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Abstract

The present thesis deals with the time series analysis of atmospheric wind velocity recordings
by taking into account that the recordings do not reflect ideal turbulence and with the
modelling of the wind velocity by stochastic processes.

As a consequence of the poor comprehension of atmospheric turbulence, time series anal-
ysis is an appropriate tool to study atmospheric wind. Based on fluctuation statistics and
superstatistics, a variety of statistical tools which allow to analyse wind velocity recordings
are developed and validated. It is verified that atmospheric boundary layer wind speed
data represent in good approximation a succession of ideal turbulence periods with different
parameters. The algorithms are able estimate the time evolution of the turbulence param-
eters. However, the results also indicate the existence of periods in which the wind velocity
recording does not reflect turbulence. The focus is not only on the velocity increment but
additionally on the wind speed variation around the mean wind speed (which itself is treated
as a random variable). It is confirmed that the wind speed fluctuation is roughly normally
distributed and that there is a proportionality between the standard deviation of the fluctu-
ation and the mean wind speed.

Motivated by this last result, the finding of a stochastic process which has the same
fluctuation statistics as atmospheric boundary layer wind speed is another goal of this thesis.
It is shown that the mentioned fluctuation property is not trivial. Nevertheless, the first
order geometric auto regressive process has the desired property under certain conditions
regarding its parameters. The extent to which this stochastic process is a suitable model for
wind velocity simulation is analysed.
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Kurzfassung

Die vorgelegte Dissertation behandelt zum einen die Zeitreihenanalyse atmosphärischer Wind-
geschwindigkeiten unter der Berücksichtigung, dass atmosphärische Turbulenz nicht idealer
Turbulenz entspricht, und zum anderen die Simulierung der Windgeschwindigkeit mittels
stochastischer Prozesse.

Zeitreihenanalyse ist ein geeignetes Mittel atmosphärische Turbulenz zu studieren. Basie-
rend auf der Fluktuations- und Superstatistik werden statische Verfahren entwickelt und va-
lidiert, mit Hilfe dessen Windgeschwindigkeits-Daten analysiert werden können. Es wird ge-
zeigt, dass eine Zeitreihe bodennaher Windgeschwindigkeiten in guter Näherung aus aufein-
ander folgenden Zeitintervallen besteht, in denen ideale Turbulenz mit unterschiedlichen Pa-
rametern wiedergespiegelt wird. Die Algorithmen sind in der Lage, die zeitliche Entwicklung
dieser Turbulenzparameter zu erfassen. Aber die Ergebnisse deuten auch auf die Existenz
von Intervallen hin, in denen keine Turbulenz wiedergespiegelt wird. Dabei werden nicht nur
die Windgeschwindigkeits-Inkremente untersucht, sondern auch die Windgeschwindigkeits-
Fluktuationen um den laufenden Mittelwert herum, welcher ebenfalls als Zufallsvariable
behandelt wird. Es wird bestätigt, dass die Fluktuationen annäherungsweise normal verteilt
sind und dass es eine Proportionalität zwischen der Standardabweichung der Fluktuation
und der mittleren Windgeschwindigkeit gibt.

Das letzte Ergebnis ist die Motivation dafür, geeignete stochastische Prozesse zu fin-
den, die die gleiche Fluktuationsstatistik wie atmosphärischer Grenzschichtenwind besitzen.
Dieses ist ein weiteres Ziel der vorliegenden Arbeit. Es wird gezeigt, dass die eben genann-
te Eigenschaft der Fluktuation nicht trivial ist. Der autoregressive Prozess erster Ordnung
besitzt hingegen unter bestimmten Bedingungen bezüglich der gewählten Parameter diese
Eigenschaft. Das Ausmaß, inwieweit dieser Prozess dazu geeignet ist, bodennahen Wind zu
simulieren, wird analysiert.
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Chapter 1

Motivation

The global demand for energy is increasing at breathtaking pace. In particular, developing
countries such as China and India show a sharp increase. A serious investment in new power
sources and grid infrastructure is essential because recovering fossil fuels becomes gradually
more difficult and thus more expensive. Pullen et al. (2008b) claim that wind power has
the advantage that it can be deployed faster than any other energy supply technology. Even
large offshore wind farms, which require a great level of infrastructure and an elaborate
grid network connection, can be installed from start to finish in less than two years. This
compares favourably with the much longer time scale for conventional power stations such
as nuclear reactors. Fig. 1.1 visualises that the global cumulative installed capacity of wind
power increased from 5 GW in 1995 to 120 GW in 2008. Pullen et al. (2008a) forecast
330 GW in 2013.

The cost efficient use of wind power is not only a challenging task for engineers but also
for natural scientists. Neumann et al. (2002) analysed the breakdown reasons of 1500 wind
power plants between 1999–2002. The wind turbines were designed to work for twenty years,
but Fig. 1.2 shows that most components need to be replaced or need intensive maintaining
after five to ten years of operation. It appears that the energy resource, i.e., boundary
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Figure 1.1: Global cumu-
lative installed capacity and
forecast by Pullen et al.
(2008a).
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Figure 1.2: Estimated operating time after which an intensive maintaining is required. The study
is published by Neumann et al. (2002).

layer wind, is responsible for the attrition. Apparently, the dynamic loads caused by wind
field fluctuations were underestimated because the load estimation procedures for the design
of wind turbines often do not accurately treat the statistical nature of loads (see Veers &
Butterfield, 2001). A better understanding of the statistical properties of boundary layer
turbulence under realistic conditions is indispensable because realistic models of input wind
fields are needed for numerical simulations estimating the loads on structures and their
expected lifetimes. This includes the need for good statistical evidence of extreme wind
gusts, their relative frequency, their spatial extension, and their temporal correlations.

The fundamental equation of turbulence, the Navier-Stokes equation, is known since
Navier (1823). Still today, more than 180 years later, an understanding of solutions to this
equation remains incomplete. In 2000, the Clay Mathematics Institute declared the proof of
the existence and smoothness of the Navier-Stokes solutions in R3 (see Fefferman, 2000) as
an unsolved problem with US$ 1,000,000 being awarded for a correct solution. Starting with
the pioneering experiments by Reynolds (1883), studying the phenomenology of a turbulent
flow has by now a long tradition. For instance, the “Album of Fluid Motion” by Van Dyke
(1982) displays photographs of the flow around an obstacle and the wake behind it.

Back in the early 20th century, Richardson (1920) studied atmospheric turbulence. “Does
the wind possess a velocity?” seems to be a foolish question at first sight. Yet, it was posed
by Richardson (1926) because the limit of ∆x/∆t, where ∆x labels the displacement of an
air parcel in x-direction over time ∆t, might not exist for ∆t → 0. Hence, a statistical
interpretation of turbulence was required. The foundation was laid by the works of Kol-
mogorov (1941a,b,c, 1962). Since then, studies about the dissipation rate by e.g. Batchelor
& Townsend (1949), the spatial correlations by e.g. Anselmet et al. (1984); Meneveau &
Sreenivasan (1991); Vincent & Meneguzzi (1991), the increment statistics by e.g. Castaing
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et al. (1990), the Markov properties by e.g. Renner et al. (2001), or the life time statistics
of coherent structures by e.g. Schneider & Eckhardt (2008) revealed a lot of insight into the
properties of turbulence (see also the overview by Sreenivasan & Antonia, 1997). Naturally,
this list is far away from being complete.

However, the transition regimes between isotropic turbulence as one idealisation and
laminar flow as another idealisation is still poorly understood. 125 years after Reynolds
(1883) made his famous pipe flow experiment, Eckhardt & Schneider (2008) addressed the
issue: “How does a flow in a pipe become turbulent?”. Recent studies by Eckhardt et al.
(2008) and Schneider et al. (2008) make a progress to answer this question but the final
solution is still due.

Similarly, studying and understanding the turbulence outside the laboratory, more specif-
ically, in the atmospheric boundary layer (ABL), is a demanding task for scientists. The
air flow in the ABL, i.e., in the lowest few 1–2 km of the atmosphere (see e.g. Stull, 1988;
Wallace & Hobbs, 2006), is strongly influenced by surface roughness and hence by orography
and land use, but even more by thermal effects through heating from the ground. The in-
tensity of solar radiation and the prevailing surface wind direction change much faster than
large scale pressure differences which generate the overall wind conditions. Summarising,
the turbulence generating mechanism changes with time. Even though studies about the
statistical analysis of ABL wind velocity can be found in the literature, for instance the
works by Beck et al. (2005a), and Kholmyansky et al. (2007), it is the work by Boettcher
(2005); Boettcher et al. (2007) which explicitly takes into account that ABL turbulence is
not ideal turbulence. Nonetheless, the authors used the approach of a Weibull distributed
mean wind speed. This distribution is frequently found empirically and is hence an accepted
fact (see Burton et al., 2004) but there is no theoretical justification for it.

As a consequence of the poor comprehension of atmospheric turbulence, time series anal-
ysis is an appropriate tool to study atmospheric wind. This rises the question: “How to
deal with a time series which was recorded in the ABL and which does not reflect ideal
turbulence?”. The present thesis is intended to give (a few) answers to this problem. After
reviewing the theoretical background of statistics, stochastic processes, ideal turbulence, and
superstatistics in Chaps. 2, 3, 4, and 5, respectively, Chaps. 6 and 7 develop and validate
a variety of statistical tools which allow to analyse wind velocity recordings. It is verified
that ABL wind speed data represent in good approximation a succession of ideal turbulence
periods with different parameters. Additionally, the algorithms are able to indicate the exis-
tence of periods in which the wind velocity recording does not reflect turbulence at all. The
focus is not only on the velocity increment as in Boettcher (2005); Boettcher et al. (2007)
but also on the wind speed variation around the mean wind speed (which itself is treated
as a random variable). It is confirmed that the wind speed fluctuation is roughly Gaussian
and that there is a proportionality between the standard deviation of the fluctuation and
the mean wind speed.

Motivated by this last result, Chap. 8 is dedicated to finding a stochastic process which
has the same fluctuation statistics as ABL wind speed. After formulating a recipe which
computes the fluctuation distribution conditioned on the value of the moving average for any
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given stochastic process, this technique is applied to a diversity of processes showing that
the mentioned fluctuation property is not trivial. Nevertheless, it is shown that the first
order geometric auto regressive process has the desired property under certain conditions
regarding its parameters. Moreover, it is shown that this process has increment statistics
similar to ABL wind speed so that this process is a suitable candidate to simulate wind
velocity during a period in which its properties are close to ideal turbulence. Finally, the
problem of how to fit the parameters to real data is discussed.

Chap. 9 summarises the results of the presented thesis. Additionally, it proposes further
studies.
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Part I

Theoretical Background
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Chapter 2

Statistics

A first question which comes to mind when dealing with statistics is: What is probability?
A mathematical definition of a belief in the chance of an event occurring is quite difficult.
Casella & Berger (2002) writes

Unfortunately, matters are not that simple. There are some technical difficulties
to overcome. We will not dwell on these technicalities; although they are of
importance, they are usually of more interest to probabilists than to statisticians.

Guided by Casella & Berger (2002), which if not stated otherwise serves as reference, this
chapter is intended to explain the basics of probability theory without going into the details
of these technicalities. An at least weak familiarity with probability theory is required for a
firm understanding of statistics.

2.1 Probability and random variable

Before defining the meaning of probability, some basics are introduced.
A random experiment is an experiment whose outcome cannot be determined in advance.

The set of all possible outcomes is called the sample space S. An event E ⊂ S is said to
occur if the outcome of the experiment is an element of S. Working with subsets of S is
simplified by defining the term sigma algebra (or Borel field) B(S). It denotes a collection of
subsets of S and has the following properties. It

• contains the empty set, i.e., ∅ ∈ B(S),

• is closed under complementation, i.e., E ∈ B(S)⇒ E{ ∈ B(E), and

• is closed under countable unions, i.e., E1, E2, · · · ∈ B(S)⇒ ⋃∞
i=1Ei ∈ B(S).

The probability function is a function P ( · ) with domain B(S) satisfying the following three
axioms, which are known as the axioms of probability or Kolmogorov’s axioms.

1. P (E) ≥ 0 for all E ∈ B(S).
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P (∅) = 0

P (E) ≤ 1

P
(
E{
)

= 1− P (E)

P (E1 ∪ E2) = P (E1) + P (E2)− P (E1 ∩ E2)

E1 ⊂ E2 ⇒ P (E1) ≤ P (E2)

Table 2.1: Properties of the probability function.

2. P (S) = 1.

3. If E1, E2, . . . , En ∈ B(S) are pairwise disjoint, then P (
⋃∞
i=1Ei) =

∑n
i=1 P (Ei).

Consequently, P (E) is a real number between zero and unity for any event E ∈ B(S). This
number is interpreted as the probability of the event. Tab. 2.1 lists some useful properties
of the probability function when applied to a single event. These rules are convenient for
calculating more complicated probabilities. Most of them are fairly self-evident so that they
are stated here without proofs.

A general method to define a probability function for an experiment with countable
sample space without having to check whether the axioms of probability are satisfied is as
follows. If S = {s1, s2, . . . } is a countable set and p1, p2, . . . are non-negative numbers that
sum to unity, the function

P : E ∈ B(S) 7→ P (E) =
∑
i:si∈E

pi (2.1)

is a probability function. Clearly, pi reflects the probability of the event {si}, i.e., P ({si}) =
pi.

The following example demonstrates that for certain random experiments it is easier to
deal with a summary variable rather than with the original probability structure.

Example 2.1: A simple game where the player tosses a fair coin and wins one Euro1 when
getting head otherwise loosing one Euro. The sample space is therefore S = {−1, 1} and the
probability function is given by P ({+1}) = P ({−1}) = 1/2. The sample space of tossing
the coin n times has 2n elements, where each of which is an ordered string of ±1’s of length
n. Of course, the player is only interested in how often the coin shows head. This is merely
an integer between zero and n and much easier to deal with than the original sample space.
Mathematically speaking, the player defines a map from the original sample space to the set
{0, 1, . . . , n}: a so-called random variable. �

1The unit Euro can be exchanged by any other unit.
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Generally, a random variable (rv) X is a function from the sample space of the experiment
into the real numbers. It is said to be discrete (continuous) if its range X ⊆ R is countable
(uncountable). For a discrete rv with range X = {x1, . . . , xm}, the probability of X taking
the value xi is denoted by P [X = xi] and given by

P [X = xi] = P ({sj ∈ S : X(sj) = xi}) . (2.2)

Similarly, for a continuous rv with range X a legitimate probability function reads

P [X ∈ A] = P ({s ∈ S : X(s) ∈ A}) , (2.3)

where A is any subset of X , i.e., A ∈ B(X ).

Example 2.2: Fair coin game mentioned in Ex. 2.1. The range X corresponds to the set
{0, 1, . . . , n}. The probability of winning k Euro (and consequently loosing n − k Euro)
corresponds to P [X = k]. Each of the strings s of size n is equally likely with P ({s}) = 2−n

so that is the probability of X = k is equal to 2−n times the number of string containing
exactly k +1’s. That is

P [X = k] =
1

2n

(
n
k

)
, (2.4)

where the so-called binomial coefficients are defined by(
n
k

)
=

n!

k! (n− k)!
. (2.5)

�

2.2 Distribution

Regarding a discrete rv X, Eq. (2.2) with range X can be interpreted as a function mapping
from X to [0, 1]. It contains all information about the probability of X taking any value x
out of X and is therefore called probability mass function (pmf)

fX(x) = P [X = x] (2.6)

with
∑

x∈X fX(x) = 1. For a continuous rv the probability density function (pdf) fX : X 7→
R≥0 is defined such that ∫

A

dx fX(x) = P [X ∈ A] (2.7)

for any A ∈ B(X ). Hence, it has to satisfy
∫
X dx fX(x) = 1. Another function used to

characterise a rv is the cumulative distribution function (cdf). It is defined by

FX(z) = P [X ≤ z] =

{∑
x≤z P [X = x] for discrete rv’s and∫

x≤z dx fX(x) for continuous rv’s.
(2.8)

so that its domain is not restricted to X , i.e., FX : R 7→ [0, 1]. It has the following three
properties:
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Figure 2.1: Fair coin game’s pmf (2.4) (left) and cdf (right) with n = 20.

• limz→−∞ FX(z) = 0 and limz→∞ FX(z) = 1.

• FX(z) is a non-decreasing function of z.

• FX(z) is right-continuous, i.e., limz↘z0 FX(z) = FX(z0).

Two rv’s X and Y are said to be identically distributed if

FX(z) = FY (z) (2.9)

for every z ∈ R.

Example 2.3: The fair coin game’s pmf k 7→ P [X = k] and cdf z 7→ P [X ≤ z] are depicted
in Fig. 2.1 for n = 20. It is obvious that the number of getting tails is identically distributed
to the number of getting heads. �

In order to settle a frequently used notation in this text, the following symbols are introduced.
If the rv X is fX-distributed, it is denoted by

X ∼ fX . (2.10)

If the two rv’s X and Y are identically distributed, it is written as

X ∼ Y. (2.11)
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2.3 Expected value and other characterisations

A rv is fully described by its pmf/pdf or its cdf, but capturing important information in a few
single quantities sometimes suffices. These could be measures of location (e.g. expected value,
median, mode, etc.), measures of statistical dispersion (e.g. standard deviation, variance),
and measures of the shape of the distribution (e.g. skewness, kurtosis).

The expected value or expectation value E [X] of a rv X is defined by

E [X] =

{∑
x∈X xfX(x) if X is discrete,∫
X dx xfX(x) if X is continuous,

(2.12)

where X denotes the range of X and fX( · ) denotes its pmf/pdf. The expected value is not
to be confused with the most probable outcome. The modes are the values x where fX(x)
takes it maximum. If a pmf/pdf has multiple modes, it is said to be multimodal. Otherwise
it is a so-called unimodal distribution. The third location measure which shall be introduced
is the median, i.e., the value z where P [X ≤ x] ≥ 1/2 and P [X ≥ z] ≥ 1/2. In other words,
the median separates the half containing the lower values of X from the half containing the
higher values of X.

Eq. (2.12) can be generalised to obtain the expected value of a rv g(X), where g : X 7→ R
and X denotes the range of X:

E [g(X)] =

{∑
x∈X g(x)fX(x) if X is discrete,∫
X dx g(x)fX(x) if X is continuous.

(2.13)

If g(x) is convex, i.e., g(λx1 + (1 − λ)x2) ≤ λg(x1) + (1 − λ)g(x2) for any x1,2 ∈ X and
λ ∈ [0, 1] such that λx1 + (1− λ)x2 ∈ X , the Jensen’s inequality

E [g(X)] ≥ g(E [X]) (2.14)

holds true. It should be mentioned that this inequality relies on properties of real-valued
functions rather than on any statistical property. Eq. (2.13) is used to define further charac-
teristics of a rv. The nth moment or raw moment of a rv is given by E [Xn] if it exists. The
nth central moment is defined by E [(X − E [X])n]. A special case is the variance

Var [X] = E
[
(X − E [X])2

]
= E

[
X2
]− (E [X])2 , (2.15)

which according to Jensen’s inequality (2.14) is always positive. Its square root, the standard
deviation, is a measure of the rv’s dispersion. If the expected value is positive, it might be
convenient to express the standard deviation in units of the expected value as

CV [X] =

√
Var [X]

E [X]
, (2.16)

which is known as the coefficient of variation.
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Figure 2.2: Mnemonic for the terms platy- and leptokurtic provided by Student (1927). β2 stands
for the kurtosis.

In addition to expected value and variance, two dimensionless quantities, which are of
importance to unimodal distributions, are introduced. The skewness

Skew [X] =
E [(X − E [X])3]

Var [X]3/2
(2.17)

is a measure of the lack of symmetry. A pmf/pdf is said to be symmetric about the point
a if for all ∆x > 0 fX(a + ∆x) = fX(a − ∆x). Its expectation value and median is a.
Furthermore, it has zero skewness because all odd central moments vanish. App. A.9.1
illustrates the meaning of skewness exemplified by a class of pdf’s with zero mean and unit
variance. The kurtosis

Kurt [X] =
E [(X − E [X])4]

Var [X]2
, (2.18)

is a measure of the peakedness or flatness of the pmf/pdf relative to the normal distribu-
tion. That is, a pdf with high kurtosis has a distinct peak near the mean, decline rather
rapidly, and has heavy tails. Conversely, a pdf with low kurtosis is flat around the mean.
The normal distribution, see App. A.2, has always kurtosis three. A pdf which has same
kurtosis as the normal distribution is called mesokurtic. A pdf with larger (lower) kurto-
sis is called leptokurtic (platykurtic)—a mnemonic provided by Student (1927) is shown in
Fig. 2.2. Jensen’s inequality in form of E [(X − E [X])4] ≥ (E [(X − E [X])2])

2
implies that

the kurtosis is bounded from below by unity. App. A.9.2 illustrates the meaning of kurtosis
exemplified by a class of pdf’s with zero mean, unit variance, and zero skewness.
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2.4 Transformation

It is often the case, that the pmf/pdf of the rv X is known, but the pmf/pdf of the rv
Y = g(X), where g : X 7→ Y , is of interest. For the sake of simplicity, only continuous rv’s
are discussed in this section. The reader is referred to Casella & Berger (2002) for discrete
rv’s. The most common case is when g( · ) is a monotone function, whose inverse g−1( · ) has
a continuous derivative in Y and when the pdf fX( · ) is continuous on X . The pdf of Y is
then given by

fY (y) =

{
fX
(
g−1(y)

) ∣∣∣ d
dy
g−1(y)

∣∣∣ for y ∈ Y ,

0 otherwise.
(2.19)

A very convenient, but maybe a bit careless, notation is

fX(x) dx = fY (y) dy, (2.20)

which is frequently used when substituting variables under an integral containing pdf’s.
A frequently used transformation is the linear transformation Y = aX + b, where a 6= 0

and b are constants. The inverse of the function g(x) = ax+ b has the derivative 1/a so that

fY (y) =
1

|a|fX
(
y − b
a

)
. (2.21)

Additionally, the following formulas are useful:

E [aX + b] = aE [X] + b, (2.22a)

Var [aX + b] = a2Var [X] , (2.22b)

Skew [aX + b] = Skew [X] , and (2.22c)

Kurt [aX + b] = Kurt [X] . (2.22d)

The last two equations demonstrate that skewness and kurtosis are invariant under linear
transformation.

Example 2.4: Linear transformation of a normally distributed rv X ∼ Nµ,σ2 (see App. A.2
for notation). The pdf of Y = aX + b with a 6= 0 is given by

fY (y) =
1√

2πa2σ2
exp

[
−(y − (aµ+ b))2

2a2σ2

]
(2.23)

so that aX + b is of a normal distribution with mean aµ+ b and variance a2σ2. �

Example 2.5: Linear transformation of a χ2-distributed rv X ∼ χ2
k (see App. A.3 for

notation). The pdf of Y = aX + b with a 6= 0 is given by

fY (y) =

{
1

2|a|Γ(k/2)

(
y−b
2a

)k/2−1
exp

[−y−b
2a

]
for y−b

a
> 0,

0 otherwise
(2.24)
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and there is no general function l = l(k, a, b) such that the expression can be written as

fY (y) = χ2
l (y) =

{
1

2Γ(l/2)

(
y
2

)l/2−1
exp

[−y
2

]
for y−b

a
> 0,

0 otherwise.
(2.25)

The only solution is the trivial solution a = 1 and b = 0, i.e., Y = X. Hence, a rv obtained
by a non-trivial linear transformation of a χ2-distributed rv is not of a χ2-distribution. �

Another transformation, which plays an important role in statistics, is the exponential trans-
formation Y = etX , where t 6= 0 is a constant and Y can only take positive values. The
inverse of the function g(x) = etx has the derivative (ty)−1 so that

fY (y) =

{
1
y|t|fX

(
ln y
t

)
for y > 0 and

0 for y ≤ 0.
(2.26)

The expectation value of Y is not directly related to the expected value of X because E [Y ]
depends on all higher moments of X (if they exist) due to

E
[
etX
]

= 1 +
∞∑
n=1

tn

n!
E [Xn] . (2.27)

Nevertheless, the function MX : t 7→ E
[
etX
]

which is defined by

MX(t) = E
[
etX
]

=

∫ ∞
−∞

dx etxfX(x), (2.28)

and thus is related to the Laplace transformation of the distribution (if it exists) contains
full information about the higher moments of X due to

E [Xn] =
dn

dtn
MX(t)

∣∣∣∣
t=0

. (2.29)

It is therefore named moment generating function (mgf). Higher moments of Y = etX are
given by

E [Y n] = MX(nt). (2.30)

Example 2.6: Mgf of normal distribution Nµ,σ2 . If X is normally distributed with mean µ
and variance σ2 its mgf is given by∫ ∞

−∞
dx etxNµ,σ2(x) =

1√
2πσ2

∫ ∞
−∞

dx exp

[
tx− (x− µ)2

2σ2

]
=

1√
2πσ2

∫ ∞
−∞

dx exp

[
−x

2 − 2x(µ+ σ2t) + µ2

2σ2

]
= exp

[
−µ

2 − (µ+ σ2t)2

2σ2

] ∫ ∞
−∞

dxNµ+σ2t,σ2(x)

= exp

[
µt+

σ2

2
t2
]
. (2.31)
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This result can be used to obtain e.g. the first two moments of X by E [X] = M ′
X(0) = µ

and E [X2] = M ′′
X(0) = σ2 + µ2. �

Example 2.7: Central moments of a normal distribution. If X is normally distributed with
mean µ and variance σ2 the shifted rv X − µ is according to (2.21) normally distributed
with zero mean and variance σ2. Its mgf is given by MX−µ(t) = exp(σ2t2/2) which can be
expanded to

MX−µ(t) = 1 +
∞∑
q=1

σ2q

2qq!
t2q (2.32)

so that its derivatives evaluated at t = 0 can be read off directly. Hence, the odd central
moments are zero and the even central moments are given by

E
[
(X − µ)2q

]
= σ2q (2q)!

2qq!
= σ2q(2q − 1)!!, (2.33)

where (·)!! denotes the double factorial (see Weisstein, 2003) which is defined by the recursion
formula

k!! =

{
1 for k = 0 or k = 1,

k(k − 2)!! for k ≥ 2.
(2.34)

�

Example 2.8: Log-normal distribution (see App. A.4 for notation). If X ∼ Nµ,σ2 with mgf
MX( · ), the rv Y = eX is log-normally distributed with density

fY (y) =
1

y
√

2πσ2
exp

[
−(ln y − µ)2

2σ2

]
(2.35)

for y > 0. The higher moments are given by

E [Y n] = MX(n) = exp

[
nµ+

n2σ2

2

]
. (2.36)

�

2.5 Joint distribution and correlation

The previous sections considered only one rv. This section is intended to generalise the
concept of a distribution to more than one rv.

Consider n rv’s X1, X2, . . . , Xn with sample set X = X1 × X2 × · · · × Xn, their joint
probability mass function (discrete rv’s) or joint probability density function (continuous rv’s)
is a function ρ : X 7→ R≥0 with

ρ(n)(x1, . . . , xn) = P [X1 = x1 ∧ · · · ∧Xn = xn] (2.37a)
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or ∫
A

dx1 . . . dxn ρ(n)(x1, . . . , xn) = P [(X1, . . . , Xn) ∈ A] (2.37b)

for any A ∈ B(X ), respectively. The corresponding marginal pmf’s and pdf’s are given by

fi(xi) =
∑
x′1

· · ·
∑
x′i−1

∑
x′i+1

· · ·
∑
x′n

ρ(n)(x
′
1, . . . , x

′
i−1, xi, x

′
i+1, . . . , x

′
n) (2.38a)

and

fi(xi) =

∫
dx′1 . . . dx

′
i−1dx′i+1 . . . dx

′
n ρ(n)(x

′
1, . . . , x

′
i−1, xi, x

′
i+1, . . . , x

′
n) (2.38b)

for i = 1, . . . , n, respectively. Additionally, the joint distribution gives information about
the distribution of the n− 1 rv’s X1, . . . , Xi−1, Xi+1, . . . , Xn if the ith rv Xi is fixed Xi = xi.
The conditioned pmf or pdf of Xi is given by

ρ(n−1)(x1, . . . , xi−1, xi+1, . . . , xn |Xi = xi) =
ρ(n)(x1, . . . , xi−1, xi, xi+1, . . . , xn)

fi(xi)
. (2.39)

Iterating this equation is frequently used to compute the joint distribution of n rv’s when
the conditioned and marginal distributions are known. A rv Xi is said to be independent of
the remaining n− 1 rv’s if the joint pmf/pdf factorises such that

ρ(n)(x1, . . . , xn) = ρ(n−1)(x1, . . . , xi−1, xi+1, . . . , xn)× fi(xi), (2.40)

i.e., the left hand side of (2.39) does not depend on xi. As a consequence, if the n rv’s
X1, . . . , Xn are mutually independent, the joint distribution completely factorises such that

ρ(n)(x1, . . . , xn) =
n∏
i=1

fi(xi). (2.41)

If furthermore fi( · ) = f( · ) for all i = 1, . . . , n so that

ρ(n)(x1, . . . , xn) =
n∏
i=1

f(xi), (2.42)

the n rv’s are called independent identically distributed (iid).
Therefore, two independent rv’s X and Y with distribution fX and fY , respectively, have

E [g(X)h(Y )] =

{∑
x

∑
y g(x)h(y)ρ(2)(x, y) (discrete)∫

dxdy g(x)h(y)ρ(2)(x, y) (continuous)

=

{∑
x g(x)fX(x)

∑
y h(y)fY (y) (discrete)∫

dx g(x)fX(x)
∫

dy h(y)fY (y) (continuous)

= E [g(X)] E [h(Y )] (2.43)
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for any functions g( · ) and h( · ). Especially, E [XY ] = E [X] E [Y ].
If the two rv’s X and Y are not independent, the expected value of XY might not be the

product of the individual expected values. The difference between E [XY ] and E [X] E [Y ] is
referred to as the covariance between X and Y , i.e.,

Cov [X, Y ] = E
[(
X − E [X]

)(
Y − E [Y ]

)]
= E [XY ]− E [X] E [Y ] . (2.44)

The covariance is used to determine the variance of aX + bY , where X and Y are any rv’s
whereas a and b are constants:

Var [aX + bY ] = E
[(
aX + bY − E [aX + bY ]

)2
]

= E
[(
a(X − E [X]) + b(Y − E [Y ])

)2
]

= a2 Var [X] + b2 Var [Y ] + 2abCov [X, Y ] . (2.45)

It is proven in (Casella & Berger, 2002, Thm. 4.5.7) that

|Cov [X, Y ] | ≤
√

Var [X] Var [Y ], (2.46)

so that it is convenient to normalise the covariance and define

Corr [X, Y ] =
Cov [X, Y ]√

Var [X] Var [Y ]
, (2.47)

which is known as the linear correlation or simply correlation. It is a real number between
−1 and +1. The theorem also proves that Corr [X, Y ] = 1 (Corr [X, Y ] = −1) if and only
if there exist numbers a > 0 (a < 0) and b such that Y = aX + b. Two rv’s X and Y are
said to be correlated if Corr [X, Y ] > 0 and anti-correlated if Corr [X, Y ] < 0. On the other
hand, if the correlation between X and Y vanishes, X and Y are called uncorrelated random
variables, which is not to be mistaken with independent rv’s. Independent rv’s are always
uncorrelated, but uncorrelated rv’s are not necessarily independent.

Example 2.9: Correlation between X ∼ N0,1 and X2 ∼ χ2
1. The rv’s X and X2 are clearly

not independent, but their linear correlation vanishes because

Corr
[
X,X2

]
=

E [X3]− E [X] E [X2]√
Var [X] Var [X2]

=
E [X3]√

2
= 0. (2.48)

�

The concept of correlation can be generalised to n ∈ N rv’s X1, . . . , Xn with finite variances.
The correlation matrix is an n× n matrix defined by

(Γ)ij = Corr [Xi, Xj] . (2.49)
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It is symmetric because Corr [Xi, Xj] = Corr [Xj, Xi] and its diagonal entries are unity. The
average correlation ρn is obtained by averaging over the off-diagonal elements, i.e.,

ρn =
1

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

(Γ)ij, (2.50)

and plays an essential role for the mean and variance estimation of a random sample,
cf. Sec. 2.8. The average correlation is bounded from above by +1 which only occurs if
Corr [Xi, Xj] = 1 for any combination i, j. As for the lower bound on the other hand, it is
not possible to have Corr [Xi, Xj] = −1 for any combination i, j with j 6= i.

Example 2.10: Three fully anti-correlated rv’s. Consider three rv’s X, Y, Z with finite
variance. If Corr [X, Y ] = −1 and Corr [X,Z] = −1 it follows that Corr [Y, Z] = +1. This
is because there are constants a, b, c, d such that Y = aX + b and X = cZ + d with a, c < 0.
Consequently, Y = acZ + ad+ b with ac > 0 so that Corr [Y, Z] = +1. �

Rasch (1989) shows that Γ is positive semi-definite, i.e., for any ~c ∈ Rn the product ~c>Γ~c is
non-negative. Hence, the sum of all entries must be non-negative. Splitting this sum into
the trace of Γ plus the sum over the off-diagonal entries results in

n∑
i,k=1

(Γ)ik = n+
n∑
i=1

n∑
j=1
j 6=i

(Γ)ij ≥ 0. (2.51)

As a consequence,

− 1

n− 1
≤ ρn ≤ 1, (2.52)

so that for n→∞ the average correlation is non-negative, i.e., 0 ≤ ρ∞ ≤ 1.

2.6 Multivariate transformation

This section derives the distribution of the rv

Z = g(X1, . . . , Xn), (2.53)

where g : X1 × · · · × Xn 7→ Z is a function of n rv’s X1, . . . , Xn with joint pmf/pdf
ρ(n)(x1, . . . , xn). Note that all Xi’s have to be either discrete or continuous.

The distribution of Z is a function fz : Z 7→ R≥0 with

fZ(z) = P [Z = z] =
∑

{x1,...,xn : g(x1,...,xn)=z}

ρ(n)(x1, . . . , xn) (2.54)

for discrete rv’s because the probability for Z = z is given by sum over the probabilities of
all possible states with g(x1, . . . , xn) = z. For continuous rv’s it is given by

fZ(z) =

∫
dx1 . . . dxn δ

(
z − g(x1, . . . , xn)

)
ρ(n)(x1, . . . , xn) (2.55)
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because ∫
A

dz fZ(z) =

∫
dx1 . . . dxn ρ(n)(x1, . . . , xn)

∫
A

dz δ
(
z − g(x1, . . . , xn)

)
,

=

∫
g(x1,...,xn)∈A

dx1 . . . dxn ρ(n)(x1, . . . , xn)

= P [g(X1, . . . , Xn) ∈ A] , (2.56)

i.e.,

P [Z ∈ A] =

∫
A

dz fZ(z) ∀A ∈ B(Z). (2.57)

Eqs. (2.54) and (2.55) can be written as

fZ(z) = E
[
δ
(
z, g(X1, . . . , Xn)

)]
, (2.58)

where

δ(x, y) =

{
δx,y (Kronecker δ) for the discrete case and

δ(x− y) (Dirac δ) for the continuous case.
(2.59)

Example 2.11: Derivation of the univariate transformation Y = g(X) (continuous) rule
(2.19). The distribution of Y is according to (2.55) given by fY (y) =

∫
dx fX(x)δ(y− g(x)).

The δ-function can be expressed as δ(x−g−1(y))/|g′(g−1(y)|, where it is assumed that g−1( ·)
and g′( · ) exist. Integrating over x yields fY (y) = fX(g−1(y))| d

dy
g−1(y)|, which corresponds

to (2.19). �

2.7 Sum of continuous random variables and stable dis-

tributions

Consider two continuous rv’s X and Y with their joint distribution ρ(2)(x, y). The question
is: what is the distribution of the rv Z = X + Y ? Of course, this is just a special case of a
multivariate transformation. However, it is worth discussing this special case thoroughly be-
cause it allows a clear and accessible introduction to concepts like convolutions, characteristic
functions and stable distributions. These ideas are commonly used in statistics.

Consider the rv Z =
∑n

i=1 Xi to be the sum of n rv’s with joint distribution ρ(n)(x1, . . . , xn).
Applying (2.55) leads to

fZ(z) =

∫
dx1 . . . dxn δ

(
z −

n∑
i=1

xi
)
ρ(n)(x1, . . . , xn). (2.60)

The δ-function can be used to reduce the n dimensional integral down to a n−1 dimensional
integral. The calculation procedure strongly depends on the structure of ρ(n)(x1, . . . , xn) and
therefore on the correlations between the rv’s.
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An important special case can be derived for independent rv’s Xi’s, where the integral

fZ(z) =

∫
dx1 . . . dxn δ

(
z −

n∑
i=1

xi
)
f1(x1) . . . fn(xn) (2.61)

can be computed using the convolutions. The convolution of two pdf’s f : R 7→ R and
g : R 7→ R is defined by

f ? g : x 7→
∫ ∞
−∞

dy f(y)g(x− y). (2.62)

It is commutative, i.e.,
f ? g = g ? f, (2.63)

and Yosida (1980) extends the definition of the convolution in a unique way such that the
associative law

f ? (g ? h) = (f ? g) ? h (2.64)

holds true. That is,

(f ? g ? h)(z) =

∫ ∞
−∞

dx1dx2dx3f(x1)g(x2)h(x3) δ(z − x1 − x2 − x3). (2.65)

More generally, the convolution of n distributions fi( · ) (i = 1, . . . , n) is written as(
n

F
i=1

fi

)
(z) =

∫
∞
δ

(
z −

n∑
i=1

xi

)
n∏
i=1

fi(xi) dxi (2.66)

so that (2.61) becomes

fZ(z) =

(
n

F
i=1

fi

)
(z). (2.67)

The computation of this convolution is sometimes quite difficult, but applying the Fourier
transformation

F [f ] : t 7→
∫ ∞
−∞

dx f(x)eitx (2.68)

to the above equation and using the convolution theorem

F
[
n

F
i=1

fi

]
=

n∏
i=1

F [fi] (2.69)

leads to

fZ(z) = F−1

[
n∏
i=1

F [fi]

]
(z), (2.70)

where the inverse Fourier transformation in this convention reads

F−1 [F ] : x 7→ 1

2π

∫ ∞
−∞

dt F (t)e−itx. (2.71)
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It is often convenient to work directly in the Fourier space using characteristic functions.
The characteristic function of a rv X which is fX-distributed is defined by

ϕX(t) = E
[
eitX

]
= F [fX ] (t). (2.72)

Hence, the characteristic function of Z =
∑n

i=1 Xi is given by

ϕZ(t) =
n∏
i=1

ϕXi(t) (2.73)

with ϕXi( · ) denoting the characteristic function of Xi.

Example 2.12: Sum of normally distributed random variables. Consider X1, . . . , Xn to be
n independent normally distributed random variables with E [Xj] = µj and Var [Xj] = σ2

j

for j = 1, . . . , n. The characteristic functions are given by ϕXj(t) = exp
[
iµjt− σ2

j t
2/2
]

so
that the characteristic function of Z =

∑n
j=1Xj reads

ϕZ(t) =
n∏
j=1

exp

[
iµjt−

σ2
j t

2

2

]
= exp

[
it

n∑
j=1

µj − t2

2

n∑
j=1

σ2
j

]
. (2.74)

Taking the inverse Fourier transformation yields that Z is normally distributed with mean∑n
j=1 µj and variance

∑n
j=1 σ

2
j . �

Example 2.13: Sum of χ2-distributed rv’s (see App. A.3 for notation). Consider Z =∑n
j=1 Xj, where Xj ∼ χ2

kj
with kj denoting the degrees of freedom. The characteristic

functions are given by ϕj(t) = (1−2it)−kj/2 so that the characteristic function of Z =
∑n

i=1Xi

reads

ϕZ =
n∏
j=1

(1− 2it)−kj/2 = (1− 2it)−
Pn
j=1 kj/2. (2.75)

Taking the inverse Fourier transformation yields that Z is also χ2-distributed with
∑n

j=1 kj
degrees of freedom. That is, the number of degrees of freedom simply add. �

Example 2.14: Sum of two uniformly distributed rv’s (see App. A.7 for notation). Consider
Z = X+Y , where both X and Y are uniformly distributed between a and b, i.e., X, Y ∼ Ua,b.
This problem is best solved without taking the detour with characteristic functions and solve
(2.61) directly by

fZ(z) =

∫ ∞
−∞

dxUa,b(x)Ua,b(z − x) (2.76)
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There is only a contribution to the integral if a ≤ x ≤ b and z − b ≤ x ≤ z − a so that

fZ(z) =
1

(b− a)2

∫
[a,b]∩[z−b,z−a]

dx

=
1

(b− a)2



0 for z ≤ 2a,

z − 2a for 2a < z < a+ b,

b− a for z = a+ b,

2b− z for a+ b < z < 2b,

0 for z ≥ 2b,

(2.77)

which is a member of the triangular distribution family. �

The examples showed that the sum of independent normally distributed random variables is
again normally distributed with added mean and variance and that the sum of χ2-distributed
rv’s is also of a χ2-distribution with added degrees of freedom. However, the sum of two
uniformly distributed rv’s is not uniformly distributed. That is, there are some distributions,
where the distribution of the sum of iid rv’s belongs to the same class as the distribution of
the individual summands.

In order to discuss this problem systematically, the sum of n rv’s is considered, which
are not only independent but in addition identically distributed. This problem was initially
studied by P. Lévy in the 1920’s and subject of a recent work by Nolan (2009). A pdf fX is
said to be stable if there are constants a > 0 and b such that the sum of n iid rv’s X1, . . . , Xn

with Xj ∼ fX for j = 1, . . . , n satisfies

a
n∑
j=1

Xj + b ∼ fX . (2.78)

Example 2.15: Sum of iid normally distributed rv’s. As shown in Ex. 2.12, the rv Z =∑n
j=1 Xj, where Xj ∼ Nµ,σ2 for j = 1, . . . , n, is normally distributed with mean nµ and

variance nσ2. The linearly transformed rv Z/
√
n−µ(

√
n− 1) is Nµ,σ-distributed, cf. Ex. 2.4

or Eq. (A.9). Hence, the normal distribution is stable. �

Example 2.16: Sum of iid χ2-distributed rv’s. As shown in Ex. 2.13, the rv Z =
∑n

j=1 Xj

with Xj ∼ χ2
k for j = 1, . . . , n is χ2-distributed with nk degrees of freedom. However, it is

not possible to shift and scale Z such that aZ+ b is χ2-distributed with k degrees of freedom
(it is shown in Ex. 2.5 that a non-trivial linear transformation of a χ2-distributed rv is not
χ2-distributed). Hence, the χ2-distribution is not stable. �

The class of stable distributions can be obtained by using characteristic functions. Denoting
ϕX(t) = E

[
eitXj

]
for all j = 1, . . . , n, the characteristic function of Z =

∑n
j=1Xj reads

ϕZ(t) = ϕX(t)n. The linear transformation rule (2.21) implies that ϕaZ+b(t) = eitbϕX(at)n

for a > 0, which has to be equal to ϕX(t) if fX is a stable distribution, i.e.,

ϕX(t) = eitbϕX(at)n. (2.79)
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Lévy (1925) and Khintchine & Lévy (1936) solved the general problem of determining the
entire class of stable distributions. The Lévy skew α-stable distributions are given by char-
acteristic functions

ϕX(t) = F [Sα,β,γ,δ] (t)

=

{
exp {−γα|t|α [1− iβ sgn(t) tan (πα/2)] + itδ} for α 6= 1,

exp {−γ|t| [1 + 2iβ/π sgn(t) ln |t|] + itδ} for α = 1.
(2.80)

Consequently, a general stable distribution requires four parameters to describe: an index
of stability 0 < α ≤ 2, a skewness parameter −1 ≤ β ≤ 1, a scale parameter γ > 0, and a
location parameter δ ∈ R. Inserting this expression into (2.79) yields

a =
1

n1/α
and b =

{
δ
[
1− n1−1/α

]
for α 6= 1,

−2βγ/π lnn for α = 1.
(2.81)

There are three special cases of Sα,β,γ,δ which are discussed in the following three examples.

Example 2.17: Normal distribution (α = 2, β = 0). The rv X ∼ S2,0,γ,δ has the charac-
teristic function ϕX(t) = exp[−γ2t2 + itδ] and is therefore normally distributed with mean δ
and variance 2γ2: S2,0,γ,δ(x) = Nδ,2γ2(x). The solution for the constants a and b for the sum
of n independent Nµ,σ2-distributed rv’s is given by a = 1/

√
n and b = −µ(

√
n − 1). This

result agrees with the result found in Ex. 2.15. �

Example 2.18: Cauchy distribution (α = 1, β = 0). The rv X ∼ S1,0,γ,δ has the charac-
teristic function ϕX(t) = exp[−γ|t| + itδ] and is therefore of a Cauchy distribution Cyδ,γ
(see App. A.5 for notation). Eq. (2.79) for the sum of n iid rv’s is solved by a = 1/n and
b = 0. That is, if Xj ∼ Cyδ,γ for j = 1, . . . , n are iid rv’s, its average 1/n

∑n
j=1 Xj is of a

Cyδ,γ-distribution, too. �

Example 2.19: Lévy distribution (α = 1/2, β = 1). The rv X ∼ S1/2,1,γ,δ has the character-

istic function ϕX(t) = exp{−[1− isgn(t)]
√
γ|t|+ itδ} and is therefore of a Lévy distribution

Lvδ,γ (see App. A.6 for notation). Eq. (2.79) for the sum of n iid rv’s is solved by a = 1/n2

and b = δ(1− 1/n). �

2.8 Random sample estimation

Consider a random sample of finite size n consisting of identically distributed rv’s Xj with
j = 1, . . . , n. Each rv is drawn from an unknown distribution fX(·). The goal is to determine
the pmf/pdf and its parameterisation.

Firstly, the case of iid rv’s is discussed. Denoting the values of the rv’s by xj (j =
1, . . . , n), the estimated distribution is formally written as

f̃X(x) =
1

n

n∑
j=1

δ(x− xj) (2.82)
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and is difficult to present graphically. A (normalised) histogram is used instead. The range
of x ∈ [a, b] is split into m bins of width ∆x = (b − a)/m. The kth bin covers Bk =
[a + (k − 1)∆x, a + k∆x[ around the bin’s centre ξk = a + (k − 1/2)∆x for k = 1, . . . ,m.
The estimated histogram h̃X : {ξ1, . . . , ξm} 7→ R is determined by

h̃X(ξk) =

∫
Bk

dx f̃X(x) =
1

n

∑
{j :xj∈Bk}

1 (2.83)

for k = 1, . . . ,m, i.e., by counting the number of rv’s whose value lies in bin k. The estimated
cdf however can be plotted directly and does not require any binning. It is given by

F̃X(x) =

∫ x

−∞
dx′ f̃X(x′) =

1

n

∑
{j :xj≤x}

1. (2.84)

Often it is not the estimation of the pmf/pdf/cdf which is of interest, but rather the mean
µX and variance σ2

X need to be estimated. The arithmetic average

X̄ =
1

n

n∑
j=1

Xj (2.85)

is itself a rv with expected value E
[
X̄
]

= µX and variance Var
[
X̄
]

= σ2
X/n. That is, if the

population size n is sufficiently large, the standard deviation of X̄, which is a measure for
the estimation uncertainty, is negligible so that the expectation value of the set {x1, . . . , xn}

E {x1, . . . , xn} =
1

n

n∑
j=1

xj (2.86)

is a reasonable estimated expectation value of Xj. As for the variance, the rv

S2 =
1

n− 1

n∑
j=1

[
Xj − X̄

]2
=

∑n
j=1 X

2
j − nX̄2

n− 1
(2.87)

has expectation

E
[
S2
]

=
1

n− 1
E

[
n∑
j=1

[
(Xj − µX)− (X̄ − µX)

]2]

=
1

n− 1

[
nσ2

X + nVar
[
X̄
]− 2

n∑
j=1

E
[
(Xj − µX)(X̄ − µX)

]]

=
1

n− 1

[
nσ2

X + σ2
X − 2σ2

X

]
= σ2

X . (2.88)
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As a consequence, defining the variance of the set {x1, . . . , xn} by

Var {x1, . . . , xn} =
1

n− 1

n∑
j=1

[xj − x̄]2 =

∑n
j=1 x

2
j − nx̄2

n− 1
(2.89)

with x̄ = E {x1, . . . , xn} is a reasonable estimated variance of Xj. Note that there is the
factor n− 1 instead of n in the denominator of the definition.

Secondly, the case of correlated rv’s Xj is discussed, where the estimated mean and
variance might not reflect the actual mean and variance of the underlying distribution. The
expected value of X̄ =

∑n
j=1Xj/n is still µX , but its variance reads

Var
[
X̄
]

=
σ2
X

n2

n∑
j,j′=1

Corr [Xj, Xj′ ]

=
σ2
X

n
+ ρnσ

2
X

n− 1

n

n→∞−→ σ2
Xρ∞, (2.90)

where ρn denotes the average correlation (2.50) and is a real number between −1/(n − 1)
(as many anti-correlated rv’s as possible) and 1 (fully perfectly correlated). Consequently,
even for an infinite population size the estimation uncertainty is positive depending on the
value of ρ∞ ∈ [0, 1]. Regarding the variance estimation, the expected value of S2 is given by

E
[
S2
]

=
1

n− 1
E

[
n∑
j=1

[
(Xj − µX)− (X̄ − µX)

]2]

=
1

n− 1

[
nσ2

X + nVar
[
X̄
]− 2

n

n∑
j,j′=1

Cov [Xj, Xj′ ]

]
= σ2

X − ρnσ2
X

n→∞−→ σ2
X(1− ρ∞), (2.91)

which potentially underestimates the true variance.

2.9 Kolmogorov-Smirnov test

In applied research it is common to speculate the population distribution (or at least any
of its parameters) and try to verify this speculation based on available data. This is known
as hypothesis testing. This section however will only cover a specific test: the Kolmogorov-
Smirnov test, which is described in standard inferential statistics books such as Sheskin
(1997) and Hartung (2005).

Some basic vocabulary needs to be introduced first. A hypothesis is a statement about
the population. The two complementary hypothesis are called null hypothesis H0 and the
alternative hypothesis H1 = ¬H0. There is of course no 100 % warranty that the decision
to accept/reject the null hypothesis is correct. A type I error refers to rejecting the null
hypothesis when in fact it is correct. The probability of making the type I error is often
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H0 is true H0 is false
test accepts H0 no error type II
test rejects H0 type I no error

Table 2.2: Error types in hypothesis testing.

denoted by α and named level of significance. Of course, this error can be minimised by
never rejecting the null hypothesis, i.e., α = 0. However, this rule makes it also impossible to
discover situations in which the null hypothesis is indeed wrong. This type of error is called
type II error, i.e., erroneously keeping the null hypothesis when it is false. Its probability is
often denoted by β, see Tab. 2.2.

The idea of the Kolmogorov-Smirnov test is to test whether n rv’s, which can be treated
as being mutually independent, are drawn from the hypothesized distribution pX , i.e.,

H0 : Xj ∼ pX . (2.92)

It is convenient to work with the cdf’s as it is mentioned in the previous section that the
cdf of the random sample {X1, . . . , Xn} can be estimated directly from data without any
binning. The “distance” between the estimated cdf F̃X and hypothesized cdf ΦX is given by

dKS
X = sup

z
|F̃X(z)− Φ(z)|. (2.93)

Calculating the supremum numerically is a bit tricky. However, using that the estimated cdf
has the form of a step function, the supremum can be computed by finding the maximum of
a finite set. That is, if the values of the rv’s are denoted by x1, . . . , xn, respectively, they can
be rearranged into {z1, . . . , zn} = {x1, . . . , xn} such that z1 ≤ z2 ≤ · · · ≤ zn. Additionally,
z0 is defined to be −∞ so that F̃X(z0) = 0. The estimated cdf reads

F̃X(zl) =
1

n
max
k=0,...,n

{k : zk = zl} (2.94)

for l = 0, 1, . . . , n. Using that ΦX( · ) is monotonically increasing, it suffices to compute the
maximum value

dKS
X = max

l=1,...,n

{∣∣∣F̃X(z∗l )− Φ(zl)
∣∣∣ , ∣∣∣F̃X(zl)− Φ(zl)

∣∣∣} , (2.95)

where z∗l = max{zk : zk < zl}. The larger dKS
X is, the less likely it is that H0 is true. The

null hypothesis is rejected if dKS
X is larger than a given critical value. The crucial question

is: how large should this critical value be such that making a type I error when rejecting
H0 has probability α < 1. Note that α = 0 means “never reject H0” so that α is usually
chosen to be 1 %, 5 %, or 10 %. Hence, the critical value should decrease with increasing
α. Moreover, the critical value should depend on the sample size as well and decrease with
increasing sample size. That is, the null hypothesis is rejected with signifacance level α if

√
ndKS

X ≥ DKS(α, n). (2.96)

25



Note that the right hand side of this equation still depends on n. However, this dependence
is neglected for n > 40. The critical values are tabled in works like Miller (1956); Daniel
(1990); Hartung (2005).

Example 2.20: Exemplary Kolmogorov-Smirnov test for a random sample of size n = 10
to illustrate the concept. Consider ten rv’s with values x1 = 0.79, x2 = 0.68, x3 = 0.76,
x4 = 0.73, x5 = 0.69, x6 = 0.77, x7 = 0.76, x8 = 0.76, x9 = 0.73, and x10 = 0.81 and test
them for being drawn from a normal distribution with mean 0.75 and variance 0.001, i.e.,
Φ(x) = Φ0.75,0.001(x) (see App. A.2 for notation). Fig. 2.3 illustrates the procedure to find
dKS
X ≈ 0.22. The critival value reads DKS(α = 1 %, n = 10) = 1.55 so that with signifacance

level of 1 % the null hypothesis cannot be rejected. �
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∣∣∣F̃X(z)− Φ(z)
∣∣∣

estimation, F̃X(z)
hypothesis, Φ(z)

l 0 1 2 3 4 5 6 7 8 9 10
zl −∞ 0.68 0.69 0.73 0.76 0.77 0.79 0.81
z∗l – −∞ 0.68 0.69 0.73 0.76 0.77 0.79

F̃X(zl) 0.00 0.10 0.20 0.40 0.70 0.80 0.90 1.00

F̃X(z∗l ) – 0.00 0.10 0.20 0.40 0.70 0.80 0.90
Φ(zl) 0 0.01 0.03 0.26 0.62 0.74 0.90 0.97

F̃X(zl)− Φ(zl) – 0.09 0.17 0.14 0.08 0.06 0.00 0.03

F̃X(z∗l )− Φ(zl) – -0.01 0.07 -0.06 -0.22 -0.04 -0.10 -0.07

∴ dKS
X ≈ 0.22

Figure 2.3: Exemplary Kolmogorov-Smirnov test from Ex. 2.20. The first graph shows the esti-
mated and hypothetical cdf, whereas the second graph displays the difference. The table illustrates
the algorithm to find the supremum (2.93) by computing the maximum (2.95). All values are
rounded to two decimal digits.
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Chapter 3

Stochastic Processes

Guided by Sobczyk (1991) and Ross (1996), which if not stated otherwise serve as references,
this chapter deals with stochastic processes, which play an essential role in time series analysis
and of course in wind velocity modelling.

A stochastic process X = {X(t) : t ∈ T } is a collection of rv’s. The set T is called
the index set and for each t ∈ T the variable X(t) is a rv, which can be either discrete or
continuous. The index t is often interpreted as time and thus X(t) is often interpreted as
the state of the process at time t. If T is a countable set, the process X is called (time)
discrete, whereas if T is uncountable, the process X is said to be (time) continuous. Any
realisation of X is called a sample path and denoted by x(t) with t ∈ T .

The variety of stochastic processes is very broad. There are for example processes, where
the rv’s X(s) and X(t) with s, t ∈ T are independent/not independent or of the same
distribution/not of the same distribution etc.

The following sections discuss some classifications and give examples of discrete and
continuous stochastic processes.

3.1 Stationary processes

A stochastic process is said to be stationary of order p ∈ N if the joint distribution of any
k ≤ p rv’s of this process X(t1), X(t2), . . . , X(tk) with t1, t2, . . . , tk ∈ T is identical to the
joint distribution of the rv’s X(t1 + s), X(t2 + s), . . . , X(tk + s) for any real s such that
t1 + s, t2 + s, . . . , tk + s ∈ T . As a special case, the distribution of the rv X(t) with t ∈ T
of a stochastic process which is stationary of at least first order does not depend on t ∈ T ,
i.e., X(s) ∼ X(t) for any s, t ∈ T . If a process is stationary of all orders, it is called strictly
stationary.

3.2 Autocorrelation function

In general, the correlation between the two rv’s X(s) and X(t) of a stochastic process X
with s, t ∈ T and Var [X(s)], Var [X(t)] < ∞ is a function of both times s and t. This
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function is named correlation function ΓX : T × T 7→ [−1,+1] with

ΓX(s, t) = Corr [X(s), X(t)] . (3.1)

If the process is at least second order stationary, ΓX(s, t) = ΓX(s + τ, t + τ) for any τ such
that s + τ and t + τ are elements of T . Choosing τ = −s leads to ΓX(s, t) = ΓX(0, t − s)
which is a function solely of t− s. Choosing τ = −t leads to ΓX(s, t) = ΓX(s− t, 0) which is
a function solely of s− t. Hence, the correlation between the rv’s X(s) and X(t) of a second
order stationary process is a function of |s− t| and called auto correlation function

γX(τ) = Corr [X(t), X(t+ τ)] . (3.2)

This function is symmetric, i.e., γX(τ) = γX(−τ), bounded by |γX(τ)| ≤ 1, and takes the
value γX(0) = 1.

For the estimation of the mean and variance of a discrete stochastic process with T =
{1, 2, . . . , n} the average correlation ρn defined in Eq. (2.50) plays a crucial role. If the
process is at least second order stationary this quantity is given by

ρn =
1

n(n− 1)

n∑
t=1

n∑
s=1
s 6=t

γX(s− t)

=
2

n− 1

n−1∑
τ=1

(
1− τ

n

)
γX(τ). (3.3)

A common case for an auto correlation function is that above a certain threshold τ > τ0 the
contribution to the sum can be neglected and therefore ρ∞ vanishes. That is, in order to
estimate the mean and variance of a time series with γX(τ) 6= 0 for τ ≥ 1, it is required that
the time series is long enough.

3.3 δ-correlated processes

If the two rv’s X(s) and X(t) of a stochastic process for any s 6= t (s, t ∈ T ) are uncorrelated,
the process is called δ-correlated because

Corr [X(s), X(t)] = δs,t =

{
1 for s = t and

0 for s 6= t.
(3.4)

Note that even though δs,t = δs−t,0 is a function of s − t, the process might not be second
order stationary because X(s) and X(t) can have totally different distributions. It only says
that X(s) and X(t) are uncorrelated. But if the process is second order stationary, its auto
correlation function is γX(τ) = δτ,0.
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3.4 Gaussian processes

A stochastic process X with index set T is said to be a Gaussian process or normal process
if for any integer n and any subset {t1, . . . , tn} ⊂ T the joint distribution of the rv’s X(t1),
. . . , X(tn) is a (multivariate) normal distribution. That is, the multivariate characteristic
function reads

ϕX(t1),...,X(tn)(λ1, . . . , λn) = E

[
exp

(
i

n∑
k=1

λkX(tk)

)]

= exp

[
i

n∑
k=1

µksk − 1

2

n∑
k,l=1

λkσ
2
klλl

]
, (3.5)

where µk = E [X(tk)] and σ2
kl = Cov [X(tk), X(tl)] for k, l = 1, . . . , n. A Gaussian process X

has the following basic properties (see Sobczyk, 1991):

1. The process is entirely determined by its mean function µX(t) = E [X(t)] and covari-
ance function RX(s, t) = Cov [X(s), X(t)].

2. All processes obtained by linear transformation of X are also normal.

3. The central moments of odd order are equal to zero, i.e., for any finite q ∈ N

E
[(
X(t1)− µ(t1)

) · · · (X(t2q−1)− µ(t2q−1)
)]

= 0. (3.6)

The even central moments can be expressed in terms of the covariance function by

E
[(
X(t1)− µ(t1)

) · · · (X(t2q)− µ(t2q)
)]

=
∑
pairs

RX(ti1 , ti2) · · ·RX(ti2q−1 , ti2q), (3.7)

where summation is over the (2q − 1)!! possible ways of dividing the set {1, . . . , 2q}
into q combination of pairs (i1, i2), (i3, i4), . . . , (i2q−1, i2q).

It immediately follows that a second order stationary Gaussian process is strictly stationary

Example 3.1: Four-point correlation of a Gaussian process. A special case of (3.7) is

E
[
X̂(t1)X̂(t2)X̂(t3)X̂(t4)

]
= R12R34 + R13R24 + R14R23, where X̂(ti) = X(ti) − µ(ti) and

Rij = RX(ti, tj) for i, j ∈ {1, 2, 3, 4}. �

The following examples describe some Gaussian processes which are needed in this thesis.

Example 3.2: The standard Gaussian white noise {ξ(t) : t ≥ 0} consists of normally
distributed rv’s ξ(t) with zero mean and unit variance. Any two rv’s ξ(s) and ξ(t) with s 6= t
(s, t ∈ T ) are defined to be independent. The process can be discrete or continuous. �
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Example 3.3: The standard Wiener process or standard Brownian motion W = {W (t) :
t ≥ 0} is characterised by W (0) = 0 and has independent increments

W (s)−W (t) ∼ N0,|s−t|, (3.8)

i.e., the increments W (t1) − W (t0), W (t3) − W (t2), . . . , W (tk) − W (tk−1) are mutually
independent for arbitrary 0 < t0 < t1 < t2 < · · · < tk (k ∈ N). Hence, W (t) ∼ N0,t so
that the process is not stationary. The mean function reads µW(t) = 0 and the covariance
function is given by RW(s, t) = min{s, t}. �

Example 3.4: The general Wiener process X = {X(t) : t ≥ 0} is defined by X(t) =
αt +

√
βW (t) (α ∈ R, β ∈ R≥0), where {W (t) : t ≥ 0} denotes a standard Wiener process.

It is again a Gaussian process with X(t) ∼ Nαt,β2t and has mutually independent increments
with X(s) −X(t) ∼ Nα(s−t),β|s−t|. The mean and covariance function read µX(t) = αt and
RX(s, t) = βmin{s, t}, respectively. �

Example 3.5: Ornstein-Uhlenbeck process. The processes in the previous examples are
non-stationary, whereas the Ornstein-Uhlenbeck process U = {U(t) : t ≥ 0} is stationary.
It is defined by

U(t) = λe−βtW (e2βt) (3.9)

with {W (t) : t ≥ 0} denoting a standard Wiener process. Being a linear transformation of a
normal process, U is a Gaussian process, too. It suffices to compute the mean and covariance
function reading µU(t) = 0 and

RU(s, t) = λ2e−β(s+t)+2βmin{s,t} = λ2e−β|s−t|, (3.10)

respectively. Hence, the process is stationary and has an exponentially decaying auto corre-
lation function given by γU(τ) = e−β|τ |. �

3.5 Transformed Gaussian processes

Non-Gaussian stochastic processes can be obtained by taking a nonlinear transformation of
a Gaussian process. That is, if X = {X(t) : t ∈ T } is a Gaussian process and f : T ×R 7→ R,
the set Y = {Y (t) : t ∈ T } with

Y (t) = f(t,X(t)) (3.11)

is again a stochastic process.
It is convenient to expand (3.11) in terms of Hermite polynomials Hn( · ) with n ∈ N0

(see Bronstein et al., 1999, Eq. (9.63) for the definition), i.e.,

Y (t) = f(t,X(t)) =
∞∑
k=0

αk(t)Hk

(
X(t)− µX(t)√

RX(t, t)

)
, (3.12)
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because these polynomials constitute an orthogonal system with respect to the standard
normal pdf. Granger & Newbold (1976) show that

E

[
Hn

(
X(s)− µX(s)√

RX(s, s)

)
Hm

(
X(t)− µX(t)√

RX(t, t)

)]
= ΓX(s, t)nn!δn,m, (3.13)

where ΓX(s, t) = Corr [X(s), X(t)] denotes the correlation function of X. Due to H0(x̂) = 1,
the mean function of Y is given by

µY(t) = E [Y (t)] = α0(t). (3.14)

Therefore, the covariance function reads

RY(s, t) = E [Y (s)Y (t)]− α0(s)α0(t) =
∞∑
k=1

k!αk(s)αk(t)γX(s, t)k. (3.15)

Example 3.6: The χ2
1-process is obtained by squaring a Gaussian process with zero mean

and unit variance, i.e., Y (t) = X(t)2 ∼ χ2
1 with X(t) ∼ N0,1. Therefore, α0 = α2 = 1

while any other αl is set to zero so that µY(t) = 1 and RY(s, t) = 2γX(s, t)2 and hence
Var [Y (t)] = 2. �

A special case of (3.11), the exponenential distribution, leads to the class of geometric
Gaussian processes which is characterised by

Y (t) = eX(t) (3.16)

so that the rv Y (t) is log-normally distributed. It has expectation

E [Y (t)] = exp

[
µX(t) +

RX(t, t)

2

]
(3.17)

and coefficient of variation
CV [Y (t)] =

√
eRX(t,t) − 1. (3.18)

In order to compute the correlation function ΓY(s, t) = RY(s, t)/
√
RY(s, s)RY(t, t) of Y,

the exponential function needs to be expanded in terms of Hermite polynomials. (Granger
& Newbold, 1976, Eq. (A.3)) states that exp[ax− a2/2] =

∑∞
n=0 Hn(x)an/n! leading to

Y (t) = eµX(t)+RX(t,t)/2

∞∑
k=0

RX(t, t)k

k!
Hk

[
X(t)− µX(t)√

RX(t, t)

]
(3.19)

so that

ΓY(s, t) =
eRX(s,t) − 1√

(eRX(s,s) − 1) (eRX(t,t) − 1)
. (3.20)

The following example describes a geometric Gaussian process which will play an essential
role in this thesis when it comes to the simulation of wind speed.
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Example 3.7: The geometric Ornstein-Uhlenbeck process G is defined by {G(t) : t ≥ 0}
with G(t) = eU(t), where U(t) denotes an Ornstein-Uhlenbeck process (3.9). As RU(t, t) =
λ2 = const, the coefficient of variation is constant, i.e.,

CV [G(t)] =
√
eλ2 − 1. (3.21)

As the process is stationary, its auto correlation function is given by

γG(τ) =
exp[λ2e−β|τ |]− 1

exp[λ2]− 1
(3.22)

by employing (3.20). �

The following two examples describe some geometric Gaussian processes which have appli-
cations beyond the scope of this thesis.

Example 3.8: The geometric Gaussian white noise is simply {eα+βξ(t) : t ∈ T } with {ξ(t) :
t ∈ T } denoting standard Gaussian white noise. The process (or a sum of several processes)
is used to model non-Gaussian background noise for developing e.g. sea clutter radars (see
Kassam & Thomas, 1976; Al-Hussaini & Turner, 1979) or wireless communication devices
(see Beaulieu et al., 1993; Cardieri & Rappaport, 2000; Renzo & Graziosi, 2009). �

Example 3.9: The geometric Brownian motion or geometric Wiener process is defined
by {eαt+βW (t) : t ≥ 0}, where {W (t) : t ≥ 0} denotes a standard Wiener process. It is
characterised by µ(t) = αt and σ2(t) = β2t. The process is used for instance in financial
mathematics as a model for the stock price (see Steele, 2001; Baaquie, 2004). �

3.6 Discretisation of continuous processes

The previous two sections introduced a couple of continuous processes. There is a convenient
way to obtain a discrete stochastic process by discretising a continuous stochastic process.

If X = {X(t) : t ≥ 0} is a continuous stochastic process, its discretised process {Xn : n ∈
N0} is defined by

Xn = X(n∆t), (3.23)

where ∆t is an intrinsic parameter, the discretisation time. The following examples derive
very prominent discretised processes.

Example 3.10: Discrete Wiener process. The increments of a Wiener process {W (t) : t ≥
0} described in Ex. 3.3 and Eq. (3.8) are normally distributed so that

W (t+ ∆t) = W (t) +
√

∆tξ(t) (3.24)

with {ξ(t) : t ≥ 0} denoting standard Gaussian white noise. That is, its discretised process
{Wn : n ∈ N} is generated by

Wk+1 = Wk + ξk
√

∆t (3.25)
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with k ∈ N0, W0 = 0 and {ξk : k ∈ N0} denoting discrete standard Gaussian white noise.
Iterating (3.25) n times yields a non-recursive description of the discrete Wiener process

Wn =
√

∆t
n−1∑
k=0

ξk ∼ N0,n∆t. (3.26)

�

Example 3.11: Discrete Ornstein-Uhlenbeck process. Discretising the Ornstein-Uhlenbeck
process (3.9) leads to a stationary auto regressive process of first order, see Sec. 3.7. Its
recursion formula can be derived from

U(t+ ∆t) = λe−β(t+∆t)W (e2β(t+∆t)) (3.27)

by using that according to (3.24) the rv W (e2β(t+∆t)) can be written as

W (e2βte2β∆t) = W (e2βt) + ξ(t)eβt
√
e2β∆t − 1 (3.28)

with {ξ(t) : t ≥ 0} denoting standard Gaussian white noise. Consequently, Eq. (3.27)
becomes

U(t+ ∆t) = e−β∆tU(t) + λξ(t)
√

1− e−2β∆t (3.29)

so that the discretised process {Un : n ∈ N} is given by

Uk+1 = aUk + λξk
√

1− a2 (3.30)

with k ∈ N0, U0 = 0, a = e−β∆t ∈ [0, 1] and {ξk : k ∈ N0} denoting discrete standard Gaus-
sian white noise. As a consequence of the stationarity of the Ornstein-Uhlenbeck process,
its discretised process is stationary as well. Moreover, Un ∼ U(n∆t) ∼ N0,λ2 and the auto
correlation function reads γ(k) = a|k| for k ∈ Z. �

3.7 ARMA processes

The Ex. 3.11 in the previous section derived a representative of an auto regressive process
of first order. This process belongs to the class of auto regressive moving average (ARMA)
processes.

Following Montgomery et al. (2008) the concept of a linear filter is introduced first. It is
a linear operation from one discrete stochastic process Z = {Zn : n ∈ Z} to another process
X = {Xn : n ∈ Z} and is defined by

Xn =
∞∑

k=−∞

ψkZn−k. (3.31)

Linear filters are said to be
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• time-invariant if the coefficients ψk do not depend on time,

• physically realisable if ψk = 0 for k < 0, and

• stable if
∑∞

k=−∞ |ψk| <∞.

Applying a time-invariant, stable linear filter to a stationary process Z with mean µZ, vari-
ance σ2

Z, and auto correlation function γZ( · ) leads to a stationary process X with mean
µX = µZ

∑∞
k=−∞ ψk, variance σ2

X = σ2
Z

∑∞
k,l=−∞ ψkψlγZ(l−k), and auto correlation function

γX(τ) =

∑∞
k,l=−∞ ψkψlγZ(τ + l − k)∑∞
k,l=−∞ ψkψlγZ(l − k)

. (3.32)

The main application of linear filters is to model or to approximate a relationship between
the input process and the output process while the true relationship is not known. This is
done by estimating the parameters ψi, which unless there is a cut-off can be infinitely many.
These models are based on observations in form of a time series and can be used to forecast
the corresponding observable (see Kantz & Schreiber, 2004; Montgomery et al., 2008).

A special case of these processes is obtained by applying a time-invariant, physically
realisable, and stable linear filter on standard Gaussian white noise Z = {ξn : n ∈ Z}, i.e.,

Xn =
∞∑
k=0

ψkξn−k. (3.33)

This process is again a Gaussian process and called moving average process. It has zero mean
and its variance is equal to

∑∞
k=0 ψ

2
k. Its auto correlation function reads

γX(τ) =

∑∞
k=0 ψkψk+|τ |∑∞

k=0 ψ
2
k

. (3.34)

If furthermore ψk = 0 for k ≥ q ∈ N, the auto correlation function vanishes for τ ≥ q. The
process is said to be of order q and is abbreviated by MA(q).

Example 3.12: The MA(1) process is characterised by ψ0 6= 0 and ψk = 0 for k > 0. Its
variance reads ψ2

0. The auto correlation function is given by γX(0) = 1 and γX(τ) = 0 for
|τ | > 0. �

The MA(∞) process at time n is characterised by the sum of infinite disturbances from the
past. However, for adequately modelling such a process it is required to estimate only a
finite number of weights. The solution to the problem is to assume that the infinitely many
weights follow a distinct pattern and are represented by only a few parameters.

Example 3.13: An MA(∞) process described by only two parameters is e.g. given by
ψk = bak with a ∈ R and b > 0. The process is stationary if (and only if)

∑∞
k=0 b|a|k < ∞,

i.e., |a| < 1. The variance of the process reads b2/(1− a2) and the auto correlation function
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is given by γX(τ) = a|τ |. For general a ∈ R, the rv Xn = b
∑∞

k=0 a
kξn−k can be written as

Xn = bξn + ab
∑∞

k=0 a
kξn−1−k = bξn + aXn−1. Equivalently,

Xn+1 = aXn + bξn, (3.35)

where the indices of the white noise term were re-labelled. If a = 1, this process corresponds
to a discrete Wiener process (3.25) with discretisation time ∆t = b2. If 0 ≤ a < 1, this
process corresponds to a discrete Ornstein-Uhlenbeck process (3.30) with discretisation time
∆t = − ln(a)/β and variance λ2 = b2/(1− a2). �

Eq. (3.35) can be understood as a regression of Xn+1 and Xn and can be generalised to
describe the class of auto regressive processes of order p, in short AR(p), by

Xn+1 =

p−1∑
k=0

akXn−k + bξn, (3.36)

where a0, . . . , ap−1 ∈ R and b > 0 are p + 1 parameters. Exemplified by the AR(1) process,
the previous example demonstrated that (3.36) does not necessarily describe a stationary
process.

More generally, the class of auto regressive moving average processes ARMA(p, q) with
p, q ∈ N0 is described by allowing q + 1 past noise terms to contribute, i.e.,

Xn+1 =

p−1∑
k=0

akXn−k +

q∑
j=0

bjξn−j. (3.37)

It is characterised by p + q + 1 parameters: a0, . . . , ap−1 ∈ R, b0, . . . , bq ∈ R≥0. It should
be noted that an ARMA(p, q) process is Gaussian with mean function µ(n) = 0 and is
consequently characterised by the covariance function R(n,m). In particular, ARMA(p, 0) =
AR(p) and ARMA(0, q) = MA(q).
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Chapter 4

Turbulence Theory

Guided by Frisch (1995); Pope (2000); Sagaut & Cambon (2008), which if not stated other-
wise serve as references, this chapter introduces the theory of turbulence.

4.1 The Navier-Stokes equation

The Navier-Stokes equation (NSE), which is known since Navier (1823), is the fundamental
equation describing a flow of particles under the continuum hypothesis, i.e., the discrete
molecular nature of fluids can be treated as continuum. From a physical point of view, it is
a momentum balance equation for an incompressible fluid.

Before deriving the NSE, the law of mass conservation is reviewed. It is a balance
equation connecting the variation of mass with its flux and production within a volume V .
Denoting an infinitesimal volume element by d3~r, the surface of V by ∂V , and its infinitesimal
normal vector by d~s, the law of mass conservation reads

d

dt

∫
V

ρ(~r, t) d3~r︸ ︷︷ ︸
variation

= −
∮
∂V

ρ(~r, t) ~u(~r, t) · d~s︸ ︷︷ ︸
flux

+

∫
V

q(~r, t)d3~r,︸ ︷︷ ︸
production

(4.1)

where ρ, ~u, and q are the density, the velocity, and the rate of mass production, respectively.
These fields are assumed to be continuous in position ~r and time t. Writing the surface
integral, i.e., the flux term, as a volume integral over the divergence yields∫

V

[
∂ρ

∂t
+ O · (ρ~u)− q

]
d3~r = 0, (4.2)

where the notation for the ~r and t dependence is omitted for the sake of clarity. This relation
has to hold true for any volume V so that

∂ρ

∂t
+ O · (ρ~u) = q (4.3)

which is known as the continuity equation.
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In the same way as for the mass, the conservation of the ith component of the momentum
ρ(~r, t)ui(~r, t) per unit volume reads

∂ρui
∂t

+ O · (ρui~u) = bi + fi (4.4)

with~bi(~r, t) and fi(~r, t) denoting the body force and surface force, respectively. Both forces are

sources and sinks of momentum. The body force of interest is gravity~b(~r, t) = −ρ(~r, t)OΨ(~r, t)
due to gravitational potential Ψ(~r, t). More contributions to the body force, such as buoy-
ancy or magnetic forces (in magnetohydrodynamics), can be regarded as well but are not
considered here. The surface forces are of molecular nature and described by the symmetric
stress tensor τij(~r, t) by fi(~r, t) =

∑3
k=1 ∂τki(~r, t)/∂xk with

τij(~r, t) = −P (~r, t)δij + µ

(
∂ui(~r, t)

∂xj
+
∂uj(~r, t)

∂xj
− 2δij

3
O · ~u(~r, t)

)
. (4.5)

Here, P = P (~r, t) and µ = const stand for pressure and coefficient of viscosity, respectively.
Applying the chain rule, Eq. (4.4) becomes

ui
∂ρ

∂t
+ ρ

∂ui
∂t

+
3∑

k=1

[
ui

∂

∂rk
ρuk + ρuk

∂uk
∂rk

]
= bi + fi (4.6)

so that

ui

[
∂ρ

∂t
+ O · (ρ~u)

]
︸ ︷︷ ︸

=q

+ ρ

[
∂ui
∂t

+ (~u · O)ui

]
= bi + fi. (4.7)

A system with no mass production, i.e., q(~r, t) = 0, has consequently

ρ

[
∂ui
∂t

+ (~u · O)ui

]
= bi + fi (4.8)

for i = 1, 2, 3.
An incompressible fluid has constant density and no mass production. Inserting ρ(~r, t) =

ρ0 = const and q(~r, t) = 0 into (4.3) leads to

O · ~u = 0. (4.9)

That is, the velocity field of an incompressible fluid flow is divergence-free or in other words
solenoidal. The stress tensor becomes

τij = −Pδij + µ

(
∂ui
∂xj

+
∂uj
∂xj

)
(4.10)

so that the surface force is given by

fi =
3∑

k=1

∂τki
∂xi

= −∂P
∂xi

+ µO2ui. (4.11)
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quantity dimension quantity dimension

~u(~r, t) LT−1 ν L2T−1

p(~r, t) MT−2L−1 ρ0 ML−3

Table 4.1: Dimension of the quantities in the NSE (L. . . length, T. . . time, M. . . mass).

Eq. (4.8) with ρ(~r, t) = ρ0 = const becomes

∂~u

∂t
+ (~u · O)~u = − 1

ρ0

Op+ νO2~u (4.12)

with modified pressure p(~r, t) = P (~r, t) + ρ0Ψ(~r, t) and kinematic viscosity ν = µ/ρ0.
Eq. (4.12) is known as the Navier-Stokes equation.

As a summary, the flow of an incompressible fluid with constant density and kinematic
viscosity is described by the NSE together with the solenoidal condition (4.9). The problem
is self-consistent and well posed: there are four parameters, ~u and p, and four equations,
(4.9) and (4.12). The dimensions of the quantities are listed in Tab. 4.1.

4.2 Periodic boundary condition and non-locality

The NSE is nonlinear due to the advection term (~u ·O)~u. However, it is not this nonlinearity
which makes it difficult to solve the NSE but rather its non-locality, which is shown in this
section.

It is easy to eliminate the (modified) pressure from the NSE by taking the divergence of
(4.12) and using the solenoidal condition so that

O2p = −ρ0

3∑
i,j=1

∂2

∂xi∂xj
uiuj. (4.13)

This equation is an instance of the Poisson equation O2p(~r, t) = σ(~r, t) with σ(~r, t) =
−ρ0

∑3
i,j=1 ∂

2
ijui(~r, t)uj(~r, t).

If the fluid fills all of the space R3, its unboundness leads to some mathematical difficulties.
Hence, a periodic boundary condition for the space variable ~r is assumed, i.e.,

~u(~r + ~sL, t) = ~u(~r, t) and p(~r + ~sL, t) = p(~r, t) (4.14)

with ~s ∈ Z3. Consequently, it suffices to consider the flow in the periodicity box BL visualised
in Fig. 4.1.

Going from physical space into the Fourier space with

p(~r, t) =
∑
~k∈Z3

e2πi~k·~r/Lp̂(~k, t) and σ(~r, t) =
∑
~k∈Z3

e2πi~k·~r/Lσ̂(~k, t) (4.15)
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Figure 4.1: The periodicity box
BL as shown in Frisch (1995).

L
L

L

results in

p̂(~k, t) = − L2

4π2

σ̂(~k, t)

k2
, (4.16)

where ~k ∈ Z3\{~0} and k2 = ~k · ~k. This equation does not yield a value for the coefficient
p̂(~0, t), which reflects that the solution of the Poisson equation is defined up to an additive
constant. Still, the NSE is invariant under adding a constant term to the pressure so that
the value of p̂(~0, t) is irrelevant. Going back into physical space yields

p(~r, t) =
ρ0

4π

∫
BL

d3~s

|~r − ~s|
3∑

i,j=1

∂2

∂xi∂xj
ui(~s, t)uj(~s, t) + const (4.17)

(see Pope, 2000, Eq. (2.49)). This equation demonstrates the non-locality problem, i.e., in
order to compute the pressure at point ~r the velocity at all other points ~s ∈ BL needs to be
known.

An alternative way to eliminate the pressure from (4.12) is to take the curl of the NSE
because O× Op is equal to zero. It is convienient to work with the vorticity defined by

~ω(~r, t) = O× ~u(~r, t). (4.18)

Applying the curl operator to the NSE and writing its advection term (~u · O)~u as 1
2
O|~u|2 −

~u× (O× ~u) leads to the vorticity equation

∂

∂t
~ω = O× (~u× ~ω) + νO2ω. (4.19)

Here, it is used that O × O|~u|2 vanishes. Solving the vorticity equation by inverting (4.18)
leads however to the same non-locality problem.

4.3 Conservation laws

This section deals with global conservation laws, i.e., the conservation of quantities averaged
over the whole volume. The reader is referred to Lamb (1932) for some local conservation
laws.
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〈Of〉 = ~0

〈(Og)f〉 = −〈fOg〉〈
(O2g)f

〉
= −〈(Of) · (Og)〉

〈~u · (O× ~v)〉 = 〈O× ~u) · ~v〉〈
~u · (O2~v)

〉
= −〈O× ~u) · (O× ~v)〉 if O · ~v = 0

Table 4.2: Properties of the average of periodic functions (Frisch, 1995, Eqs. (2.17) to (2.21)).
The average is taken over the periodicity box.

As in the previous section, periodic boundary conditions are assumed and the spatial
mean of any quantity f(~r, t) is denoted by

〈f(~r, t)〉~r =
1

L3

∫
BL

f(~r, t) d3~r. (4.20)

Properties of the average of a periodic function (scalar/vector) are listed in Tab. 4.2.

Conservation of momentum. Applying the mean operator to the NSE (4.12) yields d
dt
〈~u〉 =

0. This equation states that the mean momentum per unit volume ρ0~u is conserved.
Clearly, this is a consequence of the NSE representing a momentum balance equation.

Conservation of energy. Applying the average operator to ~u·(4.12) leads to d
dt

〈
1
2
|~u|2〉 =

−ν 〈|O× ~u|2〉 . Defining the mean energy per unit mass by

E(t) =
1

2

〈|~u(~r, t)|2〉
~r

(4.21)

and the mean enstrophy per unit mass by

Ω(t) =
1

2

〈|~ω(~r, t)|2〉
~r
, (4.22)

the equation can be interpreted as an energy balance stating that the energy dissipation
rate per unit mass is

ε(t) =
dE(t)

dt
= −2ν Ω(t) (4.23)

and thus proportional to the kinematic viscosity times the mean enstrophy per unit
mass.

Conservation of helicity. In a similar way to the conservation of energy, the conservation
of mean helicity per unit mass

H(t) =
1

2
〈~u(~r, t) · ~ω(~r, t)〉~r (4.24)
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(a)

(b)

(c)

Figure 4.2: Pipe flow experiment by Reynolds (1883). (a) Picture for low velocity. (b) Picture
for larger velocity. (c) Picture for larger velocity as seen by the light of electric sparks.

can be derived. It is given by

dH(t)

dt
= −2νHω(t) (4.25)

with

Hω(t) =
1

2
〈~ω(~r, t) · O× ω(~r, t)〉~r . (4.26)

4.4 Reynolds number and turbulence

Reynolds (1883) made his famous pipe flow experiment by injecting coloured water into a
flow of clear water trough a tube, see Fig. 4.2. For sufficiently low velocity, the streak of
colour extended in a straight line through the tube, Fig. 4.2 (a). With increasing velocity,
the colour band mixed up at some point in the tube and filled the rest of the tube, Fig.
4.2 (b). Viewing the tube by the light of electric sparks, distinct curls were observed, Fig.
4.2 (c).

For an experimental setup such as Fig. 4.2, it is convenient to express the NSE in terms
of dimensionless quantities. That is, a length and velocity scale L0 and U0, respectively, need
to be defined. The dimensionless independent variables are then ~̂r = ~r/L0 and t̂ = t U0/L0
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so that the dimensionless dependent variables are

~̂u(~̂r, t̂) =
~u
(
~̂r L0, t̂

L0

U0

)
U0

and p̂(~̂r, t̂) =
p
(
~̂r L0, t̂

L0

U0

)
ρ0U2

0

. (4.27)

Defining the dimensionless Nabla operator Ô = ∂/∂~̂r, the solenoidal condition becomes

Ô · ~̂u = 0. Multiplying the NSE (4.12) by L0/U
2
0 results in

∂~̂u

∂t̂
+ (~̂u · Ô)~̂u = −Ôp̂+

1

Re
Ô2~̂u. (4.28)

Evidently, the only parameter of the dimensionless NSE is the Reynolds number

Re =
U0L0

ν
. (4.29)

Changing the scales from L0 and U0 to L′0 and U ′0, respectively, keeps the form of the dimen-
sionless NSE invariant, but the Reynolds number changes from Re to Re′ = ReU ′0/U0 L

′
0/L0.

This is known as Reynolds number similarity.

Concerning the Reynolds (1883) experiment, increasing the velocity in fact increased
Re because the geometry of the setup and the kinematic viscosity of the water remained
constant. As a conclusion, if the flow in an experiment has Reynolds number smaller than
a specific critical value, which clearly depend on the setup, the flow is found to be laminar,
i.e., there is only few molecule exchange perpendicular to the mean flow direction. If on the
other hand the Reynolds number is larger than the critical value, the flow is turbulent. That
is, there are apparently random transverse motions superposed to the laminar flow.

Richardson (1922) considered fully developed turbulence to be composed of eddies of
different sizes and summarised the matter by the poem

Big whorls have little whorls
That feed on their velocity,
And little whorls have lesser whorls
And so on to viscosity.

It should be noted that below a certain scale, known as the Kolmogorov dissipation length η,
no eddies are observed. On the other hand, the length scale on which the turbulent motion
is generated is called the integral length `0.

It should be noted that there are efficient ways to reach a high Reynolds number in an
experiment. Usually the geometry is fixed, but using a fluid with low kinematic viscosity,
such as liquid Helium near its critical point (see Donnelly, 1999) or sulfur hexafluoride at 10
to 20 bar (see Nobach et al., 2008), leads to high Reynolds number.
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4.5 Kolmogorov 1941 theory for infinite Reynolds num-

ber

There is no fully deductive theory for turbulence. A turbulent motion appears to be random,
but yet some statistics can be found. The observable of interest is the velocity difference

~u~̀(~r, t) = ~u(~r + ~̀, t)− ~u(~r, t) (4.30)

which is a vector. A suitable scalar quantity is the longitudinal velocity increment

u‖~̀(~r, t) = ~u~̀(~r, t) ·
~̀

|~̀| (4.31)

which can be treated as a random variable (rv). Kolmogorov (1941a,b,c) states three basic
hypotheses which make it possible to derive a hand-full of laws for the statistics of u‖~̀(~r, t) for

infinite Reynolds number directly from the NSE. The hypotheses are assumed for |~̀| � `0,
i.e., for small scale turbulence. This celebrated theory is named the Kolmogorov 1941 theory,
in short K41 theory.

Symmetry. The first assumption is that for infinite Reynolds number and far away from
any boundaries the statistics of longitudinal velocity increments (4.31) is isotropic, i.e.,

the statistics of u‖~̀(~r, t) does not depend on the direction of ~̀ but only on its magnitude
`. Furthermore, the statistics shall not depend on ~r, i.e., it is translational invariant,
and if the turbulence generating mechanism, i.e., outer parameters, remain constant
in time, the statistics of (4.31) does not depend on t, either. Consequently, the pth

moment of u‖~̀(~r, t) is just a function of ` and gives rise to the longitudinal structure
function

Sp(`) = E
[(
u‖~̀(~r, t)

)p]
(4.32)

with p ∈ N.

Scaling. The second assumption is that there is a scaling exponent h ∈ R such that the
statistics of u‖λ~̀(~r, t) is the same as the statistics of λhu‖~̀(~r, t) for any λ ∈ R≥0.
Consequently,

Sp(λ`) = λphSp(`). (4.33)

Universality. The third assumption is that the turbulent flow has a finite, non-vanishing,
and constant mean energy dissipation rate ε per unit mass. Together with scale `, it
uniquely and universally determine the statistical properties of the flow. By dimen-
sional arguments it is possible to relate the longitudinal structure function to the mean
energy dissipation rate per unit mass by noting that dimSp(`, t) = lengthp/timep and
dim ε(t) = length2/time3. Thus,

Sp(`) ∝
[
ε`
]p/3

(4.34)
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for any p ∈ N. The proportionality factor for a given p must not depend on the
Reynolds number because the latter is assumed to be infinite. Hence, it must be a
universal constant.

Based on these assumptions Kolmogorov (1941a) derived an exact and non-trivial relation
from the NSE, which is known as the four-fifths law

S3(`) = −4

5
ε`. (4.35)

A consequence of (4.33) and (4.34) is that the scaling exponent is equal to h = 1/3. Obukhov
(1941a,b) argued that the two-thirds law

S2(`) ∝ (ε`)2/3, (4.36)

which is a special case of (4.34), leads to the energy spectrum

E(k) ∝ ε2/3k−5/3, (4.37)

where k denotes the length of the wave vector. As the Kolmogorov’s hypothesis are only
assumed for small scale `, this energy spectrum only holds for large wave numbers k.

4.6 Kolmogorov 1962 theory for infinite Reynolds num-

ber

Batchelor & Townsend (1949) gave experimental evidence that the energy dissipation rate on
small spatial scales is very unevenly distributed in space. Consequently, small scale turbulent
eddies are intermittent, i.e., occurring at irregular intervals. This spatial inhomogeneity
becomes more marked with decreasing scale. Therefore, Kolmogorov (1962) refined the
previously made hypothesis by allowing the energy dissipation rate to fluctuate spatially.
With decreasing scale this fluctuation becomes stronger. This theory is called the Kolmogorov
1962 theory, in short K62 theory and can be visualised as follows (see Frisch, 1995).

Consider a cube of side `0 (the integral length) in which the motion of the fluid is
turbulent. It is characterised by the mean energy dissipation rate2 ε0, see Fig. 4.3 (a).
Going into smaller scales is done systematically by splitting this cube into eight sub-cubes
of side `1 = `0/2 which are labelled by “(i)” with 1 ≤ i ≤ 8. The energy dissipation rate

averaged over sub-cube (i) is hypothesized to be ε0 times W
(i)
1 , where W

(i)
1 with 1 ≤ i ≤ 8

are positive iid rv’s with unit expectation, see Fig. 4.3 (b). Zooming into smaller scales
means splitting each sub-cube (i) again into eight sub-sub-cubes of side `2 = `0/4. They
are labelled by (i, j) with 1 ≤ i, j ≤ 8. The energy dissipation rate averaged over sub-sub-

cube (i, j) is hypothesized to be ε0W
(i)
1 W

(i,j)
2 , where W

(i)
1 and W

(i,j)
2 with 1 ≤ i, j ≤ 8 are

positive iid rv’s with unit expectation. This is visualised in Fig. 4.3 (c). That is, after n ∈ N
2per unit mass
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(a)

`0

ε0

(b)

`1

ε0W
(i)
1

(c)

`2

ε0W
(i)
1 W

(i,j)
2

Figure 4.3: Intermittency model by constructing a fluctuating mean energy dissipation rate per
unit mass.

iterations, the mean energy dissipation rate averaged over the cube (i1, i2, . . . , in), which is

of side `n = `0/2
n, is given by ε0

∏n
k=1 W

(i1,...,ik)
k , i.e., ε0 times a product of n iid rv’s with

unit expectation value. So, with increasing n and thus on smaller and smaller scales `n, the
(locally averaged) energy dissipation rate per unit mass becomes more and more fluctuating.
Its qth moment at scale ` = 2−n`0 does not depend on the exact location of (i1, . . . , in) and
is therefore

E [ε(`)q] = εq0

(
`

`0

)τq
(4.38)

with

τq = − log2 E [W q] . (4.39)

Here, W denotes a rv which is of the same distribution as the Wk’s. Due to E [W ] = 1, τ1 is
restricted to be zero.

As for the longitudinal structure functions Sp(`), Eq. (4.34) needs to be generalised
because the right hand side is no longer a constant but rather a rv. Replacing the right hand
side by its expectation value leads to

Sp(`) ∝ E
[(
ε(`) `

)p/3]
= (ε0`)

p/3

(
`

`0

)τp/3
(4.40)

which is proportional to `p/3+τp/3 . Thus, the exponent ξp defined by Sp(`) ∝ `ξp reads

ξp =
p

3
+ τp/3 (4.41)

and is restricted to ξ3 = 1 by the four-fifths law. The relation (4.41) is experimentally
verified by e.g. Meneveau & Sreenivasan (1991). So far, nothing has been said about the
distribution of the Wk’s making this relation quite general.

Obukhov (1962) and Kolmogorov (1962) argued that the logarithm of the (small scale)
energy dissipation rate corresponds to a sum of (many) iid rv’s. The central limit theorem
implies that the logarithm of the energy dissipation rate is normally distributed so that
the energy dissipation rate is log-normally distributed. Additionally, the distribution of
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K41 exponent: ξp = p/3
intermittency correction: 2− ξ6 = 0

distribution of W : W = 1 with unit probability

log-normal exponent: ξp = p/3− µp(p− 3)/18
model intermittency correction: 2− ξ6 = µ > 0

distribution of W : log-normally distributed W

β-model exponent: ξp = p/3 + (p/3− 1) log2 β
intermittency correction: 2− ξ6 = − log2 β > 0

distribution of W : W = 1/β with probability β
W = 0 with probability 1− β

log-Poisson exponent: ξp = p/9 + 2− 2(2/3)p/3

model intermittency correction: 2− ξ6 = 2/9 ≈ 0.22
distribution of W : log-Poisson distributed W

Table 4.3: Summary of cascade models. The log-normal model corresponds to Kolmogorov
(1962). The β model is stated in the way of Novikov & Stewart (1964). The log-Poisson is stated
in the form of She & Waymire (1995).

W is also assumed to be of a log-normal distribution LW0,λ2(W ) with position parameter
W0 = exp(−µ

2
ln 2) and shape parameter λ2 = µ ln 2, where µ > 0 is a dimensionless constant.

This leads to
τq = −µ

2
q(q − 1) (4.42)

so that
ξp =

p

3
− µ

18
p(p− 3). (4.43)

This is known as the log-normal model. The parameter µ reflects the intermittency correction
because it corresponds to the difference between the K41 sixth order exponent, which is 2,
and the intermittent sixth order exponent, which is ξ6 = 2 − µ. It should be noted that
the K41 theory is a special case of K62 for µ = 0. The experimentally measured value for
the intermittency correction is 0.2 ≤ µ ≤ 0.25 (see e.g. Anselmet et al., 1984; Vincent &
Meneguzzi, 1991). Regarding the energy dissipation rate at scale `, Eq. (4.38) reveals that

E [ε(`)q] = εq0

(
`

`0

)−µ
2
q(q−1)

=

[
ε0

(
`

`0

)µ/2]q
exp

[
q2

2
µ ln

`0

`

]
. (4.44)

It is therefore log-normally distributed with position parameter ε0(`/`0)µ/2 and position
parameter µ ln(`0/`).

Albeit Novikov (1971) and Mandelbrot (1972) clarified inherent problems of the log-
normal model, it is widely used in turbulence (see e.g. Castaing et al., 1990; Boettcher,
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2005). In fact, experiments show that Eq. (4.43) yields good results for p ≤ 8 (see e.g.
Frisch, 1995, Fig. 8.8). Renner et al. (2001) points out that measurements for p > 8 are very
difficult and contain large errors. This explains the coexistence of further models, such as

• the β-model introduced by Novikov & Stewart (1964) and generalised by Novikov
(1969, 1971, 1990) or

• the log-Poisson model introduced by She & Lévêque (1994), whose work is originally
based on energy filaments, and formulated in a statistical framework by She & Waymire
(1995).

These models are summarised in Tab. 4.3.

4.7 Increment distribution

This section derives a formula for the distribution of the longitudinal velocity increment
(4.31) with spatial scale ` by treating it as a rv U`. It should be mentioned that in this
section capital letters are used to label a rv while small letters are used to denote its value.

Castaing et al. (1990) argues that the simplest assumption for the distribution of U`
within a cell with mean energy dissipation rate ε(`) is a symmetric Gaussian. Its standard
deviation Σ` is proportional to (ε(`)`)1/3 and therefore also a rv. Its distribution is denoted by
f`(σ`) so that the marginal distribution for the longitudinal velocity increment corresponds
to the superposition

p`(u`) =

∫ ∞
0

dσ` f`(σ`)N0,σ2
`
(u`). (4.45)

This distribution is called the symmetric Castaing distribution. This model generates a
longitudinal structure function given by

Sp(`) = E [Up
` ] =

∫ ∞
0

dσ` f`(σ`)

∫ ∞
−∞

du` u
p
`N0,σ2

`
(u`)

=

{
0 for odd p and

(p− 1)!! E [Σp
` ] for even p.

(4.46)

Due to Σ` ∝ (ε(`)`)1/3, the structure function of even order is Sp(`) ∝ E
[
(ε(`)`)p/3

]
and

in agreement with (4.40). However, the even order structure function vanishes. Hence, the
assumption of a (symmetric) normally distributed longitudinal velocity increment within
a cell with given mean energy dissipation rate needs to be refined. If this distribution is
denoted by p(u` |σ`) with standard deviation σ` being the value of the rv Σ` ∝ (ε(`)`)1/3,
Eq. (4.45) becomes

p`(u`) =

∫ ∞
0

dσ` f`(σ`)p(u` |σ`). (4.47)

If p(u` |σ`) can be written as

p(u` |σ`) =
1

σ`
q

(
u`
σ`

)
(4.48)
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with `-independent distribution q(z), the longitudinal structure function reads

Sp(`) = E [Up
` ] =

∫ ∞
0

dσ` f`(σ`)

∫ ∞
−∞

du`
σ`

up`q

(
u`
σ`

)
. (4.49)

Substituting u`/σ` by z, this equation turns into

Sp(`) = E [Σp
` ] E [Zp] (4.50)

with Σ` and Z being f`- and q-distributed rv’s, respectively. Eq. (4.45) is recovered for
q(z) = N0,1(z). Castaing et al. (1990) shows that the distribution

q(z) ∝ exp

[
−z

2

2

(
1 + as

z√
1 + z2

)]
(4.51)

with universal factor as > 0 is a suitable candidate. Note that the so-defined q-distribution
has negative skewness. The corresponding left skewed increment distribution (4.47) is thus
called the asymmetric Castaing distribution. Experimental measurements of laboratory tur-
bulent data, such as done by Renner et al. (2001), verify the (negative) skewness of the
increment distribution.
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Chapter 5

Superstatistics

There are many complex systems whose dynamics can be understood by a superposition
of several dynamics on different time scales, e.g., a Brownian motion in an environment
with (slowly) changing temperature. The formalism of superposing two statistics was in-
troduced by Beck & Cohen (2003); Beck (2004c) and called superstatistics. It is a general
idea which has been applied to a variety of complex systems, such as fluid/air turbulence by
Reynolds (2003); Beck (2004b); Rizzo & Rapisardia (2005); Jung & Swinney (2005); Beck
et al. (2005a); Beck (2007), pattern forming systems by Daniels et al. (2004), cosmic rays by
Beck (2004a), solar flares by Baiesi et al. (2006), mathematical finance by Ausloos & Ivanova
(2003), random matrix theory by Abul-Magd (2006), networks by Abe & Thurner (2005),
hydro-climatic fluctuations by Porporato et al. (2006), delay statistics in traffic models by
Briggs & Beck (2007), and astrophysics by Chavanis (2006). The superstatistical concept is
mainly used to interpret observables with non-Gaussian distribution.

5.1 The concept

Consider a complex dynamical system in a stationary non-equilibrium state which is driven
by external forces. Generally, a complex system may be inhomogeneous, i.e., the phase
space is partitioned into small spatio-temporal cells, each of which is described by a different
relevant system parameter β > 0. The system in each cell is described by ordinary Maxwell-
Boltzmann statistics while β varies from cell to cell according to a probability density f(β),
or alternatively β is uniform throughout the whole phase space but changes with time. The
stationary distribution arises as a superposition of Boltzmann factors e−βE, where E denotes
the relevant thermodynamical variable of the system. That is,

p(E) =

∫ ∞
0

dβ f(β)
e−βE

Z(β)
(5.1)

with Z(β) =
∫

dE e−βE.
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Example 5.1: Dynamical realisation of superstatistics. Consider the Langevin equation
(see Sobczyk, 1991, for the mathematical definition) for a variable u with friction constant
γ > 0 and noise strength σ > 0 given by

u̇ = γF (u) + σξ(t), (5.2)

where ξ(t) denotes standard Gaussian white noise and F (u) = −V ′(u) denotes the drift
force due to potential V (u). For constant friction and noise strength, the stationary prob-
ability density of u is p(u|β) = e−βV (u)/Z(β) with β = γ/σ2 and Z(β) =

∫
du e−βV (u)

(see Beck, 2004c). If however β, which is f -distributed, varies slowly with time such that
the system temporarily reaches equilibrium, the marginal distribution of u reads p(u) =∫∞

0
dβ f(β) p(u|β). �

5.2 Typical weight functions

The distribution f(β) is determined by the spatio-temporal fluctuation of β. Three typical
situations and the corresponding tails of p(E) are discussed in the next examples. For a
more general discussion the reader is referred to Touchette & Beck (2005).

Example 5.2: χ2-distributed β. If there are many (nearly) independent microscopic rv’s
contributing to β in an additive way, their sum can be rescaled such that it approaches
a standard normally distributed rv X ∼ N0,1 due to the central limit theorem. In total,
there can be n such subsystems and hence n Gaussian rv’s denoted by X1, . . . , Xn. If
β =

∑n
i=1X

2
n > 0, it is χ2-distributed with n degrees of freedom so that

f(β) = χ2
n(β) =

1

2Γ(n/2)

(
β

2

)n/2−1

e−β/2. (5.3)

Hence, Eq. (5.1) becomes

p(E) =
1

Γ(n/2)2n/2

∫ ∞
0

βn/2+1e−β(E+1/2), (5.4)

which can be solved by using the Laplace transformation technique. That is,

p(E) =
n

(1 + 2E)n/2+1
(5.5)

having power law tails for large energy E. Note the specific distribution of the microscopic
rv’s is irrelevant making this superstatistics universal. �

Example 5.3: χ−2-distributed β. The same consideration as in the previous example can
be applied to the “temperature” β−1 so that

f(β) = χ−2
n (β) =

2

Γ(n/2)
(2β)−n/2−1 e−1/(2β). (5.6)

51



Hence, Eq. (5.1) becomes

p(E) =
(2E)n/4

2n/2−1Γ(n/2)
Kn/2

(√
2E
)

(5.7)

which is derived in Sattin & Salasnich (2002). Here, Kn/2( · ) denotes the modified Bessel
function of order n/2 (see Bronstein et al., 1999, Sec. 9.1.2.6.2). Consequently, this super-

statistics produces exponential decays in
√
E, i.e., p(E) ∝ e−c

√
E for large energy E. Again,

the specific distribution of the microscopic rv’s is irrelevant making this superstatistics uni-
versal. �

Example 5.4: Log-normally distributed β. The previous two examples described β and
β−1, respectively, as a sum of many contributions. In this example it is generated by a
multiplicative process. That is, if there are many positive microscopic rv’s, the sum of
their logarithms approaches a normally distributed rv lnX so that X is log-normally dis-
tributed. If there are n multiplicative contributions to β, i.e., β =

∏n
i=1Xi with log-normally

distributed X1, . . . , Xn, the distribution of β is the log-normal distribution

f(β) = Lβ0,λ2(β) =
1

β
√

2πλ2
exp

[
− 1

2λ2
ln2 β

β0

]
(5.8)

with position and shape parameter β0 and λ2, respectively. �
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Part II

Application and Discussion
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Chapter 6

Wind Speed Statistics

This chapter is intended to discuss the statistical analysis of atmospheric boundary layer
(ABL) wind velocity and more specifically its horizontal component. Ideal turbulence as
described in Chap. 4 is used as a reference for ABL turbulence.

Time series recordings of the horizontal component are obtained from measurements
made with cup anemometers at the Lammefjord (1987) site. Located at 55◦ 47’ 41” N and
11◦ 26’ 52” E, the Lammefjord is a flat terrain at the base of the Odsherred peninsula in
Denmark. The wind speed is recorded with frequency ν = 8 Hz over twelve successive days.
This produces about 6.9× 105 data points per day. For further references the time series is
denoted by

un =
√
u2
x (t = n/ν) + u2

y (t = n/ν) (6.1)

for n ∈ N0. The anemometers are installed at 10 m, 20 m, and 30 m altitude. The data
gathered at 10 m above ground are used, which clearly exemplify ABL turbulence.

6.1 Taylor hypothesis

The problem with wind velocity measurements in general is that it only reconstructs the
velocity field ~u(~r, t), or any component, at fixed ~r as a function of time t. Contrarily, the
turbulence theory introduced in Chap. 4 is build upon ~u(~r, t) as being a function of location
and time. It is impractical though to measure the wind velocity at all locations at the same
time. Nonetheless, the wind velocity ~u(~r, t) is connected to air masses traveling with velocity
~u(~r, t) so that after an infinitesimal time interval ε, the same, or nearly the same, velocity
is expected to be measured at the location ~r + εu(~r, t), i.e., ~u(~r + ε~u(~r, t), t + ε) ≈ ~u(~r, t),
see Fig. 6.1. In the limit ε → 0 this becomes d

dt
~u(~r, t) = 0. Of course, the concept can be

generalised to any observable ξ which is “tied” to the moving air parcels, such as velocity
components, temperature, humidity, etc, (see e.g. Stull, 1988). That is,

ξ(~r + ε~u(~r, t), t+ ε) ≈ ξ(~r, t), (6.2)

or equivalently d
dt
ξ(~r, t) = 0.
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time t

~r

~u(
~r,

t)

time t + ε

~r + ε~u(~r, t)~u(
~r
+

ε~u
(~r
, t
), t

+
ε)

~u(~r + ε~u(~r, t), t + ε) ≈ ~u(~r, t)

Figure 6.1: The Taylor (1938) hypothe-
sis. The left panel shows a parcel which is
at time t located at ~r and moving with ve-
locity ~u(~r, t). The right panel depicts that
the same parcel after infinitesimal time ε
is located at ~r+ ε~u(~r, t) and has nearly the
same velocity.

The idea was introduced by Taylor (1938) and generalised to macroscopic time scales.
It is thus called Taylor hypothesis. It assumes that the fluctuation of the velocity is small
compared to the mean velocity ~U measured at fixed location ~r0 over time period T . Addi-
tionally, the fluctuation of the mean velocity direction is assumed to be negligible making the
hypothesis be very useful for a (mainly) unidirectional turbulent flow. In that case, Eq. (6.2)
can be extrapolated to relate ξ(~r, t0) with fixed time t0 and variable ~r to ξ(~r0, t) and ~u(~r0, t)

measured at fixed position ~r0 as a function of time: ξ(~r, t0) ≈ ξ(~r0, t) with ~r = ~r0 − ~U∆t,
t = t0 + ∆t, and 0 ≤ ∆t ≤ T . From a statistical point ov view, the velocity fluctuation in
units of the mean velocity corresponds to the coefficient of variation and is in this context
called turbulence intensity (TI) over period T , (see e.g. Burton et al., 2004). It states the
percentage of the mean flow which is represented by the fluctuation. For the Taylor hy-
pothesis to be satisfactory, the TI should be very small. Though, Willis & Deardorff (1976)
suggested that a TI up to 50% suffices. In any case, Lumley (1965); Pinton & Labbé (1994)
developed corrections in case the TI is not small enough.

6.2 Non-stationarity and fluctuation statistics

It is customary in turbulence research to decompose the wind velocity, or its horizontal
component in the case considered here, during a period T as

u(t) = U + u′(t)
(signal) (mean) (fluctuation)

(6.3)

where U is the average value of u(t) over this period. As explained in the previous section,
the TI is defined as the root mean square of u′(t) in units of U . It describes the strength of
the instantaneous turbulence so that it depends on the thermal behaviour of the atmosphere
(see Burton et al., 2004). For instance if the air near the ground warms up on a sunny day,
it may become buoyant enough to rise up through the atmosphere. This causes a pattern
of convection cells which are experienced as large-scale turbulent eddies. It is therefore not

55



Figure 6.2: The distribution of the air speed
measured in the free jet experiment by Renner
et al. (2001). The solid line corresponds to
a Gaussian curve with mean 2.25 m s−1 and
standard deviation 0.341 m s−1.
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surprising if the TI is different at two successive days. Additionally, the value of the TI
depends on the considered period length T . It is however difficult to fix a suitable time scale
because Boettcher (2005) states that the atmospheric winds exhibit variations on any time
scale, ranging from seconds (and less) up to centuries. It is often distinguished between large
scale variations such as diurnal, weekly, and seasonal and small scale variations which mirror
ordinary turbulence as described in Chap. 4. The existence of a mesoscale gap is suggested
by van der Hoven (1957), but it is also strongly criticised by Lovejoy et al. (2001) and its
references. Consequently, no matter how long T is, the mean U fluctuates.

For fixed T , Burton et al. (2004) states that turbulent wind speed variations are roughly
normally distributed about the mean wind speed U with standard deviation U × TI. Lab-
oratory experiments such as the air into air free jet experiment by Renner et al. (2001),
which produce a turbulent flow with fixed mean air speed U , verify the picture of normally
distributed u′(t), see Fig. 6.2. Approximating the distribution of the wind speed fluctuation
by a Gaussian distribution is only justified if the TI is small. Otherwise, the probability for
u(t) < 0 forecast by the Gaussian model with zero mean and standard deviation U × TI
might be too large. It is given by

P [u(t) < 0] = P [u′(t) < −U ] =
1

2
erfc

(
1

TI
√

2

)
, (6.4)

see App. A.2. For small TI the argument in the complementary error function becomes
large. Using its asymptotic expansion, (see Abramowitz & Stegun, 1964, Eq. (7.1.23)), the
equation above becomes

P [u(t) < 0] =
TI√
2π

exp

[
− 1

2TI2

] ∞∑
n=0

(−1)n
(2n)!

n!

(
TI2

2

)n
≈ TI(1− TI2)√

2π
exp

[
− 1

2TI2

]
, (6.5)

where the series is aborted after two terms. In order to get a feeling for the numbers, if the
TI is below 20% P [u(t) < 0] is smaller than 3× 10−7.
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Figure 6.3: The top row shows the wind speed data for three different days of the Lammefjord
(1987) measurement. The second row displays the fluctuation (6.6) for m = 101 which corresponds
to a time window of 12.5 s.
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Wind speed measurements at the Lammefjord (1987) site are very non-stationary. The
top row of Fig. 6.3 shows three 24 h recordings illustrating three time series:

• The time series recorded at day 186 shows low wind activity during the night hours
whereas strong winds occur during daytime.

• The time series recorded at day 191 looks comparably stationary, whereas

• the time series recorded at day 192 has many up and downs.

Thus, a derivation of direct statistics, e.g., the estimation of probability density, mean,
variance, etc. over 24 h, becomes difficult to interpret. Of course, it is not uninteresting to
estimate the 24 h mean and variance, but they are different from the 24 one-hour means and
variances, respectively, estimated every successive hour. That is, the statistics depends on
the time and length of the considered period.

In spirit of (6.3), the signal un is transformed into a fluctuation series

f (m)
n = un − ū(m)

n , (6.6)

where the value of the moving average ū
(m)
n is taken over m = 2m̃+ 1 (m̃ ∈ N0) time steps,

i.e.,

ū(m)
n =

1

m

m̃∑
k=−m̃

un+k. (6.7)

If m is chosen to be small enough such that the series ū
(m)
n still contains the main character-

istics of the series un, the fluctuation f
(m)
n is a measure for the volatility of the wind speed

at time n. If on the other hand m is chosen too large, large temporal trends, e.g., the above
mentioned up and downs in un, are not reflected by ū

(m)
n so that the fluctuation at time n

treated as rv has non-vanishing expectation value. The second row of Fig. 6.3 displays f
(m)
n

for m exemplarily chosen to be 101, which for a 8 Hz measurement covers the time window of
12.5 s. It can be seen that the fluctuation series has zero expectation and that its volatility
becomes larger as the wind speed un, and hence the mean wind speed ū

(m)
n , increases. It is

therefore useful to investigate the statistics of the fluctuation conditioned on the value V of
the moving average.

It is assumed that the time series f
(m)
n for n such that |ū(m)

n −V | ≤ ∆V/2 for comparably
small ∆V is (first order) stationary over a diurnal cycle. Then, it is possible to verify that

f
(m)
n ∈ {f (m)

n : n ∈ N (m)
∆V (V )} with

N (m)
∆V (V ) = {n : ū(m)

n ∈ [V −∆V/2, V + ∆V/2]} (6.8)

is roughly normally distributed and that there is a proportionality between the standard de-
viation of the set {f (m)

n : n ∈ N (m)
∆V (V )} and V if the TI, which represents the proportionality

factor, remains approximately constant over 24 h. As described in Sec. 2.8, the conditioned
distribution q

(m)
∆V (f |V ) for a variety of V can be estimated by

q
(m)
∆V (f |V ) =

〈
δ
(
f − f (m)

n

)〉
n∈N (m)

∆V (V )
(6.9)
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Figure 6.4: Estimated distribution of the fluctuation conditioned on mean wind speed V over
m = 101 time steps for the Lammefjord (1987) wind data (day 186, day 191, and day 192 with
∆V = 0.2 m s−1, ∆V = 0.5 m s−1, and ∆V = 0.5 m s−1, respectively). Note that only for some
selected values of V the conditioned distributions are shown. The crosses symbolise the estimation
(6.9) whereas the dashed lines represent Gaussian distributions. The standard deviation of the
fluctuation is again plotted on top of the boxes with black dots.

and plotted as histograms. These are drawn in the boxes of Fig. 6.4. The dashed lines
correspond to symmetric normal distributions with the same standard deviation as estimated
from the set {f (m)

n : n ∈ N (m)
∆V (V )}. These standard deviations are again plotted on top of

the boxes, indicating that there might be a proportionality between the fluctuation standard
deviation and V . For further reference, the proportionality factor is denoted by α(m).

Regarding the Gaussian shape of the distributions, it is difficult to verify because the
shape depends on the binning of V . Due to ∆V > 0, it might correspond to a superpo-
sition of normal distributions with standard deviations ranging from α(m) × (V − ∆V/2)
to α(m) × (V + ∆V/2). A Kolmogorov-Smirnov test which is performed exemplarily on
the data gathered at day 191 according to Sec. 2.9 is shown in Fig. 6.5. It yields that for
sufficiently small ∆V the hypothesis “q

(m)
∆V (f |V ) is a normal distribution” cannot be rejected

with significance level 1%.

The exact shape of q
(m)
∆V (f |V ) is not crucial, the important question is whether the esti-

mated standard deviation σ
(m)
f ; ∆V (V ) of the set {f (m)

n : n ∈ N (m)
∆V (V )} is proportional to V in

the limit ∆V → 0, i.e.,

lim
∆V→0

σ
(m)
f ; ∆V (V ) ∝ V. (6.10)

Fig. 6.6 displays the standard deviation as a function of V for a variety of ∆V . It can be
seen that there is a proportionality between σ

(m)
f ; ∆V (V ) and V . This is confirmed by fitting

the two functions f(V ) = aV + b and g(V ) = cV with a, b, c ∈ R to the data points using
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Figure 6.6: Estimated standard deviation of the fluctuation gathered at day 191 at the Lamme-
fjord (1987) site conditioned on mean wind speed V over m = 101 time steps. The figure shows the
raw data for a variety of ∆V together with two fits (aV + b and cV ) obtained by linear regression.
The results are summarised in the right table. The number in brackets denotes the fit error.
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linear regression, (see e.g. Witte & Witte, 2001). The result is summarised in the right
table of Fig. 6.6. It is evident that the data are in good agreement with (6.10). In order to
obtain a value for the proportionality factor, the method of linear regression is unsuitable
because its outcome depends on the V -binning, i.e., ∆V . The assumption that there is

the proportionality σ
(m)
f ; ∆V→0(V ) = α(m)V implies that Var

[
F

(m)
n | Ū (m)

n = V
]

= α(m)2V 2,

where F
(m)
n and Ū

(m)
n are rv’s reflecting the statistics of f

(m)
n and ū

(m)
n . Consequently,

Var
[
F

(m)
n /V | Ū (m)

n = V
]

= α(m)2, which can be written as Var
[
F

(m)
n /Ū

(m)
n

]
= α(m)2.

Hence, the proportionality factor, which reflects the TI, can be estimated by estimating the
standard deviation of the normalised fluctuation F

(m)
n /Ū

(m)
n , i.e.,

α(m) =

√
Var

{
f

(m)
n /ū

(m)
n

}
, (6.11)

where Var {· · · } stands for the estimation of the set {· · · }. Note that this method does not
require any binning and takes a whole 24 h series into consideration. The proportionality
factor is estimated for three 24 h recordings (day 186, 191, and 192) at the Lammefjord (1987)
site with m = 101. They are given by 0.059, 0.0936, and 0.075, respectively, and visualised
in Fig. 6.7. Eq. (6.11) is a good estimator of the proportionality factor for the data acquired
at day 191, but there is a slight deviation from the proportionality for the data acquired at
day 192. Furthermore, the data acquired at day 186 even show bad proportionality.

This can be due to the following reasons. Fig. 6.8 (a) suggests the tendency of the
proportionality (6.10) for each of the twelve 24 h recordings gathered at the Lammefjord

(1987) site. However, panel (b) reveals that the ratio σ
(m)
f ; ∆V (V )/V is approximately constant

for mean wind speeds of above five metres per second. This could explain why the data
gathered at the days 186 and 192 are not in agreement with (6.10) in Fig. 6.7 because
the plot only considers mean wind speeds smaller than five metres per second. Another
possibility can be a fluctuating TI over the diurnal cycle, i.e., even the time series f

(m)
n

for n ∈ N (m)
∆V (V ) is not (first order) stationary within 24 h. This possibility is checked by

splitting a 24 h recording into 3, 12, and 48 sub-series, each of which containing 8 h, 2 h,
and 30 min of data, respectively. That is, the TI is treated as being constant over periods
of length ∆ϑ = 1/2, 2, 8 h and its values, estimated via (6.11) in subsequent periods, are
compared to each other. The result is shown in Fig. 6.9 and gives evidence that the TI on
day 191 hardly fluctuates whereas the days 186 and 192 show larger TI fluctuations. More
specifically, day 186 has hardly fluctuating TI between 8 h and 16 h. Its TI is (apparently)
strongly fluctuating during the morning and evening hours in which, see Fig. 6.3, there is
only little wind activity. The same behaviour is seen in the data gathered at day 192: in the
time region with low wind activity (around 8 h and 20 h, see Fig. 6.3) the TI is comparably
strongly fluctuating.

Concluding, this analysis shows that the data gathered at day 191 represent turbulent
data over 24 h. Up to now, only m = 101 is used. The day 191 data are therefore again
analysed for a variety of m to check whether the proportionality (6.10) and the usefulness of
(6.11) holds true for larger m. Fig. 6.10 shows the standard deviation of the fluctuation as a
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Figure 6.7: Estimated standard deviation of the fluctuation gathered at three days at the Lam-
mefjord (1987) site conditioned on mean wind speed V over m = 101 time steps. The figures show
the raw data together with two fits (aV + b and cV ) obtained by linear regression and together
with α(m)V , where the slope α(m) is obtained by (6.11). The results are summarised in the tables
below. The number in brackets denotes the fit error.

function of the mean wind speed over 2.5 s, 12.5 s, and 125 s, i.e., the parameter m is equal
to 21, 101, and 1001, respectively. It can be seen that the linearity (6.10) even holds true
for much larger m. Note that the points for small and large V , which do not lie on the line,
are obtained by estimating the standard deviation of a very small set N (m)

∆V (V ). It can also
be concluded that Eq. (6.11) yields reasonable results for the proportionality factor α(m).
Regarding the m-dependence of the TI, Fig. 6.11 depicts α(m) as a function of m. It can be
concluded that the TI increases with increasing m.

It should be mentioned that it is a non-trivial property of a time series that its fluctuation
conditioned on the value V of the moving average V is normally distributed with zero mean
and standard deviation proportional to V . This will be further studied in Chap. 8.

6.3 Increment statistics

As described in Chap. 4 a turbulent flow is characterised by its spatial correlations. The
longitudinal velocity increment (4.31) is [~u(~r+~̀, t)−~u(~r, t)]·~̀/`. The Taylor (1938) hypothesis
states that spatial correlations can be translated into temporal correlations if the flow is
mainly unidirectional with small TI. Denoting the main flow direction by the unit vector
~eflow and choosing ~̀ to be anti-parallel to ~eflow, i.e., ~̀ = −`~eflow, the longitudinal increment
is approximately the negative of the temporal increment uflow(~r, t+ `/U)− uflow(~r, t), where
uflow = ~u · ~eflow and U denotes the mean wind speed over a large time scale. However, a
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Figure 6.8: (a) The estimated standard deviation of the fluctuation as a function of the mean
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standard deviation of the fluctuation divided by the mean wind speed as a function of the mean
wind speed.
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quantity which is much easier to determine and which is expected to have similar properties
to uflow(~r, t+ τ)− uflow(~r, t) is the increment of the horizontal component

uτ (t) = u(t+ τ)− u(t). (6.12)

The parameter τ is called the increment length and plays the same role as the spatial scale
`. Since uτ (t) is not exactly identical to a longitudinal velocity increment, its distribution
might differ from the asymmetric Castaing distribution (4.47).

ABL wind speed measurements such as performed by Boettcher et al. (2003, 2007) and
also by Beck et al. (2005a); Rizzo & Rapisardia (2005) showed that wind velocity increments
are well described by the symmetric Castaing distribution. As mentioned in Sec. 4.7 it
assumes that the velocity increment in a (temporal) cell with mean energy dissipation rate
ε(τ)3 is given by the symmetric normal distribution

p(uτ | β) =

√
β

2π
e−βu

2
τ/2, (6.13)

where the variance is denoted by β−1. The reason why this notation is used will become clear
in the next section dealing with superstatistics. The inverse variance β of p(uτ | β) is propor-
tional to ε(τ)−2/3 and consequently a rv. The log-normal model for small scale turbulence
with intermittency correction µ assumes that ε(τ) is for (small) τ log-normally distributed
with position parameter ∝ (τ/τ0)µ/2 and shape parameter µ ln(τ0/τ), where τ0 is a constant
connected to the integral length. According to (A.20), β is also log-normally distributed
with position parameter βτ ∝ (τ/τ0)−µ/3 and shape parameter λ2

τ = 4µ/9 ln(τ0/τ).

This is checked for the (time discrete) ABL wind speed time series un recorded at the
Lammefjord (1987) site with frequency ν = 8 Hz. The observable of interest is the increment

us;n = un+s − un (6.14)

with increment length s = ντ ∈ N. It is expected that the increment vs
4 is of the symmetric

Castaing distribution

Cas(vs) =

∫ ∞
0

dβ Lβs,λ2
s
(β)N0,β−1(vs)

=
1

2πλs

∫ ∞
0

dβ√
β

exp

[
−1

2

(
1

λs
ln
β

βs

)2

− 1

2
βv2

s

]
(6.15)

with position parameter βs ∝ s−µ/3 and shape parameter λ2
s which decreases linearly with

ln s and reaches zero for very large s, see Castaing et al. (1990) for a description of large

3The spatial scale ` is replaced by the increment length τ
4The notation vs is used instead of us to avoid confusion with the wind speed recorded at time s, which

is labeled by us.
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Figure 6.12: Increment histograms ps(vs) for three 24 h data recorded at the Lammefjord (1987)
site. The x-axis represents vs in units of the (estimated) standard deviation σs. The solid lines
represent the corresponding (symmetric) Castaing distribution. The histograms are shifted and
drawn in a semi-logarithmic plot for better visibility. (a) day 186. (b) day 191. (c) day 192.

scale turbulence which the log-normal model is not justified for. The two parameters can be
estimated from the time series by estimating its variance σ2

s and kurtosis ks, i.e.,

βs =
1

σ2
s

√
ks
3

and λ2
s = ln

ks
3
. (6.16)

If the increment length s is sufficiently large such that λ2
s is expected to be zero, the increment

distribution (6.15) approaches a Gaussian distribution with kurtosis three and variance β−1
s

because it can be shown that limλ2
s→0 Cas(vs) = N0,β−1

s
(vs) by using property (A.18) of the

log-normal distribution.
The increment distribution is estimated by

ps(vs) = 〈δ (vs − us;n)〉n . (6.17)

Its shape is compared to the shape of the Castaing distribution with position and shape
parameter calculated according to (6.16) by plotting (6.17) semi-logarithmically for a variety
of s ranging from 1 to 2048, see Fig. 6.12. That is in physical units with ν = 8 Hz, the
increment length varies between 1/8 s and 4:16 min. It can be seen that the shape of the
increment distribution is in good agreement with the symmetric Castaing distribution (6.15).
Some distributions are slightly positively skewed.5 It can also be noted that the increment

5The increment (6.14) is expected to have similar properties to the negative of the longitudinal velocity
increment in flow direction. As the distribution of the latter is negatively skewed, the increment distribution
ps(vs) might (but do not have to be) positively skewed.
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Figure 6.13: The position and
shape parameter βs and λ2

s, respec-
tively, as a function of s for the data
acquired at days 186, 191, and 192
at the Lammefjord (1987) site.
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data gathered at day 186 do not tend towards a Gaussian distribution as s becomes larger.
This is visualised in Fig. 6.13 depicting the s-dependency of the position and shape parameter
estimated by (6.16). The plot shows evidence that λ2

s decreases linearly with the logarithm
of s for small s. For larger s, λ2

s approaches zero for the data gathered at day 191 and
192. For the day 186 data, there is no such settlement up to s = 2048 which corresponds to
4:16 min in physical units. That is, the increment distribution for large increment length is
still intermittent for the day 186 data.

Boettcher et al. (2007) study this large scale intermittency by treating the mean wind
speed as a Weibull distributed rv. The authors investigate the increment distribution ps(vs)
for large s as a function of the spread of the Weibull distribution. The work gives evidence
that for days with highly fluctuating mean wind speed the increment distribution is not
expected to become a Gaussian. The drawback with this approach is that a Weibull dis-
tributed mean wind speed is frequently found empirically and hence an accepted fact (see
Burton et al., 2004) but that there is no theoretical justification for that.

6.4 Superstatistics

Sec. 6.2 concludes that the TI, which is a parameter characterising the turbulence, might
vary in a diurnal cycle. The same question arises for the position and shape parameter of the
increment distribution. These are also parameters describing the turbulence. This section
develops a statistical test which quantifies the time dependence of the increment distribution
parameters and checks whether an ABL wind speed recording, or just a part of it, reflects
turbulence.

The results of the previous section about the increment distribution with increment length
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s can be reformulated as hypothesis

H0 :

{
vs ∼ Cas for all s and

λ2
s → 0 for large s.

(6.18)

Here, λ2
s stands for the shape parameter of the increment distribution, which has hypotheti-

cally the shape of a symmetric Castaing distribution (6.15). There is no standard statistical
test which directly checks (6.18), but it can be used that the symmetric Castaing distribu-
tion (6.15) corresponds to the superstatistics (5.1) with system parameter β and E = v2

s/2.
Due to the universality hypothesis, the system parameter β is related to the mean energy
dissipation rate ε by β ∝ ε−2/3. According to Kolmogorov (1962) the latter can be thought
as a product of positive iid rv’s, cf. Fig. 4.3, making the (intermittent) statistics of the
velocity increment vs be an instance of the log-normal superstatistics derived in Ex. 5.4.
As a consequence, Castaing’s hypothesis (6.18) can be checked by using the superstatistics
approach in the following way. Assuming that in a temporal cell with system parameter β
the wind speed increment is normally distributed with vanishing mean and variance 1/β,
the hypothesis (6.18) is equivalent to the null hypothesis

H0 :

{
β is for all s log-normally distributed and

its shape parameter λ2
s → 0 for large s.

(6.19)

That is, the time series us;n needs to be converted into a β-series so that H0 can be checked
with standard statistical tests.

Beck et al. (2005b) and Queiros (2007) proposed an algorithm to compute the β-series.
The assumption is that the increment time series us;n consists of cells in which the increment
is of a symmetric Gaussian distribution. These cells are treated as being of equal length Ts.
Fig. 6.14 sketches schematically the assumption. The β-series is obtained by estimating the
variance in each cell and taking its inverse. As explained in Secs. 2.8 and 3.2, in order to
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estimate the variance in each cell, their length Ts must be much larger than the decay time

τs = min
t∈N
{t : γs(t) ≤ exp(−1)}, (6.20)

where the auto correlation function γs( · ) is estimated from the whole increment series
(us;n)Nn=1. The essential step of the algorithm is to find a suitable time scale Ts. It can be
identified with the scale on which the increment series is of a normal distribution. In order
to estimate Ts, the increment series (us;n)Nn=1 which is of size N is split into the sub-series

(us;1, . . . , us;m)︸ ︷︷ ︸
size m

, (us;m+1, . . . , us;2m)︸ ︷︷ ︸
size m

, · · · (us;(K−1)m+1, . . . , us;N)︸ ︷︷ ︸
size ≤ m

(6.21)

with m ∈ N and K = N/m if N/m ∈ N or K = int[N/m] + 1 otherwise. Being a measure
of Gaussianity, the sample kurtosis, which for a set A of size |A| and mean ā = 1

|A|
∑

a∈A a
is defined by

Kurt∗A = |A| ×
∑

a∈A(a− ā)4(∑
a∈A(a− ā)2

)2 , (6.22)

is used to determine the Gaussianity in each sub-series:

(us;1, . . . , us;m)︸ ︷︷ ︸
Kurt∗{··· }=κ(m)

s;1

, (us;m+1, . . . , us;2m)︸ ︷︷ ︸
Kurt∗{··· }=κ(m)

s;2

, · · · (us;(K−1)m+1, . . . , us;N)︸ ︷︷ ︸
Kurt∗{··· }=κ(m)

s;K

. (6.23)

If the sub-series is normally distributed and reasonably large6, its estimated sample kurtosis
is equal to three. Taking the mean of the sub-series sample kurtosis leads to

κ(m)
s =

〈
κ

(m)
s;k

〉
k=1,...,K

(6.24)

being a function of m. In order to find the large time scale, m is varied between 1 and N .
Due to κ

(1)
s = 1, see footnote 6, and κ

(N)
s = ks ≥ 3 with ks denoting the kurtosis of the whole

increment series, there is a value m between 1 and N such that κ
(m)
s is closest to three.

According to Beck et al. (2005b) and Queiros (2007), this value is taken as an estimation for
the large time scale Ts.

7 Note that App. B discusses the influence of the value of Ts on the
outcome of the analysis. As mentioned before, the β-series is simply

(us;1, . . . , us;Ts)︸ ︷︷ ︸
1/Var{··· }=β1

, (us;Ts+1, . . . , us;2Ts)︸ ︷︷ ︸
1/Var{··· }=β2

, · · · , (us;(K−1)Ts+1, . . . , us;N)︸ ︷︷ ︸
1/Var{··· }=βK

. (6.25)

6The star in the definition (6.22) symbolises that the sample kurtosisis is biased with respect to the
sample size. If for instance A consists of only one or two elements, i.e. A = {a} or A = {a1, a2}, the sample
kurtosis is always unity.

7As Ts is supposed to be large there should be no problem with using the biased kurtosis estimator (6.22).
The advantage of this approach is that it always yields an estimation for Ts.
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Figure 6.15: Estimation of κ(m)
s as a function of m for three 24 h increment series recorded at

the Lammefjord (1987) site (day 186, 191, and 192). The dashed line corresponds to κ = 3. The
intersection κ

(m)
s = 3 is an estimation for the time scale Ts shown in Fig. 6.16.

Its distribution is estimated by fs(β) = 〈δ(β − βk)〉k=1,...,K which, hypothetically, has the

shape of a log-normal distribution. Thus, it is more convenient to consider the variables8

Λk = ln βk (6.26)

and estimate the distribution hs(Λ) = 〈δ(Λ− Λk)〉k=1,...,K . The null hypothesis reads

H0 :

{
Λ ∼ NΛs,λ2

s
for all s and

λ2
s → 0 for large s

(6.27)

with Λs = Mean {Λ1, . . . ,ΛK} and λ2
s = Var {Λ1, . . . ,ΛK}. The hypothesis H0 is checked

using the Kolmogorov-Smirnov test explained in Sec. 2.9. If it is satisfied, the increment
series is of a Castaing distribution with position parameter βs = eΛs and shape parameter
λ2
s.

This algorithm is applied to three 24 h recorded increment series obtained from the Lam-
mefjord (1987) measurement (day 186, 191, and 192) and discussed step by step. Fig. 6.15
displays the mean sub-series sample kurtosis (6.24) as a function of window size m for dif-

ferent increment lengths s. It is evident that κ
(m)
s increases with increasing m and has an

intersection with three, which is used for the definition of the time scale Ts. It can be

8For simplicity, the data are treated as being dimensionless.
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Figure 6.16: Time scale estimation for three
increment series (24 h recordings) obtained at
the Lammefjord (1987) site (day 186, 191, and
192). Each series consists of roughly 7 × 105

data points being the upper limit for the es-
timation of Ts. (top) Ts as a function of s.
(central) τs as a function of s. (bottom)
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seen that the latter becomes larger with increasing s. This is visualised in the top panel of
Fig. 6.16 depicting the s-dependence of Ts. As it describes the scale on which the increment
process is of a normal distribution, an increasing Ts is in full agreement with the approach
to a Gaussian increment distribution with increasing increment length. Its estimation is
bounded from above by the length N of the increment series, i.e, Ts ≤ N . The day 191 and
192 data yield an estimation Ts ≈ N for very large s. This means that the whole increment
series can be regarded as being normally distributed, which is in agreement with Castaing’s
hypothesis (6.18) and with the histograms plotted in Fig. 6.12. In addition, Fig. 6.16 reveals
that the day 186 increment series does not reach a Gaussian distribution up to s = 2048,
which is also in accordance with Fig. 6.12. Last, but not least, the bottom panel of Fig. 6.16
verifies the existence of two separated time scales Ts � τs. It pictures the ratio Ts/τs being
of the order of magnitude of 10 or larger.

As an example, Fig. 6.17 (a) shows the estimated Λ-distribution hs(Λ) for s = 8 of the
24 h recording marked with day 191. The time scale Ts is estimated to be 116, which in
physical units (ν = 8 Hz) corresponds to 14.5 s. It can be seen that hs(Λ) is close to a
normal distribution, but it has a systematic and statistically significant deviation. In fact,
it has a positive skewness. The non-Gaussianity is underlined by the quantile-quantile plot
in panel (b) of this figure. That is, on a scale of 24 h the turbulence hypothesis (6.27) is not
satisfied. Nevertheless, panel (c), which shows the diurnal cycle of Λ over 24 h, indicates
that the hypothesis might be fulfilled on a smaller period. Hence, the increment series is
divided into twelve 2 h sub-samples, each of which represents a time ϑ of the day. Each sub-
sample is analysed with respect to superstatistics individually. This also includes computing
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Figure 6.17: Superstatistical
analysis of a increment series with
s = 8 (24 h recording) obtained at
the Lammefjord (1987) site (day
191 with estimated Ts = 116). (a)
Λ-distribution hs(Λ). The dashed
line corresponds to a Gaussian
distribution with same mean and
variance as hs(Λ). (b) Quantile-
quantile plot for the Λ-distribution
with respect to a normal distribu-
tion with same mean and variance.
(c) Diurnal cycle of the Λ-series.
The numbers 1 to 12 illustrate
the twelve 2 h sub-samples which
are individually investigated with
respect to superstatistics.

and comparing the time scales Ts(ϑ) and τs(ϑ) for each sub-sample. The Λ-series for each
sub-sample is calculated and tested for Gaussianity (6.27) using a Kolmogorov-Smirnov test.
This is done not only for s = 8 but for a variety of increment lengths ranging from s = 1
to s = 2048. Fig. 6.18 shows the result for each 2 h sub-sample. The top and central panel
depict the mean and variance of Λ for each sub-sample, respectively. The bottom panel shows
the test value of the Kolmogorov-Smirnov test and the critical value for the significance level
1%. The graph allows the conclusion that the hypothesis “Λ is normally distributed” cannot
be rejected on a significance level 1%. That is, we can interpret eΛs and λ2

s as the position
and shape parameter, respectively, of the corresponding Castaing distribution. Moreover,
the λ2

s-plot in the central panel reveals that for large s the shape parameter of each sub-
sample approaches zero satisfying the hypothesis “λ2

s → 0 as s � 1”. Therefore, it can be
concluded that Castaing’s hypothesis (6.18) is fulfilled during time intervals of 2 h, but it is
(slightly) violated on much larger time scales, such as 24 h, due to the time dependence of
Λs(ϑ) and λ2

s(ϑ). In other words, the distribution shown in Fig. 6.17 is a superposition of
Gaussians with different means Λs(ϑ) and variances λ2

s(ϑ) for s = 8 and is thus not exactly
a normally shaped distribution.

The same analysis is done with the Lammefjord (1987) day 186 data which do not show
a clear cross-over behaviour between an intermittent and Gaussian increment distribution,
cf. Figs. 6.12, 6.13, 6.16. Firstly, the superstatistical algorithm is used to extract the Λ-
series from the 24 h time series (us;n)N−1

n=0 with s = 8 and tested for hypothesis H0 in (6.27).
The time scale Ts is estimated to be 58, which in physical units (ν = 8 Hz) corresponds
to 7.4 s. Fig. 6.19 (a) shows the histogram hs(Λ) for s = 8. It is clearly non-Gaussian
shaped. Secondly, the increment series of the 24 h recording is also divided into twelve 2 h
sub-samples. Each of which is analysed with respect to superstatistics individually. Fig. 6.20
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Figure 6.18: Superstatistical analysis of a 2 h resolved diurnal cycle (day 191 at the Lammefjord,
1987, site). The increment length is varied between s = 1 and s = 2048. The solid line corresponds
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for each sub-sample ϑ (NΛ denotes the number of Λ’s and depends on the Ts estimated in sub-sample
ϑ). The dashed line corresponds to the critical value 1.63 for the significance level 1%.
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Figure 6.19: Superstatistical
analysis of a increment series with
s = 8 (24 h recording) obtained at
the Lammefjord (1987) site (day
186 with estimated Ts = 59). (a)
Λ-distribution hs(Λ). The dashed
line corresponds to a Gaussian
distribution with same mean and
variance as hs(Λ). (b) Quantile-
quantile plot for the Λ-distribution
with respect to a normal distribu-
tion with same mean and variance.
(c) Diurnal cycle of the Λ-series.
The numbers 1 to 12 illustrate
the twelve 2 h sub-samples which
are individually investigated with
respect to superstatistics.

displays Λs(ϑ) and λ2
s(ϑ) as a function of time ϑ. The time span 8 h . ϑ . 18 h is the only

region where the H0 hypothesis (6.27) cannot be rejected on a 2 h scale with significance level
1 %: the Kolmogorov-Smirnov test value is below the critical value and the λ2

s(ϑ) goes to
zero as s gets larger.9 That means that Castaing’s hypothesis (6.18) is satisfied on windows
of 2 h length in the mentioned time span. Outside this temporal region, the length of 2 h
for the sub-samples is still too large, i.e., the resolution is too low for recovering a normally
distributed Λ-series, or the wind activity is too calm to be called turbulent. The latter is more
probable because the fluctuation analysis led to the conclusion that there is only little wind
activity in the morning and evening hours of day 186, cf. Figs. 6.3 and 6.9. Additionally, due
to the inverse proportionality between Λ and the increment volatility, a large Λ is equivalent
to a hardly fluctuating increment. Fig. 6.19 (c) gives evidence that Λ is comparably large
during the morning and evening hours. In any case, the increment histogram in Fig. 6.12
does not show a clear cross-over because the 24 h analysis also considers the time region in
which the turbulence parameters Λs and λ2

s are highly fluctuating. It should be mentioned
that highly fluctuating turbulence parameters could also be an indication that there is only
little wind activity in these temporal regions.

A similar behaviour is found in the data gathered at day 192. Fig. 6.21 depicts exemplarily
the Λ-distribution for the s = 8 increment series (24 h recording) and the corresponding
quantile-quantile plot. It can be inferred that Λ is not normally distributed. Splitting the
24 h recording into twelve 2 h sub-samples, where each of which is analysed with respect to
superstatistics individually, leads to the conclusion that around 8 h and 20 h the Castaing
hypothesis is not satisfied. Again, these are temporal regions with low wind activity and

9Additionally, the time scale Ts is estimated to be larger than τs in these sub-samples making the esti-
mation of Λs and λ2

s trustworthy.
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Figure 6.20: Superstatistical analysis of a 2 h resolved diurnal cycle (day 186 at the Lammefjord,
1987, site). The increment length is varied between s = 1 and s = 2048. The solid line corresponds
to s = 8 and is therefore related to the graphs in Fig. 6.17. (top) Mean of Λ in sub-sample ϑ.
(central) Variance of Λ in sub-sample ϑ. (bottom) Kolmogorov-Smirnov test variable dKS
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√
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for each sub-sample ϑ (NΛ denotes the number of Λ’s and depends on the Ts estimated in sub-sample
ϑ). The dashed line corresponds to the critical value 1.63 for the significance level 1%.
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Figure 6.21: Superstatistical
analysis of a increment series with
s = 8 (24 h recording) obtained at
the Lammefjord (1987) site (day
192 with estimated Ts = 114). (a)
Λ-distribution hs(Λ). The dashed
line corresponds to a Gaussian
distribution with same mean and
variance as hs(Λ). (b) Quantile-
quantile plot for the Λ-distribution
with respect to a normal distribu-
tion with same mean and variance.
(c) Diurnal cycle of the Λ-series.
The numbers 1 to 12 illustrate
the twelve 2 h sub-samples which
are individually investigated with
respect to superstatistics.

highly fluctuating turbulence parameters (such as TI, Λs, and λ2
s), cf. Figs. 6.3, 6.9, and 6.21

(c).

6.5 Summary

There is significant evidence that there are periods, in which atmospheric boundary layer
wind speed has statistically similar properties to ideal turbulence. That is:

1. The fluctuation around the mean wind speed is roughly Gaussian distributed.

2. The standard deviation of the fluctuation is proportional to the mean wind speed as
long as the latter is above 5 m s−1.

3. The increment distribution is not (or slightly positively) skewed and in good approxi-
mation a symmetric Castaing distribution.

4. For small/large increment lengths, the increment distribution is close to a double ex-
ponential/Gaussian distribution.

The relevant parameters are

• the turbulence intensity, i.e., the proportionality factor between the standard deviation
of the fluctuation and the mean wind speed, and

• the position and shape parameter of the increment distribution fitted by a symmetric
Castaing distribution.
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Figure 6.22: Superstatistical analysis of a 2 h resolved diurnal cycle (day 192 at the Lammefjord,
1987, site). The increment length is varied between s = 1 and s = 2048. The solid line corresponds
to s = 8 and is therefore related to the graphs in Fig. 6.21. (top) Mean of Λ in sub-sample ϑ.
(central) Variance of Λ in sub-sample ϑ. (bottom) Kolmogorov-Smirnov test variable dKS
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for each sub-sample ϑ (NΛ denotes the number of Λ’s and depends on the Ts estimated in sub-sample
ϑ). The dashed line corresponds to the critical value 1.63 for the significance level 1%.
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The measured turbulence intensity depends on the considered time scale T over which the
moving average is computed: the value of the turbulence intensity increases with increasing
T . The shape of the increment distribution depends on the considered increment length
τ : both parameters decrease with increasing τ , the shape parameter approaches zero for
sufficiently large τ .

The turbulence parameters might be different in subsequent periods. The tools allow to
quantify their time evolution. It is found that

• the periods in which the turbulence intensity can be regarded as being constant last
from several hours up to 24 h and

• the Castaing parameters usually fluctuate in a diurnal cycle.

The first result suggests to transform a wind velocity recording, in which the turbulence
intensity can be treated as being constant, into a first order stationary series by dividing the
fluctuation by the value of the moving average. The second result can be used to explain
that the increment distribution for large increment lengths is sometimes still found to be
non-Gaussian (see e.g. Boettcher et al., 2007) when analysing a recording being longer than
a turbulent period. The time series can be interpreted as consisting of subsequent periods,
in which the increment distribution is Gaussian for large increment length. Nevertheless, the
variance, which is identical to the inverse of the position parameter, changes from one period
to another so that the analysis of the full time series yields a superposition of Gaussians with
different variances.

Additionally, the methods are able to indicate the existence of periods in which the above
mentioned properties found in turbulent periods are most likely not satisfied. Indications
are:

• The turbulence intensity is highly fluctuating. (If the proportionality between the
standard deviation of the wind speed fluctuation and the mean wind velocity is not
satisfied, the analysis does not yield a constant turbulence intensity.)

• There is significance that in this period the increment distribution is symmetric (or
slightly positively skewed) but not of a symmetric Castaing distribution and does not
tend towards a Gaussian distribution for large increment lengths.

Both indicators signal that such a period is a sequence of shorter periods which can be
regarded as being turbulent with changing relevant parameters or the wind activity in this
period is not turbulent.
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Chapter 7

Discussion of the Superstatistical
Algorithm

This chapter discusses the strength and shortcomings of the superstatistical algorithm based
on the idea of Beck et al. (2005b); Queiros (2007) when applying it to an arbitrary time series.
The extent to which this algorithm is suitable to analyse ABL wind velocity recordings as
done in Sec. 6.4 is discussed.

7.1 The algorithm in a nutshell

The time series which is to be analysed with respect to superstatistics is assumed to consist
of subsequent regions in which the observable is normally distributed with zero mean. These
regions are assumed to be of constant length T . Denoting the time series by (xn)Nn=1, which
is one realisation of the stochastic process X = {Xn : n = 1, . . . , N}, the first step is to
estimate the scale T ∈ N such that

(x1, . . . , xT )︸ ︷︷ ︸
∼N

0,β−1
1

, (xT+1, . . . , x2T )︸ ︷︷ ︸
∼N

0,β−1
2

, · · · (x(K−1)T+1, . . . , xN)︸ ︷︷ ︸
∼N

0,β−1
K

(7.1)

with K = N/T if N/T ∈ N or K = int[N/T ]+1. According to Queiros (2007), it is estimated
by taking the largest m ∈ N with

(x1, . . . , xm)︸ ︷︷ ︸
Kurt{··· }=κ(m)

1

, (xm+1, . . . , x2m)︸ ︷︷ ︸
Kurt{··· }=κ(m)

2

, · · · (x(K−1)m+1, . . . , xN)︸ ︷︷ ︸
Kurt{··· }=κ(m)

K

. (7.2)
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such that κ(m) =
〈
κ

(m)
k

〉
k=1,...,K

is within numerical errors equal to three.10 Then, the β-series

(βk)
K
k=1 can be estimated by

βk =
1

Var
{
x(k−1)T+1, . . . , xmin{kT,N}

} . (7.3)

The algorithm is extended to check whether there is statistical significance to reject the
hypothesis

H0 : {ln β1, . . . , ln βK} ∼ Nµln β ,σ
2
ln β

(7.4)

with µlnβ = Mean {ln β1, . . . , ln βK} and σ2
lnβ = Var {ln β1, . . . , ln βK} by using a Kolmogorov-

Smirnov test. This extension is done because this algorithm is primarily used to analyse wind
speed increments which hypothetically satisfy H0.

7.2 Application to an ideal series

The applicability of the algorithm is demonstrated for an ideal series, i.e., a series which is
constructed to satisfy (7.1) for T = Θ ∈ N. The process X = {Xn : n = 1, . . . , N} with
N = LΘ, where L ∈ N, is defined by

n = 1, . . . ,Θ : Xn = ξn/
√
B1

n = Θ + 1, . . . , 2Θ : Xn = ξn/
√
B2

n = 2Θ + 1, . . . , 3Θ : Xn = ξn/
√
B3

...

n = (L− 1)Θ + 1, . . . , LΘ : Xn = ξn/
√
BL,

(7.5)

where {ξn : n = 1, . . . , N} denotes standard Gaussian white noise and B = {Bl : l =
1, . . . , L} stands for a non-Gaussian white noise with Bl > 0.

Three different realisations of this process (Bl ∼ L0,1, Bl ∼ χ2
1, and Bl ∼ χ2

2) with
Θ = 100 and N = 106 are analysed with respect to superstatistics under the assumption
that the true parameterisation of B is unknown. Fig. 7.1 shows κ(m) as a function of m for
the process X. It is evident that κ(m) ≈ 3 for m = Θ/j with j ∈ N so that the estimation of
T yields T = Θ. The graphs also shows that κ(m) for m = Θ± 1 is very different from three.
Hence, it is not suitable to skip some m when estimating T .

The process is designed such that for T = Θ, the estimated β-series is a realisation
of B. If Bl ∼ L0,1, the series (ln βk)

K
k=1 is normally distributed with zero mean and unit

variance when T = Θ. On the other hand, if Bl is not log-normally distributed (Bl ∼ χ2
r

10Note that for ABL wind speed increments, there is a single m with
〈
κ

(m)
k

〉
k=1,...,K

≈ 3. Hence, taking

the maximum is redundant. Additionally, by physical arguments, it suffices to estimate the biased kurtosis
when analysing ABL wind speed increments. For a general series, it is “safer” to formulate the algorithm
using an unbiased kurtosis estimator.
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Figure 7.1: Estimation of κ(m) as a function of m ∈ N for three ideal processes. The dashed
line connects the data points for the clarity of presentation. The dash-dotted line corresponds to
κ(m) = 3.
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Figure 7.2: Value of the Kolmogorov-Smirnov test variable as a function of T . The test checks
whether there is significance for rejecting the hypothesis that lnβ is normally distributed. The
dash-dotted line corresponds to the critical value for a significance level of 1%.
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with r = 1, 2 are chosen as examples), the series (ln βk)
K
k=1 is not normally distributed at

all. Regarding the robustness of the algorithm, it is interesting to analyse the extend of how
much the statistics of the estimated β-series changes when T is not equal to Θ. Therefore,
in the following analysis the parameter T is not set to the value of the estimation using κ(m).
Rather, it is varied between 1 and 2Θ.

Normality test for ln β. It is examined whether there is statistical significance to reject
the hypothesis (7.4). Fig. 7.2 displays the value of the Kolmogorov-Smirnov test vari-
able as a function of T . There is no evidence for rejecting H0 for nearly all T when
Bl ∼ L0,1, while there is for all T when Bl is χ2-distributed. That is, the value of T
does not have an impact on the decision whether H0 should be rejected or not: if H0

is (is not) rejected for T = Θ is (is not) rejected for T 6= Θ.

Estimation of parameters. The value of T is expected to have an impact on the estimated
parameters µlnβ and σ2

lnβ, though. The process with log-normally distributed Bl is
relevant for testing whether the Queiros (2007) algorithm is suitable to analyse wind
speed increment because this process is of a symmetric Castaing distribution as well.
Therefore, the estimated mean µlnβ and variance σ2

lnβ of the logarithm of the β-series
obtained from the process with Bl ∼ L0,1 are compared with 0 and 1, respectively.
Fig. 7.3 shows µlnβ and σ2

lnβ as a function of T . It is obvious that these estimations
are in agreement with the true values for T = Θ and T = Θ/2, but they are not for
any other T .

As a conclusion, the value of the estimation of the time scale T does not have an impact on
the shape of the β-distribution11, but on its parameterisation. In other words, in order to

11Better: on the decision if lnβ is of a Gaussian/non-Gaussian distribution.
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find a reasonable estimation of the process parameters, the time scale T must be estimated
correctly.

7.3 Application to a series which is not ideal

The suitability of the algorithm is analysed when it is applied to a process which does
not satisfy the assumption that the length of the regions, in which the process is normally
distributed, is constant. Consider Θ = {Θl : l = 1, . . . , L} to be a Poisson distributed white
noise so that Θl ∈ N. The process X = {Xn : n = 1, . . . , N} with N =

∑L
l=1 Θl is defined by

n = 1, . . . ,Θ1 : Xn = ξn/
√
B1

n = Θ1 + 1, . . . ,
2∑
i=1

Θi : Xn = ξn/
√
B2

n =
2∑
i=1

Θi + 1, . . . ,
3∑
i=1

Θi : Xn = ξn/
√
B3

...

n =
L−1∑
i=1

Θi + 1, . . . ,
L∑
i=1

Θi : Xn = ξn/
√
BL,

(7.6)
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Figure 7.5: Value of the Kolmogorov-Smirnov test variable as a function of T . The test checks
whether there is significance for rejecting the hypothesis that lnβ is normally distributed. The
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where {ξn : n = 1, . . . , N} denotes standard Gaussian white noise and B = {Bl : l =
1, . . . , L} stands for a non-Gaussian white noise with Bl > 0.

Fig. 7.4 indicates that the time scale estimation according to Queiros (2007) does not
yield any result12 because this process does not have a fixed scale T . Still, the statistics of
the β-series can be estimated by choosing an arbitrary T . Again, the decision whether to
reject H0 does not depend on T , see Fig. 7.5, but the estimation of the parameterisation of
the β-distribution does, see Fig. 7.5.

7.4 Wind speed increments and conclusion

It is not expected that wind speed increments satisfy the assumption that the length of the
regions, in which the increments are normally distributed, is constant, either. As concluded
in the previous section, the superstatistical algorithm is reliable for testing whether the tur-
bulence hypothesis is to be rejected or not, but the parameterisation of the β-statistics might
be defective. However, the analysis in App. B shows that the parameterisation estimated
by this algorithm is on good agreement with the parameterisation which is estimated by
directly deriving the increment statistics according to Castaing et al. (1990).13

Concluding, the Queiros (2007) algorithm is suitable to analyse wind velocity increments,
but it is not perfect. However, this imperfection does not have an influence on the decision
whether a wind recording represents turbulent wind activity or not. It is merely the strength
of intermittency which is sometimes slightly under- or overestimated.

12neglecting T . 10
13Note that for wind speed increments in Sec. 6.4, the biased kurtosis is used to compute κ(m), which

always yields a result for the time scale T due to physical reasons (intermittency).
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Chapter 8

Fluctuation Statistics of Stochastic
Processes and Wind Speed Modelling

In several applications, in particular in view of the cost efficient use of wind power, realistic
models for the input wind fields are needed for numerical simulations of the flow around an
obstacle. Solving the Navier-Stokes equation (4.12) by direct numerical simulation gives a
realistic wind field, but for three-dimensional volumes of a realistic size the computational
costs are immense. Large eddy simulation (see e.g. Frisch, 1995; Pope, 2000) is an approx-
imated solution to the Navier-Stokes equations by not directly solving the motions of the
small scales. Rather, they are modelled. Still, it requires enormous computational power.
Farge et al. (1999) suggests to solve the Navier-Stokes equation by using wavelets (most
coefficients are close to zero which reduces the computational cost). Yet, the numerics are
very involved.

Another approach are stochastic models simulating turbulent wind fields, at least for
the time period in which the turbulence parameters remain nearly constant. The thesis of
Kleinhans (2008) discusses a broad variety of synthetic wind field generators. Notable are

• spectral models by Veers (1984); Mann (1998); Rossi et al. (2004) aiming to describe
the process by its spectral density,

• wavelets models by Kitagawa & Nomura (2003) simulating the energy cascade by
wavelets,

• multiplicative models by Cleve et al. (2005); Schmiegel et al. (2005) describing the
energy dissipation rate by suitable random variables,

• Markov models by Nawroth (2007) simulating a turbulent flow by drift and diffusion
processes, and

• models based on continuous time random walks by Kleinhans et al. (2006); Kleinhans
& Friedrich (2007).
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These models put their focus on a specific statistical or physical property of turbulence
(cross-correlation, intermittency, etc.) It is very difficult (if at all possible) to consider all
kinds of statistical properties and generate a series which perfectly reflects the atmospheric
wind velocity.

Motivated by the statistical results described in Chap. 6, i.e.,

• the fluctuation of the wind velocity fluctuation is normally distributed, has zero expec-
tation and there is a proportionality between the standard deviation of the fluctuation
and the mean wind speed, and

• the wind velocity increment distribution is intermittent for small increment lengths,

this chapter discusses the usage of stochastic processes which shall have the same fluctuation
statistics. That is, its fluctuation conditioned on the value of the moving average is normally
distributed with zero mean and a standard deviation which is proportional to the value of the
moving average. Additionally, the process shall have an intermittent increment distribution
for small increment lengths.

Consequently, a method to compute the fluctuation distribution conditioned on the value
of the moving average is formulated. The method is applied to several stochastic processes. It
will be shown that the above mentioned fluctuation statistics not trivial. It is then discussed
that under certain conditions the geometric AR(1) process14 has similar fluctuation and
increment statistics to atmospheric boundary layer wind speed. This similarity is investigated
and the extent to which this stochastic process is a suitable model for wind speed simulation
is discussed.

This chapter uses the convention that rv’s are denoted by capital letters, whereas their
values are denoted by small letters. Only N0,1-distributed rv’s are denoted by the small
(Greek) letters, such as ξ and η. Additionally, if the rv X is f -distributed, it is written as
X ∼ f .

8.1 Conditioned fluctuation distribution

This section deals with the fluctuation statistics of a time discrete stochastic process X =
{Xn : n ∈ N} with Xn ∼ pn. The goal is to compute the distribution of the fluctuation

F (m)
n = Xn − X̄(m)

n (8.1)

conditioned on X̄
(m)
n = x̄n ∈ R. The moving average over m = 2m̃ + 1 time steps with

m̃ ∈ N0 is given by

X̄(m)
n =

1

m

m̃∑
k=−m̃

Xn+k. (8.2)

The F
(m)
n -distribution conditioned on X̄

(m)
n = x̄n can be computed in three steps:

14A discretised geometric Ornstein-Uhlenbeck process introduced in Ex. 3.7.
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1. Eq. (8.2) is used to get an expression for the distribution of X̄
(m)
n and X̄

(m)
n conditioned

on Xn = xn by taking advantage of (8.2) reflecting a sum of rv’s so that the trans-

formation rule (2.60) can be employed. The two distributions are denoted by p̄
(m)
n (x̄n)

and p̄
(m)
n (x̄n|Xn = xn), respectively.

2. The relation (2.39) for conditioned distributions is used to obtain the distribution of

Xn conditioned on X̄
(m)
n = x̄n, i.e.,

pn(xn|X̄(m)
n = x̄n) =

p̄
(m)
n (x̄n|Xn = xn) pn(xn)

p̄
(m)
n (x̄n)

. (8.3)

3. The fluctuation F
(m)
n conditioned on X̄

(m)
n = x̄n is simply a linear transformation of

Xn conditioned on X̄
(m)
n = x̄n because

F (m)
n

∣∣∣
X̄

(m)
n =x̄n

= Xn

∣∣∣
X̄

(m)
n =x̄n

− x̄n. (8.4)

Employing the linear transformation rule (2.21) results in the F
(m)
n -distribution condi-

tioned on X̄
(m)
n = x̄n.

If the expression (8.3) is known, the mean and variance of the fluctuation conditioned on

X̄
(m)
n = x̄n can be obtained directly via

E
[
F (m)
n |X̄(m)

n = x̄n
]

= E
[
Xn|X̄(m)

n = x̄n
]− x̄n (8.5a)

and

Var
[
F (m)
n |X̄(m)

n = x̄n
]

= Var
[
Xn|X̄(m)

n = x̄n
]
. (8.5b)

8.2 Stationary Gaussian processes

Consider a stationary Gaussian stochastic processes X = {Xn : n ∈ Z} with Xn ∼ Nµ,σ2

(n ∈ Z) and auto correlation function γ(k) (k ∈ Z).15 The moving average (8.2) is again
normally distributed with mean µ and variance σ2θ2

m, where

θ2
m =

1

m2

m̃∑
k,k′=−m̃

γ(k − k′), (8.6)

and m = 2m̃ + 1. Regarding the distribution of X̄
(m)
n conditioned on Xn = xn, it is always

possible to find a φm ∈ R such that the rv Z
(m)
n = X̄

(m)
n −φmXn is uncorrelated to Xn. That

is,
Cov

[
Xn, Z

(m)
n

]
= Cov

[
Xn, X̄

(m)
n

]− φmCov [Xn, Xn] = 0 (8.7)

15This discussion can be extended to non-stationary Gaussian processes by using the mean and covariance
function, µ(n) and R(n,m) (n,m ∈ Z), respectively, instead of mean µ, variance σ2, and auto correlation
function γ(k).
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which leads to

φm =
1

σ2
Cov

[
Xn, X̄

(m)
n

]
=

1

m

m̃∑
k=−m̃

γ(k). (8.8)

The rv Z
(m)
n = X̄

(m)
n − φmXn is obviously normally distributed with mean µ(1 − φm) and

variance σ2(θ2
m − φ2

m) because Var
[
X̄

(m)
n

]
= φ2

mVar [Xn] + Var
[
Z

(m)
n

]
. Consequently,

X̄(m)
n

∣∣
Xn=xn

∼ Nφmxn+µ(1−φm),σ2(θ2−φ2). (8.9)

It is straightforward to derive the distribution of the fluctuation F
(m)
n conditioned on X̄

(m)
n =

x̄n by (8.3) and (8.4), see App. C.1. It is a normal distribution with

E
[
F (m)
n |X̄(m)

n = x̄n
]

= (x̄n − µ)
φm − θ2

m

θ2
m

(8.10a)

and

Var
[
F (m)
n |X̄(m)

n = x̄n
]

= σ2 θ
2
m − φ2

m

θ2
m

. (8.10b)

That is, the mean of the fluctuation is proportional to x̄n − µ unless φm = θ2
m, whereas the

variance of the fluctuation is always independent of x̄n.

Two examples of this process family are discussed: the Gaussian white noise and the
stationary AR(1) process.

Gaussian white noise

Consider X = {Xn : n ∈ Z} to be Gaussian white noise with mutually independent Xn ∼
Nµ,σ2 . The auto correlation function is given by γ(k) = δk,0 so that

φm =
1

m
and θ2

m =
1

m
(8.11)

by using (8.8) and (8.6), respectively. As a consequence of (8.10), the fluctuation conditioned

on X̄
(m)
n = x̄n is normally distributed with

E
[
F (m)
n |X̄(m)

n = x̄n
]

= 0 and Var
[
F (m)
n |X̄(m)

n = x̄n
]

=
m− 1

m
σ2. (8.12)

Hence, its mean and variance are independent of x̄n and for large m the variance of the
fluctuation approaches the variance σ2 of the whole series.
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Figure 8.1: Estimated mean (red, crosses) and standard deviation (blue, dots) of the fluctuation
conditioned on X̄

(m)
n = x̄n with m = 5, 21, 101 for a generated AR(1) series with a = 0.6 and

σ2 = 1. The histogram in dash-dot line corresponds to an estimation of p̄(m)
n (x̄n) and is shown in

arbitrary units. It indicates the reliability of the estimation of µ(m)
f (x̄n) and σ

(m)
f (x̄n): the larger

p̄
(m)
n (x̄n) is, the more reliable is the estimation for µ(m)

f (x̄n) and σ
(m)
f (x̄n).

Stationary AR(1) process

Consider X = {Xn : n ∈ Z} to be a stationary AR(1) process (3.35) with

Xn+1 = aXn + σξn
√

1− a2, (8.13)

where a ∈ R with |a| < 1, σ ∈ R>0, and {ξn : n ∈ Z} denoting standard Gaussian white
noise. Thus, Xn is N0,σ2-distributed. Its auto correlation function is given by γ(k) = a|k| so
that

φm =
1 + a

(1− a)m
− 2a

a(m−1)/2

(1− a)m
and θ2

m =
1 + a

(1− a)m
− 2a

1− am
(1− a)2m2

(8.14)

by using (8.8) and (8.6), respectively. Inserting φm and θ2
m into (8.10) yields the expression

for the mean µ
(m)
f (x̄n) and standard deviation σ

(m)
f (x̄n) of the fluctuation F

(m)
n conditioned

on X̄
(m)
n = x̄n.

Due to µ = 0, the AR(1) process has µ
(m)
f (x̄n) ∝ x̄. It is easily shown that in the

limit m → ∞ the proportionality factor φm/θ
2
m − 1 becomes zero. Hence, the influence

of x̄ vanishes with very large m causing the fluctuation statistics of an AR(1) process be
similar to those of a Gaussian white noise. This can be understood by noting that the auto
correlation of an AR(1) process decays exponentially, see Ex. 3.13. That is, if m is very large,
the influence of auto correlation on the fluctuation statistics becomes very small making the
fluctuations statistics of the process similar to the one of a δ-correlated process.
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Figure 8.2: The upper row shows the m-dependence of φm/θ2
m − 1, which corresponds to the

proportionality factor between µ(m)
f (x̄n) and x̄n for generated AR(1) series with σ2 = 1. The lower

row depicts the m-dependence of σ
√
θ2
m − φ2

m/θm, which corresponds to σ(m)
f (x̄n) as a function of

m. (a) a ∈ {0.1, 0.6, 0.9}. (b) a ∈ {−0.1,−0.6}.
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It is checked whether the estimation method which is used to analyse the wind speed
fluctuation in Chap. 6 recovers the properties of the fluctuation when applying it to a gen-
erated AR(1) series. The fluctuation mean µ

(m)
f (x̄n) and variance σ

(m)
f (x̄n) is estimated by

the mean and variance of the set {xn − x̄(m)
n } with n such that |x̄(m)

n − x̄n| ≤ ∆x̄n/2 for rea-
sonably small bin width ∆x̄n. Exemplarily, an AR(1) series is generated (106 data points)

with a = 0.6 and σ2 = 1. The quantities µ
(m)
f (x̄n) and σ

(m)
f (x̄n) are estimated as a function

of x̄n for m ∈ {5, 21, 101}. Fig. 8.1 shows that this simple estimation yields agreement with

µ
(m)
f (x̄n) ∝ x̄n and σ

(m)
f (x̄n) = const. Note that with increasing m, the value of the moving

average becomes more peaked around zero in order that the range of x̄n, over which µ
(m)
f (x̄n)

and σ
(m)
f (x̄n) can be estimated, becomes smaller. Additionally, the proportionality factor

between µ
(m)
f (x̄n) and x̄n becomes smaller as m gets larger. It is given by φm/θ

2
m − 1 and

depicted in Fig. 8.2 (a). For very small and reasonable large m it tends to zero and has a

maximum in between. In contrast, the standard deviation σ
(m)
f (x̄n) increases with increasing

m and tends to σ = 1, see the lower panel of Fig. 8.2 (a). The column (b) in Fig. 8.2 shows
φm/θ

2
m − 1 and σ

√
θ2
m − φ2

m/θm for an AR(1) process with negative a. It can be seen that
both quantities are oscillating and reach 0 and 1, respectively, as m becomes very large.

8.3 χ2-distributed white noise

As explained in the previous section, the fluctuation of Gaussian white noise conditioned
on X̄

(m)
n = x̄n has vanishing expectation and its standard deviation is independent of x̄n.

App. C.1 reveals that the latter is a consequences of the properties of the normal distribution.
Being an example of a non-Gaussian process, the χ2-distributed white noise has a different
behaviour. App. C.2 derives that the fluctuation conditioned on X̄

(m)
n = x̄n has also vanishing

mean, but its standard deviation is proportional to x̄n. The proportionality factor is given
by

α(m, k) =

√
2(m− 1)

mk + 2
(8.15)

which for large m tends to
√

2/k.

In the same spirit as for the stationary AR(1) process, the result is visualised for three
generated χ2 white noise series (106 data points each) with k ∈ {1, 2, 4} by simple estimation.

Exemplarily, µ
(m)
f (x̄n) and σ

(m)
f (x̄n) are estimated as a function of x̄n for m ∈ {5, 101}.

Fig. 8.3 shows agreement with µ
(m)
f (x̄n) = 0 (red, crosses) and σ

(m)
f (x̄n) ∝ x̄n (blue, dots).

Fig. 8.4 depicts the proportionality factor between σ
(m)
f (x̄n) and x̄n as a function of m.

The figure verifies agreement between the numerical estimation (the estimated standard

deviation of F
(m)
n /X̄

(m)
n ) and the analytical solution α(m, k). Additionally, it is evident that

α(m, k) approaches
√

2/k as m→∞.

In principle, this process could be considered as a process to simulate wind speed because
it has the desired properties of vanishing µ

(m)
f (x̄n) and σ

(m)
f (x̄n) ∝ x̄n. If the number k of
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Figure 8.3: Estimated mean (red, crosses) and standard deviation (blue, dots) of the fluctuation
conditioned on X̄

(m)
n = x̄n with m = 5, 101 for generated χ2-distributed white noise series with

k ∈ {1, 4}. The histogram in dash-dot line corresponds to an estimation of p̄(m)
n (x̄n) and is shown

in arbitrary units. It indicates the reliability of the estimation of µ(m)
f (x̄n) and σ(m)

f (x̄n): the larger

p̄
(m)
n (x̄n) is, the more reliable is the estimation for µ(m)

f (x̄n) and σ
(m)
f (x̄n).
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degrees of freedom is chosen to be large, the proportionality factor, which reflects the TI,
becomes low. However, the fluctuation is not normally distributed as shown in App. C.2.
Hence, another non-Gaussian process needs to be discussed.

8.4 Geometric AR(1) process

Recall that the process shall have the property that the fluctuation F
(m)
n conditioned on

X̄
(m)
n = x̄n is normally distributed with vanishing mean and standard deviation ∝ x̄n. A

first approach is to consider the process X = {Xn : n ∈ Z} with

Xn+1 = Xn(1 + bξn). (8.16)

It has the following properties:

• {ξn : n ∈ Z} denotes standard Gaussian white noise.

• The noise strength b is so small that the fluctuation Xn− X̄(m)
n conditioned on X̄

(m)
n =

x̄n for given m = 2m̃ + 1 with m̃ ∈ N0 is roughly normal distributed due to the
normality of the ξn’s.

• The rv Xn is not necessarily dimensionless. Rather, its unit is labeled by u.
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The so-defined process is not stationary and therefore unstable for a numerical generation.
A slightly modification of (8.16), namely

Xn+1 = u

(
Xn

u

)a
ebξn , (8.17)

which for a = 1 − ε with ε � 1 and b � 1 is similar16 to (8.16), is stationary for |a| < 1
because its logarithm

ln
Xn+1

u
= a ln

Xn

u
+ bξn (8.18)

corresponds to a stationary AR(1) process with variance λ2 = b2/(1−a2). Fixing m = 2m̃+1
and choosing the parameters a = 1− ε and b such that

ε� 1/m̃ and b2 � 1/m̃, (8.19)

it will be shown that (8.17) satisfies approximately

F (m)
n

∣∣
X̄

(m)
n =x̄n

∼ N
0,σ

(m)
f (x̄n)2 (8.20)

with σ
(m)
f (x̄n) ∝ x̄n.

Eq. (8.17) defines the geometric AR(1) process which corresponds to a discretised ge-
ometric Ornstein-Uhlenbeck process introduced in Ex. 3.7. Therefore, Xn is log-normally
distributed with Xn ∼ Lu,λ2 and λ2 = b2/(1 − a2) ≈ b2/(2ε). It should be noted that λ2 is
not necessarily much smaller than unity because it is the quotient between two very small
numbers.

Using symmetry property (C.33) of the stationary AR(1) process, the geometric AR(1)
process has

Xn±k

u
=

(
Xn

u

)ak
exp

[
b

k∑
l=1

ak−lηn;±l

]
(8.21)

with mutually independent standard normally distributed ηn;±1, . . . , ηn;±k. For 1 ≤ k ≤ m̃
the expression can be approximated17 by

Xn±k ≈ Xn

(
1 + b

k∑
l=1

ηn;±l

)
(8.22)

due to ak ≈ 1 − εk ≈ 1 and Var
[
b
∑k

l=1 ηn;±l

]
= b2k � 1. This approximation is a

generalisation of (8.16) and only holds true for k ≤ m̃. Consequently, the moving average is

16Similar means in this context the following. The rv Xn+1 conditioned on Xn = xn is log-normally
distributed with position parameter u(xn/u)a ≈ xn and shape parameter b2. Due to Var [bξ] = b2 � 1,
the distribution of ebξ is nearly identical to the distribution of 1 + bξ when neglecting rare tail events.
Consequently, Xn conditioned on xn is in good approximation normally distributed with mean xn and
variance xnb2.

17The distribution of ebηn;±l is approximated by the distribution of 1+bηn;±l by neglecting rare tail events.
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approximately

X̄(m)
n ≈ Xn

[
1 +

b

m

m̃∑
k=1

k∑
l=1

(ηn;+l + ηn;−l)

]
= Xn

[
1 + Z(m)

n

]
(8.23)

with the dimensionless rv

Z(m)
n =

b

m

m̃∑
l=1

(m̃− l + 1) (ηn;+l + ηn;−l) (8.24)

which is independent of Xn. The rv Z
(m)
n is normally distributed with zero mean and variance

σ2
Z = Var

[
Z(m)
n

]
=
b2(m2 − 1)

12m
<
b2m

12
≈ b2m̃

6
� 1. (8.25)

Therefore, the moving average can be approximated by

X̄(m)
n ≈ Xn exp

[
Z(m)
n

]
(8.26)

and corresponds to a product of two independent log-normally distributed rv’s. Due to
Xn ∼ Lu,λ2 and Z ∼ N0,σ2

Z
, the moving average satisfies roughly

X̄(m)
n ∼ Lu,λ2+σ2

Z
and X̄(m)

n

∣∣∣
Xn=xn

∼ Lxn,σ2
Z
. (8.27)

Inserting these results into (8.3) yields the distribution of Xn conditioned on X̄
(m)
n = x̄n:

pn(xn|X̄(m)
n = x̄) =

Lxn,σ2
Z
(x̄n)Lu,λ2(xn)

Lu,λ2+σ2
Z
(x̄n)

. (8.28)

After some manipulations, which are written in App. C.3, this becomes

Xn

∣∣∣
X̄

(m)
n =x̄n

∼ Lucond,λ
2
cond

(8.29)

with position parameter

ucond = u
( x̄n
u

)λ2/(λ2+σ2
Z)

(8.30)

and shape parameter

λ2
cond =

σ2
Zλ

2

λ2 + σ2
Z

. (8.31)

Note that σ2
Z = b2(m2 − 1)/(12m) is always much smaller than λ2 = b2/(1− a2) because

σ2
Z

λ2
=

(m2 − 1)(1− a2)

12m
≈ ε

m2 − 1

6m
<
εm

6
≈ εm̃

3
� 1. (8.32)
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Figure 8.5: Estimated mean (red, crosses) and standard deviation (blue, dots) of the fluctuation
conditioned on X̄(m)

n = x̄n with m = 5, 21, 101 for a generated geometric AR(1) series with a = 0.99
and b = 0.1. The histogram in dash-dot line corresponds to an estimation of p̄(m)

n (x̄n) and is shown
in arbitrary units. It indicates the reliability of the estimation of µ(m)

f (x̄n) and σ(m)
f (x̄n): the larger

p̄
(m)
n (x̄n) is, the more reliable is the estimation for µ(m)

f (x̄n) and σ
(m)
f (x̄n).

Hence, Xn conditioned in X̄
(m)
n = x̄n is in good approximation Lx̄n,σ2

Z
-distributed. As a

consequence of σ2
Z � 1, the log-normal distribution corresponds roughly to a Gaussian

distribution so that almost
Xn

∣∣∣
X̄

(m)
n =x̄n

∼ Nx̄n,x̄2
nσ

2
Z
. (8.33)

The fluctuation F
(m)
n conditioned on X̄

(m)
n = x̄n is therefore close to normally distributed

with
F (m)
n

∣∣∣
X̄

(m)
n =x̄n

∼ N0,x̄2
nσ

2
Z
. (8.34)

It has vanishing mean and there is a proportionality between the standard deviation and x̄n,
i.e., σ

(m)
f (x̄n) ∝ x̄n with proportionality factor

α(m, b) =
b

2

√
m2 − 1

3m
(8.35)

which grows approximately with
√
m. Of course, the proportionality is only justified for

m̃� 1/b2 and m̃� 1/ε (recall: m = 2m̃+ 1, ε = 1− a).
Due to the made approximations, the result is checked numerically by generating a ge-

ometric AR(1) series (106 data points) with a = 0.99, i.e., ε = 0.01, and b = 0.1.18 Exem-

plarily, µ
(m)
f (x̄n) and σ

(m)
f (x̄n) are estimated as a function of x̄n for m ∈ {5, 21, 101}. Due to

18As seen for the stationary AR(1) process and the χ2-distributed white noise, the estimation method is
proven to be trustworthy.
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the proportionality factor between
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1/ε = 1/b2 = 100, the approximation (8.34) is only justified for m = 2m̃+ 1 with m̃� 100.

Fig. 8.5 (a) shows agreement with µ
(m)
f (x̄n) ≈ 0 (red, crosses) and σ

(m)
f (x̄n) ∝∼ x̄n (blue, dots)

for m = 5. Panel (b) and (c), which depict µ
(m)
f (x̄n) and σ

(m)
f (x̄n) for m = 21 and m = 101,

respectively, show a deviation from µ
(m)
f (x̄n) ≈ 0 (red, crosses) but still reasonable agrement

with σ
(m)
f (x̄n) ∝∼ x̄n (blue, dots). That is, the proportionality between σ

(m)
f (x̄n) and x̄n is

approximately satisfied for m = 2m̃+ 1 being beyond m̃� 1/ε and m̃� 1/b2.

8.5 Increment distribution of the geometric AR(1) pro-

cess

The fact that the geometric AR(1) process, which was introduced in the previous section,
has the property (8.34), does not automatically make it a suitable model to simulate wind
speed. This section is intended to compare the increment distribution of a geometric AR(1)
with the increment distribution derived from ABL wind speed data, see Fig. 6.12.

Sec. 6.3 gives evidence that the increment (6.14) of the horizontal component of ABL
wind speed is in good approximation of a symmetric Castaing distribution (6.15). The
kurtosis of the distribution depends on the increment length τ : for small τ the distribution
is intermittent (i.e., leptokurtic) whereas for large τ it is Gaussian (i.e., mesokurtic).

The increment series Xs = {Xs;n : n ∈ Z} of the geometric AR(1) process X = {Xn :
n ∈ Z}, which is defined by (8.17), is given by

Xs;n = Xn+s −Xs, (8.36)

where s ∈ N denotes the increment length. If the parameters a = 1 − ε and b in (8.17) are
chosen such that

ε� 1/s and b2 � 1/s, (8.37)
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the increment distribution for small increment length s ∈ N is in good approximation of a
symmetric Castaing distribution. This is because the increment can be approximated by
Xs;n ≈ Xn b

∑s
l=1 ηn;l which is a consequence of (8.21) and (8.37). Note that ηn;1,. . . ,ηn;s

denote s mutually independent N0,1-distributed rv’s. Defining ζs;n =
∑s

l=1 ηn;l/
√
s ∼ N0,1,

the increment is written as
Xs;n ≈ bXn

√
s︸ ︷︷ ︸

∼Lbu√s,λ2

ζs;n, (8.38)

where it used that Xn ∼ Lu,λ2 with λ2 = b2/(1 − a2) ≈ b2/(2ε). Hence, the increment
corresponds to a product between a log-normally distributed rv bXn

√
s with comparably

slowly decaying auto correlation function19 and an independent normally distributed rv ζs;n
with comparably quickly decaying auto correlation function20. Therefore, the increment
distribution reads

ps;n(xs;n) ≈
∫ ∞

0

dσ Lbu√s,λ2(σ)N0,σ2(xs;n). (8.39)

Substituting σ by β = 1/σ2 yields

ps;n(xs;n) ≈
∫ ∞

0

dβ L1/(b2u2s),4λ2(β)N0,β−1(xs;n). (8.40)

This corresponds to a symmetric Castaing distribution (6.15) with position and shape pa-
rameter

βs =
1

u2b2s
and λ2

s = 4λ2 ≈ 2b2

ε
, (8.41)

respectively.
For large increment s, the approximation as ≈ 1 and b2s � 1 cannot be used, but it is

possible to derive the exact form of the increment distribution for any a ∈ R with |a| < 1,
b ∈ R>0, and s ∈ N. Denoting the joint distribution of Xn+s and Xn by ρn+s,n(xn+s, xn), the
increment distribution reads

ps;n(xs;n) =

∫
dxndxn+s ρs(xn, xn+s) δ(xs;n + xn − xn+s) (8.42)

by applying the rules of the multivariate transformation (2.55). The joint distribution of
Xn+s and Xn can be written as

ρn+s,n(xn+s, xn) = pn+s(xn+s|Xn = xn) pn(xn) (8.43)

by using relation (2.39) for conditioned distributions. Due to (8.21), the distribution of Xn+s

conditioned on Xn = xn is given by

pn+s(xn+s|Xn = xn) = Lu(xn/u)as ,λ2(1−a2s)(xn+s). (8.44)

19It is derived in Ex. 3.7 that the auto correlation function of the geometric AR(1) process reads γX(t) =
[exp(λ2a|t|)− 1]/[exp(λ2)− 1]. Due to a = 1− ε with ε� 1, the derivative of the auto correlation function
in the limit of t→ ±0 is approximately ∓ελ2 exp(λ2)/[exp(λ2)− 1] and therefore very small in magnitude.

20The auto correlation function of {ζs;n : n ∈ Z} reads E [ζs;n+tζs;n] = max{1− |t|/s, 0}.
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Inserting this into (8.42), integrating over xn+s by taking advantage of the Dirac δ-function,
and substituting xn by y = (2xn + xs;n)/u results in

ps;n(xs;n) =
1

4πuλ2
√

1− a2s

×
∞∫

|xs;n/u|

dy

y+y−
exp

{
− ln2 y+ + ln2 y− − 2as ln y+ ln y−

2λ2(1− a2s)

}
(8.45)

with y± = (y±xs;n/u)/2. It is a symmetric and unimodal distribution. Defining z(s) = 1−as,
its variance reads

Var [Xs;n] = Var [Xn+s] + Var [Xn]− 2Cov [Xn+s, Xn]

= 2u2e2λ2
[
1− e−λ2z(s)

]
(8.46)

and its kurtosis is given by

Kurt [Xs;n] =
E [(Xn+s −Xn)4]

Var [Xs;n]2
.

= 3e4λ2 × 1 + 2e−λ
2z(s) + 3e−2λ2z(s)

6
, (8.47)

where a polynomial division is applied.

As a cross-check, for s being small enough such that the approximation λ2z(s) ≈ b2s/2�
1 is justified, the variance and kurtosis of Xs;n become

Var [Xs;n] ≈ u2b2se2λ2

and Kurt [Xs;n] ≈ 3e4λ2

(1− 2b2s/3), (8.48)

respectively. Approximating the distribution of Xs;n by a symmetric Castaing distribution
with same variance and kurtosis means that the position and shape parameter need to be
chosen as

βs ≈ 1− b2s/3

u2b2s
≈ 1

u2b2s
and λ2

s ≈ 4λ2 − 2b2s/3 ≈ 4λ2, (8.49)

which in zeroth order of b2s agrees with (8.41).

On the other hand, for very large s, the kurtosis of Xs;n becomes

lim
s→∞

Kurt [Xs;n] = 3e4λ2 × 1 + 2e−λ
2

+ 3e−2λ2

6
, (8.50)

which is always larger than three. Consequently, the increments of the geometric AR(1)
process with large increment length are not Gaussian distributed as observed in ABL wind
speed increments.
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8.6 Fitting the parameters of the geometric AR(1) pro-

cess to wind speed data

The previous two sections indicated that the geometric AR(1) process might be a suitable
model to simulate wind speed data because:

1. The fluctutation F
(m)
n conditioned on X̄

(m)
n = x̄n is in good approximation normally

distributed if (8.19) is satisfied. Its mean vanishes, while there is a proportionality
between its standard deviation and x̄n.

2. The distribution of the increment Xs;n is in good approximation of an intermittent
symmetric Castaing distribution if (8.37) is satisfied.

Both are properties of ABL wind speed data v(t). The proportionality factor between the
standard deviation of the wind speed fluctuation and the mean wind speed is identical to the
turbulence intensity (TI). The value of the TI depends on the chosen time scale T on which
the mean wind speed is evaluated, cf. Fig. 6.11, and might be constant over a long interval
such as 24 h, cf. Fig. 6.9. On the other hand, the distribution of the wind speed increment is
for small increment length τ roughly of a intermittent symmetric Castaing distribution, cf.
Fig. 6.12. It is described by two parameters: the position parameter βτ and shape parameter
λ2
τ . The values of both parameters also depend on the chosen increment length.

Concerning the geometric AR(1) process, it is discrete in time. The value xn of the rv Xn

is a model value for the wind speed at time t = n/ν, where ν denotes the model frequency.
As the wind speed is measured in discrete time steps, too, it is convenient to set ν equal to
the measurement frequency. The process is characterised by three parameters: u, a, and b.
The scale u fixes the dimension of the process and has thus the dimension of velocity. In
contrast, the other two parameters a and b are dimensionless.

The time scale T and increment length τ need to be translated into dimensionless quan-
tities m ∈ N and s ∈ N, respectively, reflecting T and τ in units of time steps.

TI time scale T ↔ m: The mean wind speed v̄(T )(t) is governed by taking the average of
v(t′) over t− T/2 ≤ t′ ≤ t+ T/2. In discrete time steps n = t/ν the mean wind speed
v̄(T )(n/ν) becomes the average of v(n′/ν) over n − Tν/2 ≤ n′ ≤ n + Tν/2. That is,
m̃ = Tν/2 so that m = 2m̃ + 1 = Tν + 1. Consequently, T needs to be chosen such
that Tν ∈ N0.

Increment length τ ↔ s: The wind speed increment reads v(t+τ)−v(t), which in discrete
time becomes v(n/ν+ s/ν)− v(n/ν). Hence, s = τν so that τ needs to be chosen such
that τν ∈ N.

The three process parameters u, a, and b are chosen such that the generated series has same
fluctuation and increment distribution as the wind speed which is to be simulated. The
proportionality factor between the standard deviation of the fluctuation and the value of the
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moving average reflects the TI of the generated series. Hence, Eq. (8.35) can be used to fix
the value of the noise strength b by setting TI(T ) = α(Tν + 1, b), i.e.,

TI(T ) =
b

2

√
(Tν + 1)2 − 1

3(Tν + 1)
. (8.51)

Strictly speaking, the T dependence of the TI is not necessarily the same as the T depen-
dence of α(Tν + 1, b) so that the value of b depends on T .21 If T is chosen such that the
TI is much less than unity, squaring this equation implies that b2Tν � 1, which ensures
that the generated series has the desired proportionality between the conditioned standard
deviation of the fluctuation and the value of the moving average. The remaining two process
parameters, a and u, can be fixed by fitting the increment distribution parameters (8.41),
i.e.,

u2 =
1

βτb2τν
and 1− a = ε =

2b2

λ2
τ

. (8.52)

The τ -dependence does not vanish (βττ 6= const and λ2
τ 6= const) so that the value of u and

a depend on τ and T (through b). If the increment length τ is chosen to be τ � 1/b2, i.e.,
the wind speed increment distribution is intermittent, the equation implies that ετ � 1 and
satisfies condition (8.37). Thus, it is ensured that the increments of the generated series are
of an intermittent symmetric Castaing distribution.

The previous chapter concluded that the day 191 data gathered at the Lammefjord
(1987) site provide a suitable 24 h turbulent ABL wind speed data set, i.e., the turbulence
parameters can be treated as being constant over 24 h. It has measurement frequency of
ν = 8 Hz. Setting T = 5 s, the TI is estimated to be 6.94%, see Fig. 6.11. The corresponding
geometric AR(1) process has noise strength b = 0.0376. Regarding the increments, fixing
τ = 1 s yields an intermittent increment distribution with βτ = 1.383 s2 m−2 and λ2

τ = 0.385,
see Fig. 6.13. That is, the corresponding geometric AR(1) process has u = 8.00 m s−1 and
a = 0.99265. The statistical properties of this process are compared with the properties of
the day 191 wind speed data. Therefore, 5 × 106 data points of a geometric AR(1) series

with u = 8.00 m s−1, a = 0.99265, and b = 0.0376 are generated. The value of Xn, X̄
(m)
n , and

F
(m)
n are denoted by xn, x̄

(m)
n , and f

(m)
n , respectively.

Fluctuation Statistics. The histograms of the fluctuation F
(m)
n with m = Tν + 1 = 41

conditioned on X̄
(m)
n = x̄ are estimated by estimating the histogram of the set {f (m)

n :

n ∈ N (m)
∆x̄ (x̄)} with N (m)

∆x̄ (x̄) = {n : x̄
(m)
n ∈ [x̄ − ∆x̄/2, x̄ + ∆x̄/2]}. The bin width

of x̄ is set to ∆x̄ = 0.25 m s−1. Fig. 8.7 displays the histograms for 6 m s−1 ≤ x̄ ≤
9 m s−1 together with the day 191 data histograms from Fig. 6.4 and symmetric normal
distributions. It is evident that the histograms are in good agreement.

Increment Statistics. The histogram of the increment xn+s − xn with s = τν = 8 is
estimated and shown in Fig. 8.8. Additionally, the day 191 increment histogram from

21For instance, Fig. 6.11 shows that the ABL TI does not grow with the square root of T .
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Figure 8.7: Estimation of the
fluctuation distributions condi-
tioned on mean x̄. For numeri-
cal evaluation, ∆x̄ is chosen to be
0.25 m s−1. The scale T is fixed
to be 5 s with estimated turbu-
lence intensity 6.94%. The solid
histograms represent the gener-
ated geometric AR(1) series with
a = 0.99265, b = 0.0376, and
u = 8.00 m s−1. The dots repre-
sent the day 191 data obtained at
the Lammefjord (1987) site, cf.
Fig. 6.4. The dashed lines corre-
spond to symmetric normal dis-
tributions with standard devia-
tion being proportional to x̄.
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Figure 8.8: Estimation of the
increment distributions with in-
crement length τ = 1 s. The
histograms are plotted semi-
logarithmically. The solid his-
togram represents the generated
geometric AR(1) series with
a = 0.99265, b = 0.0376, and
U = 8.00 m s−1. The dots represent
the day 191 data obtained at
the Lammefjord (1987) site, cf.
Fig. 6.12. The dashed line corre-
sponds to the symmetric Castaing
distribution.
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Figure 8.9: Estimation of the tur-
bulence intensity as a function of
time scale T .
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Figure 8.10: Estimation of βτ =√
Kurt [Xτν;n] /3 × Var [Xτν;n]−1

and λ2
τ = ln(Kurt [Xτν;n] /3) as a

function of increment length τ .

Fig. 6.12 and the corresponding symmetric Castaing distribution are plotted. The
figure shows good agreement between the histograms.

As a cross-check, the turbulence intensity of the generated series is estimated numerically as a
function of scale T and depicted in Fig. 8.9. Additionally, the figure shows the T -dependence
of the reference wind speed data. As expected, they are in agreement for T = 5 s, but also
in good agreement for T < 5 s. The same cross-check is done for the increment distribution
parameters βτ and λ2

τ . Fig. 8.10 shows that βτ is in good agreement with its corresponding
value obtained from wind speed data even for τ 6= 1 s. In contrast, the figure also shows that
λ2
τ estimated from the generated series is only in agreement with the corresponding value

obtained from wind speed data for τ = 1 s.
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Chapter 9

Summary and Outlook

9.1 Summary

The presented thesis analyses the statistical properties of atmospheric boundary layer wind
speed recordings as well as the extent to which it can be simulated by a stochastic pro-
cess. This section summarises the results grouped by the corresponding topic: wind velocity
statistics, the suitability of the superstatistical algorithm, and the wind velocity simulation
with stochastic processes.

Wind velocity statistics

The air motion in the atmospheric boundary layer is strongly influenced by thermal effects.
Unlike the flow in an laboratory experiment, the wind driving parameters change with time.
Motivated by this non-stationarity which appears in wind velocity recordings, Chap. 6 de-
velops a variety of statistical tools which allow to verify that a wind velocity recording has
periods in which the wind speed has statistically similar properties to ideal turbulence. The
methods are based on

• fluctuation statistics in order to analyse the wind velocity and

• superstatistics in order to analyse the wind velocity increments.

The statistical properties, which were found, are:

1. The fluctuation around the mean wind speed is roughly Gaussian distributed and has
vanishing mean.

2. The standard deviation of the fluctuation is proportional to the mean wind speed, as
long as the latter is above 5 m s−1.

3. The increment distribution is not (or slightly positively) skewed and in good approxi-
mation a symmetric Castaing et al. (1990) distribution.

106



4. For small/large increment lengths, the increment distribution is close to a double ex-
ponential/Gaussian distribution.

Additionally, the methods allow to quantify the time evolution of the relevant parameters.
These are

• the turbulence intensity, i.e., the proportionality factor between the standard deviation
of the fluctuation and the mean wind speed, and

• the position parameter and shape parameter of the increment distribution fitted by a
symmetric Castaing distribution.

The measured turbulence intensity depends on the considered time scale T over which the
moving average is computed: the value of the turbulence intensity increases with increasing
T . Even for large T , such as several minutes, the proportionality between the standard
deviation of the fluctuation and the value of the moving average is statistically satisfied.
The shape of the increment distribution depends on the considered increment length τ : both
parameters decrease with increasing τ , the shape parameter approaches zero for sufficiently
large τ . It is found that

• the periods in which the turbulence intensity can be regarded as being constant last
from several hours up to 24 h and

• the Castaing parameters usually fluctuate in a diurnal cycle.

The first result suggests to transform a wind velocity recording, in which the turbulence
intensity can be treated as being constant, into a first order stationary series by dividing the
fluctuation by the value of the moving average. The second result can be used to explain that
the increment distribution for large increment lengths is sometimes still found to be non-
Gaussian when analysing a recording being longer than a turbulent period (see e.g. Boettcher
et al., 2007). The time series can be interpreted as consisting of subsequent periods in which
the increment distribution is Gaussian for large increment length. Nevertheless, the variance,
which is identical to the inverse of the position parameter, changes from one period to another
so that the analysis of the full time series yields a superposition of Gaussians with different
variances.

Additionally, the methods are able to indicate the existence of periods in which the above
mentioned properties found in turbulent periods are most likely not satisfied. Indications
are:

• The turbulence intensity is highly fluctuating. (If the proportionality between the
standard deviation of the wind speed fluctuation and the mean wind velocity is not
satisfied, the analysis does not yield a constant turbulence intensity.)

• There is significance that in this period the increment distribution is symmetric (or
slightly positively skewed) but not of a symmetric Castaing distribution and does not
tend towards a Gaussian distribution for large increment lengths.
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Both indicators signal that such a period is a sequence of shorter periods which can be
regarded as being turbulent with changing relevant parameters or the wind activity in this
period is not turbulent.

Superstatistical algorithm

Chap. 7 discusses the superstatistical algorithm in more detail. The algorithm is proposed
by Beck et al. (2005b) and Queiros (2007) and is extended in this thesis in order to analyse
the turbulent nature of wind velocity increments. The algorithm approximates the series
which is to be analysed by equally long periods in which the series is symmetrically Gaussian
distributed. The length of these periods is estimated by computing the mean period kurtosis.
The inverse variance estimated in each period leads to the β-series, which for wind velocity
data is hypothetically log-normally distributed.

The algorithm is applied to artificial time series which per construction consist of equally
long periods in which the series is symmetrically Gaussian distributed. It is shown that
the parameter estimation of the β-statistics strongly depends on the estimated value of the
period length, but the decision whether β is log-normally distributed does not.

Furthermore, the algorithm is applied to artificial time series which per construction
consist of periods in which the series is symmetrically Gaussian distributed, but the periods
are not of equal length. Rather, the length of the periods is Poisson distributed. Indeed, the
algorithm finds that there are no equally long periods and cannot estimate their length. Still,
it is demonstrated that the estimation of the β-distribution parameters strongly depends
on the period length by setting the latter manually as internal parameter. However, the
decision whether β is log-normally distributed does not depend on the value of this particular
parameter.

Concerning atmospheric boundary layer wind velocity increment recordings, the approx-
imation by equally long Gaussian periods might be too rough. The effect of not finding a
period length is avoided by using a biased kurtosis estimator instead of an unbiased one.
Whether this is a suitable estimation procedure for the period length is discussed in App. B.
It compares the parameters of the β-distribution with the parameters gained directly from
the wind velocity increment statistics according to Castaing et al. (1990). It is found that
only the estimation of the shape parameter is slightly biased.

Concluding, the Queiros (2007) algorithm is suitable to analyse wind velocity increments,
but it is not perfect. However, this imperfection does not have an influence on the decision
whether a wind recording represents turbulent wind activity or not. It is merely the strength
of intermittency which is sometimes slightly under- or overestimated.

Simulation with stochastic processes

Chap. 8 deals with stochastic processes that might be suitable candidates to simulate at-
mospheric wind velocity during a period with constant relevant parameters. The process
is required to have the same fluctuation statistics conditioned on the value of the moving
average as wind velocity recordings. That is, the fluctuation
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• is normally distributed,

• has vanishing mean, and

• has a proportionality between its standard deviation and the value of the moving
average.

A method which allows to evaluate the fluctuation distribution of an arbitrary process is
introduced. This tool is successfully applied to a variety of discrete stochastic processes.
It is found that a process with the above mentioned fluctuation statistics is non-trivial.
So for instance, Gaussian white noise has normally distributed fluctuation, but lacks the
proportionality, whereas χ2-distributed white noise shows the proportionality, but lacks the
normal distribution.

The geometric AR(1) process however has the desired property when choosing its pa-
rameters accordingly and when the time scale T over which the moving average is computed
is small. Moreover, the increment distribution of this process is in good approximation a
symmetric Castaing distribution when the increment length τ is small. Hence, the geometric
AR(1) process is a suitable candidate to generate series which have the corresponding fluctu-
ation statistics for small scale T and intermittent increment distributions for small increment
length τ . The process is described by three parameters and they can be chosen such that the
process has the same turbulence intensity and increment distribution as the wind speed series
which is to be simulated. Unfortunately, the T -dependence of the turbulence intensity and
the τ -dependence of the increment distribution parameters are different between the data
generated by a geometric AR(1) process and boundary layer wind velocity data. Hence, in
order to fit the parameters, the time scale T and increment length τ need to be fixed. Esti-
mating the turbulence intensity at scale T and the two increment distribution parameters for
increments with increment length τ , the geometric AR(1) process parameter can be fitted
by (8.51) and (8.52). The turbulence intensity of the generated series well agrees with the
wind turbulence intensity for smaller time scales than T . The main drawback of this process
class is that it does not provide the transition from an intermittent increment distribution
for small increment lengths to a Gaussian increment distribution for large increment length.

9.2 Outlook

As mentioned in the beginning of this thesis, the understanding of turbulence is a gradual
process. Therefore, based on the found results and the methods used in this thesis, the follow-
ing issues are suggestions for further studies. They are again grouped by the corresponding
topic.

Wind velocity statistics

• It is found that the turbulence parameters change with time. It would be interesting
to see whether there is a connection between the change of the turbulence parameters
and the change of other meteorological parameters.
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• The analysis suggested that some parts of a wind velocity recording do not reflect
turbulent wind activity. The question which remains to be answered is whether the
flow is laminar-like or the parameters of the turbulence generating mechanism fluctuate
on a smaller time scale.

• The proposed method to obtain a first order stationary wind recording allows to analyse
the linear cross-correlation between several measurements because the estimation of the
linear correlation requires a constant mean and variance of the series. The results of
the correlation analysis are essential for constructing realistic wind field models, which
simulate the wind velocity at several spatial points simultaneously.

• The search for significant wind gust patterns can be improved by suitable re-scaling.
That is, the amplitude of a gust is statistically proportional to the mean wind speed.

• In order to improve the comparison between atmospheric and ideal turbulence, the
longitudinal wind velocity increments need to be measured. This however requires a
measurement at several spatial points at the same time but has the advantage that the
assumption of the Taylor hypothesis is not needed.

Superstatistical algorithm

• The mentioned imperfections of the superstatistics algorithm can be avoided by a dif-
ferent approach and by working directly with the wind velocity increment distribution.
Keeping in mind that the increment distribution represents a superposition of Gaussian
distributions with different variance (= β−1), the β’s do not have to be estimated from
the recording as done by Beck et al. (2005b); Queiros (2007). Rather, their distribution
might be optimised such that the superposition of the normal distributions gets close to
the empirically found wind velocity increment distribution. This approach still allows
to test the turbulence hypothesis by testing whether β is log-normally distributed or
not. An optimisation method based on the Metropolis et al. (1953) algorithm might
be appropriate.

Simulation with stochastic processes

• The introduced recipe to calculate the distribution of the fluctuation conditioned on the
value of the moving average for any process might be used to formulate the correspond-
ing criteria for a process to have any desired fluctuation property. This would help
in the development of wind velocity models based on stochastic processes exhibiting
more realistic characteristics.

• It might be advantageous to develop stochastic processes with changing turbulence
parameters in order to simulate atmospheric turbulence over a long period.

More generally, understanding the nature of boundary layer turbulence several tens of me-
tres above ground might be relevant for man-made constructions such as houses, bridges,
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wind turbines, but also for objects from the biosphere such as trees or the flight of insects.
Moreover, win gust prediction algorithms can be improved by taking into account the non-
stationarity of the turbulence parameters. Last, but not least, Richard Feynman once said
that turbulence is the most important unsolved problem of classical physics. Further studies
based on the results of this thesis may be some of many puzzle pieces to solve this problem.
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Part III

Appendix

112



Appendix A

Frequently used Distributions and
their Properties

This appendix is a collection of distribution functions to fix the notation which is used
throughout this thesis. Additionally, it illustrates the meaning of skewness and kurtosis.

The works of Johnson et al. (1994) and Johnson et al. (2005) serve as reference for pdf’s
and pmf’s, respectively, and their properties.

A.1 Binomial distribution

The binomial distribution is an example of a pmf of a discrete rv with range X = {0, 1, 2, 3, . . . , n}
and defined by

Bn,p(k) =

(
n
k

)
pk(1− p)n−k (A.1)

for k = 0, 1, 2, . . . , n and 0 ≤ p ≤ 1. For p = 1/2 this equation turns into (2.4). The expected
value, variance, skewness, and kurtosis read

E [X] = np, (A.2a)

Var [X] = np(1− p), (A.2b)

Skew [X] =
1− 2p√
np(1− p) , and (A.2c)

Kurt [X] = 3 +
1− 6p(1− p)
np(1− p) , (A.2d)

respectively.
If n is very large, the skewness vanishes and the kurtosis tends to three. The De Moivre–

Laplace theorem states that for the standardised binomial variable X̂ = (X−np)/√np(1− p)
the probability

lim
n→∞

P
[
α < X̂ < β

]
=

1√
2π

∫ β

α

du e−u
2/2 (A.3)
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which give a connection to the normal distribution explained in the next section.

A.2 Gaussian distribution

The Gaussian distribution or normal distribution is defined by

Nµ,σ2(x) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
, (A.4)

where µ and σ2 are real numbers. Note that σ2 must be positive. It is very tractable
analytically, symmetric about µ (hence, its median is µ), and can be used to approximate
a large variety of distributions in large samples (see e.g. the binomial distribution in the
previous section), which is known as the central limit theorem.

A normally distributed rv X has

E [X] = µ, (A.5a)

Var [X] = σ2, (A.5b)

Skew [X] = 0, and (A.5c)

Kurt [X] = 3. (A.5d)

The nth central moment reads

E [(x− µ)n] =

{
(n− 1)!!σn for even n,

0 for odd n,
(A.6)

where ( · )!! denotes the double factorial (2.34). The cdf of of the normal distribution is given
by

Φµ,σ2(x) =
1

2
erfc

(
−x− µ√

2σ2

)
, (A.7)

where erfc( ·) denotes the complementary error function. It is defined by erfc(x) = 1−erf(x),
where

erf(x) =
2√
π

∫ x

0

dt e−t
2

(A.8)

denotes the error function, and takes the value one if and only if its argument is zero. This
proves that the median of the normal distribution is µ.

It is shown in Ex. 2.4 that if X is normally distributed, its linear transformation aX + b
with a 6= 0 is also of a normal distribution, i.e.,

X ∼ Nµ,σ2 ⇒ aX + b ∼ Nµ+b,a2σ2 , (A.9)

which follows from Eq. (2.21).
The characteristic function of the normal distribution reads

E
[
eitX

]
= exp

[
iµt− σ2

2
t2
]
, (A.10)

where X ∼ Nµ,σ2 .
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A.3 χ2-distribution

If Y ∼ N0,1, the rv X = Y 2 is χ2-distributed. More generally, if Yi ∼ N0,1 are independent

identically distributed rv’s for i = 1, 2, . . . , k, the rv X =
∑k

i=1 Yi is of a χ2-distribution with
k number of degrees of freedom. It is defined by

χ2
k(x) =

{
1

2Γ(k/2)

(
x
2

)k/2−1
e−x/2 for x > 0,

0 for x ≤ 0,
(A.11)

where Γ( · ) denotes the Gamma function

Γ(z) =

∫ ∞
0

dt tz−1e−t. (A.12)

A χ2
k-distributed rv X is characterised by

E [X] = k, (A.13a)

Var [X] = 2k, (A.13b)

Skew [X] =
√

8/k, and (A.13c)

Kurt [X] = 3 + 12/k. (A.13d)

It should be noted that the standardised χ2-variable rv X̂ = (X − k)/
√

2k, which has zero
expectation and unit variance, has also skewness

√
8/k and kurtosis 3 + 12/k. If k → ∞,

its skewness vanishes and its kurtosis becomes three, which corresponds to the skewness and
kurtosis of the normal distribution, respectively. In fact, it can be shown that for k → ∞
the rv X̂ is N0,1-distributed.

A.4 Log-normal distribution

The log-normal distribution plays a central role in various branches of sciences. Limpert
et al. (2001) discusses its meaning in e.g. geology and mining, human medicine, environment
and atmospheric sciences, ecology, and food technology, to name a few.

If Y ∼ Nµ,σ2 , its exponentially transformed rv X = eY is said to be log-normally dis-
tributed. Applying Eq. (2.19), the pdf of X is given by

Lx0,λ2(x) =

{
1

x
√

2πλ2
exp

[
− 1

2λ2 ln2 x
x0

]
for x > 0,

0 for x ≤ 0,
(A.14)

where x0 = eµ > 0 and λ2 = σ2 are called position and shape parameter, respectively, because
they are directly related to the median and kurtosis, respectively. A Lx0,λ2-distributed rv
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has median x0, mode x0e
−λ2

as well as

E [X] = x0e
λ2/2, (A.15a)

Var [X] = x2
0e
λ2

(eλ
2 − 1), (A.15b)

Skew [X] = (eλ
2

+ 2)
√
eλ2 − 1, and (A.15c)

Kurt [X] = e4λ2

+ 2e3λ2

+ 3e2λ2 − 3. (A.15d)

The higher moments are

E [Xn] = xn0e
n2λ2/2. (A.16)

It is worth mentioning that

E [lnX] = lnx0, (A.17a)

Var [lnX] = λ2, (A.17b)

Skew [lnX] = 0, and (A.17c)

Kurt [lnX] = 3 (A.17d)

because lnX ∼ Nlnx0,λ2 .
An important special case is when the shape parameter is much less than unity. Consider

the rv x0e
λξ with ξ ∼ N0,1. It is Lx0,λ2-distributed whilst its expansion x0e

λξ ≈ x0 + x0λξ ∼
Nx0,x2

0λ
2 . That is, a log-normally distributed rv with very small shape parameter can be

treated like a Gaussian distributed rv. Additionally, in the limit for λ2 → 0 the log-normal
distribution becomes

lim
λ2→0

Lx0,λ2(x) = δ(x− x0), (A.18)

where δ( · ) denotes the Dirac δ-function.
It should be mentioned, that if X ∼ Lx′0,λ′2 , its linear transformed rv aX + b with a > 0

and b 6= 0 is not log-normally-distributed. It is said to be shifted log-normally distributed.
Applying Eq. (2.21) leads to the three-parameter pdf

Lx0,λ2,δ(x) =

{
1

(x−δ)
√

2πλ2
exp

[
− 1

2λ2 ln2 x−δ
x0

]
for x > δ,

0 for x ≤ δ
(A.19)

with x0 = ax′0, λ2 = λ′2, and δ = b.
In contrast to the linear transformation, the nonlinear transformation aXb with a > 0

and b 6= 0 is log-normally distributed:

X ∼ Lx0,λ2 ⇒ aXb ∼ Laxb0,b2λ2 . (A.20)

This is shown as follows. The logarithm of aXb corresponds to ln a+ b lnX, which according
to (A.9) is normally distributed with mean ln(x0a) and variance b2λ2. Hence, aXb ∼ Lax0,b2λ2 .
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A.5 Cauchy distribution

The Cauchy distribution, which is also known as Lorentz or Breit-Wigner distribution, is
defined by

Cyx0,γ =
γ

π
[
(x− x0)2 + γ2

] . (A.21)

It has no well-defined mean and variance. In fact, the improper intergals
∫∞
−∞ dx xnCyx0,γ(x)

do not converge for n = 1, 2, . . . . Nevertheless, the Cauchy distribution is symmetric about
x0 and has mode and median x0. Its characteristic function reads

E
[
eitX

]
= exp [ix0t− γ|t|] (A.22)

where X ∼ Cyx0,γ.

The Cauchy distribution is related to the normal distribution as follows. If the two iid
rv’s X and Y are normally distributed with zero mean and unit variance, their ration X/Y
is Cauchy distributed, i.e.,

X, Y ∼ N0,1 (iid) ⇒ X

Y
∼ Cy0,1. (A.23)

A.6 Lévy distribution

The Lévy distribution is defined by

Lvx0,c =
exp

[
− c

2(x−x0)

]
(x− x0)3/2

×
√

c

2π
. (A.24)

The moments are not defined as the improper intergals
∫∞
−∞ dx xnLvx0,c(x) do not converge

for n = 1, 2, . . . . Its characteristic function reads

E
[
eitX

]
= exp

[
ix0t−

√−2ict
]

= exp
[
ix0t− (1− i sgn(t))

√
c|t|
]
. (A.25)

A.7 Uniform distribution

The uniform distribution is defined by

Ux1,x2 =

{
1

x2−x1
for x1 ≤ x ≤ x2

0 otherwise.
(A.26)
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A Ux1,x2-distributed rv X has

E [X] =
x1 + x2

2
, (A.27a)

Var [X] =
(x1 − x2)2

12
, (A.27b)

Skew [X] = 0, and (A.27c)

Kurt [X] = 9/5 = 1.8. (A.27d)

A uniformly distributed rv remains uniformly distributed under linear transformation, i.e.,

X ∼ Ux1,x2 ⇒ aX + b ∼ Uax1+b,ax2+b (A.28)

with a 6= 0, which follows from Eq. (2.21).

A.8 Exponential distribution

If Y ∼ U0,1, the rv X = −x0 lnY is of an exponential distribution with pdf

Ex0(x) =

{
1
x0

exp
[
− x
x0

]
for x ≥ 0,

0 for x < 0,
(A.29)

which follows from Eq. (2.19). The parameter x0 is called the scale parameter. An Ex0-
distributed rv X has

E [X] = x0, (A.30a)

Var [X] = x2
0, (A.30b)

Skew [X] = 2, and (A.30c)

Kurt [X] = 9. (A.30d)

A.9 Interpretation of skewness and kurtosis

In the previous sections, a variety of distributions were introduced. This section illustrates
the meaning of skewness and kurtosis exemplified by two “generalised normal distributions”:

• the skew normal distribution SNξ,ω2,α recovering the normal distribution for α = 0 and

• a general distribution KNα,β,γ, which recovers the normal distribution for γ = 2.
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Figure A.1: The
skew normal dis-
tribution, where
the parameters
ξ(α) and ω2(α) are
chosen such that it
has zero mean and
unit variance, for a
variety of α. The
red (blue) curves
correspond to α > 0
(α < 0) and hence
positive (negative)
skewness. The
inner panel depicts
the skewness of a
SNξ,ω2,α-distributed
rv X as a function
of α.

A.9.1 Skewness

The meaning skewness is best exemplified by the skew normal distribution where the skewness
can be changed by a third parameter. Azzalini (1985) introduced

SNξ,ω2,α(x) = Nξ,ω2(x)× erfc

(
−αx− ξ√

2ω2

)
(A.31)

as a distribution, which obviously corresponds to the normal distribution with mean ξ and
variance ω2 if α = 0. Defining

δ =
α√

1 + α2
×
√

2

π
, (A.32)

the mean and variance of a SNξ,ω2,α-distributed rv X are given by

E [X] = ξ + ωδ and (A.33a)

Var [X] = ω2(1− δ2), (A.33b)

respectively. Its skewness and kurtosis read

Skew [X] =
4− π

2

δ3

(1− δ2)3/2
and (A.33c)

Kurt [X] = 3 + 2(π − 3)

[
δ2

1− δ2

]2

, (A.33d)
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Figure A.2:
The KN0,β(γ),γ-
distribution with
zero mean and unit
variance for a variety
of γ. The red curve
(γ = 1) has kurtosis
smaller than three
wheras the blue
curves (γ = 4, 100)
have kurtosis
larger than three.
The inner panel
shows the kurtosis
of a KN0,β(γ),γ-
distributed rv X as
a function of γ.
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respectively, and only depend on δ, which is a function of α. It can be seen that for vanishing
δ, i.e., vanishing α, the skewness becomes zero and the kurtosis becomes three.

Setting ξ(α) = −δ(α)/
√

1− δ2(α) and ω2(α) = 1/(1 − δ2(α)), the skew normal distri-
bution SNξ(α),ω2(α),α has zero mean and unit variance. The only parameter left is α, which
controls the skewness and kurtosis. For α < 0 (α > 0), and therefore δ < 0 (δ > 0), the
skewness is negative (positive). Fig. A.1 displays a variety of skew normal distributions with
zero mean and unit variance for a variety of α. The red (blue) curves with α > 0 (α < 0)
have positive (negative) skewness. The black curve, which has α = 0, corresponds to a
Gaussian distribution with vanishing skewness. It can be seen that for a positive (negative)
skewness the right (left) tail is longer, i.e., the mass of the distribution is concentrated on the
left (right) of the distribution and therefore the median is smaller (larger) than the expected
value.

A.9.2 Kurtosis

The meaning kurtosis is best exemplified by a distribution which has zero skewness and an
additional parameter to change the kurtosis. Box (1953) and Turner (1960) considered the
three-parameter pdf

KNα,β.γ(x) =
γ

2βΓ(1/γ)
exp

[
−|x− α|

γ

βγ

]
(A.34)

with β, γ > 0. There are four special cases:

1. γ = 1 leads to the double exponential distribution KNα,β,1(x) = 1
2β
e−|x−α|/β.

2. γ = 2 leads to the normal distribution KNα,β,2(x) = Nα,β2/2(x).
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3. γ = q, where q is an even integer, leads to the qth power distribution.

4. γ →∞ leads to the uniform distribution limγ→∞KNα,β,γ(x) = Uα−β,α+β(x).

This distribution is symmetric about its expectation value α so that its skewness vanishes.
A KNα,β,γ-distributed rv X has variance

Var [X] = β2 Γ(3/γ)

Γ(1/γ)
(A.35)

and kurtosis

Kurt [X] =
Γ(5/γ) Γ(1/γ)

Γ(3/γ)2
. (A.36)

That is, setting β(γ) =
√

Γ(1/γ)/Γ(3/γ), the distribution KN0,β(γ),γ has zero mean, unit
variance and a kurtosis determined by γ. Fig. A.2 depicts four such distributions: γ = 1
(double exponential distribution), γ = 2 (normal distribution), γ = 4 (power distribution),
and γ = 100 (nearly uniform distribution). The distributions with γ < 2 have larger kurtosis
than three and are more peaked than the normal distribution, i.e., leptokurtic. The distri-
butions with γ > 2 have smaller kurtosis than three and are less peaked than the normal
distribution, i.e., platykurtic.
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Appendix B

Influence of the Ts-estimation

In Sec. 6.4, the ABL wind speed increment series (us;n)Nn=1 with increment length s is analysed
with respect to superstatistics in order to check whether the intermittency hypothesis (6.18)
is satisfied. This appendix discusses the influence of the estimated value Ts on the outcome
of the superstatistical analysis. Hence, the time scale Ts is treated as a free parameter and
not estimated by the Queiros (2007) method. The rest of the analysis remains the same, i.e.,

1. estimate the β-series by

(us;1, . . . , us;Ts)︸ ︷︷ ︸
1/Var{··· }=β1

, (us;Ts+1, . . . , us;2Ts)︸ ︷︷ ︸
1/Var{··· }=β2

, · · · , (us;(K−1)Ts+1, . . . , us;N)︸ ︷︷ ︸
1/Var{··· }=βK

, (B.1)

2. estimate the cdf of Λ = ln β by treating the wind speed data as being dimensionless
and

3. perform a Kolmogorov-Smirnov normality test on the distribution of Λ to check hy-
pothesis

H0 :

{
Λ ∼ NΛs,λ2

s
for all s and

λ2
s → 0 for large s

(B.2)

with Λs and λ2
s denoting the estimated mean and variance, respectively, of the Λ-series.

In Sec. 6.4 the time scale Ts is estimated by Queiros (2007). It is found that for the three
analysed 24 h recordings the hypothesis is not satisfied, whereas it is on some of the 2 h
recordings. The questions, which this appendix tries to answer, are

• Does the outcome of the Kolmogorov-Smirnov test change for a Ts 6= TQueiros
s .22

• If not: Does the estimation of the parameters Λs and λ2
s depend on the value of Ts?

• Are the estimated parameters Λs and λ2
s (nearly) identical to the estimated position and

shape parameter, respectively, of the corresponding symmetric Castaing distribution
when setting Ts = TQueiros

s .
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1 12 64 583
2 22 128 1,099
4 36 256 1,584
8 59 512 2,176
16 98 1024 2,063
32 240 2048 2,048
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s s TQueiros

s

1 30 64 1,679
2 42 128* 97,445
4 67 256* 486,587
8 116 512* 614,283
16 223 1024* 656,959
32 459 2048* 665,541

Figure B.1: The test value of the Kolmogorov-Smirnov normality test for the Λ-series as a
function of Ts. The dashed line reflects the critical value for a significance level of 1%. The size of
the corresponding Λ-series is roughly 6.9×105/Ts. The table list the value of TQueiros

s as a function
of s. The star marks the value of s for which TQueiros

s is so large that the corresponding increment
series is not regarded as being intermittent. The results for those s are not plotted. (a) Day 186
data for 1 ≤ s ≤ 2048. (b) Day 191 data for 1 ≤ s ≤ 64.
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Analysing the increments of two 24 h recordings gathered at the Lammefjord (1987) site
(day 186 and 191), Fig. B.1 shows that the outcome of the Kolmogorov-Smirnov test, i.e.,
the decision whether to reject the hypothesis Λ ∼ NΛs,λ2

s
, does not depend on Ts. Panel

(a) depicts the test variable as a function of Ts/T
Queiros
s for a variety of s for the day 186

data. Panel (b) depicts the same for a smaller variety of s for the day 191 data.23 In both
cases the test suggests to reject the hypothesis on a significance level of 1% for any value of
Ts between 0 and 2TQuieros

s . The results of Sec. 6.4 indicates that the hypothesis H0 might
be satisfied on a 2 h recording when setting Ts = TQueiros

s . For instance, the day 186 data
show in Fig. 6.20 that the hypothesis cannot be rejected between 12–14 h, whereas it is
rejected between 20–22 h for small s. The decision of these two 2 h recordings is analysed
again as a function of Ts and shown in Fig. B.2. It yields nearly the same outcome for
0 ≤ Ts ≤ 2TQueiros

s . That is, if the hypothesis is rejected/not rejected for Ts = TQueiros
s , it is

(mostly24) rejected/not rejected for Ts 6= TQueiros
s . Even though this is not a comprehensive

analysis, it is assumed that the value of Ts does not have a strong influence on the decision
whether to reject/accept the hypothesis.

The second question is then: Does the value of Ts have an influence of the estimated
parameters Λs and λ2

s? Fig. B.3, which depicts the mean Λs and variance λs of the estimated
Λ-series as a function of Ts exemplarily for the day 186 increments (between 12–14 h),
suggests that with increasing Ts the estimation of Λs and λ2

s decreases. However, the Ts-
dependence of λ2

s is much stronger than the Ts-dependence of Λs. This behaviour is observed
in other 2 h recordings as well. In other words, the value of Ts has a small impact on the
estimation of Λs and a large impact on the estimation of λ2

s.
So, the third question is whether the time scale TQueiros

s estimated by the Queiros (2007)
method yields an estimation of Λs and λ2

s which is (nearly) identical to the position and
shape parameter, respectively, of the corresponding symmetric Castaing distribution. That
means that the estimation of Λs and λ2

s for the twelve 2 h recordings of a 24 h series by
using the Queiros (2007) and Castaing et al. (1990) method are compared. In this analysis
the increment length is varied between 1 and 2048.

Day 186 recordings in Fig. B.4. The 2 h recordings for which the superstatistical anal-
ysis in Fig. 6.20 suggests to accept/reject the hypothesis H0 are marked with •/×. It
is evident that Λs estimated by the Queiros (2007) method is nearly identical to Λs

estimated by the Castaing et al. (1990) method. On the other hand, there are some
deviations between the two λ2

s’s estimated by the two methods. The deviation for the
2 h recordings which apparently satisfy the hypothesis H0 is generally smaller than the
deviation for the recordings in which H0 is rejected.

22 TQueiros
s denotes the time scale Ts which is obtained by the Queiros (2007) method.

23The smaller variety is chosen because the test only makes sense if the size, which is approximately
6.9×105/Ts, of the Λ series is sufficiently large. As shown in Fig. 6.16, the time scale TQueiros

s , around which
Ts is varied, increases with s so that the size of the Λ-series becomes too small small when changing Ts up
to 2TQueiros

s . In fact, an estimated Ts, which is very large, means that the series is not very intermittent,
i.e., λ2

s is very small. This in turn makes the test Λ ∼ NΛs,λ2
s

redundant.
24Fig. B.2 (b) shows some cases where the hypothesis is rejected for Ts . TQueiros

s and accepted for
Ts & TQueiros

s .
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Figure B.2: The test value of the Kolmogorov-Smirnov normality test for the Λ-series as a
function of Ts. The dashed line reflects the critical value for a significance level of 1%. The size of
the corresponding Λ-series is roughly 57600/Ts. The table list the value of TQueiros

s as a function
of s. The star marks the value of s for which TQueiros

s is so large that the corresponding increment
series is not regarded as being intermittent. The results for those s are not plotted. (a) Day 186
data (12–14 h, H0 is satisfied) for 1 ≤ s ≤ 256. (b) Day 186 data (12–14 h, H0 is mostly rejected)
for 1 ≤ s ≤ 2048.
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Figure B.3: Estimation of the parameters Λs and λ2
s as a function of the value of Ts for the day

186 (12–14 h) data.
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Figure B.4: Comparison between the parameters estimated by the Queiros (2007) method and
those estimated by the Castaing et al. (1990) method. The methods are applied to 2 h recordings
of the day 186 data. The values obtained from the recording, for which H0 is accepted/rejected,
are marked with •/×. The increment length is varied between 1 and 2048.
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Figure B.5: Comparison between the parameters estimated by the Queiros (2007) method and
those estimated by the Castaing et al. (1990) method. The methods are applied to 2 h recordings
of the day 191 data. The increment length is varied between 1 and 2048.
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Figure B.6: Comparison between the parameters estimated by the Queiros (2007) method and
those estimated by the Castaing et al. (1990) method. The methods are applied to 2 h recordings
of the day 192 data. The values obtained from the recording, for which H0 is accepted/rejected,
are marked with •/×. The increment length is varied between 1 and 2048.
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Day 191 recordings in Fig. B.5. It is evident that Λs estimated by the Queiros (2007)
method is nearly identical to Λs estimated by the Castaing et al. (1990) method. On
the other hand, there are some deviations between the two λ2

s’s estimated by the two
methods.

Day 192 recordings in Fig. B.6. The 2 h recordings for which the superstatistical anal-
ysis in Fig. 6.22 suggests to accept/reject the hypothesis H0 are marked with •/×. It
is evident that Λs estimated by the Queiros (2007) method is nearly identical to Λs

estimated by the Castaing et al. (1990) method. On the other hand, there are some
deviations between the two λ2

s’s estimated by the the two methods. The deviation
for the 2 h recordings which apparently satisfy the hypothesis H0 are not necessarily
smaller than the deviation for the recordings in which H0 is rejected. Additionally,
there are some λ2

s which by the Queiros (2007) method are estimated to be zero and
which by the Castaing et al. (1990) method are estimated to be positive.

Exemplified by these three time series, it is shown that the Queiros (2007) estimation of Λs

is acceptable. This is because the estimation of Λs does not strongly depend on the value
of Ts. On the other hand, the estimation of λ2

s can (but does not have to) deviate from the
shape parameter of the corresponding symmetric Castaing distribution.

As a conclusion, the Queiros (2007) estimation of the time scale Ts is reasonable but
not perfect. Its value does not have major influence on the decision whether to reject the
turbulence hypothesis in form of H0 or not. It does however have an impact on the estimation
of λ2

s, i.e., on the strength of intermittency.
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Appendix C

Derivation of Fluctuation Statistics

C.1 Stationary Gaussian processes

Recall that the Gaussian stochastic process X = {Xn : n ∈ Z} has the following properties:

Xn ∼ Nµ,σ2 , (C.1a)

X̄m
n ∼ Nµ,σ2θ2

m
, and (C.1b)

X̄m
n

∣∣
Xn=xn

∼ Nφmxn+µ(1−φm),σ2(θ2
m−φ2

m) (C.1c)

with

θ2
m =

1

m2

m̃∑
k,k′=−m̃

γ(k − k′) and φm =
1

m

m̃∑
k=−m̃

γ(k), (C.2)

where γ(k) denotes the auto correlation function. Consequently, Eq. (8.3) yields

px(xn|X̄(m)
n = x̄n) =

Nφmxn+µ(1−φm),σ2(θ2
m−φ2

m)(x̄n)Nµ,σ2(xn)

Nµ,σ2θ2
m

(x̄n)
(C.3)

Defining zn = (xn − µ)/σ and z̄n = (x̄n − µ)/σ, the numerator reads

Nφmxn+µ(1−φm),σ2(θ2
m−φ2

m)(x̄n)Nµ,σ2(xn)

=
1

2πσ2
√
θ2
m − φ2

m

exp

[
−
(
z̄n − φmzn

)2

2(θ2
m − φ2

m)
− z2

n

2

]

=
1

2πσ2
√
θ2
m − φ2

m

exp

[
− θ2

m

2(θ2
m − φ2

m)

(
zn − z̄nφm

θ2
m

)2
]

exp

[
− z̄2

n

2θ2
m

]
=

1

σ2
N

0,
θ2m−φ2

m
θ2m

(
zn − z̄nφm

θ2
m

)
N0,θ2

m
(z̄n)

= N
µ+(x̄n−µ)φm

θ2m
,σ2 θ

2
m−φ2

m
θ2m

(xn)Nµ,σ2θ2
m

(x̄n) (C.4)
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concluding that Xn conditioned on X̄
(m)
n = x̄n is normally distributed with

E
[
Xn|X̄(m)

n = x̄n
]

= µ+ (x̄n − µ)
φm
θ2
m

(C.5a)

and

Var
[
Xn|X̄(m)

n = x̄n
]

= σ2 θ
2
m − φ2

m

θ2
m

. (C.5b)

Regarding the fluctuation F
(m)
n conditioned on X̄

(m)
n = x̄n, it is normally distributed with

E
[
F (m)
n |X̄(m)

n = x̄n
]

= (x̄n − µ)
φm − θ2

m

θ2
m

(C.6a)

and

Var
[
F (m)
n |X̄(m)

n = x̄n
]

= σ2 θ
2
m − φ2

m

θ2
m

(C.6b)

due to the linear transformation rule (A.9) of the normal distribution.

C.2 χ2-distributed white noise

The χ2-distributed white noise is defined by X = {Xn : n ∈ Z} with Xn ∼ χ2
k, where k

denotes the degrees of freedom. The moving average over m = 2m̃+ 1 (m̃ ∈ N0) time steps
reads

X̄(m)
n =

1

m

m̃∑
k=−m̃

Xn+k︸ ︷︷ ︸
∼χ2

mk

. (C.7)

The sum of χ2-distributed rv’s is again χ2-distributed by adding the degrees of freedom. The
distribution of X̄

(m)
n is given by

p̄(m)
n (x̄n) = mχ2

mk(mx̄n), (C.8)

where the linear transformation rule (2.21) is used. Furthermore, the conditioned distribution
of the moving average

X̄(m)
n

∣∣∣
Xn=xn

=
xn
m

+
1

m

m̃∑
k=1

[Xn−k +Xn+k]︸ ︷︷ ︸
∼χ2

(m−1)k

(C.9)
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is obtained by again using (2.21) and reads

p̄(m)
n (x̄n|Xn = xn) = mχ2

(m−1)k(mx̄n − xn) (C.10)

with 0 ≤ xn ≤ mx̄n. Inserting these distributions into (8.3) yields after some algebra

pn(xn|X̄(m)
n = xn) =

Am,k
mx̄n

[(
xn
mx̄n

)k−2(
1− xn

mx̄n

)(m−1)k−2
]1/2

(C.11)

with normalisation constant

Am,k =
Γ
(
mk
2

)
Γ
(
k
2

)
Γ
(
mk
2
− k

2

) . (C.12)

According to (8.4), the distribution of the fluctuation F
(m)
n conditioned on X̄

(m)
n = x̄n is

given by applying the linear transformation rule (2.21). Its mean and variance are given by

(8.5) and are related to the mean and variance of pn(xn|X̄(m)
n = xn). Therefore, the moments

E
[
Xr
n|X̄(m)

n = x̄n

]
for r ∈ {0, 1, 2} need to be computed. They are given by∫ mx̄n

0

dxnx
r
npn(xn|X̄(m)

n = x̄n) = Am,kCr,m,k ×mrx̄rn (C.13)

with

Cr,m,k =

∫ 1

0

dt tr
[
tk−2(1− t)(m−1)k−2

]1/2
. (C.14)

The integral Cr,m,k can be evaluated as follows. Setting r = 0 in (C.13) leads to 1 =
Am,kC0,m,k and thus C0,m,k = 1/Am,k. Noting that Cr,m,k = C0,m′r,k

′
r

with m′r = 1+(m−1)k/k′r
and k′r = k + 2r, the integral Cr,m,k reads

Cr,m,k =
Γ
(
k
2

+ r
)

Γ
(
mk
2
− k

2

)
Γ
(
mk
2

+ r
) . (C.15)

Using the properties of the Γ-function, a convenient formulation for r ≥ 1 can be found by

Cr,m,k = C0,m,k

r−1∏
l=0

k
2

+ l
mk
2

+ l
(C.16)

so that

E
[
Xr
n|X̄(m)

n = x̄n
]

= mrx̄rn
Cr,m,k
C0,m,k

= mrx̄rn

r−1∏
l=0

k + 2l

mk + 2l
(C.17)

As a consequence of (8.5), the mean and variance of the conditioned fluctuation read

E
[
F (m)
n |X̄(m)

n = x̄n
]

= 0 and Var
[
F (m)
n |X̄(m)

n = x̄n
]

= 2x̄2
n

m− 1

mk + 2
. (C.18)
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That is, it has vanishing expectation value, whereas its standard deviation is proportional
to x̄n. The proportional factor is given by

α(m) =

√
2(m− 1)

mk + 2
(C.19)

which for large m tends to
√

2/k.

C.3 Geometric AR(1) process

Inserting the definition of the log-normal distribution, the numerator of

pn(xn|X̄(m)
n = x̄) =

Lxn,σ2
Z
(x̄n)Lu,λ2(xn)

Lu,λ2+σ2
Z
(x̄n)

(C.20)

can be written as

Lxn,σ2
Z
(x̄n)Lu,λ2(xn) =

1

2πσZλxx̄n
exp

[
− 1

2σ2
Z

ln2 x̄n
xn
− 1

2λ2
ln2 xn

u

]
. (C.21)

The exponent can be written as

− 1

2σ2
Z

ln2 xn
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− 1

2λ2
ln2 xn
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= − 1
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− 1

2(λ2 + σ2
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ln2 x̄n
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. (C.22)

Defining

ucond = u
( x̄n
u

) λ2

λ2+σ2
Z and λ2

cond = λ2 σ2
Z

λ2 + σ2
Z

, (C.23)

the exponent becomes

− 1

2σ2
Z

ln2 xn
x̄n
− 1

2λ2
ln2 xn

u
=

1

2λ2
cond

ln2 xn
ucond

− 1

2(λ2 + σ2
Z)

ln2 x̄n
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(C.24)
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so that the numerator reads

1

2πσZλxx̄n
exp

[
− 1

2σ2
Z

ln2 x̄n
xn
− 1

2λ2
ln2 xn

u

]
= Lucond,λ

2
cond

(xn)Lu,λ2+σ2
Z
(x̄n). (C.25)

As a consequence,
pn(xn|X̄(m)

n = x̄) = Lucond,λ
2
cond

(xn). (C.26)

C.4 Symmetry of the stationary AR(1) process

The stationary AR(1) process X = {Xn : n ∈ Z} has an important symmetry: the distribu-
tion of Xn−k conditioned on Xn = xn is the same as the distribution of Xn−k conditioned on
Xn = xn for any k ∈ N.

This is shown as follows. The stationary AR(1) process is defined by

Xn+1 = aXn + σξn
√

1− a2 (C.27)

with |a| < 1, σ2 > 0, and {ξn : n ∈ Z} denoting standard Gaussian white noise. The
distribution of Xn+1 conditioned on Xn = xn can directly be read off from Eq. (C.27). It is
given by

pn+1(xn+1|Xn = xn) = Naxn,σ2(1−a2)(xn+1). (C.28)

Due to stationary, this distribution is equivalent to the distribution of Xn conditioned on
Xn−1 = xn−1. Hence, the distribution of Xn−1 conditioned on Xn = xn reads

pn−1(xn−1|Xn = xn)
(2.39)
=

pn(xn|Xn−1 = xn−1) pn−1(xn−1)

pn(xn)

stationarity
=

Naxn−1,σ2(1−a2)(xn)N0,σ2(xn−1)

N0,σ2(xn)
. (C.29)

After a bit of algebra, this equation becomes

pn−1(xn−1|Xn = xn) = Naxn,σ2(1−a2)(xn−1) (C.30)

so that
Xn−1

∣∣
Xn=xn

∼ Xn+1

∣∣
Xn=xn

. (C.31)

Therefore, it is convenient to write

Xn±1 = aXn + σηn;±1

√
1− a2 (C.32)

with ηn;±1 being two independent N0,1-distributed rv’s. Iterating this equation k ∈ N times
results in

Xn±k = akXn + σ
√

1− a2

k∑
l=1

ak−lηn;±l, (C.33)

where the rv’s ηn;±1, . . . , ηn;±k, each of which is N0,1-distributed, are mutually independent
and independent from Xn.

133



Bibliography

Abe, S. & Thurner, S. 2005 Complex networks emerging from fluctuating random graphs:
Analytic formula for the hidden variable distribution. Phys. Rev. E 72, 036102.

Abramowitz, M. & Stegun, I. A. 1964 Handbook of Mathematical Functions with For-
mulas, Graphs, and Mathematical Tables . Dover.

Abul-Magd, A.Y. 2006 Superstatistics in random matrix theory. Physica A 361, 41–54.

Al-Hussaini, E.K. & Turner, L.F. 1979 Asymptotic performance of 2-sample non-
parametric detectors when detecting non-fluctuating signals in non-gaussian noise per-
formance of 2-sample nonparametric detectors when detecting non-fluctuating signals in
non-gaussian noise. IEEE Trans. Inf. Theory 25, 124–127.

Anselmet, F., Gagne, Y., Hopfinger, E.J. & Antonia, R.A. 1984 High-order ve-
locity structure functions in turbulent shear flows. J. Fluid Mech. 140, 63–89.

Ausloos, M. & Ivanova, K. 2003 Dynamical model and nonextensive statistical mechan-
ics of a market index on large time windows. Phys. Rev. E 68, 046122.

Azzalini, A. 1985 A class of distributions which includes the normal ones. Scand. J. Statist.
12, 171–178.

Baaquie, B.E. 2004 Quantum Finance. Cambridge University Press.

Baiesi, M., Paczuski, M. & Stella, A.L. 2006 Intensity thresholds and the statistics
of the temporal occurrence of solar flares. Phys. Rev. Lett. 96, 051103.

Batchelor, G.K. & Townsend, A.A. 1949 The nature of turbulent motion at large
wave-numbers. Proc. R. Soc. London A .

Beaulieu, N. C., Abudayya, A. A. & McLane, P. J. 1993 On approximating the
distribution of a sum of independent lognormal random-variables. In IEEE WESCANEX
93: Communications, Computers and Power in the Modern Environment , pp. 72–79.
Saskatoon, Canada.

Beck, C. 2004a Generalized statistical mechanics of cosmic rays. Physica A 331, 173–181.

134



Beck, C. 2004b Superstatistics in hydrodynamic turbulence. Physica D 193, 195–207.

Beck, C. 2004c Superstatistics: theory and applications. Continuum mechanics and ther-
modynamics 16 (3), 293 – 304.

Beck, C. 2007 Statistics of three-dimensional lagrangian turbulence. Phys. Rev. Lett. 98,
064502.

Beck, C. & Cohen, E.G.D. 2003 Superstatistics. Physica A 322, 267–275.

Beck, C., Cohen, E.G.D. & Rizzo, S. 2005a Atmospheric turbulence and superstatis-
tics. Europhys. News 36, 181–183.

Beck, C., Cohen, E.G.D. & Swinney, H.L. 2005b From time series to superstatistics.
Phys. Rev. E 72, 056133.

Boettcher, F. 2005 Statistische analyse der atmosphärischen turbulenz und allgemeiner
stochastischer prozesse. PhD thesis, Carl von Ossietzky Universität Oldenburg.

Boettcher, F., Barth, S. & Peinke, J. 2007 Small and large scale fluctuations in
atmospheric wind speeds. Stoch. Environ. Res. Risk Assess. 21, 299–308.

Boettcher, F., Renner, C, Waldl, H. P. & Peinke, J. 2003 On the statistics of
wind gusts. Bound.-Layer Meteorol. 108, 163–173.

Box, G.E.P. 1953 A note on regions for tests of kurtosis. Biometrika 40, 465–468.

Briggs, K. & Beck, C. 2007 Modelling train delays with q-exponential functions. Physica
A 378, 498–504.

Bronstein, I.N., Semendjajew, K.A., Musiol, G. & Mühlig, H. 1999 Taschenbuch
der Mathematik . Harri Deutsch.

Burton, T., Sharpe, D., Jenkins, N. & Bossanyi, E. 2004 Wind Energy Handbook .
John Wiley.

Cardieri, P. & Rappaport, T.S. 2000 Statistics of the sum of lognormal variables in
wireless communications. In IEEE Vehicular Technology Conference Proceedings 2000 , pp.
1823–1827. Tokyo, Japan.

Casella, G. & Berger, R.L. 2002 Statistical Inference. Duxbury.

Castaing, B., Gagne, Y. & Hopfinger, E. J. 1990 Velocity probability density-
functions of high reynolds-number turbulence. Physica D 46, 177–200.

Chavanis, P.H. 2006 Coarse-grained distributions and superstatistics. Physica A 359, 177–
212.

135



Cleve, J., Dziekan, T., Schmiegel, J., Barndorff-Nielsen, O.E., Pearson,
B.R., Sreenivasan, K.R. & Greiner, M. 2005 Finite-size scaling of two-point statis-
tics and the turbulent energy cascade generators. Phys. Rev. E 71, 026309.

Daniel, W.W. 1990 Applied Nonparametric Statistics . PWS-KENT.

Daniels, K.E., Beck, C. & Bodenschatz, E. 2004 Defect turbulence and generalized
statistical mechanics. Physica D 193, 208–217.

Donnelly, R.J. 1999 Cryogenic fluid dynamics. J. Phys.-Condens. Matter 11, 7783–7834.

Eckhardt, B., Faisst, H., Schmiegel, A. & Schneider, T.M. 2008 Dynamical sys-
tems and the transition to turbulence in linearly stable shear flows. Phil. Trans. R. Soc.
A 366, 1297–1315.

Eckhardt, B. & Schneider, T.M. 2008 How does flow in a pipe become turbulent?
Eur. Phys. J. B 64, 457–462.

Farge, M., Kevlahan, N.K.R., Perrier, V. & Schneider, K. 1999 Turbulence anal-
ysis, model ling and computing using wavelets. In Wavelets in Physics (ed. J.C. van den
Berg). Cambridge University Press.

Fefferman, C.F. 2000 Existence and smoothness of the navier-stokes equation,
http://www.claymath.org/millennium/navier-stokes equations.

Frisch, Uriel 1995 Turbulence. Cambridge University Press.

Granger, C. W. J. & Newbold, P. 1976 Forecasting transformed series. J. R. Stat.
Soc. B 38, 189–203.

Hartung 2005 Statistik . Oldenbourg Wissenschaftsverlag GmbH.

van der Hoven, I. 1957 Power spectrum of horizontal wind speed in the frequency range
from 0.0007 to 900 cycles per hour. J. Meteorol. 14, 160–164.

Johnson, N.L., Kemp, A.W. & Kotz, S. 2005 Univariate Discrete Distributions . John
Wiley.

Johnson, N.L., Kotz, S. & Balakrishan, N. 1994 Continuous Univariate Distribu-
tions . John Wiley.

Jung, S. & Swinney, H.L. 2005 Velocity difference statistics in turbulence. Phys. Rev. E
72, 026304.

Kantz, H. & Schreiber, T. 2004 Nonlinear Time Series Analysis . Cambridge University
Press.

136



Kassam, S.A. & Thomas, J.B. 1976 Asymptotically robust detection of a known signal
in contaminated non-gaussian noise. IEEE Trans. Inf. Theory 22, 22–26.
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anti-correlated ∼s, 16
continuous, 8
correlated ∼s, 16
identically distributed ∼s, 9
independent ˜s, 15
independent identically distributed ˜s, 15
standardised binomial, 113
standardised chi-square, 115
uncorrelated ∼s, 16
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stress tensor, 38
superstatistics, 50
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