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1 Introduction

Construction cranes, in general, cannot be regarded a mainstream topic in operations research (OR).

There has been some e�ort on the topic, but mostly from engineering-oriented researchers applying

quantitative methods. These e�orts especially occured in the mid-1980s to the mid-1990s. Nowadays,

crane-related problems seem to experience a revival, but still in the engineering-oriented community.

This indicates that the topic has quite some relevance. In the chapter at hand, we will have a closer

look at the reasons for the topic's relevance (Section 1.1). Afterwards, the structure of the thesis will

be outlined (Section 1.2).

1.1 Relevance of Tower Cranes in Construction Projects

Note: this chapter is based on Briskorn and Dienstknecht [10] and Briskorn and Dienstknecht [12].

Presumably everybody has come across tower cranes in his life. From small-scale construction projects

like single residential buildings to large-scale construction projects such as infrastructure projects cranes

can be seen looming over the sites. Whereas, for small-scale projects, often only a single crane operates,

on large-scale projects, multiple cranes being more or less dispersed on-site can be observed. However,

although tower cranes are one of the most characteristic pieces of construction equipment most people

do not question their selection and on-site location, but seem to consider them as kind of given by

nature, instead.

In fact, there is no such thing as the tower crane, but within this category various models can be

distinguished: there are, e. g., rail-mounted cranes, climbing-base cranes or �xed-base cranes (see

Shapira et al. [104] for a detailed overview on construction crane types). In this thesis, the focus is

restricted to �xed-base �at-top tower cranes (which most people might have in mind when talking

about construction cranes), i. e. cranes with a �xed base, a mast, a jib which can rotate by 360 degrees

around the mast, a trolley which travels along the jib and, �nally, the hook being attached to the

trolley. One may ask why the scope is restricted to the seemingly simplest tower crane model available

or why it is restricted to tower cranes, at all. From a practical perspective, tower cranes are quite often

employed due to the rather limited space they require: the base is on-site and anything else happens

overground. This makes tower cranes particularly interesting for congested sites which, nowadays,

are quite common, especially in urban areas where space is a critical resource. From a theoretical

perspective, planning �xed-base tower cranes already is a rather challenging task as will be seen in this

thesis. The insights gained herein, however, may be utilized when tackling more complicated crane

types.
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1 Introduction

Although, in everyday life, one may tend to take the cranes operating on-site as kind of naturally given

they are, obviously, not. They have been put in their places by human beings and the questions arising

are: why has this speci�c crane been selected and why has this very location been chosen for erecting

a crane? As we will see, tower crane selection and location decisions are anything but trivial since

numerous restrictions have to be taken into account.

Clearly, tower cranes are supposed to provide material transport in both horizontal and vertical direc-

tion. Consequently, cranes have to be able to reach both the source of material and its destination in

terms of the operating radius and the operating height. The former not only depends on the speci�c

crane, but on the weight to be lifted: heavy loads, in contrast to light loads, may only be carried closer

to the crane's mast since they would cause instabilities otherwise.

But cranes may not be located arbitrarily just having coverage in mind. There are areas on-site where

cranes with certain speci�cations may not be located, e. g. due to limited bearing capacities of the

ground, insu�cient accessibility for crane erection and dismantling, or safety clearance from power

lines and other on-site structures. Similarly, cranes have to keep safety clearance from each other.

Furthermore, a crane's operations are a�ected by given on-site structures and other cranes, as well, as

a crane's jib may be blocked by an object of su�cient height. These considerations already indicate

that decisions on crane selection and location are closely related and impact each other and, thus, are

ideally addressed integratedly.

One may wonder if cranes are worth the e�ort. Not surprisingly, they are. The impact of crane

selection and location traditionally includes both operational and economic aspects, but, nowadays, as

sustainability becomes increasingly important even climate aspects of crane operations (CO2 emissions)

are emphasized. From an economic perspective, the costs imposed by operating cranes justify careful

evaluation of their utilization. Tower cranes which are often provided by rental companies can easily

impose costs of tens of thousands of dollars per month depending on a project's scale. As cranes are

still the most important lifting equipment on-site their operational relevance is obvious.

Summarizing, the complex restrictions and interrelations of decisions in combination with the subject's

practical relevance make it an interesting area for OR as decision support may be required and OR's

methodological tool box may �ll this need.

1.2 Thesis Outline

In this thesis, tower crane selection and location on construction sites will be considered. Roughly

speaking, cranes with di�erent speci�cations have to be selected and located on a polygonal construc-

tion site so that material transports between polygonal supply and demand areas can be established.

Depending on the problem variant under research, several constraints have to be respected.

In order to fully introduce the topic, related literature will be presented �rst (Chapter 2). This liter-

ature review will consist of both a rather application-oriented perspective and a methodological part.

In the former part, the focus is on crane-related planning issues and � since this thesis deals with lo-

cating cranes on-site � on construction site layout planning in general. As location planning has a long

tradition in OR, the latter part is supposed to introduce concepts related to the problems considered

2
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in the thesis at hand.

Once the literature has been reviewed, the planning problems at the core of this thesis can be focused.

At �rst (Chapter 3), tower cranes will be located in the plane, i. e. in continuous space, but only few

operational constraints are respected. The operational constraints included are load weight-dependent

lifting radii, crane type-dependent infeasible areas for crane location and a rough approach to crane

type-dependent operating heights. In this part, it will be proven that the by nature in�nite set of

potential crane locations can be boiled down to a �nite set without loss of optimality which, in turn,

allows to fall back on standard methods of OR. After this proof, a corresponding solution approach is

presented and computationally tested in order to evaluate its performance capabilities and potential

for practical application.

Afterwards (Chapter 4), more operational constraints will be considered, namely prescribed crane type-

dependent minimum distances between cranes, interferences between single cranes and interferences

of cranes and any on-site structures (buildings, obstacles). This enhanced perspective on crane oper-

ations, however, comes at the cost of switching from a continuous to a discrete perspective on space.

In a �rst step, the problem will be modelled by four di�erent mixed-integer programs (MIPs) that, as

well, will be evaluated for their computational performance employing a standard solver. As the latter

has been observed to be limited, in a second step, a branch & bound (B&B) procedure is developed

and compared to the MIP-based approach with respect to computational performance.

Finally, the �ndings are summarized and an outlook on future research directions will be given in

Chapter 5.
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2 Related Literature

In this chapter, literature related to crane selection and location planning is reviewed. Note that

it is restricted to publications presenting quantitative approaches. Consequently, research aiming

primarily at visualizing or simulating processes or environments which is quite common in the area of

construction engineering is excluded. As mentioned in Chapter 1.2, the review consists, on the one

hand, of an application-oriented part (Chapter 2.1) in which both problems from the �eld of layout

and location planning on construction sites and crane-related planning problems are presented and, on

the other hand, of a methodological part (Chapter 2.2) which includes problems and problem aspects

from the area of covering and location planning in general.

2.1 Application-Oriented Literature

Note: all contents presented and all passages quoted in this chapter are taken from Briskorn and

Dienstknecht [11].

Quantitative approaches for tackling problems in construction engineering have gained some interest

in the recent years. The problems focused are not limited to facility location problems (including

cranes), but include numerous other problems such as, e. g., construction project scheduling, vehicle

routing, contractor selection, as surveys like the ones by Chan et al. [16], Liao et al. [64], Sarker et al.

[95] and Briskorn and Dienstknecht [11] show. However, as the focus in this thesis is restricted to

the selection and location of tower cranes the literature review is restricted accordingly. In a rather

rough and super�cial approach, tower cranes can be regarded as any arbitrary type of facility to be

located on-site. Thus, layout and location problems on construction sites in general are reviewed in

Chapter 2.1.1. However, as already indicated in Chapter 1 the on-site location of tower cranes includes

many more aspects than the location of any standard facility, e. g. operating areas, operating heights

and interferences. These complicating considerations result in the requirement of putting crane location

planning into a broader context, e. g. integrating location decisions and crane selection. For example,

the decision where to optimally locate the single cranes depends on their covering capabilities, i. e. on

the selected cranes, but the optimal selection of cranes, in turn, depends on their on-site location as

this a�ects coverage. Thus, speci�c crane-related planning issues are reviewed in Chapter 2.1.2.
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2.1.1 Layout and Location Planning on Construction Sites

In this part, research focused on the on-site location of not nearly speci�ed construction facilities is

reviewed. As will be seen there is quite a variety of objectives and constraints in these problems. In

order to structure this part, the literature will be classi�ed from a rather methodological perspective

focusing on structural problem aspects. We will, thus, introduce some basic terms and concepts before

reviewing the literature.

Most of the research considering the location of facilities on-site is an application of an assignment

problem. Assignment problems have been studied in the area of OR for decades and numerous variants

and interpretations exist (see Pentico [86]). For this thesis, let us simply state that objects have to be

assigned to positions. �Usually, a set of objects to be positioned is given and restrictions regarding the

positioning have to be considered, e. g. objects must not overlap and must be placed within a given

area. It should be emphasized that this chapter only covers research concerned with placing objects

within the boundaries of a single construction site. Note that some authors employ concepts for facility

location planning in order to tackle such problems. These approaches, consequently, are summarized

in the chapter at hand, as well. Often an objective function is given implying that not only a feasible

positioning, but an optimal one or at least a good one is desired.

In the literature di�erent objective functions have been proposed in order to evaluate a given assign-

ment. Two common ones are instantiated by the quadratic assignment problem (AP) and the linear

AP, respectively.

• The quadratic AP employs distances between positions, amount of material to be transported

between objects, and � potentially � a cost factor. The e�ort for transport from one object to

another equals the amount to be transported times the distance between the assigned locations

times the cost factor. The objective of the quadratic AP is to minimize total e�ort for transport.

The quadratic AP is NP-hard, that is it is hard to solve, and it cannot even be approximated

within a constant factor in polynomial time (see Burkard [13]). Nevertheless, since it is one of

the most intensively analyzed optimization problems there are many solution methods available

in the literature, see Loiola et al. [69].

In construction engineering there is a variety of concepts regarding the objective above. Most

of them rely on the distance between two objects as a �rst factor. The distance is multiplied

by a second factor depending on the pair of objects. The interpretation of this second factor

varies among di�erent papers. It may represent, e. g., amount of material transported, safety

factors, preferences, or simply be an abstract value. Sometimes, a third factor, mostly re�ecting

variable costs is employed. Note that all these di�erent interpretations do not in�uence the

objective function's structure. In order to emphasize these structural commonalities and unify

the phrasing we refer to this component of objective functions as total weighted proximity cost

(TWPC).

• The linear AP employs assignment costs for each object and each position. A layout is then

evaluated by the total cost of chosen assignments. Again, various interpretations can be found,

e. g. set-up costs, associated risk or utility when installing a facility in a certain position. We
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refer to this component of objective functions as total assignment cost (TAC). As opposed to

the quadratic AP, the linear AP can be solved in polynomial time and is, therefore, used either

as a simplifying problem capturing the main characteristics or as sub-problem in order to tackle

problems in numerous applications.�

�Regarding the term position, it can be broadly distinguished between discrete approaches where a

prede�ned �nite set of available locations is given and continuous approaches where any point on the

construction site that is not occupied by any existing structure is available for placing an object. More

precisely, we refer to a model or an approach as continuous if there are two di�erent locations available

so that each location in between these two is available, as well. It should be noted that most researchers

discretize a continuous space by laying a grid over the site. Hence, we di�erentiate with respect to

the original problem description rather than to the model and categorize papers according to their

problem description rather than the model and solution procedure developed. If a paper considers a

truely continuous solution space, this will be explicitly stated. Another distinction can be made with

respect to time. In static approaches, a single layout is planned and considered to be valid throughout

the planning horizon. A dynamic approach, in contrast, respects requirements changing over time. For

example, a storage place for bricks is needed maybe prior to and de�nitely during building the walls,

but afterwards it can be removed from the site and its position is free for other equipment. Most of

these dynamic approaches respect the time dimension by subdividing the whole construction life cycle

into periods or phases that are planned successively. Andayesh and Sadeghpour [7] correctly point out,

that this is more of a phased perspective rather than a dynamic one. However, this type of approach is

considered dynamic in this review, since the dynamic nature of the problem has been recognized and

is re�ected.

Most of the reviewed papers are classi�ed in dynamic and static as well as discrete and continuous ap-

proaches. According to this classi�cation, they are listed in Table 2.1 and are presented in more detail

in the corresponding Chapters 2.1.1.1 to 2.1.1.4. Additionally, within these categories, we distinguish

single-objective and multi-objective problems. The modelling variety in discrete approaches is much

smaller than in continuous approaches. We therefore lay the emphasis on outlining structural common-

alities when discussing these in Chapters 2.1.1.1 and 2.1.1.2. When reviewing continuous approaches

in Chapters 2.1.1.3 and 2.1.1.4 we provide more details about the model and the actual application.�

�Some publications are rather related to facility location problems (FLPs), which constitute a tradi-

tional area in OR (see Klose and Drexl [52]). These are presented in Chapter 2.1.1.5. Similar to the

layout problems from Chapters 2.1.1.1 to 2.1.1.4, FLPs can be categorized into discrete and continuous

and static and dynamic problem variants, as well. While the categorization with respect to time does

not di�er from the one for layout problems, we brie�y outline the di�erence between discrete and

continuous FLPs in the following.

In the discrete version, there is a set of customers with given demands of a single product and there is

a set of potential facilities with given supply capacities. Opening a facility is charged with a facility-

dependent �xed cost and gives the opportunity to supply customers from this facility. Supplying a

customer from a facility yields transportation cost per unit depending on both customer and supplier.

The objective is to decide which facilities to open and which quantities to ship so that customer demand
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discrete continuous
single-obj. multi-obj. single-obj. multi-obj.

layout

static

[20], [53], [54],
[55], [60], [61],
[62], [65], [72],
[116], [119], [125],
[126], [130]

[80] [26], [30], [38],
[41], [45], [73],
[85], [94], [133],
[135]

[27], [28], [37],
[50], [122]

dynamic
[81], [82] [82], [121] [6], [29], [31], [32],

[36], [91], [93],
[134]

[90], [92], [123],
[124]

location
static

[43], [116], [117],
[118]

[116]

dynamic [18], [116], [117],
[118]

Table 2.1: Classi�cation of layout- and location-related research

is ful�lled at minimal total cost. In contrast to the assignment problems discussed in Chapters 2.1.1.1

and 2.1.1.2, discrete FLPs are not concerned with assigning facilities to prede�ned locations, but to

select given facilities (or facility locations) on-site. Additionally, transportation does not occur be-

tween facilities to be located, but between facilities to be located and given customers (i. e. there are

no inter-facility �ows).

In continuous FLPs, a given number of facilities has to be located in the plane. If only a single facility

has to be located, the problem is known as the Weber problem; if more than one facility has to be

located (and if it has to be decided which demand point is served completely by which facility), this

is referred to as the multi-source Weber problem. Again, transportation does not occur between the

single facilities, but between facilities and given customers.

Especially for the layout-related research, there is a considerable variety of practically motivated con-

straints and goals. When de�ning the basic concepts for our categorization, we already mentioned dif-

ferent practical interpretations of the classical OR objectives TAC and TWPC like location-dependent

set-up costs, risk or utility (for TAC) and transportation e�ort, safety risk or layout preferences (for

TWPC). As can be seen in the following parts, most papers rely on these concepts, but there are quite

speci�c objectives due to special applications and environments that, in turn, necessitate speci�c for-

mulations, as well. These include, e. g., noise pollution, illuminance (when locating lighting equipment)

as well as aviation safety and airport security (at an airport construction site).

APs traditionally include constraints requiring at most one facility per position and � in the general-

ized version � constraints allowing only a subset of positions for having assigned a certain facility. In

construction engineering these constraints are rather common as well. However, there are additional

constraints that are respected in several papers, e. g., prescribed maximum and/or minimum distances

between facilities, constraints requiring or prohibiting the (joint) location of certain facilities in speci�c

site areas or the need to determine a facility's orientation on-site.�
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2.1.1.1 Static Discrete Layout Planning Approaches

�In static discrete problems the goal is to identify an assignment of facilities to positions so that each

facility gets a position and no position gets more than one facility. In the basic variant, each facility

can be assigned to any position. In a generalized problem version each facility can be assigned only to a

subset of positions. We �rst review papers that focus on the basic variant and consider the generalized

variant afterwards. With one exception (Ning and Lam [80]) all papers in this section focus on a single

objective.

The basic variant is equivalent to the quadratic AP if the objective is to minimize TWPC. Lam et al.

[54], Lam et al. [55], Liang and Chao [62], and Lien and Cheng [65] employ an ant colony optimization,

a hybrid of GA and max-min ant system, tabu search, and a particle bee algorithm, respectively. Lam

et al. [53] and Li and Love [60] develop GAs. In addition to their GA, Lam et al. [53] present fuzzy

techniques and the entropy technique for determining the proximity weights. Wong et al. [119] restrict

their scope to an area on a construction site where pre-cast concrete is produced. They basically

consider the quadratic AP, propose a GA and a mathematical program that is solved by a standard

solver.

Warszawski [116] presents a mathematical program that basically models an AP with the objective to

minimize TWPC plus TAC. For the same problem, Mawdesley and Al-Jibouri [72] and Yeh [125] present

a GA and a solution approach that combines simulated annealing with arti�cial neural networks,

respectively.

Other authors tackle an AP with the objective to maximize TWPC plus TAC. A hybrid approach of

simulated annealing and arti�cial neural networks (Yeh [126]), a particle bee algorithm (Cheng and

Lien [20]) and tabu search (Liang and Chao [62]) are employed.

The generalized variant of the problem where some objects cannot be assigned to each position turns

out to be less popular in the literature. Li and Love [61] extend their approach in Li and Love [60] by

including unequal-size facilities. Zhang and Wang [130] consider the objective to minimize the sum of

TWPC and the TAC and solve the corresponding problem by particle swarm optimization.

Ning and Lam [80] are the only ones to perform multi-objective optimization. For the generalized

version of the assignment problem, they propose an ant colony optimization. From a structural per-

spective, both objectives � minimization of transportation e�ort and minimization of safety risks �

express TWPC.�

2.1.1.2 Dynamic Discrete Layout Planning Approaches

�In dynamic discrete problems the goal is to identify an assignment of facilities to positions over time.

We have a discretized time horizon partitioned into a number of periods. Each facility may occupy the

assigned position for multiple consecutive periods. No position can get more than one facility in any

period. Again, we start with single-objective approaches and consider multi-objective ones afterwards.

Ning et al. [81] propose a sort of ant colony optimization for a problem that is a quadratic AP over T

periods with the objective of minimizing the weighted sum of transportation e�ort and safety risk over
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the whole planning horizon. Both transportation e�ort and safety risk are TWPC from a structural

perspective. The problem is altered by Ning et al. [82] in two ways: �rst, unequal-size facilities are

included and second, besides the weighted objective function, true multi-objective optimization is

employed. For both approaches, ant colony optimization is used and the �nal decision is supported by

fuzzy techniques.

Multi-objective optimization in a construction project that spans over T periods is also considered by

Xu and Li [121]. They employ a multi-objective particle swarm optimization algorithm in order to

minimize the net present value of costs � comprising both deterministic and stochastic elements � on

the one hand and safety risks related to the positions of high-risk and high-protection facilities on the

other hand.�

2.1.1.3 Static Continuous Layout Planning Approaches

�In continuous layout problems, there are no prede�ned locations for placing objects, but the whole

site area � excluding areas of �xed objects � is available. Often, this continuous space is discretized by

laying a grid over the site. In any case, for each object the coordinates have to be determined. Some

papers additionally focus on an object's orientation, which is usually limited to determining whether

an object is placed horizontally or vertically in a coordinate system. The objectives are similar to those

in discrete approaches and are generally subject to the constraints of non-overlapping of objects and

placing objects completely within the site boundaries. Subsequently, we �rst present single-objective

and afterwards multi-objective approaches.

Most papers propose quantitative approaches for minimizing TWPC. Imam and Mir [45] consider a

continuous site that can be decomposed into rectangles where a number of rectangular facilities of

given sizes has to be placed. Hegazy and Elbeltagi [41] use a GA for placing facilities of arbitrary

shapes on a given construction site of arbitrary shape that is modelled as a grid. This approach is

extended in Elbeltagi and Hegazy [30] by developing a decision support system that �rst identi�es the

necessary facilities and their sizes via an expert system, then employs fuzzy techniques to determine

the proximity weights between facilities and �nally solves the problem from Hegazy and Elbeltagi [41].

Zouein et al. [135] consider a site on which a number of rectangular facilities with given sizes and known

material �ows has to be placed, i. e. location and orientation have to be determined in a continuous

space. In addition to the above mentioned general constraints, prescribed minimum and maximum

distances between facilities as well as relative positions of facilities have to be respected. A GA is

proposed for solving the problem. Osman et al. [85] employ a GA for planning the layout of a site of

arbitrary shape modelled as a grid. Rectangular facilities of di�erent sizes have to be placed. Easa

and Hossain [26] formulate a mathematical program for the problem to position a number of facilities

on a site that is divided into several rectangular areas. Within these areas, facilities can be positioned

arbitrarily with regard to several constraints comprising minimum and maximum distances between

facilities and prohibited areas for certain facilities. Sanad et al. [94] tackle a similar problem with a

given construction site of arbitrary shape, given facilities of given sizes and shapes. Minimum and

maximum distances are required between facilities. The authors discretize the site using a grid and
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propose a GA to solve the problem. Hammad et al. [38] consider a rectangular site with rectangular

barriers on it. Rectangular facilities have to be placed and oriented on-site overlapping neither each

other nor barriers (i. e. barriers render the feasible region for facility placement non-convex). The

goal is to minimize TWPC. As barriers are infeasible regions for transportation movements, distances

among facilities have to account for these regions. This problem setting is formulated as a mathematical

program. However, in order to simplify the setting the continuous region is discretized using a grid.

For the discretized version, two variants of problem setting are proposed. In the �rst one, there may

be at most one facility per cell, in the second one, multiple facilities may share a cell. Both variants are

modelled as MIPs. For the �rst variant, an exact approach � a cutting plane algorithm � is proposed

and tested favourably against a standard solver.

Mawdesley et al. [73] consider a rectangular construction site that is modelled as a grid and a number of

rectangular facilities of di�erent sizes. There are prohibited areas for facilities and distance constraints

between facilities. The problem to minimize TAC plus TWPC is approached using a GA.

Zhou et al. [133] consider a construction site of arbitrary shape with rectangular or circular zones

where no facility can be placed and rectangular facilities have di�erent sizes. They develop a GA that

respects both hard constraints, e. g. non-overlapping facilities, and soft constraints, e. g. preferred

orientation of a facility, when locating facilities in continuous space.

A number of papers aim at multi-objective optimization with rather speci�c applications and, thus,

speci�c components for layout evaluation. El-Rayes and Khalafallah [28] consider a construction site

of a given shape that can be decomposed into rectangles, where a number of rectangular facilities

with di�erent sizes has to be located so that safety is maximized and TWPC is minimized. They

propose a GA to solve this problem. El-Rayes and Hyari [27] develop a GA for illuminating a highway

construction site. The objective is to determine number, type, con�guration and location of lighting

equipment so that on the one hand average illuminance and lighting uniformity are maximized and on

the other hand lighting costs and glare are minimized. Khalafallah and El-Rayes [50] propose a GA for

multi-objective optimization on an airport construction site. A number of rectangular facilities has to

be placed in order to maximize construction safety, aviation safety and airport security and to minimize

layout costs. Xu and Song [122] propose multi-objective optimization via particle swarm optimization

for placing given facilities on a given continuous site. The objectives are minimization of TWPC and

maximization of both site utilization and logistics relevancy. In Hammad et al. [37], the construction

site is partitioned into several rectangular areas within which rectangular facilities have to be located

continuously. Multiple facilities may be located in the same area, but facilities must not overlap and

must not reach out of the respective area. The �rst objective function is to minimize TWPC while

the second objective function seeks to minimize noise pollution (measured as the maximum noise level

recorded at given on-site receivers). The problem is modelled as a mixed-integer non-linear program.

In the model, a location-dependent distance measure rather than the classical Euclidean or Manhattan

distance is used. Trade-o� solutions are identi�ed by employing the ε-constraint method.�
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2.1.1.4 Dynamic Continuous Layout Planning Approaches

�Just as in Chapter 2.1.1.2, the goal here is to identify an assignment of facilities to positions over time.

Again, we have a discretized time horizon and, �rst, present single-objective and afterwards multi-

objective approaches. Within these parts, we distinguish between the problems that allow relocation

of facilities and those that do not.

Elbeltagi et al. [31, 32] extend the paper by Elbeltagi and Hegazy [30] discussed in Chapter 2.1.1.3 to

a multi-period problem. Andayesh and Sadeghpour [6] consider a construction site of arbitrary shape.

Circular facilities that remain on-site for given time intervals have to be placed so that TWPC is

minimized. The authors discretize neither the construction site nor the planning horizon and propose

a concept from physics called minimum total potential energy for layout optimization. Minimizing

TWPC in a multi-period problem is also considered by Hammad et al. [36]. The construction site is

partitioned into several rectangular areas. Rectangular facilities have to be positioned continuously

within these areas. There may be more than one facility per area, but a facility must not reach out

of an area and must not overlap with another facility. The problem is formulated as a mathematical

program. Additionally, the paper has two special features regarding the calculation of TWPC (i. e.

the sum of the products of inter-facility distances and travel frequencies): �rst, travel frequencies are

derived from work schedule and building information modeling (BIM) information. Second, distances

are computed depending on the facilities' locations like in Hammad et al. [37].

Zouein and Tommelein [134] propose an approach that combines mathematical programming and a

customized heuristic for the following problem: in each period, a number of rectangular facilities has

to be placed in terms of location and orientation on a given continuous construction site so that

TWPC and total relocation cost are minimized over all periods. As constraints, both minimum and

maximum distances between facilities and relative positions of facilities have to be respected as well as

restrictions regarding the assignment of facilities to areas. El-Rayes and Said [29] focus on a rectangular

construction site � modelled as a grid � over a number of planning periods. Rectangular facilities have

to be placed in terms of location and orientation in order to minimize relocation cost and TWPC

over the whole planning horizon. There are constraints regarding minimum and maximum distances

between facilities and area constraints (i. e. certain facilities have to be or must not be placed in certain

areas of the site). The problem is solved by approximate dynamic programming (DP). An alternative

solution procedure, namely a GA, is proposed in Said and El-Rayes [93]. In Said and El-Rayes [91]

a similar problem is considered. A special feature of this paper is the integration of procurement

planning. Some of the facilities are storage areas; their sizes depend on the inventory levels which

result from the procurement decisions. The authors develop a GA to minimize the sum of relocation

cost, TWPC, stock-out cost, capital and ordering cost.

Few authors perform multi-objective optimization. Yahya and Saka [124] consider a construction

project of multiple periods. In each period, a number of rectangular facilities has to be placed on the

site � modelled as a grid � with regard to location and orientation. The objectives are minimization

of TWPC and minimization of safety risk � from a structural perspective, a kind of TWPC � in each

period subject to the fact that some facilities have to be placed within the radius of a tower crane.

The optimization is performed by a multi-objective arti�cial bee colony algorithm.

12



2.1 Application-Oriented Literature

In contrast to Yahya and Saka [124], the following papers allow relocation of facilities. Said and

El-Rayes [90] consider a special type of construction project � a critical infrastructure project. The

problem is similar to the one in El-Rayes and Said [29], but now security is an additional issue.

Therefore, relocation cost and TWPC have to be minimized while security is maximized. With a GA,

non-dominated solutions are found. The paper by Said and El-Rayes [91] is extended by Said and

El-Rayes [92] in such a way that areas within the building structure can be used as storage areas as

well and the construction schedule can be altered in order to make areas within the building available

at certain times. Two objectives, namely changes in the schedule and the sum of relocation cost,

TWPC, stock-out cost, capital and ordering cost, are to be minimized. A GA is employed to �nd non-

dominated solutions. Xu and Song [123] consider a multi-period layout problem where rectangular

facilities have to be located on a rectangular construction site. There are two objective functions,

namely the minimization of distances between the facilities' centers and the minimization of the sum

of TWPC and relocation cost over the complete planning horizon. In the problem, the cost factor for

calculating TWPC accounts for uncertainty. A mathematical program is formulated and a particle

swarm algorithm is proposed for solving the problem.�

2.1.1.5 Location Problems

�In Warszawski [116], a static discrete FLP is modelled with customers representing demand points

on the construction site and facilities representing feasible supply locations. Warszawski and Peer

[118] consider the special case of locating only a single supply point. Both papers present exact

and heuristic solution procedures. An extended model that considers multiple supply locations and

materials is presented in Warszawski [117] and Warszawski and Peer [118] along with several exact and

heuristic solution approaches. Huang et al. [43] formulate a mathematical program for the construction

of a high rise. Each storey implies demand for multiple materials. Some storeys which are divided into

cells can be used for storing materials and supplying others. Such cells correspond to facilities in the

FLP while storeys with demand correspond to customers.

Some papers consider dynamic discrete FLPs over multiple periods. Warszawski [116] presents an

extended mathematical program that considers multiple periods and materials and respects period-

, material- and location-speci�c operating costs of supply points. Similarly, Warszawski [117] and

Warszawski and Peer [118] introduce a model considering a single material and multiple periods and

propose a number of exact and heuristic solution procedures. Chau [18] formulates a mathematical

program for a multi-echelon distribution of material. It can be transported directly from a supply to

a demand point or via a transshipment center. There is a given set of available transshipment centers.

Opening, operating and closing a transshipment center is charged with costs. For each period it has

to be decided which transshipment centers are used and which material �ows occur. The objective is

to minimize total costs over the planning horizon. A two-stage solution approach is proposed. While

a GA searches for good con�gurations of transshipment centers, a transshipment problem is solved in

order to evaluate such a con�guration.

Warszawski [116] considers a static continuous version of the FLP where demand points with given
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Field of application Literature

Crane selection [2], [3], [39], [40], [96], [98], [99], [101], [120]

Crane location [44], [46], [66], [88], [89], [108], [109], [113], [131], [132]

Lift planning
[4], [5], [17], [48], [49], [56], [57], [58], [59], [68], [84], [87], [106], [110],
[111], [114], [127], [128], [129]

Miscellaneous [1], [35], [51], [67], [71], [100], [102], [103], [105], [112]

Table 2.2: Classi�cation of crane-related research

coordinates and demands have to be supplied by a given number of supply points that have to be

located.�

2.1.2 Construction Crane-Related Planning Problems

Once the on-site location of arbitrary facilities has been considered, the location of a speci�c type of

facility, i. e. of cranes, is focused now. As pointed out in the introductory part of Chapter 2.1 crane

location decisions are ideally made integratedly with other crane-related decisions which a�ect location

planning. Thus, the literature reviewed here is not limited to crane location planning, but includes

the most prominent �elds of crane-related planning problems. These �elds comprise crane selection,

crane location and lift planning and are reviewed in Chapters 2.1.2.1, 2.1.2.2 and 2.1.2.3, respectively.

�Finally, approaches that do not �t into this classi�cation scheme or that integrate di�erent �elds of

application are presented in Chapter 2.1.2.4. In each part, approaches for mobile cranes and those for

tower cranes are distinguished. The literature and its categorization are summarized in Table 2.2.

While the modelling variety in crane selection and lift planning problems is rather small, crane location

problems are more diverse. Regardless of the considered crane type, they di�er with respect to the

perspective of crane location which is either discrete or continuous, i. e. there is either a �nite set of

locations to be chosen from or an in�nite set. Additionally, it can be distinguished between approaches

locating a single crane or several cranes � in the latter case, it can be further di�erentiated between

approaches for homogeneous and heterogeneous cranes. With regard to objectives, there are three broad

categories: time-, cost-, and safety-oriented objectives. Time-oriented objectives focus on minimizing

(average) transportation times by locating cranes. Depending on the cost to be considered, cost-

oriented objectives are closely related to time-oriented objectives. This is the case when transportation

amounts are weighted by a cost factor instead of a rate for transportation time. Sometimes, costs

include � maybe location-speci�c � charges for setting up and dismantling cranes, as well. Safety-

oriented approaches usually focus on collision potential among cranes and, thus, have to operationalize

this goal, e. g. by the extent to which the cranes' operating areas overlap.

Restrictions are often not clearly de�ned or are implied in some assumptions. Most approaches just

require the coverage of certain objects (these can be geometric objects like points or polygons or even

the whole site). Di�erent interpretations of coverage can be found in the literature: an object may be

covered jointly by several cranes or it has to be covered completely by at least one crane.�
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2.1.2.1 Crane Selection Problems

�Crane selection is concerned with the selection of the appropriate crane types, cranes, and crane

con�gurations for a construction project. Most decision support approaches tackling this type of

problem have their focus on laying the ground for the application of OR approaches, e. g. by identifying

important drivers, rather than on formulating models or applying algorithms. However, a classic OR

problem capturing a �avour of crane selection certainly is the set cover problem, see Caprara et al.

[14], as a set of requirements regarding di�erent types of capabilities has to be met by the selection of

cranes. At �rst, we present approaches not restricted to a particular type of crane. Afterwards, the

focus is on mobile cranes and, �nally, tower cranes are considered.

Shapira and Goldenberg [98] emphasize the importance of soft factors in equipment selection in general

(not restricted to cranes) and present an analytical hierarchy process-based approach for the quan-

ti�cation of soft factors which then can be combined with hard factors to compute a score for each

equipment. The same authors identify 27 important soft factors in equipment selection (not restricted

to, but mainly focused on cranes) and critisize their lack of consideration in both practice and research

(Shapira and Goldenberg [99]). Furthermore, they �nd that there is no structured equipment selection

process in practice and thus propose one that respects both hard and soft factors. Hanna and Lotfallah

[39] use fuzzy techniques to select the right crane type for a given construction project based on both

quantitative and qualitative factors. Sawhney and Mund [96] develop a tool called IntelliCranes that

helps the user in selecting the right crane type and crane for a given project. A neural network is

employed to �nd the best crane type. Finally, an expert system �nds feasible crane models.

Shapira and Schexnayder [101] conduct interviews with experts in order to identify and rank relevant

factors in mobile crane selection. Al-Hussein et al. [2, 3] propose algorithms for selecting mobile cranes

for a given construction project. An iterative procedure to �lter all technically feasible mobile crane

con�gurations from a database for a given lift operation is introduced by Wu et al. [120].

For a given construction project, Hasan et al. [40] present a framework for tower crane selection that

respects simulation results, the crane's productivity and carbon emission.�

2.1.2.2 Crane Location Problems

�In crane location planning, the location of a single crane or several cranes has to be determined

considering various site constraints. Reference problems from OR depend on the exact problem variant

under consideration, i. e. the features of cranes captured by the problem setting. In a simple variant,

cranes are handled like any other facility on the site. Consequently, this can be regarded as a speci�c

application of a layout or location problem from Chapter 2.1.1 where cranes (facilities) have to be

placed in order to supply certain areas with material. A less simplifying problem variant focuses on

a two-dimensional perspective where cranes (discs) have to be placed in some area (the construction

site) so that other areas (buildings, e. g.) are covered. Covering problems, in general, have received

considerable attention in the OR literature (see Farahani et al. [34]). We would like to emphasize that

the problem described has a set cover �avour and we even have a geometric interpretation of subsets to
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be chosen (buildings being covered when a particular crane is placed in a particular position) so that

each element of the groundset is covered. Problems of this type are referred to as geometric set cover

problems, see Clarkson and Varadarajan [23]. If discs � i. e. working areas of cranes � are preferred

not to overlap, we may have a �avour of circle packing problems, see Castillo et al. [15].

For a given construction project, Tantisevi and Akinci [113] present a simulation-based procedure

to identify possible mobile crane locations that avoid spatial con�icts and minimize the number of

crane relocations when performing a number of lift tasks. Safouhi et al. [89] propose an algorithm to

determine collision-free areas for positioning a given mobile crane.

Location of tower cranes in the literature is mostly concerned with single cranes only. Rodriguez-

Ramos and Francis [88] consider a problem where a tower crane serves a set of construction facilities

with known locations. Servicing a facility with its speci�c demand causes transportation cost depending

on the demand and the distance between facility and crane. The authors treat this problem as a single

facility location problem with rectilinear distances and solve it by means of graph theory. In Zhang

et al. [131], a set of supply points and a set of demand points are given. Transportation amounts for

each pair of supply and demand point are known. Additionally, a set of feasible crane locations is

given. A simulation based approach is used to �nd the optimal crane location, i. e. the location with

the minimal average transportation time. Tam et al. [109] develop a GA in order to solve another

problem concerning tower cranes. For a given set of demand points, a given set of possible supply

points, known transportation amounts between supply and demand points, given transportation cost

rates and a set of possible crane locations, the objective is to select supply points and a crane location

so that total transportation cost is minimized. In a follow-up paper, Tam and Tong [108] extend the

proposed approach by adding the prediction of hoisting times via an arti�cial neural network. Huang

et al. [44] formulate an MIP for a more general tower crane problem where more than one type of

material is considered.

Only a few papers focus on the location of multiple tower cranes. Zhang et al. [132] consider a setting

similar to the one in Zhang et al. [131]. Here, however, there is a group of cranes, but transportation

between two points cannot be conducted jointly by more than one crane. Irizarry and Karan [46]

propose a graphically supported planning approach to locate tower cranes on a construction site and

reduce collision potential. Lien and Cheng [66] consider a tower crane problem with given supply and

demand points where the supply capacity of each supply point is limited and each demand point has a

certain given demand. For a given set of cranes and a given set of possible crane locations, a particle

bee algorithm is proposed to determine transportation amounts between supply and demand points

and to select the crane locations that minimize total costs, that comprise transportation and crane

costs.�

2.1.2.3 Lift Planning Problems

�Lift planning problems are concerned with the transport of objects by means of cranes. There are

two types of typical OR problems related to this area. The problem to sequence a set of transport

requests to be conducted by some mean of transport is captured by the pickup and delivery problem,
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see Berbeglia et al. [9]. There are even variants where pickup and delivery locations are positioned

on a circle which comes very close to the moving characteristics of many crane types on construction

sites. The second typical OR problem stems from computational geometry and is referred to as path

or motion planning. In a basic variant, a robot � i. e. a construct of links and joints � has to move

from a given starting position to a given destination in two-dimensional space under the presence of

polygonal obstacles. A feasible or even a shortest path from the starting position to the destination

has to be found (see de Berg et al. [25]).

Zavichi et al. [127] formulate an MIP for the crane service sequencing problem. A single tower crane

with a given location is surrounded by a set of supply and demand points with known coordinates.

Transportation amounts between supply and demand points and hook travel times between locations

are known, as well. The goal is to �nd a time-minimal service sequence.

Lift path planning problems aim at �nding a feasible � i. e. collision free � path on which a given crane

located at a given position can move a lifting object from a pick position to its destination on a given

construction site. Most � but not all � approaches for lift path planning are based on concepts from

kinematics / robotics.

For a mobile crane lift, Reddy and Varghese [87] propose a heuristic search procedure to �nd a lift path.

Tantisevi and Akinci [114] use a cyclic coordinate descent-based procedure to generate a sequence of

mobile crane moves to lift an object from its pick point to its destination. Zhang and Hammad [128]

employ rapidly-exploring random trees algorithms to �rst plan a lift path of a hydraulic crane and

later adapt the plan when new information is available. For a single mobile crane, Lei et al. [56, 57]

develop methods for checking whether there is a feasible lift path for a mobile crane. Olearczyk et al.

[84] propose an algorithm for �nding a smooth feasible lift path for a mobile crane. A special type

of mobile crane that is allowed to move during the lift is considered by Lin et al. [68]. They aim at

�nding a short feasible lift path by employing a rapidly-exploring random trees algorithm.

Kang and Miranda [48] and Kang and Miranda [49] �rst develop several search algorithms for �nding

and optimizing a lift path for a single tower crane that transports a given object from its pick point to

its destination and then introduce an iterative procedure to coordinate multiple tower cranes to avoid

collisions. A framework that allows for coordination of multiple cranes is also provided by AlBahnassi

and Hammad [4]. Paths are planned initially via rapidly-exploring random trees algorithms and can

be adapted in short time when new information is available. The coordination of cranes is achieved by

prioritization of cranes. The higher a crane's priority, the earlier it is planned, and is then considered

as a dynamic obstacle for cranes with lower priority. Zhang and Hammad [129] propose a multi-agent

system for coordinating multiple cranes.

Some authors study cooperative lifts of multiple cranes. Sivakumar et al. [106] apply an A* algorithm

and hill climbing for �nding a lift path for two identical mobile cranes lifting a given object. A GA

is used by Ali et al. [5] to �nd a collision free lift path for an object that is lifted by multiple cranes.

Chang et al. [17] rely on the probabilistic roadmap method for planning the lift path of a given object

that is moved either by a single crane or two cranes cooperatively.

The prediction of hoisting times for both mobile and tower cranes is another topic treated in the

literature. For tower cranes, Leung and Tam [58], Leung et al. [59] and Tam et al. [110] identify
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factors impacting hoisting times and apply multiple regression and arti�cial neural network models for

prediction. Similarly, Tam et al. [111] propose di�erent arti�cial neural network models for predicting

mobile crane hoisting times.�

2.1.2.4 Integrated Problems and Other Crane-Related Problems

We, �rst, focus on problems integrating multiple of the decisions discussed in Chapters 2.1.2.1, 2.1.2.2,

and 2.1.2.3. The decisions integrated are the ones regarding crane selection and location since these

are long-term decisions (in contrast to the rather short-term issue of lift planning) which are closely

related as pointed out previously.

�Furusaka and Gray [35] employ an MIP-based approach and DP for crane selection and location so

that the construction site is fully covered. The objective is to minimize total costs comprised of hire,

assembly and dismantling costs over the length of the construction project. Lin and Haas [67] propose

an MIP-based approach in order to minimize the number of crane relocations while respecting safety

measures.� Finally, Marzouk and Abubakr [71] use a combination of an analytical hierarchy process

and a GA in order to identify the best-suited tower crane type for a given construction project and

identify the single cranes' on-site locations. Available locations are given by laying a grid over the site

and restricting feasible crane locations to the grid's intersection points. The objective is to minimize

�xed crane cost while providing full site coverage respecting the cranes' operating ranges.

�Furthermore, there are several approaches in the literature tackling problems that hardly �t in Chap-

ters 2.1.2.1, 2.1.2.2, or 2.1.2.3.

Kim et al. [51] present an iterative simulation-based approach for determining a cost-optimal founda-

tion for a given tower crane. Several researchers focus on safety aspects. Tam and Fung [112] conduct

a survey on tower crane safety, whereas Al-Humaidi and Tan [1] use fuzzy set approaches to link the

clearance of a mobile crane to an overhead powerline with the probability of an electrocution acci-

dent. In order to evaluate safety related to the operations of tower cranes on a given construction

site, Shapira and Lyachin [100] �rst interview industry experts to identify factors a�ecting tower crane

safety. Then, weights of the factors are determined (Shapira and Simcha [102]) and � for two of the

identi�ed factors � the measurement of a factor on a given site and the derivation of the associated

risk are presented (Shapira and Simcha [103]). Based on that, Shapira et al. [105] �nally calculate a

site safety index.�

2.2 Methodological Literature

The previous part of this literature review has been application-oriented. Nevertheless, this application-

oriented literature has been related to problems from OR. Now, the corresponding OR literature will be

studied in more detail. However, since the related problems mentioned so far have a long tradition in

OR countless papers have been published. Hence, this methodological review has to and will be limited

to aspects covered in Chapters 3 and 4. As indicated in Chapter 1.2 these aspects belong to the �eld of

location planning problems and, within this �eld, to the area of covering problems. Roughly speaking,
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covering location problems are concerned with locating facilities in order to serve given demand sites.

However, each facility has a limited operating area, i. e. whether a speci�c demand site can be served

by a facility in a certain location depends on the distance between demand site and facility location

and the facility's operating area. There has been extensive research in this �eld as can be seen in, e. g.,

the survey by Farahani et al. [34]. The review presented in the following will thus be restricted to the

branches of literature related to the problems considered in this thesis.

As outlined in Chapter 1.2, in this thesis, cranes have to be located on a polygonal construction site

in order to establish transport relations between polygonal supply and demand sites. Obviously, a

crane's ability to establish such a relation depends on its lifting capacity which, in turn, is related to

the operating range of a crane due to the law of the lever. Thus, from a methodological perspective,

covering location problems are considered in this thesis where facilities are tower cranes and demands

to be covered are represented by polygonal areas. The covering characteristics of a crane depend on the

precise problem under consideration. The following parts are thus dedicated to the speci�c problem

variants.

2.2.1 Continuous Covering Location Planning with Circular Coverage Areas

Note: all contents presented and all passages quoted in this chapter are taken from Briskorn and

Dienstknecht [10].

As already pointed out in Chapter 1.2, in a �rst approach, cranes will be located in continuous space

with only few operational constraints being respected (Chapter 3). Particularly, there will be no crane

interdependencies and no interferences of a crane's jib with any on-site object. This, in combination

with a tower crane's moving characteristics, allows to represent a crane's operating area by a disc

centered at the crane's location. Hence, this part of the literature review is dedicated to covering

objects in the plane by discs.

�With respect to covering objects in the plane by discs, research has predominantly focused on covering

points. As covering points in the plane by discs has been shown to be NP-complete (Johnson [47]), a

lot of research has dealt with heuristics and approximation algorithms. The problems dealt with in the

literature can be divided into problems where potential disc positions are given and the actual discs

can be chosen only from them and problems where discs can be positioned freely in a plane (with some

restrictions). Since there is a huge amount of literature, we refer the reader to the papers by Liao and

Hu [63] and Chen et al. [19] providing extensive reviews on related literature. In their review, Chen

et al. [19] cite several papers that make use of the observation that a disc covering at least two points

has (at least) two of them on its border. We will develop a generalization of this observation and make

use of it in our approach.

Covering edges by discs that may have arbitrary positions in the plane is considered only by Mao et al.

[70]. They study two problems of which one is concerned with placing homogeneous discs in the plane

so that every point on each edge of a given graph is covered by at least k discs. Note that this does

not mean that each point on an edge has to be covered by the same discs.
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For covering two-dimensional polygons by discs, there has been a considerable amount of research. We

distinguish between a rather theory-driven branch of research and a rather application-driven branch.

The theoretical branch deals with thinnest coverings, i. e. a given polygon has to be covered by a

given number of discs whose positions and radii have to be determined. Most researchers consider

identical discs, so the objective is to �nd the positions of the discs' centers that allow for minimal

radius ensuring full coverage of the polygon. Research includes thinnest coverings of rectangles by

�ve discs and � for certain aspect ratios of the rectangle � by seven discs (Heppes and Melissen [42])

which is later extended by Melissen and Schuur [74] who present thinnest coverings by seven discs

and � again, for certain aspect ratios of the rectangle � by six discs. Nurmela [83] presents results

(conjectured to be optimal) for covering an equilateral triangle by up to 36 identical discs. Das et al.

[24] present an algorithm for �nding a thin (not necessarily a thinnest) covering of an arbitrary convex

polygon, Stoyan and Patsuk [107] do so for any polygon. Finally, Banhelyi et al. [8] consider a variant

of the thinnest covering: for a given arbitrary polygon and a given number of discs with known centers,

the radius of each disc has to be determined so that the sum of the squared radii is minimal while

covering the whole polygon. In this setting, the discs' radii do not need to be identical. In any case,

it su�ces if a polygon is covered by multiple discs jointly. The application-driven branch of covering

polygons by discs is mainly motivated by the insight that in facility location planning in continuous

space the representation of demand sites as points is oversimplifying in certain settings (e. g. Murray

and Tong [76], Murray et al. [78], Murray et al. [79] and Murray and Wei [77]).�

2.2.2 Discrete Covering Location Planning with Facility Interdependencies

Note: all contents presented and all passages quoted in this chapter are taken from Briskorn and

Dienstknecht [12].

As soon as interdependencies among cranes and interferences between cranes and on-site objects are

taken into account considerations become much more complicated. This step will be taken in Chapter 4

by requiring safety clearances (i. e. minimum distances) between cranes and respecting interferences

both between cranes and between cranes and on-site structures. These interferences result in the

cranes' operating areas being obstructed, i. e. a crane may not be able to reach all points within its

operating radius. Due to these interdependencies cranes may not be located independently and, hence,

a key characteristic from Chapter 3 is lost. Thus, the continuous perspective on space is dropped

and, instead, potential crane locations are given in advance by laying a grid over the construction site.

Employing such a grid is a quite common technique for discretizing a by nature continuous space with

potential loss of optimality, see, e. g., Furusaka and Gray [35] and Marzouk and Abubakr [71].

A combination of covering location planning and such peculiar facility interdependencies does not exist

in the literature to-date. However, single facettes of the problem have been studied so far. Thus, the

related literature is brie�y reviewed in the following.

Locating facilities with limited operating areas on a �nite set of potential locations in order to serve

a �nite set of customers represented by points has been introduced as the location set cover problem

(LSCP) by Toregas et al. [115]. Here, �a �nite set of demand points is given and a minimum subset of
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them has to be selected for locating �re stations. Each �re station has a given operating area, i. e. it

can serve all demand points within this operating area.� In the problem considered in Chapter 4, �the

set of potential facility (i. e. crane) locations is given by the grid's intersection points and the potential

operating area of a crane is given by its operating radius. However, in contrast to the LSCP, we cover

polygons � or, more precisely, pairs of polygons � instead of points and the actual operating areas of

the cranes to be located are not known in advance as cranes can obstruct each other.�

As minimum distances between cranes will be respected in Chapter 4, as well, there is a �avour of

facility dispersion problems. �For distributing (or dispersing) facilities, there are two branches in the

literature: the p-dispersion problem and the anti-covering location problem. In the discrete version

of the p-dispersion problem, there is a given �nite set of points from which a subset of p points has

to be selected so that the minimum distance between any two of these points is maximized (Erkut

et al. [33]). Contrastingly, the anti-covering location problem is concerned with selecting a maximum

subset from a given �nite set of points so that any two of the selected points keep at least a given

minimum distance (Murray and Church [75]). These two problems are closely related. Each feasible

solution to an anti-covering location instance with at least p chosen points certi�es a lower bound for

the corresponding p-dispersion instance (with the same point set and identical distance matrix). In

turn, each feasible solution to a p-dispersion instance with a minimum distance of at least d certi�es a

lower bound of p for the corresponding anti-covering location instance (with distance requirement of

d). This relationship can be exploited as shown in Sayah and Irnich [97].� Note that in the problem

studied in Chapter 4 �the minimum distance is given, but it is not known in advance how many points

(i. e. crane locations) have to be selected. Instead, the number of points to be selected depends on the

requirement of covering polygons located in the plane and, furthermore, is not necessarily maximized.�
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Plane

Note: all contents presented and all passages quoted in this chapter are taken from Briskorn and

Dienstknecht [10].

In the current chapter, the tower crane selection and positioning problem (TCSPP) is presented. It

aims at a cost-minimal selection and on-site location of tower cranes. Tower cranes have to be selected

from a given set of crane types with certain speci�cations, e. g. cost per crane, load weight-dependent

maximum lifting radii and maximum operating heights, and may be located at arbitrary points within

the construction site which are not occupied by any existing on-site structures. When locating cranes

the coverage of on-site supply and demand areas with speci�c lifting requirements has to be guranteed.

For this problem, a solution approach will be presented which allows to boil down the by nature in�nite

set of potential crane locations to a �nite set without losing optimality.

The problem sketched above will be precisely de�ned in Chapter 3.1 including a proof of complexity

and a brief statement regarding the contribution to the scienti�c literature. Afterwards, it will be

proven that the by nature in�nite set of potential crane locations can be boiled down to a �nite set

without losing optimality which allows to reduce it to the classic set cover problem (SCP) and, thus,

to rely on standard OR methods (Chapter 3.2). The resulting solution approach is computationally

tested and its performance is analyzed in Chapter 3.3. Finally, some problem extensions that can

easily be incorporated in the approach are presented (Chapter 3.4).

3.1 Problem De�nition, Computational Complexity and Contribution

In this part, a formal problem description including a discussion of the assumptions made is given

(Chapter 3.1.1) and, afterwards, a proof of complexity is presented (Chapter 3.1.2). Finally, a brief

statement regarding the contribution to the academic literature is given (Chapter 3.1.3).

3.1.1 Problem De�nition: TCSPP

We consider a construction site represented by a simple polygon. On this construction site, a set of

demand areas D and a set of supply areas S are located each of these areas being represented by

a simple polygon fully contained within the site polygon. From an application-oriented perspective,

demand areas can be thought of as buildings or �oors of buildings where material is to be received for
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completing construction tasks. Materials are supplied by on-site storage locations, i. e. supply areas.

�Each demand site d ∈ D is supplied by exactly one supply site sd ∈ S. [. . .] Note that a supply site

may very well supply multiple demand sites.� We refer to (d, sd) as the supply-demand-pair, 'pair' for

short, related to d. These pairs are completely predetermined, i. e. shape, size, and position of each

demand site and each supply site as well as the transport relations between supply and demand areas

are given. Each demand site d ∈ D, furthermore, has a maximum weight wd ∈ N to be lifted and

height hd ∈ N.

Tower cranes are employed for establishing all material transports from supply to demand areas. There

is a set T of crane types with each crane type t ∈ T having �xed cost πt (e. g. setup cost and/or rental

cost, the latter being a �xed amount if the duration of the construction project is �xed), maximum

operating height ht and maximum operating radius rt,w for each weight w ∈ N. �If crane type t cannot
lift weight w at any operating radius we set rt,w = −1.� Cranes of a certain type t ∈ T may not

be located arbitrarily on-site, e. g. due to safety clearance from on-site structures or the ground's

bearing capacity. �The set of forbidden areas where cranes of type t cannot be placed is denoted by

Ft.� Consequently, F = ∪t∈TFt is the set of all forbidden areas and each forbidden area f ∈ F has

a set Tf ⊆ T of crane types that cannot be positioned in f . Each f ∈ F is represented by a simple

polygon fully contained within the site polygon.

�In Figure 3.1, we give an illustrative example with |T | = 2, S = {s1, s2, s3}, D = {d1, . . . , d11} and
F = {f1, f2} with Tf1 = Tf2 = T . Assume that s1 supplies {d1, d2, d3}, s2 supplies {d4, d5, d6} and,
�nally, s3 supplies {d7, . . . , d11}. There are two di�erent maximum weights w and w′ to be lifted at

the single demand sites, w < w′. Demand areas with maximum weight w are represented by solid

polygons, demand areas with maximum weight w′ are represented by dashed polygons, that is we have

wd1 = wd3 = wd4 = wd5 = wd8 = wd11 = w and wd2 = wd6 = wd7 = wd9 = w10 = w′. Consequently,

we di�erentiate between two maximum lifting radii for each crane type t, namely rt,w and rt,w′ with

rt,w > rt,w′ , represented by solid and dashed circles, respectively. Additionally, there are two heights

of demand areas, h < h′. Assume that the smaller of the two crane types available can operate at

height h only, while the larger crane type can operate at height h′, as well. Further assume that

hd4 = hd5 = hd8 = h′ while the remaining demand sites have height h. Given these data, in Figure 3.1,

the small crane located at k3 does neither cover the pair (s3, d7) nor the pair (s3, d8): d7 does not lie

within the crane's working radius for the high weight and d8's height is larger than the small crane's

maximum operating height. Instead, pairs (s3, d7) and (s3, d8) are covered by the large crane located

at k2.

A solution is a number kt ∈ N0 for each crane type t ∈ T and a set Pt of kt points within the

construction site for each t ∈ T . Such a solution implies that kt cranes of type t are positioned with

their centers at the respective points.

For a given solution, we say that a crane of type t centered at point p covers pair (d, sd) if each point

in d and each point in sd has Euclidean distance to p of no more than rt,wd
and ht ≥ hd. That is,

the crane can lift the maximum weight associated with demand site d at each point in d and at each

point in d's supply site sd and its maximum operating height is su�cient. Since we are interested in

Euclidean distances we can represent a crane centered at point p as a set of discs (one for each potential
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Figure 3.1: Illustrative construction site

weight) centered in p. The crane of type t with su�cient height centered at point p covers pair (d, sd)

if the disc with radius rt,wd
centered at point p fully covers the polygons of d and of sd.

A solution is feasible if and only if pair (d, sd) is covered by at least one crane for each demand site

d ∈ D and no crane type t ∈ T has a point p ∈ Pt so that p is in any d ∈ D, s ∈ S, or f ∈ Ft.

Less formally, a solution is feasible if each demand site can be supplied and each crane's position is

feasible for the respective crane, that is no crane is positioned in a supply site, a demand site, or an

area forbidden for the respective crane type.

We like to emphasize that this de�nition of feasible solutions incorporates required minimum distances

between demand sites and supply sites and cranes since these can be easily represented by forbidden

areas.

We associate total cost of
∑

t∈T ktπt with such a solution and the tower crane selection and positioning

problem (TCSPP) is to �nd a feasible solution with minimum total cost among all feasible solutions.

[. . .]

Finally, we like to summarize and shortly discuss the key assumptions the problem de�nition is based

on.

1. Pairs are given. This assumption can be justi�ed as there may be a given plan for storing

materials on-site and demands can be derived from construction plans which, in turn, allows to

assign supply areas to demand areas.

2. Each demand site is supplied completely by one supply site. This is certainly a simplifying

assumption. We accept it for the time being, but can easily drop it as discussed in Chapter 3.4.

3. Capacities of cranes in terms of available time or number of lifts are not considered. This, again,

is a simplifying assumption, but certain types of capacity constraints can easily be incorporated
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as we will discuss in Chapter 3.4.

4. We consider a static construction site, i. e. there are no changes in layout over time, and, thus,

once crane locations are determined, they can be kept until the end of the project. This is a

simplifying assumption, as well, but in Chapter 3.4 we show how to account for certain dynamic

concepts.

5. We assume that the maximum weight of a pair has to be lifted at any point of the speci�c pair.

As we can adjust the granularity of demand and supply areas (by dividing them in a number of

smaller polygons instead of representing them as a single polygon each), this assumption is not

a restriction.

6. We do not consider interdependencies among cranes, i. e. a crane's location has no impact on the

other cranes' locations. This is a restricting assumption and the issue will be considered more

closely in Chapter 4.

7. We do not account for obstacles limiting the cranes' moves. In particular, the jib's (i. e. the

crane's operating arm's) rotation is not limited by obstacles like buildings or other cranes within

the jib's range. This also is a restricting assumption and the issue will be considered more closely

in Chapter 4, as well.

8. Each pair has to be covered completely by at least one crane, i. e. a pair is only said to be covered

if each point of the supply area and each point of the demand area are covered by the same crane.

Again, since we can adjust the granularity of demand and supply areas, this assumption is not a

restriction.�

3.1.2 Computational Complexity of TCSPP

�The decision version of TCSPP asks whether there is a feasible solution with total cost not exceeding

a given threshold.

Theorem 1. The decision version of TCSPP is strongly NP-complete even if |T | = 1, F = ∅, each
demand site consists of a single point only and coincides with its supply site.

Proof. The special case of TCSPP pretty obviously generalizes the problem of geometric covering by

discs (GCBD), see Johnson [47]. Here, we have a set X of points with integer-coordinates in the plane.

The question is, whether all points in X can be covered by placing at most a given number Y of discs

of radius r in the plane.

We obtain an instance of GCBD by letting wd = hd = 0 for each d ∈ D and ht = 0 and rt,w = r for

each w ∈ N0 and the only crane type t.

Finally, membership in NP of the decision version of TCSPP can be seen rather easily taking into

account that we do not need more than |D| cranes.�
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3.1.3 Research Gap

The research presented in this chapter adds to the application-oriented engineering literature in a way

that, in contrast to most of the dedicated tower crane-related research activities, crane selection and

location are integrated and that it is the �rst approach �to locate cranes optimally in continuous space

by generating a �nite set of candidate locations without loss of optimality.� Furthermore, regarding the

methodological OR literature concerning facility location and covering problems several shortcomings

which have been identi�ed by Farahani et al. [34] are addressed.

• �Demand is often point-based. We, however, consider polygons to be covered. The idea of

generating a �nite set of candidate locations without losing optimality has been introduced by

Murray and Tong [76], but their approach does not respect any of the subsequently mentioned

problem features.

• Usually, homogeneous facilities � i. e. facilities with identical covering radii � are assumed. Since

we consider multiple crane types and lifting weight-dependent working radii [. . .] we have het-

erogeneous facilities and demand- and facility-dependent covering radii.

• There is limited research on covering problems in the plane. We locate cranes in continuous space

with the additional restriction that cranes have to be located on-site (i. e. within a bounded area).

On top, we consider areas where cranes cannot be placed.�

3.2 Reduction to the Set Cover Problem

�As can be concluded from the problem de�nition in Chapter 3.1.1, there usually is an in�nite number

of points where a crane can be located. In this part, we �rst prove that the crane location problem

can be restricted to a �nite set of candidate locations without losing optimality (Chapter 3.2.1). Given

this �nite candidate set, we can generate an instance of the classic SCP. Note that we have a special

case of SCP here, namely the geometric SCP. However, as mentioned in Clarkson and Varadarajan

[23], applying techniques developed for SCP is a common approach with respect to approximating

geometric versions of the SCP. We present the method generating the SCP instance corresponding to

an instance of TCSPP in Chapter 3.2.2.

3.2.1 Finite Sets of Position Candidates

In this part, we will show that we can restrict ourselves to a �nite set of candidate locations for

each crane type t ∈ T . Since these sets can be achieved independently we focus on a single crane

type t∗ only in the following. We will refer to both types of geometric objects, circle and disc, in

order to represent cranes in speci�c positions depending on the context. We, furthermore, make two

simplifying assumptions when developing our central insights. We will later on show that similar

techniques following the very same ideas can be applied without these assumptions.

1. Crane type t∗ can cover each demand site with respect to height, i. e. ht∗ ≥ maxd∈D {hd}.
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3 Tower Crane Selection and Location in the Plane

2. All demand sites have identical maximum weights w, i. e. wd = w for each d ∈ D. Consequently,

there is only one relevant maximum operating radius, i. e. we have rt∗,w = rmax > 0 for each

weight w ∈ N.

For simplicity we make two more assumptions. As opposed to those assumptions above, however, we

argue that we can easily modify each instance so that the following assumptions are met.

3. We assume that the instance of TCSPP has no isolated vertices (a demand site with zero di-

mensions coinciding with its own supply site) with distance of more than rmax to any edge and

distance of more than 2rmax to any other vertex. If there are any, we can trivially identify each

isolated vertex in a pre-processing step, choose an appropriate position for a crane exclusively

covering a single isolated vertex, and drop them from further consideration.

4. We assume that there is no demand site that can be covered by a crane of type t∗ in any

arbitrary feasible position. If there are any, we, again, can identify each such demand site

in a pre-processing step and transform them into a forbidden area f with Tf = {t∗}. If the

corresponding supply site has no demand site left, then we transform it, too, into a forbidden

area f with Tf = {t∗}. Finally, if no demand site remains after all of them have been handled,

then we choose an arbitrary position for a single crane which constitutes the only position to be

considered for cranes of type t∗.

Murray and Tong [76] prove that a polygon is included in a circle of given radius when all its nodes

are inside the circle's border. Based on that, they develop the idea to draw circles of the given radius

with the polygon's nodes as their center points in order to identify an area where each of the nodes

lies within the considered radius (i. e. they generate an area of overlapping circles). Each point within

the circles' overlapping area is equally good, so it is concluded that a �nite set constituted of the

circles' intersection points can be used as location candidates without loss of optimality. This idea

covers a special case of the setting considered in this paper. However, we will see that restricting

ourselves to circles' intersection points is not enough and we will show how to generalize the candidate

set accordingly.

We, �rst, develop a geometric property concerning edges and circles and their relative position in a

plane. Consider an arbitrary circle c with center m and radius r and an arbitrary edge e with vertices v

and v′. It is easy to see that among all points on e either v is the unique point with maximum distance

to m, v′ is the unique point with maximum distance to m, or both, v and v′ are the only points with

maximum distance to m. If no point on e has distance larger r to m, that is edge e is fully covered by

the disc implied by c, then only v or v′ can have minimum distance to c among all points on e. We

summarize this observation in the following Corollary 1.

Corollary 1. For each circle c and each edge e where the disc implied by c fully covers e, only vertices

of e can have minimum distance to c.

With Corollary 1 we are prepared to prove the following theorem stating that we have to consider

speci�c discrete points in the plane only as candidate locations for cranes of type t∗.
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3.2 Reduction to the Set Cover Problem

Theorem 2. Under assumptions 1. and 2. there is an optimum solution to TCSPP so that for each

crane of type t∗ its center

1. has distance of exactly rmax to at least two vertices of polygons in D ∪ S or

2. lies on an edge of the construction site polygon or a polygon in D ∪ S ∪ Ft∗ and has distance of

exactly rmax to at least one vertex of polygons in D ∪ S.

In order to improve readability, we will keep the proof as informal as possible without risking ambiguity.

Proof. We will modify an arbitrary optimum solution step by step to an optimum solution with each

crane's center positioned according to the theorem. We do so by moving a crane's position continuously

until a certain condition is ful�lled. When conducting such moves the relative position of polygons

and their edges and the circle corresponding to the crane being moved changes.

The following observation is central to the proof and applies to all kinds of continuous moves. We

consider an edge e covered by the disc implied by a circle c. According to Corollary 1, at the �rst time

a point p on e lies on c while moving c, point p is a vertex of e and each point on e is covered by the

corresponding disc. That means, edge e is fully covered by the corresponding disc if no vertex of e lied

on c while moving c.

Consider an arbitrary optimum solution Z∗ for an instance of the TCSPP and a crane represented by

a circle c with a center position m1 not according to the theorem. We consider an arbitrary half-line l

starting at m1 and shift c away from m1 so that its center is on l as long as no vertex of a pair that

has been covered by the corresponding disc prior to the shift lies on c. After conducting this shift, a

vertex v of a pair that has been covered prior to the shift lies on c. Note that according to Corollary 1

each pair that has been covered prior to the shift is still covered after the shift.

Let m2 be the center's position of c after the shift. Note, furthermore, that m2 is not necessarily a

feasible position for the crane since m2 may lie in a polygon in D ∪ S ∪ Ft∗ or outside the polygon

representing the construction site. We distinguish three cases with regard to m2 in the following.

1. If the resulting center point m2 is not in a polygon in D∪S∪Ft∗ , then we found a feasible center

position for the crane having distance of exactly rmax to v. We then consider a circle c′ with

radius rmax and center v. Note each circle with radius rmax and its center on c′ contains v. We

proceed by moving c so that its center moves clockwise on c′ (we could move counterclockwise

just as well) until

• a second vertex v′ of a pair that has been covered by the corresponding disc prior to the

shift lies on c,

• the center of c lies on the edge of a polygon in D ∪ S ∪ Ft∗ , or

• the center of c lies on the edge of the polygon representing the construction site

and all pairs that have been covered prior to the shift are still covered. Note that this condition

will be met due to Corollary 1 and assumptions 3 and 4. Clearly, the new center m3 of c is a
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3 Tower Crane Selection and Location in the Plane

feasible position for the crane under consideration, we obtain a feasible solution when moving

the crane to m3 since it covers the same set of pairs as before, and m3 is in accordance with the

theorem.

2. If the resulting center point m2 is in a polygon q, q ∈ D∪S∪Ft∗ , then we consider the maximum

set P (q) of polygons in D∪S∪Ft∗ so that q ∈ P (q) and for each pair of polygons (q′, q′′) in P (q)

there is a sequence of q1, . . . , qα so that (i) q′ = q1, q
′′ = qα and (ii) qβ and qβ+1 are overlapping

for each β = 1, . . . , α− 1. Consider the union of polygons in P (q) which is itself a polygon. We

refer to this super-polygon as Q. Half-line l has at least two intersection points with edges of Q.

Consider the intersection point p with minimum distance to c's original center point m1.

We locate c so that its center point coincides with p and move c so that its center point moves

on edges of polygon Q in a 'counterclockwise orientation' (clockwise would be �ne, as well) as

long as no vertex of a pair that has been covered prior to the shift lies on c. Note that eventually

a vertex of a pair that has been covered prior to the shift lies on c since there is a vertex of Q

having distance of more than rmax to v (m2 lies in Q). Clearly, the new center m4 of c (after the

shift) is a feasible position for the crane under consideration, we obtain a feasible solution when

moving the crane to m4 since it covers the same set of pairs as before (due to Corollary 1), and

m4 is in accordance with the theorem.

3. If the resulting center pointm2 is outside the polygon representing the construction site, then half-

line l has at least one intersection point with edges of the polygon representing the construction

site. Consider the intersection point p with minimum distance to c's original center pointm1. We

locate c so that its center point coincides with p and move c so that its center point moves on edges

of the polygon representing the construction site in a 'clockwise orientation' (counterclockwise

would be �ne, as well) as long as no vertex of a pair that has been covered prior to the shift lies

on c. Note that eventually a vertex of a pair that has been covered prior to the shift lies on c

due to assumption 4. Clearly, the new center m5 of c is a feasible position for the crane under

consideration, we obtain a feasible solution when moving the crane to m5 since it covers the same

set of pairs as before (due to Corollary 1), and m5 is in accordance with the theorem.

So taking all of the preceding arguments into consideration, we can apply the procedure above to each

crane and ultimately obtain a solution according to the theorem.

In order to ease comprehension, we now illustrate the moves of circles described in the proof. In Figure

3.2, there is a pair of polygons, say a demand site with its associated supply site, and a crane with

center position m1 and a given maximum operating radius. Figure 3.2a illustrates the initial move of

the circle in an arbitrary direction according to half-line l resulting in center position m2 of the circle

as depicted in Figure 3.2b. Note that v lies on c now and m2 is a feasible position for the crane, that

is the depicted example corresponds to the �rst case considered in the proof. In Figure 3.2b we see

circle c′ along which circle c's center is moved in the following until a second vertex v′ lies on c, as

well, implying c's �nal center position m3 as shown in Figure 3.2c.

In Figure 3.3a, we �nd a di�erent initial setting and see the initial move of the circle in an arbitrary
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Figure 3.2: Moving the crane according to the �rst case
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Figure 3.3: Moving the crane according to the second case

direction from its original position (depicted in solid drawing) to the resulting position (depicted in

dashed drawing). Note that m2 is not a feasible position for the crane since it is in a polygon in

D ∪ S ∪ Ft∗ , that is the depicted example corresponds to the second case considered in the proof.

Figure 3.3b depicts the path along which the circle's center is moved around the polygon until a vertex

v′ lies on c implying c's �nal center position m4 as shown in Figure 3.3c.

Now that we have established Theorem 2 under assumptions 1. and 2. we discuss how dropping one

or both of them a�ects our result. Dropping assumption 1. does not change the result in Theorem 2

at all. Note that we can represent demand site d with ht∗ < hd as a forbidden area since (d, sd) cannot

be covered by a crane of type t∗, but no crane can be placed in a polygon of d or sd nevertheless.

If for any supply site s ∈ S each corresponding demand site d has ht∗ < hd, then we represent s

by a forbidden area, as well. Since these forbidden areas have the same shape as the demand sites

and supply sites, respectively, they represent, Theorem 2 remains true even after dropping assumption

1. However, when dropping assumption 2. our result must account for di�erent weights as stated in

Theorem 3.

Theorem 3. There is an optimum solution to TCSPP so that for each crane of type t∗ its center

1. has distance of exactly rt∗,wd
to at least one vertex v of any pair (d, sd) covered by the crane and

has distance of exactly rt∗,wd′ to at least one vertex v′, v 6= v′, of any pair (d′, sd′) covered by the

crane or
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2. lies on an edge of the construction site polygon or a polygon in D ∪ S ∪ Ft∗ and has distance of

exactly rt∗,wd
to at least one vertex v of any pair (d, sd) covered by the crane.

Since we can apply exactly the same ideas we abstain from giving a formal proof here. When moving

circles in the proof of Theorem 2 we act on a maxim predicting that no vertex of a pair covered by

the crane corresponding to the circle can leave the crane's sphere of in�uence. This maxim we still can

follow after dropping assumption 2. Then, however, the resulting distances between the center of a

circle and vertices v and v′ on the verge of the crane's coverage depend on the weight associated with

v and v′, respectively. Theorem 3 accounts for that.

For this modi�cation of the proof we provide an illustration in Figure 3.4 with a single supply site

s supplying two demand sites d and d′. We assume that wd > wd′ and, thus, rt∗,wd
< rt∗,wd′ . The

di�erent operating radii of a crane related to d (dashed) and d′ (solid) are re�ected by di�erent radii

of circles (dashed/solid) with center m1.
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Figure 3.4: Covering demand areas with di�erent weights

Figure 3.4a illustrates the initial move according to half-line l resulting in the circles' position depicted

in Figure 3.4b. Note that v belongs to d′ and lies on the corresponding circle with center position m2.

Sincem2 is a feasible position the depicted example corresponds to the �rst case considered in the proof.

In Figure 3.4b, we see circle c′ along which circle cd′ 's (and cd's) center is moved in the following until

a second vertex v′ lies on cd, as well, implying the circles' �nal center position m3 as shown in Figure

3.4c. Note that the radius of circle c′ equals rt∗,wd′ since the second moving operation is supposed to

keep v on cd′ . Note furthermore that v′ belongs to d and, therefore, lies on the corresponding circle

with center position m3.

3.2.2 Set Cover Instances

Our main result in Chapter 3.2.1 stated in Theorem 3 suggests an obvious reduction of the TCSPP to

the weighted SCP. The set of pairs to be covered in the TCSPP corresponds to the set to be covered

in the weighted SCP. Each candidate position p of a crane of type t corresponds to a subset of pairs

covered when a crane of type t is positioned in p. We refer to a pair of crane type t and a corresponding
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candidate position as candidate in the following. The crane type and position associated with candidate

c are denoted by tc and pc. Choosing a candidate comes at a price of πtc . Now, our problem is to

choose candidates so that total cost is minimized while each pair is covered.

It remains to detail how the set of position candidates is generated. As mentioned in Chapter 3.2.1

we can do so for each crane type independently. In the following we restrict ourselves to a single

crane type t∗, consequently. Potentially, each pair of vertices of polygons in D ∪ S and each pair of a

vertex of a polygon in D ∪ S and an edge of any polygon can give rise to multiple candidates. Recall

that vertices of polygons in S may be associated with multiple weights since a supply site may supply

multiple demand sites (each with a unique maximum weight). Let Ws be the set of maximum weight

values associated with s ∈ S, that is Ws = {wd | d ∈ D, sd = s}. In the following, we outline the set of

position candidates in detail.

1. For each pair of vertices v and v′ of two (not necessarily distinct) demand sites d and d′, re-

spectively, we have at most two points with distance of rt∗,wd
to v and distance of rt∗,wd′ to

v′.

2. For each pair of vertices v and v′ of demand site d and supply site s, respectively, and each weight

w ∈Ws we have at most two points with distance of rt∗,wd
to v and distance of rt∗,w to v′.

3. For each pair of vertices v and v′ of two (not necessarily distinct) supply sites s and s′ and each

pair of weights w ∈ Ws and w
′ ∈ Ws′ , respectively, we have at most two points with distance of

rt∗,w to v and distance of rt∗,w′ to v
′.

4. For each pair of a vertex v of a demand site d and an edge e of any polygon in D∪S ∪Ft∗ or the
polygon describing the construction site we have at most two points on e with distance of rt∗,wd

to v.

5. For each pair of a vertex v of a supply site s and an edge e of any polygon in D ∪ S ∪ Ft∗ or the
polygon describing the construction site and each weight w ∈Ws we have at most two points on

e with distance of rt∗,w to v.

Obviously, each of these points can qualify as a candidate only if it is not in any polygon in D∪S∪Ft∗
but in the polygon describing the construction site. Additionally, we have some further rules enabling

us to reduce the number of candidates to be considered.

a) A vertex of a polygon in D ∪ S needs to be considered in 1. to 5. above only if the interior

angle is below 180◦. We refer to such vertices as spanning vertices in the following. Note that

the convex hull of the set of spanning vertices of a polygon coincides with the convex hull of the

polygon itself. Furthermore, it is easy to see that a disc covers a polygon if and only if it covers

its convex hull. Since spanning vertices are the only vertices of the polygon corresponding to the

convex hull we can restrict ourselves to them for generating candidates.

b) Strengthening 3. above, for each pair of vertices v and v′ of (the same) supply site s we consider

a point only if it has distance rt∗,w to both, v and v′, for any weight w ∈Ws. That is, we do not

consider points having distance according to di�erent weights in Ws. Using the same ideas as in
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the proof of Theorem 3 we can easily see that this restriction does not prevent us from �nding

the optimum solution.

c) A point generated according to 1. above needs to be considered only if pairs (d, sd) and (d′, sd′)

are covered by a crane positioned in the point. Analogously, a point generated according to 2. or

4. above needs to be considered only if pair (d, sd) is covered by a crane positioned in the point.

d) A point generated according to 3. above needs to be considered only if at least one pair (d, s)

with wd = w and at least one pair (d′, s′) with wd′ = w′ is covered by a crane positioned in the

point. Analogously, a point generated according to 2. or 5. above needs to be considered only if

at least one pair (d′, s) with wd′ = w is covered by a crane positioned in the point.

For the sake of clarity we outline the mixed-integer programming fomulation. We have a binary variable

αc for each candidate c. Let C be the set of candidates. Given the crane type tc and position pc of

candidate c we can easily derive parameter id,c signaling whether candidate c covers pair (d, sd) from

the set of all pairs P (id,c = 1) or not (id,c = 0). We, then, can formulate the following model.�

Min Z =
∑
c∈C

αc · πtc (3.1)

∑
c∈C

αc · id,c ≥ 1 ∀ (d, sd) ∈ P (3.2)

αc ∈ {0, 1} ∀c ∈ C (3.3)

3.3 Computational Study

�The discretization scheme outlined in Chapter 3.2 enables us to solve TCSPP using any method

suitable for solving SCP instances. We employ two methods in the following. First, we employ

standard solver CPLEX 12.6.3 in order to solve the SCP instances exactly. Second, we implemented

the greedy approach proposed by Chvatal [21] in order to �nd heuristic solutions in a short amount of

time in case time is a critical factor. The implementation has been done in Java 8 using the Eclipse

development environment. All computational studies have been performed on a computer with 32GB

RAM and an i7-4790 CPU @ 3.6GHz. An analysis of performance is presented in Chapter 3.3.2. The

evaluation is based on a set of instances whose generation is described in Chapter 3.3.1.

3.3.1 Test Set Generation

For our tests, we consider four di�erent crane types 1, 2, 3, and 4, each with a speci�c cost, maximum

working height and maximum operating radius depending on the maximum weight to be lifted. We
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have �ve di�erent maximum weights. We do not use speci�c weights and heights but classes of weights

and heights instead. We distinguish four di�erent height classes 1, 2, 3, and 4 (corresponding to the

maximum operating height of the four types of cranes) where a higher class number represents a higher

operating height. For weights we consider �ve classes 1 to 5. Consequently, maximum operating radii

are given depending on crane type and weight class in Table 3.1. Furthermore, Table 3.1 gives the

cranes' costs.

Crane type
Weight class

Cost per crane
1 2 3 4 5

1 5 10 10 10 10 1,000
2 6 12 20 20 20 1,500
3 7 14 22 30 30 3,000
4 8 16 24 32 40 4,500

Table 3.1: Maximum operating radii and crane cost

We consider a square construction site because the site's shape has an impact on the number of

(feasible) candidates and we assume for the sake of simplicity that all demand sites, supply sites, and

forbidden areas are represented by polygons of four or six vertices with their edges parallel to those

of the construction site. Note that this gives rectangles and L-shaped areas. Furthermore, we restrict

ourselves to two sizes of rectangles and one size of L-shaped area and rotate the respective shape

randomly by 0, 90, 180, or 270 degree when placing them on the construction site.

We place supply and demand areas so that they do not overlap. Forbidden areas and safety zones (i. e.

minimum distances), however, may overlap with any other area. In order to control the density of sites

on the construction site, we partition the site by a grid laid over the construction site. The side length

of a cell of this grid equals twice the smallest crane type's maximum operating radius for the heaviest

weight. We position a supply area or a demand area completely within such a cell. A forbidden area

may be placed over several cells. A cell may be empty, but if it is not, there is one supply area that

supplies all demand areas in that cell. So basically, the number of demand areas in a cell determines

the number of pairs in it (we work with at most two demand areas per cell). The overall number of

cells is set depending on the number |D| of pairs we consider in the instance at hand and a density

parameter λ ∈ {0.4, 0.8, 1.2} describing the average number of pairs per cell. The number of cells is

then de�ned as
[√
|D|/λ

]2
.

We distinguish between di�erent sets of instances varying the following parameters:

• κ ∈ {1, 2, 3, 4} is the number of crane types available

• η ∈ {100, 300, 500, 700, 900, 1100} is the number of pairs

• λ ∈ {l,m, h} is the density (l for low (0.4), m for medium (0.8), h for high (1.2))

• µ ∈ {no, sim,min} indicates whether there are forbidden areas (no if there are none, sim if there

are simple forbidden areas � i. e. no minimum distances �, min if forbidden areas re�ect simple

forbidden areas and minimum distances as well)
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3 Tower Crane Selection and Location in the Plane

• σ ∈ {t, f} indicates whether demand sites di�er in their maximum weights (t for true, f for false)

• φ ∈ {t, f} indicates whether demand sites di�er in their heights (t for true, f for false)

With the given parameters, an instance is created using uniformly distributed random numbers. First,

κ crane types are drawn from the crane type list. Then, demand sites are randomly assigned to the

grid's cells. The procedure continues until the total number of demand areas to be placed is reached. In

a next step, exact (non-overlapping) positions for supply and demand areas are randomly determined

for each cell. The resulting pairs are randomly assigned a weight and a height (not above the maximum

height class among the chosen crane types) in case di�erent weights and di�erent heights, respectively,

are to be considered. Finally, shapes of forbidden areas are determined and they are, afterwards, placed

on-site.

3.3.2 Results

In the �rst part of our computational study, we want to evaluate the impact of the individual pa-

rameters presented in Chapter 3.3.1 on both candidate generation and solution of the SCP instance

(Chapters 3.3.2.1 and 3.3.2.2). For this purpose, it su�ces to set η ∈ {100, 300, 500}. We generate

25 instances for each combination of parameters which gives us a total of 378 parameter combinations

(called scenarios, in the following) with 9,450 instances. We encode a scenario by a sequence of letters

and numbers of the scheme κ − η − λ − µ − σ − φ. Note that, for the sake of simplicity, we assume

Tf = T for all f ∈ F , i. e. each forbidden area is a forbidden area for all crane types.

Table 3.2 summarizes the results. We outline both average and maximum values of

• the number of feasible candidates generated,

• the duration of candidate generation in seconds, and

• the total time (in seconds) of the procedure, i. e. candidate generation and exact solution via

CPLEX 12.6.3

for each scenario. In a second run, we will analyze computational limitations by pushing CPLEX to

the limits (3.3.2.2).

3.3.2.1 Candidate Generation Analysis

According to Chapter 3.2.2, we expect both the number of feasible candidates and the time for candi-

date generation (and checking) to be non-decreasing in the number of cranes, vertices and edges. This

is supported by our study as the entries in Table 3.2 show: for given values of µ, σ and φ, increasing

the number κ of crane types or the number η of pairs results in an increase of both, the maximum and

the average number of candidates, and the time needed to generate the candidates. The same holds

true for the density paramter λ, but here, a critical factor may be the ratio of crane radii and distance

between the single pairs of supply and demand sites. However, it should be noted, that the above

mentioned patterns look consistent, but there are considerable di�erences among single instances as
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# candidates generation time (sec) total time (sec) # candidates generation time (sec) total time (sec) # candidates generation time (sec) total time (sec)

avg. /max. avg. /max. avg. /max. avg. /max. avg. /max. avg. /max. avg. /max. avg. /max. avg. /max.

1-100- l- m- h-

no-f-f 1,347 /2,787 1.18 /1.83 1.31 /2.06 2,237 /4,794 1.81 /3.69 2.03 /4.08 2,757 /5,442 2.28 /4.78 2.55 /5.25

sim-f-f 1,435 /2,929 1.26 /1.94 1.43 /2.30 2,304 /4,900 1.89 /3.84 2.12 /4.23 2,815 /5,533 2.38 /5.00 2.64 /5.47

min-f-f 1,575 /3,139 1.20 /1.97 1.35 /2.23 2,441 /4,913 1.81 /3.74 2.04 /4.14 2,892 /5,539 2.26 /4.97 2.52 /5.46

no-t-f 826 /1,496 0.86 /0.96 0.95 /1.08 1,323 /2,479 1.05 /1.47 1.18 /1.67 1,716 /3,255 1.44 /1.99 1.63 /2.25

sim-t-f 886 /1,579 0.94 /1.07 1.04 /1.19 1, 372 /2,559 1.11 /1.54 1.23 /1.74 1,760 /3,298 1.51 /2.09 1.69 /2.35

min-t-f 992 /1,772 0.87 /1.04 0.97 /1.18 1,496 /2,686 1.05 /1.54 1.19 /1.75 1,855 /3,249 1.43 /1.96 1.63 /2.22

1-300- l- m- h-

no-f-f 4,441 /9,159 9.91 /15.57 11.20 /17.86 7,390 /16,027 15.97 /36.60 17.74 /40.35 9,343 /20,593 22.80 /55.62 25.12 /60.81

sim-f-f 4,698 /9,649 10.88 /17.06 12.25 /19.40 7,608 /16,390 16.75 /38.26 18.57 /42.07 9,529 /20,898 23.48 /57.20 25.86 /62.54

min-f-f 5,123 /10,199 10.48 /17.51 11.93 /20.00 7,978 /16,562 16.43 /37.45 18.34 /41.38 9,623 /20,134 22.07 /52.41 24.44 /57.30

no-t-f 2,564 /4,511 7.38 /7.78 8.26 /8.75 4,000 /7,817 9.20 /12.19 10.38 /13.88 5,178 /9,976 12.36 /16.35 14.00 /18.53

sim-t-f 2,735 /4,798 8.03 /8.63 8.93 /9.65 4,160 /8,049 9.72 /12.97 10.95 /14.71 5,321 /10,191 12.83 /16.94 14.51 /19.17

min-t-f 3,039 /5,222 7.69 /8.24 8.70 /9.36 4,521 /8,374 9.20 /12.67 10.48 /14.48 5,551 /10,222 11.90 /16.28 13.56 /18.59

1-500- l- m- h-

no-f-f 7,227 /14,663 26.50 /39.47 30.27 /45.84 12,112 /25,690 43.25 /92.89 48.54 /102.65 16,652 /36,050 69.46 /170.09 76.94 /186.38

sim-f-f 7,648 /15,370 28.56 /43.44 32.39 /51.19 12,480 /26,313 45.38 /96.50 50.73 /106.49 16,965 /36,514 71.42 /174.03 78.84 /190.49

min-f-f 8,361 /16,481 27.52 /44.98 31.51 /52.02 13,113 /27,045 44.70 /96.81 50.33 /107.33 16,908 /34,737 65.95 /157.10 73.19 /171.41

no-t-f 4,228 /7,406 19.71 /21.05 22.03 /23.66 6,801 /12,649 28.22 /32.24 32.08 /36.72 9,254 /18,658 37.64 /51.43 42.70 /58.17

sim-t-f 4,518 /7,886 21.81 /23.28 24.28 /26.05 7,072 /13,095 28.27 /34.13 31.98 /38.77 9,494 /19,025 39.09 /53.46 44.26 /60.32

min-t-f 5,037 /8,620 20.42 /22.33 23.09 /25.40 7,662 /13,725 26.79 /33.83 30.59 /38.70 9,789 /18,634 35.73 /49.76 40.72 /56.50

2-100- l- m- h-

no-f-f 2,674 /4,259 2.34 /3.55 2.62 /3.99 4,361 /7,204 4.13 /7.89 4.53 /8.48 5,393 /8,336 5.85 /10.77 6.34 /11.50

sim-f-f 2,836 /4,462 2.57 /3.86 2.86 /4.21 4,492 /7,387 4.33 /8.21 4.75 /8.83 5,506 /8,472 6.03 /11.02 6.54 /11.75

min-f-f 3,107 /4,760 2.56 /3.96 2.87 /4.63 4,756 /7,539 4.39 /8.30 4.82 /8.93 5,649 /8,441 5.97 /10.67 6.48 /11.40

no-f-t 2,297 /3,778 1.80 /2.96 2.05 /3.39 3,776 /6,420 3.30 /6.59 3.65 /7.14 4,610 /7,271 4.36 /8.10 4.76 /8.72

no-t-f 1,661 /2,412 1.63 /2.02 1.76 /2.21 2,574 /3,934 2.19 /3.12 2.42 /3.42 3,404 /5,261 2.91 /4.62 3.19 /5.04

no-t-t 1,344 /1,972 1.22 /1.63 1.34 /1.78 2,086 /3,222 1.56 /2.35 1.74 /2.60 2,721 /4,173 2.05 /3.24 2.28 /3.57

sim-f-t 2,434 /3,964 2.02 /3.28 2.29 /3.60 3,889 /6,587 3.34 /6.68 3.68 /7.21 4,707 /7,398 4.52 /8.41 4.93 /9.04

sim-t-f 1,777 /2,571 1.80 /2.22 1.95 /2.42 2,671 /4,050 2.31 /3.27 2.54 /3.58 3,492 /5,346 3.02 /4.75 3.31 /5.18

sim-t-t 1,434 /2,089 1.34 /1.78 1.46 /1.94 2,165 /3,322 1.64 /2.47 1.84 /2.73 2,789 /4,241 2.12 /3.34 2.36 /3.69

min-f-t 2,663 /4,256 2.00 /3.38 2.29 /3.73 4,112 /6,737 3.43 /6.71 3.80 /7.25 4,825 /7,427 4.43 /8.22 4.84 /8.84

min-t-f 1,987 /2,812 1.69 /2.17 1.86 /2.39 2,912 /4,309 2.24 /3.35 2.49 /3.69 3,657 /5,430 2.94 /4.65 3.24 /5.08

min-t-t 1,599 /2,319 1.25 /1.70 1.41 /2.08 2,350 /3,581 1.59 /2.49 1.78 /2.77 2,905 /4,334 2.04 /3.26 2.30 /3.61

2-300- l- m- h-

no-f-f 8,950 /14,068 20.98 /33.24 23.24 /37.18 14,486 /22,602 38.82 /70.31 42.32 /75.65 18,307 /29,506 56.95 /113.06 61.49 /120.24

sim-f-f 9,465 /14,778 23.12 /36.52 25.55 /40.56 14,915 /23,187 40.83 /73.83 44.45 /79.25 18,670 /29,966 58.90 /116.77 63.52 /124.21

min-f-f 10,272 /15,772 23.21 /37.66 25.81 /42.08 15,592 /23,890 41.19 /75.62 44.91 /81.16 18,832 /29,160 57.10 /109.31 61.74 /116.37

no-f-t 7,761 /12,801 16.00 /28.52 18.03 /32.17 12,672 /20,243 30.25 /57.77 33.28 /62.46 15,962 /26,249 44.29 /91.26 48.22 /97.67

no-t-f 5,243 /7,676 13.93 /17.14 15.11 /18.78 8,169 /12,001 18.39 /25.80 20.21 /28.37 10,546 /15,806 23.71 /36.52 26.05 /40.12

no-t-t 4,221 /6,309 10.09 /13.59 11.05 /14.94 6,643 /9,985 13.21 /19.97 14.69 /22.17 8,560 /12,982 16.79 /27.02 18.70 /29.83

sim-f-t 8,208 /13,478 17.63 /31.32 19.75 /34.87 13,048 /20,789 31.80 /60.39 34.09 /65.22 16,271 /26,677 45.82 /94.03 49.83 /100.40

sim-t-f 5,602 /8,186 15.32 /19.06 16.56 /20.82 8,487 /12,429 19.50 /27.30 21.39 /29.97 10,835 /16,151 24.78 /38.17 27.19 /41.69

sim-t-t 4,508 /6,750 11.15 /15.03 12.20 /16.48 6,899 /10,351 13.98 /21.17 15.52 /23.45 8,787 /13,285 17.50 /28.15 19.47 /31.03

min-f-t 8,900 /14,397 17.64 /32.35 19.88 /36.21 13,606 /21,484 32.01 /62.15 35.27 /67.06 16,380 /25,987 44.13 /89.25 48.17 /95.60

min-t-f 6,198 /8,870 14.32 /18.55 15.69 /20.46 9,131 /13,138 19.12 /27.68 21.15 /30.50 11,259 /16,361 24.18 /37.30 26.69 /40.83

min-t-t 4,981 /7,342 10.18 /14.33 11.32 /15.92 7,392 /11,029 13.47 /21.13 15.13 /23.65 9,071 /13,516 16.75 /27.36 18.79 /30.29

2-500- l- m- h-

no-f-f 14,638 /22,950 55.54 /86.35 66.92 /142.59 24,189 /39,654 105.28 /209.09 119.01 /225.81 32,691 /52,619 175.33 /352.74 190.86 /374.59

sim-f-f 15,487 /24,100 61.39 /95.05 74.97 /158.00 24,924 /40,589 111.08 /218.79 125.04 /235.11 33,305 /53,408 180.96 /362.53 196.38 /384.25

min-f-f 16,883 /25,881 61.77 /99.69 73.43 /173.06 26,080 /41,296 112.30 /218.98 127.73 /235.45 33,193 /52,362 172.39 /342.00 188.72 /362.95

no-f-t 12,607 /19,553 41.71 /67.86 49.25 /87.03 21,114 /34,688 81.36 /164.25 91.35 /177.47 28,665 /46,887 137.42 /283.83 149.93 /302.91
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no-t-f 8,582 /12,589 38.48 /45.94 41.82 /50.37 13,668 /20,621 51.76 /73.28 56.96 /80.63 18,353 /28,856 68.26 /111.83 75.12 /122.18

no-t-t 6,838 /9,952 27.71 /34.91 30.47 /38.59 11,039 /16,476 36.79 /52.89 41.03 /58.87 14,929 /22,969 48.00 /76.99 53.60 /85.43

sim-f-t 13,342 /20,589 46.11 /74.87 54.35 /100.11 21,749 /35,549 85.60 /171.99 96.06 /185.65 29,197 /47,638 141.63 /292.02 154.57 /311.09

sim-t-f 9,165 /13,401 42.68 /51.07 46.24 /55.77 14,211 /21,331 55.08 /77.86 60.54 /85.47 18,831 /29,473 71.19 /116.45 78.23 /126.97

sim-t-t 7,303 /10,639 30.69 /38.72 33.61 /42.64 11,472 /17,090 39.01 /56.00 43.44 /62.10 15,309 /23,481 49.93 /80.19 55.69 /88.71

min-f-t 14,538 /22,233 46.18 /78.35 54.94 /99.19 22,718 /36,394 86.18 /173.04 96.99 /186.89 29,059 /46,935 134.13 /277.64 146.75 /296.42

min-t-f 10,197 /14,688 39.73 /50.01 43.60 /55.17 15,327 /22,451 53.24 /78.17 58.95 /86.16 19,391 /29,443 68.92 /111.93 76.12 /122.41

min-t-t 8,111 /11,701 27.76 /37.01 30.84 /41.32 12,335 /18,164 36.93 /55.91 41.56 /62.37 15,673 /23,579 47.65 /77.14 53.57 /85.79

3-100- l- m- h-

no-f-f 3,876 /4,989 3.89 /5.02 4.25 /5.42 6,242 /8,589 7.15 /11.00 7.72 /11.76 7,720 /10,434 10.16 /15.51 10.87 /16.41

sim-f-f 4,110 /5,297 4.28 /5.52 4.66 /5.95 6,425 /8,842 7.49 /11.54 8.08 /12.28 7,876 /10,614 10.51 /16.02 11.23 /16.92

min-f-f 4,506 /5,770 4.36 /5.81 4.79 /6.48 6,813 /9,190 7.75 /12.01 8.37 /12.84 8,090 /10,626 10.50 /15.58 11.23 /16.48

no-f-t 3,097 /4,038 2.65 /3.52 2.97 /3.95 5,052 /6,963 4.84 /7.46 5.28 /8.02 6,185 /8,361 6.94 /10.52 7.47 /11.25

no-t-f 2,407 /3,004 2.57 /2.95 2.77 /3.18 3,714 /5,007 3.53 /4.71 3.83 /5.09 4,884 /6,587 4.75 /6.79 5.13 /7.29

no-t-t 1,750 /2,204 1.66 /1.98 1.83 /2.24 2,719 /3,499 2.14 /2.65 2.36 /2.91 3,545 /4,711 2.88 /4.06 3.19 /4.44

sim-f-t 3,283 /4,253 2.95 /3.93 3.31 /4.35 5,200 /7,164 5.08 /7.83 5.52 /8.41 6,312 /8,513 7.16 /10.83 7.70 /11.57

sim-t-f 2,579 /3,210 2.84 /3.25 3.06 /3.50 3,855 /5,181 3.72 /4.95 4.02 /5.34 5,007 /6,753 4.93 /7.08 5.33 /7.60

sim-t-t 1,872 /2,356 1.83 /2.19 2.01 /2.41 2,821 /3,597 2.26 /2.80 2.49 /3.08 3,635 /4,848 2.92 /4.12 3.22 /4.50

min-f-t 3,596 /4,637 2.96 /4.04 3.34 /4.46 5,509 /7,466 5.22 /8.09 5.69 /8.69 6,488 /8,552 7.15 /10.65 7.71 /11.39

min-t-f 2,877 /3,523 2.71 /3.17 2.95 /3.45 4,201 /5,489 3.73 /5.01 4.07 /5.43 5,254 /6,957 4.92 /7.13 5.35 /7.66

min-t-t 2,079 /2,610 1.70 /2.11 1.90 /2.32 3,059 /3,816 2.21 /2.79 2.46 /3.09 3,790 /5,014 2.92 /4.19 3.26 /4.60

3-300- l- m- h-

no-f-f 12,979 /16,181 35.75 /44.97 39.23 /50.45 20,920 /27,250 70.06 /101.27 75.37 /107.80 26,378 /34,592 104.63 /155.11 111.21 /163.67

sim-f-f 13,712 /17,090 39.43 /49.82 43.08 /55.82 21,531 /28,007 73.78 /106.57 79.15 /113.29 26,907 /35,232 108.41 /161.07 115.16 /169.70

min-f-f 14,883 /18,442 40.43 /51.81 44.27 /56.63 22,510 /29,069 75.53 /109.90 81.23 /117.28 27,124 /34,895 106.01 /155.49 112.80 /164.12

no-f-t 10,428 /13,246 23.66 /30.54 26.33 /33.60 17,120 /22,345 47.73 /69.37 51.85 /74.52 21,543 /27,993 71.29 /103.88 76.57 /110.62

no-t-f 7,669 /9,238 22.16 /24.89 23.89 /26.86 12,029 /15,854 31.98 /41.97 34.72 /45.51 15,390 /19,528 41.15 /54.68 44.53 /58.92

no-t-t 5,511 /6,565 13.58 /15.72 14.89 /17.36 8,803 /11,561 19.00 /25.15 21.05 /27.66 11,210 /13,964 24.02 /31.35 26.57 /34.41

sim-f-t 11,029 /13,974 26.16 /33.85 28.99 /37.24 17,624 /22,979 50.23 /72.94 54.44 /78.24 21,971 /28,523 73.72 /107.42 79.06 /114.29

sim-t-f 8,180 /9,875 24.57 /27.71 26.39 /29.82 12,490 /16,462 33.93 /44.56 36.78 /48.22 15,807 /20,018 43.06 /57.01 46.55 /61.34

sim-t-t 5,881 /6,975 15.03 /17.44 16.41 /19.15 9,141 /11,989 20.16 /26.72 22.29 /29.32 11,509 /14,315 25.10 /32.78 27.72 /36.07

min-f-t 11,989 /15,182 26.74 /35.30 29.86 /39.34 18,413 /23,680 51.34 /74.35 55.72 /79.81 22,162 /28,176 72.04 /105.17 77.43 /111.87

min-t-f 9,058 /11,012 23.59 /27.55 25.60 /29.92 13,429 /17,511 33.27 /45.75 36.23 /49.53 16,417 /20,669 42.73 /57.36 46.35 /61.83

min-t-t 6,517 /7,772 14.02 /16.53 15.54 /18.43 9,789 /12,751 19.70 /26.85 21.96 /29.77 11,904 /14,705 24.38 /32.00 27.11 /35.44

3-500- l- m- h-

no-f-f 21,240 /26,727 95.09 /120.27 113.80 /165.35 34,911 /46,324 190.30 /284.86 220.30 /305.99 46,975 /61,239 323.80 /481.32 350.03 /508.01

sim-f-f 22,473 /28,248 105.23 /133.71 124.15 /162.07 35,973 /47,576 200.67 /298.20 229.78 /319.85 47,861 /62,283 334.89 /497.03 363.75 /524.23

min-f-f 24,464 /30,703 108.13 /141.65 128.44 /181.04 37,621 /49,123 205.87 /306.72 236.89 /337.27 47,746 /62,138 323.96 /490.56 350.39 /518.89

no-f-t 16,996 /21,202 62.30 /80.65 73.81 /108.53 28,409 /38,086 128.07 /195.11 142.46 /210.97 38,700 /50,391 223.20 /329.46 239.49 /349.46

no-t-f 12,551 /15,404 59.80 /66.91 64.34 /72.32 19,930 /26,014 85.00 /110.55 92.21 /119.75 26,605 /35,142 116.77 /167.11 126.34 /179.69

no-t-t 8,927 /10,782 36.72 /42.73 40.10 /46.74 14,383 /18,040 50.04 /62.17 55.35 /68.71 19,431 /24,787 67.95 /92.70 75.05 /101.73

sim-f-t 18,007 /22,479 69.12 /89.90 81.12 /116.27 29,278 /39,146 135.06 /204.99 149.35 /221.41 39,426 /51,262 230.60 /339.15 247.06 /359.32

sim-t-f 13,397 /16,478 66.41 /74.86 71.22 /80.63 20,708 /26,947 99.57 /117.76 98.05 /127.30 27,300 /35,948 121.80 /174.02 131.61 /186.86

sim-t-t 9,538 /11,509 40.77 /47.48 44.36 /51.76 14,948 /18,715 53.24 /66.26 58.74 /73.12 19,935 /25,368 70.83 /96.31 78.07 /105.57

min-f-t 19,626 /24,505 70.71 /93.90 83.64 /121.98 30,610 /40,648 138.24 /211.42 154.18 /228.50 39,326 /50,972 221.75 /330.47 238.44 /351.85

min-t-f 14,883 /18,193 63.70 /73.82 69.05 /80.24 22,306 /28,871 89.89 /121.40 97.88 /131.58 28,113 /36,699 119.90 /173.04 129.99 /186.22

min-t-t 10,604 /12,782 38.02 /45.40 42.00 /49.98 16,073 /20,040 51.58 /66.39 57.45 /73.69 20,436 /25,856 68.36 /93.79 75.84 /103.14

4-100- l- m- h-

no-f-f 5,179 /5,469 5.75 /6.13 6.26 /6.57 8,369 /9,056 11.12 /12.38 11.86 /13.15 10,324 /10,957 16.13 /17.41 17.10 /18.38

sim-f-f 5,496 /5,784 6.35 /6.81 6.89 /7.27 8,616 /9,311 11.68 /13.08 12.44 /13.91 10,537 /11,163 16.71 /17.98 17.70 /19.08

min-f-f 6,025 /6,380 6.59 /7.09 7.16 /7.58 9,130 /9,780 12.25 /13.63 13.04 /14.50 10,829 /11,355 16.91 /17.97 17.91 /19.08

no-f-t 3,911 /4,189 3.38 /3.70 3.77 /4.18 6,424 /7,058 6.65 /7.66 7.17 /8.23 7,828 /8,490 9.42 /10.89 10.08 /11.62

no-t-f 3,209 /3,510 3.63 /3.85 3.89 /4.18 4,967 /5,701 5.25 /6.17 5.65 /6.61 6,492 /7,355 7.21 /8.50 7.72 /9.08

no-t-t 2,148 /2,340 1.95 /2.11 2.17 /2.45 3,338 /3,729 2.71 /2.94 2.99 /3.28 4,319 /4,947 3.57 /4.20 3.96 /4.81

sim-f-t 4,153 /4,429 3.74 /4.06 4.16 /4.55 6,613 /7,270 6.98 /8.08 7.52 /8.67 7,991 /8,650 9.71 /10.83 10.38 /11.56
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sim-t-f 3,437 /3,753 4.02 /4.27 4.30 /4.65 5,154 /5,875 5.55 /6.47 5.97 /6.93 6,658 /7,575 7.50 /8.93 8.02 /9.52

sim-t-t 2,296 /2,511 2.17 /2.32 2.41 /2.68 3,459 /3,842 2.86 /3.10 3.16 /3.46 4,428 /5,101 3.72 /4.37 4.11 /4.77

min-f-t 4,550 /4,849 3.87 /4.22 4.32 /4.78 7,001 /7,619 7.29 /8.37 7.87 /8.99 8,219 /8,719 9.84 /10.89 10.52 /11.62

min-t-f 3,836 /4,219 3.93 /4.26 4.24 /4.58 5,619 /6,395 5.68 /6.78 6.14 /7.27 6,995 /7,780 7.63 /8.95 8.19 /9.56

min-t-t 2,548 /2,808 2.05 /2.22 2.34 /2.68 3,741 /4,100 2.85 /3.13 3.17 /3.50 4,610 /5,224 3.67 /4.42 4.10 /5.03

4-300- l- m- h-

no-f-f 17,350 /18,390 53.96 /57.59 58.64 /62.68 28,089 /29,125 111.01 /118.05 118.41 /125.59 35,392 /37,245 168.82 /178.88 177.94 /189.53

sim-f-f 18,333 /19,435 59.68 /63.74 64.66 /69.56 28,912 /29,992 117.15 /124.72 124.69 /132.12 36,099 /37,985 174.81 /184.96 184.23 /196.31

min-f-f 19,907 /21,235 62.36 /67.50 67.65 /73.39 30,244 /31,274 121.64 /127.56 129.47 /135.72 36,419 /37,834 172.83 /180.54 182.11 /190.22

no-f-t 13,204 /14,165 31.60 /35.44 35.02 /38.91 21,928 /23,326 67.35 /75.50 72.45 /80.93 27,610 /28,861 102.29 /110.68 108.97 /117.55

no-t-f 10,194 /10,820 31.55 /33.27 33.77 /35.58 15,906 /17,246 46.58 /51.31 50.06 /55.18 20,381 /22,329 63.02 /71.38 67.49 /76.36

no-t-t 6,714 /7,087 16.69 /17.20 18.31 /18.98 10,714 /11,823 23.79 /26.26 26.31 /29.03 13,672 /14,646 31.07 /33.25 34.22 /36.69

sim-f-t 13,979 /14,981 35.12 /39.47 38.68 /43.25 22,572 /24,003 71.07 /79.57 76.31 /85.09 28,157 /29,403 106.12 /114.82 112.91 /121.76

sim-t-f 10,871 /11,509 34.98 /36.68 37.35 /39.14 16,522 /17,931 49.52 /54.75 53.15 /58.77 20,936 /22,983 66.04 /75.31 70.64 /80.43

sim-t-t 7,164 /7,587 18.61 /19.22 20.35 /21.03 11,120 /12,262 25.34 /27.81 27.94 /30.93 14,035 /15,041 32.52 /34.83 35.75 /38.31

min-f-t 15,212 /16,443 36.77 /41.10 40.59 /45.41 23,594 /24,949 73.83 /82.05 79.32 /87.81 28,412 /29,646 104.76 /113.35 111.58 /120.55

min-t-f 12,033 /12,714 34.24 /36.18 36.88 /39.10 17,805 /19,175 50.62 /56.11 54.53 /60.40 21,760 /23,904 66.46 /76.23 71.23 /81.51

min-t-t 7,932 /8,413 17.68 /18.54 19.56 /20.52 11,908 /13,040 25.20 /27.89 27.97 /30.96 14,496 /15,563 32.02 /34.56 35.34 /38.09

4-500- l- m- h-

no-f-f 28,401 /29,511 143.99 /149.60 171.58 /217.04 46,780 /49,021 301.21 /326.53 344.13 /379.02 63,189 /65,145 526.05 /546.83 558.23 /585.00

sim-f-f 30,044 /31,146 159.60 /165.21 189.57 /337.24 48,196 /50,375 318.23 /344.05 359.64 /405.11 64,376 /66,320 544.58 /567.17 575.78 /598.72

min-f-f 32,725 /33,786 167.20 /173.19 196.30 /264.00 50,426 /52,318 331.12 /352.85 376.54 /449.04 64,208 /65,942 537.15 /555.35 570.20 /589.31

no-f-t 21,448 /22,298 83.01 /87.18 97.84 /120.28 36,225 /38,731 179.69 /200.58 194.95 /216.62 49,725 /51,538 323.10 /337.67 343.60 /358.27

no-t-f 16,731 /18,003 85.35 /90.27 91.33 /96.76 26,559 /28,409 127.09 /136.76 136.56 /146.94 35,588 /38,922 182.42 /208.67 195.27 /222.75

no-t-t 10,860 /11,370 44.89 /47.15 49.01 /51.17 17,597 /18,368 63.50 /66.01 70.02 /72.96 23,962 /25,998 89.75 /399.11 98.52 /108.87

sim-f-t 22,729 /23,612 92.58 /97.28 108.88 /132.91 37,328 /39,824 190.29 /212.26 205.87 /228.88 50,658 /52,474 334.61 /351.12 355.36 /372.40

sim-t-f 17,861 /19,198 94.94 /100.22 101.29 /106.98 27,602 /29,467 135.63 /145.68 145.45 /156.24 36,515 /39,890 190.78 /218.33 203.96 /232.78

sim-t-t 11,600 /12,149 50.00 /51.46 54.33 /55.77 18,283 /19,061 67.72 /70.41 74.47 /77.75 24,577 /26,612 93.86 /103.72 102.87 /113.88

min-f-t 24,823 /25,790 97.02 /102.45 113.48 /137.43 39,049 /41,442 197.85 /218.47 214.18 /235.48 50,508 /51,958 327.20 /342.72 347.64 /363.13

min-t-f 19,855 /21,257 92.92 /99.06 100.00 /106.56 29,754 /31,783 138.88 /150.85 149.50 /162.20 37,611 /40,605 190.22 /214.83 203.78 /229.42

min-t-t 12,903 /13,475 47.40 /48.65 52.18 /53.50 19,641 /20,494 67.48 /71.01 74.71 /78.85 25,156 /26,924 91.69 /100.12 100.93 /110.44

Table 3.2: First computational study for TCSPP
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3 Tower Crane Selection and Location in the Plane

the sometimes quite huge di�erences between maximum and average values already indicate. E. g., for

the 3-100-h-no-f-f scenario the maximum number of candidates (10,434) exceeds the minimum number

for the 4-100-h-no-f-f scenario (9,699).

When setting µ = sim, the number of edges is higher than for µ = no and, thus, we expect the time

for candidate generation (and checking) to be higher, as well. Additionally, as any f ∈ F may overlap

with any d ∈ D, s ∈ S or f ′ 6= f ∈ F the time for feasibility checking should increase (because now

a candidate lying on an edge may well be within a polygon). With regard to the number of feasible

candidates, there are two opposing e�ects: on the one hand, increasing the number of edges should

increase the number of candidates. But on the other hand, there are more infeasible areas on-site now.

Comparing the respective entries in Table 3.2 for scenarios of type κ-η-λ-no-σ-φ and κ-η-λ-sim-σ-φ

shows us that � at least for our test set � both the number of feasible candidates and the candidate

generation time increase.

The e�ect of introducing minimum distances around supply and demand sites (µ = min) is expected to

be small in comparison to instances with µ = sim since i) minimum distances can be regarded as a kind

of forbidden area, so the arguments from the preceding paragraph hold and ii) for candidate generation,

there are neither new vertices nor does the number of edges increase, since edges of supply and demand

areas are not relevant anymore and are substituted by the edges of the minimum distance areas. The

data in Table 3.2 supports this expectation with regard to the number of feasible candidates as the

values for κ-η-λ-sim-σ-φ and κ-η-λ-min-σ-φ only di�er by relatively small amounts. An interesting

observation is that introducing minimum distances increases both average and maximum number of

candidates in all scenarios with low and medium density whereas for high-density scenarios either the

maximum number of candidates (1-300-h-sim-f-f vs. 1-300-h-min-f-f) or even both, maximum and

average number of candidates, (1-500-h-sim-f-f vs. 1-500-h-min-f-f) may decrease. This is due to the

fact that minimum distances enlarging the areas where no crane can be positioned are related to

supply sites and demand sites. On the one hand, this increases the probability for the existence of

candidates generated by intersecting circles and edges. On the other hand, however, it increases the

probability of an arbitrary candidate to be infeasible, as well. Note that the latter e�ect grows stronger

with higher density. Regarding candidate generation times, there is no clear e�ect: For scenarios with

low or medium density, introducing minimum distances sometimes increases average and maximum

generation times, but sometimes decreases them. An increase might support the explanation that

more intersection points are generated and checked. For high-density scenarios, however, average and

maximum times usually drop by a sometimes considerable amount (2-500-h-sim-f-f vs. 2-500-h-min-

f-f). Generally, such a decrease might be due to the procedure of candidate feasibility checking. We

stated in Chapter 3.2.2 that a candidate is sorted out when it is infeasible or does not cover the

pair(s) generating it. As soon as a candidate is infeasible, the checking routine can be terminated.

Introducing minimum distances increases the chance of infeasibility and, thus, may reduce the time

spent on feasibility checking. In high-density scenarios there may be more candidates that do not pass

feasibility checking compared to low- or medium-density scenarios � or infeasibilities occur and are

detected sooner.

The impact of introducing weights to the basic setting, i. e. dropping wd = w for all d ∈ D, is hard
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3.3 Computational Study

to predict as the e�ect of changing the circles' radii is unclear. Comparing the respective entries for

κ-η-λ-µ-f-f and κ-η-λ-µ-t-f in Table 3.2 shows that both the number of feasible candidates and the

candidate generation time drop signi�cantly after imposing weights.

Finally, introducing heights (φ = t), should reduce the number of nodes to consider for candidate

generation (cf. Chapter 3.2.1) and, thus, both the number of feasible candidates and the time for

generating candidates. Based on the entries for κ-η-λ-µ-f-f and κ-η-λ-µ-f-t in Table 3.2, we can con�rm

that both the average and maximum number of feasible candidates decrease when imposing heights.

The same holds true for the maximum and average generation times in the single scenarios.

3.3.2.2 Set Cover Solution Analysis

Once the candidates are generated, the SCP instance can be solved. We focus on CPLEX in the

following. We will summarize our �ndings employing the greedy approach only brie�y since run times

are very short and, thus, generating the candidates is the most challenging part. In the �rst part

of our study, optimal solutions for each scenario are obtained within computational times reaching

from about one second (1-100-l-no-t-f) to about 10 minutes (4-500-h-sim-f-f). An interesting �nding

for practitioners might be that the most realistic setting with forbidden areas, minimum distances,

weights and heights has been solved optimally within less than two minutes (4-500-h-min-t-t).

The average time it takes CPLEX to solve a scenario's instance to optimality can be derived as the

di�erence between total time and generation time in Table 3.2. It is not surprising that small set cover

instances are solved by far faster than larger instances. From an application-oriented perspective, this

gives us the number of cranes and pairs as drivers of solving time. The in�uence of the density on

the solution times is less clear. The solution time tends to increase with higher density, but we can

observe exception from that. For example, the three longest solution times (41, 43 and 45 seconds,

respectively) do not occur for high-density scenarios, but for medium-density scenarios (4-500-m-sim-

f-f, 4-500-m-no-f-f and 4-500-m-min-f-f, respectively), although these medium-density scenarios have

a signi�cantly smaller number of candidates than the high-density scenarios with the next-highest

solution times (4-500-h-sim-f-f, 4-500-h-no-f-f and 4-500-h-min-f-f, respectively).

Since all instances in the �rst part of the study could be solved to optimality, we will run a second study

to push CPLEX to the limits. In order to do so, we �rst evaluate which scenario takes on average the

longest time to compute an optimal solution. We identify scenario type 4-500-h-sim-f-f. Now, there

are several options to increase the computational e�ort, e. g. increasing the density or the number

of pairs. Since we identi�ed vertices and edges � imposed by both pairs and obstacles � as the most

reliable drivers of the computational e�ort, previously, we will increase the number of pairs. Remember

that this increases the number of forbidden areas as well since we use a �xed ratio of the site's size �

depending on the number of pairs � for determining the number of forbidden areas. We can, then, start

a second computational run with the number of pairs set to 700, 900, and 1,100, respectively. Again,

for each scenario, 25 instances are generated. Additionally, the total computational time � i. e. for

candidate generation and SCP solution � is limited to one hour. The results are reported in Table 3.3.

It can be seen that for up to 700 pairs plus forbidden areas all instances could be solved optimally.
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3 Tower Crane Selection and Location in the Plane

η # forb. areas
# candidates gen. time (sec) total time (sec) MIP gap (%)
avg. /max. avg. /max. avg. /max. avg. /max.

100 20 10,537 /11,163 16.71 /17.98 17.70 /19.08 0.00 /0.00
300 64 36,099 /37,985 174.81 /184.96 184.23 /196.31 0.00 /0.00
500 100 64,376 /66,320 544.58 /567.17 575.78 /598.72 0.00 /0.00
700 144 90,876 /93,417 1,072.15 /1,123.51 1,776.20 /3,015.41 0.00 /0.00
900 182 116,413 /118,745 1,760.92 /1,823.37 3,600.00 /3,600.00 3.76 /5.53

1,100 225 140,783 /142,904 2,565.91 /2,629.15 3,600.00 /3,600.00 5.83 /7.26

Table 3.3: Second computational study for TCSPP: analysis of scenario 4-η-h-sim-f-f

For 900 and 1,100 pairs not a single instance could be solved to optimality within one hour, but the

optimality gap reported by CPLEX is quite small.

Usually, run time is not a critical factor when solving the TCSPP. Just in case it is, it might be suitable

to employ heuristics. We implemented the standard greedy approach for SCP proposed by Chvatal

[21] and tested it during the �rst part of the computational study. Clearly, the greedy approach is by

far faster than CPLEX (about 1.5 seconds in the worst case for any instance) and �nds good or even

optimal solutions for some instances. But the average percentage deviation from the exact solutions in

any scenario from study one was worse than the average lower bound gap CPLEX achieved in study

two. Thus, terminating an exact procedure might be the better choice with regard to solution quality

for practical application.�

3.4 More General Problem Variants

�The problem described and de�ned in Chapter 3.1.1 captures several essential requirements for tower

crane selection and positioning. However, there are countless further aspects that could be taken into

account. After thoroughly analyzing the TCSPP in Chapter 3.2 and evaluating the potential of the

reduction to the weighted SCP in Chapter 3.3 we, therefore, outline how to incorporate some of these

aspects in the problem setting and how to adapt the reduction mechanism if necessary.

3.4.1 Multiple Supply Sites per Demand Site

It is easy to imagine a construction site where one or more demand sites are provided with material

by multiple supply sites. We, then, can consider two types of requirements with respect to pairs of

demand sites and their supply sites: either each pair of a demand site can be covered by an individual

crane or all pairs of one demand site have to be covered by a single crane.

In both cases, Theorem 3 still applies. In the �rst case, we can simply apply the very same procedure

as detailed in Chapter 3.2.2 by introducing a copy of demand site d for each pair it is involved in.

Each copy then gets a unique supply site. In the second case, we have to slightly adapt our procedure.

Reduction rules c) and d) do not account for demand sites with multiple supply sites. However, they
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are easy to adapt by requiring a candidate covering a demand site covers each of its supply sites, too.

Note that covering groups of demand areas that have to be supplied by one or more supply areas with

a single crane can be incorporated in a similar way, as well.

3.4.2 Capacitated Tower Cranes

According to the problem as de�ned in Chapter 3.1.1, we assume that an arbitrary number of pairs

can be served by a single crane if it is only located feasibly with respect to geometry. However, when

the load of a crane's capacity imposed by a pair is considerable this might not be true. We can enrich

the problem setting by introducing capacity Ct for each crane type t ∈ T and load of capacity imposed

by a pair (d, sd) as ad for each demand site d ∈ D.

A solution, then, is not only the number of cranes of a certain type and their respective positions but

also an assignment of pairs to cranes. A solution is feasible if it is feasible with respect to geometry

(as before) and to capacity constraints, that is for each crane the total workload of pairs assigned

does not exceed the crane's capacity. Again, Theorem 3 applies even for this generalization of the

problem setting. However, we have to generalize the concept of candidates and adapt the procedure

for generating them. A capacitated candidate implies as usual a crane type t and a position but also

a set of pairs being served with total load of capacity not exceeding Ct. Note that in the original

problem setting the set of pairs being served coincides with the set of pairs being covered since we

assume Ct =∞. It is not hard to see that for each candidate position for a crane type t we can simply

generate a capacitated candidate for type t in the respective position and each subset of pairs being

covered being maximal with respect to total load of capacity.

3.4.3 Time Dynamic Construction Sites

The problem de�ned in Chapter 3.1.1 does not have any temporal dimension. In particular for large-

scale construction sites demand sites, supply sites, and forbidden areas may be relevant only for a

limited time interval within the planning horizon. Consequently, we may associate each demand site

d ∈ D and each forbidden area f ∈ F with a start time and an end time. The respective time interval

is the time interval where this demand site has to be supplied and where this forbidden area cannot

be used for placing a crane. There is such an interval for each supply site, as well. It is given as the

union of intervals supplied by this supply site. We consider rental cost π′t per time unit for a crane of

type t. Notably, we do not consider a �xed charge for setting up a crane.

A solution, then, is not only the number of cranes of a certain type t and their respective position p

but also a time window for a crane of type t to be located in p. A solution is feasible if it is feasible

with respect to geometry (de�ned as before) at each point of time, that is each pair (d, sd) is covered at

each point of time between d's start time and end time. It is not hard to see that (due to the particular

cost structure) the problem decomposes with respect to time. For each maximum time window with

no start time or end time of any polygon, we can solve an instance of TCSPP.�
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4 Tower Crane Selection and Location with

Mutual Interference

In Chapter 3, tower cranes of given types, i. e. with given speci�cations, had to be selected and located

on a polygonal construction site in order to cover pairs of polygonal supply and demand areas at

minimum cost. Cranes could be located arbitrarily on the site (except from certain infeasible areas)

and a pair was considered to be covered by a crane if all points of the polygons constituting the pair were

within a su�ciently high crane's operating radius for the maximum weight to be lifted at the respective

pair. This problem captures basic characteristics of tower crane selection and location, but leaves out

interrelations between cranes and between cranes and �xed on-site structures. Such interrelations will

be under research in the chapter at hand. However, the incorporation of these considerations comes at

the cost of dropping the continuous location model and, instead, relying on an arti�cial discretization

of space by a grid. This step is necessary since the concepts presented in Chapter 3 were based on the

assumption that cranes could be placed independently which is, obviously, no longer the case when

crane interdependencies come into play.

The tower crane selection and positioning problem in a grid, TCSPP-GRID for short, researched

in the current chapter will be concisely de�ned, its computational complexity will be settled and the

contribution to the academic literature will be stated in Chapter 4.1. Afterwards, two di�erent solution

approaches will be presented (Chapter 4.2). The �rst one employs a standard solver which is used based

on four di�erent mixed-integer programming formulations (Chapter 4.2.3), the second one is a branch

and bound procedure (Chapter 4.2.4). Both approaches require a data pre-processing step transforming

the mainly geometric input of an instance into data suited for applying standard OR techniques. This

pre-processing will, thus, be described before the approaches themselves are presented in Chapter 4.2.1

and the resulting notation to be used when presenting the solution approaches will be summarized

in Chapter 4.2.2. Both approaches are, afterwards, tested regarding their computational performance

in Chapter 4.3. The evaluation starts with a comparison of the standard solver's performances using

the four MIP formulations (Chapter 4.3.2). In doing so, drivers of computational e�ort are identi�ed.

Once this evaluation has been �nished, the B&B approach is tested against the best-performing MIP

formulation (Chapter 4.3.3).

4.1 Problem De�nition, Computational Complexity and Contribution

In Chapter 4.1.1, a concise problem de�nition is given. The construction site with the structures

contained therein and the di�erent tower crane types are basically identical to the setting described in
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Chapter 3.1.1 with one enhancement: forbidden areas have heights now in order to represent existing

on-site structures such as fully constructed buildings. As mentioned above, the former setting is

enriched by peculiar interrelations of cranes among each other and cranes with on-site structures, but

the continuous perspective on space from Chapter 3 is, therefore, altered to a discrete one which is

achieved by employing a grid. In order to keep the chapter at hand self-contained, the problem will

be fully introduced in Chapter 4.1.1 and, afterwards, a proof regarding the problem's computational

complexity is presented (Chapter 4.1.2). Finally, a brief overview on the scienti�c contribution will be

given in Chapter 4.1.3.

4.1.1 Problem De�nition: TCSPP-GRID

Note: all contents presented and all passages quoted in this chapter are taken from Briskorn and

Dienstknecht [12].

Like in Chapter 3, �the construction site is given by a (not necessarily convex) simple polygon. We

address each point on the construction site by its Cartesian coordinates within a plane the construction

site is embedded in. Both the supply and demand areas are represented by simple polygons, as well.

Additionally, there are areas where a crane may not be located (e. g. due to ground conditions or

prescribed minimum distances between cranes and existing structures such as demand and supply

areas) that are also represented by simple polygons. We address the set of demand polygons as D and

the set of supply polygons as S. Each demand site d has a given height hd ∈ N and a given maximum

load weight wd ∈ N. As we consider a set T of di�erent crane types with di�erent speci�cations, there

is a crane type-dependent set of forbidden polygons Ft. Each forbidden area f ∈ F has a given height

hf ∈ N0, as well. Each s ∈ S, d ∈ D and f ∈
⋃
t∈T Ft is contained completely in the construction site

polygon.

With each crane type t ∈ T we associate a given �xed cost πt (representing, e. g., rental cost over a

�xed period, set-up cost, etc.), a maximum operating radius rmaxt , a maximum operating radius rt,w for

a given weight w and a maximum operating height ht. We assume that an in�nite number of cranes

is available for each crane type. Cranes have to be located on-site (including the construction site

polygon's edges), but may not be located within any polygon in D, S and F (including the polygons'

edges) and have to keep at least a given type-dependent minimum distance Dmin
t,t′ between their centers

(i. e. the cranes' locations).� Like in Chapter 3, �each demand site d ∈ D is supplied by exactly one

supply site sd ∈ S and we refer to such an assignment of a supply area and a demand area as pair

(d, sd). A supply site may supply multiple demand sites. Note that we can easily incorporate demand

sites that receive material from multiple supply sites without altering the structure of what follows.

For ease of notation, however, we restrict ourselves to the case with exactly one supply site per demand

site. Each pair has to be covered completely by at least one single crane, i. e. one crane has to be

able to move from each point in the supply area to each point in the demand area of the respective

pair. This implies that there are no material handovers between cranes. In fact, in practice handovers

are prevented whenever possible since they cause additional handling e�ort and give rise to additional

interdependencies between cranes. In the following, we will detail under which conditions a crane can

cover a pair.
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A pair (d, sd) with hd and wd is said to be in reach of a crane of type t located at location i if

• all points of the corresponding polygons are within the crane's operating radius for weight wd,

rt,wd
, i. e. they have Euclidean distance less than or equal to rt,wd

to the crane's center at location

i and

• the crane has a su�cient operating height, i. e. ht ≥ hd.�

However, as we want to account for interferences between both cranes and cranes and other on-site

structures it is not su�cient for a pair to be covered to be in reach of a crane. We will, �rst, have a

look at inter-crane interferences and, afterwards, transfer these considerations to interferences of cranes

with other blocking structures. In order to analyze such interferences we rely on the concept of polar

coordinate systems. For a given crane, we interpret its �position i as the pole of a polar coordinate

system and de�ne a horizontal half-line l starting at this pole as the polar axis. The polar coordinate

of any point p in the polar coordinate system of the crane in position i is then well de�ned as
(
ρip,Θ

i
p

)
with ρip being the radial coordinate and Θi

p being the angular coordinate of point p.�

For two cranes c and c′ of type tc and tc′ with operating heights htc ≤ htc′ located in positions ic and

ic′ , c
′ limits the operating range of c if the Euclidean distance between ic and ic′ is not larger than

rmaxtc . That means crane c cannot reach any point p with
(
ρicp ,Θ

ic
p = Θic

ic′

)
. As c may not move past

the blocking crane c′ the jib of c may be trapped between several blocking cranes within its operating

range, thus, limiting the e�ective operating range of c to one of the circular sectors formed by blocking

cranes.

As mentioned above, a crane's operating range may not only be limited by other cranes, but by �xed

on-site structures, as well. Such an on-site structure may be a demand area d ∈ D or an infeasible area

f ∈ F of su�cient height to block the jib of crane c, i. e. with hd > htc or hf > htc , respectively. If any

point p′ of such an on-site structure is in Euclidean distance of no more than rmaxtc from the position

ic of crane c of type tc, then c cannot reach any point p with
(
ρicp ,Θ

ic
p = Θic

p′

)
. Like for blocking

cranes, there may be several blocking on-site structures or combinations of blocking cranes and on-site

structures that trap the jib of c and limit its e�ective operating range to one of the circular sectors

formed thereby.

�Figure 4.1 shows how a crane can be blocked by either� an on-site structure (Figure 4.1a) �or another

crane (Figure 4.1b) of su�cient height or a combination of both (Figure 4.1c).

In Figure 4.1a there is a single demand site with a height that does not allow crane c to move its

jib over the demand area. Consequently, those points that do not lie within the demand area, but

require crane c to move its jib over it cannot be reached. This results in the gray circular sector that

cannot be reached by crane c. In Figure 4.1b there is a single crane c′ with a height that prevents

crane c from reaching any point in the circle that is located on the dashed line. In Figure 4.1c we

have a combination of� on-site structures (one demand site and two forbidden areas) �and other cranes

limiting the operating range of crane c. Again, points in gray circular sectors and on dashed lines

cannot be reached. We, furthermore, can see that crane c cannot reach all of the remaining points

simultaneously. Instead, it can serve points in a single white circular sector only. The circular sector

it serves can be chosen by setting up crane c appropriately, but cannot be changed afterwards.
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Figure 4.1: Blocking of a crane

A grid is laid over the site and only the grid's intersection points are considered as potential locations

for setting up a crane. This is a simplifying assumption as it arti�cially boils down the in�nite number

of potential crane locations for a crane of type t to a �nite set Gt. Set Gt contains all intersection points

that do not lie in any supply site (or on its boundaries), in any demand site (or on its boundaries), or

in any forbidden area in Ft (or on the corresponding boundaries). Note that while the grid restricts

the set of locations it is up to the decision maker to �netune the granularity of the grid.

A solution is

• a number kt ∈ N0 for each crane type t ∈ T and a set G∗t ⊆ Gt of kt di�erent intersection points

for each t ∈ T so that G∗t ∩G∗t′ = ∅ for t 6= t′ and

• an assignment of each pair (d, sd) to exactly one intersection point g(d) ∈
⋃
t∈T G

∗
t .

Such a solution implies that for each crane type t ∈ T we have kt cranes positioned with their centers

at the respective intersection points G∗t (one crane on each point) and pair (d, sd) is served by the

crane located in g(d). We say that (d, sd) is assigned to crane c if c is located in g(d).�

For a solution to be feasible, the latter point implies each pair (d, sd) to be accessible with respect to

the angular coordinate by crane c located at g(d) the pair is assigned to. This is the case if

• no crane limiting c's operating range has the same angular coordinate as any point of (d, sd),

• no point of a demand area or a forbidden area limiting c's operating range has the same angular

coordinate as any point of (d, sd) and

• if there are multiple cranes, demand areas or forbidden areas limiting c's operating range then

each point of (d, sd) lies in the same circular sector formed by limiting cranes, demand areas or

forbidden areas.

�Finally, we say a solution is feasible if

• each pair of cranes located at g ∈ G∗t and g′ ∈ G∗t′ has Euclidean distance of at least Dmin
t,t′ ,

• each pair is assigned to a located crane c so that the pair is in reach of c and the pair is accessible
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Figure 4.2: Illustrative site and feasible solution

by c with respect to the angular coordinate, and

• all pairs assigned to the same crane lie in the same circular sector.

Figure 4.2 depicts an illustrative construction site on the left and a feasible solution on the right. There

are four forbidden areas for placing any crane and four pairs, namely (d1, s1), (d2, s1), (d3, s2), (d4, s2).

For covering these pairs, there are two di�erent crane types available, t1 and t2, with rt1,w < rt2,w

for any weight w and ht1 < ht2 . Buildings d1 and d3 each have a height of ht2 � i. e. they cannot be

covered by cranes of type t1, but may block such cranes �, buildings d2 and d4 have a height of ht1 .

For the sake of simplicity, let wd1 = wd2 = wd3 = wd4 = 0� and hf1 = hf2 = hf2 = hf4 = 0. �With the

given grid granularity, the highlighted intersection points in Figure 4.2a remain as feasible positions

for locating a crane. In Figure 4.2b, a feasible solution is pictured that contains two candidates with

cranes of the smaller type t1 (c2 and c3) and two candidates with cranes of the larger type t2 (c1 and

c4). In the given solution, c1 covers (d1, s1), c2 covers (d2, s1), c3 covers (d4, s2) and, �nally, c4 covers

(d3, s2). Note that c2 cannot cover pairs (d2, s1) and (d4, s2) simultaneously since its jib is blocked by

buildings d1 and d3. Also note that there are no cranes blocking each other in the given solution. But,

e. g. locating a crane of type t2 at point (7, 3) would block c4 and prevent it from serving pair (d3, s2).

A total cost of
∑

t∈T ktπt is associated with a solution and the discrete tower crane selection and

positioning problem in a grid with minimum distances and slewing ranges (TCSPP-GRID) is to �nd

a feasible solution with minimum total cost among all feasible solutions.�

4.1.2 Computational Complexity of TCSPP-GRID

Note: all contents presented and all passages quoted in this chapter are taken from Briskorn and

Dienstknecht [12].

Theorem 4. TCSPP-GRID is strongly NP-hard.

The theorem is proven by reduction from a variant of the problem to �nd a minimum cardinality
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independent dominating set in a grid graph, namely IND-DOM-GRID, which has been proven to be

strongly NP-hard by Clark et al. [22]. In a grid graph each node corresponds to a circle with radius 1/2

with its center at integer Cartesian coordinates in a plane. Two nodes are connected by an undirected

edge if and only if the corresponding circles intersect. �We see an example of such a graph in Figure 4.3a

depicted by nodes (in gray) and edges (black lines) embedded in circles (black) placed in a plane that

imply the graph.� Our variant, namely IND-DOM-GRID-BIG, is the problem to �nd a minimum

cardinality independent dominating set in a grid graph with more than four nodes. Note that NP-

hardness of IND-DOM-GRID-BIG follows trivially from NP-hardness of IND-DOM-GRID since only

instances that can be solved in constant time are excluded.

�A dominating set of a graph is a subset of nodes so that each node of the graph is either in the subset

or has a neighbour in the subset. An independent set is a subset of nodes so that for each node in the

subset no neighbour is in the subset. An independent dominating set is a subset of nodes that is both

a dominating set and an independent set. A minimum cardinality independent dominating set is an

independent dominating set so that no independent dominating set with fewer nodes exists.

Proof. We consider an instance I of the decision version of IND-DOM-GRID-BIG which asks whether

an independent dominating set of a certain cardinality exists. Instance I is speci�ed by n circles and

their coordinates. In the following, we construct an instance I ′ of TCSPP-GRID. We �restrict ourselves

to connected graphs since otherwise I decomposes.

Let xmin, xmax, ymin, and ymax be the minimum and maximum �rst and second, respectively, coordinate

of centers among all circles. For simplicity we reduce each �rst coordinate by xmin and each second

coordinate by ymin. Note that in the following we will use xmin, xmax, ymin, and ymax with respect

to the modi�ed coordinates. Obviously, this does not change the structure of the graph, but gives

us xmin = ymin = 0. Since we assume the graph to be connected the number n of nodes is at least

xmax + ymax + 1.

We start by de�ning the grid in instance I ′ of TCSPP-GRID as the points in the integer coordinate

set {(x, y) | 0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax}. Note that the number of grid points is in O(xmax · ymax)

and, thus, polynomial in n. The construction site is then the polygon containing exactly the convex

hull of all grid points. Thus, all grid points lie within the construction site. We refer to the grid points

with coordinates corresponding to the position of a circle in I as node grid points and to the remaining

grid points as dummy grid points in the following. Let q be the number of dummy grid points.

We consider two types of cranes, that is T = {t1, t2}, which we will specify rather informally in the

following. Type t2 cranes can lift heavy weights and have a small height and a maximum operating

radius of ε, 0 < ε < 0.1. Cranes of type t2 can lift the heavy weights at their maximum operating radius.

Finally, the cost of type t2 is πt2 = (xmax+1) ·(ymax+1). Type t1 cranes can lift light weights only and

have a large height and a maximum operating radius of 1 + ε. The cost of type t1 is πt1 = 1. Minimum

distances are not an issue, that is we can assume w. l. o. g. Dmin
t1,t1 = Dmin

t1,t2 = Dmin
t2,t1 = Dmin

t2,t2 = 0. Note

that cranes of type t2 cannot interfere with any other crane due to their maximum operating radii and

their heights. Therefore, the only type of interference which has to be taken into account is between
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two cranes of type t1 that are positioned in Euclidean distance of 1 to each other.

It remains to de�ne the pairs, that consist of single points only. We have two types of such pairs. The

second type requires a heavy weight to be lifted, and, therefore, can be served by cranes of type t2

only. The �rst type requires a light weight to be lifted and, therefore, can be served by both types of

cranes. The pairs are speci�ed as follows.

• For each pair of adjacent nodes in the graph, that is for each pair of node grid points (x, y) and

(x′, y′) with Euclidean distance of 1 to each other, we have two pairs of the light type. The �rst

one has Euclidean distance of 1 − ε and ε to (x, y) and (x′, y′), respectively. The second one

has Euclidean distance of 1− ε and ε to (x′, y′) and (x, y), respectively. Note that both pairs lie

on the line between both points. Note, furthermore, that there is at least one pair in Euclidean

distance of ε to each node grid point since we assume the graph to be connected.

• For each dummy grid point (x, y) we have a pair of the heavy type at an arbitrary point within

Euclidean distance of ε to (x, y) and within the construction site.

Note the scheme described above constructs q + 2|E| pairs where |E| ∈ O(n2) is the number of edges

in the grid graph induced by I. Since q ∈ O(n2) the number of pairs constructed is in O(n2) and,

thus, polynomial in the size of I.

Finally, we have no forbidden areas, that is Ft1 = Ft2 = ∅. This completes the construction.

We shall verify that the reduction is indeed in polynomial time. Hence, we summarize the construction

as follows.

• The number of grid points is in O(n2). The construction site is de�ned by the four coordinates

(0, 0), (xmax, 0), (0, ymax), and (xmax, ymax) and, thus, can be constructed in constant time.

• The number of crane types is constant and, thus, in O(1).

• The number of pairs is in O(n2). Since each pair covers a single point only it can be constructed

in constant time (we set coordinates of the single point, maximum load weight, and height).

• The number of forbidden areas is zero and, thus, constant.

We conclude that the reduction can be done in polynomial time and claim that there is a feasible

solution to I ′ with cost of qπt2 + p if and only if there is an independent dominating set of cardinality

p in the grid graph.�

Consequently, we need to show that a feasible solution to I ′ with cost of qπt2 +p implies an independent

dominating set of cardinality p in the grid graph and that an independent dominating set of cardinality

p implies a feasible solution with cost qπt2 + p.

We start by showing the former point:

• On �each dummy grid point a crane of type t2 is placed since there is a pair of the heavy type

close by that can be served only by a crane of type t2 placed on the corresponding dummy grid

point. Thus, we need at least q cranes of type t2. But we cannot use more than q of them since

πt2 = (xmax + 1) · (ymax + 1) and, thus, (q + 1)πt2 > qπt2 + p. Hence, all other cranes used in
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the solution are of type t1 and there are p of them. No crane of type t2 can serve any other pair

since they are too distant. Hence, the p cranes of type t1 serve all pairs of the light type.�

• A �pair positioned in Euclidean distance of ε to (x, y) can only be served by a crane of type t2

positioned at (x, y) or by a crane of type t1 positioned at (x′, y′) with |x − x′| + |y − y′| ≤ 1

since all other node grid points have distance of more than
√

2 − ε > 1.3. Since all pairs of the

light type are served by cranes of type t1, the placement of cranes of type t1 on node grid points

constitutes a dominating set of the graph.�

• The placement of cranes of type t1 on node grid points constitutes a independent set of the graph,

as well, see Proposition 1 after the proof of Theorem 4.

�Concluding, the placement of cranes of type t1 on node grid points constitutes an independent domi-

nating set of the graph with cardinality p.

It remains to show that an independent dominating set of cardinality p implies a feasible solution with

cost qπt2 + p. We construct such a solution as follows. We place cranes of type t1 on node grid points

as implied by the independent dominating set and place a crane of type t2 on each dummy grid point.

Note that pairs of the heavy type are covered since each such pair gets a dedicated crane of type t2.

No crane of type t2 can interfere with any other crane due to the granularity of the grid. Since we

position cranes of type t1 according to an independent set they have minimum pairwise distance of
√

2

and, therefore, do not interfere neither. A crane of type t1 positioned at (x, y) can cover all pairs of

the light type in Euclidean distance of ε to (x′, y′) with |x−x′|+ |y− y′| ≤ 1. Since we position cranes

of type t1 according to a dominating set each pair of the light type is covered. Hence, the solution is

feasible. Clearly, the cost of the constructed solution is qπt2 + p.�

The reduction is illustrated in Figure 4.3. �In Figure 4.3a, there is a grid graph of a given instance I

of IND-DOM-GRID. Figure 4.3b depicts the constructed instance I ′ of TCSPP-GRID. We have node

grid points represented by large black dots and dummy grid points represented by small black dots.

The construction site is, thus, given by the convex hull of the set of black dots. The small gray dots

represent the pairs of the light type to be covered by cranes of type t1. There are two of them on the

line between each pair of node grid points with Euclidean distance of 1. The small white dots represent

the pairs of the heavy type to be covered by cranes of type t2. They are positioned close to the dummy

grid points within the construction site.

Figure 4.4 illustrates solutions to the instances depicted in Figure 4.3. In Figure 4.4a the set of nodes

highlighted in black constitutes an independent dominating set with 3 nodes. In fact, it is a minimum

cardinality independent dominating set (not the only one). Figure 4.4b depicts the corresponding

solution to I ′ of TCSPP-GRID. There is a crane of type t1 positioned on each node grid point cor-

responding to a node in the independent dominating set. Additionally, there is a crane of type t2

positioned on each dummy grid point.

In Figure 4.4 operating areas of cranes of type t1 do not overlap at all. However, this is not necessarily

the case, as we can see from the solutions of the same problem instances depicted in Figure 4.5. Both

solutions are not optimal. As we can see, here operating ranges overlap. However, no crane's operating
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Figure 4.3: Grid graph and an instance of TCSPP-GRID
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Figure 4.4: Independent dominating set of cardinality 3 and a solution with cost 3πt2 + 3

area encloses the position of another crane of type t1 and, therefore, no crane prevents another crane

from reaching its full operating range.

The proof of Theorem 4 shows that TCSPP-GRID is strongly NP-hard even if |T | = 2, F = ∅, and
each demand site consists of a single point only and coincides with its supply site. It is not hard to

see that we can modify the proof to show that it is also strongly NP-hard even if |T | = 1 and each

demand site consists of a single point only and coincides with its supply site (by using forbidden areas

in order to prevent cranes of type t1 from being placed on dummy grid points).�

In the proof of Theorem 4, the following proposition was used.

Proposition 1. The placement of cranes of type t1 in a feasible solution to I ′ with cost of qπt2 + p

constitutes an independent set of the graph.

We will prove Proposition 1 in the following.

Proof. We consider the subgraph G′ constituted by the nodes of the grid which have a crane of type
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Figure 4.5: Independent dominating set of cardinality 5 and a solution with cost 3πt2 + 5

t1 assigned. In order to allow a reasoning as intuitive as possible we will imagine the nodes of the grid

graph G to be embedded in a plane according to the coordinates of the circles' centers. This enables

us to speak about horizontal and vertical edges and pairs of edges being orthogonal to each other. As

we consider cranes of type t1 only in the following we will talk of a node covering a pair when a crane

of type t1 located at this node covers the respective pair.

If G′ has no edges, the positions of cranes of type t1 constitute an independent set which is in line

with Proposition 1. Now, in contrast, assume G′ has an edge (i, j), i. e. two adjacent nodes i and j are

selected for locating a crane of type t1 on each of them. The pairs on edge (i, j) cannot be covered by

these nodes as they obstruct each other. Thus, only other nodes adjacent to i (j) can potentially cover

the pair on edge (i, j) close by node i (j) due to the crane type's operating radius. From these adjacent

nodes, however, only those lying in orthogonal orientation with respect to edge (i, j) can potentially

cover the respective pair (any other node is obstructed by i (j)). Consequently, the selection of two

adjacent nodes i and j requires the selection of at least one more adjacent node for each of them in

order to potentially cover the pairs on edge (i, j). This, in turn, requires G′ to have additional edges

connected to edge (i, j).

Resulting from the previous considerations, we can exclude that any node in G′ has a degree of one

or larger than four. Additionally, we can rule out nodes with degree three according to the following

Lemma 1.

Lemma 1. In G′, no node may have a degree of three.

Proof. Assume there is a node i having a degree of three. Then there are three nodes j, m and n

adjacent to i (cf. Figure 4.6). Then, two of these nodes, m and n, have the same y-coordinate (x-

coordinate) as i, and the third node, j, has the same x-coordinate (y-coordinate) as i. Node j has to

have at least a degree of two with at least one edge (j, k) being orthogonally oriented with respect to

edge (i, j) for the pair on edge (i, j) close by j to be covered. Then, the jib of the crane located at j

is blocked by both the crane located at i and k and, hence, cannot simultaneously reach both the pair

on edge (i,m) and on edge (i, n) close by i. Thus, one of these pairs remains uncovered.
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Figure 4.6: Node i in G′ with a degree of three resulting in infeasibility

Now, we are going to prove that if G′ has an edge, then each node in G′ has a degree of exactly two

and G consists of a single cycle of four nodes.

In order to see this, �rst note that there has to be at least one top horizontal edge (i, j) in G′ since

any adjacent vertical edge would require another horizontal edge for covering both pairs lying on this

vertical edge. Then, neither i nor j do have a degree of four and � considering the above � have a

degree of two. Furthermore, there has to be one vertical edge adjacent to i, (i,m), and one vertical

edge adjacent to j, (j, n). Both such edges must be below (i, j) due to the assumption that (i, j) is

top-most. Then, nodes i, j, m and n constitute a cycle. From the previous considerations, it can be

concluded that the jibs of the cranes located at these four nodes are trapped within this cycle, i. e.

they can only rotate within the cycle, but cannot leave it as this would require slewing through another

crane's mast: m and n have to cover the pairs on (i, j), i has to cover the pair on (j, n) close by j and

j has to cover the pair on (i,m) close by i.

Now assume that G has at least one more node. Then there is a node a which is connected to the

cycle as G is connected. Then, in G there are two pairs on the edge connecting a to the cycle. One of

these pairs is close to a node of the cycle and, thus, can only potentially be covered by a node in the

cycle or adjacent to the same node in the cycle like a. Since i, j, m and n are trapped in the cycle

they cannot cover this pair and, thus, there has to be at least one additional node in G′. However,

according to Lemma 2, this cannot be the case.

Lemma 2. In G′, m and n have a degree of two.

Proof. We restrict ourselves to consideration of node m since node n having a degree of two can be

established in the same way. Since degrees zero, one and three have already been excluded above it

remains to exclude a degree of four.

Assume that m has a degree of four. In this case (cf. Figure 4.7), there are two nodes k and o

with coordinates (xk = xm − 1, yk = ym) and (xo = xm, yo = ym − 1), respectively, in G′. This means

that there is a pair on edge (k,m) close by k. As i may not have a degree of three there may not

be a node p with coordinates (xp = xi − 1, yp = yi) so that there has to be node q with coordinates

(xq = xk, yq = yk − 1) to cover the pair close by k. This, in turn, means that there is a pair on edge

(k, q) close by k. This pair cannot be covered by m as m serves the pair on edge (i, j) close by i and

is trapped between i and n. Thus, there needs to be node r with coordinates (xr = xk − 1, yr = yk) in

order to cover the pair. But then node k has a degree of three which is not possible due to Lemma 1.

Consequently, neither m nor n may have a degree di�erent from two.
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Figure 4.7: Node m in G′ with a degree of four resulting in infeasibility

Hence, with Lemma 2 holding, it can be concluded that G has only the four nodes i, j, m, and

n if G′ is not an independent set. However, G has more than four nodes due to the de�nition of

IND-DOM-GRID-BIG and, hence, we have a contradiction.

4.1.3 Research Gap

Note: this chapter is based on Briskorn and Dienstknecht [12].

As already mentioned when reviewing related literature in Chapter 2.2.2, single facettes of the problem

described in Chapter 4.1.1 have been studied to-date. However, the combination of these facettes has

not been considered so far. The following features are added to the scienti�c literature:

• Facilities with limited operating areas have been introduced by Toregas et al. [115]. In the current

work, facilities (i. e. cranes) have limited operating areas, as well, but these are additionally

a�ected by interferences with on-site objects. Thus, the actual operating area of a facility is

not known in advance and, furthermore, depends on both a facility's location and other facilites'

locations.

• Minimum distances between facilities to be located have been studied in both the discrete p-

dispersion problem (selection of p facility locations from a given �nite set of facility locations so

that the minimum distance between any two of them is maximized; Erkut et al. [33]) and the

discrete anti-covering location problem (selection of a maximum subset from a given �nite set of

facility locations so that any two of the selected points keep at least a given minimum distance;

Murray and Church [75]). In the current work, the selection of facilities and their locations

respects minimum distances, as well, but, additionally, the coverage of pairs of polygons has to

be respected while simultaneously not knowing which and how many facilities to select and where

to locate them.

• Additionally, analogously to the contributions mentioned in Chapter 3.1.3, the common assump-

tions of point-based demand and homogeneous facilities do not hold in the problem studied since

pairs of polygons have to be covered by cranes with di�erent speci�cations.
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4.2 Solution Approaches

In this chapter, two di�erent approaches for solving TCSPP-GRID as described in Chapter 4.1.1 will

be presented. The �rst approach relies on employing a standard solver based on a representation of

the problem as mixed-integer program. Four di�erent MIP formulations motivated by i) di�erent per-

spectives on representing coverage and ii) a trade-o� between the number of variables and constraints

are presented in Chapter 4.2.3. The second approach is a branch and bound procedure which will be

detailed in Chapter 4.2.4. Both approaches require processing the mainly geometric input data of an

instance of TCSPP-GRID in order to allow for the application of the respective techniques. This data

pre-processing will be described in Chapter 4.2.1. Chapter 4.2.2 summarizes the resulting sets along

with the remainder of the notation used when detailing the solution approaches.

4.2.1 Data Pre-Processing

Note: all contents presented and all passages quoted in this chapter are taken from Briskorn and

Dienstknecht [12].

We, now, detail the pre-processing of an instance's geometric input data. In this pre-processing step,

sets are derived from the geometric information which allows for the linear models and the B&B

approach presented in Chapter 4.2.3 and Chapter 4.2.4, respectively. After a general description of the

information to be processed and the resulting sets, a more detailed example for the derivation of one

such set is given.

�An instance of TCSPP-GRID is speci�ed by the data introduced in Chapter 4.1.1. In order to keep

the part at hand self-contained, we shortly recapitulate the notation:

• the set T of crane types with the single types' speci�cations as mentioned in Chapter 4.1.1,

• the site, i. e. the site polygon with the sets of supply areas S, demand areas D (including the

assignment of supply areas to demand areas, i. e. the set P containing all pairs (d, sd)) and

forbidden areas
⋃
t∈T Ft,

• the prescribed minimum distances between cranes of type t and t′, Dmin
t,t′ ,

• the granularity of the grid, i. e. the horizontal and vertical distance between two intersection

points of the grid.�

In the following, we point out how the inputs for the MIPs and the B&B approach are derived from

the geometric information.

�The idea of using a grid aims at discretizing the by nature continuous site space and, thus, generating

a �nite set of potential crane locations. The intersection points of the grid are regarded as potential

locations for erecting a crane. Grid points are infeasible for any crane type if they are located outside

the site's boundaries or within any s ∈ S or d ∈ D (including edges). Additionally, a grid point is

infeasible for a speci�c crane type t if the grid point is located within any f ∈ Ft (including edges).

Thus, in a �rst step, each grid point that is not infeasible in general is assigned a crane of each type
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4 Tower Crane Selection and Location with Mutual Interference

t that may be feasibly located in that point. Each assignment of location and crane type is called

a candidate and added to the candidate set C. Selecting candidate c comes at a cost of πc which

corresponds to the �x cost of crane type tc associated with candidate c, πtc .

Once the candidate set is determined, information on minimum distances among the single candidates

can be processed. Minimum distance constraints require two cranes of types tc and tc′ to keep at

least a Euclidean distance of Dmin
tc,tc′

between the cranes' centers. Thus, cranes may not be positioned

independently: we cannot simultaneously locate cranes of types tc and tc′ at intersection points of the

grid that have a distance of less than Dmin
tc,tc′

, i. e. the corresponding candidates c and c′ may not be

selected simultaneously. Consequently, all candidates that violate the minimum distance constraint

with respect to candidate c constitute the set Nc =
{
c′ ∈ C|distc,c′ < Dmin

tc,tc′

}
with |Nc| = nc for a

speci�c candidate c (with distc,c′ being the Euclidean distance between the crane locations associated

with candidates c and c′).

The crucial part is to derive coverage information for the single candidates. Here, interferences of cranes

and of cranes with� on-site structures (i. e. buildings and forbidden areas) �have to be respected. In

order to identify such interference e�ects, we �rst have a look at the prerequisites for a crane to cover

a pair and then focus on interference by any object (i. e. cranes and� on-site structures).

�In the following, we focus on a candidate c, i. e. a position given by Cartesian coordinates and an

assigned crane of type tc, and a pair (d, sd). The basic prerequisites for c to cover the pair are that the

pair is in reach of c (as de�ned in Chapter 4.1.1) and c can establish an uninterrupted path between

d and sd. If a pair is in reach of c, then all points of both the supply area and the demand area are

within the crane's operating radius. The supply and the demand area are each located in a sector

of the circle representing the crane's operating area � we call these sectors the supply sector and the

demand sector. More precisely, these sectors are the smallest sectors (in terms of the angle between the

respective sector's boundaries) that contain all points of the supply and demand polygon, respectively.

We distinguish between two cases.

1. The sectors are disjoint, cf. pair (d1, s1) in Figure 4.8a.

2. The sectors overlap (including the case of one sector being completely contained within the other

sector), cf. pair (d2, s2) in Figure 4.8a.
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Figure 4.8: Slewing directions and coverage
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In the �rst case, the pair divides the crane's operating area into four sectors, namely the supply sector,

the demand sector and two transport sectors. We distinguish between those sectors with regard to

the lifting operation of cranes (oriented from the supply site to the demand site) during which the

crane moves either clockwise or counter-clockwise. Consequently, we refer to the transport sector in

which the crane moves clockwise (counter-clockwise) from supply site to demand site as clockwise

(counter-clockwise) transport sector. In Figure 4.8a the clockwise transport sector of pair (d1, s1)

contains all points in reach having an angular coordinate larger than 0 and lower than 225 and the

counter-clockwise transport sector contains all points in reach having an angular coordinate larger

than 270 and lower than 315. In order to cover such a pair, the crane has to cover the supply and

the demand sectors and at least one of the transport sectors. This can be considered as clockwise or

counter-clockwise load-carrying rotation of the crane reaching each point in three of the four sectors

as depicted in Figure 4.8b where the direction of the load-carrying moves is indicated by the arrow

heads. In the second case, it su�ces to cover the union of supply and demand sector which can be

performed by either a clockwise or counter-clockwise rotation of the crane as depicted in Figure 4.8c

(the borders of sectors lying properly within the union of sectors are depcited using dashed lines).

Once this is established, we can focus on the conditions for objects of su�cient height� � cranes or

on-site structures � �to prevent a crane from covering a pair. Again, we distinguish the two cases 1.

and 2. speci�ed above.

In the �rst case (supply sector and demand sector are disjoint), a pair cannot be covered by the

candidate under consideration if

(a) at least one blocking object is (partially) positioned within the supply sector,

(b) at least one blocking object is (partially) positioned within the demand sector, or

(c) at least one blocking object is (partially) positioned in each transport sector.
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Figure 4.9: Objects of su�cient height preventing a crane from covering a pair

Case (a) is illustrated in Figure 4.9a where a single object o′ prevents c from covering pair (d1, s1) since

some points within s1 cannot be reached; for case (b) we can imagine a single object being positioned

within the demand sector instead. Case (c) is depcited in Figure 4.9b where two objects o′ and o′′

prevent c from covering the pair. Each point in both supply sector and demand sector can be reached
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4 Tower Crane Selection and Location with Mutual Interference

but the crane cannot move from the supply sector to the demand sector (and vice versa) since in both

transport sectors some points cannot be reached.

In the second case (supply sector and demand sector overlap), a crane can only be prevented from

covering a pair if an object is located within the union of the supply and the demand sector (that is

only cases (a) and (b) are relevant).

Summarizing, depending on the very position of the blocking objects a single object may su�ce to

prevent a candidate from covering a pair or two objects can only jointly do so.

For the MIP formulations� and the B&B approach to be developed in Chapters 4.2.3 and 4.2.4 �it

is important to note that in turn if a candidate is prevented from covering a pair (that is in reach)

we can identify a single object or a pair of objects that is su�cient for prevention. This motivates to

consider single objects or pairs of objects that have potential to prevent coverage when designing the

MIP formulations and when exploiting structural knowledge in the B&B approach. When doing so

we have to distinguish between blocking� on-site structures and blocking cranes.

Blocking on-site structures are easy to check with regard to their impact since they are given and,

naturally, have a static position. �So, for each candidate c and each pair (d, sd) we can predetermine

whether a blocking� on-site structure �(partially) lies in the supply sector or the demand sector or lies in

one of the transport sectors. In the former case candidate c cannot cover pair (d, sd) independent from

other� on-site structures �or crane locations. In the latter case, if there are blocking� on-site structures

�in exactly one transport sector a single crane in the other transport sector su�ces to prevent c from

covering (d, sd). If there are blocking� on-site structures �in both transport sectors c cannot cover

(d, sd) independent from other� on-site structures or crane locations.
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Figure 4.10: Inter-structure sectors and coverage

The concept of blocking on-site structures �is illustrated in Figure 4.10 (with blocking demand areas).

Demand areas d5 and d6 block the crane associated with candidate c and create two blocked sectors

(gray sectors) that divide the crane's operating area into two inter-structure sectors, one containing

pair (d1, s1) and the other one containing pair (d3, s3). It can be seen that neither pair (d2, s2) nor

pair (d4, s4) can be covered by c: for (d2, s2), its supply and demand site are in di�erent inter-structure

sectors, for (d4, s4), the demand site is partially in a blocked sector.

For a given instance of TCSPP-GRID, the set Bc =
{
B1
c , . . . , B

|Bc|
c

}
is the set of inter-structure

sectors speci�ed by on-site structures blocking c's jib. We consider only inter-structure sectors that
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4.2 Solution Approaches

fully contain at least one pair (d, sd) in reach of c. If there is no blocking on-site structure for candidate

c, then Bc = ∅. We say that a candidate c can cover a pair (d, sd) with respect to structures if there

are further cranes necessary for c not being able to cover (d, sd). For each pair (d, sd) ∈ P we can

de�ne a set Cd containing all candidates that can cover (d, sd) with respect to structures. A candidate

c is in Cd if and only if (d, sd) is in reach of c and either Bc = ∅ or (d, sd) is fully contained in one

of c's inter-structure sectors. In turn, for each candidate c, we can de�ne a set Pc containing all pairs

that can be covered by c with respect to structures, i. e. pair (d, sd) is in Pc if and only if (d, sd) can

be covered by c with respect to structures.�

As stated in the introductory part of Chapter 4.2, the MIPs to be developed will di�er with respect

to their representation of coverage. More speci�cally, two MIPs will rely on the slewing direction of a

candidate c covering a pair (d, sd). If there are blocking on-site structures �for c it may well be that c

can cover (d, sd) with respect to structures, but it cannot move its jib through the counter-clockwise

(clockwise) transport sector. We, thus, de�ne set Pncoc (Pnclc ) as the set of pairs in Pc where demand

sector and supply sector do not overlap with respect to c and that cannot be covered by candidate c

using the counter-clockwise (clockwise) transport sector with respect to structures.�

In contrast to blocking on-site structures, �cranes and their locations are not given in advance. However,

taking into account locations of on-site structures for each candidate c and pair (d, sd) we can derive all

single candidates and pairs of candidates that prevent c from covering (d, sd). Blocking by a single crane

or two cranes without� on-site structures �being involved are depicted in Figure 4.9. In Figure 4.9a, a

crane located at o′ prevents c from covering s1 and, thus, the pair while in Figure 4.9b both transport

sectors are blocked by cranes located at o′ and o′′. Finally, blocking both transport sectors can be

jointly achieved by a single crane and� an on-site structure �as depicted in Figure 4.11 where crane c′

and a sector blocked by a demand area (gray sector) prevent coverage.

Consequently, for each candidate c, we need to identify the sets of a single other candidate c′ and two

other candidates c′ and c′′, respectively, that block candidate c's jib, i. e. that have su�cient height and

proximity. We call these sets Tc and T
′
c. More formally, Tc is the set of tuples (c, c′) where candidate c′

blocks candidate c's jib and T ′c is the set of triples (c, c′, c′′) where candidates c′ and c′′ block candidate

c's jib. These tuples and triples, respectively, are to be taken into account in order to consider mutual

interference of cranes which might result in c being prevented from covering a pair which it can cover

with respect to structures.

For a given candidate c, set P(c,c′) ⊆ Pc is the set of pairs that can be covered by c with respect to

structures, but cannot be covered by c anymore if c′ is selected simultaneously. Sets P co(c,c′) and P
cl
(c,c′)

re�ect the sectors formed by on-site structures and cranes. Consider candidate c and one of its inter-

structure sectors Bi
c (if existent). A candidate c′ located in Bi

c divides it into two sectors (that may

be divided further by other cranes). A pair (d, sd) ∈ Bi
c cannot be covered if c′ is chosen and the pair

does not fully lie in one of these sectors. If it fully lies in one of these sectors each point of pair (d, sd)

can be reached by moving c's jib from c′ either counter-clockwise or clockwise. Depending on which

direction has to be chosen, (d, sd) is in P
co
(c,c′) or P

cl
(c,c′). Set P

nco
(c,c′) and P

ncl
(c,c′) is the complementary set

of P co(c,c′) and P
cl
(c,c′) with respect to the set of pairs in the inter-structure sector where c′ is located in.

Analogously, sets P(c,c′,c′′), P
co
(c,c′,c′′), and P

cl
(c,c′,c′′) re�ect sectors formed by two candidates. Set P(c,c′,c′′)

is the set of pairs that can be covered by c with respect to structures, but cannot be covered by c if
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4 Tower Crane Selection and Location with Mutual Interference

both c′ and c′′ are chosen. This is the case if c′ and c′′ are located in both transport sectors of the pair

and, consequently, neither can be used for moving c's jib. Sets P co(c,c′,c′′) and P
cl
(c,c′,c′′) re�ect the pairs

that can be fully reached by candidate c by moving its jib from c′ to c′′ in counter-clockwise direction

and clockwise direction, respectively.
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Figure 4.11: Demand area and crane jointly preventing coverage

The above clari�es the conditions preventing a candidate from covering a pair. However, there is one

additional issue to be considered. Although two pairs can be covered by a candidate c it may be

infeasible to cover them by c simultaneously. For example, in Figure 4.10b (d1, s1) and (d3, s3) can

be covered by c. However, c cannot cover both pairs simultaneously since they do not lie in the same

inter-structure sector and the crane cannot move its jib from one inter-structure sector to the other.

If blocking cranes are involved, similar concepts may be applied which is illustrated in Figure 4.12. In

Figure 4.12a, a blocking� on-site structure �and a blocking crane c′ divide c's operating area into two

sub-sectors of which c may at most cover one. Similarly, two cranes c′ and c′′ divide c's operating area

into two sub-sectors in Figure 4.12b.
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Figure 4.12: Creation of sub-sectors by cranes

Summarizing, for a set of pairs to be covered by a candidate simultaneously these pairs need to be

fully located in the same sub-sector formed by� on-site structures �and/or other candidates.�
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All these sets described in this chapter can be determined by implementing geometric checking routines

that determine the situation and orientation of objects in the plane in relation to each other. �We will

exemplify the generation of sets containing coverage information now by deriving the set of inter-

structure sectors Bc for a given candidate c. The ideas presented can be transferred to all other

coverage-related sets. As mentioned earlier in this chapter, Bc is determined by on-site structures of

su�cient height to block the jib of the crane associated with candidate c. In general, a circular sector

is de�ned by the circle's center (i. e. the crane location in our case) and two (polar) angles de�ning the

sector's start and end. This also holds for sectors in the paper at hand. Once these angles are known

for the single inter-structure sectors, it can be derived which pairs are completely contained in them.

This, �nally, gives us sets Bi
c that, in turn, constitute set Bc. Note that any B

i
c = ∅ can be eliminated

as an empty sector does not need to be covered.

We start by identifying the angles de�ning the single inter-structure sectors. For each on-site structure

of su�cient height to block c's jib, there are three potential situations: it is fully, partially or not at

all located within c's operating radius (cf. Figure 4.13). In the latter case, the structure does not

block c. In the �rst case, all of its nodes and edges are located in c's operating radius, so the structure

blocks a sector of c's operating area. This blocked sector can be identi�ed as the smallest circular

sector containing all nodes and edges of the structure. This circular sector is speci�ed by the two

outermost nodes of the polygon representing the structure with respect to their angular coordinates

in the polar coordinate system of c's position. In the second case, the parts of the structure lying

in c's operating area can be identi�ed by traversing along the polygon's edges in either clockwise or

counter-clockwise orientation. Once, an edge intersects the circle representing c's operating area, this

edge and, consequently, the structure is partially situated within c's operating radius. These parts of

the structure re�ect blocked sectors of c's operating area for which, in turn, the de�ning angles can be

derived from the structure's nodes and the intersection points of edges and the circle representing c's

operating area. After identifying the sectors blocked by the single structures, these sectors have to be

checked for pairwise overlaps. Whenever two such sectors overlap, we merge them.

Once we determined all sectors not blocked by on-site structures (white sectors in Figure 4.13) we still

for each such sector have to identify those pairs that completely lie within the sector. A pair is said to
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4 Tower Crane Selection and Location with Mutual Interference

be completely contained in a certain inter-structure sector if all of its nodes and edges are contained

in the sector, i. e. between the angles de�ning the sector. If an inter-structure sector contains at least

one pair completely the sector is added to the set of inter-structure sectors Bc of candidate c.

Sectors determined by cranes or by cranes and blocking on-site structures can be derived from the

angular coordinates of the polar coordinates of the blocking cranes and on-site structures, analogously,

by treating blocking cranes as on-site structures of su�cient height with punctate groundplan.�

4.2.2 Notation

Note: this chapter is based on Briskorn and Dienstknecht [12].

In this chapter, the notation introduced in Chapter 4.2.1 is summarized. Furthermore, the remaining

notation to be used in the MIP formulations (Chapter 4.2.3) and the B&B approach (Chapter 4.2.4)

is introduced in order to improve readability. This summary is presented in Table 4.1. More detailed

explanations regarding the notation will be given at the respective point of occurence.

Notation Description

Sets

Bc =
{
B1
c , . . . , B

|Bc|
c

}
set of inter-structure sectors of candidate c

C set of candidates

Cd set of candidates that can cover pair (d, sd) with respect to on-site struc-

tures

Cex in the B&B approach: set of candidates that are excluded from being

selected due to branching decisions

Csel in the B&B approach: set of candidates that have been selected by

branching decisions

C∗ in the B&B approach: set of candidates that have been selected in a

lower bound solution

Nc set of candidates that cannot be chosen due to minimum distances if

candidate c is selected

NUB
c in the B&B approach: set of candidates that cannot be chosen due to

minimum distances if candidate c is selected in the upper bound compu-

tation

P set of pairs

Pc set of pairs that can be covered by candidate c with respect to buildings

P cov in the B&B approach: set of pairs that are de�nitely covered by selected

candidates due to branching decisions

Pncoc , Pnclc set of pairs in Pc that cannot be covered by candidate c using the counter-

clockwise or clockwise, respectively, transport sector

P(c,c′) set of pairs in Pc that candidate c cannot cover if candidate c
′ is chosen

P co(c,c′), P
cl
(c,c′) set of pairs that can be fully reached by candidate c by slewing counter-

clockwise or clockwise, respectively, from candidate c′
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Pnco(c,c′), P
ncl
(c,c′) set of pairs that cannot be covered by candidate c by slewing counter-

clockwise or clockwise, respectively, from candidate c′

P(c,c′,c′′) set of pairs that cannot be covered by candidate c when candidates c′

and c′′ are selected

P co(c,c′,c′′), P
cl
(c,c′,c′′) set of pairs that can be fully reached by candidate c by slewing counter-

clockwise or clockwise, respectively, from candidate c′ to candidate c′′

Sc in the B&B approach: set of sectors of candidate c's operating area

formed by blocking cranes and / or blocking on-site structures

Tc set of tuples (c, c′) with candidate c′ blocking candidate c's jib

T ′c set of triples (c, c′, c′′) with candidates c′ and c′′ blocking candidate c's

jib

Parameters

πc cost of crane type t associated with candidate c

nc su�ciently large number, e. g. nc = |Nc|
Variables

αc binary variable; equals 1, if candidate c is selected; 0 otherwise

βc,d binary variable; equals 1, if candidate c covers pair (d, sd); 0 otherwise

γc,Bi
c

binary variable; equals 1, if candidate c covers inter-structure sector

Bi
c ∈ Bc; 0 otherwise

δco(c,c′), δ
cl
(c,c′) binary variable; equals 1, if candidate c slews counter-clockwise or clock-

wise, respectively, with respect to selected candidate c′; 0 otherwise

εco(c,c′,c′′), ε
cl
(c,c′,c′′) binary variable; equals 1, if candidate c slews counter-clockwise or clock-

wise, respectively, from selected candidate c′ to selected candidate c′′; 0

otherwise

τ jc in the B&B approach: binary variable; equals 1, if candidate c covers

its sector j ∈ Sc; 0 otherwise

ωcoc,d, ω
cl
c,d binary variable; equals 1, if candidate c covers pair (d, sd) by slewing

counter-clockwise or clockwise, respectively; 0 otherwise

Table 4.1: Notation for the MIP formulations and the B&B approach

4.2.3 Mixed-Integer Programming Formulations

Note: all contents presented and all passages quoted in this chapter are taken from Briskorn and

Dienstknecht [12].

Once the pre-processing of the geometric inputs has been �nished, the MIP formulations representing

TCSPP-GRID can be introduced. As already indicated at the beginning of the current chapter these

formulations �are motivated by i) di�erent perspectives on representing coverage and ii) a trade-o�

between the number of variables and constraints.

The MIP formulations in Chapters 4.2.3.1 and 4.2.3.2 take the same perspective on modelling the

coverage of pairs by asking whether a pair is covered by a candidate or not. Contrastingly, the MIPs
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presented in Chapters 4.2.3.3 and 4.2.3.4 represent coverage by asking whether a candidate covers

a pair by slewing in a certain direction (clockwise or counter-clockwise) from the supply site to the

demand site and, thus, use more variables for modelling coverage.

For each perspective on coverage, we examine two ways of accounting for objects limiting the cranes'

slewing ranges. One way implies more variables (Chapters 4.2.3.1 and 4.2.3.3, respectively), the other

way usually leads to a higher number of constraints (Chapters 4.2.3.2 and 4.2.3.4, respectively).�

4.2.3.1 Undirected Coverage Variables and Explicit Choice of Sectors

�The following model takes the simple perspective on coverage, i. e. asks whether a candidate covers a

pair or not. Consequently, variables αc and βc,d re�ecting choice of candidates and coverage assignments

of candidates and pairs, respectively, are employed. Whenever the working range of a crane is limited to

one of multiple sectors (between pairs of� on-site structures, cranes and on-site structures, �or pairs of

cranes) we represent the choice of the sector explicitly by employing di�erent variables: γc,Bi
c
indicates

which inter-structure sector Bi
c ∈ Bc is covered by candidate c; when c's working range is limited

by cranes and on-site structures, δco(c,c′) and δcl(c,c′) signal whether c's jib moves counter-clockwise or

clockwise from c′ in the respective inter-structure sector; for c being blocked by pairs of cranes, εco(c,c′,c′′)
and εcl(c,c′,c′′) represent whether c's jib moves counter-clockwise or clockwise from c′ to c′′ (identifying

one of the two sectors formed by c′ and c′′). Thus, the chosen sector formed by two on-site structures,

two cranes, or one on-site structure and one crane is then represented as the intersection of sectors

chosen according to variables γc,Bi
c
, δco(c,c′), δ

cl
(c,c′), ε

co
(c,c′,c′′) and ε

cl
(c,c′,c′′).

MIP UN-EX

Min Z =
∑
c∈C

αc · πc (4.1)

s. t. nc · αc +
∑
c′∈Nc

αc′ ≤ nc ∀c ∈ C (4.2)

∑
c∈Cd

βc,d ≥ 1 ∀ (d, sd) ∈ P (4.3)

βc,d ≤ αc ∀c ∈ C; (d, sd) ∈ Pc; |Bc| < 2 (4.4)

|Bc|∑
i=1

γc,Bi
c
≤ αc ∀c ∈ C; |Bc| ≥ 2 (4.5)

βc,d ≤ γc,Bi
c

∀c ∈ C; i = 1, . . . , |Bc|; (d, sd) ∈ Bi
c; |Bc| ≥ 2 (4.6)
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4.2 Solution Approaches

∑
(d,sd)∈P(c,c′)

βc,d ≤ (1− αc′) · |P(c,c′)| ∀c ∈ C;
(
c, c′
)
∈ Tc (4.7)

∑
(d,sd)∈P(c,c′,c′′)

βc,d ≤ (2− αc′ − αc′′) · |P(c,c′,c′′)| ∀c ∈ C;
(
c, c′, c′′

)
∈ T ′c (4.8)

2− αc′ ≥ δco(c,c′) + δcl(c,c′) ∀c ∈ C;
(
c, c′
)
∈ Tc; |Bc| ≥ 1 (4.9)

βc,d ≤ δi(c,c′) ∀c ∈ C;
(
c, c′
)
∈ Tc; i ∈ {co; cl} ; (d, sd) ∈ P i(c,c′); |Bc| ≥ 1 (4.10)

3− (αc′ + αc′′) ≥ εco(c,c′,c′′) + εcl(c,c′,c′′) ∀c ∈ C;
(
c, c′, c′′

)
∈ T ′c (4.11)

βc,d ≤ εi(c,c′,c′′) ∀c ∈ C;
(
c, c′, c′′

)
∈ T ′c; i ∈ {co; cl} ; (d, sd) ∈ P i(c,c′,c′′) (4.12)

αc ∈ {0, 1} ∀c ∈ C (4.13)

βc,d ∈ {0, 1} ∀c ∈ C; (d, sd) ∈ Pc (4.14)

γc,Bi
c
∈ {0, 1} ∀c ∈ C; i = 1, . . . , |Bc|; |Bc| ≥ 2 (4.15)

δco(c,c′), δ
cl
(c,c′) ∈ {0, 1} ∀c ∈ C;

(
c, c′
)
∈ Tc; |Bc| ≥ 1 (4.16)

εco(c,c′,c′′), ε
cl
(c,c′,c′′) ∈ {0, 1} ∀c ∈ C;

(
c, c′, c′′

)
∈ T ′c (4.17)

The objective is to minimize total cost for selected candidates and is re�ected by objective func-

tion (4.1).

Constraints (4.2) ensure that, if candidate c is selected, no other candidate violating the prescribed

minimum distance can be selected. The set of constraints given by (4.3) ensures that each pair is

covered by at least one selected candidate.

Constraints (4.4) to (4.6) link candidate selection variables and pair coverage variables and ensure that

each candidate can serve at most one inter-structure sector. If there are less than two inter-structure

sectors, (4.4) states that a pair may only be covered by candidate c if c is selected. If there are at

least two inter-structure sectors, (4.5) ensure that at most one of them may be selected for coverage

by candidate c and if one is selected, then candidate c is chosen. Then, constraints (4.6) ensure that
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4 Tower Crane Selection and Location with Mutual Interference

only pairs in the selected inter-structure sector may be covered by candidate c. Thus, constraints (4.4)

to (4.6) make sure that limitations of the operating ranges by on-site structures alone are chosen and

respected.

Constraints (4.7) to (4.12) re�ect restrictions of coverage caused by other candidates (possibly jointly

with on-site structures, see Chapter 4.2.1). Constraints (4.7) and (4.8) make sure that candidate c

may not cover pairs that are blocked by a single selected candidate c′ and two selected candidates c′

and c′′, respectively. Constraints (4.9) and (4.10) handle the case where there is at least one on-site

structure that blocks the moves of a candidate c and another candidate c′ is selected that blocks c,

as well. Constraints (4.9) require the selection of one sub-sector formed by on-site structures and c′

and (4.10) ensure that pairs are covered by candidate c only in accordance with the chosen sub-sector.

Similarly, constraints (4.11) and (4.12) handle two candidates c′ and c′′ that block c and divide c's

(full circle) operating area into two sub-sectors. If both c′ and c′′ are chosen, at most one of these

sub-sectors can be covered by c.

Finally, constraints (4.13) to (4.17) de�ne the domains of the decision variables.

While correctness of the model should be settled for all decision variables being binary from the

above we shall shortly justify the possible relaxation of αc, γc,Bi
c
, δco(c,c′), δ

cl
(c,c′), ε

co
(c,c′,c′′) and ε

cl
(c,c′,c′′) to

continuous variables on the interval [0, 1]. We start with αc which will be chosen as low as feasible

due to the objective function. Lower bounds on αc are imposed only by constraints (4.4) to (4.6).

The imposed lower bounds are integer and, therefore, αc takes integer values in optimum solutions.

Variables γc,Bi
c
are involved in constraints (4.5) and (4.6) only. It is easy to see that for any feasible

solution with non-integer values of γc,Bi
c
we can round these values down to zero and obtain another

feasible solution with the same objective value (since the left hand side of (4.6) is binary). The very

same argument holds for δco(c,c′) and δ
cl
(c,c′) (ε

co
(c,c′,c′′) and ε

cl
(c,c′,c′′)) which appear in (4.9) and (4.10) ((4.11)

and (4.12)) only and can be rounded down to the next integer since the only lower bound imposed by

(4.10) ((4.12)) is binary. This allows us to replace constraints (4.13), (4.15), (4.16) and (4.17) by the

following constraints.

0 ≤ αc ≤ 1 ∀c ∈ C (4.18)

0 ≤ γc,Bi
c
≤ 1 ∀c ∈ C; i = 1, . . . , |Bc|; |Bc| ≥ 2 (4.19)

0 ≤ δco(c,c′), δ
cl
(c,c′) ≤ 1 ∀c ∈ C;

(
c, c′
)
∈ Tc; |Bc| ≥ 1 (4.20)

0 ≤ εco(c,c′,c′′), ε
cl
(c,c′,c′′) ≤ 1 ∀c ∈ C;

(
c, c′, c′′

)
∈ T ′c (4.21)

MIP UN-EX employsO (|C| · |D|) binary variables, O
(
|C| · |D|+ |C|3

)
continuous variables andO

(
|C|3 · |D|

)
linear constraints.
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4.2.3.2 Undirected Coverage Variables and Implicit Choice of Sectors

The following model takes, again, the simple perspective on coverage. However, the choice of the sector

a candidate operates on is represented implicitly reducing the set of variables employed to αc and βc,d.

It does not come as a surprise then that the objective function and those constraints where only αc

and βc,d are used are identical to the MIP formulation in Chapter 4.2.3.1.

MIP UN-IM

Min Z =
∑
c∈C

αc · πc (4.1)

s. t. (4.2), (4.3), (4.4), (4.7), (4.8), (4.14), (4.18)

βc,d + βc,d′ ≤ αc ∀c ∈ C; (d, sd) ∈ Bi
c;
(
d′, sd′

)
∈ Bj

c ; j > i ∈ {1, . . . , |Bc|} ; |Bc| ≥ 2 (4.22)

2− αc′ ≥ βc,d + βc,d′ ∀c ∈ C;
(
c, c′
)
∈ Tc; (d, sd) ∈ P co(c,c′);

(
d′, sd′

)
∈ P cl(c,c′); |Bc| ≥ 1 (4.23)

3− (αc′ + αc′′) ≥ βc,d + βc,d′ ∀c ∈ C;
(
c, c′, c′′

)
∈ T ′c; (d, sd) ∈ P co(c,c′,c′′);

(
d′, sd′

)
∈ P cl(c,c′,c′′)

(4.24)

Constraints (4.22) replace constraints (4.5) and (4.6), constraints (4.23) replace constraints (4.9) and

(4.10) and, �nally, constraints (4.24) replace constraints (4.11) and (4.12). The potential choices to be

made for a candidate c of one inter-structure sector, of one sub-sector formed by� on-site structures �and

a candidate, and of one sub-sector formed by two candidates are represented by enforcing compatible

coverage decisions. Constraints (4.22) prevent pairs in di�erent inter-structure sectors from being

covered simultaneously. Similarly, constraints (4.23) prevent pairs in di�erent sub-sectors formed by

on-site structures and other candidates from being covered simultaneously. Finally, constraints (4.24)

prevent pairs in di�erent sub-sectors formed by other candidates from being covered simultaneously.

MIP UN-IM employs O (|C| · |D|) binary variables, O (|C|) continuous variables and O
(
|C|3 · |D|2

)
linear constraints.

4.2.3.3 Directed Coverage Variables and Explicit Choice of Sectors

The following model takes the more involved perspective on coverage, i. e. asks whether a candidate

covers a pair by counter-clockwise or clockwise load-carrying moves. Consequently, besides variables

αc, ω
co
c,d and ω

cl
c,d representing this decision are employed. Note that the direction refers to load-carrying

moves in case supply site and demand site do not overlap with respect to candidate c. In case they

do the choice is arbitrary. Whenever the working range of a crane is limited to one of multiple sectors
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4 Tower Crane Selection and Location with Mutual Interference

(between pairs of� on-site structures, cranes and on-site structures, �or pairs of cranes) we represent

the choice of the sector explicitly by employing variables γc,Bi
c
, δco(c,c′), δ

cl
(c,c′), ε

co
(c,c′,c′′) and ε

cl
(c,c′,c′′) (as

in Chapter 4.2.3.1).

MIP D-EX

Min Z =
∑
c∈C

αc · πc (4.1)

s. t. (4.2), (4.5), (4.9), (4.11), (4.18), (4.19), (4.20), (4.21)

∑
c∈Cd

(
ωclc,d + ωcoc,d

)
≥ 1 ∀ (d, sd) ∈ P (4.25)

ωclc,d + ωcoc,d ≤ αc ∀c ∈ C; (d, sd) ∈ Pc; |Bc| < 2 (4.26)

ωclc,d + ωcoc,d ≤ γc,Bi
c

∀c ∈ C; i = 1, . . . , |Bc|; (d, sd) ∈ Bi
c; |Bc| ≥ 2 (4.27)

1− αc′ ≥ ωcoc,d ∀c ∈ C;
(
c, c′
)
∈ Tc; (d, sd) ∈ Pnco(c,c′) (4.28)

1− αc′ ≥ ωclc,d ∀c ∈ C;
(
c, c′
)
∈ Tc; (d, sd) ∈ Pncl(c,c′) (4.29)

ωcoc,d + ωclc,d ≤ δi(c,c′) ∀c ∈ C;
(
c, c′
)
∈ Tc; i ∈ {co; cl} ; (d, sd) ∈ P i(c,c′); |Bc| ≥ 1 (4.30)

ωcoc,d + ωclc,d ≤ εi(c,c′,c′′) ∀c ∈ C;
(
c, c′, c′′

)
∈ T ′c; i ∈ {co; cl} ; (d, sd) ∈ P i(c,c′,c′′) (4.31)

ωcoc,d = 0 ∀c ∈ C; (d, sd) ∈ Pncoc (4.32)

ωclc,d = 0 ∀c ∈ C; (d, sd) ∈ Pnclc (4.33)

ωcoc,d, ω
cl
c,d ∈ {0, 1} ∀c ∈ C; (d, sd) ∈ Pc (4.34)

We detail only those constraints that are not obvious from what we have discussed above. Roughly

speaking, variable βc,d is replaced by ωcoc,d + ωclc,d. Note that (4.26) implies ωcoc,d + ωclc,d ≤ 1. Constraints

(4.25), (4.26) and (4.27) then immediately correspond to constraints� (4.3), (4.4) and (4.6).

70
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�Constraints (4.28) to (4.29) force ωcoc,d (ω
cl
c,d) to zero in case candidate c′ is chosen and prevents c from

serving (d, sd) with a counter-clockwise (clockwise) load-carrying move. Constraints (4.30) as well

as (4.31) ensure consistency between coverage variables and choice of sub-sectors formed by� on-site

structures �and single candidates as well as by pairs of candidates, respectively. Finally, constraints

(4.32) and (4.33) prohibit infeasible slewing directions for certain pairs.

MIP D-EX employsO (|C| · |D|) binary variables, O
(
|C| · |D|+ |C|3

)
continuous variables andO

(
|C|3 · |D|

)
linear constraints.

4.2.3.4 Directed Coverage Variables and Implicit Choice of Sectors

The following model takes, again, the more involved perspective on coverage by employing variables

αc, ω
co
c,d, and ω

cl
c,d. The choice of the sector a candidate operates on is represented implicitly and, thus,

allows us to drop variables γc,Bi
c
, δco(c,c′), δ

cl
(c,c′), ε

co
(c,c′,c′′) and ε

cl
(c,c′,c′′) (as in Chapter 4.2.3.2).

MIP D-IM

Min Z =
∑
c∈C

αc · πc (4.1)

s. t. (4.2), (4.18), (4.25), (4.26), (4.28), (4.29), (4.32), (4.33), (4.34)

(
ωclc,d + ωcoc,d

)
+
(
ωclc,d′ + ωcoc,d′

)
≤ αc

∀c ∈ C; (d, sd) ∈ Bi
c;
(
d′, sd′

)
∈ Bj

c ; j > i ∈ {1, . . . , |Bc|} ; |Bc| ≥ 2 (4.35)

5− 4 · αc′ ≥
(
ωclc,d + ωcoc,d

)
+
(
ωclc,d′ + ωcoc,d′

)
∀c ∈ C;

(
c, c′
)
∈ Tc; (d, sd) ∈ P co(c,c′);

(
d′, sd′

)
∈ P cl(c,c′); |Bc| ≥ 1 (4.36)

5− 2 · (αc′ + αc′′) ≥
(
ωclc,d + ωcoc,d

)
+
(
ωclc,d′ + ωcoc,d′

)
∀c ∈ C;

(
c, c′, c′′

)
∈ T ′c; (d, sd) ∈ P co(c,c′,c′′);

(
d′, sd′

)
∈ P cl(c,c′,c′′) (4.37)

The structures of constraints resemble those of the constraints used in Chapters 4.2.3.3 (where variables

αc, ω
co
c,d and ω

cl
c,d have been employed, too) and 4.2.3.2 (where choice of (sub-)sectors for candidates is

implied by consistent choice of candidates to cover pairs).

MIP D-IM employs O (|C| · |D|) binary variables, O (|C|) continuous variables and O
(
|C|3 · |D|2

)
linear constraints.�
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4 Tower Crane Selection and Location with Mutual Interference

4.2.4 Branch and Bound Procedure

Now, a simple exact solution procedure for TCSPP-GRID relying on the inputs generated as described

in Chapter 4.2.1 is proposed. The key components of this branch and bound approach with best-

�rst search, i. e. the branching scheme, the computation of upper and lower bounds and, �nally, the

fathoming of nodes in the B&B tree, will be described in Chapters 4.2.4.1 to 4.2.4.3.

4.2.4.1 Branching Scheme

In this part, the branching scheme is detailed. Branching is performed with regard to the coverage

assignment of candidates and pairs as this allows us to make use of structural knowledge in order to

exclude certain coverage assignments or even candidates from a solution. Thus, the branching scheme

is based on variables βc,d in model UN-EX and UN-IM presented in Chapters 4.2.3.2 and 4.2.3.1.

The basic idea can be sketched as follows: A pair (d, sd) can be covered by a set of candidates Cd,

but it is su�cient for pair (d, sd) to be covered by only one c ∈ Cd. Thus, it needs to be decided

which c ∈ Cd covers the pair. Once such an assignment has been �xed, pair (d, sd) is guaranteed to

be covered in the respective branch of the B&B tree and can be added to the set of covered pairs

P cov. Such an assignment for guaranteeing a pair's coverage may very well require excluding certain

candidates or combinations of candidates from a solution as their selection would render the coverage

assignment non-viable. We will detail the considerations for excluding candidates or combinations of

them below. Note that the proposed branching scheme gives us at most |P |+ 1 = |D|+ 1 levels in the

the B&B tree.

The next pair to be assigned to a covering candidate is a pair that has not been assigned to a candidate,

i. e. it is selected from the set P \ P cov. Out of this set P \ P cov we select the pair (d∗, sd∗) with the

fewest potential covering candidates which have not been excluded from the solution. With Cex

being the set of candidates being de�nitely excluded from the solution, we determine (d∗, sd∗) =

arg min(d,sd)∈P\P cov {|Cd \ Cex|}.

The exclusion of candidates and of coverage assignments as mentioned above utilizes structural in-

formation and is a signi�cant part of the branching step as it allows to boil down the solution space

considerably. We will address the related concepts now based on a node n in the B&B tree which

is generated from a parent node by assigning the still unassigned pair (d∗, sd∗) selected as described

above to a candidate c ∈ Cd \ Cex. This, obviously, gives us |Cd \ Cex| children for a parent node.

Assigning a certain pair (d, sd) to a certain candidate c for being covered has several implications which

can be classi�ed into two types, namely

1. the exclusion of candidates

• Once candidate c is selected, any candidate c′ ∈ Nc may not be selected.

• For any tuple (c, c′) ∈ Tc, c′ has to be excluded if (d, sd) ∈ P(c,c′).

• For any triple (c, c′, c′′) ∈ T ′c, the combined selection of c′ and c′′ has to be prevented if

72



4.2 Solution Approaches

(d, sd) ∈ P(c,c′,c′′). Consequently, if c′ (c′′) has already been selected c′′ (c′) may not be

selected anymore.

2. the exclusion of coverage assignments between candidates and pairs

• By assigning pair (d, sd) to a candidate c ∈ Cd all assignments of pair (d, sd) to any other

candidate c′ 6= c ∈ Cd can be excluded since multiple coverage of a pair does not add any

value.

• If pair (d, sd) ∈ Bi
c, any pair (d′, sd′) /∈ Bi

c cannot be assigned to candidate c.

• Selecting candidate c may a�ect the covering potential of another candidate c′, as well, as

c may block c′ and, thus, prevent c′ from covering certain pairs due to limiting these pairs'

accessibility by c′. This holds for any pair (d′, sd′) ∈ P(c′,c) and � if at least one pair has been

assigned to candidate c′′ � for any pair (d′, sd′) ∈ P(c′,c,c′′). Furthermore, if any pair (d′, sd′)

has been assigned to candidate c′ and if Bc′ 6= ∅ and if (d′, sd′) ∈ P co(c′,c) ((d
′, sd′) ∈ P cl(c′,c)),

any pair (d′′, sd′′) /∈ P co(c′,c) ((d
′′, sd′′) /∈ P cl(c′,c)) may not be assigned to c′. Similarly, if any

pair (d′, sd′) has been assigned to candidate c′ and if at least one pair has been assigned

to candidate c′′ and if (d′, sd′) ∈ P co(c′,c,c′′) ((d
′, sd′) ∈ P cl(c′,c,c′′)), any pair (d′′, sd′′) /∈ P co(c′,c,c′′)

((d′′, sd′′) /∈ P cl(c′,c,c′′)) may not be assigned to c′.

4.2.4.2 Lower and Upper Bounds

Besides the branching scheme, a crucial part in B&B procedures is the determination of preferably

tight upper and lower bounds. In this part, we start by de�ning our lower bound (LB) and, afterwards,

present an upper bound (UB).

For determining a lower bound, we neglect crane interferences, i. e. we only consider given on-site

structures (demand areas and forbidden areas) obstructing cranes. We, then, seek a cost-optimal

selection C∗ of candidates that have not been excluded so far, i. e. C∗ ⊆ (C \ Cex), which can cover

the whole set of pairs P while respecting the single candidates' inter-structure sectors Bc. The latter

means that for each c ∈ C∗ at most one Bi
c ∈ Bc may be serviced by c. Additionally, prescribed

minimum distances between candidates have to be respected, i. e. distc,c′ ≥ Dmin
tc,tc′

has to be ful�lled

for all c 6= c′ ∈ C∗ with distc,c′ being the Euclidean distance between the crane locations associated

with candidates c and c′.

With Csel being the set of candidates already selected by assigning at least one pair (d, sd) ∈ P to each

candidate c ∈ Csel in the branching step and γc,Bi
c
being the binary variable indicating whether the

i-th inter-structure sector Bi
c ∈ Bc of candidate c is selected or not (as already introduced for the MIP

formulations in Chapters 4.2.3.1 and 4.2.3.3), we can formulate the following MIP for determining a

lower bound.
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MIP LB

Min Z =
∑

c∈C\Cex

|Bc|∑
i=1

γc,Bi
c
· πtc (4.38)

∑
c∈C\Cex

|Bc|∑
i=1

(d,sd)∈Bi
c

γc,Bi
c
≥ 1 ∀ (d, sd) ∈ P (4.39)

|Bc|∑
i=1

γc,Bi
c

+

|Bc′ |∑
j=1

γ
c′,Bj

c′
≤ 1 ∀c ∈ C \ Cex; c′ ∈ (C \ Cex) ∩Nc (4.40)

|Bc|∑
i=1

γc,Bi
c

= 1 ∀c ∈ Csel (4.41)

|Bc|∑
i=1

γc,Bi
c
≤ 1 ∀c ∈ C \

(
Cex ∪ Csel

)
(4.42)

γc,Bi
c
∈ {0, 1} ∀c ∈ C \ Cex; i = 1, . . . , |Bc| (4.43)

The objective (4.38) is to minimize total cost for selected inter-structure sectors of candidates not

having been excluded while branching. In this selection, each pair (d, sd) ∈ P has to be contained in

at least one sector (constraints (4.39)). When selecting the sectors, it has to be taken into account

that sectors of candidates violating the minimum distance constraint are not selected simultaneously

(constraints (4.40)). Additionally, for a candidate having been selected during branching, there is

exactly one sector selected (constraints (4.41)). Similarly, for any other candidate neither having been

excluded nor selected so far, at most one sector may be selected (constraints (4.42)).

For determining an upper bound, we choose an approach similar to the one for getting a lower bound.

The basic idea is that the lower bound may be infeasible with regard to the original problem as it

neglects crane interferences. An easy way to exclude solutions with crane interferences is to require

cranes to be located with su�cient distance from each other, i. e. for two candidates c and c′ (and

their associated cranes of types tc and tc′), minimum distance requirements have to be set to a value

that prevents the smaller crane (regarding height) from being blocked by the larger one (or, for cranes

of identical types, from blocking each other). Thus, for htc ≤ htc′ , we can set Dmin,UB
tc,tc′

= rmaxtc and

de�ne set NUB
c =

{
c′ ∈ C|distc,c′ ≤ Dmin,UB

tc,tc′

}
, accordingly, with distc,c′ being the Euclidean distance

between the crane locations associated with candidates c and c′. Then, using notation as introduced

so far, an optimal solution to the following MIP UB is a feasible solution to the original problem.
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MIP UB

Min Z =
∑
c∈C

|Bc|∑
i=1

γc,Bi
c
· πtc (4.44)

∑
c∈C

|Bc|∑
i=1

(d,sd)∈Bi
c

γc,Bi
c
≥ 1 ∀ (d, sd) ∈ P (4.45)

|Bc|∑
i=1

γc,Bi
c

+

|Bc′ |∑
j=1

γ
c′,Bj

c′
≤ 1 ∀c ∈ C; c′ ∈ NUB

c (4.46)

|Bc|∑
i=1

γc,Bi
c
≤ 1 ∀c ∈ C (4.47)

γc,Bi
c
∈ {0, 1} ∀c ∈ C; i = 1, . . . , |Bc| (4.48)

Note that, due to the modi�ed minimum distances, MIP UB cannot guarantee to �nd a feasible solution

even if there is a feasible solution to the original problem. Then, an upper bound can be given by

requiring each pair to be covered by its own crane of the most expensive type.

4.2.4.3 Fathoming of Sub-Problems

Finally, we have a look at fathoming sub-problems in order to control the B&B tree's size. Once a

feasible solution with objective value ZUB has been obtained, there are three criteria which can be

applied individually to check whether the current B&B node n can be fathomed:

1. n's lower bound ZLBn is not better than the best feasible solution, i. e. ZLBn ≥ ZUB,

2. n's lower bound ZLBn is better than the best feasible solution, i. e. ZLBn < ZUB, and the corre-

sponding solution of n is feasible (which gives a new best feasible solution),

3. for node n, there is no feasible lower bound (there cannot be a feasible solution to the original

problem in this branch of the B&B tree).

As can be seen, criterion 2. requires to check the feasibility of the lower-bound solution at node n,

PLBn . Remember that our lower bound accounts for minimum distances between selected candidates

and interferences of cranes with on-site structures, but not for inter-crane interferences. Thus, we

have to incorporate these in a respective feasibility check in order to verify (or falsify) compliance of

PLBn with the feasibility criteria given at the end of Chapter 4.1.1. With the instance data processed
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4 Tower Crane Selection and Location with Mutual Interference

as described in Chapter 4.2.1 and the information contained in PLBn we can formulate the following

constraint satisfaction problem CSP FC re�ecting the feasibility check.

CSP FC∑
c∈C∗

∑
j∈Sc

(d,sd)∈j

τ jc ≥ 1 ∀ (d, sd) ∈ P (4.49)

∑
j∈Sc

τ jc = 1 ∀c ∈ C∗ (4.50)

τ jc ∈ {0, 1} ∀c ∈ C∗; j ∈ Sc (4.51)

With the set of selected candidates C∗ and information on blocking on-site structures, for each c ∈ C∗,
we can derive the set Sc of sectors formed by blocking cranes and / or blocking on-site structures of

which c may at most cover one. Note that only those elements of Sc which contain at least one pair

(d, sd) ∈ Pc are relevant. Binary variable τ jc equals one if the crane associated with candidate c operates
on sector j and zero otherwise. A solution is feasible if there is a selection of exactly one sector j ∈ Sc
for each candidate (constraints (4.50)) so that each pair (d, sd) ∈ P is in at least one of the selected

sectors (constraints (4.49)).

Note that, here, we do not respect the coverage assignments from the branching step. This provides

some �exibility as it allows a re-assignment of pairs to candidates, thus, creating a feasible solution for

a given selection of candidates that may have been infeasible due to the original assignments.

4.3 Computational Evaluation

In the chapter at hand, the computational performance of standard solver CPLEX based on the MIP

formulations presented in Chapter 4.2.3 and of the B&B approach developed in Chapter 4.2.4 is

evaluated. When comparing the di�erent MIP formulations in Chapter 4.3.2 drivers of computational

e�ort (measured in computing time) are identi�ed. Once the MIPs have been evaluated the performance

capabilities of the B&B approach are analyzed and compared to the best performing MIP formulation

(Chapter 4.3.3). All evaluations are based on a test set whose generation will be described �rst in

Chapter 4.3.1. The implementation of both the instance generator and the solution approaches has

been done in Java 8 using the Eclipse development environment. All computational studies have been

performed on a computer with 32GB RAM and an i7-4790 CPU @ 3.6GHz employing CPLEX 12.6.3

as solver.
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4.3 Computational Evaluation

4.3.1 Test Set Generation

Note: all contents presented and all passages quoted in this chapter are taken from Briskorn and

Dienstknecht [12].

With the studies to be conducted, we aim at investigating how various parameters in�uence the com-

putational performance and at analyzing the performance capabilities of the approaches developed.

�In our study we vary

• the number of pairs to be covered,

• the number of crane types available,

• the site's size, and

• the grid's granularity.

The number of pairs drives the number of binary coverage variables and the remaining parameters drive

the number of candidates and, thus, also the number of binary variables. Note that we cannot expect

the number of variables to exactly scale with the parameters above. For example, for a given size of

the site and a given grid granularity, more pairs will leave fewer feasible grid points (i. e. candidates)

as compared to fewer pairs. Still, we expect to control the computational e�ort of instances by varying

these parameters when generating the test set.

Throughout our computational study we consider the same four crane types. These types di�er in their

maximum operating height and radius as well as the cost for selecting one crane of the respective type.

Furthermore, we have given required minimum distances of cranes which depend on the respective

types. The speci�c values are given in Table 4.2. We restrict the computational study to instances

with unique maximum weights to be lifted associated with demand areas. Therefore, we do not have to

consider a maximum operating radius with respect to a certain weight to be lifted. Note, furthermore,

that the maximum operating height is not given by a number, but related to a crane type, i. e. a larger

crane type corresponds to a larger maximum operating height. We vary the number of available crane

Crane type Maximum operating radius Cost per crane
Minimum distances
1 2 3 4

1 10 500 5 6 8 12
2 20 1,500 6 10 12 14
3 30 4,000 8 12 15 17
4 40 10,000 12 14 17 20

Table 4.2: Maximum operating radii, crane cost and minimum inter-crane distances

types in instances by parameter κ specifying that κ arbitrarily chosen types are available.

For the sake of comparability, we restrict our study to square-shaped sites and choose the side length

with respect to the maximum operating radius of the smallest crane type t = 1. The side length equals

ζ times the maximum operating radius of the smallest crane type t = 1 where ζ is an integer parameter
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4 Tower Crane Selection and Location with Mutual Interference

controlling the site's size. We restrict ourselves to supply areas and demand areas [. . .] that are either

rectangles or L-shaped areas. Their edges are parallel to those of the construction site. There are

two sizes of rectangles and one size of L-shaped area, the latter being rotated randomly by 0, 90, 180,

or 270 degrees when being placed on-site. Demand and supply areas are located randomly, but non-

overlappingly on-site employing the same procedure as described in Chapter 3.3.1. Hence, there are at

most two demand sites per supply site. The number of demand sites to be placed is given by parameter

η. A demand site's height is given in terms of the smallest crane type that is capable of serving the

demand site.� When comparing the single MIP formulations no forbidden areas are considered since

these only reduce the number of candidates being available and � as stated above � we can control

for this by varying the parameters listed above. However, when comparing the B&B approach to the

MIP-based approach we add forbidden areas with speci�c heights as an additional source of limiting

the cranes' operating areas. Forbidden areas are located with a �xed ratio with respect to the site's

size, i. e. an instance's number of obstacles is given by
⌊
ζ2

4

⌋
. We assume forbidden areas to be square-

shaped and to be located non-overlappingly with respect to supply, demand and other forbidden areas.

A forbidden area's height is given by the largest crane type being blocked by it. �The grid's granularity

is given by parameter θ as the distance of consecutive (horizontally or vertically) intersection points.

We encode a class of instances using the scheme κ − η − ζ − θ with the notation introduced above,

i. e. there are κ crane types available for a square-shaped site of size ζ × ζ (with the operating radius

of the smallest crane as unit) containing η pairs and a grid with horizontal and vertical distances of θ

between the grid's intersection points. In our study, we employ the following values:

• κ ∈ {1, 2, 3, 4}

• η ∈ {20, 30, 40}

• ζ ∈ {5, 8, 10}

• θ = {5, 10}�

For the comparison of the MIP formulations, we �generate a class of instances for each combination of

these values which gives us 72 di�erent classes of instances. Our test set includes 15 instances per class

which results in a total of 1,080 instances� (as mentioned above without forbidden areas). Similarly,

for the B&B evaluation, we generate a class of instances for each combination of these values which

gives us 72 di�erent classes of instances with, again, 15 instances per class. This gives us another 1,080

instances (this time, with forbidden areas).

4.3.2 Evaluation of the MIP-Based Approach

Note: all contents presented and all passages quoted in this chapter are taken from Briskorn and

Dienstknecht [12].

Now, we report the results of the study concerning the MIP formulations. Table 4.3 �summarizes

computing times (average and maximum time in seconds) per instance class with θ = 10 for the

single MIPs formulated in Chapter 4.2.3 (results for θ = 5 are not reported as we observed out-of-
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memory issues even for the small instance classes with respect to κ, η and ζ). Note that the maximum

allowed computing time for each MIP has been limited to one hour (3,600 seconds). We refrain from

giving separate times for input generation for the MIPs and solving the respective MIP since the input

generation time is marginal (less than three seconds in the worst case).

instance class
UN-EX UN-IM D-EX D-IM

avg. max. avg. max. avg. max. avg. max.

1-20-5-10 4.32 14.15 1.98 6.22 17.68 72.99 2.91 9.89
1-20-8-10 16.25 73.24 3.67 10.99 8.77 30.88 4.86 19.61
1-20-10-10 20.78 123.13 2.15 8.79 27.93 162.78 3.51 12.04

1-30-5-10 36.33 103.31 5.38 17.19 24.69 128.84 7.99 20.19
1-30-8-10 273.27 1,101.36 14.24 47.98 266.27 1,029.58 17.74 59.77
1-30-10-10 197.29 925.13 7.93 24.42 181.34 809.85 10.44 34.30

1-40-5-10 66.86 196.93 8.27 32.88 5.44 16.75 15.06 44.99
1-40-8-10 570.17 1,920.03 30.08 86.03 597.01 2,398.22 35.12 95.77
1-40-10-10 632.05 3,137.45 29.90 169.64 697.53 2,666.51 38.34 216.68

2-20-5-10 16.75 72.21 4.59 10.09 37.30 184.65 5.90 12.04
2-20-8-10 103.32 360.10 7.03 18.21 54.93 546.05 9.79 22.22
2-20-10-10 76.87 235.88 5.52 13.81 42.29 296.26 7.93 18.46

2-30-5-10 74.11 277.87 10.20 25.97 85.10 282.62 14.97 40.26
2-30-8-10 446.40 1,547.94 25.38 73.10 484.02 1,447.63 24.53 78.19
2-30-10-10 372.98 1,163.49 12.64 31.16 85.66 656.70 19.01 49.11

2-40-5-10 143.99 452.20 19.26 49.10 55.09 330.56 28.63 56.26
2-40-8-10 1,053.69 3,600.00 54.63 175.29 1,021.60 3,600.00 82.30 544.70
2-40-10-10 1,117.99 3,600.00 37.25 124.87 1,247.12 3,600.00 50.37 176.17

3-20-5-10 41.91 110.95 6.28 9.88 53.51 175.72 8.80 12.70
3-20-8-10 220.64 643.74 12.39 29.06 46.51 165.52 18.42 33.98
3-20-10-10 194.14 572.51 9.43 16.60 113.05 377.56 15.22 27.37

3-30-5-10 167.79 581.78 15.72 42.03 167.10 379.84 21.68 47.06
3-30-8-10 842.75 2,116.53 35.19 88.82 779.63 2,125.52 49.14 115.66
3-30-10-10 571.41 1,671.44 24.77 52.94 171.10 829.66 29.70 50.07

3-40-5-10 323.74 722.29 27.88 52.71 315.35 713.16 41.62 69.15
3-40-8-10 1,762.36 3,600.00 85.97 231.16 1,811.82 3,600.00 104.61 321.45
3-40-10-10 1,914.82 3,600.00 59.05 127.99 1,832.33 3,600.00 77.62 176.00

4-20-5-10 75.45 146.11 8.87 18.48 88.02 176.42 11.08 14.40
4-20-8-10 294.84 567.23 14.81 24.55 54.49 75.96 21.94 28.93
4-20-10-10 221.76 371.31 12.21 17.22 173.29 383.98 19.60 32.08

4-30-5-10 254.77 823.09 19.14 37.68 263.17 555.27 26.97 44.09
4-30-8-10 1,011.01 2,103.95 38.41 86.45 1,100.77 2,319.06 52.51 105.00
4-30-10-10 760.68 1,403.44 28.12 41.06 228.53 983.59 40.93 52.47

4-40-5-10 391.29 615.23 33.75 51.03 384.46 572.15 53.28 79.61
4-40-8-10 2,174.98 3,600.00 99.18 230.48 2,137.67 3,600.00 124.90 193.74
4-40-10-10 2,520.14 3,600.00 87.38 157.11 2,366.81 3,600.00 123.83 214.82

Table 4.3: Average and maximum computing times (in seconds) per MIP for grid granularity θ = 10

With the study, we aim at three goals.
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4 Tower Crane Selection and Location with Mutual Interference

1. Verify drivers of computational e�ort (measured in computing times).

2. Compare the MIP models developed in Chapter 4.2.3 with regard to their computational perfor-

mance and � if possible � give recommendations on which one to employ.

3. Determine the performance capabilities of the MIP models developed in Chapter 4.2.3.

We start by identifying drivers of computational e�ort. Here, we obtained the same insights for each

model formulation. For a given κ, ζ and θ the computational e�ort increases with η � an expected e�ect

since more pairs result in more variables and more constraints. As mentioned before more pairs lead to

less candidates which reduces the number of variables and constraints. Nevertheless, not surprisingly

the former e�ect turns out to be stronger than the latter. Similarly, computing times increase with κ for

given values of ζ, η and θ. Again, this does not come as a surprise since more crane types result in more

candidates which, in turn, lead to more variables and constraints. With respect to the available crane

types, it can be stated (from the single instances) that the larger the types available are, the higher

the computing times are. This may be explained by a higher potential for crane interferences, i. e.

more tuples and triples of candidates to be considered leading to more variables and constraints. We

observe a similar e�ect when decreasing θ since the grid's granularity a�ects the number of candidates.

Note that reducing θ by 50% for a given site results in the quadruple number of grid points. Hence,

in a study with θ = 5 instead of θ = 10 we observed both increasing computing times and, more

importantly, out-of-memory issues even for small instances (with regard to κ, η and ζ). An interesting

fact is that for a given κ, η and θ, average computing times are maximal for ζ = 8, i. e. for mid-sized

sites. We can only speculate that this is attributed to the instance classes' geometric structures. On

large sites, pairs are more dispersed in comparison to small sites. Thus, on large sites crane decisions

tend to decompose whereas on small sites, few cranes su�ce to cover all pairs. On medium-size sites

we need a considerable number of cranes and the instances tend to not decompose. Hence, interference

of a considerable number of cranes is to be handled which might complicate decisions.

Now, we compare the di�erent MIP formulations developed in Chapter 4.2.3. With one exception

(instance class 1-40-5-10), the models with implicit choice of sectors, i. e. UN-IM and D-IM, outperform

the corresponding ones with explicit choice of sectors, i. e. UN-EX and D-EX, with respect to both,

average and maximum computing times. Additionally, UN-IM dominates D-IM regarding average and

maximum computing times with one (2-30-8-10) and three exceptions (3-30-10-10, 4-20-5-10 and 4-40-

8-10), respectively. Such a consistent pattern cannot be observed for models UN-EX and D-EX.

As we enforced a time limit of one hour, optimal solutions could not be found with every MIP for

every single instance although feasible solutions (if existent) were found by each MIP for all instances.

Whereas UN-IM and D-IM never reached the limit and found optimal solutions for all instances, UN-

EX and D-EX failed to �nd an optimal solution for 14 and 19 instances, respectively. In cases where

only a feasible solution could be obtained, objective values are between 400% and 800% of the optimal

objective value.

Concluding the analysis of the models, model UN-IM usually dominates all other variants. Note

that the MIP models employing directed coverage variables seem to provide more information than

the others (by prescribing the direction of load-carrying moves). However, we can easily check which

direction is feasible once we obtained a solution to a MIP model employing undirected coverage variables

80



4.3 Computational Evaluation

and, therefore, can derive this seemingly additional piece of information.

The previous study shows that the best-performing MIP UN-IM is capable of solving the most chal-

lenging instances with θ = 10 within a few minutes. As there are up to 40 demand areas on-site this size

of instances is relevant for real-world applications. One may even argue that this is too large a number

of buildings for real-world construction sites. However, even if there are usually less than 40 buildings

on real-world construction sites, the granularity of representing such buildings could be increased, i. e.

a building could be partitioned into several lots each constituting a demand site. Nevertheless, with

regard to the granularity of the grid the applicability of the MIP models seems to be restricted.�

4.3.3 Evaluation of the Branch and Bound Approach

In the previous part, MIP UN-IM has been identi�ed as the best-performing representation of TCSPP-

GRID. We, now, report the results of the comparison between MIP UN-IM and the B&B approach

developed in Chapter 4.2.4. Since, in Chapter 4.3.2, it was found that the MIP-based approach could

handle instances with a grid granularity of θ = 10 quite well, but struggled with the �ner granularity

of θ = 5 we will focus the following analysis on θ = 5 and just brie�y summarize that the B&B

approach clearly outperforms the MIP-based approach with regard to computing times with only very

few exceptions for θ = 10. The results for θ = 5 are summarized in Table 4.4. For both approaches,

average and maximum computing times are given as well as the number of instances having been

aborted due to reaching the time limit of half an hour (1,800 seconds) or running out of memory. The

last two columns report the B&B approach's average and maximum percentage savings with regard to

computing times for those instances which have not been aborted and with regard to costs (objective

value) for those instances for which a feasible solution was found when aborted.

Since drivers of computational e�ort have already been identi�ed in Chapter 4.3.2 the focus in our

analysis is on comparing the approaches' performances, now.

A comparison of computing times reveals that the B&B approach signi�cantly outperforms standard

solver CPLEX in the MIP-based approach. In total, there have been only six instances where CPLEX

was faster than B&B with CPLEX achieving an average percentage time saving of 46.59% compared

to B&B. On the whole set of instances, B&B has only been aborted in �ve cases due to reaching the

time limit, �nding a feasible solution within several seconds in each case with an average percentage gap

compared to the lower bound of 4.75%. CPLEX, in contrast, reached the time limit for 88 instances,

failing to provide a feasible solution for 32 of them. As can be seen in the last column of Table 4.4

the objective function-e�ect of poor feasible solutions found by CPLEX until aborted is signi�cant, as

well, which, in practical applications, can easily be worth several thousand dollars.

Furthermore, the B&B approach resolves the memory issues observed employing the MIP-based ap-

proach since the former has never been aborted due to memory issues whereas the latter stopped 42

times.

With regard to further enhancing the computational performance of the B&B approach we will now

have a closer look at the lower and upper bounds found during the computations. As already mentioned

above, for the instances aborted, B&B �nds feasible solutions with a marginal gap with respect to
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instance class
computing time instances aborted computing time instances aborted computing time objective value

avg. max. time limit memory avg. max. time limit memory avg. max. avg. max.

1-20-5-5 43.42 93.47 0 0 1.80 3.36 0 0 -84.12 -96.49 � �

1-20-8-5 170.34 659.33 0 0 21.62 192.34 0 0 -76.01 -97.49 � �

1-20-10-5 173.53 656.20 0 0 10.98 26.14 0 0 -61.91 -96.47 � �

1-30-5-5 214.47 523.45 0 0 3.44 8.93 0 0 -89.97 -99.06 � �

1-30-8-5 529.89 1,800.00 3 0 8.01 21.70 0 0 -77.05 -98.77 -25.00 -25.00

1-30-10-5 279.41 1,800.00 2 0 14.26 37.45 0 0 -74.95 -94.92 -50.00 -50.00

1-40-5-5 627.58 1,374.35 0 0 2.98 6.11 0 0 -84.45 -99.56 � �

1-40-8-5 495.88 1,800.00 2 0 13.00 55.69 0 0 -79.79 -99.19 -25.00 -25.00

1-40-10-5 468.71 1,800.00 2 0 20.22 93.49 0 0 -82.15 -99.91 -37.50 -37.50

2-20-5-5 68.59 264.11 0 0 2.62 8.50 0 0 -92.01 -98.64 � �

2-20-8-5 213.45 968.20 0 0 10.45 30.27 0 0 -85.25 -97.98 � �

2-20-10-5 164.13 735.48 0 0 13.85 52.79 0 0 -71.91 -96.41 � �

2-30-5-5 402.47 1,800.00 1 0 8.60 55.89 0 0 -93.77 -99.49 � �

2-30-8-5 798.80 1,800.00 5 0 13.84 35.36 0 0 -89.97 -98.19 -49.96 -62.73

2-30-10-5 578.18 1,800.00 3 0 22.69 65.52 0 0 -72.46 -98.43 -46.53 -57.58

2-40-5-5 762.21 1,800.00 4 0 4.25 9.11 0 0 -98.32 -99.59 -40.36 -52.38

2-40-8-5 388.30 1,800.00 5 0 16.47 41.10 0 0 -90.65 -97.68 -1.22 -1.22

2-40-10-5 799.34 1,800.00 4 3 163.17 1,800.00 1 0 -90.92 -98.22 -46.91 -50.91

3-20-5-5 100.85 235.94 0 0 5.03 9.33 0 0 -93.76 -98.30 � �

3-20-8-5 557.39 1,709.20 0 0 21.19 42.11 0 0 -92.56 -98.40 � �

3-20-10-5 326.47 1,546.19 0 0 31.90 61.87 0 0 -82.30 -96.26 � �

3-30-5-5 547.99 1,800.00 2 0 13.03 91.43 0 0 -97.91 -98.96 -15.00 -15.00

3-30-8-5 1,207.03 1,800.00 7 0 26.37 48.72 0 0 -95.05 -98.36 -53.35 -68.00

3-30-10-5 945.54 1,800.00 5 0 162.36 1,800.00 1 0 -92.38 -96.91 -49.43 -50.00

3-40-5-5 1,152.24 1,800.00 2 3 8.15 15.12 0 0 -99.15 -99.64 -56.38 -71.74

3-40-8-5 1,015.52 1,800.00 4 6 27.99 56.05 0 0 -94.02 -95.71 -60.14 -64.48

3-40-10-5 1,277.11 1,800.00 5 7 324.92 1,800.00 2 0 -88.90 -88.90 -45.37 -46.00

4-20-5-5 128.10 204.41 0 0 12.89 81.83 0 0 -79.34 -96.63 � �

4-20-8-5 811.35 1,800.00 1 0 34.58 42.52 0 0 -91.87 -97.51 -69.57 -69.57

4-20-10-5 636.99 1,800.00 1 0 57.69 66.18 0 0 -84.81 -95.24 -71.88 -71.88

4-30-5-5 758.76 1,800.00 1 0 36.1 215.09 0 0 -95.10 -99.18 � �

4-30-8-5 1,783.27 1,800.00 9 4 41.71 55.11 0 0 -95.18 -95.18 -58.29 -70.49

4-30-10-5 1,209.70 1,800.00 7 0 75.83 135.28 0 0 -92.39 -95.12 -56.39 -65.03

4-40-5-5 1,680.53 1,800.00 6 0 11.13 15.70 0 0 -99.31 -99.50 -45.08 -66.67

4-40-8-5 1,800.00 1,800.00 3 9 49.94 57.19 0 0 � � -59.38 -59.38

4-40-10-5 1,800.00 1,800.00 4 9 220.91 1,800.00 1 0 � � -69.03 -69.03

Table 4.4: Computational results of MIP UN-IM and B&B for grid granularity θ = 5
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the lower bound. For the remaining instances, the optimal solution was obtained within a few seconds

(with one exception where it took about 200 seconds to �nd the optimal solution). As, then, can be

concluded from the summary in Table 4.4 proving optimality consumed quite an amount of time. One

may suspect that this is attributed to poor lower bounds. Indeed, there are instances with lower bounds

of 20% to 25% gap with regard to the optimal solution, but this only holds for very few instances. In

general, this gap is rather small amounting to less than 5%. However, despite of these tight bounds,

many nodes in the B&B tree are evaluated.
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5 Concluding Remarks and Outlook

Finally, the thesis' content and contribution are summarized (Chapter 5.1) and ideas for future research

are presented (Chapter 5.2).

5.1 Conclusion

This thesis was concerned with the selection and on-site location of �xed-base tower cranes on con-

struction sites. Although tower cranes are a key factor in construction projects from both an economic

and operational perspective an extensive literature review revealed that research on the topic has been

rather limited to date. The current work presented two new concisely de�ned problem settings cap-

turing relevant aspects of tower crane selection and location in real-world applications. With these

problems de�ned and approaches developed to solve the respective problems, this research adds to

both the application-oriented and the methodological branch of literature.

The �rst problem, TCSPP, was concerned with cost-optimally selecting tower cranes from a given set

of types with di�erent speci�cations, i. e. cost, operating height and load weight-dependent operating

radii, and locating them on a polygonal construction site in order to establish transport relations for

given pairs of polygonal supply and demand areas. Such a transport relation was considered to be

established if each point of both the supply and the demand area was within one crane's operating

radius for the maximum weight to be lifted and the crane had su�cient height for serving the demand

area with its given height. Crane locations could be chosen arbitrarily within the site polygon as

long as no crane was positioned within an infeasible area. The problem was proven to be strongly

NP-complete. The approach developed proved that the by nature in�nite set of position candidates

within the site polygon can be boiled down to a �nite set without loss of optimality which, then, allows

to represent the problem as classical set cover problem and to apply corresponding solution techniques

developed over decades. This set cover problem was shown to be solvable by standard solver CPLEX

within several minutes even for rather challenging instance sizes.

The second problem, TCSPP-GRID, considered basically the same construction site setting like the

�rst one, but added interdependencies between cranes and between cranes and on-site structures to the

problem. These interdependencies included minimum distance requirements between single cranes and

interferences of cranes and of cranes with on-site objects of su�cient height. Consequently, in contrast

to the �rst problem, cranes could not be located independently which required a new approach to

solving the problem. Thus, the problem introduced a grid laid over the site polygon with only the

grid's intersection points being potential crane locations, i. e. a discretization of space with potential
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loss of optimality took place. The problem was proven to be strongly NP-hard. Two approaches were

developed for solving the problem: the �rst one was a MIP-based approach employing a standard

solver (CPLEX in this thesis), the second one was a branch and bound approach. For the MIP-based

approach four MIP formulations di�ering in the number of constraints and variables were proposed

and computationally tested. A computational study revealed that this approach particularly struggled

with �ne grid granularities, i. e. small horizontal and vertical distances between the grid's intersection

points. The branch and bound approach exploiting structural problem knowledge relieved the issue

and competed favorable against the MIP-based approach.

5.2 Ideas for Future Research

Note: this chapter is based on Briskorn and Dienstknecht [10] and Briskorn and Dienstknecht [12].

One way to extend TCSPP and TCSPP-GRID is to include new features.

This may be a time dimension and, related to that, more complex cost structures. In Chapter 3.4, a

rather simple approach to time dynamics has been presented. However, this may be enhanced, e. g. as

the site changes over time certain supply or demand or forbidden areas may be valid for certain intervals

and cranes may have to be re-located in order to still comply with the current site requirements. Then

cranes need to be erected, dismantled and re-located with each of these processes being charged with a

certain cost. Additionally, operating cost may be considered as it might be cost-optimal to dismantle

and re-errect a crane instead of keeping it in-place and operating it all the time.

Crane capacities, i. e. maximum work loads for each crane, can be added as already indicated in

Chapter 3.4. Along with this, it may be allowed to split servicing a pair of demand and supply area

between multiple cranes. In addition, not only the single cranes' capacities may be limited, but the

number of cranes of each type being available.

From both a practical and a theoretical point of view, enhancements like material hand-overs, i. e.

supply chains of multiple cranes, and lift path planning / checking are interesting. Clearly, there

are downsides of material hand-overs such as increased crane con�ict potential and increased material

handling e�ort. However, it may still be cost-optimal due to smaller (and cheaper) cranes being capable

of establishing transport relations or it may simply be inevitable as large cranes cannot be located on

suggested sites. In the work at hand, transport relations were considered established if there was an

uninterrupted path between every point of the supply site and every point of the corresponding demand

site. In practice, there may be requirements regarding such a lift path, e. g. the path has to have a

certain width in order to really make materials transportable.

Ultimately, it may be desired to integratedly plan the whole site layout, not limited to cranes. Steps

for reaching that goal can be the integrated location of cranes and supply sites (which, in turn, may

require planning the sites' situation, orientation or dimensions) or the integrated planning of several

crane types, i. e. not limited to �xed-base tower cranes, but considering other types of tower cranes or

even mobile cranes. Depending on the type of crane and its operating characteristics, more complex

geometric considerations are required.

Closely related to the last point mentioned above is the matter of how objects are represented. In
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the work at hand, all structures were represented by simple polygons and cranes were represented by

points. This may be inappropriate � particularly the point-based representation of cranes as cranes in

reality have a two-dimensional footprint.

With regard to the approaches proposed, the development of new more e�cient procedures may be a

promising, but challenging task. One way to achieve this goal could be the exploitation of geometric

problem properties. Regarding the branch and bound approach presented in Chapter 4.2.4, although

the computational study revealed the lower and the upper bounds to be quite tight in general, the lower

bound had a signi�cant gap with respect to the optimal solution for some instances and, furthermore,

there was no guarantee of �nding a feasible initial solution as an upper bound.

The ultimate goal, however, will be to combine the continuous representation of space from TCSPP with

the operational restrictions from TCSPP-GRID. Then, again, solution procedures may be developed,

but it would be even more interesting to identify structural properties that, e. g., allow to boil down

the solution space without loss of optimality as provided for TCSPP in this thesis.

All these aspects mentioned above � in combination with construction cranes' high relevance from both

an operational and economic perspective � make research regarding cranes an interesting subject as

it o�ers the opportunity to develop theoretical insights and to provide decision support for real-world

problem settings.
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