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4 FALK BECKERT

1. INTRODUCTION

The Se-construction is an important tool for defining algebraic K-theory spec-
tra in a general context. Since their first construction for Waldhausen categories
[Wal85], several variants have been considered for other models of higher homo-
topy theories, like, for instance co-categories [BGT13, Lur09] or derivators [Gar06,
GS14a).

Before giving an overview of the So-construction, let us remark that we will work
with derivators as a model for homotopy theories. This theory has the advantage
that for a derivator 2 the passage to the homotopy category is given by evaluation
at the final category Z(1), whereas evaluation at an arbitrary category A is related
to A-diagrams in the underlying homotopy category via an underlying diagram
functor

2(A) — 2(1)A.

Moreover, this thesis is part of a project on abstract cubical homotopy theory and
global Serre dualities [BG18a], [BG18b] which share the same notations and con-
ventions. Several of our results might be relevant for further research in the context
of algebraic K-theory. It is known that there cannot be a satisfying construction of
algebraic K-theory on the 2-category of derivators [MR11],[MR17], but we highly
expect that analogues of the results presented here hold true in the setting of co-
categories. In fact, in [BGT13, Prop. 9.32] it was shown that K-theory is a stable
invariant. Therefore we will restrict to stable derivators and emphasize that this
restriction is required for most of the results presented here.

Given a derivator 2, the Se-construction S,2 is a simplicial object, such that
the nth level S,2 is given by a subderivator 247":¢¥ of the shifted derivator
AN (i.e. presheaves on the arrow category of the n-simplex) spanned by objects
characterized by certain vanishing and cocartesianess conditions. We observe that
the category Ar[n] sits in the following sequence of embeddings of categories

[n—1] — Ar[n] = M,_1,

where the left map is defined by 7 — (0,7 + 1), and the right map is the embedding
into the mesh category of the (n — 1)-simplex [GS14a, Thm. 4.5]. By considering
exponentials and restricting to subobjects, we obtain for every stable derivator
a sequence of equivalences in the 2-category of derivators, which are induced by
restriction morphisms:

(11) @[n—l] <i @Ar[n],ez <i @Mn_l,er.

Since the equivalences are compatible with the simplicial structure, we in fact obtain
equivalences of simplicial objects, thus each of them gives an alternative description
of the Se-construction. We refer to the left version as the slice model and to the
right one as the symmetric model. Both models have advantages in different
situations:

(i) The slice model immediately shows that the simplicial structure of the S,-
construction can be described by inverse image functors. Moreover, it is
often easier to define morphisms from or to the slice model. And since the
categories [n] are homotopically finite, it will follow immediately in many
cases, that those morphisms admit adjoints.
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(ii) The categories M,, admit non-trivial symmetries, which carry over to the sym-
metric model. Moreover, the condition ex forces that one of these symmetries
is naturally isomorphic to the suspension functor and a certain composite of
those symmetries defines a Serre autoequivalence [GS14a, Thm. 11.12].

The interplay between those two pictures is described in detail in [GS14a] and has
been proven to be useful in abstract representation theory and abstract homotopy
theory.

e In the special case Z = % of the derivator of a field k, we can identify the
value Zi(A) = D(kA) with the derived category of modules over the category
algebra kA. In particular, in the case where A = [n — 1] is the (n — 1)-simplex
we obtain

Z(In —1]) = D(KA,)

the derived category of the path algebra of the jn—quiver with linear orien-
tation as an value of the derivator Zk. Hence (for 2 general) we can regard
PMn-1:¢T 35 a derivator of Z-representations of A,. In fact, Z-representations
of general A,-quivers can be obtained from ZM»-1¢* via restriction functors
[GS14a, Thm. 4.14]. Furthermore, one of the autoequivalences induced by the
symmetries of M,,_; can be identified with the Auslander-Reiten-translation.
Since we will work for simplicity with derivators parametrized by all small cate-
gories, we obtain unbounded versions of derived categories. In many situations
it will be more convenient to work with bounded derived categories, which are
typically values of derivators with smaller domains. It is straight forward to
generalize our results to this setting.

e The simplicial structure morphisms determine a canonical strong triangulation
on the underlying category (1) [GS14a, Thm. 13.6]. Hence we obtain com-
patibility relations for iterated fiber and cofiber constructions generalizing the
octahedral axiom as described in detail in §12. Since fiber and cofiber construc-
tions belong to the most fundamental operations available in stable homotopy
theories, we obtain insight to the general structure of stable homotopy theories.

A crucial observation is that these two features of the So-construction are com-
patible. The simplicial structure and the equivalences related to the Auslander-
Reiten-translation assemble to a parasimplicial structure [Lur09, Rmk. 4.3.6], which
can be described as follows: the mesh categories are canonically (once we have cho-
sen coordinates on parasimplices Proposition 3.20) isomorphic to certain morphism
objects in the 2-category of parasimplices

Mn = A(Ala An+1)7

thus they can be regarded as a parasimplicial version of arrow categories. In §8 we
will make precise in which way the parasimplicial structure on the Se-construction
is induced by the functor A(Aq, —).

For reasons to become clear in a moment, we will now give another model for
the Se-construction (c.f. Theorem 6.9 and Corollary 6.13), which is a generalization
of the derived equivalence of the jn—quiver and the Xn-quiver with zero relations
[HS10, Prop. 2.1] to the setting of stable derivators.

Theorem 1.2. Let Z be a stable derivator and n > 0. Then there are equivalences

of stable derivators

n+1 ~ L
gt er = gt~y gl
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The conditions — and ex define certain full subderivators of the derivator of
coherent diagrams of cubical shape. More precisely, a coherent diagram satisfies
condition —, if the support of the diagram is concentrated in a chosen path linking
the initial and the final vertex of the cube, and condition ex when the diagram is
additionally cocartesian. It is clear that the simplicial structure on the derivators
2! transfers to the derivators @En via conjugation with the above equivalences,
giving rise to a pseudofunctor A°? — Der, [n] — 25", Moreover, we observe
that this cubical version of the S,-construction also admits a symmetric model
which is in fact also related to morphism objects in the 2-category of parasimplices.
Analogously to (1.1) we have the following equivalences of stable derivators, induced
by restriction morphisms

~

(13) @Eﬂ — @E"_H,ez (_E @A(An,An«}»l),ew'

It is worth observing that on ZAMA A1) = GMn and PAMARA1) the conditions
ex are special cases of a more general requirement.

The constructions (1.1) and (1.3) suggest that certain subderivators of ZA(
with & < n should be closely related to the Se-construction. We observe that
A(Ag, A,) is asubposet of ZFT!, and we say that a coherent diagram X in ZA(AkAn)
satisfies condition ex if the support of X is concentrated in the subposet of injec-
tive maps of parasimplices and moreover, if all (k + 1)-subcubes of X which are
compatible with the embedding into Z**! are cocartesian. Then we can show that
this condition exactly specializes to the conditions ez appearing in (1.1) and (1.3).
For this reason we associate to & and a choice of n > 1 and k£ > 2 another stable
derivator

AkvAn)

Dy e 1= PANk—1,Antk—1) 6T

We remark, that the subcategory of A(Ax_1, Ap+r—1) spanned by injective maps of
parasimplices is canonically isomorphic to A(Ag_1,An_1), revealing the contravari-
ant nature of simplicial structure of (1.3), and thereby justifying the title bivariant
parasimplicial S,-construction.

The main goal of this thesis, is to analyze in detail the derivators %, ;, as
well as the functorialities between them. In a slightly different context, it was
already observed in [Pogl7], [Dyc17], that the columns of Figure 1 can be regarded
as higher dimensional Se-constructions. Complementary to this we will focus on
understanding the interaction of the horizontal and vertical structures in Figure 1,
which turns out to be completely symmetric. We now outline the internal structure
of this work and summarize the main results and some applications.

We set up our basic notations and conventions in §2. Furthermore, we explain
in detail in which situation we use the term ’full subderivator’. We consider a few
examples, which will become relevant in later sections and point out some useful
consequences of this notion.

In §3 we review in detail the 2-category A of parasimplices. We show that this
2-category is adjunction complete and describe explicitly how to construct the left
(resp. right) adjoints. This leads to the observation that both operations are related
by symmetry operations. We introduce choices of coordinates on A and use these,
to construct embeddings of the simplex category A and duality 2-functors A — A.

As a preparation for the following chapters, we recollect some elementary facts
on the stable homotopy theory of cubes in §4. This summarizes parts of [BG18a],
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D32 D33 D34
D>.2 Do 3 Da.a
D2 D13 D14 s

FIGURE 1. The bivariant Se-construction. The arrows indicate
infinite chains of adjunctions, the first column is equivalent to (1.1),
and the bottom row is equivalent to (1.3).

although some of the results are stated in a slightly stronger form (due to the earlier
use of the stability assumption).

In §5 we analyze the properties of the derivators %, for fixed n and k. In
particular, we show that the symmetries on A(Ag_1, Ay yx—1) induced by pre- and
postcomposition with the paracyclic translation restrict to 2, ;, (Corollary 5.8). We
show that they are related to powers of the suspension (Corollary 5.19), and that a
certain combination of them defines an autoequivalence s3 which has similar proper-
ties as Serre morphisms for A,,-quivers (Corollary 5.21). Since Serre morphisms and
suspension become equal after passing to certain powers, we see that the derivators
D, satisty the fractionally Calabi-Yau property [GS14a, Thm. 5.19]. Even in this
generality we are able to define a slice model (Theorem 5.12), which allows us to
use techniques which usually only apply to homotopically finite shifts of derivators.
Since the symmetry operations are usually hard to describe on the slice model, we
also establish a third model (which to some extend corresponds to the middle terms
in (1.1) and (1.3)). This ’domain model’ has the advantage that on the one hand
many structure morphisms are still accessible and on the other hand the important
symmetry operation s3 is isomorphic to an inverse image morphism in this situation
(Remark 5.13). This will turn out to be useful for understanding the interaction
of various structure morphisms with symmetry operations (e.g. see §6 or §9). Fur-
thermore, it follows from Iyama’s inductive construction of the higher Auslander
algebras of A,-quivers [Iyall], that the underlying category of 2, i is equivalent to
the derived category of the (k-1)-Auslander algebra of the En+1—quiver. Hence our
results on the structure of the derivators 2,  can be regarded as a contribution to
abstract representation theory.

Paragraph §6 is devoted to the proof of Theorem 1.2, followed by a closer in-
vestigation of the equivalence in a specific example. Moreover, using the domain
model we show that the equivalences from Theorem 1.2 are compatible with the
symmetry operation sz (Theorem 6.17). Finally, we show that the equivalences of
Theorem 1.2 are in a certain sense self-dual (Proposition 6.25). This last statement
we be an important ingredient for the main result in §11.
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We show in §7, that Theorem 1.2 can be used to define a functorial version of
higher Toda brackets [Tod62] in the context of stable derivators.

In §8 we show that the vertical adjoint morphisms in Figure 1 are in fact inverse
images of the postcomposition functors in A. In particular, it follows that many
results on the structure of A carry over to these adjunctions. As a consequence, it is
immediate that the vertical structure morphisms are compatible with the symmetry
operations (Theorem 8.7). As a preparation for the following sections, we show that
most of the vertical face morphisms can be described as inverse images on slices.
The corresponding statement also holds for vertical degeneracy morphisms if we
pass to a slightly larger version of the slice construction (Corollary 8.17).

Unfortunately, the situation in the horizontal direction is significantly more com-
plicated. In §9 we construct a fundamental adjoint triple in the horizontal direction
of Figure 1 by using the slice model. We extend these constructions to the domain
model and invoke the techniques established in §5 to proof the compatibility to the
symmetries s3 (Theorem 9.12). Building on this, we show that the above triples
of adjunctions extend to infinite chains of adjunctions and define general horizon-
tal structure morphisms via these infinite chains. Afterwards we show that in the
special cases, where Theorem 1.2 applies, there is strong relation between vertical
and horizontal structure morphisms. By generalizing this result we will show in §11
that also the horizontal structure morphisms satisfy the (para)simplicial relations.

In §10 we prove a compatibility result relating the structure morphisms in the
horizontal and vertical direction. This will rely on the characterizations as inverse
images of the structure morphisms we have established in §8 and §9. More precisely,
if we consider a subsquare

D1 — Dk

L]

D1 k-1 — Dn—1,k

of Figure 1, we show that any composition of structure morphisms through the
bottom left vertex can be realized as a composition of structure morphisms through
the top right vertex. But we observe that there is another composition of structure
morphisms through the top right vertex (which is unique up to symmetry), and
prove that this composition is isomorphic to the zero-morphism, giving rise to
recollements of stable derivators

@n,k—l @n,k -@n—l,k~

This completes the preparations for the proof of the main result in §11, which can
be summarized as follows.
There are equivalences of stable derivators

(pn,k : gn,k — -@k—l,n—i-l

such that:

(i) Pk o Pro1,n1 = id;
(ii) the @,k are compatible with symmetries;
(iii) they map horizontal structure morphism to vertical structure morphisms and
vice versa;
(iv) they specialize to the equivalences of Theorem 1.2 in the casesn =1 or k = 2.
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In the case Z = %k of the derivator of a field k, this result can be regarded as
a higher dimensional generalization of the derived equivalence between the A,-
quiver and the A'n—quiver with zero relations (Proposition 6.1) and, in particular,
provides derived equivalences between the (k — 1)-Auslander algebra of the En+1—
quiver and the n-Auslander algebra of the Ag-quiver (cf. Remark 5.15). To the
best of the author’s knowledge this seems to be a new result even in the case over
a field. We emphasize that even in the case k = n + 1 in which the equivalences
® are autoequivalences, they are in general neither identities nor induced by the
symmetries considered in §5. In fact, for the proof of the main result we consider
yet another variant of the slice model which is related more closely to cubical
shapes. This allows us to define the morphisms ®,, ;; as certain twisted products
of the equivalences of Theorem 1.2. The most involved part of the proof, that the
morphisms ®,, ;, are equivalences, relies on an inductive argument building on the
recollements considered in §10.

As an application, we formulate in §12 how the derivators %, ; can be used for
an axiomatization of higher triangulations. We start by recalling the definition
of a strong triangulation and the construction of these structures in the case of a
strong stable derivator 2 following [GSM&]. This construction relies heavily on
the structure of the derivators %, ». We explain in detail in which way the axioms
of a strong triangulation imply higher versions of the octahedral axioms, which
in turn can be regarded as compatibility relations for cofiber sequences. On the
other hand, we indicate that the derivators Z; j, for £ > 3 encode higher analogues
of cofiber sequences and expanding on this we explain how the derivators 2, i
potentially give rise to analogues of higher octahedral axioms in a different way.
They encode higher compatibility relations for higher cofiber sequences. However,
the underlying diagram functors related to the derivators %, ; are in important
examples neither full nor essentially surjective. A counterexample to the fullness
was discussed in [BG18a]. Moreover we show that non-vanishing Toda brackets
are obstructions to the essential surjectivity. Therefore, the compatibility relations
of higher cofiber sequences cannot descent to a well-behaved axiomatization at
the level of underlying categories, and hence rely on having a stable derivator or
another model for homotopy theories, which has sufficient information on coherent
diagrams. Finally, we indicate some relations to the m-angulated categories of
[GKO13].
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2. PRELIMINARIES ON DERIVATORS

In this section we set up the basic notation and conventions used in this thesis.
Moreover, we make the notion of a full subderivator precise. This will be useful to
analyze quivers with zero-relations in the context of abstract representation theory.

We denote by Cat the 2-category of small categories and by CAT the 2-
category of not necessarily small categories.

e The terminal category is denoted by 1 € Cat.
e Let A € Cat, a € A. Then we denote by a: 1 — A the unique functor with

image a € A.

A small category A is called a poset if the cardinality of the set Hom(a,a') is
at most 1 for all a,a’ € A and if all isomorphisms in A are identities.

For a small category A we denote by (), respectively oo, the initial, respectively
final, object in A, provided that these objects exist in A. Moreover, let A
be a category such that (),co € A. If the unique morphism ) — oo is an
isomorphism, we call A a pointed category and 0 := () = oo a zero object.

For a functor u: A — B and b € B we denote by A;/, respectively A, the
slice category of objects u-under b, respectively of objects u-over b.

A prederivator is a 2-functor 2: Cat°? — C AT and a pseudonatural transfor-
mation between prederivators is called a morphism of prederivators.

A derivator is a suitable 2-functor 2: Cat®? — CAT. We refer to [Grol3] for
a precise definition of derivators and their pointed and stable variants.

Let 2 be a derivator and u: A — B a functor between small categories. Then
the functor u* := Z(u): Z(B) — Z(A) is called the inverse image along u.
Since Z is a derivator, the inverse image u* admits a left and a right adjoint,
which we will denote by wuy, respectively u,, and call the left, respectively right,
Kan extension along w.

Let 2,2’ be derivators. A morphism of derivators (often called ’a morphism’)
2 — 2’ is a morphism of prederivators which is compatible with left Kan
extensions in the precise sense of [Grol3, Def. 2.2]. Note, that if 2,2’ are
stable derivators, then a morphism of derivators is additionally compatible
with homotopically finite right Kan extensions by [PS16, Thm. 7.1], and is
therefore, in particular, exact. We denote by Der the 2-category of derivators
and morphisms of derivators, and by Der®® the full sub-2-category of stable
derivators.

Let 2 be a derivator and A € Cat then 2%: B + Z(A x B) denotes the
derivator shifted by A.

Let 2 be a derivator and A € Cat then diasy: 2(A) — 2(1)* denotes the
underlying diagram functor (c.f. [Grol3]).

Construction 2.1. Let 2 be a prederivator and for A € Cat full subcategories
2(A)o C P(A) such that for every functor u: A — B between small categories the
essential image of u*|o(p),: Z(B)o — Z(A) is contained in Z(A)o. This yields the
existence of a restriction ug: Z(B)o — Z(A)o such that the diagram

2(B)o —— 9(B)
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strictly commutes. Moreover, if v: A — B is a functor and a: u* — v* is a
natural transformation, then we obtain a natural transformation og: uy — v§ by
restriction, since the fullness of the inclusion Z(A)y C Z(A) implies that the map
ap(X) = a(X) for X € P(B)o is a morphism in Z(A)y. This shows that Z: A —
PD(A)g, u — ufy is prederivator and the inclusions Zy(A4) = 2(A)g C Z(A) yield a

morphism of prederivators % £, 9. In this case we call 9y a full subprederivator
of  and % =N 2 the inclusion.

Definition 2.2. Let 2 be a derivator and Zy C Z a full subprederivator. Then
9, is called a full subderivator of 2 if

(i) 2y satisfies (Der 1),

(ii) the essential images of the restricted Kan extensions

] g A)» Us | 29(4) 1 Do(A) = D(B)

are contained in 2(B)y for all functors u: A — B between small categories
A, B € Cat.

Remark 2.3. The second condition in the above definition implies that the Kan
extensions restrict for all functors u: A — B between small categories to well
defined functors (uo), (ug)s: Zo(A) — Zo(B). This is analogous to the case of
inverse images, which was treated in Construction 2.1.

Lemma 2.4. Let 9 be a deriwator and Py C P be a full subderivator. Then %

is a derivator and the inclusion P S 9 s compatible with left and right Kan
extensions. Moreover, if 9 is pointed or stable then so is 9.

Proof. The prederivator %, satisfies (Der 1) by assumption and (Der 2) follows
immediately from the corresponding property of 2. Let now u: A — B be a
functor between small categories A, B € Cat. For (Der 3) we note that, since the
inclusions Zp(A) C 2(A) are full, the units and counits of the adjunctions w
u* 4 u, give by restriction rise to well defined units and counits of the adjunctions
(uo)r 4 u* 4 (up)«. We note that the triangle equalities are obtained by restricting
the corresponding pastings of unrestricted transformations. In the following we will
omit the subscript 0 for the functors in the image of %y. For (Der 4) we have to
check that for b € B the pasting

Do(1) —2—— Dy(A ) ———— To(A)

I
N o™ . id
id P v
n

Po(1) ———— Fo(B) +———— (A

(and its dual) is an isomorphism. Here o* is obtained by the 2-functoriality of %y
from the canonical slice square associated to (u,b). For each cell of this pasting we
see that it is obtained by restriction from the corresponding cell of the derivator
9. For the two triangles this is clear from the proof of (Der 3) and for the middle

. - . . .
square since 9y — % is a morphism of prederivators. Therefore, we deduce that
the pasting above is an isomorphism from the axiom (Der 4) for 2. The same
argument applies also to the dual pasting. Let now Z be a pointed derivator. Since
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2y is a derivator we have (), 00 € ZDy(1). Since Dy(A) C 2(A) is full we conclude
) = oo € 99(1), and hence % is pointed. If 2 is stable, then the subcategories
g (O)cocart = g(O)cert C P(0) (cf. [Grol3, Def. 3.9]) coincide. Since the Kan
extensions in 2, are obtained by restriction from those in & we have

QO(D)cocart — @(D)cocart ) 90([]) — @([Dcart N @O(D) — Qo(D)caTt.

This is exactly the stability for Z,. Next, we show that 2y C 2 is compatible
with left and right Kan extensions. We restrict to the case of left Kan extensions;
the dual case is very similar. For u: A — B a functor between small categories
A, B € Cat we consider the pasting

D(B) e P(A) e (A

€
. . id

u

. u
id
n

D(B) = Gy(B) +— gy(A).

This is obtained by restriction from one of the triangular equalities of uy 4 v* and
hence an isomorphism. O

Ezamples 2.5. (i) Let 2 be a pointed derivator, A a small category and Z C
A a set of objects in A. Then the full subcategories 244(B) = {z €
P4(B)|z*(z) 2 0 € 24(1)Vz € Z} define a full subderivator 247 of 4.
In fact, in this case both conditions in the definition of a full subderivator
follow from the fact that inverse images are always compatible with arbitrary
Kan extensions.

(ii) Let P: 9y — 2 be a fully faithful morphism of derivators. If P additionally
is compatible with right Kan extensions, then the inclusion of the essential
image of P defines a full subederivator. Typical examples where all these
conditions are satisfied are the following.

e Left Kan extension morphisms (cf. Remark 2.7) along fully faithful left
adjoint functors, and right Kan extension morphisms along fully faithful
left adjoint functors (since these morphisms are isomorphic to inverse
image morphisms)

e Kan extension morphisms along homotopically finite, fully faithful func-
tors for stable derivators [GS17, Thm. 2.14]. This includes in particular
the inclusion of the derivator of bicartesian squares into 25 for a stable
derivator 2.

Lemma 2.6. Let 99 C 2, 9, C 9’ be inclusions of subderivators and P: 9 — 9’
a morphism of derivators such that the essential image of P(A)|g,(a) is contained in
D(A) for all A € Cat. Then P restricts to a morphism of derivators Pl|g,: Py —
28

Proof. The pseudonaturality conditions for P|g, are again (using the fullness of
the restrictions for the associativity and unitality constraints) obtained by restric-
tion from those of P, hence P|g, is a morphism of prederivators. To show the
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compatibility with left Kan extensions, we consider the pasting

uy P|90 (A)
Do(B) +———— Zy(A) Z0(A)
/ . . id
id b v /
n
’ P|@0 (B) u
Z4(B) P0(B) +———— Zo(A).

This is an isomorphism, since it is obtained by restriction from an isomorphism.
Here we use again the arguments from the proof of Lemma 2.4 to show that the
triangles are obtained via restriction. (|

In the following parts of this thesis we use the following additional convention.

Remark 2.7. Let 2 be a derivator and u: A — B a functor between small categories.
Then the inverse image functors along (u x C): A x C — B x C for C € Cat
define a morphism of derivators u*: 28 — 24 which will be called the inverse
image morphisms along w. In the thesis we will work with these morphisms of
derivators instead of the functors of categories u*: Z(B) — Z(A). Note, that
we can define similarly a left Kan extension morphism w: 24 — 28 ([Grol3,
Ex 2.10]). Furthermore, there is morphism of prederivators u,: 24 — 2% defined
by right Kan extensions, which is a morphism of derivators if & is stable and w is
homotopically finite ([GS17, Thm. 2.14]).

Remark 2.8. In §§5-11 of this work we will usually consider a fixed stable derivator
2. Since most of the constructions we will consider are compositions of restrictions
of inverse images and Kan extensions between homotopically finite categories (and
in the few remaining cases where we also consider more general Kan extensions,
we will only consider restrictions of those which are equivalences of derivators) it
is immediate that all results in these sections are pseudofunctorial with respect to
the 2-category of stable derivators.

3. THE 2-CATEGORY OF PARASIMPLICES

Definition 3.1. (The 2-category of parasimplices)

(i) Let n > 0. The n-parasimplex A, is the linearly ordered right Z-set Z with
the Z-operation

(=) + (=) Au X Z = Apy (N, m) = X+ (n+ D)m.

(ii) The 2-category of parasimplices A consists of
(a) objects {A,|n > 0},
(b) Z-equivariant maps of linearly ordered sets as 1-morphisms,
(c) and natural transformations as 2-morphisms.

(iii) Let n,k > 0. We write A,, ; for the morphism category A(Ag, Ay,).

Remark 3.2. The 2-category A is a skeletal model of the parasimplex category of
[Lur09, Def. 4.2.1]. Moreover, in loc. cit. the linearly ordered Z-set %_HZ with
Z-operation +1 is used as a model for A,,.
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Remark 3.3. Let n > 0. The underlying set of A,, admits a canonical right Z-module
structure
(=)F(=): Ap X Z — Ay (N, m) = X+ m.
It will be important to distinguish this module structure from the Z-operation of
Definition 3.1.
Definition 3.4. (Paracyclic translation) Let n > 0.
(i) The paracyclic operation T: A,, — A, is given by
(5)+1=(=)Fn+1): Ay = A, A= A+ (n+1).
(ii) The paracyclic translation t: A, — A,, is given by
(=)+1: Ay = A, A= A+ 1.
Remark 3.5. In the following we use the notation (—)+(—) for the module structure
and T(-)(=) for the Z-operation.
Lemma 3.6. Let n > 0.
(i) Paracyclic operations and translations are related by
"t =T,
(ii) The 1-morphismst and T are invertible, and conversely every automorphism
of Ay, is a power of t.
(iii) The paracyclic operations T assemble into a 2-natural isomorphism
T:idy = ida.

Proof. Part (i) is immediate from the definition. The fact that t and T come
from group operations yields the first statement of (ii). For the second part we
consider an automorphism f: A,, = A,. Then for A € A,, injectivity implies that
F(A+1) > f(N) +1, and by surjectivity f(A+1) < f(A) + 1. By additionally using
the dual argument and induction we conclude. Finally, for (iii) we note that by
definition all 1-morphisms in A are Z-equivariant, i.e. they commute with T, for
the 2-naturality, and invoke (ii) for the invertibility. a

Lemma 3.7. Let k,n > 0. The automorphisms t*,t. : A, ,, — A, , satisfy the
relations

(i) t* oty =t.ot* and

(i) ()1 = (t.)" "
Proof. Let f: Ay, — A,, and X € Ay, then
(3.8) () A FO+1) and  t(f): Ao FON) + L.
Hence both sides of (i) describe the assignment

f=OA—=fA+1)+1),
which implies (i). For (ii) we invoke Lemma 3.6 (i) and (iii) to conclude
) =T =T, = (t.)" .
]

Lemma 3.7 and the fact, that the notation (—)* and (—). is used later for different
purposes, motivate the following definition.

Definition 3.9. (Symmetry operations) Let k,n > 0.
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(i) The covariant symmetry operation for A, ) is the automorphism
s1:=(te)r Ay g = Ay

(ii) The contravariant symmetry operation for A, ; is the automorphism
sg = (") Ay = Ay

If we replace T by t in Lemma 3.6 (iii), it fails drastically. In the following, we
will show that pre- and postcomposition with t, and hence the automorphisms s;
and so, are strongly related to adjunction operations in A.

Proposition 3.10. The 2-category of parasimplices A is adjunction complete (i.e.
every 1-morphism [ admits both a right adjoint rf and a left adjoint |f).

Proof. Every 1-morphism f: Ay — A, in A gives rise to an endomorphism of the
partially ordered set Z by forgetting the Z-actions. Moreover, f is neither bounded
above nor bounded below, since there must be a point in the image, and therefore
the entire orbit of this point, which is clearly unbounded, is also contained in the
image. For such a map both adjoints clearly exist in the 2-category of posets. More
precisely, they are given by the assignments

(3.11) lf:Z — Z,p— min{\ € Z|p < f(A)}
and
(3.12) tf:Z — 7, — max{\ € Z|f(\) < p}.

In fact, (3.11) and (3.12) are morphisms of parasimplices A,, — Ay. We show this
only for the left adjoint, since the argument for the right adjoint is very similar.
Consider u € Z and A = If(u). Since f: A — A, is Z-equivariant, the inequalities

p+n+1) < f(A+(B+1))
and
fO+k+D) - =f(A-D+k+1)<(p—-1D+n0+1)=p+n+1)—1

hold true, thereby proving that | f(u+(n+1)) = If(1)+(k+1). Finally, we conclude
by observing that the inclusion of A into the 2-category of posets is locally fully
faithful, such that the units and counits of the adjunctions |f 4 f and f 4 rf in the
2-category of posets also define 2-morphisms in A. ([

Construction 3.13. Let € be an adjunction complete 2-category. Then the essential
uniqueness of adjoints and their compatibility with compositions guarantee the
existence of pseudofunctors

L,R: € — P

which are the identity on objects and such that for every 1-morphism f € € there
is a triple of adjoint morphisms

Lf 4 f RS
The category of all such pseudofunctors is a contractible groupoid. Since the 2-
category A is in fact a category enriched over posets, adjoint morphisms are unique.

Therefore, in this case the pseudofunctors L and R are uniquely determined, and
furthermore they are even 2-functors.

Definition 3.14. (Adjunction functors) Let k,n > 0.
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(i) The right adjunction functor r for A, ; is the structure morphism defined

by R
R"yk’ : An,k - Azpn'
(ii) The left adjunction functor | for A, ; is the structure morphism defined
by L

. op
Ln;k? : An,k - Ak,n'

The following proposition addresses the compatibility of symmetry operations
and adjunction functors.

Proposition 3.15. Let k,n > 0. There are equalities of functors A,, , — Azzjn
losy = (s{P) tol=(s¥) tor=ros.

Proof. Let f: A, — A, be a morphism. The compatibility of taking left (resp.
right) adjoints with compositions applied to f ot (resp. to f) immediately yields
the first (resp. third) equality. For the second equality we consider p € A,. Then
(3.8) and (3.11) show that (s{¥)~! ol is given by the assignment

(3.16) pmin{d € Aglp < f(A)} — 1.

The values of the assignment can be re-expressed as the maxima of all elements,
which are smaller than the respective minima

min{\ € Aglp < f(N)} =1 =max{\ € Ag|f(N) < p—1}.
By using (3.8) and (3.12) we conclude that (3.16) also describes (s5f) "L or. O
We are now ready to discuss the 2-naturality of the paracyclic translations t.

Corollary 3.17. The paracyclic translations t assemble into a 2-natural isomor-
phism

S:R—L: A— AP,
Proof. Let f: Ay, — A, be a l-morphism in A. The statement follows from the
commutativity of the squares

A, —F oA,

Lf
An ? Aka
which in turn is a reformulation of the second equality in Proposition 3.15. (I

Remark 3.18. The 2-natural isomorphism S is an example of a global Serre duality.
These structures will be investigated in more detail in [BG18b].

Definition 3.19. A family of basepoints Ae = {\, € A,,n > 0} is called a choice
of coordinates in A.

Proposition 3.20. Let n,k > 0, Ay a choice of coordinates, and g, - , pur € Ay
such that

(3.21) po < pn < e- < g < po + (04 1).
Then there is a unique morphism f: Ay — A, such that for i € {0,---  k}
(3.22) FOw +) = i
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Proof. Let A € Ap. Then there are uniquely determined i € {0,--- ,k},p € Z such
that A = A + ¢+ p(k + 1). Hence the assignment

A= pi +p(n+1)
is the only possible definition of f that satisfies equivariance and (3.22). This

assignment is order preserving by (3.21), thus it defines a map of parasimplices. [

Definition 3.23. Let k,n > 0, As a choice of coordinates, f € A, ;. The Ae-
coordinate representation f,, of f is the k + 1-tuple

(f(Ak)af()‘k + 1)7 Tt 7f(/\k + k')) S Zk+l.

Corollary 3.24. Let n,k > 0 and A a choice of coordinates. Then the \o-
coordinate representation induces an embedding of posets

An,k — Zk+17f = f)\.'

Proof. We see immediately, that the \,-coordinate representation induces a mor-
phism of posets
Anyk _ Zk—'rl

and that the image is characterized by (3.21). The injectivity follows from Propo-
sition 3.20. ([l
Corollary 3.25. Let A\ be a choice of coordinates. Then there is a locally fully
faithful 2-functor i =iy, : A = A defined by

(i) A, — A, forn >0 and

(ii) (g: Ar = Ay) = (A +9(0), -+, Ay + g(k)) for k,n > 0.

Proof. By Proposition 3.20 the map A(Ay,A,) — A, ;. defined by (ii) is order
preserving and injective. The compatibility with identities is obvious. Finally,
consider g: A — A, and h: A,, — A;. The composition of the images of g and h
is determined by its values on A\ + ¢ for ¢ € {0,--- ,k} (Proposition 3.20)

Ak + i Ay +g(0) = N+ h(g(i) = i + (hog)(i),
which is by definition the image of the composition of g and h. O
Corollary 3.26. Let n,k > 0 and A\, be choice of coordinates. Then the functor
Aokt Ay = AP, (Fi)o<i<k = (20 +n — fr—i)o<i<k

is a self-inverse isomorphism of posets. Moreover, the functors dpnk: A,  — AP
assemble into a strictly self-inverse 2-functor

D =Dy.: A—A™.
Proof. The assignment d,, ;. is clearly order reversing. Moreover, the property fu <
o < fr < fo+n+ 1 yields
where the last inequality is obtained from the chain of implications
h<fotrn+l=>—-(fo+n+1) < —fi
= —fo<—fet+tn+1
=2\, +n—fo <2\, +n—frp+n+1.
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Hence dp : A, ,, — AZ’; .. defines indeed a functor. Furthermore, d,, j, is self inverse
since
d2 o ((fi)osi<k) = @An + 71— (2An + 71— fio—i)))o<i<k = (fi)o<i<k

and therefore an equivalence. For the functoriality statement we have to understand
how d,, 1 (f) operates on A, + j for j € Z arbitrary. More precisely, we claim that
for a map of parasimplices f: Ay = An, Ay +j — f; the image under d,, j is given
by the assignment f’: Ay +j — 2\, +n— fy_;. For this, we only have to show that
this assignment is equivariant. Then f’ = d,, x(f) will follow from Proposition 3.20
by using that both sides agree on {Ag, A\ +1, -+, Ax +k}. The equivariance follows
from the corresponding property of f

' Aeti+k+1) = 2 4+n—fr_ i1y = 2An+n—(foj—(n+1)) = f'(Ap+j)+n+1.
For the unitality, we compute
dix(id) (Mg +J) =20 + k —id(Ak + &k — J) = M + 4.

For the compatibility with compositions, we consider f: Ay, — Ay, Ay +j — f; and
g: Ay — Ay, A + 7 — gj. Then the composition of f and g is given by
(327)  gofi A= An A+ £ = At (= M) g, an-
On the other hand we have by definition

D(f): e+ 2X, +n— fi_j and D(g): A+ 72X +m — gpj.

In particular, we can compute the composition

. D(f
D(g) © D(f) Ak +.] 'L)zAn +n — fk—j = An + ()\n +n— fk—j)
D(9)
=52 1+ G () = 2Am T Gg A,

and invoke (3.27) to identify the last term with D(g o f)(Agx + 7). O

In the following, we show that for different choices of coordinates the resulting
induced simplicial embeddings and duality 2-functors are related via 2-natural iso-
morphisms. Hence we can fix one choice of coordinates, and work without loss of
generality with the structures i and D induced by this fixed choice. In particular,
we will use the choice of coordinates 04 = {0 € A,,n > 0}. Since the element
0 in the Z-set Z is not characterized by a ”special property”, the choice of the
coordinates O, is not "more natural” than any other possible choice. It just leads
in many occasions to a simpler notation.

Proposition 3.28. Let A\, be a choice of coordinates.
(i) There is a 2-functor F*s: A — A which is the identity on objects and such
that for n,k >0

Ae _ An —Ak .
F, ,.lc =51 ©Sy . An,k — Amk'

(ii) There is a 2-natural isomorphism ¢** : id — Fs such that for n > 0
PN =tMi A, = A,
Proof. We invoke Proposition A.4 and define F*+ = id[S] and ¢** = «[S] for

Sa, = t*. Moreover, F¢ is a 2-functor and ¢™* is a 2-natural isomorphism since
id: A — A is a 2-functor and t: A, — A,, is an isomorphism for all n > 0. O
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Corollary 3.29. Let A\, be a choice of coordinates.

(i) There is a 2-natural isomorphism ig, — iy, .
(i) There is a 2-natural isomorphism Do, — Dy, .

Proof. For (i) we observe by plugging in the definitions, that iy, = F oig,.
Similarly, for (ii) we have Dy, = F** o Dg, o (F**)~!. Hence, by Proposition 3.28,
the desired 2-natural isomorphisms are induced by ¢*e. (]

In the following we discuss some applications of the structures i and D with
respect to the choice of coordinates 0,. We start by describing the symmetry
operations with respect to this choice of coordinates. For this we define for n,k > 0
the following automorphisms of the poset Z*+1.

(1) S%Z <)\0a"' 7)\16) — ()‘0+ 1a 7)\k+ 1)7

(i) sZ: Aoy 5 k) = (AL, Ay Ao + 1+ 1).

Proposition 3.30. Letn,k >0 and f € A, ;. Then

(i) s1(fo,) = (s1(f))o..
(i) 5 (fo,) = (s2(f))o. -
Proof. Let f € A,, ;, then fo, = (f(0),---, f(k)). Then we conclude by observing
(i) (s1(f))os = (to flo, = (f(0)+1,---, f(k) +1),
(i) (s2(f)o, = (fotho, = (f(1),---, f(k), f(0) + n+1),

where we have used equivariance to identify the last coordinate in (ii). ]
From now on we will omit the Z-superscript on s¥ and s5.

Proposition 3.31. Let n,k > 0 and f € A, ;. Then there exists a unique | € Z
and g: A — A, such that

f=sy0i(g).
Proof. We first show the existence of I. Let f = (fo,---, fx) € A,, ; not in the image
of i. We assume 0 < fj and observe directly that then fx > n+1. The case fy < —1
is completely dual to this one. Then there exist » € {0, -+ ,n}, ¢ > 0 such that
fo=4q(n+1)+r. Then we consider ' = (f},---, fr.) := s;q(kﬂ)(f) = s;q(nﬂ)(f).
From the latter description of f’ (which follows from Lemma 3.7) we deduce that
0 < fy <nand hence f] < fi+n+1<2n+1. If f; <n, then f’is in the image
of i. Otherwise consider j minimal with n +1 < f]’ Then we have by construction
that s, * 7 *(f’) is in the image of i.
For the converse direction, we note that the image of i has a minimal element 0 :=
(0,---,0) and a maximal element n := (n,--- ,n). Comparing the last coordinates
yields

52(0) £ n.

Since sy is order preserving we conclude by using the minimality of 0 and the
maximality of n that so(i(g)) £ i(¢') for all g,¢': Ay — A,. In particular, the
images of i and sg oi are disjoint. This yields inductively the injectivity of

A(Ak, An)" = A, s (90)icz = (sh0i(9))iez

and hence the uniqueness of [. (I

Definition 3.32. Let n > 0.
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(i) Let 0 > ¢ > n+ 1. We call i(d;): Ay, = Ap41 the ith parasimplicial face
map and denote it also by d;.

(ii) Let 0 > ¢ > n. We call i(s;): Ap+1 — A, the ith parasimplicial degener-
acy map and denote it also by s;.

Remark 3.33. In the 2-category of simplices there is the following chain of adjunc-
tions

dn+14sn4dn4"'4d14804d0

of 1-morphisms relating A, and A,+;. The 2-functoriality of i yields a chain of
adjunctions relating the parasimplicial face and degeneracy maps. Moreover, by
Corollary 3.17 this can be reformulated as

(3.34) dj =todgot™ and si=tlosgot %

Furthermore, (3.34) can be taken as a definition in cases where the left hand sides
are not defined.

Corollary 3.35. Letn,k > 0 and f € A,, ;. Then f is a composition of morphisms
of the form t, t71, dy and sq.

Proof. By Proposition 3.31 there is [ € Z and g: Ay — A, such that there is
a decomposition f = i(g) ot!. Since A is generated by the simplicial face and
degeneracy maps, we can decompose in terms of those. The 2-functoriality of i yields
a decomposition of i(g) into parasimplicial face and degeneracy maps. Finally, we
obtain the desired decomposition by applying (3.34) to each of these. (]

Remark 3.36. Since the duality D: A — A is a 2-functor, it preserves adjunctions,
but reverses the order. In other words, the diagrams

A L Acoop and A R Acoop
A% s A A% s A

commute. We emphasize that this construction generalizes to arbitrary adjunction
complete 2-categories, and indicates that for such a 2-category C, there is a duality
between equivalences C — C° and equivalences C — C. We consider, the right
square and n, k > 0. In particular, we obtain isomorphisms

adn,k = dk:,n Ofpk = ln,k © dn,k: Anyk = Ak7n'
The following result describes the compatibility of ad,,  with choices of coordinates.

Proposition 3.37. Let n,k > 0. Then ad,, x(0,---,0) = (0,---,0).

Proof. By definition dj ,,(0,---,0) = (n,--- ,n) and (3.11) yields Iy »(n, -+ ,n) =
(0, ,0). s

Another interesting feature of the 2-category of parasimplices is the behavior of
injective 1-morphisms. More precisely, we will see that for given n,k > 0 the poset
A, . exactly describes the injective morphisms for a certain shift in the codomain.

Definition 3.38. Let n,k > 0. The poset A;”i is the subposet of A,, ; consisting
of those 1-morphisms f: Ay — A, whose underlying maps f: Z — 7Z are injective.
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Proposition 3.39. Let n,k > 0. The functor inj =inj, ,: A, , — Aigkﬂ’k which

is defined on coordinate representations by the assignment

(fo, fr,- 5 fe) = (fo, i+ 1, fre + K)

is an isomorphism.

Proof. Note that a morphism ¢g: Ay — A,4r4+1 with coordinate representation
(go,- -, gr) is injective if and only if the relations

(3.40) go<-<g<gotn+k+2
hold true. Since the relations
o< < fi<fo+n+1

imply the inequalities (for the last inequality we use fr < fo+n+1= fr +k <
fotn+1l+k<fo+n+k+2)

fo<fitl< - <fr+k<fot+tn+k+2,
we conclude that inj is well defined. Moreover, inj is a restriction of the translation
map +(0,--- ,k): Z — Z. Hence inj is order preserving and injective. It remains
to prove the surjectivity of inj. For this we consider g € Aﬁ{k 1k with coordinate
representation (go, - ,gx). Then (3.40) yields the inequalities

g<g—1<---<gp—k<go+n+1,

which exhibit (gg,g1 — 1, -+ ,gr — k) as a preimage of g. a

Proposition 3.41. Letn,k > 0. Then the symmetriessi,sa: Ay i1 = N1k

restrict to automorphisms of A:ﬁkﬂ « and furthermore there are equalities of iso-

morphisms A,, , — Aiﬁ&-jk-&-l,k

(i) injos; = sy oinj,

(ii) injosy = sy 0sy ! oinj.
Proof. We invoke Proposition 3.30 to describe all compositions explicitly in terms
of coordinate representations. In the case of (i), we observe immediately that both
sides are given by the assignment

(mefla"' 7fk)}_> (f0+17f1+2; 7fk+k+1)

For (ii) we compute both sides separately and conclude by comparing the results.

(f07fla"' 7fk) :2_>(f17f27"' afk7f0+n+1)

'g(f17f2+1a"' 7fk+k_1af0+n+k+l)
and

inj

(anfla"' afk) '—>(f03f1+1a"' 7fk+k)

S

——(fo—1,f1,-  fu+k—1)
}S—2>(f1)f2+17afk+k_1;f0_1+n+k+2)
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4. THE STABLE HOMOTOPY THEORY OF CUBES

In this short section we recollect some important facts about the stable homotopy
theory of cubes. Building on these, we will construct stable derivators associated
to the categories A,, ; in §5. More precisely, the proof of Theorem 5.12 will rely on
Corollary 4.8 and Proposition 4.19 and the proof of Proposition 5.16 will rely on
Corollary 4.17.

Definition 4.1. Let n > 0. The n-cube 0" € Cat is the category [1]™.

Remark 4.2. Let n > 0.
(i) The category 0" is a poset.
(ii) Let n = {0,--- ,n —1}. Then the power set P(n) inherits the structure of a
poset via the inclusion of subsets. Then the assignment

X(—): P(n) — [1]",

defined by the characteristic functions of subsets, is an isomorphism of posets.
In the following, we will sometimes use elements of P(n) to specify objects
of 00", without mentioning the implicit use of the isomorphism x_).

(iii) In particular, there is a functor #: 0" — [n] defined by the cardinality of
subsets of n.

(iv) In [BG18a] the set {1,---,n} was used to parametrize the coordinates of (™.
The reason for the different convention in this thesis is the fact that objects
in A, , can be described as functions on k + 1 via choices of coordinates
(Corollary 3.24).

Definition 4.3. Let 0 < k<Il<nandi€ n.
(i) We denote by
dg,dt: 0"t —»On and sp: O™ — Ot
the face maps and the projection with respect to the ith coordinate.

(ii) We denote by
Lkl DZ,Z — "

the inclusion of # *({k,k+1,---,1}).

Remark 4.4. Let M C n be a subset. Then we use the more general notation
(i) db =TT nenr s O #00 — O,
(i) dM =T1,,ep dpv: O #OD — On,
(ili) s} = [1,pens sir: O — On=#OD,

Construction 4.5. We recall the construction of cofiber and fiber sequences for a
stable derivator 2 and some of their properties. We refer to [Grol3] and in the
cubical case to [BG18a] for a more detailed treatment of these constructions. Let
ji: [1] = OF, be the inclusion induced by df and j: [2] — 0?,i — i. Then we
define for a stable derivator 2

the cofiber sequence morphism Cof = j o (19.1)1 0 (j1).: 21 — PP,

the cofiber morphism cof = dj; o Cof: M - gl

the cone morphism C = co* o cof: 21 — 2,

the suspension morphism ¥ =Co (dy).: 2 — 2.

Let now n > 1. Then we define
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e the iterated cofiber sequence morphism Cofl: 25" — gR" by applying
the cofiber sequence morphism in every variable separately.
e the iterated cofiber morphism cof! = (dg x - - - x dg)* o Coft: 25" — 25",
e the total cofiber morphism tcof = o0o* o coft: 25" — 2.
Dually, let j1: [1] = OF ; be the inclusion induced by dj. Then we define
e the fiber sequence morphism Fib = j3 o (119). 0 (j1): 21 — 211,
e the fiber morphism fib = dj o Fib: 21 — g1,
e the cocone morphism F = (* o cof: 211 — 2.
the loop morphism Q = Fo (do): 2 — 2.
Let now n > 1. Then we define

e the iterated fiber sequence morphism Fibt: 25" — 22" by applying the
fiber sequence morphism in every variable separately.
e the iterated fiber morphism fib} = (dy x --- x dy)* o Fib*: 25" — 95",
e the total fiber morphism tcof = (* o cofl: 25" — 9.
Then the following properties are satisfied

e (X,0) is a pair of mutually inverse equivalences.
e (coft fib) is a pair of mutually inverse equivalences.

Remark 4.6. We summarize some of the well-known isomorphisms between the
fiber and cofiber constructions for a stable derivator 2, which are elementary con-
sequences of the definitions.
(i) cof® = x: gl » gl
(ii) fib®> = Q: gl - gl
(iif) Q0 2% o0 Cof 2 Qod}ocof = F = df ofib=0*oFib: 2l - 2,
(iv) 0* o Cof 2 F o cof = d} = dj ofib = 1* o Fib: 2l — 9,
(v) 1% o Cof 2 d} o cof = dj = C o fib = 2* o Fib: 211l — 9,
(vi) 2% 0 Cof 2 dfocof 2 C =Y odfofib=Xo00*oFib: 21 — 2,
(vii) Cof o (do)1 = (dg)1 o s = (dg)ro (do) = Fibosh: 2 — 212
(viii) Cof osf 2 (dg)« o (d1)s = (da)« 08 2 Fibo (dy)s: 2 — 212,
x) Cof o (dy)s 2 X oFibo (do): 2 — 2P
)

v
(i

(x) df o Cof o (dy)s =X o(do): 2 — 2,

(xi) doFibo (do) = Qo (dy): 2 — 2.
Let now n > 0 and My U M; U My = n be a partition. Let m: n — 3 be the
map with m~!(j) = M; for j € 3. Then (i)-(vi) above generalize to the following
isomorphisms (c.f. section 8 of [BG18a]). In each case we use that morphisms of
stable derivators commute with compositions of inverse images and homotopically
finite Kan extensions.

(i) (coft)? = xm. 0" - b
(ii) (fibt)? = Q. 2P" — 95",
(iti) m* o Coft 2 tcof o (A2 x A" x idM2)* = tfibo (id™0 x dM x d}2)* o cof*:

—_

""" - 9,
(iv) m* o FibL 2 teof o (A0 x dp™ x id™?)* o fibl = tfib o (id™° x d}"* x d}")*:
9" = 9.

Proposition 4.7. Let n > 0 and 2 a stable derivator. Then for X € 99" the
following properties are equivalent.

(i) X € essim((1g,n_1)1: Z0m-1 — 2U")
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(ii) tcof (X)=0€ 2

Proof. This is [BG18a, Prop. 9.2]. O

Corollary 4.8. Let n > 0 and & a stable derivator. Then
essim((1g,n_1)1: 250m-1 — P97 = essim((11,)»: 270 — 257,

Proof. This is [BG18a, Cor. 9.3]. The first equivalence below follows from Propo-
sition 4.7, the third equivalence from the dual version of this statement and for the
second equivalence we invoke [BG18a, Rem. 8.27] for the relation tcof & X" o tfib.

X € essim((to,n—1)1) < tcof(X) =0 <= tfib(X) =0 <= X € essim((¢1,1))-

O

Remark 4.9. Let n > 0 and 2 a derivator. Then objects in essim((co,n,—1)1) are
called cocartesian n-cubes while objects in essim((¢1.,).) are called cartesian
n-cubes in 2. Hence in the case n = 2 Corollary 4.8 just states the coincidence of
cocartesian and cartesian squares for stable derivators, which is in fact the defining
property of stability.

Definition 4.10. Let n > 0 and Z a stable derivator.

(i) The stable derivator 27"¢% := essim((10.,—1)1) = essim((¢1,,)«) is called the
derivator of bicartesian n-cubes in 2.
(ii) Objects in 25"+°* are called bicartesian n-cubes in 2.

Remark 4.11. Let n > 0 and & a stable derivator.

(i) To see that 25" e g in fact a stable derivator we observe that to,n—1 and
t1,n, are fully faithful and invoke [Grol3, Prop. 1.20] to obtain equivalences
of prederivators

G- = gbher and gPie & gHter

respectively.
(ii) In [BG18a] the derivator of bicartesian n-cubes in & is denoted by 25""~1
and called the derivator of (n — 1)-determined n-cubes.

Ezample 4.12. Let n > 0, 2 a stable derivator and X € 25" such that B (X) =
0. Then

X € 72U = o0*(X) 2 2" 0 0¥ (X).
This is [BG18a, Ex. 6.7].

Proposition 4.13. Letn > 0 and & a stable derivator. Let X € @B xR Then
there is a natural cofiber sequence

(4.14) tcof o d3(X) — tcof o dj(X) — tcof o di(X)

of total cofibers of n-cubes in P.
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Proof. There is a functor f: 0% — [2] defined by the diagram

0 ——m2

0 1

‘ 1 + 2

l— 1,
where the coordinates associated to 0,1,2 € 3 are displayed in the horizontal,
vertical and diagonal direction, respectively. We observe that

(4.15) fod)=dyos? and fodd=dgosg.

We now consider a stable derivator %, and define 2, = 9([)1]. From (4.15) and
[GS14b, Thm. 8.11] we deduce that the essential image of f*: “@([)2] — 9()53 is

2
contained in @1[\ "“*where here the coordinates of [J? correspond to the coordi-

nates 1 and 2 of (0%. Furthermore, since the cone functor C : 2, — % is ex-
act, it commutes with homotopically finite left Kan extensions and hence induces
C: .@Pz’em — .@(?2’”. Moreover, for X, € _@(EQ] the object Yy = Co f*(Xo) € .@ODZ’G‘T
has by construction the underlying diagram

(4.16) C o d3(Xg) — C o di(Xo)

| |

00— Cody(Xo).

Finally, we set Zp = 27" and X, = X and apply tcof: 27" — Z to Yy. Using
(4.16) we conclude, that the bicartesian square tcof(Yp) exhibits (4.14) as a cofiber
sequence. 0

Corollary 4.17. Let n > 0 and 2 a stable derivator. Let X € @B <1, Then,
if two of the three n-cubes d5(X),d;(X) and d§(X) are bicartesian, also the third
one is bicartesian.

Proof. This is immediate from Proposition 4.7, Proposition 4.13 and the 2-out-of-3
property for zero-objects in cofiber sequences. (I

Remark 4.18. An alternative strategy to prove Corollary 4.17 relies on the corre-
sponding unstable statements [BG18a, Prop. 7.20] and Corollary 4.8.

Proposition 4.19. Let n > 0, Z be a derivator and f: A — B and g: " — B
functors between small categories such that there is a full subcategory B’ C B with
(1) f(A) € B
(i) 9(06 n—1) € B" and g(0) ¢ B',
(i) the functor O0g ,,_1 — B’/g(oo) is a right adjoint
Then the essential image of fi: 24 — PP consists objects X € PP such that g*(X)
18 cocartesian.
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Proof. This is a special case of [BG18a, Lem. 7.6]. O

We conclude this section with a new characterization of the total cofiber mor-
phism.

Proposition 4.20. Letn > 0 and 2 a stable derivator. Consider the factorization
of the inclusion df: O — O +1

a +1 B +1
0" —0Og,, — 0"
Then there is an natural isomorphism tcof = 00* o By 0 ai,: """ = 9.

Proof. The essential image of 5y o a, is contained in the full subderivator of bi-
cartesian n + 1-cubes. As a consequence, [BG18a, Cor. 9.9] yields an isomorphism
tcofo(d9)* o B0, = tcofo(d))* oBioa,. Since a and J are fully faithful we invoke
[Gro13, Prop. 1.20] for isomorphisms (d?)* o 8 o a, 2 idm». On the other hand a
is an extension-by-zero morphism [Grol3, Prop. 1.23]. We conclude that essential
image of (d3)* o B o a, coincides with the essential image of co|: 2 — 25" (where
oo’ denotes the final object of (0") and using the previously mentioned results of
[Grol3] again we obtain the first isomorphism in

tcof o (dJ)* o B 0 v, = tcof 0 00] 0 00™ o (dJ)* 0 B 0 @y = 0™ 0 B 0 (.

The second isomorphism is [BG18a, Lem. 8.19]. O

5. THE DERIVATORS %, i

In this chapter we introduce for a given stable derivator & a family of stable
derivators %, ) parametrized by pairs of natural numbers. These will be the ob-
jects of main interest in this work, and their properties will be analyzed in the
forthcoming chapters.

Definition 5.1. Let P C Z**! be a subposet, z = (zg,--- ,x;) € P and 2 a stable
derivator.
(i) 0, = {(xo + o, -,k + dx)|; € {0,1} for i € {0,--- ,k}} C P we call
this the elementary subcube of P starting in x.
(i) If O, ¢ P we say that P does not contain the subcube starting in z.
(iii) Let x € P such that 0, C P and X € 2%, then we call

O0,(X) == X|p, € 27"
the elementary subcube of X starting in z.

Ezample 5.2. The subposet A,, , C ZF+1 contains Uy if and only if f is injective.

Definition 5.3. Let P C ZF*! be a subposet. We say an object X € 2% satisfies
property (P1), resp. property (P2) at a point € P if the following condition
holds:

(P1) O, C P and O,(X) is bicartesian.

(P2) X|, = 0.

Recall from Corollary 3.24 that the choice of coordinates 0, induces embeddings
of posets A, , C ZFF1.

Definition 5.4. Let n > —k+1,k > 2. The derivator 2, is the full subderivator
of Z8n+r-1.6-1 gpanned by those objects X € PAn+r-1.1-1 gatisfying
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(i) property (P1) for all f € A, ) ;1 ,_; that are injective,
ii) property (P2) for all f € A, ., 1 ,_; that are not injective.
n+k—1,k—1

We note, that Lemma 2.4 implies that %, j, is stable, as PAn+i-10-1 s stable.

Remark 5.5. The index shift appearing in Definition 5.4 is motivated by the fol-
lowing observations.

(i) The index n of &, j refers to the dimension of a maximal subsimplex. More
precisely, for all [ € k the natural number n is exactly the maximal number
such that there exists an injective (xo, - -+ ,ox) € A1 44 With (zo, -+, 211, 21+
m, Ty, 5 Tk) € Ay, injective for all m € n. In particular, by
[GS14a, Thm. 4.5.] we have equivalences

Dy 0 = P,

(ii) The index k of 2, j refers to the dimension of the subcubes which are forced
to be bicartesian.

Remark 5.6. The property (P2) for non-injective objects implies immediately, that
there are equivalences %, 1, = 0 for n < —1 (since this assumption implies that all
objects in A, ;1 ;_; are not injective).

Remark 5.7. From the discussion in Examples 2.5 it is clear that the inclusions
Dy PAntk-1.5-1 are indeed inclusions of full subderivators in the sense of Defi-
nition 2.2. Nevertheless, we carry out the details for the case of property (P1) for
an injective object * € A, ;1,1 and the left Kan extension morphism along a
functor u: A — B between small categories A, B € Cat. The diagram

(DTde)* (LO,k—l Xid)!

DApy1p1 X A) 2(0F x A) P(0§ 1 < A)

(iqu)xJ/ (iqu)yl (iqu)yJ{

P Bnik-14-1 % B) ggm 2(0* x B) o, P (k-1 % B)

commutes up to natural isomorphisms, since wu; is a morphism of derivators. We
assume that X € Z(A, ;1,1 X A) satisfies property (P1) in 2. This means
exactly that there exists Y € Z(CJ ,_, x A) such that
(g x1d)"(X) = (v0,5—1 x id)1(Y).
Then the above diagram yields
(O x id)* o (id x u)i(X)

%

(id x w)y o (O, x id)*(X)
(id x w)r o (Lo,x—1 x id)1(Y)
)(Y).

[l

Il

(Lo’k,1 X ld)l o (ld XU
This is property (P1) for (id x u);(X) at .

In the following, we will discuss the most important automorphisms of the deriva-
tors D, k.

Corollary 5.8. Let n > —k+ 1,k > 2 and 2 a stable derivator. The inverse
images of the symmetry automorphisms

51,8520 A1 k-1 = Aot k-1
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restrict to automorphisms
* %
S1,So: 97!716 — @n,lv

Proof. Proposition 3.41 implies that all of the four operations 51,52,sf1 and s;l
preserve injective objects. Hence all of the maps also preserve non-injective objects.
This yields the compatibility of sj and s; with the property (P2) on non-injective
objects. Let e; € 7ZF, j € {0,--- ,k — 1} denote the jth basis vector. Then we
invoke Proposition 3.30 for s1(f + e;) = si(f) + €5, so(f +€;) = so(f) + €1 if
j>1andsa(f +eg) =s2(f) + ex—1. This shows that postcomposition with s; and
so maps elementary subcubes to cyclic permutations of elementary subcubes. Since
bicartesian cubes are stable under permutation of coordinates [BG18a, Cor. 4.10],
we conclude that s} and sj are compatible with the property (P1) on injective
objects. O

Remark 5.9. Proposition 3.39 implies that Ai”jk_l w1 = A, 11 It will become
clear later, that the derivator %, ;, has many properties one would expect from an
object associated to A,,_; ;. Moreover, by Proposition 3.41 the automorphism

s;tosy: Apik—1k-1 = Apyp_1-1 restricts to sy on the subposet of injective
morphisms. This motivates us to use the notation

S3 1= 51—1 0sy: A7l+k—1,k—1 - An—&-k—Lk—l'
Definition 5.10. Let n > —k+ 1,k >2and { = (0,1,--- ,k—1) € A,y 1 4 1-
Consider the following full subcategories of A,, ;1 ;1.

(i) The fundamental domain Doy, i := (A, 11 k—1)¢/sk(e) With inclusion
dop k2 Doy ), — An+k_17k_1.

(ii) The fundamental slice Si,, j, := (An-l—k—l,k—l)g/sf;*l(g) with inclusion
Sly gt Sy — An+k_1,k_1.

Definition 5.11. Let n > —k+ 1,k > 2.

(i) The derivator of fundamental domains do%, . is the full subderivator of
@Ponx spanned by those objects X € 2Pk that satisfy
(a) property (P1) for all z € Do, j such that 0, C Do, ,
(b) property (P2) for all € Do, j such that do, x(z) is not injective.

(ii) The derivator of fundamental slices sl%, ) is the full subderivator of
95k spanned by those objects X € 2P+ that satisfy property (P2) for
all x € Sl,,  such that s, y(x) is not injective.

Theorem 5.12. Letn > —k + 1,k > 2 and Z a stable derivator. The inverse
images of doy, 1, and sl restrict to equivalences

d0;7k: D je — oDy and sl D — 81D -
Proof. We show the statement for si} ;. The statement for doj, , is very similar.
We consider the following subposets of A, ;1 ;1

¢ Ay =Sl xU{x € A, non-injective|Jy € sl, 11 y < x},
e Ap=A1U{z €A, j 11Ty Eslur:y <zl
e A3=AyU{xr €A, ) 1, non-injective|Jy € sl 1: < y}
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with inclusions
Ul u us U4
Sl — A — Ay — A3 — AnJrk,Lk,l.

We claim that u := (u4).0(uz)ro(uz)io(u1). is inverse to sl ;. We observe that the
inclusions u;, 1 < ¢ < 4 are fully faithful. Then [Grol3, Prop. 1.20] yields that Kan
extensions along u; are also fully faithful and that the units of (u;); = u} and counits
of uf 4 (u;)« are invertible. Hence it is sufficient to show the essential image of w is
contained in %, ;. Since u; is a sieve, the corresponding right Kan extension is an
extension-by-zero morphism [Grol3, Prop. 1.23|. Using that the units of (u;); 4 u}
and counits of uf - (u;)« for ¢ > 2 are invertible, we conclude that objects in
the essential image of u satisfy property (P2) for non-injective objects in A;. We
claim that objects in the essential image of (ug): 241 — 242 satisfy property
(P1) for all injective objects in As. Let x be an injective objects in As. We define
B, = Ay U{y € As]y <s1(z)} and consider the inclusions A; 22y B, 25 Ay, We
observe that ugs = w, ov,. Hence (us); = (wy )10 (v, ) by the pseudofunctoriality of
right Kan extensions. In particular we have 0% o wy = 0% o (vy)1 0 (u1)«. We show
that we are now in a situation where Proposition 4.19 applies. For this we consider
B;, = B, \ {si(z)}. We observe that (B})/s,(z) = {y € Byly < si(z)}. To show

that the restriction Ogfmx 08 1—1 = (BL)/s,(x) is a right adjoint, we use the

1
fact that an embedding of posets q: P — S is a right adjoint if for every element s
not in the image of ¢ the set {p € P|q(p) > s} admits a unique minimal element.

To establish this in our situation we use that for b € (B,) /s, () the implication
b<O,(M)ANb<O,(N)=b<O,(MNN)

holds by construction of [, for M, N € OF. Therefore, Proposition 4.19 yields
the cocartesianess of objects in the image of 0% o (v;);. Moreover, Corollary 4.8
yields the bicartesianess of these cubes. By using again that the units of (u;) = u}
and counits of u} 4 (u;). are invertible and the dual arguments for uz and u4, we

conclude that the essential image of u is indeed contained in 2, .
O

Remark 5.13. Let n > 0,k > 2 and Z a stable derivator.

(i) Let i € {1,2,3}. Theorem 5.12 allows us to define the symmetry operations
on derivators of slices and domains via
o sp=slosio(sly )7 sl Dk — 8l Dk,
o 57 =doj ; os;o(do}, ;)" doDn ke — doD .
We emphasize that, although the notation might suggest that these mor-
phisms are restrictions of inverse images, this is in general not the case.
(ii) Let sdyi: Slpk — Doy i be the inclusion. Since sl , = dop i 0 sdy, i it fol-
lows from Theorem 5.12 that sd; i 0Dy 1 — slD,, i, is invertible. Moreover,
by construction (recall that the units of (u;); < u} and counits of u} - (u;).
are invertible) the inverse can be constructed as (uf); o (u])«, where

Sl k -, Doy i \{f = (fo, -, fx) € Doy |f injective, fo > 1} 2, Do, i,

are the inclusions.
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(iii) Consider the map sNdmk: Sty — Doy, f > s3(f). Then the diagram

9n,k:

shoi, 3080,
Y do:,,k :

Sl doDny ——— slDn i

Sdp 1% Sdn,k
commutes. This yield an isomorphism
¥ * —1 ~ % * * —1 ~ %
Sdn,k © (Sdn,k:) =S30 SZn,k: © (Sln,k) = S3-
Thus we regard sl as a minimal model of %, ;, and do%, ; as minimal
among those models where s3 is computable as an inverse image.
Ezxamples 5.14. Let 2 be a stable derivator.
(i) Let n > 0. We consider the case k = 2. Then

¢£=1(0,1) and s3(§) = (0,n+1).

Hence the assignment ¢,,: [n] = Sl 2,7+~ (0,9+1) defines an isomorphism of
categories. As a consequence, Theorem 5.12 provides us with an equivalence
of derivators

slfh2 o [n]
.@n,g —_— Sl.@mz — g™,

We emphasize that this special case is exactly the content of [GSMa, Thm. 4.5.].
(i) Let n =0 and k£ > 2. In this case we have s3 = idy(a, ,,A,_,). In particular,
there are isomorphisms 1 = Sly ;, = Doy ;. As a consequence, Theorem 5.12
implies that
5*2 @0_’]6 = Sl@o,k ~g

is an equivalence of derivators.
(iii) Let now n =2 and k¥ = 3. Then

€=(0,1,2), (&) =(0,1,4) and s5(¢)=(0,34).
We define the category X = [2] x [2] \ (2,0). Then the assignment
X — Slas, (i,7) — (0, + 1,5+ 2)

defines an isomorphism of categories. Moreover, by Theorem 5.12 the deriva-
tor s 3 is equivalent to the full subderivator of 2% spanned by those objects
x with (1,0)*z = 0 and (2,1)*z = 0, i.e. objects such that the underlying
diagram is of the form

20,0 Zo,1 20,2
0 T1,1 T1,2

0— a0
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Remark 5.15. Let k be a field. It is immediate from Iyama’s inductive construction
([Lyall, Thm. 1.18], c.f. also [OT12, Thm. 3.4]) of the k-Auslander algebra Tr(bk)(k)

of the ffn—quiver, that Tflk)(k) can be described by the quiver generated by the
injective objects in Sl,,41,5—1 and two types of relations. The first type corresponds
exactly to the commutativity of all existing elementary subcubes and the second
type type of relations deals with the vanishing of compositions, which factor through
a non-injective object in Sl,,_1 x+1. In particular, there are exact equivalences of
triangulated categories

(Z)n-14+1(1) = sUZ)n-14+1(1) = D(TP (K)).

Furthermore, the automorphism sflz (D)n-1k+1 = (Di)n—1,k+1 corresponds un-
der these equivalences to the k-Auslander-Reiten-translate ([Iyall, §1]). This fol-
lows from the relation sfl =s30 551 by identifying sy = ¥ (Corollary 5.19) and
relating s3 to the Serre-functor (Remark 5.22).

Proposition 5.16. Letn > 1,k > 2 and 2 a stable derivator. There is a natural
isomorphism
k-l sy, ©55 0 (sl:;k)*l: slDy i = SlDp k.

Proof. Consider the map J: Sl x OF — A, k-1 k1 defined by the assignment
((f07 e afk—l)v (60, e ;5k—1)) =

(fo+60(f1 — fo)s s fe—2 + Ok—2(fk—1 — fr—2), fo—1 + Ok—1(fo +n +k — fr—1).
It is easy to see that J is a well defined morphism of posets (and hence a functor).
Let f = (fo, * fr—1) € Slpx and 6 = (8o, ,6,_1) € OF\ {0, 00}. We claim,
that in this case J(f,d) € A, ;1,1 is not injective. If §p = 1, there exists by
assumption ¢ < k — 1 minimal with §; = 0. Hence J(f,8);_1 = J(f,8);. If 69 = 0,
there exists by assumption i < k — 1 maximal with §; = 1. If i < k — 2, we have
J(f,8);i = J(f,6)i+1. In the remaining case i = k — 1 we observe J(f,d)r—1 =
J(f,0)0 +n+ k to conclude the claim.

Moreover, we observe

(5.17) J o (id x 0) = sl 1
and
(5.18) J o (id x 00) =53 0 8l k-

As a consequence, the inverse image of J restricts to a morphism
k
T Dy = (1D )"

We claim furthermore, that for all f € S, and X € 2, j, the k-cube (f xid)*(X)
is bicartesian. In fact, if f is not injective, the cube in question is constantly zero
(in particular bicartesian). Otherwise it is a concatination of the bicartesian cubes
Dg(X) fOI‘g = f—|—(l€0,"' 7I€k_1) with 0 S Kj S fi+1 _.fi —1for 0 S ) S k—2
and 0 < kg1 < fo+n—+k— fr_1 — 1, and hence by Corollary 4.17 bicartesian.
Therefore the essential image of J* is contained in (sl_@n,k)mk’”. As a consequence
of this, the first claim and (5.17), we obtain by [BG18a, Ex. 6.7] the identification

(id x 00)* o J* = £F 1o slx .

Finally, (5.18) yields sl , os3 = ¥¥"1 o sl* , and we conclude by precomposing
with (sl )71 O
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Corollary 5.19. Let n > 1,k > 2 and & a stable derivator. There is a natural
isomorphism
Ek71 = S;: @%k — @nvk'

Proof. Proposition 5.16 implies the second isomorphism in
yho1l o (Sl:uc)_l oxk-1, sy =255 Dnk = Dok
and the first isomorhism is induced by the exactness of sy, - O

Remark 5.20. Let n > 1,k > 2 and & a stable derivator. Theorem 5.12 implies
immediately, that an object X € 2, j is completely determined by doy, x(X). Using
Corollary 5.19 we can relate the objects f*(X) for f € A, ,_; ,_; arbitrary directly
to doj, ;.(X). For this we note that Do, ) contains i(g) for every injective map
g: Ag—1 — Apip—1. Hence, for an arbitrary injective f € A, x4 ;_1, we obtain

X)) = (EN ei(g)* o doj, (X)
for the unique [ € Z induced by Proposition 3.31.

Corollary 5.21. Let n > 1,k > 2 and 9 a stable derivator. There are natural
isomorphisms

(s5)"TF = (sh)r =2k g = D

Proof. The second isomorphism is Corollary 5.19. For the first isomorphism we
invoke Lemma 3.7 for the relation s7™* = s of automorphisms of A, k1 k1"
Hence

(s5)" 7 = (s5 0 (s7) 7)™ = (s5)" o (s3) 7 = (s5)"

O

Remark 5.22. For a field k and 2 = % the autoequivalences s3 induce Serre equiva-
lences on underlying categories. Moreover, for & general it was shown in the special
case of k = 2 that the autoequivalences s; can be considered as Serre equivalences
in a derivator theoretic sense [GSMa, Thm. 11.12]. Hence Corollary 5.21 suggests
that the derivators %, , have a fractionally Calabi-Yau dimension of % We
refer to [Ladl3] for some related examples of fractionally Calabi-Yau categories.
We also observe that the enumerator and denominator of this fraction both are
invariant under the assignment

(n,k)— (k—1,n+1).
We will strengthen this observation with Theorem 11.6 by constructing equivalences
(I)n,k: @n,k — @kfl,ﬂﬁkla

which commute with s§ and . In fact, the first step towards this result, the special
case k = 2 (or equivalently n = 1) will be the main content of §6.

Furthermore, it is worth to mention that infinite chains of adjunctions very often
turn out to be 2-periodic with respect to Serre equivalence. This observation will
be investigated more closely in [BG18b]. We will encounter examples of such in-
finite chains of adjunctions in Corollary 8.24 and Corollary 9.15. In these cases
the fractionally Calabi-Yau property will be very useful for the understanding of
iterated adjoints.
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For technical reasons it will become useful in the proof of Theorem 11.6 to extend
objects of Z,, i to all of ZF by 0. The next proposition shows, that this is always
possible.

Proposition 5.23. Letn > —k+ 1,k > 2. Let @n,k be the full subderivator of
1728 spanned by those objects X € D% that satisfy
(i) property (P1) for all x € Z* representing an injective object in A, j 1 j_1,
(ii) property (P2) for all other x € ZF.
Then the Kan extensions ji, js: PArirrn-1 5 P restrict to morphisms
iie: Dok = Dge.
Moreover, the restrictions coincide and are equivalences.

Proof. We show that the restriction of j, is well defined and an equivalence. Since
Jt Ay k11 — ZF is fully faithful, the same is true for j, [Grol3, Prop. 1.26].
Hence it is sufficient to identify the essential image of j. with an For this it is
enough ([Gro13, Lem. 1.21]) to show that for # = (2o, -+ ,@x—1) € ZF\ Ay j_11
and X € P, ), we have 2*},(X) 2 0. Since A, ;. and Z* are posets, we can
identify A, 4 ,_1 x—1,,, With the full subposet of A, ;_; ,_; on those objects which
are pointwise greater or equal then z. Let i, denote the inclusion of these posets.
Axiom (Der4) implies

(5.24) ¥ 0], 2 (mp

—n+k—1,k—1,z/)* ° Z;

We claim that A, ;1 1,/ admits a minimal object. To see this we note, that
if # <! and x < 2? for x' = (z§,- -+ ,25_y), 2% = (8, ,27_1) € MApyp 151
then also min(z', %) = (min(zg, 23), - ,min(z;_,,2¢_1)) € A, 14, and by
construction z < min(z!,z?). Next, we claim that the minimal object 20 =
(z8,---,2% ) € A iko1 k-1, 1S DOt injective in Ay_y 1) 4. For this we as-
sume that 2 is injective. Since x ¢ A, there is either i € {1,--- ,k — 1}
such that ; < z;_1 or xg +n+ k < zx_;. Then we define =1 € ZF in the first
case by (2, -+ ,29—1,---,29_,) and in the second case by (z) — 1,29, ,2?_,).
Then we have by construction

r<az ! <a® and Sl WY

This contradicts the minimality of ° and proves the second claim. Hence property
(P2) holds for 2° which leads to the last isomorphism in

2" 0 . (X) = (my 0 i1(X) = ()" 0 i3 (X) 2 0,

—n+k—1,k‘—l,x/)* T

The first isomorphism above follows from (5.24), and the second from the first
claim. The proof of the statement for j; is completely dual to the above. Finally,
the isomorphism ji £ j.: Zp 1 — an follows from the observation, that both
functors are inverse to the restriction of the inverse image morphism j*. [l

Remark 5.25. We define the cubical slice SlE,c =7 and the derivator sl@mk

k
- €/s57 '€ -
to be the full subderivator of 2°!n.x spanned by those objects X € 25w that
satisfy property (P2) for allz € S ZE, 4> which are not the image of an injective object
in Sl,, . We can show with the same strategy as in the proof of Proposition 5.23,
that A

(j|5ln1k)!: Sl@n,k — Sl@n,k
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is an equivalence. Let le’k: SlE’k — ZF be the inclusion. The square

X
Sln,k

@n’k — Sl@n’k

jzl J(ﬂszn,k)!

@n k—— Sl@n k

e
commutes up to natural isomorphism (since the inverses of the vertical morphisms
are given by restrictions of inverse image morphisms). We note that the top mor-
phism is an equivalence by Theorem 5.12. Hence the entire square consists of
equivalences.

6. THE CONTRAVARIANT S,-CONSTRUCTION

In this section we establish a comparison result between the derivators Z,, » and
PD1,n+1 for n > 1. This can be regarded as a generalization of the following classical
result from representation theory. Let k be a field and R,, be the quotient of the
path algebra kffn by the ideal generated by paths of length two.

Proposition 6.1. Let n > 1 and k be a field. Then there is an exact equivalence
of triangulated categories

Db(kA,) = D*(R,).
Proof. This is [HS10, Prop. 2.1]. O

Let us consider the special case n = 4. In this case an R,-module is is given
by a functor F': [2] X [1] = k — Mod such that F(0,1) = F(2,0) = 0. Using the
universal property of the zero-object we can extend F to a functor (0° — k — Mod
as indicated by the diagram

(6.2) 0m——————— = 0

Hence we obtain an equivalence between the corresponding functor categories with
the respective zero-conditions. We will show in Theorem 6.9 that the description of
the relations based on cubical shapes (6.2) generalizes well to the setting of stable
derivators. This motivates us to introduce the notion of a cube supported on a
maximal path in a stable derivator 2. The resulting derivators are of the form
slP n, (Proposition 6.6).

Definition 6.3. Let n,k > 0. A non-degenerate k-simplex s: [k] — " is called a
path in O0". A path is called maximal if k = n.
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FEzample 6.4. Let n > 0. The standard maximal path is defined by the functor
—:n]—->0%i—{n—14,---,n—1}
Moreover, all other maximal paths in (0" are obtained from — and a permutation

o € Aut(n) by —,: [n] — O0"i — o(— (i)). Furthermore, this construction
defines a bijection between Aut(n) and the set of maximal paths in O™,

Definition 6.5. Let n > 0, Z a stable derivator and —, a maximal path in O".
The derivator of n-cubes with —,-support @EZ is the full subderivator of
29" spanned by those objects X such that for all M C n with M not in the image
of —, the property (P2) holds, i.e. M*X = 0.

Proposition 6.6. Letn > 2 and & a stable derivator. Then there are equivalences
of derivators

sihn =29 and  dody, = 79"
Proof. We note that in this case £ = (0,1, ,n — 1) and by Lemma 3.7
sy =sy0(s1) " =s1.
Therefore, we conclude that (s3)"(€) = (1,2,--- ,n) and (s5)""1(&) = (0,2, ,n)
that hence O¢: 0" 1 — Sl ,, € Z" ' and O¢: 0" — Doy, C Z™ are isomorphisms
of categories. Moreover, under these isomorphisms the objects of (1" ~! and (0" with
non-decreasing coordinates, i.e. the objects in the image of the maximal path —,

correspond exactly to the injective objects in Sl; , and Do, respectively. As
a consequence, we obtain that the inverse images LI restrict to an equivalence

slD = @Enﬂ and an embedding do%; , — QER, respectively. In the latter
case, the property (P1) for £ (which is unique in Doy, with O¢ C Doy ,,) allows us
to identify the essential image of this embedding with @Envex. O

Definition 6.7. Let n > 1 and Z a stable derivator.
(i) An n-cofiber sequence in 2 is an object in 21 ,,41.
(ii) Let X be an n-cofiber sequence in D. The base of X is the object sl ,,,1(X) €
SID1 py1.-
(iii) Let X be an n-cofiber sequence in D. The n-cone of X is the object s1(£)*(X) €
72

Remark 6.8. Let n > 1, & a stable derivator and X an m-cofiber sequence in
2. Then by Proposition 6.6 and Corollary 5.19 the underling diagram of X is
determined by a sequence

LY X > Ty — BTy — DT >
in (1) such that
e all consecutive compositions vanish,
® Ty — T] — -+ — X, gives rise to the underlying diagram of the base of X,
® 7,1 is the n-cone of X.
Moreover, if 2 is a strong derivator the underlying diagrams of 1-cofiber sequences
give rise to distinguished triangles. We will come back to this notion in §7 and §12.

Theorem 6.9. Let n > 0 and Z a stable derivator. Then there is an equivalence
of derivators
ol gl = gt
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Proof. Let T € Aut(n), 7(i) = n — 1 —i be the flip permutation. We claim that the
desired equivalence of derivators is defined by the composition

(6.10)

gl 2y gan B g0

Since —,: [n] — 0" is fully faithful the same is true for the associated Kan exten-
sion morphism. And since fibt: 29" — 29" is an equivalence ([BG18a, Prop. 8.9]),
we deduce that (6.10) is an embedding. As a consequence, to conclude it is suffi-
cient to identify the essential image of (6.10) with an. To do this, we proceed in
three steps.

(i)

(iii)

(6.11)

For 0 < ¢ < n we denote by L; C " the subcategories spanned by the
objects
L;={M Cnl|iC M,i ¢ M}.

We observe, that the collections L; are (n — 1 — i)-dimensional subcubes of
0" (here we use the convention that (—1)-cubes are singletons) and that the
L; for 0 < i < n together define a partition of the set of objects of (0. We
denote by

v Ly —O" and mis Ly — 1
the inclusion and the canonical projection, respectively. Moreover, we see
that for 0 <i<n

L; = {M € O"|i € [n] is maximal with 3(—, (i) > M) € O"}.

In particular, the right adjoint p: 0" — [n] of —,: [n] — 0" exists and can
be described by

p(M) =i < M € L,.
We can characterize the essential image of (—,): 2" — 25" as the sub-
derivator consisting of those objects € 27" such that the counit

(= (=) S

is invertible. Since —,- p we reformulate this by contemplating the pastings

O —2 s ] —=» 0O Or —2 O
idJ ,,//€ lﬁT g{d lid = idl ya lid
g —)_d g —)_d a» " 4>‘d 0.

Using the homotopy exactness of the square on the left, we conclude that
(—=-)1(—7)*x — x is invertible if and only if the canonical mate

e pt (=)' >
is invertible. But this is the case if and only if ¢Jx is constant (i.e. in the
essential image of 7}) for all 0 < ¢ < n. We denote by 5" < 99" the
subderivator of all such objects .
We claim that cof:: 20" = 95" restricts to an equivalence of derivators

75" = 97"
and show this via induction on n > 0. For n = 0 the morphism in question

can be identified with id: ¥ — &, and are therefore equivalences. Let now
ng > 0 fixed. We assume (6.11) for all 0 < n < ng.
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Let 2 € 29" Then we observe
(6.12) Az e 257 and (d))*z € i K
We can regard z as an object of (27"°)) with underlying diagram
(d9)*z — (dg)*z.
As a consequence, we can compute cofX(z) as the cofiber of an object of
(29" with underlying diagram
yo = cofH(d%)*z — y; = cofH(d)*x.
By induction assumption, [BG18a, Lem. 10.2] and (6.12) we conclude that
yo € 29" and that y; is constant, which in turn implies that coff(z) €
@Dn,0+l’n.
Conversely, let y € 29"k We observe that (d9)*y is constant and
(d)*y € 29" % We can regard y as an object of (29" with un-
derlying diagram
(d)*y — (d5)"y.
Similarly as above, we can compute fibl(y) as the fiber of an object of
(27" with underlying diagram
zo = fibX(d))*y — 2 = fibt(dd)*y.
By induction assumption, the assumption on y and [BG18a, Lem. 10.2] we
obtain z; € 25" and =z € 29" Bolno—1. Thus fibl(y) € @ETLOH, which
completes the induction step.
O

Corollary 6.13. Letn > 0 and Z a stable derivator. Then there is an equivalence
of derivators

O,ex . n] ~ antlex
giher. glnl ~, g8 :

Proof. We consider the diagram

(6.14) glnl Gt ini1) 00 (20 pOn 1 k0o fibt @O e
Glnt1] (= @Dn+17,€ fibk @E”L+1.

Since d,,+1 is sieve, [Grol3, Prop. 1.23] implies that the associated right Kan ex-
tension is an extension by zero morphism and

essim((dpp1)y) = @,

Hence the left morphism in the upper row of (6.14) is an equivalence. Moreover,
it follows from the proof of Theorem 6.9 that both morphisms in the lower row

are equivalences. The left of these equivalences restricts to (—,);: @It =
P w2 hecause of Ly = {oo} € O™ and the right equivalence restricts to

fibl: g0 moo =y 90" ex by Proposition 4.7. 0

Corollary 6.15. Letn > 1 and Z a stable derivator. Then there is an equivalence
of derivators ~
\Ijn: -@n,Q = gl,n+1~
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Proof. Let ¥,, be defined by the following chain of equivalences

glhes n
(6.16) Do = 81 Do = M 2oy G 2 o9y S Dy,

where the first and fifth equivalence is Theorem 5.12, the second equivalence is
Examples 5.14 (i), the third equivalence is Corollary 6.13, and the fourth equivalence
is Proposition 6.6. O

Theorem 6.17. Let n > 1 and & a stable derivator. Then there are natural
isomorphisms

(i) € o (s5)" oW, 2 ¢ Pys— P and
(”) S§ oV, =¥,o0 s§: 9’@,2 = 91,n+1-

Proof. For the first statement, we observe that {*: 2, — 2 corresponds to
0*: 2" — 2 under the first two equivalences in (6.16), whereas the composi-
tion £* o (s§)" ' 24 41 — 2 corresponds to co*: g9""er 5 9 under last two
equivalences in (6.16). Hence the commutativity of the diagram

o

>~ +1], ‘:|n+17 , = D"+1,
glnl =, glntlleo _ =, ¢ roo _—_y " ex

o
0 [eS)

7,

where the top row is UEh¢® completes the proof of (i).
For the second part we show the equivalent statement

(6.18) (s3) 1 oW, 2V, 0(s5) ™ Dini1 = Don.
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Let ¢: [1]x[n]\{(1,n)} — [n] be the functor defined by ¢(0,¢) = 0 and ¢(1,7) = i+1
and ¢: [1] X [n]\ {(1,n)} — [1] X [n] the natural inclusion. We consider the diagram
syt
-@n,2 > -@71,2
sly o sl o
53_1
Sl.@n,g Sl.@mz
glnl 95 glx[n)\{(1.n)} L glixn] FXid 5w
(dn+1)« (dn+1)«
9[n+1],oo (idx(=+)) @[n+1],oo
Php1=(=o) =o=pn | pha=(o0
@D"Jrl,n,oo @D”,n gDn+1,n,m

Fxid (ary*
fibl fibIJ( fibl
QD"Jrl,e:c @D"’ 9D”+1,em
— (@) — ) —

@~ Dz)ll @
dO-@l,nH oy Sl@l,m—l - dO-@l,nH
(dof,n,+1)71 (dof,n+1)71
D11 — D11
S3

We observe that the outer vertical compositions in the diagram above are by def-
inition U,,. Moreover, the top cell commutes by Remark 5.13 (i), the two squares
involving fibl in the vertical direction commute by Remark 4.6, the two squares
involving (Dz)_l commute since they are induced by restriction from inverse image
squares associated to commutative squares of functors in C'at, and the bottom cell
commutes by Remark 5.13 (iii). In the next step we show that also the cell directly
below the top one commutes. Let r: 0% x [n] — A, ; be the functor adjoint to

the functor [n] — (Anﬂ’l)m2 which maps 7 to the square

(—n+1i,1) — (—n+1i,i+2)

| J

(0,1) ——— (0, + 2).

Since the squares above are concatinations of elementary subsquares of A,, | ; ;, we

deduce from Corollary 4.17, that the associated inverse image morphism restricts
2

to 7 Dpo — (2IM)F¢7 and to conclude we note

b (070)*T* = SZ:,Q(S‘;)ilv
e (0,1)r* =0,
o (dd)*r* = G sly, o
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Furthermore, since sd doD1 41 — SID1 1 is an equivalence by Remark 5.13 and
the vertical morphisms in the two squares above are equivalences by Proposition 6.6,
we conclude that also (d2)*: 29" er 5 0" and (dp)*: @B e o PNk
are equivalences. In the following we construct the isomorphism (6.18) as the
composition of isomorphisms

v, osg1

>foo (=, h10(dpy1)eo(F xid)or,0q o fy

Efz0(=r)ro(dns1)s o (F xid) o (id x (=) o pry 0 (dnt1)s 0 f1
Efao (=)0 (dns1)s 0 (=) 0 (F xid) o pryy o (dnt1)i 0 fa

>fy 0 ((d}) )_1 o(=ho(=7)"o(F xid)opy,qo(dnyi)so fi
=fr0((d})*) " o (F xid) o pjiy o (dut1)s 0 fi

%sgl o,

Here we have used the abbreviations f; and fs for the composition of the first two
morphisms in the left column and the composition of the last three morphisms in the
right column of the diagram, respectively. Moreover, the first and last isomorphism
above follows from the commutativity of top two and bottom three rows in the
diagram, respectively. For the remaining isomorphisms we consider the following.

1

*

—~

e For the second isomorphism we show that the left triangle commutes. We
denote by ¢’ the composition

[1] < [n] O+ 2255 [+ 1]

and observe that ¢’(0,i) = 0 and ¢'(1,7) = ¢ + 1. It is sufficient to show that
the square

idXx (=)

gl 4> gNIx [N\ {(1,n)}

(dn+1)*l JL*

@[n+1] @ [1]x[n]

commutes. The above description of ¢ implies (1,n)* o ¢"* o (dpt1)« = 0.
Hence the essential image of ¢"*o(d;,+1)« is contained in the essential image of ¢,
([Grol3, Prop. 1.23]). Therefore, it is sufficient to show that ¢* og™ o (dy41)« =
q* ([Grol3, Prop. 1.20]). But this follows from ¢'o¢ = d,,11 0g, since the counit
of the adjunction (d,41)* - (dst1)« is invertible (again [Grol3, Prop. 1.20]).

e For the third isomorphisms we note that morphisms of stable derivators (in
particular the inverse image morphisms (—,)*) commute with cocones.

e For the fourth isomorphism we show that the right triangle commutes. For
this we observe that p,4+10d} = dp41 0p,. Again the counit of the adjunction
(dp41)* 7 (dp41)« induces the desired isomorphism.

e The fifth isomorphism is induced by the mutually inverse equivalences (— )
and (—,)*.

O
Remark 6.19. In fact the statement of Theorem 6.17 is a special case of Theo-

rem 11.6 which will be proven independently. We decided to give an explicit proof
at this point nevertheless, since Theorem 6.17 is the central motivation for defining
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the duality morphisms Definition 6.21. Moreover, Theorem 6.17 we be the the main
ingredient for the construction of derivator Toda brackets in the following chapter.

Remark 6.20. We also define the equivalence U/, : 9, o = %4 p+1 as the composi-
tion

ol n
Do 8l Dno = M 5 95" 281Dy i1 S Dy
Then the proof of Theorem 6.17 yields the relation ¥/ 2% o 0,,.

Both statements of Theorem 6.17 together imply that the equivalences 0, re-
spect the values at s4(£) up to some shift in ¢ € Z. Because of this, we redefine ¥,
such that the compatibility above holds without any shift.

Definition 6.21. Let n > 1 and Z a stable derivator. The duality morphism
for the n-simplex is the equivalence of derivators

- 1.1 - ~
\I/n = (S;)nJr o \I’n @mg — @1,n+1~

Corollary 6.22. Letn > 1,1 € Z and Z a stable derivator. Then there are natural
isomorphisms

(1) s5o0W, =W, 085 Dy o~ D1 pi1 and

(i) € o (s5) oW, = £* o (s5)': Dno— 9.
Proof. Both statements follow from straight-forward computations using Theo-
rem 6.17 and ¥,, = (s§)"*! o U,,. O

Ezamples 6.23. We illustrate the effect of the constructions in the proofs of Corol-
lary 6.13 and Theorem 6.17 in the cases n = 1 and n = 2. Let Z be a stable
derivator.

(n=1) We identify 2,2 = 2 and that under this equivalence sj: D2 = Do
corresponds to cof : 2111 = 9l Let # € 21 be an object with underlying
diagram E x1. Then (dz).(z) looks like xq ER 21 — 0. Hence we can
compute the underlying diagram of =’ = p} o (da).(x) as

id
g — Lo
fl |
z; —— 0.

To determine z” = fibX(2’), we extend all morphisms in z’ to the left to fiber
sequences

Qry —— Ff —— xg

N

X9 o
T i T 0.

Here we find 2/ as the upper left square, and hence W, (z) as the upper
left horizontal morphism. Furthermore, the middle vertical sequence exhibits
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the right vertical morphism of 2 as (s§) !z, such that the bicartesianess of

2 implies the ¥y (z) = (s5)~2(z). Since all the previous constructions are
natural with respect to z € 21, we obtain the important relation

U, ~id: 212 - 912,

(n=2) Similar to the previous case we identify %55 = 2l and consider x € 22

with underlying diagram zq ER 21 % x5. Hence the underlying diagram of
x' = p% o (d3)«(x) looks like

r ————— X1

e

Lo Zo

xT9 0

e

Ty ——— Xg.

To compute z”/ = fibX(2’), we again have to extend all morphisms in 2’ to fiber
sequences. As a preparation for this computation we look at the canonical
extension of z to an object of %5 5, whose underlying diagram

0 02z 02z QR 0
|
0 QF f QFgf — Qzg ——0
|
0 QFg Qxy Ff 0
|
0 Qay Fgf Fyg
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encodes all required iterated fibers. We obtain z”, which is also the funda-
mental domain of Wy (z), as the front upper left cube in

| /sz | /Fg | /a;l
Q%Q/ QFg/ Qxl/
Nz
0 / F f/ F f/
a7
sz/ Fg f/ xo./

Moreover, the front square (d9)*(z") of 2’ is the fundamental slice of Wy (z),
and the front [2] x [2]-shaped face of the diagram exhibits (d))*(2”) as
fibl o (F x idg2)(2). On the other hand the right square (d3)*(z”) of z”
is the fundamental slice of s§ o Wy(x). But the middle slice of the [2] x [2]-
shaped diagram exhibits (d2)*(z”) as fib o (d2)*(2’). We remember that the
key step in the proof of Theorem 6.17 consisted in this case of the detailed
understanding of the relation between (F x idm2)(2’) and (d?)*(z').

Remark 6.24. The following result revisits the situation of Theorem 6.9 and will
be used in §11. More precisely, for a stable derivator & there are constructions
completely dual to \IJE and \I/E*ex defined by the compositions

3 — ) n Vv fl n
pOv: gln Loy g0’ <of, g0r,

and

pOVer, gl oy gint1),0 Cndy GOm0 oty g0 e,
Here 27"7%” denotes the essential image of the right Kan extension morphism
along (—,): 2" — 25", Using exactly the dual arguments as before one shows

that the compositions above consist of equivalences. We show that \IITDL’” and
\IJEV’em coincide up to shift, which is immediate from the following.
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Proposition 6.25. Let n > 0 and 2 a stable derivator. Then there is a natural
isomorphism

30 (=) © (o)1 2 coft o (=)0 (dp1)a: Z1 = 777

Proof. Since dg and —, are fully faithful functors it is sufficient to show
e that the essential image of cof: o (—,); o (dnt1). is contained in the essential
image of (=), 0 (do); = 25" "0,
e that there is an equivalence G := (dg)* o (—;)* 0 coft o ()1 0 (dpp1)s = .
For the first point we observe that Remark 4.6 implies
coft o (=)o (dnt1)s = ztlo (ﬁbl)Q o(=7)1o(dnt1)«
and that by Remark 6.24 and Theorem 6.9
@[n] (dn+1)« @[nJrl],oo (=) @D""’l,n,oo &1_) @D"'H,e:r ﬂ’}_) @D"'H,NV,@.

For the second point we consider the functor ¢ : [n] X [n] — [ ], (i,7) — min{i, j}
and observe that the functors I,7: [n] — [n] x [n] defined by (i) = (i,n) and
r(i) = (n,1) are sections of ¢, in particular

(6.26) [* og* Zidgm and r* 0 q" Zidgm.

Since G is a morphism of derivators, it commutes in particular with inverse images,
hence

o(Gxid")og" =2 (id xn)* o (G xid*)oq¢" 2 Go (id x n)" og* =

By plugging in the definitions and using the 2-functoriality of inverse images we
obtain

(6.27) G = ((—,)((=) +1),n)* o (coft x id) o ((—=7)1 x id) o ((dpy1)s x id) 0 ¢

Consider the functors

() m: [n] = O x [n],i = (=)0 +1),n),
(if) v2: [n] = O™ x [n],i 0 (=) (@ +1),9),
(iii) 73: [n] — O x [n],i = ((—-)(n+1),4),
(iv) 7z [n] = O x ], i = (=) (1), 4),

(v) ¥5: [n] = O x [n],i = ((=5)(n), 1),

and the unique natural transformations
a2 = M, Q22 = 73 and  az: s — 3.

We claim that there are isomorphisms

G 277 o (cof x id) o ((—+)1 x id) 0 ((dp1)s x id) 0 ¢*
2~ o (coft x id) o ((—,)1 x id) o ((dpy1)« x id) 0 ¢*
2% o (coft x id) o ((—,)1 x id) o ((dpy1)« x id) 0 ¢*
2% o (coft x id) o ((—,)1 x id) o ((dpy1)« x id) 0 ¢*

=Y 048 o ((—=+)1 X id) o ((dp41)« x id) 0 ¢*
Y or*oq*
=3

The single isomorphisms above are constructed as follows

e The first isomorphism is a reformulation of (6.27).
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e For the second isomorphism, we claim that
dy := o o (coft x id) o ((—+)1 X id) 0 ((dpg1)« x id) 0 ¢*
is invertible. For this it is sufficient (using the axiom (Der 2)) to show that
i* o a1 is an isomorphism for all ¢ € [n]. In the following we fix i € [n]. We
consider the unique natural transformation 31: ¢; — co: O — O+ x [n]
between the inclusions of D’;(*'_{)(n_i) at the coordinates ¢ and n, respectively.
Hence we have

oy = teof o B o (=) % id) 0 ((dny1)s X id) 0 "

Let B1:= ff o (=) xid) 0 ((dp41)s X id) 0 ¢* and = € O, ). We claim
that z* o B~1 is an isomorphism. This would imply that 31 is an isomorphism by
(Der 2), and hence also that a; is an isomorphism. If z = oo then z* of3 is the
identity on the zero object (because of the right Kan extension along d,1).
If © # oo then p(x) < i. Denoting by ¢ the natural transformation comparing
the inclusions of (p(z),4) and (p(x),n) into [n] x [n]. Using the 2-functoriality

of 7, we conclude that 2* o 31 = 6" o ¢". But go ¢ = idp). Invoking the

2-functoriality of Z again * o 3 is seen to be an isomorphism.
e For the third isomorphism, we claim that

dy = aj o (coft x id) o ((—,)1 x id) o ((dpp1)« X id) o ¢*

is invertible. Again it is sufficient (using the axiom (Der 2)) to show that
i* o dip is an isomorphism for all ¢ € [n]. In the following we fix ¢ € [n]. Let
d: O~ — O+ x [n] be the inclusion of D7(:1,)(i+1) x {i}. We claim that
D :=d* o (cof x id) o ((—=;)1 x id) o ((dpy1)s X id) 0 ¢*

is constant. This would imply that i* o a2, which is the diagonal in the under-
lying diagram of D, is an isomorphism. By [BG18a, Cor. 9.8] it is sufficient to
show that for all i + 1 < j < n the cocone F7 o D in the direction of the jth
coordinate vanishes. For this we consider a subset M C {i + 1,--- ,n} \ {j}.
We have to show that

M*oF/ oD =0
for all such M. Let MY =n+ 1\ (M U{j}). We use the notation

d¥ = JJ dr

neN
for NCn+1 and ¢ € {0,1}. Then by Remark 4.6

M*oFioD
(((dM)* x (d)* x FI) x i*) o (coft x id) o ((—,)1 X id) o ((dns1)s X id) o ¢*
=((dM)* x M7 % (D)) 0 (=5 )10 (dpg1)s 0 (id x 4)* 0 ¢*
is exihibited as a total cofiber of the cube
E = ((d¥)* xid™" x (d2)*) o (=)1 0 (dps1)s 0 (id x )" 0 ¢*

parametrized by the coordinates MY. We observe that i € M and claim that
C'o E = (0. This would imply by [BG18a, Cor. 9.8] that tcof o E 22 0 and hence
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that dy is invertible. We consider M’ C MY \ {i} and compute M'* o C? o E.
We observe that

M*oC'oE=Cotfo(—,)10(dyi1)so0 (id x i)* o q*

for some map t: [1] — O"*! satisfying the following properties
(i) t1(0); =0,
(i) t1(1); =1,
(111) tl(O)l = tl(l)l forlen+1 \ {’L},
(iv) £1(0); = t1(1); = 0.
From the fourth property we deduce that t1(1) # co. Therefore, we obtain an
isomorphism

50 (=)0 (dng1)o (id x i) 0 g = 15 04"

where to: [1] — [n] X [n] is the map classifying (p(¢1(0)),4) — (p(t1(1)),7). It is
sufficient to show that g oty is constant, but this holds by construction. More
precisely, property (iii) above implies that if p(t1(0)) # p(t1(1)) then

p(t1(1)) > p(t1(0)) = 1.
e For the fourth isomorphism, we claim that
ds = aj o (coft x id) o ((—, )1 x id) o ((dp11)« X id) 0 ¢*

is invertible. Again it is sufficient (using the axiom (Der 2)) to show that
i* o a3 is an isomorphism for all ¢ € [n]. In the following we fix i € [n]. Let
d': 0" — O x [n] be the inclusion of D7(+—1>)(1) x {i}. Then

D' :=d"* o (coft x id) o ((=;)1 x id) o ((dp41)s X id) 0 ¢*
=(dpT)* o coft o (—4)1 0 (dpy1)s 0 (id x i)* 0 ¢*

is constant (using exactly the dual argument as in step (ii) of the proof of
Theorem 6.9), because the essential image of

coft o (=, )1(dpy1)s o (id x 4)* o ¢*

is by the first part of this proof contained in BRI particular, i* o ag,

which is the diagonal in the underlying diagram of D’, is an isomorphism.
e We use the notation 2’ := 2. Moreover, let u: [1] — O"*! be the map
classifying (—,)(n) — oco. We obtain by Remark 4.6 an isomorphism

Cou 2 () (1) ocoft: 77 5 7,

We invoke again Remark 4.6 to identify the restriction of this isomorphism to
@ID"'H,OO

So ((=-)(n)* = Cou = ((=)(1)" ocoft: 7T 5 7.

0" 7] we obtain the fifth

By using the canonical identification /7" =~ @
isomorphism by appropriate restriction.
e The sixth isomorphism is induced by (p x id) o v5 = r.

e The seventh isomorphism is (6.26).
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7. HIGHER TODA BRACKETS FOR DERIVATORS

In this section we discuss a first application of Corollary 6.13 and Theorem 6.17
concerning higher Toda brackets. Recall that Toda brackets are operations defined
on certain strings of composable morphisms in the homotopy category of a stable
model category. However, in general Toda brackets are not defined for all such
strings, and if they are, there is often a set of different values, i.e. they are only
defined up to some indeterminacy. We will show that for a strong stable derivator
2 there is a functorial construction lifting the higher Toda brackets. The following
definitions of filtered objects and Toda brackets are based on [Shi02, Appendix]
and [Sag08, 3.3]. To establish a relation to the theory of triangulated categories,
we recall the notion of a strong stable derivator.

Definition 7.1. A stable derivator & is called strong if for every finite free cate-
gory A the underlying diagram functor

diag: 2(A) - 2(1)4
is an epivalence of categories (i.e. is full and essentially surjective).
Theorem 7.2. Let 9 be a strong stable derivator and A € Cat. Then there is a
canonical triangulation on P(A) defined by the suspension functor ¥ and the class

of distinguished triangles which are isomorphic to underlying diagrams of 1-cofiber
sequences.

Proof. This is due to Maltsiniotis [Mal01], a published proof can be found in [Gro13,

Thm. 4.16], the ideas go back at least to [Fra96]. O
Definition 7.3. Let 7 be a triangulated category and

Tpoq 2 g g 2 M gy
be an (n — 1)-simplex in 7. An n-filtered object y € [uy,- - ,u,—_1] consists of

an n-simplex
v1 v2 Un
Yo—y1—> " —7Un
in T, such that yo = 0,,, = y, and choices of distinguished triangles

Yj —)vj+1 Yj+1 —>Tj+1 ijj q—J> Zyj
such that Xr; o g; = Zjuj. Moreover, the map x¢o = y; — y is denoted by o,,.
Definition 7.4. Let T be a triangulated category and
Un Un—1 ul
Tp —> Tp—] — ++ —> X

an n-simplex in 7. A map " 2z, - zo lies in the n-fold Toda bracket of
the above sequence, if there is an (n — 1)-filtered object y € [ug, -+ ,u,—1] and a

decomposition v: "2z, = y 2% x4 such that there is a commutative diagram

\

Yo

Ty

n—2 Tn
D) Ln

n—2

-2
»n Tpn—1-

Lo

Tn—1

i
|
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Proposition 7.5. Let n > 1 and 9 a strong stable derivator. Let X € an. Then
the underlying diagram of (do); o (W5)~1(X) is canonically an (n+1)-filtered object
of the underlying diagram of —* (X).

Proof. Let X € 9371. It follows from the proof of Theorem 5.12 and Proposition 6.6
that the lower square in the diagram

Do —— 81Dy 5 ———— P11

| |
)

~ £ o
Ponss —= SID 1 —— P5

where the vertical maps on the right are those from Proposition 4.20, commutes.
The upper cell commutes by definition, and for the triangle we invoke Remark 5.13.
Let

Y € g,

AS @n,g,
Vegd e
o W€D

be objects corresponding to X. Furthermore, for a poset A with a <b € A we use
the notation [a,b]: [1] — A for the functor 0 — a, 1 — b. Then Proposition 4.20
induces the second isomorphism in

s5(€),s57H (O] (W)
= (n),—= (n+1]*(V)
0, 00]* o cof(X)
0,n]*(Y)

(0,1), (0,n + 1)]*(2).

On the other hand, we have for 0 <i<n —1

Il

/\
I
>

S~—

[l

12

[
[
[
[
[

2

= (i), = (i + 1)]"(X)
s5(§).s5" (O] (W)
£(€),s5THOI ((s57) (W)

(0,1), (0, + 1)]* (W], 055 ")*(2))

=[(0,1), (0,n+ 1)]*((s57")*(2))

=" 0 [(0,1), (0,7 + 1)]*((s2~)*(2))

=" o [(n—i,n—i+1),(n—i,2n — i+ 1)]*(2),

|4

|4

(%]

[
[
[
[

/\
=~
\]

S~—

12

where the third isomorphism is (7.6), the fourth isomorphisms is Theorem 6.17 and
the fifth isomorphism follows from Corollary 5.19 and the definition of ss.
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We observe that the underlying diagram of (dg)i(Y") can be identified the following
restriction of the underlying diagram of Z

(0,0)(2) 25 (0,1)*(Z) 22 -+ 25 (0,n 4 1)*(2).

In the next step, we consider restrictions of the underlying diagram of Z along
inclusions of the form

(0,4) —— (0,i+1) —— (0,n + 2)

L] |

(t,)) —— (4,i+1) ——— (i,n+2) ——— (i,n + i+ 2)

| | |

(i+1,i+1) ——= (i +1,n+2) —— (i +1,n+i+2)

We invoke the properties (P1) and (P2) for objects in % 41 and Corollary 4.17
to conclude that we obtain distinguished triangles

Vi41

0,)*(2) —— (0,i+1)*(Z) ————

o

0 Niz, 2(0,)*(Z2) —————0

J J |

—~Xr; .
00— 2(0,i 4 1)*(2) s nitly,

o

)

where we have used (7.7) to identify (i,i + 1)*(Z) & £ — (n —i)*(X) = Y'a;.
Finally, we use the restriction of the underlying diagram along

(0,i—1) (0,4) (0,i+1) —— (0,n+2)

] o

(i—1,i—1)—> (i —1,4) (i—1,n+2)— (i—1,n+i+1)
Il |

(,)) —— (i,i+1) —— (i,n+2) —— (i,n + 1 + 1),
which consequently gives rise to the diagram

(0,0 — 1)*(Z) 2 (0,1)*(Z) —= (0, + 1)*(Z) ———— 0
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We invoke (7.7) again to identify —Xr; o ¢; = X;u;. For i even, we replace the
distinguished triangles

(0,9)*(Z) =5 (0, +1)"(Z) ~*5 Sia; L5 %(0,40)*(2)
with the isomorphic, and hence also distinguished triangles
(0,0)7(2) == (0, +1)7(2) = 'y = 5(0,1)"(2),

and conclude that we indeed have constructed a filtration. O

FExample 7.8. We explain the procedure, in the case n = 3. Let X € @En with

underlying diagram
0 —— 0
/ ) /’
I3 )
U2
/ 0 ZTo

ul

0 —— 7.
Then (¥5')~! is an object in 21¥! with underlying diagram
(7.9) Y1 =2 Y2 > Y3 — s

Using Example 8.22, we can extend (\Ilg)*l to an object of 735 with underlying
diagram

Y1 Y2 Y3 Ya 0
|
0 Cvs . . Sy 0
| |
0 Cus ° Yyo YCvy ——0
|
0 Cuy Y3 s ® 3Cvs 0

We invoke (7.7) to identify the lower three horizontal composition with $u, : Yiz; —
Yix; 1. Furthermore, we indicate the distinguished triangles, which exhibit (7.9)
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as a filtration.

V2 U3 Vg
o = Y1 Y2 Y3 Ya 0
0 Yy /o . Y2 0
T3
J/ \/ q2 T4 E’UQ J
/— r
0 219 ° Yy >re Y22 0
/ E’Ug ZT‘3 l
0 Y35 —2 s Yy . $3x2 0

Definition 7.10. Let n > 3 and & a stable derivator.
(i) Let —!: [n] — 0" 2 x [2] be the functor defined by
e =1 (0) = (= (0),0),
o >l (i)=(—=(i—1),1)for1 <i<n-—1,
e >l (n)=(—=(n-2),2).
Let 27" be the full subderivator of 25" (2] spanned by those objects X
such that M*X = 0 for all M € ("2 x [2] such that M is not in the image
of —!. The derivator 2T~ is called the derivator of n-fold Toda bracket
data.

(ii) Let d7=2: 072 — Dg;ll_Q be the inclusion of the 0-face with respect to the
(n — 2)-nd coordinate. Moreover, let e: [1] — O"~! x [2] be the functor
classifying (— (n —1),0) — (— (n — 1),2). Then the n-fold Toda bracket
morphism for Z is defined by the composition

Toda,, := €* o (to,n—2 X idg))1 © (A2 x idjg)«: 2T — g,

Theorem 7.11. Let n > 3 and 2 a strong stable derivator. Let X € 2T (1).
Then the underlying diagram of Toda,(X) lies in the n-fold Toda bracket of the
underlying diagram of (—¢)*(X).

Proof. We define X! = (idga—2 x 1)*(X) € 22" ". Let the underlying diagram of
(—=t)*(X) be of the form

n
Up, Un—1 Ul
Ty —> Tp—1 —> "+ —> X0

[}

Consider the factorization 0" ~! = (0072 x [2]) \ 0o 5, o2« [2] of the inclusion
idgn-1 x dg. Next, we consider T := 3 o a, o Toda, (X) pass to the inverse image
defined by the following diagram in (0"~2 x [2] x [2]

(7.12) (= (n-3),1,1) ——= (= (n—3),1,2)

J J

(- (n-2),1,0) ——= (= (n-2),1,1) — (= (n—2),1,2)
(= (n—2),2,0) —— (= (n—2),2,1)

Since v and § are fully faithful, we invoke [Grol3, Prop. 1.20] to conclude that the
underlying diagram of Toda, (X) is obtained by restricting further to the middle
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row in (7.12). We claim that the inverse image of T" along (7.12) is of the following
form

(7.13) L
J Jid
2z, Yn—1 Zo

w2, s Y2

2y,
To establish this, we use that the subcubes U} ;(T') for

(idgn—2 xds) (ian,72X[2]><j)

0; ;0! 02 x [2] 072 x [2] x [2]

are bicartesian for 4,5 € {0,1,2} by Proposition 4.19 and Corollary 4.17. As a
consequence, we conclude the following identifications.

e The bicatesianess of 5 ,(7') implies the relation (— (n — 2),1,0)*(T) =
Y72z, since (using fully faithfulness of Kan extensions again) the restric-
tion of this cube to DS;LI_Q is concentrated at the initial vertex with value
T,

e Building on this, and using that ay is an extension-by-zero morphism [Grol3,
Prop. 1.29], we invoke [GS14b, Thm. 8.11] applied to the bicartesian cube
08.0(T) to see that the left vertical morphism in (7.13) is the identity.

e The same argument applied to the bicartesian cube D;Q(T) yields the identity
on the right vertical morphism in (7.13).

e The identification of the top row is [Grol3, Prop. 1.20] applied to the four Kan
extensions in the construction of T' (which was used implicitly before).

e For the identification of the bottom row, we use additionally the bicartesianess
of the cubes 07 ((7T) and [J7 ; (T'), and the observation, that the restrictions of
these cubes to Dg;l_Q are concentrated at the initial vertex.

Finally, we use the bicartesianess of (13 ;(T"), and invoke Proposition 4.20 to iden-
tify the top map in the central column of (7.13) with the canonical map from
o00*(X1) — tcof(X1). Finally, Proposition 7.5 yields that this map admits a fil-
tration y = y,,_1 = tcof X' such that y, 1 € [ug, -+ ,u, — 1] and use the dual of
Proposition 4.20 combined with the bicartesianess of (g ; (T') to identify the remain-
ing map in (7.13) (which is a suspension of the canonical map tfib(X') — 0*(X1))
with the corresponding cofiber in the filtration. |

FEzample 7.14. We illustrate the construction of Toda bracket morphisms in the
case n = 4.
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(i) Let X € 2™ with underlying diagram

/J A
anvZans

(i) We extend this diagram via the right Kan extension (d? x [2]). (dashed ar-
rows), which is an extension-by-zero morphism, and the left Kan extension
(t0,2 % [2])1 (dotted arrows), which ’adds bicartesian cubes’. Moreover, we
have omitted all arrows in the direction of the last coordinate (which was
displayed in the horizontal direction in the diagram above), with the excep-
tion of the morphisms which give rise to the Toda bracket. These are the
curved arrows in the diagram below.

0——=——= +0
/ x
7/
7
7/
0-———=+--=0
I
|
‘ ~
o ! o
| it
/ ‘
+
0-—-————- +0

(iii) In the next step, we indicate the construction of the object T from the proof

ST

of Theorem 7.11. Similar to the diagram above, we visualize the effect of
the right Kan extension a,, which is an extension-by-zero morphism, with
dashed arrows, and the effect of the left Kan extension (), which ’adds bi-
cartesian cubes, with dotted arrows. Finally, we display those morphisms
in the direction of the last coordinate, which give rise to (7.13), by curved
arrows

00— 0 0——0 00— 0
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We conclude this section by providing an alternative construction of the derivator
Toda bracket. For this let a: [1] x 0772 x [2]\ {(0, 00, 1), (0, 00,2)} — 072 x [2] be
the functor induced by sg x id x id and B: [1] x O0"~2 x [2] \ {(0, 00, 1), (0, 00,2) —
[1] x O"~2 x [2] be the inclusion. Finally, let v = id x oo x c0: [1] — [1] x O ~2 x [2].

Corollary 7.15. Let n > 3 and 2 a strong stable derivator. Let X € 2T~ (1).
Then the underlying diagram of v* o By o o*(X) lies in the n-fold Toda bracket of
the underlying diagram of (—t)*(X)

Proof. By construction, 8 o a*(X) can be considered as an object in (2[1)T». We
consider the object

Y = (id X tgn—2 x id) 0 (id x d772 x i), 0 B 0 @*(X) € g %12 (1),
Let § =id x oo x dy: [1] x [1] — [1] x 0"~ x [2]. Then,
o (do x id)* 0 6*(Y) = Toda, (X),
o (id x dg)* 0 d*(Y) 2 ~* 0 5 0 a*(X).

Hence, it is sufficient to show that (d; x id)* o 6*(Y") and (id x d1)* 0 §*(Y") are
constant.

(i) It follows from Proposition 4.19 and Corollary 4.17 that the (n — 1)-cubes
(do x id x d;)* o B 0 a*(X) are bicartesian for 0 < ¢ < 2. In particular,
Z = (dgxidxd;)*ofoa*(X) is bicartesian and by construction ¢ ,, _o(Z) = 0.
Furthermore, 0*(Z) = 0*(X). We conclude, that

Co(d; xid)* 0" (Y) = tcof (Z) = 0.

Hence (d; x id)* 0 §*(Y") is constant.
(ii) On the other hand we compute

(id x d1)* o §*(Y)
2(id x 00 x 0)* 0 (id X 19—z x id); 0 (id x d7 ™2 x id). o £ 0 a*(X)
2(id x 00)* o (id X 19, n_2)1 0 (id x d7"?), o (id x id x 0)* 0 B 0 a*(X)
2(id x 00)* o (id X 1g,n_2)1 0 (id x d?72), o (sp x id)* o (id x 0)*(X)
g5 000" 0 (Lgn—2)1 © (d?fz)* o (id x 0)*(X),
which yields the constantness of (id x d;)* o 6*(Y).
(]

Remark 7.16. We illustrate also the construction of Corollary 7.15 in the case of
4-fold Toda brackets. Recall the object € 2T from Example 7.14. Then o*(X) is
obtained from (sg x id)*(X) by discarding two vertices. In the following diagram
X corresponds to the squares in the back

ry————0

A
W'

.7/'3—/’}0 04/\)0
0 0 0
Tog —————— I 0—>.’L‘0

/
% %

T2
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Moreover, the object 8o «a*(X) is obtained from the above by completing the front
part of the diagram to a concatination of to bicartesian 3-cubes, as indicated by the
dashed arrows, together with the induced maps to the back part of the diagram, as
indicated by the dotted arrows below

z —>O /070
O T3 O 0 0
| |
| |
\ |

x 0——F——

\ ‘ "

|

/ l / 4 Toda, (X)
xz 777777 Sy 0————— - X2y,

The derivator Toda bracket of X is now obtained as the map in the lower right of
the diagram above. We observe, that the front part of the diagram is a 3-cofiber
sequence. Hence the cone of the n-fold Toda bracket provides a measure how far
away a Toda bracket datum is from being an (n — 1)-cofiber sequence.

8. VERTICAL FUNCTORIALITY

The main objective of this section is the construction of canonical morphisms
relating the derivators %, ;, for fixed k > 2. For this we will show that for a stable
derivator & the inverse images associated to the postcomposition functors

(8i): An+k,k71 = An+k71,k711 (i)«

restrict to morphisms between %, , and Z,.41 . As a consequence we obtain for
k > 2 fixed a 2-functor

(—)*: AOP — D@’I“, An — .@n_k_i,_l,k.

We describe these operations also on fundamental slices, which will be useful for
later applications. In particular in the case k = 2 we will obtain an extended version
of and hence recover the standard simplicial structure on the derivators 2", n > 0.

Construction 8.1. Let m,k > 0 and Z a stable derivator. Consider the adjunction
So - Am+1 = Amt do

(c.f.Remark 3.33) in the 2-category A of parasimplices. We now apply the 2-functor
A(Ag,—): A — Cat to this adjunction, and hence obtain the adjunction

A(Ag,s0): Apr e & Ay it A(Ag, do)
in Cat. Finally, we apply 2: Cat°? — Der to obtain an adjunction
d: Qhmirn = Pl s

Proposition 8.2. Letn >0,k>2, m=n+k—1 and 9 a stable derivator. Then
the adjunction d 4 s restricts to an adjunction

d: @nJrLk = @n,k: S.
Proof. Since postcomposition functors automatically preserve non-injective objects,

we deduce that objects in the image of d and s satisfy property (P2) on all non-
injective objects. It remains to verify property (P1) for all injective objects.
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First we take care of the morphism d. For this let f = (fo, -, fk—1) be an injective
object in A,y 141 Let M ={i€k|Fj€Z: fi+1=j-(n+k)} Ckand define

Op: 0% = A ypne1: (60, 0k—1) = (fo + p(0) - So, -+, fom1 + pu(k — 1) - Gp_1),

where p: k — Z is defined by u(i) = 1if i ¢ M and p(i) = 2 if ¢ € M. Then
the elementary subcube Oy starting in f satisfies A(Ax_1,do) o Of = Ef. For z €
Dn+1,k We obtain therefore [} (d”(z)) = ﬁ*}(m), which is bicartesian by assumption
on z and Corollary 4.17.

Now we consider the morphism s. For this let ¢ = (go,-+ ,gx—1) be an injective
object in A,y 1. Let N={i€k[Fj€Z: g; =7 (n+k+1)} Ckand define

|jg: 0" — AnJrkfl,k:fl? (607 e 767@*1) = (90 +V(O> 00, Gk—1 +V(k_ 1) -(5].3,1),

where v: k — Z is defined by v(i) = 1if i ¢ N and v(i) = 0 if i € N. Then the
elementary subcube O, starting in g satisfies A(Ag_1,50) 0Oy = ﬂg. For x € 9, 1
we obtain therefore [I7(s"(z)) = E;(x), which is bicartesian by assumption on
xif N =0. If N # 0 the cube Ij;(x) is in the essential image of the inverse
image associated to the canonical projection (0¥ — ¥\ and hence bicartesian by
Proposition 4.7. U

Corollary 8.3. Let m,m’ > 0,k > 2, f € A(Am, An), and 2 a stable derivator.
Then the inverse image A(Ag—1, f)*: PAmi—1 — PRrmr k-1 restricts to a morphism
of derivators

Don—k41,k = D/ —k+1,k-

Proof. The statement is clear whenever f is of the form dg or sg by Proposition 8.2
or of the form t by Corollary 5.8. For the general case we invoke Corollary 3.35 to

factor f as a composition of morphisms of the above form and use the 2-functoriality
of A(Ak,—1,—) and 2. O

Corollary 8.4. Let k > 2 and 2 a stable derivator. Then there is 2-functor
SET(D): A — Der, Ay > D1k - A1, )
Moreover, Sgk_l)(—) is 2-functorial with respect to morphisms of derivators.

Proof. The assignment is well defined on 1-morphisms by Corollary 8.3 and on 2-
morphisms since the %, 41,1 are full subderivators of DAmr-1, The 2-functoriality
follows from the one of A(Ag—1,—) and 2. Furthermore, morphisms of prederiv-
ators commute by definition with inverse images. This implies the naturality state-
ment. O

Definition 8.5. Let £ > 1. The 2-functor S(.k)(—): Derst — 2 — Fun(A°P, Der) is
called the kth higher parasimplicial S,-construction.

Remark 8.6. By passing to derivators of fundamental domains in the case £ = 1
we recover a parasimplicial enhancement of the standard simplicial Se-construction
(cf. [Wal85, Gar06]). For k > 2 a construction very similar to s but in a
slightly different context, was considered recently in [Pogl7]. Another variant (in
the context of oo-categories) thereof was shown in [Dycl7] to appear naturally in
the categorified Dold-Kan correspondence.
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Theorem 8.7. Let k> 1 and & a stable derivator. Then the image of S(.k)(g) is
contained in Derst*°=% _ Moreover, there is a pseudonatural equivalence

S: L5 (2) = RSP (2),
defined by Sa,, =55 Dm—kk+1 — Dm—k,k+1 for m > 0.

Proof. The 2-category A is adjunction complete by Proposition 3.10. Since 2-
functors preserve adjunctions, images of adjunction complete 2-categories under
2-functors are again adjunction complete. Hence the image of Ssk) is forced to
be contained in the largest adjunction complete sub-2-category of Derst, which
is Derst>*=a2d_ For the pseudonatural equivalence, we remember Corollary 3.17,
which states that the parasimplicial translations t define a 2-natural isomorphism

S: R L: A — AP,

We again use the compatibility of 2-functors with adjunctions to deduce that the
whiskering of S with st (2) defines a pseudonatural equivalence

(8.8) Rs((2) = L5V (2),
which is locally defined by A(Ag,t)* = si. Finally, we use the natural equivalence

S5 = Yk o (s7)"!in Dm—k+2,k+1 (c.f Corollary 5.19) to exhibit S as the inverse of
the pasting of (8.8) with QF: idpeyat.co—aa == id pepat.co—ad. O

Remark 8.9. The proof of Theorem 8.7 suggests that the pseudonatural equiva-
lence (8.8) might be the more important, or at least more natural construction.
But, however, there are various reasons to prefer the equivalence S, which are all
incarnations of the fact that s3 admits more useful properties then sj.
e In the case n = 0, where %, = 2 holds true, we can identify s5 = id.
e In the case k = 2 it is known that s3: I, 2 — 9,2 define Serre equivalences
([GS14a, Thm. 11.12]).
e The relation involving s§ and ¥ in Corollary 5.21 is invariant under (n, k) —
(k—1,n+1).
e The duality morphisms ¥,, are compatible with s§ (Theorem 6.17).

And we will see even more reasons in the following chapters.

For later computations it will be useful to know how the generalized face and
degeneracy morphisms (i.e. the morphisms appearing in the infinite chain of ad-
junctions generated by d - s) interact with the restrictions to fundamental slices,
which will be the content of the remainder of this chapter. For this we observe the
following.

Proposition 8.10. Let n > 0,k > 2 and 2 a stable derivator. Then
A(Ak—1,di)(Slpi) C Slpyr i for 1 <i<n+k.

Proof. Under the assumption 1 < i < n + k, we have

(8.11) d;(j) e{j,j+1}for0<j<n+k-1.

Moreover, for f = (0, f1, -+, fk—1) € Ay _1 yx_1 the image is of the form

A(Ag—1,di)(f) = (di(0),di(f1),- -+, di(fr-1))-



58 FALK BECKERT

In particular, for &, x = (0,1,--- ,k—1) € Ay, it is now a consequence of
(8.11) that
(812) €n+1,k = (Oa 17 T ak - 1) S A(Ak—la di)(gn,k) S Ak—l,n-i—k'

By using additionally that d;(0) =0 for 1 <4 < n + k we conclude
(813) A(Ak*h di)(slgilgn,k) < (07 n—+ 23 e yn k) = S§71£n+1,k € Ak—l,n-‘,—k'
The inequalities (8.12) and (8.13) together yield the first statement. For the second
statement, we use that

() si(j) € {j—1,j}for 0<j<n+k—1,

(i) 5:(0) = 0
holds for 1 <7 <n+k — 1 and conclude with a very similar strategy. O

Unfortunately, the analogue of Proposition 8.10 fails in many cases if one re-
places the face maps d; by degeneracy maps s;, since for 0 < i < k — 2 we have
A(Ag—1,81)(Ent1,k) < &n k- Therefore, we have to consider a slightly larger version
of the slice.

Definition 8.14. Let n > 0,k > 2 and & a stable derivator.

(i) The triangular slice Slﬁk is the full subcategory

(B 1,k=1) (0,.0)/ Ot —1,oe k=) € A1 1

with inclusion slfk: Slfk =N 1kt
VAN
(ii) The derivator of triangular slices sI® %, 1 is the full subderivator of @%n.x

PN
spanned by those objects X € 2. that satisfy property (P2) for all z €
N A . e
Sl,,), such that sl ") (x) is non-injective.

Construction 8.15. Let n >0,k > 2 and 2 a stable derivator. The A™*: Sl —
A . . . . .
Sln,k inclusion admits a factorization

Sluge = (S15 e/ LN SiZ,.-

We observe a is a sieve and b is a cosieve. Since the complement of A™F consists
of non-injective objects, it follows from [Grol3, Prop. 1.23] that b o a,: sl%, 1, —
s1® D, is an equivalence inverse to (A™)*. Together with Theorem 5.12 this
implies that also (SZA"”“>*Z Dy — slA@n’k is an equivalence.

On the other hand, let A(Ag_1, Anir—1)o C A(Ak—1,Antr—1) be the full subcat-
egory on those objects g: Ag_1 — A, 1k—1 with g(0). Then the functor

(8.16) A(Ak—1,Antk-1)o — Slﬁk,g = (9(0),---,9(k —1))

is an isomorphism. This yields for every morphism f: Aj1rx—1 — Apyp—1 with

e f(0)=0,
o fln+k—-1)<n'+k-1
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a commutative diagram

A
Sln,k‘ lA Ak—l,n+k—1
S

n,k
(A(Aklyf))SLﬁkl JA(Ak—l,f)
S5, A
n' k ﬁfkq,nwkfu
“"nl Kk

since the left vertical morphism is (up to composition with (8.16)) A(Ag—_1, f)o,
which is well-defined by the assumptions on f.

Corollary 8.17. Letn >0, k > 2 and 2 a stable derivator. Then

(i) for 1 <i<mn-+k there is a strictly commutative diagram

5l:+1,k
@n+1,k ? SZQTH“L]C

A(Akhdi)*l l(A(Akhdi)Sln’k)*
‘@mk 4“* Sl-@n,k
Sy k

(ii) for 0 <i<n+k—1 there is a strictly commutative diagram

(Sl$+1.k)*
Dy —— SZA@n’k

A(Akl,sn*l f““k—hsﬁszfﬁ R

AN
@nJrl,k Téfl @nJrl,k

(sln’k

Proof. Proposition 8.10 and Construction 8.15 yield that
(1) A(Ag—1,di)lst, .2 Slag = Syt and
(i) AAk-1,8:)lgp2 SIS — SIS
are well defined under the respective assumptions on i. As a consequence, the

2-functoriality of & implies the statements immediately. O

From Corollary 8.17 and the compatibility of 2-functors with adjunctions we
deduce that there is chain of adjunctions

(A(Ag—1,d1))* 4 (A(Ag—1,81))" -

A (AAR—1,8n48-1))" A (A(Ar—1,dnir))”

relating %, and 2,41 5. Moreover, Theorem 8.7 implies that that his chain ex-
tends to an infinite chain of adjunctions. In the following we show that the left
adjoint of (A(Ax—1,d1))* and the right adjoint of (A(Agx—1,dn+r))* also admit a
simple description. For simplicity we use in the following the notation

d’ = A(Akflv d1)|Sln,k : Sl’n,k‘ — Sl’n+1,k7 (07 f17 X fk*l) = (07 fl + ]-7 T 7fk?71 + 1)7

d = A g—1, dngn)|st, 0 Sl = Sl k(0 fro - fo—1) = (0, f1, -+, fe—1)-
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Proposition 8.18. Let n > 1,k > 2 and 2 a stable derivator. Then the adjunc-
tions

dV: @5tk = @St (@) and  (dUV)*: @Ok & @Stk gy
restrict to an adjunctions

AV : 1D 2 SIDpt1 g0 (dY)* and (d")*: 81Dk S 81D s d2Y.

Proof. The statements are completely dual to each other. We show the state-
ment for d”V. We have to show that the image of (dVV)|s2, , is contained in
$1Dn+1 . Since d is fully faithful, the counit (d"V)*d?Y = id is invertible by
[Grol3, Prop. 1.20]. This shows property (P2) for non-injective objects of Sl 41k,
which are in the image of d”V. Moreover, we observe that

dv\/: (07f17"' 7fk71) — (07f17"' 7fk71)
is a sieve. Hence the corresponding right Kan extension morphism is an extension-
by-zero morphism [Grol3, Prop. 1.23], which shows the property (P2) for non-
injective objects of Sl,, 41, which are not in the image of d"V. O

In §10 it will be important to have a systematic notation for all generalized face
and degeneracy morphisms.

Notation 8.19. Let F': X — Y be a morphism in a 2-category, such that all
iterated adjoints of F' exist. Then we denote the nth iterated right adjoint by F'[n]
and the nth iterated left adjoint by F[—n]. Occasionally we use the convention
F[0] = F.

Definition 8.20. Let n > 0,k > 2 and Z a stable derivator. Then
d”:=dj ;== A(Ak—1,dr)": Dny1k = Dok
is called the standard vertical face morphism.

Example 8.21. Let n > 0, k > 2 and Z a stable derivator. With this notation we
have

(i) A(Ak—1,d;) 2d?[2(i — k)] for 0 <i <n+k,
(i) A(Ag—1,8) =2d2(—k)+ 1) for0<i<n+k-—1
Even more explicitely, we have the following.

FEzample 8.22. We consider the case k = 2.

(i) Recall from Examples 5.14 that [n] — Sl,.2,% — (0,7 + 1) is an isomorphism
of categories. Since all objects in SI,, o are injective, these isomorphisms lead
to equivalences of derivators 21" = 5192y, 2. By plugging in the definition we
obtain therefore the commutativity of the diagram

(8.23) gt = gAMAn2) = 551G

de{ l/\(/\hdwrl)* Jd“ [2i—2]

@[n] — DAL A1) —_— Sl@n)g.

In particular we observe that, due to the index shift between the left and
middle vertical morphism, we have one face and degeneracy morphism (those
defined by A(Aq,dg)* and A(Aq,80)*) more then a priori expected. These
extra morphisms also satisfy the simplicial relations.
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(ii) If we specialize even further to the case n = 0, the commutativity of (8.23)
yields the coincidence of the following sequences of adjoint morphisms, which
correspond to the vertical morphisms in (8.23)

C H(do)y Hd§ sy 4dy 4 (dy)« 1 F,
A(Ar,do)” HA(A1,80)" FA(A,di)" A A(ALs1)" FA(A,d2)” FA(AL,s2)" HA(A1,d3)",
d¥[—4] 4 d¥[=3] 4 d¥[=2] 4 d¥[—1] Hd¥ 4 d*[1] - d*[2].
We note, that in the second chain of adjunctions the parasimplicial maps

So: Ay & Aj: d3 are not in the image of the embedding i of the 2-category of
simplices A.

Corollary 8.24. Letn > 1,k > 2 and Z a stable derivator. Then the standard ver-
tical face morphism d¥: P11 — D1 generates an infinite chain of adjunctions
such that for p € Z

(i) d”[2p] = (s3)? 0 d” o (s3)77,
(ii) d[2p + 1] = (s5)? o d”[1] o (s5) 77 = (s5)P*" 0 d”[1] o (s3) P~

Proof. The isomorphisms
d[-1] = (s5) "' od’[LJos;  and  d°[l] =sjod[-1]o(s3)7",

are immediate consequences of Theorem 8.7. The general statement follows via
induction. O

9. HORIZONTAL FUNCTORIALITY

In this section we construct canonical morphisms relating the derivators 2, j for
fixed n > 1. For this we define, in a first step, morphisms of derivators sl%,, , —
51Dy, 1 and invoke Theorem 5.12 to transfer them to the desired morphisms %, , —
D k- This has the advantage, that we do not have to worry about cartesianess
conditions for subcubes. More precisely, we first define a morphism d”: D41 —
Dk, which will be exhibited as the horizontal analogue of the standard vertical
face morphisms in §11. In the next step we will construct the left and the right
adjoint of d”. We show that the resulting adjoint triples are periodic with respect
to the autoequivalences s3, and therefore extend to infinite chains of adjunctions.

Definition 9.1. Let n > 1,k > 2 and & a stable derivator.
(i) The standard horizontal face map is the inclusion of poets
dh: Slmk — Sln,k+1a (Oafh' o 7fk—1) = (07 1af1 + 17 T 7fk:—1 + 1)

(i) The standard horizontal face morphism d” := dﬁwk is the restriction of
the inverse image of d"

d" =dl 1 slDn 1 — S D .

Remark 9.2. The inclusion d" obviously preserves non-injective objects. This im-
plies directly that the restriction of the inverse image of d" above is well defined.

Proposition 9.3. Letn > 1,k > 2 and 2 a stable derivator. Then the adjunction
(dh)s A dh: @Sttt & PSta restricts to an adjunction

d" 4d"1]: 81Zp ps1 S S1D .



62 FALK BECKERT

Proof. We have to show that the image of (d!)|s4, , is contained in s1%,, y11. Since
d" is a sieve, the corresponding right Kan extension morphism is an extension by
zero, which shows the property (P2) for non-injective objects of Sl,, x+1 which are
not in the image of d”. On the other hand, for non-injective objects in the image of
d¥ the property (P2) follows from the invertibility of the counit (d")*d" = id. O

Unfortunately, it turns out that the left Kan extension dj': DStk 5 PShnk
does not restrict to a morphism of the form sl 41 — s{Z, . Because of this,
the description of d"[—1] will be slightly more involved. More precisely, we consider
the subposet

Bk = Sly k41 \{(0,91,- -+ ,9x) € Sln k41[(0, 91, -, gr) injective with g; > 1}

of Sl,, k+1. Since the image of d" is contained in By, 1, we obtain the following
factorization of d"

Slpk = Bng 2 Slyjia.
But now we are in a situation where standard techniques from the theory of pointed
derivators apply. More explicitly, we use the following result.

Lemma 9.4. Let 9 be a pointed derivator and u: A — B be a functor such that
there is a factorization u = wov

A5 CSB
with v a sieve and w fully faithful. Then the restriction of the inverse image

U*Z @B,w(C\v(A)) N @A
is a right adjoint and the left adjoint is given by wy o vy : P4 — @B wW(C\(A)

Proof. Since v is a sieve, [Grol3, Prop. 1.23] implies that the adjunction v* - v,
restricts to an equivalence of derivators

(9.5) ve: 94 5 @GOV yx,

Moreover, since w is fully faithful, by [Grol3, Prop. 1.20] the same is true for wy and
the unit of the adjunction wy 4 w* is an isomorphism. As a consequence w, - w*
restricts to an adjunction

(9.6) wy: §CCNWA) 5 gBw(@wA) . gpx,
We conclude by composing (9.5) and (9.6). O

Proposition 9.7. Letn > 1,k > 2 and 2 a stable derivator. Then the composition
Groin: @Ok — PSlnitr restricts to a morphism d"[—1]: sl%p i — 81Dn k11, which
is left adjoint to d”: SIDn k11 = SIDn k.-

Proof. The inclusion ¢ and j are both fully faithful. Hence by [Grol3, Prop. 1.20]
the Kan extensions i, and ji are also fully faithful and the counit of ¢* - 4, and
the unit of ) - j* are isomorphisms. Hence, for X € sl9, i, the condition (P2) for
non-injective objects implies the condition (P2) for j; 0 i.(X) on all non-injective
objects in d"(Sl, ). For the condition (P2) for remaining non-injective objects we
note that ¢ is a sieve and invoke Lemma 9.4 which also yields the statement about
the adjunction. (I
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Corollary 9.8. Letn > 1,k > 2 and Z a stable derivator. The adjoint triple

d[—1] H d" 4 d[1]): 1D sr == 51D

induces adjoint triples

d"[—1] 4 d" 4 d"1]: doDy, js1 T—= doDn

and

dh[—l} - dh = dh[l]Z @n,k+1 — @’ﬂyk .

Moreover, in all three cases the units of the adjunctions d"[—1] 4 d" and the counits
of the adjunctions d" 4 d"[1] are isomorphisms.

Proof. The existence of the adjoint triples follows directly from Theorem 5.12. The
statement on the units and counits follows from the fully faithfulness of d" and
[Grol3, Prop. 1.26.]. O

Remark 9.9. Let n > 0,k > 2 and & a stable derivator. There are mutually inverse
isomorphisms of categories

¢n,k5 Don,k = Sl7l,k+15 d)n,k

defined by ¢n,k(f07 e 7fk71) — (07 fO + 17 e Jfkfl + 1) and wn,k(oagh e 7gk) -
(g1 —1,---,gx —1). Moreover, the inverse image of v, j restricts to an embedding

doD s, — 81D pi1. We denote by sIZ7y, 1 — sl 41 the inclusion of the
essential image. In particular, the inverse images associated to v, ;, and ¢, j, restrict
to mutualls inverse morphisms

(1/’;,1@):1 doDn . 2 Sl@ikH: (d’z,k):v

where we use use the superscripts >~ to distinguish the above functors from the
unrestricted inverse images.

Proposition 9.10. Let n > 0,k > 2, & a stable derivator and x € Dy, . Then

~

there is an isomorphism d"[—1] = v w0 (sd*)~1. In particular, the essential image

~

of dh[—1]: SIDy 1 = 8lDy, k41 15 contained in Sl'@mk-i—l'
Proof. We consider the diagram

(u2)x (u3)

(w1 @Al @Az 9A3 (u4)!9An+k71,k71

. - . *
7’1J Zzl zsl don,kl
-/ -/

Sl k 42'> gDon kNAL j*;> gDon ik GPonk ———0 pDonk

Fwn,wwml)*l w:,kl

Sl k i Bk J S,
9 v,k >@ v,k >9 ,,k+17

‘@Sln,k

where 1i1,12,13,7 and j’ are the respective obvious inclusions. We claim that the
diagram above is commutative.

e The first square in the top row commutes because u; = i1 o i’, the fully faith-
fulness of iy and [Grol3, Prop. 1.20].
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e The second square in the top row commutes because

j/
DOn,k NA —— DOn’k

Al —— 4

is a strict pull-back, i is a sieve and [Grol3, Prop. 1.24].

e The third square in the top row commutes because i3 = ug o i, the fully
faithfullness of ug and [Grol3, Prop. 1.20].

e The third square in the top row commutes because do, . = u4 o i3, the fully
faithfullness of uy and [Grol3, Prop. 1.20].

e The squares in the bottom row commute because they are mates of inverse
image squares where the vertical maps are isomorphisms.

Hence d"[—1] = ok ©doy, o (Sl:,k)_1~ B

Remark 9.11. As a consequence, we note, that an object in sl%,, ;41 is contained
in sl if it satisfies property (P1) for all g = (0,91, ,9x) € Slyr+1 with
gL <n+k—2.

Theorem 9.12. Letn > 1,k > 2 and & a stable derivator. Then there is a natural
isomorphism
s;od"[—1] = d"[1] os3.

Proof. We show the equivalent statement, that there is an isomorphism
(9.13) (s3) tod"1] =d"[~1]o(s5) "

Proposition 9.10 implies that the essential image of d"[—1] o (s§)~! is contained

in slZ; 1. In the following we show that also the essential image of (s3)71o

~

d"[1] is contained in sl k1 Let sdng: Sly g — Doy be the inclusion and

s~dn,k: Slp.ix — Doy i, be defined by f — s3(f). Recall, that Theorem 5.12 implies
that sd;‘L,k: doDp, 1. — slDy, 1 is invertible. Let z € sl%,, ;, and consider

y = (sdy jpr) " 0 d"[1](2) € doT .
Then for g = (go,--- ,9x) € Doy k+1 we have by Proposition 9.3 that g*y = 0 if
gr =n+k and go > 1. Let now h = (ho,--- ,hx) € Do, k41 injective with hg > 1
and hy <n+k — 1. Then we define Oy, : 0¥ — Do, ;41 by

(Go,- -+ 6) 1> (ho + do(h1 — ho), -+ s hie—1 + Jk—1(hx — hg—1), hy) for 0, =0
T (ho +0o(h1 — ho), -+ s hie—1 + Ok—1(hy — hi—1),n + k) for 6, = 1.

By construction, [J;, is well-defined and a concatination of elementary subcubes.
Therefore we can conclude by Corollary 4.17 that @Z(y) is bicartesian. We observe
that 7 ;.40 0% (y) = 0, where we use non-injectivity for §; = 0 and our assumption
on y for 6 = 1. Hence, we obtain

(9.14) h*(y) = 0% o 005 (y) = 0.

In the next step we consider sd:7k+1(y) € slPDy k+1. Let now e = (0,e1,--- ,ex) €
Sl k+1 injective with e, < n + k — 1. Then we consider the elementary subcube
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Oc: 0¥ — Doy, 41 by

(605 -+ Ok) = (S0, €1 + 01, , €k + Ok).
Hence [J.(y) is bicartesian. Now (9.14) implies (d9)* o O%(y) = 0. On the other
hand

(dg)" o Tz (y) = g 0 sdy, 111,

where [ is the elementary subcube of S, ;41 starting in e. We invoke [GSMb,
Thm. 8.11] to see that U7 o sd, ; (y) is bicartesian, and therefore sdy ; ., (y) is
in fact an object in 5177, ,, and Remark 5.13 to identify sd}, ,,,(y) = (s5)~' o
d"[1](x).
We conclude by showing that both sides of (9.13) are, when considered as morphisms

81Dk — 81D,y 11, inverse to the equivalence s}lzk o(by 1) 8Dy — Sl Dk
For the left hand side we consider the composition of isomorphisms

sdy, 0 (0% 1)~ 0 (s5) ™ o d[1]

l>s~di K © ((ﬁ;,k): ° Sdz,kﬂ o (SNdz,kH) Yo dh[l}
=sdy, 5, 0 (95,1)™ © 8y joyr © (5 pyn) " H 0 d"[1]
%Sdz,k © (¢Z,k): © dh[l]
=d" o d"[1]
=idsi9,, 4

where
(i) the first step is induced by Remark 5.13,
(ii) the second step follows from sd,, k+1 © Pp i © s~dn;C = s~dn’k+1 O ¢ ks 0 S, ko,
(ili) the third step is induced by the equivalence sd,, 1 Remark 5.13,
(iv) the fourth step follows from ¢y, j o sd,, x = d",
(v) the fifth step is the invertibility of the counit of the adjunction d” - d”[1].

Finally, for the right hand side the composition of isomorphisms
dy 5 © (67,)% 0 d"[=1] o (s5) "
(sdp 1)t 0 5dy, 0 (9], )% 0 d"[=1] o (s5) 7"
=sd,, ;0 (sdf )L od" o d"[~1] o (s})
(Sdz,k

) o sy

~ %
-—>sdn7k o

l>5~d:; k ©
1550 (s5)
%idsl@n,k )
where the single step are
(i) first, induced by the equivalence sdy, , Remark 5.13,

(ii) second, the equality ¢y, x o sd,, 1 = d",

(iii) third, the invertibility of the unit of the adjunction d"[—~1] 4 d* Corollary 9.8,

(iv) fourth, induced by Remark 5.13,

(v) fifth, induced by the equivalence sj,

completes the proof. O

As an application, we obtain the horizontal analogue of Corollary 8.24.
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Corollary 9.15. Let n > 1,k > 2 and & a stable derivator. Then the standard
horizontal face morphism d": D, 111 — Dn. i generates an infinite chain of adjunc-
tions such that for p € Z

(i) d"[2p] = (s5)P o d" o (s5) 77,

(ii) d"[2p+1] = (s3) o d"[1] o (s5) 77 = (s)"*" o d"[~1] o (s5)P~".

Proof. This follows inductively from the relations
d"[~1] = (s5) tod"[lJos;  and  d"[1] =s50d"[~1]o(s5) ",
which are consequences of Theorem 9.12. O

Proposition 9.16. Let n > 0,a € Z and 9 a stable derivator. Then there are
isomorphisms

(i) W d yla] = &b a] 0 Wi for a cven.
(it) df,,1[a] o Wy, = W,y 0dY yla] for a odd.

Proof. Consider the diagram

(s5)7"

Cy, "o cofl n og
Sl@n,z = 9["] = @D e = @E = 81@1,"+1 — Slgl,nJrl

d”[znﬂ]k mm*} d;l} d::% s"d*% - Jd"[—u
S

~ ~ n+1l . ~ n+1 ~
SIDY 1 —— Glntllee 2y gl woo o B g her « 2 o i1 — SID s
’ "5:L+1 (—=-)" coft D; ’ P1,n+1 ’

(=-)"

Here sl 5 denotes the essential image of d”[2n + 1]. We conclude the commu-
tativity of the diagram by the following.

e For the first square we use Examples 5.14 and Example 8.21.

e The second and fourth squares consist of inverse images of a commutative
squares of functors.

e The third square commutes because of [BG18a, Lem. 8.19].

e The commutativity of the upper triangle is Remark 5.13.

e The lower triangle commutes by Proposition 9.10.

Moreover, the first four morphisms in the top row compose to ¥/ and the lower
row is a restriction of W; ., (Remark 6.20). Therefore, by identifying the outer
compositions, we obtain a natural isomorphism

U od’[2n+ 1] =2 d"[~1] o ¥, o (s5) "
By whiskering with (s3)"*! we obtain the third isomorphism in

Uy 0d'[=1] 27 4 0 (s3)" T o d[1]

(9.17) =y’ od¥[2n + 1] o (s5)" T
=d"[~1] 0 ¥, (s5) " o (s3)" !
~d"—1] o W,,.

The first and fourth isomorphism is Remark 6.20 and the definition of ¥,, and the
second isomorphism is Theorem 8.7. This yield the statement for @ = —1. The
remaining cases follow from (9.17) by inductively passing to adjoint isomorphisms
and using that ¥,, and ¥, ;1 are equivalences. [l
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10. THE STRUCTURE OF A LOCAL SQUARE

In §8 and §9 the main result was the existence of a good supply of morphisms
relating derivators of the form 2, ; in the situation where k, respectively n, is fixed.
In this section the main goal is to understand how the structure morphisms in the
vertical and horizontal direction interact. For this we will consider those cases,
where the relevant maps can be described as inverse images on (triangular) slices.
More precisely, we will first show that the horizontal face maps d”* assemble into a
map of certain simplicial derivators associated to higher S,-constructions. We will
build on this result in §11. Second, by additionally analyzing some boundary cases,
we will obtain a full understanding of commutative (up to natural isomorphism)
squares of the form

Drs1k — Dt k+1

]

-@n,k E— -@n,k+17

in the 2-category of derivators, where all displayed morphisms are generalized face
and degeneracy morphisms.

First we observe that standard horizontal face morphism can also on triangular
slices be defined as an inverse image morphism. More precisely, the functor

dhi Sl'ﬁk — Slﬁk+17(07fla'afk71> = (0717f1 +1,--- afkfl + 1)

satisfies AmFtl o gh = gh o A™F . Sly i — Sl§k+1 and therefore Theorem 5.12 and
Construction 8.15 yield

dh,
D1 —— Dk

si® J( lsla
n,k+1 n,k

SZA.@nJH_l —_— SZA.@n,k.
(d"”

Proposition 10.1. Let n > 0,k > 2. The following squares commute for 1 < i <
n+k.

(1)

A d" A
Sanrl}k Sanrl,kJrl

A(Ak175il)J/ JA(AMS”

A A
Sl = Sl
(i)

dh
Sly1,p — Slut1 k41

A(Akladi)T TA(Adeﬂ

Sl —— Sl k1.
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Proof. For the first statement we consider f = (0, f1,--- , fx—1) € Slﬁrl’k such that
j is maximal in k with f; <7 — 1. Then we compute the composition through the
upper right vertex as

O, fr, -, fis fis1r 5 fo—1)
=04 fi L fi L fip L froa 1)
=0, 1 fr+ 1 fy L fian o fln)
and the composition through the lower left vertex as
O, froo fis firrs oo fom1)
=0, fro s fis i = Lo freer — 1)
=0, fr+ 1 f5 L fi e free1)-

For the second statement we consider f = (0, f1,---, fx—1) € Sl such that j is
maximal in k with f; < ¢. Then we compute the composition through the lower
right vertex as

O, fr, s [ firro oo fum1)
=(0,1, fi+ 1, fi+ 1 fim+ 1, femr+ 1)
=0, fi+ 1 5+ L fjp 2, flim1 +2)
and the composition through the lower left vertex as
O, f1, s fis firn o s fom1)
=0, fr s fiy fin L femr + 1)
=0, L A+ i+ fi 20 fee1 +2).

Let k£ > 0. In the following we denote by
ETe A= AJA, = Apyr, di = digr, Si - Sik
and observe the obvious transitivity property It o k™ = (k +1)T.

Corollary 10.2. Let k > 1 and Z be a stable derivator.

(i) The standard horizontal face morphisms d": Dy, k12 — Dn 41 assemble into
a pseudonatural transformation

Sskﬂ)(_@) 0io2T — Ssk)(_@) oiol™: A% — Der.

(i) Let 0 < a < 2k. If a is even, then the morphisms d"[a]: D jr2 — Dnks1
assemble into a pseudonatural transformation

S (@)oio(k+2)t S (D)oio (k+1)": A% — Der.

If a is odd, then the morphisms d"a]: Dn ki1 — Dn sz assemble into a
pseudonatural transformation

SM(P)oio(k+1)* = SFH (D) oio (k+2)*: A% - Der.

Proof. We invoke Proposition A.4 applied to the equivalences of Theorem 5.12 and
Construction 8.15 for a pseudonatural equivalence

S (@) oiolt — 2 (9,
where S(.k)’A(Q): A — Der is the 2-functor defined by
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o A, 51A9n—k+1,k+17

o (f: A, = An)— (for Apg1 = Apy1,0 = 0,i+1— f0)+1) — A(Ag, fo)§-
To show the first statement we claim that the morphism d”: Drjer2 = Dnjt1
assemble into a 2-natural transformation SE’CH)’A(@) olt — Ssk)’A(Q). For this
it is sufficient to check the naturality condition on the generators of A, which is
exactly the 2-functoriality of & applied to Proposition 10.1.
For the second statement we additionally use the pseudofunctoriality of right ad-
joints, since in this case the pseudonaturality squares are obtained by passing to the
ath right adjoints of the inverse image squares associated to Proposition 10.1. [

Proposition 10.3. Letn >0,k >2,1<i<n+k+1 and 9 a stable derivator.
Then there are natural isomorphisms

(Z) d2+17k °© dz,k+1[_2k - 1] =0: 9n,k+1 - -@nJrl,k}
(ii) d2+1,k ody 1200 — k) = 1] =d] [2(i — k) — 1] o dZ,k: D1 = Dotk

Proof. We use the notation from Proposition 8.18
dv :A(Akad1)|sln,k+1: (O7f1?"' 7fk) = (07f1 + 17 afk + 1)
Since the image of d" is contained in the complement of the image of d” and the
left Kan extension dy is an extension-by-zero morphism, the composition
Stairr By HSturrier @) HSlairn
(10.4) DIkl —y @Rind Lkl G)Yint,

vanishes. We apply Proposition 8.18 and Example 8.22 to the left arrow and Defi-
nition 9.1 to the right arrow, to conclude that (10.4) restricts to

dn gy [—2k—1]

s
(10.5) 1D k1 S D1 k1 —— Sl D1 k-

Hence also the composition (10.5) has to vanish. Now Theorem 5.12 yields the first
statement.

For the second statement, we consider for 1 < i < n + k the following square of
slices (and observe that the vertical morphisms are well defined by Proposition 8.10)

A d" A
(10.6) Sanrl,k ’ Sln+1,k+1

A(AkhSil)J( lA(/\mSi)

A A
Sl = Sl

This square is commutative by Proposition 10.1. We apply the derivator & to the
square (10.6) and obtain by Corollary 8.17 and Remark 9.2 a restricted square

h
A d A
sl @n+1,k +—— sl @n+1,k+1

d’“[2(z’—k)—1]T Td“[Q(i—k)—l]

SIA Dy gy 4 81 Dy 1.
d 3

Theorem 5.12 yields the second statement for 1 <i <n + k.
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It remains to show the case i = n + k + 1. For this we consider the square (which
is again well defined by Proposition 8.10)
dh
Slpy1,x — Syt k+1
dv\/—A(Akhdn{»k)T TA(Akndn{»kﬁ»l)_dvv
Sln)]~c T Sln)/ﬁ_l.
We claim that also this square commutes. However, this is clear as the effect of the
vertical morphisms on coordinate representations is trivial. Moreover, this square
is a pullback of sieve and hence homotopy exact by [Grol3, Prop. 1.24]. This yields
the commutativity of mate (obtained by passing to the right adjoints in the vertical

direction) of the associated inverse image square. However, this in turn restricts by
Proposition 8.18 and Remark 9.2 to

dh
SlDpi1 ke — Sl Dpt1 k1

dv [2n+1]T Td“ [2n-+1]

$lDp s ¢ 8lDp o1
> dh )
A final application of Theorem 5.12 completes the proof. U

Theorem 10.7. Letn > 0,k > 2, a € Z even, b € Z odd, and 2 a stable derivator.

(i) Let p € Z and i € {—2k — 1,2k +1,--- ,2n+ 1} the unique elements, such
that b—a = 2p(n + k + 2) +i. Then there are natural equivalences

"  JO fori= -2k -1,
d2+1,k[a} © dn,k+1[b] = dv h .
nklb—2plodp la+2p| fori> -2k +1,

(i) Let g € Z and j € {-2n—1,—-2n+1,--- 2k + 1} the unique elements, such
that b—a = 2q(n + k 4+ 2) + j. Then there are natural equivalences

0 forj=2k+1
dv dt | [b] = ’
n,k+1[a] o n+1,k[ ] {dzyk[b_ 2q] OdZVk[a+2q] fO’f’j < 9%k —1.

(i) There are natural equivalences
dﬁﬂ,k[a +2(n+k+1)]ody, pyq[b+2(n+k+1)] = shnlo d2+1,k[a] ody j+1[0]
and
dy kil +2(n+k+1)o dZ+1,k[b +2n+k+1)] 20" 1o dy, ks1lal o dZ+1,k[b]~

Proof. We use the notation [ = n + k + 2 and show the first statement in the
case a = 0. To achieve this, we consider the following composition of natural
isomorphisms
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d2+1,k o dZ,kH d
:d2+1,k ody, ji1li + 2pl]
r;/dh s\ pl dv . s\ —pl
=dnt1,5° (s3)" o n¢k+l[l] o (s3)
=dl o (BTVRPod (i o (s5) P o (T7F) 7P
=dl g od gl o (53) 7P o (BUHIR)P o (5F) P
=dy j[i] o dl j o (s3) 77 o (SR o (57F) P

2dy, kli] o (s5) 77 o dyy x[2p] o (BTHDR)P o (57H) P

14

(s5) PV o dl y[i+ 2p(l — 1)] o (s3)P' "V o (s5) P o d [2p] o (B FVR)P o (B7F) P
=(n DG TP o g L [i+ 2p(1 — 1)] o (S"FTD)P o dl  [2p] o (BTDEYP o (1R) 7P
=d, i +2p(l—1)]o dﬁ,k[zp]

=dy, . [b— 2p] o dls 1 [2p],

where the single steps are induced by

(i) first and tenth (last), the assumption on b — a,

(ii) second and seventh, Theorem 8.7,

(iii) third and eighth, Corollary 5.21,

(iv) fourth and ninth, the exactness of morphisms of derivators, and in the latter
case also the equality (n+1)k+n(k—1)—(n+1)(k—1)—nk =0for n,k € Z.

(v) fifth, Proposition 10.3,

(vi) sixth, Corollary 9.15,

respectively. In the case i = —2k — 1, we consider only the first four steps, and
apply Proposition 10.3 to obtain the desired vanishing.
For the general case, we consider the natural isomorphism (for i > —2k + 1)

(10.8) dZ—O—l,k © dz,k+1[b —a] = di,k[b —a—2p|o dﬁ,k[Qp],

which exists by the special case above. The uniqueness of adjoints, and their
compatibility with composition yields inductively natural equivalences between the
ath right adjoints in (10.8), and hence the statement for a > 0. For a < 0 we
consider left adjoints of (10.8) instead. The arguments for the case i = —2k — 1 are
very similar (and even simpler).

For the second statement we consider o’ € Z even, b’ € Z odd with ¥/ —a’ = 2pl + i
as in the first statement. Hence we have a nautral isomorphism

(10.9) d2+1,k[al} ° dZ,m[b’} = dqu,k[b/ —2p|o dZ,k[a’ + 2p).
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We again invoke the uniqueness of adjoints, and their compatibility with composi-
tion to obtain a natural isomorphism relating the left adjoints of (10.9)

(10.10) i1t = ody g pla’ =1 = dp o’ —1+2p]ody [0 — 1 —2p].

By substituting a =¥ — 1 and b =a' — 1, we have b —a = — (b —d’) = 2¢l + j
with ¢ = —p and i = —j. Plugging this into (10.10) leads exactly to the second
statement in the case j < 2k—1. The case j = 2k+1 is again very similar (and even
simpler). For the first part of statement (iii) we consider the following composition
of equivalences

dnpasla+2n+k+ 1] ody p[b+2(n+k+1)]
=(sh) o dZ+1,k[a] ody p11[b] o ()~ (mHh+D)
opntE=D o dﬁﬂ,k[a] ody, xy1[b] o Qnr
xypk-nlo d2+1,k[a] ody k1100,

where the first equivalence is Corollary 8.24 and Corollary 9.15, the second equiva-
lence in Corollary 5.21, and the third equivalence is the exactness of morphisms of
derivators. (]

Proposition 10.11. Let n > 0,k > 2, a,b € Z such that b — a is even, and 9
a stable derivator. If there are p € Z and —k +1 < 1 < n, such that b —a =
2p(n+ k + 1) + 2, then there are natural isomorphisms

(1)
dr 1 plal ody, (0] = zpin=kth o dp k1o = 2p(n+ K+ 1)) odt la+ 2p(n + k +1)]
if a,b are even,
(1)
dila)ody, oy [b] = 2P TR o dy b+ 2p(n+ k+ D] odly o — 2p(n+ k + 1))
if a,b are odd.

Proof. We reformulate Proposition 10.1 using the notation introduced in Exam-
ple 8.21 and Definition 9.1 to obtain isomorphisms

dZ-ﬁ-l,k ody [2i] =d), ,1[2] 0 dﬁ,k

for —k+1 < i < n. By passing to adjoint isomorphisms, we conclude statement (i)
in the case p = 0. For p € Z general, we use the notation | = n + k + 1 and invoke
the following composition of isomorphisms

dﬁ+1,k[a] © dZ,k[b}
%dzﬂ’k[a] oshlo dy [0 —2pl] o 557!
gdz-&-l,k[a] o 2P o dy, x[b—2pl] o sgpl
oyrnk o dh | la] o d? b — 2pl) 055!
=5k o d oy [b— 2pl) 0 df y[a] 0 557
ey Pkt o dp 4y [b— 2pl] o SPHDETD o gl a] 0 55
ooy p(n—k+1) dy 1 [b—2pl] o st o dzyk[a] o5y

=y Pkt o dz,k+1 [b—2pl]o dﬁ,k[a + 2pl],
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where the first isomorphisms is Corollary 8.24, the second and sixth one is Corol-
lary 5.21, the third and fifth one is the exactness of morphisms of derivators, the
fourth one is statement (i) in the case p = 0, and the seventh one is Corollary 9.15.
For statement (ii) we use statement (i) with ' =a+1— 2pl and ¥’ = b+ 1 + 2pl
and pass to the left adjoint isomorphism. O

11. THE MAIN THEOREM

Lemma 11.1. Let 9 a stable derivator and u: A — B be a sieve with complemen-
tary cosievev: A’ — B. Let in[,l] be the full subderivator on those objects x, such

that (id x dy)*(x) € 254" and (id x do)* (x) € 2PA. Then there is an equivalence
of derivators

Proof. Let C = (B x [1]) \ (4’ x {1}), i: B — C the inclusion of B x {0} and
p: C' — B the projection. Then i 4 p and the essential image of 4, = p* consists
precisely of those objects on which the counit of ¢y 4 ¢* is invertible. This latter
condition holds exactly when (a x id)* is constant for all @ € A and we denote by
9§ C P¢ the subderivator of all those objects. Next, we consider the inclusion
j: C' — Bx[1], which is clearly a sieve. We define C' = (B x [1])\ C invoke [Grol3,
Prop. 1.23] for the equivalence j,: 2¢ = 2Bx1.¢" " We denote by @fxm the
essential image of 2§ under this equivalence (which consists by [Gro13, Prop. 1.23]
precisely of those objects such that the restriction to is in 2§ and the restriction
to C’ vanishes). We claim the equivalence id x cof: 2B*[1 = @Bx[ restricts

to an equivalence @fx[l] = @f’ﬁ[,l]. To see this, we invoke [BG18a, Lem. 8.19]

which shows that the vanishing on C” exactly corresponds to (id x d;)*(z) € 254’
and [BG18a, Cor. 8.6] which shows that the constantness condition for objects in
A exactly corresponds to (id x dg)*(z) € 254, Summing up, there is a chain of
equivalences

B C Jx Bx[1] idxcof Bx[1]
2% 2 95 = 9y 25950
]

Construction 11.2. Recall the cubical slice SZE,k = Z’g
We consider the isomorphism of categories

oot M) = SIT L (for oy frma) = (0, fo+ 1, fua + k+1).

JsE-1(6) (c.f. Remark 5.25).

k—1 N —
Let .@([)"] denote the essential image of ¢}, . : sl — g Furthermore, we
recall the functors

o d": Sln,k — Sanrl,ka(Oaflv"’ ,fkfl) = (vao + ]-7 7fk71 + ]-)7
hd dh: Sln,k — Sln,k}-‘rlv(oa f17"' 7fk—1) = (0717.f0 + 17 7fk—1 + 1)

These assignment extend formally to functors d”: S ZE, . — S 415 and d: S ZE E =

SlEk 41 such that there are (strictly) commutative diagrams

J Cn,k j Cnk

Sly i SI,, [n]F—! Sl ke SIE, [n]F—!

dil dul Jdlgl th dhl J@ Xid k-1

Cn+l,k

Slag1g —— Sy —5 [n+ 1)+ Sl et —— ST, s ],
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By passing to inverse images and suitable restrictions we obtain strictly commuta-
tive squares of derivators

(11.3) sl e g sl e
(dv)*/{ T(dlgl)* (dh)*/[ T(O)Xid[n]kl)*
a1+ ok
Sl@njq’k — 90 SZ—@n,lH»l — @O

Using the same argument as in Proposition 8.18 and Proposition 9.3 we see that
the adjunctions

(d’gfl)!; @[”]]Vl = 9[n+1]""1: (dlgil)* and (@ X id[n]k—l)*: @[n]k = @[n]k712 (@ X id[n]k—l)*
restrict to adjunctions
(5 2 2 g T () and (0 x idggen)T: 20 2 20T (0 % idgge)-

The analogue of this is not true for (df '), and (f x idpyjx-1)1. Instead we invoke
Lemma 9.4 and its dual to see the following.

e The right adjoint of (df~')*: Q(Enﬂ]k_l — Qén]k_l is given by
(do)s x (A2 24— g

k k—
e The essential image of the left adjoint of () x idy,s—1)*: .@([)"] — 9([)"] Cis
k
given by those objects in 9([)”] satisfying property (P1) at those objects in [n]*
which are increasing sequences in [n — 1]¥ C [n]* (c.f. Proposition 9.10).
Next, we apply Lemma 11.1 to the situation of Construction 11.2.

Corollary 11.4. Letn > 1,k > 2 and & a stable derivator. Let (Sl‘@n+1,k+1)5}A’

be the full subderivator of Ptk X1 o those objects x, such that (id x d1)*(z)
is contained in the essential image of d": Sl@n+1’k — sl@nJrLkJrl and (id x do)*(z)
is contained in the essential image of dy: sl@n,kﬂ — sl@nﬂ,kﬂ. Then there is
an equivalence of derivators

Sl@nﬂ,kﬂ = (Sl@nﬂ,kﬂ)g]ﬂ

Proof. We apply Lemma 11.1 to the case B = SZE+17k+1 and the sieve u = d": A =

SZEHJ€ with complementary cosieve v: A” — B and conclude by identifying the
essential image of the composition

7 - o~ o (SIE X
SIDpi1 1 — PSlati ki1 2 @A7A/+1,k+1 [ ]),

where the equivalence is induced by Lemma 11.1, with (Sl.@n_t,_l’k_i,_l)gﬂ A d

We note that there is also a dual picture. For the sieve
d* =AMk, A1)l 800 sn 2 Stk = Slaga w1, (0, f1, -5 o) = (0, fr,- -5 fr)
we can consider the almost complementary cosieve
d™ 2 Slyi1 g = Slasigt1, (0, fry oy fro1) = (0, fiy o fom1,m+ k +1).

Example 8.21 yields the identification (d’V)* = dV[2n]. In the following we establish
a similar identification for (d"V)*.
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Proposition 11.5. Letn > 1,k > 2 and Z a stable derivator. Then there is a
natural isomorphism

(@) = s od"2(n —k)|: 81D ki1 — 81D k.
Proof. We note that d"V = s3 0 d": Sly.e — A(Ag, Aptr), which gives rise to first
isomorphism below
(d"V)* =dh o s}
=(s3) " od"[2(n+ k)] o (s5)"F o5
ae k=1 o dh2(n 4 k)] o BF
3" o dh2(n + k).
The second isomorphism is Corollary 5.21, and the third is Corollary 9.15. (I

We observe, the pair of morphisms (d”v,dhv) behaves completely dually to
(d",d"). In particular, the commutativity of the squares

[n]kfl [n]kfl
7 — 7 —

(duv)*T T(dﬁl)* (dhv)*T T(id[n]kl X 00)™*

[n+1]%"" [n]*
SlDpt1k ¢ 9 SlDp k41— D
are dual to (11.3).

Theorem 11.6. Letn > 1,k > 2, a € Z and & a stable derivator. Then the are
equivalences of derivators

q)n,k: 9n,k - @kfl,nJrla
such that the following properties are satisfied
(Z) én,k o cbkfl,nJrl = ld;
(ZZ) Sj; e} (I)n k = (I)n,k OS;,
(ii1) d}_ ,y1lal © P g1 = nkodnk[a} for a € Z even,
dy_, n+1[a] od, = <I>n+1 podh? k[a} for a € Z odd,
(iv) dk Lns10a] 0 Pry1 = @y g 0d) (a] for a € Z even,
di 1 ppala] o ®pp = @y g 0dy [a] for a € Z odd,
(’U) 5* n,k —g*:
(UZ) @n’g = \I/n
Proof. By Theorem 5.12; Proposition 5.23 and Remark 5.25 it is sufficient to show
the corresponding statements for the derivators sl j.
We define the map ad,, x: [k — 1]™ — (O")*~1 by the assignment

(io- -+ yin—1) = ({7 €0l <ij},{j €n[2 <}, {j €nlk -1 <i5}).
We define the morphism of derivators ¥, j: sl@n,k — sl@k,l,nﬂ as the composi-
tion

“ K k—1 (\I/E)k_l nyk—1 ady, . k—1]" (C;:,l 1) R
A Sy g™ W) Gt Mk gl S g

First we show that W, ; is well defined. Consider a non-injective object f =
0, f1,---, fa) € SlEanJrl and let ¢ = (go, " ,gn_1) = Czllmﬂ(f) € [k—1"
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The non-injectivity of f implies that there is 0 <7 < n—2 such that j = g; > giy1-
As a consequence, the jth coordinate of ad,, x(g) is not in the image of the standard
maximal path —: [n] — O". Therefore,

froWn = (adni(9) o (W) oc ;=0

holds by construction of \IIE. This establishes property (P2) for f on objects in the
essential image of ¥, j.
We proceed in the following steps.

(i) In this part we establish an alternative description of ‘I’E,k = ad;, ;.0 (pHk-1

and construct adjoint morphisms. For this we consider the shuffle permuta-
tion shy, ;: (O")* — (OF)" defined by the assignment

((lgv 7l(7)L—1)7"' 7(113_1’"' 712:1)) — ((1(0)7 7l§_1)a"' 7(12,—17"' 7[2:%))

and note that (shy ;)™ = shg,. We claim that shy, x_1 0ad,r = (—-)"
To establish the claim we consider i = (ig, -+ ,in—1) € [k — 1]" and let
shp k-1 0 ady, (i) be of the following form

(10, 10 ) -, (7t Il e (@),

Consider j € n. Then by the definition of ad, ; we have I, = 1 if and only
if @ —1 < ij. Hence (shyp_10ad,i(i)); = (13, )lifz) = (—,)(i;) as
claimed.

As a consequence, we obtain the first isomorphism in

‘I’E,k =ady, ;o (Wt
=((—-)")" 0 shj_y,, 0 (W)

=((=7)")" 0 shi_1p o fibto (=7) ).

For the second isomorphism above we use that (— ), is a morphism of deriva-
tors, and therefore commutes with fibers in unrelated coordinates. In partic-
ular, we see that \I/E’ i is left adjoint to

Wit i= (=) )" o coft o shy oy o ((=1)")s

(ii) We observe that shy, 1: 0% — 0" and (—,): [1] — [1] are both identities.
Hence we obtain in the special cases k = 2 and n = 1 the identifications
o, = el and O =l

n,2 —

respectively. These are equivalences of derivators by Theorem 6.9 and Re-
mark 6.24.
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(iii) In this step we show that ¥, ; is an equivalence of derivators under the

(11.7)

(11.8)

assumption that the diagrams

A @) @)y o
Sl.@n+1)k E—— Sl@n+1’k+1 — Sl@n7k+1
‘Iln-l—l,kl ‘l/n+1,k+1J/ J\Iln’kJrloQk
. T @
Slgk—l,n—&-Q e Sl@k?n_;,_g — Sl@k7n+1
\I’X+1,kl \I’X+1,k+1 lzko‘l’y\i,m—l
A (")« A (d) -
Slgn—i-l,k E—d Sl.@n+17k+1 — Sl-@n,k—i-l
and
- (")« - (d) S
Sl@k7n+1 —_— Sl@k’n+2 — Sl@k717n+2
Eko‘l’x,k-ul ‘I’X+1,k+1 J{q,:iﬁ»l,k
( v ! h ! ~

Sl-@n,k-i-l E— Sl@n+1,k+1 — Sl-@n—&-l,k

\I/n,k,#»lOQkJ Wn-}—l,k-%—ll J‘I’n+1,k

- (d"). - CI
sl@k’rnﬁl’»l —_— Sl@k’n+2 — Sl@kfl’rnﬁFQ
commute up to natural isomorphism. Our notation is slightly abusive, since
the morphisms (d%), and (d"), are not the restrictions of the respective Kan
extensions (c.f. Construction 11.2). The commutativity of (11.7) and (11.8)
will be established in steps (iv)-(ix). We obtain by Corollary 11.4 equivalences
of derivators

T1: sl Dni1 1 = (Slgn+1,k+1)5],,4/
and
Ts: Sl-@k,n-ﬂ = (Sl-@k,n-i-Q)g],Aw
Since ¥y, 41 k41 and \I/TVL_~_17,€_~_1 are morphisms of derivators, we obtain (since

the equivalences T} and Ty are compositions of Kan extensions) commutative
diagrams

(11.9) S1Dnsr i1 — (51 ir)h ar
‘I’X+1,k+10‘1’n+1.k+1J J{(\Px+l,k+lo‘yn+lyk+l)[l]
1Dttt — (511 11) 4
and
(11.10) S1Dnr2 — (1D nr2) 44

‘I’n+1,k+1°‘p1\i+1,k+1l J(‘I’n+1,k+1°‘1’2+1,k+1)[1]

Sl.@km_;,_z —= (Sl‘@k,n—&-Z)g]’A/-



78 FALK BECKERT

We can assume by induction that the morphisms W,/ are equivalences
whenever n’ + k' < n+ k + 1. We consider the unit 9,41 41 of the ad-
junction W, 41 py1 A \ijvz+1,k+1~ The commutativity of (11.9) implies that
Mn+1,k+1 18 invertible if and only if ' = T1 0 np41 k41 OTf1 is invertible. The
commutativity of the left half of (11.7) implies that

(11.11) (d" xd)*on Znupx  and  (d, x dy)*on’ Zidg
and the commutativity of the right half of (11.7) implies that

(11.12) (d° xdo) o 2T onup1  and  (d" x do)* on =idy.
Furthermore, the property (P2) for non-injective objects implies that

(11.13) (x x idpy))* o1 =idg

forall x € SlE+1,k+1\(dh(SlEH,k)Udv(SlEkH))- The axiom (Der2) together
with (11.11), (11.12) and (11.13) and the induction assumption implies that
7', and hence also 7,41 k11 is invertible. We use exactly the same argument
applied to (11.10) and (11.8) to show that also the counit of W, 1y 41
vy +1,k+1 1s invertible. Consequently, the morphisms W, are equivalences
forn’ +k <n-+k+2andn’ >2, k' > 3. We note that step (ii) takes care
of the remaining cases n’ = 1 and &’ = 2 and therefore finishes the induction
step.
(iv) We claim that the diagrams

Shp k-1 shp k—1

(k=1 (Ok—1)n (k=1 (Ok=1)n
(DnJrl)kflsngkfl)nH, (DnJrl)kiihm](Dkil)nJrl
commute. Consider [ = ((13,---,1%_,),---, (I672,--- ,1¥72)) € (O™)* then

the maps of the left square above operate on [ as follows

((18‘ 719;—1)7"' 7(1106727"' 7[5.:%)) — ((]8 11572)1"' 7(10 ) ~Ik72))

n—1>""">ln-1

(([81 7191—171)7"' 7(1106727"' 1[?1:%1)) '—>((187 71(1;‘72)7"' ([91 1777 lkiz):(la"' 71))

- 1'n—1

Dually, for the right square we have

((l87 719171)7"' 7(15_27"' /lﬁ:?)) — ((l87 7l§_2)7"' 7(12713"' 715:%))

I I

((07 l87 e 719171)7 U 7(07l(1§727 e 7l£:?)) [ — ((07 e 70)7 (18 e 7l(l§72)7 T (lgflv U 715:%))

(v) The commutativity of the right square in step (iv) implies the commutativity
of the third square of the left and the fourth square on the right in the
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diagrams below

Sl@n’k;Jrl W} Sl@n’k Sl@k’nJrl W Sl@k,1¢n+1
C:L,k+1 CZ,k Cz,n+1 CZ—I,TH»I
@(gn]’“ . (gn]k’l @ék]"L : %k—u"

(O (idpny)* 1) ((do)™)
((=+)") (=), ((=+)")« ((=7)")«
@(Dn)k @(Dn)kfl @(Dk)n @(Dkfl)n
(O (idgn)*)* (CHION
Shi,n ShZ—l,n cof: cofl
L — Lk L — Gk
((dy)™)”" ((dy)™)”"
fibl fibL shi k shi k1
@(Dk’)n @(Dk—l)n @(Dn)k, @(Dn)kfl
(@)™ (Bx (idgn )*)*
((=)™)" ((=-)™)" (=n)*)" ((=o)F 1)
@(gk_}n i @(gk_l]n @(gn]k @(gn]k—l
((do)™) (O (idpnp)* 1)
(61:,1n+1)* (C;—ll,n+2)* (C;,1k+1)* (C’;.,lk)*
Sl@k,n—i-l (T”)z Sl@k—l,n—i-l, Sl@n,k—i-l W Sl@n,l«

The first and sixth squares follow in both cases from Construction 11.2. For
the fourth square on the left and the third square on the right we invoke
Remark 4.6. The second and fifth squares are induced by inverse images
from commutative squares in Cat. In the case of the second squares we
additionally use that (—,) has a left and a right adjoint. Moreover, we use
step (i) and the fact that fib! preserves permutations of coordinates to identify
the columns with U, 41, ¥, 1, and \I/XJCH,\I/X’,C, respectively. Hence we have
isomorphisms

(11.14) W0 (d) = (d") oWnppr  and Wy o(d) = (d") oWy,
By passing to the right (resp. left) adjoints in (11.14) we obtain
(@)oo Wy =Wy y0(d)e and  (d”)10Wpy =Wy pq 0 (d"),

which exactly yields the commutativity of the lower left (resp. lower right)
square of (11.7) (resp. (11.8)).
(vi) Consider the upper left square of (11.7)

~ ™). ~
(].].].5) Sl@n’k L) Sl@n7k+1

\Ijn,kl \I’n,k«i»lJ(

v

SlDy—1,n41 — 8l Dk png1-
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The isomorphism (11.14) implies that

(d°)* 0 Wp g1 0 (d")s = Uppo (d) o (d) = V.
Hence, for the commutativity of (11.15) it is sufficient to show that the es-
sential image of W,, x11 o (d"). is contained in the essential image of (dV)..
We restrict to the situation of \IIE’ . by composing with the equivalences c,, .
In particular, (11.15) becomes

k—1 (QXidknil)* k
gén] [n] gén]
v Vi

_1n (d )*X(dn71)1 n
Q(Ek 1] 0 0 9([)k] .
by Construction 11.2. Under these identification, we observe that the condi-
tion ’contained in the essential image of (d”).’ is equivalent to the constant-
ness of the restrictions along the 1-simplices classifying the maps

(Oaila' t ainfl) — (177;15"' 77;1171)

for all (i1, ,in—1) € [K]""!. By precomposing with ((—,)")*, the above
constantness conditions follow form the constantness of the restrictions along
the 1-simplices classifying the maps

o ,0), (*)T)(il)’ e 5(4)7')(2'7171)) - ((1’05 e ’0)7 (%T)(il)v U 7(%7')(2.”*1))'

Let (i1, ,in_1) € []""', and s: [1] — OF" the map described above. Then
we compute the cofiber

Cos* ofibtoshy, o ((—-)")ro (0 xidir").

@
o (0 x idf ).

~tfib o 13 0 ((=+)")r o (B x idf; ).

(
)

=tfib o 1] o shy , o ((—=+

by Remark 4.6 (first isomorphism) and the functoriality of inverse images
(second isomorphism), and where

u: (O, = @9 and e (")) en, 01y, — (@4
denote the natural inclusions of undercategories. We claim that the latter
total cofiber is compute over a constant cube with value zero. For this we
consider j = (jo, -+ ,jk—1) € ((O™)%)sn, .0s1)/- Since the functor (—)
admits a right adjoint p (c.f. proof of Theorem 6.9) we have ((—,)%); = (p*)*.
Using that the first index of jg is 1, we see that p(j) is contained in the
complement of the image of §) x idp,). Hence,

p*o ((—)T)k); o (0 x idfni]l)* ~p*o (pk)* o (0 x id{cni]l)* = 0.

(vil) Next, we show the commutativity of the upper right square

~ dv), ~
Sl@nJrl’k # Sl@nyk

‘I/n+1.kl J(\Iln,koﬂk_l
ar

SlDy—1mt2 & SlDr_1 n41
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of (11.7) (which coincides with the lower left square of (11.8)). We invoke
(11.14) for

(@) 0 Wy 1 0 (d°)) 2 Wy 4y 0 (d)" o (7)) 0.

Hence the essential image of W,, 11 ;0 (d) is contained in the essential image
of (d"), o W,, 1 0 Q*~L. Therefore it is sufficient to show that

(11.16) (dM)* oW, yq o0 (d) =W, o QF L

By composition with inverse images of the form ¢y, this in turn can be
reformulated as the commutativity of

g(gn+1]k l(dg) @ ]k*l
@E+1,kl J{‘l’g,k‘)ﬂk_l
@[1%1]"+1 @[k 1]
0 ((Z)><1df'k 0

We compute the composition through the left hand side
(0 x idﬁcq])* o Wl y 4o (do)f ™
“o (=)™ )" o (shy—1np1)" ofibto (=) o (do)y ™

(0 > idf—1))
=((= ) ) o (shi-1,)" 0 ((d])*71)" ofibt o (=) " o (do) ™
2((=)")" 0 (shk-1,0)" 0 ((d])*" )" ofibt o (d)y " o (=7)f ™!
( o (

shi—1)* 0 fibt o (—>T)f“71 o k-1

(=+)")"

nkoQk 1

The equalities are the definition of \I/n x> the first two isomorphisms fol-
low from the 2-functoriality of inverse images and the pseudofunctoriality
of left Kan extensions, respectively. The third isomorphism is the ((0%)*~!
parametrized version of

dj ofibo (dg)y = Q
(viii) For the commutativity of the lower right square

( h)*
S D12 ¢—— Sl D1 pi1

‘I’X+1,kl JZ’CIO‘I’X,;C

~ dv), N
Sl@nJrl,k< ( 7) SI@n,k

of (11.7) (which coincides with the upper left square of (11.8)) we invoke
(11.14) for

(d") oWy po(d), =W | 1o(d") o(d"). 0.

Hence the essential image of U +14° (d"), is contained in the essential image
of (") 0¥y, o k=1, Therefore it is sufficient to show that

(d) 0 Wy po (dh). =Wy ) o XL
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But this is obtained as the right adjoint isomorphism of (11.16), which was
shown in the previous step.

(ix) For the verification of the assumptions of step (iii), it remains to show the
commutativity of the upper right square

A~ d¥ ) ~
(11.17) ATkt < D

o [+

~ (d"y, ~
Sl-@n,k-&-l — Sl-@n,k

of (11.8). The strategy for this step is similar to step (vi). We apply (11.14)
for

(d")" oWy g 0 (d”)r = Wy o (dY)" o (dV) = Wy .
Hence for the commutativity of (11.17) it is sufficient to show that the essen-
tial image of W, ., o (d"), is contained in the essential image of (d"). By

Construction 11.2, it suffices to show that for every injective ¢ € Sly—1 k+1
the elementary subcube

(11.18) 05 o Wy e 0 (d)

is bicartesian. We use that the injective elements in SI,,_1 p4+1 correspond
under ¢, 41 to increasing sequences in [n — 1]*. We denote ¢, j41(i) = i =
(i0,+*+ ,ik—1). By composition with the equivalence, the bicartesianess of
(11.18) is seen to be equivalent to the biartesianess of

F:=0o \I’E,Ym o (do)P.

Using the functoriality of inverse images for the composition (—,)* o J; and
Remark 4.6, we obtain

k-1
F = H(d8 xoeoxdg Tt xid x df Tt x e x dPTh) o coft o shy o (=) o (do)f
=0

It is sufficient to show that tfib o F; = 0. To establish this, we observe

tfibo F;
k

|
—

I

() x - xdi ™t x Fxdi* x - x dP"1)* o coft o shy, 1.0 (=) o (do)i'

Il
= o

J
k_ . .
[I(Cx - xCxdy x g™ x - x g™l o shis o (=) o (do)F
§=0

Il

k—1
~teof o [J(id x -+ xid x dy x dj ™ x - x df ") o sh}, o (=) o (do)1".
j=0
We claim that the latter cofiber is computed over a constant cube with value
0. The value at the initial vertex of this cube vanishes, because of the pre-
composition with the extension-by-zero morphism (dg)j*. For every other
vertex

0= ((50707"' 750,i0—1,0717"' 71)7"' 7(516—1,0"" 750,i;€,1—13071,"' al))
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with d;; € {0,1} there exists (j,4) such that §,; = 1. We consider j,, € k
maximal among those j such that ¢;; = 1 for some ¢ € {0,---,7; — 1},
and im, € {0,---,i;, — 1} maximal among those ¢ such that §; , = 1.
Consequently, 6* o shy ; o (=)} is by construction of (—,). exhibited as [*
for some | = (lp- -+ ,l,—1) € [k]™ with l;,, = jm and l;, +1 < jm. This yields
the desired vanishing.

Using Remark 9.2 and Example 8.21 we can reformulate (11.14) as

U, od"=d"[—2n] o U, 4 ;.

Since W,, ), is an equivalence with inverse W, (step (iii)), we can pass to
iterated adjoints on both sides of the above isomorphism, to obtain for a € Z

(11.19) U, od"a] = d’[-2n+a]o U, i
and
(11.20) d"[a] o Wy . = WY, 1 0d’[-2n+q]

for a even, respectively odd. In the odd case, precomposing with ¥, ;, and
postcomposing with ¥, ;.1 leads to

(11.21) U, py10d"[a] 2 d'[-2n+a]o T, 4.

In particular, we have the following composition of isomorphisms

U, pos; 2V, rod"od"[-1]os;

=V, 10 d" o (s:’;)n+k+1 o dh[—2(n +k)—3]o (sg)—(n—&-k-o—l) os’
=V, o dh" o2 o dh[— (TL + k) _ 3] o Qn(k—1)
Ndv[ no\IlnkJrlodh[ 2n+k) —3]ox"

(11.22) d’[— Zn}od”[ 4n — 2k — 3] oW, o X"
=d*[—2n] o (s})” n+k+1>odv[ 2n — 1] o (s3)" oW, Lo ¥
=d°[—2n] 0 Q" 0 d¥[—2n — 1] o XF "D 665 0 W, 4 o 1"
~d¥[—2n] o d”[— 2n—1]os3o\Iln;c

:Sg o \Iln,kv

where the single isomorphisms are induced by, first, the unit of the adjunction
d"[-1] 4 d" (Corollary 9.8), second, Corollary 9.15, third, Corollary 5.21,
fourth, (11.19), fifth, (11.21), sixth, Corollary 8.24, seventh, Corollary 5.21
and ninth, the inverse of the unit of the adjunction d*[—2n — 1] 4 d¥[—2n].
We have also used that all morphisms of derivators commute with 3 and 2.
We define @, = (s3*)" 0¥, 1 Dok = Di—1,n+1 and use (11.22) to conclude

D083 = (s37)" 0 Wy 055 285 0 (537)" 0 Uy 283 0 Dy

and hence part (ii) of the theorem.For part (vi) of the theorem we use step
to for

Do =(s3")" oW, X (s3%)" 0 U] =,
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(xii) For part (iii) of the theorem, we consider

@, 0d" =(s5)" oW, od"
=(s3)" od"[=2n] o W, 41
=d” o (s3)" o Wy k11

=d" o cI)n,k:+17

where the first isomorphism is (11.19) and second isomorphism is Corol-
lary 8.24. We obtain part (iii) of the theorem in the case a € Z even,
by passing to iterated adjoint isomorphisms (which exist by Corollary 8.24,
Corollary 9.15 and step (iii)). For a € Z odd apply the analogous argument
building on (11.20).

(xiii) In this step we first show that there are isomorphisms

(11.23) fibLO(—n)foc}i’nHOd}’ = Q"o (=) 0k g 0dy : SIDh 11 — 2 0"
as follows

fibto (—,)F o chpg0dl
=fib* o (—=,)7 0 ((do)™)1 © ¢fi—1 iy
g(ﬂblo (—=7)x o (do))" 0 Ch—1,n41
=(Qo (=7)10(drs1)«)" © 1 pi1
=0 o (=7)1" 0 ((dk+1)4)" © Ch1mg1

~On * vV
20" 0 (<) 0 ¢f gy 0 Y.

~— —

n
!
n
!

Here, the first and fifth isomorphisms are Construction 11.2, the second and
fourth isomorphisms follow from the compatibility with products, and the
third isomorphism is Proposition 6.25. The isomorphism (11.23) is the key
ingredient for part (i) of the theorem, i.e. that ®p_q,11 = <I>T_L’1k. This is
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established by the following chain of isomorphisms

=(s3) "o Wy,

[12

(s3) "o (d") od oWy,

=(s3) "o (d") oWy iy 0d)

=(s3) "o (d") o (¢, y1)" 0 ((=7)") o coft o shy, o ((=7)")s 0 ¢y 0 df

=(s3) " o (d") o (¢, 41)" 0 ((=7)")" 0 (coft)? 0 shy, 0 ((=4)")1 0 € ppyg 0 dYY 0 Q7
=(s5) " o (d") o (¢} 1) 0 (—2)F)" ofibh o shy, o ((—7)" )10 cfpypy 0 dYY o BN

=(s5) "o (dh)* oW nt1 0 d’V o nk=1n

=B 0 (55) 7 0 ()" 0 Wiy 0 02

l12

(s3)° 0 (d")* 0 Wpynp1 0 dyY

[l

(sg)k_1 o (dhv)* oWgnt10 di’v

[12

(s5)" o Wp_1 g1 0 (dV) 0 dyY
~(s5)F o Wy g

:(I)k—l,n—i-l-

The first isomorphism is (11.22), the second one is the unit of the adjunction
di - (d")* (Corollary 9.8), the third one is (11.17), the fourth one is (11.23),
the fifth one is Remark 4.6, the sixth one is induced by exactness of mor-
phisms of stable derivators, the seventh one is Corollary 5.21, the eighth one
is Proposition 11.5, the ninth one is induced by exactly the dual construction
of step (v), and the tenth is the counit of the adjunction (d"V)* 4 dVV.

(xiv) We obtain part (iv) of the theorem by passing to adjoint isomorphisms of
part (iii) and using part (i).
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(xv) Finally, for part (v) we consider the diagram
gén]k—((ﬁT)k’lé(Dn)k—l fibl _@(Dn)k—l shi_1,n 9(Dk—l)n (=)™ @(gk_l]n

. 0* - x
Cn,kT @* OO*J( J(Ck_an_;.l)

sl 9 sLDy,_ ,
n,k e E*O(sg)" k—1n+1

where the composition through the top is W, ;. All triangles, except the
third one, commute by the 2-functoriality of 2 (for the second triangle we
additionally use ((—,)¥=1); = (p*)*). For the commutativity of the third
triangle we invoke Remark 4.6. Hence we obtain

5* = f* o (Sg)n o \Iln,k - g* o (I)n,k~
[l

Remark 11.24. (i) We have rarely used the first definition of \115 &, however using
this definition we can describe the underlying diagram of \IJE ;- Tor this we
note that it follows from the proof of Proposition 7.5 that

(8) = (n)* o WD 207,

(b) = (i) oW =Qn="1oFon—i—1,n—i* for0<i<n-—1.

We have already seen in the first part proof of Theorem 11.6 that j* o\I/E =0
whenever j = (jo, -+ ,Jn—1) is not a non-decreasing sequence in [k — 1]".
Therefore it is sufficient to determine j* o \I/E’ . for non-decreasing sequences
j. In this case we can regard j as a functor [n — 1] — [k — 1] and

(11.25) adni(j) = (= (n —min{i|]l < j(9)}), -+ ,— (n —min{ilk — 1 < j(9)})).
In particular, we obtain a factorization

b2l P, (-2l

A L | L R

where [k — 1)n=1 25 19)k=2] 1y min{i|ll + 1 < j(i)}. We conclude that

j o0 =0l otfibo O, (),
where the total fiber is computed of the subcube of maximal dimension ending
in m, x(j) and j' = lemn,k(j)zzl My, — 1. We will make this more explicit
in a specific example (Example 11.26). Furthermore, we observe that (11.25)
relates ady  to ad, r (c.f. Remark 3.36) and hence justifies the notation.

(ii) The statements of Lemma 11.1 and Corollary 11.4 mimic the first steps of a
general result concerning recollements in the context of oo-categories [BG16].
We emphasize that the proofs of the main results of loc. cit. do not generalize
to the context of stable derivators. In particular, we highly expect that the
analogue of step (iii) of the proof of Theorem 11.6 will be significantly simpler
in the context of stable co-categories.

(iii) Tt is possible to extend the statement of Theorem 11.6 by considering some
additional boundary cases. More precisely, we define for a stable derivator
D, nkelk<ln+k>1

¢ Ipr=0fork<0and 9, =9 for k=1,
e dV =1id,



THE BIVARIANT PARASIMPLICIAL S,-CONSTRUCTION 87

e d": 9, 5 — 9,1 the morphism induced by the inverse image of §: 1 —

Sln,Za
o &, ;. =id. Then it is straight forward to check that Theorem 11.6 holds
forn+k>1.

(iv) Let #(Sl, k) denote the cardinality of the set of injective objects in S, .
We invoke Examples 5.14 and Proposition 6.6 to see that #(Sl,2) =n+1
and #(Sly p+1) = n+ 1, respectively. Moreover, the functors d¥ and d" show
that

#(Slpt1, k1) = #(Slag1,k) + #(Slnkt1)-

Hence, by induction we conclude that #(Sl,, 1) = ("Zf;l) = (”Jrsfl). There-
fore, the derivators %, ; can be regarded as a categorification of Pascal’s
triangle, and the equivalences ®,, , as a categorification of the symmetry of

Pascal’s triangle.

Ezample 11.26. Consider an object X € sl%5 4 such that the underlying diagram
of X is of the form

0 0 0 0
/ / / /
To123 —+——> X0124 —+——> L0125 —+—> L0126
0 0 0
/ / /
0 ———— > T0234 0235 L0236
/ /! /! /
0 L0134 0135 0136
0 0
/ /
0 L0345 L0346
/ / /
0 L0245 T0246
/ /! /!
0 L0145 L0146
0 L0456
/ /
0 L0356
/ /!
0 ——— > Z0256
/ /
0 L0156

Let f = (fo, f1, f2, f3) € Sl3 4 and i = {ig,--- ,i;} C 4. Consider the cube

. . . j
leomlj : D#(l) — Sl3747 (607 Tt ’67) = f + Z(Sl@i”
=0
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where e; denotes the ith basis vector. Moreover, we define
F;U'"” =tfibo (D;""'”)*(X).
Then the underlying diagram of the object U3 4(X) can be described as

0 0 0 0
/! /! /! /!
QO Foits T QO Fodls T Q' Fogs T PFu
0 0 0
/ / /
0 —————— VF§ys O Fiias Q2 Fiiay
e 7 7 7
0 v FE, FE, 0riE,
0 0
/! /!
0 QQFO3125 QF03124
Ve 7 7
O—— QZFO21325 QFO21324
e 7 7
0 O Foiss QFgi5,
0 20123
S/ /
0 Fia
S 7
0 —————> Fiia
S/ 7
0 Foiss

Corollary 11.27. Let 2 be a stable derivator and k > 2. Then there is a pseudo-
functor

k1) (2): A" — Der
satisfying the following properties
(Z) S(.k_1)(@)(/\m) = -@k—l,m—k+27
(i1) St _1y(D)(dit Ay = Nppir) = d"[2(0 — B)]: Dhm1,m—k43 = Di—1m—tt2
(ii1) Sf,_1)(2)(si A1 — A) 2 d"[2(0 — k) +1]: Deorm—kt2 = Di—1,m—k+3,

(iv) there is a pseudonatural equivalence st St—1)-

Proof. We apply Proposition A.4 to the 2-functor Sgk_l) and the set of equivalences
San, = Prn—kt1.k: Dm—tt1,k — Di—1.m—k+2 (Theorem 11.6). The equivalences on
the values of 1-morphisms follow from Example 8.21 and Theorem 11.6 (iii) and
(iv). O

In particular, we conclude the the generalized horizontal face and degeneracy
morphisms satisfy the simplicial relations in the same way as the vertical structure
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morphisms. We can apply this to Corollary 10.2. In the following 7: A°P x A% —
A°P x A°P denotes the interchange of factors.

Corollary 11.28. Let 2 be a stable derivator. Then there is a pseudofunctor
Se.o(7): A x AP — Der

satisfying the following properties
(Z) So,o(@)(AnaAk) = @n+1,k+2y
(ii) Sua(7)(d.1d) = d¥[21),
(iii) Se.e(2)(si,id) = dV[2i + 1],
(1v) Se.o(2)(id,d;) = d"[2d],
(0) Sua(?)(id, 55) = d"[2i + 1],
(vi) there is a peudonatural equivalence Se o (Z) = Se,o(Z) 0 T.

Proof. By Corollary 10.2 we have morphisms in PsFun(A°, Der) defined by d! , . [a]
and assemble into a pseudofunctor A°? — PsFun(A°P, Der) by Corollary 11.27.
O

Remark 11.29. Let 2 be a stable derivator. Then we call the structure defined by
the derivators %, x, the morphisms sz, d’[a], d"[a] and ®,, , and the 2-morphisms
defined by Theorem 10.7 and Proposition 10.11 the bivariant parasimplicial Se-
construction.

(i) It is clear that the bisimplicial object from Corollary 11.28 only provides
a very coarse approximation of the bivariant parasimplicial Se-construction,
since we have discarded a lot of the structure morphisms.

(ii) In fact, the results of this thesis can be regarded as a first step toward a de-
scription of the bivariant parasimplicial S,-construction as a derivator-valued
presheaf on a 2-category A, which can be described as sub-2-category of the
2-category of pseudofunctors PsFun(Der®, Derst) with

e objects, the pseudofunctors  — 2, for n+k > 1,

e morphisms, compositions of (elementary) pseudonatural transformations
of the form Sgk)(f) and ka) (g) for f, g morphisms in A,

e 2-morphisms, compositions of modifications between elementary 1-mor-
phisms induced by 2-morphisms in A and the isomorphisms of Theo-
rem 10.7 and Proposition 10.11.

(iii) From the above definition the morphism categories of A are in general hard
to understand. It should be an interesting problem to describe the 2-category
A purely combinatorially, since we expect this 2-category to encode further
structures relevant for stable homotopy theory and representation theory in
a systematic way.

12. HIGHER TRIANGULATIONS

In this section we analyze the question, in which way the structure of the bivari-
ant Se-construction can be used to construct higher analogues of (strong) triangu-
lations on a stable derivator 2. We begin by recalling the construction of strong
triangulations using the covariant S,-construction following Groth-Stovicek. The
key step in this construction is based on the epivalence of the underlying diagram
functor 2([n]) — 2(1)l"). However, this property fails drastically if one replaces
[n] by [n]F for k > 2. Therefore, a satisfying axiomatization of the calculus of
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higher cofiber sequences becomes impossible on the level of underlying homotopy
categories. Instead of this we describe how the result of the previous sections lead
to a generalization of strong triangulations for coherent diagrams. Finally, we in-
dicate some relations to the notion of n-angulated categories [GKO13] and cluster
tilting theory.

Definition 12.1. Let T be an additive category and ¥: T' = T be an automor-
phism and n > 1. An n-triangle (F,¢) in T counsists of

(i) afunctor F': A, ;1 — T such that F(f) =0 for f € A, ; ; non-injective.
(ii) a natural isomorphism ¢: F osy = Yo F.

A morphism of n-triangles ©: (Fy,¢1) — (Fa,¢2) is a natural transformation
Y: Fy — Fy such that (o) o ¢y = ¢ 0 (¢ osg).

FEzxamples 12.2. Let m,n > 1, T be an additive category and X: T = T be an
automorphism.

(i) Let (F,¢) be an n-triangle in T and «: A, 11 — Ap41 be a morphism of
parasimplices. Then o*(F, ¢) := (F o au, ® o ay) is an m-triangle in 7. In
particular, there is an n-triangle si(F, ¢) := t*(F, ¢).

(ii) Let (F,¢) be an n-triangle in T. Then sj(F,¢) := (F osg,—¢ 0 s9) is an
n-triangle in T

(iii) Let 2 be a stable derivator and X € Z,2(1) C (A, ;). By Corol-
lary 5.19 we obtain an isomorphism s3(X) > ¥(X). We obtain an n-triangle
(FxX,¢x) in 2(1), where Fx = diap X) is the underlying diagram of
X and ¢x is the composition

+11(

FX O So = diaAn+l)1(S;(X)) = dlaé E(X)) = EOFX

n+1,1(

Definition 12.3. Let T be an additive category and ¥: T' = T be an automor-
phism, n > 1 and (F,¢) an n-triangle in T. The base of (F,¢) is the functor
b(F,¢) : =Foslya:[n]=Sl,o—T.

Definition 12.4. Let T be an additive category and ¥: T' =» T be an automor-
phism. A strong triangulation on (4, Y) consists classes T), of n-triangles in T,
which are closed under isomorphisms of n-triangles, for n > 2 such that

(Ex) (i) every functor [n] — T is the base of an n-triangle in T,
(ii) for every (F,¢) € T, and every morphism a: [m+1] — [n+1] in A, the
m-triangle i(a)*(F, ¢) is in Ty,
(wF) for (F1,¢1), (Fa, ¢2) € T, and a natural transformation ¢: b(Fy, ¢1) — b(Fz, ¢2)
the is a morphism of n-triangles ¢ : (Fy, ¢1) — (F, ¢h2) such that b(¢)) = 1,
(Rot) for (F,¢) € T, also the triangles s}(F, ¢) and s3(F, ¢) are in T,.

Theorem 12.5. Let 2 be a strong, stable derivator, then the suspension ¥: 9(1) =
2(1) and for n > 2 the classes T, consisting of those triangles, which are isomor-
phic to (Fx,¢x) for some X € Dy, o define a strong triangulation on Z(1).

Proof. This is [GS14a, Thm. 13.6]. O

Remark 12.6. We have ordered the axiom of a strong triangulation in a slightly
different way then in [GS14a]. The reason for this is the observation that the
axioms fall into a systematic pattern, which can be described as follows.
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(i) The axiom (Ex) is an existence axiom. Consider the the case n = 1. The
datum of a 1-triangle is is exactly the datum of a triangle, i.e. a sequence

(12.7) e T YD 2N XY e,

and the first part of the axiom (Ex) ensures the existence of 1-triangles in T}
extending arbitrary morphisms x — y in T'. In this case we call the object z
in (12.7) a cone of x — y. Similarly, in the case n = 2, the first part of the
axiom (Ex) yields for a diagram

T — Ty — I3

in T the existence of a 2-triangle in T3 of the form

(12.8)
g J l 0
X1 Xro T3

| ] |

0%0124)0134)2%1*)0

| |

0——>co3 —r Xx9 —> X1 ——0

I

0 21‘3 2013 2023 0

I

0— 322 — Y209 — X225 — 0

l l L

where for ¢,j € {1,2,3} the object ¢;; is cone of x; — ;. The second part
of the axiom (Ex) ensures that the restrictions along the face morphisms
do,d1,ds and ds are in Ty. By unraveling the definitions (c.f. Example 8.22)
we see that the restrictions along the latter three faces correspond to 1-
triangles with bases o — =3, 1 — x3 and 7 — x3. The remaining face
morphism dg however yields a triangle of the form

<e-—>Clg — C13 —> Co3 —> XCig - .

Moreover, we can reformulate (12.8) as follows.
e Discarding all non-injective objects
e Writing all horizontal and vertical compositions as simplices

e Passing to so-orbits and writing morphisms of the z — Xy as x =+ Y
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Hence we obtain a diagram

N

C12

}

C23

xs3
C13

where the upper front and back and lower left and right triangles are the
restrictions to the four faces above, and the remaining triangles commute. In
particular, we conclude that the standard octahedral axiom for triangulated
categories follows from (Ex) for 2-triangles. On the other hand we see that
2-triangles can be regarded as octahedral diagrams. The effect of the axiom
(Ex) for n > 3 can be described in an analogous way.

e Every n-simplex X in T extends to some n-triangle (F, ¢),

e the (n — 1)-triangle d§(F, ¢) relates the cones of all edges of bX,

e (F,¢) can be rewritten as a pasting of n-cells of the form of an n-simplex

or an (n — 1)-triangle, and there are n + 2 of each of these types of cells.

Hence we can think of the axiom (Ex) for n large as a generalized octahedral
axiom (although the diagrams mentioned in the last point above are not of
the shape of an orthoplex in general, as we will see below). For example the
diagram in the case n = 3 for a 3-simplex x1 — x2 — x3 — x4 is described
in Figure 2
The axiom (wF) is the weak functoriality axiom. In the case n = 1 this axiom
states that for two 1-triangles X; and Xo with cones ¢; and co, respectively,
and a morphism f: b(X;) — b(X3), there is some morphism f.: ¢; — ¢o such
that f and f. assemble into a morphism of 1-triangles. This generalizes in
the expected way to n > 2. In this case we obtain two n-triangles X; and X
and a morphism f: b(X;) — b(X2) some morphism f.: d§(X;) — d§(Xz) of
(n — 1)-triangles such that f and f. assemble into a morphism of n-triangles.
The axiom (Rot) is the rotation axiom. More precisely, for an n-triangle X
in T}, the axiom (Rot) implies that

s5(X) = (s71)"(s3(X))
is also in T),. In the special cases, we have considered before, s5(X) can be
described explicitly (up to sign).
e For n =1, it corresponds to the shift to the right in (12.7).
e For n = 2, it corresponds to the rotation around the axis through x5 and
13 in the direction of the arrows orthogonal to this axis in (12.8)
e For n = 3, it corresponds to the rotation around the center in the direc-
tion of the outer arrows in Figure 2.
In the general the rotation satisfies (s§)"*2 = (s5)".

As a summary, we see that a strong triangulation can be regarded as an axioma-
tization of the calculus of cofiber sequences. We now turn to the question whether
the calculus of k-cofiber sequences for k > 2 can be axiomatized in a similar way.
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FIGURE 2. The octahedral diagram for a 3-simplex.

Of course, a satisfying axiomatization should allow a sufficient amount of useful
examples. Hence we ask more precisely, whether Theorem 12.5 can be generalized
to k-cofiber sequences, at least for a sufficiently large class of stable derivators. For
this we note that, in the proof of Theorem 12.5 verification of the axiom (Ex) relies
on the essential surjectivity of the underlying diagram functor diaf,}, and similarly
the axiom (wF') relies on the fullness of diaj,). These two properties follow from the
strongness assumption (since the categories [n| are free). However, this assumption
does not exclude many interesting derivators, since derivators associated to model
categories are known to be strong ([Cis10, Prop. 2.15], [RB06, Thm. 9.8.5]. We
consider the following generalization of Definition 12.1.

Definition 12.9. Let T be an additive category and ¥: T' = T be an automor-
phism and n,k > 1. An (n, k)-triangle (F, ¢) in T consists of

(i) a functor F': A, 4, — T such that F'(f) =0 for f € A, ;. ; non-injective.
(ii) a natural isomorphism ¢: F osy = ¥* o F.
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A morphism of (n, k)-triangles ¢: (F1, ¢1) — (Fa, ¢2) is a natural transformation
Y: F} — Fy such that (X% o) o ¢y = ¢ 0 (10 059).

An (n,1)-triangle is exactly an n-triangle. Similarly to the case k = 1, we can

use the structure of the derivators 2, j to produce examples of (n, k)-triangles in
2(1).
Ezample 12.10. Let n,k > 1, 2 astable derivator and X € %, 41(1) C Z(A, 41 1)-
By Corollary 5.19 we obtain an isomorphism s3(X) =2 3*(X). We obtain an (n, k)-
triangle (Fx,¢x) in Z(1), where Fx = diay X) is the underlying diagram of
X and ¢x is the composition

Fxosy = diay (s3(X)) =>diay ,,  (B(X)) ¥ Zo Fx.

n+k,k(

The categories [n]* and Slp k+1 are unfortunately not free for k > 2 and [n] > 1.
Moreover, we refer to [BG18a, Ex: 3.17] for an example showing that the underlying
diagram functor diagz is not full in the case of the derivator of a field (even if we
restrict to 2; 3). Hence it is not reasonable to ask for the analogue of the weak
functorliality axiom for £ > 2. On the other hand we can show that the underlying

diagram functor diag;, , : sl%nx — .@(1)?"”“

derivator 2 and k = 3. Here 2(1);"™* C 2(1)S'»* denotes the full subcategory

spanned by those functors F': Sl, , — Z(1), such that F(f) = 0 whenever f is
non-injective.

is essentially surjective for a strong

Lemma 12.11. Let F: C — D be a full and essentially surjective functor between
categories, and A a finite, free category. Then

FA: c* - D4
is essentially surjective.

Proof. Consider an object G: A — D in D?. Since F is essentially surjective, for
all @ € A there is an object ¢, € C and an isomorphism ¢,: F(c,) = G(a). By
assumption the is a finite set B of morphisms in A such that A is generated freely
by B. Since F' is full, for all b: @ — @’ in B there is a morphism ¢, € C such that
F(cp) is the composition

Flea) 25 Gla) E9% Ga) 25 Few).

Since the category A is free, the assignment a + ¢4, b — ¢}, defines a unique functor
G: A — C and by construction, the collection of isomorphisms {¢,|a € A} defines
a natural isomorphism F4(G) = G. d

Corollary 12.12. Let 2 be a strong derivator and A, B finite, free categories.
Then the underlying diagram functor

diagxp: Z2(A x B) = 2(1)A%8
is essentially surjective.
Proof. The underlying diagram functor diasx p is isomorphic to the composite
. i B
9(A % B) = 2°(B) 222, 94(1)B = 9(4)F L4, (9(1)N)E =~ g(1)A%E,

Since 2 is strong and A, B are finte, free categories the functors dias and diag
are full and essentially surjective. By Lemma 12.11 the functor diaﬁ is essentially
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surjective. Hence dia s« p is as a composition of essentially surjective functors itself
essentially surjective. ([

Corollary 12.13. Let 2 be a strong derivator. Then the retriction of the under-
lying diagram functor

diagi, ¢ 1%n3 — 2(1)5"™°
is essentially surjective.

Proof. Let X € @(1)51"‘3. By the universal property of the zero-object, we can

extend X to an object Y € .@(1)5153 with Y|g;, , = X and Y|Sl53\Sln3 = 0.

Since 5153 & [n] x [n] there is by Corollary 12.12 an object Z € s, 3 with
dia SlDS(Z) =Y. Since underlying diagram functors are compatible with inverse

n,3

images we obtain

1%

diaSln,S((jlsln,S)*(Z)) X.

(]

Remark 12.14. Using Corollary 12.13 it should be straight forward to verify the
analogues of the axioms (Ex) and (Rot) for the classes of (n,2)-triangles in the
underlying category of a strong, stable derivator & defined by Example 12.10.
However, it is clear that the resulting formalism will be less useful that a strong
triangulation due to the failure of the axiom (wF) in important examples.

In the following we point out that the situation becomes even worse if we pass
to (n, k)-triangles for & > 3. More precisely, we show, that the underlying diagram
functor diagy,, , : 81%n 1k — @(1)?"’”c will in general not be essentially surjective for
k > 4. The obstructions for this arise from non-trivial 3-fold Toda brackets. We
recall the following alternative definition of 4-fold Toda brackets from [CF17].

Construction 12.15. Let T be a triangulated category.
(i) Let 3 =% 2o 2 21 % 20 be a 3-simplex in 7. Then the 3-fold Toda
bracket of the above sequence is the collection of composites 5o Ya: Yxz —

xg, where o and 8 are maps making the following diagram, where the middle
row is a distinguished triangle, commutative

(12.16) S
Fu, To —2% 14 Cug
idl ,ﬁi
1 LN zg.

We observe that the 3-fold Toda bracket of x5 — xo —2 1 —» ¢ is
non-empty iff us o ug = 0 and uq o ug = 0.

(i) Let x4 % x5 2% 20 2 21 %% 20 be a 4-simplex in 7. Then the 4-fold
Toda bracket of the above sequence is the union of the 3-fold Toda bracket
associated to the sequences x4 R2LN Cus i 1 % 1z for all choices of
morphisms « and 8 making (12.16) associated to x4 2y rs B e B
commutative. In particular, it follows from (i), that the 4-fold Toda bracket
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of my = 3 gy gy M xg is empty if 0 is not contained in the 3-fold
Toda bracket of x4 % x3 =% zy 25 1.

Remark 12.17. We refer to [CF17, Ex. 5.3,Ex. 5.6,Ex. 5.7] for a detailed argument
for the equivalence of Construction 12.15 and Definition 7.4. Moreover, Construc-
tion 12.15 is generalized in loc. cit. to a definition for arbitrary higher Toda brackets
and a general equivalence result to Definition 7.4 is established.

Ezample 12.18. Let 2 be a stable derivator and x4 — x5 —2 x4 —2» 21 a sequence
such that ugouy = 0, us oug = 0 and such that 0 is not contained in its 3-fold Toda
bracket. From the assumptions on the compositions and the universal property of
the zero-object, we deduce the existence of a diagram X € 2(1)2" of the form

v

Uz

0 ——m—— 0.

We assume the existence of an object Y € 2(0%) = 29°(1) with diags(Y) = X.
The structure of X immediately implies that Y € .@Es. Hence, (idgz x d2)«(Y) €
%T4(1) and by Theorem 7.11 the underlying diagram of Todas((idmz x d2).(Y))

lies in the 4-fold Toda bracket of 24 — x5 —5 29 —2 24 9. 0. On the other hand
the assumption on x4 L4y T3 23y 2o 225 2 ensures by Construction 12.15 that the
4-fold Toda bracket above is empty, which leads to a contradiction.

A more explicit example for a sequence of morphisms 4 — T3 — 9 — 14
satisfying the assumption above is given by the sequence §2 % St 2 §1 2, §0 i
the underlying category of the derivator J# associated to the homotopy theory of
spectra. In fact, the 3-fold Toda bracket of this sequence consists exactly of the
elements —2v,2v: S3 — SO [Tod62, V.(5.4)].

It is immediate from Example 12.18, that the classes of (n, k)-triangles defined
by Example 12.10 for a stable derivator 2 and k > 3 will not satisfy the analogs of
the existence axiom for important examples of stable derivators.

However, if we decide to work with coherent diagrams instead of just diagrams
in some homotopy category, the results of §5 and §8 can be regarded as analogues
(which are now consequences of having stable derivator rather than being axioms)
of the axioms of a strong triangulation for coherent (n,k)-triangles in a stable
derivator 2 (i.e. objects in P, j+1).

(Ex’) Theorem 5.12, Corollary 5.19 (first part) and Corollary 8.3 (second part),
(wF’) Theorem 5.12,
(Rot’) Corollary 5.8 and Corollary 5.21.
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We outline the analogy to Definition 12.4 in the case of (2, 2)-triangles. Consider
an object X € sl%, 3 with underlying diagram

Ty — X2 X3

Ll

0—— 24— 75

|

00— 6.

Using Theorem 5.12 we obtain an object Xe P>,3. Moreover, by applying Exam-
ple 8.22 to the face morphisms dj, da, d3 and dg: A3 — A4 we obtain (1,2)-triangles
(i.e. 2-cofiber sequence) with bases

Ty — IT5 o — I3 T4 — T3 1 —> T2
00— xg, 00— x¢, 00— x5, 00— x4,

respectively. Let ¢4, c3, co and ¢; denote the respective 2-cones, then Example 8.22
applied to do: As — A4 leads to a 2-cofiber sequence with base

1 ——C2

| ]

0*)63

and 2-cone c4. Hence, a (2,2)-triangle can be regarded as the analogue of an octa-
hedral diagram for 2-cofiber sequences. Moreover, by applying the analogue of the
procedure used in Remark 12.6 we can rewrite X as displayed in Figure 3.

Furthermore, Theorem 11.6 implies that the datum of an (n, k)-triangle is equiv-
alent to the datum of (k, n)-triangle.

In the following we indicate some relations between the calculus of (n, k)-triangles
for some k > 2 fixed and k + 2-angulated categories introduced by Geiss—Keller—
Oppermann [GKO13]. First, we recall the basic definitions.

Definition 12.19. Let n > 3, T be an additive category and ¥: T = T be an
automorphism. A diagram in T of the form

Ui U2 Un—1 Up &
Tl —> Ty — - —> Ty — 2T

is called an n — X-sequence. A morphism of n — Y-sequences is a commutative
diagram

Ul Uug Un—1 Un fod
T To . T Y

N

Y5 Y2 —; Yn —5— 21,

Un—1

where both rows are n — i—sequences. A morphism of n — i—sequenoes is called a
weak isomorphism if there is 1 < i < n such that ¢; and ¢; 1 (with ¢, 11 = Xep1)
are isomorphisms.
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T3
— N
zs N
<_
Te
N
\
- N
al \
1 ¢ T T
4 X
= A
Vi
- Co
%
7
_'_
“ — ,
x4 A
+
~ N
Ci.

FIGURE 3. The octahedral diagram for a 2-cofiber sequences. Here

an morphism x N y denotes a morphism z — X2y. Moreover, we
note that the rotation operation defined by s} corresponds to the
rotation around the center in the direction of the outer arrows.

Definition 12.20. Let n > 3, T' be an additive category and $: T = T be an
automorphism. An n-angulation on (7', %) consists of a class T, of n — X-sequences,
whose elements are called n-angles, which is closed under weak isomorphisms, such
that

(i) for every object x € T there is a trivial n-angle of the form

" .
r S —=0—--—=0— X,

and every morphism z — y € T is the first morphism of an n-angle,
.. . Ul uz Un—1 Un = . . .
(i) if 9 — 9 — -+ —— x, —> X7 is an n-angle, then also its rotation

uz us Un—1 Un & (-D)"Bur &
To 25 g =S o g, I a0 Ny

is an n-angle,



THE BIVARIANT PARASIMPLICIAL S,-CONSTRUCTION 99

(iii) every commutative diagram

w1 s us Un—1 Un &
x1 o T3 N Tn 21'1
\ \
¢1l ¢'2J{ ¢3 ‘ ¢n ‘ i(f)ll
1 + S
Y1 v1 Y2 Vs Y3 vz~ Ton_1 Yn Un Zyl’

where the rows are n-angles can be completed to a morphism of n-angles,
(iv) the morphism of n-angles above can be chosen, such that

—us 0 —ug 0 —Up, 0 if]ul 0
¢2 U1 ¢3 U2 ¢n Un—1| -~ E¢n Un| =~ ~
LoDy ——— 23D Y2 Y11 Oy ———— L2 ® Xy

is an n-angle.

We refer to [BT13] for a different but equivalent axiomatization of n-angulated
categories.

Given a stable derivator 2, we consider its underlying category 2(1) together
with the automorphism ¥ = £"~2. Then the obvious candidates for n-angles in
2(1) are the underlying diagrams of (1, n—2)-triangles, i.e. (n—1)-cofiber sequences
(c.f. Remark 6.8). In fact, using the methods from §7, in particular Proposition 7.5,
it is not hard to show that the resulting n — i-sequences canonically extend to a
diagram as described in [GKO13, Thm. 1] and [OT12, Def. 5.15(iii)]. Let T, denote
the class of the n— X-sequences defined by the (n—1)-cofiber sequences, as described
above. We may ask whether (2(1),%""2,T,,) defines an n-angulation.

We will show that the answer is in general "no”, by comparing the axioms of an
n-angulation with the properties of coherent (1,n — 2)-triangles.

e On the one hand the existence axiom in the context of n-angulated categories
(axiom (i)) is weaker as the existence for (1,n — 2)-triangles. For a morphism
r —yin Z(1) we can find X € Z([1]) = s1% 2(1) with diap(X) = (z — y).
Then (d"[1])"~3(X) and (d"[-1])"~3(X) both give rise to n-angles extend-
ing x — y. The resulting n-angles are weakly isomorphic but in general not
isomorphic.

e On the other hand the weak functoriality axiom for n-angulated categories
(axiom (iii)) does not follow from the corresponding property of (1,n — 2)-
triangles. In general there are too many different extensions of morphisms to
n-angles. For instance, given a non-invertible morphism = — y in (1), with
X € 2([1]) as above. Since d"[1](X) and d"[—1](X) both define extensions
of (x — y) to 4-angles, the identity on (z — y) should extend to a morphism
of 4-angles d"[1](X) — d"[-1](X). We assume that this morphism can be
covered be a morphism in % 3(1). By applying Proposition 9.16 we obtain a
morphism d”[1](X) — d¥[—1](X), which has by Example 8.22 an underlying
diagram of the form

— Yy
||

This would imply that (z — y) is invertible and therefore contradict our as-
sumption.

T
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This is of course not surprising. They key examples of n-angulated categories
arise as (n — 2)-cluster tilting subcategories of triangulated categories ([GKO13,
Thm. 1]). Roughly speaking these are subcategories of triangulated categories,
which are closed under bicartesian (n — 1)-cubes but not necessarily under bicarte-
sian squares. For a precise definition we refer to [Iyall, Def. 1.1]. By restricting
to an (n — 2)-cluster tilting subcategory we make the set of possible extensions of
a morphism to an n-angle smaller in a way such that the weak functoriality for
n-angles holds.
Important examples of (n — 2)-cluster tilting subcategories were constructed by
Iyama [Iyall] as subcategories of the derived categories of (n — 2)-Auslander-
algebras associated to Dynkin quivers of type A. The following related questions
and open problems seem to be interesting for future research.
e Are there analogues of higher cluster tilting subcategories for general stable
homotopy theories?
e Are there explicit descriptions of these, at least in case of Dynkin quivers of
type A?
e Do (coherent) (k,n — 2)-triangles in n-cluster tilting subcategories satisfy spe-
cial properties for k > 27
e Do these properties descent to an axiomatization of higher n-angulated cate-
gories?

APPENDIX A. CONJUGATION FOR 2-CATEGORIES

In this short appendix we describe in which way a family of autoequivalences
acts on a specific 2-category of pseudofunctors. Of course there many sources in
the literature (e.g. [Bén67] for an introduction to the theory of bicategories, but to
fix the notation we start by recalling the elementary definitions. Since we restrict
to the case of pseudofunctors between 2-categories from the beginning, we refer to
[Ren09] for a similar but more detailed exposition.

Definition A.1. Let ¥ and %’ be 2-categories. A peudofunctor 7% : ¢ — ¢’
consists of:

(i) for ¢ € Ob(¥) an object F(c) € Ob(E"),
(ii) for c1,co € Ob(F) a functor
Feren  Cc1,02) = €' (c1,02).
(iii) for e1,¢2,c3 € Ob(%) a natural isomorphism
M7 ooyt (20 =)0 (Feyon X Feres) = Feren © (=0 =) 1 Cler, c2) X Clez, c3) = €' (F (1), F(c3))

(iv) for ¢ € Ob(%) a natural isomorphism
w tidg () = Feeoide: 1 — €' (F(c), F(c))

such that the equalities of 2-isomorphisms:
(i) (associativity) for all (f,g,h) € €(c1,c2) X €(ca,c3) X €(c3,¢4):

mgs s p 0 (F (W) = w7, 0 (), F(f)) : F(h) o F(g) o F(f) = F(hogo f)
(ii) (left unitality) for all f € € (c1,c2):

idg sy =miy, ;o (WL F(f): F(f) = Z(f)
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(iii) (right unitality) for all f € €(c1, c2):
idg(p) =m7s., o (F(Ful): Z(f) > Z(f)

Cc2

hold true, with the simplified notation for (f, g) € € (c1,c2) X €(ca,c3):

m}?’g = (mf702703)(f>9) : 5?(9) 0 9(]0) i) y(g © f)

Definition A.2. Let #,.%' : ¢ — ¢’ be pseudofunctors. A pseudonatural trans-
formation o : % — %’ consists of:

(i) for ¢ € Ob¥ a l-morphism a. : F(c) = F'(c),

(ii) for c¢1,co € Ob(¥) a natural isomorphism

A o (ey)s © Py oy = () 0 FL . 1 C(cr,02) = €'(F (1), F'(c2))

c1,C2 C1,C2
such that the equalities of 2-isomorphisms:
(i) (associativity) for all (f,g) € € (c1,c2) x €(c2,c3):

)‘gof © (Z.dacB mfg) = (mfgidacl) o (ng’(g))‘?) © (/\gld?(f)) :

ac3oy(g)oy(f) —)ﬁl(gof)oam
(ii) (unitality) for all ¢ € Ob(%):

a! . .
ul ida, = Xjy o (id

u?) o — F(id,) o

Qe e

hold true, with the simplified notation for f € €(cy, c2):
A= () + ey 0 F () = F/(f) 00,

Definition A.3. Let &#,.%': € — ¢’ be pseudofunctors and a,o’: F — ' be
pseudonatural transformations. A modification 6: o — o' consists of

(i) for ¢ € Ob(€) a 2-morphism 0.: a. — o,

(ii) such that for all f € %(c1,c2) there is an equality of 2-morphisms

(idgr(5)0e,) 0 AF =AY 0 (Buyid g () ey 0 F(f) = F(f)) 0ol

Proposition A.4. Let #: € — €' be a pseudofunctor between 2-categories. Given
for all ¢ € Ob(€) an object cs € €' and an equivalence

(Se: F(c) = ¢s,S): ¢cs = F(¢), et ideg = Sc0SY €S 0Se = idg(e)),
then there is
(i) a pseudofunctor F[S|: € — €' defined by
(a) F[S|(c) = cs

(b) y[s]qm =S, 0 361’62 © le

FIs 7
(C) m01702703 T mcl,cz,C3 © 662

(@) wl® = uZ o
(it) and a pseudonatural equivalence a[S]: F — F[S] defined by

(a) afS]c =S.

(b) N2 e, = (ec) 71
Proof. Let ¢, cq,co,c3 € €. Since functors and natural isomorphisms are closed we
conclude that #[S], ., is a functor and mf,@,cg_, ul B and AQ e, are natural iso-
morphisms. Hence it is sufficent to check the associativity and unitality conditions
for Z[S] and «S].
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(i) For the associativity of Z[S], we have to show that for f € €(c1,¢2), g €
@ (c2,c3) and h € €(cs, c4)the pastings

C1s Cls Cls Cis Cils
S S S S S
F(a1) == F (c1) == F(c1) Z(c1) F (c1)
F(f)

F F
Mf.g Mot h

s, F(gof)

Z(9) F (hogof)
F(c3) == F (c3) == F (c3)
Ses Ses Ses \
C3s C3s C3s .7 (c3)
%, %, %, /
F(c3) —— F(c3) —— F(c3) F(h)
Z(h) F(h) Z(h)
F(ca) F(ca) F(ca) F(ca) F(c4)
S Se, Se, Se, Se,

Cy4s C4s Cy4s Cy4s Cy4s
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and

Cls Cls Cls Cis Cils
S S S S S
F(e) =—=——= F (1) =—= F (1) F(c1) F(cr)
Z(f) F(f) Z(f)
F(cg) —— F(c2) —— F(c2) Z(f)
S, Se, Sey \
Cas C2s C2s e F(c2)
%, %, %, /
F(cq) F(cq) F(cq)
Z(h) F(hogof)
F(c3) Z(9)
Ses F (hog)
P F
C3s % F(c3) :>mg'h Do
Sea F (hog)
F (c3) 7 (h)
Z(h)
F(cy) F(cq) F(cq) F(cq) F(cy)
Se, Se, Se, Se, Se,

Cy4s C4s Cy4s Cy4s Cy4s
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agree. By contracting some identity cell this amounts to proving the equality
of the pastings

Cls Cis Cis C1s
S S S S
F (1) == F(a1) Z(c1) 7 (c1)
Z(f)
F(c2) F(f)
Sey
7 =z
Cos % F(ca) Mg Mgof,h
o, F(gof)
F(c2)
Z(9) Z(9) Z (hogof)
F(c3)
Sy
Coo =2 F (05) —— F (c3)
sy,
Fles)  Fh #(h)
F(h)
F(cy) F(cy) F(cq) F(cyq)
Ses Se, Se, Sey

C4s C4s Cy4s Cy4s
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and

Cis Cis Cis Cis
S S, S s
F(e1) == F(a1) F (1) F(c1)
F(f)
F(e)  #() Z(f)
Se,
Crs =25 F (03) —— F(c2)
sy,
F(c2)
Z(9) F(9) Z (hogof)
F (c3)
Seq F(hog)
G 52 7 () D nos
SCV3
F(e3)  F0
F(h)
F(cy) == F(cq) F(cq) F(cq)
Se, Se, Ses Sey
C4s C4s Cy4s C4s

But this follows, by comparing the subpastings of the inner cells in the second
and third columns, since % is a pseudofunctor.
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(ii) For the left unitality of #[S] we have to show that for f € €(c1,c2) the
following pasting is equal to the identity.

c1s Cis Cis
/ %, 4
1s F(e) =—=——= F (1) =—= F(c1)
sv. /
Ney uZ;
s ———=> F () ——>| F(id.,)
Se, \ F(ide,)
c1s F(c1)
¥, \51 Z(f)
m?
sV, 1 s F (1) —ls
SY,
F(c1) Fe)) — F (1) F(f)
F(f) F(f) F(f)
F(c2) F(ca) F(c2) F(cg) == F(ca)
Se, Se, Sco Sco Se,
Cas Cas Cas Cas Cas

For this, we note that the pasting of the second cells in the second, third
and fourth column is the identity, since .# is a pseudofunctor. The two
remaining non-trivial cells compose to the identity because of one of the
triangle identities of the eqiuvalence (Sc,, Sy ). The proof of the right unitality
is completely dual to this case.
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(iii) For the associativity condition of «[S] we have to show that for f € €(c1,c2)
and g € €(cg, c3) the pasting

y(cl) _ y(Cl) _ J(Cl)
/sc1 S, s,
€cq )71
</(Cl) - J(Cl) Cis Cis Cis
\; s, %
Z(f) F (1) —— F(c1) —— F (1)
F(f) F(f)
y(CQ) e 9(62) F(f)
/Sc2 Sey \ F(gof)
€c -1 €c my o
9(02) 2) Cosg Cos 2 JJZ(CQ) L
\Zz S;/2 /
Z(9) j(CQ) = ﬁ(CQ) F(9)
Z(9) Z(9)
F(c3) == F (c3) F(c3) F (c3) == F(c3)
Ses Ses Seq Ses Ses
C3s C3s C3s C3s C3s
agrees with
F(a1)
/sc1
€ )_1
F(a1) F(c1) == c1s
(/) \
m7,
F(c2) =——=>|F(9of) F(c1)
7 (9) F(gof)
F (c3) == F (c3) == F (c3)
Sey Ses Se,
C3s C3s C3s

But this is immediate since the hexagon in the center of the first diagram
composes to the identity.
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(iv) For the unitality of «[S] we have to show that for ¢ € € the pastings

F(c)

and

cs :L> (gz(c) —| Z(id¢)
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agree. We apply one of the triangle identities of the equivalence (S.,SY) to
the first column of the second pasting to obtain

cs F(c) e | # (i)

This pasting is seen to be equal to the first diagram by contracting identity
cells.

[Bén67]
[BG16]
[BG18a]
[BG18b)
[BGT13]
[BT13]

[CF17]

[Cis10]
[Dyc17]
[Fra96]
[Gar06]

[GKO13)

O
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