
Bergische Universität Wuppertal

Fakultät für Wirtschaftswissenschaft

Schumpeter School of Business and Economics

Interference aware scheduling

of gantry cranes in container

yards

Dissertation zur Erlangung des akademischen Grades

Doktor der Wirtschaftswissenschaft

vorgelegt von

Lennart Zey (M.Sc.)

Wuppertal, Februar 2019

Betreut von: Prof. Dr. Dirk Briskorn / Prof. Dr. Stefan Bock

Die Dissertation kann wie folgt zitiert werden:

urn:nbn:de:hbz:468-20190529-101201-3
[http://nbn-resolving.de/urn/resolver.pl?urn=urn%3Anbn%3Ade%3Ahbz%3A468-20190529-101201-3]

Acknowledgements

After a little more than 4 years, this dissertation comes to an end and would

probably haven taken a little longer without the influence of several people.

First of all and most importantly, I want to thank Prof. Dr. Dirk Briskorn

for his continuous support and advice and the door that stood open for me

when a detour or deadlock in research seemed to appear on the horizon (pun

intended). On top of that, I appreciate the perfect mixture of guidance, lib-

erties and encouragement that made my time in Wuppertal really enjoyable,

letting me not once doubt my decision to step on to this path. Furthermore,

I want to thank Prof. Dr. Stefan Bock for being my second adviser and for

reviewing this dissertation.

Michael, Lena, Marcel and Bart: thank you for creating a helpful and en-

joyable working atmosphere at the chair. I would particularly like to thank

Michael, for being a passable roommate at several conferences and workshops

and for being an appreciative sparring partner in terms of research, but more

importantly in terms of humor.

I want to thank my beloved wife Vera for supporting me and accepting the

changes in our life plan that come with writing a dissertation. Thank you

for taking all duties off my back whenever one of those last-minute errors in

the coding had to be fixed.

Lastly, I deeply want to thank my parents, for encouraging me to try out

new things while supporting me if something would go wrong.

I

Contents

Abbreviations V

Tables VI

Figures VIII

List of Symbols X

1 Introduction 1

1.1 Motivation . 1

1.2 Outline . 4

1.3 Literature . 5

2 Scheduling of Triple-Crossover-Cranes 8

2.1 The Triple-Crossover-Crane interference resolving problem . . 10

2.1.1 Problem definition and model formulation 11

2.1.2 Graphical model . 17

2.1.2.1 Graphical representation 18

2.1.2.2 Schedules without detours 23

2.1.2.3 Detours . 32

II

CONTENTS III

2.1.3 Extensions . 45

2.1.3.1 Safety distances between cranes 45

2.1.3.2 Containers of different sizes 47

2.1.4 Algorithm implementation 49

2.1.5 Experimental Study 52

2.2 Interference aware scheduling of triple-crossover-cranes 58

2.2.1 Problem definition and model formulation 59

2.2.2 Branch and Bound . 65

2.2.2.1 Sequential Assignment and Sequencing 65

2.2.2.2 Simultaneous Assignment and Sequencing . . 73

2.2.2.3 Routing Phase 77

2.2.2.4 Node Order Strategies and Upper Bound

Heuristic . 78

2.2.3 Computational Results 80

2.3 Summary . 87

3 Scheduling of cooperating Twin-Cranes 89

3.1 Problem description . 91

3.2 Branch & Bound Approaches 96

3.2.1 Simultaneous Sequencing and stacking position deter-

mination . 97

3.2.1.1 Branching . 97

3.2.1.2 Routing . 107

3.2.1.3 Bounding . 109

CONTENTS IV

3.2.2 Non-simultaneous sequencing and stacking position de-

termination . 112

3.2.2.1 Determining job sequences first 112

3.2.2.2 Determining stacking positions first 114

3.3 Benchmarking Algorithms . 116

3.3.1 Heuristics for the TCSPH 116

3.3.2 Dynamic container handover 118

3.4 Computational Study . 121

3.4.1 Static Analysis . 122

3.4.2 Rolling horizon approach 132

3.5 Summary . 134

4 Conclusions and Outlook 135

Bibliography 137

Abbreviations

B&B branch-and-bound approach

MIP mixed integer programming

RMG rail mounted gantry crane

TRCIRP triple-crossover-crane interference resolving prob-

lem

TRCSP triple-crossover-crane scheduling problem

TCSPH twin-crane scheduling problem in presence of a ded-

icated handshake area

V

Tables

2.1 Average run times in seconds and average gap in percent for

high-overlap-setting . 54

2.2 Average run times in seconds and average gap in percent for

low-overlap-setting . 55

2.3 Average value for CALG . 58

2.4 Average relative gap (in percent) between max{l(nc) | c =

1, 2, 3} and CALG . 58

2.5 Comparison of MIP models 81

2.6 Comparison of average solving times in seconds, average gap

in percent . 83

2.7 Analysis of the instances solved by BESTE 84

2.8 Comparison of average solving times in seconds, average gap

in percent . 86

3.1 Effect of bh: average workload Wc, average number of jobs |Jc| 123

3.2 Comparison of B&Bs, storage block width: 6 rows: avg. run

times in seconds, average relative gap in percent, low and high

capacities . 124

VI

TABLES VII

3.3 Comparison of B&Bs, storage block width: 10 rows: avg. run

times in seconds, average relative gap in percent, low and high

capacities . 125

3.4 Comparison of nearest neighbor heuristics: average relative

gap in percent, 6 and 10 row block width 127

3.5 Comparison of 2OPT approaches and storage block width of

6 rows: low and high stacking position capacity, avg. run time

in seconds, average relative gap in percent 128

3.6 Comparison of 2OPT approaches and storage block width of

10 rows: low and high stacking position capacity, avg. run

time in seconds, average relative gap in percent 129

3.7 Average makespan obtained by the B&Bs and selected heuristics130

3.8 Average makespan obtained by SEQJS, W2 and W3 for |I
i| =

|Io| = 5, low capacity, a block width of 6 and bh = 5, 6, . . . , 15 131

3.9 Average obtained makespan by ABB, average run times in

seconds and average relative deviation in percent to best re-

sults obtained by any B&B for bh = 10 131

3.10 Avg. makespan yielded by approaches for the rolling horizon

setting, average relative deviation in percent to the makespan

obtained by ABB . 133

Figures

1.1 Schematic layout of a container terminal 2

2.1 A triple-crossover-crane setting deployed on a storage yard . . 9

2.2 Example of a triple-crossover-crane setting 9

2.3 Obstacles from a two- and three-dimensional perspective . . . 22

2.4 A feasible path through the model 23

2.5 Crane positions over time for the depicted path in Figure 2.4 . 24

2.6 Planes potentially touched by segments resulting from branching 27

2.7 Crane positions over time in the nested partial network 31

2.8 Crane positions over time in the partially overlapping network 31

2.9 A detour of crane 2 for crane 3 40

2.10 Perspective of crane 1 and 2 in the example of the sub-model . 41

2.11 Perspective of crane 2 and 3 in the example of the sub-model . 42

2.12 Detour A . 42

2.13 Detour B . 43

2.14 Detour C . 43

2.15 Obstacles covering infeasible states due to safety distances of

sc = 1.7 and st = 1.3 . 46

VIII

FIGURES IX

2.16 Container yard with different sized containers 48

2.17 Branching example for |J | = 5 67

2.18 Branching example when simultaneously assigning and se-

quencing jobs for |J | = 5 . 76

3.1 Schematic layout of a container block with twin-cranes and a

handshake area . 90

List of Symbols

(c, c′, θ, θ′) Branch, implying that crane c′ conducts operation θ′ before c

conducts θ

(c, k) The kth request of crane c ∈ C

1 Notation of the crossover-crane

2 Notation of the seaside-twin-crane

3 Notation of the landside-twin-crane

d̂bj(i) Bay position of the drop off request of job j(i)

d̂rj(i) Row position of the drop off request of job j(i)

d̂j(i) Position as (d̂bj(i), d̂
r
j(i)) of the drop off request of job j(i)

ôbj(i) Bay position of the pick up request of job j(i)

ôrj(i) Row position of the pick up request of job j(i)

ôj(i) Position as (ôbj(i), ô
r
j(i)) of the pick up request of job j(i)

ν Start point of a detour

σc Routing of crane c

εo,c Plane on obstacle o indicating the prioritization of crane c

Ac Jobs assigned to crane c

X

List of Symbols XI

bh Bay position of the handshake area

bOj The bay position of the drop off request of job j

bUj The bay position of the pick up request of job j

b0c Starting bay of crane c ∈ C at the beginning of the planning horizon

bc,k Bay where the container of request (c, k) gets picked up or dropped

off

C Set of Cranes

Ch
r Capacity of stacking position r

Cmax Makespan

dOj Duration necessary to conduct the drop off request of job j

dUj Duration necessary to conduct the pick up request of job j

di Destination position of container i

dc,k Duration necessary to conduct request (c, k)

eOj Earliest period when the drop off request of job j may be completed

eUj Earliest period when the pick up request of job j may be completed

ecc,k Earliest possible completion time of request (c, k)

Gc Number of requests of crane c ∈ C

H2 Positions in the handshake area exclusively used by crane 2 for drop-

ping off containers

H3 Positions in the handshake area exclusively used by crane 3 for drop-

ping off containers

I i Set of inbound containers

Io Set of outbound containers

List of Symbols XII

I i,l Set of inbound containers to be handled by the landside-crane

I i,s Set of inbound containers exclusively handled by the seaside-crane

Io,l Set of outbound containers to be handled by the landside-crane

Io,s Set of outbound containers exclusively handled by the seaside-crane

J Set of container transport jobs

j(i) Transport job related to container i

j1(i) Job describing the storage of i in the handshake area

j2(i) Job describing the retrieval of i from the handshake area

JR Set of jobs, having row positions in the handshake area minimizing

laden travel necessary for retrieving jobs

JS Set of jobs, having row positions in the handshake area minimizing

laden travel necessary for storing jobs

Jc Set of container transport jobs of crane c

l(σc) Duration necessary to carry out σc

l(nc) Length of the non-delay routing based on nc

lOj Latest period when the drop off request of job j may be completed

lUj Latest period when the pick up request of job j may be completed

lcc,k Latest possible completion time of request (c, k)

Nc Jobs related to containers, handled by crane c only

nc The job sequence of crane c ∈ C

o0c Initial position of the cranes

oi Origin position of container i

List of Symbols XIII

p Duration necessary for lifting or releasing a container

pc,t Bay position of crane c ∈ C at the end of period t

Q Set of bays

Rk
c Jobs in Rc for which the row position in the handshake area is deter-

mined

Ru
c Jobs in Rc for which the row position in the handshake area is not

determined

Rc Jobs implying a retrieval from the handshake area by crane c

Sk
c Jobs in Sc for which the row position in the handshake area is deter-

mined

Su
c Jobs in Sc for which the row position in the handshake area is not

determined

sc Safety distance to be kept between a twin-crane’s centre and the

crossover-crane’s centre

st Safety distance to be kept between the twin-crane’s centres

Sc Jobs of c implying a storage in the handshake area

T Planning horizon

Wc Total workload of crane c based on its assigned jobs

wj Workload of job j

xO
t,j,c Binary variable: 1 if conducting the drop off request of job j, per-

formed by crane c is completed in period t; 0 otherwise

xU
t,j,c Binary variable: 1 if conducting the pick up request of job j, performed

by crane c is completed in period t; 0 otherwise

xc,k,t Binary variable: 1, if crane c ∈ C finishes conducting the kth request

at the end of period t; 0, otherwise

List of Symbols XIV

yj,c Binary variable: 1 if a job j is assigned to crane c; 0, otherwise

zOj,c Binary variable: 1 if crane c ∈ {2, 3} is positioned in a larger bay than

crane 1 while 1 conducts the drop off request of job j; 0 otherwise

zUj,c Binary variable: 1 if crane c ∈ {2, 3} is positioned in a larger bay than

crane 1 while 1 conducts the pick up request of job j; 0 otherwise

zc,k Binary variable: 1, if crane c ∈ {2, 3} stays in a larger bay than crane

1 while the kth request of crane 1 is conducted; 0 otherwise

Chapter 1

Introduction

1.1 Motivation

The importance of maritime container transport in global supply chains is

undisputed. Over the last decades it constantly increased, from 5984 million

tons loaded globally in 2000 to 10702 million tons in 2017 (see UNCTAD

[41]). With growing transport volumes and likewise growing capacity of con-

tainer ships, increases the need for efficient processes in container terminals.

Here, the containers arrive on vessels, or by land, on trucks or trains, in order

to be transshipped to their final destination. A schematic terminal layout is

depicted in Figure 1.1.

Keeping the berthing times of ships short is a key goal of both, terminal op-

erators and shipping companies, resulting from its major influence on prof-

itability. In order to allow a high container throughput, all involved terminal

subsystems, such as the quay-cranes needed to unloaded ships, the storage

yard, as well as inner terminal transport devices such as trucks or automated

guided vehicles, are in high need of elaborate planning procedures.

This dissertation has its focus on the container storage yard. Here, containers

are intermediately stored after they arrive at the terminal whenever the des-

ignated means of onward transport is not yet available. Hence, the storage

1

CHAPTER 1. INTRODUCTION 2

Train terminal Trucks Storage Yard Quay Cranes Vessel

Figure 1.1: Schematic layout of a container terminal

yard acts as a key interface between sea- and land-transport and is involved

in most terminal operations. Typically, it consists of multiple container stor-

age blocks, in which containers are grouped and temporarily stored. Usually

these blocks are designed according to one of two layouts. Either they are

placed parallel to the wharf, following the so called Asian Layout, or they

are placed perpendicular (i.e. European Layout), see Carlo et al. [15]. This

dissertation focuses on the latter.

After being transported to the designated storage block by an inner terminal

transport device, there exist multiple types of vehicles that carry out all

operations associated with storing or retrieving containers. Among those

are Rubber Tired Gantries, being cranes that serve multiple blocks due to

their mobility, as well as Lift Trucks or Straddle Carriers. This dissertation

however examines Rail Mounted Gantry Cranes (RMGs). These cranes move

on pairs of rails along both sides of a container storage block and are hence

assigned permanently to it. The key advantage of RMGs is, that they are

able to operate (nearly) fully automated and that they can be employed

on large blocks, while being able to handle heavy containers (Libbey [34]).

We find them employed in all major container terminals such as the port of

Antwerp, Hamburg and Rotterdam (see Kemme [29]).

CHAPTER 1. INTRODUCTION 3

In- and outbound containers handled by RMGs, enter or leave a block then

through one of two transfer access points, referred to as the land- or seaside,

where they are (un-)loaded (from) onto terminal transport devices. There

exist multiple types of RMG setups, usually being one of three settings. First,

only a single RMG is employed on the block, as depicted on the bottom block

in Figure 1.1. Second, there is a pair of RMGs working jointly, as shown

on the top block in Figure 1.1. Either, it consists of two cranes of equal

height and width, referred to as twin-cranes, that cannot cross positions.

Or, on the other hand, it consists of a larger crossover-crane, moving on a

separate pair of rails along the block, that can cross a smaller RMG. Finally,

there can be three cranes employed, consisting of a pair of twin-cranes and

a crossover-crane (see the middle block in Figure 1.1), referred to as the

triple-crossover-crane setting.

There exist multiple areas of optimization with the storage yard and its blocks

being involved, such as (among others) design decisions, container-to-block

assignment, storage position allocation, as well as crane scheduling for a given

block. The research objective of this dissertation is on crane scheduling, as-

suming that all previously named decisions are already taken. Specifically,

the scheduling of triple-crossover cranes is examined, being a crane setup

that promises a high container throughput (see Klaws et al. [30]). Further-

more, the topic of twin-crane scheduling during seaside workload peaks is

covered, where the workload between cranes is shared by handing over con-

tainers from one crane to the other. For both areas, literature focusing on

holistic scheduling approaches is relatively scarce. In addition, interference

between cranes, being a key driver of productivity, is oftentimes resolved

by simple rules only and key constraints such as precedence relations and

stacking capacities are only covered to some extend. Hence, throughout this

dissertation several interference aware scheduling approaches are developed

that aim at contributing to the respective fields of research.

CHAPTER 1. INTRODUCTION 4

1.2 Outline

This dissertation focuses on two dominant topics, being the scheduling of

triple-crossover-cranes as well as the scheduling of cooperating twin-cranes in

presence of a dedicated container handover area. After providing an overview

of literature on crane scheduling in Section 1.3, a holistic scheduling approach

for triple-crossover-cranes is presented in Chapter 2. Here, a pair of twin-

cranes of equal height and width and a crossover-crane that can cross the

other cranes, serve a container storage block. The chapter begins by intro-

ducing a sophisticated routing approach and continues by detailing a holistic

scheduling framework. Within the framework, job sequences for cranes are

constructed under the objective of providing minimum makespan, interfer-

ence free, schedules. For this purpose two branch-and-bound approaches are

developed and compared by means of a computational study.

In Chapter 3 a pair of twin-cranes that serve a single storage block, is consid-

ered. It is assumed that the crane located at the seaside has a higher work-

load, e.g. during seaside workload peaks when a vessel is to be(un)loaded.

Hence, all containers arrive and leave the block at the seaside. In order to

share the workload between the cranes, a handshake area is employed within

the yard, where containers are handed over from one crane to the other.

The position of the handshake area then affects the workload of the cranes

and eventually the minimum makespan necessary to carry out all transport

jobs. Three branch-and-bound approaches that are able to obtain minimum

makespan schedules for a given handshake area, are developed and are later

on benchmarked against heuristic approaches in a computational study. The

chapter concludes with providing insight on how the position of the hand-

shake area as well as capacities affect the makespan and how the approaches

perform within a rolling horizon setting.

Finally, Chapter 4 concludes the dissertation and gives an outlook on future

research.

CHAPTER 1. INTRODUCTION 5

1.3 Literature

The literature overview presented in this section is based on the findings in

Briskorn and Zey [6, 7] and Zey et al. [43]. All quotes are taken from [7].

The topic of terminal optimization is intensively studied and many overviews

regarding the topic exist. ”Stahlbock and Voß [39] and Steenken et al. [40]

provide general overviews about operations in sea port container terminals

and give insights into the related optimization problems and solution ap-

proaches. Carlo et al. [13] focus on optimization problems located at the

seaside of a terminal, whereas Carlo et al. [15] give an overview about the

optimization problems that arise from transport operations between sea, yard

and landside. Further Carlo et al. [16] provide an overview about layout de-

cisions and optimization problems at storage yards concerning multiple crane

settings. A comparison between different types of storage crane settings can

be found in Vis [42]. When the cranes are of equal size and move on the same

pair of rails the scheduling problem shares similarities to the scheduling of

factory or warehousing cranes in automated storage and retrieval systems

(AS/RS). Boysen et al. [4] provide a general classification scheme for crane

scheduling with interference in multiple logistics areas and give an overview

about that topic.

In the literature multiple approaches exist that consider the scheduling of

a single crane that serves a yard block, see e.g. Daganzo [19] or Ng and

Mak [36], for yard crane scheduling with release dates of jobs or Gharehgo-

zli et al. [22] for an exact approach when aiming at finding a sequence of

fulfillment with minimal total travel time. Further approaches can be found

in Boysen and Stephan [3]. However, naturally, interference is not an issue

when scheduling a single crane, such that single-crane approaches have to be

extended when considering multiple cranes.

Among the work that focuses on two cranes working on a block few regard

interference in an exact manner: In Li et al. [32] a crane scheduling model

for two yard cranes moving on a common track with a discrete time horizon

is proposed that solves a problem similar to the one in Ng [35] but is less

CHAPTER 1. INTRODUCTION 6

resource demanding and therefore obtains solutions faster. The approach

assigns container jobs to cranes and determines a sequence in which they

are processed that regards interference. In Li et al. [33] the authors enhance

the model proposed in [32] such that the time horizon is modeled continu-

ously which reduces the number of variables, and improves the run time. All

three studies provide optimal solutions at the cost of large run times even

for small instances. Thus, in [32] and [33] a rolling horizon perspective is

applied as well as heuristics that provide good solutions. In Choe et al. [17]

a local search based approach is developed, while Choe et al. [18] provides

a genetic algorithm, both addressing the scheduling of twin-cranes under

consideration of non-crossing constraints. Gharehgozli et al. [23] provide a

heuristic approach tackling the problem of scheduling twin-cranes when stor-

age and retrieval operations are given under the objective of minimizing the

makespan. Briskorn and Angeloudis [5] focus on the routing decision for

given assignment of jobs to cranes and sequences. They develop a graphical

model representing the problem setting and a strongly polynomial DP al-

gorithm in order to provide conflict-free schedules that minimize the overall

makespan. Nossack et al. [37] describe a two-stage decomposition approach

for a crossover-crane-setting in which one larger crane can cross the smaller

one. The problem involves all three parts of the decision, that is assignment,

sequences, and routing have to be decided. Interference is regarded in an

exact manner employing the DP approach by [5]. The approach solves small

to medium size instances in reasonable time up to optimality and provides

good solutions for larger instances.”

For the previously presented approaches it is assumed that a container, once

lifted, is completely transported by a single crane. However, as a measure to

share the workload, container handover can be allowed. Then, cranes store

containers in intermediate positions where they get afterwards picked up by

the other crane and the remaining transport is conducted. For such a set-

ting, Briskorn et al. [8] develop an heuristic approach, aiming at makespan

minimization during seaside workload peaks. Jaehn and Kress [27] extends

the approach and regards landside-related workload as well whereas Kress

et al. [31] introduces an exact solution procedure for this optimization task.

CHAPTER 1. INTRODUCTION 7

In order to simplify planning, container handover can be restricted to a ded-

icated handshake area within the storage yard. For this premise Carlo and

Mart́ınez-Acevedo [14] propose interference avoidance rules for cranes oper-

ating in the handshake area. The effect of container handover in any bay

is compared to the handover in a dedicated area by means of simulation in

Gharehgozli et al. [24].

”Klaws et al. [30] analyze the benefits of a triple-crossover-crane setting as

compared to a setting with two cranes moving on the same pair of rails

by means of a simulation study. Here storage location, re-stacking strate-

gies and conflict avoidance between cranes are decided using heuristic ap-

proaches. The authors conclude that that a triple-crossover-crane setting

is indeed more productive than a dual crane setting even when providing

the routing in a non-optimal manner. Besides a general overview about the

design and operations of automated container storage systems, Kemme [29]

proposes a model formulation for the scheduling and routing of containers in

a triple-crossover-setting under the objective of minimizing the sum of the

cranes’ waiting times. The increase in computational complexity caused by

simultaneously tackling the routing and scheduling results in large computing

times even for a small number of jobs to be handled. Heitmann [26] proposes

a mixed integer model, again aiming at minimizing the total waiting time

of triple-crossover-cranes. Here, release dates, due dates and precedence re-

lations between jobs are considered. A two-stage decomposition approach

is presented, consisting of a first step tackling the simultaneous assignment

and sequencing of jobs while in the second step a subsequent interference

free routing is determined. For the same number and type of cranes, Dorn-

dorf and Schneider [20] develop an algorithm that solves the assignment and

sequencing. Interference is then resolved in a branch and bound algorithm

under the objective of minimizing the sum of final completion times of crane

schedules. The provided routing is afterwards evaluated by a multi-criteria

objective function.” For given job sequences, Briskorn and Zey [6] develop a

routing approach under a makespan minimization objective, that is as well

presented in this dissertation.

Chapter 2

Scheduling of

Triple-Crossover-Cranes

The content presented in this section is as well depicted in Briskorn and Zey

[6] and Briskorn and Zey [7].

When faced with increasing container transport volumes, increasing the con-

tainer handling capacity of a block, by employing more cranes seems to be a

viable measure in order to sustain a high productivity. Hence, in this chap-

ter we pick up on the so called triple-crossover-crane setting, that was e.g

implemented at Container Terminal Burchardkai (see [20]), in order to signif-

icantly increase the container throughput. In this setting, three RMGs, being

a larger crossover-crane and two twin-cranes of identical size, that move on

pairs of rails alongside the block, are considered. The smaller twin-cranes

move on the same pair of rails and are of equal size, and hence, cannot pass

each other. The larger crossover-crane however, moves on a separate pair

of rails such that the other cranes can pass below it as long as its spreader

is completely lifted. Figure 2.1 illustrates the setup, depicting a single con-

tainer block embedded in the terminal from above while Figure 2.2 provides

a detailed look on the block only.

On the right hand side in Figure 2.1, we have quay cranes (un)loading ships

that arrive at the terminal. Container transport in between the storage block

8

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 9

Figure 2.1: A triple-crossover-crane setting deployed on a storage yard

and the quay cranes is conducted by inner terminal transport devices such

as Automated Guided Vehicles whereas containers reach or leave the block

on trucks on the left hand landside.

Even though increasing the container handling capacity by employing more

cranes seems beneficial, it comes at the cost of potentially more conflicts

between crane activities. As a result, incorporating a sophisticated interfer-

ence avoidance strategy is a key measure to achieve the desired productivity.

Hence, a fast approach for conflict resolution aiming at minimal makespan,

when job sequences of cranes have been decided, is developed in Section 2.1.

Figure 2.2: Example of a triple-crossover-crane setting

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 10

In Section 2.2 an algorithm tackling

• the problem of determining an assignment of transport jobs to cranes,

• of constructing job processing sequences, based on the assignments,

and

• of determining interference free routings, by employing the approach

from Section 2.1

• under the objective of minimizing the overall makespan,

is developed. Hereby it is assumed that a set of jobs to be planned is given and

pick up and drop off positions and durations of these jobs are predetermined

by an other component of the terminal control system.

2.1 The Triple-Crossover-Crane interference

resolving problem

The content presented in this section is as well published in Briskorn and Zey

[6] and all quotes are taken from this very article.

”This section is structured as follows. In Section 2.1.1 we give a formal

definition of the problem, with a single container type only and a safety

distance of one container length between cranes followed by a mixed integer

programming (MIP) model representing it. Section 2.1.2 presents a graphical

model capturing the problem. In Section 2.1.3 we give insight on how the

model can be extended to account for different container types and arbitrary

safety distances between cranes. Although we can guarantee to find a feasible

schedule, the corresponding approach is a heuristic since the network does not

cover all dominant routing strategies. Implementation details are outlined in

Section 2.1.4. We show that we obtain near-optimal results by means of a

computational study in Section 2.1.5. In particular, we compare our results

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 11

to the solutions achieved by a standard solver using the MIP model and a

greedy heuristic.

2.1.1 Problem definition and model formulation

The problem setting in this section considers triple-crossover-cranes, having

to avoid interference while working jointly on a container yard block and we

refer to it as the triple-crossover-crane interference resolving problem (TR-

CIRP).

The yard block consists of a set of bays Q := {0, 1, . . . , B + 1} whereas

0 and B + 1 are handover areas for containers that approach or leave the

block by truck or AGV. We denote the set of cranes as C := {1, 2, 3} with 1

representing the crossover-crane. It can cross the twin-cranes since it moves

on different rails on the yard block and has a larger height and width and

thus cannot collide with them as long as its spreader is not lowered. The

twin-cranes are of equal height and width and move on the same pair of rails

along the block and, therefore, cannot cross each other or move to the same

position. They are denoted by 2 and 3 whereas 2 is always positioned in a

bay with a smaller number than 3.

Throughout this section it is assumed that the cranes, the containers and the

bays have the same length. Such an assumption is not a crucial restriction.

We see in [29], that the current generation of gantry cranes roughly has the

length of a 40-foot container and hence we consider 40-foot containers only.

However, we will give insight on how to handle containers of different sizes

in Section 2.1.3.2.

The time horizon is assumed to be continuous and is segmented into periods

where period t ∈ N \ {0} covers the interval between [t− 1, t]. We are given

a sequence of transport jobs for each crane with one job corresponding to

the lift of a container in its origin position and the release of that container

in its destination position. Each crane processes the jobs in its sequence

in the respective order. Since with regard to interference of cranes there is

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 12

no difference between picking a container up or dropping one off, we split

each job into two separate requests, corresponding to lifting or releasing a

container. This allows us to obtain a sequence of requests for each crane,

based on the sequence of transport jobs. We denote the number of requests

of crane c, c ∈ C, by Gc, the kth, k = 1, . . . , Gc, request of crane c, c ∈ C, by

(c, k), and the bay where c conducts request (c, k) by bc,k. In order to conduct

request (c, k), c has to be positioned in bc,k for a duration of dc,k which reflects

the time necessary for lowering the spreader, grabbing a container or releasing

it, and bringing the spreader up again. Note that this duration may depend

on the request since the duration of moving the spreader and adjusting it may

depend on the very location of the request and its surrounding containers.

Each crane c ∈ C is positioned in a starting bay b0c at the beginning of

the first period and has to conduct its assigned requests in the predefined

sequence nc. In between conducting two requests (c, k) and (c, k+1) crane c

has to move from bc,k to bc,k+1. Each crane can move with a speed of 1 bay

per period.

A routing σc of crane c can be described by detailing the activity of c in each

period t. We consider three types of activities:

• moving from bay b to bay b−1 or b+1 with 0 ≤ b−1 and b+1 ≤ B+1,

• conducting request (c, k) in bay bc,k and

• waiting in bay b.

The first two activities are necessary for a crane to fulfill requests in 1, . . . , Gc

and we synonymously refer to them as operation throughout this section.

A crane is positioned in a bay b ∈ Q for a whole period if a crane waits or

conducts a request. However, its position gradually changes with a constant

rate (reflecting its speed of 1 bay per period) when it moves from b to b+ 1

(b− 1) in period t′. Then, at point of time t ∈ [t′ − 1, t′], the crane’s position

is b+ (t− t′ + 1) or b− (t− t′ + 1) respectively.

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 13

A routing of crane c is considered feasible, with regard to movements and

the sequence of requests if

• c processes (c, 1) to (c, Gc) in the given order,

• c is located in bay bc,k while conducting (c, k) for dc,k consecutive peri-

ods, and

• if c is located in bay b at the end of period t, then the next operation

starts from or takes place in b.

The non-delay routing based on nc, of a crane c is the routing where crane c

conducts all of its requests as early as possible, starting from bay b0c assuming

that no interferences with other cranes occur. The length of a non-delay

routing is denoted by l(nc).

A schedule (σ1, σ2, σ3) is an assignment of a routing that is feasible with re-

gard to movements and the sequence of requests to each crane. Let T(σ1,σ2,σ3)

be the makespan of such a schedule which is the maximum number of periods

among these routings with regard to (σ1, σ2, σ3). If the routing for a crane

c has less than T(σ1,σ2,σ3) periods, then we append waiting activities in the

crane’s last position such that each routing has T(σ1,σ2,σ3) periods.

Conflicts between the cranes must be resolved while conducting requests on

the container block. A schedule, therefore, is regarded as feasible if cranes

do not interfere, that is if

• while conducting request (1, k) in a time interval [t, t + d1,k] no twin-

crane is located in a position b such that b1,k − 1 < b < b1,k + 1 at any

point of time t′ ∈ [t, t+ d1,k] and

• at each point of time t′ ∈ [0, Tσ] cranes 2 and 3 are located in bays b

and b′, respectively, with b ≤ b′ − 1. Hence, it is assumed that crane 2

(3) does not operate in bay B + 1(0).

Our problem then is to find a feasible schedule with minimum makespan.

Briskorn and Angeloudis [5] show that the corresponding problem for two

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 14

cranes (either cranes 1 and 2 or cranes 2 and 3) can be solved in (strongly)

polynomial time. These results build on a rough analogy to the problem to

schedule two jobs (corresponding to cranes) in a job shop (with machines

corresponding to bays) aiming at minimum makespan. This problem has

been shown to be solvable in polynomial time in, e. g. Brucker [12]. We are

not able to settle the computational complexity of TRCIRP but believe it to

be NP-hard since the problem to schedule three jobs (corresponding to three

cranes in TRCIRP) in a job shop aiming at minimum makespan has been

proven to be NP-hard in Sotskov and Shakhlevich [38].

In the following we formulate a MIP model that represents the TRCIRP. An

upper bound on the minimum makespan can be derived easily by considering

a schedule where the three cranes operate strictly one after another. That is,

crane 1 conducts its requests first and cranes 2 and 3 do not have anything

to do but to move out of its way if necessary. Afterwards, crane 2 conducts

its requests and, finally, crane 3 does. We set the time horizon T in our MIP

model to this upper bound. Furthermore, we can derive a lower bound as

max{l(nc) | c = 1, 2, 3}.

Note that for a given lower bound and upper bound on the makespan we

can determine an earliest completion time ecc,k as well as a latest completion

time lcc,k for each request (c, k). We employ binary variable xc,k,t signaling

whether (xc,k,t = 1) or not (xc,k,t = 0) c completes (c, k) at the end of period

t. We describe the bay in which c is positioned at the end of period t with pc,t.

Since these variables are time based it is expected that the pre-determined

upper- and lower bounds have an effect on the performance of the MIP. We

will give further insight into this circumstance in Section 2.1.5. Finally, we

use binary variable zc,k, c ∈ {2, 3}, k = 1, 2, . . . , G1, which has value 0 if crane

c is positioned in a bay b ≤ b1,k − 1 while crane 1 conducts (1, k) and has

value 1 if crane c is positioned in a bay b ≥ b1,k + 1 while crane 1 conducts

(1, k).

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 15

Min Cmax (2.1)

Cmax ≥

lcc,Gc
∑

t=ecc,Gc

xc,Gc,t · t ∀c ∈ C (2.2)

lcc,k
∑

t=ecc,k

xc,k,t = 1 ∀c ∈ C, k = 1, . . . , Gc (2.3)

lcc,k
∑

t=ecc,k

xc,k,t · t ≤

lcc,k+1
∑

t=ecc,k+1

(t− dc,k+1) · xc,k+1,t ∀c ∈ C, k = 1, . . . , Gc − 1 (2.4)

(B + 1) ·

1−

min{t+dc,k ,lcc,k}
∑

t′=max{t,ecc,k}

xc,k,t′

+ bc,k ·

min{t+dc,k ,lcc,k}
∑

t′=max{t,ecc,k}

xc,k,t′

 ≥ pc,t

(2.5)

∀c ∈ C, k = 1, . . . , Gc, t = ecc,k − dc,k, . . . , lcc,k

bc,k ·

min{t+dc,k ,lcc,k}
∑

t′=max{t,ecc,k}

xc,k,t′

 ≤ pc,t (2.6)

∀c ∈ C, k = 1, . . . , Gc, t = ecc,k − dc,k, . . . , lcc,k

(B + 2) ·

2−

zc,k +

min{t+d1,k ,lc1,k}
∑

t′=max{t,ec1,k}

x1,k,t′

 ≥ b1,k + 1− pc,t (2.7)

∀c ∈ {2, 3}, k = 1, . . . , G1, t = ec1,k − d1,k, . . . , lc1,k

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 16

(B + 2) ·

2−

(1− zc,k) +

min{t+d1,k ,lc1,k}
∑

t′=max{t,ec1,k}

x1,k,t′

 ≥ pc,t − (b1,k − 1)

(2.8)

∀c ∈ {2, 3}, k = 1, . . . , G1, t = ec1,k − d1,k, . . . , lc1,k

pc,0 = b0c ∀c ∈ C (2.9)

pc,t − pc,t−1 ≤ 1 ∀c ∈ C, t = 1, . . . , T (2.10)

pc,t−1 − pc,t ≤ 1 ∀c ∈ C, t = 1, . . . , T (2.11)

p2,t ≤ p3,t − 1 ∀t = 1, . . . , T (2.12)

xc,k,t ∈ {0, 1} ∀c ∈ C, k = 1, . . . , Gc, t = ecc,k, . . . , lcc,k (2.13)

zc,k ∈ {0, 1} ∀c ∈ {2, 3}, k = 1, . . . , G1 (2.14)

Objective function (2.1) reflects the goal to minimize the makespan. Con-

straint (2.2) bounds the makespan from below whereas (2.3) enforces that

each request is conducted exactly once. Constraint (2.4) ensures that the

jobs are executed in the given sequence. The cranes being located in the

bay they are conducting a request in is enforced by (2.5) and (2.6). Note

that constraints (2.5) and (2.6) restrict position pc,t of c in period t to values

in [0, B + 1] if no request is conducted in t. If, however, crane c conducts

its kth request in t, then position pc,t is fixed to bc,k. Constraints (2.7) and

(2.8) ensure that the twin-cranes are not positioned in a bay in which the

crossover-crane is currently conducting a request in. No significant restric-

tions are imposed on positions of cranes 2 and 3 by constraints (2.8) and

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 17

(2.7) if no request is conducted by crane 1 in t. If, however, crane 1 conducts

its kth request in t, then position p2,t is bounded from below by b1,k + 1 or

bounded from above by b1,k − 1 depending on whether z2,k = 1 or z2,k = 0.

The positions of crane 3 are restricted analogously.

The starting position of the cranes is given in (2.9). Restriction (2.12) pre-

vents the twin-cranes from passing each other or moving to the same bay.

Finally, (2.10) and (2.11) restrict the speed of each crane to one bay per pe-

riod. The domains of the decision variables are defined in (2.13) and (2.14).

2.1.2 Graphical model

We develop a graphical model picking up the foundation laid by Briskorn

and Angeloudis [5]. We detail the representation of our problem by this

model in Section 2.1.2.1. The model allows us to find a schedule by finding

a path through the three-dimensional model. Since there typically is an

infinite number of paths we narrow the paths under consideration down in

the following subsections, and in doing so, potentially miss an optimal path.

The intuition behind this reduction is to let cranes conduct their respective

request sequences simultaneously as often and as long as possible. This

naturally supports short makespans. Only in order to avoid interferences

one or two cranes may wait or make a detour which delays completion of

request sequences. The graphical model representation allows us to identify

promising situations where waiting or detours may actually be beneficial.

In Section 2.1.2.2 we determine a network of paths representing schedules

where the only allowed option to avoid interference is to let a crane wait in

order to prioritize another crane in case of a conflict. That is, we do not

take detours into account here. In Section 2.1.2.3 we extend this network

to account for detours. In both cases, we can then determine a schedule by

finding a path through the network.

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 18

2.1.2.1 Graphical representation

Before developing the model, let us quickly revisit the foundations laid by

Briskorn and Angeloudis [5]. In their work, the authors develop an exact

routing approach for two cranes. The approach yields feasible (conflict-free)

schedules with a minimum makespan. The cranes under consideration are

either two twin-cranes or a crossover-crane and a smaller crane that work

in the same storage block. For two non-delay routings of cranes c and c′, a

graphical model is presented, encompassing a rectangular area with a width

equal to l(nc) and a height equal to l(nc′). Each point (tc, tc′) describes

the progress of both cranes with regard to their non-delay routings, that

is crane c and c′ completed the first tc and tc′ periods of their non-delay

routings. Naturally, such points may violate interference constraints, e. g. if

it means that both cranes conduct requests at the same time in the same bay.

Infeasible points are clustered to obstacles. A path from the lower left to the

upper right corner of the rectangle corresponds to a schedule and if such a

path does not cut through any obstacle it is feasible. The authors construct

a network of paths such that at least one path in the network represents

a feasible schedule with minimum makespan. Finding this path within the

network can be accomplished by finding a shortest path in a directed acyclic

graph.

Throughout this section, the graphical representation of our problem is em-

bedded in a cube with width, height and depth each equal to the length of

one of the non-delay routings of the cranes such that the axis corresponding

to crane c starts at 0 and ends at l(nc). Each point in the cube, referred

to as a tuple t = (t1, t2, t3), again represents the progress of each crane with

regard to its non-delay routing. That is, crane c has processed the first tc

periods of its non-delay routing. Note that the position of c can be derived

from tc and the non-delay routing of nc. Furthermore, we can see whether

crane c is currently conducting a request or not.

A schedule corresponds to a path from (0, 0, 0) to (l(n1), l(n2), l(n3)). Such

a path can be partitioned into segments. A segment is a part of the path

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 19

where the direction of the path does not change. Each segment represents

a subset of cranes processing with regard to their non-delay routings for a

certain duration. Depending on the very subset of cranes processing we have

an orientation of the segment within the cube. The orientation can be seen

as a tuple with binary entries (p1, p2, p3) where pc = 1 if and only if crane c

is processing. Hence, we have potentially seven different types of segments,

where at least one crane is processing. Note that orientation (0, 0, 0) does

not lead anywhere. If a segment connects points (t1, t2, t3) and (t′1, t
′
2, t

′
3) we

must have either tc = t′c or tc+L = t′c for each crane c and an arbitrary non-

negative value L. This segment, then represents a partial schedule starting

at states corresponding to (t1, t2, t3) and reaching at states corresponding

to (t′1, t
′
2, t

′
3). During this partial schedule covering a timespan of L periods

crane c processes if and only if t′c = tc+L and it does so with full speed. We

then say the segment has length L.

We can easily transform, possibly by adding waiting times, a schedule in

which cranes run in any speed into another schedule of the same makespan

in which all cranes run in full speed during moving. Assume that a crane

conducts a request in a bay with less than full speed, in order to avoid a

conflict at a later part of its schedule. Then, it can as well conduct requests

with full speed and wait in the same bay afterwards, in order to compensate

for the earlier completion of the request. Now assume that a crane moves

towards a bay with less than full speed, in order to avoid a conflict in that

bay. It can as well move with full speed and wait next to the bay until the

conflict is resolved. Finally, assume that a crane c moves with half speed

because another crane c′ moves with less than full speed and in doing so

blocks c. Crane c′ may be blocked in the same way by the third crane but

there is at least one crane which is not blocked by another crane (unless we

have a deadlock). The crane not being blocked can process at full speed as

argued above enabling the other cranes to process with full speed as well.

A path represents a full schedule and its length is given as the total length

of its segments.

A point may correspond to states violating the interference constraints pre-

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 20

sented in Section 2.1.1. In this case we say that the point is infeasible. Note

that whether a point is infeasible or not depends only on the states of pairs

of cranes since interference constraints involve pairs of cranes only. Thus we

can directly project the clusters of infeasible points developed by Briskorn

and Angeloudis [5] for the two-crane settings to our cube.

1. For each request of crane 1 in bay b and each time crane 2 (3) enters

b we have a cluster. The cluster encompasses all points where crane 1

conducts the request and 2 (3) enters b, potentially conducts a request

in b, and leaves b. Whether or not point t = (t1, t2, t3) is contained in

such a cluster, hence, depends on t1 and t2 (t3) but not on t3 (t2).

2. For each request of crane 2 in bay b and each request of crane 3 in bay

b′ with b′ ≤ b we have a cluster. The cluster encompasses all points

where crane 2 (3) approaches b (b′) and has passed bay b′ (b) already,

conducts the request in b (b′), and leaves bay b (b′) and has not passed

bay b′ (b) again yet. Whether or not point t = (t1, t2, t3) is contained

in such a cluster, hence, depends on t2 and t3 but not on t1.

Note that these clusters may be overlapping. Briskorn and Angeloudis [5]

show that for two-crane settings these clusters accurately identify infeasible

points. From this result and the independence from the third coordinate as

stated above we conclude the following corollary.

Corollary 1. A point is infeasible if and only if it is contained in one or

more such clusters.

We say a path is feasible if it does not cut through any cluster. Therefore,

we refer to these clusters as obstacles in the following. We have two types of

obstacles, then, corresponding to the two types of clusters decribed above.

A feasible path represents a schedule where at no time the cranes’ states are

in conflict. The problem to find a schedule with minimum makespan, then,

is equivalent to finding a feasible path with minimum length.

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 21

Figure 2.3 gives an example of both types of obstacles in a three dimensional

model. The cranes each have to conduct one request in bay 3. Crane 1 is

positioned in b01 = 6 at the beginning of the planning horizon and has to

return to that bay after conducting the request. Crane 2 starts and ends

its schedule in bay 0, while crane 3 is positioned in 5 and has its parking

position in bay 7. The cranes cannot conduct their requests simultaneously

because in doing so they would operate in the same bay at the same time.

The non-delay routings are annotated at the respective axes. Gray squares

represent conducting requests in the bay noted in the square while white

squares represent moves, e.g. the first square on the axis of crane 1 describes

a move from bay 6 to bay 5. Considering cranes 1 and 2 (and 1 and 3), we can

restrict ourselves to the two-dimensional perspective in Figure 2.3b and 2.3a

where for each case the obstacles run across the complete third axis which

is only implied. The dark-gray area on the axis of 1 and 2 (1 and 3) covers

the infeasible states, namely when both cranes conduct a request in bay 3 at

the same time and when 2 (3) enters or leaves bay 3 while 1 conducts the

request. We find these dark-gray areas as well in Figure 2.3c. Considering

cranes 2 and 3, we can restrict ourselves to the two-dimensional perspective

in Figure 2.3d. Analogous to the obstacle between 1 and 2 (1 and 3), states

where both cranes conduct a request in bay 3 simultaneously are covered

and highlighted in dark-gray. In addition the obstacle covers states where

2 and 3 have crossed positions. In Figure 2.3c the corresponding obstacles

in the cube are depicted. We observe that there are points where only two

cranes are in conflict, e. g. cranes 1 and 3 in (4, 1, 4) and cranes 2 and 3 in

(2, 4, 4), but there are also points where all three cranes are in conflict with

each other, e. g. (4, 4, 4).

In Figure 2.4 we see a feasible path through the cube developed in Figure

2.3. The respective position of the cranes in each period implied by the path

is depicted in Figure 2.5. We denote the bay position on the y-axis while the

periods take the x-axis. Additionally we marked the states referring to the

graphical model.

In the depicted path the cranes execute their non-delay routings simultane-

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 22

3

1

(l(n1), l(n3))

0

1

2

3

4

5

6

7

8

5/4

4/3

3

3

3/4

4/5

5/6

6/7

0 1 2 3 4 5 6 7 8

6/5 5/4 4/3 3 3 3/4 4/5 5/6

(a) Perspective of crane 1 and 3

2

1

(l(n1), l(n2))

0

1

2

3

4

5

6

7

8

0/1

1/2

2/3

3

3

3/2

2/1

1/0

0 1 2 3 4 5 6 7 8

6/5 5/4 4/3 3 3 3/4 4/5 5/6

(b) Perspective of crane 1
and 2

2

3

1

(l(n1), l(n2), l(n3))

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 0
1

2
3

4
5

6
7

8

0/1

1/2

2/3

3

3

3/2

2/1

1/0

6/5 5/4 4/3 3 3 3/4 4/5 5/6 5/
4 4/
3 3

3

3/
4 4/
5 5/
6 6/
7

(c) Three-dimensional graphical
model

2

3

(l(n3), l(n2))

0

1

2

3

4

5

6

7

8

0/1

1/2

2/3

3

3

3/2

2/1

1/0

0 1 2 3 4 5 6 7 8

5/4 4/3 3 3 3/4 4/5 5/6 6/7

(d) Perspective of crane 2
and 3

Figure 2.3: Obstacles from a two- and three-dimensional perspective

ously for one period corresponding to a segment from (0, 0, 0) to (1, 1, 1) of

length 1. Crane 3 waits in bay 4 such that it does not interfere with the next

request of crane 2. Cranes 1 and 2 process with regard to their non-delay

routings for 2 periods corresponding to a segment from (1, 1, 1) to (3, 3, 1) of

length 2. At the end of period 3, crane 1 waits in bay 3 with its spreader lifted

to let 2 conduct the request first. Accordingly, crane 2 conducts its request

and leaves the bay while both other cranes wait corresponding to a segment

from (3, 3, 1) to (3, 6, 1), having length 3. At the beginning of period 7, while

crane 3 still waits crane 1 starts to conduct its request. Crane 1 operates

for an additional period and crane 2 completes its non-delay routing at the

end of period 8, corresponding to a segment from (3, 6, 1) and (5, 8, 1) with a

length of 2. From here on, cranes 1 and 3 can proceed without interruption.

This corresponds to, first, a segment from (5, 8, 1) to (8, 8, 4) where crane

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 23

1 completes its non-delay routing and, second, a segment from (8, 8, 4) to

(8, 8, 8) where crane 3 completes its own with length 3 and 4 respectively.

The length of the path then equals 15.

2

3

1

(l(n1), l(n2), l(n3))

(1, 1, 1)

(3, 3, 1)

(3, 6, 1)

(5, 8, 1)

(8, 8, 4)

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 80
1

2
3

4
5

6
7

8

0/1

1/2

2/3

3

3

3/2

2/1

1/0

6/5 5/4 4/3 3 3 3/4 4/5 5/6 5/
4 4/
3 3

3

3/
4 4/
5 5/
6 6/
7

Figure 2.4: A feasible path through the model

2.1.2.2 Schedules without detours

Given the graphical representation of a problem instance there will usually be

an infinite number of paths from (0, 0, 0) to (l(n1), l(n2), l(n3)). As mentioned

in Section 2.1.2.1 we restrict ourselves to paths consisting of segments where

cranes conduct requests either with full speed or not at all.

Still, restricting to such paths may leave us with an infinite number of paths.

In the section at hand, therefore, we further reduce the set of paths to be

considered. We do so by constructing a network with a finite set of segments

and, therefore, a finite set of paths from (0, 0, 0) to (l(n1), l(n2), l(n3)).

In order to provide an intuition we first outline the basic idea of our proce-

dure. Of course, segments with orientation (1, 1, 1) are most promising when

aiming at a small makespan since all three cranes process their non-delay

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 24

t

Bay

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7
(1,1,1) (3,3,1) (3,6,1) (5,8,1) (8,8,4) (l(n1), l(n2), l(n3))

Crane 1
Crane 2
Crane 3

Figure 2.5: Crane positions over time for the depicted path in Figure 2.4

routings in parallel. Hence, we deviate from this orientation only if (poten-

tially) necessary. The same holds for orientations with two operating cranes

from which we deviate by letting a second crane wait only if (potentially)

necessary. Hence, we aim at using segments with orientation (1, 1, 1) as much

as possible and make use of segments with less than three cranes process-

ing their non-delay routings only in order to circumnavigate obstacles. This

rule translates into the crane environment as the following property of an

optimum solution.

Property 1. We let cranes wait only if (potentially) necessary in order to

prevent interferences of cranes.

Furthermore, if crane c waits for another crane c′ it does so with respect to

one of two types of conflicting operations: First, requests r of c and r′ of c′

are in conflict with each other and we decide that c′ can conduct r′ before c

conducts r. Second, a moving operation of twin-crane c′ is in conflict with

a request r = (1, k) of c = 1 and we decide that c′ can move through the

bay b1,k before crane 1 conducts (1, k) (or the other way round). In both

cases, crane c waits for crane c′ with respect to an obstacle as defined in

Section 2.1.2.1.

Property 2. If crane c waits for crane c′ with respect to an obstacle, then

it proceeds along its non-delay routing before waiting (up to the point where

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 25

processing its operation related to the obstacle is in conflict with c′ processing

its operation first).

This property restricts the set of points in the cube where we have to allow

segments with orientations with less than 3 cranes processing. It is easy to see

that an optimum schedule with this property exists. Consider an optimum

schedule without this property and the first point of time t a crane starts

waiting earlier than it would be necessary in order to avoid interference. We

choose an arbitrary crane c among those starting to wait in t earlier than

necessary and modify the schedule by letting this crane process its non-delay

routing for one more period. This, obviously, yields a feasible schedule and

cannot increase the makespan. Furthermore, either the first point of time

where a crane waits earlier than necessary has been increased or the number

of cranes doing so in t has been decreased. Hence, by repeatedly applying

this step we can achieve an optimum schedule having the desired property.

Note that the two properties above are in line with properties developed in

Briskorn and Angeloudis [5] and transferred to the case with three cranes

here, only.

In order to construct the network we apply two basic procedures, namely

branches and restarts, whereas a restart refers to restarting the crane from

previously waiting. A branch (c, c′, θ, θ′) determines a certain crane c′ to

process operation θ′ before another crane c processes operation θ. Obviously,

branches need to be applied only for pairs of operations θ and θ′ giving rise

to an obstacle since other pairs can be processed in parallel. Branches are

applied to a certain point on segment s reducing the set of cranes currently

processing their non-delay routings by a single crane. It is implied that crane

c stops processing its non-delay routing and stays in the bay corresponding

to the point on s. Obviously such a crane c waiting in this bay must not be in

conflict with θ′. Restarts are applied at the end points of some segments and

start a new segment with more cranes processing their non-delay routings

from there.

We find restarts in state (3, 6, 1) or (5, 8, 1) in the path depicted in Figure

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 26

2.4 where crane 1 (or 3) can continue operating after previously waiting. A

branch is applied to the segment starting at (0, 0, 0) in (1, 1, 1), where crane

3 begins to wait in order to not interfere with crane 2. The two conflicting

operations inducing the branch are the moves to bay 3 of cranes 2 and 3.

Consequently we start a partial network. A second branch in the same partial

network is applied at (3, 3, 1) where crane 1 begins to wait as well for 2. Here

the conflicting operations of 1 and 2 are the ones implying conducting the

requests in bay 3.

Intuitively speaking, a partial network begins when a crane c starts to wait

and it ends, when the conflict causing the waiting has been resolved. The

partial network then consists of all the segments that describe different pri-

oritizations of the other cranes c′ and c′′ while c is waiting.

In the proposed example the partial network first induced by letting crane 3

wait does contain two segments. However this is not necessarily the case for

every partial network. A partial network with a waiting crane c can consist

of multiple segments implying different prioritization for pairs of conflicting

operations of the other cranes c′ and c′′.

We claim that given an arbitrary schedule branches and restarts (plus the

processing along a segment) are sufficient to describe the schedule. Note that

we need to allow segments to have length zero between two such procedures

since we have to account for schedules where two cranes start waiting at the

same point of time.

When generating the network we apply branches and restarts with regard to

the following scheme. A branch (c, c′, θ, θ′) is applied to a segment s in order

to induce a partial network where crane c is waiting for crane c′ with respect

to operation θ and θ′. When, eventually, a path through this partial network

is chosen, then θ′ is conducted before θ. This partial network starts with a

segment s′ with an orientation differing from the one of s only in c′ processing

as on s and c waiting with regard to s′. This partial network ends at one

edge of the obstacle (corresponding to θ and θ′) which indicates that c′ has

finished operation θ′ and the conflict is resolved. Note that while crane c is

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 27

not making any progress with respect to its non-delay routing the other two

cranes may encounter conflicts which have to be resolved. There might be

several options how to resolve these conflicts resulting in a (partial) network

of segments rather than a single segment.

2

3

1

εo,2

εo,1

(l(n1), l(n2), l(n3))

0

1

2

3

4

5

6

7

8

9

10

11

0 1 2 3 4 5 6 7 0
1

2
3

4
5

(a) Obstacle between crane 1 and 2

2

1

3

εo,2

εo,3

(l(n1), l(n2), l(n3))

0

1

2

3

4

5

6

7

8

9

10

11

0 1 2 3 4 5 6 7 8 9 10 0
1

2
3

4
5

(b) Obstacle between crane 2 and 3

Figure 2.6: Planes potentially touched by segments resulting from branching

Figure 2.6 depicts both types of obstacles (corresponding to cranes 1 and

2 on the left side and to cranes 2 and 3 on the right side). Each obstacle

has two crosshatched planes. If a partial network exists where the other

crane (involved in the perspective) waits for crane c′ to finish its operation

corresponding to obstacle o first, this partial network runs along the plane

labeled εo,c′. Note that the position of the partial network with respect to

crane c coincides with the one of ǫo,c′ due to Property 2.

A segment of the partial network ends

• at the last point where it intersects with εo,c′,

• at the point where it encounters another obstacle or

• the outer boundaries of the cube.

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 28

Note that the point where a segment reaches the upper edge of εo,2 or the

right edge of εo,1 and εo,3 of an obstacle corresponding to θ and θ′ is the

state from which on c can continue processing its non-delay routing (after

prioritizing c′). In such a state potential restarts are applied and partial

networks can end. Note, furthermore, that since further branches may be

applied to s′ (and the resulting partial network) there may be more than one

such segment in the partial network induced by branch (c, c′, θ, θ′).

If c can wait in the same position for more than one operation of another

crane c′, then we apply a branch only for the earliest such operation of c′ since

we can easily apply yet another branch for letting c wait for a later operation

of c′ after applying a restart to end points in the first partial network.

It is obvious for segments with orientation (1, 1, 1) which type of branches can

be applied. For such a segment each crane may wait for each other crane such

that six different branches can be applied. Note that there are only three

different orientations of segment s′, namely (0, 1, 1), (1, 0, 1), and (1, 1, 0).

However, depending on whether orientation (0, 1, 1) results from crane 1

waiting for crane 2 or crane 3 different types of branches can be applied

in this partial network. Accordingly, we refine our notation to (0, 1, 1) and

(0, 1, 1) meaning that crane 1 is waiting for crane 2 and 3, respectively. Sec-

ond, for a segment with only one crane operating we cannot apply branches

since in the resulting partial network no crane would be processing.

What then remains to show is which branches can be applied to segments

where only two cranes are processing. For such segments we, again, poten-

tially have six different types of branches to apply. However, we will argue

that we need to consider only three of them. Consider such a segment s

where c waits for c′ and c′′ is processing its non-delay routing in parallel. We

do not need to consider a branch letting c wait for c′ or c′′ since this does not

alter the orientation of the current segment s. So, we can just as well follow

s to its end point and – if appropriate – apply the branch here after applying

a restart. Furthermore, we do not need to consider a branch letting c′ wait

for c. Recall that on s crane c is waiting for c′ to complete an operation

θ′. Applying such a branch to s, then, means that c′ starts waiting for c to

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 29

complete an operation θ before c′ actually completes θ′. Then, there is no

reason for c to wait in the first place and c completing θ could have been

prioritized over c completing θ′ immediately.

To conclude, we apply three types of branches to s where c waits for c′ and

c′′ is processing its non-delay routing:

• letting c′ wait for c′′,

• letting c′′ wait for c′, or

• letting c′′ wait for c.

Following the proposed example and e.g. a segment with orientation (0, 1, 1),

we could create segments (0, 0, 1), (0, 1, 0) or (0, 1, 0) but omit from creating

(0, 0, 1). Note that partial networks as collections of segments are potentially

overlapping. More specifically, we have two types of overlaps. First, two

partial networks may be nested. That is, within a partial network a second

one is initiated by a branch and it has a unique end point within the first

partial network. This is necessarily the case if the first partial network reflects

c waiting for c′ and the second partial network reflects c′ to wait for c′′.

Second, two partial networks may be partially overlapping. That is, within

a partial network a second one is initiated by a branch and all end points

of the second partial network end outside the first partial network. This is

necessarily the case if the first partial network reflects c to wait for c′ and the

second partial network reflects c′′ to wait for c. If the second partial network

results from a branch letting c′′ wait for c′ then both partial networks may be

partially overlapping or nested. Since the part of the second partial network

that overlaps with the first one consists of a single path only there is either

a unique end point of the second partial network within the first one or all

end points of the second partial network lie outside the first one.

We find an example of such a partial network in the path depicted in Figure

2.4. Here, we start the first partial network by letting crane 3 wait for crane

2. Hence the orientation of the segment starting at state (1, 1, 1) in the cube

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 30

is (1, 1, 0). While the conflict between cranes 2 and 3 is not yet resolved

(crane 3 is still waiting) we decide that crane 1 waits, as well, in order to

let crane 2 conduct the request first. Hence, we start the second partial

network within the first and the segment has orientation (0, 1, 0). At this

point the first partial network consists of two segments, while the second

network consists of a single segment only. Since both networks address the

same operation of crane 2 (conducting a request in bay 3) the endpoint of

both networks is connected to 2 having left bay 3 at state (3, 6, 1) and, thus,

unique. We apply a restart afterwards such that we have a segment with

orientation (1, 1, 1). Immediately afterwards, we decide that crane 3 waits

for 1. Hence the segment describing the restarts has length 0. We create a

new segment and consequently a partial network, with orientation (1, 1, 0).

Note that this is in line with the described branching strategy.

In the setting in Figure 2.4 there is also a nested partial network to be

constructed (not depicted in Figure 2.4) letting crane 3 wait for 2 and letting

crane 2 wait for crane 1. The partial network reflecting crane 2 waiting for

crane 1 starts within the other partial network (at state (2, 2, 1) in the cube)

and, necessarily, has to be completed first before crane 2 can process its non-

delay routing further.” The respective crane positions over time are depicted

in Figure 2.7.

”A further partially overlapping network is to be constructed for crane 3

waiting for crane 2, and crane 1 waiting for crane 3 after entering bay 3.

Here, the start point of the second partial network lies inside the first one at

(3, 3, 1) but its endpoints lie outside ((3, 8, 5)), since crane 1 keeps on waiting

for crane 3 after crane 2 has finished its request.” For this network the crane

positions over time are depicted in Figure 2.8.

”It remains to detail restarts. Restarts are applied to end points of a partial

network that lie on the outer edge of planes of the obstacles giving rise to

the partial network. At each such end point a new segment is started. When

there is no second partial network starting in the first one and having its end

points outside the first one we start segments with orientation (1, 1, 1). If

there is such a second partial network, then the new segments are obviously

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 31

t

Bay

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7
(1,1,1) (2,2,1) (5,2,1) (8,5,1) (8,8,4) (l(n1), l(n2), l(n3))

Crane 1
Crane 2
Crane 3

Figure 2.7: Crane positions over time in the nested partial network

t

Bay

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

1

2

3

4

5

6

7
(1,1,1) (3,3,1) (3,5,1) (3,8,5) (5,8,7) (l(n1), l(n2), l(n3))

Crane 1
Crane 2
Crane 3

Figure 2.8: Crane positions over time in the partially overlapping network

part of it and, therefore, reflect only two cranes processing their non-delay

routings with regard to the branch implying the second partial network.

A procedure constructing the full network now can be specified easily. It

maintains a list of points where restarts have to be conducted together with

the orientation of the segment to be started. Whenever a segment is started

its end point is determined and all branches necessary (as described above)

are applied yielding new points to be inserted in the list. This list is sorted

in lexicographically non-decreasing order of the points’ coordinates. This

sorting ensures that each point is considered only once for restarts.

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 32

It is obvious that the proposed branching strategy does not necessarily lead

to an overall optimal solution and, further, does not even guarantee feasible

routings. The latter is the case when a deadlock situation occurs. Deadlocks

may occur in even very small instances. Consider an instance where crane

1 does not have any request to conduct and cranes 2 and 3 have a single

transport job to carry a container from position 3 to 4 and from position 2

to 1, respectively. If cranes 2 and 3 have initial positions 2 and 3, then there

does not exist a feasible schedule without detours. We explain how detours

are incorporated in the overall approach in the next section.

2.1.2.3 Detours

Up to now we assumed that cranes only deviate from their non-delay routings

by waiting for another crane. Hence, we ignored the opportunity to let a crane

deviate from the bay sequence resulting from the non-delay routing in order

to give way to another crane. It has been shown in Briskorn and Angeloudis

[5], however, that allowing detours may lead to better schedules or are even

necessary for obtaining feasible solutions at all. Consequently, we consider

this opportunity in the section at hand.

Note that there is no need for crane 1 to deviate from the bay sequence in

its non-delay routing since it suffices to have its spreader up in order not to

interfere with the other cranes. Therefore, we treat two cases only, namely

the case where a twin-crane gives way to crane 1 in Section 2.1.2.3.1 and the

case where one twin-crane gives way to the other in Section 2.1.2.3.2.

2.1.2.3.1 Detours of twin-cranes prioritizing crane 1 In this section

we consider detours starting from a point in the network constructed as

described in Section 2.1.2.2 only. In order to simplify notation we restrict

ourselves to crane 2 giving way for crane 1. Crane 3 giving way to crane 1

can be handled analogously. A detour of crane 2, then, can be beneficial in a

state where crane 1 cannot process its non-delay routing with crane 2 doing

the same if we stick to the bay sequences. The detour of crane 2, then, allows

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 33

crane 1 to pick up or drop off a container in a bay b with crane 2 processing

its non-delay routing before.

Let us give two intuitive reasons on when detours of crane 2 prioritizing

crane 1 can be beneficial, before we detail the specific cases. First, crane 2 is

located in the bay of the next request of crane 1 in order to avoid interference

with crane 3. Either it cannot leave this bay following its non-delay routing

since it is blocked by crane 3, or it entered the bay (following its non-delay

routing) because waiting in a different bay would have blocked crane 3. This

reason applies to the first part of case 1 and the second part of case 3 below.

Second, crane 2 may have to conduct a certain series of requests in conflict

with operations in the non-delay routing of crane 1. Without allowing detours

this series can be started only after crane 1 has processed these operations,

or on the other hand, must completely be conducted before crane 1 proceeds.

A detour of crane 2 allows then both, to start the series and intermediately

give priority to crane 1. This reason applies to the second part of case 1,

case 2 and the first part of case 3 below.

Case 1. The next operation of crane 2 is to wait in b for crane 3 or to wait

after finishing its non-delay routing.

Note that a conflict with crane 1 can occur only if crane 2 is not waiting

for crane 1. Thus, (i) crane 2 waits in b for crane 3 to operate in b + 1 and

prevents crane 1 from conducting a request in b or (ii) it finished its non-delay

routing.

Case 2. Both the previous operation and the next operation of crane 2

involve conducting requests in b but both operations belong to different re-

quests.

Whenever the previous operation and the next operation belong to the same

request, and hence a request takes multiple periods to be conducted a detour

is not possible since we do not allow preemption of requests. Case 2, then,

corresponds to a situation where crane 2 conducts two requests consecutively

in b, i.e. dropping off a container and picking up another in the same bay

afterwards, and gives way to crane 1 in between.

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 34

The next case considers settings where the previous operation is moving into

b and the next operation involves conducting a request. Note that we do not

need a detour if crane 2 can simply wait before moving into b. Hence, we

consider detours only in situations where either crane 1 (case 3a) or crane 3

(case 3b) forces crane 2 to move into bay b.

Case 3. a. Both cranes 1 and 2 conduct requests in b − 1 (b + 1) and b

consecutively and crane 1 has conducted its request in b − 1 (b + 1)

later than crane 2 has.

b. Cranes 2 and 3 have to conduct requests in b + 1 and b, respectively,

next, both cranes approach their bays from a larger bay, and crane 1

has its next request in b.

Case 3a corresponds to the (only) detours between crossover-cranes consid-

ered in Briskorn and Angeloudis [5]. Case 3b formalizes the only case where

crane 3 can force crane 2 to enter bay b where both, crane 1 and 2, have their

next requests.

What follows is an explanation of how detours of crane 2 in order to prioritize

crane 1 are conducted. Crane 2 leaves bay b and returns to b immediately

after crane 1 has conducted a request in b. Note that this is not necessarily the

next request of crane 1 in b. In any case, this determines the progress along

the non-delay routings of cranes 1 and 2 at the end of a detour. It remains

to detail the routing during such a detour which describes the progress along

the non-delay routings of crane 3 at the end of a detour.

The strategy is to let crane 1 process its non-delay routing up to completely

conducting the request in b while ensuring that crane 3 does not prevent

crane 2 from returning to b immediately after the request of crane 1 in b

is conducted. Following this strategy, there will be as little interference as

possible between cranes 2 and 3 during the detour. Note that, unless b = 0

cranes 2 and 3 will be on different sides of crane 1 and if b = 0 crane 2 stays

in bay b + 1 = 1. Implicitly, this strategy determines how much progress

crane 3 can gain during the detour such that it can at most move to b − 1

(b+ 2).

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 35

Such a detour is represented in our network by a segment that reflects no

progress of crane 2 with regard to its non-delay routing and cranes 1 and 3

processing their non-delay routings following the strategy described above.

Note that such a segment cuts through the obstacle corresponding to the

conflict of cranes 1 and 2. The segment ends in a state where crane 2 has

completed the evasive move.

2.1.2.3.2 Detours of one twin-crane prioritizing the other In this

section, again, we consider detours starting from a point in the network

constructed as in Section 2.1.2.2 only. In order to simplify notation we restrict

ourselves to crane 2 giving way for crane 3. Similar to Section 2.1.2.3.1, we

consider detours of crane 2 only if crane 3 cannot conduct its next request

with crane 2 doing the same if we stick to the bay sequences. The detour of

crane 2, then, allows crane 3 to pickup or drop off a container without crane

2 processing its non-delay routing. In contrast to Section 2.1.2.3.1, there are

instances where detours are necessary to find a feasible schedule at all. To

see this, consider cranes 2 and 3 to start from initial bays b02 = 2 and b03 = 3

and to have a single request in bays 4 and 1, respectively, only.

As in Section 2.1.2.3.1 we limit the states from which a detour starts to a

number of cases, analogously following the two underlying reasons when to

start a detour from the previous section. First, crane 2 is positioned in a

bay in order to avoid interference with crane 1 and crane 3 has to pass that

bay. Specifically, crane 2 moved to a bay by following its non-delay routing,

because waiting earlier would have blocked crane 1. In the second reason,

again, crane 2 has to conduct a series of requests, being in conflict with one

(or more) request of crane 3. By allowing a detour we do not restrict ourselves

to schedules where either crane 2 finishes the complete series, while 3 is held

back, or 2 does not start the series before 3 has conducted the interfering

requests. This reason is applied in cases 4 and 5 below.

Case 4. Crane 2 has conducted a request in bay b, has to conduct a request

in bay b′ next, and crane 3 has to conduct a request in bay b′′, b′′ ≤ min{b, b′},

next.

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 36

Note that this case is in line with the detours in a twin-crane setting con-

sidered in Briskorn and Angeloudis [5] and has been shown to be potentially

beneficial. By analogy, the next case covers conflicts of the initial position

and the final position of crane 2 with regard to its non-delay routing.

Case 5. a. Crane 2 has to conduct a request in bay b′ as first request,

and crane 3 has to conduct a request in bay b′′, b′′ ≤ min{b02, b
′}, next.

b. Crane 2 has to conduct a request in bay b′ as its last request, and crane

3 has to conduct a request in bay b′′, b′′ ≤ b′, next.

In case 5a crane 2 starts the detour right from b02 before approaching its first

request in b′. A detour as described in case 5b is of any meaning only if

crane 2 conducts its requests before crane 3 does and its parking position b′

would otherwise prevent crane 3 from conducting a request in bay b′′ ≤ b′.

While the cases above can be derived easily from the respective non-delay

routings in the following case we consider a case where a detour of crane 2

prioritizing crane 3 can be beneficial only in combination with a detour of

crane 2 prioritizing crane 1.

Case 6. Both cranes 1 and 2 conduct requests in b− 1 and b consecutively

and crane 1 has conducted its request in b − 1 later than crane 2 has, and

crane 3 has its next request in b.

Note that in Case 6 a detour is relevant not because of the non-delay routings

of cranes 2 and 3. Without crane 1 forcing crane 2 to bay b in the first place,

crane 2 could simply wait in b − 1 for crane 3 to conduct its request in b.

However, after evading from b− 1 to b (in favor of crane 1) crane 2 can only

conduct its request in b before crane 3 does or start a detour for crane 3 (in

order to let crane 3 conduct its request in b first).

In what follows we describe how detours are conducted. A detour in Cases 4

and 5 starts from bay bd = min{b, b′} and bd = min{b02, b
′}, respectively. This

decision can be motivated quite intuitively since it simply requires crane 2

not to move towards crane 3 immediately before the detour. In Case 6 the

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 37

starting bay of the detour is naturally given as bd = b. The detour ends when

crane 2 returns to bay bd. Note that this may happen whenever crane 3 is

located in a larger bay.

While in Section 2.1.2.3.1 we can apply a simple strategy in order to separate

cranes 2 and 3 as much as possible (and, therefore, prevent interference) it is

different with detours prioritizing twin-cranes since we cannot predict and/or

prevent interferences with the third crane (Crane 1) easily. Consequently, we

derive the cranes’ routings as a path through a cubic sub-model following

essentially the same ideas as for the network construction in Section 2.1.2.2.

In the following we detail the construction of the cubic model and the ob-

stacles and emphasize some particularities. The path, then, is found just as

described in Section 2.1.2.2 and 2.1.2.3.1. Note that this means that there

may be a detour of crane 3 prioritizing crane 1 included in a detour of crane

2 prioritizing crane 3.

For a given start point ν = (tν1/t
ν
2/t

ν
3) of the detour and each maximal interval

[ts3, t
e
3] in the non-delay routing of crane 3 where it is located in a bay larger

bd we construct a three-dimensional model with the same semantics as in

2.1.2.1. Interval [ts3, t
e
3] narrows the progress of crane 3 with regard to its

non-delay routing during the detour of crane 2 down. That is, all operations

on interval [tν3, t
s
3] are conducted by crane 3 during the detour of crane 2 but

no operation in [te3, l(n3)]. The operations on [ts3, t
e
3] are not in conflict with

tν2 .”

A simple example is given as follows. Assume that in tν2, crane 2 is positioned

in bay bd = 5, whereas in tν3, crane 3 is positioned in bay 8, and has three

requests (3, k), (3, k + 1) and (3, k + 2) with d3,k = d3,k+1 = d3,k+2 = 1 and

b3,k = 4, b3,k+1 = 6 and b3,k+2 = 5 remaining to conduct, before it finally

moves to bay 7. We then have two intervals where crane 3 is located in a

larger bay than bd. The first interval begins at ts3 = tν3 + 7, being the point

when 3 has moved from bay 5 to bay 6 after conducting (3, k). The position

of 3 when conducting in (3, k + 1) is not in conflict with the position of 2

in tν2, however after finishing the request 3 has to move to b3,k+2 = 5, hence

te3 equals ts3 + 1 = tν3 + 8. For the second interval we have ts3 = tν3 = 11 and

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 38

te3 = 12.

”Naturally, the non-delay routings of cranes relevant for this sub-model,

namely the non-delay sub-routings, differ from the original ones.

• The non-delay sub-routing of crane 1 coincides with the interval

[tν1 , l(n1)] of its original non-delay routing, that is the sequence of op-

erations not conducted yet.

• The non-delay sub-routing of crane 3 coincides with the interval [tν3 , t
e
3]

of its original non-delay routing, that is the sequence of operations in

[tν3 , t
s
3] being conducted during the detour for sure and the sequence of

operations in [ts3, t
e
3] potentially conducted during the detour.

• The non-delay sub-routing of crane 2 is not related to its original non-

delay routing. It solely represents the evasive move to bay be where be is

the largest bay where crane 3 does not move during its non-delay sub-

routing and the move back from be to bd. Note that when processing the

non-delay sub-routing waiting suffices in order to prevent interference

between cranes 2 and 3 in the submodel.

While in the model in Section 2.1.2.1 start and end points of paths are given,

in the submodel only the start point is specified. A potential end point of

a path is reached whenever crane 3 has processed at least the first ts3 − tν3

periods of its non-delay sub-routing and crane 2 has completed its non-delay

sub-schedule. These progresses of cranes 3 and 2 correspond to crane 3 having

reached time window [ts3, t
e
3] in its non-delay routing and crane 2 returning

to bd. At this point, we reached a feasible state, that exists in the model

from Section 2.1.2.1. Hence, it can be transferred to the original model and

a restart can be applied. Such a path can be evaluated regarding three

potentially conflicting objectives.

• The length of a path and, hence the duration of a detour, should be

minimized.

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 39

• The progress of crane 1 along its non-delay sub-routing and, hence,

along its non-delay routing during the detour should be maximized.

Note, however, that only paths are comparable where crane 1 is con-

ducting the same request or no request at all.

• The progress of crane 3 along its non-delay sub-routing and, conse-

quently, along its non-delay routing during the detour should be max-

imized within time interval [ts3, t
e
3]. Note, however, that only paths are

comparable where crane 3 is conducting the same request or no request

at all.

When evaluating paths through the sub-model we identify the set of non-

dominated paths. Note that each such path identifies the progress along

the non-delay sub-routing and, therefore, the progress along the non-delay

routing during the detour. Note, furthermore, that crane 2 does not gain

any progress along the non-delay routing during the detour. We introduce a

segment in the original model for each non-dominated path representing the

corresponding detour, accordingly.

In order to provide an example we detail the following setting. Crane 1 has

two requests, namely a pickup operation (1, 1) in bay b1,1 = 8 with duration

d1,1 = 1 and a release operation (1, 2) in bay b1,2 = 2 with duration d1,2 = 2.

The crane is initially positioned in bay b01 = 7 and its assigned parking

position after conducting its workload is bay 4. Crane 2 has b02 = 3 and

conducts two requests also, namely (2, 1) with b2,1 = 5 and d2,1 = 2 and

(2, 2) with b2,2 = 6 and d2,2 = 1. Finally, it has to approach its parking

position in bay 2. Crane 3 starts in bay b03 = 7 and has to transport two

containers from bay 7 to bay 3. The first container takes 3 periods to lift

while the second container takes 1 period to lift. Both containers take three

periods to drop off. So, there are requests (3, 1), (3, 2), (3, 3), and (3, 4) with

b3,1 = b3,3 = 7, b3,2 = b3,4 = 3, d3,1 = 3, d3,3 = 1 and d3,2 = d3,4 = 3. After

conducting its requests, crane 3 has its parking position in bay 3.

In the depicted instance, all cranes can follow their non-delay routings for

four periods without interfering. At this point crane 1 is about to leave bay

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 40

2

3

(l(n3), l(n2))

[tν3 , t
s
3]

[ts3, t
e
3]

(tν3 , t
ν
2) (ts3, t

ν
2)

(te3, t
ν
2)

0

1

2

3

4

5

6

7

8

9

10

3/4

4/5

5

5

5/6

6

6/5

5/4

4/3

3/2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

7 7 7 7/6 6/5 5/4 4/3 3 3 3 3/4 4/5 5/6 6/7 7 7/6 6/5 5/4 4/3 3 3 3

Figure 2.9: A detour of crane 2 for crane 3

6 on its way to approach bay b1,2 = 2. Crane 2 has just conducted its request

(2, 1) in bay 5 and has to enter bay b2,2 = 6 next. Crane 3 has moved from

bay b3,1 = 7 to 6 and is about to cross the position of crane 2 in order to

release the container in bay b3,2 = 3. The twin-cranes cannot simultaneously

process their non-delay routings without interfering, resulting in a case 4

detour of crane 2 prioritizing crane 3 with ν = (4/4/4). The detour enables

crane 3 to conduct request (3, 2) in bay 3 before crane 2 conducts request

(2, 2) in bay 6. During this detour the non-delay sub-routing of 2 consists

of an evasive move from bay 5 to bay b3,2 − 1 = 2 and a move back to 5.

While the original non-delay routings of 1 and 2 are not in conflict with each

other, the evasive move to bay 2 might cause interference with request (1, 2)

of crane 1, hence, the corresponding states are covered by an obstacle in the

sub-model. The first operation of 3 not in conflict with the position of crane

2 when the detour begins is the move from bay 6 to 7 between conducting

requests (3, 2) and (3, 3). The last feasible operation before crossing bay 5

again is the move from 7 to 6 after conducting (3, 3) in bay b3,3 = 7. As a

result, time window [ts3, t
e
3] with ts3 = 13 and te3 = 16 encompasses the three

periods of the non-delay routing of crane 3 where it moves from bay 6 to bay

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 41

7, conducts request (3, 3), and moves from bay 7 to bay 6.

We depicted the resulting axes of crane 2 and 3 in the graphical model from

a two-dimensional perspective in Figure 2.9. The non-delay routings are dis-

played next to the axes. The dashed line that runs through the obstacle

covers the interval [tν3, t
s
3] of 3’s non-delay routing being in conflict with tν2.

Hence, this sequence of operations must be conducted by 3 during the de-

tour. Interval [ts3, t
e
3], being the progress that crane 3 is allowed to make at

most during the detour, is displayed in between the obstacles. Note that

in this example the time window is indeed unique since it is the only one

where crane 3 is located in bays larger 5 in its remaining non-delay routing.

Note, furthermore, that the non-delay sub-routing of 2 is symmetric in its

movements and, thus, the obstacles between 3 and 2 (and 1 and 2) in the

sub-model are symmetric as well.

1

2

3

5/4

4/3

3/2

2/3

3/4

4/5

6/5 5/4 4/3 3/2 2 2/3 3/4

A

C B

6/5
5/4

4/3
3

3
3

O3

O1

O2

Figure 2.10: Perspective of crane 1 and 2 in the example of the sub-model

Figures 2.10 and 2.11 depict the sub-model for the setting described above.

Figure 2.10 emphasizes a view on the axes of cranes 1 and 2. For the sake

of clarity we display only the first six periods of the axis of 3. The other

perspective, shown in Figures 2.11, emphasizes a view on the complete axes

of 2 and 3. Here all states where the twin-cranes would cross positions are

covered by either of the two obstacles O1 and O2. The obstacle that covers

infeasible states of 1 and 2 is denoted by O3. Feasible paths in this sub-

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 42

3

2

1

5/4

4/3

3/2

2/3

3/4

4/5

6/5 5/4 4/3 3 3 3 3/4 4/5 5/6 6/7 7 7/6

C

B

A

6/5
5/4

4/3
3/2

2
2/3

3/4

O1

O2
O3

Figure 2.11: Perspective of crane 2 and 3 in the example of the sub-model

model run along the touching surfaces of both of these obstacles, implying

that crane 2 waits in bay 2 as long as crane 3 conducts the request (3, 2).

Afterwards, the moves of crane 2 are not restricted by crane 3 in the context

of this detour since crane 3 moves towards bay b3,3 = 7 with full speed,

following its non-delay sub-routing.

t

Bay

0 1 2 3 4 5 6 7 8 9 10 11 12
1

2

3

4

5

6
Crane 1
Crane 2
Crane 3

Figure 2.12: Detour A

Following the branching logic proposed in Sections 2.1.2.2 and 2.1.2.3.1 we

obtain three paths through the sub-model representing three different instan-

ciations of the detour, namely detours A (dotted lines), B (dashed lines) and

C (solid lines). The movement of the cranes during each detour is depicted

in Figures 2.12 to 2.14, as well. Analogously to Figure 2.5 we denoted the

bay position of the cranes on the y-axis while the periods are depicted on

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 43

t

Bay

0 1 2 3 4 5 6 7 8 9
1

2

3

4

5

6
Crane 1
Crane 2
Crane 3

Figure 2.13: Detour B

t

Bay

0 1 2 3 4 5 6 7 8 9
1

2

3

4

5

6
Crane 1
Crane 2
Crane 3

Figure 2.14: Detour C

the x-axis. We give insight into the routings described by the paths. After

hitting the surface of O2, we create the first two branches. The first branch,

denoted by A, describes that crane 2 waits for crane 1 during its evasive

move for crane 3 in bay 3, and, hence, forces crane 3 to wait in bay 4 un-

til crane 2 can continue the evasive movement. This is represented by the

segment of A after the first branch where only crane 1 processes with regard

to its non-delay sub-routing. Afterwards, all three cranes process simulta-

neously until crane 2 has reached bay b3,2 − 1 = 2. Here, it waits while

the other two are processing simultaneously until crane 1 has completed its

non-delay routing (and, therefore, its non-delay sub-routing). Now, crane

3 is the only processing crane until it completes (3, 2) and, then, cranes 2

and 3 process their non-delay sub-routings without further interference. The

second path B, again, gives priority to crane 1 with respect to cranes 1 and

2 interfering during crane 2’s evasive move. Here, crane 2 starts a detour to

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 44

bay b1,2 − 1 = 1 after reaching bay 2, enabling crane 1 to conduct request

(1, 2) in bay b1,2 = 2. Since 2 arrives in b1,2 one period before crane 1 and

immediately starts the evasive move to b1,2 − 1 = 1, crane 1 can start (1, 2)

without interruption. At the same time when 2 starts the evasive move for

1, crane 3 begins conducting the request in b3,2. Crane 2 can begin returning

to b3,2 − 1 when 1 has finished (1, 2), which is two periods after the start of

(3, 2). Thus, it finishes the detour for 1 and arrives in b3,2 − 1 at the same

time when crane 3 has conducted the request, hence, both cranes can con-

tinue their non-delay sub-routings without further interruption. The third

path C gives priority to crane 2 over crane 1, such that crane 1 has to wait

until 2 can leave bay b3,2−1 = 2. This is represented by the segment running

on the surface of O2 and O3. Here, only crane 3 can process since crane 2 is

waiting for crane 3 to complete (3, 2) and crane 1 is waiting for crane 2 to

leave bay b3,2−1 = 2. After crane 3 has completed (3, 2) both cranes 2 and 3

process for one period while crane 1 is still waiting. After this period, crane 2

has cleared bay b3,2 − 1 = 2 and all three cranes can process simultaneously.

All of the displayed detours end in coordinate (ts3, t
ν
2) in Figure 2.9. The

differences between them are then their lengths and the different progress on

the axis of crane 1.

In the example, detour A is dominated by detour B. In both detours crane

1 finishes its non-delay sub-routing and the progress of the twin-cranes is

identical. Nonetheless, detour B is shorter since crane 2 does not hinder crane

3 from progressing when prioritizing crane 1. Furthermore, the duration of

(1, 2) is short enough such that crane 2 can return to bay 2 at the time when

3 is about to leave bay 3. Hence, crane 2 does not spend more time for detour

B than for A. Comparing B and C, we can conclude that B dominates C, as

well. The detours’ lengths are identical. While crane 1 gains more progress

in B than in C, the progress of crane 3 is identical in both detours. We

cannot make any statement regarding dominance when comparing detours A

and C since both detours lay focus on conflicting objectives. In A the detour

is lengthened due to the larger progress of crane 1 whereas C results in less

progress of that crane in favor of a shorter length of the detour.

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 45

2.1.3 Extensions

In this Section we present two extensions for the former graphical model,

namely safety distances as decribed in Section 2.1.3.1 and different container

sizes as described in Section 2.1.3.2. Throughout this Section we refer to the

model developed in Section 2.1.2 as the basic model.

2.1.3.1 Safety distances between cranes

The basic model assumes that cranes occupy a single bay only and no extra

safety distances have to be respected. As a result, it was sufficient to ensure

that at each point of time cranes 2 and 3 are located in position b and b′

with b ≤ b′ − 1 and neither crane 2 nor crane 3 is located in a position in

]b− 1, b+ 1[whenever crane 1 is conducting a request in position b.

For a more general setting let st be the safety distance (measured in bays)

that has to be kept between the twin-cranes’ centres at any given point of

time. Analogously, let sc be the safety distance that has to be kept between

a twin-crane’s centre and the crossover-crane’s centre while the latter is con-

ducting a request. The modified interference constraints are violated in a

point t = (t1, t2, t3) of our model if

1. crane 1 is conducting a request in bay b and crane 2 or crane 3 is located

in a position in]b− sc, b+ sc[or

2. cranes 2 and 3 are located in positions b and b′ with b > b′ − st.

Note safety distances cover the cranes’ sizes and that st = sc = 1 implements

the case we consider in Section 2.1.2. Note furthermore that 0 ≤ st < 1 or

0 ≤ sc < 1 allows to model cranes that do not physically cover a whole bay

but only a part of it.

We can easily derive a graphical model that is analogous to the one in Section

2.1.2 but accounts for the modified interference constraints. If st > 1 (sc > 1)

we may have more obstacles and an obstacle for st > 1 (sc > 1) corresponding

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 46

to one with st = 1 (sc = 1) grows in size but the general shape of the two

types of obstacles remains the same.

Figure 2.15 depicts two two-dimensional planes from a graphical model, for

pairs of non-delay routings and a safety distance of sc = 1.7 and st = 1.3

(instead of sc = st = 1). On the left hand side we display the resulting

obstacles between crane 1 and 2 while on the right hand side the obstacles

between and 2 and 3 are depicted. The non-delay routings are annotated next

to the axes of the cranes. Again, white squares and the respective notation

denote a move from a certain bay to another, while gray squares denote

conducting a request in the noted bay. The dark gray covered areas in the

plane mark the original obstacle size with a safety distance of one bay. The

light gray areas cover the extended space of the original obstacle, resulting

from the larger safety distance. Finally, the hatched areas are entirely new

obstacles that result exclusively from the larger safety distances.

2

1

(l(n1), l(n2))

0

1

2

3

4

5

6

7

8

9

10

11

12

13

0/1

1/2

2

2/3

3/4

4

4

4/3

3/2

2

2/1

1/0

0

0 1 2 3 4 5 6 7 8 9 10 11 12

6/5 5 5/4 4/3 3 3 3/4 4 4/3 3/2 2/1 1

(a) Safety distance sc = 1.7

2

3

(l(n3), l(n2))

0

1

2

3

4

5

6

7

8

9

10

11

12

13

0/1

1/2

2

2/3

3/4

4

4

4/3

3/2

2

2/1

1/0

0

0 1 2 3 4 5 6 7 8 9 10 11

6/5 5 5/4 4/3 3 3/4 4/5 5 5/6 6/7 7

(b) Safety distance st = 1.3

Figure 2.15: Obstacles covering infeasible states due to safety distances of
sc = 1.7 and st = 1.3

One difference to the basic model is that edges of obstacles may have non-

integer coordinates in the extended model. As a result segments of the net-

work may have non-integer lengths. However, the network construction as

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 47

presented in Sections 2.1.2.2 and 2.1.2.3 does not rely on integer coordinates.

As opposed to this, the mathematical model in Section 2.1.1 in fact relies on

integer completion times of requests.

With regard to detours we have to account for the more general view on

safety distances, as well. In fact, similar to new obstacles arising from safety

distances of st > 1 or sc > 1 we may have to arrange opportunities for new

detours. Nevertheless, from a more generic perspective we apply the same

mechanisms considering general safety distances of st or sc instead of st = 1

or sc = 1.

2.1.3.2 Containers of different sizes

For the basic model, we assumed that containers in the yard are of equal size

which then enabled us to discretize the storage yard into bays having a length

of exactly one container length. Furthermore, we implicitly assumed that a

cranes’ size is equal to the length of a container in the basic model. Given

that the length of a crane roughly equals the length of a 40 foot container,

see Kemme [29], we consequently assumed that only these types of containers

are handled. The assumed container layout is shown on the left hand side of

Figure 2.16 depicting a container block from above, consisting of 3 equally

sized storage bays and two transfer bays at each side of the yard. Each

bay can accomodate a 40 foot container. Although the variety of container

lengths in seaport terminals is limited and the vast majority of containers

belongs to one of two length classes (20 and 40 foot length) the assumption of

unique container lengths is restrictive. We will now discuss how the setting

treated in Section 2.1.2 can be generalized.

Instead of requiring all containers to be the same length, we can assume that

the containers are placed in a grid composed of slots that are 20 foot long.

Containers of 20 (40) foot length are placed only such that they fully occupy

one slot (two slots).

Whenever a container is picked up or dropped off by a crane, the crane’s

spreader must be positioned above the center of that container. This gives

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 48

Seaside

Landside

B
ay

0

1

2

3

4

(a) Block with equally
sized containers

P
ic
k
u
p
/
D
ro
p
O
ff
P
os
i-

ti
on

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Seaside

Landside

(b) Block with different
sized containers

Figure 2.16: Container yard with different sized containers

rise to a discrete set of positions where cranes (their centres) might be located

when conducting a request. We number these positions with respect to their

alignment. Note that the distance between consecutive positions is unique,

and, therefore, we obtain a layout with the same structure as in Section 2.1.2.

Such a layout is shown on the right hand side of Figure 2.16 for the same

container block as on the left hand side. The darkgray rectangles depict 20

foot containers, while the lightgray rectangles display the 40 foot containers.

We see that container positions are aligned with the grid structure. The

possible positions from which cranes lift or release a container are marked by

dashed lines and the respective position number is shown next to the yard.

Note that a crane usually occupies more than one slot at a time due to its

size, see again [29], which is not reflected in our model explicitly. However,

by setting safety distances (see Section 2.1.3.1) appropriately we can account

for that.

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 49

2.1.4 Algorithm implementation

We implemented the algorithm (ALG) described throughout Section 2.1.2 in

Java 8. Sections 2.1.2.2 and 2.1.2.3 detail the procedure for generating the

whole network. However, we aim at – whenever possible – generating only

a part of the network containing the shortest path. We do so by deriving a

lower bound whenever a branch is applied to a state as in Sections 2.1.2.2

and 2.1.2.3. Note that while branches have the potential to increase the

lower bound associated with a (partial) path, restarts do not. Accordingly,

before describing the procedure of generating the network, we detail the lower

bounds employed.

When generating the network we maintain lower bounds for the length of

each crane’s routing in a state. For the initial state these are given as l(n1),

l(n2), and l(n3). Whenever a branch or a detour is applied one crane does not

process along its non-delay routing for a certain timespan prioritizing another

crane. The lower bound of the former crane’s routing, then, increases by

that timespan accordingly. Partial networks as introduced in Section 2.1.2.2

result from applying a branch and, hence, the increment of the lower bound

is related to the whole partial network. For a partial network not overlapping

with another it is rather straightforward that the lower bound of the non-

processing crane’s routing is increasing by the timespan it does not make

any progress. However, as discussed in Section 2.1.2.2 partial networks may

overlap and we can distinguish three types of overlaps.

1. The processing crane c′ in the partial network starting first is the non-

processing crane in the second. That is, first crane c waits prioritizing

crane c′ and while c is waiting, it is decided that c′ waits for c′′, hence,

a second partial networks starts with c′ prioritizing crane c′′. Then,

the lower bound of crane c′ increases with regard to the second partial

network as described above because it can potentially continue oper-

ating after the conflict with c′′ is resolved. However, the lower bound

of c is increased with regard to both, the first and the second network

because it can continue its progress earliest after c′ has finished waiting

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 50

for c′′ and has conducted the operation that initiated the first partial

network with c′.

2. The processing crane c′ in the partial network starting first is the pro-

cessing crane in the second network also such that c′ is the only crane

processing its non-delay routing while the others wait. That is, first

crane c prioritizes crane c′ and in this partial network crane c′′ pri-

oritizes crane c′, as well. Then, the lower bounds of cranes c and c′′

increase with regard to the first partial network and second partial

network, respectively, as described above.

3. The non-processing crane c in the partial network starting first is the

processing crane in the second network. That is, first crane c prioritizes

crane c′ and in this partial network crane c′′ prioritizes crane c by

anticipating a conflict. Then, the lower bound of crane c increases with

regard to the first partial network as described above. However, the

lower bound of c′′ is increased with regard to the second network and,

additionally, to the part of the first partial network overlapping with

the second because it can continue earliest after c has finished waiting

for c′ and after c has conducted the operation initiating the partial

network with c′′.

The lower bound related to a state and a branch is the maximum among the

corresponding lower bounds of the cranes’ routing lengths.

On the other hand, we determine upper bounds, as well. We initially set

the upper bound U∑ with regard to a feasible schedule where non-delay

routings are processed sequentially. Note that a twin-crane is not necessarily

positioned in the starting bay b0c when it can start its non-delay routing

since it may be on an evasive move for the crane that previously ended its

non-delay routing.

The network is then built as follows in order to determine a routing with

makespan CALG. We maintain a list, SL, of branches and restarts to be

applied with their respective states. Initially only a restart at (0, 0, 0) is in the

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 51

list with lower bound max{l(nc) | c = 1, 2, 3}. We maintain the list sorted in

increasing order of lower bounds with ties broken by non-increasing euclidean

distance of the state to the initial state (0, 0, 0) (reflecting the progress made

corresponding to the state). We always apply the first restart/branch in the

list and insert resulting restarts and branches accordingly.

Algorithm 1 clarifies the rather simple structure of our algorithm.

Algorithm 1 Network Construction

Add (0, 0, 0) to SL
Set the makespan CALG = U∑

while SL is not empty do

Select the first branch / restart n in SL
Remove n from SL
Apply n resulting in segment s
if state (l(n1), l(n2), l(n3)) is reached then

Determine the makespan and update CALG if necessary
else

Add a restart starting from the end of s to SL (if applicable)
Add all branches on s to SL

end if

Remove all branches / restarts in SL with a lower bound larger or equal
to CALG

end while

In Algorithm 1 we omit many details, e.g. how to decide whether a restart is

applicable or how to determine all branches on s. These details can be found

in Sections 2.1.2.2 and 2.1.2.3.

Further, we develop a greedy heuristic, GRE. Here, we prioritize the crane

that arrives in a bay of conflict first, with ties broken arbitrarily. Whenever

a deadlock occurs, i.e. situations where the twin-cranes wait for each other

to make place for the respective other twin-crane, we initiate a detour of one

of the twin-cranes. Again, the crane that would reach the bay of conflict first

is prioritized and, therefore, the other crane starts a detour. This heuristic

is supposed to mimic a simple but reasonable rule of thumb which can be

applied easily in a real world setting. We say the makespan obtained by the

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 52

greedy heuristic is CGRE .

As a benchmark, we employ CPLEX 12.6.3 with standard settings in order

to solve the MIP model presented in Section 2.1.1.

2.1.5 Experimental Study

In order to evaluate the approaches from Section 2.1.4 we generated a set of

test instances with different parameters. All of them are based on a block

with 30 bays plus one handover bay on each side where cranes exchange

containers with AGVs or trucks. We differentiated two types of workload

at the block: each container is to be picked up at one of the handover bays

and to be released within the block (st) or we have reshuffle (rs) jobs only,

that is each container’s pickup bay and drop off bay are within the block.

In both workload settings crane 2 starts in bay 0 (in the bay referring to

the handover area), crane 3 starts in bay 31 and crane 1 starts in bay 15.

Further, we distinguished between two settings regarding the pickup- and

drop off locations of the cranes’ jobs. In the low-overlap-setting the bays of

crane 2’s jobs lay on bay-interval [0, 20] while the bays of crane 3’s jobs are

located between [11, 31]. In the high-overlap-setting we increase the intervals

to [0, 25] and [6, 31] respectively, supposing that a higher overlap increases

potential interference between cranes. In both settings, the requests of crane

1 are located in [0, 31]. The number of requests in a test instance is the same

for each crane and the time it takes to pick up or drop off a container is

randomly drawn from {1, . . . , 5}. We generated instances with 4, 8, 16, 24

and 32 requests for each crane by using the test instance generator from [9]

as discussed in Briskorn et al. [10].

For combinations covering 4 and 8 requests we created a set of 500 instances

for each parameter-combination for which we compared the performance of

CPLEX and both solution algorithms. In order to limit the computational

burden we created only 20 instances with 16 or more requests per crane,

resulting in a total of 4240 instances over all parameters. It does not come as

a surprise that the performance of CPLEX depends on the length T of the

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 53

time horizon. In order to account for the opportunity to tighten T aiming

at a better performance of CPLEX we employed three different values for

T : U∑ as described earlier, the makespan CALG found by ALG (UA) and 1.5

CALG (U1.5). Regardless of the upper bound we set a solving time limit of one

hour. Note that using UA (and, probably, U1.5) gives a substantial advantage

to CPLEX since typically UA (and U1.5) will not be known and cannot be

determined easily. All tests were conducted on an Intel Core i7-4790 CPU

with 3.6 GHz and 32 GB of RAM running Windows 7.

Furthermore we can determine a sophisticated lower bound (LB) using the

exact approach for settings with two cranes presented in Briskorn and An-

geloudis [5]. For each pair of cranes and respective sequences of requests we

determine the optimum schedule ignoring the third crane. The maximum

among these three makespan values provides a lower bounds to TRCIRP .

In order to evaluate the optimality gap of solutions we use the exact solutions

(C∗), for instances with up to 16 requests. For larger instances, we could not

provide exact solutions and, therefore, compare our results with the lower

bound only.

The results of the computational study are shown in Tables 2.1 and 2.2. Here,

the average solution time for all three approaches is depicted in seconds (s).

We were able to determine the optimal solution employing CPLEX for every

instance with up to 16 requests using UA.

We observe that the ALG heuristic obtains the optimal solution for every

instance with 4, 8 and 16 requests per crane. However, even when we use

UA, CPLEX takes significantly longer to solve an instance than ALG does.

When setting the upper bound to U1.5 or larger CPLEX is not able to

determine optimal solutions for all of the relatively small instances within

the time limit. It comes at no surprise that GRE has the shortest run times

among all three approaches. We observe that the average gap to the optimal

solution of GRE is larger than the average gap of ALG, while run times

are nearly the same for the 4 and 8 request test bed. For every test bed

with more than 8 requests per crane to handle, GRE clearly outperforms

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 54

C
P
L
E
X

A
L
G

G
R
E

U
A

U
1
.5

U
∑

re
q
u
es
ts

se
tt

s
G
A
P

C
∗
(%

)
s

G
A
P

C
∗
(%

)
s

G
A
P

C
∗
(%

)
s

G
A
P

C
∗
(%

)
G
A
P

L
B
(%

)
s

G
A
P

C
∗
(%

)
G
A
P

L
B
(%

)

4
st

0.
02

0.
00

0.
91

0.
00

2.
09

0.
00

0.
00

0.
00

0.
02

0.
00

3.
54

3.
56

rs
0.
15

0.
00

4.
41

0.
00

6.
01

0.
00

0.
00

0.
00

0.
06

0.
00

9.
52

9.
59

8
st

0.
18

0.
00

40
.5
8

0.
00

82
7.
30

0.
00

0.
00

0.
00

0.
07

0.
00

4.
35

4.
42

rs
15
.4
5

0.
00

69
1.
10

0.
14

10
3.
05

0.
20

0.
01

0.
00

0.
10

0.
00

15
.0
3

15
.1
4

16
st

1.
51

0.
00

15
84
.4
3

0.
61

30
01
.5
3

23
.1
5

0.
01

0.
00

0.
18

0.
00

2.
79

2.
98

rs
92
7.
71

0.
00

30
39
.7
7

11
.2
1

32
45
.0
4

29
.8
4

0.
14

0.
00

0.
00

0.
01

22
.0
4

22
.0
4

24
st

-
-

-
-

-
-

0.
04

-
0.
05

0.
00

-
2.
78

rs
-

-
-

-
-

-
1.
28

-
0.
00

0.
02

-
22
.3
9

32
st

-
-

-
-

-
-

0.
05

-
0.
08

0.
00

-
3.
47

rs
-

-
-

-
-

-
2.
28

-
0.
12

0.
02

-
24
.9
8

Table 2.1: Average run times in seconds and average gap in percent for
high-overlap-setting

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 55

C
P
L
E
X

A
L
G

G
R
E

U
A

U
1
.5

U
∑

re
q
u
es
ts

se
tt

s
G
A
P

C
∗
(%

)
s

G
A
P

C
∗
(%

)
s

G
A
P

C
∗
(%

)
s

G
A
P

C
∗
(%

)
G
A
P

L
B
(%

)
s

G
A
P

C
∗
(%

)
G
A
P

L
B
(%

)

4
st

0.
01

0.
00

0.
47

0.
00

1.
13

0.
00

0.
00

0.
00

0.
02

0.
00

2.
83

2.
85

rs
0.
02

0.
00

1.
02

0.
00

1.
79

0.
00

0.
00

0.
00

0.
03

0.
00

4.
12

4.
15

8
st

0.
12

0.
00

6.
89

0.
00

10
.6
7

0.
00

0.
00

0.
00

0.
06

0.
00

5.
25

5.
31

rs
0.
21

0.
00

16
.0
7

0.
00

75
.0
7

0.
00

0.
00

0.
00

0.
23

0.
00

6.
86

7.
10

16
st

0.
86

0.
00

71
5.
22

0.
14

20
51
.0
1

9.
82

0.
00

0.
00

0.
00

0.
00

1.
63

1.
63

rs
15
.6
2

0.
00

15
34
.5
0

1.
61

20
05
.6
2

9.
05

0.
02

0.
00

0.
00

0.
00

5.
41

5.
41

24
st

-
-

-
-

-
-

0.
01

-
0.
03

0.
00

-
2.
23

rs
-

-
-

-
-

-
0.
07

-
0.
02

0.
00

-
13
.3
0

32
st

-
-

-
-

-
-

0.
03

-
0.
00

0.
00

-
3.
37

rs
-

-
-

-
-

-
0.
20

-
0.
14

0.
01

-
8.
09

Table 2.2: Average run times in seconds and average gap in percent for
low-overlap-setting

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 56

ALG in terms of run times at the cost of a gap to optimality. While GRE

achieves feasible schedules in virtually zero time we see that the loss in terms

of solution quality is significant when a simple rule of thumb is applied.

The more elaborate heuristic ALG unlocks the potential of better schedules

without significantly increasing run times.

It can be seen that the average time it takes to obtain a solution is larger

for all three approaches when the overlap of jobs is high. This is in line with

our intuition: due to the higher interference potential, and, in terms of the

graphical model, more obstacles, the effort for constructing the obstacles and

finding a path increases. Similarly, we see that the reshuffle (rs) setting takes

longer to solve than the st setting. Here, again, the potential interference is

higher. Further, during the pickup of a container at the handover bays, the

twin-cranes cannot interfere which reduces the amount of potential conflicts

for a given number of requests. We observe a similar effect when analyzing

the average relative gap of GRE. It increases with potential interference

resulting from the respective test bed settings.

As expected the run times increase with the number of jobs per crane to

be handled. What is interesting to see, is, that the average gap of GRE

does not increase drastically when increasing the number of requests to be

handled, and it even decreases for some settings. While this seems to be

surprising at first it actually follows from the fact that the gap between

any feasible solution’s makespan to the optimum makespan is bounded from

above by
∑

c∈C l(nc)/max{l(nc) | c = 1, 2, 3} ≤ 3 for most instances since

one crane is always processing its non-delay routing. Hence, optimality-gaps

are very unlikely to increase above 3 but, still, a gap of less than 25% for

large instances is quite good for a simple rule of thumb. This is good news

for practitioners who prefer to have simple rules applied in the real world.

However, we can unlock the remaining potential with virtually no increment

in run times applying our admittedly more complicated approach.

We observe that the lower bound is very close to the optimal solution. When

analyzing the pairwise-optimal routings of the cranes we see that out of 4240

instances in total, the largest pairwise-optimal makespan was obtained from

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 57

the pair of twin-cranes in 2656 cases, while it was obtained by a twin-crane

and crane 1 in 1584 cases. This indicates that in the majority of instances

the conflicts between twin-cranes affect the solution the most.

When comparing CALG for 24 and 32 requests with the lower bound we see

that the average gap is below 0.2 percent for every combination of parameters.

This leads to the assumption that the solution quality of ALG is high, for

even larger instances also.

Finally, we want to compare instances differing in the workload setting or in

the overlap setting. Table 2.3 outlines the average value for CALG. We see

that on average a larger makespan is obtained for the (st) setting, where jobs

are picked up at either side of the yard and transported to a storage location.

This comes at no surprise since cranes have longer average travel distances.

Similarly, the average objective value is higher for a high overlap.

Table 2.4 details the average relative gap between CALG and the longest non-

delay routing as (CALG/max{l(nc) | c = 1, 2, 3})−1 and is shown in percent.

We see that in the (rs) setting, where jobs are reshuffled within the yard, the

average relative gap is larger than in the storage setting, again pointing at a

potentially higher interference between cranes. This assumption is supported

by the larger gap of instances with a high overlap of jobs. Nonetheless,

the average relative gap is generally decreasing with the number of requests

per crane. The reason for this might be as follows. As described above

it seems that the twin-cranes are the crucial pair of cranes when it comes

to interferences. Now, once one of twin-cranes has waited for the other (or

made a detour for the other) there is a good chance they move back and forth

synchronously for a while. In the special case where both have to constantly

move between bays 0 and B and B + 1 and 1, respectively, letting a crane

wait once suffices to perfectly synchronize them. Thus, waiting time may not

be linear but less than linear in the number of requests which explains our

decreasing relative gap.

Summarizing our findings, ALG provides schedules very close to the optimum

in very short time (only in two settings the average run time is above 0.2

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 58

Requests
sett 4 8 16 24 32

high overlap
st 90 167 304 469 599
rs 78 132 235 344 434

low overlap
st 81 146 275 396 520
rs 63 108 186 271 366

Table 2.3: Average value for CALG

Requests
sett 4 8 16 24 32

high overlap
st 1.13 0.69 0.52 0.47 0.46
rs 9.17 7.77 9.08 6.53 6.12

low overlap
st 0.16 0.22 0.23 0.20 0.19
rs 2.12 2.3 1.63 2.12 1.61

Table 2.4: Average relative gap (in percent) between max{l(nc) | c = 1, 2, 3}
and CALG

seconds). Since run times for both approaches are rather small, we do not

see an advantage of GRE over ALG.”

2.2 Interference aware scheduling of triple-

crossover-cranes

The content presented in this section is as well depicted in Briskorn and Zey

[7] and all quotes are taken from this very article.

In this section, a holistic scheduling approach is developed, tackling the con-

tainer job to crane assignment, the job sequence construction as well as the

determination of conflict free routings.

”The section has the following structure. We provide a formal definition as

well as a MIP model formulation in Section 2.2.1. Further we determine the

computational complexity of the problem. The B&Bs are detailed in Section

2.2.2 and a computational study is outlined in Section 2.2.3.

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 59

2.2.1 Problem definition and model formulation

In our problem setting we have three RMGs that work jointly on a container

yard block. The block is segmented into a set of bays Q = {0, 1, ..., B + 1}

whereas 0 and B + 1 denote a handover bay on the land- or seaside of the

block. Here, the cranes can pick up and drop off containers for exchange of

containers with transport vehicles.

The cranes are denoted by C = {1, 2, 3} with 1 denoting the larger crossover-

crane. It moves on a separate pair of rails along the block and has a larger

height and width, such that it can cross the twin-cranes when its spreader

is completely lifted. Cranes 2 and 3 are the twin-cranes that share a pair

of rails and have equal height and width such that they can not cross each

other. Nevertheless, they can move below the larger crane when its spreader

is up. In the section at hand we denote 2 as the crane that is located in a

smaller bay than crane 3.

We start from the premise that the time horizon is continuous and we refer to

time interval [t− 1, t] as period t ∈ N\{0}. We consider a set J = {1, . . . , |J |}

of transport jobs to be conducted. In order to conduct a job j ∈ J , a crane

has to conduct a pick up (U) request in bay bUj and transport that container

to bay bOj where it gets dropped off (O). The respective duration for which

a crane has to stay in the bay while conducting a request are dUj and dOj ,

implying all movements of the spreader necessary to pick up or drop off a

container. Note that it is implied that the type of crane handling a job does

not affect the duration of a request. Nonetheless, the pick up and drop off

durations differ between jobs and requests, reflecting the amount of time it

takes to adjust the spreader in the respective container location.

At the beginning of the planning horizon the cranes c ∈ C are positioned in

bay b0c . They can travel between bays with a velocity of 1 bay per period. We

assume that they always travel with full speed or do not travel at all, thus

neglecting acceleration and deceleration. As a result we can assume that each

crane is always located in a bay b ∈ Q at the beginning of a period rather

than being located at some position between two consecutive bays. It stays

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 60

in that bay in a period while waiting or conducting a request. Whenever it

moves to b + 1 (b − 1) its position changes according to its progress when

approaching that bay. Hence, at any point in time t ∈ [t′−1, t′] it is positioned

in b+ (t− t′ + 1) (b− (t− t′ + 1)).

The problem is to make a three part decision, namely the assignment of jobs

to cranes, the sequencing of jobs assigned to the same crane, and the inter-

ference free routing. We decide each part under the objective of minimizing

the makespan and describe them in the following.

1. We have to assign each job to exactly one crane implying the crane a

job is conducted by.

2. For each crane and the jobs it gets assigned we have to decide the

sequence of picking up in which the crane conducts the jobs. Regarding

requests, we then can interpret the sequence of jobs as a sequence of

requests to be conducted by having the pickup request related to a job

immediately before its drop off request.

3. Given the sequence of requests to be conducted by each crane we,

finally, have to decide the position of each crane over time such that it

can process its sequence. For picking up (dropping off) of a container j

a crane has to be present for dUj (dOj) periods in bUj (bOj). The position

of a crane, thus, is affected in exactly one of the following ways in each

period.

• The crane moves from bay b to bay b− 1 or b+ 1 with 0 ≤ b− 1

and b+ 1 ≤ B + 1.

• The crane stays in bay b while either waiting or (partially) con-

ducting a pick up (drop off) request.

Another requirement is that if c is located in bay b at the end of period t,

then the next activity starts from or takes place in b. While conducting

jobs the cranes are not allowed to interfere. This translates to the

following more precise requirements.

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 61

• If crane 1 is conducting request o ∈ {U,O} of job j in boj in time

interval [t, t + doj], then no twin-crane can be positioned in a bay

b, with boj − 1 < b < boj + 1.

• At each point of time cranes 2 and 3 have to be in positions b and

b′ such that b ≤ b′ − 1. Note that this requirement implies that a

container that has to be picked up or dropped off in bay 0 (B+1)

cannot be assigned to crane 3 (2).

A routing σc of crane c implies a duration it takes crane c to carry it

out and we refer to it as its length l(σc).

A feasible schedule is an assignment of each job to exactly one crane, a

sequence of jobs assigned to each crane, and an interference free routing

such that the requirements detailed above are met. We represent a feasible

schedule by a triple (σ1, σ2, σ3) reflecting the routings and, therefore, imply-

ing the assignment and the job sequences. Consequently the makespan of

a schedule (σ1, σ2, σ3) is max{l(σ1), l(σ2), l(σ3)}. The triple-crossover-crane

scheduling problem (TRCSP), then, asks for a feasible schedule with mini-

mum makespan. In the following we settle the computational complexity of

TRCSP.

Theorem 1. The problem to decide whether a feasible schedule to TRCSP

not exceeding a given deadline exists is strongly NP-complete.

Proof. Nossack et al. [37] prove that the corresponding problem in a two

crane crossover setting is strongly NP-hard. We can design a very similar

reduction mechanism to TRCSP by enlarging the block and assigning an

initial position to the third crane which is sufficiently far from the pickup

and drop off positions. As a consequence, the third crane becomes irrelevant

for finding short schedules and we can apply the same reasoning as in the

proof of Nossack et al. [37].

Next, a MIP model representing TRCSP is developed. We introduce binary

variable yj,c that equals 1 when a job j is assigned to crane c. Furthermore,

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 62

binary variable xo
t,j,c equals 1 when conducting request o ∈ {U,O} of job j,

performed by crane c is completed in period t (and, thus, on point of time t).

Finally, binary variable zoj,c with j ∈ J, o ∈ {U,O} indicates whether crane

c ∈ {2, 3} is positioned in a larger (zoj,c = 1) or smaller (zoj,c = 0) bay while

crane 1 conducts request o of job j. We describe the position of crane c at

the end of period t (and, thus, at point of time t) by pc,t.

We narrow down the time interval [eoj , l
o
j] where request o of job j may be

completed. It is not hard to see that we can choose eUj = min{|b0c − bUj |c =

1, 2, 3}+dUj and eOj = eUj +|bUj −bOj |+dOj for each request of a job. Analogous,

we can derive latest possible completion time lUj and lOj for a given upper

bound on the makespan. A trivial upper bound is given by assigning all

jobs to the crossover-crane in arbitrary processing order. The makespan for

this schedule can then easily be computed assuming that crossover-crane can

process the corresponding sequence of requests. Possibly, we have to add

a single period to that makespan when a twin-crane prevents the crossover-

crane from starting the first request immediately. This period, then, accounts

for the twin-crane to move out of the way.

Min Cmax (2.15)

Cmax ≥

lOj
∑

t=eO
j

xO
t,j,c · t ∀c ∈ C, j ∈ J (2.16)

∑

c∈C

yj,c = 1 ∀j ∈ J (2.17)

loj
∑

t=eoj

xo
t,j,c = yj,c ∀j ∈ J, o ∈ {U,O}, c ∈ C (2.18)

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 63

lUj
∑

t=eUj

t · xU
t,j,c ≤

lOj
∑

t=eOj

(t− dOj) · x
O
t,j,c ∀j ∈ J, c ∈ C (2.19)

min{t+doj−1,loj}
∑

q=t

xo
q,j,c +

∑

o′∈{U,O}

∑

i∈J\{j}

xo′

t,i,c ≤ 1 (2.20)

∀t = eoj − doj , ..., l
o
j , j ∈ J, o ∈ {U,O}, c ∈ C

t
∑

q=1

∑

j∈J

(xU
q,j,c − xO

q,j,c) ≥ 0 ∀t = 1, ..., T, c ∈ C (2.21)

t
∑

q=1

∑

j∈J

(xU
q,j,c − xO

q,j,c) ≤ 1 ∀t = 1, ..., T, c ∈ C (2.22)

(B + 2) ·

2−

zoj,c +

min{t+doj ,T}
∑

t′=t

xo
q,j,1

 ≥ boj + 1− pc,t (2.23)

∀c ∈ {2, 3}, j ∈ J, o ∈ {U,O}, t = eoj − doj , ..., l
o
j

(B + 2) ·

2−

(1− zoj,c) +

min{t+doj ,T}
∑

t′=t

xo
q,j,1

 ≥ pc,t − (boj − 1) (2.24)

∀c ∈ {2, 3}, j ∈ J, o ∈ {U,O}, t = eoj − doj , ..., l
o
j

(B + 1) ·

1−

min{t+doj ,l
o
j}

∑

t′=t

xo
t′,j,c

+ boj ·

min{t+doj ,l
o
j}

∑

t′=t

xo
t′,j,c

 ≥ pc,t (2.25)

∀t = eoj − doj , ..., l
o
j , j ∈ J, o ∈ {U,O}, c ∈ C

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 64

boj ·

min{t+doj ,l
o
j}

∑

t′=t

xo
t′,j,c

 ≤ pc,t ∀t = eoj − doj , ..., l
o
j , j ∈ J, o ∈ {U,O}, c ∈ C

(2.26)

pc,0 = b0c ∀c ∈ C (2.27)

pc,t − pc,t−1 ≤ 1 ∀c ∈ C, t = 1, ..., T (2.28)

pc,t−1 − pc,t ≤ 1 ∀c ∈ C, t = 1, ..., T (2.29)

p2,t ≤ p3,t − 1 ∀t = 1, ..., T (2.30)

xo
t,j,c ∈ {0, 1} ∀t = 0, ..., T, j ∈ J, o ∈ {U,O}, c ∈ C (2.31)

zoj,c ∈ {0, 1} ∀j ∈ J, o ∈ {U,O}, c ∈ {2, 3} (2.32)

yj,c ∈ {0, 1} ∀j ∈ J, c ∈ C (2.33)

The objective function (2.15) represents the goal to minimize the makespan.

Constraint (2.16) bounds the makespan from below while (2.17) ensures that

each job is assigned to exactly one crane. Constraint (2.18) forces each job

to be processed exactly once by the respective crane while (2.19) ensures

that the pick up and dropp off requests of a job start after another. Similar,

constraint (2.20) ensures that requests of different jobs conducted by the same

crane are not carried out in parallel. Constraints (2.21) and (2.22) ensure

that a container can only be dropped off when it has been picked up before

and a crane can carry at most one container at a time. Constraints (2.24)

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 65

and (2.23) make sure that no twin-crane is present in a bay b while crane 1 is

carrying out a request in b. Constraint (2.30) prevents conflicts between the

twin-cranes. Constraints (2.25) and (2.26) make sure that a crane is present

for doj periods in the respective bay boj while conducting request o of job

j. Further, these constraints ensure that the position of each crane at each

point of time is in Q. The starting position of the cranes are implemented in

(2.27). Finally, (2.28) and (2.29) restrict the moving speed of each crane to

one bay per period. The domains of the binary decision variables are defined

in (2.31), (2.32) and (2.33).

2.2.2 Branch and Bound

In this section we develop two B&Bs in which the problem differing in the

sequence particular decisions are made. In the first algorithm we sequentially

take all three parts of the decision, that is in the branching process first all

jobs are assigned to cranes, then for each crane a sequence of those cranes

assigned to it is determined, and finally the routing decision is taken. In the

second algorithm assignment and sequences are determined simultaneously.

In both cases we use a static branching scheme. We outline details on how the

decisions are taken in Sections 2.2.2.1 to 2.2.2.3. Finally, in Section 2.2.2.4

we outline different node order strategies as well as a heuristic in order to

determine initial upper bounds.

2.2.2.1 Sequential Assignment and Sequencing

In this section, we treat the algorithm to take assignment and sequencing

decisions sequentially. Throughout the first phase, covered by the first |J |

levels of the decision tree, jobs are assigned to cranes. Assigning is done

one by one and, hence, on level k of the tree (with the root node being on

level 0) k jobs are assigned to cranes. Nodes on level |J |, then, represent the

first part of the decision. The second phase, again, consists of |J | stages and

comprises levels |J | + 1 to 2|J | of the tree. In each stage of this phase we

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 66

define the position of a previously assigned job in the sequence of a crane

starting at the last position and ending at the first. Clearly, the (partial)

sequences corresponding to each node have to be in line with the assignment

represented by the node’s ancestor on level |J |. Nodes on level 2|J |, then,

represent the first two parts of the decision. For such a node the routing is

still to be decided. We, thus, evaluate the node by applying the approach by

Briskorn and Zey [6] in order to find a good routing for the given assignment

and sequences. The routing, then, complements assignment and sequences to

a feasible schedule and, therefore, implies its makespan. In the exact variant

of our B&B we possibly use a standard solver to determine the optimum

routing.

The reason for separating the assignment and the sequencing in our branch-

ing scheme is that the assignment decisions alone enable us to find valu-

able bounds already. We give details on these bounds later. An alternative

strategy that comes to mind (and in our opinion is used more often in the

literature) is to simultaneously build assignments and sequences. We take

into account such an algorithm in Section 2.2.2.2 in which we simultaneously

build assignments and sequences followed by the routing. However, it proved

to be inferior to branching by separating assignment and sequencing decisions

which is why we describe this version in detail in the following.

Figure 2.17 depicts the structure of the resulting search tree for an instance

with |J | = 5. In levels 1 to |J | jobs are assigned one by one to cranes 1, 2 or

3 while in levels |J |+1 to 2|J | jobs are sequenced one by one. Finally, nodes

on level 2|J | are complemented by a routing decision.

In order to represent the information carried in an arbitrary node we denote

the set of jobs assigned to crane c so far by Ac ⊆ J . Sequences of jobs are

constructed by filling positions in the sequence in decreasing order. For a

given sequence nc we can derive the minimum timespan c needs to conduct

all jobs, by assuming that it starts in the pick-up bay of the job having the

lowest index in nc. This timespan is denoted as l(nc). Here, we disregard

interference between cranes and assume that crane c can process nc without

any waiting time or detours. Bay bnc
is the bay of the job in nc having the

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 67

Root

1

1 2 3

1 2

1

1 2 3

4

1

5

2

3

R

2

5

3

R

1

4

5

2

3

R

2

5

3

R

2 3

3

2

1 2 3

1 2 3

1 2 3

1

2

3

4

1

5

R

4

3

1

5

R

3

2

4

1

5

R

4

2

1

5

R

4

2

3

1

5

R

3

2

1

5

R

2 3

3

1 2 3

Assignment of j = 1

Assignment of j = 2

Assignment of j = 3

Assignment of j = 4

Assignment of j = 5

j = 4 in Position 2 of Crane 1

j = 1 in Position 1 of Crane 1

j = 5 in Position 2 of Crane 2

j = 2 in Position 1 of Crane 2

j = 3 in Position 1 of Crane 3

Routing

Figure 2.17: Branching example for |J | = 5

lowest index.

Naturally, one may wonder if it would be more promising to employ a dy-

namic branching scheme rather than a static one. We investigated several

relaxations we might use for determining promising branching decisions to

be taken next. However, in each attempt the potential benefit of dynamic

branching decisions was counterbalanced by the higher effort of solving the

relaxation and/or maintaining the branching tree.

In the following we outline details of the assignment phase and the sequence

phase in Sections 2.2.2.1.1 and 2.2.2.1.2. The routing decision making is

presented in Section 2.2.2.3.

2.2.2.1.1 Assignment The assignment phase is outlined in the section

at hand. We describe the branching mechanism first and the bounds after-

wards.

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 68

Branching As mentioned before, the assignment phase consists of |J |

stages and on each stage one job gets assigned to each of the cranes. Nat-

urally, we decompose the solutions space appropriately if we create a child

node by assigning the current job j to each crane that might conduct it.

Hence, if bUj = 0 or bOj = 0 (bUj = B + 1 or bOj = B + 1) we create no child

node for the assignment of j to crane 3 (2).

We consider jobs in non-increasing order of their implied workloads. The

workload of job j is wj = dUj + |bOj − bUj | + dOj , that is the total duration

of pick up and drop off request plus the travel time from its origin to its

destination. In the following, we assume that wj ≥ wj+1, j = 1, . . . , |J | − 1

which can be achieved by renumbering. Then, nodes on level j are derived

from nodes on level j − 1 by assigning job j to each crane that can handle

it. Doing so leads to potentially tighter lower bounds on low levels already

(see Section 2.2.2.1.1 for details on bounds). As a result, there are up to 3|J |

nodes on level |J | of the tree.

In Figure 2.17 the first |J | = 5 levels represent the assignment phase. In

stages 1 to |J | jobs are assigned one by one to cranes 1, 2 or 3 as indicated

by the numbers in the nodes. The left subtree in stages |J |+1 to 2|J |, thus,

is based on jobs 1 and 4, job 3, and jobs 2 and 5 being assigned to cranes

1, 2, and 3. The right subtree is based on job 5, job 1, and jobs 2, 3, and 4

being assigned to cranes 1, 2, and 3.

Bounding In order to derive lower bounds we first consider the set Ac

assigned to crane c. We derive a lower bound for processing all jobs in Ac

first and consider those jobs not assigned to any crane yet later on in order

to further tighten the lower bound.

For a given set Ac of jobs assigned to crane c, the minimum duration it takes

for that crane to conduct the jobs is affected by three factors: the total work-

load of jobs in Ac, the empty travel time between drop off position of a job

and pick up position of the next job, and the delay due to waiting or even

detours implied by the routing. Since total workload
∑

j∈Ac
wj assigned to

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 69

crane c is a constant empty travel times and routing remain as the influence-

able factors. We decided to disregard the latter when deriving bounds. Note

that, when interferences are ignored we can derive a lower bound for each

crane c independently by bounding the empty travel time implied Ac from

below.

We will consider a slightly more general version of the problem than actu-

ally necessary at this point where we consider a node of the tree in level k

with k = 1, . . . , 2|J |. Hence, nc might not be empty. While nc is empty

throughout the assignment phase this allows us to fall back on this descrip-

tion when we describe the bounding mechanism in the sequencing phase in

Section 2.2.2.1.2.

A lower bound for empty travel time can be found by determining a sequence

of jobs in Ac but not in nc such that total empty travel time is minimized.

This problem is very closely related to the one considered in Gilmore and

Gomory [25]. We shortly introduce a special case of the problem in Gilmore

and Gomory [25] serving our purpose. Here, jobs (corresponding to transport

jobs in Ac but not in nc) have to be processed on a machine (correspond-

ing to the crane). The machine is in a certain state at each point of time

(corresponding to the position of the crane over time). An initial state (cor-

responding to the starting position b0c of crane c) is given and so is a final

state the machine has to be left in after processing all jobs.

Jobs change the machines state from a start state (corresponding to the jobs

origin position) to an end state (corresponding to the jobs destination po-

sition). After completing a job the machine has to be brought from this

job’s end state to the following job’s start state before the following job can

be processed (corresponding to the empty drive of the crane from a job’s

destination position to the next job’s origin position). Gilmore and Go-

mory [25] develop a polynomial time algorithm determining the job sequence

with minimum changeover costs (minimum empty travel time). Note that

the jobs workloads do not have a counterpart in the problem considered by

Gilmore and Gomory [25]. However, since total workload is a constant once

the assignment is fixed, a sequence having minimum empty travel time has

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 70

minimum makespan, as well.

We adapt this algorithm in the following. For final position b′ we consider the

subproblem TRCSP(nc,Ac,c,b
′) to determine the sequence of jobs in Ac \ nc

implying minimum travel time for crane c under the assumption that the

crane starts in b0c and ends up in b′. Even though TRCSP has no final

position required for a crane (which would correspond to the final state of

the machine), we can restrict the set of final positions that a crane can take

to bOj for all j ∈ Ac. Note that we can indeed assume that there is a job

j in Ac such that the crane has final position bOj since otherwise the crane

conducts a superfluous empty drive after completing the last job. We end up

with a time complexity of O(|Ac|
3) to determine the minimum empty travel

time sequence of all jobs in Ac when conducted by crane c starting from b0c .

We select the sequence with minimum empty travel time and add the total

workload
∑

j∈Ac
wj , in order to obtain the minimum makespan denoted by

Ca
max(c, Ac). The lower bound determined for a node is

lb1 = max{Ca
max(c, Ac) | c = 1, 2, 3}.

We can potentially strengthen this lower bound by taking into account the

workload implied by those jobs not assigned yet. We derive a lower bound on

the total workload plus empty travel time to be managed by the crane sys-

tem. Obviously, crane c cannot finish before Ca
max(c, Ac). Furthermore, these

values do not account for the pickup times or drop off times of those jobs

not in Ac. Note that the loaded travel time |bUj − bOj | of job j 6∈ A1 ∪A2 ∪A3

may not increase the travel time of a crane c (since it goes empty from bUj

to bOj according to Ca
max(c, Ac)) it necessarily increases its travel time when

crane c does not reach every bay in the interval
[

min
{

bUj , b
O
j

}

,max
{

bUj , b
O
j

}]

of bays. Let bDj be the number of bays in
[

min
{

bUj , b
O
j

}

,max
{

bUj , b
O
j

}]

not reached by any crane according to Ca
max(c, Ac). Note that this

number does not depend on the very schedule assumed for Ca
max(c, Ac)

but only on the set of jobs in Ac since c reaches the inter-

val
[

min
{

b0j ,min
{

bUj , b
O
j | j ∈ Ac

}}

,max
{

b0c ,max
{

bUj , b
O
j | j ∈ Ac

}}]

due

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 71

to the optimality reached by applying the algorithm by Gilmore and Go-

mory [25]. We, hence, obtain lower bound

lb2 =

∑

c∈C

{Ca
max(c, Ac)}+

∑

j 6∈A1∪A2∪A3
(dUj + dOj + bDj)

3

by considering the lower bound on the total workload plus empty travel time

and distribute it evenly among the three cranes. We consider lower bound

lbA = max {lb1, lb2}

for each node in the following. Note that for a node on level k, k =

|J |, . . . , 2|J |, lb = lb1 since A1 ∪A2 ∪A3 = J .

2.2.2.1.2 Sequencing The sequencing phase is outlined in this section.

Here, nodes on level |J | and, therefore, representing an assignment are ex-

amined by determining sequences of jobs. Again, we describe the branching

mechanism first and the bounds afterwards.

Branching The branching scheme is to design sequences by considering

cranes one by one and for each crane to assign jobs to positions of the se-

quence in decreasing order of positions. By applying such a scheme and

consequently branching by constructing a cranes sequence from the last po-

sition to the first, the computational burden of determining lower bounds

decreases, as described in Section 2.2.2.1.2.

We branch such that the sequence of one crane is fully constructed before

switching to the next crane. We do so since we can achieve stronger lower

bounds on low levels of the search tree. The order in which cranes are re-

garded is according to non-increasing lower bounds Ca
max(c, Ac) as determined

in the corresponding ancestor node on level |J |. For every node we construct

a child node for each allocation of a job in Ac \ nc to the next open position

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 72

in nc. Consequently, the job-sequences of c are then built on |Ac| levels of

the search tree.

In Figure 2.17 levels |J |+1 = 6 to 2|J | = 10 represent the sequencing phase.

The comments on the left only apply to the left subtree. The lower bounds

corresponding to cranes 1, 2, and 3 corresponding to the ancestor node on

level |J | = 5 are in decreasing order (this is not represented by Figure 2.17)

and, hence, the sequence of crane 1 is constructed first on levels 6 and 7, the

sequence of crane 2 is constructed second on levels 8 and 9, and the sequence

of crane 3 is constructed last on level 10.

Bounding In order to derive lower bounds we once again adapt the ap-

proach by Gilmore and Gomory [25]. By sequencing jobs from the last posi-

tion to the first, we have both, a given initial state b0c , being the starting posi-

tion of crane c, as well as a given ending state bnc
, being the pick up bay of the

job having the lowest index in nc. Hence, we can derive TRCSP(nc,Ac,c,bnc
)

as the optimum sequence of jobs in Ac but not in nc. Since both, a beginning

and an ending state, are given we determine the minimum empty travel time

with a time complexity of O(|Ac|
2). If we add the workload

∑

j∈Ac\nc
wj , we

obtain Cs
max(c,nc,Ac) as a minimum duration for processing the jobs in Ac

that are not yet in nc. A lower bound on the time necessary to conduct the

jobs of crane c can be described as

lb3,c =

Ca
max(c, Ac) if nc is empty

l(nc) + Cs
max(c, nc, Ac) else

Recall that sequences of cranes are constructed one after another, hence lb3,c

equals Ca
max(c, Ac) if the sequencing has not yet begun, while it equals l(nc)

after a complete sequence is constructed. Consequently, the lower bound for

a node on level k, k = |J |+ 1, . . . , 2|J |, can then be described as

lb3 = max {lb3,c | c = 1, 2, 3} .

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 73

A second bound, lb4, is applied after having completely built the job se-

quences of two cranes. We derive a lower bound for the minimum makespan

of an interference-free routing by applying the approach proposed in Briskorn

and Angeloudis [5]. The authors basically tackle the two crane versions of the

problem to find a minimum makespan interference-free routing for a given

sequence of jobs. The authors can prove optimality of their polynomial time

approach and, additionally, show that run times are short. By using the

complete job sequences of the two cranes as input we can determine the op-

timum interference-free routing for the respective pair of cranes ignoring the

third crane. Obviously, such a routing implies a lower bound such that the

maximum among the makespan obtained by the pairwise routing and lb3 acts

as a lower bound for nodes implying the sequencing of the last crane.

2.2.2.2 Simultaneous Assignment and Sequencing

In this section, we treat the approach to take assignment and sequencing

decisions simultaneously. We branch by deciding the next entry in one crane’s

job sequence and, consequently, simultaneously build the assignment and

sequences. The branching scheme as well as the bounds employed are detailed

in Sections 2.2.2.2.1 and 2.2.2.2.2.

2.2.2.2.1 Branching Throughout the B&B we successively build the job

fulfillment sequences of the cranes, by appending an unassigned job to the

current partial sequence, again being denoted by nc, of a crane c. Conse-

quently the phase consists of |J | stages, with a root node on stage 0, such

that leafs on the final stage represent a node with complete assignments and

sequences.

The set of jobs that have yet to be assigned and sequenced in a node is given

by J \ n1 ∪ n2 ∪ n3. The trivial approach would be to create a child node for

each job in J \n1∪n2∪n3 being assigned to each crane. This, however, leads

to identical assignments and sequences achieved by jobs being assigned in

different order or, in other words, different leaf nodes representing the same

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 74

assignment and sequences. Hence, we employ a variant of this branching

scheme avoiding duplicate leafs.

Consider an arbitrary node with j∗ being the job with the highest index

among all assigned jobs and c∗ being the crane that this job has been assigned

to. We allow then to assign a job j ∈ J \ n1 ∪ n2 ∪ n3 to any crane, only if

j∗ < j. If we do so, we update j∗ and c∗ respectively afterwards. Whenever

j < j∗ we only allow to append that job to nc∗ .

The following theorem states that we indeed prevent creating multiple iden-

tical leafs using this variant.

Theorem 2. For each assignment of jobs to cranes and triple of correspond-

ing sequences there is exactly one order of jobs being assigned to cranes in

the branching scheme yielding it.

Proof. The proof consists of two steps. First, we consider an arbitrary as-

signment of jobs to cranes and triple (n1, n2, n3) of corresponding sequences

constructed using our branching scheme. We show that there is exactly one

branching order, that is an order in which the branching scheme assigns jobs

to cranes, such that the assignment of jobs to cranes and triple of corre-

sponding sequences under consideration is yielded. We conduct the first step

by reconstructing the sequence σ representing the branching order. We con-

struct σ from start to end by adding one job at a time and we will see that

there is exactly one such sequence.

Let jc be the first job in nc that has not yet been appended to σ. Clearly,

the next job assigned to a crane must be in {j1, j2, j3}. We claim that the

job assigned next is jc′ with c′ = argmin{ji | i = 1, 2, 3} and show it by

contradiction. Assume that jc′′ with c′′ 6= c′ and, thus, jc′′ > jc′ is assigned

next. We distinguish two cases.

• If jc′′ < j∗, then jc′′ is assigned to c∗ by the branching scheme and,

thus, c∗ = c′′. Hence, jc′ cannot be assigned next to c′ by the branching

scheme which is the case, however, in the assignment of jobs to cranes

and triple of corresponding sequences under consideration.

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 75

• If jc′′ > j∗, c∗ is set to c′′ after assigning jc′′ to c′′. Again, then, jc′

cannot be assigned next to c′ by the branching scheme.

Second, we show that for an arbitrary assignment of jobs to cranes and triple

(n1, n2, n3) of corresponding sequences there is indeed a branching sequence

leading to (n1, n2, n3). Let n′
c for each c ∈ C be a subsequence of nc as

follows. Subsequence n′
c contains the kth element of nc if and only if it is

the largest element in positions 1, . . . , k of nc. The elements in n′
c are in the

same relative order as in nc. We, then, construct the branching sequence σ

as follows. Let j′c be the first job in n′
c that has not yet been appended to σ.

Clearly, the next job in n′
c assigned to a crane is j′c. In each step we choose

j′c′ with c′ = argmin{ji | i = 1, 2, 3} to be the next job in σ. Note that at

this point j′c′ is the largest job in σ. We additionally, append all jobs in nc′

between j′c′ and its successor in n′
c′ to σ. Note that the branching scheme

assigns these jobs also to c′.

Figure 2.18 depicts the structure of the resulting search tree for an instance

with |J | = 5. The nodes indicate job j which is appended to crane c’s job

sequence. Each workplan represented by a leaf is complemented by a routing

decision. On the righthand side of the tree we put job 5 in the first position

of the sequence of crane 3. Hence, in all branches resulting from this node

we can assign the remaining (smaller) jobs only to crane 3. On the lefthand

side we assign job 1 to crane 3 and are consequently allowed to assign any

larger job to any of the cranes. In the depicted subtree we append job 3 to

the sequence of crane 1 on the second stage, hence, we can then only append

job 2 to that crane as well, but can decide freely to which crane we append

jobs larger than job 3.

Leafs on the final stage are then evaluated by the routing as depicted in

Section 2.2.2.3.

2.2.2.2.2 Bounding Analogously to Section 2.2.2.1.2 the minimum du-

ration of processing partial sequences l(nc) acts as a lower bound for the

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 76

R
o
o
t

c=
1
/
j=

1
c=

2
/
j=

1
c=

3
/
j=

1

c=
1
/
j=

2
c=

2
/
j=

2
c=

3
/
j=

2
c=

1
/
j=

3

c=
1
/
j=

2
c=

1
/
j=

4

c=
1
/
j=

2

c=
1
/
j=

5

R

c=
2
/
j=

5

R

c=
3
/
j=

5

R

c=
1
/
j=

5
c=

2
/
j=

5

c=
2
/
j=

3

R

c=
3
/
j=

5

c=
3
/
j=

2

R

c=
2
/
j=

4
c=

3
/
j=

4
..
.

c=
3
/
j=

5

c=
3
/
j=

4

c=
3
/
j=

2

R

c=
3
/
j=

2

c=
3
/
j=

4

R

..
.

c=
3
/
j=

5

c=
1
/
j=

2
c=

2
/
j=

2
..
.

c=
3
/
j=

5

c=
3
/
j=

1

c=
3
/
j=

2
c=

3
/
j=

3

c=
3
/
j=

2

c=
3
/
j=

4

R

c=
3
/
j=

4

c=
3
/
j=

2

R

c=
3
/
j=

4

c=
3
/
j=

2
c=

3
/
j=

3
c=

3
/
j=

4

c=
3
/
j=

1
c=

3
/
j=

2

c=
3
/
j=

1

c=
3
/
j=

3

R

c=
3
/
j=

3

c=
3
/
j=

1

R

c=
3
/
j=

3

Figure 2.18: Branching example when simultaneously assigning and sequenc-
ing jobs for |J | = 5

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 77

makespan of a crane such that a lower bound on the total makespan can be

described by the following term, lb5. Note that, by building sequences from

the first job to the last, l(nc) can be derived by assuming that c starts in b0c
and conducts all jobs in nc as early as possible.

lb5 = max{l(nc) | c = 1, 2, 3}.

We can potentially strengthen the bound by considering unassigned jobs.

We do so by incorporating the workload wj of each job j not assigned yet.

Furthermore, bay bnc
is the drop off bay of the job in nc having the largest

index with bnc
= b0c if nc is empty. We incorporate lower bound

bej = min
{

min{|bnc
− bUj |c = 1, 2, 3},min{|bOk − bUj |k 6∈ n1 ∪ n2 ∪ n3, k 6= j}

}

of the empty travel time to reach job j. Analogously to lb2 we, then, obtain

lower bound

lb6 =

∑

c∈C

l(nc) +
∑

j 6∈n1∪n2∪n3
(wj + bej)

3

.

The lower bound for a node is then the maximum among lb5 and lb6.

2.2.2.3 Routing Phase

The final phase of the B&B determines the routing decision. Here, no branch-

ing is involved anymore but it can be rather seen as evaluating leaf nodes

resulting from branching in the previous phases.” Since this leaf nodes rep-

resent complete assignments of jobs and the respective sequences in both

B&Bs, the routing approach from Section 2.1 is applicable for both algo-

rithms. We present a heuristic routing approach, based on Section 2.1 in the

following and show how we extend this approach in order to determine exact

solutions for a leaf node.

”First, we determine the interference free routings (and its makespans) for

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 78

all pairs of cranes, analogously to in lb4. If the maximum among these

makespans is lower than the current upper bound we determine the heuristic

routing as in Section 2.1 in a second step. If the makespan determined by

the heuristic routing equals the makespan of any pairwise routing, we obvi-

ously found the routing with minimum makespan based on the leaf node. If

this is not the case, we determine an optimum interference-free routing using

CPLEX applied to the MIP model from Section 2.1.1. We apply the mini-

mum among the (feasible) makespan derived in Step 2. and the current best

upper bound as length of the planning horizon. Note that this significantly

impacts run times since the MIP model is time-indexed.

Usually, we can prove optimality applying the first two steps only. In Section

2.1.1 it is shown that on average the results of the heuristic approach are less

than 0.2% larger than the lower bound obtained by the pairwise routing.

Hence, we have to solve the MIP only in a relatively small number of leafs.

2.2.2.4 Node Order Strategies and Upper Bound Heuristic

We can determine an initial upper bound for any of the B&Bs making use of

lbA and the heuristic routing approach presented in prior sections, by means

of a simple heuristic, STRT . Here, jobs are assigned to cranes in a greedy

fashion first. For each unassigned job and crane we compute lbA, as stated in

Section 2.2.2.1.1, under the assumption that the respective job gets assigned

to the respective crane. We select the unassigned job and crane combination

that increases the lower bound the least, with ties broken arbitrarily and

update the respective assignment. The procedure is repeated as long as

there are jobs to assign. Finally, we evaluate the complete assignment via the

heuristic routing, assuming that the cranes conduct the jobs in order implied

by Ca
max(c, nc, Ac). This initial solution is improved afterwards by a hill-

climbing mechanism. We exchange pairs of jobs between cranes. After each

exchange, we determine Ca
max(c, nc, Ac) and evaluate the implied sequences by

the routing. We stop the procedure when no exchange yields an improvement.

While there is no structural necessity to provide an initial upper bound when

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 79

executing the B&Bs, we can make sure that we provide a feasible solution

whenever no routing can be determined within a tight run time limit.

We then develop different strategies how to determine the node in the search

tree to be investigated next.

1. In the first algorithm we choose the one having the lowest attributed

lower bound among all nodes not having been investigated yet. If

there are multiple nodes having the same lowest lower bound, we purse

the one on the largest level. We denote the sequential assignment

and sequencing B&Bs using this node order strategy with BEST SEQ
H

and BEST SEQ
E depending on whether heuristic- and exact routing is

applied. The B&Bs with simultaneous assignment and sequencing of

jobs are then denoted BEST SIM
H and BEST SIM

E accordingly.

In preliminary tests we noticed that the initial upper bound gets improved

for the first time rather late in the procedure when the search tree is large.

Hence, we obtain rather bad solutions when time limits are tight. As a result

we implemented two additional strategies.

2. The second one is a beam search algorithm. Here we successively in-

vestigate only the µ nodes having the smallest lower bounds on a level

and discard the remaining nodes. Once the procedure reaches level

2|J | all leafs developed are evaluated using the heuristic routing. The

main motivation for this approach is to reduce run times. Therefore,

only the heuristic routing is applied and we refer to this algorithm as

BEAMSIM and BEAMSEQ.

3. The third algorithm is similar to the beam search algorithm. We, again,

branch the µ best nodes on a level, but do not discard the remaining

ones. Whenever there are no nodes left on a level to be processed, we

return to the previous level and progress the remaining best µ (or less)

nodes that we postponed earlier. The algorithm ends when there are no

more nodes to be processed. We therefore denote this complete beam

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 80

search algorithm by CBEAMSIM
H (CBEAMSEQ

H), when the heuristic

routing is applied and by CBEAMSIM
E (CBEAMSEQ

E) for the exact

routing step.

2.2.3 Computational Results

For our test beds we set the block size to 31 bays, such that the storage space

covers bay 1 to 30 with two handover bays on each side of the block. Crane

1 starts in bay 15, the twin-cranes start in the respective handover bays.

The pick up- and drop off durations are between 1 and 5 periods and the

respective container positions lay on bay interval [0, 31]. For an amount of

5, 10, 15 and 20 jobs we each created 50 instances based on the parameters.

Hereby we used the generator from [9] as discussed in [11]. All tests were

conducted on a System with Intel Core i7-4790 CPU with 3.6 GHz and 32

GB of RAM running Windows 7. The B&Bs were implemented in Java 8.

In a first step we evaluated the performance of the MIP model as proposed

in Section 2.2.1 using CPLEX 12.6.3 with standard settings and compared

it to the model formulation by Kemme [29]. Note that the problem tackled

in [29] differs from ours only in the objective, which is to minimize the sum

of the cranes’ waiting times. Hence, both models have equivalent solution

spaces and the MIP model proposed by [29] can be modified to represent the

goal of makespan minimization easily without major changes. Both model

formulations are period based. Nonetheless the position variables used in the

model proposed in Section 2.2.1 are time and crane based and are continuous,

while the position variables in [29] are binary and are time, crane and bay

based. So, the number of binary variables as well as the total number of

variables is smaller in our model.

When comparing the MIP models it became apparent, that we could solve

only rather small instances. Thus, we only compared the MIP models using

instances with 5 jobs and a runtime limit of one hour. Additionally, we

tackled the instances with 10 jobs using our MIP model. The time horizon

was obtained by STRT . The comparison is depicted in Table 2.5, showing the

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 81

number of instances for which we could obtain a feasible solution, the average

optimality gap to the optimal solution in percent as well as the average

runtimes. We were able to determine optimal solutions for every 5 and 10

job instance in the computational study by solving them with BEST SEQ
E , as

presented in a later part of this section, thus we did not compare the results

from Table 2.5 to a lower bound.

Formulation from Sec. 2.2.1 Kemme [29]
Jobs Feasible GAP s Feasible GAP s

5 100 0 12.56 s 100 0.69 1123
10 92 16.37 3559.66 - - -

Table 2.5: Comparison of MIP models

It can be seen that feasible solutions for all instances with 5 jobs could be

obtained within the runtime limit using both MIP models. However, when

providing CPLEX with the model formulation proposed in Section 2.2.1,

average runtimes were significantly smaller in comparison to the formulation

of Kemme [29]. Further, optimum solutions were obtained (and optimality

was proven) for every instance when using the formulation from Section 2.2.1,

while the usage of the MIP from Kemme [29] results in a small gap. Tackling

instances with 10 jobs, runtimes increase drastically with the runtime limit

reached for virtually every instance. Even worse, we can determine a feasible

solution only for 92 out of the 100 instances. For the feasible solutions found

we have a significant optimality gap of about 16%.

In a second step we evaluated the different B&Bs and apply the node order

strategies presented in Section 2.2.2.4. We set a runtime limit of one hour, 10

minutes, and 10 seconds, respectively, for each of the algorithms and, after

preliminary calibration, set µ to 0.5 · |J |2 + 30 · |J | for the (complete) beam

search algorithms. Hereby we employ a beam-width which depends on the

number of jobs, and consequently on the number of possible nodes in the

tree. The initial upper bound, again, was determined using STRT .

We begin by evaluating the B&Bs with sequential assigning and sequencing

of jobs as proposed in 2.2.2.1, first. Table 2.6 outlines the results with dif-

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 82

ferent time limits. We show average run times as well as the average gap to

the optimal solution. Note that the optimal solutions for all instances were

obtained by solving them with an infinite time limit if necessary.

We observe that each variant determines feasible solutions significantly faster

than the MIP with regard to instances with 5 or 10 jobs using STRT . Fur-

ther, we see that every algorithm, except for BEAMSEQ, determines the

optimal solution for every instance for this test bed. On average BEST SEQ
H

and BEST SEQ
E have smaller run times when compared with the respective

complete beam search algorithm. BEST SEQ
H outperforms all other B&Bs in

terms of average gap and run times, regardless of the time limit.

The main advantage of BEAMSEQ can be observed when analyzing the re-

sults for instances with 15 and 20 jobs: average run times are significantly

lower than those of the other B&Bs while the optimality gap remains mod-

erate.

When comparing BEST SEQ
H and BEST SEQ

E with the complete beam search

B&B, we see that the average gap as well as run times are larger for both,

CBEAMSEQ
H and CBEAMSEQ

E , when the time limit is larger or equal to

10 minutes. This can be explained as follows: When the time limit is suf-

ficiently large, both types of algorithms obtain a solution with the same

makespan when applying the same type of routing. Nonetheless, when em-

ploying BEST SEQ
E and BEST SEQ

H less nodes will be processed, since only

nodes with associated lower bounds not exceeding the optimum makespan

will be considered. Hence, run times are larger in comparison. On the other

hand, when the time limit is tight, BEST SEQ
E and BEST SEQ

H are more likely

to fully explore the search tree (again, since a smaller number of nodes is pro-

cessed).

The main advantage of CBEAMSEQ
H and CBEAMSEQ

E is that the final stage

of the search tree is reached potentially earlier. Consequently, µ promising

nodes can be evaluated by the routing early, such that the initial upper bound

can potentially be updated. When using the best first search algorithms this

is not necessarily the case, especially when bounds on larger stages of the

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 83

B
E
S
T
S
E
Q

H
B
E
S
T
S
E
Q

E
C
B
E
A
M

S
E
Q

H
C
B
E
A
M

S
E
Q

E
B
E
A
M

S
E
Q

jo
b
s

s
G
A
P

s
G
A
P

s
G
A
P

s
G
A
P

s
G
A
P

T
im

e
li
m
it
:
10

se
co
n
d
s

5
0.
01

0.
00

0.
03

0.
00

0.
02

0.
00

0.
03

0.
00

0.
02

0.
00

10
0.
48

0.
00

0.
71

1.
40

0.
66

0.
00

0.
74

0.
00

0.
19

1.
11

15
5.
88

1.
90

6.
26

3.
03

6.
62

3.
01

6.
86

5.
09

0.
71

6.
85

20
9.
65

22
.4
9

9.
68

24
.5
0

9.
62

5.
21

9.
65

7.
57

1.
44

7.
05

T
im

e
li
m
it
:
10

m
in
u
te
s

5
0.
01

0.
00

0.
03

0.
00

0.
02

0.
00

0.
03

0.
00

0.
02

0.
00

10
0.
48

0.
00

1.
30

0.
00

0.
66

0.
00

0.
74

0.
00

0.
19

1.
11

15
28
.0
2

0.
08

28
.7
0

0.
08

74
.0
6

0.
49

80
.7
0

0.
49

0.
71

6.
85

20
20
7.
92

1.
49

21
5.
33

2.
31

25
5.
16

2.
18

25
6.
78

2.
75

1.
44

7.
05

T
im

e
li
m
it
:
1
h
ou

r

5
0.
01

0.
00

0.
03

0.
00

0.
02

0.
00

0.
03

0.
00

0.
02

0.
00

10
0.
48

0.
00

1.
30

0.
00

0.
66

0.
00

0.
74

0.
00

0.
19

1.
11

15
37
.3
9

0.
00

38
.0
6

0.
00

14
6.
28

0.
32

15
3.
44

0.
32

0.
71

6.
58

20
47
5.
75

0.
80

51
8.
49

0.
80

10
19
.1
2

1.
33

10
27
.9
9

1.
40

1.
44

7.
05

Table 2.6: Comparison of average solving times in seconds, average gap in
percent

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 84

tree are significantly tighter than on early stages and the number of nodes

is large. We observe the effect, when setting a time limit of 10 seconds and

evaluating our B&Bs using instances with 20 jobs. Here BEST SEQ
H and

BEST SEQ
E have an average gap of 22 to 25 percent, since they often do not

reach parts of the search tree where good solutions can be found.

What is interesting to see is, that the exact algorithms CBEAMSEQ
E and

BEST SEQ
E have on average an equal or higher gap in comparison with

CBEAMSEQ
H and BEST SEQ

H respectively, while additionally average run

times are slightly larger. We find an explanation in Briskorn and Zey [6]. It

is shown that the heuristic routing has on average a gap of 0.2% to the lower

bound conducted by routing pairs of only two cranes. Consequently, we ob-

tain solutions that equal the lower bound most of the time, and, hence, do

not have to use CPLEX in the three step routing approach, since optimality

is proven within the first two steps. Table 2.7 gives some insights, when an-

alyzing all instances solved by BEST SEQ
E . We outline the quota of instances

that were solved without calling CPLEX at all. Further, we provide the

total number of leafs explored by the three step routing approach, the num-

ber of leafs evaluated by the heuristic routing approach, and the number of

leafs evaluated using CPLEX. Finally, we outline the number of leafs where

employing CPLEX actually leads to an improved upper bound. Note, that

this improvement of the upper bound does not necessarily mean that the

optimal solution for TRCSP was found, but only that CPLEX improved any

upper bound.

Quota of instances without CPLEX call 59%
Total leafs evaluated in the routing stage 27331636
Total heuristic evaluations 2964
Total calls of CPLEX 616
Total upper bound improvements by CPLEX 35

Table 2.7: Analysis of the instances solved by BESTE

We observe that only a fraction of the leafs are evaluated by the heuristic

routing and most of them are discarded due to an insufficient lower bound

obtained by the routing of pairs of cranes, lb4. The heuristic routing eval-

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 85

uation, again, leads to a large portion of leafs not explored further and,

hence, CPLEX gets called only for a tiny fraction of leafs. This explains

the minor increase in run times comparing CBEAMSEQ
E and BEST SEQ

E to

CBEAMSEQ
H and BEST SEQ

H , respectively. The gap is similar since heuris-

tic routing only very rarely yields worse solutions than exact routing does.

In fact, there is virtually no difference between exact routing and heuristic

routing when the search tree is inspected entirely (when we do not reach the

runtime limit). For the remaining instances higher average effort per node

means a smaller number of nodes explored within the runtime limit which

explains the increase of the optimality gap comparing the algorithms with

an exact routing approach to the ones with heuristic routing.

For both general branching algorithms, with sequential as well as the simul-

taneous assignment and sequencing of jobs, leafs on the final stage of the

search tree represent workplans that are structurally identical. Hence, when

conducting the routing, they are evaluated by the same heuristic or exact

routing approaches. We therefore expect similar results regarding the in-

fluence of CPLEX on the solution quality which consequently leads us to a

reduced study on the simultaneous assignment and sequencing of jobs. We

tested CBEAMSIM
H , BEST SIM

E and BEAMSIM for the same test bed and

parameters as for the sequential assignment and sequencing of jobs. When

employing BEST SIM
E we ran out of memory for most of the instances with

15 jobs or larger, hence, we cannot provide an extensive comparison. The

results are presented in table 2.8.

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 86

BEST SIM
H CBEAMSIM

H BEAMSIM

jobs s GAP s GAP s GAP

Time limit: 10 seconds

5 0.07 0.00 0.08 0.00 0.07 0.27
10 5.19 10.13 2.14 0.00 0.19 20.30
15 - - 10.00 6.32 0.40 24.42
20 - - 10.00 16.09 1.00 27.02

Time limit: 10 minutes

5 0.07 0.00 0.08 0.00 0.07 0.27
10 13.24 0.00 2.15 0.00 0.19 20.30
15 - - 511.08 0.50 0.40 24.42
20 - - 600.00 8.04 1.00 27.02

Time limit: 1 hour

5 0.07 0.00 0.08 0.00 0.07 0.27
10 13.24 0.00 2.15 0.00 0.19 20.30
15 - - 1958.04 0.10 0.40 24.42
20 - - 3600.00 5.02 1.00 27.02

Table 2.8: Comparison of average solving times in seconds, average gap in
percent

When looking at the 5 job test bed we observe that the B&Bs have short

run times and determine the optimal solution for each instance. However,

in comparison to the counterpart algorithms making use of the sequential

assignment and routing of cranes they are slower.

When we increase the number of jobs, it becomes apparent that all of the

algorithms are outperformed in comparison to the B&Bs with sequential

assignment and sequencing of jobs. Either, the search tree becomes too

large such that we run out of memory when employing of BEST SIM
H or it

takes significantly longer to solve an instance. Additionally the gap to the

optimal solution is larger for the 15 and 20 job test bed. We can further

observe that BEAMSIM has fast run times in comparison to CBEAMSIM
H

as well as BEAMSIM but does not outperform BEAMSEQ in terms of gap,

resulting from potentially weak bounds and consequently poor information

quality when progressing the µ best nodes on a level of the tree. Nonetheless

BEAMSIM is the only algorithm in our study being able to solve the largest

instances not slower than one second on average.

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 87

What is interesting to see, is that BEST SIM
H takes longer to solve than

CBEAMSIM
H and, thus, the results are in contrast to the earlier findings.

We analyzed this circumstance by tracking the average number of nodes in

the search tree for BEST SIM
H , BEST SEQ

H and CBEAMSIM
H when solving

the 10 job test bed and detail the findings in the following: when solving

instances with BEST SEQ
H the average number of nodes in the tree is 375,

for CBEAMSIM
H it is 4438 and for BEST SIM

H it is 296601. The results indi-

cate that the bounds obtained by simultaneously assigning and sequencing

jobs are potentially weaker than the bounds obtained by the sequential al-

gorithms. Hence, more nodes have to be processed and stored in the search

tree which consequently affects memory requirements and runtimes.

Summarizing our findings, we see that the sequential assignment and se-

quencing of jobs yields more promising results in comparison to the simul-

taneous assignment and sequencing, mainly due to better bounds. When

analyzing each of the conducted algorithms, we observe that BEAMSEQ

provides moderate solution quality with relatively small run times, while

BEAMSIM has faster run times with a relatively large gap. We can fur-

ther observe that BEST SEQ
H and BEST SEQ

E outperform CBEAMSEQ
H and

CBEAMSEQ
E . Additionally, the solution quality of the heuristic routing ap-

proach from Briskorn and Zey [6] is again validated, such that node order

strategies making use of only the heuristic obtain solutions faster than with

the exact approach while the optimality gap remains small.”

2.3 Summary

In this chapter, a holistic scheduling approach for triple-crossover-cranes was

developed. First, in Section 2.1, the triple-crossover-crane interference re-

solving problem (TRCIRP) is presented, aiming at minimum makespan,

interference-free routings for a set of three cranes working on a container

block. A MIP model, depicting the problem accurately is presented. Af-

terwards an heuristic approach, based on a graphical representation of the

CHAPTER 2. SCHEDULING OF TRIPLE-CROSSOVER-CRANES 88

TRCIRP, is developed, allowing to determine high quality schedules (most

of them optimum) in short time.

The proposed heuristic is then employed as a working horse in the holistic

scheduling framework presented in Section 2.2, namely the triple-crossover-

crane scheduling problem (TRCSP). The problem aims at determining min-

imum makespan schedules for a set of triple-crossover-cranes by deciding

about job assignments, -sequences and conflict free routings of the cranes. It

is proved that TRCSP is NP-hard and a MIP model, depicting the problem,

was provided. In a second step two B&Bs decomposing the problem were

developed. They consist of assigning jobs and deciding about sequences se-

quentially or of taking both decisions at once, by simultaneously fixing the

job assignment and position in the job sequence of a crane. In a final step,

job sequences are then evaluated by the routing approach from Section 2.1

in order to obtain feasible schedules. Further, if necessary, the MIP model

is solved in order to obtain minimum makespan routings. The sequential as-

signment and sequencing of jobs yields more promising results in comparison

and instances with up to 10 jobs can be solved in under a second on average.

Chapter 3

Scheduling of cooperating

Twin-Cranes

The content presented in this chapter is as well depicted in Zey et al. [43]

and all quotes are taken from this very article.

”During seaside workload peaks with huge vessels berthed, efficiently stor-

ing and retrieving inbound and outbound containers unloaded from ships

and to be loaded onto them, respectively, is of utmost importance. To in-

crease the container throughput during these peak times, the landside-crane,

although being blocked from a direct access to the seaside transfer point,

should support the seaside-crane and share some of the workload. Coopera-

tion among twin-cranes is enabled, if the seaside-crane takes over an inbound

container at the seaside access point, but, instead of directly delivering the

container towards its dedicated storage position in the block, places the box

in an intermediate storage position in between seaside access point and fi-

nal storage position. Then, the seaside-crane can prematurely return to the

seaside access point, whereas the landside-crane completes the previous con-

tainer move and delivers the container from its intermediate storage position

to its dedicated storage position. We call this type of cooperation, where

any open storage position is a potential intermediate storage position for a

container move subdivided into two legs operated by different cranes, any-

89

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 90

bay handover. Sophisticated scheduling procedures coordinating twin-cranes

with any-bay handover have, for instance, been introduced in Briskorn et al.

[8], Jaehn and Kress [27], Kress et al. [31].

Area served by landside crane
Area served by seaside crane

Handshake area

L
an

d
si
d
e S

easid
e

Figure 3.1: Schematic layout of a container block with twin-cranes and a
handshake area

Due to the interference of the twin-cranes when handing over containers in

facultative bays, these scheduling approaches are very challenging optimiza-

tion tasks, especially when executed in a real-time environment where any

change of the input data requires an (almost) instantaneous plan adaption.

Consequently, many real-world terminals prefer to avoid these complexities

and separate blocks into dedicated crane areas interconnected by a so-called

handshake area (see Figure 3.1). A handshake area restricts the handover of

containers to a fixed, predefined bay within each block. Both cranes have

their dedicated areas, which they operate exclusively without interference,

and only when entering the handshake area to handover or takeover a con-

tainer it has to be ensured that the cranes try not to do so simultaneously.

Thus, a handshake area considerably facilitates collision avoidance, and in

most real-world terminals cranes simultaneously claiming access to the hand-

shake area are prioritized by simple decision rules, e.g., prefer the crane with

the larger remaining workload.

Even with a handshake area, however, scheduling cooperative twin-cranes

and avoiding their interference in the shared area still constitutes a complex

and challenging optimization task. This section introduces three alternative

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 91

branch & bound approaches to solve the resulting optimization problem to

optimality. Once a suited exact solution procedure is available (and proven

to solve instances of practical size), for the first time, we can quantify the

price for planning simple. By benchmarking the simple rule-based approaches

commonly applied in real-world terminals with our optimal algorithms the

optimality gaps of these simple rules can be quantified. Furthermore, we

benchmark the application of a handshake area with an any-bay handover.

In this way, practitioners being under high competitive pressure to ensure

fast and reliable container handling processes especially during seaside work-

load peaks receive some decision support on how operate their twin-cranes

efficiently.

The remainder of this chapter is structured as follows. Section 3.1 defines

the optimization problem (i.e., twin-crane scheduling with a handshake area)

and states its computational complexity. Three alternative branch & bound

procedures are introduced in Section 3.2, followed by some benchmarking

algorithms, being heuristics for the introduced problem as well as an any-bay

handover approach, in Section 3.3. The approaches are tested with regard

to their computational performance in Section 3.4, in both, a static as well

as a rolling horizon planning environment. Finally, Section 3.5 concludes the

chapter.

3.1 Problem description

For defining our twin-crane scheduling problem (TCSPH) in presence of

a dedicated handshake area, we consider a single yard block, two identi-

cal twin-cranes, and two access points from sea- and landside, respectively.

The storage positions of the yard block are arranged according to a two-

dimensional grid. The slots in the first dimension, we refer to as bays

b = 1, . . . , B. The slots in the second dimension are referred to as rows

r = 1, . . . , R. Consequently, each storage position can be identified by a

tuple (b, r) ∈ P := {1, . . . , R} × {1, . . . , B}. Additionally, we have sea-

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 92

side access points aligned at the smallest bay, that is located in positions

(0, 1), . . . , (0, R). The handshake area is given by a single bay located at

predefined position bh, 1 ≤ bh ≤ B and, consequently, consists of posi-

tions (bh, 1), . . . , (bh, R). In the handshake area, containers may be handed

over from one crane to the other. This is implemented by one crane set-

ting down the container in a position (bh, r), r = 1, . . . , R, and the other

crane picking up the container in (bh, r) later on. Each stacking posi-

tion (bh, r), r = 1, . . . , R, has a capacity Ch
r amounting to the maximum

stacking height minus the number of containers fixedly stacked in this po-

sition. We assume that we have a partition of the positions in the hand-

shake area into two subsets H2 = {(bh, 1), (bh, 3), . . . ,
(

bh, 2 ⌈R/2⌉ − 1
)

} and

H3 = {(bh, 2), (bh, 4), . . . ,
(

bh, 2 ⌊R/2⌋
)

} being used exclusively by crane 2

and 3 for dropping off a container.

We only consider moves to and from the seaside, such that we have two

sets of inbound containers I i and outbound containers Io all being available

at the beginning of the planning horizon. Recall that focusing on such a

set of containers is usually done during workload peaks caused by major

vessels to be unloaded and loaded. Each container i is associated with two

positions. The origin position oi = (obi , o
r
i) is where the container needs to be

picked up by a crane. Afterwards it gets transported to destination position

di = (dbi , d
r
i) where it gets dropped off. For an inbound container i the origin

position oi is located at the seaside access point, such that it can be described

by (0, ori), o
r
i ∈ {1, . . . , R}. The respective destination position di is then a

position in P . An outbound container i has its origin position in P and their

destination position in (0, dri).

Two identical gantry cranes operate on the yard block, which move as a whole

along the bays of the first dimension. In order to reach each storage position,

a trolley runs along the horizontal beam of the gantry and passes the rows

of the second dimension. A spreader can be lowered from the trolley to pick

up or drop off a container. We refer to the seaside-crane and landside-crane

as crane 2 and crane 3, hence, picking up the notation from Chapter 2, and

assume that operation areas are separated by the handshake area, so that

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 93

they operate in bays 0, . . . , bh and bh, . . . , B+1, respectively. The only shared

bay is the handshake area where, however, both cranes cannot be present at

the same time. Thus, crane 2 (3) has to be located in a bay b ≤ bh − 1

(b ≥ bh + 1), while crane 3 (2) operates in bh.

Due to the separate areas in which the cranes operate, it is implied for each

container whether or not it is intermediately dropped off in the handshake

area. We, consequently, refer to the set of inbound (outbound) containers

that need to be handled by the landside-crane as I i,l ⊆ I i (Io,l ⊆ Io) and to

the set of remaining containers as I i,s = I i \ I i,l (Io,s = Io \ Io,l).

For each container, we derive one or two transport jobs that are necessary

to transport it from its origin to its destination, depending on whether it is

intermediately stored in the handshake area. Let Jc be the set of transport

jobs of crane c. For each container i in I i,s and Io,s, we have a single transport

job j(i) in J2. It consists of two requests, being the pick up request in position

ôj(i) = (ôbj(i), ô
r
j(i)) = oi and the drop off request in d̂j(i) = (d̂bj(i), d̂

r
j(i)) = di.

For each container i in I i,l (Io,l), we have two transport jobs j1(i) ∈ J2 and

j2(i) ∈ J3 (j1(i) ∈ J3 and j2(i) ∈ J2), referred to as the storage job and the

retrieval job. Storage job j1(i) corresponds to the transport from ôj1(i) = oi

to d̂j1(i) = (bh, d̂r
j1(i)), d̂

r
j1(i) ∈ H2 (d̂r

j1(i) ∈ H3). Retrieval job j2(i) has its

pickup position in ôj2(i) = d̂j1(i) and the drop off position in d̂j2(i) = di.

Note that the row d̂rj1(i) = ôj2(i) of the intermediate storage position in the

handshake area is not given in advance.

At the beginning of the planning horizon, crane c ∈ {2, 3} is located in

o0c = (o0,bc , or,0c). We assume that both trolleys can move one row per period

and both gantries can move one bay per period, and they can do so simul-

taneously. Hence, if no interference of cranes occurs, then moving gantry

and trolley from position (b, r) to position (b′, r′) takes max {|b− b′|, |r − r′|}

periods. The spreader can be lowered only after gantry and trolley are in

their intended position and it has to be fully up before trolley and gantry can

move. We assume that lifting and lowering takes p time periods independent

of the current stacking height.

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 94

In the setup described above, we have four simplifying assumptions (in ad-

dition to those already explained in Section 3, i.e., given handshake area

and container movement related with the seaside only), which need further

justification.

1. The partition of the handshake area into two subsets to be exclusively

used for either inbound or outbound containers aims at reducing the

computational and organizational burden. While it reduces the flexi-

bility how to conduct transport jobs, in particular deadlock prevention

becomes a lot easier if positions in the handshake area are dedicated

to one direction of container transport each.

2. The time for moving a gantry by one bay and a trolley by one row is

identical for both cranes. In the current crane generation, the gantry

is much faster than the trolley [42]. This, however, is counterbalanced

by the larger distance gantries have to cover when moving along the

length of a container of a bay. The real-world time difference is, thus,

negligible, and this assumption is often applied in crane scheduling

research, see [28, 4, 21].

3. The spreader can only be lifted or lowered while gantry and trolley

stand still, and, vice versa, they can only start moving once the spreader

is back in its upmost position. This is a technical prerequisite of many

cranes and a safety restriction in most yards. Note, however, that even

if a simultaneous movement is possible and allowed, this feature can

hardly be used in practice, because block utilization is usually high and

crowded bays can only be passed with a lifted spreader [21]. Conse-

quently, this assumption is often applied in crane scheduling research

[27, 31].

4. Duration of pickup and drop off may be position dependent, because

positions may differ in the current stacking height. However, significant

portions of these durations account for accelerating and slowing down

the spreader, adjusting it to the container, and locking or unlocking the

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 95

spreader to/from the container. Since these portions do not depend on

the very positions, real-world differences are negligible and setting p

constant is a pardonable simplification, see also [2].

We consider a continuous time horizon where both cranes can move to ad-

jacent bays in a single time unit and refer to the time interval [t− 1, t] with

t ∈ N as period t.

Within this problem setting, we seek crane schedules defining the activities

of both cranes for any period. In order to constitute a crane schedule, we

have to make a four-part decision.

1. For each container i ∈ I i,l ∪ Io,l that requires a hand-over between

seaside- and landside-crane, we have to decide in which row it is inter-

mediately stored in the handshake area. Thus, we define the positions

for the respective jobs in J2 and J3.

2. We have to determine a sequence of jobs in J3 implying the order in

which the landside-crane conducts the corresponding transport jobs.

3. We have to determine a sequence of transport jobs in J2 implying the

order in which the seaside-crane conducts the corresponding transport

jobs.

4. We have to determine a sequence of pickups and dropoffs in the hand-

shake area, because no two such requests can be carried out in parallel,

due to interference constraints between cranes. This sequence has to

be consistent with the sequences in 2. and 3., that is the sequences in

2. and 3. imply the order of requests carried out by the same crane.

Furthermore, retrieving a container i ∈ I i,l ∪ Io,l from the handshake

area has to succeed previous storage and can only be conducted as long

as no other containers are placed on top of it. Finally, at each point in

time and in each position (bh, r) in the handshake area, there must not

be more than Ch
r containers intermediately stored simultaneously.

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 96

We aim at a minimum makespan schedule, that is the point in time when

the last container is dropped off at its destination position should be as early

as possible. We can assume that each crane proceeds along its sequence of

requests (see points 2. and 3. above) as fast as possible (given the travel times

between each pair of positions), which may be delayed by interference with

the other crane only. That is, crane 2 (3) may have to wait for crane 3 (2) to

complete one or more requests in the handshake area before proceeding to the

handshake area itself. Moreover, it may be necessary to leave the handshake

area in between two requests in order to prioritize the other crane. However,

these two types of delay are determined by the sequence of decision 4. Thus,

once all four parts of the decision are made, we can easily determine the

minimum makespan. The TCSPH is to make the four-part decision, such

that an overall minimum makespan can be achieved.

Theorem 3. The TCSPH is strongly NP-hard even if I i,l = Io,l = ∅ and

p = 0.

We abstain from a formal proof and refer to Gharehgozli et al. [22] instead.

Note that the problem setting in [22] differs from ours since it has p = 0,

covers only a single crane, and has access points on landside and seaside of

the block. However, our setting with I i,l = Io,l = ∅ renders crane 3 irrelevant,

which leaves us with crane 2 only. Furthermore, Gharehgozli et al. [22] show

(although they do not emphasize it) that their problem is NP-hard even if

access points on one side of the block are used only. This setting is equivalent

to a special case of our problem with I i,l = Io,l = ∅ and p = 0. Clearly, our

problem setting is more involved due to the need to coordinate the requests

of both cranes with respect to both, physical and temporal interference in the

handshake area. Obviously, these issues do not simplify the problem setting.

3.2 Branch & Bound Approaches

We present three branch & bound approaches (B&Bs) in order to solve the

TCSPH. The approaches decide the stacking positions of jobs in I i,l ∪ Io,l

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 97

and the sequences of jobs for both cranes (parts 1. to 3. of the decision) in

the course of branching.

In the approach in Section 3.2.1 we simultaneously decide about the job

sequences as well as possible stacking positions of requests. The approach

in Section 3.2.2.1 proceeds by determining job sequences completely before

deciding stacking positions while the approach in Section 3.2.2.2 determines

the decisions in reverse.

3.2.1 Simultaneous Sequencing and stacking position

determination

We propose a B&B which simultaneously constructs job sequences and de-

cides stacking positions (part 1. to 3. of the decision) by branching in this

section. As we will show in Section 3.2.1.1 taking these parts of the decision

partially implies part 4. of the decision. However, some portion of part 4.

remains to be taken. We introduce a strongly polynomial routing approach

that determines the optimum sequence of requests in the handshake area

(part 4. of the decision) for given sequences of requests for both cranes in

Section 3.2.1.2. Finally, in Section 3.2.1.3, we describe how we determine

lower bounds.

3.2.1.1 Branching

The branching scheme in this section follows the common idea of building

sequences of jobs from start to end by appending jobs one by one. Con-

sequently, we maintain a (partial) sequence nc of jobs for each crane c,

c ∈ {2, 3}, in a node. We branch by deciding the next job to be handled

by one of the cranes and if it is a job with an request in the handshake area

we also decide the stacking position of the container in bh. For containers

that have to cross the handshake area it suffices to explicitly decide about the

stacking position for either of the resulting storage and retrieval jobs and we

do so for the first job being appended. Since a container can only be retrieved

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 98

from a position where it gets stored, we implicitly determine the stacking po-

sition for both jobs. Consequently, our search tree might reach a depth of

|J2|+ |J3| and each node may have have up to |I i,s∪ Io,s|+ ⌈R/2⌉ · |I i,l∪ Io,l|

child nodes.

While the branching scheme explicitly considers parts 1. to 3. of the decision

it is open so far how the remaining fourth part is to be taken. In the following

we distinguish between the order of requests in the handshake area that take

place in the same row and the order of those that occur in different stacking

positions. With respect to the former, the following lemma implies a strong

connection between parts 1. to 3. and part 4. of the decision.

Lemma 1. For parts 1. to 3. of the decision taken, a sequence of requests is

implied for each pair of containers intermediately stored in the same stacking

position.

Proof. For the proof we focus on a single stacking position and the requests

of jobs taking place in that stack. We consider two containers a and b that

need to be intermediately stored in the same stacking position with j1(a),

j1(b), j2(a), and j2(b) being the corresponding storage and retrieval jobs.

Clearly, a and b can be picked up only after they have been dropped off.

Let us assume, without loss of generality, that j1(a) precedes j1(b) in the job

sequence of the crane handling both. Now, we distinguish two cases. First,

if container j2(a) precedes j2(b) in the other crane’s job sequence, as well,

then a must be retrieved before b gets stored since otherwise b needs to be

retrieved before a can be retrieved. Second, if container j2(a) succeeds j2(b)

in the other crane’s job sequence, then b gets stored before a is retrieved. In

both cases we have a distinct order in which the requests in the handshake

area related to a and b are conducted.

In the following it will be more handy to talk about precedence relations

between jobs which we interpret with regard to requests as follows. For a

pair of jobs j and j′, j is a predecessor of j′ if

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 99

• both, j and j′, are in nc, c ∈ {2, 3}, and j precedes j′ in nc which means

that the drop off request of j has to be conducted before the pickup

request of j′ or

• j and j′ are jobs in different job sequences, have requests in the same

stacking position and, among these requests, j’s request has to be con-

ducted first according to Lemma 1.

In the first case j is conducted completely before the first request of j′ be-

gins. In the second case only the two requests within the stacking position

are affected by the precedence relation. The other requests of j and j′ having

a position outside of the handshake area, however are not directly affected by

the precedence relation. Note that we have cyclic (acyclic) precedence rela-

tions between jobs if and only if we have cyclic (acyclic) precedence relations

between requests.

While Lemma 1 states that there is a sequence of requests for each pair

of containers the entirety of sequences of requests in the same stack might

be in conflict. This is the case if they imply cyclic precedence constraints

between jobs. Otherwise, they imply a unique sequence of all requests for

each stacking position in the handshake area, referred to as stacking position

sequence in the following. For such a sequence we can then determine the

number of containers in a stacking position at any time and hence check if

the capacity of the position is violated or not. We say a stacking position

sequence is feasible if capacity constraints are not violated.

If we apply the proposed branching scheme and append jobs one by one

and successively define storage positions in the handshake area, we can con-

struct every pair of job sequences with different stacking positions for jobs.

However, such a brute-force branching scheme potentially yields duplicate

nodes in the search tree and requires extensive feasibility checks in each step.

Therefore, we introduce branching rules restricting the number of child nodes

to be created while implicitly ensuring feasibility. Moreover, we employ an

additional rule that enables us to prevent duplicate nodes in the search tree,

that is distinct nodes representing the same (partial) job sequences for cranes.

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 100

In order to specify these rules, let us first refine the types of jobs in Jc,

c ∈ {2, 3} that we consider in a node. We say the jobs in Nc ⊆ Jc are

the jobs that are handled by crane c only. We introduce N3 for notational

convenience only (note thatN3 = ∅). Further, the jobs in Sc ⊆ Jc are the jobs

that imply the storing of a container in the handshake area, while Rc ⊆ Jc

are the retrieval jobs. We decide about stacking positions by branching and,

hence, the origin position of some retrieval jobs and the destination position

of some storage jobs may not have been decided yet in a node of the search

tree. We focus on a single node in the following and say that the jobs in

Sk
c ⊆ Sc (Rk

c ⊆ Rc) have a row position in the handshake area determined

while the jobs in Su
c = Sc \ S

k
c (Ru

c = Rc \R
k
c) do not.

The basic idea for implicitly ensuring feasibility while branching is to make

sure that by building job sequences from start to end all implied sequences of

requests for stacking positions are build from start to end, as well. We, first,

introduce the rules and show that we actually reach our goal afterwards.

Rule 1. A retrieval job in Rc can be appended to nc only if the associated

storage job is already appended to the sequence of the other crane 5− c.

Rule 1. then allows to append retrieval jobs only after the respective storage

job is appended. Consequently, we allow only jobs from Rk
c to be appended.

Rule 1 is obviously in line with our goal since a container can be retrieved

from the handover bay only after it has been stored there.

Rule 2. Retrieval job j2(i) can be appended to nc only if for each storage job

j1(i′) succeeding j1(i) in the same stacking position in n5−c the corresponding

retrieval job j2(i′) is in nc.

Rule 2. is also in line with our goal since a container can be retrieved from

the handover bay only if it is the top container at the moment. We will give

an explanatory example of Rules 1 and 2 in the following.

Example: Let us consider four containers d, e, f and g and their respective

storage and retrieval jobs. Assume that they get stored in the same stacking

position by crane c, j1(d), j1(e) and j1(f) are already in nc and d is the

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 101

first container to be stored followed by e and finally f . Further assume

that they are the only jobs that get stored in the stacking position and that

only j2(d) is in n5−c. This implies that d is stored first and retrieved first

which means that d is retrieved before e is stored. The next allowed retrieval

job addressing the stacking position then is j2(f). For j1(e) there exists a

job (j1(f)) succeeding j1(e) in nc with its retrieval job not yet in nc′ . If

j2(e) precedes j2(f), then e is retrieved before f is stored and we do not

construct the sequence of requests in that stack from start to end. Hence,

Rule 2 demands that among j2(e) and j2(f) only j2(f) can be appended

next. For j2(g), the respective storage job is not yet in n5−c, such it cannot

be appended either according to Rule 1. Consequently, when resolving the

stacking position sequence, e and f get stored, such that container f indeed

is the top container for the given sequence pair. Note further that in the

example j2(d) must have been appended to nc′ during branching before j1(e)

and j1(f) got appended to nc, again due to Rule 2.

We will now show that Rules 1. and 2. indeed allow us to construct the

implied sequences of requests in stacking positions.

Lemma 2. By appending jobs with regard to Rules 1. and 2., the order in

which requests within the same stacking position get carried out is exactly

the order in which the respective jobs get appended to the job sequences.

Proof. We consider two arbitrary containers a and b that get intermediately

stored in the same stacking position with j1(a), j1(b), j2(a), and j2(b) being

the corresponding storage and retrieval jobs. Due to Rule 1., j1(a) or j1(b) is

appended first. Without loss of generality, we assume that j1(a) is appended

first. Again, due to Rule 1., j2(a) or j1(b) is appended next.

• If j2(a) is appended next, then the retrieval request of j2(a) precedes

the storage request of j1(b) in the stacking position, due to Lemma

1 and the order in which requests related to a or b get carried out

coincides with the order in which the respective jobs get appended to

the job sequences.

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 102

• If j1(b) is appended next, there is then a storage job (j1(a)) in the

stacking position sequence preceding j1(b) without the respective re-

trieval job (j2(a)) in the sequence. Then, due to Rule 2., j2(b) must

precede j2(a), such that j1(b) precedes j2(a) as well and , again, both

orders coincide.

Summarizing, Rules 1. and 2. allow only two orders in which jobs are ap-

pended for two arbitrary containers intermediately stored in the same stack-

ing position. For both the order coincides with the order in which the corre-

sponding requests are carried out.

Lemma 2 implies that there cannot be cyclic precedence constraints among

jobs related to the same stacking position and allows us to define a state of

each stacking position in a node, as being the current fill level and current

stacking order of containers in a position. Such a state allows us to define

an earliest possible starting time of the next request in the stacking position.

Further, we define precedence relations related to containers that are stored

in a stack for a given state. That is, if containers are stored on top of each

other we can retrieve the lower container not before the upper container

has been retrieved. We incorporate both in the determination of bounds as

detailed in Section 3.2.1.3.

Continuing the previous example, the stack is filled with container d after

appending j1(d) and gets emptied after appending j2(d). Then e and f get

stored before they get retrieved in reverse order.

The preceding rules ensured acyclic precedence relations for jobs implying

operating within the same stacking position. However, even if we obtain

stacking position sequences we have to maintain overall feasible pairs of job

sequences. That is, we have to make sure that the entirety of precedence

relations between jobs is acyclic.

Let us therefore show, that the proposed branching scheme ensures acyclic

precedence relations. We consider the set of precedence relations among jobs

given by crane sequences and implied by Lemma 1.

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 103

Lemma 3. By applying Rules 1 and 2 we obtain acyclic precedence relations.

Proof. Assume that the precedence relations contain a cycle. Consider job j

being the immediate predecessor of job j′ in the cycle but j′ being appended

to its crane’s job sequence first. Such a pair exists since the order in which

jobs are appended is well-defined. Then, j and j′ are jobs of different cranes

since precedence relations are not in conflict with job sequences of cranes and

requests related to j and j′ are in the same stacking position. However, due

to Lemma 2 the precedence relations between requests in the same stack are

in line with the order in which corresponding jobs are appended.

The definition of a state resulting from Rules 1. and 2. allows us to define

the third rule regarding the jobs that can be appended to nc in a node.

Rule 3. When appending a storage job we can only select stacking positions

with sufficient capacity.

It is obvious that Rule 3. results in only a subset of stacking positions that

can be selected for a storage job to be appended to nc and, hence, allows us

to refrain from further capacity checks.

Lastly, we say a pair of (partial) job sequences is feasible if

• all (partial) stacking position sequences are feasible and

• precedence relations among jobs are acyclic.

Due to Lemma 1, Rules 1. and 2. ensure unique stacking sequences. Using

Rule 3., obviously, only feasible stacking sequences are constructed. Lemma

3 shows that due to Rules 1. and 2. we obtain acyclic precedence relations.

Hence, Rules 1. to 3. ensure feasible (partial) job sequences.

All feasible pairs of sequences can now be constructed as follows. Based on

an ancestor node, Rules 1. and 2. define a subset of jobs to be appended

while Rule 3 limits the stacking positions to be selected. We create all child

nodes, such that in each we

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 104

• append a job from N2 not in n2 to n2, that, consequently is not related

to a stacking position,

• append a job from Rk
c not in nc to nc, c ∈ {2, 3} according to Rule 1

and 2, and

• append a job from Su
c , c ∈ {2, 3} to nc, storing a container in every

stacking position from Hc as long as Rule 3 is maintained.

However, if we apply the branching scheme as described, we potentially create

duplicate nodes in the search tree, e.g. if we first append a job from N2 to

n2 and afterwards append a job from S3 to n3, we construct the same node

as if we branch in reverse order. Hence, we propose a final rule in order to

prevent this type of redundancy.

Rule 4. If the last job assigned to a crane was appended to n3, we can

append a job to n2 only if both jobs imply operating in the same stacking

position.

We will show that applying Rules 1. to 4. indeed allow us to construct every

feasible pair of sequences and there are no two different nodes in the search

tree representing the same pair of sequences. For the proof we introduce

branching order σ, being the sequence in which jobs are appended one by

one by branching, which yields a pair of sequences (n2, n3).

Theorem 4. For each pair of sequences (n2, n3), there is exactly one σ fol-

lowing Rules 1. to 4. yielding it.

Proof. The proof is two-fold. First, we show that for any pair of job sequences

constructed by our branching scheme σ is unique. Second, we show that

following the scheme we can indeed construct any arbitrary pair of schedules.

For the first part let us consider a pair (n2, n3), constructed by the proposed

branching scheme. Assume that n2 and n3 are constructed up to a certain

point and let kc, with c ∈ {2, 3}, be the next job in nc that is not yet in σ.

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 105

Obviously, by appending one job at each level in the search tree, a job from

{k2, k3} is the next job in σ.

We, first, show that, following Rules 1. to 4., only one job in {k2, k3} can be

the next job in σ. We do so by distinguishing the following cases.

• If k2 ∈ N2, then k2 is the next job in σ since k2 cannot follow a job

from J3 in σ due to Rule 4.

• If k2 6∈ N2 and k2 and k3 imply requests in the same stacking position

then (n2, n3) together with Rules 1. and 2. implies the next job in σ

due to Lemma 2.

• If k2 6∈ N2 and k2 and k3 imply requests in different stacking positions,

jobs are appended as follows.

– If any kc, c ∈ {2, 3}, has a predecessor in n5−c not yet in σ (all

predecessors are implied by (n2, n3) due to Lemma 1), this job

cannot be the next job in σ due to Lemma 2. Hence, only k5−c

can be the next job in σ.

– If both, k2 and k3, have all their predecessors in σ, then Rule 4.

implies that k2 is the next job in σ. Assume that k3 is the next

job in σ. Then, Rule 4. requires that k2 follows immediately after

a job in J3 implying a request in the same stacking position. How-

ever, such a job would be a predecessor of k2 which we assumed

does not exist.

Second, we show that for any feasible pair of job sequences (n2, n3) there is

a branching sequence σ leading to (n2, n3). We do so by giving a procedure

constructing σ from (n2, n3) and obeying Rules 1. to 4.

1. Let σ be empty.

2. Append jobs from n2 not in σ yet in the same order until the next job

k2 in n2 has a predecessor not in σ yet or all jobs in n2 are appended.

Go to 2.

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 106

3. Append jobs from n3 not in σ yet in the same order until all jobs in n3

are appended or the predecessor of k2 is appended. Go to 1.

This procedure is in line with the branching scheme. Obviously, the job

sequence for each crane is regarded by keeping jobs in the same relative

order as in n2 and n3. Furthermore, Rules 1. to 4. are accounted for.

• Rules 1. and 2. are being followed since a job follows all its predecessors

in σ. This is explicitly ensured by Step 2. for jobs in n2. Since jobs in

n3 are appended to σ only if necessary to proceed with n2 we do not

have to ensure this in Step 3. due to acyclic precedence relations in

feasible pairs of job sequences (n2, n3).

• Rule 3. is followed since feasible pair of job sequences (n2, n3) implies a

unique stacking position sequence for each stacking position accounting

for capacity constraints.

• Rule 4. is obeyed since we switch back to Step 2. immediately after

appending the predecessor of k2 to σ.

Concluding, the branching scheme ensures that each feasible pair of job se-

quences (n2, n3) can be constructed.

The above enables us to fully specify a node in the search tree as the pair of

(partial) sequences (n2, n3) which allows us to derive all information necessary

for applying the branching scheme. However, as the branching scheme only

partially covers part 4. of the decision, namely sequences of requests in the

same stacking position. Hence, it remains to decide the sequences of requests

in different stacking position and conducted by different cranes. We propose

a strongly polynomial routing approach in Section 3.2.1.2 and incorporate

this approach in Section 3.2.1.3 when determining bounds. Consequently,

a leaf in the search tree represents a feasible solution for the TCSPH. We

denote this B&B as SIM throughout the computational study from Section

3.4.

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 107

We branch then following a best-first-search order based on the lower bounds

presented in Section 3.2.1.3. Among nodes having the same lower bound we

select the one on the largest level in the search tree. In order to avoid out

of memory errors, we deviate from the best-first-search order whenever the

size of the search tree exceeds 150000 nodes. Then, we branch only the five

best nodes on subsequent levels while keeping all remaining ones, and return

to previous levels only when no nodes are left on the current level. Such an

approach resembles a beam search and keeps the number of nodes in the tree

relatively stable.

We provide an initial upper bound on the makespan by applying a simple

nearest neighbor heuristic and we determine upper bounds for nodes by a

more sophisticated heuristic. Both approaches are presented in Section 3.3.1.

3.2.1.2 Routing

In this section we describe how the routing of cranes is determined. For

two (not necessarily complete) sequences of transport jobs n2 and n3, we

can determine the routing with minimum makespan by means of a dynamic

program (DP) resembling the one in Briskorn and Angeloudis [5] for twin-

cranes. Here, we consider rather the sequence of pick up or drop off requests

than the sequence of jobs. We number the requests of a crane in increasing

order according to nc. For two such sequences (and implied stacking position

sequences) given, we determine the order of requests in the handshake area

but in different stacking positions. This is sufficient to deduce an accurate

routing for both cranes since all other requests can be conducted by the

cranes independently and, thus, without any waiting time or detours.

We have a state s for conflicting pairs of requests within the handshake area.

Such a state is specified by (c, f2, f3), with f2 and f3 being the two conflicting

requests of cranes 2 and 3 and c being the crane that gets prioritized with

respect to this conflict. It implies that crane c has just finished request fc

and crane 5−c is positioned right next to the handshake area, with its trolley

in the position according to f5−c. Further we have an initial state si where

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 108

the cranes are in their initial positions and a final state sf where the cranes

have just conducted their very last request in nc.

Obviously we can restrict ourselves to only a subset of states, when determin-

ing a routing, due to existing precedence relations. Hence, for two conflicting

requests fc and f5−c, we have only a single state if one is a (not necessarily

immediate) predecessor of the other.

A transition (s, s′) from one state s = (c, f2, f3) to another state s′ =

(c′, f ′
2, f

′
3) then implies that

• crane c′ conducts all not yet conducted requests in [fc′ , . . . , f
′
c′] as early

as possible without waiting, starting from its implied position in s and

• if f5−c′ is f
′
5−c′, crane 5−c′ simply stays in the bay next to bh. Otherwise

it conducts all not yet conducted requests in [f5−c′ , . . . , f5−c′−1] without

waiting, moves to the bay next to bh and positions the trolley according

to f ′
5−c′ .

Obviously, we cannot have a transition for every pair of states. A transition

(s, s′) exists if and only if

• fc < f ′
c and f5−c ≤ f ′

5−c holds and

• assuming that cranes 2 and 3 process n2 and n3 from s on only inter-

rupted by waiting due to precedence constraints they would be present

in bh simultaneously for the first time when conducting f ′
2 and f ′

3.

The first requirement simply states that no crane c goes backward in nc and

the crane getting priority with respect to the second conflict makes actual

progress. The second requirement states the conflict between f ′
2 and f ′

3 is

the first one that actually materializes and, thus, has to be resolved by the

routing procedure. Here, we assume that a crane moves to the handshake

area only after bringing the trolley next to or in the right position. This

ensures that cranes interfere as little as possible without delaying the actual

request.

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 109

Note that we cannot benefit from letting a crane wait for the other crane to

work in the handshake area first if it could have worked there first without

delaying the other crane. Since for a transition (s, s′) the cranes would in-

terfere without deciding about prioritization with respect to f ′
2 and f ′

3, it is

implied that crane 5− c′ can indeed move to the bay next to bh and position

its trolley according to f ′
5−c′ while c′ is conducting the request.

The duration t(s, s′) associated with transition (s, s′) is the timespan crane

c′ requires to conduct all not yet conducted requests in [fc′, . . . , f
′
c′] starting

from its progress implied by s. Now, we are ready to define the makespan

t(s′) associated with state s′ as t(s′) = min {t(s) + t(s, s′)|s ∈ P (s′)} with

P (s′) being the set of states from which a transition to s′ exists.

For the problem at hand we have O((|I i,l| + |Io,l|)2) potential states and

transitions. We can determine if a transition exists (and compute the cor-

responding duration) in O(|I i,l| + |Io,l|) steps by iteratively checking if the

respective pairs of requests are in conflict to each other. Hence we obtain a

complexity of O((|I i,l|+ |Io,l|)3).

3.2.1.3 Bounding

In this section we describe how we determine lower bounds on the makespan

in a node, that is a makespan for the pair of partial sequences corresponding

to the node. A bound consists of two parts, being a lower bound on the

lengths of the partial sequences and the duration necessary to conduct the

remaining jobs, that are not in the sequences yet. In the following we detail

how we account for the second part and how we then use the DP approach

presented in Section 3.2.1.2 in order to derive a lower bound for each node.

For the second part, we determine two lower bounds on the time necessary

to conduct the non sequenced jobs in Ac, being the jobs in Jc but not in nc

for each crane c. The time necessary depends then on four factors.

1. the workload of a job, being the laden travel that is necessary to trans-

port jobs k ∈ Ac from its origin ôk to its destination d̂k plus the time

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 110

necessary to conduct both requests

2. the empty travel that can occur between dropping off a container in its

storage position and picking up the next container its origin position.

3. waiting times due to precedence relations between jobs

4. waiting times due to interference between cranes

We focus only on the first two factors when determining bounds. Then, we

can determine a lower bound 2 · p + max{|ôbk − d̂bk|, rk} on the workload wk

for each job k ∈ Ac with

rk =

|ôrk − d̂rk| for k ∈ Nc ∪ Sk
c ∪Rk

c

1 else.
(3.1)

Here rk is a lower bound on the time necessary for the trolley to reach the

row where the container gets dropped off after picking it up. Note that for

jobs in Su
c ∪Ru

c the row in the handshake area is not decided yet so we have

to assume that the closest row is chosen ultimately.” Note further, that in

the TCSPH we do not have reshuffling jobs, such that even if |ôrk − d̂rk| could

be 0 for jobs with unknown stacking positions, the crane would have to travel

at least 1 bay in between ôk and d̂k. Hence, bounding the time necessary to

position the trolley from below by 1 results in a feasible lower bound after

all. ”Finally, we can define Wc =
∑

k∈Ac
wk as a lower bound on the total

workload resulting from jobs in Ac of crane c.

Furthermore, we develop two lower bounds on the total empty travel time

necessary to conduct the jobs in Ac.

• We consider a bipartite graph where nodes in the first set correspond

to drop off requests of jobs in Ac or the last job in nc and nodes in

the second set correspond to pickup requests of jobs in Ac or a dummy

end job. An edge between a drop off request k and a pickup request

k′ represents k′ being carried out immediately after k and, therefore,

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 111

implies a lower bound (similar to the one in (3.1)) on the empty travel

duration. This lower bound is represented by the edge’s weight. Note

that nc and n5−c might imply precedence relations between jobs in Ac

or between jobs in A5−c. If the pickup request k ∈ Ac is a predecessor

of drop off request k′ ∈ Ac then we can drop the edge connecting k′

and k from consideration. Similar as in Gharehgozli et al. [22] we then

determine a minimum weight perfect matching. The minimum weight

is a lower bound on the total empty travel time. Note that the matching

might not imply a proper sequence and we can determine it in O(|Ac|
3).

• Ignoring the time necessary to adjust the trolley position we can derive

a lower bound by applying the approach from Gilmore and Gomory [25]

in order to determine a sequence for the jobs in Ac with minimum empty

travel time. Gilmore and Gomory [25] consider a scheduling problem

where a machine (crane) has to process a set of jobs (corresponding to

Ac) in a sequence that minimizes the total setup time. Here, every job

j has a starting state Sj (corresponding to ôbk, with k ∈ Ac) that the

machine has to brought in in order to process the job. After finishing

j the machine is left in state Ej (corresponding to d̂bk for k ∈ Ac). The

setup time between jobs j andm amounts to |Ej−Sm|. Furthermore the

machine has a starting state (being either related to the last job in nc or

o0c) and a predetermined ending state that it has to reach after finishing

all of the jobs. Gilmore and Gomory [25] develop an optimum algorithm

that runs in O(|Ac|
2) time. Note, however, that we do not know the

final position of a crane in advance. A straightforward approach would

be to fix each job to be the last one in a separate run and end up with a

runtime complexity of O(|Ac|
3). This type of approach has been applied

in Briskorn and Zey [6] before and performed well. However, we can

adapt our branching scheme to construct sequence nc from end to start

which gives us the final position of each crane after the first couple of

branching steps. We, then, can straightforwardly apply the approach

by Gilmore and Gomory [25] in O(|Ac|
2) time.” Note further, that for

such a branching scheme all previously defined properties regarding

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 112

the stacking positions are still valid, since in between two operations

in a stacking position sequence, the number of containers in a stack is

identical, regardless whether such a s sequence is conducted forward or

backwards.

”Let lbec be the larger of the lower bounds for empty travel for crane c and

Ac. A lower bound for the timespan necessary to conduct all jobs in Ac

is then given as lbec + Wc. We now integrate this lower bound with the

routing for partial sequences n2 and n3. We apply a slight adaption of the

DP approach presented in Section 3.2.1.2 for routing (n2, n3) aiming at a

minimum makespan assuming that crane c, c ∈ {2, 3}, complete its last job

lbec+Wc time units later than implied by the routing. This makespan implies

a lower bound on the minimum feasible makespan associated with the node

of the search tree at hand.

3.2.2 Non-simultaneous sequencing and stacking posi-

tion determination

In this section we present two B&Bs for which we decide about the job

sequences of cranes and stacking positions sequentially. Since most of the

ideas presented in Section 3.2.1 carry over straightforwardly we focus on

highlighting the differences in the following. The motivation for decoupling

both decisions is to keep the width of the search tree small while achieving

lower bounds which are similarly tight. Upper bound determination and

node ordering is performed analogously to Section 3.2.1.

3.2.2.1 Determining job sequences first

In this section we present a B&B in which we decide about the sequences

of jobs of each crane on the first levels of the search tree followed by deter-

mining sequences on the last levels. The routing (part 4. of the decision) is

determined as described in Section 3.2.1.2.

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 113

We append one job to n2 or n3 on the first |J2|+ |J3| levels of the search tree.

After having decided about the order of all jobs in the respective sequence,

we consecutively decide about the stacking position of each intermediately

stored container. Hence the search tree has a depth of |J2|+|J3|+|Io,l|+|I i,l|.

On levels 1, . . . , |J2| + |J3| we have up to |J2| + |J3| child nodes, on larger

levels we have up to ⌈R/2⌉ child nodes.

On each of the first |J2|+ |J3| levels of the search tree we append one job to

the sequence of a crane. Since we do not determine the stacking positions,

we only apply branching Rule 1 from Section 3.2.1.1. Hence, we allow a

retrieval job only to be appended to nc if the corresponding storage job is

already in n5−c. Based on Rule 1 only, we can formulate a similar Lemma

as in Lemma 3 an show that the obtained sequences contain only acyclic

precedence relations. Rule 1 again restricts the set of jobs to be appended,

such that on levels 1, . . . , |J2|+ |J3| − 1 we create child nodes by

• appending a job from N2 not in n2 to n2,

• appending a job from Sc not in nc to nc, c ∈ {2, 3}, and

• appending a job from Rc not in nc to nc, c ∈ {2, 3}, according to Rule

1.

On levels |J2|+|J3|, . . . , |J2|+|J3|+|Io,l|+|I i,l|−1 we decide about the stacking

positions of containers in Io,l and I i,l. On levels |J2| + |J3|, . . . , |I
i,l| − 1 we

construct child nodes by assigning containers from |I i,l| to stacking positions

inH2. In a node, we do so in the order in which the storage jobs are sequenced

in n2. On the succeeding |Io,l| levels, we consecutively assign containers from

Io,l to stacking positions in H3 and do so in the order in which the storage

jobs are sequenced in n3.

Based on Lemma 1, we define precedence relations for jobs assigned to the

same stacking position. If necessary, we discard nodes with cyclic precedence

relations or stacking position sequences violating capacity constraints.

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 114

Again, such a scheme potentially yields duplicate nodes on levels 1, . . . , |J2|+

|J3| in the search tree. Hence, we propose the following Rule, closely related

to Rule 4 in order to construct unique nodes only.

Rule 5. If the last job on levels l = 1, . . . , |J2| + |J3| − 1 was appended to

n3, we can append a job to n2 only, if the last job in n3 is a storage job and

the next job in n2 is its retrieval.

We can show that we can indeed construct every pair of job sequences by a

unique sequence of branching steps similar to the proof of Theorem 4.

Even if not every row position is defined, we can apply an adaption of the

routing approach presented in Section 3.2.1.2 for a pair of job sequences

(n2, n3). Here, we employ lower bounds on the time necessary for a trolley

to reach a row within the handshake area, as presented in Section 3.2.1.3.

Additionally, for levels 1, . . . , |J2|+ |J3|−1 we determine lbec+Wc, as detailed

in Section 3.2.1.3. The completion time of c’s last request in a routing is then

increased accordingly in order to obtain a lower bound on the makespan for

a node.

A node in the search tree is then defined by (n2, n3). We cannot always derive

a certain state of the stacking positions as long as not all jobs taking place

in Hc, c ∈ {2, 3} have a defined position. However, during the first phase of

the branching (n2, n3) suffices to determine the set of jobs Ac that has yet to

be scheduled. During the second phase we can determine the jobs that have

a yet to be defined stacking position. We denote this approach as SEQJS

throughout the computational study from Section 3.4.

3.2.2.2 Determining stacking positions first

In this section we present a B&B for which we decide stacking positions

(part 1. of the decision) of jobs in a first phase of the branching scheme. The

second phase consists of determining job sequences (part 2. and 3. of the

decision) based on the stacking position assignments. Part 4. of the decision

is made as described in Section 3.2.1.2.

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 115

On the first |I i,l|+ |Io,l| levels of the search tree we decide about the stacking

positions of containers in I i,l and Io,l. On the subsequent |J2| + |J3| levels,

we construct sequences of jobs with then already defined stacking positions,

by appending a job to n2 or n3 on each level of the search tree. Hence, in

the first level we can have up to ⌈R/2⌉ child nodes, while we have at most

|J2|+ |J3| child nodes in the second phase.

In the root node we fix arbitrary orders for containers in I i,l and Io,l. Then,

on the first |I i,l| levels we create child nodes by consecutively assigning a

container, following the order defined in the root node, in I i,l to stacking

positions in H2. On levels |I i,l| to |I i,l|+ |Io,l|−1 we then define the stacking

positions for containers in Io,l and create child nodes by assigning them to

every position in H3, again following the predefined order. Note that, by

defining the stacking position of a container i we consequently define the

stacking positions for jobs j1(i) and j2(i) in J2 and J3.

Starting from level |I i,l| + |Io,l| we decide about the job sequences. Each

node in this phase has an ancestor node on level |I i,l|+ |Io,l|−1 with already

defined rows for each job. Hence, for nodes in this phase Ru
c and Su

c are

empty. We then apply a slight modification of the branching scheme from

Section 3.2.1.1 in order to branch while avoiding duplicate nodes. On each

level in the second phase we are then allowed to

• append a job from N2 not in n2 to n2,

• append a job from Rk
c not in nc to nc, c ∈ {2, 3}, according to Rule 1.

and 2. from Section 3.2.1.1, and

• append a job from Sk
c not in nc, c ∈ {2, 3} to nc as long as Rule 3. is

maintained.

One can easily see that duplicate nodes are prevented when obeying Rule 4,

following the proposed scheme.

Bounding and routing is done using identical or similar approaches as in Sec-

tion 3.2.1. Having all rows of jobs defined, allows us to employ the approach

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 116

from Gilmore and Gomory [25] in order to obtain a sequence for jobs in Ac

with minimum empty row travel time as an additional lower bound. We

denote this B&B by SEQSJ .

3.3 Benchmarking Algorithms

This section presents approaches that are used in order to benchmark our

B&Bs developed in Section 3.2. While the approach in Section 3.3.2 hardly

achieves feasible schedules, due to allowed any-bay handover, the approaches

in Section 3.3.1 can either guarantee feasibility or achieve feasible schedule

with a high probability. Hence, they can be used as stand-alone heuristics

for TCSPH.

3.3.1 Heuristics for the TCSPH

In this section we present two approaches allowing us take the first part

of the decision, by defining stacking positions of containers based on the

work in Gharehgozli et al. [24]. For the first part of the decision taken, we

develop three heuristic scheduling approaches eventually taking the second

and third part of the decision. The remaining fourth part of the decision is

then determined by the routing approach from Section 3.2.1.2.

While Gharehgozli et al. [24] do not distinguish different stacking positions

in a handshake area, the authors decide in which of multiple handshake

areas a container is stored (if there exist more than one such area). They

propose to minimize the laden travel duration associated with either the

storage job or the retrieval job by choosing the stacking position. Note that

in our case there might be multiple stacking positions minimizing the laden

travel duration. In that case we choose the one closest to the middle row

(R/2) among the stacking positions minimizing the laden travel duration

of the respective crane. By storing the containers closely together we aim

at reducing the time necessary to adjust the trolley in between consecutive

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 117

requests in bh of the same crane. We refer to the resulting set of jobs as

JS and JR depending on whether laden travel duration of storage jobs or

retrieval jobs has been minimized.

Regarding the sequencing of jobs with already defined stacking positions

for each container, we apply the nearest neighbor scheduling approach from

Gharehgozli et al. [24]. We build a sequence of jobs for crane c, by consecu-

tively appending jobs to nc following the nearest neighbor approach. Here, a

job with minimum distance to the drop off position of the last request in the

sequence of a crane is conducted next. Afterwards, we determine a sequence

for crane 5− c from the first position to the last, again, following the nearest

neighbor approach. While Gharehgozli et al. [24] do not consider stacking se-

quences we modify the approach in order to ensure feasible pairs of sequences

by requiring jobs corresponding to containers in I i,l ∪ Io,l to be handled in

the same order by both cranes. We run the approach with c = 2 and c = 3

in separate runs and choose the better among the resulting schedules. We

denote the heuristic by NN(JS) and NN(JR), respectively depending on

whether laden travel duration associated with the storage job or the retrieval

job is minimized. For the B&Bs we determine NN(JS) and NN(JR) ahead

of branching and which ever yields the lower makespan provides an initial

upper bound.

The second adapted scheduling approach is a local search heuristic based on

JS or JR. We use the solution found by NN(JS) (NN(JR)) as an initial

solution. Then, for α iterations, we choose two jobs randomly in each se-

quence and swap them. The swap is accepted whenever the pair of resulting

sequences is a feasible and the makespan (evaluated by using the routing

approach in Section 3.2.1.2) decreases. The respective variants of the local

search heuristic are denoted by 2OPT (JS, α) and 2OPT (JR, α).

The third scheduling approach is only loosely based on the work of Ghare-

hgozli et al. [24] and is a more sophisticated nearest neighbor heuristic. Let

c be the crane having the larger workload Wc among cranes based on jobs

with already defined stacking positions. We determine sequences with mini-

mum empty travel time with respect to either bay distances or row distances

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 118

employing the approach by Gilmore and Gomory [25] (see Section 3.2.1.3

for details). Among both sequences we choose the one having smaller total

empty travel time (with respect to both, bay distances and row distances) as

job sequence of crane c. Afterwards, we construct the job sequence of crane

5−c using the nearest neighbor approach. Once again, we require containers

assigned to the same stacking position to appear in the same order in both

job sequences. If multiple jobs can be selected, ties are broken in favor of a

job implying operating in the handshake area and among those in favor of the

job with the earliest corresponding job in the sequence of crane c. Note that

the approach does not guarantee feasible job sequences such that a routing

cannot necessarily be determined. We denote the approach by SNN(JR)

and SNN(JS) respectively depending on which set of jobs is provided.

Within the B&Bs we employ the sophisticated nearest neighbor approach

in order to determine upper bounds on the makespan for nodes. Here, we

only construct sequences for jobs in Ac and A5−c in a node. Undefined

stacking positions of containers are defined based on JS or JR, depending on

for which the simpler nearest neighbor heuristic yields a smaller makespan.

Even though all scheduling heuristics presented in this Section are suitable

for determining upper bounds, we select the sophisticated nearest neighbor

heuristic since it runs faster than the 2OPT heuristics and obtains better

solutions than the simpler nearest neighbor heuristic, as we will see in Section

3.4.

3.3.2 Dynamic container handover

In this Section we present an approach in which the cranes are allowed to

intermediately store a container in every position within the yard. It is based

on Briskorn et al. [8] where a setting is tackled where containers exclusively

arrive at the seaside access point and need to be stored within the yard.

The block is represented in a one-dimensional model, that is only bays are

considered and trolley moves are neglected. Handovers between cranes are

not restricted to a handshake area but are allowed in any bay, capacities are

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 119

assumed to be infinite, and no stacking sequences are considered. Initially,

containers are picked up by the seaside-crane, that afterwards is allowed to

hand over the container to a landside-crane. The authors aim at minimizing

makespan and develop – among others – a bucket-brigade scheduling ap-

proach, see e.g. Bartholdi and Eisenstein [1], that obtains close to optimum

results. Here, crane 2 hands over a container to 3 whenever the cranes are

positioned close to each other, and 3 is not carrying a container. Afterward

3 transports the container to its final destination.

For the approach proposed in this section, we neglect capacities as well as

precedence relations for jobs in the same position and allow containers to be

intermediately stored in any position. Obviously, it does not yield feasible

solutions for the TCSPH and serves as benchmark only. Hence, we explain

the approach only briefly. Clearly, the optimum schedule to this setting

constitutes a lower bound to the TCSPH. As opposed to Briskorn et al. [8],

we consider two types of containers, namely in I i and Io, and moves of the

trolley and, therefore, have to adapt the bucket-brigade scheduling approach

as presented in the following.

For the proposed approach we omit from determining all parts of the decision

in advance and only decide about the sequence n2 in which crane 2 handles

containers in Io∪I i, as detailed at the end of this section. For such a sequence

given, we decide dynamically about the very next container to be handled

by crane 3. Such a decision is made at the beginning of the planning horizon

and every time crane 3 sets down a container.

When deciding about the next container to be handled by crane 3 we consider

relocating containers in Io and receiving a container from crane 2 as options.

For receiving a container from crane 2 we assume that crane 3 approaches

crane 2 as fast as possible and receives the first container that crane 2 can

hand over. We evaluate each of these options according to the benefit of

crane 2, that is the reduction in workload of crane 2 by crane 3 carrying a

container, as compared to the cost of crane 3, that is the empty travel time

for crane 3 to approach the container. Each option is evaluated by benefit

minus cost and we choose the option having the highest evaluation. Following

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 120

the proposed approach, the positions of containers provided for the decision

making potentially deviate from the original container positions, e.g. if a

container has been relocated by crane 3. Hence, during decision making we

use the incumbent container positions as oi = (obi , o
r
i) and di = (d

b

i , d
r

i).

We aim at handing over only containers for which crane 2 can actually gain

a benefit. Hence, for two consecutive containers i and i′ in n2, focusing only

on bay positions, we say that

• crane 2 is allowed to hand over i ∈ I i only if obi′ < d
b

i holds and

• crane 3 is allowed to relocate i′ ∈ Io only if d
b

i < obi′ holds.

If obi′ ≥ d
b

i with i ∈ I i, then crane 2 moves beyond d
b

i in order to pick up i′

and, hence, passes d
b

i . If d
b

i ≥ obi′ with i′ ∈ Io, then crane 2 moves beyond

obi′ in order to deliver i and, hence, passes obi′ on its way back. Whenever a

container is intermediately stored or relocated, we say that the crane carrying

it begins to set it when the cranes are positioned less or equal than p + 1

bays apart.

While carrying a container, crane 3 is prioritized in case of a conflict, while

crane 2 gets prioritized otherwise. The makespan of a hereby determined

schedule equals then the point of time when all containers in n2 are dropped

off in their destination positions.

What now remains to detail is the movement of the cranes’s trolleys. Clearly,

for containers not being handed over, crane 2 positions its trolley according

to the pick up request as early as possible.” For container i, destined to be

handed over to crane 3 we proceed as follows. Let rc and bc be the row and

bay position of crane c at the beginning of a period. If |d
b

i −b2| > |r2−d
r

i |+1

holds, d
r

i can be reached by 2’s trolley before 2 reaches d
b

i . Further, it can

even be moved away from d
r

i without increasing the duration to reach di. In

such a case we decide that 2 moves the trolley closer to r3, which potentially

reduces empty row travel time of 3, before picking up the container. If

|d
b

i − b2| ≤ |r2 − d
r

i | + 1 holds, 2 moves the trolley closer to d
r

i . Such a

movement brings r2 potentially away from r3 but into a position that r3

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 121

has to cross later on in order to store the container in di. Knowing the

trolley position of 2 at the end of a period, we move crane 3’s trolley closer

to that row during the current period. After 2 has set down i, 3 moves

its trolley to the positions necessary to store it in di. Whenever crane 3

is currently relocating a container, it moves the trolley according to di , if

|b3 − dbi | ≤ |r3 − dri | holds. Otherwise, it moves the trolley closer to d
r

k, with

k being the predecessor job of i in n2, potentially reducing the time for 2 to

pick up i after setting down k. Crane 2 moves its trolley closer to r3 in a

period, if 2 has already transported k. Otherwise, it moves according to the

next operation in n2.

”Let us conclusively detail how we determine n2. We do so by employing a

simulated annealing approach resembling the one in Briskorn et al. [8]. We set

the initial temperature T to 3 times the workload assuming that only crane

2 handles containers. In each iteration, we generate |I i| + |Io| neighboring

solutions for the current sequence n2 by randomly swapping the position of

two containers. We replace the current solution with a neighboring solution

if rand(0, 1) < exp(−∆/T) holds where ∆ is the difference in makespans.

After each iteration we set T to 0.99 · T and repeat the procedure unless

T is smaller than 0.1. Then, the container sequence with the best obtained

makespan is returned. The approach is denoted by ABB.

3.4 Computational Study

The computational study presented in this section is twofold, first we present

a static analysis of the performance of the algorithms and give some man-

agerial insights into strategies where to locate the handshake area in a block

in Section 3.4.1. In Section 3.4.2 we then apply these insights and employ

our deterministic approaches in a rolling horizon setting and compare the

performance of the algorithms in order to investigate how much we can gain

from better solutions to TCSPH.

We conducted the tests on an Intel Core i7-4790 CPU with 3.6 GHz and 32

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 122

GB of RAM running Windows 7. All approaches were implemented in Java

8.

3.4.1 Static Analysis

In order to evaluate the approaches we created sets of instances with different

parameter combinations. We set the size of the storage block to 30 bays with

a seaside transfer bay in bay 0 and to either 6 or 10 rows. Initially, crane 2

is positioned in bay 0 while crane 3 is positioned in bay 30 and the initial

trolley positions are in row 1. The time to pick up or drop off a container is

p = 3.

For every instance |I i| = |Io| holds and we have 5, 10, 15 or 20 containers of

each type. The bay positions of containers are randomly drawn from [1, 30]

while row positions are drawn from [1, 6] ([1, 10]) according to a uniform

distribution. We vary the location of bh throughout the study and detail

its position throughout this section. The location of the handshake area,

then consequently determines the sets of jobs for both cranes. In a real

world setting it is rather unlikely that containers get stored permanently

in the handshake area, hence, whenever oi or di implies storing a container

in bh we change the bay position to bh − 1 and bh + 1 respectively. We

used the instance generator from Briskorn et al. [11] in order to generate

30 container sets for each parameter combination, resulting in 240 container

sets. We, then, complement each container set to ten instances of TCSPH by

setting bh to each value in {5, 10, 15, 20, 25} and by varying the capacity for

each stacking position within the handshake area. We distinguish between a

low capacity setting, where the capacity of each position is randomly drawn

from {1, 2, 3} and a high capacity setting where the capacity is drawn from

{3, 4, 5}. As a result, in total 2400 instances were evaluated.

Obviously, for a given container set the position of the handshake area in-

fluences the workload of cranes. Since we expect it to have a major impact

on the optimum makespans of instances we have a closer look at it first. We

outline the average number of jobs |Jc| for a crane that result from a given

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 123

bh and number of containers as well as the average workload Wc in Table 3.1.

bh = 5 bh = 10 bh = 15 bh = 20 bh = 25
|I i| = |Io| |J1| |J2| W1 W2 |J2| W1 W2 |J2| W1 W2 |J2| W1 W2 |J2| W1 W2

5 10 9 108 158 7 147 109 5 177 68 3 198 36 2 210 14
10 20 17 216 323 14 294 225 11 356 144 7 400 77 4 427 31
15 30 26 324 475 21 440 329 16 532 207 10 595 108 5 632 42
20 40 35 432 642 28 589 446 21 712 279 14 798 151 7 849 57

Table 3.1: Effect of bh: average workload Wc, average number of jobs |Jc|

Obviously |J3| increases, the closer the handshake area is located to the

seaside, since potentially more containers have to be transported across that

bay in order to reach their final destination. Even though |J2| is a constant

for a given set of containers, the position of the handshake area affects the

workload of those jobs. Hence, the closer the handshake area is located to

the seaside, the less transport distance does crane 2 have to travel, since

more jobs need to be stored in bh and the distance between bh and bay 0

decreases. Contrarily, the distances in between the pick up and drop off

position increase for crane 3.

For the B&Bs we set the time limit to 300 seconds. In case no B&B guar-

antees optimality for an instance we consider the largest lower bound deter-

mined by a B&B and determine the average relative gap to this lower bound

for all approaches. Furthermore, we outline the average run times in seconds

in Table 3.2 for a block width of 6 rows and in Table 3.3 for a block width

of 10 rows.

For a given width of the storage block, it takes more time on average to deter-

mine solutions when the capacity of stacking positions is larger. This comes

at no surprise since with larger capacities the solution space increases and

potentially more nodes have to be evaluated. Based on the same reasoning,

the average run times increase with an increasing width of the storage block,

since more stacking positions are available to intermediately store containers

in. For an increasing number of containers to be handled, the average gap

as well as average run times increases. Next, we analyze the performance of

each B&B in detail.

We observe that SEQJS is able to determine optimum solutions when con-

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 124

Avg. relative Gap LB % Avg. run time s
|I i| = |Io| Algorithm / bh 5 10 15 20 25 5 10 15 20 25

5
SEQJS 0.03 0.00 0.00 0.00 0.00 17.23 3.60 1.14 0.02 0.02
SIM 0.00 0.00 0.02 0.00 0.00 32.95 50.86 17.26 0.03 0.01
SEQSJ 0.02 0.42 0.02 0.00 0.00 100.09 130.03 30.24 0.03 0.02

10
SEQJS 7.82 1.22 0.18 0.00 0.00 300.00 159.59 86.63 0.12 0.58
SIM 2.67 1.78 0.44 0.00 0.01 197.37 203.63 92.67 1.40 10.12
SEQSJ 0.49 0.81 0.12 0.00 0.00 127.22 146.20 61.11 0.16 0.45

15
SEQJS 9.01 5.09 1.04 0.47 0.00 300.00 268.73 200.42 41.98 0.67
SIM 3.93 2.88 1.43 0.33 0.00 281.64 203.91 222.02 62.35 0.81
SEQSJ 4.87 0.48 0.19 0.00 0.00 239.44 138.41 121.27 7.29 0.25

20
SEQJS 9.95 16.83 8.38 2.41 0.00 300.00 300.00 290.77 166.29 5.43
SIM 3.83 13.74 5.13 1.61 0.05 287.57 283.11 295.45 190.00 40.02
SEQSJ 5.97 0.77 0.19 0.01 0.00 239.71 197.68 150.84 14.16 1.18

(a) Low capacity

Avg. relative Gap LB % Avg. run time s
|I i| = |Io| Algorithm / bh 5 10 15 20 25 5 10 15 20 25

5
SEQJS 0.03 0.00 0.00 0.00 0.00 18.71 3.71 1.14 0.02 0.02
SIM 0.00 0.00 0.02 0.00 0.00 52.76 50.98 20.06 0.02 0.02
SEQSJ 0.02 0.42 0.02 0.00 0.00 100.10 130.04 30.27 0.03 0.02

10
SEQJS 6.76 0.90 0.15 0.00 0.00 300.00 159.87 89.87 0.12 0.60
SIM 3.45 1.97 0.45 0.00 0.01 203.15 203.89 93.76 2.90 10.53
SEQSJ 1.66 1.40 0.12 0.00 0.00 146.67 147.15 64.58 0.20 0.53

15
SEQJS 7.67 3.95 0.83 0.09 0.00 300.00 270.47 184.53 21.87 0.21
SIM 5.58 3.85 1.38 0.45 0.00 292.24 221.35 243.85 88.35 1.14
SEQSJ 7.64 0.71 0.18 0.01 0.00 259.27 135.87 114.91 11.97 0.28

20
SEQJS 7.70 13.40 5.45 1.45 0.00 300.00 300.00 290.76 129.18 3.08
SIM 4.98 14.12 5.32 1.97 0.22 300.00 283.84 300.00 216.61 52.55
SEQSJ 7.78 1.54 0.39 0.04 0.00 294.46 211.49 165.16 36.24 2.22

(b) High capacity

Table 3.2: Comparison of B&Bs, storage block width: 6 rows: avg. run times
in seconds, average relative gap in percent, low and high capacities

sidering 5 containers of each type for all values of bh larger than 5. It does so

significantly faster than the other approaches. For the remaining instances

the picture is different and, therefore, we, first, provide an explanation for

SEQJS being superior for these particular instances.

If the workload of crane 2 is significantly higher than the one of crane 3

(which is the case for bh ≥ 10), then in optimum schedules crane 2 is likely

to have minimum empty travel distance. This is achieved if only two stacking

positions in the handshake area are used and these two positions are next to

each other. Typically, crane 3 can support such a schedule even if this means

extra effort since its workload is significantly lower. For such a schedule,

we obtain tight lower bounds in the first phase of SEQJS if the pair of

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 125

Avg. relative Gap LB % Avg. run time s
|I i| = |Io| Algorithm / bh 5 10 15 20 25 5 10 15 20 25

5
SEQJS 0.00 0.00 0.00 0.00 0.00 14.40 0.86 2.83 0.03 0.02
SIM 0.13 0.11 0.00 0.00 0.00 98.39 50.40 28.87 0.09 0.03
SEQSJ 0.02 0.16 0.00 0.00 0.00 84.08 138.17 30.17 1.97 0.11

10
SEQJS 7.73 2.81 0.17 0.01 0.00 300.00 133.12 79.11 10.22 0.09
SIM 4.12 1.81 0.68 0.06 0.00 243.03 177.85 136.01 27.22 1.57
SEQSJ 1.85 0.52 0.22 0.00 0.00 182.39 96.27 100.32 0.23 1.27

15
SEQJS 12.73 9.32 4.58 0.03 0.04 300.00 280.29 242.21 25.67 23.08
SIM 4.69 9.57 5.52 1.55 0.02 260.49 260.00 272.74 144.00 29.34
SEQSJ 8.76 0.79 0.16 0.03 0.01 233.03 192.33 102.65 31.21 11.46

20
SEQJS 15.44 20.55 8.82 3.50 0.04 300.00 300.00 300.00 161.63 31.16
SIM 7.42 17.35 9.17 5.07 0.55 300.00 300.00 290.52 262.54 76.80
SEQSJ 11.34 0.34 0.13 0.03 0.01 290.86 188.70 138.46 44.97 21.40

(a) Low capacity

Avg. relative Gap LB % Avg. run time s
|I i| = |Io| Algorithm / bh 5 10 15 20 25 5 10 15 20 25

5
SEQJS 0.00 0.00 0.00 0.00 0.00 15.24 0.88 3.16 0.03 0.02
SIM 0.51 0.11 0.00 0.00 0.00 103.47 53.33 30.74 0.09 0.03
SEQSJ 0.02 0.16 0.00 0.00 0.00 80.06 138.53 30.17 1.98 0.11

10
SEQJS 6.75 1.74 0.17 0.01 0.00 300.00 131.95 81.24 10.21 0.10
SIM 4.07 2.02 0.86 0.09 0.00 264.85 180.23 142.09 30.68 2.39
SEQSJ 3.39 1.20 0.23 0.00 0.00 198.64 101.84 101.08 0.37 1.34

15
SEQJS 11.43 6.12 2.43 0.03 0.04 300.00 280.29 235.72 24.84 23.11
SIM 5.97 10.06 6.22 2.11 0.02 260.52 267.47 279.90 169.05 33.58
SEQSJ 10.50 1.47 0.27 0.02 0.01 273.18 194.54 112.11 23.10 11.49

20
SEQJS 12.86 14.40 6.11 2.24 0.01 300.00 300.00 291.07 155.68 31.21
SIM 8.93 17.49 9.10 6.00 0.74 300.00 300.00 290.68 271.69 86.32
SEQSJ 13.09 2.21 1.05 0.48 0.00 300.00 210.38 194.16 92.06 16.09

(b) High capacity

Table 3.3: Comparison of B&Bs, storage block width: 10 rows: avg. run
times in seconds, average relative gap in percent, low and high capacities

sequences constructed in this phase can be complemented to schedules in

the second phase. For a small number of containers we often can do so

and, hence, the tight lower bounds guide our search very well already in low

levels of the search tree. However, the more containers need to be stored

in the handshake area, that is the smaller bh or the larger |I i| = |Io|, the

more likely we cannot complement an arbitrary pair of sequences determined

in the first phase of SEQJS to a feasible schedule due to limited number

of stacking positions and limited capacities. Hence, the lower bounds in

the first phase become less of a good guide. Note that, as opposed to the

other approaches, SEQJS performes better for larger capacities which is in

line with the above reasoning since we can complement an arbitrary pair of

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 126

sequences more likely to a feasible schedule. The two other approaches do

not suffer from the drawback that decisions made in low levels of the search

tree cannot be complemented to feasible schedules and, therefore, perform

better for bh = 5 or |I i| = |Io| ≥ 10.

For SIM we see that it is on average the second fastest approach for

|I i| = |Io| = 5 but falls behind SEQSJ for |I i| = |Io| ≥ 10. While SIM

provides the strongest lower bounds on a certain level of the search tree since

it incorporates information about both, pair of sequences and stacking posi-

tions the search tree grows much faster on low levels. The latter affects run

times more for larger |I i| = |Io|. Nevertheless, for bh = 5 the advantage of

having both types of information in nodes compensates for the disadvantage

of a wider tree since more containers are stored intermediately in the hand-

shake bay. Recall that on low levels of the search tree nodes in both, SEQJS

and SEQSJ , lack one type of information.

Finally let us shed light on the performance of SEQSJ . One key advantage

of SEQSJ , as compared to SEQJS, is that after completing the first phase

of branching stacking positions for all containers are given. This allows us to

determine tighter lower bounds employing the approach from Gilmore and

Gomory [25], see Section 3.2.1.3. However, for instances with |I i| = |Io| =

5 SEQSJ is outperformed by SEQJS or SIM . For these relatively small

number of jobs (see Table 3.1) it seems as if providing partial job sequences

early on by branching decisions is more beneficial. For all other settings,

with a handshake area located in bay bh ≥ 10, SEQSJ not only yields the

shortest run times on average but also the smallest relative gap on average.

Next, we analyze the performance of the heuristics. Again, we compare the

approaches with regard to average run times and average relative gap. The

relative gaps obtained by the nearest neighbor heuristics are outlined in Table

3.4. The average run times of all nearest neighbor heuristics are virtually zero

regardless of the parameter settings and, hence, we omit from including them

into Table 3.4. The results for all 2OPT algorithms are shown in Table 3.5

and 3.6.

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 127

|Ii| = |Io|
Storage block width: 6 rows Storage block width: 10 rows

Algorithm / bh 5 10 15 20 25 5 10 15 20 25

5

NN(JS) 55.85 62.39 32.42 14.86 6.35 60.01 59.73 30.69 13.99 6.35
NN(JR) 55.83 62.37 32.40 14.86 6.34 60.14 59.47 31.39 13.43 6.30
SNN(JS) 48.55 55.07 35.96 32.77 14.01 46.22 56.12 33.39 20.85 21.20
SNN(JR) 47.17 54.12 36.18 32.74 14.01 46.16 54.94 33.23 21.48 21.21

10

NN(JS) 58.93 73.09 35.66 16.44 7.47 63.11 71.78 37.41 18.16 7.43
NN(JR) 58.93 72.98 35.68 16.44 7.52 63.28 71.67 37.63 18.22 7.60
SNN(JS) 41.62 56.54 39.11 34.87 31.48 38.89 42.18 34.02 27.50 34.99
SNN(JR) 41.11 56.95 39.07 34.97 31.46 39.42 41.31 33.04 27.49 35.12

15

NN(JS) 65.58 72.53 37.80 16.89 6.76 67.10 75.54 37.50 15.74 7.89
NN(JR) 65.59 72.56 37.72 16.90 6.76 67.28 75.25 37.95 15.64 7.81
SNN(JS) 47.02 53.33 40.81 37.50 44.94 40.82 50.30 35.72 34.80 41.94
SNN(JR) 46.14 55.78 39.99 37.64 44.41 43.20 47.74 34.50 34.99 41.48

20

NN(JS) 64.73 77.93 39.09 17.39 7.29 68.11 78.09 40.44 19.73 7.98
NN(JR) 64.73 77.93 39.08 17.50 7.36 68.48 78.17 39.82 19.20 7.75
SNN(JS) 33.48 52.45 38.98 38.65 46.27 46.98 47.20 36.70 36.58 46.18
SNN(JR) 34.20 51.59 39.52 37.41 46.22 47.01 43.13 35.10 36.36 45.97

Table 3.4: Comparison of nearest neighbor heuristics: average relative gap
in percent, 6 and 10 row block width

It comes at no surprise that all three approaches yield larger relative gaps

on average than the B&Bs while run times are significantly slower. When

analyzing the nearest neighbor heuristics, we observe that they are perfectly

robust against different capacities. This is due to the strategy to retrieve a

container immediately after it has been set down in the handshake bay when

constructing a pair of sequences. Hence we outline the relative gaps in Table

3.4 without specifying the capacity setting. The gap of both approaches to

the lower bound exceeds 30 percent on average for all instances. We see that

SNN(Js) (SNN(JR)) outperforms the simpler heuristic for bh ≤ 10 and

that it is the other way around for bh ≥ 20. Remarkably, the relative gap

tends to decrease (significantly in most cases) with increasing bh. This again

can be explained with the above mentioned strategy which is less restricting

if less containers are intermediately stored in the handshake bay.

The 2OPT approaches however yield much more promising results. We see

that the average relative gap decreases with increasing capacity. This is

due to swaps resulting in feasible pairs of sequences more often for higher

capacity. When allowing 5000 iterations, the average run times do not exceed

0.15 seconds while the gap does not exceed 10 percent on average for |I i| =

|Io| ≤ 10. For |I i| = |Io| ≥ 15 run times increase slightly due to higher

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 128
|I

i
|
=

|I
o
|

Avg. relative Gap LB % Avg. run time s
Algorithm / bh 5 10 15 20 25 5 10 15 20 25

5

2OPT (JS, 5000) 1.50 3.49 1.64 1.47 1.04 0.05 0.03 0.03 0.03 0.02
2OPT (JR, 5000) 1.62 3.34 1.64 1.47 1.03 0.05 0.04 0.04 0.03 0.02
2OPT (JS, 50000) 1.50 3.49 1.64 1.47 1.04 0.40 0.36 0.35 0.26 0.19
2OPT (JR, 50000) 1.62 3.34 1.64 1.47 1.03 0.41 0.36 0.35 0.26 0.19

10

2OPT (JS, 5000) 7.29 7.26 2.93 1.61 1.14 0.08 0.07 0.07 0.06 0.04
2OPT (JR, 5000) 7.20 7.13 2.95 1.57 1.19 0.09 0.07 0.07 0.06 0.04
2OPT (JS, 50000) 2.79 4.44 1.73 1.58 0.98 0.73 0.72 0.70 0.58 0.42
2OPT (JR, 50000) 2.77 4.43 1.61 1.54 1.03 0.73 0.73 0.68 0.58 0.43

15

2OPT (JS, 5000) 14.77 12.30 3.81 1.41 1.08 0.13 0.12 0.11 0.10 0.07
2OPT (JR, 5000) 14.19 12.43 3.81 1.36 1.08 0.14 0.11 0.11 0.10 0.07
2OPT (JS, 50000) 5.89 6.34 2.41 1.03 1.03 1.27 1.12 1.06 0.96 0.69
2OPT (JR, 50000) 6.05 6.38 1.96 1.00 1.03 1.28 1.11 1.07 0.99 0.69

20

2OPT (JS, 5000) 22.07 20.19 6.08 2.26 1.10 0.20 0.17 0.17 0.14 0.13
2OPT (JR, 5000) 22.22 19.95 5.98 2.12 1.08 0.21 0.17 0.17 0.13 0.13
2OPT (JS, 50000) 9.06 8.34 2.31 1.19 0.92 1.94 1.67 1.73 1.39 1.29
2OPT (JR, 50000) 9.11 8.29 2.31 1.20 0.91 1.96 1.68 1.75 1.35 1.30

(a) Low capacity

|I
i
|
=

|I
o
|

Avg. relative Gap LB % Avg. run time s
Algorithm / bh 5 10 15 20 25 5 10 15 20 25

5

2OPT (JS, 5000) 1.57 2.97 2.10 1.50 1.08 0.06 0.05 0.04 0.03 0.02
2OPT (JR, 5000) 1.80 3.20 2.10 1.50 1.06 0.06 0.05 0.04 0.03 0.02
2OPT (JS, 50000) 1.50 2.97 2.10 1.50 1.08 0.54 0.48 0.41 0.29 0.20
2OPT (JR, 50000) 1.72 3.18 2.10 1.50 1.06 0.55 0.48 0.42 0.29 0.20

10

2OPT (JS, 5000) 6.04 7.10 2.22 0.91 1.00 0.11 0.10 0.09 0.07 0.05
2OPT (JR, 5000) 6.10 7.27 2.23 0.86 0.96 0.12 0.10 0.09 0.07 0.05
2OPT (JS, 50000) 2.80 3.70 1.70 0.87 0.99 1.01 1.01 0.87 0.67 0.46
2OPT (JR, 50000) 3.01 3.84 1.58 0.83 0.96 1.04 0.99 0.85 0.66 0.46

15

2OPT (JS, 5000) 12.42 10.07 2.96 1.03 0.91 0.18 0.16 0.15 0.12 0.08
2OPT (JR, 5000) 12.06 10.31 2.86 1.01 0.91 0.18 0.15 0.15 0.12 0.08
2OPT (JS, 50000) 5.46 4.67 1.42 0.81 0.88 1.63 1.57 1.51 1.19 0.82
2OPT (JR, 50000) 5.50 4.57 1.46 0.80 0.88 1.63 1.55 1.53 1.22 0.82

20

2OPT (JS, 5000) 16.69 17.55 4.92 1.87 0.99 0.25 0.23 0.21 0.17 0.14
2OPT (JR, 5000) 16.81 17.48 4.94 1.63 1.00 0.25 0.23 0.21 0.17 0.14
2OPT (JS, 50000) 8.07 7.51 1.92 1.09 0.82 2.40 2.31 2.19 1.72 1.41
2OPT (JR, 50000) 8.15 7.28 1.97 0.96 0.86 2.42 2.33 2.17 1.65 1.43

(b) High capacity

Table 3.5: Comparison of 2OPT approaches and storage block width of 6
rows: low and high stacking position capacity, avg. run time in seconds,
average relative gap in percent

effort for feasibility checks and routing. Also, the relative gap increases.

When allowing 50000 iterations, naturally the average run times increase

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 129
|I

i
|
=

|I
o
|

Avg. relative Gap LB % Avg. run time s
Algorithm / bh 5 10 15 20 25 5 10 15 20 25

5

2OPT (JS, 5000) 2.05 5.10 2.99 1.91 1.60 0.04 0.04 0.03 0.03 0.02
2OPT (JR, 5000) 1.59 5.31 2.59 2.06 1.65 0.05 0.04 0.03 0.03 0.02
2OPT (JS, 50000) 1.59 5.06 2.99 1.91 1.60 0.36 0.37 0.35 0.25 0.20
2OPT (JR, 50000) 1.53 5.02 2.59 2.06 1.65 0.41 0.34 0.32 0.25 0.20

10

2OPT (JS, 5000) 9.59 9.97 3.84 1.71 1.42 0.08 0.07 0.07 0.05 0.04
2OPT (JR, 5000) 8.51 8.27 2.73 1.64 1.34 0.08 0.07 0.07 0.06 0.05
2OPT (JS, 50000) 4.64 6.33 2.83 1.66 1.40 0.69 0.68 0.66 0.53 0.43
2OPT (JR, 50000) 4.09 5.63 2.27 1.55 1.32 0.75 0.67 0.69 0.55 0.47

15

2OPT (JS, 5000) 17.74 15.64 6.06 2.25 1.35 0.12 0.11 0.11 0.09 0.07
2OPT (JR, 5000) 16.49 14.14 5.84 1.94 1.33 0.13 0.12 0.11 0.10 0.07
2OPT (JS, 50000) 7.53 7.50 3.43 1.53 1.18 1.16 1.10 1.11 0.94 0.75
2OPT (JR, 50000) 6.65 6.12 3.51 1.41 1.20 1.23 1.13 1.07 0.96 0.73

20

2OPT (JS, 5000) 27.63 24.55 8.40 3.61 1.70 0.18 0.16 0.15 0.14 0.11
2OPT (JR, 5000) 25.84 23.76 8.00 3.47 1.77 0.18 0.16 0.16 0.14 0.11
2OPT (JS, 50000) 10.74 11.47 4.43 1.63 1.31 1.76 1.58 1.51 1.37 1.13
2OPT (JR, 50000) 10.96 11.34 3.88 1.59 1.38 1.83 1.59 1.55 1.42 1.11

(a) Low capacity

|I
i
|
=

|I
o
|

Avg. relative Gap LB % Avg. run time s
Algorithm / bh 5 10 15 20 25 5 10 15 20 25

5

2OPT (JS, 5000) 2.14 4.26 2.58 1.56 1.60 0.06 0.05 0.05 0.03 0.02
2OPT (JR, 5000) 1.90 3.80 2.25 1.70 1.68 0.07 0.05 0.04 0.03 0.02
2OPT (JS, 50000) 1.89 3.96 2.58 1.56 1.60 0.53 0.48 0.44 0.28 0.21
2OPT (JR, 50000) 1.43 3.72 2.25 1.70 1.68 0.58 0.46 0.42 0.28 0.20

10

2OPT (JS, 5000) 7.65 9.17 2.62 1.58 1.48 0.11 0.10 0.10 0.08 0.05
2OPT (JR, 5000) 6.60 8.53 2.44 1.54 1.44 0.12 0.10 0.10 0.08 0.05
2OPT (JS, 50000) 3.58 4.63 1.83 1.55 1.48 0.99 1.01 0.94 0.75 0.53
2OPT (JR, 50000) 3.46 4.40 1.65 1.48 1.44 1.10 1.00 0.99 0.79 0.55

15

2OPT (JS, 5000) 12.37 12.89 3.54 1.81 1.25 0.17 0.17 0.16 0.12 0.09
2OPT (JR, 5000) 11.85 11.49 3.47 1.63 1.23 0.18 0.16 0.15 0.12 0.09
2OPT (JS, 50000) 5.12 5.94 2.19 1.57 1.19 1.65 1.71 1.54 1.25 0.92
2OPT (JR, 50000) 5.41 4.79 2.17 1.28 1.13 1.67 1.69 1.57 1.18 0.94

20

2OPT (JS, 5000) 19.82 18.99 6.61 2.50 1.51 0.25 0.23 0.21 0.18 0.14
2OPT (JR, 5000) 18.30 18.13 5.88 2.39 1.56 0.26 0.23 0.23 0.18 0.14
2OPT (JS, 50000) 9.12 9.09 2.80 1.33 1.25 2.43 2.25 2.05 1.83 1.45
2OPT (JR, 50000) 7.69 8.51 2.73 1.65 1.32 2.58 2.34 2.10 1.84 1.46

(b) High capacity

Table 3.6: Comparison of 2OPT approaches and storage block width of 10
rows: low and high stacking position capacity, avg. run time in seconds,
average relative gap in percent

but they do not exceed 3 seconds on average. Simultaneously, the relative

gap decreases. For bh = 5, |I i| = |Io| = 15 and high capacities as well

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 130

as for bh = 5, |I i| = |Io| = 20, 10 rows, and high capacities, even the

B&Bs are outperformed. Note, however, that such a setting is unlikely a real

world scenario, since usually capacities are tight, and, as we will see later on,

locating the handshake area close to the seaside is not a good choice.

Finally, we analyze the effect of the position of the handshake area on

the average makespan. In Table 3.7 we outline the average makespan ob-

tained by the B&Bs and, as the dominant heuristics, 2OPT (JS, 50000) and

2OPT (JR, 50000).

|I
i
|
=

|I
o
|

Storage block width: 6 rows Storage block width: 10 rows
Low capacity High capacity Low capacity High capacity

Algorithm / bh 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

5

SEQJS 186 164 196 220 237 186 164 196 220 237 189 169 203 228 244 189 169 203 228 244
SIM 186 164 196 220 237 186 164 196 220 237 189 169 203 228 244 190 169 203 228 244
SEQSJ 186 165 196 220 237 186 165 196 220 237 189 169 203 228 244 189 169 203 228 244
2OPT (JS, 50000) 189 170 199 223 239 189 169 200 223 239 192 177 209 232 247 193 176 208 231 247
2OPT (JR, 50000) 189 170 199 223 239 189 170 200 223 239 192 177 208 232 247 192 175 207 231 248

10

SEQJS 395 321 385 436 467 391 320 385 436 467 403 335 394 444 477 399 331 394 444 477
SIM 377 322 386 436 467 379 323 386 436 467 387 332 396 444 477 388 332 396 444 477
SEQSJ 369 319 385 436 467 373 321 385 436 467 379 327 394 444 477 385 330 394 444 477
2OPT (JS, 50000) 377 331 391 442 472 377 329 391 439 472 390 346 404 451 484 387 341 400 451 484
2OPT (JR, 50000) 377 331 390 442 472 378 329 390 439 471 388 344 402 451 484 386 340 399 450 484

15

SEQJS 568 493 570 636 674 560 488 569 634 674 615 529 611 659 706 608 513 599 659 706
SIM 539 482 572 635 674 548 487 572 636 674 571 530 617 669 706 578 533 621 673 706
SEQSJ 543 471 565 633 674 557 472 565 633 674 593 487 585 659 706 602 491 586 659 706
2OPT (JS, 50000) 550 499 578 640 681 548 491 572 638 680 587 520 604 669 714 573 513 597 669 714
2OPT (JR, 50000) 551 499 575 639 681 549 490 572 638 680 582 513 605 668 714 575 507 597 667 713

20

SEQJS 774 729 816 866 903 759 708 794 858 903 820 767 834 892 920 800 728 813 880 920
SIM 731 710 791 859 904 740 712 793 862 905 761 747 836 905 925 772 748 836 913 927
SEQSJ 746 629 754 845 903 758 633 756 845 903 790 638 767 861 920 802 650 774 865 919
2OPT (JS, 50000) 769 676 770 855 911 762 671 767 854 910 787 709 800 875 932 775 694 787 872 931
2OPT (JR, 50000) 769 676 770 855 911 763 669 767 853 911 788 709 796 874 932 765 690 787 875 932

Table 3.7: Average makespan obtained by the B&Bs and selected heuristics

First, we observe that the average makespan does not considerably depend

on the capacity. Second, we find that the average makespan is lowest for a

value of bh = 10. We find a reason by taking into account the results from

Table 3.1 and observe that max{W2,W3}, among different values for bh is

minimized for bh = 10, which intuitively supports short makespans. We like

to emphasize that this finding does not hold only for the shortest makespan

obtained but also for each single approach individually. In the following,

we provide more detailed insights into the effect of the very position of the

handshake area.

For the not yet examined values for bh in interval [5, 15], |I i| = |Io| = 5, low

capacity and a storage block width of 6 rows, we determined the average op-

timum makespan using SEQJS as well as the average workload of the cranes.

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 131

The results are provided in Table 3.8 and they indeed indicate that the av-

erage makespan is lower, the lower the maximum workload among cranes

is. For the tested instances, the respective minimum maximum workload is

W2 = 132 for bh = 8 and an average makespan of 162 is obtained.

bh 5 6 7 8 9 10 11 12 13 14 15
W1 108 116 124 132 139 147 153 159 165 171 177
W2 158 148 138 129 120 109 101 92 84 77 68

Avg. Makespan 186 175 166 162 162 164 169 176 183 189 196

Table 3.8: Average makespan obtained by SEQJS, W2 and W3 for |I i| =
|Io| = 5, low capacity, a block width of 6 and bh = 5, 6, . . . , 15

In a final step, we evaluate the loss of performance that comes with using

a fixed handshake bay instead of allowing cranes to hand over containers

flexibly. We developed ABB as a derivative of the bucket brigade algorithm

presented in Briskorn et al. [8] which performed well in a one-dimensional

setting with flexible handovers, see Section 3.3.2. Now, we employ the relative

gap between the makespans of the schedule obtained by ABB and the best

schedule obtained by a B&B as a proxy for the loss of performance. In

Table 3.9 we provide the average makespan as well as average run times in

seconds yielded by ABB. Furthermore, we outline the average relative gap

for bh = 10.

Storage block width: 6 rows Storage block width: 10 rows
|I i| = |Io| ABB Run times s Gap bh = 10 ABB Run times s Gap bh = 10

5 160 0.24 -2.74 166 0.27 -1.8
10 316 0.71 -0.59 326 0.76 -0.4
15 457 1.42 -2.86 483 1.46 -0.7
20 623 2.37 -0.79 644 2.40 1.0

Table 3.9: Average obtained makespan by ABB, average run times in seconds
and average relative deviation in percent to best results obtained by any B&B
for bh = 10

We observe that the run times of ABB are relatively small which is no

surprise given the findings in Briskorn et al. [8]. The relative deviation is

not below -3 percent on average and the B&Bs even obtain better results for

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 132

|I i| = |Io| = 20 and a storage block width of 10 rows. Thus, we conclude that

the loss in performance by having a fixed handshake bay is kept in check.

3.4.2 Rolling horizon approach

In this section we present a rolling horizon framework and evaluate the per-

formance of SEQJS, a 2OPT approach and ABB within it. More specifi-

cally we employed 2OPT (JR, 100000) which performed best among 2OPT

approaches in preliminary tests. Within the framework sets of containers

become known over time for scheduling. Rather than defining distinct points

in time when new containers become known we start with λ available con-

tainers at the beginning and add µ new containers whenever µ containers

reached their destination. This keeps the workload being added and the

workload completed in balance for different approaches in an otherwise iden-

tical setting. Note that keeping such a balance is preferable since otherwise

the number of containers available to the scheduling mechanism might grow

significantly or cranes might be idle due to lack of workload.

Whenever new containers become known we discard all decisions made in the

previous scheduling step, regarding containers that are picked up after the

µth container was set down. Afterwards, we derive a schedule using 2OPT

or SEQJS. Obviously, we have to account for the precedence relations as

well as the capacities resulting from previously fixed decisions. We, then,

implement this schedule until the µth container has been set down in its

final position. For ABB, we proceed analogously and update the positions

of containers that were re-positioned within the yard.

For the proposed approach we generated 30 instances, each with |I i| = |Io| =

50, shuffled the containers and afterwards fixed an order in which they are

released. The block has a width of 6 rows, a length of 30 bays (with an

additional seaside transfer bay in bay 0) and high capacities, randomly drawn

from {3, 4, 5} and p equals 3. The cranes begin in bays 0 and 30 respectively

with their trolley in position 1. The container sets were again generated with

the generator from Briskorn et al. [11].

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 133

We tested 4 different settings, three with µ = 5 and λ = 5, 10 or 15 and one

setting with µ = 10 and λ = 20. We set bh to 8, 9 and 10 respectively and

we limited the run time for SEQJS for each horizon to the minimum among

10 seconds or the time necessary to obtain a feasible solution. Additionally,

we employed 2OPT .

The results are detailed in Table 3.10. We depicted the average makespan

obtained by ABB as well as for the other two approaches with different

positions of the handshake area. Further, among approaches considering a

handshake area, we underlined the minimum average makespan achieved and

outline the average relative gap to the makespan achieved using ABB in the

last column.

bh = 8 bh = 9 bh = 10 Avg. rel. deviation
to ABB in %Setting ABB SEQJS 2OPT SEQJS 2OPT SEQJS 2OPT

λ = 5, µ = 5 1946 1863 1985 1880 1986 1931 2021 -4.2
λ = 10, µ = 5 1625 1728 1970 1739 1960 1804 1983 6.3
λ = 15, µ = 5 1594 1721 2089 1707 2037 1754 2050 7.1
λ = 20, µ = 10 1591 1724 2130 1707 2149 1742 2097 7.3

Table 3.10: Avg. makespan yielded by approaches for the rolling horizon
setting, average relative deviation in percent to the makespan obtained by
ABB

Let us first compare the results of 2OPT and SEQJS. Analogously to the

results from Table 3.8, we observe that the average makespan tends to be

the lowest for bh = 8 or 9. Second, we observe that the average makespan

obtained by 2OPT is significantly larger than the one obtained by SEQJS.

Third, we can see that only SEQJS can benefit from having a larger num-

ber of containers available: the makespan achieved with SEQJS tends to

decrease with increasing λ while the one achieved with 2OPT increases. So-

lution quality of 2OPT significantly diminishes with an increasing number

of containers to be considered, see Tables 3.5 and 3.6, and hence we can

conclude that solution quality of the B&B carries over to a dynamic setting

when employed in a rolling horizon approach. One reason may be that while

we can account for predetermined precedence relations and capacities in the

B&B easily we encounter a vast number of infeasible sequences in 2OPT .

CHAPTER 3. SCHEDULING OF COOPERATING TWIN-CRANES 134

Now, we analyze the makespan achieved with ABB as compared to the one

achieved with SEQJS. We observe that the average makespan decreases for

both approaches with increasing λ. We see, furthermore, that ABB achieves

better makespans. Recall, however, that not only is ABB more flexible

with regard to the handover position we also relax several constraints of

TCSPH. Given these significant relaxations we (similarly to our conclusion

in Section 3.4.1) consider a rather small relative gap of less than 7.5% as an

indication for a rather small loss of potential when handovers are restricted

to a dedicated handshake bay.

3.5 Summary

Throughout this section, we investigated the problem, namely TCSPH, of de-

termining minimum makespan schedules for a pair of twin-cranes having to

progress containers that enter and leave a yard block at the seaside under the

presence of a dedicated handshake area, where containers need to be inter-

mediately stored. We presented three branch-and-bound approaches as well

as several heuristic approaches that are able to obtain schedules with a rela-

tively small gap to a lower bound. We showed that sequential determination

of storage position in the handshake area followed by sequence construction

is beneficial in terms of average run times and gap. Further, we embedded

the approaches into a rolling horizon framework, where the exact approaches

outperform the heuristics.”

Chapter 4

Conclusions and Outlook

This work focuses on scheduling rail mounted gantry cranes in container

storage yards. In Section 1.3 a literature overview is provided that indicates

a research gap regarding the scheduling of triple-crossover-cranes as well as

twin-crane scheduling with a dedicated container handover area.

Therefore, through the course of this work, hollistic scheduling approaches

for both crane setups are developed. Chapter 2 covers the scheduling of

triple-crossover-cranes. First, in Section 2.1, a routing approach under the

objective of makespan minimization is developed, that obtains close to op-

timum interference free routings in short time. Afterwards, this approach is

then embedded in a holistic scheduling framework, tackling the assignment

of jobs to cranes as well as the construction of job sequences by means of

two branch-and-bound approaches. The scheduling problem is proven to be

NP-hard, however by decomposing the decision into a job assignment and a

sequencing phase during branching, optimum schedules can be obtained for

instances of practical size.

Even though the complexity for the holistic scheduling approach could be set-

tled, it remains open whether the routing problem alone is already NP-hard.

In further research one could investigate whether the presented approaches

can be adapted in order to account for release- and due dates or different ob-

jectives such as minimization of total completion times. Further it is unclear

135

CHAPTER 4. CONCLUSIONS AND OUTLOOK 136

at this point how the holistic scheduling approaches perform within a rolling

horizon planning scheme.

Chapter 3 then focuses on the scheduling of twin-cranes in presence of a

dedicated container handover area, being a area within the storage block

where containers are handed over from one crane to the other in order to

share workload. After proving the problem to be NP-hard, three branch-and-

bound approaches, allowing to determine minimum makespan schedules while

incorporating key constraints such as capacities and precedence relations,

are presented. Again, decomposing the decision making into separate phases

tends to be most beneficial in terms of computational performance, allowing

to solve small instances up to optimality in short time. The approaches are

then embedded into a rolling horizon scheduling framework where simpler

planning heuristics are clearly outperformed.

It remains open, how large the influence on the achievable makespan is, when

allowing container handover in any bay, while regarding stacking position

capacities as well as resulting precedence relations. When applying SEQJS,

one could investigate how to avoid nodes within lower levels of the search

tree that cannot be resolved to feasible sequences later on. Sophisticated

avoidance strategies should improve the run times of this approach such that

it possibly outperforms the other approaches. Finally, the effect of mixed

stacks could be assessed and compared, when storing and retrieving different

types of containers within the same stacking position is allowed.

Summarizing, even though the developed approaches contribute to the lit-

erature, there still exists a research gap regarding the scheduling of cranes

within the tackled settings.

Bibliography

[1] J. J. Bartholdi and D. D. Eisenstein. A production line that balances

itself. Operations Research, 44(1):21–34, 1996.

[2] N. Boysen and M. Fliedner. Determining crane areas in intermodal

transshipment yards: The yard partition problem. European Journal of

Operational Research, 204(2):336–342, 2010.

[3] N. Boysen and K. Stephan. A survey on single crane scheduling in

automated storage/retrieval systems. European Journal of Operational

Research, 254(3):691–704, 2016.

[4] N. Boysen, D. Briskorn, and F. Meisel. A generalized classification

scheme for crane scheduling with interference. European Journal of Op-

erational Research, 258(1):343–357, 2017.

[5] D. Briskorn and P. Angeloudis. Scheduling co-operating stacking cranes

with predetermined container sequences. Discrete Applied Mathematics,

201:70–85, 2016.

[6] D. Briskorn and L. Zey. Resolving interferences of triple-crossover-cranes

by determining paths in networks. Naval Research Logistics, 65(6–7):

477–498, 2018.

[7] D. Briskorn and L. Zey. Interference aware scheduling of triple-crossover-

cranes. working paper.

[8] D. Briskorn, S. Emde, and N. Boysen. Cooperative twin-crane schedul-

ing. Discrete Applied Mathematics, 211:40–57, 2016.

137

BIBLIOGRAPHY 138

[9] D. Briskorn, F. Jaehn, and A. Wiehl. Test data generator- version 1.08,

Accessed: 2017-05-09. URL http://www.instances.de/dfg.

[10] D. Briskorn, F. Jaehn, and A. Wiehl. A test suite for scheduling algo-

rithms for cranes in transshipment terminals. OR Spectrum, to appear.

[11] D. Briskorn, F. Jaehn, and A. Wiehl. A generator for test instances of

scheduling problems concerning cranes in transshipment terminals. OR

Spectrum, to appear.

[12] P. Brucker. An efficient algorithm for the job-shop problem with two

jobs. European Journal of Operational Research, 40(4):353–359, 1988.

[13] H. Carlo, I. Vis, and K. Roodbergen. Seaside operations in container

terminals: literature overview, trends, and research directions. Flexible

Services and Manufacturing Journal, 27(2-3):224–262, 9 2015.

[14] H. J. Carlo and F. L. Mart́ınez-Acevedo. Priority rules for twin auto-

mated stacking cranes that collaborate. Computers & Industrial Engi-

neering, 89:23–33, 2015.

[15] H. J. Carlo, I. F. Vis, and K. J. Roodbergen. Transport operations

in container terminals: Literature overview, trends, research directions

and classification scheme. European Journal of Operational Research,

236(1):1–13, 2014.

[16] H. J. Carlo, I. F. Vis, and K. J. Roodbergen. Storage yard operations

in container terminals: Literature overview, trends, and research direc-

tions. European Journal of Operational Research, 235(2):412–430, 2014.

[17] R. Choe, T. Park, S. M. Ok, and K. R. Ryu. Real-time scheduling for

non-crossing stacking cranes in an automated container terminal. In

M. A. Orgun and J. Thornton, editors, AI 2007: Advances in Artificial

Intelligence: 20th Australian Joint Conference on Artificial Intelligence,

Gold Coast, Australia, December 2-6, 2007. Proceedings, pages 625–631,

Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

BIBLIOGRAPHY 139

[18] R. Choe, H. Yuan, Y. Yang, and K. R. Ryu. Real-time scheduling of

twin stacking cranes in an automated container terminal using a genetic

algorithm. In Proceedings of the 27th Annual ACM Symposium on Ap-

plied Computing, SAC ’12, pages 238–243, New York, NY, USA, 2012.

ACM.

[19] C. F. Daganzo. The crane scheduling problem. Transportation Research

B, 23:159–175, 1989.

[20] U. Dorndorf and F. Schneider. Scheduling automated triple cross-over

stacking cranes in a container yard. OR Spectrum, 32:617–632, 2010.

[21] A. Ehleiter and F. Jaehn. Scheduling crossover cranes at container ter-

minals during seaside peak times. Journal of Heuristics, pages 1–34,

2018.

[22] A. H. Gharehgozli, Y. Yu, R. de Koster, and J. T. Udding. An exact

method for scheduling a yard crane. European Journal of Operational

Research, 235(2):431–447, 2014.

[23] A. H. Gharehgozli, G. Laporte, Y. Yu, and R. de Koster. Scheduling

twin yard cranes in a container block. Transportation Science, 49(3):

686–705, 2015.

[24] A. H. Gharehgozli, F. G. Vernooij, and N. Zaerpour. A simulation

study of the performance of twin automated stacking cranes at a seaport

container terminal. European Journal of Operational Research, 261(1):

108–128, 2017.

[25] P. C. Gilmore and R. Gomory. Sequencing a one state-variable machine:

A solvable case of the traveling salesman problem. Operations Research,

12(5):655–679, 1964.

[26] H. Heitmann. Selected scheduling applications. Schriftenreihe QM :

quantitative Methoden in Forschung und Praxis 38. Hamburg : Kovač,

2015.

BIBLIOGRAPHY 140

[27] F. Jaehn and D. Kress. Scheduling cooperative gantry cranes with sea-

side and landside jobs. Discrete Applied Mathematics, 242:53–68, 2018.

[28] M. Kellner and N. Boysen. Rmg vs. drmg: an evaluation of different

crane configurations in intermodal transshipment yards. EURO Journal

on Transportation and Logistics, 4(3):355–377, 2015.

[29] N. Kemme. Design and Operation of Automated Container Storage Sys-

tems. Physica-Verlag Heidelberg, 2013.

[30] J. Klaws, R. Stahlbock, and S. Voß. Container terminal yard opera-

tions – simulation of a side-loaded container block served by triple rail

mounted gantry cranes. In J. W. Böse, H. Hu, C. Jahn, X. Shi, and

S. Stahlbock, Robertand Voß, editors, Computational Logistics: Second

International Conference, ICCL 2011, Hamburg, Germany, September

19-22, 2011. Proceedings, pages 243–255. Springer, Berlin Heidelberg,

2011.

[31] D. Kress, J. Dornseifer, and F. Jaehn. An exact solution approach for

scheduling cooperative gantry cranes. European Journal of Operational

Research, 273(1):82–101, 2019.

[32] W. Li, Y. Wu, M. E. H. Petering, M. Goh, and R. de Souza. Discrete time

model and algorithms for container yard crane scheduling. European

Journal of Operational Research, 198:165–172, 2009.

[33] W. Li, M. Goh, Y. Wu, M. Petering, R. de Souza, and Y. Wu. A con-

tinuous time model for multiple yard crane scheduling with last minute

job arrivals. International Journal of Production Economics, 136(2):

332–343, 2012.

[34] S. Libbey. Rmg vs. rtg, Accessed: 2018-08-04. URL https://www.

konecranesusa.com/resources/lifting-viewpoints/rmg-vs-rtg.

[35] W. C. Ng. Crane scheduling in container yardswith inter-crane interfer-

ence. European Journal of Operational Research, 164:64–78, 2005.

BIBLIOGRAPHY 141

[36] W. C. Ng and K. L. Mak. An effective heuristic for scheduling a yard

crane to handle jobs with different ready times. Engineering Optimiza-

tion, 37:867–877, 2005.

[37] J. Nossack, D. Briskorn, and E. Pesch. Container dispatching and

conflict-free yard crane routing in an automated container terminal.

Transportation Science, 52(5):1059–1076, 2018.

[38] Y. N. Sotskov and N. V. Shakhlevich. Np-hardness of shop-scheduling

problems with three jobs. Discrete Applied Mathematics, 59:237–266,

1995.

[39] R. Stahlbock and S. Voß. Operations research at container terminals: a

literature update. OR Spectrum, 30:1–52, 2008.

[40] D. Steenken, S. Voß, and R. Stahlbock. Container terminal operations

and operations research – a classification and literature review. OR

Spectrum, 26:3–49, 2004.

[41] UNCTAD. Review of Maritime Transport 2018. New York: United

Nations Conference on Trade and Development, 2018.

[42] I. F. Vis. A comparative analysis of storage and retrieval equipment at

a container terminal. International Journal of Production Economics,

103(2):680–693, 2006.

[43] L. Zey, D. Briskorn, and N. Boysen. Twin-crane scheduling during sea-

side workload peaks with a dedicated handshake area. working paper.

