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Abstract

The Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere - New

Frontiers (CRISTA-NF) instrument has successfully taken part in the African Monsoon

Multidisciplinary Analyses - Stratospheric-Climate Links with Emphasis on the Upper

Troposphere and Lower Stratosphere (AMMA-SCOUT-O3) measurement campaign in

July and August 2006. Deployed on the high-altitude aircraft M55-Geophysica radiance

measurements in the mid infrared are taken between about 5 and 21 km altitude with

a vertical and horizontal sampling of up to 250 m and 15 km, respectively.

The Juelich Rapid Spectral Simulation Code (JURASSIC) was used to retrieve the

composition of the atmosphere from the radiance in the spectral range between about

776 to 868 cm−1. A new retrieval setup and improvements of the forward model used

for the retrieval allowed to obtain temperature, altitude and the volume mixing ratios

of water vapor (H2O ), ozone (O3 ), nitric acid (HNO3 ), peroxyacetyl nitrate (PAN),

carbon tetrachloride (CCl4 ) as well as aerosol extinction and a radiometric offset.

Intercomparisons between CRISTA-NF data and in situ measurements from the

Fast in situ Stratospheric Hygrometer (FISH) and the Fast Ozone Analyzer (FOZAN),

respectively, show a good agreement.

The retrieved variables are available on a grid with 500 m vertical spacing with a

vertical resolution of about 500 m to 3 km below the flight altitude. Hence, information

about different atmospheric trace gases and temperature are available in the upper

troposphere, lower stratosphere (UTLS) region with a higher spacial resolution than

today’s satellites and a better coverage than in situ measurements can provide. The

simultaneous observation of trace gases mainly originating from the troposphere (like

H2O and PAN) and from the stratosphere (like O3 and HNO3 ), respectively, allows to

determine the origin of air masses and detect mixing.

The results for the test flight on 29 of July 2006 are discussed in detail. This flight

started in Verona and went to the south of Italy and back, crossing twice over the

subtropical jet. The CRISTA-NF observations over Italy and the Mediterranean Sea

indicated that a tropopause fold was located on the northern side of the jet. Tracer-

tracer correlation between O3 and PAN showed the presence of mixed tropospheric and

lowermost stratospheric air at this fold and around the lapsrate tropopause north of it.

The structures seen in connection with this tropopause fold in the O3 mixing ratios

of CRISTA-NF were reproduced by a Chemical Lagrangian Model of the Stratosphere

(CLaMS) simulation but were not found in such detail in ECMWF analysis data. These

results emphasize that CRISTA-NF provides and excellent tool to observe and analyze

mesoscale processes in the UTLS.
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Kurzzusammenfassung

Das CRISTA-NF Instrument hat im Juli und August 2006 erfolgreich an der AMMA-

SCOUT-O3 Meßkampagne teilgenommen. An Bord des hochlfliegenden Forschungs-

flugzeuges M55-Geophysica wurden Strahlungsmessungen im mittleren Infrarot zwis-

chen 5 und 21 km Höhe mit einer vertikalen und horizontalen Abtastung von bis zu

250 m, bzw 15 km durchgeführt.

Die in Jülich entwickelte JURASSIC Programbibliothek wurde genutzt, um die at-

mosphärische Zusammensetzung aus den Strahldichten im Spektralbereich zwischen 776

to 868 cm−1 herzuleiten. Eine neue Konfiguration für dieses sogenannte Retrieval und

Verbesserungen des dabei genutzten Vorwärtsmodells haben es ermöglicht, Temperatur,

Höhe und die Volumenmischungsverhältnisse von Wasserdampf (H2O ), Ozon (O3 ),

Salpertersäure (HNO3 ), Peroxyacetylnitrat (PAN), Tetrachlormethan (CCl4 ) sowie die

Aerosolextinktion und einen Strahlungsuntergrund zu erhalten.

Vergleiche zwischen CRISTA-NF Daten und in situ Messungen von dem Hygrometer

FISH bzw dem Ozonmessgerät FOZAN zeigen eine gute Übereinstimmung.

Die abgeleiteten Variablen liegen unterhalb der Flughöhe auf einem vertikalen 500 m

Gitter mit einer vertikalen Auflösung von etwa 500 m bis 3 km vor. Somit sind die

Informationen über die verschiedenen atmosphärischen Spurengase und die Temperatur

für die Region der unteren Stratosphäre und oberen Troposphäre (UTLS) mit einer

höheren räumlichen Auflösung als sie heutige Satelliten und einer besseren Abdeckung

als sie in situ Instruments bieten können verfügbar. Die gleichzeitige Beobachtung von

Spurengasen die ihre Hauptquellen in der Troposphäre (wie H2O and PAN) bzw. in der

Stratosphäre (wie HNO3 and O3 ) haben erlaubt es, die Herkunft der Luftmassen und

Vermischungen nachzuweisen.

Die Ergebnisse für den Testflug am 29. Juli 2006 werden detailliert diskutiert.

Dieser Flug startete in Verona und führte nach Süditalien und zurück, wobei er zweimal

den subtropische Strahlstrom kreuzte. Die CRISTA-NF Beobachtungen über Italien

und dem Mittelmeer zeigen, dass eine Tropopausenfalte an der nördlichen Seite des

Strahlstroms lag. Spurengaskorrelationen zwischen O3 und PAN zeigen das Vorhanden-

sein von vermischter Luft aus Troposphäre und unterer Stratosphäre bei dieser Falte und

nördlich davon rund um die Tropopause (definiert duch den Temperaturgradienten).

Die Strukturen des O3 Mischungsverhältnisses im Zusammenhang mit dieser Tropo-

pausenfalte wurden auch mit einer CLaMS Modellrechnung reproduziert, wurden aber

nicht mit derselben Detailfülle in der ECMWF Analyse gefunden. Diese Ergebnisse

heben hervor, dass CRISTA-NF ein hervoragendes Instrument zur Beobachtung und

Analyse mesoskaliger Prozesse in der UTLS darstellt.
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1 Introduction

The Upper Troposphere Lower Stratosphere (UTLS) is the transition layer between the strato-

sphere and the troposphere and is important for the exchange of trace gases (e.g. Holton et

al., 1995). At the same time it is an atmospheric layer which is even today sparsely covered

by in situ measurements and not well resolved by satellite observations (e.g. Engel et al.,

2003). Therefore a lot of questions concerning the processes behind transport and exchange

of trace gases through the UTLS and its magnitude are still unanswered. Further, it is known

that the temperature structure of the stratosphere and thus the vertical circulation within it

can have effects on the climate and the weather in the troposphere. However, the underlying

mechanisms are still not sufficiently understood (WMO, 2006). This makes measurements

which can improve the knowledge about the UTLS, its structure, dynamics, and chemistry

especially valuable. Such measurements can be provided by the CRyogenic Infrared Spec-

trometers and Telescopes for the Atmosphere - New Frontiers (CRISTA-NF) onboard the

high-altitude research aircraft M55-Geophysica.

CRISTA-NF was developed in a cooperation between Forschungszentrum Jülich and the

University of Wuppertal. It is based on the satellite instrument CRISTA, which was measuring

twice, in November 1994 and August 1997, from a platform deployed and retrieved by a

space shuttle (e.g. Offermann et al., 1999; Riese et al., 1999a; Grossmann et al., 2002). Its

central telescope and spectrometers were reused for the development of the aircraft instrument

CRISTA-NF.

Deployed on the high-altitude aircraft M55-Geophysica, which reaches a maximum altitude

of up to 21 km (Stefanutti et al., 1999), CRISTA-NF measurements cover an altitude range

from 5 km to the flight altitude with a sampling of about 250 m (Kullmann et al., 2004).

Figure 1 shows the CRISTA-NF instrument inside M55-Geophysica during service in the

hangar. It is situated at the front of the aircraft. The bay is closed during the flight, leaving

just an opening at the position of the window at the upper left side of CRISTA-NF. This

allows remote sensing of the UTLS with a high resolution and dense coverage.

CRISTA-NF performed its first successful measurements during the SCOUT-O3 campaign
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Figure 1: CRISTA-NF in the front bay of M55-Geophysica, photograph: Fred Stroh.

in autumn 2005 (Hoffmann et al., 2009; Kullmann, 2006). This work concentrates on the

results of the AMMA-SCOUT-O3 Campaign in Summer 2006, with a particular focus on

the test flight, on 29 July 2006. The AMMA campaign included ten flights: The test flight

(TF2), four transfer flights (T1-T4) and five local flights (L1-L5). During TF2, there were

nearly cloud free conditions and the active attitude system was in operation, providing ideal

conditions for the trace gas retrieval. In addition, this flight was chosen because it passed over

the subtropical jet, observing both, air from the lowermost stratosphere in the north and the

upper tropical troposphere in the south, as well as the transition between these air-masses

(see Figure 2).

Figure 2 shows a schematic drawing of various exchange processes through the tropopause.

The green shaded area shows the latitude range explored by CRISTA-NF measurements

during the test flight mentioned above. The thick black line indicates the position of the

dynamical tropopause, blue lines show the isentropes and the position of the subtropical jet

is marked by a pink shading. Isentropic mixing across the tropopause can take place in the

subtropics (indicated as red arrows). In the tropics tropospheric air can enter the stratosphere

by overshooting convection. The lowermost stratosphere is marked by a blue shading, and

the Brewer-Dobson circulation is indicated by orange arrows.
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Figure 2: Scheme of exchange processes across the dynamical tropopause (thick black line).
Drawing based on Holton et al. (1995) and Hoor et al. (2002). Thin blue lines display the
potential temperature. The pink shaded area indicates the position of the subtropical jet,
the blue shaded area highlights the lowermost stratosphere. Possible exchange processes are
indicated as arrows, the approximate setting of the CRISTA-NF measurements during the
AMMA test flight are displayed as green shading.

Measurements are taken with two mid infrared spectrometers, detecting radiance between

4 and 15 µm with 15 detector channels in total (Kullmann et al., 2004). From the radiance

measured the composition of the atmosphere (“level-2 data”) is derived. This “retrieval”

requires calculations based on inverse mathematical methods. Here, the Juelich Spectral

Simulation Code (JURASSIC) (Hoffmann, 2006) was applied and adopted to the requirements

of CRISTA-NF.

Simulations from the Chemical Lagrangian Model for the Stratosphere (CLaMS) were used

for scientific data interpretation. In situ measurements of water vapor, O3, and temperature

taken onboard M55-Geophysica are used for comparison in order to establish the reliability

of the retrieved data.

This work concentrates mainly on the analysis of the Lower Resolution Spectrometer (LRS)
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detector between 776 and 868 cm−1, because it provides the possibility to derive temperature

and altitude, which are a basic requirement for all trace gas retrievals, together with water

vapor (H2O), ozone (O3), nitric acid (HNO3), peroxyacetyl nitrate (PAN), carbon tetrachlo-

ride (CCl4) and an estimate of the aerosol extinction from the same detector channel. These

are important trace gases for the following reasons:

• H2O:

Water vapor is the most important natural greenhouse gas and plays an important

role in the formation of clouds and the chemistry of both troposphere and stratosphere

(WMO, 2006). Its main source in the atmosphere is the evapotranspiration at the earth

surface. Few H2O enters from the troposphere into the stratosphere due to dehydration

in connection with freezing of ice crystals (e.g. Danielsen, 1982). An increase in upper

tropospheric water vapor has been observed and is linked to increasing temperatures

therefore providing a major positive feedback process to climate change (Trenberth et

al., 2007)

• O3:

Additionally to its well known role to shield the earth surface from ultraviolet radiation,

O3 plays an important role for the temperature structure of the stratosphere and thus

for the circulation within it. It is mainly originated in the lower tropical stratosphere.

The exchange of O3 between stratosphere and troposphere is still not well quantified

(e.g. Denman et al., 2007).

• HNO3:

Nitric acid belongs to the NOy (reactive odd nitrogen) species and plays a main role in

the formation of Polar Stratospheric Clouds (Toon et al., 1986) and cirrus clouds (e.g.

Krämer et al., 2006). Like for O3, the highest HNO3 mixing ratios are found in the

lower stratosphere (Murcray et al., 1968).
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• PAN:

Peroxyacetyl nitrate is a tropospheric NOy constituent mainly originating from pollution

and hence in the troposphere. Its lifetime is longest (in the order of few month) in the

upper troposphere. There, the only sink for PAN is photolysis (Talukdar et al., 1995).

Therefore it is an indicator for long range transport of pollutants. Allen et al. (2005)

showed that it has a important infrared emission band at about 794 cm−1. It was first

observed with infrared remote sensing in the upper troposphere by the Michelson Inter-

ferometer for Passive Atmospheric Sounding (MIPAS) balloon instrument (Remedios et

al., 2007a) and its global distribution was described by Glatthor et al. (2007).

• CCl4:

Carbon tetrachloride belongs to the ozone depleting species and is originated in the

production process of chlorofluorocarbons (CFCs) (WMO, 2006), i.e. in the troposphere

and has its main sink in the stratosphere. Thus its total amount decreases since the

production of CFCs is reduced. Its lifetime is relatively long (20 to 30 years, e.g. Volk

et al., 1997 and Happell and Roche, 2003), therefore its mixing ratio is almost constant

in the troposphere but decreases with altitude in the stratosphere.

Overall, CRISTA-NF can provide information about both, stratospheric and tropospheric

trace gases. This enables to distinguish tropospheric and stratospheric air-masses and to

identify transport and mixing among them. Together with its high resolution and coverage

this provides the possibility for a detailed analysis of mesoscale processes in the UTLS.

Chapter 2 presents the CRISTA-NF instrument and radiance measurements. Details of

the retrieval, necessary modifications of the forward model and the retrieval setup can be

found in Chapter 3. In Chapter 4 the results from the test flight on the 29 of July 2006 are

presented and discussed in detail. A summary and outlook is given in the final Section 5.
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2 Instrument and measurement description

This Section gives a short introduction to the instrument and describes important steps in

the processing of the radiance data. Detailed descriptions of the CRISTA-NF instrument can

be found in Kullmann et al. (2004) and Kullmann (2006).

CRISTA-NF is a limb sounding instrument. Thus, the measured radiance originates along

a line of sight (LOS), see e.g Gille and House (1971). For CRISTA-NF, the LOS is positioned

orthogonally to the flight direction to the right of the aircraft. The emitted radiance is

dependent on the density of the emitting gases. The density of the atmosphere increases

exponentially towards the earth surface. Therefore it can be assumed in first order that most

of the radiance originates from the point where the LOS is closest to the earth surface, the

tangent point. The altitude of the tangent point (“tangent altitude”) is usually lower or equal

to the aircraft altitude.

Figure 3: Limb sounding geometry without refraction.

Figure 3 shows a scheme of the limb sounding geometry for different LOSs. It is obvious

from this geometry that a lower tangent point means at the same time a larger horizontal

distance of the measurement from the aircraft. This implies that vertical profiles shown later

are slant rather than vertical. A limb sounding geometry implies a moderate horizontal but

a high vertical resolution. Due to the density gradient in the atmosphere the tangent point

is lowered additionally by refraction. This effect is included in the radiative transfer model.
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A schematic drawing of CRISTA-NF is shown in Figure 4. The atmospheric radiance

enters the spectrometers trough a zinc selenide (ZnSe) window, a deflection mirror, a Herschel

telescope, and several stray light baffles (telescopes and baffles are not drawn in detail and

summarized as “optics” in Figure 4). A field stop and a Lyot stop constrain the LOS to a

beam of 30“ in the horizontal and 5“ in the vertical. The primary mirror is turned to focus

onto 60 different pointing angles. This leads to measurements of radiance from 60 LOSs with

different tangent altitudes. Such a profile of radiance covers an altitude range between about

5 and 21 km.

Figure 4: Schematic drawing of CRISTA-NF (from Kullmann, 2006).

CRISTA-NF contains two mid infrared Ebert-Fastie grating spectrometers (see e.g. Fastie,

1991). The Ebert-Fastie spectrometer type is used because it is especially robust against

vibrations (Barthol, 1994) and hence well suited for measurements onboard satellites and

aircraft. The beam splitter distributes the radiance among the two spectrometers. The “High

Resolution Spectrometer” (HRS) has a resolution of about λ/dλ = 1000 (at a wavelength λ

around 12.5 µm). The resolution of the “Low Resolution Spectrometer” (LRS) for λ ≈ 12.5µm

is about λ/dλ = 500. Figure 4 displays only one spectrometer containing the Ebert mirror
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and the grating. Gallium-doped silicium (Si:Ga) semiconductor detectors are used to sample

a broad wavelength interval during a short measurement time of about 1.2 s. These detectors

need to be cooled with liquid helium to a temperature of about 12 K. A profile of atmospheric

radiance measured by varying pointing angles of the primary mirror consists of 60 spectra, so

it is recorded within about 70 s.

The whole instrument apart from the electronics is embedded in a cryostat, because the

optical system needs to be cooled to minimize infrared emission from the instrument itself.

This assures that also the relative low atmospheric radiance can be measured with a good

signal to noise ratio. A more detailed description of the optical system of the satellite in-

strument CRISTA is presented by Barthol (1994) and the modifications for CRISTA-NF are

discussed by Kullmann (2006).

The spectrometer setup used during the AMMA campaign and the spectral ranges of the

detectors are listed in Table 7 in Appendix A.1. There are eight detectors for the HRS (H1-H7

and H5R) and seven detectors for the LRS (L1-L3 and L5-L8)1 covering the spectral range

of their spectrometers. This work concentrates on the analysis of the detectors L6 (776-868

cm−1) and L5 (849-963 cm−1). Figure 5 shows a profile of spectra measured with theses

two detectors during the test flight of the AMMA campaign. Note that the spectra overlap

between the two detector channels at about 849 to 868 cm−1.

Figure 6 shows which trace gases cause the spectral features in the spectral range of de-

tector L6 at four different altitudes. The black line in each Panel is a spectrum measured by

CRISTA-NF, the black, dashed line results from the reference forward model (RFM; Dudhia,

2004, see Section 3.1 for details), which calculates the radiance for a given atmospheric com-

position and LOS based on the High-resolution transmission molecular absorption database

(HITRAN)2004 spectroscopic data base (Rothman et al., 2005). The contribution of the

different trace gases to the total radiance is calculated with RFM, too. The most distinct

spectral features are the CO2 Q branch at about 792 cm−1 and a CFC-11 band emission be-

tween about 840 and 860 cm−1. The relative contributions of several other emitters vary with

1The detector names refer to the exit slit of the spectrometers. Slit 5 is occupied with two detectors for
the HRS, there is no detector in slit 4 for the LRS. For details see Appendix A.1.
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Figure 5: Spectra from detector L5 (849-963 cm−1) and L6(776-868 cm−1) from profile 172
during the AMMA test flight. Color coding shows the approximate tangent altitude (without
corrections and refraction).

altitude: There are several H2O peaks in the spectra at 9.4 and 12.2 km, but they are hardly

visible above. The magnitude of the aerosol and PAN emissions decrease with altitude, too.

In contrast, the largest emissions originating from O3 and HNO3 relative to the total radiance

are found for the upper tangent altitudes.

In order to retrieve atmospheric data, radiance values integrated over selected spectral

bands (ISBs) are used in this work (see e.g. Hoffmann, 2006). They are described in detail in

Section 3.2.1. No ISBs are defined in the spectral region between about 800 and 825 cm−1 be-

cause of spectral cross talks, which are caused by reflections inside the spectrometer (Preusse,

1995; Riese et al., 1999a). Additionally, the abundance of CFC-22 and some other minor emit-

ters effecting the spectral region between about 800 and 825 cm−1 are not well known, but

they have few influence outside this region. Therefore most differences between the simulation

and the measured spectra are found between 800 and 825 cm−1 in Figure 6.

CRISTA-NF was developed from parts of the original satellite instrument CRISTA. CRISTA
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Figure 6: CRISTA-NF spectra from detector L6, flight TF2, profile 76 (black line). RFM
calculation for the retrieval result is shown as black dashed line (the RFM calculation is based
on an atmosphere including all emitters listed in Table 2 and 3). Colored lines show the con-
tribution of the most relevant trace gases to the result: CO2 (green), O3 (red), H2O (blue),
CFC-11 (cyan), CFC-22 (pink), HNO3 (orange), CCl4 (violet) and PAN (orchid). The contri-
bution of Aerosol is shown as yellow, the instruments radiance offset as gold line. Grey bars
indicate the position of the ISBs used for the retrieval.

took part in two successful space missions in November 1994 and August 1997 for measurement

periods of about ten days, where it was deployed and returned to Earth by a space shuttle.

CRISTA measured thermal radiance of the atmosphere with unprecedented vertical and hor-

izontal resolution. Trace gas concentrations and temperatures were retrieved by an onion

peeling retrieval (Riese et al., 1999a). The results gave insight into the atmospheric compo-

sition covering an altitude range from the upper troposphere and stratosphere where various

small and mesoscale structures were observed (e.g. Riese et al., 1999b; Preusse et al., 2002)

up to the lower thermosphere (e.g. Kaufmann et al., 2002). Additionally, due to the marked

influence of clouds on mid infrared spectra, clouds were identified and information about
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their distribution gained (e.g. Spang et al., 2002). For the deployment on M55-Geophysica

the central CRISTA Herschel telescope and twin spectrometer were integrated into a smaller

cryostat. Because of the lower observer altitude of CRISTA-NF on M55-Geophysica compared

to CRISTA, measurements with an even higher vertical resolution in the UTLS region are

possible.

2.1 Calibrations and data corrections

Before it is possible to use the CRISTA-NF radiance measurements to retrieve atmospheric

properties several corrections and calibrations are necessary. Three calibrations are performed

to translate the instrument output (usually recorded as voltages) into physical values:

• The black body calibration translates the detector signals into radiance, see Ap-

pendix A.1.1 for details including radiance errors for the detectors L5 and L6.

• For each detector the wavelength corresponding to the voltage monitoring the grating

position is determined by the wavelength calibration. This is done by comparing

measured spectra to spectra modeled with RFM. To do so, it is necessary to know the

spectral resolution, which could not be determined within the wavelength calibration.

Therefore the resolution measured for the satellite instrument CRISTA was used, see

Appendix A.1.2. In-flight data were used for the wavelength calibration, see Section

A.1.3. It is important to note that spectra recorded during different turning directions

of the grating (forward and backward spectra) must be separated in advance of the

wavelength calibration.

• The alignment of the primary mirror is determined within the line of sight (LOS)

calibration to better than 40′′ = 0.011◦, see Appendix A.1.4.

In a moving aircraft, the pointing of CRISTA-NF is not only governed by the alignment of

the primary mirror but also by the instrument and hence the aircraft attitude. The attitude

monitoring system (AMS, see Appendix A.1.5) of CRISTA-NF has a high time resolution of

28Hz during AMMA but is not sufficient to ascertain the absolute attitude, see Appendix

A.1.7. Therefore data from M55-Geophysicas avionic system, recorded within the Unit for

Connection with Scientific Equipment (UCSE, MDB, 2002, see Appendix A.1.5) was used

with a time resolution of only 1Hz but better absolute accuracy.

12



To make use of the high time resolution of the AMS and the better absolute accuracy of

the UCSE data, it is advantageous to combine both information. To do so, the time of the

internal clock of CRISTA-NF needs to be synchronized with UCSE time. Time deviations of

more than one hour where observed for CRISTA-NF. The accuracy of the corrected time is

usually better than 0.5 seconds, see Appendix A.1.6 for details.

Additionally, it is necessary to know the offset angles between CRISTA-NF and the air-

craft. CRISTA-NF is connected by wire rope springs to the aircraft, which are stiff enough

to ensure constant offset angles during each flight. Nevertheless, these offset angles have a

relatively large uncertainty compared to the LOS calibration, see Appendix A.1.8.

The pointing corrections is described in detail in Appendix A.1.7. Most important for the

pointing are the roll (Φ) and pitch (Θ) angles. The standard deviation of these angles mea-

sured by the M55-Geophysicas avionic system is according to MDB (2002) σ = 0.05◦. For the

trace gas retrieval a standard deviation of the same order as the error of the LOS calibration

is required (≈ 0.01◦). Since the absolute accuracy is despite the corrections dependent on the

M55-Geophysicas avionic system and an additional systematic error results from the offset

angles, the resulting error is too large. Therefore, the pointing must be determined within

the trace gas retrieval, see Section 3.2.

During some flights, for example during the AMMA test flight on 29 of July 2006 (discussed

in Section 4.4), an active attitude system was used. This means that the alignment of the

primary mirror is adjusted to compensates for the aircraft movements. The active attitude

system does not influence the knowledge of the pointing, but did improve the pointing stability

during the measurements significantly, see Appendix A.1.9.
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2.2 Cloud index

In contrast to spectra measured by microwave instruments like e.g. the Millimetre-wave Air-

borne Receiver for Spectroscopic CHaracterisation of Atmospheric Limb-Sounding (MARSCHALS)

(Dinelli et al., 2009) mid infrared spectra are strongly influenced by clouds. This prevents a

trace gas retrieval in the vicinity of clouds but does on the other hand provide a possibility

to identify the LOSs influenced by clouds and gain information about cloud distribution and

properties (Spang et al., 2002).

Figure 7: Spectra measured during AMMA TF2, profile 32. Colors shows the approximated
(uncorrected) tangent altitude. Black bars in the background mark the ISBs used to calculate
the CI. Red and yellow rectangles mark the ISBs used to calculate the CI for one spectrum
with a CI < 3.5 (red) and one spectrum with a CI > 3.5 (yellow). Colored lines framed by
gray lines indicate a CI < 3.5.

Figure 7 shows a profile of radiance spectra measured with CRISTA-NF during the test

flight containing both, spectra measured under cloud free conditions and spectra influenced

by clouds or optically dense conditions. Clouds emit a nearly continuous radiance spectrum
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in the infrared. The radiance it thereby generally higher radiance values than in the case of

a cloud free spectrum at the same temperature with partly optically thin spectral features

caused by emission of gases. Along the LOS the radiance emitted by clouds can be modified

due to the absorptions by trace gases, causing absorptions signals as the structures on the

spectra from below about 5 km in Figure 7.

Because the shape of the spectra differs between clear air and clouds or optically dense

conditions, they can be identified through color ratios, the so-called cloud index (CI). Here

the ratio between two ISBs at ISBA = 832− 834 cm−1 and ISBB = 791− 793 cm−1 is used.

If the ratio CI = ISBA/ISBB < 3.5, the spectrum is considered to be influenced by clouds

or optically dense conditions (see red bars in Figure 7) and is excluded from the trace gas

retrieval.

One altitude step above, yellow bars mark one spectrum with a CI larger than 3.5, which

would be identified to imply cloud free conditions. Nevertheless, this spectrum has a clearly

higher radiance difference to the one at the next altitude above (i.e. lower radiance) than

usual for the cloud free spectra. The approximated tangent altitudes show no indication that

this is caused by a altitude difference. Therefore, it is likely that there is still some influence

from of clouds although the cloud index is larger than 3.5. Hence, always one spectrum in an

altitude above all spectra with a cloud index below 3.5 is excluded from the retrieval, too.

Figure 8 shows a cross section of the cloud index for the flight AMMA T2. During the

first half of the flight the atmosphere is optically thin down to 8-10 km altitude. Single points

with lower CI between 8 and 15 km altitude are in most cases artifacts recorded while the

primary mirror is reset to its initial position for the next profile. They can be recognized

because they occur only in the last spectra of a profile. After 13:00 UTC CIs smaller than

3.5 are found up to an altitude of 15-16 km, indicating a dense cloud layer.

The altitudes are corrected for refraction and the offset angles detected during the altitude

retrieval (see Section 3.2.6). Nevertheless, the true altitude of the cloud can be higher, because

it can be situated at any position along the LOS, not necessarily at the tangent point, see

e.g. Adams et al. (2009). Anyhow, in addition to provide a filter to prevent the influence
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Figure 8: Altitude cross section for the cloud Index during AMMA T2, altitudes corrected for
refraction and offset angle from the altitude retrieval. The black line shows the flight height
of M55-Geophysica.

of clouds on the retrieval, the CI provides information about the distribution of clouds along

the flight track.
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3 JURASSIC

The Juelich Rapid Spectral Simulation Code (JURASSIC) (Hoffmann, 2006) is applied to

retrieve atmospheric data from CRISTA-NF radiance measurements. JURASSIC was previ-

ously used to analyze stratospheric observations (e.g. Hoffmann et al., 2008; Hoffmann and

Alexander, 2009). For this work, it was adapted to the requirements of CRISTA-NF, including

tropospheric conditions. JURASSIC contains, among others, the JURASSIC forward model

(JFM), a radiative transfer model based on pre-calculated emissivity tables, and the JURAS-

SIC retrieval processor (JRP). This Chapter outlines the improvements applied to JFM and

presents the setup used for retrieval of the data from the AMMA campaign.

3.1 Forward model

A radiative transfer model calculates the radiance emitted by and transferred trough an

atmosphere of given chemical and microphysical composition prescribed for an observation

geometry. The general equation for the radiative transfer through the atmosphere is according

to Chandrasekhar (1960):

I(ν, x) = I(ν, 0)τ(ν, 0, x) +

∫ x

0

J(ν, x′, x)dx′, (1)

where ν is the wavenumber, x the coordinate along the LOS, I(ν, x) the radiance emerging

from the ray path at the location of the instrument, I(ν, 0) the incident radiance entering at

the end of the LOS opposite to the instrument, τ(ν, 0, x) the transmission of the atmosphere

and J(ν, x′, x) the source function along the LOS consisting of thermal emission and scattering.

Neglecting scattering and assuming local thermal equilibrium the source function corresponds

to the Planck function B[ν, T (x′)]. The forward model combines a radiative transfer model and

the instrument model. Taking into account the finite spectral resolution of the instruments

the radiative transfer equation transforms to:

I =

∫ ν1

ν0

f(ν)

∫ ∞

0

B[ν, T (x′)]
d

dx′
ε(ν, x′, 0)dx′dν, (2)
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with emissivity ε(ν, x′, 0) = 1 − τ(ν, x′, 0), and instrument function f(ν). The incoming

radiance I(ν, 0) is zero because the instrument is pointing through the atmosphere towards

cold space.

3.1.1 Emissivity tables

In order to calculate ε(ν, x′, 0), all spectral lines in the mid infrared region of interest for

all relevant species have to be taken into account. This can be done with a line-by-line

model, which calculates the radiance with a high accuracy but is rather time-consuming due

to the large number of emission lines that may be involved. Since the retrieval requires a

large number of forward model calculations, a fast forward model based on pre-calculated

emissivity look-up tables implemented in JURASSIC is used. For each trace gas and ISB,

the look-up tables list the emissivity integrated over a given spectral range as a function of

pressure (p), temperature (T ) and column density (u). The column density is calculated by:

u = q ∗ p/(kB ∗ T ) ∗ dx, (3)

with the volume mixing ratio (q), the path length (dx) and the Boltzmann constant kB.

The emissivity look-up tables are pre-computed with the line-by-line model RFM version 4.27

(Dudhia, 2004) with emissivity depending on p, T , q and dx. Line data or absorption cross-

sections are taken from the HITRAN2004 spectroscopic database (Rothman et al., 2005)2

To reduce the table size and the computation time, the emissivity tables depend only on

u instead of both, q and dx. For the calculation of the emissivity it usually makes a difference

if q or dx is varied because the fraction of self- and air-broadening depends on the partial

pressure and therefore on the volume mixing ratio of the emitter.

For practical reasons these dependence on q cannot be considered in the look-up tables,

i.e. the self-broadening effect needs to be neglected3. This approximation is acceptable for

typical atmospheric pressures and mixing ratios with exception of the H2O and CO2 continua.

2A conversion tool from Anu Dudhia allows to include also the CO2 line mixing into RFM version 4.27.
3Inside the RFM Code, the self-broadening is disabled by setting the partial pressure to zero for the

pressure broadening.
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Therefore continua were not included in the look-up tables. Instead, to solve this an explicit

H2O continuum was included directly into JURASSIC (see Section 3.1.2).

For the look-up tables, the line-by-line emissivities obtained with RFM are convoluted with

the instrument function, which has a Gaussian shape for CRISTA-NF and integrated over the

given wavenumber interval. If integrated emissivities are used like line-by-line emissivities,

two approximations are implicitly made (e.g. Hoffmann, 2006):

1. Band Transmittance Approximation

Look-up tables contain spectrally integrated values which means that the spectral mean

of the emissivity and the spectral mean of Planck’s function are used. Their product

is then integrated along the LOS. The band transmittance approximation leads to an

error (Rodgers, 2000).

2. Continuum Approximation

For each segment of the ray path the total emissivity is calculated from the total trans-

mission (τ = 1 − ε). The total transmission is obtained by multiplying the mean

transmission of each emitter. This neglects possible spectral correlations between emit-

ters, i.e. their transmittance is treated like a continuum. If two or more emitters have

a spectral correlation, this can lead to significant errors.

There are multiple approaches to correct for errors introduced by these approximations. For

the BANDPACK model (Marshall et al., 1994) additional tables are included to account for

the correlation between each pair of emitters to minimize the effect of the Continuum Approx-

imation for the analysis of the radiance from the CRISTA satellite instrument. To minimize

the error caused by the Band Transmittance Approximation, the Emissivity-Growth Approx-

imation (EGA) and the Curtis-Godson Approximation (CGA) are applied for CRISTA.

In the current work different methods were tested to correct for the errors caused by

the Band Transmittance Approximation and the Continuum Approximation: EGA, CGA, a

linear regression and the combination of all those (see Section 3.1.4). Figure 9 shows the effect

of the H2O continuum and the methods mentioned above on the differences between JFM and

RFM for the 787–790 cm−1 ISB for about 160 different example atmospheres (for the other

ISBs see Appendix B.1, Figure 64). The JFM results applying neither EGA nor CGA differ

with a standard deviation of more than 10% from the RFM result. EGA and CGA both
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significantly reduce this difference and the combination of the two methods leads to an even

better result, as already observed by Marshall et al. (1994). Both methods combined with a

regression lead to a bias of less than 0.01% with a standard deviation < 1%, see Figure 9f. The

H2O continuum included in all but the first column is most important for the lower altitudes,

where the amount of water vapor in the atmosphere is high.

The same comparison for all ISBs used in the retrieval setup (Section 3.2) can be seen in

Appendix B.1, Figure 64. The ISBs below 800 cm−1 show a similar deviation of JFM to RFM

to the one shown in Figure 9. In contrast, the JFM result for ISBs with higher wavenum-

bers agree much better to the RFM result even without the correction (832-832.9 cm−1 and

844.3–847.3 cm−1) or only corrected by EGA (863–864 cm−1). This underlines the special

importance of the corrections applied to the forward model for wavenumbers in the interval

775 to 800 cm−1. The standard deviation of the difference between the RFM and JFM cal-

culations for the test atmospheres (red dashed line in Figures 9 and Figure 64) is used for

computing the forward model covariance for the retrieval (see Table 4).

20



NONE

−30 −15 0 15 30

5

10

15

20

A
lti

tu
de

 [k
m

]
a) Continuum

−30 −15 0 15 30

5

10

15

20
b)

EGA 

−30 −15 0 15 30

5

10

15

20

A
lti

tu
de

 [k
m

]

c) CGA 

−30 −15 0 15 30

5

10

15

20
d)

  MEAN (EGA,CGA) 

−30 −15 0 15 30

Radiance diff. [%]

5

10

15

20

A
lti

tu
de

 [k
m

]

e) Regression

−30 −15 0 15 30

Radiance diff. [%]

5

10

15

20
f)

Figure 9: Percentage radiance difference between JFM and RFM calculation for 163 ex-
ample atmospheres for the 787-790 cm−1 ISB for a) JFM without corrections and without
H2O continuum b) with H2O continuum, c) with EGA and H2O continuum, d) with CGA and
H2O continuum, e) mean of CGA and EGA including H2O continuum, f) with regression (in-
cluding EGA, CGA and continuum). Red solid lines: Average over all profiles and altitudes,
red dashed lines: standard deviation.
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3.1.2 Continuum

Molecules with strong emission bands in the mid infrared, like H2O and CO2 have continua

which result from the superposition of line wings of these bands. The effect of self broadening

is not negligible for these continua because they are very sensitive to the line shape of the lines

they originate from. Since the effect of self-broadening cannot be included in the JURASSIC

emissivity tables (see Section 3.1.1), it became necessary to calculate continuum contributions

explicitly to analyze CRISTA-NF observations.

The H2O continuum was directly implemented into JFM (based on the algorithms and

coefficients used in RFM, see Clough et al., 2005). It is calculated based on both column

density and partial pressure preventing further approximation errors. The CO2 continuum

is neglected here, because resulting contributions are smaller and effectively compensated by

the regression (see Section 3.1.4). All emissivity tables are computed excluding the continua.

3.1.3 EGA and CGA

EGA and CGA are two methods to minimize the errors caused by the Band Transmission

Approximation.

EGA

The Emissivity Growth Approximation (EGA) was proposed by Gordley and Russell (1981)

based on a technique developed by Weinreb and Neuendorfer (1973). It assumes that the

emissivity always increases along the LOS. Instead of calculating the emissivity for the total

path, the growth of emissivity for each segment dx is calculated, using a pseudo mass path.

The pseudo mass path is chosen to give the correct composite emissivity for the total path

including the new segment based on its pressure and temperature. For details about the

implementation of EGA into JFM see Hoffmann (2006).

CGA

The Curtis-Godson approximation (CGA) is based on Curtis (1952) and Godson (1981). For

a detailed description see e.g. Marshall et al. (1994). It calculates the emissivity for the whole
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path like for a homogeneous cell using an averaged temperature and pressure weighed with

the column density. The CGA was implemented into JURASSIC in the frame of this work,

see also Appendix B.1.

Combining EGA and CGA

Marshall et al. (1994) noted that a combination of EGA and CGA often decreases the errors

of a band model further than each method alone. This empirical result is also observed for

most JFM ISBs used in this work (see Figure 9e and Figure 64 Column 5 in Appendix B.1).

For the sequential HNO3 retrieval (see Section 3.2.7) this correction is sufficient. However,

for the spectral region with wavenumbers smaller than 800 cm−1 even this combination leads

to forward model errors in excess of 1%. Hence, further corrections are necessary for this

spectral region.

3.1.4 Regression

Corrections based on a linear regression are a common method to improve fast radiative

transfer models (see e.g. Francis et al., 2006). Such a correction is applied here to minimize

the deviation of JFM from RFM (see Figure 9 and Figure 64 in Appendix B.1) for each ISB.

The regression coefficients are obtained by least squares fitting of JFM to RFM computations

for about 160 training atmospheres. These atmospheres are composed of ECMWF data

for H2O , O3 , and temperatures and climatological data for the other emitters taken from

Remedios et al. (2007b). Nine regression coefficients ai with i = [0, ..., 8] are calculated for

each ISB, according to the regression equation:

Ireg = a0 + a1 ∗ IEGA + a2 ∗ ICGA+

a3 ∗ TCGA + a4 ∗ pCGA+

a5 ∗ uC2H6 + a6 ∗ uCO2 + a7 ∗ uH2O + a8 ∗ uO3

(4)

Regression coefficients are calculated for:

• Constant radiance offset a0
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• Weighing factors for the amount of radiance from EGA IEGA and CGA ICGA (a1,a2)

• Curtis-Godson temperature TCGA and pressure pCGA, see Appendix B.1, Equation 18

(a3,a4)

• The column densities of along the LOS C2H6 (uC2H6), CO2 (uCO2), H2O (uH2O) and

O3 (uO3), see Appendix B.1, Equation 12 (a5,a6,a7,a8)

In this way the regression combines the radiance from EGA and CGA and provides an ad-

ditional radiance corrections dependent on the atmospheric conditions. The other retrieved

gases and forward model parameters are not included into the regression, because to little

is known about their variability a priori to the retrieval. Multiple regression schemes were

tested and the one given above provided the best correction.

Furthermore, the regression turned out to depend on the observer altitude. Therefore

regression coefficients are calculated for 12 different observer altitudes: 14.6 km to 20.1 km

with 0.5 km spacing. These altitudes where chosen, because the most frequent observer

altitudes during the AMMA transfer flights are about 18.1 km and 19.1 km. Additionally to

the regression coefficients the JURASSIC regression tool calculates the forward model errors

and their correlation lengths (see Section 3.2) from the remaining difference between the JFM

with regression to the RFM radiance.

Figure 10 shows the difference between final radiance values and respective RFM calcu-

lations for the profiles of atmospheric variables obtained from the retrieval of the AMMA

flight T3. In this way the regression is tested on an independent data set to confirm that

the variability of the training atmospheres is adequately chosen for the regression. Figure 10

shows that there are still some systematic differences, but the mean differences are smaller

than 1% for all ISBs, which is sufficient for the retrieval.

3.2 Retrieval

A forward model calculates the radiance received along an LOS in the atmosphere, but to

analyze the CRISTA-NF data the received radiance has to be inverted into an atmospheric

state. Since the forward model is non-linear, there is no direct analytical way to calculate
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Figure 10: Percentage radiance difference between JFM and RFM calculations for atmospheric
conditions of flight T3. Black lines with crosses: All Profiles of AMMA T3; red solid line:
Mean; red dashed line: Standard deviation.

the composition of the atmosphere from the measured radiance. Hence, inverse methods

must be used. This is done with the JURASSIC retrievals processor (JRP). JRP is based on

the optimal estimation approach and provides the maximum a posteriori solution (Rodgers,

2000) of the inverse problem. The choice of the retrieval setup is important to gain as much

information about the atmosphere as possible for the given measurement.

3.2.1 Retrieval setup

Choice of spectral bands

The main retrieval setup used in this work is based on 9 ISBs in the spectral range of detector

L6. Measurements from this detector are used because its data quality is high and because

it covers a wide spectral range containing absorptions of various trace gases. The spectral
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position and the main targets for each ISB are presented in Table 1 (see also Figure 6 for the

contributions of different emitters to the total radiance). Most ISBs are chosen because they

contain characteristic emissions of targeted trace gases. However, it is important to keep in

mind that JRP fits the radiance on all ISBs simultaneously by varying all retrieved variables.

Hence, not only changes of the main target influence the radiance of each ISB.

Table 1: Integrated spectral bands (ISBs) used and main target variables.

ISB [cm −1] Main target

777.8–778.7 O3

784–785 H2O
787–790 Offset
791–793 CO2 (Temperature)
794.1–795 PAN
796.6–797.5 CCl4
832–832.9 Aerosol
844.3-847.3 CFC-11 (Altitude)
863–864 HNO3

The widths of the ISBs are between 0.9 and 3 cm−1. At least 0.9 cm−1 to use two or

more measured radiance values for each ISB (the spectral sampling for detector L6 is about

0.4 cm−1), but also not too wide, in order to focus on selected spectral features.

The 787–790 cm−1 and 832–832.9 cm−1 ISB are situated in spectral regions with rather

low emissions to obtain information about aerosol (which has an almost continuum like emis-

sion) and the radiometric offset, which is a background radiance not completely removed by

applying the black body calibration.

Retrieved variables and forward model parameters

Trace gas volume mixing ratios, temperature, and aerosol extinction, which are varied during

the retrieval process are called “retrieved” variables or emitters. Trace gas mixing ratios,

which are kept constant are called “forward model parameters” further on. Table 2 lists the

retrieved variables and Table 3 the forward model parameters and pressure. The pressure is

not varied by the retrieval in the actual sense but is calculated from temperature and altitude
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assuming hydrostatic conditions. Tables 2 and 3 give the references to a priori values, a priori

standard deviation and the uncertainty of the spectroscopic data. The spectroscopic data

are taken from the HITRAN2004 spectroscopic database (Rothman et al., 2005). Errors are

included in HITRAN2004 for emitters whose line data are available. If emissions are defined

through cross-sections4 the errors are not given within the data base or Rothman et al. (2005).

Hence, the original references to the cross-sections and their errors are included in Table 2

and 3.

Table 2: Retrieved gases, aerosol and temperature.

Emitter A priori Altitude dependent Minimum Uncertainty
state dependent a priori a priori standard of spectros-

standard deviation deviation copic data

CCl4 global 1 midlat./tropical1 1% 2%3

H2O midlatitude1 200 ppmV under, 50% 5%2

2 ppmV over 17 km
HNO3 tropical1 800 pptV under 25km 20% 4.5%2

tropical1 above
O3 ECMWF 300 ppbV 5% 5%2

PAN set to 100% of approximated 100% 4%4

zero profile from
(Glatthor et al., 2007)

Aerosol HALOE5 - 500% -
Temperature ECMWF - 5 K -

1Remedios et al. (2007b), 2Rothman et al. (2005), 3Nemtchinov and Varanasi (2003), 4Allen
et al. (2005)
5HALogen Occultation Experiment (Hervig et al., 1993)

Most a priori values for the trace gases are taken from the MIPAS reference atmospheres

(Remedios et al., 2007b). The CO2 value is adjusted for the increased amount in 2006 com-

pared to the 2001 value given in the reference atmospheres. CFC-113 is increased by a factor

of 3.7 to achieve a better agreement to more recent measurements, e.g. Dufour et al. (2005)

and Laube et al. (2008). This also improves the residuals in spectral regions where CFC-

113 emits. For HNO3 only the tropical value is used, while the values are altered between

4Different to line data, which calculate a spectrum based on the shape of each line, cross-sections describe
the whole spectrum dependent on temperature and pressure. They are used if there are two many lines or
the line data are not known well enough.
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Table 3: Forward model parameters.

Para- A priori Altitude Minimum Uncertainty
meter state dependent a priori a priori standard of spectros-

standard deviation deviation copic data

C2H6 midlat./tropical1 midlat./tropical1 5% 10%2

ClONO2 tropical1 tropical1 5% 3.5%3

CO2 modified global1 5% 5%2

global1

CFC-11 HAGAR, HAGAR, 5% 3%
midlat./tropical1 midlat./tropical1

CFC-113 modified - 10% 5%4

global1

CFC-114 global1 - 5% 5%4

CFC-12 HAGAR HAGAR, 5% 1%5

midlat./tropical1 midlat./tropical1

HCFC-22 ACE-FTS or global1 5% 4%6

global1

HNO4 midlat./tropical1 midlat./tropical1 5% 10%7

OCS global1 global1 5% 10%2

Pressure ECMWF - 1% -

1Remedios et al. (2007b), 2Rothman et al. (2005), 3Wagner and Birk (2003), 4McDaniel
et al. (1991), 5Varanasi and Nemtchinov (2003), 6Ballard et al. (2000), 7May and Friedl (1993)

tropical and mid latitude values for other gases. A priori profiles for O3 and temperature are

taken from interpolated European Centre for Medium-Range Weather Forecasts (ECMWF)

operational analysis data with 0.5 degrees horizontal resolution on 28 pressure levels interpo-

lated on the retrieval grid and position for each profile. Annual mean HCFC-22 values from

the Atmosphere Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS; see e.g.

Bernath et al., 2005) are used for the tropical flights (L5, T2, T3). CFC-11 and CFC-12 pro-

files are combined from the High Altitude Gas Analyser (HAGAR) measurements up to the

flight altitude and values from Remedios et al. (2007b) above (see Figure 21, Section 3.2.6).

A priory standard deviations can be set in the control file and/or altitude dependent on

the same grid as the a priori data. If both exist, the maximum of them is used for each grid

point in the retrieval, the standard deviation from the control file can therefore be regarded as

the minimum standard deviation. Rather large values are chosen for the standard deviation of
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the retrieved variables to give a greater weight to the measurements compared to the a priori

data. For forward model parameters the best estimate available for the standard deviation is

used.

A priori covariance and correlation lengths

The a priori covariance for retrieved variables is determined by a first-order autoregressive

model (Hoffmann, 2006):

Sij = σiσj ∗ exp
−∆z

cz

, (5)

where σi and σj are the standard deviations for the row and the column (given in Tables 2

and 3), ∆z is the vertical grid spacing, and cz is the vertical correlation length. The correlation

length determines the strength of the decay of the correlations in the a priori covariance (e.g.

Hoffmann et al., 2008). For each retrieved variable the vertical correlation lengths can be set

individually. Its choice may influences the retrieval error and characteristics (e.g. resolution)

significantly.

Especially for O3 and HNO3 long vertical correlation lengths are necessary to stabilize the

retrieval result. The reason is presumably, that the highest abundance of these emitters is

located above the measurement altitudes. Uncertainties in trace gas mixing ratios at upper

altitudes may effect the retrieval results. Due to the lack of proper measurement information

the retrieval needs to be constrained stronger. In contrast, for the other retrieved trace gases

the concentration usually decreases with altitude. For CCl4 and PAN a vertical correlation

length of one kilometer is chosen, for H2O and temperature the vertical correlation length is

set to 5 km and to 25 km for aerosol. It is important to note that the vertical resolution is

influenced by the correlation length but can still become much finer than the given correlation

length, dependent on how much information is provided by the measurements (see Section

3.2.4). The effect was studied carefully by analyzing the retrieval diagnostics to chose ideal

correlation lengths.
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Retrieval grid

The retrieval is run on a vertical grid varying with altitude:

• 500 m spacing for altitudes between 3-20 km

• 1 km spacing for altitudes between 1-3 km and between 20-30 km

• 2 km spacing for altitudes between 30-50 km

• 2.5 km spacing for altitudes between 50-65 km

Tests performed in the frame of this work showed the best retrieval performance regarding

measurement content, resolution and retrieval errors for a spacing of the retrieval grid similar

to the tangent altitude spacing. Since forward and backward spectra are separated in advance

of the retrieval (see Appendix A.1.3), the vertical spacing distance between two measured

spectra used in the retrieval is approximately 500 m. It is necessary to include information

about the atmosphere above the measurement altitudes because these layers contribute to the

radiance along the LOS. A coarser grid is sufficient there and saves computation time.

A 1D-retrieval is run for each profile independently. This means that for each profile

no horizontal grid is used and no horizontal structures are resolved. Information on the

horizontal structures in the atmospheres is obtained from changes between successive profiles.

The horizontal distance between two profiles is about 15 km, depending on the speed of the

aircraft. In addition, it can be assumed that the information at a grid point is originated

mainly close to the horizontal position of the vertically nearest tangent point (respecting

refraction). Using a 1D-retrieval is a reasonable approach because vertical structures are

generally dominant in the atmosphere and exhibit a much stronger influence on the retrieval

result than horizontal structures.

Tangent point and offset

As discussed in Appendix A.1.7 the tangent altitude could not be determined accurately

enough based on the attitude system alone. Hence, it is retrieved together with the trace

gases, temperature and the radiometric offset. The a priori error for the altitude retrieval
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is given as standard deviation of the pointing angle of 0.5o. In the setup used the tangent

altitude is varied keeping all other variables and atmospheric parameters on a fixed vertical

grid5. The term “tangent altitude retrieval” is used, even though the changes of the radiance

are caused by the differences of variables and parameters (including pressure, but not pressure

alone) along the perturbed LOS. This concept was also used e.g. by Kiefer et al. (2007) for

MIPAS. No vertical a priori correlation length is set for the tangent altitudes. This ensures

that all tangent altitudes are retrieved independently. The retrieval of the radiance offset is

restricted to one value for all ISBs and altitudes.

Figure 11: View point and tangent point without refraction.

The result of the tangent altitude retrieval with JURASSIC is not directly the tangent

altitude but the altitude of the point on the line of sight at the horizontal position of the first

guess for the tangent point, the so-called view point (see Figure 11)6.

However, differences between the altitude of the view point and tangent altitude can

amount to more than 200 m, therefore a correction is necessary. The real tangent point

without refraction is calculated through raytracing as the altitude and geographic position

of the point closest to the earth surface omitting refraction. All figures displaying retrieved

tangent points without refraction are corrected in this way. The refraction is omitted when

5I.e. there are two independent grids: One for the atmosphere and one for the instrument related variables
like tangent altitude and offset.

6This provides the possibility to define not only limb sounding geometries but geometries without defined
tangent points, like nadir or upward looking LOS, too.
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displaying the tangent altitude to focus on effects caused by the aircraft and instruments

alignment. The retrieval grid for trace gases and other atmospheric variables does take the

refraction into account.

Radiance uncertainties

The a priori error assumed for the offset and the other radiance errors for each ISB is given

in Table 4. There are two sources for radiance uncertainties, the instrument and the forward

model. The standard deviation of the forward model is estimated during the determination

of the regression parameters (see Section 3.1.4). Like the regression coefficients it is varying

with the observer altitude, but only to a small amount. The values given in Table 4 are valid

for an observer altitude of 19.1 km.

The radiance uncertainties of CRISTA-NF are estimated in the frame of the black body

calibration. The values used for the retrieval can be found in Table 4.

They are divided in

• Offset: A systematic, absolute radiance error.

• Gain: A systematic, relative radiance error.

• Absolute and relative noise: Random error.

Table 4: A priori radiance uncertainties.

ISB [cm−1] Forward Model Offset Gain Absolute noise Relative
standard deviation [%] [W/m2sr cm−1] [%] [W/m2sr cm−1] noise [%]

777.8-778.7 0.70 0.0009 1 0.00005 1
784-785 0.82 0.0009 1 0.00005 1
787-790 0.51 0.0009 1 0.00005 1
791-793 0.35 0.0009 1 0.00005 1
794.1-795 0.45 0.0009 1 0.00005 1
796.6-797.5 0.42 0.0009 1 0.00005 1
832-832.9 0.25 0.0009 1 0.00005 1
844.3-847.3 0.21 0.0009 1 0.00005 1
863-864 0.18 0.0009 1 0.00005 1

32



The aim of an optimal estimation retrieval is to find the best representation of the real

atmospheric state taking into account a priori knowledge as well as the full error characteri-

zation of the instrument. However, the best result is only obtained, if the a priori and error

covariances are known exactly. In reality, the covariances are often less accurately known.

Therefore it was decided to tune the covariances to closely reproduce the measured radiance

in the retrieval procedure. However, an exact fit of the measured radiance is not desired at

this point since such a approach typically leads to significant retrieval error amplifications

and would contradict the idea of the optimal estimation method. Reproducing the measured

radiance exactly could even favor unrealistic solutions, i.e. strong oscillations of trace gases,

due to the measurement noise.

In the chosen retrieval setup only the absolute and relative noise are considered in the

measurement error covariance. The relative and absolute radiance noise (see Table 4) were

set just high enough to enable to fit the resulting radiance to the measured ones within the

noise. Nevertheless, all uncertainties are considered when computing the error budget of the

retrieval result.

3.2.2 χ2-test

The consistency of the retrieval with the measurements and a priori data can be validated

by a χ2-test (e.g. Rodgers, 2000). A histogram of normalized χ2/m (m is the number of

radiance measurements for each profile) is shown in Figure 12. It contains all profiles of the

AMMA flights TF2, T1, T2, L5, T3 and T4 (1506 profiles, if forward and backward spectra

are separated).

Like for the CRISTA-NF H2O retrieval for SCOUT-O3 (Hoffmann et al., 2009), most values

of χ2/m for the retrieval result are smaller or close to 1.0 indicating that these retrievals are

consistent with the measured and a priori data within their errors. This can only be achieved

by using larger noise than estimated from the black body calibration. This may be due to

the forward model uncertainty or other nearly random errors such as the error of the in flight

wavelength calibration (see Appendix A.1.3).
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Figure 12: Histogram of normalized χ2/m for all profiles of AMMA flights TF2, T1, T2, L5,
T3 and T4, black bars: a priori, red bars: result. Bin size for the result is 0.2, for the a priori
20.

3.2.3 Retrieval result for one profile

In the following, the result of the setup presented above is discussed in detail for AMMA T3,

profile 94. Figure 13 shows the resulting altitude, temperature and trace gases retrieved from

forward and backward spectra separately

Panel a) shows the difference between the retrieved and a priori tangent altitudes calcu-

lated geometrically from the attitude system (both without refraction). Error bars show the

total error including smoothing (see Section 3.2.5 for a detailed discussion of the retrieval er-

rors). The tangent altitudes are very similar for forward and backward spectra. The absolute

value of the difference is largest (up to 1.8 km) for the lowest altitudes and smallest close to

the observer altitude. The angular difference resulting for this profile is about 0.25-0.3o for

all altitudes, indicating that the reason for the difference to the geometric tangent points is a

constant angular pointing offset. For backward spectra there are no radiance measurements

between about 11 and 13 km, because these spectra are filtered out due to spikes detected
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before the retrieval.

Panel b) shows the retrieved temperatures from forward and backward spectra compared

to the a priori temperature from interpolated ECMWF operational analysis data. The largest

differences below the flight altitude are found around the tropopause, where the CRISTA-

NF temperatures are up to 3 K lower, and between 10 and 13 km where the CRISTA-NF

temperatures are up to 5 K higher than the ones from ECMWF. Generally they agree well

below the flight altitude. Above, starting at about 19 km larger differences can be seen.

Variables above the flight altitude and the highest tangent point can be retrieved in principle,

because the LOS also intersects these altitudes. However, for most species there is not enough

information for a reliable retrieval there. Whether this is the case, can be estimated by the

quality measures presented in Section 3.2.4. Above 25 km the a priori temperature is not

altered by the retrieval.

Panel c) shows the retrieved water vapor volume mixing ratio in comparison to its a priori

(midlatitude case of the MIPAS reference atmospheres from Remedios et al. (2007b)). The

water vapor mixing ratio is only altered up to an altitude of 17 km during the retrieval.

The reason not to retrieve water vapor at higher altitudes is that it can only be detected for

mixing ratios above about 10 to 15 ppmV in the spectral range of detector L6. For lower

mixing ratios the spectral signatures of interfering emissions from other gases like O3 and

CO2 are much stronger than the emission from the H2O lines (see Figure 6). Depending on

the location and the observed air masses the H2O mixing ratio falls below 10 ppmV above

10 to 16 km altitude. This causes also a water vapor mixing ratio of zero at 16.5 km in this

profile (not displayed due to the logarithmic x-axis). Below 9 km it is close to but slightly

lower than the a priori. Between 10 and 15 km the retrieved water vapor is higher and shows

large variability. Between 10.5 and 12.5 km the differences of the water vapor for backward

spectra and forward spectra is largest. The mixing ratios from backward spectra stay closer

to the a priori value and have larger error bars than the ones from forward spectra. This is

most probably caused by the low number of measurements for backward spectra between 11

and 13 km (see Panel a)).
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Figure 13: Retrieval results for forward and backward spectra, Profile 94, AMMA T3 for a)
altitude, b) temperature, c) H2O, d) aerosol, e) O3, f) HNO3, g) CCl4, and h) PAN. The
dotted horizontal lines in Panel b) to h) show the observer altitude.
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Panel d) shows the retrieved aerosol extinction. As for water vapor the maximum altitude

where aerosol is retrieved is 17 km. Aerosol is the most uncertain of all retrieved variables.

This manifests itself in Figure 13d by the large error bars and the big differences between

forward and backward spectra both in absolute values and in the structure of the profiles.

Panel e) shows the retrieved O3 volume mixing ratio from forward and backward spectra

compared to the a priori O3 from interpolated ECMWF data. Above 12 km and below the

observer altitude, results for forward and backward spectra agree well and are somewhat lower

compared to the a priori value. Under 12 km forward and backward spectra are higher than the

a priori and differ from each other. In the process of the retrieval O3 is alternated up to 60 km

altitude using a vertical correlation length of 100 km (see Table 2). Values retrieved above

25 km are most often not fulfilling the requirements of quality checks presented within Section

3.2.4, Figure 15, but the large altitude range chosen increases the stability of the retrieval

also for altitudes below. In this way it is possible to obtain reliable information about O3 (see

also Section 4.2) even though the measurements take place below the O3 maximum at 30 to

40 km altitude. The long vertical correlation length causes the retrieved values not to return

to the a priori underneath 9 km, where no measurements exist for this profile. Instead, they

remain on the value retrieved for the grid point close to the altitude of the lowest existing

measurement for a profile, while their error bars increase.

Panel f) shows the retrieved HNO3 volume mixing ratio from forward and backward spectra

compared to its a priori (tropical profile of the MIPAS reference atmospheres from Remedios

et al. (2007b)). Forward and backward spectra agree well. Both are significantly higher than

the a priori value. This is probably because a too low tropical profile was used as a priori,

but profile 94 was recorded in the subtropics where the real atmospheric HNO3 and hence

the retrieval result is higher. The MIPAS reference atmospheres contain profiles for tropic,

mid-latitude, and polar summer and winter conditions. The a priori profile was chosen to

represent the conditions during the flight best. The selection of the case is not necessarily

the same for all gases: For AMMA T3 (Ouagadougou to Marrakesh) the midlatitude mixing

ratios for water vapor were chosen because the main part of the flight was situated above the
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Sahara, where the water vapor values were clearly lower than in the tropics. However, the

tropical profile for HNO3 was used, because the midlatitude value rather represents profiles

typical for Latitudes higher than about 45◦ N. If not taken from interpolated ECMWF data,

the a priori was kept constant during each flight to assure that all gradients and structures

along the flight track are resulting from measurements and are not caused by the choice of a

priori. This is also the reason why a climatological profile was chosen for H2O even though

ECMWF data is available. The results for HNO3 for this profile are, as expected, in between

the tropical and the midlatitude profiles. Like O3, HNO3 is varied up to 60 km altitude with

a correlation length of 100 km.

Panel g) shows the retrieved CCl4 volume mixing ratio from forward and backward spectra

compared to its a priori (profile of the MIPAS reference atmospheres from Remedios et al.

(2007b), for CCl4 only one global profile is given). The profiles of forward and backward

spectra agree well, but differ significantly from the a priori profile. This is probably the case

because the global profile is not a good representation for the local conditions, especially the

tropopause altitude seems to be too low in the a priori profile. Below 9 km the retrieved

profiles return to the a priori values because no measurements are available there (see Panel

a)). Due to the employed vertical correlation length of 1 km values relax smoothly to the

a priori above and below the altitudes where measurements are present. Like temperature,

CCl4 is varied up to an altitude of 25 km during the retrieval.

Panel h) shows the retrieved PAN volume mixing ratio from forward and backward spectra.

The a priori value is set to zero in this case, but an assumption for the amount of PAN expected

is included with choosing 100% of a profile approximated from Glatthor et al. (2007) as a

priori standard deviation. This provides some constrain to the PAN retrieval but the influence

of the a priori on the result is presumably lower than with an explicit a priori profile. The

profiles from forward and backward spectra agree well apart from the values between 11 and

13 km where no radiance measurements are available for the backward spectra. At these

altitudes PAN tends to lower values because of the increasing influence of the zero a priori

profile. PAN is, as CCl4 and temperature, varied up to an altitude of 25 km with a correlation
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length of 1 km. Below the lowest measurement altitude the PAN amount relaxes towards the

zero a priori profile. That no PAN is found above 16.5 km (i.e. below the flight altitude)

shows that there is less PAN than CRISTA-NF can detect.

3.2.4 Averaging kernel, resolution and measurement contribution

For the scientific interpretation of the results it is important to have measures indicating

whether a retrieved value represents a real state of the atmosphere or is biased by the a priori

or other effects. Such measures can be derived from the Averaging Kernel (AVK) matrix.

The AVK matrix describes the sensitivity of the retrieval to the true state (Rodgers, 2000):

x̂ = Ax + (I−A)xa + Gε, (6)

where A is the AVK matrix, I the identity matrix, xa the a priori data, x̂ the retrieval

result, x is the true state and Gε is the retrieval error.

The AVKs (rows of the AVK matrix) are displayed in Figure 14 and 15 (colored line)

for the retrieval results of the profiles for forward spectra of profile 94 of AMMA flight T3

(corresponding to the retrieval results displayed as red lines in Figure 13). In all cases only the

part of the AVK matrix considering the influence of the retrieved variable itself is regarded,

the effect of correlation between different variables to the AVKs is neglected. Reduced to one

variable, the AVK matrix gives the sensitivity of the vector of the retrieved variable on the

given altitude grid (row) to changes in the true state vector (column). Ideally and without

correlation lengths this matrix would be diagonal, that means the retrieval result for one

variable at one altitude would not be influence by results from other altitudes or variables.

In addition, two retrieval characteristics derived from the AVK matrix are shown: The

retrieval resolution and the measurement contribution. Following Purser and Huang (1993)

the resolution is given as information density (reciprocal of the trace of the AVK matrix)

multiplied by the grid spacing. The measurement contribution is calculated as the integral

over the AVKs. The measurement contribution is an approximate measure of the proportion

to which measurements and a priori contribute to the retrieval results (Rodgers, 2000). In
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Figure 14: Averaging Kernels (AVKs) for AMMA T3, Profile 94 for a) altitude, b) temper-
ature, c) H2O , d) aerosol. The AVKs (colored line) displays the influence of the elements
of the state vector on the result at the retrieval grid point of the altitude (color code). The
red dotted line shows the resolution, the black line the measurement contribution in relative
units (0-1).

an idealized case, a value of 0.0 for the measurement contribution means, that the result

is only containing a priori information. A value of 1.0 means that the result contains only

measurement information and is independent of the a priori. However, the measurement

contribution can exceed the value of one in case of non-linearities and large retrieval errors.

Panel a) of Figure 14 shows the AVKs for the altitude retrieval. The AVKs reach a value

of nearly 1.0 for each retrieved altitude and they are very narrow. This indicates that the

retrieved altitudes are mainly influenced by measurements at the resulting altitudes. Also,

the influence of the a priori (i.e. the geometrically calculated tangent altitude) is low, since
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Figure 15: Like Figure 14 for a) O3 , b) HNO3 , c) CCl4 and d) PAN.

the measurement contribution stays close to 1.0. Weak a priori influence can be found at the

highest altitudes. In case of the altitude retrieval, the resolution matches the spacing of the

retrieved tangent point altitudes of about 500 m.

The AVKs for temperature, CCl4 and PAN are shown in Figure 14b), and Figure 15 c) and

d). They have somewhat wider AVK peaks as the retrieved altitude and typically peak values

are between 0.3 and 0.8. This indicates that some information contributing to the result

originates either from other altitudes than the regarded grid point or from the a priori. In

order to separate these two effects the retrieval resolution and the measurement contribution

have to be considered. The vertical resolution for temperature, CCl4 and PAN is usually

between 1 and 2 km, implying that two to four neighboring grid points influence each other.

The measurement contribution reveals that the contribution of the a priori value to the result
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is small within the altitude range of the measurements. Above and below the altitudes with

radiance measurements the result is, as expected, dominated by the a priori. The measurement

contribution provides information to filter out data which is clearly influenced by the a priori,

like the ones below about 10 km for CCl4 and PAN (Figure 13). Also, very high measurement

contribution over 1.2 (e.g. for CCl4 between 17.5 and 19 km) are a sign of questionable data

quality. One should notice that hardly any information enters the retrieval below the lowest

measurement altitude (as expected) but clear peaks of the AVK can be found above the

highest one. This is due to the fact that along the LOS radiance from above, but not below

the tangent point is contributing to the corresponding measurement.

Figures 14c) and d) show the AVKs, vertical resolution and measurement content for water

vapor and aerosol. The AVK peaks are more narrow than for temperature, CCl4, and PAN

and reach higher values. For aerosol they get somewhat broader for altitudes above 15 km

indicating that the data quality is better at the lower part of the profile. The resolution,

especially for H2O, nearly reaches the grid spacing for most altitudes. The measurement

contribution is close to 1.0 from the lowest measurement altitude up to 17 km. No information

is used from above this altitude, since these variables are only varied up to 17 km altitude

during the retrieval (see Section 3.2.1).

Figures 15 a) and b) show the AVKs, vertical resolution and measurement contribution

for O3 and HNO3. The AVK peaks are broadest for these two gases and rarely reach higher

values than 0.4. The measurement contribution is close to 1.0 below 25 km indicating a

minor influence of a priori data on the retrieval result. As for CCl4, results with very high

measurement content found e.g. above 25 km are not reliable. At altitudes above 25 km also

the vertical resolution is worse. For HNO3 and O3 the vertical resolution for all altitudes is

rarely better than 1.5 km. It is important to keep in mind that the measurements contributing

to the result are not necessarily (only) from altitudes close to the retrieval grid point regarded.

It is even possible that most of the measurement information originates at a lower or higher

altitude. This is the case for O3 and HNO3 above 20 km in Figure 15a) and b). Both have

a measurement contribution close to one, but the AVK reveals that most of this information
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comes from an altitude of about 17-18 km. Hence, always measurement contribution and

resolution need to be regarded for the interpretation of the retrieval results.

Comparison with independent data

When retrieved data is compared to data from other sources, e.g. the Chemical Lagrangian

Model of the Stratosphere (CLaMS, see Section 4.3), the AVK needs to be considered. The

retrieval result can be regarded as a combination of the unknown real state, the a priori and

the retrieval errors (Rodgers, 2000), see also Equation 6. Therefore the independent data

need to be convoluted with the AVK as well, to be comparable to the CRISTA-NF retrieval

result, following e.g. von Clarmann (2006). Hence, the CLaMS data for comparison results

from:

xCLaMS(AVK) = AxCLaMS + (I−A)xa (7)

Where xCLaMS are the CLaMS data (interpolated onto the retrieval grid) and xCLaMS(AVK)

are the resulting, convoluted CLaMS data.

Figure 16 shows the difference between O3 from CLaMS and the result of the CRISTA-NF

O3 for AMMA flight TF2. For a detailed discussion of these results see Section 4. In Panel

a) the CLaMS results are interpolated onto the grid of the CRISTA-NF retrieval results.

In Panel b) CLaMS data is additionally convoluted with the AVK following Equation 7.

Obviously the differences to the CRISTA-NF data are much larger, when omitting the AVK

as in Panel a), especially above about 17 km. Hence, the largest differences are found above the

measurement altitudes where the resolution of the CRISTA-NF data decreases (see Figure 15).

This indicates that it is necessary to apply the AVK to other data sets, if comparing O3 data,

because the CRISTA-NF retrieval results are notably smoothed above about 16km due to their

decreasing vertical resolution at these altitudes. The same comparison for CLaMS water vapor

and ECMWF temperatures reveals nearly no influence of the AVKs on the comparison (not

shown), since these variables can be retrieved with a vertical resolution much better than for

O3 from CRISTA-NF measurements.
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Figure 16: CRISTA-NF O3 Retrieval for AMMA TF2 (see Section 4.4) subtracted from
CLaMS O3 a) without and b) with applying the AVK to the CLaMS data. Note nonlinear
color scale.
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3.2.5 Retrieval errors

Another measure to assess the quality of the retrieved data are the retrieval errors. In Fig-

ure 13c the result of the water vapor mixing ratio drops to zero at 16 km, which is not realistic

(e.g. Silva dos Santos, 2008). That means that CRISTA-NF is not able to detect the small

mixing ratios (below 10 ppmV) correctly in this altitude. It can not be explained by resolu-

tion and the measurement content (Figure 14c), but is consistent within the large H2O error

obtained for this altitude.

The overall errors of the retrieval results are displayed for each variable in Figure 13. The

corresponding detailed error analysis is shown in Figures 17 and 18. The retrieval errors

consists of several components:
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Figure 17: Estimated retrieval error components for AMMA T3, Profile 94. For a) altitude,
b) temperature, c) H2O, and d) aerosol retrieval.
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Figure 18: Estimated retrieval error components as in Figure 17. For a) O3, b) HNO3, c)
CCl4, and d) PAN retrieval. Colors as in Figure 17

• Smoothing error:

The smoothing error is shown as green line in Figures 17 and 18. It is caused by the

a priori covariance and depends on the measurement contribution. However, often the

exact covariance of the a priori is not known exactly and a higher, conservative estimate

is used for the retrievals in order to increase the weight of the measurements. In these

cases, the smoothing error is overestimated and results in an overestimated error of the

retrieval result, if included in the total error. On the other hand, the total error without

smoothing error tends to underestimate the real error with respect to the unknown real

state of the atmosphere. The total error without smoothing can be regarded as the error

of the smoothed state, i.e. it does describe the error compared to data smoothed on the

retrieval grid but does not take larger variations which might occur on smaller vertical

scales into account. This means, when comparing the retrieval result to an estimate

of the real state (e.g. high resolution in situ observations) the smoothing error should

be included, when comparing to an estimate after applying the AVK (like for CLaMS

data) it should be omitted.
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• Forward model error:

The forward model error (blue line in Figures 17 and 18) is the part of the retrieval

error caused be the standard deviation of JFM (see Table 4). This is determined by

comparing the fast forward model JFM with the line-by-line model RFM during the

regression (see Section 3.1.4).

• Spectral line data error:

The errors caused by uncertainties of the spectral line data (see Table 2 and 3) are

shown as a cyan line in Figures 17 and 18.

• Model parameter error:

Errors caused by the standard deviations of the forward model parameters (see Table 2

and 3). These include not retrieved emitters and pressure. But also temperature and

retrieved emitters contribute to this error through the altitudes where they are not

varied in the retrieval and therefore act as forward model parameters. In Figures 17

and 18 this error is divided into contributions from temperature and pressure (gold line)

and the one from the trace gases (orange line).

• Instrument error:

The instrument error comprises the instrument offset and gain (violet line).

• Noise:

This is the error caused by measurement noise (orchid line).

The total error (red line) is the square root of the sum of the squares of all components

mentioned above except for the smoothing error. The total+smoothing error (black line) also

contains the smoothing part. The “covariance error” (gray line) contains all errors of quan-

tities considered for the retrieval fit (see Section 3.2.1), i.e. for the setup used a combination

of the noise and the smoothing error.

The leading terms of the total error for most of the retrieved variables are the errors due

to the non-retrieved emitters, the spectral line data and the noise. The instrumental errors,

forward model errors and pressure and temperature play a minor role. For the altitude

retrieval CO2 and CFC-11 contribute most to the errors caused by forward model parameters

(not shown), even though in situ data are used to improve the knowledge about CFC-11,

implying a smaller standard deviation (see Section 3.2.6). This underlines the sensitivity of

the altitude retrieval to these emitters. The error components of profile 94 shown in Figures 17
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and 18 can be considered to be representative for the errors of most profiles. The error analyze

clearly shows:

• A good spectral data base is important.

• Improving JFM with a linear regression (see Section 3.1.4) decreased the forward model

errors sufficiently for the retrieval.

• The black body calibration (Appendix A.1.1), i.e. the instrument and noise error, is

sufficiently accurate for the retrieval.

• The retrieval result could be improved, if

1. it would be possible to fit the retrieved radiance to the measured ones inside the

limits of the noise error. An improved in-flight wavelength calibration may con-

tribute to this.

2. improved data for emitters, which cannot be retrieved (e.g. CO2, ClONO2, CFC-

11), would be implemented, e.g. from satellite measurements.

It should be noted that especially for aerosol and H2O the errors are rather large compared

to the absolute value of the variables. For H2O relative errors often exceed 100% for low

H2O mixing ratios below about 10 ppmV in the higher altitudes, for aerosol high relative

errors do occur more often (see Appendix B.2, Figure 65). This can explain unexpected

values of H2O even if χ2/m, resolution and measurement contribution indicate a high data

quality and underlines that a retrieval of H2O mixing ratios under about 10–15 ppmV is not

possible with the setup used.

Further sources of errors

Calibrations and the comparison to a line by line forward model cannot assess all possible

errors. Errors not accounted for are:

• Aerosol extinction and thin clouds:

Aerosol extinctions have a rather continuous spectral signature, but its shape can change

with the composition of aerosols. For the retrieval one fixed spectral shape is assumed,

(75% of H2SO4 approximated from Massie et al., 1994; Spang pers. com.) and applied as
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scaling factors. Especially for tropospheric conditions the real spectral shape can differ

significantly. For wavenumbers smaller than about 850 cm−1 the aerosol extinction has

few structures and is relatively low, resulting in a low influence on the retrieval result.

For the ISBs above about 850 cm−1 and the sequential HNO3 retrieval (see Section 3.2.7)

its influence could be important.

Thin clouds or clouds entering the field of view while one spectrum is measured may

not be detected by the cloud index and can influence the retrieval. Presumably thin

clouds would be mistaken as aerosol layers. Compared to most limb measurements these

errors caused by clouds are relatively small for CRISTA-NF because of the narrow field

of view.

• Relaxations:

For the satellite instrument CRISTA so called relaxations, which are short-term, non-

linear sensitivity changes of the detectors, up to 10% were observed (Offermann et al.,

1999). For the Satellite instrument CRISTA an empirical correction model was devel-

oped (Ern et al., 2003). Due to the changes in the spectrometers and the different

observation geometry, it is not possible to use this correction without modifications for

CRISTA-NF. There are presumably some relaxations which do also contribute to the

difference between forward and backward spectra.

• Stray light:

Several baffles are used to filter the incoming radiance for stray light (Barthol, 1994).

Nevertheless, some stray light might enter the spectrometer and influence the result.

• Undetected spikes:

Spikes are filtered before the retrieval according to Arndt (2006). If spikes are overlooked

they could be misinterpreted for spectral features. There are relatively few spikes for the

detectors L5 and L6 and most of them are identified and removed by the filter. Therefore

the remaining spikes would, if at all, only influence single retrieved grid points and have

only minor effects on the result.
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• Errors of the line-by-line forward model:

Through the emissivity tables RFM directly influences the result of the retrieval. Since

it is also used to check the final data, errors in connection with RFM itself, e.g. because

of missing emitters, underestimated errors of the spectral line data or problems with

line mixing are difficult to quantify. In comparison with other forward models it has

shown to be very reliable (von Clarmann et al., 2003). Nevertheless, there is a system-

atic difference between the measured spectra and RFM calculations around 855 and

860 cm−1, in the order of 10% for all altitudes present in most spectra (see e.g. Figures

6 and 22). No general explanation could be found and comparisons to MIPAS spectra

for the fifth local flight of AMMA (not shown) indicate, that it is not caused by an

instrumental error of CRISTA-NF. Also for the satellite instrument CRISTA problems

to fit the measured spectra to the modeled ones are known for this wavenumber region

(Küll, 2006 and Olschewsky pers. com.). This could indicate that an unknown spectral

signature is present at this point.

To exclude that any of these errors has a substantial influence, the retrieval result is compared

to other data, e.g. in situ measurements performed simultaneously on M55-Geophysica (see

Section 4.2).

3.2.6 Temperature and altitude

For trace gas retrievals, information about the temperature of the atmosphere and the mea-

surement altitude are important (e.g. Riese et al., 1999a). There are different ways to de-

termine both, temperature and altitude (see Section 3.2.1 for the explanation of the altitude

retrieval), in addition to the emitter mixing ratios:

1. Temperature and/or altitude can be taken from external sources.

2. At one spectral point it is not possible to distinguish the influence of temperature and
altitude, but their behavior varies spectrally. This makes it possible to use either:

(a) the shape of one spectral peak or

(b) two different spectral regions with known major emitters.
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On the temporal and spacial scales observed by CRISTA-NF, the atmosphere can be

assumed to be in hydrostatic equilibrium, allowing to calculate pressure from altitude and

temperature. To do so it is sufficient to know the reference pressure at one altitude. The

required reference pressure is taken from ECMWF analysis data at an altitude of 15 km.

Temperature, pressure and altitude determine the shape and relative intensities of the

observed spectral signatures. If the mixing ratios of all relevant emitters, their vertical dis-

tribution, their spectral lines, the pressure and the LOS are known the radiance at a given

wavelength depends only on the temperature (see Section 3.1). Given an accurate pointing

information, it is therefore possible to retrieve the temperature in a wavenumber range, where

the radiation is mainly emitted by one gas with known mixing ratio. An ideal gas for this

purpose is CO2 , because it is well mixed in the troposphere and lower stratosphere, its mixing

ratio is frequently measured by various instruments, and because it is the dominant emitter

in the wavenumber region around 792 cm−1, covered by the CRISTA-NF channels H5, H5R

and L6. The CO2 Q branch at 792 cm−1 was also used for the temperature retrieval for the

CRISTA satellite instrument, see Riese et al. (1999a).

However, due to problems with the CRISTA-NF attitude system (see Appendix A.1.7) the

altitude has to be retrieved. Hence, a potential retrieval setup for CRISTA-NF must retrieve

both altitude and temperature or use temperatures from an external data source.

The retrieval setup presented before in Section 3.2.1 uses 9 ISBs and therefore it requires

relatively large computational effort. The setup was the result of a thorough selection process.

This Section describes the reason for choosing the particular ISBs and compares the setup

with 9 ISBs (Setup C) to two faster setups using just 6 ISBs. Table 5 summarizes the employed

setups.

Setup A

Instead of retrieving the temperature, this setup uses ECMWF temperatures. It is based on

6 ISBs, omitting the spectral range above 800 cm−1. Hence, HNO3 can not be retrieved, see

Figure 6. A similar approach, but with only 3 ISBs was applied for the measurements of

CRISTA-NF during several SCOUT-O3 transfer flights by Hoffmann et al. (2009).
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Table 5: Retrieval setups.

Setup A Setup B Setup C

6 ISBs [cm−1] 6 ISBs [cm−1] 9 ISBs [cm−1]
777.8–778.7, 784–785 777.8–778.7, 784-785 777.8–778.7, 784–785
787–790, 791–793 787–790, 791–793 787–790, 791–793
794.1–795, 796.6–797.5 794.1–795, 796.6–797.5 794.1–795, 796.6–797.5

832–832.9, 844.3–847.3
863–864

Retrieved variables Retrieved variables Retrieved variables
Altitude Temperature, altitude Temperature, altitude
CCl4, H2O CCl4, H2O CCl4, H2O, HNO3

O3, PAN O3, PAN O3, PAN
Aerosol and offset Aerosol and offset Aerosol and offset

Sources for a priori mixing ratios of the different emitters, their covariances and the re-

trieval grid are the same as in Section 3.2.1 apart from the a priori covariance of temperature,

which is set to 2 K and for the one for HNO3 , which is set to 10% for all altitudes. The

influence of all three different setups (see Table 5) on the altitude and temperature retrieval

is presented in Figures 19 and 20 exemplary for the forward spectra of profile 94 during the

AMMA flight T3.

The retrieved altitude from Setup A is shown in green in these Figures. Figure 19 shows

the difference between the retrieved tangent altitudes and geometrically calculated tangent

altitudes. Obviously, the errors of the retrieved altitude become large for the upper tangent

altitudes because there small temperature changes correspond to relatively large altitude

changes. For the same reason the measurement contribution, shown in Panel c), decreases.

Figure 20 shows the retrieved temperature for three different setups together with the a priori

temperature from ECMWF operational analysis data. The temperature of Setup A is not

varied but remains on the ECMWF value.

Setup B

Here the same variables as in Setup C are retrieved from only 6 ISBs, except HNO3 . The

result of the altitude retrieval from Setup B (blue line in Figure 19) differs a lot from the one
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Figure 19: Altitude retrieval for three different Setups A (green), B (blue) and C (red)
explained in the text. Panel a) shows the altitude differences between the retrieved altitude
and the geometrically calculated altitude the with the total error (including smoothing), Panel
b) shows the angular difference and Panel c) the measurement contribution.

of Setup A. The measurement contribution indicates that insufficient information is provided

to retrieve both, temperature and altitude. This is due to the small number of ISBs providing

not enough information.

Around the tropopause, the retrieved temperature is much lower than the ECMWF tem-

perature and higher below 11 km (Figure 20). The deviations from the ECMWF temperature

appear too large and are probably due to a systematic error in the retrieved altitude.

Setup C

Setup C was already explained in detail in Section 3.2.1. From Setup B it is obvious that

more information is necessary. Setups with several ISBs at the CO2 Q branch were tested, but

resulted only in small improvements compared to Setup B. Even the higher spectral resolution
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Figure 20: Temperature retrieval for the same setups as Figure 19. Panel a) shows the
retrieved temperature and the a priori (ECMWF) temperature. Panel b) shows the resolution
and measurement contribution.

of detector H5R was not sufficient to clearly separate temperature and altitude. Therefore

a different spectral region with a known dominant emitter was added with the 845 cm−1

CFC-11 emission band.

Like CO2 , the amount of CFC-11 in the troposphere is relatively well known. In addition,

it was measured by the in situ instrument HAGAR (see e.g. Werner et al., 2009 for a de-

scription of the HAGAR instrument) on M55-Geophysica during the AMMA campaign. The

profiles measured during ascent and descent of M55-Geophysica are combined with CFC-11

values above the flight altitude from the MIPAS reference atmosphere scaled to the mea-

sured values and smoothed at the transition (see Figure 21). The CFC-11 a priori covariance

is a combination of the climatological error and the difference between the HAGAR ascent

and descent profiles. For CFC-12 HAGAR measurements were combined with CFC-12 from

the reference atmosphere the same way, allowing to retrieve also HNO3 . CFC-12 has some
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spectral signature between 860 and 865 cm−1, where HNO3 is the main emitter.
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Figure 21: CFC-11 a priori profile for AMMA TF2 (orange). Blue and green crosses show
the HAGAR measurements, the MIPAS reference atmosphere is given in black.

The result of the altitude retrieval compared to Setup A and B is shown as red line7

in Figure 19. The retrieved altitudes show a constant angular offset with respect to the

geometrically calculated altitudes. Such a constant offset might be explained by a misalign-

ment between CRISTA-NF and the aircraft axes, which are the reference for the attitude

of the M55-Geophysicas avionic system, see Appendix A.1.8. In Setup C the measurement

contribution is the highest of all three setups.

The temperature retrieved with Setup C(Figure 20) is again lower than the ECMWF

temperature close to the tropopause and higher below 14 km, but the differences are smaller

than for Setup B. The measurement contribution is close to 1.0, the resolution better than

2 km for all altitudes between 10 km and the flight altitude.

7This is identically to the retrieval result for forward spectra presented in Figure 13, red line
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The main disadvantage of Setup C is that it needs more computation time than the setups

with 6 ISBs. In addition, a profound a priori knowledge of CFC-11 is necessary, implying that

it is not possible to retrieve CFC-11. However, Setup C provides the possibility to retrieve

temperature and altitude simultaneously. Therefore it does not rely on an external source of

temperature data. By this approach it is possible to determine temperature with about the

same spatial resolution as retrieved trace gases like CCl4 and PAN. Additionally, using the

complete spectral range of detector L6 allows to retrieve HNO3, too.

Comparison with RFM spectra

The χ2/m values given for the different setups are all smaller than 1.0, see legend in Figure 19.

This indicates that the measured radiance in each setup is reproduced well for the ISBs used.

But how well do the retrieved values describe the whole radiance spectrum measured? Which

spectral information is responsible for the largely improved performance of Setup C? In order

to investigate this, the measured radiance is compared to a line-by-line calculation with RFM

for the results for the three retrieved profiles. Figure 22 compares the results of the three

setups for two different tangent altitudes at 17.9 and 9.4 km. The upper panels show the

measured spectrum together with the respective RFM spectra, the lower panels show their

differences in percent.

All RFM calculations show a good agreement for wavenumbers below 800 cm−1 but only

the RFM result for Setup C agrees well inside the whole wavelength range of L6 for both

altitudes. This confirms that the wavelength region around the 792 cm−1 CO2 peak does not

provide sufficient information to distinguish the effects of temperature and altitude on the

radiance for the moderate spectral resolution of CRISTA-NF. The uncertainty of CRISTA-

NFs spectral resolution (see Appendix A.1.2) provides an additional difficulty when relying

on the shape of one isolated spectral feature.

Additional ISBs below 800 cm−1 would not provide much more information because the

residuals of the three setups do not differ much there. Tests with the detector H5R covering

the wavenumber interval between 770 - 815 cm−1 with higher spectral resolution compared

to L6 do confirm this.

56



Tangent altitude=17.9 km

780 800 820 840 860

   

0.000

0.002

0.004

0.006

R
ad

ia
nc

e 
[W

/(
m

2  s
r 

cm
−

1 )]

       CRISTA−NF   
       Setup A   
       Setup B   
       Setup C   

CRISTA−NF −RFM, tangent altitude=17.9 km

780 800 820 840 860

Wavenumber [cm−1]

−40

−20

0

20

40

R
es

id
uu

m
 [%

]

Tangent altitude= 9.4 km

780 800 820 840 860

   

0.00

0.01

0.02

0.03

      
CRISTA−NF −RFM, tangent altitude= 9.4 km

780 800 820 840 860

Wavenumber [cm−1]

−40

−20

0

20

40

 

 

Figure 22: Comparison of measured CRISTA-NF spectra for AMMA T3, Profile 94 and RFM
calculations for the results of the three different setups (Table 5). The tangent altitudes
include refraction and refer to the Setup C. Gray bars mark ISBs used in all three setups,
light yellow bars the ones used only in Setup C. The upper Panels shows the spectra, the lower
the percentage difference between the measured spectra and RFM results for each setup.

In summary, the additional information which allows to retrieve temperature and altitude

simultaneously in Setup C is provided by the ISBs above 832 cm−1. In this spectral range

there are obvious differences between the three setups and only Setup C can reproduce the

measured spectra well as shown in Figure 22.

Simultaneously retrieved variables

Simultaneously with altitude and temperature, aerosol, CCl4, H2O, O3, PAN, and a radio-

metric offset are retrieved for all three setups presented in Table 5. The results are shown

in Figure 23. There are significant differences between the results for the different setups,

too. Hence the choice of the ISBs does not only influence temperature and altitude but
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also the other retrieved variables. The largest improvement is found for O3 (Panel d). A

O3 retrieval is possible only with 9 ISBs. Otherwise O3 drops to zero below about 16 km

altitude. H2O (Panel c)is least sensitive to the different setups. About all retrieved variables,

namely CCl4, aerosol, and especially PAN show the best result, i.e. the highest measurement

content and the best resolution for Setup C.
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Figure 23: Retrieval results for the same setups as Figure 19 for a) aerosol, b) CCl4, c) H2O,
d) O3, e) PAN, and f) offset.
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In total, the comparison shows that only a retrieval of H2O is possible with a setup with

ISBs only below 800 cm−1 and predefined temperatures. For midlatitude flights as TF2 (see

Chapter 4) there are somewhat smaller differences between the retrieved temperature and

the ECMWF temperatures facilitating a retrieval based on fixed ECMWF temperatures like

in Hoffmann et al. (2009). That the retrieved temperatures differ less from ECMWF during

TF2 might be due to a higher accuracy of the ECMWF data for this flights. Setup C will

be used further on because it performs better for all retrieved trace gases, temperature and

altitude and allows to retrieve HNO3, additionally.

Accuracy of the altitude

The accuracy of the roll angle of the airplane, which has the largest influence on the pointing,

is supposed to be better than σ = 0.05o (see Appendix A.1.7). However, the retrieved altitude

in Figure 19 shows a large difference of about 0.25o from the one calculated geometrically from

the attitude angles. Since an exact altitude information is essential for the trace gas retrieval

it is tried to identify the source of the difference. The first guess would be that the difference

is caused by the alignment of the instrument in the airplane which is known less accurately

(see Appendix A.1.8).

A misalignment of the instrument around the aircrafts x-axis would have the largest impact

on the pointing and cause a constant offset during the whole flight. Figure 24 shows the result

of an altitude retrieval with Setup C for the complete flight AMMA TF2. Panel a) displays the

difference of the retrieved altitude to the geometric altitude and the corresponding angular

difference versus time. Panel b) shows the same versus altitude and Panel c) shows only

the angular difference versus the aircrafts yaw angle. Different legs of the flight are colored

differently to recognize them in all panels. The retrieved angles vary systematically over the

flight with maximum values of up to 0.5o. These variations seem to be connected to different

yaw direction of the aircraft.

The differences between offset angles resulting from the altitude retrieval are much larger

than the stated uncertainty of the roll angle from the M55-Geophysica avionic system (UCSE

roll angle). Since the average corrected roll angle is normalized on the UCSE roll it can not
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AMMA TF2 9 ITBs: Offset angle α
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Figure 24: Offset angles vs. time for AMMA TF2. Grey stars indicate spectra with a
χ2/m > 2 or a measurement content < 98%, which are not included in the calculation of the
average offset angle. Colored stars mark spectra included in the calculation from different
parts of the flight track.

be caused by the pointing correction. A misalignment of the instrument can as well not be

the reason, because it could only explain a constant offset over the whole flight.
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A systematic variation in CFC-11 could have a significant influence on the retrieved alti-

tude and would be likely to cause some systematic error because a constant CFC-11 profile

is used for each flight. However, a clear dependence of the CFC-11 influence on the flight

direction is not very likely, as was tested with CLaMS CFC-11 data for TF2 (not shown).

Further the altitude differences are larger than the error of the retrieved altitude (see Figures

17a and 19) which includes an error component caused by the CFC-11 uncertainty. Other

systematic errors in the retrieval due to differences in cloud cover, stray light, mixing ratios

of not retrieved emitters or aerosol extinction can not be totally excluded as reason for the

altitude differences. Indication of the influence of a high cloud cover on the resulting altitudes

can be seen for flight T2 (see Appendix C.1, Figure 70), but is only observed if profiles can

not be retrieved lower than about 10 km due to clouds. The flight TF2, where the largest

differences between retrieved altitude and geometrically calculated altitude occur, took place

in nearly cloud free conditions.

Systematic differences between the UCSE and the MIPAS pointing in the same magnitude

were observed by Keim (2002). Also in this case the differences were connected with changes

of the flight direction. This indicates that differences in pointing might be caused by the

UCSE attitude angles. The differences exceed 2km for the lowest altitudes in some profiles of

TF2, and underline the importance of applying an altitude retrieval simultaneous to or before

the trace gas retrieval.
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3.2.7 Sequential retrieval

Instead of retrieving all variables simultaneously, it is also possible to retrieve them sequen-

tially, i.e. after each other. For such a sequential retrieval one should note that correlations

between the variables and non-linearities can lead to errors.

The retrieval of HNO3 with Setup C (simultaneous with the other retrieved variables) relies

on the information from the spectral range between 863 and 864 cm−1 where HNO3 is the

primary emitter. For this ISB, situated close the upper limit of the detector L6, the wavelength

calibration is less accurate (see Appendix A.1, Table 10). In addition, the measured radiance

cannot be well reproduced by RFM for unknown reasons close to this ISB (see Figure 6, 22,

and Section 3.2.5)

Therefore, to confirm the HNO3 mixing ratio resulting from Setup C, a sequential retrieval

for HNO3 (simultaneous with aerosol and a radiance offset varying with altitude) is performed.

Detector L5 is used for the sequential retrieval, because it covers a spectral region where

HNO3 is the dominant emitter and shows more distinct spectral features as within the spectral

range of L6.

The setups for the sequential retrieval use three ISBs at 876–876.9, 878.1–879 and 880.2–

881.1 cm−1, i.e. next to and in the center of a relative strong HNO3 band. A combination of

EGA and CGA is used for the forward model, but no regression. The forward model error

is estimated to be 0.5% for all ISBs. Temperature, CCl4, H2O, O3, and PAN from Setup C

are used as forward model parameters. The geometric altitude is adjusted by the average

correction angle obtained from the altitude retrieval. The other forward model parameters

and radiance errors are the same as the ones from Section 3.2. The aerosol extinction is more

important for wavenumbers greater than about 850 cm−1. Therefore two different setups for

sequential retrievals are used with different aerosol extinction scaling factors:

• Setup CS1 (green line in Figure 25): Scaling factors from Massie et al. (1994) as in
Section 3.2.5.

• Setup CS2 (purple line in Figure 25): The same scaling factor (100%) is used for all
three ISBs.
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Figure 25 shows the result of the sequential retrieval for the two different setups in com-

parison to the result of Setup C from Section 3.2.6 for aerosol, HNO3 and offset for flight

AMMA T3, profile 94, forward spectra. The results of the aerosol (Panel a)) and offset re-

trieval (Panel c)) differ clearly between the three setups, but agree well for HNO3 . This

underlines the robustness of the HNO3 retrieval with respect to the spectral range and aerosol

extinction.

The aerosol retrieval seems to be more difficult, especially for Setup CS1. In this setup

also the normalized χ2 value is relatively high (χ2/m = 1.73), indicating that the radiance

is not reproduced as good as for Setup C and CS2. This is also confirmed by a compari-

son to RFM spectra (not shown). Hence, it is questionable if the extinction scaling factors

from Massie et al. (1994) (derived for stratospheric conditions) can be used for wavenumbers

between 850 and 900 cm−1 within the troposphere. Instead, a spectrally constant aerosol

extinction like in Setup CS2 is preferable, where the normalized χ2 is much closer to 1.0 (see

Figure 25). Setup CS2 was used for a retrieval for the whole flight AMMA T3 confirming

that HNO3 structures along the flight path are similar to Setup C (not shown).

A sequential retrieval could be used further to determine trace gases with spectral features

outside the spectral range of detector L6, for instance stratospheric water vapor between 1500

and 1600 cm−1 and SF6 at about 950 cm−1.

3.2.8 Filter and grid for the retrieval result

Together with the χ2-test, which indicates the quality of the radiance fit, measurement con-

tribution and resolution provide measures for the quality of the retrieved variables (see Sec-

tion 3.2.2 and 3.2.4). Therefore, if not mentioned otherwise, all retrieval results displaced

hereafter are filtered for the following thresholds:

• χ2/m < 2

• Resolution: < 60 ∗∆z for O3 and HNO3 ; < 6 ∗∆z for all other variables, where ∆z is
the grid spacing in km

• Measurement Content: > 0.8 and < 1.2
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Figure 25: Results for two different sequential retrievals (green and purple line, details see
text) in comparison to Setup C (red line, see Section 3.2, Figure 23). The panels show: a)
Aerosol, b) HNO3, and c) radiance offset. Right panels show the appropriate measurement
contribution and resolution.

Results with a total error (without smoothing) larger than 90% are marked in the following

2D-images of retrieval results but are not excluded. To present the results, the retrieved data
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from forward and backward spectra are combined onto the same grid:

• Vertical: retrieval grid

• Horizontal: position of the refracted tangent point closest to the vertical grid point

• Usually the vertical position and errors for forward or backward spectra are interpolated,

only one result is used if

– only one of them exists or passes the filtering mentioned above

– one χ2/m value is more than 20% lower

– one measurement contribution is 2% higher on the absolute scale

– one vertical resolution is less than 50% of the other

The vertical grid position is kept and not interpolated to the tangent point positions

because resolution and measurement contribution are only valid for the grid positions. The

1D-retrieval used does not contain information on the horizontal structure along the LOS. It is

assumed that the position of the vertically nearest, refracted tangent altitude best represents

the real horizontal position. The tangent point is therefore chosen as horizontal coordinate

for interpolating the CLaMS data and for displaying the CRISTA-NF data on maps.

• The CLaMS results are convoluted with the AVK (according to Equation 7) before the

comparison.

• CLaMS data convoluted with the AVK are filters the same way as the corresponding

CRISTA-NF data.

• CLaMS data of properties not retrieved and hence not convoluted with the AVK (e.g.

mean age of air) are presented on the unfiltered grid.
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4 The AMMA-SCOUT-O3 Campaign

4.1 Overview of the Campaign

The African Monsoon Multidisciplinary Analyses (AMMA) campaign had the aim to ob-

tain a better understanding of the West African Monsoon and its implications on local and

global processes by combining field measurements, satellite observation and modeling studies

(Redelsperger et al., 2006).

Figure 26: Overview over cloud index along flight tracks of all AMMA flights used for the
trace gas retrieval.

Within the Special Observation Period of the AMMA Campaign and in cooperation with

the Stratosphere-Climate links with emphasis On the UTLS-O3 (SCOUT-O3) project8, ten

M55-Geophysica flights took place (Silva dos Santos, 2008). CRISTA-NF measured success-

fully on all of these flights. Here, the data from the flights with least cloudy conditions and

hence highest data quality for the trace gas retrieval are analyzed. These are the test flight,

8SCOUT-O3 is a project of the European Commission and has the aim to provide predictions about the
chemistry-climate system with emphasis on the O3 change in the lower stratosphere (SCOUT-O3, 2009).
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Table 6: AMMA flights analyzed in this work

Abbr. Date Location Main objective Remark

TF2 2006/07/29 From and Instrument Active attitude system
to Verona test flight used

T1 2006/07/31 Verona Transfer
to Marrakech flight

T2 2006/08/01 Marrakech Transfer Detector temperature
to Ouagadougou flight over 14.5K (first 1000s)

L5 2006/08/13 From and CALIPSO1 Detector temperature
to Ouagadougou validation over 14.5K (first 900s)

T3 2006/08/16 Ouagadougou Transfer
to Marrakech flight

T4 2006/08/17 Marrakech Transfer Detector temperature
to Verona flight over 14.5K (first 2500s)

1Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation satellite (CALIPSO, 2009)

all transfer flights, and local flight number five, see Table 6. The Cloud index (see Section

2.2) from these flights is shown in Figure 26, giving an overview of the flight tracks and the

viewing direction of CRISTA-NF.

4.2 Comparison to in situ measurements

As mentioned in Section 3.2 intercomparisons between retrieval results and in situ data are

important to exclude systematic errors. Several in situ measurements were taken on M55-

Geophysica during AMMA. Comparisons are presented for:

• Water vapor:

Total water is measured with a high accuracy with the Fast In situ Stratospheric Hy-

grometer (FISH; Zöger et al., 1999). Since only gas-phase water can be compared and

the FISH measures total water (including water droplets and ice crystals), only FISH

measurements outside clouds are used for comparison.

• Temperature:

If available, temperature measurements by the Thermo Dynamic Complex (TDC) from

the Central Aerological Observatory (CAO) are used for comparison. As TDC data
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is not available for the test flight and the second transfer flight, for these flights the

M55-Geophysica avionic temperature measurements are used.

• Ozone:

Ozone measured by the Fast Ozone ANalyzer (FOZAN; Yushkov et al., 1999) was used

for comparisons. Data is available during L5, T3 and T4.

In situ data are not convoluted with the AVK for comparison because they are only

available along the flight track. One would need data above and below the position of the in

situ measurement position to consider the AVK. Because of the high measurement content

and resolution of CRISTA-NF (see Section 3.2.4) this is expected to be of minor importance,

especially for H2O and temperature.

For water vapor the CRISTA-NF data are available up to about 15km altitude. Therefore

only FISH measurements during ascent and descent of M55-Geophysica and, in addition,

during the dives on flight TF2 and L5 can be compared. Temperature and ozone are compared

along the flight track with the highest part of the CRISTA-NF profiles.

Figure 27 shows a cross section of the CRISTA-NF O3 retrieval results for flight L5 (filtered

and averaged as explained in Section 3.2.8). Along the flight track FOZAN O3 measurements

marked as colored line framed by black lines are shown. Generally, CRISTA-NF and FOZAN

agree very well. Slight differences during the descent are likely due to the fact that FOZAN

measurements and the nearest CRISTA-NF profiles are separated by several tenth of kilome-

ters due to the limb scanning geometry.

Figure 28 displays the data for flight L5 as vertical profiles. In addition, the ECMWF

O3 values, which are used as a priori for the CRISTA-NF retrieval, are shown. The orchid

diamonds give the mean value for every grid altitude of the CRISTA-NF result and error bars

indicate averaged noise, total and smoothing errors. The CRISTA-NF O3 values vary much

more than the other data presented. This is presumably at least partly caused by existing

horizontal O3 variations between different profiles along the flight path (see for comparison

also CLaMS O3 in Appendix C.1, Figure 76). The mean CRISTA-NF O3 corresponds well

to the FOZAN measurements. Above 14 km the CRISTA-NF O3 is somewhat lower and at
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Figure 27: Cross section of CRISTA-NF O3 mixing ratios and FOZAN measurements on 13
August (L5). The black line marks the flight altitude, the colors within the lines display the
FOZAN measurements. Black dots: Cloud Index < 3.5, gray diamonds: Total error larger
than 90%.

the same time, the ECMWF O3 is rather too high compared to the FOZAN data. Since the

FOZAN O3 values are not convoluted with the AVK they should agree within the total and

smoothing error of the retrieval. This is the case for most altitudes and hence indicates that

the retrieval and its errors are reliable.

Comparisons for water vapor and temperature are shown in Section 4.4 for the test flight;

FOZAN measurements are not available during that flight.

4.3 Comparison to CLaMS model results

The Chemical Lagrangian Model of the Stratosphere (CLaMS; McKenna et al., 2002a,b) is

employed analyze dynamical and chemical processes in the stratosphere and their influence

on stratospheric trace gases. The introduction of a hybrid vertical coordinate (ζ−coordinate;

Konopka et al., 2007) extended the range of application for CLaMS to the tropopause region

and troposphere. Several studies demonstrated the capability of CLaMS by comparisons to
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Figure 28: Profiles of measured O3 on 2006/08/13 (L5). Red stars: CRISTA-NF (all profiles
of flight L5); black and gray symbols: FOZAN measurements during ascent and descent of
the airplane; orchid diamonds: Mean of CRISTA-NF measurements over the whole flight for
each altitude of the retrieval grid; Error bars: Orchid: total error including smoothing, yellow:
Total error without smoothing, pink: Noise error. Blue crosses: ECMWF O3

remote sensing measurements, among them CRISTA (e.g. Khosrawi et al., 2005) and MIPAS

(e.g. Vogel et al., 2008) and in situ data (e.g. Günther et al., 2008).

Two different CLaMS data sets were compared with CRISTA-NF retrieval results:

1. A climatological run provided by Paul Konopka:

• Setup and resolution following Konopka et al. (2007). The HALOE climatology

developed by Grooss and Russell (2005) was used for initialization and as boundary

conditions.

• Mean age: A tracer, whose source in the boundary layer increases linear with

time, is defined. The mean age is calculated from the time lag between the time
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where the tracer was released and the actual time(Waugh and Hall, 2002). MIPAS

SF6 observations are used for the upper boundary at θ =2500 K (Stiller et al., 2008;

Konopka et al., in preparation, 2009).

2. A two month transient global run provided by Gebhard Günther:

• Resolution: 70 km between 20 and 40◦ N, 100 km elsewhere

• H2O :

ECMWF data used for initialization and boundary conditions. Lower and upper

boundaries situated at ζ =200 K and ζ =500 K, respectively. Condensation and

freezing based on cloud parameters by Krämer et al. (2008) and Schiller et al.

(2008).

• Other gases:

Initialized from the climatological run.

CLaMS data are interpolated onto the CRISTA-NF grid, convoluted with the AVK (Equa-

tion 7) and filtered as explained in Section 3.2.8. Specific humidity, ice water content (IWC)

(both with formation of cloud droplets at a relative humidity of 100%), cloud liquid water

content (CLWC) and O3 from the two-months CLaMS run are compared to CRISTA-NF H2O,

Clouds and O3. For comparison with the CRISTA-NF retrieval results the specific humidity

from CLaMS is converted to water vapor volume mixing ratio. The mean age of air from

the climatological CLaMS run and backward trajectories are used to analyze the origin of

observed air-masses. Trajectories are also used to correct for the time lag between the daily

CLaMS data and the actual measurement time of CRISTA-NF. CLaMS results are presented

in detail for the test flight in Section 4.4, the results for the other flights can be found in

Appendix C.1.
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4.4 AMMA test flight on 29 July 2006

4.4.1 Results and intercomparisons

The AMMA test flight was carried out on the 29 of July 2006. Figure 29 displays a three-

dimensional view of the flight path and schematic representation of the CRISTA-NF mea-

surement geometry. Black dots show spectra with a Cloud index below 3.5 on tangent points

corrected for the result of the altitude retrieval and refraction. Colored symbols represent

the CRISTA-NF PAN measurements positioned on the grid explained in Section 3.2.8. The

vertical extent of these symbols denotes the vertical resolution9.
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Figure 29: PAN as retrieved for the AMMA test flight on 29 of July 2006. Red line: Flight
path, black dots: Cloud Index < 3.5.

Starting in Verona, the M55-Geophysica flew to the south-east. North of the coast of Sicily,

9The resolution depends on the retrieved variable (see Section 3.2.4) and is shown for PAN, here. The
resolution of the other variables differ, it is e.g. better for H2O and more coarse for O3 .

73



after three short legs towards east, southwest and west the aircraft turned and returned to

Verona. A dive down to about 9 km was performed on the two legs in westward direction.

The view direction of CRISTA-NF is to the right of the aircraft, thus the measurements

during the southeastward leg were taken over the Mediterranean Sea. On the way back to

Verona they were taken above Italy and the Adriatic Sea. During the turn north of Sicily

CRISTA-NF views towards southeast over Sicily and in northward directions during the dive.

Few data could be analyzed during the dive because of increased aircraft movements and

hence decreased data quality (causing the gap in the middle of the following Figures showing

retrieval results).

Temperature

Figure 30 shows the result of the temperature retrieval as a cross section, spectra with

a cloud index below 3.5, and in situ temperature measured by the avionic system of M55-

Geophysica along the flight track. The M55-Geophysica flew at altitudes of 17-18 km before

the dive, descents down to about 9 km during the dive, climbs up to about 18.5 km afterward

and reaches nearly 21 km before the final descent. Figure 31 shows profiles of the CRISTA-

NF temperatures (red stars), the in situ temperature (gray and black symbols) and ECMWF

temperatures (blue crosses) for the whole flight. The temperatures measured in situ during

ascent, dive and descent are colored light gray, dark gray and black, respectively.

All temperatures agree well with each other. The spread of the CRISTA-NF temperatures

is slightly higher than the one of the in situ data and ECMWF data. The difference to

the in situ data can be explained, because they are measured only along the flight path,

see Figure 30). Hence, there is a large horizontal distance between most of the CRISTA-NF

measurements and the in situ measurements for the same altitude. There is also a much larger

area covered by CRISTA-NF measurements. The lowest temperature for each profile and thus

the cold point tropopause is found at altitudes between 16 and 18 km during the whole flight.

The minimum temperature along the flight path, about 205 K, is situated in the southern

most profiles at about 16 to 17 km altitude. In this part of the flight also the highest observed

temperatures are found below an altitude of about 10 km. In the northernmost part of the
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Figure 30: Cross section of CRISTA-NF temperatures together with M55-Geophysicas in situ
avionic temperatures shown as colored line framed with black along the flight path for the
test flight on 29 of July 2006. Black dots: Cloud Index < 3.5. Note nonlinear color scale.

flight, predominant during ascent and descent in the in situ data, a local minimum can be

seen at a altitude of about 12 to 12.5 km. A 2D-field of interpolated ECMWF temperatures

is shown in Figure 86, Appendix C.2 and agrees well with the temperature distribution of the

CRISTA-NF temperatures.

Water vapor and clouds

Figure 32 shows the result of the water vapor mixing ratio (H2O) retrieval (Panel a)) and

a CLaMS simulation of H2O (Panel b). The colored, black highlighted line shows the flight

altitude with the FISH measurements as color code.

Large parts of the flight were cloud free down to an altitude of 8 km providing excellent

conditions for trace gas retrievals. The colored rectangles show the result of the CRISTA-NF

H2O retrieval. Grey diamonds mark H2O values with a total error over 90% (see Section 3.2.5

and 3.2.8). Almost all values above 12.5 km have errors exceeding 90%. An exception are
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Figure 31: All profiles of CRISTA-NF temperature (red stars), in situ temperatures during
ascent (light gray triangles), descent (black circles) and dive (dark gray circles) together with
ECMWF temperatures (blue crosses) for the test flight on 29 of July 2006.

single, remarkably high water vapor values at altitudes of 13-14 km found in two isolated

structures at about 7:00 and 8:30 UTC as well as enhanced H2O mixing ratios in this altitude

in the southernmost part of the flight, between 7:15-8:15 UTC. Below 12 km the H2O mixing

ratios are lowest in the southernmost part of the flight. The FISH measurement corresponds

well to the nearest CRISTA-NF profiles during the dive. At the flight altitude water vapor

has very low mixing ratios resulting in large relative errors of the CRISTA-NF data, because

the H2O emission at 784-785 cm−1 becomes hardly detectable (see Figure 6).

Panel b) shows H2O and ice clouds (IWC > 0) from the two-months CLaMS run (see

Section 4.3). Ice clouds are marked with gray squares. There is only one liquid water cloud

(LWC > 0) in the CLaMS data at about 7:35 UTC marked as dark gray dot. Altogether,
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Figure 32: Test flight on 29 of July 2006: Panel a) Cross section of CRISTA-NF H2O,
black dots: Cloud Index < 3.5, gray diamonds: Total error >90%. Panel b) CLaMS
H2O interpolated on CRISTA-NF tangent point positions. Gray squares: IWC > 0, dark
gray dot: LWC > 0. The flight path colored with FISH H2O measurements and framed with
black lines is shown in both panels. Note nonlinear color scale.
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there are significantly fewer clouds in the CLaMS simulation than CRISTA-NF measurements

indicate. One reason could be that clouds in CLaMS are only displayed, if they are situated at

a grid point of the retrieval result whereas clouds indicated by CRISTA-NF can be situated

anywhere along the LOS. The comparability of the clouds identified through the IWC in

CLaMS to the CI of CRISTA-NF could be improved by interpolating the modeled cloud data

onto the complete LOS to identify clouds (see e.g. Adams et al., 2009). During flight T4 a

continuous cloud layer was present along most of the flight track (see Appendix C.1, Figure

83). Here CLaMS ice clouds reproduce the clouds seen with CRISTA-NF much better (see

Appendix C.1, Figure 84).

At 12 to 13 km altitude there is an enhanced amount of water vapor mixing ratio in

the southernmost part of the flight between about 7:15 to 8:15 UTC in the CLaMS data.

This agrees in general with the CRISTA-NF results but the CLaMS H2O mixing ratios are

somewhat higher and more uniform in these altitudes. The structures of enhanced water

vapor seen at about 7:00 and 8:30 UTC in the CRISTA-NF results above 12 km are not found

in the CLaMS data. Below 12 km altitude the CLaMS water vapor mixing ratios are lower

than the retrieved ones almost everywhere. As in the CRISTA-NF data, there is less water

vapor in the southern part of the flight than in the northern part for the CLaMS data at lower

altitudes. But for CLaMS this is the case for altitudes below 10 km and not up to 12 km as

for CRISTA-NF.

Figure 33 shows the ECMWF water vapor interpolated onto the same grid as the CRISTA-

NF results. The ECMWF values agree well with the CRISTA-NF results below 12 km, better

than with the lower CLaMS water vapor. The enhanced water vapor values seen by CRISTA-

NF and CLaMS above 12 km are not found in the ECMWF data. For ECMWF the water

vapor is lowest in the south for all altitudes up to 14 km.

Figure 34 compares profiles of the different water vapor mixing ratios. Panel a) displays all

CRISTA-NF and CLaMS values for the whole flight shown already in Figure 32. Panel b) only

shows CRISTA-NF profile 76, one of the south viewing profiles over Sicily. This profile was

chosen, because the tangent points are among the ones with the smallest horizontal distance
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Figure 33: ECMWF water vapor interpolated onto CRISTA-NF tangent point positions for
the test flight on 29 of July 2006, color coding like in Figure 32.

to the FISH in situ measurements during the dive.

From Panel a) it is obvious, that the CLaMS data (golden “X”) are lower than all other

data below about 12.5 km. The CRISTA-NF values (red crosses, mean for each grid altitude:

orchid diamonds) agree better with the FISH measurements at lower altitudes, but above

12 km their errors reach 100% and they show a much larger variability than all other data.

Still the mean water vapor for each grid altitude has a reasonable value up to 15.5 km. The

CRISTA-NF data agree better with the FISH data (gray and black symbols) below 12 km

than with the CLaMS data. This is a clear indication that the CLaMS data are too low at

these altitudes. This might be due to an underestimation of convection, which is not resolved

sufficiently in all cases in CLaMS (e.g. Walter, 2009).

That the CLaMS H2O might be too low is also supported by the profile 76 shown in Panel

b): During the dive the CLaMS values agree nearly exactly with the FISH measurement
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Figure 34: Intercomparison of water vapor profiles for the test flight on 29 of July 2006: a)
All profiles b) profile 76 of CRISTA-NF (red stars), CLaMS (golden “X”), FISH (gray and
black symbols) and MIPAS midlatitude climatology (a priori, blue stars). The CRISTA-NF
mean profile is shown as orchid diamonds in Panel a). Averaged errors are shown for the
CRISTA-NF data: Pink error bar: Noise error, yellow error bar: total error, orchid error bar:
total error and smoothing error.

(dark gray symbols) above 11 km, but they are clearly lower below 11 km. In contrast, the

differences between CRISTA-NF and FISH water vapor data increase at higher altitudes. For

the CRISTA-NF data the averaged error bars are given: Pink is the noise error, yellow the total

error without smoothing and orchid the total error including smoothing (see Section 3.2.5).

Because they are convoluted with the AVK and interpolated on the same grid the CLaMS

data should agree to the CRISTA-NF data within the total error without smoothing. This
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is not the case below 12.5 km. The FISH H2O measurements are not convoluted and there

are differences between the horizontal positions of the CRISTA-NF tangent points and the

FISH measurements. Hence, even larger differences than the total error with smoothing may

be reasonable.

In almost all cases the difference between CRISTA-NF H2O of profile 76 and FISH H2O during

the dive is smaller than the CRISTA-NF total and smoothing error. At the same time the

distance of the tangent points to the flight path during the dive and hence to the FISH mea-

surement positions are small. One might expect therefore that the differences rather decrease.

The reason why this is not the case is the decrease of the strength of the spectral signature

of H2O relative to the contributions from other trace gases at 784–785 cm−1, see Figure 6.

Only up to about 12 km altitude the H2O emission is dominant, above CO2 and O3 spectral

signatures are stronger. Above about 15 km one can hardly identify the H2O emission, leading

to the large errors in the retrieval.
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Figure 35: Scatter plot of CRISTA-NF and CLaMS water vapor for the test flight on 29 of
July 2006.
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Figure 35 shows a scatter plot of CRISTA-NF and CLaMS H2O. There are two main

differences: First, for water vapor values between 10 and 300 ppmV the CLaMS data are

obviously lower. For mixing ratios above about 10 ppmV the CRISTA-NF water vapor mixing

ratios can be considered to be reliable while CLaMS was developed mainly for stratospheric

conditions and almost all H2O mixing ratios above 10 ppmV are found in the troposphere

during TF2. Second, there are nearly no CLaMS water vapor volume mixing rations lower

than 3 ppmV while there are CRISTA-NF measurements down to zero. These CRISTA-NF

H2O measurements below about 10 ppmV are not significant and are certainly too low.

In summary, the CRISTA-NF results agree well with in situ measurements below 12 km

altitude (i.e. where the water vapor volume mixing ratios are higher than 10 ppmV). At

higher altitudes and lower mixing ratios, the retrieval errors become too large for the data

to be significant. However, mean values over e.g. the whole flight are consistent with the in

situ measurements up to about 15 km. For higher altitudes, a H2O retrieval is hardly possible

using the spectral line at about 784 cm−1. This is already indicated in Figure 6 showing

only a very weak water vapor contribution to the calculated radiance for 15 km altitude and

above. There are stronger H2O emissions within the spectral range covered by CRISTA-NF,

but using them to analyze H2O is beyond the scope of this work.

Ozone

The result for the O3 retrieval is displayed in Figure 36 as a function of altitude (Panel a)

and ζ-level (Panel b). In general, the O3 mixing ratio increases with altitude. Air with low

O3 mixing ratios smaller than about 200 ppbV is found up to 12-13 km in the northern part

of the flight track but up to 15-16 km in the southern part.

The most obvious structure in the retrieved ozone is a region of high volume mixing ratios

(> 200 ppbV) down to altitudes of 10 to 12 km (approximately ζ = 320 K) before 7:00 and

after 8:30 UTC, i.e. for the northern part of the flight track. Whereas in the southern part of

the flight track volume mixing ratios down to 50 ppbV are found up to an altitude of about

15 km (approximately ζ = 380 K), regions A1 and A2 in Panel b). The transition between low

and high O3 values is rather sharp above 13 km. Below, a “tongue” of moderate O3 mixing
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Figure 36: Cross section of CRISTA-NF O3 volume mixing ratio plotted versus time and a)
altitude and b) zeta for the test flight on 29 of July 2006. Black dots in a): Cloud Index
< 3.5. Gray and black ellipses in Panel b) mark structures which are discussed in the text.
Note nonlinear color scale.
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ratios between 100 and 200 ppbV extends down to 8 km altitude, marked with B1 and B2.

There are somewhat higher O3 mixing ratios in B1 than in B2, but in general the structures

marked with A and B are nearly symmetrical in both flight directions. In the first half of

the flight there is a second O3 maximum reaching down to below 10 km, at about 6:40 UTC,

marked with C1. This is, if at all, only mirrored by a single profile at about 8:50 UTC in

the second half of the flight (C2). Another region with enhanced O3 is present directly in

the beginning of the flight (D1), down to about 11 km. This is not found in the second half,

presumably because the descent starts before.

The structures observed in the O3 mixing ratios are significant compared to the retrieval

errors. It is important to note that the low ozone values up to 15 km altitude are not part

of an enclosed feature. Instead the aircraft is turning before 8:00 UTC, measuring the same

structure a second time. This time the viewing direction is toward the northeast instead of

south west. Comparing the structure found in the O3 to the retrieved water vapor in Figure

32 shows that the isolated structures of enhanced H2O observed at 7:00 and 8:30 UTC above

12 km coincide with the base of the O3 “tongue”.

The CLaMS and ECMWF O3 mixing ratios are shown in Figure 37. ClaMS shows a very

similar structure to CRISTA-NF in the ozone. However, the absolute values are somewhat

higher than observed by CRISTA-NF, often outside the CRISTA-NF total errors. Further,

the region of high O3 mixing ratios above 200 ppbV extends lower down, below 10 km, in

the CLaMS data. In the ECMWF analysis data no such distinct O3 structure can be seen.

Low O3 values reach up to higher altitudes in the southern part of the flight but the whole

transition is smoother and there is no O3 “tongue”. Before 7:00 and after 8:30 UTC the

transition between low and high ozone is situated at the same altitude between 12 and 13 km,

whereas its altitude is much more variable in the CLaMS data shown in Panel a) as well as

in the CRISTA-NF data in Figure 32.

The scatter plot of CRISTA-NF and CLaMS O3 presented in Figure 38 reveals that the

O3 values above 300 ppbV are in excellent agreement, while for lower mixing ratios CLaMS

results are obviously higher.
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Figure 37: CLaMS (Panel a)) and ECMWF (a priori, Panel b)) O3 mixing ratios interpolated
onto CRISTA-NF tangent point positions for the test flight on 29 of July 2006. In Panel a)
gray squares show CLaMS IWC > 0 and the dark gray dot a CLaMS LWC > 0, indicating
ice and liquid water clouds, respectively. Note nonlinear color scale.
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Figure 38: Scatter plot of retrieved CRISTA-NF and modeled CLaMS O3 mixing ratios during
the test flight on 29 of July 2006.

As mentioned before the probability is rather low that two isolated O3 “tongues” have

been measured on this flight. Instead the same extended structure is seen twice: Once during

the measurement towards the southwest above the Mediterranean Sea and on the way back

measuring towards north east above Italy and the Adriatic Sea. This is illustrated by plotting

the CRISTA-NF O3 values onto a map using the locations of the refracted tangent altitudes

as positions in Figure 39. The O3 distribution appears to be nearly symmetrical for both

flight directions, indicating that it is one structure with several hundred kilometers horizontal

extent.

The map of CLaMS O3 values on the 350K ζ-Level in Figure 40 shows, that the flight

path was crossing a transition between higher O3 mixing ratios in the north and lower ones

towards the south. This means that 350K ζ-Level transects the tropopause, i.e. the high

O3 mixing ratios in the north indicate rather air from the lowermost stratosphere, the lower
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Figure 39: Map of the CRISTA-NF O3 mixing ratios during the test flight on 29 of July 2006.
Note nonlinear color scale.

O3 mixing ratios in the south tropospheric air, as will be discussed in Section 4.4.2.

Other trace gases

The retrieval result for HNO3 and PAN are shown in Figure 41. HNO3 has a similar

structure as O3 for the southern part of the flight, while for the northern part the gradient

between HNO3 mixing ratios within air below and above about 12 km is not as strong as for

O3. PAN is a tracer originating from the troposphere and shows a totally different structure

compared to O3: In the southern part PAN mixing ratios of about 80 pptV are found up to

15.5 km altitude, in the northern part these values are rather located at 14 km. There is an

isolated maximum at 7:15 and 8:15 UTC in the 14-15 km region with over 125 pptV PAN

surrounded by air with lower PAN mixing ratios of about 90 pptV. Enhanced mixing ratios of

PAN with over 150 pptV are also situated at the same location as the enhanced H2O obvious

in Figure 32 at 7:00 and 8:30 UTC between about 12 and 13.5 km.
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Figure 40: Horizontal distribution of CLaMS O3 on the ζ = 350K (about 13 km altitude)
level on 29 of July 2006 12:00. Note nonlinear color scale.

Figure 42 shows the retrieval result for CCl4 and aerosol. They show similar, but much less

distinct structures as PAN. CCl4 and aerosol are both of tropospheric origin, too. CCl4 has

a much longer lifetime than PAN, whose lifetime is in the order of months in the upper

troposphere (Talukdar et al., 1995). The lifetime of CCl4 several tenth of years, (e.g. Volk

et al., 1997 and Happell and Roche, 2003). The decrease of CCl4 with altitude is therefore

slower than for PAN and the differences between tropospheric and lower stratospheric values

are smaller. This results in much less pronounced structures for CCl4 than for PAN. For

CCl4 only in the last part of the flight measurements are taken at sufficiently high altitudes

to detect the decrease at stratospheric altitudes.

For aerosol the structure is probably less clear as for PAN because it has the largest errors

of all retrieved variables. It was also not well reproduced by the sequential retrieval (see

Section 3.2.7). The structures found in O3, HNO3, and PAN, in contrast to the ones seen in
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Figure 41: Cross section of CRISTA-NF HNO3 (Panel a) and PAN (Panel b) for the test
flight on 29 of July 2006. Black dots: Cloud Index < 3.5, gray diamonds: Total error >90%.
The PAN mixing ratios shown in Panel b) are the same as for the 3-D distribution shown in
Figure 29 (color scale differs). Note nonlinear color scales.
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Figure 42: Cross section of CRISTA-NF CCl4 (Panel a) and aerosol (Panel b) for the test
flight on 29 of July 2006. Black dots: Cloud Index < 3.5, gray diamonds: Total error >90%.
Note nonlinear color scales.
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the retrieval of Aerosol, H2O and CCl4, are significant for most profiles compared to the total

and smoothing error for the respective species (not shown).

In summary, O3 and the other retrieved trace gases show pronounced structures between

approximately 10 and 15 km altitude. For O3 the existence of this structure is reproduced

by CLaMS but it seems to be not resolved in the ECMWF operational analysis data. In the

southern part of the flight air with low O3 and HNO3 volume mixing ratios and at the same

time enhanced amounts of PAN is found while it is the opposite for the northern part. This

contrast is due to the different main origin of the trace gases. PAN has its source in the

troposphere, O3 and HNO3 are, in contrast, mainly originating from the stratosphere. This

indicates a transition between tropospheric and stratospheric air at these altitudes.
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4.4.2 Discussion

The significant structures consistently observed in the CRISTA-NF trace gas cross sections of

O3, HNO3 and PAN point to the fact that air-masses of stratospheric and tropospheric origin

and mixing processes among them were observed. A common way to analyze such mixing

processes are tracer-tracer correlations (e.g. Plumb and Ko, 1992, Volk et al., 1996). Figure 43

shows a scatter plot of O3 versus PAN. The color code displays the appropriate altitude. PAN

is originated in the troposphere only (Talukdar et al., 1995), while O3 is mostly produced in

the stratosphere. Therefore their gradients have an opposite sign at the tropopause, allowing

to detect mixing, as explained by e.g Hoor et al. (2002) and Pan et al. (2007) for CO and

H2O in combination with O3.
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Figure 43: Scatter plot of CRISTA-NF O3 versus PAN. Color scales display the altitude of the
measured mixing ratios. Gray stars show values which did not pass the quality thresholds (see
Section 3.2.8). Pink lines in Panel a) mark 150 ppbV O3 and 120 pptV PAN. Measurements
above both lines are marked with pink circles.

In this work, PAN is used instead of H2O as tropospheric tracer because it could be

retrieved reliably up to higher altitudes by CRISTA-NF. PAN is mainly originated from
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pollution and therefore has its main sources close to the ground. Between the low PAN and

high O3 values above 14 km and the high PAN and low O3 below 13 km there are intermediate

values found between about 10 and 14 km. Such measurements with more than 150 ppbV

O3 and simultaneously more than 120 pptV PAN are marked with pink circles in Figure 43.

They indicate mixing between tropospheric and stratospheric air. To some extent the field of

view of CRISTA-NF may lead to an overestimation of mixing. For the altitudes where the

mixing is observed the vertical resolution of PAN and O3 is in most cases better than 3 km

and often better than 2 km for O3 and 1 km for PAN (see e.g. Figure 15).

The altitudes where intermediate PAN and O3 mixing ratios occur, indicate a layer about

4 km wide with mixing between tropospheric and lowermost stratospheric air. It is similar to

the one found by Pan et al. (2007) in connection with a tropopause fold on the cyclonic side

of the polar jet in December 2005, using in situ measurements. Pan et al. (2007) observed a

depth of the mixed air up to 5 km with rather low O3 values with 100 ppbV also within the

mixed air. For the CRISTA-NF measurements during flight TF2 the O3 mixing ratios within

the mixed air is significantly higher (up to 300 ppbV).

Figure 44 shows a scatter plot of HNO3 versus O3. The two species are positively corre-

lated but one can distinguish two branches with tropospheric (blue and green) and strato-

spheric (green and other colors) air, respectively. Such branches can also be seen with the

HNO3 versus O3 correlation described by Fairlie et al. (2007) in tropospheric and lower strato-

spheric air measured by high-frequency in situ observations from the DC8 during the Inter-

continental Chemical Transport Experiment-North America in summer 2004. The slope of

the stratospheric correlation observed by Fairlie et al. (2007) is similar to the one observed

by CRISTA-NF above about 12 to 14 km. The tropospheric branch is more clearly separated

and there are less stratospheric measurements in this in situ measurements, which reaches

not higher up than about 12 to 13 km.

A similar structure to the one found here in the O3 and HNO3 mixing ratios (Figure 36 and

41a) was also described by Olsen et al. (2008) for High Resolution Dynamics Limb Sounder

(HIRDLS) measurements. It has a much larger extent and was connected to an intrusion of
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Figure 44: Scatter plot of CRISTA-NF HNO3 versus O3. Color scales display the altitude of
the measured mixing ratios. Gray stars show values which did not pass the quality thresholds
(see Section 3.2.8).

tropical lower stratospheric or upper tropospheric air into the high latitude lower stratosphere.

Figure 45a) presents a blowup of the O3 distribution already displayed in Figure 36. The

gray lines show the 1.5, 2 and 4 PVU surfaces as taken from ECMWF data, the black line

shows the flight altitude. O3 mixing ratios between 130 and 220 ppbV are marked with violet

diamonds to emphasize the transition between tropospheric and stratospheric air. These

are also shown in Panel b) together with the wind speed from ECMWF (golden contour

lines) to identify the position of the subtropical jet, the cold-point tropopause from ECMWF

temperatures (blue-green stars) and the lapsrate tropopause (at a lapsrate of 2 K/km; cyan

squares) calculated from CRISTA-NF measurements. ζ-levels from CLaMS are shown as red

contours. The measurements indicating mixed air based on O3 and PAN mixing ratios from

Figure 43a) are again marked as pink circles in Figure 45b).

The cold-point tropopause is situated at an altitude of 16 km or higher during the whole

flight. It is determined from ECMWF data, because it is partly situated above the flight
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Figure 45: Excerpt of the CRISTA-NF O3 cross section from Figure 36. Both Panels: Gray
lines show the ECMWF potential vorticity at 1.5, 2 and 4 PVU, black line the flight track,
violet diamonds show CRISTA-NF O3 values between 130 and 220 ppbV. The Panel a) shows
CRISTA-NF O3 values as color coding. Panel b) shows ζ-level (CLaMS) as red contours,
lapsrate tropopause from CRISTA-NF measurements (cyan squares), Cold-point tropopause
from ECMWF temperatures (blue-green stars) and ECMWF wind speed (gold contours).
Pink circles show positions, where the tracer-tracer correlation in Figure 43 indicates mixing.
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altitude where CRISTA-NF temperatures are not passing the quality filters from Section

3.2.8. The lapsrate tropopause, on the other hand, is calculated from CRISTA-NF data to

utilize the higher resolution. To detect it everywhere along the flight track an even higher

resolution would be necessary.

The dynamical tropopause, often defined as the 2 PVU surface (e.g. Pan et al., 2007), is

situated at about 10 km altitude in the northern part of the flight. During the southern part

the 2 PVU surface is situated somewhat higher up, at about 13 km but still far below the cold

point tropopause at 17 km. Even though no continuous lapsrate tropopause is resolved the

profiles where it is detected indicate that it is situated somewhat above the 4 PVU surface.

Like the dynamical tropopause but in contrast to the cold-point tropopause the lapsrate

tropopause changes its altitude between the northern and the southern part of the flight.

In the north it is mainly found at about 12 km, in the south it seems to correspond to the

cold-point tropopause at around 17 km altitude. The vertical and meridional wind speeds in

the ECMWF data reveal, that the rise of the 2 PVU surface is situated just at the center of the

subtropical jet. The air in the northernmost part of the flight above the lapsrate tropopause

and the 4 PVU surface (corresponding to about 12 km altitude) belongs to the lowermost

stratosphere, in accordance with the measured trace gas mixing ratios (especially the high

O3 ). In the southern part tropospheric air can be found up to an altitude of 15 km.

Shapiro (1980) described tropopause folds as mixing regions characterized by a chemical

characterization between troposphere and stratosphere. The 2 PVU surface in the ECMWF

data is not folded as sharply as one might expect in this case, but one should remember

that the “tongue” seen in the CRISTA-NF O3 is as well not resolved in the ECMWF data.

Nevertheless, all PVU surfaces shown in Figure 45 rise at least 2 km, where the O3 “tongue”

is observed by CRISTA-NF. Also the relatively high O3 values in the northern part of the

flight (labeled with C1 and C2 in Figure 36) concur with decreasing altitudes of the shown

PVU surfaces. In the ECMWF O3 (Figure 37b) no corresponding structure is present. These

results indicate that the CRISTA-NF measurements show a detailed cross section through a

tropopause fold.
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It certainly helped to resolve this structure by CRISTA-NF that the flight track was

aligned nearly perpendicular to the fold, providing that the CRISTA-NF measurements also

have a relatively high horizontal resolution and sampling in addition to the generally high

vertical resolution. The resolution naturally can not be as high as the one provided by in situ

measurements. However, the CRISTA-NF measurements have a higher resolution then most

satellite data available for these altitudes today and provide, unlike in situ measurements,

a two dimensional cross section. No in situ measurements deployed on the M55-Geophysica

during this flight would be able to detect these structures without extensive flight maneuvers

at lower altitudes, which would require some predictive knowledge of the structure.

Imaging spectrometers as the GLObal limb Radiance Imager for the Atmosphere (GLO-

RIA; Riese et al., 2005, Friedl-Vallon et al., 2006), which is under development for the High

Altitude and LOng range research aircraft (HALO) will provide an even better resolved view

of such small scale structures. The next generation of infrared limb imaging satellites (see

e.g. Riese et al., 2005 and ESA, 2008) like PRocesses Exploration through Measurements

of Infrared and millimeter-wave Emitted Radiation (PREMIER) will provide a spectral and

spatial resolution similar to CRISTA-NF with global coverage. This will offer the possibil-

ity to quantify the effect of small- and mesoscale processes on the total exchange between

troposphere and stratosphere.

Tropopause folds are suspected to be one of the main mechanisms for cross-tropopause-

transport (e.g. Shapiro, 1980 and Seo et al., 2008). Hoor et al. (2002) observed a greater

depth of the mixing layer above the extra-tropical tropopause during summer and explained

it with transport across the tropopause at the subtropical jet. Mixing between tropospheric

and lower stratospheric air is observed to occur often in connection with tropopause folds.

Figure 45 shows that the mixed air identified by the tracer-tracer correlation in Figure 43 is

found at the northern side of the jet where the fold is situated at up to about 14.5 km altitude

and ζ=380 K and at up to about 13 km further northwards in the lowermost stratosphere

(above the dynamic and around the lapsrate tropopause).

97



−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

0.0
10.0
50.0
70.0
90.0

110.0
130.0
150.0
170.0
190.0
210.0
230.0
250.0
300.0
400.0
750.0

2000.0

O3 [ppbV]

−180 −90 0 90 180
Longitude

     

−20

0

20

40

60

80

La
tit

ud
e

 

 

 

 

 

 

Figure 46: Map with 10 day backward trajectories from the TF2 CRISTA-NF grid positions
between 350 and 360 K ζ. Color coding shows the CLaMS O3 on the CRISTA-NF grid
(without filtering) during the test flight. The flight track is marked with red diamonds.
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Figure 47: Vertical motion in ζ space of the backward trajectories from in Figure 46 plotted
versus time.
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To gain further insight into the origin and the fate of the air masses detected during the test

flight trajectories are calculated with CLaMS. Figure 46 shows 10 days backward trajectories

of all air parcels arriving at the CRISTA-NF grid positions between 350 and 360 K ζ (without

filtering for resolution, measurement contribution and χ2/m). For ζ between 350 and 360 K

relatively low O3 values are just found in the southern part of the flight. The trajectories reveal

that nearly all air parcels with low O3 volume mixing ratios under 200 ppbV originate in the

region around the Asian monsoon anticyclone. In contrast, about all trajectories arriving

in the northern part of the flight track with O3 values over 200 ppbV come from westward

directions along the subtropical jet.

The vertical motion of backward trajectories in ζ-Level is displayed in Figure 47 showing

that they where at higher levels the days before the test flight. Further back, the ones with a

higher O3 mixing ratio are found at ζ-Level above 370 K. Most of the trajectories with lower

O3 values come from around 360 K and are sinking 2–5 K before the 29 of July. Generally

the trajectories arriving at ζ-Level between 350 and 360 K with higher O3 values seem to

originate at higher ζ-Level compared to the ones with low O3 mixing ratio.
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Figure 48: As Figure 46 but 10 day forward trajectories
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Figure 48 displays forward trajectories for the same ζ interval over 10 days showing that

the air-masses with low O3 mixing ratios do not return into the flow around the Asian monsoon

anticyclone, but follow the subtropical jet, like the ones with high O3 values. Over Asia most

of the trajectories arriving at high and low O3 values, respectively, appear to be still separated.

Few trajectories with high O3 turn south over the Pacific Ocean. Most trajectories are sinking

to ζ-Levels under 350 K during these 10 days (not shown).

The low O3 and HNO3 mixing ratios along with high PAN mixing ratios in the southern

part of the flight also correspond well to the ACE-FTS observations of low O3 and HNO3 and

high mixing ratios of tropospheric species within the Asian monsoon anticyclone (Park et al.,

2008). They observe a strong isolation of the air within this anticyclone.
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Figure 49: Cross section of mean age of air from the climatological CLaMS run interpolated
on CRISTA-NF grid points.

A further measure for the origin of the air is the mean age (see Section 4.3). Figure 49

displays the mean age of air from the climatological CLaMS run. It indicates that in the
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southern part of the flight track air with a mean age of less than about one year is found up

to 15 km altitude. In the northern part young, tropospheric air is in most cases found only

below 10 km.

In summary, the results of the AMMA test flight on 29 July 2006 shows that CRISTA-

NF provides detailed measurements in the UTLS. The data obtained agree well with in situ

measurements and modeled data from CLaMS. A tropopause fold, not well resolved by the

ECMWF operational analysis was observed.
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5 Summary and Outlook

This work concentrates on the analysis of measurements from the mid infrared spectrome-

ters CRISTA-NF during the AMMA-SCOUT-O3 campaign, which took place in July and

August 2006. Deployed on the high-altitude research aircraft M55-Geophysica it measured

mid infrared radiance within an altitude range of about 5 to 21 km at maximum. The

AMMA-SCOUT-O3 campaign consisted of a test flight over Italy and the Mediterranean Sea,

four transfer flights via Marrakech to Ouagadougou and back and five local flights around

Ouagadougou.

The retrieval code JURASSIC was utilized to retrieve atmospheric data from the 776 to

868 cm−1 detector channel of CRISTA-NF. Improvements of the forward model used and

the thorough selection of the retrieval setup made it possible to retrieve altitude, tempera-

ture, H2O, O3, HNO3, PAN, CCl4, aerosol, and a radiometric offset simultaneously from the

CRISTA-NF measurements. In addition, information about clouds along the flight track are

available.

The accuracy of the forward model, required for the retrieval, was significantly increased

by combining the Emissivity Growths Approximation, the Curtis Godson Approximation and

a linear regression model as well as by including the computation of the H2O continuum

directly into the JURASSIC code.

The attitude determination of CRISTA-NF was improved by combining information from

its own attitude monitoring system, which has a high time resolution, and the M55-Geophysica

avionic system, which has a higher absolute accuracy. Due to the remaining uncertainty of the

resulting attitude it was necessary to develop a retrieval setup, which can derive altitude and

temperature simultaneously. This was achieved by using the radiance from nine spectral bands

around 790 cm−1 and 840 cm−1 and utilizing the a priori knowledge of CFC-11 from HAGAR

in situ measurements. At the same time this emphasizes the importance of good knowledge of

the altitude in order to gain as much information as possible about the atmospheric quantities,

i.e using CFC-11 measured in situ to be able to retrieve temperature and altitude implies that

a CFC-11 retrieval is not possible.
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Based on the improved attitude, the forward model correction and the new retrieval setup

it is now possible to provide a CRISTA-NF level-2 data set for the AMMA transfer flights,

the test flight and the fifth local flight. The retrieval results are available for these flights

on a 500 m altitude grid with a vertical resolution varying between about 500 m and 3 km,

depending on the retrieved variable and the sampling of the measured radiance, below the

flight altitude of about 17 - 21 km. Measurement contribution and retrieval errors indicate

a good data quality for H2O (below about 12 km), temperature, CCl4, and especially PAN,

O3, and HNO3. Generally, CRISTA-NF data agreed well to the available in situ observations

and a CLaMS simulation during the analyzed flights. Hence, CRISTA-NF data provides a

detailed insight into the UTLS, measuring both trace gases of tropospheric and stratospheric

origin. This allows to observe mesoscale processes, which have implications for the medium

range weather forecast and ozone chemistry (WMO, 2006).

These level-2 data can form the basis to retrieve further atmospheric constituents and

extend the H2O retrieval to altitudes up to the observer altitude using the sequential retrieval

on spectral intervals outside the 776 to 868 cm−1 region. Further improvements of the quality

of the retrieved data can be achieved by using more detailed information for forward model

parameters, e.g. from satellite measurements of ClONO2 and CFCs. Additionally a more

accurate in-flight wavelength calibration would be an asset.

A detailed analysis is performed for the test flight on the 29 of July 2005. Here, a sharp

transition between tropospheric and stratospheric air was observed over the Mediterranean

Sea, identified by strong gradients in O3, HNO3, and PAN. Its structure was reproduced by

CLaMS simulations but was not as distinct in the ECMWF operational analysis data set.

It was identified to be caused by a small tropopause fold, which is not well resolved in the

ECMWF data. CLaMS data made it possible to gain further information about the origin

and the fate of the observed air masses. They indicate that the observed air originated on the

one hand in the tropopause within the Asian monsoon anticyclone and on the other hand in

the extratropical lowermost stratosphere along the subtopical jet. Tracer-tracer correlations

between PAN and O3 retrieved from the CRISTA-NF measurements show the presence of
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mixed tropospheric and stratospheric air. This emphasizes that CRISTA-NF is capable of

providing a detailed picture of the chemical composition in the UTLS with a higher resolution

than today’s satellites and a better coverage than in situ measurements.

To investigate the UTLS in such detail on a global scale could help to gain a better

understanding of the whole atmosphere. This can be facilitated by future satellite instruments

like PREMIER (ESA, 2008), which can provide a similar sampling and spectral resolution as

CRISTA-NF and operate on a global scale.
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A Appendix

A.1 CRISTA-NF

Table 7 lists the spectral ranges of all CRISTA-NF detectors in the calibrated spectra (level-

1A data). The in-flight wavelength calibration is only available for some detectors. Therefore

the spectral ranges available for data analysis can vary in the order of a few wavenumbers.

There is also a small difference in the spectral range between forward and backward spectra.

The spectral ranges listed here are based on the measured spectra of profile 76, TF2. They

are similar, but not identically to the ones listed in Schroeder et al. (2009), which are based

on the accuracy of the calibration.

Errors for the in-flight wavelength calibration for AMMA T3, detector L6 for forward and

backward spectra are listed in Table 10.
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Table 7: Detectors and spectral ranges available in level-1A data.

Detector Approximate Approximate In-flight Remark
channel spectral range spectral range wavelength

[µm] [cm−1] calibration
HRS

H1 11.39–10.74 878–931 no
H2 11.88–11.25 842–889 yes1

H3 12.18–11.53 821–867 no Defective on flights
TF2, L2, L5

H4 12.61–11.98 793–835 no Calibration incomplete2

H5 12.89–12.25 776–816 T3 Defective on flights
TF2, L2, L3

Empirical correction3

apart from T3 and T4
H5R 12.89–12.25 776–816 yes1 Empirical correction3

apart from T3 and T4
H6 6.72–6.39 1489–1565 no
H7 13.72–13.05 729–766 no

LRS

L1 8.61–7.24 1161–1382 no Review calibration4

L2 4.82–4.13 2076–2422 no Defective on flights
TF2, T1, T2, L1,
L2, L3, L4, L5

L3 10.28–8.84 973–1131 no
L5 11.78–10.38 849–963 T3
L6 12.89–11.52 776–868 yes1

L7 6.71–6.02 1490–1660 no
L8 14.04–12.67 712–789 no Review calibration4

1 For flights TF2, T1, T2, L5, T3 and T4
2 The post AMMA calibration with variable detector temperature could not be analyzed for
H4 due to a failure of the detector before or during this calibration. The spectral range of
H4 overlaps with H5R revealing that the radiance of H4 has large bias. Therefore it is not
possible to use H4 without further correction.
3 A change of the detector bias voltage before the back transfer (T3, T4) makes a correction
for all other flights necessary, because the black body calibration is only valid for the new
bias voltage (Schroeder, pers. com.).
4 Artifacts in spectra measured with closed shutter. It might be possible to remove them
with a reviewed black body or wavelength calibration.
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A.1.1 Black body calibration

A black body calibration is necessary to translate the detector signals into radiance. This is

described in detail by Kullmann (2006) and Schroeder et al. (2009) for CRISTA-NF and Ern

et al. (2003) for CRISTA. The resulting instrumental errors from the post AMMA calibration

for the detectors L5 and L6 used in this work are presented in Table 8, Appendix A.1. The

Gain error is about 1% for the ISBs of both detectors (for radiance < 0.0005 W/(m2sr cm−1)

for L5 and < 0.0015 W/(m2sr cm−1) for L6). The noise is divided by the square root of

the number of spectral measurement points in each ISB and varies between 0.1 and 0.5%,

depending on the ISB.

Usually these errors should be used as input to the retrieval. The noise is chosen larger

than the result of the calibration, see Section 3.2.5. The offset was accidentally set too low

for the L6 ISBs and too high for the L5 ISBs (0.0009 [W/m2sr cm−1] for L5 and L6). This

has next to no influence on the retrieval result for the main retrieval using L6, because

• it does not influence the retrieval errors of the other retrieved variables, because the

offset is retrieved itself.

• it does not influence the result of the offset and the other retrieved variables because

the retrieved offset is about one order of magnitude smaller than the one resulting from

the calibration (see Section 3.2.6, Figure 23).

• the only significant influence can be seen on the resulting error for the offset.

This was tested on profile 94, flight AMMA T3. The influence of the larger offset error for the

sequential retrieval using the L5 ISBs is also not expected to be large and it is not unusual,

to choose a larger error for a retrieved variable.

Schroeder et al. (2009) showed that a black body calibration must account for the de-

pendency of the detector signal on the detector temperature. The detectors have a nominal

temperature of 13 K (Offermann et al., 1999) but have warmed up during some of the AMMA

flights. Their sensitivity is temperature dependent the detectors were calibrated up to 14.5 K

during the post AMMA calibrations. During some flights detector temperatures over 14.5 K
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Table 8: Black body calibration errors for detector L5 and L6

ISB [cm−1] Offset [W/m2sr cm−1] Gain [%] Noise [%]
L5

876–876.9 0.0006 1 0.21
878.1–879 0.0006 1 0.17
880.2–881.1 0.0006 1 0.08

L6

777.8–778.7 0.0015 1 0.08
784–785 0.0015 1 0.13
787–790 0.0015 1 0.04
791–793 0.0015 1 0.05
794.1–795 0.0015 1 0.14
796.6–797.5 0.0015 1 0.14
832–832.9 0.0015 1 0.33
844.3–847.3 0.0015 1 0.10
863–864 0.0015 1 0.17

occurred (see Table 6). Data from these time periods need to be regarded with care because

they are based on extrapolated calibration coefficients and in particular, the calibration errors

are not reliable there.

Neighboring detector channels with overlapping radiance intervals are observed to display

systematic differences, especially for the HRS spectrometer. Also between HRS and LRS

channels with overlapping wavelength intervals differences exceeding the effects of the different

resolution of the spectrometers have been observed (not shown). Therefore the radiometric

offset (see Section 3.2) should be retrieved for each detector separately, or the joint retrieval

of multiple atmospheric parameters should be limited to one detector.

A.1.2 Spectral resolution

To identify the emitters based on spectral signatures, an accurate wavelength calibration and

knowledge about the spectrometer resolution is necessary. The resolution λ/dλ of an Ebert-

Fastie spectrometer is determined through the width of the entrance and the exit slit, the
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diffraction of the grid and aberrations:

dλ =
a

nf
∗

√
s2 + (Fλ)2 + b2 (8)

Where

• F = 10 is the F-Number

• n = 1 is the spectral order

• a = 50 µm is the grating constant

• s = 220 µm is the slit width

• f = 50 cm is the focal length

for the detectors L6 and L5.

The spherical aberration b of the spectrometer mirror can be neglected (Nehls, 1991).

Equation 8 results in λ/dλ = 496, for λ = 12.5 µm(ν = 800 cm−1) for both CRISTA and

CRISTA-NF.

Another way to determine the resolution is to measure the width of a single spectral line.

That was not done for CRISTA-NF, but for the CRISTA satellite instrument the resolution

was estimated using in-flight observations of atmospheric emissions. For the channel corre-

sponding to the channel L6 used in this work a value of λ/dλ = 536 for a reference wavelength

of λ = 12.5 µm was determined.

It was not possible to determine the resolution for CRISTA-NF trough in-flight information

because that requires ideally detections of single spectral lines and an exact knowledge of

tangent altitude and emitter abundances. Nevertheless, it was decided to use the value

measured for the satellite instrument instead of the calculated one.

A.1.3 In-flight wavelength calibration

Two kinds of wavelength calibrations are performed for CRISTA-NF: A laboratory wavelength

calibration, described in Kullmann (2006) and Schroeder et al. (2009) and a calibration using

in-flight data.
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For the in-flight wavelength calibration selected CRISTA-NF spectra measured during

flight are compared to spectra calculated by RFM (see Section 3.1) and their difference is

minimized. The wavelength is calculated by a quadratic fit (fit parameters a0, a1 and a2)

between the wavelength (λ) and the voltage representing the grid position (Ugp) (Kullmann,

2006):

λ(Ugp) = a0 + a1
Ugp

1V
+ a2

U2
gp

1V 2
, with [λ] = 1 µm, [Ugp] = 1 V (9)

Spectra are measured by turning the grating. To distinguish the spectra from different

turning directions, The terms forward and backward spectra are used. If a mean wavelength

scale is used for both directions, this leads to a significant oscillation in the radiance of

radiance profiles, because forward and backward spectra alternate in the measured profiles

(see Figure 50). The right Panel shows the integrated radiance of the 844.3-847.3 cm−1 ISB

obtained with a joint laboratory wavelength calibration for forward and backward spectra of

profile 130 for flight AMMA TF2 minus an average profile of the whole flight. The difference

from zero is due to variations of the atmosphere along the flight path. Oscillations are caused

by the difference between forward and backward spectra.

To correct for this difference forward and backward spectra are separated during the

wavelength calibration. This leads to a much smoother profile as obvious from Figure 50 (left

Panel). Because derivations between the two types of spectra are still visible they are also

separated during the retrieval to suppress additional noise. The drawback of this separation

is that the vertical sampling is decreased by a factor of two.

The fit parameters a0, a1 and a2 are determined for each flight and each detector is

analyzed separately for forward and backward spectra10. For T3 a0, a1 and a2 and their

errors are shown in Table 9.

The resulting errors in wavelength and wavenumber are shown in Table 10. RFM is used

to estimate the corresponding radiance errors caused depending on the ISB. Radiance errors

10Results of the in flight wavelength calibration are available for detector L6, H5R and H2 for the AMMA
flights TF2, T1, T2, L5, T3 and T4 and for detector L5 for the flight T3
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Figure 50: Radiance of the 844.3–847.3 cm−1 ISB recorded during AMMA flight TF2, profile
130, average profile subtracted. a) Separate in flight wavelength calibration for forward and
backward spectra, b) joint laboratory wavelength calibration. Red line: Forward spectra, blue
line: Backward spectra, black line: Combined profile with forward and backward spectra.

caused by spectral shifts depend on the shape of the spectra. If there are no large radiance

difference even a large wavelength error only causes a small radiance error, but close to

strong spectral signatures and peaks small wavelength shifts can cause large radiance errors.

To estimate the radiance errors, spectra calculated with RFM were subtracted with shifted

wavelength scales. The shift was done in both directions, the larger error is listed in the table.

Even with the in-flight wavelength calibration and separated forward and backward spec-

tra, radiance errors of over 2% still occur for ISBs at the wavelength extremes of the detector.

Even though the resulting radiance errors have a systematic reason they can vary with alti-

tude because the shape of the spectra changes. Overall, the in-flight wavelength calibration

and the separation of forward and backward spectra has decreased the errors significantly

compared to the combined laboratory wavelength calibrations.

There are two possible reasons for these oscillations: First, for the CRISTA Satellite
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Table 9: Fit parameters and their standard deviation for the in flight wavelength calibration
for AMMA T3, detector L6 for forward (FW) and backward (BW) spectra according to
equation 9.

a0 [µm] a1 [µm/V] a2 [µm/V2]

FW 12.6582± 0.0007 0.2695± 0.0017 −0.0021± 0.0006
BW 12.6565± 0.0007 0.2698± 0.0009 −0.0016± 0.0002

Table 10: Errors for in flight wavelength calibration for AMMA T3, detector L6 for a) forward
and b) backward spectra. Radiance errors are estimated based on a RFM calculation with
an observation altitude of 20.2km and a tangent altitude of 12km.

a) ISB [cm−1] ∆λFW[µm] ∆νFW[cm−1]11 ∆RadianceFW[%]

777.8–778.7 0.00225 0.13610 0.33
784–785 0.00135 0.08334 0.20
787–790 0.00089 0.05534 0.09
791–792 0.00055 0.03449 0.35
794.1–795 0.00034 0.02141 0.03
796.6–797.5 0.00016 0.01031 0.08
832–832.9 0.00043 0.02955 0.18
844.3–847.3 0.00166 0.11883 0.74
863–864 0.00401 0.30309 2.04

b) ISB [cm−1] ∆λBW[µm] ∆νBW[cm−1] ∆RadianceBW[%]

777.8–778.7 0.00145 0.08777 0.19
784–785 0.00102 0.06303 0.13
787–790 0.00079 0.04925 0.08
791–792 0.00061 0.03850 0.39
794.1–795 0.00050 0.03142 0.04
796.6–797.5 0.00040 0.02510 0.20
832–832.9 0.00002 0.00149 0.01
844.3–847.3 0.00025 0.01773 0.11
863–864 0.00089 0.06303 0.45

instrument is was observed, that detector relaxations (see also Section 3.2.5) have a different

effect on forward and backward spectra (Riese et al., 1999a). Second, the detectors need

a finite time to record the data each measured radiance corresponds to an integrated value
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over a short wavelength and time interval. This can lead to a small difference between the

wavelength scale for the spectra recorded during different scan directions.

A.1.4 LOS calibration

To allow to measure with a high vertical resolution in the atmosphere, CRISTA-NF contains

an adjustable primary mirror. A calibration is necessary to link the voltage recording the

mirrors position to the LOS of the telescope. The instrument is aligned into a horizontal

position with a laser and a theodolite. The reference is a mirror cube permanently attached

to the ZeSn-window flange. An infrared point source mounted on a height-adjustable table is

detected with CRISTA-NF for different angles of the primary mirror. In this way the pointing

direction of the mirror can be determined to better than 40′′ ≈ 0.011o. An LOS calibration was

performed before and after each campaign. For AMMA-SCOUT-O3 there was a systematic

difference smaller than the error of the calibration between these two calibrations. Therefore

the result from a combination of data collected during both calibrations was used. For a

detailed description of the LOS calibration see Kullmann (2006).

The airplane alignment must be added to the angle set by the mirror position to get the

pointing direction of CRISTA-NF during flight.

A.1.5 The attitude monitoring system

To retrieve the vertical distribution of trace gases and temperature an exact pointing infor-

mation is necessary. Although the pointing can in principle be retrieved from the measured

radiance, it is desirable to know it as accurately as possible from an independent measure-

ment in order to decrease the number of free parameters. The most important quantities to

calculate the alignment of the line of sight of CRISTA-NF are the aircraft altitude, position

and the attitude angles Φ (roll), Θ (pitch), and Ψ (yaw). Figure 51 shows these angles for

definition following DIN 9300 (Fabeck, 1980).

There are two sources of pointing information:

• The M55-Geophysica Unit for Connection with Scientific Equipment (UCSE, MDB,
2002), provided, among others the following information:
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Figure 51: Attitude angles roll Φ, pitch Θ and yaw Ψ following DIN 9300. Figure based on
Fabeck (1980).

– Attitude angles:

∗ Roll (Φ), pitch(Θ), standard deviation σ ≤ 0.05◦

∗ Yaw (true heading, Ψ), σ = 0.2◦

– Two independently measured altitudes:

∗ Pressure altitude (True Altitude), measurement error=75m

∗ GPS altitude (Height upon MSL), measurement error=100m

– Atmospheric pressure

• CRISTA-NFs AMS (Attitude Monitoring System), providing:

– Inclinometer around x-direction

– Accelerometers for x, y and z-direction

– Gyros x-direction (SCOUT-O3 and AMMA) and y, z-direction (only AMMA)

A standard deviation of σ = 0.05◦ corresponds to an altitude difference of about 330 m for

an observer at 20 km and a roll angle of Φ = 3.5◦. The time resolution of the UCSE data is

1 Hz (5 Hz only on request), the one of the AMS data is about 28Hz for AMMA and 56Hz for

SCOUT-O3. Despite the measurement errors given in MDB (2002) the two UCSE altitudes

differ by up to 700m (Figure 52). Here, the height upon mean sea level (MSL) is used, since
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it has proved to be more accurate by comparing the UCSE pressure with the interpolated

ECMWF pressure for the two altitudes.
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Figure 52: GPS altitude - pressure altitude for all AMMA flights.

The AMS data are used to calculate the roll angle with higher time resolution and to

estimate the alignment of the instrument within the aircraft (see Appendix A.1.7)) and to

correct the internal clock (see Section A.1.6).
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A.1.6 Correcting the internal clock

The time is recorded with 218 Hz from the internal clock of CRISTA-NF and 1 Hz for

M55-Geophysicas UCSE. The time recording of CRISTA-NF is subject to to different errors,

time jumps (1.0s long) caused by an error in the data processing and a time delay which

accumulates especially while the instrument is turned off. At first it is necessary to filter the

time from these one second jumps.

Secondly, the time lag of the internal clock of CRISTA-NF compared to M55-Geophysica

needs to be removed. To use the UCSE information on airplane position and pointing, an

exact agreement between both clocks is required. To readjust the CRISTA-NF clock during

the flights, the roll angle is used, since it is measured by both, UCSE and the CRISTA-NF

AMS. Because of the inaccuracy of the AMS roll angle (see AppendixA.1.7) at first an estimate

of the time offset is determined by comparing prominent features like sharp turns in the roll

angle time series. With this approximated time offset a correction of the bearing angles is

done as explained in Appendix A.1.7. With the corrected roll angle the correlation to the

UCSE roll is maximized by varying the time lag for each profile. In this way it was possible

to determine time offset better than 0.2 s for each profile. It was shown that it changed less

than 0.5 s during most flights therefore a fixed time offset was chosen for each flight, see Table

12. Finally the attitude correction was repeated with the corrected time (see also Figure 56)
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A.1.7 Correction of the pointing measurements

The attitude monitoring should fulfill two main requirements:

1. Give accurate information about the absolute positioning of the LOS

2. Allow to correct for movements whilst one spectrum is recorded or allow to exclude
spectra recorded during large movements

To minimize the errors in the trace gas and temperature retrieval, it would be desirable to

know the vertical pointing to better than 0.01o with a time resolution higher than 5Hz, since

one spectrum is measured in about one second. Neither the pointing information provided

by M55-Geophysica nor the one from the CRISTA-NF AMS alone is sufficient to fulfill these

requirements. But it is possible to improve the knowledge about the pointing by combining

these two sources of information.

For the UCSE data the accuracy and especially the temporal resolution is too low. The

CRISTA-NF AMS has an adequate temporal resolution, but there are other shortcomings: It

is not possible to use inclinometers and acceleration sensors alone to determine the correct

attitude during flight. Both instrument types measure the direction of the total acceleration.

On ground in a not-accelerated object this is identical to the direction towards the center of

gravity of the earth but in an aircraft additional accelerations are present during flight (see

Figure 53). Especially during turns, where these accelerations are large, the attitude cannot

be derived correctly from inclinometers and accelerometers. A gyrometer, in contrast, does

not measure any absolute pointing but the change in angular velocity around the aircraft

axes.

The effect of turns of the aircraft on inclinometers and accelerometers can also be seen

Figure 54, where the roll angle recorded by the UCSE and the inclinometer and calculated

from the accelerometer and the x-gyro12 is displayed. The lower panel shows the difference

between UCSE roll and the other angles. Inclinometer and accelerometer do not show the

turn visible in the UCSE roll angle and the accelerometer is very noisy. The normalized,

12Here the integrated angular velocity around the x-axis (
∫

Ωxdt) is used, which is not exactly equal to the
roll angle (Φ =

∫
Φ̇dt), see equation 10. This integrated angular velocity is also used for the active attitude

system (Appendix A.1.9).
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Figure 53: Vector of total acceleration measured from an aircraft during a) straight flight
with constant velocity and b) a turn.

integrated gyro shows the turn but also a significant drift of about 2o over this short time

interval.
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Figure 54: UCSE roll angle, CRISTA-NF AMS accelerometer, inclinometer and normalized
gyro x-angle (upper Panel) and their differences (lower Panel) for a four-minute flight segment
during the AMMA campaign on 2006/08/16 when an aircraft turn occurs at about 16:02 UTC.

Figure 55 shows the angles and their differences in pitch direction (or around the y-axis).

There is no pitch inclinometer. The accelerometer is again very noisy and the drift of the
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gyro is even larger as for the roll direction.

Pitch and y−angles
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Figure 55: As Figure 54 but for UCSE pitch and the y-angle calculated from the accelerometer
and the integrated y-gyro for the AMMA flight on 2006/08/16.

To calculate the exact attitude angles one would need gyrometers for all three axes and

acceleration sensors for the same directions to get an absolute reference (ideally before the air-

craft has started) and to compensate the drifts. The attitude angles could then be calculated

employing the equations from Fabeck (1980):

Yaw : Ψ =

∫
Ψ̇dt =

∫
[(Ωz cos Φ + Ωy sin Φ)/(cos Θ)]dt

Pitch : Θ =

∫
Θ̇dt =

∫
[Ωy cos Φ− Ωz sin Φ]dt

Roll : Φ =

∫
Φ̇dt =

∫
[Ωx + Ωz tan Θ cos Φ + Ωy tan Θ sin Φ]dt

(10)

Since the UCSE attitude angles are expected to be more reliable than the AMS accelerom-

eter, which shows noise and strong temperature dependence, it was chosen to calculate the

high resolution attitude angles by combining the ones from UCSE interpolated onto the AMS

temporal resolution with the information from the AMS roll gyrometer (see Figure 56). This
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was done by recalculating the angular velocities from the UCSE attitude angles according to

Fabeck (1980):

Ωx = Φ̇− Ψ̇ sin Θ

Ωy = Θ̇ cos Φ + Ψ̇ cos Θ sin Φ

Ωz = Ψ̇ cos Θ cos Φ− Θ̇ sin Φ

(11)

Then the angular velocity measured by the AMS x-gyro was adjusted to the angular veloc-

ity calculated from UCSE angles based on one minute means. The corrected attitude angles

were finally calculated with this corrected angular velocities around the x-direction taking

the starting value and the remaining directions from interpolated UCSE angular velocities.

Figure 56 shows a scheme of the roll angle correction.

During the SCOUT-O3 campaign no AMS y- and z-gyros were available, therefore Ωy and

Ωz were calculated from the UCSE angles. For the AMMA campaign, AMS y- and z-gyros

were included but show spikes. These spikes are small but all aligned in the same direction

(see Figure 57). Integrating these angular velocities would cause large errors for the resulting

angles. Therefore UCSE Ωy and Ωz were used for AMMA, too.

The quality of the correction was estimated by the correlation, the mean and maximum

difference between the UCSE Roll angle and the corrected angle and labeled with a flag13

between 0 and 9.

Figure 59 shows a short sample of the corrected roll angle in comparison with the UCSE

Roll angle and the correction flag for the AMMA flight T3 for a time interval, where the

correction is problematic: Small movements are better resolved by the corrected angle, but at

the same time it shows some significant drifts. In contrast Figure 58 shows a well corrected

interval where the corrected angle follows the small turn more accurately than UCSE roll.

Figure 60 summarizes the correction for the flight T3. With exception of the landing and

starting period and strong turns a correction (flag > 3) can be obtained nearly all the time.

130: No correction possible, i.e. interpolated UCSE roll used, 1,2: No correction for parts of the profile,
3 and higher: Correction for the whole profile, 9: best correction (small differences and good correlation to
UCSE roll indicating a period with few aircraft movements)
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Figure 56: Scheme of the roll angle correction.

By combining the UCSE angles and the AMS x-gyro it was possible to largely improve

the measurement of the aircraft movements, especially within each spectrum on time scales

shorter than one second. However, it is important to remember that the AMS does not provide

information about the absolute pointing, so the accuracy remains in the order σ = 0.05o as

the UCSE angles. Therefore further corrections of the pointing using an altitude retrieval

were necessary, see Section 3.2.6.
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Figure 57: Spikes in gyro Ωy and Ωz during the AMMA flight on 2006/08/16.
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Figure 58: UCSE roll and corrected roll angle for an interval of about 20 seconds with a
reliable correction.
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Figure 59: As Figure 58 for an interval of about 1.5 minutes.

Figure 60: As figure 58 overview of the whole flight AMMA T3.
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A.1.8 Offset angles

CRISTA-NF is attached to M55-Geophysica by 4 Enidine wire rope springs (WR16-200-08,

Enidine, 2006). The springs are too stiff to affect the pointing, but the alignment of the

instrument is not necessarily identically to the one of the aircraft and can change between

different flights. Therefore the attitude angles calculated on ground from the AMS acceleration

sensors and the inclinometer are compared to the UCSE attitude angles before the take-off,

while the aircraft is at rest.

Table 11: Overview of time offsets and offset angles for all AMMA flights.
Flight Date Time diff.[s] ΦINCL − ΦUCSE[o] ΘA −ΘUCSE[o]

TF2 2006/07/29 129.6126 -0.00441 -1.80695
T1 2006/07/31 151.7093 -0.03990 -1.75897
T2 2006/08/01 191.6676 0.02726 -1.75177
L1 2006/08/04 379.28066 -0.15938 -0.34046
L2 2006/08/07 877.63831 -0.05726 -0.43662
L3 2006/08/08 1040.8071 -0.13860 -0.45762
L4 2006/08/11 1542.3177 -0.05452 -0.56440
L5 2006/08/13 1855.1380 -0.12371 -0.55736
T3 2006/08/16 2349.0998 -0.15727 -0.63532
T4 2006/08/17 2398.1150 -0.16638 -0.71073

Figure 61 shows the offset of the roll angle for the AMMA test flight. Offset angles for

roll and pitch direction for all AMMA flights are given in Table 12, the ones for all other

CRISTA-NF flights can be found in Table 12. It is remarkable that the difference between

roll offset angles of these intervals for some flights is large compared to the uncertainty of the

UCSE and the gyrometer data (see Section A.1.5). In case several of these periods exist, as

it is the case for most flights, a 22s mean from the one closest to take-off is chosen.

Generally, the roll and pitch offsets are given corresponding to the aircraft so that they

must be corrected by the cosine of each other, transforming them into the coordinate system

fixed to the Earth. This correction is less than 1% for roll and pitch angles smaller than 8◦

and is therefore omitted.
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Table 12: Overview of time offsets and offset angles for the Testcampaign (TC5) and SCOUT-
O3 flights.
Flight Date Time diff.[s] ΦINCL − ΦUCSE[o] ΘA −ΘUCSE[o]

Testcampain
TC5 1 2005/07/09 16.580 -0.09314 0.66994
TC5 2 2005/07/12 514.947 -0.09696 1.21003
SCOUT-O3
T1 2005/11/04 580.887 -0.11230 -0.10323
T2 2005/11/04 620.711 -0.09972 0.46947
L2 2005/11/19 -21.308 -0.13170 -0.48292
L3 2005/11/23 183.866 -0.12545 -0.62027
L7 2005/11/30 4317.459 -0.16542 -0.64894
L8 2005/11/30 4367.699 -0.16879 -1.09092
L9∗1 2005/12/05 5192.772 -0.03386 -0.69101
T7 2005/12/09 5781.351 -0.16034 -0.89279
T8 2005/12/10 5822.645 -0.12597 -0.77286
T9 2005/12/13 5923.676 -0.15412 -1.31440
T10 2005/12/14 5962.917 -0.26914 -0.90023
T11 2005/12/16 6254.145 -0.16200 -1.31866
T12 2005/12/17 6295.326 -0.14561 -0.98397
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Figure 61: Inclinometer and UCSE roll angle (a) and offset angle (b) for the AMMA flight
on 2006/08/16. Note that the scaling of the y-axes is different.
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A.1.9 Active attitude system

During the AMMA test flight and some of the local flights the angle of the scanning mirror was

used to compensate for the aircraft roll movements by a newly implemented active attitude

system. The roll angle change was approximated by the x-gyro angular velocity. In this case

the approximation is sufficient because the allowed scanning angles for the mirror were limited

to −0.5− 4.0◦. The drift of the gyro can be neglected because the mirror position is reset to

zero for the start of each new profile after about 70s (P. Knieling, personal communication).

However large roll angle changes of the airplane, as they occur during turns (see Figure 54),

can not be compensated for.

Figure 62 visualizes the stabilizing effect. The combined angle of airplane roll and the

scanning mirror is shown for one profile and one spectrum of the AMMA test flight (blue,

with active attitude system) and T1 (red, without active attitude system).

The active attitude system results in a more stable pointing while one spectrum is mea-

sured and a more uniform altitude spacing of the spectra in one profile. An example of this

can be seen in Figure 63, where the upper Panel shows spectra recorded during one profile

of flight TF2 (with active attitude system). The lower Panel shows spectra of a profile of

AMMA T3, covering about the same altitude range but without active attitude system Since

this system was tested the first time during the AMMA campaign it was used only on the

test flight and the local flights 2 and 3. Due to a then unidentified problem not caused by the

active attitude system it was deactivated for the remaining AMMA flights, unfortunately.

The higher stability is especially important on timescales of a second to prevent that

different parts of one spectrum originate from different altitudes. In addition, a more equal

distribution of spectra with altitude in one profile is also advantageous for the trace gas

retrieval.
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Figure 62: Combined angle out of airplane roll and primary mirror during one spectrum (top)
and one profile (bottom) of AMMA test flight (with active attitude system) and transfer 1
(without active attitude system).
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Figure 63: Spectra with active attitude system, profile 125 during AMMA test flight on
2006/07/29 (top) and spectra without active attitude system, profile 94 during AMMA flight
T3 on 2006/08/16 (bottom).
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B Appendix

B.1 The forward model

Figure 64 shows the difference between JFM and RFM based on a monochromatic approach

without correction (Column 1), with H2O continuum (Column 2), with EGA H2O continuum

(Column 3), with CGA H2O continuum (Column 4), with a combination of radiance using

EGA and CGA and H2O continuum (Column 5), with a linear regression including EGA,

CGA and the H2O continuum for all L6 ISBs (Rows) used in the main retrieval setup (Setup

C).

Implementation of the CGA in JFM

For the Curtis-Godson approximation (CGA) temperature and pressure are weighted by

the emitters total column density along the LOS. For each emitter (ig), the Curtis-Godson

column density (uCGA,ig) is computed as the sum of the column density of this along the LOS:

uCGA,ig =

np∑
ip=0

(uip,ig), (12)

where ip is the index and np is the number of the segments along the LOS and uip,ig is the

column density of one segment of the LOS for one emitter. The Curtis-Godson temperature

(TCGA,ig) and pressure (pCGA,ig) for each emitter and partial path are calculated with

TCGA,ig =

∑np
ip=0(uip,ig ∗ Tip)

uCGA,ig

, (13)

and

pCGA,ig =

∑np
ip=0(uip,ig ∗ pip)

uCGA,ig

, (14)

where Tip and pip are temperature and pressure of one segment (or point) along the LOS,

respectively. TCGA,ig and pCGA,ig and uCGA,ig are then used to interpolate the emissivity εCGA,ig

of the LOS from the emissivity look-up tables for each ISB and each emitter. If this is not

done for the complete LOS, but for kip and kip + 1 LOS points (where 1 <= kip < np− 1),
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the result are two mean emissivities εCGA,kip,ig and εCGA,kip+1,ig whose difference is equal to the

transmissivity along the reduced LOS multiplied by the emissivity of one additional segment:

∆εCGA,kip,ig = εCGA,kip+1,ig − εCGA,kip,ig

= (1− τCGA,kip+1,ig)− (1− τCGA,kip,ig)

= τCGA,kip,ig − τCGA,kip+1,ig

= τCGA,kip,ig ∗ (1− τCGA,ip+1,ig)

= τCGA,kip,ig ∗ (εCGA,ip+1,ig)

(15)

To obtain the emissivity growth for all emitters (∆εCGA,kip) the transmissivity for all emitters

(τCGA,kip) is calculated using the continuum approximation:

τCGA,kip =

ng∏
ig=0

(τCGA,kip,ig), (16)

where ng is the number of emitters.

The Curtis-Godson radiance ICGA is hence, similar as for the EGA explained in Hoffmann

(2006) calculated iteratively by:

ICGA,kip+1 = ICGA,kip + DεCGA,kip ∗Bip+1

= ICGA,kip + τCGA,kip ∗Bip+1 ∗ (εCGA,ip+1),

(17)

where Bip+1 is the spectral mean of Planck function at one point of the LOS. In this way,

the CGA also assumes a growth of emissivity along the LOS like the EGA, as also mentioned

in Marshall et al. (1994). The difference is that the emissivity is interpolated from the tables

for the whole LOS or intervals of the LOS. These intervals are treated like a homogeneous

cell, using the Curtis-Godson mean of temperature and pressure (see Equations 13 and 14)

over all LOS segments within them.
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Figure 64: Percentage radiance difference between JFM and RFM calculation for 163 example
atmospheres for all ISBs. Red lines: Mean, red dashed lines: Standard deviation.
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For the regression, mean Curtis-Godson temperature (TCGA) and pressure (pCGA) weighted

with the column density (uCGA) of all emitters used for the regression are calculated:

uCGA =

ng∑
ig=0

(uCGA,ig),

TCGA =

∑ng
ig=0(uCGA,ig ∗ TCGA,ig)

uCGA

,

pCGA =

∑ng
ig=0(uCGA,ig ∗ pCGA,ig)

uCGA

,

(18)

where ng is the number of emitters used for the regression.
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B.2 JURASSIC

Percentage error components of the retrieval result for AMMA T3, profile 94 for H2O , aerosol,

O3 , HNO3 , CCl4 and PAN. Corresponding absolute errors are shown in Section 3.2.5, Figures

17 and 18.
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Figure 65: Estimated retrieval error components as in Figure 17 and 18, Section 3.2.5 but in
percent. For a) H2O , b) aerosol, c) O3 , d) HNO3 , e) CCl4 and f) PAN retrieval.
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C Appendix

C.1 AMMA transfer and fifth local flight

The following Figures show the results of the CRISTA-NF retrieval, comparisons to in situ

data and CLaMS model results for the AMMA flights T1, T2, L5, T3 and T4.

C.1.1 AMMA T1

AMMA T1 9 ITBs: Offset angle α
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Figure 66: CRISTA-NF altitude and temperature retrieval results: a) Angle difference and
height difference against time, b) angle difference against airplane yaw, c) angle difference
and height difference against tangent point height. Grey stars: all values. Colored stars:
χ2 < 2, measurement contend> 98% d) Result of temperature retrieval. Black dots: Cloud
index < 3.5, corrected altitudes. Note nonlinear color scales.
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Figure 67: CRISTA-NF Retrieval results: a) H2O , b) Aerosol, c) O3 , d) HNO3 , e) CCl4 , f)
PAN. Black dots: Cloud index < 3.5, corrected altitudes, grey diamonds: Total error (without
smoothing) > 90%. Note nonlinear color scales.
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Figure 68: CLaMS results for AMMA T1: a) H2O calculated from specific humidity with
saturation at 100%, b) O3 , c) Age of air. All interpolated onto CRISTA-NF grid. H2O and
O3 Convoluted with CRISTA-NF AVK for corresponding variable and filtered as data in 67.
Light grey squares: Ice clouds (IWC > 0). Note nonlinear color scales.
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CRISTA−NF, ECMWF and in situ temperature
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Figure 69: CRISTA-NF Retrieval results compared to in situ data, CLaMs and ECMWF anal-
ysis data: a) Temperature profile, b) temperature scatter plot, c)H2O profile, d) H2O scatter
plot, e) O3 profile, f) O3 scatter plot.
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C.1.2 AMMA T2

AMMA T2 9 ITBs: Offset angle α
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Figure 70: CRISTA-NF altitude and temperature retrieval results: a) Angle difference and
height difference against time, b) angle difference against airplane yaw, c) angle difference
and height difference against tangent point height. Grey stars: all values. Colored stars:
χ2 < 2, measurement contend> 98% d) Result of temperature retrieval. Black dots: Cloud
index < 3.5, corrected altitudes. Note nonlinear color scales.
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Figure 71: CRISTA-NF Retrieval results: a) H2O , b) Aerosol, c) O3 , d) HNO3 , e) CCl4 , f)
PAN. Black dots: Cloud index < 3.5, corrected altitudes, grey diamonds: Total error (without
smoothing) > 90%. Note nonlinear color scales.
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Figure 72: As Figure 68 but for CLaMs results for AMMA T2. Note nonlinear color scales.
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CRISTA−NF, ECMWF and in situ temperature
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Figure 73: CRISTA-NF Retrieval results compared to in situ data, CLaMs and ECMWF anal-
ysis data: a) Temperature profile, b) temperature scatter plot, c)H2O profile, d) H2O scatter
plot, e) O3 profile, f) O3 scatter plot.
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C.1.3 AMMA L5

AMMA L5 9 ITBs: Offset angle α
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Figure 74: CRISTA-NF altitude and temperature retrieval results: a) Angle difference and
height difference against time, b) angle difference against airplane yaw, c) angle difference
and height difference against tangent point height. Grey stars: all values. Colored stars:
χ2 < 2, measurement contend> 98% d) Result of temperature retrieval. Black dots: Cloud
index < 3.5, corrected altitudes. Note nonlinear color scales.
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Figure 75: CRISTA-NF Retrieval results: a) H2O , b) Aerosol, c) O3 , d) HNO3 , e) CCl4 , f)
PAN. Black dots: Cloud index < 3.5, corrected altitudes, grey diamonds: Total error (without
smoothing) > 90%. Note nonlinear color scales.
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Figure 76: As Figure 68 but for CLaMs results for AMMA L5. Note nonlinear color scales.
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Figure 77: CRISTA-NF Retrieval results compared to in situ data, CLaMs and ECMWF anal-
ysis data: a) Temperature profile, b) temperature scatter plot, c)H2O profile, d) H2O scatter
plot, e) O3 profile, f) O3 scatter plot.
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C.1.4 AMMA T3

AMMA T3 9 ITBs: Offset angle α

14:00:00 15:00:00 16:00:00

−0.4

−0.2

0.0

0.2

0.4

A
n

g
le

 d
iff

e
re

n
ce

 [
o
]

     Offset angle,    
     profile <  144   
     Profile >  144   

Geometric height − retrieval height

14:00:00 15:00:00 16:00:00

Time [UTC]

−2

−1

0

1

2

H
e

ig
h

t 
d

iff
e

re
n

ce
 [

km
]

d) 

Geometric height − retrieval height

−2 −1 0 1 2

Height difference [km]

5

10

15

20

H
ei

gh
t [

km
]

Offset Angle

−0.4 −0.2 0.0 0.2 0.4

Angle difference[o]

5

10

15

20

H
ei

gh
t [

km
]

a)

c) 

Offset Angle

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Angle difference [o]

0

100

200

300

Y
a

w
 [

o
]

temp on CRISTA−NF tangent points

14:00:00
16.08.06

15:00:00
16.08.06

16:00:00
16.08.06

Time

5

10

15

20

25

H
ei

gh
t [

km
]

190.0
192.0
194.0
196.0
198.0
200.0
202.0
204.0
206.0
208.0
210.0
212.0
214.0
216.0
218.0
220.0
230.0
240.0
260.0

temp [K]

       CI < 3.5   
       Flight altitude   

b) 

Figure 78: CRISTA-NF altitude and temperature retrieval results: a) Angle difference and
height difference against time, b) angle difference against airplane yaw, c) angle difference
and height difference against tangent point height. Grey stars: all values. Colored stars:
χ2 < 2, measurement contend> 98% d) Result of temperature retrieval. Black dots: Cloud
index < 3.5, corrected altitudes. Note nonlinear color scales.
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Figure 79: CRISTA-NF Retrieval results: a) H2O , b) Aerosol, c) O3 , d) HNO3 , e) CCl4 , f)
PAN. Black dots: Cloud index < 3.5, corrected altitudes, grey diamonds: Total error (without
smoothing) > 90%. Note nonlinear color scales.
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Figure 80: As Figure 68 but for CLaMs results for AMMA T3. Dark grey dots: Water clouds
(LWC > 0). Note nonlinear color scales.
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Figure 81: CRISTA-NF Retrieval results compared to in situ data, CLaMs and ECMWF anal-
ysis data: a) Temperature profile, b) temperature scatter plot, c)H2O profile, d) H2O scatter
plot, e) O3 profile, f) O3 scatter plot.
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C.1.5 AMMA T4

AMMA T4 9 ITBs: Offset angle α
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Figure 82: CRISTA-NF altitude and temperature retrieval results: a) Angle difference and
height difference against time, b) angle difference against airplane yaw, c) angle difference
and height difference against tangent point height. Grey stars: all values. Colored stars:
χ2 < 2, measurement contend> 98% d) Result of temperature retrieval. Black dots: Cloud
index < 3.5, corrected altitudes. Note nonlinear color scales.
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Figure 83: CRISTA-NF Retrieval results: a) H2O , b) Aerosol, c) O3 , d) HNO3 , e) CCl4 , f)
PAN. Black dots: Cloud index < 3.5, corrected altitudes, grey diamonds: Total error (without
smoothing) > 90%. Note nonlinear color scales.
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Figure 84: As Figure 68 but for CLaMs results for AMMA T4. Note nonlinear color scales.
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Figure 85: CRISTA-NF Retrieval results compared to in situ data, CLaMs and ECMWF anal-
ysis data: a) Temperature profile, b) temperature scatter plot, c)H2O profile, d) H2O scatter
plot, e) O3 profile, f) O3 scatter plot.
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C.2 ECMWF data

The following Figures show the ECMWF analysis data of potential vorticity, zonal, meridional

and vertical wind speed, pressure, temperature, H2O , and O3 interpolated on the uncorrected

geometric tangent points of CRISTA-NF for the AMMA flights TF2, T1, T2, L5, T3, T4.

Temperature and O3 are used as a priori for the CRISTA-NF retrieval.
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Figure 86: Cross section of ECMWF data on CRISTA-NF tangent points for TF2 on
2006/07/29. Black dots: Cloud Index < 3.5. Note nonlinear color scales.
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Figure 87: Cross section of ECMWF data on CRISTA-NF tangent points for T1 on
2006/07/31. Black dots: Cloud Index < 3.5. Note nonlinear color scales.
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Figure 88: Cross section of ECMWF data on CRISTA-NF tangent points for T2 on
2006/08/01. Black dots: Cloud Index< 3.5. Note nonlinear color scales.
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Figure 89: Cross section of ECMWF data on CRISTA-NF tangent points for L5 on
2006/08/13. Black dots: Cloud Index < 3.5. Note nonlinear color scales.
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Figure 90: Cross section of ECMWF data on CRISTA-NF tangent points for T3 on
2006/08/16. Black dots: Cloud Index < 3.5. Note nonlinear color scales.
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Figure 91: Cross section of ECMWF data on CRISTA-NF tangent points for T4 on
2006/08/17. Black dots: Cloud Index < 3.5. Note nonlinear color scales.
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