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Abstract

We develop multigrid methods for simulating lattice QCD with physical values of the quark masses

within the twisted mass fermion formulation. We employ the developed multigrid method both for

the calculation of the quark propagators needed for extracting the hadronic matrix elements and for

accelerating the generation of gauge field ensembles. For the computation of the quark propagators

we improve the performance by two orders of magnitudes as compared to conjugate gradient enabling

to perform the analysis of key nucleon observables at physical values of the light quark mass. For the

generation of gauge field ensembles with two degenerate flavors of the light quarks (N f =2) an order

of magnitude speedup is achieved. Extension of the multigrid approach is carried out to include in the

simulation the dynamical strange and charm quarks. To accomplish this one needs the calculation of

the square root of the non-degenerate twisted mass operator. We solve the square root with an optimal

rational approximation and employ multigrid methods in the solution of the shifted linear system. In

such a way we accelerate simulations with N f =2+1+1 flavors of fermions all tuned at their physical

value by an order of one magnitude. These methods are used for the production of four ensembles,

two with N f =2 and two with N f =2+1+1, which are state-of-the-art worldwide. These ensembles are

shared by all members of the Extended Twisted Mass Collaboration (ETMC) and are being used them

for obtaining quantitative description of hadron properties including observables that can probe new

physics beyond the standard model. In this thesis we focus on physical results on low-lying hadron

masses, meson decay constants, and pion and nucleon electromagnetic form factors.1

1Common thesis between the University of Cyprus and the University of Wuppertal in partial fulfillment of the PhD
requirements for a dual degree within the European Joint Doctorate Program High Performance Computing for Life Sci-
ences, Engineering And Physics (HPC-LEAP). The project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No’ 642069.
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Περίληψη

Αναπτύξαμε νέες μεθόδους για προσομοίωση πλέγματος ΚΧΔ με φυσικές τιμές των μαζών

κουάρκς εντός του φορμαλισμού συνεστραμμένης μάζας φερμιονίων. Χρησιμοποιούμε τον αλ-

γόριθμο μυλτιγριδ τόσο για τον υπολογισμό των διαδοτών κουάρκς που χρειάζονται για την

εξαγωγή στοιχείων αδρονικής μήτρας καθώς και για την επιτάχυνση των προσομοιώσεων των

γκλουανικών πεδίων. Για τον υπολογισμό των διαδοτών κουάρκ βελτιώνουμε την απόδοση κατά

δύο τάξεις μεγέθους σε σύγκριση με τη συζευγμένη κλίση, επιτρέποντας την μελέτη των ιδιοτήτων

των νουκλεονίων για δύο εκφυλισμένες γεύσεις των ελαφρών κουάρκ (N f=2) με φυσική τιμή της

μάζας τους. Για την προσομοίωση επιτεύχθηκε ταχύτητα επιτάχυνσης μιας τάξης μεγέθους.

Επεκτείναμε τον αλγόριθμο μυλτιγριδ για να συμπεριλάβουμε και την προσομοίωση των παράξ-

ενων και των γοητευτικών κουάρκς όπου κάποιος χρειάζεται το υπολογισμό της τετραγωνικής

ρίζας του μη εκφυλισμένου πίνακα Διρας. Με αυτό τον τρόπο επιταχύνουμε προσομοιώσεις με

N f=2+1+1 γεύσεις φερμιονίων όταν όλα έχουν την φυσική τους μάζα. Αυτές οι μέθοδοι χρησι-

μοποιούνται για την παραγωγή τεσσάρων συνόλων προσομοιώσεων που συγκαταλέγονται στα

καλύτερα διεθνώς. Χρησιμοποιούμε αυτές τις προσομοιώσεις για την ποσοτική περιγραφή της

δομής των αδρονίων και των ποσοτήτων που μπορούν να ανιχνεύσουν νέα φυσική πέρα από το

μοντέλο πρότυπο. Φυσικά αποτελέσματα που παρουσιάζονται σε αυτή τη διατριβή περιλαμβάνουν

μάζες αδρονίων, σταθερές αποσύνθεσης μεσονίων και την ηλεκτρομαγνητική μορφή πιονίου και

νουκλεονίου.
1

1
Κοινή διατριβή μεταξύ του Πανεπιστημίου Κύπρου και του Πανεπιστημίου του Ωυππερταλ για τη μερική

εκπλήρωση των διδακτορικών απαιτήσεων για το διπλό πτυχίο στο πλαίσιο του Ευρωπαϊκού Κοινού Διδακτορικού

Προγράμματος ΗΠ῝-ΛΕΑΠ.
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Zusammenfassung

In dieser Thesis werden Mehrgitterverfahren zur Simulation von Gittereichtherien mit physikalischen

Werten der Quark-Massen innerhalb der Twisted-Mass-Fermion-Formulierung entwickelt. Diese en-

twickelten Mehrgitterverfahren werdenowohl für die Berechnung der Quark-Propagatoren, die für

die Extraktion von hadronischen Matrixelementen benötigt werden, als auch für die Beschleunigung

der Simulation von Eichfeld-Ensembles mit zwei degenerierten Light-Quarks (N f =2) verwendet. Für

die Berechnung der Quark-Propagatoren wird die erforderliche Lösungszeit um zwei Größenordnun-

gen im Vergleich zur Conjugated Gradient Methode verbessert. Dies ermöglicht die Statistik für die

Analyse wichtiger Nukleon-Observablen entscheident zu erhöhen. In der Simulation wurde die Lö-

sungszeit um eine Größenordnung für Quarkmassen am physikalischen Punkt verringert. Des Weit-

eren wurde das Mehrgitterverfahren auf den nicht-degenerierten Twisted-Mass-Operators erweitert,

was die Anwendung des Mehrgitterverfahren für die Simulation von dynamischer Strange und Charm

Quarks ermöglicht. Dies erfordert die Berechnung der Quadratwurzel des Operators, welche mit

einer optimalen rationalen Approximation und dem verwenden Mehrgitterverfahren zur Lösung des

verschobenen Linearsystems berechnet wird. Auf diese Weise wurde der Rechenaufwand der Sim-

ulationen mit N f =2+1+1 Fermionen deutlich reduziert, was Simulation mit Quarks ermöglicht, die

alle auf ihren physikalischen Wert abgestimmt sind. Diese Ensembels, hier zwei mit N f =2 und zwei

mit N f =2+1+1, sind weltweit auf dem neuesten Stand. Die Messungen auf diesen Ensembels werden

verwenden für die quantitativen Beschreibung der Hadronenstruktur und können Hinweise auf neue

Physik jenseits des Standardmodell geben. Die präsentierten physikalischen Ergebnisse beinhalten

Hadronenmassen, Mesonzerfallskonstanten sowie elektromagnetische Formfaktoren von Pione und

des Nukleon.1

1These zwischen der Universität von Zypern und der Bergischen Universität Wuppertal, welche ein Teil der Promo-
tionsvoraussetzung für den Doppelabschluss im Rahmen des europäischen gemeinsamen Doktorandenprogramms HPC-
LEAP ist.
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Preface

In September 2015 I started my Ph.D. under the European Joint doctorate program High Perfor-

mance Computing in Life sciences Engineering and Physics (HPC-LEAP) founded by the European

Union’s Horizon 2020 research and innovation program. As an early-stage researcher (ESR) I was

given a joint research project between the University of Cyprus (UCY) and the University of Wup-

pertal (BUW). The aim of the project was the development and the application of multigrid methods

in Lattice Quantum Chromodynamics (LQCD), which nicely combined the research interests of my

two supervisors C. Alexandrou, Professor of theoretical physics at UCY, and A. Frommer, Profes-

sor of applied mathematics at BUW. Prof. Alexandrou has many years of experience in research

in LQCD, she is the Acting Director of the Computation-based Science and Technology Research

Center (CaSToRC) of The Cyprus Institute (CyI) and member of the Extended Twisted Mass (ETM)

collaboration. This, as well as the HPC-LEAP network, gave me the opportunity to collaborate with

many other researchers in lattice QCD outside of my two institutions. Prof. Frommer has pioneered

algorithms that have become mainstream within LQCD community codes. I was thus exposed in the

mathematical basis for the development of algorithms for large scale simulations and for the tools for

achieving improved performance.

For the successful implementation of the project, I received a multidisciplinary training in numer-

ical methods, computational physics and HPC. The workshops organized by the HPC-LEAP program

contributed significantly in the rapid development of the required interdisciplinary knowledge and

skills. During the first year of the project, we had an intensive training program divided in four work-

shops of three weeks each. The topic of the first workshop organized by the university of Wuppertal

was “Numerical analysis and algorithms towards exascale”. It was a perfect starting and gave me also

the advantage to be embedded in the group of Prof. Frommer at the University of Wuppertal receiving

an introduction to multigrid methods and to employ them in our LQCD projects. This collaboration

resulted in our first paper entitled “Adaptive Aggregation-based Domain Decomposition Multigrid

for Twisted Mass Fermions” [1]. Other works followed on the application of multigrid methods for

twisted mass fermions [2, 3].

In collaboration with the LQCD group at the Cyprus Institute as well as with members of the

ETM collaboration we carried out an intensive research program with the goal to improve simulation

of gauge field ensembles and to enable studies of hadron structure. Using multigrid methods we

succeeded in simulating a series of twisted mass ensembles with quark masses tuned to their physical

value. To accomplish this we found an optimal setup for the multigrid algorithm and developed

codes optimized for the biggest supercomputers, including several numerical studies that resulted

in several publications [4–7]. This included the generation of the first ensemble of twisted mass

fermions at the physical point with up, down, strange and charm quarks all tuned to their physical

mass as reported in Ref. [8]. Two additional ensembles were also simulated and a fourth one is

currently under production. We used our new ensembles for conducting several studies on hadronic

observables as scattering processes, meson decay constants, nucleon parton distribution functions and

the pion and nucleon electromagnetic form factors. They can be found in our publications [9–13].
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1. Introduction

Research in lattice Quantum Chromodynamics (QCD) relies critically on algorithms and novel com-

puter architectures. This thesis addresses the development of algorithms that deal with the criti-

cal slowing down as light quark mass approaches its physical value. The algorithm development is

specifically oriented for twisted mass fermions.

Lattice QCD provides the only known framework to solve non-perturbatively the fundamental

theory of the strong interactions starting directly from the QCD Lagrangian. It uses the same input

parameters as those of the continuum theory, namely the bare quark masses and coupling constant. It

is a very appropriate formalism for nuclear physics since it provides a rigorous framework to com-

pute hadronic matrix elements and compare with experimental results. In lattice QCD one solves the

QCD Lagrangian on a 4-dimensional Euclidean lattice, discretizing the space-time. This introduces

several sources of systematical effects which need to be kept under control. Large lattice sizes, fine

lattice spacing and dynamical quarks are required for obtaining results that can be compared with

observations. Simulations that are performed with dynamical quarks with masses tuned to their phys-

ical value are referred to as the physical point simulations. Such simulations have been targeted for

many years by the lattice QCD community. A lot of effort has been devoted to reach the techno-

logical, algorithmic and theoretical developments that nowadays allow to perform simulations at the

physical point with large enough volume and fine enough lattice spacing. A number of lattice QCD

collaborations are currently pursuing such simulations providing results that have never before been

so reliable.

The thesis is structured as follows:

• In Chapter 1 we introduce the fundamental concepts of Quantum Chromodynamics starting

from the standard model. We also discuss physical quantities studied in lattice QCD and open

questions we aim to address.

• In Chapter 2 we introduce the concepts of lattice QCD focusing in particular on the twisted

mass fermion formulation used in our studies.

• In Chapter 3 we present the iterative solvers for computing the inverse of the Dirac twisted

mass operator. We begin with a qualitative description of standard iterative Krylov solvers.

We derive the Conjugate Gradient algorithm and present the problem of the critical slowing

down, which appears when we approach the physical pion mass. Then we introduce multigrid

methods, which provide a solution to the critical slowing down and we review their application

in lattice QCD. We explain first inexact deflation as introduced by M. Lüscher [14], we review

the first algebraic multigrid approach in lattice QCD referred to as MG-GCR, and we conclude

with the formal description of the multigrid algorithm we use, namely the Aggregation-based

Domain Decomposition Multigrid (DD-αAMG) solver.

• In Chapter 4 we describe the application of the DD-αAMG solver to compute quark propaga-

tors of twisted mass fermions. We present several numerical results obtained on configurations

at the physical point and we provide a detailed analysis of the multigrid parameters and their

properties.
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• In Chapter 5 we describe the simulation approach used in Lattice QCD for computing ob-

servables, i.e. the Monte Carlo integration. We start from pure-gauge theories employing the

Metropolis algorithm, then we integrate the fermions using the pseudo-fermions representation

and we solve the integral using hybrid MC (HMC) and rational HMC algorithms. We also

present our approach for accelerating inversions in the rational approximation by providing an

initial guess to the solver.

• In Chapter 6 we detail our procedure for the generation of the gauge ensembles at the physical

point that include two N f = 2 and two with N f = 2+1+1 ensembles of twisted mass clover-

improved fermions. We discuss the improvements achieved using the new algorithms, the

tuning procedure and physical observables that test the accuracy of the simulation.

• In Chapter 7 we show selected results for meson and nucleon observables computed on the

aforementioned physical ensembles and we compare them with older results using an N f = 2

ensemble with lattice volume V = 483× 96 addressing finite size and heavy quark quenching

effects on these observables.

1.1 Standard model
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Figure 1.1: Schematic representation of the standard model. Within the red box we indicate the degrees of
freedom of the theory of the strong interactions, QCD. Image credit: CERN.

Four fundamental forces are believed to govern the universe and they describe its dynamical

evolution. Gravity is the most well-known force that is evident on the macroscopic level being a long

distance interaction. The classical theory of gravity finds its most complete formulation in the general

theory of relativity [15] by A. Einstein. The other three forces are electromagnetism, the weak and
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strong forces. Electromagnetism is a long-distance force while the weak and strong forces contribute

to short distance interactions among particles. The Standard Model (SM) is the quantum field theory

formulation of the last three forces. The gravitational force does not have yet a consistent quantum

field theory formulation. The effects of this force are very small on the microscopic level and can

thus be neglected for the phenomena of interest here.

Electromagnetism was the first to be quantized and it serves as a prototype quantum field theory.

Originally, electricity and magnetism were considered as two separate forces until J. C. Maxwell

unified electric and magnetic phenomena, which are now described by Maxwell’s classical theory

of electromagnetism. Maxwell provided a theoretical formulation where electric and magnetic fields

are described by wave functions. Within the standard model, electromagnetism is quantized and

it is known as Quantum Electrodynamics (QED). In QED [16] the interactions between charged

particles – the fermions, namely electrons, muons and τs – are described through the exchange of

photons, γ . Photons are massless particles and thus the electromagnetic forces have infinite range.

Mathematically, QED is an abelian gauge theory with symmetry group U(1). The gauge field, which

mediates the interaction between the charged spin-1/2 fermions is the electromagnetic field. The QED

Lagrangian is given in natural units by the real part of

LQED = ∑
f=e,µ,τ

ψ̄ f (iγµDµ −m f )ψ f −
1
4

FµνFµν (1.1)

where

• γµ are Dirac matrices1;

• ψ f is a spinor field and f denotes the different leptons, namely the electron, the muon and the

tau; ψ̄ ≡ ψ†γ0;

• Dµ ≡ ∂µ + ieAµ is the gauge covariant derivative;

• e is the electric charge;

• m f is the mass of the different fermions;

• Aµ is the electromagnetic gauge field;

• Fµν = ∂µAν −∂νAµ is the electromagnetic field tensor describing the gauge field.

The weak force is responsible for β -decays and nuclear fission, it is short ranged and can change

the flavor of a quark. The mediators of this force are the Z0 and W± bosons, which have masses [17]

91.1876(21) GeV and 80.379(12) GeV respectively. The Standard Model unifies the electromagnetic

and the weak interactions in what is referred to as the electroweak (EW) force (S. Glashow [18], A.

Salam [19] and S. Weinberg [20] won the Nobel price in 1979 for the formulation of the SM). The EW

lagrangian describes the interaction between leptons and quarks through a composite U(1)× SU(2)

gauge-field theory:

LEW = ∑
f=u,d,s,c,t,b,

e,µ,τ,νe,νµ ,ντ

ψ̄ f (iγµD f
µ −m f )ψ f − 1

4W µν
a W a

µν −
1
4

BµνBµν +Lh +Ly (1.2)

1The γ-matrices fulfill the Dirac algebra {γµ ,γν}= 2gµν where gµν = diag(+1,−1,−1,−1) is the metric in Minkowski
space.
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where

• D f
µ is the gauge covariant derivative for leptons when f = e,µ,τ,νe,νµ ,ντ and for quarks when

f = u,d,s,c, t,b;

• W µν
a , with a= 1,2,3, (SU(2)) and Bµν (U(1)) are the field strength tensors for the weak isospin

and weak hypercharge gauge fields;

• Lh describes the Higgs field and its interactions;

• Ly describes the Yukawa interaction between the Higgs field and the fermions.

The Higgs field produces spontaneous symmetry breaking through a non-vanishing vacuum expec-

tation value. From the Higgs mechanism QED emerges as an U(1) gauge field theory, where the

electromagnetic field is described by the photon, and an SU(2) gauge field theory representing the

weak interaction with bosons Z0 and W±. The new bosons are connected to Wa and B, cf. Eq. (1.2)

by the relations(
γ

Z0

)
=

(
cosθW sinθW

−sinθW cosθW

)(
B

W3

)
and W± =

1√
2
(W1∓ iW2), (1.3)

where θW is the weak mixing angle. Moreover the bosons Z0 and W± acquire masses, MZ and MW ,

respectively, connected by the relation MZ = MW
cosθW

, while γ is still mass-less.

The strong interaction is the force that binds together protons and neutrons to form the nucleus

of atoms [21]. For nuclear systems the characteristic strong scale is about 1 f m or about 1 GeV .

The carrier of this force is the gluon, which mediates the interaction between quarks. The strong

interaction introduces a new kind of charge, the so-called color, that can take three values (r, g or

b). Combinations of three different colored charges or color charge and anti-charge (e.g. r̄+ r) give

colorless states, which the only ones that can be observed. Therefore, the combinations εabcqaqbqc

or q̄+q make a colorless baryon and meson respectively. From this follow the name assigned to the

respective field theory, Quantum Chromodynamics (QCD). We describe the properties of QCD in the

next section.

All the constituents of the standard model have been discovered when in 2012 CERN announced

the discovery of a particle with all the quantum numbers of the Higgs boson and, in 2014, confirmed

that this particle is indeed the Higgs boson [22]. Thus the standard model describing the electroweak

and strong interactions is the current theory of particle physics. Major experiments at CERN are

searching for physics beyond the standard model (BSM). Such theories may provide an explanation

for dark matter making 24% of matter in the universe the nature of which is currently unknown.

Indeed the purpose of lattice QCD is three-fold, namely to:

• provide reliable theoretical predictions solving non-perturbatively the QCD Lagrangian en-

abling comparison with the experimental results;

• to provide results for systems where experimental measurements are inaccessible, and

• to compute quantities that can probe BSM physics.
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1.2 Quantum Chromodynamics (QCD)

In the 50s, after the invention of spark and bubble chambers, a large number of hadrons were dis-

covered. These particles were categorized according to their properties, see Fig. 1.2. Following the

idea of the periodic table of elements in chemistry, an underlying model was proposed to understand

the properties of these baryons and mesons. In 1963 R. Feynman, M. Gell-Mann and G. Zweig [23]

proposed that the structure of these particles can be explained if hadrons were not fundamental par-

ticles, but composed from three elementary particles called partons. However, the ∆++ presented a

puzzle since it consists of three strange quarks with aligned spins. This state is prohibited by the Pauli

principle, so the only case that such a particle could exist was if the three quarks carried an additional

quantum number, the color charge. When first proposed, quarks were considered as a mathematical

construction and not as physical particles. R. Feynman et al. [24] interpreted the results of experi-

ments at high energy colliders as showing evidence that hadron were indeed not elementary particles

and that the proton consisted from 3 quarks. This established the physical existence of quarks.

Figure 1.2: The baryon multiplets of up (u), down (d), strange (s) and charm (c) quarks obtained using the
SU(4) group. The left diagram shows the spin-1/2 20-plet and the right the spin-3/2 20′-plet.

In 1973 Fritzsch, Gell-Mann and Leutwyler [25] formulated a consistent theory for QCD, as a

non-abelian SU(3) gauge-field theory [26] where quarks carry three different values of color charges.

This introduces a fundamental difference between QED and QCD. The gluons can interact with each

other, as opposed to photons, which do not self-interact. Two main fundamental characteristics of the

non-abelian nature of QCD follow:

• Confinement, which arises because the force between two quarks remains constant as the

distance between them goes to infinity. As we try to separate two quarks the energy transferred

to the system will permit the creation of a quark-antiquark pair. Thus, it is not possible to

isolate a quark in order to study it experimentally. The mechanism of confinement is still not

understood analytically but it has been demonstrated in lattice QCD [27].

• Asymptotic freedom, which implies that at high energy scales or equivalently when the dis-

tance between quarks becomes small, they interact very weakly. This prediction was confirmed

experimentally in the 70s [28, 29], by measuring the strong coupling constant as a function of

energy.

The Lagrangian of QCD can be written in a very elegant form following the notation of the QED
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Lagrangian in Eq. (1.1), namely

LQCD = ∑
f=u,d,s,c,t,b

ψ̄ f (iγµDµ −m f )ψ f −
1
2

Fa
µνFµν

a . (1.4)

Even though the mathematical equation for the QCD and QED Lagrangian look very similar, the

physical properties of QCD differ significantly from those described by QED. In the QCD Lagrangian

• ψ f ≡ (ψa
µ) f are the quark color-spinor fields and they carry a color index a, additionally to the

spin index µ; the same applies to the gluon gauge field Aa
µ ;

• Dµ ≡ ∂µ + igsAa
µ is the gauge covariant derivative where the coupling “constant”, gs, increases

logarithmically with decreasing energy, E,

g2
s (E

2) ∝ ln

(
Λ2

QCD

E2

)
, (1.5)

where ΛQCD is the QCD renormalization group invariant scale and its value depends on the

specific renormalization scheme;

• Fa
µν = ∂µAa

ν − ∂νAa
µ −gs f a

bcAb
µAc

ν is the field tensor2 describing the gauge field. The last term

g f a
bcAb

µAc
ν is responsible for the self-interaction among gluons not present in QED.

The particles resulting from QCD are “colorless” and are made up of valence quarks and/or anti-

quarks confined inside mesons and baryons. The six flavors of quarks differ only by their mass term

in the QCD Langragian. The quarks also carry an electric charge, which is +2
3 e for the up-, charm-

and top-quarks and −1
3 e for the down-, strange- and bottom-quarks. The strange quark carries a

strangeness quantum number, S = (ns̄− ns) where ns and ns̄ represent the number of strange- and

antistrange-quark, respectively. This number is conserved in strong and electromagnetic interactions

while in weak interactions can vary between −1,0,+1.

1.2.1 Solving QCD numerically on the lattice

The theory of strong interactions describes the complex hierarchy and relations among hadrons with a

small number of input parameters, namely the mass of the quarks and the coupling constant. However,

due to its non-perturbative nature it is a major challenge to solve it. K. G. Wilson [30] managed to

regularize the theory by defining it on a discretized space-time. Rotating the discretized theory to

Euclidean time provides a starting point for a numerical solution of QCD. Creutz performed the first

SU(2) gauge simulation in 1980 [31]. The discretized Euclidean formulation of QCD is known as

lattice QCD and it provides a robust ab initio method for solving QCD. After taking the continuum

limit of lattice QCD, the continuum theory is recovered.

In its early days, due to limited computational resources and advanced algorithms, LQCD sim-

ulations were restricted to pure gauge. Quenched QCD simulations, i.e. without sea quarks were

performed. A major success, was the numerical confirmation of the confinement via the computation

of the linearly rising quark-antiquatk potential [27]. Full QCD simulations and fermionic observables

started after 2000 with the advancement in theoretical and numerical methods as well as the avail-

ability of bigger computers. It is only in the last 10 years that reliable computation of properties of

2Note that Fa
µν is the result of [Dµ ,Dν ] =Fµν =−igFa

µν ta where ta are the generators of SU(3) that fulfill [tb, tc] = i f a
bcta.
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hadrons have emerged. A landmark was the computation of the low-lying hadrons masses [32]. After

taking the continuum and infinite volume limits and extrapolating to physical light quark mass the

low lying hadron spectrum was reproduced. A collection of results on the low-lying baryon masses

computed by several LQCD collaborations is depicted in Fig. 1.3. A major success was the prediction

of the masses of doubly charmed baryons within LQCD. These particle were subsequently discovered

at LHCb at CERN [33] with mass consistent with the one predicted by lattice QCD, see e.g. the red

bands in middle plot of Fig. 1.3.

Another benchmark quantity beyond hadron masses is the nucleon axial charge gA. It is well-

measured experimentally and it is the simplest hadronic matrix element that can be computed within

LQCD. Many LQCD collaborations have computed gA mostly using light quark masses larger than

physical and consistently underestimated it. It is only in the past five years that one can extract gA

directly at the physical point. A number of systematic errors are still under scrutiny but we are begin-

ning to see a resolution to the disagreement between lattice QCD results and experiment. With the

progress in both algorithms and computers LQCD is targeting a wider range of observables including

quantities that can probe physics BSM. For a comprehensive overview of recent lattice QCD results

see the Flavour Lattice Averaging Group (FLAG) report3 with the latest version given in Ref. [45].

The FLAG report aims to be the lattice equivalent of the PDG providing results from various lattice

QCD groups and performing an average of state-of-the-art results that satisfy certain criteria.

The computations presented in this thesis are done within the twisted mass fermion discretization

scheme. The twisted mass formulation [46] is a lattice regularization that allows automatic O(a)

improvement by tuning only one parameter. This formulation is particularly appropriate to hadron

structure studies since the renormalization of local operators is significantly simplified with respect to

the standard Wilson regularization and no improvement of the currents is needed. In the continuum,

the twisted mass formulation is equivalent to the standard QCD action in a different basis. The calcu-

lation of nucleon form factors is a major line of research in hadron structure. For instance, the proton

electric and magnetic form factors of the nucleon, GE(Q2) and GM(Q2), encapsulate information on

the distribution of charge and magnetization and are among the quantities that have been extensively

studied experimentally. The slope of the electric and magnetic form factors at zero momentum yields

the electric and magnetic root mean square radius, while the value of the form factors at zero momen-

tum gives its electric charge and magnetic moment. Extensive electron scattering experiments have

been carried out since the 50s for the precise determination of the nucleon form factors, including

recent experiments at Jefferson Lab, MIT-Bates and Mainz. The proton radius can also be obtained

spectroscopically, namely via the Lamb shifts of the hydrogen atom and of muonic hydrogen [47]

and via transition frequencies of electronic and muonic deuterium. Despite the longer than fifty years

of experimental activity, new precise experiments with muonic atoms hold surprises. As depicted in

Fig. 1.4, a measurement of the charge radius of the proton at PSI [47] extracted a value that is smaller

by almost seven standard deviations as compared to the value extracted from electron scattering ex-

periments. This sparked a wealth of theoretical explanations some of which involve new physics.

Whether new physics is responsible for this discrepancy, or errors in the theoretical or experimental

analyses [48], a first principles calculation of the electromagnetic form factors of the nucleon can

provide valuable insight. Although nucleon electromagnetic form factors have been extensively stud-

ied in lattice QCD, most of these studies have been carried out at higher than physical pion masses,

requiring extrapolations to the physical point, which for the case of baryons carry a large systematic

3http://flag.unibe.ch/
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LHCb (2017)

Figure 1.3: Low-laying baryon masses from LQCD and experiments. Points are the results produced by a
number of LQCD collaborations [32, 34–43]. The bands are the results obtained by experiments [33, 44]. For
most baryons the band is too small to be visible.
Top: The octet and decuplet baryon masses made of up, down and strange quarks.
Middle: The masses of spin-1/2 charm baryons.
Bottom: The masses of spin-3/2 charm baryons.
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Figure 1.4: Left: Extractions of the proton charge radius from muonic hydrogen measurements [47, 49],
hydrogen spectroscopy [50], electron scattering measurements at Mainz [51], and a global analysis of earlier
world data [52]. The direct average shown is compared to the CODATA-2010 evaluation [50]. Image credit:
Randolf Pohl. Right: Nature cove page, volume 466 issue number 7303, where Ref. [47] has been published.

uncertainty. One of our objectives is to obtain high accuracy results at the physical point for nucleon

form factors.
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2. Overview of lattice QCD

In this chapter we review the Wilson’s formulation of lattice gauge theories. We begin with the

connection between statistical mechanics and the lattice regularization of Feynman’s path integrals.

We then introduce the Wilson proposal for regularizing QCD on the lattice regarding gauge and

fermionic quantities. Finally, we introduce the fermionic discretization used in this thesis, twisted

mass fermions, which is an extension of the Wilson discretization in the twisted mass base.

2.1 Formulation of a lattice gauge field theory

The lattice regularization of gauge field theories was proposed by K. G. Wilson [30]. We review here

this formulation. Let us consider a group G with infinitesimal generators ta, which fulfill [tb, tc] =

i f a
bcta where f a

bc are referred to as structure constants. The covariant derivative of the theory is

Dµ = ∂µ +Aa
µta, (2.1)

where Aa
µ(x) is an element of the algebra referred to as gauge field. The so-called field strength tensor

is

Fµν = [Dµ ,Dν ] =−igFa
µνta. (2.2)

A Lagrangian of the form

LG = ψ̄(iγµDµ −m)ψ− 1
2

Fa
µνFµν

a (2.3)

is invariant under gauge transformations G(x) under which

Aµ(x)→ A′µ(x) = G(x)Aµ(x)G−1(x)+ i
(
∂µG(x)

)
G−1(x),

ψ(x)→ ψ
′(x) = G(x)ψ(x),

ψ̄(x)→ ψ̄
′(x) = ψ̄(x)G−1(x). (2.4)

In what follows we indicate the Lagrangian with LG ≡ LG (Aµ , ψ̄,ψ,g,m) and the operators with

O≡ O(Aµ , ψ̄,ψ) where the fields Aµ , ψ and ψ̄ are elements of the algebra, g stands for the coupling

parameter, and m f for the quark masses. Note that the operators are functions of the fields only.

2.1.1 Feynman path integral formulation

The Feynman path integral is a useful formulation for quantum field theories and an alternative de-

scription of quantum mechanics [53, 54]. In quantum mechanics the quantum mechanical probability

amplitude for a particle described with the Hamiltonian H to evolve from a point~x0 to~x f of space in

the time interval t is given by the multidimensional integral

〈~x f |e−iHt |~x0〉=
∫ ~x f ,t

~x0,0
D~x(t)eiS(~x(t)) (2.5)

where the action S(~x(t)) =
∫
~x(t)L (x)d4x depends on the Lagrangian density L (x) and

∫~x f ,t
~x0,0

D~x(t) is

the normalized measure which integrates over every possible path in the space, ~x(t), which fulfills

10



~x(0) =~x0 and~x(t) =~x f .

Applying the path integral formulation to a gauge field theory described by a Lagrangian L, we

can compute the vacuum expectation value of an operator O using

〈O〉 ≡ 〈Ω|O|Ω〉= 1
Z

∫
DAµDψ̄Dψ O(Aµ , ψ̄,ψ)eiS(Aµ ,ψ̄,ψ,g,m) (2.6)

where now
∫

DAµDψ̄Dψ is a functional integral over all the possible fields. The normalization factor

Z,

Z =
∫

DAµDψ̄DψeiS(Aµ ,ψ̄,ψ,g,m), (2.7)

is the partition function.

2.1.2 Connection to statistical mechanics and lattice regularization

There is a close relation between Feynman path integral formulation and statistical mechanics. In

statistical mechanics a system described by the Hamiltonian, H (s) is defined over a finite number

of degrees of freedom, s = si, e.g. spin variables in the Heisenberg model. Then the probability of

finding the system in a particular configuration s is given by

P(s) =
1
Z

e−βH (s) (2.8)

where the partition function

Z = ∑
s

e−βH (s) (2.9)

has a sum over all the possible spin configurations. The parameter β = 1/KT acts as a thermodynamic

factor that scales the energy of the system, where T is the temperature. The expectation value of an

operator is given by

〈O〉= 1
Z ∑

s
O(s)e−βH (s). (2.10)

Eqs. (2.6) and (2.10) express expectation values with a similar structure, i.e. a sum over all the

possible configurations of the basic degrees of freedom of the system weighted by the exponential of

the Hamiltonian or classical action of the system. In order to map a quantum field theory to a classical

statistical theory the following steps are performed:

1. Wick rotation: In Eq. (2.6) we have a phase, which does not allow us to interpret it as a

probability unlike Eq. (2.10), where one can use Monte Carlo methods introduced in Sec. 5.1

to evaluate the multidimensional integrals. If one performs a Wick rotation (see Ref. [55] for

an overview) by letting the time tE = it then the action in Eq. (2.5) gets an imaginary factor, i.e.

S(~p(t)) =
∫ t

0
L (~p(t ′))dt ′ = i

∫ t

0
L (~p(it ′E))dt ′E = iSE(~pE(tE)) (2.11)

where SE is the respective Euclidean action of S and ~pE(tE) is the respective path in Euclidean

space-time of ~p(t) which is in Minkowski space-time. Therefore the observable expectation

value becomes

〈O〉= 1
Z

∫
DAµDψ̄Dψ O(Aµ , ψ̄,ψ) e−SE (Aµ ,ψ̄,ψ,g,m) with Z =

∫
DAµDψ̄Dψ e−SE (Aµ ,ψ̄,ψ,g,m)

(2.12)
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2. Lattice regularization: In order to perform numerical simulations one discretizes the theory by

defining it on a 4-dimensional Euclidean lattice. The purpose of this step is two-fold: it provides

a non-perturbative regularization avoiding ultraviolet diverges and presents a formulation which

is amenable to numerical simulations.

The lattice Euclidean regularization

• is defined on a four-dimensional hypercubic lattice of finite volume

V = {xi = (x0,x1,x2,x3),1≤ x0 ≤ NT , 1≤ x1,x2,x3 ≤ NL} (2.13)

with NT being the number of points in the temporal direction and NL the number of points

in the spatial directions x, y and z. Here and in what follows, the lattice spacing a is set to

unity. The lattice volume is given by V = T ·L3, where T is the temporal and L the spatial

length.

• defines discrete fields on the lattice sites xi ∈ V

ψ(x)→ ψi = ψ(xi) , ψ̄(x)→ ψ̄i = ψ̄(xi) and Aµ(x)→ Aµ,i = Aµ(xi) (2.14)

3. The β parameter: as last, in analogy with the statistical approach in Eq. (2.10), one can

introduce a β parameter that scales the action in the measure factor e−SE → e−βSE . In a thermo-

dynamical average β is related to the temperature T , β = 1/kT , and SE is the internal energy

of the system. In lattice gauge theory, instead, β is related to a coupling constant g, β ∝ 1/g2

and SE is a rescaled action rather than a true energy. It is worth noting that g entering the def-

inition of β is an unrenormalized coupling constant, which describes the interaction strength

at the distance a. Contact with the physical world, is made via a suitable continuum limit as

described later in the chapter.

The introduction of the β parameter let us consider two expansion approaches one for high

values of β , i.e. weak coupling, and one for small values of β , i.e. strong coupling:

• The weak coupling expansion of lattice gauge theories applies standard perturbative ap-

proaches made, however, more complicated by the loss of Lorentz covariance that leads

to additional terms in the perturbative expansion. Weak coupling expansions of the lattice

theory become necessary when we need to compare with physical results.

• The possibility of a performing strong coupling expansion is a tool provided by the lat-

tice regularization that can lead to insights in the theory. Unfortunately, at intermediate

values of β a phase transition occurs prohibiting the analytic continuation between weak

and strong coupling. This phase transition is due to the lattice spacing becoming too

rough [56] and it is named roughening phase transition.

2.1.3 Continuum limit

Lattice quantum field theories require taking a suitable continuum limit, i.e. a→ 0, at infinite lattice

volume, i.e. V → ∞. In analytic calculations the latter limit is taken as first and then the continuum

limit is calculated. Namely,

lim
a→0

lim
V→∞

SE(a,V,g,m) = SE(g,m) and lim
a→0

lim
V→∞

O(a,V,g,m) = O(g,m). (2.15)

12



In numerical calculations, instead, one analyzes the dependence on a and V on the observables,

O(a,V,g,m) =
1
Z

∫
dV

φi O(Aµ,i, ψ̄i,ψi,a) e−SE (Aµ,i,ψ̄i,ψi,a,g,m) (2.16)

and the values at continuum and infinite volume limits are extrapolated. The effects of finite a and V

are known as lattice artifacts and they need to be kept under control for obtaining the correct physical

result. They are classified into:

• Discretization effects: the continuum limit of the discretized quantities is studied through a

Taylor expansion over small lattice spacing. For instance, an observable can be written as

O(a,g,m) = O(g,m)+
∞

∑
n=1

anOn(g,m) (2.17)

where On(g,m) are corrections of order O(an) of the continuum quantity O(g,m). Thus one

takes a lattice spacing small so that only leading order finite a corrections are important. Im-

proved discretization schemes are those where the first order a correction vanishes. Such im-

proved actions are nowadays by state-of-the-art simulations leading to discterization effects of

order O(a2) instead of O(a).

• Finite volume effects: These are a consequence of the finite volume used in numerical simu-

lations. It is common to take periodic boundary conditions in space and anti-periodic in time

and these are the ones considered in this work. However, other choices can also be considered.

Finite volume effects depend on the lowest modes, which have longer wavelengths. In LQCD

the lowest mode is the pion and thus the dimensionless quantity Lmπ is commonly used for

characterizing finite size effects. Chiral perturbation theory can be used in particular in the

meson sector to estimate volume effects, see e.g. Ref. [57, 58].

For completeness sake, other two well-known systematic effects in lattice simulation are

• Quenching effects: Simulations where dynamical quarks degrees of freedom are neglected

introduce quenching effects. Such simulations are less computationally demanding and were

used extensively in the 80’s and 90’s. Nowadays simulations commonly are done with dynam-

ical light and strange quarks. In a number of simulations dynamical charm quarks are also

included, as done in this thesis.

• Pion mass dependence: As last, simulating at physical pion mass makes LQCD computation-

ally demanding. This is due to two reasons:

1. as mentioned above, finite volume effects are characterized by the quantity Lmπ . Then, at

fixed Lmπ the computational costs, which increase with the lattice volume ∝ L4, increase

as ∝ 1/m4
π .

2. Moreover, the time to solution of some iterative algorithms used in LQCD, as described

in Sec. 3.1.2, has a dependence on the pion mass, namely ∝ 1/m2
π in the referred case.

Combining these two effects, simulation costs have a dependence on the pion mass ∝ 1/m6
π

which can significantly affect the feasibility of the calculation. Thus simulating at a pion mass

larger than the physical one helps to reduce the computational costs and for this reason chiral
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perturbation theory has been extensively used in LQCD for computing pion mass corrections

to the physical quantities. In this thesis we consider, instead, only simulations performed at

physical pion mass.

2.1.4 Wilson’s proposal

In a gauge field theory, the action is invariant under gauge transformations, cf. Eq. (2.4). If the field

ψ(x) belongs to a definite representation of the gauge group, then a scalar product ψ̄(x+ dx)ψ(x)

would not be invariant under local gauge transformations,

ψ(x)→ G(x)ψ(x) (2.18)

where G(x) is a position dependent, finite element of the gauge group. To construct an invariant scalar

product, the field must first be “transported” from xµ to xµ +dxµ and this is done by multiplying by

the so-called transport operator

ψ̄(x+dx)eigAa
µ (x)τadxµ

ψ(x), (2.19)

where g is the gauge coupling constant. This quantity is invariant under the local gauge transformation

in Eq. (2.18). Thus, the gauge acts as “transport operators” and can be used to compare orientations

at neighboring points xµ and xµ +dxµ .

This suggests that on the lattice the gauge dynamical variables are associated with oriented links

between neighboring vertices xi and xi+aµ̂ rather vertices themselves. Thus, in the lattice regulariza-

tion we take as basic dynamical variables finite group elements Uµ(xi) ∈ G defined on oriented links.

The gauge-link Uµ is a finite element because the displacement is now over a finite length a given by

Uµ(xi) = eigAa
µ (xi)τaa ' 1+ igAa

µ(xi)τaa. (2.20)

Then the equivalent of Eq.(2.19) on the lattice is

ψ̄(xi +aµ̂)Uµ(xi)ψ(xi) (2.21)

which is invariant under the gauge transformation ψ(xi)→ G(xi)ψ(xi).

Thus, putting the theory on the lattice, we have to consider not only the sites, but also the links.

For clarity sake, if we consider a hyper-cubical lattice of size L in d dimensions, we will have Ld

sites containing as many matter fields and dLd links containing gauge elements Uµ(xi). It is worth

noting that fermions have spin-1/2 and they do not have a peculiar representation on the lattice as we

will see in the next section they are integrated directly in either the action or the observables using

properties of the Grassmann algebra.

2.1.5 Grassmann variables and integration over fermions

Fermion fields ψ satisfy anti-commuting relations given by

{ψi,ψ j}= ψiψ j +ψ jψi = 0 (2.22)

and thus ψiψ j =−ψ jψi and ψiψi = 0. Such property is described by the Grassmann algebra, which

has the following properties:
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• Any function f (ψ1, · · · ,ψN) with ψ j a Grassmann variable, is represented by the following

Taylor-series

f (ψ1, · · · ,ψN) = a+
N

∑
i

biψi +
N

∑
i< j

ci jψiψ j + · · ·+ zψ1 · · ·ψN (2.23)

since any other term with ψk
i would vanish for k > 1.

• The derivative of Grassmann variables are given by

∂

∂ψ j
ψi = δi j and

∂

∂ψk
ψiψ j = δikψ j−δ jkψi, (2.24)

where δi j is the Kronecker delta.

• The integration rules for Grassmann variables are∫
dψ j ψi = δi j,

∫
dψi = 0 and

∫
dψk ψiψ j = δ jkψi−δikψ j. (2.25)

• For physical gauge theories we encounter Gaussian integrals of the form∫
(dψ̄dψ)Ne−ψ†Mψ = det(M), (2.26)

where M is a matrix of size N×N and (dψ̄dψ)N = ∏N
i dψ̄i dψi, and of the form∫

(dψ̄dψ)N
ψiψ̄ je−ψ̄Mψ = M−1

i j . (2.27)

The fermions can be then integrated over exactly since they appear quadratically in the action to yield

Z f =
∫
(dψ̄dψ)Ne−ψ̄(γµ Dµ−m)ψ = det(γµDµ −m) (2.28)

and

〈ψiψ̄ j〉=
1

Z f

∫
(dψ̄dψ)N

ψiψ̄ je−ψ̄(γµ Dµ−m)ψ = (γµDµ −m)−1
i j (2.29)

where we have considered the free Dirac equation.

2.1.6 Observables

Only expectation values of gauge invariant quantities yield a non-zero value as for example operators

depicted in Fig. 2.1.

Wilson loop

Any product of gauge-links on a path Γ on the lattice, i.e. given by a sequence of neighboring sites

x1,x2 = x1 + µ̂, . . . ,xiN ,

UΓ(xN ,x1) =Uλ (xN− λ̂ ) . . .Uν(x1 + µ̂)Uµ(x1) (2.30)

transforms as

UΓ(xN ,x1)→ G(xN)UΓ(xN ,x1)G−1(x1). (2.31)
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Figure 2.1: Schematic representation of a 3D lattice
with gauge invariant quantities.

Thus the trace of a closed loop Λ, as depicted in Fig.2.1, which starts from a point xi and returns to

that point, is a gauge invariant quantity

UΛ(xi)→ G(xi)UΛ(xi)G−1(xi) and WΛ(xi) = Tr UΛ(xi)→WΛ(xi). (2.32)

The quantity WΛ is called Wilson loop and it is the most common pure gauge observable on the lattice.

Then, we can define the observable

W (Λ) = 〈∑
xi

WΛ(xi)〉=
1
Z

∫ [
∏
µ,xi

dUµ(xi)

][
∑
xi

Tr UΛ(xi)

]
e−S(U,g,m), (2.33)

known as Wilson loop. More generally one may consider

W (Λ1,Λ2, . . . ,ΛN) = 〈WΛ1WΛ2 . . .WΛN 〉 (2.34)

the correlation between several Wilson’s loop factors; or less generally the rectangular Wilson loop

W (R,T ) = 〈WΛR,T 〉 (2.35)

where R and T are the width and the height of a rectangular loop ΛR,T , respectively.

Fermionic observables

Another gauge invariant quantity is a Wilson line joining a quark and an anti-quark field introduced

in Eq. 2.21. In general, a path Γ starting from a matter field and ending at an anti-matter field is a

gauge invariant quantity,

Ψλρ

Γ (xN ,x1) = ψ̄
λ (xN)UΓ(xN ,x1)ψ

ρ(x1), (2.36)

where color indexes have been contracted. A good observable is then the propagation of field for a

distance ∆x = xN− x1 along all the possible paths Γ

Ψλρ(∆x) = 〈∑
Γ

∑
xi

Ψλρ

Γ (xi +∆x,xi)〉. (2.37)
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For fermions we obtain from Eq. (2.29)

Ψλρ(∆x) =
1
Z

∫ [ 4V

∏
µ,xi

dUµ(xi)

][
∑
Γ

∑
xi

UΓ(xi +∆x,xi)b,a(γ
µDµ(U)−m)−1

xi,xi+∆x,a,b,ρ,λ

]
e−S(U,g,m).

(2.38)

Levi-Civita contracted fields in special groups

A gauge transformation contracted by the completely anti symmetric Levi-Civita tensor gives

G j1
i1 G j2

i2 . . .G
jN
iN ε

i1,i2,...,iN = ε
j1, j2,..., jN detG = ε

j1, j2,..., jN (2.39)

where G is an element of the group SU(N), i and j are matrix indexes and detG≡ 1. It follows then

that N matter fields or gauge-links contracted by the Levi-Civita tensor are invariant:

ψ
j1

i1 (xi) . . .ψ
jN

iN (xi)ε
i1,...,iN → Gi1

k1
. . .GiN

kN
ψ

j1
i1 (xi) . . .ψ

jN
iN (xi)ε

k1,...,kN =

ψ
j1

i1 (xi) . . .ψ
jN

iN (xi)ε
i1,...,iN detG(xi)︸ ︷︷ ︸

1

. (2.40)

and similarly for the gauge-links. For a baryon propagator we thus have

B(∆x) = 〈∑
xi

ε
i1,...,iN (ψ̄) j1

i1 (xi +∆x) . . .(ψ̄) jN
iN (xi +∆x)ψk1

j1 (xi)ψ
kN
jN (xi)εk1,...,kN 〉. (2.41)

2.2 Wilson gauge action for SU(N) gauge theories

The Yang-Mills action for SU(N) gauge field theories can be written as

SY M =
1
4

∫
d4xFa

µνFµν
a =

1
4

lim
a→0

∑
x

a4 Tr[F2
µν ] (2.42)

where the minimal lattice equivalent of Fµν , i.e. a gauge invariant quantity with the same dimension-

ality, is the trace of the plaquette

Tr
[
Uµν(xi)

]
= Tr

[
Uµ(xi) Uν(xi +aµ̂) U−µ(xi +aµ̂ +aν̂) U−ν(xi +aν̂)

]
, (2.43)

as depicted in Fig. 2.2. We will use the gauge invariant Uµν(xi) for the construction of the lattice

gauge action.

x

xx

x

Figure 2.2: Schematic representation of the plaquette, Uµν(x).

Taking the Taylor expansion of the shifted gauge-links, i.e.

Uν(xi +aµ̂) =
(
1+a∂µ +O(a2)

)
Uν(xi) =

(
1+ iga2

∂µAν(xi)+O(a3)
)

Uν(xi) (2.44)
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where Uν(xi) = eigaAν (xi), one can prove that

S = ∑
x,µ<ν

2N
g2

(
1− 1

N
Re Tr Uµν(x)

)
(2.45)

gives at O(a) the Yang-Mills discretized action of Eq. (2.42). The action in Eq. (2.45) is commonly

referred to as the Wilson lattice gauge action. Several remarks are in order here.

• we note that, in analogy to the continuum case, SP takes its lowest value, namely 0, when the

gauge field is a free field having U = 1, while it grows as UP deviates from 1.

• the coupling constant determines the strength of the plaquette excitations: large g suppresses

effects of small variations; the opposite happens for small g. It is common to define

β =
2N
g2 (2.46)

and thus g plays the same role of the temperature in a thermodynamic average where β =

1/(kT ).

• the Wilson gauge action produces the Yang-Mills action plus O(a) corrections. Better dis-

cretization schemes have been developed to cancel these corrections and produce actions free

of O(a) effects. These are referred to as improved actions. In our simulations we use the

Iwasaki improved gauge action [59], which reads as

Sg = β

1− 1
6N

N

∑
x=1

b0

4

∑
µ,ν=1
µ<ν

ReTrU1×1
µν (x)+b1

4

∑
µ,ν=1
µ 6=ν

ReTrU1×2
µν (x)


 , (2.47)

with the bare inverse gauge coupling β = 6/g2, b1 = −0.331 and b0 = 1−8b1. Compared to

the Wilson gauge action of Eq. (2.45), the Iwasaki action has O(a)-improvement and employs

additionally to the plaquette U1×1
µν (x) a rectangular Wilson loop, U1×2

µν (x), of size 1× 2 lattice

units to correct O(a) effects.

2.3 Renormalization and lattice spacing

We discuss in this section the renormalization. Suppose that a physical quantity qi bearing dimension

di in units of the lattice spacing is calculated in the lattice regularized version of the theory. Adopting,

as we do, natural units, it has a dimension of [qi] = [a]di = [mass]−di . The result of the calculation

will take the form

qi = adi fi(g), (2.48)

where the dependence on the lattice spacing is trivial and the whole content of the theory is expressed

by the mathematical functions fi of the dimensionless coupling constant g. If some of our observables,

say ql , are for instance correlation lengths, they will be given by

ql = a fl(g), (2.49)

where fl(g) measures the correlation length in units of the lattice spacing.
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It is now obvious that merely letting a→ 0 will not produce a meaningful continuum limit. The

coupling constant g must be changed at the same time as the limit a→ 0 is taken, in such a way

that the observables approach a well-defined limit when one recovers the continuum field theory. The

fact that this is possible and, therefore, that the lattice theory admits a continuum limit is a priori not

evident. Indeed, the existence of a continuum limit puts very stringent requirements on the theory.

Let us first discuss this by examining the correlation length.

To make ql approach a finite limit by suitably changing g as a→ 0, there must be a critical value

gc of g such that fl(g)→ ∞ as g→ gc. Values of the coupling constant, for which the correlation

length goes to infinity are known as critical points. Moreover, as g→ gc, all the functions fi(g) must

tend either to infinity or zero (according to whether di is negative or positive). For g approaching gc,

a→ 0 in such a way so all the observables qi tend to constant values. If this happens then we say that

the critical point defined by g = gc is a scaling critical point.

From the above discussion it is clear that the passage to the continuum limit requires a definite

functional relationship between a and g; in the literature it is generally known as Callan-Symanzik

equation, because the inverse of a is proportional to the characteristic momentum scale at which the

lattice coupling g is defined. This could be obtained by demanding that any of the observables remains

strictly constant throughout the process of renormalization. Then, from Eq. (2.48) we would infer

a = a(g) = q1/di
i f−1/di

i (g). (2.50)

It is useful, however, to allow more freedom in relating a and g. We therefore express the functional

relationship between a and g in the form

a = Λl F(g), (2.51)

where F is a dimensionless function embodying the correct scaling behavior of a as g→ gc and Λl

is a scale parameter with length dimension. Λl does not have a direct physical significance and in

general it will depend on the scheme of renormalization.

The scaling properties of the critical point now manifest themselves in the fact that all the func-

tions fi(g) must behave as

fi(g)∼ ci F−di(g) (2.52)

for g→ gc, with ci being constants. Substituting Eqs. (2.51) and (2.52) into Eq. (2.48), we find that

the continuum values of the observables qi are given by

qi = ci Λdi
l , (2.53)

i.e. all physical observables are expressed in terms of the scale parameter Λl . Any observable might

then be used to establish the scale and, after replacing Λl , all other observables are then expressed in

terms of this one observable.

If g 6= 0, non-perturbative methods will be required to determine the functional relationship of

Eq. (2.51). However, for non-Abelian quantum gauge theories it has been shown [60, 61] that gc = 0

has the properties of a scaling critical point. Note that gc = 0 is the value of the coupling constant

required by asymptotic freedom. The functional form of Eq. (2.51) can then be determined by pertur-
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bative arguments and this leads to [62, 63]

F(g) =
(
g2b0

)− b1
2b2

0 e
− 1

2b0g2
(
1+O(g2)

)
(2.54)

where

b0 =
11
3

N
16π2 , b1 =

34
3

[
N

16π2

]2

(2.55)

for a pure SU(N) theory. Using Eqs. (2.46), (2.51) and (2.54), we can write

a(β )' Λl

(
β

2Nb0

) b1
2b2

0 e−
β

4Nb0 . (2.56)

From this discussion it emerges that, in the case of QCD, we are interested in β → ∞. Therefore,

the strong coupling results obtained for small values of β must be extrapolated to at least a value of

β large enough that scaling towards the continuum limit is seen to take place.

2.4 Wilson fermions

We introduce now the discretization of the Dirac fermionic action

L f = ψ̄
(
γ

µ
∂µ +mq

)
ψ. (2.57)

A simple discretization approach given by

∂µψ(x) =
Uµ(xi)ψ(xi +aµ̂)−ψ(x)

a
(2.58)

suffers from the fermion doubling problem [64] i.e. in the continuum limit, it gives rise to two modes

per each dimension. The simplest way to remove the unwanted modes is to give them an extra mass

by adding to the action a term irrelevant in the continuum limit. Such a term is aψ̄∂ 2ψ [65], which

leads to

SWF = mq ∑
n

ψ̄(xi)ψ(xi)+
1
2a ∑

n,µ
ψ̄(xi)γ

µ
[
Uµ(xi)ψ(xi +aµ̂)−U†

µ(xi−aµ̂)ψ(xi−aµ̂)
]
+

+
r

2a ∑
n,µ

ψ̄(xi)
[
Uµ(xi)ψ(xi +aµ̂)−2ψ(xi)−U†

µ(xi−aµ̂)ψ(xi−aµ̂)
]
. (2.59)

In this formulation, it is clear that the added term acts as a mass term that is non-zero even when the

“bare mass” is set to zero. The coefficient of the mass term ψ̄(xi)ψ(xi) is mq+4r/a. In the continuum

the doublers have a large mass mq + 4r/a, and decouple; however in an interacting theory the value

of r is a function of β and needs to be tuned.

Usually the Wilson fermion action is rewritten in the form

SWF(U, ψ̄,ψ) = ∑
i, j

ψ̄(xi)Di j(U)ψ(x j), (2.60)

where

Di j = δi j−κ ∑
µ

[(
r− γµ

)
Uµ(xi)δxi+aµ̂,x j +

(
r+ γµ

)
U†

µ(xi−aµ̂)δxi−aµ̂,x j

]
. (2.61)
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is the Wilson Dirac operator where we have defined

κ =
1

2a
1

mq +4r/a
ψ → ψ√

2κ
. (2.62)

where κ is known as the hopping parameter since it determines the strength of a fermion coupling to

an adjacent site. The case r = 1 is special as the factor (1± γµ) is a projection operator

(
1± γµ

2

)2

=
1± γµ

2
Tr
(

1± γµ

2

)
= 2. (2.63)

The hopping parameter κ is related to the inverse of bare quark mass by

mqa =
1
2

(
1
κ
−8r

)
=

1
2

(
1
κ
− 1

κc

)
, (2.64)

where the critical hopping parameter has been defined as kc = 1/8r. We now have a new parameter,

κ , beside β , on which the dynamics of the lattice depends and a parameter, κc, which we have to tune

in order to find the bare mass of the quarks. Additionally, κ has to be smaller than κc in order to keep

the mass positive.

One of the disadvantages of Wilson fermions is the explicit breaking of chiral symmetry at O(a).

Wilson fermions can be improved by including a clover term Qµν , given by

Qµν(x) =Uµ(x)Uν(x+ µ̂)Uµ(x+ ν̂)†Uν(x)†+

Uν(x)Uµ(x− µ̂ + ν̂)†Uν(x− µ̂)†Uµ(x− µ̂)+

Uµ(x− µ̂)†Uν(x− µ̂− ν̂)†Uµ(x− µ̂− ν̂)Uν(x− ν̂)+

Uν(x− ν̂)†Uµ(x− ν̂)Uν(x− ν̂ + µ̂)Uµ(x)† . (2.65)

The so-called clover improved Wilson operator is

Dψ(x) =
(
(m+4)IS ⊗ IC −

csw

32

3

∑
µ,ν=0

(γµγν)⊗
(
Qµν(x)−Qνµ(x)

))
ψ(x)

− 1
2

3

∑
µ=0

(
(IS − γµ)⊗Uµ(x)

)
ψ(x+ µ̂)

− 1
2

3

∑
µ=0

(
(IS + γµ)⊗U†

µ(x− µ̂)
)

ψ(x− µ̂) , (2.66)

where appropriate values of the Sheikoleslami-Wohlert improvement coefficient csw [66] reduce the

discretization error from O(a) to O(a2). This defines the Wilson Dirac operator that will be used in

what follows. Compared to Eq. (2.61) we have taken r = 1, m = 1/(2κ)−4, and we have explicitly

indicated the Kronecker products between spin and color space. For clarity, the vector ψ is defined

in Dirac space

D = V ⊗S ⊗C , (2.67)

where V is the lattice volume defined in Eq. (2.13), S denotes spin space and C color space.

The Wilson Dirac operator satisfies the relation

Γ5D = D†Γ5, (2.68)
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referred to as Γ5-hermiticity, where

Γ5 = IV ⊗ γ5⊗ IC (2.69)

acts on space Vs defined in Eq. (2.67) as a linear transformation of the spin degrees of freedom at each

lattice site. In this thesis we use γ5 = γ0γ1γ2γ3, which is diagonal in spin space

γ5 =


1

1

-1

-1

 . (2.70)

Thanks to Γ5-hermiticity, the symmetrized Wilson Dirac operator H = Γ5D is hermitian (and indefi-

nite), such that we have

H = Γ5D =V ΛV †, (2.71)

where the diagonal matrix Λ contains the eigenvalues λ j of HW (which are all real) and the unitary

matrix V the corresponding eigenvectors.

2.5 Quark mass determination

After introducing the Wilson fermion discretization, it is important to understand what is the mass of

the quarks. The quark mass obtained in Eq. (2.64) is a bare mass and the calculation of the renor-

malized quark masses is an active subject of investigation in lattice QCD. An accurate determination

of these parameters is in fact extremely important, for both phenomenological and theoretical appli-

cations. The values of quark masses cannot be directly measured in experiments because quarks are

confined inside the hadrons and they are not physical states. The quark masses can be determined by

for example comparing the mass of a hadron with the corresponding experimental value.

2.5.1 Ward identities

Non-perturbative definitions of quark masses are provided by the chiral Ward identities (WI) of

QCD [67, 68]. These definitions allow us to express the renormalized quark mass, in a given scheme

and at a given renormalization scale, in terms of lattice renormalization constants and bare quantities.

Before we address the determination of quark masses, let us introduce the meaning of Ward identi-

ties. In the path integral expression for the partition function Eq. (2.12), the field variables, φ , are

integrated. Then, a transformation of these variables in general gives the same result,

〈O〉= 1
Z

∫
Dφ O(φ) e−SE (φ ,g,m) =

1
Z′

∫
Dφ

′ O(φ ′) e−SE (φ
′,g,m) with Z′ =

∫
Dφ

′ e−SE (φ
′,g,m).

(2.72)

Exceptions are anomalous transformations, which affect the integration measure. Ward identities

express the invariance of the partition function and of expectation values under a transformation of

the field variables. Studying the effect of a local, unitary, infinitesimal symmetry transformation of

the fermion fields, φ → φ + δφ , the result has to be invariant and we obtain Ward identities of the

form

〈δO〉= 〈OδS〉, (2.73)
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where δO and δS denote the linear change of the operator O and the action S under the transformation.

The simplest case with O = 1 gives

〈δS〉= 0, (2.74)

which leads to relations analogous to the classical Noether conservation laws. The Ward identity,

which is most of interest in calculation of quark mass is the one referred to as axial Ward identity

(AWI). We consider the transformation,

ψ(x) −→ ψ
′(x) = (1+ iε(x)γ5)ψ(x) (2.75)

ψ̄(x) −→ ψ̄
′(x) = ψ̄(x)(1+ iε(x)γ5) , (2.76)

where ε(x) is a function that vanishes smoothly outside some bounded region. In the continuum, we

are led to

〈(∂µAa
µ(x)) O〉= 2m〈Pa(x) O〉, (2.77)

where m is the quark mass. In this equation, Aa
µ(x) and Pa(x) are the isovector axial current and the

pseudo-scalar density. The corresponding lattice operators are

Aa
µ(xi) =

1
2

ψ̄(xi)γµγ5τ
a
ψ(xi) (2.78)

Pa(xi) =
1
2

ψ̄(xi)γ5τ
a
ψ(xi). (2.79)

The observable O is an operator chosen such that 〈Pa(x) O〉 does not vanish, with the restriction that

its support does not include the point x where Aa
µ(x) and Pa(x) are located. Eq. (2.77) implies that

the isovector axial current is conserved for a chiral theory where m = 0. Thus, it is referred to as the

partially conserved axial current relation (PCAC).

2.5.2 Renormalized quark mass

On the lattice we expect that after renormalization, the lattice expectation values approach the con-

tinuum relation (2.77), such that

〈(∂µA(r)a
µ (xi)) O〉= 2m(r)〈P(r)a(xi) O〉+O(a), (2.80)

where the superscript (r) expresses the fact that renormalized quantities are being used. The renor-

malized operators are

A(r)a
µ (xi) = ZAAa

µ(xi)+O(a), (2.81)

P(r)a
µ (xi) = ZPPa(xi)+O(a) (2.82)

and defining the unrenormalized quark mass

mPCAC =
〈(∂µAa

µ(xi)) O〉
2〈Pa(xi) O〉 , (2.83)

referred to as PCAC mass, we obtain

m(r) =
ZA

ZP
mPCAC +O(a). (2.84)
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where the O(a) effects are vanishing in case of improved actions having O(a2) corrections. Now

we can fix the renormalization factor ZA/ZP evaluating the PCAC mass using different operators O.

These operators probing the PCAC relation need to have the quantum numbers of Pa and to leave

the renormalization factor unchanged. Usually, Pa itself is used as operator in conjunction with other

interpolator coupling to the pion. The operative definition of PCAC mass that we use is

mPCAC =
〈(∂tA1

0(~x, t)) P1(~0,0)〉
2〈P1(~x, t) P1(~0,0)〉

=
∂t〈Tr(ψ̄(~x, t)γ0γ5τ1ψ(~x, t) ψ̄(~0,0)γ5τ1ψ(~0,0))〉

2〈Tr(ψ̄(~x, t)γ5τ1ψ(~x, t)ψ̄(~0,0)γ5τ1ψ(~0,0))〉
, (2.85)

where the expectation value at the denominator is equivalent to the pion propagation from a point

(~0,0) to a point (~x, t) in the space time.

2.6 Twisted mass fermions

The continuum QCD action is invariant under chiral symmetry. Two degenerate quark flavors of mass

mq, are invariant under the chiral rotation

ψ2 =

[
ψu

ψd

]
→ ψ

′
2 = ei ω

2 Γ5⊗τ3

[
ψu

ψd

]
when mq→ mqei ω

2 Γ5⊗τ3 (2.86)

where τ3 = diag(1,−1) is the third Pauli matrix and acts in flavor space F . Under this transformation

the continuum Dirac operator in Eq. (2.57) takes the form

L f =ψ̄
′
2
(
γ

µ
∂µ +m′q + iµγ5τ3

)
ψ
′
2

≡ψ̄
′
2
(
γ

µ ⊗∂µ ⊗ IF +m′qIS ⊗ IC ⊗ IF + iµγ5⊗ IC ⊗ τ3
)

ψ
′
2 (2.87)

where we used the identifications

m′q = mq cosω , µ = mq sinω and mq =
√

m′2q +µ2. (2.88)

This form is completely equivalent to the standard one, except that certain discrete symmetries look

more complicated. The mass parameter µ is referred to as the twisted mass, m′q as the quark mass

and mq as the polar mass. ψ ′2 fields are referred to as the twisted basis. The relationship between the

rotation angle and the mass terms is

ω = arctan
µ

m′q
. (2.89)

In addition to the standard case ω = 0, a special value ω = π/2 can be identified for which the quark

mass is given entirely by the twisted mass, this particular value is referred to as maximal twist.

2.6.1 Degenerate twisted mass operator

The twisted mass QCD becomes non-trivial on the lattice since Wilson fermions explicitly break chi-

ral symmetry. The lattice discretization of the twisted mass Dirac operator in Eq. (2.87) is straight-

forward. We denote with D the Wilson operator introduced in Eq. (2.66) and with µ ∈ R the twisted

mass parameter. We use τ3 = diag(1,−1) diagonal in flavor space. The degenerate twisted mass
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operator discretized on the lattice, DD(µ), is then given by

DD(µ) = (D⊗ I2)+ iµ̄ (Γ5⊗ τ3) −→ DD(µ)ψ2 =

[
DTM(µ) 0

0 DTM(−µ)

][
ψu

ψd

]

=

[
Dψu

Dψd

]
+

[
+iµΓ5ψu

−iµΓ5ψd

]
, (2.90)

where

DTM(µ) = D+ iµΓ5 (2.91)

is what we refer to as the twisted mass Wilson operator, which is restricted to the space D , cf.

Eq. (2.67). Properties of the twisted mass fermions discretization have been studied in Refs. [69–

71] and fully reviewed for the degenerate twisted mass operator in Ref. [46]. An important property

of twisted mass fermions is the automatic O(a)-improvement for simulations at maximal twist, i.e.

when the twist angle ω , cf. Eq. (2.89), is equal to π/2.

2.6.2 Isospin symmetry breaking

In the degenerate twisted mass operator the twist is applied linearly in the flavor space of the up

(u-) and down (d-) quark. Then the twisted mass term acts with a positive shift given by iµΓ5 on

the u-quark operator and with a negative shift given by −iµΓ5 on the d-quark operator. The twisted

mass term does not change the up and down quark masses, cf. Eq. (2.88), but breaks explicitly the

isospin symmetry between the u- and the d-quark, which was preserved by the Wilson operator. The

isospin symmetry breaking is an unwanted lattice artifact, which is removed in the continuum limit.

An important consequence of the isospin symmetry breaking is that the neutral pion is lighter than

the charged pion. This slows down or even prohibits simulations for light quark masses close to the

physical value for certain values of the lattice spacing.

The neutral to charge pion mass splitting can be estimated in chiral perturbation theory. To first

order one finds [72]

m2
π0−m2

π± ' 4c2a2 (2.92)

where c2 depends on low energy constants and it is found to be negative for twisted mass fermions [73].

This means that the neutral pion mass may vanish for finite light quark masses triggering a phase tran-

sition into a non-physical phase. As a consequence, simulations at the physical point of twisted mass

fermion without a clover term would require a very fine lattice spacing, i.e. a < 0.062, and therefore

imply a very large volume, as depicted in Fig. 2.3.

The employment of a clover term into the action comes in our rescue. As shown by the purple

points in Fig. 2.3, the critical twisted mass value for the light quarks is significantly reduced as

compared to simulations without this term. By introducing a clover term the quadratic lattice artifacts

in the isospin symmetry breaking are suppressed, e.g. in case of the neutral pion mass as shown in

Refs.[6, 74–76]. The clover parameter is usually set by using an estimate from 1–loop [77] tadpole

boosted perturbation theory given by

cSW ∼= 1+0.113(3)
g2

0
P
, (2.93)

with P being the plaquette expectation value. This allows simulations at the physical point with a
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value of the lattice spacing around a = 0.1 fm or even larger [76]. Thus, differently from the Wilson

operator, the clover term is employed in reducing the isospin breaking effects since the discretization

effects are already O(a2) improved being at maximal twist.
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Figure 2.3: The squared neutral pion mass is plot-
ted against the squared charged pion mass in units of
the lattice spacing a. We show results for N f =2+1+1
ETMC ensembles with no clover term i.e. taking cSW =
0 and for the N f =2 ensemble with clover term from
Ref. [76]. We use a linear fit in a2m2

π± excluding en-
sembles with mπ± > 400 MeV. The vertical line corre-
sponds to the physical value of the charged pion mass.

2.6.3 Quark currents and renormalized quark mass

After applying the chiral transformation, the Ward quark currents introduced in Eq. (2.78) and (2.79)

transform as

A′aµ =
1
2

ψ̄
′
2γµγ5τ

a
ψ
′
2 (2.94)

P′a =
1
2

ψ̄
′
2γ5τ

a
ψ
′
2 (2.95)

V ′ai =
1
2

ψ̄
′
2γiτ

a
ψ
′
2. (2.96)

where we also include the vector current V a
i with i = 1,2,3 being the spatial indexes. As we see in

the following the vector current plays an important role in twisted mass fermions. The PCAC and the

PCVC relations are [70]

〈(∂µA′aµ ) O〉 = 2m′q〈P′a O〉 with a = 1,2 (2.97)

〈(∂µA′3µ ) O〉 = 2m′q〈P′3 O〉+ iµ〈ψ̄ ′2Oψ
′
2〉 (2.98)

〈(∂iV ′ai ) O〉 = −2µε
a
b 〈P′b O〉 with a,b = 1,2 (2.99)

〈(∂iV ′3i ) O〉 = 0 (2.100)

At zero twist then the vector current is conserved and the axial current is the same as in Eq. (2.77). At

maximal twist, when m′q = 0, the components a = 1,2 of the axial current are conserved. As shown in

Ref. [78, 79] this gives the most suitable and theoretically-sound condition for the desired automatic

O(a)-improvement. It is achieved by demanding a vanishing value for the partially conserved axial

current (PCAC) quark mass, cf. Eq. (2.85). The renormalized quark mass at maximal twist is then

m(r)
q =

1
ZP
|µ|+O(a2). (2.101)

which is directly proportional to the twisted mass parameter µ with ZP being the pseudoscalar renor-

malization constant.
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2.6.4 Properties of the degenerate twisted mass operator

Due to the close connection to the Wilson operator, the twisted mass operator has similar properties.

The equivalent to the Γ5-hermiticity, cf. Eq. (2.68), is

DTM(µ)Γ5 = Γ5D†
TM(−µ) (2.102)

which connects the “up”, DTM(µ), and the “down”, DTM(−µ), flavor of the operator, cf. Eq. (2.90).

Since DTM is non-normal, the left and right eigenvectors differ. For the twisted mass operator, the

left eigenvectors of the u-quarks are connected to the right eigenvectors of the d-quarks. Let ϕ
u(d)
j,L

and ϕ
u(d)
j,R be left and right eigenvectors of DTM((−)µ), respectively, with corresponding eigenvalue

λ
u(d)
j , then due to Γ5-hermiticity, cf. Eq. (2.102) we have

λ
u
j = ϕ

u
j,L

†DTM(µ)ϕu
j,R =

(
ϕ

u
j,R

†(DTM(µ))†
ϕ

u
j,L

)†
=
(

ϕ
u
j,R

†Γ5DTM(−µ)Γ5ϕ
u
j,L

)†

=
(

ϕ
d
j,L

†
DTM(−µ)ϕd

j,R

)†
= (λ d

j )
?. (2.103)

Thus, eigenpairs of DTM(µ) are connected to the eigenpairs of DTM(−µ) with the relations

λ
u
j = (λ d

j )
? , ϕ

u
j,L = Γ5ϕ

d
j,R and ϕ

u
j,R = Γ5ϕ

d
j,L. (2.104)

The equivalent of the symmetrized Wilson operator, cf. Eq. (2.71), is

HTM(µ) = Γ5DTM(µ) = H+ iµ =V ΛV † + iµ =VeiΘ
√

Λ2 +µ2 V †, (2.105)

where the diagonal matrix eiΘ contains the complex phases θ j of the eigenvalues λ j+iµ and
√

Λ2 +µ2

is their absolute values. For the non-symmetrized twisted mass operator D(µ), analogously to the

Wilson case [80], this gives the singular value decomposition

DTM(µ) = Γ5VeiΘ
√

Λ2 +µ2 V † =U
√

Λ2 +µ2 V † (2.106)

with U = Γ5VeiΘ and V being unitary. The smallest singular value
√

λ 2
i +µ2 is thus not smaller

than µ , which shows that a non-zero value of µ protects the twisted mass operator D(µ) from being

singular, unlike the Wilson operator where this can happen for quark mass m close to its critical value.

Similarly, for the squared twisted mass operator

D†
TM(µ)DTM(µ) = (D†− iµΓ5)(D+ iµΓ5) = D†D+µ

2 = H2 +µ
2 (2.107)

we have

H2 +µ
2 =V (Λ2 +µ

2)V †, (2.108)

the eigenvalues of which are bounded from below by µ2.

A special property of the twisted mass operator is that at maximal twist the region just above µ2

is densely populated with the eigenvalues of the squared operator, cf. Eq. (2.107). We illustrate this in

Figure 2.4, which displays a histogram of the (scaled) ensemble averaged moduli of the eigenvalues

of the non-squared symmetrized even-odd reduced (or preconditioned) twisted mass operator, ĤTM.

The eigenvalues of the operator are measured on an ensemble simulated at a physical value of the

light quark mass doublet, which we will refer to as the physical ensemble. ĤTM is obtained using an
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even-odd ordering of the lattice sites such that

DTM =

[
Doo Doe

Deo Dee

]
(2.109)

where Doo and Dee are diagonal in spinor space since only first neighbor interactions are found in the

Wilson operator. ĤTM is then given as ĤTM = Γ5D̂TM with

D̂TM = (Dee−DeoD−1
oo Doe). (2.110)

Figure 2.4: The density of the approxi-
mated rescaled eigenvalues of the hermitian
even-odd reduced twisted mass Dirac opera-
tor measured on gauge configurations of the
physical ensemble cA2.48 (see Ref. [76]).
The quark mass is given by mq = 3.89 MeV
in the MS-scheme.

[M. Lüscher, 2007]

Figure 2.5: The density of small eigen-
values in the Wilson operator. Figure taken
from Ref. [14], reported here for comparison
to Fig. 2.4

For csw = 0, i.e. without the clover term, the spectrum of D̂TM is directly connected to the spectrum

of the full operator DTM, e.g. in the case of the small eigenvalues we have

λi(DTM)

m+4
= 1−

√
1−λi(D̂TM)

m+4
≈ 1

2
λi(D̂TM)

m+4
(2.111)

where λi(DTM) and λi(D̂TM) are respectively eigenvalues of D and D̂. Although this relation does not

hold exactly for the hermitian even-odd reduced twisted mass operator, we found that numerically

this relation still holds approximately for the eigenvalues close to µ . We find that the largest relative

deviation of the smallest eigenvalue to the approximated cut-off 2µ is given by |λmin−2µ|/2µ <

0.0005 MeV. Thus we rescale the spectrum by a factor two and relate it to the energy scale of

the MS-scheme defined at 2 GeV. The eigenvalue density is shown in Fig. 2.4. In contrast to the

spectrum of the Wilson Dirac operator, shown in Refs. [14, 81] and reported in Fig. 2.5, the density

of the eigenvalues increases close to the physical quark mass.

28



2.6.5 Non-degenerate operator

A generalization of the degenerate twisted mass operator, cf. Eq. (2.90), is the so-called non-degenerate

(ND) twisted mass operator

DND(µ̄, ε̄) = (D⊗ I2)+ iµ̄ (Γ5⊗ τ3)− ε̄(I⊗ τ1) =

[
DTM(µ̄) −ε̄I

−ε̄I DTM(−µ̄)

]
(2.112)

with the bare mass parameters µ̄ and ε̄ ∈ R. Clearly with ε̄ = 0 and µ̄ = µ we retrieve the degenerate

twisted mass operator. In what follows, we consider the ND twisted mass operator for ε̄ > 0, the

properties of which have been studied in Ref. [82]. Also the non-degenerate twisted mass operator

is free of O(a) effects if the light quark sector is tuned at maximal twist [83, 84]. Due to the flavor

mixing, introduced by the off-diagonal term proportional to ε̄ , the non-degenerate operator generates

two renormalized quark masses connected to the bare twisted mass parameters by

ms =
1

ZP
µs =

1
ZP

µ̄− 1
ZS

ε̄ and mc =
1

ZP
µc =

1
ZP

µ̄ +
1
ZS

ε̄ (2.113)

where ZS and ZP are respectively the scalar and the pseudoscalar renormalization constants. We use

the names ms and mc since we will use this operator for the strange and charm quarks doublet. The two

flavors are although mixed and we cannot directly retrieve the strange and charm quark propagators.

This operator is then mostly used in simulations adding to the partition function the determinant of

DND.

The ND twisted mass operator is (Γ5⊗ τ1)-hermitian

HND(µ̄, ε̄) = (Γ5⊗ τ1)DND(µ̄, ε̄) = D†
ND(µ̄, ε̄)(Γ5⊗ τ1) = H†

ND(µ̄, ε̄) (2.114)

thanks to the Γ5-hermiticity of the Wilson operator. For the determinant of the ND twisted mass

operator, it follows that

det [DND(µ̄, ε̄)] ∈ R (2.115)

thanks to the (Γ5⊗τ1)-hermiticity. This implies the reality of the determinant but not its positiveness.

The positiveness of the operator is proved for µ̄ > ε̄ [46]. In case of the heavy quark doublet, taking

the physical values of the strange and charm quark masses, this is achieved if the ratio of the renor-

malization constants is ZP/ZS > 0.85. However, on the lattice we typically have ZP/ZS ' 0.8. This

does not imply that the determinant is negative, but its positiveness is not ensured. Numerically, we

find that for ZP/ZS ' 0.8 the determinant is positive with no exceptions observed.
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3. Inverting the Dirac operator on the lattice

For lattice QCD calculations involving fermions we need to compute the inverse of the Dirac operator

D. It is a very frequent operation, which makes LQCD simulations computationally demanding. The

Dirac operator discretized on a lattice is represented by a sparse matrix. A sparse matrix is a matrix

where the number of non-zero components is proportional to the matrix size. The stencil of the matrix,

i.e. how the non-zero components are distributed, changes accordingly to the fermions discretization

scheme and the boundary conditions. For Wilson fermions, as well as for twisted mass fermions, we

have local and first-neighbor contributions and commonly periodic boundary conditions are applied.

We depict a schematic representation of the Dirac operator in Fig. 3.1.

D=( (D=( (
Figure 3.1: Schematic representation of the Dirac operator. On the left a 4×4 lattice with sites numbered in
row-major order from 1 to 16. The gray links show inner connection between the sites, while red links show
connections through the boundaries. On the right hand side a schematic matrix representation of the Dirac
operator where the non-zero contributions are depicted with symbols. Each square or circle represent a 12×12
block matrix being the color-spin components per lattice site. On the diagonal of the matrix we show the local
contributions for each lattice site. The gray squares are the first neighbor contributions through the inner links,
while the red squares are the first neighbor contributions through the boundaries.

Even though D is a sparse matrix, its inverse is not. D−1 is a full matrix with size proportional

to the lattice volume squared. Considering simulations performed currently, where we typically have

lattices of size V = 643×128, it would be impossible to store in memory the inverse of such a matrix,

which would have size (2×Nc×Ns×V )2 ' 6 ·1017 ' 600 petabytes (PB). The fact that D is sparse

can be utilized in that we always compute the inverse of the matrix applied to a vector b by solving

the linear system

Dx = b −→ x = D−1b. (3.1)

In this chapter, we introduce iterative approaches for solving sparse linear systems. We will refer to x

as the solution and to b as right hand side (rhs). The matrix D here indicates any non-singular matrix,

even though our methods target the Dirac operator.

3.1 Iterative Krylov solvers

Iterative Krylov solvers are iterative algorithms for computing an approximate solution of the inverse

of a matrix. Many methods exist and for a complete survey we refer to the book [85]. Some important

features that characterize these methods are:
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• The residual, r, and the error, e, of the approximate solution, x, are defined as

r = b−Dx and e = D−1b− x = D−1r. (3.2)

While e is the real error of x, the residual r is the quantity we compute to approximately estimate

the error since it does not require the knowledge of the exact solution D−1b.

• The solution x is searched in the so-called Krylov subspace, Kn,

x ∈Kn(D,b) =
{

b,Db,D2b, . . . ,Dn−1b
}
, (3.3)

where n indicates the number of iterations. It can be proven that for non-singular matrices of

size N×N the exact solution belongs to

D−1b ∈KN(D,b) =
{

b,Db,D2b, . . . ,DN−1b
}
. (3.4)

Therefore N is the maximum number of iterations we need to exactly solve a linear system. We

need only an approximate but precise solution aiming to a number of iteration n� N.

• An initial guess x0 can be given to the solver. The correction is then given by

x = x0 +D−1b− x0 = x0 +D−1r0 with r0 = b−Dx0. (3.5)

The solution to D−1r0 is searched in the Krylov susbspaces Ki(D,r0).

• The Krylov subspace is constructed iteratively by applying the operator D

Ki+1 = Ki ∪ DKi[i], (3.6)

where Ki[i] is the last, i-th, element of Ki. Also the solution is constructed iteratively as

xi+1 = xi +∆xi+1, where xi ∈Ki and ∆xi+1 ∈Ki+1.

• Most of the Krylov solvers aim to find the solution xi ∈Ki which minimizes the norm of the

residual in the current Krylov subspace Ki. The approaches differ by the definitions of the

norm used. For instance, a solver like Minimal Residual (MR) minimizes the Euclidean norm

of the residual, i.e. ‖r‖2 =
√

r†r, while a solver like Conjugate Gradient (CG) minimizes the

D-norm of the error, i.e. ‖e‖D =
√

e†De, where D must be an hermitian matrix, resulting in the

minimization of the D−1-norm of the residual.

• The norm of the residual is often used as a stopping criterium. The number of iterations n is

such that
‖rn‖= ‖b−Dxn‖< ρ, (3.7)

where ρ is the stopping criterium. Using the Euclidean norm we have

‖r‖2 = ‖De‖2 ≤ ‖D‖2 ‖e‖2 = |λmax|‖e‖2 and

‖e‖2 =
∥∥D−1r

∥∥
2 ≤

∥∥D−1∥∥
2 ‖r‖2 =

1
|λmin|

‖r‖2 , (3.8)
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with |λmin| =
√

λ ?
minλmin and |λmax| =

√
λ ?

maxλmax where λmin and λmax are respectively the

smallest and the largest eigenvalues of D. Therefore the error in the solution is bounded by

1
|λmax|

ρ ∼ 1
|λmax|

‖r‖2 ≤ ‖e‖2 ≤
1
|λmin|

‖r‖2 <
1
|λmin|

ρ. (3.9)

It follows that the smallest eigenvalue plays an important role since the error is bounded from

above by ρ/ |λmin|, which can take very large values for small λmin. It is then important to keep

ρ/ |λmin| sufficiently small.

• From these considerations, it follows that the convergence of Krylov solver to the exact solution

is a function of the condition number of the operator. The condition number K of a matrix D is

defined as

K(D) = ‖D‖
∥∥D−1∥∥= |λmax|

|λmin|
, (3.10)

where the right hand side has been obtained using the Euclidean norm. Following the same

approach as above we find that
‖e‖
‖x‖ ≤ K(D)

‖r‖
‖b‖ . (3.11)

• We distinguish the Krylov methods between short and long recurrence algorithms. In a short

recurrence algorithm the update of the iterated solution requires the storage of a constant num-

ber of vectors; in a long recurrence algorithm the update of the solution requires a number of

vectors which increases with the number of iterations. For instance the MR solver is a long

recurrence algorithm where all the vectors belonging to the Krylov subspace are stored and the

solution is searched in the full Krylov subspace in order to find the absolute minimum to the

norm of the residual.

• The storage required by the long recurrence solver can be reduced by restarting the Krylov

solver, i.e. using as initial guess the last iterated solution. This though does not guarantee the

convergence of the solver.

Several Krylov solvers have been analyzed for the twisted mass operator in Ref. [79]. It has been

found that the best performing approach is the conjugate gradient (CG). In the following we introduce

this approach, which has been extensively used for twisted mass fermions until the employment of

multigrid methods.

3.1.1 Conjugate gradient

The conjugate gradient (CG) algorithm is one of the best known iterative techniques for solving

sparse symmetric positive definite linear systems. It can be employed in LQCD for inverting the

squared Dirac operator, H2 = DD† → H2x = b, and, when needed, the solution of the Dirac operator

is retrieved as

D−1b = D†H−2b = D†x. (3.12)

Inverting the square of the Dirac operator has the disadvantage that it increases the condition num-

ber of the matrix, having κ(H2) = κ(D)2. For this reason, in case of Wilson fermions other Krylov

solvers, which can invert directly D are faster and therefore preferred. For twisted mass fermions it

has been showed that CG is the best performing solver [79]. This has been observed for twisted mass

fermions at maximal twist where the mass of the Wilson operator is tuned to its critical value. Thus,
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the smallest eigenvalue of Γ5DTM(µ) is λmin = iµ , as seen from Eq. (2.105), which is purely imag-

inary and makes the operator a complex shifted maximally indefinite matrix. The squared operator

D†D+µ2 is instead well conditioned and CG is the best algorithm for the inversion.

The starting point of the CG approach is to consider a set of residuals, which are orthogonal to

each other:

r†
j ri = δi j ‖ri‖ . (3.13)

Supposing that any residual ri belongs to the Krylov subspace Ki+1(A,r0), as should be the case of

Krylov solvers, then

ri ∈Ki+1(A,r0) =⇒ ri ∈K ⊥
i (A,r0) since ri ⊥ ri−1 ∈Ki(A,r0), (3.14)

where K ⊥
i (A,r0) is a orthogonal subspace to Ki(A,r0). By definition of Krylov solver, also the

iterated solution xi belongs to Ki(A,r0) and thus

x†
i r j = 0 ∀i≤ j. (3.15)

The difference between two consecutive iterations is

(xi− xi−1)
†(r j+1− r j) = ∆x†

i A∆x j+1 = 0 ∀i≤ j, (3.16)

which show that the updates of the solution ∆xi = xi− xi−1 are A-orthogonal to each other. Thus, the

exact solution should be written as

A−1b = xN = x0 +
N

∑
i=0

ai pi, (3.17)

where N is the size of the matrix, x0 is the initial guess and pi are a set of A-orthogonal vectors, i.e.

p†
jApi = δi j ‖pi‖A with ‖pi‖A = p†

i Api. (3.18)

This relation is satisfied for any i and j if A is symmetric (or hermitian), otherwise needs to be

satisfied only for j ≤ i, as follows from Eq. (3.16). The CG algorithm considers the first case, but

the algorithm can be generalized to any matrix A as in the formulation of the generalized conjugate

residual (GCR) [85]. Multiplying Eq. (3.17) on the left by p†
jA we obtain

p†
jAA−1b = p†

jb = p†
jAx0 +∑ai p

†
jApi = p†

jAx0 +a j
∥∥p j
∥∥

A =⇒ a j =
p†

jr0∥∥p j
∥∥

A

. (3.19)

This gives the coefficients a j, which can be computed without the knowledge of the exact solution

xN . The iterated solution and residual are

xk = x0 +
k−1

∑
i=1

ai pi = xk−1 +ak−1 pk−1 and rk = r0−
k−1

∑
i=1

aiApi = rk−1−ak−1Apk−1. (3.20)

Since the updated vector for the next solution, pk, needs to belong to the subspace Kk+1(A,r0) it can

be written as

pk = rk +βk pk−1, (3.21)
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where rk ∈Kk+1(A,r0) and pk−1 ∈Kk(A,r0). Using this we obtain

p†
k−1Ark = p†

k−1A(pk−βk pk−1) =−βk ‖pk−1‖A → βk =−
p†

k−1Ark

‖pk−1‖A
. (3.22)

Different definitions of αk and βk can be derived from the properties of xk, rk and pk. The one that is

most commonly used is

αk =
‖rk‖
‖pk‖A

and βk =
‖rk+1‖
‖rk‖

(3.23)

since only two norms need to be computed every iteration, namely ‖rk+1‖ and ‖pk‖A. An implemen-

tation of the CG algorithm is listed in Alg. 1. From the computational side, it requires per iteration

one application of A (line 6) and two global reductions, (p† p′) and ‖r‖ (lines 7, 10). These compo-

nents in a parallel implementation require communication, while the remaining of the algorithm is

computed in-node. The convergence rate of CG is [85],

Algorithm 1: x =CG(A,b,x0)

Input: b, x0
Output: x
Parameters: nmax, ρmin

1 x = x0
2 r = b−Ax
3 p = r
4 ρ = ‖r‖
5 for i = 1 to nmax or until ρ > ρmin do
6 p′ = Ap
7 α = ρ/(p† p′)
8 x← x+α p
9 r← x−α p′

10 β = ‖r‖/ρ

11 p← r+β p
12 ρ ← β ρ

13 return x

ρ =
‖r‖
‖b‖ ≤ 2

(√
K(A)−1√
K(A)+1

)n

, (3.24)

where n is the number of iterations. It follows that the number of iterations required for obtaining the

desired relative residual ρ is

n≤ ln(2/ρ)

ln
(√

K(A)+1
)
− ln

(√
K(A)−1

) . (3.25)

Considering a constant time per iteration, titer, we can parameterize the time to solution of the CG

solver at fixed ρ as function of the condition number κ as

tCG(K)≤ tinit + titer
ln(2/ρ)

ln
(√

K +1
)
− ln

(√
K−1

) , (3.26)
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where tinit is the initialization cost of CG.

3.1.2 Critical slowing down

When one approaches the physical value of the light quark mass, the efficiency of the CG solver

suffers due to the increase of the condition number. Any discretization of the Dirac operator suffers

from this so-called critical slowing down. In case of CG with twisted mass fermions, the time to

solution increases with 1/µ2. We show this phenomenon in Fig. 3.2, where we depict numerical

results computed on an ensemble with light quark mass tuned to its physical value (physical ensemble)

with a lattice volume of V = 483× 96. The characteristic quantities of this ensemble are listed in

Tab. 3.1.

Name Ref. N f V β cSW κ µ a [fm] mπ [MeV]

cA2.48 [76] 2 483×96 2.1 1.57551 0.13729 0.0009 0.0913(2) 131.9(3)

Table 3.1: We give the simulation parameters (N f , V , β , cSW, κ and µ) and some characterizing quantities (a
and mπ ) for the cA2.48 ensemble studied in this section.

Figure 3.2: Time to solution for computing the twisted mass fermion propagator at different quark mass using
the CG solver with the odd-even reduced twisted mass operator. The value of the light, strange and charm
quark masses are shown by the vertical lines with the labels mu,d , ms and mc, respectively.

We fit the time to solution using Eq. (3.26), with initialization time tinit ' 0 core-seconds, iteration

time titer ' 35 core-seconds and stopping criterion ρ = 10−9. Having λmin(Q2 + µ2) ' µ2, we find

λmax(Q2 + µ2) ' 0.26. The fitted data are depicted in Fig. 3.2. From this data set one understands

easily how prohibitive simulations at the physical point are. This has limited simulations to larger

than physical values of the pion mass for a number of years. In order to extract physical results one

then resorted to chiral perturbation theory. Chiral extrapolations typically work well for mesons but

for baryon such an extrapolation is problematic and brings in and uncontrolled error. Therefore, for

baryon observables one benefits from having simulations performed directly at the physical point.

3.1.3 CG with exact deflation

Before the employment of multigrid methods, one used CG with exact deflation [86, 87]. In this

approach, the eigenvectors with small eigenvalue are computed exactly and the deflated operator is
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inverted. This improves the time to solution reducing the condition number of the Dirac matrix. Let

us consider a set of the low-mode eigenvectors of D†D+µ2 collected in the matrix V , then

V †(D†D+µ
2)V = Λ and HV = (1−VV †)†(D†D+µ

2)(1−VV †), (3.27)

where Λ is a diagonal matrix of the respective eigenvalues and HV is the deflated operator. The

solution of the linear system (D†D+µ2)x = b is computed as

x = (D†D+µ
2)−1b = H−1

V b+V Λ−1V †b, (3.28)

where H−1
V b is solved with CG. The approach just described is referred to as CG with exact deflation

(CG-eDe) and it can be improved by the algorithm outlined in Ref. [88] known as eigCG. In the latter,

the eigenvectors of the operator are computed progressively while computing solutions with CG. At

every inversion a small set of eigenvectors would be computed and then used in the next inversion for

accelerating the convergence. An alternative approach used in this work, is to compute all low-lying

eigenvectors at once using the implicitly restarted Arnoldi method implemented in ARPACK [89].

For a well deflated CG solver, most of the smaller eigenvalues need to be computed in order to

effectively deflate the operator. For the cA2.48 this requires the calculation of 1600 eigenvectors. Note

that the number of eigenvectors needed grows with the volume since the spectral density increases

with the volume. In Fig. 3.3 we present a comparison of the inversion times of the CG solver and the

CG solver with exact deflation (CG-eDe). For CG and CG-eDe we use the publicly available software

package tmLQCD [90] that is commonly used for simulations with the twisted mass operator.

Solver Setup time Inversion time Iteration
[core-hrs] [core-hrs] count

CG – 338.6 34 790

CG-eDe 6 941.1 9.8 695

Figure 3.3: Comparison of CG (tmLQCD), CG-eDe (tmLQCD+ARPACK) with 1600 eigenvectors. The
results have been computed for the cA2.48 ensemble, Tab. 3.1, with mπ = 0.131 GeV. We depict on the left the
speed-up over CG when inverting multiple right hand side, nrhs, using the same setup. The reference timings
are reported in the table on the right. The

CG-eDe achieves a speed-up compared to CG which is of a factor greater than twenty. On the

other hand, the setup time is expensive and more than one thousand rhs need to be inverted in order to

take advantage of the full speed-up as depicted in Fig. 3.3. Since the eigenvectors are configuration

dependent and they need to be computed exactly in order to make the approach work, this approach

works if we have a high number of inversions. CG-eDe improves the inversion time for measurements

but does not help in the simulations where only a few inversions are computed per configuration before

updating the links. The introduction of multigrid solvers has thus played a very important role for

accessing the physical point without a prohibitive computational cost.
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3.2 Multigrid methods

The main idea of multigrid methods is to accelerate the convergence of standard iterative solvers

by coarsening the degrees of freedom of the linear system reducing its complexity. The coarsen

problem, constructed on a so-called coarse-grid, restricts long-wavelength information of the target,

namely the fine-grid, linear system. The coarse linear operator is significantly cheaper to solve and is

used to compute a coarse-grid correction of the iterated fine-grid solution. In multigrid methods this

idea is extended recursively, i.e. by additionally coarsening the coarse problem, defining a hierarchy

of coarse-grids levels, until a small enough linear system is reached.

Smooth Restrict

Solve

Prolongate

Figure 3.4: A two-grid cycle showing the main multigrid steps. Image credit: Luke Olson.

Multigrid methods can be used either as preconditioners or stand-alone solvers and many varia-

tions are available in the literature [91]. Their common features are:

• A smoother, a method applied on either the fine- or coarse-grid for reducing the short-wavelength

fluctuations. The smoother is applied horizontally in the multigrid hierarchy without changing

level. Typically, the smoother is a cheap and simple iterative method, such as a relaxation

schemes like Jacobi, Gauss-Seidel or their block variants as well as few iterations of a Krylov

subspace method;

• A restriction operator, the mapping that allows to move from a finer to a coarser grid in the

multigrid hierarchy;

• A prolongation operator, the mapping that allows to move from a coarser to a finer grid in the

multigrid hierarchy.

Restriction and prolongation operators are the most critical components for a successful multigrid

approach and they are critically discussed in this chapter.

3.2.1 Two-level multigrid operators

In a two-level multigrid approach, restriction and prolongation operators, R and P respectively, are

used to define the coarse-grid operator, Dc, from the fine-grid operator, D, as follows

Dc = RDP. (3.29)

D is the Wilson Dirac operator but the approach can be applied to a generic linear operator. R and P

are then matrices of size (m,n) and (n,m), respectively, where (m,m) is the size of D and (n,n) is the
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size of Dc with n< m. Commonly, R and P also satisfy

RI P = Ic, (3.30)

such that the fine-grid identity, I, is mapped into the coarse-grid identity, Ic.

In a standard multigrid (MG) approach, R and P are constant sparse matrix constructed with

a geometric definition. For instance, in a block-aggregation of neighboring sites, demonstrated in

Fig.3.5, R averages between sites of a block-aggregate, Ai, and then P is constructed to satisfy the

property in Eq.(3.30). A standard MG approach is usually applied for solving partial differential

equations (PDEs) discretized on a grid, where the geometrical meaning of the linear operator is clear.

The Dirac operator in lattice QCD is part of this category and such approach has been investigated at

the beginning of the ’90s [92–95] without satisfactory results. The reason is due to the random nature

of the gauge fields entering in the lattice Dirac operator that obfuscates the geometrical interpretation

of the underlying PDE. The advent of algebraic multigrid methods (AMG) and the pioneering studies

in Refs. [96–98], opened the way for a successful application of multigrid methods in LQCD. These

works are discussed later in this chapter.

R
P

Figure 3.5: Block aggregation of neighboring sites and symbolic representation of the movement from the
fine-grid to the coarse-grid and vice-versa.

From the coarse-grid operator in Eq. (3.29) the following error propagation is defined

ε ←
(
I−PD−1

c RD
)

ε. (3.31)

From this we obtain the coarse-grid correction of the iterated solution z

z ← z+PD−1
c R(b−Dz), (3.32)

where b is the right hand side. Such correction involves the solution of the coarse-grid linear system

Dcec = rc := R(b−Dz). (3.33)

It is then straightforward to extend recursively the multigrid approach by employing an additional

coarse-grid correction for solving the coarse-grid linear system given in Eq. (3.33). A generic two-

level multigrid step is then described via the error propagation

ε ← (I−MD)k (I−PD−1
c RD

)
(I−MD) j

ε, (3.34)

where M denotes the smoother and j and k are, respectively, the number of pre- and post-smoothing
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iterations, applied before and after the coarse-grid correction.

3.2.2 Multi-level approach

For a rigorous extension to a multi-level approach, we use N` to indicate the number of levels, with

the first level being the fine-grid and the N`th level the coarsest-grid. For each level `, except the

coarsest, ` ∈ [1,N`), we construct R`, P̀ , M` and D`, where

D`+1 = R`D` P̀ and D1 = D. (3.35)

On the coarsest-grid we only need DN` since no additional coarsening is applied. From a straight-

forward recursive application of the error propagation of Eq. (3.34) we obtain the algorithm listed

in Alg. 2, commonly referred to as V-cycle. Other well-known algorithms are the W- and K-cycles.

These approaches are schematically depicted in Fig. 3.6. In a W-Cycle, smoothing and coarse-grid

correction are arbitrarily repeated multiple times for each level (see Alg. 3). In a K-cycle, instead,

the repetition is not arbitrarily and a Krylov solver preconditioned by a next-level K-Cycle is used

for computing the coarse-grid correction, (see Alg. 4). Note that the “V” and “W” in the name of the

respective cycles refer to the shape of the diagram as depicted in Fig. 3.6. On the other hand, the “K”

of K-cycle refers to Krylov solver, despite we also depict the K-cycle in the figure with a diagram of

shape “K”.

1
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solve

2

1 1

2

3

solve

2

3
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2

1 1

22

3
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satisfied?

3
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no

Figure 3.6: Schematic representation of V-, W- and K-Cycles for a three-level multigrid approach.

Algorithm 2: z` = V-Cycle(`,b`)
Input: b`, ` < N`
Output: z`
Parameters: N`, ρ , j, k

1 z` = 0
2 for i = 1 to j do
3 z`← z`+M`(b`−D`z`)

4 r`+1← R`(b`−D`z`)
5 if `+1 = N` then
6 z`+1← solve(D`+1 z`+1 = r`+1, residual = ρ)

7 else
8 z`+1← V-Cycle(`+1,r`+1)

9 z`← z`+ P̀ z`+1
10 for i = 1 to k do
11 z`← z`+M`(b`−D`z`)

12 return z`

Pre-smoothing

Post-smoothing

Coarse-grid correction
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3.2.3 Algebraic multigrid (AMG)

Algebraic multigrid (AMG) is an important extension of multigrid methods. The main difference with

standard, i.e. geometrical, MG approaches regards the construction of the restriction and prolongation

operators which in a AMG method do not necessary have a geometrical meaning. They are indeed

non-constant matrices constructed upon the fine-grid operator itself, i.e. R ≡ R(D) and P ≡ P(D).

The purpose of R and P is still to define a coarse operator Dc as in Eq. (3.29) with long wavelength

information of the fine grid operator D. Multilevel approaches can be used as done for standard MG.

Exact deflation could be an example of AMG algorithm, but we will explain why in fact it is not.

We have introduced CG with exact deflation in Sec. 3.1.3 and here we explain the same concept using

the multigrid operators. Let vi be right-eigenvectors of D and v̂i be the respective left-eigenvectors,

then they satisfy

v̂T
i D vi = λi v̂i · vi = λi. (3.36)

If we construct R and P from a set of Nv left- and right- eigenvectors, respectively,

PeDe = (v1 | . . . | vNv) and ReDe = (v̂1 | . . . | v̂Nv)
T, (3.37)

where the notation (||) means that the vectors are used as columns of the matrix, we obtain then a

coarse-grid operator, as defined in (3.29), which is the diagonal matrix of the respective eigenvalues,

DeDe = ReDeDPeDe = diag(λ1, . . . , λNv), (3.38)

equivalent to Λ in Eq. (3.27). In case of the Wilson Dirac operator D, left- and right-eigenvectors are

Algorithm 3: z` = W-Cycle(`,b`)
Input: b`, ` < N`
Output: z`
Parameters: N`, ρ , j, k, n`
Comment: Same as Algorithm 2 with a for-loop wrapping the lines from 2 to 11 and

replacing V-Cycle with W-Cycle.

1 z` = 0
2 for i = 1 to n` do

3-8 Lines 2 - 7 of Algorithm 2
9 | z`+1←W-Cycle(`+1,r`+1)

10-12 Lines 9 - 11 of Algorithm 2

13 return z`

Algorithm 4: z` = K-Cycle(`,b`)
Input: b`, ` < N`
Output: z`
Parameters: N`, ρ`, j, k
Comment: Same as Algorithm 2 replacing line 8 as follow.

1-7 Lines 1 - 7 of Algorithm 2 using ρ = ρ`

8 | z`+1← solve(D`+1 z`+1 = r`+1, residual = ρ`, preconditioner = K-Cycle(`+1,__))
9-12 Lines 9 - 12 of Algorithm 2
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connected by the property

v̂T
i = (Γ5vi)

T =⇒ ReDe = (Γ5PeDe)
T, (3.39)

since D is Γ5-hermitian, cf. Eq. (2.68). In case of the squared operator D†D, hermitian by construc-

tion, left- and right-eigenvectors are connected by

v̂T
i = v†

i =⇒ ReDe = P†
eDe. (3.40)

The coarse-grid correction in Eq. (3.32) is then equivalent to the exact deflation of the linear operator

D in Eq. (3.28).

Even though we can express exact deflation in terms of multigrid operators, i.e. could go under

the category of AMG approaches since P and R are constructed from D, it is not a multigrid approach

for the following reasons:

• it brings no benefit to additionally coarsen the diagonal matrix DeDe and thus we cannot define

a multilevel approach;

• one application of the coarse-grid correction is enough to deflate the low-mode and thus it

brings nothing to apply it iteratively, i.e. the solution would not change anymore;

• the computation of ReDe and PeDe is extremely expensive and grows with V 2, which is not in

line with the objectives of multigrid approaches.

3.3 Inexact deflation

The first work paving the path for AMG in lattice QCD is by M. Lüscher [96]. The approach presented

is named inexact deflation, as opposed to exact deflation. Inexact deflation is very close to an AMG

approach but small differences are significant to change the method and moreover there is no reference

to multigrid methods in the presentation of the approach in Ref. [96]. The remarkable innovation

brought by inexact deflation regards mostly the reduction of the setup costs as compared to exact

deflation. The main idea is indeed to compute the eigenvectors “inexactly”, i.e. at low precision,

which reduces the computational costs.

3.3.1 Local Coherence

In Ref. [96] it has been observed that low-modes of the Dirac operator are approximately similar

over block-aggregates of the lattice. Loosely speaking the long-wavelength fluctuations of the Dirac

operator have waves similarly repeated all over the lattice. More formally we can state that a block-

segment of a low-mode eigenvector is highly correlated with a large amount of block-segments of

other low-mode eigenvectors. This property is known as local coherence and for a qualitative analysis

we refer to Ref. [96].

Thanks to the property of local coherence we can motivate the construction of a prolongation op-

erator as follow. Let v1, ..., vNv be a set of Nv low-mode right-eigenvectors of D, then the prolongation
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operator P constructed by decomposing the eigenvetors into Nb block-aggregates is given by

(v1 | . . . | vNv) =




−→ P =


. . .



A1

A2

...

ANb

, (3.41)

will approximate O(Nb×Nv) low-mode eigenvectors. The block-aggregation acts only on position

space aggregating to one site a full set of components belonging to

A j = V j×S ×C , (3.42)

as can be seen from Eq.(2.67). Local coherence has several important consequences:

• As mentioned, O(Nb×Nv) low-modes of D are approximately projected in the coarse Dirac

operator Dc = RDP.

• The block size, Vb, of the aggregates depends on the wavelengths of the low-modes, which

change accordingly to the lattice spacing a and the quark mass mq of the operator, and not with

the lattice volume V . It is found then that a block-aggregate of volume 44 is a good choice at

the physical point at any volume.

• Thus, since the block size is fixed at given a and mq, the number of modes restricted in the

coarse grid is proportional to the volume having Nb =V/Vb.

• The spectral density of the low-modes in the Dirac operator grows as well with the volume.

It follows, then, that the dependence on the volume is taken into account by Nb. Therefore,

the number of eigenvectors Nv can be constant. It is found that an order of twenty vectors are

enough for sufficiently deflating the low-modes at the physical point at any volume.

• The constructed coarse Dirac operator is still a sparse matrix as depicted in Fig. 3.7 involving

only first-neighbor interactions. If we consider a block volume Vb = 44 and number of vectors

Nv = 24, then the coarse Dirac operator is 128 times smaller than the Dirac operator.

• The setup cost for computing the eigenvectors is then proportional to the volume V and not to

V 2 as in exact deflation.

• Moreover, since P approximates the low-modes of D, also the eigenvectors entering in P can

be computed approximately.

3.3.2 The algorithm – A missed AMG approach

In Ref. [96], a different approach to the multigrid error propagation in Eq. (3.31) is used. Two pro-

jections are introduced,

π̄ = I−DPD−1
c R and π = I−PD−1

c RD. (3.43)
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Figure 3.7: Schematic representation of fine- and coarse-grid Dirac operator. The same caption of Fig. 3.1
applies here. Differently from Fig. 3.1, the Dirac operator D as been reordered accordingly to the block de-
composition of the lattice. The red and blue arrows show, respectively, the different approach between standard
MG and AMG methods. In the first, the coarse operator Dc is defined from the coarse-grid, in the latter instead
the coarse operator is defined from the fine grid operator D as in Eq. (3.29).

where π is clearly the coarse-grid error propagation of Eq. (3.31). The following properties1 result:

(i) π̄π̄ = π̄ and ππ = π (3.44)

(ii) π̄D = Dπ (3.45)

(iii) Rπ̄ = πP = 0 (3.46)

(iv) π̄DP = RDπ = 0 (3.47)

Moreover, if R and P satisfy RP = Ic, as in multigrid methods, then

(v) π̄(I−PR) = (I−PR)π = (I−PR) (3.48)

1Proofs:

(i) π̄π̄ = I−2DPD−1
c R+DPD−1

c RDP︸︷︷︸
Dc

D−1
c R = π̄ and ππ = I−2PD−1

c RD+PD−1
c RDP︸︷︷︸

Dc

D−1
c RD = π

(ii) π̄D = D−DPD−1
c RD = Dπ

(iii) Rπ̄ = R−RDP︸︷︷︸
Dc

D−1
c R = 0 and πP = P−PD−1

c RDP︸︷︷︸
Dc

= 0

(iv) combining (ii) and (iii): π̄DP = DπP = 0 and RDπ = Rπ̄D = 0

(v) π̄(I−PR) = I−DPD−1
c R−PR+DPD−1

c RP︸︷︷︸
Ic

R = (I−PR) and

(I−PR)π = I−PD−1
c RD−PR+P RP︸︷︷︸

Ic

D−1
c RD = (I−PR).
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These projections are used to decompose the linear system Dx = b as follows

(I− π̄)Dx = (I− π̄)b =⇒ D(I−π)x︸ ︷︷ ︸
χ

= (I− π̄)b =⇒ χ = PD−1
c Rb, (3.49)

π̄π̄︸︷︷︸
π̄

Dx = π̄b =⇒ Dπ πx︸︷︷︸
χ ′

= π̄b =⇒ χ
′ = (Dπ)−1

π̄b. (3.50)

and x = χ +χ ′. χ , involves the inversion of the coarse Dirac operator; χ ′ involves the inversion of Dπ

with rhs π̄b = (b−Dχ) which is the residual of the partial solution χ . The inexact deflation algorithm

is listed in Alg. 5.

Algorithm 5: z = InDe(b)
Input: b
Output: z
Parameters: ρ , z0

1 r← b−Dz0
2 solve χc in Dc χc = Rr with residual ρ

3 r← r−DPχc

4 solve χ ′ in Dπ χ ′ = r, with residual ρ

5 z← z0 +Pχc +χ ′

6 return z

Coarse-grid correction

By comparing Alg. 5 and the coarse-grid corrections for a two-level multigrid approach in Eqs. (3.32)

and (3.33) is clear that the first step of the inexact deflation approach is equivalent to a coarse grid

correction. The main difference between the two approaches is then that

• for exact deflation the coarse grid correction is applied only once and the remaining part of the

solution is computed directly with a deflated Dirac operator Dπ;

• for a multigrid approach, instead, the coarse-grid correction with pre- and post-smoothing is

iterated until convergence.

This has been demonstrated in Ref. [80] where inexact deflation has been compared to an AMG

approach. After the publication of the latter work the inexact deflation algorithm implemented by

M. Lüscher in openQCD2 has been improved to be effectively an AMG approach. Except for the

algorithm itself, the work of M. Lüscher in Ref. [96] opened the path to a successful application of

AMG approaches in lattice QCD. Moreover many other important characteristics of AMG methods

have been rediscovered in its work. For instance, it has been proposed to use for the inversion of

Dπ a preconditioner, the Schwartz alternating procedure (SAP), which reduces the short-wavelength

fluctuations and it is a suitable smoother in case of multigrid methods. The construction of P as in

Eq. (3.41) is also typical of AMG methods with block aggregation. And the restriction operator is

chosen as R = P† that in AMG methods is known as Galerkin approach.

3.4 MG-GCR – The first AMG approach in LQCD

Going from inexact deflation to a real AMG approach, is straightforward. The USQCD collaboration

implemented the first AMG approach for Wilson fermions in LQCD. The method has been called
2http://luscher.web.cern.ch/luscher/openQCD/
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MG-GCR and for details we refer to Refs. [97–102].

The algorithm is a GCR solver preconditioned by a multilevel AMG approach. As explained

in Sec. 3.4.1, a Petrov-Galerkin approach is used for the definition of the restriction operator, while

the prolongation operator P, is constructed from a set of null-vectors built in the setup procedure, as

explained in Sec. 3.4.2. The smoother consists of a few iterations of the MR solver.

3.4.1 Petrov-Galerkin approach for Wilson fermions

For an efficient AMG approach, the restriction operator R should be constructed from the left-

eigenvectors of D and P from the right-eigenvectors. Defining R as R = P† is known as Galerkin ap-

proach in the MG literature, while defining R from the right eigenvalues is known as Petrov-Galerkin

approach. If left- and right-eigenvectors are not connected by any relation, this requires a separated

setup procedure for R which doubles the setup costs. In case of Wilson fermions, we know that left-

and right-eigenvectors are connected by the relation in Eq. (3.39). Therefore, if P is built from vectors

v1, . . . ,vN , which approximate right eigenvectors with small eigenvalues of D, then

R = P†Γ5 (3.51)

is the most suitable restriction operator for Wilson fermions accordingly to the Petrov-Galerkin ap-

proach. The choice done in exact deflation, R = P†, follows instead the Galerkin approach.

As pointed out in Ref. [98], it is possible to combine Petrov-Galerkin and Galerkin approaches,

defining a prolongation operator, which takes into account the spin structure of the Dirac operator. It

can be done by decomposing the aggregation in the spin space S with an aggregate

A j,+ = V j×S0,1×C , (3.52)

which collects the two upper spin components, 0 and 1, and an aggregate

A j,− = V j×S2,3×C , (3.53)

which collects the two lower spin components, 2 and 3. In the chiral basis, Γ5 acts with +1 on the

components of the aggregate A j,+ while with −1 on the other aggregates. Now, the coarse grid Γ5,c

can be defined by Γ5,c = IVc ⊗ τ3⊗ INv , where τ3 acts on the different spin aggregates. This type of

aggregation was proposed in Ref. [100] for the MG-GCR method. A prolongation operator P, which

acts on the aggregates A j,+ and A j,− is said Γ5-compatible and satisfies

Γ5 P = PΓ5,c. (3.54)
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Schematically, we represent the latter equation as

I6·Vb

−I6·Vb

. . .



 . . .


=

 . . .




INv

−INv

. . .

. (3.55)

A Γ5-compatible prolongation operator preserves the Γ5-hermiticity of the Wilson operator on the

coarse grid, i.e.

Γ5,cDc = Γ5,cP†DP = P†D†PΓ5,c = D†
cΓ5,c. (3.56)

The hermitian operator Hc = Γ5,cDc is the same as the operator HPG
c = P†Γ5DP, where in the latter a

non Γ5-compatible prolongation operator has been used. Thus, the Γ5-compatibility has the important

consequence of preserving the Γ5-hermiticity of the Wilson operator and allows to employ in the

coarse grid the matrix Dc instead of HPG
c . Indeed, the inversion of the Hermitian matrix HPG

c , which

has positive and negative eigenvalues is harder since is close to be maximally indefinite [103], i.e. the

number of negative eigenvalues is about the same as the positive ones. Instead the eigenvalues of Dc

lie on the right-half of the complex plane as in the case of D. Solving Dc as the same complexity of

solving D and this is optimal for defining a stable multilevel approach.

3.4.2 Null-vector setup

The setup procedure employed in Refs. [97, 98, 102] is based on the idea of adaptive setup proposed

in Ref. [104]. The idea is to use the smoother itself for finding the error components, which will not

be effectively reduced by it. Considering the homogeneous equation

Du = 0, (3.57)

which has trivial solution, u= 0, and solving it with the smoother starting from a random initial guess,

one finds a solution vector u, which is the numerical error of the solver with respect to the real solution

0. The numerical error in u is populated by the modes that the smoother does not handle well. In case

of an ill-conditioned operator these modes are the low modes of the operator. The solution u is called

null-vector and the setup procedure for Nv null-vectors is listed in Alg. 6. It is repeated for every level

of the multigrid method.

3.5 Aggregation-based Domain Decomposition Multigrid (DD-αAMG)

In this section we introduce in detail the multigrid approach used in this work DD-αAMG based on

Refs. [80, 105, 106]. The main purpose of DD-αAMG is to find the best set of elements to construct

an optimal AMG approach for Wilson fermions. Most of the components are inspired by inexact

deflation, MG-GCR and other AMG applications outside LQCD.

The resulting method is based on a flexible iterative Krylov solver, FGMRES, which is precondi-

tioned at every iteration step by a multigrid approach. The multigrid preconditioner exploits domain
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decomposition strategies: the smoother is given by the Schwarz Alternating Procedure (SAP), see

Sec. 3.5.1 and the coarse grid operator Dc = P†DP is constructed from a Γ5-compatible prolongation

operator P, see Sec. 3.4.1. The method is designed to deal efficiently with both, infrared (IR) and

ultra-violet (UV) modes of the operator D, as depicted in Fig. 3.8. The smoother reduces the error

components belonging to the UV-modes [80], while the coarse grid correction is designed to deal with

the IR-modes. This is achieved by constructing the prolongation operator P from an iterative adaptive

setup procedure, see Sec. 3.5.3. Thanks to the property of local coherence explained in Sec. 3.3.1, the

subspace can be approximated by aggregating over a small set of Nv ' O(20) test vectors vi. On the

coarse grids, single precision and, on the coarsest grid, even-odd reduction are used to accelerate the

time to solution. Note that it could be beneficial to employ even-odd reduction also for higher levels,

see Ref. [102] and results in Sec. 4.4 for MG-GCR.
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Figure 3.8: Combination of smoother and coarse grid correction in the DD-αAMG approach applied on the
eigenvectors of the Dirac operator for a 44 trial lattice. Image credit: Mathias Rottmann

3.5.1 Smoother

In the DD-αAMG approach, a red-black Schwarz Alternating Procedure (SAP) is used as a smoother.

This domain decomposition method was introduced to LQCD in Ref. [107], where it was used as a

preconditioner. The lattice is partitioned into alternated “red(r)” and “black(b)” lattice blocks in a

checkerboard manner and the subdomains are obtained as the full color-spin space over the respective

lattice block, cf. Eq. (3.42). Note that the operator D has only next neighbor interactions and thus

blocks of a specific color do not couple to the same color. Re-ordering the Dirac twisted mass operator

Algorithm 6: P̀ = Setup(`= 1)
Input: ` < N`: level.
Output: P̀
Parameters: Nv, Nb, ρsmooth

1 for j = 1 to Nv do
2 v j

` = random vector
3 v j

`← solve(D`v
j
` = 0, ρsmooth) with the smoother

4 for j = 1 to Nb do
5

{
v` ∈A j

}
← Gram-Schmidt

({
v` ∈A j

})
6

{
v` ∈A j

}
←
{

v` ∈A j/
∥∥v` ∈A j

∥∥}
7 P̀ ← block-aggregation(Nb,{v`})
8 D`+1← P†

` D`P̀
9 if ` < N`−1 then

10 Setup(`+1)

{v`}← block-orthonomalization(Nb,{v`})
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such that the red blocks come first, we obtain

D =

(
Drr Drb

Dbr Dbb

)
, (3.58)

where Drr and Dbb are block diagonal matrices filled with the respective subdomains, while Drb and

Dbr connect the neighboring blocks, as schematically depicted in Fig. 3.9.

D=( (
Figure 3.9: Schematic representation of the red-black reduced Dirac operator. The same caption of Fig. 3.1
applies here. Differently from Fig. 3.1, the Dirac operator D as been reordered accordingly to a red-black block
decomposition of the lattice.

The eigenmodes of the blocks have a higher cut-off than the full operator, given by pν = π/Lb in

the free case due to the Dirichlet boundary conditions. If now the role of the smoother is to reduce

the UV-modes, a natural choice for the operator M in the error propagation of Eq. (3.31) is given by

the inverse of the block operators Brr(µ) and Bbb(µ) defined as

Brr =

(
D−1

rr 0

0 0

)
and Bbb =

(
0 0

0 D−1
bb

)
. (3.59)

They can be combined in two ways, known respectively as additive and multiplicative SAP,

Eadd = (I−MaddD) = (I− (Brr +Bbb)D) , (3.60)

Emul = (I−MmulD) = (I−BrrD)(I−BbbD)) , (3.61)

where

Mmul = Brr +Bbb−BrrDBbb = Madd−BrrDBbb. (3.62)

Thus Mmul is more computational demanding than Madd but numerical tests show a better time to

solution when the first is employed [106]. In practice, the inversion of the blocks on the diagonal of

Brr and Bbb is performed approximately with small computational cost by a few steps of an iterative

method like the Minimal Residual method [80, 86]. Note that we fix the block size to coincide with

the aggregates on each level of the multigrid hierachy.

3.5.2 Krylov subspace methods

A Krylov subspace method preconditioned by the chosen multigrid approach has to be a flexible

algorithm, since the smoother as well as the solver on the coarse grid system are non-stationary

processes. Flexible solvers, which have been employed in multigrid preconditioning for lattice QCD

are the flexible BiConjugate Gradient Stabilized method (BiCGStab, [108]), Generalized Conjugate

48



Residual (GCR, [109]) and the Flexible Generalized Minimal RESidual (FGMRES, [110]) solver.

In the DD-αAMG approach a FGMRES solver is used for the inversion of the fine grid operator

and in the K-cycle for the inversion of the coarser operators except for the coarsest. The latter is

inverted by even-odd preconditioned GMRES, i.e. GMRES is run for the even-odd reduced system

D̂φo = ηo−DoeD−1
ee ηe with D̂ from Eq. (2.110) and then φe in the solution [ φe

φo
] of D[ φe

φo
] = [ηe

ηo ]

is retrieved as φe = D−1
ee (ηe−Deoφe). Even-odd preconditioning is also used in the smoother when

inverting the blocks. In both cases a speed-up of about 50% compared to the full operator is achieved.

This results in a speed-up of about 20% in the full multigrid procedure.

In general, the accuracy of the coarse grid inversions may be very much relaxed as compared

to the target accuracy of the fine grid inversion. Indeed, for DD-αAMG with the K-cycle strategy,

optimal results are obtained when requiring the (approximate) inversions of the coarser operators to

reduce the residual by just one order of magnitude.

3.5.3 Iterative adaptive setup procedure

In the setup phase we have to compute a sufficient number of approximate low modes vi, which,

when chopped into aggregates, will approximate the IR-modes thanks to the local coherence property.

The setup procedure is iterative and adaptive with several differences compared to the null-vectors

introduced in Sec. 3.4.2. The iterative setup is obtained considering a set of vectors {v(k)i } where

i = 1, . . . ,Nv runs over the number of vectors and k = 1, . . . ,nsetup on the number of setup iterations.

The vectors are connected by the relation

v(k)i = D−1v(k−1)
i = D−kv(0)i with v(0)i chosen randomly. (3.63)

We refer to these vectors as test-vectors. The test-vectors v(k)i converge to the eigenvectors with eigen-

values of smallest modulus. In practice, in order to maintain numerical stability, after each iteration

k the test-vectors v(k)i spanning the space of approximate IR-modes have to be orthonormalized, and

D−1 is replaced by a multigrid iteration with prolongation operator constructed from the current set

of approximate low modes v(k)i . For k = 1, where a multigrid hierarchy is not yet available, we just

apply some steps of the SAP smoother. This approach results in a iterative self-adapting procedure

where the multigrid hierarchy is improved while using it to expose the small eigenmodes. Typically,

a small number of setup iterations nsetup is sufficient. The setup procedure is listed in Alg. 7.

3.5.4 Software implementation

The DDalphaAMG solver [111], has been released under GNU General Public License. This soft-

ware package includes an implementation of the DD-αAMG for clover Wilson fermions as described

in Ref. [80]. The implementation is of production code quality, it includes a hybrid MPI/openMP

parallelization, state-of-the-art mixed precision and odd-even preconditioning approaches and also

SSE3 optimizations. Implementation details can be found in Ref. [106]. Based on the DDalphaAMG

code we have developed a version, which supports twisted mass fermions [5]. Additionally to the

support to twisted mass fermions, as described in the next chapter, many features have been added to

the solver making it an independent library to be used in our production codes.
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Algorithm 7: P̀ = Setup(`= 1, i = 0)
Input: ` < N` level and i setup iteration. First call with `= 1 and i = 0.
Output: P̀
Parameters: Nsetup, Nsmooth

1 for j = 1 to Nv do
2 if i = 0 then
3 v j

` = random vector
4 x = 0
5 for k = 1 to Nsmooth do
6 x← x+M`(v

j
`−D`x)

7 v j
`← x

8 else
9 v j

`←K-Cycle(`,v j
`);

10 {v`}← block-orthonomalization(Nb,{v`})
11 P̀ ← block-aggregation(Nb,{v`})
12 D`+1← P†

` D`P̀
13 if ` < N`−1 then
14 Setup(`+1, i)

15 else if i< Nsetup then
16 Setup(1, i+1)

Smoother used in v j
`← D−1

` v j
`

DD-αAMG used in v j
`← D−1

` v j
`

Iterative adaptive setup

50



4. DD-αAMG for twisted mass fermions

Algebraic multigrid approaches in LQCD are known for a variety of fermion discretizations, such

as for the Wilson fermion discretization [14, 80, 98], as a preconditioner for Neuberger overlap

fermions [112], for Domain Wall fermions [113] or for staggered fermions [114]. In this work [1,

3], we have extended the DD-αAMG [80] approach to twisted mass Wilson fermions. In this chap-

ter we discuss the construction of the coarse-grid operators for twisted mass fermions and present

numerical results on the performance of DD-αAMG for the twisted mass operators.

4.1 Coarse-grid operators for Twisted Mass fermions

The degenerate and non-degenerate TM operator, DTM(µ) and DND(µ̄, ε̄) have been introduced in

Sec. 2.6. In this section, we construct appropriate coarse-grid operators and preserve properties of the

twisted mass operators that successfully deflate the low modes of the target linear system. We also

motivate our choices with theoretical arguments.

4.1.1 Degenerate twisted mass operator

The coarse-grid degenerate twisted mass operator in a multigrid approach is defined as, cf. Eq. (3.29),

DTM,c = R (D+ iµΓ5) P = RD P+ iµRΓ5 P. (4.1)

where D is the Wilson operator with mass tuned to its critical value. Since R and P act only on the Wil-

son operator, as pointed out in Sec. 3.4.1, the natural choice for the restriction operator is R = (Γ5P)†

since in this way the restriction operator approximates the subspace of the right-eigenvectors of the

Wilson operator when the prolongation operator P approximates the left-eigenvectors. Using this

formulation, though, the resulting coarse grid operator RDTMP is equivalent to HTM,c = P†(Γ5D +

iµΓ5)P, which is a complex shifted maximally indefinite operator, cf. Eq. (2.105). Thus such restric-

tion operator should be avoided for twisted mass fermions.

Requiring a commuting relation between P and Γ5, as done in Eq. (3.54), the coarse grid correc-

tions obtained by R = (Γ5P)† and R = P† are identical, as noted in Sec. 3.4.1. We then use for twisted

mass fermions a Γ5-compatible operator P, i.e. Γ5P = PΓ5,c, and R = P†. The coarse grid twisted

mass operator used in DD-αAMG is then defined by

DTM,c = P† D P+ iµΓ5,c, (4.2)

where DTM,c preserves several important properties of the fine grid operator DTM. It preserves its

sparse structure in that only neighboring aggregates are coupled. The square coarse grid operator,

D†
TM,cDTM,c = D†

cDc +µ
2, (4.3)

has eigenvalues bounded from below by µ2. And there is a Γ5,c-symmetry which reproduces the
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connection between the u- and d-quark operators, cf. Eq. 2.102, as

D†
TM,c(µ) = P†(D+ iµΓ5)

†P = P†(Γ5DΓ5− iµΓ5)P = Γ5,c DTM,c(−µ)Γ5,c . (4.4)

We construct the operator P using the DD-αAMG setup procedure, see Sec. 3.5.3. In practice

we find that the same prolongation operator P constructed for DTM(µ) can be effectively used for

coarsening all the operators DTM(±ρ) where ρ ≥ µ . As shown in Sec. 4.3.3 the time to solution is

affected only slightly by this choice. This can be explained by the connection between right-handed

eigenvectors vR of the degenerate TM operator DTM(µ) and the left-handed eigenvectors vL = v†
RΓ5

of DTM(−µ), which reads

DTM(µ)vR = λvR ⇐⇒ v†
RΓ5DTM(−µ) = v†

RΓ5λ
†. (4.5)

Thanks to the Γ5-compatibility of the aggregation, this is also true for the coarse operator. Thus,

the eigenspaces of DTM(±µ) are connected and a prolongation operator P constructed for DTM(µ)

captures the low modes of DTM(µ) when acting on the right while acting from the left captures the

low modes of DTM(−µ).

Although the dimension of the coarse grid operator is reduced, it can develop a large number of

small eigenvalues close to µ . This can critically slow down the convergence of a standard Krylov

solver to be used on the coarsest grid such that the time spent in the coarsest operator inversions

dominates by far the overall inversion time even though only poor accuracy is required. We therefore

keep the option to decrease the density of small eigenvalues of the coarsest grid operator by increasing

the twisted mass parameter by a factor of δ given by

Dc(µ,δ ) = Dc + iδ ·µΓ5,c (4.6)

with δ ≥ 1. We will analyze the effect of δ in detail in Sec. 4.3.2.

4.1.2 Non-degenerated twisted mass operator

The idea behind adapting the DD-αAMG approach to the non-degenerate twisted mass operator

DND(µ̄, ε̄) is based on preserving the (Γ5⊗ τ1)-symmetry, cf. Eq. (2.114), on the coarse grid. We

define the non-degenerate coarse grid operator as

DND,c(µ̄, ε̄) = P†
NDDND(µ̄, ε̄)PND. (4.7)

with PND being a suitable prolongation operator. If PND is (Γ5⊗ τ1)-compatible, i.e.

(Γ5⊗ τ1)PND = PND(Γ5,c⊗ τ1), (4.8)

it follows that the (Γ5⊗τ1)-hermiticity of DND in Eq. (2.114) is also preserved on the coarse grid and

the coarse grid operator fulfills

(Γ5,c⊗ τ1)DND,c = P†
ND(Γ5⊗ τ1)DNDPND = P†

NDD†
ND(Γ5⊗ τ1)PND = D†

ND,c(Γ5,c⊗ τ1) . (4.9)

The property in Eq. (4.8) is satisfied by a prolongation operator PND, which is Γ5-compatible and

diagonal in flavor space. We choose identical components in flavor space defining PND = P⊗ I2.
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Thus, we obtain

DND,c(µ̄, ε̄) = (D,c⊗ I2)+ iµ̄ (Γ5,c⊗ τ3)− ε̄ (Ic⊗ τ1) =

[
DTM,c(µ̄) −ε̄ Ic

−ε̄ Ic DTM,c(−µ̄),

]
(4.10)

which follows from the property P†P = Ic. We note that the flavor and spin components of the coarse

operator preserve a similar sparse structure and properties of the fine grid operator DND(µ̄, ε̄) in

Eq. (2.112).

It follows from Eq. (4.10), that the prolongation operator P has to project onto a subspace, which

captures the IR-modes. While PND is degenerate in flavor space, the low modes of the non-degenerate

twisted mass operator are defined in the full space. Thus our solution to Eq. (4.8) i.e. PND = P⊗ I2

could spoil the efficiency of the coarse grid correction since the same prolongation operator P has to

act on both flavor spaces. A possible solution is to use the prolongation operator P constructed for

the degenerate twisted mass operator. This has also the advantage that if the multigrid solver is used

during the HMC the same setup, built up for one flavor of the TM Wilson operator, can be reused in

any step of the HMC for both light degenerate and heavy non-degenerate sector. Saving additional

setup expenses makes the usage of the multigrid in HMC more effective. We motivate this choice as

follow:

• In the construction of DND,c(µ̄, ε̄), see Eq. (4.10), the prolongation operator P is used for con-

structing both DTM,c(±µ̄). As mentioned in the previous subsection, a P constructed for D(µ)

can be successfully employed for coarsening any DTM(±ρ) where ρ ≥ µ . Thus when µ̄ ≥ µ

we are well motivated to use the same P. This is the case in N f = 2+1+1 simulations where

the non-degenerate operator is used in the strange and charm sector, while P is constructed for

the degenerate operator used for the light, up and down, sector.

• Considering the case DND(0, ε̄) where µ̄ = 0 and ε̄ 6= 0, it follows that the eigenvalues have a

linear dependency in ε̄ and the eigenvectors are degenerate in flavor space. Indeed the relation

DND(0, ε̄)w± = (λ ± ε̄)w± with w± = (v,±v) and Dv = λv (4.11)

holds in flavor space. Thus, for µ̄ = 0 the eigenspace is invariant under changing ε̄ and it

motivates the choice via Eq. (4.8) for the coarse grid projector.

• From the two above points follows that the choice for the projector of Eq. (4.8) is well-

motivated for the special cases µ̄ 6= 0 ∧ ε̄ = 0 and µ̄ = 0 ∧ ε̄ 6= 0. However, in our simulations

we have µ̄ ∼ 0.1 ∧ ε̄ ∼ 0.1. In order to verify if the properties mentioned in the previous two

items are a good approximation, we study numerically the eigenvalue spectrum when chang-

ing the parameters µ̄ and ε̄ on a small lattice of a size of 44. The eigenvalue spectrum with

positive imaginary part of the ND twisted mass operator is depicted in Fig. 4.1. Note that due

to the (Γ5⊗ τ1)-hermiticity the real-axis is a symmetry axis, thus eigenvalues come in com-

plex conjugated pairs or are real. For the one flavor operator DTM(µ) this symmetry is broken

for µ 6= 0. This is shown in the left lower panel, where we focus on the spectrum of the low

modes. By taking a closer look to the middle panel, the parameter ε̄ for the non-degenerate

operator DND(µ̄, ε̄) acts on the eigenvalues via a linear shift ±ε̄ similar to the ideal case given

by DND(0, ε̄). Thus, the projector given by Eq. (4.8) should project on the small eigenvalues of

DND(µ̄, ε̄). For our case study, this is indeed the case as depicted in the right panel of Fig. 4.1.
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TM TM,c

Figure 4.1: Complete spectrum of twisted mass operators on a gauge configuration for a lattice of size 44. The
twisted mass parameters are µ, µ̄, ε̄ = 0.01. In the top panel, we depict the spectrum of the degenerate DTM(µ)
operator folded with respect to the imaginary axis. In the bottom left panel we show part of the spectrum close
to the origin for DTM(µ) for different sign of ±µ . In the central lower panel we compare the degenerate and
non-degenerate TM operator. In the right lower panel, we show the spectrum for the coarse version of both
operators.
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The spectrum of the coarse grid operator for the degenerate and non-degenerate twisted mass

operator display similar features showing that preserving the operator structure in the coarse

grid allows to preserve properties of the fine operator.

4.2 Multigrid performance with twisted mass fermions

The DD-αAMG approach uses a wide range of parameters and its time to solution will depend on a

good choice of the parameters. The purpose of this section is therefore threefold. We first provide

a set of default parameter choices, which in our extensive numerical testing turned out to yield good

overall performance. Secondly, we show that for physically relevant configurations, appropriately

chosen parameters yield speed-ups of about two orders of magnitude compared to standard methods

for twisted mass fermions. Finally, we compare the critical slowing down of the DD-αAMG solver

against CG solver. All the presented numerical results have been obtained on SuperMUC phase 2

at the Leibniz Supercomputing Centre, an Intel Haswell Xeon computer on which we used up to

4096 cores. We have also performed runs on JURECA at the Julich Supercomputing Centre and

on Cy-Tera at the Computation-based Science and Technology Research Center Cyprus obtaining

compatible results. The stopping criterion of the overall iteration was fixed such that the residual is

reduced by a factor of 109.

4.2.1 Default parameters

Table 4.1 summarizes our default parameter set used for DD-αAMG. The parameter tuning was done

for the physical ensemble cA2.48, see Tab. 3.1, already used in Sec. 3.1.2.

As compared to the optimal parameters for the Wilson Dirac operator, given in ref. [105], when

inverting the TM operator at the physical point turns out that, additionally to the employment of

the shift δ , cf. Eq. (4.6), the overall execution time is minimized if one relaxes even further the

accuracy of the coarsest-grid correction using here 10−1 as stopping criterium. Also the aggregation

parameters differ slightly to the ones suggested in ref. [105], namely Nv,1/2 = 28 instead of 24. This is

a consequence of the extensive analysis done in Sec. 4.3.1, where the parameter space for the block-

aggregation is studied. Here a dependence on the number of right-hand-side (rhs) to be solved is

found and in the following we always consider O(100) and more rhs, if not otherwise stated.

As shown in Tab. 4.2, the setup costs needs to be optimized accordingly to the application. The

value nsetup = 5 in Tab. 4.1 yields a good time to solution when several inversions (O(100) and more)

with the same operator are desired. The relatively large setup time can be neglected in this case. We

did not find that more setup iterations than nsetup = 5 yield substantial further improvement in the

solve time. On the other hand, when solving for a few rhs, a good balance of setup and solve time has

to be found. As explained in Section 3.5.3, in each iteration of the adaptive setup routine the currently

available multigrid hierarchy is used to perform one iteration with the multigrid preconditioner on

each test vector. As the setup iteration proceeds the test vectors become more rich in low mode

components. This also leads to a more ill-conditioned coarse operator Dc and higher iteration counts

on the coarse grid (cf. Ref. [80]), i.e. one can observe a higher cost per setup iteration as the setup

proceeds. This can be seen in Tab. 4.2 where the first two setup iterations together costed 5.5 core-hrs,

the third costed 5.7 core-hrs and from the fourth on they have an average cost of 6.5 core-hrs each.

Therefore a smaller number of setup iterations like nsetup = 3 might be more suitable when few rhs are

solved. Note that we use the parameters from Table 4.1 also in the multigrid preconditioner during
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parameter optimal

Multigrid number of levels n` 3
number of setup iterations nsetup 5
number of test vectors on level 1 Nv,1 28
number of test vectors on level 2 Nv,2 28
size of lattice-blocks for aggregates on level 1 Vb,1 44

size of lattice-blocks for aggregates on level `, ` > 1 Vb,2 24

Solver mixed precision FGMRES
relative residual tolerance (restarting criterion) 10−6

Smoother red-black multiplicative SAP
(SAP) size of lattice-blocks on level 1 44

size of lattice-blocks on level `, ` > 1 24

number of post-smoothing steps 4
MINRES iterations to invert the blocks 3

K-cycle with single precision FGMRES
restart length 5
number of maximal restarts 2
relative residual tolerance (stopping criterion) 10−1

Coarsest solved by even-odd preconditioned GMRES
grid twisted mass parameter µcoarse = δ ·µ 5 ·µ

restart length 100
number of maximal restarts 5
relative residual tolerance (stopping criterion) 10−1

Table 4.1: The parameter set used in DD-αAMG, obtained by parameter tuning for the TM fermion ensemble
cA2.48 [76].

the setup phase when running the method itself on each test vector (cf. the call of K-cycle in Alg. 7

at line 9).

Setup iters Setup time Iteration cost Inversion time Inversion
nsetup [core-hrs] [core-hrs] [core-hrs] iterations

2 5.5 – 4.6 48
3 11.2 5.7 1.9 20
4 17.8 6.6 1.7 18
5 24.4 6.6 1.6 17
6 30.8 6.4 1.7 18
7 37.2 6.4 1.7 18

Table 4.2: Analysis on the number of setup iterations using a configuration from the ensemble cA2.48. The
same parameters of Tab. 4.1 are used changing nsetup as reported here in the table.

As mentioned in Sec. 4.1.1, we use the same subspace for the u-quark with +µ and the d-quark

with −µ , i.e. we run the setup phase only once for both quarks. Although the eigenspace changes,

numerically we do not find a large difference. This also saves computing time for many applications

with twisted mass fermions. When solving at larger pion mass than the physical one, a smaller number

of smoothing step can improve the time to solution. For the non-degenerate operator at the strange

and charm quark mass we find that 2 post-smoothing step are enough for the optimal time to solution.

Also the shift δ of the twisted mass term on the coarsest-grid depends on the pion mass and for large
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pion masses a value between 1 ≤ δ < 5 should be used, where 5 is the optimal value at the physical

point as suggested in Table 4.1. For the non-degenerate operator at the strange and charm quark mass

we find that δ = 1 gives the optimal time to solution. Moreover, for larger pion masses one can, in

principle, improve the generation of the subspace of small eigenmodes in the setup by using a smaller

twisted mass parameter µ , which helps to probe the small eigenmodes more rapidly within the setup

phase. However, at least at the physical point, we do not find a significant improvement by using

different mass parameters.

4.2.2 Comparison with CG and CG-eDe for the degenerate twisted mass operator

To put the improvements for twisted mass simulations in perspective, we start with an experiment

for Wilson Dirac fermions, thus complementing the results from Ref. [105] for our target machine.

We use the default parameter set from Ref. [105] and a configuration from ensemble V II [115] with a

pion mass of amπ = 0.05786, a lattice spacing of a = 0.0071 fm and a lattice volume of V = 64×483.

Table 4.3 presents a comparison of the inversion times of the Conjugate Gradient (CG) solver, the CG

solver with exact deflation (CG-eDe) and the DD-αAMG solver. A similar comparison between CG

and CG-eDe has been shown in Sec. 3.1.3 for twisted mass fermions at the physical point.

The conjugate gradient solver, cf. Sec. 3.1.1, requires a positive definite hermitian matrix, which is

obtained by solving the linear system with the squared even-odd reduced operator given by D̂†D̂x = b′

with b′ = D̂†b. This squares the condition number of the involved matrix.

The CG-eDe and the DD-αAMG solver involve a setup phase, which has to be done for each new

configuration once before the linear system is solved. In the case of the CG-eDe solver, O(100) lowest

eigenmodes of the squared even-odd reduced Dirac operator are calculated (here we use 800 for the

case of Wilson case and 1600 for the twisted mass case). The number of eigenvectors in CG-eDe

is obtained by optimizing the time to solution (setup + inversion time) for computing O(1000) rhs.

Indeed the setup phase is extremely expensive which makes CG-eDe inefficient for a small number

of rhs. The low mode computation is done by using the publicly available package ARPACK with

tmLQCD [90].

Solver
Setup time Inversion time Total iteration count Total iteration count
[core-hrs] [core-hrs] of the fine grid solve of coarse grid solvers

CG ˘ 174.8 26 937 ˘

CG-eDe 1 527.4 5.4 649 ˘

DD-αAMG 13.3 0.9 16 2 988

Table 4.3: Results for clover Wilson fermions†. Comparison of CG (tmLQCD), CG-eDe (tm-
LQCD+ARPACK) with 800 eigenvectors and DD-αAMG with parameters from Ref. [105]. The results are for
a 483×64 lattice from ensemble V II of Ref. [115] with mπ = 0.1597(15) GeV.

Table 4.3 shows that in the case of Wilson Dirac fermions, the DD-αAMG solver speeds up the

time to solution by roughly a factor of 200 compared to CG and roughly by a factor five compared to

the CG-eDe solver. When including the setup time, DD-αAMG is roughly a factor of 12 faster than

CG for one rhs, while CG-eDe is not competitive due to its computationally demanding setup.

†In Tables 4.3 and 4.4 the timings for CG and eigCG have been normalized to 1.0 Gflop/s per core (average of standard
performance ∼ 0.7 Gflop/s and optimal performance ∼ 1.3 Gflop/s); the rhs of the equation Dψ = b has been randomly
generated and in all the cases the propagator ψ has been computed to a relative precision of 10−9.
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Solver
Setup time Inversion time Total iteration count Total iteration count
[core-hrs] [core-hrs] of the fine grid solve of coarse grid solvers

CG ˘ 338.6 34 790 ˘

CG-eDe 6 941.1 9.8 695 ˘

DD-αAMG
7.7 2.5 28 16 619

for nsetup = 3

DD-αAMG
38.3 1.5 15 11 574

for nsetup = 5

Table 4.4: Results for TM fermions†. Comparison of CG (tmLQCD), CG-eDe (tmLQCD+ARPACK) with
1600 eigenvectors and DD-αAMG. The results are computed for the cA2.48 ensemble, see Tab. 3.1.
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Figure 4.2: Speed-up over CG using the results of Table 4.3 and Table 4.4 depicting f (nrhs) = (tsetup + nrhs ·
tsetup)/(nrhstCG) .

In the twisted mass fermion case, we are able to achieve the same speed-ups as for the Wilson

fermion case. This it not straightforward as it requires the coarsest grid twisted mass µc to be chosen

different from the fine grid twisted mass µ . We choose µc = 5µ (cf. Table 4.1) for reasons that will

be explained in Section 4.3.2. The results for twisted mass fermions are shown in Table 4.4. We are

able to achieve a speed-up in inversion time of roughly a factor of 220 compared to CG and roughly

by a factor six compared to the CG-eDe solver, with the time for the setup being almost a factor of

100 less as compared to CG-eDe. For nsetup = 3 we used the parameters from Table 4.1 except for the

number of test vectors on the fine level Nv,1 being 20 instead of 28. For nsetup = 5 we used a further

optimized set which is given in the last row of Table 4.5. This yields another factor of 1.5 speed-up

in the inversion time at the expense of increasing the setup time.

In Figure 4.2 we show the speed-up in total time (setup+solve) compared to one CG solve for

DD-αAMG and CG-eDe as a function of the number of rhs nrhs. The difference between the two

blue curves in the figure on the right hand side is due to results from a different number of setup

iterations (3 and 5) and a different number of test vectors (20 and 28), where 3 setup iterations are

optimal for few rhs (blue dotted line) and 5 setup iterations for many rhs (blue line). In summary, the

results for twisted mass fermions show that for one rhs DD-αAMG is roughly 30 times faster than

CG for one rhs, 120 times faster for twenty rhs and 220 times faster for a thousand rhs.
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4.2.3 Solution to the critical slowing down of the degenerate TM operator

We have discussed the critical slowing down of standard Krylov solvers in Sec. 3.1.2. It arises due

to the singularity of the twisted mass operator at µ = 0 when the Wilson mass is tuned to its critical

value, i.e. for simulations at maximal twist. As depicted in Fig. 4.3, DD-αAMG definitely resolve

the critical slowing down problem.
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Figure 4.3: Comparison between time to solution for computing the twisted mass fermion propagator at dif-
ferent quark mass using the odd-even (oe) CG solver and the DD-αAMG approach. The value of the light,
strange and charm quark masses are shown by the vertical lines with the labels mu,d , ms and mc, respectively.

The time to solution of CG have been fitted in Sec. 3.1.2. The fit approach used for the time

to solution of the multigrid solver is motivated by the convergence of the general minimal residual

solver (GMRES) [116]. We use the functional form

tGMRES(K) = tinit + titer
ln(2/ρ)

ln(K)− ln(K−1)
, (4.12)

where tinit and titer are the initialization and iteration costs respectively. In case of MG we employ a

modified condition number

KMG =
Λ2

max +µ2

Λ2
min +µ2 (4.13)

where Λmax/Λmin defines the condition number of the equivalent multigrid deflated Wilson operator.

Note that in case of MG we invert twice the non-squared operator DTM, since it performs better

when applied to a linear equation with a single Wilson operator[97]. The reason is simply that an

implementation for the squared operator is far more complicated, involving next to next neighbor

interactions, which increase the complexity of the coarse operator. Thus we fit the MG timings with

tMG(KMG) = 2 · tGMRES(
√

KMG), (4.14)

For the cA2.48, the time per iteration is titer ' 7 core-minutes and we keep as free parameters tinit,

Λmax and Λmin. We find an initialization cost tinit ' 0.6 core-hours and a condition number for the

equivalent multigrid deflated Wilson operator Λmax/Λmin ' 18 and the values satisfy λmin(D†D) >

Λ2
max > Λ2

min > λmin(D†D). A finite condition number for the deflated Wilson operator proves that

the multigrid operator solves the critical slowing down of the degenerate maximally twisted TM

operator. The time to solution still slows down approaching the physical point but only slightly and
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Figure 4.4: Comparison between time to solution for computing the inverse of the squared even-odd reduced
ND twisted mass operator at different shift m2 using the odd-even (oe) CG solver and the DD-αAMG ap-
proach. We used the physical test ensemble employing physical strange and charm quark masses (left panel)
and physical up and down quark masses (right panel).

not critically. For clarity sake, note that we used the same multigrid parameters for all the mass shifts.

The timings at higher mass can be significantly improved by adopting the observation described in

Sec. 4.2.1.

4.2.4 Comparison with CG for the non-degenerate operator at increasing mass shift

Here we test the effectiveness of our choice PND =P⊗I2 using a physical test ensemble simulated with

N f =2+1+1 TM fermions, ensemble cB211.64 in Tab. 6.1 at page 94. We compare the performance of

the multigrid solver against CG when solving

(D†
NDDND +m2)x = b. (4.15)

for several shifts in m2. We obtain the results shown in Fig. 4.4. On the left we have tuned µ̄, ε̄ for

giving the strange and charm quark mass accordingly to Eq. (2.113). On the right we have tuned

them to give the mass shift of the physical up and down quark masses, i.e. useful to simulate a

N f = 1 + 1 + 1 + 1 ensemble. As in the previous section we have fit the time to solution using

Eqs. (3.26) and (4.14).

At the physical strange and charm quark masses – i.e. m2→ 0 see left panel of Fig. 4.4 – we find

an order of magnitude speed-up of the multigrid approach compared to the CG solver. Moreover,

the ND-multigrid solver is even more effective than the multigrid solver for the degenerate twisted

mass operator at physical strange quark mass. This can be seen by comparing the relative speed-up

for strange quark mass of mq ∼ 95 MeV, shown in Fig. 4.3 for the degenerate TM operator. The

relative speed-up for two application of the ND-multigrid solver is comparable with the speed-up of

a single application in case of the TM Wilson operator. This shows that the choice of the coarse grid

projector, built up from the TM Wilson operator, yields a very effective multigrid approach for the

non-degenerate twisted mass operator. This is also confirmed at physical non-degenerated light quark

masses, as shown in the right panel of Fig. 4.4. Here we found a speed-up of around two orders of

magnitude similar to the case of the TM Wilson operator.

Due to the large parameter set of multigrid approaches, optimization for a specific lattice can

become a major task. In the next section we outline our strategy and we gave a set of parameters

in Tab. 4.1. For the non-degenerate operator we use this set of optimized parameters with a few
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adjustments in case of heavy quark masses. Namely, the shift δ of the TM parameter in the coarse

grid is set to unity and the number of smoothing iterations is reduced from 4 to 2.

4.3 Analysis of parameter settings and tuning strategy

As demonstrated in the previous section, well-tuned parameters are important for a good performance

and they tend to be stable at least for configurations from a given ensemble. It is therefore advisable

to invest some effort for obtaining good parameters. Since the parameter space is large, it cannot be

searched exhaustively and there is thus a need for a strategy how to tune the method in practice. Our

suggestion for twisted mass simulations is to keep the default parameters given in Table 4.1, but tune

the aggregation parameters and the twisted mass parameter on the coarsest level, µc. This is justified

by the analysis that we explain in the subsequent sections as follows. In Sec. 4.3.1, we present an

analysis of the aggregation parameters without tuning µc, i.e. we fix δ = 1. In Sec. 4.3.2, we show the

benefits obtained by increasing µc and we repeat the previous analysis. In Sec. 4.4.1, we demonstrate

that also other multigrid approaches can benefit by an increasing µc. All the tests are performed on

one configuration averaging the time to solution for the u- and d-propagator. This choice is motivated

by the stability of the solver presented in the previous section.

4.3.1 Aggregation parameters

Aggregation parameters are the number of the test vectors Nv,` and the size of the lattice-blocks Vb,`

on each level `. They should be tuned simultaneously since they define the size of the coarser Dirac

operator and consequently the size of the projected subspace. In the present analysis, the solver is

restricted to a 3-level implementation. We do not find an improvement in the time to solution by using

a 4th level, which is also the result found in Ref. [105] for the Wilson operator with similar lattice

sizes. On the other hand, the inversion time increases when just a 2-level multigrid method is used.

To optimize the aggregation parameters on the first level, we fix the values of the parameters on

the second level for which we find a block size of Vb,2 = 24 and a number of test vectors of at least

28. More precisely the latter is set as Nv,2 = max(28,Nv,1) due to software limitations which require

the number of test vector to increase. We analyze how the setup time and time per inversion change

dependently on the block size Vb,1 and the number of test vectors Nv,1. The results are depicted in

Figure 4.5, for the cA2.48 ensemble and a scaling parameter δ = 1 on all levels has been used.

We find that every block size has an optimal number of test vectors as shown in Figures 4.5(a)

and 4.5(b) that minimizes the time to solution. By fitting the data to a polynomial of order 2 in Nv,1

we estimate the minimums and we find that the optimal number of test vectors grows approximately

linearly for block sizes Vb,1 < 8 ·43 with the block volume

Nv,1 = α +β Vb,1, (4.16)

which is shown in Figure 4.5(c). This indicates a non-trivial connection between the fine-grid size

and the dimension of the coarse-grid operator given by

dim(Dc,1) = 2
(

α

Vb,1
+β

)
V . (4.17)

This implies that the optimal size of the coarse-grid operator increases linearly with the volume V at
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Figure 4.5: Analysis of the aggregation parameters for the cA2.48 ensemble. For each set of raw data presented
in (a) and (b) the position and value of the minimum has been extracted with a parabolic interpolation and
displayed in (c) and (d), respectively. In (d), (e) and (f), Nv,1 and Vb,1 are connected according to the minimums
found in (c), i.e. (d) shows the inversion time and (e) the setup time, both for the minimums from (c). The
estimated average total time per right hand side (tsetup + nrhstsolve)

/
nrhs is shown in (f). The fitting functions

are explained in the text.
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Figure 4.6: Analysis of aggregation parameters for cA2.64, see Tab. 6.1, and δ = 5 on the coarsest grid.
The sets of raw data are presented in (a); from each set, the value of the minimum has been extracted with a
parabolic interpolation and plotted with red points in (b). The black points are for the ensemble cA2.48 and
δ = 5 on the coarsest grid.

fixed aggregation block size. For larger block sizes the behavior deviates from this linear dependence,

however. For this case the minimum of the time to solution is already reached for a smaller number

of test vectors. We can interpret this complex behavior as an insight into the non-trivial link between

coarse grid size and local coherence.

The time to solution of the multigrid method is dominated by the solves with the coarse grid

operator. We use a K-cycle and a 3-level approach where, due to fixing the blocks of the coarsest grid,

it follows that dim(Dc,1) ∝ dim(Dc,2). The numerical effort needed for a matrix-vector multiplication

involving Dc,1 depends linearly on dim(Dc,1). Allowing for an additional second order term we model

the time for an inversion as

tsolve = γ
′+δ

′ dim(Dc,1)+ ε
′ dim(Dc,1)

2. (4.18)

By using the dependence on Vb,1 of Eq. (4.17) we can rewrite tsolve with

tsolve = γ +δ V−1
b,1 + ε V−2

b,1 . (4.19)

Within this model, connecting Nv,1 and Vb,1 according to Eq. (4.16) and Fig. 4.5(c), the time to

solution can be fitted very well up to Vb,1 ≈ 82×42 as shown in Fig. 4.5(d). In Fig. 4.6, we display the

data obtained for the ensemble cA2.64 with a lattice size of 128× 643. The other lattice parameters

are the same as those for cA2.48. In contrast to the discussed analysis of cA2.48, the coarse grid scale

factor is set to δ = 5 on the coarsest grid. The full analysis on the dependence of the algorithm on

δ is reserved for the next section. For both lattice sizes the inversion times reach the minimum for

the same block volumes. The asymptotes γ from Eq. (4.19) are given by 1.64(13) for the cA2.48

ensemble and by 6.3(5) for the cA2.64 ensemble, which is an increase of V 5/4. As mentioned above,

for larger block sizes, the linear connection of Nv,1 and Vb,1 does not hold and the solution time is

increased. This is also observed for the time spent in the setup. We also observe that with increasing

lattice volume the region where the linear dependence holds is shifted.

During the setup procedure the solver is applied on Nv,1 test vectors for several iterations. Here,

the test vectors are orthonormalized at the end of each iteration and used for building the multigrid
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hierarchy. We model the setup time by allowing for a linear and quadratic term as

tsetup = ζ +η Nv,1 tsolve +θ dim(Dc,1), (4.20)

where the amount of computation which does not involve the solver scales with dim(Dc,1) at leading

order. Fig. 4.5(e) shows that the measured timings are indeed very well described by the Ansatz given

in Eq. (4.20). We remark that for block sizes Vb ∼ 44 up to 62× 42 the time to solution shows a

relatively large plateau, which makes the timings for the multigrid solver relatively stable. Further

fine tuning in this region would lead only to small improvements.

The optimal choice for Nv,1 and Vb,1 depends on the number of rhs nrhs. The total time is given by

ttotal = tsetup +nrhs tsolve, (4.21)

and we find a non-trivial dependence of Vb,1 on nrhs for an optimal time to solution, as depicted in

Figure 4.5(f). This motivated our suggestion to consider two different values for nsetup, depending on

the number of rhs.

4.3.2 Tuning the coarse grid scale factor δ

Block size Test vectors δ for the coarsest µ Setup time Inversion time
Vb,1 Nv,1 µc = δ µ [core-hrs] [core-hrs]

33× 4 24 7.8 31.1 3.19(3)

2 × 43 24 6.6 27.5 2.71(5)

32× 42 24 8.6 23.5 2.47(2)

3 × 43 28 5.4 28.0 2.04(5)

44 28 5.2 22.2 1.75(4)

43× 6 36 4.5 37.4 1.74(6)

43× 8 40 4.0 40.7 1.73(5)

42× 62 40 4.1 37.7 1.59(6)

4 × 63 44 4.0 38.3 1.52(4)

Table 4.5: Summary of δ parameters yielding the optimal solve time for various block sizes Vb,1. The shown
numbers were computed for the cA2.48 ensemble and a relative residual tolerance of 10−9. The number of test
vectors was chosen as in Figure 4.5(c) according to the block size Vb,1. All other parameters were fixed to the
values in Table 4.1.

At physical quark masses, the density of the low-lying eigenvalues for the twisted mass operator

increases compared to the Wilson Dirac operator, see Figs. 2.4 and 2.5. Densely populated low

eigenvalues slow down the iteration of the Krylov subspace solvers on the coarsest grid and thus of

the whole multigrid method. This is much more pronounced for the twisted mass operator than it

is for the Wilson Dirac operator. For the latter, Tab. 4.3 reports a total of around 3000 coarse grid

iterations for the considered ensemble, whereas data depicted in Fig. 4.7(a) show that for δ = 1 we

have roughly 40 times more coarse grid iterations in the twisted mass case, an unexpectedly large

increase.

When using a larger twisted mass value on the coarsest gird operator, given by µc = δ µ with

δ ≥ 1, we make the small eigenvalues less dense in the low-lying part of the spectrum. This speeds
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Block size Test vectors δ for the coarsest µ Setup time Inversion time
Vb,1 Nv,1 µcoarse = δµ [core-hrs] [core-hrs]

33 × 4 24 7.8 31.1 3.19(3)

2 × 43 24 6.6 27.5 2.71(5)

32 × 42 24 8.6 23.5 2.47(2)

3 × 43 28 5.4 28.0 2.04(5)

44 28 5.2 22.2 1.75(4)

43 × 6 36 4.5 37.4 1.74(6)

43 × 8 40 4.0 40.7 1.73(5)

42 × 62 40 4.1 37.7 1.59(6)

4 × 63 44 4.0 38.3 1.52(4)

Table 4: Summary of δ parameters yielding the optimal solve time for various block
sizes Vb,1. The shown numbers were computed for the cA2.09.48 ensemble and a
relative residual tolerance of 10−9. The number of test vectors was chosen as in Figure
6(c) according to the block size Vb,1. All other parameters were fixed to the values in
Table 1.
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Figure 8: The number of coarse grid iterations as a function of the δ parameter
and the inversion time for different δ-values depending on the block size. The results
depicted in (a) are for a block size of Vb,1 = 44 and compare the number of iterations
on the coarse grid with the fine grid inversion time. The number of iterations has
been scaled down by a factor 10 000. The behavior for the coarse grid iterations is
proportional to 1/δ2, while the inversion time has an additional term linear in δ due
to the increase in the fine grid iteration count. The results depicted in (b) show the
inversion time for different values of δ and different block sizes. The behavior is similar
to the one observed in Figure 6(d).

23

Figure 4.7: The number of coarse grid iterations as a function of the δ parameter and the inversion time for
different δ -values depending on the block size. The results depicted in (a) are for a block size of Vb,1 = 44 and
compare the number of iterations on the coarse grid with the fine grid inversion time. The number of iterations
has been scaled down by a factor 10000. The behavior for the coarse grid iterations is proportional to 1/δ 2,
while the inversion time has an additional term linear in δ due to the increase in the fine grid iteration count.
The results depicted in (b) show the inversion time for different values of δ and different block sizes. The
behavior is similar to the one observed in Figure 4.5(d).

up the inversion time on the coarsest grid. We also analyze the effect of the scaling factor δ as a

function of the block size. The results are depicted in Fig. 4.7 and we find that the optimal aggregation

parameters determined in the previous section do not depend on the chosen coarse grid scale factor

δ . In Tab. 4.5 we present the final results for the cA2.48 ensemble, summarizing the δ parameters

which minimize the inversion time for various block sizes and the corresponding optimal numbers of

test vectors. By using a scaling factor δ = 2 the iteration count on the coarsest grid is already reduced

by a factor of five, which results into a speed-up of the fine grid inversion time by roughly a factor

of three. Optimal performance is achieved for a relatively large plateau around δ ∼ 5. Obviously, a

large scaling factor δ causes a distinct violation of the Galerkin condition, i.e. P†D(µ)P 6= Dc(δ µ).

However, we only find a minor increase in the iteration count of the fine grid solver from 14 to 16

iterations.

4.3.3 Stability of optimal parameters

Empirically we find that the solver performance is stable for the tuned parameter set. Within the

ensemble cA2.48 we do not find any configurations where the iteration counts or the time to solution

differ by more than 5%, as can be seen in Fig 4.8. This behavior is also corroborated by the perfor-

mance of the multigrid solver during the force computation in the HMC algorithm, where it shows

very stable iteration counts for simulations at the physical point, see Fig. 4.9.

4.4 Comparison with inexact deflation and MG-GCR

In this section we consider an implementation of the MG-GCR algorithm provided by the QUDA

library [117] and the implementation of inexact deflation provided in openQCD 1 [118]. The latter is

restricted to a two-level approach. Differences between the three multigrid approaches are summa-

rized in in Tab. 4.6.
1We use for the tests a modified openQCD-version, which is optimized for twisted mass fermions, i.e. where the even–

odd reduced twisted mass Dirac operator is implemented.
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restriction of Γ5 to the odd lattice sites.

Component Inexact deflation MG-GCR DD-αAMG

Multilevel AMG No Yes Yes
Γ5-compatibility No Yes Yes
Setup Test-vectors Null-vector Test-vectors
Smoother SAP MR SAP
Odd-even reduction Everywhere Everywhere Smoother and coarsest level
Flexible solver GCR GCR FGMRES
Coarse-grid solver GCR GCR GMRES

Table 4.6: Main differences between DD-αAMG and MG-GCR approaches.

4.4.1 The coarse-grid scale factor δ

We tested the influence of a delta parameter in both cases. For both approaches we find that the

iteration counts on the coarsest grid are reduced by using a scale factor δ > 1, also resulting in

reduced inversion and setup times.

The MG-GCR implementation in QUDA allows to chose whether we want to use the even-odd

reduction only on the coarsest-level or in all levels. The first is the same as in DD-αAMG, while the

latter is the same as suggested for MG-GCR since one achieves the best performance. In Tab. 4.7 we

show results at several shifts δ in three different situations. The first without even-odd reduction, the

second employing even-odd reduction only on the coarsest level and the third employing the reduction
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directly from the fine-level inverting the even-odd reduced operator. The first and second case have

a similar dependence on the shift δ , finding the best performance at δ ∼ 5 as in DD-αAMG, cf.

Tab. 4.5. Going from the first to the second case gives a speed-up of around 20%. In the third case,

instead, one has to employ a factor δ at least four times larger than before. Going from the second to

the third case gives an additional speed-up of around 20%.

No even-odd

δµ Inv. iters Inv. time

2 26 47.1 s
3 28 12.8 s
4 30 10.8 s
5 31 10.7 s
6 31 10.5 s
7 32 11.2 s
8 33 11.4 s

Only on the coarsest level

δµ Inv. iters Inv. time

2 26 31.7 s
3 29 9.9 s
4 30 8.5 s
5 31 8.2 s
6 31 8.1 s
7 32 8.4 s
8 33 8.6 s

On all the levels

δµ Inv. iters Inv. time

5 29 66.8 s
10 30 9.7 s
15 32 7.0 s
20 33 6.7 s
25 36 7.1 s
30 37 7.4 s
35 37 6.7 s

Table 4.7: Analysis of the shift δ dependently on the levels where the even-odd reduction is employed. The
results have been obtained with the QUDA package for the ensemble cA2.48 running on 54 Nvidia Kepler
GPUs. In the table on the left no even-odd reduction has been use. In the middle the even-odd reduction has
been employed only on the coarsest level. On the right the even-odd reduction has been employed on all the
three levels of the multigrid inverting directly the even-odd reduce operator.

For inexact deflation in openQCD we observe similar result as the latter case, since also there the

even-odd reduced operator is inverted. Furthermore, when solving for D(−µ) with a setup built for

D(µ), we find that the optimal δ increases by a factor of four within the openQCD solver whereas

it remains constant for DD-αAMG. This is a consequence of the Γ5-compatibility which is not pre-

served by the prolongation operator in inexact deflation. For the Wilson fermion case it was reported

in Ref. [105] that the two-level openQCD solver shows about the same performance as the three-level

DD-αAMG approach. For the twisted mass ensemble cA2.48, the openQCD solver is roughly a factor

of four slower than DD-αAMG.

4.4.2 Null-vector setup

We analyze the performance of the null-vector setup in MG-GCR, cf. Sec. 3.4.2. For its successful

application we had to implement the possibility of changing solver in the setup procedure of QUDA.

The default solver in QUDA is BiCGStab which has a very bad convergence for twisted mass fermions

as shown in the top-left of Fig. 4.10. GCR shows a better convergence which although stops at a

relative residual of 10−4. As expected the optimal convergence is given by CG where although the

squared operator is used in the definition of null-vectors, cf. Eq. 3.57, i.e. D†Du = 0. Therefore

the CG solver has to be used in the setup procedure. We also show the convergence of the solver at

several values of the twisted mass term µ in the top-right of Fig. 4.10. Interestingly the convergence

is the same at different µ down to a certain relative residual, then the solver starts to converge faster.

Also the convergence in the coarse grid is stable as shown in the bottom left of Fig. 4.10. Finally

employing setups at different tolerance in the inversion we find out that the best time to solution is

achieved with a setup tolerance of about 10−7 relative residual.
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Figure 4.10: Null-vector setup procedure in MG-GCR for twisted mass fermions using the ensemble cA2.48.
Top-left, comparison between the convergence of different solvers in the calculation of the null vectors. Top-
right, convergence of CG at different twisted mass parameter µ (target µ = 0.0009). Bottom-left, convergence
of the CG solver on different multigrid levels with L0 being the fine-level and L1 the first coarse level. Bottom-
right, table with the iterations and time to solutions for inversions with MG-GCR using setup procedure at
different relative residual.

4.5 Error and residual of multigrid solutions

In this section we compare the numerical error and residual of solutions which are equivalent in exact

arithmetic but not numerically. For clarity sake, our notation is the following: a linear system

Ax = b, (4.22)

with A being an invertible matrix, b a known right hand side (rhs) and x the numerical solution, has

residual and error, respectively,

r = b−Ax and e = A−1b− x = A−1r. (4.23)

The residual is commonly used as stopping criterium for the solvers, since it does not require the

knowledge of the exact solution A−1b. However the error vector e is the statistical deviation which

one introduces using the solution x. The error is connected to the residual by the relation

e = A−1r which states ‖e‖=
∥∥A−1r

∥∥≤ ∥∥A−1∥∥‖r‖= ‖r‖√
λmin(A†A)

, (4.24)
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where the latter equality holds in the Euclidean norm and λmin(A†A) is the smallest eigenvalue of

A†A. Iterative solvers are usually stopped when ‖r‖< ρ ‖b‖ with ρ being a fixed tolerance. This fix

the relative norm of the residual to be below a given threshold.

Hereafter we study and show numerical results for equivalent solutions in several cases. We use

the twisted mass operator on the physical test ensemble. In the numerical results we also show the

error with maximal and minimal deviation of the local components. In the following examples we

start from a random vector taken as the solution x. Then we apply the involved operator A to obtain

the right hand side b = Ax. Then the error is given by e = x′− x with x′ the iterated solution. The

minimal and maximal local deviation are given min/max of the norm of e restricted to the lattice site.

The maximal and minimal deviation are potentially interesting for future simulations where very large

lattices will be used [119]. Indeed since ‖b‖ grows with V 1/2, the stopping criterium ‖r‖≤ ρ ‖b‖ does

not guarantee the residual or error to be uniformly small and at larger V larger local deviation of the

vectors are allowed.

4.5.1 Inverting the twisted mass operator
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Figure 4.11: The dependence of the relative error and residual on the solver stopping criterium, ρ for the three
different approaches for solving the linear equation involving one single TM Wilson operator. Method 1 is
given by the direct solution using the multigrid solver (red), method 2 is given by the CGNR method (blue)
and method 3 is given by the CGNE method (green). The relative residual is shown as dashed line while the
error is illustrated by the solid line with a shaded band determined by the largest and smallest local deviations
as defined in Sec. 4.5. The black line shows where y-axis is equal to the x-axis (i.e. relative residual equals to
ρ).

In general retrieving the solution of the linear system in Eq. (4.22) can be done by different

methods, for instance by using a linear iterative solver like the conjugate gradient (CG) solver. In case

of CG, which requires A to be hermitian instead of Eq. (4.22) a modified linear equation involving a

hermitian operator has to be solved. Two methods are available, known as CGNR and CGNE given

by solving the equations

(A†A)x = A†b or (AA†)y = b→ x = A†y (4.25)

for obtaining x respectively. Although both solutions are equivalent in exact arithmetic, in practice the

numerical error and residual, as defined in Eq. (4.23), are in general different. In order to approach
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smaller quark masses and increasing the dimension of the lattice require to study different ways in

order to control the resulting error.

Here we consider the following three methods for solving the linear equation (Q± iµI)x± = b:

1: The linear system is solved directly by obtaining

x±,1 + e±,1 = (Q± iµI)−1b. (4.26)

The solver stopping criterium is based on the relative residual of the solution, thus

‖r±,1‖= ‖b− (Q± iµI)x±,1‖ ≤ ρ ‖b‖ . (4.27)

Following Eq. (4.24), the norm of the error satisfies

‖e±,1‖=
∥∥(Q± iµI)−1r±,1

∥∥≤ ‖r±,1‖√
λ 2

min +µ2
≤ ρ ‖b‖√

λ 2
min +µ2

(4.28)

where λ 2
min is the smallest eigenvalue of Q2.

2: A normal equation is used by applying a transformation on the rhs (equivalent to CGNR)

x±,2 + e±,2 = (Q2 +µ
2I)−1(Q∓ iµI)b. (4.29)

Since the rhs is (Q∓ iµI)b, the solver stopping criterium is

∥∥r′±,2
∥∥= ∥∥(Q∓ iµI)b− (Q2 +µ

2I)x±,2
∥∥≤ ρ ‖(Q∓ iµI)b‖ ≤ ρ ‖b‖

√
λ 2

max +µ2. (4.30)

The norm of the residual is then

‖r±,2‖=
∥∥(Q∓ iµI)−1r′±,2

∥∥≤ ρ ‖(Q∓ iµI)b‖√
λ 2

min +µ2
≤ ρ ‖b‖

√
λ 2

max +µ2

λ 2
min +µ2 (4.31)

and the norm of the error satisfies

‖e±,2‖ ≤
‖r±,2‖√
λ 2

min +µ2
≤ ρ ‖b‖

√
λ 2

max +µ2

λ 2
min +µ2 . (4.32)

3: A normal equation is used by applying a transformation on the solution (equivalent to CGNE)

y3 + e3 = (Q2 +µ
2I)−1b −→ x±,3 + e±,3 = (Q∓ iµI)y3 (4.33)

where e±,3 = (Q∓ iµI)e3. The solver stopping criterium

‖r3‖=
∥∥b− (Q2 +µ

2I)y3
∥∥= ‖b− (Q±µI)x±,3‖= ‖r±,3‖ ≤ ρ ‖b‖ (4.34)

is equivalent to computing the residual of the solution r±,3. The norm of the error then satisfies

‖e±,3‖ ≤
‖r±,3‖√
λ 2

min +µ2
≤ ρ ‖b‖√

λ 2
min +µ2

. (4.35)
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From this analysis, we conclude that method 1 and 3 generates solutions which have compatible

residuals and errors. On the other hand, method 2 has upper limits increased by the condition number

K =
√

(λ 2
max +µ2)/(λ 2

min +µ2) compared to 1 or 3. The numerical results depicted in Fig. 4.11 for

the degenerate twisted mass operator at the physical light quark mass (λ 2
min = 0 and µ = 0.00072)

confirm these conclusions. From the numerical results we also notice that the error of the method

2 is close to the upper limits obtained in Eq. (4.32). This shows that the residual of CG solver is

dominated by the lowest eigenmodes. Indeed if r = vmin(A†A) holds, where vmin is the eigenvector of

the smallest eigenvalue, then it follows

‖e‖=
∥∥A−1r

∥∥= ∥∥A−1∥∥‖r‖= ‖r‖√
λmin(A†A)

. (4.36)

4.5.2 Solving the squared linear equation

Here we take a closer look to the linear system

(Q2 +µ
2I)x = b (4.37)

which involves a squared hermitian operator Q2 = D†D. We consider here the following three meth-

ods:

A: the linear system is directly solved by

xA + eA = (Q2 +µ
2I)−1b . (4.38)

The solver stopping criterium is based on the relative residual of the solution, thus

‖rA‖=
∥∥b− (Q2 +µ

2I)xA
∥∥≤ ρ ‖b‖ (4.39)

and norm of the error satisfies

‖eA‖=
∥∥(Q2 +µ

2I)−1rA
∥∥≤ ‖rA‖

λ 2
min +µ2 ≤

ρ ‖b‖
λ 2

min +µ2 . (4.40)

B: the system is solved in two consecutive steps, by computing

x±+ e± = (Q± iµI)−1b and then xB + e′B = (Q∓ iµI)−1x± (4.41)

using either x+ or x−. The solution

xB + eB = (Q2 +µ
2I)−1b has error eB = e′B +(Q∓ iµI)−1e±. (4.42)

The solver stopping criteria are in the two steps respectively

‖r±‖= ‖b− (Q± iµI)x±‖ ≤ ρ ‖b‖ (4.43)∥∥r′B
∥∥= ‖x±− (Q∓ iµI)xB‖ ≤ ρ ‖x±‖ ≤

ρ ‖b‖√
λ 2

min +µ2
. (4.44)
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The residual of the solution is then

rB = b− (Q2 +µ
2I)xB = b− (Q± iµI)(x±+ r′B) = r±+(Q± iµI)r′B

=⇒‖rB‖< ‖r±‖+‖Q± iµI‖
∥∥r′B
∥∥≤(1+

√
λ 2

max +µ2

λ 2
min +µ2

)
ρ ‖b‖ . (4.45)

For obtaining a smaller upper limit of the error in Eq. (4.42), we consider

e± = (Q± iµI)−1r±,B =⇒ ‖e±‖ ≤
ρ ‖b‖√

λ 2
min +µ2

(4.46)

e′B = (Q∓ iµI)−1r′B =⇒
∥∥e′B
∥∥≤ ρ ‖x±‖√

λ 2
min +µ2

≤ ρ ‖b‖
λ 2

min +µ2 (4.47)

from which we obtain

‖eB‖=
∥∥e′B +(Q∓ iµI)−1e±

∥∥≤ ∥∥e′B
∥∥+ ‖e±‖√

λ 2
min +µ2

≤ 2ρ ‖b‖
λ 2

min +µ2 . (4.48)

C: the solution is given by a difference of two solutions of a linear combination of x±+ e± =

(Q± iµ)−1b,

xC = b−(Q2+µ
2)xC =

i
2µ

(x+−x−) = (Q2+µ
2I)−1b− i

2µ
(e+−e−) for µ 6= 0. (4.49)

The solver stopping criteria are in Eq. (4.43) and the errors e± in Eq. (4.46). The residual of

the solution is then

rC =
i

2µ
((Q+ iµI)r+− (Q− iµI)r−)

=⇒‖rC‖ ≤
1

2 |µ| (‖Q+ iµI‖‖r−‖+‖Q− iµI‖‖r+‖)≤
ρ
√

λ 2
max +µ2 ‖b‖
|µ| (4.50)

while the error of the solution is

eC =
i

2µ
(e+− e−) =⇒ ‖eC‖ ≤

1
2 |µ|(‖e+‖+‖e−‖)≤

ρ ‖b‖
|µ|
√

λ 2
min +µ2

. (4.51)

In exact arithmetic all ways yield to the same solution. This is not so obvious anymore if iterative

solvers are used since they involve the stopping criterium ρ and the different approaches have differ-

ent upper limits as just derived. In case of the CG solver, only method A can be employed. On the

other hand, in case of MG solver only methods B and C are available accordingly to our software im-

plementation, i.e. only the un-squared twisted mass operator can be solved. Analytically comparing

the bounds of the residual of the iterated solution of Eq. (4.41) and Eq. (4.49) one would be in favor

of case B for µ < 1. Indeed following the above discussion for the residuals we obtain

‖rB‖
‖b‖ ≤

(
1+

√
λ 2

max +µ2

λ 2
min +µ2

)
ρ and

‖rC‖
‖b‖ ≤

√
λ 2

max +µ2

|µ| ρ , (4.52)
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indicating that ‖rC‖ can be much larger than ‖rB‖ at µ � 1. However, comparing the error

‖eB‖
‖b‖ ≤

ρ

λ 2
min +µ2 and

‖eC‖
‖b‖ ≤

ρ

|µ|
√

λ 2
min +µ2

. (4.53)

it follows the error eB of case B is numerical equivalent to the error eC of case C if λmin� µ .

In the case of twisted mass fermions at maximal twist this relation is fulfilled since λmin ∼ 0. This

is the case in our example, shown in Fig. 4.12 for the degenerate operator at light quark mass. The

dependence of the relative error and residual on the solver stopping criterium ρ for solutions obtained

from the CG solver and the two aforementioned multigrid approaches is analyzed on our physical test

ensemble. For this ensemble, λ 2
min + µ2 ' 0.000722, thus yielding a difference around six orders of

magnitude between the stopping criterium ρ and error, as shown in Fig. 4.12 for all the three methods

after ρ > 10−9.
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Figure 4.12: The dependence of the relative error and residual on the solver stopping criterium, ρ , for the
three different ways of solving Eq. (4.37). Method A uses the conjugated gradient solver (green), method B
uses the consecutively ordered single inversions of Eq. (4.41) (blue) and method C uses the single inversions
involving differences (red) given by Eq. (4.49). The relative residual is shown as dashed line while the relative
error is illustrated by the solid line with a shaded band determined by the largest and smallest local deviations
as defined in 4.5. The black line shows where y-axis is equal to the x-axis (i.e. relative residual equals to ρ).

Despite the fact that as long as µ � λmin all approaches yield a similar error, the approach C
has advantages. The first advantage is about software optimization where one can solve both shifts

together, as outlined in Ref. [120, 121]. The second advantage is that for the shifted linear equations

we can give a common initial guess where available since we are solving twice the same linear system

(except for the sign of µ) on the same rhs, cf. Eq. (4.49).

The comparison between the numerical error and the analytical upper bound can give some in-

formation on the modes the solver tackles effectively. Namely if the numerical error coincidences

with the upper bound, the error is dominated by the mode of the smallest eigenvalue. In contrast, if

the error is much smaller than the upper bound, the error is dominated by much larger modes and

thus the solver would treat the small eigenmodes very effectively. In our numerical test we found that

in all cases the smallest eigenvalues are dominating the error. Interestingly, this is also the case if a

multigrid solver is used, which is in contrast to the observation in the case of Wilson fermions [102].

It is surprising because multigrid methods threat the low mode subspace separately and the conver-
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gence is expected to be similar for all the modes, cf. Fig. 3.8. For instance an exactly deflated solver

would have the residual dominated by the first non-deflated eigenvalue. Therefore the analytical upper

bound would be reduced accordingly. This has been observed in Ref. [102] for Wilson fermion but

here we do not observe it for twisted mass fermions. Our explanation is that the difference is related

to a finite twisted mass term which has a higher density of small eigenvalues at the cut-off scale µ ,

as shown in Fig. 2.4. The higher density increases the condition number of the coarse operator which

makes its inversion harder. For accelerating the time to solution of DD-αAMG we have employed a

shift in the coarsest grid, cf. Sec. 4.3.2. Most probably the latter spoils the effective deflation of the

twisted mass operator and some low modes survive in the error. To corroborate this observation we

also notice that the norm of the error has a slope parallel to the target relative residual at a distance

λ
−1
min, only when the residual vector is dominated by the eigenvector with the smallest eigenvalue.

Indeed ‖e‖=
∥∥(Q2 +µ2I)−1r

∥∥= λ
−1
min ‖r‖ only if r is such eigenvector. This is indeed the separation

we observe in Fig. 4.12 between error and relative target residual.
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Figure 4.13: The dependence of the relative error and residual on the shift m2 for the three different approaches
for solving the linear equation involving the squared even-odd reduced ND twisted mass operator. Method A is
given by the direct solution using the conjugate gradient solver (green), method B is given by the consecutively
ordered single solves (blue) and method C is given by the difference of the two single solves (red). The relative
residual is shown as dashed line while the relative error is illustrated by the solid line with a shaded band
determined by the largest and smallest local deviations as defined in 4.5. The black solid line shows where the
relative residual is equal to the solver stopping criterium ρ = 10−10. The black dashed line shows where m2 is
equal to the smallest eigenvalue of Q2

ND, λ 2
ND,min ∼ 0.0008

In Fig. 4.13 we analyze the connection of the error with the residual for the squared non-degenerate

twisted mass operator at different shifts m2 where the operator has been tuned at physical strange and

charm quark mass. The solved equation is the following,

(D†
NDDND +m2) x = b. (4.54)

We fix the stopping criteria for each inversions to ‖r‖/‖b‖ < ρ = 10−10. As discussed above, the

relative error and residual depend on the smallest eigenvalue of the operator Q2
ND+m2, which is given

by λ 2
ND,min ∼ 0.0008. As follows from Eqs. 4.40 and 4.48, the inverse of the smallest eigenvalue

bounds the relative error for the approach A and B to be by around 3 orders of magnitudes larger

compared to the stopping criterium ρ if m2 < λ 2
ND,min. This is shown in Fig. 4.13. For the case C
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this is not true since from Eq. 4.51 follows that the relative error is bounded by ρ/|mλND,min| which

should diverge at m2→ 0. However, numerically we find that the real relative error is similar to case

A and B when m2 > 10−14. This shows that method C can be used for our application since in the

rational approximation of the matrix square root all shifts are larger than m2 > 10−10. At m2 < 10−14

the error of method C diverges. This is probably due to a significance loss of the floating point

precision. In the test we have used the well-known 64 bytes double precision which has significance

loss at a relative value smaller than 10−14. To corroborate this statement it would be interesting to

perform the same test as in Fig. 4.13, for single precision which we expect to diverge at m2 < 10−7.

75



5. Monte Carlo algorithms for Lattice QCD

Monte Carlo techniques are used to evaluate the Feynman path integrals needed for the extraction

of observables. In this chapter, we introduce Monte Carlo techniques starting from pure gauge field

theory and then discuss how fermionic degrees of freedom are taken into account. We explain the

Hybrid Monte Carlo (HMC) algorithm, which is a combination of Monte Carlo and Molecular Dy-

namics (MD) approaches. In the simulation of the non-degenerate twisted mass operator one has to

compute the square-root of the inverse of the operator. This is done by employing a rational approx-

imation of the square-root. We also present our approach for accelerating the inversions involved in

the rational approximation and show the speed-up we achieve by employing multigrid methods in the

simulations.

5.1 Monte Carlo simulations

The goal is to have an efficient method to compute expectation values of gauge invariant operators

that can be related to physical observables. Such an observable, as follows from Sec. 2.1, can be

computed via the integral

〈O(ψ̄,ψ,U)〉= 1
Z

∫ [ 4V

∏
µ,xi

dUµ(xi)

]
O
(
D−1(U,m f ),U

)
∏

f
det(D(U +m f ))e−S(U), (5.1)

which can be evaluated using Monte Carlo methods. The idea stems from similar approaches used

in statistical mechanics where a representative set of states of the systems is generated by an ergodic

process. Utilizing these representative set of states, also referred to as configurations, one can estimate

the integral over the fundamental degrees of freedom of the system.

Markov chain Monte Carlo (MC) approaches were first studied under a secret project, coined

Monte Carlo, at the Los Alamos National Laboratory during second world war and that gave this

name to these methods. The Metropolis algorithm [122] revolutionized the field, since it provided

a rigorous algorithm to generate representative configurations and evaluate integrals of the form of

Eq. (5.1) for a general action S. The basic steps of the Metropolis algorithm is as follows:

1. Start from a random gauge field configuration C(0), i.e. a set of values for all the gauge variables

Uµ(x).

2. Change one link, Uµ(x)→U ′µ(x), using a procedure that has a symmetric probability, i.e.

P(U →U ′) = P(U ′→U). (5.2)

3. Accept U ′µ(x) if the action is decreased or accept with probability e−∆S if the action is increased

where ∆S = S(U ′)− S(U) is the change in the action. Otherwise reject, i.e Uµ(x) remains

unchanged.

4. Repeat steps 2-3 for all Uµ(x). When all Uµ(x) are updated then a new configuration C(1) is

generated.
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5. Repeat step 4 for N times.

Steps 2 and 3 of the Metropolis algorithm generate configurations C with a probability distribution

proportional to e−S(C). For example, let U →U ′ be a change that increases the action, then the new

element U ′ is accepted with a transition probability

T (U →U ′) = P(U →U ′)e−∆S = P(U ′→U)e−∆S. (5.3)

On the other hand, the change U ′→U would decrease the action and thus it is always accepted having

T (U ′→U) = P(U ′→U). (5.4)

Therefore, from the property of the detailed balance,

P(U)T (U →U ′) = P(U ′)T (U ′→U), (5.5)

which is satisfied by the Markov chain Monte Carlo methods, we obtain

P(U ′)
P(U)

=
T (U →U ′)
T (U ′→U)

=
P(U ′→U)e−∆S

P(U ′→U)
=

e−S(U ′)

e−S(U)
. (5.6)

The same can be proved if the change U →U ′ decreases the action. Eq. (5.6) is verified if each link

U is distributed accordingly to a probability P(U) = e−S(U).

5.1.1 Monte Carlo expectation values

The expectation value in Eq. (5.1) is evaluated by using an ensemble average over the N sampled con-

figurations. Since the Metropolis algorithm starts from a random set of elements, C(0), the number of

iterations required to approach the correct probability distribution is known as thermalization period.

Assuming that after n0 steps the probability distribution has approached the correct limit we can use

the subsequent configurations to compute the expectation value of our operator given as

〈O〉= 1
N−n0

N

∑
k=n0

O(C(k)) (5.7)

where O(C) stands for the value of O computed on the configuration C(k). This average is computed

on a finite ensemble of configurations and it is necessary to estimate the error. In general, the error of

an observable O is given by

∆O = σ(O)

√
2τint

Ncn f
∝

1√
Ncn f

where σ(O) =
√
〈O2〉−〈O〉2, (5.8)

where Ncn f = N − n0 is the number of thermalized configurations and τint ≥ 0.5 is the integrated

autocorrelation time, which takes into account that the configurations are correlated with each other.

In LQCD, the autocorrelation time increases with decreasing lattice spacing a and its value depends

on the specific Monte Carlo algorithm. This can spoil simulations for very fine lattices [123].
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5.1.2 Pure-gauge simulations

In case of pure-gauge theories or quenched LQCD, i.e. where only the gauge action is considered in

the MC sampling, we have

P(U) ∝ e−Sg(U) ∝ eβ ∑x,µ<ν Re Tr Uµν (x). (5.9)

An important element is that the gauge action is local, which means that each time a link is updated

only next neighboring terms are affected making the computation of the difference in the action very

simple. If Uµ(xi)→U ′µ(xi), ∆S is

∆S = β ∑
ν 6=µ

Re Tr
(
U ′µν(xi)−Uµν(xi)

)
, (5.10)

which does not have a sum over the volume and consists of a very small number of operations. This

is crucial when one has to repeat such a calculation an enormous number of times. Moreover the

variation ∆S is kept small and one avoids drastic changes of configuration which, implying a very

large positive ∆S, would almost invariably lead to a rejection of the move.

An improved approach for simulations of SU(2) pure-gauge theories is the heat bath algorithm

developed by M. Creutz in Ref [31]. Here the weight of the distribution can be solved exactly gen-

erating directly link distributed as e−Sg(U). This approach has been extended to any SU(N) theory in

Ref. [124] where the heat bath algorithm is applied to SU(2) subgroups of SU(N).

5.2 Pseudo-fermions integral

When we include the fermionic interactions of QCD in the action we obtain

∫
U Dψ̄ Dψ e−S f (U,ψ̄,ψ) =

∫
U
∫

Dψ̄ Dψ e−∑
n f
i=1 ψ̄D(U,mi)ψ =

∫
U

n f

∏
i=1

detD(U,mi), (5.11)

where mi is the bare quark mass. The fermionic determinant makes the Boltzmann weight non-local.

This explains why it took more than 20 years to develop algorithms and have large enough machines

to perform unquenched computations.

We now show how to rewrite the determinant in a different form that helps us in the simulations.

For a generic matrix M ∈ Cn×n and considering a complex vector η = {xi + iyi} ∈ Cn, we have the

identity
πn

detM
=
∫

dnxi dnyie−η†Mη if Re(η†Mη)> 0 ∀η ∈ Cn\{0}. (5.12)

In the case of Grassmann variables we have instead

detD =
∫

dn
ψ̄i dn

ψie−ψ̄Dψ =
1

πn

∫
dnxi dnyie−η†D−1η , (5.13)

where ψi are Grassmann variables, while ηi are complex numbers that can be represented on a com-

puter. The η variables are referred to as pseudo-fermions [125, 126], since they are used to represent

the detD but they are commuting variables. The condition Re(η†Mη)> 0 ∀η ∈ Cn\{0} is equiva-

lent to requiring

Re(η†Mη)> 0 ∀η =⇒ λi(M+M†)> 0 ∀i , (5.14)

where λi(M + M†) are the eigenvalues of the matrix M + M†. But this is not the most stringent
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condition on the eigenvalues. If we want to evaluate the integral in Eq. (5.13) with MC sampling, i.e.

using e−η†D−1η as a propability, we need η†D−1η to be real and positive ∀η . Therefore, we need all

the λi(D−1) to be real and positive, which is consistent with the condition given in Eg. (5.14). This

leads to the following formulations for dynamical fermion simulations

Wilson fermions, N f =1: The Wilson operator D given in Eq. (2.66), has a real determinant thanks

to the Γ5-hermiticity, defined in Eq. (2.68), but the eigenvalues of H = Γ5D are not positive-

definite. In order to avoid the sign problem in the MC evolution one can rewrite as follows:

detD = det
√

D†D =
1

πn

∫
dnxi dnyie−η†(D†D)

−1/2
η (5.15)

and

SW
N f =1(U,η) = η

† [D†(U,m f )D(U,m f )
]−1/2

η . (5.16)

Wilson fermions, N f =2: In the case of a degenerate doublet, such as in the case of taking the same

mass for the u- and d- quarks then one takes advantage of the Γ5-hermiticity of the Wilson

Dirac operator to write

detD(mud) detD(mud) = det(Γ5D(mud)Γ5D(mud)) = det
(
D†(mud)D(mud)

)
, (5.17)

where D†(mud)D(mud) is a positive-definite matrix by construction and invertible for mud > m̄

where m̄ is the critical mass of the Wilson operator. Therefore, the action for two degenerate

quarks is

SW
N f =2(U,η) = η

† [D†(U,m f )D(U,m f )
]−1

η . (5.18)

Twisted mass fermions, N f =2: In the case of the degenerate twisted mass operator given in Eq. (2.90)

we have

det

[
DTM(µ) 0

0 DTM(−µ)

]
= det

(
DTM(−µ)DTM(µ)

)
= det

(
Γ5DTM(−µ)Γ5DTM(µ)

)
= det

(
D†

TM(µ)DTM(µ)
)
= det

(
D†D+µ

2
)
. (5.19)

The squared operator, cf. Eq. (2.107), is again positive definite by construction for µ2 > 0. The

degenerate twisted mass action for fermions at maximal twist, i.e. D ≡ D(U, m̄) with m̄ being

the critical mass of the Wilson operator, is

STM
N f =2(U,η) = η

† [D†D+µ
2]−1

η . (5.20)

Twisted mass fermions, N f =1+1: In the case of the non-degenerate twisted mass operator, given in

Eq. (2.112) we have

detDND(µ̄, ε̄) = det

[
D+ iµ̄Γ5 −ε̄I

−ε̄I D− iµ̄Γ5

]
, (5.21)

for which the determinant is real thanks to the (Γ5⊗τ1)-hermiticity, cf. Eqs. (2.114) and (2.115).

However, the positiveness of HND(µ̄, ε̄) = (Γ5⊗ τ1)DND(µ̄, ε̄) is not ensured and in order to

avoid the sign problem we proceed with the same construction as for Eq. (5.15). The non-
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degenerate twisted mass action is then given by

STM
N f =1+1(U,η) = η

†
[
D†

ND(µ̄, ε̄)DND(µ̄, ε̄)
]−1/2

η . (5.22)

In all the actions listed above we need to compute either the inverse of the Dirac operator or the

square root of the inverse. These calculations are non-local and computationally very demanding

with a cost proportional to the lattice size. The algorithms outlined in Sec. 5.1 for MC sampling

are too expensive when dynamical fermions are used and improved algorithms are needed. Indeed,

a Monte Carlo algorithm has either a very high rejection rate if significant changes are proposed or

highly auto-correlated configurations if very small changes are applied. Standard MC approaches

are effective only when the locality of the action can be exploited as in the case with pure-gauge

simulations. Therefore, with dynamical fermions one needs an algorithm that computes the change

in the action as less times as possible. A suitable algorithm is introduced in the next section.

5.3 Hybrid Monte Carlo (HMC) algorithm

The Hybrid Monte Carlo (HMC) algorithm [127, 128] combines MC and molecular dynamics (MD)

approaches. In molecular dynamics a physical system is evolved in real time using the equations of

motion. Therefore, compared to the Metropolis algorithm in Sec 5.1, the update of the configuration

in HMC is not proposed randomly but from the evolution of a MD trajectory. For combining MD

with MC, one needs

• to satisfy the detailed balance condition of Eq. (5.5),

• to ensure that the system can explore all the configuration space (ergodicity).

The first condition is achieved by using a symplectic time reversible integrator, i.e. one that can

return to the initial point staring from the final point of the trajectory by reversing the momenta (time

reversible) and preserve the Hamilton equation (symplectic). Such an integrator then satisfies

P(U →U ′) = P(U ′→U), (5.23)

where U ′ ≡ U(t f ) is evolved from U ≡ U(ti) using the MD integration along a time τ = t f − ti.

The second condition is ensured by integrating over all the possible values of the momentum of the

Hamiltonian. Adding a momentum to the action is allowed since the observable expectation value is

conserved, i.e.

〈O〉= 1
Z

∫
DU O(U)e−S(U)=

1
Z
∫

Dπe−π†π/2

∫
DU Dπ O(U)e−H(U,π) with H(U,π)=

1
2

π
†
π+S(U).

(5.24)

This is equivalent to the introduction of a new field, πa
µ(x), in the action that we identify as the

conjugate momentum of the Hamiltonian. The conjugate momentum has a weight e−π†π/2 which is

integrated by generating fields πa
µ(x) from a Gaussian distribution.

For a gauge-theory the equations of motion are

U̇µ(x) = πµ(x)Uµ(x) and π̇µ(x) =−Fµ(x) =
∂S(eωUµ)

∂ω(x)

∣∣∣∣
ω(x)=0

(5.25)
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where ω(x) is the generator of an infinitesimal gauge-field transformation.

The HMC algorithm proceeds as follow:

1. Generation of conjugated momenta: The momenta are generated via a normalized Gaussian

distribution

P(x) =
1√
2π

e−
x2
2 . (5.26)

2. Integration of Hamilton’s equations: The Hamilton’s equations given in Eq. (5.25) are inte-

grated via a numerical integration scheme. Detailed balance requires that the integrator is time

reversible and area preserving. In general the integration scheme can be constructed by the

operations (see e.g. Ref. [129])

Uπ(ε) : π → π− εF and UU(ε) : U → eεπU, (5.27)

where Uπ(ε) describes the update of the field π and UU(ε) the update of the gauge-field U .

Now, the integration from t = 0 to t = τ can be given by the leap frog scheme with

U (ε,N) =
(
Uπ

(
ε

2

)
UU(ε)Uπ

(
ε

2

))N
(5.28)

and ε = τ/N. The integrator is time reversible since starting from the final point with opposite

momenta, π(τ)→−π(τ), one returns to the starting point. The discretization error increases

as δH ∝ Nε3 = ε2τ for this integration scheme. Note that the discretization error contributes

randomly to the change of the energy resembling the update in the Metropolis algorithm.

3. Metropolis accept-reject step: The usage of a numerical integration scheme introduces dis-

cretization errors and the energy conservation is violated. For a proper sampling the weight of

the new configuration has to be corrected. The correction is done by a Metropolis accept–reject

step with the acceptance probability

Pacc(U(0)→U(τ)) = min
(

1,e−δH
)

(5.29)

where δH is the change of the Hamiltonian and it is given by

δH = H(U(τ),π(τ))−H(U(0),π(0)). (5.30)

The steps 1-3 are iterated in a HMC simulation. Several remarks are in order here.

• The trajectory length τ and the number of integration steps N need to be tuned to get the best

performance. A good compromise between high acceptance rate and small auto-correlation

time needs to be found in order to reduce the computational cost.

• One can replace the leap-frog algorithm with higher order integration schemes to reduce the

discretization error and therefore improve the acceptance. For more details see Ref. [130].

• The MD integration can be split into nested monomials [131], where different pieces of the

action are integrated on different levels at increasing number of steps N. This allows to compute

more precisely the parts of the Hamiltonian, which produce bigger forces.
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5.3.1 HMC simulations for degenerate quark masses

When a degenerate fermionic doublet is introduced in the action, as done for Wilson fermions and for

degenerate twisted mass fermions, the partition function of the theory takes the form

Z =
∫

DUe−Sg(U) det
[
D†(U)D(U)

]
=
∫

DU Dηe−Sg(U)−SF (U,η), (5.31)

where SF(U,η) = η†
(
D†(U)D(U)+µ2

)−1
η with µ2 = 0 for Wilson fermions and µ2 > 0 for

twisted mass fermions. The pseudo-fermionic field η is integrated in HMC by considering the Hamil-

tonian

H(U,π,η) =
1
2

π
†
π +Sg(U)+η

† (D†(U)D(U)+µ
2)−1

η . (5.32)

The field η is generated randomly at the beginning of the trajectory and not evolved in the MD

integration. The acceptance step in Eq. (5.29) involves then the difference of the Hamiltonian

δH = H(U(τ),π(τ),η(0))−H(U(0),π(0),η(0)). (5.33)

It is not necessary to evolve the pseudo-fermionic field η since it is only an auxiliary field introduced

in the computation of the determinant of the Dirac operator whose value depends on U and not

η . Therefore, generating η randomly at the beginning of every HMC step is enough for the MC

procedure.

In the HMC algorithm we need to compute the inverse of D†D+ µ2 at the beginning and at the

end of the trajectory, in order to evaluate δH and twice for every calculation of the force for updating

the momenta, as given in Eqs. (5.27) and (5.25). The fermionic contribution to the force is

−Fµ, f (x) = ∂S f = η
†D−1†

TM (µ)
∂D†(eωUµ)

∂ω(x)

∣∣∣∣
ω=0

(
D†D+µ

2)−1 ∂D(eωUµ)

∂ω(x)

∣∣∣∣
ω=0

D−1
TM(µ)η , (5.34)

which is computed in two steps performing

φ =
∂D(eωUµ)

∂ω(x)

∣∣∣∣
ω=0

D−1
TM(µ)η and −Fµ, f (x) = φ

† (D†D+µ
2)−1

φ . (5.35)

The calculation of the inverse of D is then a critical component in the HMC, where 4N +2 inversions

of D†D+µ2 are required with N being the number of MD steps. It is worth noting that the force can

be computed at low precision since this is corrected by the acceptance step.

A common improvement to the HMC integration with dynamical fermions is the so-called Hasen-

busch mass preconditioning [132]. The fermionic determinant is transformed into

det
[
D†D+µ

2]= n−1

∏
i=1

det

[
D†D+µ2

i

D†D+µ2
i+1

]
det
[
D†D+µ

2
n
]

(5.36)

with µ1 = µ and µi+1 > µi. This results in the integration of the action

SN f =2(U,η) =
n−1

∑
i=1

η
†
i

D†(U)D(U)+µ2
i+1

D†(U)D(U)+µ2
i

ηi +η
†
n (D

†(U)D(U)+µ
2
n )
−1

ηn, (5.37)

where a number of n pseudo-fermionic fields are used. Although the Hasenbusch mass precondi-

tioning seems to increase significantly the number of inversions, it speeds-up the algorithm. It is
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important to note that the terms that produce a larger contribution to the force are the ones with a

larger shift µ . Thus

Fn > Fn−1 > · · ·> F1, (5.38)

where Fi is the force generated by the terms η
†
i

D†D+µ2
i+1

D†D+µ2
i

ηi for i < n and Fn is the force generated by

η†
n (D

†D+µ2
n )
−1ηn. This allow to split the integration of the fermionic action in multiple monomials,

computing more frequently the contribution to the force due to a large shift µi and few times for the

target mass µ . Therefore, the number of inversion are effectively increased but the inversions at large

µi are several order of magnitude faster than an inversion done for a µ tuned to the physical quark

mass when CG is employed. Before the employment of multigrid methods, this reduced significantly

the computational costs. Moreover, the terms with a small forces, like F1, can be computed at low

precision without increasing the integration errors. Then the physical point inversions are also accel-

erated requiring a less precise solution. This also reduces the integration errors since the total force F

is split in several terms Fi which can be better controlled.

5.3.2 Rational HMC simulations for single flavor or non-degenerate quark masses

When we include a single flavor quark term or a non-degenerate twisted mass doublet to the action,

as done in Eqs. (5.16) and (5.22), we need to compute the squared root of the inverse of D†D+ µ2.

This is significantly more complicated than computing an inverse since a direct numerical approach

is not known and approximations of the square root need to be used. A first approach used in LQCD

has been a polynomial approximation of the squared root, resulting in a polynomial HMC (PHMC)

approach [133]. A more recent and better solution involves the employment of a rational approxi-

mation. The resulting approach is known as Rational Hybrid Monte Carlo (RHMC) [134] and we

present it below.

Any continuous function f (x) can be approximated by a rational function of generic order [m,n]

R(x) = A
∏m

i=1(x+ni)

∏n
i=1(x+di)

. (5.39)

The maximal deviation in a fixed interval of the rational approximation R(x) from the function f (x) is

then bounded from below, as stated in the de-Vallée-Poussin’s theorem [135]. A rational approxima-

tion is optimal when the maximal deviation is equal to the bound. In the case of the function 1/
√

x an

optimal rational approximation is given by Zolotarev’s solution [136]. The rational function of order

[n,n]

Rn,ε (x) = an,ε

n

∏
j=1

x+ cn,ε,(2 j−1)

x+ cn,ε,2 j
(5.40)

optimally approximates 1/
√

y in the interval ε < x< 1 with a maximal deviation

δn,ε = max
ε<x<1

∣∣1−√xRn,ε (x)
∣∣ . (5.41)
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The parameters in Eqs. (5.40,5.41) can be computed analytically [129] and they are given by

cn,ε,k = cs2
(

k · vn,ε ,
√

1− ε

)
with vn,ε =

K
(√

1− ε
)

2n+1
(5.42)

an,ε =
2

1+
√

1−d2
n,ε

n

∏
j=1

sn,ε,(2 j−1)

sn,ε,2 j
with sn,ε,k = sn2

(
k · vn,ε ,

√
1− ε

)
(5.43)

δn,ε =
d2

n,ε

1+
√

1−d2
n,ε

with dn,ε = (1− ε)
2n+1

2

n

∏
j=1

s2
n,ε,(2 j−1), (5.44)

where sn(u,k) and cs(u,k) = cn(u,k)/sn(u,k) are Jacobi elliptic functions and K(k) is the complete

elliptic integral.

The squared root of the inverse of Q2
ND(µ̄, ε̄) = D†

ND(µ̄, ε̄)DND(µ̄, ε̄) is then approximated by a

rational approximation of the kind

√
Q−2

ND(µ̄, ε̄)' Rn,ε
(
Q−2

ND(µ̄, ε̄)
)
= an,ε

N

∏
i=1

Q2
ND + cn,ε,(2i−1)

Q2
ND + cn,ε,2i

= an,ε

(
1+

n

∑
i=1

qi · (Q2
ND(µ̄, ε̄)+m2

i )
−1

)
, (5.45)

where in the latter we have split the product of fractions in a sum of fractions using

m2
i = cn,ε,2i and qi = (cn,ε,(2i−1)− cn,ε,2i)

n

∏
j=1, j 6=i

cn,ε,(2 j−1)− cn,ε,2i

cn,ε,2 j− cn,ε,2i
. (5.46)

The parameter ε has to be take such that the maximal and minimal eigenvalue of Q2
ND(µ̄, ε̄), λmax and

λmin respectively, belong to the interval ε < λ < 1 with ε = λmin/λmax. Unfortunately, theoretical

proofs, which determine the limits to the eigenspace of Q2
ND(µ̄, ε̄) are missing but from empirical

arguments we can deduce that

|µ̄− ε̄|2 < λmin .
∣∣µ̄2− ε̄

2∣∣ and λmax . (4+ |4+mc|+ |µ̄|+ |ε̄|)2, (5.47)

where the upper limit of λmax is proved in Ref. [1] in the case where no clover term is included in the

operator.

Practically, in RHMC simulations values for λmin and λmax are computed for a large amount of

configurations in the pre-production phase of the ensemble and then cross-checked frequently during

the simulation. In Fig. 5.1 we depict the fluctuations of the smallest and largest eigenvalue for the

ensemble produced in Ref. [8]. We measured the distribution of the smallest and largest eigenvalues

of the squared even-odd reduced non-degenerate twisted mass operator on an ensemble of gauge-field

configurations with a lattice of size 128× 643 and a lattice spacing of a ∼ 0.08 fm. It is generated

with fermions parameters, such that the light, strange and charm quark masses are tuned close to their

physical values. The value of the light quark mass is set by parameter µ = 0.00072 and for the strange

by µ̄ = 0.12469 and ε̄ = 0.13151 sets the mass splitting between the strange and charm quarks. More

details on this ensemble are given in Sec. 6.3. Using the values of these parameters the limits in

Eq. (5.47) are

0.0000465< λmin . 0.00175 and λmax . 68.2 (5.48)

and the values depicted in Fig. 5.1 are all within the bounds.
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Figure 5.1: Distribution of the smallest (left) and largest (right) eigenvalues of the squared even-odd reduced
non-degenerate twisted mass operator using an ensemble of gauge-field configurations tuned to the physical
values of the light, strange and charm quark masses.

In the N f = 1+ 1 twisted mass fermionic action, given in Eq. (5.22), we consider the rational

approximation

R1+1 ≡ Rn,ε
(
Q2

1+1
)
= an,ε

(
1+

n

∑
i=1

qi · (Q2
1+1 +m2

i )
−1

)
, (5.49)

where we have defined the non-degenerate operator

Q2
1+1 ≡

Q2
ND(µ̄, ε̄)

λmax
such that ε =

λmin

λmax
< λi

(
Q2

1+1
)
< 1 ∀i. (5.50)

The determinant of the non-degenerate twisted mass operator is transformed as

det
[
DND(µ̄, ε̄)

]
= det

[√
Q2

1+1

]
= det

[
R−1

1+1

]
det
[∣∣Q1+1

∣∣R1+1

]
, (5.51)

where
∣∣Q1+1

∣∣R1+1 is a correction term. This term needs to be introduced since R−1
1+1 only approxi-

mates the square root.

The correction term is treated with an additional approximation given by the Taylor expansion

∣∣Q1+1

∣∣R1+1 = (1+Z)1/2 =
∞

∑
n=0

(
1/2
n

)
Zn with Z = Q2

1+1R2
1+1−1, (5.52)

which is rapidly converging since ‖Z‖∞ ≤ δ 2
n,ε and can be truncated after the Z2 or Z3 term [129,

137]. The more accurate the rational approximation, the closer the correction term is to the identity.

Thus, the contribution to the force in the MD trajectory is small and for this reason the correction

term is excluded from the MD trajectory. It is instead included either in the acceptance step or as a

reweighting factor.

As for the Hasenbusch mass preconditioning, given in Eq. (5.36), the several fractions composing

the rational approximation can be split in multiple determinants. We consider the following fractions

R1+1 ∝ r1,a
1+1 · ra+1,b

1+1 · ... · r
n+1,N
1+1 with ri, j

1+1 ≡ ri, j
n,ε
(
Q2

1+1
)
=

j

∏
k=i

Q2
1+1 + cn,ε,2k−1

Q2
1+1 +mk

, (5.53)

where 1< a< b< ... < n<N are integers. Nested monomials can be used in the MD integration and
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each term ri, j
1+1 is placed on a different timescale and integrated at different frequency. The frequency

is determined by studying the force intensity of the respective monomials in the molecular dynamic

(MD) trajectory. As depicted in Fig. 5.2, the force intensity depends on the mass shifts mk included

in ri, j
1+1 and the terms that have larger shifts produce higher contributions to the force – note m1 is the

largest mass and mN the smallest.
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5.4 Multigrid in shifted linear systems

The inverse operators entering the rational approximation of Eq. 5.45, can be treated as shifted linear

systems. These are linear equations of the kind

(Q+miI)xi = b (5.54)

defined for a set of different mass shifts mi acting on the diagonal of the operator Q and for a common

right hand side b. Additionally to the case of the rational approximation, shifted linear systems have

to be solved also for a polynomial approximation of the square root [133] or when using an integral

definition via Stieltjes function [138, 139]. In general, the matrix roots have to be calculated in case

of HMC simulations involving a single quark or in case of fermions represented by the Neuberger

overlap operator [140].

The approaches routinely used to solve shifted linear equations like Eq. (5.54) are given by Krylov

space solvers [138, 139, 141–143]. In what follows we will consider the multi-shift conjugated gra-

dient (MS-CG) solver as our standard solver for shifted linear systems [141, 142]. The advantage

of multi-shifts solvers is that the numerical effort scales only with the cost for solving the smallest

shift and thus is almost independent of the total number of shifts. The idea behind these approaches

is to exploit the identical eigenspaces by using the same Krylov space generated for the most ill-

conditioned system to iterate all other shifts. However, if the operator Q2 develops very small eigen-

values, multigrid solvers can be by far more effective as compared to the conjugate gradient solver.

But a multi-shift solver version of mix-precision approaches or flexible preconditioners have not been

successfully developed so far and this can further hinder the efficiency of multi-shift solvers.

The central idea of this section is to introduce a hybrid method, using MS-CG solver for systems

with a larger mass-shift, while for the systems with smaller shifts employ a multigrid approach using

extrapolated initial guesses. Usually, initial guesses are chosen to be zero, since it is the most safe

starting point when the inverse is unknown. However, if parts of the inverse is known the iteration

count can be reduced by starting with an initial vector close to the solution. Here, we will discuss two
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approaches: one using Lagrange interpolation based on the solution of other shifts and the second

using the MS-CG solver to construct guesses that will be used for the systems involving the smallest

mass-shifts.

5.4.1 Initial guesses via Lagrange interpolation

The idea for the employment of multigrid in multi-mass shifted systems is to use previously computed

solutions, e.g. x1, . . . ,xn, to generate an initial guess for the next inversion of the solution xn+1. This

can be done by a Lagrangian interpolation of the previous solutions, where the previous shifts enter

as node points. The Lagrangian interpolation of a function f (x) is given by

Lk(x) =
k

∑
i=1

f (xi)li,k(x), (5.55)

where k > 1 and li,k(x) satisfies li,k(x j) = δi j for all i, j ∈ [1,k] with δi j being the Kronecker delta. A

polynomial solution to the latter property is

li,k(x) =
k

∏
j=1
j 6=i

x− x j

xi− x j
=⇒ li,k(x j) = δi j for i, j ∈ [1,k], (5.56)

where the Lagrangian interpolation defined via li,k(x) is denoted as the Lagrange’s form. In this case,

Lk(x) is the unique polynomial of degree (k−1) that exactly interpolates k fixed points of the function

f (x), i.e. L(xi) = f (xi) for all i ∈ [1,k]. Additionally, we define l1,1(x)≡ 1 that gives

k

∑
i=1

li,k(x) = 1 for all k ∈ N+ . (5.57)

Furthermore, it follows that the Lagrangian interpolation of a constant is exact, Lk(x)=∑k
i=1 bli,k(x)=

b∑k
i=1 li,k(x) ≡ b and the Lagrangian interpolation of (Q+mI)−1 with grid points {(Q+miI)−1} is

given by

Lk(m) =
k

∑
i=1

li,k(m)(Q+miI)−1 with li,k(m) =
k

∏
j=1
j 6=i

m−m j

mi−m j
. (5.58)

The interpolated solution reads as

x̃k(m) = Lk(m)b =
k

∑
i=1

li,k(m)(Q+miI)−1b =
k

∑
i=1

li,k(m)xi, (5.59)

where xi are solutions of (Q+miI)xi = b computed with a residual ri = b− (Q+miI)xi that fulfills

the solver stopping criterion ‖ri‖< ρ ‖b‖. For the residual of the interpolated solution x̃k(m) we have

r̃k(m) = b− (Q+mI)x̃k(m) = b−
k

∑
i=1

li,k(m)(Q+mI)xi (5.60)

=
k

∑
i=1

li,k(m)((mi−m)xi +b− (Q+miI)xi) =
k

∑
i=1

li,k(m)((mi−m)xi + ri) ,

87



which is a Lagrangian interpolation of the residuals, i.e. r̃k(mi) = ri. Studying the norm of the La-

grange form of the residuals we obtain∥∥∥∥∥ k

∑
i=1

li,k(m)ri

∥∥∥∥∥≤ k

∑
i=1
|li,k(m)|‖ri‖< ρ ‖b‖

k

∑
i=1
|li,k(m)|= ρ γk(m)‖b‖ , (5.61)

where γk(m)=∑k
i=1 |li,k(m)| is the Lebesgue function defined from the Lagrange’s polynomials li,k(m).

The Lebesgue function in the interval [mmin,mmax] assumes values

1≤ γk(m)≤ Γk, (5.62)

where mmin and mmax are the smallest and largest shifts of mi, respectively. Γk =maxm∈[mmin,mmax] γk(m)

is referred to as Lebesgue constant. Depending on the shifts, the Lebesgue constant could grow

exponentially, logarithmically or as an asymptotic function of k [144]. In case of diverging growths

one can truncate the degree of the interpolation in order to keep the error under control. The relation∥∥∥∥∥ k

∑
i=1

li,k(m)ri

∥∥∥∥∥≤ ρ Γk ‖b‖ for m ∈ [mmin,mmax] (5.63)

fixes the maximal contribution of the residuals to the residual of the interpolated solution.

The additional term to the Lagrange form in Eq. (5.60) can be re-written as

k

∑
i=1

li,k(m)(m−mi)xi '
(

k

∏
j=1

(m−m j)

)
k

∑
i=1

 k

∏
j=1
j 6=i

1
mi−m j

(Q+miI)−1b

=

(
k

∏
j=1

m−m j

Q+m jI

)
b, (5.64)

where xi ' (Q+miI)−1b is used and the partial fraction decomposition is re-summed in a product of

fractions. For the norm of it follows that∥∥∥∥∥ k

∑
i=1

li,k(m)(m−mi)xi

∥∥∥∥∥'
∥∥∥∥∥
(

k

∏
i=1

m−mi

Q+miI

)
b

∥∥∥∥∥≤ k

∏
i=1

|m−mi|
|λmin,i|

‖b‖ , (5.65)

where λ 2
min,i is the smallest eigenvalue of (Q+mi)

†(Q+mi). If Q is a positive-definite matrix then

λmin,i = λmin +mi with λmin > 0 being the smallest eigenvalue of Q.

Considering now the full residual interpolation in Eq. (5.60) we find the following upper limits

‖r̃k(m)‖=
∥∥∥∥∥ k

∑
i=1

li,k(m)((m−mi)xi + ri)

∥∥∥∥∥≤
∥∥∥∥∥ k

∑
i=1

li,k(m)(m−mi)xi

∥∥∥∥∥+ρ γk(m)‖b‖

.

(
k

∏
i=1

|m−mi|
|λmin,i|

+ρ Γk

)
‖b‖ . (5.66)

The first upper bound requires a knowledge of the solutions xi and residuals ri, making it dependent on

the numerical approach. The second instead depends only on the analytical properties of the shifted

systems.
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From the second upper bound in Eq. (5.66) we obtain that the residual of the n+1 solution is

‖r̃n+1‖
‖b‖ . γnρ +

n

∏
i=1

|mn+1−mi|
λmin +mi

(5.67)

if mi > 0 and Q a positive-(in)definite matrix with λmin ≥ 0. The residual of the initial guess r̃n+1

is bounded by two terms. The first term depends on the nodes mi while the second term depends

additionally on the smallest eigenvalue of the matrix. It follows that ‖r̃n+1‖/‖b‖ > ρ since γn > 1.

However, γn is known apriori such that the interpolation strategy can be adapted if γn becomes too

larger. In our case γn is around 2 and for ρ < 10−6 the second term dominates the right hand side

of Eq. (5.67) due to the dependence on λmin. Moreover the second term is strictly smaller than one

for the case mn+1 < mi. This gives the optimal ordering to solve the multi-shifted problem via initial

guesses with

m1 > m2 > .. . > mn > mn+1 > .. . > mN > 0, (5.68)

whereby it follows that

0≤
n

∏
i=1

|mn+1−mi|
λmin +mi

< 1. (5.69)

Finally, we remark that if the upper bound of Eq. (5.67) is smaller than 1, starting from x̃n+1 will be

always more efficient than from a zero vector.

5.4.2 Initial guesses via MS-CG

Another possibility to guess a starting vector for the last (N−n) shifts is given by using the MS-CG

solver. The general idea of the MS-CG solver is to exploit the fact that the eigenspace of the shifted

systems are identical. Thus the Krylov space generated for one of the shifts can be simultaneously

used to iterate the other shifts.

If one generates the Krylov space for the most ill-conditioned system, here the Nth system, all

other iteration vectors will converge to smaller residuals than the residual of the target system. How-

ever, if the system is too ill-conditioned, like it is in our case, the iteration count of the MS-CG solver

increases drastically and a hybrid-approach is potentially more efficient.

Our proposal is to solve the first n systems via the MS-CG solver by generating the Krylov space

for the nth system. This will generate the first n solutions x1, x2, . . . ,xn. Furthermore, the MS-CG

solver can also predict guesses for the next m systems by iterating those together with the first n

systems. Although the iteration vectors of these systems will not reach the target precision, at the iter-

ation count where the nth system is converged, the iteration vectors will contain the full information

of the generated Krylov space for the nth system. Based on this fact, for the (n+ 1)th system, the

MS-CG solver generates an initial vector, which is in general closer to the target residual than using

a Lagrange interpolation based on the n solutions.

5.5 Multigrid in the rational approximation of the square root

In this section, we analyze the behavior of multigrid for the rational approximation of the square root

of Eq. (5.45), for the non-degenerate twisted mass operator using the ensemble cB211.64, cf. Tab. 6.1,

at physical strange and charm quark masses. We choose a rational approximation consisting of 10

terms and restring the eigenvalues of the operator in the interval (εND ; 1] with εND = 0.000065/4.7,
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as follow from Fig. 5.1.

5.5.1 Initial guesses for the rational approximation of the square root

Using the Lagrange interpolation we obtain an upper bound for the initial guesses through Eq. (5.67),

bounded by two terms, which depend on γn and the previous mass-shifts mi, respectively. The coeffi-

cient γn depends as well on the nodes of the mass-shifts and with an ordering m1 >m2 > .. . >mN for

the shifts we find that γn is never larger than 2. This bounds the first term of Eq. (5.67) by 2ρ where

ρ is the precision of the stopping criterion. Thus, the first term is suppressed compared to the second

term of Eq. (5.67) such that we can neglect it in the following.

The second term of Eq. (5.67) is generated by∥∥∥∥∥ n

∑
i=1

ci,n(mn+1−mi)xi

∥∥∥∥∥. ‖b‖ n

∏
i=1

|mn+1−mi|
λmin +mi

(5.70)

with λmin ∼ 0.0008 for the squared even-odd reduced non-degenerate twisted mass operator. Using

an ordering m1 > m2 > .. . > mN this yields an upper bound of 0.0003 for the last, the Nth, initial

guess, which is close to the residual shown in Fig. 5.3. However, this upper bound significantly

overestimates the relative residual of the first shifts being up one order of magnitude larger than the

values depicted in the figure. We find that the data can be described effectively via∥∥∥∥∥ n

∑
i=1

ci,n(mn+1−mi)xi

∥∥∥∥∥' ‖b‖ n

∏
i=1

|mn+1−mi|
Aimi

, (5.71)

where the Ai are similar to each other and smaller then 1.9 for all i. Using B = [max(Ai)]
−1 < 1 it

follows ∥∥∥∥∥ n

∑
i=1

ci,n(mn+1−mi)xi

∥∥∥∥∥' Bn ‖b‖
n

∏
i=1

(
1− mn+1

mi

)
(5.72)

with mn+1 <mi and B∼= 0.6. Thus, the initial guesses using the Lagrange interpolation become more

efficient with increasing n, as shown in figure Fig. 5.3.

As pointed out in the previous section, the MS-CG solver, used for solving the first n systems,

can be used to predict an initial guess by including the (N − n) systems in the MS-CG iteration.

This effectively interpolates the initial vector x j in the Krylov space of the nth system. We depict

the residual for the predicted initial guesses by the MS-CG solver in Fig. 5.4 if the nth system is

converged. As shown, the relative residual of the (n+1)th system depends only slightly on n and is

given by ∼ 10−5. Thus, for the first step after using the MS-CG solver the residual is smaller then the

residual of the initial guess generated by the Lagrange interpolator. However, this changes for m> 1.

While for small n the guess using the MS-CG solver for the (n+2)th system is better, for n & 5 the

guesses of the Lagrange interpolation yield similar results and becomes better for m> 2.

Based on these results, the optimal approach for our example is a combination of all three el-

ements, namely the MS-CG solver and the multigrid solver with initial guesses using the MS-CG

solver and the Lagrange interpolation. Thus, solving the first nth systems using MS-CG solver in-

volves an additional iteration for the (n+1)th and (n+2)th systems, which can be used as an initial

guess. The (N−n) remaining systems are then solved via a multigrid approach one by one, where for

the last (N−n−2) systems the Lagrange interpolation is used to start the iteration. In the following

section, we will discuss the optimal n.
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Figure 5.3: The relative residuals of the Lagrange interpolation based on the n solutions versus the shifts m2

used in the approximation of the square root of the squared even-odd reduced ND twisted mass operator. The
solid lines illustrate the norm of the relative residual of the initial guess for decreasing m taking all available
nodes into account. The nodes used in the interpolation, i.e. the shifts m2, are denoted by vertical dotted lines.
We depict the dependence of each polynomial p(i) for m2 > m2

i by the dashed lines.
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Figure 5.4: The relative residual of the iteration vectors of the MS-CG versus the mass shifts when varying the
target Krylov space for the non-degenerate twisted mass case. The solver is stopped when the residual of the
target system reaches the stopping criterion given here by ‖r‖/‖b‖ < 10−8. The iteration vectors of systems
with smaller shift than the target one have a larger residual. This is shown for all N−1 cases depicted by the
solid line changing the color from black, for the largest target shift to orange for the N−1 shift. Note that we
do not show the case where the target system is given by the last, Nth system, because here all other systems
have converged. The vertical dotted lines illustrate the shifts m2

i .

5.5.2 DD-αAMG speed-up in the rational approximation of the square root

Based on the observations in the previous section, we propose to use a hybrid approach to solve

a system of linear equations with N shifts. Namely, use the MS-CG solver for the largest n shifts

and the DD-αAMG approach for the remaining (N− n) systems solving each one via the different

methods discussed in section 4.5.2. The (N− n) systems can be started by initial guesses, proposed

for the (n+ 1)th and (n+ 2)th systems using the MS-CG solver and for the rest using Lagrange

interpolation and employing the previous solutions.

The optimal n depends on the ratio of the performance of the solvers, which includes environ-
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mental parameters, software implementation and computer hardware. Here, we consider the Haswell-

nodes partition of SuperMUC and use an MPI parallelization employing 1024 task on 37 nodes. The

software used is the tmLQCD package [7, 90], which is linked to the DDalphaAMG library [111] and

is publicly available.

The question we would like to answer is what is the optimal n of the hybrid approach introduced

in this section, i.e. how many n shifts should be solved with the MS-CG solver in order to solve the

total system with N shifts in an efficient way employing for the last N − n shifts the DD-αAMG

approach. We discuss it on the cB211.64 ensemble using the non-degenerate twisted mass operator at

the strange and charm quark masses with 10 mass-shifts. We employ Eq. (4.49) for solving the linear

equation with the squared operator when the multigrid solver is used.

 0

 20

 40

 60

 80

 100

 120

 140

 0  2  4  6  8  10

C
o
re

-h
rs

Number of shifts solved with CGMMS

CGMMS
DD-αAMG w/   init. guess
DD-αAMG w/o init. guess

Figure 5.5: The CPU hours necessary to solve the multi-mass shifted equation involving the squared even-odd
reduced non-degenerate twisted mass operator at the strange and charm quark masses versus the number of
shift n used in the MS-CG solver shown as black crosses. The left 10− n shifts are solved via the multigrid
approach with initial guesses as red crosses and without initial guesses as blue squares. The total CPU hours
needed to solve the system is shown by the red solid line for the hybrid method using initial guesses and for the
hybrid method without initial guesses with the red solid line.

The cost for the solution of the multi-mass shift linear equation via the hybrid method is given by

cHY (n) = tCG(m2
n)+

N

∑
i=n+1

tMG(m2
i ) , (5.73)

where the time to solution of the MS-CG solver is approximated with the time of CG solver tCG(m)

at the smallest shift mn. For the case without initial guesses, the cost cHY (n) can be minimized using

the fits of Eqs. (3.26) and (4.14). This yields an optimal nopt ∼= 7 as shown in Fig. 5.5. However, the

total speed-up of the hybrid method without initial guesses only improves slightly the time to solution

compared to the application of the MS-CG solver. This changes by using initial guesses. Here, the

cost for the multigrid part is significantly reduced as shown in Fig. 5.5 using initial guesses compared

to the case without. We find that the initial guesses reduce the total time to solution by about factor

of two while the optimal nopt ∼ 6 is shifted slightly.

The hybrid method becomes even more effective for smaller quark masses. To illustrate this, the

n-dependence is examined using the non-degenerate twisted mass operator at physical light quarks

using the physical test ensemble. For µ̄` = 0.00072 and ε̄` = 0.000348 the dependence of the hybrid

method using a rational approximation with N = 15 terms is shown in Fig. 5.6. We find that the hybrid
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Figure 5.6: The CPU hours necessary to solve the multi-mass shifted equation involving the squared even-odd
reduced non-degenerate twisted mass operator for the physical value of the up and down quark mass. The
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without initial guesses with the blue squares. The total CPU hours needed to solve the system is given by the
red solid line for the hybrid method using initial guesses and with the dotted blue line for the hybrid method
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method with initial guesses gives a total speed up at optimal nopt ∼= 7 by approximately a factor of 15.

As in the case of the strange and charm quark masses, the initial guesses, result in a speedup of about

a factor of two.
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6. Simulating twisted mass fermions at the phys-
ical point with multigrid methods

Simulations directly at physical quark masses with large enough volume and small enough lattice

spacing have become feasible in the recent year thanks to significant algorithmic improvements, such

as multigrid methods, and the availability of substantial computational resources. In fact, state-of-

the-art simulations using different discretization schemes are currently being carried out worldwide.

Within the twisted mass formulation, the Extended Twisted Mass Collaboration (ETMC) has

carried out the first simulation directly at the physical value of the pion mass [76, 145] with N f = 2

mass-degenerate up and down quarks at a lattice spacing of a = 0.0913(2)fm, the ensemble cA2.48

in Tab. 3.1. This has been a remarkable result, since explicit isospin breaking effects associated with

twisted mass fermions can make physical point simulations at too coarse values of the lattice spacing

very difficult. Being able to reach the physical pion mass for the case of N f = 2 flavours was therefore

of great importance and many physical quantities have already been computed on the so generated

gluon field configurations. Examples are meson properties [9–11, 76, 145, 146], the structure of

hadrons [12, 145, 147–150] and the anomalous magnetic moment of the muon [76].

The ensemble cA2.48 has been simulated with a huge computational effort since multigrid solvers

where not yet available for twisted mass fermions. After our extension of the DD-αAMG to twisted

mass fermions, the solver has been employed largely within the collaboration. Many of the observ-

ables measured on the cA2.48 ensemble have been computed with it. After the success of this first

N f = 2 flavor simulation we have performed other three simulations at the physical point and a fourth

is currently under production. The properties of these simulations are summarized in Tab. 6.1 and

depicted in Fig. 6.1 together with other ensembles outside of the physical point produced by ETMC.

Name1 Ref. N f V a [fm] mπ [MeV] mπ L

cA2.48 [76] 2 483×96 0.0913(2) 131.9(3) 3.004(5)
cA2.64 [76]2 2 643×128 0.0913(2) 131.9(3) 4.005(5)
cA2.64.r [76]2 2 643×128 0.0913(2) 135.0(3)3 4.100(5)
cB211.64 [8] 2+1+1 643×128 0.0820(4) 136.1(7) 3.71(1)
cC211.80 N.A.4 2+1+1 803×160 0.07∼ 135∼ 3.9∼

Table 6.1: We give the lattice volume V , the lattice spacing a, the pion mass mπ and the value of mπ L for the
physical point ensembles produced by the ETM collaboration.

In this chapter we review the production of these ensembles. We start from the improvements in

the numerical sector of the simulation where we employ the DD-αAMG solver for the inversions [2,

4, 6]. We start from the N f = 2 simulations showing results for the production of the ensembles

cA2.64 and cA2.64.r in Sec. 6.1. These ensembles did not require additional effort in setting up the

simulation since they use similar parameters to cA2.48 whose tuning has been presented in Ref. [76].
1Our nomenclature is generated by the following rules: c stands for clover, A/B/C stands for the lattice spacing category,

2/211 stands for the number of flavors, 48/64/80 for the lattice size and r for replica.
2These ensembles are not part of the publication, but the same parameters and simulation setup of cA2.48 have been

used.
3The ensemble cA2.64.r differ from cA2.64 only by the twisted mass term which has been tuned to give a more precise

physical pion mass. Namely we used µ = 0.000966 instead of µ = 0.0009.
4The ensemble cC211.80 is currently under production.
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Figure 6.1: Constellation of ensembles produced by the ETM collaboration. The same ensembles are depicted
on the left as a function of the pion mass mπ and on the right as a function of the lattice spacing. The radius
of the circles scales proportionally to the number of independent configurations in the ensembles. The five
ensembles at the physical point (dashed vertical line on the left) are the ensemble listed in Tab. 6.1.

In Sec. 6.2 we review numerical approach in our N f = 2+ 1+ 1 simulations using results from the

production of the ensemble cB211.64. And we conclude the chapter with a sections dedicated to the

ensemble cB211.64 where we show the tuning of the parameters and the determination of the lattice

spacing in Sec. 6.3.

6.1 N f =2 twisted mass simulations at the physical point

The N f = 2 twisted mass action is

S = Sg +STM,N f =2 , (6.1)

where STM,N f =2 has been given in Eq. (5.20) and for Sg we chose the Iwasaki improved gauge action,

cf. Eq. (2.47).

6.1.1 Simulations details

The tuning of the simulation parameters for the ensemble cA2.48 was carried out in Ref. [76]. For

simulating the ensembles cA2.64 and cA2.64.r we used similar parameters where additionally to the

volume we changed the hopping parameter κ , in order to be closer to maximal twist, and the twisted

mass parameter µ , in cA2.64.r only, in order to have a pion mass closer to the physical one. We list

the simulation parameters in Tab. 6.2.

Name Volume β µ κ cSW

cA2.48 483×96 2.1 0.0009 0.13729 1.57551
cA2.64 643×128 2.1 0.0009 0.1372938 1.57551
cA2.64.r 643×128 2.1 0.000966 0.1372938 1.57551

Table 6.2: The table shows the simulations parameters for the ensembles cA2.48, cA2.64 and cA2.64.r which
physical properties are listed in Tab. 6.1.

The simulations have been produced using the tmLQCD software package [90] and the DDal-

phaAMG library for TM fermions [2]. All the simulation codes are released under GNU license. The

integrator we used is given by a nested minimal norm scheme of second order [131] with a nested
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integration scheme similar to the previously produced simulation [76]. In the N f = 2 sector of the sim-

ulations we employ the Hasenbusch mass preconditioning, cf. Eq. (5.36), by introducing additional

mass terms and split up the determinants into additional ratios as in the following

det
[
Q2 +µ

2]= det
[

Q2 +µ2

Q2 +(µ +ρ1)2

]
det
[

Q2 +(µ +ρ1)
2

Q2 +(µ +ρ2)2

]
det
[

Q2 +(µ +ρ2)
2

Q2 +(µ +ρ3)2

]
det
[
Q2 +(µ +ρ3)

2]
(6.2)

where Q = Γ5D = Q† is the hermitian Wilson Dirac operator.

Each determinant in the right hand side (rhs) of Eq. (6.2) can be placed on a different monomial

and integrated on a different time-scale. The time-steps are chosen accordingly to the intensity of the

force term. This procedure controls the large fluctuations of the force terms, avoiding instabilities

during the HMC. In our simulations we use 5 time-scales, which are integrated respectively Nint =

{20,60,180,540,1620} times. The gauge action is placed in the innermost time-scale and in the other

time-scales we place one by one the fermionic determinants from the rhs of Eq. (6.2) going from the

largest shift to the smallest.

6.1.2 DD-αAMG speed-up in N f =2 simulations

The simulations are performed for the even-odd reduced operator while the DD-αAMG solver inverts

the full operator. The even-odd reduced solution is retrieved by projecting the complete solution

provided by DD-αAMG. For the heat-bath inversions and acceptance steps we require as stopping

criterion for the solvers the relative residual to be smaller than 10−11. For the force terms in the MD

trajectory the criterion is relaxed, using 10−7 for the CG solver and 10−9 for the DD-αAMG method.

This ensures that the reversibility violation of the MD integration is sufficiently reduced. Note that

the usage of the multigrid method is efficient if the subspace can be reused at larger integration time.

In general, this yields a larger reversibility violation [96]. By choosing a higher accuracy i.e. by

using a smaller stopping criterion, for the multigrid solver the reversibility violation can be reduced.

We checked that with the values mentioned above the reversibility violations are compatible with the

case where a CG solver is used for all the monomials. As depicted in Fig. 6.2, this yields a stable

simulation without large spikes in the energy violation δH with an acceptance rate of 84.5%.

For the Hasenbusch mass preconditioning we use the three shifts as reported in Eq. (6.2). The

DD-αAMG method is faster than CG solver for all the shifts except the largest, ρ3. Thus we have

used DD-αAMG for the inversions with shifts µ , µ+ρ1 and µ+ρ2. The DD-αAMG iterations count

averaged per MD trajectory is depicted in Fig. 6.2. No exceptional fluctuations or correlations with

larger energy violation δH are seen along the simulation. The stability of the multigrid method is

ensured by updating the setup every time the inversion at the physical quark mass, i.e. (Q2+µ2)−1, is

performed. The update is based on the previous setup by using one setup iteration, which is possible

due to the adaptivity in the DD-αAMG method [105] for the definition of the setup iteration. At

the beginning of the trajectory we perform three setup iterations. The final speed-up, including setup

costs, is a factor of 8 compared to CG in N f = 2 simulations at the physical pion mass.

6.2 N f =2+1+1 twisted mass simulations at the physical point

In N f =2+1+1 simulations we follow the same approach of N f =2 simulation regarding the gauge field

and the N f =2 sector, cf. Sec. 6.1. Additionally we add to the action a N f =1+1 term which simulates

the strange and charm quark flavors. This term involves the calculation of the square root of the
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Figure 6.2: Results for the ensemble cA2.64.r produced on Supermuc phase 2.
Top: The energy violation of the numerical integrator in the MD integration plotted in units of MD trajectories
(left) and its frequency (right).
Bottom: DD-αAMG iterations count averaged on MDU considering different monomials of the HMC simu-
lation shown in units of MD trajectories (left) and its frequency (right). The shifts ρi are {0.0015, 0.015} and
µ = 0.000966. The iterations count corresponds to average of the sum of the count of the outer level during
the calculation of the force in the MD. A similar frequency plot has been depicted in Fig. 4.9 which was for the
ensemble cA2.64.

inverse of the non-degenerate TM operator, cf. Eq. (5.22), which cannot be computed directly with

numerical methods. We use a rational approximation of the square root which we integrate via a

RHMC approach, cf. Sec. 5.3.2. We recall that the determinant of the degenerate operator is written

as, cf. Eq.(5.51)

det
[
DND(µ̄, ε̄)

]
= det

[√
Q2

ND

]
= det

[
R−1

ND
]

det
[∣∣QND

∣∣RND
]
, (6.3)

where QND = (Γ5⊗ τ1)DND = Q†
ND is the hermitian version of DND and RND is the optimal rational

approximation of 1/
√

Q2
ND. In general, one can relax the approximation of the square root by intro-

ducing a correction term det
[∣∣QND

∣∣RND

]
as in the rhs of Eq. (6.3). It takes into account the deviation

from |QND| being closer to the identity as much as the rational approximation is precise. For this

reason we include it only in the acceptance step.

6.2.1 Simulation details

We list the simulation parameters for the cB211.64 and cC211.80 in Tab. 6.3. In Sec. 6.3 we will

review the tuning for generating the cB211.64 ensemble [8]. The tuning of cC211.80 followed a

similar procedure.

For the production of the gauge field configurations we use as a basis the simulation setup for the

N f =2 simulations, see Sec. 6.1.1. In particular, here we employ four determinant ratios for the N f =2

sector with mass shifts ρ = {0.0; 0.0003; 0.0012; 0.01; 0.1} and we use a 6 level nested minimal norm

second order integration scheme with integration steps Nint = {12,36,108,324,972,2916}. As for

the N f =2 simulations we place the integration of the gauge field in the innermost level and the N f =2

97



Name Volume β µ` µ̄ ε̄ κ cSW

cB211.64 643×128 1.778 0.00072 0.1246864 0.1315052 0.1394265 1.69
cC211.80 803×160 1.836 0.00060 0.1065860 0.1071460 0.1387529 1.6452

Table 6.3: The table shows the simulations parameters for the ensembles cB211.64 and cC211.80 which phys-
ical properties are listed in Tab. 6.1.

monomials one by one in the outer levels. For the N f =1+1 section we use a rational approximation

of order n = 10, which has a relative deviation such that
∥∥|QND|RND

∥∥
∞ < 1.4 · 10−6, considering

the eigenvalues of Q2
ND in the interval λmin = 6.5 ·10−5 and λmax = 4.7. The product of ratios in the

rational approximation is split in four terms R1−4, cf. Eq. (5.53). The first two contain three shifts, the

second two contain two shifts. The four monomials R1−4 are placed one by one in the four outermost

time-scales.

6.2.2 DD-αAMG speed-up in N f =2+1+1 simulations

The force calculation in the N f =2 sector is accelerated by a 3-level DD-αAMG approach as described

in Sec. 6.1.2. Here we also use the DDalphaAMG method for the non-degenerate twisted mass

operator. It is particularly helpful for the lowest terms of the rational approximation, as well as for the

correction of rational approximation in the acceptance steps, where it yields a speed up to two over

the standard multi-mass shifted conjugate gradient (MMS-CG) solver. As depicted in Fig. 6.3, with

this setup we have relative small energy violation during the MD integration and an acceptance rate

of 76.8%. We checked the size of reversibility violation yielding a standard deviation< 0.01 for δ∆H

and |1−〈∆H〉|< 0.02 fulfilling the criteria discussed in Ref. [151]. Here, δ∆H is the difference of the

Hamiltonian at integration time t = 0 and the Hamiltonian of the reversed integrated field variables

after one trajectory is performed.

In Fig. 6.3 we also depict the iterations count for the inversions done with DD-αAMG. The setup

update is done on the second time-scale for the shift µ +ρ1, since it is still close to the light quark

mass. In this case, we find slightly larger fluctuations in the iteration count of the outer level of the

multigrid solver compared to the N f = 2 simulation shown in Fig. 6.2. Overall the simulation is stable

and we find no correlation of the iteration count with larger energy violations δH.

The computational cost of each monomial per MD trajectory is depicted in Fig. 6.4. The previous

approach depicted in the left panel involves the employment of multi-mass-shift CG (MMS-CG) for

inverting all in once the shifted linear systems. In the right panel we have depicted the costs of the

simulation accelerated by using the DD-αAMG solver for the most ill-conditioned linear systems.

We achieve a speed-up for the N f = 1+ 1 sector of a factor of 2 compare to a full eo-MMS-CG

algorithm. The overall speed-up for N f = 2+ 1+ 1 simulation at the physical light, strange and

charm quark mass is a factor of 5.

As last, we report in Fig. 6.5 the time per HMC step for the cA2.64 and cB211.64 ensembles. The

time per MDU is quite stable with fluctuations within the 10%. During the N f = 2+1+1 simulation

we calculate the smallest and largest eigenvalue of the non-degenerated TM operator at least every

ten MDUs, which takes additionally 15 mins. This explains the single points that are frequently out of

the main distribution. The two longer fluctuations instead are due to machine instabilities since they

are limited to a single allocation of the job. Although the multigrid method is limiting significantly

the parallelization of the calculation, the speed-up achieved makes feasible to sample enough MD
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Figure 6.3: Top: The energy violation of the numerical integrator used during the MD integration of the
cB211.64 ensemble plotted in units of MD trajectories (left) and its frequency (right). Bottom: DD-αAMG
iterations count averaged on MDU considering different monomials of the HMC simulation shown in units
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Figure 6.4: Costs per MDU of the cB211.64 simulation shown in units of CPU hours. In the left panel all
the inversions in the RHMC are computed with a MMS-CG solver while in the right panel an hybrid approach
of MMS-CG and DD-αAMG solvers is used. The last column, “Sum”, reports the cost of RHMC in the
N f = 1+1 sector compared to HMC in N f = 2 sector. The other columns regard different components of the
RHMC: the “Ri”s are the rational approximation split in different monomial – R1 contains the largest shifts
while R4 the smallest – and “Acc-Corr” is the cost for the acceptance and correction step.

trajectory. The average time per MDU in the N f = 2 simulation is slightly larger than an hour and in

the N f = 2+1+1 simulation below three hours. In both cases, 4096 cores employing 147 Haswell-

nodes on SuperMUC are used since up to it we found that the three-level DD-αAMG method shows

an almost ideal scaling up to this number of cores for a lattice with volume V = 643×128.

6.3 Simulation procedure for the ensemble cB211.64

In this section we review the tuning of the simulation parameters for the production of the ensemble

cB211.64. As Tab. 6.4 suggests, it has been a considerably expensive procedure involving the gen-
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Figure 6.5: Time per MDU of the N f = 2 (cA2.64) and N f = 2+ 1+ 1 (cB211.64) ensembles in Table 6.1.
The N f = 2+ 1+ 1 timings also include the calculation of the smallest and largest eigenvalue done at least
every ten trajectories. The large fluctuation around MDU 500 for the N f = 2+1+1 ensemble is due to a bad
allocation in the machine (it lasts exactly the duration of the allocation).

eration of other ten ensembles at smaller volume and different parameters for a precise estimation of

the physical point.

Ensemble L µ κ Nth µ̄ ε̄

Th1.350.24.k1 24 0.0035 0.1394 755 0.1162 0.1223
Th1.350.24.k2 24 0.0035 0.13942 350 0.1162 0.1223
Th1.350.24.k3 24 0.0035 0.13945 351 0.1162 0.1223
Th1.350.24.k4 24 0.0035 0.13950 267 0.1162 0.1223
Th1.350.32.k1 32 0.0035 0.13940 88 0.1162 0.1223
Th1.200.32.k2 32 0.002 0.13942 430 0.1162 0.1223
Th2.200.32.k1 32 0.002 0.13940 178 0.1246864 0.1315052
Th2.200.32.k2 32 0.002 0.13942 439 0.1246864 0.1315052
Th2.200.32.k3 32 0.002 0.13944 392 0.1246864 0.1315052
Th2.125.32.k1 32 0.00125 0.139424 815 0.1246864 0.1315052
cB211.072.64.r1 64 0.00072 0.1394265 1647 0.1246864 0.1315052
cB211.072.64.r2 64 0.00072 0.1394265 1520 0.1246864 0.1315052

Table 6.4: Summary of the parameters of the ensembles used for the tuning and final runs: L is the lattice
spatial size with the time direction taken to be 2L, µ is the twisted mass parameter of the mass degenerate light
quarks, κ is the hopping parameter (common to all flavours), Nth are the number of thermalized trajectories in
molecular dynamics units (MDU), µ̄ and ε̄ are the bare twisted mass parameter of the mass non-degenerate
fermion action used for the heavy quark sector. The ensembles cB211.072.64.r1 and cB211.072.64.r2 represent
the targeted large volume runs at the physical point.

6.3.1 Tuning at maximal twist

Twisted mass fermions at maximal twist have O(a)-improvement. This is the first condition to tune

in a twisted mass fermions simulation. As discussed in Sec. 2.6.3, the tuning procedure to maximal

twist requires a value of the hopping parameter κ = κcrit such that mPCAC(κcrit) = 0. Note that the

value of mPCAC has second order corrections in a2 which depends on the twisted mass parameters µ ,

µ̄ and ε̄ . Thus determining kcrit at the value of interest for these parameters is important in order to
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keep small the lattice artifacts which are introduced by the quark doublets [152, 153]. In practice, we

allow some tolerance to the strict condition mPCAC(κcrit) = 0 and following Ref. [154] we require that

ZAmPCAC

µ
0.1 (6.4)

within errors where ZA is the renormalization constant of the axial current. Fulfilling the condition in

Eq. (6.4) is numerically consistent with O(a)-improvement of physical observables, where it entails

only an error of order O((ZA ·mPCAC/µ)2). Therefore for the targeted lattice spacing the error is

comparable to other O([aΛQCD]
2) discretization errors. This allows an O(a2) scaling of physical

observables towards the continuum limit.

Figure 6.6: Left: The PCAC mass versus the bare light quark mass am = 1/(2κ)−4 for various values of the
twisted mass parameter for the tuning of the critical mass. The linear interpolations are done on the Th1.350.24
ensembles (blue, triangle points) illustrated with the blues dashed line and on the Th2.200.32 ensembles (red
square points) illustrated with the red dashed line. The value of the PCAC mass for the Th2.125.32.k1 ensemble
is shown by the orange star point and of the cB211.072.64 by the green right pointing triangle.
Right: The MC History of the PCAC quark mass on the large volume physical point ensembles is shown at
twisted mass value µ = 0.00072 and hopping parameter κ = 0.1394265.

In order to find κcrit, we have generated several ensembles with fixed volumes of size 243 ·48 and

323 · 64, as listed in Table 6.4 and depicted in Fig. 6.6. At fixed twisted mass parameter µ we first

scan over several values of the hopping parameter κ and we find a range close to zero (blue fit in the

figure). Then we move to a smaller value of µ and scan again (red range). The dependence of the

PCAC quark mass on κ at different twisted mass parameter µ differs visibly as shown by the slope

of the two fits. Using simple linear fits for the L = 32 ensembles, we determine a critical value of κ ,

κcrit = 0.1394265 and we employ this κ-value for our large volume ensembles.

In the 643 ·128 lattices we first thermalize the ensemble using 500 trajectories. We then take the

latest configuration as a starting point for two replicas, each having a final statistics of about 1500

MDUs. This allows us to run in parallel two simulations and to combine them back-to-back in a

unique ensemble, cB211.64. In Fig. 6.6 we depict the Monte Carlo history of the PCAC quark mass

for these two replicas, where we separate the two replicas adding the second replica (rep 1) with

a reversed history starting from zero. The PCAC quark mass fluctuates around zero and does not

show particularly large autocorrelation times. Performing the average over the two replica runs, we

find ZAmPCAC/µ = 0.02(2) where we used ZA = 0.763(2) and mPCAC = 0.189(114)10−4. Thus, the

condition of eq. (6.4) is nicely fulfilled. We therefore conclude that the tuning to maximal twist is

achieved for the c211.64 ensemble.
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6.3.2 Tuning of the heavy quark sector

After fixing κcrit we proceed by tuning the heavy twisted mass parameters to realize physical kaon

and Ds-meson mass and decay constant. Such tuning is not a trivial task due to the mixing in flavor

space introduced by the non-degenerate twisted mass operator, cf. Sec. 2.6.5. In order to tackle the

problem, it is convenient to employ in an intermediate step the so-called Osterwalder Seiler (OS)

fermions [155] as valence quarks avoiding the mixing effects. The OS-fermions can be used in a

well defined mixed action setup having the same critical mass, mcrit , as determined in the maximal

twist tuning [83]. In this case, strange and charm quarks are introduced as valence quark with the

twisted mass operators D(µs) and D(µc) respectively, while they are simulated in the sea with the

non-degenerate TM operator DND(µ̄, ε̄). The renormalized valence quark masses for OS fermions

are m(r)
c,s = µc,s/ZP. The parameters µc,s are matched to the corresponding non-degenerate twisted

mass parameters, cf. Eq. (2.113), via

µc,s =

(
µ̄± ZP

ZS
ε̄

)
(6.5)

with ZP and ZS denoting the non-singlet pseudoscalar and scalar renormalization constants. The

correlation functions using OS or non-degenerate TM fermions are equivalent in the continuum limit.

Moreover they still yield O(a)-improved physical observables.

The parameter tuning procedure for the heavy sector can be carried out on a non-large lattice (in

the present case, 323 ·64) and at larger than physical up/down quark mass. With a convenient choice

of the physical renormalization conditions, we use for the tuning

C1 ≡
µc

µs
= 11.8 and C2 ≡

mDs

fDs

= 7.9 (6.6)

where mDs is the Ds-meson mass and fDs is its decay constant. The condition C2 has a strong sensi-

tivity to the charm quark mass while C1 fixes the strange-to-charm mass ratio. They show only small

dependence on the light quark mass arising from sea quark effects. We expect these conditions to be

essentially free from finite-size effects due to the heavy Ds-meson mass.

Figure 6.7: Tuning of the charm quark twisted mass pa-
rameter µc using the C2 condition on the Th1.200.32.k2
ensemble. The figure shows 5 measured values of the
mDs/ fDs ratios with blue square points, using 5 differ-
ent pairs of µc and µs which ratio is fixed by the C1
condition. The horizontal line illustrates the physical
value of C2 and the black dashed line the tuned values
for µc.

As first step, we use the ensemble Th1.200.32.k2 in Tab. 6.4 which has a µ around three times

larger than the physical up-down quark mass and it is generated with guessed values of µ̄ and ε̄ . We

chose the OS bare quark masses µc and µs such that the condition C1 is always fulfilled. As depicted

in Fig. 6.7, we vary the OS quark masses over a broad range such that we find the value where also the

condition C2 is satisfied. When matching the non-degenerate twisted mass parameters via Eq. (6.5),
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we obtain directly the value of µ̄ from the tuned µs and µc, while ε̄ requires the ratio ZP/ZS. The latter

can be estimated by adjusting ε̄ such that the kaon mass evaluated in the twisted mass formulation

(mtm
K ) is the same as its counterpart computed with valence OS fermions (mOS

K ). Although the kaon

mass value can be unphysical due to the larger value of µ , we use this matching condition only for

relating heavy quark action parameters. In such way, from the values tuned in Fig. 6.7,

µs = 0.01948 and µc = 0.2299, (6.7)

we find

µ̄ = 0.12469 and ε̄ = 0.13151. (6.8)

Since the matching steps described so far are performed on an unphysical gauge ensembles, we

still need to check these conditions on a new gauge ensemble generated with the tuned values of µ̄

and ε̄ . Therefore, several other ensembles with volumes of 323× 64 at light twisted mass values of

µ = 0.002 and µ = 0.00125 have been generated to check again these conditions and to determine

precisely the critical hopping parameter κcrit = 0.1394265. In this procedure turned out that the

previous tuning of the heavy quark sector was already good enough and we did not adjust again the

parameters µ̄ and ε̄ .

6.3.3 Heavy meson sector at the physical point

Repeating the tuning procedure on the physical ensemble cB211.64 we find

µs = 0.01892(13) and µc = 0.2233(16). (6.9)

The OS valence quark parameters are lower by around 2.4% compared to the values determined

using the Th1.200.32.k2 ensemble, cf. Eq. (6.7). If we impose an exact matching between mOS
K and

the unitary mtm
K ensembles we find the ratio of the pseudoscalar to the scalar renormalization constants

to be
ZP

ZS
= 0.813(1). (6.10)

Using this value of ZP/ZS and the OS quark masses in Eq. (6.9) we obtain

µ̄phys = 0.1211(12) and ε̄phys = 0.126(13). (6.11)

Thus the actually employed sea quark mass parameters correspond to a sea strange and charm quark

mass 3% heavier than those derived a posteriori from imposing the same tuning and matching condi-

tions on the physical point ensembles.

In Fig. 6.8 we show the decay constants of the kaon and the D-meson and compare them with

the results extracted from the N f = 2 clover ensembles [76]. We employ 244 measurements on the

cB211.64 and 100 on the Th2.200.32.k1 ensemble. The ratios of the kaon and Ds-meson masses to

decay constants for the cB211.64 ensembles are found to be

mK

fK
= 3.188(7) and

mD

fD
= 8.88(11), (6.12)

where the former ratio has a central value slightly larger than the physical ratio mphys
K / f phys

K = 3.162(18) [156],

while the latter agrees well within errors with the value mphys
D / f phys

D = 9.11(22) [17]. These results in-
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Figure 6.8: The pseudoscalar decay constants in the heavy quark sector. The left panel shows the kaon decay
constant, while the right panel shows the D-meson decay constant both versus the squared pion mass. The
dashed vertical line indicates the physical value of the pion mass. The red squares are the measurements for
the Th2.200.32.k1 and cB211.64 ensembles, while the blue triangles are for the N f = 2 clover twisted mass
ensembles [76]. The scale is set via the pion decay constant.

dicate that discretization effects for our setup are small in the heavy quark sector. For a more rigorous

check, a direct calculation at different values of the lattice spacing needs to be carried out.

6.3.4 Light meson sector at the physical point

The main goal of this section is to determine the value of the lattice spacing within the pion sector.

In principle, the lattice spacing could be determined directly from the cB211.64 target ensembles

requiring a vanishing pion mass in the chiral limit. The lattice spacing and the physical twisted mass

value can be fixed by assuming a linear dependence of µ on a2m2
π and m2

π/ f 2
π . The so determined

lattice spacing is

a = 0.0801(2) fm. (6.13)

However, it is helpful to also use the other available ensembles, listed in Table 6.4, which are

all tuned to maximal twist, namely Th1.350.24.k2, Th2.200.32.k2, Th2.150.32.k2 in addition to

cB211.64. By employing chiral perturbation theory (χPT) to describe the quark mass dependence

of the pion decay constant and pion mass, we obtain a robust result for the value of the lattice spac-

ing. We depict in Fig. 6.9 the ratio m2
π/ f 2

π and the pion decay constant itself as function of the light

bare twisted quark mass.

In the figure we show the fits to NLO χPT [159–161], which for the ratio m2
π/ f 2

π reads as

m2
π

f 2
π

= 16π
2
ξ (1+Pξ +5ξ log(ξ ))

FFV E
fπ

2

FFV E
mπ

2 (6.14)

and for the pion decay constant is

a fπ = a f0 (1+Rξ −2ξ log(ξ ))1/FFV E
fπ

. (6.15)

Since the ensembles out of the physical point have a relatively small volume, we have included finite

volume corrections, FFV E
fπ

,FFV E
mπ

, from chiral perturbation theory [157, 158]. The variable ξ is given
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Figure 6.9: Left: The ratio m2
π/ f 2

π is plotted against µ . Right: The pion decay constant a fπ is plotted against
the light twisted mass math parameter µ .
The solid lines are fits to NLO chiral perturbation theory with the error as shaded band, see eq. (6.14) and
eq. (6.15). The dotted lines are fits for which the chiral logs are neglected. The pion mass and decay constant
are corrected with finite volume correction terms on the left from Ref. [157] and on the left from Ref. [158].

by

ξ =
2B0

ZP(4π f0)2 µ (6.16)

where B0 and f0 are low energy constants. The fitting constants P,R are related to the NLO low energy

constants by

P =−l3−4l4−5log

(
mphys

π

4π f0

)2

and R = 2l4 +2log

(
mphys

π

4π f0

)2

. (6.17)

From the fits, we determine the values of 2B0/ZP = 4.52(6) and a f0 = 0.0502(3) and we determine

the finite volume correction terms by fixing the low energy constants using the results of Ref. [153].

For our target ensemble cB211.64 with mπL = 3.62 we find that the finite volume effects yield cor-

rections of less than 0.5% for the pion mass and less than 0.5% for the pion decay constant. By using

the fit functions from χPT and fixing the ratio m2
π,phys/ f 2

π,phys ≡ 1.034 we find a more correct light

twisted mass parameter

µphys = 0.00067(1), (6.18)

which is 7% smaller than the one used. We then use this value in Eq. (6.15) to determine the lattice

spacing. We get

a fπ
= 0.07986(15)(35) fm, (6.19)

with the first error the statistical and the second the systematic by using the physical value of the

pion decay constant, fπ,phys = 130.41(20) MeV [17]. We follow the procedure adopted in Ref. [154]

for determining a systematic error by performing several different fits, adding or neglecting finite

volume terms. Such fits employ the finite volume corrections of Ref. [158] using the calculated

low energy constant c2 of Eq. (6.23) different orders in chiral perturbation theory and including or

excluding the ensemble Th2.150.32.k2 due to larger finite size effects. The systematic error is then

given by the deviations of these different fits from the central value given in Eq. (6.19). Although

we include ensembles like Th2.150.32.k2 or Th1.350.24.k2 which have large finite size effect up to

8% in the pion decay constant, the systematic uncertainties are suppressed due to the fact that we are

using ensembles close to physical quark masses which stabilize the fits. Thus this demonstrates the
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importance of working at physical quark masses. Moreover this is confirmed by the estimation of the

lattice spacing which takes only the pion mass and decay constant from cB211.64 into account, cf.

Eq. (6.13), which compatible with the final value in Eq. 6.19 within errors.

6.3.5 O(a2) isospin-breaking lattice artifacts in the pion sector

An important aspect when working with twisted mass fermions at maximal twist is to keep the size

of isospin violations small, cf. Sec. 2.6.1. This isospin breaking manifests itself by the fact that the

neutral pion mass becomes lighter than the one of the charged pion. In leading order (LO) of chiral

perturbation theory this effect is described by

a2(m2
π −m2

π0) =−4c2a2sin2(ω) (6.20)

with the twisted mass angle given by ω = atan(µ/ZAmPCAC) and c2 a low energy constant character-

izing the strength of O(a2)-effects of twisted mass fermions. As shown in Ref. [74, 76], a clover term

reduces the value of the low energy constant c2. Indeed, only employing a clover term, simulations at

physical quark masses at large enough lattice spacing become possible as demonstrated in Ref. [76].

Full contribution
Disconnected
Connected

Figure 6.10: Left: The correlator of the neutral pion versus t/a. Right: The effective mass of the neutral
pion. The shaded band shows the constant fit in the plateau range. The red triangle shows the data of the full
correlator, while the blue squares the disconnected and the the black stars the connected contribution.

In order to calculate the neutral pion mass one needs to compute disconnected two-point functions

that are notoriously noisy. To suppress the noise in the computation of the two-point functions we use

a combination of exact deflation, projecting out the 200 lowest lying eigenvalues, and 6144 stochastic

volume sources corresponding to an eight-distance hierarchical probing [162, 163]. The disconnected

correlator needed is given by

Cdisc(t0) = 〈Ô(0)Ô(t0)〉 with Ô(t0) = D−1(t0, t0)−〈D−1(t, t)〉 (6.21)

where the ensemble and time average of the vacuum contribution is subtracted from the disconnected

operator. Note that we used global volume noise sources to extract the disconnected contribution,

however methods which do not subtract the vacuum expectation value explicitly could be more effec-

tive as pointed out in [9, 76, 164]. We find that the disconnected contribution dominates the correlator

for time distances t/a> 10, as can be seen in Fig. 6.10. However we include the connected contribu-
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tion in the plateau average, leading to a neutral pion mass given by

am
π(0) = 0.044(9) . (6.22)

Note, that for the connected contribution small statistics of around 250 measurements is used, which

results in a relatively large statistical error. The charged pion mass is straight forward to compute and

we find for the charged pion mass amπ = 0.05658(6). This gives an isospin splitting in the pion mass

of 22(16)% and the low energy constant c2 of Eq. (6.20) reads as

4c2a2 =−0.0013(8) (6.23)

assuming ω = π/2. Thus, introducing a clover term for N f = 2+ 1+ 1 twisted mass fermions sup-

presses isospin breaking effects effectively, i.e. by a factor of 6 compared to an N f = 2+ 1+ 1 en-

sembles with twisted mass fermions without a clover term and a pion mass of 260 MeV at a similar

lattice spacing of a = 0.078(1) fm [73, 165], where it was found that the mass splitting is given by

(am
π(0))2−(amπ)

2 =−0.0077(4) . The suppression of the pion isospin breaking effects, thanks to the

use of the clover term, is the underlying reason why we can perform our simulations at the physical

point with N f = 2+1+1 flavours of quarks.

6.3.6 Baryon sector at the physical point

As another test, whether we are in the desired physical condition, we analyze the nucleon mass which

can also provide an independent determination of the lattice spacing, which can be compared to the

one found in the meson sector. We measured the nucleon mass on the cB211.64 ensemble by using

interpolating fields containing the operator

Jp = εabc
(
uT

a Cγ5db
)
uc , (6.24)

with C = γ4γ2 the charge conjugation matrix. We then constructed the two point correlation function

Cp(t) =
1
2

Tr(1± γ4)∑
x
〈Jp(x, t)J̄p(0,0)〉 (6.25)

which provides the nucleon mass in the large time limit. We used 50 APE smearing steps with

αAPE = 0.5 [166] in combination with 125 Gaussian smearing steps with αgauss = 0.2 [167, 168] to

enhance the overlap of the used point sources with the lowest state.

We extracted the nucleon mass for t � 0 by a plateau average over the effective mass aEe f f =

log(Cp(t +a)/Cp(t)) shown in Fig. 6.11. The plateau average of the nucleon mass, given by amN =

0.3864(9) on the cB211.64 ensemble, which is in agreement with a two-state fit having amN,2st =

0.3850(12).

As an alternative way to determine the lattice spacing, one can use the nucleon mass. A direct

way would be to use the physical ratio from which, by using the pion mass determined above, the

lattice spacing can be estimated directly by the value of the lattice nucleon mass. Indeed, with the

the pion mass amπ = 0.05658(6) the nucleon to pion mass ratio 0.3864(9)/0.05658(6) = 6.83(2) is

close to its physical value of mphys
N /mphys

π = 0.9389/0.1348 = 6.965 where we take the average of

neutron and proton mass [17] and the pion mass in the isospin symmetric limit [156]. However, as in

the case of the meson sector, using more data points at heavier pion masses and χPT to describe their
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cB211.64

Figure 6.11: Left: The time dependence of the effective mass extracted from the nucleon correlator is shown.
The blue band shows the fitted plateau average.
Right: The squared pion mass dependence of the nucleon mass is shown by comparing the nucleon mass from
our target lattice cB211.64 to the values determined on the N f = 2+1+1 ETMC ensembles. The dotted line
shows the fit by employing chiral perturbation theory at O(p3).

quark mass dependence, a more robust result can be obtained. More concretely, we have employed

chiral perturbation theory at O(p3) [169, 170] for the nucleon mass dependence on the pion mass, i.e.

mN = mphys
N −4b1m2

π −
3g2

A
16π f 2

π

m3
π . (6.26)

Similarly to Ref. [43] we use the nucleon masses of the N f = 2+ 1+ 1 ETMC ensembles without

a clover term, determined in Ref. [40] to perform the chiral fit of Eq. (6.26). In our analysis we

neglect cutoff effects, which appear to be small and not visible within our statistical errors. The same

holds for finite volume effects, see Ref.[43]. We fixed fπ = 0.1304(2) GeV and gA = 1.2723(23) [17]

in Eq. (6.26). The resulting fit to Eq. (6.26) is shown in the right panel of Fig. 6.11 and allows to

determine the lattice spacing as

amN (β = 1.778) = 0.08087(20)(37) fm . (6.27)

The first error is statistical while the second error is the deviation between the estimate obtained from

Eq. (6.26) and taken the mass from the two-state fit. Note that the statistical error in the nucleon mass

is comparable with pion sector due to three orders of magnitude larger number of inversions.

6.3.7 O(a2) isospin splitting in the baryon sector

The finite twisted mass value can result into a mass splitting of hadrons which are symmetric under

the isospin symmetry of the light flavor doublet. As pointed out in sec. 6.3.1 this indeed leads to a

sizable effect in the neutral-charged pion mass splitting. Here, we want to discuss the splitting in

the baryon sector in case of the ∆-baryon employing the cB211.64 ensemble. Note that for the used

lattice size the lowest decay channel of the Delta baryon, which is a nucleon+pion state with correct

parity, is heavier than the Delta baryon itself. Thus, for the simulations performed here, the Delta can

be treated as a stable state.
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fN =2+1+1
fN =2

cB211.64

Figure 6.12: Relative differences of
the effective Delta baryon masses.

Top: The relative difference given by
δm∆,e f f (t)/m∆+ (blue squares). To
illustrate the beginning of the plateau
we added the relative effective mass
me f f (t)−mplateau

e f f with mplateau
e f f is the

plateau value m∆+ (blue squares).

Bottom: Isospin breaking for the
Delta baryons as a function of the
lattice spacing squared for non-clover
improved N f =2+1+1 ensembles,
N f =2 clover improved ensemble and
cB211.64 (red star). The value of
cB211.64 is the plateau extracted in
the top panel; the other values have
been computed in Ref. [40, 43].

We measured the ∆-baryon correlator by using the following interpolating fields

Jµ

∆+ =
1√
3

εabc

[
2
(
uT

a Cγ
µdb
)
uc +

(
uT

a Cγ
µub
)
dc

]
, (6.28)

Jµ

∆++ = εabc
(
uT

a Cγ
µub
)
uc . (6.29)

Note that Jµ

∆+ and Jµ

∆++ is symmetric under u→ d to Jµ

∆0 and Jµ

∆− respectively. We neglect the potential

mixing of ∆ with the spin-1/2 component which is suppressed [171]. Thus the correlators for the ∆++

is given by C∆ = Tr[C]/3 with Ci j = Tr[(1+ γ4)/2〈Ji
∆++(t)J̄

j
∆++(0)〉] and gives an average value of

am∆ = 0.5251(72) by using a plateau average over the effective mass. Now we define the splitting in

the mass by

δm∆,e f f = log
{

CR(t)
CR(t +a)

}
with CR =

C∆+(t)+C∆0(t)
C∆++(t)+C∆−(t)

(6.30)

where we average over the symmetric parts. In Fig. 6.12 we show the effective relative mass splitting

given by δm∆,e f f /m∆+ . In addition we plot the relative effective mass me f f (t) of the ∆+ particle

subtracted from its plateau average to illustrate where the plateau of the ∆-baryon starts. We find that

the relative splitting in the ∆ mass is δm∆/m∆+ = 0.0098(65) and hence close to zero within errors.

This result is in agreement with Ref. [76] where it was found that the isospin splitting of the twisted

mass action in the baryon section is suppressed.

6.3.8 Final determination of the lattice spacing

As we saw, the lattice spacing can be evaluated by matching lattice observables to their physical

counterparts. This has been done, as described in sections 6.3.4 and 6.3.6, in the meson sector

by employing the pion decay constant and in the baryonic sector using the nucleon mass, respec-

tively. Differences in the values obtained for the lattice spacing as determined using different phys-

ical observables can shed light on cut-off effects. We discuss here an additional method to deter-

mine the lattice spacing, which is provided by the gradient flow scale setting parameters t0 from

Ref. [172] and w0 from Ref. [173]. Following the procedure described in these articles and in
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Figure 6.13: Left: Linear extrapolation of the gradient flow observable t0/a2. Right: Linear extrapolation of
the gradient flow observable w2

0/a2. The solid line with the shaded violett band shows the linear extrapolation.

particular as applied to the twisted mass setup in Ref. [76], we extrapolate the gradient flow ob-

servables to the chiral limit using a fit ansatz linear in µ , which corresponds to LO χpt [174].

We employ the values computed for the ensembles Th1.350.24.k2, Th2.200.32.k2, Th2.125.32.k1,

cB211.64. The resulting curves are shown in Fig. 6.13. From the fit we find we extract at µ = 0

the values tch
0 /a2 = 3.261(6) and wch

0
2
/a2 = 4.550(20). Using the phenomenological values of

√
t0 = 0.1465(25) and w0 = 0.1755(18) [173] we deduce the following values for the lattice spacing

at0 = 0.0811(14) fm and aw0 = 0.0823(8) fm . (6.31)

phys. quant. lat. spac. [fm] quantities in lat. units

at0 0.0811(14) t0/a2
∣∣
µ`=0.00072 = 3.246( 7)

aw0 0.0823( 8) w2
0/a2

∣∣
µ`=0.00072 = 4.512(16)

a fπ
0.07986(38) a fπ |µ`=0.00072 = 0.05272(10)

amN 0.08087(44) mN/mπ |µ`=0.00072 = 6.829(19)

average 0.08029(41)

Table 6.5: We give the values of the lattice spacing determined by using different physical quantities as inputs,
including in the errors the input systematic uncertainties. The final value of the lattice spacing is derived via
a weighted average of a fπ and amN where for the final error a 100% correlated data is assumed [175]. The
residual systematic uncertainty on the lattice spacing, which stems from higher order cutoff effects, should be
of relative size O(a2) and looks numerically smaller than 2%.

In Table 6.5 we summarize the values of the lattice spacing as determined from the pion mass and

decay constant, the nucleon mass and the gradient flow parameters t0 and w0. As it can be noticed,

there are small deviations of the lattice spacing between the meson and the baryons sector and in any

case they are comparable to the one we have observed in the simulations with N f = 2 flavours of

quarks. That indicates that cutoff effects do not increase for our N f = 2+ 1+ 1 flavour setup used

here.
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6.3.9 Autocorrelation

The autocorrelation of the HMC algorithm, cf. Sec. 5.1.1 slows down critically for very fine lattice

spacings with a < 0.05 fm. This can be seen in the freezing of the topological charge [123]. For

our lattice with a∼ 0.08 fm we found that the topological charge can fluctuate between the different

sectors leading to small autocorrelation times of τint(Q) = 13(5) [MDU]. As pointed out in [176]

the energy density at finite flow times develops larger autocorrelation times in the regime with a &

0.05 fm. Although we have relative small statistics we calculated integrated autocorrelation time for

the plaquette and the gradient flow observables t0/a2 as shown in figure 6.14 by using the Γ-method

[177]. We find a pion mass dependence given by

τint(mπ) = A
1

mb
π

(6.32)

with b = 2.2(5) case of the plaquette while b = 2.0(7) in case of the gradient flow observable t0.

A possible explanation for the quark mass dependence of the autocorrelation time τint is a phase

transition in case of finite twisted mass term for vanishing neutral pion masses. Although the isospin

splitting is suppressed in our case, observables like the gradient flow observables shows an increase

with inverse of the squared pion mass. This behavior is also seen in the PCAC mass, where moderate

integrated autocorrelation times were found which can be clearly seen in the Monte Carlo history

(see right panel of Fig. 6.6). However in other quantities like the pseudoscalar mass, the pseudoscalar

decay constant or nucleon observables τint is very small and a quark mass dependence can be not

observed.
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Figure 6.14: The figure shows the integrated autocorrelation τint of the ensembles at maximal twist (from right
to left Th1.350.24.k1, Th2.200.32.k2, Th2.125.32.k1, cB211.072.64 for both cases). Note that we used here
the ensemble Th1.350.24.k1 instead of Th1.350.24.k2 which not at maximal twist but has a larger statistics.

6.3.10 Important remarks

We have presented here our first successful simulation of maximally twisted mass fermions with

N f = 2+ 1+ 1 quark flavours at the physical values of the pion, the kaon and the D-meson masses.

By having a lattice spacing of a = 0.08029(41) fm, we find that the simulation is stable also when

performed with physical values of the quark mass parameters. In particular, we have been able to

carry out a demanding but smooth tuning procedure to maximal twist and to find the values of the

light, strange and charm bare quark masses, which correspond to the physical ones for the first two

quark generations.
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In our setup, which employs a clover term, the cutoff effects appear to be small. Several observa-

tions corroborate this conclusion:

• as already mentioned above, the simulations themselves are very stable;

• as computed in the Secs. 6.3.3 and 6.3.4 and here summarized in Tab. 6.6 our tuned parameters

are very close to the physical point with deviations of few percent;

• when fixing the quark mass parameters through the selected physical observables, other phys-

ical quantities, as collected in Table 6.7 come out to be consistent with their physical counter-

parts;

• the O(a2) effects originating from the isospin breaking of twisted mass fermions are small

and significantly reduced compared to our earlier simulations without clover term with N f =

2+1+1 flavors at non-physical pion masses;

• deviations of the lattice spacing from the meson sector, the baryon sector and gradient flow

observables, as listed in Table 6.5, are small and of the same size as in our former N f = 2 flavor

simulations;

β cSW µ µ̄ ε̄ κcrit

cB211.64 1.778 1.69 0.00072 0.1246864 0.1315052 0.1394265
physical point a posteriori 0.00067(1) 0.1211(12) 0.126(13) T.B.D.

Table 6.6: The table shows the simulations parameters for the ensembles cB211.64 compared to the values
determine at posteriori on this ensemble for being exactly at physical point with β = 1.778 and cSW = 1.69.
An improved values of κcrit needs to be determined with reweighting factors.

amπ = 0.05658(6) amK = 0.2014(4) amD = 0.738(3)

mπ/ fπ = 1.0731(30) mK/ fK = 3.188(7) mD/ fD = 8.88(11)

amN = 0.3864(9) amPCAC = 0.189(114)10−4

mN/mπ = 6.829(19) P = 0.5543008(60)

Table 6.7: The masses and the decay constants of the charged pseudoscalar mesons as well as the plaquette P,
the PCAC mPCAC and the nucleon mass mN are presented.

We thus conclude that we have given a successful demonstration that simulations of maximally

twisted mass fermions with N f = 2+1+1 quark flavors can be carried out with all quarks of the first

two generations tuned to their physical values. This clearly opens the path for the ETM collaboration

to perform simulations towards the continuum limit with a rich research program being relevant for

phenomenology and ongoing and planned experiments.
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7. Pion and nucleon electromagnetic form factor

We discuss results on the pion and nucleon electromagnetic form factors. In particular, we discuss

nucleon observables that unlike the ones for the pion have larger statistical uncertainties: although

we perform three orders of magnitude more measurements compared to pion form factors, the signal

we achieve is not yet precise to shed light on the discrepancy between the muonic determination of

the proton charged radius and the one extracted from electron scattering experiments, cf. Sec 1.2.1.

The analysis of these ensembles also heavily relied on the application of the multigrid approaches

developed.

7.1 Pion electromagnetic form factor

The electromagnetic pion form factor, Fπ(Q2) is investigated using small values of the four-momentum

transfer Q2 ≤ 0.25 GeV2 [11]. We combined several N f = 2 ensembles produced by the ETM col-

laboration at fixed lattice spacing, a ' 0.09 fm and several pion masses, from the physical value up

to about 340 MeV, as well as for several lattice volumes. The study included the two physical point

ensembles cA2.48 and cA2.64 reported in Tab. 6.1.

The pion form factor is computed from the matrix elements of the electromagnetic vector current

Vµ(x) =
2
3

ū(x)γµu(x)− 1
3

d̄(x)γµd(x) (7.1)

between pion states, yielding〈
π
+(~p′)|Vµ(0)|π+(~p)

〉
= (p′µ + pµ)Fπ(Q2) , (7.2)

where qµ = (pµ − p′µ) is the 4-momentum transfer and

Q2 ≡−q2 =
∣∣∣~p−~p′∣∣∣2−[Eπ(~p)−Eπ(~p′)

]2
= 4 |~p|2 ,

where the right hand side is given in the Breit frame, i.e ~p′ = −~p. For the discussion of the pion

form factor, we consider only the Breit frame. As detailed in Ref. [178], up to discretization effects

of order O(a2), it is enough to compute only the connected contributions in Eq. (7.2) considering the

single flavor current ū(x)γµu(x). Since the spatial matrix elements of the vector current are vanishing,

i.e. p′i + pi = 0 with i = 1,2,3 in Eq. (7.2), we compute the following correlation functions

C2pt(t,~p) = ∑
x,z

〈
Jπ(x)J†

π(z)
〉

δt,tx−tze
−i~p·(~x−~z) (7.3)

C3pt
0 (t, t ′,~p,−~p) = ∑

x,y,z

〈
Jπ(y)V0(x)J†

π(z)
〉

δt,tx−tzδt ′,ty−tze
−i~p·(~x−~z)−i~p·(~x−~y) , (7.4)

where V0(x) = ū(x)γ0u(x) is the temporal component of the local vector current, Jπ(x) = d̄(x)γ5u(x)

is the interpolating operator annihilating the π+, t is the time distance between the vector current

insertion and the source and t ′ is the time distance between the sink and the source.
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Figure 7.1: Data for the electromagnetic form factor Fπ as a function of Q2 for the N f = 2 ensembles [150],
where the two at Mphys

π with L/a = 48 and 64 are respectively cA2.48 and cA2.64 in Tab. 6.1. The gray band
shows the extrapolated form factor at the physical pion point and after taking the infinite volume limit. In
addition we show experimental results from CERN [179].

Taking the appropriate limits in the time extent we obtain

lim
t→∞
T→∞

C2pt(t,~p)→ G2
π

2Eπ(~p)
e−Eπ (~p)t (7.5)

lim
t→∞

(t ′−t)→∞
T→∞

C3pt
0 (t, t ′,~p,−~p)→ G2

π

2Eπ(~p)2Eπ(~p)

〈
π
−(~p)|V0|π+(~p)

〉
e−Eπ (~p)te−Eπ (~p)(t ′−t) , (7.6)

where G2
π is the amplitude of the 2-point correlation function. The ratio

R(t, t ′,~p) =
C3pt

0 (t, t ′,~p)
C2pt(t ′,~p)

, (7.7)

has the following limit

lim
t→∞

(t ′−t)→∞
T→∞

R(t, t ′,~p)→ 〈π
+(−~p)|V0|π+(~p)〉

2Eπ(~p)
=

1
ZV

Fπ(Q2) .

where the renormalization constant of the vector current, ZV , is fixed by the normalization condition

Fπ(0) = 1. We get ZV = 0.6679 (1)stat (1)syst for the lattice spacing considered here.

As depicted in Fig. 7.1, we combine the measurements of Fπ(Q2) from multiple twisted mass

ensemble obtaining a final result, the gray band in the figure, which takes into account mass and

finite volume corrections. For doing so, we used SU(2) Chiral Perturbation Theory (ChPT) at next to

leading order (NLO) writing

Fπ(Q2,mπ ,L) = 1+∆FNLO
π (Q2,mπ ,∞)+KNLO

FVE (Q2,mπ ,L), (7.8)

where ∆FNLO
π (Q2,mπ ,∞) is the continuum ChPT correction while KNLO

FVE (Q2,mπ ,L) takes into account

of the finite size effects. The continuum ChPT corrections are known at several order [160, 180] and
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the NLO term is given in powers of (Q/Mπ)
2 as

∆FNLO
π (Q2,mπ ,∞) =−sNLO

π

Q2

M2
π

+ cNLO
π

Q4

M4
π

+O

(
Q6

M6
π

)
, (7.9)

where the slope and curvature are respectively

sNLO
π =

1
3

ξ

[
`6− log

ξ

ξ phys −1
]
, (7.10)

cNLO
π =

1
30

ξ . (7.11)

with `6 being an SU(2) low-energy constant and ξ ≡ M2
π/(4π fπ)

2. The SU(2) ChPT prediction of

KNLO
FVE (Q2,mπ ,L) derived at NLO in the Breit frame is available in Refs. [181, 182]. The ensemble

cA2.64 played an important role in the infinite volume extrapolation showing quantifiable effects also

at the physical pion mass, as seen by comparing the results for cA2.48 and cA2.64 in Fig. 7.1.

An important observable, which can be extracted from the electromagnetic form factor is the

mean squared charged radius. It is obtained from

〈r2〉=− 6
F(0)

∂F(Q2)

∂Q2

∣∣∣∣
Q2=0

. (7.12)

Our final value at the physical point is
〈
r2
〉

π
= 0.443(29) fm2, where the error includes several

sources of systematic errors. Discretization effects still need to be determined, since in this study

we employed one lattice spacing. The extracted radius is consistent with the experimental value of

〈r2〉exp.
π = 0.452 (11) fm2 [17]. This suggests that discretization effects on our result are small and

within the current statistical accuracy but this conclusion needs to be verified by repeating the cal-

culation at a smaller value of the lattice spacing. The calculations of 〈r2〉π from lattice QCD have

been examined recently by FLAG and are collected in Table 22 of Ref. [45]. Three results satisfy the

FLAG quality criteria, namely: 〈r2〉π = 0.456 (38) fm2 [178] (N f = 2), 〈r2〉π = 0.481 (35) fm2 [183]

(N f = 2) and 〈r2〉π = 0.403 (19) fm2 [184] (N f = 2+1+1). Our finding is nicely consistent with all

the these lattice results.

7.2 Nucleon electromagnetic form factor

The nucleon matrix element of the electromagnetic form factor is parameterized in terms of the Dirac

(F1) and Pauli (F2) form factors given in Minkowski space by

〈N(p′,s′)|Vµ |N(p,s)〉=
√

m2
N

EN(~p ′)EN(~p)
ūN(p′,s′)

[
γµF1(Q2)+

iσµνqν

2mN
F2(Q2)

]
uN(p,s) , (7.13)

where N(p,s) is the nucleon state with initial (final) momentum p (p′) and spin s (s′), with energy

EN(~p) (EN(~p ′)) and mass mN . Q2≡qµqµ is the momentum transfer squared with qµ=(p′µ − pµ),

uN is the nucleon spinor and Vµ is the vector current. The electric and magnetic Sachs form factors

GE(Q2) and GM(Q2) are alternative Lorentz invariant quantities and are expressed in terms of F1(Q2)

and F2(Q2) via the relations,

GE(Q2) = F1(Q2)+
Q2

4m2
N

F2(Q2) , (7.14)
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GM(Q2) = F1(Q2)+F2(Q2) . (7.15)

The nucleon electromagnetic form factors are investigated in Ref. [13] for the cA2.64 and on the

cB211.64 ensembles. Here we summarize the results for the cB211.64 ensemble considering only the

isovector form factors, which do not require disconnected contributions. The isovector current is

V u−d
µ = ju

µ − jd
µ , (7.16)

which gives the difference between the proton and neutron form factors. In contrast to our study for

the pion form factor, where we used the local vector current j f
µ = q̄ f γµq f , for the nucleon electro-

magnetic form factors we employ the symmetric lattice conserved vector current given by

j f
µ(x) =

1
4
[q̄ f (x+ µ̂)U†

µ(x)(1+ γµ)q f (x)− q̄ f (x)Uµ(x)(1− γµ)q f (x+ µ̂)

+q̄ f (x)U†
µ(x− µ̂)(1+ γµ)q f (x− µ̂)− q̄ f (x− µ̂)Uµ(x− µ̂)(1− γµ)q f (x) ] , (7.17)

which does not need renormalization.
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Figure 7.2: Left: The isovector electric form factor as a function of Q2 (circles). We show fits to our results
using a dipole form (top) and using the z-expansion (bottom) for kmax=4. Black crosses are experimental
results taken from the A1 collaboration [51] for the proton and from Refs. [185–199] for the neutron.
Right: The isovector magnetic form factor fitted using a dipole form (top) and using the z-expansion (bottom).

In Fig. 7.2 we depict the electric and magnetic Sachs form factors for the isovector current mea-

sured on the cB211.64 ensemble. We use two fitting Ansätze for the Q2-dependence. Since one

expects that for small Q2 > 0 the behavior is dominated by the poles in the time-like region then one

can use a dipole form given by [200]

G(Q2) =
G(0)

(1+ Q2

M2 )2
, (7.18)

where M is the mass of the vector meson that parameterizes the Q2 dependence. A model independent

fit, which has been applied recently to experimental data of both electromagnetic and axial form
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factors, is the z-expansion [201]. In this case, the form factor is expanded as a series

G(Q2) =
kmax

∑
k=0

akzk, (7.19)

where

z =

√
tcut +Q2−√tcut√
tcut +Q2 +

√
tcut

(7.20)

and tcut is the time-like cut-off. We take tcut=4m2
π for the isovector combination Gu−Gd [201].
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Figure 7.3: Results for the isovector charge
radius 〈r2

E〉u−d , magnetic moment µu−d and
magnetic radius 〈r2

M〉u−d from the plateau
method using ts/a=20 as extracted from a
dipole fit (green square) and z-expansion
(red triangles). The latter are shown as a
function of kmax. The green band is the sta-
tistical error on the value extracted from the
dipole fit.

The value of the form factor at zero momentum transfer gives the electric charge in the case of

the electric form factor and the magnetic moment in the case of the magnetic form factor. We can

investigate finite volume effects by comparing the two N f=2 twisted mass ensembles with pion mass

of 130 MeV with the same lattice spacing but Lmπ'3 and Lmπ'4. We observe consistent results

between these two volumes, but we cannot exclude finite volume effects of the order of our statistical

errors that may affect the magnetic form factor for small Q2 values as the volume increases. Further

studies are required to take the infinite volume limit and make definite conclusions on the small Q2

behavior of the magnetic form factor. In Fig. 7.3 we compare the extracted values of the electric and

magnetic radius defined in Eq. (7.12) and of the magnetic moment µ = GM(0). The values extracted

from the dipole fit are all compatible with the z-expansion for kmax ≥ 3. We take as reference value

the one obtained from the dipole fit. In Fig. 7.4 we compare our value with others extracted using our

other ensembles or from other collaborations. As can be seen, our results are one of the most precise.

Comparing results calculated using N f =2 and N f =2+1+1 twisted mass ensembles we observe no

quenching effects. Our values for the electric and magnetic radii as well as the magnetic moment are

all compatible within errors. Overall the values extracted within lattice QCD underestimate the elec-

tric and magnetic radii. This is due to the slower decay of Gu−d
E (Q2), which needs to be investigated

further.
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Figure 7.4: Isovector
√
〈r2

E〉u−d ,
√
〈r2

M〉u−d and µu−d with lattice QCD results from the cB211.64 ensemble,
from the cA2.64 ensemble with mπ L ' 4 (blue squares), the cA2.48 ensemble with mπ L ' 3 from Ref. [149]
(green triangles), LHPC using N f=2+1 stout-smeared clover fermions from Ref. [202] (left purple triangles)
and Ref. [203] (right yellow triangles) and from PACS using N f=2+1 stout-smeared clover fermions from
Ref. [204] (cyan rhombuses). The experimental result extracted from muonic hydrogen [47] is shown by
the vertical dashed-dotted line and from CODATA [50] by the dotted vertical line. The PDG value [17] is
shown with the dashed vertical line. The red vertical inner band denotes the statistical error extracted using the
N f=2+1+1 twisted mass ensemble and the outer lighter band is the total error adding statistical and systematic
errors in quadrature.
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Conclusions

Improvements to the simulation algorithms have been one of the main focus of this thesis. We

have implemented several state-of-the-art approaches achieving two order of magnitude of speed-

up. Namely we have employed the DD-αAMG solver for the inversion of the degenerate and non-

degenerate twisted mass fermions presented in Chapter 4; we have optimized the solution of shifted

linear systems via multigrid methods employing suitable initial guesses for the rational approxima-

tion; and accelerated N f =2 and N f =2+1+1 twisted mass simulations at the physical point. Addition-

ally our production codes have been optimized for current computing architectures.
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Figure 7.5: Improvements over the years in the ensemble production, in core-hours per molecular dynamics
update (MDU) as a function of the lattice length L. Dashed curves are for N f =2 simulations, while the solid
curves are for N f =2+1+1 simulations. All the curves show the volume scaling according to the standard second
order integration schemes, namely L5. The recently developed fourth order integration scheme is shown with
the red curve, following a L4.5 dependence. The rhombus, circle, pentagon and star show the data points
used to determine the curves. The blue arrow shows the speedup obtained when considering all improvements
developed so far for the simulation of the cC211.80 ensemble compared to our first ensemble at the physical
point cA2.48. The rest of the arrows show, from left to right: the improvement obtained using DD-αAMG for
N f = 2 (green arrow), the cost increase when going from N f = 2 to N f = 2+1+1 both with and without DD-
αAMG (brown arrows), the improvement when using DD-αAMG in the heavy strange-charm sector (1+ 1)
of the simulation (green arrow), and the improvement when using a 4th order integration scheme compared to
a 2nd order scheme (green arrow).

The various improvements are illustrated in Fig. 7.5, where one can see the large speed-up ob-

tained by transitioning to multigrid, namely almost two orders of magnitude, as well as the improved

scaling obtained by employing fourth order integration schemes. N f =2 simulations are accelerated

by employing and tuning the DD-αAMG method within the simulation algorithm. It resulted in a

speed-up of a factor of about one order of magnitude for simulations at the physical pion mass. The

speed-up is smaller than the two order of magnitudes achieved for the single inversion at the physical

pion mass. This is because the multigrid method requires a setup phase the cost of which cannot be

avoided in case of simulations since it is configuration dependent and in HMC simulations the con-

figuration evolves during the integration following a molecular dynamic trajectory. Moreover, many
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other calculations are included in a HMC step and the calculation of physical quark propagators is

only a fraction. The N f =1+1 sector of the simulation was also accelerated achieving a speed-up of a

factor of two for this specific sector in the simulation.

We have also implemented and analyzed fourth order integration schemes, namely the force gra-

dient scheme (2NMFG) [130, 205] and the Omelyan-Mryglod-Folk (OMF4) integrator. Fourth order

schemes have a better volume scaling compared to second order schemes: at fixed acceptance rate the

number of integration steps scales with V 1/8 for the first and with V 1/4 for the latter. The drawback is

that the fourth order schemes require more applications of gauge derivatives and thus more inversions

of the operator D per integration steps. The scaling therefore pays back as the lattice size increases,

as shown by the red curve in Fig. 7.5.

Using the aforementioned improvements, the ETM collaboration was enable to simulate three

ensembles at the physical point. These are the ensembles cA2.64, cA2.64.r, cB211.64 and cC211.80

which cost per MDU is depicted in Fig. 7.5 and simulation details have been described in Chapter 6.

The ensemble cA2.64, with N f = 2 and lattice size L = 64 has been simulated for studying finite

size effects by comparing results computed on cA2.48, which differ only on the lattice size having

L = 48. The ensembles cB211.64 and cC211.80 have been simulated for taking the continuum limit

in N f = 2+ 1+ 1 QCD with light, strange and charm quark masses tuned to their physical value.

Results on the cA2.64 and cB211.64 have been computed while the ensemble cC211.80 has not been

analyzed yet. In Chapter 7, we showed results for the electromagnetic form factor on these ensembles.

Analyses and publications of other quantities are under preparation.
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