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1. Introduction

1. Introduction

1.1. Motivation and Objectives

The knowledge about the probability of failure plays an important role in the
development and safe operation of gas turbine components. They are subject
to high mechanical and thermic loads with strongly deviating cyclic loading
conditions, since changes from part load to full load or abrupt cold starts are
usual. In this context low-cycle fatigue of components is of high relevance.

To estimate the fatigue life, material-specific key figures are required. There-
fore, standardized specimen tests are performed to derive strength values or
deformation behaviour [1]. The LCF life scatters widely and mechanical com-
ponents often fail, before the deterministic failure time is reached. Hence, safety
factors are applied to consider uncertain or unnown factors such as grain size
or local temperature and loading conditions. Thereby, the local grain structure
and the relation between loading and grain orientation has the most important
physical impact on fatigue life.

There are several statistical studies on fatigue and the underlying causes, see
e.g. [25; 17; 11]. In [27; 13], a probabilistic model for low-cycle fatigue life,
considering the Ramberg-Osgood and Coffin-Manson-Basquin equation com-
bined with a local hazard approach, was introduced. Additionally, the impact
of Schmid factors of the crack initiating grain on LCF was empirically demon-
strated and the size effect could be taken into account.

In [12], the modelling approach, using a Poisson process and the local strain
field, was also used for notched specimen. With both investigations, the im-
pact of local grain structure and the relation between loading state and grain
orientation could not be considered.

A similar stochastic model for the time until crack initiation under high-cycle
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fatigue, using maximum principal stress, was presented in [32]. Physical mod-
els for scatter in low-cycle fatigue lifetime were investigated in [9]. The impact
of the combination of the statistical and the geometrical size effect on fatigue
life for notched specimen was considered in [34].

In this thesis, an approach based on the physical damage mechanisms of Nickel-
based superalloys is presented. We investigate the impact of the local grain
structure and focus on the size and orientation between grains and loading
state. We present a probabilistic LCF life model using probabilistic Schmid
factors, where multi-axial loading states and anisotropic elasticity can also
be considered. We discuss two different approaches for a percolation model
to compute the crack propagation and fatigue, depending on different failure
criteria.

The models are statistically validated on real data and the fitted results are ap-
plied to the geometry of a Bladed Disk. In addition, an approach is introduced,
which allows us to transfer a common cycle counting method, combined with
an appropriate damage accumulation assumption to the probabilistic LCF life
model.

In chapter 2, we discuss the material characteristics of polycrystalline metal
and its elastic and plastic behaviour, in particular with regard to deformation.
We closely follow [28; 3].

In chapter 3, we introduce fatigue mechanisms under cyclical loading and show
the concept of Wöhler curves and the Coffin-Manson Basquin equation. Then,
we give some details on the experimental data, also given in [8]. At the end
of the chapter, we show an approach for damage accumulation on slip system
level.

In chapter 4, we introduce the mathematical basics to describe the random
orientation and give numerical insight to solve the recurrence relation of the
percolation models in chapter 7.

In the following chapter 5, probabilistic maximum shear stresses are presented,
which are resulting from the random orientation of grains. We show methods
to obtain the distributions based on the level of multi-axiality. In addition,
anisotropic elasticity is also considered and the results are compared to the
isotropic ones.
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With the probabilistic shear stress distributions, we calculate probabilistic LCF
life for single grains in chapter 6, following [19; 27]. The results for different lev-
els of multi-axiality of the loading states as well as for isotropic and anisotropic
elasticity are compared.

We introduce an analytical approach, using a percolation model to simulate
the crack propagation within a specimen, in chapter 7. Hereby, different grain
morphologies and failure criteria are considered and compared to each other.
The model is enlarged to circuit structures to also consider the geometry of
specimen. Additionally, we show the probabilsitic LCF life for different crack
and grain sizes for both models.

Afterwards, a different approach, a Voronoi polycrystal approach, is presented.
At the end of the chapter, the results of the analytical and the Voronoi model
are compared.

The analytical percolation model is fitted to experimental LCF lifetime data
in chapter 8, where we calibrate the parameters of the statistical lifetime dis-
tribution with a maximum likelihood method. The results are transferred to a
Bladed Disk in chapter 9.

In chapter 10, we present an approach for probabilistic damage accumulation
and rainflow counting for variable stress amplitudes. We use the introduced
random grain orientation and probabilistic maximum shear stresses. This al-
lows us to also consider loading states with different levels of multi-axiality.
We obtain probabilistic damage parameters for these scenarios.

Note that all considered material and test data are either provided by TU
Kaiserslautern or by Siemens AG Energy. This work has been supported by
the German federal ministry of economic affairs BMWi via an AG Turbo grant,
also consider the final report [26] of the corresponding AG Turbo project ”Von
Mikroskopischen Modellen der Schadensakkumulation zur Ausfallwahrschein-
lichkeit von Gasturbinen”.
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2. Material Structure and Mechanical
Behaviour

There are numerous materials having different mechanical properties and there-
with various possible applications. These characteristics result from the ar-
rangement of atoms at which we will look at first. We focus on metals, in
particular Nickel, as we are dealing with Nickel-base alloys.

2.1. Crystal Structures and Material
Characteristics

As metals are well deformable and can be very resistant when alloyed, they
are preferred construction materials, used in many engineering applications.
Metals represent a group of solid-states having good thermical and electrical
conductivity as well. As it can withstand large fluctuations of temperature as
well as high stress levels, it is predestined, amongst other possible applications,
for the design of gas turbines.

The kind of bonding of metals is attributable to the fact that they have only
few electrons on the outer shell being just weakly bound to individual atoms.
The so-called ionisation energy, being the energy with which the least bonded
electron is bound to the atom, is low in general. Thus the positively charged
atomic cores form a lattice with freely moving valence electrons in between,
also referred to as electronic gas. Due to the specific grid structure each atom
has a large number of nearest neighbours, which leads to higher bonding energy.

To encourage the spread of the electrons over as many atoms as possible,
different kinds of metal form varying periodic crystal structures, which can be
understood as three-dimensional grids. The elementary cell is the smallest unit
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Figure 2.1.: Cubic Crystal System

showing the appropriate characteristic building the crystal. There are 14 kinds
of so-called Bravais lattices that are distinguishable from each other by the
specific structure and symmetry1 of their elementary cells, which are the basic
components the crystals are consisting of. Figure 2.1 shows the basic lattice
structure for cubic crystals.

As we are mainly interested in the mechanical behaviour of Nickel, we espe-
cially observe the so-called face centered cubic lattice (fcc). Notwithstanding,
other crystal structures are of interest as well, as there are 3 forms being char-
acteristic for metal such as the body centered cubic we look at in the next
chapter. In the fcc case there are half atoms at the surfaces of each elemetary
cell, respectively eighth in the edges being shared with their neighbour cells as
noticeable in figure 2.2a and 2.2b.

We focus on a preferred composition of metal in form of a Nickel-base superal-
loy, which i.e. has a high mechanical strength and a strong resistance to creep
at high temperatures. The microstructure is given by the γ-matrix composed
of Nickel atoms and various amounts of different chemical elements. The γ′-
phase in the form of intermetallic precipitates increases the resistance against
dislocations. The kind of composition of chemical elements leads to differing
mechanical properties.

1The symmetry properties are discussed more precisely in chapter 3.
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(a) FCC Elementary Cell
with Edge Atoms Only

(b) FCC Elementary Cell

Figure 2.2.: Elementary Cell of a Face Centered Cubic Crystal

Subsequently to melting, the metal is cooled down building crystalized areas
also referred to as grains, which sizes depend on the appropriate cooling time.
Figures 2.3a and 2.3b show cross sectional areas of metal rods with unequal
grain sizes. There are grain boundaries between each grain and its neighbours
connecting the areas of different grain orientations and being considered as
lattice defects. As well as within these boundaries not everey grain shows a
complete crystal structure, as vacancies, random replacements of substitution
atoms or even more complex dislocations possibly occur. These structural de-
fects are described more precisely in chapter 2.2.1, since they decisively induce
deformations.

The chemical compostion of the material influences the assorted characteris-
tics of these structural defects directly, wherefore various compounds result in
diverging mechanical properties.

(a) Small Grains (b) Large Grains

Figure 2.3.: Cross Sectional Area of Metal Rods with Different Grain Sizes,
see [8]
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2.2. Elastic and Plastic Behaviour of
Polycrystalline Metal

Let us consider a metallic component being exposed to an acting force resulting
in a relocation of the atoms, on which the mechanical behaviour of the material
is depending. At a certain point, the deformation passes from an elastic to a
plastic one, which, in contrast to the former case, remains after decreasing the
stress again.

Stress and deformation are normalized with regards to length and surface,
respectively, to obtain characteristic values, which describe the behaviour and
properties of the material. These values can be determined on the basis of
experiments with standard specimen and can be transferred to various shapes
and sizes of components. The values are specified locally for small volume el-
ements to enable a characterization of fluctuations within the component. We
consider a continuum mechanical approach and therewith a size scale compar-
atively large to the distance of the atoms obtaining continuous values, as the
material is regarded as blurred. In the following we follow the presentation in
[28; 3].

Let us consider forces acting on the material in form of surface loads g and
volume forces f . The stress vector at one point of a cross sectional area through
the observed subject with force ∆F acting on surface ∆A is the lower limit of
average surface load

g = lim
∆A→0

∆F
∆A = dF

dA
. (2.1)

Since the influence of the surface size ∆A on ∆F is eliminated, one obtains
information on the stress at each point locally, as we have described above.
The force can be subdivided into normal stress acting perpendicular and shear
stress in tangential direction of the surface of the cross section.

In the three-dimensional case the stress state is attained building three cross
sections, which is shown for the most simple case in form of those being per-
pendicular to coordinate axes in figure 2.4.

Therefore consider 3 cross section surfaces Ai, i = 1, 2, 3 and the respective
forces F i

j , where j = 1, 2, 3 represent the components of the force vector. The
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Figure 2.4.: Visualization of the Stress Tensor with its Components

stress values can be calculated via σij = F i
j

Ai
, and can be represented in form of

a so-called stress tensor σ of second order with

σ =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (2.2)

As σij = σji for i, j = 1, 2, 3, the stress tensor contains 6 independent compo-
nents and determines a stress state uniquely for each point. The components
of σ give the appropriate stress values with i standing for the direction of the
cross section normal on which the stress acts, which direction in turn is signed
by the second index j. We consider stress vectors g1, g2 and g3 being assigned
to these axes and therewith representable via

gj = σjiei = σj1 · e1 + σj2 · e2 + σj3 · e3 (2.3)

with appropriate basis vectors ei for i = 1, 2, 3. The diagonal entries are the
normal stress values and the off-diagonal components are the values of shear
stress.
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It can be useful to consider the stress state in a system being rotated from the
standard coordinate system, such that the stress vectors gi and regarding nor-
mal vectors ni have the same direction respectively. This form is also regarded
as principal axes form with transformed stress tensor

σ =


σI 0 0
0 σII 0
0 0 σIII

 (2.4)

containing normal stress only, which simultaneously constitute the extreme
values of normal stress of each direction. It is common to arrange the absolute
values in a descending order and identify them by Roman numerals, such that
|σI | ≥ |σII | ≥ |σIII | ≥ 0.

As the principal stress values are the eigenvalues of the stress tensor one obtains
σI , σII and σIII solving

det(σij − σeδij) = 0, e = I, II, III, (2.5)

where

δij =

 1, if i = j

0, if i 6= j.
(2.6)

This leads to
σ3
e − I1σ

2
e − I2σe − I3 = 0 (2.7)

with

1. I1 = σ11 + σ22 + σ33,

2. I2 = σ2
12 + σ2

23 + σ2
13 − (σ11σ22 + σ22σ33 + σ11σ33),

3. I3 = det(σ).

The solutions of equation (2.5) are independent of the coordination system,
they are called invariants of the stress tensor. Using principal stress we obtain

1. I1 = σI + σII + σIII ,

2. I2 = −(σIσII + σIσIII + σIIσIII),

3. I3 = σIσIIσIII .
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2.2.1. Deformation

Having introduced some basic technical terms and designations regarding stress
we focus on the dependencies between stress and according deformation, espe-
cially for the case of polycrystalline metal.

Therefore, let us consider the shape of a mechanical component made of poly-
crystalline metal in form of a bounded region Ω ⊆ R3 with boundary ∂Ω and
closure Ω̄. As mentioned at the beginning of chapter 2.2, we consider forces
f : Ω→ R3 in form of external loads spread over volume Ω as well as surface
loads g : ∂Ω→ R3.

These forces result in a deformation represented by u : Ω̄ → R3 being also
referred to as displacement field with according stress tensor σ : Ω → R3×3,
whereas we assume the component to be fixed at some points, u(x) = 0,
x ∈ ∂ΩD ⊆ Ω.

For the (linearized) strain tensor ε : Ω → R3×3 describing the displacements
relatively when external loads are applied to the component it holds that

εij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
(2.8)

and therewith εij = εji, i, j = 1, 2, 3. Thereby the strain tensor is symmetric as
well and contains 6 independent strain components. In the uniaxial case the
relation between strain and according perpendicular strain is given by Poisson
ratio ν, which is a material specific constant, via

εper = −νε. (2.9)

Obviousely, stress and strain tensors are closely connected to each other and
one can note that stress can result in strain in normal direction as well as in
perpendicular strain. So, each component of σ influences several components
of ε. Since we consider linear elastical material and small displacements only,
the following relationship holds for multiaxial stress states

σij = Cijklεkl = Cij11ε11 + Cij12ε12 + Cij13ε13 + Cij21ε21 + ...+ Cij33ε33, (2.10)
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where C is the so-called elasticity tensor of fourth order, which describes the
stiffness of the material containing material depending characteristic values for
the elastic behaviour. We also applied Einstein’s convention on summation.
The components of the elasticity tensor can also be calculated via

Cijkl = ∂σij
∂εkl

. (2.11)

The elasticity tensor consists of 92 = 81 components, whereas 62 = 36 of
them are independent due to these symmetry properties. Therefore we can
use a simplified matrix notation, which is known as the Voigt notation, where
(σα) = (σ11, σ22, σ33, σ23, σ13, σ12) and (εβ) = (ε11, ε22, ε33, γ23, γ13, γ12), such
that we obtain

σ11

σ22

σ33

σ23

σ13

σ12


=



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C55 C56 C66


·



ε11

ε22

ε33

γ23

γ13

γ12


(2.12)

where γij = 2εij and matrix Cα,β.

If we consider the material to be isotropic, i.e. having equivalent mechnical
properties in each direction, the components of the elasticity matrix need to
be invariant under rotations. Cα,β as given in (2.12), can be reduced due to the
invariance under rotations using the isotropy assumption, as the mechanical
properties are then equal in all directions. We obtain

Cα,β =



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44


(2.13)

where
C44 = C11 − C12

2 . (2.14)
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For a more common notation we introduce the material related Lamé coeffi-
cients µ and λ with

µ = E

2(1 + ν) , λ = Eν

(1 + ν)(1− 2ν) , (2.15)

where E is the elasticity module, indicating the stiffness of the material, and
Poisson ratio ν. In the isotropic linear case it holds that

σij = λεkkδij + 2µεij, (2.16)

so

σ = λtr(ε)I + 2µε. (2.17)

Conversly, it holds that

ε = − ν
E
tr(σ)I + 1 + ν

E
σ, (2.18)

where we use the definition of Lamé coefficients as given in A.6.

For a face-centered cubic crystal stucture the material constants for a single
crystal in general depend on its orientation2 as it is the case for most crystal
types. The constants are then identified by additional indices [3].

We consider polycrystalline metals and in general a large number of grains in
comparison to the size of the component with each grain showing a random
orientation, many effects of anisotropic properties are compensated looking at
the component in total. As this is not always the case, we will introduce an
approach for including possible anisotropic effects of medium and large sized
grains in chapter 5.2.

2.2.2. Types of Displacements and Yield Criteria

Before investigating the different possibilities and criteria to identify disloca-
tion motions, some basics on mechanical resistance are introduced. The aim
is to make use of relocation mechanisms and their load depending triggers

2The material is anisotropic.
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to specify appropriate yield criteria and to recognize serious damage of me-
chanical components. To obtain yield criteria, which will be introduced in the
following subsection, it is necessary to determine specific conditions. We sub-
divide deformations into plastical and elastical parts, whereas the former ones
are irreversible in controversion to the latter.
As plastical deformations are accompanied by relocations of atoms or even
entire atom layers, the crystal structure types are of great importance. Mainly
due to the existence of these (linear) lattice defects being either screw or edge
dislocations, irreversible distortions occur which eventually lead to damage of
a component.
A dislocation can be identified by its line vector t in the direction of the dis-
location line and by its Burger vector b.

(a) Edge Dislocation (b) Screw Dislocation

Figure 2.5.: Dislocation Types with Burger and Line Vector

Drawing a circulation line around the distortion line with same length in each
grid direction, the Burger vector is the counterpart, which is missing to com-
plete the circle as identified by the red arrow in figure 2.5a and 2.5b.
Edge dislocation can be characterized by an additional half plane included at
one side of the chrystal. Screw dislocations, which are named as such as the
path of dislocation line has the form of a screw, can be understood as a slip-
ping of atom layers agiainst each other by an atom distance at one side of the
dislocation line.
In contrast to the former distortion type Burger and line vector of a screw dis-
location are parallel to each other, edge dislocations Burger and line vectors
are orthogonal.
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There are hybrids of both distortion types and in general, the dislocation line
is much more complex and changes its direction several times moving through
the crystal, wherefore the line vector direction varies locally. As the Burger
vector remains unchanged, the angles between them differ from 0◦ to 90◦.

Shear stresses acting on a dislocation in a sufficient strength lead to disbalances
of the atoms within the distortion area and result in replacing of the binding
partner as atom distances change and bondings turn over. Under further load
this procedure is repeated and moves through the crystal until the dislocation
reaches the surface, i.e. the crystal is deformed plastically.

(a) Most Densely Packed Direction (b) Not Most Densely Packed Direction

Figure 2.6.: Differences between Densely and Not Densely Packed Atom
Layers

The lowest energy starting these mechanisms is needed in direction of the most
densely packed atom layers, such that less stress is needed in comparison to
other directions to enable slipping and therefore deformations.

Section 2.2.3.2 deepens the understanding of these mechanisms and method-
ologies. We show how to advance common approaches introduced in the next
section to obtain a more appropriate yield criterion for detecting and evaluat-
ing possible dislocations.

2.2.3. Stress-Strain-Relation and Yield Criteria

It is common to carry out material tests to obtain the so-called stress-strain
diagrams showing the relation between stress and strain. In figure 2.7, we
consider uniaxial loading with σI > 0 and σII = σIII = 0. A strain level of
0.2 % is considered to be the last value before inacceptable irreversible strain
occurs, of which the corresponding stress value is also referred to as yield

14
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strength Rp0.2. Up to this point the relation can be described by a line having
a slope for small strains, which is equal to the elasticity coefficient E.

Figure 2.7.: Relation between Stress and Strain

To obtain the exact yield stress value including the fact that the atoms reorder,
if strain increases such that plastical deformations occur, the elastical line is
shifted by 0.2%. As one can note the relation changes beginning from this
point and stress increases flatly up to a maximum Rm. Beyond this ultimate
tensile strength growing neckings at the specimen can be observed resulting in
a fracture at ε = A, also called elongation. Though the stress decreases as it is
obtained with regards to the starting prepositions, it locally increases, as the
cross sectional area of the specimen becomes smaller.

Considering a polycrystalline metal rod with an isotropic material behaviour,
on which uniaxial forces are acting, we assume to obtain plastical deformation
approximately, when reaching the yield criterion

σI −Rp = 0. (2.19)

For cases of multiaxial stress states we need a reference value to compare the
strength of stress to an uniaxial loading state and therewith check whether the
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critical value for plastical deformation is exceeded. In engineering it is common
to use an equivalent stress σv of the stress tensor, such that

f(σ) = σv(σ)− σyield = 0. (2.20)

Considering the principal stress (2.4) of the stress tensor ordered in a descend-
ing way we obtain

f(σI , σII , σIII) = 0 (2.21)

as flow condition of the material. Consider the situation where the loads switch
from state σ1 to load state σ2 periodically, i.e. showing a cyclic behaviour. The
according stress amplitude with respect to equivalent stress is

σa = 1
2 (σv(σ1)− σv(σ2)) . (2.22)

For the purpose of describing the connection between strain and stress accord-
ing to a given stress amplitude we use the following relation:

Definition 2.1 (Ramberg-Osgood Equation). Let E be the elasticity mod-
ule of some material with strain hardening coefficient K and strain hardening
exponent n. The Ramberg-Osgood equation representing the relation between
stress and strain with regards to its material constants is defined by

εa = RO(σa) = σa
E

+
(
σa
K

) 1
n

. (2.23)

The right handside of the Ramberg-Osgood equation shows the composition
of an elastical part and a plastical part, where the former one can be neglected
considering large deformations only. The strength of plastical deformation be-
fore fracturing is charaterized by its ductility, the heigth of stress by hardening
respectively.

2.2.3.1. Von Mises Yield Criterion

To investigate the close form of the yield criterion and its usefulness regarding
multiaxial loading states we focus on the condtitions resulting in deformation
first and closely follow von Mises’ shape modification hypothesis.
Within one grain plastical deformation is caused by slipping of the atomic
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layers, wherefore the order of atoms and the crystal structure type are impor-
tant for the elastical and plastical behaviour. Hydrostatical stress, i.e. where
σ1 = σ2 = σ3 does not lead to a relocation of atoms and therewith to plastical
deformation. As only stress differences compared to the resulting hydrostatical
axis leads to shearing within the material, the stress tensor can be reduced by
its hydrostatical part

σh = 1
3(σ11 + σ22 + σ33). (2.24)

We obtain the so-called stress deviator

σ′ = σ − σh · δij, i, j = 1, 2, 3, (2.25)

which means considering principal stress
σ′I 0 0
0 σ′II 0
0 0 σ′III

 =


σI 0 0
0 σII 0
0 0 σIII

−

σh 0 0
0 σh 0
0 0 σh

 . (2.26)

The invariants, that we introduced in (2.2), can be calculated for the stress
deviator as well. To distinguish between the invariants of the stress tensor and
the stress deviator we use I ′1, I ′2, I ′3 instead of I1, I2, I3. Thus the first invariant
of the stress deviator (compare (2.2)) I ′1 is equal to zero, as

I ′1 = (σI − σh) + (σII − σh) + (σIII − σh) = 0 (2.27)

Noting that the stress deviator is symmetric as well it holds for the second
invariant that

I ′2 = 1
2σ
′
ijσ
′
ji

= 1
2
[
(σ11 − σh)2 + (σ22 − σh)2 + (σ33 − σh)2 + 2σ2

12 + 2σ2
13 + 2σ2

23

]
= 1

3
[
σ2

11 + σ2
22 + σ2

33 − (σ11σ22 + σ11σ33 + σ22σ33)
]

+ σ2
12 + σ2

13 + σ2
23

(2.28)

Considering the deviator in the principal axes form we have

I ′2 = 1
6
[
(σI − σII)2 + (σI − σIII)2 + (σII − σIII)2

]
. (2.29)
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To evaluate the influence of a multiaxial stress scenario it is a very frequent
practice in engineering to calculate equivalent tensile stress from σ to obtain
a comparable value for a yield strentgh of an uniaxial loading case.

Considering von Mises’ shape modification hypothesis the material is assumed
to be deformed when the second invariant of the stress deviator reaches a given
yield stress, which is related to the former introduced yield criterion Rp (see
(2.19)).
The yield criterion in the von Mises case takes the following form

f(I ′2) = I ′2 − k2
f = 0 (2.30)

with a material depending constant kf .

The equivalent stress therewith is defined by

σv =
√

1
6 [(σI − σII)2 + (σI − σIII)2 + (σII − σIII)2]. (2.31)

Considering an uniaxial stress state with strength of the yield offset Rp, i.e.
σII = σIII = 0 and σI = Rp the von Mises yield criterion

√
1
6 [(σI − σII)2 + (σI − σIII)2 + (σII − σIII)2] = kf (2.32)

becomes

kf =
√

2R2
p

6 = Rp√
3
. (2.33)

Thus the yield criterion is reached if it holds that

√
σ′ijσ

′
ji =

√
2
3Rp. (2.34)

Figure 2.8 shows the appropriate yield surface in case of von Mises equivalent
stress. It can be visualized via a cylinder around the hydrostatic axis, i.e. where
σI = σII = σIII and radius r =

√
2
3 · Rp. The axes are used according to the

principal stress system.
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Figure 2.8.: Von Mises Yield Surface as Cylinder around σhI with r =
√

2
3Rp

The following definition shows the possibility of another version for equation
(2.34).

Definition 2.2. The Frobenius norm (being also referred to as Hilbert-Schmid
norm) of A ∈ R3×3 is defined by

||A||F =
√√√√ 3∑
i,j=1
|aij|2. (2.35)

As the stress deviator is symmetric and therewith we can write

√
σ′ijσ

′
ji =

√√√√ 3∑
i,j=1
|σ′ij|2 = ||σ′||F , (2.36)

the yield criterion is fullfilled if

||σ′||F =
√

2
3Rp. (2.37)

There are many combinations of σ′I , σ′II , σ′III fullfilling the yield criterion, such
that for the appropriate stress tensors equation (2.37) holds.
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Let σh be fixed. Then the set of possible stress can be visualized by a slice out
of the cylinder around the hydrostatic axis being coloured in darker grey as
shown in figure 2.8. For each point on the outer line of the circle standing for
a combination of principal stress with coordinates on the circle line equation
(2.37) holds.

Let Rp = 1, then the set of combinations of principal stress according to
equation (2.34) can as well be illustrated by a ball with r =

√
2
3 (Figure 2.9).

Considering the stress deviator resulting in deformation only in accordance to
the von Mises shape modification hypothesis, principal stress combinations are
regarded, where (Compare equation 2.27)

I ′1 = σ′I + σ′II + σ′III = 0. (2.38)

Therewith a plane exists intersecting the ball, whose resulting circle line con-
tains all possible stress vectors. The von Mises yield strength criterion does
not take into account the relation between σ′I , σ′II and σ′III , wherewith the dif-
ferences between principal stress are neglected. All points of the intersection
lead to the same result of equivalent von Mises stress and are ranked as equals.

Figure 2.9.: Intersection of Deviatoric Plane and Sphere with ||σ′||F =
√

2
3
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Figure 2.10.: Mohr’s Circles characterizing Possible Shear and Normal Stress
Combinations

2.2.3.2. Schmid Factors and Modified Yield Criteria

As the diversity of solutions is ignored using the resulting equivalent tensile
stress only, we now introduce an alternative approach of yield criteria.
According to (2.4) consider a stress state described in terms of principal stress
σI , σII , σIII .

As only shear stress leads to deformation only and the fact that principal stress
constitute the extreme values of normal stress of each direction, we can easily
calculate maximum shear stress as follows:

τmax = σI − σIII
2 , (2.39)

which closely relates to Tresca shear stress hypothesis [See 3.3.2, [3]] with yield
criterion

σv = σI − σIII = Rp. (2.40)

Thus the flow condition is
τmax = τcrit. (2.41)

Figure 2.10 shows the the valid range of normal and shear stress being identified
by the grey coloured area and makes the calculation of maximum shear stress
regarding (2.39) easily recognizeable. This hypothesis considers the differences
of principal stress, but the height of the middle stress σII is ignored. Our aim
is to introduce an approach with accords to the shear stress resulting from
different loading states, which acts on the different densely packed atom layers
depending on the appropriate crystal structure type. First we have a look at
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the standard case in form of an uniaxial loading state and then continue with
the specific characteristics and a possible parametrization for multiaxial stress
scenarios.

At first we consider a crystal with face centered cubic lattice (fcc) which means
we have a cubic lattice with one eighth of an atom at each edge and half atoms
centered in each face.

Figure 2.11.: FCC Crystal

As introduced in the beginning of this section dislocation begin to move through
the crystal once a sufficient shear stress value is reached. Looking at the struc-
ture (Compare figure 2.2a) of a face-centered cubic elementary cell it is obvious
in which way the atoms can be relocated under forces involved, namely along
the planes of most dense packages. Those are equal to the so-called slip planes
being 4 in this case and forming a tetrahedron which is shown in figure 2.11.
There are 3 possibilities of slip directions for each slip plane, as two different
edges build one slip system. The figure shows an unit cell of a crystal with
appropriate slip planes and systems.
Let us consider ni to be the normal of slip plane i, i = 1, ..., 4 and si,j, j = 1, 2, 3
the j-th slip system related to slip plane i. In the following we consider both
vectors to be unit vectors.

Let F be the vector in direction of tensile stress identified by the dashed line
in figure 2.12 and consider the axes of x1 being parallel to F . The blue surface
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Figure 2.12.: Impact of Tensile Stress on a Slip System

represents an arbitrary slip plane of the crystal with normal vector ni and slip
direction sij. The stress tensor is given by

σ =


σI 0 0
0 0 0
0 0 0

 . (2.42)

The shear stress acting on the slip plane in direction of sij is calculated via

τij = ni · σ · sij. (2.43)

As one can note on figure 2.12, for unit vectors ni and sij, as considered above,
and σ as defined, we obtain

τij = σI · cos γ cosκ. (2.44)

So in the case of an uniaxial loading state the Schmid factor or rather the
conversion factor of normal stress to shear stress for a slip system shear stress
can be expressed by

τij
σI

= ni,1 · sij,1

= cosκ cos γ.
(2.45)
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Obviously the factor reaches its maximum value being 0.5 under forces acting
in direction 45◦ to the slip system. In the following we will rather use the term
maximum shear stress than Schmid factor to avoid confusion as there is no
one to one transfer possible in the multiaxial loading case. In the following we
always consider σ to be normalized, such that we can use τ directly as shear
stress value.

In the general case shear stress in direction of a slip system si,j, i = 1, ..., 4,
j = 1, 2, 3 given the stress tensor σ can be calculated as in 2.43. As the crystal
structure type and according slip systems determine the number of shear stress
values, there are 12 shear stresses in case of a face-centered cubic crystal. A
dislocation begins to move through the crstal when a critical value τcrit (or Rp)
is reached, i.e.

τi,j = τcrit. (2.46)

So we follow a shear stress based yield criterion approach on slip system level.
As for a one-time loading the slip system experiencing maximum shear stress
reaches the critical value first and therewith may activate an ongoing disloca-
tion, we consider

τ = max
i,j
|τi,j| (2.47)

as a comparison value to the critical one
Let us consider three-dimensional loading conditions comprising stresses in
normal directions and shear stresses in all directions of space. We see in equa-
tion 2.2.3.2 that depending on the crystal structure type and therewith the
number of slip systems there are various different shear stress values resulting
from one loading state.As the deviatoric principal stress tenses are sorted ac-
cording to their absolute size (compare (2.4)), for uniaxial tensile stress σI it
holds that

σ′I 0 0
0 σ′II 0
0 0 σ′III

 =


σI − σh 0 0

0 −σh 0
0 0 −σh

 =


2
3σI 0 0
0 −1

3σI 0
0 0 −1

3σI

 . (2.48)

It is noticable that the yield criterion according to equation (2.37) is fullfilled
for σI = Rp, as ∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣


2
3σI 0 0
0 −1

3σI 0
0 0 −1

3σI


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣ =
√

2
3σI . (2.49)
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To have a ratio between maximum shear stress and the applied principal stress,
we introduce the alternative Schmid factor

m := τ√
3/2 · ||σ′||F

, (2.50)

where the denominator results from the comparison of von Mises equivalent
stress to the yield point Rp, which is given in equation (2.37).
So in the case where we normalize the stress deviator to

√
2
3 , we can use τ

directly.
We introduce the parameter κ ∈ [0, 1] to measure the ratio of multiaxiality,

κ = |σ
′
III − σ′II |
|σ′I |

, (2.51)

which is equal to zero in the uniaxial loading state, i.e. if σ′II = σ′III . Parameter
κ = 1 holds, if the absolute stress difference between σII and σIII is equal
to |σI |, which is illustrated in figure 2.13. As one can note this is the case
for principal stresses with the same strength but different sign. The possible

Figure 2.13.: Mohr circles for κ = 1

combinations of principal stress values are on the intersection of the deviatoric
plane and the cylinder given by the constant equivalent stress condition, shown
in figure 2.9. All values on the circle have an equal an constant equivalent stress
value and consist of deviatoric parts only. The sphere represents the case, where
||σ′||F =

√
2
3 .
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Figure 2.14.: Intersection of Deviatoric Plane and Sphere with ||σ′||F =
√

2
3

There are 6 equal areas, as each of the 3 principal stress values can be the
lowest or the highest, respectively. The green disk in figure 2.14 shows one of
the 6 areas. Each possible point on the circle represents one principal stress
combination. The edges represent the points where we have an uniaxial stress
state. Proceeding the circle from one point to the other, we obtain all possible
loading states with varying principal stress relation κ.
Using κ we can connect the relation of principal stresses to the resulting values
of maximum shear stress. We therewith also include the middle stress difference
in controversion to section 2.41, where the differences of principal stress are
regarded, but the height of the middle stress σII is neglected.
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3. Fatigue

In the following we deal with cyclically changing stresses resulting in maximum
load limits considerable lower than statical ones. A mechanical component un-
dergoes several numbers of loading cycles of differing intensities and frequency,
temperature fluctuations or environmental conditions. We focus on repeated
cyclic stress states changing in time, which lead to fracture and damage of the
material being also referred to as fatigue.

We first introduce the differences between individual resistance types with
regards to two different stress states and in the following focus on a larger
number of loading states to evaluate various loading histories. Thereby we fol-
low [3; 28]. Furthermore, we introduce an approach for damage accumulation
on slip system level.

3.1. Types of Resistance and Fatigue Testing

We differentiate between dynamic (cycle fatigue) strength resistance and oper-
ational resistance being both also referred to as fatigue resistance of the com-
ponent. The former one is used for periodic loadings whereas the latter one
describes an aperiodic deterministic or even randomly occuring stress course.
Note that in many cases, these terms are not strictly determined and therefore
are often used synonymously.

Figure 3.1 shows an examplary, sinusoidal fatigue test curve. The stress am-
plitude identified by σa gives the strength of stress changes compared to mean
stress σm, so the heigth of swings from mean stress to the upper limit σu and
the lower σl. Obviously, the maximum working stroke is given by ∆σ = 2σa
and it holds that σm = σu+σl

2 and σa = σu−σl

2 .
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Figure 3.1.: Fatigue Test Curve

Figure 3.2.: Wöhler Curve

The general fatigue resistance test is called Wöhler fatigue test being a cy-
cle fatigue test with periodically repeated stress or strain cycles of the same
heigths until a specified failure criterion is reached. The stress amplitudes are
varied such that pairs of values for different stress levels σa and their maximum
number of load cycles until fatigue3 Ni are obtained. Plotting these values one
obtains the so-called Wöhler line as shown in figure 3.2. There is a large scat-
ter, as the influence of even the smallest material defects on fatigue can be
very high.

The range up to a level of lifetime Ni = 104 belongs to the short-term fa-
tigue, whereas the range beginning from Ni = 105 constitutes the long-term
strength, also referred to as time strength or fatigue strength, which has an

3Here we use the term lifetime as well.
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even larger number of cycles and characterizes the material depending range,
where the specimen is considered not to fail once the limit is reached. The first
range especially covers plastical deformations, beginning from Ni = 105 the
elastical ones outweigh.

It is very common to also refer to low-cycle fatigue (LCF) and high-cycle
fatigue (HCF). LCF corresponds approximately to the short-term strength,
whereas HCF begins from Ni = 105 according to time strength. The key idea
is to differentiate between fatigue mechanisms occuring after a low number of
cycles already and those appearing after a large number of cycles. The usage of
different terms is often overlapping to some extend. It is a frequent practice to

Figure 3.3.: Hysteresis Loop showing Relations between
Stress an Strain under Cyclic Loading

do the LCF fatigue testing according to given strain levels rather than stress
levels to obtain the so-called strain Wöhler curves.
Figure 3.3 illustrates the non linear relation between stress and strain levels
of elastic-plastic load within Wöhler fatigue testing by a hysteresis loop. The
composition of strain amplitude εa = ∆ε

2 comprising elastic and plastic parts
was introduced by the Ramberg-Osgood equation in (2.23).

Straining the tensile specimen in a sufficient manner leads to an arising of
extrusions and intrusions within the material along so-called persistent slip
bands, which result from small irreversible dislocations (compare section 2.2.2).
For metals, the stress depending Wöhler curve has the form of a straight line
on a wide range, the relation can be described by the following
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Definition 3.1 (Basquin Equation). Let σ′f > 0 be the material depending
fatigue strength coefficient and b < 0 the fatigue strength exponent. The relation
of stress amplitude and life cycle Ni for metals is approximately given by

σa = σ′f (2Ni)b . (3.1)

Strain Wöhler diagrams can be divided into two ranges with approximately
linear behaviour at log-scale, which characterize the elastical and plastical part
of the total strain as seen in (2.23). In order to describe the elastical part and
therewith the HCF strain lifetime relation equation (3.1) is used

εela =
σ′f
E

(2Ni)b . (3.2)

As the LCF part covers higher amplitudes, it includes plastical deformations
mostly, for which the following relation can be approximated.

Definition 3.2 (Coffin-Manson Equation). Consider fatigue ductility coeffi-
cient ε′f > 0 and exponent c < 0, which characterizes the solidification of the
material. The plastical strain lifetime relation can be described by the Coffin-
Manson equation

εpla = ε′f · (2Ni)c . (3.3)

The composition of both equations (3.1) and (3.2) to total strain leads to

Definition 3.3 (Coffin-Manson Basquin Equation). Dividing total strain into
plastical and elastical components the relation can be described the following

εa = εela + εpla =
σ′f
E

(2Ni)b + ε′f · (2Ni)c (3.4)

with material constants as given in (3.1) and (3.2).

In the following we also write in a short form

CMB(Ni) = εela + εpla =
σ′f
E

(2Ni)b + ε′f · (2Ni)c . (3.5)

Therewith the relationship between the deterministic number of cycles to fail-
ure Ni and total strain amplitude can be described, see 3.4. To calculate the

30



Microscopic Damage Accumulation Models

3. Fatigue

0.
00

2
0.

00
3

0.
00

4
0.

00
6

1e
+0

2

1e
+0

3

1e
+0

4

1e
+0

5

1e
+0

6

Cycles Ni

S
tr

ai
n

Figure 3.4.: Coffin-Manson Basquin, relation between strain and cycles to
failure, axis are scaled in log10

deterministic number of load cycles to crack initiation based on a given strain
amplitude, the equation needs to be inverted, see 3.5. We obtain

CMB−1(εa) = Ni. (3.6)

As plastic yielding causing stress relaxation is not included in using the elastic
stress amplitude, the elastic-plastic stress amplitude is overestimated. One can
use the common Neuber shake down to convert the elastic stress amplitude to
an elastic-plastical one

(
σela
)2

E
=

(
σel−pla

)2

E
+ σel−pla

(
σel−pla

K

) 1
n′

(3.7)

By solving SD
(
σela
)

= σel−pla and plugging in the Ramberg-Osgood equation
we obtain εel−pl.

After we have introduced the damage mechanisms under cyclic loading, section
3.3.1 shows how cycles of different sizes can be accumulated with regards to
their causing damage.
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Figure 3.5.: Inverse CMB Relation, resulting from an interpolation in R with
10 000 knots, the axis are plotted in log10

3.2. Experimental Data

The previously shown results offer a possibility to calculate the number of load
cycles Ni to crack initiation, i.e. a deterministic failure time by inverting CMB

as given in (3.5).
Therewith it should be possible to predict the lifetime of a component based
on given parameters of the appropriate material and loading state. For the
experimental part, conducted by TU Kaiserslautern, specimen made of Nickel-
base superalloy Réne80 are used. Due to the fact that this material has a
maximum operational temperature of 982◦ C, it is often used in rear stages of
gas turbines, where there is a temperature of about 800◦ C.

Figure 3.6.: Material components of Réne80 specimen
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The exact casting and follow-up treatment process can be found in [8]. To
obtain different grain sizes, the rods, of which the specimens are made, have
different diameters. The devianting cooling time results in smaller grains for
smaller diameters and bigger grains for larger ones.The dashed black line shows
the area of an approximately homogeneous grain structure.

Figure 3.7.: Cross section of the specimen rods with diameter of 12mm,
17mm and 20mm, see [8]

Isothermal LCF experiments are performed under 850◦C. In case of a crack
occuring during the test, the stress amplitude is reduced due to the decreasing
cross section. The cycle to fatigue is determined at a stress amplitude drop of
5%.

Figure 3.8.: Grain sizes on the surface of the specimen, coarse grain, medium
sized grain, fine grain, see [8]

Figure 3.11 shows a big scatter in life for equal stress amplitudes. The fine
grained specimens tend to a longer life compared to the medium sized and
coarse grained matrial.
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Figure 3.9.: Total strain Wöhler diagramm with coarse, medium sized and
fine grained specimen, a) shows the total strain amplitude, b) the stress

amplitude on the y-axis, cycles to fatigue on the x-axis, plotted with results
from [29], see [8]

It is also noticeable that for one strain amplitude the lifetime scatters widely,
such that one can not easily imply a deterministic lifetime when loading the
specimen by a specific strain. Using the stress amplitude σa reduces the scatter
significantly for one stress level.

Figure 3.10.: Fracture face of isothermal LCF tests with a, a) low total strain
amplitude and fine grained material, b) high total strain amplitude and
medium grain size, the red arrows show the crack initiation areas, see [8]
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The fracture face differs, depending on the level of applied strain. In case of
large strain amplitudes there are often several areas of crack initiation due to
the high loading and strong plastical deformation. The cracks grow together
and lead to an abrupt fatigue. For lower strain amplitudes the cracks grow
slowly and start within one single grain. The crack face looks more homo-
geneous. The different colours within the crack surface result from oxidation
under high temperature and make the different areas differentiable.

3.2.1. Schmid factors

Low stress amplitudes lead to single cracks, where the plastical deformation is
concentrated on one grain and the crack is initiated. The critical shear stress
within a slip system of a grain on the surface is exceeded. The local grain ori-
entation and resulting Schmid factor of a specimen and its crack starting zone
can be visualized in the so-called EBSD (Electron Back Scatter Diffraction)
analysis. Therefore the cutting zone goes through the crack initiating grain,
which is afterwards polished and etched.

Figure 3.11.: Resulting shear stress within the slip system plotted against
cycle to fatigue, together with results from [29], see [8]

Here we can see a clear relation between lifetime to failure Ni and resulting
shear stress τres.
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Figure 3.12.: Schmid Factors - EBSD Analysis, see [8]

Grain Number 1 2 3 4 5
Schmid factor 0.46 0.46 0.49 0.49 0.47
Table 3.1.: Schmid factors of grains in 3.12, a)

Grain Number 1 2 3 4 5
Schmid factor 0.46 0.47 0.43 0.49 0.47
Table 3.2.: Schmid factors of grains in 3.12, b)

We see that there are comparably high Schmid Factors in the crack starting
area. In practice, we can not look inside the material of the component and
therefore need an appropriate possibility to estimate the lifetime based on the
regarding parameters such as grain size distribution, stress state and stress
history.
The most important problem is that the grains are randomly distributed, there-
with determinstic lifetime approaches are not appropriate. Our approach is to
build a probabilistic model, which will be introduced in the following chap-
ters.
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3.3. Damage Accumulation

Looking at the real operation mode of a gas turbine, especially in the case
when full and part load periods are considered, a lifetime prediction with con-
stant stress states only is not appropriate. There are several loading collectives,
which need to be evaluated differently, as the according lifetimes vary with the
respective stress amplitude.

A common approach to estimate a component’s life are damage accumula-
tion rules of linear type, such as the so-called Miners rule. The loading states
of a stress course are subdivided into several groups of different amplitudes
and evaluated with a damage each. The outcome is a damage paramter, whose
calculation is given by the following definition.

Definition 3.4. Consider a loading course with M ∈ N different stress states
repeated and according amplitudes σka, k = 1, ...,M with respective determinis-
tic lifetime Nk,det = Ndet(σka) and nk,det repetitions in group k. The damage of
collective k can be calculated as

Dk = nk,det
Nk,det

. (3.8)

According to Miners rule the component fails if

M∑
k=1

Dk =
M∑
k=1

nk,det
Nk,det

≥ 1. (3.9)

So for each stress component, the number of realized cycles to a given stress
amplitude is evaluated in relation to its deterministic admissable number of
cycles until failure according to the Coffin-Manson Basquin equation. Once
the sum of all groups exceeds a value of 1, hundred percent of allowed cycle
numbers is exploited and the component is considered to fail.

One common issue regarding Miners rule is that it does not take into ac-
count the sequence of loading states, which may lead to unevaluated sequence
effects. As the lifetime is calculated according to a deterministic approach,
damage parameter D is deterministic as well. But the scatter in life is trans-
ferred to D and failure may occur for loading histories having a deterministic
damage parameter of D < 1.
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3.3.1. Rainflow Counting - General and Slip System Based
Approach

The Miners’ rule offers a simple possibility to evaluate sustained damage for
mechanical components based on the stress history. Thererfore the loading
course needs to be subdivided into cycles of different height, as each stress
amplitude results in a different lifetime value. We consider a stress-time func-

Figure 3.13.: Example of a Stress-Time Function

tion representing the given loading history, i.e. as given in 3.13. The points of
interest are the turning points of the stress course, as these local maxima and
minima characterize stress reversal and therewith start or end points of load
cycles. We can see, that there are also smaller amplitudes adding up to larger
cycles. Therefore the load-time history is reduced by removing small cycles,
which contribute a negligible amount of damage only.
The aim is to measure the number of passed hysteresis loops of individual
stress ranges and evaluate critical load cycles having significant impacts on
the damage.
The rainflow counting method was invented by [7] and independently from this
research also by [5]. Here we closely follow [22].
Rainflow counting is named as such, as the principle reminds of examining the
flow of rain over a set of pagoda roofs. A flows starting point is a positive or
negative peak of the time dependent stress or strain function, where the rain
reaches the lower level (roof).

The rainflow ends if one of the following conditions is fullfilled:

1. The rainflow of a roof reaches the falling water of a higher roof.
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Figure 3.14.: Figure 3.13 as pagode roof with positive (red) and negative
(green) directed flows

2. The waterfall is on the opposite of a peak being higher / lower than (or
equal to) the starting point of the flow.

3. There is no higher (or lower) roof, which the falling water reaches.

An example is given in figure 3.14. Each rainflow has an according start point,
a stress value at start point respectively, and an end point. The range between
each start and end point is evaluated as half cycle regarding stress difference
between them.

After all half cycles are determined they are summed up depending on their
individual amplitude, since each cycle results in part damages according to
a general assumption that damages accumulate and lead to a total damage.
We focus on a linear damage accumulation with regards to [23] as given in
definition 3.4.
Although it may lead to uncertain or inaccurate results, it is a very frequent
practice due to simplification and transparancy of the procedure. The used
lifetime parts nk are measured relative to the ones given by Wöhler testing to
obtain the portion of load cycles already realized.
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3.3.1.1. Slip System Based Rainflow Counting

Conventional rainflow counting methods use principal stress ranges or von
Mises equivalent stress for cycle counting. This is applicable for uniaxial load-
ings. For multiaxial and non-proportional loading cycles these methods are
not appropriate. According to the previously given reasons, we evaluate the
damage each collective causes applying a slip system based approach. Possible
approaches to count and evaluate multiaxial variable amplitude loading have
been introduced in [35; 4].
We consider that the part damages calculated according to equation (3.8) occur
within the slip systems. Therefore we again recall equation (2.43) to calculate
shear stress for each slip system in the case of a face centered cubic crystal
structure.
Consider 3 loading states σrep,1, σrep,2 and σrep,3, which are alternating due to
a cyclic operational course. Applied to (2.43) we obtain 3 shear stress values
for each slip system

τi,j(σrep,l) = ni · σrep,l · si,j, (3.10)

where l = 1, 2, 3. Looking at a time history with T changing points we consider
various switches between the stress states and therewith a complete sequence
of stress scenarios

σhist =


σhist,0

σhist,1
...

σhist,T

 , (3.11)

with σhist,t ∈ {σrep,1, σrep,2, σrep,3}, t = 0, 1, ..., T . The shear stress for each slip
system at a given time point m > 0 is given by

τi,j(σhist,m) = τi,j(σhist,m). (3.12)

Since we apply rainflow counting, we first reduce the given historical load
course and remove small cycles. For 3 stress scenarios it is sufficient to apply
the following:

As there are 3 stress scenarios σrep,1, σrep,2 and σrep,3 for a fixed slip system,
there are 3 different situations of resulting shear stress, namely τi,j(σrep,1),
τi,j(σrep,2) or τi,j(σrep,3).
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Algorithmus 1 : Reduce History for Rainflow Counting with 3 Load States
Data : σhist (T + 1× 3× 3) tensor with σhist,m ∈ {σrep,1, σrep,2, σrep,3}

∀m ∈ {0, 1, ..., T}, Slip Plane Normals ni, Slip Systems si,j,
i = 1, 2, 3, 4, j = 1, 2, 3

Result : σ∗ (T ′ × 3× 3) tensor containing the reduced stress history

for all slip planes i = 1, 2, 3, 4 do
for all slip systems j = 1, 2, 3 do

1 Let τa,i,j(σhist,m) :=
τi,j(σhist,m)− τi,j(σhist,m−1) for all changing points m = 1, ..., T do

2 if sgn(τa,i,j(σhist,m) · τa,i,j(σhist,m+1)) == +1 then
Delete σhist,m;

end
end

end
3 Store new load history with T ′ points as σ∗

This results in the following possible stress amplitudes for a given time point
m of the adjusted load history:

τa,i,j(σ∗m) =


(τi,j(σrep,1)− τi,j(σrep,2))/2, if σ∗m = σrep,1, σ

∗
m−1 = σrep,2or v.v.,

(τi,j(σrep,2)− τi,j(σrep,3))/2, if σ∗m = σrep,2, σ
∗
m−1 = σrep,3or v.v.,

(τi,j(σrep,1)− τi,j(σrep,3))/2, if σ∗m = σrep,1, σ
∗
m−1 = σrep,3or v.v..

Algorithm 2 shows the counting for a face-centered cubic crystal with 3 states
and the previously adjusted load history according to the given rainflow count-
ing method. Let the stress amplitudes be sorted with respect to their size, such
that

τi,j(σrep,1)− τi,j(σrep,3) ≥ τi,j(σrep,1)− τi,j(σrep,2) ≥ τi,j(σrep,2)− τi,j(σrep,3).

To introduce a shorter form let τaI := τi,j(σrep,1)− τi,j(σrep,3),
τaII := τi,j(σrep,1)− τi,j(σrep,2) and τaIII := τi,j(σrep,2)− τi,j(σrep,3).

With the method described in algorithm 1 and 2 we can evaluate given stress
scenarios with respect to their damage with a slip system based approach.
The problem is the unknown orientation of grains. Therefore a probabilistic
approach and enlargement for this method will be introduced in chapter 10.
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Algorithmus 2 : Rainflow Counting per Slip System with 3 Stress States
Data : σ∗ (T ′ × 3× 3) tensor with σ∗m ∈ {σrep,1, σrep,2, σrep,3}

∀m ∈ {0, 1, ..., T}, Slip Plane Normals ni, Slip Systems si,j,
i = 1, 2, 3, 4, j = 1, 2, 3

Result : Nrain (3× 3× 4) tensor containing the rainflow counts of 3
stress states for a fcc crystal (12 slip systems)

1 Initialize a 3× 3× 4 tensor nrain := 0;
for all slip planes i = 1, 2, 3, 4 do

for all slip systems j = 1, 2, 3 do
2 Sort shear stress amplitudes according to size, such that

τaI := τi,j(σrep,1)− τi,j(σrep,3), τaII := τi,j(σrep,1)− τi,j(σrep,2) and
τaIII := τi,j(σrep,2)− τi,j(σrep,3) with τaI ≥ τaII ≥ τaIII ;
for all changing points m = 1, ..., T ′ do

3 Calculate shear stress amplitudes
τa,i,j(σ∗m) := τi,j(σ∗m)− τi,j(σ∗m−1);

4 if τa,i,j(σ∗m) == τaI then
Nrain,1,i,j := Nrain,1,i,j + 1;

else if τa,i,j(σ∗m) == τaII then
Nrain,2,i,j := Nrain,2,i,j + 1;

else
Nrain,3,i,j := Nrain,3,i,j + 1;

end
end

end
end
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4. Mathematical Basics

We introduce mathematical basics to describe the random orientations of
grains appropriately and give some numerical insight to solve the recurrence
relations arising from the percolation model in the next chapters.

4.1. Stochastical Fundamentals and Haar
Measure

For the following we follow [6] and [15].

Definition 4.1 (Group). A group is a set Γ with a corresponding operation
· : Γ× Γ→ Γ which complies

1. (ab)c = a(bc) ∀ a, b, c ∈ Γ (Associativity)

2. ∃e ∈ Γ such that ae = ea = e ∀a ∈ Γ (Existence of identity)

3. ∀a ∈ Γ ∃a−1 ∈ Γ such that aa−1 = a−1a = e (Existence of inverse)

In the following let Γ be a group with identity element e. With A,B ⊂ Γ and
x ∈ Γ we determine

AB := {ab : a ∈ A, b ∈ B}, A−1 := {a−1 : a ∈ A},

xA := {xa : a ∈ A}, Ax := {ax : a ∈ A}.
(4.1)

For a ∈ Γ we define left translation L(a) : Γ → Γ and right translation
R(a) : Γ→ Γ as L(a) := ax and R(a) := xa, x ∈ Γ.

Definition 4.2 (Topological space). Let X be a set. A set of subsets of X τ

is a topology on X if
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1. ∅, X ∈ τ ,

2. Ai ∈ τ ∀ i ∈ I ⇒
⋃
i∈I Ai ∈ τ for all set of indices I,

3. Ai, ..., An ∈ τ ⇒
⋂n
i=1Ai ∈ τ .

X has the Hausdorff property if ∀ x, y ∈ X ∃ U, V ∈ τ with x ∈ U , y ∈ V and
U ∩ V = ∅.

In the following will consider the groups to fulfill the Hausdorff property. Let
C(X) denote the space of continuous functions f : X → K. Further let CC(X)
denote the space of f ∈ C(X) with compact supp f := {f 6= 0} and C+

C (X)
the non-negative elements of CC(X).

Definition 4.3 (Topological group). A group Γ with an associated topology τ
on Γ is a topological group, if the maps

Γ× Γ→ Γ (x, y)→ xy(group multiplication)

Γ→ Γ x→ x−1(inverse)

are continuous. A group with a Hausdorff topology is locally compact if each
point x ∈ X has a compact neighborhood.

Definition 4.4 (Lie group). A topological group with the structure of a C∞

manifold having a smooth multiplication and inversion map is called a Lie
group.

Definition 4.5. The special orthogonal group SO(3) with matrix multiplication
is the set of matrices in {U |U ∈ R3×3 : UUT = UTU = 1, det(U) = 1}. It
represents the group of rotations in R3.

Definition 4.6 (Borel measure, Radon measure). Let X be a locally compact
Hausdorff space with Borel σ-algebra B(X). If for a measure µ : B → [0,∞]
it holds that ∀ x ∈ X ∃ an open set D with µ(D) < ∞, then µ is a Borel
measure. If additionally,

∀B ∈ B(X) : µ(B) = sup{µ(K)|K ⊂ B,Kcompact}, (4.2)

µ is a Radon measure.
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A linear form I : CC(Γ)→ K with

I(f ◦ L(y)) = I(f), (4.3)

f ∈ CC(Γ), y ∈ Γ, is called left invariant. Analoguously, a measure µ : B(Γ)→
[0,∞] is left invariant, if ∀y ∈ Γ it holds that

µ(yB) = µ(B), (4.4)

B ∈ B(Γ), y ∈ Γ, i.e. if L(y)(µ) = µ.

Theorem 4.7 (3.8, [6]). Let Γ be a topological group. Each f ∈ CC(Γ) is left-
and right uniformly continuous4.

Lemma 4.8 (3.9, [6]). Let Γ be a locally compact Hausdorff topological group.
Let I : CC(Γ)→ K be a left invariant positive linear form. There exists exactly
one Radon measure µ : B(Γ)→ [0,∞] with

I(f) =
∫

Γ
fdµ, (4.5)

f ∈ CC(Γ), and µ is left invariant. In reverse, with each left invariant Radon
measure µ : B(Γ) → [0,∞] complies a left invariant positive linear form I :
CC(Γ)→ K, so I(f) ≥ 0forf≥ 0, with (4.5).

[Proof] Since I is a left invariant positive linear form on CC(Γ), there exists
exactly one Radon measure µ with (4.5) according to Riesz-Markov represen-
tation theorem (see [6] for example). Applying the general transformation law
(V.3.1, [6]), it holds for f ∈ CC(Γ), y ∈ Γ

I(f) = I(f ◦ L(y)) =
∫

Γ
f ◦ L(y)dµ =

∫
Γ
fdL(y)(µ), (4.6)

which means that µ is left invariant. Since L(y)(µ) is a Radon measure, it
holds that L(y)(µ) = µ, y ∈ Γ, as µ is unique. Vice verse, with the general
transformation law the left invariance of I follows, if µ in (4.5) is a left invariant
Radon measure.

Theorem 4.9 (3.11,[6]). Let Γ be a locally compact Hausdorff topological
group. There exists a left invariant positive linear form I : CC(Γ)→ K, I 6= 0,

4See A.1 for defintion.
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and I is uniquey determined except for a positive factor. I is called left Haar
integral on CC(Γ).

The proof is given in A.2.

Theorem 4.10 (3.12,[6]). Let Γ be a locally compact Hausdorff topological
group. There exists a left invariant Radon measure µ : B(Γ)→ [0,∞], µ 6= 0,
and µ is determined uniquely up to a positive factor. µ is the left Haar measure
on Γ.

[Proof] The statement is following from (4.8) and (4.9).

Let

Z(θ) =


cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (4.7)

be rotations around the z-axes and

X(θ) =


1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (4.8)

around the x-axes. An element U ∈ SO(3) can be parametrized by the so-called
Euler angles and therewith represented via

U = Z(ϕ2)X(θ)Z(ϕ1) (4.9)

with θ ∈ [0, π], ϕ1, ϕ2 ∈ [0, 2π).

Let f(U) be a function depending on orientation U . We obtain for the integral
in accordance with the Haar measure the following

∫
SO(3)

f(U)dU = 1
8π2

∫ pi

0

∫ 2π

0

∫ 2π

0
f(U(ϕ1, ϕ2, θ))dϕ1dϕ2 sin θdθ. (4.10)

As orientation-depending function we will use

f(U) = 1{m(U)≤m} (4.11)

with m(U) being defined in (5.3).
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4.2. Recurrence Relations

We use [20] and [30] in the following section.

Definition 4.11. A recurrence relation of order k is defined as

tn = f(n, tn−1, ..., tn−k), (4.12)

with order k of the relation and therefore the number of dependencies and
initial conditions.

Definition 4.12 (homogeneous, linear). A recurence relation

tn = d1tn−1 + . . .+ dktn−k + ck (4.13)

with initial conditions ti = ci ∀i ∈ {0, ..., k − 1} is linear and of order k. If

ck = 0, (4.14)

it is a linear homogeneous recurrence relation.

A homogeneous linear recurrence relation of second order is

tn = d1tn−1 + d2tn−2, (4.15)

with n ≥ 2.

The recurrence can be considered as a kind of polynomial and ti can be replaced
by xi.

Definition 4.13 (Characterisical Polynomial). The characteristical polyno-
mial of a homogeneous recurrence relation is given by

P (x) = dkx
n + dk−1x

k−1 + · · ·+ d1x
1 + d0x

0 =
k∑

λ=0
dλ · xλ. (4.16)

Theorem 4.14 (4.15,[20]). Let α 6= β be real zero crossings of the character-
istical polynomial P (x) = x2−d1x−d2. All solutions of the recurrence relation
tn = d1tn−1 − d2 are given by

tn = c1α
n + c2β

n (4.17)
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for c1, c2 ∈ R.

[Proof] First we show that all tn of the given form fullfill the recurrence
relation. Therefore let c1, c2 ∈ R. We can write

tn = c1α
n + c2β

n

= c1α
n−2α2 + c2βn− 2β2

= c1α
n−2 · (d1α + d2) + c2β

n−2 · (d1β + d2)

= d1 ·
(
c1α

n−1 + c2β
n−1

)
+ d2 ·

(
c1α

n−2 + c2β
n−2

)
= d1tn−1 + d2tn−2

(4.18)

Now let tn be a solution of the recurrence. We define

sn := tn − (c1α
n + c2β

n) , (4.19)

c1, c2 ∈ R, such that s0 = 0 and s1 = 0. As per (4.18), sn also fullfills the
recurrence relation, i.e.

sn = d1sn−1 + d2sn−2, (4.20)

n ≥ 2. Since s0 = s1 = 0, it follows that sn = 0 ∀n ≥ 2 and therewith it holds
for (4.19)

tn = sn + (c1α
n + c2β

n) = c1α
n + c2β

n. (4.21)
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5. Grain Orientation and Probabilistic
Schmid Factors

5.1. Random Grain Orientation and Probabilistic
Schmid Factors

As we do not know the actual orientation of grains and their individual sizes,
we will introduce an approach, which includes and projects the probabilistic
properties appropriately. Therefore, we model the distribution of grains ac-
cording to the Haar measure, which we introduced in section 4.1.
We assume that the scatter occuring in LCF life arises from the scatter of
shear stress acting on the different slip planes, which are randomly oriented.

First, we consider the case of an uniaxial loading state and then continue with
multiaxial stress scenarios. In this regard, we show the differences between
both assumptions and their impacts.

5.1.1. Probabilistic Schmid Factors

We consider a crystal with face centered cubic lattice with properties as given
in (2.43) and before. We make the assumption that the material is isotropic
and the orientation of each grain is random as well as independent from neigh-
bouring grains.
A rotation can be represented by a transformation with a rotation matrix U ∈
SO(3). The randomness of a grain can therewith be represented by a random
tranformation of the according slip systems within the crystal, in particular of
ni and si,j.

We parametrize via Euler angles. Let us therefore consider a coordinate system
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with basis vectors e1, e2 and e3 which is transferred to an arbitrarily rotated
one by carrying out 3 successively rotations.

1. Rotation of ϕ1 ∈ [0, 2π) around e3.

2. Rotation of θ ∈ [0, π) around e1 the axis e3 is changed to e′3.

3. Rotation of ϕ2 ∈ [0, 2π) around e′3.

Hence we obtain an arbitrary rotation matrix via

U(ϕ1, ϕ2, θ) =


cosϕ2 sinϕ2 0
− sinϕ2 cosϕ2 0

0 0 1




1 0 0
0 cos θ sin θ
0 − sin θ cos θ




cosϕ1 sinϕ1 0
− sinϕ1 cosϕ1 0

0 0 1


with ϕ1, ϕ2 and θ being called the Euler angles.
As we transform ni and si,j with U(ϕ1, ϕ2, θ), slip planes and systems become prob-
abilistic and we obtain

ni(U) = Uni,

si,j(U) = Usi,j .
(5.1)

Considering the random transformation acting on the slip planes and systems, one
can obtain probabilistic shear stress as well as their maximum value depending on
rotation U ,

τi,j(U) = Uni · σ · Usi,j , τ = max
i,j
|τi,j(U)|. (5.2)

We do not necessarily need the maximum value only, when we want to proceed the
rainflow counting to accumulate damages, all stress values within one time step need
to be stored. But first we focus on the most simple case having equal stress states
and a constant von Mises stress amplitude.
As the probability distribution of U is uniquely determined, one method to generate
random rotation matrices is given in algorithm 3.

The random generation of Euler angles according to the Haar measure is imple-
mented within the rotations package in R. In order to reduce simulation expense,
there is a more efficient approach to generate maximum shear stress. As we know the
distribution of the Euler angles, we can discretize and weight them in accordance to
their density value.

To build the density values for maximum shear stress we choose a number of grid
points Na, with which we discretize each of the Euler angles. Based on these mesh

50



Microscopic Damage Accumulation Models

5. Grain Orientation and Probabilistic Schmid Factors

Algorithmus 3 : Monte Carlo Simulation of Random Shear Stress
Data : Slip Plane Normals ni, Slip Systems si,j, i = 1, 2, 3, 4,

j = 1, 2, 3,Stress Tensor σ, Number of Simulations MSF

Result : SF (12×MSF ) matrix containing the shear stresses for a fcc
crystal with loading state σ, SFmax vector of size MSF

containing the maximum shear stress for each simulation

1 Initialize a MSF × 12 matrix SF := 0;
2 Initialize a MSF vector SFmax := 0;
for all simulation steps k = 1, ...,MSF do

3 Generate random Euler angles ϕ1, ϕ2, θ according to Haar measure;
4 Build random rotation matrix U(ϕ1, ϕ2, θ);

for all slip planes i = 1, 2, 3, 4 do
for all slip systems j = 1, 2, 3 do

5 Calculate random shear stress τi,j(U) = U · si,jσ · U · ni
SFi,j,k := τi,j ;

6 Compute maximum shear stress τ = maxi,j|τi,j(U)|
SFmax,k := τ ;

end
end

end

points we build the rotation matrices and calculate maximum shear stress for each
rotation. The weigths according to the density for SO(3) with regards to the Haar
measure are calculated and stored as well to further obtain the densities of Schmid
factors. Algorithm 4 shows the procedure. Based on the results of both algorithms
we can obtain

m(U) = τ(U)√
3
2 · ||σ′||F

. (5.3)

We again consider the former mentioned Haar measure for SO(3)
∫
SO(3)

f(U)dµ(γ) =
∫ π

0

∫ 2π

0

∫ 2π

0

1
8π2 sin θf(U(ϕ1, ϕ2, θ))dϕ1dϕ2dθ (5.4)

with
f(U) = 1{m(U)≤m}. (5.5)

The algorithm is independent from the chosen crystal structure type, the normal
and slip system vectors can be customized, such that we obtain simulation results
for different types of crystals.
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Algorithmus 4 : Calculation of Shear Stress with Discretization of Euler
Angles
Data : Slip Plane Normals ni, Slip Systems si,j, i = 1, 2, 3, 4,

j = 1, 2, 3,Stress Tensor σ, Number of Grid Points for Euler
Angles Na

Result : SF (12×Nq) matrix containing the shear stresses for a fcc
crystal with loading state σ, SFmax vector of size Nq containing
the maximum shear stress for each grid point

1 Initialize I := [0, 2π]× [0, 2π]× [0, π];
2 Set number of grid points Nq := (Na − 1)3;
3 Initialize grid points x1, ..., xNq ∈ I for Euler angle discretization;
4 Initialize a Nq × 12 matrix SF := 0;
5 Initialize Nq vectors SFmax := 0 and wk := 0;
for all grid points xk, k = 1, ..., Nq do

6 Set Euler angles (ϕ1, ϕ2, θ) := xk;
7 Compute rotation matrix U(ϕ1, ϕ2, θ);

for all slip planes i = 1, 2, 3, 4 do
for all slip systems j = 1, 2, 3 do

8 Calculate shear stress τi,j(U) = U · si,jσ · U · ni
SFi,j,k := τi,j;

9 Compute maximum shear stress τ = maxi,j|τi,j(U)|
SFmax,k := τ ;

10 Calculate weight according to Haar measure and store
wk := sin(θ)

8π2 ;
end

end
end

First, we consider the stress state in the simulation to be uniaxial with

σ =


σI 0 0
0 0 0
0 0 0

 . (5.6)

and ||σ′||F =
√

2
3 . After a Monte Carlo simulation with an amount of 1 Mio. simu-

lation steps we can display the density of maximum shear stress of a face-centered
cubic crystal, as it is shown in figure 5.1.
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Figure 5.1.: MC Simulation - Density of Schmid Factor Distribution

We see a characteristic course of the histogram with a very sharp limit at m = 0.5,
which represents the case of forces acting in direction 45° to a slip system. For the
uniaxial case this is the maximum value of shear stress.

The highest density of values is in the range of 0.4 to 0.5, which is implied by
the fact that there are 12 slip systems in total. Therewith there is often at least one
of the slip systems oriented such that is has a large Schmid factor. The denstity for
a single slip planes, without maximizing over all 12 ones, looks different, as we can
see in figure 5.2.
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Figure 5.2.: MC Simulation - Density of Schmid Factor Distribution for one
Slip Plane

53



Microscopic Damage Accumulation Models

5. Grain Orientation and Probabilistic Schmid Factors

We are interested in the results for different loading states and want to evaluate these
according to the different yield criteria. We consider κ from (2.51), which represents
the level of multiaxiality of the principal stress values. The stress tensor for each
value of κ can be used for the input tensor in the simulation of algorithm 3.

(a) Surface of Densities of Maximum
Shear Stress Distribution

(b) Densities of Maximum Shear Stress
Distribution

Consider that for each of the principal stress combinations of the whole circle we
proceed the simulation and calculate the values for the density of the maximum
shear stress distribution. If we put all of the densities together they build a surface
as it is shown in figure 5.3a.

Assume a uniaxial loading state as a start point, so for example one of the red points
on the circle in figure 2.14. To reach a point of the circle, we can turn this vector via
rotation from 0 to 2π around the inclined axis. The x axis plots the angle of rotation
around this axis. The z axis gives the value of the density for each shear stress value
plotted on the y axis.

As there are 6 areas, where the order of the principal stress values changes, but
the relation implies the same κ, we focus on the changes within one of them. The
amount of multiaxiality κ equals zero in the red points and reaches its maximum
value of 1 in the middle of the way between both. In figure 5.3b we selected some
principal stress combinations on the circle and calculated the respective densities of
maximum shear stress. It is noticeable, that there are large differences between the
several stress states. In a direct comparison of the uniaxial case, as shown again in
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(c) Uniaxial Loading State κ = 0
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(d) Multiaxial Loading State κ = 1

figure 5.3c, to a multiaxial one as shown in figure 5.3d, it is remarkable, that the
course of the curve varies significantly.

There is a greater variance of maximum shear stress as well as a higher mean. Ad-
ditionally, there are maximum shear stress values larger than the upper limit of
m(U) = 0.5. Therewith, the conversion factor used to calculate shear stress based
on normal stress is much higher, when multiaxial loading states are present.
Although the von Mises equivalent stress is equal and we change the relation of the
principal stress values only, the maximum shear stress of a grain scatters more under
multiaxial loading conditions.

Figures 5.3 and 5.4 show the different values for the standard deviation and the
mean values depending on the amount of multiaxiality. Under an uniaxial loading
state, i.e. where κ = 0, the mean takes the typical value of 0.4523. The larger the
part of a second principal stress value becomes, i.e. the more κ increases, the higher
is the mean value. Similar results are noticeable for the standard deviation.
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Figure 5.3.: Mean of m(U) depending on κ

Under a maximum of multiaxiality with κ = 1 a mean value of 0.462 is reached, so
there is an increase by about 2.1%.
Looking at the upper limits of maximum shear stress, the differences are even clearer.
In the uniaxial case there is a natural upper limit at 0.5. Under variation of κ the
maximum values go beyond that limit. In the case where κ = 1, the maximum shear
stress is at 0.577, which is an increase of about 15.4%.
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Figure 5.4.: Standard Deviation of m(U) depending on κ
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5.2. Anisotropic Elasticity

We introduced an approach to calculate maximum shear stress and according distri-
butions under the condition that we consider an isotropic linear material behaviour
and a constant global elasticity module E for all grains, such that with Lamé coef-
ficients

µ = E

2(1 + ν) , λ = Eν

(1 + ν)(1− 2ν) , (5.7)

we calculate the values for the stress tensor via

σ = λtr(ε)I + 2µε. (5.8)

Cubic crystal structures, such as Nickel on a subgranular scale, have orientation
depending properties, they are anisotropic. Our isotropy assumptions are based on
the fact that we generally consider the component to have a large number of grains
in comparison to its size, such that the orientation of the single grains and their
impact on material properties are compensated and even out. In the case of Nickel,
the grain size is much larger in relation to the specimens, especially compared to
other metals like steel. The calculation of shear stress distributions and resulting
lifetime distributions supposes an isotropic behaviour of elasticity and a global E
module, although we calculate the shear stress locally for each grain.

The following approach includes the anisotropy of E module in the calculation of the
shear stress distribution and represents an alternative to the probabilistic Schmid
factor model considering an isotropic E module.
In case of isotropic material, the components of the elasticity tensor Cα,β as given
in 2.12 look the following

Cα,β =



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44


(5.9)

where
C44 = C11 − C12

2 . (5.10)
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So it is sufficient to know the values for C11 and C12. In cubic crystal systems, where
the material is generally anisotropic, it holds that

C44 6=
C11 − C12

2 . (5.11)

In the following we consider the local occuring stress of one grain to be strain con-
trolled.

We consider calculations based on the values of an FEA model to obtain stress
tensor σel,iso := σFE by using an isotropic material law. We use the elastic isotropic
stress tensor of the FEA to calculate an elastic isotropic strain tensor

εel,iso = − ν
E
tr(σel,iso)I + 1 + ν

E
σel,iso (5.12)

This strain tensor is then converted into an anisotropic stress tensor. In a standard
orientation this is realized by using the elasticity tensor C and calculate

σij = Cijklεkl = Cij11ε11 + Cij12ε12 + Cij13ε13 + Cij21ε21 + ...+ Cij33ε33. (5.13)

In the following section we calculate the stress tensor according to a random trans-
formation of the elasticity tensor and introduce an additional approach to obtain
Schmid factors using anisotropic elasticity.

5.2.1. Probabilistic Schmid Factor

We again assume random orientations of the grains and use rotation matrices U ∈
SO(3) to transform the elasticity tensor

C(U)ijkl =
∑
p,q,r,s

UipUjqUkrUlsCpqrs. (5.14)

Therewith we can calculate a random anisotropic stress state

σ(U)ani,ij =
∑
k,l

C(U)ijklεel,iso,kl. (5.15)

The randomly oriented anisotropic stress tensor is used for further calculations of
the shear stress of slip systems. Therefore we again consider ni and si,j with i ∈
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{1, 2, 3, 4}, j ∈ {1, 2, 3}, being transformed by U , such that slip planes and systems
become randomly oriented as well and we obtain

ni(U) = Uni,

si,j(U) = Usi,j .
(5.16)

Combining the transformed slip planes and systems as well as the transformed
anisotropic stress tensor, we obtain the probabilistic shear stress for ith slip plane
and jth direction

τij(U) = Uni · σani(U) · Usi,j (5.17)

We insert the transformed anisotropic stress tensor and subsequently the trans-
formed elasticity tensor. We obtain using Einstein notation

τij(U) = (Uni)v · (σani(U))vw · (Usi,j)w
= (Uni)v · C(U)vwklεel,iso,kl · (Usi,j)w
= (Uni)v · UvrUwsUktUluCrstuεel,iso,kl · (Usi,j)w
= Uvr(ni)rUvrUwsUktUluCrstuεel,iso,klUws(si,j)s
= UTvrUvr(ni)rUktUluCrstuεel,iso,klUTswUws(si,j)s
= (ni)rCrstuUTtkUTulεel,iso,kl(si,j)s,

(5.18)

where we used for the last equation, that UTU = I. With

(
Cεel,iso

(
UT
))

rs
= Crstu

(
εel,iso

(
UT
))

tu
(5.19)

and

(
εel,iso

(
UT
))

tu
= UTtkU

T
ulεel,iso,kl (5.20)

we obtain

τij(U) = niCεel,iso
(
UT
)
si,j . (5.21)

We again look at the maximum shear stress of all slip systems

τ(U) = max
ij
|τij(U)|. (5.22)

The resulting random anisotropic maximum shear stress can be used to obtain an al-
ternative probabilistic correcting factor, or probabilistic Schmid factor respectively,
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with which we can adjust lifetime calculations. Therefore we again define our adjust-
ment factor as the ratio between maximum anisotropic computed shear stress τ(U)
and von Mises equivalent stress in the same form as in equation 2.50. In this case
our reference stress is given by the elastic isotropic stress tensor and we obtain

m(U) = τ(U)√
3
2 ||σ

′
iso||F

. (5.23)

To obtain the distribution of Schmid factors to be transferred to lifetime calcula-
tions, we follow the same approach for the rotations as in the isotropic case. The
Euler angles are again discretized and weigthed according to the Haar measure for
SO(3). Algorithm 4 shows the different steps of the procedure to obtain probabilistic
Schmid factors based on a given isotropic stress state and known material constants.
We are interested in the differences between the isotropic and the anisotropic cal-
culation. We further compare the values for different loading states regarding their
multiaxiality. After proceeding the simulation with material constants of Nickel at
a temperature of 850◦C under uniaxial loading we obtain the histogram of figure
5.5.
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Figure 5.5.: Maximum Shear Stress for Uniaxial Loading State - Anisotropic

The maximum value is at m = 0.563 and therewith almost 13% higher than for the
isotropic calculated stress. The values are strongly depending on material constants
given for different temperatures. Since we are interested in the behaviour at 850◦C,
we focus on this case and set the constants of the elasticity tensor to C11 = 225, C21 =
161 and C44 = 98 according to the values of the experiment for Rene80. We use an
isotropic E module of 145. It is noticeable that the course of the histogram is different
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to the isotropic one. There is a slight difference of maximum values as well as a lower
limit of the anisotropic calculated Schmid factors which is smaller than the isotropic
one. The values of the anisotropic calculation are shifted to the left and the deviaton
is larger. Table 5.1 shows the summary of both variants.

Schmid Factor Min. 1st Qua. Median Mean 3rd Qua. Max.
Isotropic 0.2746 0.4349 0.4621 0.4523 0.4835 0.5
Anisotropic 0.2361 0.4648 0.5118 0.4916 0.5383 0.563

Table 5.1.: Summary of Schmid Factors - Isotropic and Anisotropic
Uniaxial

We see the differences in the mean value with a value being about 0.039 higher than
the isotropic calculated Schmid factors, which corresponds to a percentage deviation
upwards by 8.7%. Also the differences in range and the right shift of the values in the
anisotropic case are indicated. In the multiaxial case, where κ = 1, the distribution
looks similar to the isotropic one at first glance. Figure 5.6 shows the histogram.
The standard deviation is noticeably higher than under uniaxial loading and the
mean is again shifted to the right. There is a maximum value of 0.65, which is much
higher compared to the maximum value of 0.5772 for the isotropic calculated shear
stresses.
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Figure 5.6.: Maximum Shear Stress, Anisotropic, Multiaxial
κ = 1

The standard deviation and mean values for different levels of multiaxiality are
shown in figures 5.7 and 5.9. The mean value increases with the amount of multiax-
iality. The mean value for κ = 1 is 8.5% higher than under uniaxial loading.
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Figure 5.7.: Mean depending on κ, Anisotropic

If we compare the change of mean value under multiaxial loading between the
isotropic and anisotropic case, it is noticeable that the percentage increase of the
mean of Schmid factors based on an isotropic calculation is about four times lower
than the change under anisotropic conditions. Both changes in mean are in the same
direction, but the anisotropic calculation is much more sensitive to increases of mul-
tiaxiality.
Figure 5.8 shows both courses in comparison, where the remarkable differences are
illustrated. The mean in the anisotropic case is already higher for uniaxial loading,
which can also be seen in table 5.1 and figure 5.8, as this is the case for the slope.
For the highest multiaxiality where κ = 1 anisotropic calculated Schmid factors have
higher means.
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Figure 5.8.: Comparison of Mean of Isotropic and Anisotropic Schmid Factors

The values of standard deviation also show an increasing course. The scatter in-
creases under a larger amount of multiaxiality. But under consideration of the scale
the values do not differ a lot from each other for varying levels of multiaxiality.
At κ = 0.25 and κ = 0.5 the values are slightly different only. For an increasing
multiaxiality represented by κ, the values for Schmid factors scatter more, but the
differences of standard deviation with κ = 1 to the uniaxial case need to be compared
to those of the isotropic calculation. The standard deviation of both variants can be
seen in figure 5.9. In comparison to the isotropic calculation the scatter increases
only minimally under multiaxial loading.
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Figure 5.9.: Comparison of Standard Devation of Isotropic and Anisotropic
Schmid Factors

Table 5.2 contains the values of the summary. In the multiaxial case, the isotropic
calculated Schmid factor has a lower 1st Quartile.

Schmid Factor Min. 1st Qua. Median Mean 3rd Qua. Max.
Isotropic 0.2431 0.4101 0.4760 0.4620 0.5179 0.5772
Anisotropic 0.2609 0.4945 0.5411 0.5332 0.5831 0.6499

Table 5.2.: Summary of Schmid Factors - Isotropic and Anisotropic
κ = 1

The mean values differ by 0.08, which is a percentage deviation upwards by 17.9%
calculating the shear stress anisotropic.
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6. Probabilistic LCF Life for Single Grains

We introduced different approaches to calculate maximum shear stress and accord-
ing distributions either based on an isotropic E module or on an anisotropic one.
The comparison of both distributions for different levels of multiaxiality indicates
differences in scatter and location.

The shift of means and an increase of standard deviation of maximum shear stress
within a grain also influences the time until plastical deformation occurs and there-
with its lifetime. A deterministic approach according to section 3.1 is standard be-
cause of the pracitical applicability, but it is not really appropriate, as the lifetime
results of testing even under equal loading conditions scatter a lot and the curve
does not exactly fit the data.
Including the random orientation of grains allows us to consider distributions of
shear stress at different given stress levels. Additionally, we have the possibility to
include several levels of multiaxiality as well as an anisotropic behaviour of the elas-
ticity tensor C.

In the following section we present an approach to calculate the lifetime to fail-
ure based on probabilistic shear stress. Thereby we use the distributions of Schmid
factors for different strengths of multiaxiality and compare the results from calcula-
tions based on an isotropic and an anisotropic material law.

We use reliabilty statistics to model local fatigue life and use the probabilistic mod-
els of the previous section. We follow [19] and [27].

We are interested in the time to crack initiation and therefore consider T to be
a continuous random variable on some probability space (Ω,A,P) with values in
R+. We will later on use the discrete number of cycles to failure n instead of t.
Further, consider the corresponding cumulative densities function to be given by
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FT = P(T ≤ t) and the underlying density fT (t) = ∂
∂tFT (t). The according hazard

function describing the current rate of failure at time t is defined as

h(t) = lim
∆n→0

P(t < T < t+ ∆t|T > t)
∆t . (6.1)

The respective cumulative hazard function is defined as

H(t) =
∫ t

0
h(s)ds. (6.2)

The function giving the probability of survival up to time t is given by the survival
function

ST (t) = exp(−H(t)), (6.3)

which can also be calculated with the according probability of failure as

ST (t) = 1− FT (t). (6.4)

It holds that
h(t) = fT (t)

1− FT (t) = − ∂

∂t
logST (t). (6.5)

We are interested in the LCF failure mechanisms of a polycrystalline component.
Therefore consider a geometry Ω ⊂ R3 with an arbitrary partition of pairwise disjoint
{Ai}i=1,..,m of the boundary ∂Ω, such that

∂Ω =
m⋃
i=1

Ai. (6.6)

We consider the failure time on each Ai to be independent and further let {Ti}i=1,...,m

be iid. random variables describing the time to crack initiation for each set Ai with
according hazard functions hi, i = 1, ...,m.
To obtain the first time to crack initiation over the whole boundary of the geometry
we consider T = min(T1, ..., Tm). Since for indepentent Ti, Tj with respective hi, hj
we can calculate the hazard of min(Ti, Tj) via hi + hj , the hazard function of T is
given by

h =
m∑
i=1

hi. (6.7)

Additionally we consider for any measurable surface region A ⊆ ∂Ω that the hazard
function of the respective area at time t can be calculated with an appropriate hazard
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density function ρ taking into account the number of grains N , the displacement field
u induced by the underlying stress state σ and the critical crack size LC as

hA(t) =
∫
A
ρ(t,N, σ, LC)dA. (6.8)

We consider a subset of the surface A ⊂ ∂Ω, which we subdivide into k equal sized
subsets again with surface sizes

|Ai| =
|A|
k
, i = 1, ..., k. (6.9)

Let the applied load be approximately constant and equal overall surface subsets,
which results in hAi ≈ hAj for i, j = 1, ..., k. We obtain for the hazard of the arbitrary
subset A that

hA =
k∑
i=1

hAi

≈ k · hA1

= |A|
|A1|

hA1 .

(6.10)

For k →∞ the hazard densitiy function becomes

ρ = lim
k→∞

k · hA1

|A|
(6.11)

and h ≈ A · ρ.
With the assumptions made, we obtain the hazard function for the whole geometry
as

h(t) =
∫
∂Ω
ρ(t,N, σ, LC)dA. (6.12)

Therewith, we can calculate the probability of failure for LCF initiation of crack
until time or cycle t via

FT (t) = 1− exp(−H(t))

= 1− exp
(
−
∫ t

0
h(s)ds

)
= 1− exp

(
−
∫ t

0

∫
∂Ω
ρ(t,N, σ, LC)dAdt

) (6.13)

We now discuss the form of the hazard density function ρ in case of a single grain and
will later on extend this to multiple grains. Therefore we first calculate the probabil-
ity of failure for one grain depending on a given loading state and strain amplitude.
We recapitulate the relation between stress and strain amplitude being described
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by the Ramberg-Osgood equation in (2.23). and the Coffin-Manson-Basquin equa-
tion in (3.5) describing the strain to life relation. To obtain the number of load
cycles to crack initiation based on a given strain amplitude, the equation needs to
be inverted, e.g. this can be realised by using a spline-approximation. So we again
consider the inverse of the Coffin-Manson-Basquin equation in 3.6 and the inverse
of the Ramberg-Osgood equation

RO−1(εa) = σa. (6.14)

The material functions are usually used for a deterministic calculation of fatigue
life for an applied strain amplitude and given material constants. We now use these
relations to calcuate probabilisitic fatigue life. Therefore we make use of the proba-
bilistic shear stresses as we have introduced in chapter 5.1.
The strain amplitudes scatter because of the random grain orientation, such that we
do not know which strain can appropriately be used for the Coffin-Manson-Basquin
equation.

Hence, we use the Schmid factors to adjust stress and strain amplitudes. The Schmid
factors can be calculated by

m(U) = τ(U)√
3
2 · ||σ′||F

. (6.15)

We want to use an adjustment factor, which locally measures the deviation from the
expectational value in the uniaxial case. Now let

λ = EU [m(U)]. (6.16)

As we do mostly consider strain controlled fatigue testing we now use the inverse
of the Ramberg-Osgood equation to compute the corresponding stress amplitude,
which is then corrected with the adjustment factor

σada (U) = m(U)
λ

RO−1(εa). (6.17)

Therewith we compute the probabilistic strain amplitude

εa(U) = RO(σada (U)). (6.18)
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Finally, we obtain a random fatigue lifetime via

Ni(U) = CMB−1(εa(U))

= CMB−1
(
RO

(
σada (U)

))
= CMB−1

(
RO

(
RO−1 (εa) ·

m(U)
λ

))
.

(6.19)

Therewith, we can calculate the probability of LCF failure as

P(Ni(U) ≤ n)

=P(CMB−1(εa(U)) ≤ n)

=P(CMB−1
(
RO

(
σada (U)

))
≤ n)

=P
(
CMB−1

(
RO

(
RO−1 (εa) ·

m(U)
λ

))
≤ n

)
.

(6.20)

Let the distribution function of Schmid factors m(U) be denoted by

FSF (n) = P
(
CMB−1

(
RO

(
RO−1 (εa) ·

m(U)
λ

))
≤ n

)
. (6.21)

and the corresponding density function by

fSF (n) = ∂

∂n
FSF (n). (6.22)

The distribution of Schmid factors represents the probability of failure for one grain
at cycle n. The survival function SSF (n) can be computed as given in 6.4 and for
the hazard function hSF (n) we obtain 6.5. These functions can be used to compute
reliability values for single grains applying different stress or strain states. As the
setting of of the Schmid factor calculations enable computations for arbitrary crystal
structure types, these values can be obtained for different materials.

We have seen that depending on the level of multiaxiality the Schmid factors dis-
tributions deviate a lot and we hereby have a possibibility to include these effects
in the fatigue lifetime calculations. The following section shows the results of the
transfer of the probabilistic Schmid factors to LCF fatigue lifetime.

6.1. Single Grain Life for fcc Crystals

In this section we use the results of chapter 5.1 to calculate LCF fatigue lifetime
in case of the face-centered cubic crystal. We consider a single grain first, the next
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chapter shows the transfer to multigrain models and the impacts on lifetime calcu-
lations. The material parameters, which we use, were provided by Siemens and will
not be stated explicitely.

We have seen that the different levels of multiaxiality imply different Schmid factor
distributions. The means are shifted and the scatter varies significantely. We first
consider an uniaxial loading state with an applied strain amplitude of 0.2% and ap-
propriate material parameter. Figure 6.1 shows the lifetime distribution of a single
grain.
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Figure 6.1.: Lifetime Distribution Uniaxial

We can see that there is a high increase within an area of Ni = 103.5 and Ni = 104.5.
The corresponding density function is shown in figure 6.2.
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Figure 6.2.: Lifetime Density Function Uniaxial
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As it is noticeable in the figure, the course if the density of single grain LCF fatigue
life is a result of the Schmid factor density. There is a big mass within a small area
such that the density becomes acute. This results from the small range of the Schmid
factors. The sharp upper limit of the Schmid factors becomes a lower one for LCF
lifetime.

Figure 6.3.: Lifetime Densities Multiaxial

Figure 6.3 shows the densities of lifetime distributions under different levels of mul-
tiaxiality with κ ∈ [0, 1]. The red line is the density according to the uniaxial case,
i,e. κ = 0, which has already been shown in figure 6.2.

It is noticeable that the curves deviate between different amounts of multiaxial-
ity. The distributions scatter more and the minimum values are shifted to the left.
These effects closely correspond those of the Schmid factors. As the maximum values
of shear stress increase, the minimum of fatigue lifetime decreases.
The according distributions are given in figure 6.4.
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Figure 6.4.: Lifetime Distribution Multiaxial

Figure 6.5 shows the change in minimum value for an increasing multiaxiality. In
mean the number of cycles to fatigue Ni change slightly only as one can see in table
6.1. They stay in a range of 104.67 and 104.95 and even increase by a small amount
comparing the values of κ = 0 to those of κ = 1, but there is a left-shift of the
range in general and an accompanying increase in scatter by raising the amount of
multiaxiality. Therewith, multiaxiality changes the lifetime of single fcc grains. As
usually, the amplitude of von Mises stress is taken as a reference value, the risk of
failure can be underestimated.

Figure 6.5.: Mean of Fatigue Life Multiaxial
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Fatigue Life Min. 1st Qua. Median Mean 3rd Qua. Max.
Uniaxial 10590 13790 19850 46780 32900 2044000
Multiaxial 4269 9501 18520 89530 65300 6121000

Table 6.1.: Summary of Fatigue Life - Uniaxial and Multiaxial

Table 6.1 shows the deviation of the number of cycles to fatigue between the uniaxial
and the multiaxial loading state where κ = 1. The mean of fatigue life under high
multiaxial loading conditions reaches 89530 cycles. The maximum value in the uni-
axial case is 2044000 and 6121000 in the multiaxial. The minimum of fatigue lifetime
is at 4269 cycles, the minimum number of cycles in the uniaxial case is 10590 and
therewith almost 2.5 times higher than under multiaxial loading conditions.

Figure 6.6.: SD of Fatigue Life Multiaxial

Although the equivalent stress is at the same level, we obtain very different lifetime
distributions and according densities for a single grain fatigue. Generally speaking,
the shift of minimum values tends to lower life values resulting from the right-shift of
shear stress under multiaxial loading. Also the scatter in life increases at higher levels
of multiaxiality. To which effects the slip system based approach leads in multigrain
models will be shown in chapter 7.

Single grain fatigue can also be calculated for an anisotropic E module. The in-
tention behind using an anisotropic E module as well as the combination with a slip
system based approach was discussed in chapter 5.2. We use the resulting Schmid
factor distributions to compute single grain life for different levels of multiaxiality
and compare them to the results of those based on an isotropic calculation.
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A comparison of LCF fatigue life distribution is given in 6.7. The anisotropic cal-
culated distribution increases at a smaller number of cycles than the isotropic one.
Therefore it is flatter and has a larger range in total.
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Figure 6.7.: Lifetime Distributions Uniaxial

Looking at the density under multiaxial loading, we see that it has a strong increase,
but is although lower and not as sharp as the density in the isotropic case, which
can be seen in a direct comparison in firgure 6.9. Figure 6.8 shows the density in the
anisotropic case for an uniaxial loading state.

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Cycles Ni

D
en

si
ty

Figure 6.8.: Lifetime Density for κ = 1 - Anisotropic
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Figure 6.9.: Lifetime Densities Comparison

Now we discuss the influence of multiaxiality on the density. Therefore we variate
κ and generate the according LCF fatigue life distributions. Figure 6.10 shows the
densities of 5 different values of κ ∈ [0, 1].

Figure 6.10.: Lifetime Densities Multiaxial - Anisotropic

The denstities show similar changes to the isotropic calculated densities. They are
shifted to the left, the minimum life is shorter. The standard deviation increases as
well, but can see bigger differences only for κ ≥ 0.75.
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Figure 6.11.: Minimum of Fatigue Life Multiaxial

Figure 6.11 shows the comparison between the change in the minimum value for dif-
ferent levels of multiaxiality in the isotropic and the anisotropic case. It is noticeable
that the minimum value decreases for both calculations. For κ = 0.25 we already
have a decrease of 36% in the isotropic case and about 25% in the anisotropic one.
The minimum value for κ = 1 is changed by 60% and 37%, they fall to 4268 and
5095 cycles.

Figure 6.12.: Comparison Standard Deviation

Comparing the mean values and standard deviation of both single life distributions
for κ ∈ [0, 1] we notice effects, which arise from those of the Schmid factor distri-
butions. Since we standardize with the expectational value for lifetime calculation,
the effects weaken. In the anisotropic case we notice a slightly decreasing number
of cycles for the mean value from 156771 to 110640 cycles, therefore the standard
deviation also falls from about 621881 to 392814 cycles. In the isotropic case the
mean value increases, in the uniaxial case the mean number of cycles is 46782 and
in the highest multiaxial case where κ = 1 we have 89525. The standard deviation
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increases from 112210 to 244479 cycles.
Therewith we in general have a lower mean number of cycles to fatigue in the uni-
axial case. This value slightly increases under multiaxial loading, but therefore the
standard deviation also increases, since the number of cycles scatter more. This is
also noticeable looking at development of the minimum values of figure 6.11. Al-
though there are small changes in the mean value of the number of cycles to fatigue,
the bandwidth becomes wider, such that the minimum value is shifted from 10 587
to 4 269 cycles.
In the anisotropic case we see that the mean becomes smaller when the loading
becomes more multiaxial. Therefore the scatter decreases and the standard devia-
tion changes downwards. It is noticeable that the values in the isotropic case are in
general below those of the anisotropic one.

Since we have seen how the Schmid factor distributions influence the lifetime of
a single grain, the following chapter shows different approaches to obtain multi-
grain models. Additionally, different fatigue criteria are introduced and the models
are used to calculate probabilities of failure for various grain and crack sizes to get
insights in the mechanisms of failure depending on the grain morphology.
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7. Crack Propagation and Grain
Morphology

We investigated the material behaviour depending on the state of stress applied
with focus on multiaxial load states for a single grain. Here the results are extended
to multiple grains, since the component build of polycristalline material consists of
numerous grains showing interdependencies, which are analyzed in the following.

It is necessary to have an insight into the interactions between the different grains,
especially at the grain boundaries, to understand how an initiated crack percolates
to another grain and which factors influence the crack propagation in detail. An
important quantity we look at is the grain size, which can to a certain extend be
controlled by the cooling rate.
We consider randomly distributed and twisted grains, since we do neither know the
exact distribution nor the orientation of the grains in the component. We use a

(a) Triangular Lattice and Hexagonal
Cells

(b) Square Lattice and Square Cells

Figure 7.1.: Regular Lattices and their Voronoi Cells

so-called cell model to describe the microstructure of the polycrystal, which is very
common in case of random heterogeneous material (see [33, 8] for example). In this
regard we introduce Voronoi tessellations, which are used to partition spaces of di-
mension d into d-dimensional (convex) cells with either deterministic equidistant or
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random points.
The partitioning of finite type (Voronoi diagram) or extending to all of space with
its several forms are used very frequently, as these cell models represent plentiful
materials having cellular microstructure appropriately and simplify answering re-
quired questions such as finding nearest neighbours for given point sets.

Let G = (V,E) be a graph with finite number of vertices V and corresponding
edges E ⊆

{
(u, v)

∣∣u, v ∈ V, u 6= v
}

with elements e ∈ E of the form e = (u, v),
u, v ∈ V , u 6= v. Further let N,F ∈ N be the number of cells and the number of
faces respectively. Figures 7.1a and 7.1b show typical tile patterns in two dimensions
resulting in shapes of equal size and form. We focus on the square lattice to describe
the composition of grains of the material, where each square cell relates to a grain
with respective neighbouring cells. We consider an area of size A and cells of length
LG such that the number of cells in the area is calculated as N = A

L2
G
.

We first look at the one-dimensional case with N cells in a row and a crack enabled
to grow in one direction only.

Figure 7.2.: Cubic Lattice in One Dimension

Furthermore, consider a critical crack length of size LC . The number of cells, which
need to be cracked until reaching the critical crack length, is given as nC = LC

LG
.

Looking at a finite grid there are a multiple possibilities for a crack of size LC , i.e.
a chain of cells showing a crack in a row, which we will call cluster of size nC for
simplification reasons.

Figure 7.3.: Possible Positions for a Crack LC = 2LG

Consider the cells being numbered in an ascending manner from left to right. The
crack of size LC with nC cracked grains in a row can be shifted from the first left
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cell to the cell with position N −LC + 1, as at least nC cells need to be cracked in a
row after the observed cracked one. Beginning from the first one, we go trough the
cells from left to right and stop once a cluster showing a crack with a minimum size
of nc is observed. So we are looking for the probability that the first crack with a
minimum size of LC begins in grain k = 1, ..., N − nC + 1.

7.1. Modified Percolation Models

The investigation in the occurence of cracks showing a given critical length is closely
related to questions regarding percolation theory, i.e. the occupancy and transfer
within graphs with certain initial conditions. Some basics are for example shown in
[24].

For the sake of simplification, we consider the vertices as centers of the grains and
vi ∈ Z2, i=1,...,N with ∑2

j=1 |vij − vkj | = 1, i 6= k. In this context let the set of all
edges of neighboured cells be

E′ :=
{

(vi, vk)|vi, vk ∈ Z2, i, k = 1, ...N, i 6= k, ||vi − vk||1 = 1
}
. (7.1)

Thus, we obtain the graph G = (V ′, E′) with vertices V ′ and edges E′ as defined
with |V ′| = N cells and |E′| = m edges. We first consider the chain-type grain
structure, so let the second coordinate be fixed.
With probability p ∈ [0, 1] each vertex can crack and a sequence of s cracked grains
is again called s-cluster, so a set of active vertices being connected by edges. This
percolation type is also known as site percolation.

Figure 7.4.: Graph for One Dimension

This can be represented byN i.i.d. random variables (Xk)k=1,...,N on (Ω,A,P) with

Ω := {ω = (ωk)k=1,...,N |ωk ∈ {0, 1}} = {0, 1}N (7.2)

A vertex number k of graph G can be either cracked,

Xk(ω) = ωk = 1 (7.3)
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or not cracked
Xk(ω) = ωk = 0. (7.4)

A is the σ-algebra of subsets of Ω being generated by the finite cylindrical sets. We
see that Xk ∼ Bp with crack probability p and as we consider independency,

P :=
⊗

k=1,...,N
µk (7.5)

with Bernoulli measure µk(ωk = 1) = p and µk(ωk = 0) = 1−p. This can be imagined
as N -stage decision tree as shown in figure 7.5, where each level represents one grain.
We want to obtain the probability that the first crack with a cluster length of nC ,
which is defined as the most left nC-cluster, begins in grain k = 1, ..., N − nC + 1.
We define the starting point of a cluster of at least a given length s ∈ N as follows.
We set

Figure 7.5.: Decision tree with C=cracked and N=not cracked

C(s, ω) := {j|j ∈ {1, ..., N − s+ 1} : Xj(ω) = 1, ..., Xj+s−1(ω) = 1} (7.6)

and the first observed s-cluster

Cmin(s, ω) := minC(s, ω). (7.7)

Given the critical cluster size nC and the probability p that one grain cracks, we
calculate the probability for a crack of critical size starting in grain k = 1 by

P (Cmin(nC , ω) = 1) = pnC , (7.8)

and up to k = 2 via

P (Cmin(nC , ω) ≤ 2) = (1− p)pnC + pnC

= (1− p)pnC + P (Cmin(nC , ω) = 1) .
(7.9)
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For grain k ∈ {2, ..., N − s+ 1} we can formulate the cumulated crack probabilities
recursively,

P (Cmin(nC , ω) ≤ k) = (1− P (Cmin(nC , ω) ≤ k − 2)) (1− p)pnC

+ P (Cmin(nC , ω) ≤ k − 1) ,
(7.10)

since grain k − 2 can not be the minimum starting point for a nC-crack and grain
k− 1 needs to be not cracked, as otherwise the cluster’s starting point would not be
in k. This can be visualized

Figure 7.6.: Crack Possibilities for nC = 2 and N = 3

In order to obtain solutions for the crack probabilities we transfer it to approaches
to solve recurrence relations.

7.1.1. Recurrence Relation of Crack Probability

The probability for cracks of a given critical length nC can be formulated recursively.
We consider a chain-type graph G = (V ′, E′) as defined in (7.1) and its grains from
left to right, i.e. k = 1, ..., N−nC+1. The problem can be represented as in equations
(7.8), (7.9) and (7.10). We use the introduced fundamentals as given in 4.2.

Let
Ck(nC) := P (Cmin(nC , ω) ≤ k) (7.11)

for k ∈ {2, ..., N − nC + 1} with

C0(nC) = 0

C1(nC) = pnC ,
(7.12)
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then Ck(nC) can be obtained by

Ck(nC) = (1− Ck−2(nC))(1− p)pnC + Ck−1(nC). (7.13)

This corresponds to an inhomogeneous recurrence equation of second order and can
be easily seen after rearranging as follows

Ck(nC)− Ck−1(nC) + (1− p)pnCCk−2(nC) = (1− p)pnC := p̃ (7.14)

and initial conditions as given in (7.12). This can also be represented by



1 0 0 0 · · · 0 0 0
−1 1 0 0 · · · 0 0 0
p̃ −1 1 0 · · · 0 0 0
0 p̃ −1 1 · · · 0 0 0
...

...
. . .

. . .
. . .

...
...

...

0 0 0 0 · · · p̃ −1 1


·



C0

C1

C2

C3
...

Ck


=



0
pnC

p̃

p̃
...

p̃


, (7.15)

and in short form
Ax = b, (7.16)

where

A :=



1 0 0 0 · · · 0 0 0
−1 1 0 0 · · · 0 0 0
p̃ −1 1 0 · · · 0 0 0
0 p̃ −1 1 · · · 0 0 0
...

...
. . .

. . .
. . .

...
...

...

0 0 0 0 · · · p̃ −1 1


, x :=



C0

C1

C2

C3
...

Ck


, b :=



0
pnC

p̃

p̃
...

p̃


(7.17)

.

To assign the probabilities of a critical crack up to grain k, we calculate

x = A−1b, (7.18)
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wherefore we compute the inverse of A. The individual matrix entries of A follow a
regular pattern. Considering

1 0 0 0 0 · · · 0 0 0 1 0 0 0 0 · · · 0 0 0
−1 1 0 0 0 · · · 0 0 0 0 1 0 0 0 · · · 0 0 0
p̃ −1 1 0 0 · · · 0 0 0 0 0 1 0 0 · · · 0 0 0
0 p̃ −1 1 0 · · · 0 0 0 0 0 0 1 0 · · · 0 0 0
0 0 p̃ −1 1 · · · 0 0 0 0 0 0 0 1 · · · 0 0 0
...

...
. . .

. . .
. . .

. . .
...

...
...

...
...

. . .
. . .

. . .
. . .

...
...

...

0 0 0 0 0 · · · p̃ −1 1 0 0 0 0 0 · · · 0 0 1


(7.19)

after proceeding some steps of the Gauß algorithm to invert the matrix, the right
handside takes the following form

1 0 0 0 0 · · · 0 0 0
1 1 0 0 0 · · · 0 0 0

1− p̃ 1 1 0 0 · · · 0 0 0
1− 2p̃ 1− p̃ 1 1 0 · · · 0 0 0

0 0 0 0 1 · · · 0 0 0
...

...
. . .

. . .
. . .

. . .
...

...
...

0 0 0 0 0 · · · 0 0 1


(7.20)

and the inverse further becomes

1 0 0 0 0 · · · 0 0 0
1 1 0 0 0 · · · 0 0 0

1− p̃ 1 1 0 0 · · · 0 0 0
1− 2p̃ 1− p̃ 1 1 0 · · · 0 0 0

1− 2p̃− p̃(1− p̃) 1− 2p̃ 1− p̃ 1 1 · · · 0 0 0
...

...
. . .

. . .
. . .

. . .
...

...
...

0 0 0 0 0 · · · 0 0 1


, (7.21)

where it is noticeable that the individual matrix entries follow a regular pattern as
well, they can be computed using a recurrence relation as well,

aij = ai−1j − p̃ · ai−2j , (7.22)

84



Microscopic Damage Accumulation Models

7. Crack Propagation and Grain Morphology

where

(a1j)tj=1,...,n = ~e1,

(a2j)tj=1,...,n = ~e1 + ~e2,

aii = 1, for i = 1, ..., n,

(7.23)

such that we can compute the matrix directly to calculate the inverse and therewith
avoid a possibly time-consuming procedure for inversion. This again corresponds to
a recurrence relation of second order, since it depends on the values of two former
solutions. But in controversion to (7.14) it is homogeneous, since the disruptive term
on the right handside after rearranging (7.22) equals zero,

aij − ai−1j + p̃ · ai−2j = 0. (7.24)

To solve the coefficients of (7.24) we follow a common method, which is shown for
example in [16]. Therefore, we first compute the zero crossings of the characteristical
polynomial of equation (7.24)

P (x) = x2 − x+ p̃ (7.25)

and we obtain

x0 = 1 +
√

1− 4p̃
2 ,

x1 = 1−
√

1− 4p̃
2 .

(7.26)

The general solution is given by

tn = c0 · xn0 + c1 · xn1 , (7.27)

with some constants ci, i = 1, 2. We plug in the initial conditions, namely

t0 = 0, t1 = 1, (7.28)

and obtain

c0 + c1 = 0

c0x0 + c1x1 = 1.
(7.29)
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With x0 and x1 this leads to the constants

c0 = −c1

c1 = 1√
1− 4p̃

(7.30)

and therewith the relation

tn =
( 1√

1− 4p̃

)
·
(

1 +
√

1− 4p̃
2

)n
−
( 1√

1− 4p̃

)
·
(

1−
√

1− 4p̃
2

)n

= 1√
1− 4p̃

[(
1 +
√

1− 4p̃
2

)n
−
(

1−
√

1− 4p̃
2

)n]
.

(7.31)

The inverse matrix A−1 ((N − nC + 2) × (N − nC + 2)-matrix) therewith can be
computed directly and has the following form

A−1 =



t1 t0 0 0 0 · · · 0 0 0
t2 t1 t0 0 0 · · · 0 0 0
t3 t2 t1 t0 0 · · · 0 0 0
t4 t3 t2 t1 t0 · · · 0 0 0
t5 t4 t3 t2 t1 · · · 0 0 0
...

...
. . .

. . .
. . .

. . .
...

...
...

tN−nC+2 tN−nC+1 tN−nC
tN−nC−1 tN−nC−2 · · · t3 t2 t1


.

(7.32)

Therefore, the cumulated probabilities to observe a nC crack in the chain is given
by

C0

C1

C2

C3

C4
...

CN−nC+1


=



t1 t0 0 · · · 0 0 0
t2 t1 t0 · · · 0 0 0
t3 t2 t1 · · · 0 0 0
t4 t3 t2 · · · 0 0 0
t5 t4 t3 · · · 0 0 0
...

...
. . .

. . .
...

...
...

tN−nC+2 tN−nC+1 tN−nC
· · · t3 t2 t1


·



0
pnC

p̃

p̃
...

p̃

p̃


(7.33)

The total crack probability in this model is therewith

CN (nC) =P (Cmin(nC , ω) ≤ N − nC + 1)

=
N−nC∑
k=1

tkp̃+ tN−nC+1p
nC .

(7.34)
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To compute the probabilities of failure and the hazard rate we compute the partial
derivation with respect to p. Thus,

∂

∂p
CN

= ∂

∂p
P (Cmin(nC , ω) ≤ N − nC + 1)

= ∂

∂p

N−nC∑
k=1

tkp̃+ tN−nC+1p
nC

=
N−nC∑
k=1

∂

∂p
(tkp̃+ tN−nC+1p

nC )

=
N−nC∑
k=1

∂

∂p

 p̃√
1− 4p̃

(1 +
√

1− 4p̃
2

)k
−
(

1−
√

1− 4p̃
2

)k
+ ∂

∂p

 pnC

√
1− 4p̃

(1 +
√

1− 4p̃
2

)N−nC+1

−
(

1−
√

1− 4p̃
2

)N−nC+1
 .

(7.35)

Let index k be fixed, we compute for the left part

∂

∂p

(1− p)pnC√
1− 4(1− p)pnC

=nCp
nC−1 − (nC + 1)pnC

√
1− 4p̃

(
1 + 2p̃

1− 4p̃

)
=
(
nCp

nC−1 − (nC + 1)pnC
)

(1− 2p̃)
(1− 4p̃) 3

2
,

(7.36)

and for the right part

∂

∂p

(1 +
√

1− 4p̃
2

)k
−
(

1−
√

1− 4p̃
2

)k
=k (nC + 1)pnC − nCpnC−1

√
1− 4p̃

(1 +
√

1− 4p̃
2

)k−1

+
(

1−
√

1− 4p̃
2

)k−1
 .

(7.37)

Thus, the partial derivation with respect to p for the sum is given by
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N−nC−2∑
k=1

∂

∂p
tkp̃

=
N−nC−2∑
k=1

∂

∂p

 p̃√
1− 4p̃

(1 +
√

1− 4p̃
2

)k
−
(

1−
√

1− 4p̃
2

)k
=
N−nC−2∑
k=1

(
nCp

nC−1 − (nC + 1)pnC
)

(1− 2p̃)
(1− 4p̃) 3

2

·

(1 +
√

1− 4p̃
2

)k
−
(

1−
√

1− 4p̃
2

)k
+ p̃k

(nC + 1)pnC − nCpnC−1

1− 4p̃

(1 +
√

1− 4p̃
2

)k−1

+
(

1−
√

1− 4p̃
2

)k−1
 .
(7.38)

As it holds that

∂

∂p

pnC

√
1− 4p̃

=pnC−1 (nC − 2nCpnC + (2nC − 2)pnC+1)
(1− p̃) 3

2
,

(7.39)

we further compute

∂

∂p
tN−nC+1p

nC

= ∂

∂p

 pnC

√
1− 4p̃

(1 +
√

1− 4p̃
2

)N−nC−2

−
(

1−
√

1− 4p̃
2

)N−nC−2


=pnC−1 (nC − 2nCpnC + (2nC − 2)pnC+1)
(1− p̃) 3

2

·

(1 +
√

1− 4p̃
2

)N−nC−1

−
(

1−
√

1− 4p̃
2

)N−nC−1


+ (N − nC − 1)pnC
(nC + 1)pnC − nCpnC−1

1− 4p̃

·

(1 +
√

1− 4p̃
2

)N−nC−2

+
(

1−
√

1− 4p̃
2

)N−nC−2
 .

(7.40)
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For the partial derivative of the total crack probability we obtain

∂

∂p
CN

= ∂

∂p
P (Cmin(nC , ω) ≤ N − nC + 1)

= ∂

∂p

N−nC−2∑
k=1

tkp̃+ tN−nC−1p
nC

=
N−nC−2∑
k=1

nCp
nC−1 − (nC + 1)pnC (1− 2p̃)

(1− 4p̃) 3
2

·

(1 +
√

1− 4p̃
2

)k
−
(

1−
√

1− 4p̃
2

)k
+ p̃k

(nC + 1)pnC − nCpnC−1

1− 4p̃

(1 +
√

1− 4p̃
2

)k−1

+
(

1−
√

1− 4p̃
2

)k−1


+ pnC−1 (nC − 2nCpnC + (2nC − 2)pnC+1)
(1− p̃) 3

2

·

(1 +
√

1− 4p̃
2

)N−nC−1

−
(

1−
√

1− 4p̃
2

)N−nC−1


+ (N − nC − 1)pnC
(nC + 1)pnC − nCpnC−1

1− 4p̃

·

(1 +
√

1− 4p̃
2

)N−nC−2

+
(

1−
√

1− 4p̃
2

)N−nC−2
 .

(7.41)

Having computed the partial derivation of the probability of failure for N grains in
a row, we can use the result to calculate the hazard function

hA(n) =
∫
A
ρ(n,LG, σ, LC)dA (7.42)

with grain size LG, where N = A
L2

G
, critical crack size LC = nC · LG and number

of cycles n,which we consider as fixed for the moment. To obtain the hazard for a
chain of size N with the discussed model let

p(n) = FSF (n)

= P
(
CMB−1

(
RO

(
RO−1 (εa) ·

m(U)
λ

))
≤ n

) (7.43)
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denote the single grain crack probability, which is based on the Schmid factor dis-
tribution. We use the derivative of the probability of failure and plug in the single
crack probability. Thus, we can calculate the density function for a given size A

fA(n) = ∂

∂n
FA(n)

= ∂

∂n
FA(LG, LC , p(n, σ))

= ∂

∂p
CN (LG, LC , p(n, σ)) · ∂

∂n
p(n, σ)

= ∂

∂p
CN (LG, LC , p(n, σ)) · ∂

∂n
P
(
CMB−1

(
RO

(
RO−1 (εa) ·

m(U)
λ

))
≤ n

)
= ∂

∂p
CN (LG, LC , p(n, σ)) · fSF (n)

(7.44)

with ∂
∂pCN as calculated before. The probability of failure as well as the according

density can now be calculated for different numbers of grains, surface size and critical
crack sizes nC . As we use the Schmid factor distribution, we can include different
levels of multiaxiality.
We now look at the distributions for different combinations of grain numbers N and
levels of multiaxiality. The case where N = 1 and nC = 1 are the same results as
for the single grain fatigue life, as shown in figure 6.2. For an increasing number of
grains and a constant single grain crack probability the number of possibilities for a
crack increases. We can see that the densities as shown in figure 7.7 and 7.12 become
more sharp for a growing grain number and a constant critical crack size.
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Figure 7.7.: Densities of Lifetime Distribution for 2 and 3 Grains
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Figure 7.8.: Densities of Lifetime Distribution for 5 and 10 Grains

Looking at the Lifetime Distributions we can see the large differences between even
clearer. For N = 10 the distribution increases suddenly up to 1 at a number of about
10.000 cycles. For N = 1 we obtain the known fatigue life distribution of the single
grain case. The other distributions for grain numbers N = 2, 3, 5 are in between.
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Figure 7.9.: Distributions of Fatigue Life for different Grain Numbers

We look at critical crack lengths LC with LC
LG

= nC > 1 and see, how the fatigue
lifetime changes. We consider a grain chain of size N = 10 and different critical
crack sizes with according nC .
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Figure 7.10.: Distributions of Fatigue Life for different Crack Numbers

Figure 7.10 shows the distribution for a fixed grain number of N = 10 and critical
grain numbers of 1, 2, 3, 5 and 9. For nC = 1 we obtain the distribution as given
in figure 6.1, represented by the black line. As the number of grains, which need
to be cracked in a row to reach a critical crack length, increases, the distribution
becomes more and more flat. For a fixed grain number N the number of possibilities
decreases for larger cracks, since more grains need to crack in a row such that the
critical crack size is reached. In the following the according densities for the different
crack sizes are shown.
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(a) Density for N = 10, nC = 2
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Figure 7.11.: Densities of Lifetime Distribution for nC = 2 and nC = 3
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(a) Density for N = 10, nC = 5
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(b) Density for N = 10, nC = 9

Figure 7.12.: Densities of Lifetime Distribution for nC = 5 and nC = 9

For the case of a larger number of grains and a smaller critical crack size the den-
sity concentrates and becomes sharp, as the number of possibilities is much higher
and once the number of cycles is reached, which leads to a sufficient single crack
probability, a small critical crack length is reached very fast. For larger cracks and
therewith higher nC there is more scatter, as we can see in figure 7.12.

The previous results have been produced using a uniaxial loading state. We now
look at the case where κ = 1 and compare the densities among each other and to
the effects we have seen in the uniaxial case.
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Figure 7.13.: Distributions for nC = 1 and κ = 1

Comparing the distributions as given in figures 7.13 and 7.14 we see that the changes
under increasing the number of grains are different to those under uniaxial loading.
The minimum values are shifted to the left, so to lower life. They are also wider
compared to the uniaxial case.
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Figure 7.14.: Distributions for N = 10 and κ = 1

Considering a fixed number of grains and a larger critical crack size, we see that
the distributions deviate even more. As the length of critical crack and therewith
nC increases, the distributions become flat. In the case where nC = 5 the course
looks nearly linear and for nC = 9 the distribution increases more steeply at a larger
number of cycles.

Cycles Ni

0.
00

0.
01

0.
02

0.
03

D
en

si
ty

Uniaxial
Multiaxial

Figure 7.15.: Densities for N = 3, nC = 2 and κ = 0, 1

We consider a grain number N = 3 and a number of grains to obtain a critical
crack nC = 2. It is noticeable that the density in the multiaxial case has a wider
range as the uniaxial one. The density of LCF fatigue lifetime starts to increase
at approximately 10.000 cycles, wheras the uniaxial one starts increasing at about
n = 4.500, so less than half of the number of cycles.
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Figure 7.16.: Densities for N = 5, nC = 2 and κ = 0, 1

As the number of grains becomes larger and the size of critical crack size remains
fixed, the densities become closer, but the one of the multiaxial case is in general
shifted to a lower number of cycles and deviates more.
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Figure 7.17.: Densities for N = 10, nC = 2 and κ = 0, 1

For a fixed number of grains and a larger critical crack size the effects are the same.
The larger the critical crack size and therewith nC becomes, the more the density
scatters.
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Figure 7.18.: Densities for N = 5, nC = 2 and κ = 0, 1
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Figure 7.19.: Densities for N = 5, nC = 3 and κ = 0, 1

Now we enlarge this to two dimensions and consider a grid of size N = N1×N2. We
are still focussing on cracks growth in one direction only, which in this case can occur
in each of the grain layers. According to (7.5) we again assume independency of the
grains, applying equally to the individual grain layers. The nC-crack probability of
an N2 chain is

FN2(nC , p(n, σ)) = CN (nC , p(n, σ)), (7.45)

therewith the survival of one layer can be calculated via

SN2(nC , p(n, σ)) = 1− FN2(nC , p(n, σ)). (7.46)

We transfer this to N2 independent layers and obtain the survival of all layers

SN (nC , p(n, σ)) = (1− FN2(nC , p(n, σ)))N1 (7.47)
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(a) Square Lattice and Square Cells (b) Finite Square Lattice with Two Crack
Directions

Figure 7.20.: Regular Square Lattice with Two Crack Directions

and therewith the total probability of failure for surface A divided into N grains

FN (nC , p(n, σ)) = 1− SN (nC , p(n, σ))

= 1− (1− FN2(nC , p(n, σ)))N1
(7.48)

Thus, the partial derivative with respect to lifetime n of the total crack probability
is given by

∂

∂n
FN (nC , p(n, σ))

= ∂

∂n
(1− SN (nC , p(n, σ)))

= ∂

∂n

(
1− (1− FN2(nC , p(n, σ)))N1

)
= N1 (1− FN2(nC , p(n, σ)))N1−1 ·

(
∂

∂n
FN2(nC , p(n, σ))

)
= N1 (1− FN2(nC , p(n, σ)))N1−1 ·

(
∂

∂p
CN (nC , p(n, σ)) · ∂

∂n
p(n, σ)

)
= N1 (1− FN2(nC , p(n, σ)))N1−1 ·

(
∂

∂p
CN (nC , p(n, σ)) · fSF (n)

)
,

(7.49)

where ∂∂pCN2 is the result of 7.41. We consider a critical crack size with nC = 2 and
N2 = 5. A comparison of the corresponding densities is given in figure 7.21 and 7.21.
As expected the density becomes more sharp for multiple layers, since the total crack
probability increases strongly for growing N1.
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Figure 7.21.: Densities for N1 = 1, 2, N2 = 5 nC = 2
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Figure 7.22.: Densities for N1 = 1, 5, N2 = 5 nC = 2

Once a threshold value for a number of cycles and therewith a single crack probability
is reached, the density increases. As

FN2(nC , p(n, σ)) −→
n→∞

1 (7.50)

and therewith
1− FN2(nC , p(n, σ)) −→

n→∞
0, (7.51)

the density of the total crack probability converges to 0 for N1 →∞, if p(n, σ) > 0.
Since we have investigated the lifetime calculations for crack within a given rect-
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angular surface and given edges, the following chapter considers surfaces in form
of a rod and introduces an extension of the model by cracks occuring at the whole
surface, where both edges are connected.

7.2. Approach for Circuit Structures

The introduced percolation model, which fullfills a recurrence relation, illustrates a
simple case of a grain structure and the type of crack possibly occuring with regards
to the single grain crack probability p and definition of a critical crack condition.

Figure 7.23.: Visualization of the Geometry of the Measuring Section, see [8]

We considered an arbitrary long chain neglecting boundary effects. The geometry
of the measuring section of the specimen is cylindrical. An example of this section
is given in figure 7.23. Thus, cracks can occur within the whole circumference. We
introduce an approach, which considers the geometry of the specimen. Let us assume
that both ends are merging into one another, such that there exists an edge (vN , v1) ∈
E′ as given in (7.1). Besides the starting point of an s-cluster of the non-connected
chain, i.e. for k = 1, ..., N − s+ 1,

C(s, ω) := {j|j ∈ {1, ..., N − s+ 1} : Xj(ω) = 1, ..., Xj+s−1(ω) = 1} , (7.52)
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and the first observed nC-cluster again defined by

Cmin(s, ω) := minC(s, ω). (7.53)

we enable the critical crack to begin in a grain k ∈ {N −nC + 2, ..., N} and proceed
at the beginning of the chain with k ∈ {1, ..., nC − 1}. Therfore we set for k ∈
{2, ..., N − nC + 1}

Mk(nC) :={ω : Cmin(nC , ω) = k}

= {min k|ω : Xk−1(ω) = 0, Xk(ω) = 1..., Xk+nC−1(ω) = 1}
(7.54)

and
M1(nC) := {ω : X1(ω) = 1..., XnC (ω) = 1} . (7.55)

Therefore, the last possible critical crack in the chain, which does not overlap the
edges, is given by

MN−nC+1(nC) = {ω : Cmin(nC , ω) = N − nC + 1}. (7.56)

Let the crack size nC be devided, such that

nC = n1
C + n2

C . (7.57)

The case that a crack overlaps, such that there is a n1
C-crack starting in grain

k = N − n1
C + 1 and continuing from k = 1 up to at least k = n2

C can be illustrated
by

E1(n1
C) := {ω : XN−n1

C
(ω) = 0, XN−n1

C+1(ω) = 1, ..., XN (ω) = 1} (7.58)

and
E2(n2

C) := {ω : X1(ω) = 1, ..., Xn2
C

(ω) = 1}. (7.59)

To obtain the probability for a nC-crack overlapping on the boundary cells we
connect the former given events, namely that there is no nC-crack starting un-
til the boundary is reached as well as the case that a n1

C-crack begins in grain
k = N − n1

C + 1, ..., N and continues up to k = 1, ..., n2
C .

For k ∈ {N−nC+2, ..., N} let E1 = E1(N−k+1) and E2 = E2(k+nC−N−1) and
compute the nC-crack probability for an overlapping crack starting in k as follows

P (Cmin(nC , ω) = k) = P

(E1 ∩ E2) \

N−nC+1⋃
l=1

Ml

 (7.60)
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and can be rearranged the following

P

(E1 ∩ E2) \

N−nC+1⋃
l=1

Ml


=P

E1 ∩ E2 ∩

N−nC+1⋂
l=1

MC
l


=P (E2) · P

N−nC+1⋂
l=1

MC
l

∣∣∣∣E2

 · P
E1

∣∣∣∣E2 ∩

N−nC+1⋂
l=1

MC
l


=P

E2 ∩

N−nC+1⋂
l=1

MC
l

 · P
E1

∣∣∣∣E2 ∩

N−nC+1⋂
l=1

MC
l


=P

E2 \

N−nC+1⋃
l=1

Ml

 · P
E1

∣∣∣∣E2 ∩

N−nC+1⋂
l=1

MC
l


=

P(E2)− P

E2 ∩

N−nC+1⋃
l=1

Ml

 · P
E1

∣∣∣∣E2 ∩

N−nC+1⋂
l=1

MC
l


= (P(E2)− P (E2 ∩M1)− P (E2 ∩M2)− · · · − P (E2 ∩MN−nC+1))

· P

E1

∣∣∣∣E2 ∩

N−nC+1⋂
l=1

MC
l

 ,

(7.61)

where the last equation holds, because the sets Mk are pairwise disjoint.
Therewith, only the cases are considered, which show a crack in k = N − n1

C + 1
up to k = n2

C . As we look at the minimal or most left grain where this occurs, it is
reduced by the cases of nC-crack occurencies (in form of events Mk) before the edge
is reached according to the calculations for the nC-crack probabilities without the
edges. This can as well be vizualised by a tree structure, where each level stands for
a specific grain number.

As the sets Ml describe the case that the minimal starting point is in l we can
calculate for the case that a n2

C-crack starts in the first grain, but does not contain
a nC-crack (otherwise this would have been the first observed nC-crack already), as
follows

P(E2)− P (E2 ∩M1) = pn
2
C − pnC . (7.62)

We see that for the second case it holds that

P (E2 ∩M2) = 0, (7.63)
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as the case X1 = 0 is not included in E2, which is also true forM3, ...,Mn2
C+1, thus

P(E2)− P (E2 ∩M1)− · · · − P
(
E2 ∩Mn2

C+1

)
= pn

2
C − pnC . (7.64)

Now let
Dl(nC) := P (E2 ∩M1) + · · ·+ P (E2 ∩Ml) (7.65)

for l ∈ {1, ..., N−nC+1} with E1 and E2 as given in (7.58) and (7.59). Therewith,

D1(nC) = pnC , (7.66)

Dl(nC) = 0 + pnC (7.67)

for grains l = 2, ..., n2
C + 1 and

Dn2
C+2(nC) = pn

2
C (1− p)pnC . (7.68)

For grains l ∈ {n2
C + 3, ..., N − nC − n1

C} the probability can again be represented
via a recurrence relation

Dl(nC) =
(
pn

2
C −Dl−2

)
(1− p)pnC +Dl−1, (7.69)

as the minimal nC-crack starting point follows the same principle as in (7.10) and
the cumulated crack possibilities can be formulated recursively as well.

Considering again the whole expression

P

(E1 ∩ E2) \

N−nC+1⋃
l=1

Ml

 , (7.70)

we see that the probability of all events can be calculated according to those of E2

and the junction of Mk, since we can equivalently write

P

(E1 ∩ E2) \

N−nC+1⋃
l=1

Ml


=P(E2 ∩ E1)− P (E2 ∩ E1 ∩M1)− P (E2 ∩ E1 ∩M2) · · ·

· · · − P (E2 ∩ E1 ∩MN−nC+1)

(7.71)

Since

E1(n1
C , ω) := {XN−n1

C
(ω) = 0, XN−n1

C+1(ω) = 1, ..., XN (ω) = 1}, (7.72)
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it follows that
P (E2 ∩ E1 ∩Ml) = 0 (7.73)

for l = N − nC − n1
C + 1, ..., N − nC + 1, as the case that XN−n1

C
(ω) = 0 is not

included in MN−nC−n1
C+1, ...,MN−nC+1. Equation (7.61) reduces the following

P

(E1 ∩ E2) \

N−nC+1⋃
l=1

Ml


=P(E2 ∩ E1)− P (E2 ∩ E1 ∩M1)− P (E2 ∩ E1 ∩M2) · · ·

· · · − P (E2 ∩ E1 ∩MN−nC+1)

=P(E2 ∩ E1)− P (E2 ∩ E1 ∩M1)− P (E2 ∩ E1 ∩M2) · · ·

· · · − P
(
E2 ∩ E1 ∩MN−nC−n1

C

)
,

(7.74)

For the remaining events it is easy to see that E1 is independent of them, therefore
it follows that

P

(E1 ∩ E2) \

N−nC+1⋃
l=1

Ml


=P(E2 ∩ E1)− P (E2 ∩ E1 ∩M1)− P (E2 ∩ E1 ∩M2) · · ·

· · · − P
(
E2 ∩ E1 ∩MN−nC−n1

C

)
= (P(E2)− P (E2 ∩M1)− P (E2 ∩M2) · · ·

· · · − P
(
E2 ∩MN−nC−n1

C

))
· (1− p)pn2

C

(7.75)

Combining the calculations, we obtain for k = N − nC + 2, ..., N that

P (Cmin(nC , ω) = k) =P

(E1 ∩ E2) \

N−nC+1⋃
l=1

Ml


= (P(E2)− P (E2 ∩M1)− P (E2 ∩M2) · · ·

· · · − P
(
E2 ∩MN−nC−n1

C

))
· (1− p)pn2

C

=
(
pn

2
C −DN−nC−n1

C

)
(1− p)pn1

C ,

(7.76)

where

Dl =


pnC , l = 1, ..., n2

C + 1

pn
2
C (1− p)pnC + pnC , l = n2

C + 2(
pn

2
C −Dl−2

)
(1− p)pn1

C +Dl−1, l = n2
C + 3, ..., N − nC − n1

C .

(7.77)

103



Microscopic Damage Accumulation Models

7. Crack Propagation and Grain Morphology

Therewith, we can subdivide the probability of an inner nC-crack up to grain k =
N − nC + 1 and those of an overlapping nC-crack. We see that

P (Cmin(nC , ω) ≤ k) = CN−nC+1 +
N−k+1∑
n1

C=nC−1

(
pn

2
C −DN−nC−n1

C

)
(1− p)pn1

C , (7.78)

for k = N − nC + 2, ..., N and n2
C = nC − n1

C .

The probability for a nC-crack ocurrence up to grain N − nC + 2 can be calculated
as follows

CN−nC+2(nC) = P (Cmin(nC , ω) = N − nC + 2) + CN−nC+1

=
(
pn

2
C −DN−nC−n1

C

)
(1− p)pn1

C + CN−nC+1

=
(
p−DN−nC−(nC−1)

)
(1− p)pnC−1 + CN−nC+1.

(7.79)

To obtain the total nC-crack probability up to grain N , i.e. the probability that at
least one nC-crack occurs in the chain, we compute

CN (nC) =P (Cmin(nC , ω) ≤ N)

=P (Cmin(nC , ω) ≤ N − nC + 1)

+
1∑

n1
C=nC−1

(
pn

2
C −DN−nC−n1

C

)
(1− p)pn1

C

(7.80)

The following we solve the last term, in particular we calculate Dl to obtain a so-
lution for the cumulated crack probabilities depending on nC and N , which we use
to compute the total nC-crack probability for a chain of length N . Afterwards the
results are transferred to two-dimensional grain structures.

Analogously to (7.14) Dl can be represented as an inhomogeneous recurrence equa-
tion of second order. To remind, p̃ := (1− p)pnC , we rearrange Dl the following

Dl −Dl−1 +Dl−2(1− p)pn1
C = (1− p)pnC = p̃. (7.81)

With
(1− p)pn1

C = p̃

pn
2
C

:= p∗ (7.82)

we again set up the equations
Ax = b, (7.83)
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where

A :=



1 0 0 0 · · · 0 0 0 0 0 · · · 0 0 0 0
0 1 0 0 · · · 0 0 0 0 0 · · · 0 0 0 0
0 0 1 0 · · · 0 0 0 0 0 · · · 0 0 0 0
...

...
. . .

. . .
. . .

. . .
...

...
...

...
...

...
...

...
...

0 0 0 0 · · · 1 0 0 0 0 · · · 0 0 0 0
0 0 0 0 · · · −1 1 0 0 0 · · · 0 0 0 0
0 0 0 0 · · · p∗ −1 1 0 0 · · · 0 0 0 0
0 0 0 0 · · · 0 p∗ −1 1 0 · · · 0 0 0 0
...

...
. . .

. . .
. . .

. . .
...

...
...

...
...

...
...

...
...

0 0 0 0 · · · 0 0 0 0 0 · · · 0 p∗ −1 1



,

(7.84)

x :=



D0

D1

D2

D3
...

Dn2
C+1

Dn2
C+2

Dn2
C+3

Dn2
C+4
...

DN−nC−n1
C



, b :=



0
pnC

pnC

pnC

...

pnC

pn
2
C p̃

p̃

p̃
...

p̃



(7.85)

.

To assign the probabilities of a critical crack up to grain N − nC − n1
C , which is

overlapping the edges, we again calculate

x = A−1b, (7.86)
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and see that the entries of the inverse of A follow a regular pattern as well. According
to the calculations before we easily obtain

A−1 :=



1 0 0 0 · · · 0 0 0 0 0 · · · 0 0 0 0
0 1 0 0 · · · 0 0 0 0 0 · · · 0 0 0 0
0 0 1 0 · · · 0 0 0 0 0 · · · 0 0 0 0
...

...
. . .

. . .
. . .

. . .
...

...
...

...
...

...
...

...
...

0 0 0 0 · · · 1 0 0 0 0 · · · 0 0 0 0
0 0 0 0 · · · 1 1 0 0 0 · · · 0 0 0 0
0 0 0 0 · · · 1− p∗ 1 1 0 0 · · · 0 0 0 0
0 0 0 0 · · · 1− 2p∗ 1− p∗ 1 1 0 · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...



,

(7.87)

for whose entries we can set up the recurrence relation

aij = ai−1j − p∗ · ai−2j (7.89)

and conditions

(aij)tj=1,...,n = ~ei, for i = 1, ..., n2
C + 1,

(aij)tj=1,...,n = ~ei−1 + ~ei, for i = n2
C + 2,

aii = 1, for = n2
C + 3, ..., N − nC − n1

C .

(7.90)

This recurrence relation of second order is again homogeneous and the coefficients
solve

aij − ai−1j + p∗ · ai−2j = 0 (7.91)

can be obtained by calculating the zero crossings of

P (x) = x2 − x+ p∗, (7.92)

which are given by

x0 = 1 +
√

1− 4p∗
2 ,

x1 = 1−
√

1− 4p∗
2 .

(7.93)
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Plugging in the initial conditions in the general solution as given before in (7.27),
namely

t0 = 0, t1 = 1, (7.94)

we obtain

c0 + c1 = 0

c0x0 + c1x1 = 1.
(7.95)

With the constants

c0 = −c1

c1 = 1√
1− 4p̃ ,

(7.96)

which results in the relation

tn =
( 1√

1− 4p∗
)
·
(

1 +
√

1− 4p∗
2

)n
−
( 1√

1− 4p∗
)
·
(

1−
√

1− 4p∗
2

)n

= 1√
1− 4p∗

[(
1 +
√

1− 4p∗
2

)n
−
(

1−
√

1− 4p∗
2

)n]
.

(7.97)

This leads to the (N − nC − n1
C + 1)× (N − nC − n1

C + 1)-matrix

A−1 :=



t1 t0 0 0 · · · 0 0 0 · · · 0 0
0 t1 t0 0 · · · 0 0 0 · · · 0 0
0 0 t1 t0 · · · 0 0 0 · · · 0 0
...

...
. . .

. . .
...

...
...

...
...

...
...

0 0 0 0 · · · t1 t0 0 · · · 0 0
0 0 0 0 · · · t1 t1 t0 · · · 0 0
0 0 0 0 · · · t2 t1 t1 · · · 0 0
0 0 0 0 · · · t3 t2 t1 · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 · · · tN−2nC−1 tN−2nC−2 tN−2nC−3 · · · t1 t1



,

(7.98)
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Therefore, the results for Dl, l ∈ 1, ..., N − nC + 1 can be calculated via



D0

D1
...

Dn2
C+1

Dn2
C+2

Dn2
C+3
...

DN−nC−n1
C



=



t1 t0 · · · 0 0 0 · · · 0
0 t1 · · · 0 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · t1 t0 0 · · · 0
0 0 · · · t1 t1 t0 · · · 0
0 0 · · · t2 t1 t1 · · · 0
...

...
. . .

. . .
. . .

. . .
. . .

0 0 · · · tN−2nC−1 tN−2nC−2 tN−2nC−3 · · · t1



·



0
pnC

...

pnC

pn
2
C p̃

p̃
...

p̃


(7.99)

So we obtain DN−nC−n1
C
depending on nC and n1

C as follows

DN−nC−n1
C

=tN−2nC−1 · pn
2
C p̃+ tN−2nC−2 · p̃+ · · ·+ t1 · p̃+ t1 · p̃

=p̃

pnC−n1
C tN−2nC−1 +

N−2nC−2∑
j=1

tj + t1

 (7.100)

and

tj = 1√
1− 4p∗

(1 +
√

1− 4p∗
2

)j
−
(

1−
√

1− 4p∗
2

)j . (7.101)

Thus we can compute the probability of observing at least one nC-crack in a chain
of length N via

CN (nC)

=P (Cmin(nC , ω) ≤ N − nC + 1)

+
1∑

n1
C=nC−1

(
pn

2
C −DN−nC−n1

C

)
(1− p)pn1

C

=
N−nC−2∑
k=1

tkp̃+ tN−nC−1p
nC

+
1∑

n1
C=nC−1

pn2
C − p̃

pnC−n1
C tN−2nC−1 +

N−2nC−2∑
j=1

tj + t1

 (1− p)pn1
C

(7.102)

Let us consider a given critical crack length LC leading to failure of the component.
Given the grain size we can therewith calculate the probability of failure of a chain
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with N grains, also considering crack growth all around. We now again compute the
partial derivative of the total crack probability with respect to p and use the results
in the following chapter to obtain the lifetime results and for fitting the model.

∂

∂p
CN

= ∂

∂p

P (Cmin(nC , ω) ≤ N − nC + 1) +
1∑

n1
C=nC−1

(
pn

2
C −DN−nC−n1

C

)
(1− p)pn1

C


= ∂

∂p
(P (Cmin(nC , ω) ≤ N − nC + 1))

+
1∑

n1
C=nC−1

∂

∂p

((
pn

2
C −DN−nC−n1

C

)
(1− p)pn1

C

)

= ∂

∂p

N−nC−2∑
k=1

tkp̃+ tN−nC−1p
nC


+

1∑
n1

C=nC−1

∂

∂p

pn2
C − p̃

pnC−n1
C tN−2nC−1 +

N−2nC−2∑
j=1

tj + t1

 (1− p)pn1
C

 .
(7.103)

In equation (7.41) we have already calculated

∂

∂p
(P (Cmin(nC , ω) ≤ N − nC + 1)) , (7.104)

so we now compute the left part of the partial derivative with respect to p

1∑
n1

C=nC−1

∂

∂p

((
pn

2
C −DN−nC−n1

C

)
(1− p)pn1

C

)

=
1∑

n1
C=nC−1

∂

∂p

pn2
C − p̃

pnC−n1
C tN−2nC−1 +

N−2nC−2∑
j=1

tj + t1

 (1− p)pn1
C

 .
(7.105)
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Let again j and n1
C be fixed. We compute the partial derivative for one addend in

the following

∂

∂p

pn2
C − p̃

pnC−n1
C tN−2nC−1 +

N−2nC−2∑
j=1

tj + t1

 (1− p)pn1
C


= ∂

∂p

(
pn

2
C (1− p)pn1

C − p̃pn2
C (1− p)pn1

C tN−2nC−1 − p̃(1− p)pn
1
C (tj + t1)

)
= ∂

∂p

(
p̃− p̃2tN−2nC−1 − p̃p∗(tj + t1)

)
.

(7.106)

We use the results from the previous section and obtain

∂

∂p
tj

= ∂

∂p

(1 +
√

1− 4p∗
2

)j
−
(

1−
√

1− 4p∗
2

)j
=j (n1

C + 1)pn1
C − n1

Cp
n1

C−1
√

1− 4p∗

(1 +
√

1− 4p∗
2

)j−1

+
(

1−
√

1− 4p∗
2

)j−1


(7.107)

and further

∂

∂p
tN−2nC−1

=(N − nC − 2)(n1
C + 1)pn1

C − n1
Cp

n1
C−1

√
1− 4p∗

·

(1 +
√

1− 4p∗
2

)N−nC−3

+
(

1−
√

1− 4p∗
2

)N−nC−3
 ,

(7.108)

as well as

∂

∂p
t1

=(n1
C + 1)pn1

C − n1
Cp

n1
C−1

√
1− 4p∗

[(
1 +
√

1− 4p∗
2

)
+
(

1−
√

1− 4p∗
2

)]
.

(7.109)
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We obtain for the partial derivative of the whole expression

∂

∂p

(
p̃− p̃2tN−2nC−1 − p̃p∗(tj + t1)

)
=nCpnC−1 − (nC + 1)pnC

−
(
2nCp2nC−1 − (4nC + 2)p2nC + (2nC + 2)p2nC+1

)
tN−2nC−1 + p̃2 ∂

∂p
tN−2nC−1

+
(
(nC + n1

C)pnC+n1
C−1 − 2(nC + n1

C + 1)pnC+n1
C + (nC + n1

C + 2)pnC+n1
C+1

)
· (tj + t1) + p̃p∗

∂

∂p
(tj + t1)

(7.110)

Similar to the first approach we can use the derivative with respect to p to obtain
the derivative of the total crack probability with respect to n

fN (n) = ∂

∂n
FN (n)

= ∂

∂n
FN (nC , p(n, σ))

= ∂

∂p
CN (nC , p(n, σ)) · fSF (n)

(7.111)

where

p(n) = FSF (n)

= P
(
CMB−1

(
RO

(
RO−1 (εa) ·

m(U)
λ

))
≤ n

) (7.112)

and

fSF (n) = ∂

∂n
FSF (n) (7.113)

denote the single grain crack probability and the according density based on the
Schmid factor distribution as well as ∂

∂pCN as calculated before. This approach is
again enlarged to two dimensions similar to (7.41), wherefore we again consider a
grid of size N = N1 × N2. We are still focussing on cracks growth in one direction
considering cracks on the whole circumference, which can occur in each of the grain
layers.
Transferring the probability distributions of one to multiple layers we obtain ana-
logueously to the model without edges

FN (nC , p(n, σ)) = 1− (1− FN2(nC , p(n, σ)))N1 (7.114)
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and

∂

∂n
FN (nC , p(n, σ)) = N1 (1− FN2(nC , p(n, σ)))N1−1

·
(
∂

∂p
CN (nC , p(n, σ)) · fSF (n)

)
,

(7.115)

where CN is the probability of an nC crack of one layer with connected edges.
We now briefly look at the differences between both distributions.
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Figure 7.24.: Distributions with and without Edges - N = 5, nc = 3
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Figure 7.25.: Distributions with and without Edges - N = 10, nc = 2
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As assumed the distribution without considering the edges is lower compared to
the other one enabling crack around the whole circumference. As the crack is not
restricted to given edges and therewith a limited start and end point, there are more
possibilities.
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Figure 7.26.: Distributions with and without Edges - nC = 5, N = 10

For a given number of grains N the deviations between both distributions increases
for growing sizes of cracks, since the position of the crack is more and more limited.
We can see in figure 7.26 that the distribution for the model without edges is more
flat in comparison to the first model.
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Figure 7.27.: Distributions with and without Edges - nC = 8, N = 10

These results are used to compute the probability of failure for a disretized compo-
nent and for fitting the model. Therefore, the hazard rate hA of a given surface A
needs to be calculated locally. Now let A = N1 · N2. The cumulative hazard for a
given surface A is

HA(n, σ) = − logSA(n, σ)

= − log (1− FN2(nC , p(n, σ)))N1 .
(7.116)

We can approximate
H(σ, n) ≈ HA(σ, n)

A
(7.117)

as local cumulative hazard function. Therefore, we calculate HA(n, σ) for growing
surface A and different combinations of nC and σ. Depending on the combination
we obtain different slopes of the hazards, which is shown in figure 7.28.
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Figure 7.28.: Dependency of Size and Hazard Function for Different p(n, σ)

Considering the individual size effect of each combination we can compute the local
hazard, which can be transferred to arbitrary surfaces A to obtain the probability
of failure

PoF (n) = 1− e−
∫

A
H(σ(x),n)dA. (7.118)

7.3. Voronoi Polycrystal Model

To describe polycrystalline material with regards to the introduced cell model ap-
proach Voronoi diagrams are frequently used and offer several advantages, since there
are many well-known questions and according applications. The main structure is
closely related to the cell model we have introduced before.
The Voronoi diagram subdivides an area with given points into convex polygones.
The so-called bisector represents the border between two different cells containing
the according point. This border has the same distance to each of the points of the
neighboured cells. The Voronoi cells are therewith generated in dependency of the
point set.
In our case the point set is simulated according to a given region and size distribu-
tion for the grains, such that we can transfer the results to the standard specimen
with given grain structures.
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(a) Random Point Set (b) Random Point Set with Voronoi
Tesselation

Figure 7.29.: Voronoi Tesselation for Random Point Set

Let us consider an area A = [0, 1]× [0, 1], which we intend to subdivide into different
regions, each one representing a grain. In general we consider a set of N points with
positions r1, r2, ..., rN in two dimensions. Associated to the ith point let ri be the
Voronoi cell and therewith the region of space being nearer to the point than to any
other point in the set.
To randomly subdivide the region A let us consider the coordinates to be uniformly
distributed on A. Figure 7.29a shows an example of a simulated set of points on
the given surface. In this case there are 100 Voronoi cells. The resulting Voronoi
diagram is shown in figure 7.29b. Let the crack probability of a single grain be
p ∈ [0, 1], which will be replaced by the single crack probability depending on given
stress states, material constants and number of proceeded cycles. Based on the single
crack probability for each grain, we randomly select grains to be cracked. In figure
7.29b we simulated random occuring cracks with probability p = 0.2 for each of the
100 grains and highlighted them. Thus,

P (Xk = 1) = 0.2, P (Xk = 0) = 0.8, (7.119)

where k = 1, ..., 100. In our case we are looking for subgraphs showing a certain
property, namely being cracked. Therefore we need the following definition.

Definition 7.1 (Connected Components). An undirected graph G = (V,E) is con-
nected, if for each vertex v ∈ V there exists a path to every other vertex u ∈ V . A
connected component is defined as the maximal connected subgraph G′ ⊆ G of
an undirected graph G.
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We are interested in cracks growing throughout the grains. We consider nearest
neighbored cells, i.e. cells that share a Voronoi edge, showing a crack to belong to
one connected component. In figure 7.30 the adjacent grains, which are cracked, are
connected by their edges. The connected components correspond to the clusters of
the previous chapter, varying in terms of the fact, that the distances in the previous
cell models are equidistant and the lattices are regular.

Figure 7.30.: Voronoi Tesselation with Subgraphs

Algorithm 5 shows the procedure of generating the voronoi graph and finding sub-
graphs in more detail.

Figure 7.31 shows the graph with highlighted cracked grains, such that the sizes of
the connected components and therewith the crack sizes are visualized.
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Algorithmus 5 : Generation of Random Graphs and Connected Sub-
graphs
Data : Single Grain Crack Propability p, Number of Grains NG, Surface

A = [x−, x+]× [y−, y+], Number of simulated Graphs NMC

Result : List of NMC Graphs with Node Lists for connected Clusters each

for all simulation steps k = 1, ..., NMC do
1 Generate NG randomly uniform distributed points gi with

i = 1, ..., NG;
2 Create Voronoi diagram and graph G = {V,E} for surface S and

points gi;
for all points gi i = 1, ..., NG do

Generate crack property z with z ∼ Bp with single grain crack
probability p

end
3 Find all connected components with z = 1;
4 Store list of graph information and node list of connected components;
end

Figure 7.31.: Voronoi Tesselation with Subgraphs

Depending on the size of the surface, the grain size and the underlying stress states,
the individual crack sizes and directions need to be assessed with regard to their
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contribution on occuring damage. In the following we introduce different failure
criteria and thereby follow [28] and [3].

The calculations are made for each possible pair of two nodes ri and rj , ij, i, j =
1, ..., k, belonging to one subgraph. We introduce two crack criteria, which are closely
related. The first crack criteria is the maximum crack opening stress of one connected
component

σs = |tij |
π

2n
T
ijσnij , (7.120)

where tij = ri − rj , i, j = 1, ..., k, is the vector between two grains of one subgraph
and nij is the according normal vector. The second failure criteria is the so-called
stress intensity factor, or simply K-factor

KI = 1.1215 · nTijσnij ·

√
π
|tij |
2 , (7.121)

where KI is the K-factor including cracks of mode I, which we are interested in.
It describes the stress distribution at its crack tip. Thereby the factor of 1.1215 is
dependend on the geometry and the crack position we are considering. To obtain
maximum possible values within one cluster we calculate

σ∗s = max
i,j=1,..,k

|tij |
π

2n
T
ijσnij , (7.122)

and

K∗I = max
i,j=1,..,k

1.1215 · nTijσnij ·

√
π
|tij |
2 , (7.123)

so we maximize over all possible combinations between two grains in one subgraph.
Both crack criteria consider stress and the direction of the crack. Additionally we
can calculate the crack size in total and in x-direction only, which, in the case of
uniaxial load, corresponds to mode I cracks. We consider for each cluster

C = max
i,j=1,..,k

|tij | (7.124)

and
Cx = max

i,j=1,..,k
|e1ri − e1rj |. (7.125)

In the following we use these failure criteria to decide whether a generated graph
is critical or not. We need to define a limit for each and consider real conditions of
our specimen. Let the gauge length be 18mm, diameter d = 7 and the circumference
22mm. We consider a penny shaped crack and calculate the crack length along the
circumference, which needs to be reached for a critical crack size by considering a
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failure criteria of 5% drop in stress. Therewith, we obtain the critical crack length
by solving

ϕ

2π −
∣∣∣∣∣sinϕ2π

∣∣∣∣∣ = 2.5% (7.126)

and computing
C∗ := 3.5πϕ

π
mm. (7.127)

In our case we obtain a critical crack length of C∗ = 3.022618. Depending on the
grain size and number we can generate a graph with the required properties as
described before via algorithm 5 and evaluate the crack clusters with respect to
the given criteria. Per grain number and single grain crack probability p ∈ [0, 1]
we randomly generate 1000 graphs each. Since the percolation threshold is at 0.5,
it is sufficient to generate the graphs for p ∈ [0, 0.5]. The single grains crack with
probability according to the probabilities of the analytical percolation models is
given by

p(n) = FSF (n)

= P
(
CMB−1

(
RO

(
RO−1 (εa) ·

m(U)
λ

))
≤ n

) (7.128)

with number of cycles to failure n and Schmid factor m(U). We can generate a suf-
ficient large amount of Monte Carlo samples for each crack probability and number
of grains for a given surface. These samples serve as a basis for the values of (7.128).
Once the state of each Voronoi cell is fixed, the subgraphs are filtered and evaluated
according to the given failure criteria to calculate the number of sufficienty cracked
graphs. A method to find the subgrahs and compute the criteria is given in algorithm
5.

The following we look at the resulting distributions depending on grain size and
number. With the conditions as given before we consider a circumferential sur-
face of approximately 374mm2 and compare the distributions for grain numbers
N = 50, 75, 100 and different crack criteria.
Let the failure criteria be C = 3 and the Voronoi region fixed and as given above.
Figure 7.32 shows the densities for different numbers of grains.
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Figure 7.32.: Lifetime Densities resulting from Sample Voronoi Tesselation

With an increasing number of grains the densities are shifted to the left.

Figure 7.33.: Distributions Voronoi Tesselation for C = 3

The mean number of cycles, which are given in table 7.1, deviate. The density of the
analytical model with 50 grains lies above both calculated according to the sample
Voronoi tesselations.

Grain Number 50 Grains Vor. 150 Grains Vor. 50 Grains Ana.
Mean 7 579 6 300 10 968

Table 7.1.: Summary of Fatigue Life - Uniaxial and Multiaxial
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There is a longer LCF Lifetime in case of the analytical model compared to the
Voronoi based models with a crack criteria of C = 3 mm. An increasing number of
grains results in a shorter LCF lifetime.
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Figure 7.34.: LCF Lifetime Densities for Different Grain Numbers

Comparing this to the density change under an increasing number of grains in case
of the analytical model, we see that in the latter one, the scatter of LCF lifetime
becomes smaller and the form more sharp, but the minimum value is nearly equal.
LCF lifetime density is more concentrated on shorter life for more grains.
Using the Voronoi tesselation the densities are shifted to shorter LCF life considering
a higher amount of grains. The scatter is similar, but the mean value becomes lower,
as table 7.1 shows.
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Figure 7.35.: Distributions Voronoi Tesselation for C = 3 mm

The following we consider the results of the analytical model with N1 = N2 = 10
and compare them to the sample Voronoi Tesselations with N = 100, both under
uniaxial loading. We can see in figure 7.36 that the analytical model leads to longer
LCF life. The increase is very sharp, as we have already seen before for a large
number of grains. The mean value is approximately 5.000 cycles higher than with
the same number of grains using Voronoi tesselation.

Looking at the densities the deviation in mean value is clearly noticeable. Also the
fact that both densities of the Voronoi tesselation show a similar course, but are
shifted to the left for an increasing grain number.

Figure 7.36.: Densities Voronoi Tesselation for C = 3
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We have seen that the models result in different LCF lifetime distributions. With
the analytical models and the sample Voronoi tesselation it is possible to generate
the probabilities of failure and hazard rates according to several conditions. We can
vary the number and size of grains, the surface size, the loading state to be applied
including unaxial and multiaxial loadings, as well as different criteria to set and
evaluate the amount damage.

The next chapter shows the application and transfer to the component, followed
by fitting of the model to real data.
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8. Fitting to Experimental LCF Lifetime
Data

We introduced an approach to calculate probabilistic LCF fatigue lifetime based on
cell models. Therefore we can vary the amount of stress and its level of multiaxiality.
Additionally, we can modify the number and size of grains as well as the underly-
ing surface area. The following we use the shown models to fit parameters of the
Ramberg-Osgood equation 2.1 and Coffin-Manson-Basquin equation 3.2 to obtain
material parameters fitting to given data, such that appropriate calculations of LCF
fatigue life can be made.

We consider a given set of experimental data resulting from fatigue tests of Rene80
specimen applying different loading strengths. The initial material parameters, which
we used for the fit, were provided by Siemens and will not be stated explicitely. Fig-
ure 8.1 shows a sample of 22 data points (ni,1, ..., ni,22), where again both axes are
in log− log scale.
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Figure 8.1.: Experimental Data at Different Strain Levels
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Our aim is to fit the material parameters θ = (σf , εf , c, b) to the given set of data.
Based on this parameters and the according CMB relation the probability of failure
can be calculated and transferred to the component. As a starting point θ0 we
consider parameters resulting in the CMB relation as given in figure 8.2.
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Figure 8.2.: Experimental Data with CMB at Initial Value

We consider the analytical model to calculate LCF fatigue life and the real size and
grain number to optimize the parameters.We consider experiments with a length of
the measuring section (gauge length) of 18mm, diameter d = 7mm and circumference
of 21.991mm. We chose a grain size of 3mm based on assumptions on the material.
Figure 8.3 shows an engineering drawing of the specimen.

Figure 8.3.: Technical Drawing of Specimen, see also [8]
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According to the analytical model we consider

fN (n|θ) = ∂

∂n
FN (n|θ)

= ∂

∂n
FN (nC , p(n, σ, θ)|θ)

= ∂

∂p
CN (nC , p(n, σ, θ)|θ) · fSF (n|θ)

(8.1)

where

p(n|θ) = FSF (n|θ)

= P
(
CMB−1

(
RO

(
RO−1 (εa) ·

m(U)
λ

)
, θ

)
≤ n

∣∣∣θ) (8.2)

and

fSF (n|θ) = ∂

∂n
FSF (n|θ) (8.3)

denote the single grain crack probability and the according density based on the
Schmid factor distribution as well as ∂

∂pCN as calculated in section 7.2. We consider
a grid of size N = N1 ×N2 and multiple layers and therewith

FN (nC , p(n, σ, θ)|θ) = 1− (1− FN2(nC , p(n, σ, θ)|θ))N1 (8.4)

and

∂

∂n
FN (nC , p(n, σ, θ)|θ) = N1 (1− FN2(nC , p(n, σ, θ)|θ))N1−1

·
(
∂

∂p
CN (nC , p(n, σ, θ)|θ) · fSF (n|θ)

)
,

(8.5)

where N1 = 7 and N2 = 6. Now let the density according to given parameters θ ∈ Θ
be shortly denoted by fN (n|σ, θ). The Likelihood function is defined as follows

L(θ) = L(ni,1, ni,2, ..., ni,l|θ) = fN (ni,1|σ1, θ) · · · · · fN (ni,l|σl, θ) (8.6)

and the according log-Likelihood is given as

logL(θ) = logL(ni,1, ni,2, ..., ni,l|σ1, . . . , σl, θ) =
l∑

k=1
log fN (ni,k|σk, θ) (8.7)

The parameters in our case are given as θ = (σf , εf , c, b). We are looking for param-
eters, which maximize the underlying density value at each given data point and
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in total maximizes the probability of all fatigue test realizations. Therefore we are
looking for values maximizing the log-Likelihood function, i.e.

logL(θ)→ max . (8.8)

The Maximum Likelihood Estimator (MLE) is therewith given by

θ̂ML = argmax
θ∈Θ

logL(θ). (8.9)

The densities fN (ni,k|σk, θ) vary for each group of specimen not having an equal
strain or stress level, as we can see in figure 8.4 and 8.5.

Figure 8.4.: LCF Fatigue Life Data and Initial CMB Relation

Figure 8.5.: Initial CMB Relation with LCF Life Densities, N1 = 7, N2 = 6,
nC = 2
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As the values of critical number of cracked grains in a row nC are discrete in the
analytical model, we estimate one MLE for each nC = 1, ..., 7 and compare the
end values of the log-Likelihood function. The initial values and the corresponding
function is shown by the dashed black line.
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Figure 8.6.: Estimated CMB Parameters for Different Crack Sizes

The CMB relations with the estimated parameters show deviations for each crack
length nC . We can see that the red line with nC = 1 has the largest distance to the
other CMB relations. This is due to the sharp shape of the density for such a large
number of grains and layers, as visible in 7.36. The other lines, apart from the initial
one, are very close to each other. If we evaluate all log-Likelihood functions with the
estimated parameters of each critical crack number, we obtain the values shown in
table 8.1.

nC 1 2. 3 4 5 6 7
− logL(nC , θ̂) 225.58 180.72 149.55 103.16 89.64 85.25 82.99
Table 8.1.: Values of negative log-Likelihood functions for different nC

The highest value is given at nC = 1, the lowest at nC = 7. All values are in a
range of 226 to 80. This is due to the fact that densities with higher critical crack
number nC are wider and cover the data points better. As the range of the densities
are quite close to the scatter of specimen of one strain group, a change of CMB
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parameters and therewith a shift of all densities leads to some data points being not
covered. Thus, the values of negative log-Likelihood decrease for larger critical crack
length.
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9. Finite Elements Discretization and
Transfer to Component

To calculate the probability of failure for a component, we use finite element dis-
cretization. To discretize the elasticity PDE in (3.5) we first introduce some fun-
damentals of finite element analysis [14], [2]. Let K ⊆ R3 be a compact, connected
Lipschitz set with non-empty interior called element domain. Further let P be a
finite vector space of polynomials p : K → R and Σ(K) = {ϑ1, ..., ϑns} be linear
functionals ϑl : P (K) → R with ϑK,j(p) = p(Xj), which are also called the local
degrees of freedom. A finite element is denoted by the triple {K,P (K),Σ(K)}.
The local shape functions {γ1, ..., γns} are basis functions γK,k ∈ P (K) satisfying
ϑK,j(γK,k) = δj,k, j, k ∈ {1, ..., ns}. If there are nodes {XK

1 , ..., X
K
ns
} ∈ K, such that

for all p ∈ P (K) it holds that ϑK,j(p) = p(XK
j ), j ∈ {1, ..., ns}, we call it a Lagrange

finite element.
Let ∆h be a finite element mesh on Ω containing elementsKm,m ∈ {1, ...,Mel}, with
non-empty interior and {Km}1≤m≤Mel

representing a partition of Ω. By H1
D(Ω, R3)

we denote the Sobolev space of L2(Ω,R) functions u with with first derivatives
∇u ∈ L2(Ω,R3×3), such that u = 0 on ∂ΩD. We consider a reference element
{K̂, P̂ , Σ̂(K̂)} with a finite dimensional linear space of reference polynomials P̂ .
Further considering a bijective transformation TK : K̂ → K for each K ∈ ∆h, such
that P̂ = P ◦ TK , γ̂j = γj ◦ TK and ϑ̂j(p) = ϑj(p ◦ TK) where j ∈ {1, ..., ns}, we can
write

TK(ψ̂) = TK(ψ̂,X) =
ns∑
j=1

γ̂j(ψ̂)XK
j , ψ̂ ∈ K̂. (9.1)

Let X = {X1, ..., XM} = ⋃
K∈∆h

{XK
1 , ..., X

K
ns
} be the set of all Lagrange nodes with

index mapping

∆h × {1, ..., ns} → {1, ..., N}

(K, r)→ l̂(K, r).
(9.2)
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We consider the set of global shape functions {ϑj : j ∈ {1, ...,M}}, ϑj : Ω → R.
Restricted to K ∈ ∆h the functions are in P (K) and if ∃k ∈ {1, ..., ns} such that
l̂(K, k) = j, then

ϑj|K
(
XK
m

)
= δmk. (9.3)

Thus, ϑj(Xm) = δjm for j,m ∈ {1, ..., N}. Now let the volume force densitiy be
f ∈ L2(Ω,R2) and surface load g ∈ L2(∂ΩN ,R2) as described in (2.2.1). The
global finite element space H1

h(Ω,R) is the linear span of {ϑj : j ∈ {1, ...,M}}.
Let H1

h(Ω,R3) = H1
h(Ω,R)×3, then H1

h(Ω,R3) ⊆ H1(Ω,R3). Let H1
D,h(Ω,R3) be

the subspace of H1
h(Ω,R3) with H1

D,h(Ω,R3) = {u ∈ H1
h(Ω,R3)

∣∣u = 0 on ∂ΩD ∩
{X1, ..., XM}}, i.e. vanishing of u on boundary nodes. We are looking for a solution
u ∈ H1

D,h(Ω,R3) to the discretized elasticity PDE fullfilling

B(u, v) =
∫

Ω
f · vdx+

∫
∂ΩN

g · vdA,∀ v ∈ H1
D,h(Ω,R3). (9.4)

Because of the coercivity of the bilinear form, such a solution always exists and this
also holds on H1

D,h(Ω,R3).

To transfer the probability of failure PoF (t) = 1− S(t) = 1− e−J(Ω,u) to the com-
ponent, the functional J(Ω, u) needs to be discretized. This is given as an integral
of the surface ∂Ω with

J(Ω, u) =
∫
∂Ω
H(σ(x), n,N,LC)dA, (9.5)

where H(σ(x), n,N,LC) is obtained according to (7.117) and following. Let Mh be
the set of allMf faces F of finite elements K = K(F )∈ ∆h which are in ∂Ω. Let the
according face of the reference element K̂ be F̂ such that TK : F̂ → F . We consider
quadrature points ψ̂Fl with weights ω̂Fl on F̂ . The computation of the surface integral
reduces to the evaluation of integrals over each element lying in Mh, therewith

J(Ω, u) =
∑
F∈Mh

∫
F
H(σ(x), n,N,LC)dA

=
∑
F∈Mh

∫
F̂
H(σ(T̂K(F )(x̂)), n,N,LC)

√
det(gF (x̂))dÂ

≈
∑
F∈Mh

lFq∑
l=1

ω̂Fl H(σ(T̂K(F )(ψ̂Fl )), n,N,LC)
√

det(gF (ψ̂))dÂ,

(9.6)

with lFq Gauß points {ψ̂Fl , ..., ψ̂lFq } and weights {ω̂Fl , ..., ω̂lFq } being a quadrature on
F̂ . det(gF (ψ̂)) denotes the Gram determinant, i.e. the determinant of the Gram

132



Microscopic Damage Accumulation Models

9. Finite Elements Discretization and Transfer to Component

matrix F (ψ̂) = (JF (ψ̂))TJF (ψ̂) with JF (ψ̂) = ∂TF (ψ̂)
∂ψ̂

being the Jacobian matrix of
TF .

9.1. Example: Application to a Blisk-Geometry

As an example, we show the results of probabilistical lifetime calculation for a Bladed
Disk. We consider a volume force resulting from centrifugal load from a rotation. Air
pressure surface loads are not considered. The FEA discretization consists of 13 682
nodes with 1 838 brick elements with 20 degrees of freedom and reduced quadrature
lq = 8. The surface quadrature points are selected such that lFq = 16.

(a) Stress State of Blade - front (b) Stress State of Blade - back

Figure 9.1.: Front and back view of a blisk with according von Mises stress
under centrifugal loading resulting from a rotation

Figures 10.2a and 10.2b show the von Mises stress of the component. For the cal-
culation of crack intensity we use (7.117) and (7.116), respectively. For (7.128) we
use the fitted CMB and RO parameters of the Voronoi percolation model as given
in 8. We determine the failure criteria C∗ = 3 mm according to material properties
of (7.36) to apply realistic conditions. The direction of stress and factor of multiax-
iality are also taken into consideration of the model. The crack intensity increases
with the number of loading cycles. The intensity is colored from blue to red. At the
beginning of the loading there is no damage (9.3a, 9.3b).
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(a) Hazard of Blade cycles- front (b) Hazard of Blade - back

Figure 9.2.: Cumulative hazard previous to the loading, figure 9.3a shows the
front, 9.3b the back side of the component, intensity from blue to red

(a) Hazard of Blade 1 000
cycles - front

(b) Hazard of Blade 1 000 - back

Figure 9.3.: Cumulative hazard after a number of 1 000 cycles, figure 9.4a
shows the front, 9.4b the back side of the component, intensity from blue to

red
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After 1 000 loading cyles there is a high crack intensity at the transition between
blade and blade root at the back of the component as well as at the right edge in
the front.

(a) Hazard of Blade 10 000
cycles- front

(b) Hazard of Blade 10 000
cycles - back

Figure 9.4.: Cumulative hazard after a number of 10 000 cycles, figure 9.4a
shows the front, 9.4b the back of the component, intensity from blue to red

An increasing number of loading cycles leads to an expand of the area and a strength-
ening of crack intensity in the front and in the back.

(a) Hazard of Blade 100 000
cycles- front

(b) Hazard of Blade 100 000
cycles - back

Figure 9.5.: Cumulative hazard after a number of 100 000 cycles, figure 9.5a
shows the front, 9.5b the back side of the blade, intensity from blue to red
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10. Probabilistic Damage Accumulation
and Rainflow Counting

To evaluate loading cycles with respect to their individual size and intensity, damage
parameter can be used. Applying a deterministic approach hysteresis loops can be
classified and counted according to their strength by the Rainflow counting method,
which we have already introduced in chapter 3.3.1. We have shown a slip system
based approach and a counting algorithm for 3 different stress states and a face-
centered cubic crystal.
In the following, we combine the slip system based approach with random orientation
of the grains and transfer it to the random Schmid factor model. Therewith, we
obtain a probabilistic damage parameter dependend on different stress states with
according levels of multiaxiality. The methods for calculating probablistic damage
parameter as well as the results are shown in the following.

Figure 10.1.: Stress History with T = 17

According to the procedure shown in 3.3.1 we consider 3 different stress states
σrep,1, σrep,2, σrep,1 and the appropriate sequence of stress scenarios

σhist =


σhist,0

σhist,1
...

σhist,T

 (10.1)
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with σhist,t ∈ {σrep,1, σrep,2, σrep,3}, t = 0, 1, ..., T . Figure 10.1 shows an example
course with time T = 17. The sequence is given by

σhist =



σrep,2

σrep,1

σrep,3
...

σrep,3


(10.2)

We follow a slip system based approach and use the shear stress each slip system
experiences. Per slip system, those are categorised in different damage collectives
according to their strength. We consider randomly distributed grains and recall the
probabilistic shear stress τi,j(U), i = 1, 2, 3, 4 and j = 1, 2, 3 for a face-centered
cubic crystal. Applying the calculation of shear stress for randomly oriented grains
to the stress history in 10.2, we obtain 3 shear stress values for each of the 12 slip
systems

τi,j(U, σrep,l) = Uni · σrep,l · Usi,j , (10.3)

with σhist,t ∈ {σrep,1, σrep,2, σrep,3}, t = 0, 1, ..., T . The calculation of shear stress of
the whole loading history is calculated for each random orientation, since the orien-
tation remains unchanged during the time. To accumulate the damage we apply the
3 loading states according to the history to the different slip systems and calculate
the shear stress amplitudes, which are classified in damage collectives afterwards.
We reduce the given historical load course and apply the following:

To evaluate the load history with regards to 12 slip systems in this case, the stress
amplitudes are calculated for each i and j.
As there are 3 stress scenarios σrep,1, σrep,2 and σrep,3, there are 3 different situations
of resulting shear stress, namely τi,j(Uσrep,1), τi,j(U, σrep,2) or τi,j(U, σrep,3).

This results in the following possible stress amplitudes for a given time point m:

τa,i,j(U, σ∗m) =


(τi,j(U, σrep,1)− τi,j(U, σrep,2))/2, if σ∗m = σrep,1, σ

∗
m−1 = σrep,2 or v.v.,

(τi,j(U, σrep,2)− τi,j(U, σrep,3))/2, if σ∗m = σrep,2, σ
∗
m−1 = σrep,3 or v.v.,

(τi,j(U, σrep,1)− τi,j(U, σrep,3))/2, if σ∗m = σrep,1, σ
∗
m−1 = σrep,3 or v.v..
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Algorithmus 6 : Reduce History for Random Rainflow Counting with 3
Load States
Data : σhist (T + 1× 3× 3) tensor with σhist,m ∈ {σrep,1, σrep,2, σrep,3}

∀m ∈ {0, 1, ..., T}, Slip Plane Normals ni, Slip Systems si,j,
i = 1, 2, 3, 4, j = 1, 2, 3, orientation U

Result : σ∗ (T ′ × 3× 3) tensor containing the reduced stress history

for all slip planes i = 1, 2, 3, 4 do
for all slip systems j = 1, 2, 3 do

1 Let τa,i,j(U, σhist,m) := τi,j(U, σhist,m)−
τi,j(U, σhist,m−1) for all changing points m = 1, ..., T do

2 if sgn(τa,i,j(U, σhist,m) · τa,i,j(U, σhist,m+1)) == +1 then
Delete σhist,m;

end
end

end
3 Store new load history with T ′ points as σ∗

To visualize the effect that the same loading states result in different strengths and
therewith different order for each slip system, we first use stress states with

||σ′rep,1||F = ||σ′rep,2||F = ||σ′rep,3||F . (10.4)

So we use 3 loading states with equal von Mises equivalent stress, but different levels
of multiaxiality. For each slip system the stress states are ordered according to their
resulting shear stress.The y-axis gives the according shear stress state being ordered
ascending, which means in the example loading history that

τ1,1(U, σrep,3) < τ1,1(U, σrep,2) < τ1,1(U, σrep,1) (10.5)

and
τ2,1(U, σrep,1) < τ2,1(U, σrep,2) < τ2,1(U, σrep,3). (10.6)

So for example at time t = 5, where σhist,5 = σrep,1, we reach the stress state 3 for
slip system 2 and therewith the loading state resulting in the highest shear stress,
whereas for slip system 1 the applied stress leads to the lowest shear stress. Figures
10.2a and 10.2b show the stress history for those 2 different slip systems.

The level of multiaxiality and therewith the different combinations of principal stress
lead to deviating results for the slip systems. Therewith even under loading states
having equivalent von Mises stress there are different loading histories for each slip

138



Microscopic Damage Accumulation Models

10. Probabilistic Damage Accumulation and Rainflow Counting

system, as the strengths are depending on the orientation between slip system and
stress tensor.

(a) Stress History for s1,1

(b) Stress History for s2,1

Figure 10.2.: Different Loading Histories per Slip System with T = 17

Algorithm 2 shows the method to obtain the individual shear stress histories per slip
system. In order to calculate a probabilistic damage parameter based on the loading
histories for each slip system we compute probabilistic lifetime first using the stress
history depending on the random orientation.
Therefore we use the stress amplitudes to calculate the amount of damage. First
we use Neuber shake down as given in 3.7 to convert the elastic stress amplitudes
to elastic plastical ones via SD

(
τ ela (U)

)
= τ el−pla (U). We use the Ramberg-Osgood

equation given in 2.23 to obtain strain according to the given stress amplitudes and
compute

εel−pla (U) = RO
(
τ el−pla

)
. (10.7)

The probabilistic number of cycles for the given stress states can be calculated via

Ni(U) = CMB−1
(
εel−pla (U)

)
= CMB−1

(
RO

(
SD

(
τ ela (U)

)))
.

(10.8)
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The loading states of the stress course are subdivided into several groups of different
amplitudes and evaluated with a damage each. Therefore we use the number of
cycles depending on the random orientation U as given in 10.8 and compute the
number of cycles to failure according to the shear stress amplitudes for each slip
system. Algorithm 7 shows the procedure to obtain the number of realized cycles
using slip system based rainflow counting under random grain orientation.

With the resulting tensors of algorithm 7 we can apply the Miners rule as given in
3.4. Therefore we consider the results nrain to compute a damage parameter, whose
calculation is given by the following definition.

Definition 10.1. Let U ∈ SO(3) and consider a loading history σhist,M with accord-
ing random shear stress amplitudes denoted by τa,i,j(U, σhist,m), where m = 1, ...M
and M ∈ N. Further consider the number of repetitions nrain,k,i,j(U) in group k of
the i−th slip plane in j−th direction and Nk,i,j(U) the calculated number of cycles
to failure depending on random orientation U . The probabilistic damage of collective
k can be calculated as

Dk,i,j(U) = nrain,k,i,j(U)
Nk,i,j(U) . (10.9)

With the probabilistic damage parameter, we have the possibility to transfer the
deterministic method of Rainflow counting to a random grain orientation and calcu-
late slip system based damage paramters. We add up the part damages of all stress
collectives to obtain a total damage parameter depending on the orientation U . As
we consider the grain to have the same orientation during the whole loading history,
the total damage is calculated for each orientation. According to Miners rule we
are interested in the probability of the damage parameter reaching 1, i.e.

P
(

M∑
k=1

Dk,i,j(U) ≥ 1
)

= P
(

M∑
k=1

nrain,k,i,j(U)
Nk,i,j(U) ≥ 1

)

= 1− P
(

M∑
k=1

nrain,k,i,j(U)
Nk,i,j(U) < 1

)
,

(10.10)

respectively, taking into account all 12 slip systems at the same time,

P
(

max
i,j

(
M∑
k=1

Dk,i,j(U)
)
≥ 1

)
= 1− P

(
max
i,j

(
M∑
k=1

nrain,k,i,j(U)
Nk,i,j(U)

)
< 1

)
. (10.11)

So for each slip system and stress component the number of realized cycles to a
given stress amplitude is evaluated in relation to its admissable number of cycles
until failure according to the Coffin-Manson Basquin equation, whereby we consider
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Algorithmus 7 : Probabilistic Rainflow Counting
Data : σ∗hist (T ′ + 1× 3× 3) tensor with σ∗m ∈ {σrep,1, σrep,2, σrep,3}

∀m ∈ {0, 1, ..., T}, Slip Plane Normals ni, Slip Systems si,j,
i = 1, 2, 3, 4, j = 1, 2, 3, Number of Grid Points for Euler Angles
Na

Result : nrain (3× 3× 4) tensor containing the rainflow counts of 3 stress
states for a fcc crystal (12 slip systems),

N (3× 3× 4) tensor containing the rainflow counts

1 Initialize I := [0, 2π]× [0, 2π]× [0, π];
2 Set number of grid points Nq := (Na − 1)3;
3 Initialize grid points x1, ..., xNq ∈ I for Euler angle discretization;
4 Initialize a Nq × 3× 3× 4 tensor nrain := 0;
5 Initialize a Nq × 3× 3× 4 tensor N := 0;
for all grid points xl, l = 1, ..., Nq do

6 Set Euler angles (ϕ1, ϕ2, θ) := xl;
7 Compute rotation matrix U(ϕ1, ϕ2, θ);

for all slip planes i = 1, 2, 3, 4 do
for all slip systems j = 1, 2, 3 do

8 Sort shear stress amplitudes according to size, such that
τaI := |τi,j(U, σrep,1)− τi,j(U, σrep,3)|,
τaII := |τi,j(U, σrep,1)− τi,j(U, σrep,2)| and
τaIII := |τi,j(U, σrep,2)− τi,j(U, σrep,3)| with τaI ≥ τaII ≥ τaIII ;
for all changing points m = 1, ..., T do

9 Calculate shear stress amplitudes
τa,i,j(U, σ∗m) := τi,j(U, σ∗m)− τi,j(U, σ∗m−1);

10 if τa,i,j(Uσ∗m) == τaI(U) then
nrain,1,i,j := nrain,1,i,j + 1;

else if τa,i,j(U, σ∗m) == τaII(U) then
nrain,2,i,j := nrain,2,i,j + 1;

else
nrain,3,i,j := nrain,3,i,j + 1;

end
end

11 N1,i,j,l := CMB−1 (RO (SD (τaI(U))));
12 N2,i,j,l := CMB−1 (RO (SD (τaII(U))));
13 N3,i,j,l := CMB−1 (RO (SD (τaIII(U))));

end
end

end
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random orientation of grains. Once the sum of all groups reaches a value of 1, hun-
dred percent of allowed cycle numbers is exploited and the component is considered
to fail.

We are interested in the distribution of the damage parameter, especially in the
intensity of change during the loading history. As noticeable, the damage parameter
changes during time for each slip system, as nrain,k,i,j(U) and Nk,i,j(U) depend on
the number of cycles. With algorithm 7 the probabilistic damage parameters for
arbitrary loading histories can be generated using again discretization of Euler an-
gles.Please note that the resulting values are afterwards weighted according to the
Haar measure, similar to algorithm 4.

The following we are looking at the different distributions of damage parameters
depending on σhist,m where m = 1, ...M and compare them after different numbers
of cycles. Therefore we subdivide the loading history into severeal time periods to
see the developement of the damage parameter.
To obtain significant damage we set the stress states as follows:

σrep,1 =


1.329531 0 0

0 −0.6647655 0
0 0 −0.6647655

 ,

σrep,2 =


−558.41202 363.574605 20.831985
181.80920 279.375863 −2.377382
−10.02646 3.689832 −333.162072

 ,

σrep,3 =


−2363.1118 −17.92722 1168.7057

165.6428 1258.84897 354.2381
−560.4561 390.94992 −1127.2400

 .

(10.12)

We consider a loading history with Time T = 30, which is sampled, and stop at
times t = 10, 20, 30. First we look at the damage parameter at time t = 10 for 2
different slip systems. Obviousely, the 2 densities differ slightly already at this time,
as the loading states have different impacts on the damage parameter of each slip
system.

142



Microscopic Damage Accumulation Models

10. Probabilistic Damage Accumulation and Rainflow Counting

Figure 10.3.: Densities of Damage Parameter at t = 10 - 2 Slip Systems

Figure 10.3 shows the 2 densities. The damage parameters are much lower than the
threshold of 1, since there are only 5 cycles that have been repeated combined with
sufficiently low stress states.

Figure 10.4.: Density of Maximum Parameter at t = 10

The maxiumum parameter maxi,j
(∑M

k=1
nrain,k,i,j(U)
Nk,i,j(U)

)
scatters much wider as we

notice on figure 10.4. The width of the density is significantly higher than the one
of ∑M

k=1
nrain,k,i,j(U)
Nk,i,j(U) . The scatter and right shift of damage parameter values occurs
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due to the fact that we maximize over slip systems for each rotation.
We focus on the maximum damage parameter, as we are interested in the slip system
experiencing the maximum damage during loading course, due to the fact that this
is the critical one.

Figure 10.5.: Density of Maximum Parameter at t = 20

In figure 10.5 we can see the density of the maximum damage parameter after 20
loading states. The shape looks similar, the function is shifted to the right, as the
higher number of cycles causes a higher amount of damage.

Figure 10.6.: Density of Maximum Parameter at t = 30
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Over the period until t = 40 we notice the same effects. For this period we have

P
(

max
i,j

(
M∑
k=1

Dk,i,j(U)
)
≥ 1

)
= 1− P

(
max
i,j

(
M∑
k=1

nrain,k,i,j(U)
Nk,i,j(U)

)
< 1

)
= 0.27.

(10.13)

Figure 10.7.: Density of Maximum Parameter at t = 40

With this procedure, we have the possibility to calculate probabilistic damage pa-
rameter for arbitrary loading histories to make an assumption on the amount of
damage for given stress states. Therewith we can evaluate the course of loading
states with respect to their damage and make estimations on their possible damage
and the failure of the component.
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11. Conclusion and Outlook

In this thesis, we have shown, that it is possible to model LCF life, using an approach,
which is based on the physical damage mechanisms and the material characteristics.
We have introduced a probabilistic LCF life model for single grains, which uses the
assumption, that the scatter in LCF life results from the scatter of shear stress,
acting on the randomly oriented slip systems.
With the model, it is possible to compute LCF lifetime distributions also for loading
states with different levels of multiaxiality. We have shown, that the level of multi-
axiality has an impact on the lifetime, the scatter increases and the mean tends to
lower values.
A method for anisotropic elasticity has been introduced. For those lifetime distribu-
tions we have seen, that the means are lower and the scatter is larger, in comparison
to the isotropic ones.
We have presented two approaches to enlarge the single grain life to model the crack
propagation. First, we used a cell model to describe the crack percolation within
polycrystalline material. Therewith, it was possible to compute the probability of
failure analytically for varying amounts and sizes of grains and for different critical
crack lengths. Additionally, a Voronoi polycrystal model was introduced.

In chapter 8, we have fitted the parameters of the analytical percolation model
to real LCF life data, using a maximum likelihood method. We have seen, that the
models do reflect the scatter of experimental data appropriately and that the quality
of estimation differs for different input parameters.
The analytical percolation model has been transferred to the geometry of a bladed
disk. We have shown an exemplary calculation of cumulative hazard for a chosen
stress state after different numbers of loading cycles.

We have presented an approach for a probabilistic damage accumulation and a Rain-
flow counting method, where multiaxial loadings states can also be considered. A
procedure for arbitrary loading histories with 3 different stress states was introduced.
We have seen the change of the distribution of a probabilistic damage parameter,
depending on the number of cycles. Therewith, we can evaluate the course of loading
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states with respect to their damage and can make assumptions on the failure of a
component.

It would be possible to combine the presented models with a thermo-mechanical
fatigue model, which are mostly based on an empirical approach. A more detailed
investigation and comparison between the analytical and the Voronoi model would
also be interesting.
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A.1. Further Definitions

Definition A.1 (3.7, [6]). A function f : G → K is left uniformly continuous, if
∀ ε > 0 ∃ V ∈ V, such that |f(x) − f(y)| < ε, x, y ∈ G with x−1y ∈ V , so with
|f(x)− f(xv)| < ε ∀ x ∈ G, v ∈ V . If ∀ ε > 0 ∃ V ∈ V, such that |f(x)− f(y)| < ε,
x, y ∈ G with yx−1 ∈ V , so with |f(x)− f(vx)| < ε ∀ x ∈ G, v ∈ V , f is called right
uniformly continuous.

Theorem A.2 (3.11, [6]). Let Γ be a locally compact Hausdorff topological group.
There exists a left invariant positive linear form I : CC(Γ) → K, I 6= 0, and I

is uniquey determined except for a positive factor. I is called left Haar integral on
CC(Γ).

[Proof] First we show existence: Let f, g ∈ C+
C (Γ), g 6= 0. Then V := {g > 1

2 ||g||∞}
is a non-empty open set. There exists a finite number of x1, ..., xm ∈ Γ, m ∈ N, with
supp f ⊂ ⋃mk=1 xkV , by this

f ≤ 2
( ||f ||∞
||g||∞

) m∑
k=1

g ◦ L(x−1
k ) (A.1)

Therewith it holds that
f ≤

m∑
k=1

ckg ◦ L(x−1
k ), (A.2)

c1, ..., ck ≥ 0. It follows for each positive left invariant linear form J : CC(Γ) → K,
J 6= 0, that

J(f) ≤
m∑
k=1

ckJ(g), (A.3)

therewith ∑m
k=1 ck ≥

J(f)
J(g) . Now let (f : g) be the infimum of all sums ∑m

k=1 ck of all
coefficients c1, .., cm in inequations of type (A.2). The form (f : g) has the following
properties:

1. (f ◦ L(y) : g) = (f : g), y ∈ Γ,

2. (λf : g) = (f : g), λ ≥ 0,

3. (f1 + f2 : g) ≤ (f1 : g) + (f2 : g), f1, f2 ∈ C+
C (Γ),

4. (f : g) ≥ ||f ||∞||g||∞ ,

5. (f : h) ≤ (f : g)(g : h), h ∈ C+
C (Γ), h 6= 0,

6. 1
(h:f) ≤

(f :g)
(h:g) ≤ (f : h), f, g, h ∈ C+

C (Γ) \ {0}.
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Properties 1. − 3. are resulting from the definition of (f : g). For property 4 we
consider (A.2) and obtain ||f ||∞ ≤

∑m
k=1 ck||g||∞, therewith ∑m

k=1 ck ≥
||f ||∞
||g||∞ . To

obtain 5. let x1, ..., xm ∈ Γ and c1, ...cm ≥ 0 as per (A.2)and y1, ..., yn ∈ Γ, d1, ..., dn ≥
0 according to g, h such that g ≤ ∑m

l=1 dlh ◦ L(y−1
l ). We use (A.2) and use the last

inequality to obtain

f ≤
m∑
k=1

n∑
l=1

ckdlh ◦ L((xkyl)−1) (A.4)

and therewith (f : h) ≤ ∑m
k=1 ck

∑n
l=1 dl. Computing the infimum on the right side

of the inequality results in 6. and 6. follows directly, noting that the denominators
are positive, since f, g, h 6= 0. The further approach yields in reducing the support of
g to identity element e and at the same time control (f : g). Therefore we determine
a comparison function f0 ∈ CC(Γ), f0 6= 0 and consider

Ig(f) := (f : g)
(f0 : g) , (A.5)

f, g ∈ C+
C (Γ), g 6= 0. With properties 1.− 3. we obtain

Ig(f ◦ L(y)) = Ig(f), y ∈ Γ

Ig(λf) = λIg(f), λ ≥ 0

Ig(f1 + f2) ≤ Ig(f1) + Ig(f2), f1, f2 ∈ C+
C (Γ)

(A.6)

and 7. yields
Ig(f) ∈

[ 1
(f0 : f) , (f : f0)

]
, (A.7)

f 6= 0. We consider Ig(f) to approximate I(f). For all f1, f2 ∈ C+
C (Γ) and ε ≥ 0 ∃

V ∈ U,5 such that
Ig(f1) + Ig(f2) ≤ Ig(f1 + f2) + ε (A.8)

for all g+
C (Γ), g 6= 0 and supp g ⊂ V . To show this let K := supp(f1 + f2)+

C(Γ) and
h+
C(Γ) with h|K = 1. Further let F := f1 + f2 + δh with δ > 0 sufficiently small,

such that 2δ(h : f0) < ε
2 . For j = 1, 2 let

ϕj(x) :=


fj(x)
F (x) , for x ∈ {F > 0}
0, for x ∈ KC .

(A.9)

Therewith ϕ1, ϕ2 are well-defined, since K ⊂ {F > 0} and ϕ1(x) = ϕ2(x) = 0 for all
x ∈ KC ∩ {F > 0}. Both functions are continuous, as they are continuous on open
sets {F > 0} and KC . Therewith it holds that ϕ1, ϕ2 ∈ C+

C (Γ), 0 ≤ ϕ1 + ϕ2 ≤ 1
and Fϕj = fj , j = 1, 2. As per (4.7) are uniformly continuous from the left. We set

5U is the neighbourhood system of the idendity element e

iii



Microscopic Damage Accumulation Models

A. Appendix

0 < η < 1
2 sufficiently small, such that 2η(f1 + f2 : f0) < ε

2 . There exists a V ∈ U,
such that |ϕj(x) − ϕj(xv)| < η ∀x ∈ Γ, v ∈ V , j = 1, 2. Now let g ∈ C+

C (Γ), g 6= 0,
supp g ⊂ V and x1, ...xm ∈ Γ, c1, ..., cm ≥ 0, such that

F ≤
m∑
k=1

ckg ◦ L(x−1
k ). (A.10)

With g ◦ L(x−1
k ) 6= 0 it holds that x ∈ xkV , and ϕj(x) ≤ ϕj(xk) + η. Thus,

fj(x) = ϕj(x)F (x) ≤
m∑
k=1

ck(ϕj(xk) + η)g(x−1
k x), (A.11)

x ∈ Γ, j = 1, 2. Summing up of the resulting inequalities for (f1 : g), (f2 : g) yields

(f1 : g) + (f2 : g) ≤
m∑
k=1

ck(ϕ1(xk) + ϕ2(xk) + 2η) ≤
m∑
k=1

ck(1 + 2η), (A.12)

considering ϕ1 + ϕ2 ≤ 1. Applying (A.6) and (A.10) we obtain

(f1 : g) + (f2 : g) ≤ (F : g)(1 + 2η) ≤ ((f1 + f2 : g) + δ(h : g))(1 + 2η),

Ig(f1) + Ig(f2) ≤ (Ig(f1 + f2) + δIg(h))(1 + 2δ).
(A.13)

We determine δ, η sufficiently and see that

2ηIg(f1 + f2) ≤ 2η(f1 + f2 : f0) < ε

2 ,

δIg(h)(1 + 2η) ≤ 2δ(h : f0) < ε

2 .
(A.14)

We now consider X := ∏
f

[
1

(f0:f),(f :f0)

]
, the product of all f ∈ C+

C (Γ), f 6= 0.
According to the theorem of Tychonoff [21, 10.1] X is compact. It follows from
(A.7)that Ig ∈ X for all g ∈ C+

C (X), g 6= 0. Now for V ∈ U let F (V ) be the closure
of {Ig : g ∈ C+

C (Γ), g 6= 0, supp g ⊂ V } in X. For V1, ..., Vn ∈ U F (V1)∩ ...∩F (Vn) =
F (V1 ∩ ...∩ Vn). Since X is compact, the intersection of F (V ), V ∈ U, is not empty.
Let I ∈ F (V ) for all V ∈ U. For each f1, ..., fn ∈ C+

C (Γ) \ {0}, n ∈ N, ε > 0 and
V ∈ U there exists g ∈ C+

C (Γ), g 6= 0 with supp g ⊂ V , such that

|I(fj)− Ig(fj)| < ε, (A.15)
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for all j = 1, ..., n. With properties (A.6) we obtain the following for I : C+
C (Γ) \

{0} → (0,∞), f, f1, f2 ∈ C+
C (Γ) \ {0}:

I(f ◦ L(y)) = I(f), y ∈ Γ,

I(λf) = λI(f), λ > 0,

I(f1 + f2) = I(f1) + I(f2),
1

(f0 : f) ≤ I(f) ≤ (f : f0).

(A.16)

Therewith I can be continued to a left invariant positive linear form I : CC(Γ)→ K.
Due to (4) (f0 : f0) = 1 and following I(f0) = 1. Due to the last properties it holds
that I 6= 0.
Now we show uniqueness: Let J : CC(Γ) → K be a left Haar integral and f, g ∈
C+
C (Γ), g 6= 0. It results from (A.3), i.e. J(f) ≤∑m

k=1 ckJ(g), so

J(f) ≤ (f : g)J(g) (A.17)

J(g) 6= 0. Further let f ∈ C+
C (Γ), ε > 0. As f is left uniformly continuous, there

exists U ∈ U, such that |f(x) − f(y)| < ε for all x, y ∈ Γ with x−1y ∈ U . Let
g ∈ C+

C (Γ), g 6= 0 with supp g ⊂ U , such that g(x) = g(x−1), x ∈ Γ. For x ∈ Γ
fixed we consider Γ → R, y 7→ f(y)g(y−1x), y ∈ Γ. For y−1x ∈ U it holds that
g(y−1x) = 0 and for y−1x ∈ U f(y) ≥ f(x) − ε. Since g is symmetric and J is left
invariant,

J(f(y)g(y−1x)) ≥ (f(x)− ε)J(g(y−1x))

= (f(x)− ε)J(g(x−1y))

= (f(x)− ε)J(g),

(A.18)

and

f(x)− ε ≤ J(f(y)g(y−1x))
J(g) . (A.19)

Function g is right uniformly continuous. Considering a η > 0 there is W ∈ U open
with |g(y)− g(z)| < η for all y, z ∈ Γ and yz−1 ∈W . Let K := supp(f + f0). There
exists a finite number of y1, ..., yn ∈ Γ and ϕ1, ..., ϕn ∈ C+

C (Γ) with ∑n
k=1 ϕk|K = 1

and suppϕk ⊂ ykW , k = 1, ..., n. The right side of (A.19)

J(f(y)g(y−1x)) =
n∑
k=1

J(f(y)ϕk(y)g(y−1x)). (A.20)
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Here ϕk(y) = 0 for ykW and y−1
k x ∈ Wy−1 for y ∈ ykW , therewith g(y−1x) ≤

g(y−1
k ) + η. Now let γk := J(fϕk)

J(g) , then ∑n
k=1 γk = J(f)

J(g) . Considering (A.19) and
(A.20), we obtain

f(x) ≤ ε+
n∑
k=1

γk(g(y−1
k x) + η) = +ηJ(f)

J(g) +
n∑
k=1

γkg(y−1
k x). (A.21)

We set η sufficiently small, such that η J(f)
J(g) < ε and h ∈ C+

C (Γ) with h|K = 1.
Therewith

f(x) ≤ 2εh(x) +
n∑
k=1

γkg(y−1
k x) (A.22)

and
(f : g) ≤ 2ε(h : g) +

n∑
k=1

γk = 2ε(h : g) + J(f)
J(g) . (A.23)

Dividing by (f0 : g) yields with property 6 of (f : g) and (A.17)

Ig(f) = f : g
f0 : g ≤ 2ε h : g

f0 : g + J(f)
(f0 : g)J(g) ≤ 2ε(h : f0) + J(f)

J(f0) . (A.24)

Let U be sufficiently small, such that |f0(x) − f0(y)| < ε for all x, y ∈ Γ with
x−1y ∈ U . We can apply (A.23)to f0 instead of f and (A.17) and obtain

Ig(f) = f : g
f0 : g ≥

J(f)
2ε(h : g)J(g) + J(f0) . (A.25)

We now estimate (h : g)J(g) upwards. Therefore we set h∗ ∈ C+
C (Γ) with h∗ |K = 1

and ε∗ := (4(h∗ : h)−1). Additionally, we choose U sufficiently small, such that
|h(x) − h(y)| < ε∗ for all x, y ∈ Γ with x.1y ∈ U . It holds (A.23) also for h, h∗ and
ε∗ for all symmetric g ∈ C+

C (Γ), g 6= 0 and supp g ⊂ U , i.e.

(h : g) ≤ 2ε ∗ (h∗ : g) + J(h)
J(g)

≤ 1
2

(h∗ : g)
(h∗ : h) + J(h)

J(g)

≤ 1
2(h : g) + J(h)

J(g) .

(A.26)

We obtain
(h : g)J(g) ≤ 2J(h) (A.27)

and wth (A.25)
Ig(f) ≥ J(f)

4εJ(h) + J(f0) . (A.28)
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As per to (A.24) and (A.28) there is a V ∈ U for each δ > 0, such that |Ig− J(f)
J(f0) | < δ

for all symmetric g ∈ C+
C (Γ), g 6= 0 with supp g ⊂ V . Therewith J(f)

J(f0) is uniquely
determined.

The definition of Sobolev spaces can be found e.g. in [31; 10; 18].

Definition A.3 (Sobolev Space of 1st Order). Let Ω ⊂ Rd. We denote the Sobolev
space of order 1 by

H1(Ω) = {v ∈ L2(Ω), ∂xiv ∈ L2(Ω), 1 ≤ i ≤ d}. (A.29)

H1 is endowed with the norm

〈u, v〉H1(Ω) =
∫

Ω

(
uv +

d∑
i=1

∂xiu∂xiv

)
dx, (A.30)

and we denote the according norm by ||v||H1(Ω) =
√
〈v, v〉 =

(∫
Ω|u|2dx+

∫
Ω |∇u|

2dx

) 1
2
.
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