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Abstract 

In spite of considerable developments and modifications of earthquake-resistant design 
methods and much more conservative building norms, massive death and destructions have 
been reported after several great earthquakes in recent years. High developed countries are 
susceptible to earthquakes as well, as for example the unprecedented economical loss of Kobe 
earthquake (Japan, 1995). 

Seismic building norms are mainly life-safety oriented. Providing a sufficient plastic reserve 
by a ductile design concept to guarantee the structural serviceability after a severe shaking has 
been proved to be very difficult to be implemented. In an alternative method, based on the 
concept of reduction of the earthquake-induced forces, structural properties are modified, 
instead of providing additional strength and stiffness. In friction pendulum isolated systems 
this can be done by means of several bearings sliding over concave contact surfaces, which 
are decoupling the system from its foundation. 

In this study a numerical model is developed to simulate the response of such an isolated 
structure. First, assuming a rigid structural response, a one-degree-of-freedom model has been 
applied to simulate the response of a sliding bearing. The model is then improved to a two-
degree-of-freedom system, to consider the interaction effect between a sliding bearing and the 
structure over it. Finally, a general multi-degree-of-freedom planar model is developed, in 
which several extra degrees-of-freedom, regarding the number of the isolators in the set, are 
activated, as soon as the set starts sliding. By sticking of some bearings, the corresponding 
degrees of freedom are deactivated. Hence, there are different system configurations in 
sticking and sliding phases. This makes the exact prediction of all phase changes during an 
analysis very important. By means of a developed adaptive time digitization algorithm 
extremely short time steps would be applied only in the case of possibility of a phase change. 
In this way numerical costs of the analysis can be reduced. As the nonlinearity of the response 
of such a system is only restricted to phase changes between time steps and in every single 
time step system properties do not change, modal analysis has been used to solve the set of 
differential equations, so that only the first few mode shapes governing the main part of the 
structural response are required to be considered. Results are then transformed back into the 
original space to be evaluated. To verify the numerical model, several practical cases have 
been simulated. Results are then compared with those reported in literature. 



 

 

Zusammenfassung 

In den letzten Jahren sind viele Entwicklungen und Fortschritte im Bereich erdbebensicheres 
Bauen gemacht worden. Trotzdem hat in den vergangenen Jahren manch verheerendes 
Erdbeben, wie zum Beispiel in Bam (Iran, 2003) oder Kaschmir (Pakistan, 2005) massive 
Zerstörungen angerichtet. Das geschieht nicht nur in den Entwicklungsländern, sondern auch 
in den hoch entwickelten Ländern wie Japan, beispielsweise das Erdbeben in Kobe (1995). 

Die Normen sind meistens ‘‘life-safety’’ orientiert. Das führt dazu, dass die Sanierung wegen 
des Schadensniveaus unwirtschaftlich oder gar unmöglich ist. Es gibt zwei Strategien um die 
Funktionalität eines Gebäudes im Falle eines Erdbebens erhalten zu können: 

Nach der klassischen Strategie wird versucht durch plastische Reserve die Tragfähigkeit des 
Systems zu gewährleisten. Zahlreiche Gebäude, die nach diesem Prinzip konzipiert sind, 
haben in der Vergangenheit einer Erdbebenbelastung nicht standgehalten. Das war zum 
Beispiel auf Ausführungsmängel und geringe Baustoffqualität zurückzuführen. 

Alternativ dazu versucht man durch gezielte konstruktive Maßnahmen die dynamischen 
Systemeigenschaften zu verändern, so dass die Erdbebenkräfte dissipiert bzw. reduziert 
werden können. Eine mögliche Maßnahme ist die Basisisolation. Dabei wird das Gebäude 
durch spezielle Lager, zum Beispiel Elastomerlager oder Reibelemente von den Fundamenten 
entkoppelt. 

Sogenannte Reibpendelelemente sind spezielle Lager, die zur Basisisolation von Gebäuden 
eingesetzt werden. Sie besitzen eine gekrümmte Oberfläche um eine Zwangszentrierung der 
Lager zu gewährleisten. Ihre Oberfläche ist mit einer speziellen Beschichtung versehen, die 
den Reibungskoeffizient minimiert. Sobald die durch ein Erdbeben induzierten Kräfte den 
statischen Reibungswiderstand des Lagers überschreiten, lässt das Lager ein Gleiten des 
Gebäudes gegenüber dem Baugrund zu. In der vorliegenden Arbeit wird ein numerisches 
Modell zur Simulation von Systemen mit einem Reibpendellager entwickelt. Zunächst wurde 
ein einfreiheitsgerades System benutzt, wobei das Verhalten des Gebäudes starr angenommen 
wird. Um die Wechselwirkung zwischen der Struktur und dem Lager zu berücksichtigen, 
wurde ein zweifreiheitsgerades System verwendet. Anschließend ist ein MDOF Planarmodell 
entwickelt worden, in dem mehrere zusätzliche Freiheitsgerade aktiviert werden, sobald das 
System anfängt zu gleiten. Die zusätzliche Freiheitsgerade dient dazu, die Reibelemente in 
Gleit-Phasen zu simulieren. Sobald das System wieder haftet, werden diese Elemente 
deaktiviert. Das Modell wird bezüglich des numerischen Aufwands optimiert. Um das 
numerische Modell zu verifizieren, mehrere praktische Anwendungen wurden mit diesem 
Modell simuliert. 
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Chapter 1 

Motivation  

In this chapter, firstly a short review of devastating earthquakes in  the last century is 
given. Then, three main design concepts are introduced. Disadvantages of these 
classical concepts are discussed. In an alternative design concept, active and passive 
control methods are then introduced. Afterwards, the significance of this study is 
briefly discussed and the aims of this study are reviewed. Finally, the outline of the 
dissertation is presented. 
 

1.1 Introduction 

Earthquake-resistant design is a challenging task for civil engineers. Although building codes 
of praxis have become more detailed and conservative, severe damages have been reported to 
modern buildings after several strong earthquakes in recent years. A list of strong earthquakes 
with fatalities larger than 1000 is given in Appendix A. It shows that an average of almost 
19000 persons were killed yearly due to earthquakes. Earthquakes’ aftermath are also usually 
disastrous, namely conflagrations, landslides, and tsunamis. 

Building code provisions based on different design methods pursue two main goals: Firstly to 
provide a low probability of failure under all likely load combinations through prescription of 
a minimum required level of structural strength; and secondly, a minimum stiffness must be 
available to restrict deflections; so that the structure remains serviceable [Chen and 
Scawthorn, 2003]. 

Main design methods are conventional, capacity, and performance-based design methods. In 
conventional methods, buildings are designed to remain elastic in their life-time under all 
possible load combinations. This leads to an uneconomical design for structures in regions 
with high seismic risk. In capacity design methods, however, some plastic hinges are allowed 
to be produced in predefined locations. Through plastic deformations (damage) it is possible 
to dissipate excitation energy to some extent. 

Current building code provisions are prescriptive in nature. They require that buildings are 
designed with a minimum specified strength and stiffness. In contrary to them, performance 
based procedures permit the designer to demonstrate directly that a design is capable of 
meeting prescriptive strength and stiffness criteria. An acceptable performance may be 
demonstrated through a variety of means, including prototype testing or analytical simulations 
[Chen and Scawthorn, 2003]. 

Seismic codes are mainly life-safety oriented. At least for residential buildings they do not 
define serviceability and functionality of a structure after an earthquake with the same priority 
as life-safety. High damage levels in structures after earthquakes make it impossible (or 
uneconomical) to retrofit them. 
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To maintain structural functionality after severe shakings different strategies are available. In 
traditional methods, by providing a reserve stiffness and ductility in the system the 
serviceability after an earthquake is guaranteed. The collapse ofnumerous modern structures 
in recent earthquakes showed that it is very difficult to provide such a reserve capacity. 
Flawed implementations, poor material quality, corruption, and lack of supervision are the 
main reasons for shortcomings of this strategy. This motivated the designer to develop control 
systems (active and passive) to modify structural features in case of major ground shakings. 
The dependency of active systems on additional controlling software and hardware make their 
application restricted to rare special structures. In contrast to them, passive systems as base 
isolated systems and tuned mass dampers do not require any additional controlling 
mechanism, which makes them more attractive for engineers. 

 
1.2 Motivation 

Iran’s plateau is located in a very active seismic zone along the Alpine-Himalayan mountain 
belt between the Indian, Arabian, and Eurasian plates (Figure 1.1) [Berberian]. Several 
devastating earthquakes in Iranian history have been registered with tens of thousand 
casualties and massive destructions (Table 1.1). At least 150000 people have been killed in 
great earthquakes in Iran in the last 100 years. It was not only as a matter of the national 
interest of the author, but also as a real engineering concern, which made the motivation to 
propose a method to solve a part of this problem. 

 
Figure 1.1: Global tectonic plate boundaries [USGS]. 

Besides, a very rapid population growth, especially in the last century, has resulted in an 
enormous demand of housing of around one million units per year. Iran’s need for an annual 
investment of 20 billion dollars in the housing sector is out of the capacity of domestic 
investors [Iran Daily, 2006]. 
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Mass production of affordable earthquake-proof structures is an essential need for the young 
Iranian generation. It has great economical, social, and political importance for the country as 
well. Low-rise buildings with prefabricated segments equipped with base isolation method 
against earthquakes have the potential to be considered as a solution for this dilemma. 

 
1.3 6BAims 

The main aim of this study is to develop a numerical model to simulate the response of 
friction-based isolated structures. The model is developed in three main stages. Firstly, a 
single-degree-of-freedom model is applied, in which the structural response is considered to 
be rigid. Secondly, to simulate the interaction between the isolation block and the structure, a 
model with two degrees of freedom is developed. Finally, the model is generalized, so that 
friction-based isolated systems with many degrees-of-freedom can be also simulated. In 
between, features of such systems are studied and advantages and disadvantages of this 
method in different situations are discussed. 

 
1.4 Overview 

In Chapter two, some basic earthquake principles are introduced. Plate tectonics, different 
types of faults, and shear waves are briefly reviewed. At last, earthquake magnitude and 
intensity scales are presented. 

In Chapter three, control systems (active, passive, and hybrid) are discussed. The history of 
the base isolation is then reviewed. Finally, different types of base isolation method are 
presented. 

Friction force and its nature are the main themes of Chapter four. Different models to simulate 
this force are presented. The response of a single degree-of-freedom model with friction is 
then studied. Afterwards, frictional properties of a Teflon layer sliding on polished stainless 
steel plate are studied. 

In Chapter five, the concept of base isolation is explained. Using the response spectrum 
method the period shift effect is described. An arbitrary two-degree-of-freedom model is then 
used to prove mathematically how isolation decreases earthquake-induced forces in 
structures.The friction pendulum system as an isolation means is introduced in chapter six. 
Different configurations of bearing modules are firstly illustrated. Then physical properties of 
such a system are studied. At last, a stick-slip criterion is presented. 

In Chapter seven, after a brief review of classical analysis methods and numerical models, the 
models developed in this study to simulate the response of an isolated system are presented. 

Chapter eight is devoted to case studies done to evaluate the models developed in the previous 
chapter. Main features of base isolated systems are studied in between. 

In Chapter nine, the results are discussed. Advantages and disadvantages of friction base 
isolation method are explained. Finally, features of the developed numerical model are 
compared with the classical models. 
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Table 1.1: Major earthquakes in Iranian history [USGS]. 

 

Year Day-Month Location Latitude Longitude Deaths M 

856 22-Dec Iran, Damghan 36.0N 54.0E 200000  

893 23-Mar Iran, Ardabil 38.0N 48.0E 150000  

1727 18-Nov Iran, Tabriz 38.0N 46.0E 77000  

1909 23-Jan Iran, Silakhor 33.4N 49.1E 5500 7.3 

1923 25-May Iran, Torbat e heydaria 35.3N 59.2E 2200 5.7 

1929 01-May Iran, Koppe Dagh 38.0N 58.0E 3300 7.4 

1930 06-May Iran, Salmas 38.0N 44.5E 2500 7.2 

1957 02-Jul Iran, Mazandaran 36.2N 52.7E 1200 7.4 

 13-dec Iran, Sahneh 34.4N 47.6E 1130 7.3 

1962 01-Sep Iran, Qazvin 35.6N 49.9E 12230 7.3 

1968 31-Aug Iran, Dasht e Bayaz 34.0N 59.0E 12000 7.3 

1972 10-Apr Iran, Southern (Fars) 28.4N 52.8E 5054 7.1 

1976 24-Nov Iran 39.1N 44.0E 5000 7.3 

1978 16-Sep Iran, Tabas 33.2N 57.4E 15000 7.8 

1981 11-Jun Iran, Southern  29.9N 57.7E 3000 6.9 

 28-Jul Iran, Southern 30.0N 57.8E 1500 7.3 

1990 20-Jun Iran, western 37.0N 49.4E 40000 7.7 

1997 28-Feb Iran, Ardabil 38.1N 48.1E 1200 6.1 

 10-May Iran, Manjil 33.9N 59.7E 1560 7.5 

2002 22-Jun Iran, Qazwin 35.6N 49.1E 261 6.5 

2003 26-Dec Iran, Bam 29.0N 58.3E 31000 6.6 

2005 22-Feb Iran, Zarand 30.1N 56.8E 612 6.4 
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Chapter 2 

Basic Earthquake Principles 

The Lithosphere, the outermost part of the earth interior, is made up of large plates, 
which are continuously in movement because of forces acting on them. Elastic 
rebound theory is one of the theories describing this phenomenon. According to it a 
sudden release of a huge amount of energy as a result of slippage of two plates over 
each other causes an earthquake. This sudden rupture propagates several types of 
waves, which are mainly responsible for the devastating damages of earthquakes. In 
technical literature, earthquakes are usually described quantitatively. Whereas, a 
qualitative description of earthquakes is more usual in media. In this chapter plate 
tectonics is briefly reviewed. Then different types of seismic waves are categorized. 
Finally, quantitative and qualitative measurements of an earthquake are introduced. 
 

2.1 8BPlate tectonics 

The earth consists of several layers of different compositions, which can be divided in an 
inner solid core, an outer molten core, the mantle, and the crust. The combination of the crust 
and the rigid part of the mantel is called lithosphere [Suy, 2005]. The Lithosphere’s large 
plates are driven by the convective motion of the material in the earth’s mantle. Relative plate 
motions are constrained by friction and asperities between adjacent plates (Figure 2.1). 
According to the elastic rebound theory, the strain energy accumulated in the plates 
eventually overcomes the friction force between plates and causes a slippage between two 
adjacent plates. This sudden slippage releases a large amount of energy, which causes an 
earthquake [Chen, 1999]. 

The fractured zone between two plates along which a rupture has happened is called fault. 
The Hypocenter is the point, where the rupture in a fault during an earthquake has been 
initiated. Its projection on the surface of the ground is called Epicenter. There are several 
different types of faults. The most common ones are: 

• Strike-slip fault, in which the movement between faults is parallel to the strike1
F of the 

fault (Figure 2.2). 

• Normal fault, in which the hanging wall block, that is the part of the ground on the right 
hand side of a fault’s block, has moved downward with respect to the foot wall block, 
which is the block located on the left side of a fault (Figure 2.3). 

• Reverse fault, in which the hanging wall block has moved upwardly with respect to the 
foot wall [Day, 2002]. 

__________________________ 
1 The orientation of a fault on the earth’s surface, which is usually measured clockwise from the north. 
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Figure 2.1 World tectonic plates [USGS]. 

 
Figure 2.2   Schematic view of a strike-slip fault [Namson and Davis, 1988]. 

 
Figure 2.3   Schematic view of a normal fault [Namson and Davis, 1988]. 
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2.2 9BSeismic waves 

Most earthquakes are caused by stress build-up between the asperities of the plates and then a 
sudden release of energy, as a fault ruptures. To explain features of an earthquake it is of great 
importance to record the motion of the ground surface due to seismic waves generated by an 
earthquake. The Seismograph is an instrument recording the ground motions. Its record of 
ground shakings is known as seismogram, which can be acceleration, velocity, or 
displacement of a point on the ground during shakings (Figure 2.4). 
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Figure 2.4   Acceleration, velocity, and displacement seismograms of the Bam Earthquake, Iran, 2003. 

Seismograms contain valuable information used in seismic analysis and design of structures. 
Parameters such as acceleration, velocity, displacement, frequency content of the ground 
motion, duration of strong shakings, and various intensity measures play important roles in 
seismic evaluation of existing facilities and design of new systems. 

Ground motions recorded at different sites vary significantly due to several factors, including, 
but not limited to, earthquake magnitude, faulting mechanism, distance from the recording 
site to the earthquake source, local site condition, depth of sediments, basin features, and 
source directivity effects (Figure 2.5). 



8  2 Basic Earthquake Principles 

 

 

0 10 20 30 40 50 60 70 80 90
−1

0
1

Time [s]A
cc

. [
g 

m
/s

2 ]

Tabas, M 7.4, Iran, 1978

Loma Prieta, MW 6.9, USA, CA, 1989

Whittier Narrows, MW 5.9, USA, CA, 1987

Landers, MW 7.3, USA, CA, 1992

Kobe, M 6.9, Japan, 1995

Bam, MS 6.7, Iran, 2003

Manjil, MS 7.7, Iran, 1990

Chi−Chi, M 7.6, Taiwan, 1999

Imperial Valley, M 6.9, USA, 1940

Figure 2.5   Acceleration seismograms of some strong earthquakes [USGS and PEER]. 

An earthquake produces several types of waves, mainly categorized as body waves and shear 
waves. Body waves can pass through the interior of the earth, as for example P-waves 
(compression waves). Shear waves, however, can only be observed close to the surface of the 
ground, as Love and Rayleigh waves. As a result of the interaction between body waves and 
the material near the earth’s surface, surface waves are produced. They are normally 
categorized as shear waves. Main seismic waves are (Figure 2.6): 

• P-Wave: known as primary or compressional wave. It causes a series of compressions 
and dilations of the material through which it travels. As the P-wave is the fastest wave 
produced by an earthquake, its detection is for early warning systems of great 
importance. 

• S-wave: known as secondary, shear, or transverse wave. The s-wave causes shear 
deformation in the material through which it travels and is the most destructive seismic 
wave produced by an earthquake. 

• Love wave, which is analogous to the S-wave. In contrast to the S-wave, which has 
vertical and horizontal components, Love waves have no vertical components. 

• Rayleigh waves, which are like ocean waves. Particles are displaced by Rayleigh waves 
both vertically and horizontally in a vertical plane oriented in the direction in which the 
wave is travelling [Bozorgnia and Bertero, 2004]. 
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Figure 2.6   (a) P-Wave, (b) S-Wave, (c) Love Wave, and (d) Rayleigh wave [Pocanschi and Phocas, 2003]. 

2.3 10BMagnitude and intensity of an earthquake 

There are two basic ways to measure the strength of an earthquake: either with a quantitative 
observation, based on the amount of energy released by an earthquake, that is magnitude, or 
with a qualitative observation, based on damages to buildings and reactions of people, which 
is called intensity. 

There are several earthquake magnitude scales used by seismologists. Among them the local 
magnitude scale, the Richter magnitude scale (ML), is the most famous one. In the Richter 
magnitude scale, mainly used for shallow local earthquakes, the magnitude is calculated as 
[Richter, 1935]: 

0logLM A A=  ( 2.1) 

where ML is the local magnitude in Richter scale. A is the maximum trace amplitude (mm) as 
recorded by a standard Wood-Anderson seismograph, located on a firm ground at a distance 
of exactly 100 kilometres from the epicentre of the earthquake. A0 is a constant, taken 
normally to be 0.001 millimetre. 

Because of limitations of the Richter magnitude scale, it is more common to use the moment 
magnitude scale (MW) to describe the magnitude of an earthquake. First the seismic moment 
(M0) is calculated [Meskouris and Hinzen, 2003]. It is a function of shear modulus of the 
material along the fault plane, the area of the fault plane undergoing a slippage, and the 
average displacement of the rupture. The moment magnitude is calculated as [Kanamori, 
1977]: 

06.0 0.67 logWM M= − +   ( 2.2) 

In contrast to the magnitude scale, the intensity of an earthquake is based mainly on the 
observations of damaged structures and the presence of secondary effects as landslides, 
liquefaction, and ground cracking. It is also based on the degree to which the earthquake is 
felt by inhabitants. The most common intensity scale is the modified Mercalli intensity scale 
(Appendix B). 
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Chapter 3 

Active and Passive Control Systems 

There are several methods to protect buildings from damaging earthquakes. Active 
and passive control systems belong to a younger generation of these methods. Passive 
systems, in contrast to active systems, have no logically driven external device to 
control the structural properties. Base isolation methods are classified under passive 
control systems. Isolation systems are mainly classified to elastomeric and sliding-
based types. The main advantage of sliding-based systems is the capability of the 
system to slide freely over its foundation, which results in a drastic reduction of the 
transmitted forces to the structure. In this chapter main structural control systems are 
introduced. A brief review of different types of base isolation methods is then 
presented. 
 

3.1 11BIntroduction 

Protecting structures from the damaging effects of severe earthquakes is one of the oldest 
challenges in structural engineering. In the last two decades beside conventional methods, 
additional protective systems are becoming more and more practical [Soong and 
Constantinou, 1994] and [Chen, 1999]. 

Structural protective systems against vibration are divided into three main types: Passive 
systems, as base isolation and energy dissipation systems, active systems, as smart bracing and 
damping systems, and hybrid control systems [Zhao et al., 2000]. Active systems in contrast 
to passive systems monitor the structure and incoming ground motion and through a 
controlling system and actuators control the structural properties such as stiffness and 
damping (Figure 3.1). In passive systems, however, no logically driven external device is 
applied, and by means of a specially designed interface at the structural base, as sliding 
bearing elements, or special components in the structure, e.g. tuned mass dampers (TMD) and 
bracings, the input energy of an earthquake is diverted or dissipated. In hybrid control systems 
a combination of passive and active instruments is applied. 

Because of a permanent monitoring of structural features, active control systems are 
functioning more efficiently than passive systems. Nevertheless, the dependency of such 
systems on an exterior energy source and monitoring software and hardware is a great 
drawback, which caused this method not to be used as widely as passive control systems. In 
the rest of this chapter, a brief review of different base isolation systems will be presented. 
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Figure 3.1   Basic elements of an active control system [Soong and Constantinou, 1994]. 

3.2 12BBase isolation history 

The idea of preventing disastrous damages of strong earthquakes through decoupling a 
structure from its foundation has a long history. The first documented concept belongs to a 
Frenchman, named Jules Touaillon [Touaillon, 1870]. To isolate structures, he suggested in 
his patented work, to use some ball bearings between the base and the foundation of the 
structure (Figure 3.2). 
 

 
Figure 3.2   Jules Touaillon original patented earthquake-proof building [US Patent Nr. 338240, 1870].
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Some years later in 1906, a similar suggestion was proposed by Jakob Bechtold. He suggested 
a pad of metal spheres as an isolation layer (Figure 3.3) [Bechtold, 1906]. 

 

 
Figure 3.3   Jakob Bechtold patented earthquake-isolated building [US Patent Nr. 845046, 1907]. 

In 1909, J. A. Calantarients, a medical doctor from England, proposed the construction of 
buildings on a layer of fine sand, mica, and talc that allows the building to slide in case of 
severe shakings (Figure 3.4) [Calantarients, 1909]. To withstand large relative displacements 
he designed a set of ingenious connections for gas lines and sewage pipes (Figure 3.5). 

Some local innovative housing techniques can be observed in countries located in regions 
with high seismic hazards. They are mainly based on the idea of decoupling the structure from 
its foundation. For example in the north of Iran it is an old tradition to construct the houses 
over pyramid-shape wooden pedestals (Figure 3.6) [Hosseini, 1999]. 

Natural rubber was used for the first time to provide an earthquake protection system in 1969 
for a school in Skopje, Macedonia [Naeim and Kelly, 1999]. In contrast to modern rubber 
bearings, the rubber blocks used there are not reinforced, so that the weight of the building 
caused the bearings to bulge sideways. Some glass blocks are used as seismic fuses to break 
when the horizontal loading exceeds a certain threshold, to guarantee that under ordinary 
service loads, such as daily wind load, the structure responds as a classical fixed-base 
structure. 
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Figure 3.4   Calantarient’s base isolation system [Calantarient, 1909]. 

 

 
Figure 3.5   Service connection proposed for an isolated structure [Calantarient, 1909]. 
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Figure 3.6   Traditional isolated structure, north of Iran [Hosseini, 1999]. 

3.3 13BBase isolation types 

Base isolation systems are divided into two main groups of systems with a recentering 
(restoring) mechanism and systems without this mechanism. The recentering mechanism is 
responsible to push the structure back to its original place to minimize the permanent 
displacement of the structure in its base. Regarding isolation mechanisms, base isolated 
systems can be divided into three main groups: elastomeric-based systems, sliding-based 
types, and spring type systems. 

3.3.1 38BElastomeric-based systems 
In most recent isolated buildings multi-layered laminated rubber bearings with steel 
reinforcement have been applied (Figure 3.7). Because of steel reinforcements, elastomeric 
bearings are very stiff in the vertical direction. Because of the low stiffness of rubber, 
however, the bearings are very soft in the horizontal direction, which guarantees an isolation 
effect. Laminated elastomeric bearings are categorized into low- and high-damping types. 

 

Natural rubber

Thin steel plates (Shims)

Steel end plate

 
Figure 3.7   A typical elastomeric bearing consisting of two steel end plates, layers of vulcanized low-damping 

natural rubber, and steel plates. 

3.3.1.1 46BLow-damping rubber systems 
A bearing of this type consists of two thick steel endplates and many thin steel plates in 
between (shims), which are vulcanized and bonded to layers of natural rubber in a mold under 
extreme heat and pressure (Figure 3.7). Steel shims provide the required vertical stiffness 
without increasing significantly the horizontal stiffness. Such bearings behave under shear 
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loading quite linearly even up to 100% shear strain with a damping ratio in the range of two to 
three percent of the critical damping. 

This kind of bearing has many advantages, among them an easy manufacturing production 
process, relatively simple numerical simulation of their response, and a rate independent 
response under aging and preloading can be mentioned. On the other hand, because of a very 
low damping rate, they require sometimes a supplementary damping source to restrict lateral 
displacement. 

3.3.1.2 47BHigh-damping rubber systems 
To avoid supplementary devices, guaranteeing a higher damping ratio for structures isolated 
with low-damping rubber bearings, the damping properties of natural rubber are improved by 
adding extra fine carbon blocks, oil, resins, and some other fillers [Derham and Kelly, 1985]. 
In this way, the damping ratio is increased up to 20% of the critical damping at 100% shear 
strain. High damping rubber responds strongly nonlinearly, which makes its numerical 
simulation much more complicated than low-damping rubber systems. 

Adding a lead core to such a set serves as an extra source of damping (Figure 3.8). This 
special kind of bearing was invented in New Zealand and has been used extensively there 
[Naeim and Kelly, 1999]. The steel plates in the bearing force the lead plug to deform. 
Because of yielding of the lead core, a bilinear response is produced in the isolator. Buildings 
isolated with this kind of bearings performed well during the 1994 Northridge and 1995 Kobe 
earthquakes. Besides, the lead core acts as a seismic fuse. As long as the stress in the core has 
not reached the yielding stress of the lead, it does not let the elastomeric bearing to be 
activated. This helps the structure to respond as traditional fixed-base structures to daily 
service loads. 
 

Lead core

Steel end plate

Elastomeric bearing

 

Figure 3.8   Elastomeric bearing with a lead core. 

3.3.2 39BSliding-based systems 

Although initial innovative isolation concepts were mostly of sliding-based type, because of 
numerous practical problems, this kind of isolation technique was accepted much later than 
other types in praxis.  

Westermo and Udwadia studied the periodic response of a linear isolator with Coulomb 
friction law [Den Hartog, 1956] and [Westermo and Udwadia, 1983]. The response of a 
similar model to a general loading was later studied by [Mostaghel et al., 1983 and 1990]. 
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Because of appealing results, many different configurations were suggested, which all were 
based on the same principle. In the coming section they will be shortly introduced. 

3.3.2.1 48BElectricite-de-France system 
This system, developed in the early 1970s, is a combination of the elastomeric isolation with 
the sliding type one. Laminated neoprene bearings in combination with lead-bronze plates in 
contact with stainless steel are the main components of this system. The neoprene pad has a 
limited displacement capacity. If the displacement demand exceeds the displacement capacity 
of the neoprene pad, the steel plate begins to slide over the lead-bronze plate, guaranteeing the 
isolation effect for larger displacements (Figure 3.9). There is no restoring mechanism for the 
sliding part of the bearing. The elastomeric bearing, however, produces a restoring force. 

 

Lead-Bronze Plate
Stainless steel plate

Elastometric bearing
Thin steel plates in between

 
Figure 3.9   Electricite-de-France system. 

3.3.2.2 49BEERC system 
This system is also a combination of the introduced methods, in which the interior columns 
are carried on sliding-based isolators. The exterior columns are isolated with low damping 
natural rubber bearings. Sliding elements provide the required damping. Elastomeric bearings 
are responsible for the restoring mechanism [Chalhoub and Kelly, 1990]. 

With a similar concept the engineers of Taisei corporation in Japan devised a system, in 
which the entire weight of the structure carried on sliding-based isolators and elastomeric 
bearings are just providing the restoring force [Kelly, 1988]. 

3.3.2.3 50BResilient-Friction based isolation system (R-FBI) 
High sliding velocity between sliding layers, usually Teflon and stainless steel plates, 
produces high friction coefficients, which is inappropriate for the isolation effect. By using 
several sliding plates instead of only one layer, it is possible to reduce considerably the sliding 
velocity and friction coefficient (Figure 3.10). To provide a restoring mechanism a rubber 
core, which carries no vertical load, is applied [Mostaghel et al., 1987 and 1988] and [Su et 
al., 1989]. 
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Central rubber core

Steel end plate

Connecting plate

Sliding rings

 
Figure 3.10   Resilient-friction bearing [Mostaghel 1984]. 

3.3.2.4 51BFriction pendulum systems 
The idea of using an articulated slider on a concave surface, a friction pendulum system 
(FPS), was first proposed by [Zayas et al., 1987]. It combines a sliding action with a restoring 
mechanism (Figure 3.11). As the slider moves over a spherical surface the supported mass 
rises and a recentering force is provided because of the concavity of the base plate. At the 
same time the friction between the spherical surface and the slider produces damping in the 
set. 

 

Concave steel plate

Column

Articulated slider

Special Teflon coatingUndeformed Deformed  
Figure 3.11   Configuration of a friction pendulum bearing [Mokha et al., 1990]. 

With a similar concept in sliding concave foundation (SCF), columns are laid on a concave 
sliding raft. Bearings can slide over a cylindrical concave foundation. Because of a very large 
radius of curvature, the system has a longer period of isolation in comparison to FPS, which 
reduces the possibility of resonance in case of long period waves as in near source 
earthquakes. From the construction point of view, however, it faces numerous obstacles 
(Figure 3.12). 

The possibility of uplifting is a drawback for all kinds of isolation systems. In recent years 
some innovative uplift-restraining systems have been proposed [Roussis and Constantinou, 
2006], in which tension can be developed in the bearing without any lose of contact between 
the slider and the sliding surface (Figure 3.13). 
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Figure 3.12   Sliding concave foundation [Hamidi at al., 2003]. 

 

 
Figure 3.13   Uplift-restraining friction pendulum bearing [Roussis et al., 2006]. 

3.3.3 40BSpring-type systems 

Spring-type systems, e.g. the Gerb system, are mainly composed of large helical steel springs 
that are flexible both horizontally and vertically. The system is always used in conjunction 
with viscodampers (Figure 3.14). The Gerb system was originally developed for vibration 
isolation of machine foundations such as power plant turbines. 

 

 
Figure 3.14   Spring-based isolator with viscodamper [Nawrotzki, 2001].
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Chapter 4 

Friction 

The friction force has a complicated nature. It depends on several factors, among 
them the material of the rubbing surfaces, the contact pressure, the sliding velocity, 
and the history of loading. There are several models to simulate it. For example, the 
Coulomb friction law considers a constant friction coefficient during sliding. Whereas, 
in the viscoplasticity model the friction coefficient is defined as a function of several 
parameters. In this chapter, after a brief explanation of the nature of friction force, 
three numerical models, Coulomb, modified Coulomb, and viscoplasticity models, are 
introduced. Finally, frictional properties of sliding Teflon layers over stainless steel 
are studied. This will be later used to simulate the friction force in friction pendulum 
systems. 
 

4.1 14BGeneralities 

Friction, the force that opposes the relative motion or the tendency for a movement in a 
particle, is not considered a fundamental force, as it is made up of electromagnetic forces 
between atoms. In macro scale, asperities of contact surfaces cause the friction force. The 
most famous relation used to approximate the friction force between two solid surfaces is the 
Coulomb law: 

( )fF Wsign uμ= − &  (4.1) 

which applies only when sliding has been initiated. μ  is the dynamic friction coefficient, W 
the weight of the sliding particle, and u&  its sliding velocity. In Coulomb friction law the 
dynamic friction coefficient is considered to be constant. 

The friction force has a complicated nature. As long as no sliding has been initiated, it has a 
passive nature. It opposes the resultant force acting on the body. Only when slippage has 
occurred and the body starts sliding, the friction force changes its nature and acts on the set 
independently from other forces in the system. 

There are several models to simulate the friction force. They are based on many factors, as for 
example the sliding velocity, the contact pressure between the rubbing surfaces, and the 
material of the sliding plates. In the coming sections some of these models will be introduced. 

 
4.2 15BThe Coulomb friction model 

To explain how the friction force acts in a dynamic system simulated by the Coulomb model, 
a simple mass-spring system, with a mass of 100 kg and a spring stiffness of 10 kN/m, laying 
on a surface with a constant friction coefficient of 0.1, is used. For the sake of simplicity no 
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other force or damping source has been considered in the system. An initial displacement, 0u  
= 0.125 m, is applied as initial condition (Figure 4.1). 
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Figure 4.1   Forces acting on the mass in a cycle of oscillation. 

When the mass is released, depending on the forces acting on the mass, in this case just the 
spring force, either the mass remains in its original position, if the spring force cannot 
overcome the static friction force, or it starts sliding. Supposing that the spring force is large 
enough to overcome the static friction force, the mass starts sliding. The friction force is 
simulated by the Coulomb model (Equation 4.1). As the spring force is a restoring force and 
because of the positive initial displacement, it acts in the negative direction and the friction 
force works against it according to the equation of equilibrium. As the mass slides further, the 
spring force gets smaller. The friction force, however, remains constant (Figure 4.3). This 
decreases the acceleration of the mass. As soon as the spring is compressed, the direction of 
the spring force changes. It acts in the same direction as the friction force, resulting in an 
increase of the acceleration of the mass, until the opposing force, the inertial force, is large 
enough to overcome friction and spring forces and brings the mass to rest (Figures 4.1 and 
4.2). At this moment the spring force which is a function of the location of the mass 
(displacement) and the spring stiffness, is the key factor determining whether the mass starts 
again sliding in the opposite direction or not (Equation 4.2). 
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Figure 4.2   Displacement, velocity, and acceleration of the mass during oscillations [Jamali and Zahlten, 2006].
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Figure 4.3   Coulomb friction force versus time and sliding displacement. 

?

fK u F≥  (4.2) 

The same process is repeated in several cycles until in one of the resting moments the spring 
force cannot overcome the static friction force. At this moment the mass remains where it is 
and it will be the end of the oscillation (Figures 4.1 and 4.2) [Jamali and Zahlten, 2006]. 

The amplitude of oscillation decreases steadily (Figure 4.2). In contrast to hysteretic damping 
its decreasing rate is linear. Unlike other types of damping, damped and natural frequency of 
vibration are equal in this case [Petersen, 1996 and 2005] and [Mostaghel and Davis, 1997]. 

As discussed before, there are two different phases of sticking and sliding in such systems, 
which are separated by zero crossings of the sliding velocity. There is no analytical solution to 
find exactly these phase changes. Besides, if there are many sliding devices in a system, 
keeping track of all phase changes for all sliding elements is too cumbersome. To avoid 
discontinuities caused by the signum function in the Coulomb friction model it is practical to 
use instead some similar continuous functions, as for instance the hyperbolic tangent function. 

The signum function is defined as: 

1 0
( ) 0 0

1 0

x
sign x x

x

+ >⎧
⎪= =⎨
⎪− <⎩

 (4.3) 

The hyperbolic tangent function is defined as: 

tanh ( )
u u
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e eu
e e

α α

α αα
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−
=

+

& &

& &
&  (4.4) 

in which α  controls the rate change of the function around zero crossing points. u&  is the 
relative velocity (Figure 4.4). Larger values of α  guarantee a better representation of the 
signum function.  



4.3 The modified Coulomb model 

 

25

It must be taken into consideration that a very large coefficient may produce numerical 
instability. 

tanh( )fF W uμ α= − &  (4.5) 

Equation 4.5 is valid only for sliding phases. For sticking phases the friction force must be 
calculated from the equation of equilibrium. 

 
Figure 4.4   comparison of hyperbolic tangent function with signum function. 

4.3 16BThe modified Coulomb model 

Most of the theoretical works on the seismic performance of sliding isolated systems have 
been done by utilizing the Coulomb law [Constantinou et al., 1990]. Experimental results, 
however, show that the material behaviour deviates significantly from that of Coulomb’s law 
of friction [Constantinou, 1987] and [Mokha et al., 1990, 1991, and 1993]. In experiments 
done on Teflon-steel interfaces, it has been observed that [Mokha et al., 1990] and 
[Constantinou et al., 1990]: 

• the friction force at the initiation of sliding, the breakaway friction force, is 
substantially larger than the starting (kinetic) value. 

• both of these friction coefficients are independent of the sliding acceleration 
between sliding layers. 

• both values depend on the bearing pressure and sliding velocity. 

• prestraining of samples reduces the breakaway coefficient. Several cycles of loading 
with large sliding velocity, however, increase the friction force. 

An important factor controlling the friction coefficient in the sliding phase, sμ , is the sliding 
velocity.  
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Velocity-dependent friction coefficient is defined as [Constantinou et al., 1990]: 

max max min( ) u
s f f f e βμ −= − − &

 (4.6) 

( )f sF W sign uμ= &  (4.7) 

in which fmax and fmin are friction coefficients at high and low sliding velocities, respectively. 
β  is a constant depending on the bearing pressure and condition of the rubbing surfaces. u&  is 
the sliding velocity. This model is referred to as the modified Coulomb model. 

 
4.4 17BViscoplasticity model 

There are certain complications by applying the modified Coulomb model. For systems with 
multiple sliding bearings, as in bridges, in which Teflon bearings are placed on top of flexible 
piers, it is required to apply multiple stick-slip criteria. This makes the model too 
complicated. 

Based on theories of viscoplasticity and random vibration, the modified viscoplasticity model 
has been developed [Wen, 1976], [Park et al., 1986], and [Constantinou et al., 1990]: 

2 0Y Z u Z Z u Z uγ β+ + − =& && & &  (4.8) 

f sF W Zμ=  (4.9) 

in which u&  stands for the sliding velocity, and Z, as a hysteretic dimensionless quantity, 
stands for the signum function (Equation 4.1). Y represents the yield displacement, which is in 
a range of 0.13-0.5 mm. β  and γ  are model parameters [Constantinou and Adnan, 1987]: 

1β γ+ =  (4.10) 
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Figure 4.5   Friction force according to the viscoplasticity model in a cycle of loading and unloading, assuming 

constant sliding velocity. 

During sticking phases the absolute value of Z is less than unity and when the set slides, Z 
takes values of 1± , depending on the direction of sliding. This model produces a very small 
elastic displacement, Y, which is consistent with the primary elastic shear deformation of 
Teflon reported in experimental studies (Figure 4.5). 
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To account the breakaway friction in the current formulation, sμ  in equation 4.6 is modified 
for very low sliding velocities as: 

min .999s b f for Zμ = ≤  (4.11) 

in which b is a constant larger than unity taken from experimental studies (Figure 4.6). 

Displacement

Friction force

Breakaway friction force

Sliding friction force

 
Figure 4.6   Breakaway friction coefficient in viscoplasticity model, assuming constant sliding velocity. 

4.5 18BFrictional properties of Teflon 

According to studies on frictional properties of Teflon bearings, the sliding velocity is an 
important factor controlling the friction coefficient of such bearings. High sliding velocities 
produce larger friction coefficients. The trend levels off from certain sliding velocities (Figure 
4.7). 

It has been observed that the sliding acceleration does not have a great effect on the friction 
coefficient. However, the friction coefficient decreases as the bearing pressure increases 
(Figure 4.7). At a certain pressure level, this tendency vanishes. 

The friction coefficient in the direction perpendicular to the direction of polishing has been 
reported to be 15%-30% higher than the one in the polishing direction [Mokha et al., 1993]. 

The friction coefficient of unfilled Teflon layers is reported to be lower than the one of layers 
filled with glass fibers. 

As stated before the friction coefficient at the initiation of sliding, the breakaway coefficient, 
is substantially larger than the sliding one. This effect has been reported only for the first run 
of loading and the difference for pre-strained specimens is not that large. According to an 
experiment by [Mokha et al., 1991] it has been shown that a long period load dwelling has no 
considerable effect on the breakaway and sliding friction coefficients. In contrast to that, both 
these two parameters are highly sensitive to contaminations. Therefore, isolation modules 
must be maintained in a closed environment, to prevent dust and water from gathering in the 
bearing’s module. 
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Figure 4.7   Variation of sliding friction coefficient with velocity and pressure of Teflon against polished 

stainless steel plate [Soong and Constantinou, 1994]. 
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Chapter 5 

Concept of Base Isolation 

Ductile design concept assumes that part of the seismic input energy of an earthquake 
will be absorbed by the formation of plastic hinges (damage) in predefined locations. 
In isolated systems, however, the induced forces are reduced (and in some cases 
dissipated). As a result of a period shift by isolation it is possible to reduce 
considerably the forces transmitted to the structure. In addition, higher damping 
ratios help to some extent to increase the efficiency of the isolation method. In this 
chapter, the response spectrum analysis is briefly discussed and then the period shift 
effect is introduced. A simple two-degree-of-freedom system is applied to show how 
isolation leads to smaller transmitted seismic forces in the structure. Finally, some 
limitations of this strategy are discussed. 
 

5.1 19BPhilosophy of isolation 

The seismic energy transmitted to a structure during an earthquake can be decomposed as 
[Chen, 1999]: 

IE KE DE SE= + +  (5.1) 

where IE is the input seismic energy, KE the kinetic energy, DE the dissipated energy, and SE 
the strain energy. By ductile designing of structures, it is possible to form a finite number of 
plastic hinges in the system in the case of extreme lateral loading without endangering the 
general stability of the structure. This is the so-called ductility concept for traditional fixed-
base structures. 

To get an insight into the role of isolation in the seismic protection of structures a single-
degree-of-freedom system (SDOF) has been applied. Hence, the structural behaviour is 
assumed to be rigid. As will be shown later on, this is a reasonable assumption for isolated 
structures. 

The differential equation governing the behaviour of such a set under seismic excitations is: 

gmu cu ku mu+ + = −&& & &&  (5.2) 

where m, c, and k are mass, damping, and stiffness of the system, respectively. u is the 
relative displacement of the degree of freedom. gu&&  is the ground acceleration. Defining 
natural and damped frequencies of vibration as: 

k
m

ω =  (5.3) 

21dω ω ξ= −  (5.4) 
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where 

2
c
m

ξ
ω

=  (5.5) 

The response of such a SDOF system to an arbitrary earthquake excitation, gu&& , can be 
expressed by Duhamel’s integral as: 

[ ]( )

0

1( ) ( ) sin ( )
t t

g d
d

u t u e t dξω ττ ω τ τ
ω

− −= − −∫ &&  (5.6) 

Applying the Duhamel’s integral over a wide range of structural periods and damping ratios, 
the response spectrum can be constructed (Figure 5.1 and Section 7.1.5). It plots the 
maximum structural response over the structural period. Depending on the type of response 
acceleration, velocity, and displacement spectra can be generated. For example for a harmonic 
excitation the pseudo-acceleration response spectrum is computed by two times 
differentiation of equation 5.6, which is: 

2( ) ( )a t u tω=  (5.7) 

that is used to compute the base shear. 
 

(a) 

 
(b) 

 
(c) 

 
Figure 5.1   (a) El Centro accelerogram, (b) displacement, and (c) acceleration response spectrum.
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The response spectrum of a single earthquake cannot be a good representative design criterion 
for a specified region, as there are numerous factors influencing the structural response. By 
considering several earthquakes belonging to different local faults in the region and doing 
probabilistic studies over possible maximum ground accelerations and returning periods of 
each of them, it is possible to construct a norm response spectrum, which is a safe envelope 
covering all possible earthquakes (Figure 5.2). The values for TB, TC, and TD, are site-
dependent and can be taken for standard cases from engineering codes, e.g. in Europe from 
Eurocode 8. 

Period

Acceleration

A

B C

D

a

ag

max

T TB C TD  
Figure 5.2   Norm response spectrum. 

If the structural natural period of vibration is shifted to a higher range with some kind of 
softer structural design, for instance with a base isolation method, it is possible to design the 
structure for a lower range of seismic forces. Figures 5.3 demonstrates that the period shift 
reduces the original acceleration of a1 to the smaller value a2. 

Period

Acceleration

1

2
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2
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Figure 5.3   The effect of period shifting in the reducing of seismic loads. 

Besides, by increasing the damping ratio in a structure it is possible to reduce the seismic 
forces transmitted to the structure (Figure 5.4). It should be taken into consideration that this 
effect is restricted and it does not always work. This will be discussed later on. 

An appropriate structural period of vibration for isolated structures is in the range of 1.2 to 2.0 
seconds. This range is far from the dominant period of vibration of most devastating 
earthquakes. Isolated structures are susceptible to resonance in case of near field earthquakes 
or against seismic waves, which have traveled a long distance in soft soil layers. Soft soil 
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layers function the same as a filter medium, producing long period waves, as in the 1985 
Mexico City earthquake. Long period waves are dangerous for isolated systems with large 
period of vibration. They can produce large displacements because of resonance. Therefore a 
local inappropriate soil layer must be excavated. If sedimentary layers are thick, an extra 
damping mechanism, among other techniques, can prevent the resonance phenomenon. 

Period
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ξ = 2%
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Figure 5.4   The response spectrum regarding structural damping. 

5.2 20BTheory of seismic isolation 

To get a better understanding of the concept of base isolation a more detailed model rather 
than the one used in the previous section is needed, in which the structure and the isolation 
bearings are simulated separately (Figure 5.5). 
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u
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Figure 5.5   A two-degree-of-freedom isolated system and its simplified physical model. 

The differential equations governing such a set are [Mostaghel and Khodaverdian, 1988], 
[Kelly, 1996], and [Jamali and Zahlten, 2006]: 

( ) ( ) 0

( ) 0
s s b g b b g b b b b

s s b g s s s s

m u u u m u u c u k u

m u u u c u k u

+ + + + + + =⎧⎪
⎨ + + + + =⎪⎩

&& && && && && &

&& && && &
 (5.8) 

where the indices s, b, and g stand for structure, base, and ground, respectively. m, c, and k 
are the mass, damping, and stiffness of the degrees of freedom. u , u& , and u&& , displacement, 
velocity, and acceleration of the degrees of freedom, correspondingly, are all written in a 
relative coordinate system (Figure 5.5). Rearranging the equations and rewriting them in a 
matrix form: 

gMu +Cu + Ku = - Mru&& & &&  (5.9) 
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in which 

0 0 1
, , , ,

0 0 0
b s b s b b

s s s s s

u m m m c k
u m m c k

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
u M C K r  (5.10) 

Defining the mass and frequency ratios as: 

s

b s

m
m m

γ =
+

 (5.11) 

2( )b

s

ωε
ω

=  (5.12) 

in which bω  and sω  are isolation and structural circular frequencies: 

b
b

b s

k
m m

ω =
+

 (5.13) 

s
s

s

k
m

ω =  (5.14) 

In this model the structural and base masses are both considered to be in the same order. The 
structure, however, is much stiffer than the isolators. These are formulated as: 

0(10 )γ = Ο  (5.15) 

2(10 )ε −= Ο  (5.16) 

For further discussion the eigenvalue problem is solved [Chopra, 2001]: 
2[ ]n nω− =K M Φ 0  (5.17) 

where nω  and nΦ  are the eigenvalue and eigenvector of an arbitrary mode. The characteristic 
equation as a function of nω  is: 

4 2 2 2 2 2(1 ) ( ) 0n b s n b sγ ω ω ω ω ω ω− − + + =  (5.18) 

Circular frequencies of the first and second modes are: 
1

2 2 2 2 2 2 2 2 2
1

1 ( ) 4(1 )
2(1 ) b s b s b sω ω ω ω ω γ ω ω

γ
⎧ ⎫

⎡ ⎤= + − + − −⎨ ⎬⎣ ⎦− ⎩ ⎭
 (5.19) 
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1 ( ) 4(1 )

2(1 ) b s b s b sω ω ω ω ω γ ω ω
γ

⎧ ⎫
⎡ ⎤= + + + − −⎨ ⎬⎣ ⎦− ⎩ ⎭

 (5.20) 

Considering only terms with higher order, mode frequencies are: 

1 1bω ω γε≈ −  (5.21) 

2
1
1s

γεω ω
γ

+
≈

−
 (5.22) 

Eigenvectors corresponding to these eigenvalues are (Figure 5.6): 
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 (5.23) 
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Figure 5.6   Modal shapes of vibration. 

It should be noted that eigenvectors are given in the relative coordinate system, as the 
differential equations were also defined in a relative coordinate system. 

The relative displacement of the second degree of freedom in the first mode is negligible in 
comparison to the relative displacement of the first degree of freedom in this mode, i.e. there 
is almost a rigid behaviour in the structure. This mode is the favourable excitation mode, 
explaining the efficiency of the base isolation method. In contrast to the first mode, the 
response of the second mode is unfavourable, as the relative displacement of the second 
degree of freedom is much larger than that of the first degree of freedom and in the opposite 
direction. 

Although the second mode is unfavourable, it does not lead to an inefficiency of the base 
isolation method. To prove it, the modal participation factor is firstly defined as: 

T

T

Φ MrΓ=
Φ MΦ

 (5.24) 

Using the approximate values of the eigenvectors the participation factors of the first and 
second modes of vibration are: 

1 1 γ εΓ = −  (5.25) 

2 γ εΓ =  (5.26) 

As long as γ  and ε  have the orders assumed in this section, the participation factor of the 
second mode is considerably smaller than the first one. Therefore, the response of such a 
system is mainly governed by its first mode of vibration. 
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As far as the structural and isolation natural frequencies of vibration, ωs and ωb, respectively, 
are well separated, i.e. a very stiff structure with a very flexible isolation layer, the 
argumentation above is valid. Otherwise the frequency ratio, ε , would not be that small, 
which means a higher participation factor of the unfavourable second mode. This explains 
why a single-degree-of-freedom model gives a relatively good approximation of the general 
response of an isolated structure to seismic excitations. 
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Chapter 6 

Friction Pendulum Systems (FPS) 

In friction pendulum isolation systems, structures are decoupled from their foundation 
through special sliding bearings. Because of the concavity of base plates in friction 
pendulum bearings, a restoring force is produced in the system that constrains the 
permanent sliding displacement after severe shakings. The FPS has the same 
frequency of vibration as a simple pendulum, which depends only on its radius of 
curvature and the gravitational acceleration g. Several possible configurations of the 
friction pendulum bearing are firstly demonstrated in this chapter. Then the restoring 
mechanism and forces in such a system are introduced. After introduction of the stick-
slip criterion, equivalent damping and stiffness in such systems are derived. 
 

6.1 21BIntroduction 

Friction Pendulum Systems (FPS), were first devised by [Zayas et al., 1987], in which 
isolation, dissipation, and restoring mechanisms are all integrated in one unit. Several 
numerical and experimental studies have been done in the last two decades on these systems, 
among them [Al Hussaini et al., 1994] and [Tsai et al., 2005] on small deformations, 
[Almazan and Llera, 1998 and 2002] on large deformations and P − Δ  effect, [Roussis and 
Constantinou, 2006] on the uplift prevention, [Mokha et al., 1990], [Al Hussaini et al., 1994], 
and [Tsai et al., 2003] on full scale tests on the shaking table. 

So far friction pendulum systems have been used mainly to retrofit and upgrade historical 
buildings seismically, as in US Court of Appeals [Mokha et al., 1996], and Oakland, San 
Francisco, and Los Angeles city halls [Naeim and Kelly, 1999]. Some other great projects as 
the San Francisco airport international terminal and huge LNG tanks in Greece and Turkey 
are among other seismically isolated structures with FPS. 

 
6.2 22BGeneralities 

A friction pendulum bearing is composed of three main parts: a lower concave plate fixed to 
the foundation of the structure, an upper pedestal fixed to its top column, and an articulated 
slider in between (Figure 6.1). The slider is coated with a special Teflon layer (sometimes 
with other materials such as Techmet-B) to generate a low friction coefficient in the range of 
0.05-0.10. 
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Figure 6.1   A schematic view of a downward friction pendulum isolator. 

A bearing element can be installed either downwardly, as in figure 6.1, or upwardly (Figure 
6.2). The direction of installation of an element makes no significant difference on the seismic 
response of the structure. However, in case of large deformations, extra bending moments 
produced because of P − Δ  effects, will be distributed differently in the super- and sub-
structures [Almazan and Llera, 2003]. 
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Column

 
Figure 6.2   A schematic view of an upward friction pendulum isolator. 

Where a high sliding displacement capacity is required, as in large-spanned bridges, two-
sided isolation bearings are used (Figure 6.3). These bearing have the same features as those 
stated before. Because of the double curvature of sliding plates, the sliding displacement 
capacity of the bearing is doubled. 

The general geometry of the FPS is the same as a simple pendulum. Hence, they both have 
the same oscillation frequency. For small deformations, the circular frequency is 
approximated as: 

g
R

ω =  (6.1) 

in which g is the gravitational acceleration (9.81 m/s2) and R the radius of curvature of the 
sliding surface. For large deformations the period is: 

2 ˆ12 1 sin ( )
4 2

RT
g

ϕπ ⎡ ⎤= + +⎢ ⎥⎣ ⎦
K  (6.2) 

where ϕ̂  is the maximum oscillation angle (Figure 6.4). For practical cases, where ϕ̂  is 
relatively small, equation 6.1 has the required accuracy. 
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Figure 6.3   A schematic view of a two-sided friction pendulum isolator. 
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Figure 6.4   Simplified geometrical configuration of FPS. 

As a bearing slides on its lower (upper) concave surface the structure rises up. The resulted 
vertical displacement of the structure is (Figure 6.4): 

2 2Z R R u= − −  (6.3) 

In comparison to the horizontal displacement, the vertical displacement is negligible. For 
example the maximum vertical displacement of an isolator with a radius of curvature of 2 
meters and a maximum horizontal displacement of 25 centimetres is about 1.6 centimetres 
(about 6.5% of the horizontal displacement). 

Forces acting on an FPS bearing are frictional and gravitational forces (Figure 6.5). Assuming 
that the isolator is sliding to the right-hand side, for small oscillation angles regarding the 
equation of equilibrium: 

f
WF F u
R

= +  (6.4) 

in which W is the vertical load over the bearing, Ff  the friction force, and F the resultant force 
in the slider. In the abovementioned formulation, the vertical displacement of the slider is 
supposed to be small in comparison to its horizontal displacement. The second term is the so-
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called restoring (recentering) force, produced because of the concavity of the sliding plate 
(Equation 6.4). For a bearing sliding on a flat surface this term vanishes. For two-sided 
bearings the sum of both radii of curvature must be applied as the radius of curvature (Figure 
6.3). 
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Figure 6.5   Forces acting on the articulated slider (not scaled). 

Regarding the definition of stiffness of a degree of freedom, i.e. the force required to produce 
one unit of displacement in that degree of freedom, the ratio of the weight of the structure to 
the radius of curvature of the sliding surface ( /W R ) can be defined as equivalent stiffness of 
the isolation element (geometrical stiffness). 

 
6.3 23BDifferential equation governing FPS 

The simplest model simulating a friction pendulum system is a one-degree-of-freedom 
system, in which the structural response is assumed to be rigid. The differential equation 
governing such a set is: 

f g
Wmu u F mu
R

+ = − −&& &&  (6.5) 

where u  and u&&  are the relative displacement and acceleration of the degree of freedom, 
respectively. W and m are weight and mass of the set. Ff  stands for the friction force. gu&&  is 
the ground acceleration (Figures 6.6 and 6.7). 
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Figure 6.6   Simplified physical model of an isolated set assuming a rigid structural response (not scaled). 
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6.4 24BStick-slip Criterion 

A prominent factor controlling the numerical accuracy of simulation of such an isolated 
system is the accurate prediction of phase changes between sticking and sliding. As long as 
the static friction force has not been overcome, the slider remains sticking. When the resultant 
force overcomes the static friction force (or the breakaway friction force in the viscoplasticity 
model) the bearing begins sliding. Therefore, it is of great importance to find the exact time of 
phase changes. 

For a single-degree-of-freedom system the stick-slip criterion is formulated as: 
?

g f
Wmu u F
R

+ ≥&&  (6.6) 

After sliding initiation, the stick-slip criterion is not checked anymore until the sliding 
velocity vanishes. At this moment if the resultant force in the slider overcomes the static 
friction force, the slider sticks just for a moment and will slide in the opposite direction, i.e. a 
change in the direction of sliding. Otherwise the mass sticks where it is. 
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Figure 6.7   Forces acting on an FPS bearing in different configurations. 
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6.5 25BEquivalent damping and stiffness 

A rough estimate of stiffness and damping of an isolation mechanism is essential for the 
preliminary steps of the design process. Equivalent damping and stiffness approximated in 
this way are used to calculate main design factors as base shear and maximum sliding 
displacement to choose an appropriate isolation bearing. There are numerous methods to 
estimate equivalent features of such systems [Beucke and Kelly, 1985] and [Petersen, 1996 
and 2005]. 

In friction pendulum systems the resultant force in the isolator is composed of two terms: the 
friction force, which is a constant term in case of the Coulomb friction model, and the 
restoring force (FR), because of the geometrical stiffness (Equation 6.5 and Figure 6.8). 
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Figure 6.8   Friction, restoring and resultant forces in the isolator in a cycle of loading and unloading. 

The energy dissipated by the friction force under periodic forced-displacement with a loading 
frequency Ω : 

ˆ sin( )u u t= Ω  (6.7) 

applied to a friction pendulum system is: 

ˆ4d fW F u=  (6.8) 

in which û  is the maximum displacement and Wd is the surface under the diagram of friction 
force versus displacement in a full cycle of loading and unloading (Figure 6.8). 

Defining an equivalent linear stiffness for such a system as: 

.

ˆ
ˆ ˆeq
F W WK
u R u

μ
= = +  (6.9) 
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in which F̂  is the maximum resultant force acting on the slider, which occurs at the 
maximum sliding displacement. The work done by such an artificial spring is: 

1 1ˆ ˆ ˆ ˆ( )
2 2k

WW Fu u W u
R

μ= = +  (6.10) 

It should be taken into consideration that by increasing the maximum sliding displacement, 
the equivalent stiffness decreases, which is considered a drawback for such systems. 

If the system is assumed to be in resonance, the equivalent damping is then given by: 

.
1 2

ˆ4
d

eq
k

W
uW
R

μξ
π π μ

= =
+

 (6.11) 

in which μ  is the friction coefficient, û  the maximum displacement, and R the radius of 
curvature of the sliding bearing. 

Similar to the equivalent stiffness, the equivalent damping decreases as the maximum sliding 
displacement increases. 
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Chapter 7 

Numerical Simulation of Dynamic Response 
of FPS 

A numerical simulation of the structural response of friction based-isolated systems to 
earthquake motions is a time consuming task with existing numerical models. There 
are several numerical methods to simulate the structural response, namely time 
stepping methods, modal analysis, response spectrum analysis, frequency domain 
analysis, and time domain analysis. In this chapter some of them are briefly reviewed. 
Then a numerical model combined of the constant average acceleration method (time 
stepping) and modal analysis is developed and applied to simulate the behavior of one 
degree-of-freedom systems isolated with friction pendulum bearings under earthquake 
motions. Afterwards, the model is generalized to simulate two and many degree-of-
freedom systems as well. The method is based on the activation of an extra element to 
simulate a sliding bearing as soon as the sliding is initiated in the set. Finally, some 
considerations about damping are discussed. 
 

7.1 26BNumerical methods 

Considering all forces acting on a body, the dynamic response of a system can be modelled 
by: 

( )tot rel rel t+ + =Mu Cu Ku P&& &  (7.1) 

in which M, C, and K are the mass, damping, and stiffness matrices, respectively. u , u& , and 
u&&  are the displacement, velocity, and acceleration vectors, respectively. P(t) is the load vector 
acting on the set in the time domain. For damping and stiffness forces, 2nd and 3rd terms of the 
equation, relative variables (values) are required. To compute inertial forces, however, the 
absolute acceleration, in case of earthquake loading the sum of the ground acceleration and 
the relative acceleration of the degree of freedom, must be used. For earthquake excitations 
there is no explicit form of loading. A part of the inertial force because of the ground 
acceleration takes this role: 

urel rel rel g+ + = −Mu Cu Ku M&& & &&  (7.2) 

All variables used in this chapter are considered relative, here with subscript rel, unless it is 
explicitly stated that they are total (absolute) values, here with subscripts tot. 

There are several numerical methods to solve such a differential equation [Meskouris, 1999]. 
In the coming sections some of them will be briefly reviewed. 
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7.1.1 41BTime stepping methods 
The step-by-step procedure is a general approach to dynamic response analysis and is mainly 
used for nonlinear systems. Considering the differential equation governing the dynamic 
response of a system (Equation 7.1) subjected to initial conditions: 

0 (0)u u=  (7.3) 

0 (0)u u=& &  (7.4) 

the response of the system is determined in an arbitrary time step ti relying on its previous 
time steps’ results. Accuracy, efficiency, stability, and the rate of convergency are main 
factors, considered to compare different algorithms. Algorithms are divided into two main 
groups of explicit and implicit types, in which in explicit methods just the results of the 
previous known time steps are required. In implicit methods, however, unknown parameters 
of the current time step are also needed to compute the unknown variables. Euler-Cauchy, 
Runge-Kutta, and central difference method are some examples of explicit methods. Park, 
Newmark, and Wilson-Θ methods are classified among implicit algorithms [Petersen, 1996], 
[Clough and Penzien, 1993], and [Chopra, 2001]. 

In this study Constant Average Acceleration (CAA) method has been used to solve 
numerically the differential equation (Equation 7.1). The method is unconditionally stable and 
it is a self-starting method. In this method it is assumed that the acceleration remains constant 
in every time step: 

11( ) ( )
2

i iu u uτ −= +&& && &&  (7.5) 

in which i stands for the current time step and i-1 for the last one, which is already known 
(Figure 7.1). 
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Figure 7.1   Constant average acceleration method. 

To compute the unknown displacement, iu , equation 7.5 must be integrated. Rewriting 
acceleration and velocity in term of iu , and replacing them in equation 7.1 leads to the 
following system of algebraic equations: 
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i
eff. effK u = P  (7.6) 

in which 

2

4 2
eff t t

= + +
Δ Δ

K K M C  (7.7) 

1 1 1
2

4 2 4( ) ( ) ( ) ( )i i i
eff t t

t t t
− − −= + + + + +

Δ Δ Δ
P P M C u M C u Mu& &&  (7.8) 

Based on the computed displacement at the end of a time step, velocity and acceleration are 
computed as: 

1 1
2 ( )i ii i

t
− −= − −

Δ
u u u u& &  (7.9) 

1 1 1
2

4 4( )i i ii i

t t
− − −= − − −

Δ Δ
u u u u u&& & &&  (7.10) 

7.1.2 42BModal analysis 

For linear-elastic systems with many degrees of freedom (MDOF) it is inefficient, even 
sometimes not feasible, to solve the coupled set of differential equations of motion. In an 
alternative process, the system of equations can be transformed to another space so that the 
coupled set of equations can be decomposed into a set of uncoupled equations, i.e. several 
single-degree-of-freedom systems (SDOF), which can be solved much more easily. To this 
end, an eigenvalue problem must be solved to compute eigenvectors and eigenvalues of the 
system, which are used to transform the set of equations (Equation 7.1) into modal space 
(Equation 7.11).  

( )n n n n n n nm c k p tη η η+ + =%&& &% % %  (7.11) 

( ) ( ) , ,T T T
n n n n n n n np t t m k= = =Φ P Φ M Φ Φ K Φ%% %  (7.12) 

nmod

j = 1
j jη= ∑u Φ  (7.13) 

nm% , nc% , and nk%  are the modal mass, damping, and stiffness matrices of an arbitrary mode, 
respectively. Sub-index n denotes the mode number and Φ  is the eigenvector. 

As the equations are decoupled in modal space, as a result of the orthogonality of modes, just 
the modes, which have the largest participation factors, are considered [Clough and Penzien, 
1993] and [Chopra, 2001]. This leads to a drastic decrease of the numerical cost of the 
simulation. 

7.1.3 43BTime domain analysis 
Through Duhamel’s integral, it is possible to simulate the response of a linear elastic system 
to an impulse. An arbitrary loading can be modelled as successive impulses over a range of 
time, each producing its own response over the time domain (Figure 7.2). Summing all these 
responses over the time domain the overall response of the set is [Clough and Penzien, 1993]: 

0

1( ) ( ) sin ( ) 0
t

h t p t d t
m

τ ω τ τ
ω

= − ≥∫  (7.14) 
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where m  and ω  are the equivalent mass and frequency of an SDOF, respectively. p  is the 
load function in the time domain. With a slight modification the same process may be applied 
to damped systems. 

Normally it is not possible to compute equation 7.14 analytically. However, there are several 
efficient numerical algorithms to compute it, as for instance simple summation, trapezoidal 
rule, and the Simpson’s rule. 

 

t

P(t)

 
Figure 7.2 Decomposition of an arbitrary loading into several impulses. 

7.1.4 44BFrequency domain analysis 
For systems with frequency dependent parameters, as stiffness and damping of large bridges 
under wind load, it is more convenient to perform the analysis in the frequency domain 
instead of in the time domain. To this end the variables are first transformed into the 
frequency domain through Fourier (Equations 7.15) or Laplace transformation (Equation 
7.16). After the analysis being done the results are transformed back again into the time 
domain. As there is normally no analytical solution for these transformations, several 
numerical methods have been developed to compute them, as Discrete Fourier 
Transformation (DFT) and Fast Fourier Transformation (FFT) methods. Because of a very 
high numerical cost of the frequency domain analysis, it is not normally applied for the 
earthquake analysis. 

1( ) ( )
2

j tF f t e dtωω
π

+∞ −

−∞
= ∫  (7.15) 

0
( ) ( ) stF s f t e dt

∞ −= ∫  (7.16) 

7.1.5 45BResponse spectrum analysis 
Regarding time domain analysis with Duhamel’s integral, the displacement produced in a 
system can be computed (Equation 5.6). For systems with low damping ratio, less than 10% 
of the critical damping, and neglecting the minus sign in the equation, as just the maximum 
response is desired not its direction, one may write: 

[ ]( )

0

1( ) ( ) sin ( )
t t

gu t u e t dξω ττ ω τ τ
ω

− −= − −∫ &&  (7.17) 
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Figure 7.3   An arbitrary SDOF system under ground excitations. 

By differentiating equation 7.17 the velocity and acceleration of the-degree-of-freedom can be 
computed. Maximum values of the response given by equation 7.17 and its derivatives are 
called spectral relative displacement (Sd), velocity (Sv), and acceleration (Sa). Taking only 
terms of higher order, the so-called pseudo-velocity spectral response and acceleration 
response are then formulated in term of spectral displacement response as: 

[ ]( )
max0

( , ) [ ( ) cos ( ) ]
t t

pv g dS u e t d Sξω τξ ω τ ω τ τ ω− −≈ − ≈∫ &&  (7.18) 

2( , )pa pv dS S Sξ ω ω ω≈ ≈  (7.19) 

The spectral relative acceleration is particularly significant in the structural analysis, as it is a 
measure for the maximum base shear: 

2
max d d aF K S m S m Sω= = =  (7.20) 

where m is the total mass of the structure. 

Spectral values can be computed in this way for a specific earthquake loading, discrete values 
of damping ratio, and structural natural frequency (Figure 5.1). Such plots of spectral values 
are called response spectrum, which are used by engineers to design structures. 

It is much more convenient to plot all these four spectrums in a logarithmic scale, as in this 
way they can be demonstrated all in a four-way log plot, in which the natural frequency (or 
period) is taken as the abscissa and pseudo-velocity spectral values (Spv) as the ordinate. There 
are two extra axes: the spectral displacement and the spectral pseudo-acceleration, which 
make angles of 45± o  to the original axes (Figure 7.4): 

log log logd pvS S ω= −  (7.21) 

log log logpa pvS S ω= +  (7.22) 
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Figure 7.4   Four-way log response spectrum for the N-S component of Tolmezzo earthquake [Wenk, 1992]. 

Structures are simulated with several degrees of freedom. To use the same process the system 
must be decomposed first to several SDOF systems. A response spectrum analysis will then 
be done for the number of modes, which are considered. Finally, the results are combined to 
get the whole response of the original system. Complete Quadratic Combination (CQC) and 
Square Root of Sum of Square (SRSS) methods are main techniques used to get the results. 

As just the maximum value of the response during an analysis for a specific system is 
considered in the response spectrum analysis, this method does not deliver any information 
about details of the response during excitations. The second drawback of this method, the 
same as the modal analysis, is that because of the application of the superposition method it 
can be only applied to linear systems. There are some experimental corrections for the 
response spectrum method, so that it can be used for nonlinear systems as well. 

 
7.2 27BFinite element analysis of FPS 

The differential equation governing an FPS isolated structure is [Almazan and Llera, 2002 
and 2003]: 

W= −Mq + Cq + Kq + Q ML W&& &  (7.23) 

where q is the vector of the system degrees of freedom. M, C, and K are mass, damping, and 
stiffness matrices, respectively. W is the 3-D excitation input vector, LW the input influence 
matrix, and Q the vector of non-linear restoring force generated by isolators with respect to 
the degree-of-freedom q of the structure. To keep track of the axial force in bearings a gap 
element has been incorporated in the set (Figure 7.5). The sliding displacement of the isolator 
is: 

______ T

k k k xk yk zkO S δ δ δ⎡ ⎤= = ⎣ ⎦δ  (7.24) 

By imposing the kinetic constraint, i.e. spherical surface of the isolator, the three components 
of the deformation kδ  and its velocity kδ&  are implicitly expressed in terms of each other as: 
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2 2 2 2( )xk yk zk k kR Rδ δ δ+ + − =  (7.25) 

( ) 0xk xk yk yk zk zk kRδ δ δ δ δ δ+ + − =& & &  (7.26) 

where Rk is the radius of curvature of the spherical surface of the kth isolator. 
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Figure 7.5   Friction pendulum element in downward position [Almazan and Llera, 2003]. 

The element demonstrated in figure 7.5 has 2 nodes, I and J, and 12 degrees of freedom, 
which are linearly related to the global degrees-of-freedom (q): 

;J I
k k k k⎡ ⎤= =⎣ ⎦u u u P q  (7.27) 

where Pk is the nodal kinetic transformation matrix of the kth isolator. J
ku  and I

ku  are nodal 
deformation vectors of the lower and upper element nodes. 

Assuming small node rotations, it is possible to relate deformation and velocity in the isolator, 
kδ  and kδ& , with nodal deformations, ku as: 

( )k k k=δ S u u  (7.28) 

ˆ ( )k k k=δ S u u& &  (7.29) 

in which 

1 0 0 0 0 1 0 0 0

( ) 0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0

j z I y

k j z I x

y x

l u l u

l u l u

u u

⎡ ⎤− − Δ + Δ
⎢ ⎥

= − − Δ + − Δ⎢ ⎥
⎢ ⎥− Δ Δ⎣ ⎦

S u  (7.30) 

1 0 0 1 0 ( )
ˆ ( ) 1 0 0 1 0

1 0 0 0 1 0

I I I I
z y j z y z I y

I I I I
k z x j z x z I x

I I I I
y x y x y x

r r l r r u l u

r r l r r u l u

r r r r u u

⎡ ⎤− − − − − Δ + Δ
⎢ ⎥

= − − − Δ + − Δ⎢ ⎥
⎢ ⎥

− − − − Δ Δ⎢ ⎥⎣ ⎦

S u  (7.31) 

where J I
i i iu u uΔ = −  for , , ,i x y z=  and lJ and lI are vertical distances between nodes J and I 

and the origin Ok in the original configuration of the FPS, correspondingly (Figure 7.5). 
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In the next step the non-linear restoring force vector Q must be determined. The restoring 
force in an isolator of this type is composed of the two main terms of the pendular effect, fp, 
and the frictional part, fμ: 

ˆ ˆ
ˆ ˆ( )

k k k k k k kk

k k k k k k k

N N
N N

η μ
η μ

= +
= + =

f n s
n s r

 (7.32) 

where Nk is the magnitude of the normal force. ˆ kn  and ˆks  are unit vectors in the outward 
normal direction and tangential to the trajectory of the isolator, respectively. kμ  is the friction 
coefficient. kη  is a positive non-dimensional variable with value one during sliding phases 
and less than one during sticking phases [Wen, 1976] and [Park, 1986].  

In sticking phases, it is not possible to determine the magnitude and direction of the friction 
force, as regarding equation 7.32, the sliding velocity vanishes. To overcome this problem, 
instead of the Coulomb friction law an equivalent hysteretic model is applied (Section 4.4). 

To compute the restoring force in the global coordinate system, the restoring force computed 
in equation 7.32 is transformed as (Figure7.6): 

T
k k k=Q L f  (7.33) 

ˆ
k k k=L S P  (7.34) 

Finally adding restoring forces of all isolators in the system: 
T T

k k k
k k

= = =∑ ∑Q Q L f L F  (7.35) 

The integration of the equation of motion is performed in the state-space [Almazan and Llera, 
2003]. The numerical integration is performed using MATLAB© function ode15s, an implicit 
multi-step integration algorithm, which is applied mainly for stiff differential equations 
[MATLAB], [Shampione, 1994], and [Shabana, 2001]. 
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Figure 7.6   Forces acting on an FPS bearing (left) in local coordinates, (right) in global coordinates system 

[Almazan and Llera, 2003]. 
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7.3 28BPiecewise exact solution for 1-DOF systems 

One of the simplest time stepping methods for the analysis of 1-DOF systems is the piecewise 
exact method, which is based on the exact solution of the equation of motion for the response 
of a linear system to a loading, which varies linearly during a discrete time step [Clough and 
Penzien, 1993]. 

1-DOF models can nearly approximate the response of an isolated system (Section 5.2). This 
implies a rigid response of the structure. 

Assuming that the ground acceleration varies linearly during each time step (Figure 7.7), the 
differential equation governing such a set is: 

1
1

i i
g gi

f g

mu mu
mu cu ku F mu

t
τ

−
− −

+ + = − − −
Δ

&& &&
&& & &&  (7.36) 

where m, c, and k are mass, damping, and stiffness of the degree-of-freedom, respectively. Ff  
is the friction force, which can be considered constant or velocity- (pressure-) dependent. For 
the sake of simplicity the Coulomb friction law has been used. It does not restrict the 
generality of the discussion. u , u& , and u&&  are relative displacement, velocity, and acceleration 
of the mass with respect to the ground, correspondingly. 1i

gu −&&  and i
gu&& are the ground 

acceleration at the beginning and the end of the time step, respectively. tΔ  is the size of the 
time step. 

The transient and particular solutions of the aforementioned differential equation are [Tsai et 
al., 2005]: 

τξωτωτωτ neBAu ddc
−+= )sincos()(  (7.37) 

1
1 1

2 2

( )1 2( ) sign( ) ( )
i i
g gi i i

p g g g
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u u
u g u u u u

t t
ξτ μ τ

ω ω ω

−
− − −⎡ ⎤

= − − + − −⎢ ⎥Δ Δ⎣ ⎦

&& &&
& && && &&  (7.38) 

where nω  and dω  are the natural and damped frequencies of vibration, respectively. ξ  is the 
viscous damping ratio. A and B are calculated from initial conditions of the current time step 
as: 

1 1 1 1
2

1 2( 0) sign( ) ( )
n

i i i i i i
g g g

n

u u A u g u u u u
t

ξτ μ
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Differentiating equations 7.37 and 7.38, the relative velocity and acceleration are calculated 
as: 

1
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Figure 7.7   The ground acceleration in a discrete time step. 

 

Regarding equation 7.42, the relative sliding acceleration of a degree-of-freedom in a system 
with no extra damping source rather than friction, at the beginning of a time step is: 

2
0( 0) nu u Aτ ω= = = −&& &&  (7.43) 

Assuming no initial displacement in the system and applying equation 7.39, the relative 
acceleration can be rewritten as: 

1
0 sign( ) i

gu g u uμ −= − −&& & &&  (7.44) 

The inertial force due to ground motions is then computed as: 
1( )

sign( )

i
tot g

f

F mu m u u

mg u Fμ

−= = +

= − = −

&& && &&

&
 (7.45) 

This can be compared with the inertial force due to the ground excitations in a fixed-base 
system, i.e. gmgu&& . The lower the friction coefficient the lower is the force applied to the 
system. A very small friction coefficient, however, results in unacceptably large sliding 
displacements. Besides, the efficiency of the isolation method depends also on the maximum 
ground acceleration. The larger the maximum earthquake acceleration, is the more efficient an 
isolated system responds. 

An important factor controlling the response of an isolated system is the friction force. Forces 
acting on such a set and their possible combinations have already been discussed (Section 
6.3). As long as the resultant force acting on the mass is smaller than the static friction force, 
the mass remains sticking (Equation 6.7). In this case, the relative velocity and acceleration 
are both set to zero. As soon as the static friction force is overcome, this constraint is 
deactivated and the stick-slip criterion is not checked any more (Section 6.4 and Figure 7.8) 
[Jamali and Zahlten, 2006].  

 
7.4 29BTime step refining process 

The response of a sliding-based isolated system is composed of two distinct parts: sliding and 
sticking phases. The set responds completely different in these phases (Chapter 6). Therefore, 
it is very important to find precisely zero crossing points of the sliding velocity. There is no 
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analytical solution to find these points exactly, as the response of these systems is highly non-
linear, because of the nature of the friction force. To get good results, time steps must be in 
the order of 10-5-10-6 seconds. On the other hand, it is very time-consuming to perform the 
whole analysis with time steps in this order. To overcome this problem, a time step refining 
process has been developed, in which extremely short time steps are used only when a phase 
change, i.e. sticking or sliding initiation or a change in the direction of sliding, is close to 
happen. At the end of each time step it is checked first whether sticking or sliding has been 
initiated or not (through the stick-slip criterion). Secondly, it is controlled whether the 
direction of sliding has been changed or not. If one of them occurred, the time step is halved 
and the same process is repeated until the zero crossing point is found with the desired 
precision (Figure 7.9). This process has a fast rate, as for example for a time step in the order 
of 10-3 seconds in less then 10 iterations the desired point can be found with an accuracy of 
10-6 seconds. Afterwards, the previous time step is applied again [Jamali and Zahlten, 2006]. 

 
input parameters (m, c, k, μ , 

gu&& ) 

while time(i) ≤  max(time) 
     if phase_state == 'stick' 
          computation of friction_force (Equation of equilibrium) 
     else 
          computation of friction_force (Sections 4.2 – 4.4) 
     end 
     assignment of initial conditions (Equations 7.39 and 7.40) 
     solution of the differential equation (Equations 7.36-38 and 7.41-
42) 
     if phase_state == 'stick' 
          if resultant_force ≥  friction_force 
               phase_state = 'slide'; 
          else 
              velocity_rel = 0; 
              acceleration_rel = 0; 
         end 
     end 
     if (phase_state == 'slide')  &  (sign(velocity_rel(ti) * velocity_rel(ti-

1)) < 0) 
          velocity_rel(ti) = 0; 
          acceleration_rel(ti) = 0; 
          phase_state = 'stick'; 
     end 
     i = i + 1; 
     end 
end 

Figure 7.8   Pseudo-algorithm for piecewise exact solution of 1-DOF systems. 
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Figure 7.9   A schematic view of the time step refining process. 
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7.5 30BNumerical Simulation of 2-DOF isolated systems 

SDOF systems are appropriate to get the general features of the response of isolated sets. 
Especially for initial design phases, in which there is no detailed information of the structural 
system, they give a rough estimate of the structural response. It helps the designer to decide 
about other design aspects, as for example an additional damping mechanism; features of the 
isolation system, as maximum sliding displacement capacity, maximum permanent 
displacement after excitations, etc. 

For the next phases, a more detailed model is required. At least the isolation mechanism and 
the structure must be modelled separately to get some insight of their interaction effect. 

The simplest model fulfilling this goal is a 2-DOF model, in which the first degree of freedom 
resembles the isolation mechanism, here the friction pendulum bearing, and the second one 
stands for the structure. The response of such a system is governed by the following set of 
differential equations [Jamali et al., 2007]: 

( )gms cs ks u u m+ + = − +&& & && &&  (7.46) 

( ) ( ) g fM m u Cu Ku M m u F ms+ + + = − + − −&& & && &&  (7.47) 

where 

 

s : relative structural displacement (to the base) K: base stiffness 

s& : relative structural velocity (to the base) k: structural stiffness 

s&&: relative structural acceleration (to the base) C: base damping 

u : relative base displacement (to the ground) c: structural damping 

u& : relative base velocity (to the ground) M: base mass 

u&& : relative base acceleration (to the ground) m: structural masses 

fF : friction force α : mass ratio [m/(M+m)] 

gu

gu u s

 
Figure 7.10   2-DOF system configuration [Jamali et al., 2007]. 

The base stiffness is calculated according to the geometrical stiffness of the FPS bearing 
(Section 6.2). Base and structural displacement, velocity, and acceleration are all defined in a 
relative coordinate system (Figure 7.10). 
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Defining Ω  and ζ , the natural frequency and damping ratio of the FPS bearing, respectively, 
as: 

K
M m

Ω =
+

 (7.48) 

2 C
M m

ζ Ω =
+

 (7.49) 

Equation 7.47 can be written as: 
22 /( )f gu u u F M m u sζ α+ Ω + Ω = − + − −&& & && &&  (7.50) 

The structural natural frequency and damping ratio are defined as: 

k
m

ω =  (7.51) 

2 c
m

ξω =  (7.52) 

Regarding equations 7.51 and 7.52 the differential equation governing the structural response 
is rewritten as (Equation 7.46): 

22 ( )gs s s u uξω ω+ + = − +&& & && &&  (7.53) 

Equations 7.50 and 7.53 govern the response of a 2-DOF system isolated with FPS bearings 
in a sliding phase (Figure 7.10). In sticking phases, equation 7.50 vanishes and the system 
turns into a 1-DOF set. 

It has been assumed that the ground acceleration is changing linearly during every time step. 
This is a logical assumption, as time steps are very short, in the order of 10-2-10-3 seconds 
during analysis and 10-5-10-6 when a phase change is to happen. The ground acceleration 
during a time increment is (Figure 7.7): 
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 (7.54) 

where indices b and e stand for the beginning and end of a time step, respectively. The same 
assumption are used for the relative structural acceleration: 

t
tststs iii Δ

Δ+=+ +
ττ )()()( 1&&&&&&  (7.55) 

)()()( 11 iii tststs &&&&&& −=Δ ++  (7.56) 

Equations 7.54-56 are substituted in equation 7.50: 

2
12 i iu u u P Q

t
τζ ++ Ω + Ω = +
Δ

&& &  (7.57) 

in which Pi contains parameters of the right hand side of the differential equation at the 
current known time step ti.  
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The remaining terms are defined in Qi+1 as: 

/( ) ( )b
i f g iP F M m u s tα⎡ ⎤= − + + +⎣ ⎦&& &&  (7.58) 

1 1 1( ) ( )i g i iQ u t s tα+ + +⎡ ⎤= − Δ + Δ⎣ ⎦&& &&  (7.59) 

The solution of the equation 7.57 is: 
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1 1( ) ( )e
i i iu t u z t+ += =&& && &&  (7.62) 

in which z(t) is the complementary solution [Mostaghel and Khodaverdian, 1988]: 

1 1 1( )i iz t A R Q+ += +  (7.63) 

1 2 1 1( ) ( ) ( )i iz t B A R R Qζ ζ+ += − Ω + − Ω&  (7.64) 

1 3 1( )i iz t C R Q+ += − −&&  (7.65) 
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2

1( ( ) )d i iE u t P= Ω −
Ω  (7.73) 

21d ζΩ = Ω −  (7.74) 

Regarding equations 7.54-56: 

1 1( ) ( ) ( )i i is t s t s t+ += + Δ&& && &&  (7.75) 
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and integrating equation 7.75 yields the following expressions: 
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Substituting equations 7.75-77 in equation 7.53 and rearranging the equation in term of the 
unknown 1( )is t +Δ&&  gives: 
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in which 
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2
6 2R tξω ω= + Δ  (7.81) 

Substituting Qi+1 from equation 7.59 in equation 7.78, 1( )is t +Δ&&  is computed as: 
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Once )( 1+Δ its&& is computed, the relative structural variables at the end of the time step, )( 1+its , 
)( 1+its& , and )( 1+its&&  can also be computed (Equations 7.75-77). Base variables ( e

iu , e
iu& , and e

iu&& ) 
are recalculated using )( 1+Δ its&& and Qi+1 (Equation 7.50 and 7.59). Substituting e

iu&&  in equation 
7.53 the structural variables ( s , s& , and s&&) are recomputed. At this stage )( 1+Δ its&&  is known 
based on the computed Qi+1: 

2
1 3 1 5 6

1
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( ) g i i i i i

i

u t C R Q R s t R s t s t
s t

R
ω+ +

+

− + + − − −
Δ =

&& && &
&&  (7.83) 

which is used to control the convergence of the iterative process. This iterative process of the 
computation of structural variables according to the base variables and vice versa must be 
repeated several times, until )( 1+Δ its&&  converges. 
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Based on the same principle stated before (Section 6.4) a stick-slip criterion is defined for 
such a system as: 

?
2

./g f totu s u F Mα+ + Ω ≥&& &&  (7.84) 

where Mtot. is the total mass of the structure with its foundation. If the resultant force acting on 
the bearing, left hand side of the equation 7.84, does not overcome the static friction force, 
equation 7.50 vanishes and equation 7.53 is rewritten as: 

2
1 1 1 1( ) 2 ( ) ( ) ( ) ( )i i i g i g is t s t s t u t u t

t
τξω ω+ + + ++ + = − − Δ
Δ

&& & && &&  (7.85) 

Its complete solution is [Mostaghel and Khodaverdian, 1988]: 

1 1 1( ) ( ) ( )i c i p is t s t s t+ + += +
 (7.86) 

1 1 1( ) ( ) ( )i c i p is t s t s t+ + += +& & &
 (7.87) 

1 1( ) ( )i c is t s t+ +=&& &&  (7.88) 

in which 
* *( sin cos )t

c d ds e A t B tξω ω ω− Δ= Δ + Δ  (7.89) 
* *( cos sin )t

c c d d ds s e A t B tξωξω ω ω ω− Δ= − + Δ − Δ&  
 (7.90) 

2 2 * *(1 2 ) 2 ( cos sin )t
c c d d ds s e A t B tξωξ ω ξω ω ω ω− Δ= − − − Δ − Δ&&  (7.91) 
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&& &&

 (7.92) 

1 12
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Δ
& &&

 
 (7.93) 

*
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 (7.94) 

*
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1 2( ) ( )b
i g g iB s t u u t

t
ξ

ω ω +
⎡ ⎤= + − Δ⎢ ⎥Δ⎣ ⎦
&& &&  (7.95) 

As the variables are all defined in a relative coordinate system, the total (absolute) structural 
displacement and acceleration are: 

tot gs u u s= + +  (7.96) 

tot gs u u s= + +&& && && && (7.97) 

in which ug is the ground displacement due to earthquake motions. 

The process of the numerical simulation is explained in a pseudo-algorithm (Figure 7.11). Its 
time refining process is explained in detail in Appendix C.  
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input parameters 
while time(i) ≤  max(time) 
     computation of the friction_force (Sections 4.2-4) 
     assignment of initial conditions (from the last time step) 
     computation of P (Equation 7.58) 
     computation of R1-R6 and A-E (Equations 7.66–81) 
     computation of del_s_acc(ti,iteration 1) (Equation 7.82) 
     j = 1; 
     while |del_s_acc(ti,iteration j)- del_s_acc(ti,iteration j-1)| > tolerance 
          computation of Q (Equation 7.59) 
          computation of z, z_dot, z_dot_dot (Equations 7.63-65) 
          computation of base_dis, base_vel, base_acc (Equations 7.60-62) 
          computation of struc_dis, struc_vel, struc_acc (Equations 7.75-77) 
          j = j+1; 
     end 
     computation of base_shear (stick-slip criterion) 
     if (phase state == 'stick')  &  (base_shear < friction_force) 
          base_vel(ti) = 0; 
         base_acc(ti) = 0; 
          solution of 1-DOF system (Equations 7.85-95) 
     end 
     if (sign(base_vel(ti) * base_vel(ti-1)) < 0) or (base_shear > 

friction_force) 
          time step refining process (Appendix C) 
     end 
     assignment of phase_state 
     if (phase_state == 'slide')  &  (sign(base_vel(ti) *base_ vel(ti-1)) < 0) 

& … 
     (time_step has been refined) 
          velocity_rel(ti) = 0; 
          acceleration_rel(ti) = 0; 
          phase_state = 'stick' 
     end 
     i = i + 1; 
end 

Figure 7.11   Pseudo-algorithm for the numerical simulation of a 2-DOF isolated system. 

7.6 31BModal analysis of MDOF isolated systems 

The two degree-of-freedom model is an appropriate means to study the interaction between 
sliding bearings and the structure in an isolated system. It helps in initial design phases not 
only to choose an eligible isolation method, but also to consider specific features for the 
adopted system to optimize the seismic structural response. However, to consider more 
aspects a more detailed model is required. The challenging task is to develop a rather simple 
numerical model, which estimates the actual response of such structures relatively well. 

As explained earlier in this chapter, modal analysis is an appropriate numerical method to 
simulate systems with many degrees-of-freedom. In the modal space, merely modes with 
higher participation factors are considered. This decreases the numerical effort of this method 
drastically. 

[Mostaghel and Khodaverdian, 1988] applied this method to develop a numerical model to 
simulate the seismic response of Resilient-Friction Base Isolated (R-FBI) systems.  
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To this end, firstly the fixed-base mode shapes of the superstructure, i.e. the structure without 
its foundation, are computed as (assuming a linear structural response): 

1
( )

N

i ij j
j

s t vφ
=

= ∑  (7.98) 

where φ  is the matrix of mode shapes of the superstructure with N degrees of freedom. The 
differential equations governing such an MDOF system are (Figure 7.12): 

( )gu u= − +ms + cs + ks mr&& & && &&  (7.99) 
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with the same variables which have been already defined (Equations 7.46 and 7.47). 

Regarding equation 7.98, the term 
1

s
N

i i
i

α
=
∑ &&  in equation 7.100 is replaced by its modal 

amplitudes as: 

1 1

N N

i i j j
i j

s vα β
= =

=∑ ∑&& &&  (7.101) 

in which 

1

N

j i ij
i

β α φ
=

= ∑  (7.102) 

Therefore equation 7.100 can be rewritten as: 

2

1 1
2 /( )

N N

f i g j j
i j

u u u F M m u vζ β
= =

+ Ω + Ω = − + − −∑ ∑&& & && &&   (7.103) 

Substituting equation 7.101 in equation 7.99 and applying the orthogonality property, it 
yields: 

22 ( )n n n n n n n gv v v u uξ ω ω λ+ + = − +&& && &&   (7.104) 

where the subscript n denotes the mode number. nλ  is the participation factor, which is: 
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  (7.105) 

In a process similar to the one explained in the previous section for a 2-DOF isolated system, 
the seismic response of this system can be modelled. The main drawback of this method is the 
modal transformation of the superstructure regardless of its foundation into the modal space. 
Thereby, the interaction between the isolation block, in this case the friction pendulum 
bearing, and the structure itself cannot be fully simulated.  
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To solve this problem the whole set of differential equations (Equations 7.99 and 7.100) is 
transformed into the modal space. This requires the transformation of the friction force as 
well as the inertial force (due to the ground motions) into the modal space. 
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Figure 7.12   A structure supported on an R-FBI system [Mostaghel and Khodaverdian, 1988]. 

To this end, first of all the set of differential equations must be rewritten in a matrix form, 
which makes a modal transformation of the system possible. The matrix form of equations 
7.99 and 7.100 is (Figure 7.13): 

1 2Ff gMU +CU + KU = - r - P r&& &   (7.106) 

where U , U& , and U&&  are the generalized displacement, velocity, and acceleration vectors, 
respectively. 1r  and 2r  are the influence matrices, which are mapping the friction and inertial 
forces to corresponding degrees-of-freedom. M, C, and K are the mass, damping, and 
stiffness matrices of the whole system, correspondingly. In a 2-degree-of-freedom system 
these matrices are (Figure 7.10): 
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Figure 7.13   (N+1) degree-of-freedom isolated system with rotational and translational degrees of freedom. 
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Plane beam elements have been used for the discretization of the set. Local stiffness and 
consistent mass matrices of this type of element are defined as (Figure 7.14) [Cook, 1995]: 
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where E and I are the Young’s modulus and the moment of inertia, respectively. ρ , A, and L 
are the density, cross sectional area, and length of the element, correspondingly. 

By the initiation of sliding a new element is activated in the system, which is representing the 
isolation bearing. In sticking phases, however, the added element is deactivated and the rest of 
the system is simulated as a classical fixed-base structure. In classical finite element method a 
permanent element is defined, in which the element is very stiff in sticking phases; so that no 
sliding displacement would be produced in sticking phases. Activating a new element in 
comparison to a permanent element in classical finite element method has the advantage that 
it is not required to perform an iterative process in sticking phases to compute the resultant 
force in this element. This iterative process is time consuming. In this new model base shear 
is the deciding factor controlling whether the bearing starts sliding at the end of a time step or 
not (stick-slip criterion). 
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Figure 7.14   Simple plane beam in local coordinate system. 

Transforming the differential equation (Equation 7.106) into the modal space by: 
U = φη  (7.110) 

where φ  is the matrix of mode shapes of the whole set of the differential equations, equation 
7.106 is rewritten in the modal space as: 

1 2FT T T T T
f g+ + = − −φ Mφη φ Cφη φ Kφη φ r φ P r&& &  (7.111) 

f g+ + = − −M η Cη K η F P%% % % %&& &  (7.112) 

in which M% , C% , and K%  are the modal mass, damping, and stiffness matrices, respectively, 
and fF%  and gP%  are the modal friction and inertial forces. 

It must be taken into consideration that these modal values, in particular the modal friction 
force, cannot be physically interpreted as in the original space. For instance, the modal 
resultant force in an arbitrary mode cannot be compared with the static friction force 
transformed into the modal space. In other words, the stick-slip criterion is not valid in the 
modal space (Equation 7.113). Hence, the variables must be transformed back into the 
original space for further considerations. 

?

.abs base base fk u F+ ≥MU&&   (7.113) 

The first step to solve the differential equation (Equation 7.112) in the modal space is the 
introduction of initial conditions. For those time steps where no phase change has happened in 
their previous time step, i.e. stick-stick or slide-slide cases, it is straight forward. The final 
values of the last time step in the modal space are directly used as the initial values of the 
current time step. When a phase change happens, however, the initial conditions must be 
computed differently, as the number of degrees of freedom has been changed because of the 
activation (or deactivation) of the sliding element. Regarding equation 7.110: 

1 1i
initial

− −η = φ U  (7.114) 

1 1i
initial

− −η = φ U&&  (7.115) 

where 1i−U  and 1i−U&  are displacement and velocity of the degrees of freedom at the end of the 
last time step, respectively. 1−φ  is the inverse matrix of eigenvectors. It should be noted, that 
depending on the type of a phase change, i.e. sticking to sliding or sliding to sticking, the 
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appropriate matrix of eigenvectors must be used. This is because of the different number of 
degree-of-freedom in sticking and sliding phases. 

The great advantage of the modal analysis method is the independence of the modes of 
vibration from each other. This makes it possible to consider only modes that play an 
important role in the general structural response (Figure 7.15). They are normally the first few 
modes of vibration. This causes a drastic reduction of the numerical costs of the simulation. 
As discussed before (Chapter 5), the global response of an isolated system is governed mainly 
by its first modes. This makes modal analysis an appropriate method to simulate such 
systems. 

U

ndof  1 ndof    nmod ndof   ndof ndof  1

nmod  1

Applied matrix

ndof:  Number of degrees-of-freedom
nmod: Number of modes used in the analysis

Whole matrix

 
Figure 7.15   Partial consideration of the eigenvector in modal analysis. 

In case of partial consideration of mode shapes, the initial conditions are calculated as 
[Petersen, 1996]: 

1 1( )
TT i T

initial M M− −⎡ ⎤⎣ ⎦η = φ U %   (7.116) 

1 1( )
TT i T

initial M M− −⎡ ⎤⎣ ⎦η = φ U& %&  (7.117) 

Now the differential equation can be solved. The constant average acceleration method 
(Section 7.1.1) has been used. The load P(t) is (Equation 7.8): 

( ) ( ) ( )f gt t t= − −P F P% % %   (7.118) 

The process of the numerical simulation is explained in a pseudo-algorithm (Figure 7.16 and 
Appendix D). 

 
7.7 Damping considerations  

The dynamic response of a structure to ground motions depends on its mechanical 
characteristics and the nature of earthquake-induced forces. Mechanical properties that are 
efficient to mitigate the structural response to some excitations might have undesirable effects 
during other inputs. Base isolation is an efficient method to reduce forces and interstory drift 
during severe shakings (Sections 8.2-4). However, under seismic excitations with relatively 
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long periods of vibration or impulse-shape loads, numerical simulations and large-scale 
experiments have shown that they do not respond properly. Integrating an additional damping 
mechanism to the isolated structure located near active faults or in regions over thick 
sedimentary soil layers improve to some extent the structural response [Makris and Chang, 
1998]. On the other hand, it must be taken into consideration that a very high damping ratio 
may have negative effects on the efficiency of isolation [Kelly, 1999]. In highly damped 
isolated structures, the maximum sliding displacement is decreased at the cost of higher base 
shear and larger interstory drift that are both counterproductive.  

In most cases it is assumed that damping is small enough that the effect of the off-diagonal 
components of the damping matrix are negligible; so the required solution can be obtained 
from the uncoupled modal equations of motion [Kelly, 1999]. 

 
input parameters 
assembling mass, damping, and stiffness matrices of the superstructure 

(for sticking phases an M-DOF system) 
solution of the eigenvalue problem 
computation of parameters of the CAA method (Equations 7.7-10) 
assembling mass, damping, and stiffness matrices of the whole system (for 

sliding phases an (M+1)-DOF) 
solution of the eigenvalue problem 
computation of parameters of the CAA method (Equations 7.7-10) 
while time(i) ≤  max(time) 
     if the time refining process has been activated (Appendix D) 
          recalculation of parameters of the CAA method (Equations 7.7-10) 
     end 
     if phase_state(ti-1) == 'stick' 
          computation of the modal inertial force (Equation 7.111) 
          assignment of the initial conditions (Equations 7.114-117) 
          solution of the differential equations for the considered modes 

(Equation 
          7.112) 
          transformation of the results into the original space (Equation 

7.110) 
          control of the stick-slip criterion (Equation 7.113) 
          assignment of the phase_state parameter 
     else 
          computation of modal friction and inertial forces (Equation 7.111) 
          assignment of initial conditions (Equations 7.114-117) 
          solution of the differential equations for the considered modes 

(Equation 
          7.112) 
          transformation of the results into the original space (Equation 

7.110) 
          if (sign(base_vel(ti) * base_vel(ti-1)) < 0) 
               time step refining process 
               if delta_t_new  < tolerance 
                    phase_state = 'stick' 
                    base_vel(ti) = 0; 
               end 
          end 
     i = i + 1; 
end 

Figure 7.16   Pseudo-algorithm for the numerical simulation of multi degree-of-freedom isolated systems. 
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In Rayleigh damping, the damping matrix is defined as a linear combination of mass and 
stiffness matrices: 

0 1α α= +C M K   (7.119) 

where 

0

2 i j

i j

ω ω
α ξ

ω ω
=

+
 (7.120) 

1
2

i j

α ξ
ω ω

=
+

 (7.121) 

in which ξ  is the damping ratio at natural frequencies of iω  and jω . Throughout this study, 
the damping ratio is taken in a range that the off diagonal damping components can be 
ignored. 

The response of isolated structures in sticking and sliding phases are completely different. As 
long as sliding bearings are not activated, the structure responds the same as a fixed-base 
structure. After initiation of sliding, the interstory drift (main reason of the structural 
damages) decreases. Hence, the damping ratio in isolated structures is taken usually smaller 
than the one in fixed-base structures. 

For the sake of numerical stability, a minimum damping ratio of 0.5% of the critical damping 
is assigned for the first and second modes of vibration in both sticking and sliding phases in 
this study. 

 



 

69 

Chapter 8 

Case Studies  

In this chapter, several case studies are simulated with the numerical models 
developed in the previous chapter. They are classified into three main groups of one, 
two, and many degree-of-freedom systems. Main features of friction-based isolated 
systems, e.g. efficiency of the isolation method and its relation to the level of input 
excitation, frequency dependency of the structural response, restoring mechanism, the 
effect of concavity of the sliding surface, etc. are discussed. In the last section, an 
experimental test done on a shaking table is simulated. Results computed with the 
developed model are then compared with those reported elsewhere. 

8.1 33B1-DOF model under harmonic excitation 

The very large participation factor of the first mode of vibration of FPS isolated systems in 
comparison with the participation factor of the other modes motivates the idea to simulate 
such systems with 1-DOF models. First the response of such a system to a harmonic ground 
acceleration ag(t) is studied (Section 7.3), in which: 

ˆ( ) sin( )g ga t a t= Ω  (8.1) 

System properties are as follows (Figures 6.6 and 8.1): 

m= 10000 kg, k = 106 N/m, c = 0 Ns/m, μ = 0.075, fF = 7500 N, ˆga = 0.981 m/s2, ω = 10 s-1, and Ω = 6.284 s-1. 

The constant Coulomb friction law has been used. The time step is taken as 10-2 seconds. 
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Figure 8.1   Physical model of an isolated system under a harmonic load. 
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Figure 8.2   The response of a friction isolated system to a harmonic excitation: (a) the harmonic ground 
acceleration, (b) relative acceleration, (c) relative velocity, (d) relative displacement, (e) relative velocity 

according to [Petersen, 2005], and (f) relative displacement according to [Petersen, 2005]. 

As long as the load is smaller than the static friction force, no sliding has been initiated 
(Figures 8.2 and 3). Because of the Coulomb friction model, the friction force remains 
constant during sliding phases. In sticking phases (constant sliding displacement) the friction 
force is calculated regarding the equation of equilibrium that is not constant, but its maximum 
value is bounded. The restoring force is composed of the spring force (geometrical stiffness) 
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and the friction force. Because the friction force is always in the opposite direction of the 
sliding velocity, as soon as the direction has changed, a jump occurred in the diagram, which 
is two times of the friction force (Figure 8.3.c). 
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Figure 8.3   The response of a friction isolated system to a harmonic loading: (a) Friction force versus 
displacement, (b) Friction force versus time, and (c) the restoring force versus displacement. 

Adding a viscous damping source to the system (c = 5000 Ns/m) decreases the sliding 
displacement in comparison to the former case (Figure 8.4). 

The efficiency of the isolation method under different circumstances is an important issue in 
base isolated systems. The stick-slip criterion is the key factor distinguishing the two possible 
phases of sticking and sliding (Equation 6.7). As long as base shear force does not overcome 
the static friction force, the isolated system remains sticking and responds the same as a fixed-
base system (sticking phase). Therefore, apart from the system properties the efficiency of an 
isolated system is depending mainly on the level of input excitations. The lower this level is 
the later the isolator begins to slide. Only after the initiation of sliding, a relative sliding 
acceleration is initiated in the opposite direction of the input acceleration (excitation). This 
reduces the inertial force applied to the mass, as the inertial force is a function of the total 
(absolute) acceleration of the degree-of-freedom, not the relative acceleration. 
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To examine this issue a similar system is excited with two levels of harmonic ground 
acceleration. The response of the set and the efficiency of the isolation method are then 
compared in both cases (Figure 8.5). System properties are as follows: 

m = 10000 kg, k = 106 N/m, c = 0 Ns/m, μ = 0.075, gu&& = 0.9 (1.2) m/s2, ω = 10 s-1, and Ω = 6.284 s-1. 
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(c) (d) 

Figure 8.4   The response of a friction isolated system with viscous damping to a harmonic loading: (a) Damping 
force versus displacement, (b) Restoring force versus displacement, (c) Damping force versus displacement 

according to [Petersen, 2005], and (d) restoring force versus displacement according to [Petersen, 2005]. 

For lower levels of excitations the isolated system is activated later in comparison with a 
system excited with a higher level of loading. This implies that sticking phases, in which 
isolators are not active, last for longer periods of time (Figure 8.5). 

Not only the maximum amplitude of loading (excitation) affects the response of an isolated 
system, but also the frequency content of the excitation plays an important role in the 
response of such systems. A period of vibration close to the natural period of isolation causes 
resonance and instability in form of a very large sliding displacement. The closer the period of 
vibration to the natural period of isolation, the larger are relative displacement and velocity of 
the sliding bearing (Figures 8.6 and 8.7). The same system discussed before is excited with 
two harmonic excitations with circular frequencies of vibration of 2 and 8 s-1. 

Another important issue in friction pendulum isolated systems is the restoring mechanism. 
Because of the concavity of the sliding surface a restoring force is produced, which restrains 
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the permanent displacement of the isolator, i.e. the displacement remains in the system after 
cessation of excitations. The restoring mechanism restricts to some extent the maximum 
displacement during excitations as well. However, it does not guarantee that after cessation of 
the excitation the bearing would be located exactly in its initial position. A sliding bearing 
would stick somewhere in between, as soon as the restoring force cannot overcome the 
friction force anymore. The response of an FPS system is compared with a bearing sliding 
simply on a flat surface (Figure 8.8). The same system properties and loading used before are 
applied. 
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Figure 8.5   Comparison of the response of an isolated system to two different levels of harmonic ground 

excitations: gu&& = 0.9 and 1.2 m/s2. 
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Figure 8.6   The response of an isolated 1-DOF system to harmonic excitations with circular frequencies of 

vibration (a) 2 s-1, (b) 8 s-1. 
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Figure 8.7   The response (relative displacement) of an isolated 1-DOF system to harmonic excitations with 

different circular frequencies of vibration. 
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Figure 8.8   Comparison of the response (relative displacement) of an isolated 1-DOF system sliding on a 

concave surface (R = 0.2 m) with the one sliding on a flat surface. 

8.2 34B1-DOF model under non-harmonic loading 

The same numerical model as in section 8.1 has been used to simulate an isolated 1-DOF set 
under non-harmonic excitation. The El Centro earthquake accelerogram (USA, 1940 with a 
magnitude of 7.1) is used as the input ground acceleration (Figure 8.9). System properties are 
as follows: 

m = 250 ton, k = 1000 kN/m, c = 0 Ns/m, μ = 0.07, fF = 175 KN, ω = 2 s-1, and R  = 2.5 m. 
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Time steps are considered to be 0.02 seconds. If a phase change happens, time steps are 
refined to 0.002 seconds. The maximum sliding displacement is about 4 centimeters. The 
permanent displacement at the end of the analysis is less than 4 millimeters, as a result of the 
concavity of the sliding surface. The friction force is considered to be of the Coulomb type 
(Figure 8.10). The same as before, in sticking phases it has been computed with regard to the 
equation of equilibrium. 
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Figure 8.9   Response of an isolated 1-DOF set to El Centro earthquake: (a) the ground excitation, (b) relative 

acceleration, (c) relative velocity, and (d) relative displacement of the degree-of-freedom. 

The initiation of sliding is directly controlled by the static friction force. The larger the 
friction coefficient the later the isolation mechanism is activated. In an extreme case, during 
the entire period of loading the base shear force does not overcome the friction force. In such 
a case, an isolated system responds the same as a classical fixed-base system (blocking). The 
response of the aforementioned system to the same excitation (El Centro earthquake) with 
different levels of friction force is studied (Figure 8.11). For friction coefficients larger than 
0.32 the set is blocked (Table 8.1). 
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Figure 8.10   Restoring and friction forces versus relative displacement in an isolated 1-DOF set. 

Table 8.1   Maximum and minimum values of relative acceleration and sliding displacement of an FPS isolated 
set for different levels of the friction force. 

2[ / ]u m s&&  [ ]u m  
μ  

max  min  max  min  

0.02 3.35 -3.15 0.102 -0.121 

0.08 3.12 -3.59 0.013 -0.034 

0.15 2.69 -3.45 0.002 -0.014 

0.25 3.89 -5.24 0.001 0.000 

 

The concavity of the sliding surface in friction pendulum systems produces a recentering 
mechanism, which decreases the permanent deviation of the set from its original 
configuration at the end of excitations. To study this effect, the same model as before with a 
friction coefficient of 0.08 is analysed for four different radii of curvature (Figure 8.12). As 
expected, a smaller radius of curvature, i.e. a more concaved sliding surface with accordingly 
larger geometrical stiffness, reduces the permanent displacement of the bearing. For different 
radii of curvature a similar trend in the response is observed. A higher geometrical stiffness 
has not caused the bearing to slide later than a bearing sliding on a flat surface. Therefore, it 
does not impair the isolation efficiency of sliding bearings (Figure 8.13). Jumps in the 
diagram are because of the dependency of the friction force on the direction of the sliding 
velocity. They are equal to 2 fF . 
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Figure 8.11   Response of an isolated 1-DOF set (relative acceleration and sliding displacement) to El Centro 

earthquake with bearings sliding on a surface with friction coefficients of:                                                           
(a) 0.02, (b) 0.08, (c) 0.15, and (d) 0.25. 
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Figure 8.12   Response of an isolated 1-DOF set (relative acceleration and sliding displacement) to El Centro 

earthquake with bearings sliding (a) on a flat surface, or over a concave surface with radii of curvature of: (b) 10 
m, (c) 2 m, and (d) 1 m. 
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Figure 8.13   Restoring force in an isolated 1-DOF set with bearings sliding (a) on a flat surface, or over a 

concave surface with radii of curvature of: (b) 10 m, (c) 2 m, and (d) 1 m. 

8.3 35B2-DOF model 

In the initial phases of the design process one-degree-of-freedom models are appropriate to 
simulate roughly the response of an FPS isolated set. In subsequent phases, however, more 
detailed models are required to study the interaction effect between the structure and the 
isolation block. The simplest model of this type is a 2-DOF system, in which the first degree-
of-freedom stands for the isolation module and the second one for the structure. The ground 
excitation is applied to the isolation block and through FPS bearings it is transmitted to the 
structure.  

The response of this system to a triangular loading in form of forced ground acceleration is 
studied (Figure 8.14). System properties are as follows (Figure 7.10 and Appendix C): 

m = 350 kg, M = 700 kg, k = 86400 N/m, K = 10300 N/m, c = 220 Ns/m, C = 0 Ns/m, μ = 0.08, fF = 824 N, 

ω = 15.7 s-1, Ω = 3.13 s-1, α = 0.33, R  = 1 m, tΔ = 0.001 s. 
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Figure 8.14   Triangular forced ground acceleration. 

It takes 0.104 seconds until the bearing starts sliding. The load lasts 0.8 seconds. The bearing, 
however, slides much longer until 2.91 s (Figure 8.15). Structural relative and absolute 
accelerations are then compared (Figure 8.16). The structural damping ratio is taken to be 2% 
(rather than the classical 5%) of the critical damping, as structural damages, e.g. plastic 
deformations and cracks in columns and walls, in isolated systems are less than those in fixed-
base structures. 
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Figure 8.15   Response of an isolated 2-DOF system to a triangular load: (a) relative base acceleration to the 
ground, (b) total base acceleration. 

The main source of damage in a structure under earthquake excitations is the relative 
deformation in floors (drift). Through sliding isolation it can be drastically decreased (Figures 
8.19 and 8.20). The main part of the generated displacement is concentrated in the isolation 
layer. Thereby, a large deformation in the second degree-of-freedom (the structure) is 
prevented. 
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Figure 8.16   Response of an isolated 2-DOF system to a triangular load: (a) relative structural acceleration to the 
base, (b) relative structural acceleration to the ground , and (c) total structural acceleration. 
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Figure 8.17   Response of an isolated 2-DOF system to a triangular load: (a) base relative velocity and (b) 
structural relative velocity to the base. 
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Figure 8.18   Comparison of the total velocity of the first and second degrees-of-freedom relative to the ground. 
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Figure 8.19   Comparison of the relative displacement of the first and second degrees-of-freedom. 
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Figure 8.20   Comparison of the total displacement of the first and second degrees-of-freedom relative to the 

ground. 
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The response of the same system studied before to the El Centro earthquake excitations is 
computed (Figure 8.21). The maximum ground acceleration is scaled to one g (9.81 m/s2). 
The Relative base acceleration is almost in the same order of the ground acceleration, but in 
the opposite direction. Because of the isolation, there is a delay between the maximum 
amplitude of the ground acceleration and the structural response to it. 
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Figure 8.21   Structural response of an isolated 2-DOF set to El Centro earthquake. 

Even in intervals with a ground acceleration smaller than the friction coefficient, e.g. between 
the 6th and 8th seconds of the analysis, the bearing has not stopped sliding because of the 
inertial force of the second degree of freedom (Equation 7.84 and Figure 8.21). 

It takes such an isolated system a longer time to come to rest, as a result of a smaller damping 
ratio considered in the system in comparison with a fixed-base system (Figure 8.22). 

The relative displacement of the second degree of freedom as a measure of the structural 
damage is one order smaller than the sliding displacement of the bearing (Figure 8.23). 
Besides, the concavity of the sliding surface has restricted the permanent displacement to less 
than 2 centimeters. 
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Figure 8.22   Relative velocities of the first and second degrees-of-freedom in an isolated 2-DOF system 
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Figure 8.23   Relative displacements of the first and second degrees-of-freedom in an isolated 2-DOF system. 
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Figure 8.24   Comparison of the base shear in an isolated system with the one in a fixed-base structure. 
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Figure 8.25   Comparison of the drift in an isolated system with the one in a fixed-base structure. 
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In comparison to a fixed-base system base shear in an isolated structure is reduced about 55% 
(Figure 8.24). The drift in such a system is strongly decreased as well (Figure 8.25).  

A coarser time stepping decreases numerical costs. However, the moment, in which the 
sliding has been initiated, cannot be found as exactly as before. Maximum values of response 
are also to some extent different in comparison with a very fine time digitization (Figure 
8.26). The results of the base displacement are more sensitive in this issue (Table 8.2). 
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Figure 8.26   Two degree-of-freedom model analyzed with coarse and fine time steps: (a) and (b) base relative 
displacement with time steps of 0.001 and 0.02 s, (c) and (d) drift with time steps of 0.001 and 0.02 s, 

respectively. 

Table 8.2   Comparison of the base relative displacement and drift with different time stepping. 

Base displacement [m] Drift [m] 
Time step [s] 

max  min  max  min  

Permanent base 
displacement [m]

0.02 0.239 -0.237 0.021 -0.021 -0.021 

0.001 0.250 -0.244 0.021 -0.021 -0.018 
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8.4 36BGeneral MDOF model 

Modal analysis facilitates the numerical simulation of FPS isolated systems. By considering 
several degrees of freedom the interaction effect between the isolation block and the structure 
can be studied more precisely. To this end the numerical model developed in the previous 
chapter has been applied to model a multi degree-of-freedom system (Figure 8.27). 

A consistent mass matrix has been used. The system is discretized with 12 beam elements. 
The first element is allocated to the isolation bearing. As soon as the bearing starts sliding it is 
activated. The rotation degrees-of-freedom of the first and last nodes are blocked. The 
discretization and the first five modes of vibration in the sticking phase are given in figure 
8.27. 

To guarantee the condition of orthogonality of modes, Rayleigh damping has been used. Half 
a percent of the critical damping has been considered for the first and second modes of 
vibration in both sticking and sliding phases. 

 

 

Mesh
 

Mode nr. 1
 

Mode nr. 2
 

Mode nr. 3
 

Mode nr. 4
 

Mode nr. 5  

 

 

 

E = 3*107 KN/m2  

I = 0.00045 m4  

L = 3 m 

A = 0.06 m2  

ρ = 2500 Kg/m3  

KBase = 1000 KN/m  

MBase = 1000 Kg 

Δt = 0.0001 s 

 

 

 

Figure 8.27   First five modes of vibration in the sticking phase. 

tΔ  is taken to be 10-4 seconds, which is fine enough to capture the response of all modes of 
vibration that have been taken into consideration. To decrease computational costs, time steps 
have been refined to 10-6 seconds in case of a phase change. In addition, instead of 
considering all modes of vibration, only the first five modes out of 24 ones, which have larger 
participation factors, are considered. The response of such a system to forced triangular 
ground excitations is simulated (Figures 8.14 and 8.28-30). 

Sticking of the sliding bearing produces a shock in the structure (Figure 8.28.a at 0.45 and 0.8 
seconds). For sensitive structures and equipments, this can be damaging. The shock can be 
reduced by adding a damping source to the isolator. 

To examine the efficiency of the refining process, results of the previous analysis are 
compared with those computed with a coarser time digitization and without any refining 
process (Figure 8.31). The refining process decreases computational costs of the simulation 
drastically (about 100 times) and saves the accuracy of simulation even in comparison with an 
analysis with much smaller time steps (Figure 8.32). 
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Figure 8.28   Response of the sliding bearing to a triangular loading: (a) relative acceleration, (b) absolute 

acceleration, (c) relative velocity, and (d) displacement. 
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Figure 8.29   Response of an isolated M-DOF system at its mid height: (a) relative acceleration, (b) absolute 
acceleration, (c) displacement, and (d) rotation. 
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Figure 8.29   Response of an isolated M-DOF system at its mid height: (a) relative acceleration, (b) absolute 

acceleration, (c) displacement, and (d) rotation. 
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Figure 8.30   Response of the system at its top: (a) relative acceleration, (b) absolute acceleration, (c) 
displacement. 
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Figure 8.31   Sliding displacement of the FPS bearing computed with coarse time steps in comparison with the 
one computed with the time refining process: (a) the whole response, and (b) the response near a phase change. 
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Figure 8.32   Sliding displacement of the FPS bearing computed with very fine time steps in comparison with 

those computed with larger time steps with a time refining process (a) the whole response, and (b) the response 
near a phase change. 

By performing modal analysis it is possible to consider only a few of the modes of vibration 
without risking the accuracy of the entire simulation. Because of the physical nature of 
isolated systems the first few modes of vibration construct the main part of the response 
(Chapter 5). The same system presented before is simulated considering all of its eigenmodes. 
The result is compared with the case, in which only the first three modes of vibration are 
considered. With a good precision relative displacements and base shear force match the 
results of the analysis done considering all modes of vibration. Structural accelerations, in 
contrary to them, are in some small details different (Figure 8.33). The difference is 
negligible. 

Simulating such an isolated system with more eigenshapes with a constant time step ( tΔ ) 
does not necessarily yield a more accurate response, as higher modes of vibration have 
smaller periods. To catch their response, the time step must be at least one order shorter than 
the period of vibration of the highest mode that is taken into consideration. In this way the 
numerical cost of the simulation increases exponentially, as not only the transformation into 
the modal space and back to the original space become much more time-consuming, but also 
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the number of time steps increases rapidly. Hence, it is logical to take only modes with large 
participation factors and to perform the analysis with a reasonably small time step. 
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Figure 8.33   Top structural acceleration computed with modal analysis considering all degrees of freedom in 
comparison with an analysis taking just the first 3 modes of vibration: (a) the whole response, and (b) the 

response around a peak. 

Many experimental studies on the friction coefficient of sliding surfaces coated with a Teflon 
layer over stainless steel plates have shown a big difference with the prediction of the 
Coulomb friction model. [Mocha et al. and Constantinou et al., 1990]. It has been observed 
that the friction coefficient rises as the sliding velocity increases. To take this issue into 
consideration the modified Coulomb friction model has been used instead of the classical 
Coulomb friction model (Section 4.3): 

max max min( ) u
s f f f e βμ −= − − &  (8.2) 

in which maximum and minimum friction coefficients are taken to be 0.095 and 0.06, 
respectively. β  is reported to be 43.3 [s/m] for bearings coated with Techmet-B material 
sliding on stainless steel plates (Figure 8.34) [Mokha et al., 1990]. 

The same system introduced before is simulated considering the modified Coulomb friction 
model and the results are compared with the previous results. In case of a constant friction 
force μ  is considered to be 0.06 (Figure 8.35). The case simulated with the modified 
Coulomb friction model has resulted in less sliding velocity and displacement. It is because of 
larger friction and restoring forces in comparison to the case of constant friction force 
(Figures 8.35.c and d). It shows how susceptible a sliding-isolated structure is to changes of 
the friction force. 
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Figure 8.34   Friction coefficient based on the modified Coulomb model. 
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Figure 8.35   Comparison of the response of the set simulated with constant and modified Coulomb models: (a) 

relative displacement of the bearing, (b) relative sliding velocity, (c) friction force, and (d) restoring force.



8.5 Simulation of a shaking table test with general MDOF model  93 

 

 

8.5 Simulation of a shaking table test with general MDOF model 

To evaluate the numerical model an experiment done on a shaking table is simulated with this 
model [Mokha et al., 1990]. The experiment was carried out with a model representing a 
section in the weak direction of a typical steel moment-resisting frame at a quarter scale 
(Figure 8.36). The model is a six-story structure with three bays. The weight distribution is 
approximately as follows: 34.1 KN at the sixth floor, 34.9 KN at the fifth to first floors, and 
20.3 KN at the base. Columns are bolted to two heavy W14 x 90 sections (rotation degrees of 
freedom are blocked in this simulation). Bearings are placed between these beams and the 
shaking table. 

A planar numerical model has been used to simulate the response of model building. The set 
has been simulated with beam elements. There are 13 degrees of freedom. The first seven 
mode shapes has been considered. Time step is taken to be one millisecond and in case of 
possibility of a phase change, it is refined to 10-6 seconds. 

Natural frequencies of vibration under fixed-base condition are compared with those 
computed in the simulation (Table 8.3). They are in good agreement with each other. For 
higher modes of vibration some discrepancies can be seen. They are mainly because of the 
simple discretization applied here. 

Half a percent damping ratio as before has been taken for the first and second modes of 
vibration for both sticking and sliding phases. 

The structure is isolated through four FPS bearings. Each bearing consists of an articulated 
slider on a polished concave surface with a radius of curvature equal to 248 mm (Figure 8.37). 
The period of vibration is one second (Equation 6.2). The period of vibration of the prototype 
is 2 seconds because of four to one length scaling. The slider is coated with a material, 
Techmet-B, with a low friction coefficient similar to Teflon (Figure 8.34). 

The response of the aforementioned system to six strong earthquakes is studied (Table 8.4 and 
Figure 8.38). The bearing displacement, the drift at the top of the structure (sixth floor), base 
shear, and structural shear (measured at its first floor) are four main outputs of the analysis. 
Base and structural shear forces are normalized by the total weight of the structure including 
its base weight (229.2 KN).  

Results of the simulations are then compared with those reported elsewhere (Tables 8.5 and 
8.6) [Mokha et al., 1990]. 
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Figure 8.36   Six-story steel test structure [Mokha et al., 1990]. 

Table 8.3   Eigenfrequencies of modes of vibration. 

Frequency [Hz] Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

Experiment (fixed) 2.34 7.76 13.28 19.04 24.80 28.92 

Fixed 2.37 7.47 13.47 20.70 28.58 32.55  

isolated 1.03 5.31 9.87 14.57 21.17 28.78 
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Figure 8.37   FPS bearing design (all dimensions are in mm) for the model structure [Mokha et al., 1990]. 
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Table 8.4   Earthquake motions used in the analysis. 

Excitation Record Peak ground 
accel. [g] 

Duration 
[s] Magnitude 

El Centro 
USA, Imperial Valley, 

May 18, 1940 
S00E 

0.36 60 6.7 

Pacoima 
USA, San Fernando, 

Feb., 9, 1971 
S74W 

0.92 60 6.4 

Pacoima 
USA, San Fernando, 

Feb., 9, 1971 
S16E 

1.17 30 6.4 

Manjil 
Iran, Manjil, 

June, 20, 1990 0.94 60 7.7 

Kobe 
Japan, Kobe, 
Jan., 17, 1995 0.34 50 7.3 

Bam 
Iran, Bam 

Dec., 26, 2003 0.79 60 6.5 
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Figure 8.38   Time histories of the ground acceleration of: (a) El Centro, (b) Pacoima S74W component, (c) 
Pacoima S16E component, (d) Manjil, (e) Kobe, and (f) Bam earthquakes. 
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Figure 8.38   Time histories of the ground acceleration of: (a) El Centro, (b) Pacoima S74W component, (c) 
Pacoima S16E component, (d) Manjil, (e) Kobe, and (f) Bam earthquakes. 

The first analysis is done with the El Centro earthquake with a maximum ground acceleration 
of 3.5 m/s2 (0.357 g). To be consistent with the four to one length scaling, time axis is scaled 
by a factor of two (Figures 8.38 and 8.39). Drift at the top of the structure in the isolated 
system is three times smaller than the one in the fixed-base structure (Figure 8.39 and 8.40). 
Maximum base and structural shear are both less than 15% of the total structural weight. In 
the fixed-base structure, however, structural shear is more than 65% of the total weight. 
Results of the sliding displacement, base shear, and permanent sliding displacement are in 
good agreement with the results reported by [Mokha et al., 1990]. Unlike them, the drift in the 
structural system has not been anticipated exactly. It can be explained by the fact of lack of 
information about properties of the structural system. 

Second and third analyses are done with Pacoima earthquake S74W and S16E (50% of the 
original magnitude) components with a maximum ground acceleration of 9.03 and 5.74 m/s2 
(0.92 and 0.58 g), respectively (Figures 8.38 and 8.41-44). As a result of stronger ground 
excitations in comparison to El Centro earthquake the maximum sliding displacements are in 
these analyses larger. In spite of that, base and structural shear remain almost in the same 
range as before. 
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Table 8.5   Summary of the results based on the developed numerical model. 

Excitation Isolation 
condition 

Sliding 
displ. [mm] 

Base (struct.*) 
shear over 
weight [-] 

Drift** 
[mm] 

Permanent 
displ. [mm] 

Isolated 9.4 0.12 2.8 0.2 El Centro S00E 

(100%) Fixed-base - 0.67 14.5 - 
Isolated 25.6 0.19 4.3 0.5 Pacoima S74W 

(100%) Fixed-base - 0.76 16.0 - 
Isolated 29.1 0.20 4.6 1.6 Pacoima S16E 

(50%) Fixed-base - 0.54 11.6 - 
Isolated 9.1 0.46 8.4 0.7 Manjil 

(100%) Fixed-base - 2.15 45.9 - 
Isolated 16.0 0.15 2.8 0.0 Kobe 

(100%) Fixed-base - 0.61 13.1 - 
Isolated 9.9 0.50 9.3 0.1 Bam 

(100%) Fixed-base - 0.97 20.8 - 
* Base shear if the structure is isolated, otherwise structural shear. 
** The maximum interstory drift in the structure 

Table 8.6   Summary of the experimental results [Mokha et al., 1990]. 

Excitation Isolation 
condition 

Sliding 
displ. [mm] 

Base shear 
over weight [-] 

Drift 
[mm] 

Permanent 
displ. [mm] 

El Centro S00E 

(100%) 
Isolated 10.0 0.13 3.0 0.3 

Pacoima S74W 

(100%) 
Isolated 35.6 0.20 4.2 0.5 

Pacoima S16E 

(50%) 
Isolated 28.2 0.20 4.4 0.9 
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Figure 8.39   Structural response to El Centro earthquake: (a) base (bearing) displacement, (b) drift at the top of 
the structure (sixth floor), (c) base shear, (d) structural shear (measured at its first floor), (e) Friction force, and 

(f) restoring force versus sliding displacement. 
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Figure 8.40   Structural response of the fixed-base structure to El Centro earthquake: (a) drift at the top of the 
structure (sixth floor), and (b) structural shear (measured at its first floor). 
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Figure 8.41   Structural response to Pacoima earthquake S74W component (a) base (bearing) displacement, (b) 
drift at the top of the structure (sixth floor), (c) base shear, (d) structural shear (measured at its first floor), (e) 

Friction force, and (f) restoring force versus sliding displacement. 
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XFigure  8.41   Structural response to Pacoima earthquake S74W component (a) base (bearing) displacement, (b) 
drift at the top of the structure (sixth floor), (c) base shear, (d) structural shear (measured at its first floor), (e) 

Friction force, and (f) restoring force versus sliding displacement. 
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Figure 8.42   Structural response of the fixed-base structure to Pacoima earthquake S74W component: (a) drift at 
the top of the structure (sixth floor), and (b) structural shear (measured at its first floor). 
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Figure 8.43   Strcutural response to Pacoima earthquake S16E component 50% (a) base (bearing) displacement, 
(b) drift at the top of the structure (sixth floor), (c) base shear, (d) structural shear (measured at its first floor), (e) 

Friction force, and (f) restoring force versus sliding displacement. 
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Figure 8.44   Structural response of the fixed-base structure to Pacoima earthquake S16E component 50%: (a) 
drift at the top of the structure (sixth floor), and (b) structural shear (measured at its first floor). 

The next simulation is done with Manjil earthquake (Figures 8.45 and 8.46). Although the 
maximum ground acceleration is almost in the same range as the one in the analysis with 
Pacoima earthquake, the maximum sliding displacement and base shear are considerably 
larger than those computed in that analysis. It is mainly because of a larger input energy 
imbedded in the time history of Manjil earthquake in comparison to Pacoima earthquake 
(Figure 8.38). Besides, a very low frequency content of excitations, as seismic waves passed 
through thick layers of sedimentary soils of north of Iran, has increased the sliding 
displacement of the isolated structure considerably. With a higher friction coefficient and 
additional damping mechanism it is possible to reduce base shear and sliding displacement at 
the cost of a larger structural response. 

The time history of the Kobe earthquake used in this analysis has a peak ground acceleration 
of 3.34 m/s2 (0.34 g), which is almost the same as El Centro. It has a form similar to Pacoima 
S74W component (Figure 8.38 and Table 8.4). Both base and structural shear are less than 
15% of the total weight of the structure. The same structure with a fixed foundation would 
experience a shear force as much as 60% of the structural weight, considering an elastic 
response for the structure (Figures 8.47 and 8.48). 

The devastating Bam earthquake was a near source excitation with a very large maximum 
ground acceleration of 7.75 m/s2 (0.79 g). It has a strong impulse effect on the isolated 
structure in a very short period of time (Figure 8.49.a). Apart from the first four seconds, the 
response is almost the same as the response to other motions studied here. Base isolated 
structures are susceptible to impulse-shape loads. An additional damping mechanism 
dissipates to some extent the energy and gives the system more time to react more smoothly. 
With a larger value of friction coefficient it is possible to restrict the maximum sliding 
displacement. 
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Figure 8.45   Structural response to Manjil earthquake: (a) base (bearing) displacement, (b) drift at the top of the 
structure (sixth floor), (c) base shear, (d) structural shear (measured at its first floor), (e) Friction force, and (f) 

restoring force versus sliding displacement. 
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Figure 8.46   Structural response of the fixed-base structure to Manjil earthquake: (a) drift at the top of the 

structure (sixth floor), and (b) structural shear (measured at its first floor). 
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Figure 8.47   Structural response to Kobe earthquake: (a) base (bearing) displacement, (b) drift at the top of the 
structure (sixth floor), (c) base shear, (d) structural shear (measured at its first floor), (e) Friction force, and (f) 

restoring force versus sliding displacement. 
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XFigure  8.47   Structural response to Kobe earthquake: (a) base (bearing) displacement, (b) drift at the top of the 
structure (sixth floor), (c) base shear, (d) structural shear (measured at its first floor), (e) Friction force, and (f) 

restoring force versus sliding displacement. 
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Figure 8.48   Structural response of the fixed-base structure to Kobe earthquake: (a) drift at the top of the 
structure (sixth floor), and (b) structural shear (measured at its first floor). 
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Figure 8.49   Structural response to Bam earthquake: (a) base (bearing) displacement, (b) drift at the top of the 
structure (sixth floor), (c) base shear, (d) structural shear (measured at its first floor), (e) Friction force, and (f) 

restoring force versus sliding displacement 
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Figure 8.50   Structural response of the fixed-base structure to Bam earthquake: (a) drift at the top of the 
structure (sixth floor), and (b) structural shear (measured at its first floor).

 

Results of the first three analyses are in good agreement with those reported by [Mokha et al., 
1990]. It proves that it is possible to simulate the response of friction-isolated systems with 
the developed model based on the modal analysis. 

8.6 Conclusions 

In this chapter, first of all a one degree-of-freedom model is presented and its response to 
harmonic and non-harmonic loads have been studied. Parameters influencing the dynamic 
response of such a system, as for example the intensity of input excitations, frequency content 
of the excitation, and friction coefficient between sliding layers, are then introduced and their 
effects are discussed. 

To study the interaction between structural and bearing modules a two degrees-of-freedom 
model is developed and its response to a triangular excitation is then investigated. To prove 
the efficiency of sliding bearings the response of such a system is compared with the response 
of a fixed-base two-degree-of-freedom system. It has been shown that as a result of isolation, 
base shear acting on the first degree-of-freedom and drift in the second degree-of-freedom are 
reduced considerably. 

An isolated steel structure built on a shaking table is then simulated using a multi-degree-of-
freedom planar model developed in this research. To study the response of such a system 
comprehensively, several accelerogram with different characteristics, as for example the max 
peak ground acceleration, duration of the excitation, frequency content, etc. have been 
considered. Results of the numerical simulation are then compared with results of the 
experiment. 

It has been shown that base shear in a sliding-based isolated system is three to five times 
smaller than the one in a fixed-base structure. This can be achieved at the cost of a sliding 
displacement in bearings. 

As the magnitude of an earthquake increases, the sliding displacement becomes larger. For 
near source cases, to restrict the maximum sliding displacement, a higher amount of friction 
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coefficient or an extra damping source is required. The sliding displacement anticipated by 
simulation matches the result reported by the experiment very well. 

As a result of concavity of sliding plates in all investigated cases, bearings return back to their 
original configurations with a good degree of precision. This complies with results of shaking 
table tests done by [Mokha et al., 1990]. 

Permitting a structure sliding over its foundation distracts earthquake-induced forces from the 
structural system. In this way, drift in isolated systems is much smaller in comparison with 
the classical fixed-base systems. Drifts anticipated by the numerical simulation here are 
smaller than those reported by the experiment, mainly due to a stiffer numerical model for the 
structural system. 
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Chapter 9 

Conclusions and Further Works 

In friction pendulum systems, the structure is decoupled from its foundation by several 
sliding bearings. They can slide over a concave surface coated with a material with a 
very low friction coefficient. The response of such systems is complicated and 
combined of two phases of sticking and sliding. Numerical simulation of these systems 
is a challenging task because of their nonlinearity. In this chapter, firstly a brief 
review of numerical models developed, will be presented. Then main results of the 
study will be discussed. At last, some topics for further research have been proposed. 

9.1 37BA review of modelling and results 

The main goal of this study was to propose a numerical model to simulate the response of 
friction-isolated structures, in which the model must be simple, accurate, and practical. To 
this end three types of models are proposed, which will be reviewed here briefly.  

A very large participation factor of the first mode of vibration in base-isolated systems 
motivated the idea to simulate the dynamic response of such systems with a simple one 
degree-of-freedom model. Differential equation governing the response of such a system is 
solved with a piecewise exact solution. The solution is composed of two parts: transient and 
particular solutions. Regarding initial conditions in each time step, unknown parameters of the 
solution can be calculated. As the closed form solution has been applied, it is not required to 
use very short time steps. In case of possibility of a phase change, however, very short time 
steps must be applied, so that the exact point of a phase change can be found within the 
desired accuracy. Phase changes are controlled by means of a stick-slip criterion that is based 
on forces acting on the mass, namely inertial and restoring forces as a result of the 
geometrical stiffness (if it exists). This kind of model implies a rigid structural response. This 
is a logical assumption, as seismic forces transmitted to an isolated structure are much smaller 
than those transferred into a classical fixed-base structure. Results simulated with this model 
are then compared with those reported elsewhere as for instance by [Petersen, 2005], in which 
there is a good agreement. 

To study the interaction between an isolation block (sliding bearing) and the structure over it 
in a friction-isolated system, the model is developed into a two degree-of-freedom system, in 
which the first degree-of-freedom is corresponding the isolation module and the second one is 
for the structural block. In an iterative process, two differential equations governing the 
response of the system are solved. To decrease computational costs of the simulation an 
adaptive time digitization algorithm has been developed.  

At last, the model is generalized to simulate a planar MDOF system, in which by the initiation 
of sliding several new elements are activated, regarding the number of sliding bearings in the 
system. In sticking phases, however, added elements are deactivated and the rest of the 
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system is simulated as a classical fixed-base structure. As the nonlinearity of the response of 
such a system is restricted only to phase changes and in every single time step, system 
properties do not change, it is possible to apply modal analysis to simulate the response of 
such systems. First few mode shapes of isolated systems govern the main part of the structural 
response. Because of orthogonality of mode shapes in the modal space, it is possible to 
consider only these mode shapes instead of taking all of them as what is done in direct 
integration method. This reduces computational costs of simulation considerably. 

The set of differential equations controlling such a system must be written in a matrix form, 
so that it can be transformed into the modal space. Then the desired decoupled differential 
equations can be solved easily. Subsequently, results must be transformed back into the 
original space, as they cannot be interpreted in the modal space. For instance, it cannot be 
determined whether a phase change has happened or not. After controlling the possibility of a 
phase change in the original space, if no phase change has happened the same process will be 
done again for next time steps. Otherwise, time steps must be refined to fine the exact point of 
the phase change within the desired accuracy to activate/deactivate extra degrees-of-freedom. 

To simulate these systems more realistically, a velocity-dependent friction coefficient is 
applied (in sliding phases only). 

Results of numerical simulations with the developed numerical model are in good agreement 
with those cited in reports. Forces in a friction-isolated system are three to four times smaller 
than those in a fixed-base structure. The amount of the base sliding displacement depends on 
the intensity of excitations and the frequency content of the loading. 

It has been shown that the efficiency of the isolation method is a function of the earthquake’s 
magnitude (level of loading). Low levels of excitations activate sliding bearings too late or 
even not at all. As far as no sliding has been initiated, i.e. sticking phase, the structural 
response of an isolated system is the same as a fixed-base set.  

The friction coefficient is the other factor controlling the initiation of sliding in an isolated set 
(stick-slip criterion). Sliding bearings with larger friction coefficients are activated later than 
those with a lower friction coefficient. Hence, it is quite important to keep the friction 
coefficient for the whole life-time of an isolated structure in the same range as it is designed 
for. Therefore, isolation modules must be kept in a closed environment, preventing dust and 
water to gather in the bearing’s module. 

The frequency content of excitations plays an important role in the structural response of 
isolated structures. Isolated structures are susceptible to long-period waves with a dominant 
frequency of vibration near the isolation frequency. Impulse-shape waves can produce large 
sliding displacements. An additional damping mechanism or a larger friction coefficient 
avoids large sliding displacement and reduces base shear in bearings. 

The concavity of the sliding base plates in friction pendulum systems produces a restoring 
force, which creates a tendency in the set to come back to its original configuration after 
cessation of excitations. It has been shown that it does not have any negative effect on the 
efficiency of the isolation method. The choice of using a flat surface instead of a concave one 
depends mainly on the nature of local excitations. For instance, sites near an active fault are 
not appropriate for this choice. It depends also on the arrangement of neighbouring structures. 

The proposed multi-degree-of-freedom model in this study is much simpler in theory rather 
than the existing numerical model simulating the response of sliding-based isolated structures 
with a contact element, which makes this model more practical. Numerical results, at the 
same time, are in good agreement with results of practical tests. Because of application of 
modal analysis an adaptive time digitization process, numerical simulation with this model is 
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not time consuming. All these make this model an appropriate means to simulate the response 
of low-rise isolated buildings, in which uplifting is not a critical issue. 

9.2 Outlook 

Based on the numerical model proposed in this study several recommendations for further 
research can be made, among them: 

• Development of a numerical model to simulate the response of highly damped 
friction-isolated structures to restrict sliding displacement in case of excitations with a 
very low frequency content or impulse shape waves. Off-diagonal terms of the 
damping matrix in a heavily damped structure are large and may not be neglected. So 
modal analysis may not be directly applicable and the model must be modified. 

• Computation of axial force in sliding bearings to simulate frictional properties of 
bearings more realistically, as several experiments have proved that the friction 
coefficient between layers of Teflon and polished steel depends not only on the sliding 
velocity but also on the contact pressure. 

• Adding a gap element to the model; so that uplifting can be simulated as well. In this 
way the model may be applied to high-rise buildings too. 
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Appendix A 
Major Earthquakes since 1900 

 
Year Day-Month Location Latitude Longitude Deaths M 

1902 19-Apr Guatemala 14.0N 91.0W 2000 7.5 

 16-Dec Turkestan 40.8N 72.6E 4500 - 

1903 19-Apr Turkey 39.1N 42.4E 1700 - 

 28-Apr Turkey 39.1N 42.5E 2200 6.3 

1905 04-Apr India 33.0N 76.0E 19000 8.6 

 08-Sep Italy, Calabria 39.4N 16.4E 2500 7.9 

1906 31-Jan Colombia 01.0N 81.5W 1000 8.9 

 16-Mar Taiwan 23.6N 120.5E 1300 7.1 

 18-Apr USA, San Francisco 38.0N 123.0W 2000+ 8.3 

 17-Aug Chile, Santiago 33.0S 72.0W 20000 8.6 

1907 14-Jan Jamaica, Kingston 18.2N 76.7W 1600 6.5 

 21-Oct Central Asia 38.0N 69.0E 12000 8.1 

1908 28-Dec Italy, Messina 38.0N 15.5E 70000 7.5 

1909 23-Jan Iran, Silakhor 33.4N 49.1E 5500 7.3 

1912 09-Aug Turkey 40.5N 27.0E 1950 7.8 

1915 13-Jan Italy, Avezzano 42.0N 13.5E 29980 7.5 

1917 21-Jan Indonesia, Bali 08.0S 115.4E 15000 - 

 30-Jul China 28.0N 104.0E 1800 - 

1918 13-Feb China, Canton 23.5N 117E 10000 7.3 

1920 16-Dec China, Gansu 35.8N 105.7E 200000 8.6 

1923 24-Mar China 31.3N 100.8E 5000 7.3 

 25-May Iran, Torbateheydaria 35.3N 59.2E 2200 5.7 

 01-Sep Japan, Kanto 35.0N 139.5E 143000 8.3 

1925 16-Mar China, Yunnan 25.5N 100.3E 5000 7.1 

1927 07-Mar Japan, Tango 35.8N 134.8E 3020 7.9 

 22-May China 36.8N 102.8E 200000 8.3 

1929 01-May Iran, Koppe Dagh 38.0N 58.0E 3300 7.4 
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Year Day-Month Location Latitude Longitude Deaths M 

1930 06-May Iran, Salmas 38.0N 44.5E 2500 7.2 

 23-Jul Italy 41.1N 15.4E 1430 6.5 

1931 31-Mar Nicaragua 13.2N 85.7W 2400 5.6 

1932 25-Dec China, Gansu 39.7N 97.0E 70000 7.6 

1933 02-Mar Japan, Sanriku 39.0N 143.0E 2990 8.9 

 25-Aug China 32.0N 103.7E 10000 7.4 

1934 15-Jan India 26.6N 86.8E 10700 8.4 

1935 20-Apr Formosa 24.0N 121.0E 3280 7.1 

 30-May Pakistan, Quetta 29.6N 66.5E 30000 7.5 

 16-Jul Taiwan 24.4N 120.7E 2700 6.5 

1939 25-Jan Chile, Chillan 36.2S 72.2W 28000 8.3 

 26-Dec Turkey, Erzincan 39.6N 38.0E 30000 8.0 

1940 10-Nov Romania 45.8N 26.8E 1000 7.3 

1942 26-Nov Turkey 40.5N 34.0E 4000 7.6 

 20-Dec Turkey, Erbaa 40.9N 36.5E 3000 7.3 

1943 10-Sep Japan, Tattori 35.6N 134.2E 1190 7.4 

 26-Nov Turkey 41.0N 33.7E 4000 7.6 

1944 15-Jan Argentina, San Juan 31.6S 68.5W 5000 7.8 

 01-Feb Turkey 41.4N 32.7E 2800 7.4 

 07-Dec Japan 33.7N 136.2E 1000 8.3 

1945 12-Jan Japan 34.8N 137.0E 1900 7.1 

 27-Nov Pakistan 25.0N 60.5E 4000 8.2 

1946 31-May Turkey 39.5N 41.5E 1300 6.0 

 10-Nov Peru 08.3S 77.8W 1400 7.3 

 20-Dec Japan 32.5N 134.5E 1330 8.4 

1948 28-Jun Japan, Fukui 36.1N 136.2E 5390 7.3 

 05-Oct Turkmenistan 38.0N 58.3E 110000 7.3 

1949 05-Aug Ecuador, Ambato 01.2S 78.5E 6000 6.8 

1950 15-Aug India, Assam; Tibet 28.7N 96.6E 1530 8.7 

1954 09-Sep Algeria 36.0N 1.6E 1250 6.8 

1957 27-Jun USSR (Russia) 56.3N 116.5E 1200 - 

 02-Jul Iran, Mazandaran 36.2N 52.7E 1200 7.4 

 13-Dec Iran, Sahneh 34.4N 47.6E 1130 7.3 

1960 29-Feb Morocco 30.0N 9.0W 10000 5.9 

 22-May Chile 39.5S 74.5W 4000 9.5 

1962 01-Sep Iran, Qazvin 35.6N 49.9E 12230 7.3 

1963 26-Jul Yugoslavia, Skopje 42.1N 21.4E 1100 6.0 

1966 19-Aug Turkey, Varto 39.2N 41.7E 2520 7.1 
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Year Day-Month Location Latitude Longitude Deaths M 

1968 31-Aug Iran, Dasht e Bayaz 34.0N 59.0E 12000 7.3 

1969 25-Jul Eastern China 21.6N 111.9E 3000 5.9 

1970 04-Jan China, Yunnan 24.1N 102.5E 10000 7.5 

 28-Mar Turkey, Gediz 39.2N 29.5E 1100 7.3 

 31-May Peru 09.2S 78.8W 66000 7.8 

1972 10-Apr Iran, Southern (Fars) 28.4N 52.8E 5054 7.1 

 23-Dec Nicaragua 12.4N 86.1W 5000 6.2 

1974 10-May China 28.2N 104.0E 20000 6.8 

 28-Dec Pakistan 35.0N 72.8E 5300 6.2 

1975 04-Feb China 40.6N 122.5E 10000 7.4 

 06-Sep Turkey 38.5N 40.7E 2300 6.7 

1976 04-Feb Guatemala 15.3N 89.1W 23000 7.5 

 06-May Italy 46.4N 13.3E 1000 6.5 

 25-Jun New Guinea 04.6S 140.1E 422 7.1 

 27-Jul China, Tangshan 39.6N 118.0E 255000 8.0 

 16-Aug Philippines 06.3N 124.0E 8000 7.9 

 24-Nov Iran 39.1N 44.0E 5000 7.3 

1977 04-Mar Romania 45.8N 26.8E 1500 7.2 

1978 16-Sep Iran, Tabas 33.2N 57.4E 15000 7.8 

1980 10-Oct Algeria, El asnam 36.1N 1.4E 3500 7.7 

 23-Nov Italy, southern 40.9N 15.3E 3000 7.2 

1981 11-Jun Iran, Southern  29.9N 57.7E 3000 6.9 

 28-Jul Iran, Southern 30.0N 57.8E 1500 7.3 

1982 13-Dec W. Arabian Peninsula 14.7N 44.4E 2800 6.0 

1983 30-Oct Turkey 40.3N 42.2E 1342 6.9 

1985 19-Sep Mexico, Michoacan 18.2N 102.5W 9500 8.1 

1986 10-Oct El Salvador 13.8N 89.2W 1000 5.5 

1987 06-Mar Colombia 00.2N 77.8W 1000 7.0 

1988 20-Aug Nepal 26.8N 86.6E 1450 6.6 

 07-Dec Armenia, Spitak 41.0N 44.2E 25000 7.0 

1990 20-Jun Iran, western 37.0N 49.4E 40000 7.7 

 16-Jul Philippines, Luzon 15.7N 121.2E 1621 7.8 

1991 19-Oct India, northern 30.8N 78.8E 2000 7.0 

1992 12-Dec Indonesia, Flores 08.5S 121.9E 2500 7.5 

1993 29-Sep India, southern 18.1N 76.5E 9748 6.3 

1995 16-Jan Japan, Kobe 34.6N 135.0E 6000 6.9 

 27-May Sakhalin Island 52.6N 142.8E 1989 7.5 

1997 10-May Iran, Manjil 33.9N 59.7E 1560 7.5 
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Year Day-Month Location Latitude Longitude Deaths M 

1998 04-Feb Afghanistan 37.1N 70.1E 2323 6.1 

 30-May Afghanistan 37.1N 70.1E 4000 6.9 

 17-Jul Papua New Guinea 2.96S 141.9E 2183 7.1 

1999 25-Jan Colombia 4.46N 75.8W 1185 6.3 

 17-Aug Turkey 40.7N 30.0E 17118 7.4 

 20-Sep Taiwan 23.7N 121.0E 2297 7.6 

2001 26-Jan India, Bhuj 23.3N 70.3E 19988 7.7 

2002 25-Mar Afghanistan 35.9N 69.2E 1000 6.1 

2003 21-May Algeria 36.9N 3.71E 2266 6.8 

 26-Dec Iran, Bam 29.0N 58.3E 31000 6.6 

2004 26-Dec Sumatra 03.3N 95.9E 227898 9.1 

2005 28-Mar Indonesia 02.1N 97:0E 1313 8.6 

 08-Oct Pakistan 34.5N 73.6E 86000 7.6 

2006 26-Jun Indonesia 07.0N 110.5E 5749 6.3 

           Total Death           2115000  

Source: National Earthquake Information Center, Golden, CO, 
http://neic.usgs.gov/neis/eqlists/eqsmajr.html. 
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1BAppendix B 
Modified Mercalli Intensity Scale 

 

Intensity level Reaction of observers and types of damage 

I 
Not felt except by a very few people under especially favourable circumstances. 
No damage. 

II 
Felt only by a few persons at rest, especially on upper floors of buildings. Many people do 
not recognize it as an earthquake. 
No damage. Delicately suspended objects may swing. 

III 

Felt quite noticeably indoors, especially on upper floors of buildings. The vibration is like 
the passing of a truck, and the duration of the earthquake may be estimated. However, 
many people do not recognize it as an earthquake. 
No damage. Standing motor cars may rock slightly. 

IV 

During the day, felt indoors by many, outdoors by a few. At night, some people are 
awakened. The sensation is like a heavy truck striking the building. 
Dishes, windows, and doors are disturbed. Walls make a creaking sound. Standing motor 
cars rock noticeably. 

V 

Felt by nearly everyone, many awakened.  
Some dishes, windows, etc., broken. A few instances of cracked plaster and unstable 
objects overturned. Disturbances of trees, poles, and other tall objects sometimes noticed. 
Pendulum clocks may stop. 

VI 
Felt by everyone. Many people are frightened and run outdoors. 
There is slight structural damage. Some heavy furniture is moved, and there are a few 
instances of fallen plaster or damaged chimneys. 

VII 

Everyone runs outdoors. It is noticed by persons driving motor cars. 
Negligible damage in buildings of good design and construction, slight to moderate 
damage in well-built ordinary structures, and considerable damage in poorly built or badly 
designed structures. Some chimneys are broken. 

VIII 

Persons driving motor cars are disturbed. 
Slight damage in specially designed structures. Considerable damage in ordinary 
substantial buildings, with partial collapse. Great damage in poorly built structures. Panel 
walls are thrown out of frame structures. There is the fall of chimneys, factory stacks, 
columns, monuments, and walls. Heavy furniture is overturned. Sand and mud are ejected 
in small amounts, and there are changes in well-water levels. 

IX 

Considerable damage in specially designed structures. Well-designed frame structures are 
thrown out of plumb. There is great damage in substantial buildings with partial collapse. 
Buildings are shifted off of their foundations. The ground is conspicuously cracked, and 
underground pipes are broken. 

X 

Some well-built wooden structures are destroyed. Most masonry and frame structures are 
destroyed, including the foundations. The ground is badly cracked. There are bent train 
rails, a considerable number of landslides at river banks and steep slopes, shifted sand and 
mud, and water is splashed over their banks. 

XI 
Few, if any, masonry structures remain standing. Bridges are destroyed, and train rails are 
greatly bent. There are broad fissures in the ground, and underground pipelines are 
completely out of service. There are earth slumps and landslips in soft ground. 

XII 
Waves are seen on the ground surface. The lines of sight and level are distorted. 
Total damage with practically all works of construction greatly damaged or destroyed. 
Objects are thrown upward into the air. 
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2BAppendix C 
2-DOF Model Algorithm 
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m Structural mass  M Base mass 

 c Structural damping  C Base damping 

 k Structural stiffness  K Base stiffness 

 R Radius of curvature of the sliding 
surface  Ff Friction force 

ω  Structural natural frequency Ω  Base natural frequency 

ξ  Structural damping ratio ζ  Base damping ratio 

 i Time counter  j Time counter for refined time steps 

b
iu  Base displacement at the beginning 

of the time step Nr. i 
b
iu&  Base velocity at the beginning of the 

time step Nr. i 

1
e
iu −  Base displacement at the end of the 

time step i-1 1
e
iu −&  Base velocity at the end of the time step 

i-1 

iη  
Phase state variable of the current 
time step (zero for sticking and one 
for sliding) 

 1iη −  
Phase state variable of the previous 
time step (zero for sticking and one for 
sliding) 

tΔ  Time step sΔ&&  
Variation of the calculated structural 
acceleration in two consecutive 
iterations 

 P The known part of the loading 
(Equation 7.58) gu&&  Ground acceleration 
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3BAppendix D 
MDOF Model Algorithm 
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 M Mass matrix of the Superstructure  M2 Mass matrix of the whole set 

 C Damping matrix of the Superstructure  C2 Damping matrix of the whole set 

 K Stiffness matrix of the Superstructure  K2 Stiffness matrix of the whole set 

M%  
Modal mass matrix of the super-
structure 2M%  Modal mass matrix of the whole set 

C%  
Modal damping matrix of the super-
structure 2C%  Modal damping matrix of the whole 

set 

K%  
Modal stiffness matrix of the super-
structure 2K%  Modal stiffness matrix of the whole 

set 

ω  Eigenfrequencies of the superstructure 2ω  Eigenfrequencies of the whole set 

φ  Eigenvector of the superstructure 2φ  Eigenvector of the whole set 

 i Time counter  tol Tolerance (10-6) 

tΔ  Time step newtΔ  Refined time step 

η  Modal displacement U  Displacement matrix of the whole set 

η&  Modal velocity U&  Velocity matrix of the whole set 

η&&  Modal acceleration U&&  Acceleration matrix of the whole set 

fF  Friction force matrix gP  Matrix of the inertial force 

fF%  Modal friction force matrix gP%  Matrix of the modal inertial force 

iη  
Phase state variable of the current time 
step (zero for sticking and one for 
sliding) 

 1iη −  
Phase state variable of the previous 
time step (zero for sticking and one 
for sliding) 

effK  Effective stiffness (CAA method) effP  Effective load (CAA method) 
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