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ABSTRACT

The Lattice Boltzmann Method (LBM) is a mesoscopic flow solver that has gained mo-

mentum due to its ability to deal with complex fluid dynamics. However, its application

to the simulation of turbulent flows has been limited by instabilities arising when decreas-

ing the viscosity. The Entropic LBM (ELBM) tackles this issue by equipping LBM with

an H-theorem, achieving apparent unconditional stability. In practice, ELBM extends

the Bhatnagar-Gross-Krook (BGK) [1] collision operator by allowing the relaxation time

to fluctuate through the definition of an entropic parameter α(x, t). ELBM has been

put forward as an implicit Large-Eddy Simulation (LES) with an eddy viscosity Sub-

Grid Scale (SGS) model, resulting from the assumption that the equation bridging the

mesoscopic relaxation time with the macroscopic viscosity still holds when the relaxation

time is fluctuating,

νeff(x, t) = c2
s∆t

(
2τ0

α(x, t)
− 1

2

)
= ν0 + δνMe (x, t), (1)

with τ0 the input relaxation time and ν0 the input viscosity. The non-linear dependency

of the entropic parameter on the distribution functions does not allow the effective viscos-

ity to be expressed directly in terms of macroscopic quantities and therefore its physical

meaning remains hidden. A hydrodynamical approximation of the eddy viscosity was

proposed in Ref. [2] by expanding the entropic parameter using a Chapman-Enskog (C-E)

procedure and leading to

δνAe ≈ −c2
s∆t

2 1

6β2

Tr S3

Tr S2
, (2)

where Sij = 1
2(∂iuj + ∂jui) is the strain-rate tensor. However, little has been done to

numerically study the implicit SGS model implied by ELBM and the validity range of its

macroscopic formulation (2). Therefore, it is still unclear whether it acts as a mere sta-

bilizer or as an accurate representation of the unresolved physics of turbulence stemming

from kinetic theory. In this thesis, we shed some light on this question in the context of

two- and three-dimensional Homogeneous Isotropic Turbulent (HIT) flows.

A first step consists in quantifying the validity of ELBM as an implicit closure. We

develop an analysis tool to assess the accuracy with which Navier-Stokes hydrodynamics

is recovered by LBM compared to Pseudo-Spectral (PS) simulations of the Navier-Stokes

Equations (NSE). We apply this tool to analyze two- and three-dimensional HIT ELBM

simulations at different Reynolds numbers. On the one hand, the energy spectra reveals

that ELBM is able to extend the inertial range up to 20 times the Reynolds of the last

stable LBM simulation. On the other hand, the a priori assumption that ELBM can be

macroscopically described as a LES with an eddy viscosity type SGS model (1) cannot be

clearly confirmed. Furthermore, we study the validity of the approximated macroscopic
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eddy viscosity formulation (2). We find that it captures the dynamics of the ELBM

eddy viscosity only at low Reynolds numbers, while it fails in fully developed turbulent

regimes.

To identify analytically the weak points of those approximations, we numerically check

the assumptions made at every step of a C-E expansion of the entropic parameter α(x, t).

We explain why the macroscopic eddy viscosity formulation fails to be recovered at high

Reynolds number by highlighting the presence of extra terms whose magnitude grows

with the velocity gradients. We find that the implicit ELBM model is not only composed

of an eddy viscous dissipation that depends on the effective relaxation time as assumed

in the literature [3], but also of extra terms of the same order of magnitude. The latter

result is of particular importance as it raises questions on the validity of many other

eddy viscosity SGS models implemented in LBM.

The fact that the ELBM closure is more complex than a simple eddy viscosity model does

not mean, in principle, that it is unable to model turbulence. To assess the capability of

the ELBM closure, we compare the inertial range statistics of turbulent velocity fields

obtained from an ELBM simulation, with those coming from a high-resolution Direct

Numerical Simulation (DNS) of the NSE conducted with a PS code. First results show

that ELBM is able to increase the inertial scaling range and partially captures the correct

intermittent behaviors.

Moreover, the macroscopic approximated eddy viscosity (2) has an interesting feature,

as it scales with the strain-rate tensor like the Smagorinsky eddy viscosity [4],

δνSe = (CS∆)2
√

2 Tr S2, (3)

where CS is a dimensionless coefficient and ∆ the LES filter cut-off length. However,

δνAe in (2) is not positive-definite, meaning that it allows backscatter of energy from the

unresolved to the resolved scales. Implementing the model (2) and the Smagrosinsky

model (3) in a PS LES code, we observe that both closures have similar inertial range

statistics.

A part of the present thesis is also dedicated to more practical numerical issues. We

have written an open-source high-performance implementation of LBM [5] that support

multiple 2D and 3D lattice stencils and can be used to conduct high-resolution flow sim-

ulations using different turbulence models and spectral HIT forcings. In particular, the

code was optimized on multi-GPUs architectures by making use of NVSHMEM, a novel

GPU-centric communication library. This implementation is being benchmarked against

the standard CPU-centric communication implementation based on the Message-Passing
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Interface (MPI) library. We introduce this on-going work and present preliminary re-

sults of the reference MPI implementation in terms of both strong and weak scaling

properties.

THESIS OUTLINE

This thesis is organized as follows:

Chapter 1: Introduction

We presented the background and the numerical techniques on which our work is based

on. We briefly summarize the main features of the physics of two- and three-dimensional

HIT and introduce LES-based models of turbulence. We present the fundamentals of

the mesoscopic LBM flow solver and of its unconditionally stable extension, the ELBM.

We close this chapter by providing a brief overview of the state-of-the-art regarding the

question of the interpretation of ELBM as an implicit physical SGS model. Chapters 2

to 5 will focus on further discussing this matter.

Chapter 2: A numerical tool for the assessment of the hydrodynamic recovery

of LBM simulations

We will investigate the hydrodynamic recovery of LBM by analyzing exact balance re-

lations for energy and enstrophy derived from averaging the equations of motion on

sub-volumes of different sizes. In the context of 2D HIT, we first validate this approach

on decaying turbulence by comparing the analysis of an ensemble of LBM simulations

against one of an ensemble of PS simulations. We then conduct a benchmark of LBM

simulations of forced turbulence with increasing Reynolds number by varying the in-

put relaxation time of LBM. The results presented in this chapter are published in

Ref. [6].

Chapter 3: A-priori study of ELBM hydrodynamics recovery and implicit

SGS model

We investigate the validity of the a priori assumption that ELBM can be macroscopically

described as a LES with an eddy viscosity model (1). For a set of two- and three-

dimensional HIT flows at increasing Reynolds number, we conduct a statistical analysis

of the hydrodynamic recovery of ELBM simulations. In order to do that, we extend

the tool introduced in chapter 1 by adding to the balance equations the mesoscopic
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eddy viscous dissipation term stemming from Eq. (1). In parallel, we study numerically

the approximated macroscopic formulation Eq. (2) to validate it against the measured

mesoscopic expression Eq. (1).

Chapter 4: Study of the ELBM implicit SGS model at the macroscale

We perform a numerical check of the assumptions made at every step of the C-E expan-

sion of the entropic parameter α(x, t) that leads to the hydrodynamic eddy viscosity (2).

We reveal that the ELBM SGS model does not consist only in an eddy viscosity term

and obtain its full expression. The results presented in this chapter will be published

in [7].

Chapter 5: Inertial range statistics of the Entropic Lattice Boltzmann and

Large-Eddy Simulations in 3D turbulence

We conduct an analysis of the inertial range statistics of turbulent velocity fields compar-

ing ELBM to a high-resolution Direct Numerical Simulation (DNS) of the NSE conducted

with a PS code. Moreover, we also add the analysis from two PS LES: one equipped

with the macroscopic approximation eddy viscosity Eq. (2) and one using a Smagorinsky

model Eq. (3). These results will be published in [8].

Chapter 6: Accelerating Lattice Boltzmann flows simulation using NVSH-

MEM model for GPU-initiated communications

We discuss the implementation of the LBM algorithm on GPU-accelerated architectures

and present the NVSHMEM programming interface for GPU-initiated communications.

We show a benchmark of our code on a single GPU and present preliminary results

of the performance scaling on multi-GPUs using MPI with the aim of using them as a

reference to evaluate NVSHMEM implementations based on in-kernel communications.

The results presented in this chapter are part of a paper in preparation [9].

Chapter 7: Conclusion

In this concluding chapter, we summarize the findings of this thesis work and highlight

possibilities for future works.
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ZUSAMMENFASSUNG

Die Lattice Boltzmann Methode (LBM) ist ein mesoskopischer Strömungslöser, der auf-

grund seiner Fähigkeit, mit komplexen Strömungssituationen umzugehen, an Bedeutung

gewonnen hat. Ihre Anwendung auf die Simulation turbulenter Strömungen wurde jedoch

durch Instabilitäten begrenzt, die bei der Verringerung der Viskosität auftreten. Die En-

tropische LBM (ELBM) löst dieses Problem, indem sie die LBM mit einem H-Theorem

ausstattet und so eine scheinbar bedingungslose Stabilität erreicht. In der Praxis erweit-

ert ELBM den Bhatnagar-Gross-Krook (BGK) Kollisionsoperator [1], indem es die Re-

laxationszeit durch die Definition eines entropischen Parameters α(x, t) schwanken lässt.

ELBM wurde als implizite Large-Eddy Simulation (LES) mit einem Wirbelviskositäts-

Sub-Grid-Skala (SGS)-Modell vorgeschlagen, das sich aus der Annahme ergibt, dass die

Gleichung, die die mesoskopische Relaxationszeit mit der makroskopischen Viskosität

überbrückt, auch bei schwankender Relaxationszeit gilt

νeff(x, t) = c2
s∆t

(
2τ0

α(x, t)
− 1

2

)
= ν0 + δνMe (x, t), (4)

Hierbei ist τ0 die Eingangsrelaxationszeit und ν 0 die Eingangsviskosität. Die nichtlin-

eare Abhängigkeit des entropischen Parameters von den Verteilungsfunktionen erlaubt es

nicht, die effektive Viskosität direkt in Form von makroskopischen Größen auszudrücken,

so dass ihre physikalische Bedeutung verborgen bleibt. Eine hydrodynamische Approxi-

mation der Wirbelviskosität wurde in Ref. [2] durch Erweitern des entropischen Param-

eters mit einem Chapman-Enskog (C-E)-Verfahren durchgeführt und ergab

δνAe ≈ −c2
s∆t

2 1

6β2

Tr S3

Tr S2
, (5)

wobei Sij = 1
2(∂iuj + ∂jui) der Dehnungstrend-Tensor ist. Es wurde jedoch bisher

wenig getan, um das implizite SGS-Modell (das durch ELBM impliziert wird), und den

Gültigkeitsbereich seiner makroskopischen Formulierung (5) numerisch zu untersuchen.

Daher ist es noch unklar, ob es als reiner Stabilisator oder als genaue Darstellung der un-

gelösten Physik der Turbulenz aus der kinetischen Theorie wirkt. In dieser Doktorarbeit

werfen wir etwas Licht auf diese Frage im Zusammenhang mit zwei- und dreidimen-

sionalen homogenen, isotropischen, turbulenten (HIT) Strömungen. Ein erster Schritt

besteht darin, die Validität von ELBM als impliziten Abschluss zu quantifizieren.

Wir entwickeln ein Analysetool, um die Genauigkeit zu beurteilen, mit der die Navier-

Stokes-Hydrodynamik durch LBM im Vergleich zu Pseudospektral-(PS)-Simulationen

der Navier-Stokes-Gleichungen (NSG) gewonnen wird. Wir wenden dieses Tool an, um

zwei- und dreidimensionale HIT-ELBM-Simulationen bei verschiedenen Reynoldszahlen

zu analysieren. Einerseits zeigten die Energiespektren, dass ELBM in der Lage ist,
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den Trägheitsbereich bis zum 20-fachen der Reynoldszahl der letzten stabilen LBM-

Simulation zu erweitern. Andererseits kann die a priori angenommene Annahme, dass

ELBM makroskopisch als LES mit einem Wirbelviskositätstyp SGS-Modell (1) beschrieben

werden kann, nicht eindeutig bestätigt werden. Darüber hinaus untersuchen wir die

Validität der approximierten makroskopischen Wirbelviskosität Formulierung (2). Wir

finden, dass es die Dynamik der ELBM Wirbelviskosität nur bei niedrigen Reynold-

szahlen erfasst, während es bei voll entwickelten turbulenten Regimen versagt.

Um die Schwachstellen dieser Annäherungen analytisch zu identifizieren, überprüfen wir

numerisch die Annahmen, die bei jedem Schritt einer C-E-Erweiterung des entropis-

chen Parameters α(x, t) getroffen wurden. Wir erklären, warum die makroskopische

Wirbelviskositätsformulierung bei hoher Reynoldszahl nicht wiederhergestellt werden

kann, indem wir das Vorhandensein zusätzlicher Begriffe hervorheben, deren Größe mit

den Geschwindigkeitsgradienten wächst. Wir stellen fest, dass das implizite ELBM-

Modell nicht nur aus einer wirbelviskosen Dissipation besteht, die von der in der Literatur

angenommenen effektiven Relaxationszeit abhängt [3], sondern auch aus zusätzlichen Be-

griffen der gleichen Größenordnung. Letzteres Ergebnis ist von besonderer Bedeutung, da

es Fragen über die Gültigkeit vieler anderer SGS-Modelle mit Wirbelviskosität aufwirft,

die in LBM implementiert sind.

Die Tatsache, dass der ELBM-Abschluss komplexer ist als ein einfaches Wirbelviskositätsmodell,

bedeutet im Prinzip nicht, dass er Turbulenzen nicht modellieren kann. Zur Beurteilung

der Leistungsfähigkeit des ELBM-Abschlusses vergleichen wir die Trägheitsbereichsstatistik

turbulenter Geschwindigkeitsfelder, die aus einer ELBM-Simulation gewonnen wurden,

mit denen, die aus einer hochauflösenden Direkten Numerischen Simulation (DNS) der

Navier-Stokes Gleichung (NSG), durchgeführt mit einem PS-Code. Vorläufige Ergeb-

nisse zeigen, dass ELBM in der Lage ist, den Trägheitsskalierungsbereich zu erhöhen

und teilweise das korrekte intermittierende Verhalten widerspiegelt.

Darüber hinaus hat die makroskopisch approximierte Wirbelviskosität (5) ein interes-

santes Merkmal, da sie mit dem Dehnungstrend-Tensor wie die Smagorinsky Wirbelviskosität [4]

skaliert,

δνSe = (CS∆)2
√

2 Tr S2, (6)

wobei CS ein dimensionsloser Koeffizient ist und ∆ die LES Filter Cut-Off Länge bezeich-

net. Aber A in (5) ist nicht positiv-definit, was bedeutet, dass es eine Rückstreuung der

Energie aus den nicht aufgelösten auf die aufgelösten Skalen geben kann. Bei der Imple-

mentierung des Modells (5) und dem Smagrosinsky Modell (6) in einem PS LES-Code

beobachten wir, dass beide Abschlüsse eine ähnliche Verteilung des Trägheitsbereich

haben.
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Ein Teil der vorliegenden Doktorarbeit ist auch eher praktischeren numerischen Fragen

gewidmet. Wir haben eine Open-Source-Hochleistungsimplementierung von LBM [5]

geschrieben, die mehrere 2D- und 3D-Gitterstrukturen unterstützt und zur Durchführung

hochauflösender Strömungssimulationen mit verschiedenen Turbulenzmodellen und spek-

tralen HIT-Verstärkungenverwendet werden kann. Insbesondere wurde der Code auf

Multi-GPUs-Architekturen optimiert, indem NVSHMEM, eine neuartige GPU-zentrierte

Kommunikationsbibliothek, verwendet wurde. Diese Implementierung wird mit der stan-

dardmäßigen CPU-zentrierten Kommunikationsimplementierung auf Basis der Message-

Passing Interface (MPI)-Bibliothek verglichen. Wir stellen diese laufenden Arbeiten vor

und präsentieren erste Ergebnisse der Referenz-MPI-Implementierung sowohl in Bezug

auf starke als auch auf schwache Skalierungseigenschaften.

GLIEDERUNG DER DOKTORARBEIT

Diese Arbeit ist wie folgt gegliedert:

Kapitel 1: Einführung

Im ersten Kapitel stellten wir den Hintergrund und die numerischen Techniken vor,

auf denen unsere Arbeit basiert. Wir fassen kurz die wichtigsten Merkmale der Physik

des zwei- und dreidimensionalen HIT zusammen und stellen LES-basierte Modelle der

Turbulenz vor. Wir stellen die Grundlagen des mesoskopischen LBM-Strömungslösers

und seiner bedingungslosen stabilen Erweiterung, dem ELBM, vor. Wir schließen dieses

Kapitel mit einem kurzen Überblick über den Stand der Technik bei der Frage der

Interpretation von ELBM als implizites physikalisches SGS-Modell. Die Kapitel 2 bis 5

werden sich auf die weitere Diskussion dieser Frage konzentrieren.

Kapitel 2: Ein numerisches Werkzeug zur Beurteilung der hydrodynamischen

Erholung von LBM-Simulationen

In Kapitel 2 werden wir die hydrodynamische Rückgewinnung von LBM untersuchen,

indem wir genaue Gleichgewichtsverhältnisse für Energie und Enstrophie analysieren, die

sich aus der Mittelwertbildung der Bewegungsgleichungen auf Teilvolumina mit unter-

schiedlichen Größen ergeben. Im Rahmen von 2D HIT validieren wir diesen Ansatz

zunächst, indem wir die Analyse eines Ensembles von LBM-Simulationen mit einer

aus einem Ensemble von PS-Simulationen vergleichen. Anschließend führen wir einen
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Benchmark durch. von LBM-Simulationen von erzwungenen Turbulenzen mit steigen-

der Reynoldszahl durch Variation der Eingangsrelaxationszeit von LBM. Die in diesem

Kapitel vorgestellten Ergebnisse sind in Ref. [6] publiziert.

Kapitel 3: A-priori-Studie zur ELBM-Hydrodynamik-Rückgewinnung und

implizites SGS-Modell

In Kapitel 3 untersuchen wir die Gültigkeit der a priori Annahme, dass ELBM makroskopisch

als LES mit einem Wirbelviskositätsmodell (4) beschrieben werden kann. Für eine

Reihe von zwei- und dreidimensionalen HIT-Strömen mit steigender Reynoldszahl führen

wir eine statistische Analyse der hydrodynamischen Erholung von ELBM-Simulationen

durch. Um dies zu erreichen, erweitern wir das in Kapitel 1 vorgestellte Werkzeug, in-

dem wir zu den Bilanzgleichungen den mesoskopischen Wirbel viskose Dissipationsterm

hinzufügen, der sich aus Gleichung (4) ergibt. Parallel dazu untersuchen wir numerisch

die approximierte makroskopische Formulierung Eq. (5), um sie gegen den gemessenen

mesoskopischen Ausdruck Eq. (4) zu validieren.

Kapitel 4: Studie des ELBM impliziten SGS-Modells auf der Makroskala

In Kapitel 4 führen wir eine numerische Überprüfung der Annahmen durch, die bei

jedem Schritt der C-E-Erweiterung des entropischen Parameters α(x, t) getroffen wur-

den und die zur hydrodynamischen Wirbelviskosität (5) führten. Wir zeigen, dass das

ELBM SGS-Modell nicht nur aus einem Begriff der Wirbelviskosität besteht und erhal-

ten seine volle Gleichung. Die in diesem Kapitel vorgestellten Ergebnisse werden in [7]

veröffentlicht.

Kapitel 5: Trägheitsreichweitenstatistik der Entropischen Lattice Boltzmann

und Large-Eddy Simulationen in 3D-Turbulenzen

In Kapitel 5 führen wir eine Analyse der Trägheitsstatistik von turbulenten Geschwindigkeits-

feldern durch, indem wir ELBM mit einer hochauflösenden Direkten Numerischen Simu-

lation (DNS) der NSG, die mit einem PS-Code durchgeführt wird, vergleichen. Darüber

hinaus präsentieren wir auch die Analyse von zwei PS LES: eine mit der makroskopis-

chen Approximation Wirbelviskosität Eq. (5) und eine mit einem Smagorinsky-Modell

Eq. (6). Diese Ergebnisse werden in [8] veröffentlicht.
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Kapitel 6: Beschleunigung der Lattice Boltzmann Strömungssimulation mit

dem NVSH-MEM-Modell für die GPU-initiierte Kommunikation

In Kapitel 6 wird die Implementierung des LBM-Algorithmus auf GPU-beschleunigten

Architekturen diskutiert und die NVSHMEM-Programmierschnittstelle für die GPU-

initiierte Kommunikation vorgestellt. Wir zeigen einen Benchmark unseres Codes auf

einer einzelnen GPU und präsentieren vorläufige Ergebnisse der Leistungsskalierung

auf Multi-GPUs mit MPI mit dem Ziel, diese als Referenz für die Bewertung von

NVSHMEM-Implementierungen auf Basis von in-Kernel-Kommunikation zu verwenden.

Die in diesem Kapitel vorgestellten Ergebnisse sind Teil eines Artikels in Vorbereitung [9].

Kapitel 7: Fazit

In diesem abschließenden Kapitel fassen wir die Ergebnisse dieser Arbeit zusammen und

zeigen Möglichkeiten für zukünftige Forschungsarbeiten auf.
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ESTRATTO

Il metodo Lattice Boltzmann (LBM) è un numerico per la simulazioni di flussi alle scale

mesoscopiche che ha acquisito molta importanza a causa della sua capacità di gestire flu-

idi complessi. Tuttavia, le sue applicazioni in flussi turbolenti risultano ancora limitate

dalle presenza delle instabilità che si presentano al ridurre della viscosità. Il Lattice Boltz-

mann Entropico (ELBM) affronta questo problema incorporando nel classico metodo

LBM il teorema H, ottenendo in questo modo una stabilità apparentemente incondizion-

ata. In pratica, nel metodo ELBM l’operatore di collisione di Bhatnagar-Gross-Krook

(BGK)[1] viene modificato consentendo al tempo di rilassamento di fluttuare attraverso

la definizione di un parametro entropico α(x, t). Il metodo ELBM è visto come un mod-

ello per la dinamica delle Scale Sotto Griglia (SGS) riconducibile alla classe di metodi

impliciti utilizzati nelle Large Eddy Simulations (LES), dove alla normale viscosità cin-

ematica viene aggiunta una viscosità extra derivante dal presupposto che l’equazione

che collega il tempo di rilassamento mesoscopico con la viscosità macroscopica è ancora

valida quando il tempo di rilassamento è lasciato fluttuare,

νeff(x, t) = c2
s∆t

(
2τ0

α(x, t)
− 1

2

)
= ν0 + δνMe (x, t), (7)

dove τ0 e ν0 sono rispettivamente il tempo di rilassamento e la viscosità di ingresso

passati al sistema. La dipendenza non lineare del parametro entropico rispetto alle

funzioni di distribuzione non consente di esprimere direttamente la viscosità effettiva

in termini di quantità macroscopiche e quindi il suo significato fisico rimane nascosto.

L’approssimazione idrodinamica della extra viscosità derivante dal metodo entropico è

stata proposta in Ref. [2] tramite l’espansione Chapman-Enskog (C-E) del parametro

entropico,

δνAe ≈ −c2
s∆t

2 1

6β2

Tr S3

Tr S2
, (8)

dove Sij = 1
2(∂iuj + ∂jui) è il tensore degli sforzi. Tuttavia, ancora manca uno studio

numerico dettagliato del modello SGS implicito prodotto dal metodo ELBM dal quale

sia possibile anche estrarre il range di validità della formulazione macroscopica (8). Per-

tanto, non è ancora chiaro se l’ELBM agisca come un semplice stabilizzatore numerico o

fornisca una rappresentazione accurata della dinamica turbolenta delle scale non risolte.

L’obiettivo della tesi è di fare luce su questa questione nel contesto dei flussi turbolenti

in condizioni omogenee ed isotrope (HIT) sia in geometrie bidimensionali che tridimen-

sionali.

Il primo passo consiste nel quantificare la validità del metodo ELBM come chiusura

implicita. In questo lavoro abbiamo sviluppato uno strumento di analisi per valutare

l’accuratezza con cui l’idrodinamica di Navier-Stokes viene riprodotta dal metodo LBM
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prendendo in riferimento simulazioni Pseudo-Spettrali (PS) in cui vengono risolte es-

plicitamente le equazioni di Navier-Stokes (NSE). In seguito abbiamo applicato questo

strumento nell’analisi di simulazioni HIT ELBM sia bidimensionali che tridimensionali

al variare del numero di Reynolds. Da una parte, gli spettri di energia hanno rivelato

che ELBM è in grado di estendere l’interavllo di scale inerziali fino a 20 volte in più

rispetto all’ultima simulazione LBM stabile. Dall’altra parte, l’ipotesi a priori che il

metodo ELBM possa essere macroscopicamente descritto come un modello LES con vis-

cosità extra (7) non può essere confermata chiaramente. Inoltre, abbiamo studiato la

validità della formulazione approssimata di viscosità macroscopica (8). Scoprendo che

questa cattura le dinamiche della extra viscosità prodotta dal metodo ELBM solo a bassi

numeri di Reynolds, mentre fallisce nel regime di turbolenza sviluppata.

Per identificare analiticamente i punti deboli di tali approssimazioni, abbiamo control-

lato numericamente le assunzioni fatte ad ogni passo dell’espansione C-E del parametro

entropico α(x, t). In questo modo abbiamo potuto spiegare come la formulazione della

viscosità macroscopica non riesca ad essere recuperata ad alti numeri di Reynolds, ev-

idenziando la presenza di termini aggiuntivi la cui importanza cresce all’aumentare dei

gradienti di velocità. Cos̀ı abbiamo scoperto che il modello implicito ELBM non è com-

posto solo da un solo termine di dissipazione viscosa legato al tempo di rilassamento

effettivo come ipotizzato in letteratura [3], ma dipende anche da altri termini che non

possono essere trascurati. Quest’ultimo risultato è di particolare importanza in quanto

solleva interrogativi sulla validità di molti altri modelli SGS di viscosità implementati

nel metodo LBM.

Il fatto che la chiusura ELBM sia più complessa di un semplice modello di extra viscosità

non significa, in linea di principio, che non sia un buon modello per la turbolenza. Per

valutare la qualità della chiusura ELBM, abbiamo confrontato la statistica dei campi

di velocità nelle scale inerziali ottenuti da simulazioni ELBM, con quella proveniente

da simulazione numeriche dirette (DNS) ad alta risoluzione. Alcuni risultati preliminari

mostrano che il metodo ELBM è in grado di estendere l’intervallo inerziale catturando i

corretti comportamenti intermittenti.

Inoltre, va osservato che l’extra viscosità macroscopica approssimata (8) ha una carat-

teristica interessante, poiché è qualitativamente simile alla formulazione di extra viscosità

proposta da Smagorinsky [4],

δνSe = (CS∆)2
√

2 Tr S2, (9)

dove CS è un coefficiente adimensionale e ∆ è la lunghezza caratteristica del filtro LES.

Tuttavia, δνAe introdotta in (8) non è definita positiva, il che significa che consente di

riprodurre eventi di diffusione di energia all’indietro, dalle scale sotto griglia alle scale
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risolte. Implementando il modello (8) e il modello di Smagrosinsky (9) in un codice

LES PS, abbiamo osservato che entrambe le chiusure producono una statistica simile

nell’intervallo inerziale.

Una parte della tesi è dedicata allo studio di problemi numerici di natura pratica. Abbi-

amo scritto un’implementazione open-source del metodo LBM [5] per alte prestazioni,

che supporta diversi reticoli sia 2D che 3D, e che può essere utilizzata per condurre sim-

ulazioni di flusso ad alta risoluzione utilizzando diversi modelli e forcing di turbolenza

HIT in spazio di Fourier. In particolare, il codice è stato ottimizzato su architetture

multi-GPU facendo uso di NVSHMEM, una nuova libreria di comunicazione incentrata

su GPU. Questa implementazione viene confrontata con l’implementazione di comuni-

cazione basata sulla CPU standard basata sulla libreria MPI (Message-Passing Inter-

face). Nella tesi sono presentati i primi risultati di scalabilità sia “forte” che “debole”

provenienti dal confronto della nuova libreria con l’implementazione MPI.

TRACCIA DELLA TESI

La tesi è organizzata come segue:

Capitolo 1: Introduzione

Nel primo capitolo abbiamo presentato il background e le tecniche numeriche su cui

si basa il nostro lavoro. Riassumiamo brevemente le caratteristiche principali della

fisica della turbolenza isotropo ed omogenea bidimensionale e tridimensionale ed in-

troduciamo modelli di turbolenza basati su LES. Presentiamo i fondamenti del metodo

LBM e della sua estensione incondizionatamente stabile, l’ELBM. Chiudiamo questo

capitolo fornendo una breve panoramica dello stato dell’arte riguardante la questione

dell’interpretazione del metodo ELBM come un modello implicito per la dinamica SGS.

I capitoli da 2 a 5 si concentreranno su ulteriori discussioni su questo argomento.

Capitolo 2: Uno strumento numerico per la valutazione del recupero idrodi-

namico delle simulazioni LBM

Nel capitolo 2, studieremo il recupero idrodinamico del metodo LBM analizzando le re-

lazioni di equilibrio esatte per energia ed enstrofia derivate dalla media delle equazioni

del moto in sub-volumi di diverse dimensioni. Nel contesto di HIT 2D, prima convalidi-

amo questo approccio nel caso di turbolenza in decadimento, confrontando l’analisi di un

insieme di simulazioni LBM con quelle provenienti da simulazioni PS. Successivamente

conduciamo una validazione di simulazioni LBM di turbolenza forzata all’aumentare del
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numero di Reynolds, variando il tempo di rilassamento in ingresso al modello LBM. I

risultati presentati in questo capitolo sono pubblicati in Ref. [6].

Capitolo 3: Studio a-priori del recupero dell’idrodinamica dell’ELBM e del

modello SGS implicito

Nel capitolo 3, indaghiamo sulla validità dell’ipotesi a-priori che il metodo ELBM possa

essere descritto macroscopicamente come un modello LES con extra viscosità (7). Per

un insieme di flussi HIT bidimensionali e tridimensionali all’aumentare del numero di

Reynolds, conduciamo un’analisi statistica del recupero idrodinamico delle simulazioni

ELBM. Per fare ciò, estendiamo lo strumento introdotto nel capitolo 1 aggiungendo alle

equazioni di bilancio il termine di dissipazione mesoscopica derivante da Eq. (7). In

parallelo, studiamo numericamente la formulazione macroscopica approssimata Eq. (8)

per convalidarla contro l’espressione mesoscopica misurata Eq. (7).

Capitolo 4: Studio del modello SGS implicito del metodo ELBM alle macroscale

Nel capitolo 4, eseguiamo un controllo numerico delle assunzioni fatte in ogni fase

dell’espansione C-E del parametro entropico α(x, t) che porta alla definizione della extra

viscosità (8). Rileviamo che il modello SGS ELBM non consiste solo nei termini con-

tenuti nella definizione della extra viscosità, e ne otteniamo la sua completa espressione.

I risultati presentati in questo capitolo saranno pubblicati in [7].

Capitolo 5: Statistica nell’intervallo di scale inerziali prodotta del modello

LBM entropico e dalle simulazioni LES per turbolenza 3D

Nel capitolo 5, conduciamo un’analisi della statistica del campo di velocità nell’intervallo

di scale inerziali, confrontando l’ELBM con una simulazione numerica diretta ad alta

risoluzione (DNS) condotta con un codice PS. Inoltre, aggiungiamo l’analisi di due PS

LES: una equipaggiata con il modello derivante dall’approssimazione macroscopica di

extra viscosità Eq. (8) e una in cui viene utilizzato il modello di Smagorinsky Eq. (9).

Questi risultati saranno pubblicati in [8].

Capitolo 6: Accelerazione delle simulazioni LBM utilizzando il modello NVSH-

MEM per comunicazioni avviate dalla GPU

Nel capitolo 6 discutiamo l’implementazione dell’algoritmo LBM su architetture acceler-

ate dalla GPU e presentiamo l’interfaccia di programmazione NVSHMEM per le comuni-

cazioni avviate dalla GPU. Mostriamo una validazione del nostro codice su una singola

GPU e presentiamo i risultati preliminari del ridimensionamento delle prestazioni su
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multi-GPU utilizzando MPI con l’obiettivo di utilizzarli come riferimento per valutare le

implementazioni NVSHMEM basate sulle comunicazioni nel kernel. I risultati presentati

in questo capitolo fanno parte di un documento in stato di preparazione [9].

Capitolo 7: Conclusioni

In questo capitolo conclusivo, riassumiamo i risultati del lavoro di tesi ed evidenziamo i

possibili sviluppi futuri.
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CHAPTER 1

INTRODUCTION

This chapter presents a description of both the theoretical and numerical tools used and

developed within this thesis. In Section 1.1, we provide a brief summary of the theory

of Homogeneous Isotropic Turbulence (HIT) both for two- and three-dimensional flows.

Then, in Section 1.2, we present the technical difficulties in simulating such flows along

with the Large-Eddy Simulation (LES) techniques commonly used to model turbulence.

In Section 1.3, we introduce the Lattice Boltzmann Method (LBM), a mesoscale flow

solver, while in Section 1.4 we detail an unconditionally stable LBM, the Entropic Lattice

Boltzmann Method (ELBM), which is of main importance in this thesis.

1.1 Physics of turbulence

The simulation of turbulent flows pertains to a vast diversity of applications [10]. We

focus here on theoretical turbulent flows that are incompressible, homogeneous, and

isotropic in both two and three dimensions and that lives in a periodic box of volume

V0 = L0 × L0 × L0. In this section, we summarize the basic concepts of the theory of

turbulence in such systems.

1.1.1 Navier-Stokes Equations

The evolution of the turbulent flows of interest are modeled by the incompressible Navier-

Stokes equations (NSE):

∇ · u = 0

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν0∆u− γ u + F

(1.1)

The first equation stems from the conservation of mass for an incompressible fluid, while

the second equation is obtained from the conservation of momentum. Here u is the

velocity field, p is the pressure, ν0 is the kinematic viscosity and F is an external forcing,
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here taken as a homogeneous and isotropic injection of energy at a scale `in. In this

thesis, we put ourselves in the theoretical setting of a flow in a periodic box of size L0.

To be able to reach a statistically stationary state, in the case of two-dimensional flows,

we have included to the momentum equation a large scale drag term, −γ u.

1.1.2 Control parameters

The dynamics of a flow governed by the NSE depends only on a set of two dimensionless

parameters representing the relative importance of the non-linear term, which contributes

to destabilizing the flow, in comparisons with the two dissipation terms, which stabilize

it. The first one is the Reynolds number Re, defined as the ratio of inertial forced to

viscous forces,

Re =
|(u · ∇)u|
ν0|∇2u| , (1.2)

and the second one is its large-scale drag counterpart Rγ

Rγ =
|(u · ∇)u|
γ |u| , (1.3)

Rewriting the NSE equations using the non-dimensional variables

x̃ =
x

`in
; ũ =

u

U
; t̃ =

t

`in/U
; p̃ =

p

ρU2
; F̃ =

F

`inU2
, (1.4)

based on the root mean squared velocity U and the forcing length scale `in, we ob-

tain
∂ũ

∂t̃
+ (ũ · ∇̃)ũ = −∇̃p̃+

1

Re
∇̃2ũ− 1

Rγ
ũ + F̃ , (1.5)

with Re = U`in
ν0

and Rγ = U
γ`in

.

Eq. (1.5) highlights the similarity principle, which states is that any system with the

same initial conditions, Re, and Rγ will evolve towards the same solution.

Whenever the Reynolds number is small, Re� 1, the non-linear term becomes negligible

compared to the viscous dissipation. The flow is said to be in the laminar regime and

the solution is linear and smooth. On the other hand, as we increase Re, a series of

transitional stages occur and the flow becomes chaotic. The chaotic behavior of turbulent

flows, i.e. high Reynolds number flows, implies that any small uncertainty in the initial

conditions will lead to very different flow evolutions making impossible a deterministic

prediction. Therefore, one can only hope to build a statistical theory for describing the

physical system.
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Besides, since Richardson [11], it is known that in 3D, the generated vortex structures

called eddies split into smaller and smaller eddies until they reach a scale η at which

the Reynolds number defined for this scale Reη =
ηUη
ν0

is small enough to allow their

dissipation. Thus, turbulent flows are multi-scale systems, in which energy cascades

down to small scales and an increase in the Reynolds number results in an increase of

the range of scales involved in the dynamics.

1.1.3 Fourier space representation and energy spectrum

In order to study a multi-scale system where energy cascades across scales, one first need

to introduce the concept of ‘scale’. As commonly done, we use the Fourier space-based

definition. A velocity field u(x, t) can be reconstructed through its Fourier series;

u(x, t) =
∑
k

û(k, t)eik·x with û(k, t) =
(2π)d

Ld0

ˆ L0

0
u(x, t)e−ik·xdxd,

with d the dimension of the system, k = k0n the wavenumber, n ∈ Zd the mode number

and k0 = 2π
L0

the smallest wavenumber in the system.

We define the scale l = 2π
k as all modes of wavenumber amplitude k = |k| and the energy

at that scale as the sum of all corresponding energies. The energy spectrum E(k, t) is

then defined as the sum of the energy at all wavenumbers contained in a spherical shell

defined by k ≤ |k| < k + ∆k, with ∆k = 2π
L0

:

E(k, t) =
1

∆k

ˆ
k≤|k|<k+∆k

|û(k, t)|2dk. (1.6)

We can recover the total energy of the system by summing over all shells the spec-

trum:

E(t) = ∆k
∑
k

E(k, t). (1.7)

1.1.4 Isotropic 3D turbulence

Turbulence is often rightfully designated as the last open problem of classical mechan-

ics. Indeed, no theory is able to deduce from the NSE results on the statistics of fluid

quantities. However, by formulating a set of reasonable hypotheses, in 1941, Kolmogorov

derived a phenomenological scaling theory (K41) [12] leading to dimensional predictions

of the kinetic-energy spectrum [13] and the dissipative scales.
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Conservation laws

In 3D turbulence, there are two global quantities that are of significant interest, the mean

energy, E = 〈12u · u〉, and the mean helicity, H = 〈12u · ω〉, where the angular brackets

denotes averages over the periodic domain V0, and ω = ∇× u is the vorticity.

• Conservation of mean energy:

d

dt
E = −ν0〈|∇u|2〉 − γ〈|u|2〉+ 〈F · u〉 = −εν0 − εγ + εin, (1.8)

where εν0 is the rate of viscous energy dissipation, εγ is the rate of energy dissipa-

tion due to the drag, and εin is the rate of energy injection.

• Conservation of mean helicity:

d

dt
H = −ν0 〈(∇∧ ω) · ω〉 − γ〈u · ω〉+ 〈F · ω〉. (1.9)

In the absence of drag (γ = 0), and in the inviscid (ν0 = 0), unforced (F = 0) case,

both energy and helicity are globally conserved. These conservation laws, along with

the conservation of mass and momentum, are essential characteristics of the flow and its

evolution. They are also important to consider whenever deriving a turbulence model.

Indeed, if the model does not conserve those quantities, the resulting simulated solution

will obviously be non-physical.

Phenomenological Kolmogorov 1941 theory

In the wake of Richardson’s cascade of energy [11] for turbulent flow and in the limit

of infinite Reynolds numbers, at small scales ` < `in, and far away from boundaries,

Kolmogorov [12] made the following hypotheses:

1. All the possible symmetries of Navier-Stokes equations, usually broken by the mech-

anism producing turbulence, are restored in a statistical sense.

2. Turbulent flows are self-similar at small scales.

3. All the small-scale statistical properties are uniquely and universally determined by

the scale ` and the mean energy dissipation rate ε.

He therefore hypothesised that there is a significant scale separation between the large

scales `in and the small dissipative scales `ν0 , inferring the existence of an intermediate

4



range of scales ` of self-similar eddies that are neither depending on the large-scale eddies

nor affected by viscosity (`in � `� `ν0).

In order to understand the physical meaning of those hypotheses, we look at the statistics

of the longitudinal velocity increments [14]

δru‖ ≡ (u(x + r)− u(x)) · r
r̂

, with r̂ =
1

r
r and r = ‖r‖

The self-similar behaviour hypothesis means that there exists a scaling exponent h ∈ R
such that

δλru‖ ≡ λhδru‖ ∀λ ∈ R+,

.

From the universality hypothesis and using dimensional analysis we can obtain that

the second order longitudinal structure function, S
‖
2 = 〈(δru‖)2〉 follows the scaling

equation

〈(δru‖)2〉 ∼ C(εν0r)
2/3, (1.10)

where the angular brackets 〈·〉 denote the spatial average (assuming a statistically ho-

mogeneous and isotropic system) and C is a non-dimensional universal constant.

Further assuming that the energy dissipation ε has a finite limit as Re → ∞ (see sec-

tion 1.1.4), Komogorov [12] obtained the four-fifth law

〈(δru‖)3〉 = −4

5
εν0r. (1.11)

This implies that the p-th order longitudinal structure function has the following scaling

behavior:

S‖p〈(δru‖)p〉 ∼ Cp(εν0r)p/3. (1.12)

As a result of the formulation for the scaling behavior for the second order longitudinal

structure function Eq. (1.10), Kolmogorov obtained the celebrated predictions for which

the energy spectrum follow a k−5/3 power-law:

E(k) = CKε
2/3
ν0 k

−5/3 (1.13)

with CK the dimensionless Kolmogorov constant. On Figure 1.1, we show such the

sketch of an energy spectrum highlighting the predicted −5/3 slope and the cascading

of energy accross scales.

Besides, Kolmogorov conjectured [12] that, a high, but not infinite Reynolds numbers,

statistical properties at the small-scale (l� lin) are solely and universally dependent on

the scale l, the energy dissipation rate εν0 , and the kinematic viscosity ν0. Therefore,
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Figure 1.1. Sketch of the energy spectrum in log-log scale E(k) versus
k highlighting the direct energy cascade and Kolmogrov’s -5/3 slope pre-
diction. Energy is injected at wavenumber kin = 2π/`in and dissipated at
kν0 = 2π/`ν0 (γ = 0 is assumed). Taken from Ref. [15] with permissions.

following a dimensional analysis, one can express the length-, velocity-, and time-scales

at which the viscous forces becomes effective;

η ∝
(
ν0

3

εν0

)1/4

, δηu ∝ (ν0εν0)1/4, τη ∝
(
ν0

εν0

)1/2

, (1.14)

which are respectively the Kolmogorov’s scale η (∝ `ν0), the velocity fluctuations at scale

η and the ‘eddy turnover time’ associated with the scale η.

Departure from K41

In practice, on experimentally observed or numerically simulated turbulent flow, we

observe the presence of disorderly strong fluctuations over a range of scales in both space

and time. This phenomenon is known as small scales intermittency and its origin is one

of the most significant open question of turbulence. Intermittency is usually highlighted

by the departure from the K41-predicted scaling exponent of structure functions of order

p, S
‖
p(r) as a function of the distance r of the points

S‖p(r) ≡ 〈(δru‖)p〉 = 〈[(u(x + r)− u(x)) · r̂]p〉 ∼ Cp(εν0r)ζ(p), (1.15)

where ζ(p) is different from the predicted linear behaviour, p/3.

In practice to measure intermittency we calculate the kurtosis

K(r) ≡
〈
((δru‖)

4
〉〈

((δru‖)2
〉2 =

S
‖
4(r)(

S
‖
2(r)

)2 . (1.16)
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Assuming self-similarity, K(r) is constant in the inertial range, therefore the deviation

of K(r) as r → η gives us a measure of the degree of intermittent behavior.

Moreover, She-Lêveque showed in Ref. [16] that the exponent of S
‖
(p) can be modelled

as

ξp =
p

9
+ 2

(
1−

(
2

3

)p/3)
. (1.17)

It is also worth pointing out that in 1986, Parisi and Frisch [14] suggested that turbulent

flows have a superposition of different scale-invariance, i.e., there exist different values of

the scaling exponent h occurring with a probability. The outcome model is known as the

multifractal model and allow an excellent recovery of the experimentally and numerically

measured structure-function exponents.

Dissipative anomaly

As mentioned above, Kolmogorov’s four-fifth law Eq. (1.11) has been obtained assuming

the finiteness of the energy dissipation (repeated indices are meant summed upon)

εν0 = ν0〈(∂jui + ∂iuj)
2〉 −−−−→

Re→∞
C, (1.18)

where 〈·〉 denotes volume average and C is a positive constant.

While there is no mathematical proof explaining this phenomenon, it has been system-

atically observed in numerical simulations and experiments and is referred to as the

dissipative anomaly. Because taking the limit of Re→∞ is equivalent to taking ν → 0,

one could conjecture that εν0 −−−→
ν0→0

0 [17, 18].

Inspecting Eq. (1.18), we notice that, as the Reynolds number increases, the velocity

gradients become increasingly singular in order to compensate for the viscosity reduction.

Indeed, peaks of dissipation are localized intermittently, solely in small areas and the

intensity and probability of extreme events in the velocity gradients sharply increase

with Re [19].

1.1.5 Isotropic 2D turbulence

While 2D flows do not exist in the real world, their theoretical study provides an un-

derstanding of quasi-2D flows that evolves in a domain for which the depth Lz is very

small compared to the other dimensions Lx, Ly such as geostrophic flows. Indeed, 2D

turbulence is very different in substance from 3D turbulence, as it is characterized by

two positive-definite inviscid quadratic invariants which cascade in opposite directions.

In this section, we briefly summarize those results.
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Conservation laws

In 2D, helicity is not of interest as it is identically zero. However, besides the energy, we

have a second globally conserved quantity, the enstrophy (Ω = 1
2ω · ω).

• Conservation of mean energy:

As in 2D, the mean energy is conserved and its evolution in time is given Eq. (1.8).

• Conservation of mean enstrophy:

d

dt
Ω = −ν0〈|∇ω|2〉 − γ〈|ω|2〉+ 〈ω · (∇∧ F )〉 = −ζν0 − ζγ + ζin, (1.19)

where ζν0 is the rate of viscous enstrophy dissipation, ζγ is the rate of enstrophy

dissipation due to the drag, and ζin is the rate of enstrophy injection.

These two quantities are invariants in the inviscid (ν0 = 0), unforced (F = 0) cases and

in the absence of drag (γ = 0). The fact that they are both positive-definite implies that

there is a dual split cascade, with the energy going to large scales and the enstrophy

going to small scales.

Phenomenological Kraichnan-Leith-Batchelor theory

In 2D turbulence, the Richardson cascade of energy towards small scales does not hold.

It is known since Fjortoft [20] (and more quantitatively since Kraichnan, Leith and

Batchelor [21, 22, 23]) that energy and enstrophy cannot both cascade to small scales

and that the presence of a second sign-definite inviscid quadratic invariant leads to the

presence of a dual cascade: enstrophy goes to small scales `ν0 where it is dissipated

by viscous effects, while energy goes to large scales `γ where it is dissipated by the

large-scale friction. Following Kolmogorov hypotheses, the two intervals of scales `γ �
` � `in and `in � ` � `ν0 are the inertial ranges over which statistics can be assumed

universal.

In the indirect energy cascade inertial sub-range, `γ � `� `in, using the same arguments

than in the K41 theory, we obtain the same prediction for the spectrum slope:

E(k) = C ′Kε
2/3
ν0 k

−5/3 (1.20)

with C ′K another dimensionless Kolmogorov constant.

In the direct enstrophy cascade inertial sub-range, `in � ` � `ν0 , we can adapt K41

reasoning on a sub-range dominated by energy transfer to a sub-range dominated by

enstrophy transfer at a rate ζν0 . We obtain the Batchelor-Kraichnan prediction for the
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energy spectrum slope:

E(k) = CBζ
2/3
ν0 k−3 (1.21)

with CB a dimensionless constant. The KLB prediction for the energy spectrum of forced

2D HIT are summarized on the sketch Fig 1.2

Figure 1.2. Sketch of the energy spectrum in log-log scale E(k) versus
k highlighting the indirect energy cascade’s -5/3 slope prediction and
the direct enstrophy cascade’s -3 slope prediction. Energy is injected at
wavenumber kin = 2π/`in, dissipated by viscosity at kν0 = 2π/`ν0 and by
drag at kγ = 2π/`γ . Taken from Ref. [15] with permissions.

1.2 Turbulence modeling

As pointed out in the previous section, the range scales involved in a turbulent flow

expand as the Reynolds number increases, making the Direct Numerical Simulation

(DNS) of such flows computationally prohibitive. Therefore, we present in this section

the Large-Eddy Simulation (LES) technique to reduce the number of degree of freedoms

involved in the simulation of turbulent flows and introduce some of the available closure

Sub-Grid Scale (SGS) models.

1.2.1 Direct Numerical Simulation

From section 1.1, we saw that in both 2D and 3D turbulence, the increase of the Reynolds

numbers leads to an extension of the inertial sub-range of the direct cascade. This means

that the smallest scale of motion of the flow, η, gets smaller with increasing the Reynolds

number. From the phenomenological theories KLB in 2D and K41 in 3D, we can get the

corresponding dissipative length-scales:

η2D ∝ `inRe−1/2 and η3D ∝ `inRe−3/4. (1.22)
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DNS requires solving the NSE on a grid with a sufficient resolution to capture the smallest

scales of motion of the flow. Therefore, the number of collocation points N ∼ `in/L0

is

N2D ∼ Re and N3D ∼ Re9/4, (1.23)

in 2D and 3D respectively.

Therefore, turbulence at very high Reynolds numbers quickly becomes challenging even

on the latest supercomputers. For this reason, there has been a considerable interest

in the development of models that can be used to simulate real-world relevant quanti-

ties.

1.2.2 Large-eddy simulations

Large-Eddy Simulation (LES) is a workaround which allows a reduction of the number

of degrees of freedom. It is acknowledged in the engineering community as a cost-

effective alternative to DNS [24, 25, 26]. The principle of LES is to solve flow scales

up to a cut-off and to filter the small scales out. As large scales and smaller scales

are coupled, unresolved small scales have to be modeled using a so-called subgrid-scale

(SGS) model.

Filtered NSE

In LES, the small scales are filtered using a filter kernel G∆ associated to the filter width

∆. This coarse-graining operation applied to the velocity gives:

u∆(x, t) ≡
ˆ
L3
0

dx′ G∆(|x− x′|) u(x′, t) =
∑
k∈Z3

Ĝ∆(k) û(k, t)eikx. (1.24)

The most common filter is the spectral cutoff easily defined in Fourier space as;

G∆(|k|) =

{
1, if |k| < 2π/∆

0, otherwise
(1.25)

which filters out all wavenumbers k above a given threshold 2π/∆.

Another popular filter is the Gaussian smooth filter, which writes

G∆(|k|) = exp (−|k|
2∆2

24
). (1.26)

Applying a filter kernel to the NSE (1.1), we obtain the governing equation for LES:
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∂tu + (u · ∇)u = −∇p+ ν0∆u− γ u. (1.27)

The filtered Navier-Stokes equations, eq. (1.27), cannot be simulated as the filtered non-

linear term (u · ∇)u involves the product of two unfiltered fields, and thus cannot be

recovered from the filtered velocity field u. Therefore, we introduce the subgrid-scale

(SGS) tensor

τij(u,u) = uiuj − uiuj , (1.28)

and rewrite Eq. (1.27) as

∂tu + (v · ∇)u = −∇p−∇ · τ(u,u) + ν0∆u− γ u. (1.29)

Eq. (1.29) is the NSE (1.1) written for the filtered velocity field u with an additional term

involving the SGS-tensor. This extra-term is not closed in terms of filtered quantities

and requires SGS modeling. Hence any LES implementation is based on the choice of

(i) the filter G∆ and (ii) the SGS model. For a review on the existing filters and models,

the reader is referred to Refs. [27, 28, 29].

Eddy viscosity models

Here we derive the class of the so-called eddy viscosity models which lead to a NSE

equation for the filtered velocity u with an effective viscosity νeff fluctuating in space

and time:

∂tu + (v · ∇)u = −∇p+ νeff(x, t)∆u− γ u, (1.30)

where ν(x, t) = ν0 + δνe(x, t), with ν0 the fixed input viscosity, and δνe the fluctuating

eddy viscosity.

Indeed, this can be obtained by setting the deviatoric part of the SGS-stress tensor τij

as

τ rij −
1

3
τkk = −2δνeSij , (1.31)

with Sij = 1
2(∂iuj + ∂jui), the resolved strain-rate tensor.

Assuming that the energy production and dissipation of the small scales are in equilib-

rium, Smagorinsky [4] proposed the first SGS model. The Smagorinsky eddy viscosity

writes

δνSe = (CS∆)2
√

2Sij Sij ∝ |S| (1.32)
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The Smagorinsky model has attracted a large interest from both the scientific and in-

dustrial communities and remains one of the most robust SGS models. However, it fails

to model the transfer of energy from unresolved to resolved scales (the so-called energy

backscatter) is not properly modeled as the eddy viscosity δνSe is positive-definite and

thus the model remains purely dissipative.

1.3 Lattice Boltzmann Method

The Lattice Boltzmann Method (LBM) is a mesoscale flow solver that has been gaining

popularity because of it is highly scalable and suitable for parallel computing, as well

as its ability to deal with multiple physics and complex boundary conditions. In this

section, we give an introduction of LBM and highlight the stability challenge in using it

as a turbulent flow solver and discuss techniques used to combine LES and LBM.

1.3.1 Boltzmann Equation

Considering a d-dimensional fluid, the probability of finding a particle at position x and

velocity v at a given time t is given by the particle distribution function f(x,v, t). Its

evolution is given by the Boltzmann equation which, in the abscence of external forces

reads:
∂f

∂t
+ v · ∇f = Ω(f) (1.33)

where Ω is the collision operator. The collision operator is popularly modeled by the

Bhatnagar-Gross-Krook (BGK) [1] relaxation towards a local equilibrium with a relax-

ation time τ . The BGK operator writes

Ω(f) = −1

τ
[f − feq] , (1.34)

where τ is the relaxation time and feq the local equilibrium distribution function, de-

scribed by a Maxwell-Boltzmann distribution:

feq = ρ

(
m

2kBT

)d/2
exp

(
− m

2kBT
(v − u)2

)
, (1.35)

with kB is the Boltzmann constant and m the particle mass. We will use a natural unit

system for which m = kB = 1 in this section. Macroscopic quantities such as mass

density ρ, macroscopic velocity u and thermodyncamic temperature T are obtained by
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taking the moments of the particle distribution function:

ρ(x, t) =

ˆ
f(x,v, t)dv,

ρ(x, t)u(x, t) =

ˆ
f(x,v, t)vdv, and

ρ(x, t)T (x, t) d =

ˆ
f(x,v, t)‖v − u(x, t)‖2dv.

(1.36)

1.3.2 Lattice Bhatnagar-Gross-Krook

To obtain a discrete Boltzmann equation, one starts with the discretization of the velocity

space. First, we approximate feq by writing it on a truncated basis of Hermite polyno-

mials [30], noticing that the first Hermite expansion coefficients correspond exactly to

the moments Eq. (1.36) of the distribution [31].

To find a lattice stencil, i.e. a set of q poles {c`}q−1
`=0 and weights {t`}q−1

`=0 , we rely

on Gauss-Hermite quadratures [32] so that we recover the appropriate moments of the

distribution, while ensuring that all the weights are non-negative for numerical stability

and that the poles belong to the nodes of a Cartesian grid for perfect streaming. As

a result, for a given algebraic degree of precision > 2M , the knowledge of the discrete

distributions f = {f`}q−1
`=0 is enought to recover exactly the first M moments. In this

thesis, we will be interested in the simulation of isothermal turbulence, therefore, we

need M > 2 so that we have

ρ =

q−1∑
`=0

f` and

ρu =

q−1∑
`=0

f`c`.

(1.37)

The obtained lattice stencil is commonly named in the DdQq format. Usual lattice in-

cludes the D1Q3 and its tensorial products, the D2Q9, and the D3Q27. On such a lattice,

we introduce the LBM equation discretized in time, which describes the streaming and

collision of the discrete distribution functions f`(x, t) with a finite set of kinetic velocities

c` for ` = 0 . . . q − 1. Written for a BGK collision operator with a fixed dimensionless

relaxation time τ0, the LBM equation is called hereafter the LBGK equation:

f`(x + c`∆t, t+ ∆t)− f`(x, t) = − 1

τ0

[
f`(x, t)− feq` (x, t)

]
+ S`, (1.38)

where ∆t is the time step and S` is a suitable forcing term designed to reproduce a

macroscopic external forcing [33, 34, 35].
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The discrete equilibrium distribution f eq
` is assumed to have a finite Hermite polynomials

expansion. We will use thereafter the third order (M = 3) expansion:

f eq
` = ρt`

(
1 +

u · c`
c2
s

+
uu : c`c` − c2

s|u|2
2c4
s

+
uuu : · c`c`c` − 3c2

s|u|2u · c`
6c6
s

)
, (1.39)

where cs the speed of sound in the lattice.

1.3.3 Algorithm

The LBGK algorithm is given in Listing 1. It should be noted that the popularity

of LBGK as a flow solver mostly lies in the fact that its algorithm is fully local, and

therefore can make use of highly parallel architectures such as General Purpose Graphical

Processing Units (GPUs). This is explored in more details in Chapter 6.

Algorithm 1 Commonly used LBGK algorithm.

1: for each time step do
2: for each lattice node do
3: Calculate density and equilibrium velocity
4: Calculate the equilibrium distribution feq

5: Calculate the non-equilibrium part of the distribution fneq

6: Collide with a relaxation time of τ0

7: Propagate
8: end for
9: end for

1.3.4 Chapman-Enskog expansion

From a theoretical point of view, the use of a multi-scale Chapman-Enskog (CE) per-

turbative expansion allows to recover hydrodynamic equations [33, 34]. It is usually

unrolled on the basis of a separation of the advective and dissipative time scales. The

order of magnitude characterizing this scale separation is given by the Knudsen number

Kn = λ
L0
� 1. Indeed, the kinetic system is characterized by a length scale, that is

the mean free path λ, defined as the typical distance traveled by an atom between two

collisions that is several orders of magnitude smaller than the macroscopic length scale

L0 of the fluid system. In C-E expansion, it is commonly hypothesized that the advective

time scale is of O(Kn), while the dissipative time scale is of O(Kn2). Here to describe

the scale separation we expand in order of the time step ∆t. For any order N ≥ 1 we

can write

f`(x + c`∆t, t+ ∆t) = f`(x, t) +
N∑
n=1

∆n
t

n!
Dn
` f`(x, t) +O(∆N+1

t ), (1.40)

14



where D` = ∂t + c` ·∇ and ∆t can be interpretated as the Knudsen number.

We then obtain

N∑
n=1

∆n−1
t

n!
Dn
` f

eq
` = − 1

τ0
f eq
` φ` −

N−1∑
n=1

∆n
t

n!
Dn
` (f eq

` φ`) +O(∆N
t ), (1.41)

where f`, which is a parametric function of ∆t, has been decomposed as

f` = f eq
` (1 + ∆tφ`) , (1.42)

with φ` = O(1) for ∆t → 0. To recover hydrodynamic equation, we use the fact that we

have the following the zeroth order moment relations

ρ =
∑
`

f` =
∑
`

f eq
` ,

∑
`

f eq
` φ` = 0 (1.43)

and the first order moment relations

ρu =
∑
`

c`f` =
∑
`

c`f
eq
` ,

∑
`

c`f
eq
` φ` = 0. (1.44)

Therefore taking the zeroth and first order moments of Eq. (1.41) for an equilibrium dis-

tribution chosen as in Eq. (1.39), one can recover the continuity and momentum equations

corresponding to the athermal weakly compressible Navier-Stokes equations. The full

derivation is provided in Appendix B and we give the outcome in Eq. (1.45).

∂tρ+ ∂j(ρuj) = 0 +O(∆2
t )

∂t (ρui) + ∂j (ρuiuj) = −∂ip+ ∂j (ρν (∂jui + ∂iuj)) + Fi +O(∆2
t ) +O(Ma3).

(1.45)

Beyond the higher order corrections in the Knudsen number (hereO(∆2
t )), in the recovery

of the momentum equations one usually neglects terms which are cubic in the velocity

[36], Hence we find the term O(Ma3), with Ma = U
cS

the Mach number, where U is the

root mean squared velocity. The term p = c2
sρ is the fluid pressure and the viscosity ν

is linearly dependent on the relaxation time τ in (1.46) and vanishes as τ → 0.5:

ν0 = c2
s

(
τ0 −

1

2

)
∆t. (1.46)

1.3.5 LBM-based LES

An analysis of inertial range statistics was recently conducted for a high-resolution 3D

HIT DNS using LBGK in Ref. [37], highlighting that it is possible to obtain a good

recovery of both high- and low-order inertial range statistics with a LBM mesoscale flow

solver.
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However, the LBGK exhibits instabilities as the input relaxation time τ0 → 0.5, i.e. for

an input viscosity ν0 → 0. This, along with the low Mach number, which is required to

well recover the NSE, drastically limit the range of Reynolds number Re = U L0
ν0

with L0

the characteristic length of the flow, reachable at a fixed grid resolution [38].

The LBM community has been keenly proposing Navier-Stokes inspired SGS models to

combine the intrinsic scalability of LBM with turbulence modelling. The majority of

them are eddy viscosities models implemented by locally modifying the relaxation time

τ , i.e. assuming that the bridge equation Eq. (1.46) holds and that an effective relaxation

time τeff(x, t) results in an effective viscosity νeff(x, t) [39, 40, 41, 42]. This assumption

is discussed in more details in Chapter 4.

In LBM simulations the filtering operation is implicit and the filter width is set by the

choice of a grid resolution. But it is not obvious a priori that filtering (implicitly or not)

the LBM equations is equivalent at the macroscopic scale to approximating filtered N-S

equations. However, it was shown by Malaspinas & Sagaut that in the athermal weakly

compressible limit [43], this is indeed the case. As we work with implicit filtering in this

thesis, to simplify notations, we will drop the overline over the filtered fields.

To illustrate how LBM-LES is usually working, we take the example of the Smagorinsky

SGS introduced Eq. (1.32). In that case, in order to obtain νSeff = ν0 + δνSe , we calculate

τeff = τ0 + δτSe by rewriting Eq. (1.46) as

δτSe =
δνSe
c2
s∆t

(1.47)

The eddy viscosity in the Smagorinsky model depends on the filtered strain-rate tensor.

In LBM, this quantity can be obtained without calculating any derivative, directly from

the non-equilibrium distribution:

S ≈ − 1

2ρτeffc2
s∆t

Π(1), (1.48)

with Π(1) =
∑

` c`c`f
neq
` the non-equilibrium momentum tensor.

1.4 Entropic Lattice Boltzmann Method

Stabilization of LBGK has been linked to the existence of an underlying Lyapunov func-

tional in the form of a discrete Boltzmann H-functional [44]. Indeed, it was previously

shown that conventional LBGK schemes cannot obey an H-theorem [45]. However,

by ensuring the local monotonicity of such a convex function provides in principle a

simulated dynamical flow system with non-linear stability. Through the local calcula-

tion of an effective relaxation time that enforced a discrete local H-theorem, Karlin et
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al. [46] introduced a new sub-class of LBM, the Entropic Lattice Boltzmann Methods

(ELBM).

The apparent unconditional stability of ELBM [47] has made it a popular choice for

the simulation of low-dissipative flows. Naturally, it has been applied to the simulation

of turbulent flows, both homogeneous isotropic [48] and wall-bounded [49]. Apart from

the simulation of turbulent flows, the entropy feedback has been used to improve the

stability of thermal flows [50, 51, 52], multiphase flows [53] and other fluid flows [54].

For a detailed review of ELBM, the reader is referred to Refs. [55, 56].

1.4.1 Enforcement of a discrete local H-theorem

Using the formalism of Karlin et al. [46], the ELBM eq. writes:

f`(x+ c`∆t, t+ ∆t) = f`(x, t)− α(x, t)β
(
f`(x, t)− feq` (x, t)

)
= (1− β) fpre` (x, t) + β fmirror` (x, t)

= fpost` .

(1.49)

To equip a LBGK with a H-theorem, the ELBM collision operator adapts the BGK

relaxation of the distribution functions f towards a local equilibrium feq with the use of

an effective relaxation time τeff(x, t) = 1
α(x,t)β , with β = 1

2τ0
and α a local parameter.

As seen in the ELBM Eq. (1.49), the post-collision distribution fpost(β) can then be

understood as a convex combination between the pre-collision distribution fpre = f and

the so-called mirror distribution fmirror(α) = fpre − α fneq with fneq = f − feq the non-

equilibrium part of fpre. This convex combination is parametrized by the parameter β

for which we have 0 < β < 1 as 0.5 < τ0 < +∞.

For a convex H-functional commonly chosen [46, 57] as

H[f] =

q−1∑
`=0

f` log

(
f`
t`

)
, f = {f`}q−1

`=0 . (1.50)

the discrete local H-theorem [45] can then be expressed as a the local decrease of the

H-functional between the pre-collision and post-collision distributions,

∆H = H[fpost]−H[fpre]

= H[(1− β)fpre + βfmirror(α)]−H[f] ≤ 0,
(1.51)

where the pre-collision distribution is fpre = f and the the post-collision distribution is

fpost = (1− β)fpre + βfmirror(α).

The equilibrium distribution feq is here defined as the extremum of a H-functionnal

under the constraints of mass and momentum conservation [58]. This extremalization
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has an analytical solution for the D1Q3 lattice and its tensorial products, the D2Q9 and

D3Q27,

feq` (x, t) = t` ρ
d∏

γ=1

{(
2−

√
1 +

u2
γ

c2
s

)
2uγ√
3cs

+

√
1 +

u2γ
c2s

1− uγ√
3cs


c`, γ√
3cs}

, (1.52)

where d is the dimension of the DdQq lattice.

The first three moments of the equilibrium distribution Eq. (1.52) are exactly the same

as the one coming from the third order truncated equilibrium distribution Eq. (1.39) [57].

Therefore, it allows the recovery of the same athermal weakly compressible Navier-Stokes

given in Eq. (1.45).

Different approaches have been proposed to enforce the discrete local H-theorem Eq. (1.51).

Recently, Atif et al. [59] expanded the left-hand side of Eq. (1.51) and highlighted

the presence of negative-definite terms, providing an exact solution for α by solving a

quadratic equation involving the remaining non-negative-definite terms. Bösch et al. [60]

uncovered a new class of multi-relaxation time ELBM, the KBC family of methods, which

minimize the H-value of the post-collision distributions defined for a decomposition of

the pre-collision distribution in the kinematic part k, shear part s, and the remaining

higher moment parts h: fpre = k + s + h and applying an entropic relaxation only to the

higher moments part.

In this work, we use Karlin et al. [46] approach to ELBM, which calculates α(x, t) as

the solution of the entropic step equation (1.53). Indeed, as the H function is convex

and the post-collision distribution is a convex combination between two distributions

fpre and fmirror of equal H-value, the monotonic decrease of the H-functional Eq. (1.51)

value is ensured as illustrated in figure1.3.

H[f ] = H[fmirror(α)] (1.53)

where fmirror(α) = f − αfneq with fneq = f − feq the non-equilibrium part of the

distribution f .

ELBM, as a result of the enforcement of the H-theorem, is apparently unconditionally

stable [47] LBM for τ0 → 0.5 (ν0 → 0).

1.4.2 Algorithm

The ELBM algorithm adds a single extra step to the LBGK algorithm (Listing 1), the

entropic step, which returns the effective relaxation time τeff = 1
αβ . The entropic step
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Figure 1.3. ELBM: Perspective from H-functional hypersurface [46]

equation (Eq. (1.53)) is popularly solved using a Newton-Raphson (N-R) algorithm. Typ-

ical values for the tolerance and the maximum number of iteration for the N-R solver are

respectively 10−5 and 20, although in this thesis, to study the implicit closure, we have

often used a tolerance of 10−8 and a maximum number of iteration of 1000. Without

going to the extent of such high values, it should be noted that ELBM is a computa-

tionally expensive algorithm. Performing the simulations whose results are documented

in this thesis, we have observed that whenever distributions are very close to their local

equilibrium counterparts, the number of iterations required to solve the entropic step

equation increases greatly. However, in that case, we know that if locally, the simulation

is resolved (f → feq), we have α → αLBGK = 2. As a result the ELBM community has

been using an optimization that consists in calculating the relative deviation of the distri-

bution to the equilibrium distribution ∆ (f, fneq) = max
0<`<q−1

|f
neq
`
f`
| and having the entropic

step returning α = 2 if this deviation is smaller than a threshold (usually taken equal to

10−3). The ELBM algorithm including this optimization is shown in Listing 2.

1.4.3 Forcing the Entropic Lattice Boltzmann Method

In order to simulate a forced flow, one needs to add a suitable forcing source term S`

to the ELBM Eq. (1.49). Therefore, the entropic step needs to be adapted to ensure

that the H-functional decreases between the new pre- and post-collision states. In most

of the literature, this adaptation is skipped and the algorithm for the calculation of the

entropic parameter α neglects the presence of the forcing term in the LBM equation.

Only one occurrence of the formal inclusion of this term, which was found in Ref. [53],

suggests how to formally include it.

Indeed, by assuming that the force is applied before the collision takes place, fpre = f+S

and rewriting the mirror distribution as fmirror = fpre − αfneq, we obtain again that the
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Algorithm 2 Commonly used optmized ELBM algorithm.

1: for each time step do
2: for each lattice node do
3: Calculate density and equilibrium velocity
4: Calculate the equilbrium distribution feq

5: Calculate the non-equilibrium part of the distribution fneq

6: Check the deviation ∆ (f, fneq)
7: if ∆ (f, fneq) <= 10−3 then
8: Set α = 2
9: else

10: Calculate αmax corresponding to min
0<`<q−1;fneq` >0

| f`
fneq`
|

11: if αmax ¡ 2 then
12: Set α = 0.9× αmax
13: else
14: Use Newton-Raphson method to solve H (f) = H (f − αfneq) with

αguess = 2, αmin = 1 and previously calculated αmax
15: end if
16: end if
17: Collide with a relaxation time of 1

αβ
18: Propagate
19: end for
20: end for

post-collision distribution is a convex combination between the pre-collision distribution

and the mirror distribution (Eq. (1.54)), thus enabling a forced ELBM algorithm.

f`(x+ c`∆t, t+ ∆t) = f`(x, t)− α(x, t)β
(
f`(x, t)− feq` (x, t)

)
+ S`(x, t)

= (1− β) (f`(x, t) + S`(x, t)) + β (f`(x, t) + S`(x, t)− αfneq` (x, t))

= (1− β) fpre` (x, t) + β fmirror` (x, t) = fpost` (x, t)

(1.54)

In our numerical experiments, we have always used small macroscopic forcing amplitudes

and therefore, we did not notice that including the forcing source term in the entropic

step had an impact on the physics of the flow. However, including it did increase the

required number of Newton-Raphson solver.

In all the forced flow simulations documented in this thesis, we enforce the macroscopic

forcing F using the exact-difference method forcing scheme [61] for which

S` = feq` (ρ,u +
F

ρ
)− feq` (ρ,u). (1.55)
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It is important to note, that not all forcing scheme can be used to force ELBM. Guo’s

forcing scheme [62] involves a source term that depends on the effective relaxation time

τeff and therefore would require its knowledge before the entropic step is used to calculate

it.

1.4.4 Beyond the stabilization, an implicit turbulence model?

As ELBM shows an apparent unconditional stability [47], it is possible to use ito simulate

fluid flows with arbitrary small input viscosities. However, it is important to stress that

stability does not mean accuracy, and that there is no garantees that the output flows

physics is preserved by ELBM. In practice, a number of work have put forward that the

ELBM is implicitly enforcing a SGS model of the eddy viscosity type [48, 3, 2]. Indeed,

as it involves modifying the relaxation time in space and time and assuming that the

bridge equation between viscosity and relaxation times Eq. (1.46) hold for fluctuating

quantities, we have

νeff (α) =c2
s

(
1

αβ
− 1

2

)
∆t

=c2
s

(
1

2β
− 1

2

)
∆t + c2

s

2− α
2αβ

∆t = ν0 + δνMe (α) ,

(1.56)

where the superscript M in δνMe , stands for measured, as it can be measured online

directly from the α field.

The effective viscosity is larger than the input kinematic viscosity ν0 = νeff (2) if α > 2

and smaller if α < 2. For β → 1 (i.e.τ → 0.5), the viscosity ν0 vanishes and the effective

viscosity νeff (α) can become negative, without leading to instabilities. Thus, it seems

to allow local backscatter of energy as a negative effective viscosity brings energy to the

resolved scales. Moreover, it has been observed that if the simulation is resolved (i. e.

f → feq), the local parameter α becomes homogeneously equal to 2 [3] and the ELBM

collision operator turns into a standard LBGK collision operator α ≡ αLBGK ≡ 2.

As α has a complex non-linear dependencies on the distributions f`, the effective viscosity

cannot a priori be understood in terms of macroscopic quantities. Therefore, ELBM

physical meaning remains hidden. Unrolling a C-E perturbative expansion, it is possible

to obtain a macroscopic approximation of the eddy viscosity Eq. (1.56). Initially due to

Malaspinas et al. [2], we have corrected and clarified the range of validity of the derivation

in Chapter 4. The resulting eddy viscosity approximation written reads

δνAe ≈ −c2
s∆t

2 1

6β2

SλµSµγSγλ
SγδSγδ

, (1.57)
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where Sij = 1
2(∂iuj + ∂jui) is the strain-rate tensor. This eddy viscosity possesses an

interesting functional shape. As the Smagorinsky model [4], it scales as the strain-rate

tensor, but is not positive-definite. This means, that it allows backscatter of energy

from the unresolved scales to the resolved scales. Indeed, while energy transfer should

in average be towards the small scales to model properly the small-scale dissipation, a

realistic SGS should also intermittently transfer energy in the other direction.

The ELBM approach has been validated for a number of turbulent flows in terms of

mean flow properties. [60, 63, 64]. However, little has been done to numerically study

the implicit SGS model implied by ELBM and the validity range of its macroscopic

formulation. Therefore, it is still unclear whether it acts as a mere stabilizer or as an

accurate representation of the unresolved physics of turbulence stemming from kinetic

theory.
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CHAPTER 2

A NUMERICAL TOOL FOR THE ASSESSMENT OF

THE HYDRODYNAMIC RECOVERY OF LBM

SIMULATIONS

In this chapter we build a tool to take control of the hydrodynamic recovery and deter-

mine to which accuracy LBGK is able to recover the Navier-Stokes equations as a function

of the analyzing sub-volume size. This chapter summarizes the results of Ref. [6] and is

organized as follows: in section 2.1 we introduce the balance equations, their averaged

counterparts over a sub-volume and we define balancing errors as a measure of the hy-

drodynamic recovery; in section 2.2 we present the numerical set-up for the simulations

of 2D isotropic homogeneous turbulence and for the statistical analysis of the balancing

errors; in section 2.3 we present a validation of the tool by comparing the hydrodynamic

recovery of an ensemble of LBGK simulations to an ensemble of Pseudo-Spectral (PS)

simulations in the case of decaying flows; in section 2.4 we benchmark the tool on LBGK

simulations of forced turbulence for a range of increasing Reynolds numbers, while link-

ing the results to the corresponding statistics of the Mach number; some concluding

remarks follow in section 2.5.

2.1 Hydrodynamic recovery for energy and enstrophy balance in 2D

The hydrodynamic recovery of a simulation is studied from the perspective of kinetic

energy and enstrophy balance equations, averaged over sub-volumes of the computational

domain. The kinetic energy (E = ρuiui
2 ) and the enstrophy (Ω = ωiωi

2 , with ωi the

component of the vorticity ~ω = ~∇ × ~u along ~ei) balance equations are obtained from

the macroscopic mass and momentum conservation equations recovered by LBM (see
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Eq. (1.45)). The details of their derivation is given in appendix A and holds to

∂t

(ρuiui
2

)
=− ui∂ip− νρ (∂jui + ∂iuj) ∂jui + uiFi

− ∂j
(ρuiui

2
uj

)
+ ∂j (νρui (∂jui + ∂iuj))

(2.1)

∂t

(ωiωi
2

)
=− ∂j

(ωiωi
2
uj

)
+ ωiωj∂jui +Hi(ν)εijk∂jωk + ωiεijk∂j

(
1

ρ
Fk

)
− ∂j

(ωiωi
2
uj

)
+ ∂j (εijkωiHk(ν)) ,

(2.2)

where ε is the Levi-Civita symbol and Hi(ν) = 1
ρ∂jνρ (∂iuj + ∂jui). From the local

equations (2.1) and (A.8) , we calculate their averaged counterparts over a sub-volume

V

LHSEV = ∂t
〈ρuiui

2

〉
V

=−
〈
∂j

(ρuiui
2

uj

) 〉
V
−
〈
ui∂ip

〉
V

+
〈
uiFi

〉
V

−
〈
νρ (∂jui + ∂iuj) ∂jui

〉
V

+
〈
∂j (νρui (∂jui + ∂iuj))

〉
V

=RHSE, 1V +RHSE, 2V +RHSE, 3V +RHSE, 4V +RHSE, 5V

=RHSEV

(2.3)

LHSΩ
V = ∂t

〈ωiωi
2

〉
V

=−
〈
∂j

(ωiωi
2
uj

) 〉
V
−
〈ωiωi

2
∂juj

〉
V

+
〈
ωiεijk∂j

(
1

ρ
Fk

)〉
V

+
〈
Hi(ν)εijk∂jωk

〉
V

+
〈
∂j (εijkωiHk(ν))

〉
V

+
〈
ωiωj∂jui

〉
V

=RHSΩ, 1
V +RHSΩ, 2

V +RHSΩ, 3
V +RHSΩ, 4

V +RHSΩ, 5
V +RHSΩ, 6

V

=RHSΩ
V

(2.4)

where
〈
· · ·
〉
V

stands for an average over an arbitrary sub-volume V . Each term of the

right-hand side (RHSE,ΩV ) of equations (3.2) and (2.4) accounts for a contribution to

the evolution of the averaged energy and enstrophy on the left-hand-side (LHSE,ΩV ).

Equations (3.2) and (2.4) hold if the viscosity is allowed to flucte in space and time

ν = νeff(~x, t) = ν0 + νt(~x, t). We note that, in 2D, the vortex streching term in the

enstrophy balance is null [65].

The quality of the hydrodynamic recovery over a sub-volume V is defined through bal-

ancing errors for the kinetic energy and enstrophy balance, δEV and δΩ
V . For a fixed time t,

δE,ΩV (t) is calculated as the ratio of the absolute difference between the RHSE,ΩV (t) and

the LHSE,ΩV (t) terms by the term of the right-hand side with the maximum absolute
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value i.e.

δEV (t) =

∣∣RHSEV (t)− LHSEV (t)
∣∣

maxi

∣∣∣RHSE, iV (t)
∣∣∣ (2.5)

and

δΩ
V (t) =

∣∣RHSΩ
V (t)− LHSΩ

V (t)
∣∣

maxi

∣∣∣RHSΩ, i
V (t)

∣∣∣ . (2.6)

Naturaly, a perfect matching of the averaged balance equations at a time t on a sub-

volume V would lead to δEV (t) ≡ δΩ
V (t) ≡ 0.

2.2 Numerical set-up for the statistical analysis of 2D homogeneous isotropic

turbulence hydrodynamics

We first apply the tool described in the previous section to simulations’ output of a

periodic two-dimensional 256 × 256 system. A homogeneous isotropic forcing with a

constant phase φ on a shell of (dimensionless) wavenumbers ~k of magnitude from 5 to

7 is set in a stream-function formulation in order to preserve incompressibility in the

system,

F TΨ (~x) = F T0
∑

5≤‖~k‖≤7

cos

(
2π

256
~k · ~x+ φ

)
. (2.7)

The force is then easily derived as

F Tx = ∂yF
T
Ψ and F Ty = −∂xF TΨ . (2.8)

From this forcing, a time scale Tf =
√

2π
kfF

T
0

can be defined with kf taken equal to six.

To maintain the Mach number under control by limitting the backward energy cascade,

we apply a large-scale energy damping as a forcing

~FR (~x, t) = −FR0
∑

1≤‖~k‖≤2

~̂u(~k, t) e
2π
256

~k·~x, (2.9)

where ~̂u(~k, t) is the Fourier transform of ~u(~x, t). The amplitudes of the forcings are

taken equal to F T0 = 0.0008 and FR0 = 0.00001. The D2Q9 [33, 34, 35] is used for

all LBGK simulations and the forcings are applied using the exact-difference method

forcing scheme [61]. All terms of the averaged balance equations are calculated offline

based on dumped configuration fields. Derivatives in those terms are obtained by using

a 2nd order explicit Euler scheme for time derivatives and a 8th order centered scheme

for the space derivatives, i.e.

∂A

∂t

∣∣∣∣n
i,j

∼
3Ani,j − 4An−1

i,j +An−2
i,j

2 ∆t
, and (2.10)

25



∂A

∂x

∣∣∣∣n
i,j

∼
− 1

56A
n
i+4,j + 4

21A
n
i+3,j −Ani+2,j + 4Ani+1,j − 4Ani−1,j +Ani−2,j − 4

21A
n
i−3,j + 1

56A
n
i−4,j

5 ∆x
.

∂A

∂y

∣∣∣∣n
i,j

∼
− 1

56A
n
i,j+4 + 4

21A
n
i,j+3 −Ani,j+2 + 4Ani,j+1 − 4Ani,j−1 +Ani,j−2 − 4

21A
n
i,j−3 + 1

56A
n
i,j−4

5 ∆y
.

(2.11)

To illustrate the balancing of the terms of the energy and enstrophy equations, we plot

on Figs. 2.1 and 2.2, the corresponding evolution in time of the left-hand side (LHSE,ΩV )

and the right-hand side (RHSE,ΩV ). As observed, the RHSE,ΩV terms is constructed

from terms of much higher amplitudes. The balancing errors δE,ΩV are of the order of

magnitude of O(10−3) thus highlighting an excellent hydrodynamic recovery.

Figure 2.1. Typical time-evolution of the kinetic energy balancing over
a single sub-volume of size 181×181 shown for a forced LBGK simulation
with τ0 = 0.60 (Re ≈ 90) on a 256× 256 grid. The top figure shows the
matching between the LHSEV and the RHSEV , the middle figure shows the

contribution of each RHSE, iV term and their sum RHSEV , and the bottom
figure shows the balancing error δEV . Taken from Ref [6] with permissions.

To conduct a statistical analysis for at a characteristic sub-volume size L at a time

t, we calculate the balancing errors δE,ΩV (t) on randomly selected squared sub-volumes

V = L× L as illustrated in Fig. 2.3.
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Figure 2.2. Typical time-evolution of the enstrophy balancing over a
single sub-volume of size 181× 181 shown for a forced LBGK simulation
with τ0 = 0.60 (Re ≈ 90) on a 256× 256 grid. The top figure shows the
matching between the LHSΩ

V and the RHSΩ
V , the middle figure shows the

contribution of each RHSΩ, i
V term and their sum RHSΩ

V , and the bottom
figure shows the balancing error δΩ

V . Taken from Ref [6] with permissions.
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Figure 2.3. Illustration on a snapshot of the vorticity field of three
random squared sub-volumes V1 = L1×L1, V2 = L2×L2, and V3 = L3×L3

corresponding to the sub-volume size L1, L2, and L3 respectively. Taken
from Ref [6] with permissions.

We define a normalized sub-volume size l = L
L0

with L0 = 256 the of the computational

grid, and we define the mean µE,Ωl (t) and the standard deviation σE,Ωl (t) of the balancing

errors δE,Ωl (t) = δE,ΩV=L×L(t) obtained for all sub-volumes of the same normalized sub-

volume size l on a configuration at time t. For each normalized sub-volume size l, the

number of sub-volumes selected is shown in Table 2.1.

Table 2.1. Number of sub-volumes processed per sub-volume size L.

Sub-volume size L Normalized sub-volume size l Number of sub-volumes

L = 256 l = 1 1
100 ≤ L < 256 0.4 ≤ l < 1 1000
10 ≤ L < 100 0.04 ≤ l < 0.4 5000

L < 10 l < 0.04 10000

2.3 Validation: LBGK against Pseudo-Spectral on an ensemble of decaying

flow simulations

We first compare the hydrodynamics recovery of LBGK simulations with the one of PS

simulations, taken as a reference for its renowned accuracy.

We study an ensemble of LBGK simulation against an ensemble of PS simulation: we

perform a simulation of a statistically stationary turbulent flow at Re ≈ 1200 (τ0 = 0.52)

using LBGK and we take 25 configurations from it (Fig. 2.4) that we use as the initial
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configuration of both a LBGK simulation and a PS simulation. The vector potential ~b

used to restart the PS simulations is obtained by inverting ~u = ~∇ ×~b and rescaled to

ensure the same Reynolds number. More accurately, we set

Re =
ULBGKLLBGK

νLBGK0

=
UPSLPS

νPS0

(2.12)

with

UPS = ULBGK
∆xLBGK

∆tLBGK
,

LPS = 2π = LLBGK∆xLBGK ,

νPS0 = νLBGK0

(∆xLBGK)2

∆tLBGK

(2.13)

and where νLBGK0 = c2
s(τ0 − 0.5) with τ0 = 0.52. As ∆xLBGK = 2π

256 , τ0 = 0.52, and

∆tLBGK = 0.001 are fixed, we can get νPS0 ≈ 0.004. We fix ∆tPS = 0.0005 so that

configurations of both PS and LBGK simulations are dumped at the same physical time

(∆tLBGK ∝ ∆tPS)and the stability of the PS simulations is ensured. As a result, the

initial LBGK simulation velocity field are rescaled by a factor ∆xLBGK

∆tLBGK
before to restart

the PS simulations. All simulations of both ensembles are then left to decay for a du-

ration of 450Tf . We show the resulting superposed ensemble-averaged energy spectrum

of both the LBGK and PS ensembles at three chosen times t1 = 0, t2 = 225Tf , and

t3 = 450Tf in Fig. 2.5. Note that the pressure field of the PS simulations is calculated

by solving the Poisson equation.

Figure 2.4. Evolution of the kinetic energy (a) and of the enstrophy
(b) of the forced LBGK simulation. The 25 vertical lines highlight the
sampled configurations used to initialize the 25 decaying flow simulations
of the PS and the LBGK ensembles. Taken from Ref [6] with permissions.

The outcome of the statistical analysis of the kinetic energy balancing error δEl and en-

strophy balancing error δΩ
l is presented in Figs. 2.6 and 2.7. The reference PS ensemble’s

hydrodynamics recovery accuracy is significantly higher than the LBGK’s. Besides, it
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Figure 2.5. Superposed ensemble-averaged energy spectrum shown for
three selected time instances for the PS and the LBGK simulations. The
Kraichnan-Leith-Batchelor predictions for the backward energy cascade
slope of k−5/3 and forward enstrophy cascade slope of k−3 are given for
reference. Taken from Ref [6] with permissions.

shows an improvement with time – and thus with increasingly lower Reynolds number –

which cannot be observed from the results stemming from the LBGK ensemble in terms

of both the energy balancing error statistics µEl and σEl (Fig. 2.6, Panels (c)-(d)) and

the the enstrophy balancing error statistics µΩ
l and σΩ

l (Fig. 2.7, Panels (c)-(d)). All in

all, both balancing errors highlight a quality hydrodynamic recovery, espescially on large

sub-volumes with an accuracy two orders of magnitude higher than on small sub-volumes

(see Figs. 2.6 and 2.7, Panels (a)-(b)), on which the errors still remain of order O(10−1).

In view of the previous result and on the dependence of the theoretical hydrodynamics

recovery on the smallness of the Mach number, we plot, for the LBGK ensemble, a similar

statistical analysis of its value on a normalized sub-volume size l, that is

Mal =
〈U
cs

〉
V=L×L, l =

L

L0
(2.14)

on Fig. 2.8. Its mean is observed to be independent of the sub-volume size (Fig. 2.8-(c))

with values around 0.55 to 0.4 and its standard deviation (Fig. 2.8-(d)) as well up to

L ≈ 20. As the flow decays, so does its Mach number number. This analysis provides an

evaluation of the importance of the neglected O(Ma3) in the momentum equation (see

Eq. (1.45)). Looking at the statistics of the balancing errors in Figs. 2.6 and 2.7, we see

that the value of our simulation’s Mach number, Ma ≈ 0.05 is low enough not to affect
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Figure 2.6. Statistics of the balancing error obtained from the kinetic
energy balance δEl (see Eq. (2.5)) against the normalized size of the sub-
volume l shown for the PS and LBGK ensemble of 25 decaying simulations
for three selected times. Top figures are PDF of the balancing error for
sub-volumes corresponding to l ≈ 0.01 (Panel (a)) and l ≈ 0.707 (Panel
(b)) and insets shows the PDFs of the balancing error for the PS ensemble
alone. Bottom figures are the mean (Panel (c)) and the standard deviation
(Panel (d)) of the balancing error. Taken from Ref [6] with permissions.
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Figure 2.7. Statistics of the balancing error obtained from the enstro-
phy balance δΩ

l (see Eq. (2.6)) against the normalized size of the sub-
volume l shown for the PS and LBGK ensemble of 25 decaying simu-
lations for three selected times. Top figures are PDFs of the balancing
error for sub-volumes corresponding to l ≈ 0.01 (Panel (a)) and l ≈ 0.707
(Panel (b)) and insets shows the PDFs of the balancing error for the PS
ensemble alone. Bottom figures are the mean (Panel (c)) and the stan-
dard deviation (Panel (d)) of the balancing error. Taken from Ref [6]
with permissions.
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the accuracy of the hydrodynamic recovery as statistics do not vary in time as the Mach

number decays and we therefore recover a reliable Navier-Stokes solver.

Figure 2.8. Statistics of the Mach number at normalized sub-volume
size l (see Eq. (2.14)) Mal against the normalized size of the sub-volume
l shown for the LBGK ensemble of 25 decaying simulations for three se-
lected times. Top figures are PDFs of Mal for sub-volumes corresponding
to l ≈ 0.01 (Panel (a)) and l ≈ 0.707 (Panel (b)). Bottom figures are the
mean (Panel (c)) and the standard deviation (Panel (d)) of Mal. Taken
from Ref [6] with permissions.

2.4 Forced LBGK hydrodynamics

Using the same computational set-up and the same forcing than in the previous section,

we benchmark forced LBGK turbulent dynamics at changing Reynolds numbers. We

process dumped configurations of simulations at five different Reynolds numbers Re ≈
90, 390, 640, 1200 and 1800 (corresponding to relaxation times τ0 = 0.60, 0.54, 0.53,

0.52 and τ last0 = 0.515, beyond which LBGK is no longer stable) in the statistically

stationnary regime. The energy spectrum of the simulations of the resulting simulations

is plotted Fig. 2.10. The effect of the inverse cascade is successfully reduced thanks to the

large-scale energy damping forcing. Moreover, as we decrease τ0 (i.e. as we increase Re)

the inertial-range of scales corresponding to the forward enstrophy cascade extends ang

33



Figure 2.9. Evolution of the kinetic energy (a) and of the enstrophy (b)
of LBGK simulations for five different relaxation times. The 25 vertical
lines highlight the time when configurations were processed to gather
statistics in space and time of the balancing errors. Taken from Ref [6]
with permissions.

its corresponding slope approches the Kolmogorov-predict value of −3 [66, 14]. In order

to evaluate the hydrodynamic recovery of those simulations, we calculate statistics of

the balancing errors sampling sub-volume in space and also in time on 25 configurations

(see Fig. 2.9).

Figs. 2.11 and 2.12 shows the results of the statistical analysis of the balancing errors δEl
and δΩ

l respectively. The forced LBGK results are very similar to the LBGK validation

results with the accuracy of the hydrodynamic recovery depending significantly on the

sub-volume size. On large sub-volumes, the balancing errors are of an order of magnitude

of up to O(10−3) lower than on small sub-volumes, where it is of orders of magnitude

O(10−1) (see dashed lines in Figs. 2.11 and 2.12, Panels (c)-(d)). On Fig. 2.11, we note

a slight dependence of the energy balancing error on the Reynolds number. However, on

Fig. 2.12, we see that the enstrophy balancing error improves as the Reynolds number

decreases, as one could expect given that enstrophy is heavily impacted by the small-scale

resolution.

As shown in Fig. 2.13, the Mach number of the forced LBGK changes with the Reynolds

number. This is due to the fact that we forced all simulation with the same fixed forcinf

amplitudes. Again, statistics of the Mach number at sub-volume size l, Mal (Eq. 2.14)

do not affect the quality of the hydrodynamic recovery. Indeed, we are working with

Mach numbers that have the same qualitative and quantitative statistics than the ones

observed in the previous section (see Fig. 2.8).
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Figure 2.10. Superposed time-averaged spectrum of LBGK simulations
for five different relaxation times. The Kraichnan-Leith-Batchelor predic-
tions for the backward energy cascade slope of k−5/3 and forward enstro-
phy cascade slope of k−3 are given for reference. Taken from Ref [6] with
permissions.

2.5 Concluding remarks

In this work, we have developped a generic tool to assess the hydrodynamics of a fluid

flow generated through numerical simulations. It relies on calculating averages of each

term of the kinetic energy and enstrophy balance equations averaged on a randomly

chosen sub-volumes of the computational domain in a systematic manner. To quantify

the accuracy of the numerical simulation, we have defined balancing errors and performed

a statistical analysis over squared sub-volumes of varying size.

We first validated this approach on ensembles of decaying 2D turbulence flows by and

compared a D2Q9 LBGK to a reference PS code. The quality of the hyrodynamics recov-

ered by the PS simulations was shown to be two to six orders of magnitudes higher than

LBGK, which still recovered Navier-Stokes dynamics with high accuracy. In all cases,

larger sub-volume size correlates with higher accuracy. We then applied the developed

tool to benchmark LBGK hydrodynamics for forced turbulence at changing Reynolds

number. In that case as well, statistics of the balancing errors were very close to the

validation results. The forcing scheme additional approximate error was therefore not

observed.
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Figure 2.11. Kinetic energy balancing error δEl (see Eq. (2.5)) in func-
tion of the size of the sub-volume l for 5 forced LBGK simulation of
different Reynolds numbers. Top figures are PDF of the balancing er-
ror for sub-volumes corresponding to l ≈ 0.01 (Panel (a)) and l ≈ 0.707
(Panel (b)). Bottom figures are the mean (Panel (c)) and the standard
deviation (Panel (d)) of the balancing error. Taken from Ref [6] with
permissions.
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Figure 2.12. Enstrophy balancing error δΩ
l (see Eq. (2.6)) against the

size of the sub-volume l shown for 5 forced LBGK simulation of different
Reynolds numbers. Top figures are PDF of the balancing error for sub-
volumes corresponding to l ≈ 0.01 (Panel (a)) and l ≈ 0.707 (Panel
(b)). Bottom figures are the mean (Panel (c)) and the standard deviation
(Panel (d)) of the balancing error. Taken from Ref [6] with permissions.
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Figure 2.13. Local Mach number (see Eq. (2.14)) Mal in function of the
normalized size of the sub-volume l shown for 5 forced LBGK simulation
of different Reynolds numbers. Top figures are PDF of the balancing
error for sub-volumes corresponding to l ≈ 0.01 (Panel (a)) and l ≈ 0.707
(Panel (b)). Bottom figures are the mean (Panel (c)) and the standard
deviation (Panel (d)) of Mal. Taken from Ref [6] with permissions.
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Overall, while the PS method offers a much higher level of accuracy than LBGK, LBGK

proved to be able to recover the Navier-Stokes equation with a good agreement. More-

over, in both the validation and benchmark, a value of Mach number of 0.05 was shown

to be low enough for its effect to be sub-leading in the hydrodynamic recovery. There-

fore, we have obtained valuable insights on the LBGK recovery of hydrodynamics and

we can now study the impact on this recovery of an additional SGS model term to the

balancing equation while using the present results as reference.
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CHAPTER 3

A-PRIORI STUDY OF ELBM HYDRODYNAMICS

RECOVERY AND IMPLICIT SGS MODEL

In this chapter, we investigate the validity of the a priori assumption that ELBM can

be macroscopically described as a LES with an eddy viscosity model. In section 3.1, we

describe how the hydrodynamic recovery check tool was extended to include eddy viscous

dissipation. In the context of 2D HIT (section 3.2), and 3D HIT (section 3.3), we first

present the results of the extended hydrodynamic check tool and we numerically explore

the range of validity of the macroscopic eddy viscosity; some concluding remarks follows

in Section 3.4.

3.1 Extension of the hydrodynamic check tool

The hydrodynamic recovery check tool developed in Chapter 1 is based on calculating

each term of the kinetic energy balance equations averaged over a suitable ensemble

of sub-volumes of the computational grid and conducting a statistical analysis of an

error to a perfect balancing. To extend this tool, we add the contributions related to

the eddy viscous dissipation terms to the kinetic energy E = ρuiui
2 ) balance Eq (2.1).

The full derivation is given in Appendix A and we give Eq. (3.2) the outcome. It

describes the balance between the time derivative of the averaged (over a volume V

denoted by
〈
· · ·
〉
V

) kinetic energy(LHSEV ) and the right-hand side (RHSEV ) given by

the contributions driving its evolution: the effect of compressibility, dissipation, input,

and the transport and diffusive fluxes written for a viscosity changing in space and time

ν = νeff(x, t) = ν0 + δνe(x, t). In this chapter, the eddy viscosity will be systematically

taken as the measured eddy viscosity δνe = δνMe , with

δνMe = c2
s

2− α
2αβ

∆t. (3.1)
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LHSEV = ∂t
〈ρuiui

2

〉
V

=−
〈
∂j

(ρuiui
2

uj

) 〉
V
−
〈
ui∂ip

〉
V

+
〈
uiFi

〉
V

−
〈
ν0 ρ (∂jui + ∂iuj) ∂jui

〉
V

+
〈
∂j (ν0 ρui (∂jui + ∂iuj))

〉
V

−
〈
δνe ρ (∂jui + ∂iuj) ∂jui

〉
V

+
〈
∂j (δνe ρui (∂jui + ∂iuj))

〉
V

=RHSE, 1V +RHSE, 2V +RHSE, 3V +RHSE, 4V +RHSE, 5V +RHSE, 6V +RHSE, 7V

=RHSEV

(3.2)

We redefine a balancing error δEV in order to quantify the accuracy of the hydrodynamics

recovery over a sub-volume V :

δEV (t) =

∣∣RHSEV (t)− LHSEV (t)
∣∣

L−1
0

(
maxt

〈
E(t)

〉
V0

) 3
2

. (3.3)

Note that the denominator of Eq. (3.3) used to normalize the error is arbitrary, and the

one chosen here represents properly the order of magnitude and the dimension of the

therms of the kinetical balance equation.

As in the previous chapter, the sub-volume averaged terms are calculated offline based on

the output configuration fields. A 2nd order explicit Euler scheme is used (see Eq. (2.10))

to evaluate time derivatives. However, in this chapter, spectral derivatives are used to

calculate spatial derivatives.

3.2 ELBM simulation of 2D Homogeneous Isotropic Turbulence, 2D HIT

In order to evaluate the implicit SGS of ELBM, we first conduct a set of simulations of

forced 2D homogeneous isotropic turbulence (HIT) at different Reynolds numbers on a

periodic two-dimensional 256×256 computational grid. We make use of a 2D lattice with

9 discrete velocities, the well-known D2Q9 [33, 34, 35]. The macroscopic forcing used to

trigger homogeneous isotropic turbulence acts on a shell of (dimensionless) wavenumbers

k of magnitude from 5 to 7 with a constant phase φ. We write it in a stream-function

formulation to ensure that it does not generate any incompressibility:

F TΨ (x) = F T0
∑

5≤‖k‖≤7

cos

(
2π

L0
k · x + φ

)
(3.4)

with L0 = 256, the size of the computational domain.
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The reciprocal force FT is then given by

F Tx = ∂yF
T
Ψ and F Ty = −∂xF TΨ , (3.5)

in which the forcing amplitude F T0 is kept constant for all simulations. Based on it, we

define a time-scale Tf =
√

2π
kfF

T
0

, where kf is taken equal to six, the average wavenumber

forced in Eq, (3.4). As 2D turbulence is characterized by the presence of a backward

energy cascade [66, 14], in order to recover the NSE using LBM, it is necessary to

maintain the Mach number under control. Therefore, as in Eq. (1.1), we introduce a

large scale drag term, but here in order not to spoil the small scale physics, we use

spectral forcing to damp only energy in the shell of wavenumber of amplitude between

1 to 2:

FR (x, t) = −FR0
∑

1≤‖k‖≤2

û(k, t) e
2π
L0

k·x
, (3.6)

where û(k, t) is the Fourier transform of u(x, t).

We enforce the resulting forcing F = FT +FR using the exact-difference method forcing

scheme [61] (See Chapter 1.4.3).

Table 3.1. Parameters of the conducted simulations

Re τ0 F T0 FR0

60 0.51 5.0 10−4 1.0 10−6

240 0.5025 5.0 10−4 1.0 10−5

1200 0.5005 5.0 10−4 1.5 10−5

6000 0.5001 5.0 10−4 2.0 10−5

12000 0.50005 5.0 10−4 5.0 10−4

We conduct a set of one LBGK and five ELBM statistically stationary simulations vary-

ing the input relaxation time τ0 to gradually increase the Reynolds number while chang-

ing the large-scale energy damping forcing amplitude to maintain the Mach number

under control. The conducted LBGK simulation uses the last stable relaxation time

τ0 = 0.51. For the first ELBM simulation, we use the same relaxation time τ0 = 0.51

and we gradually decrease it down to τ0 = 0.50005. The parameters used in each simu-

lation are summarized in Table 3.2. Fig. 3.9 shows that the Mach number is successfully

maintained around a value of 5.0 10−2. This Mach number was shown to be sufficiently

low to recover well the NSE in Chapter 2.

We show in Fig. 3.10 the superposed time-averaged spectrum for the conducted simu-

lations. At large scale, the energy removal prevents the energy to accumulate. On the

other hand, at small scales, we observe that, as we decrease τ0 (increasing Re), the flow

becomes more turbulent and the slope gets increasingly closer to the forward enstrophy
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Figure 3.1. Evolution of the Mach number of the conducted LBGK and
ELBM simulations.

Figure 3.2. Superposed time-averaged spectrum of a LBGK simulation
for the ELBM simulations for five different relaxation times. The red
background highlights the range of wavenumbers where energy damping
is active and the blue backgrounds show the range of wavenumbers where
energy is injected. The Kraichnan-Leith-Batchelor predictions for the
backward energy cascade slope of k−5/3 and forward enstrophy cascade
slope of k−3 are given for reference.
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cascade slope of −3. For ELBM simulations of Re ≈ 1200, the implicit ELBM SGS

model nicely extends the inertial range of the direct cascade, while for simulations of

Re ≈ 6000 and Re ≈ 12000, the energy accumulates at small scales, showing that the

implicit SGS model is not dissipative enough.

From those observations, we identify three typical ELBM simulation cases. The first one,

for Re ≈ 60, exhibits an exponential decay at small scales and therefore, the resolution

of the simulation is high enough to resolve all scales (over-resolved case). The second one

for Re ≈ 1200, shows a long inertial range and will be labeled as the optimally-resolved

case. The third one, for Re ≈ 12000, highlights a significant energy accumulation at

small scales, showing that not enough scales are resolved and the model is not able to

properly dissipate energy. It will be designated as the under-resolved case.

3.2.1 Validation of the ELBM hydrodynamics

To illustrate the typical hydrodynamic recovery of an ELBM simulation, we sho in

Fig. 3.11 an example of the evolution in time of the kinetic energy balancing for the

optimally-resolved simulation on a randomly chosen sub-volume of size 128 × 128. The

matching between the left-hand side (LHSEV ) and the right-hand side (RHSEV ) shows

very small discrepancies, whereas the total RHSEV terms are obtained by summing up

terms of significantly higher amplitude. Overall, the balancing error δEV is of the order

O(10−2) to O(10−3) and underlines an excellent hydrodynamics recovery.

To describe the hydrodynamics recovery accuracy, we conduct a statistical analysis of

the balancing error δEV (t) over randomly chosen squared sub-volumes V = L × L. We

introduce the normalized sub-volume size l = L
L0

with L0 = 256 the size of the squared

computational domain and gather the balancing errors δEl = δEV=L×L obtained for 10000

sub-volumes of the same normalized sub-volume size l on 25 configurations sampling the

statistically stationary domain. We call their mean µEl .

We show the results of the statistical analysis of the kinetic energy balancing error

δEl in Fig. 3.4. As expected from the hydrodynamics recovery of LBGK simulations

in chapter 2, the size of the sub-volume strongly affects the hydrodynamics recovery

accuracy. Indeed, hydrodynamics is much better recovered on large sub-volumes than

on small sub-volumes with up to three orders of magnitudes difference (compare values

at dashed lines in Fig. 3.4, Panels (c)).

On the statistics of the kinetic energy balancing error in Fig. 3.4, we can also observe

a dependence on the Reynolds number on the mean µEl (Panel (c)) with the balancing

errors globally being higher for the simulations that are less resolved. For simulations
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Figure 3.3. Typical time-evolution of the kinetic energy balancing over
a single sub-volume of size 128 × 128 shown for the optimally-resolved
ELBM simulation (Re ≈ 1200) on a 256 × 256 grid. The top figures
shows the evolution of the matching between the LHSEV and the RHSEV ,

the middle figures shows the contribution of each RHSE,iV term and their
sum, RHSEV , and the bottom figure shows the evolution of the balancing
error δEV .
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Figure 3.4. Statistics of the balancing error obtained from the kinetic
energy balance δEl (see Eq. (3.3)) against the size of the sub-volume l for
5 forced LBGK simulation of different Reynolds numbers. Top figures
are PDF of the balancing error for ELBM simulations at Re ≈ 1200
(Panel (a)) and at Re ≈ 6000 (Panel (b)) for sub-volumes corresponding
to l ≈ 0.01, l ≈ 0.09, and l ≈ 0.707. Bottom figure is the mean of the
balancing error (Panel (c)).
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of Re ≤ 1200, up to the optimally-resolved case, this trend is less obvious and the

accuracy of the hydrodynamics of simulation of Re ≈ 240 is slightly better than the one

of Re ≈ 1200 (optimally-resolved case). Beyond this Reynolds number, the quality of

hydrodynamics recovery appears to quickly decrease as can be seen on the probability

distribution functions (PDF) of δEl for the simulations Re ≈ 1200 (Panel (a)) and Re ≈
6000 (Panel (b)). Indeed, they highlight that both at small sub-volumes and large

sub-volumes, there is a jump of over an order of magnitude in the balancing error for

simulations of Reynolds numbers beyond the optimally-resolved simulation’s.

Overall, the hydrodynamics recovery accuracy remains good for simulations of Reynolds

number from 60 (over-resolved case) to 1200 (optimally-resolved case) but is not main-

tained to the LBGK’s order of magnitude. Higher Reynolds number simulations up to

Re = 12000 (under-resolved case) exhibit a higher balancing error, especially for small

sub-volumes. As a result, it appears that ELBM’s implicit SGS modeling is able to

properly maintain a recovery of hydrodynamics for simulations with a Reynolds number

up to 20 times the Reynolds number of the last stable LBGK simulation. For higher

Reynolds number, we observed that hydrodynamics is not preserved and ELBM acts as

a mere stabilizer.

3.2.2 Numerical assessment of the macroscopic behavior of ELBM

The derivation of the approximated eddy viscosity

δνAe ≈ −c2
s∆t

2 1

6β2

SλµSµγSγλ
SγδSγδ

, (3.7)

where Sij = 1
2(∂iuj+∂jui) is the strain-rate tensor (see Chapter 4 for the full derivation),

is based on the assumption of small deviation of α around 2. As shown on the PDF of

α (Fig. 3.15), this assumption remains valid for all of our ELBM simulations with a

maximum deviation of 1% in the under-resolved case. We note that the smaller the

Reynolds number, the smaller the fluctuations of α around 2 are.

To assess the validity of the approximated eddy viscosity δνAe , we measure the eddy

viscosity stemming from the effective relaxation time δνMe using Eq. (1.56). We show

on Fig. 3.16, the joint PDF between δνMe and δνAe both expressed relatively to the

input viscosity ν0. Pearson’s correlation coefficient r decreases as the Reynolds number

increases and the amplitude of the fluctuations of α increases. It reaches r = 0.89 in

the over-resolved case, showing a quite strong correlation, to r = 0.07 in the under-

resolved case, where the approximate eddy viscosity no longer holds. However, even in

the over-resolved case, the joint PDF highlights the presence of two branches, one of
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Figure 3.5. PDF of α for the 5 ELBM simulations. A line of α = 2 has
been added for the LBGK simulation for reference.

them showing a very good agreement between the measured and approximated viscosity

while the other is not properly understood at this stage.

Figure 3.6. Joint PDF between the measured eddy viscosity δνMe /ν0

(see Eq. (3.1)) and the approximated eddy viscosity δνAe /ν0 (see Eq. (3.7))
expressed relatively to the input viscosity ν0 for the three showcases: the
over-resolved case, optimally-resolved case, and under-resolved case. The
blue curve shows a perfect fit δνMe = δνAe , and r is Pearson’s correlation
coefficient.
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The snapshot Fig. 3.18 gives a valuable insight on the spatial correlation between the

measure eddy viscosity δνMe and the approximated one δνAe . The vorticity ω is also

plotted as a reference. We observe that the eddy viscosity is a small scale quantity and

the spoiling of the spatial correlation between δνMe and δνAe with the increase of the

Reynolds number is again highlighted.

Figure 3.7. Snapshot of the vorticity ω = ∂xuy−∂yux, of the measured
eddy viscosity δνMe /ν0 (see Eq. (3.1)) and the approximated eddy viscos-
ity δνAe /ν0 (see Eq. (3.7)) expressed relatively to the input viscosity ν0

for the three showcases. From left to right, the over-resolved case, the
optimally-resolved case, and under-resolved case.

50



Additionally, we can observe on the PDF of the measure and approximated eddy viscosity

in Fig. 5.3 that for simulations of Reynolds number below the one of the optimally-

resolved simulation, the measured turbulent viscosity δνMe is slightly positively skewed,

making the ELBM implicit SGS overall dissipative, while the approximated one, δνAe

SGS does not exhibit this characteristic.

Figure 3.8. PDF of δνMe
ν0

(a) and δνAe
ν0

(b) for the LBGK and ELBM
simulations at Re ≈ 60 and the ELBM simulations at Re ≈ 240 and
Re ≈ 1200. The For the LBGK simulation, δνMe

ν0
= 0 and δνAe

ν0
= 0 are

plotted for reference. Insets contain zoom-ins of the PDF for LBGK and
ELBM simulations at Re ≈ 60 and the ELBM simulation at Re ≈ 240.

3.3 ELBM simulation of 3D Homogeneous Isotropic Turbulence, 3D HIT

We investigate 3D HIT by conducting a set of forced simulations on a periodic three-

dimensional 256× 256× 256 computational grid on a lattice with 27 discrete velocities,

the D3Q27 [33, 34, 35]. The macroscopic homogeneous isotropic turbulence forcing acts

on a shell of (dimensionless) wavenumbers k of magnitude from 1 to 2 with a constant

phase φ. We take its rotational formulation to ensure that it does not generate any

incompressibility:

F = F T0 ∇× FShell with F̂Shell(k, t) =

{
1, if |k| ≤ 2

0, otherwise
, (3.8)

where F̂Shell(k, t) is the Fourier transform of FShell(x, t) and the forcing amplitude F T0
is kept constant for all simulations to 5.96 10−8. This value has been chosen in order

to to maintain a low Mach number, which allows the recovery of the NSE using LBM.

Based on this forcing amplitude, we can define a time-scale Tf =
√

2π
kfF

T
0

, where kf = 2.
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We enforce the resulting forcing F using, again, the exact-difference method forcing

scheme [61] (see Chapter 1.4.3)

We conduct a set of four LBGK and five ELBM statistically stationary simulations

varying the input relaxation time τ0 to gradually increase the Reynolds number. The

conducted LBGK simulations starts from τ0 = 0.55 to the last stable relaxation time τ0 =

0.502. For the first ELBM simulation, we start at the first with the smaller relaxation

time of the conducted LBGK simulations for which the entropic scheme is active (α not

homogeneously equal to 2), τ0 = 0.51, and we conduct simulations gradually decreasing

it down to τ0 = 0.50002. The parameters used in each simulation are summarized

in Table 3.2. Fig. 3.9 shows that the Mach number is maintained around a value of

5.0 10−2. This Mach number was shown to be sufficiently low to recover well the NSE

in 2D turbulent flows in Chapter 2.

Figure 3.9. Evolution of the Mach number of the conducted LBGK (red
lines) and ELBM (black lines) simulations.

Table 3.2. Parameters of the conducted simulations

Re τ0 FT
0

6.1 102 0.55 5.96 10−8

3.4 103 0.51 5.96 10−8

1.7 104 0.502 5.96 10−8

7.0 104 0.5005 5.96 10−8

1.8 106 0.50002 5.96 10−8
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We show in Fig. 3.10 the superposed time-averaged spectrum for the conducted sim-

ulations. At small scales, we observe as we decrease τ0 (increasing Re) that the flow

becomes more turbulent and the slope gets increasingly closer to the forward energy

cascade slope of −5/3 [28, 14]. For the ELBM simulation at Re ≈ 7.0 104, we observe

that the implicit ELBM SGS model is able to nicely extends the inertial range of the

direct cascade, while for the simulation at Re ≈ 1.8 106 the energy accumulates at small

scales, showing that the implicit SGS model is not dissipative enough.

Figure 3.10. Superposed time-averaged spectrum of four LBGK simu-
lations (red lines) and five ELBM simulations (black lines) varying the
relaxation times. The blue background shows the the range of wavenum-
bers where energy is injected.

We identify four typical ELBM simulation cases. The first one, for Re ≈ 3.4 103, exhibits

an exponential decaying at small scales and therefore, the resolution of the simulation is

high enough to resolve all scales (over-resolved case). The second one for Re ≈ 1.7 104,

is barely able to solve all scales of the flow and also corresponds to the smallest stable τ0

for LBGK. It will be referred as the resolved case. The third one, Re ≈ 7.0 104, shows an

extended inertial range and will be labeled as the optimally-resolved case. The last one,

for Re ≈ 1.8 106, highlights a significant energy accumulation at small scales, showing

that not enough scales are resolved and the model is not able to properly dissipate energy.

It will be designated as the under-resolved case.

3.3.1 Validation of the ELBM hydrodynamics

Fig. 3.11 presents an example of the evolution in time of the kinetic energy balancing for

the over-resolved simulation on a randomly chosen sub-volume of size 128×128×128. The

53



matching between the left-hand side (LHSEV ) and the right-hand side (RHSEV ) shows

very small discrepancies, whereas the total RHSEV terms are obtained by summing up

terms of significantly higher amplitude. Overall, the balancing error δEV is of the order

O(10−1) and highlights a good hydrodynamics recovery.

Figure 3.11. Typical time-evolution of the kinetic energy balancing over
a single sub-volume of size 128 × 128 × 128 shown for the over-resolved
ELBM simulation (Re ≈ 3.4 103) on a 256 × 256 × 256 grid. The top
figures shows the evolution of the matching between the LHSEV and the

RHSEV , the middle figures shows the contribution of each RHSE,iV term
and their sum, RHSEV , and the bottom figure shows the evolution of the
balancing error δEV .

However, it is worth noticing that rescaling the input viscosity ν0 can significantly im-

prove the quality of the hydrodynamics recovery. Indeed, we show on Fig. 3.12, the

improvement compared to Fig. 3.11 by rescaling ν0 by a factor 1.06. The achieved bal-

ancing error improved by over an order of magnitude to O(10−2)–O(10−4). This is the
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sign of the presence of so-called numerical dissipation, where the numerical scheme ar-

tificially increase dissipation, although it is usually seen with Finite-Difference-Method-

based schemes (see for example Ref. [67]).

Figure 3.12. Typical time-evolution of the kinetic energy balancing over
a single sub-volume of size 128 × 128 × 128 shown for the over-resolved
ELBM simulation (Re ≈ 3.4 103) on a 256 × 256 × 256 grid. The top
figures shows the evolution of the matching between the LHSEV and the

RHSEV , the middle figures shows the contribution of each RHSE,iV term
and their sum, RHSEV , and the bottom figure shows the evolution of the
balancing error δEV .

We show the results of the statistical analysis of the kinetic energy balancing error δEl in

Fig. 3.4. As expected from the hydrodynamics recovery of 2D HIT simulations presented

in the previous section, the Reynolds number of the simulation, as well as the size of

the sub-volume, strongly affects the hydrodynamics recovery accuracy. Indeed, as seen

on the mean hydrodynamics is much better recovered on large sub-volumes (Fig. 3.13,
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Panels (b)) than on small sub-volumes (Fig. 3.13, Panels (a)) with up to three order of

magnitudes difference (Fig. 3.13, Panels (c)). However, this trends is only valid for small

subvolume sizes. From ` = 40 on, we observe that we reach a plateau of accuracy.

Figure 3.13. Statistics of the balancing error obtained from the kinetic
energy balance δEl (see Eq. (3.3)) against the size of the sub-volume l for
all conducted simulations. Top figures are PDF of the balancing error
at ` ≈ 0.01 (Panel (a)) and at ` ≈ 0.707 (Panel (b)) for sub-volumes
corresponding to l ≈ 0.01, l ≈ 0.09, and l ≈ 0.707. Bottom figure is the
mean of the balancing error (Panel (c)).

After having observed the existence of a numerical dissipation, we have found the rescal-

ing factors for the viscosity ν0 that best improve best the hydrodynamic recovery accu-

racy (see Tab. 3.3). Taking this phenomenon into account, we present the kinetic energy

balancing error for rescaled viscosities in Fig. 3.14. We observe a dependence on the

Reynolds number on the mean µEl (Panel (c)) with the balancing errors globally being

higher for the simulations that are less resolved. For simulations of Re ≈ 3.4 103 (over-

resolved case), up to Re ≈ 7.0 104 (the optimally-resolved case), we observe that the

accuracy of the hydrodynamics of the simulations increases with their Reynolds number
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but are still contained within an order of magnitude. For Reynolds numbers beyond

the optimally-resolved simulation’s, the accuracy of the hydrodynamics recovery appears

to quickly decrease as can be seen on the probability distribution functions (PDF) of

δEl both at small sub-volume sizes (Panel (a)) and large sub-volume sizes (Panel (b)).

Indeed, they highlight a jump of several orders of magnitude in the balancing error for

the under-resolved simulation.

Figure 3.14. Statistics of the balancing error obtained from the
viscosity-rescaled kinetic energy balance δEl (see Eq. (3.3)) against the
size of the sub-volume l for all conducted simulations. Top figures are
PDF of the balancing error at ` ≈ 0.01 (Panel (a)) and at ` ≈ 0.707
(Panel (b)) for sub-volumes corresponding to l ≈ 0.01, l ≈ 0.09, and
l ≈ 0.707. Bottom figure is the mean of the balancing error (Panel (c)).

3.3.2 Numerical assessment of the macroscopic behavior of ELBM

The derivation of δνAe Eq. (1.57) is based on the assumption of small deviation of α

around 2. Again and as shown on the PDF of α (Fig. 3.15), this assumption remains
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Table 3.3. Rescaling factors for the input viscosity ν0 for each of the
conducted simulations. For the ELBM simulation no rescaling factors
were found to improve the hydrodynamic recovery.

Method Re Scaling factor for ν0

LBGK 6.1 102 1.00
LBGK 1.7 104 1.02
ELBM 1.7 104 1.06
LBGK 3.4 103 1.19
ELBM 3.4 103 1.55
ELBM 7.0 104 1.60
ELBM 1.8 106 NA

valid for all of our ELBM simulations with a maximum deviation of 1% in the under-

resolved case. We note, that as observed in the 2D HIT case in the previous section, the

smaller the Reynolds number, the smaller the fluctuations of α around 2 are.

Figure 3.15. PDF of α for the 4 ELBM simulations. α = 2 corresponds
to the value for LBGK simulationa.

To assess the validity of the approximated eddy viscosity δνAe Eq. (1.57), we measure the

eddy viscosity stemming from the effective relaxation time δνMe using Eq. (1.56). We

show on Fig. 3.16, the joint PDF between δνMe and δνAe both expressed relatively to the

input viscosity ν0. Pearson’s correlation coefficient r decreases as the Reynolds number

increases and the amplitude of the fluctuations of α increases. It reaches r = 0.90 in the

over-resolved case, showing a quite strong correlation, but quickly goes down to r = 0.49
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for the optimally-resolved case and to r = 0.1 in the under-resolved case, where the

approximate eddy viscosity no longer holds.

Figure 3.16. Joint PDF between the measured eddy viscosity δνMe /ν0

(see Eq. (3.1)) and the approximated eddy viscosity δνAe /ν0 (see Eq. (3.7))
expressed relatively to the input viscosity ν0 for the three showcases: the
over-resolved case, optimally-resolved case, and under-resolved case. The
blue curve shows a perfect fit δνMe = δνAe , and r is Pearson’s correlation
coefficient.

As in the 2D HIT case, we can observe on the PDF of the measure and approximated

eddy viscosity in Fig. 5.3 that for simulations of Reynolds number below the one of the

optimally-resolved simulation, only the measured turbulent viscosity δνMe is positively

skewed, making the ELBM implicit effective viscosity higher than the input one. The

approximated eddy viscosity δνAe seem to not be able to approximate the dissipative

properties of the measure eddy viscosity.

Figure 3.17. PDF of the measured eddy viscosity (pannel (a)) δνMe /ν0

(see Eq. (3.1)) and the approximated eddy viscosity (pannel (b)) δνAe /ν0

(see Eq. (3.7)) expressed relatively to the input viscosity ν0 at different
reynolds numbers
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Figure 3.18. Snapshot of the vorticity ‖ω| = |∇ × u‖, of the measured
eddy viscosity δνMe /ν0 (see Eq. (3.1)) and the approximated eddy viscos-
ity δνAe /ν0 (see Eq. (3.7)) expressed relatively to the input viscosity ν0

for the four showcases: the over-resolved, resolved, ptimally-resolved, and
under-resolved cases.
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The snapshot Fig. 3.18 gives a valuable insight on the spatial correlation between the

measure eddy viscosity δνMe and the approximated one δνAe . The vorticity ω is also

plotted as a reference. We observe that the eddy viscosity is a small scale quantity and

the spoiling of the spatial correlation between δνMe and δνAe with the increase of the

Reynolds number is again highlighted.

3.4 Concluding remarks

In this work, we have presented a detailed numerical study of the implicit SGS model

stemming from ELBM in the context of both forced 2D and 3D HIT, assuming a-priori

that ELBM can be macroscopically described as a LES eddy viscosity model. We con-

ducted LBGK simulations at decreasing input relaxation time τ0 until the lowest relax-

ation time ensuring stability and then ELBM simulations of further decreasing relaxation

times (i.e. gradually increasing Reynolds numbers).

Firstly, we have applied a systematic statistical hydrodynamics recovery accuracy tool

to the performed simulations. This tool rests on the measurement of each term of the

kinetic energy balance averaged over random sub-volumes for different configurations

in the statistically stationary domain. The generated hydrodynamics recovery is then

assessed through the definition of the balancing errors and its calculations across a large

number of sub-volumes of a wide range of sizes. In the case of 3D HIT simulations,

we observed the presence of numerical dissipation. When we rescaled appropriately

the input viscosity in the energy balance, we obtained results similar to the 2D HIT

simulations case. Using this approach, we have been able to observe that the ELBM

hydrodynamics recovery accuracy is not maintained at the order of magnitude of LBGK.

Although, it seems that it is able to maintain a range of validity as a turbulence model

going up to 20 times the Reynolds number of the last stable LBGK simulation, while

the mean balancing error increase by one order of magnitude. Above this value, we have

observed that ELBM still ensure stability without preserving the eddy viscosity-based

hydrodynamics.

Secondly, we numerically checked the approximated eddy viscosity for the conducted

simulations. The approximation appeared to be very good for low Reynolds numbers,

with a Pearson’s correlation coefficient of about 0.9 in an over-resolved setting both in

2D and 3D simulations of HIT. However, it quickly worsens as the Reynolds number of

the simulation increases and, even in the over-resolved case, the joint PDF highlights

the presence of two branches, one of them showing a very good agreement between the

measured and approximated viscosity while the other is not properly understood at this

stage. Besides, only the measured turbulent viscosity δνMe and not its approximation
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δνAe have PDF that exhibits positive skewness. This means that δνAe does not recover

well the dissipative characteristics of δνMe .
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CHAPTER 4

STUDY OF THE ELBM IMPLICIT SGS MODEL AT

THE MACROSCALE

In this chapter, we focus on unrolling and numerically checking the derivation of the im-

plicit sub-grid scale model implied by ELBM at the macroscopic scale. We first present

a set of decaying 2D Homogeneous Isotropic Turbulence (HIT) simulations conducted

using lattices of different levels of isotropy in section 4.1. Then, in Section 4.2, we nu-

merically check step-by-step each assumption made in the derivation of the macroscopic

approximation of the entropic parameter α. In section 4.3, we discuss the macroscopic

momentum equation recovered by ELBM and the validity of eddy viscosities SGS model

within LBM. Some concluding remarks follows in Section 4.4.

4.1 Simulations of 2D decaying homogeneous isotropic turbulence with ELBM
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Figure 4.1. Lattices used to simulate 2D HIT. D2Q9 and D2Q13 have
4th order isotropy while D2Q17 and D2Q21 have 6th order isotropy.

The derivation of the macroscopic eddy viscosity is not valid in general for forced flows

(unless one can further assume ‖F ‖ � 1). To numerically validate it, we, therefore, work

with decaying HIT flows. We consider decaying flows from previously forced 2D HIT

configuration using two lattices: a 4th order isotropic lattice, the D2Q9, and a 6th order

isotropic lattice, the D2Q17 (See stencils on Fig. 6.1). We first conduct simulations of
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forced HIT flows using a spectral forcing with an amplitude F T0 to trigger 2D HIT. Energy

is injected in a shell of (dimensionless) wavenumbers k of magnitude from 5 to 7 with

a constant phase φ. The forcing is written in a stream-function formulation to ensure

that it does not generate any incompressibility. As 2D turbulence is characterized by

the presence of a backward energy cascade [66, 14], we introduce a spectral forcing with

an amplitude FR0 to damp large-scale energy (|k| ≤ 2) to maintain the Mach Number

under control and ensure a quality recovery of the NSE (see Chapter 2). We enforce the

resulting forcings using the exact-difference method forcing scheme [61]. The parameters

on Table 4.1 of the two forced simulations have been chosen iteratively to obtain, in the

statistically stationary regime an inertial range exhibiting an energy spectrum with a

k−3 slope.

Table 4.1. Parameters of the conducted forced 2D HIT simulations.

Lattice τ0 F T
0 FR

0

D2Q9 0.50001 1.0e− 06 5.0e− 04
D2Q17 0.500001 2.2e− 07 1.1e− 04

At t = t0, we turn off the forcings and let the turbulent flow simulations decay. For each

simulation we will follow the decay around three times t1, t2, and t3. On Fig. 4.2 and 4.3,

we show the energy spectra and the Mach number evolution for the D2Q9 and the D2Q17

simulations respectively. On the energy spectra of the D2Q17 simulation, we observe

nonphysical bumps at the smaller scales, especially for the D2Q17 simulation. This is

most likely linked to spurious velocities effects due to the multi-speed characteristic of

the D2Q17 stencil (see stencil on Fig. 6.1), as described in [68]. Moreover, for both

D2Q9 and D2Q17, it seems that the smallest scales are not properly dissipated during

the decaying, which poses the question of the differentiability of the flow. For both

simulations, we have Ma = U
cs
� 1, with U the Root-Mean Squared velocity, which

ensures that we fall within the low Mach number approximation required during the

C-E expansion to recover N-S equations.

4.2 Derivation and numerical check of the macroscopic expression of α

In this section, we follow the steps of Malaspinas et. al [2] to conduct a C-E expansion

of the entropic parameter α, but we use our own C-E formalism (see Chapter 1.3.4).

The parameter α is calculated at each lattice cell, at each time step as the solution of

the entropic step equation Eq. (1.53), which fully developed yields:

q−1∑
`=0

(f` − αfneq` ) ln

(
f` − αfneq`

t`

)
−

q−1∑
`=0

f` ln

(
f`
t`

)
= 0 (4.1)
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Figure 4.2. D2Q9: On the left panel, energy spectrum and Mach num-
ber evolution of the decaying ELBM simulation. The three spectrum
corresponds to the studied times t1, t2, and t3 highlighted in the corre-
sponding colored area of the mach number evolution shown on the right
panel.

Figure 4.3. D2Q17: On the left panel, energy spectrum and Mach num-
ber evolution of the decaying ELBM simulation. The three spectrum
corresponds to the studied times t1, t2, and t3 highlighted in the corre-
sponding colored area of the mach number evolution shown on the right
panel.

This is solved using Newton-Raphson’s (N-R) algorithm with a tolerance of 10−8. If

a solution is not found within 1000 iterations, then α = 2 is returned. The ELBM

community has been limiting the computational expense induced by the entropic step

by returning α = 2 whenever the deviation of f to feq is relatively small [3]. As we are

interested in the solution of Eq. (4.1), we do not use this deviation criteria and we bear

the full computational cost of the ELBM. Fig.4.4 and Fig. 4.5 show a joint PDF between

the number of N-R iterations and the value of α for the D2Q9 and the D2Q17 simulation

respectively.

Following the idea of [2] and our formalism for C-E expansions presented in chapter 1.3.4,

the entropic parameter α itself admits an expansion in ∆t as a function of f and feq, which

themselves have expansions in ∆t. Using an anologous formalism than for f Eq. (1.42),

we write

α = 2(1 + ∆tφα), (4.2)
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Figure 4.4. D2Q9: Joint PDF between α and the number of iteration
of N-R algorithm. Each column corresponds to one of the three studied
times of the decaying t1, t2, and t3.

Figure 4.5. D2Q17: Joint PDF between α and the number of iteration
of N-R algorithm. Each column corresponds to one of the three studied
times of the decaying t1, t2, and t3.
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with φα = O(1) for ∆t → 0. This implies that in the limit of fine lattice resolution, we

have α → 2. Indeed, Fig. 4.6 as well as previous simulations confirms that α remains

close to its LBGK value αLBGK = 2.

Figure 4.6. PDF of α for the D2Q9 (left panel) and the D2Q17 (right
panel) simulations shown around the three different times t1, t2, and t3.

4.2.1 Step 1: Solving the taylor expanded entropic step

In order to estimate the zeroth order of φα, we inject Eq. (4.2) in Eq. (4.1) and expand

in ∆t, to get

(2− α)
∑
`

f eq
` φ

2
` −∆t

(
1− α+

α2

3

)∑
`

f eq
` φ

3
` = O(∆2

t ). (4.3)

Replacing Eq. (4.2) in Eq. (4.3) and solving for φα at the zeroth order in ∆t, we ob-

tain

φα = −1

6

∑
` f

eq
` φ

3
`∑

` f
eq
` φ

2
`

+O(∆t), (4.4)

leading to the approximation of the value of α at the first order in ∆t as an outcome of

this first step

α1 = 2− ∆t

3

∑
` f

eq
` φ

3
`∑

` f
eq
` φ

2
`

+O(∆2
t ) = 2− 1

3

T3

T2
+O(∆2

t ), (4.5)

where T2 =
∑

` f
eq
` (∆tφ`)

2 and T3 =
∑

` f
eq
` (∆tφ`)

3. If T2 = 0, we have φ` = 0 and

therefore f = feq. It is worth pointing out that this asymptotic expansion for α has

long been used in the literature. In Ref. [69], the authors have derived an equivalent

expression and suggest that it can be used instead of N-R to reduce the computational

expense of ELBM.

We show on Fig. 4.7 and on Fig. 4.8, the summary of the numerical check for step 1

for the D2Q9 and the D2Q17 simulations respectively. On each figure, the first line
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corresponds to the joint PDF between α and α1. We observe as the flow decays, that

the perfect matching for time around t1 and t2 is spoiled by a vertical branch around

t = t3 corresponding to α1 = 0. This is due to the fact that, the approximated solution

α1 = 2− T3
3T2

will reach α1 = 2 when T3 = 0 without the N-R algorithm returning α = 2.

Indeed if T3 = 0, we don’t necessarily have T2 = 0 and thus we are not in the limit of a

fluid at equilibium, f = feq.

On the second line of Figs 4.7 and 4.8, we plot the joint PDF between α and T2. We

observe that as t → t3, T2 gets closer to 0, but α does not necesserally tend toward

its equilibrium value αLBGK = 2. Therefore, we filter a posteriori data for which T2

is inferior to a threshold of 10−10 for the D2Q9 simulation and 10−11 for the D2Q17

simulation and we plot again the joint PDF between α and α1 on the last line of Figs 4.7

and 4.8. We observe that this filtering operation removes the vertical branch observed

for t ≈ t3.

4.2.2 Step 2: Approximating the non-equilibrium distribution by the regu-

larized distribution

From the full second order C-E expansion provided in Appendix B and Eq. (B.4) in

particular, we can write

φ` = − 1

2β
D` ln f eq

` +O(∆t), (4.6)

and hence

φα =
1

12β

∑
` f

eq
`

(
D` ln f eq

`

)3∑
` f

eq
`

(
D` ln f eq

`

)2 +O(∆t). (4.7)
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Figure 4.7. D2Q9: The first line shows the joint PDF between α1

(Eq.(4.5)) and α (calculated using Newton Raphson). The second line
shows the joint PDF between T2 and α with the horizontal black line
highlighting the thereshold T2 = 10−10. The last line shows the joint
PDF between α and α1 for data corresponding to T2 > 10−10. Each col-
umn corresponds to one of the three studied times of the decaying t1, t2,
and t3. The blue curve shows a perfect matching while r is the Pearson’s
correlation coefficient.
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Figure 4.8. D2Q17: The first line shows the joint PDF between α1

(Eq.(4.5)) and α (calculated using Newton Raphson). The second line
shows the joint PDF between T2 and α with the horizontal black line
highlighting the thereshold T2 = 10−11. The last line shows the joint
PDF between α and α1 for data corresponding to T2 > 10−10. Each
column corresponds to one of the three studied times of the decaying
t1, t2, and t3. The blue curve shows a perfect matching while r is the
Pearson’s correlation coefficient.
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From the expression of the equilibrium distribution Eq. (1.39), we have

D`f
eq
` = t`

[
∂tρ−

∂t(ρ|u|2)

2c2
s

]
+ t`

[
∂t(ρu)

c2
s

+ ∇ρ− ∇(ρ|u|2)

2c2
s

− ∂t(ρ|u|2u)

2c4
s

]
· c`

+ t`

[
∂t(ρuu)

2c4
s

+
∇(ρu)

c2
s

− ∇(ρ|u|2u)

2c4
s

]
: c`c`

+ t`

[
∇(ρuu)

2c4
s

+
∂t(ρuuu)

6c6
s

]
: · c`c`c`

+ t`
∇(ρuuu)

6c6
s

:: c`c`c`c` +O(∆t)

= t`

[
∇ ·

(
ρ|u|2u

)
2c2
s

− ρ∇ · u
]

+ t`

[
−ρu∇ · u

c2
s

− 2ρu ·∇u

c2
s

+
∇ ·

(
ρ|u|2uu

)
2c4
s

]
· c`

+ t`

[
ρ∇u

c2
s

− ∇ · (ρuuu)

2c4
s

− ∇(ρ|u|2u)

2c4
s

]
: c`c`

+ t`

[
ρu∇u

c4
s

− ∇ · (ρuuuu)

6c6
s

]
: · c`c`c`

+ t`
∇(ρuuu)

6c6
s

:: c`c`c`c` +O(∆t)

= t`ρ

(
−∇ · u−

[
u∇ · u
c2
s

+
2ρu ·∇u

c2
s

]
· c` +

∇u

c2
s

: c`c` +
u∇u

c4
s

: · c`c`c`
)

+O(∇u3) +O(∆t),

(4.8)

As in Ref. [2], we can introduce the dissipative part of the momentum tensor Π(1) into

Eq. (4.12). It is directly linked to the strain rate tensor [70], S = 1
2 [∇u+ (∇u)T ]:

Π(1) = −2ρc2
s

1

2β
S +O(∆t). (4.9)

We have

Q` : Π(1) = −ρc
2
s

β
Q` : S +O(∆t)

= −ρc
4
s

β
(−∇ · u +

∇u

c2
s

: c`c`) +O(∆t)

(4.10)

71



with Q` = c`c` − c2
s1. As a result, Eq. (4.8) becomes

D`f
eq
` = t`ρ

(
− β

ρc4
s

Q` : Π(1) −
[
u∇ · u
c2
s

+
2ρu ·∇u

c2
s

]
· c` +

u∇u

c4
s

: · c`c`c`
)

+O(∇u3) +O(∆t),

(4.11)

and hence, as D` ln f eq
` = D`f

eq
` /f

eq
` ,

D` ln f eq
` =

− β
ρc4s

Q` : Π(1) −
[
u∇·u
c2s

+ 2ρu·∇u
c2s

]
· c` + u∇u

c4s
: · c`c`c` +O(∆t) +O(∇u3)

1 + u·c`
c2s

+ uu:c`c`−c2s|u|2
2c4s

+ uuu:· c`c`c`−3c2s|u|2u·c`
6c6s

= − β

ρc4
s

Q` : Π(1) −
[
u∇ · u
c2
s

+
2ρu ·∇u

c2
s

]
· c` +

u∇u

c4
s

: · c`c`c`

− u · c`
c2
s

(
− β

ρc4
s

Q` : Π(1)

)
+O(∇u3) +O(∆t)

= − β

ρc4
s

Q` : Π(1) −
[
u∇ · u
c2
s

+
2ρu ·∇u

c2
s

]
· c` +

u∇u

c4
s

: · c`c`c`

− u · c`
c2
s

(
−∇ · u +

∇u

c2
s

: c`c`

)
+O(∇u3) +O(∆t)

== − β

ρc4
s

Q` : Π(1) − 2u ·∇u

c2
s

· c` +O(∇u3) +O(∆t).

(4.12)

Consequently,

(D` ln f eq
` )2 =

[
− β

ρc4
s

Q` : Π(1) − 2u ·∇u

c2
s

· c` +O(∇u3) +O(∆t)

]2

=
β2

ρ2c8
s

(Q` : Π(1))2 +O(∇2u3) +O(∆t)

(4.13)

and

(D` ln f eq
` )3 = −

[
− β

ρc4
s

Q` : Π(1) − 2u ·∇u

c2
s

· c` +O(∇u3) +O(∆t)

]3

=
β3

ρ3c12
s

(Q` : Π(1))3 +O(∇3u4) +O(∆t),

(4.14)

as Q` : Π(1) = O(∇u). Notice that from all the terms in Eq. (4.11), the term in

Q` : Π(1), is the only one playing a role. This justifies the validity of the regularization

approximation [70] made in Ref. [2], as we have

fneq = feqφ`∆t ≈ −
∆t

2β
D`f

eq
` ≈

t`∆t

2c4
s

Q` : Π(1) = f̄(1) (4.15)

It is important to keep in mind that this approximation is valid at O(∇u3) (and O(∆t)).

As the flow starts decaying from a highly turbulent configuration, which involves high
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velocity gradients, it is therefore expected that this approximation will get increasingly

valid as turbulence decays. This will be discussed further in section 4.2.5.

Figure 4.9. D2Q9: The first line shows the joint PDF between fneq`

and f̄
(1)
` (Eq. (4.15)) for ` = 8. The second line shows the joint PDF

between α1 (Eq. (4.5)) and α2 (Eq. (4.17)). Each column corresponds to
one of the three studied times of the decaying t1, t2, and t3. The blue
curve shows a perfect matching, while the red curve shows the expected
expression from ref [2]. r is the Pearson’s correlation coefficient.
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Figure 4.10. D2Q7: The first line shows the joint PDF between fneq`

and f̄
(1)
` (Eq. (4.15)) for ` = 8. The second line shows the joint PDF

between α1 (Eq. (4.5)) and α2 (Eq. (4.17)). Each column corresponds to
one of the three studied times of the decaying t1, t2, and t3. The blue
curve shows a perfect matching, while the red curve shows the expected
expression from ref [2]. r is the Pearson’s correlation coefficient.

Finally, we obtain

φα = − 1

12ρc4
s

∑
` f

eq
` [(Q` : Π(1))3 +O(∇3u4)]∑

` f
eq
` [(Q` : Π(1))2 + +O(∇2u3)]

+O(∆t)

= − 1

12ρc4
s

∑
` t`(Q` : Π(1))3∑
` t`(Q` : Π(1))2

+O(∇u2) +O(∆t),

(4.16)

giving as an outcome of step 2

α2 = − ∆t

6ρc4
s

∑
` t`(Q` : Π(1))3∑
` t`(Q` : Π(1))2

+O(∆t∇u2) +O(∆2
t ). (4.17)

This expression for α2 differs from the one obtained by Malaspinas et al. by a factor 2

(Ref. [2] Eq. (18)).
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In Figs. 4.9 and 4.10, we first show a check of the reguralized distribution approximation

f̄
(1)
` is a good approximation of fneq` at ` = 8 for respectively the D2Q9 and D2Q17

simulations. In both cases, the agreement improves as time decays, to reach an excellent

level at t ≈ t3, especially for the D2Q9 simulation. We see that due to the complex

non-linear dependency of α2 on fneq, the agreement between fneq and f̄(1) needs to be

perfect in order to have a good agreement between α2 and α3. This is only the case

for D2Q9 at t ≈ t3. We also note that we are able to validate our expression for α@

Eq. (4.17) ash seen by comparing the red curve that represent the prediction made in

Ref. [2], and the blue curve, representing the present result.

4.2.3 Step 3 - Using isotropy relations

We evaluate the sum on the numerator and on the denominator of α2 Eq. (4.17) by

using isotropy relations, while keeping in mind that Π(1) is symmetric. Starting with

the denominator, we can make use of the fourth order lattice isotropy relation, ∆(4) =∑
` t`c`c`c`c` = c4

s [11]3, where the notation ([LM]3)ijkl = LijMkl+LikMjl+LilMkj , for

A and B, two symmetric second-order tensors denotes the fourth-order tensor created

by taking the sum of the 3 fourth-order tensors with unique index combination of the

two (symmetric) tensors. We have:

q−1∑
`=0

t`

(
Q` : Π(1)

)2
= Π(1)Π(1) ::

∑
`

t`(c`c` − c2
s1)(c`c` − c2

s1)

= Π(1)Π(1) ::
∑
`

t`[c`c`c`c` − c2
s(c`c`1 + 1c`c`) + c4

s11]

= 2c4
s Tr(Π(1)Π(1))

(4.18)

In order to evaluate the numerator, we need to use a sixth order lattice isotropy relation

∆(6) = c6
s [111]15. The notation [LMN]15, for L, M, and N, ee symmetric second-order

tensors, denotes the sixth-order tensor created by taking the sum of the 15 sixth-order

tensors with unique index combination of the three (symmetric) tensors. This is not a

requirement of C-E to recover the NSE and usual lattices such as D2Q9 do not possess

this property, while D2Q17 does. Therefore we introduce the sixth-order anisotropic

contributions A and write ∆(6) = c6
s [111]15 + 6c6

sA. We obtain:
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q−1∑
`=0

t`

(
Q` : Π(1)

)3
= Π(1)Π(1)Π(1) :::

∑
`

t`(c`c` − c2
s1)(c`c` − c2

s1)(c`c` − c2
s1)

= Π(1)Π(1)Π(1) :::
∑
`

t`[c`c`c`c`c`c` − c2
s(c`c`c`c`1 + c`c`1c`c` + 1c`c`c`c`)

+ c4
s(c`c`11 + 1c`c`1 + 11c`c`)− c6

s111]

= c6
s(8 Tr(Π(1)Π(1)Π(1)) + 6 Π(1)Π(1)Π(1) ::: A)

(4.19)

As a result, φα yields

φα = − 1

3ρc2
s

Tr(Π(1)Π(1)Π(1))

Tr(Π(1)Π(1))
− 1

4ρc2
s

A :::
Π(1)Π(1)Π(1)

Tr(Π(1)Π(1))
+O(∇u2) +O(∆t), (4.20)

and the outcome of step 3 reads:

α3 = 2− 2∆t

3ρc2
s

Tr(Π(1)Π(1)Π(1))

Tr(Π(1)Π(1))
− ∆t

2ρc2
s

A :::
Π(1)Π(1)Π(1)

Tr(Π(1)Π(1))
+O(∆t∇u2)+O(∆2

t ) (4.21)

We plot in Figs. 4.11 and 4.12 the summary of the numerical check corresponding to

step 3 for the D2Q9 and D3Q17 simulations respectively. We first check whether the

denominator relation Eq. (4.18) is checked. Because both lattices have 4th order isotropy

properties, the matching is perfect. As for the numerator relation Eq. (4.19), we have

again a perfect match for the D2Q17 simulation as it possesses 6th order isotropy prop-

erties which therefore leads to a perfect agreement between α3 and α4 on the last line

of joint PDFs. The 6th order anisotropy arising for the D2Q9 is relatively small as the

joint PDF between the LHS and RHS of Eq. (4.19) falls very close to the blue line high-

lighting a very good agreement. However, the impact of anisotropy is amplified in the

formulation of α4 and results in a second anisotropic branch on the joint PDF between

α4 and α3.
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Figure 4.11. D2Q9: The first line shows the joint PDF between the
LHS and the RHS of Eq. (4.18) based on 4th order isotropy relations.
The first line shows the joint PDF between the LHS and the RHS of
Eq. (4.19) based on 6th order isotropy relations. The last line shows
the joint PDF between α2 (Eq.(4.17)) and α3 (Eq.(4.21)). Each column
corresponds to one of the three studied times of the decaying t1, t2, and
t3. The blue curve shows a perfect matching while r is the Pearson’s
correlation coefficient.
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Figure 4.12. D2Q17: The first line shows the joint PDF between the
LHS and the RHS of Eq. (4.18) based on 4th order isotropy relations.
The first line shows the joint PDF between the LHS and the RHS of
Eq. (4.19) based on 6th order isotropy relations. The last line shows
the joint PDF between α2 (Eq.(4.17)) and α3 (Eq.(4.21)). Each column
corresponds to one of the three studied times of the decaying t1, t2, and
t3. The blue curve shows a perfect matching while r is the Pearson’s
correlation coefficient.
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4.2.4 Step 4 - Macroscopic closure

To close φα, we can directly use the relation between Π(1) and S in Eq. (4.9) and we

obtain

φα =
1

3β

Tr(S3)

Tr(S2)
+

1

4β
A :::

S3

Tr(S2)
+O(∇u2) +O(∆t), (4.22)

and we obtain the closed approximation of α,

α4 = 2 +
2∆t

3β

Tr(S3)

Tr(S2)
+

∆t

2β
A :::

S3

Tr(S2)
+O(∆t∇u2) +O(∆2

t ) (4.23)

We first look at the relation Eq. (4.9) component by component for the D2Q9 simulation

on Fig. 4.13 and for the D2Q17 simulation on Fig. 4.14. Like at step 3, we observe an

improvement of the matching between all components for the D2Q9 simulation as time

goes to t ≈ t3. For the D2Q17 simulation, only the symmetric components develop in a

good matching with time. This is most likely due to the lack of differentiability of the

velocity field and will be discussed further in the next section.

Finally, we show on Fig. 4.7 and on Fig. 4.8, the summary of the numerical check for step

4 for the D2Q9 and the D2Q17 simulations respectively. For the D2Q9 simulation, the

agreement between α3 and α4 goes from bad for t ≈ t1 and t ≈ t2, to perfect as t ≈ t3.

As expected, given the numerical check between Π(1) and S for the D2Q17 simulation,

we do not observe a good agreement between α3 and α4.

4.2.5 Overall agreement and discussion

The final correlation between α and α4 is plotted for the D2Q9 and the D2Q17 re-

spectively on Fig. 4.17 and Fig. 4.18. For D2Q9, while we are unable to reach a good

agreement at t ≈ t1 and t ≈ t2, , we observe a very good matching at t ≈ t3 (first line,

Fig. 4.17). We can further improve the accuracy by imposing a threshold under wish we

filter out points to enforce T2 6= 0 as done in step 1. On the second line of Fig. 4.17, we

show the overall agreement imposing T2 > 10−10. On top of it, based on the results of

step 3, we filter out anisotropic points observed at step 3 by imposing∣∣∣∑q−1
`=0 t`

(
Q` : Π(1)

)3 − 8c6
sΠ

(1)
κθ Π

(1)
θγ Π

(1)
γκ

∣∣∣∣∣∣8c6
sΠ

(1)
κθ Π

(1)
θγ Π

(1)
γκ

∣∣∣ < 0.1,

thus selecting only points which validates the sixth order isotropy relations given in

Eq. (4.19). We plot the resulting overall agreement between α and its hydrodynamic

closure on the third line of Fig. 4.17 and observe further improvements in the agreement

at t ≈ t3 between α calculated online using Newton-Raphson and its macroscopic closure

α5. As for the D2Q17 simulation, as expected from the results of step 2 and step 4, no
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Figure 4.13. D2Q9: Joint PDF between Π(1) and −2ρc2s
αβ S. Each line

corresponds to the matching of a component of the tensors and each
column corresponds to one of the three studied times of the decaying
t1, t2, and t3. The blue curve shows a perfect matching while r is the
Pearson’s correlation coefficient.
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Figure 4.14. D2Q17: Joint PDF between Π(1) and −2ρc2s
αβ S. Each line

corresponds to the matching of a component of the tensors and each
column corresponds to one of the three studied times of the decaying
t1, t2, and t3. The blue curve shows a perfect matching while r is the
Pearson’s correlation coefficient.
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Figure 4.15. D2Q9: Joint PDF between α3 (Eq. (4.21)) and α4

(Eq. (4.23)). Each column corresponds to one of the three studied times
of the decaying t1, t2, and t3. The blue curve shows a perfect matching
and the red curve shows the prediction made in Ref [2] while r is the
Pearson’s correlation coefficient.

Figure 4.16. D2Q17: Joint PDF between α3 (Eq. (4.21)) and α4

(Eq. (4.23)). Each column corresponds to one of the three studied times
of the decaying t1, t2, and t3. The blue curve shows a perfect matching
and the red curve shows the prediction made in Ref [2] while r is the
Pearson’s correlation coefficient.
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agreement was obtained between α and α5 (first line Fig. 4.18) and filtering out points

to enforce T2 > 10−11 (second line line Fig. 4.18) is not sufficient to improve it.

Overall, our computations revealed a difference to Ref. [2] of a factor 2, which was numeri-

cally verified for the D2Q9 simulation as the simulation got increasingly resolved. Indeed,

the outcome of the derivation of α in terms of macroscopic quantities α4 (Eq. (4.23)) is

valid at O(∆t∇u2). This validity criteria was hidden in Ref. [2] under the regularization

assumption Eq. (4.15) (made at step 2 of this derivation). But if this C-E expansion

for α is only valid for smooth velocity fields, it is by definition not applicable to fully

developed turbulent flows (see section 1.1.4 on the dissipative anomaly). As for D2Q17,

looking at the small scales on the spectra (Fig. 4.2 panel (a)), we can see that the veloc-

ity field is not obviously differentiable, and therefore we were not able to check relations

involving velocity gradients.

4.3 Computation of the resulting macroscopic Sub-Grid Scale model

In the ELBM literature as well as in the original derivation of the hydrodynamic SGS

in Ref. [2], the effective viscosity νeff is straightforwardly obtained from the effective

relaxation time τeff = 1
αβ as

νeff = ∆t

(
1

αβ
− 1

2

)
c2
s +O(Ma3) +O(∆2

t ). (4.24)

and therefore,

δνAe ≈ −c2
s∆t

2 1

6β2

SλµSµγSγλ
SγδSγδ

. (4.25)

Notice that Eq. (4.25) differs from the output eddy viscosity of a factor 2 stemming from

the approximation of α numerically verified in the last session, and a further factor ∆t

in the eddy viscosity, correcting the dimensionality of the result.

This expression is based on the fact that the momentum conservation equation obtained

at the second order in ∆t Eq. (4.26) for a fixed relaxation time τ = τ0 is also valid when

τ = τeff = α
β . Therefore we have

∂t(ρu)+∇·(ρuu) = −∇(c2
sρ)+∇·

{
∆t

(
1

αβ
− 1

2

)[
c2
sρ[∇u + (∇u)T ] + A :: ∇(ρuuu)

]}
+O(∆2

t ).

(4.26)

This expression can be considered correct up to O(∆2
t ), meaning that α has to be set

equal to its leading order expression in ∆t. As per Eq, (4.2), we have

α = 2 +O(∆t), (4.27)
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Figure 4.17. D2Q9: Joint PDF between α (calculated using Newton-
Raphson) and α4 (Eq.(4.23)). Each column corresponds to one of the
three studied times of the decaying t1, t2, and t3. The blue curve shows a
perfect matching and the red curve shows the prediction made in Ref [2]
while r is the Pearson’s correlation coefficient.
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Figure 4.18. D2Q17: Joint PDF between α (calculated using Newton-
Raphson) and α4 (Eq.(4.23)). Each column corresponds to one of the
three studied times of the decaying t1, t2, and t3. The blue curve shows a
perfect matching and the red curve shows the prediction made in Ref [2]
while r is the Pearson’s correlation coefficient.
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and higher orders in the expansion of α are absorbed in O(∆2
t ) in Eq. (B.20). It is clear

that the ELBM viscosity as identified in the momentum equation of second order in ∆t,

is actually given by

ν = ∆t
1− β

2β
c2
s +O(Ma3) +O(∆2

t ) = ν0 +O(Ma3) +O(∆2
t ). (4.28)

Therefore in order to observe the effect of the fluctuating entropic parameter α on the

dynamics, it is necessary to go the third order C-E expansion. The full derivation is

given in Appendix C and the resulting mass conservation equation is

∂tρ+ ∇ · (ρu) =
∆2
t

12
∇∇ :

[
c2
sρ[∇u]2 + A :: ∇(ρuuu)

]
+O(∆3

t ), (4.29)

in which we use the notation ([A]2)ij = Aij + Aji, with A a second-order tensor. The

momentum conservation equation is given here in the isotropic case (A = 0) for simplic-

ity:

∂t(ρu) + ∇ · (ρuu) = −∇(c2
sρ)

+ ∆t∇ ·
{(

τ0 −
1

2

)
c2
sρ[∇u]2

}
+ ∆t∇ ·

{
2− α

4β
c2
sρ[∇u]2

}
+ ∆2

t

(β − 1)2

4β2
∇ ·

{
c2
sρ[∇u ·∇u]2 + 2c4

sρ∇∇ ln ρ+ ∇∇ : (ρuuuu)
}

+
∆2
t

12
c2
s∇ · {∇ · (ρ[∇u]2u)− 2ρ[∇u ·∇u]2}

− ∆2
t

12
∇ ·

{
4c4
sρ∇∇ ln ρ+ ∇∇ : (ρuuuu)

}
+O(∆3

t ).

(4.30)

Replacing α by its macroscopic approximation Eq. (4.23), the momentum balance be-

comes

∂t(ρu) + ∇ · (ρuu) = −∇(c2
sρ)

+ ∆t∇ ·
{(

τ0 −
1

2

)
c2
sρ[∇u]2

}
− ∆2

t

6β2
∇ ·

{
Tr S3

Tr S2
c2
sρ[∇u]2

}
+ ∆2

t

(β − 1)2

4β2
∇ ·

{
c2
sρ[∇u ·∇u]2 + 2c4

sρ∇∇ ln ρ
}

+
∆2
t

12
c2
s∇ · {∇ · (ρ[∇u]2u)− 2ρ[∇u ·∇u]2}

− ∆2
t

12
∇ ·

{
4c4
sρ∇∇ ln ρ

}
+O(∇3u3∆2

t ) +O(∆3
t ).

(4.31)
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Eq. (4.31) reveals that the implicit SGS model implied by ELBM is, even assuming

the validity of sixth order isotropy relation, much more complex than the single eddy

viscosity term usually put forward in the litterature [3, 69].

Moreover, this finding also strongly puts in question the control one has when using

an eddy viscosity SGS within LBM. As discussed in section 1.3.5, this is traditionally

done by modifying the local relaxation time to obtain a local effective viscosity. For

example, in the Smagorinsky model [4], the eddy viscosity is δνSe = (CS∆)2
√

2SijSij

which scales as S. Calculating the effective relaxation time to enforce this model is

equivalent to coming up with a parameter αS = 2(1 + ∆tφ
S
α), [71], where the fluctuation

corresponding to the Smagorinsky eddy viscosity are contained in φSα = O(1). Thus

in that case as well, the eddy viscous dissipation term is of order O(∆2
t ) as the terms

contained in the last four lines of Eq. (4.31) and therefore this LBM-LES cannot be

considered solely as a LES with a Smagorinsky eddy viscosity model.

4.4 Concluding remarks

In this chapter, we have studied in detail the formulation of the implicit SGS implied by

ELBM both at macroscale and at mesoscale. In the context of decaying 2D HIT from a

fully developed turbulent flow configuration, we have reformulated the C-E expansion of

α carried out in Ref. [2]. Step-by-step, we numerically checked for simulations using the

D2Q9 (isotropic to the fourth order) and the D2Q17 (isotropic to the sixth order), all the

approximation to obtain a formulation of the entropic parameter in terms of macroscopic

quantities.

Our computations revealed a difference to Ref. [2] of a factor 2 for the approximation

of α, which was numerically verified, and a further factor ∆t in the eddy viscosity,

correcting the dimensionality of the result. We have determined that the macroscopic

approximation for α is valid for a smooth velocity field with low gradients. Indeed, we

observed that for the D2Q9 simulation by filtering out anisotropic points, we could only

recover a good matching with the measured α at the end of the decaying. As a result,

the macroscopic approximation of the entropic parameter was shown to be valid only for

well-resolved flows, out of the range of interest of a LES.

As for the D2Q17 simulation, while the steps based on isotropy relations highlighted

a perfect agreement, it was not possible to recover an agreement between α and its

macroscopic approximation. The simulated flow was unphysical from the fully developed

turbulent initial configuration on, as its energy spectrum was showing a set of small scales

bumps. Those bumps, due to the multi-speed characteristic of the D2Q17 lattice, leads

to velocity field that was not differentiable.
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Furthermore, we have shown that the implicit ELBM model does not limit itself to a

sole eddy viscous dissipation depending on the input relation time and on the entropic

parameter. Indeed, this term appears in a macroscopic equation of motion that requires

a C-E expansion of third order, while the N-S equations are recovered at the second

order. A number of extra third-order terms are therefore part of the implicit ELBM

SGS model.

However, a few points need to be highlighted here. The first one is that the macroscopic

eddy viscosity term of the ELBM implicit model still has a very interesting formulation.

It is similar to the Smagorinsky model in the sense that scales with the strain-rate

tensor, but, at the same time, it is not positive-definite and therefore allows backscatter

of energy to the resolved scales. Secondly, even if there is more to the ELBM implicit

SGS model than the eddy viscous dissipation, it does not mean that ELBM does not

model turbulence properly. Both of those points should be further explored to conclude

about the ELBM’s implicit modeling of turbulence.

88



CHAPTER 5

INERTIAL RANGE STATISTICS OF THE ENTROPIC

LATTICE BOLTZMANN AND LARGE-EDDY

SIMULATIONS IN 3D TURBULENCE

In this chapter, we present preliminary results on the comparison of inertial range

statistics of turbulent velocity fields obtained by ELBM, with those coming from a high-

resolution DNS of the NSE conducted with a PS code. Additionally, we also study the

approximated eddy viscosity against the Smagorinsky [4] closures by implementing them

in a PS LES code. This chapter is organized as follows. After presenting the set of forced

3D HIT ELBM and PS LES simulations in section 5.1, we study low-order inertial range

statistics in section 5.2; in section 5.3; in order to understand how the compared closures

capture non-linear intermittent behavior [72], we analyze high-order statistics of those

simulations; some concluding remarks follows in section 5.4.

5.1 Compared ELBM and LES closure in 3D homogeneous isotropic turbu-

lence

In chapter 4, we have shown that ELBM cannot be considered to be recovering the

Navier-Stokes equations with a sole eddy viscosity term of the form

δνMe = c2
s

2− α
2αβ

∆t. (5.1)

However, the fact that the actual ELBM closure is more complex than a simple eddy

viscosity model does not mean, in principle, that ELBM is unable to model turbulence.

At the same time, even if invalid for the range of Reynolds numbers of interest, the

macroscopic approximation of the ELBM eddy viscosity has a very interesting formula-

tion

δνAe = (CA∆)2SλµSµγSγλ
SγδSγδ

∝ o(S), (5.2)
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where ∆ is the LES cut-off length and CA a dimensionless coefficient. In Chapter 4,

we have shown that the C-E expansion of the ELBM entropic parameter yields CA =
cs∆t

β
√

6
and ∆ = 1 as the filtering is implicit. Indeed, it is similar to a Smagorinsky

model [4],

δνSe = (CS∆)2
√

2SλµSλµ ∝ o(S), (5.3)

where CS is a dimensionless coefficient typically taken equal to 0.16 and ∆ is the cut-

off length, as they both scale as the strain-rate tensor S. Moreover, the approximated

eddy viscosity δνAe Eq. (5.2) is not positive-definite and therefore allows backscatter of

energy, i.e. energy transfer from the unresolved to the resolved scales. Indeed, while

energy should in average cascade towards the small scales to model properly the small-

scale dissipation, a realistic SGS should also intermittently transfer energy in the other

direction. The approximate eddy viscosity δνAe possesses this property and therefore is

of interest.

We conduct a set of simulations of forced 3D homogeneous isotropic turbulence (HIT)

on a periodic three-dimensional 5123 computational grid. The homogeneous isotropic

turbulence forcing acts on a shell of (dimensionless) wavenumbers k of magnitude from

1 to 2 with a constant phase φ and we take its rotational to ensure that it does not input

any incompressibility in the system.

The ELBM simulation uses a lattice with 27 discrete velocities (see Fig. 5.1), the

D3Q27 [33, 34, 35]. We enforce the spectral forcing using the exact-difference method

forcing scheme [61] for a relaxation time τ0 = 0.5001 corresponding to β ≈ 0.9998.

x −1
0

1 y

−1

0

1

z

−1

0

1

D3Q27

Figure 5.1. D3Q27 lattice stencil used for the ELBM simulation.

90



In order to benchmark the approximated eddy viscosity model against the Smagorinsky

model, we have implemented them as LES closures within a PS code. We refer hereafter

to the LES simulation with an approximated eddy viscosity model as LES-A and to

the one with a Smagorinsky model as LES-S. In the expression of Smagorinsky eddy

viscosity Eq (5.3), we use the standard value of CS = 0.16, while for the approximated

eddy viscosity Eq. (5.2), we use CA = 0.45, and for both we have ∆ = 3π
512 ≈ 0.0184.

Additionally, as a reference, we run a Direct Numerical Simulation (DNS) conducted on

a 10243 grid, which will be denoted as DNSx2.

The snapshots Fig. 5.2 of the approximated eddy viscosity δνAe for the LES-A simula-

tion and the approximated δνAe and measured eddy viscosity δνMe for ELBM provide an

insight on their spatial behavior. All eddy viscosities appear to be small scales quan-

tities, which do not seem to be organized in structures. As expected for such a high

Reynolds number, the measured and approximated eddy viscosities do not seem to be

correlated.

Figure 5.2. 2D-sliced snapshot of the approximated eddy viscosity δνAe
for the LES simulation (LES-A) and of the approximated eddy viscosity
δνAe and measured eddy viscosity δνMe for the ELBM simulation.

Moreover, we show on Fig. 5.3 the PDF of the ELBM measured eddy viscosity δνMe ,

the ELBM approximated eddy viscosity δνAe and the approximated eddy viscosity of the

LES simulation δνAe . Only the ELBM measured eddy viscosity exhibits a strong positive

skewness, highlighting that information on the presence of a forward cascade is contained

in the tails of its PDF. However, all eddy viscosities are positive on average and therefore

their corresponding SGS is always overall dissipative. Moreover, they show deviations

of one order of magnitude of their standard deviations, a sign of a strong non-Gaussian

behavior.
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Figure 5.3. Standardized PDF of the eddy viscosity corresponding to
LES with the approximated model (LES-A), ELBM with the approx-
imated model δνAe model, and ELBM with the measured model δνMe
model.

5.2 Analysis of low-order inertial range statistics

We show in Fig. 3.10 the superposed time-averaged spectrum for all the conducted sim-

ulations. First, it is worth mentioning that the ELBM and LES-A simulation remain

stable even though their eddy viscosities can take negative values. Overall, each simula-

tion highlights a nicely extended inertial range with an energy cascade slope matching

the Kolmogorov prediction of −5/3 [28, 14], except for the ELBM simulation that shows

a slight small-scale accumulation of energy. To ensure a fair comparison, an ELBM sim-

ulation exhibiting a −5/3rd energy spectra slope need to be produced. We will pursue

our analysis nonetheless and present preliminary results.

According to the phenomenological theory of Kolmogorov (K41) [12] and as described

in Chapter 1.1.4, the scaling behavior of the p-th order longitudinal structure function

is

Sp(r) = 〈(δru‖)p〉 ∼ Cp(εν0r)ξp , with ξp = p/3. (5.4)

Nevertheless, both experimental and numerical studies have highlighted that the scaling

exponent of p-th order structure function deviates from the K41 predicted value as a

result of intermittency. She-Lêveque showed in Ref. [16] that the real exponent can be
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Figure 5.4. Superposed time-averaged spectrum for the conducted sim-
ulations at 5123 grid points, using ELBM, LES with the approximated
model (LES-A), LES with Smagorinsky model (LES-S) and DNS at 10243

grid points (DNSx2). The Kolmogorov predicted slope of the forward en-
ergy cascade of −5/3 [28, 14] is given as a reference.

modelled as

ξp =
p

9
+ 2

(
1−

(
2

3

)p/3)
. (5.5)

The energy spectrum can be directly linked to the second-order structure functions.

Therefore, we start by taking look at Fig. 5.5, where the longitudinal second-order struc-

ture functions S2 (left panel) and their scaling exponent (right panel) are plotted. The

exponent is obtained by taking the derivative of the logarithm of the S2. The range of

scales exhibiting a power-law defines the inertial range of scales. Therefore the scaling

exponent is of particular interest and it is interesting to observe that ELBM inertial

range predictions seem particularly expanded. Looking closer on panel (b), we can see

that the ELBM simulation exponent starts to deviate from the constant She-Lêveque

value at the same scale than other simulations and comes back to it at a smaller scale.

In this preliminary stage, it is unclear whether this is only a consequence of the small

bump observed on the energy spectra (Fig. 5.4). The LES-A and LES-S closures show

similar inertial range behavior that the DNSx2 simulation. However, from second-order

statistics, it is not possible to estimate whether the non-linear inertial range physics is

preserved by the closures and we need to perform higher-order statistical analysis.
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Figure 5.5. Second-order longitudinal structure functions (left) and cor-
responding local slopes (right) for the conducted simulations at 5123 grid
points, using ELBM, LES with the approximated model (LES-A), LES
with Smagorinsky model (LES-S) and DNS at 10243 grid points (DNSx2).
The dashed line corresponds to the K41 prediction in the inertial range
(Eq. (5.4)), while the straight line corresponds to the intermittent cor-
rected prediction from the She-Lêveque model (Eq. (5.5)).

5.3 Analysis of high-order inertial range statistics

We extend the analysis of the second-order structure function by conducting a similar

one with the fourth-order structure functions S4 on Fig. 5.6. The analyzed scaling

behavior of S4 is very similar than the one of S2. To get an insight on whether the

intermittent behavior is captured by the closures, we look on Fig. 5.7 at the Extended

Self-Similarity [73],

ESS(r) =
ξ4

ξ2
. (5.6)

A linear K41 behavior would recover an inertial range value of the ESS of 2. The She-

Lêveque predictions, accounting for intermittency, highlight the presence of a plateau

for an ESS value of 1.86. We observe, that while at large scale the ESS is dominated by

the forcing, both ELBM and DNSx2 exhibit a plateau on an inertial range of scales of

similar length. The LES-based closures, LES-A and LES-S, both clearly fail to capture

the right intermittent physics in the inertial range. At small scales, all closures deviate

away from the right non-linear physics to a linear behavior.

Looking further at the Kurtosis of the velocity increment,

K(r) ≡
〈
((δru)4

〉
〈((δru)2〉2

=
S(4)(r)(
S(2)(r)

)2 , (5.7)

on Fig. 5.8, we see that for all simulations at large scale, where the forcing is active, the

velocity increments are Gaussian with a K value of 3. At decreasing scales, the statistics

are changing following predictions of the She-Lêveque model. In the inertial range of
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Figure 5.6. Fourth-order longitudinal structure functions (left) and cor-
responding local slopes (right) for the conducted simulations at 5123 grid
points, using ELBM, LES with the approximated model (LES-A), LES
with Smagorinsky model (LES-S) and DNS at 10243 grid points (DNSx2).
The dashed line corresponds to the K41 prediction in the inertial range
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Figure 5.7. Longitudinal Extended Self-Similarity for the conducted
simulations at 5123 grid points, using ELBM, LES with the approximated
model (LES-A), LES with Smagorinsky model (LES-S) and DNS at 10243

grid points (DNSx2). The dashed line corresponds to the K41 prediction
in the inertial range (Eq. (5.4)), while the straight line corresponds to the
intermittent corrected prediction from the She-Lêveque model (Eq. (5.5)).
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scale, the DNSx2 physics appeared to be still captured by all closures. At r ≈ 0.2,

the statistics of the DNSx2 simulation depearts from inertial range predictions as the

dissipation effects are appearing. The closure-based simulations, ELBM, LES-A and

LES-S do not have dissipative scales, but deviate simultaneously as DNSx2 simulations

from the correct inertial range physics.
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Figure 5.8. Kurtosis of the velocity increment for the conducted sim-
ulations at 5123 grid points, using ELBM, LES with the approximated
model (LES-A), LES with Smagorinsky model (LES-S) and DNS at 10243

grid points (DNSx2). The dashed horizontal line corresponds to the value
of a Gaussian.

5.4 Concluding remarks

In this chapter, in order to assess the capabilities of the ELBM closure, we compared

the inertial range statistics of turbulent velocity fields obtained by ELBM, with those

coming from a higher-resolution DNS conducted with a PS code. Preliminary results

showed that ELBM is able to increase the inertial scaling range and partially captures

the correct intermitent behaviors. However, there is a need to perform a new ELBM

simulation with an increased input viscosity to have fair comparisons with simulations

exhibiting similar energy spectra small-scale slopes.

Besides, we have implemented the approximated ELBM eddy viscosity closure as the

SGS in a PS LES code, we observed that it has similar inertial range statistics than a

Smagorinsky model implemented with the same code. Even in this preliminary study

ELBM exhibits a more extended inertial range and captures the non-linear intermittent
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physics slightly better than those closures. It means observe that the added physics of

ELBM compared to a sole eddy viscosity leads to, in this preliminary study at least,

improved inertial range statistics.
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CHAPTER 6

ACCELERATING LATTICE BOLTZMANN FLOWS

SIMULATION USING NVSHMEM MODEL FOR

GPU-INITIATED COMMUNICATIONS

The top 500 list of the most powerful supercomputers has seen the rise of accelerated

systems [74]. In, particular, NVIDIA V100 Graphics Processing Units (GPUs), which are

capable of more than 5 tera floating-point operations (TFLOPS), provide a significant

part of the computational power of the current two most powerful computer systems,

Summit [75] and Sierra [76], which together make use of more than 40,000 of them.

The success of GPUs in High-Performance Computing (HPC) is due to its inherent

capacity to perform massively parallel calculations. A number of algorithms in scientific

computing have been able to harness these computational capabilities. In particular,

codes making use of a stencil are well ported on GPUs as they mostly require a set of

local operation which needs to be performed similarly across a usually large number of

nodes and requires interactions only between nearest neighbor nodes.

The Lattice Boltzmann Method (LBM) implementation on parallel architectures is of

interest to allow the simulation of turbulent flows. As seen in Chapter 1, such flows

require a very high-resolution computational grid because of their multi-scale nature. A

number of works have been carried out to optimize LBM codes on single and multiple

GPUs [77, 78, 79]. State-of-the-art implementations commonly offload computations

to the GPUs and rely on the CPU to initiate communications between processes using

Message-Passing Interface (MPI) calls [80].

Recently, NVSHMEM, a programming interface that implements the OpenSHMEM pro-

gramming model across a cluster of peer-to-peer (P2P) connected NVIDIA GPUs was

introduced. It provides an in-kernel interface that allows CUDA threads to access any

location in symmetrically-distributed memory, thus making possible to initiate commu-

nication from the GPU [81]. The motivation behind NVSHMEM lies in the fact that
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depending on the CPU for communication limits strong scalability, i.e. how the time-

to-solution of a fixed problem varies as the number of processors increases. This is an

important metric for scientific codes as they run on systems relying on an increasing

number of GPUs.

In this chapter, we present a work-in-progress of the performance scaling of a LBM

code on multi-GPUs using MPI with the aim of using them as a reference to evaluate

NVSHMEM implementations based on in-kernel communications. We have developed

metaLBM [5], an open-source high-performance implementation of LBM that support

multiple 2D and 3D lattice stencils and have been used to conduct high-resolution flow

simulations using different turbulence models and spectral forces. metaLBM makes pos-

sible the use of any DdQq stencil, but in this work, we focus on the simulation of 3D

flows using the D3Q19 lattice, for which a number of benchmarks have already been car-

ried out [82, 83]. NVSHMEM is not yet available to the public, and for that reason, we

will not be able to show comparative performance benchmarks. However, we will detail

our NVSHMEM implementations, showing how its API can be used to implement GPU-

centric communications. We will first detail the LBM algorithm in section 6.1. Then,

the details of the GPU architecture and the DGX-1 systems used for benchmarks are pre-

sented in section 6.2. In section 6.3, we highlight the optimization featured by metaLBM

on single GPU, while in section 6.4, we introduce all the studied CPU- and GPU-centric

communication multi-GPUs implementations; we show preliminary results on the bench-

mark of the CPU-initiated MPI one in section 6.5; we conclude on the presented results

and highlight the next steps in section 6.7.

6.1 The metaLBM software: algorithmic aspects

As described in chapter 1, the LBM equation describe the streaming and collision of

particle distribution functions f`:

f`(x + c`∆t, t+ ∆t) = f`(x, t)−
1

τ0

[
f`(x, t)− feq` (x, t)

]
, (6.1)

with τ0 the dimensionless relaxation time and in this chapter, we take feq as the equilib-

rium distribution projected on the first two Hermite polynomials:

f eq
` = ρt`

(
1 +

u · c`
c2
s

+
uu : c`c` − c2

s|u|2
2c4
s

)
, (6.2)

where cs the speed of sound in the lattice.

We study 3D flows using a lattice with 19 discrete velocities, the D3Q19. However,

to depict algorithmic details in a clear manner, we will use in what follows diagrams
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representing behaviors for the 2D projection of the D3Q19, the D2Q9. Those two stencils

are shown in Fig. 6.1.
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Figure 6.1. D2Q9 and D3Q19 lattice stencils. The D2Q9 stencil is
given to illustrate all algorithmic concepts, while the D3Q19 is used in
benchmarks.

After, initializing the distribution functions, Eq. (6.1) is iterated on for lattice node x

and each discrete velocity direction ` until the required maximum iteration is reached.

At each time step, boundary conditions are applied by copying appropriates distribution

functions at the boundaries of the computational domain. Each iteration of Eq. (6.1)

consists in two phases. The first one is the collision step, in which the post-collision

distributions are calculated as

fpost
` (x, t) = f`(x, t)−

1

τ0

)
−feq` (x, t)

]
, (6.3)

and the second one is the streaming step

f`(x + c`∆t, t+ ∆t) = fpost
` (x, t). (6.4)

This straightforward algorithm is called the push-algorithm and is characterized by local

read but non-local write operations. On GPUs, it is less computationally expensive to

have local write but non-local read operations. Therefore, in the following we will adopt

the pull-algorithm [84] for which the streaming step comes first and becomes

fpre
` (x, t+ ∆t) = f`(x− c`∆t, t−∆t). (6.5)

In practice to minimize the read and write operations, the metaLBM algorithm iteratively

calls a single step called streamAndCollide, which fuses the streaming and collision step

together [85], as well as periodic boundary conditions kernels. A high-level summary
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of the implemented streamAndCollide functions called at each iteration is presented in

Algorithm 3.

Algorithm 3 Fused streamAndCollide pull algorithm as implemented in metaLBM.

1: Set ρ = 0 and u = 0
2: for each lattice node x do
3: for each discrete velocity number ` do
4: Store fpre

` (x, t) = f`(x− c`∆t, t−∆t)
5: ρ += fpre

` (x, t)
6: u += fpre

` (x, t) c`
7: end for
8: u /= ρ
9: Calculate and store fneq = fpre − feq

10: for each discrete velocity ` do
11: Stream and collide f`(x, t) = fpre

` (x, t)− 1
τ0
fneq
` (x, t)

12: end for
13: end for

6.2 GPU arthitecture

6.2.1 NVIDIA GPU characteristics

In this chapter, we will work with two generations of NVIDIA GPUs, Pascal and Volta.

The main characteristics of the Pascal P100 and the Volta V100 GPUs are given in

Table 6.1. Such GPUs have a massively parallel architecture and can perform a number

of floating-point operations per second (FLOPS) of the order of 1013.

GPUs are designed to process Single Instruction on Multiple Threads (SIMT). This is

different from CPUs’ Single Instruction, Multiple Data (SIMD) as the branch of instruc-

tions executed on each thread on the GPU can diverge at the expense of performance.

NVIDIA GPUs processing units are called Streaming Multiprocessors (SMX), each of

them combining compute units called CUDA cores. A CUDA thread is scheduled on a

CUDA core and parallelism is commonly achieved by mapping each CUDA thread to

one node of the computational grid. The scheduling of CUDA threads on CUDA cores

is done by grouping 32 CUDA threads into warps. It allows latency hiding by putting

on hold the warps waiting for data and executing the ones ready to run. This is a very

important feature for our work. Indeed, one of the ideas behind NVSHMEM is to use

these intrinsic latency hiding capabilities to hide remote direct memory access (RDMA)

access from/to other memory physically located on another GPU.

The P100 GPU delivers a single-precision (SP) peak performance of 10.6 TFLOPS and

5.3 Tflops in double-precision (DP); The V100 GPU greatly improves on those numbers
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with a peak performance of 15.7 TFLOPS in SP and 7.8 in DP, corresponding to a

≈ 50% increase of peak performance compared to the Pascal generation system.

Table 6.1. Features of the most NVIDIA GPUs used in this work: the
Pascal P100 and the Volta V100. DP and and SP stands for double- and
single-precision.

Pascal P100 Volta V100

# Streaming Multiprocessors 56 80
# CUDA cores 3584 5120
Clock (GHz) 1.328 1.530
DP peak performance (GFLOPS) 5300 7800
SP peak performance (GFLOPS) 10600 15700
L2 cache (MB) 4.96 6.14
Global Memory (GB) 16 16
Memory bandwidth (GB/s) 732 900

The on-chip memory hierarchy of NVIDIA GPUs gets increasingly complex at each

new generation. Overall, the large throughput of GPUs is backed up by significant

memory bandwidth. The available global memory of the P100 and V100 GPUs is 16 GB

and has a bandwidth of 732 and 900 GB for the P100 and the V100 GPU respectively.

Modern GPUs are characterized by a number of memory levels from L2 cache to registers,

which access times from the lowest to the highest level differs by up to two orders of

magnitude.

From the GPU, access to the CPU memory (RAM) is very expensive. While the RAM

is often much larger than the GPU memory, it is connected to it through a PCI express

connection, with a bandwidth of only 16 GB/s. This implies that often CPU-GPU

memory transfers can be the bottleneck of applications’ performance. Therefore, one

needs to ensure that the data required for computation remain as high as possible in

the GPU memory hierarchy for as long as possible and that accesses to the RAM are

avoided.

6.2.2 The DGX-1 cluster

In order to benchmark implementations based on NVSHMEM, we need a system of P2P-

connected NVIDIA GPUs. As shown on Fig 6.2, the DGX-1 machine is an ideal machine

for our single node experiments. It comes in two flavors: the DGX-1P composed of 8

P100 GPUs and the DGX-1P, which makes use of 8 V100 GPUs. In both cases, the GPUs

are densely P2P-connected using NVIDIA NVLink connections. As GPUS are connected

directly together, when data need to be transferred, it is no longer required to suffer from
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Figure 6.2. Network topology in a DGX-1 system. The PCIe connec-
tions are shown as black arrows and the NVLink connections are shown
as green arrows. If the GPUs are P100s, the system is referred to as
DGX-1P, while if they are V100s, it is referred to as DGX-1P. Taken
from [86].

the low PCIe connection bandwidth going through the host CPUs. As a result, NVLink

connections improves the bandwidth implied by GPU-GPU communications by a factor

10 to 160 GB/s compared to PCIe. Each GPU having four NVlink connections, the

DGX-1 system links two groups of four fully-connected GPUs together in the shape of a

hybrid-cube mesh. On the host side, the DGX-1 machine equips a dual-socket of Xeon

E5-2698 v4, each of them having 20 cores. It should be noted that each CPU-GPU PCIe

bandwidth is shared among two GPUs using PCIe switches, thus reducing further the

memory bandwidth between the CPU and the GPU. In our application, this proved to

strongly impact input/output (I/O) performances.

6.2.3 Programming NVIDIA GPUs

metaLBM code is written in an object-oriented fashion in C++ and utilize a few C++11

features as well as C++ templates for genericity. In order to port it on GPUs, we make

use of CUDA C/C++, an NVIDIA API for GPU programming, which, since version 7.5, is

compatible with a number of C++11 features. We offload all computationally heavy parts

of the code to the devices (GPUs), while functions with small parallelism run on the host

(CPUs). Parallel function running on the GPUs are denoted as kernels and identified

using the global keyword. They can call device functions (keyword device ), while

host functions (keyword host ) only runs on the CPUs only. To run a kernel, one needs

to indicate how CUDA threads should be grouped in blocks and how blocks should be

grouped in a grid. The grid is a one-, two-, or three-dimensional arrangement of blocks,
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which are themselves one-, two-, or three-dimensional arrangements of threads. The

kernel terminates once, every thread of every block in the grid has executed all of its

instructions.

It is important to notice that CUDA kernels run in parallel with CPU functions, so it is

possible to overlap executions of functions on the host and of kernels on the device. This

feature is usually exploited to overlap computation and communication in a multi-GPU

setting (see section 6.4)

6.3 Single GPU implementation

6.3.1 Data dependency and access pattern

In metaLBM, we use the most common pattern of accessing the distribution functions:

the AB-pattern. According to the AB access pattern, there are two copies of the distribu-

tion functions in global memory (A and B). At each iteration, the pointers to distribution

functions A and distribution functions B is swapped and therefore, we alternatively read

from A and write to B, and then read from B and write to A. This choice ensures that

there is no data dependency involved in an iteration of the LBM algorithm and there-

fore make its parallelization straightforward. However, the global memory requirements

implied by this access pattern are significant. Other LBM memory access patterns have

been studied [85] and some of them allow to use only a single copy of the distributions in

memory, while still allowing distributed-memory parallelism. The AA-pattern and the

swap pattern are two of such memory access patterns, yet they come at the price of high

complexity, especially in the generic case of a DdQq stencil, and therefore we did not

explore them further.

As we saw, in the previous section, access to the CPU memory is very expensive and

should be minimized to preserve performances. Nevertheless, research-oriented LBM

codes such as metaLBM require to store and output a number of field arrays. In addition

to the usual macroscopic arrays (velocity and density), we commonly need to store the

distribution functions to create a checkpoint of the simulation and be able to restart the

code. To minimize device memory requirements, we use host pinned memory. Apart from

having the advantage to make the host memory directly reachable within a CUDA kernel,

it also makes it possible to cut some of the cost of CPU-GPU memory copy [87].

6.3.2 Memory layout

The memory layout of the distribution functions array is typically based on either the

array of structures (AoS) or the structure of arrays (SoA) schemes. On the one hand, the
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AoS scheme, while reminding of object-oriented programming, is not suitable on GPUs as

it does not provide the coalesced memory that is required for warps to perform grouped

read/write operations. On the other hand, the SoA scheme is a popular choice [88, 89, 90]

as for a given an index, populations of all lattice nodes can be written on a contiguous slab

of memory. Those memory layouts are usually implemented as index functions and we

give in Listing the index functions corresponding to AoS and SoA memory layouts.

s i z e t AoS index populat ion ( s i z e t index node ,
s i z e t d i r ) {

r e turn index node ∗ num dir + d i r ;
}

s i z e t SoA index populat ion ( s i z e t index node ,
s i z e t d i r ) {

r e turn d i r ∗ volume + index node ;
}

Figure 6.3. Implementation of the AoS (top) and SoA (bottom) mem-
ory layouts. index node is the node index in column-major order and
dir is the discrete velocity number while num dir is the total number of
discrete velocities (for D3Q19, it is 19) and volume is the total number
of nodes.

More complex memory layouts have also been suggested. For instance, in the Cluster

SoA (CSoA) [91] memory layout for which a number, multiple of the number of threads

in a warp (32), of consecutive elements of each population are grouped together to enable

aligned read operations. However, while benchmarks showed significant improvements

for Intel Accelerators, on GPUs, the improvements were strongly limited. As a result,

the SoA memory layout was adopted in metaLBM.

6.3.3 Periodic boundary conditions

In order to allow an efficient implementation of the periodic boundary conditions, we sur-

round the lattice by a halo as shown in Fig. 6.4. Therefore, each of the two distribution

functions array allocated on the GPU have a size of (Lx+2Hx)×(Ly+2Hy)×(Lz+2Hz).

Since for the D3Q19 lattice, populations can move a maximum of a single point at each

iteration, we take a halo thickness Hx = Hy = Hz = 1. In practice at the beginning of

each iteration, we pull each distribution pointing outside of the computational domain

to the corresponding halo node to allow computations at the boundary to happen seam-

lessly. For D3Q19 this means that for each site only five populations per boundary node

need to be transferred, while three populations per boundary node need to be transferred

for D2Q9.
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Figure 6.4. Two-dimensional D2Q9 visualization of the computational
domain surrounded by a halo region as allocated on the GPU.

6.4 Multi-GPUs implementation

In practice, turbulent flows simulations require very large domains and are therefore

limited by the amount of memory available on the GPU. To deal with this issue, we can

run the simulations on multiple GPUs, distributing the global computational grid into

smaller local domains. To do that, we create a one to one map between processes, called

MPI processes for MPI or processing elements for NVSHMEM, and GPUs. We present

two different approaches to GPU-GPU communications, one which relies on the host

CPU to initiate communication, and the other solely based on the NVSHMEM API,

which allows the GPU itself to initiate communications to P2P connected GPUs.

6.4.1 Domain partitioning

For three-dimensional flow simulations, the computational domain can be partitioned

either across one, two or three dimensions. Each of these partitions forms a sub-domain

allocated to one GPU. Going to higher partitioning dimensions have the advantage of

being able to scale the communication time with the number of processes. However,

this a priori does not impact the scaling at a low number of processes [92] and as we

work on a single-node multi-GPUs (< 8) system, we adopt a 1D partitioning along the

X-direction.

In order to enforce a 1D ring of Np NVLink-connected GPUs, we can use nvidia-smi

topo -m to get the DGX-1 system topology and force ordering of the GPU using the

environmental variable CUDA V ISIBLE DEV ICES. As seen in Fig. 6.5, each local

grid is also surrounded by a halo and allocated a local volume of (Lx + 2Hx)/Np ×
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(Ly + 2Hy)× (Lz + 2Hz) nodes. At the beginning of an iteration, GPUs exchange data

for nodes close to the right and left boundaries of their sub-domains with the GPUs

that are previous and next on the 1D ring. This implies that along the direction of the

partitioning, periodic boundary conditions are automatically enforced.

Figure 6.5. Two-dimensional D2Q9 visualization of the one-
dimensional set of sub-domains on Np GPUs virtually ordered along a
ring. Adapted from Ref. [86].

6.4.2 CPU-initiated communications

CUDA+MPI model

The most common approach to port a single GPU code to multiple GPUs is to use the

MPI communication library. Typically, to send distribution functions from one GPU to

the next GPU on the 1D ring, one has to allocate a buffer, pack contiguously into this

buffer the distribution functions to be sent, transfer the buffer to the CPU and send it

with MPI communication routines. Once the buffer is received by the neighboring pro-

cess, it is transferred to the receiving GPU and unpacked into the distribution functions

array. As mentioned in section 6.2, communication between CPU and GPU are a com-

mon bottleneck of multi-GPUs implementation scaling. However, the situation can be

partially dealt with on NVIDIA architectures using CUDA-Aware MPI [93]. It allows to

directly use memory addresses located on the GPU as arguments of MPI communication

routines. While it simplifies the code by allowing the ommitment of explicit CPU-GPU

communications, it also improves performances by pipelining all the operations required

in a data transfer and allowing RDMA communications.

Moreover, to further simplify MPI communications and improve efficiency, we can cut

the packing/unpacking steps by noticing that, when the SoA memory layout is used, for

each direction pointing outside of the local sub-domain at the boundary, the distribution

functions for all nodes at the boundary are already coalesced slabs of memory. Therefore,

at the cost of 3 (for D2Q9) or 5 (for D3Q19) MPI communication calls instead of one,

the packing/unpacking procedure can be skipped as shown in Fig. 6.6. Moreover, we can

further improve on this by making use of non-blocking send and receives communications

MPI Isend / Irecv.
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Figure 6.6. Two-dimensional D2Q9 visualization of the communication
procedure at a single time step. For each direction pointing outside of the
local domain. a slab of memory corresponding to distribution functions
at that direction at all boundary nodes is sent and received to/from the
next GPU on the virtual onde-dimensional ring. Adapted from Ref. [80]
with permissions.

CUDA+NVSHMEM model

NVSHMEM API also supports CPU-side communication in a very similar manner than

CUDA-Aware MPI and therefore we add this implementation to our comparative perfor-

mance analysis. In order to use NVSHMEM for CPU-initiated communication we simply

replace the MPI Isend / Irecv calls by the corresponding shmem putmem NVSHMEM

API calls. Alternatively, there is a similar API, shmem putmem on stream, that offloads

communications on a CUDA stream. For this implementation as well as others that

use NVSHMEM, all GPU memory allocation is pinned GPU device memory allocated

symmetrically on each GPU memory using the shmem alloc API.

Communication and computation overlapping

As a kernel running on GPU devices and host-side function can run in parallel, it is

possible to hide communications by overlapping them with computations through the

use of CUDA streams. Indeed, as described in Fig. 6.7, after running the periodic

boundary conditions on the Y- and Z-axis, we can launch on stream 1 the kernel to

process the bulk of the sub-domain, i.e., the sub-domain without the X-axis boundary

nodes, and proceed with communications. Once communications are done, we launch a

kernel on X-axis boundary nodes to process them as well.
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Figure 6.7. Timeline of the overlapping logic implemented in met-
aLBM. Adapted from Ref. [91] with permissions.

6.4.3 GPU-initiated communications

CUDA+NVSHMEM model

Once the memory is allocated symmetrically on all GPUs using shmem alloc, it is pos-

sible to get, from any GPU, a pointer to the memory residing on its P2P-connected

GPUs using shmem ptr. At this point, from a practical perspective, communicating at

the boundary along the X-axis is the same than applying periodic boundary condition in

that direction. Therefore, the implementation of an NVSHMEM kernel is very simple.

On top of that, having kernels that include both communication and computation enable

overlapping between computation and communication using the GPU intrinsic capabili-

ties based on warp scheduling. Moreover, if communications are handled by the device,

there is no input needed from the host, but it stills launch the required kernels at each

iteration. Launching kernel includes an overhead which can be skipped by writing a per-

sistent kernel that takes care of iterating over time. Therefore this implementation, while

having the advantage of being easy to code, could also result in better performances than

a CPU-centric CUDA+MPI implementation with communication-computation overlap-

ping.

6.5 Comparative performance benchmarks

We present in this section benchmarks on a single GPU and the weak and strong scaling

of the reference CUDA+MPI implementation. In both cases, we use two systems: the

DGX-1P, based on P100 GPUs and the DGX-1V, based on V100 GPUs.
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6.6 Performance metrics

Performances of LBM codes are commonly evaluated based on an indicator called million

lattice updates per second (MLUPS) defined as

V0 · n
t · 106

, (6.6)

where t is the time required to perform n iterations of the LBM algorithm on V0 nodes

of the lattice.

In the following, we will also be interested in measuring times. First, the computation

time, i.e. the cumulative time taken by the streamAndCollide kernel to proceed with

all nodes in the case of no communication-computation overlapping or all nodes in the

bulk, in the case of overlapping. Then in the case without overlapping, we also measure

the communication time, which is the cumulative time taken to proceed with periodic

boundary conditions and MPI communications and the processing of the streamAnd-

Collide kernel on the boundary along the X-axis.

6.6.1 Single GPU

We first present a benchmark of the performance of metaLBM on a single GPU at

increasing size of the domain along the X-axis while setting the size along the Y- and Z-

axis to Ly = Lz = 256 for both a Pascal P100 GPU and a Volta V100 GPU. On Fig. 6.8,

we observe that on domain such as Lx > 64, performances are constant reaching ≈ 1000

MLUPS on P100 and ≈ 1500 on V100. The theoretical increase of 50% in performances

on the specs between the GPU of the Pascal generation to the one of the Volta generation

is, therefore, also observed in practice. Below Lx = 64, we see that performances decrease

quickly, most likely because kernels are faster to execute and we start seeing the overhead

of starting kernels on the GPUs.

Figure 6.8. One-dimensional ring of a lattice on Np GPUs virtually
ordered along a ring.

111



6.6.2 Weak scaling

We measure the code performance at increasing the number of processes while maintain-

ing the local domain size per process constant. This so-called week scaling experiment

was conducted imposing a domain size of V0 = (Np · 480) × 256 × 256, where Np is the

number of processes. We show on Figs. 6.9 and 6.10 the results of the weak scaling

benchmark on the DGX-1P and the DGX-1V respectively. The benchmark on both

systems looks very similar if we account for the performance differences observed on a

single GPU. Overall, we observe a perfect scaling in the MPI with overlapping and a

close to perfect scaling when overlapping is not implemented. From the measurement of

the communication and computation times, it can be surprising than the weak scaling

appears so good. However, here the communication times includes the time taken to

process periodic boundary conditions, which, as the sub-domain treated on each GPU is

the same for all, does not impact the results.

Figure 6.9. Weak scaling of the metaLBM code on a DGX-1P (8 P100
GPUs) for a domain of (NP ·480)×256×256, where NP is the number of
processes (= number of GPUs). Panel (a) shows the performance scaling
for the MPI implementations with and without overlapping, while Panel
(b) shows the communicaiton and computation times for the implemen-
tation without overlapping.

6.6.3 Strong scaling

To assess how an application scale on multiple GPUs, one can also look at the code

performance on a constant global domain size, while gradually increasing the number

of GPUs. This measurement is denoted as strong scaling and performed on a compu-

tational domain of size V0 = 480 × 256 × 256. On Figs. 6.11 and 6.12, we show the

result of the strong scaling benchmark for the DGX-1P and the DGX-1V respectively.

Again, except for the higher performances of V100 GPUs compared to P100 GPUs, the
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Figure 6.10. Weak scaling of the metaLBM code on a DGX-1V (8 V100
GPUs) for a domain of (NP ·480)×256×256, where NP is the number of
processes (= number of GPUs). Panel (a) shows the performance scaling
for the MPI implementations with and without overlapping, while Panel
(b) shows the communicaiton and computation times for the implemen-
tation without overlapping.

results on both systems look similar. Here, we observe more clearly the impact of the

fact that periodic boundary conditions are not overlapped. Indeed, while the commu-

nication times are much smaller than the computational times, we do not see a perfect

scaling in the implementation involving communication-computation overlapping. This

implementation, nevertheless, is still exhibiting better scaling than the non-overlapped

implementation as MPI communications are properly hidden.

Figure 6.11. Strong scaling of the metaLBM code for a domain of (NP ·
480) × 256 × 256, where NP is the number of processes (= number of
GPUs).

From the strong scaling results, we can infer the number of GPUs up to which our

application should scale. Indeed, looking at the communication times for 8 GPUs, we

see that they are still at least four times higher than the computation time, meaning
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Figure 6.12. Strong scaling of the metaLBM code for a domain of (NP ·
480) × 256 × 256, where NP is the number of processes (= number of
GPUs).

that the application could scale up to 32 GPUs. To further improve the scaling on more

GPUs, it is then required to adopt a higher-dimensional domain partitioning. indeed,

in 2D and 3D domain partitioning, communications times scales with the number of

processes. However, for the present work, we deal with single node systems of 8 GPUs

and therefore the 1D domain partitioning adopted here is perfectly suitable.

6.7 Concluding remarks & future work

In this chapter, we have presented a work-in-progress involving the benchmark of NVSH-

MEM, a new communication library that allows GPU to initiate data exchange across

a set of P2P-connected GPUs. We have presented all implementations based on NVSH-

MEM for our code, metaLBM, and presented a detailed benchmark of a single GPU

and MPI-based multi-GPUs implementations on DGX-1 systems composed of either

Pascal or Volta generation GPUs. While results could be improved by also be over-

lapping periodic boundary conditions with computations, we have observed a near-to-

perfect weak scaling and a very good strong scaling for implementation with and without

communication-computation overlapping.

Based on those reference CUDA+MPI implementations, we can benchmark the perfor-

mances of NVSHMEM implementations, for both standard and persistent kernels that

allows saving performances from the overhead of repetitive kernel launches. NVSHMEM

is yet only available for single node runs. When extended to multi-nodes, it could be

interesting to explore further the scalings for a larger number of GPUs. This would also

114



give us the opportunity to explore its performances in 2D or even 3D domain partition-

ing, for which the packing/unpacking required by MPI communications can no longer

be skipped.
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CHAPTER 7

CONCLUSION

7.1 Summary of the results

In this thesis, we shed some light on the implicit sub-grid scale modeling implied by the

Entropic Lattice Boltzmann Method (ELBM) in the context of Homogeneous Isotropic

Turbulence (HIT). The apparent unconditional stability of this sub-class of Lattice Boltz-

mann Method (LBM) is due to the enforcement of a H-theorem through the local cal-

culation of an entropic parameter α(x, t). ELBM has been put forward as an implicit

Large-Eddy Simulation (LES) with an eddy viscosity Sub-Grid Scale (SGS) model, re-

sulting from the assumption that the equation bridging the mesoscopic relaxation time

with the macroscopic viscosity still holds when the relaxation time is fluctuating. Our

first efforts focussed on numerically validating this assumption. To do that we developed

a tool to assess the accuracy with which Navier-Stokes hydrodynamics is recovered by

LBM and validated it against Pseudo-Spectral (PS) simulations of the Navier-Stokes

Equations (NSE). Extend this tool with additional terms stemming from the eddy vis-

cous dissipation implied by the fluctuating relaxation time, we applied it to a set of 2D

and 3D HIT flows simulations of increasing Reynolds numbers. On the one hand, we

could not clearly confirm, the assumption stating that ELBM can be macroscopically

described as a LES with an eddy viscosity type SGS model. On the other hand, we have

shown that ELBM extends the inertial range up to 20 times the Reynolds number of

the last stable LBM simulation, demonstrating the existence of an implicit turbulence

model while providing an upper limit of its range of validity.

In parallel for those two sets of simulations, we numerically assessed the hydrodynamic

approximation of the assumed ELBM eddy viscosity from Ref. [2]. We find that it

captures the dynamics of the ELBM eddy viscosity only at low Reynolds numbers, while

it fails in fully developed turbulent regimes. To identify analytically the weak points

of this approximation, we numerically check the assumptions made at every step of a

C-E expansion of the entropic parameter α(x, t). We explain why the macroscopic eddy
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viscosity formulation fails to be recovered at high Reynolds number by highlighting the

presence of extra terms whose magnitude grows with the velocity gradients.

We performed a C-E expansion of ELBM at the second order showing that we recover

the Navier-Stokes Equations (NSE) with only the constant zeroth order contribution of

the entropic parameter α(x, t) = 2+O(∆t) appearing. Thus, we show that a third order

C-E expansion is required to analytically observe the implicit ELBM model. Performing

this higher-order expansion, we have shown that it is not only composed of an eddy

viscous dissipation that depends on the effective relaxation time, but also of extra terms

of the same order of magnitude. The latter result is of particular importance as it

raises questions on the validity of many other eddy viscosity SGS models implemented

in LBM.

The fact that the ELBM closure is more complex than a simple eddy viscosity model

did not mean, that it was unable to model turbulence. Indeed, we have assessed the

capability of the ELBM closure by comparing inertial range statistics of turbulent veloc-

ity fields obtained from an ELBM simulation, with those coming from a high-resolution

Direct Numerical Simulation (DNS) of the NSE conducted with a PS code. First results

showed that ELBM is able to increase the inertial scaling range and partially captures

the correct intermittent behaviors. Intrigued by the interesting functional shape of the

approximated eddy viscosity closure, we have shown, conducting the same inertial range

statistical analysis, that it does not capture intermittency any better than a Smagorinsky

model.

A part of this thesis was also dedicated to high-performance computing and this thesis

work has required significant computing power. We developed an in-house open-source

high-performance implementation of LBM [5] that support multiple 2D and 3D lattice

stencils and can be used to conduct high-resolution flow simulations using different tur-

bulence models and spectral HIT forcings. The code was optimized on multi-GPUs archi-

tectures by making use of NVSHMEM, a novel GPU-centric communication library. As

a part of on-going work, this implementation is benchmarked against the standard CPU-

centric communication implementation based on the Message-Passing Interface (MPI)

library. We introduced the motivation behind this work and presented the results of

the reference MPI implementation in terms of both strong and weak scaling properties,

highlighting excellent scaling behaviors.
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7.2 Future work

As a further step, it could be interesting to look at multi-relaxation times ELBM, the

KBC family of methods [60]. Different flavors of those methods exist, but while they

have been benchmarked in terms of mean flow properties, it is still unclear whether they

are able to capture intermittent behaviors.

On the implementation side, ELBM was shown to be a computationally expensive algo-

rithm, that is also intrinsically unadapted to GPUs. Indeed, the fact that at any lattice

node the number of Newton-Raphson steps required to solve the entropic step equation

can be different damages performances on massively parallel architectures. Indeed, it

means that each CUDA thread can diverge causing the other CUDA threads within the

same warp to wait. Also, each thread perform writes operations at each iteration of the

Newton-Raphson algorithm and therefore, it might be worthwhile to use the Clustered

Structure of Array [91] that allows aligned read operations or to make used of a shared

memory-based tilling technique.
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APPENDIX A

DERIVATION OF THE BALANCE EQUATIONS FROM

THE WEAKLY COMPRESSIBLE NAVIER-STOKES

A.1 Kinetic energy balance equations

A.1.1 Derivation of the equation

To get the kinetic energy balance, we start by multiplying Eq. (1.45) by ui and it reads

(reapeted indices are meant summed upon)

ρui∂tui + ρujui∂jui = −c2
sui∂iρ+ νui∂j (ρ (∂jui + ∂iuj)) + uiFi. (A.1)

Using the continuity Eq. (1.45), we can rewrite the L.H.S. of Eq. (A.1) as

ρui∂tui + ρujui∂jui = ρ∂t
u2

2
+ ρuj∂j

u2

2

= ∂t
ρu2

2
− u2

2
∂tρ+ ∂j

ρu2

2
uj −

u2

2
∂j (ρuj)

= ∂t
ρu2

2
+ ∂j

ρu2

2
uj −

u2

2
(∂tρ+ ∂j (ρuj))

= ∂t
ρu2

2
+ ∂j

ρu2

2
uj .

We can also rewritte the second term of the R.H.S. of Eq. (A.1) as

νui∂j (ρ (∂jui + ∂iuj)) = ∂j (νρui (∂jui + ∂iuj))− νρ (∂jui + ∂iuj) ∂jui.

We obtain the balance equation for kinetic energy:

∂t
ρu2

2
= ∂j

[
−ρu

2

2
uj + νρui (∂jui + ∂iuj)

]
− c2

sui∂iρ− νρ (∂jui + ∂iuj) ∂jui + uiFi.

(A.2)
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A.1.2 Averaging over a subvolume

To check the balance equations, we average them over a volume V of surface ∂V . this

volume can be, theoretically speaking any subvolume of the computational domain. We

refer with
〈
. . .
〉

to the integration over V :
˝

V . . . dV . This gives us for the kinetic

energy balance Eq. (A.2)〈
∂t
ρu2

2

〉
=

˚
V
∂j

[
−ρu

2

2
uj + νρui (∂jui + ∂iuj)

]
dV

− c2
s

〈
ui∂iρ

〉
− ν
〈
ρ (∂jui + ∂iuj) ∂jui

〉
+
〈
uiFi

〉
.

(A.3)

Using the divergence theorem, we get

∂t
〈ρu2

2

〉
=

‹
∂V

[
−ρu

2

2
uj + νρui (∂jui + ∂iuj)

]
nj dS

− c2
s

〈
ui∂iρ

〉
− ν
〈
ρ (∂jui + ∂iuj) ∂jui

〉
+
〈
uiFi

〉
.

(A.4)

A.1.3 Case of a 2D system

When we integrate over the whole grid, V = [0, L− 1]× [0, L− 1], with periodic bound-

aries, the fluxes become 0 and the averaged kinetic energy balance Eq. (A.4) becomes

∂t
〈ρu2

2

〉
= −c2

s

〈
ui∂iρ

〉
− ν
〈
ρ (∂jui + ∂iuj) ∂jui

〉
+
〈
uiFi

〉
. (A.5)

A.2 Enstrophy balance equations

A.2.1 Derivation of the equation

To get the enstrophy balance, we start by deriving the equation for the vorticity ω =

∇ × u. In order to do that, we drop the index notation for the vector notation in

Eq. (1.45) and divide by ρ to obtain

Du

Dt
= −c2

s

1

ρ
∇ +

1

ρ
∇ ·

[
νρ
(
∇u + (∇u)T

)]
+

1

ρ
F . (A.6)

Taking the curl of the L.H.S. of Eq. (A.6) holds

∇× Du

Dt
= ∇×

(
∂u

∂t
+ ∇u2

2
− u× (∇× u)

)
=

∂

∂t
(∇× u) + ∇×∇

(
u2

2

)
−∇× (u× ω)

=
∂ω

∂t
+ ω (∇ · u)− (ω ·∇)u + (u×∇)ω.
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and taking the curl of the pressure gradient term in Eq. (A.6) we have

∇× c2
s

1

ρ
∇ρ = c2

s

1

ρ
(∇×∇ρ) + c2

s

(
∇1

ρ

)
×∇ρ

= −c2
s

1

ρ2
∇ρ×∇ρ = 0.

Thus, we obtained the vorticity equation

∂ω

∂t
+ ω (∇ · u)− (ω ·∇)u + (u×∇)ω = ∇× 1

ρ
∇ ·

[
νρ
(
∇u + (∇u)T

)]
+ ∇× 1

ρ
F .

(A.7)

To get the enstrophy balance equation, we take the scalar product of ω with Eq. (A.7).

Starting from the L.H.S., we go back to index notations and it reads

ω ·
{
∂ω

∂t
+ ω (∇ · u)− (ω ·∇)u + (u×∇)ω

}
= ω · ∂ω

∂t
+ ω · ω (∇ · u)− ω · (ω ·∇)u + ω · (u×∇)ω

= ∂t
ω

2
+ ωiuj∂jωi − ωiωj∂jui + ωiωi∂juj .

However, as

ωiuj∂jωi =
1

2
uj∂j (ωiωi)

=
1

2
∂j (ujωiωi)−

1

2
ωiωi∂juj ,

we have

ω·
{
∂ω

∂t
+ ω (∇ · u)− (ω ·∇)u + (u×∇)ω

}
= ∂t

ω2

2
+∂j

(
ω2

2
uj

)
+
ω2

2
∂juj−ωiωj∂jui.

Setting H = 1
ρ∇ ·

[
ρ
(
∇u + (∇u)T

)]
, we take the scalar product of ω and the dissipa-

tion term of the R.H.S. of Eq. (A.7):

ω · (ν∇×H) = νωiεijk∂jHk

= νεijk [∂j (ωiHk)−Hk∂jωi]

= ∂j (νεijkωiHk) + νεkjiHk∂jωi

= ∂j (νεijkωiHk) + νH · (∇× ω) ,

where ε is the Levi-Civita symbol.
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The enstrophy balance equation is:

∂t
ω2

2
= ∂j

[
−ω2

2
uj + νεijkωiHk

]
− ω2

2
∂juj + ωiωj∂jui + νH · (∇× ω) + ω ·

(
∇× 1

ρ
F

) (A.8)

where H = 1
ρ∇ ·

[
ρ
(
∇u + (∇u)T

)]
A.2.2 Averaging over a subvolume

Again, to check the balance equations, we average them over a volume V of surface ∂V .

this volume can be, theoretically speaking any subvolume of the computational domain.

Similarly, integrating the entropy balance Eq. (A.8) over V , we get〈
∂t
ω2

2

〉
=

˚
V
∂j

[
−ω2

2
uj + νεijkωiHk

]
dV

−
〈ω2

2
∂juj

〉
+
〈
ωiωj∂jui

〉
+ ν
〈
H · (∇× ω)

〉
+
〈
ω ·
(
∇× 1

ρ
F

)〉
.

Using the divergence theorem, we get

∂t
〈ω2

2

〉
=

‹
∂V

[
−ω2

2
uj + νεijkωiHk

]
nj dV

−
〈ω2

2
∂juj

〉
+
〈
ωiωj∂jui

〉
+ ν
〈
H · (∇× ω)

〉
+
〈
ω ·
(
∇× 1

ρ
F

)〉
,

(A.9)

where H = 1
ρ∇ ·

[
ρ
(
∇u + (∇u)T

)]
A.2.3 Case of a 2D system

In 2D, the vortex streching term is zero and the Levi-Civita symbol gets simpler, therefore

the averaged enstropy balance Eq. (A.9) becomes

∂t
〈ω2

2

〉
=

‹
∂V

[
−ω

2

2
uj + νεzjkωHk

]
nj dV

−
〈ω2

2
∂juj

〉
+ ν
〈
Hx∂yω −Hy∂xω

〉
+
〈
ω

(
∂x
Fy
ρ
− ∂y

Fx
ρ

)〉
,

(A.10)

where ω is the component of the vorticity vector along the z-axis, ω = ωez.

Moreover, when integrating over the whole grid, V = [0, L− 1] × [0, L− 1], with peri-

odic boundaries, the fluxes become 0 and the averaged enstrophy balance Eq. (A.10)

becomes

∂t
〈ω2

2

〉
= −

〈ω2

2
∂juj

〉
+ ν
〈
Hx∂yω −Hy∂xω

〉
+
〈
ω

(
∂x
Fy
ρ
− ∂y

Fx
ρ

)〉
. (A.11)
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APPENDIX B

CHAPMAN-ENSKOG EXPANSION FOR LBGK

To unroll the C-E expansion, we use the formalism introduced in section 1.3.4. The

following notation will also be used for the n-th order isotropy relation

∆(n) =
∑
`

t`

n︷ ︸︸ ︷
c` . . . c`, (B.1)

Moreover, for L, M, and N, three symmetric second-order tensors, we use the following

notations to shorten the proof:

([L]2)ij = Lij + Lji, meaning that [A]2 is a second-order tensor

([uL]2)ij = uiLjk + ujLik + ukLij , meaning that [uL]3 is a third-order tensor,

([LM]3)ijkl = AijBkl +AikBjl +AilBkj , meaning that [LM]3 is a fourth-order tensor,

and [LMN]15 is the sixth-order tensor created by taking the sum of the 15 sixth-order

tensors with unique index combination of the three (symmetric) tensors.

(B.2)

We know that, thanks usual lattice possess second and third order isotropy, therefore we

will assume that ∆(2) = c2
s1 and ∆(4) = c4

s [11]3, while the sixth order isotropy relation

is written as

∆(6) = c6
s [111]15 + 6c6

sA, (B.3)

with [111]15 = [1[11]3]5, where the extra contribution proportional to A are due to

(eventual) lattice anisotropies.

B.1 First order: Euler equations

For N = 1, Eq. (1.41) gives

D`f
eq
` = −αβf eq

` φ` +O(∆t). (B.4)

125



Taking the zeroth order moment of Eq (B.4) leads straightforwardly to mass conserva-

tion

∂tρ+ ∇ · (ρu) = O(∆t), (B.5)

and its first order moment gives the momentum balance

∂t(ρu) + ∇ ·
∑
`

c`c`f
eq
` = O(∆t). (B.6)

Since ∑
`

c`c`f
eq
` = c2

sρ1 + ρuu, (B.7)

momentum balance becomes

∂t(ρu) + ∇ · (ρuu) = −∇(c2
sρ) +O(∆t). (B.8)

By using the mass conservation equation Eq. (B.5), momentum balance can also be

written as

ρ∂tu + ρu ·∇u = −∇(c2
sρ) +O(∆t). (B.9)

B.2 Second order: Athermal weakly compressible Navier-Stokes equations

Going to N = 2, Eq. (1.41) writes

D`f
eq
` +

∆t

2
D2
`f

eq
` = −αβf eq

` φ` −∆tD`(f
eq
` φ`) +O(∆2

t ). (B.10)

By applying the D` = ∂t + c` · ∇ operator, we get

D2
`f

eq
` = − 1

τ0
D`(f

eq
` φ`) +O(∆t). (B.11)

By inserting the latter in the former we obtain

D`f
eq
` = − 1

τ0
f eq
` φ` + ∆tD`

[(
αβ

2
− 1

)
f eq
` φ`

]
+O(∆2

t ), (B.12)

Taking the zeroth order of Eq. (B.12), we get the mass conservation equation,

∂tρ+ ∇ · (ρu) = O(∆2
t ), (B.13)

and taking its first order moment, we obtain the momentum balance,

∂t(ρu) + ∇ · (ρuu) = −∇(c2
sρ) + ∆t∇ ·

[(
1

2τ0
− 1

)∑
`

c`c`f
eq
` φ`

]
+O(∆2

t ), (B.14)
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where (B.7) has been used. Starting from (B.4), we obtain∑
`

c`c`f
eq
` φ` = −τ0

∑
`

c`c`D`f
eq
` +O(∆t)

= −τ0

[
∂t
(
c2
sρ1 + ρuu

)
+ ∇ ·

∑
`

c`c`c`f
eq
`

]
+O(∆t),

(B.15)

where, again, we used (B.7). By using mass conservation and momentum balance at the

order N = 1 (Eq. (B.5) and Eq. (B.8)), we have

∂t(c
2
sρ1 + ρuu) = c2

s∂tρ1 + ∂t(ρu)u + ρu∂tu

= −c2
s∇ · (ρ[u1]3) + c2

sρ[∇u]2 −∇ · (ρuuu) +O(∆t).
(B.16)

Furthermore,∑
`

c`c`c`f
eq
` = ρ

[
u ·∆(4)

c2
s

+
uuu : ·∆(6) − 3c2

s|u|2u ·∆(4)

6c6
s

]
= c2

sρ[u1]3 + ρuuu + A : · ρuuu.
(B.17)

Therefore, we obtain∑
`

c`c`f
eq
` φ` = − 1

αβ
c2
sρ[∇u]2 −

1

αβ
A :: ∇(ρuuu) +O(∆t). (B.18)

Momentum balance Eq. (B.16) then becomes

∂t(ρu)+∇·(ρuu) = −∇(c2
sρ)+∇·

{
∆t

(
1

αβ
− 1

2

)[
c2
sρ[∇u]2 + A :: ∇(ρuuu)

]}
+O(∆2

t ).

(B.19)

This allows us to write, in the isotropic case (A = 0) or in the limit of low Mach numbers,

the following expression kinematic viscosity ν0:

ν0 = ∆t

(
τ0 −

1

2

)
c2
s +O(Ma3) +O(∆2

t ). (B.20)
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APPENDIX C

CHAPMAN-ENSKOG EXPANSION FOR ELBM

To perform this C-E expansion, we use the formalism introduced in section 1.3.4 as well

as the tensorial notations described in Eq. (B.2)

The entropic parameter α is computed at each lattice node as the solution of∑
`

f` ln

(
f`
t`

)
=
∑
`

[αf eq
` + (1− α)f`] ln

(
αf eq

` + (1− α)f`
t`

)
. (C.1)

Notice that α is a parametric function of ∆t through its dependence on f`.

C.1 Second order: Athermal weakly compressible Navier-Stokes equations

The momentum balance obtained at the second order Eq. (4.26) for a fixed relaxation

time τ = τ0 is also valid when τ = τeff = α
β . Therefore we have

∂t(ρu)+∇·(ρuu) = −∇(c2
sρ)+∇·

{
∆t

(
1

αβ
− 1

2

)[
c2
sρ[∇u]2 + A :: ∇(ρuuu)

]}
+O(∆2

t ).

(C.2)

Therefore, the kinematic viscosity ν is given by:

ν = ∆t

(
1

αβ
− 1

2

)
c2
s +O(Ma3) +O(∆2

t ). (C.3)

Notice that this expression can be considered correct up to O(∆t). This actually means

that α, which itself admits an expansion in ∆t, has to be set equal to its leading order

expression. In order to estimate the leading order of α, we rewrite Eq. (C.1), by using

Eq. (1.42), as∑
`

f eq
` (1+∆tφ`) ln

(
f eq
`

1 + ∆tφ`
t`

)
−
∑
`

f eq
` [1+(1−α)∆tφ`] ln

(
f eq
`

1 + (1− α)∆tφ`
t`

)
= 0,

(C.4)
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and expand in ∆t, to get

α
∑
`

f eq
` φ`

(
1 + ln

(
f eq
`

t`

))
+ ∆tα

(
1− α

2

)∑
`

f eq
` φ

2
` = O(∆2

t ). (C.5)

By excluding the trivial solution α = 0 and simplifying (the first term vanishes), we

obtain

α = 2 +O(∆t), (C.6)

and higher orders in the expansion of α are absorbed in O(∆2
t ) in Eq. (B.20), that

is

ν = ∆t
1− β

2β
c2
s +O(Ma3) +O(∆2

t ) = ∆t

(
τ0 −

1

2

)
c2
s +O(Ma3) +O(∆2

t ). (C.7)

C.2 Third order: Added contributions from the fluctuating entropic param-

eter

Therefore in order to observe the effect of the fluctuating entropic parameter α on the

dynamics, it is necessary to go the third order C-E expansion. For N = 3 we obtain

D`f
eq
` +

∆t

2
D2
`f

eq
` +

∆2
t

6
D3
`f

eq
` = −αβf eq

` φ`−∆tD`(f
eq
` φ`)+

∆2
t

2
D2
` (f

eq
` φ`)+O(∆3

t ). (C.8)

The following relations will be systematically used:∑
`

n︷ ︸︸ ︷
c` . . . c`D`(αf`) = ∂t

(
α
∑
`

n︷ ︸︸ ︷
c` . . . c` f`

)
+ ∇ ·

(
α
∑
`

n+1︷ ︸︸ ︷
c` . . . c` f`

)
, (C.9)

and∑
`

n︷ ︸︸ ︷
c` . . . c`D

2
` (αf`) = ∂2

t

(
α
∑
`

n︷ ︸︸ ︷
c` . . . c` f`

)
+ 2∂t∇ ·

(
α
∑
`

n+1︷ ︸︸ ︷
c` . . . c` f`

)

+ ∇∇ :

(
α
∑
`

n+2︷ ︸︸ ︷
c` . . . c` f`

)
,

(C.10)

By applying the D` operator we get

D2
`f

eq
` +

∆t

2
D3
`f

eq
` = −βD`(αf

eq
` φ`)−∆tD

2
` (f

eq
` φ`) +O(∆2

t ). (C.11)

while a second application gives

D3
`f

eq
` = −βD2

` (αf
eq
` φ`) +O(∆t). (C.12)

By inserting the last two in the first one we obtain

D`f
eq
` = −αβf eq

` φ` + ∆tD`

[(
αβ

2
− 1

)
f eq
` φ`

]
−∆2

t

β

12
D2
` (αf

eq
` φ`) +O(∆3

t ). (C.13)
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Taking the zeroth order moment of Eq. (C.13) leads to mass conservation

∂tρ+ ∇ · (ρu) = −∆2
t

β

6
∇∇ :

∑
`

c`c`f
eq
` φ` +O(∆3

t ), (C.14)

and its first order moment gives the momentum balance

∂t(ρu) + ∇ · (ρuu) = −∇(c2
sρ) + ∆t∇ ·

[(
αβ

2
− 1

)∑
`

c`c`f
eq
` φ`

]

−∆2
t

β

6
∇ ·

[
2∂t
∑
`

c`c`f
eq
` φ` + ∇ ·

∑
`

c`c`c`f
eq
` φ`

]
+O(∆3

t ),

(C.15)

where Eqs. (B.7) and (C.6) were used. Further using Eq. (B.18), mass conservation

Eq.(C.14) becomes

∂tρ+ ∇ · (ρu) =
∆2
t

12
∇∇ :

[
c2
sρ[∇u]2 + A :: ∇(ρuuu)

]
+O(∆3

t ). (C.16)

Starting from Eq. (C.13), we obtain∑
`

c`c`f
eq
` φ` = − 1

αβ

∑
`

c`c`D`f
eq
` + ∆t

β − 1

2β

∑
`

c`c`D`(f
eq
` φ`) +O(∆2

t )

= − 1

αβ

[
∂t
(
c2
sρ1 + ρuu

)
+ ∇ ·

(
c2
sρ[u1]3 + ρuuu + A : · ρuuu

)]
+ ∆t

β − 1

2β

[
∂t
∑
`

c`c`f
eq
` φ` + ∇ ·

∑
`

c`c`c`f
eq
` φ`

]
+O(∆2

t ),

(C.17)

where Eqs. (B.7), (B.17) and (C.6) have been used. Consequently, momentum balance

becomes

∂t(ρu) + ∇ · (ρuu) = −∇(c2
sρ)

+ ∆t∇ ·
[(

1

αβ
− 1

2

)[
∂t
(
c2
sρ1 + ρuu

)
+ ∇ ·

(
c2
sρ[u1]3 + ρuuu + A : · ρuuu

)]]
+ ∆2

t

(β − 1)2

2β
∇ ·

[
∂t
∑
`

c`c`f
eq
` φ` + ∇ ·

∑
`

c`c`c`f
eq
` φ`

]

−∆2
t

β

6
∇ ·

[
2∂t
∑
`

c`c`f
eq
` φ` + ∇ ·

∑
`

c`c`c`f
eq
` φ`

]
+O(∆3

t ),

(C.18)
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where Eq. (C.6) has been used. By using mass and momentum conservation equations

at the order N = 2 (Eqs. (B.13) and (4.26)), we have

∂t(c
2
sρ1 + ρuu) = c2

s∂tρ1 + ∂t(ρu)u + ρu∂tu

= −c2
s∇ · (ρ[u1]3) + c2

sρ[∇u]2 −∇ · (ρuuu)

−∆t
β − 1

2β

{
c2
s[∇ · (ρ[∇u]2)u]2 + [A :: ·∇∇(ρuuu)u]2

}
+O(∆2

t ),

(C.19)

where Eq. (C.6) has been used. Momentum balance then becomes

∂t(ρu) + ∇ · (ρuu) = −∇(c2
sρ)

+ ∆t∇ ·
{(

1

αβ
− 1

2

)[
c2
sρ[∇u]2 + A :: ∇ (ρuuu)

]}
+ ∆2

t

(β − 1)2

4β2
c2
s∇ · [∇ · (ρ[u∇u]6)−∇ · (ρu[∇u]2)]

+ ∆2
t

(β − 1)2

4β2
∇ · [A :: ·∇∇(ρuuu)u]2

+ ∆2
t

(β − 1)2

2β
∇ ·

[
∂t
∑
`

c`c`f
eq
` φ` + ∇ ·

∑
`

c`c`c`f
eq
` φ`

]

−∆2
t

β

6
∇ ·

[
2∂t
∑
`

c`c`f
eq
` φ` + ∇ ·

∑
`

c`c`c`f
eq
` φ`

]
+O(∆3

t ),

(C.20)

where we used again Eq. (C.6). A derivation of Eq. (B.18) with respect to time gives

∂t
∑
`

c`c`f
eq
` φ` = − 1

2β
c2
s (∂tρ[∇u]2 + ρ[∇∂tu]2)− 1

2β
A :: ∇ [∂t(ρu)uu + 2ρuu∂tu] +O(∆t)

=
1

2β
c2
s

[
∇ · (ρu[∇u]2) + ρ[∇u ·∇u]2 + 2c2

sρ∇∇ ln ρ
]

+
1

2β
A ::

[
∇∇ · (ρuuuu) + 3c2

s∇∇(ρuu)− 6c2
s∇(ρu∇u)

]
+O(∆t).

(C.21)

where Eqs. (C.6), together with mass conservation Eq. (B.5) and momentum balance

Eq. (B.8) at the order N = 1 were used. Starting from Eq. (C.13), we obtain∑
`

c`c`c`f
eq
` φ` = − 1

2β

∑
`

c`c`c`D`f
eq
` +O(∆t)

= − 1

2β

[
∂t(c

2
sρ[u1]3 + ρuuu + A : · ρuuu) + ∇ ·

∑
`

c`c`c`c`f
eq
`

]
+O(∆t),

(C.22)
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where, again, Eqs. (C.6), mass conservation Eq. (B.5) and momentum balance Eq. (B.8)

at the order N = 1 were used, we have

∂t(c
2
sρ[u1]3 + ρuuu + A : · ρuuu) = c2

s[∂t(ρu)1]3 + ∂t(ρu)uu + ρu[u∂tu]2

+ A : · [∂t(ρu)uu + 2ρuu∂tu]

= −c2
s[∇ · (ρuu) 1]3 − c2

s[∇(ρuu)]3 + c2
sρ[u∇u]6

−∇ · (c4
sρ[11]3)−∇ · (ρuuuu) +O(∆t)

−A : · [∇ · (ρuuuu) + 3c2
s∇(ρuu)− 6c2

sρu∇u],

(C.23)

Furthermore, ∑
`

c`c`c`c`f
eq
` = ρ

(
1− |u|

2

2c2
s

)
∆(4) +

ρuu

2c4
s

: ∆(6)

= c4
sρ[11]3 + c2

sρ[uu1]6 + 3c2
sA : ρuu.

(C.24)

Therefore, since ∇ · (ρ[uu1]6) = [∇ · (ρuu)1]3 + [∇(ρuu)]3, we obtain∑
`

c`c`c`f
eq
` φ` = − 1

2β

∑
`

c`c`c`D`f
eq
` +O(∆t)

= − 1

2β

{
c2
sρ[u∇u]6 −∇ · (ρuuuu)

}
− 1

2β
A : · [6c2

sρu∇u−∇ · (ρuuuu)] +O(∆t).

(C.25)

For the sake of simplicitly, we give the resulting momentum balance in the isotropic case

(A = 0):

∂t(ρu) + ∇ · (ρuu) = −∇(c2
sρ)

+ ∆t∇ ·
{(

τ0 −
1

2

)
c2
sρ[∇u]2

}
+ ∆t∇ ·

{
2− α
2αβ

c2
sρ[∇u]2

}
+ ∆2

t

(β − 1)2

4β2
∇ ·

{
c2
sρ[∇u ·∇u]2 + 2c4

sρ∇∇ ln ρ+ ∇∇ : (ρuuuu)
}

+
∆2
t

12
c2
s∇ · {∇ · (ρ[∇u]2u)− 2ρ[∇u ·∇u]2}

− ∆2
t

12
∇ ·

{
4c4
sρ∇∇ ln ρ+ ∇∇ : (ρuuuu)

}
+O(∆3

t ),

(C.26)

where we used that β = 1
τ0

and ∇∇ : (ρ[u∇u]6) = ∇∇ : (2ρu[∇u]2 + ρ[∇u]2u).
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