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Chapter 1

Introduction

Theoretical many-particle physics aims to describe the behaviour of systems involving large
numbers of interacting particles. This poses a difficult problem even if the elementary inter-
actions are known, since the total degree of freedom increases exponentially with the number
of involved particles. A thermodynamical description, which relies on the knowledge of all
eigenstates and eigenvalues of the quantum mechanical system, therefore usually requires
the application of approximations, where the multi-particle interactions are replaced by ef-
fective single-particle terms, for instance by averaging the mutual interactions. This mean
field approach is, however, known to be problematic in the vicinity of phase transitions,
where the behaviour of a system is governed by collective phenomena.

Although there exists a well-defined notion of integrability in classical mechanics due to
Liouville’s theorem, no such general notion is known for quantum mechanical systems. Still,
certain classes of systems have been found that admit an exact solution. The first example
dates back to 1931, when Bethe invented a method to obtain the complete spectrum of
the isotropic spin-1/2 Heisenberg chain [12]. He could show that each eigenvalue of the
Hamiltonian for a chain of length N may be described with the help of just a finite set of
M ≤ N/2 many complex numbers, the Bethe ansatz roots, which are completely determined
by M coupled algebraic equations. Although Bethe’s original plan to further generalize his
approach—nowadays known as the coordinate Bethe ansatz—to allow for spatial lattices
proved to be too optimistic, his seminal work paved the way for the subsequent solution
of many other related one-dimensional quantum models, thus constituting the new field of
integrable quantum chains.

As the first alternative application of the Bethe ansatz, the spectrum of the Bose gas
with delta-function interactions could be obtained by Lieb and Liniger [62]. Lieb further-
more extended the ansatz to cope with certain two-dimensional problems from statistical
mechanics, namely special cases of the six-vertex model [59–61]. The general solution of the
six-vertex model was then given by Sutherland [73]. Another important refinement of the
Bethe ansatz technique is due to the work of Yang [97] and Gaudin [29], who managed to
deal with systems including internal degrees of freedom with the help of a nested Bethe
ansatz.
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2 Chapter 1. Introduction

It was soon realized that the exact solvability of quantum chains relies on the factorization
of the many-body scattering matrix into a product of scattering matrices of just two particles.
This does only happen, if the corresponding two-particle scattering matrices satisfy a self-
consistency relation known as the Yang-Baxter equation. Remarkably, the same equation
also applies to the local Boltzmann weights of the solvable two-dimensional classical models,
where it gives rise to a commuting family of transfer matrices. As a consequence of this
mutual relationship between both types of models, it follows that the logarithmic derivative
of the transfer matrix of a given solvable two-dimensional model—taken at some special
spectral parameter—also defines the Hamiltonian of an integrable quantum chain. For a
review, see Baxter’s book [10] and references therein. Note that Baxter also showed that
the star-triangle relations that have been earlier used in Onsager’s solution of the two-
dimensional Ising model [64] are in fact equivalent to the Yang-Baxter equation.

The discovery of the Yang-Baxter equation as the defining feature of integrable models
soon lead to the development of the so-called algebraic Bethe ansatz, where, based on a
given solution called R matrix, purely algebraic techniques are used for the construction of
the eigenvalues and eigenstates of the transfer matrix and thereby also of the Hamiltonian of
the corresponding quantum model, see [49] for a review. Moreover, it initiated a systematic
search for new solutions [51, 52] eventually leading to the discovery of quantum groups [21,
33].

The first treatment of the thermodynamical properties of an integrable model has been
achieved by Yang and Yang for the case of the delta-function Bose gas [98, 99]. Later, the
method—known as the thermodynamic Bethe ansatz (TBA)—was independently extended
by Gaudin [30] and Takahashi [82] in order to treat the thermodynamics of the spin-1/2
Heisenberg model, see [83] for a review. In their work, they exploit the observation that
the Bethe ansatz roots corresponding to excited states of the model form certain string
patterns in the complex plane. Admitting these distributions in general, which is known as
the string hypothesis, they are able to classify all excitations and calculate the corresponding
eigenvalues. The thermodynamic limit of the free energy is finally found to be encoded by a
set of infinitely many nonlinear integral equations (NLIEs).

An alternative method to calculate the free energy that does not rely on the string hy-
pothesis has later been introduced by Klümper [40, 41]. He starts with a Trotter-Suzuki
mapping [78–80, 87] in order to express the partition function of the one-dimensional quan-
tum chain by that of an equivalent inhomogeneous two-dimensional classical model. The
latter is then expressed in terms of the eigenvalues of an adapted quantum transfer ma-
trix (QTM), where only the largest eigenvalue survives in the thermodynamic limit [48].
With the help of an assumption on the analyticity properties of two suitable auxiliary func-
tions, which are backed by numerics, he finally manages to encode the largest eigenvalue of
the QTM—and thus the free energy—by a set of just two coupled NLIEs. Remarkably, these
equations turn out to be extremely well posed for numerical evaluations at arbitrary tem-
perature and magnetic field. Note that similar equations have previously been established
for the treatment of finite size corrections [43, 44].

There exists yet another type of NLIEs which has been discovered by Takahashi [84]
in an attempt to simplify the TBA equations. In his work, he finally obtains just a single
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NLIE for the largest eigenvalue of the QTM. Although it is difficult to numerically evaluate
the equation for finite temperature, high-temperature expansions have been achieved up to
very high order [71]. Note that his NLIE has also been rederived on the basis of the QTM
approach [85].

To this day, many interesting models could be solved by a combination of the available
techniques, see [23] for example. Recent developments even allow for the derivation of finite-
temperature correlation functions for the case of the XXZ chain, see [15] and references
therein.

Let us now turn to the main subject of our work, the Uimin-Sutherland model. In 1970
Uimin proposed and solved a three-component generalization of the spin-1/2 Heisenberg
model in order to deal with a spin-1 chain [93]. Sutherland then showed that the general
multi-component, higher-rank generalization of this model is also solvable by the nested
Bethe ansatz and managed to calculate its ground-state energy and excitations [74]. The
Hamiltonian is given as a sum over nearest-neighbour permutators, where Sutherland addi-
tionally introduces a Z2 grading to allow for fermionic as well as bosonic components. The
two-dimensional classical model associated to the Hamiltonian of the Uimin-Sutherland
model was later discovered to be a special case of the Perk-Schultz model [65, 69], which
itself is a generalization of the six-vertex model. The models correspond to the fundamental
representation of the supersymmetry algebra sl(r|s), see [16] for a review on supersymme-
tries. The case of higher-level representations of the underlying symmetry algebra has been
treated by Andrei and Johannesson [4, 35]. Affleck was the first to calculate the critical
behaviour based on non-Abelian bosonization and conformal field theory [1, 3].

Despite its simplicity, the model has many interesting applications to integrable quantum
chains arising from several contexts. Besides the spin-1/2 Heisenberg chain and the three-
component, sl(3)-symmetric case investigated by Uimin, models that are known to fall in
this class are the supersymmetric t-J model [67], the SU (4) spin-orbital model [95, 96], its
SU (4|1) generalization including mobile defects, the Essler-Korepin-Schoutens model [24, 25]
and certain spin-ladder systems [6, 94].

Using the TBA approach for the thermodynamics of the sl(n)-symmetric Uimin-Suther-
land model [34], the low-field asymptotics of the susceptibility [68] as well as the low-
temperature asymptotics of the specific heat [56, 57] have been derived analytically. TBA
equations for the general sl(r|s)-symmetric case have been provided by Saleur [66]. Note
that it has been shown by Jüttner, Klümper and Suzuki that the final TBA equations may
as well be derived in the context of the QTM formalism without using the string hypoth-
esis [38]. Instead, they exploit the functional relations provided by the fusion hierarchy of
transfer matrices [53, 88, 89] and additionally use certain assumptions on the analyticity
properties of the fused eigenvalue functions, which are backed by numerics. Unfortunately,
the numerical evaluation of the infinitely many coupled TBA equations generally poses a
problem as some kind of truncation scheme is necessary.

An alternative approach by generalizing Takahashi’s single NLIE has been pursued by
Tsuboi [90]. He managed to derive a finite set of coupled NLIEs, where the number of
equations is equal to the rank of the underlying algebra. Still, the numerical evaluation of
his NLIEs turns out to be difficult, since their structure involves integration contours along
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rather complicated complex paths. Similar to Takahashi’s NLIE however, the formulation
admits high-temperature expansions up to very high orders (∼ 40) [71, 92]. Recently, Tsuboi
managed to further extend the approach to deal with the general Uq(ŝl(r|s))-symmetric
Perk-Schultz model [91].

However, since neither the TBA nor Tsuboi’s equations allow for a precise numerical
evaluation in the interesting low-temperature regime, it is still worthwhile to search for finite
sets of NLIEs in the spirit of [41], which are known to yield accurate numerical results for
arbitrary finite temperature. Unfortunately, no straightforward way of getting the required
auxiliary functions, from which this type of NLIEs can be derived, is known. Previously,
such auxiliary functions have been known only for cases involving three components at
most [27, 36, 37].

The goal of our work has been to further investigate the structure of the latter type
of NLIEs and to extend the approach to new subcases of the Uimin-Sutherland model.
Although a general construction of the necessary auxiliary functions stays out of reach, we
are able to provide suitable auxiliary functions for all possible four-component cases and
derive their corresponding NLIEs. The auxiliary functions are shown to be intimately linked
to those of the TBA approach. Based on the observed general structure, we conjecture the
final NLIEs of two five-component NLIEs. Moreover, we derive accurate numerical results
for several interesting applications.

The outline of this thesis is as follows. In Chapter 2, we briefly introduce the general
Uimin-Sutherland model, mention several of its applications to integrable quantum chains
and review the QTM approach to the thermodynamics of the model. In Chapter 3, we start
with a review of the fusion hierarchy relations. Thereafter, we show how the set of relations
can be exploited in order to derive the TBA equations for the Uimin-Sutherland model.
Chapter 4 deals with the derivation of the finite sets of Klümper-type NLIEs. We start with
a review of the previous work in order to unify the notation and to introduce some additional
observations. After this, we present new sets of auxiliary functions from which we obtain well-
posed coupled sets of NLIEs for all four-component cases of the Uimin-Sutherland model.
Note that these are the main results of this thesis. Several limiting cases of the NLIEs
are considered to check the validity of the results. Finally, we show how the Klümper-
type auxiliary functions can be modified to exactly truncate the NLIEs obtained from the
TBA approach at an arbitrary level. In contrast to these rigorous results, Chapter 5 is
devoted to conjectures for higher-rank cases of the Uimin-Sutherland model. Based on some
reasonable assumptions on the general structure of the NLIEs and by exploiting certain
limiting cases, we are able to find the final form of the NLIEs for the sl(5)- and sl(4|1)-
symmetric cases. Furthermore, we conjecture the general form of the exactly truncated
TBA equations. In Chapter 6, we deal with the efficient numerical evaluation of the NLIEs.
The validity and accuracy of our results is checked by a comparison with Tsuboi’s high-
temperature expansions of the specific heat. After this, we present various new results for
the applications of the Uimin-Sutherland model. Finally, in Chapter 7, we give a summary
of our work and an outlook on open problems and possible future developments.

The appendices cover material that has been deferred from the main text. In Appendix A,
we show how to translate between the Bethe ansatz results for equivalent grading choices.



5

Appendix B contains the derivation of the TBA equations for the sl(n|1)-symmetric case
of the Uimin-Sutherland model. Similarly, Appendix C contains the explicit derivation of
the Klümper-type NLIEs for the sl(4)-symmetric case of the Uimin-Sutherland model. Ap-
pendix D introduces some observations on the general structure of the kernel matrix which
are somehow related to the underlying algebra. Finally, the explicit kernel matrix of the
sl(5)-symmetric case is given in Appendix E.

Note that two publications [18] and [17] are more or less based on the work on this
thesis. The former of these deals with the new sets of auxiliary functions and NLIEs for
the sl(4)-symmetric case of the Uimin-Sutherland model, confer Section 4.2.1. In the latter
publication, which deals with the correlation functions of the spin-1/2 Heisenberg chain at
finite lengths, merely the same software implementation for solving NLIEs has been used to
generate the numerical results. The topic is nevertheless not part of this thesis.
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Chapter 2

Thermodynamics of the
Uimin-Sutherland model

In this chapter, we begin with a short review of the Uimin-Sutherland model [74, 93] and
introduce some of its applications to specific integrable quantum chains. Thereafter, we
briefly discuss the quantum transfer matrix approach to the thermodynamics of the model,
which will be the basis for the derivation of the nonlinear integral equations in the successive
chapters.

2.1 Definition of the Uimin-Sutherland model

The Uimin-Sutherland model is defined on a one-dimensional lattice with L sites, where a
q-state spin-variable αj is assigned to each site j. The local basis is Z2 graded, where the
grading of each spin α will be denoted by p(α). The global basis is then obtained by a tensor
product of the local spins,

|α1 . . . αL〉 = |α1〉 ⊗ · · · ⊗ |αL〉 . (2.1)

The Hamiltonian of the Uimin-Sutherland model is given by

H0 = J
L∑
j=1

πj,j+1 , (2.2)

where the local interaction operators πj,j+1 permute neighbouring spins on the lattice with
respect to their grading,

πj,j+1|. . . αj αj+1 . . .〉 = (−1)p(αj)p(αj+1)|. . . αj+1 αj . . .〉 . (2.3)

Note that periodic boundary conditions are imposed, so that αL+1 = α1. Accordingly, the
total number of spins of each type α is conserved. Moreover, the model shows sl(r|s) sym-
metry, where r and s (q = r + s) are the total number of states with grading p(α) = 0 and
p(α) = 1, respectively.

7



8 Chapter 2. Thermodynamics of the Uimin-Sutherland model

The one-dimensional Uimin-Sutherland model is known to be exactly solvable by Bethe
ansatz [74]. Its classical two-dimensional counterpart is given by the Perk-Schultz model [65,
69], which will be introduced in Section 2.3.1.

In order to incorporate the effect of external fields, we may add certain additional terms
to the Hamiltonian (2.2),

H = H0 +Hext = H0 −
L∑
j=1

q∑
α=1

µαnj,α , (2.4)

where µα is some general chemical potential associated with state α and the operator nj,α
counts the number of particles of type α sitting on site j. Although terms of this type
generally break the sl(r|s) symmetry, we will see in the following that they do not affect the
integrability of the thermodynamical properties. Note that these terms play a crucial role
in order to deal with the applications of the model.

2.2 Applications to integrable quantum chains

Several interesting integrable quantum chains are of Uimin-Sutherland type. In the following,
we will briefly mention some of the possible applications.

2.2.1 The spin-1/2 Heisenberg chain

Since the Uimin-Sutherland model is basically a higher-rank generalization of the one-
dimensional spin-1/2 Heisenberg chain,

H = J
L∑
j=1

(2SjSj+1 + 1/2)− h
L∑
j=1

Szj , (2.5)

this model is of course contained as a special case. Using the two-state basis

|1〉 = |↑〉 , |2〉 = |↓〉 , (2.6)

with p(1) = p(2) = 0, it is easy to see that the first term is equivalent to that of the
corresponding Uimin-Sutherland model. Since the external field term is diagonal in the
given basis, it can also be treated within the framework of the Uimin-Sutherland model by
choosing the general chemical potentials to be

µ1 = h/2 , µ2 = −h/2 . (2.7)

2.2.2 The spin-1 chain with biquadratic interaction term

Let us now turn to the three-state, sl(3)-symmetric case of the Uimin-Sutherland model,
which is the simplest higher rank generalization. Identifying the three ungraded basis states
(p(α) = 0 for α = 1, 2, 3) with the eigenstates of the spin-1 Sz-operator, we find that this
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case is connected to some spin-1 Heisenberg chain with an additional biquadratic interaction
term [93]

H = J

L∑
j=1

{
SjSj+1 + (SjSj+1)2

}
− h

L∑
j=1

Szj . (2.8)

Again we have introduced an external magnetic field term, which according to our basis
choice, leads to the general chemical potentials

µ1 = h , µ2 = 0 , µ3 = −h . (2.9)

Note that the Hamiltonian of this model is strongly related to another exactly solvable
model, the Takhtajan-Babujian model [5, 86], where just the sign in front of the biquadratic
term is changed.

2.2.3 The supersymmetric t-J model

Consider the Hamiltonian of the one-dimensional t-J model [67],

H = t
L∑
j=1

∑
σ=↑,↓

P
(
c†j,σcj+1,σ + cj,σc

†
j+1,σ

)
P + J

L∑
j=1

(SjSj+1 − njnj+1/4)

− µ
L∑
j=1

nj − h
L∑
j=1

Szj . (2.10)

The origin of this model is the strong-coupling limit of the Hubbard model, where only the
nearest-neighbour interaction terms are retained. It is also a natural generalization of the
spin-1/2 Heisenberg chain in order to incorporate mobile defects. There are three possible
basis states per lattice site: Each site may be empty, or there may be an electron with either
spin up or down. Double occupancy is forbidden due to strong on-site repulsion. The first
term of the Hamiltonian describes the hopping of electrons, while the second term deals
with the spin interactions. The operators cj,σ and c†j,σ annihilate and create, respectively, an
electron at site j with spin σ, the projector P =

∏L
j=1 (1− nj,↑nj,↓) inhibits the occurrence

of two electrons at the same site, and nj counts the number of particles on site j.
Note, however, that in general the model is neither integrable nor of Uimin-Sutherland

type. Only two special cases, J = 0 and J = 2t, are integrable, and only the latter of
these, the so-called supersymmetric case of the t-J model can be treated within the Uimin-
Sutherland framework. It is found to be equivalent to the sl(2|1)-symmetric case, where one
of the three basis states is graded.

Let us fix the grading p(1) = p(2) = 0 and p(3) = 1 and accordingly identify the basis
states

|1〉 = |↑〉 , |2〉 = |↓〉 , |3〉 = |0〉 , (2.11)
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where |0〉 denotes the empty site. Using these definitions, the Hamiltonian (2.10) with J = 2t
may be cast as

H = t

L∑
j=1

πj,j+1 + tL− (2t+ µ)
L∑
j=1

nj − h
L∑
j=1

Szj , (2.12)

where the first term is exactly the Hamiltonian H0 of the sl(2|1)-symmetric case of the
Uimin-Sutherland model (2.2). Because the remaining terms are already diagonal in the
given basis, they are also compatible with the Uimin-Sutherland formulation. By comparison
with equation (2.4), we find

µ1 = t+ µ+ h/2 , µ2 = t+ µ− h/2 , µ3 = −t . (2.13)

2.2.4 The SU (4) spin-orbital model

Another special case that we want to mention is a generalization of the spin-1/2 Heisenberg
model, where each electron carries an orbital pseudospin in addition to the spin [95, 96]. We
have the Hamiltonian

H = J
L∑
j=1

(2SjSj+1 + 1/2) (2τjτj+1 + 1/2)− h
L∑
j=1

(
gSS

z
j + gττ

z
j

)
, (2.14)

where Sj and τj are the spin and pseudospin operators, respectively. The Landé factors gS
and gτ adjust the respective coupling strengths to the external magnetic field. This model
corresponds to the four-state, sl(4)-symmetric case of the Uimin-Sutherland, where we use
the basis

|1〉 = |↑S↑τ 〉 , |2〉 = |↑S↓τ 〉 , |3〉 = |↓S↑τ 〉 , |4〉 = |↓S↓τ 〉 (2.15)

and accordingly set the general chemical potentials

µ1 = (gS + gτ )h/2 , µ2 = (gS − gτ )h/2 , (2.16a)
µ3 = −(gS − gτ )h/2 , µ4 = −(gS + gτ )h/2 (2.16b)

for the inclusion of the magnetic field term.

2.2.5 The two-leg spin-1/2 ladder

Yet another possible application of the sl(4)-symmetric Uimin-Sutherland model is a certain
two-leg spin-1/2 ladder [94],

H = J‖Hleg + J⊥

L∑
j=1

SjTj − h
L∑
j=1

(
Szj + T zj

)
, (2.17)

where

Hleg =
L∑
j=1

(SjSj+1 + TjTj+1 + 4 (SjSj+1) (TjTj+1)) . (2.18)
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Here, Sj and Tj are the spin operators for the two legs of the ladder. The intrachain and
rung couplings are controlled by the coupling constants J‖ and J⊥, respectively. Apart from
the appearance of the biquadratic interaction term in Hleg, this model is equal to the usual
two-leg Heisenberg ladder, which, however, is not integrable. The Hamiltonian Hleg may
alternatively be written as

Hleg =
L∑
j=1

(2SjSj+1 + 1/2) (2TjTj+1 + 1/2)− L/4 , (2.19)

which, up to the constant L/4, is equivalent to the four-state Uimin-Sutherland Hamiltonian.
In order to include the remaining terms, we have to choose a basis, in which the interchain
coupling is diagonal. This is accomplished by the basis

|1〉 =
1√
2

(|↑↓〉 − |↓↑〉) , |2〉 = |↑↑〉 , (2.20a)

|3〉 =
1√
2

(|↑↓〉+ |↓↑〉) , |4〉 = |↓↓〉 . (2.20b)

Note that the state |1〉 is a singlet state with respect to the intrachain coupling, while the
remaining states form a rung triplet. Accordingly, the general chemical potential of the
Uimin-Sutherland model are

µ1 = (J‖ + 3J⊥)/4 , µ2 = (J‖ − J⊥)/4 + h , (2.21a)

µ3 = (J‖ − J⊥)/4 , µ4 = (J‖ − J⊥)/4− h . (2.21b)

So, this model can also be treated within the framework of the Uimin-Sutherland model.

2.2.6 The Essler-Korepin-Schoutens model

The next application we are going to deal with is the Essler-Korepin-Schoutens model [24,
25]. The model is similar to the supersymmetric t-J model, but here double occupancy is
allowed at each site and controlled by a Hubbard interaction term. Thus the model combines
features of both the t-J and the Hubbard model. The Hamiltonian is given by

H = JH0 + U

L∑
j=1

(nj,↑ − 1/2)(nj,↓ − 1/2)− µ
L∑
j=1

nj , (2.22)
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where

H0 =
L∑
j=1

{
(c†j,↑cj+1,↑ + cj,↑c

†
j+1,↑)(1− nj,↓ − nj+1,↓)

+ (c†j,↓cj+1,↓ + cj,↓c
†
j+1,↓)(1− nj,↑ − nj+1,↑)

+ (nj − 1)(nj+1 − 1)/2− (nj,↑ − nj,↓)(nj+1,↑ − nj+1,↓)/2

+ c†j,↑c
†
j,↓cj+1,↓cj+1,↑ + cj,↑cj,↓c

†
j+1,↓c

†
j+1,↑

− c†j,↓cj,↑c
†
j+1,↑cj+1,↓ − c

†
j,↑cj,↓c

†
j+1,↓cj+1,↑

+ (nj,↑ − 1/2)(nj,↓ − 1/2) + (nj+1,↑ − 1/2)(nj+1,↓ − 1/2)
}
. (2.23)

Despite the lengthy form of H0, all of its L many summands are nothing else but graded
permutation operators πj,j+1 of nearest-neighbour states. Let us fix the basis

|1〉 = |↑〉 , |2〉 = |↓〉 , (2.24a)
|3〉 = |d〉 , |4〉 = |0〉 , (2.24b)

where |d〉 denotes a doubly occupied site. The grading for this particular choice is p(1) =
p(2) = 0 and p(3) = p(4) = 1. The model therefore corresponds to the sl(2|2)-symmetric
case of the Uimin-Sutherland model. Both the Hubbard and the chemical potential terms are
diagonal in this basis and can thus be treated within the framework of the general chemical
potentials,

µ1 = U/4 + µ+ h/2 , µ2 = U/4 + µ− h/2 , (2.25a)
µ3 = −U/4 + 2µ , µ4 = −U/4 . (2.25b)

2.2.7 The SU (4|1) spin-orbital model with mobile defects

Finally, let us consider a model that serves both as a generalization of the supersymmetric
t-J model and the SU (4) spin-orbital model. It arises either by introducing an additional
pseudospin-1/2 degree of freedom for each electron in the supersymmetric t-J model or,
equivalently, by adding mobile empty sites to the SU (4) spin-orbital model. Note that the
model is similar to [58]. The Hamiltonian is given by

H = J
L∑
j=1

∑
σ

P
(
c†j,σcj+1,σ + cj,σc

†
j+1,σ

)
P

+ 4J
L∑
j=1

{(SjSj+1 + njnj+1/4) (τjτj+1 + njnj+1/4)− njnj+1/4}

− µ
L∑
j=1

nj − h
L∑
j=1

(
gSS

z
j + gττ

z
j

)
, (2.26)
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where σ runs over all possible electron configurations. Like in the t-J model the first term
deals with the hopping of electrons, while the second term controls the nearest-neighbour
interaction of spins and pseudospins. The remaining terms implement the effects of a chem-
ical potential and an external magnetic field. In order to show the equivalence to the graded
five-state Uimin-Sutherland model, we use the basis

|1〉 = |↑S↑τ 〉 , |2〉 = |↑S↓τ 〉 , |3〉 = |↓S↑τ 〉 , (2.27a)
|4〉 = |↓S↓τ 〉 , |5〉 = |0〉 , (2.27b)

where the grading is p(1) = p(2) = p(3) = p(4) = 0 and p(5) = 1. Note that apart from the
unoccupied state |0〉 this basis choice is the same as for the SU (4) spin-orbital model. Now,
the Hamiltonian (2.26) may be recast as

H =
L∑
j=1

πj,j+1 + JL− (2J + µ)
L∑
j=1

nj − h
L∑
j=1

(
gSS

z
j + gττ

z
j

)
. (2.28)

Again, all terms that appear in addition to the permutation operators are diagonal in the
given basis and can therefore be treated as external field terms via the general chemical
potentials

µ1 = J + µ+ (gS + gτ )h/2 , µ2 = J + µ+ (gS − gτ )h/2 , (2.29a)
µ3 = J + µ− (gS − gτ )h/2 , µ4 = J + µ− (gS + gτ )h/2 , (2.29b)
µ5 = −J . (2.29c)

We end up with a perfect equivalence of our particular spin-orbital model and the sl(4|1)-
symmetric case of the Uimin-Sutherland model.

Finally, we like to note that an analogous application of the sl(4|1)-symmetric case in
order to treat the generalization of the spin-ladder system from Section 2.2.5 with mobile
defects is possible, but, unfortunately, does not make much sense, since empty sites would
only be allowed to appear simultaneous at both legs of the ladder. A model dealing with single
empty sites, similar to a two-leg t-J ladder system, would require a larger number of basis
states and, although perhaps possible to realize with some higher-rank Uimin-Sutherland
model, is beyond the scope of the current work.

2.3 Quantum transfer matrix approach

In the following, we will be interested in obtaining the thermodynamics of the Uimin-
Sutherland model in the thermodynamic limit (chain length L → ∞). The basic problem
is that the dimension of the Hilbert space increases exponentially in this limit, making a
direct evaluation of the partition function Z = Tr e−βH impossible. Fortunately, there exists
an alternative way to obtain the partition function in terms of just the largest eigenvalue of
the so-called quantum transfer matrix [40, 80]. In the following, we will briefly review the
origin of this matrix and show that it can be diagonalized with the help of the Bethe ansatz.
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Rβναµ(v) =

α

β

µ ν
v

Figure 2.1: Graphical depiction of the R matrix as defined in equation (2.30).

µ

ν ′

ν µ′

α

β

w u

v

=

µ

ν ′

ν µ′

α

β

wu

v

Figure 2.2: Graphical depiction of the Yang-Baxter equation, where w = u − v. Note that
closed bonds between vertices denote summation over the intermediate variables.

2.3.1 The Perk-Schultz model

Let us first take a closer look at the Perk-Schultz model [65, 69], which turns out to be the
classical two-dimensional counterpart of the one-dimensional Uimin-Sutherland model. The
model can be defined as follows. Instead of a chain of length L, we now consider a square
lattice with L × N vertices at the intersections, where a variable α, which can be in one
of q many Z2-graded states (α = 1, . . . , q), is assigned to each bond of the lattice. Periodic
boundary conditions are imposed in both directions, thus effectively contracting the lattice
to a torus. Let us further associate the classical Boltzmann weight

Rβναµ(v) = δναδ
β
µ + v · (−1)p(α)p(µ) · δβαδνµ (2.30)

to every local vertex configuration (α, β, µ, ν), see Figure 2.1. Note that the free parameter
v is the so-called spectral parameter. The total Boltzmann weight of some fixed lattice
configuration is then given by the product of all local Boltzmann weights. Finally, we define
the partition function of the Perk-Schultz model to be the sum of the Boltzmann weights
over all possible lattice configurations.

The R matrix of Boltzmann weights (2.30) has some nice properties. First of all, it
is sl(r|s) symmetric, where r and s are again the numbers of states carrying the grading
p(α) = 0 and p(α) = 1, respectively. More important, however, is the fact that it is a solution
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of the Yang-Baxter equation∑
ρ,σ,τ

Rρσµν(u− v)Rτµ
′

ασ (u)Rβν
′

τρ (v) =
∑
ρ,σ,τ

Rτραµ(v)Rβστν (u)Rν
′µ′
ρσ (u− v) , (2.31)

see Figure 2.2 on the preceding page for a graphical representation. Let us consider the
monodromy matrix T ν

′
ν (v) which is defined to be the product of all R matrices belonging to

one row of the lattice,

T ν
′

ν (v) =
∑
{µ}

Rβ1µ2
α1ν (v)Rβ2µ3

α2µ2
(v) · · ·RβL−1µL

αL−1µL−1(v)RβNν
′

αLµL
(v) , (2.32)

where {µ} denotes the summation over all intermediate indices µj and the sets of indices αj
and βj are suppressed. As a consequence of the Yang-Baxter equation (2.31), we see that
the monodromy matrix is a representation of the corresponding Yang-Baxter algebra,∑

ρ,σ

Rρσµν(u− v)
(
Tµ
′

σ (u)T ν
′

ρ (v)
)

=
∑
ρ,σ

(
T ρµ(v)T σν (u)

)
Rν
′µ′
ρσ (u− v) . (2.33)

Note that (Tµ
′

µ T ν
′

ν ) denotes a multiplication with respect to the suppressed space coor-
dinates. Equation (2.33) may easily be proven by repeatedly applying the Yang-Baxter
equation (2.31).

Let us further define the row-to-row transfer matrix of the Perk-Schultz model by taking
the trace of the monodromy matrix,

T (v) = Tr T(v) =
∑
ν

T νν (v) . (2.34)

Admitting the multiple indices α = (α1 . . . αL) and β = (β1 . . . βL) again, we find the explicit
form

T βα (v) =
∑
{ν}

L∏
j=1

R
βjνj+1
αjνj (v) , (2.35)

where νL+1 = ν1. The fact that the monodromy matrix is a representation of the Yang-
Baxter algebra has an important consequence for the transfer matrix. To see this, let us
multiply both sides of equation (2.33) with the inverse of Rβναµ(u−v) and then take the trace
with respect to the indices µ, µ′ and ν, ν ′. Due to the cyclic invariance of the trace, we
immediately get the result that the transfer matrices constitute a commuting family, where

[T (u), T (v)] = 0 (2.36)

for all u, v ∈ C, which, in combination with the knowledge of the reference eigenstate

|Ω〉 = |1 1 . . . 1〉 , (2.37)

implies that the matrix may be diagonalized with the help of the nested Bethe ansatz,
see [70, 74].
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The usefulness of the transfer matrix stems from the fact that the partition function
ZPS(v) of the Perk-Schultz model can be written solely in terms of it,

ZPS(v) = Tr T N (v) , (2.38)

where the trace is meant to be taken in the qL-dimensional space. Moreover, making use of
Baxter’s formula [10], one exactly recovers the Hamiltonian of the Uimin-Sutherland from
the transfer matrix,

H0 = J
d
dv

ln T (v)
∣∣∣∣
v=0

= J

L∑
j=1

πj,j+1 , (2.39)

which gives the justification to view the Perk-Schultz model as the classical counterpart
of the Uimin-Sutherland model. This connection also guarantees the integrability of the
latter, since the eigenstates of the transfer matrix following from the Bethe ansatz are
simultaneously eigenstates of the Hamiltonian H0.

2.3.2 Trotter-Suzuki mapping

Although equation (2.39) provides us with a means to calculate individual eigenvalues and
eigenstates of the Hamiltonian H0 on the basis of the Bethe ansatz for the transfer matrix
T (v), the evaluation of the partition function of the Uimin-Sutherland would still require
the knowledge of all qL many eigenvalues. Even then it would be difficult to deal with the
thermodynamic limit L→∞. In the following, we therefore follow the approach which has
been developed in [40, 80].

Let us introduce an alternative set of matrices R(v) which are obtained by rotating the
graphical depiction of R(v) counterclockwise by 90 degrees,

R
βν
αµ(v) = Rµβνα(v) . (2.40)

The transfer matrix T (v) is then defined as the product of matrices R(v) in analogy to
equation (2.35). It is easy to check that the new R matrix is again a solution of the Yang-
Baxter equation (2.31), implying that the transfer matrices T (v) also constitute a commuting
family. Applying Baxter’s formula to the transfer matrix T (v) again leads to the Hamiltonian
of the Uimin-Sutherland model,

H0 = J
d
dv

ln T (v)
∣∣∣∣
v=0

= J
L∑
j=1

πj,j+1 . (2.41)

Note that the transfer matrices T (v) and T (v) do not commute in general. At the
spectral parameter v = 0, however, both of them reduce to simple shift operators. It is
easy to check, that T (0) and T (0) are the right and left shift operators (eiP and e−iP ),
respectively. Combining this information with (2.39) and (2.41) we obtain the expansion

ln(T (v)T (v)) = ln(T (0)T (0))︸ ︷︷ ︸
=0

+2H0/J · v +O(v2) . (2.42)
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exp(iφj)

T (u) 1

T (u) 2

...

N

1 2 · · · L

TQTM(0)

Figure 2.3: Graphical depiction of the staggered Perk-Schultz model. The transfer matrices
T (v) and T (v) alternate in vertical direction, while the wavy line indicates the twists at the
boundaries. The quantum transfer matrix TQTM(v) is the inhomogeneous column-to-column
transfer matrix (dashed box).

In order to relate this formula to the partition function of the Uimin-Sutherland model, we
define u = −Jβ/N , where the Trotter number N is a sufficiently large even integer so that
the absolute value of u is small compared to one. Then, we evaluate equation (2.42) at the
spectral parameter v = u and use the result to finally write down the partition function of
the Uimin-Sutherland model Z in terms of the two transfer matrices,

Z = Tr e−βH = lim
N→∞

Tr
[(
T (u)T (u)

)N/2 e−βHext

]
, (2.43)

where the trace has to be taken in the qL-dimensional space.
Comparing this expression to equation (2.38) that we have obtained for the partition

function of the Perk-Schultz model, we notice that Z may be viewed as the partition func-
tion of a staggered L × N Perk-Schultz model, see Figure 2.3. In this picture, we have
alternating rows of matrices R(u) and R(u) in the Trotter direction. The external field
terms can be incorporated via twisted boundary conditions with imaginary twist angles
φj = −iβ

∑q
α=1 µαnj,α, where j is the column number.

2.3.3 Definition of the quantum transfer matrix

Let us further exploit the interpretation of (2.43) being the partition function of a staggered
Perk-Schultz vertex model. Recall that the two matrices T (u) and T (u) act as row-to-
row transfer matrices in this picture. As already indicated in Figure 2.3, the key idea is to
consider the column-to-column transfer direction instead. Due to the fact that the R matrices
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alternate only in the vertical direction, we need just a single inhomogeneous transfer matrix
here, which is called the quantum transfer matrix (QTM).

In order to properly define this matrix, let us first introduce the matrix R̃(v) which we
get by rotating R(v) clockwise by 90 degrees and changing the sign of the spectral parameter,

R̃βναµ(v) = Rναµβ(−v) . (2.44)

By comparison with Figure 2.3 on the preceding page we then find the QTM to be

(TQTM)βα (v) =
∑
{ν}

eβµν1
N/2∏
j=1

R
β2j−1ν2j
α2j−1ν2j−1(iv + u)R̃β2jν2j+1

α2jν2j (iv − u) , (2.45)

where we have additionally introduced a spectral parameter v so that the QTMs constitute
a commuting family, see Section 2.3.5 for the proof. Finally, we can write the partition
function of the Uimin-Sutherland model solely in terms of the QTM,

Z = lim
N→∞

Tr (TQTM(0))L . (2.46)

2.3.4 Thermodynamic limit of the free energy

Let us now consider the thermodynamic limit (L→∞) of the free energy per unit length,

f = − lim
L→∞

1
Lβ

lnZ , (2.47)

where Z is given by equation (2.46). The following facts will help to proceed:

1. The limits L→∞ and N →∞ may be interchanged, see [81].

2. The largest eigenvalue of the QTM is separated by a gap from the next-leading eigen-
values, see [77].

While the first statement allows us to take the limit L → ∞ first and postpone the limit
N → ∞ to the very end of the calculation, it follows from the second one that the unique
largest eigenvalue Λmax(0) of the QTM dominates the trace for large L,

ln Tr (TQTM(0))L = ln
(

ΛLmax(0) +
qN−1∑
j=1

ΛLj (0)
)

= L ln Λmax(0) + ln

[
1 +

qN−1∑
j=1

(
Λj(0)

Λmax(0)

)L]
, (2.48)

where the other eigenvalues are denoted by Λj(0). Inserting the latter result into equa-
tion (2.47) and applying the thermodynamic limit finally yields

f = − lim
N→∞

1
β

ln Λmax(0) . (2.49)
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This is a remarkable result, since it tells us that the thermodynamical properties of the
model are determined by just the unique largest eigenvalue of the QTM.

Note that the next-leading eigenvalues of the QTM also carry some information. They
can be shown to determine the correlation lengths,

ξj =
(

ln
Λmax(0)
Λj(0)

)−1

. (2.50)

2.3.5 Commuting family of quantum transfer matrices

Like the homogeneous transfer matrices T (v) of the Perk-Schultz model, the QTMs TQTM(v)
are constructed to constitute a commuting family, where[

TQTM(v), TQTM(v′)
]

= 0 (2.51)

for arbitrary v, v′ ∈ C. The reason is that both matrices R(v) and R̃(v) which appear in the
definition (2.45) are in fact representations of the same Yang-Baxter algebra generated by
R(v), ∑

ρ,σ,τ

Rρσµν(v − v′)Rτµ′ασ (v)Rβν
′

τρ (v′) =
∑
ρ,σ,τ

Rτραµ(v′)Rβστν (v)Rν
′µ′
ρσ (v − v′) , (2.52a)∑

ρ,σ,τ

Rρσµν(v − v′)R̃τµ′ασ (v)R̃βν
′

τρ (v′) =
∑
ρ,σ,τ

R̃τραµ(v′)R̃βστν (v)Rν
′µ′
ρσ (v − v′) . (2.52b)

Then the quantum monodromy matrix defined by

(TQTM)ν
′

ν (v) =
∑
{µ}

Rβ1µ2
α1ν (v − iu)R̃β2µ3

α2µ2
(v + iu) · · ·RβL−1µL

αL−1µL−1(v − iu)R̃βNν
′

αLµL
(v + iu) (2.53)

will obviously be a representation as well,

∑
ρ,σ

Rρσµν(v − v′)
(

(TQTM)µ
′

σ (v) (TQTM)ν
′

ρ (v′)
)

=
∑
ρ,σ

(
(TQTM)ρµ (v′) (TQTM)σν (v)

)
Rν
′µ′
ρσ (v − v′) . (2.54)

Since the QTM follows from the trace of the quantum monodromy matrix,

TQTM(v) = Tr TQTM(iv) =
∑
ν

(TQTM)νν (iv) , (2.55)

in analogy to equation (2.34), we can use the same arguments as in Section 2.3.1 to check
that equation (2.51) is fulfilled.
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2.3.6 Eigenvalues and Bethe ansatz equations

Since the quantum monodromy matrix (2.53) is a representation of the same Yang-Baxter
algebra as the homogeneous monodromy matrix (2.32), the Bethe ansatz for both commuting
sets of transfer matrices TQTM(v) and T (v) is very similar. The difference arises only from
the different reference eigenstates. Note that in the case of the QTM a suitable reference
state is given by

|Ω〉 = |1 q . . . 1 q〉 . (2.56)

The necessary modifications have been treated in [47]. Finally, the eigenvalues of the QTM
are found to be

Λ(v) =
q∑
j=1

λj(v) , (2.57)

where

λj(v) = φ−(v)φ+(v)
qj−1(v − iεj)
qj−1(v)

qj(v + iεj)
qj(v)

eβµj . (2.58)

For convenience, we have defined εj = (−1)p(j), φ±(v) = (v ± iu)N/2 and

qj(v) =


φ−(v) for j = 0∏Mj

kj=1(v − vjkj ) for j = 1, . . . , q − 1

φ+(v) for j = q

. (2.59)

Note that we have used u = −Jβ/N again. The complex parameters vjkj , which are the roots
of the polynomials qj(v), are called the Bethe ansatz roots. Mj gives the number of Bethe
ansatz roots of the jth polynomial. Depending on the eigenvalue of interest, the numbers
Mj can range from 0 to N/2.

The Bethe ansatz roots are not arbitrary, but have to fulfil a set of coupled nonlinear
equations, the so-called Bethe ansatz equations. These arise either from the Bethe ansatz
itself or, alternatively, from the requirement that the eigenvalues—like the QTM itself—are
analytic in the spectral parameter. For each of the Bethe ansatz roots there is one Bethe
ansatz equation,

λj(v
j
kj

)

λj+1(vjkj )
= −1 , (2.60)

to ensure that all potential poles vanish,

Res
v=vjkj

(λj(v) + λj+1(v)) = 0 . (2.61)

From the form of (2.57) it then follows that all eigenvalues must in fact be polynomials of
degree N . Note that the Bethe ansatz equations are solved not only by the Bethe ansatz
roots, but that there exist additional solutions, the so-called hole solutions v′jlj . From the
structure of the functions λj(v) it is clear, that there must exist a total of Mj−1 +Mj+1 −
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Figure 2.4: Distribution of the Bethe ansatz roots for q = 4, N = 32 and Jβ = 0.32. The
three sets of roots are denoted by different symbols.

δεj ,−εj+1Mj many hole solutions for the jth Bethe ansatz equation, where we have defined
M0 = Mq = N/2.

For the derivation of the thermodynamic properties we are only interested in the largest
eigenvalue, for which the number of Bethe ansatz roots in each set is fixed to Mj = N/2.
Figure 2.4 shows a typical distribution of the Bethe ansatz roots. Note that the distribution
remains discrete even for large N , but that there is a cluster point at the origin. In order
to perform the Trotter limit N → ∞, it is thus not possible to introduce meaningful root
densities. Note also that the distribution of hole solutions looks very similar. These are also
lying on slightly curved lines with cluster points in the middle, but here the lines are shifted
by ±i away from the real axis.

We like to stress two further properties of the result for the eigenvalue (2.57). Firstly,
for fixed total numbers r and s of basis states α with grading p(α) = 0 and p(α) = 1,
respectively, the eigenvalue does not depend on the actual choice of grading. This fact,
which is rather obvious from the definition of the Hamiltonian (2.2), but not obvious from
equation (2.57), has certain consequences for the Bethe ansatz roots, see Appendix A for
details. Secondly, the eigenvalue stays invariant if we change the sign of the coupling constant
J and simultaneously reverse all gradings. For the following derivation of nonlinear integral
equations, it is therefore sufficient to treat only cases where r ≥ s.
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Chapter 3

Fusion hierarchy and
thermodynamic Bethe ansatz
equations

Of course, it is in principle possible to numerically solve the Bethe ansatz equations (2.60)
for some fixed Trotter number N . However, this approach is possible only for finite N and
also quite cumbersome to perform. As we are interested in the limit N →∞ for deriving the
free energy of the model, we have to choose a different approach, where we encode the Bethe
ansatz equations into an alternative form for which the limit can be taken analytically.

One way to do so is the so-called thermodynamic Bethe ansatz (TBA), which has been
developed by Yang & Yang, Takahashi and Gaudin [30, 82, 98, 99] for the case of the
spin-1/2 Heisenberg chain using the string hyptothesis. Later it was realized by Jüttner,
Klümper and Suzuki [38] that the TBA equations can also be derived by an alternative
method. Instead of the string hypothesis, they exploit functional relations based on the
fusion hierarchy of transfer matrices, which have been developed in a series of preceeding
articles [11, 39, 46, 53, 88, 89].

Unfortunately, the TBA approach typically yields an infinite number of nonlinear integral
equations (NLIEs), which strongly limits its practical use for numerical calculations. How-
ever, since the TBA equations can be calculated for arbitrary cases of the Uimin-Sutherland
model in a quite straightforward way, and since they are closely related to the finite sets
of nonlinear integral equations that we will derive in Chapter 4, it is worthwhile to explore
their structure first.

We will start with a brief introduction of the fusion hierarchy relations. Then, we will
use these relations to derive the TBA equations for the sl(n)- and sl(n|1)-symmetric cases
of the Uimin-Sutherland model.

23
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3.1 Fusion hierarchy relations

The fusion hierarchy relations for the transfer matrix eigenvalues of the general sl(r|s)-
symmetric Perk-Schultz model have first been established in [88]. The necessary modifica-
tions for the QTM case, which basically shares the same structure, are given in [38]. Since,
however, the underlying derivation is quite involved, we will content ourselves with just
stating the results here.

3.2 The Yangian analogue of Young tableaux

In order to formulate the fusion relations, we will utilize a compact notation using the
Yangian analogue of Young tableaux, which has been developed in [11, 54, 55, 75]. The
simplest case is given by a box filled with the letter j,

j
∣∣
v

= λj(v) , (3.1)

where the function λj(v) is the one defined in equation (2.58). This corresponds to a Young
tableau belonging to a vector of the first, (r + s)-dimensional representation of sl(r|s).
Similarly, expressions for general rectangular Young tableaux corresponding to higher di-
mensional representations are defined,

n1,1 · · · n1,m
...

. . .
...

na,1 · · · na,m

∣∣∣∣∣∣∣
v

=
a∏
j=1

m∏
k=1

nj,k
∣∣
v+i(j−a/2)−i(k−m/2)

, (3.2)

where the shift in the spectral parameters on the right hand side depends on the coordinate
of the corresponding box in the tableau, and the set of numbers nj,k ∈ {1, . . . , r+ s} has to
fulfil two admissibility conditions, which depend on the grading:

1. If p(nj,k) = 0, we demand nj−1,k < nj,k and nj,k−1 ≤ nj,k.

2. If p(nj,k) = 1, we demand nj−1,k ≤ nj,k and nj,k−1 < nj,k.

In the sl(r)-symmetric case, for example, only semi-standard tableaux are allowed. This
implements the combinatorial rules, which will be necessary in order to define suitable
generalized eigenvalue functions in the next section.

3.3 Fused eigenvalue functions and functional relations

Let us define generalized fused eigenvalue functions as a sum over all admissible Young
tableaux with certain height a and width m,

Λ(a)
m (x) =

∑
{nj,k}∗

n1,1 · · · n1,m
...

. . .
...

na,1 · · · na,m

∣∣∣∣∣∣∣
x

, (3.3)
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where {nj,k}∗ denotes all admissible sets of numbers. For those special cases, where there
exist no admissible sets at all, we set

Λ(a)
m (x) = 1 if a = 0 or m = 0 , (3.4)

Λ(a)
m (x) = 0 if a > r and m > s . (3.5)

It is important to note that all functions Λ(a)
m (x) are analytic as a direct consequence of the

Bethe ansatz equations (2.60). Note also that the functions Λ(a)
m (x) are in general expected to

be eigenvalues of corresponding generalized fused QTMs T (a)
m (x), confer [38]. Since, however,

the following calculations do not depend on this observation, we will not go into further
details. Nevertheless, it is an important fact that the eigenvalues of the usual QTM (2.57)
are contained as the simplest case,

Λ(v) = Λ(1)
1 (v) =

r+s∑
j=1

j
∣∣
v
, (3.6)

which is rather obvious from the definition.
Having all ingredients at hand, we are now ready to formulate the fusion hierarchy

relations amongst the generalized eigenvalue functions,

Λ(a)
m (x− i/2)Λ(a)

m (x+ i/2) = Λ(a−1)
m (x)Λ(a+1)

m (x) + Λ(a)
m−1(x)Λ(a)

m+1(x) . (3.7)

They can be proved using a quantum analogue of the Jacobi-Trudi and Giambelli formulae,
see [88, 89].

There is one further refinement. In order to actually work with the relations, it is possible
and advantageous to divide all eigenvalue functions Λ(a)

m (x) by common factors, so that the
resulting normalized functions Λ̃(a)

m (x) are all just polynomials of degree N ,

Λ(a)
m (x) = n(a)

m (x)Λ̃(a)
m (x) . (3.8)

The corresponding normalization function n
(a)
m (x) is found to be

n(a)
m (x) =

a−1∏
j=1

{
φ−

(
x+

a+m− 2j
2

i
)
φ+

(
x− a+m− 2j

2
i
)}

×
a∏
j=1

h(1)
m

(
x− a+ 1− 2j

2
i
)
, (3.9a)

h(1)
m (x) =

m−1∏
k=1

{
φ−

(
x− 1 +m− 2k

2
i
)
φ+

(
x+

1 +m− 2k
2

i
)}

, (3.9b)

with the exception of two special cases,

n(0)
m (x) =

1
φ−(x+ m

2 i)φ+(x− m
2 i)

, n
(a)
0 (x) =

1
φ−(x− a

2 i)φ+(x+ a
2 i)

. (3.10)
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Because of the identity

n(a)
m (x− i/2)n(a)

m (x+ i/2) = n(a−1)
m (x)n(a+1)

m (x) = n
(a)
m−1(x)n(a)

m+1(x) , (3.11)

the fusion relations for the new set of functions Λ̃(a)
m (x) even remain unchanged. Their final

form is given by

Λ̃(a)
m (x− i/2)Λ̃(a)

m (x+ i/2) = Λ̃(a−1)
m (x)Λ̃(a+1)

m (x) + Λ̃(a)
m−1(x)Λ̃(a)

m+1(x) . (3.12)

3.4 Thermodynamic Bethe ansatz equations

In the following, we will focus only on the TBA equations for the largest eigenvalue of
the QTM, Λ(1)

1 (x) = Λmax(x), although TBA equations for other eigenvalues may also
be obtained [38]. It is a remarkable fact that, although we are only interested in a single
eigenvalue, the complete set of fusion relations has to be exploited.

In addition to the fusion relations (3.12), we will also need some knowledge on the
analyticity properties of the fused eigenvalue functions. The correpsonding data are known
from numerical case studies at finite Trotter number N , where the roots of the polynomials
Λ̃(a)
m (x) have been obtained by directly solving the Bethe ansatz equations for various models

and parameters a and m. Based on these results, a general pattern can be conjectured. For
each function Λ̃(a)

m (x), we expect that half the roots are located above and below the real
axis on slightly curved lines with imaginary parts close to ±(a+m)/2.

Note that, in the following, we will only deal with the TBA equations for the sl(n)- and
sl(n|1)-symmetric cases of the Uimin-Sutherland model and do not attempt to derive the
TBA equations for the most general sl(r|s)-symmetric case. This is, because the general
derivation—though structurally similar to the special cases—is more involved, and because
we do not need these results in the following chapters. Nevertheless, the corresponding results
already exist in the literature. They have been derived by Saleur [66] on the basis of the
string-hypothesis.

3.4.1 Definiton of the auxiliary functions

In order to derive the thermodynamic Bethe ansatz equations from the fusion relations (3.12)
we define the auxiliary functions

y(a)
m (x) =

Λ̃(a)
m−1(x)Λ̃(a)

m+1(x)

Λ̃(a−1)
m (x)Λ̃(a+1)

m (x)
. (3.13)

Additionally, we will also use the functions

Y (a)
m (x) = y(a)

m (x) + 1 , Y
(a)
m (x) =

(
y(a)
m (x)

)−1 + 1 =
Y

(a)
m (x)

y
(a)
m (x)

. (3.14)
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Due to the fusion relations (3.7) the auxiliary functions of the latter type can also be iden-
tified as rational functions in terms of Λ̃(a)

m (x),

Y (a)
m (x) =

Λ̃(a)
m (x− i/2)Λ̃(a)

m (x+ i/2)

Λ̃(a−1)
m (x)Λ̃(a+1)

m (x)
, Y

(a)
m (x) =

Λ̃(a)
m (x− i/2)Λ̃(a)

m (x+ i/2)

Λ̃(a)
m−1(x)Λ̃(a)

m+1(x)
. (3.15)

Concerning the analyticity properties of the auxiliary functions y(a)
m (x), Y (a)

m (x) and
Y

(a)
m (x), we like to note that, with the exception of the case a = m = 1, they are all analytic,

non-zero and have constant asymptotics (ANZC) inside the strip −1/2 < =(x) < 1/2, which
directly follows from the root distribution of the eigenvalues Λ̃(a)

m (x).

3.4.2 TBA equations for the sl(n)-symmetric case

The functions Y (a)
0 (x) = Y

(0)
m (x) = Y

(n)
m (x) = 1 are trivial in the sl(n) case. For the other

functions we find the relations

y(a)
m (x− i/2)y(a)

m (x+ i/2) =
Y

(a)
m−1(x)Y (a)

m+1(x)

Y
(a−1)
m (x)Y (a+1)

m (x)
, (3.16)

where a = 1, . . . , n− 1, as a direct consequence of the fusion relations (3.12). Furthermore,
we find that

Λ̃(n)
1 (x) = φ−

(
x− n+ 1

2
i
)
φ+

(
x+

n+ 1
2

i
)

eβ
∑n
j=1 µj . (3.17)

In order to decouple the set of functional relations we apply a Fourier transform to the
logarithmic derivative of both sides of (3.16),

f̂(k) =
∫ ∞
−∞

d
dx

[ln f(x)] e−ikx dx
2π

, (3.18)

which directly yields

(e−k/2 + ek/2)ŷ(a)
m (k) = δa,1δm,1φ̂h(k) + (1− δm,1)Ŷ (a)

m−1(k) + Ŷ
(a)
m+1(k)

− (1− δa,1)Ŷ
(a−1)

m (k)− (1− δa,n−1)Ŷ
(a+1)

m (k) . (3.19)

The extra term for a = 1 and m = 1,

φ̂h(k) =

{
φ̂−(k)− φ̂+(k) for k < 0
φ̂+(k)− φ̂−(k) for k > 0

, (3.20)

stems from two explicitly known roots and poles of the function y
(1)
1 (x) that are located in

the strip −1/2 < =(x) < 1/2. Equation (3.19) may be recast as

n−1∑
b=1

M (a,b)(k)ŷ(b)
m (k) = δa,1δm,1φ̂h(k) + (1− δm,1)Ŷ (a)

m−1(k) + Ŷ
(a)
m+1(k)

− (1− δa,1)Ŷ (a−1)
m (k)− (1− δa,n−1)Ŷ (a+1)

m (k) , (3.21)
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where we have defined the matrix M(k) with elements

M (a,b)(k) = 2 cosh(k/2)δa,b − δa,b−1 − δa,b+1 . (3.22)

The inverse of this matrix is given by

Â
(a,b)
[n] (k) =

sinh(min(a, b)k/2) sinh([n−max(a, b)]k/2)
sinh(k/2) sinh(nk/2)

. (3.23)

Applying this information to (3.21) leads to

ŷ(a)
m (k) = δm,1Â

(a,1)
[n] (k)φ̂h(k) +

n−1∑
b=1

{
Â

(a,b)
[n] (k)

(
(1− δm,1)Ŷ (b)

m−1(k) + Ŷ
(b)
m+1(k)

)
−
(
Â

(a,b−1)
[n] (k) + Â

(a,b+1)
[n] (k)

)
Ŷ (b)
m (k)

}
, (3.24)

which, after applying the Trotter limit N →∞, is finally transformed back to

ln y(a)
m (x) = −Jβδm,1A(a,1)

[n] (x) +
n−1∑
b=1

{[
A

(a,b)
[n] ∗

(
(1− δm,1) lnY (b)

m−1 + lnY (b)
m+1

)]
(x)

−
[(
A

(a,b−1)
[n] +A

(a,b+1)
[n]

)
∗ lnY (b)

m

]
(x)
}
, (3.25)

where
A

(a,b)
[n] (x) =

∫ ∞
−∞

Â
(a,b)
[n] (k) eikx dk , (3.26)

and convolutions are denoted by[
f ∗ g

]
(x) =

∫ ∞
−∞

f(x− y)g(y)
dy
2π

. (3.27)

The set of equations given by (3.25) for a = 1, . . . , n − 1 and m = 1, . . . ,∞ are the so-
called TBA equations. Together with the known asymptotics of the involved functions they
provide an infinite set of coupled nonlinear integral equations, which uniquely determine all
auxiliary functions y(a)

m (x).
Finally, the largest eigenvalue of the QTM Λ(1)

1 (0) can be reconstructed from the set
of auxiliary functions. In order to derive the corresponding equation, let us consider the
expression for the functions Y (a)

m (x) given in (3.15) and take the Fourier transform of its
logarithmic derivative, which can be written as

Ŷ (a)
m (k) + δa,1Λ̂(0)

m (k) + δa,n−1Λ̂(n)
m (k) =

n−1∑
b=1

M (a,b)(k)Λ̂(b)
m (k) . (3.28)

Using the inverse of the matrix M(k) again, this can be recast as

Λ̂(a)
m (k) = Â

(a,1)
[n] (k)Λ̂(0)

m (k) + Â
(a,n−1)
[n] (k)Λ̂(n)

m (k) +
n−1∑
b=1

Â
(a,b)
[n] (k)Ŷ (b)

m (k) . (3.29)
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In order to apply this result to Λ(1)
1 (0), we define the additional function

Λ(1)
1 (x) =

Λ(1)
1 (x)

φ−(x− i)φ+(x+ i)
, (3.30)

which has the advantage of having constant asymptotics. In the Trotter limit N → ∞ this
definition simply yields ln Λ(1)

1 (0) = ln Λ(1)
1 (0)− Jβ. From equation (3.29) it follows that

Λ̂
(1)

1 (k) = −iN sinh(kJβ/N)e−|k|/2
sinh([n− 1]k/2)

sinh(nk/2)
+
n−1∑
a=1

Â
(1,a)
[n] (k)Ŷ (a)

1 (k) . (3.31)

Only the first term explicitly depends on the Trotter number N , so that we just have to
consider

lim
N→∞

N sinh(kJβ/N) = kJβ (3.32)

to apply the global Trotter limit N →∞. Transforming the result back, we arrive at

ln Λ(1)
1 (0) = −β

J
[
1− 2

n

(
ψ(1)− ψ

(
1
n

))]
− 1
n

n∑
j=1

µj

+
n−1∑
a=1

[
A

(1,a)
[n] ∗ lnY (a)

1

]
(0) ,

(3.33)
where ψ(x) denotes the digamma function.

3.4.3 TBA equations for the sl(n|1)-symmetric case

The derivation of the TBA equations for the sl(n|1)-symmetric case of the Uimin-Sutherland
model is very similar to the one for the sl(n)-symmetric case and therefore deferred to Ap-
pendix B. The difference is that we have one additional identity for the eigenvalue functions,

Λ̃(n)
m (x)/a(n)

m = Λ̃(n+m−1)
1 (x)/a(n+m−1)

1 , (3.34)

where a
(b)
m are the highest coefficients of the polynomials, and that only the functions

Y
(a)
0 (x) = Y

(0)
m (x) = 1 are trivial; the function

y
(n)
1 (x) =

Λ̃(n)
0 (x)Λ̃(n)

2 (x)

Λ̃(n−1)
1 (x)Λ̃(n+1)

1 (x)
=

Λ̃(n)
0 (x)a(n)

2

Λ̃(n−1)
1 (x)a(n+1)

1

(3.35)

now contributes to the final equations.
Finally, we get the result

ln y(a)
1 (x) = −β

(
J

4a
4x2 + a2

+ c(a)
)

+
n−1∑
b=1

[
A

(a,b)
[n] ∗ lnY (b)

2

]
(x)

−
n∑
b=1

[(
A

(a,b−1)
[n] +A

(a,b+1)
[n] + C(a,b)

)
∗ lnY (b)

1

]
(x) , (3.36a)
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ln y(n)
1 (x) = −β

(
J

4n
4x2 + n2

+ c(n)

)
−

n∑
b=1

[
C(n,b) ∗ lnY (b)

1

]
(x) + lnY (n)

1 (x) , (3.36b)

where a = 1, . . . , n− 1, and

ln y(a)
m (x) =

n−1∑
b=1

{[
A

(a,b)
[n] ∗

(
lnY (b)

m−1 + lnY (b)
m+1

)]
(x)

−
[(
A

(a,b−1)
[n] +A

(a,b+1)
[n]

)
∗ lnY (b)

m

]
(x)
}
, (3.37)

where m = 2, . . . ,∞ and a = 1, . . . , n − 1. Considering the asymptotes of these equations,
we find the constants to be

c(a) = aµg −
a

n

n∑
j=1
j 6=g

µj , (3.38)

where g is the label of the basis state with grading p(g) = 1. The kernel functions C(a,b)(x)
are defined by

C(a,b)(x) =
∫ ∞
−∞

e−(n−1)|k|/2 sinh(ak/2) sinh(bk/2)
sinh(k/2) sinh(nk/2)

eikx dk . (3.39)

Again, the set of TBA equations (3.36) and (3.37) together with the known asymptotics
completely determines all auxiliary functions.

Once the auxiliary functions are known, the largest eigenvalue of the QTM can be cal-
culated via

ln Λ(1)
1 (0) = β(J + µg) +

n∑
a=1

[
4a

4x2 + a2
∗ lnY (a)

1

]
(0) . (3.40)

3.5 Zero-temperature limit

We have already seen that the TBA equations are a coupled set of infinitely many nonlinear
integral equations. In the zero-temperature limit, nevertheless, they reduce to only a finite
set of coupled linear integral equations. In order to take the limit, we first have to rescale
the auxiliary functions. We define

e(a)m (x) =
1
β

ln y(a)
m (x) , E(a)

m (x) =
1
β

lnY (a)
m (x) . (3.41)

Note that in the zero-temperature limit, the relation between both sets of functions is largely
simplified,

E(a)
m (x)→ e+

(a)
m (x) =

{
e
(a)
m (x) if <(e(a)m (x)) > 0

0 if <(e(a)m (x)) ≤ 0
, (3.42)

which is also the cause for the structural simplifcation of the NLIEs in this limit.
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Applying the limit to the TBA equations of the sl(n) case (3.25), we finally arrive at the
coupled set of linearized integral equations

e
(a)
1 (x) = −

(
JA(a,1)(x) + c(a)

)
−
n−1∑
b=1

[
K(a,b)

[n] ∗ e
+(b)

1

]
(x) , (3.43)

where
K(a,b)

[n] =
∫ ∞
−∞

{
e|k|/2Â(a,b)(k)− δa,b

}
eikx dk . (3.44)

Note that the constants c(a) have not been fixed here. They depend on the proportions of
the general chemical potentials and vanish, if all of them are zero. The equation for the
largest eigenvalue (3.33) turns into

1
β

ln Λ(1)
1 (0) = −

J
[
1− 2

n

(
ψ(1)− ψ

(
1
n

))]
−

n∑
j=1

µj

+
n−1∑
a=1

[
A(1,a) ∗ e+(a)

1

]
(0) . (3.45)

In case of the sl(n|1)-symmetric Uimin-Sutherland model, see equations (3.36) and (3.37),
the linearized zero-temperature equations have the structure,

e
(a)
1 (x) = −

(
J

4a
4x2 + a2

+ c(a)
)
−

n∑
b=1

[
K(a,b) ∗ e+(a)

1

]
(x) , (3.46)

where the constants c(a) still have to be fixed, and the integration kernels are given by

K(a,b)(x) =
∫ ∞
−∞

{
e−(max(a,b)−1)|k|/2 sinh(min(a, b)k/2)

sinh(k/2)
− δa,b

}
eikx dk . (3.47)

The corresponding modification of the equation for the largest eigenvalue (3.40) yields

1
β

ln Λ(1)
1 (0) = (J + µg) +

n∑
a=1

[
4a

4x2 + a2
∗ e+(a)

1

]
(0) . (3.48)

3.6 Concluding remarks

The advantage of the TBA approach lies in the fact that the corresponding equations can
be obtained in a rather straightforward way for general sl(r|s)-symmetric Uimin-Sutherland
models. However, they are less suitable for numerical investigations at finite temperature
and external fields, since one has to deal with an infinite number of auxiliary functions.
Some kind of truncation scheme is necessary. The standard method is to take a large but
finite number of the auxiliary functions y(a)

m (x) and approximate the rest by their asymptotic
values. Estimates for the systematic error introduced by this procedure, which have been
obtained in comparison with direct Bethe ansatz solutions at finite Trotter numbers N
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in [38], nevertheless show that it is difficult to obtain reliable numerical results in the low-
temperature region in this way.

In order to get accurate numerical results, we have to use a different approach to obtain
only finite numbers of coupled NLIEs, which will be presented in the next chapter. However,
both approaches are mutually related, and the knowledge of the TBA equations therefore
helps in order to understand the general structure of the alternative NLIEs.



Chapter 4

Finite sets of nonlinear integral
equations

The TBA equations, which have been treated in the last chapter, can be obtained for the
general sl(r|s)-symmetric Uimin-Sutherland model. Nevertheless, it is a major disadvantage
of this approach that we have to deal with an infinite number of coupled nonlinear inte-
gral equations (NLIEs). Fortunately, there exist alternative approaches, where only a finite
number of auxiliary functions is necessary.

One of them has been developed by Takahashi [84] for the case of the spin-1/2 Heisen-
berg chain, where only one single NLIE is sufficient. His approach was later generalized by
Tsuboi [90, 91] to the case of the sl(r|s)-symmetric Uimin-Sutherland model. Here, the num-
ber of auxiliary functions and therefore the number of resulting coupled NLIEs is equal to the
rank of the underlying algebra. However, integration contours along complex paths instead
of simple convolutions—like in the TBA equations—are involved in the NLIEs, which makes
numerical calculations difficult. Only high-temperature expansions, albeit to very high order
(∼ 40), have been obtained using this approach [71, 91, 92].

In the following we will stick to the third approach, which has been developed by
Klümper, Batchelor and Pearce [40, 43, 44] and has been applied to the thermodynamics of
the spin-1/2 Heisenberg chain by Klümper in [41]. There exist two equivalent formulations.
The first one uses just a single auxiliary function, where the resulting NLIE involves com-
plex integration contours. The second formulation uses a closely related additional auxiliary
function and leads to two coupled NLIEs involving only convolution-type integrals. Due to
its structure, this second form of the equations is well suited for numerical calculations at
arbitrary finite temperature and chemical potentials, see Chapter 6.

Unfortunately, the extension of the Klümper-type approach to the arbitrary Uimin-
Sutherland model is difficult since there is no known straightforward way to construct the
required auxiliary functions. Therefore, the generalized auxiliary functions and NLIEs have
previously been obtained only for cases with three components at most, r+ s ≤ 3, basically
by trial and error.

Our treatment improves on the situation. We have succeeded in finding auxiliary func-

33
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tions for all cases with four components. We are also able to shed some light on the general
structure of the NLIE and thus conjecture the NLIEs even for some higher-rank cases,
namely for the sl(5)- and sl(4|1)-symmetric cases. A general construction, like in the case
of the TBA or Takahashi-type equations, however, is still out of reach.

4.1 Previous work

In the following sections, we review the previous results on the NLIEs of Klümper-type.
This is done in order to unify the notation and to introduce some additional observations
on the structure of the integration kernels and the connection to the TBA approach, which
will later help for treating the generalizations.

4.1.1 The sl(2)-symmetric case

Let us start with the sl(2)-symmetric case. Although this is the simplest non-trivial case,
the basic ideas are the same as for the more complicated cases. We define two auxiliary
functions [41],

b
(1)
1,1(x) = 1

2

∣∣∣∣
x+i/2

, b
(1)
1,2(x) = 2

1

∣∣∣∣
x−i/2

. (4.1)

Additionally, we introduce the uppercase functions B(1)
1,j (x) = b

(1)
1,j (x)+1. Note that the extra

indices are not essential here. They are used solely in order to maintain a consistent notation
which will be useful in the context of generalizations.

We note that the auxiliary functions b(1)
1,j (x) and B

(1)
1,j (x) are rational functions in terms

of the spectral parameter x. Moreover, it can be checked numerically that they are analytic,
non-zero and have constant asymptotics (ANZC) in a strip −1/2 . =(x) . 1/2 surrounding
the real axis. We recast the auxiliary functions in factorized form,

b
(1)
1,1(x) =

φ−(x− i
2)φ+(x+ i

2)q1(x+ 3
2 i)

φ−(x+ i
2)φ+(x+ 3

2 i)q1(x− i
2)
· eβ(µ1−µ2) , (4.2a)

b
(1)
1,2(x) =

φ−(x− i
2)φ+(x+ i

2)q1(x− 3
2 i)

φ−(x− 3
2 i)φ+(x− i

2)q1(x+ i
2)
· eβ(µ2−µ1) , (4.2b)

B
(1)
1,1(x) =

q1(x+ i
2)Λ̃(1)

1 (x+ i
2)

φ−(x+ i
2)φ+(x+ 3

2 i)q1(x− i
2)
· eβµ1 + eβµ2

eβµ2
, (4.2c)

B
(1)
1,2(x) =

q1(x− i
2)Λ̃(1)

1 (x− i
2)

φ−(x− 3
2 i)φ+(x− i

2)q1(x+ i
2)
· eβµ1 + eβµ2

eβµ1
, (4.2d)

where the function Λ̃(1)
1 (x) is defined as the polynomial Λ(1)

1 (x) divided by its highest coef-
ficient,

Λ(1)
1 (x) = Λ̃(1)

1 (x) · (eβµ1 + eβµ2) . (4.3)
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Note that in the sl(2)-symmetric case the roots of the largest eigenvalue are equivalent to
the hole solutions of the Bethe ansatz equation (2.60).

Due to the analyticity properties, we are allowed to apply a Fourier transform to the
logarithmic derivative of all auxiliary functions,

f̂(k) =
∫ ∞
−∞

d
dx

[ln f(x)] e−ikx dx
2π

, (4.4)

in analogy to the derivation of the TBA equations in Chapter 3. In the cases k < 0 and k > 0,
we will close the integration path to a contour above and below the real axis, respectively.
Let us first turn to the case k < 0, where we only have to deal with roots and poles, which
are located above the real axis. Here, we get the result,

b̂
(1)
1,1(k) = ek/2φ̂−(k)− ek/2q̂1(k) , (4.5a)

b̂
(1)
1,2(k) = ek/2φ̂−(k) + e3k/2q̂1(k)− e3k/2φ̂−(k)− ek/2φ̂+(k) , (4.5b)

B̂
(1)
1,1(k) = e−k/2Λ̂(1)

1 (k)− ek/2q̂1(k) , (4.5c)

B̂
(1)
1,2(k) = ek/2Λ̂(1)

1 (k) + ek/2q̂1(k)− e3k/2φ̂−(k)− ek/2φ̂+(k) . (4.5d)

The latter two equations may easily be solved to get the functions q̂1(k) and Λ̂(1)
1 (k) in

terms of the auxiliary functions B̂(1)
1,j (k). We then substitute the result into the equations

for the functions b̂(1)
1,j (k) and are left with a self-consistent set of equations for the auxiliary

functions. After treating the case k > 0 along the same lines, we combine the results to
obtain equations valid for all k ∈ R,

b̂
(1)
1,1(k) = − iN sinh(kJβ/N)

2 cosh(k/2)
+

e−|k|/2

2 cosh(k/2)
B̂

(1)
1,1(k)− e−k−|k|/2

2 cosh(k/2)
B̂

(1)
1,2(k) , (4.6a)

b̂
(1)
1,2(k) = − iN sinh(kJβ/N)

2 cosh(k/2)
− ek−|k|/2

2 cosh(k/2)
B̂

(1)
1,1(k) +

e−|k|/2

2 cosh(k/2)
B̂

(1)
1,2(k) . (4.6b)

Only the first term on the right hand side of each equation explicitly depends on the Trotter
number N . Therefore, we can perform the global Trotter limit N → ∞ just by replacing
this term by its asymptotic form,

lim
N→∞

N sinh(kJβ/N) = kJβ . (4.7)

The remaining steps are to apply the inverse Fourier transform to equations (4.6) and
integrate with respect to the spectral parameter x. This eventually yields

ln b(1)
1,1(x) = −β

(
J

π

cosh(πx)
+ c

(1)
1

)
−
[
K0 ∗ lnB(1)

1,1

]
(x)−

[
K1 ∗ lnB(1)

1,2

]
(x) , (4.8a)

ln b(1)
1,2(x) = −β

(
J

π

cosh(πx)
+ c

(1)
2

)
−
[
K2 ∗ lnB(1)

1,1

]
(x)−

[
K0 ∗ lnB(1)

1,2

]
(x) , (4.8b)
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where convolutions are denoted by[
f ∗ g

]
(x) =

∫ ∞
−∞

f(x− y)g(y)
dy
2π
, (4.9)

and the kernel functions are given by

K0(x) = i
d

dx

(
ln

Γ(1 + x
2 i)Γ(1

2 −
x
2 i)

Γ(1− x
2 i)Γ(1

2 + x
2 i)

)
, (4.10a)

K1(x) = K0(x) +
i

x+ i
− i
x− 0i

, K2(x) = K0(x) +
i

x+ 0i
− i
x− i

. (4.10b)

Here, x ± 0i indicates that the corresponding terms are strictly valid only for x with pos-
itive/negative imaginary part. The missing integration constants c(1)

j are determined by
considering equation (4.8) in the limit x→∞. For the convolution terms, we find

lim
x→∞

[
f ∗ g

]
(x) = g(∞)

∫ ∞
−∞

f(x)
dx
2π

. (4.11)

Since the asymptotic values of the auxiliary functions are known and the norms of the kernel
functions are found to be 1/2, the constants follow as

c
(1)
1 =

µ2 − µ1

2
, c

(1)
2 =

µ1 − µ2

2
. (4.12)

Now, the finite set of coupled NLIEs (4.8) for the sl(2)-symmetric case is complete.
The largest eigenvalue of the QTM, however, has still to be recovered from the auxiliary

functions. Recall that an expression for Λ̂(1)
1 (k) in terms of the auxiliary functions B̂(1)

1,j (k)
already appeared during the derivation of the NLIEs. In order to transform this expression
back, we first introduce the additional function,

Λ(1)
1 (x) =

Λ(1)
1 (x)

φ−(x− i)φ+(x+ i)
, (4.13)

which has a constant asymptotic value. This expression simplifies to ln Λ(1)
1 (0) = Λ(1)

1 (0)−Jβ
in the Trotter limit N →∞. We find

Λ̂
(1)

1 (k) =
iN sinh(kJβ/N)e−|k|/2

2 cosh(k/2)
+

1
2 cosh(k/2)

(
B̂

(1)
1,1(k) + B̂

(1)
1,2(k)

)
. (4.14)

Again, we take the Trotter limit N → ∞ by means of equation (4.7). After the inverse
transform, we fix the integration constants like in the derivation of the NLIEs. This finally
yields

ln Λ(1)
1 (0) = −β

{
J(1− 2 ln 2)− µ1 + µ2

2

}
+
[

π

cosh(πx)
∗
(

lnB(1)
1,1 + lnB(1)

1,2

)]
(0) . (4.15)

The equation is basically the same as the one we derived for the eigenvalue in the TBA
approach (3.33) for n = 2. This is expected, since the functions Y (1)

1 (x) and B
(1)
1,j (x) are

related via
Y

(1)
1 (x) = B

(1)
1,1(x)B(1)

1,2(x) . (4.16)
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4.1.2 The sl(3)-symmetric case

We have seen in the previous section that the definition of suitable auxiliary functions is the
key to the derivation of a finite set of nonlinear integral equations. The necessary auxiliary
functions for the sl(3)-symmetric case have first been found by Fujii and Klümper [27]. There
are six auxiliary functions

b
(1)
1,1(x) = 1

2 + 3

∣∣∣∣
x+i/2

, b
(1)
1,2(x) =

1
2
· 2

3
1
3
·
(

1
2

+ 1
3

+ 2
3

)
∣∣∣∣∣∣∣∣
x

, (4.17a)

b
(1)
1,3(x) = 3

1 + 2

∣∣∣∣
x−i/2

, b
(2)
1,1(x) =

1
2

1
3

+ 2
3

∣∣∣∣∣∣∣∣
x+i/2

, (4.17b)

b
(2)
1,2(x) = 1 · 3

2 ·
(

1 + 2 + 3
)∣∣∣∣∣
x

, b
(2)
1,3(x) =

2
3

1
2

+ 1
3

∣∣∣∣∣∣∣∣
x−i/2

. (4.17c)

Again, we define uppercase auxiliary functions via B(a)
1,j (x) = b

(a)
1,j (x) + 1. Like in the sl(2)-

symmetric case, there is a close connection to the auxiliary functions of the TBA approach,

Y
(a)
1 (x) = B

(a)
1,1 (x)B(a)

1,2 (x)B(a)
1,3 (x) (a = 1, 2) . (4.18)

The auxiliary functions may apparently be grouped into two subsets, which justifies our
naming convention. Each of the subsets contains three functions, which corresponds to the
dimension of the two fundamental representations of sl(3). Moreover, the second set of
functions may be obtained from the first one by a conjugation transformation of the Young
tableaux, confer [27].

Again, the auxiliary functions have the ANZC property in a strip −1/2 . =(x) . 1/2.
The factorized form is

b
(1)
1,1(x) =

φ−(x− i
2)φ+(x+ i

2)q1(x+ 3
2 i)

φ−(x+ i
2)q(h)2 (x+ i

2)
· eβµ1

eβµ2 + eβµ3
, (4.19a)

b
(1)
1,2(x) =

φ−(x− i
2)φ+(x+ i

2)q1(x− 3
2 i)q2(x+ 3

2 i)

q1(x+ i
2)q2(x− i

2)Λ̃(2)
1 (x)

· e2βµ2

a
(2)
1

, (4.19b)

b
(1)
1,3(x) =

φ−(x− i
2)φ+(x+ i

2)q2(x− 3
2 i)

φ+(x− i
2)q(h)1 (x− i

2)
· eβµ3

eβµ1 + eβµ2
, (4.19c)

b
(2)
1,1(x) =

φ−(x− i)φ+(x+ i)q2(x+ 2i)

φ+(x+ 2i)q(h)1 (x)
· eβ(µ1+µ2)

eβµ3(eβµ1 + eβµ2)
, (4.19d)
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b
(2)
1,2(x) =

φ−(x− i)φ+(x+ i)q1(x+ i)q2(x− i)

q1(x− i)q2(x+ i)Λ̃(1)
1 (x)

· eβ(µ1+µ3)

eβµ2a
(1)
1

, (4.19e)

b
(2)
1,3(x) =

φ−(x− i)φ+(x+ i)q1(x− 2i)

φ−(x− 2i)q(h)2 (x)
· eβ(µ2+µ3)

eβµ1(eβµ2 + eβµ3)
. (4.19f)

The polynomials q(h)j (x) are defined in analogy to qj(x), see (2.59), where the Bethe ansatz
roots are replaced by the hole solutions of the Bethe ansatz equations. The eigenvalue
functions Λ̃(a)

1 (x) are defined via

Λ(a)
1 (x) = n

(a)
1 (x)Λ̃(a)

1 (x)a(a)
1 , (4.20)

where n(a)
1 (x) is the normalization function (3.9), and a

(a)
1 is the highest coefficient of each

polynomial Λ(a)
1 (x),

a
(1)
1 = eβµ1 + eβµ2 + eβµ3 , a

(2)
1 = eβ(µ1+µ2) + eβ(µ1+µ3) + eβ(µ2+µ3) . (4.21)

For the uppercase auxiliary functions, we find

B
(1)
1,1(x) =

q1(x+ i
2)Λ̃(1)

1 (x+ i
2)

φ−(x+ i
2)q(h)2 (x+ i

2)
· a

(1)
1

eβµ2 + eβµ3
, (4.22a)

B
(1)
1,2(x) =

q
(h)
1 (x− i

2)q(h)2 (x+ i
2)

q1(x+ i
2)q2(x− i

2)Λ̃(2)
1 (x)

· (eβµ1 + eβµ2)(eβµ2 + eβµ3)

a
(2)
1

, (4.22b)

B
(1)
1,3(x) =

q2(x− i
2)Λ̃(1)

1 (x− i
2)

φ+(x− i
2)q(h)1 (x− i

2)
· a

(1)
1

eβµ1 + eβµ2
, (4.22c)

B
(2)
1,1(x) =

q2(x+ i)Λ̃(2)
1 (x+ i

2)

φ+(x+ 2i)q(h)1 (x)
· a

(2)
1

eβµ3(eβµ1 + eβµ2)
, (4.22d)

B
(2)
1,2(x) =

q
(h)
1 (x)q(h)2 (x)

q1(x− i)q2(x+ i)Λ̃(1)
1 (x)

· (eβµ1 + eβµ2)(eβµ2 + eβµ3)

eβµ2a
(1)
1

, (4.22e)

B
(2)
1,3(x) =

q1(x− i)Λ̃(2)
1 (x− i

2)

φ−(x− 2i)q(h)2 (x)
· a

(2)
1

eβµ1(eβµ2 + eβµ3)
. (4.22f)

Now, the same procedure using the transform (4.4) as in the last section is applicable,
because the number of unknown functions in both cases, k < 0 and k > 0, is again equal to
the number of uppercase auxiliary functions B̂(a)

1,j (k). However, we will not go into the details
of the derivation here, since we will explicitly repeat the arguments for the sl(4)-symmetric
case in Section 4.2.1, where an even higher number of unknown functions is involved. The
result is a self-consistent set of six coupled NLIEs of the form

ln b(a)1,j (x) = −β
(
JV (a)(x) + c

(a)
j

)
−

2∑
b=1

3∑
k=1

[
K(a,b)
j,k ∗ lnB(b)

1,k

]
(x) . (4.23)
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In the driving terms, we have the functions

V (1)(x) =
2π√

3
1

2 cosh(2πx/3)− 1
, V (2)(x) =

2π√
3

1
2 cosh(2πx/3) + 1

, (4.24)

and the constants

c
(1)
1 = (−2µ1 + µ2 + µ3)/3 , c

(1)
2 = (µ1 − 2µ2 + µ3)/3 , (4.25a)

c
(1)
3 = (µ1 + µ2 − 2µ3)/3 , c

(2)
1 = (−µ1 − µ2 + 2µ3)/3 , (4.25b)

c
(2)
2 = (−µ1 + 2µ2 − µ3)/3 , c

(2)
3 = (2µ1 − µ2 − µ3)/3 . (4.25c)

The kernel matrices K(a,b)(x) are given by

K(1,1)(x) =

K0(x) K1(x) K1(x)
K2(x) K0(x) K1(x)
K2(x) K2(x) K0(x)

 , (4.26a)

K(1,2)(x) =

K3(x) K3(x) K4(x)
K3(x) K6(x) K3(x)
K5(x) K3(x) K3(x)

 , (4.26b)

K(2,1)(x) = K(1,2)(x) , (4.26c)

K(2,2)(x) = K(1,1)(x) . (4.26d)

The kernel functions are found to be

K0(x) = K(1,1)(x) , K1(x) = K(1,1)(x) +
i

x+ i
− i
x− 0i

, (4.27a)

K2(x) = K(1,1)(x) +
i

x+ 0i
− i
x− i

, K3(x) = K(1,2)(x) , (4.27b)

K4(x) = K(1,2)(x) +
i

x+ 3
2 i
− i
x+ i

2

, K5(x) = K(1,2)(x) +
i

x− i
2

− i
x− 3

2 i
, (4.27c)

K6(x) = K(1,2)(x) +
i

x+ i
2

− i
x− i

2

, (4.27d)

with the common transcendental functions

K(1,1)(x) = i
d

dx

(
ln

Γ(1 + x
3 i)Γ(2

3 −
x
3 i)

Γ(1− x
3 i)Γ(2

3 + x
3 i)

)
, (4.28a)

K(1,2)(x) = i
d

dx

(
ln

Γ(1
6 + x

3 i)Γ(1
2 −

x
3 i)

Γ(1
6 −

x
3 i)Γ(1

2 + x
3 i)

)
. (4.28b)

Finally, the largest eigenvalue of the QTM can be calculated via

ln Λ(1)
1 (0) = −β

J
(

1− π

3
√

3
− ln 3

)
− 1

3

3∑
j=1

µj

+
2∑

a=1

3∑
j=1

[
V (a) ∗ lnB(a)

j

]
(0) . (4.29)
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4.1.3 The sl(2|1)-symmetric case

Let us now turn to the simplest non-trivial case with different gradings, the sl(2|1)-symmetric
case of the Uimin-Sutherland model. From the definition of the Hamiltonian (2.2) it is im-
mediately clear that there exist three equivalent formulations, differing only in the choice
of grading. In the framework of the Bethe ansatz formulation (2.58), however, this equiv-
alence is not so obvious. We show in Appendix A, how the different formulations can be
transformed into one another.

The set of coupled NLIEs for the sl(2|1)-symmetric case has first been derived by Jüttner,
Klümper and Suzuki [36, 37]. Although the structure of the graded models, for example their
representation theory, is generally more difficult, we need only three auxiliary functions here,
compared with the six functions of the sl(3)-symmetric case. The appearance of the auxiliary
functions is simplest for the grading ε1 = −ε2 = ε3 = +1, which we will further on denote
by (+−+). Here, the functions are actually a subset of those for the sl(3)-symmetric case,

b
(1)
1,1(x) = 1

2 + 3

∣∣∣∣
x+i/2

, b
(1)
1,2(x) = 3

1 + 2

∣∣∣∣
x−i/2

, (4.30a)

b
(2)
1,1(x) = 1 · 3

2 ·
(

1 + 2 + 3
)∣∣∣∣∣
x

. (4.30b)

After the definition of the uppercase functions B(a)
1,j (x) = b

(a)
1,j (x) + 1, we again recognize the

connection to the auxiliary functions of the TBA approach,

Y
(1)
1 (x) = B

(1)
1,1(x)B(1)

1,2(x) , Y
(2)
1 (x) = B

(2)
1,1(x) . (4.31)

The latter relation, which of course also means that y
(2)
1 (x) = b

(2)
1,1(x), may come as a

surprise, as it is not immediately obvious from the definitions. It can, however, easily be
checked by cancelling all common Young tableaux in the numerator and denominator of
the corresponding TBA auxiliary function. Note also that the former relation bears strong
similarity to the sl(2)-symmetric case (4.16).

As before, we assure ourselves that the auxiliary functions have the ANZC property
in some strip −1/2 . =(x) . 1/2 around the real axis. The factorization of the auxiliary
functions yields,

b
(1)
1,1(x) =

φ−(x− i
2)φ+(x+ i

2)q1(x+ 3
2 i)

φ−(x+ i
2)q2(x− i

2)q(h)2 (x+ i
2)
· eβµ1

eβµ2 + eβµ3
, (4.32a)

b
(1)
1,2(x) =

φ−(x− i
2)φ+(x+ i

2)q2(x− 3
2 i)

φ+(x− i
2)q1(x+ i

2)q(h)1 (x− i
2)
· eβµ3

eβµ1 + eβµ2
, (4.32b)

b
(2)
1,1(x) =

φ−(x− i)φ+(x+ i)

Λ̃(1)
1 (x)

· eβ(µ1+µ3)

eβµ2a
(1)
1

, (4.32c)
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where a(1)
1 = eβµ1 + eβµ2 + eβµ3 . For the uppercase auxiliary functions, we find

B
(1)
1,1(x) =

q1(x+ i
2)Λ̃(1)

1 (x+ i
2)

φ−(x+ i
2)q2(x− i

2)q(h)2 (x+ i
2)
· a

(1)
1

eβµ2 + eβµ3
, (4.33a)

B
(1)
1,2(x) =

q2(x− i
2)Λ̃(1)

1 (x− i
2)

φ+(x− i
2)q1(x+ i

2)q(h)1 (x− i
2)
· a

(1)
1

eβµ1 + eβµ2
, (4.33b)

B
(2)
1,1(x) =

q
(h)
1 (x)q(h)2 (x)

Λ̃(1)
1 (x)

· (eβµ1 + eβµ2)(eβµ2 + eβµ3)

eβµ2a
(1)
1

. (4.33c)

Due to the fact that the hole-solution polynomials q(h)1 (x) and q
(h)
2 (x) are only of degree

N/2 here, with zeros lying completely above and below the real axis, respectively, we again
have the correct number of unknown functions after applying the transform (4.4). The rest
of the derivation is straightforward.

Before giving the results, let us also deal with the two other possible choices for the
grading. In fact, the auxiliary functions—and therefore the resulting set of coupled NLIEs—
are exactly the same in all three possible gradings. However, the role of zeros, poles and the
chemical potentials change. From the results of Appendix A, we know how all factors in the
factorized form of the auxiliary functions (4.32) and (4.33) have to be renamed in order to
change the grading from (+−+) to the case (−+ +) or (+ +−). Then, it is easy to regress
to the Young tableaux formulation, which indeed looks different in all three cases. For the
(−+ +) case, we find

b
(1)
1,1(x) =

2
3
·
(

1
1

+ 1
2

)
1
3
·
(

1
1

+ 1
2

+ 1
3

+ 2
3

)
∣∣∣∣∣∣∣∣
x

, b
(1)
1,2(x) = 3

1 + 2

∣∣∣∣
x−i/2

, (4.34a)

b
(2)
1,1(x) =

2
3

1
1

+ 1
2

+ 1
3

∣∣∣∣∣∣∣∣
x−i/2

. (4.34b)

Similarly, in the (+ +−) case, the auxiliary functions have the form

b
(1)
1,1(x) = 1

2 + 3

∣∣∣∣
x+i/2

, b
(1)
1,2(x) =

1
2
·
(

2
3

+ 3
3

)
1
3
·
(

1
2

+ 1
3

+ 2
3

+ 3
3

)
∣∣∣∣∣∣∣∣
x

, (4.35a)

b
(2)
1,1(x) =

1
2

1
3

+ 2
3

+ 3
3

∣∣∣∣∣∣∣∣
x+i/2

. (4.35b)
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Note that these formulations also bear a strong resemblance to the sl(3) auxiliary functions,
which becomes obvious by deleting all Young tableaux that are not admissible in the sl(3)-
symmetric case.

The resulting set of three coupled NLIEs is given by

ln b(a)1,j (x) = −β
(
JV (a)(x) + c

(a)
j

)
−

2∑
b=1

3−b∑
k=1

[
K(a,b)
j,k ∗ lnB(b)

k

]
(x) , (4.36)

where the driving terms are

V (1)(x) =
4

4x2 + 1
, V (2)(x) =

2
x2 + 1

. (4.37)

As noted before, only the labelling of the general chemical potentials depends on the choice
of grading. Let us stick to the (+−+) case here, for which we find the constants to be

c
(1)
1 = µ2 − µ1 , c

(1)
2 = µ2 − µ3 , c

(2)
1 = 2µ2 − µ1 − µ3 . (4.38)

The complete 3-by-3 kernel matrix is

K(x) =
(

K(1,1)(x) K(1,2)(x)
K(2,1)(x) K(2,2)(x)

)
=

 0 K1(x) K3(x)
K2(x) 0 K3(x)
K3(x) K3(x) K4(x)

 , (4.39)

where the integration kernels have the form

K1(x) =
i

x+ i
− i
x− 0i

, K2(x) =
i

x+ 0i
− i
x− i

, (4.40a)

K3(x) =
4

4x2 + 1
, K4(x) =

2
x2 + 1

, (4.40b)

We like to note here, that the matrix K(1,1)(x) has exactly the same structure as the kernel
matrix of the sl(2)-symmetric case, despite the fact that there is no common transcendental
part here. This may seem coincidental at this stage, but is already a hint at the general
structure.

Eventually, the largest eigenvalue of the QTM can be calculated from the uppercase
auxiliary functions,

ln Λ(1)
1 (0) = β (J + µ2) +

2∑
a=1

3−a∑
j=1

[
V (a) ∗ lnB(a)

j

]
(0)

= −β(J + µ2 − µ1 − µ3)− ln b(2)
1,1(0) . (4.41)

Note that the latter form of this expression is a bit special, since the corresponding sim-
plification is only possible for the sl(2|1)-symmetric case. In contrast, the former form co-
incides with the general structure we have already gained from the TBA approach, see
equation (3.40).
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4.2 New sets of nonlinear integral equations

Now we will show, how the previously gained results can be extended to the four-component
cases of the Uimin-Sutherland model. These extensions are the main results of this thesis,
together with the numerical evaluation in Chapter 6.

4.2.1 The sl(4)-symmetric case

Recall the results for the sl(2)- and sl(3)-symmetric cases, where the set of auxiliary func-
tions resolves into as many subsets as the number of fundamental algebra representations,
and the number of auxiliary functions in each subset is given by the dimension of the funda-
mental representations. Admitting this structure in general, we expect a total of 14 auxiliary
functions for the sl(4)-symmetric case, which should be dividable into three subsets. Two
of these should consist of four, and one of them of six auxiliary functions. Moreover, the
uppercase auxiliary functions should again be connected to those of the TBA approach, in
analogy to equations (4.16) and (4.18).

We define the following four auxiliary functions for the first fundamental representation:

b
(1)
1,1(x) = 1

2 + 3 + 4

∣∣∣∣
x+i/2

, (4.42a)

b
(1)
1,2(x) =

1
2
·
(

2
3

+ 2
4

+ 3
4

)
(

1
3

+ 1
4

)
·
(

1
2

+ 1
3

+ 1
4

+ 2
3

+ 2
4

+ 3
4

)
∣∣∣∣∣∣∣∣
x

, (4.42b)

b
(1)
1,3(x) =

1
3
· 3

4
1
4
·
(

1
3

+ 1
4

+ 2
3

+ 2
4

+ 3
4

)
∣∣∣∣∣∣∣∣
x

, (4.42c)

b
(1)
1,4(x) = 4

1 + 2 + 3

∣∣∣∣
x−i/2

. (4.42d)

We have six auxiliary functions for the second fundamental representation:

b
(2)
1,1(x) =

1
2

1
3

+ 1
4

+ 2
3

+ 2
4

+ 3
4

∣∣∣∣∣∣∣∣
x+i/2

, (4.43a)

b
(2)
1,2(x) =

1
3
· 3

4(
1
4

+ 2
4

+ 3
4

)
·
(

2
3

+ 2
4

+ 3
4

)
∣∣∣∣∣∣∣∣
x+i/2

, (4.43b)
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b
(2)
1,3(x) = 1 · 4(

2 + 3
)
·
(

1 + 2 + 3 + 4
)∣∣∣∣∣
x

, (4.43c)

b
(2)
1,4(x) =

1
2
3
·

2
3
4 1

2
4

+
1
3
4

 ·
 1

2
3

+
1
2
4

+
1
3
4

+
2
3
4



∣∣∣∣∣∣∣∣∣∣∣∣
x

, (4.43d)

b
(2)
1,5(x) =

1
2
· 2

4(
1
2

+ 1
3

+ 1
4

)
·
(

1
2

+ 1
3

+ 2
3

)
∣∣∣∣∣∣∣∣
x−i/2

, (4.43e)

b
(2)
1,6(x) =

3
4

1
2

+ 1
3

+ 1
4

+ 2
3

+ 2
4

∣∣∣∣∣∣∣∣
x−i/2

. (4.43f)

And finally, the four auxiliary functions for the third fundamental representation are:

b
(3)
1,1(x) =

1
2
3

1
2
4

+
1
3
4

+
2
3
4

∣∣∣∣∣∣∣∣∣∣∣
x+i/2

, (4.44a)

b
(3)
1,2(x) =

1
2
· 2

4
2
3
·
(

1
2

+ 1
3

+ 1
4

+ 2
3

+ 2
4

)
∣∣∣∣∣∣∣∣
x

, (4.44b)

b
(3)
1,3(x) =

3
4
·
(

1
2

+ 1
3

+ 1
4

)
(

2
3

+ 2
4

)
·
(

1
2

+ 1
3

+ 1
4

+ 2
3

+ 2
4

+ 3
4

)
∣∣∣∣∣∣∣∣
x

, (4.44c)

b
(3)
1,4(x) =

2
3
4

1
2
3

+
1
2
4

+
1
3
4

∣∣∣∣∣∣∣∣∣∣∣
x−i/2

. (4.44d)

The uppercase functions B(a)
1,j (x) = b

(a)
1,j (x)+1 are defined as usual. They can also be written

in a form, where only simple sums of Young tableaux appear as factors in the numerators.
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For the first subset, we get

B
(1)
1,1(x) = 1 + 2 + 3 + 4

2 + 3 + 4

∣∣∣∣
x+i/2

, (4.45a)

B
(1)
1,2(x) =

(
1
2

+ 1
3

+ 1
4

)
·
(

1
3

+ 1
4

+ 2
3

+ 2
4

+ 3
4

)
(

1
3

+ 1
4

)
·
(

1
2

+ 1
3

+ 1
4

+ 2
3

+ 2
4

+ 3
4

)
∣∣∣∣∣∣∣∣
x

, (4.45b)

B
(1)
1,3(x) =

(
1
3

+ 1
4

)
·
(

1
4

+ 2
4

+ 3
4

)
1
4
·
(

1
3

+ 1
4

+ 2
3

+ 2
4

+ 3
4

)
∣∣∣∣∣∣∣∣
x

, (4.45c)

B
(1)
1,4(x) = 1 + 2 + 3 + 4

1 + 2 + 3

∣∣∣∣
x−i/2

. (4.45d)

The uppercase functions of the second subset are

B
(2)
1,1(x) =

1
2

+ 1
3

+ 1
4

+ 2
3

+ 2
4

+ 3
4

1
3

+ 1
4

+ 2
3

+ 2
4

+ 3
4

∣∣∣∣∣∣∣∣
x+i/2

, (4.46a)

B
(2)
1,2(x) =

(
2
4

+ 3
4

)
·
(

1
3

+ 1
4

+ 2
3

+ 2
4

+ 3
4

)
(

1
4

+ 2
4

+ 3
4

)
·
(

2
3

+ 2
4

+ 3
4

)
∣∣∣∣∣∣∣∣
x+i/2

, (4.46b)

B
(2)
1,3(x) =

(
1 + 2 + 3

)
·
(

2 + 3 + 4
)(

2 + 3
)
·
(

1 + 2 + 3 + 4
)∣∣∣∣∣
x

, (4.46c)

B
(2)
1,4(x) =

 1
2
3

+
1
2
4

+
1
3
4

 ·
 1

2
4

+
1
3
4

+
2
3
4


 1

2
4

+
1
3
4

 ·
 1

2
3

+
1
2
4

+
1
3
4

+
2
3
4



∣∣∣∣∣∣∣∣∣∣∣∣
x

, (4.46d)

B
(2)
1,5(x) =

(
1
2

+ 1
3

)
·
(

1
2

+ 1
3

+ 1
4

+ 2
3

+ 2
4

)
(

1
2

+ 1
3

+ 1
4

)
·
(

1
2

+ 1
3

+ 2
3

)
∣∣∣∣∣∣∣∣
x−i/2

, (4.46e)

B
(2)
1,6(x) =

1
2

+ 1
3

+ 1
4

+ 2
3

+ 2
4

+ 3
4

1
2

+ 1
3

+ 1
4

+ 2
3

+ 2
4

∣∣∣∣∣∣∣∣
x−i/2

. (4.46f)
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For the third subset, the results are

B
(3)
1,1(x) =

1
2
3

+
1
2
4

+
1
3
4

+
2
3
4

1
2
4

+
1
3
4

+
2
3
4

∣∣∣∣∣∣∣∣∣∣∣
x+i/2

, (4.47a)

B
(3)
1,2(x) =

(
2
3

+ 2
4

)
·
(

1
2

+ 1
3

+ 2
3

)
2
3
·
(

1
2

+ 1
3

+ 1
4

+ 2
3

+ 2
4

)
∣∣∣∣∣∣∣∣
x

, (4.47b)

B
(3)
1,3(x) =

(
2
3

+ 2
4

+ 3
4

)
·
(

1
2

+ 1
3

+ 1
4

+ 2
3

+ 2
4

)
(

2
3

+ 2
4

)
·
(

1
2

+ 1
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+ 1
4

+ 2
3

+ 2
4

+ 3
4

)
∣∣∣∣∣∣∣∣
x

, (4.47c)

B
(3)
1,4(x) =

1
2
3

+
1
2
4

+
1
3
4

+
2
3
4

1
2
3

+
1
2
4

+
1
3
4

∣∣∣∣∣∣∣∣∣∣∣
x−i/2

. (4.47d)

Using the explicit form of the functions B(a)
1,j (x), it can easily be shown that the relations

Y
(a)
1 (x) =

da∏
j=1

B
(a)
1,j (x) (4.48)

hold as expected, where da =
(
4
a

)
is the dimension of the ath fundamental representation of

sl(4). Like in the sl(3)-symmetric case, the set of auxiliary functions (4.42) is related to (4.44)
by a conjugation transformation to the Young tableaux. The set (4.43) is self-conjugate in
this sense. Note that a second set of valid auxiliary functions for the sl(4)-symmetric case
can actually be obtained by a complex conjugation of all auxiliary functions.

Let us take a closer look at the sums of Young tableaux appearing as factors in the
numerators and denominators of the auxiliary functions. It is a remarkable fact that all
these factors are partial sums of the Young tableaux appearing in the three eigenvalue
functions,

Λ(1)
1 (x) = 1 + 2 + 3 + 4

∣∣
x
, (4.49a)

Λ(2)
1 (x) = 1

2
+ 1

3
+ 1

4
+ 2

3
+ 2

4
+ 3

4

∣∣∣∣
x

, (4.49b)
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Λ(3)
1 (x) =

1
2
3

+
1
2
4

+
1
3
4

+
2
3
4

∣∣∣∣∣∣
x

. (4.49c)

Therefore, several of the potential poles in the summands of each term vanish. We find the
explicit terms

2 + 3
∣∣
x

=
φ−(x)φ+(x)q(h)2 (x)

q1(x)q3(x)
· ϑ2 , (4.50a)

3 + 4
∣∣
x

=
φ−(x)q(h)3 (x)

q2(x)
· ϑ3 , (4.50b)

1 + 2 + 3
∣∣
x

=
φ+(x)X(1)

1 (x)
q3(x)

· χ(1)
1 , (4.50c)

2 + 3 + 4
∣∣
x

=
φ−(x)X(1)

2 (x)
q1(x)

· χ(1)
2 , (4.50d)

1
2

+ 1
3

+ 1
4

+ 2
3

+ 2
4

∣∣∣∣
x

=
φ−(x+ i

2)φ+(x− i
2)X(2)

1 (x)
q2(x− i

2)
· χ(2)

1 , (4.50e)

1
3

+ 1
4

+ 2
3

+ 2
4

+ 3
4

∣∣∣∣
x

=
φ−(x+ i

2)φ+(x− i
2)X(2)

2 (x)
q2(x+ i

2)
· χ(2)

2 , (4.50f)

1
2

+ 1
3

+ 2
3

∣∣∣∣
x

=
φ−(x+ i

2)φ+(x− i
2)φ+(x+ i

2)X(3)
1 (x)

q3(x+ i
2)

· χ(3)
1 , (4.50g)

2
3

+ 2
4

+ 3
4

∣∣∣∣
x

=
φ−(x+ i

2)φ+(x− i
2)φ−(x− i

2)X(3)
2 (x)

q1(x− i
2)

· χ(3)
2 , (4.50h)

where the functions q(h)j (x) and X(a)
j (x) are polynomials of degree N , with the exception of

X
(2)
1 (x) and X(2)

2 (x) being of degree 3N/2. We also use the normalized eigenvalue functions
Λ̃(b)

1 (x) again, where Λ(b)
1 (x) = n

(b)
1 (x)Λ̃(b)

1 (x)a(b)
1 . The constants

ϑ2 = eβµ2 + eβµ3 , (4.51a)

ϑ3 = eβµ3 + eβµ4 , (4.51b)

χ
(1)
1 = eβµ1 + eβµ2 + eβµ3 , (4.51c)

χ
(1)
2 = eβµ2 + eβµ3 + eβµ4 , (4.51d)

χ
(2)
1 = eβ(µ1+µ2) + eβ(µ1+µ3) + eβ(µ1+µ4) + eβ(µ2+µ3) + eβ(µ2+µ4) , (4.51e)

χ
(2)
2 = eβ(µ1+µ3) + eβ(µ1+µ4) + eβ(µ2+µ3) + eβ(µ2+µ4) + eβ(µ3+µ4) , (4.51f)

χ
(3)
1 = eβ(µ1+µ2) + eβ(µ1+µ3) + eβ(µ2+µ3) , (4.51g)

χ
(3)
2 = eβ(µ2+µ3) + eβ(µ2+µ4) + eβ(µ3+µ4) , (4.51h)
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a
(1)
1 = eβµ1 + eβµ2 + eβµ3 + eβµ4 , (4.51i)

a
(2)
1 = eβ(µ1+µ2) + eβ(µ1+µ3) + eβ(µ1+µ4) + eβ(µ2+µ3) + eβ(µ2+µ4) + eβ(µ3+µ4) , (4.51j)

a
(3)
1 = eβ(µ1+µ2+µ3) + eβ(µ1+µ2+µ4) + eβ(µ1+µ3+µ4) + eβ(µ2+µ3+µ4) (4.51k)

have been separated, so that the highest coefficient of each polynomial is one. Again, the
roots of the polynomials q(h)j (x) are given by the hole solutions of the Bethe ansatz equa-
tions (2.60). The roots of the other polynomials, however, are new and have no particular
meaning in terms of the Bethe ansatz. From numerical solutions of the Bethe ansatz equa-
tions at finite Trotter number N , we know the root structure of all emergent functions. They
are located in groups of N/2 many roots on slightly curved lines with imaginary parts close
to the values

qj(x): 0 , Λ̃(a)
1 (x): ±(a+ 1)/2 , (4.52a)

q
(h)
j (x): ±1 , X

(1)
j (x): ±1 , (4.52b)

X
(2)
1 (x): +1/2, ±3/2 , X

(2)
2 (x): −1/2, ±3/2 , (4.52c)

X
(3)
j (x): ±3/2 . (4.52d)

Using the information on the constituents, we are able to write down the auxiliary
functions in factorized form,

b
(1)
1,1(x) =

φ−(x− i
2)φ+(x+ i

2)q1(x+ 3
2 i)

φ−(x+ i
2)X(1)

2 (x+ i
2)

· eβµ1

χ
(1)
2

, (4.53a)

b
(1)
1,2(x) =

φ−(x− i
2)φ+(x+ i

2)q2(x+ 3
2 i)X(3)

2 (x)

q1(x+ i
2)q(h)3 (x+ i

2)Λ̃(2)
1 (x)

· eβµ2χ
(3)
2

ϑ3a
(2)
1

, (4.53b)

b
(1)
1,3(x) =

φ−(x− i
2)φ+(x+ i

2)q2(x− 3
2 i)q3(x+ 3

2 i)

q3(x− i
2)X(2)

2 (x)
· e2βµ3

χ
(2)
2

, (4.53c)

b
(1)
1,4(x) =

φ−(x− i
2)φ+(x+ i

2)q3(x− 3
2 i)

φ+(x− i
2)X(1)

1 (x− i
2)

· eβµ4

χ
(1)
1

, (4.53d)

b
(2)
1,1(x) =

φ−(x− i)φ+(x+ i)q2(x+ 2i)

X
(2)
2 (x+ i

2)
· eβ(µ1+µ2)

χ
(2)
2

, (4.53e)

b
(2)
1,2(x) =

φ−(x− i)φ+(x+ i)q1(x+ i)q2(x− i)q3(x+ 2i)

q2(x+ i)X(1)
1 (x)X(3)

2 (x+ i
2)

· eβ(µ1+2µ3)

χ
(1)
1 χ

(3)
2

, (4.53f)

b
(2)
1,3(x) =

φ−(x− i)φ+(x+ i)q1(x+ i)q3(x− i)

q
(h)
2 (x)Λ̃(1)

1 (x)
· eβ(µ1+µ4)

ϑ2a
(1)
1

, (4.53g)

b
(2)
1,4(x) =

φ−(x− i)φ+(x+ i)q1(x− 2i)q3(x+ 2i)

q
(h)
2 (x)Λ̃(3)

1 (x)
· e2β(µ2+µ3)

ϑ2a
(3)
1

, (4.53h)
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b
(2)
1,5(x) =

φ−(x− i)φ+(x+ i)q1(x− 2i)q2(x+ i)q3(x− i)

q2(x− i)X(1)
2 (x)X(3)

1 (x− i
2)

· eβ(2µ2+µ4)

χ
(1)
2 χ

(3)
1

, (4.53i)

b
(2)
1,6(x) =

φ−(x− i)φ+(x+ i)q2(x− 2i)

X
(2)
1 (x− i

2)
· eβ(µ3+µ4)

χ
(2)
1

, (4.53j)

b
(3)
1,1(x) =

φ−(x− 3
2 i)φ+(x+ 3

2 i)q3(x+ 5
2 i)

φ+(x+ 5
2 i)X(3)

1 (x)
· eβ(µ1+µ2+µ3)

eβµ4χ
(3)
1

, (4.53k)

b
(3)
1,2(x) =

φ−(x− 3
2 i)φ+(x+ 3

2 i)q2(x+ 3
2 i)q3(x− i

2)

q3(x+ 3
2 i)X(2)

1 (x)
· eβ(µ1+µ2+µ4)

eβµ3χ
(2)
1

, (4.53l)

b
(3)
1,3(x) =

φ−(x− 3
2 i)φ+(x+ 3

2 i)q2(x− 3
2 i)X(1)

2 (x+ i
2)

q1(x− 3
2 i)q(h)3 (x+ i

2)Λ̃(2)
1 (x)

· eβ(µ1+µ3+µ4)χ
(1)
2

eβµ2ϑ3a
(2)
1

, (4.53m)

b
(3)
1,4(x) =

φ−(x− 3
2 i)φ+(x+ 3

2 i)q1(x− 5
2 i)

φ−(x− 5
2 i)X(3)

2 (x)
· eβ(µ2+µ3+µ4)

eβµ1χ
(3)
2

. (4.53n)

For the uppercase auxiliary functions, we get

B
(1)
1,1(x) =

q1(x+ i
2)Λ̃(1)

1 (x+ i
2)

φ−(x+ i
2)X(1)

2 (x+ i
2)
· a

(1)
1

χ
(1)
2

, (4.54a)

B
(1)
1,2(x) =

X
(1)
2 (x+ i

2)X(2)
2 (x)

q1(x+ i
2)q(h)3 (x+ i

2)Λ̃(2)
1 (x)

· χ
(1)
2 χ

(2)
2

ϑ3a
(2)
1

, (4.54b)

B
(1)
1,3(x) =

q
(h)
3 (x+ i

2)X(1)
1 (x− i

2)

q3(x− i
2)X(2)

2 (x)
· ϑ3χ

(1)
1

χ
(2)
2

, (4.54c)

B
(1)
1,4(x) =

q3(x− i
2)Λ̃(1)

1 (x− i
2)

φ+(x− i
2)X(1)

1 (x− i
2)
· a

(1)
1

χ
(1)
1

, (4.54d)

B
(2)
1,1(x) =

q2(x+ i)Λ̃(2)
1 (x+ i

2)

X
(2)
2 (x+ i

2)
· a

(2)
1

χ
(2)
2

, (4.54e)

B
(2)
1,2(x) =

q
(h)
2 (x)X(2)

2 (x+ i
2)

q2(x+ i)X(1)
1 (x)X(3)

2 (x+ i
2)
· ϑ2χ

(2)
2

χ
(1)
1 χ

(3)
2

, (4.54f)

B
(2)
1,3(x) =

X
(1)
1 (x)X(1)

2 (x)

q
(h)
2 (x)Λ̃(1)

1 (x)
· χ

(1)
1 χ

(1)
2

ϑ2a
(1)
1

, (4.54g)

B
(2)
1,4(x) =

X
(3)
1 (x− i

2)X(3)
2 (x+ i

2)

q
(h)
2 (x)Λ̃(3)

1 (x)
· χ

(3)
1 χ

(3)
2

ϑ2a
(3)
1

, (4.54h)

B
(2)
1,5(x) =

q
(h)
2 (x)X(2)

1 (x− i
2)

q2(x− i)X(1)
2 (x)X(3)

1 (x− i
2)
· ϑ2χ

(2)
1

χ
(1)
2 χ

(3)
1

, (4.54i)
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B
(2)
1,6(x) =

q2(x− i)Λ̃(2)
1 (x− i

2)

X
(2)
1 (x− i

2)
· a

(2)
1

χ
(2)
1

, (4.54j)

B
(3)
1,1(x) =

q3(x+ 3
2 i)Λ̃(3)

1 (x+ i
2)

φ+(x+ 5
2 i)X(3)

1 (x)
· a

(3)
1

eβµ4χ
(3)
1

, (4.54k)

B
(3)
1,2(x) =

q
(h)
3 (x+ i

2)X(3)
1 (x)

q3(x+ 3
2 i)X(2)

1 (x)
· ϑ3χ

(3)
1

eβµ3χ
(2)
1

, (4.54l)

B
(3)
1,3(x) =

X
(2)
1 (x)X(3)

2 (x)

q1(x− 3
2 i)q(h)3 (x+ i

2)Λ̃(2)
1 (x)

· χ
(2)
1 χ

(3)
2

eβµ2ϑ3a
(2)
1

, (4.54m)

B
(3)
1,4(x) =

q1(x− 3
2 i)Λ̃(3)

1 (x− i
2)

φ−(x− 5
2 i)X(3)

2 (x)
· a

(3)
1

eβµ1χ
(3)
2

. (4.54n)

From the explicit form of the auxiliary functions we can now easily read off the analyticity
properties. Again, we find each function to have the ANZC property in the vicinity of the
real axis, −1/2 . =(x) . 1/2.

Having analyzed the properties of the auxiliary functions, we are ready to derive the set of
NLIEs, again using the standard procedure. Since, however, the corresponding calculations
are rather lengthy, details are deferred to Appendix C.

We finally obtain the result

ln b(a)1,j (x) = −β
(
JV

(a)
[4] (x) + c

(a)
j

)
−

3∑
b=1

db∑
k=1

[
K(a,b)
j,k ∗ lnB(b)

1,k

]
(x) , (4.55)

which is exactly of the same structure we already found in all previous cases. The functions

V
(a)
[n] (x) =

2π
n

sin(πa/n)
cosh(2πx/n)− cos(πa/n)

(4.56)

are exactly the inverse Fourier transforms of (C.4), and the kernel matrices are the inverse
Fourier transforms of (C.5) and (C.6). Therefore, we get

K(1,1)(x) =


K0(x) K1(x) K1(x) K1(x)
K2(x) K0(x) K1(x) K1(x)
K2(x) K2(x) K0(x) K1(x)
K2(x) K2(x) K2(x) K0(x)

 , (4.57a)

K(2,2)(x) =



K3(x) K4(x) K4(x) K4(x) K4(x) K6(x)
K5(x) K3(x) K4(x) K4(x) K8(x) K4(x)
K5(x) K5(x) K3(x) K10(x) K4(x) K4(x)
K5(x) K5(x) K10(x) K3(x) K4(x) K4(x)
K5(x) K9(x) K5(x) K5(x) K3(x) K4(x)
K7(x) K5(x) K5(x) K5(x) K5(x) K3(x)

 , (4.57b)
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K(1,2)(x) =


K11(x) K11(x) K11(x) K12(x) K12(x) K12(x)
K11(x) K14(x) K14(x) K11(x) K11(x) K12(x)
K13(x) K11(x) K14(x) K11(x) K14(x) K11(x)
K13(x) K13(x) K11(x) K13(x) K11(x) K11(x)

 , (4.57c)

K(1,3)(x) =


K15(x) K15(x) K15(x) K16(x)
K15(x) K15(x) K18(x) K15(x)
K15(x) K19(x) K15(x) K15(x)
K17(x) K15(x) K15(x) K15(x)

 , (4.57d)

and

K(3,3)(x) = K(1,1)(x) , K(2,1)(x) =
(
K(1,2)(x)

)†
, (4.58a)

K(3,1)(x) =
(
K(1,3)(x)

)†
, K(3,2)(x) =

(
K(2,3)(x)

)†
, (4.58b)

K(2,3)
j,k (x) = K(1,2)

5−k,7−j(x) . (4.58c)

The matrices may also be viewed as submatrices of one big kernel matrix

K(x) =

K(1,1)(x) K(1,2)(x) K(1,3)(x)
K(2,1)(x) K(2,2)(x) K(2,3)(x)
K(3,1)(x) K(3,2)(x) K(3,3)(x)

 , (4.59)

which then features two interesting symmetry relations. Namely, the matrix K(x) is Hermi-
tian and invariant under a reflection along the antidiagonal,

K(x) = (K(x))† , Kj,k(x) = K15−k,15−j(x) . (4.60)

The kernel functions are

K0(x) = K(1,1)
[4] (x) , K1(x) = K(1,1)

[4] (x) +
i

x+ i
− i
x− 0i

, (4.61a)

K2(x) = K(1,1)
[4] (x) +

i
x+ 0i

− i
x− i

, K3(x) = K(2,2)
[4] (x) , (4.61b)

K4(x) = K(2,2)
[4] (x) +

i
x+ i

− i
x− 0i

, K5(x) = K(2,2)
[4] (x) +

i
x+ 0i

− i
x− i

, (4.61c)

K6(x) = K(2,2)
[4] (x) +

i
x+ 2i

− i
x− 0i

, K7(x) = K(2,2)
[4] (x) +

i
x+ 0i

− i
x− 2i

, (4.61d)

K8(x) = K(2,2)
[4] (x) +

2i
x+ i

− 2i
x− 0i

, K9(x) = K(2,2)
[4] (x) +

2i
x+ 0i

− 2i
x− i

, (4.61e)

K10(x) = K(2,2)
[4] (x) +

i
x+ i

− i
x− i

, K11(x) = K(1,2)
[4] (x) , (4.61f)

K12(x) = K(1,2)
[4] (x) +

i
x+ 3

2 i
− i
x+ i

2

, K13(x) = K(1,2)
[4] (x) +

i
x− i

2

− i
x− 3

2 i
, (4.61g)

K14(x) = K(1,2)
[4] (x) +

i
x+ i

2

− i
x− i

2

, K15(x) = K(1,3)
[4] (x) , (4.61h)
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K16(x) = K(1,3)
[4] (x) +

i
x+ 2i

− i
x+ i

, K17(x) = K(1,3)
[4] (x) +

i
x− i

− i
x− 2i

, (4.61i)

K18(x) = K(1,3)
[4] (x) +

i
x+ i

− i
x+ 0i

, K19(x) = K(1,3)
[4] (x) +

i
x+ 0i

− i
x− i

, (4.61j)

where the common terms are given by the transcendental functions

K(a,a)
[n] (x) = i

d
dx

a−1∑
j=0

ln
Γ
(
δj,0 + j

n + x
n i
)

Γ
(

1 + j−a
n −

x
n i
)

Γ
(
δj,0 + j

n −
x
n i
)

Γ
(

1 + j−a
n + x

n i
)
 , (4.62a)

K(a,b)
[n] (x) = K(b,a)

[n] (x) = i
d

dx

a−1∑
j=0

ln
Γ
(

2j+b−a
2n + x

n i
)

Γ
(

1 + 2j−b−a
2n − x

n i
)

Γ
(

2j+b−a
2n − x

n i
)

Γ
(

1 + 2j−b−a
2n + x

n i
)
 , (4.62b)

with the restriction a < b. The integration constants are again obtained by considering the
set of NLIEs (4.55) for x→∞. We find

c
(1)
1 = (−3µ1 + µ2 + µ3 + µ4)/4 , c

(1)
2 = (µ1 − 3µ2 + µ3 + µ4)/4 , (4.63a)

c
(1)
3 = (µ1 + µ2 − 3µ3 + µ4)/4 , c

(1)
4 = (µ1 + µ2 + µ3 − 3µ4)/4 , (4.63b)

c
(2)
1 = (−µ1 − µ2 + µ3 + µ4)/2 , c

(2)
2 = (−µ1 + µ2 − µ3 + µ4)/2 , (4.63c)

c
(2)
3 = (−µ1 + µ2 + µ3 − µ4)/2 , c

(2)
4 = (µ1 − µ2 − µ3 + µ4)/2 , (4.63d)

c
(2)
5 = (µ1 − µ2 + µ3 − µ4)/2 , c

(2)
6 = (µ1 + µ2 − µ3 − µ4)/2 , (4.63e)

c
(3)
1 = (−µ1 − µ2 − µ3 + 3µ4)/4 , c

(3)
2 = (−µ1 − µ2 + 3µ3 − µ4)/4 , (4.63f)

c
(3)
3 = (−µ1 + 3µ2 − µ3 − µ4)/4 , c

(3)
4 = (3µ1 − µ2 − µ3 − µ4)/4 . (4.63g)

Therewith, the self-consistent set of coupled NLIEs for the sl(4)-symmetric case of the
Uimin-Sutherland model is complete.

Due to the connection of the auxiliary functions B(a)
1,j (x) to the auxiliary functions Y (a)

1 (x)
of the TBA approach via equation (4.48), we may exploit the expression (3.33) for n = 4 to
finally regain the largest eigenvalue Λ(1)

1 (x) of the QTM. Alternatively, the same reasoning as
in the sl(2)-symmetric case may be applied, since also here the eigenvalue function already
appeared in the derivation of the NLIEs. Either way, we find the final expression

ln Λ(1)
1 (0) = −β

J
(

1− π

4
− 3

2
ln 2
)
− 1

4

4∑
j=1

µj

+
4∑

a=1

da∑
j=1

[
V

(a)
[4] ∗ lnB(a)

j

]
(0) . (4.64)

We like to note that the functions V
(a)
[n] (x) and the transcendental kernel functions

K(a,b)
[n] (x) used in this section have already been defined in a form, which will be valid for

the general sl(n)-symmetric case. For example, it can be checked that the functions V (a)(x)
and K(a,b)(x) that appeared in the sl(2)- and sl(3)-symmetric cases are of the same form
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as given by equations (4.56) and (4.62) for n = 2 and 3. The general form of the functions
V

(a)
[n] (x) = A

(1,a)
[n] (x) follows from the TBA approach, see equations (3.26) and (3.33). The

general form of the transcendental kernels follows from their connection to the S matrix of
elementary excitations, which for the general sl(n)-symmetric model has first been derived
by Kulish and Reshetikhin [50]. The relation is

K(a,b)
[n] (x) = i

d
dx

(
lnS(a,b)

[n] (x)
)

=
d

dx
ϕ

(a,b)
[n] (x) , (4.65)

where S(a,b)
[n] (x) is the S matrix element for the scattering of particles of type a and b, and

ϕ
(a,b)
[n] (x) is the corresponding phase shift. Note that the functions K(a,b)

[n] (x) also appear as
kernel functions in the zero-temperature limit of the TBA equations (3.43).

4.2.2 The sl(3|1)-symmetric case

Although there are so far no interesting physical applications of the sl(3|1)-symmetric case
of the Uimin-Sutherland model, we will nevertheless treat this case for completeness. It will
also be the basis for the conjecture of the NLIEs for the sl(4|1)-symmetric case in the next
chapter. Depending on the explicit choice of grading for the basis states, there are four
equivalent formulations. We will choose the grading (+−++) for the following calculations.
We find a total of seven auxiliary functions, half as many as for the ungraded sl(4)-symmetric
case,

b
(1)
1,1(x) = 1

2 + 3 + 4

∣∣∣∣
x+i/2

, (4.66a)

b
(1)
1,2(x) =

3
4
·
(

1
2

+ 1
3

)
1
4
·
(

1
2

+ 1
3

+ 1
4

+ 2
2

+ 2
3

+ 2
4

+ 3
4

)
∣∣∣∣∣∣∣∣
x

, (4.66b)

b
(1)
1,3(x) = 4

1 + 2 + 3

∣∣∣∣
x−i/2

, (4.66c)

b
(2)
1,1(x) =

3
4
·
(

1
2

+ 1
3

)
(

1
4

+ 2
4

+ 3
4

)
·
(

2
2

+ 2
3

+ 2
4

+ 3
4

)
∣∣∣∣∣∣∣∣
x+i/2

, (4.66d)

b
(2)
1,2(x) = 1 · 4(

2 + 3
)
·
(

1 + 2 + 3 + 4
)∣∣∣∣∣
x

, (4.66e)

b
(2)
1,3(x) =

1
4
· 3

4(
1
4

+ 2
4

)
·
(

1
2

+ 1
3

+ 1
4

)
∣∣∣∣∣∣∣∣
x−i/2

, (4.66f)
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b
(3)
1,1(x) =

1
3
· 3

4
2
3
·
(

1
2

+ 1
3

+ 1
4

+ 2
2

+ 2
3

+ 2
4

+ 3
4

)
∣∣∣∣∣∣∣∣
x

. (4.66g)

As usual, we define the uppercase auxiliary functions B(a)
1,j (x) = b

(a)
1,j (x) + 1. In terms of the

Young tableaux, we find the explicit form

B
(1)
1,1(x) = 1 + 2 + 3 + 4

2 + 3 + 4

∣∣∣∣
x+i/2

, (4.67a)

B
(1)
1,2(x) =

(
1
4

+ 2
4

+ 3
4

)
·
(

1
2

+ 1
3

+ 1
4

)
1
4
·
(

1
2

+ 1
3

+ 1
4

+ 2
2

+ 2
3

+ 2
4

+ 3
4

)
∣∣∣∣∣∣∣∣
x

, (4.67b)

B
(1)
1,3(x) = 1 + 2 + 3 + 4

1 + 2 + 3

∣∣∣∣
x−i/2

, (4.67c)

B
(2)
1,1(x) =

(
2
4

+ 3
4

)
·
(

1
2

+ 1
3

+ 1
4

+ 2
2

+ 2
3

+ 2
4

+ 3
4

)
(

1
4

+ 2
4

+ 3
4

)
·
(

2
2

+ 2
3

+ 2
4

+ 3
4

)
∣∣∣∣∣∣∣∣
x+i/2

, (4.67d)

B
(2)
1,2(x) =

(
1 + 2 + 3

)
·
(

2 + 3 + 4
)(

2 + 3
)
·
(

1 + 2 + 3 + 4
)∣∣∣∣∣
x

, (4.67e)

B
(2)
1,3(x) =

1
4
·
(

1
2

+ 1
3

+ 1
4

+ 2
2

+ 2
3

+ 2
4

+ 3
4

)
(

1
4

+ 2
4

)
·
(

1
2

+ 1
3

+ 1
4

)
∣∣∣∣∣∣∣∣
x−i/2

, (4.67f)

B
(3)
1,1(x) =

(
1
3

+ 2
3

)
·
(

2
2

+ 2
3

+ 2
4

+ 3
4

)
2
3
·
(

1
2

+ 1
3

+ 1
4

+ 2
2

+ 2
3

+ 2
4

+ 3
4

)
∣∣∣∣∣∣∣∣
x

. (4.67g)

The connection of the auxiliary functions to those of the corresponding TBA approach
becomes apparent by the relations

Y
(a)
1 (x) = B

(a)
1,1 (x)B(a)

1,2 (x)B(a)
1,3 (x) , Y

(3)
1 (x) = B

(3)
1,1(x) , (4.68)

where a = 1, 2. We see that one of the functions of the TBA approach directly enters the set,
while the other relations are similar to the sl(3)-symmetric case, see equation (4.18). The
structure is also analogous to the sl(2|1)-symmetric case, see equation (4.31). Comparing
the terms appearing in the auxiliary functions with the eigenvalue functions

Λ(1)
1 (x) = 1 + 2 + 3 + 4

∣∣
x
, (4.69a)
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Λ(2)
1 (x) = 1

2
+ 1

3
+ 1

4
+ 2

2
+ 2

3
+ 2

4
+ 3

4

∣∣∣∣
x

, (4.69b)

we again see that only partial sums of the Young tableaux in the eigenvalues contribute.
Besides the eigenvalue functions, we find the constituents

1 + 2
∣∣
x

=
φ+(x)q1(x+ i)q(h)1 (x)

q2(x)
· ϑ1 , (4.70a)

2 + 3
∣∣
x

=
φ−(x)φ+(x)q2(x− i)q(h)2 (x)

q1(x)q3(x)
· ϑ2 , (4.70b)

1 + 2 + 3
∣∣
x

=
φ+(x)X(1)

1 (x)
q3(x)

· χ(1)
1 , (4.70c)

2 + 3 + 4
∣∣
x

=
φ−(x)X(1)

2 (x)
q1(x)

· χ(1)
2 , (4.70d)

2
2

+ 2
3

+ 2
4

+ 3
4

∣∣∣∣
x

=
φ−(x− i

2)φ−(x+ i
2)φ+(x− i

2)q2(x− 3
2 i)X(2)

1 (x)
q1(x− i

2)
· χ(2)

1 , (4.70e)

where the functions q(h)j (x) and X(a)
j (x) are polynomials due to the cancellation of potential

poles. The roots of q(h)j (x) are given by the hole solutions of the Bethe ansatz equations.

We find that q(h)j (x) and X
(2)
1 (x) are of degree N/2, while the polynomials X(1)

j (x) are

of degree N . Again, we additionally define normalized eigenvalue polynomials Λ̃(b)
1 (x) via

Λ(b)
1 (x) = n

(b)
1 (x)Λ̃(b)

1 (x)a(b)
1 . All polynomials have the highest coefficient one, since we have

separated the constants

ϑ1 = eβµ1 + eβµ2 , (4.71a)

ϑ2 = eβµ2 + eβµ3 , (4.71b)

χ
(1)
1 = eβµ1 + eβµ2 + eβµ3 , (4.71c)

χ
(1)
2 = eβµ2 + eβµ3 + eβµ4 , (4.71d)

χ
(2)
1 = e2βµ2 + eβ(µ2+µ3) + eβ(µ2+µ4) + eβ(µ3+µ4) , (4.71e)

a
(1)
1 = eβµ1 + eβµ2 + eβµ3 + eβµ4 , (4.71f)

a
(2)
1 = eβ(µ1+µ2) + eβ(µ1+µ3) + eβ(µ1+µ4) + e2βµ2

+ eβ(µ2+µ3) + eβ(µ2+µ4) + eβ(µ3+µ4) . (4.71g)

Moreover, we know the root structure of all polynomials from numerical calculations. The
roots have imaginary parts close to the values

qj(x): 0 , Λ̃(a)
1 (x): ±(a+ 1)/2 , (4.72a)

q
(h)
1 (x): +1 , q

(h)
2 (x): −1 , (4.72b)
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X
(1)
j (x): ±1 , X

(2)
1 (x): −3/2 . (4.72c)

With this knowledge, the auxiliary functions may easily be written in factorized form. We
obtain

b
(1)
1,1(x) =

φ−(x− i
2)φ+(x+ i

2)q1(x+ 3
2 i)

φ−(x+ i
2)X(1)

2 (x+ i
2)

· eβµ1

χ
(1)
2

, (4.73a)

b
(1)
1,2(x) =

φ−(x− i
2)φ+(x+ i

2)q2(x− 3
2 i)q(h)2 (x+ i

2)

q1(x+ i
2)q3(x− i

2)Λ̃(2)
1 (x)

· eβµ3ϑ2

a
(2)
1

, (4.73b)

b
(1)
1,3(x) =

φ−(x− i
2)φ+(x+ i

2)q3(x− 3
2 i)

φ+(x− i
2)X(1)

1 (x− i
2)

· eβµ4

χ
(1)
1

, (4.73c)

b
(2)
1,1(x) =

φ−(x− i)φ+(x+ i)q(h)2 (x+ i)

X
(1)
1 (x)X(2)

1 (x+ i
2)

· eβ(µ1+µ3)ϑ2

χ
(1)
1 χ

(2)
1

, (4.73d)

b
(2)
1,2(x) =

φ−(x− i)φ+(x+ i)q1(x+ i)q3(x− i)

q2(x− i)q(h)2 (x)Λ̃(1)
1 (x)

· eβ(µ1+µ4)

ϑ2a
(1)
1

, (4.73e)

b
(2)
1,3(x) =

φ−(x− i)φ+(x+ i)q2(x− 2i)

q
(h)
1 (x− i)X(1)

2 (x)
· eβ(µ3+µ4)

ϑ1χ
(1)
2

, (4.73f)

b
(3)
1,1(x) =

φ−(x− 3
2 i)φ+(x+ 3

2 i)

Λ̃(2)
1 (x)

· eβ(µ1+µ3+µ4)

eβµ2a
(2)
1

. (4.73g)

The uppercase auxiliary functions take the form

B
(1)
1,1(x) =

q1(x+ i
2)Λ̃(1)

1 (x+ i
2)

φ−(x+ i
2)X(1)

2 (x+ i
2)
· a

(1)
1

χ
(1)
2

, (4.74a)

B
(1)
1,2(x) =

X
(1)
1 (x− i

2)X(1)
2 (x+ i

2)

q1(x+ i
2)q3(x− i

2)Λ̃(2)
1 (x)

· χ
(1)
1 χ

(1)
2

a
(2)
1

, (4.74b)

B
(1)
1,3(x) =

q3(x− i
2)Λ̃(1)

1 (x− i
2)

φ+(x− i
2)X(1)

1 (x− i
2)
· a

(1)
1

χ
(1)
1

, (4.74c)

B
(2)
1,1(x) =

q
(h)
2 (x)Λ̃(2)

1 (x+ i
2)

X
(1)
1 (x)X(2)

1 (x+ i
2)
· ϑ2a

(2)
1

χ
(1)
1 χ

(2)
1

, (4.74d)

B
(2)
1,2(x) =

X
(1)
1 (x)X(1)

2 (x)

q2(x− i)q(h)2 (x)Λ̃(1)
1 (x)

· χ
(1)
1 χ

(1)
2

ϑ2a
(1)
1

, (4.74e)

B
(2)
1,3(x) =

q2(x− i)Λ̃(2)
1 (x− i

2)

q
(h)
1 (x− i)X(1)

2 (x)
· a

(2)
1

ϑ1χ
(1)
2

, (4.74f)

B
(3)
1,1(x) =

q
(h)
1 (x− i

2)X(2)
1 (x)

Λ̃(2)
1 (x)

· ϑ1χ
(2)
1

eβµ2a
(2)
1

. (4.74g)
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Now it is easy to check, that all auxiliary functions have the desired ANZC property in
some strip around the real axis, and we are therefore allowed to apply the transform (4.4).
Although there are a total of ten unknown functions involved besides the auxiliary functions,
only seven of them remain in the transformed equations for k < 0 and k > 0, since their
roots appear only either above or below the real axis. This allows for the derivation of the
NLIEs along the usual lines. For brevity, we will directly skip to the results.

We arrive at the self-consistent set of coupled NLIEs

ln b(a)1,j = −β
(
JV (a)(x) + c

(a)
j

)
−

3∑
b=1

db∑
k=1

[
K(a,b)
j,k ∗ lnB(b)

1,k

]
(x) . (4.75)

The number db gives the number of auxiliary functions in each set b. The driving terms are

V (a)(x) =
4a

4x2 + a2
, (4.76)

and we obtain the integration constants

c
(1)
1 = µ2 − µ1 , c

(1)
2 = µ2 − µ3 , (4.77a)

c
(1)
3 = µ2 − µ4 , c

(2)
1 = 2µ2 − µ1 − µ3 , (4.77b)

c
(2)
2 = 2µ2 − µ1 − µ4 , c

(2)
3 = 2µ2 − µ3 − µ4 , (4.77c)

c
(3)
1 = 3µ2 − µ1 − µ3 − µ4 . (4.77d)

For the complete kernel matrix, we find

K(x) =

K(1,1)(x) K(1,2)(x) K(1,3)(x)
K(2,1)(x) K(2,2)(x) K(2,3)(x)
K(3,1)(x) K(3,2)(x) K(3,3)(x)



=



0 K1(x) K1(x) K3(x) K3(x) K4(x) K10(x)
K2(x) 0 K1(x) K3(x) K6(x) K3(x) K10(x)
K2(x) K2(x) 0 K5(x) K3(x) K3(x) K10(x)
K3(x) K3(x) K4(x) K7(x) K8(x) K8(x) K11(x)
K3(x) K6(x) K3(x) K9(x) K7(x) K8(x) K11(x)
K5(x) K3(x) K3(x) K9(x) K9(x) K7(x) K11(x)
K10(x) K10(x) K10(x) K11(x) K11(x) K11(x) K12(x)


. (4.78)

The explicit kernel functions are

K1(x) = K(1,1)(x) +
i

x+ i
− i
x− 0i

, K2(x) = K(1,1)(x) +
i

x+ 0i
− i
x− i

, (4.79a)

K3(x) = K(1,2)(x) , K4(x) = K(1,2)(x) +
i

x+ 3
2 i
− i
x+ i

2

, (4.79b)

K5(x) = K(1,2)(x) +
i

x− i
2

− i
x− 3

2 i
, K6(x) = K(1,2)(x) +

i
x+ i

2

− i
x− i

2

, (4.79c)
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K7(x) = K(2,2)(x) , K8(x) = K(2,2)(x) +
i

x+ i
− i
x− 0i

, (4.79d)

K9(x) = K(2,2)(x) +
i

x+ 0i
− i
x− i

, K10(x) = K(1,3)(x) , (4.79e)

K11(x) = K(2,3)(x) , K12(x) = K(3,3)(x) , (4.79f)

where the common functions have the form

K(a,b)(x) =
∫ ∞
−∞

{
e−(max(a,b)−1)|k|/2 sinh(min(a, b)k/2)

sinh(k/2)
− δa,b

}
eikx dk . (4.80)

Note that these functions have already appeared as the kernel functions of the zero-temper-
ature limit of the TBA equations (3.46).

It is a remarkable fact, that the complete kernel matrix K(x) looks very similar to the
one we have obtained for the sl(3)-symmetric case. Despite the additional auxiliary function
b
(3)
1 (x) and the different common functions K(a,b)(x), the block structure of the matrix and

all the rational parts of the kernel functions are exactly the same. Note that this observation
also conforms with what we have already found for the sl(2|1)-symmetric case.

The expression for the largest eigenvalue of the QTM finally is

ln Λ(1)
1 (0) = β (J + µ2) +

3∑
a=1

da∑
j=1

[
V (a) ∗ lnB(a)

1,j

]
(0) . (4.81)

4.2.3 The sl(2|2)-symmetric case

The structure for the sl(2|2)-symmetric case of the Uimin-Sutherland model is a bit more
complicated. There are six equivalent possible choices to apply the grading to the basis
states. In the following, we will stick to the grading (+ − −+). We find a total of six
auxiliary functions,

b
(1)
1,1(x) = 1 1 + 1 2 + 1 3 + 1 4 + 2 3 + 2 4 + 3 4 + 4 4

1
2

+ 1
3

+ 1
4

+ 2
2

+ 2
3

+ 2
4

+ 3
3

+ 3
4

∣∣∣∣∣∣∣∣
x

, (4.82a)

b
(1)
2,1(x) = 1 1 + 1 2 + 1 3 + 1 4

2 3 + 2 4 + 3 4 + 4 4

∣∣∣∣
x+i/2

, (4.82b)

b
(1)
2,2(x) = 1 4 + 2 4 + 3 4 + 4 4

1 1 + 1 2 + 1 3 + 2 3

∣∣∣∣
x−i/2

, (4.82c)

b
(2)
1,1(x) = 1 + 2 + 3 + 4

1 + 2

∣∣∣∣
x

·

3
3

+ 3
4

2 3 + 2 4 + 3 4 + 4 4

∣∣∣∣∣∣∣∣
x+i/2

, (4.82d)
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b
(2)
1,2(x) = 1 + 2 + 3 + 4

3 + 4

∣∣∣∣
x

·

1
2

+ 2
2

1 1 + 1 2 + 1 3 + 2 3

∣∣∣∣∣∣∣∣
x−i/2

, (4.82e)

b
(2)
2,1(x) =

2 3 ·
(

1 1 + 1 2 + 1 3 + 1 4 + 2 3 + 2 4 + 3 4 + 4 4
)

1 4 ·
(

1
2

+ 1
3

+ 1
4

+ 2
2

+ 2
3

+ 2
4

+ 3
3

+ 3
4

)
∣∣∣∣∣∣∣∣
x

.

(4.82f)

By adding one, we arrive at the uppercase auxiliary functions B(a)
m,j(x). These may be written

in an analogous way,

B
(1)
1,1(x) =

(
1 + 2 + 3 + 4

)∣∣
x−i/2

·
(

1 + 2 + 3 + 4
)∣∣
x+i/2

1
2

+ 1
3

+ 1
4

+ 2
2

+ 2
3

+ 2
4

+ 3
3

+ 3
4

∣∣∣∣
x

, (4.83a)

B
(1)
2,1(x) = 1 1 + 1 2 + 1 3 + 1 4 + 2 3 + 2 4 + 3 4 + 4 4

2 3 + 2 4 + 3 4 + 4 4

∣∣∣∣
x+i/2

, (4.83b)

B
(1)
2,2(x) = 1 1 + 1 2 + 1 3 + 2 3 + 1 4 + 2 4 + 3 4 + 4 4

1 1 + 1 2 + 1 3 + 2 3

∣∣∣∣
x−i/2

, (4.83c)

B
(2)
1,1(x) = 3 + 4

1 + 2

∣∣∣∣
x

·

1
2

+ 1
3

+ 1
4

+ 2
2

+ 2
3

+ 2
4

+ 3
3

+ 3
4

2 3 + 2 4 + 3 4 + 4 4

∣∣∣∣∣∣∣∣
x+i/2

, (4.83d)

B
(2)
1,2(x) = 1 + 2

3 + 4

∣∣∣∣
x

·

1
2

+ 1
3

+ 1
4

+ 2
2

+ 2
3

+ 2
4

+ 3
3

+ 3
4

1 1 + 1 2 + 1 3 + 2 3

∣∣∣∣∣∣∣∣
x−i/2

, (4.83e)

B
(2)
2,1(x) =

(
1 1 + 1 2 + 1 3 + 2 3

)
·
(

2 3 + 2 4 + 3 4 + 4 4
)

1 4 ·
(

1
2

+ 1
3

+ 1
4

+ 2
2

+ 2
3

+ 2
4

+ 3
3

+ 3
4

)
∣∣∣∣∣∣∣∣
x

. (4.83f)

We find the connection to the auxiliary functions of the TBA approach

Y
(1)
1 (x) = B

(1)
1,1(x) , Y

(1)
2 (x) = B

(1)
2,1(x)B(1)

2,2(x) , (4.84a)

Y
(2)
1 (x) = B

(2)
1,1(x)B(2)

1,2(x) , Y
(2)
2 (x) = B

(2)
2,1(x) , (4.84b)

which is structurally a bit different from the previous cases, since the functions Y (2)
j (x)

appear instead of Y (2)
j (x).



60 Chapter 4. Finite sets of nonlinear integral equations

In analogy to the previous cases, the sums of Young tableaux appearing in the auxiliary
functions are partial sums of the tableaux in the eigenvalue functions

Λ(1)
1 (x) = 1 + 2 + 3 + 4

∣∣
x
, (4.85a)

Λ(1)
2 (x) = 1 1 + 1 2 + 1 3 + 1 4 + 2 3 + 2 4 + 3 4 + 4 4

∣∣
x
, (4.85b)

Λ(2)
1 (x) = 1

2
+ 1

3
+ 1

4
+ 2

2
+ 2

3
+ 2

4
+ 3

3
+ 3

4

∣∣∣∣
x

. (4.85c)

This time, also the fused eigenvalue function Λ(1)
2 (x) is important. As usual, we introduce the

normalized eigenvalue polynomials Λ̃(b)
m (x), where Λ(b)

m (x) = n
(b)
m (x)Λ̃(b)

m (x)a(b)
m . The constants

a
(b)
m are

a
(1)
1 = eβµ1 + eβµ2 + eβµ3 + eβµ4 , (4.86a)

a
(1)
2 = e2βµ1 + eβ(µ1+µ2) + eβ(µ1+µ3) + eβ(µ1+µ4)

+ eβ(µ2+µ3) + eβ(µ2+µ4) + eβ(µ3+µ4) + e2βµ4 , (4.86b)

a
(2)
1 = eβ(µ1+µ2) + eβ(µ1+µ3) + eβ(µ1+µ4) + e2βµ2

+ eβ(µ2+µ3) + eβ(µ2+µ4) + e2βµ3 + eβ(µ3+µ4) . (4.86c)

In addition to the eigenvalue functions themselves, we identify the terms

1 + 2
∣∣
x

=
φ+(x)q1(x+ i)q(h)1 (x)

q2(x)
· ϑ1 , (4.87a)

3 + 4
∣∣
x

=
φ−(x)q3(x− i)q(h)3 (x)

q2(x)
· ϑ3 , (4.87b)

1 1 + 1 2 + 1 3 + 2 3
∣∣
x

=
φ−(x− i

2)φ+(x− i
2)φ+(x+ i

2)q1(x+ 3
2 i)X(1)

2,1 (x)

q3(x− i
2)

· χ(1)
2,1 ,

(4.87c)

2 3 + 2 4 + 3 4 + 4 4
∣∣
x

=
φ−(x− i

2)φ−(x+ i
2)φ+(x+ i

2)q3(x− 3
2 i)X(1)

2,2 (x)

q1(x+ i
2)

· χ(1)
2,2 ,

(4.87d)

where the separated constants are

ϑ1 = eβµ1 + eβµ2 , ϑ2 = eβµ3 + eβµ4 , (4.88a)

χ
(1)
2,1 = (eβµ1 + eβµ2)(eβµ1 + eβµ3) , χ

(1)
2,2 = (eβµ2 + eβµ4)(eβµ3 + eβµ4) . (4.88b)

Thus, the functions q(h)j (x) and X
(1)
2,j (x) are each polynomials of degree N/2 with one as

highest coefficient. Like before, the roots of the polynomials q(h)j (x) are the hole solutions
of the corresponding Bethe ansatz equations. Numerically, the roots of the polynomials
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appearing in the auxiliary functions for finite N are found to have imaginary parts close to
the values

qj(x): 0 , Λ̃(a)
m (x): ±(a+m)/2 , (4.89a)

q
(h)
1 (x): +1 , q

(h)
3 (x): −1 , (4.89b)

X
(1)
2,1 (x): +3/2 , X

(1)
2,2 (x): −3/2 . (4.89c)

Using this information, we can easily verify all auxiliary functions to have the ANZC property
in some strip −1/2 . =(x) . 1/2, which is necessary for the following calculation, and pose
the functions in the factorized form

b
(1)
1,1(x) =

φ−(x− i
2)φ+(x+ i

2)Λ̃(1)
2 (x)

φ−(x+ i
2)φ+(x− i

2)Λ̃(2)
1 (x)

· a
(1)
2

a
(2)
1

, (4.90a)

b
(1)
2,1(x) =

q1(x+ 2i)Λ̃(1)
1 (x)

φ−(x+ i)q3(x− i)X(1)
2,2 (x+ i

2)
· eβµ1a

(1)
1

χ
(1)
2,2

, (4.90b)

b
(1)
2,2(x) =

q3(x− 2i)Λ̃(1)
1 (x)

φ+(x− i)q1(x+ i)X(1)
2,1 (x− i

2)
· eβµ4a

(1)
1

χ
(1)
2,1

, (4.90c)

b
(2)
1,1(x) =

q
(h)
3 (x+ i)Λ̃(1)

1 (x)

φ+(x+ i)q(h)1 (x)X(1)
2,2 (x+ i

2)
· eβµ3ϑ3a

(1)
1

ϑ1χ
(1)
2,2

, (4.90d)

b
(2)
1,2(x) =

q
(h)
1 (x− i)Λ̃(1)

1 (x)

φ−(x− i)q(h)3 (x)X(1)
2,1 (x− i

2)
· eβµ2ϑ1a

(1)
1

ϑ3χ
(1)
2,1

, (4.90e)

b
(2)
2,1(x) =

Λ̃(1)
2 (x)

Λ̃(2)
1 (x)

· eβ(µ2+µ3)a
(1)
2

eβ(µ1+µ4)a
(2)
1

. (4.90f)

The uppercase auxiliary functions are analogously written in the form

B
(1)
1,1(x) =

Λ̃(1)
1 (x− i

2)Λ̃(1)
1 (x+ i

2)

φ−(x+ i
2)φ+(x− i

2)Λ̃(2)
1 (x)

· (a(1)
1 )2

a
(2)
1

, (4.91a)

B
(1)
2,1(x) =

q1(x+ i)Λ̃(1)
2 (x+ i

2)

φ−(x+ i)q3(x− i)X(1)
2,2 (x+ i

2)
· a

(1)
2

χ
(1)
2,2

, (4.91b)

B
(1)
2,2(x) =

q3(x− i)Λ̃(1)
2 (x− i

2)

φ+(x− i)q1(x+ i)X(1)
2,1 (x− i

2)
· a

(1)
2

χ
(1)
2,1

, (4.91c)

B
(2)
1,1(x) =

q
(h)
3 (x)Λ̃(2)

1 (x+ i
2)

φ+(x+ i)q(h)1 (x)X(1)
2,2 (x+ i

2)
· ϑ3a

(2)
1

ϑ1χ
(1)
2,2

, (4.91d)

B
(2)
1,2(x) =

q
(h)
1 (x)Λ̃(2)

1 (x− i
2)

φ−(x− i)q(h)3 (x)X(1)
2,1 (x− i

2)
· ϑ1a

(2)
1

ϑ3χ
(1)
2,1

, (4.91e)
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B
(2)
2,1(x) =

X
(1)
2,1 (x)X(1)

2,2 (x)

Λ̃(2)
1 (x)

·
χ

(1)
2,1χ

(1)
2,2

eβ(µ1+µ4)a
(2)
1

. (4.91f)

We observe exactly nine unknown functions on the right hand sides of the equations. Some
of the singularities of the auxiliary functions caused by these unknowns are, however, located
only above or below the real axis. The application of the Fourier transform to the logarithmic
derivative of the equations, see (4.4), thus reduces the number of unknown functions in each
of the subcases k < 0 and k > 0 to six. As a consequence, all unknown functions can be
expressed solely in terms of the uppercase auxiliary functions B(a)

m,j(x).

Substituting the results back into the transforms of the functions b(a)m,j(x) and afterwards
applying the inverse transform like in the previous derivations, we are again led to a coupled
set of NLIEs. It is of the well-known structure

ln b(a)m,j(x) = −β
(
JV (a)

m (x) + c
(a)
m,j

)
−

2∑
b=1

2∑
l=1

db,l∑
k=1

[
K(a,b)
m,l;j,k ∗ lnB(b)

l,k

]
(x) . (4.92)

Here, db,l gives the number of auxiliary functions in the set specified by the fusion levels b
and l. We find the driving terms to be

V
(1)
1 (x) =

π

cosh(πx)
, V

(1)
2 (x) = 0 , (4.93a)

V
(2)
1 (x) = i

d
dx

(
ln

Γ(1 + x
2 i)Γ(1

2 −
x
2 i)

Γ(1− x
2 i)Γ(1

2 + x
2 i)

)
, V

(2)
2 (x) = i

d
dx

(
ln

Γ(5
4 + x

2 i)Γ(3
4 −

x
2 i)

Γ(5
4 −

x
2 i)Γ(3

2 + x
2 i)

)
,

(4.93b)

and the integration constants are

c
(1)
1,1 = 0 , c

(1)
2,1 = (µ4 − µ1)/2 , (4.94a)

c
(1)
2,2 = (µ1 − µ4)/2 , c

(2)
1,1 = (µ1 + µ4 − 2µ3)/2 , (4.94b)

c
(2)
1,2 = (µ1 + µ4 − 2µ2)/2 , c

(2)
2,1 = µ1 + µ4 − µ2 − µ3 . (4.94c)

The complete kernel matrix has the structure

K(x) =


K(1,1)

1,1 (x) K(1,1)
1,2 (x) K(1,2)

1,1 (x) K(1,2)
1,2 (x)

K(1,1)
2,1 (x) K(1,1)

2,2 (x) K(1,2)
2,1 (x) K(1,2)

2,2 (x)
K(2,1)

1,1 (x) K(2,1)
1,2 (x) K(2,2)

1,1 (x) K(2,2)
1,2 (x)

K(2,1)
2,1 (x) K(2,1)

2,2 (x) K(2,2)
2,1 (x) K(2,2)

2,2 (x)



=



0 −W (x) −W (x) W (x) W (x) 0
−W (x) K0(x) K1(x) 0 0 W (x)
−W (x) K2(x) K0(x) 0 0 W (x)
−W (x) 0 0 K0(x) K1(x) W (x)
−W (x) 0 0 K2(x) K0(x) W (x)

0 −W (x) −W (x) W (x) W (x) 0

 . (4.95)
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where the kernel W (x) is given by

W (x) =
π

cosh(πx)
, (4.96)

and the kernels Kj(x) are exactly the kernels we already know from the sl(2)-symmetric
case, confer equation (4.10),

K0(x) = i
d

dx

(
ln

Γ(1 + x
2 i)Γ(1

2 −
x
2 i)

Γ(1− x
2 i)Γ(1

2 + x
2 i)

)
, (4.97a)

K1(x) = K0(x) +
i

x+ i
− i
x− 0i

, K2(x) = K0(x) +
i

x+ 0i
− i
x− i

. (4.97b)

We like to stress that unlike in the previous cases, the kernel matrix K(x) is no longer
Hermitian here. As a consequence, an analytical treatment of the low-temperature behaviour
similar to [41] will not be possible in this case.

Once the auxiliary functions are fixed by the NLIEs, the largest eigenvalue of the QTM
follows from

ln Λ(1)
1 (0) = −β

{
J(1− 2 ln 2)− µ1 + µ4

2

}
+
[
V

(1)
1 ∗ lnB(1)

1,1

]
(0)

−
2∑

m=1

d2,m∑
j=1

[
V (2)
m ∗ lnB(2)

m,j

]
(0) . (4.98)

4.3 Limiting cases of the NLIEs

In order to check the validity of the derived NLIEs, it is possible to consider several limiting
cases. In the following sections, we will briefly discuss some of these results.

4.3.1 Reducing the degrees of freedom

Considering the Hamiltonian of the Uimin-Sutherland model (2.4) it is immediately obvious,
that shifting one of the chemical potentials µα to minus infinity effectively freezes out the
corresponding basis state. On the level of the coupled set of NLIEs, however, the changes are
less trivial. Therefore, it is a good test to check that the NLIEs for the simpler models are
contained in the more complicated ones. This method has first been used in [27] to regain
the NLIEs for the sl(2)- from those for the sl(3)-symmetric case.

As an example, we will consider the sl(4)-symmetric case here. We choose to freeze out
the state α = 4 and accordingly treat the limit µ4 → −∞. From the asymptotic behaviour
of the auxiliary functions (4.42)–(4.44) we observe

b
(1)
1,1(x) = O(1) , b

(1)
1,2(x) = O(1) , b

(1)
1,3(x) = O(1) , (4.99a)

b
(1)
1,4(x) = O(eβµ4) , b

(2)
1,1(x) = O(1) , b

(2)
1,2(x) = O(1) , (4.99b)



64 Chapter 4. Finite sets of nonlinear integral equations

b
(2)
1,3(x) = O(eβµ4) , b

(2)
1,4(x) = O(1) , b

(2)
1,5(x) = O(eβµ4) , (4.99c)

b
(2)
1,6(x) = O(eβµ4) , b

(3)
1,1(x) = O(e−βµ4) , b

(3)
1,2(x) = O(eβµ4) , (4.99d)

b
(3)
1,3(x) = O(eβµ4) , b

(3)
1,4(x) = O(eβµ4) . (4.99e)

Obviously, only seven of the auxiliary functions survive, and we can regard

b
(1)
1,4(x) ≡ b(2)

1,3(x) ≡ b(2)
1,5(x) ≡ b(2)

1,6(x) ≡ b(3)
1,2(x) ≡ b(3)

1,3(x) ≡ b(3)
1,4(x) ≡ 0 . (4.100)

Since the function b
(3)
1,1(x) diverges, we can also regard b

(3)
1,1(x)/B(3)

1,1(x) → 1. Therefore, the
corresponding NLIE from the set (4.55) linearizes and can easily be solved analytically in
Fourier space. This yields the result

lnB(3)
1,1(x) = −β

(
JD(x)− µ1 + µ2 + µ3

3
+ µ4

)
−
[
V

(2)
[3] ∗ ln

(
B

(1)
1,1B

(1)
1,2B

(1)
1,3

)]
(x)

−
[
V

(1)
[3] ∗ ln

(
B

(2)
1,1B

(2)
1,2B

(2)
1,4

)]
(x) , (4.101)

where

D(x) =
∫ ∞
−∞

e−|k|/2

e−k + 1 + ek
eikx dk . (4.102)

Substituting this result into the remaining NLIEs and relabelling b(2)
1,4(x) to b(2)

1,3(x), we arrive
exactly at the coupled set of NLIEs of the sl(3)-symmetric case, see (4.23). As expected, in
this sense the sl(3)-symmetric case is completely contained in the sl(4) equations.

From the original set of auxiliary functions, we can even recover the explicit form of
all sl(3) auxiliary functions. Recall that the function λ4(x) vanishes in the limit µ4 → −∞.
Therefore, we drop all Young tableaux containing a box with the number 4 from the auxiliary
functions. The six remaining nonvanishing and nondivergent functions have exactly the form
known from the definitions (4.17). Still, the definition of the λ functions is different for both
models. Requiring, however, that the auxiliary functions are consistent with the previously
gained set of coupled NLIEs, we conclude that q3(v)→ φ+(x) in the limit µ4 →∞.

Note that our choice of freezing out the state α = 4 was completely arbitrary. Choosing
one of the other states yields, after some relabelling of indices, the same NLIE and auxiliary
functions. For µ1 → −∞ this implies q1(x)→ φ−(x), while for µα →∞ with α = 2 or 3 we
find qα−1(x)→ qα(x).

The method is applicable also to the graded Uimin-Sutherland models. From the sl(3|1)-
symmetric case, for example, it is possible to regain the NLIEs for either the sl(3)- or
the sl(2|1)-symmetric case, depending on the basis state that is frozen out. Note that the
sl(2|2)-symmetric case is a bit special, since here also auxiliary functions corresponding to
a higher-level representation, where the first lower index is two, are used. Therefore, the
reduction to the sl(2|1)-symmetric case, for example, gives the form of the NLIEs which will
be introduced in Section 4.4 for the truncation level m = 2.

In order to generally determine which of the auxiliary functions survive if we take the
limit µα → −∞ for some state α, it is in principle always necessary to consider the explicit
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asymptotics of the auxiliary functions. Based on the known results, however, we may con-
jecture the general structure of the selection rules. Let us stick to the sl(n)-symmetric case
for a moment and consider the first set of auxiliary functions first. In all cases, where the
auxiliary functions are known, exactly one of the auxiliary functions vanishes from this set
for each choice of α. In fact, the first function vanishes for α = 1, the second one for α = 2
and so on. Now, let us assign a Young tableau with one box to each of the auxiliary func-
tions, containing the corresponding number. If we move on to the second set of functions,
we find that now every auxiliary function may vanish for two choices of α. The first one
for α = 1 and 2, the second one for α = 1 and 3, etc. The pattern is exactly that of the
admissible semi-standard sl(n) Young tableaux with two boxes on top of each other. For
n ≥ 4, we would accordingly assign a three-box Young tableau to each auxiliary function
of the third set. Indeed, the corresponding auxiliary functions vanish for three choices of
α, and the patterns of the numbers coincide with the possible Young tableaux. It therefore
seems reasonable to assign exactly one Young tableau to each auxiliary function. In order
to determine if some auxiliary function survives when freezing out the state α, we just have
to check if α is contained in the corresponding Young tableau. In the sl(4)-symmetric case,
for example, we get the identifications,

b
(1)
1,1(x)↔ 1 , b

(1)
1,2(x)↔ 2 , b

(1)
1,3(x)↔ 3 , b

(1)
1,4(x)↔ 4 , (4.103a)

b
(2)
1,1(x)↔ 1

2
, b

(2)
1,2(x)↔ 1

3
, b

(2)
1,3(x)↔ 1

4
, (4.103b)

b
(2)
1,4(x)↔ 2

3
, b

(2)
1,5(x)↔ 2

4
, b

(2)
1,6(x)↔ 3

4
, (4.103c)

b
(3)
1,1(x)↔

1
2
3
, b

(3)
1,2(x)↔

1
2
4
, b

(3)
1,3(x)↔

1
3
4
, b

(3)
1,4(x)↔

2
3
4
. (4.103d)

In case of the sl(n|1)-symmetric cases, where we have a reduced number of auxiliary
functions, we notice that the rule still holds, if we leave out the number of the graded state.
The auxiliary functions of the sl(2|1)-symmetric case with grading (+ − +), for example,
are thus connected to the tableaux

b
(1)
1,1(x)↔ 1 , b

(1)
1,2(x)↔ 3 , b

(1)
2,1(x)↔ 1

3
. (4.104)

Unfortunately, although this conjecture is expected to hold for the general case and covers
all the known results, the underlying representation theoretical argument is yet unknown.

In summary, we have seen that from a known set of NLIEs it is always possible to
reconstruct the NLIEs for all models, which have a smaller number of basis states. Then the
natural question arises whether it is also possible to go the opposite way and to introduce
new basis states. For example, it would be nice to be able to directly derive the NLIEs of the
sl(5)- from those of the sl(4)-symmetric case. Although the corresponding considerations do
not lead to a complete set of NLIEs, it will be shown in Chapter 5 that they fix most of the
structure of the NLIEs for higher-rank cases.
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4.3.2 Zero-temperature limit and critical points

In order to treat the zero-temperature limit of the NLIEs, we define rescaled auxiliary
functions by

e
(a)
m,j(x) =

1
β

ln b(a)m,j(x) , E
(a)
m,j(x) =

1
β

lnB(a)
m,j(x) . (4.105)

In the limit T → 0 (β →∞) we get

E
(a)
m,j(x)→ e+

(a)
m,j(x) =

{
e
(a)
m,j(x) if <(e(a)m,j(x)) > 0

0 if <(e(a)m,j(x)) ≤ 0
. (4.106)

Therefore, auxiliary functions with negative real parts for all x ∈ R do no longer contribute,
since e+(a)

m,j(x) ≡ 0 for these functions.
As an example, we will again deal with the sl(4)-symmetric case of the Uimin-Sutherland

model. Note that other cases can, in principle, be treated along the same lines. We assume
J > 0 and, without loss of generality, choose the chemical potentials to be ordered, µ1 ≥
µ2 ≥ µ3 ≥ µ4. Because all basis states are equivalent, changing this order just amounts to
some permutation of indices in the following calculations. We observe that only one auxiliary
function remains from each representation. In our case, the functions e(a)1,1(x) for a = 1, 2, 3
survive. The corresponding NLIEs linearize and take the form

e
(a)
1,1(x) = −JV (a)

[4] (x)− c(a)1 −
3∑
b=1

[
K(a,b)

[4] ∗ e
+(b)

1,1

]
(x) . (4.107)

It follows that the remaining auxiliary functions are real and even. The ground-state energy
is given by

f0 = J

(
1− π

4
− 3

2
ln 2
)
− 1

4

∑
j=1

µj −
3∑

a=1

[
V

(a)
[4] ∗ e

+(a)
1,1

]
(0) . (4.108)

We like to stress that these are exactly the equations, which also follow from the zero-
temperature limit of the TBA equations, confer (3.43) for n = 4. They may alternatively be
obtained directly from the Bethe ansatz equations for the Hamiltonian (2.4), see [34].

If all chemical potentials are equal, these equations have a particularly simple solution.
In this case, we get e(a)1,1(x) = −JV (a)

[4] (x) and e+
(a)
1,1(x) ≡ 0 so that the ground state energy

is just f0 = J(1 − π
4 −

3
2 ln 2) − µ1. In general, depending on certain differences of the

chemical potentials, the ground state can be in one of four possible phases, admitting certain
simplifications to the NLIEs (4.107). We start with the phase, where all degrees of freedom
are frozen out, i.e. only the state α = 1 survives. In this case, we have e(a)1,1(x) = e+

(a)
1,1(x)

for all a. As a consequence, the equations (4.107) can be solved analytically. We find the
restriction µ1 − µ2 ≥ 4J and obtain

e
(1)
1,1(x) = µ1 − µ2 − J

4
4x2 + 1

, e
(2)
1,1(x) = µ2 − µ3 , e

(3)
1,1(x) = µ3 − µ4 , (4.109)
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while the ground-state energy turns out to be f0 = J −µ1. As expected, the ground state is
fully polarized.

Below the first critical point, that is for µ1−µ2 < 4J , the function e(1)
1,1(x) possesses two

real roots, and therefore e(a)1,1(x) = e+
(a)
1,1(x) remains valid only for a = 2, 3. We can still solve

the equations (4.107) for the latter two functions to obtain

e
(1)
1,1(x) = −JV (1)

[2] (x) +
µ1 − µ2

2
−
[
K(1,1)

[2] ∗ e
+(1)

1,1

]
(x) , (4.110a)

e
(2)
1,1(x) = JK(1,1)

[2] (x) +
1
2

2∑
j=1

(µj − µ3)−
[
V

(1)
[2] ∗ e

+(1)
1,1

]
(x) , (4.110b)

e
(3)
1,1(x) = µ3 − µ4 . (4.110c)

For the ground-state energy, we arrive at

f0 = J(1− 2 ln 2)− µ1 + µ2

2
−
[
V

(1)
[2] ∗ e

+(1)
1,1

]
(0) . (4.111)

This is exactly the T = 0 behaviour of the sl(2)-symmetric case. Two states, α = 1 and 2,
are present in the ground state. Note that these equations are only valid above the second
critical point, i.e. as long as e(2)

1,1(x) ≥ 0 for all x ∈ R. From equation (4.110b), we find the
restriction

2∑
j=1

(µj − µ3) ≥ 4J ln 2 + 2
[
V

(1)
[2] ∗ e

+(1)
1,1

]
(0) , (4.112)

where the positive convolution term unfortunately still depends on the function e+
(1)
1,1(x),

which is not explicitly known. The convolution term vanishes for µ1 = µ2.
Below the second critical point, the state α = 3 also contributes to the ground-state.

Both functions e(1)
1,1 and e(2)

1,1 possess two real roots, and only e(3)
1,1(x) = e+

(3)
1,1(x) remains valid.

Here, we recover the T = 0 behaviour of the sl(3)-symmetric case of the Uimin-Sutherland
model,

e
(a)
1 (x) = −JV (a)

[3] (x)− c(a)1 −
2∑
b=1

[
K

(a,b)
[3] ∗ e

+(b)
1

]
(x) (a = 1, 2) , (4.113a)

e
(3)
1 (x) = −JW (x) +

1
3

3∑
j=1

(µj − µ4)−
2∑
b=1

[
V

(3−b)
[3] ∗ e+(b)

1

]
(x) , (4.113b)

where c
(a)
1 are the constants of the sl(3)-symmetric case defined in equation (4.25). The

ground-state energy can be calculated by use of

f0 = J

(
1− π

3
√

3
− ln 3

)
− 1

3

3∑
j=1

µj −
2∑

a=1

[
V

(a)
[3] ∗ e

+(a)
1,1

]
(0) . (4.114)
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These equations hold as long as we are above the third and last critical point. From equa-
tion (4.113b) we get the restriction

3∑
j=1

(µj − µ4) ≥ J(π
√

3− 3 ln 3) + 3
2∑

a=1

[
V

(3−a)
[3] ∗ e+(a)

1,1

]
(0) , (4.115)

where we again have no explicit expression for the positive convolution terms, which vanish
if µ1 = µ2 = µ3.

Only below the third critical point, all four basis states contribute to the ground state.
Here, equation (4.107) can not be further simplified.

Note that the other cases of the Uimin-Sutherland model may be treated in basically
the same way. However, like in the previous section, it is important to know, which of
the auxiliary functions still contribute in the zero-temperature limit depending on some
given ordering of the general chemical potentials. In order to find this out, the explicit
asymptotics of the functions have to be examined. However, based on the Young tableaux
that we have assigned to each auxiliary function in Section 4.3.1, we can again conjecture the
selection rules. Let us deal with the sl(n)-symmetric case first. Suppose, we have the order
µα1 ≥ µα2 ≥ . . . ≥ µαn . Then, in the limit T → 0, we expect only those auxiliary functions
to contribute to the largest eigenvalue, whose corresponding Young tableaux from top to
bottom contain exactly the first numbers of the sequence {α1, α2, . . . , αn}. Accordingly,
only one auxiliary function from each set will survive. This makes sense, since the remaining
auxiliary functions and linearized integral equations should be equivalent to those obtained
by the TBA approach. The number of remaining functions therefore has to be equal to the
rank of the algebra sl(n). Similar arguments are expected to hold for the sl(n|1)-symmetric
case. Here, the single auxiliary function from the last set will always contribute, while from
the remaining sets only one function is selected, according to the arguments above, but
where the general chemical potential of the state with grading p(αj) = 1 is left out.

4.4 Connection to the TBA approach

For each of the cases treated in the previous sections, we have pointed out the connection
of the auxiliary functions we used to those of the TBA approach. Let us further explore
the relationship between both approaches. It has first been pointed out by Suzuki [76] that,
after some slight modification, the auxiliary functions of the sl(2)-symmetric case can be
used to exactly truncate the TBA equations at some arbitrary fusion level, leaving only a
finite number of NLIEs. Note that in this sense, the auxiliary functions (4.1) make for the
natural truncation at level m = 1. In the following sections, we will show how to extend this
approach to higher-rank cases of the Uimin-Sutherland model.

4.4.1 Exact truncation of the TBA equations for the sl(2) case

Recall that the TBA approach for the sl(2)-symmetric case of the Uimin-Sutherland model
deals with infinitely many auxiliary functions y(1)

k (x), where k = 1, . . . ,∞. Let us truncate
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the set of functions at some arbitrary level k = m. This can be done by considering only
m − 1 many of the original auxiliary functions and replacing the mth function by the two
new functions

b
(1)
m,1(x) =

λ1(x+ m
2 i)Λ(1)

m−1(x)∏m−1
k=0 λ2(x− 2k−m

2 i)
, b

(1)
m,2(x) =

Λ(1)
m−1(x)λ2(x− m

2 i)∏m
k=1 λ1(x− 2k−m

2 i)
. (4.116)

Then the new uppercase functions B(1)
m,j(x) = b

(1)
m,j(x) + 1 can be written as

B
(1)
m,1(x) =

Λ(1)
m (x+ i

2)∏m−1
k=0 λ2(x− 2k−m

2 i)
, B

(1)
m,2(x) =

Λ(1)
m (x− i

2)∏m
k=1 λ1(x− 2k−m

2 i)
. (4.117)

This definition leads to the following factorized form of the auxiliary functions:

b
(1)
m,1(x) =

q1(x+ m+2
2 i)Λ̃(1)

m−1(x)
φ−(x+ m

2 i)φ+(x+ m+2
2 i)q1(x− m

2 i)
·

eβµ1a
(1)
m−1

emβµ2
, (4.118a)

b
(1)
m,2(x) =

q1(x− m+2
2 i)Λ̃(1)

m−1(x)
φ+(x− m

2 i)φ−(x− m+2
2 i)q1(x+ m

2 i)
·

eβµ2a
(1)
m−1

emβµ1
, (4.118b)

B
(1)
m,1(x) =

q1(x+ m
2 i)Λ̃(1)

m (x+ i
2)

φ−(x+ m
2 i)φ+(x+ m+2

2 i)q1(x− m
2 i)
· a

(1)
m

emβµ2
, (4.118c)

B
(1)
m,2(x) =

q1(x− m
2 i)Λ̃(1)

m (x− i
2)

φ+(x− m
2 i)φ−(x− m+2

2 i)q1(x+ m
2 i)
· a

(1)
m

emβµ1
. (4.118d)

From the latter form of the functions it is immediately clear, that the function Y
(1)
m (x) can

be written as a product of the new uppercase functions,

Y (1)
m (x) = B

(1)
m,1(x)B(1)

m,2(x) , (4.119)

which is the generalization of relation (4.16). However, we also find an additional relation
similar to (3.16),

b
(1)
m,1(x− i/2)b(1)

m,2(x+ i/2) = Y
(1)
m−1(x) . (4.120)

The advantage compared to the usual set of TBA functions is the fact that the set of auxiliary
functions y(1)

k (x), b(1)
m,1(x), b(1)

m,2(x) no longer contains the eigenvalue function Λ̃(1)
m+1(x) by

avoiding the explicit use of y(1)
m (x). Instead, we now have m + 1 many auxiliary functions

exactly meeting the number of unknown functions which are given by the eigenvalues Λ̃(1)
k (x)

for k = 1, . . . ,m and the function q1(x). Thus, the former infinite set of functions has been
exactly closed.

Note that the structure of the factorized form of the auxiliary functions given by equa-
tion (4.118) is very similar to that of the original auxiliary functions (4.2). In each fusion
step, the singularities of the auxiliary functions are shifted away from the real axis by an
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amount of i/2. Thereby, the eigenvalue functions φ−(x − i/2)φ+(x + i/2) = Λ̃(1)
0 (x) and

Λ̃(1)
1 (x) are replaced by Λ̃(1)

m−1(x) and Λ̃(1)
m (x), respectively, while the other functions φ−(x),

φ+(x) and q1(x) remain structurally unchanged, so that there is just a shift in the argument.
Now, the final coupled set of NLIEs can be calculated from the auxiliary functions by

the usual method. For the first, m− 1 many auxiliary functions y(1)
j (x), we get

ln y(1)
k (x) = −Jβδk,1V

(1)
[2] (x) +

[
V

(1)
[2] ∗

(
(1− δk,1) lnY (1)

k−1 + lnY (1)
k+1

)]
(x) , (4.121)

where we use equation (4.119) in order to determine the function Y
(1)
m (x) that appears for

k = m− 1. The remaining NLIEs for the functions b(1)
m,j(x) are

ln b(1)
m,j(x) = −βc(1)

j +
[
V

(1)
[2] ∗ lnY (1)

m−1

]
(x)−

2∑
k=1

[
K(1,1)
j,k ∗ lnB(1)

m,k

]
(x) , (4.122)

where the kernel matrix is given by

K(1,1)(x) =
(
K0(x) K1(x)
K2(x) K0(x)

)
, (4.123)

and the kernels Kj(x) and constants c(1)
j are defined like in Section 4.1.1, see equations (4.10)

and (4.12). The largest eigenvalue of the QTM follows from

ln Λ(1)
1 (0) = −β

{
J(1− 2 ln 2)− µ1 + µ2

2

}
+
[
V

(1)
[2] ∗ lnY (1)

1

]
(0) . (4.124)

4.4.2 Exact truncation of the TBA equations for the sl(3) case

In the TBA approach for the sl(3)-symmetric case of Uimin-Sutherland model, there are
infinitely many auxiliary functions of two types, y(1)

k (x) and y
(2)
k (x), with k = 1, . . . ,∞. In

analogy to the sl(2) case, it should be possible to exactly truncate both sets of functions
at some arbitrary step using six auxiliary functions similar to (4.17) to replace y(1)

m (x) and
y

(2)
m (x). Indeed, this is possible. We find

b
(1)
m,1(x) =

λ
(1)
1 (x+ m

2 i)Λ(1)
m−1(x)

Γ(1)
m,2(x+ i

2)
, (4.125a)

b
(1)
m,2(x) =

λ
(2)
1 (x+ m−1

2 i)Λ(1)
m−1(x)Λ(3)

m−1(x)λ(2)
3 (x− m−1

2 i)∏m
k=1 λ

(2)
2 (x− 2k−m−1

2 i)Λ(2)
m (x)

, (4.125b)

b
(1)
m,3(x) =

Λ(1)
m−1(x)λ(1)

3 (x− m
2 i)

Γ(1)
m,1(x− i

2)
, (4.125c)

b
(2)
m,1(x) =

λ
(2)
1 (x+ m

2 i)Λ(2)
m−1(x)

Γ(2)
m,2(x+ i

2)
, (4.125d)
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b
(2)
m,2(x) =

λ
(1)
1 (x+ m−1

2 i)Λ(2)
m−1(x)λ(1)

3 (x− m−1
2 i)∏m

k=1 λ
(1)
2 (x− 2k−m−1

2 i)Λ(1)
m (x)

, (4.125e)

b
(2)
m,3(x) =

Λ(2)
m−1(x)λ(2)

3 (x− m
2 i)

Γ(2)
m,1(x− i

2)
, (4.125f)

where we have defined

λ
(1)
j (x) = λj(x) , λ

(2)
j (x) =

{
λ1(x− i/2)λj(x+ i/2) for j = 1, 2
λ2(x− i/2)λ3(x+ i/2) for j = 3

(4.126)

and

Γ(a)
m,1(x) =

m∑
k=0


k∏
j=1

λ
(a)
1

(
x− 2j −m− 1

2
i
) m∏
j=k+1

λ
(a)
2

(
x− 2j −m− 1

2
i
) , (4.127a)

Γ(a)
m,2(x) =

m∑
k=0


k∏
j=1

λ
(a)
2

(
x− 2j −m− 1

2
i
) m∏
j=k+1

λ
(a)
3

(
x− 2j −m− 1

2
i
) . (4.127b)

For the uppercase auxiliary functions B(a)
m,j(x) = b

(a)
m,j(x) + 1, we find the expressions

B
(1)
m,1(x) =

Λ(1)
m (x+ i

2)

Γ(1)
m,2(x+ i

2)
, (4.128a)

B
(1)
m,2(x) =

Γ(2)
m,1(x)Γ(2)

m,2(x)∏m
k=1 λ

(2)
2 (x− 2k−m−1

2 i)Λ(2)
m (x)

, (4.128b)

B
(1)
m,3(x) =

Λ(1)
m (x− i

2)

Γ(1)
m,1(x− i

2)
, (4.128c)

B
(2)
m,1(x) =

Λ(2)
m (x+ i

2)

Γ(2)
m,2(x+ i

2)
, (4.128d)

B
(2)
m,2(x) =

Γ(1)
m,1(x)Γ(1)

m,2(x)∏m
k=1 λ

(1)
2 (x− 2k−m−1

2 i)Λ(1)
m (x)

, (4.128e)

B
(2)
m,3(x) =

Λ(2)
m (x− i

2)

Γ(2)
m,1(x− i

2)
. (4.128f)

The results for B(a)
m,1(x) and B

(a)
m,3(x) are a direct consequence of the relation

Λ(a)
m (x) = Γ(a)

m,1(x) + Λ(a)
m−1

(
x+

i
2

)
λ

(a)
3

(
x− m− 1

2
i
)

= λ
(a)
1

(
x+

m− 1
2

i
)

Λ(a)
m−1

(
x− i

2

)
+ Γ(a)

m,2(x) , (4.129)
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which follows from the structure of the fused eigenvalue functions (3.3), while the results for
the remaining functions B(a)

m,2(x) can be proved by induction.

For the functions Γ(a)
m,j(x), we find the factorized form

Γ(1)
m,1(x) = n(1)

m (x) ·
φ+(x− m−1

2 i)Xm,1(x)
q2(x− m−1

2 i)
· χm,1 , (4.130a)

Γ(1)
m,2(x) = n(1)

m (x) ·
φ−(x+ m−1

2 i)Xm,2(x)
q1(x+ m−1

2 i)
· χm,2 , (4.130b)

Γ(2)
m,1(x) = n(2)

m (x) ·
φ−(x− m+2

2 i)Xm,2(x+ i
2)

q1(x− m
2 i)

· emβµ1χm,2 , (4.130c)

Γ(2)
m,2(x) = n(2)

m (x) ·
φ+(x+ m+2

2 i)Xm,1(x− i
2)

q2(x+ m
2 i)

· emβµ3χm,1 , (4.130d)

where the functions Xm,j(x) are just polynomials of degree N . This fact may also be proved
by induction, where one exploits that the special cases X1,j(x) are identical to the polyno-
mials of hole solutions q(h)j (x). Moreover, we have checked numerically that the roots of the
functions Xm,j(x) have imaginary parts close to ±(m + 1)/2. The constants are explicitly
given by

χm,1 =
m∑
k=0

ekβµ1e(m−k)βµ2 , χm,2 =
m∑
k=0

ekβµ2e(m−k)βµ3 . (4.131)

Using this information we are able factorize the auxiliary functions. We get the result

b
(1)
m,1(x) =

q1(x+ m+2
2 i)Λ̃(1)

m−1(x)

φ−(x+ m
2 i)Xm,2(x+ i

2)
·

eβµ1a
(1)
m−1

χm,2
, (4.132a)

b
(1)
m,2(x) =

q1(x− m+2
2 i)q2(x+ m+2

2 i)Λ̃(1)
m−1(x)

q1(x+ m
2 i)q2(x− m

2 i)Λ̃(2)
m (x)

·
e(m+1)βµ2a

(1)
m−1

a
(2)
m

, (4.132b)

b
(1)
m,3(x) =

q2(x− m+2
2 i)Λ̃(1)

m−1(x)

φ+(x− m
2 i)Xm,1(x− i

2)
·

eβµ3a
(1)
m−1

χm,1
, (4.132c)

b
(2)
m,1(x) =

q2(x+ m+3
2 i)Λ̃(2)

m−1(x)
φ+(x+ m+3

2 i)Xm,1(x)
·

eβ(µ1+µ2)a
(2)
m−1

emβµ3χm,1
, (4.132d)

b
(2)
m,2(x) =

q1(x+ m+1
2 i)q2(x− m+1

2 i)Λ̃(2)
m−1(x)

q1(x− m+1
2 i)q2(x+ m+1

2 i)Λ̃(1)
m (x)

·
eβ(µ1+µ3)a

(2)
m−1

emβµ2a
(1)
m

, (4.132e)

b
(2)
m,3(x) =

q1(x− m+3
2 i)Λ̃(2)

m−1(x)
φ−(x− m+3

2 i)Xm,2(x)
·

eβ(µ2+µ3)a
(2)
m−1

emβµ1χm,2
. (4.132f)

The uppercase auxiliary functions may be written as

B
(1)
m,1(x) =

q1(x+ m
2 i)Λ̃(1)

m (x+ i
2)

φ−(x+ m
2 i)Xm,2(x+ i

2)
· a

(1)
m

χm,2
, (4.133a)
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B
(1)
m,2(x) =

Xm,1(x− i
2)Xm,2(x+ i

2)

q1(x+ m
2 i)q2(x− m

2 i)Λ̃(2)
m (x)

· χm,1χm,2
a

(2)
m

, (4.133b)

B
(1)
m,3(x) =

q2(x− m
2 i)Λ̃(1)

m (x− i
2)

φ+(x− m
2 i)Xm,1(x− i

2)
· a

(1)
m

χm,1
, (4.133c)

B
(2)
m,1(x) =

q2(x+ m+1
2 i)Λ̃(2)

m (x+ i
2)

φ+(x+ m+3
2 i)Xm,1(x)

· a
(2)
m

emβµ3χm,1
, (4.133d)

B
(2)
m,2(x) =

Xm,1(x)Xm,2(x)

q1(x− m+1
2 i)q2(x+ m+1

2 i)Λ̃(1)
m (x)

· χm,1χm,2
emβµ2a

(1)
m

, (4.133e)

B
(2)
m,3(x) =

q1(x− m+1
2 i)Λ̃(2)

m (x− i
2)

φ−(x− m+3
2 i)Xm,2(x)

· a
(2)
m

emβµ1χm,2
. (4.133f)

From the latter equations, we immediately find the connection to the auxiliary functions
Y

(a)
m (x) in analogy to equation (4.18),

Y (a)
m (x) = B

(a)
m,1(x)B(a)

m,2(x)B(a)
m,3(x) , (4.134)

for a = 1 and 2. Like in the sl(2)-symmetric case, we also find further relations which are
similar to equation (3.16),

b
(1)
m,1(x− i/2)b(1)

m,3(x+ i/2) =
Y

(1)
m−1(x)

B
(2)
m,2(x)

, (4.135a)

b
(2)
m,1(x− i/2)b(2)

m,3(x+ i/2) =
Y

(2)
m−1(x)

B
(1)
m,2(x)

, (4.135b)

where B(a)
m,2(x) = B

(a)
m,2(x)/b(a)m,2(x).

Like the original TBA auxiliary functions, all additional auxiliary functions have the
desired ANZC property, and thus the coupled set of NLIEs can be derived via the standard
approach. In comparison to the original auxiliary functions for m = 1, confer equations (4.73)
and (4.74), the eigenvalue functions φ−(x − a+1

2 i)φ+(x + a+1
2 i) = Λ̃(a)

0 (x) and Λ̃(a)
1 (x) are

replaced by Λ̃(a)
m−1(x) and Λ̃(a)

m (x), respectively, the hole-solution polynomials q(h)j (x) are
replaced by Xm,j(x), and all other roots and poles of the auxiliary functions stemming from
φ−(x), φ+(x) and qj(x) are just shifted away from the real axis by i/2 in each fusion step.
Like in the sl(2)-symmetric case, these are only small, rather systematic modifications. In
the Young tableaux formulation, however, this would not have been obvious.

Applying the standard derivation utilizing the logarithmic Fourier transform of the
derivatives, we find the final coupled set of NLIEs to be

ln y(a)
k (x) = −Jβδk,1V

(a)
[3] (x) +

2∑
b=1

{[
A

(a,b)
[n] ∗

(
(1− δk,1) lnY (b)

k−1 + lnY (b)
k+1

)]
(x)
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−
[(
A

(a,b−1)
[n] +A

(a,b+1)
[n]

)
∗ lnY (b)

k

]
(x)
}
, (4.136a)

ln b(a)m,j(x) = −βc(a)j +
2∑
b=1

{[
A

(a,b)
[n] ∗ lnY (b)

m−1

]
(x)−

3∑
k=1

[
K(a,b)
j,k ∗ lnB(b)

m,k

]
(x)

}
, (4.136b)

where the function A
(a,b)
[n] (x) is the one introduced in Section 3.4.2, confer equation (3.26),

and the kernel matrices K(a,b)(x) and the constants c(a)j are those introduced in Section 4.1.2,

confer equations (4.26) and (4.25). The function Y
(a)
m (x), which appears in the first set of

equations for k = m−1, is obtained via equation (4.134). Note that the first set of equations
is equivalent to first m − 1 many TBA equations (3.25) for n = 3, while the second set is
very similar to the previously derived NLIEs (4.23). Finally, the equation for the largest
eigenvalue of the QTM is

ln Λ(1)
1 (0) = −β

J
(

1− π

3
√

3
− ln 3

)
− 1

3

3∑
j=1

µj

+
2∑

a=1

[
V (a) ∗ lnY (a)

1

]
(0) . (4.137)

4.4.3 Exact truncation of the TBA equations for the sl(2|1) case

Let us now turn to the sl(2|1)-symmetric case of the Uimin-Sutherland model. One family
of TBA auxiliary functions, y(1)

j (x), has infinitely many members, j = 1, . . . ,∞, while the

function y
(2)
1 (x) is unique. Therefore, the structure is very similar to the sl(2)-symmetric

case. We choose the grading (+ − +) and truncate the equations at j = m by replacing
y

(1)
m (x) by the two new auxiliary functions

b
(1)
m,1(x) =

λ1(x+ m
2 i)Λ(1)

m−1(x)

Γm,2(x+ i
2)

, b
(1)
m,2(x) =

Λ(1)
m−1(x)λ3(x− m

2 i)

Γm,1(x− i
2)

, (4.138)

where we have defined

Γm,1(x) =
m−1∏
k=1

λ1

(
x− 2k −m− 1

2
i
)[

λ1

(
x− m− 1

2
i
)

+ λ2

(
x− m− 1

2

)]
, (4.139a)

Γm,2(x) =
[
λ2

(
x+

m− 1
2

i
)

+ λ3

(
x+

m− 1
2

i
)] m∏

k=2

λ3

(
x− 2k −m− 1

2
i
)
. (4.139b)

It follows, that the uppercase auxiliary functions B(1)
m,1(x) = b

(1)
m,1(x) + 1 are

B
(1)
m,1(x) =

Λ(1)
m (x+ i

2)
Γm,2(x+ i

2)
, B

(1)
m,2(x) =

Λ(1)
m (x− i

2)
Γm,1(x− i

2)
. (4.140)

Analyzing the structure of the functions Γm,j(x), we find

Γm,1(x) = n(1)
m (x) ·

φ+(x− m−1
2 i)q1(x+ m+1

2 i)q(h)1 (x− m−1
2 i)

q2(x− m−1
2 i)

· e(m−1)βµ1(eβµ1 + eβµ2) ,

(4.141a)
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Γm,2(x) = n(1)
m (x) ·

φ−(x+ m−1
2 i)q2(x− m+1

2 i)q(h)2 (x+ m−1
2 i)

q1(x+ m−1
2 i)

· e(m−1)βµ3(eβµ2 + eβµ3) .

(4.141b)

Then it is easy to write down all auxiliary functions in the factorized form. We get

b
(1)
m,1(x) =

q1(x+ m+2
2 i)Λ̃(1)

m−1(x)

φ−(x+ m
2 i)q2(x− m

2 i)q(h)2 (x+ m
2 i)
·

eβµ1a
(1)
m−1

e(m−1)βµ3(eβµ2 + eβµ3)
, (4.142a)

b
(2)
m,1(x) =

q2(x− m+2
2 i)Λ̃(1)

m−1(x)

φ+(x− m
2 i)q1(x+ m

2 i)q(h)1 (x− m
2 i)
·

eβµ2a
(1)
m−1

e(m−1)βµ1(eβµ1 + eβµ2)
(4.142b)

and

B
(1)
m,1(x) =

q1(x+ m
2 i)Λ̃(1)

m (x+ i
2)

φ−(x+ m
2 i)q2(x− m

2 i)q(h)2 (x+ m
2 i)
· a

(1)
m

e(m−1)βµ3(eβµ2 + eβµ3)
, (4.143a)

B
(2)
m,1(x) =

q2(x− m
2 i)Λ̃(1)

m (x− i
2)

φ+(x− m
2 i)q1(x+ m

2 i)q(h)1 (x− m
2 i)
· a

(1)
m

e(m−1)βµ1(eβµ1 + eβµ2)
. (4.143b)

Like in the sl(2)-symmetric case, the connection to the original TBA auxiliary function
Y

(1)
m (x) is

Y (1)
m (x) = B

(1)
m,1(x)B(1)

m,2(x) , (4.144)

and there exists the additional relation

b
(1)
m,1(x− i/2)b(1)

m,2(x+ i/2) = Y
(1)
m−1(x) . (4.145)

Using the auxiliary functions y(1)
j (x) (for j = 1, . . . ,m−1), y(2)

1 (x) and the two new func-

tions b(1)
m,1(x) and b

(1)
m,2(x), we can derive a closed set of NLIEs in the usual straightforward

way. We find the result

ln y(1)
1 (x) = −β(JW (1)(x) + d1) +

[
K0 ∗ lnY (1)

1

]
(x)−

[
W (1) ∗ lnY (2)

1

]
(x)

+
[
V

(1)
[2] ∗ lnY (1)

2

]
(x) , (4.146a)

ln y(2)
1 (x) = −β(JW (2)(x) + d2)−

2∑
a=1

[
W (a) ∗ lnY (a)

1

]
(x) , (4.146b)

ln y(1)
k (x) =

[
V

(1)
[2] ∗

(
lnY (1)

k−1 + lnY (1)
k+1

)]
(x) (k = 2, . . . ,m− 1) , (4.146c)

ln b(1)
m,j(x) = −βcj +

[
V

(1)
[2] ∗ lnY (1)

m−1

]
(x)−

2∑
k=1

[
K(1,1)
j,k ∗ lnB(1)

m,k

]
(x) , (4.146d)
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where the kernel function K0(x) and the kernel matrix K(1,1)(x) are those of the sl(2)-
symmetric case, see equations (4.10) and (4.123). The functions W (a)(x) are defined as

W (a)(x) =
4a

4x2 + a2
, (4.147)

and the constants are found to be

c1 =
µ3 − µ1

2
, c2 =

µ1 − µ3

2
, (4.148a)

d1 =
2µ2 − µ1 − µ3

2
, d2 = 2µ2 − µ1 − µ3 . (4.148b)

The final expression for the eigenvalue is

ln Λ(1)
1 (0) = β(J + µ2) +

2∑
a=1

[
W (a) ∗ lnY (a)

1

]
(0)

= −β (J + µ2 − µ1 − µ3)− ln y(2)
1 (0) . (4.149)

We like to stress the strong resemblance of the set of NLIEs (4.146) to the corresponding
equations (4.121) and (4.122) of the sl(2)-symmetric case. Despite the differences for the
auxiliary functions ln y(a)

1 (x), the structure is exactly the same. This result is expected,
nevertheless, if we recall the mutual similarity between the TBA equations of both the
general sl(n)- and sl(n|1)-symmetric cases that we have pointed out in Section 3.4.



Chapter 5

Conjectures for higher ranks

The derivation of the finite coupled sets of NLIEs presented in the last chapter is based on
the knowledge of suitable auxiliary functions. Apart from the assumption of certain ana-
lyticity properties, which are backed by numerics, it is completely rigorous. Unfortunately,
no method to generally construct these functions is known so far, so that a considerable
amount of trial and error is necessary to find the proper auxiliary functions for each case.
On the background of a rising number of such functions with increasing complexity, the
derivation of NLIEs for higher-rank cases of the Uimin-Sutherland model seems to be out
of reach. However, based on the known results it is well possible to conjecture much of the
general structure of the final NLIEs. This will be enough to propose the NLIEs for the sl(5)-
and sl(4|1)-symmetric cases of the Uimin-Sutherland model. Note that these conjectures are
backed by the numerical results of the next chapter.

5.1 General structure for the sl(n)-symmetric case

For the sl(n)-symmetric case of the Uimin-Sutherland model, we expect to have as many
sets of auxiliary functions as is the rank of the underlying algebra, while the number of
auxiliary functions within each set a should match the dimension of the ath fundamental
representation da =

(
n
a

)
. This gives a total number of N = 2n−2 many functions. Moreover,

the uppercase forms of the auxiliary functions are expected to be connected to the auxiliary
functions of the TBA approach via

Y
(a)
1 (x) =

da∏
j=1

B
(a)
1,j (x) . (5.1)

The final NLIEs should be of convolution type, where the structure is

ln b(a)1,j (x) = −β
(
JV

(a)
[n] (x) + c

(a)
j

)
−
n−1∑
b=1

db∑
k=1

[
K(a,b)
j,k ∗ lnB(b)

1,k

]
(x) . (5.2)
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For the largest eigenvalue of the QTM, we get the equation

ln Λ(1)
1 (0) = −β

J
[
1− 2

n

(
ψ(1)− ψ

(
1
n

))]
− 1
n

n∑
j=1

µj

+
n−1∑
a=1

db∑
j=1

[
V

(a)
[n] ∗ lnB(a)

1,j

]
(0) ,

(5.3)
which is equivalent to the corresponding eigenvalue formula known from the TBA approach,
see equation (3.33). The function V

(a)
[n] (x) is given by

V
(a)
[n] (x) =

2π
n

sin(πa/n)
cosh(2πx/n)− cos(πa/n)

, (5.4)

confer equation (4.56).
In order to conjecture the explicit form of the constants c(a)j , recall that at the end of Sec-

tion 4.3.1 it proved useful to assign Young tableaux to the auxiliary functions. These Young
tableaux are also helpful here. Let us denote by Y (a, j) the set of numbers that appear in the
Young tableau assigned to the jth auxiliary function of the ath set. Then, we notice that the
constants c(a)j of all previously derived NLIEs of sl(n) type, confer equations (4.12), (4.25)
and (4.63), are compatible with the general form

c
(a)
j =

a

n

n∑
k=1

µk −
∑

l∈Y (a,j)

µl . (5.5)

Having fixed the constants, only the kernel matrices K(a,b)(x) yet remain to be deter-
mined. Note that, as usual, we assume the matrices K(a,b)(x) to be the submatrices of one
big matrix

K(x) =

 K(1,1)(x) · · · K(1,n−1)(x)
...

. . .
...

K(n−1,1)(x) · · · K(n−1,n−1)(x)

 , (5.6)

which we expect to be both Hermitian and invariant under a reflection along the antidiagonal,

K(x) = (K(x))† , Kj,k(x) = KN+1−k,N+1−j(x) . (5.7)

Remarkably, it turns out that most of the entries of this matrix can be deduced by investi-
gating certain limiting cases of the NLIEs (5.2).

Let us start with the zero-temperature limit and recall the results of Section 4.3.2. We
have already seen that the number of contributing auxiliary functions reduces to n − 1 in
this limit. The corresponding selection rule depends on the actual ordering of the general
chemical potentials, µP (1) ≥ µP (2) ≥ . . . ≥ µP (n), where P (j) is some fixed permutation of
the indices 1, . . . , n. The resulting linearized integral equations, nevertheless, are structurally
the same for all n! possible permutations and identical to the corresponding zero-temperature
TBA equations (3.43). Only the constants c(a) depend on the actual choice of P (j). Since
all kernel functions K(a,b)

[n] (x) of the zero-temperature TBA equations are explicitly known,



5.1. General structure for the sl(n)-symmetric case 79

see equation (3.44), we can now use the selection rules to deduce their original positions
within K(x). Let us formulate the result with the help of the sets Y (a, j). We find that
K(a,b)
j,k (x) = K(a,b)

[n] (x) if Y (a, j) ⊆ Y (b, k) or Y (b, k) ⊆ Y (a, j).
Next, we consider the limiting case where one basis state α is frozen out by sending

the corresponding chemical potential µα to minus infinity. As we already know from Sec-
tion 4.3.1, the NLIEs (5.2) of the sl(n)-symmetric case are expected to reduce to those of
the sl(n−1)-symmetric case in this limit. Moreover, the conjectured selection rule says that
only those auxiliary functions b(a)1,j (x) will survive in this process, for which α /∈ Y (a, j). The

single auxiliary function b
(n−1)
1,s (x) that survives from the last set will diverge and the cor-

responding NLIE linearizes, since b(n−1)
1,s (x)/B(n−1)

1,s (x) → 1. Note that we already know all
kernel functions that appear in this equation, because Y (a, j) ⊆ Y (n− 1, s) for all surviving
functions B(a)

1,j (x). Therefore, we get the result

lnB(n−1)
1,s (x) = −β

(
JV

(n−1)
[n] (x) + c(n−1)

s

)
−
n−1∑
b=1

db∑
k=1

α/∈Y (b,k)

[
K(n−1,b)

[n] ∗ lnB(b)
1,k

]
(x) . (5.8)

With the help of the transformation (4.4), this equation can now be solved with respect to
lnB(n−1)

1,s (x). Substituting the result into the equations for the other nonvanishing functions

b
(a)
1,j (x), we finally get the result

ln b(a)1,j (x) = −β
(
JV

(a)
[n−1](x) + d

(a)
j

)
−
n−2∑
b=1

db∑
k=1

α/∈Y (b,k)

[
L(a,b)
j,k ∗ lnB(b)

1,k

]
(x) , (5.9)

where

L(a,b)
j,k (x) = K(a,b)

j,k (x)−
∫ ∞
−∞

e|k|/2
sinh(ak/2) sinh(bk/2)

sinh((n− 1)k/2) sinh(nk/2)
eikx dx . (5.10)

After relabelling the 2n−1−2 many surviving functions b(a)1,j (x) in order to fill the gaps in the
index nomenclature, the set of NLIEs given by (5.9) is indeed of the form that we expect
for the sl(n− 1)-symmetric case.

Suppose now that the NLIEs of the sl(n−1)-symmetric case are already known. Then we
also know all functions L(a,b)

j,k (x)—and therefore the sought-after kernel functions K(a,b)
j,k (x)

of the sl(n)-symmetric case—for which α /∈ Y (a, j) and α /∈ Y (b, k). Note that we expect
all kernel functions to be of the form

K(a,b)
j,k (x) = K(a,b)

[n] (x) +R
(a,b)
j,k (x) , (5.11)

where R(a,b)
j,k (x) is a rational function. Remarkably, the rational part R(a,b)

j,k (x) must then be

the same for both K(a,b)
j,k (x) and L(a,b)

j,k (x), because of the identity

K(a,b)
[n−1](x) = K(a,b)

[n] (x)−
∫ ∞
−∞

e|k|/2
sinh(ak/2) sinh(bk/2)

sinh((n− 1)k/2) sinh(nk/2)
eikx dx . (5.12)
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Since we are free to choose any basis state α ∈ {1, . . . , n} to perform the limit, we can
eventually get all kernel functions K(a,b)

j,k (x) for which α exists such that α /∈ Y (a, j) and
α /∈ Y (b, k). This will definitely not be the case if Y (a, j) ∪ Y (b, k) = {1, . . . , n}, which
may happen in the lower right triangle of the kernel matrix K(x). Nevertheless, these kernel
functions can still be gained from the upper left triangle due to the fact that K(x) should be
symmetric along the antidiagonal. Note, however, that we have a problem if the sets Y (a, j)
and Y (b, k) turn out to be disjunct. This can only happen if a+ b = n and j + k = da + 1,
that is exactly on the antidiagonal of the kernel matrix K(x). These kernel functions remain
unknown. Still, it is a quite remarkable result that nearly all kernel functions of the sl(n)-
symmetric case follow directly from those of the sl(n− 1)-symmetric case.

Although the above procedure tells us nothing on the kernel functions that are still miss-
ing, we have actually found a way to guess these functions on the basis of certain additional
algebra-related properties of the kernel matrix K(x). The method is briefly explained in
Appendix D. Unfortunately, the additional structure is not yet well understood.

Based on the known results for the sl(4)-symmetric case, we are finally able to conjecture
the complete kernel matrix of the sl(5)-symmetric case, where we have 30 auxiliary functions,
divided into sets of 5, 10, 10 and 5 many functions. The explicit result is given in Appendix E.

5.2 General structure for the sl(n|1)-symmetric case

Let us now turn to the general sl(n|1)-symmetric case of the Uimin-Sutherland model, for
which the NLIEs can be conjectured in an analogous way. Here, the total number of auxiliary
functions is expected to be N = 2n − 1, where the functions are dividable into n sets of
da =

(
n
a

)
many auxiliary functions. The connection to the TBA auxiliary functions Y (a)

1 (x)
is then given by

Y
(a)
1 (x) =

da∏
j=1

B
(a)
1,j (x) . (5.13)

Note that the last set (a = n) contains only one function which therefore must be identical
to the corresponding TBA auxiliary function, y(n)

1 (x) = b
(n)
1,1 (x). Based on the results of the

previous chapter, the general form of the coupled NLIEs is expected to be

ln b(a)1,j (x) = −β
(
JV (a)(x) + c

(a)
j

)
−

n∑
b=1

db∑
k=1

[
K(a,b)
j,k ∗ lnB(a)

1,j

]
(x) , (5.14)

while the expression for the largest eigenvalue is already known from the TBA calculations,

ln Λ(1)
1 (0) = β(J + µg) +

n∑
a=1

da∑
j=1

[
V (a) ∗ lnB(a)

1,j

]
(0) , (5.15)

confer equation (3.40), where g is the graded basis state for which p(g) = 1. We find the
functions V (a)(x) to be

V (a)(x) =
4a

4x2 + a2
, (5.16)
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and the constants c(a)j are

c
(a)
j = aµg −

∑
k∈Y (a,j)

µj , (5.17)

where we have again used the sets of numbers Y (a, j) appearing in the Young tableaux,
which we have assigned to the auxiliary functions in Section 4.3.1.

The complete kernel matrix K(x) will be Hermitian, but we do no longer expect it to be
invariant under reflection along the antidiagonal. In order to get some explicit information on
the kernel functions K(a,b)

j,k (x), let us analyze the zero-temperature limit of the NLIEs again,
where the resulting linearized integral equations have to coincide with the corresponding
zero-temperature TBA equations, see equation (3.46). We learn that K(a,b)

j,k (x) = K(a,b)(x)
if Y (a, j) ⊆ Y (b, k) or Y (b, k) ⊆ Y (a, j), where

K(a,b)(x) =
∫ ∞
−∞

{
e−(max(a,b)−1)|k|/2 sinh(min(a, b)k/2)

sinh(k/2)
− δa,b

}
eikx dk . (5.18)

This particularly implies that all kernel functions K(n,a)
1,j (x) = K(a,n)

j,1 (x) are explicitly known.
In order to determine the remaining entries of the kernel matrices K(a,b)(x) with a, b < n,

suppose now that we already know the results for the sl(n)-symmetric case and recall the
final result of Section 4.1.2, where we have found a close connection between the kernel
matrix of the sl(3|1)- and that of the sl(3)-symmetric case. Admitting this structure in
general, we can make the following conjecture: Suppose that R(a,b)

j,k (x) is the rational part of

some kernel function K(a,b)
j,k (x) of the sl(n)-symmetric case. Then the corresponding kernel

function K(a,b)
j,k (x) of the sl(n|1)-symmetric case will be given by

K(a,b)
j,k = K(a,b)(x) +R

(a,b)
j,k (x) . (5.19)

Based on the explicit results that we have obtained for the sl(4)-symmetric case in
Section 4.2.1, for example, we can now easily get the complete 15 by 15 kernel matrix K(x)
of the sl(4|1)-symmetric case. Note that the 31 by 31 kernel matrix of the sl(5|1)-symmetric
case similarly follows from our conjecture for the sl(5)-symmetric case.

5.3 Exact truncation of the TBA equations for sl(n) and
sl(n|1)

In Section 4.4 we have already seen that, after some slight modification of the auxiliary
functions b(a)1,j (x), one can find new functions b(a)m,j(x) such that

Y (a)
m (x) =

da∏
j=1

B
(a)
m,j(x) . (5.20)
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Moreover, we have seen that these functions can be used to exactly truncate the set of TBA
equations y(a)

k (x) at some arbitrary level k = m. Based on the structure we found there, we
are able to conjecture the final form of the truncated TBA equations for both the general
sl(n)- and sl(n|1)-symmetric cases.

For the sl(n)-symmetric case, we expect the result to be

ln y(a)
k (x) = −Jβδk,1V

(a)
[n] (x) +

n−1∑
b=1

{[
A

(a,b)
[n] ∗

(
(1− δm,1) lnY (b)

k−1 + lnY (b)
k+1

)]
(x)

−
[(
A

(a,b−1)
[n] +A

(a,b+1)
[n]

)
∗ lnY (b)

k

]
(x)
}
, (5.21a)

ln b(a)m,j(x) = −βc(a)j +
n−1∑
b=1

{[
A

(a,b)
[n] ∗ lnY (b)

m−1

]
(x)−

db∑
k=1

[
K(a,b)
j,k ∗ lnB(b)

m.k

]
(x)

}
. (5.21b)

Note that the functions A(a,b)
[n] (x) are exactly those from the usual TBA equations (3.25),

while the functions V (a)
[n] (x), constants c(a)j and kernel matrices K(a,b)(x) are those from the

NLIEs (5.2).
In order to deal with the sl(n|1)-symmetric case, we need to modify the equations (5.21)

only slightly, since the TBA equations for both cases are closely related. Instead of the
equations for ln y(a)

1 (x), we will now have the equations

ln y(a)
1 (x) = −β

(
J

4a
4x2 + a2

+ d(a)

)
+
n−1∑
b=1

[
A

(a,b)
[n] ∗ lnY (b)

2

]
(x)

−
n∑
b=1

[(
A

(a,b−1)
[n] +A

(a,b+1)
[n] + C(a,b)

)
∗ lnY (b)

1

]
(x) , (5.22a)

ln y(n)
1 (x) = −β

(
J

4n
4x2 + n2

+ d(n)

)
−

n∑
b=1

[
C(n,b) ∗ lnY (b)

1

]
(x)− lnY (n)

1 (x) . (5.22b)

The constants d(a) are those given in equation (3.38), and the functions C(a,b)(x) have been
defined in equation (3.39). Note that we also have to change the constants c(a)j . Suppose
again that g is the label of the basis state with grading p(g) = 1. Then all indices j of the
general chemical potentials µj are shifted by one, j 7→ j + 1, if j ≥ g.



Chapter 6

Numerical investigation

The finite sets of coupled nonlinear integral equations (NLIEs) that have been obtained
in the previous two chapters are well suited for a numerical evaluation at arbitrary finite
temperature and chemical potentials. In this chapter, we will briefly explain the necessary
methods and show, how the results can be used to derive various thermodynamical proper-
ties.

6.1 Numerical treatment of the NLIEs

Since our sets of NLIEs are self-consistent, it appears promising to strive for a solution by
iteration. We start with some initial approximation for the set of functions ln b(a)m,j(x) and

compute the functions lnB(a)
m,j(x) and the convolutions on the right hand sides of the NLIEs

to eventually obtain a new approximation for the set of functions ln b(a)m,j(x). Then, we restart
the cycle with this new approximation. These steps have to be repeated until all auxiliary
functions have converged within some given error margin. In the end, the largest eigenvalue
of the QTM can be calculated from the known set of functions lnB(a)

m,j(x).
In order to do the calculations on a computer, it is of course necessary to clip and dis-

cretize all involved functions. We achieve this by sampling all functions on the real axis at
a fixed number of equally distributed points within a fixed interval around the origin. The
convolutions on the right hand sides of the NLIEs are best evaluated in Fourier space, since
the Fourier transformation turns them into simple multiplications. The necessary transfor-
mations can efficiently be calculated by use of the fast Fourier transform (FFT) algorithm.
We like to stress that the truncation and discretization of the functions are the only sources
of systematic error within this approach. In comparison to these, the additional numerical
roundoff error is generally found to be negligible. Fortunately, the systematic error can eas-
ily be controlled by comparing the results gained for different choices of the interval and
the number of sampling points. Note that the knowledge of a reliable error margin for all
numerical results is a big advantage of the current approach.

The largest eigenvalue of the QTM is directly related to the free energy of the model.
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Since we are also interested in certain derivatives of the free energy, we additionally need
to calculate the corresponding derivatives of the largest eigenvalue. Instead of dealing with
potentially ill-conditioned numerical derivatives, however, it is possible to pursue an alter-
native approach where we directly work with derivatives of the equation for the eigenvalue
and the NLIEs. It uses the fact, that the derivative of each uppercase function lnB(a)

m,j(x)
with respect to some parameter p is related to the derivative of the corresponding lowercase
function ln b(a)m,j(x) by

∂

∂p
lnB(a)

m,j(x) =
b
(a)
m,j(x)

B
(a)
m,j(x)

· ∂
∂p

ln b(a)m,j(x) . (6.1)

Thus, the differentiated NLIEs can be solved in the same iterative fashion as the original
NLIEs, once the results for all functions ln b(a)m,j(x) are known. Similarly, it is possible to
treat higher derivatives. For the second derivative with respect to p, for example, we find
the relation

∂2

∂p2
lnB(a)

m,j(x) =
b
(a)
m,j(x)

B
(a)
m,j(x)

{
1

B
(a)
m,j(x)

(
∂

∂p
ln b(a)m,j(x)

)2

+
∂2

∂p2
ln b(a)m,j(x)

}
, (6.2)

which gives the relation between ∂2

∂p2
ln b(a)m,j(x) and ∂2

∂p2
lnB(a)

m,j(x). Since here the functions

ln b(a)m.j(x) and ∂
∂p ln b(a)m,j(x) appear, these have to be calculated first.

Note that the above procedure does not introduce any significant additional numerical
errors, so that we can get reliable error estimates even for the derived properties.

6.2 Calculation of thermodynamical properties

In the thermodynamic limit, the free energy f of the Uimin-Sutherland model is related to
the largest eigenvalue of the QTM via

f = − 1
β

ln Λ(1)
1 (0) . (6.3)

Moreover, we are interested in the entropy S, specific heat C, particle density n and the
compressibility κ, which are defined by

S = −
(
∂f

∂T

)
µ

, C = T

(
∂S

∂T

)
n

, n = −
(
∂f

∂µ

)
T

, κ =
(
∂n

∂µ

)
T

. (6.4)

Note that since we are working in the grand canonical formulation with a fixed chemical
potential µ, we have to use the relation(

∂S

∂T

)
n

=
(
∂S

∂T

)
µ

−
(
∂n

∂T

)2

µ

(
∂n

∂µ

)−1

T

(6.5)
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in order to actually calculate the specific heat. If some external magnetic field h is applied,
we are additionally interested in the magnetization M and the magnetic susceptibility χ
defined by

M = −∂f
∂h

, χ =
∂M

∂h
. (6.6)

With the help of equation (6.3), it is easy to see that all the properties can be written
solely using derivatives of the largest eigenvalue,

S = lΛ− β ∂

∂β
lΛ , C = β2 ∂

2

∂β2
lΛ−

(
∂
∂µ lΛ− β ∂2

∂β∂µ lΛ
)2

∂2

∂µ2 lΛ
, (6.7a)

n =
1
β
· ∂
∂µ

lΛ , κ =
1
β
· ∂

2

∂µ2
lΛ , (6.7b)

M =
1
β
· ∂
∂h

lΛ , χ =
1
β
· ∂

2

∂h2
lΛ , (6.7c)

where lΛ is used as a shorthand for ln Λ(1)
1 (0). Therefore, it is possible to derive all the

properties with good accuracy just by solving the corresponding derivatives of the NLIEs
using the approach from the previous section.

6.3 Numerical results

In the following, we start with a comparison of the results obtained by our NLIEs to existing
high-temperature expansions. Thereafter, we give results for the various applications of
the four- and five-state cases of the Uimin-Sutherland model that have been introduced in
Section 2.2. Note that we will always assume J > 0. The models based on the two- and
three-state cases are skipped, since their NLIEs have been previously known, and extensive
numerical investigations for these models already exist in the literature, see for example [27,
37, 41].

6.3.1 Comparison with high-temperature expansions

We have checked the validity of our specific-heat results against existing high-temperature
expansions, which have been derived by Tsuboi [91] up to very high orders (∼ 40). Figures 6.1
to 6.3 show the comparison for the various special cases of the Uimin-Sutherland model. Since
the high-temperature expansions naturally diverge above T/J = 1.0, we have also plotted
the Padé approximants based on the expansions, which give reasonable results even for lower
temperature. Obviously, we get an excellent agreement in all considered cases. Remarkably,
the Padé approximants coincide with the results from our NLIEs down to T/J ≈ 0.3. Only
the results based on our NLIEs are also valid for arbitrary finite temperature and thus show
the expected low-temperature behaviour, where the specific heat finally drops to zero. In
the high-temperature regime, the accuracy of our results is generally found to be better
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(a) Specific heat of the sl(4)-symmetric Uimin-Sutherland model.
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(b) Specific heat of the sl(3|1)-symmetric Uimin-Sutherland model.

Figure 6.1: Comparison of specific-heat results for the sl(4)- and sl(3|1)-symmetric cases of
the Uimin-Sutherland model. The Padé approximants are based on the high-temperature
expansions. The insets show the relative difference between the data from the NLIEs and
the high-temperature expansion in the high-temperature regime.
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Figure 6.2: Comparison of specific-heat results for the sl(2|2)- and sl(5)-symmetric cases of
the Uimin-Sutherland model. The Padé approximants are based on the high-temperature
expansions. The insets show the relative difference between the data from the NLIEs and
the high-temperature expansion in the high-temperature regime.
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Figure 6.3: Comparison of specific-heat results for the sl(4|1)-symmetric case of the Uimin-
Sutherland model. The Padé approximant is based on the high-temperature expansion.
The inset shows the relative difference between the data from the NLIEs and the high-
temperature expansion in the high-temperature regime.
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than 10−9. For the sl(4)- and sl(5)-symmetric cases, an even better accuracy around 10−14

is reached. Note that for these two cases the low-temperature asymptotics of the free energy
follows from conformal field theory to be

f ' f0 −
πc

6vJ
T 2 , (6.8)

where c is the central charge and v is the sound velocity [2, 13]. For the sl(4)-symmetric case
we have c = 3 and v = π/2, whereas for the sl(5)-symmetric case the values are c = 4 and
v = 2π/5, confer [19, 74]. The low-temperature specific heat data are therefore expected to
asymptotically yield C ' 2T/J and C ' 10T/(3J), respectively, in full agreement with our
results. Note also that the enormous accuracy of our data is achieved only because of the
vanishing general chemical potentials. In the presence of external fields, we typically find
the numerical error to be in the order of 10−3 to 10−6.

Finally, we like to stress that especially for the sl(5)- and sl(4|1)-symmetric cases, where
the corresponding sets of NLIEs are only conjectures, these results can be taken as a strong
evidence for the validity of the NLIEs and support our assumptions on the general structure.

6.3.2 The SU (4) spin-orbital model

Let us now turn to the SU (4) spin-orbital model introduced in Section 2.2.4. Note that
the thermodynamical properties of this model have already been studied numerically using
various methods [26, 28, 32, 72, 91]. Still, none of these methods is capable of providing
highly accurate results for low finite temperature in the thermodynamic limit.

We first consider the special case, where the external magnetic field couples only to
spins but not at all to the pseudospin degrees of freedom. Accordingly, the Landé factors are
gS = 1 and gτ = 0 and we have µ1 = µ2 = h/2 and µ3 = µ4 = −h/2. From our analytical
investigation of the zero-temperature limit in Section 4.3.2, we already know that there
exists only one critical magnetic field in this case, which is given by hc = 2J ln 2 ≈ 1.39J . If
the external field is below this critical value, all four basis states contribute to the ground
state. Above the critical field, the spins are fully polarized and only the orbital degrees of
freedom remain.

The phase transition is clearly exposed by the numerical data given in Figures 6.4 and 6.5.
The low-temperature slopes both of the entropy and the specific heat increase from 2 at h = 0
to infinity at h = hc, whereas a constant value of 1/3 is obtained for h > hc. Moreover, the
magnetization data shows the expected saturation behaviour for h ≥ hc. Note also that the
magnetic susceptibility diverges at the critical field. Below, the value at T = 0 stays finite;
above, it drops to zero.

The magnetic susceptibility at h = 0 is particularly interesting, since it is expected to
show a characteristic singular behaviour at T = 0 due to logarithmic corrections. Indeed,
this is confirmed by our results for the low-temperature susceptibility, see Figure 6.6 on
page 92. Even for the lowest plotted temperature, T/J = 10−10, the susceptibility is still
well above the ground-state value χ(0) ·J = 2/π2. For the spin-1/2 Heisenberg model, these
corrections have already been treated in detail [22, 42, 45, 63]; similar results for the general
sl(n)-symmetric Uimin-Sutherland model are known [27, 68].
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Figure 6.4: Entropy and specific heat of the SU (4) spin-orbital model at gS = 1, gτ = 0
for various magnetic fields. The insets show the low-temperature parts. The critical field is
hc = 2J ln 2 ≈ 1.39J .
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Figure 6.5: Magnetization and magnetic susceptibility of the SU (4) spin-orbital model at
gS = 1, gτ = 0 for various magnetic fields. The critical field is hc = 2J ln 2 ≈ 1.39J .
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Figure 6.6: Magnetic susceptibility of the SU (4) spin-orbital model at h = 0 for temperatures
down to T/J = 10−10. The cross denotes the ground-state value χ(0) · J = 2/π2 ≈ 0.2026.
The inset shows the low-temperature part of the susceptibility using a logarithmic scale.

Next, we consider the case gS = 1 and gτ = 2, where the magnetic field also couples to
the pseudospin. The general chemical potentials are then given by

µ1 = 3h/2 , µ2 = h/2 , µ3 = −h/2 , µ4 − 3h/2 . (6.9)

Note that this case also corresponds to a spin-3/2 interpretation of the model, confer Sec-
tion 2.2.2. Now all three possible types of phase transitions are present. Numerical results
for this case showing the rich resulting structure are plotted in Figures 6.7 and 6.8. Again,
the low-temperature susceptibility at h = 0 shows the characteristic singular behaviour.
The highest of the three critical magnetic fields is exactly hc1 = 4, while the other two
have to be calculated numerically as only the lower bounds hc2 > 4J ln(2)/3 ≈ 0.924J and
hc3 > J(π/(2

√
3) − ln(3)/2) ≈ 0.358J are known explicitly. We find the remaining critical

fields to be hc2 ≈ 0.941J and hc3 ≈ 0.370J . Note the numbering of the critical fields, where
at each field hcj the number of involved degrees of freedom changes from j to j + 1. The
advantage of this naming convention is that the critical fields hc1 and hc2 also appear in
the spin-1 interpretation of the sl(3)-symmetric Uimin-Sutherland model, while only hc1
remains in the spin-1/2 Heisenberg model. Likewise, all three critical fields are present in
the spin-(n− 1)/2 interpretation of the general sl(n)-symmetric Uimin-Sutherland model.

We are also able to calculate the complete ground-state phase diagram of the spin-orbital
model. Figure 6.9 on page 95 shows the result in dependence on the magnetic field h and
the orbital Landé factor gτ , while the Landé factor for the spins is fixed at gS = 1. We can
identify five different phases. If the magnetic field is above hc1 (I), all spins and orbitals are
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Figure 6.7: Entropy and specific heat of the SU (4) spin-orbital model at gS = 1, gτ = 2 for
various magnetic fields. The critical fields are hc1 = 4J , hc2 ≈ 0.941J and hc3 ≈ 0.370J .
Note the numbering of the critical fields as discussed on the preceding page.
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Figure 6.8: Magnetization and magnetic susceptibility of the SU (4) spin-orbital model at
gS = 1, gτ = 2 for various magnetic fields. The critical fields are hc1 = 4J , hc2 ≈ 0.941J and
hc3 ≈ 0.370J . Note the numbering of the critical fields as discussed on page 92.
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fully polarized. Between hc1 and hc2, there are two distinct regions with gτ > 1 (II) and
gτ < 1 (III), respectively. In the former region, the orbitals are fully polarized, while the
spins are only partially aligned. In the latter case, it is the other way around. For exactly
gτ = 1, we have a direct transition from phase I to phase IV, because hc1 = hc2. For a
magnetic field below hc2, but above hc3 (IV), both spins and orbitals are partially polarized,
while the state |↓S↓τ 〉 is still completely suppressed. For h < hc3 (V) all possible spin
configurations contribute to the ground state. Note that hc1 tends to infinity for gτ → 0. As
we have seen before, only one phase transition survives for gτ = 0, where the magnetic field
couples only to the spins. Note also that the phase diagram presented here is qualitatively
in perfect agreement with the one presented in [32], where a finite system of 200 sites has
been investigated.

6.3.3 The two-leg spin-1/2 ladder model

The thermodynamics of the two-leg spin-1/2 ladder model introduced in Section 2.2.5 has
been previously investigated in [7, 8] based on high-temperature expansions of Tsuboi’s
NLIEs [90]. The results have moreover been compared to experimental realizations. However,
in all cases that have been investigated in these papers, the rung coupling was chosen to
be large in comparison to the intrachain coupling, J⊥ � J‖, leading to a gapped ground
state where only the rung singlet state survives. Note that under these circumstances, the
high-temperature expansion gives reasonable results even in the low-temperature regime.
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On the basis of our NLIEs, we are able to calculate accurate low-temperature results for an
arbitrary choice of the coupling constants. Here, the ground state may as well be a mixture
of the rung singlet and all rung triplet states.

The ground-state phase diagram of the model depending on the ratio of the coupling
constants J⊥/J‖ and the magnetic field h is shown in Figure 6.10. Note that the first two
critical fields are exactly given by hc1 = J⊥ − 4J‖ and hc2 = J⊥ + 4J‖, while hc3 and hc4
have to be calculated numerically. There exist five different phases. As noted above, only
the rung singlet state is present in the ground state if the ratio J⊥/J‖ is greater than four
and the magnetic field is below hc1 (I). Likewise, the ground state is fully polarized if the
magnetic field is above hc2 (II). In the intermediate region (III), both the rung singlet state
and the fully polarized triplet state are present, while the other two basis states are still
completely suppressed. If the ratio J⊥/J‖ is below four and the magnetic field is between
hc3 and hc4 (IV), also the neutral triplet state enters the ground state. Only if the magnetic
field is smaller than hc4 (V), all four basis states contribute to the ground state.

In order to show the behaviour in the different regimes, we have calculated results for
both J⊥/J‖ = 1 and J⊥/J‖ = 5 and various magnetic fields. The data for J⊥/J‖ = 1 are
shown in Figures 6.11 and 6.12. In this case, the critical fields are hc2 = 5J‖, hc3 ≈ 1.81J‖
and hc4 ≈ 0.318J‖. All three phase transitions are clearly visible from the low-temperature
magnetic susceptibility, which diverges at the critical fields. Above hc2, where the ground
state is fully polarized, the low-temperature susceptibility and the zero-temperature slope
of the specific heat eventually vanish.
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Figure 6.11: Specific heat and magnetization of the two-leg spin-1/2 ladder model at J⊥/J‖ =
1 for various magnetic fields. The critical fields are hc2 = 5J‖, hc3 ≈ 1.81J‖ and hc4 ≈
0.318J‖.
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Figure 6.12: Magnetic susceptibility of the two-leg spin-1/2 ladder model at J⊥/J‖ = 1 for
various magnetic fields. The critical fields are hc2 = 5J‖, hc3 ≈ 1.81J‖ and hc4 ≈ 0.318J‖.
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Figure 6.13: Specific heat of the two-leg spin-1/2 ladder model at J⊥/J‖ = 5 for various
magnetic fields. The critical fields are hc1 = J‖ and hc2 = 9J‖.
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Figure 6.14: Magnetization and magnetic susceptibility of the two-leg spin-1/2 ladder model
at J⊥/J‖ = 5 for various magnetic fields. The critical fields are hc1 = J‖ and hc2 = 9J‖.
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Figures 6.13 and 6.14 show the corresponding data for J⊥/J‖ = 5. Here, we have the two
critical fields hc1 = J‖ and hc2 = 9J‖. The low-temperature slope of the specific heat is found
to be zero both for h < hc1 and h > hc2, which is expected because all degrees of freedom are
frozen out in the ground state of these cases. Accordingly, also the low-temperature magnetic
susceptibility vanishes there. The susceptibility diverges at the critical fields and has constant
asymptotics for hc1 < h < hc2. Note also the mutual similarity of the susceptibility in the
vicinity of both phase transitions. The reason is that only two basis states, the rung singlet
and the fully polarized triplet state, basically contribute to the low-temperature behaviour
here and that the nature of the transitions is the same at both critical fields.

6.3.4 The Essler-Korepin-Schoutens model

Next, we consider the Essler-Korepin-Schoutens model introduced in Section 2.2.6. Recall
that the interaction is controlled by several parameters. Besides the coupling constant J , we
can adjust the Hubbard parameter U , which determines whether the model favours single
or double occupation of sites, the chemical potential µ and the external magnetic field h.
However, instead of the chemical potential µ, we would rather like to directly control the
density of states n. Since we are easily able to derive n and the compressibility κ for a fixed
value of µ using our NLIEs, we can use Newton’s method to iteratively adjust µ to achieve
some given value for n. Therefore, we iteratively use

µ′ = µ− n(µ)− d
κ(µ)

, (6.10)

where µ′ is the updated chemical potential and d the target density. However, this approach
only works as long as the slope of n(µ) is neither too flat nor too steep. Note that this
imposes a limitation for the evaluation at low temperatures.

The ground-state phase diagram of the model has been determined in the original work of
Essler, Korepin and Schoutens [25]. Nevertheless, no numerical results have previously been
calculated for finite temperature. Let us first turn to the case of half filling, where n(µ) = 1,
and without an external magnetic field. We know from the phase diagram that there exist
two critical values for the Hubbard parameter, Uc1 = 0 and Uc2 = 4J ln 2 ≈ 2.77J . Their
meaning is the following: If U is negative, only doubly occupied or empty sites are present
in the ground state. For U > Uc1 the electron pairs start to dissolve, until above Uc2 only
single electrons are left at each site.

Figures 6.15 and 6.16 show the numerical data for the specific heat, magnetic suscepti-
bility, compressibility and the proportion of single occupancy derived by our NLIEs. Note
that the density n = 1 corresponds to a constant chemical potential µ = 0, so no additional
calculation of µ is necessary here. The phase transitions at both critical Hubbard parame-
ters are clearly exposed by the data. For instance, we see that the low-temperature magnetic
susceptibility drops to zero below Uc1, which is expected since no single spins are left in the
ground state of this phase. On the other hand, the susceptibility diverges exactly at Uc1
and has constant asymptotics for all values of U above this critical value. For U ≥ Uc2, the
ground-state value does no longer change, because only single electrons are left, and the
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Figure 6.15: Specific heat and magnetic susceptibility of the Essler-Korepin-Schoutens model
at half filling for various Hubbard parameters U . The critical parameters are Uc1 = 0 and
Uc2 = 4J ln 2 ≈ 2.77J .
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Figure 6.16: Compressibility and proportion of sites occupied by single electrons of the Essler-
Korepin-Schoutens model at half filling for various Hubbard parameters U . The critical
parameters are Uc1 = 0 and Uc2 = 4J ln 2 ≈ 2.77J .



6.3. Numerical results 103

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.5  1  1.5  2

sp
ec

ifi
c 

he
at

 C

temperature T/J

n=0.1
n=0.3
n=0.5
n=0.7
n=0.9
n=1.0

(a) Specific heat vs. temperature.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.2  0.4  0.6  0.8  1

m
ag

ne
tic

 s
us

ce
pt

ib
ili

ty
 χ

·J

temperature T/J

n=0.1
n=0.3
n=0.5
n=0.7
n=0.9
n=1.0

(b) Magnetic susceptibility vs. temperature.

Figure 6.17: Specific heat and magnetic susceptibility of the Essler-Korepin-Schoutens model
at Hubbard parameter U = 2.0J for various densities.
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Figure 6.18: Compressibility and proportion of sites occupied by single electrons of the
Essler-Korepin-Schoutens model at Hubbard parameter U = 2.0J for various densities.
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Figure 6.19: Specific heat and magnetic susceptibility of the Essler-Korepin-Schoutens model
at half filling and Hubbard parameter U = 2.0J for various magnetic fields.
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Figure 6.20: Magnetization and proportion of double occupancy of the Essler-Korepin-
Schoutens model at half filling and Hubbard parameter U = 2.0J for various magnetic
fields.
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ground state is equal to that of the usual spin-1/2 Heisenberg chain. The compressibility
diverges for all values below Uc2 and suddenly drops to zero above. This is also expected,
because the half-filled chain with singly occupied sites admits no density other than n = 1.
The data for the specific heat are less enlightening. We see that the zero-temperature slope
changes from infinity to zero at Uc2, but since the slope of n(µ) diverges around µ = 0 for
T → 0, we are unable to get reliable results for small temperatures if the Hubbard parameter
is below Uc2.

We have also calculated data for various other densities, where we have fixed the Hubbard
parameter at some intermediate value U = 2.0J . The results are shown in Figures 6.17
and 6.18. Note that we have only considered densities between zero and half filling, since
the results are symmetric to those for densities between half and complete filling, where
just the role of empty and doubly occupied basis states is interchanged. We see that for
densities up to approximately n = 0.7 only singly occupied sites are present in the ground
state. Above this value, however, the positive Hubbard constant is no longer large enough to
suppress double occupation. As a consequence of this phase transition, the low-temperature
compressibility diverges and the magnetic susceptibility decreases.

Finally, Figures 6.19 and 6.20 show data for the specific heat and magnetic susceptibility
at half filling, fixed Hubbard constant U = 2.0J and an external magnetic field. Naturally,
the magnetization increases with the magnetic field as the single spins start to align with
the field, until all single spins are polarized above hc1 ≈ 2.0J . The corresponding phase
transition is most clearly indicated by the diverging zero-temperature susceptibility at the
critical value. Simultaneously, we notice that the number of doubly occupied sites increases
slightly. The reason is that electron pairs are neutral with respect to the magnetic field.
Above hc1, however, also the electron pairs start to break up, until all sites are finally filled
with single, fully polarized electrons above the second critical magnetic field hc2 ≈ 6.0J .
Again, the phase transition is indicated by a diverging ground-state susceptibility at the
critical value. Above this value, the specific heat and the susceptibility of the ground state
drop to zero, since now all degrees of freedom are frozen out.

6.3.5 The SU (4|1) spin-orbital model with mobile defects

As stated before, the SU (4|1) spin-orbital model is an extension of the SU (4) spin-orbital
model, where mobile defects are additionally allowed and the hopping term is the same as
in the t-J model. Like in the previous section, the particle density n can be controlled only
indirectly by iteratively determining the corresponding chemical potential µ(n).

Figures 6.21 and 6.22 show the thermodynamical properties of the model at various
particle densities, where the magnetic field is chosen to only couple to the spin degrees
of freedom. It can clearly be seen that for increasing particle density n, as expected, the
specific heat and magnetic susceptibility tend to those of the SU (4) spin-orbital model.
The compressibility meanwhile drops to zero, since the number of holes is reduced. For
low temperatures and particle densities close to one, the density unfortunately becomes
independent of the chemical potential. Therefore, we have no reliable results in the low-
temperature area in these cases.
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Figure 6.21: Specific heat and magnetic susceptibility of the SU (4|1) spin-orbital model at
gS = 1, gτ = 0 for various particle densities. The data for n = 1.0 stems from the SU (4)
spin-orbital model.
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Figure 6.22: Compressibility of the SU (4|1) spin-orbital model at gS = 1, gτ = 0 for various
particle densities.
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Figure 6.23: Specific heat of the SU (4|1) spin-orbital model at gS = 1, gτ = 0 for particle
density n = 0.5 and various orbital fields. Results for the supersymmetric t-J model are also
given.
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Figure 6.24: Magnetic Susceptibility and compressibility of the SU (4|1) spin-orbital model
at gS = 1, gτ = 0 for particle density n = 0.5 and various orbital fields. Results for the
supersymmetric t-J model are also given.
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We have also calculated results for the limit, where the orbital degrees of freedom are
gradually frozen out. This is achieved by introducing a secondary magnetic field that only af-
fects the orientation of the pseudospins. Eventually, only three of the five basis states remain.
We therefore expect the limiting case to be equivalent to the supersymmetric t-J model.
The corresponding data are shown in Figures 6.23 and 6.24, where we have also plotted re-
sults for the supersymmetric t-J model for comparison. The expected behaviour can clearly
be seen. Starting from the unperturbed model, the orbital degrees are gradually frozen out
with rising orbital field ho. The critical field is approximately at ho = 0.5J , where we get
a diverging low-temperature magnetic susceptibility and compressibility. Above the critical
value, all pseudospins are polarized in the ground state. By further increasing the orbital
field, we can finally see the expected convergence towards the data of the supersymmetric
t-J model.

We like to stress that the numerical data again strongly support our conjectured NLIEs
for this case.
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Chapter 7

Summary and outlook

In this thesis, we have treated the thermodynamics of various integrable quantum chains
of Uimin-Sutherland type on the basis of nonlinear integral equations (NLIEs). There exist
several approaches to derive such NLIEs, confer [34, 90]. Nevertheless, only the approach
developed in [40, 41] is known to allow for an efficient numerical solution for arbitrary finite
temperature and rather general chemical potentials. The approach is based on a Trotter-
Suzuki mapping of the quantum chain to an equivalent two-dimensional classical model. In
case of the Uimin-Sutherland model the classical counterpart is an inhomogeneous Perk-
Schultz model, where alternating R matrices appear in vertical direction. For the latter
model one defines the so-called quantum transfer matrix (QTM), which is basically the
inhomogeneous column-to-column transfer matrix with an additional spectral parameter.
This allows for the formulation of the partition function of the Uimin-Sutherland model solely
in terms of the QTM. The big advantage is that the thermodynamical limit can be performed
exactly, and it follows that the thermodynamical properties of the model depend on just the
largest eigenvalue of the QTM. Moreover, the QTM can be diagonalized by means of the
Bethe ansatz, since the underlying R matrices are solutions to the Yang-Baxter equation
and thus a whole commuting family of QTMs exists. The calculation of the Bethe ansatz
roots still turns out to be problematic. Therefore, the Bethe ansatz equations are encoded
into a set of suitable auxiliary functions, which turn out to be determined by a finite set
of coupled NLIEs containing only convolution-type integrals. For numerical investigations,
the NLIEs can then be solved efficiently by iteration, where the fast Fourier transform is
used to calculate the convolutions. In contrast to the other approaches, however, no general
construction of the NLIEs for arbitrary cases of the Uimin-Sutherland model is known.
Previous to our work, results were known for up to three components at most [27, 36, 37].

In this work, we have succeeded in finding suitable auxiliary functions for all four-
component cases of the Uimin-Sutherland model and have derived the corresponding closed
sets of NLIEs. Several limiting cases have been considered in order to check the validity
of our new NLIEs. In the zero-temperature limit, for example, the NLIEs linearize and are
equal to those, one can get either from the zero-temperature limit of the traditional TBA
equations or directly from the Bethe ansatz equations for the Hamiltonian [34]. The pre-
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viously known auxiliary functions and NLIEs are recovered by freezing out one or more of
the basis states with the help of the general chemical potentials. Moreover, we could show
that—after a slight modification—the auxiliary functions can be used to exactly truncate
the TBA equations at some arbitrary fusion level, which extends the result of [76]. Note
that our treatment covers only the fundamental representation of the underlying algebra. A
further generalization to higher-level representations should nevertheless be straightforward.

Unfortunately, the general construction of the auxiliary functions for arbitrary higher-
rank cases of the Uimin-Sutherland model stays out of reach. All new sets of auxiliary
functions have basically been found by trial and error. On the level of the final NLIEs,
however, certain conjectures are possible. They are based on the observation that the number
of required auxiliary functions for the sl(n)-symmetric case should always be equal to the
sum of the dimensions of all fundamental representations of sl(n), that is 2n − 2, and the
requirement that both the zero-temperature limit and the reduction of the basis states
reproduce the known results. We have shown that these assumptions are sufficient to fix all
driving terms and most of the entries of the kernel matrix of the NLIEs of the sl(n)-symmetric
case once the results for the sl(n− 1)-symmetric case are known. Nevertheless, they provide
no information on the kernel functions lying on the antidiagonal of the kernel matrix, which
prevents a recursive derivation. Still, we have been able to conjecture the complete set of
NLIEs for the sl(5)-symmetric case by exploiting some additional algebra-related structure
of the kernel matrix to get the missing kernel functions. We like to stress, however, that
the emergence of the additional structure is not yet understood. It is our hope that further
investigations in this direction may lead to explicit results for the general sl(n)-symmetric
case in the future. We have also been able to conjecture the general structure of the final
NLIEs of the sl(n|1)-symmetric case, which turn out to be very similar to those of the sl(n)-
symmetric case. Here, the number of required equations is expected to be 2n − 1. Based on
the known results for the sl(4)-symmetric case, for example, we could thus fix the complete
NLIEs of the sl(4|1)-symmetric case. Additionally, we have investigated the general structure
of the exactly truncated TBA equations for both the sl(n)- and the sl(n|1)-symmetric cases.

Numerical results have been provided for all new sets of NLIEs. In order to check the
validity of our results, we have compared our results for the specific heat to those obtained
from the high-temperature expansions and Padé approximants derived in [91]. As expected,
the data are in excellent agreement within the corresponding areas of validity. Especially
for the sl(5)- and sl(4|1)-symmetric cases, for which our NLIEs have only been conjectured,
this provides strong evidence for the correctness of the NLIEs and supports our assump-
tions on their general structure. Moreover, we have calculated thermodynamical properties
for various applications of the Uimin-Sutherland model, like the SU (4) spin-orbital model,
the integrable two-leg spin-1/2 ladder, the Essler-Korepin-Schoutens model and the SU (4|1)
spin-orbital model with mobile defects, which have become accessible via our new sets of
NLIEs. In contrast to previous approaches, we achieve high accuracy even at low tempera-
tures.

However, although we have thus managed to extend the current approach to include most
of the physically interesting models of higher-rank Uimin-Sutherland type, some interesting
models are still not accessible in this framework. These mainly include further applications



115

of the sl(n)- and sl(n|1)-symmetric models for n > 5, like the general integrable n-leg spin-
1/2 ladder [9], the integrable mixed spin ladders [6] and higher-spin generalizations of the
supersymmetric t-J model [58].

The treatment of models based on q-deformations of the underlying algebra is a further
direction of generalization. Since the Bethe ansatz is similar for these models, this should
be possible by rather straightforward modifications of the auxiliary functions. Note that in
the framework of Tsuboi’s NLIEs this has already been demonstrated [91, 92].

Concerning the structure of our NLIEs, another open question is the connection between
the kernel matrix elements and the complete S matrix of elementary excitations [20]. In the
zero-temperature case, all kernel functions can be obtained from corresponding S matrix
entries [50], the generalization to finite temperature is unknown.

The systematic derivation of finite-temperature correlation lengths is yet another future
task. For that, it is necessary to calculate also the next-leading eigenvalues of the QTM.
The corresponding NLIEs follow from the same auxiliary functions, but modified integration
contours are required due to the different distributions of the Bethe ansatz roots. Note that
corresponding results already exist for the spin-1/2 Heisenberg chain [40, 41]. In the context
of the TBA equations, the necessary modifications have been discussed in [38].

Future developments in the spirit of [14, 15] may also allow for the direct calculation
of finite-temperature correlation functions. Note, however, that the approach is currently
limited to the XXZ chain.



116 Chapter 7. Summary and outlook



Appendix A

Equivalence of different grading
choices

Let us consider the sl(r|s)-symmetric case of the Uimin-Sutherland model for some fixed
numbers r and s. From the definition of the Hamiltonian (2.2) it is immediately clear that
there exist

(
r+s
s

)
many equivalent formulations differing only in the actual choice of grading.

Changing the grading just leads to some permutation of the basis states and, accordingly,
of the general chemical potentials µj and of the signs in the definition of the permutation
operator πj,j+1. In the framework of the Bethe ansatz formulation (2.57), however, the
equivalence is not so obvious, since, at first glance, the expression for the eigenvalue

Λ(v) =
r+s∑
j=1

λj(v) (A.1)

with
λj(v) = φ−(x)φ+(x)

qj−1(v − iεj)
qj−1(v)

qj(v + iεj)
qj(v)

eβµj (A.2)

does not seem to be invariant under a combined permutation of gradings and general chemi-
cal potentials. The eigenvalue must be invariant, however, since the Hamiltonians are equiv-
alent. The clue is that the polynomials qj(v) of Bethe ansatz roots, see the definition (2.59),
also depend on the choice of grading. In the following, we will show how the Bethe ansatz
roots have to be adapted by using the approach introduced in [31].

Suppose, we have chosen some fixed pattern of gradings {ε}. Now let us investigate what
happens, if we exchange just two neighbouring gradings, εj and εj+1, where εj = −εj+1. The
resulting pattern shall be called {ε̃}, but let us first stick to {ε}. We define the polynomial

pj(v) = qj−1(v − iεj)qj+1(v)eβµj + qj−1(v)qj+1(v − iεj)eβµj+1 (A.3)

and compare it with the jth Bethe ansatz equation (2.60),

− 1 =
λj(v)
λj+1(v)

=
qj−1(v − iεj)qj+1(v)
qj−1(v)qj+1(v − iεj)

eβ(µj−µj+1) , (A.4)
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which is fulfilled for all Mj many Bethe ansatz roots vjkj of the jth set and, additionally, for

the M (h)
j = Mj−1 + Mj+1 −Mj many hole solutions v′jlj . Obviously, the roots of the poly-

nomial pj(v) are given by the Bethe ansatz roots and the hole solutions. We may therefore
write

pj(v) = qj(v)q(h)j (v)(eβµj + eβµj+1) , (A.5)

where

q
(h)
j (v) =

M
(h)
j∏

lj=1

(v − v′jlj ) (A.6)

is defined in analogy to q(v). Next, we consider the quotient

pj(v + iεj)
pj(v)

=
qj−1(v)qj+1(v + iεj)eβµj + qj−1(v + iεj)qj+1(v)eβµj+1

qj−1(v − iεj)qj+1(v)eβµj + qj−1(v)qj+1(v − iεj)eβµj+1

=
qj(v + iεj)q

(h)
j (v + iεj)

qj(v)q(h)j (v)
. (A.7)

The resulting identity can be recast as

qj−1(v − iεj)
qj−1(v)

qj(v + iεj)
qj(v)

eβµj +
qj(v − iεj+1)

qj(v)
qj+1(v + iεj+1)

qj+1(v)
eβµj+1

=
qj−1(v − iεj+1)

qj−1(v)
q
(h)
j (v)

q
(h)
j (v − iεj+1)

eβµj+1 +
q
(h)
j (v)

q
(h)
j (v + iεj)

qj+1(v + iεj)
qj+1(v)

eβµj . (A.8)

After multiplying both sides with φ−(x)φ+(x), we find that the two terms on the left hand
side are equal to our original functions λj(v) and λj+1(v), respectively. Defining

q̃j(v) = q
(h)
j (v + iεj) = q

(h)
j (v − iεj+1) , (A.9)

we get the result

λj(v) + λj+1(v) = φ−(x)φ+(x)
qj−1(v − iεj+1)

qj−1(v)
q̃j(v + iεj+1)

q̃j(v)
eβµj+1

+ φ−(v)φ+(v)
q̃j(v − iεj)
q̃j(v)

qj+1(v + iεj)
qj+1(v)

eβµj . (A.10)

Comparing the right hand side to the left, we notice that the structure is basically the
same. On the right hand side, the neighbouring gradings εj and εj+1 and accordingly the
chemical potentials have been interchanged. At the same time, the polynomial qj(v) has been
replaced by q̃j(v) = q

(h)
j (v + iεj). We may identify the right hand side with the expression

λj(v) +λj+1(v) obtained for the new set of gradings {ε̃}. The remaining λ functions are the
same for both sets {ε} and {ε̃}.
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Grading {ε} Grading {ε̃}

{. . . , εj , εj+1, . . .} 7→ {. . . , εj+1, εj , . . .}
µj 7→ µ̃j = µj+1

µj+1 7→ µ̃j+1 = µj

qj(v) 7→ q̃j(v) = q
(h)
j (v + iεj)

q
(h)
j (v) 7→ q̃

(h)
j (v) = qj(v + iεj)

Table A.1: By exchanging two neighbouring gradings εj and εj+1, not only the general
chemical potentials, but also the polynomial of Bethe ansatz roots qj(v) and the polynomial
of hole solutions q(h)j (v) are modified. The eigenvalue Λ(v) therefore stays invariant.

Thus, the eigenvalue Λ(v) stays invariant, but the set of Bethe ansatz roots and hole
solutions changes. The corresponding mapping between {ε} and {ε̃} is summarized in Ta-
ble A.1.

Up to now, we have only investigated the permutation of two neighbouring gradings εj
and εj+1. However, because the result holds for any j, we can also deal with the general situa-
tion. Any particular grading pattern with fixed numbers of positive and negative gradings, r
and s respectively, can be transformed into any other pattern by repeated nearest-neighbour
permutations. Thus, once all Bethe ansatz roots and hole solutions are known for one par-
ticular case, Table A.1 can be used to calculate the corresponding roots and holes for any
other possible grading choice.
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Appendix B

Derivation of the TBA equations
for the sl(n|1)-symmetric case

In this appendix, we deal with the derivation of the NLIEs for the auxiliary functions y(a)
1 (x),

which has been omitted in Section 3.4.3.
For a = 1, . . . , n−1 and m = 2, . . . ,∞ the relations (3.16) also apply here. Therefore, the

derivation of the TBA equations for m ≥ 2 is completely analogous to the sl(n)-symmetric
case and yields the same result, see (3.37).

The case m = 1 is a bit more complicated. Applying the transformation (3.18) to both
sides of equation (3.16) for a = 1, . . . , n − 1 and m = 1, which is also valid for the sl(n|1)-
symmetric case, we eventually obtain

ŷ
(a)
1 (k) =

n−1∑
b=1

{
Â

(a,b)
[n] (k)Ŷ (b)

2 (k)−
(
Â

(a,b−1)
[n] (k) + Â

(a,b+1)
[n] (k)

)
Ŷ

(b)
1 (k)

}
+ Â

(a,1)
[n] (k)φ̂h(k)− Â(a,n−1)

[n] (k)
(
Ŷ

(n)
1 (k)− ŷ(n)

1 (k)
)
. (B.1)

Additionally, we consider the transform of the function y
(n)
1 (x),

ŷ
(n)
1 (k) = Λ̂(n)

0 (k)− Λ̂(n−1)
1 (k) . (B.2)

where we still have to eliminate the function Λ̂(n−1)
1 (k). In order to achieve this, consider

the equation

Λ̂(n−1)
1 (k) = Â

(n−1,1)
[n] (k)Λ̂(0)

1 (k) + Â
(n−1,n−1)
[n] (k)Λ̂(n)

1 (k) +
n−1∑
b=1

Â
(n−1,b)
[n] (k)Ŷ (b)

1 (k) , (B.3)

which is obtained in analogy to (3.29), and the equation

Ŷ
(n)
1 (k) = e|k|/2Λ̂(n)

1 (k)− Λ̂(n−1)
1 (k) , (B.4)
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which stems from the transform of the function Y
(n)
1 (x), where the identity

Λ̂(n+1)
1 (k) = e−|k|/2Λ̂(n)

1 (k) (B.5)

has been applied. Note that the latter identity is a direct consequence of the fusion relation

Λ̃(n+1)
1 (x− i/2)Λ̃(n+1)

1 (x+ i/2) = Λ̃(n)
1 (x)Λ̃(n+2)

1 (x) . (B.6)

Combining equations (B.3) and (B.4) yields

Λ̂(n−1)
1 (k) = e−(n−1)|k|/2Λ̂(0)

1 (k) + e−(n−1)|k|/2
n∑
b=1

sinh(bk/2)
sinh(k/2)

Ŷ
(b)
1 (k)− Ŷ (n)

1 (k) , (B.7a)

Λ̂(n)
1 (k) = e−n|k|/2Λ̂(0)

1 (k) + e−n|k|/2
n∑
b=1

sinh(bk/2)
sinh(k/2)

Ŷ
(b)
1 (k) . (B.7b)

We substitute this result into equation (B.2) and obtain

ŷ
(n)
1 (k) = e−n|k|/2φ̂h(k)−

n∑
b=1

e−(n−1)|k|/2 sinh(bk/2)
sinh(k/2)

Ŷ
(b)
1 (k) + Ŷ

(n)
1 (k) . (B.8)

Then, we eliminate ŷ(n)
1 (k) from equation (B.1), which leads to

ŷ
(a)
1 (k) = e−a|k|/2φ̂h(k) +

n−1∑
b=1

Â
(a,b)
[n] (k)Ŷ (b)

2 (k)

−
n∑
b=1

(
Â

(a,b−1)
[n] (k) + Â

(a,b+1)
[n] (k) + e−(n−1)|k|/2 sinh(ak/2) sinh(bk/2)

sinh(k/2) sinh(nk/2)

)
Ŷ

(b)
1 (k) .

(B.9)

Finally, the set of NLIEs (3.36) results from the inverse transform of equations (B.8)
and (B.9).



Appendix C

Derivation of the NLIEs for the
sl(4)-symmetric case

In this appendix, we give the detailed derivation of the NLIEs for the sl(4)-symmetric case
that has been deferred from Section 4.2.1.

We apply the transform (4.4) to all auxiliary functions. For brevity, we will treat only
the case k < 0 here, since the derivation is completely analogous for k > 0. For the functions
b
(a)
1,j (x) we get the results

b̂
(1)
1,1(k) = ek/2φ̂−(k)− e−k/2X̂(1)

2 (k) , (C.1a)

b̂
(1)
1,2(k) = ek/2φ̂−(k) + X̂

(3)
2 (k)− e−k/2q̂(h)3 (k)− Λ̂(2)

1 (k) , (C.1b)

b̂
(1)
1,3(k) = ek/2φ̂−(k) + e3k/2q̂2(k)− ek/2q̂3(k)− X̂(2)

2 (k) , (C.1c)

b̂
(1)
1,4(k) = ek/2φ̂−(k) + e3k/2q̂3(k)− ek/2φ̂+(k)− ek/2X̂(1)

1 (k) , (C.1d)

b̂
(2)
1,1(k) = ekφ̂−(k)− e−k/2X̂(2)

2 (k) , (C.1e)

b̂
(2)
1,2(k) = ekφ̂−(k) + ekq̂2(k)− X̂(1)

1 (k)− e−k/2X̂(3)
2 (k) , (C.1f)

b̂
(2)
1,3(k) = ekφ̂−(k) + ekq̂3(k)− q̂(h)2 (k)− Λ̂(1)

1 (k) , (C.1g)

b̂
(2)
1,4(k) = ekφ̂−(k) + e2kq̂1(k)− q̂(h)2 (k)− Λ̂(3)

1 (k) , (C.1h)

b̂
(2)
1,5(k) = ekφ̂−(k) + e2kq̂1(k) + ekq̂3(k)− ekq̂2(k)− X̂(1)

2 (k)− ek/2X̂(3)
1 (k) , (C.1i)

b̂
(2)
1,6(k) = ekφ̂−(k) + e2kq̂2(k)− ek/2X̂(2)

1 (k) , (C.1j)

b̂
(3)
1,1(k) = e3k/2φ̂−(k)− X̂(3)

1 (k) , (C.1k)

b̂
(3)
1,2(k) = e3k/2φ̂−(k) + ek/2q̂3(k)− X̂(2)

1 (k) , (C.1l)

b̂
(3)
1,3(k) = e3k/2φ̂−(k) + e3k/2q̂2(k) + e−k/2X̂(1)

2 (k)− e3k/2q̂1(k)− e−k/2q̂(h)3 (k)− Λ̂(2)
1 (k) ,

(C.1m)

b̂
(3)
1,4(k) = e3k/2φ̂−(k) + e5k/2q̂1(k)− e5k/2φ̂−(k)− X̂(3)

2 (k) . (C.1n)
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For the uppercase functions B(a)
1,j (x) the transform yields

B̂
(1)
1,1(k) = e−k/2Λ̂(1)

1 (k)− e−k/2X̂(1)
2 (k) , (C.2a)

B̂
(1)
1,2(k) = e−k/2X̂(1)

2 (k) + X̂
(2)
2 (k)− e−k/2q̂(h)3 (k)− Λ̂(2)

1 (k) , (C.2b)

B̂
(1)
1,3(k) = e−k/2q̂(h)3 (k) + ek/2X̂(1)

1 (k)− ek/2q̂3(k)− X̂(2)
2 (k) , (C.2c)

B̂
(1)
1,4(k) = ek/2q̂3(k) + ek/2Λ̂(1)

1 (k)− ek/2φ̂+(k)− ek/2X̂(1)
1 (k) , (C.2d)

B̂
(2)
1,1(k) = e−k/2Λ̂(2)

1 (k)− e−k/2X̂(2)
2 (k) , (C.2e)

B̂
(2)
1,2(k) = q̂

(h)
2 (k) + e−k/2X̂(2)

2 (k)− X̂(1)
1 (k)− e−k/2X̂(3)

2 (k) , (C.2f)

B̂
(2)
1,3(k) = X̂

(1)
1 (k) + X̂

(1)
2 (k)− q̂(h)2 (k)− Λ̂(1)

1 (k) , (C.2g)

B̂
(2)
1,4(k) = ek/2X̂(3)

1 (k) + e−k/2X̂(3)
2 (k)− q̂(h)2 (k)− Λ̂(3)

1 (k) , (C.2h)

B̂
(2)
1,5(k) = q̂

(h)
2 (k) + ek/2X̂(2)

1 (k)− ekq̂2(k)− X̂(1)
2 (k)− ek/2X̂(3)

1 (k) , (C.2i)

B̂
(2)
1,6(k) = ekq̂2(k) + ek/2Λ̂(2)

1 (k)− ek/2X̂(2)
1 (k) , (C.2j)

B̂
(3)
1,1(k) = e−k/2Λ̂(3)

1 (k)− X̂(3)
1 (k) , (C.2k)

B̂
(3)
1,2(k) = e−k/2q̂(h)3 (k) + X̂

(3)
1 (k)− X̂(2)

1 (k) , (C.2l)

B̂
(3)
1,3(k) = X̂

(2)
1 (k) + X̂

(3)
2 (k)− e3k/2q̂1(k)− e−k/2q̂(h)3 (k)− Λ̂(2)

1 (k) , (C.2m)

B̂
(3)
1,4(k) = e3k/2q̂1(k) + ek/2Λ̂(3)

1 (k)− e5k/2φ̂−(k)− X̂(3)
2 (k) . (C.2n)

The latter forms a system of 14 linear equations, where there are exactly 14 unknown
functions on the right hand sides. After solving the linear system for the unknown functions,
we substitute the result into equations (C.1). This way, only the auxiliary functions survive
in the remaining set of equations. After repeating the procedure for the case k > 0, we
combine the results to get a system of equations valid for all k ∈ R. The resulting equations
are of the form

b̂
(a)
1,j (k) = −iN sinh(kJβ/N)V̂ (a)

[4] (k) +
3∑
b=1

db∑
l=1

K̂(a,b)
j,l (k) · B̂(b)

l (k) . (C.3)

The functions V̂ (a)
[n] (k) are given by

V̂
(a)
[n] (k) =

sinh([n− a]k/2)
sinh(nk/2)

, (C.4)

and for the matrices K̂(a,b)(k) we find the structure

K̂(1,1)(k) =


K̂0(k) K̂1(k) K̂1(k) K̂1(k)
K̂2(k) K̂0(k) K̂1(k) K̂1(k)
K̂2(k) K̂2(k) K̂0(k) K̂1(k)
K̂2(k) K̂2(k) K̂2(k) K̂0(k)

 , (C.5a)
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K̂(2,2)(k) =



K̂3(k) K̂4(k) K̂4(k) K̂4(k) K̂4(k) K̂6(k)
K̂5(k) K̂3(k) K̂4(k) K̂4(k) K̂8(k) K̂4(k)
K̂5(k) K̂5(k) K̂3(k) K̂10(k) K̂4(k) K̂4(k)
K̂5(k) K̂5(k) K̂10(k) K̂3(k) K̂4(k) K̂4(k)
K̂5(k) K̂9(k) K̂5(k) K̂5(k) K̂3(k) K̂4(k)
K̂7(k) K̂5(k) K̂5(k) K̂5(k) K̂5(k) K̂3(k)


, (C.5b)

K̂(1,2)(k) =


K̂11(k) K̂11(k) K̂11(k) K̂12(k) K̂12(k) K̂12(k)
K̂11(k) K̂14(k) K̂14(k) K̂11(k) K̂11(k) K̂12(k)
K̂13(k) K̂11(k) K̂14(k) K̂11(k) K̂14(k) K̂11(k)
K̂13(k) K̂13(k) K̂11(k) K̂13(k) K̂11(k) K̂11(k)

 , (C.5c)

K̂(1,3)(k) =


K̂15(k) K̂15(k) K̂15(k) K̂16(k)
K̂15(k) K̂15(k) K̂18(k) K̂15(k)
K̂15(k) K̂19(k) K̂15(k) K̂15(k)
K̂17(k) K̂15(k) K̂15(k) K̂15(k)

 , (C.5d)

and

K̂(3,3)(k) = K̂(1,1)(k) , K̂(2,1)(k) =
(
K̂(1,2)(−k)

)T
, (C.6a)

K̂(3,1)(k) =
(
K̂(1,3)(−k)

)T
, K̂(3,2)(k) =

(
K̂(2,3)(−k)

)T
, (C.6b)

K̂(2,3)
j,l (k) = K̂(1,2)

5−l,7−j(k) . (C.6c)

The functions K̂j(k) are explicitly given by

K̂0(k) = K̂(1,1)
[4] (k) , K̂1(k) = K̂(1,1)

[4] (k) + e−k/2−|k|/2 , (C.7a)

K̂2(k) = K̂(1,1)
[4] (k) + ek/2−|k|/2 , K̂3(k) = K̂(2,2)

[4] (k) , (C.7b)

K̂4(k) = K̂(2,2)
[4] (k) + e−k/2−|k|/2 , K̂5(k) = K̂(2,2)

[4] (k) + ek/2−|k|/2 , (C.7c)

K̂6(k) = K̂(2,2)
[4] (k) + e−k−|k| , K̂7(k) = K̂(2,2)

[4] (k) + ek−|k| , (C.7d)

K̂8(k) = K̂(2,2)
[4] (k) + 2e−k/2−|k|/2 , K̂9(k) = K̂(2,2)

[4] (k) + 2ek/2−|k|/2 , (C.7e)

K̂10(k) = K̂(2,2)
[4] (k) + e−|k| , K̂11(k) = K̂(1,2)

[4] (k) , (C.7f)

K̂12(k) = K̂(1,2)
[4] (k) + e−k−|k|/2 − e−k/2 , K̂13(k) = K̂(1,2)

[4] (k) + ek−|k|/2 − ek/2 , (C.7g)

K̂14(k) = K̂(1,2)
[4] (k) + e−|k|/2 , K̂15(k) = K̂(1,3)

[4] (k) , (C.7h)

K̂16(k) = K̂(1,3)
[4] (k) + e−3k/2−|k|/2 − e−k , K̂17(k) = K̂(1,3)

[4] (k) + e3k/2−|k|/2 − ek , (C.7i)

K̂18(k) = K̂(1,3)
[4] (k) + e−k/2−|k|/2 − 1 , K̂19(k) = K̂(1,3)

[4] (k) + ek/2−|k|/2 , (C.7j)

with the common function

K̂(a,b)
[n] (k) = e|k|/2

sinh(min(a, b)k/2) sinh([n−max(a, b)]k/2)
sinh(k/2) sinh(nk/2)

− δa,b . (C.8)
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Since only the first term of (C.3) explicitly depends on the Trotter number N and has
the same structure as in the sl(2)-symmetric case, we may again use the simple replacement

N sinh(kJβ/N)→ kJβ (C.9)

in order to apply the Trotter limit N → ∞, see equation (4.7). Next we transform the
equations back and apply the integration with respect to the spectral parameter x. Doing
this, products are replaced by convolutions and we arrive at the final form of the NLIEs
given in equations (4.55)–(4.63).



Appendix D

Algebra-related properties of the
kernel matrix

In Section 5.1, we have seen that most of the kernel functions of the NLIEs for the general
sl(n)-symmetric case of the Uimin-Sutherland model can be obtained from reasonable as-
sumptions on the general structure of the equations and by exploiting certain limiting cases
of the NLIEs. However, exactly one kernel function of each NLIE cannot be fixed by these
considerations. In this appendix, we will therefore explore some additional structure that
helps in guessing the remaining functions.

Let us first turn to the constants appearing in the driving terms of the NLIEs for the
sl(n)-symmetric case of the Uimin-Sutherland model. From equation (5.5) it follows that
the constants of the first subset c(1)

j and the first constants of the subsets c(a)1 are explicitly
given by

c
(1)
j =

1
n

n∑
k=1

µk − µj , c
(a)
1 =

a

n

n∑
k=1

µk −
a∑
l=1

µl . (D.1)

We also introduce the differences αj between the constants c(1)
j and c(1)

j+1 which are given by

αj = c
(1)
j − c

(1)
j+1 = µj+1 − µj . (D.2)

These differences do not only appear in the first subset, but αj is generally found to be the
difference between two constants c(a)k and c

(a)
l for which the corresponding Young tableaux

differ only by one entry being j and j+1, respectively. We may therefore regard the constants
c
(a)
j as being weights belonging to vectors of the ath fundamental representation of sl(n) and

the differences αj as being the simple roots1. Moreover, there is a connection between the
roots αj , the highest weights c(a)1 for each representation and the Cartan matrix of sl(n),

1Thanks to J. Suzuki for pointing this out to me.
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Cj,k = −δj,k−1 − δj,k+1 + 2δj,k, given by

αj =
n−1∑
k=1

Cj,k · c
(k)
1 . (D.3)

It looks tempting to include a spectral parameter dependence and search for a similar
structure taking the complete expressions for ln b(a)1,j (x) as generalized weights. Let us also
introduce the generalized roots

αj(x) = ln b(1)
1,j (x)− ln b(1)

1,j+1(x) . (D.4)

If the expressions αj(x) are supposed to be proper roots, they should connect the weights
ln b(a)1,j (x) of the other representations as well. Checking this with the explicit form of the
auxiliary functions of the sl(3)-symmetric case (4.17), however, proves that this can not
strictly be the case, since for example

1 → 2 : α1(x) = ln b(1)
1,1(x)− ln b(1)

1,2(x) , (D.5)

is clearly different from

1
3
→ 2

3
: α′1(x) = ln b(2)

1,2(x)− ln b(2)
1,3(x) . (D.6)

Note also that equation (D.3) is no longer valid with these definitions. Nevertheless, we
observe the functions α1(x) and α′1(x) to look very similar to each other if we express them
with the help of the final NLIEs (4.23). We find

α1(x) = −βα1 −
[(

i
x− i

− i
x+ 0i

)
∗ lnB(1)

1,1

]
(x)−

[(
i

x+ i
− i
x− 0i

)
∗ lnB(1)

1,2

]
(x)

−

[(
i

x− i
2

− i
x+ i

2

)
∗ lnB(2)

1,2

]
(x)−

[(
i

x+ 3
2 i
− i
x+ i

2

)
∗ lnB(2)

1,3

]
(x) ,

(D.7a)

α′1(x) = −βα1 −

[(
i

x− 3
2 i
− i
x− i

2

)
∗ lnB(1)

1,1

]
(x)−

[(
i

x+ i
2

− i
x− i

2

)
∗ lnB(1)

1,2

]
(x)

−
[(

i
x− i

− i
x+ 0i

)
∗ lnB(2)

1,2

]
(x)−

[(
i

x+ i
− i
x− 0i

)
∗ lnB(2)

1,3

]
(x) . (D.7b)

It is a remarkable fact that we can basically recover α′1(x) just by shifting the argument of
all kernel functions in α1(x) by −i/2. Note that the value for the shift in the argument is
not totally unexpected, but that it corresponds to the position of the boxes containing the
numbers 1 and 2 in the Young tableaux of the second fundamental representation, confer
equation (D.6). Problems occur, however, where the shift leads to a pole at the origin, since
α1(x) contains no information whether the pole should be placed slightly above or below
the real axis in the expression for α′1(x).
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The observation that the function α1(x) is at least similar to a root is not accidental. In
analogy, the function α2(x) is related to α′2(x) = ln b(2)

1,1 − ln b(2)
1,2 by a shift of +i/2. We have

checked that this observation also holds for the sl(4)-symmetric case. Here, the generalized
roots αj(x) are connected to those of the other representations by shifts of ±i/2 and ±i or
0 for the second and third fundamental representations, respectively. Note that the exact
positions of the poles near the real axis also need to be neglected here. The structure even
holds for the sl(5)-symmetric case, as far as the kernel functions can be fixed by exploiting
the sl(4) limit. Admitting this in general thus enables us to fix the missing kernel functions
from the antidiagonal of the kernel matrix. For the missing kernel functions of the sl(5)-
symmetric case there is even no ambiguity, since all poles that appear in these functions are
away from the origin. A further extension to the sl(6)-symmetric case would nevertheless
require some additional tests to find the right pole configuration.

Unfortunately, the mathematical background of the observed structure is yet unknown.
It is our hope that further investigations may lead to a rigorous construction of the NLIEs
for the general sl(n)-symmetric case.
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Appendix E

Explicit kernel matrix of the
sl(5)-symmetric case

In this appendix, we give the explicit kernel matrix of the sl(5)-symmetric case of the Uimin-
Sutherland model that has been deferred from Section 5.1. The submatrices K(a,b)

j,k (x) are
found to be

K(1,1)(x) =


K0(x) K1(x) K1(x) K1(x) K1(x)
K2(x) K0(x) K1(x) K1(x) K1(x)
K2(x) K2(x) K0(x) K1(x) K1(x)
K2(x) K2(x) K2(x) K0(x) K1(x)
K2(x) K2(x) K2(x) K2(x) K0(x)

 , (E.1a)

K(1,2)(x) =
K3(x) K3(x) K3(x) K3(x) K4(x) K4(x) K4(x) K4(x) K4(x) K4(x)
K3(x) K6(x) K6(x) K6(x) K3(x) K3(x) K3(x) K4(x) K4(x) K4(x)
K5(x) K3(x) K6(x) K6(x) K3(x) K6(x) K6(x) K3(x) K3(x) K4(x)
K5(x) K5(x) K3(x) K6(x) K5(x) K3(x) K6(x) K3(x) K6(x) K3(x)
K5(x) K5(x) K5(x) K3(x) K5(x) K5(x) K3(x) K5(x) K3(x) K3(x)

 , (E.1b)

K(1,3)(x) =
K7(x) K7(x) K7(x) K7(x) K7(x) K7(x) K8(x) K8(x) K8(x) K8(x)
K7(x) K7(x) K7(x) K10(x) K10(x) K10(x) K7(x) K7(x) K7(x) K8(x)
K7(x) K11(x) K11(x) K7(x) K7(x) K10(x) K7(x) K7(x) K10(x) K7(x)
K9(x) K7(x) K11(x) K7(x) K11(x) K7(x) K7(x) K11(x) K7(x) K7(x)
K9(x) K9(x) K7(x) K9(x) K7(x) K7(x) K9(x) K7(x) K7(x) K7(x)

 , (E.1c)

K(1,4)(x) =


K12(x) K12(x) K12(x) K12(x) K13(x)
K12(x) K12(x) K12(x) K15(x) K12(x)
K12(x) K12(x) K17(x) K12(x) K12(x)
K12(x) K16(x) K12(x) K12(x) K12(x)
K14(x) K12(x) K12(x) K12(x) K12(x)

 , (E.1d)

131



132 Appendix E. Explicit kernel matrix of the sl(5)-symmetric case

K(2,2)(x) =

K18(x) K19(x) K19(x) K19(x) K19(x) K19(x) K19(x) K21(x) K21(x) K21(x)
K20(x) K18(x) K19(x) K19(x) K19(x) K23(x) K23(x) K19(x) K19(x) K21(x)
K20(x) K20(x) K18(x) K19(x) K25(x) K19(x) K23(x) K19(x) K23(x) K19(x)
K20(x) K20(x) K20(x) K18(x) K25(x) K25(x) K19(x) K25(x) K19(x) K19(x)
K20(x) K20(x) K25(x) K25(x) K18(x) K19(x) K19(x) K19(x) K19(x) K21(x)
K20(x) K24(x) K20(x) K25(x) K20(x) K18(x) K19(x) K19(x) K23(x) K19(x)
K20(x) K24(x) K24(x) K20(x) K20(x) K20(x) K18(x) K25(x) K19(x) K19(x)
K22(x) K20(x) K20(x) K25(x) K20(x) K20(x) K25(x) K18(x) K19(x) K19(x)
K22(x) K20(x) K24(x) K20(x) K20(x) K24(x) K20(x) K20(x) K18(x) K19(x)
K22(x) K22(x) K20(x) K20(x) K22(x) K20(x) K20(x) K20(x) K20(x) K18(x)


,

(E.1e)

K(2,3)(x) =

K26(x) K26(x) K26(x) K27(x) K27(x) K27(x) K27(x) K27(x) K27(x) K30(x)
K26(x) K29(x) K29(x) K26(x) K26(x) K27(x) K27(x) K27(x) K32(x) K27(x)
K28(x) K26(x) K29(x) K26(x) K29(x) K26(x) K27(x) K34(x) K27(x) K27(x)
K28(x) K28(x) K26(x) K28(x) K26(x) K26(x) K36(x) K27(x) K27(x) K27(x)
K26(x) K29(x) K29(x) K29(x) K29(x) K34(x) K26(x) K26(x) K27(x) K27(x)
K28(x) K26(x) K29(x) K29(x) K37(x) K29(x) K26(x) K29(x) K26(x) K27(x)
K28(x) K28(x) K26(x) K35(x) K29(x) K29(x) K28(x) K26(x) K26(x) K27(x)
K28(x) K28(x) K35(x) K26(x) K29(x) K29(x) K26(x) K29(x) K29(x) K27(x)
K28(x) K33(x) K28(x) K28(x) K26(x) K29(x) K28(x) K26(x) K29(x) K26(x)
K31(x) K28(x) K28(x) K28(x) K28(x) K26(x) K28(x) K28(x) K26(x) K26(x)


.

(E.1f)

Due to the symmetry properties of K(x), the rest of the submatrices are given by

K(2,1)(x) =
(
K(1,2)(x)

)†
, K(2,4)

j,k (x) = K(1,3)
6−k,11−j(x) , (E.2a)

K(3,1)(x) =
(
K(1,3)(x)

)†
, K(3,2)(x) =

(
K(2,3)(x)

)†
, (E.2b)

K(3,3)
j,k (x) = K(2,2)

11−k,11−j(x) , K(3,4)
j,k (x) = K(1,2)

6−k,11−j(x) , (E.2c)

K(4,1)(x) =
(
K(1,4)(x)

)†
, K(4,2)(x) =

(
K(2,4)(x)

)†
, (E.2d)

K(4,3)(x) =
(
K(3,4)(x)

)†
, K(4,4)

j,k (x) = K(1,1)
6−k,6−j(x) . (E.2e)

The explicit kernel functions are

K0(x) = K(1,1)
[5] (x) , K1(x) = K(1,1)

[5] (x) +
i

x+ i
− i
x− 0i

, (E.3a)

K2(x) = K(1,1)
[5] (x) +

i
x+ 0i

− i
x− i

, K3(x) = K(1,2)
[5] (x) , (E.3b)
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K4(x) = K(1,2)
[5] (x) +

i
x+ 3

2 i
− i
x+ i

2

, K5(x) = K(1,2)
[5] (x) +

i
x− i

2

− i
x− 3

2 i
, (E.3c)

K6(x) = K(1,2)
[5] (x) +

i
x+ i

2

− i
x− i

2

, K7(x) = K(1,3)
[5] (x) , (E.3d)

K8(x) = K(1,3)
[5] (x) +

i
x+ 2i

− i
x+ i

, K9(x) = K(1,3)
[5] (x) +

i
x− i

− i
x− 2i

, (E.3e)

K10(x) = K(1,3)
[5] (x) +

i
x+ i

− i
x+ 0i

, K11(x) = K(1,3)
[5] (x) +

i
x+ 0i

− i
x− i

, (E.3f)

K12(x) = K(1,4)
[5] (x) , K13(x) = K(1,4)

[5] (x) +
i

x+ 5
2 i
− i
x+ 3

2 i
, (E.3g)

K14(x) = K(1,4)
[5] (x) +

i
x− 3

2 i
− i
x− 5

2 i
, K15(x) = K(1,4)

[5] (x) +
i

x+ 3
2 i
− i
x+ i

2

, (E.3h)

K16(x) = K(1,4)
[5] (x) +

i
x− i

2

− i
x− 3

2 i
, K17(x) = K(1,4)

[5] (x) +
i

x+ i
2

− i
x− i

2

, (E.3i)

K18(x) = K(2,2)
[5] (x) , K19(x) = K(2,2)

[5] (x) +
i

x+ i
− i
x− 0i

, (E.3j)

K20(x) = K(2,2)
[5] (x) +

i
x+ 0i

− i
x− i

, K21(x) = K(2,2)
[5] (x) +

i
x+ 2i

− i
x− 0i

, (E.3k)

K22(x) = K(2,2)
[5] (x) +

i
x+ 0i

− i
x− 2i

, K23(x) = K(2,2)
[5] (x) +

2i
x+ i

− 2i
x− 0i

, (E.3l)

K24(x) = K(2,2)
[5] (x) +

2i
x+ 0i

− 2i
x− i

, K25(x) = K(2,2)
[5] (x) +

i
x+ i

− i
x− i

, (E.3m)

K26(x) = K(2,3)
[5] (x) , K27(x) = K(2,3)

[5] (x) +
i

x+ 3
2 i
− i
x+ i

2

, (E.3n)

K28(x) = K(2,3)
[5] (x) +

i
x− i

2

− i
x− 3

2 i
, K29(x) = K(2,3)

[5] (x) +
i

x+ i
2

− i
x− i

2

, (E.3o)

K30(x) = K(2,3)
[5] (x) +

i
x+ 5

2 i
− i
x+ i

2

, K31(x) = K(2,3)
[5] (x) +

i
x− i

2

− i
x− 5

2 i
, (E.3p)

K32(x) = K(2,3)
[5] (x) +

2i
x+ 3

2 i
− 2i
x+ i

2

, K33(x) = K(2,3)
[5] (x) +

2i
x− i

2

− 2i
x− 3

2 i
, (E.3q)

K34(x) = K(2,3)
[5] (x) +

i
x+ 3

2 i
− i
x− i

2

, K35(x) = K(2,3)
[5] (x) +

i
x+ i

2

− i
x− 3

2 i
, (E.3r)

K36(x) = K(2,3)
[5] (x) +

i
x+ 3

2 i
+

i
x− i

2

− i
x+ i

2

− i
x− 3

2 i
, K37(x) = K(2,3)

[5] (x) +
2i

x+ i
2

− 2i
x− i

2

, (E.3s)

where the common function K(a,b)
[5] (x) is the one given in equation (4.62).
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dimensional hubbard model, Cambridge University Press, Cambridge, 2005.

[24] F. H. L. Essler, V. E. Korepin, and K. Schoutens, New exactly solvable model of strongly
correlated electrons motivated by high-Tc superconductivity, Phys. Rev. Lett. 68 (1992),
no. 19, 2960–2963.

[25] , Electronic model for superconductivity, Phys. Rev. Lett. 70 (1993), no. 1, 73–76.

[26] B. Frischmuth, F. Mila, and M. Troyer, Thermodynamics of the one-dimensional SU (4)
symmetric spin-orbital model, Phys. Rev. Lett. 82 (1999), no. 4, 835–838.



Bibliography 137
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[43] A. Klümper and M. T. Batchelor, An analytic treatment of finite-size corrections in the
spin-1 antiferromagnetic XXZ chain, J. Phys. A: Math. Gen. 23 (1990), L189–L195.
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[45] A. Klümper and D. C. Johnston, Thermodynamics of the spin-1/2 antiferromagnetic
uniform Heisenberg chain, Phys. Rev. Lett. 84 (2000), no. 20, 4701–4704.
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[47] A. Klümper, T. Wehner, and J. Zittartz, Thermodynamics of the quantum Perk-Schultz
model, J. Phys. A: Math. Gen. 30 (1997), 1897–1912.

[48] T. Koma, Thermal Bethe-ansatz method for the one-dimensional Heisenberg model,
Prog. Theor. Phys. 78 (1987), no. 6, 1213–1218.

[49] V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum inverse scattering method
and correlation functions, Cambridge University Press, Cambridge, 1993.

[50] P. P. Kulish and N. Yu. Reshetikhin, Generalized Heisenberg ferromagnet and the Gross-
Neveu model, Sov. Phys. JETP 53 (1981), no. 1, 108–114.

[51] P. P. Kulish, N. Yu. Reshetikhin, and E. K. Sklyanin, Yang-Baxter equation and repre-
sentation theory: I, Lett. Math. Phys. 5 (1981), 393–403.

[52] P. P. Kulish and E. K. Sklyanin, Solutions of the Yang-Baxter equation, Zap. Nauchn.
Sem. LOMI 95 (1980), 129–160.

[53] A. Kuniba, T. Nakanishi, and J. Suzuki, Functional relations in solvable lattice models:
I. Functional relations and representation theory, II. Applications, Int. J. Mod. Phys.
A 9 (1994), no. 30, 5215–5266, 5267–5312.

[54] A. Kuniba, Y. Ohta, and J. Suzuki, Quantum Jacobi-Trudi and Giambelli formulae for
Uq(B

(1)
r ) from the analytic Bethe ansatz, J. Phys. A: Math. Gen. 28 (1995), 6211–6226.

[55] A. Kuniba and J. Suzuki, Analytic Bethe ansatz for fundamental representations of
Yangians, Commun. Math. Phys. 173 (1995), 225–264.

[56] K. Lee, Critical behavior of the SU (N)-invariant Heisenberg ferromagnet in one dimen-
sion, J. Korean Phys. Soc. 27 (1994), no. 2, 205–209.

[57] , Low-temperature specific heat of the generalized antiferromagnetic SU (N)
Heisenberg model with and without a field, Phys. Lett. A 187 (1994), 112–118.

[58] K. Lee and P. Schlottmann, Soluble one-dimensional narrow-band model with arbitrary
spin S and possible relevance to heavy-fermions and resonating valence bonds, J. Phys.
Colloques 49 (1988), no. C8, 709–710.



Bibliography 139

[59] E. H. Lieb, Exact solution of the F model of an antiferroelectric, Phys. Rev. Lett. 18
(1967), no. 24, 1046–1048.

[60] , Exact solution of the two-dimensional Slater KDP model of a ferroelectric,
Phys. Rev. Lett. 19 (1967), no. 3, 108–110.

[61] , Residual entropy of square ice, Phys. Rev. 162 (1967), no. 1, 162–172.

[62] E. H. Lieb and W. Liniger, Exact analysis of an interacting Bose gas. I. The general
solution and the ground state, Phys. Rev. 130 (1963), no. 4, 1605–1616.

[63] S. Lukyanov, Low energy effective Hamiltonian for the XXZ spin chain, Nucl. Phys. B
522 (1998), 533–549.

[64] L. Onsager, Crystal statistics. I. a two-dimensional model with an order-disorder tran-
sition, Phys. Rev. 65 (1944), 117–149.

[65] J. H. H. Perk and C. L. Schultz, New families of commuting transfer matrices in q-state
vertex models, Phys. Lett. A 84 (1981), no. 8, 407–410.

[66] H. Saleur, The continuum limit of sl(N/K) integrable super spin chains, Nucl. Phys. B
578 (2000), 552–576.

[67] P. Schlottmann, Integrable narrow-band model with possible relevance to heavy-fermion
systems, Phys. Rev. B 36 (1987), no. 10, 5177–5185.

[68] , Logarithmic singularities in the susceptibility of the antiferromagnetic SU (N)
Heisenberg model, Phys. Rev. B 45 (1992), no. 10, 5293–5298.

[69] C. L. Schultz, Solvable q-state models in lattice statistics and quantum field theory,
Phys. Rev. Lett. 46 (1981), no. 10, 629–632.

[70] , Eigenvectors of the multi-component generalization of the six-vertex model,
Physica A 122 (1983), 71–88.

[71] M. Shiroishi and M. Takahashi, Integral equation generates high-temperature expansion
of the Heisenberg chain, Phys. Rev. Lett. 89 (2002), 117201.

[72] J. Sirker, Thermodynamics of a one-dimensional S = 1/2 spin-orbital model, Phys.
Rev. B 69 (2004), 104428.

[73] B. Sutherland, Exact solution of a two-dimensional model for hydrogen-bonded crystals,
Phys. Rev. Lett. 19 (1967), no. 3, 103–104.

[74] , Model for a multicomponent quantum system, Phys. Rev. B 12 (1975), no. 9,
3795–3805.

[75] J. Suzuki, Fusion Uq(G
(1)
2 ) vertex models and analytic Bethe ansätze, Phys. Lett. A 195

(1994), 190–197.



140 Bibliography

[76] , Spinons in magnetic chains of arbitrary spins at finite temperatures, J. Phys.
A: Math. Gen. 32 (1999), 2341–2359.

[77] J. Suzuki, Y. Akutsu, and M. Wadati, A new approach to quantum spin chains at finite
temperature, J. Phys. Soc. Jpn. 59 (1990), no. 8, 2667–2680.

[78] M. Suzuki, Generalized Trotter’s formula and systematic approximants of exponential
operators and inner derivations with applications to many-body problems, Commun.
Math. Phys. 51 (1976), 183–190.

[79] , Relationship between d-dimensional quantal spin systems and (d + 1)-
dimensional Ising systems, Prog. Theor. Phys. 56 (1976), no. 5, 1454–1469.

[80] , Transfer-matrix method and Monte Carlo simulation in quantum spin systems,
Phys. Rev. B 31 (1985), no. 5, 2957–2965.

[81] M. Suzuki and M. Inoue, The ST-transformation approach to analytic solutions of quan-
tum systems. I, Prog. Theor. Phys. 78 (1987), no. 4, 787–799.

[82] M. Takahashi, One-dimensional Heisenberg model at finite temperature, Prog. Theor.
Phys. 46 (1971), no. 2, 401–415.

[83] , Thermodynamics of one-dimensional solvable models, Cambridge University
Press, Cambridge, 1999.

[84] , Simplification of thermodynamic Bethe-ansatz equations, Physics and Combi-
natorics 2000 (Singapore) (A. N. Kirillov and N. Liskova, eds.), World Scientific, 2001,
pp. 299–304.

[85] M. Takahashi, M. Shiroishi, and A. Klümper, Equivalence of TBA and QTM, J. Phys.
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