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Abstract

We describe the computation of parton distribution functions (PDFs) of the nucleon from first
principles. The investigation is done within the lattice formulation of Quantum Chromody-
namics (QCD). The numerical calculations are performed employing a twisted mass ensemble
of gauge field configurations simulated with two degenerate light quarks with mass fixed to
their physical value. By using the quasi-PDF approach we extract the isovector unpolarized,
helicity and transversity distributions. Within this approach, we compute quasi-distributions
which are related to the physical PDFs using the framework of Large Momentum Effective
Theory. As the nucleon boost increases, we observe that the renormalized lattice PDFs move
towards the quark distributions extracted from global QCD analyses. The results at larger
momentum boost reproduce the main features of the phenomenological fits to inclusive and
semi-inclusive scattering data. We discuss future issues that need to be addressed to eliminate
systematic uncertainties related to the lattice calculation. The results obtained clearly demon-
strate the potential impact of non-perturbative methods in the determination of PDFs and
open a most promising path to investigate quantities that require the evaluation of non-local
operators on the lattice.
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Περίληψη

Περιγράφουμε τον υπολογισμό των συναρτήσεων διανομής (PDFs) του νουκλεονίου αρχί-
ζοντας από τη Λαγκαντζιανή των ισχυρών αλληλεπιδράσεων και χρησιμοποιώντας το φορ-

μαλισμό Κβαντικής Χρωμοδυναμικής (ΚΧΔ) πλέγματος. Οι αριθμητικοί υπολογισμοί εκ-
τελούνται χρησιμοποιώντας ένα σύνολο γκλουονικών πεδίων που προσομοιώνεται με δύο

εκφυλισμένα ελαφρά κουάρκ (up, down) με μάζα ίση με τη φυσική τους τιμή. Εξάγουμε
τις μη-πολωμένες, ελικοειδείς και εγκάρσιες κατανομές. Ο υπολογισμός των κατανομών
σχετίζεται με τα φυσικά PDFs χρησιμοποιώντας το πλαίσιο της Θεωρίας Μεγάλης Ορμής.
Καθώς αυξάνεται η ορμή του νουκλεονίου, παρατηρούμε ότι τα PDFs πλέγματος προσεγγί-
ζουν τις κατανομές κουάρκς που εξάγονται από τις αναλύσεις των πειραματικών δεδομένων.
Τα αποτελέσματα σε μεγαλύτερη ορμή αναπαράγουν τα κύρια χαρακτηριστικά των φαιν-

ομενολογικών PDFs. Συζητάμε τα μελλοντικά ερωτήματα που πρέπει να αντιμετωπιστούν
προκειμένου να εξαλειφθούν οι συστηματικές αβεβαιότητες που σχετίζονται με τον υπ-

ολογισμό του πλέγματος. Τα αποτελέσματα που προέκυψαν δείχνουν σαφώς τον πιθανό
αντίκτυπο των μη διαταρακτικών μεθόδων στον προσδιορισμό των PDFs και ανοίγουν μια
πολύ ελπιδοφόρα πορεία για τη διερεύνηση ποσοτήτων που απαιτούν την αξιολόγηση μη

τοπικών τελεστών στο πλέγμα.
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Zusammenfassung

Wir beschreiben die ab-initio Berechnung von Parton Verteilungsfunktionen (PDFs) des Nuk-
leons. Die Untersuchung wird innerhalb der Gitterformulierung der Quanten-Chromodynamik
(QCD) durchgeführt. Die numerischen Berechnungen werden unter Verwendung von En-
semblen von Eichfeldkonfigurationen durchgeführt, die einen chiral verdrehten Massenterm
benutzen, wobei die leichten Quarks massen-degeneriert und auf ihren physikalischen Wert
fixiert sind. Mit Hilfe des Quasi-PDF-Ansatzes extrahieren wir die Isovektor-unpolarisierten
Helizität und Transversalverteilungen. Innerhalb dieses Ansatzes berechnen wir zunächst
Quasi-Verteilungen und verknüpfen diese mit den physikalischen PDFs im Rahmen der ef-
fektiven Theorie großer Impulse. Wir finden, dass sich die renormierten Gitter-PDFs mit
zunehmenden Nukleon-Boost den Quark-Verteilungen annähern, wie sie aus globalen QCD-
Analysen extrahiert werden. Insbesondere reproduzieren die Ergebnisse bei größerem Boost
die Hauptmerkmale der phänomenologischen Fits an inklusive und semi-inklusive Streudaten.
Wir sprechen zukünftige Probleme an, die angegangen werden müssen, um systematische
Unsicherheiten im Zusammenhang mit der Gitterberechnung zu kontrollieren. Die erzielten
Ergebnisse verdeutlichen klar die potenzielle Anwendung von nicht-störungstheoretischen
Methoden bei der Bestimmung von PDFs und eröffnen einen vielversprechenden Weg zur
Untersuchung von Größen, die die Berechnung von nicht-lokalen Operatoren auf dem Gitter
erfordern.
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Chapter 1

Introduction

The strong nuclear force plays an essential role in Particle Physics. It is one of the four
fundamentals forces in Nature, responsible for holding quarks and gluons together to form
composite states, called hadrons. Protons and neutrons are perhaps the most well known
strongly interacting particles and form the essential building blocks of atomic nuclei. The
theory describing the strong force is called Quantum Chromodynamics (QCD).

QCD has its roots in the constituent quark picture, formulated in the ’60s by Gell-Mann
and Zweig [1, 2] independently. They put forward that low energy properties, such as the
spin, could be explained if hadrons were made up of elementary particles, called quarks.
At the same time, there was an intensive experimental program to study the inner structure
of hadrons through scattering experiments, mostly limited to scattering of electrons off a
proton target. In 1969 at the Standford Linear Accelerator (SLAC) it was discovered that
at large momentum transfer Q, new hadronic states were produced as final products of the
collisions [3, 4]. Moreover, the structure functions that parameterize the cross sections were
surprisingly found to be almost constant over a large range of Q2 values. This behavior, which
appeared clearly in contrast with the rapid decay observed for the elastic structure functions,
was also predicted by Bjorken and is known as Bjorken scaling [5].

To explain the formation of new states in the so-called deep inelastic scattering regime,
it was assumed that the proton had a granular structure and its point-like constituents were
essentially free [6]. Within Feynman’s parton model, the proton constituents were called
partons. Later it became natural to identify the partons with the quarks of Gell-Mann and
Zweig. However, in this picture there were still some inconsistencies that needed to be
solved. Firstly, assuming that quarks are charged point-like particles, the measured cross
sections e+e−→ hadrons were found to be larger than expected; secondly, it was difficult to
construct antisymmetric wave functions for certain hadronic states, like for the ∆++. These
paradoxes were overcome by associating to the quarks an extra quantum number called color,
which exists in three variants. In addition, measurements of structure functions showed that
quarks did not generate the complete momentum of the proton and almost half was missing.
This suggested that there must be other constituents besides quarks, that at high energies
interact very weakly so that Bjorken scaling is satisfied. These inconsistencies were finally
explained with the discovery of asymptotic freedom of non-Abelian gauge theories [7–9].
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For this discovery, Gross, Politzer and Wilczek were awarded the Nobel Prize in Physics in
2004. Thus, the experimental fundings and theoretical discoveries mentioned above led to the
establishment of QCD as the theory of strong interactions. This is a non-Abelian gauge theory,
based on the SU(3) color symmetry group [10]. QCD is described in terms of matter fields
(quarks and antiquarks) and gluons, vector bosons that mediate the strong force. Quarks,
antiquarks and gluons are collectively called partons. In Table 1.1, we list the six known
flavors of quarks: up, down, strange, charm, top, bottom. They cover a wide range of masses,
from few MeV (for up and down quarks) up to around 170 GeV for top quark [11].

u d s c b t

Q-electric charge +2/3 −1/3 −1/3 +2/3 −1/3 +2/3

I- isospin +1/2 +1/2 0 0 0 0

Iz- isospin z-component +1/2 −1/2 0 0 0 0

Table 1.1 The six flavors of quarks (u, d, s, c, b, t) and their additive quantum numbers for the electric
charge (Q), isospin (I) and isospin z-component (Iz) [11].

The non-Abelian structure of the theory is responsible for asymptotic freedom: at high
energies (or equivalently at small distances) quarks and gluons behave as free particles, in
line with the original Feynman’s parton model and Bjorken’s prediction. On the other hand,
the constituents are only approximately free because of QCD effects, as later confirmed by
deep inelastic scattering where Bjorken scaling violations were observed. However, the most
puzzling feature of QCD is that quarks have never been observed isolated. This property
is called color confinement: color-charged particles, such as quarks and gluons, cannot be
isolated and are confined within hadrons. An analytic proof of color confinement has not been
found up to date. The reason is that the value of the strong coupling, αs, increases at large
distances and αs ∼ O(1) at energies comparable to ΛQCD (approximately 300 MeV [12]).
The running of the coupling is qualitatively shown in Fig. 1.1. At low energies, the behavior

0 1 2 3 4 5 6 7
0

2

4

6

8

Figure 1.1 The dependence of αs on the energy scale µ .

of αs cannot be predicted in perturbative QCD, as perturbative methods fail in this regime.
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Consequently, no hadronic property involving long-distance physics can be investigated in
terms of an expansion of the coupling.

An approach to study gauge field theories in the non-perturbative regime was proposed by
Wilson in 1974 [13]. Applied to the strong interactions, this method took the name of lattice
QCD. In this approach, the theory is discretized in a hypercubic grid with Euclidean metric
and is solved numerically via Monte Carlo methods.

In Euclidean space, the distance between two space-time points is defined in the usual
way as d2 = t2 + r⃗2, whilst in the Minkowski as d2 = t2− r⃗2. The metric used in lattice QCD
poses serious limitations on the study of quantities that in Minkowski space are defined on
the light-cone. An example of those are parton distribution functions (PDFs), which are the
objects of interest in this Thesis.

Parton distribution functions are among the intangible elements of the real world, de-
scribing the momentum distributions of quarks and gluons inside hadrons. They were first
introduced in Feynman’s parton model, where deep inelastic cross sections lepton-proton were
shown to factorize in partonic cross sections and PDFs. The twist-two PDFs of interest here
are of three kinds: unpolarized, helicity, and transversity distributions. They all quantify the
probability densities of finding a parton with a longitudinal momentum fraction x (0≤ x≤ 1)
of the total momentum of the parent hadron. The difference among them lies on how the
quark helicity is aligned with respect to the helicity of the parent hadron, which can be
longitudinally or transversely polarized. Much later, PDFs were generalized to functions
that probe also the quark spin and the transverse momentum distributions; these include
generalized parton distributions (GPDs) [14–17] and transverse-momentum dependent parton
distribution functions (TMDs) [18–21].

PDFs, which are the simplest distribution functions, have been studied intensively and
continuously in experimental facilities over the last few decades, most notably for the proton.
The interest was, also in part, motivated by the fact that PDFs are an essential and indispensable
input for collider experiments, such as the LHC. In fact, a rich experimental program at major
facilities, e.g. BNL, CERN, DESY, Fermilab, JLab and SLAC, has provided a wealth of
measurements with a corresponding world-wide theoretical effort to interpret the results. The
method used to extract information from scattering data is called global QCD analysis (see
e.g. [22, 23]). In general, one resorts to fits of experimental data aided by phenomenologically
motivated Ansätze. However, knowledge of PDFs only from phenomenological fits cannot be
considered as a direct and ab initio QCD prediction, as the analysis is not-unique [24]. In fact,
a comparison between different extractions from global fits is shown in Fig. 1.2 for the gluon
(left) and down quark (right) PDF within the proton. As can be seen, PDF determinations are
not without ambiguities and an extraction from first principles is a valuable addition to the
global fitting analyses.

The non-perturbative nature of PDFs makes lattice QCD an ideal ab initio formulation to
study them, utilizing large-scale simulations. A direct evaluation was thought to be impossible
until recently, since PDFs require light-cone dynamics, which cannot be implemented on a
Euclidean lattice. Unlike PDFs, there is no theoretical difficulty in extracting the moments
of these distributions, as they are related to matrix elements of local operators. However,
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Figure 1.2 Left: The gluon PDF xg(x,Q2), at Q = 1.7 GeV, extracted from NNPDF3.1 [25],
MMHT14 [26], CT14 [27] NNLO sets with αs(mZ) = 0.118. Right: The down quark PDF, xd(x,Q2)
at Q = 100 GeV, comparing the NNPDF3.1 [25], MMHT14 [26], CT14 [27], ABMP16 [28] NNLO
sets. Figures from Ref. [23].

only the lowest moments can be realistically computed, due to an unavoidable large gauge
noise for high moments and the presence of power-divergent mixing with lower-dimensional
operators (see e.g. [29–32]). This has clearly made impossible a full reconstruction of PDFs
from first principles.

A possible solution to extract parton distribution functions from lattice QCD was proposed
six years ago by X.Ji [33]. Within this method, called quasi-PDF approach, one computes
matrix elements probing purely spatial correlations, accessible in Euclidean lattice QCD. The
correlation functions are then related to the physical PDFs within the framework of Large
Momentum Effective Theory [34]. Soon after its introduction, this method was intensively
explored with promising results presented in Ref. [35] and later in Refs. [36, 37] by the
ETM (Extended Twisted Mass) Collaboration. Subsequent investigations can be found in
Refs. [38, 39]. The quasi-PDF approach has renewed interest towards a direct computation
of PDFs from lattice QCD and also in other approaches that were proposed earlier but
not applied until recent times, such as the hadronic tensor [40–42]. Other recent lattice
techniques for studying x-dependent hadron structure include the so-called good lattice cross
sections [43, 44] and pseudo-PDFs [45–48]; the lattice investigations with the latter approach
can be found in Refs. [49–52]. For a detail overview of the current status of lattice QCD
calculations of PDFs and other partonic distributions we refer to recent reviews [53, 54].

Despite the tremendous progress in this field, the accuracy of lattice QCD computations
of PDFs cannot still compete so far with the one of the moments, achieved after a long
history of lattice effort. This is because the investigation of PDFs is a new research field that
entails many delicate components, such as the renormalization of non-local operators that
was understood only in 2017, with the first works of Refs. [55, 56].

The work presented in this Thesis is part of the effort by ETM Collaboration and is based
on Refs. [57–59]. The results presented here concern distribution functions of the nucleon
corresponding to the isovector flavor structure u−d and are obtained by using a gauge field
ensemble with two degenerate light quarks whose masses are tuned to their physical value.
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Before discussing the actual research that has been done for quark distribution functions,
we dedicate Chapter 2 to an overview of scattering experiments, as they played a pivotal role
in understanding the inner structure of hadrons. Starting from elastic scattering we proceed to
deep inelastic scattering and introduce the definition of parton distribution functions. State-
of-the-art unpolarized, helicity and transversity PDFs are also presented, with focus on the
light-content of the proton of interest in our work.

In Chapter 3 we give an overview of lattice QCD, describing the Wilson discretization of
the QCD action and the clover improvement. We then introduce the twisted mass fermion
action for two degenerate light quarks and subsequently explain the theoretical principles of
the quasi-PDF approach.

The lattice techniques employed in our computation are described in Chapter 4. These
include smearings of interpolating fields and of the gauge links, as well as the method to
generate quark propagators, which are the building blocks of nucleon correlation functions in
lattice QCD. The focus is only on the so-called connected diagrams entering our calculation.

In Chapter 5 we present our numerical setup, namely the gauge ensemble used and the
tuning of different parameters in order to reduce the signal-to-noise ratio for large momenta
and accumulate high statistics at reduced computational cost. Moreover, we present the
unrenormalized results for the matrix elements at different source-sink time separations and
our analysis on isolating the ground state matrix element. We also discuss the computational
cost of our calculations and explain what the computational challenges are for such lattice
investigations.

The renormalization procedure of our lattice operators is addressed in Chapter 6. In
particular, we describe the types of divergences that need to be removed, the computation
of the renormalization functions on the lattice and finally present the renormalized matrix
elements for the unpolarized, helicity and transversity distributions. The effect of gauge
link-smearing is also discussed.

In Chapter 7 we describe the extraction of the physical PDFs. From the renormalized
matrix elements, we show how to compute the quasi-distributions for the three twist-two
operators and apply the necessary corrections to match the quasi- to the physical PDFs. We
show how the lattice results approach the phenomenological PDFs as the momentum increases,
and compare our results at the highest momentum with PDFs from global analyses. We also
discuss the dependence on the quark mass and demonstrate that performing the calculation at
physical mass is important. Finally, we summarize the outcome and discuss future directions
in Chapter 8.
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Chapter 2

Parton physics

In this Chapter we present an overview of the theoretical and experimental background
in which this work is embedded. Given the central role played by scattering processes in
understanding hadron structure, the first two Sections are dedicated to the analyses of some
of the simplest scatterings, elastic and inelastic, and to the calculation of the corresponding
cross sections. The interpretation of experimental data in the inelastic scattering regime
will naturally lead to the formulation of a parton model and to the introduction of Parton
Distribution Functions (PDFs). In the last Section, state-of-the-art phenomenological results
for PDFs are reported, with special emphasis on the light-content of the proton.
Before introducing the concept of parton distribution functions, let us first start with the basic
scattering processes, and then add complications that bring us to the lepton-hadron inelastic
scattering.

2.1 Elastic scattering

2.1.1 Electron-muon scattering

The simplest scattering processes exclusively involve point-like particles and have the same
initial and final particle states. These processes are known as elastic scattering. To establish
the formalism, we consider the elastic scattering of electrons off muons, e−µ− → e−µ−.
The interaction between e− and µ− can be mediated by a photon or Z0 bosons, with the
electroweak contribution becoming important for center-of-mass energy ECM > MZ ≃ 90 GeV.
For simplicity, we assume that the collision occurs at low energy so that the cross section can
be computed in Quantum Electrodynamics (QED) at the leading order; we also suppose that
it is dominated by only one virtual photon exchange. The Feynman diagram associated to this
process is shown in Fig. 2.1.

We call kµ , k′µ the momenta of the incoming and outgoing electron and pµ , p′µ the ones of
the initial and final muon respectively. The particle states, with well-defined momentum and
spin, are indicated by Dirac spinors, like u(k,σ), u(p,s) for the incoming electron and muon,
etc. Using this notation and denoting with qµ = (k− k′)µ the momentum transfer carried by
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2.1 Elastic scattering

Figure 2.1 Lowest-order diagram for e−(k)µ−(p)→ e−(k′)µ−(p′).

the virtual photon, the scattering amplitude of the process reads

iM f i = ū(k′,σ ′)(−ieγ
µ)u(k,σ)

(
−i

gµν

q2

)
u(p′,s′)(−ieγ

ν)u(p,s) . (2.1)

gµν = diag(+1,−1,−1,−1) is the Minkowski tensor and γµ are the Dirac γ-matrices (see
e.g. [60] for standard conventions). The amplitude above enters the general expression for the
differential cross section, dσ , in the following way

dσ = (2π)4
δ

4(Pf −Pi)
1
4I
|M f i|2

n

∏
i=1

d3 pi

(2π)32Ei
, (2.2)

where 4I is the flux factor [60], Pf ,Pi are the quadri-momenta of the initial and final states,
and pi,Ei are the momenta and energies of the final particles, which are fixed by momentum
conservation through the Dirac-delta δ 4(Pf −Pi).

To evaluate the cross section, one needs to choose a reference frame, since the scattering
amplitude depends on the momenta and polarization of the particles involved in the collision.
The simplest case, considered here, corresponds to the one in which the incoming particles are
not polarized and the final polarizations are not measured in experiments. Thus, for 1/2-spin
particles, the conditions above lead to the following replacement at the level of the scattering
amplitude:

|M f i|2→
1
4 ∑

σ ,σ ′,s,s′
|M f i|2 . (2.3)

The sum over the spins can now be carried out by using the spinor completeness relation

∑σ u(p,σ)ū(p,σ) = (/p+m), which yields the following expressions for the electronic and
muonic tensor

Lµν
e =

1
2

Tr[(/k′+me)γ
µ(/k+me)γ

ν ] , Lµν
muon =

1
2

Tr[(/p′+mµ)γ
µ(/p+mµ)γ

ν ] . (2.4)

We now have to choose a reference frame where to evaluate the expressions (2.4) and, as
a consequence, the final cross section. Here we suppose that the muon is initially at rest,
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2.1 Elastic scattering

which means performing the calculation in the laboratory frame (LAB). In this frame, the
quadri-momenta and kinematic are indicated below:

p = (mµ ,⃗0) k = (E ,⃗k)
k′ = (E ′ ,⃗k′) p′ = p+q
q = k− k′ e(k)

e(k′)

θ

1

⇒ q2 = k2 + k′2−2k · k = 2me−2k · k′ ≈−2k · k′

≈−2EE ′(1− cosθ) =−4EE ′ sin2 θ

2 ,

where θ is the scattering angle and we have assumed that the electron mass is negligible
compared to its momentum, i.e. me << |⃗k|. From the computation above we also find that
q2 < 0.

Making now explicit the kinematic in Eq. (2.4) and substituting I = mµE for the LAB
frame, one can see that the differential cross section takes the form [61](

dσ

dE ′dΩ

)
LAB

=
α2

e

4E2 sin4
θ/2

[
cos2 θ

2
+

(E−E ′)
mµ

sin2 θ

2

]
δ

(
E−E ′+

q2

2mµ

)
, (2.5)

where α2
e = e2/4π is the fine-structure constant in natural units (ε0 = c = h̄ = 1). If we inte-

grate over the energy E ′ of the outgoing electron, we obtain a more compact expression [61]1

(
dσ

dΩ

)
LAB

=
α2

e

4E2 sin4
θ/2

E ′

E

[
cos2 θ

2
+

(E−E ′)
mµ

sin2 θ

2

]
. (2.6)

From these results, given in Eqs. (2.5, 2.6), it thus clear that the cross section between point-
like particles can be written in terms of quantities that can be really measured in experiments,
which in the LAB frame are the energies of the incident and outgoing electron, and the
scattering angle θ .

Moreover, a crucial observation is that the dependence on the momentum transfer q2

appears only in the second term of Eq. (2.6), being (E−E ′) =−q2/(2mµ) in the LAB frame.
Therefore, large values of q2 lead to a decrease of the cross section, as intuitively expected.
This represents a characteristic of those scattering processes where only point-like particles
are involved, as discussed further along this Chapter.

2.1.2 Elastic electron-proton scattering

A slightly more sophisticated scattering than e−µ−→ e−µ− involves a lepton and a particle
which is not point-like, such as the proton N. We consider in QED the elastic scattering
electron-proton

e−(k)+N(p)→ e−(k′)+N(p′)

1We use this property: δ

(
E−E ′− 4EE ′ sin2 θ/2

2mµ

)
= 1

1+ 4EE′ sin2 θ/2
2mµ

δ

(
E ′− E

1+ 4E sin2 θ/2
2mµ

)
, which integrated over

dE ′ gives the factor E ′
E .
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2.1 Elastic scattering

for which the leading order Feynman diagram is analogous to the one of Fig. 2.1. For
simplicity, we assume again that the interaction is mediated by the exchange of one virtual
photon, γ . This kind of process has been extensively studied over the years, with the first
experiments dating back to the ’50s at the Standford linear accelerator [62]. They discovered
that the cross section e−N had a strong dependence on the momentum transfer q2 and the
behavior was different from the one observed for e−µ scattering. This has been theoretically
formalized assuming that the interaction γ−N is described by a matrix element of the form

⟨N(p′)|Jem(0)µ |N(p)⟩= ūN(p′)Γµ
emuN(p) , (2.7)

where Γ
µ
em is no longer γµ as for γ− e interaction, but a linear combination of all possible

four-vectors on which the kinematic may depend on [63]

Γ
µ
em = A1γ

µ + iA2σ
µν(p′− p)ν + iA3σ

µν(p′+ p)ν +A4(p− p′)µ +A5(p+ p′)µ , (2.8)

where σµν = i/2[γµ ,γν ]. The coefficients Ai must be functions of Lorentz invariants, depen-
dent in principle on (p′+ p)2 and q2 = (p− p′)2. Since these two quantities depend one from
each other, being q2 = 2m2

p−2p′ · p and (p′+ p)2 = 2m2
p +2p′ · p, it is sufficient to consider

only one of them and is customary to use q2. By using the Gordon identity2 [60] and the
electromagnetic current conservation, which is a consequence of the gauge invariance, it is
possible to rewrite Eq. (2.8) as a combination of only two terms [60], namely

Γ
µ
em = F1(q2)γµ +F2(q2)

i
2mp

σ
µνqν . (2.9)

F1 and F2 are real dimensionless functions that can only depend on q2 and are the so-called
electromagnetic elastic structure functions or form factors. Through an analogous calculation
to the one of the cross section eµ → eµ , with γµ replaced by Γµ in Eq. (2.9) for the proton
vertex, one obtains the well-known Rosenbluth formula [62]

d2σ

dΩdE ′
=

α2
e

4E2 sin4
θ/2

[(
F2

1 −
q2

4m2
p

F2
2

)
cos2 θ

2
− q2

2m2
p

(
F2

1 +F2
2
)

sin2 θ

2

]
δ

(
E−E ′+

q2

2mp

)
.

(2.10)

This result suggests that the differential cross section is modulated by two q2-dependent
quantities, F1 and F2, that can be directly extracted from measurements of the angular
dependence at several q2. F1,F2 are important observables because they correspond to the
Fourier transform of the electric and magnetic charge distribution, ρ (⃗r) and µ (⃗r), through
Born approximation [64]

F1(q) =
∫

d3r ρ (⃗r)ei⃗q·⃗r , F2(q) =
∫

d3r µ (⃗r)ei⃗q·⃗r . (2.11)

2The Gordon identity reads: ū(p′)γµ u(p) = 1
2mp

ū(p′)[(p+ p′)µ + iσ µν qν ]u(p). It is valid if ūN(p′) and
uN(p) are solutions of the Dirac equation, i.e. (/p−m)u(p) = 0 and ū(p′)(/p′−m) = 0.
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2.2 Inelastic scattering

Therefore, their measurements can provide information on the inner structure of the proton. In
the earliest measurement of cross sections in the ’50 [65] it was observed that the two proton
form factors have approximately the same dependence on the momentum transfer squared up
to 0.5 GeV2 and they drop off as

F(q2)∼ 1(
1− q2

0.71GeV2

)2 . (2.12)

By consequence, from the inverse Fourier transform of such parametrization, it became clear
that the proton is an extended object whose electric charge distribution decays exponentially
as e−r/r0 , with r0 ∼ 1 fm.

However, in subsequent experiments conducted at SLAC in the ’60s [3, 4], it was discov-
ered surprisingly that at energies |q2|> 1 GeV2 (above the proton mass) the analogous form
factors did not decrease at large q2. This lead to the idea that the proton is not an elementary
particle and that at high energies the electron can interact with its constituents.

In addition, at energies |q2| > 1 GeV2, production of new particles was also observed
in the final state of e− p collisions. This discovery is the basis of a new class of scattering
processes called inelastic scattering, for which we need a new formalism.

2.2 Inelastic scattering

2.2.1 Inelastic electron-proton scattering

The reaction of our interest is referred to as deep inelastic scattering. It encodes a large
number of processes in which the inner structure of hadrons is probed at large values of
the momentum transfer. Examples are: inclusive (DIS) [66], semi-inclusive (SIDIS) and
exclusive scattering processes, such as deeply virtual Compton scattering (DVCS) [67]. In
DIS, such as eN→ eX , only the energy E ′ of the outgoing electron and the scattering angle θ

are measured by the detector and what remains of the proton is not observed; therefore, X
stands for anything the proton can break up into. On the contrary, in semi-inclusive scattering
(SIDIS), a hadron is also detected among the final products of the collision, and the reaction
will be eN→ ehX . DIS and SIDIS data are nowadays the major sources of information about
parton distribution functions and provide information somewhat also complementary to each
other, as we will see in Section 2.4.

Here we want to study the simplest inclusive process, eN→ eX , sketched in Fig. 2.2. In
particular, we extract the cross section in the LAB frame and then compare it to the one of a
generic elastic scattering.

Let us suppose again that the weak interactions can be neglected3 and the main contribution
comes from the exchange of one photon in QED. As discussed in Section 2.1.1, the differential

3This is a good approximation for |q|< MW .
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2.2 Inelastic scattering

e(k)

e(k′)

γ(q)

N(p)
X

1

Figure 2.2 Schematic diagram of the inclusive inelastic scattering electron-proton: eN→ eX . X stands
for all particles created in the collision.

cross section is proportional to the product of two tensors

d2σ

dΩdE ′
∝

α2
e

mNq4
E ′

E
LµνWµν , (2.13)

where E,E ′ are the energies of the incoming and outgoing electron, mN is the proton mass
and Lµν , Wµν are the electronic and hadronic tensor. The electronic tensor is the same as for
the process eµ → eµ and is given in Eq. (2.4) for unpolarized scattering. What is different
is the form of Wµν , which now depends on the vertex γN→ X and therefore on the matrix
element ⟨X |Jµ |N⟩, with Jµ the electromagnetic current. The hadronic tensor for unpolarized
scattering is defined as [63]

Wµν =
1
2 ∑

initial
spins

∑
X
(2π)3

δ
4(PX − p−q)⟨N|Jµ(0)|X⟩⟨X |Jν(0)|N⟩ , (2.14)

where ∑X includes the factor d3 p j
(2π)3 2E j

for each particle j contained in X . We note that the
tensor Wµν is Hermitian, i.e. Wµν =W ∗νµ , and therefore it can be decomposed in a symmetric
(S) and antisymmetric (A) part under exchange µ ↔ ν [63]

Wµν =W S
µν + iW A

µν , W S,W A ∈ R . (2.15)

However, after contraction with the leptonic tensor of Eq. (2.4), only the symmetric part W S

will contribute to the cross section in (2.13), since Lµν = Lνµ . By consequence, the most
general form for Wµν reads

Wµν = A1gµν +A2qµqν +A3(qα pβ +qβ pα)+A4 pα pβ , (2.16)

where Ai are real functions that may depend on p2, q2, p · q. A crucial property that Wµν

has to satisfy is the electromagnetic current conservation, which implies qµWµν = 0. This
condition can be used to rewrite A2 and A3 in terms of A1 and A4, and introducing the standard
notation [63]

W1 =−
A1

2mN
,

W2

m2
N
=

A4

2mN
, (2.17)

11



2.3 Parton Model

the hadronic tensor simplifies into

Wµν

2mN
=W1

(
−gµν +

qµqν

q2

)
+

1
m2

N
W2

(
pµ −

p ·q
q2 qµ

)(
pν −

p ·q
q2 qν

)
. (2.18)

W1, W2 are real scalar functions, called structure functions. Finally, substituting the above
expression into Eq. (2.13), the cross section in the LAB frame takes the form [63]

d2σ

dΩdE ′
=

α2
e

4E2 sin4
θ/2

[
2W1 sin2 θ

2
+W2 cos2 θ

2

]
. (2.19)

From this result we can see that the cross section has the same angular dependence as for
the elastic scattering eµ → eµ and eN→ eN, with the difference that the structure functions
W1, W2 depend now on three variables (i.e. q2, p2 = m2

N and p ·q) instead of only on q2, see
Eq. (2.9) for the proton vertex. The Lorentz invariants used to describe DIS processes are the
momentum transfer Q2 ≡−q2 > 0 and one of the following variables

ν ≡ p ·q
mN

LAB
==== E−E ′, x≡ Q2

2p ·q
=

Q2

2mNν
(Bjorken variable) , (2.20)

where x is a dimensionless quantity, called Bjorken variable.
The Bjorken variable satisfies the relation 0≤ x≤ 1. This inequality follows from two

conditions: i) for physical processes Q2 ≥ 0, since energies cannot be negative; ii) for the
baryon number to be preserved, we must have MX ≥mN , which means that at least one baryon
is produced in the final state. From the above, it follows that

M2
X = (p+q)2 = m2

N +2mNν−Q2 ≥ m2
N ⇒ Q2 ≤ 2mNν , (2.21)

and x = 1 in the limit of elastic scattering, where MX = mN .
The denomination “Bjorken variable” is due to the prediction by Bjorken (in 1969) that

the structure functions W1 and the combination νW2 only depend on the variable x in the limit
Q2→ ∞ and ν → ∞, at x fixed. This prediction was confirmed in experiments conducted at
SLAC in the ’60s, where W1 and νW2 (a priori function of two variables) were found to be
almost independent on Q2, at fixed x and for Q2 > 1 GeV2. This appeared in contrast to the
behavior of the elastic form factors that decay rapidly with Q2, as indicated in Eq. (2.12).

This remarkable discovery led to the idea of the proton (and hadrons) as made of struc-
tureless objects, which are struck by the virtual photon in the DIS regime. The constituents
of hadrons were called partons and the behavior of the inelastic structure functions at large
momentum transfer was called Bjorken scaling.

2.3 Parton Model

Since the Q2-independence of the structure functions could not be explained by elastic
scattering, a sophisticated model was formulated to interpret the experimental results. This
model was introduced by Feynman in 1969 and is called quark parton model (QMP) [5, 6].

12



2.3 Parton Model

The basic assumption is that, at very large momentum transfer, lepton-hadron interactions are
due to interactions of partons, because the virtual photon has a sufficient small wavelength
(λ ∼ 1/Q) to resolve the constituents of the target. The interaction eN → eX can be then
described as in Fig. 2.3.

e(k)

e(k′)

γ(q)

pf (ξp)

N(p)
X

pf (p
′)

1

Figure 2.3 At large momentum transfer a lepton interacts with a parton.

Moreover, in the naive picture, partons behave as free particles. This assumption can
be justified thinking that the fast-moving hadron is Lorentz contracted in the center of mass
frame, where also time is dilated by relativistic effects. Therefore, lepton-parton interactions
occur on a time scale which is much smaller than the typical interaction scales among partons
themselves.

From the above, the parton model assumes that electron-proton cross sections can be
factorized as

σ(eN→ eX) =
∫ 1

0
dξ ∑

f
f f (ξ ) σ̂(e(k)p f (ξ p)→ e(k′) p f (p′)) , (2.22)

where the struck parton has quadri-momentum ξ pµ and f f (ξ ) is the probability density
that parton f carries a fraction ξ of the proton momentum and is called parton distribution
function. In the equation above, σ̂ is a partonic cross section that must have the same form as
the one for e−µ scattering, see Eq. (2.5). In particular, the energy conservation in Eq. (2.5)
now becomes

δ

(
E−E ′− Q2

2mµ

)
→ δ

(
Q2

2mNx
− Q2

2ξ mN

)
= δ

[
Q2

2mN

(
1
x
− 1

ξ

)]
=

2mN

Q2 x2
δ (ξ − x) ,

(2.23)
where mµ has been replaced with the mass of a parton, i.e ξ mN . The result of Eq. (2.23)
implies that the Bjorken variable x = Q2/(2p · q), introduced in the previous Section, is
nothing but the parton momentum. We can now use this result to rewrite the decomposed
cross section in Eq. (2.22) as

d2σ(eN→ eX)

dΩdE ′
= ∑

f
f f (x)

α2
e Q2

f

4E2 sin4
θ/2

(
2mN

Q2 x2 cos2 θ

2
+

1
mN

sin2 θ

2

)
, (2.24)

where Q f is the electric charge of each quark and we have assumed that the partonic cross
section, σ̂ , is equivalent to Eq. (2.5). On the other hand, the above result must be equal to
the DIS cross section (2.19) which depends on the structure functions W1, W2. From the
comparison of Eq. (2.24) with Eq. (2.19), we get the following relations for the structure
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2.3 Parton Model

functions

mNW1(x,Q2) =
1
2 ∑

f
Q2

f f f (x)≡ F1(x) , νW2(x,Q2) = ∑
f

Q2
f x f f (x)≡ F2(x) , (2.25)

which are the quantitative formulation of the scaling predicted by Bjorken. The above result
is also important because it relates the structure functions to parton densities f f (x).

An illustration of the Bjorken scaling is reported in Fig. 2.4 for the inelastic proton
structure function F2, obtained from unpolarized scattering. As can be seen, in the range 0.1 ≲

18. Structure functions 241

NOTE: THE FIGURES IN THIS SECTION ARE INTENDED TO SHOW THE REPRESENTATIVE DATA.
THEY ARE NOT MEANT TO BE COMPLETE COMPILATIONS OF ALL THE WORLD’S RELIABLE DATA.

F igure 18.8: The proton structure function F
p
2 measured in electromagnetic scattering of electrons and positrons on protons (collider

experiments H1 and ZEUS for Q2 ≥ 2 GeV2), in the kinematic domain of the HERA data (see Fig. 18.10 for data at smaller x and Q2),

and for electrons (SLAC) and muons (BCDMS, E665, NMC) on a f xed target. Statistical and systematic errors added in quadrature are

shown. The data are plotted as a function of Q2 in bins of f xed x. Some points have been slightly of set in Q2 for clarity. The H1+ZEUS

combined binning in x is used in this plot; all other data are rebinned to the x values of these data. For the purpose of plotting, F
p
2 has

been multiplied by 2ix , where ix is the number of the x bin, ranging from ix = 1 (x = 0.85) to ix = 24 (x = 0.00005). References: H1 and
ZEUS—F.D. Aaron et al., JHEP 1001, 109 (2010); BCDM S—A.C. Benvenuti et al., Phys. Lett. B223, 485 (1989) (as given in [66]) ;
E665—M.R. Adams et al., Phys. Rev. D54, 3006 (1996); NM C—M. Arneodo et al., Nucl. Phys. B483, 3 (1997); SLAC—L.W. Whitlow
et al., Phys. Lett. B282, 475 (1992).

Figure 2.4 Unpolarized proton structure function F2, measured from electromagnetic scattering of
electrons and positrons on protons (collider experiments H1 and ZEUS for Q2 > 2 GeV), and for
electrons (SLAC) and muons (BCDMS, E665, NMC) on a fixed target. For the purpose of plotting,
F2 is multiplied by 2ix , where ix is the number of the x bin, ranging from ix = 1 (x = 0.85) to ix = 24
(x = 0.00005). Figure from Ref. [68].

x ≲ 0.5, F2 is approximately constant with Q2, in agreement with Bjorken’s prediction. On
the other hand, we can also notice that there are x-regions in which F2 is not Q2-independent.
For instance, at small x values the structure function increases with Q2, namely when the
probe has a smaller wavelength. These scaling violations were not predicted by the naive
parton model and were later explained as an effect of the strong nuclear force, whose strength
increases at large distances (or equivalently at low-x). Indeed, in the framework of QCD in
which partons are identified by quarks and gluons, we know that quarks emit gluons with
higher probability at low-x. Therefore, if Q2 is sufficiently large, the particles produced via
strong interaction can be resolved as separate objects and this leads to an increase of the
structure functions, as can be seen in Fig. (2.4). As a consequence, also the parton densities
f f (x) will depend on the resolving power Q2, as illustrated in Section 2.4.
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2.3 Parton Model

2.3.1 OPE analysis and light-cone dominance

The parton densities (or parton distribution functions), introduced within the naive parton
model, emerge also naturally from the analysis of the hadronic tensor in the deep inelastic
scattering. In this Section we want to briefly summarize how they can be derived in this
framework, from which a fundamental property of parton distributions also arises, namely
the light-cone dominance. The starting point is the definition of the hadronic tensor, here
rewritten

Wµν =
1
2 ∑

initial
spins

∑
X
(2π)3

δ
4(PX − p−q)⟨N|Jµ(0)|X⟩⟨X |Jν(0)|N⟩ . (2.26)

Applying a translation operator P̂, which acts in the following way

⟨N|Jµ(0)|X⟩= ⟨N|e−iP̂·xJµ(x)eiP̂·x|X⟩= e−i(P−px)x⟨N|Jµ(x)|X⟩ , (2.27)

together with the completeness relation of the states and the Dirac-delta integral representation

∑
X
|X⟩⟨X |= 1 , δ

4(P+q− pX) =
∫ d4x

(2π)4 ei(P+q−pX )x , (2.28)

we can see that the hadronic tensor can be written in terms of commutator of the currents

Wµν =
1

4π

∫
d4x eiqx ⟨N|[Jµ(x),Jν(0)]|N⟩ . (2.29)

Note that in the derivation we have added an extra term that is proportional to Jν(0)Jµ(x).
This is allowed because its contribution must vanish, as it would violate the kinematic of the
physical region, i.e MX ≥ mN and −q2 < 0.

From Eq. (2.29) it is evident that Wµν can only receive non-zero contribution only for
x2 ≥ 0, otherwise causality would be violated. Moreover, if we do not impose any constrain,
for Q→ ∞ the exponential eiq·x oscillates rapidly averaging out all contributions of the
integrand. Thus, we can deduce that the hadronic tensor must have support only in the
region where |q · x| is finite in the DIS limit. One can show that this condition is satisfied
when x2 ≤ const./Q2 [69], see Appendix A.1. Consequently, from the conditions x2 ≥ 0 and
x2 ≤ const./Q2, it follows that the hadronic tensor for DIS is governed by product of currents
near the light-cone, x2 ∼ 0. In practice, this means that the cross section for e−N inelastic
scattering is dominated by short distance interactions, given that the interaction time is very
small.

The light-cone dominance of the hadronic tensor is a crucial property in QCD, because is
the basis for factorization theorems, whose essence is contained in Eq. (2.22). The derivation
of factorization theorems, leading to parton distribution functions, makes use of the operator
product expansion (OPE). The OPE has been proposed by Wilson as a way to deal with
T-ordered product of fields that become singular when they are defined in the same points (for
general reviews see e.g. textbooks [60, 61, 70]). According to the OPE, the product of any
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2.3 Parton Model

two operators O1(x)O2(0) can be written as expansion of local operators in the limit x→ 0

lim
x→0

O1(x)O2(0) = ∑
n

Cn(x)On(0) , (2.30)

where On(0) are well-defined local operators and Cn (called Wilson coefficients) contain the
singularities. In QCD and in the DIS limit, it can be shown that Cn are independent on the
external states where the operator product is computed and can be obtained in perturbation
theory, given the asymptotic freedom of QCD at small separations x. Transforming to
momentum space, that is what we need to calculate the hadronic tensor, one then obtain∫

d4xeiqx O1(x)O2(0) = ∑
n

Cn(q)On(0) for |q| → ∞ , (2.31)

where the dependence on q is only contained in the Wilson coefficients. By applying the
optical theorem to the hadronic tensor (see e.g. [60]), one can demonstrate that the local
operators On(0) in Eq. (2.31) depend on both quark and gluonic fields; for vector currents
with quarks of flavor f , On takes the form

O(n)µ1...µn
f = ψ̄ f γ

{µ1(iDµ2)...(iDµn})ψ f − traces . (2.32)

In the equation above, the spin indices µ1...µn are intended to be symmetrized and the traces
of the operator have been subtracted. When the local operators O f are evaluated between two
proton states with momentum P, we get

⟨N|O(n)µ1...µn
f |N⟩= 2A(n)

f Pµ1Pµ2...Pµn− traces , (2.33)

where A(n)
f are dimensionless quantities, depending on the operator. Their physical interpreta-

tion becomes immediately clear considering the case of 1-spin operator (n = 1), which is just
the vector current. Indeed, from Eqs. (2.32, 2.33), we have that the matrix element

⟨N|ψ̄ f γ
µ

ψ|N⟩= 2A(1)
f Pµ (2.34)

has to be equal to ⟨N|ψ̄ f γµψ|N⟩ = ū(P)γµ u(P)Ff after spin-average (namely 2PµFf ). Ff

is a form factor analogous to the one introduced in Section 2.1.2, corresponding here to the
number of quarks minus antiquarks of flavor f in a proton state. By consequence, A(1)

f = Ff

and knowing that the valence quark content of the proton is uud, we obtain

A(1)
f = 2 for f = u , A(1)

f = 1 for f = d . (2.35)

From this argument, it comes natural to introduce distribution functions f f (x) as quantities
that count the number of quarks and antiquarks inside a hadron and whose moments match
the coefficients A(n)

f of the OPE applied to the hadronic tensor.
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2.3 Parton Model

2.3.2 Definition of parton distributions

Parton distribution functions are usually defined in the light-cone frame, where the hadron is
moving along one direction with momentum P = (P+,P−,0⊥), with plus/minus components
P± = (P0±P3)/

√
2. For a non-polarized hadron, the unpolarized PDFs are defined as [70]

q f (x) =
1

4π

∫ +∞

−∞

dξ
−e−ixP+ξ− ⟨N|ψ̄ f (ξ

−)γ+W (ξ−,0)ψ f (0)|N⟩ , (2.36)

where |N⟩ denotes the hadron state (in this work we consider only the proton) and γ+ is the
combination of the Dirac matrices given by γ+ = (γ0+ γ3)/

√
2. The light-cone directions are

taken as ξ± = (ξ 0±ξ 3)/
√

2 and W (ξ−,0) = e−ig
∫ ξ−

0 dη−A+(η−) is a product of gluon fields
that guarantee the gauge invariance of the distribution.

We note that, by the definition of PDFs, the transverse components of the parton mo-
mentum fraction with respect to the direction of the hadron momentum are integrated over
and x represents the colliner momentum fraction. The matrix element in Eq. (2.36) can
be interpreted as the probability amplitude that a quark f is extracted from the proton at
coordinate 0 and is inserted back at ξ−, propagating on the light-cone.

For a polarized hadron, one can study how partons are sensitive to its polarization and
define two polarized distributions, known as helicity ∆q f (x) and transversity δq f (x) PDFs.
They quantify the parton densities with spin parallel and antiparallel to the one of a lon-
gitudinally and transversely polarized hadron and are defined in an analogous way to the
unpolarized PDF [70]

∆q f (x) =
1

4π

∫ +∞

−∞

dξ
−e−ixP+ξ− ⟨N|ψ̄ f (ξ

−)γ+γ5W (ξ−,0)ψ f (0)|N⟩ , (2.37)

δq f (x) =
1

4π

∫ +∞

−∞

dξ
−e−ixP+ξ− ⟨N|ψ̄ f (ξ

−)γ+γ5γ jW (ξ−,0)ψ f (0)|N⟩ . (2.38)

In δq f (x), j-index is purely spatial and is orthogonal to the direction of the hadron momentum.
A simplified illustration of the physical interpretation of these three distributions is

reported in Fig. 2.5, where the blue and black arrows denote the spin direction of the proton
and quark respectively.

The definitions in Eqs. (2.36-2.38) hold only for quarks, and the following crossing
relations

q̄ f (x) =−q f (−x) , ∆q̄ f (x) = ∆q f (−x) , δ q̄ f (x) =−δq f (−x) , (2.39)

relate quark distributions to their antiquark counterparts [70]. Thus, from the negative x-region
we can read the antiquark densities. As concerns the gluon PDFs, explicit formulae can be
found for instance in Refs. [19, 71–73].
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+

q(x) = q →+q ←

−

∆q(x) = q →−q ←

− δq(x) = q⊥+q ⊥

direction of motion

Figure 2.5 Schematic visualization of the three PDFs: unpolarized, helicity (left and right in the top
panel) and transversity (low panel). The blue and black arrows denote the direction of the spin of the
proton and quark respectively. In all three figures, it is assumed that the proton is moving along the
direction depicted by the dashed line.

2.3.3 Moments of PDFs and sum rules

To reproduce the characteristics of a hadron (e.g. the valence quark content), PDFs have to
satisfy certain constraints, which can be derived in a very intuitive way or directly from the
operator definition of PDFs by applying a Mellin transform. The theoretical constraints are
usually formulated in terms of moments which for a specific quark flavor are given by

⟨xn⟩ f ≡
∫ 1

0
dxxn−1q f (x) . (2.40)

Here q f is the unpolarized PDF, but the same definition in Eq. (2.40) also applies for the
helicity and transversity distributions. The integration range for computing the Mellin
moments can be in principle extended to x→ ∞, since PDFs vanish for x > 1. This property
can be used to derive the so-called number sum rules, which involve the zeroth moment of the
difference between quark-antiquark unpolarized distributions. Indeed, for n = 1, we have

∫ 1

0
dx [q f (x)−q f̄ (x)] =

∫ 1

0
dxq f (x)+

∫ 0

−1
dxq f (x) =

∫
∞

−∞

dxq f (x)

=
1

4π

∫
∞

−∞

dx
∫ +∞

−∞

dξ
−e−ixP+ξ− ⟨N|ψ̄ f (ξ

−)γ+W (ξ−,0)ψ f (0)|N⟩

=
1

4π

∫ +∞

−∞

dξ
−

δ (ξ−P+) . . . =
1

2P+
⟨N|ψ̄ f (0)γ+ψ f (0)|N⟩= N f , (2.41)

where N f is the net number of quarks with flavor f in the proton state and is exactly the
moment we obtain from the OPE analysis, that we called A(1)

f in Eq. (2.35). Thus, to match
the valence quark content of the proton (uud), the following sum rules have to be satisfied at
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any energy scale

∫ 1

0
dx [qu(x)−q̄u(x)] = 2 ,

∫ 1

0
dx [qd(x)− q̄d(x)] = 1 ,

and
∫ 1

0
dx [q f (x)− q̄ f (x)] = 0 for f = s,c,b, t .

(2.42)

For the separate flavors there is no constrain, since quarks can be continuously created via
exchange of gluons.

Another theoretical constrain is the so-called momentum sum rule∫ 1

0
∑

f
xq f (x)dx = 1 or ⟨x⟩u + ⟨x⟩ū + . . .+ ⟨x⟩g = 1 , (2.43)

which imposes that the total momentum fraction carried by all partons (including gluons)
must be unity. Experimental results on the structure function F2 have revealed that each parton
contributes to the total momentum with a different amount and the gluon predominates at
low-x, as illustrated in Section 2.4.1 in Fig. 2.7. In Appendix A.2 we generalize Eq. (2.41)
and show that the moments of PDFs are always related to local matrix elements between two
nucleon states. The derivation is carried out for the unpolarized case, but it also applies to the
polarized distributions.

In analogy to the unpolarized case, also for the polarized PDFs it is possible to define
moments of the distributions and relate them to specific matrix elements. Following the same
logical steps as in Eq. (2.41), we get the zeroth moment of the helicity distribution

∫ 1

0
dx [∆q f (x)+∆q f̄ (x)] =

1
2P+
⟨N|ψ̄ f (0)γ+γ5ψ f (0)|N⟩ , (2.44)

where the gamma structure γ+ is now replaced with γ+γ5. Unlike the unpolarized case, the
antiquark helicity distribution has a plus sign in the integral of the left hand side, which is a
consequence of the crossing relation ∆q f̄ (x) = ∆q f (−x), see Eq. (2.39).
An important quantity is the zeroth moment of the flavor non-singlet combination (∆qu +

∆qū)− (∆qd +∆qd̄). It is related to the neutron axial decay constant, the well-known nucleon
axial charge gA, via

∫ 1

0
dx [(∆qu +∆qū)− (∆qd +∆qd̄)] =

1
2P+
⟨N|ūγ

+
γ5u− d̄γ

+
γ5d|N⟩= gu−d

A . (2.45)

gu−d
A is extracted in beta decay experiments (n→ pe ν̄e), aiming at the investigation of

electroweak interactions in the Standard Model. The latest PDG value is gA = 1.2724(23) [11].

Another fundamental quantity describing the inner structure of the proton is the zeroth
moment of the transversity distribution, the tensor charge gT . The following integral

gT, f =
∫ 1

0
dx(δq f (x)−δ q̄ f (x)) , (2.46)
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quantifies the net number of quarks with helicity parallel and antiparallel to that of a trans-
versely polarized proton, as indicated in Fig. 2.5. Thus, the tensor charge gives information
about the transverse spin structure of the proton and it has been receiving a lot of attention
from experiments because may provide a potential probe of new tensor interactions, as well
as input for dark matter searches [74].

It is important to stress that, unlike the unpolarized case, the currents associated to the
polarized PDFs are not conserved, so there is no direct determination of the corresponding
charges. However, they can be extracted experimentally, as well as with non-perturbative
methods.

2.4 Obtaining parton distributions

As mentioned in Section 2.3.1, factorization theorems applicable to a large class of deep
inelastic scattering processes offer a well-consolidated framework to gain knowledge on parton
distributions. The traditional method relies on a procedure called global QCD analysis [23,
24, 75–79]. PDFs are extracted through simultaneous fits to a wide set of experimental data,
coming for instance from fixed target experiments and high energy collisions, where particle
beams are directed against each other (such as e±p, pp̄ and pp) leading to heavy quarks and
jet-production [23]. Each process, occurring at a certain value of the momentum transfer Q2,
gives information on a specific x-range of the distribution, as illustrated in Fig. 2.6 for the
case of unpolarized scattering. As we can see, experimental data do not cover uniformly the

10 4 10 3 10 2 10 1 100

x

101

102

103

104

105

106

Q2 (
Ge

V2 )

Kinematic coverage
Fixed target DIS
Collider DIS
Fixed target Drell-Yan
Collider Inclusive Jet Production
Collider Drell-Yan
Collider Z transverse momentum
Collider Top-quark pair production

black edge: New in NNPDF3.1

Figure 2.6 Typical kinematic coverage in the (x,Q2) plane of the DIS and proton-(anti) proton
scattering data, that are used as input to determine unpolarized PDFs. Every measurement can be
mapped in the (x,Q2) plane. Figure from Ref. [23].

entire domain and abound for intermediate x-values. The small x-region (x≪ 1) is one of the
less constrained, because it can only be accessed at energies much larger than the nucleon
mass. This can be understood through the connection between the Bjorken x-variable and the
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invariant mass squared M2
X of the scattering, given by

M2
X = (p+q)2 = p2 +2p ·q−Q2 = m2

N +
Q2

x
−Q2 ⇒ x =

Q2

M2
X −m2

N +Q2 . (2.47)

Thus, we can see that for x≪ 1 we must have M2
X ≫ m2

N .
From Fig. 2.6, it is also clear that the most complete information on the momentum struc-

ture of hadrons can be obtained by combining several data sets. This procedure is nowadays
carried out by many collaborations performing global fits, such as the CT group [80], MMHT
with the recent release [26], NNPDF, whose methodology for global fits was explained for the
first time in [81], ABM [28], CJ collaboration from Jefferson Lab [82] and HERAPDF [83].
The fitting methodology relies first of all on the choice of a parametrization at a certain input
scale Q2

re f (∼ 1−2 GeV2), that can be written as [22]

f (x,Q2
re f ,{ai}) = xa1 (1− x)a2 C(x,{a j}) . (2.48)

The terms xa1 and (1− x)a2 govern the PDF behavior for small-x and in the elastic limit
x→ 1 respectively, while C(x,{a j}) is an interpolating function which determines the PDF
shape away from the limits x→ 0 and x→ 1. The overall behavior of the distribution is
characterized by the parameters {ai}, which depend on the specific flavor combination and
are determined through fits to structure functions. Moreover, the form of C(x,{a j}) is not
known a priori and many different approaches and parameterizations are usually employed in
global analyses. This non-uniqueness choice is among the sources of uncertainties of PDFs
determinations. Other delicate points involve the perturbative computation of the partonic
cross section σ̂ , which is carried out with truncation up to a certain order in the perturbative
expansion; this leads to different kinds of fits (leading-order (LO), next-to-leading order
(NLO) etc...). Additional uncertainties are due to ambiguities in the fitting procedure and
lack of experimental data in certain x-regions, as illustrated in the representative kinematic
coverage of Fig. 2.6. For a detailed review about PDFs uncertainties and determinations from
fitting procedure see for instance [22, 23].

The difficulties mentioned above motivate searches for alternative approaches that could
provide important insight into the inner structure of hadrons not relying on any ansatz.

In the next Sections we report examples for start-of-the-art global analyses for the unpo-
larized, helicity and transversity distributions, with special focus on the light-content of the
proton and in particular on the u−d flavor structure, of interest in this work.

2.4.1 State-of-the-art unpolarized PDFs

In Fig. 2.7 we show the momentum decomposition of the proton among different partons, as
obtained from PDF4LHC15 NLO analysis [84]. The distributions are shown at two different
scales, µ2 = Q2 = 4 GeV2 and µ2 = Q2 = 10 GeV2. The evolution from the reference scale
Q2

re f is determined by solving DGLAP evolution equations [85–87]. The energy scale µ

denotes here both factorization (µF ) and renormalization (µR) scales, which are usually
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2.4 Obtaining parton distributions

taken equal to the scale of the process (µ = µF = µR = Q). Fig. 2.7 shows the unpolarized
distributions for u, d quarks, for the valence combinations uv = u− ū and dv = d− d̄ and
for the sea quarks and the gluon. The latter is scaled by a factor 10. We observe that the
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Figure 2.7 Unpolarized PDF4LHC15 NLO [84] PDFs at the scale µ2 = Q2 = 4 GeV2 (left) and
µ2 = Q2 = 10 GeV2 (right). PDFs for different quark flavors are shown: u, d, the valence combinations
uv = u− ū and dv = d− d̄ and sea quarks. The gluon PDF is scaled by a factor 10. Figure from
Ref. [22].

valence distributions uv and dv reflect the constrain from the number sum rules of Eq. (2.42).
The gluon and sea quarks PDFs grow rapidly in the small x-region and this suggests that
high energy collisions can trigger processes initiated by gluons and sea quarks with higher
probability. Moreover, the rapid grow at small-x is also more pronounced at a larger Q2, as can
be seen from the comparison of the two panels in Fig. 2.7. This feature reflects the fact that
structure functions at low-x have a logarithmic increase with Q2 and it is also a demonstration
of Bjorken scaling violations, as seen in Section 2.3.

Information about possible asymmetries in the light sector can be extracted from the
differences u(x)− d(x) and d̄(x)− ū(x). The comparison between three different sets in
Fig. 2.8 shows some tension, which is remarkable for the antiquarks at small-x values,
although the PDFs shape is overall similar.

2.4.2 State-of-the-art helicity PDFs

Helicity distributions are determined with less accuracy than the unpolarized ones, because
there is less abundance of data, limited in a restricted range in the (x,Q2) plane [22].

An example of helicity distribution for separate flavors and the gluon is illustrated in
Fig. 2.9 at two energy scales, namely µ2 = Q2 = 4 GeV2 and 10 GeV2. From the comparison
with their unpolarized counterparts at the same scale (right plot in Fig. 2.7), one can observe
that the helicity PDFs are suppressed in the entire x-range and especially at small x, validating
the theoretical constrain |∆ f (x,Q2)| ≤ f (x,Q2) [89]. In Fig. 2.10 we show the helicity PDFs
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Figure 2.8 Unpolarized PDFs for the flavor structure u−d (left) and d̄− ū (right), extracted from three
global analyses: CJ15 [82], ABMP16 [28], NNPDF3.1 [25]. The scale is Q2 = 4 GeV2.
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Figure 2.9 Momentum distribution for separate quark flavors and the gluon in a longitudinally polarized
proton. The scale is µ2 = 4 GeV2 (left) and µ2 = 10 GeV2 (right). The distributions are extracted
from NNPDFpol1.1 NLO analysis [88]. Figure from Ref. [22].

∆u−∆d and ∆ū−∆d̄, which are among the distributions of interest in this work. From these
PDFs one can quantify the flavor symmetry breaking for polarized quarks and antiquarks.

2.4.3 State-of-the-art transversity PDFs

The transversity distribution, δq(x), is the collinear PDF that is determined with less accuracy
up to date. In fact, in order to be measured, a change of the helicity state (from left- to
right-handed or vice-versa) has to occur at the vertex interaction, but that is however forbidden
in QED and QCD because of helicity conservation. This can be understood with the following
argument. Let us denote with φ the angle between the spin and the direction of motion of
a hadron. A transversely polarized state can be thus written as a linear combination of two
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Figure 2.10 Comparison of helicity distributions x(∆u−∆d) (left) and x(∆ū−∆d̄) (right) between
NNPDF1.1 [88] and JAM17 [90] global QCD analyses.

helicity states, |L⟩ and |R⟩

|ψ⟩= 1√
2

(
e−iφ/2 |L⟩+ eiφ/2 |R⟩

)
. (2.49)

From the equation above one can see that a cross section will depend on the angle φ if, and
only if, a transition between two states with different chirality is allowed. For this reason,
transversity PDF is a chiral-odd distribution and can be extracted only if coupled to other
chiral-odd functions [91].

The first results for the transversity PDF for up and down quarks go back to 2007
only [92, 93] and use SIDIS data available from HERMES [94], COMPASS [95] and
Belle [96] collaborations. Although estimates have noticeably improved over the years,
phenomenological analyses based on only experimental data cannot impose tight constraints,
as shown in Fig. 2.11 for the flavor combination u− d. These are the most recent deter-
minations for the light quarks, obtained from the analysis in Ref. [97]. The tensor charge

0 0.2 0.4 0.6 0.8 1
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Figure 2.11 Transversity PDF, δu−δd, at Q2 = 2 GeV2 obtained from SIDIS data only (yellow) and
SIDIS data analysis that uses as input the value of the tensor charge gu−d

T extracted from lattice QCD
(blue) [97].

gu−d
T =

∫ 1
0 dx(δu(x)−δd(x)) is found to be 0.9(8) when only SIDIS data are used. A more

accurate determination of the distribution is obtained when the global fit is constrained via the
non-perturbative estimate of gu−d

T from lattice QCD. As can be seen, the inclusion of lattice
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2.4 Obtaining parton distributions

data for gu−d
T strongly reduces the uncertainty in the x-dependence of the distribution by a

factor of at least 3. This shows the enormous impact that information from first principles has
on the determination of the transversity PDFs. The alternative tool to global analyses is called
lattice QCD, which allows to study the dynamics of strong interactions in the non-perturbative
regime. This approach and the method used in this work to extract PDFs are discussed in the
next Chapter.
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Chapter 3

Lattice QCD and parton physics in
Euclidean space

As explained in the Introduction, perturbative methods cannot be applied to study quantities
involving long distance physics, such as parton distribution functions. Lattice QCD is the
only ab initio method to study the strong interactions in a non-perturbative regime. In this
Chapter we describe the main ideas of lattice QCD and refer to Refs. [98, 99] for a more
detailed introduction. In particular, we discuss the standard discretization of the fermion and
gluon actions introduced by Wilson [13], and the improved discretization schemes that are
relevant for our work. In the last Section we describe the method employed for the ab initio
computation of parton distribution functions, namely the quasi-PDF approach [33]. Before
introducing lattice QCD we give an overview of QCD in the continuum.

3.1 Introduction to QCD

The structure and interactions of hadrons are described by Quantum Chromodynamics (QCD),
the gauge theory based on the SU(3) [100] color symmetry group, whose degrees of freedom
are quarks and gluons. Quarks belong to the fundamental representation of the group and
gluons are the generators, and therefore they carry three and eight values for the color charge
respectively. More formally, the theory is formulated in terms of the following fields, defined
at a specific point x of the space-time

quarks : ψ(x) f
α,c gluons: Aa

µ(x) . (3.1)

Quarks exist in six different flavors, f , (up, down, strange, charm, top, bottom) and carry also
Dirac and color indices, denoted by α,c respectively (α = 1,2,3,4;c = 1,2,3). Interactions
among quarks are mediated by gluon fields, which are defined for every direction µ of the
space-time and carry a color index a, running from one to eight. The gluon field can be
written in a compact way as Aµ(x) = ∑a Aa

µ(x)T
a, with T a generators of the SU(3) group.

The explicit form of T a matrices strictly depends on the representation chosen for SU(3)
group; for their expressions we refer to standard quantum field theory textbooks [60, 69].
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3.1 Introduction to QCD

The dynamics of the strong interactions is determined by the QCD Lagrangian density

LQCD = LG +LF , (3.2)

with the action of the theory given by

SQCD =
∫

d4x(LG +LF) . (3.3)

LG and LF denote the gluon and fermion contributions to the QCD Lagrangian and read

LG =−1
2

Tr
[
Fµν Fµν

]
, Fµν = ∂µAν −∂νAµ + ig0[Aµ ,Aν ] , (3.4)

LF = ∑
f

ψ̄ f (x)(iγµ

Dµ︷ ︸︸ ︷
(∂µ + ig0 Aµ)−m f

0)ψ f (x) . (3.5)

In the formulae above, g0 is the bare coupling constant, Fµν is the gluon field strength
tensor, m f

0 the bare mass of a quark of flavor f and the operator Dµ is the so-called covariant
derivative.

The QCD Lagrangian is constructed in such a way that the action is gauge invariant, i.e. it
takes the same form when local rotations Ω(x) are applied to the quark fields

ψ(x)→ ψ
′(x) = Ω(x)ψ(x) , ψ̄(x)→ ψ̄

′(x) = ψ̄(x)Ω(x) . (3.6)

Ω(x) = eiθ a(x)T a are 3x3 unitary matrices (Ω† = Ω−1 and det[Ω] = 1), acting in color space
and depending on local parameters θ a(x). For the QCD action to be gauge invariant, the
gluon field, the covariant derivative and the strength tensor have to transform in the following
way

Aµ(x)→ A′µ(x) = Ω(x)Aµ(x)Ω(x)† +
i

g0
(∂µΩ(x))Ω(x)† . (3.7)

Dµ(x)→Ω(x)Dµ(x)Ω(x)† , F(x)→ F ′(x) = Ω(x)F(x)Ω(x)† . (3.8)

From the relations above it follows that the object Dµψ(x) transforms exactly in the same
way as the quark field ψ(x), justifying the denomination of “covariant derivative”.

It is important to remark that, unlike quantum electrodynamics (QED) that is based on the
U(1) symmetry group, in QCD the commutator [Aµ ,Aν ] is non-zero. This allows for vertex
interactions between a quark and gluon fields, and also vertices with three and four gluons that
have no analogy with QED (see Fig.3.1). The presence of three- and four-gluon vertices makes
QCD a highly non-trivial theory and increases the complexity of theoretical calculations. It is
also believed that the structure of these interactions is responsible for the peculiar behavior of
the strong coupling constant, which increases at large separations, confining quarks inside
hadrons. This is a phenomenon for which there exists only a qualitative explanation and for
this reason is known as color confinement problem.
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Figure 3.1 The interaction vertices of quarks and gluons. Solid (wavy) lines represent fermions
(gluons).

An analytic determination of the strong coupling constant is impossible to achieve since
that would require the evaluation of infinite diagrams, which take into account all possible
vertex interactions between quarks and gluons. Calculations including 1-loop diagrams have
indeed demonstrated that the value of the strong coupling increases as compared to the case of
zero loop, implying that the higher contributions cannot be neglected in the series expansion.
Moreover, complications arise when computing loop-graphs. Indeed, while the tree level
diagrams are associated to well-defined amplitudes, in the loop diagrams one has to integrate
over the internal momenta of the virtual particle. This leads to divergent integrals. This
discussion is important because it allows us to introduce two fundamental concepts:

1. to study long distance physics we need to use alternative methodologies that do not rely on
any assumption for the strong coupling value. These are usually refer to as non-perturbative
methods. However, high energy processes can still be described in perturbative QCD and
an example of those is the partonic cross section (σ̂) of deep inelastic scattering, introduced
in Eq. (2.22);

2. the parameters and fields contained in the QCD Lagrangian of Eqs. (3.4, 3.5) are not the
physical ones and are called bare. The reason is that the divergences, arising from loop
diagrams, make the amplitudes ill-defined. This issue is overcome via regularization, for
instance by truncating the integrals up to some momentum Λ. Since eventually this cutoff
must be removed (Λ→ ∞), all quantities have to be renormalized, in such a way that
they remain finite order by order in perturbation theory. Thus, the physical values of the
coupling constant and the mass of a quark of flavor f are given by

g2
R = Zgg2

0 , m2
R = Zmm2

0 . (3.9)

Zg and Zm are called renormalization functions (Z-factors) and are extracted by imposing
a set of renormalization conditions.

3.2 Lattice QCD approach

The idea of a lattice as a way to regularize Yang-Mills theories was introduced by Wilson in
his seminal work in 1974 [13] and the first numerical simulation on the lattice was performed
by Creutz [101] in 1980 for the gauge group SU(2). The numerical approach applied to the
theory of strong interactions is called lattice QCD. In this framework, physical observables
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are computed by using the same tools as in statistical physics, or in other words through path
integral formulation.

First of all, let us recall that within Feynman’s path integral formalism the expectation
value of a gauge invariant observable O in QCD is given by

⟨O⟩ ≡ ⟨Ω|O|Ω⟩=
∫
DψDψ̄DAO(ψ, ψ̄,A)e iS∫

DψDψ̄DAe iS , (3.10)

where S is the continuum action given in Eq. (3.3).
To evaluate ⟨O⟩ through statistical methods, it is necessary to switch from the Minkowskian

to Euclidean space-time, by performing the following Wick rotation

(x0, x⃗)→ (ix0, x⃗) , d4x→ id4x . (3.11)

In Euclidean space the action takes the form

SE =
∫

d4x(LE
F +LE

G) , (3.12)

where LE
F and LE

G are

LE
F = ∑

f
ψ̄

f (x)
(

γ
E
µ Dµ(x)+m f

0

)
ψ

f (x) , (3.13)

LE
G =

1
2

Tr[Fµν(x)Fµν(x)] . (3.14)

The Dirac matrices are related to the Minkownskian counterparts by

γ
E
0 = γ0 , γ

E
i=1,2,3 =−iγi=1,2,3 , {γE

µ ,γ
E
ν }= 2δµν1 . (3.15)

The convention for the Dirac matrices used throughout this Thesis can be found in Ap-
pendix A.3. In Euclidean space, the expectation value in Eq. (3.10) becomes

⟨O⟩= 1
Z

∫
Dψ̄ Dψ DAO(ψ̄,ψ,A)e−SE

, (3.16)

where Z is the QCD partition function

Z =
∫

Dψ̄ Dψ DAe−SE
. (3.17)

From Eqs. (3.16, 3.17) we can see that ⟨O⟩ can be computed as an average with respect to the
Boltzmann factor e−SE

using Monte Carlo methods. From now on, we omit the index E and
we will intend coordinates and fields as defined in Euclidean space, unless otherwise stated in
the text.

However, the theory is not ready yet to be solved numerically, because the infinite degrees
of freedom make impossible the treatment of the path integral. This difficulty is overcome
replacing continuum space by a hypercubic grid of spatial and time extents Lx,Ly,Lz,Lt . The
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neighboring points in each direction are separated by a distance a, called lattice spacing. In
most practical applications, the spatial extent of the lattice is taken to be the same in all three
directions, i.e. L≡ Lx,Ly,Lz and the hypercubic grid L3×Lt is said to be isotropic. A graphic
representation of a 2-dimensional lattice is depicted in Fig. 3.2.

Lµ

Lν

ψ(n)

Uµ(n)
Uν(n)

a

ν̂

µ̂

1

Figure 3.2 Schematic representation of a 2-dimensional lattice.

In the lattice, the Euclidean continuum coordinates xµ assume discrete values

xµ → nµa , a : lattice spacing , nµ = 0, . . . ,Lµ −1 , (3.18)

and the 4-dimensional integral is transformed into a sum over all lattice sites as∫
d4x→ a4

∑
n

. (3.19)

The discretization of the space-time provides a natural way to regularize the theory, since the
inverse of the lattice spacing serves as an ultra-violet momentum cutoff and makes all loop
integrals finite. The reason is that on the lattice all functions are periodic in momentum space
with a periodicity of 2π/a, and the momenta pµ are quantized as

pµ =
2π

Lµ

nµ , nµ = 0,1, . . . ,Lµ −1 . (3.20)

The integrations are thus restricted to the interval pµ ∈ [0,2π/L) or alternatively to (−π/a,π/a],
making finite all quantities computed on the lattice.

Fermion fields (quarks and antiquarks) are placed at each point of the lattice, i.e. ψ(x)→
ψ(n), ψ̄(x)→ ψ̄(n) and they carry Dirac and color indices as in the continuum formulation.
The gauge transformations of the fermion fields take the form

ψ(n)→ ψ
′(n) = Ω(n)ψ(n) , ψ̄(n)→ ψ̄

′(n) = ψ̄(n)Ω(n) , (3.21)

where Ω(n) is an element of the SU(3) group defined at each lattice site n. To define a gauge
invariant discretized version of the QCD continuum action, it is necessary to introduce link
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variables Uµ(n) as a discrete version of the path ordered product

Uµ(n)≡U(n,n+ µ̂) = eiag0Aµ (n) . (3.22)

Uµ(n) are SU(3) matrices that belong to the fundamental representation of SU(3) group, like
the fermion fields, whilst Aµ(n) are algebra-valued lattice gauge fields. From Eq. (3.22), we
can see that link variables connect neighboring sites on the lattice and are oriented, since they
can also point to negative directions according to

U−µ(n)≡U(n,n− µ̂) = e−iagAµ (n−µ̂) =Uµ(n− µ̂,n)† =Uµ(n− µ̂)† . (3.23)

Finally, for the gauge action to be invariant under transformations Ω(n), the link variables
have to transform in the following way

Uµ(n)→U ′µ(n) = Ω(n)Uµ(n)Ω(n+ µ̂)† . (3.24)

Having discretized space-time, the theory can be solved numerically on a supercomputer.
The number of degrees of freedom remains still large and simulations are computationally
very demanding. In fact, the hypercubic grid must have sufficiently large volume and small
enough lattice spacing so that finite volume and discretization effects are small or negligible.
In practice, lattice spacings used in numerical simulations are typically restricted in the range
0.05 fm ≲ a ≲ 0.1 fm. Ideally, even smaller lattice spacing would be desirable, but the lower
bound is limited by the increasing of computational cost. The reason is the critical slowing
down [102], which affects lattice QCD simulations. Thus, to measure observables on the
lattice, one has to perform computations at different values of lattice spacings (at least three)
and eventually extrapolate the results to a→ 0. The limit a→ 0 is called continuum limit. The
functional form of the extrapolation strictly depends on the observable under study and on the
discretized version of the QCD action. Therefore, even if observables are not affected by any
discretization effects after the continuum limit is performed, it is beneficial to construct lattice
actions that have reduced cutoff effects. This also allows to employ relatively larger values
of the lattice spacing (but still a≤ 0.1 fm) and obtain results of the same quality. Different
discretization schemes, naive and improved, will be discussed in the next Sections.

3.3 Standard discretization schemes

The first formulation of non-Abelian gauge theories on a discretized space-time was proposed
in 1974 by Wilson in the seminal work [13]. We first start with the description of the standard
Wilson pure gauge action to move then to fermion action. The formulation of the fermionic
part is much less trivial, because the Lagrangian contains derivative terms with respect to the
fermion fields that need be properly discretized.
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3.3.1 Wilson gauge action

The Wilson gauge action is constructed in such a way that gauge invariance is preserved if
link variables transform as in Eq. (3.24). The QCD continuum gauge action is recovered for
a→ 0. The choice is non-unique, since a gauge action on the lattice can be function of any
extended products of link variables connecting two different lattice sites.

The simplest object from which a gluon action can be build on is given by a closed path
of link variables, called plaquette

Pµν(n)≡Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂ + ν̂)U−ν(n+ ν̂) , (3.25)

shown schematically in Fig. 3.3. As can be seen, it is the shortest path involving only four link
variables. Under gauge transformations of Eq. (3.24), Pµν(n) transforms as Ω(n)Pµν(n)Ω(n)†.

n n+ µ̂

n+ µ̂ + ν̂n+ ν̂

Uµ(n)

Uν(n+ µ̂)

U−µ(n+ µ̂ + ν̂)

U−ν(n+ ν̂)

Figure 3.3 A plaquette on the µν-plane in a 4-dimensional grid.

Therefore, the two SU(3) matrices at the endpoints cancel out if we take the trace of Pµν(n)
over the color indices. This leads to the definition of the Wilson gauge action

SW
G = β ∑

n
∑

µ ̸=ν

[
1− 1

Nc
Re Tr[Pµν(n)]

]
= β ∑

n
∑

µ ̸=ν

[
1− 1

2Nc
Tr[Pµν(n)+P†

µν(n)]
]
,

(3.26)
where Nc is the number of colors (Nc = 3 in QCD) and the value of β has to be chosen in
such a way that the lattice action recovers the Yang-Mills gauge action for vanishing lattice
spacings. Rewriting the plaquette Pµν(n) in terms of the lattice gluon fields Aµ(n), it is
possible to see that SW

G reduces to the Yang-Mills action in the continuum limit

SG
W = ∑

n
a4 1

2
Tr[FµνFµν ]+O(a2)

a→0−−→ 1
2

∫
d4xFµν Fµν , (3.27)

if g0 satisfies the relation β = 2Nc/g0.

3.3.2 Wilson fermions

The discretization procedure of the fermion action involves the issue called fermion doubling.
As will be described in this Section, a naive discretization procedure leads to unwanted lattice
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artifacts and unphysical particle states, that have to be removed in order to have the correct
continuum limit. This problem was first solved by Wilson [13] and his formulation is still one
of the most used in lattice QCD.

To define a lattice counterpart of the QCD Lagrangian given in Eq. (3.5), the continuum
covariant derivative Dµψ(x) has to be replaced by some discretized form that ensures the
gauge invariance of the action. This requirement is guaranteed with the following replacement

Dµψ(x)→
Uµ(n)ψ(n+ µ̂)−U−µ(n)ψ(n− µ̂)

2a
. (3.28)

Therefore, the discretized fermion action reads

SF [ψ, ψ̄,U ] = a4
∑
f ,n

ψ̄
f (n)

[
4

∑
µ=1

γµ

Uµ(n)ψ f (n+ µ̂)−U−µ(n)ψ f (n− µ̂)

2a
+m f

0ψ
f (n)

]
.

(3.29)
The expression above cannot be considered as a good lattice representation of the fermion
action and must be improved. To understand why, let us write the action in Eq. (3.29) as

SF [ψ, ψ̄,U ] = a4
∑

f
∑
n,m

ψ̄
f (n)D f (n,m)ψ

f (m) , (3.30)

where D f (n,m) is the Dirac operator

D f (n,m) =
4

∑
µ=1

γµ

Uµ(n)δn+µ̂,m−U†
µ(n− µ̂)δn−µ̂,m

2a
+m f

0δn,m . (3.31)

We now want to study the properties of D−1(n,m), the so-called fermion propagator, which
represents the probability amplitude that fermions of flavor f propagate from the space-time
points m to n on the lattice. An important property is that the singularities (poles) of the
propagator in momentum space give the spectrum of the theory. Thus, to describe the same
physics, continuum and lattice formulation have to share the same poles. To extract these
singularities, we switch from the coordinate to the momentum space by taking the Fourier
transform of the Dirac operator D f (n,m). To simplify the discussion, we consider the free
case, i.e. Uµ(n) = 1. Denoting with V = L3×Lt the lattice volume, for a specific fermion f
we obtain

D(p′, p) =
1
V ∑

n,m
e−ip′·naD(n,m)eip·ma =

1
V ∑

n
e−i(p′−p)·na

[
∑
µ

γµ

eipµ a− e−ipµ a

2a
+m0

]

= δ (p′− p)

[
∑
µ

i
a

γµsin(pµa)+m0

]
,

(3.32)
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where we have used the following properties for the discrete Fourier transform

f (p) =
1√
V ∑

n
e−ip·na f (n) , δ (p′− p) =

1
V ∑

n
e−i(p′−p)·na . (3.33)

Thus, the free fermion propagator in momentum space reads

D−1(p) =

[
i
a ∑

µ

γµsin(pµa)+m0

]−1

=
m2

0− ia−1γµsin(pµa)
m0 +a−2 ∑µ sin(pµa)2 , (3.34)

and in the simplest case of zero quark masses it becomes

D−1(p)|m0=0 =−ia
γµsin(pµa)

∑µ sin(apµ)2
ap→0−−−→

−i∑µ γµ pµ

p2 . (3.35)

At a fixed momentum (with the condition ap→ 0), D−1(p) has the correct continuum limit
with the pole at pµ = (0,0,0,0), as for the massless Dirac operator. On the lattice, D−1(p)
has additional poles every time sin(apµ) = 0, i.e. when pµ is either 0 or π/a. This implies
that on the lattice there are additional fermion states which are unphysical, because they do
not have analogy in the continuum theory. This effect can be interpreted as an artifact of the
action of Eq. (3.29) and is known as doubling problem. Even though the above argument
holds for the free case, one can still assume that the doublers appear in full QCD as the theory
is considered asymptotically free at high energies.

Wilson added a higher order derivative term in order to eliminate the doubling problem.
The additional contribution to the action was spotted to be a discretized form of the second
derivative (−ar/2)∂µ∂µ , namely

−ar ψ̄(n)∑
µ

[
Uµ(n)δn+µ̂+m−2δn,m +U−µ(n)δn−µ̂,m

2a2

]
ψ(m) , (3.36)

where r is called Wilson coefficient (the standard choice is r = 1). The Wilson term vanishes
in the continuum limit but leads to lattice artifacts of order a. Using the same logical steps
leading to Eq. (3.32), one can see that the operator (3.36) in momentum space is

r
a ∑

µ

(1− cos(pµa)) (3.37)

for the free theory, Uµ(n) = 1. With this addition, the modified fermion propagator reads

D−1(p) =

[
i
a ∑

µ

γµsin(pµa)+m0 +
r
a ∑

µ

(1− cos(pµa))

]−1

. (3.38)

The physical pole at pµ = (0,0,0,0) remains untouched, because the added term vanishes
in the continuum limit. On the other hand, at pµ = π/a, (1− cos(pµa)) gives an additional
2r/a, which is of the order O(a−1). By consequence, for a→ 0, the Wilson term creates
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particle states with infinite energy, which decouple from the theory. In this way, the Wilson
term can remove the doubling problem.

To conclude, the Wilson fermion action SW
F is given by

SW
F [ψ, ψ̄,U ] = a4

∑
f

∑
n,m

ψ̄
f (n) [D f

F,W (n,m)]ψ f (m) , (3.39)

where D f
F,W denotes the whole Wilson Dirac operator

D f
F,W (n,m) = DW (n,m)+m f

0 , (3.40)

and DW (n,m) is the operator without the mass term

DW (n,m)αβ

ab =
4r
a

δαβ δa,bδn,m

− 1
2a ∑

µ

[
(r− γµ)αβUµ(n)abδn+µ̂,m +(r+ γµ)αβUµ(n− µ̂)†

abδn−µ̂,m

]
.

(3.41)

In the equation above, we have made explicit the dependence on the color and spin indices.
Wilson’s formulation has been the basis for lattice discretizations employed for studying
QCD in the non-perturbative regime. Formulations introduced later differ in the treatment of
the fermion and gluon sectors of the action and were proposed in order to overcome some
disadvantages of the Wilson action, which are discussed in the next Section.

3.3.3 Properties of Wilson action

The Wilson action satisfies a number of crucial properties, besides being free of fermion
doublers and preserving gauge symmetry. Firstly, as the continuum action, it is invariant
under parity (P), charge (C) and time reversal (T ) transformations, that act on fermion and
gluon fields as described in Table 3.1. Secondly, the Wilson-Dirac operator (3.40) has an

P C T

U4(⃗x, t) U4(−⃗x, t) U∗4 (⃗x, t) U−4(⃗x,−t)
Ui(⃗x,τ) U−i(−⃗x, t) U∗i (⃗x, t) Ui(⃗x,−t)

ψ (⃗x, t) γ4ψ(−⃗x, t) Cψ̄T (⃗x, t) γ4γ5ψ (⃗x,−t)
ψ̄ (⃗x, t) ψ̄(−⃗x, t)γ4 −ψT (⃗x, t)C−1 ψ̄ (⃗x,−t)γ5γ4

Table 3.1 Discrete transformations C,P,T on fermion and gluon fields [103].

additional symmetry called γ5-Hermiticity, i.e it obeys to the following relation

D f
F,W (n,m)† = γ5 D f

F,W (n,m)γ5 . (3.42)
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Since (D f
F,W

†)−1 = (D f
F,W
−1)†, also the Wilson fermion propagator is γ5-Hermitian. This

implies that a quark propagator from the lattice points m to n can be reconstructed from the
one having the opposite direction (from n to m) by applying only the γ5-matrix, with no need
of new inversions. The validity of Eq. (3.42) reduces therefore the computational effort in
those lattice calculations in which the knowledge of hadron correlation functions is required.

On the other hand, the Wilson action has also some disadvantages:

1. The leading lattice artifacts of the fermion action are of order O(a), whilst for the gluon
sector they contribute to O(a2).

2. The Wilson-Dirac operator D f
F,W (3.40) is non-protected by zero modes, and thus its

inverse can be ill-defined. This can happen when for some gauge configurations, called
exceptional configurations, the eigenvalues of the whole operator have quite small values
which break down numerical inversions. To avoid exceptional configurations, the solution
is to simulate at large enough values for the bare quark masses, that could balance the
eigenvalues of the Wilson Dirac operator DW (3.41). The drawback of this approach is
that hadron masses may not correspond to their physical value. This represents therefore a
strong limitation of Wilson formulation.

3. At finite lattice spacing all chiral symmetries are explicitly broken even in the massless
case. We remind that, in the continuum theory, chiral rotations leave the Lagrangian
invariant for vanishing quark masses. The origin of the chiral symmetry breaking can
be traced back to the Wilson term, introduced to remove the doublers. Indeed, under the
following chiral rotations

ψ
′(x) = eiαγ5ψ , ψ̄

′(x) = ψ̄(x)eiαγ5 ,

ψ
′(x) = eiαγ5Taψ , ψ̄

′(x) = ψ̄(x)eiαγ5Ta ,
(3.43)

where Ta are the generators of SU(3) color group and α ∈ R, the Wilson term transforms
as

r ψ̄ψ → r e2iαγ5ψ̄ψ , r ψ̄ψ → r e2iαγ5Taψ̄ψ , (3.44)

behaving like a mass term. By consequence, Wilson fermions are not suitable to study
phenomena connected to chiral symmetries, such as the spontaneous chiral symmetry
breaking which has important phenomenological implications [104].

In light of the above, one might wonder whether there exists another way to remove
the doublers, while keeping the chiral symmetry on the lattice. The connection between
chiral symmetries and fermion doubling was established by Nielsen and Ninomiya in the
famous No-Go theorem [105] published in 1981. It states that it is impossible to formulate
a lattice theory that reproduces the correct fermion spectrum and whose Lagrangian is at
the same time Hermitian, local and invariant under translational and chiral transformations
of the form (3.43). However, years later, Ginsparg and Wilson demonstrated that these
limitations can be overcome into two main steps: i) employing a different Dirac operator [106];
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ii) defining on the lattice new chiral transformations, that act on both gluon and fermion
fields [107] and that reduce to the ones of the continuum theory for a→ 0. This has led to the
introduction of two kinds of QCD lattice discretizations: the overlap fermions [108] and the
so-called domain wall fermions [109]. We omit details about these discretizations since they
are not used in this work.

3.4 Improved discretization schemes

3.4.1 Fermion action with clover term

Even if the discretization errors vanish for a→ 0, it is very advantageous to deal with improved
actions that ensure a faster convergence towards the continuum limit. A way to achieve this
improvement in lattice QCD was proposed by Sheikholeslami and Wohlert [110] and makes
use of the Symanzik improvement program [111, 112]. The idea is that O(a) contributions,
and in principle higher order discretization effects, can be removed by adding extra terms to
the lattice action. This role, in Wilson’s formulation, is played by the so-called clover term.

To understand the origin of the clover term we first recall the Symanzik program, according
to which the lattice theory for a→ 0 can be described by an effective action expandable in
powers of the lattice spacing

Le f f = L0 +aL1 +a2L2 + . . . , Se f f =
∫

d4x(L0 +aL1 +a2L2 + . . .) . (3.45)

L0 is the QCD Lagrangian in the continuum and L1, L2 etc. are terms made of composite
operators, depending on gluon and fermion fields. They have to share the same symmetries
of the continuum theory (invariance under gauge, parity, Lorentz, charge-conjugation trans-
formations). To remove O(a) effects, the proposal is to add counterterms that cancel all
possible operators O(1)

i contained in L1. Since the action is dimensionless, L1 must be a
linear combination of operators with dimension (energy)5 [113, 114], given by

O(1)
1 = ψ̄iσµνFµνψ ,

O(1)
2 = ψ̄DµDµψ + ψ̄(x)

←−
D µ

←−
D µψ ,

O(1)
3 = m0 Tr[FµνFµν ] ,

O(1)
4 = m0 [ψ̄γµDµψ− ψ̄

←−
D µγµψ] ,

O(1)
5 = m2

0ψ̄ψ ,

(3.46)

where σµν = i/2[γµ ,γν ] and Fµν is the gluon operator in the continuum. The discretized
version of the backward covariant derivative

←−
D µψ(x) is defined as

←−
D µψ(n) =

1
a

[
ψ(n)−U−1

µ (n− µ̂)ψ(n− µ̂)
]
. (3.47)
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The dependence of L1 on the operators in Eq. (3.46) can be simplified by employing the
equation of motion (γµDµ +m)ψ(x) = 0, which leads to the following conditions

O(1)
1 +O(1)

2 +2O(1)
5 = 0 , O(1)

4 +2O(1)
5 = 0 . (3.48)

The relations above can be used to write O(1)
2 and O(1)

4 in terms of the simpler operators O(1)
1 ,

O(1)
3 and O(1)

5 . This is a strategic choice, since O(1)
3 and O(1)

5 are already part of the continuum
QCD Lagrangian (up to some multiplicative factors). Therefore, they can be absorbed into
Wilson gluon action and in the local product ψ̄(n)ψ(n), by a simple redefinition of the bare
coupling g0 and bare quark mass m0.

Thus, the only term left is O(1)
1 and the improved Wilson action reads

SW,I = SG
W +SF

W + ia5 cSW

4 ∑
n,µ,ν

ψ̄(n)σµν F̂µν(n)ψ(n) , (3.49)

where cSW is called clover parameter. F̂µν is an antisymmetric tensor under exchange µ ↔ ν

and represents the lattice counterpart of the gluon operator Fµν , chosen by Sheikholeslami
and Wohlert to be

F̂µν(n) =
1

8a2

[
Qµν(n)−Qνµ(n)

]
. (3.50)

Qµν(n) is a sum over the plaquettes in the plane µ−ν

Qµν(n) = Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂ + ν̂)U−ν(n+ ν̂)

+ U−ν(n)Uµ(n− ν̂)Uν(n− ν̂− µ̂)U−µ(n+ µ̂)

+ U−µ(n)U−ν(n− µ̂)Uµ(n− µ̂− ν̂)Uν(n− ν̂)

+ Uν(n)+U−µ(n+ ν̂)U−ν(n+ ν̂− µ̂)Uµ(n−n−µ) ,

(3.51)

as shown in Fig. 3.4. The value of cSW has to be tuned in order to remove O(a) effects. A

µ

ν

n

Figure 3.4 Graphical representation of Qµν (Eq.(3.51)) entering the clover action.

correct choice for cSW leads to O(a) improvement for on-shell quantities, such as hadron
masses. This task can be achieved non-perturbatively through lattice calculations, see e.g
Refs. [115–118] for determinations of csw using the Wilson plaquette action and different
dynamical flavors.

It is important to mention that the introduction of the clover term in Wilson formulation
removes effects of order a only for on-shell observables. Other quantities, such as the fermion
propagator or quark currents of the form ψ(x)Γψ(x), where Γ is a Dirac matrix, are not
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improved andO(a) improvement can be achieved by adding appropriate terms to the operator
under study.

3.4.2 Twisted mass fermions

In this Section we present the twisted mass fermion formulation for QCD (tmQCD) [119],
which is the one used in this work. In particular, we focus on its simplest form, which involves
two light degenerate quarks (N f = 2 QCD). Generalizations of the twisted mass action with a
further doublet of non-degenerate quarks can be found in Refs. [120, 121].

Twisted mass action has two fundamental properties: 1) it is protected against zero modes,
unlike Wilson formulation; 2) a large class of operators are authomatically O(a) improved,
provided that some parameters of the action are properly tuned. These two nice aspects make
tmQCD a very attractive framework for studying strong interactions in a non-perturbative
regime. tmQCD has also became a very popular variant of Wilson formulation. Using twisted
mass fermions, a wide variety of aspects in QCD have been investigated over the years, that
are related to topological properties and hadron structure, such as baryon and meson spectrum,
form factors, nucleon spin and recently also nucleon parton distribution functions.

Action for N f = 2 degenerate quarks

We consider two quark fields with the same bare mass m0 that form doublets {χ, χ̄} in flavor
space. For light quarks χ = (u,d)T . The tmQCD action is given by

S{χ}tm = a4
∑
n,m

χ̄(n)
[
DW (n,m)+m01 f + iµqγ5τ3

]
χ(m) , (3.52)

where 1 f and τ3 = diag(1,−1) are the identity matrix and the third Pauli matrix acting in
flavor space, and m f

0 is the bare mass. DW is the Wilson Dirac operator defined in Eq. (3.41)
with r = 1 and µq is the so-called bare twisted mass parameter. The last term in the action,
known as twisted mass term, is crucial to protect the Dirac operator against zero modes. To see
this, we analyze the determinant employing the γ5-Hermiticity property of Wilson operator
and we obtain

det
[
DW +m01 f + iµqγ5τ3

]
= det

[
DW +m01 f + iµqγ5

]
det
[
DW +m01 f − iµqγ5

]
= det

[
DW +m01 f + iµqγ5

]
det
[
γ5(DW +m01 f − iµqγ5)γ5

]
= det

[
(DW +m01 f + iµqγ5)(D

†
W +m01 f − iµqγ5)

]
= det

[
(DW +m01 f )(DW +m01 f )

† +µ
2
q )
]
.

(3.53)

For any finite value of µq the determinant is always positive and thus the twisted Dirac
operator does not have zero modes. Consequently, the additional term in µq acts like a mass
term and can be incorporated with m0 to form a unique mass term in the action. This is
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achieved by applying the flavor-dependent axial transformations

ψ(n) = eiαγ5τ3/2
χ(n) −→ χ(n) = e−iαγ5τ3/2

ψ(n) ,

ψ̄(n) = χ̄(n)eiαγ5τ3/2 −→ χ̄(n) = ψ̄(n)e−iαγ5τ3/2 ,
(3.54)

where α is the twist angle and {ψ, ψ̄} are doublets in flavor space in the so-called physical
basis. The “mass term” transforms as

χ̄(m0 + iµqγ5τ3)χ → ψ̄e−iαγ5τ3(m0 + iµqγ5τ3)ψ , (3.55)

and can be written in a compact form defining the polar mass M via

m0 + iµqγ5τ3 ≡Meiαγ5τ3 with m0 = M cos(α) , µq = M sin(α) . (3.56)

Moreover, under transformations (3.54) the Dirac operator DW gets modified into Dtm
W , in

which only the Wilson term is rotated by e−iαγ5τ3 . Thus, the twisted mass action in the
physical basis

S{ψ}tm = a4
∑
n,m

ψ̄(n)
[
Dtm

W (n,m)+M1 f
]

ψ(m) (3.57)

assumes the standard form of the QCD action, with a kinetic part and only one mass term,
given by M =

√
m2

0 +µ2
q . In the continuum limit, where the Wilson term vanishes, tmQCD

is equivalent to the standard QCD, provided that in the axial rotations of Eq. (3.54) tan(α) =

µq/m0.

Chiral symmetry and maximal twist

We have pointed out above that in the continuum limit the axial rotations (3.54) relate tmQCD
to the standard QCD. However, the relation between the two formulations needs to involve
renormalized quantities when working at finite lattice spacing. In this respect, we observe
that the transformations from twisted to physical basis do not leave tmQCD action invariant
even at zero bare quark masses, because of the Wilson term. In other words, at finite a, chiral
symmetry is explicitly broken. This has an important implication because it determines the
renormalization properties of the bare mass. In the continuum theory, masses renormalize
multiplicatively (mR = Zmm0) because the chiral symmetry is fully restored in the limit
of zero mass. In presence of an explicit symmetry breaking, the mass takes an additive
renormalization

mR = Zm(m0−mcr) . (3.58)

This is due to the fact that breaking of chiral symmetry shifts the chiral point by a certain value
mcr and to achieve vanishing renormalized masses (recovery of the chiral limit) m0 needs to be
subtracted by mcr. After this subtraction, the difference m0−mcr renormalizes multiplicatively.
Thus, the relation tmQCD and standard QCD rather involves renormalized quantities such
that tan(α) = µR/mR, where µR = Zµ µq [122, 123]. It is particularly interesting the case
usually called full or maximal twist, in which mR = 0 and consequently α = π/2. In fact, it
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has been demonstrated [124] that a large class of observables is automatically free of order
a effects when the physical quark mass is solely given by µR. In numerical simulations, the
standard procedure to achieve maximal twist is to tune the bare mass m0 to the critical value
mcr, such that the so-called PCAC mass [125, 126]

mPCAC =
∑x⟨∂0Aa

0(x)P
a(0)⟩

2x⟨Pa(x)Pa(0)⟩
a = 1,2 (3.59)

vanishes for large Euclidean times. The relation above, which written in this form is valid for
degenerate quarks, follows from the well-known nonsinglet axial Ward identity (AWI) [127,
128]. The AWI states that, under global transformations ψ → eiθ aγ5τa/2ψ , the divergence of
the axial vector current (Aa

µ ) is related to the pseudoscalar current (Pa) via

∂µAa
µ =

1
2

ψ̄{M,τa}γ5ψ , where Aa
µ =

1
2

ψ̄γµγ5τ
a
ψ , Pa =

1
2

ψ̄γ5τ
a
ψ . (3.60)

The relations above hold in physical basis and for a generic mass matrix M.
Performing the rotations (3.54), it can be easily proved that in twisted basis and for degenerate
quarks the AWI is given by

∂µAa
µ = 2m0Pa + iµqδ

3aS0 , where Aa
µ =

1
2

χ̄γµγ5τ
a
χ , S0 = χ̄χ . (3.61)

In the following we review a simple proof of the automatic O(a) improvement at maximal
twist, which is one of the biggest advantages of tmQCD.

Automatic O(a) improvement

Automatic O(a), that holds at maximal twist, means that composite operators are automat-
ically improved having discretization errors only at order a2. The proof applies to a large
class of correlation functions involving multi-local fields, such as two currents applied in two
different lattice points, and it is based on the Symanzik improvement program already used
in Section 3.4.1. For the proof we follow the arguments of Refs. [122, 123]. According to
the effective Symanzik theory, in the limit a→ 0 the action and a generic operator can be
expanded as

Se f f = S0 +aS1 +O(a2) , Oe f f = O0 +aO1 +O(a2) . (3.62)

S0 is the twisted mass continuum action at maximal twist (mR = 0)

S0 =
∫

d4x χ̄(x)
[
γµDµ(x)+ iµγ5τ

3]
χ(x) , with Dµ(x) = ∂µ + iAµ(x) , (3.63)

while S1 is the continuum counterpart of the clover fermion action (3.49) and reads

S1 = cSW

∫
d4x χ̄(x)iσµνFµν χ(x) . (3.64)

In Eq. (3.62), O0 denotes the continuum expression of the lattice operator under study and
O1 is a suitable operator with the correct dimension and symmetry properties of O0. After
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renormalization, the expectation value ⟨O⟩e f f on the lattice can be expanded as well in
powers of a and in terms of quantities evaluated in the continuum. Indeed, using path integral
formulation we have

⟨O⟩e f f =
1
Z

∫
[DU ][Dψ][Dψ̄]e−S0 e−(aS1+O(a2))

[
O0 +aO1 +O(a2)

]
=

1
Z

∫
[DU ][Dψ][Dψ̄]e−S0

[
1−aS1−O(a2)

] [
O0 +aO1 +O(a2)

]
= ⟨O⟩0−a⟨S1O0⟩0 +a⟨O1⟩0 +O(a2) ,

(3.65)

where ⟨. . .⟩0 stands for continuum expectation value evaluated with the action S0. We now
examine the symmetry property of all terms in Eq. (3.65) with respect to the transformations

R1,2 : χ → iγ5τ
1,2

χ , χ̄ → χ̄iγ5τ
1,2 (3.66)

for which the continuum action S0 is invariant. We note that S0 is invariant only at maximal
twist, because otherwise we would have in the action a non-invariant term, i.e. χ̄m0χ . This is
a key ingredient for this proof, that allows us to establish the following symmetries under R1,2

rotations
S0

R1,2
−−→ S0 , S1

R1,2
−−→−S1 . (3.67)

As concerns the operators, they can be odd or even under R1,2, but the transformation
properties of O0 automatically fix the ones of the correction term O1 [123]. In particular, the
following relations hold [123]

O0
R1,2
−−→±O0 ⇒ O1

R1,2
−−→∓O1 . (3.68)

Consequently, by combining the relations (3.67) and (3.68), we can now finalize our proof
and distinguish between the two possible cases:

1. If O0 is even under R1,2, then ⟨S1O0⟩0 = ⟨O1⟩= 0 and we obtain

⟨O⟩e f f = ⟨O⟩0 +O(a2) . (3.69)

2. If O0 is odd under R1,2, then ⟨O⟩0 = 0 and therefore

⟨O⟩e f f =−a⟨S1O0⟩0 +a⟨O1⟩0 +O(a2) . (3.70)

Thus, at maximal twist, physical observables that are R1,2-even have lattice artifacts of order
a2, whilst odd operators have a vanishing expectation value in the continuum limit.

Some remarks

So far we have seen that, unlike Wilson fermions, in tmQCD the clover term of Eq. (3.51) is
not needed for O(a) improvement if maximal twist is achieved. However, including a clover
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term in the action has been found very advantageous because it can further reduce lattice
artifacts. Also, it has made feasible the production of gauge ensembles at quark masses close
to their physical value. The ensemble at the physical point used in this work has been indeed
produced incorporating the clover term in the twisted mass formulation.

The crucial point is that tmQCD action is not invariant under isospin transformations at
finite lattice spacing. This is due the twisted mass term, which in flavor space takes values
+iµq and −iµq for up and down quarks. In the continuum limit, however, this symmetry is
fully restored. The biggest effect of isospin symmetry breaking has been observed in past
simulations via a mass splitting in the pion sector, with the neutral pion being lighter than the
charged one. The difference in mass is responsible for the lower bound of the bare light quark
mass, under which the mass of the neutral pion approaches zero triggering a phase transition
that is not observed in the QCD vacuum in the real world. This problem has been recently
overcome by including the clover term in tmQCD action. There is indeed evidence that the
mass splitting gets significantly reduced than the one measured on ensembles without clover
term [129], enabling the production of gauge ensembles with quark masses tuned to their
physical value [130, 131].

3.5 Computing observables in lattice QCD

Once a lattice representation of the gluon and fermion action has been chosen, physical
observables are computed using Feynman’s path integral formulation. The goal is to estimate
expectation values of observablesO(ψ, ψ̄,U), which in general depend on gluon and fermion
fields. After Wick rotation, we have seen that the expectation value takes the form

⟨Ω|O(ψ, ψ̄,U)|Ω⟩= 1
Z

∫
DψDψ̄DU O(ψ, ψ̄,U)e−SG[U ]−SF [ψ,ψ̄,U ] , (3.71)

where Z is the partition function

Z =
∫
DψDψ̄DU e−SG[U ]−SF [ψ,ψ̄,U ] . (3.72)

The path integral must be solved numerically, but there is an intrinsic problem: ψ , ψ̄ are
defined through anti-commutation relations and is very difficult to represent such numbers at
low-level on a computer. The way around this problem is to integrate over the fermion fields
analytically and use the fact that ψ and ψ̄ are Grassmann numbers.

If {η1, . . . ,ηN} are Grassmann variables, namely

{ηi,η j}= ηiη j +η jηi = 0 , i, j = 1, . . . ,N , (3.73)

they have to satisfy the following properties

∫
dηi = 0 ,

∫
dηiηi = 1 ,

∫ N

∏
l=1

dη̄ldηl e−∑i, j η̄iAi jη j = det [A] , (3.74)
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3.5 Computing observables in lattice QCD

where det [A] is the determinant of a generic matrix.
The relations above can be directly used to carry out the integration over ψ, ψ̄ in the

partition function. The fermion action is indeed bilinear in the fermion fields and can be
written as

SF [ψ, ψ̄,U ] = ∑
n,m,α,β ,a,b

ψ̄n,α,a(D[U ])αβ ,a,b ψm,β ,b , (3.75)

where D is the Dirac operator. Thus, the integration over the fermion variables gives rise to
the determinant of the Dirac operator, and the partition function becomes

Z =
∫
DψDψ̄DU e−SG[U ]−SF [ψ,ψ̄,U ] =

∫
DU e−SG[U ] det[D] . (3.76)

Now we have to carry out the integration left in Eq. (3.71). To simplify the derivation, let
us suppose that the observable O involves only two fermion fields ψ(x1), ψ̄(x2), and the
expectation value of interest is

⟨O(ψ, ψ̄)⟩= ⟨Ω|ψ(x1)ψ̄(x2)|Ω⟩

=
1
Z

∫
DψDψ̄DU ψ(x1)ψ̄(x2) e−SF [ψ,ψ̄,U ]e−SG[U ] .

(3.77)

The discussion can be, however, easily generalized for any quantity, including gluon-dependent
ones. The integration in (3.77) is now less straightforward than the one in (3.76) and can
be performed by introducing a functional integral dependent on two auxiliary Grassmann
variables η , η̄

Zη ,η̄ =
∫
DψDψ̄DU e−∑ ψ̄D[U ]ψ+∑(ψ̄η+η̄ψ) e−SG[U ] . (3.78)

In the expression above we have replaced SF by its the compact form ψ̄D[U ]ψ , according to
Eq. (3.75). The expectation value (3.77) can now be obtained through derivation procedure

⟨O(ψ, ψ̄)⟩= 1
Zη ,η̄

(
∂η̄(x1)∂η(x2)Zη ,η̄

)∣∣∣∣
η ,η̄=0

=
1

Zη ,η̄
∂η̄(x1)∂η(x2)

∫
DψDψ̄DU e−∑ ψ̄D[U ]ψ+∑(ψ̄η+η̄ψ) e−SG[U ]

∣∣∣∣
η ,η̄=0

.

(3.79)

If we perform the change of variables ψ → ψ + D−1[U ]η and ψ̄ → ψ̄ + η̄D−1[U ], the
exponential in the integral above can be decomposed into two quadratic expressions in terms
of the Grassmann variables, and the integration over ψ, ψ̄ gives rise to another fermion
determinant

Zη ,η̄ =
∫
DψDψ̄DU e−ψ̄D[U ]ψ+η̄D−1[U ]η e−SG[U ] =

∫
DU det D[U ] e+η̄D−1[U ]η e−SG[U ] .

(3.80)
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Thus, from the repeated differentiation of the exponent η̄D−1[U ]η , the expectation value
(3.77) can be finally written as

⟨Ω|ψ(x1)ψ̄(x2)|Ω⟩=
∫
DU D−1[U ](x1,x2)detD[U ]e−SG[U ]∫

DU det D[U ]e−SG[U ]
. (3.81)

This result can be generalized for any observable of interest and the expectation value reads

⟨O⟩=
∫
DU Õ[U ]detD[U ]]e−SG[U ]∫
DU det D[U ]e−SG[U ]

, (3.82)

where Õ[U ] may depend on the gluon fields either explicitly or implicitly through the inverse
of the Dirac operator, as seen in our example.

In Eqs. (3.81, 3.82) we are left with the integration over the gluon fields, which still cannot
be performed analytically. In practice, in numerical simulations, a representative set of gluon
configurations,

{
U1,U2, . . . ,UN

}
, is generated using Monte Carlo methods with probability

density (det D[U ]e−SG[U ])/Z. To simulate QCD with N f quark flavors, det D[U ] in Eq. (3.82)
gets replaced by

det D[U ]→
N f

∏
f=1

det D f [U ] . (3.83)

The so-called (partial) quenched approximation consists in neglecting (some) the contribution
of det D f [U ] in Monte Carlo simulations.

Once gauge configurations have been produced, the expectation value ⟨O⟩ is estimated
via its sample average

⟨O⟩= Ō±∆Ō , Ō =
1
N

N

∑
k=1
O[Uk] , ∆Ō ∝

1√
N

. (3.84)

The statistical error ∆Ō is due to the fact that the number of measurements is always finite
and it is usually called gauge noise. Moreover, ∆Ō does not scale exactly as 1/

√
N, because

the gauge configurations generated with Monte Carlo methods are correlated with each other.
It is possible to show that ∆Ō is rather increased by a factor

√
2τint(O) than what expected

for uncorrelated measurements. Here we indicate with τint(O) the so-called integrated
autocorrelation time, defined as

τint(O) =
1
2

t=+∞

∑
t=−∞

ΓO(t)
ΓO(0)

, (3.85)

where t = i− j is the distance between the measurements i and j in the Monte Carlo history,
while ΓO(0) is the variance of the observable O and ΓO(t) the autocorrelation function given
by

ΓO(0) = ⟨(O−⟨O⟩)2⟩ , (3.86)

ΓO(i− j) = ⟨(Oi−⟨O⟩)(O j−⟨O⟩) . (3.87)
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3.6 Quasi-distributions on a Euclidean space-time

Different techniques can be in general used to estimate the statistical errors of correlated
data. In this work we use the so-called Jackknife binning, that is among the simplest
analysis methods and easily applicable to any complicated function of the primary data, which
are directly extracted from lattice calculations. Details about the method can be found in
Refs. [132, 133].

3.6 Quasi-distributions on a Euclidean space-time

Having described how observables are computed in lattice QCD, we now explain the method
used in this work to study parton physics on a Euclidean lattice. The focus is on the quasi-PDF
approach, a novel method proposed by X.Ji in 2013 [33]. This approach has opened the
path to many ab initio calculations of quark distribution functions, with the idea that these
observables can be accessed on the lattice through appropriate matrix elements.

To explain the theoretical principles of the quasi-PDF approach, let us first recall the defi-
nitions of parton distribution function (PDF), already stated in Eqs. (2.36-2.38) in Minkowski
space. In this Section we consider the unpolarized PDF, but the arguments described below
also extend to other kinds of quark distributions. The unpolarized PDF for a given quark is
defined on the light-cone and reads

q(x) =
1

4π

∫ +∞

−∞

dξ
−e−ixP+ξ− ⟨N|ψ̄(ξ−)γ+W (ξ−,0)ψ(0)|N⟩ , (3.88)

where P+ = (P0 +P3)/
√

2 is the plus component of the hadron momentum, ξ− = (ξ 0−
ξ 3)/
√

2, γ+ = (γ0+γ3)/
√

2 and W (ξ−,0) = e−ig
∫ ξ−

0 dη−A+(η−) is the Wilson line connecting
the light-cone points ξ− and 0. The difficulty in computing PDFs in lattice QCD is due
to the fact that the definition in Eq. (3.88) cannot be used in Euclidean space. As seen in
Section 2.3.1, the integral (3.88) receives non-zero contributions in an area which is close to
the light-cone, i.e. ξ 2 = t2− r⃗2 ≈ 0. Applying the rotation to imaginary time, we see that in
Euclidean space the light-cone condition becomes −t2− r⃗2 ≈ 0, that on the lattice is satisfied
only at the origin. On the other hand, the moments of PDFs are related to matrix elements
of local operators (see Section 2.3.3 and Appendix A.2) and can be accessed on the lattice.
However, only the first few moments can be realistically computed, making impossible a full
reconstruction of PDFs from first principles. It is at this point that the quasi-PDF approach
comes into play.

The approach by X.Ji relies on the fact that parton distributions can be equivalently defined
in two different frames: on the light-cone, where a hadron is moving with momentum P, or
in the infinite momentum frame (IMF) according to Feynman’s original parton model [6].
As explained in Section 2.3, partons do not have time to interact if a hadron is moving with
infinite momentum and the definition of parton distribution functions emerges naturally in
this framework. Therefore, if we find a way to boost the nucleon with very large momentum,
we should be able to reconstruct PDFs and get closer to the physics of the light-cone as well.
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3.6 Quasi-distributions on a Euclidean space-time

More formally, we compute on the lattice the following distribution, called quasi-distribution

q̃(x,Λ,P3) =
∫ +∞

−∞

1
4π

e−izxP3⟨N|ψ̄(z)γ3W (z,0)ψ(0)|N⟩ , (3.89)

where Λ ∼ 1/a is a ultra-violet cutoff (being a the lattice spacing), P = (P0,0,0,P3), x is
the “quark momentum fraction” and W (z,0) = e−ig

∫ z
0 dz′A3(z′) is the Wilson line in the boost

direction. The quark field ψ̄ is defined in the space-time point zµ ≡ (0,0,0,z), from which
we can see that the quasi-distributions are purely spatial correlation functions. The light-cone
definition of PDF corresponds to the Eq. (3.89) evaluated at P3→ ∞, in line with Feynman’s
original parton model. Since the momentum employed on the lattice is finite, the variable x
in Eq. (3.89) does not represent the quark momentum fraction. Indeed, as we will see with
our results in Chapter 7, the quasi-distribution does not vanish for x > 1, meaning that the
partonic interpretation is lost at this stage.

The connection between quasi-PDF, Eq. (3.89), and physical PDF, Eq. (3.88), is estab-
lished in the framework of Large Momentum Effective Theory (LaMET) [34]. In this context,
one has to apply a matching procedure, that was discussed for the first time in Ref. [134]. The
matching condition takes the form

q̃(x,µ,P3) =
∫ −1

−1

dy
|y|
C
(

x
y
,

µ

P3

)
q(x,µ)+O

(
Λ2

QCD

P2
3

,
m2

N

P2
3

)
, (3.90)

where q̃(x,µ,P3) is the renormalized quasi-PDF at a scale µ and q(x,µ) is the light-cone PDF.
In the expression above, C is the matching coefficient (or matching kernel), computable in
perturbation theory as an expansion in the strong coupling constant. The quasi-PDFs differ
from the light-cone distributions by corrections which are suppressed with Λ2

QCD/P2
3 and

m2
N/P2

3 , where mN is the nucleon mass. The mass-dependent corrections are known as nucleon
mass corrections (NMCs) and can be computed analytically to all orders and subtracted out,
as proved in Ref. [38]. In Eq. (3.90), the corrections in Λ2

QCD/P2
3 are generic higher twist

effects [33], in principle computable in perturbative QCD. So far their contribution has not
been estimated and thus they can be made smaller by boosting the nucleon with very large
momentum, and using the matching procedure.

The approaching of the quasi-PDF to the light-cone physics is schematically represented
in Fig. 3.5. The dashed lines in the diagram denote the light-like separations, where PDFs
are defined, whilst the thick blue line represents non-local matrix elements with an extended
Wilson line in the z-direction in the rest frame of the hadron. Introducing a momentum
boost (red arrow), the space-like matrix elements are tilted to the light-cone directions. The
difference between the final correlation functions after matching (diagonal solid line) and
PDFs is given at the leading order by O(Λ2

QCD/P2
3 ,m

2
N/P2

3 ) terms.

Summarizing, the ab initio extraction of parton distribution functions, within the quasi-
PDF approach, requires the following steps:

47



3.6 Quasi-distributions on a Euclidean space-time

ξ0 = t

ξ3 = z

ξ− ξ+

O
(

Λ2
QCD

P 2
3
,
m2

N

P 2
3

)

1

Figure 3.5 Approaching of the space-like correlation functions with Wilson line in the z-direction
(blue) to the light-cone PDFs. The dashed lines indicate the light-cone directions and the red arrow
denotes the nucleon boost. The diagonal black solid line represents the estimate of the light-cone PDF
from the lattice.

1. computation and renormalization of the non-local matrix elements

hΓ(P3,z) = ⟨N|ψ̄(z)ΓW (z)ψ(0)|N⟩ , (3.91)

where P3 is the momentum in the z-direction and Γ is some combination of Dirac
matrices, whose structure gives access to a specific quark distribution;

2. computation of the Fourier transform of the renormalized matrix elements, yielding the
quasi-distribution q̃(x,µ,P3);

3. application of the matching procedure, Eq. (3.90), to relate quasi- to physical PDFs.
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Chapter 4

Nucleon correlation functions on the
lattice

In this Chapter we describe how to extract the matrix elements of interest in this work. They
are of the type ⟨N(p⃗)|O|N(p⃗)⟩, where N(p⃗) is a nucleon state with momentum p⃗ and O is
an operator having the form q̄Γq, where q is a quark field and Γ some combination of Dirac
γ-matrices. We find that matrix elements can be obtained by taking suitable ratios of three-
and two-point correlation functions, and the ground state dominates in the limit of large
Euclidean time. First of all, it is important to establish the notation and introduce the concept
of interpolating fields, which share the same quantum numbers of the desired particle. Then,
we discuss the basic structure of the correlation functions that are computed in this work,
together with their building blocks (the quark propagators). Finally, we describe the main
lattice techniques that we employ to improve the signal-to-noise ratio on the correlators.

4.1 Nucleon field

In hadron structure calculations it is necessary to introduce interpolating fields, that applied to
the vacuum of the theory create and annihilate particle states at two specific space-time points.
The choice of the interpolating field is in general not unique, because the same fermion fields
may be combined in different ways reproducing the same quantum numbers of the particle
state. Here we discuss only the interpolating field of the nucleon, since this is what we used
in this work. For a detail review about other baryons and mesons see for instance Ref. [98].

Nucleon is the lightest positive parity state of the baryon spectrum and it is either a proton
(p) or a neutron (n). Proton and neutron form a doublet of 1/2-spin, with isospin components
Iz = +1/2 (p) and Iz = −1/2 (n); their valence quark content is uud and duu respectively.
They are almost degenerate in mass (mp ≃ 938 MeV against mn ≃ 940 MeV), indicating that
isospin is a good symmetry. The interpolating fields on the lattice must be constructed in such
a way that the quantum numbers of the particles are preserved: baryon number, parity, spin,
isospin and valence quark content. For the proton interpolating field, we make the following
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4.2 Nucleon two-point functions

choice
N p

α (x) = ε
abcua

α(x)
(

dbT
(x)Cγ5uc(x)

)
, (4.1)

where C = iγ2γ4 is the charge conjugation matrix and the transposition T acts only on the Dirac
indices. As can we see, the antisymmetric tensor εabc ensures that the proton is color-singlet.
Moreover, with the choice (4.1), the proton quantum numbers relative to the electric charge,
spin and isospin are fully reproduced.
In a similar way, one can define the interpolating field for the neutron as

N n
α(x) = ε

abc da
α(x)

(
ubT

(x)Cγ5dc(x)
)
. (4.2)

However, under parity transformation ψ (⃗x, t) P−−→ γ4ψ(−⃗x, t), the interpolating fields trans-
form in a non-trivial way

N p
α (⃗x, t)

P−−→ γ4N p
α (−⃗x, t) , N n

α (⃗x, t)
P−−→ γ4N n

α(−⃗x, t) . (4.3)

Therefore, to ensure that the nucleon has positive parity we need to apply a projection matrix
and we define

N p(x)≡ P+ N p(x) , N n(x)≡ P+ N n(x) with P+ =
1+ γ4

2
. (4.4)

The projection by P- = (1− γ4)/2 is also possible, but that would give a state with negative
parity, which physically corresponds to the negative parity partner of the nucleon with mass
M ≃ 1535 MeV.
To conclude, we also specify the interpolating fields (with positive parity) for the creation
operators for both proton and neutron

N p
(x) = ε

abc
(

d̄a(x)Cγ5ūbT
(x)
)

ūc(x)P+ , (4.5)

N n
(x) = ε

abc
(

d̄a(x)Cγ5ūbT
(x)
)

d̄c(x)P+ , (4.6)

where only the color indices have been made explicit.

4.2 Nucleon two-point functions

The basic nucleon two-point function in position space is defined as

C2pt
αβ

(x′,x) = ⟨Ω|Nα(x′) Nβ (x)|Ω⟩ , (4.7)

where Nβ (x) is the nucleon operator that applied to the vacuum creates a nucleon state at
position x, which is in turn annihilated by Nα(x′). The open Dirac indices are saturated in
such a way that the nucleon state has positive parity. In the previous Section we have seen that
the projection matrix is given by the combination Γ = (1+ γ4)/2 and thus the spin projected
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4.2 Nucleon two-point functions

two-point function is
C2pt

Γ
(x′,x) = Γβα ⟨Ω|Nα(x′) Nβ (x)|Ω⟩ . (4.8)

Written in this form, the two-point function can be interpreted as the probability amplitude that
a nucleon propagates from x to x′ on a given background gauge configuration, see Eq. (3.81).
However, in lattice QCD we are actually interested in its average value over a sample of gluon
configurations, indicated via

⟨C2pt(x′,x)⟩= ⟨N(x′) N(x)⟩ . (4.9)

We refer to x = (⃗x, t) as the source position, where a nucleon state is created, and x′ = (⃗x ′, t ′)
as sink position. Note that we have assumed t ′ > t, since a T-ordered product is implicit in
Eq. (4.7).
Moreover, we can use the translational invariance property on the lattice to simplify the
notation and the derivations of the formulae from now on. Indeed, correlation functions
evaluated as path integral depend only on the difference x′− x. Consequently, without loss of
generality, we can shift x′ by the position of the source and consider the following expressions

C2pt(x′,0)≡C2pt (⃗x ′, t ′;0) , ⟨C2pt(x′,0)⟩= ⟨N(x′) N(0)⟩ . (4.10)

In the following, we study in detail the structure of the two-point functions in terms of quark
propagators (quark level) and energy states of the nucleon (hadron level).

4.2.1 Quark level

The aim here is to write down the nucleon two-point function in terms of Wick contractions
of the quark fields. Since the logic is very similar, we consider only the proton for which we
have

C2pt
α,α(x

′,0) = ⟨Ω|Nα(x′)N α(0)|Ω⟩=−⟨Ω|N α(0)Nα(x′)|Ω⟩
=−⟨Ω|(NP+)α(0) (P+N)α(x′)|Ω⟩ .

(4.11)

Using the property P2
+ = 1 and applying the Wick theorem, we get

C2pt
α,α(x

′,0) =−ε
abc

ε
a′b′c′⟨Ω| d̄a

α(0) (Cγ5)αβ ūbT

β
(0) ūc

γ(0)Pγγ ′ (4.12)

ua′
γ ′(x
′)db′T

α ′ (x
′)(Cγ5)α ′β ′ u

c′
β ′(x

′) |Ω⟩

=−ε
abc

ε
a′b′c′(Cγ5)αβ (Cγ5)α ′β ′Pγγ ′

⟨Ω| d̄a
α(0) ūbT

β
(0) ūc

γ(0)ua′
γ ′(x
′)db′T

α ′ (x
′)uc′

β ′(x
′) |Ω⟩

= ε
abc

ε
a′b′c′(Cγ5)αβ (Cγ5)α ′β ′ Pγγ ′ D−1

d (x′,0)b′a
α ′α[

D−1
u (x′,0)a′b

γ ′β D−1
u (x′,0)c′c

β ′γ −D−1
u (x′,0)c′b

β ′β D−1
u (x′,0)a′c

γ ′β

]
, (4.13)

where we have contracted all quark fields using the Grassmann properties for anti-commuting
numbers. D−1

u (x′,0) and D−1
d (x′,0) denote the up and down quark propagators from 0 to x′,
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4.2 Nucleon two-point functions

on a given gauge field configuration. From Eq. (4.13) it is thus clear that up quark fields can be
contracted in two possible ways, that give rise to connected diagrams. This contraction pattern
is depicted schematically in Fig. 4.1, where the solid lines denote the quark propagators
connecting the lattice points 0 and x′.

u

u

d
−

u u

d

1

Figure 4.1 Schematic representation of the proton two-point function. The solid lines indicate the
quark propagators connecting the points 0 and x′, in which the particle is created and annihilated
respectively.

The fact that solely connected pieces contribute to the two-point function is a result that can
be extended also to the other baryons. On the other hand, this is not valid in general for
all mesons, and examples are the pseudoscalar π0 and η0 mesons. For these particles it is
possible to have a quark propagating from one point to the same point of the lattice, which
produces disconnected diagrams. These diagrams are notoriously much more difficult to
compute and require the use of appropriate gauge-noise reduction techniques. Disconnected
contributions appear also in three-point function calculations, as we will see in Section 4.3.1.
However, in this work they are not computed as we focus on the non-singlet flavor structure
u−d, in which disconnected diagrams cancel out under isospin symmetry.

4.2.2 Hadron level

Having discussed how the two-point functions are built from quark propagators, we want
to study these correlation functions also from another point of view, i.e. in terms of energy
states.

In our practical applications we are interested in the momentum dependence of the matrix
elements extracted from the lattice. To this aim, we need to do a momentum-projection onto
states with well-defined momentum p⃗. This is realized via a sum over the sink positions, as

C2pt
αβ

(p⃗, t ′) =
1
V ∑

x⃗′
e−ip⃗·⃗x ′C2pt

αβ
(⃗x′, t ′) =

1
V ∑

x⃗′
e−ip⃗·⃗x′⟨Ω|Nα (⃗x ′, t ′)Nβ (0)|Ω⟩ , (4.14)

where V = L3 is the spatial volume of the lattice. From the two-point function in momentum
space one can extract physical quantities, like energies and masses of particles if p⃗ = 0. To do
this, we first have to shift the interpolating field to the origin via unitary operators

C2pt
αβ

(p⃗, t ′) =
1
V ∑

x⃗′
e−ip⃗·⃗x′ ⟨Ω|e−i p̂⃗x′eĤt ′Nα(0)e−Ĥt ′ei p̂⃗x′Nβ (0)|Ω⟩ , (4.15)
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4.2 Nucleon two-point functions

where p̂ and Ĥ are the momentum operator and the QCD Hamiltonian, and then insert a
complete set of eigenstates. We assume that the states are normalized as

⟨p⃗,n|⃗k,m⟩= δn,mδ p⃗,⃗k , with 1 = ∑
p⃗,n
|p⃗,n⟩⟨p⃗,n| . (4.16)

Thus, using Eqs. (4.15) and (4.16), we obtain the spectral decomposition

C2pt
αβ

(p⃗, t ′) = ∑
n

e−E(n)
p⃗ t ′⟨Ω|Nα(0)|n, p⃗⟩⟨n, p⃗|Nβ (0)|Ω⟩ , (4.17)

according to which the two-point function receives contributions by all states that share the
same quantum numbers of the nucleon. The n-th eigenstate of the spectrum is an excitation
of the nucleon with energy E(n)

p⃗ . However, all this “tower” of states does not contribute
to the sum with the same amount for two main reasons. First of all, the correlator decays
exponentially with the energy of the particle, implying that excited states are suppressed for
sufficiently large time separation, t ′. Secondly, the nucleon interpolating field has a different
overlap with the eigenstates |n, p⃗⟩, which are then created with different probabilities. To
quantify this overlap we can introduce some factors Zn for each state, through the following
Euclidean relations

⟨Ω|Nα |n, p⃗⟩= Zn uα(p(n),s) , ∑
s

uα(p,s) ūβ (p,s) = (−i/p+m)αβ . (4.18)

Therefore, the spectral decomposition of the two-point function becomes

C2pt
αβ

(p⃗, t ′) = ∑
n
|Zn|2 e−E(n)

p⃗ t ′ (−i/p+mn
)

αβ
. (4.19)

In the asymptotic limit, t ′→ ∞, only the ground state will dominate the sum

C2pt
αβ

(p⃗, t ′) t≫0−−→ |Z0|2e−E(0)
p⃗ t ′ (−i/p+mN

)
αβ

, (4.20)

where mN is the nucleon mass. As a result, the energy of the ground state can be extracted by
using the exponential decay of the two-point function over the time. The standard procedure
is to define the effective energy as a ratio of correlators at two consecutive time-slices

EN
e f f

(
p⃗, t +

1
2

)
=

C2pt(p⃗, t)
C2pt(p⃗, t +1)

t≫0−−→ EN(p⃗) (4.21)

and seek the range in which its value becomes constant. We note that in Eq. (4.21) we have
assumed that the two-point function is already spin-projected and the average over a sample
of gauge configurations has been already carried out.
In Fig. 4.2 we show the nucleon effective energies and their plateau averages obtained on
the twisted mass cA2.09.48 ensemble [130], used in this work to extract parton distribution
functions. The cA2.09.48 ensemble is simulated on a lattice volume V = 483×96 with lattice
spacing a≃ 0.0938 fm, using two light degenerate quarks (N f = 2) with mass tuned to their
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4.3 Nucleon three-point functions

physical value. The complete list of parameters is given in Table 5.1. The nucleon energies
are extracted at momenta |p⃗|= {0,6,8,10}π/L≃ {0,0.83,1.11,1.38} GeV (blue, red, ma-
genta, green) using {20,99,425,811} configurations with multiple random source positions.
The total statistics consists of {320,9504,38250,72990} measurements respectively (see Sec-
tion 5.2). We also note that these results are obtained by using smearing techniques to improve
the overlap of the interpolating fields with the particle states; in particular, Wuppertal-, APE-
and momentum smearing techniques have been employed. The smearing methods used in
this work are discussed in Section 4.6.

2 4 6 8 10 12 14 16 18

0

0.5

1

1.5

Figure 4.2 Nucleon effective energies as a function of time and plateau averages, extracted at
|p⃗| = {0,6,8,10}π/L ≃ {0,0.83,1.11,1.38} GeV (blue, red, magenta, green respectively). The
measurements are performed on the physical point cA2.09.48 ensemble [130] of lattice volume
V = 483×96. Due to a rapid increase of the noise-to-signal ratio with time and nucleon momentum,
we perform {320,9504,38250,72990} measurements to reach sufficiently high accuracy. The results
are obtained using Wuppertal-, APE- and momentum smearing techniques discussed in Section 4.6.

4.3 Nucleon three-point functions

To study the inner structure of hadrons one also needs to compute more complicated objects
than two-point functions. Indeed, as seen in Chapter 2, the operator product expansion of
deep inelastic scattering relates form factors and parton distributions to matrix elements
of composite operators. In our work, essential ingredients of the calculation are nucleon
three-point functions. The most general form is

C3pt
αβ

(x′;x1;x) = ⟨Ω|Nα(x′)O(x1)Nβ (x)|Ω⟩ , (4.22)

where Nβ (x), Nα(x′) are the nucleon interpolating fields at the source and sink respectively
and O is a composite operator applied at some insertion point x1 of the lattice. In general O
carries Dirac and color indices, that have to be properly contracted. O can be distinguished in:
i) ultra-local operator, if it is of the form q̄Γq, where the quark fields q, q̄ are applied at the
same lattice points; ii) local operator, if a finite number of derivatives in the quark fields are
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4.3 Nucleon three-point functions

involved; iii) non-local operator, as in our case, if q and q̄ are applied at two different points
of the lattice and are connected by gauge links that make the whole object gauge invariant.

In analogy to two-point functions, translational invariance implies here that C3pt is only a
function of the distances x′− x and x1− x. Consequently, we can use this property to simplify
the notation and set the source to the origin. Having this in mind, we consider from now on
the following object

C3pt
αβ

(x′;x1;0)≡C3pt
αβ

(⃗x′, t ′; x⃗1,τ; 0) with x′ = (⃗x′, t ′) , x1 = (⃗x1,τ) , (4.23)

where t ′ and τ denote the time-slices of the sink and insertion point respectively. They
must satisfy the condition t ′ < τ < 0, as we have implicitly assumed a T-ordered product in
Eq. (4.22).

As for the two-point case, the three-point functions can be studied at the quark level, i.e.
in terms of Wick contractions, or at the hadron level via a spectral decomposition. This is
discussed in the following two Sections.

4.3.1 Quark level

Compared to the two-point case, in the three-point functions there are two additional quark
fields that have to be contracted. Moreover, the contraction pattern depends on the flavor
structure of the composite operator. Indeed, it is easy to see that for the proton with interpolat-
ing field as in Eq. (4.1), we have more terms to sum if the operator is of the type O = ūXu
than O = d̄Xd. Here X indicates anything the operator is made of: Dirac gamma structure
(γµ , γ5, etc.) and/or link variables.

Since in our work we are interested in the non-singlet flavor combination u−d, we consider
the following operator

O(x1) = ū(x1)Xu(x1)− d̄(x1)Xd(x1) . (4.24)

For the time being we keep X generic, because contractions among quark fields are not
affected by its specific structure.

Expanding the three-point function ⟨Ω|Nα(x′)O(x1)Nβ (x)|Ω⟩, we have

C3pt
αβ

(x′;x1;0) =⟨Ω|εabcua
α(x)

(
dbT

(x)Cγ5uc(x)
)
×

[ū f
µ(x1)Xµνu f

ν(x1)− d̄ f
µ(x1)Xµνd f

ν (x1)]×

ε
a′b′c′

(
d̄a′(0) (Cγ5) ūb′T (0)

)
ūc′

β
(0)|Ω⟩ .

(4.25)

For clarity reasons we have written explicitly only the open Dirac indices for the interpolating
fields. From Eq. (4.25) we can see that the three-point function can be splitted into two main
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4.3 Nucleon three-point functions

components, the up-part (Uαβ ) and the down-part (Dαβ ), and therefore

C3pt
αβ

(x′;x1;0) =Uαβ (x
′;x1;0)−Dαβ (x

′;x1;0) . (4.26)

Both terms contain two disconnected diagrams each, that arise from contractions of quark
fields placed at the same insertion points. An example of this kind of contraction is shown in
the right panel of Fig. 4.27, for the insertion with the down quark. In the diagram we indicate
the generic operator with the black circle and the arrow circulating inside loop stands for
the propagator G−1

d (x1,x1). If one is interested in the single up and down components of the
three-point function, the computation of disconnected diagrams cannot be avoided. However,
if we focus on the flavor structure u− d, disconnected terms can be neglected, since they
appear in Uαβ and Dαβ with opposite signs and cancel out invoking isospin symmetry. This
is the reason why in our lattice calculations only connected diagrams are considered.

After Wick contractions with the down quarks in the current, the connected part reads

Dαβ (x
′;x1;0)

∣∣
CONN

=ε
abc

ε
a′b′c′[(Cγ5)

T D−1
d (x′,x1)X D−1

d (x1,0)(Cγ5)]
ba′
δδ ′

×
{

D−1
u (x′,0)ac′

αβ
D−1(x′,0)cb′

δδ ′−D−1
u (x′,0)ab′

αδ ′D
−1
u (x′,0)cc′

δβ

}
,

(4.27)

where the transposition acts on the Dirac indices. This contraction pattern for the connected
part of Dαβ is illustrated in the left panel of Fig. 4.3.

d d

u

u
−

d d

u u

d

d

u

u

1

Figure 4.3 Wick contractions for the proton three-point function using an inserted operator of the type
d̄ X d. The hadron states are on each side of the diagrams and the insertion operator is indicated via the
black circle. Left: Difference between the two connected diagrams in Eq. (4.27). Right: Illustration of
one possible disconnected diagram.

The expression of Uαβ (x′;x1;0) is slightly more involved than the one of Dαβ (x′;x1;0),
because there are more possibilities to contract the up quarks to each other; the contractions
result in four terms in total. We omit writing the final result, since Wick contractions proceed
in a similar way as the ones just showed above.

We have thus seen that computing correlation functions of the nucleon requires the inversion
of the Dirac operator for both up and down quarks, followed by the contraction of propagators
according to the specific pattern. Moreover, the momentum projection for the three-point
functions requires the knowledge of all-to-all propagators, i.e propagators from all to all
lattice sites of the lattice, as Eq. (4.27) suggests. To be computed explicitly, the all-to-all
propagators would require sets of inversions proportional to the lattice volume. This procedure
is far too computationally demanding. Fortunately, different methods have been developed
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4.3 Nucleon three-point functions

for making this feasible, leaving on the other hand some flexibility in the treatment of such
propagators. The approach used in this work is described in Section 4.5.2.

4.3.2 Hadron level

Here we want to extract the spectral decomposition of nucleon three-point functions, which is
an important step for introducing the matrix elements computed in this work.
The spectral decomposition is performed by summing over the spatial positions of the sink
and the insertion. The difference with the two-point case is that now the momentum projection
introduces dependency on two momenta, p⃗ ′ and q⃗. The three-point function in momentum
space reads

C3pt
αβ

(p⃗′, t; q⃗,τ;0) =
1

V 2 ∑
x⃗ ′ ,⃗x1

e−ip⃗′ ·⃗x ′⟨Ω|Nα(x′)O(x1)Nβ (0)|Ω⟩ e+i⃗q·⃗x1 . (4.28)

Writing the interpolating fields and the insertion operator in the Heisenberg picture

C3pt
αβ

(p⃗′, t; q⃗,τ; 0) =
1

V 2 ∑
x⃗ ′ ,⃗x1

e−ip⃗′ ·⃗x ′ e+i⃗q·⃗x1

×⟨Ω|Nα(0)e−Ĥt ′eip̂′ ·⃗x ′e−ip̂·⃗x1eĤτO(0)e−Ĥτeip̂·⃗x1N(0)|Ω⟩ ,
(4.29)

and inserting two sets of complete eigenstates, the three-point function becomes

C3pt
αβ

(p⃗′, t; q⃗,τ; 0) =
1

V 2 ∑
x⃗ ′ ,⃗x1

k⃗,⃗k ′,n,n′

⟨Ω|Nα |n′ ,⃗k′⟩⟨n′,⃗k′|O |n,⃗k⟩⟨n,⃗k|Nβ |Ω⟩

× e−i⃗x ′(p⃗′−⃗k′) e−i⃗x1(⃗k′−⃗k−q⃗)e−E(n′)
k⃗′

(t ′−τ) e−E(n)
k⃗

τ
.

(4.30)

Here we have assumed the states normalized as in Eq. (4.16). As we can see, the sum over the
sink and insertion points fixes the momentum of the final state to k⃗′ = p⃗′ and the one of the
initial state to p⃗≡ p⃗′− q⃗. Thus, the difference q⃗ = p⃗′− p⃗ can be interpreted as the momentum
transferred to an outgoing proton. Eliminating the volume sums over x⃗ ′ and x⃗1, we finally get
the spectral decomposition

C3pt
αβ

(p⃗′, t; q⃗,τ; 0) = ∑
n,n′

e−E(n′)
p⃗′ (t ′−τ)e−E(n)

p⃗ τ ⟨Ω|Nα |n′, p⃗′⟩⟨n′, p⃗′|O |n, p⃗⟩⟨n, p⃗|Nβ |Ω⟩ .

(4.31)
As for the two-point functions, hadron states with the same quantum numbers of the proton
give non-zero contributions, but the proton ground state will dominate the sums in the
asymptotic limit t ′− τ → ∞ and τ → ∞. Denoting the proton ground state by H 1, the

1We use this notation to avoid confusion with the proton interpolating field.
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4.3 Nucleon three-point functions

asymptotic limit of the three-point function reads

C3pt
αβ

(p⃗′, t; q⃗,τ; 0) t ′≪τ≪0
= e−E(0)

p⃗′ (t
′−τ)e−E(0)

p⃗ τ

×⟨Ω|Nα |H(p⃗′)⟩⟨H(p⃗′)|O |H(p⃗)⟩⟨H(p⃗)|Nβ |Ω⟩ . (4.32)

An important conclusion follows from the above result: excited states are suppressed for
large time separations of the sink and the insertion relative to the source. Consequently, in
order to isolate the ground state, one should let the nucleon propagate long enough on the
lattice. However, this is not an easy task because the correlation functions decay exponentially
with time and one would need to accumulate a large amount of statistics to have a clear signal.
This point is discussed in detail in Chapter 5, but can already be evinced from Fig. 4.2.

In our work, it is also important to derive the form factor decomposition of the three-point
functions, because it determines the structure of the projection matrix and kinematic factors
associated to a specific insertion. To this aim, first of all we write the amplitudes in Eq. (4.32)
in terms of overlap factors (Z0) between the proton state and the interpolating field

⟨Ω|Nα |H(p′) = Z0 uα(p′) , ⟨H(p′)|O |H(p)⟩= ū(p′)O00 u(p) , (4.33)

where u, ū are the usual Dirac spinors and O00 is the matrix element evaluated between the
two proton ground states. Finally, applying the spinor completeness relation as in Eq. (4.18),
the three-point function can be decomposed as

C3pt
αβ

(p⃗′, t; q⃗,τ; 0) t ′≪τ≪0
= |Z0|2 e−E(0)

p⃗′ (t
′−τ)e−E(0)

p⃗ τ
[(
−i/p′+mN

)
O00

(
−i/p+mN

)]
αβ

,

(4.34)
where mN is the nucleon mass. The open Dirac indices in the above equation are then saturated
by using a projection matrix Γ̃, which defines a spin-projected three-point function

C3pt
Γ̃

(p⃗′, t; q⃗,τ; 0) = Γ̃αβ C3pt
αβ

(p⃗′, t; q⃗,τ; 0) . (4.35)

The structure of Γ̃ in terms of γ-matrices strictly depends on the operatorO and on the physics
we want to study. In our computation we use different projectors for the three-point functions,
as described in Section 5.1.2.

So far we have kept the discussion very general, assuming that the momentum of the initial
and final proton states is different. However, in our calculations the momentum transfer is set
to zero, because parton distribution functions are defined as matrix elements between particle
states sharing the same momentum. Consequently, from now on, we take q⃗ = 0 and p⃗′ = p⃗,
unless otherwise specified in the text.
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4.4 Nucleon matrix elements

4.4 Nucleon matrix elements

From the spectral decomposition of the three-point function, see Eq. (4.32), we can extract
the matrix element ⟨H(p)|O |H(p)⟩ of an operator O between the nucleon ground states.
This object encodes information about the nucleon inner structure. For instance, from
O = ψ̄γ5γµτ3ψ one can compute the nucleon axial charge gu−d

A as seen in Section 2.3.3,
or from a twist-two non-local operator we obtain parton distribution functions and their
generalizations.

To isolate the matrix element hO = ⟨H(p)|O |H(p)⟩, it is necessary to remove from the
three-point functions the exponential factors energy-dependent, as well as the overlap terms
Zn that appear in the spectral decomposition. Since these unwanted terms also enter the
two-point functions, see Eq.(4.20), we can simply take their ratio in the time window in which
the ground state dominates. Using the Lorentz invariant normalization of the states

⟨p⃗|⃗k⟩= 2E (p⃗)V δp⃗,⃗k , (4.36)

where V = L3 is the lattice volume, we obtain

C3pt
Γ̃

(p⃗, t; q⃗,τ; 0)

C2pt
Γ

(p⃗, t)
t ′≪τ≪0
=

Tr
[
Γ̃(−i/p+mN)O00 (−i/p+mN)

]
2Ep⃗Tr

[
Γ(−i/p+mN)

] = K(p⃗) hO(Γ, Γ̃) . (4.37)

hO(Γ, Γ̃) = ⟨H(p)|O |H(p)⟩ is the desired matrix element, obtained by projecting the two-
and three-point functions with γ-matrices, indicated with Γ and Γ̃ respectively. A kinematic
factor K(p⃗) is associated at every matrix element and depends on the nucleon momentum and
inserted operator.
For non-zero momentum transfer (p⃗′ ̸= p⃗), the matrix elements can be obtained in a similar
way, building suitable ratios of three- and two-point functions that cancel the unwanted terms.

4.5 Quark propagator

Having established how matrix elements can be extracted in Euclidean field theory, it is
important to see in detail the building blocks of every hadron correlation function, namely
the quark propagators. In our calculation we need to evaluate two kinds of propagators,
point-to-all and all-to-all propagators, that are discussed in the next two Sections.

4.5.1 Point-to-all propagator

The quark propagator on a given gauge field configuration is defined as the inverse of the
Dirac operator

⟨Ω|ψa
α(x
′)ψ̄b

β
(x)|Ω⟩= D−1ab

αβ
(x′,x)[U ] . (4.38)
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4.5 Quark propagator

Computing quark propagators is in general the most demanding component of a typical
hadron structure calculation. Indeed, if n is the dimension of a Dirac spinor

n = dim(ψ) =V ×4 [spin]×3 [color]×2 [complex] , (4.39)

the dimension of the Dirac operator will be n× n and an inversion of such a matrix has a
computational cost ∝ n2. To make some examples, typical lattice settings require the solution
of linear systems with not less than 107 unknowns. For instance, the gauge ensemble on
which our computations have been performed has V = 483×96 lattice points, for a total of
254.803.968 systems to be inverted. This lattice might also tend to be small compared to
state-of-the-art lattices currently under production. Moreover, this is also made worse by the
very large number of quark propagators needed to collect enough statistics for the observable
under study. For instance, in our numerical setup we need to invert 576 vectors for each source
position (see Section 5.1.4). The number of inversions (and also measurements) depend on
several factors, such as the kind of observable, the gauge ensemble and value of the quark
masses, the reference frame needed for the specific calculation (e.g. rest frame p⃗′ = 0, or
boosted frame p⃗′ ̸= 0) and also the value of the source-sink time separation chosen in case of
three-point function computations.

In actual lattice calculations, instead of inverting the whole Dirac operator that is not
feasible, one makes use of the translational invariance property to invert the matrix from one
fixed space-time point x0 to any lattice site. This means solving a set of linear equations

D[U ]φ = S , where Sx0,α0,a0(x)α a = δ (x− x0)δαα0δaa0 ,

φ = D−1(x′,x)[U ]Sx0,α0,a0(x)α a ,
(4.40)

where S is called point source, carrying Dirac and color indices. The inversion at fixed α and
a indices of the source gives only one column of the quark propagator, indicated here by φ .
Therefore, a complete point-to-all propagator is obtained by solving Eq. (4.40) for 12 (4×3)
different rhs.

Since inversions of Dirac operators are fundamental components of numerical computa-
tions, the optimization of strategies for solving very large linear systems has been receiving
particular attention in the lattice community. This effort results nowadays in a wide variety
of approaches based on iterative methods, among which are Krylov space solvers using a
preconditioner in order to speed up the inversions (see for instance [135–139]). The solution
is not exact, but up to a precision fixed by the norm of the residual r = Dφ −S. Moreover, the
solving time mainly depends on two aspects: the volume V , as the application of D scales
with the dimension of the lattice, and quark masses. It is indeed well known that the smaller
quark masses, the more ill-conditioned the operator, yielding an increased time to solution.
This is one of the reasons why observables were being computed at quark masses heavier
than the physical ones. However, nowadays, thanks to advances in algorithms and the use of
large-scale supercomputers, computations at physical quark masses have become feasible,
although they still remain difficult and represent a computational challenge in lattice QCD.
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4.5.2 All-to-all propagator

Computing quark propagators from a fixed source, as seen in the previous Section, is not
enough to extract the three-point functions and therefore the desired nucleon matrix elements.
The reason is that the momentum-projection leads to a sum over all spatial sink (⃗x ′) and
insertion positions (⃗x1), and involves propagators like D−1

u (x1,x′) or D−1
d (x1,x′), see Eq. (4.27).

It is thus clear that point-source methods cannot be used in these cases, as we need to compute
all-to-all propagators.

The lattice methods for computing all-to-all-propagators can be divided in two main
categories:

1. Stochastic methods [140, 141], where a set Nr of orthogonal random sources are used to
invert the Dirac operator. The all-to-all propagator is then reconstructed by combining
solution vectors with the random sources. This approach is currently applied in a wide
variety of hadron structure calculations and was also used for nucleon parton distribution
functions in Refs. [37, 39]. In this method, one can freely choose different nucleon
momenta at the sink, with no additional inversion. However, the presence of a stochastic
noise is unavoidable, unless the stochastic ensemble (Nr) has a reasonable size. The ideal
number of stochastic sources to use is not known a priori and needs to be investigated
for every specific setup. Also, the flexibility of stochastic methods is lost if momentum
smeared interpolating fields [142] are applied in the calculations, as pointed out in Ref. [39].
Therefore, for the reasons mentioned above, stochastic techniques are not employed in our
setup.

2. Sequential methods [143], where one of the volume sums (at the sink-⃗x ′ or insertion-⃗x1) is
carried out through an inversion of the Dirac operator. This method is exact and exists in
two variants, fixed sink and fixed current approach, if the inversions perform the sum over
x⃗ ′ or x⃗1 respectively. In this work, we employ the fixed sink approach for the reasons that
will be explained in this Section.

Below we describe the fixed sink method to compute the nucleon all-to-all propagator and we
consider only the connected part of the three-point function.

The idea is to construct an appropriate sequential source (S) by contracting point-to-all
propagators. To illustrate the procedure, let us suppose that the insertion operator is d̄Xd,
where X is a generic Dirac matrix2 and the momentum transfer is set to zero. The goal is to
compute the following three-point function with down quark insertion

C3pt
Γ̃,d

(p⃗′, t ′; 0⃗,τ) = ∑
x⃗ ′ ,⃗x1

Γ̃αβ Dαβ (⃗x
′, t ′; x⃗1,τ;0) · e−ip⃗ ′ ·⃗x ′ , (4.41)

where Dαβ (⃗x ′, t ′; x⃗1,τ;0) is given in Eq. (4.27). Γ̃ is the projector used for the three-point
function and introduced in Section 4.3.2. The trick is to rewrite Dαβ and split it into a product

2The discussion here applies to any type of operator, provided that is of the form d̄Xd.
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of two terms. After some algebra we obtain

C3pt
Γ̃,d

(p⃗′, t ′; 0⃗,τ) = ∑
x⃗ ′ ,⃗x1

X D−1
d (x1;0)

∣∣∣∣da ′

µν

D−1
d (x′;x1)

bd
κµ · e−ip⃗ ′ ·⃗x ′×

Γ̃αβ ε
abc

ε
a′b′c′

[
Cγ5 D−1

u (x′;0)(Cγ5)
T
∣∣∣∣cb′

κν

D−1
u (x′,0)ac′

αβ
− (Cγ5)D−1

u (x′;0)
∣∣∣∣cc′

κβ

D−1
u (x′,0)(Cγ5)

T
∣∣∣∣ab′

αν

]
.

(4.42)
If we identify all the second row of the equation above to be P(x′;0)ba ′

κν and we use γ5-
hermiticity property of the twisted mass operator, we get

C3pt
Γ̃,d

(p⃗′, t ′; 0⃗,τ) = ∑
x⃗ ′ ,⃗x1

X D−1
d (x1;0)

∣∣∣∣da ′

µν

[
γ5(D−1

u )∗(x1;x′)
]db

µκ

[
γ5P(x′;0)

]ab′

κν
· e−ip⃗ ′ ·⃗x ′ .

(4.43)
From the result above, one can see that the sequential source can be identified via

S(x′;0)ab′
κν =

[
γ5P(x′;0)

]∗ab′

κν
· e+ip⃗ ′ ·⃗x ′ . (4.44)

Indeed, upon inversion for each of the indices b′ and ν , we obtain3

S−1(x1;0) = ∑
x⃗ ′

D−1
u (x1;x′)S(x′) = ∑

x⃗ ′
D−1

u (x1;x′)
[
γ5P(x′;0)

]∗ · e+ip⃗ ′ ·⃗x ′

⇒
[
γ5S−1(x1;0)

]∗
= ∑

x⃗ ′

[
γ5D−1

u (x1;x′)
]∗

γ5P(x′;0) · e−ip⃗ ′ ·⃗x ′ ,
(4.45)

which is exactly what we can read in Eq. (4.43).
Summarizing, the momentum-projected three-point function for an operator d̄Xd is computed
by

C3pt
Γ̃,d

(p⃗′, t ′; 0⃗,τ) = ∑
x⃗1

Tr
{

X D−1
d (x1;0)

[
γ5 S−1(x1;0)

]∗}
, (4.46)

where S−1, given in Eq. (4.45), is called sequential propagator. Quite often it is also referred
to as backward propagator, because one has to take its conjugate to reconstruct the correct
direction of the fermion lines of the diagram. Following this logic, D−1

d (x1;0) in Eq. (4.46) is
instead a forward propagator.

In a similar way, one can derive the expression for the sequential source with an operator
ūXu and get an analogous formula to the one in Eq. (4.46). Once computed the three-
point functions with up and down quark insertions, the difference C3pt

Γ̃,u
−C3pt

Γ̃,d
will give the

non-singlet contribution corresponding to the flavor structure u−d.

We observe that two important aspects follow from the discussion above. By construction,
the momentum, p⃗′, and time-slice of the sink , t ′, must be fixed when computing the sequential
source; when varying one of these two parameters, new inversions of the Dirac operator are

3We generate an up propagator through inversion of the Dirac operator. We also omit color and Dirac indices
for clarity.
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needed. On the other hand, the insertion operator (X) can change arbitrarily as well as the
momentum transfer, which has always to preserve the momentum conservation q⃗ = p⃗′− p⃗
(see Section 4.3.2).

The logic in the fixed current approach is instead reversed: the momentum transfer and
the operator X have to be fixed prior performing sequential inversions. The sequential source
for down quark insertion now reads

S(x1;0) = X D−1
d (x1;0) · e+i⃗q·⃗x1 . (4.47)

Upon inversion, the sequential propagator is given by

S−1(x′;0) = ∑
x⃗1

D−1
d (x′;x1)X D−1

d (x1;0) · e+i⃗q·⃗x1 . (4.48)

The method of the fixed current is thus particularly convenient when one is interested in matrix
elements at a specific value of the momentum transfer and in varying the state at the sink.
Therefore, this approach is not advantageous for our computation, in which the initial and
final states are kept to be the same. However, in the fixed sink method we need to repeat the
inversions for each momentum employed at the sink (p⃗′) and for each projector (Γ̃), coupled
to the operator X under study.

4.6 Smearing techniques

To get a signal as clear as possible for the correlation functions, we employ different smearing
methods, that are described in the following Sections. They are used in order to optimize the
overlap of the interpolating fields with the nucleon ground state, reducing contamination by
excited states. In lattice QCD this is in general achieved by applying smearing functions to
gluon fields and interpolating operators, with parameters that must be properly tuned. An
exception has been for us the stout smearing link, employed not to improve the overlap factors
with the ground state, but to smooth the power divergences typical of non-local operators with
Wilson line. This point is discussed in detail in Sections 5.2.1 and 6.4.

4.6.1 Wuppertal smearing

Although the easiest way to create a particle state is to use point sources (see Section 4.5.1),
this is not the optimal choice because hadrons are extended particles with a given radius.
Moreover, using the point source method, we are also forcing quarks to a specific spin and
color state. Although for large time separations results do not depend on the initial state,
excited states might not be sufficiently suppressed at moderate time-slices far from the source
if the overlap is not optimal. The risk is that the ground state dominates in a time range
in which the signal-to-noise ratio is very poor. Indeed, as we have seen in Eq. (4.20), the
two-point functions decay exponentially as e−Et ′ , while the gauge noise affects all time-slices
in the same way, leading to a quick deterioration of the signal.
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The standard method used in lattice QCD to deal efficiently with hadron correlation
functions is the so-called Gaussian smearing, also known as Wuppertal smearing [144, 145].
Within this approach, one constructs new hadron operators from point sources (S) via

Ssm(⃗x, t) = ∑
y⃗

F (⃗x, y⃗;U(t))S(⃗y, t) , (4.49)

where
F (⃗x, y⃗;U(t)) = [δ⃗x,⃗y +αH (⃗x, y⃗;U(t))] , (4.50)

and α is the coupling strength of the nearest neighbours in the hopping matrix

H (⃗x, y⃗;U(t)) =
3

∑
µ=1

[
Uµ (⃗x, t) δ⃗y,⃗x+µ̂ +U†(⃗x− µ̂, t) δ⃗y,⃗x−µ̂

]
. (4.51)

The algorithm can be applied recursively n times and thus the smeared source will be

Ssm(⃗x, t) = ∑
y⃗
[δ⃗x,⃗y +αH (⃗x, y⃗;U(t))]n S(⃗y, t) . (4.52)

The parameters (α,n) must be tuned for every specific gauge ensemble, to optimize the
overlap of the hadron operators with their respective ground states. Typically, they are tuned
in such a way that the root mean square (r.m.s)

⟨r2⟩= ∑⃗r r2S†(⃗r) S(⃗r)
∑⃗r S†(⃗r) S(⃗r)

, (4.53)

reproduces approximately the electric charge radius of the particle under study. In Fig. 4.4
we show the effect of the smearing on a point source, keeping α = 4 fixed and varying the
number of iterations. The more iterations are, wider is the region where the norm squared
of the source vector is non-zero. The profile of the distribution takes the form of a typical
Gaussian.

To avoid a numerical overflow for a large number of smearing iterations, an arbitrary
normalization α-dependent is usually employed. In our computations we adopt the following
definition of Gaussian smearing function

(F q⃗x) =
1

1+6α

[
q⃗x + α

±3

∑
j=±1

U⃗x, ĵ q⃗x+ ĵ

]
, (4.54)

which is just a rewriting of the Eqs. (4.49, 4.50) with an additional factor in front. In the
equation above, q⃗x denotes the quark field at coordinate x⃗ and U⃗x, ĵ the link variable along the
direction pointed by the vector ĵ of unit length. The time coordinate has been suppressed
because the smearing operator acts only on the spatial positions and color indices of quark
fields, leaving untouched also the spin state.
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Figure 4.4 Qualitative effect of the Gaussian smearing applied on a point-like source. The norm
squared of the source is plotted in the yz-plane, for 20 (left) and 50 (right) smearing iterations, at
α = 4. The results are obtained using a single gauge configuration from the ensemble cA2.09.48 [130]
with lattice volume V = 483×96.

To improve the efficiency of Gaussian smearing, link-smearing techniques are usually
employed as well, such as APE-[146], Stout-[147] and HYP-[148] smearing. In the next
Sections we describe the ones employed in this work.

4.6.2 APE smearing

APE-smearing [146] was one of the earliest introduced smearing methods, belonging to the
class of link-smearing techniques. It is used not only to reduce excited states effects, but
also to limit the presence of exceptional configurations, which lead to small eigenvalues of
the Dirac operator as discussed in Section 3.3.3. This improvement is achieved by replacing
each link variable Uµ(x) with a well-defined path of gluon fields, which connect the same
endpoints on the lattice.

In the APE-smearing, each link variable Uµ(x) is replaced by taking the following combi-
nation

UAPE
µ (x) = ProjSU(3) [(1−αAPE)Uµ(x)+

αAPE

6 ∑
µ ̸=ν

Cµν(x)] , (4.55)

where Cµν(x) is the sum of the staples

Cµν(x) =Uν(x)Uµ(x+ ν̂)U†
ν (x+ µ̂)+U†

ν (x− ν̂)Uµ(x− ν̂)Uν(x− ˆν + µ̂) , (4.56)

sketched in Fig. 4.5 for a 3-dimensional lattice.
Like Gaussian smearing, APE-smearing is a recursive method. The number of iterations nAPE

as well as αAPE parameter must be optimized according to the problem at hand.
We note that the sum of the staples is not an element of the SU(3) group and therefore
the smeared links must be projected back to SU(3) at every iteration, to ensure that the
algorithm remains effective. There are different ways of performing the SU(3) projection (see
e.g. [149, 150]) and this non-uniqueness is sometimes regarded as a limit of this type of gauge
smoothing. Moreover, due to the SU(3) projection, APE-smearing is a non-differentiable
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UAPE
µ (x)

==(1− αAPE)×
Uµ(x)

+ αAPE
4 ×

1

Figure 4.5 Schematic 3-D representation of the APE-smearing procedure. In a 4-D lattice, two
additional staples in perpendicular directions contribute.

smearing and consequently non-applicable in Hybrid Monte Carlo [151] updating techniques,
that require knowing the response of the action to a small change of the link variables. Another
example of non-analytic gauge smoothing is the HYP-smearing [148], in which gauge links
are replaced by using hypercubes attached to the original links. This method involves three
levels of modified APE-smearing and three SU(3) projections for every complete iteration. For
a detailed description of HYP-smearing procedure we refer to the original work of Ref. [148].

4.6.3 Stout smearing

An alternative link-variable smoothing to the before introduced APE-smearing is the stout
smearing, proposed and tested in Ref. [147]. It has the big advantage of being analytic in the
finite complex plane and therefore applicable in Monte Carlo methods that use gauge actions
built from stout smeared links. According to [147], an analytic smearing can be constructed
by taking a weighted sum of perpendicular staples to the original link, Uµ(x), as

Cµ(x) = ∑
ν ̸=µ

ρµν

(
Uν(x)Uµ(x+ ν̂)U†

ν (x+ µ̂)+U†
ν (x− ν̂)Uµ(x− ν̂)Uν(x− ˆν + µ̂

)
,

(4.57)
where ρµν are real tunable parameters. One then defines the matrix Qµ(x) through the
following relations

Qµ(x) =
i
2

(
Ω

†
µ(x)−Ωµ(x)

)
− i

2N
Tr
(

Ω
†
µ(x)−Ωµ(x)

)
,

Ωµ(x) =Cµ(x)U†
µ(x) (no summation over µ) .

(4.58)

Since Qµ(x) is a traceless Hermitian matrix defined in SU(3), eiQµ (x) is an element of SU(3)
and therefore the algorithm is iteratively defined in such a way that the links U (n)

µ (x) at step n
are mapped into links U (n+1)

µ (x) via

U (n+1)
µ (x) = eiQ(n)

µ U (n)
µ (x) . (4.59)

It is important to note that the exponential function ensures that U (n+1)
µ (x) are elements of

SU(3), eliminating the need of any projection back into the group. Moreover, under any
local gauge transformations G(x), the updated links, as well as Qµ(x) and exp(iQµ(x)),
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share the same transformation properties as the standard link variables, e.g. U (n+1)
µ (x)→

G(x)U (n+1)
µ (x)G†(x+ µ̂).

The most common choices for the weighted factors ρµν are:

ρi j = ρ with ρ4µ = ρµ4 = 0 , or ρµν = ρ , (4.60)

corresponding to an isotropic three-dimensional and four-dimensional smearing respectively.
The choice of the scheme depends on the problem at hand. In our calculation, we smear only
the spatial links of the inserted operator, as the ones in the time direction do not enter the
matrix elements under study (see Section 5.1.2).

There are also two other important aspects worth mentioning and for further details we refer
to Ref. [147]. Firstly, there is a certain freedom in the choice of Cµ(x) in Eq. (4.57); in
principle, any path with the same endpoints can be employed, such as the one proposed for the
HYP-smearing. Secondly, the stout smearing is particularly sensitive to the ρ parameter, as it
appears inside the exponential function exp(iQµ(x)). A careful tuning is therefore necessary,
as shown in Fig. 4.6. The mean value for the 3-D plaquette is plotted for five ρ-values, varying

5 10 15 20 25 30

0.5

0.6

0.7

0.8

0.9

1

Figure 4.6 The mean smeared 3-D plaquette against stout smearing iterations, for different ρ values.
In all cases an isotropic three-dimensional scheme has been applied. These results were obtained using
an ensemble simulated with the Symanzik improved gauge action on a 643×128 lattice [131].

the number of smearing iterations (Nstout). As can be seen, for small values ρ ∈ [0.05−0.15]
the plaquette value increases towards unity and remains stable as the levels of smearing
increase. On the other hand, at ρ = 0.20 and ρ = 0.25, the plaquette initially increases and
then begins to fall, reaching a minimum value. A similar behavior has also been observed for
the smeared 4-D plaquette and more sophisticated quantities, such as the effective energy of a
static quark-antiquark pair extracted from Wilson loop calculations [147].

4.6.4 Momentum smearing

Many applications in lattice QCD require hadrons moving at high momenta. Among these
are parton distribution functions (PDFs) and their generalizations (GPDs), and transverse-
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momentum dependent parton distribution functions (TMDs). These are all examples of
quantities that are defined on the light-cone and require very large boosts to be reliably
determined. A novel technique to improve the signal-to-noise ratio for this kind of applications
has been recently proposed and tested in Ref. [142] and is known as momentum smearing.
The idea consists in constructing improved interpolators, having a better overlap with the state
of a boosted particle. In Ref. [142] was indeed shown why the standard Gaussian smearing
is not efficient for large boosts and the reason relies on the form of the smearing operator F ,
here rewritten in a more simplified way

F = ∑
y⃗

f⃗x−⃗y Gx⃗ y⃗ ⇒ (Fq)⃗x = ∑
y⃗

f⃗x−⃗y Gx⃗ y⃗ q⃗y . (4.61)

The sum is over all spatial lattice sites and G stands for the link variables entering the smearing
operator. In the free case (G = 1) and assuming a Gaussian distribution for the scalar function
f⃗x−⃗y

f⃗x−⃗y = f⃗0 exp
(
−|⃗x− y⃗|2

2σ2

)
, (4.62)

the smearing kernel in momentum space ( f̃ ) is also a Gaussian

f̃ (p⃗) = ∑
z⃗

eip⃗·⃗z f⃗z = ∑
z⃗

f⃗0 eip⃗·⃗z e−
|⃗z|2

2σ2 = f̃ (⃗0) exp
(
− p⃗2 σ2

2

)
, (4.63)

centered at p⃗ = 0. This implies that the smearing operator has maximal overlap with quarks
at rest and therefore is not effective for fast moving hadrons. Hence, it would be beneficial to
distribute part of the nucleon momentum among quarks. The aim is thus to shift the quark
momentum distributions in such a way that they are centered around a finite momentum k⃗.
This is achieved by the following replacement in position space

f⃗z 7→ e−i⃗k·⃗z f⃗z . (4.64)

In this way, the modified smearing operator (F
(⃗k)q)⃗x contains the additional phase factor

exp(−i⃗k · (⃗x− y⃗)) and can be expressed as

(F
(⃗k)q)⃗x = ∑

y⃗
e−i⃗k·(⃗x−⃗y) f⃗x−⃗y Gx⃗ y⃗ q⃗y . (4.65)

The basic idea of momentum smearing is illustrated in Fig. 4.7. Taking into account the phase
exp(−i⃗k ·⃗ z) in position space (see Eq. (4.65)), the Wuppertal momentum smearing function
reads

(F
(⃗k) q)⃗x =

1
1+6α

[
q⃗x + α

±3

∑
j=±1

U⃗x, ĵ e−i⃗k· ĵ q⃗x+ ĵ

]
, (4.66)

where α is the standard Gaussian smearing parameter. In the free case, it has been shown [142]
that the optimal value of k⃗ is given by the hadron momentum divided by the number of valence
quarks, for instance p⃗/2 for mesons or p⃗/3 for baryonic states, leading to the interpretation
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Figure 4.7 Wuppertal smearing (top) and momentum smearing (low) for the example of a Gaussian
wave function in 1-D space. The phase k-dependent makes the distribution centered around k in
momentum space. Figure taken from Ref. [142].

that k⃗ is the momentum carried by the smeared quark. However, this interpretation is not so
straightforward in the interacting case, where the gluons can carry an important fraction of
the total momentum. In general, k⃗ is some fraction ξ of the hadron boost and does not need
to be quantized

k⃗ = ξ p⃗ = ξ
2π

L
n⃗ (p⃗ : hadron momentum) . (4.67)

The real parameter ξ has to be tuned to maximize the signal-to-noise ratio for each value of
the boost employed for correlation function calculations, as demonstrated for the first time in
Ref. [142].

In our calculation we make use of this approach, since we need to simulate at as high momenta
as possible. In Fig. 4.8 we show the effect of the momentum smearing on the effective energy
of a nucleon boosted with |p⃗|= 10π/L, which for the ensemble used in this work corresponds
to |p⃗|= 1.38 GeV. The improvement in the quality of the signal is valuable, as can be observed
comparing different ξ values (ξ = 0 corresponds to the standard Gaussian smearing). The
improvement also becomes more and more evident as the ratio γ = E(p⃗)/mN increases. For
a detailed description of our implementation of momentum smearing and results for other
boosts see Section 5.1.3 in the next Chapter.

Since the introduction of momentum smearing, lattice studies in which large boosts
are required have benefited from such approach. Indeed, as can be seen from Fig. 4.8 and
described in Section 5.1.3, momentum smearing technique allows to achieve momenta that
otherwise are not accessible without accumulating huge statistics and using a huge amount of
computational resources.
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Figure 4.8 Nucleon effective energy at boost |p⃗| = 10π/L ≈ 1.38 GeV, extracted from 100 mea-
surements using the physical point ensemble cA2.09.48 [130]. In this setup γ = E(p⃗)/mN ≈ 1.78.
Different values of the ξ parameters have been tested to optimize the overlap with the boosted nucleon.
The result for ξ = 0 (gray squares) corresponds to the conventional Gaussian smearing.
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Chapter 5

Bare matrix elements for quark
distribution functions

In this Chapter we present our results for the relevant matrix elements that allow to extract
the spin-averaged (unpolarized), helicity and transversity parton distribution functions of the
nucleon (PDFs), using the quasi-PDF approach [34]. The computation is performed on a
twisted mass ensemble N f = 2 and is focused on the nucleon flavor structure u−d, which
receives contributions only from connected diagrams (up to cutoff effects).

In particular, here we focus on the non-local unrenormalized matrix elements of the
form ⟨N|ψ̄(z)ΓW (z,0)ψ(0)|N⟩ that, as explained in Chapter 2, give access to a specific PDF
depending on the Dirac Γ structure in the inserted operator. The numerical setup of our
simulations, the investigation of excited states contamination, as well as the computational
cost to extract these observables in lattice QCD are discussed in detail along this Chapter.

A schematic picture of all the steps we need to go through in this work is shown in
Fig. 5.1. The renormalization procedure for the operators is addressed in Chapter 6, whereas
the computation of quasi-distributions and implementation of the matching procedure yielding
the physical PDFs are described in Chapter 7.

Bare matrix
element

Renormalized
matrix element

Quasi-PDF PDF

Excited states
contamination

Remove
divergences

Fourier
transform

Factorization

1

Figure 5.1 Schematic representation of the procedure leading to the physical PDFs from the quasi-
PDFs. The main steps and challenges are outlined with red and green blocks respectively.
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5.1 Lattice setup

5.1 Lattice setup

In this Section we give details on the ensemble used in our computations and the operators
employed to extract the unpolarized, helicity and transversity distributions. The optimization
of the lattice computation is discussed in Sections 5.1.3 and 5.1.4.

5.1.1 N f = 2 physical point ensemble

This work is conducted within the ETM (Extended Twisted Mass) Collaboration, that has
provided the necessary gauge field configurations. In particular, here we focus only on one
gauge ensemble of ETMC production, labeled cA2.09.48 in Ref. [130] and indicated with a
blue filled circle in Fig. 5.2. The cA2.09.48 ensemble includes two dynamical degenerate light
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Figure 5.2 Twisted mass ensembles as a function of the pion mass mπ (left) and lattice spacing
a (right). The dotted line shows mπ = 135 MeV. The radius of the circles is proportional to the
number of independent gauge configurations. Open red (blue) circles denote N f = 2 (N f = 2+
1+ 1) ensembles without a clover term [110]. The results that are presented in this Thesis use the
cA2.09.48 ensemble [130]. The computation of parton distribution functions on the recent ensemble
cB211.64 [131] is currently in progress.

quarks (N f = 2) at maximal twist, whose masses have been tuned to reproduce the physical
value of the pion mass, condition that is often referred to as physical point. It is simulated on
a lattice volume 483×96, with lattice spacing a = 0.0938(2)(3) fm [152], corresponding to a
spatial lattice extent L≈ 4.5 fm and mπL≃ 2.98. The complete list of parameters is reported
in Table 5.1 . The gauge configurations were generated using the Iwasaki improved gauge

β = 2.10, cSW = 1.57751, a = 0.0938(3)(2) fm, r0/a = 5.32(5)

483×96, L = 4.5 fm

aµ = 0.0009

mπ = 0.1304(4) GeV

mπL = 2.98(1)

mN = 0.932(4) GeV

Table 5.1 Parameters of the ensemble used in this work. The nucleon mass (mN), the pion mass
(mπ) and the lattice spacing (a) have been determined in Ref. [152].
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action [153–155] for the gluonic sector, which includes besides the plaquette term U1×1
x,µ,ν also

rectangular (1 x 2) Wilson loops U1×2
x,µν and is given by

SG =
β

3 ∑
x

b0 ∑
µ,ν=1

1≤µ≤ν

{
1−Re Tr(U1×1

x,µ,ν)
}
+b1 ∑

µ,ν=1
µ ̸=ν

{
1−Re Tr(U1×2

x,µ,ν)
} . (5.1)

In the above expression β = 6/g2
0 is the bare inverse coupling, b1 = −0.331 and the nor-

malization condition is b0 = 1− 8b1. For b1 = 0 this action recovers the standard Wilson
plaquette gauge action. For the fermionic sector, the twisted mass Wilson action [119, 124]
described in Section 3.4.2 was employed, with in a addition a clover term [110] whose form
is described in Section 3.4.1. The complete fermion action reads

SF [χ, χ̄,U ] = a4
∑
x

χ̄

(
DW [U ]+m0 + iµγ5τ3 +

ia
4

cswσµνFµν [U ]

)
χ(x) , (5.2)

where DW is the Wilson-Dirac operator (3.41) (with r = 1), m0 is the bare Wilson mass
parameter, µ is the bare twisted mass for the light quarks and τ3 = diag(1,−1) is the third
Pauli matrix in flavor space. The last term includes the field strength tensor Fµν [U ] weighted
by the clover coefficient introduced in Section 3.4.1.

In the fermion action of Eq. (5.2), χ(x) = (u,d)T denotes the light quark doublet in the
“twisted basis” at maximal twist. It is related to the doublet of fermion fields in the “physical
basis” ψ(x) by the following chiral rotation

ψ(x)≡ ei α

2 γ5τ3 χ(x)
α=π/2
====⇒ ψ(x)≡ 1√

2
(1+ iγ5τ3)χ(x) ,

ψ̄(x)≡ χ̄(x)ei α

2 γ5τ3
α=π/2
====⇒ ψ̄(x) = χ̄(x)

1√
2
(1+ iγ5τ3) .

(5.3)

The above relations determine the transformation laws of the interpolating fields and currents.
Since gauge ensembles are simulated with the twisted mass action in the form (5.2), the
operators used for computing observables have to be expressed in twisted basis, {χ, χ̄}.
However, in the next Sections and following Chapters, the interpolating fields and the nucleon
matrix elements have to be understood with quark fields in the physical basis unless otherwise
specified, keeping in mind that the proper chiral rotations are used in the actual lattice
computation.

5.1.2 Definition of operators

According to the quasi-PDF approach, the unpolarized, helicity and transversity quark distri-
bution functions are extracted from matrix elements between nucleon states moving at very
large momentum along one direction. The matrix elements of interest are given by

hΓ(P3,z) = ⟨N|O(τ;z)|N⟩= ⟨N|∑
y⃗

ψ̄(τ, y⃗)ΓW (⃗y, y⃗+ êµ z)τ
3

ψ(τ, y⃗+ êµ z)|N⟩ , (5.4)
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where ψ = (u,d)T is the light quark doublet, Γ is some Dirac combination of γ-matrices
and τ3 = diag(1,−1) the third Pauli matrix. The matrix τ3 acts only in flavor space and
allows us to extract distribution functions relative to the flavor structure u− d. With this
choice, disconnected diagrams cancel due to isospin symmetry, and we need to evaluate
only connected contributions as shown schematically in Fig. 5.3. Moreover, in Eq. (5.4) |N⟩
represents a nucleon state boosted in the z-direction with momentum P = (P0,0,0,P3). We
take the Wilson line W to be a straight path of link variables of length z, connecting the points
y⃗ and y⃗+ êµ z. Considering a straight Wilson line is the standard choice in the quasi-PDF
approach, but in principle other paths with the same endpoints are possible, such as two pieces
of links oriented in orthogonal directions, as suggested in Ref. [156]. However, this possibility
has never been explored in lattice calculations so far, also because the implementation is much
less practical than assuming gauge links displaced only along one direction. In Eq. (5.4) we
have made explicit the dependence of the matrix elements on the nucleon momentum, P3, as
well as the dependence on the Wilson line length z. For each value of z we have a different
operator, which becomes ultra-local for z = 0.

To compute the matrix elements in Eq. (5.4) we take a ratio of three- and two-point
functions, averaged over a sample of gauge configurations. A schematic illustration of the
diagrams is reported in Fig. 5.3.

N(~x, t) N(~0, 0)

1

N(~x, ts) N(~0, 0)

W (z)

N(~x, ts) N(~0, 0)

W (z)

1

Figure 5.3 Schematic representation of the nucleon two- (left) and three-point (right) functions. The
nucleon is created at the source at (⃗0,0), and annihilated at (x, t) and (x, ts) for the two- and three-point
functions, respectively. The solid lines represent the quark propagators, the curly line denotes the
Wilson line of length z and the highlighted arc is an all-to-all propagator.

The two-point and three-point functions are given by

C2pt(P⃗, t;0) = Pαβ ∑
x⃗

e−iP⃗·⃗x⟨Ω|Nα (⃗x, t)Nβ (⃗0,0)|Ω⟩ , (5.5)

C3pt(P⃗, ts;τ;0) = P̃αβ ∑
x⃗,⃗y

e−iP⃗·⃗x⟨Ω|Nα (⃗x, ts)O(⃗y,τ;z)Nβ (⃗0,0)|Ω⟩ , (5.6)

where P⃗ = (0,0,P3), Nα(x) = εabcua
α(x)

(
dbT

(x)Cγ5uc(x)
)

is the proton interpolating field.

Pαβ and P̃αβ denote the parity projectors for the two- and three-point functions respectively,
O is the insertion operator of Eq. (5.4) and t (ts) is the time separation of the sink relative
to the source in the two-point (three-point) function. We use different symbols to highlight
that three-point functions are computed using sequential inversions through the sink, at fixed
source-sink time separation (ts). The sequential method for computing all-to-all propagators
has been discussed in detail in Section 4.5.2 in Chapter 4.
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5.1 Lattice setup

To gain in statistics, the two-point functions are projected using the plus and minus parity
projectors P± = 1±γ0

2 , and we take the average over the forward and backward correlators.
According to the CPT symmetry, forward and backward correlators correspond to correlation
functions of protons and anti-protons respectively. In addition, to gain further in statistics, the
Wilson line in the operator is computed with plus and negative orientations along z-direction.
This means considering the following two possibilities

O(⃗y,τ;+z) = ψ̄(τ, y⃗) Γ W (⃗y, y⃗+ êµ z) τ
3

ψ(τ, y⃗+ êµ z) ,

O(⃗y,τ;−z) = ψ̄(τ, y⃗) Γ W (⃗y, y⃗− êµ z) τ
3

ψ(τ, y⃗− êµ z) .
(5.7)

Using the property Wµ(x) =W−µ(x+ êµ)
†, one can see that the matrix elements above are

related by
O(⃗y,τ;+z) =O(⃗y,τ;−z)† , (5.8)

independently on the Dirac structure, Γ. Consequently, all operators considered in this work
satisfy the property hΓ(P3,+z) = hΓ(P3,−z)†. This relation can be used as a cross-check of
our results in the first place, but also to average the matrix elements obtained at fixed length
|z| of the Wilson line.

As mentioned above, to extract the unpolarized, helicity and transversity distributions we
need to select a particular Dirac structure in the operator of Eq (5.4). In principle, different Γ

matrices may be used to compute a given PDF. For example, if the nucleon momentum and
the Wilson line are in the 3-direction (z), we can access to the unpolarized PDF via γ3 or γ0

(temporal direction). However, some choices are preferable (e.g. γ0 in this example), as they
simplify the renormalization properties of matrix elements in lattice regularization [55]. In
this work, we make the following choices:

• Γ = γ3,γ0 for the unpolarized distribution, q̃(x) =
−→̃
q (x)+

←−̃
q (x) ,

• Γ = γ5γ3 for the helicity distribution, ∆q̃(x) =
−→̃
q (x)−←−̃q (x) ,

• Γ = σ3 j for the transversity distribution, δ q̃(x) = q̃⊥(x)+ q̃ ⊥(x) ,

where←−q (−→q ) and q⊥ (q ⊥) indicate momentum distributions of quarks with helicity aligned
(anti-aligned) with that of a longitudinally and transversely polarized proton respectively, see
Fig. 2.5. For transversity distribution, j-index denotes the direction of the quark spin, which
is orthogonal to the proton momentum and purely spatial. Each of these choices of the Dirac
structure requires a specific parity projector P̃αβ for the three-point functions, as anticipated
in Chapter 4. For the choices of γ-matrices made in this work, the only non-zero contributions
come from:

• P̃αβ = 1+γ0
2 for the unpolarized q̃(x) ,

• P̃αβ = iγ3γ5
1+γ0

2 for the helicity ∆q̃(x) ,

• P̃αβ = iγ5γk
1+γ0

2 for transversity δ q̃(x), where k ̸= j .
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5.1 Lattice setup

The explicit form of the projector can be obtained by the trace algebra in Eq. (4.37).

Once having the two- and three-point functions spin-projected, we extract the matrix elements
of Eq. (5.4) for each nucleon boost, by forming a ratio of three-point over two-point functions.
As will be described in Section 5.3, there are different ways to isolate the ground state
contribution and one possibility is to perform a plateau fit

hΓ(P3,z)
ts≪τ≪0
= K⟨C

3pt(P3, ts;τ;0)⟩G
⟨C2pt(P3, ts;0)⟩G

, (5.9)

where we have replaced P⃗ with P3 in the argument of the correlation functions because the
momentum is always taken along only one spatial direction. The kinematic factor K depends
on the Dirac structure used in the insertion operator and, for the choices made in this work, it
is equal to K = iE/P3 for the vector current γ3, whereas K = 1 for all other cases. Its value
can be derived again from Eq. (4.37).

5.1.3 Improvement with momentum smearing

To make contact with the light-cone frame one needs to achieve very large nucleon boosts
and this is one of main practical difficulties of PDFs calculations. Indeed, as shown explicitly
in Chapter 4, two- and three-point functions decay exponentially with time and the energy of
the state, leading to a rapid degradation of the signal at already few time-slices far from the
source position.

To optimize our setup we employ the momentum smearing technique (see description in
Section 4.6.4), following the implementation of Ref. [142]. Momentum smearing modifies
the standard Gaussian smearing function by including a complex phase factor

Smom =
1

1+6αG

(
ψ(x)+αG ∑

j
U j(x)e−iξ P⃗·j

ψ(x+ ĵ)

)
(5.10)

that in our case multiplies the gauge links only along one direction, being for instance
P⃗ = (0,0,P3). Here U j denotes a gauge link in the spatial j-direction, αG is the parameter of
the conventional Gaussian smearing and ξ the momentum smearing parameter, which must
be optimized for each value of the boost employed.

Our practical implementation is as follows. Firstly, we apply APE-smearing [146] (see
Section 4.6.2) on the gauge links using parameters (αAPE ,NAPE) = (0.5,50), optimized in
previous works that used the same gauge ensemble [157]. Then we iterate Eq. (5.10) using
(αG,NG) = (4,50) [157], at a given value of the momentum smearing parameter. In order to
improve the overlap of our interpolator with the boosted proton, we optimize the parameter ξ

by minimizing the statistical errors of the nucleon two-point functions.
In Figs. 5.4 and 5.5 we demonstrate the effect of the momentum smearing, by plotting the
scaling of the error of the nucleon effective energy and two-point correlator, obtained from 100
measurements for boosts P3 = 6π/L and P3 = 8π/L, or 0.83 and 1.11 GeV in physical units.
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For comparison we also include the results obtained with the standard Gaussian smearing
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Figure 5.4 Effective nucleon energies with boost P3 = 6π/L (left) and P3 = 8π/L (right) for dif-
ferent values of ξ . The value ξ = 0 (gray points) corresponds to the standard Gaussian smear-
ing. The dashed lines indicate the nucleon energy in lattice units, obtained at the nucleon mass
amN = 0.4436(11) [152]. The statistics consists of 100 measurements. Symbols are shifted horizon-
tally for a better legibility.
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Figure 5.5 Relative error of the nucleon two-point correlator as a function of the Euclidean time t/a
for different values of ξ . The results are obtained from 100 measurements. The nucleon boosts are:
P3 = 6π/L (left) and P3 = 10π/L (right).

(ξ = 0). As can be seen, the errors in the correlation functions reduce dramatically as the
value of ξ increases and convergence is observed in the range ξ ∈ [0.6−0.75]. Thus, any
value of ξ in this window of values leads to a similar signal-to-noise ratio. Similar conclusions
also hold for a boost P3 = 10π/L≃ 1.38 GeV, shown in Fig. 4.8 in Section 4.6.4. Thus, we
fix ξ = 0.6 throughout this work. Moreover, from the comparison between the two plots in
Fig. 5.4, it is clear that the gain of using momentum smearing increases with the value of
the boost, and the conventional smearing becomes less and less effective. From Fig. 5.5, one
can also see that the noise-to-signal ratio of the two-point correlator increases exponentially
with the time separation from the source, but with a reduced slope when momentum smearing
is employed. The only drawback of momentum smearing is that each value of ξ⃗ employed
at the source requires us to compute the respective quark propagator, but overall the effort
pays off since also the three-point functions have reduced statistical errors. In fact, in the
first exploratory study of momentum smearing for PDFs calculation [39], a factor of 200
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5.1 Lattice setup

fewer measurements was found to produce the same statistical errors as the ones obtained
with standard Gaussian smearing, at nucleon boost P3 = 10π/L≃ 2.4 GeV and source-sink
separation ts = 8a≃ 0.7 fm.

5.1.4 Choosing the optimal setup

The optimization of the lattice setup for computing the matrix elements at the physical point
ensemble, and for different momenta, has been a crucial step in this work, that has required
tuning of different parameters. Apart from the momentum smearing parameter discussed
previously, another parameter to tune is the number of random point sources (Nsrc) to use for
each configuration, making sure the correlation among measurements remains under control.
This test is performed at the lowest momentum used in this work (P3 = 6π/L), for which we
vary the number of source positions extracted randomly in the lattice volume, from Nsrc = 1
to Nsrc = 16. The result of this test is shown in Fig. 5.6 for the matrix elements at z/a = 0
(no Wilson line) and for the three Γ structures. For comparison purpose, the absolute error is

0 2 4 6 8 10 12 14 16

0.2

0.4

0.6

0.8

1

Figure 5.6 Scaling of the statistical errors varying the number of random source positions on each
configuration. The absolute error of the matrix elements at z/a = 0 for the unpolarized, helicity and
transversity distributions (red circles, blue squares, yellow triangles, respectively) is normalized to the
corresponding one obtained from only one source position.

normalized to the one obtained using only one source position per configuration. As can be
seen, the scaling of the statistical errors follows approximately the ideal behavior 1/

√
Nsrc

expected for uncorrelated measurements (dashed line in the figure), implying that the data
are weakly correlated. Thus, also for the higher momenta we use multiple source positions
in order to increase our statistics. Same qualitative conclusions also hold for correlation
functions obtained by boosting the nucleon along all possible directions, ±x, ±y, ±z. The
error scaling is shown in Fig. 5.7 for the matrix element with zero length of the Wilson line.

However, despite the use of momentum smearing, the noise-to-signal ratio grows exponen-
tially as the nucleon momentum is increased. This is also shown in Fig. 5.8, in which we plot
the relative error on the nucleon two-point correlator at a fixed time-slice t = 9a≈ 0.85 fm
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Figure 5.7 Scaling of the statistical errors averaging over the directions of the nucleon boost in ±x,
±y, ±z. Same convention of colors as in Fig. 5.6. The absolute error is normalized to the one obtained
from one boost direction and the result is compared with the ideal scaling (dashed line) expected from
statistically independent measurements.

from the source, when the boost increases by one lattice unit at a time. Thus, it is important
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Figure 5.8 Relative error of the nucleon two-point correlator at fixed time separation from the source
(t = 9a≈ 0.85 fm) as the momentum increases by one lattice unit. Momentum smearing is applied
and the statistics consists of 100 measurements for all momenta.

to find another method that allows to accumulate sufficiently high statistics but at reduced
computational cost. The most computationally demanding components are the inversions of
the Dirac operator, which for one single source position amount to

# inversions for C2pt : 6 (dir)×2(up/down)×12(color and spin) = 144 ,

# inversions for C3pt : 6 (dir)×2 (up/down)×12(color and spin)×3(Γ structure) = 432 .

(5.11)

To reduce the computational cost we apply the Covariant Approximation Averaging (CAA) [158],
which belongs to the class of truncated solver methods with bias correction. CAA prescribes
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the improved observable

Oimp =
1

NLP

NLP

∑
i=1

Oi,LP +
1

NHP

NHP

∑
i=1

(Oi,HP−Oi,LP) , (5.12)

where NHP and NLP represent the number of source positions in which an observable O
is evaluated at high-precision (Oi,HP) and low-precision (Oi,LP) inversions of the Dirac
operator. The first term in the equation above introduces a bias in the measurements, which is
however corrected if ⟨ 1

NLP
∑

NLP
i=1 Oi,LP⟩= ⟨ 1

NHP
∑

NHP
i=1 Oi,LP⟩. The statistical error of Oimp [158]

is expected to scale as

δ̃ = δ

√
2(1− rc)+

1
NLP

, (5.13)

where δ is the original error and rc the correlation coefficient among correlators computed
at high- and low-precision. For an overall error not be larger than the original one, rc has
to be very close to unity. For this to happen, a reasonable precision of the inverter must be
employed and Oi,HP, Oi,LP in the second sum of Eq. (5.12) must be computed on the same
source positions.

In this work the inversions of the Dirac matrix are performed using the adaptive multigrid
solver with twisted mass fermion support [136] and the relative residual for high-precision
measurements is set to be rHP = |residue|HP/|source|= 10−10. To decide about the value of
the relative residual for low-precision inversions, we study how the correlation coefficient
for two- and three-point functions varies at different precisions of the solver. We find that
the stopping criterion rLP = 2 ·10−3 guarantees a correlation coefficient rc ≥ 0.999, with a
considerable speed-up in the inversion time. As a next step, at rLP = 2 ·10−3, we tune the
number of correlation functions Oi,LP, Oi,HP to use within each configuration in order to avoid
unbiased results. Taking 15 HP source positions as reference setup, we find that the bias
introduced from low-precision inversions is negligible compared to the gauge noise for a CAA
setup of (NHP,NLP) = (1,16). In Fig. 5.9 we show a comparison of HP and CAA estimates
on the nucleon two-point correlator and effective energy at boost P3 = 8π/L, performed on
20 configurations using the setup mentioned above. As can be seen, the mean values of the
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Figure 5.9 Comparison of nucleon two-point correlator (left) and effective energy (right) using 15
inversions with high-precision (15 HP) and 1 and 16 inversions with high- and low- precisions (1 HP+16
LP), on a sample of 20 configurations.
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5.2 Lattice results at the largest source-sink separation

CAA results fluctuate very closely to the ones extracted from high-precision inversions and
the slight shift is within statistical errors.

Therefore, at the higher momenta P3 = 8π/L and P3 = 10π/L for which we need a
much increased statistics than for boost P3 = 6π/L, we use the CAA method. Within each
configuration we first construct the improved two- and three-point correlators using Eq. (5.12)
and then apply Jackknife procedure over these configuration averages.

Before presenting any results we also mention that in this work we apply another lattice
technique to reduce the noise-to-signal ratio, namely the 3-dimensional stout smearing. This
is applied only to the Wilson line in the insertion operator, given in Eq. (5.4). In this Chapter
we show how the smearing modifies the bare matrix elements, postponing to Chapter 6 the
consistency check between renormalized smeared and non-smeared results.

5.2 Lattice results at the largest source-sink separation

In this Section we focus on the results extracted at the highest source-sink separation employed
in this work, namely ts = 12a≃ 1.13 fm. The matrix elements at ts = 12a are the ones used
by us to compute the final quark distributions, presented in Chapter 7, as excited state
effects are found to be suppressed at a level of precision of 10%, see Sections 5.3.3-5.3.5.
The statistics is listed in Table 5.2 for the three momenta, P3 = {6π/L,8π/L,10π/L} or
{0.83,1.11,1.38} GeV in physical units. The dashed lines in the Table separate the operators
that are used for the unpolarized PDFs (γ3,γ0), helicity PDFs (γ5γ3) and transversity PDFs
(σ3 j).

P3 =
6π

L P3 =
8π

L P3 =
10π

L

Ins. Nconf Nmeas Ins. Nconf Nmeas Ins. Nconf Nmeas

γ3 100 9600 γ3 425 38250 γ3 811 72990

γ0 50 4800 γ0 425 38250 γ0 811 72990

γ5γ3 65 6240 γ5γ3 425 38250 γ5γ3 811 72990

σ3 j 50 9600 σ3 j 425 38250 σ3 j 811 72990

Table 5.2 Statistics of our calculation at source-sink time separation ts = 12a, for each Dirac structure
in the insertion operator and each boost. Nconf is the number of analyzed gauge configurations and
Nmeas the total number of measurements.

The number of measurements, for each Γ insertion reported in Table 5.2, is computed as
follows:

• Nmeas = Nconf×16src×6dir , at P3 = 6π/L and Γ = {γ0,γ3,γ5γ3} ,

• Nmeas = Nconf×16src×6dir×2 j=1,2 , at P3 = 6π/L and Γ = σ3 j ,

• Nmeas = Nconf×15src×6dir , at P3 = {8π/L,10π/L} .
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5.2 Lattice results at the largest source-sink separation

In the count above, the extra factor of 2 for P3 = 6π/L and Γ = σ3 j comes from the average
over the two possible tensor structures that we can have if a nucleon is moving along the
3-direction; for P3 = {8π/L,10π/L} we have considered that 15 source positions contribute
to the number of measurements when the CAA setup (1 HP, 16 LP) is employed, as described
in the previous Section.

5.2.1 Matrix elements with stout smearing

In this Section we present our lattice results for the matrix elements obtained by forming the
ratio in Eq. (5.9). This approach is usually known as plateau method.
An example of fitting procedure is shown in Fig. 5.10 for the real and imaginary part of the
operator with γ0 as insertion, Wilson line length z/a = 4 and boost P3 = 6π/L. To the gauge
links entering the insertion operator we apply multiple steps of 3-D stout smearing and in
Fig. 5.10 we show constant fits performed to the data at 0 and 15 levels of smearing. As
can be seen, the real and imaginary parts of the unrenormalized matrix elements are shifted
towards larger absolute values and we find this effect to be momentum-independent. In fact,
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Figure 5.10 Effective unrenormalized matrix elements for Wilson line length z/a = 4, as a function of
the insertion time τ/a and for γ0 insertion. The data refer to 0 and 15 3-D steps of stout smearing and
are extracted from a nucleon boosted with P3 = 6π/L.

we observe the same qualitative behavior for other boosts. In Figs. 5.11 and 5.12 we report the
results at nucleon momentum P3 = 8π/L and for the three classes of operators, corresponding
to different quark distributions.

The use of link-smearing techniques is very advantageous in our calculation because it
helps to reduce the ultra-violet divergences that are typical of non-local operators. As shown
in Ref. [55], in lattice regularization long-link operators are power divergent with respect to
the UV cutoff 1/a and the divergence increases exponentially as eδm|z|/a, where δm > 0 is a
dimensionless quantity characterizing the strength of the power divergence. From a practical
point of view, the presence of a power-like divergence introduces a large noise to the data,
especially at large values of the Wilson line length, that can however be mitigated by smearing
the gauge links. In principle, any kind of smearing can be used and another choice has been so
far also the HYP-smearing [148], applied for PDFs calculations in works [37, 39]. However,
here we prefer to apply stout smearing for its analytic properties and because perturbative
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Figure 5.11 Unrenormalized matrix elements for γ0 operator as a function of Wilson line length and
boost P3 = 8π/L. 0, 5, 10, 15 steps of stout smearing are compared (squares, circles, diamonds and
pentagons respectively).
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Figure 5.12 Unrenormalized matrix elements for polarized distributions, for different steps of stout
smearing and boost P3 = 8π/L. Top: axial operator (γ5γ3). Bottom: tensor operator (σ3 j). Same
conventions of color and markers as in Fig. 5.11.

calculations on the renormalization functions are considerably simplified. The divergences
of the lattice operators are discussed in detail in the next Chapter, which is dedicated to the
description of our renormalization procedure of the lattice matrix elements and results for the
renormalization functions are also presented.

Another important feature that is worth to mention is the symmetry property of the
matrix elements under the exchange z→−z. As we can see from Fig. 5.11 and Fig. 5.12,
the real part is symmetric and the imaginary part is antisymmetric, as expected from the
relation hΓ(P3,+z) = hΓ(P3,−z)† derived in Eq. (5.8). This property has been applied to get

83



5.2 Lattice results at the largest source-sink separation

the results shown in Figs. 5.11 and 5.12 and, from now on, all results have to be intended
properly symmetrized. We anticipate here that the relation hΓ(P3,+z) = hΓ(P3,−z)† has
the fundamental consequence of producing an asymmetry between quark and antiquarks
distributions, as it will be clear in Chapter 7.

5.2.2 Momentum dependence

Within the quasi-PDF approach, parton distributions are expected to be reconstructed in the
limit of very large momenta. Thus, our final goal is to study the momentum dependence of
the lattice distributions, which at sufficiently large boosts should get closer to the light-cone
PDFs. In this Section we start studying how the bare matrix elements depend on the value
of the nucleon momentum. In Fig. 5.13, a comparison is shown for the matrix elements of
the unpolarized PDF, obtained using γ0 in the insertion operator. The statistics is indicated in
Table 5.2.
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Figure 5.13 Momentum dependence of the unrenormalized matrix elements for unpolarized PDFs
(γ0 is used in the insertion operator), as a function of the displacement z/a. Left: real part. Right:
imaginary part. The nucleon boosts are P3 = 6π/L (green diamonds), P3 = 8π/L (red circles) and
P3 = 10π/L (blue pentagons).

As the momentum increases, one can see that the matrix elements decay to zero faster. This
behavior can be qualitative interpreted as a contraction of the spatial correlation length of the
nucleon valence distribution, which manifests along the direction of the boost. Therefore, this
effect will be more evident as the value of the nucleon boost increases. Computations at larger
momenta are highly desirable to make contact with the light-cone PDFs, but they require huge
computational resources, especially for source-sink separations ts ≳ 1 fm. Indeed we observe
that, for γ0-Dirac structure, it is necessary to increase the number of measurements of a factor
around 8 and 15 with respect to P3 = 6π/L in order to extract meaningful results. Also, the
worsening trend is expected to be exponential with time separation and boost, as shown for
the two-point correlator in Fig. 5.8. For a detailed discussion about the consequence of a rapid
deterioration of the signal we refer to the last Section of this Chapter, where we discuss the
computational cost of our simulations, including also a “projected cost” for achieving 10%
precision for a wide range of nucleon momenta.

On the other hand, even if computations at large momenta were feasible, the nucleon
boost cannot be arbitrarily large, because cutoff effects become important if the condition
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aP3 << 1 is not satisfied. Finer lattice spacings would surely help to reach large momenta
with reduced cutoff effects.

The polarized matrix elements show a similar momentum dependence as for the one of
the unpolarized case, as can be seen in Fig. 5.14. The only difference is an increased gauge
noise and more overlap between data at P3 = 8π/L and P3 = 10π/L. Overall, we can say

-20 -15 -10 -5 0 5 10 15 20

0

0.5

1

1.5

-20 -15 -10 -5 0 5 10 15 20

-0.4

-0.2

0

0.2

0.4

-20 -15 -10 -5 0 5 10 15 20

0

0.4

0.8

1.2

-20 -15 -10 -5 0 5 10 15 20

-0.4

-0.2

0

0.2

0.4

Figure 5.14 Momentum dependence of the unrenormalized matrix elements for helicity (top) and
transversity (bottom) PDFs. Left: real part. Right: imaginary part. The nucleon boosts are: P3 = 6π/L
(green diamonds), P3 = 8π/L (red circles) and P3 = 10π/L (blue pentagons).

that at the highest momentum the unrenormalized matrix elements are compatible with zero
within ∼ 10% errors for z≥ 11a≈ 1.03 fm.

5.2.3 Unpolarized matrix elements: choice of the Dirac structure

As regards the unpolarized distribution, so far we have only presented results for the matrix
elements obtained by using γ0 as Dirac matrix in the current insertion. The other explored
choice for the Dirac structure is γ3, where the index has to be intended parallel to the direction
of the Wilson line and nucleon momentum. A comparison between the two Dirac structures is
reported in Fig. 5.15 at momentum P3 = 8π/L. As we can see, the data extracted from γ3 suffer
from an increased noise contamination, being the statistics the same as for γ0. Therefore, γ3 is
not our preferable choice and from now will not be used in the discussion of our numerical
results. The origin of this peculiar behavior can be traced back to the operator mixing of Oγ3

with the scalar operator

OI = ψ̄(x)P e−ig
∫ z

0 Aµ (x+ξ µ̂)dξ
ψ(x+ zµ̂) , (5.14)
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Figure 5.15 Comparison between results at P3 = 8π/L, obtained with γ0 (cyan circles) and γ3 (vi-
olet diamonds) as Dirac structure in the current insertion. Both choices are possible for extracting
unpolarized PDF.

discovered in the recent study [55]. The direct consequence of having an operator mixing
between the vector (γ3) and the scalar (1) is that a mixing renormalization matrix must be
computed [56] in order to evaluate the renormalized unpolarized distribution function. In
other words, the renormalization of the operator Oγ3 is not simply multiplicative. From
a practical point of view, larger statistical errors are unavoidable, since the accuracy and
systematic uncertainties on the physical PDF will eventually depend on both matrix elements
with Γ = γ3 and Γ = 1, and also on the estimates of the renormalization functions. The logic
can also be reversed, in the sense that also the bare results obtained with the vector (γ3) are
affected by a larger noise, due to the mixing with the scalar operator.

However, we note that the mixing between Oγ3 and OI does not manifest in all lattice
discretization schemes, but it does in the twisted mass formulation, as the chiral symmetry is
explicitly broken by the twisted mass term. In the lattice formulations where chiral symmetry
is instead preserved, Oγ3 and OI would not mix, because these operators transform in a
different way under chiral rotations, for which the action is instead invariant.

The perturbative calculation of Ref. [55] has also shed light on the possible Γ structures
that guarantee a multiplicatively renormalization of operators for quasi-PDFs. Indeed, it was
found that if the Wilson line is along µ-direction, then the Γ matrices for which

{
Γ,γµ

}
= 0

do not suffer from operator mixing. Thus, one can in principle use any vector operator γν with
ν ̸= µ . However, if the Wilson line and nucleon momentum are both taken in the 3-direction,
γ1 and γ2 would give a vanishing contribution in the calculation; hence, we are left with only
one possibility, γ0, which also offers a faster convergence to the light-cone PDFs than γ3, as
demonstrated in Ref. [45].

Since the discovery of the operator mixing in Ref. [55], lattice calculations do not use
anymore Oγ3 , which was the first proposal for extracting the unpolarized PDF [33]. At the
same time, we note that for our choices for the helicity (γ5γ3) and transversity (σ3 j) PDFs no
mixing occurs, because the Dirac matrices have one index in the direction of the Wilson line.
To conclude, from now on we will only focus on results extracted with Oγ0 as regards the
unpolarized PDF and we expect the final results to be in agreement with the ones from Oγ3 ,
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also in light of the comparison shown in Fig. 5.15 at the level of the unrenormalized matrix
elements.

5.3 Lattice results for excited states analysis

The matrix elements showed so far are extracted at one single value of the source-sink
separation, namely ts = 12a ≃ 1.13 fm. To check to what extent they are contaminated by
excited states, at our highest momentum P3 = 10π/L we perform measurements using other
three values of the source-sink time separation: ts = [8,9,10]a≃ [0.75,0.84,0.94] fm. The ts
values explored here are chosen such that we can achieve a statistical accuracy comparable
to one obtained at ts = 12a and at moderate computational effort. Moreover, we focus only
on the highest boost since we expect excited states contamination to be more severe at large
momenta.

In general, the number of excited states increases not only with the nucleon boost but
also going towards to the physical point; at fixed pion mass, it also increases with the lattice
volume, since the spectrum becomes denser [159]. Predicting excited states contributions is
impossible in lattice QCD, because that would require knowing the whole spectrum En that
composes the two- and three-point functions, as well as the operator matrix elements ⟨n′|O|n⟩
and the overlap terms Zn = ⟨Ω|N|n⟩, where N is the nucleon interpolating field. Given the
impossibility of extracting all this information, it is good practice employing more than one
methodology for data analysis. In this way we can establish at which level of accuracy excited
states are suppressed or hidden within statistical errors.

Before presenting our results we list the methods used to analyze our data, in order to examine
the dominance of the ground state in the lattice matrix elements. These are the strategies
applied in typical hadron structure calculations of the nucleon charges and form factors among
others.

5.3.1 The method

As we have seen in Chapter 4, two- and three-point functions have the following spectral
decomposition

C2pt(P3, t) = ∑
n
⟨Ω|N|n⟩⟨n|N̄|Ω⟩e−En t , (5.15)

C3pt(P3, ts;τ) = ∑
n,n′
⟨Ω|N|n′⟩⟨n′|O|n⟩⟨n|N̄|Ω⟩e−Enτ e−En′(ts−τ) , (5.16)

where N (N̄) is the nucleon interpolating field and |n⟩, |n′⟩ the eigenstates of the Hamiltonian
(|0⟩ - ground state, |1⟩- first excited state, etc). For convenience the time-slice of the source
is set to zero. From the expressions in Eq. (5.15) and (5.16) we can construct three analysis
methods:
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1. Plateau method
This is the methodology with which the matrix elements in previous Sections have been
obtained. The logic is to build the ratio of the three- over the two-point functions and
individuate a region where it becomes constant, equal to the desired matrix element.
Indeed, isolating the ground state contribution, the ratio of Eq. (5.9) reads

C3pt(P3, ts;τ)
C2pt(P3, ts)

=
⟨0|O|0⟩+ f10⟨1|O|0⟩e−∆E(ts−τ)+ f †

10⟨0|O|1⟩e
−∆Eτ+| f10|2⟨1|O|1⟩e−∆E ts+...

1+| f10|2 e−∆E ts+...
,

(5.17)
where f10 = ⟨Ω|N|1⟩/⟨Ω|N|0⟩ and ∆E = E1−E0 is the energy gap between the first
excited state and the ground state. Thus, in the limit of large Euclidean time separation we
obtain

C3pt(P3, ts;τ)

C2pt(P3, ts)
→ ⟨0|O|0⟩+O(e−∆Eτ)+O(e−∆E(ts−τ))+O(e−∆Ets) . (5.18)

⟨0|O|0⟩ can be extracted through a constant fit within the plateau region.

2. Summation method
This approach, proposed in Ref. [160], involves summing the ratio of Eq. (5.17) over
the insertion time τ of the operator. One can see that the terms τ-dependent give rise to
geometric series, whereas the other terms grow linearly with the source-sink separation,
yielding the relation

S(P3, ts)≡
ts−a

∑
τ=a

C3pt(P3, ts;τ)

C2pt(P3, ts)
= const.+ ⟨0|O|0⟩ ts +O(e−∆E ts) . (5.19)

Thus, we can extract the desired matrix element ⟨0|O|0⟩ from a linear two-parameter fit.
This method has the advantage of suppressing the excited states contamination by a faster
decaying factor, e−∆Ets , but the linear fit usually leads to results with larger uncertainties
as compared to the ones obtained with the plateau method. This aspect negates some of
the advantage of the summation method.

3. Two-state fits
Within this method, we take into account terms involving the ground state and the first
excited state, and perform many-parameter fit to the data extracted at three and four values
of the source-sink time separation. To this aim, we use the following decompositions of
the nucleon two- and three-point functions in terms of the overlap factors

C2pt(P3, t) = |Z0|2 e−E0 t
(

1+ | f10|2e−∆Et
)
, (5.20)

C3pt(P3, ts;τ) = |Z0|2 e−E0 ts
(
⟨0|O|0⟩+ f10⟨1|O|0⟩ e−∆E(ts−τ)

+ f †
10⟨0|O|1⟩e

−∆E τ + | f10|2⟨1|O|1⟩e−∆E ts
)
.

(5.21)
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5.3 Lattice results for excited states analysis

The two-point function depends on four parameters, |Z0|2, E0, | f10|2 and ∆E, while the
three-point function depends in addition on the operator matrix elements and on the factors
f10 and f †

10. We perform the analysis using two approaches:

(a) sequential fit, where we first carry out a four-parameter fit to the two-point correlators
to extract |Z0|2, E0, | f10|2 and ∆E; the values obtained are then used as inputs into
the three-point functions fit. The latter depends on eight parameters, distinguishing
between real and imaginary contributions: Re/Im [⟨0|O|0⟩], Re/Im [ f10⟨1|O|0⟩],
Re/Im [ f †

10⟨0|O|1⟩], Re/Im [⟨1|O|1⟩];

(b) simultaneous fit, where the desired matrix element is extracted from a simultaneous
combined fit of Eq. (5.20) and Eq. (5.21).

When the three methodologies described above (plateau, summation method and two-state
fit) give results which are consistent with each other, we consider contributions from excited
states to be under control. This is the criterion used by us to ensure the ground state dominance
at a certain level of accuracy.

5.3.2 Two-point function analysis

The simplest two-state fit that can be carried out is the one on the two-point correlator, using
the relation in Eq. (5.20). The result of the fit to the data at boost P3 = 10π/L is shown in
the left panel of Fig. 5.16, where the error band includes the covariance matrix of the fitting
parameters computed via binning Jackknife analysis. The fitting range excludes the first few
time-slices close to the source where higher excited states are predominant. We choose it to be
[3−16]a, as including larger time separations leads to values of the fitting parameters which
are compatible with each other within statistical errors. The nucleon ground state energy from
the two-state fit is aE2−state

0 = 0.773(18), in line with the value extracted from a constant fit
in the plateau region to the effective energy, aE1−state

0 = 0.788(9). The comparison of the
nucleon ground state energies obtained with these two approaches is shown in the right panel
of Fig. 5.16.
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Figure 5.16 Left: Two-state fit to the two-point correlator and error band (orange); logarithmic scale
is used in the y-axis for improving legibility. Right: Effective energy plotted together with the ground
state energy, obtained from one-state (cyan band) and two-state fit (orange band). The nucleon boost is
P3 = 10π/L.
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5.3 Lattice results for excited states analysis

Moreover, to check whether the extracted nucleon energy at momentum P3 = 10π/L
satisfies the energy dispersion relation, we complement our measurements and compute
nucleon two-point correlators at zero momentum and at P3 = 2π/L ≃ 0.28 GeV and P3 =

4π/L≃ 0.55 GeV, using momentum smearing. To derive the energy dispersion relation, we
first compute the nucleon energy from one-single state fit at each value of the boost and then

perform a two-parameter fit using the expression aE =
√

a2m2
Nc4 +a2P2

3 c2. In Fig. 5.17 we
show the lattice data and the continuum dispersion relation, together with the error band and
the values of the fitting parameters.
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Figure 5.17 Energy of the nucleon as a function of the boost P3 in lattice units. We fit the relativistic
energy-momentum relation E2 = m2

Nc4 +P2
3 c2 to the lattice data (red squares) obtained from one-state

analysis. The values of the parameters extracted from the fit are shown in the Figure. The error band
(cyan) includes the covariance matrix of the fitting parameters.

We observe that up to momentum P3 = 10π/L≃ 1.38 GeV there are no deviations from
the continuum energy-momentum relation within the present statistical accuracy. In fact, at
our highest momentum we have 10π/L≈ 0.65/a, which is well below the lattice cutoff 1/a
of our ensemble. Moreover, from the fit to the data we obtain c2 = 1.00(3) for the squared
of the speed of light and a2m2

Nc4 = 0.207(4) for the nucleon mass in lattice units, which is
in line with the value amN = 0.4436(11) extracted at zero-momentum in Ref. [152]. Having
discussed the analysis on the two-point functions, in the next Sections we show the results
for the matrix elements at our highest boost and for the three Dirac structures in the inserted
operator.

5.3.3 Matrix elements for the unpolarized PDFs

To study the influence of excited states for the unpolarized PDFs we explore four values
of the source-sink time separation, namely ts/a = [8,9,10,12] or in physical units ts ≃
[0.75,0.84,0.94,1.13] fm. This analysis is carried out only at the highest momentum P3 =

10π/L, because three-point functions evaluated at different nucleon boosts require separate
sequential inversions, and the calculation becomes very computationally demanding when
multiple source-sink separations have to be considered as well. Thus, we prefer to focus on
the case in which excited states may be more influent, i.e on the highest momentum. The
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5.3 Lattice results for excited states analysis

statistics for the excited state analysis on the unpolarized PDF is reported in Table 5.3. For all
values of the source-sink time separation we use the same CAA setup as for ts/a = 12, i.e.
1 HP and 16 LP source positions from which high- and low-precision inversions are carried
out respectively, as discussed in Section 5.1.4.

The first approach used is the plateau method, which involves a constant fit within the
insertion time interval, as illustrated in Fig. 5.18 for z/a = 1 and source-sink separation
ts/a = 8,9. Iterating the procedure for each ts value, we get the results in Fig. 5.19. We

P3 = 10π/L, Ins: γ0 ts = 8a ts = 9a ts = 10a ts = 12a

Nconf 48 98 100 811

Nmeas 4320 8820 9000 72990

Table 5.3 Number of analyzed configurations and measurements at each source-sink separation, for
the unpolarized case (γ0) at P3 = 10π/L.
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Figure 5.18 Plateau method for extracting the real and imaginary part of the matrix element at ts/a = 8
(left panel) and ts/a = 9 (right panel).

notice that for ts = 8a, the real part of the matrix element is shifted towards smaller values at
each z/a compared to larger ts , while the effect in the imaginary part is less prominent.

We also analyze the data using the summation method, in which a linear fit with respect
to ts is performed, as indicated in Eq. (5.19). To this aim, we employ two ranges of ts values:
1) ts/a = [8,9,10] and 2) ts/a = [8,9,10,12]. The results from these two sets are reported in
Fig. 5.20. They are obtained summing over the whole range of τ (τ ∈ [a, ts−a], contact terms
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Figure 5.19 Real (left) and imaginary (right) part of the matrix elements for the unpolarized PDFs at
ts = 8a (red stars), ts = 9a (blue circles), ts = 10a (green diamonds), ts = 12a (yellow squares). The
nucleon boost is P3 = 10π/L.

0 5 10 15 20

0

0.5

1

1.5

2

0 5 10 15 20

-0.6

-0.4

-0.2

0

Figure 5.20 Summation method applied to the matrix elements for the unpolarized PDF. Left: real
part. Right: imaginary part. Two sets of ts values are compared, with the sum over τ extended from
τ = a to τ = ts−a. The nucleon boost is P3 = 10π/L.

excluded) and, as we can see, they are compatible with each other. However, ts = [8a−12a]
does not provide a good description of the data, since for z/a ≈ 10− 15 the linear fit has
χ2/d.o.f > 2, see Fig. 5.21. We find that at z/a = 12, χ2/d.o.f. ≃ 0.16 when fitting in the
range ts = [9a−12a] and χ2/d.o.f.≃ 2.4 for ts = [8a−12a]. The origin of this behavior is
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Figure 5.21 Quality of the linear fit in the summation method, shown for the real part of the matrix
element for the unpolarized PDF. In both plots the dashed line (red) denotes the fits to all source-sink
separations, while the solid line (blue) to the three largest separations. The error bands of the fits are
not included.
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due to the fact that the matrix element at ts = 8a (obtained from the ratio method) is well
below the ones at larger separations, compromising the quality of the fit. Besides that, the
fitting interval ts = [8a−12a] also leads to an overestimation of the real part of the matrix
elements. This can be deduced by looking at the value at z/a = 0, that we know has to be
equal to the valence quark number of the proton (i.e. 1), upon renormalization. Applying
the Z-factor ZV = 0.655 estimated for N f = 2 twisted mass fermions at z/a = 0 in Ref. [161],
we find that the renormalized matrix element is 1.02(24) when fitting for ts = [9a−12a] and
1.21(16) for ts = [8a−12a]. Therefore, as concerns the summation method we consider only
the results from the fit to the largest source-sink separations. We also note that, varying the
interval over which τ is summed, the quality of the fit is almost unchanged to the one showed
in Fig. 5.21 and the statistical errors remain much larger than the ones obtained from the
plateau method. Consequently, it is difficult to derive conclusions about the ground state
dominance from the summation method.

We also perform two-state analysis and in Fig. 5.22 we compare the results from the
sequential and simultaneous two-state fits. The central values and the errors of the matrix
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Figure 5.22 Real (left) and imaginary (right) part of the matrix element for the unpolarized PDF from
two-state fits, using source- sink separations 8a− 12a (circles) and 8a− 10a (squares). Sequential
fit (filled symbols) is compared to simultaneous fit (open symbols). The nucleon is boosted with
10π/L≃ 1.38 GeV.

elements are very similar in both procedures and also when varying the fitting range as
indicated in the Figure, demonstrating that the fits are quite robust. Given their equivalence,
for comparison purpose we focus only on two cases, i.e. sequential fit in ts = [8a−10a] and
ts = [9a−12a], and collect the results in Fig. 5.23.
Overall, we can see that excited states are clearly visible for ts = 8a, especially in the real
part. For the imaginary part we notice only a very small tension between ts = 8a,9a from one
side and ts = 12a and two-state fits from the other, but everything is within statistical errors.
For better legibility, a comparison between different methods is illustrated in Fig. 5.24 for
two selected values of the Wilson line length, z/a = 5 and z/a = 10.

Summarizing our analysis for the unpolarized operator, we observe that the values obtained
at the higher separation ts = 12a are perfectly compatible with the ones from two-state fits at
each length z/a of the Wilson line. This implies that at the level of accuracy of our results,
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Figure 5.23 Real (left) and imaginary (right) part of the matrix element for the unpolarized PDF
from plateau method (points labeled with appropriate ts), summation method (for ts ≥ 9a), two-state
sequential fits. The nucleon is boosted with 10π/L≃ 1.38 GeV.
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Figure 5.24 Real (left) and imaginary (right) part of the matrix element for the unpolarized PDF at
z/a = 5 and z/a = 10. Different analysis procedures are compared to each other: plateau method
(for ts/a = 8,9,10,12), summation method (for ts ≥ 9a) and two-state sequential fits. The nucleon is
boosted with 10π/L≃ 1.38 GeV.

≈ 10%, excited states are hidden within statistical errors up to the source-sink separations
considered in this work. Thus, for all the momentum values, the results for the unpolarized
PDFs will be given from now on at ts = 12a using the plateau method.

5.3.4 Matrix elements for the helicity PDFs

To study the contamination by excited states on the matrix elements for the helicity dis-
tribution, we use the same source-sink separations as for the unpolarized case, namely
ts/a = [8,9,10,12] or ts ≃ [0.75,0.84,0.94,1.13] fm in physical units. The statistics is re-
ported in Table 5.4.
In Fig. 5.25 we show the results obtained with the plateau method, applied for each ts value.
As can be seen, the imaginary part is amplified at lower separations and the values of the
operator are not compatible with those at the highest ts, meaning that they are strongly
contaminated by excited states of the nucleon. The two-state fit analysis for both intervals
[8−12]a and [9−12]a is reported in Fig. 5.26, where the results are shown up to z/a = 13
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P3 = 10π/L, Ins: γ5γ3 ts = 8a ts = 9a ts = 10a ts = 12a

Nconf 36 50 88 811

Nmeas 3240 4500 7920 72990

Table 5.4 Number of analyzed configurations and measurements for the excited states analysis for the
helicity operator (γ5γ3) at P3 = 10π/L≃ 1.38 GeV.
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Figure 5.25 Real (left) and imaginary (right) part of the matrix element for the helicity PDF. The data
at ts = 8a (red triangles), ts = 9a (blue circles), ts = 10a (green diamonds), ts = 12a (yellow squares)
are analyzed using the plateau method. The nucleon momentum is 10π/L≃ 1.38 GeV.

for better legibility. From the right panel of Fig. 5.26, we notice that the two-state fits using
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Figure 5.26 Real (left) and imaginary (right) part of the matrix element for the helicity PDF. We
compare the results from the plateau method at ts = 8a (red triangles), ts = 9a (blue circles), ts = 10a
(green diamonds), ts = 12a (yellow squares) with the two-state fits data (violet and black pentagons)
extracted from fitting ranges [8−10]a and [8−12]a. The nucleon momentum is 10π/L≃ 1.38 GeV.

ts/a = 8,9,10 are incompatible with the plateau values at ts = 10a, suggesting that with
only these three source-sink separations excited states are not yet under control. This is
also illustrated in Fig. 5.27 for two selected values of z/a (z/a = 5 and z/a = 10) where
summation method results are included as well. All this enforces the necessity of simulating
at ts = 12a to check the consistency of results obtained with different analysis methodologies.
Given that at ts = 12a compatibility is achieved between plateau method and two-state fits at
the highest momentum, we take the data at ts = 12a as our final values for the nucleon helicity
operators at all momenta considered in this work.
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Figure 5.27 Comparison between plateau (for ts/a = 8,9,10,12), summation method and two-state
sequential fits, for the helicity operator at Wilson line length z/a = 5 and z/a = 10. Left: real part.
Right: imaginary part. The nucleon momentum is 10π/L≃ 1.38 GeV.

5.3.5 Matrix elements for the transversity PDFs

The investigation of the excited states effects for the tensor operator proceeds along the lines
of the previous cases. Using the number of measurements listed in Table 5.5 we get the results
shown in Fig. 5.28 when the plateau method is employed.

P3 = 10π/L, Ins: σ3 j ts = 8a ts = 9a ts = 10a ts = 12a

Nconf 36 50 88 811

Nmeas 3240 4500 7920 72990

Table 5.5 Number of analyzed configurations and measurements for the excited states analysis for the
tensor operator (σ3 j), at boost P3 = 10π/L≃ 1.38 GeV.
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Figure 5.28 Real (left) and imaginary (right) part of the matrix element for the transversity PDF. The
data at ts = 8a (red triangles), ts = 9a (blue circles), ts = 10a (green diamonds), ts = 12a (yellow
squares) are analyzed using the plateau method. The nucleon momentum is 10π/L≃ 1.38 GeV.

As for the helicity matrix elements, the excited states effects manifest through an enhance-
ment of the imaginary part for small source-sink separations. Moreover, at small lengths of
the Wilson line (z≤ 5a) the two-state fits in the interval ts = [8−10]a do not give compatible
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results with the plateau values at ts = 10a. This is illustrated in Fig. 5.29 and Fig. 5.30, for
two values of z/a. However, at a level of accuracy of around 10%, this incompatibility is not
observed for the real part.
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Figure 5.29 Real (left) and imaginary (right) part of the matrix element for the transversity PDF.
We compare the results from the plateau method at ts = 8a (red triangles), ts = 9a (blue circles),
ts = 10a (green diamonds), ts = 12a (yellow squares) with the two-state sequential fits data (violet
and black pentagons) extracted from fitting ranges [8−10]a and [8−12]a. The nucleon momentum is
10π/L≃ 1.38 GeV.
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Figure 5.30 Comparison between plateau (for ts/a = 8,9,10,12), summation method and two-state
sequential fits, for the tensor operator at Wilson line length z/a = 5 and z/a = 10. Left: real part.
Right: imaginary part. The nucleon momentum is 10π/L≃ 1.38 GeV.

The results obtained reinforce the conclusion reached in the previous cases for the bare matrix
elements for the unpolarized and helicity quasi-PDFs, namely that the tensions observed
between results from source-sink separations below 1 fm are indeed manifestations of excited
states contamination.

Since ts = 12a≃ 1.13 fm is the minimum value of the source-sink separation at which
plateau values and two-state fits results are compatible with each other, we can conclude that
ground state dominance is achieved only at ts = 12a in our setup, to around 10% statistical
accuracy. Even if the plateau and two-state approaches are in agreement, we prefer to
extract PDFs by taking the plateau values, as they are more precisely determined. We also
note that the more severe excited states effects observed for the helicity and transversity
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5.4 Computational cost of simulations

operators (as compared to the vector case) are in accordance with observations in lattice
computations of the nucleon axial and tensor charges, extracted at zero-momentum (see for
instance Refs. [157, 162]).

5.4 Computational cost of simulations

Natural questions that may arise at this point are: Why do we reach P3≃ 1.38 GeV as maximal
value of the nucleon boost and do not go beyond if very large momenta (P3≫ ΛQCD) are
crucial to make contact with light-cone PDFs? Or, why source-sink time separations larger
than 1.13 fm are not employed if they suppress excited states by a larger factor?
These questions can be addressed with the help of Fig. 5.31 and Fig. 5.32. These are
qualitative illustrations of what the computational cost would be if simulations are performed
with larger momenta, up to 3 GeV to make an example, and aiming at 10% of accuracy
for the unrenormalized matrix elements. Knowing how many measurements are needed for
the boosts {0.83,1.11,1.38} GeV at ts ≃ 1.13 fm and the corresponding computational cost,
we can perform an exponential fit to have an idea about the resources required to push the
calculation forward. As can be seen from Fig. 5.31, we estimate that to reach a momentum
of around 2 GeV one would need O(10)−O(100) million core-hours for a 10% precision
only, depending on the Dirac structure in the inserted operator. These estimates increase
up O(104)−O(106) million core-hours at 3 GeV, going clearly beyond what is currently
available.
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Figure 5.31 Projection of the computational cost for 10% of accuracy on the bare matrix elements of
PDFs varying the nucleon momentum. We compare the unpolarized operators (γ0-circles, γ3-hexagons),
helicity operator (γ5γ3-squares) and transversity operator (σ3 j-diamonds) at ts ≃ 1.13 fm.

Thus, simulating at very large boosts and at ts ≳ 1 fm is a computational challenge in lattice
QCD. These cost requirements may be alleviated with further efficient algorithms and lattice
techniques that might beat the exponential decreasing of the signal-to-noise ratio at large
nucleon boosts and sufficiently large source-sink separations. On the other hand, in our PDF-
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5.4 Computational cost of simulations

related work, additional help may come from theoretical side investigations that may allow a
robust extraction of PDFs even at lower momenta. This aspect is discussed in Chapter 7.

From Fig. 5.31, it is also evident that computations at source-sink separations larger than
ts ≃ 1.13 fm are prohibitively demanding. Therefore, in quasi-PDF calculations a compromise
is needed between the maximal value of the boost and source-sink time separation one is
aiming at. This very stringent limit is less severe in lattice calculations of the nucleon charges
(vector, axial and tensor), which are quantities that do not need a boosted frame in order to be
extracted from the lattice. In those investigations, typical lattice calculations reach source-sink
time separations of around ts ≃ 1.3 fm and even larger (see e.g. Refs. [162, 163]).

In Fig. 5.32 we show the estimate of the computational cost when using a smaller source-
sink separation, namely ts = 8a ≃ 0.75 fm. As we can see, achieving high momenta is
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10 10

Figure 5.32 Projection of the computational cost for 10% of accuracy on the bare matrix elements
of the unpolarized PDFs as a function of the nucleon momentum. The computational resources at
ts ≃ 0.75 fm are compared to those at ts ≃ 1.13 fm.

perfectly feasible for this setup and does not require huge computational resources. Indeed,
for the unpolarized operator, an order O(1) million of core-hours must be compared with
O(104) millions of core-hours to reach a nucleon momentum of around 3 GeV at ts ≃ 1.13 fm.
Even if appealing, using very large boosts at ts < 1 fm is not our choice. If too small source-
sink separations are employed, physical results may be strongly dominated by excited states
and two-state analysis might be in disagreement with the plateau method, as found for instance
in Refs. [163, 164] for the nucleon scalar and tensor charges extracted on the same ensemble
as the one used in this work. It is also crucial to observe that the nucleon momentum has to
satisfy the condition P3 << 1/a, to avoid huge cutoff effects.
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Chapter 6

Renormalization of matrix elements

The renormalization of lattice operators is one of the main components of our parton distribu-
tion functions calculation, that is addressed in this work following a non-perturbative approach.
Here we give an overview of the method employed to renormalize the matrix elements for
quasi-distributions and show results for the renormalization functions, as well as for the
renormalized matrix elements. Our method is based on the non-perturbative renormalization
prescription presented in 2017 in Ref. [56], which in turn has received crucial inputs from the
perturbative study of the renormalization properties of quasi-PDF operators of Ref. [55].

Compared to previous works in this field, our analysis also involves a number of improved
elements and important checks described along this Chapter. We also refer to Ref. [59] for
a detailed description of the analysis on the renormalization functions in our physical point
setup.

6.1 The method

Renormalization is needed in order to relate the bare lattice QCD matrix elements to physical
results, removing the divergences that prevent taking the continuum limit, a→ 0.

Apart from finite terms related to the lattice regularization and logarithmic divergences
with respect to the regulator (i.e. log(aµ0)), the bare matrix elements of quasi-PDFs have an
additional power divergence, related to the Wilson line [55]. The divergent term assumes the
form eδm|z|/a, where z is the length of the Wilson line and δm > 0 represents the strength of
the power divergence. Moreover, heavy quark effective theory arguments [165] suggest the
dependence of the matrix elements on a dimensionful scale, c. For quasi-PDFs this extra term
could be of the form c|z|. Consequently, from the bare matrix elements one necessarily needs
to remove an overall exponential factor of the type eδm|z|/a+c|z|. The perturbative one-loop
calculation of Ref. [55] has demonstrated that δm depends only on the parameters of the gluon
action and thus is expected to be operator independent. However, a proper determination of
δm requires a non-perturbative approach, since higher orders than one-loop will dominate in
the limit a→ 0.

In this work, we use the non-perturbative renormalization program developed in Ref. [56]
for quasi-PDFs. The procedure consists in a generalization of the RI′-scheme [166] and is
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6.1 The method

appropriate for operators with Wilson line, i.e. well-suitable to eliminate all divergences of
the matrix elements discussed above, power-like and logarithmic. In a nutshell, our procedure
is composed of two main steps:

• Lattice calculation of appropriate vertex functions, from which renormalization func-
tions (Z-factors) are extracted in a RI′-scheme at a scale µ0. In the RI′-scheme, each
operator O (associated to the vector, axial, tensor current) has a corresponding Z-factor,
ZRI′
O (ZRI′

V0
, ZRI′

A , ZRI′
T ).

• Renormalization functions ZRI′
O are then converted to the traditional scheme (and scale)

in which phenomenological results are presented, i.e. the MS-scheme. The conversion
from RI′ to MS-scheme makes use of perturbation theory and brings each ZRI′

O to the
appropriate ZMS

O , that are eventually applied to renormalize the lattice matrix elements.

In the following we outline the procedure to extract the Z-factors in the RI′-scheme, at a
given energy scale µ0. The general idea is the same as the one applied for the renormalization
of ultra-local matrix elements and we refer to Refs. [161, 167] for a more detailed description.
Defining an operator O of the type

O = ψ̄(x)ΓP e−ig
∫ z

0 A(ξ )dξ
ψ(x+ zµ̂) , (6.1)

the renormalization functions of the operator and the quark field (ZO and Zq) are obtained by
imposing the following conditions

ZRI′
O (z,µ0)

ZRI′
q (µ0)

1
12

Tr
[
V(z, p)

(
VBorn(z, p)

)−1
]∣∣∣

p2=µ2
0

=1 , (6.2)

ZRI′
q (µ0)

1
12

Tr [(S(p))−1SBorn(p)]
∣∣∣

p2=µ2
0

= 1 . (6.3)

Zq, which renormalizes the quark field (ψR = Z1/2
q ψ), is computed by taking the trace over

the color and spin indices of the product between the fermion propagator S(p) (up- and down-
propagator) and its tree-level value SBorn in momentum space. In this work, we take SBorn to
be [167, 168]

SBorn =
−i ∑ρ γρ(pρ)

∑ρ sin(pρ)2 (6.4)

in Euclidean space. In Eq. (6.2), V(z, p) is the amputated vertex function of the operator O
and VBorn(z, p) is its tree-level value, e.g. VBorn(z, p) = γ0 eipz for the unpolarized operator.
The amputated vertex functions V(z, p) are extracted through lattice computation of the vertex
functions G(z, p). The corresponding expressions are

V(z, p) = (Su(p))−1G(z, p)(Sd(p))−1 , (6.5)

G(z, p) =
a12

V ∑
x,x′,z′,y

e−ip(x−y)⟨u(x)ū(x′)Γ W (x′,z′)d(z′)d̄(y)⟩ , (6.6)
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6.1 The method

where Su (Sd) is the up (down) quark propagator, z′ = x′+ zêµ where z is the length of the
Wilson line, W , and Γ is a Dirac structure. For the calculation of G(z, p) we employ the
momentum source method [161, 169], that has the advantage of yielding results of high
statistical accuracy. This method requires separate inversions for each momentum used, but
significant reduction in the gauge noise is observed, which by far outweighs the additional
computational cost.

Within this framework, the amputated vertex functions V(z, p) contain the same power
divergence as the nucleon matrix elements, as can be deduced from Eq. (6.5) and Eq. (6.6).
Consequently, since ZO is related to the inverse of V(z, p) from the first renormalization
condition, one obtains the following relation

ZO(z,µ0) = ẐO e−δm|z|/a−c|z| , with δm > 0 , (6.7)

where ẐO is the multiplicative Z-factor of the operator. Therefore, upon multiplication
ZO · hbare

Γ
, such a renormalization program ensures the elimination of all the divergences of

the bare matrix elements, the power-like divergence included.

It is also important to notice that the renormalization conditions of Eqs. (6.2-6.3) are
imposed for each length z of the Wilson line and therefore ZO is a function of z. Moreover,
both ZO and Zq depend on the RI′ renormalization scale µ0, that in this work is chosen to be
“democratic” in the spatial directions, that is

(aµ0)≡ 2π

(
nt

Lt
+

1
2Lt

,
n
Ls
,

n
Ls
,

n
Ls

)
, (6.8)

being Lt (Ls) the temporal (spatial) extent of the lattice. Another possibility for the scale µ0

is the so-called “parallel” choice, where the integer numbers are taken to be (nt ,0,0,n), i.e.
n is non-zero only along the direction of the Wilson line. However, this choice is found to
produce enhanced lattice artifacts for the renormalization functions [56, 161] and therefore is
not considered in this work.

The dependence of the renormalized results on the RI′-scale (6.8) is highly non-trivial,
because of the complex nature of the Z-factors and the extra dependence on the Wilson line
length, z. Thus, we explore several values for µ0. We consider scales (aµ0)

2 ≥ 2 for which
perturbation theory is trustworthy and that minimize the following ratio

P̂≡
∑ρ µ4

0ρ(
∑ρ µ2

0ρ

)2 , (6.9)

to avoid enhanced discretization effects [56, 161].

Before showing any results for Z-factors, we list in detail the steps carried out in this work
to estimate the renormalization functions, eventually converted in the MS-scheme:
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6.2 Lattice results for renormalization functions

1. at a given RI′-scale, we perform a chiral extrapolation using three ensembles N f = 2 at
different values of the pion mass but at the same lattice spacing. This is an important
step because even if a RI-type scheme is mass-independent [166], the Z-factors show a
residual dependence on the value mπ of the ensemble, that ideally has to be eliminated;

2. using two physical point ensembles N f = 2 with mπ ≃ 130 MeV and different volumes,
we check any finite size effects on the renormalization functions;

3. the chirally extrapolated Z-factors from point 1 are then converted from each scale µ0 to
MS scheme, using the one-loop conversion formulae derived in Ref. [55] in perturbation
theory and in dimensional regularization;

4. the final Z-factors in MS are obtained performing a linear fit in (aµ0)
2, where always

(aµ0)
2 ≥ 2. We explore different fitting ranges and eventually take the one correspond-

ing to a better χ2/d.o. f . This procedure allows us to eliminate the residual dependence
on the initial choice of the RI′ scale µ0. Such a dependence is in general interpreted as
a truncation effect in the perturbative conversion and evolution from the intermediate
RI′-scheme to MS, that are currently performed using one-loop formulae [55]. For
a discussion about systematic effects on the estimate of renormalization functions
see [54, 56].

6.2 Lattice results for renormalization functions

The pion mass dependence of the renormalization functions is studied on three N f = 2 twisted
mass ensembles having the same value of the lattice spacing but different volumes, see
Table 6.1.

β = 2.10, cSW =1.57751, a = 0.0938(3)(2) fm mπ L

483×96 aµ = 0.0009 mπ = 130 MeV 2.98

243×48 aµ = 0.003 mπ = 235 MeV 2.69

243×48 aµ = 0.006 mπ = 340 MeV 3.89

Table 6.1 Parameters of the ensembles used to chirally extrapolate the Z-factors in this work. For other
details about the gauge ensembles see Ref. [152].

The chiral extrapolation is performed at each RI′ scale µ0, after the renormalization
conditions of Eqs. (6.2-6.3) are imposed at every value of the Wilson line length [59]. The
data are expected to have a quadratic dependence on mπ and therefore they are fitted by the
following function

ZRI′
O (z,µ0,mπ) = ZRI′

O,0(z,µ0)+m2
π ZRI′

O,1(z,µ0) , (6.10)

where ZRI′
O,0(z,µ0) represents the extrapolated value. In Fig. 6.1, we show an example of chiral

extrapolation for z/a = 1 and z/a = 5. The dashed lines and bands of different colors indicate
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6.2 Lattice results for renormalization functions

the chiral fits for the three operators. ZV0 , ZA and ZT are the Z-factors of the unpolarized,
helicity and transversity PDFs, obtained via the Dirac structures γ0, γ5γ3 and σ3 j respectively.
For small values of the Wilson line we find a very mild dependence on m2

π both for real and
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Figure 6.1 Chiral extrapolation of the Z-factors for the unpolarized (blue circles), axial (red squares),
tensor (orange diamonds) operator at the RI′ scale (aµ0)

2 = 2.5. Left: real part. Right: imaginary
part. The open symbols show the extrapolated values. The errors on the Z-factors are estimated by
employing the Jackknife binning [133].

imaginary part of the Z-factors, as also observed for ultra-local operators [161]. For large
values of z/a, the dependence is quadratic as expected.

To check possible finite-volume effects on the renormalization functions, we extract the
RI′ Z-factors on another N f = 2 twisted mass ensemble, simulated at the same value of the
lattice spacing and pion mass of the one employed to compute the matrix elements for PDFs,
i.e. a = 0.0938(3)(1) fm and mπ ≃ 130(2) MeV. The difference is in the lattice volume, that
is 643× 128, corresponding to mπ L ≃ 3.97 [130]. These parameters have to be compared
with a volume V = 483× 96 and mπ L ≃ 2.98, see Table 5.1 in Chapter 5. To study finite
volume effects, we monitor the ratios of the real and imaginary part of the Z-factors, obtained
from the two ensembles:

RO(z)≡
Re[ZRI′

O,64(z,µ0,mπ)]

Re[ZRI′
O,48(z,µ0,mπ)]

, IO(z)≡
Im[ZRI′

O,64(z,µ0,mπ)]

Im[ZRI′
O,48(z,µ0,mπ)]

. (6.11)

A fair comparison between the two lattices has to be done at the same RI′ scale, because the
results may be otherwise affected by lattice artifacts to a different extent. In Fig. 6.2 we show
these ratios for (aµ0)

2 = 2.5. Both the real and imaginary parts do not show a significant
dependence on the volume and this is observed for all RI′ scales considered in this work. In
fact, the ratios take a maximum value of around 1.03 for z/a up to 15, which is well within
the range of interest. Thus, to the estimates of the Z-factors we do not attribute any systematic
error due to finite volume effects. This is also motivated by the fact that the bare matrix
elements of quasi-PDFs go to zero for large values of the Wilson line (see e.g. Figs. 5.13,
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Figure 6.2 Study of volume effects on the RI′ Z-factors. The scale is (aµ0)
2 = 2.5. The ratios for the

real (left) and imaginary (right) part are defined in Eq. (6.11) for the vector, axial and tensor operator.

5.14) and systematic errors on the renormalization functions in that region would be even
more negligible.

It is important to remark that finite size effects should also be investigated at the level of
the bare matrix elements, before quoting any credible estimates of the systematic uncertainties.
Such a study requires significant computational resources and so far has not been performed
yet for quasi-PDFs. However, due to the non-trivial volume dependence that non-local matrix
elements may have [170], the computation at different physical volumes is among the future
goals of collaborations studying x-dependent hadron structure.

After chiral extrapolation, the Z-factors are then converted from each RI′ scale µ0 to MS
scheme, using the conversion formulae of Ref. [55]. The remaining dependence on µ0 is
studied with a linear fit in (aµ0)

2 and is eventually eliminated by taking a fit of the form

ZMS
O (z, µ̄,µ0) = ZMS

O,0(z, µ̄)+(a µ0)
2ZMS

O,1(z, µ̄) . (6.12)

ZMS
O (z, µ̄,µ0) denotes the chirally extrapolated Z-factor converted to the MS scheme at a scale

µ̄ and ZMS
O,0(z, µ̄) is the desired Z-factor. We note that the same form for the extrapolation in

Eq. (6.12) has already been applied in previous works for ultra-local and non-local operators,
see e.g. Refs. [56, 161].

Our renormalization program entails a new element, namely the use of a modified MS
scheme (MMS). The development of such a scheme was motivated by the fact that the
existing matching formulae to the light-cone PDFs (see e.g. [171]) do not satisfy particle
number conservation. The latter is computed through the integral of the unpolarized quasi-
and physical PDF in the region of quark momentum fraction x ∈ [−1,1]. For details about
the need and the extraction of a MMS scheme we refer to Ref. [59]. Here we just sketch our
procedure, which in a nutshell includes an additional conversion factor to bring ZMS

O,0(z, µ̄) to

ZMMS
O,0 (z, µ̄) via

ZMMS
O,0 (z, µ̄) = ZMS

O,0(z, µ̄)C
MS,MMS(z, µ̄) , (6.13)

where CMS,MMS is operator-dependent, whose form has been derived in Ref. [59]. The MMS
scheme allows us to compare our lattice results with the phenomenological ones, presented in
the MS scheme.
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6.2 Lattice results for renormalization functions

Moreover, our approach contains another improved component, that is the subtraction of
the O(g2 a∞) terms from the quark renormalization functions Zq, computed perturbatively in
Ref. [161] on the same ensembles. The effect of subtraction of lattice artifacts to all orders of
the lattice spacing is shown in Ref. [59], to which we refer for more details about the analysis
of the renormalization functions for this work.

In Figs. 6.3, 6.4 and 6.5 we show the final Z-factors employed to renormalize the unpolar-
ized, helicity and transversity PDFs in the MMS scheme.
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Figure 6.3 Final values of the Z-factors in the MMS scheme for the vector operator (γ0), upon chiral
and (a µ0)

2 extrapolation. Real and imaginary parts are shown in the left and right panels, respectively.
5 levels of 3-D stout smearing are applied to the gauge links in the vertex functions.
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Figure 6.4 Final values of the Z-factors in MMS scheme for the axial (γ5γ3) operator, upon chiral and
(a µ0)

2 extrapolation. Left: real part. Right: imaginary part. 5 levels of 3-D stout smearing are applied
to the gauge links in the vertex functions.

The results are obtained by applying 5 steps of 3-D stout smearing to the gauge links entering
the vertex functions. The renormalization scale is set to µ̄ = 2 GeV for the unpolarized and
helicity operator and µ̄ =

√
2 GeV for the tensor operator. With these choices, the lattice

PDFs will be renormalized at the same scale at which the phenomenological results used for
comparison purpose are presented (see next Chapter).

The Z-factors have two important properties: i) the real and imaginary parts are respec-
tively symmetric and antisymmetric with respect to z→−z, as for the bare matrix elements;
ii) the imaginary part is around a factor 2 smaller than the real counterpart. However, as
demonstrated in Ref. [55], the Z-factors should be real after conversion in MS scheme to
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Figure 6.5 Final values of the Z-factors in the MMS scheme for the tensor (σ3 j) operator, upon chiral
and (a µ0)

2 extrapolation. Left: real part. Right: imaginary part. 5 levels of 3-D stout smearing are
applied to the gauge links in the vertex functions.

all orders in perturbation theory. Their complex nature observed here is an artifact due to
truncation effects in the conversion and evolution from RI′ to MS scheme at a given scale,
currently performed to one-loop order. For a discussion about systematic effects on the
renormalization functions see [54, 56].

6.3 Renormalized matrix elements

Having computed the Z-factors, we can now renormalize the nucleon bare matrix elements
(hbare

Γ
) in the MMS scheme by the complex multiplication

hMMS
Γ (P3,z, µ̄) = hbare

Γ (P3,z) ·ZMMS
Γ (z, µ̄) . (6.14)

Therefore, the real and imaginary part of hMMS
Γ

are sums of two terms

Re[hMMS
Γ ] = Re[ZMMS

Γ ]Re[hbare
Γ ] − Im[ZMMS

Γ ] Im [hbare
Γ ] ,

Im[hMMS
Γ ] = Re[ZMMS

Γ ] Im[hbare
Γ ] + Im[ZMMS

Γ ] Re [hbare
Γ ] ,

(6.15)

where both Re[ZMMS] and Im[ZMMS] contribute. In Figs. 6.6, 6.7 and 6.8 we compare
the bare and renormalized matrix elements for the vector, axial and tensor operator. Since
the behavior after renormalization is similar to all values of momenta, here we discuss the
general properties showing only one single case, corresponding to a nucleon boosted with
P3 = 10π/L≃ 1.38 GeV. The results presented here are extracted by applying 5 levels of 3-D
stout smearing, both to the Wilson line of the matrix elements and of the vertex functions.
As can be seen, after renormalization, the real and imaginary part of the matrix elements are
shifted towards larger values and decay to zero slower than the bare ones. The amplification
of the bare matrix elements, more profound in the large z-region, is due to the large values
of Z-factors and stems from the power divergence of non-local operators with Wilson line.
We also observe that statistical errors are increased and this very large noise on the data will
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Figure 6.6 Bare (filled symbols) and renormalized (opened symbols) matrix elements for unpolarized
distributions (Γ = γ0) in the MMS scheme at µ̄=2 GeV. Left: real part. Right: imaginary part. The
nucleon boost is P3 = 10π/L≃ 1.38 GeV.
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Figure 6.7 Bare (filled symbols) and renormalized (opened symbols) matrix elements for helicity
distributions (Γ = γ5γ3) in the MMS scheme at µ̄=2 GeV. Left: real part. Right: imaginary part. The
nucleon boost is P3 = 10π/L≃ 1.38 GeV.
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Figure 6.8 Bare (filled symbols) and renormalized (opened symbols) matrix elements for transversity
distributions (Γ = σ3 j) in the MMS scheme at µ̄ =

√
2 GeV. Left: real part. Right: imaginary part.

The nucleon boost is P3 = 10π/L≃ 1.38 GeV.

propagate through the Fourier transform and matching to the final distributions, as described
in Chapter 7.
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6.4 Renormalized matrix elements with stout smearing

6.4 Renormalized matrix elements with stout smearing

For a given operator (vector, axial, tensor), the renormalized matrix elements depend not only
on the nucleon momentum but in principle on any technique employed in a lattice calculation,
such as link-smearing that is used in this work. In Fig. 6.9 we show the Z-factors in the
MMS scheme for the helicity operator, obtained by applying 0,5,10,15 levels of 3-D stout
smearing to the gauge links in the vertex functions of Eq. (6.6). As one can see, smearing
reduces both real and imaginary part of ZMMS

A , shifting them towards their tree-level values
and thus reducing the power-like divergence. This effect is significant for z/a > 3 and is
stronger from Nst = 0 to Nst = 5 stout iterations than from 5 to 10. However, once applied the
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Figure 6.9 Real (left) and imaginary (right) part of the Z-factors in the MMS scheme at 2 GeV for
the helicity operator, applying 0/5/10/15 (green circles/red diamonds/ blue pentagons/orange stars)
levels of stout smearing to the Wilson line in the vertex functions.

renormalization functions to the bare matrix elements (see Figs. 5.11 and 5.12) the smearing
dependence almost vanishes, as shown in Fig. 6.10 for the axial operator, where the nucleon is
boosted with P3 = 6π/L≃ 0.83 GeV. The difference when using different smearing iterations
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Figure 6.10 Real (left) and imaginary (right) part of renormalized matrix elements for the axial
operator (helicity PDF) for momentum 6π/L≃ 0.83 GeV, as a function of the length of the Wilson
line. They are obtained using the Z-factors shown in Fig. 6.9.

is mostly in the statistical errors, which are much larger in absence of link-smearing. To make
an example, for the helicity operator shown here the error at z/a = 9 is around 18% on the
real bare matrix element and 20% and 28% after renormalization, using five and zero levels
of smearing respectively. Therefore, we can exploit the property that the results are almost
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6.4 Renormalized matrix elements with stout smearing

equivalent (see Fig. 6.10) to smear the gauge links in the inserted operator and reduce in this
way the statistical uncertainties, which originate from an ultra-violet power divergence of the
type eδm|z|/a. Smearing independence is also observed for the renormalized unpolarized and
transversity nucleon matrix elements, that share similar properties to the ones presented in
Fig. 6.10 and therefore are not shown here.

From now on, all results will be understood as obtained applying 5 levels of 3-D stout
smearing, both to the bare matrix elements and the vertex functions. However, we stress
that any number of stout smearing iterations may be used in the renormalization process
without changing the physical results, but it has to be kept fixed as the continuum limit is
taken. The independence on the stout smearing step is an important check that indicates that
the elimination of the power divergences is realized correctly.
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Chapter 7

Physical Quark distributions

In this Chapter we present our final results for the renormalized unpolarized, helicity and
transversity distribution functions within the nucleon, with focus on the flavor structure u−d.
We describe the steps leading to the final PDFs, that involve the Fourier transform of the
renormalized matrix elements, the implementation of the matching procedure and the nucleon
mass corrections (NMCs). We also discuss the importance of having simulations at the
physical value of quark masses, by comparing the results of this work with the ones of a
previous computation [39] performed on a twisted mass N f = 2+1+1 ensemble simulated
at mπ ≃ 372 MeV [172].

7.1 Matching to light-cone PDFs

According to the quasi-PDF approach, to reconstruct parton distribution functions we need to
compute quasi-distributions that are eventually related to the light-cone PDFs via a perturbative
matching procedure [34, 134, 171, 173].

Having renormalized the nucleon matrix elements for the different operators, as described
in the previous Chapter, we perform a Fourier transform to obtain the renormalized quasi-
PDFs. They represent the would-be quark momentum distributions in a nucleon moving with
a large but finite momentum along the z-direction

q̃(x, µ̄,P3) =
∫ +∞

−∞

dz
4π

e−izxP3⟨N|ψ̄(0,z)ΓW (0,z)ψ(0,0)|N⟩MMS,µ̄ , (7.1)

where µ̄ is the renormalization scale in the modified MS scheme (MMS), introduced in
Section 6.1. On the lattice we use the discretized form of the Fourier transform

q̃(x, µ̄,P3) =
2P3

4π

+zmax

∑
z=−zmax

e−izxP3hMMS
Γ (z,P3) , (7.2)

where the factor 2P3 is needed to have the correct normalization for different momenta. At
this stage there is some flexibility on the maximal value of the Wilson line length (zmax) to
use for the Fourier transform. This issue originates from the fact that lattice provides data
for a finite number of lengths z/a of the Wilson line; therefore, a truncation of the Fourier
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7.1 Matching to light-cone PDFs

transform is unavoidable. This represents a delicate issue within the quasi-PDF approach, that
is numerically investigated in Section 7.1.1.

Once computed the MMS renormalized quasi-PDFs as in Eq. (7.2) for the unpolarized,
helicity and transversity distributions, we apply a matching procedure in order to make contact
with the physical PDFs. The matching procedure relies on perturbation theory and consists
in computing corrections to the quark probability distribution of Eq. (7.1) in terms of the
strong coupling. To one-loop order, the diagrams describe the process q→ qg, i.e. the gluon
emission out of a quark, whose momentum p3 = yP3 is collinear to the nucleon boost. After
gluon emission, the daughter quark will have a momentum ξ p3 = ξ yP3. The corrections
entering this process are known as self-energy and vertex corrections, that together build the
so-called matching kernel C.

The matching formula we implement reads [59]

qMMS(x, µ̄) =
∫ +∞

−∞

dy
|y|
CMMS

(
x
y
,

µ̄

p3

)
q̃MMS(y, µ̄,P3)+O

(
Λ2

QCD

P2
3

,
m2

N

P2
3

)
, (7.3)

where q̃ in the r.h.s. is the renormalized quasi-PDF, whereas q is the matched PDF, which is
equal to the light-cone distribution in the limit P3→ ∞. Thus, for a finite-momentum frame,
the lattice distributions differ from the light-cone PDFs by power corrections suppressed in
Λ2

QCD/P2
3 and m2

N/P2
3 , where mN is the nucleon mass.

For the matching kernel CMMS we use the expression derived to one-loop order in Ref. [59],
to which we refer for a complete derivation of the formulae. For the unpolarized and helicity
distributions the matching kernel reads

CMMS
γ0,γ3γ5

(
ξ ,

µ̄

p3

)
= δ (1−ξ ) − αsCF

2π

×



(
1+ξ 2

1−ξ
ln
(
−ξ

1−ξ

)
−1+

3
2ξ

)
+(1)

, ξ > 1,(
1+ξ 2

1−ξ

[
ln
(

p2
3

µ̄2

)
+ ln

(
4ξ (1−ξ )

)]
− ξ (1+ξ )

1−ξ
+2ι(1−ξ )

)
+(1)

, 0 < ξ < 1,(
−1+ξ 2

1−ξ
ln
(
−ξ

1−ξ

)
−1+

3
2(1−ξ )

)
+(1)

, ξ < 0,

(7.4)

where ι = 0 for γ0 (unpolarized) and ι = 1 for γ3γ5 (helicity).
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7.1 Matching to light-cone PDFs

The matching kernel for the transversity PDF is given by [59]

CMMS
γ3γ j

(
ξ ,

µ̄

p3

)
= δ (1−ξ ) − αsCF

2π

×



[
2ξ

1−ξ
ln
(

ξ

ξ −1

)
+

2
ξ

]
+(1)

, ξ > 1,[
2ξ

1−ξ

[
ln
(

p2
3

µ̄2

)
+ ln(4ξ (1−ξ ))

]
− 2ξ

1−ξ

]
+(1)

, 0 < ξ < 1,(
− 2ξ

1−ξ
ln
(

ξ

ξ −1

)
+

2
1−ξ

)
+(1)

, ξ < 0.

(7.5)

In the equations above, CF = 4/3 for SU(3) gauge theories. The subscript “+(1)” denotes
the plus prescription at ξ =+1, which in a domain D acts in the following way

∫
D

dξ

|ξ |
CMMS

(
ξ ,

µ̄

p3

)
q̃
(

x
ξ
, µ̄,P3

)
=
∫

D

dξ

|ξ |
CMMS

(
ξ ,

µ̄

p3

)
q̃
(

x
ξ
, µ̄,P3

)
− q̃(x, µ̄,P3)

∫
D

dξCMMS
(

ξ ,
µ̄

p3

)
, (7.6)

where we have defined x/y = ξ . Therefore, for the three kinds of quark distributions the
connection between quasi- and physical PDFs at one-loop order can be written in a compact
way as

qMMS(x, µ̄) = q̃MMS(x, µ̄,P3)− q̃MMS(x, µ̄,P3)Z(1)
F (µ̄,P3)− q̃(1),MMS(x, µ̄,P3) , (7.7)

where the integrations in Eq. (7.3) have been included in the terms Z(1)
F and q̃(1),MMS. In

the equation above, the first term represents the tree-level matching, the second one is the
contribution of the self-energy corrections and the third one of the vertex corrections.

After matching, we apply further corrections known as nucleon mass corrections (NMCs),
that result from a non-zero ratio of the nucleon mass to its momentum, as can be seen from
Eq. (7.3). Unlike the corrections in Λ2

QCD/P2
3 , the NMCs can be exactly computed to all orders

and in this work we use the expressions derived in Ref. [38] for the unpolarized, helicity and
transversity quark distributions. For the sake of completeness, the formulae of the NMCs are
reported in Appendix A.4.

7.1.1 Truncation of the Fourier transform

Computing quasi-distributions represents the first step towards the matching to the light-cone
PDFs. In this Section we describe in detail the procedure to extract quasi-PDFs and discuss
delicate issues arising from such lattice calculations.

When computing quasi-PDFs one needs to choose the maximal value of the Wilson line
length over which the Fourier transform is performed, that we call zmax/a. Ideally, it should
be a value for which the matrix elements have decayed to zero and physical results should
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7.1 Matching to light-cone PDFs

not change when considering any value of z/a larger than zmax/a. For unrenormalized matrix
elements the choice of such a value poses no problem, since the matrix elements for each
operator are compatible with zero for |z|/a > 15 in our setup (see e.g. Figs. 5.13 and 5.14). In
contrast, this choice is non-trivial for the renormalized matrix elements, unless one employs
sufficiently large values of zmax/a beyond which both real and imaginary parts are compatible
with zero. Moreover, as seen in Figs. 6.6-6.8, the renormalized matrix elements are amplified
and go to zero slower than the bare ones. If the physical distance at which the matrix elements
decay to zero is too large, the periodicity of the Fourier transform will induce non-physical
oscillations in the quasi-PDFs, as shown in Fig. 7.1 for the unpolarized quasi-distributions
at nucleon boost P3 = 10π/L ≃ 1.38 GeV. In the left plot of Fig. 7.1 we compare the bare,
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Figure 7.1 Left: Bare (violet), RI′ (yellow) and MMS (cyan) unpolarized quasi-PDFs. The RI′ scale
is aµ0 = 2π

( 6
96 +

1
2·96 ,

3
48 ,

3
48 ,

3
48

)
. The Fourier transform is truncated at zmax/a = 10. Right: MMS

unpolarized quasi-PDFs for zmax/a = 8 (red), zmax/a = 10 (cyan), zmax/a = 13 (green).

the RI′ and MMS quasi-PDFs (violet, orange and cyan bands respectively); the Fourier
transform has been truncated at zmax/a = 10. As can be seen, oscillations manifest in the
renormalized quantities and are more evident after conversion to the MMS scheme. This
effect may originate from uncertainties related to the estimate of the renormalization functions
and in particular from: i) lattice artifacts on the complex Z-factors; ii) truncation effect in
the perturbative conversion between the intermediate RI′ scheme Z-factors and the MMS
ones. In the right panel of Fig. 7.1, unpolarized quasi-distributions for three different cutoffs
are compared. As we can see, the results are contaminated by a larger noise and stronger
oscillations as zmax/a increases.

We remark that the selected values of zmax/a, for which results are presented in this
Section, correspond to the smallest (largest) value of z/a where the real (imaginary) part of
the renormalized matrix elements of each operator is compatible with zero (see Figs. 6.6, 6.7,
6.8).

After implementing the matching procedure of Eq. (7.3) with the kernel (7.4) and the
nucleon mass corrections, we obtain the unpolarized quark distributions depicted in Fig. 7.2.
First of all, we notice that the matching brings the support of the distributions into the range
x ∈ [−1,1], where x represents the quark momentum fraction collinear to the moving hadron.
At the level of quasi-PDF, x has no partonic interpretation. Moreover, due to the crossing
relation q(−x) =−q̄(x) [174], the positive x-region in the Fig. 7.2 stands for the distribution
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7.1 Matching to light-cone PDFs

u(x)−d(x), while the negative x-region can be interpreted as d̄(x)− ū(x). When comparing
different values of the cutoff zmax/a, we can see that the matched PDFs are compatible with
each other, but the statistical uncertainties are larger when choosing a larger cutoff.
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Figure 7.2 Matched unpolarized PDF in MMS scheme for different values of the cutoff in the
Fourier transform: zmax/a (red), zmax/a = 10 (blue), zmax/a = 13 (green). The nucleon momentum is
P3 = 10π/L≃ 1.38 GeV.

The analysis for the nucleon polarized distributions (helicity and transversity) leads
to similar conclusions, shown in Fig. 7.3 for the matched PDFs. We notice that for the
helicity (left plot) the crossing relation is ∆q(−x) = ∆q̄(x) [174], implying that we can
extract ∆u(x)−∆d(x) for x > 0 and ∆ū(x)−∆d̄(x) for x < 0. The transversity PDF (right
plot in Fig. 7.3) shares the same crossing relation as the unpolarized distribution [174], and
therefore the region x > 0 provides information about δu(x)−δd(x), whereas x < 0 gives
δ d̄(x)−δ ū(x). As can be seen in Fig. 7.3, for the selected values of zmax/a we do not observe
a strong dependence on the cutoff, apart from increased statistical noise for larger values of
zmax/a, as noticed before for the unpolarized case.
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Figure 7.3 Matched helicity (left) and transversity (right) PDFs in the MMS scheme for cutoff
values zmax/a = 10 (red), zmax/a = 12 (blue), zmax/a = 14 (green). The nucleon momentum is
P3 = 10π/L≃ 1.38 GeV.

Therefore, to avoid a too large noise contamination that propagates through the Fourier
transform and matching procedure to the final PDFs, we truncate the Fourier transform at
some justified and middle values of zmax/a. We choose it to be: zmax/a = {10,12,12} for
unpolarized, helicity and transversity distributions respectively. We also keep the same cutoffs
for the same distributions at smaller momenta.
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7.1 Matching to light-cone PDFs

At this point natural questions would be: Why does the periodicity of the Fourier transform
cause oscillations at the level of quasi-PDFs, that propagate in a non-trivial way to the physical
PDFs? What would be the natural solution to this problem? To understand the origin of this
issue we decompose the Fourier transform in terms of cosine and sine functions as

q̃(x,P3) ∝ ∑
z
(cos(xzP3)hR(z,P3)− sin(xzP3)hI(z,P3)) . (7.8)

hR, hI are the real and imaginary parts of matrix elements and any numerical factors and
dependence on the renormalization scale are neglected in the equation above, because ir-
relevant for the purpose of this discussion. As one can see, if the matrix elements do not
decay to zero fast enough, the oscillations introduced by the cosine and sine functions lead to
negative values for the quasi-PDFs, shown numerically in Fig. 7.1. Therefore, it is natural to
expect that the oscillations become milder as the nucleon boost increases, as demonstrated
for instance in Fig. 7.8. However, as argued in the recent work of Ref. [175], the problem of
reconstructing a distribution from a limited data points is more general and mathematically
ill-posed. Advanced reconstruction techniques applied to the lattice data might be necessary
for solving this highly non-trivial aspect, that is among the sources of uncertainty of the whole
quasi-PDF approach.

Another method to carry out the Fourier transform over the matrix elements was introduced
in Ref. [176] and tested in this work. In this approach, one exploits the integration by part of
the Fourier transform that yields the quasi-PDFs, namely

q̃(x,P3) = h(z,P3)
eixzP3

2πix

∣∣∣zmax

−zmax
−
∫ zmax

−zmax

dz
2π

eixzP3

ix
∂h(z)

∂ z
, (7.9)

and eventually one neglects the surface term. Thus, quasi-PDFs are computed through

q̃(x,P3)deriv =−
∫ zmax

−zmax

dz
2π

eixzP3

ix
∂h(z,P3)

∂ z
. (7.10)

The comparison between the matched PDFs obtained by using this approach, that we refer to
as “derivative method”, and the previous one, that we call “standard”, is shown in Fig. 7.4
for P3 = 10π/L. Here we only show the unpolarized and helicity distributions at the highest
momentum, but the same conclusions also hold for all the other cases that are not presented
here. We notice that the matched PDFs are perfectly compatible in the intermediate and large
x-region, but have a very different behavior for small values of x. The reason mostly relies
on the presence of the factor 1/x in Eq. (7.10), that leads to uncontrolled effects for small
values of x, where also the surface term has a large contribution but is being neglected. The
additional discretization effects due to the use of a discretized form of ∂h(x)∂ z lead us to
employ the standard definition of quasi-PDFs and truncate the Fourier transform at some
reasonable value of zmax/a, for which physical results are not altered.
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Figure 7.4 Comparison between two different approaches of performing the Fourier transform: stan-
dard (Eq. (7.2)-green band) and derivative (Eq. (7.10)-cyan band). Left: unpolarized PDF. Right:
helicity PDF. The nucleon momentum is P3 = 10π/L≃ 1.38 GeV.

7.2 Dependence on the pion mass

Computing observables using ensembles simulated at the physical value of quark masses is
crucial to make comparison with experiments. Lattice PDFs can be compared with results
extracted from global QCD analyses. As stated in Chapter 2, global fits represent the
traditional method to gain knowledge on quark distributions and rely on factorization of
hard-scattering cross sections [22].

Here we investigate the pion mass dependence of quark distributions by comparing the
results of this work, which uses a twisted mass N f = 2 physical point ensemble, with the
ones obtained in Ref. [39], where measurements are performed on a N f = 2+1+1 twisted
mass ensemble at mπ ≃ 372 MeV and volume 323× 64 [177]. Fig. 7.5 shows the MMS
renormalized unpolarized u(x)−d(x) PDF at a value of the nucleon momentum which is very
similar for both ensembles. The renormalization scale is µ̄ = 2 GeV. We also include the
phenomenological curve from NNLO analysis performed by the NNPDF collaboration [25].
As we can see, there is a clear pion mass dependence. This observation is compatible with the
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Figure 7.5 Unpolarized PDF using the ensemble of this work (blue) and a N f = 2+1+1 ensemble at
mπ ≃ 372 MeV (green). The nucleon momentum has a similar value for both PDFs. For comparison
purpose we include phenomenological data from NNPDF3.1 analysis [25].

dependence observed for the momentum fraction in the nucleon ⟨x⟩u−d , which in terms of
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7.3 Quark unpolarized distributions

parton distribution functions is given by

⟨x⟩u−d =
∫ 1

0
dx{u(x)+ ū(x)−d(x)− d̄(x)} , (7.11)

where u(x), ū(x), d(x), d̄(x) stand for the unpolarized PDFs for the separate flavors of quarks
and antiquarks. In Fig. 7.6 we show a selection of estimates for ⟨x⟩u−d as a function of the pion
mass, obtained by different collaborations using different discretization schemes. The values
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Figure 7.6 Nucleon momentum fraction ⟨x⟩u−d . Twisted mass fermion results are shown for N f = 2
ensembles (open green squares), for two N f = 2+ 1+ 1 ensembles (blue filled square) and for the
N f = 2 physical ensemble with a clover term (open red triangle), which is the one used in this
work. Also shown are results from RBC-UKQCD using N f = 2+1 DWF (magenta right pointing
triangle) [178], from QCDSF/UKQCD using N f = 2 clover fermions (filled magenta diamond) [179]
and LHPC using DWF on N f = 2+1+1 staggered sea (blue crosses) [133], N f = 2+1 clover (filled
black triangles) [180] and N f = 2 clover [181]. All values are extracted using the plateau method and
ts ∼ (1−1.2) fm, except the result at the physical point extracted at ts ∼ 1.3 fm. The experimental
value for ⟨x⟩u−d is taken from Ref [182]. The Figure is taken from Ref. [157].

in Fig. 7.6 are extracted from matrix elements involving the local operator O = ψ̄γ{µDν}τ3ψ ,
where Dν is the covariant derivative and {. . .} indicates index symmetrization. Lattice
calculations show that the value of ⟨x⟩u−d is overestimated when simulations are performed at
a pion mass larger than the physical one, and there is a clear decreasing trend going towards
the physical point [157]. A smaller value for ⟨x⟩u−d corresponds to a shift of the quark
distribution to smaller values of x, as indeed observed in Fig. 7.5 with our data.

7.3 Quark unpolarized distributions

In this Section we present our final results for the collinear unpolarized quark distributions
corresponding to the flavor structure u− d. In Fig. 7.7 we show the quasi-PDFs, q̃, the
matched PDFs, q, and the final PDFs that take into account the nucleon mass corrections
(NMCs). These curves are depicted by green, orange and blue bands respectively. The
nucleon boosts are: P3 = 6π/L ≃ 0.83 GeV (top left), P3 = 8π/L ≃ 1.11 GeV (top right)
and P3 = 10π/L≃ 1.38 GeV (bottom). For the matching kernel we use Eq. (7.4), while for
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Figure 7.7 Unpolarized quasi-PDFs (green), matched PDFs (yellow) and final PDFs (blue) with NMCs
included. The nucleon momentum is P3 = 6π/L≃ 0.83 GeV (top left), P3 = 8π/L≃ 1.11 GeV (top
right) and P3 = 10π/L≃ 1.38 GeV (bottom).

the NMCs the expressions reported in Eq. (A.21). The latter are implemented up to m4
N/P4

3

order, since higher order corrections are found to be negligible. We remark that the errors are
estimated using binning Jackknife procedure.

We note that the one-loop matching, connecting the quasi-PDFs q̃ to the light-cone PDFs,
has a considerable effect. In fact, it alters completely the shape of the quasi-PDFs, giving to
the distributions an asymmetric form with respect to x→−x, regions that correspond to the
momentum distribution u(x)−d(x) and d̄(x)− ū(x) respectively. On the other hand, NMCs
are found to be significantly smaller than the corrections from the matching. This is because
the expansion parameter of the NMCs is m2

N/4P2
3 [38] and the NMCs are suppressed by

powers of m2
n/P2

3 , whereas the corrections from the matching are suppressed by O(Λ2
QCD/P2

3 )

terms. NMCs should be negligible in the limit of large momenta [46] and with our data we
observe that already at P3 = 10π/L≃ 1.38 GeV they produce a very small effect.

In Fig. 7.8, we show how the physical PDFs (after matching procedure and NMCs) de-
pend on the nucleon momentum. We observe a significant change of the PDF shape when
increasing the momentum from 6π/L to 8π/L, while the distributions for 8π/L and 10π/L
are almost compatible over the whole x range, within the accuracy of our data. Moreover,
the oscillatory behavior becomes milder as the momentum increases. As discussed in Sec-
tion 7.1.1, unphysical oscillations result from the periodicity of the Fourier transform, which
bounds the quasi-PDFs to be negative in certain x-regions.
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Figure 7.8 Momentum dependence for the unpolarized PDFs corresponding to the flavor structure
u−d (matching and NMCs are taken into account). The nucleon boosts are: P3 = 6π/L≃ 0.83 GeV
(green), P3 = 8π/L≃ 1.11 GeV (red), P3 = 10π/L≃ 1.38 GeV (blue).

In Fig. 7.9 we compare the lattice distribution at the highest momentum with PDFs
extracted from global fits to scattering data. In particular, for comparison purpose we consider
PDFs from CJ15 [82], ABMP16 [28], NNPDF3.1 [25] sets. From Figs. 7.8 and 7.9 we observe
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Figure 7.9 Final results for the isovector u− d unpolarized PDF. The lattice data at nucleon boost
P3 = 10π/L≃ 1.38 GeV are compared with phenomenological extracted PDFs from global analyses:
CJ15 [82], ABMP16 [28], NNPDF3.1 [25].

that as the nucleon momentum increases the renormalized lattice PDFs move towards the
phenomenological curves, as expected within the quasi-PDF approach. Achieving this result
in lattice QCD is non-trivial, since on a Euclidean lattice we can only reconstruct PDFs from
quark bilinear operators that are not on the light-cone, but separated by a space-like distance.
We also note that the lattice PDF approaches zero in the large x-region. This is an expected
result because in the infinite-momentum frame no constituents of the nucleon can carry more
momentum of the nucleon as a whole. However, we can still notice small deviations from zero
at x = 1 and a negative dip for x ∈ [−0.4,0], not observed in phenomenology. These effects
may be due to a certain number of reasons and systematic effects that need to be addressed
in the future. The first source of uncertainty is the value of the nucleon momentum, which
might not be sufficiently large to make contact with light-cone PDFs. In fact, one can expect
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7.4 Quark helicity distributions

a two-loop matching formula to have significant impact if the boost is not much larger than
the nucleon mass.

7.4 Quark helicity distributions

Similarly to the computation of the unpolarized distribution we can obtain the helicity
distribution, whose zeroth moment represents the number of quarks with helicity parallel and
antiparallel to that of a longitudinally polarized nucleon.

At each nucleon boost we compute the quasi-PDFs by taking the Fourier transform of
the renormalized matrix elements, as in Eq. (7.1), and we follow the procedure described in
Section 7.1.1. The matching procedure is implemented by using the kernel of Eq. (7.4). As
for the unpolarized case, the renormalization scale is µ̄ = 2 GeV in the MMS scheme.

To account for a non-negligible nucleon mass as compared to the nucleon momenta, we
apply the NMCs on the matched distributions. Since some small effect is visible when adding
further corrections in mn/P3, we implement the NMCs up to O

(
(m2

N/P2
3 )

2) following the
prescription of Ref. [38]. The expressions are in this case slightly more involved than for the
unpolarized case, as they contain double integrals of the matched distributions, see Eq. (A.23).

The helicity quasi-distributions, ∆q̃, are shown in Fig. 7.10 together with the matched
distributions, ∆q, with and without NMCs. As observed for the unpolarized PDF in the
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Figure 7.10 Helicity quasi-PDFs (green), matched PDFs (orange) and final PDFs (blue) with NMCs
included. The nucleon momentum is P3 = 6π/L≃ 0.83 GeV (top left), P3 = 8π/L≃ 1.11 GeV (top
right) and P3 = 10π/L≃ 1.38 GeV (bottom).

previous Section, the matching procedure modifies drastically the shape of the quasi-PDFs
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7.4 Quark helicity distributions

moving the peak of the distributions around x≈ 0. The NMCs are not negligible for boosts
P3 = 6π/L and P3 = 8π/L but they have a small effect at the highest momentum, as expected
from the study of nucleon mass corrections in Ref. [46]. Collecting the results we can
investigate the momentum dependence of the renormalized lattice PDFs, shown in Fig. 7.11.
We observe that increasing the momentum from 6π/L to 8π/L has a very small effect and the
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Figure 7.11 Momentum dependence of the quark helicity distributions for the flavor structure
u− d. The nucleon boosts are: P3 = 6π/L ≃ 0.83 GeV (green), P3 = 8π/L ≃ 1.11 GeV (red),
P3 = 10π/L ≃ 1.38 GeV (blue). The renormalization scale is 2 GeV.

way the distributions are shifted towards small values of x seems to be non-monotonic, in both
quark and antiquark sector. The appearance of a possible non-monotonic behavior was studied
in Ref. [45] using models for quasi-distributions; in our work it can be a consequence of
various systematics, among which truncation effects in the matching procedure, that may play
an important role for momenta not much larger than the nucleon mass. Again, as observed
previously for the unpolarized distributions, the oscillatory behavior is more pronounced in
the antiquark sector (x < 0) and becomes less prominent as the nucleon momentum increases
from P3 = 8π/L to P3 = 10π/L.

In Fig. 7.12, our final result for the helicity distribution at the highest momentum is
compared to three selected PDFs from global fits: NNPDF1.1pol [88], DDSV08 [183] and
JAM17 [90]. A significant overlap is obtained with the phenomenological data for 0 ≲ x ≲ 0.4
and for very small negative values of x, corresponding to ∆u−∆d distribution. In the large
x-region (0.5 < x < 1) the slope of the lattice curve changes, possibly due to the oscillations
mentioned above. The observed overlap for some regions of the quark momentum fraction
seems to suggest a faster convergence of the quasi-PDF to the physical PDFs for the helicity
case, but on the other hand it can also be the result of different systematic effects, with
some of them possibly canceling out. However, from the momentum dependence shown
in Fig. 7.11, one can expect a better agreement with phenomenological analyses as the
nucleon momentum increases. The minimum value of the boost needed for this kind of
calculations is not known and can be a few GeV [45]. Because of the oscillatory behavior
for negative x values, at present we cannot address the question whether an asymmetry in the
light sea-quark polarizations emerge from our calculations. Very recent results from global
QCD analyses [184] seem to suggest a sizable difference between ū and d̄ quark helicity
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Figure 7.12 Final result for the isovector u−d helicity distribution. The lattice data at P3 = 10π/L≃
1.38 are compared to the phenomenological PDFs: NNPDF1.1pol [88], DDSV08 [183], JAM17 [90].

distributions, with the consequence that the flavor asymmetry in the polarized quark sea might
not be so small as previously thought.

7.5 Quark transversity distributions

In this Section we present the final results for the quark transversity distribution, often
indicated with h1(x) or δq(x). Transversity PDF gives information about the momentum
decomposition of quarks with helicity aligned and anti-aligned to that of a transversely
polarized hadron. As discussed in Chapter 2, it is the least known PDF among the three
distributions studied, because it is chiral-odd, and totally inclusive processes cannot be used.
Therefore, lattice QCD could be a powerful approach to complement our knowledge to what
is already known from analysis of scattering data, mostly coming from e+e− annihilation into
hadron pairs [96, 185, 186] and SIDIS data for single hadron production [187–189].

The general procedure to obtain the transversity PDFs proceeds along the lines of the
unpolarized and helicity distributions. The difference relies on the use of a tensor structure σ3 j

in the lattice matrix elements (where j-index is purely spatial), yielding different matching
formulae. The effect of the matching and nucleon mass corrections on the quasi-PDFs, δ q̃,
is shown in Fig. 7.13 for all values of the momenta used in this work. Again, we start
with the renormalized quasi-PDFs (δ q̃), apply the matching given in Eq.(7.5) and finally
include the NMCs [38], which lead to the final estimate of the distribution. The expressions
of the NMCs are reported in Eq. (A.22). As can be seen, the application of the matching
shifts the peak of the quasi-PDFs towards x≈ 0 and increases it, as expected. On the other
hand, the NMCs affect mostly the positive x-region and become smaller as the value of the
boost increases. Thus, we expect that the larger source of systematic effects comes from the
matching procedure that, as highlighted previously, has been worked out to one-loop order in
perturbation theory.

In Fig. 7.14 the dependence on the nucleon momentum of the final distributions is shown
in the MMS scheme and at the scale of

√
2 GeV. For the nucleon boosts employed we notice

that the momentum dependence is milder than for the unpolarized and helicity PDFs (see
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Figure 7.13 Transversity quasi-PDFs (green), matched PDFs (orange) and final PDFs (blue) with
NMCs included. The nucleon momenta are: P3 = 6π/L≃ 0.83 GeV (top left), P3 = 8π/L≃ 1.11 GeV
(top right) and P3 = 10π/L≃ 1.38 GeV (bottom). The renormalization scale is set to µ̄ =

√
2 GeV in

the MMS scheme.
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Figure 7.14 Momentum dependence of the lattice transversity PDFs for the flavor structure u−
d. The nucleon boosts are: P3 = 6π/L ≃ 0.83 GeV (green), P3 = 8π/L ≃ 1.11 GeV (red) and
P3 = 10π/L≃ 1.38 GeV (blue). The MMS renormalization scale is set to µ̄ =

√
2 GeV.

Fig. 7.8 and Fig. 7.11 for comparison). The results using momentum 6π/L and 8π/L are
indeed compatible over a wide range of x values, within statistical uncertainties. At the
highest momentum the oscillatory behavior seems to be slightly milder, especially for x < 0.
Reducing systematic effects can also help in this direction and must be strongly addressed
in the future. We remark that, apart from finite volume and lattice discretization effects that
can only be investigated performing simulations at different physical volumes and lattice
spacings, improvements on a given gauge ensemble may come from: i) application of a
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7.5 Quark transversity distributions

two-loop formula matching quasi- to physical PDFs, as mentioned previously; ii) improved
estimates of the renormalization functions. As seen in Section 7.1.1, the renormalized RI′

quasi-PDFs has indeed reduced unphysical oscillations than the MMS counterpart, implying
the presence of truncation effects on the perturbative conversion from RI′ scheme to MMS at
the chosen reference scale.

In Fig. 7.15 we present our final result for the transversity PDF at the highest momentum,
P3 = 10π/L. We include two phenomenological determinations: one obtained from fits to only
SIDIS data [97] and another one in which the tensor charge, computed in lattice QCD, is used
as an additional constrain in the phenomenological analysis [97]. In Fig. 7.15 we refer to the
latter as “SIDIS+glattice

T ”. Here gT has to be intended as the zeroth moment of δu(x)−δd(x).
As can be seen, our result for the transversity PDF is in agreement with both phenomenological
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Figure 7.15 Final result for the isovector u− d transversity distribution. The lattice data at P3 =
10π/L ≃ 1.38 GeV (blue) are compared with phenomenological fits obtained using SIDIS data
(grey) [97] and SIDIS data constrained using the tensor charge gT computed within lattice QCD
(violet) [97].

data for x ≲ 0.4− 0.5. An interesting feature is that the statistical errors of our results are
strikingly smaller than the ones from phenomenological fits to the SIDIS data, underlining
how the extraction of the transversity distribution is difficult from experiments. Moreover, the
lattice distribution is significantly narrower, like the phenomenological determination that
uses gT as input.

A valuable check of our calculation is given by the value extracted for the tensor charge
gu−d

T . At the highest momentum, P3 = 10π/L, we find gu−d
T = 1.07(10) from the value of

the local matrix element with inserted current ψ̄σ3 jψ and gu−d
T = 1.09(11) by integrating the

distribution over x within the interval [−1,1]. Both results are also compatible with the value
of the tensor charge computed at zero nucleon momentum in Ref. [164] on the same physical
point ensemble as the one used in this work. The observed agreement on the value of gu−d

T

obtained from two different approaches (via local matrix element and through integration)
is non-trivial, because the steps leading to both values are different and involve different
systematic effects.

Moreover, we note that in the antiquark sector (x< 0) no SIDIS data are available, whereas
lattice QCD can potentially extract the sea quark distribution δ d̄−δ ū without any additional
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7.5 Quark transversity distributions

difficulty. This is another element that favors the direct extraction of the transversity PDF
from lattice QCD.
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Chapter 8

Conclusions and Outlook

In this work we have presented state-of-the-art lattice calculations of the helicity-dependent
and helicity-independent collinear parton distribution functions (PDFs) of the nucleon. The
lattice QCD computation is performed on a twisted mass ensemble of two light degenerate
quarks (N f = 2) with masses tuned to their physical value.

Direct extractions of distribution functions require light-cone dynamics, which cannot be
achieved within the Euclidean lattice QCD formulation. Such a computation was thought
impossible a few years ago. The method proposed by X.Ji in 2013, known as quasi-PDF
approach, has enabled such investigations, which proceed through extractions of quasi-
distributions of non-local matrix elements between two nucleon states at finite momentum.
The contact with light-cone PDFs is established through a perturbative matching procedure
and nucleon mass corrections.

We have computed three collinear distributions: the spin-averaged (also called unpolar-
ized), helicity and transversity distributions. The unpolarized PDFs give information about the
momentum decomposition of quarks independently of their polarization, whilst the helicity
and transversity PDFs describe the momentum decomposition of quarks with helicity aligned
and anti-aligned to that of a longitudinally and transversely polarized nucleon. To simplify the
lattice calculation, we have considered the isovector flavor structure u−d, as it receives contri-
butions only by connected diagrams (up to cutoff effects). In this context, two- and three-point
functions have been computed by boosting the nucleon with momentum 0.83 GeV, 1.11 GeV
and 1.38 GeV, taken along spatial directions of the lattice. The all-to-all propagators are eval-
uated using sequential inversions through the sink. In total four source-sink time separations
are tested to isolate the required ground state matrix element. Separate quark propagators
are required for each momentum boost, source-sink time separation value and each kind of
momentum distribution, since different parity projectors enter the construction of the nucleon
sequential source. To improve the signal-to-noise ratio, we have implemented the momentum
smearing method and optimized the smearing parameter for each value of the boost employed.
For the three distributions studied in this work, we found that the ground state dominance is
achieved only at our largest source-sink time separation, namely at ts = 12a≃ 1.13 fm. We
check that a two-state fit analysis is in agreement with the plateau method at this value of
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the source-sink time separation. Exploring larger ts values is prohibitively costly, requiring
computational resources that go beyond what is currently available to us.

The matrix elements are renormalized using a non-perturbative approach, which is a
generalization of the RI′-scheme. This step has required the computation of appropriate
vertex functions with the same divergences of the operators in the matrix elements. The
renormalization functions are computed at different RI′ scales using three N f = 2 twisted
mass ensembles at different pion masses, that allow us to chirally extrapolate the results
and eliminate the residual dependence on the pion mass. The final values are obtained
after conversion and evolution to a modified MS scheme at the appropriate scale in which
phenomenological distributions are presented. A fitting procedure is also applied to eliminate
the residual dependence of the renormalization functions on the initial RI′ scale. Moreover, we
have also applied three-dimensional stout smearing to the gauge links of the vertex functions
and matrix elements of quasi-distributions, and studied the effect of the smearing on the
renormalized matrix elements. We have found that, after renormalization, matrix elements
with and without smearing are in agreement with each other, and the smeared matrix elements
are affected by a reduced statistical noise. This is due to the fact that link-smearing brings the
renormalization functions closer to their tree-level values, reducing the power divergences that
are typical of operators with an extended Wilson line. Ultimately, we have used a maximal
number of five smearing steps, to keep the iterations as fewer as possible.

The matching procedure on the quasi-distributions is carried out to one-loop order in
perturbation theory and is followed by the nucleon mass corrections. As the momentum
increases we have observed that the lattice distributions approach the phenomenological
results, as shown in Figs. 7.8, 7.11 and 7.14. This is expected within the quasi-PDF approach,
according to which light-cone distributions can be reconstructed in the limit of very large
nucleon momenta. Our results at the largest boost show a similar behavior as the one of
phenomenological distributions. As concerns the unpolarized PDF shown in Fig. 7.9, a
complete agreement with the physical PDFs has not been reached yet, but the slope of the
distribution is very similar to the one of global analyses. Unlike the unpolarized PDF, for
the helicity case we have obtained a significant overlap with phenomenological analyses in
the Bjorken region 0 ≲ x ≲ 0.5 and at low negative x values, as can be seen in Fig. 7.12.
Finally, the lattice determination of the nucleon transversity distribution is in agreement with
the one obtained from semi-inclusive scattering processes (SIDIS) in the positive x-range,
region for which SIDIS data currently allow a reconstruction of this distribution. As can be
seen from Fig. 7.15, the lattice results have also strikingly smaller statistical errors than the
ones extracted from SIDIS data only. This comparison favors the direct extraction of the
transversity PDF using the quasi-PDF method, in terms of reliability and uncertainty.

The antiquark counterparts of the unpolarized, helicity and transversity PDFs (which can
be read from the negative x values of the corresponding figures) are affected by oscillations
that are not observed in the phenomenological analyses. Therefore, it is not possible to make
any conclusive statement about asymmetries in the antiquark sector.

The great progress recently achieved in the ab initio calculation of PDFs is paving the
way for further improvements. First of all, we note that the value of the pion mass is not
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among the systematic uncertainties of the present calculation, since our extraction has been
already carried out at the physical value of the quark masses and chiral extrapolation is not
needed. Among systematics uncertainties are discretization effects and finite volume effects,
which can be addressed and eliminated by computing distribution functions on additional
gauge ensembles. Apart from the aforementioned systematics, there are also additional ones
that are specific to the quasi-PDF approach. They include the unphysical oscillations of the
distributions, that are due to the periodicity of the Fourier transform, and systematics related
to the truncation of the conversion factor and the matching formula to one-loop level. In
particular, having a matching formula to two-loops may lead to better convergence to light-
cone PDFs at smaller nucleon momenta. On the other hand, new computer architectures can
lead to the extraction of reliable estimates for PDFs using higher nucleon boosts, that would
presently require huge computational resources to eliminate excited states contamination.
Development of new techniques to tackle the exponential increase of the statistical noise
with respect to the source-sink time separation and higher momenta will also be crucial for
quasi-PDF calculations.

Despite these uncertainties, this work demonstrates the tremendous progress achieved
in the last 3 years in the determination of parton distribution functions from first principles.
The theoretical and technical aspects are now well understood and addressing the systematic
uncertainties is the next step. A follow up of this research is the ongoing computation
of the isovector u− d nucleon PDFs on a twisted mass N f = 2+ 1+ 1 ensemble, which
includes a strange and charm quark in the sea, whose masses are tuned to their physical
value. Another natural extension of this work is the extraction of distribution functions
of the gluon and of the separate quark flavors, which necessarily require computations of
disconnected diagrams. Other interesting directions would be the calculation of generalized
parton distribution functions (GPDs) and transverse momentum-dependent parton distribution
functions (TMDs).
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Appendix A

A.1 Light-cone dominance

In this Section we show that, for deep inelastic scatterings in which Q2 → ∞ at Bjorken
variable x fixed, the dominant contribution to the hadronic tensor

Wµν =
1

4π

∫
d4zeiq·z⟨N|[Jµ(z),Jν(0)]|N⟩ (A.1)

comes from the region where z2 vanishes, i.e. from the light-cone. To this end we consider a
scattering process in the laboratory frame, where the target particle has quadri-momentum
P = (M,0,0,0) and the first component of the momentum transfer is q0 = P ·Q/M = ν .
Denoting with r the component of z⃗ in the direction of q⃗, i.e.

r ≡ q⃗ ·⃗ z
|⃗q|

, (A.2)

the factor q · z can be written as

q · z = q0z0− q⃗ ·⃗ z = q0z0− |⃗q|r = q0z0− r
√

q2
0−q2

LAB
= νz0− r

√
ν2 +Q2 ≈ νz0− rν(1+Mx/ν) = ν(z0− r)− rMx ,

(A.3)

where x = Q2/(2P ·q) is the Bjorken variable, which is finite in the Bjorken limit, i.e. Q→ ∞

and ν → ∞. If q · z is large, the contribution to the integral (A.1) is suppressed by rapid
oscillations and thus we are only interested in the region in which |q · z| is finite. To keep |q · z|
finite in the Bjorken limit, we must have

|z0− r|≲ const./ν , and|r|≲ const./x , (A.4)

which combined together give

z2
0 ≲

(
r+

const.
ν

)2
≈ r2 + const.

r
ν
< |⃗z|2 + const.

xν
. (A.5)

In the last step we have used the definition of r in Eq. (A.2). From this result, it follows that

z2
0 = z2 + |⃗z|2 ≲ |⃗z|2 + const.

xν
⇒ z2 ≲

const.
Q2 . (A.6)
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A.2 Moments and matrix elements in the OPE

Since the causality also imposes that the commutator in Eq. (A.1) must vanish for z2 < 0, one
can see that only the space-time region very close to the light-cone, z2 ∼ 0, contributes to the
hadronic tensor and to the cross section in DIS processes.

A.2 Moments and matrix elements in the OPE

In Chapter 2 we have seen that the zeroth moment of the valence unpolarized distribution is
related to the local vector matrix element by the expression (2.41), here rewritten

∫ 1

0
dx [q f (x)−q f̄ (x)] =

1
2P+
⟨N|ψ̄ f (0)γ+ψ f (0)|N⟩ , (A.7)

where q f (q f̄ ) denotes the unpolarized distribution of a quark (antiquark) with flavor f ,
P+ = (P0+P3)/

√
2 is the plus component of the nucleon momentum and γ+ = (γ0+γ3)/

√
2

the Dirac matrix in the light-cone frame. In this Section we want to generalize the expression
above, showing that the n-th moment of the valence unpolarized distribution can be obtained
through appropriate local matrix elements, which are exactly the ones arising from the operator
product expansion (OPE). The derivation follows from [190] and makes use of the light-cone
definition of the unpolarized distribution

q f (x) =
1

4π

∫ +∞

−∞

dξ
− e−ixP+ξ−h f (ξ

−) , (A.8)

h f (ξ
−) = ⟨N|ψ̄ f (ξ

−)γ+e−ig0
∫ ξ−

0 A+(ξ ′)dξ ′
ψ f (0)|N⟩ , (A.9)

being ξ± = (ξ 0±ξ 3)/
√

2 the light-cone directions and A+ = (A0+A3)/
√

2 the plus compo-
nent of the gluon field.

First of all, let us define the n-th moment, An, of the valence distribution of a quark f

An ≡
∫ +1

−1
dx xn−1q f (x) =

∫ 1

0
dx xn−1

[
q f (x)+(−1)nq f̄ (x)

]
, (A.10)

where the crossing relation q f (x) =−q̄ f (−x) for the unpolarized distribution has been used.
As can be seen, for n = 1 in Eq. (A.10), we obtain again the expression (A.7).
Since q f (x) vanishes for |x| ≥ 1, the moment An can be written in the following way with the
help of Eq. (A.8)

An =
∫ 1

−1
dx xn−1q f (x) =

∫ +∞

−∞

dx xn−1q f (x)

=
∫ +∞

−∞

dx
∫ dξ−

4π

1
(−iP+)(n−1)

(
∂
+(n−1)

e−ixP+ξ−
)

h(ξ−) , (A.11)
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A.2 Moments and matrix elements in the OPE

where ∂+ ≡ ∂/∂ξ−. The integral over ξ− can now be performed through integration by parts

∫
dξ
−
(

∂
+(n−1)

e−ixP+ξ−
)

h(ξ−) =
(

∂
+(n−2)

e−ixP+ξ−
)

h(ξ−)
∣∣∣∣+∞

−∞

−
∫

dξ
−
(

∂
+(n−2)

e−ixP+ξ−
)

∂
+h(ξ−) , (A.12)

where the contribution at the border ξ− =±∞ can be neglected. Thus, iterating (n−1) times
the integration by parts (A.12), we get∫

dξ
−
(

∂
+(n−1)

e−ixP+ξ−
)

h(ξ−) = (−1)n−1
∫

dξ
− e−ixP+ξ−

∂
+(n−1)

h(ξ−) . (A.13)

Replacing the result above in Eq. (A.11), we obtain

An =
∫ 1

−1
dx xn−1q f (x) =

(−i)n−1

4π(P+)(n−1)

∫
dξ
−
[
∂
+(n−1)

h(ξ−)
]∫ +∞

−∞

dxe−ixP+ξ−

=
(−i)n−1

2(P+)n

[
∂
+(n−1)

h(ξ−)
]

ξ−=0
. (A.14)

We are now left with the derivatives of the matrix element ∂+(n−1)
h(ξ−). Using the Eq. (A.9),

the first derivative reads

∂
+h(ξ−) =

∂

∂ξ−
⟨N|ψ̄(ξ−)γ+e−ig0

∫ ξ−
0 A+(ξ ′)dξ ′

ψ(0)|N⟩

= ⟨N|∂+
ψ̄(ξ−)γ+e−ig0

∫ ξ−
0 A+(ξ ′)dξ ′

ψ(0)|N⟩

+ ⟨N|ψ̄(ξ−)γ+(−ig0A+(ξ−))e−ig0
∫ ξ−

0 A+(ξ ′)dξ ′
ψ(0)|N⟩

=−⟨N|ψ̄(ξ−)γ+
[←−
∂
++ ig0A+(ξ−)

]
e−ig0

∫ ξ−
0 A+ dξ ′

ψ(0)|N⟩ , (A.15)

where the identity [∂+ψ̄(ξ−)]ψ(0) =−ψ̄(ξ−)
←−
∂+ψ(0) has been used in the last step. The

derivative
←−
∂+ acts on the fermion field on the left. From the result in Eq. (A.15), it turns out that

each derivative ∂+h of the matrix element will bring a covariant derivative, D+ = ∂++ ig0A+.
Therefore, the n-th moment (A.14) of the unpolarized valence quark distribution becomes

An =
in−1

2(P+)n ⟨N|
[
ψ̄(ξ−)γ+

←−
D+
←−
D+ . . .

←−
D+
]

ξ−=0
ψ(0)|N⟩ , (A.16)

where the derivatives D+ = ∂++ ig0A+ are computed at ξ− = 0. Eq. (A.16) is a generaliza-
tion of the Eq. (A.7) for an integer moment of the distribution and has important implications.
The moments of parton distributions are matrix elements of local operators, and therefore
computable in Euclidean space. Unlike the moments, distribution functions are strictly
Minkowski-space objects, light-cone dominated. As explained in Chapter 3, a direct imple-
mentation of the definition of parton distributions is impossible in Euclidean space. We also
note that the result in Eq. (A.16) also applies for the helicity and transversity distributions
replacing γ+ with the appropriate Dirac structures.
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A.3 Gamma Matrix Representation

In our lattice calculations we use the so-called chiral representation of γ-matrices. They obey
to the anti-commutation relations

{γµ ,γν}= 2δµν14 , (A.17)

where 14 is the 4×4 unit matrix. The γ-matrices are given by

γk =

[
0 −iσk

iσk 0

]
, γ4 =

[
0 12

12 0

]
, (A.18)

where σk for k = 1,2,3 are the Pauli matrices and 12 is the 2×2 unit matrix. We also define
the matrix γ0 as γ0 = −γ4; it is redundant but practical in the applications. The chirality
operator γ5 is defined as

γ5 = γ1γ2γ3γ4 , γ5 =

[
12 0
0 −12

]
(A.19)

and anti-commutes with all other γ-matrices, {γ5,γµ}= 0 for µ = 1,2,3,4.
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A.4 Nucleon Mass Corrections

Here we report the formulae for the nucleon mass corrections (NMCs) used in this work in
order to account for the non-zero ratio of the nucleon mass to its momentum. We follow the
same formalism as in Ref. [38].

First of all we define the following factors

c =
m2

N
4P2

z
, f± =

√
1+4c±1 , a = 1+4c , b =

f+√
1+4c

, r =
f−
f+

, (A.20)

where mN is the nucleon mass and Pz the nucleon momentum taken along the z-direction.
The NMCs for the unpolarized distribution functions read

qII(x) =
√

1+4c
∞

∑
n=0

f n
−

f+n+1

[
(1+(−1)n)qI

( f n+1
+ x
2 f n
−

)
+(1− (−1)n)qI

(− f n+1
+ x

2 f n
−

)]
=
√

1+4c
∞

∑
n=0

(4c)n

f 2n+1
+

[
(1+(−1)n)qI

( f 2n+1
+ x

2(4c)n

)
+(1− (−1)n)qI

(− f 2n+1
+ x

2(4c)n

)]
,

(A.21)

where qI denotes the matched unpolarized distribution, obtained after applying the matching
kernel of Eq. (7.4) with ι = 0. The final lattice distribution with NMCs subtracted is indicated
via qII .

The NMCs for the transversity distribution functions are the same as for the unpolarized
case and read

δqII(x) =
√

1+4c
∞

∑
n=0

f n
−

f n+1
+

[
(1+(−1)n)δqI

( f n+1
+ x
2 f n
−

)
+(1− (−1)n)δqI

(− f n+1
+ x

2 f n
−

)]
=
√

1+4c
∞

∑
n=0

(4c)n

f 2n+1
+

[
(1+(−1)n)δqI

( f 2n+1
+ x

2(4c)n

)
+(1− (−1)n)δqI

(− f 2n+1
+ x

2(4c)n

)]
,

(A.22)

where δqII is the final transversity distribution and δqI the one obtained after matching
procedure, given in Eq. (7.5).
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The NMCs for the helicity distributions are given by

∆qII(x < 0) =
2a
f+

{
∆qI

(
f+
2

x
)
− r
[

∆qI

(
− f+

2
x
r

)
−
∫ x

−∞

dy
y

b∆(y)
]

+ r2
[

∆qI

(
f+
2

x
r2

)
−
∫ x

−∞

dy
y

b∆

(
− y

r

)
+
∫ x

−∞

dy
y

∫ y

−∞

dz
z

b2
∆(z)

−
∫ − x

r

−∞

dy
y

b∆(y)+
∫ x

−∞

dy
y

∫ − y
r

−∞

dz
z

b2
∆(z)

]}
+O(r3) , (A.23)

where ∆(y) denotes the matched distribution computed as

∆(y) = ∆qI

(
f+
2

y
)
+∆qI

(
− f+

2
y
r

)
. (A.24)

The matching kernel is given in Eq. (7.4) with ι = 1. The final helicity distribution in the
positive x-region is obtained via ∆qI(x > 0) = ∆qI(x < 0)[−∞→ ∞]. In Eq. (A.23) we have
reported only the corrections up to O(r2), that have been implemented in this work. Higher
order terms in r3 can be found in Ref. [38].
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