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1 Chapter 1

Introduction

Particle physics aims at gaining a fundamental understanding of the elementary con-
stituents of matter and radiation, and of the interactions between them. While researchers
and philosophers speculated about the structure of matter for at least 2500 years, it was
the research of the past century that revolutionized our physical understanding of this
�eld. Triggered by the discovery of the electron (Thompson, 1887) and the realization that
atoms must have a substructure (Rutherford, 1909), physicists started to systematically
analyze the build-up of matter. It soon became clear that the physics at sub-atomic length
scales is an incredibly fascinating �eld and far more complex than expected.

In a constant interplay between theory and experiment, more and more details on the
structure of matter were resolved and the theoretical understanding started to improve
in the early 20th century. Finally, the work culminated in the formulation of the so-
called Standard Model (SM) of particle physics in the 1960s [1�8]. This theoretical model
contains 12 elementary particles, which are the fundamental constituents of matter (cf.
Fig. 1.1(a)). Furthermore, it describes the interaction between these particles and allows
us to make accurate predictions of their scattering behavior. It groups together three of the
four known fundamental forces, namely the electromagnetic force, the weak force and the
strong force. Each of these forces is mediated by so-called gauge bosons (cf. Fig. 1.1(b)).
The mediator of the electromagnetic force is the photon, the quantum of light. The force
carriers of the weak force are called weak gauge bosons and the ones of the strong force
are the gluons.

In the past decades, the predictions of the SM were thoroughly tested in a number of
large-scale experiments. Today, all of the elementary SM particles are discovered and the
theoretical predictions made by the SM were con�rmed to astonishing accuracy. Thus,
there can be little doubt that the Standard Model is an excellent description of the known
elementary particles and their interactions.

Despite the unquestionable success of the Standard Model, there still is a number of
theoretical and experimental challenges left:
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1. Introduction

(a) (b)

Figure 1.1.: (a) The 12 matter particles of the Standard Model. (b) The force carriers
assigned to the fundamental forces that are combined in the Standard Model.

� One of the fundamental problems is the origin of the masses of gauge bosons and
elementary particles such as electrons and quarks. A priori, the theory contains
massless particles. Since the gauge bosons that are mediating the weak force and
electrons and quarks are observed to be massive in experiment, a mechanism to
give masses to them is mandatory. The Standard Model incorporates a mechanism
called spontaneous symmetry breaking to explain the masses [9, 10]. Through that
mechanism one obtains the prediction of a massive Higgs boson which should be
observable at colliders if this mechanism is realized in nature. Despite enormous
e�orts, the existence of this Higgs boson has not yet been con�rmed experimentally.

� Gravity � the fourth fundamental force in nature � is not included in the model.

� From cosmological observations we know that only about 4% of the matter in the
universe is visible and made up from baryons. So far it is not known what the rest
is made up from. Additional 23% of the matter content of the universe is called
dark matter. It is non-baryonic, non-luminous and cannot be explained within the
Standard Model [11]. The residual 73% of the overall energy density of the universe
is called dark energy. It is an energy form that permeates all of the universe and
cosmology has not �nally decided what it is.

� The forces of the Standard Model possess signi�cantly di�erent coupling constants.
Theorists however expect the existence of a more fundamental Grand Uni�ed Theory
which describes the three forces with just one coupling constant [12,13].

These problems have motivated theorists to work on possible solutions. Since the Standard
Model is such a well-tested theory, the most promising new models are direct extensions.
Those new models contain the SM and add a number of additional particles and/or inter-
actions. One of the most promising extensions is the so-called Minimal Supersymmetric
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Standard Model (MSSM) (see [14, 15] and references therein) where one practically dou-
bles the content of the Standard Model by demanding that each Standard Model particle
gets assigned a supersymmetric partner that only di�ers from the original particle by an
amount of 1/2 in spin. This implies that bosons obtain fermions as superpartners and
vice versa. This symmetry between fermions and bosons is called Supersymmetry (SUSY).
The MSSM may provide solutions for the above mentioned shortcomings of the Standard
Model.

Just like the SM, the MSSM allows us to predict the scattering behavior of particles
after a collision. While no supersymmetric particle has ever been observed, the upcoming
experiment of the Large Hadron Collider (LHC) at CERN will test the very energy scales
at which extensions of the Standard Model predict new particles. The LHC is designed to
search for the Higgs boson and extensions of the Standard Model like the MSSM.

Since the Higgs boson has not been found in experiments so far, it is important to investi-
gate mechanisms that explain the observed masses within other models. In the MSSM one
has the prediction of �ve physical Higgs bosons. In this thesis, we consider two of these
Higgs bosons more closely in two scattering processes, which should allow for a direct com-
parison with experimental results that will be obtained at the LHC. For the experimental
con�rmation it is important to know the production and decay mechanisms of these Higgs
bosons at the colliders built for their search. The main motivation for performing calcu-
lations for collider experiments is to obtain physical predictions for quantities that can be
measured.

The LHC is a proton-proton collider. Besides two up quarks and one down quark, protons
consist mainly of massless gluons. Thus, the so-called gluon fusion process is an important
production mechanism for Higgs bosons at the LHC. Alongside the production of scalar
and pseudoscalar Higgs bosons in the gluon fusion process, we investigate their decay into
two photons, which could be an important channel for discovering Higgs bosons in case
they are rather light. Massless particles such as gluons and photons cannot couple directly
to Higgs bosons which were introduced to generate masses in the �rst place. For this reason
gluons and photons can only couple to Higgs bosons via intermediate, massive particles
in the SM and MSSM. This process is therefore sensitive to new massive particles, which
can couple to the Higgs boson. Regarding fermions as intermediate particles, in the SM
the top quark provides for the dominant contribution as it is the fermion with the largest
mass.

In this thesis we investigate the production of pseudoscalar and scalar Higgs bosons via
the gluon fusion process in the framework of the MSSM. The predictions the theory can
provide for are only approximate. For the processes under consideration, to leading order
(LO) in the strong coupling, the prediction is not a very good approximation to reality.
The goal from the theory side is to access higher orders in the calculation to obtain better
predictions. We calculate next-to-leading order (NLO) corrections that include contribu-
tions from quarks that are SM particles as well as their superpartners, the squarks. The

3



1. Introduction

contributions from top quarks and their superpartners are known. The aim of the present
thesis is to include the contributions from the second heaviest quarks, the bottom quarks
and their superpartners into the calculation. The latter contributions can be enhanced in
the MSSM in comparison to the SM. In addition to the superpartners of the quarks, the
massive superpartner of the gluon, the gluino has to be included into the calculation as
well.
This thesis introduces the concept of Supersymmetry in chapter 2. The parts relevant
for our purposes of a phenomenological model of SUSY (MSSM) are presented in chapter
3. The regularization and renormalization with an emphasis on our calculations will be
described in chapter 4. In chapter 5 the method of asymptotic expansions that is applied
to the two-loop calculations performed in the context of this thesis is explained.
After these introductory chapters, chapter 6 presents results for the lightest scalar and
pseudoscalar MSSM Higgs bosons decaying into two photons. In particular, the results for
the partial decay widths of the photonic Higgs decay are investigated in terms of analytic
expressions for the leading terms in certain mass hierarchies and in terms of numerical
graphs. We especially investigate the in�uence of top quarks and their superpartners vs.
bottom quarks and their superpartners on the amplitude and the decay rate.
The second main part of the results is presented in chapter 7. Those are the NLO-SQCD
corrections to the production of scalar and pseudoscalar Higgs bosons in the gluon fusion
process. Here, the bottom quarks and their superpartners have been included into the
calculations as well. The thesis concludes with a summary and a short outlook.
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2 Chapter 2

Supersymmetry (SUSY)
Supersymmetry (SUSY) denotes a symmetry between bosons and fermions. The theoretical
foundations of supersymmetric theories were developed more than 30 years ago. As alluded
to in the introduction, SUSY represents an appealing theoretical concept and potentially
provides answers to some open questions within the Standard Model of particle physics
(SM). In order to gain a better understanding of the concept of SUSY, this chapter begins
with a brief historical overview. Subsequently, we discuss the main features of the Wess-
Zumino Model and introduce the concept of super�elds. Finally, a master Lagrangian for
supersymmetric gauge �eld theories is presented.

2.1. The Beginning
The starting point for SUSY is a theorem formulated by Coleman and Mandula in 1967 [16],
which usually is referred to as a �no-go� theorem. It states that every Lie group, which
contains the Poincaré group P and an inner symmetry group G (e.g., the gauge group
G = SU(3)C ⊗ SU(2)L ⊗ U(1)Y of the SM) has to be a direct product P ⊗ G. For a Lie
group, the underlying product of the generators is the commutator [. , .], which is de�ned
as [A,B] = AB − BA for operators A and B. The Poincaré group is an extension of the
Lorentz group where, in addition to the Lorentz rotations and boosts (Mµν), translations
in space and time (P µ) are included as well. Particle states in the Standard Model are
labeled with quantum numbers which are external (m, s, ~p, s3) and inner quantum numbers
(Q, I, I3, Y, ...). Let T a be the generators of an inner symmetry group G. These are
independent of spin and momentum. The statement of the �no-go� theorem is

[Mµν , T a] = 0 and [P ρ, T a] = 0,

whereMµν are the generators of the rotations and P ρ denote the generators of the transla-
tions of the Poincaré group. This means that the T a possess a trivial Lorentz-transformation
since they do not change spin.
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2. Supersymmetry (SUSY)

Further, it follows that a new group with generators Qa, for which holds

[Mµν , Qa] 6= 0 and [P ρ, Qa] 6= 0

is not allowed due to the theorem. This has to be understood in the sense that a new
symmetry can only predict particles with the same spin and mass. A symmetry is de�ned
to be a group of transformations that leave the action invariant and whose generators ful�ll
a certain algebra. A new symmetry that introduces particles with the same spin and mass
is experimentally excluded because these particles would already have been observed in
experiments. In other words, this means that no multiplet can group particles of di�erent
spins or masses together. There seems to be no way to bypass this no-go theorem and a
non-trivial extension of a Quantum Field Theory (QFT) seems impossible.
However, this theorem does only hold for Lie algebras, where the product among genera-
tors is the commutator [. , .]. It does not apply to fermionic symmetries. For an extension
of the group structure one is not allowed to use commutator but anti-commutator ({. , .})
relations among group generators are not excluded. The anti-commutator of two operators
A and B is de�ned as {A,B} = AB + BA. The idea of circumventing the theorem and
constructing new models is to enlarge the algebra by anti-commutator relations. One can
divide the set of operators into even (bosonic) and odd (fermionic) operators. The associa-
tion behind those names are bosons that possess integer spin and fermions with half-integer
spin. If one denotes even (odd) operators by B (F ) then a SUSY algebra possesses the
following structure:

[F,B] ∼ F,

[B,B] ∼ B,

{F, F} ∼ B.

(2.1)

The �rst expression in Eq. (2.1) indicates that the commutator of an odd and an even
operator results in an odd operator and so forth. Therefore, a SUSY algebra makes a
distinction between even and odd elements.
If one introduces, in addition to the Lorentz rotations and translations, a fermionic gen-
erator Qa with spin 1/2 one obtains a so-called SUSY algebra or super algebra or graded
Lie algebra. With the help of this fermionic operator, bosonic states are transformed into
fermionic ones and vice versa:

Qa |B〉 = |F 〉 and Qa |F 〉 = |B〉 .

A super algebra is the only possibility of a graded Lie algebra that mixes integer and half-
integer spin and changes statistics. It connects fermions and bosons. For a super algebra
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2.1. The Beginning

with one (N = 1) fermionic generator Q the relations of Eq. (2.1) read

[P µ, Qa] = 0,

[Qa,M
µν ] = (Σµν)abQb,

{Qa, Qb} = 2 (γµ)ab Pµ.

(2.2)

The indices a, b are spinor indices. For completeness, the known relations for the Poincaré
algebra are given by

[Pµ, Pν ] = 0,

[Pµ,Mµν ] = i (gµρPσ − gµσPρ) ,
[Mµν ,Mρσ] = i (gνρMµσ − gνσMµρ − gµρMνσ) ,

(2.3)

where P µ denote the generators of the translation, Mµν are the Lorentz rotations, Q is the
charge conjugate of Q and Σµν = i

4
[γµ, γν ]. The γµ are the Dirac γ-matrices which ful�ll the

Cli�ord algebra {γµ, γν} = 2gµν with the metric tensor gµν . Together, Eqs. (2.2) and (2.3)
form the super Poincaré algebra. Since Q does not commute with the Lorentz rotations we
notice that it has a non-trivial Lorentz transformation that possesses a �non-zero� spin.
Haag, Lopuszanski and Sohnius showed in 1974 [17], that the above described graded Lie
algebra is the only non-trivial uni�cation of internal and space-time symmetries compatible
with Quantum Field Theory. With this extension of the algebra, it is possible to group
particles with integer and half-integer spin together into a multiplet if the number of bosonic
degrees of freedom (d.o.f.) equals the number of fermionic degrees of freedom. But then
one can show that for every fermionic state there is a bosonic one with equal mass. Let |F 〉
be a fermionic state with mass m, |B〉 = Qa |F 〉 and P 2 |F 〉 = m2 |F 〉 with the momentum
operator P . It then follows

P 2 |B〉 = P 2Qa |F 〉 = Qam
2 |F 〉 = m2 |B〉 .

Thus, for every fermionic state there is a bosonic one with equal mass m.
This is excluded experimentally, because otherwise the supersymmetric partner particles
of the Standard Model particles should have been observed so far. As a consequence,
if supersymmetry exists it has to be broken in nature. Models with more than one su-
persymmetric charge do not lead to chiral fermions [18]. That is why they are excluded
phenomenologically and we restrict ourselves henceforth to N = 1 supersymmetry.

2.1.1. The Wess-Zumino Model
In 1974, Wess and Zumino constructed the �rst linear realization of supersymmetry in four
dimensions [19]. They worked out transformations that transform boson �elds into fermion
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2. Supersymmetry (SUSY)

�elds and vice versa. We sketch the idea of SUSY transformations along the lines of their
publication.
The in�nitesimal supergauge transformations for two scalar �elds A, B and a fermion
�eld ψ are given by [19]

δA = iαψ (B → F ),

δB = iαγ5ψ (B → F ),

δψ = ∂µ (A− γ5B) (F → B).

Here, a complex scalar �eld φ = (A+ iB) /
√

2 and a Majorana fermion ψ = ψc = Cψ
T
are

given. C is the charge conjugation matrix that satis�es CγTµC
−1 = −γµ, CT = C−1 = −C

and [C, γ5] = 0. Here, α is an in�nitesimal anti-commuting spinor parameter. From the
transformations the mass dimension of α can be determined. The transformations given
above preserve mass dimension, Lorentz invariance and parity. As the mass dimension of
[ψ] = 3

2
, [A] = [B] = 1, it follows that the one of [α] = −1

2
= [α]. In Ref. [19] local

gauge transformations are applied, which means that the generator of the transformations
depends on the locality, i.e., α = α(x). Assuming that α = const the calculations and
results simplify a lot but nevertheless, the main ideas of the paper become clear.
As a starting point, we perform two SUSY transformations successively. The commutators
of two such transformations are examined. A transformation with parameter α1 (α2) is
denoted by δ1 (δ2). For the commutators of SUSY transformations, which are applied to
boson �elds, one obtains

[δ1, δ2]A = ζµ(∂µA),

[δ1, δ2]B = ζµ(∂µB),

where ζµ = 2iα1γ
µα2. One can read o� the result that applying the transformation twice

transforms a boson �eld back into a boson �eld (B → F → B). This corresponds to a
translation in space-time as ∂µA indeed corresponds to the application of the momentum
operator Pµ. It means that the result of applying a SUSY transformation twice leads to a
translation in space-time, which belongs to the Poincaré algebra, i.e., remains within the
super algebra. In this sense, one says that the algebra closes. For commutators applied to
fermion �elds the result reads

[δ1, δ2]ψ = ζµ(∂µψ) + i(α2γνα1)γν (γµ∂µ)ψ.

The algebra only closes, if the second term on the right hand side vanishes. This is only
the case if the Dirac equation i 6∂ψ = 0 holds. Fermions that obey the Dirac equation are
said to be on-shell. Thus, if the Dirac equation is imposed we obtain

[δ1, δ2]ψ = ζµ(∂µψ).
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2.1. The Beginning

Also, we observe that applying the SUSY transformation two times in a row on a fermion
�eld (F → B → F ), one again gets back a fermion �eld that is translated in space-time.
Our goal is to �nd a closed algebra for fermion �elds with arbitrary masses and not being
restricted to on-shell fermions (two d.o.f.). If the fermion �eld is o�-shell, the number of
bosonic degrees of freedom does not balance the fermionic one any longer. To reinstate
this equality of bosonic and fermionic degrees of freedom, in addition to the boson �elds
A and B one introduces two more �elds which are denoted by F and G. One then has 4
bosonic d.o.f., which correspond to the 4 fermionic ones an o�-shell spinor possesses. With
the new �elds, the so-called auxiliary �elds, one obtains the SUSY transformations listed
below [19].

δA = iαψ,

δB = iαγ5ψ,

δψ = ∂µ (A− γ5B) γµα + Fα +Gγ5α,

δF = iαγµ∂µψ,

δG = iαγ5γ
µ∂µψ.

For the application of the SUSY transformations we now obtain

[δ1, δ2]A = ζµ(∂µA),

[δ1, δ2]B = ζµ(∂µB),

[δ1, δ2]F = ζµ(∂µF ),

[δ1, δ2]G = ζµ(∂µG),

and for the fermion �eld
[δ1, δ2]ψ = ζµ(∂µψ).

Hence, the algebra closes. Again, ζµ = 2iα1γ
µα2. The newly introduced auxiliary �elds

are non-physical. As F and G possess mass dimension two, a kinetic term for them is
forbidden. It would be of the form (∂µF )2 and would have a mass dimension six, which is
not allowed in the Lagrangian with mass dimension four.
By grouping the four boson �elds and the spinor �eld together, we obtain a multiplet in
which the number of bosonic and fermionic d.o.f. are matched, as required. The Lagrangian
of the multiplet (A,B, F,G, ψ) is

L = −1

2
(∂µA) (∂µA)− 1

2
(∂µB) (∂µB)− 1

2
iψγµ∂µψ +

1

2

(
F 2 +G2

)
.

From the Euler-Lagrange equations it follows that F = 0 and G = 0. If one examines this
Lagrangian under a SUSY transformation, one �nds that it is invariant only up to a total
derivative [19]. Therefore, the action S =

∫
d4xL is invariant.

Finally, it should be noted that Wess and Zumino were not the �rst to consider super-
symmetry. There is a really nice book which narrates the beginnings of SUSY by letting

9



2. Supersymmetry (SUSY)

the protagonists have their say [20]. Golfand and Likhtman [21] were the �rst to consider
SUSY-QED. Volkov and Akulov [22, 23] laid the foundations for spontaneously broken
SUSY. They were able to obtain Goldstone particles with spin 1/2 due to an extension of
the Poincaré group. Volkov and Soroka [24] were the �rst to consider local supersymmetry
which leads to supergravity.

2.2. Steps Towards a Phenomenological Model of SUSY
In the last section we introduced the concept of SUSY transformations. There is still
some work to be done to attain a viable phenomenological model for supersymmetry.
In this thesis we will focus on the minimal supersymmetric extension of the Standard
Model (MSSM). Its essential features needed for this work will be described in chapter
3. Beforehand, the super�eld formalism will be introduced that provides general rules for
how to construct supersymmetric Lagrangians. A master Lagrangian for supersymmetric
theories will be presented at the end of this section. A very clear introduction to SUSY
and the MSSM is given in the book by Baer and Tata [18].

2.2.1. Superfields
First, we establish supersymmetric multiplets. A chiral multiplet is composed of

S =
1√
2

(A+ iB) ,

ψL =
1− γ5

2
ψ,

F =
1√
2

(F + iG) .

S, ψL and F form a (left) chiral supermultiplet. We observe that, as required, the number
of d.o.f. of ψL is equal to the number of scalar d.o.f. of F and S. The Lorentz group can
be decomposed into two fundamental representations

(
1
2
, 0
)
and

(
0, 1

2

)
. A

(
1
2
, 0
)
object

transforms as a left-handed two-component Weyl spinor ψL,A with A = 1, 2, whereas a(
0, 1

2

)
object transforms as a right-handed two-component Weyl spinor ψȦR with Ȧ = 1, 2.

Spinors of the two fundamental SU(2) groups are distinguished by di�erent indices A and Ȧ.
If we combine both representations by a direct sum, i.e.,

(
0, 1

2

)
⊕
(

1
2
, 0
)
, a four-component

Dirac spinor is given by

ψDa =

(
ψL,A
χȦR

)
. (2.4)

ψL and χR are independent. Since (−iσ2ψ
∗
L) with the Pauli matrix σ2 transforms as a(

0, 1
2

)
representation, it transforms as χR. Consequently, we are able to construct a four-

10



2.2. Steps Towards a Phenomenological Model of SUSY

component spinor whose right-handed piece is completely determined by its left-handed
piece:

ψa =

(
ψL,A

(−iσ2ψ
∗
L)Ȧ

)
. (2.5)

ψa is called a Majorana spinor with χR = (−iσ2ψ
∗
L). In the following the four-component

Majorana spinor notation is used. ψDa then can be thought of as a combination of two
Majorana spinors, like complex numbers as a combination of two real ones. Usually, one
uses projectors to project out the left-handed (upper) components or right-handed (lower)
components of spinor �elds like ψR,L = PR,Lψ with PR,L = (1±γ5)/2 and the representation
of γ5 = diag(−1,−1, 1, 1).
The question now is how to combine S, ψL and F into a super�eld. The problem we are
facing is that S and ψL transform di�erently under Lorentz transformations. Therefore,
it is not obvious how to combine them into one super�eld. We are forced to introduce a
new Majorana spinor θ with components θ1, θ2, θ3 and θ4, which can be combined with
ψ to make a Lorentz scalar that can be �added� to S [18]. As ψ obeys anti-commutation
relations, the components of θ are taken to be anti-commuting. They are called Grassmann
numbers and ful�ll {θa, θb} = 0 from which θaθa = 0 (no sum over a) is concluded. Further,
{θa, ψb} = 0. The Grassmann numbers are not operators but anti-commuting numbers.
They anti-commute with fermionic operators and commute with bosonic operators. We
impose the Majorana condition θ = θTC. Therefore, the components of the conjugated
spinor θ are completely determined in terms of the four θa.
General super�elds are denoted by φ̂ = φ̂ (x, θ). A hat is put on top of the super�eld to
distinguish it from usual �elds. x and θ span the superspace. A super�eld can be expanded
in terms of the various possible θ combinations.
A general scalar super�eld can be expressed as [18]

φ̂ (x, θ) = S − i
√

2 θγ5ψ −
i

2

(
θγ5θ

)
M+

1

2

(
θθ
)
N

+
1

2

(
θγ5γµθ

)
V µ + i

(
θγµθ

){
θ

(
λ+

i√
2
6∂ψ
)}

− 1√
4

(
θγ5θ

)2
(
D − 1

2
�S

)
.

(2.6)

Here, the coe�cients are sixteen component �elds. S, M, N and D are the scalar ones,
V µ denotes a vector �eld and ψ and λ are spinor �elds. As demanded, the eight scalar
d.o.f. balance the eight spinorial d.o.f.. If the lowest spin component has spin-zero, one
speaks of a chiral scalar super�eld, otherwise of a chiral spinor super�eld. Eq. (2.6) is not
unique but it can be regarded as the canonical form in the sense that any scalar super�eld
can be straightforwardly reduced to Eq. (2.6) with identities among Grassmann variables.

11



2. Supersymmetry (SUSY)

We de�ne the super�eld to be real φ̂† = φ̂. Therefore, it follows that the boson �elds are
real and the fermion �elds are Majorana ψ = ψc and λ = λc.
The spinorial generator Q of SUSY transformations can be realized as a di�erential opera-
tor in superspace acting on super�elds φ̂ (x, θ). First, derivatives with respect to Grassmann
numbers have to be de�ned:

∂θa
∂θb

= δab,
∂θa

∂θb
= δab.

From θa = cabθb it follows that
∂θa
∂θb

= cab.

∂

∂θc
(θaθb) = δacθb − θaδbc,

where we used the fact that the anti-commutator of two θs is zero. For the action of the
spinor operator Q on super�elds one obtains [18]

[αQ, φ̂] = i

(
α
∂

∂θ
+ iα 6∂θ

)
φ̂. (2.7)

It changes the Lorentz properties of the individual terms of the super�eld by taking away
or adding a θ term. With the help of Eq. (2.7) it can be computed how a general super�eld
changes under an in�nitesimal supersymmetric transformation. The variation of φ̂ is δφ̂ =
i[αQ, φ̂] and by working δφ̂ into the canonical form of Eq. (2.6) the transformation laws of
the component �elds are obtained. Ultimately, the transformation laws of the components
of a general scalar super�eld are given by [18]

δS = i
√

2αγ5ψ,

δψ = −αM√
2
− iγ5αN√

2
− iγµαV

µ

√
2
− γ5 6∂Sα√

2
,

δM = α
(
λ+ i

√
2 6∂ψ

)
,

δN = αγ5

(
λ+ i

√
2 6∂ψ

)
δV µ = −iαγµλ+

√
2α∂µψ,

δλ = −iγ5αD −
1

2
[ 6∂, γµ]V µα,

δD = α 6∂γ5λ .

(2.8)

As expected, the variation of a boson �eld is proportional to a fermionic one and vice versa.
Next, left-chiral scalar super�elds will be de�ned. By choosing λ = 0 = D and Vµ = ∂µξ
the multiplet can be reduced into two multiplets such that the �eld components of each
multiplet transform only among themselves.
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2.2. Steps Towards a Phenomenological Model of SUSY

We obtain a left-chiral super�eld consisting of

∂µS − iV µ

√
2

, ψL,
M− iN√

2

and a right-chiral super�eld composed of

∂µS + iV µ

√
2

, ψR,
M+ iN√

2
.

Having started with the real super�eld φ̂ of Eq. (2.6), those two chiral super�elds are
related. By setting ψR = 0, V µ = i∂µS and N = iM ≡ iF into Eq. (2.6), we obtain
what we call a left-chiral scalar super�eld ŜL. By setting ψL = 0, V µ = −i∂µS and
N = −iM ≡ F into Eq. (2.6), we obtain what we call a right-chiral scalar super�eld ŜR.
Note that Ŝ†L has the form of a right-chiral scalar super�eld.
A left-chiral super�eld is expressed by [18]

ŜL =S + i
√

2 θψL + iθθLF +
i

2

(
θγ5γµθ

)
∂µS

− 1√
2
θγ5θ · θ 6∂ψL +

1

8

(
θγ5θ

)2
�S.

(2.9)

In Eq. (2.9) the chiral representation is applied like in Eq. (2.5) for θ, i.e., (θ1, θ2, θ3, θ4) =
(θL1, θL2, θR1, θR2). With this θθL = 2θL1θL2. The transformation laws for the component
�elds are [18]

δS = −i
√

2αψL,

δψL = −
√

2FαL +
√

2 6∂SαR,
δF = i

√
2α 6∂ψL .

(2.10)

By de�ning x̂µ = xµ+ i
2
θγ5γµθ a shorter expression for the left-chiral super�eld is obtained.

ŜL (x, θ) = S (x̂) + i
√

2 θψL (x̂) + iθθLF (x̂) . (2.11)

A product of any number of left-chiral scalar super�elds is a left-chiral super�eld and a
product of a left-chiral with a right-chiral scalar super�eld is a general super�eld [18].
Starting from the real general scalar super�eld (2.6), one can work with all but the λ,
V µ and D components set to zero which then make up a gauge potential super�eld Φ̂.
The vector potentials are enclosed in them. Under a general supersymmetric local gauge
transformation the gauge potential super�eld transforms as

egΦ̂ → e−igŜ
†
LegΦ̂eigŜL .
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2. Supersymmetry (SUSY)

Here, g is the gauge coupling and ŜL is a left-chiral scalar super�eld. For the Abelian case,
this transformation is [18]

Φ̂′ → gΦ̂ + i
(
ŜL − Ŝ†L

)
. (2.12)

Performing this Abelian gauge transformation, starting from a multiplet

(S, ψ,M,N , V µ, λ,D) and choosing the component �elds of ŜL appropriately, one can
set the following gauge-transformed parts to zero: S ′, ψ′, M′, N ′. This is called Wess-
Zumino (WZ) gauge. The WZ gauge is not supersymmetric because after applying it and
performing another SUSY transformation, one re-generates these components again [18].
Since there is a WZ gauge even for non-Abelian gauge theories, it is compatible with the
usual gauges. In WZ gauge a gauge potential super�eld (vector super�eld) can be written
as [18]

Φ̂A =
1

2

(
θγ5γµθ

)
V µ
A + iθγµθθλA −

1

4

(
θγ5θ

)2DA,

with gauge group index A.

2.2.2. Lagrangians for Chiral Superfields

So far, we gathered together the information needed for constructing actions that are
invariant under SUSY transformations. This invariance means that the variation of L can
at most be a total derivative. In fact, L can never be invariant under SUSY transformations
[18]. First, we observe that the D-component (cf. Eq. (2.8)) of any super�eld and the F -
component (cf. Eq. (2.10)) of chiral super�elds transform as a total derivative under SUSY
transformations. If the product of any number of chiral super�elds with their hermitian
conjugates is taken, the so-called D-term (cf. Eq. (2.6)) of the product super�eld changes
only by a total derivative under SUSY transformations. Similarly, if the product of only
left-chiral scalar super�elds is taken, the so-called F -term (cf. Eq. (2.9)) changes only by
a total derivative.

Therefore, D and F -terms are candidates for a SUSY Lagrangian.
In order to obtain SUSY invariant actions we concentrate on two functions, namely the
so-called Kähler potentialK = K(Ŝ†Li, ŜLj) and the superpotential f̂ = f̂(ŜLi). ŜLi denotes

a set of left-chiral super�elds with i = 1, ..., N , Ŝ†Li is a set of right-chiral super�elds and K

is a general super�eld. The D-term of K and the F -term of f̂ are candidates for a SUSY
Lagrangian.

In the same way that a scalar potential speci�es any theory of spin-zero and spin-1/2 �elds
in a usual �eld theory, a SUSY theory is speci�ed by the Kähler potential and the superpo-
tential. To obtain the Kähler potential contributions to the Lagrangian, we compute the
coe�cients of (θγ5θ)

2 which means the D-term of K, short �D-term� contributions to L.
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2.2. Steps Towards a Phenomenological Model of SUSY

Imposing renormalizability, the general choice for the Kähler potential has the form [18]

K[Ŝ†, Ŝ] =
N∑
i=1

Ŝ†i Ŝi.

For a single chiral scalar super�eld the D-term contribution to the Lagrangian that is by
convention the coe�cient of −(1/2) (θγ5θ)

2 of the product Ŝ†LŜL is given by [18]

LD = ∂µS
†∂µS +

i

2
ψ 6∂ψ + F †F .

In order to extract the superpotential, the coe�cient of θθL of a product of left-chiral
super�elds has to be calculated, i.e., the F -term of the superpotential. Those are called
�F -term� contributions. To obtain a renormalizable Lagrangian, the superpotential can at
most be cubic in Ŝ.
Formally, the superpotential can be written as a power series about Ŝ = S

f̂
(
Ŝ
)

= f̂
(
Ŝ = S

)
+
∑
i

∂ f̂

∂Ŝi

∣∣∣∣
Ŝ=S

(
Ŝ − S

)
i

+
1

2

∑
i,j

∂2 f̂

∂Ŝi∂Ŝj

∣∣∣∣
Ŝ=S

(
Ŝ − S

)
i

(
Ŝ − S

)
j

+ ...

S is the scalar component of Ŝ. Only the second and third term will contribute, since the
�rst does not contain θs. The second term contributes with the θθL term of (Ŝ − S)i and
the third term contributes when (Ŝ − S)i and (Ŝ − S)j each contribute a term linear in θ.
Inserting all the possible terms one obtains the Hermitian Lagrangian which is by con-
vention the coe�cient of (−θθL) [18]

LF = −i
∑
i

∂ f̂

∂Ŝi

∣∣∣∣
Ŝ=S

Fi −
1

2

∑
i,j

∂2 f̂

∂Ŝi∂Ŝj

∣∣∣∣
Ŝ=S

ψiPLψj

+ i
∑
i

(
∂ f̂

∂Ŝi

)† ∣∣∣∣
Ŝ=S

F †i −
1

2

∑
i,j

(
∂2 f̂

∂Ŝi∂Ŝj

)† ∣∣∣∣
Ŝ=S

ψiPRψj.

By adding the F -and D-term Lagrangians from above we obtain a master Lagrangian for
chiral scalar super�elds. The auxiliary �elds Fi can be eliminated with the help of the
Euler-Lagrange equations.
For a general supersymmetric Lagrangian for theories with just scalars and spinors one
�nally gets [18]
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L =LD + LF =
∑
i

(∂µSi)
† (∂µSi) +

i

2

∑
i

ψ 6∂ψ

−
∑
i

∣∣∣∣∣ ∂ f̂∂Ŝi
∣∣∣∣∣
2

Ŝ=S

− 1

2

∑
i,j

(
∂2 f̂

∂Ŝi∂Ŝj

∣∣∣∣
Ŝ=S

ψi
1− γ5

2
ψj + h.c.

)
.

(2.13)

The third term in Eq. (2.13) is the scalar potential that is quartic if f̂ is cubic in the �elds
and the last term contains the masses and Yukawa interactions of fermions.

The model dependence enters the Lagrangian via the choice of the superpotential.

Working in superspace, the action becomes an integral over superspace. First, we have to
de�ne an integral over Grassmann numbers η:

∫
dη = 0 and

∫
dη η = 1.

Using an explicit representation for γ5 = diag(−1,−1, 1, 1) one obtains that (θγ5θ)
2 =

8θ4θ3θ2θ1. We then de�ne d4θ ≡ dθ1dθ2dθ3dθ4. For the D-term part, i.e., the coe�cient of
−1

2
(θγ5θ)

2 of the action we get

∫
d4xLD = −1

4

∫
d4x d4θ K

(
Ŝ†, Ŝ

)
.

For θθL = 2θL2θL1 we de�ne d2θL ≡ dθL1dθL2.
The F -term part of the action is

∫
d4xLF = −1

2

∫
d4x d2θL f̂

(
Ŝ
)

+ h.c.

2.2.3. A Master Lagrangian for SUSY Gauge Theories

Besides the Kähler and superpotential, two more terms are permitted in a locally gauge-
invariant SUSY Lagrangian. These are a gauge kinetic term, which provides for the kinetic
terms for the gauge super�elds, including the gauge �elds and their superpartners, the
gauginos. Furthermore, one has a gauge part in which chiral scalar super�elds are coupled
to gauge super�elds. In addition, the D-term of a gauge potential super�eld is gauge
invariant if the gauge group is abelian. These terms are put into the Lagrangian as well.
A master Lagrangian for SUSY gauge theories is given by [18]
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L =
∑
i

(∂µSi)
† (∂µSi) +

i

2

∑
i

ψi /Dψi +
∑
α,A

[
i

2
λαA

(
/DλαA

)
− 1

4
Fµν αAF

µν
αA

]
−
√

2
∑
i,α,A

(
S†i gαtαAλαA

1− γ5

2
ψi + h.c.

)

− 1

2

∑
α,A

[∑
i

S†i gαtαASi + ξαA

]2

−
∑
i

∣∣∣∣∣ ∂ f̂∂Ŝi
∣∣∣∣∣
Ŝ=S

− 1

2

∑
i,j

ψi

( ∂2 f̂

∂Ŝi∂Ŝj

)∣∣∣∣
Ŝ=S

1− γ5

2
+

(
∂2 f̂

∂Ŝi∂Ŝj

)† ∣∣∣∣
Ŝ=S

1 + γ5

2

ψj.

(2.14)

The covariant derivatives are de�ned as

DµS = ∂µS + i
∑
α,A

gαtαAVµαAS,

Dµψ = ∂µψ + i
∑
α,A

gα (tαAVµαA)ψL − i
∑
α,A

gα (t∗αAVµαA)ψR,

(/Dλ)αA =6∂λαA + igα

(
tadjαB /VαB

)
AC

λαC ,

FµναA = ∂µVναA − ∂νVµαA − gαfαABCVµαBVναC .
i, j denote matter �eld types and A is the gauge group index. The index α is there to
allow for several gauge couplings. ξ are coupling constants with [ξ] = 2. tA are the
matrix representations of the generators of the gauge group and satisfy the Lie algebra
[tA, tB] = ifABCtC , with the structure functions fABC . The occurrence of t

∗ has the origin
in that if ψL transforms according to a representation given by tA, then ψR transforms
according to the conjugate representation given by (−t∗A). (tadjA ) denote the generators in
the adjoint representation.
Let us comment on the di�erent parts of this Lagrangian [18].

* The �rst line displays the usual gauge-invariant kinetic energies for the components of
the chiral and gauge super�elds. The covariant derivatives are each in the appropriate
representation in which the �elds belong. For quarks the covariant derivative contains
triplet SU(3)C matrices. The couplings of all particles to gauge bosons is completely
determined by those terms.

* The second line represents the interactions of gauginos with the scalar and fermion
components of chiral super�elds. Thus, it describes how gauginos couple matter
fermions to their superpartners and Higgs bosons to their superpartners. Those
interactions are completely determined by the gauge couplings.
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* In the third line the scalar potential is given. The �rst part is determined only
by gauge interactions. As it originates from the auxiliary D-�eld, it is referred to
as the D-term contribution to the scalar potential. The second term is from the
superpotential f̂ . It is referred to as the F -term contribution to the scalar potential.

* In the last line, superpotential interactions of matter and Higgs �elds and fermion
mass terms are given. This means that all the Yukawa couplings are contained in the
superpotential.

2.2.4. SUSY Breaking
As is known from experiments, SUSY cannot be an exact symmetry in nature due to the
lack of observation of supersymmetric particles. Thus, supersymmetry has to be broken
by assuming that the masses of bosons and fermions in a multiplet di�er from each other,
i.e., mF 6= mB.
The mechanism of how SUSY is broken in nature is not yet understood.
What is common to all SUSY breaking mechanisms is that they occur in a sector of the
theory that di�ers from that containing Standard Model particles and their superpartners.
This is because SUSY models where the SUSY breaking occurs in the Standard Model
sector of the theory lead to phenomenological problems (e.g. light scalars) [18].
This raises the question of how to convey the information of SUSY breaking to the observ-
able sector of the Standard Model particles and their superpartners. One possible scenario
of SUSY breaking is gravity-mediated SUSY breaking since gravity couples universally
to energy. There, the SUSY breaking is dispatched to the low-energy SUSY model via
gravitational interactions.
As the dynamics of SUSY breaking is unknown, it is most common to parameterize SUSY
breaking e�ects by adding terms to the Lagrangian that are consistent with the desired
unbroken symmetries at the SUSY breaking scale, that only have couplings with positive
mass dimension and do not introduce new quadratic divergences. Terms ful�lling these
requirements are called soft SUSY breaking terms.
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3 Chapter 3

The Minimal Supersymmetric
Standard Model (MSSM)

Initially, the investigation of SUSY was driven by aesthetic reasons to �nd larger symmetry
groups not yet explored in theory. Later on, it was found that a phenomenological SUSY
model is very attractive due to the fact that it o�ers possible solutions to some problems
that cannot be answered in the Standard Model. In this chapter, we introduce a very
popular phenomenological supersymmetric model, the minimal supersymmetrization of
the Standard Model (MSSM).
First, some motivations for studying phenomenological SUSY models are highlighted.
Afterwards, we introduce the MSSM with an emphasis on the Higgs sector and the mech-
anism of spontaneous symmetry breaking within this model. We describe how to obtain
the physical lightest and pseudoscalar MSSM Higgs boson with respect to the fact that we
will later on study their decay into two photons and their production in the gluon fusion
process. Finally, we comment on the supersymmetric partners of the quarks of the third
family whose e�ects we include into our calculations.

3.1. Motivations for Investigating Phenomenological
SUSY Models

The Standard Model describes physics up to an energy range that is sixteen orders of magni-
tude below the natural mass scale, i.e., the Planck scaleMP = (8πGNewton)−1/2 ≈ 1.2×1019

GeV [25]. Physicists agree on the fact that there should be new physics at the Planck scale
since gravity becomes very strong at that scale. The actuality that the natural scale is
gigantic compared to the electroweak symmetry breaking scale of about v ∼ 250 GeV is
called the hierarchy problem. It describes a sensitivity of the Higgs potential towards new
physics. By calculating radiative corrections to the Higgs boson mass squared, one obtains
quadratic divergences in the cut-o� scale Λ up to which the Standard Model is assumed to
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h h

q

h h

q̃

h h

q̃

Figure 3.1.: Lowest order diagrams contributing to quadratic divergences in the prop-
agator of the Higgs boson h.

be valid. These originate from loop insertions of fermions, gauge bosons and Higgs bosons
into the Higgs propagator. The quadratic divergences occurring due to quark contributions
are displayed on the left of Fig. 3.1. Choosing Λ of the order of the Planck scale requires a
considerable amount of �ne-tuning to obtain a Higgs mass of the order of the electroweak
symmetry breaking scale favored by electroweak precision measurements. SUSY prevents
the Higgs mass from obtaining very large radiative corrections due to a cancellation of the
fermion contributions with the contributions from their scalar superpartners, which come
into play with opposite signs [15]. Those contributions are displayed in Fig. 3.1 for quarks
q and their scalar superpartners, the squarks q̃. This cancellation stabilizes the hierarchy
between the Planck and electroweak scale without much �ne-tuning, if it is assumed that
the masses of the squarks are in the TeV-range.

SUSY may also solve the cosmological constant problem. In quantum �eld theory the
cosmological constant Λc ∼M4

P but experimentally Λc ∼ (10−12 GeV)4 [26]. If SUSY were
an exact symmetry Λc ≡ 0 and in softly broken SUSY theories it can be assumed to be in
the ball-park of the experimental limit [26].

The studies of the �uctuations in the spectrum of the relic microwave background from
the Big Bang have established the existence of non-baryonic matter called dark matter.
Galaxies are surrounded by a halo of dark matter. The �at rotation curves of spiral
galaxies provide direct evidence for a large amount of dark matter. Only about 4 % of
the energy content of the universe is of baryonic origin. Dark matter provides for about
23 % of the remaining energy content. A particle that is absolutely stable, fairly massive,
electrically neutral and only weakly interacting could make up for this 23 %. The Standard
Model does not provide for such a candidate of dark matter. SUSY models provide for
a candidate for dark matter if a new symmetry called R-parity is imposed. R-parity is a
symmetry under which the usual �elds (fermions, Higgs and gauge bosons) are even while
their superpartners (sfermions, higgsinos and gauginos) are odd. Imposing R-parity, all
interactions involve an even number of supersymmetric particles and these can only be
produced in pairs. Therefore, any sparticle decay must lead to an odd number of sparticles
and the lightest supersymmetric particle (LSP) is stable. The LSP is a candidate for dark
matter [18].

At the GUT (Grand Uni�ed Theory) scale ∼ 1016 GeV, the theory describes the electro-
magnetic, weak and strong force within a single gauge group as, e.g. SU(5) or SO(10)
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and the di�erent couplings become indistinguishable. In the Standard Model the renor-
malization group evolution of the three gauge couplings of SU(3)C ⊗ SU(2)L ⊗ U(1)Y fail
to meet at a common point. Due to the introduction of SUSY particles into the spectrum
the slopes of the three gauge couplings are altered in the renormalization group evolution.
They tend to meet at an energy of around 1016 GeV and thus SUSY may cause gauge
coupling uni�cation [27].
Furthermore, SUSY theories have a strong connection to superstring theories that are
considered to be candidates for theories that include a �nite quantum theory of gravity.
Although SUSY has not been discovered in experiments so far, the data gathered at LEP
is not inconsistent with SUSY since the radiative corrections to electroweak observables
rapidly decouple with the SUSY masses [18]. This means that the heavier the SUSY masses
are the less visible their e�ects in the observables.
All in all, there are strong arguments in favor of investigating phenomenological SUSY
theories more closely.

3.2. The MSSM
The Minimal Supersymmetric Standard Model (MSSM) is a direct supersymmetrization
of the Standard Model (SM) with two Higgs doublets. It is minimal in the sense that it
introduces the smallest number of new particle states and new interactions consistent with
phenomenology. For constructing the MSSM one proceeds as follows [18]:

- First, the gauge group is chosen to be SU(3)C ⊗ SU(2)L ⊗ U(1)Y . The generator
of the SU(3)C is the color, the generator of SU(2)L is the weak isospin I and the
generator of the U(1)Y is the hypercharge Y . The gauge bosons of the SM are then
promoted to gauge super�elds. Descriptively, this means that, in addition to gauge
boson �elds, spin-1/2 gaugino �elds are introduced. The nomenclature is such that
the fermionic partners of the gauge boson �elds get the name of the gauge boson
with a su�x �ino�. This means that the superpartners of the photon, Z, W± and the
gluons are the photino γ̃, Z-ino, W±-ino and the gluino g̃.

- The matter content is realized as left-chiral scalar super�elds with the same gauge
quantum numbers as in the SM. Quarks and leptons get spin-0 partners, called
squarks and sleptons or collectively sfermions. Each SM fermionic d.o.f. obtains
a superpartner. Therefore, squarks and sleptons obtain two partners corresponding
to their chirality. They are denoted �left� and �right� f̃L and f̃R. In contrast to
spinors, sfermions are scalar particles. That is why the indices L and R are just
labels.

- In the Higgs sector, two left-chiral scalar super�elds Ĥu and Ĥd with opposite hy-
percharge are chosen. Both are needed in order to give masses to up- and down-type
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fermions and to avoid anomalies [28]. The two doublets possess eight degrees of
freedom. After the spontaneous symmetry breaking three of them become the longi-
tudinal modes of the two W -bosons and the Z-boson which are thus massive. Five
physical degrees of freedom remain which correspond to �ve Higgs particles. One
obtains two neutral, CP-even (h, H), a neutral, CP-odd (A) and two charged Higgs
bosons (H±). Accompanying with the Higgs �elds are their spin-1/2 superpartners,
the higgsinos.

- In the next step the superpotential f̂ is chosen that �xes the masses and couplings
of the matter �elds.

- Then one computes the SUSY Lagrangian with the help of Eq. (2.14).

- All possible soft SUSY breaking terms consistent with gauge and Poincaré invariance
are added. As already emphasized before, softly broken SUSY theories have the
virtue that they do not su�er from quadratic divergences.

The masses of the superpartners set the scale for radiative corrections to the Higgs mass
and hence the weak scale. That is why we consider weak scale supersymmetry. Therefore,
it is required that the SUSY breaking parameters and µsusy are in the range of the weak
scale O(100 GeV), or at least not larger than a TeV [18].

3.2.1. Higgs Superfields
Analogously to the Standard Model we want to break the SU(3)C⊗SU(2)L⊗U(1)Y gauge
symmetry to an SU(3)C ⊗ U(1)em. Through this breaking the W± and Z-bosons and the
fermions acquire masses as in the Standard Model. The Higgs doublet φ of the SM is
promoted to a doublet of left-chiral super�elds

φ =

(
φ+

φ0

)
→ Ĥu =

(
Ĥ+
u

Ĥ0
u

)
.

This transforms as a doublet 2 under SU(2)L and has hypercharge Y = 1. The Yukawa
interactions of its scalar component with matter fermions must arise via the superpotential
[18]. The vacuum expectation value (vev) of the scalar component of Ĥ0

u gives masses to
up-type quarks.
It cannot give a mass to I3 = −1/2 down-type fermions. This is because a Y = −1 �eld
needed to give mass to these would have to be the scalar component of the right-chiral
super�eld Ĥ0†

u but that is not allowed in the superpotential. This is in contrast to the SM
where φc = iσ2φ

∗ with Y = −1 can lead to masses for down type fermions.
Thus, an additional Higgs doublet has to be introduced

Ĥd =

(
Ĥ0
d

Ĥ−d

)
.
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which is a doublet 2 under SU(2)L that possesses hypercharge Y = −1. The masses of the
fermions of the up-type are obtained with Ĥu, the ones of the down type with the help of
Ĥd. The entries Ĥ

0
u, Ĥ

0
d are electrically neutral and Ĥ

+
u and Ĥ−u carry the electrical charge

one. The superpotential for the interaction of Higgs bosons with fermions is given by [18]

f̂ =
3∑

i,j=1

[
(fe)ij εabL̂

a
i Ĥ

b
dÊ

c
j + (fd)ij εabQ̂

a
i Ĥ

b
dD̂

c
j + (fu)ij εabQ̂

a
i Ĥ

b
uÛ

c
j

]
+ µsusyεabĤ

a
uĤ

b
d. (3.1)

The super�elds occurring in Eq. (3.1) and their corresponding SM �elds are given in
Tab. 3.1. The generation indices of the quarks and leptons are denoted by i, j. The
3×3-matrices fd, fu and fe contain dimensionless Yukawa couplings as entries, which occur
in the quark and lepton mass terms. The occurrence of the ε-tensor re�ects the fact that it
is the antisymmetric combination of two doublets that is a SU(2) singlet. The hypercharge
of each term in the superpotential sums up to zero, which means that the superpotential
is invariant under U(1)Y . The Lagrangian derived from this superpotential is given by [18]

L = −
∑
i

∣∣∣∣∣ ∂ f̂∂Ŝi
∣∣∣∣∣
2

Ŝ=S

− 1

2

∑
i,j

ψi

( ∂2 f̂

∂Ŝi∂Ŝj

)∣∣∣∣
Ŝ=S

1− γ5

2
+

(
∂2 f̂

∂Ŝi∂Ŝj

)† ∣∣∣∣
Ŝ=S

1 + γ5

2

ψj.
(3.2)

The sum over i runs over all scalar �elds in the model. With the �rst term in Eq. (3.2) mass
terms and interactions of the scalar �elds are described. The second term describes masses
and Yukawa interactions of the fermion �elds. The soft SUSY breaking terms allowed in
the gauge-invariant Lagrangian of the MSSM are added by hand [18]

Lsoft = −[Q̃†im
2
Qij
Q̃j + d̃†Rim

2
Dij
d̃Rj + ũ†Rim

2
Uij
ũRj

+ L̃†im
2
Lij
L̃j + ẽ†Rim

2
Eij
ẽRj +m2

Hu |Hu|2 +m2
Hd
|Hd|2]

− 1

2

[
M1λ0λ0 +M2λAλA +M3g̃B g̃B

]
− i

2

[
M ′

1λ0γ5λ0 +M ′
2λAγ5λA +M ′

3g̃Bγ5g̃B
]

+
[
(au)ij εabQ̃

a
iH

b
uũ
†
Rj + (ad)ij εabQ̃

a
iH

b
ud̃
†
Rj + (ae)ij εabL̃

a
iH

b
uẽ
†
Rj + h.c.

]
+
[
(cu)ij εabQ̃

a
iH
∗b
d ũ
†
Rj + (cd)ij εabQ̃

a
iH
∗b
u d̃
†
Rj + (ce)ij εabL̃

a
iH
∗b
u ẽ
†
Rj + h.c.

]
+
[
BµsusyεabH

a
uH

b
d + h.c.

]
.

(3.3)

It is understood that it is summed over the generation indices i, j, and over the SU(2)
indices a, b . The scalar mass matrices m in Eq. (3.3) are 3 × 3 Hermitian matrices with
six real and three complex parameters each. The third row of Eq. (3.3) are the gaugino
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Super�eld fermion �eld, spin boson �eld, spin SU(3)C SU(2)L U(1)Y

Φ̂U(1)Y λ0, 1/2 Bµ, 1 1 1 0

Φ̂i
SU(2)L

λi, 1/2 W i
µ, 1 1 3 0

Φ̂a
SU(3)C

g̃a, 1/2 Ga
µ, 1 8 1 0

Q̂ (uL, dL), 1/2
(
ũL, d̃L

)
, 0 3 2 1

3

Û c uR, 1/2 ũ∗R, 0 3∗ 1 −4
3

D̂c dR, 1/2 d̃∗R, 0 3∗ 1 2
3

L̂ (νL, eL), 1/2 (ν̃L, ẽL), 0 1 2 −1

Êc eR, 1/2 ẽ∗R, 0 1 1 2

Ĥu

(
H̃+
u , H̃

0
u

)
, 1/2 (H+

u , H
0
u), 0 1 2 1

Ĥd

(
H̃0
d , H̃

−
d

)
, 1/2

(
H0
d , H

−
d

)
, 0 1 2 −1

Table 3.1.: The super�elds and particle content of the MSSM. The group representa-
tion of the non-Abelian groups SU(3)C and SU(2)L is given in bold numbers that denote
the dimension of the representation. For the Abelian group U(1)Y the hypercharges are
shown.

mass terms, whereas in the fourth row the CP-odd gaugino mass terms are given. The
latter violate CP invariance. The six gaugino mass parameters (Mi,M

′
i) are real. The label

i = 1, 2, 3 corresponds to the 3 factors of the MSSM gauge group. The a and c matrices
are general 3× 3 complex matrices. Those parts describe trilinear scalar interactions. The
terms proportional to c are frequently omitted because they are strongly suppressed in
many models [18], but they are allowed by the theory. m2

Hu
and m2

Hd
are real and Bµsusy

is in general taken to be complex.

3.3. Electroweak Symmetry Breaking in the MSSM

In order to investigate the symmetry breaking in the MSSM, the minima of the scalar
potential have to be examined. Here we only investigate the parameter regions where the
scalar potential develops a minimum with respect to the Higgs scalars.

Three di�erent sources contribute to the scalar Higgs potential at tree-level: VHiggs =
VD + VF + Vsoft [18]. First, the D-terms which contain the quartic Higgs interactions are
given by [18]

VD =
1

2

∑
A

[∑
i

S†i gtASi

]2

,
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where i is the sum over the scalar Higgs �elds. In component �elds they are [29]

U(1)Y : V 1
D =

1

2

[g1

2

(
|Hu|2 − |Hd|2

)]2

SU(2)L : V 2
D =

1

2

[g2

2

(
H i∗
d τ

a
ijH

j
u +H i∗

u τ
a
ijH

j
d

)]2

g1 and g2 are the coupling constants of the U(1)Y and SU(2)L respectively. τa = σa/2
with the Pauli matrices σa. Adding those two contributions together, one obtains

VD =
g2

1

8

[
|Hu|2 − |Hd|2

]2
+
g2

2

8

[
4
∣∣∣H†dHu

∣∣∣2 − 2 |Hd|2 |Hu|2 +
(
|Hd|2

)2
+
(
|Hu|2

)2
]
.

From the F -term of the superpotential one obtains [29]

VF =
∑
i

∣∣∣∣∣ ∂ f̂∂Ŝi
∣∣∣∣∣
2

Ŝ=S

= |µsusy|2
(
|Hu|2 + |Hd|2

)
.

The third part comes from the soft SUSY breaking scalar Higgs mass terms and the bilinear
terms [18]

Vsoft = m2
Hd
H†dHd +m2

HuH
†
uHu +Bµsusy

(
εabH

a
uH

b
d + h.c.

)
.

The scalar potential for the Higgs �elds is then the sum of the three terms from above

VHiggs =
(
|µsusy|2 +m2

Hu

)
|Hu|2 +

(
|µsusy|2 +m2

Hd

)
|Hd|2

+
(
Bµsusy

(
H+
u H

−
d −H0

uH
0
d

)
+ h.c.

)
+

1

8

(
g2

1 + g2
2

) (
|Hu|2 − |Hd|2

)2
+

1

2
g2

2

∣∣H+
u H

0∗
d +H0

dH
−∗
u

∣∣2 . (3.4)

Now there is the requirement that the minimum of the potential breaks the electroweak to
an electromagnetic symmetry, SU(2)L ⊗ U(1)Y → Uem(1). The SU(2)L-gauge symmetry
freedom allows to rotate the vev of Hu to its lower component which was de�ned to be
neutral. At the minimum of the potential one can always choose

〈
H−d
〉

= 0 because of
SU(2) symmetry. By taking ∂V/∂H−d = 0 one automatically obtains 〈H+

u 〉 = 0.
This means that in the minimum of the potential the electromagnetism is unbroken since
the charged components of the Higgs doublets do not acquire vevs. Therefore, there is
no breaking of the symmetry in the charged directions and it is secured that the electric
charge is conserved in the Higgs sector. As the charged parts in the Higgs potential are set
to zero during the minimization process, only the scalar potential for the �neutral �elds�
has to be minimized. It reads

Vneutral =
(
|µsusy|2 +m2

Hu

) ∣∣H0
u

∣∣2 +
(
|µsusy|2 +m2

Hd

) ∣∣H0
d

∣∣2
−
(
BµsusyH

0
uH

0
d + h.c.

)
+

1

8

(
g2

1 + g2
2

) (∣∣H0
u

∣∣2 − ∣∣H0
d

∣∣2)2

.
(3.5)
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Some comments can be made on the Higgs potential [29].
The quartic Higgs couplings are completely �xed by the SU(2)L ⊗ U(1)Y couplings. One
has the freedom to choose Bµsusy, which is the only part depending on complex phases
to be real. This can be done by rede�ning the phases of Hu and Hd. It follows that CP
is not broken spontaneously by the scalar Higgs potential as all vevs and couplings can
be chosen to be real at the same time. The Higgs mass eigenstates are CP eigenstates
as well [15]. The scalar potential is thus CP conserving at tree-level. In order to have
electroweak symmetry breaking and not obtain 〈H0

u〉 = 0 and 〈H0
d〉 = 0, we must have a

local maximum of the scalar potential. We are therefore interested in evaluating the second
derivatives with respect to the �elds. Then just the bilinear terms contribute.
The condition obtained for electroweak symmetry breaking to take place is then

(Bµsusy)
2 >

(
|µsusy|2 +m2

Hu

) (
|µsusy|2 +m2

Hd

)
.

In the direction where |H0
u| = |H0

d |, the quartic term vanishes. Vneutral is then bounded
from below only when it is positive. The additional requirement for symmetry breaking
thus is

m2
Hu +m2

Hd
+ 2|µsusy|2 > 2 |Bµsusy| .

The previous two conditions only hold if
(
|µsusy|2 +m2

Hu

)
6=
(
|µsusy|2 +m2

Hd

)
.

Therefore, the requirement is that the soft SUSY breaking masses are unequal, i.e.,

m2
Hu 6= m2

Hd
.

This implies that in order to break the electroweak symmetry one needs to break SUSY as
well. We observe that there is a connection between gauge-symmetry breaking and SUSY
breaking.
For a minimum of the potential in Eq. (3.5) one demands that the product H0

uH
0
d is real

and positive such that 〈H0
u〉 and 〈H0

d〉 carry opposite phases. With the help of an U(1)Y -
transformation both vevs of the neutral Higgs �elds can be chosen to be real. In that is
no loss of generality as Hu and Hd carry opposite hypercharges (±1). Commonly the vevs
are denoted by 〈

H0
u

〉
= vu and

〈
H0
d

〉
= vd.

The vevs of the two Higgs �elds vu and vd can be expressed by v [29]:

v2 = v2
u + v2

d =
4M2

Z

g2
2 + g2

1

≈ (246 GeV)2. (3.6)

where MZ ≈ 91.1876 GeV is the mass of the Z-boson. Through convention the ratio of the
two vevs is chosen to be a free parameter of the theory

tan β ≡ vu
vd
. (3.7)
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Since vu and vd were chosen to be real and positive we have 0 < β < π/2. Minimizing the
scalar potential with respect to H0

u and H0
d , one is able by using Eqs (3.6) and (3.7) to

replace Bµsusy and |µsusy| with the help of tan β [29]:

Bµsusy =

(
m2
Hd
−m2

Hu

)
tan 2β +M2

Z sin 2β

2
,

|µsusy|2 =
m2
Hu

sin2 β −m2
Hd

cos2 β

cos 2β
− M2

Z

2
.

Given the soft breaking Higgs masses, the second equation can be used to �x the magnitude
of µsusy to reproduce the experimental Z mass. Nevertheless, those do not �x the phase of
µsusy.

3.3.1. The Physical Neutral MSSM Higgs Bosons

For determining the physical Higgs �elds and their masses one �rst splits the neutral �elds
into real and imaginary parts [18]

Hd =

(
H0
d

H−d

)
=

(
H0
d,R+iH0

d,I√
2

H−d

)
, Hu =

(
H+
u

H0
u

)
=

(
H+
u

H0
u,R+iH0

u,I√
2

)
.

Then the only non-vanishing vevs are
〈
H0
u,R

〉
=
√

2vu and
〈
H0
d,R

〉
=
√

2vd. All the other
vevs are set to zero. Due to conservation of the electric charge, there is no mixing between
the charged and neutral Higgs �elds. Therefore, one obtains one matrix for the charged
sector and one for the neutral sector. Because CP invariance is assumed in the Higgs sector
the real and imaginary components of the neutral Higgs bosons do not mix. Therefore, the
4 × 4 matrix in the neutral sector decomposes into two 2 × 2 blocks. The mass terms for
the imaginary components of the neutral �elds can be written as [18]

L 3 1

2

(
H0
u,I , H

0
d,I

)
M2

H0
i,I

(
H0
u,I

H0
d,I

)
with

M2
H0
i,I

=


∂2V
∂H02

u,I

∣∣∣∣
hi→vi

∂2V
∂H0

u,I∂H
0
d,I

∣∣∣∣
hi→vi

∂2V
∂H0

d,I∂H
0
u,I

∣∣∣∣
hi→vi

∂2V
∂H02

d,I

∣∣∣∣
hi→vi

 . (3.8)

Evaluating Eq. (3.8) one obtains
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M2
H0
i,I

=

(
Bµsusy cot β Bµsusy
Bµsusy Bµsusy tan β

)
. (3.9)

The eigenvalues of this matrix are the mass of the pseudoscalar Higgs boson A and massless
Goldstone boson

m2
A =

2Bµsusy
sin 2β

and m0
G = 0.

The pseudoscalar Higgs �eld A, that is obtained from the imaginary parts of the neutral
parts in the Higgs doublets is then(

G0

A

)
=

(
sin β − cos β
cos β sin β

)(
H0
u,I

H0
d,I

)
.

In unitary gauge, where only physical �elds are present, the Goldstone boson G0 becomes
the longitudinal mode of the Z-boson. The �elds of the two neutral Higgs bosons are
obtained analogously to the procedure for the imaginary parts by replacing those with the
real parts of the Higgs �elds H0

u,I → H0
u,R and H0

d,I → H0
d,R.

The mass matrix one obtains is then given by [18]

M2
H0
i,R

=

(
m2
A cos2 β +M2

Z sin2 β − (m2
A +M2

Z) sin β cos β
− (m2

A +M2
Z) sin β cos β m2

A sin2 β +M2
Z cos2 β

)
. (3.10)

At tree level their masses are

m2
H,h =

1

2

(
m2
A +M2

Z ±
√

(m2
A +M2

Z)
2 − 4m2

AM
2
Z cos2 2β

)
.

h and H characterize the lighter and heavier of the neutral scalar mass eigenstates. Their
physical �elds are given by(

h
H

)
=

(
cosα sinα
− sinα cosα

)(
H0
d,R

H0
u,R

)
.

α is denoted the Higgs mixing angle.
Given that, in this thesis only calculations which include either scalar or pseudoscalar
Higgs bosons are performed, a discussion of the charged Higgs bosons is omitted. Usually
mA and tan β are chosen to be the free parameters of the MSSM Higgs sector, as one
can express all mass eigenstates of the other Higgs particles through them. For the Higgs
mixing angle the following relation holds [18]

tanα =
(m2

A −M2
Z) cos 2β +

√
(m2

A −M2
Z)

2 − 4m2
AM

2
Z cos2 2β

(m2
A +M2

Z) sin 2β
.

For the lighter neutral Higgs boson h one obtains the mass limits [18]
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mh ≤MZ |cos 2α| ≤ mH . (3.11)

Eq. (3.11) implies that mh = 0 for tan β = 1. It only holds at tree level. Radiative
corrections allow h to be heavier than MZ . This is very fortunate for otherwise LEP2
would have excluded the MSSM.
There are two essential di�erences between the neutral CP-even H = {h,H} and the
pseudoscalar (CP-odd) Higgs boson A [30]:

1. In contrast to the production of scalar Higgs bosons there is no contribution from
squarks in the �rst order of perturbation theory in the production of pseudoscalar
Higgs bosons via the gluon fusion process. The same holds for the Higgs decaying
into two photons. The Lagrangian is proportional to (H + iA). As it is real the
following real expression for the coupling terms follow [18]:

Hq̃†Lq̃L, Hq̃†Rq̃R and H
(
q̃†Rq̃L + q̃†Lq̃R

)
For the coupling of two squark �elds to a pseudoscalar Higgs boson A only pure
imaginary parts of the form

A
(
q̃†Rq̃L − q̃†Lq̃R

)
.

exist. Two squarks of the same `chirality' cannot couple to a pseudoscalar Higgs
boson A. But gluons and photons can only couple to squarks of the same `chirality',
which is why a coupling of squarks to A in the gluon fusion and decay into two
photons is only possible by including the gluino at two-loop level.

2. For the A boson the Born coupling to electroweak vector boson pairs (AV V ) does not
exist. The coupling of CP-even scalar Higgs bosons to a pair of massive vector bosons
results from (DµS

†
i )(D

µSi), Si = Hu, Hd in the Lagrangian. In a CP conserving
theory, this mechanism does not generate a coupling for the CP-odd A: A is derived
from Im(Si) but the vev of Si and all the couplings are chosen to be real in the Higgs
mechanism [28]. Therefore, 〈A〉 = 0 which results in a vanishing AV V coupling.

The Yukawa couplings of Higgs bosons to quarks of down and up-type can be read o�
Tab. 3.2.

3.3.2. Squark-Mixing and Mass Eigenstates
In the SM, �avor eigenstates do not coincide with mass eigenstates of the particles in
general. There, the B and W i mix to become the physical γ, Z and W± �elds. This
always happens upon spontaneous symmetry breaking, where �elds with the same color,
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φ gφu gφd
h cosα/ sin β − sinα/ cos β
H sinα/ cos β cosα/ cos β
A cot β tan β

Table 3.2.: The couplings of the neutral Higgs bosons to quarks.

electric charge and spin may mix. The super�elds in the MSSM are a�ected by this as well.
Gauginos and higgsinos are not the physical �elds but the mixing of the neutral higgsino
and gaugino �elds form the neutral fermion mass eigenstates, the so-called neutralinos.
The mixing of the charged higgsino �elds and the superpartner of the W -�elds make up
the charged fermion �elds, called charginos.

Mixing takes place for the squark �elds as well. As we only need the masses and mixing
of the squark �elds in our calculation, we only consider these in the following. The mixing
determines the properties of the squarks and is related to the question of how SUSY is
broken [31].

The masses of matter fermions arise only from the superpotential Yukawa interactions.
Simply adding fermion mass terms would introduce new quadratic divergences into the
theory and is not allowed [18].

Four distinct sources of mass terms for sfermions exist [18]. One part arises from the
superpotential and is a mass term equal to the corresponding fermion mass term. These
are pure mass (mif̃

†
i f̃i, i = R,L) terms and the ones with intra-generational mixing

(m(f̃ †Lf̃R+f̃ †Rf̃L)). These mass terms vanish if the corresponding fermion Yukawa couplings
are zero. Second, there are soft SUSY breaking scalar masses of Eq. (3.3). Those will
be present whether or not electroweak symmetry is spontaneously broken. The third
contribution arises due to soft SUSY breaking trilinear terms of squarks with neutral Higgs
bosons. The fourth part originates from D-term contributions from cross terms between
squark and Higgs boson �elds.

The squark mass eigenstates are obtained if one diagonalizes two 6 × 6-matrices. One
for the squarks of the up-type and one for the ones of the down-type. By neglecting the
mixing between the generations, the matrices split into 2 × 2-matrices, which describe

squarks of a special �avor each. Taking into account experimental results of the K0 −K0

and D0−D0
-mixing one can neglect the mixing of the squarks of the �rst two generations,

as their masses are degenerate [31]. They will be considered to be equal. Anyhow, their
masses are small compared to the soft SUSY breaking masses [18].

For the third family the mixing cannot be neglected. Stop mixing can occur due to the
large top mass and sbottom mixing due to the possibly large value of tan β. Therefore, in
case of the squarks, one has to consider only the q̃ = {t̃, b̃}. The part of the Lagrangian
containing the masses of the squarks of the third family is given by [18]
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L 3 −
(
q̃†L, q̃

†
R

)
M2

q̃

(
q̃L
q̃R

)
.

For the squarks one obtains for the mass matrix [18]

M2
q̃ =

 m2
q̃L

+m2
t +D(q̃L) mq

(
−Aq + µsusy

{
cot β
tan β

})
mq

(
−Aq + µsusy

{
cot β
tan β

})
m2
q̃R

+m2
q +D(q̃R)

 (3.12)

with

D(q̃L) = M2
Z cos 2β

(
I3,q −Qq sin2 θW

)
,

D(q̃R) = M2
Z cos 2β

(
Qq sin2 θW

)
.

Aq is the soft SUSY breaking trilinear coupling, I3,q is the isospin three component of the
quark with I3,t = 1/2, I3,b = −1/2 and Qq the charge of the quark with Qt = 2/3 and

Qb = −1/3. sin θW =
√

1−M2
W/M

2
Z with the mass of the Z (W ) boson MZ (MW ). The

upper part of {} holds for stops and the lower component for sbottoms.
The eigenvalues of the matrix in Eq. (3.12) are calculated to be [18]

m2
q̃1,2

=
1

2

(
m2
q̃L

+m2
q̃R

){+
−

}
1

4
M2

Z cos 2β +m2
q

∓
√[

1

2

(
m2
q̃L
−m2

q̃R

){+
−

}
M2

Z cos 2β

(
1

4
− |Qq| sin2 θW

)]2

+m2
t

(
µsusy

{
cot β
tan β

}
− At

)2

.

As a convention q̃1 is de�ned to be lighter than the q̃2 mass eigenstates. The superpartners
of the quarks belonging to the chiral eigenstates q̃L and q̃R are connected with the mass
eigenstates q̃1 and q̃2 in the following manner(

q̃1

q̃2

)
= Rq̃

(
q̃L
q̃R

)
, Rq̃ =

(
cos θq̃ sin θq̃
− sin θq̃ cos θq̃

)
.

θq̃ is the squark mixing angle. For the squark mixing angle θq̃ the relations given below
hold [18]

tan θq̃ =
m2
q̃q +m2

q +D(q̃L)−m2
q̃1

mq

(
−Aq + µsusy

{
cot β
tan β

}) .
Furthermore, one has mq̃1 ≤ mq̃L,R ≤ mq̃2 and 0 ≤ θq̃ < π.
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The couplings of two squarks to the light neutral Higgs boson h and to the pseudoscalar
Higgs boson A, i.e., q̃q̃h and q̃q̃A are given in App. A. They arise due to quartic inter-
actions of Higgs bosons and squark �elds when one of the Higgs �elds acquires a vacuum
expectation value. In addition, soft SUSY breaking scalar trilinear couplings (A-terms) are
sources of these interactions as well.

Gluino mass

The gluino is a color octet fermion. Since SU(3)C is not broken, the gluino cannot mix
with any other fermion and must be a mass eigenstate. Its mass term arises from the soft
SUSY breaking gaugino mass term already given in Eq. (3.3)

L 3 −1

2
M3g̃g̃.

Its tree level mass is mg̃ = |M3|. The gluino is taken to be a Majorana fermion.
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4 Chapter 4

Regularization and
Renormalization

At tree-level approximation the parameters in the Lagrangian that are called bare parame-
ters are directly related to observables like masses and couplings measured in experiments.
These days, the precision of the experiments requires us to go beyond the tree-level ap-
proximation and take into account higher order corrections.
Such higher order corrections that are quantum e�ects result from loop insertions into
Feynman diagrams. Due to loop corrections the bare parameters in the Lagrangian be-
come divergent and the relations between the bare parameters and the observables change.
The divergences of the loop integrals can be parameterized by so-called regulators. To treat
the divergences properly requires a regularization scheme that respects Lorentz and gauge
invariance. In the end, the result should be independent of the regulator to recover the
original theory. This is accomplished by a rede�nition of the parameters of the Lagrangian
called renormalization. Altogether, the regularization and its physical interpretation con-
stitute the renormalization of the theory.
First, the need for regularization with respect to loop calculations is motivated. Subse-
quently, two regularization schemes, dimensional regularization (DREG) and dimensional
reduction (DRED) are presented. The latter is particularly well suited for calculations
performed in a SUSY framework. The application of DRED and DREG in the calculations
under consideration in this work is emphasized. At the end of this chapter we comment on
the running of the strong coupling and the bottom mass through the introduction of the
renormalization scale.

4.1. Implications for Loop Calculations

In order to present the essential features that show the need for regularization in dealing
with loop calculations (see for e.g. [32,33]), we consider the simplest one-loop integral that
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p

m

Figure 4.1.: Massive (mass m) one-loop tadpole diagram with loop momentum p.

is the scalar tadpole diagram from Fig. 4.1. Its assigned integral is given by

A(m) =
1

iπ2

∫
d4p

(2π)4

1

(p2 −m2 + iε)
∼
∫
d4p

p2
∼
∫
dp p. (4.1)

As demonstrated above, according to power counting, this integral is quadratically diver-
gent in four dimensions. For large p it is ultra-violet (UV) divergent and therefore has to
be regularized. The factor (iπ2)

−1
is there by de�nition.

By applying dimensional regularization or reduction, the calculations are performed in
d instead of four dimensions. The loop integrals then converge for small enough d and
the usual calculational rules such as linearity, translational and rotational invariance can
be used. The analytic structure of these integrals allows for an analytic continuation to
arbitrary complex values of d. The ultra-violet divergences manifest themselves as poles at
integer values of d as can be observed below. By changing the dimension of the integral,
the dimension of A(m) is changed as well. This is compensated with an additional factor
and thereby the integration volume is replaced in the following way∫

d4p

(2π)4
→ µ4−d

∫
ddp

(2π)d
,

where µ is a reference mass. Using dimensional regularization or reduction implies that
integrals that do not depend on any scale other than the loop momentum vanish∫

d4p
(
p2
)α

= 0, for all α. (4.2)

The integrand given in Eq. (4.1) would be divergent for p2 = m2, if the +iε part were
absent. This iε part is important to keep track of how to perform the integration contour
in the complex plane. We especially have to keep in mind that we have those +iε summands
to de�ne how functions are continued analytically. They are important in case our results
for instance contain logarithms with negative arguments that develop an imaginary part.
For instance

ln(a± iε) = ln(−a)± iπ, a < 0.

For later application we are interested in the evaluation of integrals of type A(m) with
arbitrary powers of denominators and de�ne

A(m;n1) =
µ4−d

iπ2

∫
ddp

(2π)d−4

1

(p2 −m2 + iε)n1
, n1 ≥ 1. (4.3)
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The aim is to perform the integration over the loop momentum of an integral of the form

In(R) =

∫
ddp

1

(p2 −R + iε)n
. (4.4)

The momentum integration is over Minkowski space with pµ = (p0, p1, ..., pd−1) and p2 =
(p0)2 − ~p2 if the d- dimensional metric is by convention gµν = diag(1,-1,-1,...,-1).

In(R) =

∫ +∞

−∞
dp0

∫
dd−1~p

1

((p0)2 − ~p2 −R + iε)n
. (4.5)

It should be noted that there is a subtlety in evaluating the integral given in Eq. (4.5)
because the p0-component is treated di�erently from the pi components. That is why
the integral cannot be evaluated directly. In order to perform the momentum integration
nonetheless, a trick called Wick rotation is introduced, with which one then is able to work
in Euclidean space instead of Minkowski space. We de�ne p0 ≡ ip0

E and ~p = ~pE. With
these replacements p2 = (p0)2−~p2 = −(p0

E)2−~p2
E = −p2

E and hence all the coordinates are
treated alike. Then one can perform the integral using d-dimensional spherical coordinates.
If one performs the Wick rotation and afterwards the evaluation of the momentum integral
in Euclidean space, one has to transform momenta back to Minkowski coordinates in the
end. The evaluation of the integral in Eq. (4.4) is illustrated with intermediate steps
in [33,34]. The �nal result for the integral under investigation is [34]

In(R) = i(−1)nπ(d/2) Γ
(
n− d

2

)
Γ (n)

(R− iε) d2−n . (4.6)

with the Euler Γ function

Γ(z) =

∫ ∞
0

dt tz−1e−t

that has the basic properties

Γ(z + 1) = zΓ(z), Γ(z + 1) = z!, Γ

(
1

2

)
=
√
π,

and �rst order poles at z = 0,−1,−2,−3, ....
Γ(z + 1) = 1

z
+ γE + O(z) with the Euler-Mascheroni constant γE = −Γ′(1) = 0.5772....

One observes that analytic continuation in d and R holds.
Since the starting point was an integral over four physical dimensions, one usually takes
d = 4 − 2ε. The ultraviolet divergences then manifest themselves as poles in ε. For the
original integral A(m, 1) one then obtains [33]

A(m, 1) = m2

(
1

ε
− γE + ln 4π − ln

(
m2

µ2
− iε

)
+ 1

)
+O(ε2). (4.7)
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The ultra-violet singularity is manifest for ε→ 0 which corresponds to the limit d→ 4. It
should be noted that the ε originating from going from four to d = 4−2ε dimensions is not
the same as the +iε that appears in the propagators to �x the integration contour in the
complex p0 plane. It is unfortunate that the same symbol is used for di�erent quantities
in the literature but it should always be clear from the context which one is meant.

4.2. Dimensional Regularization (DREG) and γ5

Dimensional regularization (DREG) according to 't Hooft and Veltman [35] is an estab-
lished regularization method, which respects Lorentz and gauge invariance and the symme-
tries of the Standard Model. The Feynman diagrams are calculated as analytic functions
in d space-time dimensions. For small enough d the loop momentum integral converges and
the Ward identities are conserved. Ward identities express current conservation which is a
consequence of the gauge invariance of the theory. In the end, the results for observables
have to possess a well de�ned limit for d→ 4. A common choice is d = 4− 2ε. In order to
formulate the dimensional regularization in theories with fermions consistently, one needs
a set of matrices γµ (µ = 0, 1, 2, ..., d− 1), which ful�ll the Cli�ord algebra

{γµ, γν} = 2gµν1.

The metric tensor gµν is de�ned below

gµν =


g00 = 1

gii = −1, i = 1, ..., d− 1

gµν = 0, µ 6= ν

In addition one needs a de�nition of the γ5-matrix. It plays a role for the pseudoscalar
current at the vertex of quarks q and a pseudoscalar Higgs boson qqA: j5 = ψγ5ψ. In four
dimensions γ5 is

γ5 = iγ0γ1γ2γ3,

with a four dimensional representation of the γµ. It anti-commutes with the other γ-
matrices

{γ5, γµ} = 0.

One would assume that the relation above can be continued dimensionally and holds in
d dimensions as well. But there is an inconsistency which is described below. The γ5

occurring at the vertex qqA is rewritten after 't Hooft and Veltman [35] in

γ5 =
i

4!
εµνρσγµγνγργσ (4.8)
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to make it suitable for loop calculations performed in DREG. The totally antisymmetric
Levi-Civita tensor is a four dimensional object de�ned as

εµνρσ =


1 , (µνρσ) = even permutation of (0123)

−1 , (µνρσ) = odd permutation of (0123)

0 , otherwise

In the de�nition in Eq. (4.8) γ5 remains four dimensional because the ε-tensor is a four
dimensional object. The advantage of this de�nition is that the γ-matrices in the loop
integrals can be treated as d-dimensional. Products of two Levi-Civita tensors can be
replaced by metric tensors which can be interpreted as d-dimensional objects

εµνρσε
µ1ν1ρ1σ1 = −g[µ1

µ gν1ν g
ρ1
ρ g

σ1]
σ .

An inconsistency occurs in the calculation of traces of products of γ5 with an even number
of Dirac matrices [32]. For the trace of γ5 with four Dirac matrices one obtains for d = 4

tr (γ5γµγνγργσ) = 4iεµνρσ (d = 4). (4.9)

To be able to analytically continue this expression to d dimensions, one now takes γ5 in d
dimensions to be anti-commuting. One then obtains for the same trace [32]

(d− 4)tr (γ5γµγνγργσ) = 0

⇒ tr (γ5γµγνγργσ) = 0 (d 6= 4).
(4.10)

By examining Eq. (4.10), here in (d = 4) dimensions the non-zero de�nition of the trace
in Eq. (4.9) is prohibited, if the trace in d dimensions is a meromorphic function. If one
takes γ5 to be anti-commuting in d dimensions no analytic continuation of Eq. (4.10) to
four dimensions exists. This is an inconsistency in dealing with γ5. The anti-commutation
relations of γ5 with the d-dimensional γµ are lost for d 6= 4. That is why Ward identities and
with that gauge invariance of the theory is violated. A possible solution of this dilemma
is described in the next section.

Renormalization constant Zp
5 for the pseudoscalar current in QCD

In this section we demonstrate how the anti-commutativity of γ5 can be recovered explic-
itly. It covers the QCD case. It is not known whether there is a similar procedure for
supersymmetric theories. The pseudoscalar current that occurs at the vertex qqA in the
calculation of the QCD corrections to the gluon fusion process and the Higgs decay into
two photons has the form

P (x) = ψ(x)γ5ψ(x) =
i

4!
εµνρσψ(x)γµγνγργσψ(x).
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In order to renormalize the current correctly a �nite constant Zp
5 in addition to the ultra

violet renormalization constant Zp
MS is introduced. The renormalized current is given by

PR = Zp
5Z

p
MSPB = Zp

5Z
p
MS

i

4!
εµνρσψ(x)Bγµγνγργσψ(x)B.

The index R denotes the renormalized and B the non-renormalized or bare parameters.
The �nite renormalization constant Zp

5 is needed to restore Ward identities which have
been violated by the assumption of the anti-commutativity of γ5 in d dimensions. Zp

5 is
determined by the requirement of the restoration of the anti-commutativity of γ5.
In �ve �avor QCD one obtains [36]

Zp
5 = 1− αs

π
2CF +O

(
α2
s

)
, (4.11)

with the Casimir operator CF = 4/3 in SU(3). To conclude, for practical QCD calculations
where γ5 is taken to be anti-commuting in d dimensions, the result has to be multiplied
with the �nite Zp

5 .

4.3. Dimensional Reduction (DRED)
Dimensional regularization (DREG) violates SUSY as the transition from space-time di-
mension 4 to d = 4− 2ε introduces a mismatch between the number of degrees of freedom
of gauge bosons and their supersymmetric fermionic partners (gauginos). A spinor �eld
in d dimensions is 2d/2-dimensional, whereas a vector �eld is d-dimensional. Thus, the
dimensions of the �elds only match for d = 2 and d = 4 dimensions. One can apply
DREG nonetheless if one adds �nite counterterms which restore the supersymmetric Ward
identities [37�39]. The existence of such counterterms is granted by the renormalizability
of supersymmetric gauge theories [40�42].
Besides the violation of SUSY the second reason not to use DREG is the appearance of
γ5 in our calculations. If one uses γ5 in DREG to be anti-commuting Ward identities are
violated which have to be restored by adding �nite counterterms. This counterterm is only
known for the calculation in the SM (cf. Eq. (4.11)) [36]. As it is not known how such
a counterterm would read for a calculation including supersymmetric contributions, or if
it even exists, our preferred choice of regularization scheme in a SUSY calculation is not
DREG.
A di�erent possibility is the use of a regularization scheme in which the momentum inte-
grals are taken to be in d = 4− 2ε dimensions and the Lorentz indices of the gauge bosons
are taken to be 4-dimensional. While the momentum integration further stays in d dimen-
sions, the number of �eld components remains unchanged and SUSY is conserved. This
procedure is called dimensional reduction (DRED) [43]. In DRED only the momenta are
treated in d dimensions whereas the γ-matrices and gauge �elds remain in 4 dimensions.
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Therefore, a direct breaking of SUSY, as occurs in DREG, is circumvented. The idea of
dimensional reduction consists in assuming that all �eld variables depend on a subset of the
whole number of space-time dimensions; in this case d = 4−2ε. One now introduces 4 and
d-dimensional objects. The indices µ, ν, ... denote 4-dimensional and i, j, ... d-dimensional
objects. The associated metric tensors are gµν and gij. Additionally, one introduces sym-
bols with a hat (ĝµν ,γ̂

µ) , which agree with the d-dimensional objects in the d-dimensional
subspace and carry zeros as entries in (4 − d) dimensions. Momenta pµ only exist in d
dimensions and therefore do not obtain a hat symbol. In DRED for instance the following
relations hold

/p = pµγ
µ = pµγ̂

µ,

gµνgµν = 4, ĝµν ĝµν = gijgij = d,

ĝµνgλν = ĝµλ, ĝµνγν = γ̂µ.

In order to obtain 4-dimensional vector �elds Wµ on d-dimensional space-time xj, each
vector �eld (Yang-Mills-gauge �eld) gets an additional scalar �eld Wσ. This scalar �eld
is called an ε-scalar because it transforms as a scalar �eld under gauge transformations.
In dimensional reduction the vector �elds are thus split into a d-dimensional and an ε-
dimensional part [44]

W a
µ

(
xj
)

=
{
W a
i

(
xj
)
,W a

σ

(
xj
)}
,

with
δii = δjj = d and δσσ = ε.

In leading order the new regularization scheme manifests itself in a way that the Dirac
algebra is performed in four dimensions whereas the loop integrations still remain in d
dimensions. By applying DRED to supersymmetric theories, one does not run into prob-
lems as Wi and Wσ behave like Wµ under renormalization [44]. Even in higher orders of
perturbation theory the only e�ect of ε-scalars is that the Dirac algebra is performed in 4
dimensions. Inserting the �elds and their ε-scalars into the Lagrangian, one obtains

L4
B = LdB + LεB.

The Lagrangian contains a d-dimensional and an ε-dimensional part. In dimensional reg-
ularisization (DREG) only LdB is considered. The newly introduced part LεB is needed to
recover the supersymmetric Ward identities in one-loop order in SUSY theories [44].

4.3.1. Dimensional Reduction and γ5

One could conjecture that γ5 in DRED does not pose any problems as the whole Dirac
algebra can be executed in four dimensions. Nevertheless, it has been shown that, as in
DREG (see Sec. 4.2), in a mathematically consistent formulation of DRED an inconsistency
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with γ5 exists. This is revealed by the transition from d to four dimensions in the trace of
γ5 with other γ-matrices [45]. Assuming that the anti-commutativity of γ5, {γµ, γ5} = 0,
in four dimensions holds in d dimensions as well one obtains as in DREG that

(d− 4)tr
(
γ5γ̂µγ̂ν γ̂ργ̂σ

)
= 0 (d 6= 4).

The result given above requires that the trace vanishes for (d = 4) dimensions. This is in
contradiction to the results in four dimensions

tr
(
γ5γµγνγργσ

)
= 4iεµνρσ.

This results in problems analogous to the ones in DREG in handling γ5.

Concluding remarks

In our calculations we take γ5 to be anti-commuting and the Dirac-Algebra (traces, etc.)
is conducted in four dimensions. After the anti-commutation γ5 is replaced with Eq. (4.8)
((6.6)) in case the projector from Eq. (6.3) ((6.5)) is applied.
In general, in an MSSM calculation in DRED one would have to introduce ε-scalars which
occur when vector bosons are generated in the loops. In our calculations the only gauge
bosons that appear are gluons. We do not calculate the pure QCD parts contributing to
the Higgs production and Higgs decay at two-loop order. In case of the pseudoscalar Higgs
production as well as decay the NLO-SUSY contributions to the amplitude do not have
gluon insertions in the loops. For the Higgs decay and production squark diagrams with
one internal gluon line occur. The gq̃q̃ coupling however does not obtain a counterpart
with an ε-scalar. In addition, in the Higgs production processes only the virtual part for
the pure SUSY contributions is evaluated by ourselves. Those are inserted into an e�ective
ggφ vertex we take from the literature. To conclude, in the calculations presented in this
thesis, we do not have to introduce ε-scalars into the computation.

4.4. Renormalization
Renormalization is needed to absorb UV-divergences that originate from large loop mo-
menta. Via renormalization the bare parameters of the Lagrangian are related to measur-
able physical quantities like couplings and masses. Hence, the theory can make predictions
for experiments. In a renormalizable theory divergences can appear to all orders in pertur-
bation theory. Nevertheless, it is possible to remove them via a �nite number of parameter
renormalizations. The MSSM and SM are renormalizable non-Abelian gauge theories.
On the one hand, radiative corrections can be calculated from the bare Lagrangian where
the bare parameters are transformed into the physical ones afterwards. On the other hand
one can consider a Lagrangian that contains counterterms from the beginning to compen-
sate for the divergences and obtain a �nite result. We choose the �rst renormalization
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procedure that goes by the name of multiplicative renormalization. In doing so, the bare
coupling constants and masses gB are expressed through the physical coupling constants
and masses g with the help of multiplicative factors Zg in the following manner

gB = Zgg = (1 + δZg) g.

The factors δZg contain poles and have to be inserted into our calculations to the appro-
priate order in the strong coupling constant αs.

δZg ∼ αs +O(α2
s).

The δZg contain poles in 1/ε to compensate for UV-divergences appearing in Feynman
diagrams.

Various renormalization schemes exist which tie the renormalization of the parameters
to various boundary conditions. They are all equivalent and can be converted into each
other. In comparison with the calculation in leading order, in a next-to-leading order
calculation one has to renormalize the parameters that appear in the leading order. The
renormalization of the coupling constants is performed in the MS-scheme (modi�ed mini-
mal subtraction). In theMS-scheme that is applied if the underlying regularization scheme
is DREG after the transition from 4 to d = 4− 2ε dimensions the 1/ε-poles from the loop
integrations are subtracted. In addition to this subtraction, in the MS-scheme �nite parts
−γE+ln(4π) as in Eq. (4.7) are subtracted as well. In both cases a �nite result is obtained.
If the applied regularization scheme is DRED, the underlying renormalization scheme is
called DR or DR-scheme analogously to MS or MS.

For our calculation of the gluon fusion process the coupling αs of the strong interaction
has to be renormalized. This is not the case for the Higgs decay into two photons, because
there the leading order is independent of αs.

In these processes we perform the renormalization of the masses of the �elds that occur
as internal lines in the leading order in the on-shell scheme. On-shell means that the
boundary conditions are taken for particles on their mass shell. The mass of particles that
are on-shell is given by the real part of the pole of the propagator and is interpreted as
the physical mass. Besides the pole term the on-shell mass counterterms contain �nite
parts as well. This is due to the fact that the real parts to the pole mass are absorbed in
the counterterm. In the calculations involving pseudoscalar Higgs bosons only the quark
mass is renormalized because there are no contributions from supersymmetric particles in
leading order. In the scalar cases the squark masses and the squark mixing angle have to
be renormalized as well.
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4.5. DREG and DRED in our Calculations
The calculations we perform are the NLO-SQCD contributions to the Higgs decaying into
two photons, where the Higgs can either be a scalar or a pseudoscalar MSSM Higgs boson.
Furthermore, the NLO-SQCD contributions to the production of pseudoscalar and scalar
MSSM Higgs bosons via the gluon fusion mechanism are determined. In all the processes
we take the appearing masses to be on the mass shell. In our calculations we �nd that
the naive treatment of taking γ5 to be anti-commuting works. We even observe that our
physical on-shell results that should not depend on a regulator agree in DRED and DREG
if we perform the calculations carefully within each scheme.
For the pseudoscalar cases we �nd that the result in DRED with the on-shell quark mass
counterterms (cf. App. B) in DRED and the one in DREG with on-shell quark mass
counterterms in DREG agree, as expected.
The picture changes when one considers the cases for the scalar Higgs boson. Here, already
at leading order there are contributions due to squarks that are absent in the pseudoscalar
case because of its being CP-odd. If one performs the calculation in DRED with on-shell
mass counterterms for the quarks, squarks and the squark mixing angle, only the quark
mass depends on the DRED scheme. In DRED the Higgs-squark-squark couplings are
taken as they naturally appear in the MSSM. The result is then the correct one.
In contrast to the calculation in DRED the one in DREG is more subtle. Naively changing
the counterterm of the pole quark mass from DRED to DREG is not su�cient to obtain the
same on-shell result in DREG as in DRED. The crux is that one has to perform shifts in
the Higgs-squark-squark couplings in the calculation in DREG [46]. The relation between
the renormalized coupling m2

qg
h
q̃,ij (cf. App. A) in DREG and DRED is [46]

(
m2
qg
h
q̃,ij

)DREG
=
(
m2
qg
h
q̃,ij

)DRED
+mq

∂
(
m2
qg
h
q̃,ij

)
∂mq

[
δZDRED

mq − δZDREG
mq

]
+O

(
α2
s

)
=
(
m2
qg
h
q̃,ij

)DRED − 1

4
CF

αs
π
mq

∂
(
m2
qg
h
q̃,ij

)
∂mq

+O
(
α2
s

)
.

(4.12)

Having performed this shift in the Higgs-squark-squark couplings by applying DREG to
the calculation we �nd that the on-shell result regularized in DRED agrees with the corre-
sponding one regularized in DREG as required by the physical result that should be form
invariant in both schemes. The reason for this shift in the Higgs-squark-squark couplings
is due to the di�erence in the on-shell quark mass counterterms in DREG and DRED that
appear in this coupling [46]. The shift given in Eq. (4.12) accommodates for that depen-
dence such that the DRED result is recovered. The formula states that there is no shift
in case the term of the coupling is independent of the quark mass. There is a shift if the
dependence is linear and the shift is twice as big if the dependence of the quark mass is
quadratic. In the coupling m2

qg
h
q̃,ij all three cases appear as can be checked in App. A.
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4.6. Running of αs and the Bottom Mass
Via renormalization, a scale µ is introduced into the parameters of the Lagrangian. It is
the point at which the subtractions which remove the UV-divergences are performed. We
consider a dimensionless observable R that only depends on a single energy scale Q more
precisely on the ratio Q2/µ2 and the renormalized strong coupling αs. αs also depends
on µ. This physical quantity R should be independent of the choice of µ provided that
the bare parameters are kept �xed. This is expressed by the RG (renormalization group)
equation

µ2 d

dµ2
R

(
Q2

µ2
, αs

)
= 0.

The renormalized strong coupling αs is not a constant but evolves with energy. It is large
at low energies and becomes smaller at high energies. Therefore, perturbation theory works
for high energies. The change in αs is described by [47]

µ2 d

dµ2

αs (µ2)

π
= β (αs) = −

∑
i≥0

βi

(αs
π

)2+i

.

If coe�cients higher than β0 are neglected, the evolution is given by

αs (µ) =
αs (µ0)

1 + αs(µ0)
π

β0 ln
(
µ
µ0

) .
Here, β0 is the one-loop QCD β-function, which is given below. To evaluate the equation
above, as a starting point one chooses the experimentally very well measured αs(MZ) =
0.1176 [25] and extrapolates then to the desired energy scale.
The only quark masses we deal with in our calculations are the bottom quark mass and
the top quark mass. Since besides those two mass scales the Higgs mass and the masses
of the squarks and gluino are appearing in our calculations, the mass range we investigate
is of the order of magnitude around 100 GeV to 1000 GeV. The top mass, the Higgs mass,
the squark masses and the gluino masses are set to their pole masses in our calculations.
It has been suggested that one should use the MS bottom quark mass at the Higgs scale
instead of the on-shell bottom mass for the virtual contributions of bottom quarks to the
Higgs production [48]. In our calculations we will compare the results for on-shell bottom
masses with taking MS bottom masses. Like the running strong coupling, minimally
renormalized masses are a�ected by the energy scale under consideration. By taking a
MS bottom mass, running e�ects have to be included. The running describes, that the
bottom mass becomes larger, the smaller the energy scale and vice versa. The change in
the running MS bottom quark mass mb is described by [47]

µ2 d

dµ2

mb (µ2)

π
= mbγm = −mb

∑
i≥0

γim

(αs
π

)1+i

.
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The solution for the running mass mb is given by [47]

mb (µ) = mb (µ0) exp

{
1

π

∫ αs(µ)

αs(µ0)

dx
γm(x)

β(x)

}

= mb (µ0)

(
αs(µ)

αs(µ0)

) γ0m
β0

[
1 +

(
γ1
m

β0

− β1γ
0
m

β2
0

)(
αs(µ)

π
− αs(µ0)

π

)]
+O

(
α2
s

)
.

γm is called the anomalous dimension. As reference value we take mb(µ0 = 2GeV) = 4.2
GeV [25]. Furthermore, we use the explicit relation between the on-shell mass and theMS
mass which is given by [47]

mb (µ) = Mb

[
1− αs(µ)

π

(
4

3
+ ln

(
µ2

M2
b

))]
+O

(
α2
s

)
.

With the help of this equation, the on-shell bottom mass is expressed through a running
MS bottom mass. There is no limitation on the result since one can always convert between
MS into DR masses. The β-functions needed are

β0 =
1

4

(
11− 2

3
nf

)
,

β1 =
1

16

(
102− 38

3
nf

)
,

β2 =
1

64

(
2857

2
− 5033

18
nf +

325

54
n2
f

)
.

The anomalous dimensions are given by

γ0
m =

1

4
(3CF ) ,

γ1
m =

1

16

(
3

2
C2
F +

97

6
CFCA −

10

3
CFTnf

)
,

with nf = 5, CF = 4/3, CA = 3 and T = 1/2.
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5 Chapter 5

Asymptotic Expansions

The main topic of the present thesis are the production of Higgs bosons in the gluon fusion
process (gg → φ) and the decay of Higgs bosons into two photons (φ→ γγ). Both processes
are evaluated in next-to-leading order supersymmetric Quantum Chromodynamics (SQCD)
for φ = h and A.
In the occurring two-loop diagrams, up to four massive scales arise due to the quarks,
their superpartners and the gluino, all of which can be generated as intermediate particles.
To make the calculations feasible, we employ the method of asymptotic expansions which
is suited for higher order processes with several massive scales.
First, the method of asymptotic expansions in large masses is introduced. We comment on
the program packages we use as an assistance for our two-loop calculations. Subsequently,
the inclusion of the e�ects of bottom quarks with the help of the method of asymptotic
expansions is described. In the last section we illustrate the implementation of additional
one-loop routines needed for the inclusion of the bottom e�ects.

5.1. Asymptotic Expansions in Large Masses
When calculating loop corrections, one has to deal with Feynman diagrams which depend
on external momenta and masses. Especially in higher orders of perturbation theory this
gets increasingly di�cult due to momentum integrations which occur in loops. Diagrams
one is unable to calculate exactly due to their complexity one has to calculate approxi-
mately. A limit of large masses and momenta is de�ned by grouping the set of external mo-
menta and internal masses of a Feynman diagram Γ into largeQ ≡ {Q1, ..., Qi, ...} and small
q ≡ {q1, ..., qi, ...} momenta and large M ≡ {M1, ...,Mi, ...} and small m ≡ {m1, ...,mi, ...}
masses. The associated Feynman integral is FΓ

(
Q, q,M,m

)
. One can then expand the

Feynman diagrams with respect to masses and/or momenta. Reviews of the method of
asymptotic expansion are given in [49�51].
In our calculations we apply the method of expansions in large masses. A few exemplary
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h,Aq g̃
q̃1

q̃2

h,Aq̃1 g̃
q

h,Aq q̃

g̃

Figure 5.1.: Two-loop (NLO) Feynman diagrams for Higgs production through gluon
fusion (gg → φ).

diagrams are displayed in Fig. 5.1. They can depend on the quark mass mq, the two squark
masses mq̃1 , mq̃2 and on the gluino mass mg̃, where (q, q̃) = (t, t̃) or (b, b̃). Therefore, we
are dealing with up to four massive scales in a Feynman diagram. For processing the
expansion, one in advance �xes a hierarchy among the magnitude of the masses appearing
in the loops. In our calculations we performed asymptotic expansions for instance for the
mass hierarchies

mq � mq̃1 � mq̃2 � mg̃, mq � mq̃1 = mq̃2 � mg̃,

mq � mq̃1 � mq̃2 = mg̃, mq � mq̃1 = mq̃2 = mg̃,

m ≡ mt = mt̃1 = mt̃2 � mg̃,

where (q, q̃) = (b, b̃) or (t, t̃). One has to keep in mind that the convergence of the expansion
is only given in the assumed mass hierarchy. The method of expansion in the limit of large
masses M is depicted in the formula below [49]

FΓ

(
q,M,m; ε

)
∼
∑
γ

FΓ/γ

(
q,m; ε

)
◦ Tqγ ,mγFγ

(
qγ,M,mγ; ε

)
.

FΓ is the integral belonging to a Feynman diagram Γ. Γ/γ is a diagram in which the
subdiagram γ has been shrunk to a point. Tqγ ,mγ denotes the Taylor expansion in all small
mass scales mγ and external momenta qγ of the subgraph γ. In this way, loop momenta
of the diagram under consideration can become external momenta of subgraphs. The sum
runs over all subdiagrams γ, which

1. contain all lines with large masses

2. are one particle irreducible with respect to the lines of small masses.

The integrals are calculated in d = 4 − 2ε dimensions. The asymptotic expansions in our
calculation are performed with the help of EXP [52, 53]. The software packages used are
described in the next section.
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5.2. Methods and Auxiliary Material
One of the main di�culties in our calculations performed in the MSSM is the occurrence
of more than one massive scale mi ∈ {mq,mq̃1 ,mq̃2 ,mg̃} with (q, q̃) = (t, t̃) or (b, b̃). For
the calculation of the two-loop amplitudes (NLO) we use existing software programs. The
generation and calculation of the diagrams is completely automatized.
With the help of the program QGRAF [54] the diagrams contributing to the given process
are generated. For this we implement the Feynman rules in terms of propagators and
vertices in the notation of QGRAF and determine the initial and �nal state for the process
under consideration. The output of QGRAF contains the number of propagators, loops,
ingoing and outgoing momenta and in addition for each propagator the momentum of the
respective particle for each Feynman diagram. Lines which for instance merge into the same
vertex carry the same number. From that information one can reconstruct the diagrams
graphically. In our cases of the calculation we always deal with O(100 − 300) diagrams.
The Feynman rules applied are given in App. C. Q2E [55] translates the symbolic notation
of the diagrams given in QGRAF as an input into EXP.
EXP generates �les that can be given directly to a FORM-program [56] for the calculation.
EXP [52, 53] contains routines that process asymptotic expansions (cf. Sec. 5.1). For the
expansion in large masses, one �rst has to �x arbitrary mass hierarchies among the massive
particles occurring in the diagram. In the calculations under consideration � in one single
Feynman diagram � up to four massive scales that are the gluino, the two squark masses
and the quark mass can occur. The asymptotic expansions are carried out in the way
that the program searches the single graphs for subgraphs which can be calculated with
additional routines. The diagrams are classi�ed by topologies which can be calculated with
the same routines. If EXP detects a routine with which a subgraph can be calculated it
is not fragmented any more. EXP does not apply asymptotic expansions in case routines
for evaluating all graphs exist. EXP prepares the diagrams �nally for the calculation by
providing the essential information.
With the help of MATAD [57] or MINCER [58], which are implemented in the language
FORM [56] the output of EXP is analyzed. MATAD is a program to calculate massive vacuum
diagrams. It can deal with up to three-loop vacuum diagrams in which one massive scale
occurs. With MINCER one can calculate diagrams of the propagator type which only depend
on one non-vanishing external momentum. It can deal with up to three-loop graphs in the
massless case. After the procedure of generating the Feynman diagrams, and having done
the asymptotic expansions and evaluations of the diagrams with the automatized setup,
the unrenormalized amplitudes of the respective process are obtained.
The renormalization and the calculation of physical observables like decay widths and
cross sections remain yet to be done. The projectors that are described in Sec. 6.4 are
implemented in addition. The treatment of γ5 and the regularization scheme (see chapter
4) are handled user-de�ned.
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The following �ow chart abstracts the steps of the automatized setup described above

QGRAF → Q2E → EXP → MATAD/MINCER
generation translation asymptotic evaluation

expansion
(optional)

5.3. The Method Applied in our Case

The goal of our calculations is an expression for the amplitudes in supersymmetric Quantum
Chromodynamics (SQCD) for the photonic Higgs decay and the production of scalar and
pseudoscalar MSSM Higgs bosons at the two-loop level. Since we are about to apply
the method of asymptotic expansions, we have to set a hierarchy among the mass scales
appearing in our calculations.

If one is just interested in performing the calculations including the top quark, its scalar
superpartners and the gluino, one can make the assumption that the top quark is heavier
than the Higgs boson and perform an expansion in (m2

φ)/(4m2
t ), φ = h,A, with the Higgs

mass mφ and top mass mt. This seems to be a more or less valid assumption for mt = 172.4
GeV and an assumed Higgs mass between 100 GeV and 200 GeV. The superpartners of
the top quark and the gluino can be assumed to be heavier than the top anyway. The
calculation then simpli�es in a way that one can set the external momenta of the photons
and gluons to zero and ends up with the evaluation of massive two-loop tadpole diagrams.

Having in mind to include the bottom quark and its superpartners into the calculation,
the assumption of the quark being heavier than the Higgs boson clearly does not hold for
a bottom quark with a mass of around mb = 5 GeV. In this case, it is not permitted to set
the external momenta of the process under consideration to zero. This clearly demands
for another manner of including the bottom quark. The squarks and the gluino are still
considered to be heavy. By including the bottom quark, we will nevertheless perform
asymptotic expansions, only this time by keeping the external momenta non-vanishing.

Below, we want to describe the method to obtain this expansion in more detail. Applying
the method of asymptotic expansions for the �rst diagram displayed in Fig. 5.1 in the limit
Ms ≡ mb̃1

= mb̃2
= mg̃ � mφ,mb with the sbottom masses mb̃1,2

and gluino mass mg̃ leads
to the following relation
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q

q̃

g̃

Ms→∞→ q

q̃

g̃ ∗

+

q̃

g̃ ∗ q

(5.1)
On the right hand side it is understood that the integrand of the Feynman integral left of
∗ is Taylor-expanded in terms of all its parameters (external momenta, masses) except for
the heavy mass scale Ms (note that in the second term, also the loop momentum of the
diagram to the right of ∗ counts as external momentum to the term left of ∗). This leads
to massive tadpole integrals depending only on Ms which can be evaluated analytically.
The resulting expression is inserted into the shaded blob in the diagram left of ∗ as an
e�ective vertex. The dependence of the external momenta of the process is contained in
the diagrams to the right of *. The triangle diagram to the lower right is a one-loop
three-point function which gives rise to functions F∆(mφ,mb) depending on the bottom
and Higgs mass. Its evaluation will be described in more detail in Sec. 5.4. An analogous
procedure can be applied to all other diagrams contributing to the gluon fusion process.
For clarity, let us give one other example for the second exemplary Feynman diagram in
Fig. 5.1:

q̃ g̃
q Ms→∞→ q̃ g̃

q

∗

+
q̃ g̃

∗
q

(5.2)
Here, an additional type of one-loop diagram appears that has to be evaluated with non-
vanishing external momenta and results again in functions FO(mφ,mb) depending on the
bottom and Higgs mass. By performing an asymptotic expansion for the last diagram of
Fig. 5.1 one has to evaluate triangle diagrams like in the one given in Eq. (5.1) with one
propagator appearing in the triangle graph, raised by one power.
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q1 →

q2 →

q1 + q2→
m

m

m

q1 →
q2 →

→
m

m

q1 + q2

Figure 5.2.: Diagrams calculable with the new routines.

For the one-loop diagrams to the right of ∗ in the symbolic sketches of Eqs. (5.1) and
(5.2) we implement additional routines into the setup described in Sec. 5.2 which allow
us to evaluate them using standard Feynman parameterization. It should be noted that if
these integrals are expressed in terms of analytic functions, the result is valid both below
and above the cut at mφ = 2mq. In particular, we can compare it to the expansions of
Ref. [59, 60] obtained in the limit mt > mφ, which provides a welcome check.
The result obtained for the pure supersymmetric contributions to the amplitude is then
expressed as a power series of the following form

Asusy =
∑
n

(
m2
φ

M2
s

)n
F∆,O(mφ,mq) .

Above, we only illustrated asymptotic expansions for the production of Higgs bosons
through gluon fusion. Of course, this is analogously applicable to the process where the
Higgs decays into two photons via a loop. For the decay process Eqs. (5.1) and (5.2) from
above can be taken with the modi�cations that initial and �nal state are interchanged and
the two gluons are replaced by photons.

5.4. New Routines for Including the Bottom Quark
In order to include the bottom quark and its superpartners into our calculation, we imple-
mented new routines. They are included in the topology �le used by EXP [52, 53], which
reads in the topologies that we assume for the diagrams during the calculation as follows

{mb1l; 2; 1; 2; 2; ; (q1 : 1, 2)(q2 : 1, 2)(p1 : 2, 1)(p2 : 1, 2); 33},

{3ptriangle; 3; 1; 2; 3; ; (q1 : 1, 3)(q2 : 2, 3)(p1 : 2, 1)(p2 : 1, 3)(p3 : 3, 2); 333}.

The procedure 3ptriangle allows us to evaluate the leading order for the process gg → φ
and φ→ γγ where either a top quark or a bottom quark are generated in the loop exactly,
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i.e., without having to make an approximation. Furthermore, both of the new routines
enable us to include the bottom quarks and their superpartners into our calculation in
next-to-leading order (NLO) perturbation theory, as described in the previous section.

3ptriangle is implemented in order to calculate triangle (∆) graphs with three massive
propagators with one mass scalem (m = mq) appearing in the loop and with non-vanishing
external momenta. The type of diagrams that can be evaluated with 3ptriangle is shown on
the left side in Fig. 5.2. The incoming external momenta are denoted q1 and q2. Those dia-
grams arise as subdiagrams in the expansion of diagrams of the type exhibited in Eq. (5.1).

mb1l is implemented in order to calculate two-point functions with two massive propa-
gators with one mass scale m (m = mq) and non-vanishing external momenta. Diagrams
that can be calculated with mb1l are illustrated on the right side in Fig. 5.2. These arise
as subdiagrams like the one depicted in Eq. (5.2) in the calculations.

In both routines, the two external four-momenta q1, q2 correspond to the two photon
or gluon momenta. We assume that the photons and gluons are on the mass shell, i.e.,
q2

1 = 0 = q2
2 and that (q1 + q2)2 = 2q1 · q2 = m2

φ. The Higgs bosons are taken as real
particles.

During the calculation projectors are applied, which project out the scalar parts of the
amplitudes. We are then left to consider scalar integrals. Since we have to regularize the
Feynman integrals appearing in our calculations we do so by evaluating loop integrals in
d = 4 − 2ε rather than in 4 dimensions. This is done in dimensional regularization and
dimensional reduction which were discussed in chapter 4.

In the routine 3ptriangle for evaluating ∆ diagrams, the most complex integral appearing
is the one with three propagators corresponding to three factors in the denominator of the
integrand. The corresponding scalar integral is given by

C(q1, q2,m,m,m;n1, n2, n3) =

(2πµ)4−d

iπ2

∫
ddp

1

(p2 −m2 + iε)n1 ((p+ q1)2 −m2 + iε)n2 ((p− q2)2 −m2 + iε)n3
.

The factors in the denominator we face can contain one exponent ni = 2 and the other
exponents nj = 1, j 6= i in case the original diagram was of the type of the last diagram
shown in Fig. 5.1. In this case, while processing the asymptotic expansion by taking out
the squark/gluino loop of the original diagram, one is left with a triangle diagram, where
the exponent of one propagator is increased by 1. For diagrams like the one shown left in
Fig. 5.1 the exponents are ni = 1 for i = 0, 1, 2.

In the routine mb1l diagrams with two propagators are evaluated. Their integrals can be
expressed by
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B(q1, q2,m,m;n1, n2) =
(2πµ)4−d

iπ2

∫
ddp

1

((p+ q1)2 −m2 + iε)n1 ((p− q2)2 −m2 + iε)n2
,

(5.3)

B(q1,m,m;n1, n2) =
(2πµ)4−d

iπ2

∫
ddp

1

(p2 −m2 + iε)n1 ((p+ q1)2 −m2 + iε)n2
,

B(q2,m,m;n1, n2) =
(2πµ)4−d

iπ2

∫
ddp

1

(p2 −m2 + iε)n1 ((p− q2)2 −m2 + iε)n2
.

The B-type integrals occur in both routines. In the routine 3ptriangle we may have can-
cellations between numerators and denominators and the C-type integrals may be reduced
to B-type ones.
Additionally, scalar integrals of the type already discussed in Sec. 4.1 occur

A(m;n1) =
(2πµ)4−d

iπ2

∫
ddp

1

(p2 −m2 + iε)n1
.

In our calculations n1 and n2 are integer.
For the evaluation of these one-loop routines, we proceed as follows. First, we express the
momenta (p1, p2 and p3 in case of the ∆ diagram) running in the loops with the help of
the ones of the external gluons respective photons q1 and q2 and the loop momentum p.
Afterwards, these momenta are rewritten in terms of the appearing denominators. In both
routines an integration momentum p is present. Numerators that appear are expressed
through denominators and reduced. One simpli�es the structure of the integrals if one
reduces the numerators �rst. Having the integrals C, B and A from above in mind, we
write

p2 =(p2 −m2) +m2,

p · q1 =
1

2
((p+ q1)2 −m2)− 1

2
(p2 −m2),

p · q2 =− 1

2
((p− q2)2 −m2) +

1

2
(p2 −m2).

(5.4)

If Eq. (5.4) for instance is applied to the expression p · q1 C(q1, q2; 1, 1, 1), it simpli�es
considering the complexity of the integrals remaining to be calculated. The reduced ex-
pression is p · q1 C(q1, q2; 1, 1, 1) = 1

2
B(q2,m,m; 1, 1)− 1

2
B(q1, q2,m,m; 1, 1). The example

demonstrates that after the reduction one obtains new integrals which often have a simpler
structure in the denominator.
The problem with the integrals above is that one has to reform them into an expression,
that allows us to perform the integration over the loop momentum p. One method to

52



5.4. New Routines for Including the Bottom Quark

reformulate the integrals in a simpler way that allows for the integration over the loop
momenta is Feynman parameterization. Here, the goal of this method is to reduce the
various factors of the denominators in the integrals into a single quadratic polynomial in
p, raised to some power. Then what remains is a spherically symmetric integral, that can
be evaluated without any di�culties. As nothing comes for free, when one reduces the
denominator to one single factor, additional parameters come into play, with integrations
over them. The simplest identity has the form [61]

1

AB
=

∫ 1

0

dx

(xA+ (1− x)B)2 (5.5)

with the so-called Feynman parameter x. We will demonstrate step by step how they are
applied for the case of the Feynman integral of Eq. (5.3) by takingA = ((p+ q1)2 −m2 + iε)
and B = ((p− q2)2 −m2 + iε).

(2πµ)4−d

iπ2

∫
ddp

1

AB
=

(2πµ)4−d

iπ2

∫
ddp

1

((p+ q1)2 −m2 + iε) ((p− q2)2 −m2 + iε)

=
(2πµ)4−d

iπ2

∫
ddp

∫ 1

0

dx
1

[x ((p+ q1)2 −m2 + iε) + (1− x) ((p− q2)2 −m2 + iε)]2

=
(2πµ)4−d

iπ2

∫
ddp

∫ 1

0

dx
1

[p2 + 2pq1x− 2(1− x)pq2 −m2 + iε]2

=
(2πµ)4−d

iπ2

∫
ddp

∫ 1

0

dx
1

[p2 + 2q1q2x(1− x)−m2 + iε]2

=
(2πµ)4−d

iπ2

∫
ddp

∫ 1

0

dx
1[

p2 +m2
φx(1− x)−m2 + iε

]2 .

(5.6)

In the last step we performed the substitution of setting p′ = p + q1x − (1 − x)q2 and
afterwards relabeled p′ back to p again. We also applied q2

1=0 and q2
2 = 0 and Q2 =

(q1 +q2)2 = 2q1q2 = m2
φ. The identity in Eq. (5.5) generalizes to having n factors A1, ..., An

in the denominator with exponents mi [61]

1

Am1Am2
2 ...Amnn

=
Γ (m2 + ...+mn)

Γ (m1) Γ (m2) ...Γ (mn)

∫ 1

0

dx1

∫ 1

0

dx2...

∫ 1

0

dxn

δ
(∑

xi − 1
) ∏

xmi−1
i

[
∑
xiAi]

∑
mi
.

(5.7)

This formula even holds for non-integer mi. The special cases we need are given below,
where we already eliminated one integration with the help of the δ-function which appears
in Eq. (5.7)
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5. Asymptotic Expansions

1

A2BC
= Γ(4)

∫ 1

0

dx

∫ 1−x

0

dy
x

(xA+ yB + (1− x− y)C)4 ,

1

ABC
= Γ(3)

∫ 1

0

dx

∫ 1−x

0

dy
1

(xA+ yB + (1− x− y)C)3 ,

1

A2B
= Γ(3)

∫ 1

0

dx
x

(xA+ (1− x)B)3 .

After having inserted the Feynman parameters into the Feynman integrals, we are left
with just one denominator raised to a certain power. This then has to be expressed
in the form p2 − R, where the loop momentum p is separated from the rest R that is
independent of p (cf. Eq. (5.6)). This is done with the help of substitution of momenta
in the integral. In general, the function R = R (q1, q2, ..., qn;m1,m2, ...,mn;x1, x2, ..., xn)
depends on the external momenta qi, the masses mi appearing in the propagators and the
Feynman parameters xi. After the Feynman parameterization and before performing the
integration over the loop momentum p, powers of the denominator are reduced. In doing
so, the numerators in which momenta p2 appear are rewritten in the form p2 + R − R by
adding zero and the �rst two terms are reduced against one power in the denominator. As
an example, the following integral can be simpli�ed by∫

ddp
p2

p2 −R =

∫
ddp

p2 −R +R

p2 −R = R

∫
ddp

1

p2 −R.

Eq. (4.2) was applied to the �rst summand that then vanishes by de�nition. The aim then
is to eliminate all powers of loop momenta in the numerator and just be left with integrals
of the form [34]

In(R) =

∫
ddp

1

(p2 −R + iε)n
= i(−1)nπ(d/2) Γ

(
n− d

2

)
Γ (n)

(R− iε) d2−n ,

where the result was already presented in Sec. 4.1.
Having performed the integration over the loop momentum, integrations over Feynman
parameters remain to be done. The functions we obtain in our calculations and we are left
with to solve are

fxy (a, b, c, n) =
(2πµ)4−d

iπ2

∫ 1

0

dx

∫ 1−x

0

dy

∫
ddp

xa yb Rxy(q1q2,m, x, y)c

(p2 −Rxy(q1q2,m, x, y) + iε)n

= (−1)n
(
4πµ2

)ε Γ (n− 2 + ε)

Γ(n)

∫ 1

0

dx

∫ 1−x

0

dy xa yb (Rxy(q1q2,m, x, y)− iε)c+2−n−ε ,
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fx (a, c, n) =
(2πµ)4−d

iπ2

∫ 1

0

dx

∫
ddp

xa Rx(q1q2,m, x)c

(p2 −Rx(q1q2,m, x)− iε)n

= (−1)n
(
4πµ2

)ε Γ (n− 2 + ε)

Γ(n)

∫ 1

0

dx xa (Rx(q1q2,m, x)− iε)c+2−n−ε ,

where d = 4 − 2ε was employed. The functions can be written as an expansion in the
in�nitesimal parameter ε. To achieve this the expansion of the exponential function is
used

R±ε = e±ε lnR = 1± ε lnR +
ε2

2
ln2R± ....

In the �nal results for the amplitudes only integrals appear which are at most proportional
to a logarithm squared.
Finally, three types of integrals remain to be solved

F0(a, c, n) = (−1)n
(

4πµ2

m2

)ε
Γ (n− 2 + ε)

Γ(n)

∫ 1

0

dx xa(m2)c+2−n

= (−1)n
(

4πµ2

m2

)ε
(m2)c+2−n

(a+ 1)
,

F1(a, c, n) = (−1)n

(
4πµ2

m2
φ

)ε
Γ (n− 2 + ε)

Γ(n)

∫ 1

0

dx xa

(
x2 − x+

m2

m2
φ

− iε
)(c+2−n)

·
[

1− ε ln

(
x2 − x+

m2

m2
φ

− iε
)

+O(ε2)

]
,

F2(a, b, c, n) = (−1)n

(
4πµ2

m2
φ

)ε
Γ (n− 2 + ε)

Γ(n)

∫ 1

0

dy

∫ 1−x

0

dy xayb(
−xy +

m2

m2
φ

− iε
)(c+2−n)

·
[

1− ε ln

(
−xy +

m2

m2
φ

− iε
)

+O(ε2)

]
.

Here, we observe the use of µ as a reference mass in order to keep arguments of logarithms
dimensionless. The expressions of R for the integrals above are R0 = m2, R1 = (x2 −
x)m2

φ +m2 and R2 = −x ym2
φ +m2.

Finally, this means that the results obtained with the help of the new routines are functions,
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5. Asymptotic Expansions

in case we apply them to quarks loops, depending on the quark mass mq (denoted by m
above) and the Higgs boson mass mφ, i.e.,

Fi = Fi (mq,mφ) , (i = 0, 1, 2)

The analytic expressions for the integrals as well as their expansions are calculated with
the help of mathematica [62]. For some integrals it is not possible to evaluate them with
mathematica directly. By applying substitutions and appropriate replacements, one can
force the program to calculate the integrals step by step. The integrals we are left with
are roughly F1(a, c, n) where n = 1, 2, 3, a ∈ 0, ...,O(10) and c = 0, ..., 4. For most of them
we need the constant as well as the O(ε) parts. Only for F1(0, 0, 2), F1(1, 0, 2), F1(2, 0, 2),
F1(1, 0, 2) and F1(0, 0, 1) we need the ln2 part, i.e., the O(ε2) contribution. The most
complicated integrals we are �nally left with are F2(0, 0, 0, 3) and F2(0, 0, 0, 4). For the
renormalization one needs to take the derivative of F2(0, 0, 0, 3) with respect to the quark
mass, mq. The term proportional to ε in F2(0, 0, 0, 3) is known in the literature [63, 64].

Validation and Remarks

The need for new routines is due to the inclusion of the bottom quarks. To all diagrams
that contain mixed gluino/quark/squark contributions, the new routines are applied.
The new routines which were primarily designed to calculate the bottom contributions
to the two-loop processes under consideration, are applicable in the case of the top quark
as well. A welcome check of our routines is that we can compare the results obtained
with them with the results obtained for the limit of large top masses. Therefore, we could
test our new routines at leading order and next-to-leading order in perturbation theory.
We calculated all limiting cases including top quarks and their superpartners in the limit
of large top masses. With these results we checked our new routines by expanding the
integrals obtained with them in the appropriate small parameter, i.e., m2

φ/(4m
2
t ) in the

case of the top quark.
Applying the new routines to the two-loop diagrams that contain top quarks results in
a larger radius of convergence compared to the result obtained in the limit of large top
masses. In particular, they are valid for Higgs masses larger than the top mass.
In the renormalized results for the amplitudes of photonic decay of Higgs bosons, the inte-
grals are kept analytically to evaluate the results obtained for the Higgs decay numerically.
For the Higgs production via the gluon fusion they are expanded in the parameters mq

and mφ. The expansion parameter is 4m2
b/m

2
φ for the bottom case and m2

φ/(4m
2
t ) in the

top case. This is described in more detail in the chapters about Higgs decay and Higgs
production.
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6 Chapter 6

Higgs Decay

After having set the scene in the previous chapters, we now proceed to the main part of this
thesis. First, we will brie�y discuss the current status of the Higgs search. Next, the decay
of Higgs bosons in general will be discussed and throughout the chapter we focus on the
decay of scalar and pseudoscalar Higgs bosons into two photons. We calculate the latter
process in the framework of NLO-SQCD, where we include contributions from tops, stops
and gluinos as well as the � previously unknown � contributions from bottoms, sbottoms
and gluinos. We will give explicit expressions for the leading terms of the amplitude in
NLO-SQCD to the Higgs decay into two photons. Finally, we discuss the physical results
for the partial decay widths of the process under consideration.

6.1. Theoretical and Experimental Bounds on the Higgs

The di�erent experiments yielded certain limits on the Standard Model Higgs boson mass.
From direct search the experiments at the Large Electron Positron Collider (LEP) con-
cluded a lower bound for the Higgs mass which is mH ≥ 114.4 GeV at 95% con�dence
level [65]. From electroweak precision data the preferred value of the Higgs mass is
mH = 90+36

−27 GeV at 68% con�dence level including only the experimental uncertainty [65]
and an upper bound of mH ≤ 163 GeV with 95% con�dence level [65]. The upper bound
increases to mH ≤ 191 GeV if the direct search limit of LEP is included [65].
From the theory side, the bounds for the Higgs mass depend on the underlying model. In
the SM the Higgs mass is a priori a free parameter. Constraints come from the demand
to have a non-zero Higgs potential which possesses a stable vacuum expectation value. In
the SM the Higgs potential is given by VHiggs = λ(φ†φ)2 − µ2(φ†φ) and the Higgs mass is

mH =
√

2µ =
√

2λv [61]. Such as all couplings in a quantum �eld theory, the parameter
λ exhibits an energy dependency. From its running, an upper limit called triviality bound
for the Higgs mass is obtained by demanding that λ should not become singular. On the
other hand in order to have spontaneous symmetry breaking at all requires a non-vanishing
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6. Higgs Decay

Figure 6.1.: The triviality bound (upper) and the vacuum stability bound (lower) on
the Higgs mass in dependence of a cut-o� scale Λ up to which the SM is assumed to be
valid. The allowed region is in between the bands. Taken from [67].

λ at all energies. This is called stability bound and provides a lower limit on the Higgs
mass. In case the SM ful�lls these two requirements up to a certain energy scale Λ up to
which the SM is assumed to be valid, the bounds can be read o� in Fig. 6.1. If the validity
of the SM is assumed up to Λ ∼ 1019 GeV the bounds on the Higgs mass are roughly
100 GeV ≤ mH ≤ 200 GeV. Fig. 6.1 displays that the upper bound on the Higgs mass
increases to mH ≤ 800 GeV if one assumes for instance that new physics sets in at an order
O(1 TeV).

With the end of data taking at LEP, the search for Higgs bosons has turned to hadron
colliders. The Tevatron experiment at Fermilab is a proton-anti-proton collider with

√
s =

1.96 TeV hadronic center of mass energy. Recently, the two Tevatron experiments D∅ and
CDF published a combined exclusion of a SM Higgs boson with a mass between 160 GeV
to 170 GeV at 95% con�dence level [66].

The LHC, which shall start operating in the end of 2009 is a proton-proton collider with√
s = 14 TeV hadronic center of mass energy. There, it should be possible to discover a

Higgs boson from the lower experimental mass limit up to a mass of about 1 TeV.

The above bounds were given for a Standard Model Higgs boson. Supposed the underlying
model is the MSSM, there exist theoretical bounds on the lightest Higgs mass and on tan β.
For a SUSY scale of aboutMs ≈ 1 TeV one obtains 1 . tan β . 60 in models with universal
boundary conditions at the GUT scale [29]. If one requires that the set of SUSY parameters
ful�lls the known theoretical and experimental constraints the lightest MSSM Higgs boson
mass is at most mh ' 144 GeV for mt = 175 GeV [29].

Thorough reviews on SM and MSSM Higgs physics can be found in [28,29,68].
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6.2. Higgs Decay

(a) (b)

Figure 6.2.: (a) The main branching ratios for the Higgs decay in the SM in depen-
dence of the Higgs mass. The color coding for the single decay channels is shown in
the legend. (b) The expected signi�cance of the combined channels in dependence of the
Higgs mass for a luminosity of L=10 fb−1. Both taken from [69].

6.2. Higgs Decay

Since the existence of the Higgs boson has not been established experimentally, it is impor-
tant to know its dominant decay channels. For the Higgs search it is necessary to examine
these decay channels for di�erent Higgs boson masses. The SM Higgs boson can directly
decay into fermion pairs and massive gauge boson pairs (see Fig. 6.2).

The Higgs decay into bottom pairs H → bb is the dominant decay mode for Higgs masses
below the W+W− threshold (mH = 2mW ). The second largest decay mode for light Higgs
bosons is their decay into two τ leptons. In case the Higgs mass approaches and is above the
W+W− threshold, the Higgs decays mainly into W pairs. Once the Z threshold opens up,
the Higgs decays into these as well. Owing to the fact that the Zs are identical particles,
the decay into Z pairs is a factor of two smaller than the one into W pairs. Below their
thresholds, the decay into W or Z pairs can happen also, but with at least one W or Z-
boson being virtual. The branching ratios for the decay into two electroweak gauge boson
pairs then rises steeply towards their thresholds. For a very heavy Standard Model Higgs
boson, starting around the top pair threshold, the decay into top quarks opens in addition
to the decay into gauge bosons. But its branching ratio is smaller than the ones into gauge
bosons.

For a Higgs boson with a mass larger than about 130 GeV, the main search channel for a
discovery will be the decay of the Higgs boson into two W or Z bosons [69]. If the Higgs
mass is smaller than about 130 GeV, the Higgs boson decays dominantly into bb pairs.
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6. Higgs Decay

Figure 6.3.: The signi�cance vs. the Higgs mass for an integrated luminosity given in
fb−1. The black curve marks the 5σ discovery potential. Taken from [69].

Since one will have a large QCD background of bottom quarks from other processes at the
LHC one will not be able to distinguish the bb pairs from the Higgs decay and those from
the QCD background. In this case one would have to look into the decay into two photons
which possesses a small branching ratio of the order of 10−3 (see Fig. 6.2(a)). Already
at leading order the decay into two photons is a loop induced Higgs decay. The Higgs
decay into a photon and a Z boson is loop induced as well. Their branching ratios are
rather small but provide a clean signal. The Higgs decay into two gluons is a one-loop
process whose signature one would not be able to distinguish from the gluons from the
QCD background.

Some combined Higgs decay channels are given in the signi�cance plot in Fig. 6.3. The
black curve re�ects the 5σ discovery potential. The prospect for discovering a Higgs boson
with a mass larger than about 120 GeV seems within reach. But the main concern might
be a possibility of unobservability at the low mass end as displayed in Fig. 6.3.

In view of experimental limits some SUSY particles such as the charginos, neutralinos
and possibly sleptons and the third generation of squarks could be light enough to give
contributions in Higgs decays [29]. The contributions of these sparticles to the decay of the
neutral Higgs bosons into the two photon or two gluon �nal state can be large and they
can signi�cantly alter the other decay modes through radiative corrections [29].

The decay channels described above are valid both for a Standard Model Higgs boson and
the lightest MSSM Higgs boson h. For the pseudoscalar Higgs boson, the decay into WW
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6.3. φ→ γγ

(a) (b)

Figure 6.4.: The di-photon invariant mass spectrum in terms of cross sections in fb
for a Higgs mass of 120 GeV. The contribution from various signal to background (bkg)
processes are presented in stacked histograms. (a) Inclusive analysis (only the di-photon
system) (b) beyond the inclusive analysis with one jet analysis. Taken from [69].

and ZZ bosons does not exist.

In this thesis, the main focus will be on the decay of neutral MSSM Higgs bosons into
two photons in NLO-SQCD.

6.3. φ→ γγ

One of the most important search channels for Higgs bosons of masses of up to mH ≤ 130
GeV is the decay into two photons (H → γγ). In spite of an expected large background
one hopes for a clear signal on top of the background (Fig. 6.4(a),(b)) in case of the mass
of the Higgs being in that range. Both �gures display the cross sections in dependence of
the invariant di-photon mass for a Higgs mass of 120 GeV. Fig. 6.4(a) is inclusive, i.e., one
only looks at the di-photon system in the experiment and in 6.4(b) in addition one jet is
required. The leading jet in the gg → Hj process tends to be more separated from the
di-photon system than in background events [69]. Thus, taking the jet in addition to the
di-photon system as the signal process, discriminates well the signal from the background.
If one compares Fig. 6.4(a) with 6.4(b) the improvement of the signal/background ratio can
be observed. By using distinctive features of di�erent production mechanisms in addition
to the inclusive analysis, one can enhance the signal to background ratio. The drawback is
that the improved signal/background ratio comes with worse statistics and might be more
sensitive to systematic uncertainties [69].

The so-called irreducible part of the background is generated mainly due to qq → γγ and
gg → γγ. Irreducible contributions are the ones in which the background contains the
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6. Higgs Decay

same particles in the �nal state as the signal process. A reducible part of the background
is due to jets which are falsely detected as photons.

For a discovery of a Higgs boson with a mass less than about 130 GeV the decay channel
into two photons has to be combined with all the other production channels or the ττ
channel from the fusion of weak gauge bosons [69].

Status of the theoretical predictions

The status of the perturbative calculations for the decay of SM Higgs bosons into two
photons will be brie�y recollected. The LO decay rate was �rst presented in [70�72]. The
references for the calculation of the two-loop QCD amplitudes are given in [68]. The general
NLO-QCD result is known numerically [73,74] and analytically [75,76]. The NNLO-QCD
e�ects are known only in the limit of large top masses [77]. The electroweak corrections
have been evaluated in NLO as well [74]. For the decay of a pseudoscalar Higgs boson
the NLO-electroweak corrections have been calculated in [78]. In our calculations the
electroweak corrections will not be considered.

In this thesis we only calculate SQCD (supersymmetric QCD) corrections. If one performs
the QCD calculation for a neutral, scalar MSSM Higgs boson h instead of a SM Higgs
boson, one obtains an additional multiplicative factor cosα/ sin β as the Feynman rule
for the vertex htt is modi�ed in the MSSM (cf. App. C and Tab. 3.2). For the bottom
contributions this corresponding factor is − sinα/ cos β (cf. Tab. 3.2). α is the mixing
angle in the Higgs sector and tan β = v1/v2 is the ratio of the vacuum expectation values
of the two Higgs doublets in the MSSM. The LO-MSSM Higgs decay into two photons is
known for h and A. The references are given in [29]. The NLO-SQCD corrections to the
photonic decay of light CP-even Higgs bosons in the limit of large top/stop and gluino
masses have been derived in [79]. For the case of the decay of the lightest scalar MSSM
Higgs bosons h with the inclusion of the supersymmetric partners of the bottom quarks,
the sbottoms, the result is only known in leading order, which corresponds to a one loop
calculation.

The aim of the presented work was to obtain the next-to-leading order corrections in SQCD
to the process h, A → γγ by not only including the top quark and its superpartners but
also the bottom quark and its superpartners. The gluino, which is the massive superpartner
of the gluon contributes to these corrections as well. For the pseudoscalar case in leading
order no contribution due to supersymmetric particles exists, as the coupling of A to two
squarks is non-diagonal in the two di�erent squark �avors (cf. App. A). Those arise �rst
one order higher. Here, we are interested in the NLO-SQCD corrections as well.
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6.4. Projectors and d’Alembert Operators
We apply the projectors and d'Alembert operators described in this section both for the
calculation of the amplitudes of the Higgs decaying into two photons and the Higgs being
produced via the gluon fusion process. The calculation of the diagrams for the processes
A and h → γγ is done with the help of an expansion in the external momenta q1 and q2

of the photons. The result for the top contributions to the amplitude is an expansion in
m2
h/(4m

2
t ) with the Higgs mass mh and the quark mass mt. Its application to the MSSM

calculation and the inclusion of the bottom quarks will be described at the end of this
section.
The Lorentz structure of the amplitude of the decay of two on-shell photons with polar-
ization vectors εµ (q1) and εν (q2) into a CP-even Higgs boson is given by [77]

Aµν,h =
∑
i

Aµν,hi =
∑
i

(
ahi q1q2g

µν + bhi q
ν
1q

µ
2 + chi q

µ
1 q

ν
2

)
= (q1q2g

µν − qν1qµ2 )
∑
i

ahi . (6.1)

The sum runs over the number of diagrams which contribute to the given process.
Utilizing gauge invariance, i.e., q1µA

µν,h = 0 and q2νA
µν,h = 0 together with the fact that

q2
1 = 0 = q2

2 for real photons, results in
∑

i a
h
i = −∑i b

h
i and a vanishing coe�cient

∑
i c
h
i .

In order to have an additional check for the scalar parts of the amplitude, one can keep
both, ahi and b

h
i . The projectors onto a

h
i and b

h
i possess the following properties [77]

ahi =
Aµν,hi

(d− 2) (q1q2)2 (q1q2 gµν − q1νq2µ − q1µq2ν) , (6.2)

bhi =
Aµν,hi

(d− 2) (q1q2)2 (−q1q2 gµν + q1νq2µ + (d− 1)q1µq2ν) .

They have been obtained by contracting Eq. (6.1) with q1µq2ν , q1νq2µ and gµν , where
gµνg

µν = gµµ = d in d dimensions.
These projectors are applied to simplify the calculation of Feynman diagrams contributing
to the amplitude such that only scalar Feynman integrals have to be evaluated.
The amplitude for pseudoscalar Higgs bosons possesses a di�erent Lorentz structure due
to the CP properties of A:

Aµν,A =
∑
i

Aµν,Ai =
∑
i

(
εµναβq1αq2β

)
aAi .

The corresponding projector in this case is given by

aAi = − Aµν,Ai

(d− 2)(d− 3) (q1q2)2 εµνρσq
ρ
1q
σ
2 . (6.3)
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In connection with this projector we implement γ5 as follows

γ5 =
i

4!
εµνρσγµγνγργσ. (6.4)

As a test of the setup the projector given in [80] is implemented as well. The latter projector
can be displayed as follows [80]

P µνρσ
αβ (q1, q2) = q

[µ
1 q

ν
2g

ρ
αg

σ]
β . (6.5)

The square brackets denote an anti-symmetrization in the Lorentz indices µ, ν, ρ and σ. In
connection with this projector γ5 is replaced with [80]

γ5 →
i

4!
γ[µγνγργσ]. (6.6)

As expected, both projectors lead to the same results for the amplitude of a pseudoscalar
Higgs boson decaying into two photons. Because the projector given in Eq. (6.3) is much
more e�cient with respect to running time if we are dealing with additional mass scales of
supersymmetric particles in the diagrams, we mainly use that one.

Our observation is that we obtain the same results in the limit of large top masses for
the QCD top contributions in the decay of two photons into a pseudoscalar Higgs boson if
we use (a) the projector and γ5 as given in Eqs. (6.5) and (6.6) and the �nite counterterm
Zp

5 6= 1 (cf. Eq. (4.11)) [36] compared to the application of (b) the projector and γ5 from
Eqs. (6.3) and (6.4) together with Zp

5 = 1.

Since we are interested in a result which poses an expansion in mφ, φ = h,A, we will
perform an expansion in the external photon momenta. If one performs a Taylor expansion
in q1 and q2 for both h and A, the scalar part of the amplitude can be expressed by [77]

ah,Ai (q1, q2) =
∞∑

l,m,n=0

ci,h,Almn

(
q2

1

)l (
q2

2

)m
(q1q2)n . (6.7)

Only the coe�cients ci,h,A00n contribute to the amplitude, as we calculate with photons or
gluons on the mass shell, i.e., q2

1 = 0 and q2
2 = 0. In our calculations we always have

q1q2 = m2
h,A/2 since the Higgs is taken to be real. The ci,h,A00n correspond to massive two-

loop diagrams with vanishing external momenta.

By successively applying d'Alembert operators one obtains a system of equations, which
is solved for ci,h,A00n . The d'Alembert operators are given by

�ij =
∂2

∂qµi ∂qj,µ
, i, j = 1, 2. (6.8)
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If one solves the system of equations, the solution for the coe�cients is [77]

ci,h,A000 = ah,Ai ,

ci,h,A001 =
1

d
�12a

h,A
i ,

ci,h,A002 = − 1

2(d− 1)d(d+ 2)

(
�11�22 − d�2

12

)
ah,Ai ,

ci,h,A003 = − 1

2(d− 1)d(d+ 2)(d+ 4)

(
�11�22�12 −

1

3
(d+ 2)�3

12

)
ah,Ai ,

ci,h,A004 =
1

8(d− 1)d(d+ 1)(d+ 2)(d+ 4)(d+ 6)(
�2

11�
2
22 − 2(d+ 2)�11�22�

2
12 +

1

3
(d+ 2)(d+ 4)�4

12

)
ah,Ai .

(6.9)

In addition, we employ ci,h,A005 and ci,h,A006 .
All in all in the approximation in which m2

h < 4m2
t , i.e., the limit of large top masses

holds, the amplitude for the Higgs decay into two photons with only the contributions due
to top quarks can be depicted as a series

Aφ (q1, q2) = cφ0 + cφ1

(
m2
φ

4m2
t

)
+ cφ2

(
m2
φ

4m2
t

)2

+ ...,

where we employed the convention cφn ≡
∑

i c
i,φ
00n, q1q2 = m2

φ/2 and φ = h, A. By expanding
in this manner, the calculation of the diagrams has been simpli�ed in a way that one only
has to deal with massive two-loop vacuum diagrams, i.e., ones where the external momenta
vanish. In the supersymmetric two-loop calculation we performed, in addition to the top
mass more massive scales occur. With the help of the vacuum diagrams one obtains the
coe�cient functions in dependence of the mass scales appearing in the diagrams, namely
the top mass mt, stop masses mt̃1 , mt̃2 and the gluino mass mg̃. Our aim is hence the
determination of

ch,An = ch,An
(
mt,mt̃1 ,mt̃2 ,mg̃

)
.

We apply the method of asymptotic expansions described in chapter 5 for calculating the
Higgs production and decay amplitudes. In case one is just interested in contributions due
to top quarks and their superpartners, these can all be assumed to be much larger than
the Higgs mass so the method with the application of the d'Alembert operators can be
applied. As a result the amplitude is an expansion in powers of m2

h.
If we seek to include bottom quarks and their superpartners into the two-loop calculation
the assumption that the quark mass is larger than the Higgs mass is not valid. In this
calculation we perform asymptotic expansions in a certain hierarchy among the massive
scales. To each Feynman diagram thus several subdiagrams contribute which have to be
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γ

γ

h,A

q γ

γ

h
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Figure 6.5.: The Feynman diagrams in leading order of the photonic Higgs decay.

calculated separately and summed up in the end. We only apply the d'Alembert operators
in subdiagrams in which no new routines occur and obtain an expansion in ratios of the
Higgs mass and the large supersymmetric mass scales that are the two sbottom masses and
the gluino mass. In the cases where we deal with a bottom one-loop subdiagram we keep
the external momenta in those diagrams non-zero and explicitly evaluate those one-loop
diagrams.
To conclude, in our SQCD calculations we apply a mixture of applying d'Alembert opera-
tors which corresponds to calculating massive vacuum diagrams and of keeping the external
momenta of one-loop quark subdiagrams non-zero. The projectors given in Eqs. (6.2) and
(6.3) for the decay of scalar respective pseudoscalar Higgs bosons into two photons are
always applied to each Feynman diagram to free them of the tensor structure and to be
able to deal just with scalar integrals.

6.5. LO and NLO-(S)QCD Results
In the following section the decay of a Higgs boson into two photons, φ → γγ, is investi-
gated. As massless photons do not couple directly to Higgs bosons, this process is already
at leading order in perturbation theory a one-loop process. In the SM either a fermion or
charged W -bosons mediates the coupling of Higgs bosons to photons. We will not go into
detail considering insertions of weak gauge bosons in the loops and higher order corrections
of those which are electroweak corrections. We are just interested in the QCD parts of the
amplitude. Fig. 6.5 displays the corresponding Feynman diagrams.
The cases where φ = h or A is a MSSM Higgs boson will be examined. Fermions couple
proportional to their mass to Higgs bosons. If one considers the decay of a Standard
Model Higgs boson, the dominant fermion contribution originates from the top quark. In
the MSSM however, the Yukawa couplings are modi�ed to be

ght =
cosα

sin β
, ghb = − sinα

cos β
,

gAt = cot β, gAb = tan β.

Thus, for large tan β the e�ects through bottom quarks cannot be neglected in the MSSM.
The aim of this thesis is to include the two-loop MSSM corrections which contain the
superpartners of the bottoms, the sbottoms in order to obtain an estimate of how large
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γ

γ

h,A

f, χ̃± γ

γ

h

f̃ ,W,H± γ

γ

h

f̃ ,W,H±

Figure 6.6.: The LO Feynman diagrams which contribute to the decay of scalar and
pseudoscalar Higgs bosons into two photons in the MSSM are displayed.

their e�ects are. The two-loop QCD-corrections can be taken from the literature [76].
In spite of only considering MSSM Higgs bosons h and A and of the non-existence of a
CP-odd Higgs boson in the SM, pure quark and gluon contributions, i.e., contributions
from SM particles in the loops will be referred to as �QCD-� or �SM parts�. For the
decay of pseudoscalar Higgs bosons into two photons the leading order does not change
when taking into account MSSM particles. The supersymmetric particles only supply a
contribution in NLO. Contrary to the pseudoscalar case, in the decay of scalar Higgs bosons
into two photons already at leading order we get shares due to supersymmetric particles
(cf. Fig. 6.6).
By considering SQCD, which means that one is interested in an expansion in the coupling
of the strong force αs, contributions of quarks as well as their superpartners, the squarks
have to be considered. As mentioned above, the Yukawa couplings in the MSSM are
modi�ed. That is why we take into account the top quarks as well as the bottom quarks as
well as their superpartners. This means the introduction of two additional massive scales
for each quark into the calculation in leading order coming from the two di�erent masses
of the squarks. Each Standard Model degree of freedom gets assigned a superpartner,
that is why left and right-handed quarks obtain one massive superpartner each. The mass
eigenstates of the squarks are denoted by q̃1 and q̃2. In leading order only one species of
squarks, q̃1 or q̃2 can propagate in the loop at a time, as the photon cannot convert them.
In case only the top quark is taken into account at leading order, the left Feynman diagram
of Fig. 6.5 has to be evaluated. This triangle diagram exists for the squarks as well. There
is an additional diagram which includes a four vertex where two squarks couple to the
two photons. This coupling does not exist for quarks. The Standard Model and MSSM
contributions are displayed in Figs. 6.5 and 6.6 respectively.
For completeness we cite the entire supersymmetric leading order contributions to the
partial decay widths for φ→ γγ. These are given by [81]

Γ (h→ γγ) =
GFα

2m3
h

128
√

2π3

∣∣∣∣∣∑
f

Nc,fQ
2
fg

h
fHf (τf ) + ghWH

h
W (τW )

+ghH±HH± (τH±) +
∑
χ̃±

ghχ̃±Hχ̃± (τχ̃±) +
∑
f̃

Nc,f̃Q
2
f̃
gh
f̃
Hf̃

(
τf̃
)∣∣∣∣∣∣

2

,
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Γ (A→ γγ) =
GFα

2m3
A

128
√

2π3

∣∣∣∣∣∣
∑
f

Nc,fQ
2
fg

A
f Af (τf ) +

∑
χ̃±

ghχ̃±Aχ̃± (τχ̃±)

∣∣∣∣∣∣
2

,

with the form factors

Hf,χ̃± (τ) = 2τ [1 + (1− τ) f(τ)] ,

Hf̃ ,H± (τ) = −τ [1− τf(τ)] ,

HW (τ) = − [2 + 3τ + 3τ (2− τ) f(τ)] ,

Af,χ̃± (τ) = 2τf(τ).

(6.10)

The function f has the shape

f(τ) =

arcsin2 1√
τ

, τ ≥ 1

−1
4

(
ln 1+

√
1−τ

1−√1−τ − iπ
)2

, τ < 1

Here, τX = 4m2
X/m

2
φ with the mass mX of particle X and φ = h,A. The labels H± denote

the charged Higgs bosons, f fermions, f̃ sfermions, χ̃± charginos and W gauge bosons.
gh,AX are their respective dimensionless couplings to h and A bosons. The electric charge of
the fermion (sfermion) is denoted Qf (Qf̃ ). For the decay of scalar Higgs bosons into two
photons the contribution due to W bosons is dominant over the one due to fermions. For
τ → 0 one obtains Hh

W → −7 in contrast to Hh
f → 4

3
and Hh

f̃
→ 1

3
.

In our calculations however, we exclusively consider the QCD and SQCD part including
the third family of quarks and squarks given by

Γ (h→ γγ) =
GFα

2m3
h

128
√

2π3

∣∣∣∣∣∣
∑
q=t,b

NcQ
2
qg
h
qHq (τq) +

∑
q̃=t̃1,t̃2,b̃1,b̃2

NcQ
2
q̃g
h
q̃Hq̃ (τq̃)

∣∣∣∣∣∣
2

(6.11)

and for the pseudoscalar Higgs boson we have

Γ (A→ γγ) =
GFα

2m3
A

128
√

2π3

∣∣∣∣∣∑
q=t,b

NcQ
2
qg
A
q Aq (τq)

∣∣∣∣∣
2

. (6.12)

The charges Qq̃ of the squarks are the same as for the respective quarks. For the top quark
we have Qt = 2/3 and for the bottom quark the electric charge is Qb = −1/3. Nc = 3 is the
number of colors and α is the �ne-structure constant. The Fermi constant GF is related

to the vacuum expectation values of the Higgs �elds via v =
√
v2

1 + v2
2 = 1/

√√
2GF .

The amplitude H (h→ γγ) for the scalar Higgs decay will be de�ned as

H (h→ γγ) =
∑

qq̃=tt̃,bb̃

Q2
q Hqq̃ =

∑
qq̃

Q2
q

(
H(0)
qq̃ +

αs
π
H(1)
qq̃

)
+O

(
α2
s

)
, (6.13)
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with

Hqq̃ = H(0)
q +H(0)

q̃ +
αs
π

(
H(1)
q +H(1)

susy

)
+O

(
α2
s

)
,

(6.14)

where H(0)
q ≡ ghqHq and H(0)

q̃ ≡ ghq̃Hq̃ with the form factors Hq, Hq̃ given in Eq. (6.10).

H(0)
qq̃ and H(1)

qq̃ denote the one- and two-loop SQCD contributions respectively.
In case only QCD contributions are considered, the amplitude is denoted by

H (h→ γγ) =
∑
q=t,b

Q2
q Hq =

∑
q

Q2
q

(
H(0)
q +

αs
π
H(1)
q

)
+O

(
α2
s

)
.

Similarly, the amplitude A (A→ γγ) for the decay of pseudoscalar Higgs bosons is modi�ed
if higher order contributions are accounted for

A (A→ γγ) =
∑

qq̃=tt̃,bb̃

Q2
q Aqq̃ =

∑
qq̃

Q2
q

(
A(0)
qq̃ +

αs
π
A(1)
qq̃

)
+O

(
α2
s

)
,

(6.15)

with

Aqq̃ = A(0)
q +

αs
π

(
A(1)
q +A(1)

susy

)
+O

(
α2
s

)
,

(6.16)

where A(0)
q ≡ gAq Aq and Aq from Eq. (6.10). In case only QCD corrections are referred to,

the amplitude is written as

A (A→ γγ) =
∑
q=t,b

Q2
q Aq =

∑
q

Q2
q

(
A(0)
q +

αs
π
A(1)
q

)
+O

(
α2
s

)
.

The particle content of H(1)
susy and A(1)

susy will be speci�ed in the next section.
In next-to leading order in QCD the diagrams to calculate are the ones where a gluon line
is inserted into the leading order quark loop. Two example diagrams are shown in Fig. 6.7.
There is no contribution from real gluon emission at that order in perturbation theory due
to color conservation since the initial as well as �nal state are colorless. As a reminder, we
present the results for NLO-QCD amplitudes for both the decay of scalar and pseudoscalar
Higgs bosons into two photons for the top as well as for the bottom contributions. We
display them as an expansion in the parameters

τ = m2
φ/(4m

2
t ) and τb = 4m2

b/m
2
φ. (6.17)

69



6. Higgs Decay
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Figure 6.7.: The Feynman diagram contributing to the NLO-QCD of the photonic
Higgs decay.

The on-shell result for the top contributions to the amplitude h→ γγ reads [77]

Ht =
cosα

sin β

(
1 +

7

30
τ +

2

21
τ 2 +

26

525
τ 3 +

512

17325
τ 4 +O

(
τ 5
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+
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135
τ +

8864

14175
τ 2 +

209186

496125
τ 3 +

696616

2338875
τ 4 +O

(
τ 5
))

.

(6.18)

We take the on-shell result for the NLO contributions of bottom quarks from [76] and
expand it in the parameter τb as follows

Hb =
sinα

cos β

[
3

8

(
L2
bh − 4

)
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3

8
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.

with Lbh = ln (τb/4) + iπ, τb and τ taken as in Eq. (6.17) and φ = h.
The amplitude of A→ γγ through NLO-QCD in the on-shell scheme is [76]

At = cot β

(
1 +

1

3
τ +

8

45
τ 2 +

4
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τ 3 +
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(6.19)
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Again, the corresponding on-shell result for the bottom quark contributions is taken from
[76] and expanded in τb

Ab = tan β

[
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,

with LbA = ln(τb/4) + iπ, τb and τ as de�ned in Eq. (6.17) and φ = A.
As a test of our setup of the programs we reproduce known results for the top quarks as
an expansion in τ which corresponds to the limit of large top masses. In order to obtain
the amplitude we calculate the two-loop QCD diagrams with the help of the projectors
and the application of the d'Alembert operators described in Sec. 6.4. Furthermore, the
top mass has to be renormalized. Its on-shell counterterm is given in Eq. (B.1) in App. B.
The next step is then to augment the calculation by the e�ects of the MSSM partners of
the quarks, the squarks and the gluino to the photonic Higgs decay.

6.6. Diagrams in NLO-SQCD for φ→ γγ

In the following, characteristic Feynman diagrams contributing to the partial decay width
of scalar and pseudoscalar Higgs bosons into two photons are exempli�ed.
From now on by �top sector� or �top case� we term the contributions generated by top
quarks, top squarks and gluinos and analogous �bottom sector� or �bottom case� refers to
the contributions generated by bottom quarks, sbottom squarks and gluinos.
For the scalar case there areO(300) and for the pseudoscalar Higgs decayO(100) diagrams
for the top sector and the same amount of diagrams for the bottom sector.
The contributing diagrams can be categorized according to

1. pure quark contributions (SM- or QCD contributions) (Fig. 6.8(a), 6.8(b))

2. mixed quark-squark-gluino contributions (qg̃ contributions) (Fig. 6.8(c)-6.8(e))

3. pure squark contributions (q̃ contributions) (Fig. 6.8(f), 6.8(g))
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Figure 6.8.: NLO-SQCD contributions to the decay of Higgs bosons into two photons:
(a),(b): pure quark contributions; (c)-(e): mixed quark-squark-gluino contributions;
(f),(g): pure squark contributions.

The qg̃ and q̃ contributions together constitute what we call �SUSY� contributions to
the given process. For the decay of scalar Higgs bosons in NLO-SQCD more diagrams
exist because of the diagonal couplings of hq̃iq̃i. With this information on the two-loop
contributions in SQCD we can further specify the amplitude in the notation introduced in
Eqs. (6.13) and (6.14)

H(1)
susy = H(1)

q̃ +H(1)
qg̃ .

Thus, the supersymmetric part of the amplitude for the photonic decay of scalar Higgs
bosons contains diagrams that only have pure squark (label q̃) insertions and diagrams that
contain a gluino besides the quark and squark lines (label qg̃). Again, if the contributions
to the amplitude are labeled with qq̃ the entire contributions are meant, if the label is q̃ (q)
only the squarks (quarks) are included and with the label qg̃ we denote the contributions
that contain a gluino as an internal particle. The gluino parts have an additional quark
label (q) to further specify if we mean contributions from top quarks and top squarks in
connection with the gluino or from bottom quarks and bottom squarks. Analogously, the
two-loop part of the amplitude for the pseudoscalar case (cf. Eqs. (6.15) and (6.16)) is
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expressed by

A(1)
susy = A(1)

qg̃ .

6.7. Determination of the New Contributions
In both calculations, i.e., the scalar as well as pseudoscalar Higgs decay into two photons,
the projectors given in Sec. 6.4 are applied. In the decay of pseudoscalar Higgs bosons,
the coupling Aqq ∼ γ5 occurs. Therefore, the antisymmetric projector of Eq. (6.3) or
(6.5) in combination with the assigned implementation of γ5 are applied in evaluating the
diagrams. For the scalar case, the projector is given in Eq. (6.2). After the application of
the projectors, one is left with a scalar structure and thus with scalar Feynman integrals
to be evaluated.
Those are evaluated with the help of the method of asymptotic expansions according to
the chosen hierarchy among the massive particles appearing in the Feynman diagrams. The
massive scales are mq,mq̃1 ,mq̃2 and mg̃, where qq̃ = tt̃, bb̃. The asymptotically expanded
diagrams contain several subdiagrams (cf. Eqs. (5.1) and (5.2)). If a subdiagram contains a
quark subloop, this is evaluated with the help of the newly implemented one-loop routines
described in Sec. 5.4. The other subloop is a one-loop tadpole which can be evaluated with
MATAD. If a new routine is applied to a subloop, the external momenta are kept and the
d'Alembert operators are not applied. In case a subdiagram is a two-loop tadpole diagram
or a product of two one-loop tadpoles, the d'Alembert operators are applied as described
in Eqs. (6.7)-(6.9) and the result is an expansion in ratios of m2

φ/M
2
s with the appearing

heavy SUSY mass scales Ms.
The new routines which were originally designed for the inclusion of the bottom quark
e�ects can of course be applied to the top quark subloops as well. We do that in order to
push the validity of the top contributions to a higher energy scale. If the large top limit is
applied, the result is valid for m2

φ < 4m2
t . Applying the new routines to the top sector in

addition, the result is valid for M2
s > m2

φ > 4m2
t .

After the calculation of the diagrams as described above, the amplitude has to be renor-
malized.

6.7.1. Renormalization of the New Contributions
As we only calculate the contributions which contain at least one supersymmetric particle
in the loop, i.e., squark or gluino, we have to make sure to obtain a �nite result for them and
to adjust the renormalization procedure. The pure QCD parts of the two-loop amplitude
are taken from [76].
Parts of the amplitude which include at least one supersymmetric scale in the loop will
be referred to as �SUSY parts�. In the end, we have to make sure to add the QCD part
and our SUSY part consistently together to obtain the full SQCD result.
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By calculating only the SUSY parts of the amplitude, the counterterms have to be modi�ed
in comparison to the calculation in the full theory. The mass counterterms of the quarks
and their superpartners are known [82] and explicitly given in App. B.
For both, the decay of scalar and pseudoscalar Higgs bosons, the quark mass has to
be renormalized. The application of the new routines leads to amplitudes which depend
on functions F of Feynman integrals. Those depend on the quark and Higgs mass, i.e.,
F = F (mq,mφ). We renormalize those functions in the following manner

F (mq,mφ) = F (mb,mφ) + δZmqmqF
′ (mq,mφ) +O(δZ2

mq).

F ′ denotes the derivative of F with respect to the quark mass mq. At next-to-leading
order, the Higgs mass is not renormalized.
For the pseudoscalar case, the result obtained by just taking the pure SUSY contributions
in NLO and taking the MSSM counterterm for the quark mass, is not �nite. Therefore, the
counterterm for the quark mass has to be modi�ed in a way that the di�erence between
the MSSM counterterm and the QCD counterterm is applied to render a �nite result. The
bare quark mass is related to the renormalized one by mB

q = Zmqmq =
(
1 + δZmq

)
mq.

The renormalization constant utilized for the quark mass renormalization is given by

δZmq ,susy = δZmq ,MSSM − δZmq ,QCD.

This formula is employed in DRED as well as DREG. In detail it reads

δZDRED
mq ,susy = δZDRED

mq ,MSSM − δZDRED
mq ,QCD

δZDREG
mq ,susy = δZDREG

mq ,MSSM − δZDREG
mq ,QCD

The counterterms are given in App. B. By taking the respective on-shell counterterms
for the quark masses in DREG and DRED, both results agree in the on-shell scheme as
required.
Moreover, an additional check of this subtraction in the quark mass counterterm for the
renormalization of the SUSY parts is testing it in the limit of large top masses. In that
limit we can always calculate the complete NLO result for the top sector that includes the
two-loop QCD contributions of top quarks. This is a check of the calculation in which we
employ modi�ed counterterms. For the comparison of the new results for the top case with
the result in the limit of large top masses, we expand it in the parameter m2

φ/(2m
2
t ) and

�nd agreement.
For the process h→ γγ, the renormalization is modi�ed, due to the appearance of squark
e�ects already at LO. Again, we calculate all the diagrams except for the pure QCD ones
at two-loop level. Here, the squark masses and the squark-mixing angle are renormalized
with the complete MSSM counterterms given in appendix B. For the renormalization of
the quark mass we again subtract the pure QCD quark mass counterterm from the MSSM
one. The only exception is the Higgs-squark-squark coupling. Since the hq̃q̃ coupling is
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purely supersymmetric, the complete MSSM quark mass counterterm has to be employed
in case this coupling is present.
No matter what limiting case is calculated with the method of asymptotic expansions and
which SUSY scales are set equal (e.g. mq̃1 = mq̃2), the complete LO MSSM result has to be
taken into account. In particular, this means that the full dependence of mq̃1 and mq̃2 has
to be included and both squark masses and the mixing angle θq̃ have to be renormalized.
Only after the renormalization of the LO result that contains the full mass dependence,
one �nally sets the scales according to the NLO part (e.g. mq̃1 = mq̃2). Taking the limit
at the LO before the renormalization, the result will not be �nite.
The transition from DR to MS is given by [83]

αDRs = αMS
s

(
1 +

αMS
s

4π
+O

(
(αMS

s )2
))

. (6.20)

This �nite shift does not a�ect the results in NLO-SQCD as αs is not renormalized. There-
fore, this shift does not contribute to the NLO amplitude but one order higher. Thus, in
the �nal result, αDRs and αMS

s can be interchanged, depending on whether one is interested
in the DR or MS result.

6.7.2. Correct Decoupling of the Contributions
An important check for the �nite SUSY parts of the two-loop amplitude is that the result
decouples in the sense that these vanish in the limit in which the couplings are �xed and
the masses of the SUSY particles tend to in�nity. In this limit, according to the decoupling
theorem of Appelquist and Carazzone [84], the QCD result should be reproduced.
To clarify this limit with formulae, the on-shell results for the expansion up to O(τ =
m2
φ/(4mt)

2) in the limit of large top and SUSY masses will be given explicitly for the
limiting case where mt �Ms = mt̃1 = mt̃2 = mg̃.
For A→ γγ this limit reads

Att̃ = cot β

[
1 +

1

3
τ +

αs
π
τ

[
q̃

(
4

9
− 2

9
l +

2

9
ln

(
µ2

M2
s

)
− 2

9
Bfin

0

(
m2
t ,Ms,Ms

)
l

)
+q

(
14

9
+

2

9
dr

)]
+O

(
1

Ms

)]
+O

(
τ 2
)

= cot β

[
1 +

1

3
τ +

αs
π
τ

[
q̃

(
4

9
− 2

9
l

)
+ q

(
14

9
+

2

9
dr

)
+O

(
1

Ms

)]]
+O

(
τ 2
)
.

In the above formula we introduced labels q̃ and q (q = 1) to distinguish the SUSY parts
from the QCD parts. From the results we can read o� that in the QCD case (q̃ = 0) in
NLO only terms proportional to q = 1 occur. With l (l = 1) we denote the part which
originates from the renormalization of the LO. We set dr = 1, as we perform the calculation
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in DREG in the pure QCD calculation. The coe�cient of τ is therefore 16/9 as required
(cf. Eq. (6.19)). By considering the SUSY case (q̃ = 1), dr = 0 in DRED, the QCD part
then only provides for (14/9)τ and the (4/9− (2/9) l)τ = (2/9) τ that counts to the QCD
limit which originate from the SUSY diagrams in NLO and the part which comes from the
SUSY top mass renormalization of the LO. The term ln (µ2/M2

s ) cancels against the �nite
part of the MSSM top mass counterterm Bfin

0 (m2
t ,Ms,Ms) = ln (µ2/M2

s ) +O(1/Ms).
Therefore, in the limit of large SUSY masses working in DRED we obtain the on-shell
QCD result of (16/9) τ as required. This non-trivial interplay between the SUSY and SM
parts was already observed for the case of the production of pseudoscalar Higgs bosons
in [60].
The analogous case for h→ γγ is given by

Htt̃ =
cosα

sin β

[
1 +

7

30
τ +

αs
π

[
q̃ τ

(
14

45
− 7

45
l +

7

45
ln

(
µ2

M2
s

)
− 7

45
Bfin

0

(
m2
t ,Ms,Ms

)
l

)
+ q

(
−1 + τ

(
101

135
+

7

45
dr

))]]
+O

(
1

Ms

, τ 2

)
= 1 +

7

30
τ +

αs
π

[
q̃ τ

(
14

45
− 7

45
l

)
+ q

(
−1 + τ

(
101

135
+

7

45
dr

))]
+O

(
1

Ms

, τ 2

)
.

Again, the logarithmic term cancels against the Bfin
0 part originating from the �nite part

of the SUSY top quark mass counterterm, as described above. The parameters are chosen
like in the pseudoscalar case. For the pure QCD result proportional to q (q = 1), the
coe�cient of τ in NLO is 122/135, as expected (cf. Eq. (6.18)). By performing the full
MSSM calculation in the limit of large top masses and taking dr = 0 in DRED, we again
observe that the QCD result is recovered in the limit of large SUSY masses. But it is only
obtained as an interplay between the pure SUSY parts with the renormalized LO parts
(label l = 1) and the pure QCD parts.
Altogether for the amplitudes the �SM limit� reads

Aqq̃ = Aq +
1

Ms

Aqg̃ limMs→∞−−−−−−→ Aqq̃ = Aq

Hqq̃ = Hq +
1

Ms

(Hqg̃ +Hq̃)
limMs→∞−−−−−−→ Hqq̃ = Hq.

Aq and Hq are the known QCD amplitudes. We only calculate the expressions in the �es,
which correspond to the contributions through supersymmetric particles.
For the decay of pseudoscalar Higgs bosons into two photons we observe that by letting
the heaviest mass scale tend to in�nity, the SUSY parts vanish.
In the decay of scalar Higgs bosons, by letting the largest mass scale tend to in�nity
the result vanishes only for the case where all the SUSY scales are set to one scale. By
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assuming di�erent SUSY masses, all of them have to be taken very large and thus the limit
is zero. We then obtain ratios of masses in that limit which are always suppressed by a
power of a SUSY mass scale, e.g. µsusymt̃1/m

2
t̃2
→ 0 for mt̃1 � mt̃2 and a �xed µsusy.

To conclude, for both the decay of scalar and pseudoscalar Higgs bosons the SM limit is
recovered in the limit of very large SUSY masses.

6.8. Explicit Results as an Expansion in Leading Terms

In order to investigate the two-loop results for the Higgs decaying into two photons, we
will give explicit examples for the cases where we assume certain hierarchies among the
masses of the supersymmetric particles. The simplest case is assuming one SUSY mass
scale, i.e., Ms ≡ mq̃1 = mq̃2 = mg̃. Further we apply the method of asymptotic expansions
in the limit mq �Ms.

For the top case and its superpartners, we explicitly checked that the results obtained
with the routines described in Sec. 5.4 agree with the ones obtained in the limit of large
top masses. To perform this check the new results are expanded in the parameter τ =
m2
h,A/(4m

2
t ).

The amplitudes we are interested in are the ones in leading order and next-to-leading
order.

For the photonic decay of scalar and pseudoscalar Higgs bosons the amplitudes can be
written in the following form (cf. Eqs. (6.13) and (6.15))

H (h→ γγ) =
∑

qq̃=tt̃,bb̃

Q2
q Hqq̃ =

∑
qq̃=tt̃,bb̃

Q2
q

(
H(0)
qq̃ +

αs
π
H(1)
qq̃

)
+O

(
α2
s

)
,

A (A→ γγ) =
∑

qq̃=tt̃,bb̃

Q2
q Aqq̃ =

∑
qq̃=tt̃,bb̃

Q2
q

(
A(0)
qq̃ +

αs
π
A(1)
qq̃

)
+O

(
α2
s

)
.

This has to be understood in the sense that qq̃ = tt̃ (bb̃) denotes the top (bottom) case
which includes the stops (sbottoms) and gluinos as well. In addition to the Feynman
integrals obtained with the new routines, the �nite expressions, Bfin

0 originating from the
on-shell counterterms, are expanded according to the mass hierarchy given in the limiting
case under consideration. The notation given in the table below will be applied to the
explicit expressions of the two-loop on-shell amplitudes for which we display the leading
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terms in the following sections.

xφs =
m2
φ

M2
s

, Lφs = lnxφs − iπ, xqs =
m2
q

M2
s

, Lqs = lnxqs, xqg̃ = x−1
g̃q =

m2
q

m2
g̃

,

Lqg̃ = lnxqg̃, xφq = x−1
qφ =

m2
φ

m2
q

, Lφb = lnxφb − iπ, Lφt = lnxφt,

x1g̃ = x−1
g̃1 =

m2
q̃1

m2
g̃

, L1g̃ = lnx1g̃, x2g̃ = x−1
g̃2 =

m2
q̃2

m2
g̃

, L2g̃ = lnx2g̃, xφg̃ =
m2
φ

m2
g̃

,

Lφg̃ = lnxφg̃ − iπ, x12 = x−1
21 =

m2
q̃1

m2
q̃2

, L12 = lnx12, Lg̃ = ln
µ2
R

m2
g̃

,

Ls = ln
µ2
R

M2
s

, Lq̃1 = ln
µ2
R

m2
q̃1

, Lq̃2 = ln
µ2
R

m2
q̃2

, Lq̃ = ln
µ2
R

m2
q̃

, Lq = ln
µ2
R

m2
q

,

xφ1 = x−1
1φ =

m2
φ

m2
q̃1

, xφ2 = x−1
2φ =

m2
φ

m2
q̃2

with φ = h, A; q = t, b; q̃ = t̃, b̃.

(6.21)

6.8.1. Explicit Expressions for the Amplitude A→ γγ

The contributions of the bottom sector to the two-loop amplitude for the decay of pseu-
doscalar Higgs bosons into two photons can be expressed through

Abb̃ = tan βA0,bb̃ +
µsusy
Mx

(
1 + tan2 β

)
A1,bb̃, (6.22)

with

Ai,bb̃ =
∑
n

(
mb

mA

)n
Ai,bb̃,n.

The analogous part of the amplitude of the top sector reads

Att̃ = cot βA0,tt̃ +
µsusy
Mx

(
1 + cot2 β

)
A1,tt̃, (6.23)

with

Ai,tt̃ =
∑
n

(
mA

mt

)n
Ai,tt̃,n.

Furthermore,

Ai,qq̃ = A(0)
i,qq̃ +

αs
π
A(1)
i,qq̃ +O

(
α2
s

)
, qq̃ = tt̃, bb̃
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and

A(j)
i,qq̃ = A(j)

i,q +A(j)
i,qg̃.

The analogous decomposition applies to the coe�cients Ai,qq̃,n. Here, Mx denotes the
largest SUSY mass scale chosen in the limiting case. In the following sections, coe�cients
that are omitted vanish. The QCD parts for the top and bottom contributions are already
given in Sec. 6.5. Since we choose a di�erent expansion parameter we list the results again
in the same expansion we apply to the SUSY parts of the amplitude. The leading order
does not get a contribution from squarks in the MSSM. For the bottom case it reads

A(0)
0,b = −L2

AbxbA − 4LAbx
2
bA − (6LAb − 4)x3

bA −
(

40LAb
3

+ 12

)
x4
bA

−
(

35LAb +
107

3

)
x5
bA −

(
504LAb

5
+ 110

)
x6
bA +O

(
x7
bA

)
.

The two-loop QCD contributions of bottoms through O (m4
b) are given by [76]

A(1)
0,b,2 =

L4
Ab

18
− 2L3

Ab

3
+

4π2L2
Ab

9
+

(
4π2

9
− 32ζ(3)

3

)
LAb −

8ζ(3)

3
+

2π4

15
,

A(1)
0,b,4 =

16L3
Ab

9
− 44L2

Ab

3
+

(
16

3
+

16π2

9

)
LAb +

64ζ(3)

3
+

8π2

9
+

80

3
,

The amplitude in LO from top e�ects is

A(0)
0,t = 1 +

xAt
12

+
x2
At

90
+
x3
At

560
+

x4
At

3150
+O

(
x5
At

)
,

For the two-loop SM insertions due to top quarks we obtain

A(1)
0,t =

4xAt
9

+
17x2

At

180
+

13253x3
At

680400
+

4339x4
At

1058400
+O

(
x5
At

)
.

6.8.2. A→ γγ in the Limit mq �Ms ≡ mq̃1 = mq̃2 = mg̃

Here, the explicit results for the amplitude in the limit mq � MS ≡ mq̃1 = mq̃2 = mg̃,
i.e., where we set the SUSY masses equal are displayed. By setting the squark masses to
one scale, we do not assume mixing between them. Therefore, this result is independent
of the squark mixing angle θq̃. In this limit, Mx = Ms (cf. Eqs. (6.22) and (6.23) ). In the
following, coe�cients which are omitted vanish.
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For the e�ects due to sbottoms and gluinos in the photonic decay of the pseudoscalar
Higgs boson in NLO we obtain through O (m4

b)

A(1)
0,bg̃,2 =

LAb
9
xAs +

(
LAb
135
− LAs

90
+

37

2700

)
x2
As

+

(
LAb
1260

− LAs
1890

− 1147

793800

)
x3
As +O

(
x4
As

)
,

A(1)
0,bg̃,4 =

(
2L2

Ab

9
− 2LAb

9
− 2

9

)
xAs +

(
4LAb
135

+
1

135

)
x2
As

+

(
LAb
180
− LAs

126
+

121

13230

)
x3
As +O

(
x4
As

)
,

A(1)
1,bg̃,2 =

L2
Ab

3
+

(
L2
Ab

36
− Lbs

9
+

2

27

)
xAs +

(
L2
Ab

270
− Lbs

45
− 1

2700

)
x2
As

+

(
L2
Ab

1680
− 11Lbs

2520
− 503

264600

)
x3
As +O

(
x4
As

)
,

A(1)
1,bg̃,4 = −4LAb

3
+

(
L2
Ab

18
− LAb

9

)
xAs +

(
L2
Ab

135
+

7LAb
135

− LAs
15

+
3

50

)
x2
As

+

(
L2
Ab

840
+

2LAb
105

− 3LAs
140

+
403

44100

)
x3
As +O

(
x4
As

)
.

The two-loop e�ects of the mixed top-stop-gluino contributions up to O(m4
A) are

A(1)
0,tg̃,2 = − 1

27
xts +

(
−Lts

90
− 1

900

)
x2
ts +

(
29

6615
− Lts

126

)
x3
ts +O

(
x4
ts

)
,

A(1)
0,tg̃,4 = − 7xts

1620
− x2

ts

4050
+

(
− Lts

1890
− 629

793800

)
x3
ts +O

(
x4
ts

)
,

A(1)
1,tg̃,0 =− 1

3
+

(
1

54
− Lts

9

)
xts +

(
11

225
− Lts

15

)
x2
ts +

(
131

4900
− Lts

35

)
x3
ts +O

(
x4
ts

)
,

A(1)
1,tg̃,2 = − 1

36
− 7xts

216
+

(
−Lts

45
− 47

5400

)
x2
ts +

(
409

58800
− 3Lts

140

)
x3
ts +O

(
x4
ts

)
,

A(1)
1,tg̃,4 =− 1

270
− 19xts

6480
− x2

ts

225
+

(
−11Lts

2520
− 139

42336

)
x3
ts +O

(
x4
ts

)
.
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6.8.3. A→ γγ in the Limit mq � mq̃1 �Mg̃ ≡ mq̃2 = mg̃

In the limit where mq � mq̃1 � Mg̃ ≡ mq̃2 = mg̃, the newly calculated amplitude for the
bottom, sbottom and gluino contributions can be displayed like in the last paragraph but
with Mx = Mg̃.
For the e�ects due to sbottoms and gluinos in the photonic decay of the pseudoscalar
Higgs boson in NLO we obtain through O (m4

b)

A(1)
0,bg̃,0 = sin2 (2θb̃)

[
1

12
+

(
L1g̃

3
+

1

2

)
x1g̃ +

17

324
xAg̃ +

(
5L1g̃

6
+

1

2

)
x2

1g̃

+

(
4L1g̃

9
+

86

81

)
xAg̃x1g̃ +

29x2
Ag̃

864

]
+O

(
x3

1g̃, x
2
1g̃xAg̃, x1g̃x

2
Ag̃, x

3
Ag̃

)
,

A(1)
0,bg̃,1 = sin (2θb̃)

[(
−L

2
Ab

12
− 2LAb

9

)
√
xAg̃ +

(
−L

2
Ab

27
+
LAb
20

+
11Lbg̃

60
+

19

5400

)
x

3/2
Ag̃

+

[(
−L1g̃

3
− 7

12

)
L2
Ab +

(
−2L1g̃

3
− 1

)
LAb

]
x1g̃
√
xAg̃

]
+O

(
x2

1g̃x
1/2
Ag̃ , x1g̃x

3/2
Ag̃ , x

5/2
Ag̃

)
,

A(1)
0,bg̃,2 =

L2
Ab sin2 (2θb̃)

12
+

(
L1g̃

3
+

1

2

)
L2
Ab sin2 (2θb̃)x1g̃ +

[(
L2
Ab

27
+

5

108

)
sin2 (2θb̃)

+
5LAb
18

]
xAg̃ +

(
5L1g̃

6
+

1

2

)
L2
Ab sin2 (2θb̃)x

2
1g̃ +

[((
L1g̃

3
+

22

27

)
L2
Ab +

L1g̃

3

+
20

27

)
sin2 (2θb̃) +

(
2L1g̃

3
+

11

9

)
LAb

]
xAg̃x1g̃ +

[(
L2
Ab

48
+
Lbg̃
36

+
311

4320

)
sin2 (2θb̃)−

4Lbg̃
45
− 4LAb

135
− 1

10800

]
x2
Ag̃ +O

(
x3

1g̃, x
2
1g̃xAg̃, x1g̃x

2
Ag̃, x

3
Ag̃

)
,

A(1)
0,bg̃,3 = sin (2θb̃)

[(
−4L2

Ab

9
+

7LAb
9

+
4

9

)
√
xAg̃ +

(
−5L2

Ab

108
− 41LAb

270
− 1

10

)
x

3/2
Ag̃

+

[(
−4L1g̃

3
− 2

)
L2
Ab +

(
8L1g̃

3
+

13

3

)
LAb +

4L1g̃

3
+ 2

]
x1g̃
√
xAg̃

]
+O

(
x2

1g̃x
1/2
Ag̃ , x1g̃x

3/2
Ag̃ , x

5/2
Ag̃

)
,

A(1)
0,bg̃,4 = −LAb sin2 (2θb̃)

3
+

(
−4L1g̃

3
− 2

)
LAb sin2 (2θb̃)x1g̃

+

[(
5 sin2 (2θb̃)

108
+

5

9

)
L2
Ab +

(
−4 sin2 (2θb̃)

27
− 5

9

)
LAb −

5

9

]
xAg̃

+O
(
x2

1g̃, x1g̃xAg̃, x
2
Ag̃

)
,
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A(1)
1,bg̃,1 = sin (2θb̃)

[
−
√
xAg̃

6
+

(
−2L1g̃

3
− 7

6

)
x1g̃
√
xAg̃ −

17x
3/2
Ag̃

162

−
29x

5/2
Ag̃

432
+

(
−8L1g̃

9
− 361

162

)
x1g̃x

3/2
Ag̃ +

(
−7L1g̃

3
− 13

6

)
x2

1g̃

√
xAg̃

]
+O

(
x2

1g̃x
1/2
Ag̃ , x1g̃x

3/2
Ag̃ , x

5/2
Ag̃

)
,

A(1)
1,bg̃,2 =

2L2
Ab

3
+

(
2L1g̃

3
+

2

3

)
L2
Abx1g̃ +

(
L2
Ab

6
− 4Lbg̃

9
− 1

27

)
xAg̃ +

(
4L1g̃

3
+

2

3

)
L2
Abx

2
1g̃

+ x1g̃xAg̃

[(
2L1g̃

3
+

4

3

)
L2
Ab −

4L1g̃

3
+

(
−4L1g̃

3
− 22

9

)
Lbg̃ −

8ζ(2)

3
+

26

27

]
+

(
2L2

Ab

27
− 4Lbg̃

15
− 17

75

)
x2
Ag̃ +O

(
x3

1g̃, x
2
1g̃xAg̃, x1g̃x

2
Ag̃, x

3
Ag̃

)
,

A(1)
1,bg̃,3 = sin (2θb̃)

[
−1

6
L2
Ab

√
xAg̃ +

(
−2L1g̃

3
− 7

6

)
L2
Abx1g̃

√
xAg̃ +

(
−2L2

Ab

27
− 5

54

)
x

3/2
Ag̃

+

(
−L

2
Ab

24
− Lbg̃

18
− 311

2160

)
x

5/2
Ag̃ +

[(
−2L1g̃

3
− 46

27

)
L2
Ab −

2L1g̃

3
− 85

54

]
x1g̃x

3/2
Ag̃

+

(
−7L1g̃

3
− 13

6

)
L2
Abx

2
1g̃

√
xAg̃

]
+O

(
x3

1g̃x
1/2
Ag̃ , x

2
1g̃x

3/2
Ag̃ , x1g̃x

5/2
Ag̃ , x

7/2
Ag̃

)
,

A(1)
1,bg̃,4 = −8LAb

3
+

(
−8L1g̃

3
− 8

3

)
LAbx1g̃ +

(
2L2

Ab

9
− 2LAb

3

)
xAg̃

+

(
−16L1g̃

3
− 8

3

)
LAbx

2
1g̃ +

[(
2L1g̃

3
+

11

9

)
L2
Ab +

(
−8L1g̃

3
− 16

3

)
LAb

]
xAg̃x1g̃

+

(
5L2

Ab

54
− 8LAb

27
− 3Lbg̃

5
+

4

225

)
x2
Ag̃ +O

(
x3

1g̃, x
2
1g̃xAg̃, x1g̃x

2
Ag̃, x

3
Ag̃

)
,

For the contributions due to top quarks and their partners up to O(m4
A) we �nd

A(1)
0,tg̃,2 = −sin2 (2θt̃)

144
+

17 sin (2θt̃)
√
xtg̃

108
+

(
−L1g̃

36
− 1

24

)
x1g̃ sin2 (2θt̃)

+

(
5 sin2 (2θt̃)

432
− 5

54

)
xtg̃ +

(
11Ltg̃

60
+

1169

5400

)
sin (2θt̃)x

3/2
tg̃

+

(
5L1g̃

9
+

11

12

)
sin (2θt̃)x1g̃

√
xtg̃ +O

(
x2

1g̃, x1g̃xtg̃, x
2
tg̃

)
,

82



6.8. Explicit Results as an Expansion in Leading Terms

A(1)
0,tg̃,4 = −sin2 (2θt̃)

1080
+

101 sin (2θt̃)

6480

√
xtg̃ +

(
−L1g̃

270
− 1

180

)
sin2 (2θt̃)x1g̃

+

(
−7 sin2 (2θt̃)

1944
− 7

648

)
xtg̃ +

1307 sin (2θt̃)

32400
x

3/2
tg̃

+

(
29L1g̃

540
+

7

80

)
sin (2θt̃)x1g̃

√
xtg̃ +O

(
x2

1g̃, x1g̃xtg̃, x
2
tg̃

)
,

A(1)
1,tg̃,0 = −2

3
+

(
−2L1g̃

3
− 2

3

)
x1g̃ +

(
−4Ltg̃

9
− 7

27

)
xtg̃ +

(
−4L1g̃

3
− 2

3

)
x2

1g̃

+

[
−2L1g̃ +

(
−4L1g̃

3
− 22

9

)
Ltg̃ −

8ζ(2)

3
− 7

27

]
x1g̃xtg̃ +

(
−3Ltg̃

5
− 37

450

)
x2
tg̃

+O
(
x3

1g̃, x
2
1g̃xtg̃, x1g̃x

2
tg̃, x

3
1g̃

)
,

A(1)
1,tg̃,2 = − 1

18
+

sin (2θt̃)
√
xtg̃

72
+

(
−L1g̃

18
− 1

18

)
x1g̃ −

5xtg̃
27

+

(
L1g̃

18
+

7

72

)
sin (2θt̃)x1g̃

√
xtg̃ −

5

216
sin (2θt̃)x

3/2
tg̃ +

(
−L1g̃

9
− 1

18

)
x2

1g̃

+

(
−13L1g̃

18
− 155

108

)
xtg̃x1g̃ +

(
−4Ltg̃

15
− 1769

5400

)
x2
tg̃ +O

(
x2

1g̃x
1/2
tg̃ , x1g̃x

3/2
tg̃ , x

5/2
1g̃

)
,

A(1)
1,tg̃,4 = − 1

135
+

sin (2θt̃)
√
xtg̃

540
+

(
−L1g̃

135
− 1

135

)
x1g̃ −

53xtg̃
3240

+
7

972
sin (2θt̃)x

3/2
tg̃

+

(
L1g̃

135
+

7

540

)
sin (2θt̃)x1g̃

√
xtg̃ +

(
−2L1g̃

135
− 1

135

)
x2

1g̃

+

(
−17L1g̃

270
− 101

810

)
xtg̃x1g̃ −

1343x2
tg̃

16200
+O

(
x2

1g̃x
1/2
tg̃ , x1g̃x

3/2
tg̃ , x

5/2
1g̃

)
.

6.8.4. A→ γγ in the Limit mq � mq̃1 � mq̃2 �Mg̃

The limit where mq � mq̃1 � mq̃2 � Mg̃ is the most general one where we set all the
appearing mass scales unequal and the gluino is assumed to be larger than the squarks.
By convention, mq̃2 > mq̃1 . For four di�erent scales, the expressions get larger. Therefore,
we include less terms. Here, Mx = Mg̃.
For the e�ects due to sbottoms and gluinos in the photonic decay of the pseudoscalar
Higgs boson in NLO we obtain through O (m4

b)

A(1)
0,bg̃,0 = sin2 (2θb̃)

[(
L12

3
+

1

6

)
x1g̃ +

x2g̃

6
+

((
L12

3
+

2

3

)
x12 +

xA2

36
+

1

18

)
xAg̃

]
+O

(
x2

2g̃, x2g̃xAg̃, x1g̃xAg̃, x
2
1g̃, x

2
Ag̃

)
,
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A(1)
0,bg̃,1 = sin (2θb̃)
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L2
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−L12
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− 1

3

)
x12 −

xA2

18
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6

)
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(
2L2
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3
− 4LAb

3

)
x

3/2
1g̃ + L2g̃

(
4LAb
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− 2L2
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3

)
x

3/2
2g̃

]
+O

(
x
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2g̃ , x
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2
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1/2
Ag̃ , x

2
1g̃x

1/2
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)
,

A(1)
0,bg̃,2 =

1

6
L2
Ab sin2 (2θb̃)x2g̃ +

[(
L12

3
+

1

6

)
L2
Ab +

(
L12

3
+

2

3

)
xA2L

2
Ab

]
sin2 (2θb̃)x1g̃

+

((
xA2

36
+

1

18

)
L2
Ab sin (2θb̃)

2 +
4LAb

9

)
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[
−L

2
Ab

3
+

2LAb
3

+L1g̃

(
2LAb − L2

Ab

)]
x2

1g̃ +

(
−L

2
Ab

3
+

2LAb
3

+ L2g̃

(
2LAb − L2
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))
x2

2g̃

+O
(
x3

2g̃, x
2
2g̃xAg̃, x2g̃x

2
Ag̃, x

3
1g̃, x

3
Ag̃

)
,

A(1)
0,bg̃,3 = sin (2θb̃)

[
L1g̃

(
8

3
− 16LAb

3

)√
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3/2
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(
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− 8

3

)√
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+
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3
− 4LAb

3

)]
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+

[
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(
4LAb
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3

)]
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√
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+O
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x
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2
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Ag̃ , x

2
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)
,

A(1)
0,bg̃,4 =

(
−4L12

3
− 2

3

)
LAb sin2 (2θb̃)x1g̃ −

2

3
LAb sin2 (2θb̃)x2g̃

+

[
8L2

Ab

9
− 8LAb

9
− 8

9
+ sin (2θb̃)

2

(
LAb

((
−4L12

3
− 8

3

)
x12 −

2

9

)
−LAbxA2

9

)]
xAg̃ +O

(
x2

2g̃, x2g̃xAg̃, x1g̃xAg̃, x
2
1g̃, x

2
Ag̃

)
,

A(1)
1,bg̃,1 =

((
−2L12

3
− 2

3

)
x12 −

xA2

9
− 1

3

)
√
xAg̃ +O

(
x1g̃x

1/2
Ag̃ , x2g̃x

1/2
Ag̃ , x

3/2
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)
,

A(1)
1,bg̃,2 = L2
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(
−2L2g̃

3
+

2L12x12

3
+
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3

)
+O (x1g̃, x2g̃, xAg̃) ,

A(1)
1,bg̃,3 = sin (2θb̃)

[(
−2L12

3
− 2

3

)
x12L

2
Ab +

(
−xA2

9
− 1

3

)
L2
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]
√
xAg̃

+O
(
x1g̃x

1/2
Ag̃ , x2g̃x

1/2
Ag̃ , x

3/2
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)
,

A(1)
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(
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3
− 4xA2

3

)
− 8L12LAbx12

3
+O (x1g̃, x2g̃, xAg̃) ,
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For the contributions due to top quarks and their partners we compute up to O(m4
A)

A(1)
0,tg̃,2 =

[(
L12

3
+

1

3

)
x12 +

1

6

]
sin (2θt̃)

√
xtg̃ −

4xtg̃
27
− x2g̃ sin2 (2θt̃)

72

+

(
−L12

36
− 1

72

)
x1g̃ sin2 (2θt̃) +O

(
x

3/2
1g̃ , x

3/2
2g̃ , x2g̃x

1/2
tg̃ , x2g̃x

1/2
tg̃

)
,

A(1)
0,tg̃,4 = sin (2θt̃)

[((
L12

36
+

1

36

)
x12 +

1

18
xt2 +

1

72

)
√
xtg̃

]
+ sin2 (2θt̃)

[(
−L12

270
− 1

540

)
x12 −

1

540

]
x2g̃ +

[
− 7

405
+ sin2 (2θt̃)((

−L12

36
− 1

18

)
x12 −

1

216

)]
xtg̃ +O

(
x

3/2
1g̃ , x

3/2
2g̃ , x2g̃x

1/2
tg̃ , x2g̃x

1/2
tg̃

)
,

A(1)
1,tg̃,0 = −2L12x12

3
+

2L2g̃

3
+O (x1g̃, x2g̃, xtg̃) ,

A(1)
1,tg̃,2 = −L12x12

18
+
L2g̃

18
− xt2

3
+ sin (2θt̃)[(

L12

18
+

1

18

)
x12 +

1

36

]
√
xtg̃ +O (x1g̃, x2g̃, xtg̃) ,

A(1)
1,tg̃,4 =

L2g̃

135
− L12

135
x12 −

xt2
36

+

[(
L12

135
+

1

135

)
x12

+
xt2
108

+
1

270

]
sin (2θt̃)

√
xtg̃ +O (x1g̃, x2g̃, xtg̃) .

6.8.5. Explicit Expressions for the Amplitude h→ γγ

In this paragraph we will give explicit expressions for the amplitude in the process of
h → γγ. The structure of the amplitude for the decay of scalar Higgs bosons into two
photons for the bottom sector can be expressed through

Hbb̃ =
sinα

cos β
H0,bb̃ +

µsusy
Mx

cos (α− β)

cos2 β
H1,bb̃ −

M2
Z

M2
x

sin (α + β)H2,bb̃

− M2
Z

M2
x

2

3
sin2 θW sin (α + β)H3,bb̃,

(6.24)

with

Hi,bb̃ =
∑
n

(
mb

mh

)n
Hi,bb̃,n. (6.25)
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For the top sector the structure of the amplitude is given by

Htt̃ =
cosα

sin β
H0,tt̃ +

µsusy
Mx

cos (α− β)

sin2 β
H1,tt̃ +

M2
Z

M2
x

sin (α + β)H2,tt̃

+
M2

Z

M2
x

4

3
sin2 θW sin (α + β)H3,tt̃,

(6.26)

with

Hi,tt̃ =
∑
n

(
mh

mt

)n
Hi,tt̃,n. (6.27)

Furthermore,

Hi,qq̃ = H(0)
i,qq̃ +

αs
π
H(1)
i,qq̃ +O

(
α2
s

)
, qq̃ = tt̃, bb̃

and

H(j)
i,qq̃ = H(j)

i,q +H(j)
i,q̃g̃ = H(j)

i,q +H(j)
i,q̃ +H(j)

i,qg̃.

The analogous decomposition applies to the coe�cients Hi,qq̃,n. It should be noted that

H(j)
i,q̃g̃ denotes corrections to the amplitude that contain at least one supersymmetric scale

whereas H(j)
i,qg̃ only refers to contributions from gluinos. Again, Mx denotes the heaviest

mass scale in the certain limit under consideration. The mass of the Z (W ) bosons, MZ

(MW ), occur at the hq̃q̃ couplings together with sin θW =
√

1−M2
W/M

2
Z . In the following

sections, coe�cients which are omitted vanish.
The SM bottom contributions are given by

H(0)
0,b =

(
3L2

hb

2
− 6

)
xbh +

(
−6L2

hb + 6Lhb
)
x2
bh + (−15Lhb + 6)x3

bh

− (16Lhb + 6)x4
bh +O

(
x5
bh

)
,

We take the NLO-QCD result for the amplitude from the literature [76].

H(1)
0,b,2 = −L

4
hb

12
− L3

hb −
2π2L2

hb

3
+

(
12 +

2π2

3
+ 16ζ(3)

)
Lhb

+ 4ζ(3)− π4

5
− 20,

H(1)
0,b,4 =

L4
hb

3
+ 12L3

hb +

(
10 +

8π2

3

)
L2
hb + (−16− 64ζ(3))Lhb

+ 16ζ(3) +
4π4

5
− 4π2

3
− 64,
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For the top contributions we obtain

H(0)
0,t = 1 +

7xht
120

+
x2
ht

168
+

13x3
ht

16800
+

2x4
ht

17325
+O

(
x5
ht

)
,

H(1)
0,t = −1 +

61xht
270

+
554x2

ht

14175
+

104593x3
ht

15876000
+

87077x4
ht

74844000
+O

(
x5
ht

)
.

6.8.6. h→ γγ in the Limit mq �Ms ≡ mq̃1 = mq̃2 = mg̃

For the scalar case, we also have to account for sbottoms as well as stops at leading order.
For the LO contributions from sbottoms we get the following non-vanishing results for the
amplitude

H(0)

0,b̃,2
= −xhs

2
− x2

hs

15
− 3x3

hs

280
, H(0)

1,b̃
= 0,

H(0)

2,b̃,0
= −1

8
− xhs

60
− 3x2

hs

1120
, H(0)

3,b̃
= 0.

We calculate the results for the LO squark contributions in the limit where the squark
masses are considered to be signi�cantly larger than the Higgs mass since the two-loop
squark contributions are evaluated in this limit as well.
In next-to-leading order we obtain the following expression for the pure SUSY parts of
the amplitude which arise from sbottom and/or gluino insertions in the Feynman diagrams
(see Fig. 6.8) through O(m4

b)

H(1)
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=

(
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3
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+
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+
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,
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=
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(
L2
hb

15
− 4Lhb

15
− 2Lbs

15
− 118

225

)
x2
hs

+
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,
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+
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+
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+
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+
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,

H(1)

1,b̃g̃,3
= −1
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4
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3
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x
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,
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H(1)

1,b̃g̃,4
= 2L2

hb + 2Lhb +

(
L2
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+
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6

+
1
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+
Lhb
45

−4Lbs
15

+
127

300

)
x2
hs +
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+
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(
x4
hs

)
,
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,
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+
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,
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=
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,
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+

(
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2
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(
−L

2
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+
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)
,

H(1)
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The LO stop contributions are given by

H(0)

0,t̃,0
=
xts
2
, H(0)
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=
x2
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, H(0)
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=

3x3
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For the two-loop contributions from tops and their superpartners and gluinos we obtain
up to O(m4

h)
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H(1)
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+
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6.8.7. h→ γγ in the Limit mq � mq̃1 � mq̃2 �Mg̃

For the limit mq � mq̃1 � mq̃2 � Mg̃ we explicitly write down the results only for the
bottom sector. Here, the large scale is Mg̃ = Mx. Again, the pure SUSY part due to
bottoms, sbottom and gluinos can be written in the form of Eq. (6.24). In leading order,
the sbottom contributions through O(m2

b) are given by
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6.9. Results for the Partial Decay Width Γ (φ→ γγ)

In the following we investigate the results for the partial decay widths of a Higgs decaying
into two photons schematically. The e�ects through bottoms/sbottoms are compared with
the top/stop e�ects. First, the decay of CP-odd Higgs bosons is under investigation. For
this case the NLO-SUSY parts are particularly important since there is no contribution
from SUSY particles in LO. Afterwards, the decay of the lightest scalar MSSM Higgs
boson into two photons is examined. For this process, already at leading order there are
contributions originating from stops and sbottoms.
If not mentioned otherwise, the parameters we use in the following are set to

mt = 172.4 GeV, mb = 4.2 GeV, mb(2GeV) = 4.2 GeV,

αs (MZ) = 0.1176, MZ = 91.1876 GeV, µR = mφ.
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For the photonic decay of scalar as well as pseudoscalar Higgs bosons, we investigate the
limiting cases given by

mq �Ms ≡ mq̃1 = mq̃2 = mg̃,

mq � mq̃1 = mq̃2 � mg̃

mq � mq̃1 � mq̃2 = mg̃,

mq � mq̃1 � mq̃2 � mg̃,

where qq̃ = tt̃, bb̃.

6.9.1. A→ γγ

For the process A→ γγ, the decay width in NLO-SQCD is given by (cf. Eq. (6.12))
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Being interested in the NLO part of the decay width, at this order, we include the LO
squared parts of the amplitude plus the interference terms consisting of the one-loop (label
(0)) times the two-loop (label (1)) parts of the amplitude. One has to pay attention that
the absolute square values of the pure NLO contributions are already contributing to higher
orders, which are not considered here. Therefore, those are not included in the plots shown
later on.
We compare the QCD results of top and bottom quarks with the contributions obtained
by taking into account their superpartners and the gluino at the two-loop level. Although
the pseudoscalar Higgs boson is not a SM particle, �QCD part� refers to only taking into
account SM particles like quarks and gluons in the loops. The two-loop QCD results to
the amplitude are taken from [76]. For this process we then calculate the NLO-SQCD
corrections. The in�uence of the contribution of bottom squarks on the partial decay
width is examined. This is closely connected to examining the dependence of the results
on di�erent values for tan β.
As expected and shown in Fig. 6.9, the contribution for the LO top part decreases with
growing tan β whereas the bottom contribution increases with growing tan β. The graphs
display the contributions to the partial decay widths for the LO parts in dependence of
the mass of the pseudoscalar Higgs boson mA. The contributions of the tops and bottoms
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Figure 6.9.: The LO partial decay width Γ(0) is displayed in dependence of mA. It is shown

for (a) tanβ = 5 and (b) tanβ = 15 (top: dotted red; bottom: dashed-dotted red; sum: solid

blue; interference term: dashed red).

to the LO are plotted separately and combined as well as their interference term which is
negative. The diagram Fig. 6.9(a) is done for tan β = 5 whereas in 6.9(b) tan β = 15.

In order to clarify the dependence of the LO partial decay width on tan β, Fig. 6.10(a) is
plotted. There, the LO curves for the top parts, bottom parts and their sum are displayed
in dependence of tan β for mA = 200 GeV. The color coding is identical to the one in
Fig. 6.9. Here, one clearly observes that the contributions from top quarks dominate for
values of tan β of up to about 12. Beyond that value, the contributions from bottom quarks
form the shape of the LO partial decay widths.

Furthermore, the running of the bottom mass is taken into account. As we investigate the
results for the decay widths at the scale of the order of the top mass and larger, it seems
appropriate to replace the bottom pole mass with the running bottom mass. First, the
e�ect of only replacing the pole bottom mass at the Higgs-bottom Yukawa coupling with
the running bottom mass is examined. Subsequently, all pole masses are replaced with a
running bottom mass.

Fig. 6.10(b) illustrates the e�ects of these di�erent assumptions for the bottom mass on
the partial decay width in dependence of tan β with a Higgs mass set to mA = 200 GeV.
For the range of tan β where the top quarks account for the dominant contributions to
the LO decay width, the in�uence of a running bottom mass is practically not visible in
the diagram. The observation is that the partial decay width decreases for larger tan β if
one replaces the pole bottom mass at the Higgs-bottom Yukawa coupling with the running
bottom mass. Γ(0) decreases even further in case all bottom pole masses are replaced with
the running bottom mass.

In the next step the NLO-QCD contributions from quarks of the third family are included.
These are taken from [76] and dressed with the appropriate prefactors to include them into
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Figure 6.10.: The LO partial decay width Γ(0) is displayed in dependence of tanβ for

mA = 200 GeV. (a) It is shown for the top parts (dotted red) the bottom parts (dashed-

dotted red) and their sum (solid blue) as well as their interference term which is constant and

negative (dashed red). (b) Γ(0) is shown for an on-shell bottom mass (dotted line) compared

to a running bottom mass for the coupling (dashed-dotted) and to all bottom masses being

replaced by the running one (solid).

our calculation.

Fig. 6.11 depicts a comparison between the LO and NLO-QCD partial decay widths with
an on-shell bottom mass, only the bottom mass at the Higgs-bottom Yukawa coupling
replaced by the running bottom mass and all bottom masses replaced by the running ones.
For tan β = 5 (see Fig. 6.11 (a)) one almost cannot distinguish between the leading order
and NLO-QCD parts and a running or on-shell bottom mass. As the contributions from
top quarks dominate the result for smaller values of tan β the e�ects through taking a
running bottom mass instead of the pole bottom mass become more pronounced for larger
tan β (see Fig. 6.11 (b),(c)). In contrast, for tan β = 15 and tan β = 25 one can clearly
distinguish the NLO from the LO. The convergence of the NLO compared to the LO order
also gets better by taking the bottom mass at the coupling to be running and the distance
of the NLO and LO order curves is smallest if one takes all the bottom masses to be the
running ones.

Since we observe a better convergence for taking the bottom masses to be running ones,
in the following we only display diagrams in which all bottom masses are replaced by the
running bottom mass.

The next �gures display the results for the partial decay widths in NLO-SQCD. Here,
all the e�ects due to supersymmetric particles in the NLO are due to mixed gluino-quark-
squark diagrams for the decay of pseudoscalar Higgs bosons into two photons (cf. Fig. 6.8).
This means that all the SUSY e�ects we investigate originate from gluinos.

In the following diagrams, if not mentioned otherwise, all the SUSY mass scales are set
to Ms = 350 GeV and µsusy = 200 GeV.
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Figure 6.11.: The LO and NLO-QCD partial decay widths Γ(0,1) are displayed in dependence

of mA for di�erent values of tanβ. We investigate the e�ect on the LO and NLO-QCD partial

decay widths by taking an on-shell bottom mass (red; b(os); LO: dotted, NLO: dashed-dotted)

compared to a running bottom mass at the coupling (blue; b(coupl); LO: dashed; NLO: long-

dashed) and to taking all bottom masses to be running ones (yellow; b(run); LO: long-dashed;

NLO: solid). Di�erent scales were chosen on the vertical axes.
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In Fig. 6.12 we investigate the e�ect of squarks on the NLO decay rate in dependence of
mA for the case where Ms ≡ mq̃1 = mq̃2 = mg̃, q̃ = t̃, b̃, i.e., where we set the SUSY mass
scales to one scale. The LO decay width is shown in blue. The red curves display the NLO
decay widths of which we show the NLO-QCD and NLO-QCD plus stop curves, i.e., the
ones where in addition to the QCD e�ects only the e�ects through stops are included, and
the entire NLO-SQCD results. We observe that the � previously unknown � sbottom
contributions do have a signi�cant e�ect on the decay width for larger tan β. Because the
LO-SQCD part for Γ(A → γγ) only contains contributions from top and bottom quarks,
squarks �rst arise in the calculation at NLO-SQCD.
We �nd that the contributions of top squarks are up to 8% compared to the NLO-QCD
partial decay width. But taking into account the e�ects through bottom squarks as well to
obtain the entire NLO-SQCD result, we observe a strong suppression of the decay width
for large tan β. This can be seen in Fig. 6.12(b)-(d), where the solid curves display the
NLO-SQCD partial decay width which include the sbottoms. In Fig. 6.12(a) (Fig. 6.12(b))
the sbottoms are responsible for a change up to 2% (22%) compared to the NLO partial
decay width that includes the top sector as well as the two-loop bottom e�ects. For
tan β = 25 (Fig. 6.12(c)) the size of the two-loop sbottom contributions amounts to 33%
and for tan β = 35 (Fig. 6.12(d)) their size is up to 47% compared to the NLO-QCD plus
stop result. Since Ms = 350 GeV was taken to be rather small in these plots, we have to
keep in mind that the corrections get smaller, the larger the SUSY masses are chosen.
It was checked that by keeping µsusy �xed and letting the SUSY masses tend to in�nity
that the SUSY e�ects disappear and the QCD result is recovered in that limiting case
which we denote the �SM-limit� (see Sec. 6.7.2). In this sense the SUSY particles decouple.
Fig. 6.13 again compares the e�ects on the NLO decay widths due to stops and sbottoms
in dependence of mA. For all four graphs we take tan β = 25. The result obtained in the
limit mt � mt̃1 � mt̃2 = mg̃ and mb � mb̃1

� mb̃2
= mg̃ is analyzed. The plot styles

and colors are chosen analogously to Fig. 6.12. From Fig. 6.13 (a)-(c) the SUSY masses
are gradually increased and the observation is as expected in that the NLO-SQCD decay
widths approaches the NLO-QCD result the larger the SUSY masses get. Furthermore,
e�ects from sbottoms are sizable in the NLO-SQCD result for the partial decay widths. In
Fig. 6.13 the sbottom (stop) e�ects account for up to 35% (8%), in (b) 25% (6%) in (c)
14% (4%) and in (d) 6% (1%) of the NLO partial decay widths.
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Figure 6.12.: The LO and NLO partial decay width Γ(0,1) illustrated in dependence of mA

and a �xed value of tanβ. All the bottom masses are taken to be running ones. The LO

curve is given in blue (dotted). We exhibit the NLO partial decay widths (red) by successively

including �rst, the e�ects due to top squarks to the SM result and �nally, the sbottom e�ects

as well to obtain the entire NLO-SQCD result. The NLO-QCD (dashed-dotted) parts, the

NLO-QCD+t̃ (dashed) and the NLO-SQCD (solid) decay widths are compared to each other.

Here, all the SUSY mass scales are chosen to be equal, i.e., Ms ≡ mq̃1 = mq̃2 = mg̃, q̃ = t̃, b̃
with Ms = 350 GeV.
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Figure 6.13.: Here, we examine the behavior of the LO and NLO partial decay widths by

successively including �rst the e�ects due to top squarks and �nally the sbottom e�ects as well.

Γ is displayed in dependence of mA with tanβ = 25. The LO is shown in blue (dotted). The

NLO parts are coded in red. The solid curves depict the NLO-QCD parts, the dashed-dotted

curves the NLO-QCD+t̃ results and the long-dashed curves are the ones for the full NLO-

SQCD decay width. We consider the limiting case where mq � mq̃1 � mq̃2 = mg̃, qq̃ = tt̃, bb̃.
The masses of the SUSY particles vary as follows (a) mt̃1

= 250 GeV, mb̃1
= 250 GeV,

mg̃ = 450 GeV (b) mt̃1
= 250 GeV, mb̃1

= 350 GeV, mg̃ = 600 GeV (c) mt̃1
= 300 GeV,

mb̃1
= 500 GeV, mg̃ = 800 GeV (d) mt̃1

= 1000 GeV, mb̃1
= 2000 GeV, mg̃ = 5000 GeV.
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6.9.2. Evaluation of the Results in the SPS 1a-Scenario
Next, we examine the results obtained in the limit mq � mq̃1 � mq̃2 � mg̃, qq̃ = tt̃, bb̃.
In this limit we can investigate the NLO-SQCD decay width depending on �ve di�erent
MSSM mass scales, i.e., the four squark masses and the gluino mass, appearing in the
loops. The aim is to obtain an estimate of the size of the NLO partial decay widths in a
so-called MSSM benchmark-scenario. The e�ect of the sbottom contributions on the decay
width is examined.
The unconstrained version of the MSSM does not assume a distinct mechanism of the
breaking of SUSY. It contains more than 100 new parameters in addition to the SM pa-
rameters. In order to restrict the parameter space, tangible SUSY-breaking scenarios
are assumed. Common scenarios like minimal supergravity (mSUGRA), gauge-mediated
SUSY-breaking (GMSB) and anomaly-mediated SUSY-breaking (AMSB) reduce the num-
ber of parameters with respect to the unconstrained MSSM. To reduce the number of
parameters even further, one assumes so-called benchmark scenarios. This means that
one only takes special parameter points or a one-dimensional parameter-space (model line)
which displays the features of the MSSM parameter space. In Ref. [85] some represen-
tative SUSY scenarios are de�ned. In general, a benchmark scenario consists of a model
line (slope), which corresponds to a continuous set of parameters that runs through the
benchmark point.
In this thesis we investigate our results in the SPS 1a scenario which is a mSUGRA
scenario. The SPS 1a point is characterized by [85]

m0 = 100 GeV, m1/2 = 250 GeV, A0 = −100 GeV, tan β = 10, sign(µsusy) = +1,

with the slope de�ned as

m0 = −A0 = 0.4m1/2, m1/2 varies.

m0 is the scalar mass parameter, m1/2 the gaugino mass parameter and A0 the trilinear
coupling. The sign of the Higgs mixing parameter is chosen to be positive. With the help
of the renormalization group equations in the MSSM, m0 and m1/2 at the mSUGRA scale
are evaluated down to the MSSM scale and thus the masses of the matter particles are
obtained. From the running of m0 the masses of the scalar particles are calculated and
analogously from m1/2 the masses of the fermions are obtained. For the calculation of the
spectrum, the following parameters are chosen as an input

MZ = 91.1876 GeV, mb = 4.2 GeV, mt = 172.4 GeV, mτ = 1.777 GeV, µR = mφ,

α−1 (MZ) = 127.934 GeV, GF = 1.16637× 10−5 GeV−2, αs (MZ) = 0.118,

where mτ is the mass of the τ lepton, α (MZ) is the �ne structure constant at MZ (not
to be mixed up with the Higgs mixing angle that is denoted by α as well) and GF is the
Fermi constant.
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Figure 6.14.: The scalar and pseudoscalar Higgs masses in dependence of m1/2 along
the slope of SPS 1a.

The SUSY spectrum belonging to SPS1a which �xes the masses of the squarks, gluinos
and Higgs bosons, the squark mixing angles θt̃, θb̃, the Higgs mixing angle α and µsusy
for varying m1/2 is evaluated with the help of the program suspect [86]. For m1/2 ∈
[100 GeV, 600 GeV] the variation of the parameters relevant for our calculations are

99 GeV ≤ mh ≤ 116 GeV,

148 GeV ≤ mA ≤ 896 GeV,

172 GeV ≤ mt̃1 ≤ 945 GeV,

327 GeV ≤ mt̃2 ≤ 1190 GeV,

227 GeV ≤ mb̃1
≤ 1153 GeV,

327 GeV ≤ mb̃2
≤ 1202 GeV,

266 GeV ≤ mg̃ ≤ 1360 GeV,

144 GeV ≤ µsusy ≤ 775 GeV,

0.6488 ≥ θb̃ ≥ 0.1991,

0.8638 ≥ θt̃ ≥ 0.1181,

−0.2259 ≤ α ≤ −0.1057.

In the chosen mass range of m1/2, besides mh the masses of the sparticles vary linearly
with m1/2. The dependence of the Higgs masses and squark masses on m1/2 is shown in
Figs. 6.14 and 6.15. As can be seen in Fig. 6.15 the gluino mass gets larger than all of
the squark masses for about m1/2 = 220 GeV and higher values of m1/2. In the limiting
case under consideration the gluino mass was chosen to be the largest SUSY scale, that is
why for m1/2 ≥ 220 GeV the hierarchy among the SUSY masses is a better approximation
to our case. In the following diagrams all the bottom masses are taken to be running in
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Figure 6.15.: The masses of the top squarks, bottom squarks and gluino in dependence
of m1/2 along the slope of SPS 1a.

dependence of the Higgs mass scale.

Fig. 6.16 displays the results for the partial decay widths in dependence ofm1/2 in the SPS
1a scenario. The LO-SQCD (dotted red) and NLO-QCD (dashed-dotted red) results are
compared to the NLO-QCD plus stop (dashed blue) and NLO-SQCD (solid blue) results
for the partial decay widths. In addition, the pure top/stop result without any e�ects
from bottoms/sbottoms is shown in yellow. In case of the decay of the pseudoscalar Higgs
boson the graphs in Fig. 6.16(a) show a peak at m1/2 ≈ 220 GeV, which corresponds to
mA ≈ 345GeV ≈ 2mt. It comes from the threshold which the process possesses. The result
does contain an imaginary part in case 4m2

t < m2
A. The threshold is at mA = 2mt. In

Fig. 6.16(b) we zoom into the region below the threshold. Including (above) the threshold,
the stop e�ects amount to about 22% (5%) compared to the NLO-QCD partial decay
widths. The sbottom e�ects including (above) the threshold are of a size of up to 28%
(9%). In the SPS 1a scenario, the sbottom and stop e�ects on the NLO partial decay width
are of comparable size. Below the threshold, the SUSY e�ects change the partial decay
widths thus that they are larger than the QCD contributions and the picture reverses above
the threshold. We observe a large increase of the LO partial decay width with growing
m1/2. This is a result of the large increase of mA with m1/2. For large values of m1/2, mA

is up to about 900 GeV.
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Figure 6.16.: The partial decay widths for the process A → γγ in dependence of
m1/2 along the slope of SPS 1a. The dotted (red) curve is the LO-SQCD result, the
dashed curve (red) depicts the NLO-QCD result, the dashed-dotted (blue) curve is the
NLO-QCD plus stop result and the solid line (blue) is the full NLO-SQCD decay width.
In yellow (dashed-dotted) only the top/stop, i.e, no bottom e�ects are displayed. (a)
including the threshold (b) zoom into the region below the threshold.

6.9.3. h→ γγ

The decay width for the decay of the lightest scalar MSSM Higgs boson into two photons
in NLO-SQCD (cf. Eq. (6.11)) is given by

ΓSQCD (h→ γγ) =
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There are two main di�erences between the decay of scalar and pseudoscalar Higgs bosons
into two photons. For the scalar case already at leading order perturbation theory there
exists a contribution from the scalar partners of the quarks (see Fig. 6.6). Furthermore,
not all of the SUSY contributions in NLO are due to gluinos. Also, contributions from
pure squark diagrams exist (see Fig. 6.8). The coupling of squarks to scalar Higgs bosons
is di�erent from the one to pseudoscalar Higgs bosons (see App. A).
As in the previous section, the in�uence of the SUSY particles on the partial decay width

Γ in LO and NLO perturbation theory is investigated. In particular, the e�ects due to
sbottom insertions at NLO will be discussed. These were not known before.

104



6.9. Results for the Partial Decay Width Γ (φ→ γγ)

As we take the common convention to use the mass of the pseudoscalar Higgs boson mA

and the ratio of the two vacuum expectation values tan β to be the input parameters of
the MSSM Higgs sector, the scalar Higgs mass cannot be assumed to be a free parameter.
Therefore, we should take a radiatively corrected scalar Higgs mass in the investigation of
the partial decay width of h→ γγ. The SUSY parameter space will be examined with the
help of FeynHiggs [87]. Its online version is available on the web page www.feynhiggs.de.
FeynHiggs is a Fortran program for the calculation of the masses of the CP-even Higgs
bosons in the MSSM. It includes the complete one-loop on-shell results, some leading
order two-loop QCD and electroweak results and higher order corrections to the Higgs
self-energy are accounted for. We employ the online version of this program where we take
our choice for the squark masses, mA and tan β as input parameters and let the program
generate the related loop corrected values for the scalar Higgs mass mh and the Higgs
mixing angle α, as an output.

First, we examine the partial decay width, by assuming all the squark masses to be
equal with no-mixing, i.e., θq̃ = 0, namely mq � mq̃ ≡ mq̃1 = mq̃2 � mg̃, qq̃ = tt̃, bb̃.
In addition, we set the stop mass equal to the sbottom mass, i.e., mq̃ = mt̃ = mb̃. All
bottom masses are set to the running one that varies with the Higgs mass through µ = mh.
Actually, for the examined parameter spaces the curves where the bottom masses are taken
to be running ones practically coincide with the curves where the bottom mass is taken
to be on-shell. In the following we examine the impact of the SUSY e�ects on the partial
decay widths. The QCD corrections are a�ected by the variation of mh and the Higgs
mixing angle α.

In Fig. 6.17 the partial decay widths Γ(0,1) are examined in dependence of tan β. We
display the LO and NLO-QCD (red) decay width in comparison with the LO and NLO-
SQCD (blue) decay width. In yellow the NLO-QCD plus the full NLO stop dependence,
i.e., with no sbottom e�ects are shown. The observation is that the NLO e�ect due to
sbottoms is very small. A steep increase of the partial decay widths for values of tan β
up to 15 is observed. For tan β > 15, the curves almost do not exhibit a dependence on
this parameter. As indicated in the caption in Fig. 6.17, the change in the scalar Higgs
mass is largest for values of up to tan β = 15. For larger values of tan β, the Higgs mass
remains almost constant. For all four graphs, the e�ects of the sbottoms compared to the
partial decay widths that include the top sector as well as the bottom e�ects are below
one percent. Here, the e�ects through stops clearly dominate since those amount to 11%
in Fig. 6.17(a), 6% in Fig. 6.17(a), 2% in Fig. 6.17(c) and 6.17(d) compared to the NLO-
QCD partial decay widths. We observe that the decay widths grow with larger squark
masses and that the QCD and SQCD results move closer together the larger the squark
and pseudoscalar Higgs mass. This is as expected since for very large SUSY masses the
SM limit should be recovered.

In Fig. 6.18 the partial decay widths are shown in dependence of tan β. The curves
are denoted as in Fig. 6.17 and we set mA = 200 GeV, µsusy = 200 GeV. We compare
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Figure 6.17.: The partial decay widths Γ(0,1) are shown in dependence of tanβ. We illustrate

the LO-QCD (dotted red) and the NLO-QCD (dashed red) partial decay width for all bottom

masses taken to be running ones. The blue curves contain the complete SQCD parts in LO

(dashed-dotted) and in NLO-SQCD (solid). In addition, in yellow, nearly on top of the entire

NLO-SQCD result, the NLO-QCD+stop (dashed) result is displayed. The results are given in

the limiting case mq � mq̃ = mq̃1 = mq̃2 � mg̃, qq̃ = tt̃, bb̃. mq̃ = mt̃ = mb̃, µsusy = 200
GeV and mg̃ = 1600 GeV. (a) mA = 200 GeV, mq̃ = 450 GeV, tanβ ∈ [5, 15] corresponds
to mh ∈ [98.6GeV, 105.3GeV] and the Higgs mass increases only up to mh = 106.8 GeV

for tanβ = 40; (b) mA = 350 GeV, mq̃ = 600 GeV tanβ ∈ [5, 15] corresponds to mh ∈
[103.1GeV, 108.5GeV] and for tanβ = 40, mh = 109.5 GeV; (c) mA = 500 GeV, mq̃ =
1000 GeV, tanβ ∈ [5, 15] corresponds to mh ∈ [108.1GeV, 112.9GeV] and for tanβ = 40,
mh = 114 GeV; (d) mA = 1000 GeV and mq̃ = 1000 GeV, tanβ ∈ [5, 15] corresponds to

mh ∈ [108.4GeV, 113GeV] and for tanβ = 40, mh = 114 GeV.
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Figure 6.18.: Γ(0,1) is displayed in dependence of tanβ for the limiting case mq � mq̃ ≡
mq̃1 = mq̃2 � mg̃, qq̃ = tt̃, bb̃. mq̃ = mt̃ = mb̃, µsusy = 200 GeV and mA = 200 GeV. The

LO-QCD (dotted red) , NLO-QCD (dashed red), LO-SQCD (dashed-dotted blue), NLO-QCD

plus stop e�ects (dashed yellow) and NLO-SQCD (solid blue) decay widths are displayed. (a)

mq̃ = 300 GeV, mg̃ = 500 GeV, mh ∈ [93GeV, 102GeV] (b) mq̃ = 300 GeV, mg̃ = 1000 GeV,

mh ∈ [93GeV, 102GeV] (c) mq̃ = 600 GeV, mg̃ = 1000 GeV and mh ∈ [101GeV, 109GeV].
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(b) tanβ = 15
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(c) tanβ = 25
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(d) tanβ = 40

Figure 6.19.: Γ(0,1) is displayed in dependence of one SUSY mass scale mq̃, i.e., for the

limiting case mq � mq̃ ≡ mq̃1 = mq̃2 � mg̃, qq̃ = tt̃, bb̃. mq̃ = mt̃ = mb̃, µsusy = 200 GeV,

mg̃ = 1600 GeV and mA = 400 GeV. The LO-QCD (dotted red) , NLO-QCD (dashed red),

LO-SQCD (dashed-dotted blue), NLO-QCD plus stop e�ects (dashed yellow) and NLO-SQCD

(solid blue) decay widths are displayed. The four diagrams di�er in the value of tanβ given

below the diagrams. (a) mh ∈ [94.5GeV, 111.5GeV] (b)-(c) mh ∈ [100GeV, 117.4GeV].
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Figure 6.20.: The partial decay widths for the process h→ γγ in dependence of m1/2

along the slope of SPS 1a. mh ∈ [107GeV, 116GeV] and tan β = 10. (a) We compare
the LO-QCD (dotted red) with the NLO-QCD (dashed red), LO-SQCD (dashed-dotted
blue) and the full NLO-SQCD (solid blue) results. (b) The LO-SQCD (dotted blue),
the NLO-QCD+stop (dashed-dotted red) and NLO-QCD+stop+LO sbottom (dashed
yellow) and NLO-SQCD results are compared.

Fig. 6.18(a) with Fig. 6.18(b) where only mg̃ is changed. The change for doubling the
gluino mass is almost not visible in the diagrams. For Fig. 6.18(a),(b) the corrections from
sbottoms (stops) are up to 1% (25%) and for Fig. 6.18(c) they are below 1% (6%).

Fig. 6.19 displays the partial decay widths in dependence of mq̃. The curves are denoted
as in Fig. 6.17. We observe the expected tendency that from squark mass scales of about
1 TeV onwards, the SQCD curves lie on top of the QCD curves. For lower SUSY masses,
we observe a larger e�ect through the inclusion of squarks in comparison with the QCD
result. The SQCD curves exhibit a dip at about mq̃ = 400 GeV and grow with larger
squark masses. For the given choice of parameters the decay widths grow by about 18%
in the change from tan β = 5 (Fig. 6.19(a)) to tan β = 15 (Fig. 6.19(b)). Changing
from tan β = 15 to tan β = 25 (Fig. 6.19(c)) amounts to an increase of 2% and further
augmenting to tan β = 40 (Fig. 6.19(d)), the e�ect on the partial decay widths is a rise of
about 3%. For all curves the NLO-SQCD decay width lies on top of the NLO decay width
that includes the complete NLO-QCD and in addition, only stop/gluino e�ects in NLO.
This means that, for this choice of parameters, the LO and NLO sbottom contributions
only lead to corrections of one percent and smaller and practically do not have an impact
on the partial decay width. The stop e�ects compared to the NLO-QCD result amount to
about 25% for smaller mq̃.

As in Sec. 6.9.2 in the pseudoscalar case, for taking the full mass dependency, i.e., the
limiting case where we assume mq � mq̃1 � mq̃2 � mg̃, we investigate the results along
the slope of the SPS 1a benchmark point. For m1/2 ∈ [200GeV, 600GeV] the variation of
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Figure 6.21.: The partial decay widths for the process h→ γγ in dependence of m1/2

along the slope of SPS 1a. We compare the results in which we take all the SUSY masses
to be di�erent in the LO-SQCD (dashed-dotted blue) and the NLO-SQCD result (solid
blue) with the LO-SQCD (dotted,red) and NLO-SQCD (dashed red) result in which we
assume equal sbottom masses mb̃1

= mb̃2
since their mass splitting is not large along

the slope of SPS 1a.

the scalar Higgs mass is given by mh ∈ [107GeV, 116GeV].
Fig. 6.20 displays the partial decay widths along the slope of SPS 1a in dependence ofm1/2.
In Fig. 6.20(a) the LO and NLO-QCD are compared with the LO and NLO-SQCD decay
widths. The deviation of the NLO-SQCD with respect to the NLO-QCD partial decay
widths is up to 6%. In Fig. 6.20(b) the LO-SQCD and three NLO curves are displayed. In
yellow the NLO-QCD plus stop partial decay width, in red the NLO-QCD plus stop plus
LO sbottom decay width and in blue the full NLO-SQCD decay width is shown. The e�ects
of stops compared to the QCD e�ects amount to about 6%. We observe that by including
the LO sbottom e�ects in addition to the QCD and entire stop e�ects the deviations are
not visible in the plot and are numerically below one percent. Further including the NLO
sbottom e�ects amounts to a change of the corrections of less than one percent. In total,
including the sbottom contributions to the partial decay width amounts to a deviation of
up to one percent compared to the result that only includes the e�ects of the top sector
and bottom quarks. For the SPS 1a scenario, the observed two-loop SUSY e�ects on the
amplitude are almost entirely from the top sector.
In Fig. 6.21 the LO and NLO-SQCD partial decay widths are displayed in dependence
of m1/2. The result with the full dependence on all SUSY mass scales is compared to the
one where the masses of the sbottoms are equal, i.e., mb̃1

= mb̃2
and set to the arithmetic

mean of the two sbottom masses along the slope of SPS 1a (see Fig. 6.15). We observe
that these results coincide in LO-SQCD and they do not di�er to a great amount in
NLO-SQCD. This demonstrates that the two limits where mq � mq̃1 � mq̃2 � mg̃ and
mq � mq̃1 = mq̃2 � mg̃ are in good agreement if the sbottom masses do not di�er much
from each other. The deviation of the curves is below one percent.
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7 Chapter 7

Higgs Production

After a short overview about the production mechanisms of scalar and pseudoscalar Higgs
bosons at the LHC, we will focus on the production of Higgs bosons via the gluon fusion
channel. For this process, we will present results for the NLO-SQCD corrections, including
the top and bottom quarks as well as their superpartners and the gluino. We discuss some
subtleties about the renormalization of the two-loop amplitudes we calculate. Subsequently,
we present explicit results for the expansions of the virtual two-loop SUSY contributions
to the amplitudes in the leading terms for various limiting cases. Finally, we investigate
the two-loop virtual contributions to the amplitude. For the production of pseudoscalar
Higgs bosons an estimate of the size of the sbottom e�ects on the hadronic cross section is
given.

7.1. Higgs Production at the LHC

This section shall provide an overview over the production of scalar and pseudoscalar Higgs
bosons at the LHC. If not stated otherwise, φ = {h,A} denotes scalar and pseudoscalar
Higgs bosons, respectively. The expression H = {h} only refers to scalar Higgs bosons,
where h denotes the SM Higgs boson as well as the lightest MSSM Higgs boson which
possesses the closest similarity to the SM Higgs boson. For examining the production of
Higgs bosons at the LHC one has to know their production mechanisms. The main parts
of protons which are accelerated at the LHC are massless gluons and very light quarks.
As the Higgs coupling is proportional to the mass of the particles coupling to the Higgs,
the Higgs production has to be mediated by massive intermediate particles which couple
to gluons or light quarks (u, d).

The four main production channels for generating Higgs bosons at the LHC are [28]

1. Associated production with electroweak gauge bosons (Higgs strahlung):
qq → WH, ZH (Fig. 7.2(a))
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Figure 7.1.: Inclusive cross sections for SM Higgs production at the LHC. Taken
from [88].
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Figure 7.2.: Leading order Feynman diagrams for (a) the Higgs strahlung and (b)
weak boson fusion.

2. Fusion of weak gauge bosons (vector boson fusion (VBF)):
qq → Hqq via W+W−, ZZ → H (Fig. 7.2(b))

3. Associated production with a top quark respectively a bottom quark pair:
gg, qq → ttφ, bbφ (Fig. 7.3(a)).

4. Gluon fusion: gg → Φ (Fig. 7.3(b))

The cross sections for the processes listed above are illustrated in Fig. 7.1 for the production
of SM Higgs bosons. For a Higgs mass between 100 GeV and 500 GeV the process of the
gluon fusion is the one with the largest cross section at the LHC. For an up to date review
about Higgs production the reader is referred to [29,68].
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Figure 7.3.: Leading order to (a) the associated qq φ (q = t, b) production and (b) the
gluon fusion process.

Higgs Strahlung

The Feynman diagram for the leading order in the process of the Higgs strahlung is dis-
played in Fig. 7.2(a). The Higgs boson is produced together with a weak gauge boson.
Although the cross section is almost an order of magnitude smaller than for the gluon
fusion, in this channel one has the advantage that the bottom quarks from the decay can
be distinguished from the background. This is possible by measuring the decay products
of the W - and Z-bosons, which were generated together with the Higgs boson. This chan-
nel is very well under control from the theory side because up to NNLO-QCD as well as
NLO-electroweak e�ects are known (cf. references in [89]). This production channel does
not provide a contribution for the pseudoscalar Higgs boson A as a coupling of the form
AV V does not exist.

Fusion of Weak Gauge Bosons (VBF)

The production of Higgs bosons via the fusion of weak gauge bosons results in the second
largest cross section at the LHC (see Fig. 7.1). The leading order is displayed in Fig. 7.2(b).
The Higgs is produced together with two jets which are not color-connected. This results
in a small hadronic activity in the rapidity region between these jets. On the other hand,
the Higgs decay products are found at central rapidities. Thus, suitable cuts and jet vetoes
allow for a signi�cant background reduction [89]. The VBF is important especially in the
regions with lower Higgs masses [90]. The fusion of weak gauge bosons is an important
production channel for Higgs bosons from which one expects information beyond discovery
and mass determination of Higgs bosons. One expects fundamental information about
Higgs boson couplings to gauge bosons and fermions from the VBF process. The QCD
corrections to VBF are known up to NLO and are moderate such that the theoretical
prediction for the cross section is under control [91]. In combination with the gluon fusion
and the associated ttH production one can determine ratios of the Higgs couplings and
with limitations the total Higgs decay width [90, 92]. Nevertheless, this process, as the
Higgs strahlung does not exist for pseudoscalar Higgs bosons, as the coupling of the form
AV V with vector bosons V does not exist.
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Figure 7.4.: Production cross sections for neutral Higgs bosons φ at the LHC as
functions of the Higgs mass for tan β = 30 [68].
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Figure 7.5.: Comparison between the exact and approximate NLO cross section
σ (pp→ A+X) at the LHC for a cms energy of

√
s = 14 TeV. The solid lines display

the exactly calculated cross section with the complete top and bottom quark dependency.
The dashed lines show the results in the limit of large top masses. Taken from [81].
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ttφ and bbφ Associated Production

Although the cross section is rather small in this case, the ttφ channel has a distinct
signature: four bottom quarks in combination with two W bosons. Furthermore, this
process is directly sensitive to the top Yukawa coupling for ttφ and the bottom Yukawa
coupling for bbφ. The largest contribution in leading order at the LHC is depicted in
Fig. 7.3(a). For the ttφ associated production the NLO in QCD is known exactly [93, 94]
as well as in the limit of large top masses [95]. In Fig. 7.4 [68] it is shown that the cross
section for the associated bbH and bbA-production for Higgs masses up to about 130 GeV
and tan β = 30 GeV is about the same order of magnitude as the cross section for the
gluon fusion. For larger Higgs masses it even gets dominant.

7.2. Gluon Fusion

In the SM the coupling of gluons to the Higgs boson is mediated through a top quark loop.
The large gluon luminosity as well as the large top Yukawa coupling both compensate that
this process is suppressed by loop level. Already at leading order perturbation theory there
is a dependence of the cross section on α2

s(µR), as it is a one-loop process (Fig. 7.3(b)).
This corresponds to a large dependence on the renormalization scale µR, which one has
to reduce by including higher order corrections. However, the exact calculation of higher
order corrections is di�cult as the leading order is already a one-loop process. The NLO
electroweak corrections were obtained in [96]. The process is known in QCD up to NLO
[81,97] exactly and NNLO in the limit of large top masses [98�100]. Especially the NNLO-
QCD results demonstrate the expected reduction of the dependence of the cross section on
µR as well as the factorization scale µF . This dependence is signi�cantly reduced by the
transition from two- to three-loops. Therefore, it can be assumed that the perturbative
approach works well in the gluon fusion process.

In the MSSM the cross sections are known in NLO in the limit of large top masses
[59, 60, 79, 82]. In this limit, it is assumed that the top quark mass is a lot larger than
the Higgs boson mass. Admittedly, this does not seem to be a good approximation for
mt = 172.4 GeV and mh ≥ 114 GeV. Nevertheless, the expansion in the masses is not
given by mφ/mt, but by τ = m2

φ/(4m
2
t ). That is why one can assume that the expansion

in τ converges for mφ < 2mt. One can perform the calculation (a) in an approximation
and (b) exactly. In case (a) the cross section in NLO is calculated in an approximation
in which the entire top mass dependence is kept at leading order

(
σLOt

)
and at NLO the

QCD corrections are calculated in the limit of large top masses
(
σNLO∞

)
. Mathematically,

the approach in (a) can be written in the following way

σNLOt ≈ K∞σ
LO
t ,
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Figure 7.6.: LO-SQCD contributions to the Higgs production via the gluon fusion.

with

K∞ =
σNLO∞
σLO∞

.

By comparing the two results in the case of the production of scalar Higgs bosons one
observes that the approximation (a) does agree with the exact result (b) up to 2%. This
holds up to a threshold of mφ = 2mt. Even at a Higgs mass of about mφ = 1 TeV there is
only a deviation of about 10% [73, 101].
The limit of large top masses is a good approximation even for an MSSM calculation as
can be seen in Fig. 7.5. This graph shows a large dependence on tan β for the calculation
of the top and bottom quark e�ects. The bottom quark e�ects are not negligible even
for small tan β for the production of pseudoscalar Higgs bosons [81]. Clearly, this is a
motivation for investigating the in�uence of bottom quarks and their superpartners on the
amplitude and the cross section.
Since the main goal in this thesis is to determine the contributions of the bottom and
sbottom quarks in NLO-SQCD, the approach of large quark masses it not applicable any
longer. The bottom quark cannot in the least be assumed to be larger than the Higgs mass.
Therefore, new routines were implemented, to account for the dependence on the external
momenta of the gluons in order to calculate the bottom subloops arising in the asymptotic
expansions of the Feynman diagrams (see Sec. 5.4). The NLO-SQCD virtual corrections
with the inclusion of the bottom and sbottom quarks have been presented in [46]. Later
on we will compare our results with these which have not been obtained in any limiting
case. Only the squark contributions without the gluino have been given in [102,103].

7.3. Diagrams in LO and NLO-SQCD in the Gluon
Fusion

The LO diagrams for the gluon fusion process are displayed in Fig. 7.6. Analogously to the
decay of Higgs bosons into two photons, for the pseudoscalar Higgs bosons the entire LO-
SQCD part arises from quark insertions in the loop. As before, for the production of scalar
Higgs bosons however, already at LO we obtain contributions from squarks circulating in
the loop. Again, we only take into account the e�ects of top and bottom quarks as well as
their superpartners.
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Figure 7.7.: NLO-SQCD contributions for the Higgs production via gluon fusion:
(a),(b): pure quark contributions; (c)-(e): mixed quark/squark/gluino contributions;
(f)-(h): pure squark contributions

The contributions one obtains for the gluon fusion process in NLO-SQCD are very similar
to the case of Higgs bosons decaying into two photons in NLO-SQCD. However, for the
Higgs production process via the gluon fusion, more diagrams and a more complicated
structure are obtained due to the allowed emission of real gluons that was prohibited by
color conservation in the case of the Higgs decaying into two photons. Additionally, two-
loop diagrams with more than one internal gluon line exist. There are O(100) diagrams
which contribute to the cross section for the production of pseudoscalar Higgs bosons via
the gluon fusion in NLO-SQCD for the top sector as well as the bottom sector. For the
scalar case there are O(300) diagrams.
The contributions to the Higgs production (h,A) can be categorized according to

1. pure quark contributions (SM or QCD-contributions) (Fig. 7.7(a), 7.7(b))

2. mixed quark-squark-gluino contributions (qg̃ contributions) (Fig. 7.7(c)-7.7(e))
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3. pure squark contributions (q̃ contributions) (Fig. 7.7(f)-7.7(h))

For the production of scalar Higgs bosons there exist more diagrams in NLO-SQCD because
of the allowed possible diagonal couplings of hq̃iq̃i, i = 1, 2. In order to categorize the
contributions to the amplitude the same notation as in Sec. 6.6 is applied.

7.4. Renormalization of the New Contributions

The renormalization procedure for the contributions to the gluon fusion process is more
complicated than for the decay of Higgs bosons into two photons. As for the Higgs decay,
we only calculate the SUSY parts of the two-loop diagrams.
The QCD contributions to the hadronic cross section are publicly available in the program
HIGLU [104]. This program allows to evaluate the total Higgs production cross section
in the gluon fusion process at hadron colliders including the next-to-leading order QCD
corrections of top quarks as well as bottom quarks. The cross sections can be evaluated
for the scalar as well as pseudoscalar Higgs boson.
For the production of pseudoscalar Higgs bosons, the QCD contributions to the cross
section can be taken from HIGLU [104] which accounts for the virtual two-loop quark
diagrams as well as the real radiation of gluons in NLO. The mixed quark-squark-gluino
diagrams we calculate do not contain contributions from real gluon radiation in NLO-
SQCD. Due to the absence of squark contributions at LO, by just the inclusion of the two-
loop mixed quark-squark-gluino diagrams, the full NLO-SQCD result is derived. Thus, for
the pseudoscalar case no SUSY diagrams with real gluon emission exist at NLO-SQCD.
The production of scalar Higgs bosons is somewhat more complicated, since already at
LO there exist contributions from squarks. The program HIGLU provides for the real and
virtual QCD contributions to the cross section. But it does not provide for expressions of
the interference terms for the real QCD parts with the real SUSY parts. The full two-loop
virtual QCD contributions are available to us [76].
The structure of the two-loop SUSY parts to the amplitude of the scalar Higgs production
is more complex than for the Higgs decay. In addition to the diagrams containing gluinos,
pure squark diagrams with insertions of more than one internal gluon line exist.
For the production of scalar and pseudoscalar Higgs bosons through the fusion of gluons,
in addition to the renormalization of the mass scales and the squark mixing angle, the
strong coupling constant αs has to be renormalized as well. Furthermore, the gluon wave
functions have to be renormalized.

7.4.1. Renormalization in the Effective Theory vs. the Full Theory

As an important check of our calculation of the SUSY parts that include contributions from
top and bottom quarks as well as their superpartners, we calculate the top/stop/gluino
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Figure 7.8.: Diagrammatic illustration of the LO in the e�ective theory where the top
quark is integrated out.

parts of the amplitude in an e�ective theory where the top quark is integrated out, i.e., it
is assumed to be much heavier than the Higgs boson. In addition, the stops and gluino are
integrated out as well.
The calculation in the e�ective theory is performed along the lines of [60, 82]. We will
brie�y recollect the renormalization of αs and the decoupling of the heavy particles in the
e�ective theory.
The e�ective ggφ (φ = h,A) coupling in leading order in mφ can be expressed by

Lφeff = −φ
v
CB

1,φOB1,φ with OB1,h =
1

4
GB,a
µν G

B,aµν and OB1,A =
1

4
GB,a
µν G̃

B,aµν .

Since the top quark has been integrated out, GB
µν is the bare gluon �eld strength tensor in

�ve-�avor QCD. The dual �eld strength tensor is denoted G̃B
µν . In the e�ective theory, the

goal is to determine the dimensionless so-called Wilson coe�cient CB
1,φ. This coe�cient

only depends on the bare quantities of the full theory and is a function of αs. In particular,
it contains the e�ects of the heavy particles that are integrated out.
Diagramatically (cf. Fig. 7.8) the LO top quark contribution decomposes into a product of
two factors if the top is integrated out. The �rst diagram with vanishing external momenta
contains the full top quark dependence and the second part depends on the kinematics of
the process but does not contain any massive internal lines. In order to determine C1,φ in
NLO-SQCD, vacuum diagrams that contain massive internal lines of the top quark, top
squarks and the gluino have to be evaluated up to the two-loop level.
For both, the production of scalar and pseudoscalar Higgs bosons in the e�ective theory
the renormalization of αs and the decoupling of the heavy particles are described below.
First, the top quark and its supersymmetric partners and the gluino are decoupled from
the bare coupling constant

α̃Bs =
1

(ζBg )2
αBs .

α̃Bs denotes the bare coupling in the full theory (SQCD) including the tops, stops and
gluino. αBs is the bare coupling in �ve-�avor QCD. The decoupling factor is given by [82]

1

(ζBg )2
= 1 +

αs
π

[
1

ε

(
1

6
CA +

1

2
T

)
+ L(ε)

]
+O(α2

s), (7.1)
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with CA = 3, T = 1/2 and

L(ε) =
1

12

(
2CALg̃ + T

(
Lt̃1 + Lt̃2 + 4Lt1

))
+

ε

12

(
CAL

2
g̃ +

1

2

(
L2
t̃1

+ L2
t̃2

)
+ 2TL2

t + (CA + 3T ) ζ2

)
,

(7.2)

where

Lt = ln
µ2
R

m2
t

, Lt̃i = ln
µ2
R

m2
t̃i

, Lg̃ = ln
µ2
R

m2
g̃

.

The renormalization scale is denoted with µR. The renormalization of the bare coupling
αBs is given by [82]

αBs =

[
1 +

αs
π

1

ε

(
−11

12
CA +

1

3
Tnl

)]
αDRs . (7.3)

αDRs is the coupling in the DR-scheme and nl (nl = 5) denotes the number of light �avors.
The gluon �eld G̃B

µ of the entire theory is reduced to the one in the e�ective theory GB
µ

by [82]

G̃B
µ =

1√
ζB3
GB
µ , (7.4)

with

ζB3 = 1 +
αs
π

(
1

ε

(
1

6
CA +

1

2
T

)
+ L (ε)

)
+O(α2

s). (7.5)

In addition, the renormalized Wilson coe�cient C1 is obtained through [80]

C1 = Z−1
11 C

B
1 , (7.6)

Z−1
11 =

[
1− αs

π

1

ε

(
−11

12
CA +

1

3
Tnl

)]
. (7.7)

To conclude, the application of Eqs. (7.1), (7.3), (7.4) and (7.6) of which we only need the
terms up to O (αs) in our two-loop calculation results in a net zero e�ect.

In the calculation in the full theory, the result will be expressed in terms of αDRs in �ve-
�avor QCD. There, the heavy particles, i.e., the top quark, the squarks and the gluino have
to be decoupled as in Eq. (7.1). Furthermore, the bare strong coupling has to be renor-
malized as given in Eq. (7.3). In addition, the gluon wave function has to be renormalized.
In the e�ective theory, ζB3 is obtained by [105]

ζB3 = 1 + ΠB
G(0).

ΠB
G(0) is determined by the one-loop corrections to the gluon propagator that are mediated

by the heavy particles at zero momentum transfer. Those are the top quark, squarks and
gluino as can be seen in Fig. 7.9.
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g g
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Figure 7.9.: Contributions to the gluon wave function renormalization.

It coincides with the on-shell gluon wave function renormalization in the full theory.
Thus, in the full theory, the gluon wave function is renormalized with the factor given in
Eq. (7.4). The decoupling and the renormalization of the gluon wave functions lead to a
net zero e�ect.

Limitation of the Approach

Our approach to the production of scalar and pseudoscalar Higgs bosons via the gluon
fusion is guided by the intention of the inclusion of the bottom quarks. Clearly, the bottom
quarks cannot be assumed to be heavier than the Higgs boson and the e�ective theory is
not applicable.
In addition we do not determine the pure QCD bottom contributions to the amplitude.
Therefore, we have to split the calculation into QCD parts and SUSY parts. We only
determine the latter and have to ensure that these are separately �nite by a modi�ed
renormalization procedure and can be added to the QCD parts in order to obtain the
entire SQCD result.
In the pseudoscalar case, the SUSY contributions are entirely from gluino insertions at
the two-loop level. The corresponding Feynman diagrams are determined with the help of
the new routines (cf. Sec. 5.4).
In the scalar case we perform an additional splitting of the SUSY contributions into pure
squark diagrams and diagrams containing at least one gluino as an internal particle. This
is due to the fact that we cannot perform the exact calculation of the pure squark diagrams
with several gluon insertions with our setup.
We obtain the pure squark contributions only in an e�ective theory where we assume
the masses of the top and bottom squarks to be much larger than the Higgs mass, i.e.,
mb̃1,2

,mt̃1,2 � mh. The assumption of the squark masses being heavier than the Higgs
boson seems to be a fair approximation. The pure sbottom diagrams are calculated with
the help of asymptotic expansions and the application of d'Alembert operators.
In contrast to the Higgs decay, diagrams contributing to the pure squark parts at the
two-loop level do not only consist of the ones where only squark lines or at most one gluon
line appear as internal lines. Additionally, diagrams dressed with more than one gluon
propagator exist. An example diagram is given to the left of Fig. 7.10. Since we cannot
perform the calculation of this diagram directly, we apply the approach of the e�ective
theory in which the squarks are integrated out as illustrated to the right of Fig. 7.10.
The diagrams to the left of * are vacuum diagrams. The dependence on the external
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g q̃1
h

q̃1

−→

q̃
∗ + ∗

Figure 7.10.: A squark diagram that is evaluated in the e�ective theory where the
squarks are integrated out.

momenta is contained in the e�ective ggh vertex, given by the vertices to the right of *.
This e�ective vertex, with the dependence on the external momenta can be taken from [73].
The Wilson coe�cient is determined by applying asymptotic expansions to the pure squark
diagrams in certain hierarchies among the two squark masses and the evaluation of one-
and two-loop vacuum diagrams. It is the coe�cient of (m2

h)
0 and thus independent of the

Higgs mass.

It should be noted that in splitting the amplitude into QCD and SUSY contributions and
dividing the latter into smaller pieces, one has to carefully think about which part of the
renormalization of the leading order counts to which renormalized NLO piece.

7.4.2. Renormalization of the Amplitude for gg → h

In the renormalization of the production of scalar Higgs bosons we obtain additional parts
in comparison to the pseudoscalar case due to the appearance of SUSY particles, namely
squarks in leading order. Therefore, we have to perform additional renormalizations, which
are the ones of the squark masses and of the squark mixing angle. For the scalar cases we
do not calculate the QCD e�ects. These can be extracted from HIGLU [104].

As described above, we perform an additional splitting of the amplitude into pure squark
diagrams and the ones containing gluinos.

It should be noted that by calculating the pure stop or pure sbottom contributions for
gg → h in the e�ective theory, in principle, the only adjustment that would have to be
performed is a change in L(ε) in Eq. (7.2), where one would have to separate the gluino
e�ects from the squark e�ects and just apply the squark e�ects. But this separation is
dispensable since those shifts occur in Eq. (7.1) as well as in Eq. (7.4) with opposite signs,
i.e., with a net zero e�ect.

The mixed gluino-quark-squark e�ects are evaluated with the new routines (cf. Sec. 5.4).
In the bottom case, these cannot be computed in the e�ective theory. If we perform
the renormalization of the gluino diagrams separately from the pure squark diagrams, we
only have to include the e�ects from gluinos (label g̃) to the decoupling of the strong
coupling from the full theory in Eq. (7.1). In addition, only e�ects from gluinos are taken
into account in the on-shell gluon wave function renormalization. To sum up, the bare
amplitude is renormalized with a factor that is given by ζB,g̃3 (ζB,g̃g )2 = 1 up to order αs
to accommodate for the renormalization of the gluon wave functions and the decoupling
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of the full theory to �ve �avors. The renormalization of the strong coupling does not
contribute to the gluino parts of the amplitude that are �nite after the renormalization of
the appearing mass scales and squark mixing angle. Its renormalization only contributes
to the QCD and pure squark corrections at NLO-SQCD.

Performing the calculation with the new routines for the top sector without the assumption
of an e�ective theory leads to the same coe�cient for (m2

φ)0 as in the e�ective theory. This
provides for a welcome check of the new results.

7.4.3. Separation of the Contributions from Gluinos and Squarks

For the production of scalar Higgs bosons in the gluon fusion process an additional parti-
tioning of the SUSY parts, namely into the pure squark ones and the contributions that
contain the e�ects of gluinos, is performed. Therefore, the squark and gluino contributions
to the NLO amplitude are renormalized separately. This separation also permits to clearly
tell apart terms originating from gluino e�ects and their renormalization from those coming
from the squarks and their renormalization.

Altogether, the entire NLO-SUSY amplitude is given by

Hsusy =
∑

qq̃=tt̃,bb̃

(Hqg̃ +Hq̃) .

where

Hq̃ =
(αs
π

)
H(0)
q̃ +

(αs
π

)2

H(1)
q̃ .

Hqg̃ =
(αs
π

)2 (
H(0),ren
q +H(0),ren

q̃

)
+
(αs
π

)2

H(1)
g̃ .

(7.8)

Eq. (7.8) tries to express that the LO contributions are not counted twice. To the pure
SUSY parts, in LO only the squark diagrams contribute. These are included in Hq̃. In
order to obtain a �nite NLO gluino part of the amplitude, we renormalize the LO quark
as well as the LO squark parts and take their contributions through gluinos to O (α2

s)

(label (0),ren) from the renormalization into Hqg̃. H(0)
q is counted to the QCD parts of the

amplitude.

Gluino Contributions to the Amplitude

Clearly, for including the bottom quarks the approach of the e�ective theory is not valid.
First, we discuss the renormalization of the mixed gluino-squark-quark Feynman diagrams.
For the gluino parts (label g̃), we take the complete LO amplitude and renormalize the
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q̃1
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q̃1
q̃1

q̃1 q̃1 q̃1 q̃1

q̃1/2

q̃1

q

g̃
q̃1

Figure 7.11.: Contributions to the squark mass counterterm Zmq̃1 . In order to obtain
the mass counterterm that is independent of gluino e�ects the diagram to the right is
omitted in the calculation.

mass scales and the squark mixing angle according to

δZ g̃,DRED
mq = δZDRED

mq − δZDRED
mq ,QCD,

δZ g̃,DREG
mq = δZDREG

mq − δZDREG
mq ,QCD,

δZ g̃
mq̃1

= δZmq̃1 − δZ
no g̃
mq̃1

,

δZ g̃
mq̃2

= δZmq̃2 − δZ
no g̃
mq̃2

,

δZ g̃
θq̃

= δZθq̃ − δZno g̃
θq̃

.

The renormalization constants Zxi (xi = mq,mq̃1 ,mq̃2 , θq̃) with no additional label denote
the full MSSM ones that are given in App. B. In order to obtain the counterterms Zno g̃

xi

(labeled �no g̃�) without gluino contributions, the counterterms are calculated without the
diagrams that contain gluinos. They are explicitly listed in App. B.
We do not have to evaluate Feynman diagrams to obtain Zno g̃

mq . As the only e�ects from
SUSY particles to the quark mass counterterm involve gluinos, this counterterm is just
the di�erence of the complete MSSM quark mass counterterm and the QCD quark mass
counterterm. Only for the quark mass counterterm there is a distinction whether the
calculation is performed in DRED or DREG.
The complete counterterms Zmq̃1 and Zmq̃2 are obtained by the calculation of the one-loop
corrected squark propagators for real squarks, i.e., the external momentum p2 = m2

q̃i
. The

loop insertions are internal squark, quark, gluon and gluino lines. The contributions are
illustrated in Fig. 7.11. To get the counterterms without gluinos Zno g̃

mq̃1
, Zno g̃

mq̃2
, only the

one-loop diagrams that contain no gluinos are evaluated. For the determination of these
counterterms, the right diagram in Fig. 7.11 is omitted in the calculation. We implement
a new subroutine in order to calculate the contribution in which the squark emits a gluon
and re-absorbs it again. The diagrams that contribute to the counterterm of the squark
mixing angle are shown in Fig. 7.12.
It should be noted that just modifying the renormalization of the masses and the squark
mixing angle for the calculation of the pure gluino parts does not lead to a �nite result.
That is why, in addition to the new counterterms which do not contain squark parts, we
�nd that we need additional counterterms at the Higgs-squark-squark couplings in order
to obtain a �nite result for the pure gluino contributions. These are calculated with the
help of the known results for the top case, which were obtained in the e�ective theory [82].
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q̃1 q̃2

q̃1/2

q̃1

q

g̃
q̃2

Figure 7.12.: Contributions to the squark mixing angle counterterm Zθq̃ . In order
to obtain the squark mixing angle counterterm without e�ects from gluinos the right
diagram is omitted in the calculation.

In this case we could explicitly check if the splitting of the counterterms works. We could
reproduce the complete NLO-SQCD result in the limit of large top/stop and gluino masses
by renormalizing the SUSY and QCD parts separately and adding them together afterwards
to obtain the known result.
The Higgs-squark-squark couplings can be split as follows [82]:

ghq̃,ij = gh,ewq̃,ij + gh,µq̃,ij + gh,αq̃,ij.

The detailed expressions are given in App. A. For the renormalization of the couplings
only the diagonal couplings ghq̃,ii, i = 1, 2 have to be taken into account because only these
occur in the leading order. First at two-loop level the non-diagonal couplings exist, where
squarks of a di�erent kind couple to Higgs bosons (ghq̃,ij, i 6= j) due to the gluino or four
squark insertions.
The single parts of the Higgs coupling to squarks have to be dressed with additional
counterterms in order to obtain a �nite amplitude. These are given by

gh,ew,g̃q̃,ii = Zew,g̃ gh,ewq̃,ii ,

gh,µ,g̃q̃,ii = Zµ,g̃ gh,µq̃,ii .

We �nd that the new minimal counterterms are given by

Zew,g̃ = 1 +
αs
π

1

ε

2

3
,

Zµ,g̃ = 1 +
αs
π

1

ε

1

3
.

For the last term in the coupling we �nd a more complicated structure:

gh,α,g̃q̃,11 = cq̃

(
2Zα,g̃

A + Zα,g̃
B

1

2

(
m2
q̃1
−m2

q̃2

)
m2
q

sin2 2θq̃

)
,

gh,α,g̃q̃,22 = cq̃

(
2Zα,g̃

A − Zα,g̃
B

1

2

(
m2
q̃1
−m2

q̃2

)
m2
q

sin2 2θq̃

)
,
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where ct̃ = − cosα/ sin β and cb̃ = sinα/ cos β (cf. App. A).

The corresponding counterterms are expressed by

Zα,g̃
A = 1− αs

π

1

ε

4

3
,

Zα,g̃
B = 1 +

αs
π

1

ε
0.

These counterterms are the same for the bottom sector of the calculation as for the top
sector of the calculation.

Squark Contributions to the Amplitude

The pure squark contributions to NLO are computed in the e�ective theory. The renor-
malization procedure is modi�ed according to our needs. In the leading order only the
pure squark diagrams are taken into account.

The counterterms applied are given by

δZ q̃,DRED
mq = δZDRED

mq ,QCD,

δZ q̃,DREG
mq = δZDREG

mq ,QCD,

δZ q̃
mq̃1

= δZno g̃
mq̃1

,

δZ q̃
mq̃2

= δZno g̃
mq̃2

,

δZ q̃
θq̃

= δZno g̃
θq̃

.

Their explicit expressions are displayed in App. B. In order to obtain a �nite result for
the pure squark contributions, again we have to introduce �nite counterterms at the hq̃q̃
couplings. This goes about the same way as for the gluino parts.

We obtain

Zew,no g̃ = 1 +
αs
π

1

ε

(
−2

3

)
,

Zµ,no g̃ = 1 +
αs
π

1

ε

(
−1

3

)
,

Zα,no g̃
A = 1− αs

π

1

ε

(
−4

3

)
,

Zα,no g̃
B = 1 +

αs
π

1

ε
0.

Here, we can observe that we performed the renormalization correctly as these new coun-
terterms for the squark and gluino parts add up to zero.

126



7.4. Renormalization of the New Contributions

7.4.4. Renormalization of the Amplitude gg → A

For the production of pseudoscalar Higgs bosons via the gluon fusion, besides the pure
QCD parts only the ones where at least one gluino occurs as an internal particle exist at
the two-loop level. Therefore, no splitting into squark and gluino parts as in the scalar
case is required.

The mixed gluino-quark-squark e�ects are evaluated with the help of the new routines (cf.
Sec. 5.4). If we perform the renormalization of the gluino diagrams separately from the
quark diagrams, we only have to include the e�ects from gluinos and squarks (label q̃g̃) in
the decoupling of the strong coupling from the full theory in Eq. (7.1). In addition, only
e�ects from gluinos and squarks are taken into account in the on-shell gluon wave function
renormalization. To sum up, the bare amplitude is renormalized with a factor that is given
by ζB,q̃g̃3 (ζB,q̃g̃g )2 = 1 up to order αs to accommodate for the renormalization of the gluon
wave functions and the decoupling of the full theory to �ve �avors. The renormalization
of the strong coupling does not contribute to the gluino parts of the amplitude that are
�nite after the renormalization of the quark mass.

In addition, only the quark mass has to be renormalized in analogy to the procedure
described for the process A→ γγ (cf. Sec. 6.7.1).

For the production of pseudoscalar Higgs bosons we evaluated the NLO-SQCD cross
section in the e�ective theory in the large top/stop/gluino limit in [60].

An important check is that the expansion of the newly obtained results for the top sector
in an expansion in the parameter m2

A/(4m
2
t ) agree with the result of the e�ective theory.

There, the �rst term of the expansion, i.e., the coe�cient of (m2
A)0 has to agree.

Again, we have to be careful to obtain the SM limit by keeping the couplings �xed and
letting the SUSY masses tend to in�nity. For the SUSY parts we obtain that this limit
vanishes as required since we take the QCD parts from elsewhere. For the e�ective theory,
i.e., the limit of large SUSY as well as top masses is given explicitly below. As required,
the QCD result is obtained in the SM limit.

In this limit, the SUSY parts decouple as demonstrated below

Att̃ =
αs
π

cot β

[
1 +

αs
π

(
4

3
l +

2

3
q̃ − 2q

)]
=
αs
π

cot β
(

1 + 0 · αs
π

)
.

Here, the terms are labeled such that q (q = 1) denotes the part arising from the two-loop
QCD e�ects and q̃ denotes the two-loop contribution from supersymmetric particles (in
SUSY: q̃ = 1 , in QCD: q̃ = 0 ). The label l (l = 1) denotes the term originating from the
renormalization of the LO part of the amplitude. This has already been observed in [60]
and suggests that in MSSM calculations there is a non-trivial interplay of the QCD parts
with the SUSY parts.
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Validation and Conclusions

Given that we only compute the NLO-SUSY contributions to the amplitude, it should be
ensured that we do not obtain contributions from the renormalization of the leading order
quark amplitude that are already included in the two-loop QCD result. Therefore, our
newly calculated results have to vanish in the SM limit. We explicitly checked that the
SUSY e�ects decouple if we keep the couplings �xed and consider the limit of very large
SUSY masses. For all the amplitudes we calculate, the SUSY e�ects vanish in that limit.
Of course, all our SUSY results are separately �nite. The pole parts for the top case as
well as the bottom case of the amplitudes are analytically zero.

We �nd agreement if we perform the renormalization in DRED and DREG with the
appropriate on-shell quark mass counterterms. In DREG, the hq̃q̃ coupling has to be
renormalized as described in Sec. 4.5.

For the production of the lightest scalar Higgs boson we renormalize the pure squark
contributions separately from the gluino contributions to the amplitude. A check of the
sum of Ht̃+Htg̃ is to renormalize the gluino and stop parts together in one procedure in the
e�ective theory. Thereby, the newly introduced counterterms for the ht̃t̃ couplings and the
splitting of the other counterterms into parts that contain gluinos and �no g̃� parts are not
applied. Of course, for calculating the SUSY parts together, we take the entire LO MSSM
contribution to the amplitude. By calculating the SUSY parts without the NLO QCD
contributions to the amplitude, we perform the renormalization in analogy to the scalar
Higgs decay where we did not split the SUSY contributions into ones from gluinos and
ones from squarks. There, we changed the entire quark mass counterterm by subtracting
the QCD part and the hq̃q̃ coupling was renormalized with the full MSSM quark mass
counterterm. Finally, we �nd that the result where one renormalizes the stop and gluino
parts separately agrees with the one where the two parts are renormalized together in the
e�ective theory. This is an important check of the newly obtained counterterms.

Our result is limited by the pure squark contributions that were obtained in the e�ec-
tive theory. By taking the pure squark parts of the two-loop amplitude from elsewhere,
respectively providing the gluino result for others, one could obtain a more general result.

In principle, the calculation can be extended to apply it to the heavier of the two CP-even
Higgs bosons H. In doing so, we need to change the Higgs couplings to squarks and quarks.
But one has to keep in mind that this is assumed to be much heavier than h and therefore
the assumption of the squark masses being larger than the Higgs mass might not be a good
assumption any more.

7.5. Explicit Results as an Expansion in Leading Terms

Some limiting cases for the virtual SUSY contributions to the NLO amplitudes in the gluon
fusion process will be explicitly listed below. For this process the leading order Feynman
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diagrams are already proportional to αs caused by the two gluons appearing as external
particles. The amplitude for the scalar and pseudoscalar Higgs production via the gluon
fusion is denoted by

H (gg → h) =
∑

qq̃=tt̃,bb̃

Hqq̃ =
∑

qq̃=tt̃,bb̃

(
αs
π
H(0)
qq̃ +

(αs
π

)2

H(1)
qq̃

)
+O

(
α2
s

)
,

A (gg → A) =
∑

qq̃=tt̃,bb̃

Aqq̃ =
∑

qq̃=tt̃,bb̃

(
αs
π
A(0)
qq̃ +

(αs
π

)2

A(1)
qq̃

)
+O

(
α2
s

)
.

This has to be understood in the sense that qq̃ = tt̃, bb̃ denotes the top (bottom) case which,
in addition to quarks, includes the stops (sbottoms) and gluinos. Since we do not calculate
the QCD parts of the amplitude in the gluon fusion process, the results given in this section
arise from two-loop virtual contributions to the amplitude from supersymmetric particles,
i.e., they contain at least one supersymmetric particle as an internal line. For our newly
obtained results we explicitly checked that they all vanish in the SM-limit and that the
expansions of the top/stop results agree with the result in the e�ective theory to (m2

φ)0.
In addition, we checked that our on-shell results agree in DREG and DRED. Because of
the simple structure of the Aq̃q̃ coupling, for the production of pseudoscalar Higgs bosons
we tested that the bottom/sbottom results agree with the one for the top/stops with the
replacements mt → mb, mt̃1 → mb̃1

, mt̃2 → mb̃2
, cot β → tan β. For the scalar Higgs

bosons, the corresponding replacements at the coupling to squarks can be read o� in
App. A.
The notation applied in the next sections is the one already taken for the amplitudes in
the Higgs decay. For the expansion parameters the notation given in Eq. (6.21) is applied.

7.5.1. Explicit Expressions for the Amplitude for gg → A

For the pure SUSY part due to bottoms, sbottom and gluinos we can write down the
amplitude in the following form

Abb̃ = tan βA0,bb̃ +
µsusy
Mx

(
1 + tan2 β

)
A1,bb̃, (7.9)

with

Ai,bb̃ =
∑
n

(
mb

mA

)n
Ai,bb̃,n.

The analogous part of the amplitude for the top sector reads

Att̃ = cot βA0,tt̃ +
µsusy
Mx

(
1 + cot2 β

)
A1,tt̃, (7.10)
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with

Ai,tt̃ =
∑
n

(
mA

mt

)n
Ai,tt̃,n.

Furthermore,

Ai,qq̃ =
αs
π
A(0)
i,qq̃ +

(αs
π

)2

A(1)
i,qq̃ +O

(
α3
s

)
, qq̃ = tt̃, bb̃

and

A(j)
i,qq̃ = A(j)

i,q +A(j)
i,qg̃.

The analogous decomposition applies to the coe�cients Ai,qq̃,n. The largest SUSY mass
scale that we chose in our limiting case is denoted by Mx.
The leading order contribution for the production of pseudoscalar Higgs bosons via the
gluon fusion does not contain contributions from squarks. The leading order contributions
of bottom quarks read

A(0)
0,b = −L2

AbxbA − 4LAbx
2
bA + (6LAb − 4)x3

bA +

(
40LAb

3
− 12

)
x4
bA

+

(
35LAb −

107

3

)
x5
bA +

(
504LAb

5
− 110

)
x6
bA +O

(
x7
bA

)
.

The amplitude in LO from top e�ects is given by

A(0)
0,t = 1 +

xAt
12

+
x2
At

90
+
x3
At

560
+

x4
At

3150
+O

(
x5
At

)
.

In the following, coe�cients that are omitted vanish.

7.5.2. gg → A in the Limit mq �Ms ≡ mq̃1 = mq̃2 = mg̃

First we examine the case, where the masses of the supersymmetric particles are set to one
scale, Ms, i.e., Mx = Ms.
For the bottom sector we obtain through O (m4

b)

A(1)
0,bg̃,2 =

(
1

4
− 5LAb

36

)
xAs +

(
−LAb

108
− 71LAs

720
+

1073

5400

)
x2
As

+

(
− LAb

1008
− 67LAs

7560
+

24959

3175200

)
x3
As +O

(
x4
As

)
,
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A(1)
0,bg̃,4 =

(
−L

2
Ab

36
+

5LAb
18

+
5

18

)
xAs +

(
203LAb
1080

+
287

1080

)
x2
As

+

(
277LAb
5040

− 191LAs
2520

+
73249

529200

)
x3
As +O

(
x4
As

)
,

A(1)
1,bg̃,2 =

L2
Ab

3
+

(
L2
Ab

36
+

5Lbs
36
− 16

27

)
xAs +

(
L2
Ab

270
+
Lbs
36
− 113

864

)
x2
As

+

(
L2
Ab

1680
+

11Lbs
2016

− 15091

529200

)
x3
As +O

(
x4
As

)
,

A(1)
1,bg̃,4 = −4LAb

3
+

(
L2
Ab

18
− LAb

9

)
xAs +

(
L2
Ab

135
− 2LAb

135
− 7Lbs

60
− 7

600

)
x2
As

+

(
L2
Ab

840
− LAb

420
− 31Lbs

560
− 9463

352800

)
x3
As +O

(
x4
As

)
.

The pure SUSY contributions arising from top, stop and gluino contributions to the am-
plitude up to O (m6

A) are given by

A(1)
0,tg̃,2 =

11

432
xts +

(
−71Lts

720
− 43

3600

)
x2
ts +

(
40973

1058400
− 191Lts

2520

)
x3
ts +O

(
x4
ts

)
,

A(1)
0,tg̃,4 =

17

6480
xts +

1199

64800
x2
ts +

(
−67Lts

7560
− 15809

3175200

)
x3
ts +O

(
x4
ts

)
,

A(1)
0,tg̃,6 =

23

60480
xts +

17

9072
x2
ts +

9883x3
ts

4233600
+O

(
x4
ts

)
,

A(1)
1,tg̃,0 = −1

3
+

(
5Lts
36
− 35

54

)
xts +

(
−7Lts

60
− 41

1800

)
x2
ts +

(
1069

19600
− 23Lts

280

)
x3
ts +O

(
x4
ts

)
,

A(1)
1,tg̃,2 = − 1

36
− 7

216
xts +

(
Lts
36
− 601

4320

)
x2
ts +

(
−31Lts

560
− 1137

39200

)
x3
ts +O

(
x4
ts

)
,

A(1)
1,tg̃,4 = − 1

270
− 19

6480
xts −

x2
ts

225
+

(
11Lts
2016

− 6329

211680

)
x3
ts +O

(
x4
ts

)
,

A(1)
1,tg̃,6 = − 1

1680
− 37

90720
xts −

559x2
ts

1360800
− 4577x3

ts

6350400
+O

(
x4
ts

)
.

7.5.3. gg → A in the Limit mq � mq̃1 �Mg̃ ≡ mq̃2 = mg̃

Again, the pure SUSY part due to bottoms, sbottoms and gluinos can be written in the
form of Eq. (7.9), but with Mx = Mg̃.
The individual parts for the bottom sector through O(m4

b) are given by

A(1)
0,bg̃,0 = sin2 2θb̃

[
1

12
+

(
L1g̃

3
+

1

2

)
x1g̃ +

137

5184
xAg̃

]
+O

(
x2
Ag̃, x1g̃xAg̃, x

2
1g̃

)
,
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A(1)
0,bg̃,1 = sin 2θb̃

√
xAg̃

(
−L

2
Ab

12
+

11LAb
72

− 3

8

)
+O

(
x

3/2
Ag̃ , x1g̃x

1/2
Ag̃

)
,

A(1)
0,bg̃,2 = sin2 2θb̃

[
L2
Ab

12
+

(
L1g̃

3
+

1

2

)
L2
Abx1g̃

]
+ xAg̃

[(
L2
Ab

27
+

5

108

)
sin2 2θb̃ −

2LAb
9

+
1

2

]
+O

(
x2
Ag̃, x1g̃xAg̃, x

2
1g̃

)
,

A(1)
0,bg̃,3 = sin 2θb̃

√
xAg̃

(
−5L2

Ab

72
+
LAb
36
− 11

36

)
+O

(
x

3/2
Ag̃ , x1g̃x

1/2
Ag̃

)
,

A(1)
0,bg̃,4 = sin2 2θb̃

[
−LAb

3
+

(
−4L1g̃

3
− 2

)
LAbx1g̃

]
+ xAg̃

[
L2
Ab

18
+

4LAb
9

+

(
5L2

Ab

108
− 4LAb

27

)
sin2 2θb̃ +

4

9

]
+O

(
x2
Ag̃, x1g̃xAg̃, x

2
1g̃

)
,

A(1)
1,bg̃,1 = sin 2θb̃

[
−1

6

√
xAg̃ −

137x
3/2
Ag̃

2592
+

(
−2L1g̃

3
− 7

6

)
x1g̃
√
xAg̃

]
+O

(
x

5/2
Ag̃ , x

2
1g̃x

1/2
Ag̃

)
,

A(1)
1,bg̃,2 =

2L2
Ab

3
+

(
2L1g̃

3
+

2

3

)
L2
Abx1g̃ +

(
L2
Ab

6
+

11Lbg̃
36
− 85

108

)
xAg̃ +O

(
x2
Ag̃, x1g̃xAg̃, x

2
1g̃

)
,

A(1)
1,bg̃,3 = sin 2θb̃

[
−L

2
Ab

6

√
xAg̃ +

(
−2L1g̃

3
− 7

6

)
L2
Abx1g̃

√
xAg̃

+

(
−2L2

Ab

27
− 5

54

)
x

3/2
Ag̃

]
+O

(
x

5/2
Ag̃ , x

2
1g̃x

1/2
Ag̃

)
,

A(1)
1,bg̃,4 = −8LAb

3
+

(
−8L1g̃

3
− 8

3

)
x1g̃LAb +

(
2L2

Ab

9
− 2LAb

3

)
xAg̃ +O

(
x2
Ag̃, x1g̃xAg̃, x

2
1g̃

)
.

For the pure SUSY part arising due to the top, stop and gluino contributions to the
amplitude we obtain up to O (m4

A)

A(1)
0,tg̃,2 = −sin2 2θt̃

144
+

55 sin 2θt̃
864

√
xtg̃ +

(
−L1g̃

36
− 1

24

)
sin2 2θt̃x1g̃ +

(
7

216
− 25 sin2 2θt̃

1728

)
xtg̃

+

(
71Ltg̃
960

+
30179

86400

)
sin 2θt̃x

3/2
tg̃ +

(
53L1g̃

144
+

35

48

)
sin 2θt̃x1g̃

√
xtg̃ +

(
−5L1g̃

72
− 1

24

)
sin2 2θt̃x

2
1g̃ +

[(
−L1g̃

24
− 29

864

)
sin2 2θt̃ −

5L1g̃

144
− 109

864

]
xtg̃x1g̃ +

[(
29

21600
− 7Ltg̃

720

)
sin2 2θt̃ −

281Ltg̃
1440

− 49

225

]
x2
tg̃ +O

(
x

5/2
tg̃ , x

1/2
tg̃ x

2
1g̃

)
,
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A(1)
0,tg̃,4 = −sin2 2θt̃

1080
+

67 sin 2θt̃
12960

√
xtg̃ +

(
−L1g̃

270
− 1

180

)
sin2 2θt̃x1g̃

+

(
−7 sin2 2θt̃

1944
+

1

324

)
xtg̃ +

1039 sin 2θt̃
64800

x
3/2
tg̃ +

(
71L1g̃

2160
+

1

15

)
sin 2θt̃x1g̃

√
xtg̃

+

(
−L1g̃

108
− 1

180

)
sin2 2θt̃x

2
1g̃ +

[(
−17L1g̃

540
− 37

486

)
sin2 2θt̃ −

11L1g̃

2160

− 211

12960

]
xtg̃x1g̃ +

(
5009

129600
− 151 sin2 2θt̃

12960

)
x2
tg̃ +O

(
x

5/2
tg̃ , x

1/2
tg̃ x

2
1g̃

)
,

A(1)
1,tg̃,0 = −2

3
+

(
−2L1g̃

3
− 2

3

)
x1g̃ +

(
11Ltg̃

36
− 109

108

)
xtg̃ +

(
−4L1g̃

3
− 2

3

)
x2

1g̃

+

(
Ltg̃L1g̃

6
− L1g̃

2
− 7Ltg̃

36
+
ζ(2)

3
− 109

108

)
xtg̃x1g̃ +

(
−7Ltg̃

20
− 673

1800

)
x2
tg̃

+O
(
x

5/2
tg̃ , x

1/2
tg̃ x

2
1g̃

)
,

A(1)
1,tg̃,2 = − 1

18
+

sin 2θt̃
72

√
xtg̃ +

(
−L1g̃

18
− 1

18

)
x1g̃ −

5xtg̃
27

+
25

864
sin 2θt̃ x

3/2
tg̃

+

(
L1g̃

18
+

7

72

)
sin 2θt̃x1g̃

√
xtg̃ +

(
−L1g̃

9
− 1

18

)
x2

1g̃ +

(
−13L1g̃

18
− 155

108

)
xtg̃x1g̃

+

(
67Ltg̃
480

− 14377

43200

)
x2
tg̃ +O

(
x

5/2
tg̃ , x

1/2
tg̃ x

2
1g̃

)
,

A(1)
1,tg̃,4 = − 1

135
+

sin 2θt̃
540

√
xtg̃ +

(
−L1g̃

135
− 1

135

)
x1g̃ −

53xtg̃
3240

+
7

972
sin 2θt̃ x

3/2
tg̃

+

(
L1g̃

135
+

7

540

)
sin 2θt̃x1g̃

√
xtg̃ +

(
−2L1g̃

135
− 1

135

)
x2

1g̃

+

(
−17L1g̃

270
− 101

810

)
xtg̃x1g̃ −

1343x2
tg̃

16200
+O

(
x

5/2
tg̃ , x

1/2
tg̃ x

2
1g̃

)
.

7.5.4. gg → A in the Limit mq � mq̃1 � mq̃2 �Mg̃

For this limiting case we take Mx = Mg̃. For the SUSY parts of the amplitude in the
bottom sector we obtain through O (m2

b)

A(1)
0,bg̃,0 = sin2 2θb̃

[(
L12

3
+

1

6

)
x1g̃ +

xAg̃
18

+
x2g̃

6
+ xA2

((
L12

3
+

2

3

)
x1g̃ +

xAg̃
36

)]
+O

(
x2
Ag̃, x1g̃x2g̃, xAg̃x1g̃, xAg̃x2g̃, x

2
2g̃

)
,

A(1)
0,bg̃,1 =

√
xAg̃L

2
Ab sin 2θb̃

[
−1

6
+

(
−L12

3
− 1

3

)
x12 −

xA2

18

]
+O

(
x

3/2
Ag̃ , x

1/2
Ag̃ x1g̃, x

1/2
Ag̃ x2g̃

)
,
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A(1)
0,bg̃,2 = sin2 2θb̃L

2
Ab

[
x2g̃

1

6
+ x1g̃

((
L12

3
+

1

6

)
+

(
L12

3
+

2

3

)
xA2

)]
+

[
−11LAb

36

+
3

4
+

(
1

18
+
xA2

36

)
L2
Ab sin2 2θb̃

]
xAg̃ +O

(
x2
Ag̃, x1g̃x2g̃, xAg̃x1g̃, xAg̃x2g̃, x

2
2g̃, x

2
1g̃

)
,

A(1)
1,bg̃,1 = sin 2θb̃

√
xAg̃

(
−1

3
+ x12

(
−2L12

3
− 2

3

)
− xA2

9

)
+O

(
x

3/2
Ag̃ , x

1/2
Ag̃ x1g̃, x

1/2
Ag̃ x2g̃

)
,

A(1)
1,bg̃,2 = L2

Ab

(
−2L2g̃

3
+

2L12

3
x12 +

xA2

3

)
+O (xAg̃, x1g̃, x2g̃) .

For the SUSY parts of the amplitude in the top sector up to O (m4
A) we obtain

A(1)
0,tg̃,2 =

√
xtg̃ sin 2θt̃

[
1

6
+

(
L12

3
+

1

3

)
x12

]
+

[(
−L12

36
− 1

72

)
x1g̃

−x2g̃

72

]
sin2 2θt̃ +

17

432
xtg̃ +O

(
x

3/2
tg̃ , x

1/2
tg̃ x1g̃, x

1/2
tg̃ x2g̃

)
,

A(1)
0,tg̃,4 =

√
xtg̃ sin 2θt̃

[
1

72
+

(
L12

36
+

1

36

)
x12 +

xt2
18

]
+

[
− 1

540
+

(
− 1

540
− L12

270

)
x12

]
sin2 2θt̃

x2g̃ +

[
− 1

216
+

(
−L12

36
− 1

18

)
x12

]
sin2 2θt̃xtg̃ +

23xtg̃
6480

+O
(
x

3/2
tg̃ , x

1/2
tg̃ x1g̃, x

1/2
tg̃ x2g̃

)
,

A(1)
1,tg̃,0 = −2L12x12

3
+

2L2g̃

3
+O (xtg̃, x1g̃, x2g̃) ,

A(1)
1,tg̃,2 =

L2g̃

18
− xt2

3
− L12

18
x12 +

[
1

36
+

(
L12

18
+

1

18

)
x12

]
sin 2θt̃

√
xtg̃ +O (xtg̃, x1g̃, x2g̃) ,

A(1)
1,tg̃,4 =

L2g̃

135
− xt2

36
− L12

135
x12 +

[
xt2
108

+
1

270
+

(
L12

135
+

1

135

)
x12

]
sin 2θt̃

√
xtg̃ +O

(
x

3/2
tg̃ , x

1/2
tg̃ x1g̃, x

1/2
tg̃ x2g̃

)
.

7.5.5. Explicit Expressions for the Amplitude gg → h

The structure of the amplitude for the production of scalar Higgs bosons in the gluon fusion
process for the bottom as well as top sector can be expressed through

Hbb̃ =
sinα

cos β
H0,bb̃ +

µsusy
Mx

cos (α− β)

cos2 β
H1,bb̃ −

M2
Z

M2
x

sin (α + β)H2,bb̃

− M2
Z

M2
x

2

3
sin2 θW sin (α + β)H3,bb̃,

(7.11)
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with

Hi,bb̃ =
∑
n

(
mb

mA

)n
Hi,bb̃,n. (7.12)

Htt̃ =
cosα

sin β
H0,tt̃ +

µsusy
Mx

cos (α− β)

sin2 β
H1,tt̃ +

M2
Z

M2
x

sin (α + β)H2,tt̃

+
M2

Z

M2
x

4

3
sin2 θW sin (α + β)H3,tt̃,

(7.13)

with

Hi,tt̃ =
∑
n

(
mh

mt

)n
Hi,tt̃,n. (7.14)

Furthermore,

Hi,qq̃ =
αs
π
H(0)
i,qq̃ +

(αs
π

)2

H(1)
i,qq̃ +O

(
α3
s

)
, qq̃ = tt̃, bb̃

and

H(j)
i,qq̃ = H(j)

i,q +H(j)
i,q̃g̃ = H(j)

i,q +H(j)
i,q̃ +H(j)

i,qg̃.

The analogous decomposition applies to the coe�cients Hi,qq̃,n. It should be noted that

H(j)
i,q̃g̃ denotes corrections to the amplitude that contain at least one supersymmetric scale

whereas H(j)
i,qg̃ only refers to contributions from gluinos. Again, Mx denotes the heaviest

mass scale in the certain limit under consideration.

We only display the QCD results in LO since we do not calculate the NLO-QCD parts.
The bottom contributions are given by

H(0)
0,b =

(
L2
hb

2
− 2

)
xbh +

(
−2L2

hb − 2Lhb
)
x2
bh + (5Lhb + 2)x3

bh +

(
16

3
Lhb − 2

)
x4
bh +O

(
x5
bh

)
,

For the top contributions we obtain

H(0)
0,t =

1

3
+

7xht
360

+
x2
ht

504
+

13x3
ht

50400
+

2x4
ht

51975
+O

(
x5
ht

)
,

In the following, coe�cients that are omitted vanish.
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7.5.6. gg → h in the Limit mq �Ms ≡ mq̃1 = mq̃2 = mg̃

We split the NLO-SUSY contributions to the amplitude into the ones due to gluinos (label
g̃ = 1 ) and the pure sbottom (label b̃ = 1) ones. The parts which are not marked result
from the renormalization of the two-loop gluino e�ects.
For the LO sbottom contributions we get through O(m4

b)

H(0)

0,b̃,2
= −1

6
xhs, H(0)

1,b̃
= 0, H(0)

2,b̃,0
= − 1

24
, H(0)

3,b̃
= 0.

In NLO we obtain for the bottom sector up to O(m4
b)

H(1)
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=

(
L2
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3
− 2Lhb

3
− 4

3
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9
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+
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12
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2
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3
+
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3

+
4

3

)
Lb̃ +

(
5Lhb
72
− 5Lhs

36
+
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)
xhs

]
+O

(
x2
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)
=
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72
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)
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)
,
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2
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+
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9
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9

)
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(
4

3
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3

)
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3
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3
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(
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4
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]
+O

(
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)
=

(
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,
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+O (xhs) , H(1)

2,b̃g̃,4
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For the top case the SUSY parts of the amplitude are up to O(m4
h)

H(0)

0,t̃,2
=

1

6
xts, H(0)

1,t̃
= 0, H(0)

2,t̃,0
= − 1

24
, H(0)
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= 0.
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Analogously, the SUSY e�ects in the top sector are split into the ones due to gluinos
(label g̃ = 1) and the pure stop (label t̃ = 1) ones. The parts that are not marked result
from the renormalization of the two-loop gluino e�ects. The stop e�ects up to O(m4

h) read
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=
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+
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+

(
−2Lt

9
+
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7.5.7. gg → h in the Limit mq � mq̃1 � mq̃2 �Mg̃

For the limit mq � mq̃1 � mq̃2 � Mg̃ we explicitly write down the results only for the
bottom sector. In this paragraph, the large scale is Mx = Mg̃. Again, the pure SUSY part
due to bottoms, sbottom and gluinos can be written in the form of Eq. (7.11).
The sbottom contributions to the leading order up to O (m2

b) read
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7.6. Results for the Virtual Two-Loop Contributions to
the Amplitude

In this section, we compare our results with Ref. [46], where the virtual parts of the NLO-
SQCD amplitude for the process gg → h were examined. There, the result for the two-loop
virtual contributions to the amplitude that only contains e�ects from tops/stops/gluinos
(no bottom) is compared to the entire SQCD e�ects that include bottoms/sbottoms/gluinos
in addition to the top sector. The result presented in [46] is a complete one in the sense
that novel numerical methods were applied and a general result with no approximations
was obtained. The variation of the virtual parts of the two-loop amplitude that contains
the QCD parts as well as the SUSY parts with respect to the leading order is examined in
Ref. [46]. This is done by means of the K-factor that is the ratio of the squared amplitude
through O (α3

s) divided by the result to O (α2
s).
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In order to perform the comparison with the publication, we take the parameters chosen
there. They are given by

mh = 115 GeV, mb = 5 GeV, mt = 172.4 GeV, mt̃1 = 150 GeV,mb̃1
= 350 GeV,

mt̃2 = 370 GeV,mg̃ = 500 GeV, q0 = 200 GeV, α = 3°, θt̃ = 40°, θb̃ = 40°,

tan β = 20, µsusy = 300 GeV, µR = mh, α
MS
s (MZ) = 0.1176.

(7.15)

In all the plots the results are taken in terms of αMS
s . The conversion between αDRs and

αMS
s was given in Eq. (6.20). We take the two-loop virtual QCD contributions from [76].

With the help of the mathematica package HPL [106] the harmonic poly logarithms that
occur in the QCD result are evaluated numerically.
As our result is limited by the assumption of the hierarchies among the various SUSY
mass scales we compare various limits with di�erent mass hierarchies.
We include the bottom result in the limiting cases given by

(B2m) mb �Ms ≡ mb̃1
= mb̃2

= mg̃ with Ms = 500 GeV.

(B3m) mb � mb̃1
� mb̃2

= mg̃ with mb̃1
= 360 GeV and mg̃ = 500 GeV.

(B3m') mb � mb̃1
= mb̃2

� mg̃ with mb̃1
= 360 GeV and mg̃ = 500 GeV.

(B4m) mb � mb̃1
� mb̃2

� mg̃ with the masses as in Eq. (7.15).

The parameters not mentioned are chosen as in Eq. (7.15). In spite that in [46] the lighter
stop mass is taken to be lighter than the top mass we take the four mass case, where (T4m)
mt � mt̃1 � mt̃2 � mg̃ into the calculation for the K-factors. We display our results for
two light squark masses, i.e., for mt̃1 = 150 GeV and mt̃1 = 190 GeV. Once mt̃2 becomes
larger than the gluino mass, the radius of convergence is left for (T4m).
In Fig. 7.13 we compare our results displayed in Fig. 7.13(b) for the virtual contributions
to the K-factor in dependence of mt̃2 to Fig. 7.13(a) from Ref. [46]. In both diagrams the
constant QCD K-factors are shown in green. The top-sector contributions to the K-factor
are given by the brown/yellow curves. They are of similar size. Fig. 7.13(a) displays the
visible e�ects of the bottom sector on the K-factors of the virtual parts of the amplitude
compared to the top sector. Only for the case (B3m') the K-factor including the bottom
sector is larger than the result for the top sector. For gg → h we �nd for the O (α3

s)
contributions of the squared SQCD amplitudes that they decrease with growing mt̃2 . This
is due to cancellations between diagrams where a top or light stop couple to the Higgs
boson [46]. The O (α3

s) contribution ranges from 15% to −40% in [46] and for our squared
amplitudes from 10% to 18% to about (−33)% to (−15)% depending on the curve we
consider. They become negative for large mt̃2 .
Whereas in [46] the e�ects of the bottom sector is below 3% the e�ects we obtain contri-
butions up to 14% depending on which limiting case we include for the bottom sector. To
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(a) Taken from [46].
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(b) Our result.

Figure 7.13.: K-factors of the virtual parts of the amplitude in NLO-(S)QCD for the
process gg → h in dependence of mt̃2. (a) The green (dotted) QCD result is compared
to the K-factors that only contains the top sector (no bottoms, solid brown) with the
entire SQCD contributions (black). Taken from [46]. (b) Comparison with our result
where we give the QCD result (dotted green), only the top sector contributions (dashed-
dotted yellow) and in black the whole SQCD K-factor in various limits. For the entire
SQCD results we distinguish four cases (B2m, dotted), (B3m, dashed-dotted), (B3m',
dashed), (B4m, solid). The corresponding choice of mass parameters is given in the
text.
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Figure 7.14.: K-factors of the virtual parts of the squared amplitude in NLO-(S)QCD
for the process gg → h in dependence of mt̃2. mt̃1 = 150 GeV. In green we give the SM
result (dotted), in yellow only the top contributions (dashed-dotted) are included and in
black the whole MSSM result is given. For the MSSM results we distinguish four cases
(B2m, dotted), (B3m, dashed-dotted), (B3m', dashed), (B4m, solid). (a) mb = 5 GeV
(b) running bottom mass.
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Figure 7.15.: Same as Fig. 7.14 but with mt̃1 = 190 GeV.
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specify this further, the e�ects of the bottom sector compared with the top sector are up
to 5% for (B2m), 14% for (B3m), 8% for (B3m') and 1% for (B4m). It seems that for this
choice of parameters, the cases (B2m) and (B4m) agree best with the publication.

In Fig. 7.14(a) we again display Fig. 7.13(b) where the bottom mass was taken to be 5
GeV and compare it to Fig. 7.14(b) where all the bottom masses are taken to be running
ones. We observe that the K factors slightly increase for running bottom masses compared
to the assumption of a �xed bottom mass. The e�ects of the bottom sector compared with
the top sector change for running bottom masses and are up to 4% for (B2m), 12% for
(B3m), 13% for (B3m') and 6% for (B4m). For (B3m') and (B4m) an enhancement of the
bottom/sbottom e�ects is observed by taking a running bottom mass.

As argued above, the very light stop mass does not suit our limiting case very well.
Therefore, we show Fig. 7.15 where the same is illustrated as in Fig. 7.14 but withmt̃1 = 190
GeV. We �nd that towards lower mt̃2 the spectrum is practically identical to the one for
mt̃1 = 150 GeV but for larger mt̃2 the curves for the K-factor are a lot �atter than before
the O (α3

s) contribution only ranges from 18% to −8%. Compared to the top sector the
e�ects of the bottom sector for an on-shell (running) bottom mass amount to about 5%
(1%) for (B2m), 10% (9%) for (B3m), 3% (6%) for (B3m') and 2% (2%) for (B4m).

Additionally, the results for the K-factors are examined in the SPS 1a benchmark scenario
with the choice of parameters as in Sec. 6.9.2. The squared virtual parts of the amplitude
are only a part of the entire NLO-SQCD result. Therefore, this study is performed to
obtain an impression of the size of the corrections. In the SPS 1a scenario tan β = 10.

In Fig. 7.16 we investigate the O (α3
s) e�ects of the squared (S)QCD amplitude in de-

pendence of m1/2. We display the QCD, the top sector (w/o bottoms), the QCD plus
contributions (w/o sbottoms), the QCD plus stop and LO sbottom contributions (w LO
sbottom) and the entire SQCD K-factors. It can be read o� from Fig. 7.16(a) that the
e�ects to the O (α3

s) squared amplitude amount to about 1% if in addition to the top sec-
tor only the pure bottom parts are included. Including the LO sbottom e�ects in addition
does not lead to a visible e�ect in the diagram. Further taking into account the two-loop
sbottom e�ects to obtain the entire SQCD virtual contributions to the two-loop amplitude
makes up for corrections below one percent. In total, the e�ect of the bottom sector is
below 2% for the virtual contributions.

We compare Fig. 7.16(a) where we take an on-shell bottom mass to Fig. 7.16(b) where all
bottom masses are taken to be running ones. Since the SPS 1a scenario along the slope of
m1/2 suits our limiting cases (B4m) and (T4m) we observe the expected better convergence
for taking a running bottom mass because the K-factors decrease in that case compared
to taking an on-shell bottom mass. In case we take the bottom masses to be running
(on-shell) the e�ects to the O (α3

s) squared amplitude if one includes in addition to the top
sector only the pure bottom contributions amount to about 2% (1%). Further, including
the LO sbottom e�ects in addition amounts to contributions below one percent. Therefore,
the e�ect from sbottoms is entirely due to the NLO sbottom contributions which deviate
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up to 1% (1%) from the bottom result. Taking all the bottom/sbottom e�ects into account
as well in the end only amounts to corrections of up to 1% (2%) in addition to the top
sector.

In Fig. 7.17 we compare theK-factors where we take the limit (B4m) with (B3m'). Setting
the sbottom masses to their arithmetic mean in the SPS 1a scenario seems to be a valid
assumption since the mass di�erence between the sbottoms is at most 40 GeV for the mass
range of m1/2 we chose. Their di�erence amounts to about 1% towards higher m1/2 where
the splitting between the sbottoms gets larger.

Next, the K-factors of the virtual squared amplitudes for the process gg → A are exam-
ined. In Fig. 7.18 we take the same parameters as given in Eq. (7.15) and in addition set
the pseudoscalar Higgs mass to mA = 200 GeV. For the production of pseudoscalar Higgs
bosons in the gluon fusion process, the e�ects of sbottoms are pure NLO e�ects. That is
why, for the pseudoscalar case, the K-factors of the virtual contributions to the two-loop
amplitude without sbottom e�ects are compared to the ones including the sbottom e�ects.
We observe in Fig. 7.18 that the pure sbottom e�ects of the K-factor for our choice of
tan β = 20 and mA = 200 GeV are large. Compared to the K-factor that includes the top
sector as well as the bottom e�ects, the sbottom e�ects amount to 30% for (B2m), 11% for
(B3m), 17% for (B3m') and 32% for (B4m). Taking mt̃1 = 190 GeV instead of mt̃1 = 150
GeV does not change the size of the relative e�ects. For this choice of parameters the
e�ects from stops only account for up to 4% compared to the QCD K-factor for the virtual
e�ects.

In the SPS 1a scenario examined in Fig. 7.19 the e�ects to the O (α3
s) squared amplitude

are shown in dependence of m1/2. The diagrams display the threshold (mA = 2mt) for
m1/2 ≈ 220 GeV. We display the K-factors for the QCD e�ects, the top sector (w/o
bottom), the contributions without any sbottom e�ects (w/o sbottoms) and the entire
SQCD virtual e�ects. The K-factors displayed are for an on-shell bottom mass since
the e�ects of a running bottom mass are small in that case. We �nd that the two-loop
sbottom e�ects for an on-shell bottom mass amount to about 30% compared to the K-
factor without sbottom e�ects for the given mass range. Here, the stop e�ects amount to
about 15% compared to the K-factor that only contains the QCD e�ects.
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Figure 7.16.: K-factors of the virtual parts of the squared amplitude in NLO-(S)QCD
for the process gg → h in dependence of m1/2 along the slope of SPS 1a. As a reference,
the dotted (red) line displays the SM K-factor. The dashed-dotted curve (yellow) depicts
the K-factor for only the top and stop contributions, the dashed (blue) curve includes
the bottoms as well, the long-dashed (blue) curve in addition includes the LO sbottom
e�ects and �nally the solid (blue) curve is the complete MSSM result. (a) mb = 5 GeV
(b) running bottom masses.
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Figure 7.17.: K-factors of the virtual parts of the squared amplitude in NLO-(S)QCD
for the process gg → h in dependence of m1/2 along the slope of SPS 1a. The MSSM
K-factors are shown for setting the two sbottom masses equal (dotted red) vs. the case
where the sbottom masses are taken unequal (solid-blue). In these plots, the bottom
masses are taken to be running ones.
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Figure 7.18.: K-factors of the virtual parts of the amplitude in NLO-(S)QCD for the
process gg → A in dependence of mt̃2. The green (dotted) QCD result is compared to
the K-factors that contain the top sector and bottom e�ects (no sbottom, dotted red)
with the entire SQCD contributions (black). For the entire SQCD results we distinguish
four cases (B2m, dotted), (B3m, dashed-dotted), (B3m', dashed), (B4m, solid). The
corresponding choice of mass parameters given in the text. We chose mA = 200 GeV
and tan β = 20. (a) mt̃1 = 150 GeV (b) mt̃1 = 190 GeV.
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Figure 7.19.: K-factors of the virtual parts of the amplitude in NLO for the process
gg → A in dependence of m1/2 along the slope of SPS 1a for mb = 5 GeV. The dotted
(red) line is the QCD result, the dashed-dotted curve (yellow) depicts the K-factor for
only the top and stop contributions, the dashed (blue) curve includes the bottoms as
well and �nally the solid (blue) curve is the complete MSSM result. (a) Including the
threshold (b) zoom above the threshold.
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7.7. The Cross Section in NLO-SQCD for gg → φ

The partonic cross sections to lowest order in the production of scalar and pseudoscalar
Higgs bosons via the gluon fusion read [81]

σ̂φLO (gg → φ) = σφo δ (1− z) ,

σφo =
π2

8m3
φ

ΓLO (φ→ gg)

σho =
GFα

2
s(µR)

288
√

2π

∣∣∣∣∣∣
∑
Q=t,b

ghQHQ (τQ) +
∑

Q̃=t̃1,t̃2,b̃1,b̃2

gh
Q̃
HQ̃

(
τQ̃
)∣∣∣∣∣∣

2

σAo =
GFα

2
s(µR)

128
√

2π

∣∣∣∣∣∑
Q=t,b

gAQAQ (τQ)

∣∣∣∣∣
2

,

where z = m2
φ/ŝ with the partonic center of mass energy squared ŝ and τi = 4m2

i /m
2
φ.

The form factors are given by

HQ (τ) =
3

2
τ [1 + (1− τ) f(τ)] ,

HQ̃ (τ) = −3

4
τ [1− τf(τ)] ,

AQ (τ) = τf(τ).

The function f has the shape

f(τ) =

arcsin2 1√
τ

, τ ≥ 1

−1
4

(
ln 1+

√
1−τ

1−√1−τ − iπ
)2

, τ < 1.

The next-to-leading order corrections to the gg → φ process consist of virtual and real
corrections.
The inclusive NLO hadronic cross section can be written as [29,81]

σ(pp→ φ+X) = σφ0

[
1 + Cφαs

π

]
τφ
dLgg
dτφ

+ ∆σφgg + ∆σφgq + ∆σφqq,

where τφ = m2
φ/s with the total center of mass energy squared s. The gluon luminosity is

de�ned by
dLgg
dτ

=

∫ 1

τ

dx

x
g(x, µF )g(τ/x, µF )

with the gluon density g(x, µF ). The renormalization scale µR of the strong coupling
αs(µR) and the factorization scale µF of the parton densities are given by the Higgs mass
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Figure 7.20.: Typical diagrams for the real corrections to gg → φ.

mφ. ∆σφij are contributions from radiation of quarks and gluons with massless initial state
partons (i, j = g, q, q) corresponding to the subprocesses gg → φg, gq → φq and qq → φg
(cf. Fig. 7.20).
In NLO-SQCD, the coe�cients Cφ denote contributions from virtual two-loop corrections
that depend on

Cφ = Cφ(mφ,mb,mt,mt̃1 ,mt̃2 ,mb̃1
,mb̃2

,mg̃).

For the production of pseudoscalar Higgs bosons, the virtual corrections consist of the
two-loop contributions to the amplitude that contain pure quark e�ects and mixed quark-
squark-gluino e�ects.
The production of scalar Higgs bosons in addition contains pure squark e�ects. For
the scalar Higgs production in the gluon fusion process, we calculated the virtual two-
loop contributions from supersymmetric particles. The program HIGLU [104] provides for
the �nal cross sections for the NLO-QCD contributions. In order to obtain the entire
cross section we lack the interference term of the real corrections from quarks with the
real corrections from squarks that are displayed in Fig. 7.20. These do not exist in the
pseudoscalar Higgs production via the gluon fusion process.
In the following we examine the sbottom e�ects on the cross section for the production
of pseudoscalar Higgs bosons. The integration over the parton distribution functions is
performed with the help of ggh@nnlo [107]. For the purpose of obtaining an estimate of
the sbottom e�ects on the cross section, the top sector is included in the e�ective theory
(cf. [60]). In addition, our newly obtained two-loop bottom-sbottom-gluino e�ects are
included as well. The latter are the only e�ects from sbottoms that occur in NLO-SQCD.
The numerical results for the cross section are evaluated graphically in the SPS 1a
benchmark-scenario that has been introduced in Sec. 6.9.2, where tan β = 10. The two-
loop sbottom e�ects are included in the limit where mb � mb̃1

� mb̃2
� mg̃. The size

of the newly obtained sbottom e�ects on the hadronic cross section is investigated. We
only investigate the e�ects of the sbottoms qualitatively since we do not include the NLO
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Figure 7.21.: (a) This �gure displays the ratio of the NLO cross section including
the sbottom e�ects over the cross section without the sbottom e�ects in dependence of
mA. The e�ect is thus the share of the sbottom parts to the cross section that includes
the NLO top and stop e�ects. (b) The percentaged fraction of the pure NLO sbottom
e�ects with respect to the LO is shown.

bottom e�ects into the calculation.

In order to obtain an estimate of the size of the corrections on the cross section due to
sbottoms we display the ratio of the cross section including the sbottom e�ects over the
cross section without sbottom contributions in dependence ofmA in Fig. 7.21(a). The black
dots mark the actual data points that we extrapolate in between under the assumption
that the curves are smooth. Below the threshold the absolute value of the e�ects due to
sbottoms amount to about 8%. For Higgs masses larger than about 350 GeV the e�ects from
sbottoms on the cross section only amount to about one percent in comparison with the
e�ects without sbottoms. Since the presented NLO hadronic cross sections were obtained
for a running bottom mass, we can only qualitatively estimate the e�ect of the NLO
bottom contributions the program HIGLU [104] contains. There, the bottom mass is set to
its on-shell value. By qualitatively including the NLO bottom e�ects to the cross section
from HIGLU, we �nd that then the pure sbottom e�ects only contribute approximately
one percent to the NLO cross section over the entire mass range of the pseudoscalar Higgs
boson displayed in Fig. 7.21(a). In Fig. 7.21(b) the pure NLO sbottom e�ects are compared
to the full LO cross section and the result is that their size amounts up to 5% of the LO.

For comparing the e�ects of the sbottoms with the stop contributions, Fig. 7.22 is dis-
played. In order to obtain an estimate of the absolute value of the corrections on the cross
section due to stops we show the ratio of the cross section including the stop e�ects over
the cross section without stop contributions in dependence of mA in Fig. 7.22(a). Below
the threshold, the absolute value of the e�ects due to sbottoms amount up to 17%. Above
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Figure 7.22.: (a) This �gure displays the ratio of the NLO cross section including
the stop e�ects over the cross section without the stop e�ects in dependence of mA.
The e�ect is thus the share of the stop contributions to the cross section that includes
the NLO stop e�ects. (b) The percentaged fraction of the pure NLO stop e�ects with
respect to the LO is displayed.

the threshold they are up to 5%. By qualitatively including the NLO bottom e�ects, the
pure stop e�ects only amount to about 7% on the NLO cross section that includes two-loop
top as well as bottom e�ects. In Fig. 7.22(b) the pure NLO stop e�ects are compared to
the entire LO. Their size amounts to about 20% of the LO.
In this estimate of the production cross section of pseudoscalar Higgs bosons in the gluon
fusion process, the stop e�ects are dominant over the sbottom e�ects. In comparison with
the leading order cross section, the stop e�ects are about a factor of four larger than the
sbottom e�ects. Of course what remains to be done is the inclusion of the NLO bottom
e�ects to obtain the complete NLO-SQCD cross sections.
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8 Chapter 8

Conclusions and Outlook

In the present thesis, the in�uence of the bottom sector on the production of scalar and
pseudoscalar Higgs bosons via the gluon fusion process in the framework of the MSSM
has been investigated. In addition, we examined the decay of scalar and pseudoscalar
Higgs bosons into two photons. For both, the production and the decay of these Higgs
bosons, the virtual NLO-SQCD corrections were obtained in the framework of the MSSM.
Already at leading order, the processes are at the one-loop level as massive Higgs bosons
do not couple to massless gluons or photons directly. Therefore, the next-to-leading order
calculation corresponds to the evaluation of up to two-loop Feynman diagrams.
In QCD the top quark provides the dominant contribution to these processes. Within the
framework of the MSSM however, the couplings of quarks to Higgs bosons are modi�ed
by factors of tan β which can lead to an enhancement of the contributions from bottom
quarks together with a suppression of the top contributions. Therefore, the bottom quark
has to be considered in an MSSM calculation.
The transition from QCD to SQCD is performed by including the superpartners of the
quarks, namely the squarks into the calculation. Each quark obtains two massive super-
partners. At the two-loop level the massive superpartner of the gluon, the gluino also has
to be taken into account. The contributions from top quarks and top squarks and the
gluino were known in the limit of large top and SUSY masses where these were assumed
to be much larger than the mass of the Higgs boson. For the calculation in the MSSM, in
addition, contributions from the superpartners of the bottoms, the sbottoms, have to be
accounted for.
In order to determine the two-loop contributions, the method of asymptotic expansions
in various hierarchies among the up to four contributing mass scales (the quark mass, the
two squark masses and the gluino mass) for the bottom as well as the top sector was
applied. The assumption of the quark being heavier than the Higgs bosons is not valid
for the bottom quark. To account for the e�ects of bottom quarks, one-loop routines were
implemented which were applied to subdiagrams during the expansion of the two-loop
diagrams.
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For the decay of pseudoscalar Higgs bosons into two photons we �nd that the contributions
from sbottoms have an impact on the partial decay widths for large tan β. The �nding is
that the sbottoms may have an e�ect of up to 47% on the partial decay widths, depending
on the limiting case and the value of tan β. In evaluating the e�ects along the slope of the
SPS 1a benchmark point, where tan β = 10, the size of the sbottom e�ects amounts to
28%, which is comparable to the size of the stop e�ects.

Since commonly mA and tan β are chosen to be the free parameters in the MSSM Higgs
sector, the lightest scalar Higgs mass is not a free parameter and depends on the choice
of mA and tan β. The partial decay widths for the photonic decay of scalar Higgs bosons
were examined with the help of FeynHiggs [87] that provides for a loop corrected scalar
Higgs mass. There, we found that the sbottom e�ects have a share of less than one percent
on the NLO-SQCD decay width. Along the slope of the SPS 1a benchmark point we �nd
that the sbottoms account for contributions of up to one percent on the NLO partial decay
width. For this case, the newly obtained sbottom contributions are small and the e�ects
of supersymmetric particles in that case are mainly due to stops.

Regarding the Higgs production via the gluon fusion mechanism the two-loop virtual
e�ects of the bottom/sbottom contributions to the amplitude were investigated. For scalar
Higgs bosons in the SPS 1a scenario these contributions are of the size of up to 2%. In case
of the pseudoscalar Higgs bosons the virtual e�ects of sbottoms amount to approximately
30% and are dominant over the stop contributions. However, one has to keep in mind that
the virtual e�ects of the two-loop amplitudes only provide for a �rst estimate of the size
of the e�ects. These could be smaller once the real corrections to the process are included
into the results.

Finally, the e�ects of the sbottoms on the hadronic cross section for the production of
pseudoscalar Higgs bosons were estimated in the SPS 1a scenario. Without the inclusion
of the NLO bottom e�ects, these extend to 8%. By including an estimate for the NLO
bottom e�ects with the help of the publicly available program HIGLU [104], they drop to
one percent. The stop e�ects that were included in the large top limit amount to about 17%
and with the estimate of the NLO bottom e�ects to about 7%. In addition, we observed
that the NLO sbottom e�ects on the hadronic cross section compared to the LO cross
section are of up to 5% and the stop e�ects amount to 20%. In this case, the stop e�ects
are dominant over the sbottom e�ects.

In case of the decay of scalar and pseudoscalar Higgs bosons into two photons we pro-
vided for the entire NLO-SQCD corrections to the partial decay widths. Additionally, we
evaluated the two-loop SUSY contributions for the production of scalar and pseudoscalar
Higgs bosons via the gluon fusion. For the pseudoscalar case, we estimated the sbottom
contributions to the hadronic cross section. The results were obtained in various limiting
cases that assumed di�erent hierarchies among the contributing SUSY mass scales. In
case the MSSM is the underlying model, one of these should always provide for a good
approximation to reality.
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As an outlook, it would be interesting to determine the NLO hadronic cross sections
including the NLO bottom quarks and our newly obtained e�ects for both the scalar as
well as pseudoscalar Higgs production. Since we provided for the two-loop e�ects from
sbottoms in the Higgs production and decay, these can be included into existing programs
for evaluating cross sections and decay rates.
It is important to dispose of predictions for cross sections and decay rates for the Higgs
boson production and decay. If the Higgs is found at the LHC, these become precision
observables with which one can investigate the SM and in case it exists, the MSSM more
closely.
Finally, judging from the di�erences between leading-order predictions and our NLO re-
sults, we do not expect dramatic changes from NNLO corrections. Thus, we think that our
results are entirely su�cient to support the ongoing search for supersymmetric particles.
However, should experiments � at the LHC or elsewhere � �nd concrete evidence for the
existence of SUSY particles, it would de�nitely make sense to extend our calculations to
the next higher order.
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A Appendix A

Couplings hq̃q̃ and Aq̃q̃

The coupling of two squarks to the pseudoscalar Higgs boson , q̃iq̃jA, is proportional to [31]

i
mq

v
gAq̃,ij = i

mq

v

 0 −Aq
{

cot β
tan β

}
− µsusy

Aq

{
cot β
tan β

}
+ µsusy 0


ij

. (A.1)

It is the same for the mass and �avor eigenstates of the squarks as (gAq̃ )ij is an o�-diagonal
matrix and R in Eq. (A.4) is a unitary matrix. The upper entry in {} in Eq. (A.1) holds
for the stop and the lower one for the sbottom. Furthermore, we have

Aq =
m2
q̃1
−m2

q̃2

2mq

sin 2θq̃ + µsusy

{
cot β
tan β

}
. (A.2)

Aq is the trilinear coupling of the soft SUSY breaking terms.
The couplings of the CP-even, lightest Higgs boson h to two squarks can be obtained
from [31] by expressing the terms in the chiral basis through the mass eigenstates. The
q̃iq̃jh coupling is proportional to [31]

i
m2
q

v
ghq̃,ij ≡ i

[
Rq̃Ĝq̃

(
Rq̃
)T]

ij
, (A.3)

Rq̃ =

(
cos θq̃ sin θq̃
− sin θq̃ cos θq̃

)
, (A.4)

Ĝq̃ =


2M2

Z

v
CqLsα+β − 2mqh̃q

{
cα
−sα

}
−h̃q

(
Aq

{
cα
−sα

}
+ µsusy

{
sα
−cα

})
−h̃q

(
Aq

{
cα
−sα

}
+ µsusy

{
sα
−cα

})
2M2

Z

v
CqRsα+β − 2mqh̃q

{
cα
−sα

}
 (A.5)
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A. Couplings hq̃q̃ and Aq̃q̃

for

{
up

down

}
-type of the squarks. The following abbreviations are used sα = sinα, cα =

cosα, sα+β = sinα + β, CqL = Iq3L −Qq sin2 θW , CqL = Qq sin2 θW . The Yukawa-couplings
are given by

h̃t =
mt

v sin β
, h̃b =

mb

v cos β
. (A.6)

Altogether in the notation of [82] the couplings of squarks to scalar Higgs bosons can be
expressed by

ghq̃,ij = gh,µq̃,ij + gh,ewq̃,ij + gh,αq̃,ij. (A.7)

For the coupling of top squarks to scalar Higgs bosons �nd with the help of Eq. (A.3)

gh,ew
t̃,11

= cew1 cos2 θt̃ + cew2 sin2 θt̃, (A.8)

with

cew1 =

(
MZ

mt

)2(
1− 4

3
sin2 θW

)
sin (α + β) (A.9)

and

cew2 =

(
MZ

mt

)2
4

3
sin2 θW sin (α + β), (A.10)

gh,µ
t̃,11

= −gh,µ
t̃,22

= −µsusy
mt

sin (2θt̃)
cos (α− β)

sin2 β
, (A.11)

gh,α
t̃,11

= −cosα

sin β

2 +
1

2

(
m2
t̃1
−m2

t̃2

)
m2
t

sin2 (2θt̃)

 , (A.12)

gh,ew
t̃,22

= cew1 sin2 θt̃ + cew2 cos2 θt̃, (A.13)

gh,α
t̃,22

= −cosα

sin β

2− 1

2

(
m2
t̃1
−m2

t̃2

)
m2
t

sin2 (2θt̃)

 , (A.14)

ght̃,12 = ght̃,21, (A.15)

gh,ew
t̃,12

=
1

2
(cew2 − cew1 ) sin (2θt̃), (A.16)

gh,µ
t̃,12

= −µsusy
mt

cos (2θt̃)
cos (α− β)

sin2 β
, (A.17)
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gh,α
t̃,12

= −cosα

sin β

(
m2
t̃1
−m2

t̃2

)
2m2

t

sin (2θt̃) cos (2θt̃). (A.18)

For the coupling of sbottoms to h we obtain

gh,ew
b̃,11

= cew1 cos2 θb̃ + cew2 sin2 θb̃, (A.19)

with

cew1 =

(
MZ

mb

)2(
−1 +

2

3
sin2 θW

)
sin (α + β) (A.20)

and

cew2 = −
(
MZ

mb

)2
2

3
sin2 θW sin (α + β), (A.21)

gh,µ
b̃,11

= −gh,µ
t̃,22

=
µsusy
mb

sin (2θb̃)
cos (α− β)

cos2 β
, (A.22)

gh,α
b̃,11

=
sinα

cos β

2 +
1

2

(
m2
b̃1
−m2

b̃2

)
m2
b

sin2 (2θb̃)

 , (A.23)

gh,ew
b̃,22

= cew1 sin2 θb̃ + cew2 cos2 θb̃, (A.24)

gh,α
b̃,22

=
sinα

cos β

2− 1

2

(
m2
b̃1
−m2

b̃2

)
m2
b

sin2 (2θb̃)

 , (A.25)

gh
b̃,12

= gh
b̃,21
, (A.26)

gh,ew
b̃,12

=
1

2
(cew2 − cew1 ) sin (2θb̃), (A.27)

gh,µ
b̃,12

=
µsusy
mb

cos (2θb̃)
cos (α− β)

cos2 β
, (A.28)

gh,α
b̃,12

= − sinα

cos β

(
m2
b̃1
−m2

b̃2

)
2m2

b

sin (2θb̃) cos (2θb̃). (A.29)
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B Appendix B

Counterterms

The quark mass counterterm in QCD is given by

mB
q

mq

= 1− CF
αs
π

(
1

ε

3

4
− 1− 3

4
Lq

)
. (B.1)

with CF = 4/3 and Lq = ln
(
µ2
R/m

2
q

)
. The quark mass counterterm in QCD is given in

DREG. Switching to DRED, the constant �1� becomes �5/4�.

Complete SQCD Counterterms

The relations between the bare and renormalized pole masses are given in what follows.
For the quark (q = t, b) one has [82]

mB
q

mq

= 1 + CF
αs
π

{
− 1

2ε
− 5

4
− 3

4
Lq −

mg̃2

4m2
q

(1 + Lg̃) +
2∑
i=1

m2
q̃i

8m2
q

(
1 + L2

q̃i

)
+

2∑
i=1

[
1

8

(
1 +

m2
g̃

m2
q

− m2
q̃i

m2
q

+ 2(−1)i
mg̃

mq

sin 2θq̃

)
Bfin

0

(
m2
q,mg̃,mq̃i

)]}
,

(B.2)

with

Lq = ln
µ2
R

m2
q

, Lq̃i = ln
µ2
R

m2
q̃i

, Lg̃ = ln
µ2
R

m2
g̃

. (B.3)

It should be noted that the above given counterterm (B.2) is obtained by using DRED.
The corresponding counterterm in DREG is obtained by changing the constant �5/4� to
�1� in Eq. (B.2).
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B. Counterterms

The relation between the bare and renormalized squark (q̃ = t̃, b̃) mass reads [82]

mB
q̃1

mq̃1

= 1 + CF
αs
π

{
1

8m2
q̃1
ε

[
4mg̃mq sin 2θq̃ − 4m2

g̃ − 4m2
q +

(
m2
q̃2
−m2

q̃1

)
sin2 2θq̃

]
−3

4
− sin2 2θq̃

8
−
(

1

4
+

sin2 2θq̃
8

)
Lq̃1 −

m2
g̃

4m2
q̃1

(1 + Lg̃)−
m2
q

4m2
q̃1

(1 + Lq)

+
m2
q̃2

sin2 2θq̃

8m2
q̃1

(1 + Lq̃2) +

[
1

4
+

2mg̃mq sin 2θq̃ −m2
g̃ −m2

q

4m2
q̃1

]
Bfin

0

(
m2
q̃1
,mq,mg̃

)}
.

(B.4)

The result for mq̃2 is obtained if one exchanges the indices 1 and 2 and switches the sign
of sin 2θq̃.
For the renormalization of the mixing angle the following holds [82]

θBq̃ = θq̃ + δθq̃, (B.5)

where

δθq̃ = CF
αs
π

cos 2θq̃
m2
t̃2
−m2

q̃1

{
4mg̃mq +

(
m2
q̃1
−m2

q̃2

)
sin 2θq̃

4ε

+
sin 2θq̃

4

[
m2
q̃2

(1 + Lq̃2)−m2
q̃1

(1 + Lq̃1)
]

+mg̃mqB
fin
0

(
q2
o ,mq,mg̃

)}
.

(B.6)

Counterterms without gluino effects (no g̃)

For the on-shell counterterms without gluinos we �nd

δZno g̃
mq̃1

= CF
αs
π

[
1

2ε

1

m2
q̃1

(
−1

2
m2
q̃1
−
(
m2
q̃2
−m2

q̃1

)
sin2 θq̃ + sin4 θq̃

(
m2
q̃2
−m2

q̃1

))
−1

2
m2
q̃1

(3 + Lq̃1)−
1

4
sin2 2θq̃m

2
q̃1

(1 + Lq̃1) +
1

4
sin2 2θq̃m

2
q̃2

(1 + Lq̃2)

]
,

(B.7)

δZno g̃
mq̃2

= CF
αs
π

[
1

2ε

1

m2
q̃2

(
−1

2
m2
q̃1
−
(
m2
q̃2
−m2

q̃1

)
sin2 θq̃ + sin4 θq̃

(
m2
q̃2
−m2

q̃1

))
−1

2
m2
q̃2

(3 + Lq̃2) +
1

4
sin2 2θq̃m

2
q̃1

(1 + Lq̃1)−
1

4
sin2 2θq̃m

2
q̃2

(1 + Lq̃2)

]
,

(B.8)

δθq̃
no g̃ = CF

αs
π

[
1

ε

1

m2
q̃1
−m2

q̃2

(
1

4

(
m2
q̃2
−m2

q̃1

)
sin 2θq̃ −

1

2
sin 2θq̃ sin2 θq̃

(
m2
q̃2
−m2

q̃1

))
+

1

8

1

m2
q̃1
−m2

q̃2

sin 4θq̃
(
m2
q̃2

(1 + Lq̃2)− m2
q̃1

(1 + Lq̃1)
)]
.

(B.9)
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In the calculation of the counterterms integrals of the form

I (q,m1,m2) =
(2πµ)4−d

iπ2

∫
ddl

1

((q + l)2 −m2
1) (l2 −m2

2)
(B.10)

are obtained. Their �nite parts are denoted by Bfin
0 (q2,m1,m2). For q2 ≤ (m1 −m2)2 it

is given by [82]

Bfin
0

(
q2,m1,m2

)
= 2− ln

m1m2

µ2
R

+
m2

1 −m2
2

q2
ln
m2

m1

+
M+M−
q2

ln
M+ +M−
M+ −M−

, (B.11)

with M± =
√

(m1 ±m2)2 − q2.

For a certain given hierarchy among the masses we calculate

Bfin
0

(
M2,M,M

)
= 2− π√

3
+ LM ,

Bfin
0

(
m2,M,M

)
= 2 + LM +

√
t− 1 arctan

(
2
√
t− 1

t− 2

)
,

Bfin
0

(
M2,m,M

)
= 2 + LM +

2

t
ln
M2

m2
− 4

t

√
t− 1 arctan

(√
t− 1

)
,

(B.12)

with

t =
4M2

m2
, LM = ln

µ2
R

M2
. (B.13)
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C
Appendix C

Feynman Rules

The Feynman rules relevant for the calculations are taken from [31,82,108].
First, we introduce the notation applied for the Feynman rules. p, p1, p2, p3 and k are
four-momenta. We name color triplet indices (r, s, t, u), color octet indices (a, b, c ), Lorentz
indices (µ, ν, ρ), squark mass eigenstate indices (i, j, k, l) and �avor indices (α, β).
The expressions used below are de�ned as[

T a, T b
]

= ifabcT c,
{
T a, T b

}
=

1

nc
δab + dabcT c,

PL =
1− γ5

2
, PR =

1 + γ5

2
,

Rq̃ =

(
Rq̃

11 Rq̃
12

Rq̃
21 Rq̃

22

)
=

(
cos θq̃ sin θq̃
− sin θq̃ cos θq̃

)
,

S q̃ij ≡ Rq̃
i1Rq̃

j1 −Rq̃
i2Rq̃

j2 =

(
cos θq̃ sin θq̃
− sin θq̃ cos θq̃

)
ij

.

(C.1)

i
mq

v
gφq (see Tab. 3.2)

q

φ

q

imq
v
gAq̃,ij , i

m2
q

v
ghq̃,ij (see Eqs. (A.1), (A.3)) φ

q̃β
i

q̃α
j
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C. Feynman Rules

igsT
a
rsγ

µ g

q

q

a, µ
r

s

ie eqγ
µ γ

q

q

µ

gsf
abc [(p1 − p2)ρ gµν + (p2 − p3)µ gνρ

+ (p3 − p1)ν gµρ]

g
a, µ

p1

p2

p3

b, ν

g

g

c, ρ

gsf
abcγµ g

a, µ

g̃

g̃

b

c

igsT
a
rs (p+ k)µ δij

q̃i

q̃j

g
a, µ

k

p

r

s

ie eq (p+ k)µ δij

q̃i

q̃j

γ
µ

k

p
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√
2gsT

a
rs

(
Rq̃
i1PL −Rq̃

i2PR

) s

q
r

a

g̃

q̃i

√
2gsT

a
rs
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Rq̃
i1PR −Rq̃

i2PL

) s

q
r

a
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q̃i

−ig2
s

(
1
3
δabδrs + dabcT

c
rs
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gµνδij

q̃ig

g q̃j

r

s

b, ν

a, µ

−2ie eqgsT
a
rsgµνδij

q̃iγ

g q̃j

r

s

ν

a, µ

2ie2 e2
qgµνδij

q̃iγ

γ q̃j

ν

µ

ig2
s

(
T arsT

a
tuSαijSβkl + T aruT

a
tsSαilSαkjδαβ

)
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k
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i
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j

t

r
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