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Abstract

In this thesis we access the prediction of extreme events observing precursory structures, which
were identified using a maximum likelihood approach. The main goal of this thesis is to investi-
gate the dependence of the quality of a prediction on the magnitude of the events under study.
Until now, this dependence was only sporadically reported for different phenomena without be-
ing understood as a general feature of predictions. We propose the magnitude dependence as a
property of a prediction, indicating, whether larger events can be better, harder or equally well
predicted than smaller events. Furthermore we specify a condition which can characterize the
magnitude dependence of a distinguished measure for the quality of a prediction, the Receiver
Operator characteristic curve (ROC). This test condition allows to relate the magnitude depen-
dence of a prediction task to the joint PDF of events and precursory variables. If we are able
to describe the numerical estimate of this joint PDF by an analytic expression, we can not only
characterize the magnitude dependence of events observed so far, but infer the magnitude depen-
dence of events, larger then the observed events. Having the test condition specified, we study
the magnitude dependence for the prediction of increments and threshold crossings in sequences
of random variables and short- and long-range correlated stochastic processes. In dependence
of the distribution of the process under study we obtain different magnitude dependences for
the prediction of increments in Gaussian, exponentially, symmetrized exponentially, power-law
and symmetrized power-law distributed processes. For threshold crossings we obtain the same
magnitude dependence for all distributions studied. Furthermore we study the dependence on
the event magnitude for the prediction of increments and threshold crossings in velocity incre-
ments, measured in a free jet flow and in wind-speed measurements. Additionally we introduce
a method of post-processing the output of ensemble weather forecast models in order to identify
precursory behavior, which could indicate failures of weather forecasts. We then study not only
the success of this method, but also the magnitude dependence.

keywords: extreme events, statistical inference, prediction via precursors, ROC curves, likelihood
ratio, magnitude dependence



Zusammenfassung

In dieser Arbeit untersuchen wir die Vorhersagen von Extremereignissen in Zeitreihen, welche
mittels Beobachtung von Vorläuferstrukturen gemacht werden. Geeignete Vorläuferstrukturen
wählen wir mit Hilfe von bedingten Wahrscheinlichkeitsverteilungen (Maximum Likelihood
Ansatz) aus. Das Hauptanliegen dieser Arbeit ist es, die Abhängigkeit der Vorhersagen von der
Ereignisgröße zu untersuchen. Bisher wurde sporadisch für einzelne Phänomene beschrieben, daß
größere Ereignisse besser vorhersagbar sind, als kleinere, ohne dies jedoch als eine allgemeine
Eigenschaft von Vorhersagen zu interpretieren. Wir führen somit die Ereignisgrößenabhängigkeit
als Eigenschaft einer Vorhersage ein. Die Ereignisgrößenabhängigkeit kann positiv, negativ oder
null sein und somit angeben, ob größere und somit extremere Ereignisse, besser, schlechter
oder gleichgut vorherzusagen sind, wie kleinere. Des Weiteren geben wir eine Bedingung an,
welche die Ereignisgrößenabhängigkeit im Bezug auf ein bestimmtes Maß für die Qualität von
Vorhersagen, die Receiver Operator Characteristic, angibt. Besagte Bedingung erlaubt es, die
Ereignisgrößenabhängigkeit auf die Verbundverteilung von Ereignis und Vorläuferstruktur
zurückzuführen. Sofern wir in der Lage sind, diese Verteilung analytisch zu beschreiben, können
wir aus bisherigen Beobachtungen die Größenabhängigkeit von Ereignissen einschätzen, die
größer sind, als alle bisher beobachteten Ereignisse. Dabei setzen wir vorraus, daß extreme
und nicht extreme Ereignisse der gleichen Wahrscheinlichkeitsverteilung folgen. Mit Hilfe der
Testbedingung untersuchen wir nun die Ereignisgrößenabhängigkeit der Vorhersagen von Inkre-
menten und Schwellwertüberschreitungen in Folgen von Zufallszahlen, sowie in kurz- und langre-
ichweitig korrelierten stochastischen Prozessen. In Abhängigkeit von der Verteilung des unter-
suchten Prozesses erhalten wir unterschiedliche Ergebnisse für die Ereignsisgrößenabhängigkeit
der Vorhersagen von Inkrementen. Die Vorhersagen von Schwellwertüberschreitungen zeigten
jedoch für alle untersuchten Verteilungen qualitativ die gleiche Ereignisgrößenabhängigkeit. Des
Weiteren haben wir Vorhersagen von Inkrementen und Schwellwertüberschreitungen in Zeitrei-
hen aus Geschwindigkeitsinkrementen, die in einem Freistrahlexperiment und in bodennahem
Wind gemessen wurden, untersucht. Zusätzlich haben wir auch eine Methode zur Vorhersage
von abweichenden Wettervorhersagen entwickelt. Diese Methode konstruiert aus Ensemblewet-
tervorhersagen Indikatoren für eine große Abweichung zwischen der vorhergesagten und der
beobachteten Temperatur. Außerdem wurde auch an den Vorhersagen von abweichenden Tem-
peraturvorhersagen die Ereignisgrößenabhängigkeit untersucht.

Stichwörter: Extremereignisse, Vorhersagen mittels Vorläuferstrukturen, Receiver Operator Charak-
teristik, Maximum-Likelihood-Ansatz, Ereignisgrößenabhängigkeit
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Chapter 1

Introduction

Systems with a complex time evolution which generate a great impact event from time to time
are ubiquitous. Examples include electrical activity of human brain with rare epileptic seizures,
fluctuations of prices for financial assets in economy with rare market crashes, changing weather
conditions with rare disastrous storms, floods or landslides, fluid flows with rare intermittent
bursts, and also fluctuations of on-line diagnostics of technical machinery and networks with
rare breakdowns or black-outs.

Since humans are typically adapted to the “normal”, i.e, non-extreme state of a system and
not to its rare extremal behavior, many extreme events have a destructive impact on society.
Hence, there should be no need to motivate the research of them. In the last years the interest in
rare events, sometimes also titled “black swans, kings” [1] or “outliers” [2] significantly increased,
since climate models suggest an increase in the frequency and the intensity of extreme climate
events [3]. As a consequence researchers in different geo scientific disciplines now show an
increased interest in research on natural hazards.

Besides the exploration of done for each type of events, e.g., landslides, earthquakes, floods,
or hurricanes, there are approaches, which aim in accessing common features of extremes [4, 5].
Many of these generalizing approaches study extreme events by using concepts and methods
from “complex systems science”, such as the assumption of long range correlations [6], cellular
automata models [7], self organized criticality [4] or others [8]. A second type of generalizing
approach concentrates on the statistical properties of extreme events. Many of these approaches
(see, e.g., [9]) are based on the application of extreme value theory (see [10, 11, 12, 13, 14]
and many others) or the theory of large deviations (see e.g., [15, 16]). The knowledge about the
distribution of extreme events is then often used to calculate return time distributions and return
time levels, see, e.g., [17, 18]. Although extreme value theory allows to access the statistical
properties of extremes, it can not serve in order to predict the occurence of single events.

In order to increase the knowledge about extreme events, both approaches, the detailed
expert knowledge about the system generating extreme events, and the generalizing approach
which searches for similarities in different phenomena are indispensable.

In this thesis we assume the point of view of the generalizing approaches, by investigating
extreme events which are simply defined as structures in time series, independently of the mech-
anism which generated them. Nevertheless, we need a definition of the targets of our interest,
in order to transfer the term “extreme event” from every day language into a scientific concept.
Therefore a definition which characterizes extreme events in a general sense, i.e., independent
from the mechanism, which generated them is developed in Sec. 2.1. Due to the variety of
phenomena labeled as extreme events, this definition cannot claim to be exhaustive. However,
it is able to describe many different types of events, such as strong turbulent wind gusts, errors
in weather forecasts, threshold crossings, epileptic seizures and many others

The complexity of the systems generating extreme events, often prevents a complete mod-
eling, either due to the huge number of degrees of freedom involved, or due to a lack of precise
knowledge about the governing equations. Considering the great impact of some of the above

1



2 CHAPTER 1. INTRODUCTION

mentioned events, a prediction of their occurrence is nonetheless highly desirable. Therefore,
there have been many attempts to investigate time series of a record of historical data and try to
infer knowledge about the future. One possibility to do so, consists in predicting via identifying
precursory structures. In order to keep the method of prediction as general as possible, we fo-
cus on predictions made via precursory structures, which are identified through the conditional
probability that an event follows a given precursory structure. Hence, we do not use additional
information about the details of the system under study, but simply rely on the estimates of
conditional probabilities, obtained from the time series. Thus, this method explained in more
detail in Sec.2.2, is generally applicable to a variety of phenomena. A very similar approach is
e.g., successfully applied for the prediction of large earthquakes [19].

We keep the point of view of a joint approach, when focusing on a specific phenomenon,
namely the observation, that the quality of a prediction is often dependent on the magnitude
of the events under study. For the prediction of wind gusts [20], the prediction of precipitation
events [21], prediction of collective phenomena in multi agent games [22] and also for the pre-
diction of avalanches in systems which display self organized criticality [23] it has been reported
that larger events are better predictable than smaller, although they are more rare. Furthermore
it is known, that also in weather forecasts, large scale events are easier to predict [24].

It is the main goal of this thesis, to understand and describe this dependence on the event
magnitude independently of the example under study. In Sec. 2.3.1 we will introduce different
methods of forecast verification and then discuss, why we consider the Receiver Operator Char-
acteristic curve to be a suitable measure for the quality of the prediction of extreme events. In
contrast to many other measures for the quality of predictions, the Receiver Operator Charac-
teristic curve is not designed and optimized to be “good in the average” and does not weight
failures in the prediction of events according to their rareness.

Having specified the prediction method and the measure for the quality of a prediction,
we develop in Chap. 4 a condition, which allows us to test for the dependence on the event
magnitude. Next, we study the performance of this test condition for the prediction of events
defined as increments in short and long-range correlated stochastic processes (in Chap. 3), in
sequences of uncorrelated random numbers (in Chap. 5), in velocities, measured in a fluid
flow experiment and wind speeds (Chap. 7). Analogously we also investigate the prediction
of threshold crossings in short range correlated stochastic processes (Chap. 6) and the data sets
named above. Furthermore we study the magnitude dependence also for the prediction of large
failures of weather forecasts in Chap 8.

Parts of the results presented in this thesis are also published in [25],[26], [27], [28] and [29].



Chapter 2

Theoretical Background

2.1 Extreme Events in time series

2.1.1 What are extreme events?

In the introduction we already mentioned natural hazards, like floods or storms, breakdowns
of electricity networks or epileptic seizures as popular examples for extreme events. Although
these examples suggest an intuitive understanding of the term extreme events, a precise scientific
definition of it is still missing. Due to the different context and circumstances in which extreme
events are discussed, it is very difficult to provide a definition which covers all examples and is
still precise enough to be useful. On the other hand, there is a strong need to specify the target
of our interest. That is why we choose to work with a preliminary definition of extreme events
which comprises the examples we are interested in. However, one has to keep in mind that this
definition does exclude many other examples. We arrive at this definition by using the following
considerations which are also proposed in [25].

In all types of phenomena where the event magnitude can assume any value inside some
interval, one has to decide beyond which magnitude one calls an event “extreme”. This implies
first of all that we can define a variable η which characterizes the magnitude of the event and
which is a function η(x) of a scalar or vector valued observable x of the system under study.
Note that the magnitude is the essential key to transfer the term “extreme event” from the every
day language into a scientific definition. We demand now that the explicit form of η(x) is chosen
such that η(x) assumes a large value if the observable x is in a state to which we would refer as
an extreme event. Typically the critical magnitude, beyond one would call an event extreme is
chosen such that events of larger magnitude cause damage or harm to us.

Furthermore we demand that the events which we call extreme are related to observations
x, which are different from the “typical” behavior of the system under study. This implies
the rareness of extreme events. However, not every rare event is an extreme event. A counter
example for a rare but not extreme event is winning the lottery. There is no way to distinguish
the 6-tuple of drawn numbers from all other possible 6-tuples, such that we could call this
observation a non-typical behavior of the dynamics of the system under study, i.e, the lottery
wheel.

Additionally, we require some form of irregularity in the occurrence of extreme events, since
otherwise prediction and adaptation to the events would be trivial. This irregularity in the
occurrence of the extreme events requires that the underlying system possesses some complex
dynamics.

Another issue is whether an event appears endogenously, generated by the system dynamics,
or exogenously, being induced by some external perturbation. The distinction between exogenous
and endogenous depends of course on the way in which you define the system under study, e.g.,
formerly endogenous events might become exogenous by excluding subsystems. In total, we will
assume a slightly different point of view than Sornette [30] and not regard small perturbations as

3



4 CHAPTER 2. THEORETICAL BACKGROUND

external, which allows us to study also stochastic dynamics. Hence, small perturbations that act
like noise are then considered as inherent to the system, and only externally controlled changes
of system parameters or macroscopic perturbations that are much stronger than noise will be
considered to be exogenous.

Finally we arrive at our working definition of Extreme Events.

Definition 1 (Extreme Events) As an extreme event we understand an event which is gener-
ated by a system with an underlying (deterministic or stochastic) complex dynamic. We demand
that it fulfills the following properties:

Quantifiability: It is possible to assign a magnitude η to the event, where η(x) is a function of
an observable x of the system under study. The explicit form of η(x) is chosen such that
η(x) assumes a large value if the observable x is in a state to which we would refer as an
extreme event,

Rareness: The event is rare, i.e., its occurrence is reflected by the tails of the probability dis-
tribution which describes the occurrence of all possible events.

Irregularity: The event does occur irregularly, i.e., it is does not occur periodically.

Endogenity: The event is generated by the dynamics of the system itself and not as a conse-
quence of external shocks.

As already mentioned this definition describes the examples of extreme events studied here, but
it is not a general accepted definition. The two postulates in our definition which are the most
ambiguous are rareness and endogenity.

One can certainly not argue about the fact that extreme events are rare. However, one
could be more restrictive about the conditions events characterized by the tails of probability
distributions have to fulfill. Sometimes the term extreme events is only used if the events
are characterized by tails, which decay slower than in the Gaussian or the exponential case,
e.g., power-law tails. Following this idea, one could demand that the rareness of an event is
quantifiable in order to call it an extreme event. An example for this would be demanding that
the relative frequency of its occurrence is smaller than a given threshold.

The question of how to distinguish between an endogenous or an exogenous origin of the
behavior of a system is typically linked with an example, in which these influences are in partic-
ular hard to distinguish: the stock market. However, one could also think of other events which
consist simply in the response of a system to another primary event, e.g., a tsunami caused by
an earthquake or a large landslide. While it is possible to recognize some causality between the
events in the subsystems in such a well defined and simple example of the coupling of two sys-
tems (the ocean and the surface of the earth), it is much more difficult to identify this causality
in systems which consist of many interacting subsystems, like markets. It was discussed since
the 1930s whether stock-marked crashes are endogenous events, caused by the system of the
marked itself or exogenous events, which are stimulated by external shocks [31]. In the recent
literature many authors implicitly assume the existence of an endogenous origin of crisis, by
studying endogenous market crashes [32] or speculation bubbles.

2.1.2 Extreme Events in Time series

In this contribution we study the occurrence and prediction of extreme events which can be
observed in a scalar time series [33, 34, 35], i.e., a set of N observations {xn} at discrete times
tn, where tn = t0 + nΔ, with n = 0, 1, ..., N − 1 with a fixed sampling interval Δ. We are not
employing any prior knowledge about physical processes or models for the phenomenon under
study, but rely only on recordings of past data. In case that the phenomena governing the
evolution of the system under study are fairly well understood, and physical models have been
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Figure 2.1: An example for threshold crossings for a threshold η = 2 which were observed in an
autoregressive process of order one.

demonstrated to yield useful forecasts over a large spectrum of spatial and temporal scales, this
approach would not be reasonable. In a variety of other circumstances though, a time series
approach is the only possibility for predictions at all. A frequent reason is that good models for
the specific situation are not available.

As a consequence of the approach via time series analysis we demand that the events under
study are recurrent in the sense that we are able to extract statistical information about them
from a time series. Note that this postulation does exclude events which change the dynamics of
the system, as, e.g., events which terminate the life-time of a system, such as material fracture.

We trace the occurrence of an event in a second time series {χm} with the same sampling
interval Δ and m ∈ N0. The variables χm of this tracer time series are indicators, i.e., they are
restricted to the values unity and zero, in order to indicate, whether an event occurred or not. In
many applications the tracer time series is derived from the original time series {xn}. However,
in principle the events could also be defined using the observation of some other quantity. (For
simplicity we assume that this other observation is also recorded with the same sampling interval
Δ.) In fact, the only important requirements are that at the time tn when the forecast of an
event has to be made, χm is unknown and that its actual value is revealed later. The relative
time distance κ = (m − n)Δ between the time of the last observed value, which contributes to
the forecast xn and the time tm at which the event occurs is usually called forecast horizon or
lead time.

Since we are typically interested in comparing the forecast which was issued at tn with the
observation of an event happening at a future time tm we decide to shift the time index of the
tracer time series in such a way that an event (non-event) recorded in the tracer time series will
have the same time index as the corresponding forecast,

χn =

⎧⎪⎪⎨
⎪⎪⎩

1 : an event occurred at time tm = tn + κΔ,
the corresponding forecast was issued at time tn;

0 : no event occurred at time tm = tn + κΔ,
the corresponding forecast was issued at time tn.

(2.1)

We are now going to take a closer look at some simple but interesting structures in time series,
which are typically discussed as extreme events, if their magnitude is larger than expected.

Threshold Crossings

An important class of events are the exceedances of a given threshold η, see Fig.2.1. There
are many examples in which a disastrous event is characterized by a variable which exceeds
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Figure 2.2: An example for increments occurring in an autoregressive process of order one. The
colored regions highlight increments xn+k − xn ≥ 5 occurring in less than 8 time steps.

a threshold as, e.g., the water level in a river which can exceed the height of a levee or the
magnitude of a seismic activity which is stronger than a certain value.

If we assume that the tracer time series is derived from the one dimensional time series {xn},
the corresponding events and non-events are defined as follows:

χn(η) =
{

1 : if xn+κ ≥ η,
0 : if xn+κ < η,

(2.2)

in both cases we assume that the index n of the tracer time series refers to a forecast made at
a time tn with n < m, as in Eq. 2.1.

Increments

Increments are events which consist in a sudden change of the observed variable within a few
time steps. In this contribution we concentrate on sudden increases. An example for this kind
of extreme events are wind gusts appearing as sudden increases in wind speed [20, 36] which can
destroy wind turbines or influence aircraft take off and landing, but also stock marked crashes
[37] which consist in sudden decreases. Figure 2.2 shows an example for increments observed
in an autoregressive process of oder one. In this context we assume that the time series under
study is a one dimensional time series and we define our extreme increment xn+k − xn to be
larger than a given distance η

χn(η) =
{

1 : if (xn+κ − xn) ≥ η
0 : if (xn+κ − xn) < η

(2.3)

Again we assume that the index n of the tracer time series refers to a forecast made at time tn
as explained in Eq. 2.1.

Increments and threshold crossings can be related to each other by creating a new time series
zn = xn+k −xn. If the time series under study is generated by a well defined stochastic process,
e.g., an autoregressive moving average process (ARMA) of order (m,n) this transformation from
the original time series to the time series of increments zn = xn+1−xn induces a transformation to
another stochastic process. In the example above, which is in more detail discussed in appendix
A the increment time series is described by an autoregressive moving average process of order
(m,n+1).
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Figure 2.3: An example for the definition of extreme events as block maxima and minima i.e.,
the largest (smallest) values within 50 data points. The respective maxima and minima are
highlighted by increased symbols and the color shaded regions indicate segmentss of 50 data
points

Block Maxima

Another class of events, which is especially important for time series exhibiting periodic changes,
e.g., seasonal fluctuations, are so called block maxima. Block maxima represent the largest value
of a finite number of data points. They are of historical importance, since their study in river
level data lead to the developement of extreme value statistics [12].

Apart from the examples of event classes listed here, one can – with respect to the system
under study and its interesting events – define many other different types of extreme events and
thus construct {χ(η)} for {xn} in various ways.

2.1.3 Assigning a magnitude to the events under study

In the following we are going to measure the magnitude of an event in units of the standard
deviation σ of the underlying stochastical process,

η = xn/σ, for threshold crossings; (2.4)

η =
(xn+k − xn)

σ
=

d

σ
, for increments, (2.5)

where the variable d denotes the absolute size of the event. This definition for the event magni-
tude implies that the variance of the process is finite which is the case in the examples studied
here. However, there exist also processes with infinite variance, e.g. the Weierstrass Random
Walk[38, 39]. For processes with infinite variance there is no intuitive measure for the magnitude
of an event and one has to describe the magnitude of the event indirectly, e.g., by its relative
frequency.
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2.2 Predictions via Precursory Structures

Et de eis quae significant illud [the aproaching of the plague] est ut videas mures et
animalia quae habitant sub terra fugere ad superficiem terrae et pati sedar, id est,
commoveri hinc inde sicut animalia ebria.
(Avicenna, Liber canonis, translation from 1556, original work written in Arabic
between 1005 and 1024)

translation: And among those [signs] which announce it [the approaching of the
plague] is, that you will see mice and animals which live under the earth flee to the
surface and suffer, i.e. here, they will move like drunken animals.

The search for precursors which announce extreme events is a very old idea and it is the
foundation of both, superstition and adaptive learning. If the assumption, that there is a corre-
lation between the event and its precursor is wrong, we are very likely to call the corresponding
prediction superstition, as in the famous example of the black cat which is interpreted as a
precursor for bad luck. However, if a correlation between a precursor and an event exists, the
interpretation of the precursor is very likely to turn into passed on knowledge, as for example
the quote of Avicenna, listed above, which is according to Abel [40] the first reliable source of
quoting anomalous behavior of rodents as a precursor for the plague.1

Another example for passed on knowledge about precursors are the legends about precursory
phenomena in clouds or animal behavior previous to large earthquakes, which were mainly
told in Asian countries [41]. Today, there are different studies, trying to explain the observed
phenomena as caused by electromagnetic signals [41]. However, naturally the distinction between
superstition and passed on knowledge was not trivial in times where many scientific phenomena
were not yet understood and is in some cases difficult even today. Thus, if we are interested
in studying precursors from a scientific point of view, we have to be careful in examining the
correlations between event and precursor and we have to examine the quality of our precursors
by evaluating the quality of the corresponding predictions. In other words, we have to move
away from sporadically observed precursors to precursors which are systematically identified by
data driven methods.

Prediction via precursory structures on a scientific basis is discussed in a variety of fields.
The most prominent example is the already mentioned task of earthquake prediction [42, 43,
44, 19], but precursors are also discussed for the prediction of epileptic seizures [45, 46, 47] and
many others. Some authors even suggest that there could be “similarities in the corresponding
precursory features for earthquakes and epileptic seizures” [4]. However, in both, earthquake and
epileptic seizure prediction, it is not yet fully accepted that a practically applicable prediction of
the events under study is indeed possible [47, 48, 49, 50]. Recent examples for prediction with
precursory structures are the prediction of avalanches in SOC-systems[51] and the prediction of
strong turbulent wind gusts[20, 36, 52, 53] , which are known to destroy the rotor blades of wind
turbines.

All the examples mentioned have in common that the predictions are made for a time in
the “very near future”, although the time scale on which this “very near future” is defined can
naturally differ with respect to the problem under study. The ideal prediction horizon for the
prediction of strong wind gust would be e.g., in the order of tens of seconds, while earthquake
warnings are most useful if they are issued days ahead. This is one of the typical aspects of a
situation in which people prefer forecasting via identifying precursory structures, whereas model
based forecasts are used to obtain information about the “far future”. Other indicators for the
use of precursors are, e.g., a complicated dynamics of the system under study which cannot
be sufficiently well described by a (deterministic) model, or if the corresponding model is too
complex to allow simulations with reasonable computational effort or if initial conditions for the
model.

1Indeed, the plague is a disease which affects rodents and humans and was typically transmitted by rat fleas.
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Due to the different fields in which precursor based predictions are discussed, there are also
various interpretations of the term precursor, which we will not list here in detail. In the following
we will assume that at least a part of the dynamics of the system under study is unknown and
therefore has to be described by a stochastic term. The consequence of this is, that we cannot
demand from the precursor to preceed every individual event. However, we can expect the
data structure we call precursor to typically preceeding an event, allowing deviations from the
given structure, but also allowing events without preceeding structure. This interpretation of
a precursor allows to determine the specific values of the precursory structure by statistical
considerations.

In order to predict an event occurring at time (n + 1) we compare the last τ observations

sn = (xn−τ+1, xn−τ+2, ..., xn−1, xn) (2.6)

to which we will refer as precursory variable, to a specific precursor2, also called predictor,

u = (uτ−1, uτ−2, ..., u0). (2.7)

We can then define an alarm volume V (u, δ) around each precursor as the set of all sn for which
||sn −u|| ≤ δ, where || · || denotes a norm which can be, for example, the Euclidean norm or the
maximum norm. When using the maximum norm, the alarm volume consists of all time series
segments which fall into a δ-tube around the precursory pattern u. We give an alarm for an
event if we find the precursory structure sn within the alarm volume. In a formal way we can
express this procedure by defining a decision variable

A(sn,u, δ) =
{

1 : if sn ∈ V (u, δ),
0 : otherwise.

(2.8)

Note that this approach is inspired from the “Lorenz method of analogs” [54, 55] which refers
to prediction via so called local predictors which were defined in state space for predictions in
chaotic systems. Furthermore Keilis-Borok and Kossobokov used a similar approach in order to
construct their well known M8 algorithm for the prediction of earthquakes [19].

We will now consider the question, how we can identify precursors in time series. There are
various approaches to do this, some of them are based on additional knowledge of the system
under study, as e.g., an epileptic seizure is known to be a state of high synchronization and
hence one tries to interpret increases in synchronization as precursors for seizures. However,
there exist also purely data driven approaches which do not require any additional knowledge
about the system and can hence be applied to arbitrary data. Osterhage and Lehnertz give
a nice overview of such approaches in [56], where they list changes in the correlation sum, the
correlation dimension, correlation density, correlation entropy, marginal predictability, Lyapunov
exponents or local flow in state space as possible precursors of epileptic seizures.

We prefer to choose the precursor by using conditional probabilities. A similar approach
was already used in the work of Ragwitz, Vitanov, Holstein and Kantz [52, 53, 20, 36], who
studied the prediction of turbulent wind gusts via using conditional probabilities and probability
densities. However, they preferred to use the mean of the conditional probability p(χn, sn) as a
precursory structure, whereas we intend to maximize the respective conditional probabilities.

In the field of time series analysis the use of conditional probabilities is strongly linked with
Markov-chains. In weather forecasting conditional probabilities form the so called probabilistic
forecasts, and an analog use of conditional probabilities or probability densities is also the basis of
statistical or Bayesian inference. Furthermore, artificial neural networks for pattern recognition
are designed in a way that they approximate respective conditional probabilities.

Since for many considerations the distinction between probabilities and probability densi-
ties is not of relevance, as far as numerical estimates of probability densities are involved, we

2We are going to address the issue of how to identify such precursors in Subsec. 2.2.3. Suppose for the moment
that we had already chosen a precursor u in one way or another.



10 CHAPTER 2. THEORETICAL BACKGROUND

formulate the corresponding expressions mostly in terms of probabilities, denoted by p(.). If a
distinction between probability and probability density is possible or desirable, we denote the
corresponding probability densities by ρ(.). In general we will also use the abbreviation PDF
for both, the term probability density function and the term probability distribution function.
The same yields for conditional probability distribution functions and conditional probability
densities which will both be denoted as CPDF.

2.2.1 Describing stochastic processes with conditional probabilities via Markov
Chains

In the following we will interpret the time series under study as being generated by a discrete
time stochastic process [33, 57, 58], regardless of what process and what measurement function
created the data.

A Markov process is defined as a stochastic process with the property, that for any set of
successive times t1 < t2 < ... < tn

ρ(xn, tn|x1, t1; ...;xn−1, tn−1) = ρ(xn, tn|xn−1, tn−1) (2.9)

holds [57]. This indicates that the process has only a finite memory (one time step) and one
can hence infer the probability distribution/density function at time step tn by knowing the
value of x at the previous time step tn+1. There are various textbooks on Markov processes and
their properties [57, 59], thus we will highlight here just some aspects which are relevant in the
context of forecasting.

Furthermore we assume the process to be stationary, although stationarity is a property
which almost never applies to realistic processes such as atmospheric turbulence. Applying
concepts from stationary processes to data which might originate from a non-stationary process
could result in reduced performance of our prediction algorithms, but is not a fundamental
problem in the examples of non-stationary data3, which we study in this contribution. Moreover,
the methods proposed in this contribution should also be suitable in the special case of non-
stationarity due to slowly varying system parameters, as it was argued in [60]. In terms of
the prediction of wind-speeds in high frequency wind speed data those slowly varying system
parameters are related to changing weather conditions or change of the time of the day.

For stationary and for homogeneous Markov processes the conditional probability
ρ(xn, tn|xn−1, tn−1) does not depend explicitly on time, but just on the time interval r be-
tween the successive time steps, such that we can use ρ(xn|x1, ..., xn−1) = ρ(xn|xn−1) instead of
Eq. (2.9). If we assume that the process under study is a discrete time process, we can construct
a chain of CPDFs

ρ(xn, xn−1, ..., x0) = ρ(xn|xn−1)ρ(xn−1|xn−2)...ρ(x1|x0)ρ(x0), (2.10)

in which the probability density for the present state of the process is given by the knowledge
of the transition PDF ρ(xj |xj−1) and the initial function ρ(x0).

We implicitly assume that the Markov property (Eq. (2.9)) holds, whenever we choose
the precursory variable to be scalar sn = xn, i.e., we condition only on the value occur-
ring at the last time step. If we condition on more then the last time step, i.e. sn =
(xn−τ+1, xn−τ+2, ..., xn−1, xn), we assume the process to be a Markov process of a higher or-
der τ , i.e., we expect

ρ(xn+1|xn, xn−1, ..., x0) = ρ(xn+1|xn, xn−1, ..., xn−τ+1) (2.11)

to hold for any set of successive time indices 0, 1, ..., n+1. This process can be transformed into
a corresponding (generalized) Markov process of order 1 by considering a vector valued process
with xj = {xn, xn−1, ..., xn−τ+1}, and the following consequence of Eq. (2.11) [57]

ρ(xn+1, xn, ..., xn−τ+1|xn, xn−1, ..., x0) = ρ(xn+1, xn, ..., xn−τ+1|xn, xn−1, ..., xn−2τ+1), (2.12)
3Data are called non-stationary, if the null-hypothesis of stationarity can easily be rejected.
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such that
ρ(xj |xj−1,xj−2, ...,x0) = ρ(xj |xj−1) (2.13)

holds.
Another property, which holds for Markov processes and is of importance for forecasting is

the fact that they fulfill the Chapman Kolmogorov Equation [57, 61]

ρ(xn+1|xn−1) =
∫

dxnρ(xn+1|xn)ρ(xn|xn−1). (2.14)

By further marginalizing, we arrive at CPDFs connecting observations, which are κ time steps
apart:

ρ(xn+κ|xn) =
∫

dxn+κ−1...dxn+1 ρ(xn+κ|xn+κ−1)ρ(xn+κ−1|xn+κ−2)...ρ(xn+1|xn). (2.15)

This allows us to use lead times κ > 1, i.e., to forecast based on ρ(xn+κ|xn).

2.2.2 Applying finite conditioning to general (non Markovian) processes

CPDFs provide the information needed for (probabilistic) predictions: Knowing
p(xn+κ|xn, xn−1, . . . , xn−τ+1) and given specific values for the xn, xn−1, . . . , xn−τ+1’s, one can
calculate the probability that the observation Δ time steps in the future will fall into a given
interval. Generally, the probability density function or probability mass function of xn+κ will
be the sharper, the further into the past the conditioning extends. Ideally, the entire past of the
process would be observed and the CPDF for infinite conditioning would be known, thus yielding
optimal knowledge of the future (which does not mean that this CPDF becomes necessarily sharp
peaked like a δ–function). In practice this is absolutely out of reach. The difficulty here is to
estimate the CPDF from the sample of N data points, as this estimate gets the worse the larger
τ . If the observed time series were governed by a generalized Markov process of order τ0, then the
τ0-step conditioning would be optimal and any additional conditioning would not improve (or in
fact change) the forecast. In general, although the process is not Markovian, finite conditioning
still provides a rather good approximation to infinite conditioning, or in more colloquial terms,
there is nothing wrong about basing one’s predictions on finite τ -conditioning, the worst to
happen is that this is sub–optimal. In total one can say that whenever one constructs a CPDF
with respect to a finite number of time steps in the past, and then uses this CPDF in order to
infer the distribution of a future value, one implicitly assumes that the process under study is
a Markov process. Although this assumption is not valid in general, it is impossible to avoid
it, due to the fact, that every algorithm will require a conditioning on a finite number of time
steps τ . Furthermore, the only consequence of the fact, that the conditioning was not done with
respect to sufficiently many time steps into the past, are probably unsatisfactory forecasts.

2.2.3 From Hypothesis Testing to the Bayes Classifier

As already explained above, we will use conditional probabilities and probability densities in
order to identify precursory structures. Conditional probabilities and probability densities
(CPDFs) are used in various contexts, e.g., hypothesis testing and classification problems, but
also for probabilistic forecasts. Therefore it is not surprising that we can find different names
for the same quantities, but also different concepts, which are expressed by the same formulas.
In this section we will try to sort out possible confusions of names and concepts. Thus, we
start with highlighting the classical use of CPDFs in the form of hypothesis testing, e.g., used
for Bayesian decision making, and then move on to a different interpretation in terms of the
maximum likelihood method.

There are two possible choices of using CPDFs: One can either condition on an already
observed event, such that the CPDF describes the probability or probability density to find
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a specific precursory variable before the event/non-event occurs, namely ρ[sn|χn(η)], or one
can condition on precursory variables, and evaluate the probability, that an event/a non-event
precedes them p[χn(η)|sn].4 Both alternatives are linked via Bayes’ theorem [62] and they are
called posterior PDF (also a posterori PDF) and likelihood [63, 64]. In order to understand the
origin of these names one has to take a short glance at the framework of hypothesis testing.
For simplicity let us consider just a single hypothesis H, which can be accepted due to the
observation of the evidence E. Hence the PDF describing the acceptance of the hypothesis is
given by

p(H|E) =
p(E|H)p(H)

p(E)
, (2.16)

which is Bayes’ theorem and goes back to Bayes and Laplace in the 18th century[64]. In this
framework of hypothesis testing [63, 65]

p(H|E) is called posterior probability or a posterori probability of the hypothesis to be true,
after observing the evidence E;

p(E|H) is referred to as likelihood of seeing the evidence E, if the hypothesis is true;

p(E) has the names predictive probability or marginal probability and

p(H) is called prior probability, that p(H) is true, prior to (i.e., without) considering the
evidence E .

For hypothesis testing, the estimates are then made by considering the posterior PDF. The names
prior probability and posterior probability can only be understood in the sense of an update of
the PDFs by using the information provided by the evidence E [66]. The prior PDF reflects in
this context the information, which was available before the evidence E was observed. Key to
the framework which is today known as Bayesian statistics is the idea, that the prior probability
can also be obtained by other methods than the analysis of the available data [64, 63, 66], e.g,
by the opinion of an expert or by an ad hoc choice of a probability distribution function, e.g. a
Gaussian.

This practice is disliked by the so called “frequentists” which follow the idea of R. A. Fisher
[67, 68] that statistical inference must be based entirely on probabilities with direct experimen-
tal verification [64]. This implies that they should be constructed by analyzing the relative
frequencies of the occurrence of events. Furthermore, the school of the frequentists prefers to
use the maximum of the likelihood p(E|H) in order to estimate, e.g., parameter values, instead
of the “posterior PDF”. In this context, the evidence is assumed to be fixed and the hypoth-
esis is variable. While the first difference to the Bayesian framework, the dislike of subjective
probabilities, is a rather strong issue, the second one, the concentration on the likelihood, does
not make such a big difference as it seems on the first glance. The reason for this is that the
choice, to which conditional probability one assigns the names likelihood or posterior probability
is rather subjective. We will illustrate this issue by transferring the framework from hypothesis
testing to forecasting via precursory structures. It turns out quickly that there is some need
for subjective interpretation, if we have to decide what we consider to be the hypothesis under
study, and what the observed evidence. Naturally there are (at least) two ways of formulating
hypotheses in terms of the prediction via precursory structures. The first one focuses on the
hypothesis, that an event is expected to follow the precursor by specifying:

H: an extreme event will happen (after E is observed)

E: we observe a distinguished pattern u in the precursory variable sn.

4Please do not worry about the usage of the brackets ”[” and ”]” as e.g., in pn[xn|χn(d) = 1] and in the following
formulas, since it has no special meaning in this context and is simply introduced to improve the readability of
the formulas.
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The second approach focuses on the selection of the precursor:

H: a specific choice u (precursor) of all possible patterns sn (precursory variables) is a pre-
cursor for an extreme event, i.e., we give an alarm after observing sn in V (u, δ).

E: an event occurred (after the precursor was observed and we gave the alarm).

The corresponding hypothesis of observing a non-event and giving no alarm can of course be
formulated analogously. Since we are interested in identifying precursors, we decide to consider
the second interpretation which is the basis of the following nomenclature.

Definition 2 (Nomenclature for (C)PDFs in the context of forecasting)
In this contribution we call

ρ[sn|χn(η)] the posterior PDF,

p[χn(η)|sn] the likelihood,

ρ(sn) the marginal probability and

p[χn(η)] the total probability of observing an event.

All PDFs can be formulated for both values of the event variable, χn(η) = 1 and χn(η) = 0.

This choice follows also the convention that the likelihood is typically chosen to be a function of
its second argument, while the first argument is fixed [63, 64].5 Furthermore it expresses also our
approval of frequentists approaches, i.e., we will construct the PDFs based on the analysis of the
available data and not on subjective choices. Note however that in the literature of forecasting
and signal detection one can also find the terms likelihood and posterior PDF to be assigned
vice versa.

After settling the question of the nomenclature, we can now start thinking about whether it
is more useful for predictive purposes to exploit the CPDF, which conditions on the precursor,
or the CPDF, which conditions on the event. The two possible strategies which arise from this
are the following:

Definition 3 (Strategies to identify the Precursor)

Strategy I: The a posterior PDF ρ(sn|χn(η) = 1) takes into account all events of size η and
provides the probability density to find a specific precursory structure before an observed
event. Hence the first strategy consists in defining the precursors in a retrospective way:
once the extreme event χnhas been identified, one asks for the signals right before it. We
can then use the global maximum of the a posteriori PDF to define precursors

uI := sn : ρ[sn|χn(η) = 1] = max ρ[sn|χn(η) = 1]. (2.17)

Strategy II: The likelihood p[χn(η) = 1|sn] takes into account all possible values of precursory
structures, and provides the probability that an event will follow them. The second strategy
consists thus in determining those values of each component xi of the precursory variable
sn for which the likelihood is maximal.

uII := sn : p[χn(η) = 1|sn] = max p[χn(η) = 1|sn]. (2.18)

5Since we consider either the conditional PDFs for the occurrence of an event or a non- event, i.e., χn = 1 or
χn = 0 the first argument of the likelihood is indeed fixed.



14 CHAPTER 2. THEORETICAL BACKGROUND

Note that the posterior PDF in strategy I can be interpreted as probability or probability
density whereas the likelihood in strategy II can (for our purposes) not be formulated as a
density function with respect to the precursory structure, but as a probability distribution with
respect to the event. This is due to the fact that we distinguish only between event and non-
events and hence this probability distribution thus consist of only two bins.6 The precursory
structure thus enters into the likelihood only as a parameter.

The two possible strategies which we address here, represent fundamental choices of strate-
gies, in the sense, that they are not constructed with respect to additional requirements of
possible applications. In more applied examples still based on CPDFs one looks for precursors
which minimize or maximize more sophisticated quantities, e.g., discriminant functions or loss
matrices, see, e.g., [64]. These quantities are usually functions of the posterior probability or
the likelihood, but they take into account the additional demands of the specific problem, e.g.,
minimizing the loss due to a false prediction. The two strategies studied in this contribution
are thus fundamental in the sense that they enter into most of the more sophisticated quantities
which were used for predictions and decision making.

Despite the ambiguity of the names of the CPDFs, we can expect the respective prediction
strategies to be very different in performance, since they follow different concepts, either condi-
tioning on the precursor or conditioning on the event. Strategy I might seem a very intuitive
approach to look for precursory structures and it is indeed applied in problems, where it would
be (numerically) too expensive to apply strategy II. In this situation one prefers to concentrate
on the precursory structures, which one can extract from the history of already observed events
instead of taking all possible values of the precursory variable into account in order to generate
p[χn(η) = 1|sn]. However, according to the Neyman-Pearson lemma [69] it is actually strategy
II, which is the optimal choice for a scheme to determine the precursor. Hence the performance
obtained by identifying precursors with strategy I is expected to be worse or equal, but not
better than with strategy II.

In order to show this, one needs a concept called (Bayes) likelihood ratio test in the context of
statistical inference [64] and it is related to a very similar concept, known as the so called Bayes
classifier (Bayes test, Bayes factor) for classification problems[65, 64]. As the name likelihood
ratio test already tells us, the quantity, which an optimal strategy should maximize is the ratio

Λ[sn, χ(η)] =
p[sn|χn(η) = 1]
p[sn|χn(η) = 0]

. (2.19)

Although Λ(sn) is called likelihood ratio, it is in our notation in fact a ratio of posterior PDFs.
However we will use the common name likelihood ratio in the following.

Definition 4 (Likelihood ratio test for predictions via precursors) The (randomized) test
with test function φ0 is said to be a likelihood ratio test if it is of the form

φ0(sn) =

⎧⎨
⎩

1 if p[χn(η) = 1|sn] > Kp[χn(η) = 0|sn]
g(sn) if p[χn(η) = 1|sn] = Kp[χn(η) = 0|sn]

0 if p[χn(η) = 1|sn] < Kp[χn(η) = 0|sn]
(2.20)

where K ≥ 0 is a constant and g(sn) an arbitrary function satisfying 0 ≤ g(sn) ≤ 1 for all sn.

In order to arrive at the Neyman-Pearson lemma, we need to specify furthermore the power
and the size of a test. In general the power-function w of a test is the probability of rejecting a
null hypothesis H0, when the tested hypothesis H1 is true. For our purpose, we formulate the
hypothesis under study H1 and the corresponding null hypothesis H0 as follows:

H1: an event will occur in the next step → give an alarm
6According to [66] this testing for the outcome of binary events was indeed also the initial problem studied by

Bayes.
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H0: no event will occur in the next step → no alarm

In our situation rejecting H0 means to accept H1 and hence

w(u, δ, η) = Pr[reject H0|χn(η) = 1] = Pr[accept H1|χn(η) = 1] (2.21)
= Pr[sn ∈ V (u, δ)] (2.22)

=
∫

V (u,δ)
dsn ρ[sn|χn(η) = 1] = rc(u, δ, η), (2.23)

i.e., the power-function of a test corresponds in the context of forecasting to the rate of correct
predictions rc, which we will discuss in more detail in Subsec. 2.3.4. The size b of a test
corresponds in this context to a fixed upper limit for the rate of false alarms rf

Pr[rejectH0|χn(η) = 0] = Pr[accept H1|χn(η) = 0] ≤ b (2.24)

Pr[rejectH0|χn(η) = 0] =
∫

V (u,δ)
dsn ρ[sn|χn(η) = 0] = rf (u, δ, η) ≤ b. (2.25)

The Neyman-Pearson lemma for simple hypothesis then states:

Theorem 1 (Neyman-Pearson lemma for simple hypothesis)

Optimality: For any K and g(sn), the test φ0(sn) has maximum power among all tests whose
sizes b are no greater than the size of φ0.

Existence: Given b ∈ (0, 1), there exist constants K and g0 such that the likelihood ratio test
defined by this K and g(sn) = g0 for all sn has exactly the size b.

Uniqueness: If the test φ has size b, and is of maximum power among all possible tests of size
b, then φ is necessarily a likelihood ratio test, except possibly on a set of values of sn which
has probability 0 under both H0 and H1.

A proof and further information about this theorem can, e.g., be found in [64] or in the original
work of Neyman and Pearson from 1933 [69]. Thus according to the Neyman-Pearson theorem
the strategy, which maximizes Λ(sn) for a fixed rate of false alarms is the optimal strategy. One
can see that strategy II is more suitable to maximize the likelihood ratio, by expressing the
likelihood ratio in terms of the CPDFs, which enter into strategy I and II. Considering strategy
II which consists in maximizing p[χn(η) = 1|sn] we obtain by expressing the posterior PDF
through Bayes’ theorem

Λ[sn, χn(η)] =
p[χn(η) = 1|sn]ρ(sn)

(1 − p[χn(η) = 1|sn]) ρ(sn)
(1 − p[χn(η) = 1])

p[χn(η) = 1]
(2.26)

=
p[χn(η) = 1|sn]

(1 − p[χn(η) = 1|sn])
(1 − p[χn(η) = 1])

p[χn(η) = 1]
(2.27)

= Λ (p[χn(η) = 1|sn], p[χn(η) = 1]) , (2.28)

since p[sn|χn(η) = 0] = 1− p[sn|χn(η) = 1] holds. The probability p[χn(η) = 1] to find events is
given by the process and cannot be influenced by the forecaster. Thus we find that the likelihood
ratio can be maximized by maximizing p[χn(η) = 1|sn] for a fixed p[χn(η) = 1]. Expressing Λ(sn)
in terms of the posterior PDF (strategy I) reads

Λ[sn, χ(η)] =
ρ[sn|χn(η) = 1]

(1 − p[χn(η) = 1|sn])
(1 − p[χn(η) = 1])

ρ(sn)
(2.29)

= Λ (ρ[sn|χn(η) = 1], p[χn(η) = 1|sn], ρ(xn), p[χn(η) = 1]) , (2.30)
since ρ[sn|χn(η) = 0] �= 1 − ρ[sn|χn(η) = 1], (2.31)

but ρ[sn|χn(η) = 0] =
ρ(xn)(1 − p[χn(η) = 1|sn])

1 − p[χn(η) = 1]
. (2.32)
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Figure 2.4: A multimodal CPDF leads to multiple precursors. In this cases one could also
think about imposing probability thresholds p1 and p2 on the CPDF instead of constructing
alarm volumes around the precursors. If the CPDF is symmetric with respect to its maxima
the respective alarm volumes correspond exactly to the use of a probability threshold.

Reminding ourselves of the fact that p[χn(η) = 1 is determined by the problem under study and
thus not under the influence of the forecaster, we see that the likelihood ratio is a monotonously
increasing function of p[χn(η) = 1|sn] in the first case (Eq.2.28), whereas it is a function of both
CPDFs in Eq.2.30. Therefore, strategy I can at best be equal to strategy II, in the special case
that the precursor, which maximizes ρ[sn|χn(η) = 1] simultaneously maximizes p[χn(η) = 1|sn]
and minimizes ρ(xn).

The Bayes classifier [70] (posterior odds [64], ratio of odds[71]) is a very similar concept,
since it consists in our notation of the ratio of likelihoods7

B[sn, χ(η)] =
p[χn(η) = 1|sn]
p[χn(η) = 0|sn]

=
(1 − p[χn(η) = 1])

p[χn(η) = 1]
Λ[sn, χn(η)], (2.33)

where (1 − p[χn(η) = 1]) /p[χn(η) = 1] is called prior odds and the likelihood ratio Λ(sn) is here
referred to as Bayes factor. Since we assume the prior PDFs p[χn(η) = 1] and p[χn(η) = 0] =
(1 − p[χn(η) = 1]) to be given by the process, and not under the influence of the forecaster, it
is easy to see that the prediction strategy, which focus on maximizing the likelihood ratio also
maximizes the Bayes classifier. In general, i.e., if subjective Bayesian estimates of the prior
probabilities p[χn(η) = 1] and p[χn(η) = 0] are used, this it not necessarily the case.

In the definition of the precursors according to strategy I and II, we already took into
account, that there might be more than one choice for a precursor which maximizes the CPDF,
if the respective CPDF is multimodal, see e.g., Fig. 2.4. In this cases one could also think
about imposing a threshold on the CPDF and give an alarm if the CPDF which corresponds
to an observed precursory variable is larger then this threshold, instead of constructing alarm
volumes around the precursors. Our approach of predicting via precursors is thus replaced by
a probabilistic forecast. The decision variable in terms of a probability threshold 1 − δ is then
defined as

Â(sn, δ, η) =
{

1 : if p[χn(η) = 1|sn] ≥ 1 − δ,
0 : if p[χn(η) = 1|sn] ≤ 1 − δ.

(2.34)

If the CPDF is symmetric with respect to its maxima the respective alarm volumes correspond
exactly to the use of a probability threshold. Thus one can think of the use of precursors defined

7Keep in mind that in our notation the likelihood ratio is in fact a ratio of posterior PDF.



2.2. PREDICTIONS VIA PRECURSORY STRUCTURES 17

by maximizing CPDFs as an (numerically faster) approximation to the usage of the full CPDF,
as it is done in probabilistic forecast.
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decision variable Observation in terms of the event variable χn

An event occurred, χn = 1 no event occurred, χn = 0

marginal PDF p[χn = 1] marginal PDF p[χn = 0]

alarm for an event hit (correctly predicted event) false alarm

An = 1 rc(sn,u, δ) = p[sn ∈ V (u, δ)|χn = 1] rf (sn,u, δ) = p[sn ∈ V (u, δ)|χn = 0]

no alarm given missed event correct rejection

An = 0 p[sn �∈ V (u, δ)|χn = 1] p[sn �∈ V (u, δ)|χn = 0]

Table 2.1: The four possible outcomes of a binary forecast of events and the corresponding
probabilities which describe them. The event variable χn and the decision variable An are defined
in Eqs. (2.1) and (2.8). The variables rc and rf denote the the rates of correct predictions and
false alarms.

2.3 Measuring the Quality of a Prediction

In this section, we address the question of how to quantify the performance of a forecast. Mea-
sures which try to judge the quality of a prediction are important not only in order to rank
existing forecast schemes but also in the design of such schemes, for example in the tuning of
free parameters. Such measures have been formulated for a variety of purposes and for a mul-
titude of different situations[72]. For example the book of Jolliffe and Stephenson [73] discusses
about 30 of them. In general we can distinguish between measures which understand the pre-
dictability as a property inherent to the system under study (intrinsic measures of predictability)
and verification measures [72] which compare the results of a forecast with the observed outcome,
the verification. We will mostly focus on the latter. Furthermore we introduce the idea of trans-
forming measures which are traditionally considered to be intrinsic measures into verification
measures.

The decision which verification measure to use is among other considerations influenced by
the type of forecast, e.g., whether we forecast a specific value of an observable, e.g., the tempera-
ture forecasted by a weather model, or whether we simply do a binary forecast (yes/no forecast),
as it is the case for the prediction of (extreme) events. When forecasting a specific value, one
typically tries to be “good in the average”, i.e., it is not important, if a single large mistake is
hidden among sufficiently many good forecasts. The probably most frequently used verification

method, the root mean square error ē =
√

1
N

∑N
n=1(fn − xn)2, with fn representing the fore-

casted value and xn the corresponding verification works according to this principle. However,
the forecast of events, especially the forecast of large impact events, demands detailed infor-
mation about the contribution of correctly predicted events, missed events, correctly predicted
non-events and false alarms. Table 2.1 illustrates these four possible outcomes of a categorical
forecast of events by using the event variable χn as defined in Eq. (2.1) and the decision variable
An as defined in Eq. (2.8). 8

In many applications it is furthermore important to weight theses four options according
to the loss which is associated with the occurrence of each of them.9 One then tries to find a
prediction strategy which optimizes the corresponding loss matrix. Since we are not interested
in a certain application, we will not consider losses and costs, but simply measure the quality of
the prediction.

8Note that the definition of the rates rc and rf for probabilistic forecasts are used, i.e., if the decision variable
was defined according to Eq.2.34.

9Note that losses and costs can in this context not only be counted in terms of money, but also in terms of
e.g., injured humans
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2.3.1 Predictability, Kullback Leibler distance and Mutual Information

Loosely speaking, the term predictability is used as a synonym for the quality of a forecast.
However, it is worth mentioning, that in fact the term predictability is properly defined as a
function of entropies. The predictability P (t, κ) at a time t for future time t + κ is is defined as
[74]

P (κ) =
R(x(t), x(t + κ))

H(x(t))
, (2.35)

where H(x(t)) = −∑x p(x(t)) log(p(x)) or respectively H(x(t)) = − ∫ dx ρ(x(t)) log(ρ(x)) is
the entropy of a marginal PDF and R(x(t)) = H(x(t))+H(x(t+κ))− 2H(x(t), x(t, κ)) denotes
the redundancy. Typically entropies are evaluated for the marginal PDFs and the summa-
tion/integration is over all possible values of x(t), which represent usually all accessible states of
a system. Thus a function based on entropies provides us with information about the possible
predictability of the system under study, without considering exactly how this prediction can be
made. In other words, the predictability is assumed to be a property of the system under study
and does not result from the interaction with the system and a prediction method. In particular
it does not reflect the quality of a prediction algorithm.

Except from the predictability as defined above there are various other similar measures,
which can specify the tendency of a system to reveal information about its future or other
uncertain aspects. For example, if the dynamics of the system is sufficiently known, the time
until which the system is expected to be predictable is often characterized by the inverse of the
Lyapunov exponent.

However, we saw before that we can easily combine the forecast and the verification in terms
of a joint PDF [72]. Hence it is in principle also possible to evaluate intrinsic measures based on
probabilities on the joint PDF of precursor and event, or the respective CPDFs. Predictability
measures which are in particular suitable for this are Mutual Information and the Kullback
Leibler distance[75], also called relative entropy, which is often interpreted as a measure for the
“distance” between two distributions. Another interpretation describes it as “the inefficiency of
assuming that the distribution is q when the true distribution is p” [75] . The Kullback Leibler
distance is defined as

D(p||q) =
∑

x

p(x) log
(

p(x)
q(x)

)
, (2.36)

or D(p||q) =
∫

dx p(x) log
(

p(x)
q(x)

)
, (2.37)

for probability densities.
Considering the Kullback Leibner distance of the a posteriori probabilities of an event and

a non-event

D (ρ[sn|χn(η) = 1] || ρ[sn|χn(η) = 0]) =
∫

dsnρ[sn|χn(η) = 1] log
(

ρ[sn|χn(η) = 1]
ρ[sn|χn(η) = 0]

)
.

(2.38)

one can see that the Kullback Leibler distance is in fact the expected value of the logarithm of
the likelihood ratio [75] with respect to the PDF ρ[sn|χn(η) = 1]. In Subsec. 2.3.4 we will see
that the likelihood ratio itself is closely linked with the ROC curve, which is not an intrinsic
measure for predictability but a forecast verification methods. Hence, due to its link with the
likelihood ratio, the Kullback Leibler distance might serve as method to related information
obtained from the system under study and its dynamics and forecast verification methods.

In case that we are interested in using the joint PDF, rather than the CPDFs of precursors
and events, we can compute the mutual information, which is defined as the relative entropy
between the joint distribution and the product of the marginal distributions of two random



20 CHAPTER 2. THEORETICAL BACKGROUND

variables X and Y . Hence we can easily express the mutual information between event and
precursor as follows

M(sn, χn(η)) =
∫
sn

dsn p[sn, χn(η) = 1] log
p[sn, χn(η) = 1]
ρ[sn]p[χn(η) = 1]

+
∫
sn

dsn p[sn, χn(η) = 0] log
p[sn, χn(η) = 0]
ρ[sn]p[χn(η) = 0]

. (2.39)

2.3.2 Forecast Verification

In contrast to the measures discussed in the previous section, forecast verification consists by
definition in comparing a forecast with the corresponding observation. Thus the quality of a
single forecast can only be evaluated retrospectively, when the forecasted event was observed or
not observed. From a practical point of view, in the moment in which the knowledge about the
observation is available, the forecast also looses its value. However, by comparing many pairs
of forecasts and observations one can derive information about the overall quality of a forecast
method.

The framework proposed by Murphy [72] is based on the joint probability of forecast and
observations. Based on this joint PDF and its possible factorizations in terms of marginal PDFs
and CPDFs one can then derive properties, which one hopes a probabilistic forecast p̂ to fulfill.
Note that it is the definiton of the decision variable as shown in Eqn. 2.8 and 2.34 which makes
a distinction between a forecast based on the full CPDF of a forecast based on the maximum of
the CPDF (the precursor). As we discussed in Sec. 2.2.3, forecasts made by precursors which are
identified by CPDs, can thus be interpreted as an approximation to a full probabilistic forecast.

Intuitively, one would hope that p̂(sn) gives the probability of χn(η) = 1 given sn, or

p̂(sn) = p[χn(η) = 1|sn]. (2.40)

Many reasonable measures of forecast success support this intuition, that is, they give maximum
possible scores if p̂(sn) indeed agrees with the probability of χn(η) = 1 given sn.

A seemingly different way to motivate p[χn(η) = 1|sn] as a good forecast probability is
through reliability. Reliability means that on condition that the relative frequency of alarms
(approximately) equals z, the event should occur with a relative frequency (approximately)
equal to z, too. As an optimality criterion, reliability is not sufficient to single out a particular
forecasting scheme, since any conditional probability of the form p(χn(η) = 1|I) is reliable,
independent of what I is. In particular, the unconditional probability p̂(sn) = const. = p[χn(η) =
1] is reliable as well. Hence, in addition to reliability, the forecast should feature a high correlation
with the actual event. This property is known as sharpness. It can be demonstrated (also as
a consequence from the Neyman-Pearson theorem), that p[χn(η) = 1|sn] is indeed the reliable
forecast which features maximum sharpness among all functions of sn.

Furthermore one can propose so called Scoring schemes, which evaluate a scoring function
on every pair of forecast and observation and then average in order to obtain information about
the overall quality of the forecast method. In the following Section we will discuss the Brier
score and the ignorance as examples for Scores.

2.3.3 Brier Score and Ignorance

A score is a “point–wise” (evaluated at every single time instance) measure of performance.
It quantifies the success of individual forecast instances by comparing the forecasts p̂n and
the observations χn(η) for every n. The general quality of a forecasting system is commonly
measured by the average score E [S(p̂, χn(η))], which can be estimated from the empirical mean

E [S(p̂, χn(η))] ∼= 1
N

N∑
i=1

S(p̂i, χn(η)) (2.41)
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over a sufficiently large data set (p̂i, χn(η)). A scoring rule [76, 77, 78, 79] is a function S(p̂, χn(η))
which effectively defines two functions S(p̂|χn(η) = 1) and S(p̂|χn(η) = 0) quantifying the score
in case the forecast is p̂ and the event happens or does not happen. Two important examples
are the ignorance score[80], given by the scoring rule

S(p̂, χn(η)) := − log(p̂) · χn(η) − log(1 − p̂) · (1 − χn(η)), (2.42)

and the Brier score[81], given by the scoring rule

S(p̂, χn(η)) := (χn(η) − p̂)2 = (1 − p̂)2 · χn(η) + p̂2 · (1 − χn(η)). (2.43)

Both definitions imply the convention that a smaller score indicates a better forecast.
The rationale behind both scoring rules mentioned is rather obvious. If the event occurs,

the score should become better (i.e., decrease) with increasing p̂, while if it does not occur, the
score should become worse (i.e. increase) with increasing p̂. But why then not taking just 1− p̂
if the event occurs, and p̂ if it does not? To see the problem with this “linear” scoring rule,
define the scoring function

s(p̂, q) := S(p̂, 1) · q + S(p̂, 0) · (1 − q) (2.44)

where q is another probability, i. e. , a number in the unit interval. Note that the scoring function
is the score averaged over cases where the forecast is p̂ but in fact q is the true distribution of
χ. In view of the interpretation of the scoring function, it seems reasonable to require that the
average score of the forecast p̂ should be best (i.e. minimal) if and only if p̂ in fact coincides
with the true distribution of χ. This means that the divergence function

d(p̂, q) := s(p̂, q) − s(q, q) (2.45)

has to be positive definite, i.e., it has to be nonnegative, and zero only if p̂ = q. A scoring rule
with the corresponding divergence function having this property is called strictly proper [78, 82].
The divergence function of the Brier score for example is d(p̂, q) := (p̂− q)2, demonstrating that
this score is strictly proper. While the ignorance is proper as well, the linear score though is
easily shown to be improper. In total, scores are designed to evaluate the forecast of multiple
values. It is not in general obvious that we can apply them to evaluate binary forecast.

2.3.4 The Receiver Operating Characteristic and the Likelihood Ratio

A common method to verify a hypothesis or test the quality of a prediction via precursory struc-
tures is the receiver operating characteristic curve (ROC curve) [83, 84]. In the 1980s it became
popular for medical diagnostic testing, nowadays there are many other fields of application as
well. The idea of the ROC curve consists simply in comparing the rate of correctly predicted
events rc (hit rate, rate of true positives, sensitivity) with the rate of false alarms rf (rate of
false positives,(1-specificity)) by plotting rc vs. rf as it is illustrated in Fig. 2.5. Numerically,
these rates can be computed from the original time series {xn} and the time series of the events
{χn(η)} by simple counting. In order to calculate rc and rf analytically, we have to consider
the respective definition of the decision variables, either in terms of the alarm volume according
to Eq. (2.8) or in terms of a probability threshold according to Eq. (2.34). In the context of
predictions with precursory structures, these rates of correct and false alarms can be calculated
from the posterior PDFs of events and non-events

rc(u, η, δ) =
∫

Vpre(u,δ)
dsn ρ[sn|χn(η) = 1], (2.46)

and rf (u, η, δ) =
∫

Vpre(u,δ)
dsn ρ[sn|χn(η) = 0], (2.47)
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Figure 2.5: An example for an ROC curve and the slope of the ROC curve in the vicinity of the
origin, i.e., the likelihood ratio.

where V (u, δ) is the alarm volume as defined in Sec. 2.2
If the definition of the decision variable according to Eq. (2.34) is applied, then the rates of

correct prediction and the rate of false alarms are given by the following expressions:

r̂c(η, δ) =
∫
sn:p[χn(η)=1|sn]≥1−δ

dsn ρ[sn|χn(η) = 1], (2.48)

and r̂f (η, δ) =
∫
sn:p[χn(η)=1|sn]≥1−δ

dsn ρ[sn|χn(η) = 0], (2.49)

which can only be evaluated analytically if the regions for which p[χn(η) = 1|sn] ≥ δ holds are
simply connected.

Thus for each value of δ one obtains a point in the ROC-coordinates and if δ is assumed to
be a continuous variable one arrives at a curve parametrized by δ. The resulting curve in the
unit-square of the rf -rc plane approaches the origin for δ → 0 and the point (1, 1) in the limit
δ → ∞. It follows readily from the definitions that both rc and rf are monotonously decreasing
functions of the size of the tolerance volume δ with limits 0 for decreasing δ and 1 for increasing
δ. Hence, the ROC curve is a monotonously increasing arc connecting the points (0, 0) and
(1, 1).

A ROC curve with a monotonously decreasing slope (a convex ROC) is called proper
ROC curve [84].

The shape of the curve characterizes the significance of the prediction. A curve above the
diagonal reveals that the corresponding strategy of prediction is better than a random prediction
which is characterized by the diagonal.

If we have to compare ROCs created from two different decision variables A and Ã, then
it is not obvious to decide which is “the better” ROC as the two curves might cross. This is
a problem if a criterion is required in order to optimize a prediction algorithm, in particular,
when we search for optimal precursors. Hence, summary indices [85] of ROC curves are needed,
for example the following:

Proximity to (0,1) (Kolmogorov Smirnov Distance): A good ROC should be close to the
point (0, 1), that is where the false–alarm rate is zero while the hit rate is 1. The point
closest to (0, 1) would simultaneously define an operation point for the algorithm.
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Area under ROC curve: The area under the ROC curve (AUC) is a well established sum-
mary index for ROC curves, which should be maximal. It can be shown that this quantity
gives the probability that on an instance when the event takes place, the decision variable
is actually larger than on an independent instance when the event does not take place. It
is a global quantity, averaging over all alarm rates.

Maximal Hit Rate for fixed Alarm Volume: Optimizing ROC for precursors by asking for
a maximal hit rate without any further constraints is not a useful criterion, since all decision
variables have a maximum hit rate of 1, achievable by just giving always alarms. Fixing
the alarm volume this criterion leads to precursors according to strategy I of Sect. 3. Note
that the false alarm rate is not considered at all in such an optimization, so that the
optimal hit rate for fixed alarm rate might be achieved at the cost of an unreasonably
large false alarm rate. Inverting the criterion to minimizing the false alarm rate for fixed
alarm volume leads to the same precursor.

Ratio of Hit Rate and False Alarm Rate (Likelihood Ratio): A maximum ratio of hit
rate versus false alarm rate in the limit of small false alarm rates yields another well
established summary index, the slope m of the ROC curve at the vicinity of the origin,
which we can identify as the likelihood ratio. The slope of the ROC curve is given by

m[u, δ, χ(η)] =
drc

drf
=

∂rc[u,δ,χ(η)]
∂δ

∂rc(u,δ,χ(η))
∂δ

(2.50)

Expressing the partial derivatives of the rates by their definition, i.e.,

∂rc[u, δ, χ(η)]
∂δ

= lim
h→0

rc[u, δ + h, χ(η)] − rc[u, δ, χ(η)]
h

(2.51)

and then considering

lim
x→p

f(x)
g(x)

=
limx→p f(x)
limx→p g(x)

, (2.52)

(see e.g., [86]) the slope of the ROC curve reads

m[u, δ, χ(η)] = lim
h→0

rc[u, δ + h, χ(η)] − rc[u, δ, χ(η)]
rf [u, δ + h, χ(η)] − rf [u, δ, χ(η)]

. (2.53)

Assuming that the Euclidean norm was used to define the alarm Volumina used in Eqs. (2.46)
and (2.47), the rates of correct prediction and false alarm for the decision variable according
to Eq. (2.8) are given by

rc(u, η, δ) =
∫ uτ−1+δ/2

uτ−1−δ/2
dxn−τ+1

∫ uτ−2+δ/2

uτ−2−δ/2
dxn−τ+2 ...

∫ u0+δ/2

u0−δ/2
dxn ρ[sn|χn(η) = 1],

(2.54)

rf (u, η, δ) =
∫ uτ−1+δ/2

uτ−1−δ/2
dxn−τ+1

∫ uτ−2+δ/2

uτ−2−δ/2
dxn−τ+2 ...

∫ u0+δ/2

u0−δ/2
dxn ρ[sn|χn(η) = 0],

(2.55)
with sn = (xn−τ+1, xn−τ+2, ..., xn).

Substituting with y = sn + 1
2
�δ, with the τ− dimensional vector �δ = (δ, δ, ..., δ) yields

rc(u, η, δ) =
∫ uτ−1+δ

uτ−1

dyn−τ+1

∫ uτ−2+δ

uτ−2

dyn−τ+2 ...

∫ u0+δ

u0

dyn ρ

[
y − 1

2
�δ
∣∣∣χn(η) = 1

]
,

(2.56)

rf (u, η, δ) =
∫ uτ−1+δ

uτ−1

dyn−τ+1

∫ uτ−2+δ

uτ−2

dyn−τ+2 ...

∫ u0+δ

u0

dyn ρ

[
y − 1

2
�δ
∣∣∣χn(η) = 0

]
,

(2.57)
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which allows us to express the difference rc[u, δ + h, χ(η)] − rc[u, δ, χ(η)] as

rc[u, δ + h, χ(η)] − rc[u, δ, χ(η)] =

=
∫ uτ−1+δ+h

uτ−1+δ
dyn−τ+1

∫ uτ−2+δ+h

uτ−2+δ
dyn−τ+2 ...

∫ u0+δ+h

u0+δ
dyn

[
y − 1

2
�δ
∣∣∣χn(η) = 1

]
,

(2.58)

and the analog for rf [u, δ + h, χ(η)] − rf [u, δ, χ(η)]. Using the mean value theorem of the
integral calculus, we can express the difference as

rc[u, δ + h, χ(η)] − rc[u, δ, χ(η)] = hτρ

[
u +

1
2
�δ + �ξ

∣∣∣χn(η) = 1
]

, (2.59)

with �ξ = (ξ1, ξ2, ..., ξτ ), (ui−1 + δ < ξi < ui−1 + δ + h), (i = 1, 2, ...τ),

and the analog for rf [u, δ+h, χ(η)]−rf [u, δ, χ(η)]. Hence we obtain the following expression
for the slope of the ROC curve

m[u, �δ, χ(η)] = lim
h→0

ρ
[
u + 1

2
�δ + ξc

∣∣∣χn(η) = 1
]

ρ
[
u + 1

2
�δ + ξf

∣∣∣χn(η) = 0
] =

ρ
[
u + 1

2
�δ
∣∣∣χn(η) = 1

]
ρ
[
u + 1

2
�δ
∣∣∣χn(η) = 0

] (2.60)

with ξc = (ξc
1, ξ

c
2, ..., ξ

c
τ ), (ui−1 + δ < ξc

i < ui−1 + δ + h), (i = 1, 2, ...τ),

and ξf = (ξf
1 , ξf

2 , ..., ξf
τ ), (ui−1 + δ < ξf

i < ui−1 + δ + h), (i = 1, 2, ...τ).

Comparing with Sec. 2.2.3 we see, that this expression is indeed the likelihood ratio

m[u, �δ, χ(η)] =
ρ
[
u + 1

2
�δ
∣∣∣χn(η) = 1

]
ρ
[
u + 1

2
�δ|χn(η) = 0

] = Λ
[
u +

1
2
�δ, χ(η)

]
. (2.61)

In [87] it is shown that this relation also holds for tolerance volumes, which are not con-
nected, i.e., the tolerance volume according to Eq.(2.34).

We will use the slope in the vicinity of the origin of the ROC curve, i.e. in the limit of
small tolerance volumes

m[u, 0, χ(η)] =
ρ[u|χn(η) = 1]
ρ[u|χn(η) = 0]

= Λ[u, χ(η)] (2.62)

as a summary index for the ROC curve. The slope of the ROC curve decreases monotonously
with increasing tolerance volume, to the value of zero in the point (1,1). Thus the slope in
the vicinity of the origin does not only corresponds to the region, in which we have a very
low rate, but it also provides us with the maximal slope of the ROC curve. Alternatively
one could also consider the slope for a fixed size of the alarm volume as a summary index.

2.3.5 Consequences of the Neyman-Pearson Lemma

We saw in the previous subsection, that the shape of an ROC curve can be characterized by the
likelihood ratio. From Sec. 2.2 we know that due to the Neyman-Pearson lemma the strategy
which maximizes the likelihood ratio is the optimal strategy for a prediction. Furthermore we
argued that this optimal strategy is represented by strategy II which consists in predicting with
the likelihood p[χn(η) = 1|sn] or a precursor which maximizes it. Due to the connection of
ROC curve and likelihood ratio, we can hence conclude, that strategy II is also the optimal
strategy in terms of the ROC curve. This connection was already noticed by Egan in 1975 [84]
in his studies about the use of ROCs in signal detection. Egan calls the respective decision
rule, which optimizes the likelihood ratio likelihood ratio observer. Furthermore Egan found,
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that “the ROC for the likelihood observer is never concave upwards”. This can be understood,
by considering that the point (0,0) of the ROC corresponds to the maximum of the likelihood
ratio. If we then lower the tolerance threshold δ, we move away from this maximum of the
likelihood ratio, i.e., the slope of the ROC decreases. In other words, the slope of the ROC is a
monotonously decreasing function and hence we can expect to observe a convex ROC or a ROC
which corresponds to the diagonal, but not a concave ROC.

Another consequence derived from the likelihood ratio is the existence of monotone like-
lihood ratio families and corresponding families of ROC curves. Imagine a situation, where
the likelihood ratio is given by two distributions which are in addition to the conditioning on
the event/non-event parameterized by a variable θ. If we understand the likelihood ratio as a
function of sn we now have a family of functions Λ(sn, θ) parametrized by θ. This situation
can be reflected by a family of ROCs. Egan investigated this property for the special case,
that the nominator and the denominator of the likelihood ratio are given by distributions which
differ only in their means [84]. The resulting family of likelihood ratios and ROC curves are
thus parametrized by the relative difference of the means. The main topic of interest in this
contribution is very similar, since we study families of ROC curves which are parametrized by
the event magnitude η.
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Chapter 3

Predicting Increments in AR(1) and long
range correlated ARMA Processes

In this chapter we study analytically and numerically predictions in a simple autoregressive
process of order 1 [AR(1) process] in order to obtain a detailed understanding of some aspects
on precursors and predictions. The AR(1) process is a simple stationary stochastic model
process, that might not reflect all features of more complex processes occurring in nature, but it
admits an analytic treatment. Additionally, we study similar prediction procedures numerically
in long-range correlated data, verifying the same quantitative results. The aspects, which we
intend to address are the following:

A1, superiority of strategy II: In the previous chapter we argued, that according to the
Neyman-Pearson lemma, strategy II should be superior to strategy I. In this chapter we
will illustrate this aspect for the example of the AR(1) process.

A2, influence of the event magnitude: In the introduction we listed examples from the lit-
erature in which a better predictability of larger events was reported. The simple AR(1)
process allows us to study this effect analytically and numerically.

A3, influence of the correlation: Naturally one would expect a stronger correlation to lead
to a better quality of the predictions. However, for events defined as increments, the rea-
soning has to be more subtle, especially if the forecast is made by statistical considerations.
Thus we study the influence of the correlation of the data on the quality of predictions of
extreme increments.

3.1 AR(1) process

In this chapter we study the prediction of increments, as defined in Subsec. 2.1.2, in a time-series
{xn} which is generated by an auto-regressive model of order 1 [AR(1)] (see, e.g.,[33])

xn+1 = axn + ξn, (3.1)

where ξn are uncorrelated Gaussian random numbers and −1 < a < 1 is a constant which
represents the coupling strength. The size and the sign of the coupling strength determine
whether successive values of xt are clustered or spread, as illustrated in Fig. 3.1. In the case
a = 0 the process reduces to uncorrelated random numbers with mean μ = 0 and variance
σ2 = 1, whereas generally the process is exponentially correlated 〈xnxn+k〉 = |ak| < 1 .

The joint PDF p(sn, χn(η)) of event and precursory variable is derived from the joint PDF
ρj(x0, x1, ..., xn+1) of the process as described in Subsec. B. The Markov property of the AR(1)
process suggests to reduce the vector valued precursory variable sn to the scalar value xn, i.e.,
sn = xn and κ = τ = 1. For a stationary process the conditional PDF ρ(xn+1|xn) is given by

ρ(xn+1|xn) =

√
1
2π

exp
(
−1

2
(
xn+1 − axn

)2)
, (3.2)

27
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Figure 3.1: Parts of the time series generated by the AR(1) process for different values of a.

since it adapts the distribution of the noise term ξn, which has mean axn. The marginal
probability for one variable xn of an AR(1) process reads (see e.g., [33]

ρ(xn, a) =
√

1 − a2

√
2π

exp
(
−1 − a2

2
x2

n

)
. (3.3)

Since the magnitude of the events is naturally measured in units of the standard deviation
σ(a), the relative magnitude of the events η is given by η = d

σ(a) = (
√

1 − a2)d, where d denotes
the absolute magnitude of an increment.

Applying the filter mechanism developed in App. B we obtain the a posteriori PDF of extreme
events and the joint PDF of non-extreme events as defined in Sec.2.2.3

p[xn, χn(η) = 1, a] =

√
1 − a2

2π
exp
(
−(1 − a2)

2
xn

2

)
∫ ∞

0
dγ exp

(
−1

2
(
(1 − a)xn + d + γ

)2)

=
1
2

√
1 − a2

2π
exp
(
−(1 − a2)

2
xn

2

)
erfc

(√
1
2

(
(1 − a)xn + d

))
.

(3.4)

Replacing the absolute event magnitude d = η√
1−a2

and normalizing with p[χn(η) = 1, a] leads
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to the posterior PDFs

ρ[xn|χn(η) = 1, a] =
√

1 − a2

2
√

2πp[χn(η) = 1, a]
exp
(
−1 − a2

2
x2

n

)
.

erfc
(

(1 − a)xn√
2

+
η√

2
√

1 − a2

)
, and (3.5)

ρ[xn|χn(η) = 0, a] =

√
1 − a2

2
√

2π(1 − p[χn(η) = 1, a])
exp
(
−1 − a2

2
x2

n

)
(

1 + erf
(

(1 − a)xn√
2

+
η√

2
√

1 − a2

))
.

(3.6)

Through Bayes’ theorem we can calculate the corresponding likelihoods

p[χn(η) = 1|xn, a] =
1
2
erfc
(

(1 − a)xn√
2

+
η√

2
√

1 − a2

)
(3.7)

p[χn(η) = 0|xn, a] =
1
2

(
1 + erf

(
(1 − a)xn√

2
+

η√
2
√

1 − a2

))
(3.8)

The total PDF p[χn(η) = 1, a] to find events can only be calculated exactly if the process under
study is uncorrelated, i.e., for a = 0. (The corresponding calculation for a sequence of Gaussian
random numbers will be presented in Sec. 5.2.) For the AR(1) process with −1 < a < 1 we can
obtain an approximation by using an asymptotic expression for the mean of the posterior PDF,

〈xn〉ρ[xn|χn(η)=1,a] =
∫ ∞

−∞
dxn xnρ[xn|χn(η) = 1, a]. (3.9)

Inserting Eq. (3.5) and using the integral representation

∫
z exp(−b2z2) erfc(az + c) dz =

=
−a

2b2
√

a2 + b2
exp
(
− b2c2

a2 + b2

)
erf
(

z
√

a2 + b2 +
ac√

a2 + b2

)

− 1
2b2

exp(−b2z2) erfc(az + c) (3.10)
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Figure 3.2: The means evaluated numerically by integration of Eq. (3.9) and the asymptotic expression
according to Eq. (3.13). The symbols represent the results of the numerical calculation, the black lines
represent Eq. (3.13).

from [88] we find that the mean of the posterior PDF is given by

〈xn〉ρ[sn|χn(η)=1] =
√

1 − a2

2
√

2π p[χn(η) = 1, a]

∫ ∞

∞
exp
(
−1 − a2

2
x2

n

)

erfc
(

(1 − a)xn√
2

+
η√

2
√

1 − a2

)
dx

= −
√

1 − a2

2
√

2π p[χn(η) = 1, a]

√
1 − a√

2(1 − a2)
exp
(
−(1 + a)

4
d2

)

erf
(

xn

√
1 − a +

√
1 − a

2
d

)∣∣∣∣
∞

−∞

− 1
(1 − a2)

exp
(
−(1 − a2)

2
x2

)
erfc
(

(1 − a)√
2

z +
d√
2

)∣∣∣∣
∞

−∞

=
− exp

(
− (1+a)

4 d2
)

4
√

π
√

1 + a p[χn(η) = 1, a]
erf
(

xn

√
1 − a +

√
1 − a

2
d

)∣∣∣∣∣∣
∞

−∞

=
− exp

(
− (1+a)

4 d2
)

4
√

π
√

1 + a p[χn(η) = 1, a]

(
1 − (−1)

)

=
− exp

(
− η2

4(1−a)

)
2
√

π
√

1 + a p[χn(η) = 1, a]
. (3.11)

We can then formulate the total probability in terms of the mean

p[χn(η) = 1, a] =
− exp

(
− η2

4(1−a)

)
2
√

π
√

1 + a 〈xn〉ρ[sn|χn(η)=1]

(3.12)

Since we do not know the analytic structure of the mean explicitely, we assume, that the mean
of the posterior PDFs is similar to its maximum. In principle the maximum of a PDF equals the
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Figure 3.3: The lines with symbols represent the values of p[χn(η) = 1, a], which are obtained by
numerically integrating the posterior PDF given by Eq. (3.5). The lines without symbols represent the
expression for p[χn(η) = 1, a] according to Eq. (3.14).

mean only in the special case, that the distribution is symmetric and unimodal. Although our
posterior PDFs given by Eq. 3.5 are unimodal, they are not symmetric as Fig. 3.4 illustrates.
Thus, replacing the mean by the asymptotic expression for the maximum of the posterior PDF
in Eq. (3.20) which will be derived in the following section is nothing else than an educated
guess. Hence for large values of η we expect

〈xn〉 � uI ∼ − η

2
√

1 − a2
(
1 + O

(
1
η2

)) , (η → ∞), (3.13)

to hold, provided that ρ[xn|χn(η) = 1, a] is not too asymmetric (i.e., a is not too small). Fig. 3.2
compares this asymptotic expression with specific values for the means obtained by numerical
integration of Eq. (3.9) and reveals that the approximation in Eq. (3.20) holds well for positive
values of a and it is not too bad for negative a.

Inserting the asymptotic expression for the mean into Eq. (3.11) to obtain an approximation
for the total probability to observe extreme events

p[χn(η) = 1, a] ∼
√

1 − a√
π

1
η

exp
(
− η2

4(1 − a)

)(
1 + O

(
1
η2

))
, η → ∞. (3.14)

Figure 3.3 shows that for large values of η this expression complies well with the numerical
results for p[χn(η) = 1, a], which were obtained by numerically integrating the posterior PDF
as given by Eq. (3.5).

3.2 Determining the precursor value

Because of the Markov-property of the AR(1) model the precursory variable is reduced to the
preceeding value xn and the alarm volume reduces to an alarm interval. Thus, we give an alarm
for an extreme event when an observed value xn is in an interval

I = [u − δ/2, u + δ/2]; (3.15)
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Figure 3.4: The a posteriori PDFs for the AR(1) process are depicted for different values of a < 0 and
η. The vertical lines represent the means. The PDFs become asymmetric for a → −1. (For a = −0.99
and η → ∞ the marginal PDFs becomes very flat and hence can not be distinguished from the x-axis.)

around the precursor u.
Although we saw in Sec. 2.2.3 that strategy II is superior to strategy I we illustrate this

property with the example of the AR(1) process. Therefore we compute the precursor values of
both strategies, xI , and xII , according to Eqs. (2.17) and (2.18), i.e.,

uI := sup
xn

ρ[xn|χn(η) = 1], (3.16)

uII := sup
xn

p[χn(η) = 1|xn]. (3.17)

3.2.1 The precursor according to strategy I

Differentiating Eq. (3.5) with respect to xn, the maximum uI of p[xn|χn(η) = 1, a], is given by
the solution of the transcendental equation

uI =
√

2√
π(1 + a)

exp
(
−1

2

(
(1 − a)xI + η√

1−a2

)2
)

erfc
(

(1−a)xI√
2

+ η√
2
√

1−a2

) .

(3.18)

Inserting the asymptotic expansion for large arguments of the complementary error function

erfc(z) ∼ exp(−z2)√
πz

(
1 +

∞∑
m=1

(−1)m
1 · 3...(2m − 1)

(2z2)m

)
,

(
z → ∞, |argz| <

3π
4

)
, (3.19)

which can be found in [89] we obtain:

uI ∼ − η

2
√

1 − a2
(
1 + O

(
1
η2

)) , (η → ∞). (3.20)
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Figure 3.5: The ROC curves made for the precursors of strategy I. The lines represent the results of
the evaluation of the integrals in Eqs (2.46) and (2.47) , the symbols correspond to the results of the
empirical test using the means of ρ[xn|χn(η) = 1, a] as precursors and 107 AR(1)- correlated data. In the
case a = 0.99 the data set contained no extreme events which were significantly larger than η = 0. Very
large events (η = 8) were only observed for a=-0.75 and a=-0.99.

Fig. 3.4 shows the posterior PDFs according to Eq. (3.5) for different values of a and η. One
can see that the maximum of ρ[xn|χn(η) = 1, a] moves towards −∞ with increasing size of η
and decreasing a. Note that ρ[xn|χn(η) = 1, a] becomes asymmetric if a → −1 and its variance
increases immensely if a → 1. Although we can always formally define the maximum uI one
can argue that the maximum of the distribution has no predictive power if a → 1. Since
ρ[xn|χn(η) = 1, a] becomes very flat in this limit, the value of ρ[xn|χn(η) = 1, a] in its maximum
does not considerably differ from the values in any other point.

3.2.2 The precursor according to strategy II

In order to determine uII , the precursor for strategy II, we have to find the maximum of the
likelihood in xn as given in Eq. (3.7). Since the complementary error function is a monotonously
decreasing function of xn we see that we do not have a well defined maximum uII and that the
interval I− = [−∞, δ] with the upper limit δ represents the optimal strategy to raise alarms
according to strategy II. In other words, the optimal precursor for strategy II is

uII = −∞. (3.21)

Since we will never observe this optimal precursor value in a given data set, we consider the
smallest observed value in the data set as an approximation for uII , i.e., the “practically useable”
value up

II is given by
up

II := min{xn}. (3.22)

3.3 Testing the Performance of the Precursor

In order to test for the predictive power of uI and uII we create ROC curves, as discussed
in chapter 2. We use two different ways of determining the rates of correct prediction and



34 CHAPTER 3. PREDICTING INCREMENTS IN AR(1) PROCESSES

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

rate of false alarms

ra
te

 o
f c

or
re

ct
 p

re
di

ct
io

ns
empirical

strategy II

η=0

a= 0
a= 0.75
a= 0.99

a= -0.75
a= -0.99

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

num. int.

η=2

a= 0
a= 0.75
a= 0.99

a= -0.75
a= -0.99

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

η=4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

η=8

Figure 3.6: The ROC curves made for the precursors of strategy II. The lines represent the results of
the evaluation of the integrals in Eqs (2.46) and (2.47) , the symbols correspond to the results of the
empirical test using the means of ρ[xn|χn(η) = 1, a] as precursors and 107 AR(1)- correlated data. In the
case a = 0.99 the data set contained no extreme events which were significantly larger than η = 0. Very
large events(η = 8) were only observed for a=-0.75 and a=-0.99.

false alarms. In order to determine the rates from the analytically calculated posterior PDFs
we evaluate the integrals in Eqs. (2.46) and (2.47) by using Mathematica [90]. As precursor
values we inserted the means of the posterior PDFs as an approximation of the maxima for the
calculations according to strategy I. In order to calculate the rates of false alarms and correct
predictions according to strategy II we used the smallest values of the AR(1) correlated data
sets as precursors. Note that this evaluation of strategy II, was made in order to compare the
analytic results with the ROC curves obtained from the AR(1) correlated data sets. Thus the
smallest value of the data sets was inserted for the numerical evaluation of the alarm rates,
instead of the theoretical precursor value uII = −∞.

We also generated ROC-plots empirically by predicting within 107 AR(1)- correlated data.
The second method consists in simply performing predictions on a time series of 107 AR(1) data,
and counting the number of extreme increments which could be predicted by using the precursors
specified above. For different values of the correlation coefficients the data sets contained the
following numbers of extreme increments:

number of increments of size
a η ≥ 0 η ≥ 2 η ≥ 4 η ≥ 8

-0.99 5000059 1579103 222858 310
-0.75 5000563 1425146 162405 107

0 5000417 786355 23370 0
0.75 5000818 23377 0 0
0.99 5001081 0 0 0

For both methods, the size of the precursory volume ranged from 10−6 to 4, measured in size of
the standard deviation of the marginal PDF of the AR(1) process σ(a) = 1/

√
1 − a2.

The figures 3.5 and 3.6 reveal that the empirically determined rates comply well with the rates
obtained via the evaluation of Eqs. (2.46) and (2.47). Hence, we tried to create the ROC curves
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Figure 3.7: The influence of the correlation strength a and the event magnitude η on the ROC-Plots
made for the precursors of strategy I.

for the values of a and η, which were not accessible for the empirical test, via evaluating the
integrals in Eqs. (2.46) and (2.47) with Mathematica. However for very large values of η, and
a → 1 also the evaluation of the integrals was not successful, see e.g, the curves for a = 0.99
in Fig. 3.6. The reason for this, is that in this case, the probability to find large increments
in the data set become smaller than 10−7 and thus the standard algorithms for the numerical
integration fail to archive reasonable accuracy.

The resulting ROC curves are shown in Figs. 3.7- 3.9. Whereas Figs. 3.5 and 3.6 focus on
comparing the ROC curves obtained via integrating the posterior PDFs and the empirically
generated ROC curves, Figs. 3.7 and 3.8 reveal the dependence on the event magnitude for
different values of a and Fig.3.9 focus on the comparison of strategy I and strategy II.

In total the resulting ROC curves display the following properties:

A1, superiority of strategy II:
Fig. 3.9 illustrate that the predictions according to strategy II are better than the pre-
dictions according to strategy I for all values of a and η. A detailed discussion of this
phenomenon will be provided in Sec. 3.4.

A2, influence of the event magnitude:
The ROC curves display an increase of the quality of our prediction with increasing size
of the events η. Explanations for this effect will be provided by the asymptotic expression
for the likelihood ratio in Sec. 3.4.

A3, influence of the correlation:
The prediction within the strongly correlated random numbers with positive correlation
strength (a=0.99) is not (significantly) better than any random prediction which corre-
sponds to the diagonal. Hence our precursor does not have any predictive power in this
case. This complies with the fact that ρ[xn|χn(η) = 1, a] is very flat for this value of a, as
discussed in the previous section. Surprisingly we observe a better quality of prediction
for a = 0, although in this case the predictions were made within completely uncorrelated
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Figure 3.8: The influence of the correlation strength a and the event magnitude η on the ROC-Plots
made for the precursors of strategy II.
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Figure 3.9: The ROC-Plots made for the precursors of strategy I and II. The lines represent the results
of strategy I, the symbols correspond to predictions made according to strategy II. In both cases the
predictions were made within 107 AR(1)- correlated data.

random numbers. This is contrary to the intuitive expectation that the quality of the
prediction should increase with increasing correlation strength. In fact, we observe the
opposite: the predictability increases with decreasing correlation strength a. This obser-
vation is in agreement with results which were reported by Sornette et al. in [91] for the
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prediction of signs of increments in uncorrelated random numbers. The prediction of the
sign of an increment within uncorrelated random numbers corresponds to the special case
η = 0 and a = 0 of the AR(1) process we discuss here. We can understand this counter
intuitive effect by considering that increments are not independent from the last observa-
tion. More precisely xn+1 − xn = (a − 1)xn + ξn, so that the absolute value of the known
part of the increment (a − 1)xn is the larger, the smaller a. A formal explanation of the
a-dependence is also given by an asymptotic expression for the slope m(u, a, η), which we
derive in Sec. 3.4.

3.4 Analytical investigation of the Precursor Performance

In this section we try to understand the results A1-A3 obtained by the ROCs by investigating
the asymptotic behavior of the slope m(u, η, a) of the ROC curve in the vicinity of the origin.
As we saw in chapter 2 the slope of the ROC curves m(u, η, a) is identical to the likelihood ratio
Λ(u, η, a). For the AR(1) processes under study the slopes in the vicinity of the origin are given
by

Λ(a, η, u) =
(1 − p[χn(η) = 1, a])

p[χn(η) = 1, a]
B
(
u, η, a

)
, (3.23)

with B
(
u, η, a

)
=

erfc
(

(1−a)u√
2

+ η√
2
√

1−a2

)
1 + erf

(
(1−a)u√

2
+ η√

2
√

1−a2

) , (3.24)

where B
(
u, η, a

)
denotes the ratio of odds, as introduced in the previous chapter (see Eq. (2.33)).

Inserting the asymptotic expression for the total probability in Eq. (3.14) we obtain

Λ(a, η, u) ∼
⎛
⎝ √

π√
1 − a

η exp
(

η2

4(1−a)

)
1 + O

(
1
η2

) − 1

⎞
⎠B

(
u, η, a

)
, (η → ∞).

(3.25)

According to the choice of the precursor u, we have to consider two different behaviors of the
ratio of odds B

(
u, η, a

)

lim
η→∞B

(
u, η, a

)
=
{

1, if u = −∞;
0, if u > −∞.

(3.26)

3.4.1 The theoretical precursor given by strategy II

The first case in Eq. (3.26) corresponds to the theoretical precursor value for strategy II. The
slope of the ROC curves obtained with strategy II can be computed by simply evaluating
Eq. (3.23) at the value uII = −∞

Λ(a, η, uII) = ∞ for xII = −∞, η �= 0, (3.27)
since erf(∞) = −1. (3.28)

Thus, if we make predictions according to strategy II, with a size independent precursor uII =
−∞, we should in theory expect to obtain ROC curves which coincide with the vertical axis
of the plot and hence represent an ideal predictability for all size of events and all possible
correlation strengths. However, since in any finite data set, the precursor is not −∞, but the
smallest accessible data point, we find also for strategy II ROC curves which depend on a and
η.



38 CHAPTER 3. PREDICTING INCREMENTS IN AR(1) PROCESSES

3.4.2 Finite (realistic) precursors

For any finite precursor value, i.e., here uI and any finite up
II , it is necessary to ascertain, if the

contribution of the ratio B
(
u, η, a

)
or the exponential function in Eq. (3.25) prevails. Inserting

the asymptotic expansion of the complementary error function in Eq. (3.19), the ratio B
(
u, η, a

)
reads

B(z) =
erfc(z)

1 + erf(z)
=

erfc(z)
2 − erfc(z)

∝ exp(−z2)
(
1 + O ( 1

z2

))
2
√

πz − exp(−z2)
(
1 + O ( 1

z2

)) , (z → ∞)

with z = z(η, a, u) =
(1 − a)√

2
u +

η√
2
√

1 − a2
(3.29)

Note that the limit z → ∞ corresponds to the limit η → ∞ for fixed values of a and u, but it can
also be interpreted as the limit a → ±1 for a fixed (sufficiently large) value of η. The later case
will be discussed in more detail in Sec. 3.4.3, whereas we focus in this section on the dependence
of the coupling strength. We therefore demand in the following that the selected precursor value
u is fixed and finite such that η → ∞ implies z → ∞. Inserting the consideration made for the
ratio of odds, we obtain the following asymptotic expression for the slope

Λ(a, η, u) ∼
√

π√
1 − a

⎛
⎝η exp

(
η2

4(1−a)

)
(
1 + O

(
1
η2

)) − 1

⎞
⎠B(u, η) (3.30)

∼
√

π√
1 − a

⎛
⎝η exp

(
η2

4(1−a)

)
(
1 + O

(
1
η2

)) exp(−z2)
(
1 + O

(
1
η2

))
2
√

πz − exp(−z2) −O
(

exp(−z2)
η2

) − B(u, η)

⎞
⎠(3.31)

∼
η exp

(
η2

4(1−a) − z2
)

2
√

1 − az −
√

1−a√
π

exp(−z2) − (O)
(

exp(−z2)
η2

) −
√

πB(u, η)√
1 − a

(3.32)

∼ η exp (f(u, η, a))

2
√

1 − az −
√

1−a√
π

exp(−z2) −O
(

exp(−z2)
η2

) −O
(

exp(−z2)
z2

)
,

with f(u, η, a) =
η2

4(1 − a)
−
(

(1 − a)u√
2

+
η√

2
√

1 − a2

)2

,

and O (B(u, η)) = O
(

exp(−z2)
z2

)
. (3.33)

The denominator of Eq. (3.33) tends to 2
√

(1−a)z in the limit z → ∞, hence the asymptotic be-
havior of the whole expression is mainly influenced by the argument f(u, η, a) of the exponential
function in Eq. (3.33). If f(u, η, a) is positive, we can expect Λ(a, η, u) to increase exponentially
with increasing event magnitude η. Whereas we can expect Λ(a, η, u) to approach a constant in
the limes η → ∞ if f(u, η, a) is negative. Hence we can use the zeros of this parabolae f(u, η, a),
namely

(u0(a, η))+,− =
η

1 − a

(
− 1√

1 − a2
± 1√

2(1 − a)

)
(3.34)

to discuss the regimes in which a chosen precursor value leads to an increase of Λ(u, a, η) with
increasing η. Figure 3.10 illustrates the following discussion. For a fixed value of η, we can
clearly distinguish specific intervals [(u0)−, (u0)+], for which f(u, η, a) is nonnegative. However
for a fixed value of η it is also pointless to discuss the limit η → ∞. As we see in Eq. (3.34)
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and in Fig. 3.10, the width of the intervals [(u0)−, (u0)+] is a function of the coupling strength
a and especially for a → −1, the intervals become quite small. Thus for a fixed range of
η ∈ [η−, η+], and a precursor value u �∈ [(u0(a, η))−, (u0(a, η))+] the slope of the ROC-plot
could also decrease instead of increase with increasing η, which is in contrast to the observations
made in the previous section. However, we should not forget, that the borders of the intervals
[(u0)−, (u0)+] are functions of η themselves, i.e., they decrease linearly with increasing η, as
the explicit expression for the zeros of in Eq. (3.34) reveals and as it is illustrated in Fig. 3.11.
Furthermore, the width w(a, η) of the intervals in which f(u, a, η) is positive also increases
linearly with increasing η

w(a, η) = (u0(a, η))+ − (u0(a, η))− (3.35)

=

√
2

(1 − a)
η

(1 − a)
, (3.36)

which is also displayed in Fig. 3.11 (b). Hence, in the limit η → ∞, η �= ∞ also the width of
the interval for which f(u, a, η) is positive increases, i.e., it becomes more likely that we find
a specific precursor value u within this interval. Only if η = ∞ the interval size reduces to
zero and we arrive at the single point u = −∞, which is the optimal (theoretical) precursor
according to strategy II. Thus discussing the limit η → ∞ implies that w(a, η) → ∞ and
u ∈ [(u0(a, η))+, (u0(a, η))−]. The consequence of this is

Λ(a, η, u) → ∞, (u ∈ [(u0(a, η))+, (u0(a, η))−], and η → ∞). (3.37)

The special case of strategy I

There are (at least) three ways to show, that for strategy I larger events are the better pre-
dictable, the larger they are, i.e., the slope m of the ROC curve increases, with increasing η.
The first aproach consist in simply showing, that the asymptotic expression for uI according
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to Eq. (3.13) lies within the interval [(u0(a, η))−, (u0(a, η))+] for all value of a and η. As the
discussion in the previous section suggests, in this case m → ∞, as η → ∞. This can be also
shown by inserting the asymptotic expression, given by Eq. (3.13) in Eq. (3.33). The third
aproach starts even before Eq. (3.33) and focuses on separating the influences of the posterior
PDF to find events, after the precursor was observed ρ[xn|χn(η) = 1, a] , and the corresponding
PDF for non-events ρ[xn|χn(η) = 0, a]. In order to illustrate the role of each posterior PDF
we will choose a third aproach. Therefore we study first the asymptotic behavior of the pos-
terior PDFs ρ[uI |χn(η) = 1, a] and ρ[uI |χn(η) = 0, a] and then the behaviour of the complete
likelihood ratio. Inserting the asymptotic expression for the total probability to find events
according to Eq. (3.14), the approximation of uI in Eq. (3.13) and the asymptotic expansion of
the complementary error function Eq. (3.19) we find the following asymptotic expression

ρ[uI |χn(η) = 1, a] =

√
1 − a2

2
√

2π p[χn(η) = 1, a]
exp
(
−1 − a2

2
u2

I

)

erfc
(

(1 − a)uI√
2

+
η√

2
√

1 − a2

)
(3.38)

∼
√

1 − a2

2
√

2π p[χn(η) = 1, a]
exp

⎛
⎝−η2

8
1(

1 + O
(

1
η2

))
⎞
⎠

erfc

⎛
⎝
⎛
⎝ 1 + a + O

(
1
η2

)
2
√

2
√

1 − a2
(
1 + O

(
1
η2

))
⎞
⎠ η

⎞
⎠ , (η → ∞)

In the following we will denote the asymptotic expression for the argument of the complementary
error function by

g(a, η) =

⎛
⎝ 1 + a + O

(
1
η2

)
2
√

2
√

1 − a2
(
1 + O

(
1
η2

))
⎞
⎠ . (3.39)
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By using the asymptotic expression of the complementary error function in Eq. (3.19), we arrive
at

ρ[uI |χn(η) = 1, a] ∼
√

1 − a2

2
√

2π p[χn(η) = 1, a]

exp

(
−η2

8
1“

1+O
“

1
η2

”” − (η g(a, η))2

)
√

π (η g(a, η))(
1 +

∞∑
m=1

(−1)m
1 · 3...(2m − 1)
2 (η g(a, η))2m

)
, (η → ∞). (3.40)

Simplifying the argument of the exponential function

⎛
⎜⎝−η2

8
1(

1 + O
(

1
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)) −
⎛
⎝
⎛
⎝ 1 + a + O

(
1
η2

)
2
√

2
√

1 − a2
(
1 + O

(
1
η2

))
⎞
⎠ η

⎞
⎠

2
⎞
⎟⎠

= − η2
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1
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.

and truncating the expansion yields

ρ[uI |χn(η) = 1, a] ∼
√

1 − a2

2
√

2π p[χn(η) = 1, a]

exp
(
− η2

4(1−a)

)
η g(a, η)

(
1 + O

(
1
η2

))
, (η → ∞). (3.41)

If we now replace the total probability to find events by its asymptotic expression from Eq. (3.14),
i.e.,

p[χn(η) = 1, a] ∼
√

1 − a√
π

1
η

exp
(
− η2

4(1 − a)

)(
1 + O

(
1
η2

))
, (η → ∞),

we arrive at

ρ[uI |χn(η) = 1, a] ∼
√
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2
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1
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(
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(
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η2

)) , (η → ∞). (3.44)
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Hence the value of the PDF at the precursor approaches a constant if terms of the order 1/η2

can be neglected. The asymptotic expression for ρ[uI |χn(η) = 0, a] can be evaluated analogously

ρ[uI |χn(η) = 0, a] =
√

1 − a2

2
√

2π(1 − p[χn(η) = 1, a])
exp
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2
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I

)
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+
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2
√
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(3.45)
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√
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(
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(
1
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√
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””
)

√
2π
(
1 −O

(
exp(−η2)

η

)) (
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(
exp(−η2)

η

))
, (η → ∞)

∼
√
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√
2π

exp

⎛
⎝−η2

8
1(

1 + O
(

1
η2

))
⎞
⎠ , (η → ∞). (3.49)

Thus, we can conclude, that ρ[uI |χn(η) = 1, a] decreases in the leading order as exp(−η2) with
increasing η. The numerically evaluated PDFs ρ[xn|χn(η) = 1, a] and ρ[xn|χn(η) = 0, a] at
xn = uI and their approximations given by Eqs. (3.44) and (3.49) are compared in Fig. 3.12.
The approximations become worse for a → −1, since in this case ρ[xn|χn(η) = 1, a] becomes
asymmetric and hence the assumption in Eq. (3.13) does not hold. Note that the value of the
failure PDF at the precursor value decreases as a squared exponential with increasing η.

Inserting the asymptotic expressions for the posterior PDFs in Eqs. (3.44) and (3.49) yields

Λ(xI , a, η) ∼
√

2
1 + a

exp

⎛
⎝ η2

8
(
1 + O

(
1
η2

))
⎞
⎠

(
1 + O

(
1
η2

))
(
1 + a + O

(
1
η2

)) η → ∞. (3.50)

The numerical evaluation of this expression leads to the straight lines in Fig. 3.13 which indicate
the slopes of the ROC-plots. Since the posterior PDF of the events approaches a constant,
whereas the posterior PDF for the non-events decreases, with increasing η one can argue, that
strategy I’s main contribution to the slope of the ROC curves is the minimization of the rate
of false alarms. Or more precisely, at least, the η-dependence of the slope can be explained
as a decrease of the failure PDF (see Eq. (3.44) and Fig. 3.12). This effect is illustrated in
Fig. 3.14 which compares for families of posterior PDF ρ[xn|χn(η, a) = 1, a] ρ[xn|χn(η, a) = 0, a]
parametrized by the event magnitude η for a = −0.75. Since the maximum of the posterior PDF
ρ[xn|χn(η, a) = 0, a] remains at the origin, but the precursor of strategy I, i.e., the maximum of
ρ[xn|χn(η, a) = 0, a], tends to infinity, the values of ρ[xn|χn(η, a) = 0, a] at the precursor value
xI decrease according to the decrease of ρ[xn|χn(η, a) = 0, a] as xn → −∞.

Since the precursor value obtained by strategy II is even further away, from xI in which the
marginal failure PDF ρ[xn|χn(η) = 0, a] has its maximum, strategy II focus on the minimization
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to Eqs. (3.44) and (3.49).

of the failure rate, rather than on the maximization of the rate of correct predictions. The fact,
that in this point the corresponding value of the marginal PDF ρ[xn|χn(η) = 1, a] is also far away
from the maximum of ρ[xn|χn(η) = 1, a] does apparently not significantly influence the quality
of the prediction . Since strategy II leads to better predictions than strategy I, the minimization
of the rate of false alarm seems to be more relevant for the quality of the predictions, than
maximizing the rate of correct predictions.

3.4.3 The dependence on the coupling strength

As we saw before for uII = −∞, the theoretical precursor of strategy II, the asymptotic behavior
of Λ(a, η, uII ) → ∞. Hence the slope would be independent of the value of the coupling strength
if the “theoretical” precursor of strategy II could be used.

For any finite precursor value, the asymptotic expression for the slope of the ROC-plots
in Eq. (3.33) can also serve to investigate the dependence on the variable a, as we already
mentioned in Sec. 3.4.2. Starting again from Eq. (3.33), namely

Λ(u, a, η) ∼ η exp (f(u, η, a))
√

1 − a
(
2z − 1√

π
exp(−z2)

)
−O

(
exp(−z2)

η2

) −O
(

exp(−z2)
z2

)
, (z → ∞)

with f(u, η, a) = − η2

4(1 + a)
−

√
1 − a√
1 + a

uη − (1 − a)2

2
u2,

and z = z(u, a, η) =
(1 − a)√

2
u +

η√
2
√

1 − a2
. (3.51)

we now interprete the limit z → ∞ in the following way. Let η have an arbitrary fixed value,
large enough to ensure that Eq. (3.14) is a useful approximation for the total probability and
thus the limit z → ∞ corresponds to a → ±1. Hence, for any finite precursor the asymptotic
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expressions of f(u, a, η) and z2(u, a, η) read as follows

f(u, a, η) ∼ − η2

4(1 + a)
+ O (√1 − a

)
, (a → 1), (3.52)

z2(u, a, η) ∼ η2

2(1 − a2)
+ O (√1 − a

)
, (a → 1), (3.53)

and we would thus expect f(u, a, η) → const. in the limit a → 1.
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The asymptotic expression for the likelihood ratio Λ(u, a, η) is then given by

Λ(u, a, η) ∼ η exp (f(u, η, a))

2
√

1 − az(u, a, η) −O
(
exp
(
− 1

1−a2

)) −O
⎛
⎝exp

(
− 1

1−a2

)
1 − a2

⎞
⎠ , (a → 1), (3.54)

∼
η exp

(
− η2

4(1+a) + O (√1 − a
))

√
2η√

1+a
+

√
2(1 − a)3/2u −O

(
exp
(
− 1

1−a2

)) −O
⎛
⎝exp

(
− 1

1−a2

)
1 − a2

⎞
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∼ ηO (1)√
2η√

1+a
+ O ((1 − a)3/2

) −O
⎛
⎝exp

(
− 1

1−a2

)
1 − a2

⎞
⎠ , (a → 1),

(3.55)

and hence Λ(u, a, η) → O (1).

In the limit a → −1 the terms −
√

1−a
1+aηu and (1−a)2

2 u2 in f(u, a, η) and z2(u, a, η) do not
vanish, i.e.,

f(u, a, η) ∼ − η2

4(1 + a)
−
√

1 − a

1 + a
ηu + O (1) , (a → −1), (3.56)

z2(u, a, η) ∼ η2

2(1 − a2)
+

√
1 − a

1 + a
ηu + O (1) , (a → −1), (3.57)

although the leading order terms are still − η2

4(1+a) and η2

2(1−a2)
. In order to understand the role of

the term
√

1−a
1+aηu we have to keep in mind, that suitable precursors for increments are typically

negative, i.e., u < 0. Thus the behavior of the leading order terms is not enforced by
√

1−a
1+aηu,

but inhibited. In other words f(u, a, η) ∼ o (1/(1 + a)), if u > 0 and f(u, a, η) ∼ O (1/(1 + a)),
if u < 0 and analog for z2(u, a, η). In any case f(u, a, η) → −∞ and z(u, a, η) → −∞ in the
limit a → −1 and hence

Λ(u, a, η) ∼
η exp

(
− η2

4(1+a) −
√
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1+aηu + O (1)

)
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⎛
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1−a2

)
1 − a2

⎞
⎠ , (a → −1),(3.58)

∼
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)
√
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⎠ , (a → −1),(3.59)

∼ O (exp(−1/(1 + a)))√
2η√

1+a
+ O (1)

−O
⎛
⎝exp

(
− 1

1−a2

)
1 − a2

⎞
⎠ , (a → −1). (3.60)

Thus Λ(u, a, η) → 0, as a → −1.
If we demand now, that u ∈ [(u0)−, (u0)+] (which also implies u < 0), we know, that

f(u, a, η) > 0, as discussed in the previous section. This implies, that the absolute value of the

term
√

1−a
1+aηu is larger than − η2

4(1+a) . In other words, a suitable chosen value of u ensures, that

the term
√

1−a
1+aηu dominates the overall behavior of f(a, u, η) and not the term, which is of

leading order in terms of a → ±1. Hence since√
1 − a

1 + a
ηu → 0, (a → 1), (3.61)

and

√
1 − a

1 + a
ηu → ∞, (a → −1), (3.62)
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Figure 3.15: ROC curves for the ARMA(∞,∞) processes with γc = 0.2 andγc = 0.8.

f(u, a, η) → ” + 0”, (a → 1) and f(u, a, η) → ∞, (a → −1). Consequently Λ(u, a, η) → 1,
(a → 1) and Λ(u, a, η) → ∞, (a → −1).

In total we can say, that the asymptotic expressions of the likelihood ratio reflect the behavior
of the ROC curves, if the chosen precursor is within the interval [(u0)−, (u0)+] : The predictions
become better as a → −1 and worse for a → 1.

However, the result for precursors outside the interval in the limit a → −1 , namely
Λ(u, a, η) → 0, (a → −1) , does not comply to the observations and is also a result which
is difficult to understand in terms of the ROC curves.

3.5 Predicting extreme increments in long-range correlated pro-
cesses

We study the same aspects as we investigated before in the short range correlated AR(1) pro-
cesses, in long-range correlated processes. The idea is, to test whether the long-range correlation
does qualitatively alter the results obtained for the prediction of extreme increments. Since the
precursors we were interested in live on a very short time scale (one step before the event), one
should not expect long-range correlations to lead to qualitatively different results for the aspects
we were interested in.

There are various definitions of long-range correlation. Typically long-range correlation
in a time series is characterized by the exponent 0 < γc < 1 of the power-law decay of the
autocorrelation function as a function of the time t

Cx(t) = 〈xnxn+t〉 =
1

N − t

N−t∑
n=1

xnxn+t ∼ t−γc (3.63)

The correlation coefficient γc is controlling, how fast the correlations decay.
We study the predictability of increments numerically by applying the prediction strategies

described in Sec. 3.2 and in chapter 2. The data used for this numerical study were generated
as described in [92] and applied in [?]: Imposing a power-law decay on the Fourier spectrum,

fx(k) ∝ k−β (3.64)
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with 0 < β < 0.5 and choosing phase angles at random one obtains through an inverse Fourier
transform the long-range correlated time series in x with γc = 1 − 2β. The data are Gaussian
distributed with 〈x〉 = 0, σ = 1. Having specified the power spectrum or, correspondingly,
the autocorrelation function for sequences of Gaussian random numbers means to have fixed all
parameters of a linear stochastic process. Hence, in principle the coefficients of an autoregressive
or moving average process can be uniquely determined, where, due to the power-law nature of
the spectrum and autocorrelation function the order of either of these models have to be infinite
[34, 33]. Thus, the effects which we observed for this ARMA(∞, ∞) model should be valid for
the whole class of linear long-term correlated processes.

The ROC curves in Fig. 3.15, which are generated from the long-range correlated data are
very similar to the ones for the AR(1) process in terms of the question we want to study.

A1, superiority of strategy II:
The ROC curves obtained by using strategy II are superior to the curves resulting from
strategy I.

A2 and A3, influence of the event magnitude and of the correlation
The quality of the prediction also increases with increasing event size and decreasing
correlation. The decrease of the correlation is explicitely shown in Fig. 3.16

Hence we observe the same effects which we described before for the AR(1) process in a long
range correlated ARMA(∞, ∞) process.

3.6 Summary

We studied the predictability of extreme increments in an AR(1) correlated process and in
long-range correlated ARMA processes. To measure the quality of the prediction we used the
ROC curve and additionally the slope of the ROC curve in the vicinity of the origin as a summary
index. This so called likelihood ratio, characterizes particularly the behavior in the limit of low
false-alarm rates.

In the case of the AR(1) process we could construct the posterior PDF and the likelihood
analytically from a given joint PDF and hence we were able to obtain the asymptotic behavior
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of the likelihood ratio analytically. In the case of the two other examples, we constructed the
posterior PDFs numerically. The resulting distributions were then used to determine precursors
according to two different strategies of prediction.

In all examples we studied the aspects : (A1) Which is the best strategy to choose precur-
sors? (A2) How does the predictability depend on the event size? (A3) And how does the
predictability depend on the correlation? The results can be summarized as follows:

superiority of strategy II
Strategy I, the a posteriori approach, maximizes the rate of correct predictions, while
strategy II focuses on the minimization of the rate of false alarms. 1 For the example of
the AR(1) process one can show that strategy II is the optimal strategy to make predictions.
For other stochastic processes, it is not in general clear which of the two strategies leads
to a better predictability. However, the application to the prediction of wind speeds and
the numerical study within long-range correlated data reveals that also for these examples
better results are obtained by predicting according to strategy II.

influence of the event magnitude:
The examples studied, we observe an increase of predictability with increasing size of the
events. This phenomenon which is also reported for specific examples [20, 21, 22], can be
discussed by investigating the asymptotic behavior of our summary index. In the case of
the AR(1) process we showed explicitly that the likelihood ratio increases as a squared
exponential with increasing event size.

influence of the correlation:
For the AR(1) process and the long-range correlated data we observe that the correlation of
the data is inversely proportional to the quality of the predictions. This effect is due to the
special definition of the events as increments. The asymptotic expression for the likelihood
ratio in Eq. (3.33) provides us also with a formal understanding of the a-dependence.

1Note that the terms maximization and minimization refer to changes in the integrand, which enters into the
alarm rates as given by Eqs. (2.46) and (2.47) and not to changes in the integration ranges Vpre and V−.



Chapter 4

Investigating the Influence of the
Event Size

In the previous chapter, we saw that large increments are in the examples of the AR(1) processes
and in the long-range correlated linear processes, the better predictable the larger they are. In
the following we will call this effect positive magnitude dependence of the quality of a prediction.
The previous chapter also revealed that we could describe the magnitude dependence investigat-
ing the asymptotic behavior of the likelihood ratio. In Chap. 2 we noticed that the likelihood
ratio is essentially given by the likelihood to observe an event after a precursor occurred and
by the total probability to find events. Both probabilities are derived from the joint PDF of
event and precursor. Hence, we can expect to predict the occurrence of a (positive) magnitude
dependence by simply knowing the joint PDF of event and precursor or the likelihood and the
total probability to find events. In this chapter we will formulate a condition, based on the
likelihood and the total probability, which can indeed predict the occurrence of a positive or
negative magnitude dependence.

4.1 Magnitude Dependence of a Prediction

A survey of the literature reveals, that the better predictability of larger events was sporadically
already reported by other authors. Lamper et al. [22] report an enhanced predictability prior
to large changes in multi-agent games. They “measure” the predictability by visual comparison
of the forecasted behavior of a time series and the verification. Furthermore Snirman et al. [23]
found hints for the fact that larger avalanches in the Bak-Tang-Wiesenfeld sand pile are better
predictable than smaller ones. They consider the error-curve which is typically used to char-
acterize the efficiency of earthquake prediction algorithms as a measure for the quality of their
predictions. For the prediction of wind speeds it was reported [36] that predictions focusing on
larger wind gusts lead to better results in terms of better ROC curves.

An example from weather forecasting, which also uses the quantity which we call likelihood
ratio is the work of Göber [21], who investigates “that forecasts of more extreme (rare) events
have more skill than forecasts for more ’normal’ events” for the prediction of precipitation.
Events and non-events are in this case rainfall or no rainfall and Göber discusses the observed
effect as an influence of the total probability to observe events. Furthermore he proposes a
measure in which the influence of the total probability is eliminated. As a critical remark it has
to be said that removing this explicit dependence on the total probability in the measure does
not eliminate the implicit influence on the likelihood to find extreme events, as one can easily
see by expressing the likelihood in terms of Bayes’ theorem. Furthermore one could argue, that
the total probability plays the role of a normalizing factor in the likelihood ratio and in the
ROC curve .

This last example raises also the interesting question whether the observed dependence on

49
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the event magnitude is in fact not simply a dependence on the rareness, i.e., the low relative
frequency or the low probability to observe events. We will discuss this question in more detail
in Sec. 4.4.

Inspired from the above mentioned examples we dare to name the effect that larger events
are observed to be better predictable in the following definition.

Definition 5 (Magnitude Dependence of a the Prediction Quality)
Suppose, that we have specified a certain measure L for the quality of a prediction. Then we call
a prediction of an event magnitude dependent under L if the quality of the prediction changes
as the magnitude of the events under study is varied.

positive magnitude dependence If the quality of the prediction increases with increasing
event magnitude, we call the prediction positively dependent on the event magnitude.

negative magnitude dependence If the quality of the prediction decreases with increasing
event magnitude, we call the prediction negatively dependent on the event magnitude.

magnitude independence If we cannot find any dependence on the event magnitude we will
call the prediction not magnitude dependent.

Note that the magnitude dependence depends sensitively on the measure of the quality which
is used. We will see in Sec. 4.3 that considerations made for one quality measure do in general
not describe the magnitude dependence of another measure, even if both measures are applied
to the same problem under study.

4.2 The Test-condition for Likelihood Ratios

We are now interested in learning how the predictability depends on the event magnitude η if
we use ROC curves and their slopes in the vicinity of the origin, to characterize the quality of a
prediction. As discussed already in Sec.2.3.4 for prediction via precursory structures, the slope
of the ROC curve is given by the likelihood ratio

m[u, δ, χ(η)] =
ρ[u + δ|χn(η) = 1]
ρ[u + δ|χn(η) = 0]

= Λ[u + δ, χ(η)]. (4.1)

and we can use the the slope in the vicinity of the origin

m[u, δ = 0, χ(η)] = Λ[u, χ(η)] =
ρ(u|χn(η) = 1)
ρ(u|χn(η) = 0)

(4.2)

as a summary index. In the following we will discuss the magnitude dependence of the likelihood
ratio Λ[sn, χ(η)].

Via Bayes’ theorem the likelihood ratio as introduced in Eq. 2.28 can be expressed in terms
of the likelihood p[χn(η) = 1|sn] and the total probability to find events p[χn(η) = 1].

Λ[sn, χn(η)] =

(
1 − p[χn(η) = 1]

)
p[χn(η) = 1]

ρ[χn(η) = 1|sn](
1 − ρ[χn(η) = 1|sn]

) . (4.3)

Keeping in mind that the likelihood and the total probability were in fact calculated from the
joint PDF p(sn, χn)1 of the precursor time series {xn} and the time series of events and non-
events {χn} (see App. B), we can reformulate the expression as

Λ[sn, χn(η)] =

(
1 − ∫∞−∞ dsn Θ(f(χn))p(sn, χn)

)
∫∞
−∞ dsn Θ(f(χn))p(sn, χn)

Θ(f(χn))p(sn, χn)

ρ(sn)
(
1 − Θ(f(χn))p(sn,χn)

ρ(sn)

) . (4.4)

1Note that the notation p[sn, χn] describes the joint PDF of the precursor and of both, events and non-events,
i.e., the filtering for events did not take place yet.
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Θ(f(χn)) denotes the event filter as described in App. B and the function f(χn) has to be
specified according to the definition of the event. The filter Θ(.) for events defined as increments
and threshold crossings as it is used in App.B leads to the following expression

Λ[sn, χn(η)] =

(
1 − ∫∞−∞ dsn p(sn, χn(η) = 1)

)
∫∞
−∞ dsn p(sn, χn(η) = 1)

p(sn, χn(η) = 1)

ρ(sn)
(
1 − p(xn,χn(η)=1)

ρ(sn)

) ,

with p(sn, χn(η) = 1) =
∫
M

dxn+κ p(sn, xn+κ), M = {xn+κ : χn = 1}, (4.5)

and ρ(sn) = p[sn, χn(η) = 1] + p[sn, χn(η) = 0].

Looking at the rather technical formula in Eq. (4.5), there are three remarkable aspects:

Characterization via the joint PDF: Once the event and precursory variable are defined,
(thus implicitly also set M is defined,) the slope of the ROC-plot is fully characterized
by the knowledge of the joint PDF p[sn, χn] of the precursory variable sn and the event
variable χn.

Dependence on the correlation: The characterization via the joint PDF implies that in the
framework of statistical predictions, all kind of (long-range) correlations which might
be present in the time series influence the quality of the predictions only through
their influence on the joint PDF of events and precursors.

Influence of the event type: The definition of the event, e.g., as a threshold crossing or an
increment enters only into the set on which the integrals in Eq. (4.4) are carried out. Both
χn(η) and the borders of the integrals in Eq. (4.4) have to be defined according to the type
of events under study.

Exploiting Eq. (4.4) we can hence determine the dependence of the likelihood ratio and the
ROC curve on the event magnitude η, via the dependence of the joint PDF of the process under
study.

In order to simplify the expressions we prefer to work with the PDFs derived from the
joint PDF, namely the likelihood to observe an extreme event after a certain precursor value
p[χn(η) = 1|sn] and the total probability to observe events p[χn(η) = 1]. Our aim is to find
constraints or conditions which the likelihood and the total probability to find events have to
fulfill in order to find a better predictability of larger (smaller) events. A simple way to arrive
at such a condition consists in asking for the change of the likelihood ratio with increasing event
magnitude η.

∂

∂η
Λ[sn, χn(η)] � 0. (4.6)

Before we continue, we introduce the following notations for the posterior PDFs, the likelihood
and the total probability to find events, in order to improve the readability of the following
calculations,

L := p[χn(η) = 1|sn], (4.7)

L′ :=
∂

∂η
p[χn(η) = 1|sn], (4.8)

P := p[χn(η) = 1], (4.9)

P ′ :=
∂

∂η
p[χn(η) = 1], (4.10)

Λ′ =
∂

∂η
Λ[sn, χn(η)]. (4.11)
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Computing the derivative and rearranging the equation yields

Λ′ =
∂

∂η

L − LP

P − PL
,

=
(L′ − L′P − P ′L)(P − PL) − (P ′ − P ′L − L′P )(L − LP )

(P − PL)2

=
PL′ − P 2L′ − PLP ′ − PLL′ + P 2LL′ + PL2P ′

(P − PL)2

+
−LP ′ + L2P ′ + PLL′ + LPP ′ − L2PP ′ − LP 2L′

(P − PL)2

=
L′(P − P 2 − PL + P 2L + PL − P 2L)

(P − PL)2

+
P ′(−PL + PL2 − L + L2 + LP − L2P )

(P − PL)2

=
PL′(1 − P ) − LP ′(1 − L)

P 2(1 − L)2

=
L′(1 − P )
P (1 − L)2

− P ′L
P 2(1 − L)

=
1

P (1 − L)

(
L′(1 − P )
(1 − L)

− P ′L
P

)
(4.12)

Typically 0 < L(sn, η) < 1, 0 < P (sn, η) < 1 for all finite values of the precursory variable due
to their definition as PDFs and hence we can manipulate the equations:

Λ′ � 0 ⇔ L′(1 − P )
P (1 − L)

− P ′L
P 2

� 0, (4.13)

⇔ L′

L
− (1 − L)

(1 − P )
P ′

P
� 0, (0 < L < 1), (0 < P < 1).

(4.14)

Thus if 0 < L(sn, η) < 1, 0 < P (sn, η) < 1, the derivative of the likelihood ratio is positive
(negative, zero), if the following sufficient condition c(η, sn) is fulfilled

c(η, sn) =
∂

∂η
ln p[χn(η) = 1|sn] −

(
1 − p[χn(η) = 1|sn])

)(
1 − p[χn(η) = 1]

) ∂

∂η
ln p[χn(η) = 1] � 0. (4.15)

In the special case L = 1 and 0 < P < 1 Eq. (4.12) diverges either to ∞ or −∞ in dependence
on the sign of L′. In case that L = 0 and 0 < P < 1 we are left with the following expression

Λ′ =
L′(1 − P )

P
, (L = 0), (0 < P < 1). (4.16)

The case P = 1 corresponds to a tracer time series which consists only of events, thus we can
conclude, that in this case also L = 1 holds for all possible precursors. Both assumptions lead
to

Λ′ → L′(1 − P )
(1 − L)2

− P ′

(1 − L)
, (P → 1), (L → 1). (4.17)

Since the first term in Eq. (4.17) is not well defined, and we cannot exclude that (P → 1)
faster then (L → 1), it is hard to say which is the dominating term. However since the case
P = 1, L = 1 corresponds to the perfect prediction scenario (always correct prediction, no false
alarms), represented by a ROC curve situated on the vertical axis, we know that the likelihood
ratio has in this case the value ∞ and thus no improvement due to a change in the event size is
possible.
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Analogously the case P = 0 also implies L = 0 which leads as well to a derivative of Λ′,
which contains not well defined expressions,

Λ′ → L′

P
− P ′L

P 2
, (P → 0), (L → 0). (4.18)

In total we can summarize these considerations to the following conditions to test the magnitude
dependence.

Condition 1 (Condition to test the magnitude dependence)

(a) If 0 ≤ p[χn(η) = 1|sn] < 1 and 0 < p[χn(η) = 1] < 1,

sign
(

∂

∂η
Λ[sn, χn(η)]

)
= sign c(η, sn), (4.19)

with c(η, sn) =
∂

∂η
ln p[χn(η) = 1|sn] −

(
1 − p[χn(η) = 1|sn])

)(
1 − p[χn(η) = 1]

) ∂

∂η
ln p[χn(η) = 1],

holds. Consequently,

if c(η, sn) > 0 , the corresponding families of likelihood ratios and ROC curves, parametrized
by η show a positive magnitude dependence,

if c(η, sn) < 0 , the corresponding families of likelihood ratios and ROC curves show a
negative magnitude dependence and

if c(η, sn) = 0 , likelihood ratio and ROC curves are not dependent on the event magni-
tude.

(b) If p[χn(η) = 1|sn] = 0 and 0 < p[χn(η) = 1] < 1,
or if p[χn(η) = 1|sn] = 1 and 0 < p[χn(η) = 1] < 1, then

sign
(

∂

∂η
Λ[sn, χn(η)]

)
= sign

(
∂

∂η
p[χn(η) = 1|sn]

)
. (4.20)

Consequently,

if ∂
∂ηp[χn(η) = 1|sn] > 0 the corresponding families of likelihood ratios and ROC curves,

parametrized by η show a positive magnitude dependence,

if ∂
∂ηp[χn(η) = 1|sn] < 0 the corresponding families likelihood ratios and ROC curves show

a negative magnitude dependence and

if ∂
∂ηp[χn(η) = 1|sn] = 0 the likelihood ratio and the ROC curve are not dependent on the

event magnitude.

(c) For (p[χn(η) = 1] = 1) which implies (p[χn(η) = 1|sn] = 1) and (p[χn(η) = 0) which implies
(p[χn(η) = 1|sn] = 0) the derivative of the likelihood ratio is not well defined.

Remarks:

addressing (a) The conditions leading to case (a) describe a typical scenario, in which pre-
diction via precursory structures is required. Hence in most examples for the prediction
via precursory structures the condition c(η, sn) is needed, whereas the (b) and (c) are less
common.
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addressing (b) In theory the case p[χn(η) = 1|sn] = 1 only occurs for predictions in a deter-
ministic system. However we can also find it as a numerical artefact in any finite time
series containing a finite number of events. Note that the condition in (a) is formulated
in a way which prevents this numerical artefact to cause a divergence of c(η, sn), i.e., in
principle also the formulation

c̃(η, sn) =

(
1 − p[χn(η) = 1]

)(
1 − p[χn(η) = 1|sn]

) ∂

∂η
ln p[χn(η) = 1|sn] − ∂

∂η
ln p[χn(η) = 1] (4.21)

could have been considered.

addressing (c) Note, that the cases of p[χn(η) = 1] = 1, i.e., every data point is an extreme
event, and p[χn(η) = 1] = 0, no extreme events are observed so far do not correspond to
situations in which one would ask for predictions based on precursors in time series.

Although the considerations leading to this theorem are extremely simple, Eq. (4.19) turns
out to be a useful tool in order to characterize the occurrence of the magnitude dependence.
Consequently one can tell for an arbitrary process, if extreme events are better predictable, by
simply testing, if the marginal PDF of the event and the likelihood of event and precursor fulfill
Eq. (4.19).

4.3 The magnitude dependence of the Kullback Leibler distance

Having formulated a condition which describes the magnitude dependence for the likelihood ratio
and for ROC curves, we could in principle derive similar conditions for other quality measures.
Since we saw that the likelihood ratio is closely linked to the Kullback Leibler distance we
can also ask, whether the corresponding magnitude dependences can be described by the same
condition. Evaluating the magnitude dependence for the Kullback Leibler distance leads to

∂

∂η
D(p(η, sn)||q(η, sn)) =

∫
dsn log

(
p(η, sn)
q(η, sn)

)(
∂

∂η
p(η, sn)

)

+
∫

dsn p(η, sn)
q(η, sn)
p(η, sn)

(
∂

∂η

p(η, sn)
q(η, sn)

)
.

Substituting p(η, sn) by ρ[sn|χn(η) = 1] and q(η, sn) by ρ[sn|χn(η) = 0] yields

∂

∂η
D(ρ[sn|χn(η) = 1]||ρ[sn|χn(η) = 0]) =

∫
dsn log (Λ(sn, χn(η))

(
∂

∂η
ρ[sn|χn(η) = 1]

)

+
∫

dsn ρ[sn|χn(η) = 0]
(

∂

∂η
Λ(sn, χn(η)

)
.

(4.22)

This Kullback Leibler distance evaluates the separability of the CPDFs according to strategy I.
Equation (4.22) displays, that the sign of ∂

∂ηΛ(sn, χn(η) does not determine the sign of
∂
∂ηD(ρ[sn|χn(η) = 1]||ρ[sn|χn(η) = 0]). The analog holds for the Kullback Leibler distance,
which describes the separability of the CPDFs according to strategy II:

∂

∂η
D(p[χn(η) = 1|sn]||p[χn(η) = 0|sn]) =

∫
dsn log B(sn, χn(η))

(
∂

∂η
p[χn(η) = 1|sn]

)

+
∫

dsn p[χn(η) = 0|sn]
(

∂

∂η
B(sn, χn(η))

)
,

(4.23)

with B(sn, χn(η)) denoting the ratio of odds, as defined in Chap. 2.
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4.4 Frequently asked Questions

• Is the better predictability of larger events not simply caused by an increased
signal to noise ratio?

It is sometimes suggested, that the better detectability of larger events can be simply described
by an increased signal to noise ratio. In other words, larger events are expected to be better
predictable since they and their precursors differ significantly from the typical behavior of the
system under study. Following this intuitive explanation we would expect to observe a better
predictability of larger events in any case. This is in contrast to the previous investigation
for the AR(1) process. We saw, that there are regimes of parameters for which we observe
a positive magnitude dependence in terms of a diverging likelihood ratio and an improved
ROC statistics. However, we also discussed that for other values of e.g., the precursor or the
coupling strength, the likelihood ratio does not show a positive magnitude dependence in any
case. Furthermore Chap. 5 will provide us with more counter examples. Thus, the intuitive
explanation via an increased signal to noise ratio is not sufficient to describe the phenomenon
under all circumstances and instead the condition in Eq. (4.19) should be applied.

• Is the better predictability of larger events not simply a better predictability
of rarer events?

Eq. (4.19) can also serve to discuss the question, whether the dependence on the magnitude
is a dependence on the rareness, i.e., the decreasing total probability to observe events. Most
PDFs have the property that larger events are rarer and this dependence enters into the explicit
formula of the joint PDF of event and precursor via the definition of the event magnitude.
Since the likelihood and the total probability to find events are derived from the joint PDF, this
dependence consequently propagates into the likelihood.

Visualizing the dependence of the likelihood on the “rareness”, i.e., the total probability of
events, one can simply express the likelihood via Bayes’ theorem

p[χn(η) = 1|sn] =
ρ[sn|χn(η) = 1]p[χn(η) = 1]

ρ(sn)
. (4.24)

Inserting this and the analog for the likelihood that a precursor is followed by a non-event into
the likelihood ratio, the terms involving the total probabilities cancel

m[sn, χn(η)] =

(
1 − p[χn(η) = 1]

)
p[χn(η) = 1]

ρ[sn|χn(η) = 1]p[χn(η) = 1]
ρ(sn)

ρ(sn)
ρ[sn|χn(η) = 0](1 − p[χn(η) = 1])

.

(4.25)

Thus, the “rareness” in terms of the total probability to find events plays an important role in the
likelihood ratio. However, according to our understanding this role consists more in normalizing
the likelihood than in giving an own contribution to the observed effect. One can argue that
it is in fact the normalization with the total probability which insures that ROC curves are
independent on the total probability, as we argued already in Sec. 2.3.4.

• How do the results for the ROC curve relate to predictions which are evaluated
using the “(ad your favorite measure of predictability here)-score”?

As we saw on the example of the Kullback Leibler distance discussed in Sec. 4.3, one cannot
conclude that the magnitude dependence found for the ROC curve or the likelihood ratio can
describe the magnitude dependence of other scores.
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4.5 Summary

In this chapter we saw, that for different examples of prediction tasks and different measures for
the quality of the predictions the effect, that larger events are better predictable was reported.
We therefore call this effect the positive magnitude dependence of the prediction quality, allowing
also the existence of the opposite effect, called a negative magnitude dependence of the predic-
tion quality. Furthermore we discussed that the likelihood ratio and hence the ROC curves
are fully determined by the joint PDF of precursor variables and tracer time series and we
derived a condition which can predict, whether likelihood ratios and ROC curves display a pos-
itive/negative or no magnitude dependence. Unfortunately the statements derived from this
condition do not describe the magnitude dependence for other measures for the quality of a
prediction, such as the Kullback Leibler distance. Having all preliminary requisites specified we
can now in the following chapter determine the magnitude dependence of ROC curves for the
prediction of increments and threshold crossings in stochastic processes and real world data.



Chapter 5

Predictions of Increments in i.i.d.
random numbers

In this chapter we test the condition c(η, sn) derived in the previous chapter for the prediction of
increments in Gaussian, exponentially, symmetrized exponentially, power-law and symmetrized
power-law distributed i.i.d. random numbers. As in chapter 3 we concentrate on extreme events
which consist of a sudden increase (or decrease) of the observed variable within the next time
steps, namely

xn+1 − xn ≥ η, (5.1)

where xn and xn+1 denote the observed values at two consecutive time steps and the event
magnitude η is again measured in units of the standard deviation.

Since the first part of the increment xn can be used as a precursory variable, the definition of
the event as an increment introduces a correlation between the event and the precursory variable
xn. We already saw this in the previous studies on the AR(1) process, since we could even predict
increments in an AR(1) process with correlation strength a = 0, i.e., a sequence of random
numbers. Hence the prediction of increments in random numbers provides a simple, but not
unrealistic example which allows us to study the influence of the distribution of the underlying
process on the event-magnitude dependence of the quality of prediction. In the examples which
we study in this section the joint PDF of precursory variable and event is known and we can
hence evaluate c(η, xn) analytically. However we will also develop an algorithm which evaluates
c(η, xn) numerically. We focus in this chapter on predictions made according to strategy II, as
described in Sec. 2.2.3.

5.1 Numerical evaluation of the test condition

Since in most cases the structure of the PDF is not known analytically, we are also interested
in developing a numerical method of evaluating c(η, xn). For the numerical computation of
c(η, xn) the approximations of the total probability and the likelihood are obtained by “binning
and counting” and their numerical derivatives are calculated using Savitzky-Golay filters [93, 94].
The numerical evaluation is done within 107 data points. In order to check the stability of this
procedure, we compute c(η, xn) also on 20 bootstrap samples which are generated from the
original data set. These bootstrap samples consist of 107 pairs of event and precursory variable,
which were drawn randomly from the original data set. Thus, their PDFs are slightly different
and they contain different numbers of events. Evaluating c(η, xn) on the bootstrap samples
thus shows how sensitive our numerical evaluation procedure is towards fluctuations in the
distributions and in the numbers of events. This is especially important for large and therefore
rare events for which only few data are available.

In order to check the results obtained by the evaluation of c(η, xn), we compute also the
corresponding ROCs analytically and numerically. Note that for both, the numerical evaluation

57
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Figure 5.1: The condition c(η, xn) for the Gaussian distribution as given by Eq. (5.9). The color
shaded regions indicate the intervals [−ση,−η/2] for which we can expect c(η, xn) to be positive
according to Eq. (5.10). If xn < −ση, η > 2

√
π and terms of the order of exp(−(xn + ση)2) are

sufficiently small, the condition is also positive according to Eq. (5.11). If terms of the order
of exp(−(xn + ση)2) cannot be neglected one also might find small regions in (−∞,−ση] for
which c(η, xn) < 0. However, the influence of these regions is negligible, since our alarm interval
is defined as [−∞, δ] which implies an averaging over several possible values of the precursory
variable.

of the condition and the numerically evaluated ROC curves, we used only event magnitudes η
for which we found at least 1000 events, so that the observed effects are not due to a lack of
statistics of the large events.

5.2 Gaussian distributed random numbers

In the first example we assume the sequence of i.i.d. random numbers which forms our time
series to be normal distributed. As we know from chapter 3, increments within Gaussian random
numbers are the better predictable, the more extreme they are. In this section we will show that
their PDFs fulfill also the condition in Eq. (4.19). Applying the filter mechanism developed in
App. B we obtain the following expressions for the a posteriori PDFs

ρ[xn|χn(η) = 1, σ] =
exp
(
− x2

n
2σ2

)
2
√

2πσp[χn(η) = 1]
erfc
(

xn + ση

σ
√

2

)
, (5.2)

and the likelihood

ρ[χn(η) = 1|xn, σ] =
1
2
erfc
(

xn + ση

σ
√

2

)
. (5.3)

We do not show the explicit calculation for this PDFs here, since they can be obtained easily
from the considerations made for the AR(1) process in Chap. 3 (see Sec. 3.1) by setting the
coupling strength a of the AR(1) process to zero. We recall that the optimal precursor is given
by the value of xn which maximizes the likelihood. We refer to this special value of the precursory
variable xn by u and find for the likelihood according to Eq. (5.3) u = −∞. Thus, instead of a
finite alarm volume δ here is the upper limit of the interval [−∞, δ]. In contrast to the example
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Figure 5.2: Comparison of the numerically evaluated condition c(η, xn, σ) for the Gaussian
distribution and the expression given by Eq. (5.9). The black curves denote the evaluation
of the analytic result in Eq. (5.9), the curves plotted with lines and symbols represent the
numerical results obtained from the original data set, and the dashed lines represent the results
obtained from the corresponding bootstrap samples. The green shaded regions indicate the
regime −ση < xn < −ση/2 for which c(η, xn, σ) is positive in the limit η → ∞ according to Eq.
(5.10). If xn < −ση, η > 2

√
π and terms of the order of exp(−(xn + ση)2) are sufficiently small,

the condition is also positive according to Eq. (5.11). The numerical evaluation of c(η, xn, σ) was
done by sampling the likelihood and the total probability of events from 107 random numbers.

of the AR(1) process we can calculate the total probability to find events exactly:

p[χn(η) = 1] =
1

2
√

2πσ

∫ ∞

−∞
dxn exp

(
− x2

n

2σ2

)
erfc
(

xn + ση

σ
√

2

)

=
1

2πσ

∫ ∞

−∞
dxn exp

(
− x2

n

2σ2

)∫ ∞

xn+ση
dy exp

(
− y2

2σ2

)
, (5.4)

due to the definition of the complementary error function and substitution with y = xn + ση.
Substitution with v = y − xn and u = y + xn yields

p[χn(η) = 1] =
1

2πσ

∫ ∞

−∞
du exp

(
− u2

4σ2

)∫ ∞

ση
dv exp

(
− v2

4σ2

)
(5.5)

=
1
2

∫ ∞

ση
dv exp

(
− v2

4σ2

)
(5.6)

=
σ

2

∫ ∞

η/2
dt exp(−t2) (5.7)

=
σ

2
erfc
(η

2

)
. (5.8)

Hence the condition in Eq. (4.19) reads
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Figure 5.3: ROCs for Gaussian distributed i.i.d. random variables. The symbols represent ROC curves
which where made via predicting increments in 107 normal i.i.d. random numbers. The predictions were
made according to strategy II as described in Sec. 2.2.3. The lines represent the results of evaluating the
rate of correct predictions and false alarms according to Eqs. (2.46) and (2.47) for the Gaussian case.
Note that the quality of the prediction increases with increasing event magnitude.

c(η, xn, σ) = −
√

2
π

exp
(−z2

)
erfc (z)

+
1√
π

exp
(
−η2

4

)
erfc

(η
2

) (
1 − 1

2erfc (z)
)(

1 − 1
2erfc

(η
2

)) ,
with z =

xn + ση√
2σ

(5.9)

Fig. 5.1 illustrates this expression and Fig. 5.2 compares it to the numerical results. For the
ideal precursor xn = u = −∞ the condition c(η, xn) is —according to Eq. (5.9)— zero, since
in this case, the slope of the ROC-curve tends to infinity (see chapter 3) and does not react to
any variation in η. For any finite value of the precursory variable xn < 0 we have to distinguish
three regimes of z = (xn +ση)/

√
2σ, namely, z → ∞ or z → −∞ and finally also the case z = 0.

In the first case we study the behavior of c(η, xn, σ) for a fixed value of the precursory variable
−ση < xn and η → ∞. This implies that z → ∞ and we can use the asymptotic expansion for
large arguments of the complementary error function

erfc(z) ∼ exp(−z2)√
πz

(
1 +

∞∑
m=1

(−1)m
1 · 3...(2m − 1)

(2z2)m

)
,

(
z → ∞, |argz| <

3π
4

)

as given in [89] to obtain

c(η, xn, σ) ∝ −xn

σ
+

η

2
, −ση < xn < 0. (5.10)

This expression is appropriate for xn > −ση since the asymptotic expansion in Eq. (3.19) holds
only if the argument of the complementary error function is positive. In this case c(η, xn, σ) is
larger than zero, if xn is fixed and finite and −ση < xn < −ση/2.

In the second case, we assume η � 1 to be fixed, xn < −ση and xn → −∞. Hence we can
use the expansion in Eq. (3.19) only to obtain the asymptotic behavior of the dependence on η
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and not for the dependence on z. An asymptotic expression of c(η, xn, σ) hence reads

c(η, xn, σ) ∝ η

2
(
1 − 1

2erfc (η/2)
) (erf(z)√

π
+

η

2

)
−O (exp(−z2)

)
, xn < −ση. (5.11)

Since erf(z) tends to minus unity as z → −∞ the expression in Eq. (5.11) is positive if η > 2
√

π
and if the squared exponential term is sufficiently small. If the latter assumption is not fulfilled
one might observe some regions of intermediate values of −∞ < xn < −ση, for which c(η, xn, σ)
is negative.

However the ROC curves in Fig. 5.3 suggest that the influence of these regions is sufficiently
small, if the alarm volume is chosen to be [−∞, δ]. Hence we can expect that the influence
of the regions, where c(η, xn, σ) is negative, is suppressed since we average over many different
values of xn and the condition is positive as xn → −∞. (Positive is meant here in the sense,
that c(η, xn, σ) approaches the value zero for xn = −∞ from small positive numbers.)

In the third case, for xn = −ση and hence z = 0 we find that c(η, xn, σ) is positive if

η > 2
√

2
π

(
1 − 1

2erfc(η/2)
)
.

In total we can expect larger increments in Gaussian random numbers to be easier to predict
the larger they are. The ROCs in Fig. 5.3 support these results.

5.3 Exponentially distributed random variables

In this section we investigate the prediction of increments in random numbers, which follow a
one-sided exponential distribution

ρ(x) = λ exp(−λx), x > 0, (5.12)

with mean μ = 1/λ and variance σ = 1/λ2. We can obtain the corresponding joint and condi-
tional PDFs of event and precursor by filtering according to App. B. The joint PDF of precursor
xn and event reads

p[xn, χn(η) = 1] = −λ exp(−2λxn − λ2η). (5.13)

The likelihood and the total probability to find events are given by

p[χn(η) = 1|xn] = exp(−λxn − λ2η), (5.14)

and p[χn(η) = 1] =
1
2

exp(−λ2η). (5.15)

Using Bayes’ theorem, we can compute the posterior probabilities to find and not to find events

ρ[xn|χn(η) = 1] = 2λ exp(2λxn), (5.16)

ρ[xn|χn(η) = 0] = λ exp(−λxn)
(1 − exp(−λxn − λ2η))

(1 − 1
2 exp(−λ2η))

. (5.17)

The condition determining the dependence on the event magnitude as specified in Sec. 4.2 is
thus given by

c(xn, η, λ) = λ2 exp(−λ2η)

(
− exp(−λxn) +

1 − exp(−λxn − λ2η)
(1 − 1

2 exp(−λ2η)

)
(5.18)

This expression is compared with it’s numerically evaluated approximations in Fig. 5.4. The
test condition for the magnitude dependence is smaller than zero for very small values of xn

and η ≈ 0. A η increases, the value of the condition approaches zero. 1 Hence we should
1Small values of xn are of special importance for the prediction of increments since our precursor u is the

smallest value of the data set.
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Figure 5.4: The numerically and analytically evaluated condition for the exponential distributed
random variables with λ = 1. The black line is the result of the analytical evaluation according
to Eq. (5.18), the curves plotted with lines and symbols represent the numerical results obtained
from the original data set, and the dashed lines represent the results obtained from the corre-
sponding bootstrap samples. Note that for small values of xn the condition c(η, xn, λ) is for all
values of η close to zero.

expect a better predictability of smaller events in the region η ≈ 0, and no dependence on the
event size as η increases. The corresponding ROC-curves in Fig. 5.5 support these findings. The
ROC-curves obtained for events with η �= 0 indicate that events are harder to predict than just
the sign of the change, characterized by η = 0. However within the bundle of curves for η �= 0 we
find almost no dependence on the event magnitude, which corresponds to the fact, that c(η, xn)
approaches zero for small values of xn and larger values of η.

5.4 Symmetrized exponentially distributed random variables

We now consider a sequence of random variables having a symmetrized exponential distribution.
The PDF of the symmetrized exponential reads

ρ(x) =
λ

2
exp(−λ|xn|) =

⎧⎨
⎩

λ
2 exp(−λxn) : xn > 0,
λ/2 : xn = 0,
λ
2 exp(λxn) : xn < 0.

The factor λ
2 normalizes the distribution ρ(x) which has mean μ = 0, and standard deviation

σ =
√

2/λ. Since both, the variables xn and xn+1 ≥ xn + ση have these marginal probabilities
we have to distinguish three different regimes in which we can find increments, namely

I : (xn > 0) ⇒ (xn+1 > 0), (5.19)
II : (−ση ≤ xn < 0) ⇒ (xn+1 ≥ 0) (5.20)

III : (xn < −ση) ⇒ (xn+1 ≥ 0) ∨ (xn+1 < 0). (5.21)

Hence we have to calculate all PDFs separately for the three different regimes. We apply the
filtering mechanism according to App. B. If it simplifies the calculation we use the absolute
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Figure 5.5: The ROCs for exponentially distributed i.i.d. random numbers show no significant
dependence on the event magnitude. The ROC curves were made via predicting increments in
107 normal i.i.d. random numbers and the predictions were made according to the prediction
strategy II as described in Sec. 2.2.3. The black line indicates the analytically evaluated ROC
curve for η = 0.

magnitude of the event d and just switch to relative magnitude of events η = d/σ at the end.
Hence we find the joint PDFs of precursory variable and event to be given by the following
expressions

p[sn, χn(η) = 1] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ2

4 exp(−λxn)
∫∞
0 dγ exp(−λ(xn + d + γ)), : xn > 0,

λ2

4 exp(λxn)
∫∞
0 dγ exp(−λ(xn + d + γ)) : −d ≤ xn < 0,

λ2

4 exp(λxn)
(∫ −(xn+d)

0 dγ exp(λ(xn + d + γ))

+
∫∞
−(xn+d) dγ exp(−λ(xn + d + γ))

)
: xn < −d < 0,

(5.22)

=

⎧⎨
⎩

λ
4 exp(−λ(2xn + d)), : xn > 0,
λ
4 exp(−λd) : −d ≤ xn < 0,
−λ

4 exp(λ(2xn + d)) + λ
2 exp(λxn) : xn < −d < 0,

(5.23)

=

⎧⎪⎨
⎪⎩

λ
4 exp(−2λxn −√

2η)), : xn > 0,
λ
4 exp(−√

2η) : −
√

2
λ η < xn < 0,

−λ
4 exp(2λxn +

√
2η) + λ

2 exp(λxn) : xn < −
√

2
λ η < 0,

(5.24)

with η = λd/
√

2.
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The total probability to find events can be obtained by marginalizing

p[χn(η) = 1] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ
4

∫∞
0 dxn exp(−2λxn − λd), : xn > 0,

λ
4

∫ 0
−d dxn exp(−λd) : −d ≤ xn < 0,

−λ
4

∫ −d
−∞ dxn exp(λ(2xn + d))
+λ

2

∫ −d
−∞ dxn exp(λxn) : xn < −d < 0.

(5.25)

=

⎧⎨
⎩

1
8 exp(−λd), : xn > 0,
λd
4 exp(−λd) : −d < xn < 0,
−3

8 exp(−λd) : xn < −d < 0,
(5.26)

=

⎧⎪⎨
⎪⎩

1
8 exp(−√

2η), : xn > 0,
λd
4 exp(−√

2η) : −
√

2
λ η ≤ xn < 0,

−3
8 exp(−√

2η) : xn < −
√

2
λ η < 0.

(5.27)

If we are not interested in the range of the precursory variable, the total probability to find
events is given by the sum of the probabilities for the different regimes, namely

p[χn(η) = 1|xn] =
1
2

exp(−
√

2η)
(

1 +
η√
2

)
. (5.28)

Using Bayes’ theorem, we find the posterior probabilities,

ρ[xn|χn(η) = 1, λ] =

⎧⎪⎪⎨
⎪⎪⎩

λ
(2+

√
2η)

exp(−2λxn) : xn > 0,
λ

(2+
√

2η)
: −ση < xn < 0,

λ
(2+

√
2η)

(
2 exp(

√
2η + λxn) − exp

(
2
√

2η + 2λxn

))
: xn < −ση < 0,

(5.29)

ρ[xn|χn(η) = 0, λ] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ
2 exp(−λxn) (1− 1

2
exp(−λxn−

√
2η))

(1− 1
2(1+

η
2) exp(−√

2η)) : xn > 0,

λ
2 exp(λxn) (1− 1

2
exp(−λxn−

√
2η))

(1− 1
2(1+

η
2 ) exp(−√

2η)) : −ση < xn < 0,

λ
4

exp(2λxn+
√

2η)

(1− 1
2(1+

η
2 ) exp(−√

2η)) : xn < −ση < 0,

(5.30)

and the likelihood

p[χn(η) = 1|xn, λ] =

⎧⎨
⎩

1
2 exp(−√

2η − λxn) : xn > 0,
1
2 exp(−√

2η − λxn) : −ση < xn < 0,
1 − 1

2 exp(
√

2η + λxn) : xn < −ση < 0.
(5.31)

Hence the condition c(η, xn, λ) reads

c(η, xn, λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−√
2
(

1 − (1− 1
2

exp(−√
2η−λxn))

(1− 1
8

exp(−√
2η))

)
, xn > 0, (I)

−√
2 + (1−√

2η)
η

(1− 1
2

exp(−√
2η−λxn))“

1−
√

2
4

η exp(−√
2η)

” , −ση < xn < 0, (II)

− 1√
2
exp(λxn +

√
2η)
(

1
1− 1

2
exp(

√
2η+λxn)

+ 1
1− 3

8
exp(−√

2η)

)
, xn < −ση (III).

(5.32)

In the limit η → ∞ the expressions in Eq. (5.32) tend either to zero (regime (I) and (III) or
to −√

2 + 1 (regime(II)). Figure 5.6 compares the results of the numerical evaluation of the
condition and the analytical expression given by Eq. (5.32). Since most precursors of large
increments can be found among negative values, the numerical evaluation of c(η, xnλ) becomes
worse for positive values of xn, since in this limit the likelihood is not very well sampled from the
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Figure 5.6: The numerically and analytically evaluated condition for the symmetrized expo-
nential. The black line is the result of the analytical evaluation according to Eq. (5.32), the
curves plotted with lines and symbols represent the numerical results obtained from the original
data set, and the dashed lines represent the results obtained from the corresponding bootstrap
samples. Note that for small values of xn the condition c(η, xn, λ) close to zero is for all values
of η.
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Figure 5.7: The ROCs for symmetrically exponentially distributed i.i.d. random numbers show
no significant dependence on the event magnitude. The ROC curves were made via predicting
increments in 107 normal i.i.d. random numbers and the predictions were made according to
the prediction strategy II as described in Sec. 2.2.3. The black line indicates the analytically
evaluated ROC-curves.



66 CHAPTER 5. PREDICTIONS OF INCREMENTS IN I.I.D. RANDOM NUMBERS

data. This leads also to the wide spread of the bootstrap samples in this region. Furthermore,
Figure 5.6 shows that in the vicinity of the smallest value of the data set, the condition c(η, xn, λ)
is zero. As we approach larger values of η, c(η, xn, λ) approaches zero in the whole range of data
values. That is why we would expect to see no influence of the event magnitude on the quality
of predictions in the exponential case.

However, the ROC-curves in Fig. 5.7 show a different behavior. Fig. 5.7 shows the numerical
evaluated ROC curves made via predicting increments in 107 normal i.i.d. random numbers
according to strategy II, as described in chapter 2. Additionally the analytical ROCs are cal-
culated by evaluating the integrals over the posterior PDFs for η = 0. Since the posterior PDF
is a non-continuous function we evaluated the integrals in the different regimes of xn separately
(starting from the smallest observed value of xn) and then added the values.

In the vicinity of the origin the ROC-curves for different η coincide, which corresponds to
c(η, xn) ≈ 0. However, the curves separate with increasing size of the tolerance volume and reveal
a positive magnitude dependence. In total the positive magnitude dependence is less pronounced
than the one observed for the Gaussian ROC-curves shown in the Sec. 5.2. Although the range
of η-values investigated in the exponentially distributed ROC-curves has twice the size than the
range of eta values studied in the Gaussian ROC (Sec. 5.2), the exponential ROC-curves are
closer to each other, than the corresponding Gaussian ROC-curves.

In total the ROC-curves for the exponentially distributed random numbers provide an exam-
ples for the limits of our test condition. Although we are very well able to predict the behavior
in the vicinity of the origin, the condition is unable to capture the behavior of the parts of the
ROC-curves which corresponds to a larger tolerance volume. It is especially astonishing, that
the condition has no positive values for xn < 0, which is in contrast to the ROCs showing a
positive magnitude dependence.

5.5 Power-Law distributed random variables

In this section we investigate a sequence of random variables which follow a one-sided power-law
distribution

ρ(x) = αxα
min x−(α+1) (5.33)

for x ∈ [xmin,∞) the exponent α ≥ 3, lower endpoint xmin > 0, and variance σ = xmin
α−1

√
α

α−2 .
This distribution has a finite variance for α ≥ 3. Applying the filter according to App. B, the
joint PDF is in the power-law case given by

p[xn, χn(d) = 1, α, xmin] =
αx2α

min

xα+1
n

∫ ∞

0
dγ (xn + d + γ)−α−1 (5.34)

=
αx2α

min

xα+1
n

1
(xn + d)α

(5.35)

= p[xn, χn(η) = 1, α, xmin] =
αx2α

min

xα+1
n

1(
xn +

(
xmin
α−1

)√
α

α−2η
)α . (5.36)

with η = d
(

α−1
xmin

)√
α−2

α . Marginalizing the total probability to find events reads

p[χn(d) = 1, α, xmin] = αx2α
min

∫ ∞

xmin

dxn
1

xα+1
n (xn + d)α

. (5.37)

This integral can be solved using the following identity from [95]:∫ ∞

x0

dx
xμ−1

(1 + βx)ν
=

uμ−ν

βν(ν − μ)2F1

(
ν, ν − μ; ν − μ + 1,− 1

βx0

)
, [Re ν > Re μ],(5.38)

=
1
βν

∫ ∞

x0

dx
xμ−1

( 1
β + x)ν

.
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Figure 5.8: The condition c(η, xn, xmin, α) for the power-law distribution with lower endpoint xmin =
0.01 is plotted for constant values of the precursory variable xn. The symbols represent the results of the
numerical evaluation of c(η, xn, xmin, α), the colored lines denote the analytic results, and the bundle of
black lines denotes the result for the corresponding bootstrap samples evaluated for the optimal precursor.
For the “ideal” precursor xn = xmin = 0.01 all values of c(η, α, 0.01) are negative. Hence one should
expect smaller events to be better predictable. One can also see that this effect is sensitive of the choice
of the precursor.

Hence setting x0 = xmin, 1/β = d, μ = −α and ν = α the total probability to find events reads

p[χn(d) = 1, α, xmin] =
1
2 2F1

(
α, 2α, 2α + 1,− d

xmin

)
, (5.39)

= p[χn(η) = 1, α] =
1
2 2F1

(
α, 2α, 2α + 1,− η

(α + 1)

√
α

α − 2

)
. (5.40)

Using Bayes’ theorem we find the following conditional PDFs:

ρ[xn|χn(η) = 1, α, xmin] =
αx2α

min

xα+1
n

(
xn + xmin

α+1

√
α

α−2 η
)α

P (η, α)
(5.41)

ρ[xn|χn(η) = 0, α, xmin] =
αxα

min

xα+1
n

(
1 −
(

xmin

xn+
xmin
α+1

√
α

α−2
η

)α)
1 − P (η, α)

(5.42)

p[χn(η) = 1|xn, α, xmin] =

⎛
⎝ xmin

xn + xmin
α+1

√
α

α−2 η

⎞
⎠

α

. (5.43)

Within the range (xmin,∞) the likelihood p[χn(η) = 1|xn, α, xmin] has no well defined maximum.
However, since the likelihood is a monotonously decreasing function, we use the lower endpoint
xmin as a precursor. In order to evaluate the criterion we need to calculate the derivative of
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Figure 5.9: ROC-plot for the power-law distribution with α = 3 and xmin = 0.01. The symbols show the
numerical results and the lines indicate the analytically calculated ROC curves. The ROC curves were
made via predicting increments in 107 Pareto distributed i.i.d. random numbers. The predictions were
made according to strategy II described in Sec. 2.2.3. Note that we tested only event magnitudes η, for
which we found at least 1000 events, so that the effects we observe are not due to a lack of statistics. The
ROC curves display that in Pareto distributed i.i.d. random numbers with the lower endpoint xmin = 0.01
large events are very hard to predict.

the hypergeometric function in p[χn(η) = 1, α, xmin]. The first derivative of a hypergeometric
function is according to [89] given by

∂

∂z
2F1(a, b, c, z) =

ab

c
2F1(a + 1, b + 1, c + 1, z) (5.44)

In [95] we find the Gauss’ recursion relation

az2F1(a + 1, b + 1, c + 1, z) = c2F1(a, b + 1, c, z) − c2F1(a, b, c, z). (5.45)

Hence we can express the derivative of the hypergeometric function as

∂

∂z
2F1(a, b, c, z) =

b

z
(2F1(a, b + 1, c, z) − 2F1(a, b, c, z)) . (5.46)

In our special case, a = α, b = 2α, c = 2α + 1, the first term on the right hand side of Eq.(5.46)
is given by 2F1(α, 2α + 1, 2α + 1, z) which can be simplified using

2F1(n, b, b, z) = (1 − z)−n, (5.47)

which can also be found in [95]. Hence the derivative of 2F1(α, 2α, 2α + 1, z) is given by

∂

∂z
2F1(α, 2α, 2α + 1, f(z)) =

2α
f(z)

(
1

(1 − f(z))α
− 2F1(α, 2α, 2α + 1, f(z))

)
∂

∂z
f(z). (5.48)
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Figure 5.10: (Color online) ROC-plot for the power-law distribution with α = 6 and xmin = 0.01.
The symbols show the numerical results, the lines indicate the analytically calculated ROC-curves. The
ROC-curves where made via predicting increments in 107 Pareto distributed i.i.d. random numbers. The
predictions were made according to the strategy II as described in Sec. 2.2.3. The ROC-curves show
that in Pareto distributed i.i.d. random numbers with the lower endpoint xmin = 0.01 large events are
especially hard to predict.

Thus the derivative of the total probability reads

∂P (η, α)
∂η

=
α

η

⎛
⎜⎝ 1(

1 + η
α+1

√
α

α−2

)α − 2P (η, α)

⎞
⎟⎠ .

(5.49)

Using this derivative and inserting the expressions (5.43) and (5.41) for the components of
c(η, xn, xmin, α) we obtain an explicit analytic expression for the condition, namely

c(η, xn, α, xmin) =
−α

α−1
xmin

√
α−2

α xn + η
+

2α
η

(1 − p[χn(η) = 1])
(1 − p[χn(η) = 1])

−2α
η

(1 − p[χn(η) = 1])
(1 − p[χn(η) = 1])

(
1 + 1

α−1

√
α

α−2η
)−α

2F1(α, 2α, 2α + 1, 1
α−1

√
α

α−2η)
. (5.50)

In Fig. 5.8 we evaluate this expression using Mathematica and compare it with the results of an
empirical evaluation on the data set of 107 i.i.d. random numbers.

Figure (5.8) displays that the value of c(η, xn, xmin, α) depends sensitively on the choice of
the precursor. For the ideal precursor u = xmin all values of c(η, α, xmin) are negative. Hence
in this case one should expect smaller events to be better predictable. The corresponding ROC
curves in Figs. 5.9, 5.10 and 5.11 verify this statement of c(η, xn, xmin, α).

In summary we find that larger events in power-law distributed i.i.d. random numbers are
harder to predict the larger they are. This is an admittedly unfortunate result, since extremely
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Figure 5.11: ROC-plot for the power-law distribution with α = 9 and xmin = 0.01. The symbols
show the numerical results and the lines indicate the analytically calculated ROC curves. The ROC
curves where made via predicting increments in 107 Pareto distributed i.i.d. random numbers and the
predictions were made according strategy II as described in Sec. 2.2.3. The ROC-curves display that
in Pareto distributed i.i.d. random numbers smaller events are better predictable and large events are
especially hard to predict.

large events occur much more frequently in power-law distributed processes than in Gaussian
distributed processes. Hence, their prediction would be highly desirable.

5.6 Symmetrized Power-Law distributed Random Variables

In this section we evaluate the test condition for the magnitude dependence and the corre-
sponding ROC-curves numerically for the prediction of increments in a sequence of symmetrized
power-law distributed random variables. The symmetrized power-law distribution is given by

ρ(x) = αxα
min x−(α+1), x > xmin > 0

ρ(x) = α|xmax|α |x|−(α+1), x < xmax < 0, (5.51)

with xmin = |xmax| = 0.01, xmax < 0,xmin > 0 and power-law coefficient α = 3 were generated
by transformation from uniformly distributed random numbers. Since the lower and the upper
end-points xmin and xmax have to be non-zero, there is always an interval [xmax, xmin] in which
our distribution is not defined. Thus trying to evaluate the distributions, the test condition and
the ROC-curve analytically does not seem to be promising in this case. However we artificially
join both distributions by shifting them to the left (right) by subtracting (adding) xmin. The
result is a symmetrized power law distribution with mean zero and variance σ = 0.01.

We can then evaluate the test condition for the magnitude dependence and the corresponding
ROC-curves. The results for the test condition, shown in Fig. 5.12, indicate that the condition
is approximately zero for most values of η and xn. This corresponds to the behavior of the
ROC-curves in the vicinity of the origin, as shown in Fig. 5.13. Most curves, with the exception
of the one for η = 0, resemble to the vertical axis and are very similar. In the regions of the
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Figure 5.12: The numerically and analytically evaluated condition for the symmetrized power-
law distributed random variables with α = 3. The curves plotted with lines and symbols
represent the numerical results obtained from the original data set, and the dashed lines represent
the results obtained from the corresponding bootstrap samples.

ROC, which correspond to an increased tolerance volume we find that large events are harder
to predict. This behavior is reflected by the fact, that c(η, xn) is negative for larger η and larger
values of xn.

5.7 Is there a “universal” ROC-Curve for η = 0?

Comparing the different ROC-curves in this chapter, it is apparent, that the curves for η = 0 are
very similar. They do in fact coincide, as it is shown in Fig. 5.14. Furthermore we observe, that
the curves for η = 0 are symmetric with respect to the diagonal rf = 1 − rc and they all pass
through the point (rc = 0.75, rf = 0.25). These findings do agree with the results of Sornette and
Andersen [91] who already found in 2006 that the sign of increments in uncorrelated random
numbers can be predicted with a success probability of 75% . Sornette also emphasizes the
independence on the underlying distribution function.

In the following we will try to understand these effects in terms of the ROC-curves.
Since the events xn+1−xn > 0 reflect simply an increase of any size, the question whether or

not an increment of size η = 0 occurs, corresponds to the question, whether or not the next value
of the time series is larger or smaller than the previous one. In any uncorrelated time series the
probability for a larger (smaller) value in the next step should be 1/2, which the calculations
in the previous sections confirm. Using p[χn(0) = 1] = p[χn(0) = 0] = 0.5, the rates of correct
predictions and the rate of false alarms (as given by Eqs. (2.46) and (2.47)) are given by

rc(u, δ, 0) = 2
∫ δ

0
dν ρ(u + ν)p[χn(0) = 1|u + ν] (5.52)

rf (u, δ, 0) = 2
∫ δ

0
dν ρ(u + ν) (1 − p[χn(0) = 1|u + ν]) , (5.53)
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Figure 5.13: The ROCs for symmetrized power-law distributed i.i.d. random numbers show no
significant dependence on the event magnitude. The ROC curves were made via predicting
increments in 107 normal i.i.d. random numbers and the predictions were made according to the
prediction strategy II as described in Sec. 2.2.3.

and hence all ROC curves for η = 0 are given by

rc(u, δ, 0) = −rf (u, δ, 0) + 2
∫ δ

0
dν ρ(u + ν), (5.54)

It is easy to see, that the curves given by this expression cross the points (rc = 0, rf = 0) in
the limit δ → 0 and (rc = 1.0, rf = 1.0) in the limit δ → ∞. However all ROC curves also
cross the diagonal from (0.0, 1.0) to (1.0, 0.0). The intersection point, in this case the point
(rc = 0.75, rf = 0.25), corresponds to the value of δ for which

∫ δ
0 dν ρ(u + ν) = 1/2 holds, i.e.,

(u + δ) represents the median of the distribution ρ(u + ν).
Demanding, that the ROC-curves for different distributions coincide, is equivalent to de-

manding that the slope of the ROC-curve is for every point of independent on the choice of the
distribution. It is sufficient to discuss the behavior of the slope, since every ROC-curves crosses
the points (0, 0) and (1, 1). From Sec. 2.3.4 we know, that the slope of the ROC curve is given
by the likelihood ratio, which reads in case of the alarm interval according to strategy II,

Λ(u, δ, 0) =
ρ[u + δ|χn(0) = 1]
ρ[u + δ|χn(0) = 0]

. (5.55)

(5.56)

Expressing the posterior PDFs through Bayes’ theorem, we see, that for p[χn(0) = 1] =
p[χn(0) = 1] = 1/2, the likelihood ratio is indeed the ratio of odds as specified in Sec. 2.2.3

Λ(u, δ, 0) =
p[χn(0) = 1|u + δ]
p[χn(0) = 0|u + δ]

=
p[χn(0) = 1|u + δ]

1 − p[χn(0) = 1|u + δ]
. (5.57)

Since, p[χn(0) = 0|u + δ] = 1 − p[χn(0) = 1|u + δ], there exist always a fixed relation between
the nominator and the denominator of Λ(u, δ, 0), independently of the details of the likelihood
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Figure 5.14: The ROCs for different i.i.d. random numbers and η = 0.

p[χn(0) = 1|u + δ]. In other words, the values of the likelihoods p[χn(0) = 1|u + δ] at a specific
u + δ are of course different for different marginal PDFs of the processes. However, the fact
that we consider the ratio of a probability and it’s complement insures, that each value u + δ
correspond to a point on the ROC curve in which the slope of the curve is given by Eq. (5.57)

The main difference to predictions for event magnitudes η �= 0 is that we find also the term
(1 − p[χn(η) = 1])/p[χn(η) = 1] in the likelihood ratio, i.e., the likelihood ratio is not equal to
the ratio of odds

Λ(u, δ, η) =
(1 − p[χn(η) = 1])

p[χn(η) = 1]
(1 − p[χn(0) = 1|u + δ])

p[χn(0) = 1|u + δ]
. (5.58)

5.8 The Influence of the Symmetry of the distribution

Comparing the ROC curves for the symmetric distributions and the one-sided distributions we
observe the following features:

• For the one-sided distributions (exponential and power-law) we observe that events with
η �= 0 are much harder to predict than events with magnitude η = 0.

• For the one-sided distributions the ROC-curves η �= 0 form a bundle of curves, which is
well separated from the curve η = 0. The curves for η �= 0 are also very close to each other
within this bundle.

• In the symmetric distributions the ROC-curve for η = 0 is not further apart from the
curves η �= 0 than the “typical distance” within the curves for η �= 0.

5.9 Conclusions

We study the magnitude dependence on the quality of predictions for increments in a time series
which consists in sequences of i.i.d. random numbers. Using the first part of the increment xn
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as a precursory variable we predict large increments xn+1 − xn via statistical considerations. In
order to measure the quality of the predictions we use ROC curves. Furthermore we evaluate
the condition c(η, xn) as introduced in chapter 4 for time series of Gaussian, exponential, sym-
metrized exponential, power-law and symmetrized power-law i.i.d. random variables. The results
obtained from the criterion comply in most cases well with the corresponding ROC-curves. Note
that for both, the numerical evaluation of the condition and the ROC-plots, we used only event
magnitudes η for which we found at least 1000 events, so that the observed effects are not due
to a lack of statistics of the large events.

For the sequence of Gaussian i.i.d. random numbers, we find that large increments are
better predictable the larger they are. This feature is reflected by both the ROC-curve and the
condition.

For the power-law distributed time series (both, the one-sided and the symmetrized) we
observe that events are the harder to predict, the larger they are. However for the sequence of
symmetrized power-law distributed random numbers the dependence on the event magnitude
becomes only visible for larger alarm volumes. Also in the case of Pareto distributed random
numbers, the condition is able to characterize the behavior of the ROC-curve.

Concerning the exponentially distributed random variables we find a qualitatively different
behavior for the symmetrized and the one-sided distribution. The ROC-curves for the one-
sided distribution display that events with η �= 0 are harder to predict, than just the sign of the
increment (η = 0), however the curves for η �= 0 almost coincide. Both features are well reflected
by the values of c(η, xn) for small xn. However in the symmetrized exponential case we observe,
that ROC-curves for different values of η almost coincide in the vicinity of the origin (i.e., for
small alarm volumes), but then later show a positive magnitude dependence for larger alarm
volumes. This magnitude dependence is significantly weaker than in the gaussian case, but it
nevertheless exists. Our test condition is able to predict the coinciding curves in the vicinity
of the origin, but totally misses the better predictability of larger events, which we observe
for larger alarm volumes. In fact, the condition rather suggests to find a negative magnitude
dependence. Hence the symmetrically exponential distributed random numbers provide us with
an example for the limits of our method. Although our test condition is very well able to predict
the behavior in the vicinity of the origin, it does in this case not provide information about
regions of the ROC which correspond to larger alarm volumes.

While the condition can be easily evaluated analytically, it is not that easy to compute numer-
ically from observed data, since the calculation implies evaluating the derivatives of numerically
obtained distributions. Using Savitzky-Golay filters improved the results, but especially in the
limit of larger events, where the distributions are difficult to sample, one cannot trust the results
of the numerically evaluated criterion. However, for practical applications one could also think
about fitting a PDF to the distribution of the underlying process and then evaluate the criterion
analytically, starting from the fitted PDF.



Chapter 6

Predicting threshold crossings in
AR(1) correlated processes

In this chapter we test the condition c(η, sn) as given in Eq. (4.19) for threshold crossing in
AR(1) processes, which have a Gaussian, power-law and exponential distribution. The most
popular example for an extreme event, which consist in a threshold crossing is probably the
level of water in a river exceeding the height of a levee. However, one can easily find other
examples, in which it would be desirable to predict the exceeding of a threshold. We study
the prediction of threshold exceedances in simple short range correlated processes. As already
specified in Chap. 2, we define an event, which consist in threshold crossings by a value xn+1 of
the time series exceeding a given threshold η

χn(η) =
{

1, xn+1 ≥ η,
0, xn+1 < η.

(6.1)

where the event magnitude η is measured in units of the standard deviation. Due to the corre-
lation of the AR(1) process we use the present value xn of a time series as a precursory variable
for the event happening at time n + 1.

6.1 Non-Gaussian AR(1) processes

As already presented in Chap. 3, an autoregressive process of order 1 [AR(1)] (see, e.g., [33]) is
given by

xn+1 = axn + ξn, (6.2)

where ξn are uncorrelated random numbers with mean zero. The value and the sign of the
coupling strength a determine whether successive values of xn are clustered or spread. Since we
are not in particular interested in the influence of the coupling strength we will set a = 0.75 in
all following considerations. For a �= 0 the process is exponentially correlated, 〈xnxn+k〉 = ak.

Typically the random numbers ξn are chosen to be Gaussian distributed. In this case the data
generated by the AR(1) model is as well Gaussian distributed. However, due to the summation
of random numbers in Eq. (6.2) also non-Gaussian random numbers might lead to a process
with an approximately Gaussian distribution. That is why one has to apply other methods in
order to obtain an AR(1) correlated process with a non-Gaussian distribution. We create the
non-Gaussian distributed AR(1) processes by replacing the data of the Gaussian AR(1) process
by random numbers, which follow the desired distribution function. This is done by ordering
the data of the Gaussian AR(1) process and the random numbers according to their magnitude
and then replacing the n-th largest value of the data set by the n-th largest random number.
This procedure leads of course to local fluctuations in the value of the correlations strength a.
However, the characteristic behavior of the process is still preserved, as one can see in Fig. 6.1.

75
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Figure 6.1: The autocorrelation function c(τ) =
∑

n(xn − μ)(xn+τ − μ)/((n − τ)σ2), with the
mean μ and the standard deviation σ is evaluated on the AR(1) correlated data.

For the Gaussian AR(1) process all quantities which enter into the prediction can be eval-
uated analytically. Since in most cases the structure of the PDF is not known analytically,
we evaluate c(η, xn) also numerically. In this case the approximations of the total probability
and the likelihood are obtained by ”binning and counting” and their numerical derivatives are
evaluated via a Savitzky-Golay-filter [93, 94]. The numerical evaluation is done within 107 data
points. In order to check the stability of this procedure, we evaluate c(η, xn) also on 20 bootstrap
samples, which are generated from the original data set. These bootstrap samples consist of 107

pairs of event and precursor, which were drawn randomly from the original data set. Thus their
PDFs are slightly different in their first and second moment and they contain different numbers
of events. Evaluating c(η, xn) on the bootstrap samples thus shows, how sensitive our numerical
evaluation procedure is towards changes in the numbers of events. This is especially important
for large and therefore rare events.

In order to check the results obtained by the evaluation of c(η, xn), we compute also the
corresponding ROC curves analytically and numerically.

Note that for both, the numerical evaluation of the condition and the ROC-plots, we used
only event magnitudes η, for which we found at least 100 events, so that the observed effects
are not due to a lack of statistics of the large events.

6.2 Results for the Gaussian AR(1) process

We start again from the marginal PDF of the time step xn of an AR(1) process, which was
already used in Chap. 3

ρ(xn, a) =

√
1 − a2

2π
exp
(
−1 − a2

2
xn

2

)
. (6.3)

Since the magnitude of the events is naturally measured in units of the standard deviation σ(a)
we introduce a new scaled variable η = d

σ(a) = d
√

1 − a2. For a �= 0 the process is exponentially
correlated 〈xnxn+k〉 = ak and the joint PDF of two successive values ρ(xn, xn+1) is a bivariate
Gaussian. From this we derive the joint PDF p[xn, χn(η) = 1, a] by a simple integration using
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Figure 6.2: The condition c(η, xn, 0.75) for the Gaussian distributed AR(1) process as given by
Eq. (6.10).

the Heaviside function Θ as introduced in App. B,

p[xn, χn(η) = 1, a] =
∫

dxn Θ(xn − ησ)ρ(xn, xn+1).

Since the calculation of the CPDFs and the total probability to find events is very similar to the
calculation for the prediction of increments presented in detail in Chap. 3, we will simply list
the resulting PDFs for events defined as threshold crossings here. The posterior PDFs to find
or not to find events are given by

ρ[xn|χn(η) = 1, a] =

√
1 − a2 exp

(
−1−a2

2 x2
n

)
2
√

2πρΘ(a, η)

erfc
(

η√
2
√

1 − a2
− axn√

2

)
, (6.4)

ρ[xn|χn(η) = 0, a] =

√
1 − a2 exp

(
−1−a2

2 x2
n

)
2
√

2π(1 − ρΘ(a, η))(
1 + erf

(
η√

2
√

1 − a2
− axn√

2

))
.

(6.5)

The corresponding likelihood reads

p[χn(η) = 1|xn, a] =
1
2
erfc
(

η√
2
√

1 − a2
− axn√

2

)
. (6.6)

We recall that the optimal precursor is given by u which maximizes the likelihood and hence
u = ∞. In a finite data set, this optimal precursor value is u = max {xn} and the alarm interval
becomes I = [u − δ, u]. From the mean value of the posterior PDF 〈xn〉 we can obtain the
analytic structure of the total PDF to find events

p[χn(η) = 1, a] =
a√

2(1 − a2)
1

〈xn〉 exp
(
−η2

2

)
. (6.7)
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Using the asymptotic expression of the error function from Eq.(3.19)

erfc(z) ∼ exp(−z2)√
πz

(
1 +

∞∑
m=1

(−1)m
1 · 3...(2m − 1)

(2z2)m

)
,

(
z → ∞, |argz| <

3π
4

)
and approximating the mean value 〈xn〉 with the maximum x∗

n of the posterior PDF

x∗
n =

√
2
π

a

1 − a2

exp
(
−
(

η√
2
√

1−a2
− ax∗

n√
2

)2
)

erfc
(

η√
2
√

1−a2
− ax∗

n√
2

)
∝ aη

√
1 − a2

(
1 + O

(
1
η2

)) , η → ∞, (6.8)

we obtain the following approximation of the total probability to find events

p[χn(η) = 1, a] ∝
exp
(
−η2

2

)
√

2η

(
1 + O

(
1
η2

))
, η → ∞ (6.9)

Note that this expression is only valid in the limit of large η. In particular it does not hold for
η = 0. Using Eq. (6.6) and Eq. (6.9) the constraint c(η, xn, a) reads

c(η, xn, a) ∝ −
√

2
π(1 − a2)

exp
(

−1
2

(
η√

1−a2
− axn

)2
)

erfc
(

η√
2
√

1−a2
− axn√

2

)

+
(

η +
1
η

) (1 − 1
2erfc

(
η√

2
√

1−a2
− axn√

2

))
1 − exp(−η2/2)√

2η

(
1 + O

(
1
η2

))
(6.10)
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Figure 6.4: ROC curves for the Gaussian distributed AR(1) process with correlation coefficient a = 0.75.
The ROC curves where made via predicting threshold crossings of magnitude η within 107 data points.
Note that the quality of the prediction increases with increasing event magnitude.

Using again Eq. 3.19 we obtain the following asymptotic behavior for large values of η

c(η, xn, a) → η

((
1 −O (exp(−η2)/η

)
1 −O (exp(−η2)/η)

)
− 1√

1 − a2

)
+

axn√
1 − a2

1
(1 + O(1/η2))

+
1
η

(
1 −O (exp(−η2)/η

)
1 −O (exp(−η2)/η)

)
, η → ∞. (6.11)

This expression is larger than zero, if terms of O (exp(−η2)/η
)

are negligible. Hence we can
conclude, that c(η, xn, a) is positive for large values of η and arbitrary values of xn.

However for finite values of η we observe a dependence on the precursory variable. Figures
6.2 and 6.3 display that c(η, xn, a) is positive for larger values, i.e., values, which are closer to
the ideal precursor u = ∞ or respectively u = max {xn} in any finite data set. Hence we should
expect larger events to be better predictable, if our alarm interval is situated in this region, i.e.,
if the alarm interval I = [u − δ, u] is small.

The ROC curves in Fig. 6.4 support this result. In the region of low rates of false alarms
which corresponds to a small alarm interval we find a strong dependence on the event magnitude
in the sense, that larger events are better predictable.

Finally one can discuss the case of the ideal precursor u = ∞. Inserting this value of the
precursory variable into Eq. 6.10 one obtains c(η, xn, a) = 0. This ideal precursor corresponds
to the idea of an ideal ROC curve, which is identical to the vertical axis of the ROC-plot. Hence
no further improvement of the ROC curve, e.g., by a change of the event magnitude, is possible.
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Figure 6.5: The condition according to Eq. (4.19) evaluated on 107 exponentially distributed
AR(1) correlated data .

6.3 AR(1) Process with Symmetrized Exponential Distribution

The AR(1) data with exponential distribution were created via replacing the values of the Gaus-
sian distributed AR(1) data with exponentially distributed i.i.d. random variables, as explained
in Sec. 6.1. The exponential distributed AR(1) process has the following PDF

ρ(x) =
λ

2
exp(−λ|xn|)

with λ = 1 and was generated by transformation from uniformly distributed random numbers.
(The uniformly distributed random numbers were generated by using the Mersenne twister
algorithm [96].) Numerically we find the maximum of the likelihood also in the region of large
values of xn, similar to the Gaussian case with an alarm interval I = [u− δ, u], where u denotes
the largest value of the data set. We compute the condition according to Eq. 4.19 and the
ROC curves numerically by using 107 exponentially distributed AR(1) correlated data. Fig.
6.5 compares the results of the numerical evaluation of the condition c(η, xn, λ). In the vicinity
of the larger values of the data set, the condition c(η, xn, λ) is positive as in the Gaussian case.
The ROC curves in Fig. 6.6 support the positive magnitude dependence indicated by the test
condition.
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Figure 6.7: The condition c(η, xn, α, σ) evaluated on 107 power-law distributed AR(1) correlated data
with variance σ = 1, mean zero and power-law coefficient α = 3.

6.4 Power-Law Distributed random variables

The AR(1) data with power-law distribution were created via replacing the values of the Gaus-
sian distributed AR(1) data with symmetrized power-law distributed i.i.d. random variables, as
explained in Sec. 6.1. The symmetrized power-law distributed i.i.d. random variables follow the
following distribution

ρ(x) = αxα
min x−(α+1), x > xmin > 0

ρ(x) = α|xmax|α |x|−(α+1), x < xmax < 0, (6.12)

with xmin = |xmax| = 0.01 and power-law coefficient α = 3. They were generated by trans-
formation from uniformly distributed random numbers. Since the distributions with xmin =
|xmax| = 0.01 would not allow values in the interval ]xmin, xmax[, the resulting random numbers
were shifted to the left (right) by subtracting (adding) xmin. The result is a symmetrized power
law distribution with mean zero and variance σ = 0.01. Finally, the values of the AR(1) process
were amplified by multiplication with a constant ca = 100. The resulting power law distributed
AR(1) process has a variance of σ = 1, and a power law exponent of α = 3.

Figs. 6.7 and 6.8 show the numerical results for c(η, xn, α, σ) and the ROC curves. Again
we choose the alarm interval to be I = [u − δ, u], with u denoting the largest value of the data
set. Although c(η, xn, α, σ) is less regular than in the Gaussian or the exponential case, its
values are mainly above zero, especially in the region of the optimal precursor, i.e, for large
values of xn. This complies to the ROC curves in figure 6.8. Hence large threshold crossings are
also within the power-law distributed AR(1) process better predictable than smaller ones. This
result for threshold crossings in AR(1) correlated data is qualitatively different from the results
for the prediction of increments in sequences of Pareto distributed random numbers. In Chap. 5
we found that the event magnitude has no influence on the prediction of large increments in
sequences of exponentially distributed i.i.d. random numbers. This difference can probably be
understood by the fact that the condition c(η, xn) is not only a function of the event magnitude
η, but also a function of the event class and of the precursor values xn.



6.4. POWER-LAW DISTRIBUTED RANDOM VARIABLES 83

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1

ra
te

 o
f c

or
re

ct
 p

re
di

ct
io

ns

rate of false alarms

η = 0.00
η = 1.50
η = 3.00
η = 4.50
η = 6.00

Figure 6.8: ROC-plot for the power-law distribution. The ROC curves where made via predicting
increments in 107 data points of the AR(1) process with power-law distribution.
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Figure 6.9: ROC curves for the Gaussian AR(1) process made according to the more realistic
prediction procedure described in Sec. 6.5

6.5 A more realistic prediction procedure

Predicting an above-threshold event when the current observation itself is already above the
threshold might not be really relevant in most applications. Therefore we modify here the
sample on which predictions are to be made: We define as events the subset of previous events,
where not only the future value is above threshold, but simultaneously the current value is below
threshold.

χn+1 =
{

1 : xn+1 ≥ η, xn < η
0 : xn+1 < η, xn < η

(6.13)

The events χn = 1 according to this definition are a subset of the previously discussed events and
the alarm interval reduces to I = [η−δ, η]. Hence, this modification reduces the number of events
in the time series and might render the prediction task more difficult. The corresponding ROC-
curves in Figs. 6.9-6.11 show qualitatively the same dependence on the event magnitude as the
ROC curves obtained in the previous section: Threshold crossings in Gaussian, approximately
exponentially distributed, and approximately power-law distributed AR(1) processes are better
predictable, the larger they are.
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Figure 6.10: ROC curves for the exponentially distributed AR(1) process made according to the
more realistic prediction procedure described in Sec. 6.5
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Figure 6.11: ROC curves for the power law distributed AR(1) process made according to the
more realistic prediction procedure described in Sec. 6.5
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Figure 6.12: ROC curves for η = 0 for different distributions, the annotation “realistic” refers to the
ROC curves in described in Sec. 6.5.

6.6 ROC curves for η = 0

Analogous to the considerations for the predictions of increments of magnitude zero (see. Sec. 5.7),
we observe, that the ROC curves indicating the success of the prediction of threshold crossings
of size zero, i.e. the sign of xn+1 coincide as it is displayed in Fig. 6.12.

We can understand this coinciding curves by considerations analogous to Sec. 5.7. Since
p[χn(0) = 1] = 1/2, the likelihood ratio equals to the ratio of odds, which reads for an alarm
interval I = [u − δ, u] with u being the largest value of the data set

Λ(u, δ, 0) =
p[χn(0) = 1|u − δ]
p[χn(0) = 0|u − δ]

=
p[χn(0) = 1|u − δ]

1 − p[χn(0) = 1|u − δ]
. (6.14)

Hence the slope of all ROC curves for η = 0 follow the behavior indicated by this ratio and since
all curves cross the origin and the point (1,1), we observe coinciding ROC curves.

However, one can now ask, why we obtain different “universal” ROC curves for the prediction
of increments η = 0, threshold crossings η = 0 and threshold crossings in the sense of Sec. 6.5.
In order to understand this, one has to remind oneself, that that the slope Λ(u, δ, 0) as it is
given by Eq. (6.14) is a function of the size of the alarm interval δ. However, in terms of the
ROC curves we typically think of Λ(u, δ, 0) as a function of the rate of false alarms, which can
be misleading. Since the mapping which relates δ to the rate of false alarms is dependent on
the definition of the event and the corresponding alarm volume, we find different ROC curves
for different types of events.

6.7 Summary

We study the magnitude dependence of the quality of predictions for threshold crossings in
autocorrelated processes of order one and in measured accelerations in a free jet flow. Using the
present value xn as a precursory variable we predict threshold crossings at a future time step
xn+1 via statistical considerations.

We are especially interested in the influence of the probability distribution of the underlying
process on changes in the quality of the predictions, which are evoked by focusing on different
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event magnitudes. For Gaussian, exponential and power law distributed AR(1) processes we
find, that larger threshold crossings are better predictable, the higher the threshold. In all cases
studied the behavior of the ROC curves was reasonably well reflected by the condition c(η, xn),
which is an expression that depends on the total probability to find events and the likelihood
to observe an event after a given value of xn. This theoretical results could in principle help to
understand the effects reported for avalanches in systems, which display self organized criticality
[23].

These results for the prediction of threshold crossings are in contrast to the results for the
prediction of increments in i.i.d. random numbers presented in Chap. 5. For the prediction
of increments we found qualitatively different magnitude dependences in dependence of the
different distributions of the data, whereas predictions of threshold crossings show the same
magnitude dependence for the distributions under study. This difference can be understood
by taking into account the different regimes in which we find the optimal precursors: When
predicting increments, the optimal precursors are typically among the smallest values in the
data set, while for the prediction of threshold crossings, large values are optimal. Furthermore
threshold crossings form a different class of events. Hence both PDFs which contribute to the
value of c(η, xn), namely the likelihood and the total probability to find events are different.
Hence we should not be surprised to find different results for the predictability of larger events.

In summary we find, that threshold crossings in AR(1) processes are the better predictable,
the larger they are.
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Chapter 7

Predictions of Events in Fluid Flows

In this chapter we investigate the predictability of increments and threshold crossings in mea-
surements of the flow velocity in a round air into air free jet and of wind speed recorded in
the boundary layer. In both fluid flows we observe intermittent behavior, visible in form of
non-Gaussian, i.e, exponential distributions of small velocity increments. However, velocity in-
crements, between well separated time steps, corresponding to larger scale structures are still
Gaussian distributed. Since, the exponentially and the Gaussian distributed data sets of in-
crements are obtained from the same original data set, we can assume, that many features of
the data sets are identical, although they differ in distribution. Hence, the fluid flow velocities
provide us with the opportunity to test the influence of the underlying distribution on the mag-
nitude dependence. However, in contrast to the previous studies on synthetic data, we deal here
with realistic data sets, containing measurement noise and correlations.

7.1 Distributions of velocity increments in the presence of dis-
sipation range intermittency

Fully developed turbulent flows are characterized by a flux of energy, which is injected into the
fluid motion at large scales (integral scale) and is then transported to smaller scales (dissipa-
tion range).1 This turbulent cascade is typically investigated, by studying the longitudinal (in
direction of the main flow) velocity increments [97], [98]

v(r, t) = e · [u(x + re, t) − u(x, t)], (7.1)

where u(x, t) denotes the velocity field and e a unit vector aligned to the main flow.
It is well known ([99], [100], [101], [102], [97]) and many others, that that in fully developed

turbulence the fluid motion at small scales is characterized by intermittency. In the context of
dynamical systems, intermittency is typically discussed as the alternation between regular phases
and short irregular chaotic bursts (see. e.g. [103]). The influence of intermittency on fluid motion
is mainly described by its influences on the statistics of the velocity increments, namely as a
violation of the scale independence of moments of the velocity 〈v(r, t)n〉 ([104], [105], [97], [98]) or
as “quasi-exponential tails of the PDF of longitudinal [velocity] increments” ([106], [98]). We will
focus on the latter feature, which is more relevant in order to test for the magnitude dependence
of predictions. Numerous measurements and simulations ([107], [108], [109], [110] and many
others) indicate, that the PDFs of longitudinal increments are approximately Gaussian if r is
sufficiently large and they “develop exponential wings”[97] if r is decreased. These exponential
distributions can even turn into stretched exponential distributions for even smaller r. The
distributions of the data sets under study illustrate this effect (see Figs. 7.1 and 7.6.)

1Precise definitions of the terms “integral scale”,“inertial range/scale” and “dissipation range/scale” can be
found in standard textbooks on turbulence, such as [97]. In the context of this study we simply distinguish
between “small scales” and “large scales”.

89
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Figure 7.1: PDF of the increments an,j = vn+j − vn with j = 1, 3, 10, 35, 144, 285. The black
lines correspond to Gaussian and exponential PDFs with appropriate values for the standard
deviation or the coefficient λ.

A well known parametrization, which allows to describe the evolution of the shape of the
PDFs was developed by Castaing, Gagne and Hopfinger [109]. The idea of this description
consist in assuming, that the deviation from a Gaussian results from the influence of the energy
transfer rate towards smaller scales εr. This energy transfer rate is according to the hypothesis
of Kolmogorov [104] and Obukov [105] (later refined by Kraichnan [111]) assumed to follow
a lognormal distribution. Since the variance σ ∝ (rεr)1/3 of the velocity increment PDF is
essentially given by the scale r and the energy transfer rate, Castaing proposes also a log normal
distribution of the variance. Combining the Gaussian distribution of the increments with the
lognormal distribution of its variance and taking into account the observed skewness of the
distributions yields

p[v] =
A(as)
2πλ

∫
dσ

1
σ2

exp

[
− v2

2σ2

(
1 + as

v/σ√
(1 + v2/σ2)

)]
exp

⎛
⎝−

ln
(

σ
σ0

)
2λ2

⎞
⎠ , (7.2)

where σ0 is the most probable variance of v , λ =
√〈(ln σ)2〉 denotes the variance of the

lognormal distribution of σ and A(as) and as > 0 are normalization constants, describing the
skewness. The success of this description leads to the fact, that the whole phenomena of changing
shapes of increment distributions is often called Castaing distributions.

Renner, Peinke and Friedrich already showed [98] that the free jet data set under study is
indeed well characterized by the Castaing distributions. Thus, we will concentrate on investi-
gating not the full Castaing distribution, but simply on their asymptotics, i.e., Gaussian and
exponential distributions.

7.2 Predictions of Increments in a Free Jet Flow

Thus the incremental data sets an,j provides us with the opportunity to test the results for
statistical predictions within Gaussian and exponential distributed i.i.d. random numbers on a
data set, which exhibits correlated structures. In this section, we apply the method of statistical
inference to predict acceleration increments in free jet data. Therefore we use a data set of
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1.25 × 107 samples of the local velocity measured in the turbulent region of a round free jet.
The data were measured in the group of Joachim Peinke and all details of the experiment can
be found in [98]. That is why we will simply give a brief overview here.

Using hot wire anemometry, the velocity of the air in front of a nozzle is measured at a
sampling rate of 8 Hz and at a position where the flow can in good approximation be considered
as being isotropically turbulent. Taking increments ai of such a sequence vi over short time
intervals, ai = vi+j − vi, for j small, yields approximately a symmetric exponential distribution
for ai, whereas for long time intervals, i. e. large j, the distribution of the increments is
approximately Gaussian, see Fig. 7.1. 2 The Taylor hypothesis r = u(tn+1 − tn), with the mean
velocity u, allows to relate the time-resolution to a spatial resolution.

We are now interested in predicting increments of the acceleration an+κ,j − an,j ≥ η in the
incremental data sets an,j = vn+j − vn. In the following we concentrate on the incremental data
set an,10, which has an asymptotically exponential PDF and the data set an,144, which has an
asymptotically Gaussian PDF.

The time horizon κ between the prediction and the event corresponds to the time through
which the increment is defined. Since the data is strongly correlated we choose a time horizon κ =
285, which corresponds to an increment 35.625 s ahead in time, in order to observe sufficiently
many large increments. In other words, the short-range persistence of the process could otherwise
prevent us from detecting large events.

As in the previous sections we are hence exploiting the statistical properties of the time series
to make predictions, rather than the dynamical properties.

We can now use the evaluation algorithm which was tested on the previous examples to
evaluate the condition for these data sets. The results are shown in Fig. 7.2. We find that at
least for larger values of η the main features of c(xn, η) for the exponential and the Gaussian
case as described in Chap. 5 are also present in the free jet data. For larger values of η, c(an,j, η)
is either larger than zero in the Gaussian case (j = 144) or equal to zero in the exponential case
(j = 10) in the region of interesting precursory variables, i.e., small values of an,j.

However, the presence of the exponential and the Gaussian distributions is also visible in
the corresponding ROC curves. In order to generate the ROC curves we used a threshold of
the likelihood instead of a specific precursor. In this setting we give an alarm for an extreme
event, whenever the likelihood that an extreme event follows an observation is larger than a
given threshold value.

In the exponential regime (j = 10) shown in Fig. 7.3(a) the ROC curves for different event
magnitude η almost coincide, although the range of η is larger (η ∈ (0, 6.71)) than in the
Gaussian case shown in Fig. 7.3 (b). For j = 144 the ROC curves are further apart, which
corresponds to the results of Secs. 5.2 and 5.4.

This corresponds to the previous observation, that the magnitude dependence is much more
prominent if the underlying distribution is Gaussian. Hence, the specific dependence of the ROC
curve on the event magnitude can also in the case of correlated data sets be characterized by
the PDF of the underlying process.

2For longitudinal velocity increments, one wing of the distributions is higher than the other. This effect can be
understood via Kolmogorov’s four-fifths law, which demands a non-zero skewness of the velocity increment [97].
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Figure 7.2: Transition from the exponential regime (a) to the Gaussian regime (b) characterized
via the numerical evaluation of c(xn, η). The black line corresponds to the analytic results for
the Gaussian and the exponential PDF, fitted to the PDFs of the increments, as it is shown
in Fig. 7.1. For larger values of η the main features of c(xn, η) for the exponential and the
Gaussian case as described in Sec. 5.2 and 5.4 are reproducible. For larger values of η we find
that if −ση < an,j −ση/2 c(an, η) is either larger than zero in the asymptotically Gaussian case
(j = 144) or equal to zero in the asymptotically exponential case (j = 10).
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Figure 7.3: Transition from exponential ROC curves (a) to Gaussian ROC curves (b). In the
exponential case (j = 10), shown in (a) the ROC curves for different event magnitude η are
almost the same, although the range of η is larger (η ∈ (0, 6.71)) than in the Gaussian case
shown in (b). For j = 144 the ROC curves are further apart, which corresponds to the results
for Gaussian ROC curves (see Sec. 5.2)
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Figure 7.4: The condition c(η, an,j) evaluated for the prediction of threshold crossings in the
free jet data set. Figure (a) shows the exponential regime (a) and Fig. (b) displays the results
in the Gaussian regime (b). Qualitatively both pictures are not very different: In both cases,
c(η, an,j) is positive for larger values of the precursory variable an,j

7.3 Predictions of Threshold Crossings in a Free Jet Flow

We are now interested in predicting larger values of the acceleration an+κ,j ≥ η in the incremental
data sets an,j = vn+j − vn. In the following we concentrate on the data set an,10, which has an
asymptotically exponential PDF and the data set an,144, which has an asymptotically Gaussian
PDF. Since the free jet data are correlated, predicting the next time step would be equivalent
to predicting persistence. That is why we choose a prediction horizon of seven time steps, i.e.,
κ = 7 in the Gaussian regime (j=144) and a smaller time horizon κ = 2 in the less correlated
exponential distributed increments (j=10). As in the previous chapters we are hence exploiting
the conditional probabilities of the time series to make predictions.

We can now use the algorithm which was tested on the previous examples to evaluate the
condition and the corresponding ROC curves for these data sets. The results are shown in Figs.
7.4 and 7.5. In both examples the evaluation of the condition c(η, an,j) reflects the behavior of
the ROC curves.
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Figure 7.5: ROC curves for the prediction of threshold crossings in the free jet data set. The
results for the exponential distributed velocity increments are on the left, the results for the
Gaussian regime on the right.
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Figure 7.6: Histograms of velocity increments in wind speed. Again, we find that on short
scales the pdfs of the increments follow approximately an exponential distribution, whereas the
increments are approximately Gaussian distributed for larger j. However, the deviations from
the asymptotic distributions are larger than in the laboratory experiment, expecially in the tails
of the distributions.

7.4 Prediction of Increments in Wind Speeds

As a second example, we study wind speeds recorded at a measurement site in the north of
Germany, 66 m above ground at a sampling rate of 1 Hz. These measurements were made by
Julia Gotschall in the group of Joachim Peinke at the university of Oldenburg. These data
reflect the full complications of field measurements, including non-stationarity and inaccuracies,
but also represent a much more complicated turbulent state, namely boundary layer turbulence
which is strongly affected by the interaction of the air flow with the earth’s surface. Hence
the deviations from the asymptotic distributions are larger than in the laboratory experiment,
expecially in the tails of the distributions.

We predict large increments in the acceleration of the wind, so called turbulent gusts which
are of relevance for controlling wind turbines or scheduling aircraft take-off and landing. The
time horizon κ between the prediction and the event corresponds to the time through which the
increment is defined. Since the data is strongly correlated we choose a time horizon κ = 35,
which corresponds to an increment 35 s ahead in time, in order to observe sufficiently many large
increments. The predictions were made via identifying the precursors in the first part of the data
set (about 40000 data points) and then predicting in the second part (also 40000 data points).
Thus, we made predictions on a part of the data set, which was not used to determine suitable
precursors (“training”). The resulting ROC curves (Fig. 7.7) show again a better predictability
of larger events if the data set {ai} is asymptotically Gaussian distributed and a much weaker
dependence on the event size in the asymptotically exponential case.

7.5 Summary

We investigated the prediction of increments and threshold crossings in time series of longitudinal
velocity increments observed in a free jet experiment and in wind speed recordings. If we choose
the prediction horizon to be sufficiently large, for the prediction of increments or relatively
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Figure 7.7: ROC statistics for the prediction of large increments of wind speeds for different
event magnitudes, predicting κ = 35 time steps ahead.

small for the prediction of threshold crossings, we can find similar magnitude dependence as it
was discussed in previous chapters for predictions in AR(1) processes and sequences of random
numbers. Thus, we can apply the test condition also in the presence of correlations and noise of
measurement data. Again, we see, that the test condition is only influenced by the correlation
via the joint PDF of event and precursor, as it was discussed in Chap. 4.
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Chapter 8

Predicting errors in weather
forecasts

In this chapter we are interested in studying the magnitude dependence for predictions which
are not entirely based on purely statistical considerations. In fact we postprocess the output
of model based weather forecasts by using statistical inference and thus try to combine the
information provided by both prediction techniques. In contrast to pure statistical forecast
verification we apply precursors based on the output of an ensemble forecast system to predict
large differences between high resolution forecasts and the actual measurements (verification).
Having in mind our previous considerations about the dependence on the event magnitude, we
are of course not only interested in learning, whether we can identify large deviations of the high
resolution forecast and the verification using the corresponding ensemble forecast, but also in
studying the magnitude dependence of these predictions.

8.1 The ECMWF’s medium range temperature forecast

The weather forecasts and the corresponding verifications were provided by the European Cen-
ter for Medium Range Weather Forecasts (ECMWF). The data contain the ECMWF’s medium
range ensemble forecast and the ECMWF’s high resolution forecast and the corresponding ver-
ifications.

Very loosely speaking a weather forecast model consists of a system of differential equations,
describing the state of the atmosphere. Processes occurring on smaller scales, than the grid
resolution of the model are described by stochastic components. The model equations are then
fed with initial conditions measured by observation stations on the earth, ships and satellites
and evolved up to ten days into the future.

The high resolution forecast consists of the ECMWF’s operational forecast model TL799L91.
The numbers 799 and 91 indicate the resolution in terms of 799 linear spectral components of
a spherical harmonic which determine the horizontal resolution of the grid to be about 25 km
and 91 vertical levels of atmospheric layers.

The idea of the ensemble forecast is to provide a measure of the sensitivity on the initial
conditions, i.e, for the fact that small errors in the observation can evolve into large scale errors
within the 10 day forecast period. Thus, selected small amplitude perturbations are added to
the observations in order to create a range of slightly different initial conditions, which are then
chosen to be the initial conditions of an ensemble of forecast models. The ECMWF’s ensemble
forecast consists of 50 ensemble members, fed with perturbed initial conditions plus one member
which evolves the unperturbed conditions, the control. The resolution of the ensemble forecast
models is lower, than the one of the operational forecast, i.e, the model is a TL255L40 model.
More details about the ECMWF’s forecast models can be found in [24].

The forecasts we used were issued and verified twice a day at 0:00 and 12:00 in the years
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Figure 8.1: The temperature measured at London Heathrow at 12:00 from 2001 to 2005 is
indicated by the black line. The corresponding ensemble forecast is represented by the green
symbols, the high resolution forecast is represented by the blue symbols.

from 2001 to 2005. Thus, each data set, the one corresponding to the forecast for noon and
the one corresponding to the forecast for midnight, contains data corresponding to about 1800
time steps. Furthermore each data set consists of five sub-data sets, which correspond to four
neighboring grid points on the circulation model. The fifth data set is obtained by interpolation
of the four surrounding data sets. For all following considerations we always use this interpolated
data set.

In our investigations we focused on the temperature forecasted for and measured at London
Heathrow airport, 51o29’N 000o27’W at noon and we interpreted the control as a 51th ensemble
member.

In the following sections we present the results for the numerical evaluations of the quantities,
which were specified in the previous section, i.e., the likelihood to find events, the ROC-curves
and the corresponding area under the ROC curve (AUC, see Sec. 2.3.4), the Brier Score and
the Ignorance. We will show the results for a lead time (i.e., the time between the issuing of
the forecast and the time, the forecast is made for) of 120h. However all calculations presented
here were also made for the lead times 24h, 48h, 96h, 144h, 168h, 192h, 216h, 240h. Since we
do not find qualitatively different results for the magnitude dependence we restrict ourselves to
the discussion of the results for a lead time of 120h.

The corresponding data sets of high resolution forecast, ensemble forecasts and verification
presented in Fig. 8.1 have the following features:

data set mean standard maximal minimal
variation value value

{yn}, verification 287.11 K 6.27 K 307.9K 272.3 K
{hn}, high res. 286.57 K 6.24 K 271.86 K 305 K
{xn}, ensemble 286.02 K 6.05 K 306.33 K 270.1 K
{|yn − hn|} 1.98 K 1.61 K 12.35K 0K
{|yn − xn|} 1.96 K 1.71 K 14.05 K 0 K
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event number of magnitude in magnitude in
magnitude events units of σy units of σ|y−h|
≥ 0 K 1814 0 0

≥ 0.41 K 1560 0.07 0.26
≥ 0.82 K 1342 0.13 0.51
≥ 1.25 K 1106 0.2 0.78
≥ 1.65 K 901 0.26 1.02
≥ 2.06 K 714 0.33 1.28
≥ 2.47 K 545 0.4 1.53
≥ 2.88 K 414 0.46 1.79
≥ 3.29 K 314 0.52 2.04
≥ 3.71 K 237 0.59 2.30
≥ 4.12 K 175 0.66 2.56
≥ 4.53 K 130 0.72 2.81
≥ 4.94 K 105 0.79 3.07
≥ 5.35 K 72 0.85 3.32
≥ 5.76 K 53 0.92 3.58
≥ 6.17 K 42 0.98 3.83
≥ 6.59 K 30 1.05 4.09
≥ 7.0 K 24 1.12 4.35
≥ 7.40 K 14 1.18 4.6
≥ 7.82 K 11 1.25 4.86
≥ 8.23 K 10 1.31 5.11
≥ 8.63 K 6 1.38 5.36
≥ 9.06 K 6 1.45 5.63
≥ 9.47 K 6 1.51 5.88
≥ 10.29 K 5 1.64 6.39
≥ 10.7 K 4 1.71 6.65
≥ 11.11 K 3 1.77 6.9
≥ 11.53 K 1 1.84 7.16
≥ 11.94 K 1 1.9 7.12

Table 8.1: The number of events |yn − hn| for hn being generated with lead time 120 h.

8.2 Definition of the Events

We define the events under study to be large differences between the issued high resolution
forecast h and the verification y. Hence the definition of the events is given by

χn(η) =
{

0 if |yn − hn| < η
1 if |yn − hn| ≥ η

(8.1)

Since it is – in the context of weather forecasting – more relevant to measure the absolute
difference between a predicted temperature and the observed temperature, we did not scale the
event magnitude by the standard deviation of the data set in this section. Thus, the values
for η presented in the figures are absolute values, measured in Kelvin.

In order to compare the results to the previous chapters, in which we measured the event
magnitudes in units of the standard deviations, we present the size measured in units of the
standard deviation in Tab. 8.1, which contains also the numbers of events found in the data.
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8.3 Identification of the precursor

We search for precursors for differences between the high resolution and the verification, by
investigating the differences of the high resolution forecast and the ensemble forecast. More
precisely we use the number of ensemble members for which the difference to the high resolution
is larger than η as a precursory variable v:

v = #{i, |hn − xi
n| ≥ η} = vn(η). (8.2)

Thus we construct a time series of the precursory variable {vn(η)}, using the ensemble forecasts
and the high resolution forecast. In analogy to the previous studies, we give an alarm for an
event χn(η), if we find vn to be in a tolerance interval, constructed, such that it contains a
specified precursor u. In the following we will compare two possible choices of u leading to two
different alarm volumes.

Maximum Likelihood Method The first method of identifying u consists in using a max-
imum likelihood approach, as it was applied in the previous chapters for prediction in
one-dimensional time series. Thus, we define our precursor in the following way

ulike(η) = {vn(η) : p[χn(η) = 1|vn(η)] = max p[χn(η) = 1|vn(η)]}. (8.3)

Consequently the alarm volume Ilike(η, δ) = [ulike(η) − δ
2 , ulike(η) + δ

2 ] is centered around
this precursor value. As for the predictions in the previous chapters we can express this
procedure by defining a decision variable

A[vn(η), ulike(η), δ] =
{

1 : if vn ∈ Ilike(η, δ) = [ulike(η) − δ
2 , ulike(η) + δ

2 ],
0 : otherwise.

(8.4)

Threshold Method The second method of identifying suitable precursory structures is based
on “educated guessing” more than on strict mathematical reasoning. We simply give an
alarm for an event χn(η) if the number of ensemble members, deviating from the high
resolution forecast is larger than a specified number. Thus our tolerance volume is given
by

Ithresh(η, δ) = {vn(η) ≥ δ}, with δ ∈ (0, 51). (8.5)

A decision variable describing the prediction is thus given by

A[vn(η), Ithresh(η, δ)] =
{

1 : if vn ∈ Ithresh(η, δ) = {vn(η) ≥ δ},
0 : otherwise.

(8.6)

A possible reasoning of this educated guess goes as follows: In situations, in which we would
expect the high resolution forecast to differ significantly from the verification, we assume,
that this failure of the forecast is due to an increased sensitivity on small perturbations
in the initial conditions. We can then hope, that this sensitivity is not only present in
the atmosphere, but also reflected by the ECMWF’s circulation model. Consequently, we
would also expect a large number of ensemble members to deviate significantly from the
high resolution forecast, which is then turned into an alarm for a deviation.

Note, that the alarm volumes and decision variables are chosen such that the limit δ → 0
corresponds to the vicinity of the origin, and δ → 51 corresponds to the point (1, 1), as it was
done for the ROC curves in the previous chapters.
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Figure 8.2: The condition c(η, vn(η) evaluated for the prediction of differences between the
high resolution forecast as defined in Eq. (8.1). The red symbols correspond to the results for
the original data set. The dashed blue lines represent the results for the resampled data set
(resampling with repetition).

8.3.1 Testing the Magnitude dependence

In this section we apply the developed algorithm which tests the magnitude dependence of
ROC curves to time series of precursory variables {vn(η)} and events {χn(η)} as defined in
Eqs. (8.1) and (8.2). The tolerance volumes are therefore either defined as indicated in Eq. (8.4)
or according to Eq. (8.6). The results presented in Fig. 8.2 indicate, that the condition c(η, vn)
is mostly positive and hence one would expect a positive magnitude dependence.

Since the curves c(η, vn) presented in Fig. 8.2 are very noisy, we apply different methods of
post processing c(η, vn), which are discussed in the following.

Counting #c(η, vn) > 0: In order to summarize the results of c(η, vn) one could think about
counting for all evaluated values vn the instances in which the condition c(η, vn) is positive
or negative.

The results presented in Fig. 8.3 reveal, that for intermediate values of η we find more
instances in which c(η, vn) is positive. However, for very small and very large values of η
we find the opposite.

Averaging over η: Another method to summarize the behavior of c(η, vn) consist in averaging
over different values of η, i.e., we discuss the mean 〈c(η, vn)〉 instead of the function c(η, vn).
The results graphs in Fig. 8.4 are significantly less noisy,m than the original results in
Fig. 8.2.

Averaging over vn: Similarly we can also take the mean over all investigated values of vn.
The results displayed in Fig. 8.5 are also less noisy, than the original results in Fig. 8.4. In
total the average over vn suggests also a positive magnitude dependence of the likelihood
ratio.

All results obtained by post processing are – from a theoretical point of view – of course less
accurate, than evaluating c(η, vn) directly. However, in situations in which only few data-points
are available, they can help to display the overall tendencies of c(η, vn). In total the evaluation
of the condition c(η, vn) and its averages over η or vn suggest a positive magnitude dependence.
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Figure 8.6: ROC curves for the prediction of failures as defined in Eq. (8.1) via the number
of ensemble members vn(η) ∈ (0, 51) for which |yn − xn| ≥ η holds. For these ROC-curves an
alarm was given, if we find vn(η) within Ilike(η, δ) = [ulike(η)− δ

2 , ulike(η)+ δ
2 ], i.e., according to

the decision variable defined by Eq. (8.6). The points represent the original data set, the lines
denote the results for 20 bootstrap samples, generated by sampling with replacement.

8.3.2 AUC and ROC

In this section we compute ROC curves for the precursors and tolerance intervals defined above.
Since our data set is very small (1814 time steps) , we cannot concentrate on events which occur
more than 1000 times, but we focus on events, which occur more than 20 times. Additionally
we generate ROC curves from resampled data sets, in order to get an estimate of the sensitivity
of the ROC curves on variations in the distribution of the data. As in the previous studies
for the prediction of extreme events in one-dimensional time series, the resampling was done by
sampling with repetition from the original data set. The random generator used for the sampling
is the Mersenne twister [96], as implemented in the Gnu Scientific Library [112]. The results are
presented in Figs. 8.7-8.8. Surprisingly we find no significant difference in performance between
the numerically more expensive maximum likelihood method and our educated guess. This is
probably due to the small size of the data set, which leads to a low accuracy in the estimate of
the CPDF.

Both sets of ROC-curves and also Fig. 8.8 displaying the area under the ROC curves, reveal
a positive magnitude dependence, which is in good agreement with the results for c(η, vn),
discussed in the previous section.
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Figure 8.9: The relative Brier Score evaluated for the original data set (results denoted by
symbols) and the resampled data sets (results denoted by lines).

8.4 Brier Score and Ignorance

Additionally we evaluate also the relative Brier score and the relative Ignorance, since both
scores are common in the framework of weather forecasting. We repeat here the definition of
the Brier Score and the ignorance, already presented in Chap. 2. The Brier Score is defined as

B(χn(η), p̂) =
1
N

N∑
i=1

(χn(η) − p̂)2, (8.7)

where p̂ denotes a PDF. In our example, p̂ is chosen to be the likelihood p[χn(η) = 1|vn] or
the relative number of ensemble members vn/51 for which the difference to the high resolution
forecast is larger than a given value of η. In order to evaluate the performance of a prediction
it is very common to use the relative scores, i.e,

Brel (χn(η), p̂, p[χn(η) = 1]) =
B[χn(η) = 1, p[χn(η) = 1]] − B[χn(η), p̂]

B[χn(η) = 1, p[χn(η) = 1]]
, (8.8)

with B[χn(η) = 1, p[χn(η) = 1]] denoting the Brier score obtained for the total probability
p[χn(η) = 1] to find events (this probability is often called climatology in the context of weather
forecasting).

The ignorance score for a binary event is given by

Ig[χn(η), p̂] =
1
N

N∑
i=1

− log(p̂) · χn(η) − log(1 − p̂) · (1 − χn(η)), (8.9)

where p̂ denotes, as a above a PDF, which is here either the likelihood p[χn(η) = 1|vn] or the
relative number of ensemble members vn/51. Analog to the relative Brier Score, one typically
also uses the relative ignorance

Igrel (χn(η), p̂, p[χn(η) = 1]) =
Ig[χn(η) = 1, p[χn(η) = 1]] − Ig[χn(η), p̂]

Ig[χn(η) = 1, p[χn(η) = 1]]
, (8.10)



8.5. SUMMARY 109

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0  1  2  3  4  5  6  7  8

re
la

tiv
e 

Ig
no

ra
nc

e

η[K]

LT 120h

likelihood sample
threshold sample

threshold
likelihood

Figure 8.10: The relative Ignorance evaluated for the original data set (results denoted by
symbols) and the resampled data sets (results denoted by lines).

in order to measure the quality of a prediction. In order to prevent values of zero or unity
obtained for numerical estimates of PDFs, from causing a diverging ignorance, we add two
imaginary ensemble members. These two imaginary members have the property that one of
them is always counted as a deviation from the high resolution, and the second one is assumed
to deviate never from the high resolution forecast. This trick allows us to numerically estimate
the ignorance for binary events.

Before we start to discuss the results, it is important to remember that both scores, the Brier
Score and the ignorance score indicate a good performance of the prediction method under study,
if their values are small.

The results for the relative Brier score and the relative ignorance, evaluated for the likelihood
p[χn(η) = 1|vn] and the relative number of deviating ensemble members vn(η)/51 are shown
shown in Figs. 8.9 and 8.10. Again we did not only use the original data set, but also resampled
data sets in order to obtain an estimate of the sensitivity on small changes in distribution. We
can see, that the maximum likelihood approach and the ad hoc construction of the decision
variable lead to very similar results.

In total, the results for the ignorance and the Brier score show a better predictability, i.e.,
smaller values for the prediction of larger events, as the ROC curves.

However, we learned in Chap. 4 that the magnitude dependence of one measure for the
quality of a prediction does not necessarily indicate that other measures have the same magnitude
dependence. Hence, we should beware of interpreting the results for the ignorance and the Brier
score to be in agreement with the magnitude dependence obtained for the ROC curve. Each
quality measure has it’s own magnitude dependence and even if evaluated for the same prediction
problem, they do not necessarily agree, although this is the case in this example studied.

8.5 Summary

We use information obtained from the ensemble forecast and the high resolution forecast to suc-
cessfully predict errors of the hight resolution forecast. Comparing the quality of the predictions
we find no significant difference in performing between the “ad hoc choice” of the alarm volume
and an alarm volume constructed via the numerically more expensive maximum likelihood ap-
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proach. This result is probably due to the limited amount of available data, which leads to a
suboptimal estimation of the likelihood.

In addition the ROC curves, the Brier score and the likelihood characterizing our prediction
experiment show a positive magnitude dependence. The positive magnitude dependence of
the ROC curves was also reasonable well reflected by the test condition for the magnitude
dependence of ROC curve and likelihood ratio, introduced in Chap. 4. Furthermore, we saw,
that in situations in which a limited amount of data does not allow a sufficiently good evaluation
of the test condition, we can use the averages of the test condition in order to obtain information
about the magnitude dependence.



Chapter 9

Conclusions and open Questions

In this thesis we access the prediction of extreme events from a point of view which does not
focus on a specific system generating large impact events, but on the common features of events
occurring in very different circumstances as completely different phenomena. We therefore study
predictions made by identifying precursory structures in time series, which were identified using
a maximum likelihood approach.

The main goal of this thesis is to investigate the dependence of the quality of a prediction
on the magnitude of the events under study. Until now, this dependence was only sporadically
reported for different phenomena [20, 21, 22, 23] without being understood as a general feature
of predictions. We propose the magnitude dependence as a property of a prediction, indicat-
ing, whether larger events can be better, harder or equally well predicted than smaller events.
Furthermore, we specify a condition which can characterize the magnitude dependence of a
distinguished measure for the quality of a prediction, namely for the Receiver Operator Charac-
teristic curve (ROC curve). We consider the ROC curve a suitable measure for the performance
of predictions of extreme events since it is independent of the relative frequency of the events
under study, and does not average, which would hide the contributions of rare events between
results for the predictions of smaller events. The specified test condition for the magnitude
dependence allows to predict the magnitude dependence of a prediction via studying the joint
PDF of events and precursory variables. If we are able to describe the numerical estimate of this
joint PDF by an analytic expression, we can not only characterize the magnitude dependence of
events observed so far, but infer the magnitude dependence of events larger than the observed
ones.

Having the test condition specified, we study the magnitude dependence for the prediction of
increments and threshold crossings in sequences of random variables and short- and long-range
correlated stochastic processes. Furthermore we investigate the dependence on the event mag-
nitude for the prediction of increments and threshold crossings in velocity increments, measured
in a free jet flow and in wind-speed measurements. In dependence of the distributions of the
processes under study we obtain positive, negative or zero magnitude dependences.

Additionally we introduce a method of post-processing the output of ensemble weather fore-
cast models in order to identify precursory behavior, which could indicate failures of weather
forecasts. We then study not only the success of this method, but also the above referred
magnitude dependence.

To summarize, we propose that the magnitude dependence sporadically reported for pre-
dictions in different applications is a property inherent to any prediction of a binary event.
If the quality of a prediction is measured by ROC curves, the magnitude dependence is fully
characterized by the definition of the events under study and the joint PDF of precursor and
event.

111
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9.1 List of specific results

The main novel results presented in this thesis are:

• We propose a definition for extreme events in time series, which can serve in order to
transfer the term “extreme event” into a scientific concept.

• We propose a method of obtaining the joint PDFs of precursor and event analytically via
using the Heaviside function as a filter.

In chapter 3:

• Increments in an AR(1) correlated process are the better predictable the larger they are.
This result can be obtained both, analytically and numerically.

• Increments in long-range correlated ARMA processes are also the better predictable, the
larger they are.

• The magnitude dependence is not explicitely influenced by the correlation of the data, but
only by the joint PDF of event and precursor. The influence of the correlation is only of
relevance in terms of its effect on this joint PDF.

In chapter 4:

• We define the magnitude dependence of a prediction task as a quantity which is dependent
on the process under study, the definition of the events and the measure for the quality of
a prediction.

• We derive a test condition for the magnitude dependence of families of likelihood ratios and
ROC curves. This condition allows to trace back the magnitude dependence to properties
of the relative frequency of events and the likelihood.

In chapter 5:

• For the prediction of increments in a sequence of Gaussian distributed random numbers we
obtain a positive magnitude dependence. The corresponding statement of the numerically
and analytically evaluated test-condition was verified by the ROC curves.

• For the prediction of increments in a sequence of one-sided exponentially distributed ran-
dom numbers larger events are harder to predict, i.e, for the optimal precursor we find
a negative magnitude dependence. The corresponding statement of the numerically and
analytically evaluated test-condition was verified by the respective ROC curves.

• For the prediction of increments in a sequence of symmetrized exponentially distributed
random numbers, we obtain an independence of the event magnitude from the test con-
dition. This result is reflected by the first part of the ROC curves, corresponding to a
low rate of false alarms. However, the ROC curves show a positive magnitude dependence
for larger false alarm rates. This dependence is significantly less pronounced than in the
Gaussian case.

• For the prediction of increments in sequences of one-sided power-law distributed random
numbers with finite variance, both the test condition and the ROC curve indicate a negative
magnitude dependence. This result is independent of the exponent of the power-law, as
long as the exponent guarantees a finite variance.
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• For the prediction of increments in symmetrized power-law distributed random numbers,
the test condition and the ROC curve display a negative magnitude dependence.

• Furthermore we find an “universal”1 ROC curve for the prediction of increments of mag-
nitude zero, i.e., predictions of the sign of an increment.

In chapter 6:

• For the prediction of threshold crossings in AR(1) correlated processes with Gaussian,
asymptotically exponential and power-law distributions we find a positive magnitude de-
pendence.

• If we restrict the set of events to threshold crossings, which are not preceeded by a pre-
cursor which is an event itself, we find a slightly reduced performance, but also a positive
magnitude dependence.

• For predictions of threshold crossings of magnitude zero, i.e, predicting the sign of the
next value in the time series, we find again ROC curves which are independent of the
distribution of the process under study.

In chapter 7:

• The qualitative results obtained for the predictions of increments and threshold crossings
in synthetical time series can be retrieved by predicting in measured time series, containing
noise and long-range correlations. The corresponding time series, namely velocity incre-
ments measured in a free jet flow experiment and increments of wind speed measurements
are in dependence on the definition of the increment either exponentially or Gaussian
distributed.

• Specifying the prediction horizon in a suitable way, we find again a positive magnitude
dependence in the exponential and the Gaussian case for both increments and threshold
crossings.

• For the prediction of increments we can also observe, that the magnitude dependence
for the prediction of exponentially distributed increments is significantly weaker than the
magnitude dependence of the corresponding Gaussian case.

In chapter 8:

• We successfully predict failures of weather forecasts by using a post-processing method,
which transfers deviations within a model based ensemble forecasts system into precursors
for failures.

• For relatively short data sets, the maximum likelihood approach to identify suitable pre-
cursors performs not better than a numerically less expensive “educated guess” of suitable
alarm intervals, which is specified in more detail in Sec. 8.3.

• We observe also for this example a positive magnitude dependence, indicated by the test
condition, the ROC curves, the Brier score and the ignorance.

• We find that for short data sets, one can also use averages of the test condition in order
to extract the information provided by the test condition itself.

1The term universal is here used to indicate the independence on the underlying distribution of the process.
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9.2 Specific open Questions

We studied the magnitude dependence for predictions within Gaussian, exponentially or power-
law distributed data sets and with respect to the ROC curve as a measure for the quality of
a prediction. It is important to obtain information of the magnitude dependence in order to
judge the quality of a forecast in a reasonable way. Especially, one would like to know if it is
possible to extrapolate the performance of a forecast, which is able to detect smaller events, to
the performance of larger events of unknown magnitudes.

Starting from the results obtained in this thesis, one could now investigate the magnitude
dependence for predictions in data following arbitrary other distributions. It is of particular
interest to study the magnitude dependence of data following a Levy stable distribution or a
truncated Levy stable distribution. Due to their stability and their heavy tails which enforce the
occurrence of extreme events, these distributions are of particular interest and inferring their
magnitude dependence is thus highly desirable. Although their tails are also asymptotically
power-law distributed, it is not obvious that the results obtained for power-laws with finite
variance hold also for power-laws with diverging variance, as they are present in Levy stable
distributions.

Furthermore, the concept of the magnitude dependence can be transfered to other measures
of predictability. In other words, it would be useful to formulate test conditions for the Brier
score, the ignorance, the Kullback Leibler distance and many other measures for the quality
of a prediction. It is especially important to relate the results obtained for the ROC curves
to predictions evaluated with the so called “error-curve”, which is a well established concept to
evaluate the success of earthquake predictions. Since earthquake predictions are made under the
assumption of a continuous time process, the error-curve does relate the success of a prediction
to the total alarm time. However, when applied to discrete time series and for fixed alarm times,
the error-curve can be transformed into a ROC curve. In other words, the ROC curve relates
to a special case of the error curve. Hence it would be of special interest to investigate, whether
the results for the magnitude dependence of the ROC curve can be generalized.

Leaving the field of statistical inference one can also investigate the magnitude dependence
of model based forecasts. It is already empirical knowledge [24] that large scale structures in
the atmosphere are more stable and thus better predictable. Using the ensemble spread of the
weather forecasts studied in Chap. 8 was a very course grained approach in this direction. A
more specific approach is discussed under the name prediction of predictability [35, 113] which
evaluates localized Lyapunov exponents in order to distinguish regions in phase space, which
allow a high predictability from those in which infinitesimal uncertainties lead to exponentially
diverging trajectories.

9.3 Open Questions on Extreme Events and Outlook

Thinking about extreme events as a general phenomenon occurring in systems possessing com-
plex dynamics, there are very few things which are known and specified yet. It is not even clear,
whether one can call the different approaches a field of research yet. Thus, one can start with
the naive but reasonable question “What is an extreme event?” and realize that there is no
generally accepted definition yet. Although many systems in our surrounding display from time
to time behavior that we consider to be extreme, one can always ask whether this classification
is not simply the source of our specific reception. Regarding the development of the earth in
total, rare disastrous events like hurricanes, droughts or floods are not extreme but perfectly
normal. Following this idea, one could also say that events we call extreme, are simply events
we are not adapted to, neither by evolution, nor by the way we created our habitats nor by
the way our economies work. However, we probably do not want to rely on evolution to enable
future generations to deal better with the expected more frequent and more intense [3] extremes
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of the future climate.2

If we consequently try to access extreme events by scientific methods, another important
question is to ask “Are extreme events like smaller events, only larger?” [114], i.e., can we
simply extrapolate from our knowledge about the less rare events observed in a system. In
this thesis we implicitly assumed that the answer to the above question is yes, since we always
expected the events under study to originate from the same process. Most research on extreme
value statistics also uses this assumption. Despite the fact that extreme value statistics for
uncorrelated random numbers was already developed in the 1940 and 1950s, there is still no
established concept that allows to apply the extremal types theorem to correlated data without
making restrictive assumptions about the correlation [115]. However, some authors claim to be
able to successfully estimate extreme values distributions on long-range correlated data [116],
while others explicitly warn not to do so [117, 118]. Since most of the interesting data sets
are indeed correlated, it is highly desirable to explore under which circumstance one can still
successfully estimate the generalized extreme value distributions.

In case, that we answer the question “Are extreme events like smaller events, only larger?”
[114] with “no”, we can think about extreme events and “normal events” as phenomena ranging
from two (or more) different types of dynamics, whose superposition is then perceived as a
system displaying rare extreme events. A similar approach is to separate between short range
correlations, which determine the part of the dynamics, which is understood and predictable and
the influence of long-range correlations (often hidden by the finite size of the data set), which
influence the occurrence of extreme events [6].

If one does not demand the events under study to be endogenous, one can also consider
all sorts of couplings between different subsystems, one of them being the subsystem in which
we observe the extreme event. The generation of the extreme event is then the result of the
exogenous driving [30].

Furthermore one could also interpret extreme events and “normal events” as intermittent
behavior [119], especially if the extreme events occur in clusters.

The irregular occurrence of extreme events can be related with various model classes pos-
sessing complex dynamics, e.g., non-linear maps and differential equations, systems displaying
self organized criticality, cellular automata, networks and models for stochastic resonances and
others. Much research was already done in the last decades to study properties of these systems.
However, it might be worth revisiting them and focus now on their ability to generate extreme
events, their statistical properties, e.g., their extreme value distributions, the precise mechanism
of the event generation, or precursory behavior which can help to predict them. A promising
approach in this direction is the work of Nicolis and Nicolis [18] who studied how different de-
terministic non-linear dynamics are reflected by the PDFs and CPDFs. Their results indicate
that one cannot obtain a simple limiting behavior in the sense of a generalized extreme value
distributions for systems displaying deterministic chaos.

Since many of the models listed above are indeed applied in order to describe natural phe-
nomena, such as earthquakes [120], avalanches or forest fires, it will hopefully be possible to
relate the knowledge gathered from extreme events occurring in the model systems to real world
phenomena.

2Maybe one could also think of research and its application as a part of evolution.
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Appendix A

Increments and threshold crossings
in ARMA processes

We show how to relate the results obtained using the definition of extreme events as extreme
increments (xn+1 − xn ≥ d, as in Eq. (5.1)) to the case when extreme events are defined as
extreme values (yn+1 ≥ d, as in Eq. (5.1)), for ARMA(p,q) processes. An ARMA(p,q) model is
defined as [33]

Φ(B)xn = θ(B)ξn, (A.1)

where {ξ} correspond to white noise and

Φ(B) = 1 − Φ1B − Φ2B
2 − ... − ΦpB

p,

θ(B) = 1 + θ1B + θ2B
2 + ... + θqB

q,

with Bjxn = xn−j. Searching for extreme increments in a time series {x} is equivalent to search
for extreme values in the time series {y}, defined through the transformation

yn+1 = xn+1 − xn. (A.2)

Assuming that {x} is described by an ARMA(p,q) process defined by Eq. (A.1), and inserting
Eq. (A.2) in Eq. (A.1), one obtains that {y} is described by an ARMA(p,q+1) model with the
following transformed coefficients

Φ†
i = Φi i = 1, 2, ...p ,

θ†i = θi − θi−1 i = 1, 2, ...q ,

θ†q+1 = θq . (A.3)

Due to the transformation (A.2) the precursory structure equivalent to the one used in Sec. 3 is
obtained choosing1

ypre =
n∑

j=0

yj − x0 = xn. (A.4)

With this choice and the corresponding transformation of the process (Eq.(A.2)), the results
obtained for extreme increments can be transferred to the case of extreme values. In particular,
for the case of AR(1) processes (which corresponds to an ARMA(1,0)) discussed in Chap. 3,
all results are also valid for an ARMA(1,1) process with the precursor given by Eq. (A.4) and
events defined as threshold crossings.

1We assume x0 = 0, which is the mean value of {x}. This assumption is irrelevant for large values of n.

117



118APPENDIX A. INCREMENTS AND THRESHOLD CROSSINGS IN ARMA PROCESSES



Appendix B

Evaluating the CPDFs of precursors
and events

In this section we will discuss how the CPDFs of precursor and event can be obtained analytically.
This more technical issue might not fit in the context of a more general background. In order
to obtain the CPDFs we are interested in, we use both time series, the original data set {xn}
and the tracer time series {χn} to construct the joint probabilities p(χn, x0, x−1, . . . , x1−τ ) which
contain all dependencies between the sequence of observations down to τ temporal steps into the
past. Numerically these joint probabilities can be estimated by simply counting the coincidences
of event and precursory variables and then normalizing with the total number of events.

We can additionally obtain the joint PDFs of event and precursors analytically by applying
the Heaviside function (see e.g. [121]) Θ(xn+1 − xn − d) as a filter to the PDF of the stochastic
process under investigation.

Prediction of increments in the next time step

The following considerations are made for increments which occur within one time step, i.e.
κ = 1 and a one-dimensional precursory variable, i.e., τ = 1 and sn = xn. In order to simplify
the notation in this section, we refer to the magnitude of the increment not by the relative
magnitude η = (xn+1 − xn)/σ, measured in units of the standard deviation, but in terms of the
absolute magnitude d = xn+1 − xn.

Since only the time steps (xn, xn+1) are of relevance for the filtering, we can neglect all
previous time steps and apply our filter simply to the joint PDF for (xn, xn+1), which has
the form ρj(xn, xn+1) = ρn(xn)ρn+1(xn+1|xn) . This implies that we can regard all previous
time-steps x0, x1, ..., xn−1, on which ρn and ρn+1 might depend, as parameters. In a broader
context, this corresponds to the fact, that due to the conditioning on a finite number of previous
time steps, we implicitly treat the process under study as a Markov process, also described in
Sec. 2.2.1. The joint PDF of the extreme events pn[xn, χn(d) = 1] can then be obtained by
multiplication with Θ(xn+1 − xn − d).

p[xn, χn(d) = 1] =
∫ ∞

−∞
dxn+1 Θ(xn+1 − xn − d)ρj(xn, xn+1) (B.1)

= ρ(xn)
∫ ∞

−∞
dxn+1 Θ(xn+1 − xn − d)ρj(xn+1|xn) (B.2)

Note, that we integrate over xn+1 since our event does not consist in observing a distinguished
value of xn+1, but in observing xn+1 to be in a certain range of possible values, namely

χn = 1 iff xn+1 ≥ xn + d, (B.3)

according to the definition of increments in Sec. 2.1.2. This is also the reason, why the joint
PDF of precursory variable and event is a probability density in terms of the precursory variable
and a probability in terms of the event.
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Continuing with our calculation, we substitute xn+1 = xn + d + γ and thereby introduce a
new random variable γ ∈ R.

p[xn, χn(d) = 1] = ρ(xn)
∫ ∞

−∞
dγ Θ(γ)ρ(xn + d + γ|xn) (B.4)

= ρ(xn)
∫ ∞

0
dγ ρ(xn + d + γ|xn). (B.5)

By normalizing with the total probability p[χ(d) = 1] to find extreme events of size d or larger

p[χ(d) = 1] =
∫ ∞

−∞
dxn p[xn, χn(d) = 1] , (B.6)

we obtain the posterior PDF and the likelihood by using Bayes’ theorem:

ρ[xn|χn(d) = 1] =
ρn(xn)

p[χ(d) = 1]

∫ ∞

0
dγ ρ(xn + d + γ|xn); (B.7)

p[χn(d) = 1|xn] =
∫ ∞

0
dγ ρ(xn + d + γ|xn). (B.8)

Analogously we can calculate the corresponding PDFs and CPDFs for non-events,

p[xn, χn(d) = 0] = ρ(xn)
∫ ∞

−∞
dxn+1 (1 − Θ(xn+1 − xn − d))ρj(xn+1|xn) (B.9)

= ρ(xn)
∫ ∞

−∞
dγ (1 − Θ(γ))ρ(xn + d + γ|xn) (B.10)

= ρ(xn)
∫ ∞

−∞
dγ Θ(−γ)ρ(xn + d + γ|xn) (B.11)

= ρ(xn)
∫ 0

−∞
dγ ρ(xn + d + γ|xn), (B.12)

where we used the reflection rule (1 − Θ(x − a)) = Θ(a − x). By normalizing with the total
probability p[χ(d) = 0] to find non-events

p[χ(d) = 0] =
∫ ∞

−∞
dxn p[xn, χn(d) = 0] , (B.13)

we obtain the posterior PDF and the likelihood by using Bayes theorem.

ρ[xn|χn(d) = 0] =
ρn(xn)

p[χ(d) = 0]

∫ 0

−∞
dγ ρ(xn + d + γ|xn); (B.14)

p[χn(d) = 0|xn] =
∫ 0

−∞
dγ ρ(xn + d + γ|xn). (B.15)

Prediction of threshold crossings in the next time step

If we are interested in evaluating the corresponding PDFs and CPDFs not for increments but
for threshold crossings as defined in Sec. 2.1.2, which occur in the next time step xn+1 we simply
have to set xn = 0 in the terms which are relevant for the filtering. This means, that we apply
the Heaviside function Θ(xn+1 − d) and substitute with xn+1 = d + γ. Hence the joint PDF of
event defined as threshold crossings and the precursory variable xn reads

p[xn, χn(d) = 1] = ρ(xn)
∫ ∞

−∞
dγ Θ(γ)ρ(d + γ|xn) (B.16)

= ρ(xn)
∫ ∞

0
dγ ρ(d + γ|xn). (B.17)

The total PDF to observe /not to observe a threshold crossing of a given size d, the posterior
PDFs and the likelihoods can be obtained analogously to the corresponding PDFS and CPDFs
for increments (see Eqs. (B.6-B.15)).
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Prediction of increments κ time steps into the future

In principle one can also consider predictions with a larger prediction horizon, κ > 1, if the
underlying process is a Markov process, i.e., we require, that the Chapman-Kolmogorov Equation
holds,

ρ(xn, xn+1, ..., nn+κ) = ρ(xn+k|xn)ρ(xn), (B.18)

with ρ(xn+k|xn) =
∫

dxn+κ−1 ... dxn ρ(xn+κ|xn+κ−1)ρ(xn+κ−1|xn+κ−2)...ρ(xn+1|xn).

The joint PDF of precursor xn and the event χn+κ = 1 iff xn+κ − xn ≥ d is then given by

ρ(xn, xn+1, ..., χn+κ) = ρ(xn)
∫ ∞

0
dγ ρ(xn + d + γ|xn), (B.19)

with ρ(xn + d + γ|xn) =
∫

dxn+κ−1 ... dxn ρ(xn + d + γ|xn+κ−1) ×
×ρ(xn+κ−1|xn+κ−2)...ρ(xn+1|xn).

However, this later example practically useless, since it makes no sense to predict κ time steps
ahead in a process, which has only a memory of one time step into the past. In order to expect
a certain success of the prediction it is more suitable to consider a generalized Markov process
which is at least of order κ. This implies

ρ(xn, xn−1, ..., x0) = ρ(xn, xn−1, ..., xn−κ+1). (B.20)

Then we can analogously express the joint pdf of precursor xn and the event
χn+κ = 1 iff xn+κ − xn ≥ d by

ρ(xn, xn+1, ..., χn+κ) = ρ(xn, xn+1, ..., xn+κ−1)
∫ ∞

0
dγ ρ(xn + d + γ|xn+κ−1, ...xn),

(B.21)

= ρ(sn+κ)
∫ ∞

0
dγ ρ(xn + d + γ|sn+κ), (B.22)

(B.23)

if we choose τ = κ. The corresponding expressions for the prediction of threshold crossings can
be formulated analogously. Note however, that although we can easily formulate Eq. (B.21) it
is difficult to obtain for a given problem due to the multiple integration.
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[29] S. Hallerberg, J. Bröcker, and H. Kantz, Nonlinear Time Series Analysis in the Geo-
sciences, volume 112 of Springer Series: Lecture Notes in Earth Sciences, chapter Predic-
tion of Extreme Events, Springer, 2008, (in Press).

[30] D. Sornette, Endogenous versus Exognous Origins of Crises, chapter 5, pages 95–116,
Springer, 2006.

[31] J. A. Schumpeter, Business Cycles: A Theoretical, Historical and Statistical Analysis of
the Capitalist Process, Mc Graw-Hill, New York, 1939.

[32] D. Sornette and A. Johansen, Significance of log-periodic precursors to financial crashes,
Quant. Finance 1, 452–471 (2001).

[33] G. E. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis, Prentice Hall, 1994.

[34] P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods, Springer, 1998.

[35] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, Cambridge University Press,
1997.

[36] H. Kantz, D. Holstein, M. Ragwitz, and N. K. Vitanov, Short time prediction of wind
speeds from local measurements, in Wind Energy – Proceedings of the EUROMECH
Colloquium, edited by J. Peinke, P. Schaumann, and S. Barth, Springer, 2006.



BIBLIOGRAPHY 125

[37] N. Vanderwalle, M. Ausloos, P. Boveroux, and A. Minguet, How the financial crash of
October 1997 could have been predicted, European Physical Journal B 4, 139–141 (1998).

[38] W. Paul and J. Baschnagel, Stochastic Processes From Physics to Finance, Springer, 2000.

[39] E. Montroll and M. Shlesinger, Nonequilibrium Phenomena II:From Stochastics to Hydro-
dynamics, chapter On the Wonderful World of Random Walks, Elsevier Science Publishers,
1984.

[40] R. Abel, Die Bedeutung der Ratten und Flöhe für die Verbreitung der Bubonenpest,
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