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RG renormalization group
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1 Introduction

Ultimately, intermolecular forces must be derived from quantum theory. Nevertheless,
structural and dynamic properties of molecular systems can often be described via simple
phenomenological models. Two molecules for instance attract at large distances and repel
each other at close range. Based on this concept, the first microscopic theory of phase
change, i.e. gas-liquid transition, was developed by van der Waals. This simple picture of
molecular interaction may be extended to complex phenomenological force fields which, if
properly parametrized, yield precise descriptions of many molecular and thermodynamic
properties exhibited by real systems (an overview on force fields is provided by refer-
ence [5]). An important ingredient, largely responsible for phase changes in molecular
systems, is the description of long-range interaction in terms of a power series expan-
sion of dispersion attraction combined with Coulomb interaction between partial charges
formed due to the difference in electron affinity of the atoms. Partial charges may be
static or, which is less of an approximation, dynamically induced. The latter results in
non-pairwise additive interactions.
This thesis describes the investigation of the phase behaviour of a simple molecular model,
the Stockmayer potential with and without polarization, both via computer simulation
and mean-field theory. The Stockmayer potential, originally designed as a simple approx-
imation of molecular water or similar low molecular weight fluids, is one of the prototyp-
ical models in the context of ferrofluids. The original Stockmayer potential consists of a
Lennard-Jones potential, u = 4(r−12 − r−6), where u and r are the potential energy and
the intermolecular separation in reduced units, plus a point dipole-point dipole interac-
tion, where the dipole moments ~µ are located on the Lennard-Jones sites.
Ferrofluids become strongly polarized in the presence of a magnetic field. They are nor-
mally colloidal suspensions of solid, ferromagnetic nanoparticles, such as Iron (Fe), cobalt
(Co), nickel (Ni) or magnetite (Fe3O4) and a carrier liquid like water or oil. In ferrofluids
agglomeration of the particles is usually unwanted and prevented by coating the ferro-
magnetic particles with stabilizing surfactants or silica layers. The size of the particles
(5-15nm) is smaller than the size of magnetic domains making sure that the particles are
magnetized homogeneously. The particles of modern ferrofluids produced by chemical
reaction are almost of perfect spherical shape [6]. Since the magnetic field of a homoge-
neously magnetized sphere is an exactly dipolar one, the Stockmayer potential is a very
good model to investigate the phase behaviour of ferrofluids. There is a analogy between
the gas-liquid phase transition of polar molecules and the dilute-dense transition of fer-
rofluids which affects only the magnetic subsystem, the carrier system remains always
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16 1 Introduction

liquid [7, 8]. This results in clusters of ferromagnetic particles which form droplets in the
carrier liquid.
Ferrofluids are already used in a wide range of applications. They are adopted as ac-
tive liquid coolants for example in loud speakers to dissipate the heat from the voice
coil and to cushion the membrane. They are used as liquid seals around spinning drive
shafts, especially for vacuum chambers. The rotating shaft is surrounded by magnets to
hold the ferrofluid in position. This principle is applied in hard disk drives of comput-
ers. Furthermore they are used for magnetohydrostatic separation, a method to separate
substances like metal particles by density. An inhomogeneous magnetic field is varied
and so the lifting force on the particles can be adjusted. Ferrofluids are constituents of
Radar Absorbent Material (RAM) paint, an important part of the stealth technology to
make aircrafts invisible for radar. In medicine ferrofluids are useful for cancer therapy.
The concentration of drugs bonded to ferromagnetic particles can be increased in special
parts of the body by appling an external magnetic field. Another approach is to heat the
tumor by injecting a ferrofluid and then applying a fast varying magnetic field, but this
is still a point of research. The last big area of applications is optics, due to the refractive
properties of ferrofluids, so they are used in wave plates and polarizers.
The Stockmayer potential can be taken as a model potential for particles of magnetorhe-
ological liquids, too. These are very similar to ferrofluids, the main difference is the size
of the ferromagnetic particles which is for magnetorheological liquids on the micrometer
scale. If an external magnetic field is applied to these liquids, the ferromagnetic particles
begin to form chains which lengths depend on the field strength. For ferrofluids this be-
haviour is disliked, for magnetorheological liquids one wants to influence the rheological
properties like viscosity or elasticity. Magnetorheological liquids are used in dampers,
shock absorbers, clutches and brakes. Electrorheological liquids are analogous to magne-
torheological, but the particles consist of a ferroelectric or high polarizable material. The
areas of applications are the same.
Another field of application of dipolar model fluids like the Stockmayer fluid are self assem-
bling polymers. This is because dipolar interaction may lead to the reversible formation
of polydisperse chains from molecules or colloidal particles [9] (cf. in particular Ref. [10]
and the references therein) whose physical behavior is similar to ordinary polymer sys-
tems [11]. The chain formation in turns strongly affects the behavior of the monomer
systems. Examples for reversibly self assembling polymers are the already mentioned
ferrofluids [12] and surfactants. The latter form micelles with shapes dependend on the
molecular shape. Another example are mesogens which show a liquid crystalline phase.
The Stockmayer fluid can be taken as a model for dipolar liquid crystals, but models
with an extended rigid body are here more favorable, since the liquid crystalline phase is
caused by the rigid shape of the molecules, too.
Because of the perfect analogy between systems of magnetical and electrical dipolar par-
ticles, our results are applicable to both. Each electric physical quantity has an analog
magnetic one. For reasons of simplicity we will always use the electric terminology in the
equations, because most of the first articles on the Stockmayer fluid and other dipolar
model potentials use this. If we refer to the literature, we will adopt the terminology used
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there.
The main results of the present work are the path of the gas-liquid critical point in the T -
ρ-plane parametrized by µ, the magnitude of the dipole moment [2,3] and the dependence
of the isotropic liquid-to-ferroelectric liquid transition on T , ρ and µ [1]. T and ρ denote
temperature and number density, respectively. A major conclusion is the absence of a
sudden disappearance of the gas-liquid critical point beyond a certain value of the dipole
moment as proposed previously. This leads to the conclusion that dipolar interaction as
the sole source of molecular attraction does not lead to gas-liquid phase separation [4].
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2 Models of polar fluids

Here we discuss three simple models frequently studied in the context of dipolar liquids:
the dipolar hard sphere (DHS) model, the dipolar soft sphere (DSS) model and the Stock-
mayer (ST) model. Also included in this discussion are the polarizable Stockmayer (pST)
model and the modified Stockmayer (vLS) model by van Leeuwen and Smit [1]. Common
to the aforementioned three models is the description of long-range anisotropic interac-
tion in terms of a point dipole-point dipole potential. They differ with respect to their
short range interaction. The DHS model employs hard core repulsion, whereas the ST
potential employs the Lennard-Jones (LJ) potential. The intermediate DSS model adopts
the soft repulsive core of the LJ potential. Here we do not investigate the DHS model
explicitly, which is often discussed in literature for analytic calculations (see for instance
references [2–8]), but it is expected to show a phase behaviour like the DSS model [9].
The fields of applications for these three model potentials are the same. They are used
as simple models for polar molecules, ferrofluids or other self assembling systems as dis-
cussed for the ST potential in chapter 1. Other models for polar molecules like charged
hard dumbbells [10] or model potentials for liquid crystals like hard spheroids [11] or hard
rods [12] are not discussed here.
All three models, DHS, DSS and ST, exhibit a transition from an isotropic liquid to an
orientationally ordered liquid and show quite similar dielectric properties, whereas a gas-
liquid (GL) transition is established for the ST fluid only (e.g., [9, 13–15]) and is for the
DHS or DSS still a matter of debate as discussed in chapter 6. One has to be aware of
this fundamental different behaviour of these model fluids, if properties of real systems,
for instance ferrofluids, should be obtained.

2.1 The Stockmayer interaction potential with and
without polarizability

2.1.1 Pair interaction

In 1941 ST introduced a model potential to describe the interaction between the particles
in a polar gas [16]. One part of his potential is an isotropic interaction which is independent
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22 2 Models of polar fluids

of the orientations of the particles i and j and depends only on their separation rij =
|~ri − ~rj|. The isotropic part consists of a repulsive interaction due to Pauli’s exclusion
principle of the electron shells of the different particles and an attractive interaction which
should describe the dispersion and induction energies. In the model ST employed every
term of this interaction was adjustable to adapt the potential as close as possible to real
systems. We will follow the literature afterwards on the ST fluid and use the well known
LJ potential

uLJ(rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
, (2.1.1)

in which the repulsive part depends on inverse order twelve of the distance and the attrac-
tive part on inverse order six. In this work we use LJ units (cf. table 2.1). In particular

Table 2.1: Conversion of common units to LJ units

Quantity Conversion

length l∗ = l/σ
time t∗ = t√

mσ2/ε

density ρ∗ = σ3N/V
energy E∗ = E/ε
temperature T ∗ = kBT/ε
pressure P ∗ = Pσ3/ε

dipole moment µ∗ =
√
µ2/(4πε0σ3ε)

force ~F ∗ = ~Fσ/ε

torque ~N∗ = ~N/ε

we set ε = σ = m = 1. LJ units are usually indicated by a star (. . .)∗ which we omit in
the following. Additionally we use 4πε0 = 1. ST added a permanent point-dipole ~µ to
the particles to describe the electrostatic interactions between them. Every point-dipole
i gives rise to a dipole potential ϕ(~r) (see e.g. [17]) at position ~r,

ϕ(~r) =
~r · ~µi
r3

, (2.1.2)

which results in the electric field

~E(~r) = −~∇ϕ =
3 (~r · ~µi)~r

r5
− ~µi
r3
. (2.1.3)

This leads to the point dipole-point dipole (DD) pair interaction

uDD(~rij, ~µi, ~µj) = −~µi · ~Ei(~rij) =
~µi · ~µj
r3
ij

− 3 (~rij · ~µi) (~rij · ~µj)
r5
ij

, (2.1.4)



2.1 The Stockmayer interaction potential with and without polarizability 23

Figure 2.1: The angular coordinates of two interacting dipoles ~µi and ~µj with separation rij .
The z-axis is set parallel to ~n = ~rij/rij . The bottom picture is the top one rotated
90◦ around the vertical axis.

whereas ~Ei(~rij) is the electric field evoked by dipole j affecting dipole i and ~rij = ~ri − ~rj.
In the following we will call this field ~E(~ri) for simplicity. Adding equations (2.1.1) and
(2.1.4) yields the ST pair potential

uST (~rij, ~µi, ~µj) = uLJ(rij) + uDD(~rij, ~µi, ~µj) . (2.1.5)

ST used this potential in a form depending on the angles between the dipoles (cf. figure
2.1)

uST (rij, θi, θj, ϕi − ϕj) = 4

(
1

r12
ij

− 1

r6
ij

)
+
µ2

r3
ij

(~si · ~sj − 3 (~n · ~si) (~n · ~sj)) (2.1.6)

= 4

(
1

r12
ij

− 1

r6
ij

)
+
µ2

r3
ij

f (θi, θj, ϕi − ϕj) , (2.1.7)

where µ = |~µ| is the dipole strength and

~si =
~µi
µ

=

 sin θi cosϕi
sin θi sinϕi

cos θi

 . (2.1.8)

Without loss of generality we chose the z-axis parallel to ~n. Evaluating the dot products
in equation (2.1.6) we get the orientation function

f (θi, θj, ϕi − ϕj) = sin θi sin θj cos(ϕi − ϕj)− 2 cos θi cos θj , (2.1.9)
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Figure 2.2: The orientation function f (θi, θj , ϕi − ϕj) in the ST interaction potential (2.1.7).
To get a better impression f is plotted for θi, θj ∈ [−π, π], nevertheless the domain
of both is [0, π]. The region with a negative θ can be realized with ϕi − ϕj = π
instead of ϕi − ϕj = 0. In figure 2.3 values of f for some selected orientations are
given.

which depends on the angular coordinates only. θi and θj are the inclinations of the two
dipole axes to the intermolecular axis, and (ϕi−ϕj) is the azimuthal angle between them
as shown in figure 2.1. Figure 2.2 shows f (θi, θj, ϕi − ϕj) versus θi and θj. For parallel
orientation of the dipoles there is the strongest attractive interaction, i.e. f (0, 0, 0) = −2;
for antiparallel orientation there is the strongest repulsive interaction, i.e. f (0, π, 0) = 2.
The values of f (θi, θj, ϕi − ϕj) for selected orientations are shown in figure 2.3. The
dependency of the ST potential on the pair separation for head-to-tail and head-to-head
orientation is compared in figure 2.4 with the LJ potential.

ST defined his system only for particles with permanent dipole moments. We add an
isotropic point polarizability α which gives an additional contribution to the total dipole
moment, i.e.

~mi(~µi, ~pi) = ~µi + ~pi = ~µi + α~E(~ri). (2.1.10)

The induced dipole moment ~pi is evoked by the electric field ~E(~ri), produced by the dipole
moments of the surrounding particles. For simplicity we only use the linear approximation
for small electric fields ~E(~ri). With polarizability the DD pair interaction (2.1.6) of the
pST fluid becomes

upST (rij, ~mi, ~mj) = 4

(
1

r12
ij

− 1

r6
ij

)
− 1

2

(
~µi · ~E(~ri) + ~µj · ~E(~rj)

)
(2.1.11)
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Figure 2.3: Values of the orientational function f (θi, θj , ϕi − ϕj) for some selected dipole ori-
entations. Head-to-tail orientation of the dipoles gives the minimum of the dipolar
energy, head-to-head orientation gives the strongest repulsive dipolar energy and
perpendicular orientation causes no dipolar energy.

1 1.5 2 2.5 3
rij

-3

-2

-1

0

1

2

3

u(
r ij)

uLJ(rij)

uST(rij,0,0,0)

uST(rij,0,π,0)

Figure 2.4: The LJ pair potential compared with the ST pair potential for dipole strength µ = 1
versus the pair separation rij . The dotted (dashed) line is for head-to-tail (head)
orientation of the dipoles. At given distances the ST potential can assume every
value in the shaded region due to orientation of the particles.
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with

~E(~ri) =
3 (~rij · ~mj)~rij

r5
ij

− ~mj

r3
ij

. (2.1.12)

For a simpler notation of the DD interactions we introduce the dipole tensor

T∼ ij =
1

r3
ij

− 3~rij ~rij
r5
ij

. (2.1.13)

Notice that ij refers to the interacting particles. The elements of the tensor which are
given by

(T∼ ij)αβ =
1

r3
ij

(δαβ − 3nαnβ) . (2.1.14)

The nα’s are the components of the unit vector in direction of the intermolecular axes
(2.1.6). Now we can rewrite the electric field (2.1.12)

~E(~ri) = −T∼ ij ~mj, (2.1.15)

the DD pair interaction for permanent dipoles (2.1.6)

uST (rij, ~µi, ~µj) = 4

(
1

r12
ij

− 1

r6
ij

)
+ ~µi T∼ ij ~µj (2.1.16)

and for the polarizable case (2.1.11)

upST (rij, ~mi, ~mj) = 4

(
1

r12
ij

− 1

r6
ij

)
+

1

2

(
~µi T∼ ij ~mj + ~mi T∼ ij ~µj

)
(2.1.17)

= 4

(
1

r12
ij

− 1

r6
ij

)
+ ~mi T∼ ij ~mj +

α

2

(
~E(~ri) + ~E(~rj)

)
(2.1.18)

where the term
upol =

α

2

(
~E(~ri) + ~E(~rj)

)
(2.1.19)

denotes the reversible work required to create induced dipoles [18].

2.1.2 Many-body interaction

If we now consider a system of N ST particles, the total potential energy for the non-
polarizable and polarizable case is

UST (~r1, ..., ~rN , ~s1, ..., ~sN) = UST ({~ri}, {θi}, {ϕi}) = ULJ + UDD (2.1.20)

= 4
N∑
i<j

(
1

r12
ij

− 1

r6
ij

)
− 1

2

N∑
i=1

~µi · ~E(~ri) (2.1.21)



2.2 The modified Stockmayer interaction potential 27

Here we use the notation
N∑
i<j

=
N−1∑
i=1

N∑
j=i+1

, (2.1.22)

i.e. pairs are counted only once and self-interaction is excluded.
The first term in equation (2.1.21) is the total LJ potential and the second term is the
total DD interaction [18]

UDD = −1

2

N∑
i=1

~µi · ~E(~ri) =
N∑
i<j

~mi T∼ ij ~mj +
α

2

N∑
i=1

~E(~ri)
2 , (2.1.23)

where

Upol =
α

2

N∑
i=1

~E(~ri)
2 (2.1.24)

is the reversible work of formation of the induced dipoles. Notice that equation (2.1.21) is
valid for both the ST and pST fluid. For the ST fluid Upol in equation (2.1.23) vanishes.
The total electric field at the position of particle i is given by

~E(~ri) = −
N∑
j=1
j 6=i

T∼ ij ~mj . (2.1.25)

2.2 The modified Stockmayer interaction potential

In 1993 van Leeuwen and Smit defined a modified version of the ST potential [1] multi-
plying the isotropic dispersion interaction by a parameter λ, i.e.

uvLS(rij, ~µi, ~µj) = 4

(
1

r12
ij

− λ 1

r6
ij

)
+ ~µi T∼ ij ~µj , (2.2.1)

where 0 ≤ λ ≤ 1. Notice that λ = 0 corresponds to the DSS and λ = 1 to the ST
potential. Stevens and Grest showed that this system can be mapped onto the ordinary
ST system [19] via the following scaling relations for energy, temperature, density, dipole
moment, length and pressure

EST = λ−2EvLS (2.2.2)

TST = λ−2 TvLS (2.2.3)

ρST = λ−1/2 ρvLS (2.2.4)

µST = λ−3/4 µvLS (2.2.5)

rST = λ1/6 rvLS (2.2.6)

PST = λ−5/2 PvLS . (2.2.7)
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If we write the vLS potential (2.3.1) in a dimensionless form, i.e.

UvLS(rvLS, µvLS)

TvLS
=

4

TvLS

(
1

r12
vLS

− λ 1

r6
vLS

)
− µ2

vLS

TvLSr3
vLS

f , (2.2.8)

the scaling relations transform this to the dimensionless ST potential , i.e.

UST (rST , µST )

TST
=

4

TST

(
1

r12
ST

− 1

r6
ST

)
− µ2

ST

TST r3
ST

f . (2.2.9)

Notice that the Boltzmann weight exp(−U/T ) determines configurational averages in the
NVT ensemble. So the equivalence of the two potentials is not only a mathematical formal
one, there is a physical argument. The consequence is that for every choice of λ in the
vLS model, there exists a corresponding ST model which properties can be obtained by
applying the scaling relations to the properties of the vLS system. On the other hand
we can map the ordinary ST system onto a vLS system with given λ. This is used in
subsection 7.3.1 to investigate the GL critical behaviour for the limit λ→ 0 (DSS model)
which corresponds to the large dipole limit in the ST system.

2.3 The dipolar soft sphere and dipolar hard sphere
model

Both the DSS and DHS model are dipolar interaction potentials without attractive dis-
persion interaction. The systems are similar and should in general show similar phase
behaviour. The DSS interaction potential is a DD interaction, in addition with the soft
repulsive core of the LJ potential. It can directly be obtained from the vLS potential
(2.3.1) for λ = 0.

uDSS(rij, ~µi, ~µj) =
4

r12
ij

+ ~µi T∼ ij ~µj (2.3.1)

Different to the ST and the DSS, the DHS model employs hard core repulsion and the
potential looks as follows

uDHS(rij, ~µi, ~µj) =

{
~µi T∼ ij ~µj for rij > σ

∞ for rij < σ
(2.3.2)

with σ as the diameter of the hard sphere. The DHS system was often discussed in
literature (cf. [9, 15]). In this work it is only interesting because the phase behaviour of
the vLS and so the DSS system allows considerations about the phase behaviour of the
DHS, due to its strong similarity.
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3 Molecular dynamics simulations

3.1 The molecular dynamics method

The aim of this work is to investigate the thermodynamic properties of the ST fluid via
computer simulation. We chose the molecular dynamics (MD) method1 to perform these
simulations2. In MD the classical equations of motion

d

dt
~pi = ~Fi (3.1.1)

and
d

dt
~Li = ~Ni (3.1.2)

of a N -particle system are solved numerically to obtain the trajectories for all particles.
Here ~pi is the momentum of particle i and ~Fi is the total force acting on this particle. In
contrast to ordinary LJ systems we now include the orientational motion of the dipoles.
~Li is the angular momentum of dipole i and ~Ni is the total torque acting on it.

3.2 Calculating forces and torques

The force on dipole i is

~F (~ri) = ~FLJ(~ri) + ~FDD(~ri) = −~∇i UST ({~ri}, {θi}, {ϕi}) (3.2.1)

1Detailed introductions to the MD method and its connection to statistical mechanics are given in [1–4].
We present here only the techniques and fundamentals applied in our work on our special problems.
Many equations are taken from the literature above and many pictures are similar to pictures in there.
we abstain from citing these references every time. The interested reader will have a careful look at
these references anyway.

2It turns out that the ST fluid exhibits pronounced formation of linear aggregates (dipole chains) under
certain thermodynamic conditions. Efficient Monte Carlo sampling techniques are difficult to design
for these conditions.
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with (2.1.20). The LJ and the DD contribution to the total force on the i-th particle can
be calculated separately. For the LJ part we get

~FLJ(~ri) = −~∇i ULJ = 48
N∑
j=1
j 6=i

[(
σ

rij

)14

− 1

2

(
σ

rij

)8
]
~rij (3.2.2)

and for the DD part

~FDD(~ri) = −~∇i UDD = ~∇i

(
~µi · ~E(~ri)

)
=
(
~µi · ~∇i

)
~E(~ri) + ~µi ×

(
~∇i × ~E(~ri)

)
︸ ︷︷ ︸

=− 1
c
~̇H(~ri)=0

(3.2.3)

=
N∑
j=1
j 6=i

[
3

r5
ij

(
~mi (~rij · ~mj) + ~mj (~rij · ~mi) + ~rij (~mi · ~mj)

)

−15 (~rij · ~mi) (~rij · ~mj)~rij
r7
ij

] (3.2.4)

The ~∇i× ~E(~ri)-term in equation (3.2.3) is zero, since at any snapshot of time evolution of
the system this is an electrostatic problem, thus the time derivative of the magnetic field
~H vanishes. With the knowledge of the forces we are able to integrate the translational
motion.
Additional to the force there is a torque

~Ni = ~µi × ~E(~ri) = ~si × ~Gi , (3.2.5)

with ~Gi = µi ~E(~ri), acting on the dipole moment due to the electric field. We consider
the ST particles to be linear molecules with angular momentum

~Li = I ~ωi, (3.2.6)

where I is the moment of inertia with respect to the momentary axis of rotation and ~ωi

the angular velocity of the i-th particle. This leads via ~̇Li = ~Ni to the equations of the
rotational motion

I ~̇ωi = ~si × ~Gi (3.2.7)

~̇si = ~ωi × ~si (3.2.8)

and by differentiating the second one with respect to time, we can combine both to get
the angular acceleration

~̈s = ~̇ω × ~s+ ~ω × ~̇s (3.2.9)

=
1

I

(
~s× ~G

)
× ~s+ ~ω × (~ω × ~s) (3.2.10)

=
1

I

[
~G− ~s

(
~s · ~G

)]
− ~s ω2 . (3.2.11)
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With
~̇s 2 = (~ω × ~s)2 = ω2s2 − (~ω · ~s)2 = ω2 , (3.2.12)

since ~ω ⊥ ~s and s2 = 1, follows

~̈s =
1

I
~G−

(
1

I
~s · ~G+ ~̇s 2

)
~s . (3.2.13)

With the knowledge of the translational and angular acceleration we can know think on
an integration scheme for the equations of motion.

3.3 Integration of the equations of motion

To integrate the equations of motion numerically, we will use a method traced back to
Störmer [5], but initially adopted by Verlet [6] to MD. Verlet’s algorithm can be derived
from the Taylor expansion about ~ri(t), i.e.

~ri(t+ ∆t) = ~ri(t) + ∆t ~vi(t) +
1

2
∆t2~ai(t) + ...

~ri(t−∆t) = ~ri(t)−∆t ~vi(t) +
1

2
∆t2~ai(t)− ...

(3.3.1)

at finite time steps ∆t. Here ~vi(t) = ~̇ri(t) is the instantaneous velocity of the particle i.
Addition of these two equations yields to the original Verlet algorithm

~ri(t+ ∆t) = 2~ri(t)− ~ri(t−∆t) + ∆t2~ai(t) +O(∆t4) (3.3.2)

which is a discrete solution for times m∆t, where m is an integer. The solution is based
on the positions ~ri(t) and ~ri(t − ∆t) from the previous step and the accelerations ~ai(t)

connected to the force ~Fi via (3.1.1) for each particle i. The Verlet algorithm is the
perhaps most widely used in molecular dynamics, because of the big advantages for this
application. Different to algorithms like the Runge-Kutta method, the computational ef-
fort of the Verlet algorithm is much less, since only one force calculation per time step is
needed. In the simulation program the force is evaluated by a double loop over all particle
pairs (which can be decreased with acceleration methods later), so it is the most CPU
expensive task in MD. Compared to other integrators with only one force evaluation like
the Euler method with error of order ∆t2, the numerical stability of the Verlet algorithm
is much higher and the errors are of order ∆t4. From a physical point of view the time
reversibility and area preserving properties are very important.
The algorithm itself does not provide the velocities ~vi(t) which leads to the biggest dis-
advantage of the algorithm, because they are needed to calculate the kinetic energy and
other thermodynamic values. They can be estimated from the formula

~vi(t) = ~̇ri(t) =
~ri(t+ ∆t)− ~ri(t−∆t)

2∆t
+O(∆t2). (3.3.3)
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To avoid this problem of the original Verlet algorithm we use for our simulations the
velocity Verlet version of the algorithm [7]

~ri(t+ ∆t) = ~ri(t) + ∆t ~vi(t) +
1

2
∆t2~ai(t) (3.3.4)

~vi(t+
1

2
∆t) = ~vi(t) +

1

2
∆t~ai(t) (3.3.5)

~vi(t+ ∆t) = ~vi(t+
1

2
∆t) +

1

2
∆t~ai(t+ ∆t) , (3.3.6)

where the velocities and forces are provided at the same time as the positions. Eliminating
the velocities in these equations will trace back to the original Verlet algorithm, so the
original and the velocity version are completely equivalent. To calculate the trajectories
~ri(t) the three equations (3.3.4)-(3.3.6) are processed gradually by the simulation program.
In the past this method had computational disadvantages, because in the equation for
the positions terms of very different values are added. This is not a problem any longer,
since we perform our simulations on computers with a precision for floating point numbers
which is sufficient.
For integration of the rotational motion we employ the velocity Verlet algorithm, too. It
is exactly analog to the translational motion.

~si(t+ ∆t) = ~si(t) + ∆t ~̇s(t) +
1

2
∆t2 ~̈si(t) (3.3.7)

~̇si(t+
1

2
∆t) = ~̇si(t) +

1

2
∆t ~̈si(t) (3.3.8)

~̇si(t+ ∆t) = ~̇si(t+
1

2
∆t) +

1

2
∆t ~̈si(t+ ∆t) (3.3.9)

Here ~si is the in (2.1.8) introduced orientation of the dipole moment of particle i. With
equation (3.2.13) we can directly evaluate the first two steps of the algorithm (3.3.7) and
(3.3.8), but in the last step (3.3.9) there is a problem due to the dependence of the angular
acceleration ~̈si(t+ ∆t) on the angular velocity ~̇si(t+ ∆t) which is at this time unknown,
but applying the approximation

~̇si(t+ ∆t) = ~̇si(t+
1

2
∆t) +

1

2
∆t ~̈si(t), (3.3.10)

we can calculate the angular acceleration

~̈si(t+ ∆t) =
1

I
~Gi(t+ ∆t)−

[
1

I
~si(t+ ∆t) · ~Gi(t+ ∆t)

+

(
~̇si(t+

1

2
∆t) +

1

2
∆t~̈si(t)

)2
]
~si(t)

(3.3.11)

with sufficient precision, since the simulation is numerically stable. In references [1,8] the
velocity term in (3.3.11) is completely neglected, but stability seems even in this case not
to be effected.
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Figure 3.1: Visualisation of periodic boundary conditions and the minimum image convention
in two dimensions. The central, cubic simulation box (shaded) is surrounded by
replicas. If a particle leaves the central box an image of its own directly reenters
on the opposite side. Interactions are only calculated to nearest copies of particles
within a cut off sphere.

3.4 Periodic boundary conditions and minimum image
convention

Despite the rise of computing power since adoption of the MD simulation method, the
simulations are still usually preformed for a small number of particles. Almost all simu-
lations for this work were done on systems with at most 5000 particles, most simulations
were done with fewer particle numbers. Simulations with more particles were only done
as a check for finite size effects. The reason for the small number of particles is not the
lack of memory of computers, it is rather the computational power spent on evaluating
the forces between the particles which is proportional to N2, or at best of order N with
special acceleration techniques discussed in section 3.9. Because we are interested in the
thermodynamic properties of the bulk phases, it is not satisfactory to simulate the system
as a closed box. In such a simulation box of a system of 1000 particles, arranged on a
simple cubic lattice, 50% of the particles are in contact with the surface of the box. These
particles will experience quite different forces as particles inside the bulk. This problem
can be overcome by implementing periodic boundary conditions. The small system of
particles is expanded to infinity by surrounding the central simulation box with identical
copies till an infinite space-filling array is obtained. For this work, only simulations with
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a cubic simulation box were performed. An visualisation for the two dimensional case is
given in figure 3.1. If particles leave the central simulation box, an image of their own will
reenter it directly through the opposite face. Nevertheless, even with periodic boundary
conditions finite size effects are still present. On the one hand structures bigger than the
central simulation box cannot be formed. For instance this may be a problem in two
phase coexistence regions, or if the particles aggregate to chains or clusters of size com-
parable to the box size. On the other hand there are correlations between particles and
fluctuations of physical quantities. As a minimal requirement, the size of the box should
exceed the range of any significant correlations to prevent self correlation of the particles.
Fluctuations of the density for example can propagate around the system and eventually
return to affect the source of the fluctuation itself. Long-wavelength fluctuations with a
wavelength greater than the box length will be inhibited at all. This might cause prob-
lems for simulations near the gas-liquid critical point, where the range of fluctuations
critical quantities is macroscopic. Furthermore, phase transitions which are known to be
of first order often appear as transitions of higher order in a small simulation box like the
nematic-to-isotropic transition, shown for liquid crystals in [9].
A direct consequence of periodic boundary conditions is the minimum image convention
first used by Metropolis et al. in Monte Carlo (MC) simulations [10]. If all interactions
between a central particle and the other particles in the box should be calculated in peri-
odic systems, we have to take into account that some copies of particles are closer to the
central one, than the particle itself (c.f. figure 3.1, the image of the diamond particle is
closer to the circle particle than the diamond itself). We calculate the components of the
separation vector ~rij in the minimum image convention by

(~rij)
(min)
α = (~rij)α − L

⌊
(~rij)α
L

+ 0.5

⌋
, (3.4.1)

where α ∈ {x, y, z} and L is the length of the cubic box. Usually the interactions are
only calculated with particles, within a definite cut off distance rcut, because neighboring
particles give the largest contribution to the potential energy and the force. To prevent
self interaction of the particles the cut off distance should be at maximum half the box
length L (rcut < L/2). The contributions to potential energy and force from particles
outside the cut off sphere are discussed in section 3.7.

3.5 Calculating thermodynamic quantities

3.5.1 Ergodicity

MD simulations provide knowledge of the classical microscopic states of the system. Ev-
ery microstate is represented by a particular point in phase space corresponding to a full
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set of generalized coordinates qj and conjugate momenta pj, Γ = (q1, ..., q6N , p1, ..., p6N).
However, a thermodynamic state of the system is characterized by macroscopic quantities
like pressure P , temperature T , internal energy E, etc. Statistical mechanics allows to
connect the microscopic information to these macroscopic quantities.
In conventional statistical mechanics a macroscopic quantity A, depending on the mi-
crostate Γ, is given by the ensemble average

〈A〉 =

∫
dΓA(Γ)ρ(Γ)∫

dΓρ(Γ)
, (3.5.1)

where ρ(Γ) is the so called phase space density. From a single system configuration/snapshot
produced by molecular dynamics simulation we can determine the instantaneous value
A(Γ). With running simulation the system evolves in time, so that a trajectory in phase
space Γ(t) is produced and A(Γ(t)) will change. To measure the observable macroscopic
property Aobs from simulation, we determine the time average over a definite time period
tobs

Aobs = A(Γ(t)) = lim
tobs→∞

1

tobs

tobs∫
0

dtA(Γ(t)) =
1

M

M∑
m=1

A(Γ(m∆t)). (3.5.2)

The overline implies the time average of a physical quantity. In general, time averaging
should be done over infinite times to get macroscopic quantities, but in practice this
might be satisfied with long enough finite times tobs. Since MD simulation do not provide
continuous time development of the system, we have to sum the instantaneous values of A
at integer multiples of the time step ∆t. The observed time interval is then tobs = M∆t.
Provided the considered system is ergodic, we can identify the time average (3.5.2) with
the ensemble average (3.5.1)

Aobs = A(Γ(t)) = 〈A〉 , (3.5.3)

i.e. if we simulate the system for a long enough time, the system can access every possible
point Γ in phase space. This is based on the ergodic hypothesis originally traced back to
Boltzmann. In general the ergodicity of a system has always to be proved for a definite set
of parameters, but this is hard to do. In MD ergodicity is often destroyed by metastable
states trapping the system for extended periods of time. This problem can be avoided
by comparing averages of observables from different simulations with the same simulation
parameters, but different initial configurations. Even in this case one cannot be sure,
however, to reach every region in phase space.

3.5.2 Internal energy and enthalpy

The internal energy E of a thermodynamic system is the sum of the total kinetic energy K
due to the motion of the particles and the total potential energy U due to the interaction
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of the different particles. For a system of ST particles there are contributions from the
translational motion, Ktrans, and the rotational motion, Krot, to the total kinetic energy

K = Ktrans +Krot, (3.5.4)

with

Ktrans =
1

2
m

N∑
i=1

|~vi|2 =
1

2
m

N∑
i=1

(
v2
xi

+ v2
yi

+ v2
zi

)
(3.5.5)

and

Krot =
1

2
I

N∑
i=1

|~̇si|2 =
1

2
I

N∑
i=1

(
ṡ2
xi

+ ṡ2
yi

+ ṡ2
zi

)
=

1

2
I

N∑
i=1

(
θ̇i

2
+ ϕ̇i

2 sin2 θi

)
. (3.5.6)

In general all masses and moments of inertia of the ST particles are set to one (m = I = 1),
but we will show them explicitly to represent the physical context. In equation (3.5.5)
vxi ,vyi and vzi are the Cartesian components of the translational velocities which are
independent of each other, i.e. in a system of N particles there are 3N independent
velocity components. In equation (3.5.6) ~si is the orientation of the dipole moment,
which can be expressed by the angles via (2.1.8). The potential energy was already given
in (2.1.20).
With knowledge of kinetic and potential energy we can write down the Lagrangian of the
system in terms of coordinates and velocities

L = K − U (3.5.7)

=
N∑
i=1

[
m

2

(
v2
xi

+ v2
yi

+ v2
zi

)
+
I

2

(
θ̇2
i + ϕ̇2

i sin2 θi

)]
− UST ({~ri}, {θi}, {ϕi}) . (3.5.8)

To be able to write down the Hamiltonian of the system, first the generalized momenta
have to be determined via

pxi =
∂L
∂vxi

= mvxi (3.5.9)

pyi =
∂L
∂vyi

= mvyi (3.5.10)

pzi =
∂L
∂vzi

= mvzi (3.5.11)

pθi =
∂L
∂θ̇i

= Iθ̇i (3.5.12)

pϕi =
∂L
∂ϕ̇i

= Iϕ̇i sin
2 θ . (3.5.13)

In the following we will use

{qi} = {{xi}, {yi}, {zi}, {θi}, {ϕi}} (3.5.14)
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as an abbreviation for the generalized coordinates and

{pi} = {{pxi}, {pyi}, {pzi}, {pθi}, {pϕi}} (3.5.15)

for the generalized momenta.
The Hamiltonian, dependend on the generalized coordinates and momenta, can be derived
from the Lagrangian via the Legendre transformation

H =
∑
j

q̇jpj − L (3.5.16)

=
N∑
i=1

[
1

2m

(
p2
xi

+ p2
yi

+ p2
zi

)
+

1

2I

(
p2
θi

+ p2
ϕi

)]
+ UST ({~ri}, {θi}, {ϕi}) (3.5.17)

= E (3.5.18)

and is equal to the total energy E of the system or the ”instantaneous” internal energy.

Besides the internal energy, the enthalpy is another important thermodynamic potential,
which we will need in section 6.2 for thermodynamic integration along the GL phase
boundaries, and can be calculated from the simulation data via the relation

H = E + PV. (3.5.19)

To use this equation, we must be able to determine the pressure P , which is explained in
the next subsection. V is the volume of the simulation box.

3.5.3 Calculating the temperature and pressure from the
equipartition theorem

With knowledge of the phase space trajectory Γ(t) the thermodynamic quantities temper-
ature T and pressure P can be calculated from the general formulation of the equipartition
theorem 〈

xi
∂H
∂xj

〉
= δij T (3.5.20)

(in LJ units). Here xj can either be the generalized coordinates qj or momenta pj. Due
to the Kronecker delta δij, the ensemble average vanishes for i 6= j. If xj is set to pj, we
can calculate the temperature. With Hamilton’s equation of motion

q̇j =
∂H
∂pj

(3.5.21)

and (3.5.17), (3.5.9)-(3.5.13) follows〈
f∑
i=1

pj q̇j

〉
=

〈
N∑
i=1

(
pxivxi + pyivyi + pzivzi + pθi θ̇i + pϕiϕ̇i

)〉
(3.5.22)

= 2 〈K〉 = 5NT . (3.5.23)
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On the right hand side of equation (3.5.22) it can be easily seen that the system of
linear ST particles has 5N degrees of freedom, 3N for translation and 2N for rotation.
Equation (3.5.23), without the ensemble average on the left hand side, gives something
like an ”instantaneous temperature”. For our purpose we do not distinguish between them
explicitly. So we are able to calculate the temperature from the simulation data by

T =
2

5N
K . (3.5.24)

Anyway, this formula has to be used carefully in MD simulation, because global constraints
can reduce the number of degrees of freedom. In our simulations we set the center of mass
motion to zero to prevent ”the flying ice cube” problem [11]. This reduces the number of
degrees of freedom by Nc = 3. So for simulations with few particles we have to use the
formula

T =
2

(5N −Nc)
K. (3.5.25)

instead of (3.5.24), but this can be neglected for big particle numbers (N � Nc). A
similar procedure for the rotation of the particles is not necessary, due to the cubic shape
of the simulation box which prevents a global rotation of the system. If we are interested
in the different contributions to the temperature by the translation and rotation we can
directly determine them from equation (3.5.22) resulting in

Trot =
1

N
Krot (3.5.26)

Ttrans =
2

3N
Ktrans . (3.5.27)

We will call these quantities translational and rotational temperature in the following.
Note that they should be equal in equilibrium T = Ttrans = Trot.

The pressure, P , can be calculated from the equipartition theorem by choosing Cartesian
coordinates qj in equation (3.5.20) and Hamilton’s second equation of motion

ṗj = −∂H
∂qj

, (3.5.28)

resulting in

−

〈
N∑
i=1

(xiṗxi + yiṗyi + ziṗzi)

〉
= 3NT (3.5.29)

⇔ V =

〈
N∑
i=1

~ri · ~F tot
i

〉
= −3NT (3.5.30)

Here ~F tot
i is the sum of internal forces between the particles ~F int

i and external forces ~F ext
i

evoked by the container walls which border the volume V . Notice that we may avoid the
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inclusion of the torques. Like the forces we can split the virial V in an internal Vint and
external Vext one with

V = Vint + Vext =

〈
N∑
i=1

~ri · ~F int
i

〉
+

〈
N∑
i=1

~ri · ~F ext
i

〉
. (3.5.31)

To get the pressure we substitute the external virial for an isotropic fluid by

Vext = −P
∫
A

dA (~n · ~r) = −P
∫
V

dV ~∇~r · ~r = −3PV. (3.5.32)

Here ~n is a unit vector perpendicular to the surface element dA, pointing outwards and
A is the surface bordering the volume V . The combination of equations (3.5.30),(3.5.31)
and (3.5.32) leads to the pressure

P =
NT

V
+

1

3V
Vint (3.5.33)

=
NT

V
+

1

3V
(VLJ + VDD) (3.5.34)

with the LJ and DD contributions

VLJ =

〈
N∑
i=1

~ri · ~F LJ
i

〉
=

〈
N∑
i<j

~rij · ~F LJ
ij

〉
(3.5.35)

VDD =

〈
N∑
i=1

~ri · ~F DD
i

〉
=

〈
N∑
i<j

~rij · ~F DD
ij

〉
= 3 (UDD − Upol) . (3.5.36)

~Fij denotes the force between the i-th and the j-th particle. Equations (3.5.35) and
(3.5.36) are only valid, because of the pairwise additivity of the forces [12]. From these
equations we are now able to calculate the pressure from the simulation data.

3.6 Control of temperature and pressure

3.6.1 The Berendsen thermostat

To be able to adjust the temperature of the system during the simulations and not by
choice of the initial conditions, we used the method proposed by Berendsen et al. [4, 13].
This method is a rescaling of the velocities ~vi and ~̇si with a factor λtrans and λrot every
time step, since the temperature is only dependend on the kinetic energy (cf. equation
(3.5.24)). We apply the thermostat to both, the translational and the rotational motion.
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In general to apply it to one should be enough, because translational and rotational motion
of the particles are coupled, but for systems with small dipole strength or very dilute ones
equilibrium is reached much faster in this way. From a physical point of view, this is a
coupling of the system to a huge external heat bath. The heat current between system
and heat bath is given by

JQ =
∆Q

∆t
= NcV

∆T

∆t
= αT (TB − T ) . (3.6.1)

Here ∆Q is the exchanged heat quantity per time step ∆t, cV is the heat capacity per
particle at constant volume, ∆T is the temperature change of the system per time step,
TB is the temperature of the heat bath (or supposed temperature of the system) and T
the actual temperature of the system. The heat current couples to the system via the
kinetic energy

∆Q = ∆K =
1

2

(
λ2 − 1

) N∑
i=1

(
m |~vi|2 + I|~̇si|2

)
(3.6.2)

=
1

2

N∑
i=1

[
m |~vi|2

(
λ2
trans − 1

)
+ I|~̇si|2

(
λ2
rot − 1

)]
(3.6.3)

=
3

2
NTtrans

(
λ2
trans − 1

)
+NTrot

(
λ2
rot − 1

)
(3.6.4)

Notice that the differences between λ, λtrans and λrot is only a technical one due to the
discrepancies of the instantaneous values of T , Ttrans and Trot. In equation (3.6.1) αT is a
constant related with the relaxation time τT through

τ =
3N

2αT
=
NcV
αT

. (3.6.5)

If we combine equations (3.6.1), (3.6.2), (3.6.4) and (3.6.5) we get

λ =

√
1 +

∆t

τT

(
TB
T
− 1

)
≈ 1 +

∆t

2τT

(
TB
T
− 1

)
, (3.6.6)

or splitted in translational and rotational parts

λtrans ≈ 1 +
∆t

2τT

(
3NTB
2Ktrans

− 1

)
(3.6.7)

λrot ≈ 1 +
∆t

2τT

(
NTB
Krot

− 1

)
, (3.6.8)

to scale the velocities and angular velocities

~vi −→ λtrans ~vi (3.6.9)

~̇si −→ λrot ~̇si. (3.6.10)
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More physical consistent would be a scaling by introducing a term of friction in the
equations of motion

~̈ri =
1

m
~Fi − ζ~̇ri (3.6.11)

with ζ = (1 − λ)/∆t and including the solution of this equation directly in the Verlet
algorithm. Due to the much simpler structure of the simulation program with a separated
analysis of the thermostat and the equations of motion, we prefer the more simple veloc-
ities scaling method (3.6.9) and (3.6.10). Nevertheless, for weak couplings (ζ ∼ O(∆t))
both methods are completely equivalent. The special feature of the Berendsen thermostat
compared to the constraint method [1,4] is the exponential adjustment of the temperature
with time t

T = TB − (TB − T0) exp

(
− t

τT

)
, (3.6.12)

with T0 as the starting temperature. The system is effected by the thermostat in a less
stronger way, than for the constraint method and has higher numerical stability. We
chose for all simulations τT ∈ [0.1, 1]. For simulations of systems of dipoles with a cut
off radius, the thermostat is not only necessary to adjust the temperature, these systems
do not conserve energy, so without thermostat there would be a drift in internal energy
and temperature during the simulation. There are methods to improve the situation like
smoothing the forces at the cut off distances, but we are only interested in properties at
given temperature, so we do not employ such methods.

3.6.2 The Berendsen barostat

With Berendsen’s method we are also able to adjust the pressure of the system, if this
is necessary, as for example for Kofke’s thermodynamic integration method. The box
volume of the simulated system and the particle positions are scaled as the velocities with
the thermostat

L −→ µL (3.6.13)

~ri −→ µ~ri (3.6.14)

with V = L3. The system can now exchange volume with its environment via the ”volume
current”

JV = −αP (PB − P ) =
V̇

V
= 3

L̇

L
= 3 η (3.6.15)

with the supposed pressure PB, the actual pressure P and η = (µ−1)/∆t. The equivalent
effect on the equations of motion like in (3.6.11) is

~̇ri = ~vi + η ~ri , (3.6.16)
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with ~vi = ~pi/m as the ”real” kinetic velocities of the particles, but we prefer to apply the
scaling (3.6.13) and (3.6.14) with

µ = 1− 1

3
αP (PB − P ) ∆t (3.6.17)

to the system for the same reason as in the case of the thermostat. The relaxation time
is given by τP = κT/αP , where

κT = − 1

V

dV

dP

∣∣∣∣
T

(3.6.18)

is the compressibility at constant temperature. Because we cannot calculate the com-
pressibility easily for the system, we set αP instead of τP as parameter for the simulation.
We choose αP small to make sure that the coupling to the ”volume bath” is only weak.
Like in the case of the thermostat the pressure is adjusted exponentially in time

P = PB − (PB − P0) exp

(
− t

τP

)
. (3.6.19)

Both Berendsen’s thermostat and barostat can be applied to the system at the same
time to adjust pressure and temperature. One has always to be aware of the fact that
neither the NVT nor the NPT ensemble can be produced by the Berendsen thermostat or
barostat. To calculate quantities which depend strongly on the existing ensemble of the
system, one has to make sure carefully that the thermodynamic limit is reached.

3.7 Long-range corrections

Since our simulations are performed with a cut off radius, we calculate the interactions
only between particle pairs exactly, whose separations are smaller than a definite cut off
radius (rij < rcut). The long range tail of the potentials, so the interactions between
particles whose separations are greater than the cut off (rij ≥ rcut) are not respected in
this procedure and some physical quantities must be corrected. Hence, we have to choice
the cut off radius in a way that the structure of the fluid outside the cut off sphere is
negligible for the center particle, meaning the correlations between these pairs should not
depend on the separation any longer. In the case of the ST fluid we have to observe two
spatial correlation functions, on the one hand the radial pair distribution function g2(rij)
and on the other hand the DD correlation 〈~µ(0) · ~µ(~r)〉 /µ2. If this holds, we can interpret
the matter outside the cut off sphere as a dielectric continuum as shown in figure 3.2 and
we can calculate the corrections for the center particle. This cannot be handled in the
same way for the LJ and the DD interaction due to the different symmetries of both. The
LJ potential has radial symmetry, the DD potential not.



3.7 Long-range corrections 45

rcut

g2r ≈1,a

i

i

Figure 3.2: Long-range corrections for the ST fluid: Interactions of particle i and the particles
within the cut off sphere (triangles) are calculated exactly. The medium, surround-
ing the cut off sphere, is considered to be a homogeneous dielectric continuum with
dielectric constant εa.

3.7.1 Pair correlations

A measurement for the structure of matter is the radial pair distribution function g2(rij),
dependend only on the pair separation rij for a translational invariant system of identical
particles. It gives the probability of finding a pair of particles a distance rij apart, relative
to the probability expected for a completely random distribution for the same density.
We get the radial pair distribution function by the definition

g2(rij) =
V

N2

〈∑
i

∑
j 6=i

δ(r − rij)

〉
(3.7.1)

from the simulation data. In practise the delta function is replaced by a discrete function
which is not vanishing for a definite range of separations. To evaluate g2(rij) a histogram
is compiled of all pair separations falling within each such range and normalized by the
volume of the spherical shell covered by the separation range.
Ensemble averages of quantities which are only dependend on the pair separation rij,
〈h(rij)〉, can now be calculated by

〈h(rij)〉 =
1

V

∫
d3rij h(rij) g2(rij) , (3.7.2)
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so the radial pair distribution function is something like a phase space density for particle
pairs. If the matter for the considered range of separation has no structure, the radial
pair distribution function should be constant g2(rij) ≡ 1 in this range, we are satisfied
with g2(rij) ≈ 1.

The spatial DD correlation 〈~µ(0) · ~µ(r)〉 /µ2 is important for the ST fluid, too, since it can
exhibit structure in the dipole orientation. It is easily determined from the simulation
data by averaging the scalar products of all dipole orientations of particles r apart. To
consider the matter as dielectric continuum, the spatial DD correlation should be constant
with separation, it is not necessary to become zero (non-correlated pairs). In the case of
ferroelectric order, the dipoles are strongly correlated with a not vanishing DD correlation
function, but beyond a definite distance it doesn’t depend on separation any longer and
the matter can be interpreted as polarized dielectric continuum, too.
Examples of radial pair distribution functions and the spatial DD correlation with and
without ferroelectric order are shown in figure 6.15 in section 6.3.

3.7.2 Corrections for the Lennard-Jones potential

Because the LJ part of the ST potential has radial symmetry and therefore depends only
on the distance of the particles, we can directly apply equation (3.7.2) to calculate the
long-range corrections for the internal energy and the virial. For the total LJ potential
energy in (2.1.20) we get

ULJ =
1

2

N2

V

∞∫
r=0

d3r uLJ(r)g2(r) = U r<rcut
LJ + U r≥rcut

LJ (3.7.3)

≈ U r<rcut
LJ + 2πNρ

∞∫
rcut

dr r2 uLJ(r) (3.7.4)

= U r<rcut
LJ +

8

9
πρN

(
1

r9
cut

− 3
1

r3
cut

)
, (3.7.5)

where U r<rcut
LJ is the exactly calculated and U r≥rcut

LJ the long range part.
Applying the same procedure to the internal virial (3.5.35) we get the correction for the
LJ part

VLJ ≈ VLJ,cut +
16

9
πρN

(
2

1

r9
cut

− 3
1

r3
cut

)
(3.7.6)

which has to be respected for the calculation of the pressure in equation (3.5.34). The
correction of the total potential energy has no effect on other values.
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3.7.3 Reaction field corrections

For the long-range corrections of the dipolar interactions we cannot employ the method
used for the corrections of the LJ interactions. The dipolar interactions depend on the
orientation of the particle, thus it has no spherical symmetry and equation (3.7.2) is
not applicable. Another, perhaps more important difference to the LJ interaction is the
long-range character of the DD interaction falling with r−3 instead of r−6 in the LJ case.
Indeed, for a vanishing correlation of the dipoles at finite separation, the DD interactions
diminishes effectively with r−6 for these separations (cf. equation (7.2.70)). But in a
ferroelectric phase there is no separation for which the correlation vanishes and integral
(3.7.3) would not converge for the DD case. Nevertheless, these phases of dipolar systems
are stable, hence we have use special methods to calculate the long-range corrections for
the DD interaction.
In our simulations we employ the theory of dielectric continua, the so called reaction
field method [12, 14–16]. In this method the electric field acting on the observed dipole
i in the center of the cut off sphere is splitted into two parts. The first part is the
electric field produced by the dipoles of the other particles inside the cut off sphere, which
can be calculated exactly, the second part arises from dipoles outside the cut off sphere
considered to form a dielectric continuum with dielectric constant εa as shown in figure
3.2. The reaction field method is suitable for the ferroelectric ordered phases, too, due to
the afore mentioned reasons.
To explain the reaction field method, we consider the cut off sphere, centered on particle i,
with volume Vsphere = (4π/3) r3

cut, containing Nsphere other point dipoles and embedded in
a dielectric continuum with dielectric constant εa, cf. figure 3.2. The total dipole moment
~Msphere of the cut off sphere is calculated exactly by summing up all dipole moments with

(j ∈ Vsphere)
~Msphere =

∑
j∈Vsphere

~mj = Vsphere ~Psphere . (3.7.7)

We consider the part of the system inside the sphere large enough to show macroscopic
behaviour, so the sphere will appear to the surrounding dielectric as a cavity with a
homogeneous polarization ~Psphere. This is one of the lacks of this theory, because the
size of the cut off sphere in our simulations is not of macroscopic dimension, but we will
discuss this later.
The electric field acting on the center particle can be obtained by applying the continuity
relations of the tangential component of the electric field ~E and the normal component
of the dielectric displacement field ~D at the surface of the cut off sphere on

~Di = ~Ei + 4π ~Psphere (3.7.8)

~Da = εa ~Ea , (3.7.9)

where the index i denotes the quantities inside the sphere and a outside. The solution
of this will give the total field inside the sphere caused by its own polarization and the
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polarization of the surrounding dielectric [2, 14]

~Ei = − 4π

2εa + 1
~PSphere . (3.7.10)

Remembering that we are only interested in the contribution of the surrounding dielectric,
since we are calculating the contribution of dipoles inside the sphere exactly, we have
to remove this part from ~Ei. Thus we have to subtract the field inside a sphere with
polarization Psphere surrounded by vacuum from equation (3.7.10). This is solved by
setting εa = 1 in (3.7.9) and yields to the so called self-field

~Es = −4π

3
~PSphere , (3.7.11)

which direction is opposite to ~PSphere. Assuming that the fluid is a homogeneous dielectric
with εa = εi = ε, where ε is the dielectric constant of the fluid, we can write down the
reaction field as

~ER(~ri) = ~Ei − ~Es =
2(ε− 1)

2ε+ 1

4π

3
~PSphere =

2(ε− 1)

2ε+ 1

1

r3
cut

~MSphere (3.7.12)

at the postion ~ri of the particle i. The dielectric constant ε of the system is still unknown,
but can be obtained by the fluctuation equation

3

4πρ

(ε− 1)(2ε+ 1)

3ε
=
〈 ~Msphere · ~M〉 ~Eext=0

TNsphere

+
3

4πρ

(ε∞ − 1)(2ε∞ + 1)

3ε∞
. (3.7.13)

derived in subsection 8.2.3. Here ~M is the total dipole moment of the entire simulation box
and ρ is the particle number density. The index relation, ~Eext = 0, refers to a vanishing
external field. The high-frequency dielectric constant ε∞ is in general related to α via the
Clausius-Mossotti relation

ε∞ − 1

ε∞ + 2
=

4π

3
ρα (3.7.14)

(ε∞ = 1 in the non polarizable case), adapted to the boundary conditions used here

(ε∞ − 1)(2ε∞ + 1)

9ε∞
=

4π

3
ρα . (3.7.15)

Now we can give the expression for the total electric field acting on particle i

~E ′(~ri) = −
∑
j∈Vcut
j 6=i

T∼ ij ~mj + ~ER(~ri) . (3.7.16)

In the simulation the reaction field must be respected in the calculation of the internal
energy of the system and the torques on every particle. ’Thus the electric field ~E(~ri)

in equations (2.1.20), (2.1.23) and (3.2.5) have to be substituted by ~E ′(~ri). Notice that
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the reaction field is homogeneous, so it has neither effect on the dipole forces nor on the
pressure or virial calculation.
An apparent disadvantage of the reaction field method often mentioned in literature [1]
is that the static dielectric constant ε, needed to evaluate (3.7.12), is a priori unknown
and an expected value must be used. We prevent this problem by using the cumulative
average of ε obtained from (3.7.13) at run time of the simulation. If we choose several
spheres at random to calculate the fluctuations of the total dipole moment the cumulative
average will converge very soon. Furthermore, the total electric field depends only slightly
on the dielectric constant (cf. equation (3.7.12) and (3.7.16))
The Ewald method, more often used in recent publications (for instance [17–20]), was
originally developed in the study of ionic crystals [21]. The lattice sums in general, such
as the Ewald sum, include the interaction of the dipoles with all its periodic images.
But the use of these methods to calculate the long-range behaviour of DD interactions,
especially in fluids, is not without controversy, too. Thus Valleau claimed [22] that the
Ewald sum, working well for crystals, overemphasize the periodic nature of the model
fluid. On the other hand, it was shown previously [17, 23–27] that simulations working
with Ewald or reaction field method lead to almost the same results, so it seems that the
problems of both methods are negligible. Especially reference [28] shows the equivalence
of the reaction field and Ewald summation method for GL phase equilibria simulations.
This should convince us that both methods are reasonable.

3.8 Iteration scheme to calculate the induced dipole
moments

The induced dipole moments ~pi = α~E ′(~ri) (cf. equation (2.1.10)) are calculated at every
MD step using an iteration scheme, since it is dependend on the instantaneous electric
field including the contribution of the induced dipoles of the neighboring particles. We
follow the iteration scheme proposed by Vesely [12] with only minor improvements, here
k denotes the iteration step:

k = 0 For the starting point of the iteration scheme to calculate the induced dipole mo-
ments and the resulting electric field, we have to distinguish two different cases:
at the beginning of the simulation we set the initial value for the induced dipole
moments to zero

~p
(0)
i = 0 , (3.8.1)

for a running simulation we set it to the iteration result of the previous time step

~p
(0)
i (t) = ~pi(t−∆t) . (3.8.2)

The initial value of the electric field ~E ′(0)(~ri) is now calculated via equation (3.7.16)

with ~mi = ~µi + ~p
(0)
i .
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k = 1 At the first real iteration step the induced dipole moments are calculated from the
initial electric field

~p
(1)
i = α~E ′(0)(~ri) (3.8.3)

and with the result ~E ′(1)(~ri) as for k = 0.

k This procedure is now repeated by applying

~p
(k)
i = α~E ′(k−1)(~ri) , (3.8.4)

to calculate ~E ′(k)(~ri), until the required precision is reached.

Following Vesely we take

RE(k) =

N∑
i=1

∣∣∣ ~E ′(k)(~ri)− ~E ′(k−1)(~ri)
∣∣∣2

N∑
i=1

~E ′(k−1)(~ri)
2

(3.8.5)

as measure for accuracy of the scheme. For our simulations, we chose RE(k) ≤ 10−4. To
use the results for the induced dipole moments of the previous time step as initial values
for the iteration, causes a dramatic decrease of CPU time, in this way only 1-2 iterations
per time step are necessary, instead of 5-6 starting with ~p

(0)
i = 0.

A problem of the pST model is that for large polarizabilities and temperatures a polar-
ization catastrophe may occur. If two very fast particles hit each other centrally, their
minimal separation during the impact will be very small, so the electric field acting on
the particles will become very large. The raise of the electric field will be even enforced
by the polarizability and it may happen that the iteration scheme does not converge
anymore. This will cause a crash of the simulation. Vesely gives as condition for this sep-
arations smaller than rij < (2α)1/3. We did not analyze this condition in our simulations,
since if the polarization catastrophe occur, we will recognize the crash of the simula-
tion. We found for intermediate dipole strengths (µ2 = 0.5, ..., 5) and a polarization of
α = 0, ..., 0.08 no problems for the simulated temperatures and densities, while for the
larger dipole strengths (µ2 = 30 and 36) polarizations of α = 0, ..., 0.04 were manageable.

3.9 Acceleration methods: cell and neighbor list

Since we have to perform simulations of systems with a huge number of particles, we
have to think about acceleration methods for our simulation program. The computing
time of the original Verlet algorithm scales as N2, because the separations of all particle
pairs must be calculated for every time step in the minimum image convention. Only
after doing this, all interactions whose separation exceeds rcut can be neglected. Verlet
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Figure 3.3: The Verlet neighbor list: The center particle (circle) is only interacting with the
particles inside the cut off sphere with radius rcut (triangles). All particles within the
list sphere with radius rlist are stored in the neighbor list (diamonds + triangles) and
the separations are calculated every time step. The distances to all other particles
(stars) are only calculated for setting up and updating the neighbor list.

proposed a method to decrease the computer time by storing all particles with positions
inside or close to the cut off sphere of the center particle in an array [6], the so called
neighbor list. In practice the cut off sphere of every particle is surrounded by an additional
sphere with radius rlist > rcut, shown in figure 3.3. For setting up the list at the start
of the simulation, we have to calculate all particle separations like for the pure Verlet
algorithm. The simulation can now run for some steps by calculating only the separations
of the neighboring particles, since only these particles are able to enter the cut off sphere.
If the number of neighbors of one particle is small, compared to the total particle number,
this method reduces the computation effort to order N . After a definite time particles
from outside the list sphere will be able to enter the cut off sphere and the neighbor
list has to be updated. For this reason the two largest displacements of every time step
are stored and as soon as the sum of these exceeds the distance rlist − rcut, the neighbor
list is updated. The optimal choice of rlist − rcut is dependend on almost all simulation
parameters. We abstain from determining the optimal list radius for every simulation, as
our experience shows a choice of rlist − rcut = 0.5 is always close to the optimum.
The neighbor list method works well for simulation boxes bigger than the cut off sphere,
but still of same magnitude. For huge systems of which the half box length L/2 exceeds
rcut several times the set-up of the neighbor list becomes predominant and the computing
time will scale again with order N2. Hence, for huge systems we must think on another
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Figure 3.4: Combined cell and neighbor list: The simulation box is divided into cells at least of
size rlist. For setting up the neighbor list, only particles in the same or neighboring
cells of the considered particle have to be respected (shaded region), the diamonds
outside can be neglected.

acceleration method.
Auerbach et al. proposed to combine the Verlet neighbor list with a cell list [29]. This
allows to use it even for very huge systems and reduces the computing time to order N
again. A schematic picture in two dimensions is given in figure 3.4. If the length of the
simulation box exceeds at least four times rlist, the box is divided into cells with size equal
to or slightly larger than the list radius rlist. Before setting up the neighbor list, we store
the cell number for each particle in an additional array, so we have only to calculate the
separations of particles within the same or neighboring cell (shaded cells). So we can save
computer time neglecting the calculations of separations to particles in the non-shaded
region from the outset, since the computational effort for setting up the cell list is of order
N , too. This method is not only useful for systems with huge particle numbers, for very
low densities this saves computer time even for smaller particle numbers.
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4 The Stockmayer fluid in literature:
Theory and computer simulation

In this chapter we give an overview over the literature published on the ST fluid. We
report both theoretical works and results of computer simulation. Notice that the ST
fluid has been investigated for more than 65 years. Therefore our main intention is not
completeness with respect of the published works, but rather with respect to the different
scientific aspects.

4.1 Gas-liquid phase coexistence

It is well known that at small dipole strength the ST fluid does exhibit a GL phase sepa-
ration, mainly due to the isotropic dispersion interaction from the LJ potential. The first
computer simulations on GL equilibria for the ST fluid were performed by Smit, Williams,
Hendriks, de Leeuw and van Leeuwen [1–3]. They employed the Gibbs ensemble Monte
Carlo method (GEMC), a technique proposed by Panagiotopoulos [4], to simulate GL
equilibrium without explicit knowledge of the chemical potential. Two phases are sim-
ulated in two separate simulation boxes. The method employs MC steps with particle
displacements and volume changes for each box including particle exchange between the
two boxes, to impose internal and mutual equilibrium on the two phases. The long-
range corrections were calculated by Ewald summation with ’tinfoil’ boundary conditions
(cf. equation (4.3.5)). They got GL phase coexistence curves for the ST fluid for dipole
strengths up to µ2 = 6 and compared them with curves obtained from first order pertur-
bation theory [5] and first order perturbation theory with Padé approximation [6]. They
found good agreement with first order perturbation theory only for GL coexistence curves
with µ2 < 1, with Padé approximation up to µ2 < 4. Nevertheless in the critical region
both methods are not satisfactory and overestimate the critical point.
In perturbation theory the Helmholtz free energy of the considered system is expressed
in terms of a well known reference system and a perturbation of the reference system. In
case of the ST fluid, the LJ fluid is an adequate reference system and an expansion in
terms of the dipole moment µ yields the perturbation. The Padé approximation includes
an estimate for the higher order terms of the expansion. First order perturbation theory
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for dipolar systems refers to expansions of order µ4. The next order estimated by Stell et
al. via Padé approximation is O(µ6). As equation of state for the LJ system, the modified
Benedict-Webb-Rubin (MBWR) equation [7] was used. Perturbation theory calculations
using Padé approximation applied to the pST fluid were also carried out by Vesely [8]. He
calculated the internal energy, the compressibility factor and the mean dipole moment for
dipole strength µ = 1 and polarizabilities up to α = 0.1. The results were also compared
with values obtained from computer simulation [9]. He found substantial deviations for
large polarizabilities, but his simulated systems were small (N = 108).
In reference [3], van Leeuwen compared the critical properties obtained from GEMC with
properties obtained from the virial equation of state [10–12], including the third virial co-
efficient, and density functional theory (DFT) [13], originally developed for higher dipole
strengths. The former one does not even reproduce the critical behaviour qualitatively,
because it is a low density theory and the critical densities for the investigated range
of dipole strengths are close to 0.3. DFT shows an overly strong µ dependence of the
critical properties. Van Leeuwen showed the increasing deviation from the principle of
corresponding states [14] for the ST fluid with increasing dipole strength, especially in the
liquid phase.
DFT is based on the fact that the thermodynamic potential of an ensemble, for example
the Helmholtz free energy, can be written as a functional of the microscopic density. This
functional is minimal for the physical realized density. From the thermodynamic potential
all other thermodynamic properties can be derived.
Garzón, Lago and Vega showed in reference [15] the equivalence of reaction field and Ewald
summation simulations for GEMC simulations, by comparing their results for µ2 = 2 and
4 obtained using the reaction field method with the ones of Smit et al. [1]. They found
differences neither in the location of the phase coexistence region, nor in the structure of
the gas and liquid by observing the pair correlation functions.
Van Leeuwen and Smit investigated the GL phase coexistence region for the vLS fluid (cf.
equation (2.3.1)) with the same method employed in [16]. They performed simulations
with dipole strength µ2 = 4 and varied λ between 0 and 1. Most noticeably they found no
coexistence region for λ . 0.3 (especially for the DSS fluid (λ = 0)). They claimed chain
formation, observed for small values of λ, prohibits the phase transition. Since the vLS
fluid can be mapped onto the ST fluid according to (2.2.2)-(2.2.7), the phase transition
should disappear for the ST fluid for dipole strengths µ2 & 25. This seemed to be in line
with a publication of Caillol [17], who performed GEMC and isothermal-isobaric MC sim-
ulations of the DHS fluid and was not able to observe a GL transition. This conclusion is
quoted frequently in the subsequent literature (e.g, [18–24]), although, van Leeuwen and
Smit reported problems with the GEMC method due to formation of reversible dipole
chains resulting in too low acceptance rates for the MC steps (cf. reference [25]). They
tried to solve these problems employing the configurational bias MC technique.
Tavares, Telo da Gama and Osipov [21] calculated the free energy of a strongly polar
fluid as a mixture of self-assembled chains applying several approximations to calculate
the phase coexistence region and critical properties. They compared their results to the
simulation data for the vLS fluid of van Leeuwen and Smit and found qualitatively good
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agreement for λ ≥ 0.35. If λ is further decreased, the theory predicts coexistence for a
fluid of chains, interacting via the isotropic dispersion interaction between the monomers.
They suggest finite size effects as possible reason for the prevention of the phase transition
in simulation, since the average chain length grows exponentially with decreasing λ. Their
theory predicts the critical temperature and density to become zero for λ = 0.
Stevens and Grest performed GEMC simulations on the ST fluid with and without an
applied electric field [18]. They provided GL coexistence curves without applied field up
to dipole strength µ2 = 16, together with the values for the critical temperature and crit-
ical density. Additionally, they obtained the field dependence of the coexistence curves
for µ2 = 1 and 6.25. They provided the mapping laws of the vLS potential [16] onto the
ordinary ST potential. To our knowledge they were the first who combined simulation
data for GL coexistence with ferroelectric ordering. They found a ferroelectric phase in
the dense liquid phase for µ2/T & 4, but the isotropic gas-ferroelectric liquid coexistence,
as predicted by a theory of Zhang and Widom [26], seemed to be unlikely, since the order
parameter decreases strongly entering the phase coexistence region. They relied on the
disappearance of the GL coexistence region for the ST fluid above the dipole strength
µ2 & 25, but it does not become clear if they checked this on their own or not.
Stoll et al. determined vapour-liquid equilibria properties of the two-centre LJ plus axial
point dipole fluid (2CLJD) [27] from MD simulations using the reaction field method. The
2CLJD potential model is composed of two identical LJ sites at fixed distance and a point
dipole ~µ2CLJD placed in the geometric center of the molecule, pointing along the molecular
axis. They employed the NPT plus test particle method introduced by Möller [28] to get
GL coexistence curves. In the borderline case for vanishing LJ centre-centre distance, they
provided GL phase coexistence and critical data for dipole strengths up to µ2

2CLJD = 20,
corresponding to µ2 = 5 for the ST fluid.
Kiyohara, Gubbins and Panagiotopoulos, to the best of our knowledge, published the
only phase coexistence data from simulation on the pST fluid [29]. They performed grand
canonical Monte Carlo (GCMC) simulations [30] and calculated the thermodynamic prop-
erties from the histogram reweighting method [31]. They gave coexistence curves for dipole
strengths µ2 = 1, 4 and polarizabilities α = 0, 0.03, 0.06 and compared their results with
Wertheim’s perturbation theory [32], later improved by Kriebel and Winkelmann [33,34].
Kiyohara et al. recognized an advantage of the GCMC method for phase equilibria in
CPU time compared with the GEMC simulations.
As already mentioned Frodl, Groh and Dietrich provided various global phase diagrams
for the ST fluid, obtained from DFT, including GL phase coexistence, ferroelectric order
and the liquid-solid transition [13,35–38]. The main focus of reference [13] was GL coex-
istence with small dipole strengths µ2 ≤ 4. In [35,36] Groh and Dietrich investigated the
phase coexistence and the isotropic liquid-ferroelectric liquid transition for samples of dif-
ferent shapes. In [37,38] they deal with the freezing of the ST system and the coexistence
of ferroelectric liquid and ferroelectric solid. They found that for small dipole strengths
µ2 < 1, the ferroelectric liquid is preempted completely by the freezing transition.
Russier and Douzi compared the GL phase transition of the ST fluid as a model for the
dilute-dense phase transition of a colloidal ferrofluid [39]. They did not take the solvent



60 4 The Stockmayer fluid in literature

into account explicitly, thus they considered a one-component system whose interaction
potential indirectly includes the influence of the solvent. They determined GL coexistence
curves from a second order virial expansion via the Maxwell construction in the range of
dipole strengths µ2 = 1 − 4 and compare their results with MC simulation [1–3] and
DFT [13]. With this simple method they got surprisingly good results.
Dudowicz, Freed and Douglas applied a Flory-Huggins mean field lattice model for re-
versibly associating polymers to the ST fluid to determine the GL phase coexistence region
and the critical points for high dipole strengths [40]. In their model they found no evidence
for the coexistence region to disappear for µ2 & 25. The critical temperatures and densi-
ties they found were in good agreement with the existing data from GEMC [1–3,16,18].

4.2 Clusters, droplets and chains

The structure of compact clusters and droplets of ST particles has been investigated with
computer simulation in [41–44]. In theoretical considerations by Zhang and Widom [26],
phase coexistence of a isotropic gas and a magnetic liquid was expected. The droplets
of magnetic liquid were expected to be highly prolate spheroids. But this could not be
confirmed by MD and MC simulations [41,42]. For small dipole strengths (µ2 = 1, 3) the
droplets are of spherical shape and the particles inside form chains in a circulating pattern
with non-zero curl. The orientations of the dipoles are perpendicular to an axis through
the center of mass and parallel to the surface of the droplet, contrary to DFT calculations
by Talanquer and Oxtoby [45]. Clusters of ST particles with dipole strength µ2 = 16
were investigated by ten Wolde et al. [43]. They observed that the nucleation process was
initiated by chainlike clusters. When these clusters exceed a certain size, they condense
to form compact droplet like nuclei. The shape of the droplets differ slightly from spheres
and from a planar interface due to the high degree of chain formation. Toroidal shapes
as predicted by DFT in [46] were not found. The shape of droplets were investigated in
a diploma thesis by Florian Pesth from this group [47]. He found significant deviations
from spherical shape of strongly polar droplets, but he performed simulations at very low
temperatures, so that the droplets may be trapped in metastable states.
Equilibrium polymerization in the ST fluid was investigated by van Workum and Douglas
[24]. They did MC simulations with a simple interaction truncation for dipole strength
µ2 = 36. They chose this dipole strength to be sure that there is no GL phase coexistence
[16, 18]. Their main interest was the polymerization transition which is characterized by
a maximum of the constant volume heat capacity as function of temperature CV (T ) and
an inflection point of the extend of polymerization Φ(T ) with Φ = Np/N , where Np is the
number of associated particles and N is the total number of particles. The criterion for
determining clusters was simply based on distance. Furthermore, they investigated the
frequency distribution of cluster types like chains, rings and mutants. Mutants they called
branched chains and rings. They found a power law scaling for the radius of gyration with
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particle number Rg ∼ N ν with ν ≈ 0.68. For this they observed clusters with particle
number 10 6 N 6 70. It should be mentioned that they performed simulations only in
the very dilute phase.

4.3 Dielectric properties and ferroelectric transition

Pollock and Alder [48] performed MD simulations of the ST fluid to calculate dielectric and
structural properties as the total dipole moment fluctuations, static dielectric constant,
radial pair distribution g2(r) and the DD correlation functions h110(r) and h112(r) defined
via

g(i, j) = g2(rij) + h110(rij)~si · ~sj + h112(rij) [3 (~si · ~n) (~sj · ~n)− ~si · ~sj] , (4.3.1)

where g(i, j) is the total pair distribution function. They compared results obtained from
simulations with the Ewald summation technique and a simple truncation of the potential
at the cut off radius. For calculation of the static dielectric constant, they employed the
Kirkwood relation for the fluctuation of the total dipole moment

(εi − 1)(2 εa + 1)

3(2 εa + εi)
= gy , (4.3.2)

with y = 4πρµ2β, g is the so called Kirkwood factor and εi/εa the dielectric constant
inside/outside a spherical system (cf. figure 3.2). Notice, that equation (3.7.13) is a
special case of the Kirkwood relation. Pollock and Alder chose g = 〈M2〉 /(Nµ2), where
〈M2〉 denotes the fluctuation of the total dipole moment of the spherical system. Almost
all later publications on the dielectric properties of the ST fluid from computer simulation
refer to equation (4.3.2). They may differ in the boundary conditions, in the choice of εa,
and in the sample shape to which the fluctuation of the total dipole moment 〈M2〉 refers.
We will derive the equation for our conditions in subsection 8.2.3. In the case of Ewald
summation Pollock and Alder adopted ε = εi = εa, corresponding to a dielectric sphere
surrounded by a continuum with the same dielectric constant, resulting in

(ε− 1)(2ε+ 1)

9ε
= gy . (4.3.3)

For the truncated system they used the formula for a spherical system surrounded by
vacuum (ε = εi, εa = 1)

ε− 1

ε+ 2
= gy . (4.3.4)

They compared the properties obtained for both systems and found significant differences
in the DD correlation function h110(r), while the radial pair distribution function g2(r)
and h112(r) coincidences.



62 4 The Stockmayer fluid in literature

So they showed that the complete truncation of the long-range tail of the potential will
cause a change in the structure of the fluid. Furthermore, they compared their results
from the Ewald method with the linearized hypernetted-chain approximation (LHNC)
and the quadratic hypernetted-chain approximation (QHNC) predictions. They found
good accordance for small dipolar coupling strengths, µ2/T < 2, only.
A detailed overview on the hypernetted-chain (HNC) theories like LHNC, QHNC and
reference hypernetted-chain (RHNC) can be found in [49, 50]. The HNC theories are so
called integral equation methods or correlation function expansions. The basic principle of
these methods is to approach the molecular pair distribution function (4.3.1), containing
all necessary information to calculate thermodynamic or dielectric properties, by means
of different approximations. The HNC theory is based on the Ornstein-Zernike integral
equation, which splits the pair distribution function in parts with direct and indirect
correlations, and the HNC closure approximation, which connect the direct correlation
function to the pair potential.
The molecular pair distribution function (4.3.1), or more likely h(i, j) = g(i, j) − 1, is
calculated for the ST fluid with LHNC, QHNC and RHNC in [51,52] by Patey, Levesque,
Weis, Lee and Fries. The LHNC and QHNC hold only for small dipole strengths µ2 . 3,
where the QHNC gives an improvement especially for low densities. Best results for the
ST fluid gives the RHNC, where only the difference of the pair distribution function to
a well known reference liquid, here the LJ fluid, is calculated. The different parts of the
pair distribution function and the herefrom calculated dielectric constants are in very
good agreement with MC simulations [52].
In reference [53] Pollock et al. investigated the dielectric properties of the pST fluid. They
derived the equation for the polarizable case by adding a term for the high frequency
dielectric constant ε∞ which is given by the Clausius-Mossotti formula. They observed
the same quantities as in [48] and compared the results for the static dielectric constant
with Wertheim’s single super chain approximation (SSCA) [54]. Only poor accordance
was found between simulation and theory.
In reference [55] Adams and Adams compared the Ewald-Kornfeld summation [56, 57], a
special adaption of the Ewald summation for point dipoles, with the reaction field method.
They compared dielectric and structural properties as Pollock and Alder did. In the case
of the Ewald-Kornfeld summation they calculated the static dielectric constant from the
Kirkwood fluctuation (4.3.2) formula with ’tinfoil’ (ε = εi, εa =∞) boundary conditions

ε− 1

3
= gy . (4.3.5)

They used the fluctuation of the total dipole moment of the cubic simulation box to get
the Kirkwood factor g. In the case of the reaction field method they applied equation
(4.3.3) and used the fluctuation of the total dipole moment of the sphere beyond which
the interactions are truncated. They pointed out that even the accordance of dielectric
properties obtained from simulations with Ewald summation and reaction field method
are no prove that the methods are adequate, because both suffer from the fact that
macroscopic formulae are applied to a very small region of material. Comparing results
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from MD and MC for different particle numbers, they found good accordance of the
Ewald-Kornfeld and reaction field method in calculating h110(r) for both, different to
the simple spherical truncation method. The results for the dielectric constant differed
slightly, but this is hard to judge, because they varied several simulation parameters like
particle number, number of steps and cut off radius for the different methods. In the
second part of the paper they investigated the influence of an external electric field on the
dielectric properties.
Gray et al. [58] compared results from MC simulations with ’tinfoil’ (4.3.5) boundary
conditions for both the reaction field and Ewald summation method. They calculated
the Kirkwood factor g from the fluctuation of the total dipole moment of the simulation
box. They found different finite size effects for the methods, but good accordance for
sufficiently large particle numbers (N > 8). However, their comparison involves only a
single state point with a relative small dipole moment µ2 = 1.
Neumann et al. [59, 60] showed the equivalence of the reaction field and Ladd’s lattice
summation method [61, 62] with respect to dielectric properties and the structure of the
ST fluid via MD simulation. They found only differences for small particle numbers. Millot
et al. [63] repeated this comparison for the polarizable case and found deviations for high
static dielectric constants (ε > 200) for relative small systems (N = 256). They claim
that both methods are equivalent for not too large dielectric constants and for sufficient
sample size. The region of equivalence they found should increase with system size. In
reference [64], Neumann compared the reaction field and Ewald summation method and
found good agreement. Both Neumann et al. [59, 60, 64] and Millot et al. [63] used the
total dipole moment of the simulation box.
MC simulations on the pST with reaction field method were done by Valiskó et al. [65,66].
They compared the results for the dielectric constant with calculating it from perturbation
theory by expanding the Kirkwood factor g = 〈M2〉 /(Nµ2), M2 is here the total dipole
moment of the entire simulation box, with respect to the density. This is done with a
convolution integral (cf. reference [67]), whose values have been tabulated for the ST fluid
by Goldman [68]. They performed simulations with dipole strengths up to µ2 = 3 and
polarizabilities up to α = 0.08. For these parameters they found excellent agreement with
perturbation theory.
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[67] M. Valiskó, D. Boda, J. Liszi, and I. Szalai. Relative permittivity of dipolar liq-
uids and their mixtures. Comparison of theory and experiment. Physical Chemistry
Chemical Physics, 3:2995 – 3000, 2001.

[68] S. Goldman. Determination of static dielectric constant-temperature-density surfaces
of a Stockmayer fluid by perturbation theory. Molecular Physics, 71(3):491–507, 1990.



70 Bibliography



5 Low density structure of the
Stockmayer fluid

5.1 Introduction

In this chapter the low density structure of the ST fluid is discussed. First, we will compare
the results for the pressure obtained from MD simulation for intermediate dipole strengths
µ2 = 1, 2 and 3 with analytic results obtained from a second-order virial expansion for the
ST fluid and for the pST fluid with µ2 = 3 . This is primarily done as a check of accuracy
for our MD program, because dipolar systems are rather complex and programming errors
are not unlikely. We will show that a third-order virial expansion is neither for a very
strongly dipolar ST fluid with µ2 = 36 nor for a intermediate ST fluid with µ2 = 3
sufficient to provide an adequate equation of state in the entire GL coexistence region.
(Some authors have given estimates for the coexistence curves from a virial expansion [1]).
In the last part of this chapter the focus lies on structures formed by strongly polar ST
fluids in the very dilute phase and in the GL phase coexistence region. The strongly polar
ST fluid is known to associate into chains. We give a short description of the algorithm,
how to determine the clusters and quantities like frequency distributions and scaling laws
of cluster sizes. We will also discuss the internal structure of droplets, since there are
different predictions from theory in the present literature. In the following we set α = 0
unless stated, otherwise.

5.2 Simulation results for low densities

5.2.1 Comparison to a second-order virial expansion

To write a MD simulation program for the ST fluid is a quite effortfull task, because the
algorithm for the rotational movement with its constraints is complicated and a potential
source of mistakes. Altough, we checked our MD program versus data of other groups,
for example reference [2], it is always recommendable to check the MD program versus
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exact analytic results when possible. This can be done for the pressure from simulation
in the very dilute gas phase compared to a virial expansion

P = kBTρ
(
1 +B2(T, µ2, α)ρ+B3(T, µ2, α)ρ2 + ...

)
, (5.2.1)

where B2(T, µ2, α) and B3(T, µ2, α) are the second and third-order virial coefficients. The
virial expansion of the equation of state adds particle interactions to the ideal gas law.
From this point of view, B2 corresponds to interactions between pairs of molecules and
B3 between triplets. A detailed description of the calculation of B2 and B3 for the ST
fluid can be found in appendix A. For the considered dipole strengths µ2 = 1, 2 and 3
and temperature T = 1.2 the system is an isotropic gas of monomers, i.e. no chains or
clusters are formed. Therefore we can be sure that at least in the very dilute limit, the
pressure should be described by a second-order virial expansion adequately. Figure 5.1
shows the difference of the LJ pressure P (LJ) and the pressure of the corresponding ST
fluid P (ST ), ∆P = P (LJ) − P (ST ), versus number density ρ, from computer simulation
(symbols) and from a second-order virial expansion (lines) for T = 1.2 and µ2 = 1, 2 and
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3. The results are in very good accordance with each other, i.e. our MD program is able
to reproduce the results of a second-order virial expansion at low densities. In figure 5.2 a
similar comparison is shown for the case T = 1.2, µ2 = 3 and non-vanishing polarization
α = 0.02, 0.04 and 0.06. Here too we find good accordance for low densities.

5.2.2 Comparison to a third-order virial expansion

In the literature there are attempts to calculate the critical properties [3] or even whole
coexistence curves [1] for the ST fluid from a virial expansion of the equation of state. In
these publications third- and second-order expansions were employed. Figure 5.3 shows
a comparison of the pressure P versus number density ρ of analytic results for the virial
equation of state of different orders for intermediate µ2 = 3 and strong µ2 = 36 dipole
strength and simulation data. The temperatures T are slightly below the respective
critical temperatures. For µ2 = 36 the third-order virial approximation fails already at
low densities below the GL coexistence region. For dipole strength µ2 = 3 at T = 1.8, the
third-order approximation provides a significant improvement compared to the second-
order one. Nevertheless, in this case the virial approximation fails on entering the GL
phase coexistence region as indicated by the beginning van der Waals loop. So the third-
order virial expansion works well in the gas phase for intermediate dipole strengths, while
for strongly polar systems it fails already for dilute systems most likely due to chain
formation. Simulation snapshots for number density ρ = 0.01 are shown in figure 5.4. For
µ2 = 3 the particles are dispersed homogeneously over the entire simulation box, while
for µ2 = 36 the particles assemble to chains. So even at very low densities, there are
many-particle interactions for µ2 = 36 and the third-order virial expansion provides no
adequate description of the equation of state.

5.3 Chains and droplets

5.3.1 Single droplet simulations

We want to give a global phase diagram of the ST fluid. In this part we investigate
structures appearing in the GL phase coexistence region, the droplets. Zhang and Widom
[4] predict with their phenomenological theory a coexistence of an isotropic-gas and a
magnetic-liquid, meaning that droplets should show ferromagnetic order, located in the
lower temperature range of the GL coexistence region. They assume the droplets should
be of spheroidal shape due to their magnetization. Contrary Banerjee and Widom suggest
in reference [5] a vortex like structure of the droplets with dipoles aligned parallel to the
surface which leads to a toroidal or ’donut’ shape. The vortex structure is in agreement
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Figure 5.4: Simulation snapshots in the gas phase at density ρ = 0.01 slightly below the critical
temperature. Top: µ2 = 36, T = 10.2; bottom: µ2 = 3, T = 1.8. Each ST particle
is represented by a cone whose orientation gives the instantaneous direction of the
particle’s dipole moment. For the smaller dipole moment there is a homogeneous
gas of monomers, while for the higher one single particles are coexisting with chains.
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with simulation results by Lavender et al. [6] and Lu and Singer [7] for droplets consisting
of 10 to 50 ST particles with dipole strengths µ2 = 1 and 3. The particle numbers were
too few to give a meaningful conclusion of the shape of the droplets, but the presented
ones are sphere like. This confirms the observations of Shreve et al. [8] who performed
MD simulations of ST droplets for µ2 = 4 and particle numbers in the range from 50 to
896. Comparing the results of Shreve et al. with the ones of our group and references [6,7]
we have to take into account that their system was different. They trapped the droplets
in a spherical container, while in the simulations of our group and [6, 7] the droplets
were surrounded by vacuum. The simulations are in contradiction with DFT results from
Talanquer and Oxtoby [9] who predict a perpendicular alignment of the dipoles to the
surface of the droplet.
Here we report single droplet simulations. For this task the MD simulation program has
to be changed only slightly. We turned off the periodic boundary conditions and minimum
image convention, so we have a finite system and we can calculate the interactions between
all particles exactly without long-range corrections. In general droplets are growing in
the gas and particles are exchanged between the two phases in the GL phase coexistence
region. These simulations were performed at temperatures low enough so that all particles
of the system form one large metastable droplet surrounded by vacuum. For every system
we chose the highest possible temperature, for which long simulations without evaporation
were feasible.

Total angular momentum and principal moments of inertia

Additionally, compared to simulations with periodic boundary conditions, we must take
care of the ’rotating block of ice’ [10] and remove the total angular momentum

~L = m
N∑
i=1

~ri × ~vi (5.3.1)

from the system, because here we have no cubic box which prevents the system from
rotating. This is done for every particle via

~v ′i = ~vi − ~ω × ~ri (5.3.2)

with
~ω = I∼

−1~L , (5.3.3)

the instantaneous angular velocity of the system and the inverse moment of inertia tensor
I∼
−1. The moment of inertia tensor is a symmetric 3× 3 matrix with the elements I∼µµ =

m
∑

i(r
2
i − µ2

i ) and I∼µν = −m
∑

i µiνi with µ 6= ν and µ, ν ∈ {x, y, z} [11]. The inverse of
I∼ can be obtained from

I∼
−1 =

1

det(I∼)
adj(I∼) , (5.3.4)
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Figure 5.5: Time evolution of the principal moments of inertia I1, I2 and I3 for a N = 16
cluster from single droplet simulation with µ2 = 5, T = 0.7 (top) and µ2 = 36,
T = 4 (bottom). Different line types correspond to 1, 2 and 3.

where det(I∼) is the determinant and adj(I∼) the adjoint of I∼.
Moreover, we use the moment of inertia tensor to characterize the shape of the droplet.
Because it depends on the origin and orientation of the coordinate system, we have to
determine the eigenvalues. These are the principal moments of inertia Iµ with respect to

the axes of rotation for which the angular velocity and momentum are parallel (~L ‖ ~ω).
The three eigenvalues roughly characterize the shape of the droplet, i.e. for spheres all
eigenvalues are equal, for spheroids two eigenvalues are equal and for prolate ellipsoids
all eigenvalues differ. Nevertheless, there are many other shapes and generally visual
inspection is necessary. A problem of this method is that the droplet changes shape
with time and does not behave like a rigid body. For example if the principal moments of
inertia, all have the same value on average, there is the possibility of a spherical shape, but
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an ellipsoid, which is oscillating around a sphere, is possible also. To be able to distinguish
the different cases, we calculate two kinds of averages of the principal moments of inertia.
First we average the eigenvalues due to the same or only slightly changing eigenvectors
and call them 〈I1〉, 〈I2〉 and 〈I3〉. We get the eigenvalues by diagonalizing the moment
of inertia tensor numerically with Octave [12]. If some of these eigenvalues differ the
shape of the droplet is likely a stable non spherical one. This should be observed for
Zhang and Widoms spheroids. If all averages are equal, there is the possibility that the
shape is stable highly symmetric, like for a sphere, but it can also oscillate around a
sphere. To distinguish these cases we determine 〈Imax〉, 〈Imed〉 and 〈Imin〉 corresponding
to the averages of the instantaneous maximal, medium and minimal principal moment of
inertia. These should differ for an oscillating shape. Figure 5.5 shows the time evolution
of the instantaneous principal moments of inertia I1, I2 and I3 for a cluster with dipole
strength µ2 = 5 at temperature T = 0.7, and one with µ2 = 36 at temperature T = 4.
The fluctuations for µ2 = 5 seem to be statistical, while the ones for µ2 = 36 are highly
correlated. So there is a systematic difference in the time evolution of the shape of a
µ2 = 5 and a µ2 = 36 cluster. For the latter one the different kinds of averages should
differ much.

Radius of gyration

Another important quantity, often used in polymer physics, is the so called radius of
gyration

Rg =

√√√√ 1

N

N∑
i=1

~r 2
i −

1

N2

(
N∑
i=1

~ri

)2

. (5.3.5)

Here N is the number of particles inside the cluster or chain. The radius of gyration is
the average distance of a particle to the center of mass of its cluster. From the scaling
behaviour with increasing particle number

Rg ∼ N ν (5.3.6)

we can also get information of the cluster shape. A compact spherical object should
scale with νs = 1/3 [13], an ideal chain (random walk) with νrw = 1/2, a self-avoiding
random walk with νsrw = 3/5 and head-to-tail rings described by the XY model with
νXY = 0.67 [14–16]. The critical exponent ν for LJ clusters in the neighborhood of the
critical point was found to be in the range νLJ = 0.4−0.5 [17–19] by computer simulation.
From a modified cluster-cluster aggregation model with dipolar interactions [20], Mors et
al. predict νccd = 0.75 for the zero temperature limit.
To compare the principal moments of inertia with the radius of gyration, we introduce

Rgµ =

√
Iµ
N

=

√√√√m

N∑
i=1

r′2i (5.3.7)
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(cf. [13]) where r′i denotes the distance of the particle to the principal axis of rotation µ.
Figure 5.6 shows the radius of gyration Rg and Rg1 , Rg2 , Rg3 , Rgmax , Rgmed , Rgmin ,

calculated via (5.3.7) from 〈I1〉, 〈I2〉, 〈I3〉, 〈Imax〉, 〈Imed〉 and 〈Imin〉 versus particle number
of the cluster for the dipole strengths µ2 = 5, 16 and 36 . For all dipole strengths the radius
of gyration scales with Nν and ν close to 1/3, that indicates a compact spherical growth
of the cluster. The scaling law for the moments of inertia from the different averaging
methods changes with particle number for the two higher dipole moments. This can be
explained with the forming of stiff chains for small particle numbers which collapse at a
definite particle number to a more compact shape, as already discussed by ten Wolde et al.
and called coil-globule transition. For µ2 = 5 it is similar to the scaling law of Rg, and the
two averaging methods show only differences for the principal moments of inertia at very
small particle numbers, since few particles cannot form ideal spheres. So we can assume
a compact spherical shape for the droplets with µ2 = 5. For µ2 = 16, 36 the averages 〈I1〉,
〈I2〉 and 〈I3〉 coincide for small particle numbers, while 〈Imax〉, 〈Imed〉 and 〈Imin〉 differ.
This is an evidence that for these dipole strengths there is a non-stable not spherical shape
for small particle numbers. For high particle numbers all averages are close to each other
and the scaling law is similar to the one for Rg. It remains unclear, why the scaling law
for Rg does not show a transition for µ2 = 16 and 36 like for the Rgµ ’s. Since Rg1 , Rg2

and Rg3 are in quite good agreement for all dipole strengths and particle numbers there is
no evidence for a significant stable spheroidal, ellipsoidal or toroidal shape, as predicted
by [4,5].

In figure 5.7 we show simulation snapshots of the single droplet simulations. The left
column are droplets of ST particles with µ2 = 5 and T = 0.7, the middle column with
µ2 = 16 and T = 2 and the right column with µ2 = 36 and T = 4. For every dipole
strength clusters with N = 16, 64, 512 and 2048 particles are shown. The temperatures
were chosen as large as possible that no particles evaporate from the droplet for a long
enough time period.
For the smallest dipole moment we can confirm a compact spherical shape for all particle
numbers. For the two higher dipole moments and small particle numbers the systems
form chains which compose to ring like structures. These structures collapse to a more
compact globule for larger particle numbers, but the chain-characteristic remains obvious,
especially for µ2 = 36.
On the other hand in all clusters, even for µ2 = 5, the particles are linked head-to-tail
in chains. Their dipole orientations are forming a vortex like structure with arrangement
parallel to the surface as predicted by [5] and already observed by [6,7]. This become less
obvious for increasing dipole strength at given particle number, but the reason for this
can be the increasing temperature, too.
Lu and Singer [7] simulated droplets of 50 ST particles with dipole moment µ2 = 1, 3
with MC at the temperature T = 0.28 and found liquid behaviour. We were not able
to reproduce these results via MD. In our simulations with these dipole strengths the
particles were trapped to a lattice for an even larger temperature. An example is shown
in figure 5.8 for µ2 = 3 and T = 0.55.
However, our simulation procedure for single droplets holds many dangers. Because of
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Figure 5.7: Snapshots from single droplet simulations for dipole strengths µ2 = 5, 16 and 36
from left to right and particle numbersN = 15, 64, 512 and 2048 from top to bottom.
The temperatures are T = 0.7, 2 and 4 for the increasing dipole strength. Inside the
clusters the particles are linked head-to-tail in chains forming a globally circulating
pattern. With increasing particle number the shape of the droplets become more
spherical. For increasing dipole strengths the chain characteristic becomes more
obvious.
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Figure 5.8: Snapshot from single droplet simulation for µ2 = 3, T = 0.55 and N = 512. The
droplet freezes to a crystalline solid. The dipole orientations are arranged head-to-
tail in an almost perfect circulating pattern. The perspective depth in this picture
has been removed to make the lattice structure more obvious.

the low temperatures the systems can freeze or the shape of the droplets can be trapped
in metastable states, so that it does not change any more. These problems were observed
for simulations for µ2 < 5, so that no meaningful observations for these systems can be
reported. It is worth mentioning that before we were aware of the ’rotating block of
ice’ problem, simulations of not evaporating droplets without crystalline structure were
possible even for dipole strengths µ2 < 5. This problem may concern the investigations on
droplets in reference [21]. Furthermore, droplets in the GL phase coexistence region are
coexisting with gas particles and other droplets, so interaction between them may effect
the shape and size. The results reported here can only be taken as a low temperature
limit of the properties of droplets.
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Figure 5.9: The nematic order parameter qnem versus particle number N for droplets with
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qnem for an ideal chain. For increasing particle number in simulation there is a
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The nematic order parameter

We have confirmed the vortex like structure of the dipole orientations by eye, but at
last we want to amplify the degree of ferroelectric/-magnetic order inside the droplets by
means of the nematic order parameter

qnem =
1

(N − 1)N

〈
N∑
i<j

(
3 cos2 θij − 1

)〉
=

1

(N − 1)N

〈
N∑
i<j

(
3 (~si · ~sj)2 − 1

)〉
, (5.3.8)

where θij is the angle between the two dipole orientations ~si and ~sj. A system of com-
pletely parallel ordered dipoles would show qnem = 1, while a completely randomly dis-
persed system would show qnem = 0. Negative values to qnem = −0.5 are possible, but
have not been observed. We will show here the nematic order parameter of the investi-
gated droplets to check if there is a tendency of the droplet to form a ferroelectric ordered
phase, as predicted by Zhang and Widom [4]. Doing this we have to be aware that qnem of
a vortex like structure is in general not zero, since for an ideal ring there exists for every
particle at least one with parallel dipole orientation. Consider N particles arranged on an
ideal ring. The angle between the dipole orientations of two particles positioned on sites
i and j is given by

θij =
2π

N
(j − i) (5.3.9)
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and we can calculate for the ring

q(ring)
nem =

1

(N − 1)N

N∑
i<j

[
3 cos2

(
2π

N
(j − i)

)
− 1

]
. (5.3.10)

Figure 5.9 shows the nematic order parameter qnem dependend on the particle number
N of the droplet. Additionally shown is qnem of an ideal ring calculated via (5.3.10)
numerically, as an upper limit for a non-vanishing qnem without real ferroelectric order. It
is hard to judge the change of qnem with particle number, because of the large scattering,
but there seems to be an decreasing tendency of qnem with increasing particle number.
The more important information is that, except a few outliers, the highly symmetric ideal
ring structure shows a larger qnem than the investigated droplets. So the non-vanishing
qnem has not to be interpreted as starting ferroelectric ordering, it can be interpreted as
a result of the ring structure inside the droplet. The crystalline cluster, shown in figure
5.8 has a order parameter qnem = 0.1357 for N = 512, more than all other droplets with
this particle number.

5.3.2 Coexisting clusters in the dilute phase

In this part we want to investigate clusters at higher temperatures which are more rele-
vant for the gas phase and GL coexistence region. At higher temperatures the droplets
and clusters are no longer stable. Chains are formed and destroyed continuously due to
equilibrium polymerization [14,22] and in the phase coexistence region there is permanent
evaporation and condensation, due to the dynamic equilibrium between the two phases.
To investigate clusters in this temperature range we have to simulate large systems in
which several chains or droplets can be formed. We use the simulations performed to
determine the phase coexistence region in chapter 6 to search for clusters in the stored
configurations. As already pointed out by van Workum and Douglas [14], in the very
dilute phase there are reversible chains, rings and an intermediate species, the mutants.
Examples are given in figure 5.10. Notice that the given illustration for mutants is a very
schematic one. Branched chains and rings are rather rare during simulation. Most de-
tected mutants are interlooped chains and rings with increasing frequency for increasing
density.

Searching for clusters

Clusters are determined from the simulation configuration files containing all coordinates
of the particles in the system. We determine the clusters with a simple distance argument:
two particles, which are less than a definite distance rn apart, are considered to belong
to the same cluster. The most reasonable choice for rn is the first minimum of the radial
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Figure 5.10: In the very dilute phase of the strongly dipolar ST fluid, we divide the clusters
into three different classes: chains, rings and the intermediate mutants (similar to
this example).

pair distribution function (3.7.1), but we also chose different ones, to compare results with
literature, or to determine the dependence of the chain length on rn in the more dense
phase.
We employ an recursive algorithm to search for the clusters in a configuration, since this
has turned out to be the fastest method. At the beginning we take one particle and define
it as the cluster number one. Now we check if any of the other particles is inside a sphere
of radius rn around the first particle. As soon as we find one particle, we consider it
to belong to the same cluster and start the search function for this particle. We repeat
this procedure until we find a particle with no more neighbors. Then we return to the
former particle and search for one more neighbor. If there is one we start the search for
this particle, if there none we go again to the former particle in the row and so on. We
continue this procedure until we reach again the first particle of the cluster and if no
more neighbors are found, we have successfully determined the cluster and can continue
with the next single particle. Particles which already belong to any cluster are not longer
respected in the search.
The species of a cluster (cf. figure 5.10) is determined by storing the number of neighbors
for every particle. If all particles of a cluster have exactly two neighbors the cluster is
considered to be a ring, if all particles in the cluster have two neighbors except two, which
have only one neighbor, the cluster is considered to be chain and if at least one particle has
more than two neighbors the cluster is considered to be a mutant. Notice that compact
droplets will be recognized as mutants, too.
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Characteristics of clusters

The radius of gyration, a significant characteristic of any type of cluster, was already in-
troduced in equation 5.3.7. Another important characteristic for systems with equilibrium
polymerization is the average chain length

n =

N∑
s=1

sNs

N∑
s=1

Ns

, (5.3.11)

where s is the number of particles in a given chain and Ns is the number of chains
of length s in the system. Notice that N is here the total number of particles of the
whole system. Different to mixtures of ordinary polymers the average chain length of a
configuration is a dynamic property and changing with running simulation. For systems
with chain formation one has to check carefully, if the system has reached equilibrium
before producing data, since especially in the very dilute phase this can take an enormous
long time. The average chain length n is often used in literature to show the degree of
polymerization for a system of self-assembling particles. Although we call this quantity
average ’chain’ length, all clusters are respected for this quantity regardless of the cluster
species.
The persistence length is a basic mechanical property quantifying the stiffness of a polymer
and is given by

lp = − 1

ln 〈~si · ~si+1〉
, (5.3.12)

where ~si ·~si+1 is the dot product of neighboring dipole orientations in a chain. The average
is taken over all starting positions. The persistence length is defined as the length over
which correlations in the direction of the tangent are lost. This can be interpreted that for
pieces of the polymer, shorter than the persistence length, it behaves like an elastic rod,
for pieces longer than the persistence length it is statistically described by a random walk.
The persistence length is calculated for all species of clusters, but for mutants particles
with more than two neighbors are neglected for the average in (5.3.12).
To analyze the distribution of chain lengths and species of a system, we give the number
fraction

h(spec)(s) =
N

(spec)
s∑

spec

N∑
s=1

N
(spec)
s

, (5.3.13)

where N
(spec)
s is the number of chains of species spec with length s.
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Simulation results for coexisting clusters

In figure 5.11 we show some examples for the scaling laws of the radius of gyration with
cluster length for different systems. For the smallest dipole moment µ2 = 5 there is
only one scaling law, valid in the whole range of cluster length. For dipole strengths
16 ≤ µ2 ≤ 36 there are two scaling laws for small and large particle numbers with a sharp
transition for a definite cluster length. For µ2 = 60 there is only one scaling law with
variations in the small cluster limit. For the DSS fluid there is a scaling law only valid for
small clusters with no sharp transition. The analyzed configurations for µ2 = 5, 16 and 60
and the DSS fluid were taken from simulations for determining the GL coexistence region
with maxwell construction (cf. chapter 6) in a density range of ρ = 0.001, ..., 0.3. For
µ2 = 30 and 36 were special simulations done for ρ = 0.001, 0.01 and 0.05, since for the
original particle number N = 2048 the finite size effects for the scaling law were too close
to the transition point. The scaling of radius of gyration of the observed clusters with
particle number is not dependend on density, only the range of observed chain lengths
vary. The different critical parameters are given in table 5.1. Here ν1 denotes the critical

Table 5.1: Critical parameters for the radius of gyration scaling.

µ2 ν1 ν2

0 - 0.446
5 - 0.489
16 0.690 0.470
30 0.688 0.462
36 0.710 0.451
60 0.644 -

7.563 (DSS) 0.752 -

parameter for the scaling law in the short chain length range, ν2 denotes it in the long
chain length range. The parameters are averaged over several temperatures, only the
values for µ2 = 60 and µ2

DSS = 7.563 are for one temperature. The critical parameters
are not dependend on the temperature, only the absolute value of Rg and the transition
points are.
The values lie in the range of ν1 = 0.644− 0.752 and ν2 = 0.446− 0.489 without tendency
for increasing dipole strength. We can explain this behaviour of ν with the conclusions
we came to for the behaviour of single clusters with particle number and dipole strength
in subsection 5.3.1. ST particles with high dipole strength and DSS particles form chains
with a certain stiffness. So short chains for these systems are most likely linear chains, rings
or chain like mutants as shown in figure 5.10. The critical parameters of the scaling law
for these systems should lie somewhere in the range between the parameter νXY = 0.67,
describing head-to-tail rings, and νccd = 0.75, derived by cluster-cluster aggregation for
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Figure 5.13: The average bond length, r0, radius of gyration, Rg, persistence length, lp, and
fraction number, h(n), per cluster size, n, for µ2 = 36, T = 9.31, N = 2048 and
ρ = 0.003. The circles are the values for clusters of certain size, the other the
contributions of the particular species.

head-to-tail dipolar clusters in the zero temperature limit. All observed parameters ν1

lie in or close to this range as expected for rigid chains and rings. It is also in good
accordance with van Workum and Douglas who found ν = 0.68 for µ2 = 36 [14].
For small dipole moments like µ2 = 5 and long clusters of high dipole moments, the
observed parameters ν2 are in accordance with the parameters obtained from simulation
νLJ = 0.4 − 0.5 in literature [17–19] for the LJ fluid, including this work (cf. table 5.1).
The parameter for the LJ fluid νLJ is larger than the one for a compact spherical shape
νs = 1/3, meaning there is a fractal structure inside the cluster. Here the transition from
one scaling law to the other is a smooth one, different to the single cluster simulations,
where we saw a ’collapse’ of the structure for a certain particle number (cf. figure 5.6).
Figure 5.12 shows the transition chain length nch for the gyration scaling and persistence

length lp for long clusters (n > 100) dependend on the reciprocal temperature β. For
dipole moments µ2 = 30 and 36 we see a clear correlation between sch of the transition
and lp. Both depend linear on the reciprocal temperature with a larger scattering for sch.
We can’t make a judgement for µ2 = 16, since the scattering for sch is so large, while lp
clearly depends linear on β, too. This correlation is quite reasonable, if we remember that
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pieces of the chains shorter than the persistence length behave rather like flexible rods
and pieces longer can only be described statistically, like a random walk. Van Workum
and Douglas did not find a transition in the gyration scaling of the µ2 = 36 system [14],
since they give data in a chain length range ( 10 ≤ s ≤ 70 for β ≈ 0.11) where we find a
transition (sch ≈ 45).
In figure 5.14 some characteristic properties for a system with chain formation (µ2 = 36,
T = 9.31, N = 2048, ρ = 0.003) are shown. The number fraction of chains with a certain
length h(s) show that the total frequency of clusters is decreasing with chain length. If we
take deeper insight at the frequency of species, we see that for short clusters with s ≤ 6
rings and mutants do not play a role, but become more important for 6 < s < 30. For
cluster lengths s ≥ 30 mutants become predominant, but these clusters are already very
unlikely for these system parameters. For the radius of gyration we see no real difference in
the scaling behaviour for the different species, only the absolute values differ. As expected
in the range 4 ≤ s ≤ 40, the radius of gyration of chains of certain length is the largest,
the one of rings is the smallest and the one of mutants is intermediate. For cluster lengths
s > 40 the scattering is too big for this low density. The average bond length r0 differs for
small clusters (s < 30) until the large cluster limit is reached. The average bond length
is monotonically decreasing to this limit for rings, for chains its monotonically increasing.
This is clear since for a linear chain the dipolar are bigger than for a bended chain like
a piece of a ring. This effect disappear for large rings, where small apertures look like
linear chains. For chains its the other way, since very short chains are almost perfectly
linear, while longer chains are a little bit bended. Mutants behave similar to rings. The
persistence length lp has a large cluster limit, too. For small clusters it is very large for
chains, while for rings it is very short. This is consistent with the observations for the
bond length.
Figure 5.14 shows the dependence of the average chain length n on the density for a system
of N = 2048 ST particles with µ2 = 36 and different temperatures. The upper panel shows
an amplification for the low density range. Here n seems to have a linear dependence of
density like in [14], while for a larger density range (lower panel) the dependence seems
to be exponential. With decreasing temperature the chains become longer on average.

5.4 Conclusion

We successfully compared our ST MD simulation program for low densities and interme-
diate dipole moments with a second-order virial expansion for the case with and without
polarizability. A third-order virial expansion describes a system with intermediate dipole
moment (µ2 = 3) in the whole gas phase quite well, failing on entering the GL coexis-
tence region, while for strongly dipolar systems (µ2 = 36) it fails already for a very dilute
system due to chain formation. By single droplet simulations we were able to confirm
the vortex like arrangement of the dipole orientations inside the clusters predicted by [5]
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and observed by [6–8]. We could also confirm the spherical shape in the low temperature
limit for big clusters observed by [6,7]. On the one hand we found no evidence neither for
ferroelectric order [4] nor for a perpendicular orientation of the dipoles to the surface [9],
on the other hand we found no evidence neither for a spheroidal [4] nor for a toroidal [5]
shape. By simulating coexisting clusters, we found a transition in the scaling of the radius
of gyration for clusters with strong dipoles as already investigated by [13]. While the size
of clusters with intermediate dipole strength (µ2 ≤ 5) scale with particle number like LJ
clusters, clusters with strong dipoles µ2 ≥ 16 scale like stiff rings or chains. This scaling
shows a transition for large particle numbers, since the chains form globules with a more
compact shape. A collapse was only observed by single droplet simulation in the low
temperature limit. We showed the correlation between persistence length of the clusters
and the transition point.
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6 Gas-liquid coexistence in the
Stockmayer fluid via computer
simulation

6.1 Introduction

The ST model does exhibit GL phase separation readily for small dipole strengths, be-
cause of the LJ part of its potential. In this chapter we want to trace the GL coexistence
curves of the ST fluid via computer simulation. The equation of state of a one com-
ponent system depends in general on the quantities P, V, T of which two can be chosen
independently (cf. equation (5.2.1))1. Figure 6.1 shows a schematic illustration of the
phase diagram of a one component system like the LJ system2. The left figure shows the
phase behaviour in the P -T plane where the GL phase transition is indicated by a line,
the vaporization curve, on which GL coexistence exists only. If we adjust pressure and
temperature of a system (NPT ensemble) we will find no stable phase coexistence of the
gas and liquid phase, the transition is happening immediately if we pass the borderline.
The vaporization curve terminates at the critical point for high temperatures and pres-
sures, beyond which no GL transition exists any more, and by the triple point for low
temperatures and pressures, where three phases coexist: gas, liquid and solid. For smaller
temperatures and pressures than the triple point there is the sublimation curve indicating
the gas-solid transition. We focus on the region between the critical and the triple point.
Looking at the phase diagram in the P -V plane (right figure), we see that there is no sud-
den transition from gas to liquid by changing volume or pressure, there is rather a region
where both phases coexist. The dashed lines indicate isotherms. Compressing the system
in a pure phase causes an increase in pressure. In the coexistence regions the isotherms
are flat and the pressure is constant. The critical isotherm has an inflection point at the
critical volume. Notice that the slope of the isotherms is negative in pure phase regions,
∂P/∂V |T < 0, due to the stability condition κT > 0 for the compressibility at constant
temperature. The borderline of the GL phase coexistence region is called binodal. On
an isotherm in the coexistence region, the pressure and the chemical potential of both

1Here we do not consider the interaction with external fields.
2In general full phase diagrams, even for one component systems, are much more complex (e.g. water)
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Figure 6.1: Schematic illustration of the phase diagram for a simple one component system in
the P -T and the P -V plane. The dashed lines in the P -V plane are isotherms.

phases remain constant. GL and gas-solid coexisting lines can be theoretically obtained
from the Clausius-Clapeyron equation, based on the equality of the chemical potentials
of both phases and the continuity of the Gibbs free energy. A detailed introduction to
the physics of phase transitions can be found in [1–3].
The phase diagram of the ST fluid is more complicated than the one shown here, because
it includes orientational ordering of the dipoles. Actually, the global phase diagram of
the ST fluid is still unknown [4, 5]. For increasing dipole strength the ST fluid shows re-
versibly assembling chains in the gas phase3. Due to this chain formation GL separation
was previously believed to disappear above a certain threshold of dipole strength. The
conclusion that this threshold should be close to µ2 ≈ 25 is based on work by van Leeuwen
and Smit [7], which is quoted frequently in the subsequent literature (e.g, [4, 8–13]). Van
Leeuwen and Smit used the GEMC technique to study the modified ST potential.
In this work we report GL phase coexistence curves of the ST fluid including equilibrium
polymerization and ferroelectric order. In particular we report phase coexistence between
an isotropic gas and an isotropic liquid for dipole strengths up to µ2 = 60, which is signif-
icantly above the limit proposed previously beyond which no GL transition should exist.
We also present GL coexistence curves of the polarizable ST fluid for point polarizabili-
ties α in the range 0 ≤ α ≤ 0.08 and dipole strengths µ2 = 1.0, 2.0 and 3.0. Finally we
investigate possible GL phase transition in the DSS fluid for selected parameters.

3The formation of chains in colloidal systems due to dipolar interaction was first predicted by Pincus
and de Gennes [6].



6.2 Determination of gas-liquid coexistence curves 99

2000 4000 6000
V

0,1

0,12

0,14

0,16
P

A

B
C

D

E

F

G

Figure 6.2: Illustration of the Maxwell construction method for a typical van der Waals
isotherm. The symbols are the results of NVT-MD simulations for µ2 = 5, T = 2.26,
N = 512. Open circles: results obtained during compression; open diamonds: re-
sults obtained during subsequent expansion. The dashed line represents a fit using
a simple approximate equation of state. The shading highlights the equal areas.

6.2 Determination of gas-liquid coexistence curves

6.2.1 The Maxwell construction method

GL phase coexistence curves in this work are obtained primarily via Maxwell construction,
a method to determine equilibrium states for instance for the van der Waals equation.
The van der Waals equation

P =
NT

V − b
− a

V 2
(6.2.1)

was in history the first attempt of an equation of state which reproduces many of the
important features of the GL phase transition. A shortcumming of the van der Waals
theory is the phase coexistence region, where isotherms of real systems should be flat due
to phase separation (cf. Fig 6.1). The van der Waals equation behaves different, like the
isotherm shown in figure 6.2, and exhibits in this region a so called van der Waals loop.
Phase separation is not included in the theory due to its mean field character, describing
a homogeneous fluid. One compression path for a van der Waals system follows the points
ABCDEFG, while in equilibrium the path would be ABDFG. Following the path of the van
der Waals loop, we start in the pure gas phase A compressing the system until we reach
the binodal B. Entering the coexistence region, for a real gas in equilibrium the pressure
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Figure 6.3: Gibbs free energy versus pressure for the van der Waals isotherm in figure 6.2. In
equilibrium the compression/expansion path would be ABG. The paths BC and EF
are metastable, the path CDE is mechanical unstable, since G(T, P ) is convex.

would not increase by compressing the system until the pure liquid phase is reached. For
the van der Waals system the pressure continues to increase until point C, marking the
spinodal. Region BC is metastable, since phase separation is driven by nucleation assisted
by impurities or external disturbances, and conforms to a supercooled gas which can be
realized in the laboratory for very pure samples. Comparing with figure 6.3, showing the
molar Gibbs free energy dependend on pressure for the isotherm in figure 6.2, we see that
the region BC is not equilibrium, because it no longer corresponds to the minimum of free
energy. This applies also for the region EF which conforms to a metastable superheated
liquid. With the path CDE the system passes the region where spinodal decomposition
proceeds [14]. Spinodal decomposition does not depend on the formation of nucleation
sites, it is rather started immediately by fluctuations in density with infinitesimal ampli-
tude and long wave length which grow and result in phases of different density. The van
der Waals equation predicts here positive slope ∂P/∂V |T > 0 and therefore a negative
compressibility κT < 0, an unphysical effect. This corresponds to mechanical unstable
states, since the Gibbs free energy is convex in this region violating the requirements of
stability. The points E and F correspond again to the spinodal and binodal, respectively,
before we reach the pure liquid phase G. At the critical temperature and beyond the van
der Waals equation will behave like real systems with an inflection point at the critical
point. However, aim of the Maxwell construction is to remove the unphysical parts from
the isotherms.
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Equilibrium requirements for GL phase coexistence of a one component system are equal-
ity of both the pressures and the chemical potentials of the coexisting phases

Ps = Pg = Pl , (6.2.2)

µs = µg = µl . (6.2.3)

Here Pg (Pl) indicates the pressure of the gas (liquid) phase and µg (µl) the chemical
potential of both, the s indicates saturation pressure (chemical potential). Equation
(6.2.3) corresponds to a constant Gibbs free energy

G = Nµ = F + PV (6.2.4)

along an isotherm in the GL coexistence region (dG = 0). Here F indicates the Helmholtz
free energy. For the difference of the Gibbs free energies of the pure phases on the
coexistence curve we get

0 = N (µl − µg) = Fl − Fg + Ps (Vl − Vg) . (6.2.5)

and by integrating the relation P = −∂F/∂V |T along the isotherm we obtain the difference
of the Helmholtz free energies

F (Vl, T )− F (Vg, T ) = −
Vl∫

Vg

P (V, T ) dV . (6.2.6)

Here P (V, T ) is the particular equation of state not the equilibrium pressure. Adopting
this into equation (6.2.5) we get the system of equations from which we can practically
calculate the equilibrium pressure Ps, and the coexisting volumes Vg and Vl

Ps = Pg = Pl
Vl∫

Vg

P (V, T ) dV = Ps (Vl − Vg) .
(6.2.7)

The justification of the Maxwell construction was given by Griffiths [15] with his suggested
’hypothesis of analyticity’ for deriving equilibrium. The Helmholtz free energy is analytic
everywhere except on the phase boundaries. Only Maxwell’s equal-areas construction
satisfies this condition. An attempt to place the horizontal part of the isotherm in any
other position inevitably leads to some sort of phase transition in the one phase region.
To apply this method to simulation data we carry out a large number of NVT-simulations
along an isotherm (cf. Fig. 6.2). The simulated systems exhibit the same behaviour in
the coexistence region as the van der Waals fluid, because they are too small to show
phase separation. Cross-sections of simulation snapshots for huge ST systems are shown
in Figure 6.4 for µ2 = 3 and 36 at critical density and below critical temperature. Both
systems evince phase separation, we can see regions with higher and lower density. For
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Figure 6.4: Phase separation in huge ST systems with µ2 = 3, T ≈ 1.49, ρ ≈ 0.3 (left) and
µ2 = 36, T ≈ 8.3, ρ ≈ 0.09 (right), both with particle number N = 100000. For
illustration cross-sections with thickness of some LJ units were taken. The squares
indicates the box sizes of simulations done for Maxwell construction.

comparison the size of the simulation boxes, used for Maxwell construction, are indicated
by the squares. We can see that the spatial range of the density fluctuation due to phase
separation exceed the size of the small boxes, so phase separation cannot proceed. We
start with simulations in the very dilute gas phase. Here we have to check carefully if
equilibrium is really reached, since this can take more time than getting good averages
if chain association occurs. Then the system is compressed gradually and the pressure is
averaged after a long enough equilibration time. This is continued till the liquid phase
is reached. To preclude hysteresis effects, this procedure is repeated during expansion
of the system from the liquid phase to the gas phase. If both van der Waals loops are
approximately equal, we do not report the results separately, but average them to get
better results. We obtain the analytical equation of state by fitting an adequate function,
in general a modification of the van der Waals equation, to the simulation data. For
some fitting functions there are no exact solutions of (6.2.7), so we solve the system of
equations numerically using Mathematica [16]. Repeating this procedure for a series of
temperatures yields the GL coexistence curve.

6.2.2 Kofke’s thermodynamic integration method

As soon as we have determined the coexistence points for a system of one single temper-
ature, we can also proceed with Kofke’s thermodynamic integration method [17, 18] to
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determine the phase coexistence curves. With given conditions at a single state point,
simultaneous but independent NPT simulations of each phase are performed in succes-
sion along the saturation line. In each of both simulations the pressure is adjusted to
satisfy the chemical potential equality, according to the Gibbs-Duhem equation for pure
substances (gas or liquid) which may be written as

Ng, l (β dµg, l + µg, l dβ) = Hg, l dβ + βVg, l dPg, l , (6.2.8)

where Ng, l is the number of particles, µg, l is the chemical potential, Hg, l the enthalpy, Vg, l
the volume and Pg, l the pressure of the respective phases. The reciprocal temperature is
given by β = 1/T . If the temperature for two coexisting phases is changed, to remain
in equilibrium, the pressure must change in a manner (dPs = dPg = dPl) that maintains
chemical potential equality between them (dµs = dµg = dµl). The required change is
obtained by subtracting the two Gibbs-Duhem equations (6.2.8) for the pure phases at
the borders of the phase coexistence region

0 = (Hg −Hl) dβ + (Vg − Vl) βdPs , (6.2.9)

resulting in the Clausius-Clapeyron relation

dPs
dβ

= − ∆H

β∆V
(6.2.10)

with ∆H = Hg − Hl and ∆V = Vg − Vl. The subscript s indicates that the derivative
is taken along the saturation line. Practically, for the Kofke integration the equivalent
equation

d lnPs
dβ

= − ∆H

βP∆V
= f(β, P ) (6.2.11)

is used, because any integration scheme applied would benefit from the slowly varying
integrand f(β, P ). We will follow Kofke and use a predictor-corrector integration scheme
solving the differential equation y′ = f(β, P ) with y = lnP . Depending on how many
former state points are available we will employ the formula from table 6.1 with the best
accuracy. As initial values for Kofke integration we use a single state point on the phase
coexistence curve obtained by Maxwell construction and do the first integration step with
the trapezoid-rule predictor yielding

P = P0 e
f0∆β . (6.2.12)

Here ∆β is the step size for the integration scheme in reciprocal temperature. We proceed
with two independent NPT simulations at the same pressure, one in the gas phase and
one in the liquid phase. The difference in Volumes ∆V can be directly obtained from the
simulation, the difference in enthalpies ∆H can be obtained via the relation

H = E + PV , (6.2.13)

where E is the internal energy. For every state point we apply one predictor and one
corrector, since these two are already in quite good agreement for the chosen temperature
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Table 6.1: Predictor-corrector formulas for the Kofke integration method

Name Type n Formula

Trapezoid P 1 yi+1 = yi + ∆βfi

C 1 yi+1 = yi + ∆β
2

(fi+1 + fi)

Midpoint P 2 yi+1 = yi−1 + 2∆βfi

C 2 yi+1 = yi−1 + ∆β
3

(fi+1 + 4fi + fi−1)

Adams P 4 yi+1 = yi + ∆β
24

(55fi − 59fi−1 + 37fi−2 − 9fi−3)

C 3 yi+1 = yi + ∆β
24

(9fi+1 + 19fi − 5fi−1 + fi−2)

steps. In principle the corrector can be applied as often as needed for desired accuracy.
After this we can proceed for the next step applying the midpoint-rule, because we have
knowledge of two state points along the coexistence curve and so on.
The most successful approach was to start with Kofke integration scheme at an interme-
diate temperature of the phase coexistence diagram and than calculating two integration
paths, one for decreasing temperature and one for increasing temperature towards the
critical point.

6.2.3 Scaling laws for the critical point

The discussed methods to determine state points on the GL phase coexistence curves both
do suffer both from problems near the critical point. In close proximity of the critical point
fluctuations, especially in the pressure, become very large. So in the case of the Maxwell
construction near the critical temperature, we have to perform very long simulations to
get adequate averages for the pressure, at some point this becomes infeasible. A similar
problem occurs for the Kofke integration. The large fluctuations in pressure cause large
fluctuations in the volumes of the NPT simulations and the instantaneous volume differ-
ences ∆V of the pure phases can become very small, consequential the simulation volume
can jump between both. This can be precluded by increasing the system size, because this
increases ∆V . The disadvantage of NPT simulations of huge particle numbers, however,
is the very slow volume averaging which becomes infeasible, too. But even if we are not
able to get good results in the vicinity of the critical point, we are able to estimate the
location of the critical point based on the coexistence curve as explained below.
This estimate is based on suitable scaling laws [19]. Systems in same universality classes,
according to their critical exponents, behave similar at continuous phase transitions, which



6.3 Results for gas-liquid coexistence from molecular dynamics 105

can be described by an order parameter, vanishing in the unordered phase and growing
spontaneously on approach of the critical point. The different order parameters obey the
same scaling functions with the same critical exponents, except for the system depen-
dend amplitudes that relate mathematical scaling laws to physical laws. Fluids near the
GL critical point are expected to belong to the universality class of the three dimensional
Ising model. This is reasonable, since we can describe a fluid quite well by a lattice model,
equivalent to the Ising model, where an up-spin represents lattice sites with microscopic
droplets and a down-spin microscopic cavities. These are systems with short-ranged forces
and scalar order parameters, here ρl− ρg, vanishing at the critical temperature Tc. Below
Tc, ρl−ρg increases monotonously. Some thermodynamic quantities diverge at the critical
point like in this case the heat capacity at constant temperature Cv.
The scaling laws can be obtained from renormalization group (RG) theory [2, 20]. The
critical point is a fixed point with a characteristic ’range of attraction’ meaning a range
of starting points within which convergence will occur to the particular root. Each fixed
point corresponds to one universality class and Hamiltonians with a wide range of param-
eters will converge to the same fixed point. The RG is a transformation of the original
Hamiltonian of a system into a new one with reduced correlation length of the density
fluctuations and reduced number of degrees of freedom. The transformation is chosen
that the partition function is preserved.
We analyze the phase coexistence data to get an estimate of the critical point using the
scaling relations

ρL − ρG ≈ A0 | t |β +A1 | t |β+∆ (6.2.14)

(ρL + ρG)/2 ≈ ρc +D0 | t |1−α +D1 | t | (6.2.15)

P − Pc ≈ P0 | t | +P1 | t |2−α +P2 | t |2 , (6.2.16)

with t = (T−Tc)/Tc [21], in conjunction with the 3D-Ising values of the critical exponents
α ≈ 0.110, β ≈ 0.326 and ∆ ≈ 0.5 [22] to extract the critical point parameters.

6.3 Results for gas-liquid coexistence from molecular
dynamics

6.3.1 The non polarizable case

In Figure 6.5 we compare results for GL coexistence curves obtained by Maxwell construc-
tion for this work with data obtained by GEMC in [23–25] for the ST fluid with dipole
strengths in the range µ2 = 1 to 5. For µ2 = 1 to 4 we simulated N = 216 particles, for
µ2 = 5 both N = 216 and N = 512 (large symbols). We chose a time step of t = 0.006 and
cut off radius rcut = 3, except for µ2 = 5 and N = 512 where we chose rcut = 4.5 which
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Figure 6.5: Comparison of the results for GL coexistence curves in the T -ρ plane from the
Maxwell construction method (hollow symbols) with results from the GEMC
method [23–25] (shaded symbols) for dipole strengths µ2 = 1 (diamonds), 2 (up-
triangles), 3 (left-triangles), 4 (down-triangles) and 5 (right-triangles). The solid
symbols indicate the critical points obtained from Maxwell construction and the
striped symbols the ones obtained from GEMC.

changed the results only slightly. The GEMC results were obtained by simulations with
particle numbers N = 216 and N = 512, comparable to the ones we have chosen. Long-
range corrections were calculated with Ewald summation, contrary to the reaction field
method we used. Nevertheless the results are in good agreement with each other. Only in
the gas phase the densities of GEMC seem to be systematically lower, but they are still
in a acceptable range. The critical temperatures obtained by the GEMC data with the
same scaling laws we employed, are systematically lower than the critical points obtained
by Maxwell construction. This is rather an effect of the low temperatures used for the
critical point scaling in GEMC, with the NVT simulations for Maxwell construction we
were able to approach much closer to the critical temperature. It is worth mentioning
that all simulation methods may suffer from problems in the vicinity of the critical point
due to the finite size of the simulation box, which may suppress critical fluctuations.
Furthermore, in figure 6.6 we compare the results from Maxwell construction for µ2 = 5

and 16 to corresponding results obtained via thermodynamic integration using Kofke’s
method. In addition we vary the system size N and in the case of thermodynamic inte-
gration the temperature increment ∆T . The coexistence curves thus obtained for selected
fixed dipole strengths are in close accord. Systems with µ2 = 16 were simulated with a
time step t = 0.004 and cut off radius rcut = 5. For this dipole strength we were able to
determine coexistence curves by Kofke’s method for much lower temperatures than with
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Figure 6.6: Binodal lines in the T–ρ plane for µ2 = 5 (top) and 16 (bottom). Comparison of
Maxwell construction (M) and Kofke Integration (K) for different particle numbers
N and in the case of Kofke integration different temperatures increments ∆T .
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Maxwell construction. Figure 6.7 shows the logarithmic saturation pressure for these
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Figure 6.7: Logarithmic saturation pressure lnPs versus reciprocal temperature β for µ2 = 5,
N = 512, rcut = 4.5 (left) and µ2 = 16, N = 2048, rcut = 5 (right) obtained
from Maxwell construction. The indicated formulas are fits to the data and used to
calculate initial pressures for Kofke integration.

systems obtained from Maxwell construction. Initial values for Kofke integration are cal-
culated from the indicated formulas, which are linear fits to the data, to get more averaged
values than only from one Maxwell construction. Additionally, this gives a justification
of the use of the logarithmic form of the Clausius-Clapeyron equation (6.2.11). The loga-
rithmic saturation pressure depends linear on the reciprocal temperature β. The nematic
order parameter qnem from Kofke integration for the coexistence curve on the liquid side
is shown in figure 6.8. For decreasing temperature qnem raises at T/Tc . 0.55. Notice
that here Tc is again the GL critical temperature. The reduced transition temperature
seems to be universal.
We tried also to obtain results for coexistence curves via Kofke integration for µ2 = 30
and 36, but this turned out to be impracticable, because averaging the volumes from NPT
simulations for systems with long chains turned out to be prohibitively time consuming.

Figure 6.9 compiles coexistence curves for dipole strengths in the range from µ2 = 0
to 36 in LJ and in the range from µ2 = 0 to 60 in critical units obtained via Maxwell
construction. Numerical values for critical temperatures and densities are listed in Table
6.2. Simulations for µ2 = 30 and 36 were performed with N = 2048, t = 0.002 and
rcut = 7, simulations for µ2 = 60 with N = 2048, t = 0.002 and rcut = 10.5 unless stated
otherwise. As fit function for the van der Waals loop was used in the range µ2 = 0 to 4

P =
NT

V − b
− a

V 2−ν , (6.3.1)

in the range µ2 = 5 to 36

P =
NT

V − b
− a

V 2−ν + c (6.3.2)
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Figure 6.8: Nematic order parameter qnem from simulations for Kofke integration with µ2 = 5,
N = 1024 and µ2 = 16, N = 1024 in the liquid phase. For decreasing temperature
(T/Tc . 0.55) qnem is increasing.

and for µ2 = 60

P =
NT

(V − b)d
− a

V 2−ν . (6.3.3)

Here a, b, c, d and ν are fit parameters. The dashed coexistence curves in figure 6.9 are
obtained by the fits for the critical point (cf. equation (6.2.14) and (6.2.15)) with

ρg = ρc −
1

2
A0 t

β − 1

2
A1 t

β+∆ +D0 t
1−α +D1 t (6.3.4)

ρl = ρc +
1

2
A0 t

β +
1

2
A1 t

β+∆ +D0 t
1−α +D1 t . (6.3.5)

We notice that the critical temperature obtained for the LJ system is slightly higher than
most values found in literature (between 1.31 to 1.32). Possibly the equal area construction
based on a simple equation of state, like the van der Waals equation or modifications of
the van der Waals equation, overemphasizes the occurrence of the pressure loop. On the
other hand with the NVT simulations we are able to get results much closer to the critical
temperature than with with the GEMC method, because two box simulation methods
suffer from switching phases in the boxes in the vicinity of the critical point. This can be
avoided by increasing the system size, as done for the Kofke integrations. Nevertheless,
this effect is small compared to the dependence of the GL critical temperature on µ2 in
the range studied. The bottom panel in figure 6.9 shows the coexistence curves in critical
units T/Tc and ρ/ρc to point out the deviation from the principle of corresponding states,
which claims that all substances obey the same equation of state if expressed in critical
units [26], with increasing dipole strength. We can confirm the observations in [25] for
µ2 = 0 to 5 that the deviation from corresponding states behaviour for the ST fluid is
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Figure 6.9: GL coexistence curves in the T -ρ plane obtained by Maxwell Construction for µ2 = 0
(hollow circles), 0.5 (squares), 1.0 (diamonds), 2.0 (up-triangles), 3.0 (left-triangles),
4.0 (down-triangles), 5.0 (right-triangles), 16 (pluses), 30 (crosses), 36 (stars) and
60 (striped circles). In the top panel fat symbols indicate the position of the critical
point. The dashed lines are fits obtained via equations (6.3.4) and (6.3.5). The solid
line shows the shift of the critical point as obtained by a lattice theory, discussed in
chapter 7. Bottom: Same as above in critical units to show the deviation from the
principle of corresponding states with increasing dipole strength.
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Table 6.2: GL critical parameters for the ST system and the pST system obtained by the
scaling relations (6.2.14)-(6.2.16).

µ2 α Tc ρc Pc

0 0.00 1.35 0.307 0.147
0.5 0.00 1.39 0.309 0.156
1 0.00 1.45 0.3123 0.158
2 0.00 1.65 0.304 0.168
3 0.00 1.86 0.297 0.170
4 0.00 2.09 0.283 0.170
5 0.00 2.34 0.275 0.159
16 0.00 5.20 0.191 0.121
30 0.00 8.89 0.118 0.0668
36 0.00 10.35 0.089 0.0439
60 0.00 16.51 0.0249 0.0133
1 0.02 1.48 0.297 0.160
1 0.04 1.50 0.308 0.160
1 0.06 1.53 0.307 0.162
1 0.08 1.58 0.308 0.175
2 0.02 1.69 0.307 0.164
2 0.04 1.76 0.316 0.174
2 0.06 1.85 0.310 0.189
2 0.08 1.95 0.321 0.203
3 0.02 1.95 0.297 0.175
3 0.04 2.07 0.303 0.186
3 0.06 2.22 0.304 0.210
3 0.08 2.43 0.322 0.240

in the direction of higher liquid densities and near the critical region in the direction of
slightly lower gas densities. The stronger the dipole moment, the larger is the deviation.
Beyond the observations in [25], it seems that for large dipole strengths there is a limiting
curve, at least on the gas side, since the results for µ2 = 16, 30, 36 and 60 appear to
scatter around the same line. On the liquid side the investigated density range is too
small to make a judgement.
Figure 6.10 shows the coexistence curves for µ2 = 30, 36 (top panel) and 60 (bottom
panel) in detail. For increasing dipole strength the maximum around the critical point
becomes much sharper in density. Contrary to smaller dipole strengths the coexistence
curve for µ2 = 36 seems to intersect in its extension with the one for µ2 = 30. To justify
the choice of the cut off radius rcut = 10.5 used for µ2 = 60, we show in figure 6.11 the
DD correlation function 〈~µ(0) · ~µ(r)〉 /µ2 and the radial pair distribution function g2(r)
for densities ρ = 0.0005 (start of the isotherm for Maxwell construction) and ρ = 0.14
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Figure 6.10: GL coexistence curves for µ2 = 30, 36 (top) and 60 (bottom) from Maxwell con-
struction in detail. The pluses in the bottom figure indicate (ρg + ρl)/2.

(end of the isotherm) at temperature T = 14.5. For the higher density the cut off is
much larger than the correlation length in both the dipole orientations and radial pair
distribution. Contrary, in the very dilute phase the correlation lengths are similar to
10.5. The slowly declining tail of the radial pair distribution is typical for clusters of
comparable size as the correlation length. The negative tail of the DD correlation function
is a consequence of rings as predominant cluster species (cf. figure 6.12). For an ideal
ring the DD correlation of particles on opposite sites is negative. This behaviour was not
observed for the other dipole strengths. Figure 6.13 shows a check of an isotherm with
µ2 = 60 for finite size effects. For different particle numbers, N = 2048 and 10000, the
pressure must be printed versus density to compare the systems, since the volume is not
invariant under particle number changes. The solid line is a fit obtained for N = 2048
via equation (6.3.3). We see no significant deviations of the two curves which cannot
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Figure 6.11: DD correlation 〈~µ(0) · ~µ(r)〉 /µ2 (top) and radial pair distribution function g2(r)
(bottom) for µ2 = 60 and the indicated densities ρ at T = 14.5. The choice of
rcut = 10.5 seems to be sufficient for the correlation functions. In the very dilute
phase the correlations seem to be more long-ranged due to chain formation.

be explained with statistical scattering. To perform simulations with N = 10000 and
µ2 = 60 is a enormous computational task. Getting good averages for the 6 points with
N = 10000 took even longer time than simulating the whole isotherm for N = 2048.
A number of isotherms for ST systems with µ2 = 5, 16, 30, 36 and 60 obtained from
NVT simulations are shown in figure 6.14. For µ2 = 5 the system with particle number
N = 512 is presented, the rest for parameters already mentioned above. The symbols
indicate the simulation results, the solid lines the fits to equations (6.3.2) and (6.3.3). For
some systems there are large deviations of the fitting and simulation data in the very dilute
phase. This is for our purpose irrelevant, since for Maxwell construction we need a good
fit only in the phase coexistence region. For increasing temperature the pressure is also
increasing as indicated by the arrows. The plotted isotherms correspond to temperatures
T = 2.25, 2.26, 2.27, 2.28, 2.29, 2.3, 2.31, 2.32, 2.33, 2.335, 2.34 for µ2 = 5, T = 5, 5.1,
5.15, 5.175, 5.2, 5.225, 5.25, 5.3 for µ2 = 16, T = 7.75, 8, 8.25, 8.5, 8.75, 8.8, 8.85, 9, 9.25
for µ2 = 30, T = 9.5, 9.75, 10, 10.2, 10.25, 10.3, 10.5 for µ2 = 36 and T = 14.5, 15, 15.5,
16, 16.25, 16.5 for µ2 = 60.
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Figure 6.12: Simulation snapshot for a system with µ2 = 60, ρ = 0.0005 and T = 14.5. At
these system parameters rings are the predominant cluster species. Contrary to
other snapshots shown in this work, perspective depth has been removed due to
the huge simulation box.

The nematic order parameter qnem versus density ρ of isotherms for a system with µ2 = 4
and N = 216 are shown in figure 6.15. The arrow indicates increasing temperature. The
binodal lies for T = 1 at ρl ≈ 0.95. With Maxwell construction we reach only state points
on the binodal with beginning ferroelectric ordering. The two lower panels show the radial
pair distribution function g2(r) and the DD correlation function 〈~µ(0) · ~µ(r)〉 /µ2 for this
system at density ρ = 1 and particle number N = 2048 for three temperatures: T = 1
with the largest appearing qnem, T = 1.5 with a very small qnem and from the not in
the top panel given temperature T = 2, where the average of qnem is exactly zero. For
the correlation functions we chose simulations with larger particle number to be able to
print g2(r) and 〈~µ(0) · ~µ(r)〉 /µ2 for a larger range of separations. The radial distribution
function looks similar for all temperatures with only small deviations in the amplitude of
the maxima and minima. The DD correlation function behaves different. Here we can
see clearly the increasing correlation for decreasing temperature. For T = 1, where we
find qnem ≈ 0.24, the DD correlation is not longer vanishing for the long-range limit. The
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Figure 6.13: Isotherm for µ2 = 60 for different particle numbers. Here pressure versus density
is plotted, since the volume is not invariant under particle number changes. The
fit is obtained via equation (6.3.3)

correlations are propagating through the whole simulation box. For large dipole moments
µ2 = 16, 30 and 36 the Maxwell construction fails for parameters where ferroelectric
ordering should appear. To determine the ferroelectric transition on the binodal, the
Kofke integration seems to be the method of choice (cf. fig. 6.8), but this becomes
difficult for large dipole moments (µ2 = 16), too.

6.3.2 Checking the cut off radius

Up to now we have chosen different cut offs rcut for systems with different dipole strengths
without justifying the particular choice, except for the radial pair distribution function
and the DD correlation. In practice we have chosen some single state points and increased
rcut until the pressure reached a limit. By this method we have shown that the cut off
is sufficient at this particular state point, but we cannot assume that this holds for the
whole coexistence region offhand. So we investigate the influence of the cut off on one
isotherm in some more detail. Figure 6.16 shows isotherms for a system with µ2 = 30
and N = 2048 at temperature T = 8.75 for three different cut offs rcut = 4, 7 and 9. The
smallest cut off, rcut = 4, is definitely not sufficient to calculate the phase boundaries.
The cut offs rcut = 7 and 9 are in good accordance in the pure phases and metastable
regions (∂P/∂ρ|T > 0), in the mechanical unstable region (∂P/∂ρ|T < 0) they differ.
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Figure 6.14: Isotherms (pressure vs. volume) for dipole strengths µ2 = 5, 16, 30, 36 and 60
from NVT simulations from which phase boundaries are determined via Maxwell
construction. The solid lines are fits to the simulation data corresponding to
equation (6.3.1) to (6.3.3). The arrows indicate direction of increasing temperature.
The deviations of the fits to the simulation data in the very dilute phase are
irrelevant, since we are only interested in the phase coexistence region.
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Figure 6.15: Nematic order parameter qnem versus particle number density ρ for µ2 = 4 andN =
216. The radial distribution function g2(r) and DD correlation 〈~µ(0) · ~µ(r)〉 /µ2 are
shown for N = 2048. In the top panel the arrow indicates increasing temperature
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Figure 6.16: Comparison of isotherms for a system with µ2 = 30, N = 2048 and T = 8.75 for
different cut offs rcut = 4, 7 and 9

This difference appears a little bit shady, the van der Waals loop for rcut = 7 looks better
than for rcut = 9 whose shape looks untypical. This can be due to equilibration problems,
the simulation of the isotherm for rcut = 9 took several times as long as for rcut = 7. In
figure 6.17 we compare the radial distribution function g2(r) and the DD correlation for
the different cut offs at density ρ = 0.001. There are no noticeable deviations. So to check
the correlation functions is not enough to choose a sufficient cut off. In figure 6.18 we
compare the average chain lengths n and fraction numbers h of species for cut offs rcut = 4,
7 and 9. Here we can see no significant deviations, too. The choice of the cut off has no
effect on the cluster structure of the system, in all linear chains are predominant. We can
conclude that the choice of the cut off has no influence on the structure of the system. We
see deviations in pressure for the cut off which we used to calculate the phase boundaries
and a larger one in the mechanical unstable region. We were not able to investigate this
in more detail due to the enormous computational effort necessary for rcut = 9. To find
out if rcut = 7 for µ2 = 30 and 36 is sufficient or not to determine the phase boundaries
adequately, may be a task for the future.

6.3.3 The polarizable case

Figure 6.19 compiles GL coexistence curves for the pST model, we obtained at fixed dipole
moment µ2 = 1 and point polarizabilities α = 0, 0.02, 0.04, 0.06 and 0.08 using again the
Maxwell construction method, in comparison with data obtained by GCMC in [27]. For
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Figure 6.17: The radial pair distribution function g2(r) and the DD correlation function
〈~µ(0) · ~µ(r)〉 /µ2 for µ2 = 30, N = 2048, T = 8.75 and ρ = 0.001 for different
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Figure 6.18: Average chain length n and number fraction of the different species h vs. density
for µ2 = 30, N = 2048, T = 8.75 and different cut off distances rcut = 4, 7 and
9. In the right panel the hollow symbols indicate chains, the striped symbols rings
and the filled symbols mutants.
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Figure 6.19: GL coexistence curves in critical units for the pST fluid with µ2 = 1 and polariz-
abilities α = 0 (circles), 0.02 (squares), 0.04 (diamonds), 0.06 (up-triangles), 0.08
(left-triangles) via Maxwell construction in comparison with data from GCMC [27]
for α = 0 (Pluses), α = 0.03 (crosses) and α = 0.06 (stars).

this case we give the phase diagram only in critical units since the deviations for different
polarizabilities are too small. For our data there seems to be no deviations from the
principle of corresponding states larger than the statistical scattering for different values
of α. Our data differs slightly from the data given in [27] in the gas phase. This is most
likely due to the different critical points which are given for the GCMC data by Tc = 1.4,
ρc = 0.318 for α = 0, Tc = 1.432, ρc = 0.322 for α = 0.03 and Tc = 1.478, ρc = 0.328 for
α = 0.06. We provide data much closer to the the critical point, so differences in the fits for
the critical points are not surprising. For µ2 = 2 and 3 the coexistence curves are shown
in figure 6.20 in LJ and critical units. Here the polarization causes no obvious deviations
from the principle of corresponding states, too, despite the polarizability causes a strong
increase of the critical temperatures for µ2 = 2 and 3. A possible reason for this may be the
isotropic form of the polarizability. On the other hand the range of investigated densities
and temperatures may be too small for significant deviations. The critical parameters are
listed in Table 6.2.

6.3.4 Gas-liquid transition for the dipolar soft sphere fluid

In this subsection we will have a short look at the phase behaviour of the DSS fluid.
Whether or not the similar DHS fluid exhibits a GL phase transition has been discussed
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Figure 6.20: GL coexistence curves for the pST fluid for µ2 = 2 (left) and 3 (right). The
different polarizabilities α are indicated by the same symbols as in figure 6.19.
Filled symbols indicate the critical point. The bottom figures are in critical units
and show the principal of corresponding states.

frequently in literature [9,28–32] and is still a matter of debate [4,5]. We will investigate
isotherms of the DSS fluid in a region where a GL phase transition for the DHS fluid was
claimed based on NPT and GCMC simulations. The critical point for a DHS fluid should
lie in our units at Tc ≈ 1.14 and ρc ≈ 0.1 for µ2 = 7.563 [31,32].

Figure 6.21 shows in the top panel isotherms (pressure vs. density) at temperature
T = 1, clearly below the expected critical temperature, for the DSS fluid with µ2 = 7.563
for different cut off distances rcut and different particle numbers N . We see that the
isotherms do not depend on the particle number. For N = 512 and 2048 with the same
cut off the isotherms are in good agreement. Contrary, the isotherms of the DSS fluid
depend strongly on the chosen cut off at the given simulation parameters. While the
isotherms for rcut = 7 show an obvious van der Waals loop, the isotherms for rcut = 9
show only an inflection point or perhaps a very weak van der Waals loop, the isotherm
for rcut = 11 shows no van der Waals loop at all. So for these parameters the occurrence
of a van der Waals loop seems to be a cut off effect. The lower panel of Figure 6.21 shows
again no significant deviations in the average chain length of the system for different cut
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Figure 6.21: Top: pressure versus density for the DSS fluid with µ2 = 7.563 for different cut offs
and particle numbers as indicated at temperature T = 1. For sufficient large cut
offs (rcut & 9) the van der Waals loop disappears and the equation of state shows
no phase transition. Bottom: the average chain length n for the different systems.
Besides statistic uncertainties there seems to be no deviations for different cut offs
and particle numbers.
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Figure 6.22: Pressure versus density for the DSS fluid (µ2 = 7.563, rcut = 11, T = 1) with
particle numbers N = 2048 and 4096, in a region where Camp et al. observed
a phase transition for the DHS fluid [31]. There is evidence neither for a phase
transition nor for significant finite size effects in the DSS fluid.

offs and particle numbers, as already observed for the ST fluid. So differences in cluster
structure should be no reason for the differences in pressure. It is remarkable that if we
look at the particular systems with van der Waals loop (N = 512 and 2048, rcut = 7.), we
expect for them the border to the liquid phase to lie in the region ρl ≈ 0.03, even this is
much below the expected critical density ρc ≈ 0.1 for the DHS fluid obtained in [31, 32].
In reference [32] Ganzenmüller and Camp argue that the GL phase transition of the
DHS fluid may disappear in simulation due to finite-size effects. In figure 6.22 we show
isotherms around the expected critical density for two relative large systems (N = 2048
and 4096, rcut = 11, T = 1). Here we see evidence neither for a phase transition nor for
significant finite-size effects.

For comparison, we show in figure 6.23 the influence of particle number and cut off
for a ST system with µ2 = 7.563 at temperature T = 2.8. The critical temperature of
this system is expected to be approximately Tc ≈ 2.96, obtained from a linear fit for the
critical temperatures (cf. chapter 7). Here systems with (N = 512, rcut = 3, 4 and 5),
(N = 1372, rcut = 5, 6 and 7) and (N = 2700, rcut = 5 and 7) are shown. We see that for
the smallest particle number the limiting curve is still not reached, first with N = 1372
and rcut = 5 it is. Nevertheless, the finite-size and cut off effects for the ST with these
parameters are small compared with the ones observed for the investigated DSS fluid. We
note that the DHS system differ from the DSS system discussed here due to the distinct
length scale of the repulsive interaction which the power law repulsion does not posses.
But we can at least state that at parameters where the DHS is expected to show a GL
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Figure 6.23: For comparison a ST fluid with µ2 = 7.563 and T = 2.8. For N = 512 the cut offs
rcut = 3 (circles), 4 (squares), 5 (diamonds) were simulated, for N = 1372 rcut = 5
(up-triangles), 7 (left-triangles) and for N = 2700 rcut = 5 (down-triangles), 7
(right-triangles). There are finite size effects, but the limiting curve shows still a
phase transition.

phase transition [31,32] we found no evidence for the DSS to show a GL phase transition.
Nevertheless, we cannot argue with our existing data on the DSS that it exhibits no GL
phase transition at all, but in chapter 7 we will show that the non-existence of GL phase
separation is consistent with the existing data on the GL critical point of the ST fluid.

6.4 Conclusion

While the results from Maxwell construction for our NVT simulations are in close accord
with previous GEMC works for dipole strengths µ2 ≤ 5 [23–25] we do find phase coex-
istence also for the larger dipole strengths. This disagrees with the GEMC work by van
Leeuwen and Smit [7], which is responsible for the widely accepted believe that the ST
system should not exhibit a GL critical point above µ2 ≈ 25. Van Leeuwen and Smit
attribute the observed disappearance of the critical point to the formation of reversible
dipole chains. However, we do find coexistence of the isotropic gas and the isotropic liquid
for all dipole strengths studied, i.e. 0 ≤ µ2 ≤ 60. We found that the deviation from the
principle of corresponding states increases with increasing dipole moment. On the other
hand there seems to be a limiting curve for large dipole moments, at least on the gas side
of the coexistence curve.
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For dipole strengths µ2 = 5 and 16 Kofke’s integration method turned out to be a good
alternative to Maxwell construction. We were able to determine the binodal to much lower
temperatures and observed nematic order for reduced temperature T/Tc . 0.55. For the
large dipole moments µ2 = 30 and 36 Kofke’s method turned out to be impracticable. In
the region where these systems were investigated by NVT simulations no nematic order
was found.
For the pST fluid we showed that our results are in good accord with results obtained by
GCMC [27]. At fixed dipole moment and various polarizabilities the principle of corre-
sponding states was fullfilled almost perfectly.
Finally we showed that for a particular DSS system the GL transition is an effect of a too
short cut off, while the structure of the fluid is almost not dependend on the cut off. For
parameters where the DHS fluid is expected to show a phase transition [31,32] we found
evidence neither for a phase transition nor for finite-size effects with Maxwell construc-
tion. Due to the strong similarity between the DSS and the DHS system, we expect the
same conclusion to hold for DHS. For comparable ST fluids smaller cut offs are sufficient.
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7 Equilibrium polymerization and
gas-liquid critical behavior in the
Stockmayer fluid

7.1 Introduction

Dipolar interaction may lead to the reversible formation of polydisperse chains from
molecules or colloidal particles [1, 2] whose physical behavior is similar to ordinary poly-
mer systems [3]. The ST fluid, as already discussed in the chapters 5 and 6, shows this
kind of chain formation. The chain formation in turn strongly affects the behavior of the
monomer systems. This coupling together with the special problems caused by long-range
interaction thus far has prevented a complete theory, particularly for computing the phase
diagram of dipolar liquids [4]. While it was widely accepted that the ordinary SF will not
show GL phase separation for dipole moments exceeding µ2 ≈ 25 [5,6], attributed to the
formation of reversible dipole chains, Dudowicz, Freed and Douglas reached a different
conclusion [7]. They mapped the Stockmayer fluid onto a Flory-Huggins (FH) mean field
lattice model and studied the interplay between chain formation and GL phase separation.
Their theory implies that the GL critical point exists for all dipole strengths.
In this chapter we develop a simple theory to explain the dependence of the GL critical
point in the ST fluid on dipole strength, in particular the coupling between GL critical
behaviour and the formation of reversible dipole chains. The theory is based on the FH
lattice description for polymer systems in conjunction with a transfer matrix model for
isolated chains of reversibly assembled dipolar particles. The basis of our theory, i.e. the
FH lattice description, is the same as in references [7–11]. However, we choose a different
mapping between the lattice model’s direct interaction parameters and the ST fluid, cf. in
particular [7,11]. Our approach allows to directly relate the shift of the GL critical point
to the details of the underlying interactions. We also stress the similarity between the
mean field critical behavior of reversibly formed dipole chains in comparison to ordinary
systems of linear polymers, in particular n-alkanes. It is this similarity which also makes
the disappearance of the GL critical point in the ST system due to chain formation highly
suspicious. As the alignment of the dipoles tangential to the chain strongly diminishes
the DD interaction between chains, the remaining LJ interaction makes the chains very
much alkane-like.

131



132 7 Equilibrium polymerization and gas-liquid critical behavior

On the other hand the DD interaction may give rise to long-range orientational order,
and the attending transition from the isotropic fluid to an anisotropic liquid may interfere
with the isotropic gas-to-isotropic liquid transition. Zhang and Widom [12] have studied
the interplay between isotropic van der Waals type interaction and anisotropic dipolar in-
teraction using a simple mean field model. The difference to the model used in this work
is the neglect of chain formation. The authors obtain a sequence of phase diagrams which
indicate a vanishing of the GL critical point due to the instability of the isotropic liquid
in comparison to the anisotropic liquid. The parameter which drives this behavior is the
reduction of the GL critical temperature. Similar results were obtained via DFT by Groh
and Dietrich [13, 14]. The ST model has been shown to exhibit ferroelectric liquid order
under suitable conditions (cf. chapter 8). To some extend we also include a discussion
of the transition from the isotropic liquid to the ferroelectric liquid and employ the FH
model to describe entire GL coexistence curves, including possible ferroelectric order.

7.2 Flory-Huggins lattice model for reversibly assembling
polymers

7.2.1 The Helmholtz free energy

According to the FH-approach polymers are described by paths on a regular lattice. A
schematic illustration for a mixture of polydispers polymers on such a lattice is given
in figure 7.1 for two dimensions. Each lattice site may represent one monomer, here
corresponding to one ST particle. Polymers, i.e. dipole chains, are indicated by the lines
between monomers, monomers without lines are single particles. We derive the Helmholtz
free energy

FL = EL − TSL (7.2.1)

for a lattice model including self assembly of particles and free lattice sites, corresponding
to free space. This model has been introduced for a different system in references [15,
16]. In equation (7.2.1) EL is the lattice energy, caused by the interactions between
the monomers arranged on the lattice, and SL the packing entropy of the lattice. In
equilibrium the Helmholtz free energy is minimal and from this condition thermodynamic
quantities like for instance the mean chain length or the pressure may be obtained.

The lattice interaction energy

First we will calculate the lattice energy EL. We distinguish interactions between monomers
of different clusters or single particles with interaction energy εT per contact, and interac-
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Figure 7.1: Schematic illustration of the FH lattice model for polydispers polymers in two di-
mensions. The monomers (circles) are allocated randomly to the lattice. Polymers
are indicated by paths of connected balls. Isolated balls correspond to single parti-
cles, while free cells correspond to free space.

tions between monomers within the same aggregate (chain) with interaction energy εiT .
We assume the single particles and aggregates to be distributed randomly on the lattice.
If we look at any lattice site the probability for finding here a monomer, belonging to an
aggregate of length s (s-mer), is given by the volume fraction

φs =
b0sNs

V
. (7.2.2)

Here b0 denotes the volume of one lattice site, or the particle respectively, Ns the number
of aggregates consisting of s monomers and V the volume of the whole considered lattice.
The probability that a site is occupied by a monomer, part of whatever kind of aggregate,
is given by the volume fraction

φ =
∞∑
i=1

φs =
b0

V

∞∑
i=1

sNs , (7.2.3)

which is related to the number density via φ = b0ρ. We will call interactions between
monomers belonging to different clusters inter-aggregate interaction, interactions between
monomers within the same cluster intra-aggregate interaction. For randomly distributed
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configurations the mean number of inter-aggregate interactions between monomers of s-
mers and monomers of s′-mers (s 6= s′) is given by

≈ φsφs′ NL q , (7.2.4)

where

NL =
∞∑
s=1

sNs +Nempty =
V

b0

(7.2.5)

is the total number of lattice sites not to be confused with the total number of monomers
N =

∑∞
s=1 sNs, Nempty is the number of free lattice sites and q is the coordination number

of the lattice. In three dimensions q = 6 , while in two dimensions as in figure 7.1, q = 4 .
The average number of inter-aggregate interactions between monomers of aggregates with
same length is given by

≈ 1

2
φ2
sNL q . (7.2.6)

The factor 1/2 prevents double counting. In both cases we neglect that monomers inside
and at the end of aggregates have a reduced number of possible nearest neighbors from
other clusters and assume q−2 ≈ q−1 ≈ q. So the total lattice inter-aggregate interaction
energy is

Einter = T

(∑
s<s′

ε φsφs′ +
1

2

∞∑
s=1

εφ2
s

)
NL q . (7.2.7)

The total intra-aggregate interaction energy is given by

Eintra = T
∞∑
s=2

εi (s− 1)Ns , (7.2.8)

if we assume all clusters to be linear chains, since a linear chain of length s has s − 1
bonds. This yields the total lattice energy

EL = Einter + Eintra (7.2.9)

= T

[(
∞∑
s<s′

φsφs′ +
1

2

∞∑
s=1

φ2
s

)
εNLq +

V

b0

∞∑
s=2

εi(s− 1)Ns

]
(7.2.10)

= T

(
1

2
εNLqφ

2 +
εiV

b0

∞∑
s=2

s− 1

s
φs

)
. (7.2.11)

For the last transformation we have used

φ2 =

(
∞∑
s=1

φs

)2

=
∞∑
s=1

∞∑
s′=1

φsφs′ =
∞∑
s=1

φ2
s + 2

∞∑
s<s′

φsφs′ (7.2.12)

and Ns = V φs/(b0s).
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The lattice packing entropy

Deriving the packing entropy takes more effort and requires additional approximations
[17–19]. The packing entropy of a lattice with polydispers aggregates is given by

SL = ln

[
∞∏
s=1

Ωs (Ns)

]
, (7.2.13)

where

Ωs (Ns) =
1

Ns!

Ns−1∏
i=0

ωs,i+1 (7.2.14)

is the number of possibilities to arrange the s-mers sequentially on the lattice on which the
s′-mers with s′ < s are already arranged. Here Ns! accommodates the in-distinguishability
of the particles. ωs,i+1 is the number of possibilities to arrange the (i+ 1)th s-mer on the
lattice, already filled with i s-mers and all shorter aggregates. To determine a general
term for ωs,i+1 we consider an empty lattice and fill it with aggregates with increasing
chain length starting with single particles (s = 1).

s = 1 :
ω1,i+1 = NL − i (7.2.15)

To insert the (i + 1)th single particle, the number of available lattice sites NL is
reduced by i already inserted single particles.

s = 2 :

ω2,i+1 = (NL −N1 − 2i)︸ ︷︷ ︸
T1

q

(
1− N1 + 2i

NL

)
︸ ︷︷ ︸

T2

(7.2.16)

Here T1 determines the number of possibilities to insert the first unit of the (i+1)th
dimer on the lattice, already filled with N1 single particles and i dimers. The first
unit of each dimer has q nearest neighbor sites of which T2 are empty on average,
since f2,i/NL = (N1 + 2i)/NL is the number fraction of filled sites. Due to this
treatment of particle insertions the FH model has the character of a mean field
theory.

s = 3 :

ω3,i+1 = (NL −N1 − 2N2 − 3i)︸ ︷︷ ︸
T1

q

(
1− N1 + 2N2 + 3i

NL

)
︸ ︷︷ ︸

T2

× (q − 1)

(
1− N1 + 2N2 + 3i

NL

)
︸ ︷︷ ︸

T3

(7.2.17)
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Insertion of the first two units of the 3-mers following the same reasoning as above.
Here the second units have only (q− 1) nearest neighbor sites. We assume that the
number fraction of filled sites remain the same for all units of the same aggregate.
For every additional unit for s-mers with s > 3 we make the approximation that
these also each have T3 insertion possibilities.

s : With the former approximations we can now give a general term for s-mers

ωs,i+1 = (NL − fs,i) (q − 1)s−1

(
1− fs,i

NL

)s−1

(7.2.18)

= (NL − fs,i)s
(
q − 1

NL

)s−1

(7.2.19)

with the number fraction of filled sites

fs,i
NL

=
1

NL

(
s∑

k=1

kNk − sNs + si

)
(7.2.20)

and the additional approximation q ≈ q − 1.

Now we possess the information necessary to calculate the packing entropy of the lattice,
i.e.

SL = ln

[
∞∏
s=1

Ωs (Ns)

]
= ln

[
∞∏
s=1

1

Ns!

Ns−1∏
i=0

ωs,i+1

]
(7.2.21)

=
∞∑
s=1

ln

[
1

Ns!

Ns−1∏
i=0

ωs,i+1

]
=
∞∑
s=1

(
− ln [Ns!] +

Ns−1∑
i=0

lnωs,i+1

)
(7.2.22)

=
∞∑
s=1

(
−Ns lnNs +Ns +

Ns−1∑
i=0

(
s ln [NL − fs,i] + (s− 1) ln

[
q − 1

NL

]))
, (7.2.23)

where we have used the Stirling approximation ln[N !] ≈ N lnN − N . Using equation
(7.2.2) to replace the Ns’s we obtain for the first term of the sum

∞∑
s=1

(−Ns lnNs +Ns) =
V

b0

∞∑
s=1

(
φs
s
− φs

s
ln

[
V φs
b0 s

])
(7.2.24)

=
V

b0

(
∞∑
s=1

φs
s
−
∞∑
s=1

φs
s

ln

[
φs
s

]
− ln

[
V

b0

] ∞∑
s=1

φs
s

)
. (7.2.25)
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For the second term we approximate the inner sum via integration, i.e.

∞∑
s=1

Ns−1∑
i=0

s ln (NL − fs,i) (7.2.26)

≈
∞∑
s=1

Ns∫
0

di s ln (NL − fs,i) =
∞∑
s=1

x(0)∫
x(Ns)

dx(i) lnx(i) (7.2.27)

=
∞∑
s=1

(x(0) lnx(0)− x(0)− x(Ns) lnx(Ns) + x(Ns)) (7.2.28)

=
∞∑
s=1

(
NL −

s∑
k=1

kNk − sNs

)
ln

[
NL −

s∑
k=1

kNk − sNs

]

−
∞∑
s=1

(
NL −

s∑
k=1

kNk

)
ln

[
NL −

s∑
k=1

kNk

]
−
∞∑
s=1

sNs

(7.2.29)

= NL lnNL −

(
NL −

∞∑
s=1

sNs

)
ln

[
NL −

∞∑
s=1

sNs

]
−
∞∑
s=1

sNs (7.2.30)

= NL lnNL −Nempty lnNempty −
∞∑
s=1

sNs (7.2.31)

=
V

b0

[(
ln

[
V

b0

]
− 1

)
φ− (1− φ) ln [1− φ]

]
, (7.2.32)

In equation (7.2.27) we have used the substitution x(i) = NL − fs,i. Notice that for any
finite lattice there exists a smax with Ns′ = 0 for all s′ > smax. So all terms in equation
(7.2.29) of the first two sums cancel each other except for the very first of the first sum and
the very last non-vanishing term of the second sum. From equation (7.2.30) to (7.2.32)
we have used NL = V/b0 and

Nempty = NL −
∞∑
s=1

sNs =
V

b0

(1− φ) . (7.2.33)

For the last term of equation (7.2.23) we can simply evaluate the inner sum

∞∑
s=1

Ns−1∑
i=0

(s− 1) ln

[
q − 1

NL

]
(7.2.34)

=
∞∑
s=2

(s− 1)Ns ln

[
q − 1

NL

]
(7.2.35)

=
V

b0

(
ln [q − 1]

∞∑
s=2

s− 1

s
φs − ln

[
V

b0

] ∞∑
s=2

s− 1

s
φs

)
. (7.2.36)
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Combining equation (7.2.25), (7.2.32) and (7.2.36) we get the packing entropy of the
lattice dependend on the volume fractions φs and φ

b0 SL
V

= (ln [q − 1]− 1)
∞∑
s=2

s− 1

s
φs −

∞∑
s=1

φs
s

ln

[
φs
s

]
− (1− φ) ln [1− φ] . (7.2.37)

Inserting equation (7.2.37) and (7.2.11) in (7.2.1) we get an expression for the Helmholtz
free energy of the lattice

b0FL
V T

=
1

2
εqφ2 + (c+ 1)

∞∑
s=2

s− 1

s
φs +

∞∑
s=1

φs
s

ln

[
φs
s

]
+ (1− φ) ln [1− φ] (7.2.38)

with c = εi − ln [q − 1]. Note that this is a special case of

b0FL
V T

=
1

2
qεMMφ

2
1 +

1

2
qεAAφ

2
agg + qεMAφ1φagg

+ (c+ 1)
∞∑
s=2

s− 1

s
φs +

∞∑
s=1

φs
s

ln

[
φs
s

]
+ (1− φ) ln [1− φ] , (7.2.39)

introduced in references [15, 16], where εMM is the parameter for interactions between
free monomers, εAA for interactions between monomers bound in aggregates and εMA

for interactions between free monomers and monomers bound in aggregates. φ1 is the
volume fraction for free monomers and φagg =

∑∞
s=2 φs for aggregates with s > 1. The

remaining variables are the same as we used here. This equation reduces to our with
εMM = εMA = εAA = ε.

7.2.2 Calculating critical properties from the lattice model

Mean chain length

To be able to determine the critical properties for our lattice model, we first calculate
the mean chain length of the aggregates. Using the equilibrium condition for reversible
aggregation µs = sµ1, where

µs
T

=
1

T

∂FL
∂Ns

∣∣∣∣
T,V,Ns′(s′ 6=s)

=
b0s

V T

∂FL
∂φs

∣∣∣∣
T,V,φs′(s′ 6=s)

(7.2.40)

= sεqφ+ c(s− 1) + ln

[
φs
s

]
− s ln [1− φ] (7.2.41)

is the chemical potential of an s-mer, we obtain φs = sβsec with β = φ1e
−c. We get the

mean chain length from

n =

∞∑
s=1

sNs

∞∑
s=1

Ns

=

∞∑
s=1

φs

∞∑
s=1

φs
s

=
1

1− β
, (7.2.42)
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where we have used

φ =
∞∑
s=1

φs =
∞∑
s=1

sβsec =
βec

(β − 1)2
(7.2.43)

∞∑
s=1

φs
s

=
∞∑
s=1

βsec =
βec

1− β
, (7.2.44)

obtained by the limit of the geometric series and
∑∞

s=1 sβ
s = (βd/dβ)

∑∞
s=1 β

s. Insertion
of β = (1− n−1) in (7.2.43) yields the mean chain length expressed via φ

n =
1

2
+

1

2

√
1 + 4φe−c (7.2.45)

=
1

2
+

1

2

√
1 + 4(q − 1)φe−εi . (7.2.46)

Now we can rewrite the Helmholtz free energy as function of φ and mean chain length n
only

b0FL
TV

=
1

2
qεφ2 + φ lnφ+ (1− φ) ln[1− φ] +

(
1− 1

n
− 2 ln[n]

)
φ , (7.2.47)

where we have used
∑∞

s=1 φs/s = φ/n, obtained by combining equations (7.2.42), (7.2.43)
and (7.2.44). Here, however, n is a function of φ.

The equation of state and critical point

Using the relations

∂ φs
s

∂V

∣∣∣∣∣
T,Ns

= − 1

V

φs
s

and
∂φ

∂V

∣∣∣∣
T,Ns

= − 1

V
φ (7.2.48)

we are able to calculate the equation of state from equation (7.2.38), i.e.

b0P

T
= −b0

T

∂FL
∂V

∣∣∣∣
T,Ns

=
1

2
εqφ2 − ln [1− φ]− φ+

∞∑
s=1

φs
s

(7.2.49)

=
1

2
εqφ2 − ln [1− φ]−

(
1− 1

n

)
φ , (7.2.50)

Analog to reference [11] we obtain the virial expansion for the pressure. First we consider
the ordinary simple liquid limit (SL) without aggregation. For this we set n = 1 in
equation (7.2.50). We derive the virial expansion by substituting ln [1− φ] in equation
(7.2.50) by the power series expansion

ln [1− φ] = −φ− 1

2
φ2 − 1

3
φ3 −O(φ4) (7.2.51)
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with respect to φ for the limit φ→ 0. This yields

PSL =
Tφ

b0

(
1 +

b0

2
(εq + 1)

φ

b0

+
b2

0

3

φ2

b2
0

+O(φ3)

)
(7.2.52)

and by comparison with equation (5.2.1) we get for the second and third virial coefficients

B2,SL(T ) =
b0

2
(εq + 1) (7.2.53)

B3,SL(T ) =
b2

0

3
. (7.2.54)

Via B2,SL(TBoyle,SL) = 0 we obtain the Boyle temperature

TBoyle,SL = −ε0q (7.2.55)

for a system of monomers, where ε0 = εT . For the case with aggregation we have to
expand additionally the reciprocal mean chain length

1

n
= 1− e−cφ+ 2e−2cφ2 − 5e−3cφ3 +O(φ4) , (7.2.56)

inserted in equation (7.2.50) this yields

P =
Tφ

b0

[
1 +

b0

2

(
εq + 1− 2e−c

) φ
b0

+ b2
0

(
1

3
+ 2e−2c

)
φ2

b2
0

+O(φ3)

]
(7.2.57)

and we get for the virial coefficients

B2(T ) =
b0

2
(εq + 1− 2e−c) (7.2.58)

B3(T ) = b3
0

(
1

3
+ 2e−2c

)
. (7.2.59)

For the Boyle temperature with aggregation we get

TBoyle =
ε0q

2e−c − 1
. (7.2.60)

The GL critical properties expressed via the mean chain length at the critical point nc
can be obtained by solving the system of equations

∂P

∂V

∣∣∣∣
T

=
∂2P

∂V 2

∣∣∣∣
T

= 0 (7.2.61)

employing Mathematica [20]. We obtain for the GL critical point by power series expan-
sion of the solution with respect to nc

φc = fρ(nc) =


1
2
− 3

4
(nc − 1)2 +O ((nc − 1)3) nc → 1

√
3

2
1√
nc
− 3

4
1
nc

+O
(

1

n
3/2
c

)
nc →∞

, (7.2.62)
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Tc = −qε0fT (nc) =

 −
qε0
4

[1 + (nc − 1) +O ((nc − 1)2)] nc → 1

−qε0

(
1− 5

2
√

3
1√
nc

+O
(

1
nc

))
nc →∞

, (7.2.63)

and

b0Pc =

 −qε0

[(
ln 2
4
− 1

8

)
+O(nc − 1)

]
nc → 1

−qε0

[
5
√

3
16

1

n
3/2
c

− 77
64

1
n2
c

+O
(

1

n
5/2
c

)]
nc →∞

. (7.2.64)

Here ε = ε0/T , nc = n(φc, εi(Tc)),

fρ(n) ≡

(
1 +

√
m3

K

)−1

, (7.2.65)

where m = 2n− 1 and K = 6n(n− 1) + 1, and

fT (n) ≡ 1

2

(
n

m
+ [K − n(n− 1)]

√
1

Km3

)−1

. (7.2.66)

The equations (7.2.62) to (7.2.64) include the GL critical point in the limit of a system
consisting of monomers only (nc → 1), as well as in the limit of a system consisting of long

monodisperse polymers (nc → ∞). For large nc the critical density vanishes as ∼ n
−1/2
c ,

whereas the critical temperature approaches a constant value, which coincides with the
Boyle temperature of the monomer system in the SL.
In this theory reversible association is promoted by the quantity εi. In particular εi = 0
describes the SL. For εi = 0 and q = 6, however, one obtains nc = (

√
11+1)/2 ≈ 2.158 and

not nc = 1 as one may expect. This theory reaches the limit nc = 1 only if exp[−c] = 0.
But this means that nc = 1 under all circumstances, i.e. no association occurs even if
εi 6= 0. The effect is due to the inability of the lattice theory to distinguish between
adjacent unassociated and reversibly bound lattice sites. Because of this we must redefine
the SL, i.e. εi = 0, via the simultaneous solution of equations (7.2.46) and (7.2.62) given
by nc,SL ≈ 2.0142 and φc,SL = fρ(nc,SL) ≈ 0.4086. The attendant critical temperature
is Tc,SL = −qε0,SLfT (nc,SL) ≈ −0.4002qε0,SL, where ε0,SL is the pair interaction for the
SL. Note that in the case of the ST fluid the SL compiles to the LJ fluid. For the virial
expansion of PSL we avoided this problem by first setting n = 1.

Dipolar long-range contribution to the pressure

Up to now this theory can explain the decrease of the critical density with increasing
dipole strength µ2 in terms of an increasing mean chain length n. Thus we must find a
link between µ2 and n. We may introduce the dipole strength on the level of the equa-
tion of state by including the pressure contribution due to long-range dipolar attractive
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interaction. The thermally averaged DD interaction can be calculated analog to equation
(3.7.2) via

〈uDD〉 =
1

4π2

∫ ∫
dΩidΩjuDD(~rij, ~µi, ~µj)gDD(rij, ~µi, ~µj) (7.2.67)

with the solid angle elements dΩi = dϕidθi sin θi, the DD pair interaction
uDD(~rij, ~µi, ~µj) (cf. equation (2.1.4)) and the pair distribution function of the mutual
orientations of the dipoles gDD(rij, ~µi, ~µj) which can be approximated by

gDD(rij, ~µi, ~µj) ≈ exp

[
−uDD(~rij, ~µi, ~µj)

T

]
≈ 1− uDD(~rij, ~µi, ~µj)

T
(7.2.68)

= 1− µ2

r3
ijT

f(θi, θj, ϕi − ϕj) , (7.2.69)

resulting in

〈uDD〉 = − 2µ4

3T r6
. (7.2.70)

From this we get the long-range contribution to the pressure

PDD ≈ −
1

6
ρ2

∫
r≥R

d3rr
∂〈uDD〉
∂r

= −8π

9

µ4ρ2

TR3
, (7.2.71)

where r is the DD separation and R is a suitable cut off. This approximation holds only
for −µ2/(Tr3)� 1, cf. equation (7.2.69). Specifically we integrate this contribution into
the equation of state (7.2.50) via the substitution

ε0 = ε0,SL −
16π

9qb0R3

µ4

T
(7.2.72)

and by substitution of ε0,SL in terms of

Tc,SL = −qε0

4
(7.2.73)

from equation (7.2.63) for nc → 1, we get for the inter-aggregate particle-particle interac-
tion parameter

εq = −4Tc,SL
T
− 16π

9b0R3

µ4

T 2
. (7.2.74)

Here the SL complies again with the LJ fluid in the case of the ST system. Insertion of
equation (7.2.72) into equation (7.2.63) yields

Tc(µ) = Tc,SL for µ2 = 0 ,
Tc(µ) ∝ µ2 for µ2 →∞ (7.2.75)

and fixed critical mean chain length nc. This is in reassuring agreement with simulation
data (cf. figure 7.5). We note that the applicability of equation (7.2.71) rests on the
premise that the individual dipoles retain sufficient rotational freedom even as part of a
reversible chain. So in the case of aggregation the persistence length of the chains should
fullfill the condition lp < R.
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Transfer matrix model for an isolated chain

To give an estimation of the intra-aggregate interaction parameter εi, we employ the
transfer matrix model which is useful to calculate canonical partition functions for which
exp[−βH] can be separated in factors of identical form. We get the lattice free energy in
the limit of a single infinitely long chain (s→∞), vanishing φ and Ns = 1 form equation
(7.2.38)

FL
sT

= εi − ln[q − 1] . (7.2.76)

In order to find an approximate expression for εi = εi(µ
2) we estimate the configuration

free energy of an isolated chain consisting of s ST dipoles based on the potential energy

U
(chain)
conf =

s−1∑
i=1

(
uLJ(ri,i+1) + ~µi T∼ ~µi+1

)
, (7.2.77)

where uLJ is the LJ pair potential (2.1.1) and T∼ the dipole tensor (2.1.13). The summation
includes the interactions of nearest neighbors only, which in the one-dimensional case is
not unreasonable. In addition we assume a uniform ”bond length” r = |~ri,i+1|. The
canonical configurational partition function now becomes

Q
(chain)
conf =

∫
d{Ω~r}d{Ω~µ} exp

[
− 1

T
U

(chain)
conf

]
, (7.2.78)

where
∫
d{Ω~r}d{Ω~µ} denotes the integration over all possible paths and dipole orientations

of the chain. We want to evaluate the integration on a simple cubic lattice, i.e.

∫
d{Ω~r}d{Ω~µ} ≈

(
4π

q

)2s−1 ∑
{Ω~r},{Ω~µ}

. (7.2.79)

Note that there are s dipole moments connected by s− 1 ”bonds”. The chain becomes a
path on the cubic lattice (q = 6). Every lattice site on the path is occupied by a dipole ~µi
oriented along one of six possible lattice directions. The possible orientations are given by
the vectors ~e (1) = (1, 0, 0), ~e (2) = (0, 1, 0), ~e (3) = (0, 0, 1), ~e (4) = −~e (1), ~e (5) = −~e (2), and
~e (6) = −~e (3), i.e. ~µ (k) = µ~e (k). Because every segment along the chain contributes the
same to the total LJ interaction we may write this factor in front of the sum and expand
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the exponential function

Q
(chain)
conf =

(
4π

q

)2s−1

exp

[
−(s− 1)uLJ(r)

T

]
(7.2.80)

×
∑

{Ω~r},{Ω~µ}

〈µ1|M∼ |µ2〉〈µ2|M∼ |µ3〉...〈µs−1|M∼ |µs〉〈µs|M∼ 0|µ1〉 (7.2.81)

=

(
4π

q

)2s−1

exp

[
−(s− 1)uLJ(r)

T

] ∑
{Ω~r},{Ω~µ}

〈µ1|M∼
s−1M∼ 0|µ1〉 (7.2.82)

=

(
4π

q

)2s−1

exp

[
−(s− 1)uLJ(r)

T

]
Tr
(

M∼
s−1M∼ 0

)
, (7.2.83)

with |µi〉 = ~µi and ∑
{Ω~r},{Ω~µ}

|µi〉〈µi| = 1 . (7.2.84)

The elements of the transfer matrix M∼ are given by

M∼ kl =
6∑

ν=1

exp

[
− 1

T

∑
α,β

µ(k)
α T∼

(ν)
αβ µ

(l)
β

]
(7.2.85)

(k, l = 1, ..., 6) and T∼
(ν)
αβ are the components of the dipole tensor

T∼
(ν)
αβ =

1

r3
(δαβ − 3e(ν)

α e
(ν)
β ) , (7.2.86)

cf. equation (2.1.14). The orientations of the dipole moments are indicated by (k), (l)
and the direction of the intermolecular axis by (ν). The elements of the matrix M∼ 0 are
simply all equal to 1, since we consider chains with open non-interacting ends. Note that
the trace is independent from the basis, hence we can write

Tr
(

M∼
s−1
)

=
∑
i

λs−1
i , (7.2.87)

where λi are the eigenvalues of M∼ . Approximating Tr
(

M∼
s−1
)
≈ λs−1

max, where

λmax(r) = 2e2a(1 + 2e−a + 12e−2a + 2e−3a + e−4a) (7.2.88)

is the largest eigenvalue of M∼ with a = µ2/(Tr3), we obtain for the configuration free
energy of the chain

1

sT
F

(chain)
conf = −1

s
lnQ

(chain)
conf (7.2.89)

≈ s− 1

s
min
r

(
uLJ(r)

T
− ln

[
λmax(r)

q2

])
− 2s− 1

s
ln[4π] , (7.2.90)
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Figure 7.2: Comparison of the intra-aggregate interaction parameter εi according to the ex-
pression in square brackets in equation (7.2.91) (solid line) to εi according to the
expression in square brackets in equation (7.2.92) (dashed line) plotted vs. ”bond
length” r for T = 10 and µ2 = 36. Note that εi(µ2/(Tr3

0) ≈ −9.7 (using equation
(7.2.92)) and r0 ≈ 0.73 in this special case.

Note that minr accounts for the fact that r is a variable parameter and the free energy
becomes minimal in equilibrium. Comparing equation (7.2.76) with equation (7.2.90) we
find that εi is given by

εi ≈
[
uLJ(r)

T
− lnλmax(r) + 2 ln q

]
r=rmin

, (7.2.91)

where we have replaced (s − 1)/s by unity. Here rmin is the separation for which the
expression (7.2.91) acquires its minimum. Note also that the term (2s− 1)/s ln[4π] which
appears in equation (7.2.90) is missing here. This is because a factor s ln[4π], correspond-
ing to the dipole orientation, is not present in the lattice free energy. The remaining part,
(s − 1) ln[4π] corresponds to the orientation of the bonds in the off lattice case, which
in the lattice model is replaced by the term ln[q − 1]. Notice that for µ2 = 0 we find
εi ≈ uLJ(rmin)/T . Because the LJ fluid is our SL we must not use (7.2.91) directly but
rather

εi ≈ [− lnλmax(rmin) + 2 ln q]r=rmin , (7.2.92)

where rmin is the optimal monomer separation within a chain computed via minimization
of expression (7.2.91).
The last ingredient to our theory of the µ2 dependence of the critical point is the relation

b0 ≈ b0,SL
r0

r0,SL

. (7.2.93)
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Figure 7.3: Based on the theoretical curves shown in figure 7.5 this plot compares intra-
aggregate interaction parameter εi(µ2/(Tcr3

0)) (solid line) at the critical point with
the simple approximation −2µ2/Tc (dashed line).

Here r0 is the root of expression (7.2.91), and r0,SL = 1 is the root of the same expression
in the limit µ2 = 0. Because the dipolar interaction within a chain leads to an attraction
increasing with increasing µ2 we see from equation (7.2.62) that at constant nc this leads to
an increase of the critical monomer number density ρc = φc/b0. However, if nc is increasing
with increasing µ2 then the competition of the two effects will determine ρc(µ

2).
The two quantities rmin and r0 are illustrated in figure 7.2, which shows the dependence
of the expression (7.2.91) on r for T = 10 and µ2 = 36. The minimum of this expression
(solid line) is rmin and the function − lnλmax(r)+2 ln q (dashed line) evaluated at r = rmin
is εi(µ

2/(Tr3
min)) ≈ −9.7 for this temperature and dipole strength. In addition r0 ≈ 0.73

is the root of expression (7.2.91) in this special case. Figure 7.3 shows the comparison of
εi(µ

2/(Tcr
3
min)) plotted vs. dipole strength with the simple approximation −2µ2/Tc. We

note that the simple approximation comes close to being constant for µ2 > 10.
In order to compute the critical point shift as function of µ2 together with the critical
aggregation number nc, we need to solve the equations (7.2.46), (7.2.62), and (7.2.63)
using (7.2.72), (7.2.92), and (7.2.93). Introducing the definitions xρ ≡ ρc/ρc,SL and xT ≡
Tc/Tc,SL we may rewrite the above set of equations, i.e. equations (7.2.46), (7.2.62), and
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(7.2.63), in a more transparent form:

nc =
1

2
+

1

2

√
1 + 4(q − 1)e−εifρ(nc) (7.2.94)

xρ ≈
fρ(nc)

r0fρ(nc,SL)
(7.2.95)

1

xT

(
1 +

κµ4

r0

1

xT

)
≈ fT (nc,SL)

fT (nc)
, (7.2.96)

where

κ =
16πρc,SLfT (nc,SL)

9R3T 2
c,SLfρ(nc,SL)

, (7.2.97)

r0 = r0(µ2, Tc) and εi = εi(µ
2/(Tcr

3
min)). Here ρc,SL and Tc,SL are the respective values

for the LJ system.
Assuming for the moment constant rmin and r0, we observe that xρ or ρc will simply
decrease if the average critical chain length increases at Tc. We do expect an increase of
nc, because for small dipole strength µ2 increases faster than Tc as equation (7.2.96) shows.
However, for long chains fT (nc) approaches 1 and Tc ∝ µ2. This in turn implies that εi
becomes constant, which means that nc and thus also ρc approaches a constant. This
basic behavior, i.e. an initial slow increase of Tc, as function of µ2, which subsequently
becomes steeper and proportional to µ2 and the decrease of ρc which then levels off as
soon as Tc ∝ µ2, is modified by the µ2-dependence of rmin and r0. A decrease of rmin
with increasing µ2 promotes growth because it tends to increase εi. This will decrease
fρ(nc) causing ρc to decrease. On the other hand the factor 1/r0 in equation (7.2.95) will
counteract this decrease to some extend.

7.2.3 Including ferroelectric order

This model does not yet include ferroelectric order. A mean field description for the
orientational potential energy can be derived by using Debye’s approximation [21] of the
local field

~E
(D)
loc =

4πρ

3

ε+ 2

ε− 1
〈~µ〉 , (7.2.98)

experienced by a point dipole in the center of a spherical cavity inside a dielectric medium
with static dielectric constant ε. Here 〈~µ〉 is the mean dipole moment of the sample (mean
field!). We will discuss this description in chapter 8 in more detail. Employing Debye’s
approximation we derive the orientational potential energy

Uorient = −1

2

N∑
i=1

~E
(D)
loc · ~µi (7.2.99)
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for a system of N point dipoles. This leads to the canonical orientation partition function

Qorient =
N !∏

ν
Nν !

(
4π
∆Ω

)N exp

[
1

2T

N∑
i=1

~E
(D)
loc · ~µi

]
(7.2.100)

=
N !∏

ν
Nν !

(
4π
∆Ω

)N exp

[
µ

2T

∑
ν

Nν
~E

(D)
loc · ~eν

]
. (7.2.101)

Here Nν is the number of indistinguishable dipoles pointing into a solid angle element
∆Ων = ∆Ω with N =

∑
ν Nν and (4π/∆Ω)N is the total number of orientational states

[22]. The unit vector ~eν points into ∆Ων . The factor N !/
∏

ν Nν ! is the number of
distinguishable distributions of the dipole orientations to the solid angle elements. The
attending orientational free energy is

b0Forient
V T

= −b0

V
lnQorient (7.2.102)

=
b0

V

(
−N lnN +N +

∑
ν

(
Nν lnNν −Nν

4πρ

6T
µ2d cos θν

)

+N ln

[
4π

∆Ω

]) (7.2.103)

= φ

[(
3

2
− 2πρµ2

3T

)
d2 +

9

20
d4 +

99

350
d6 +

1539

7000
d8 . . .

]
, (7.2.104)

where µd is the average dipole moment along the director and θν = �(〈~µ〉, ~eν). In addition
(ε + 2)/(ε − 1) is set equal to unity. The route from equation (7.2.103) to (7.2.104)
is analogous to the calculation of the free energy for classical spins by the mean field
approach and is presented in section 6.1 of reference [19]. Here d is an order parameter
for the transition from the isotropic to the ferroelectric liquid. When the coefficient of the
leading term in equation (7.2.104) changes sign an orientationally ordered phase becomes
stable compared to the isotropic fluid or vice versa. The condition

3

2
− 2πρµ2

3T
(D)
cf

= 0 (7.2.105)

yields an isotropic-ferroelectric transition temperature T
(D)
c,f = (4π/9)ρµ2 for Debye’s ap-

proach. An example for Forient/(NT ), dependend on the order parameter d, is given
in figure 7.4 (µ2 = 1, ρ = 1) for temperatures T < Tcf , T = Tcf and T > Tcf . For
temperatures higher than the critical temperature Tcf the orientational free energy is
monotonously increasing and has its minimum at d = 0. The minimum of the free energy
determines equilibrium, thus we can state that there is no ferroelectric phase stable. For
T < Tcf the free energy has its minimum at d 6= 0, meaning there is a non vanishing ori-
entation of the dipoles and an ferroelectric phase becomes stable. The equilibrium value
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Figure 7.4: The orientational free energy Forient/(NT ) from the Debye approach vs. the order
parameter for the ferroelectric phase d. For T > Tcf there is no orientational order
in equilibrium. For T < Tcf the orientational free energy has its minimum for non
vanishing d.

of d in equation (7.2.104), i.e. d(0), is determined by the minimum of the free energy

b0

V T

∂Forient
∂d

∣∣∣∣
T,φ

= 0 . (7.2.106)

However, the critical temperature predicted by Debye’s approach is considerably too high,
compared to simulation data (cf. chapter 8). Here we account for these simulation results

by scaling the Debye transition temperature, T
(D)
cf via

Tcf = κT
(D)
cf , (7.2.107)

where κ ≈ 0.1361 is chosen to reproduce the transition temperature T
(ST )
cf obtained on

the basis of previous simulation work1.
Thus the combined free energy is

F = FL + Forient(d
(0)) (7.2.108)

and the combined pressure
P = PL + Porient(d

(0)) , (7.2.109)

1Note that this κ is not related to κ in equation (7.2.97)
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where
b0Porient

T
= − b0

T

∂Forient
∂V

∣∣∣∣
T,Ns

= −2πφ2µ2

3T
(d(0))2 . (7.2.110)

Note that φ = b0N/V and ρ = N/V in (7.2.104) are both dependend on volume. With
the exception of possible chain formation this model has been used before by Zhang and
Widom [12] to investigate the global phase diagram of dipolar fluids (Zhang and Widom
use the van der Waals free energy to model Fconfig.).
With the knowledge of the equation of state (7.2.109) and the Helmholtz free energy
(7.2.108) we are able to determine the GL coexistence curves from the lattice theory. For
this we solve simultaneously

P (T, φg) = P (T, φl) (7.2.111)

µ(T, φg) = µ(T, φl) , (7.2.112)

where

µ =
G

N
=
F

N
+
b0P

φ
(7.2.113)

using the computer algebra package Mathematica [20]. Here φg and φl are the coexisting
volume fractions of gas (g) and liquid (l).

7.3 Comparison to molecular dynamics simulation results

7.3.1 Gas-liquid critical behaviour

The Stockmayer fluid

In this section we want to compare the data for critical points and GL coexistence curves
obtained by simulation for the ST fluid, reported in section 6.3, with the results from
lattice theory developed in section 7.2. Figure 7.5 compiles and compares simulation re-
sults for the GL critical temperature Tc and the critical density ρc of the ST fluid plotted
versus dipole strength µ2. The filled circles denote data points obtained by this work
using MD simulations in conjunction with the Maxwell construction method to determine
the coexisting GL densities, shown in table 6.2. The hollow circles denote data points
obtained by Florian Pesth [25] via the same method, but slightly different long-range
corrections. He calculated the reaction field from the Onsager equation [26]. All other
symbols denote previously published data by other groups [5, 6, 23, 24]. Notice that the
data for the vLS system taken from reference [5] where mapped via the relations (2.2.3),
(2.2.4) and (2.2.5) to the ST system. The dotted line in the upper panel of figure 7.5
is a linear fit to the critical temperature Tc = b + mµ2 (with b = 1.0815, m = 0.25761)
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Figure 7.5: Top: GL critical temperature Tc of the ST fluid versus dipole strength µ2. Symbols
indicate computer simulation results (this work and references [5,6,23–25]). Bottom:
GL critical density ρc of the ST fluid vs. dipole strength µ2. The solid lines are
the theoretical results obtained from the FH model for R = 4.1. The insets are
magnifications of the small dipole strength range.
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including data only for µ2 ≥ 3. The theoretical curves (solid lines) are obtained by numer-
ical solution of equations (7.2.94) to (7.2.96) computing εi according to equation (7.2.92)
using rmin obtained via the minimization condition (7.2.91). Here we use the LJ critical
constants ρc,SL = 0.305 and Tc,SL = 1.32. The only adjustable parameter is the cut off
radius R which is set to R = 4.1. The resulting agreement with the simulation results
for the critical temperature Tc versus dipole strength µ2 shown in the top panel of figure
7.5 is excellent in the range of dipole strength µ2 ≤ 36. For µ2 = 60 there is an obvious
deviation, but the error of ∼ 10% is still small. The bottom panel shows the theoretical
results for the critical density ρc versus µ2 in comparison to the simulation results. We do
find quite reasonable agreement between the theory and our simulations over the range
of dipole strengths µ2 ≤ 36. Here for µ2 = 60 the deviations become quite large. The
reason for this disagreement may be the choice of R = 4.1. Since R is the cut off for the
long-range contribution for thermally averaged dipole orientations, cf. equation (7.2.71),
the persistence length for chains should be smaller than R (lp < R). From figure 5.12 we
know that this holds for µ2 = 36, but the persistence length has not yet been investigated
for µ2 = 60. However, both our theory and the simulations yield critical densities which
are systematically lower than the values obtained previously with the GEMC method in
the range µ2 > 5. In addition, and more important, we do observe GL criticality for
µ2 = 30, 36 and 60. This is well above the limit µ2 ≈ 25 beyond which the critical point
should disappear. The path of the critical point obtained by lattice theory in the T -ρ
plane parameterized by the dipole moment, is the solid line in figure 6.9 (top panel) .
It is worth pointing out that an equally good result for Tc versus µ2 may be obtained by
adding the pressure long-range contribution (7.2.71) to any simple monomer equation of
state (for instance equation (7.2.50) with n = 1 or the van der Waals equation (6.2.1)).
It is the decrease of the critical density with increasing µ2 which presents a challenge.
In the case of equation (7.2.50) with n = 1 or the van der Waals equation the critical
density is inversely proportional to the monomer volume. In order for the critical density
to drop this volume must effectively increase. The reversible aggregation of monomers
into linear chains offers a simple mechanism as shown by equation (7.2.62). Even though
the FH type lattice model employed here is not difficult, there is an even simpler way
to understand this point intuitively. Let b describe the volume parameter in the van der
Waals equation. Then, as just mentioned, the critical chain number density ρ

(chain)
c is

proportional to b−1, i.e. ρchainc ∝ b−1. If now a reversible chain consisting of n monomers
can be treated as an ”ideal coil” or ”blob” with a mean diameter ∼ n1/2 and therefore
with b ∼ n3/2 interacting with other such ”blobs” the resulting critical density of this fluid
of ”blobs” obeys ρchainc ∼ n−3/2. Multiplying ρchainc with n we obtain for the monomer
number density ρc ∼ n−1/2. This is exactly the same scaling behavior as in equation
(7.2.62) for large nc. The problem with this simple van der Waals picture is that there
usually is significant overlap between ”blobs” at the densities of interest. For instance, we
can extend the scaling argument to the critical temperature, which in the van der Waals
case is proportional to a/b, where a is the attraction parameter. Using a ∝ n2 we obtain
Tc ∝ n1/2, i. e. the critical temperature does not approach a finite value as n → ∞. In
the case at hand this yields a exaggerated rise of Tc with increasing µ2.
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Figure 7.6: Snapshots taken during a MD computer simulation of 2048 ST particles with µ2 = 36
at ρ = 0.099(≈ ρc). Left: T = 14.0; right: T ≈ Tc. At the critical temperature
the particles form obvious chains. Considerably above the critical temperature the
snapshot shows a more homogeneous gas of monomers.

The existence of chains near the GL critical point is illustrated pictorially in figure 7.6.
The figure shows two snapshots taken during a molecular dynamics simulation of 2048 ST
particles with µ2 = 36 near the critical density. The left panel shows a system configura-
tion at a temperature high enough to suppress the formation of long chains. The system
looks more like a homogeneous gas of monomers. The right panel corresponds to T ≈ Tc.
In this case chain segments are clearly discernible. The preceding theoretical analysis of
the critical point shift attributes the decreasing critical density to a corresponding in-
crease of the average chain lengths. In order to support this point figure 7.7 shows the
dependence of the average chain length at criticality obtained from MD simulations on
dipole strength. Two ST particles are considered to be neighbors along a chain, if their
distance is less than rn (cf. subsection 5.3.2). Consequently the average chain length
depends considerably on the value of rn in the not very dilute phase. Nevertheless, we do
observe a significant increase of the average chain length regardless of the specific rn-value
supporting our above premise. In addition to the simulation results the figure includes
the theoretical dependence of nc on µ2 (corresponding to the solid lines in Fig. 7.5). The
agreement between theory and simulation is qualitative. The theoretical nc is plagued by
a strong dependence on the details of the interaction between the Stockmayer particles.
Quantitative agreement between theory and simulation can for instance be improved if
an additional factor is introduced reducing the numerical value of εi in equation (7.2.92).
However, this procedure does not yield additional physical insight beyond the level of the
present one-parameter theory.
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Figure 7.7: Mean aggregation number at the critical point nc versus dipole strength µ2. Sym-
bols: MD simulation point analyzed with the parameter rn = 1.0, 1.1 and 1.2 as
described in subsection 5.3.2; solid line: theoretical results corresponding to the
theoretical curves in figure 7.5.

Comparison to gas-liquid criticality of alkanes

Here we want to draw a more explicit correspondence between the FH lattice description
and an ordinary system of chain molecules at GL criticality. Figure 7.8 shows experimental
critical point data for n-alkanes versus chain length n, i.e. their number of methylene
groups. The solid curves are well known results following from the equation of state
(7.2.50) [3], i.e. Tc = T∞c n/(1 +

√
n)2 with T∞c = TBoyle, the critical temperature for

a system of infinitely long chains, φc = 1/(1 +
√
n) and Pc accordingly. We emphasize

that this is not an attempt to describe the critical data for n-alkanes quantitatively.
This has been done elsewhere [27–29]. In addition, corrections to the FH critical point
shift at large n, where n is the monodisperse chain length in pure polymer systems or
in polymer-solvent mixtures also have been discussed (e.g., [30, 31]). Instead, the main
purpose of figure 7.8 is to highlight similarities between the ST system near GL criticality
and an ordinary fluid of linear polymer or polymerlike molecules. Notice that T∞c is not
known for n-alkanes. In the literature a rather wide range of values is discussed, e.g.
1100 K to 1700 K in Ref. [27]. Here we use T∞c = 1300K. Notice that the function
fT (n) in equation (7.2.63) also approaches a constant value in the limit n → ∞. It is
the factor (7.2.74) which yields the µ2-dependence of Tc in the ST system. In the case

of ρc we use ρc = m
(n)
0 /b

(n)
0 φc simply setting m

(n)
0 /b

(n)
0 = 1. Here b

(n)
0 is the volume

per carbon subunit and m
(n)
0 is its mass. The important point to note is that both
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Figure 7.8: The critical point of n-alkanes as function of chain length n, i.e. the number of
methylene groups. Large Dots: Experimental critical point data for n-alkanes taken
from Table 2 in reference [27] vs. chain length n; small dots: critical density com-
puted via ρc = 6.718nPc/Tc; solid lines: FH theory with T∞c = 1300K and b0 = 1 in
the units used here; dashed line: density based on MP2-calculations of the all-trans
molecular volume.
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quantities depend on n. This is demonstrated by the dashed line in the middle panel
of figure 7.8. The line connects the values (m

(n)
0 /b

(n)
0 )/(m

(1)
0 /b

(1)
0 )ρmethanec obtained for

n = 1, 2, . . . , 6 using the experimental critical density of methane. m
(n)
0 /b

(n)
0 is obtained

by dividing the mass of the respective n-alkane by its volume computed via the quantum
chemistry program Spartan [32] using second order Møller-Plesset perturbation theory
(6-31G* basis set) applied to all-trans conformations (for n > 4). Notice that the initial
rise of the critical density with n is the consequence of a shrinking volume per C-subunit
essentially due to dispersion attraction. This is the motivation to include the relation
(7.2.93) into the above theory, even though the maximum exhibited by ρc in figure 7.5
is much less pronounced in comparison to the maximum of the critical mass density in
figure 7.8. In order to extend the available data for ρc to larger n-values we have assumed
the relation ρc = 6.718nPc/Tc. Data values obtained via this relation are represented
by the smaller dots. Notice that Pc/(ρcTc) = const is a fairly good approximation for
n ≤ 18, where ρc is known independently. For n > 18 the scatter is considerable. But the
extrapolation suggests that the experimental ρc may decrease in reasonable accord with
the FH prediction. Finally, the solid line in the bottom panel of figure 7.8 is plotted using
T∞c = 1300K and b0 = b

(n)
0 = 1 allowing a rough comparison between the slope of Pc for

large n as obtained experimentally in comparison to the FH result.

The modified Stockmayer fluid

Here we want to discuss the critical behaviour of the vLS system with the interaction
energy, given by equation (2.3.1), at fixed dipole moment µ2

vLS
and variable λ. Notice

that the factor λ adjusts the strength of the dispersion attraction. Therefore we may
infer the critical behaviour of purely dipolar systems without dispersion attraction, since
the vLS potential includes the DSS potential in the limit λ → 0. In recent research
it is still a matter of debate, if purely dipolar systems exhibit a GL phase transition
or not, as already discussed in subsection 6.3.4. Applying the scaling relations (2.2.3),
(2.2.4) and (2.2.5) we map the data obtained for the ST system obtained by simulation
and theory to the vLS system with fixed dipole strength µ2

vLS = 4 originally investigated
by van Leeuwen and Smit [5]. Figure 7.9 shows the same critical data as in figure 7.5
converted via the above mentioned scaling relations to Tc,vLS versus λ as well as ρc,vLS
versus λ. The dotted line in the upper panel is obtained by inserting the straight fit from
figure 7.5, here Tc,vLS = bλ2 + mλ1/2 (with b = 1.0815, m = 0.25761). Notice that the
agreement with the simulation data is excellent for λ ≤ 1.21. For λ > 1.21 the deviation
is expected, because this corresponds to µ2 < 3 for the ST fluid in figure 7.5, where the
dependence of Tc on µ2 is not linear for the ST fluid. Notice also that Tc,vLS ∼ λ1/2 → 0
for λ → 0 at fixed µ2

vLS corresponds to µ2 → ∞ for the ST system. Thus according to
the scaling argument presented here, there should be no finite GL critical temperature in
the DSS system (λ = 0). For the critical density of the vLS system ρc,vLS (lower panel
in figure 7.5) we do expect that it also vanishes for small λ, since the simulations yield a
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Figure 7.9: The critical properties of the ST system shown in figure 7.5 converted to the vLS
system with µ2

vLS = 4. Symbols indicate simulation results, the solid line is the
result obtained via lattice theory and the dotted line corresponds to the linear ap-
proximation of Tc,ST shown in figure 7.5. Top: GL critical temperature Tc,vLS versus
lambda; bottom: GL critical density ρc,vLS versus λ. The insets are magnifications
for the small λ range.
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Figure 7.10: GL critical temperature Tc in units of the LJ GL critical temperature Tc,LJ vs.
polarizability α. From bottom to top: µ2 = 1, 2 and 3. The symbols are simulation
data taken from table 6.2. Solid lines show the theoretical results including the
second order in α; dotted lines show the theoretical results including the first order
in α.

monotonous decrease of ρc for the ST fluid with increasing µ2. The lattice theory in fact
yields ρc,vLS → 0 for λ→ 0.
Therefore we conclude that in the DSS limit a vanishing GL critical temperature and
a simultaneously vanishing GL critical density is consistent with the simulation data
obtained thus far for the ST and vLS models. In principle of course there may be other
types of phases and phase transitions intervening before the limit is reached, which are
not included at present. However, the result for a vanishing critical point for λ → 0 is
consistent with direct simulations on the DSS fluid reported in subsection 6.3.4.

The polarizable Stockmayer fluid

Figure 7.10 shows the α-dependence of the critical temperature for µ2 = 1, 2, and 3 of
the pST. Symbols indicate results from simulation, the solid and dotted lines are theo-
retical results including the second and first order respectively (cf. appendix A). For the
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theoretical results the ratio Tc/Tc,LJ is estimated using its relation

Tc
Tc,LJ

=
TBoyle
TBoyle,LJ

(7.3.1)

to the Boyle temperature TBoyle. The index LJ always refers to the same quantity in
the LJ system. If we assume that the investigated systems exhibit no chain formation,
which is reasonable because the dipole strength is low, we get Tc and TBoyle from lattice
theory for mean chain length n = 1, coinciding with the SL and equations (7.2.55) and
(7.2.73) apply. Comparing equations (7.2.55) and (7.2.73) yields TBoyle = 4Tc. The Boyle
temperature is obtained by the root of the second virial coefficient B2(TBoyle, µ, α) = 0
which we calculate in appendix A. Notice that this estimate of Tc in terms of TBoyle is
close to the corresponding result obtained from other simple equations of state like the
Dieterici or van der Waals equations of state. The resulting estimate of Tc via TBoyle is in
qualitative agreement with the simulation data.

7.3.2 Gas-liquid coexistence curves and ferroelectric order

Here we compare the theoretical results for the GL coexistence curves for the ST system,
obtained by lattice theory including possible ferroelectric order by using our mean field
model, with computer simulation results already discussed in chapter 6. Coexistence
curves for dipole strengths µ2 = 1, 5, 16 and 36 are compiled in figure 7.11. Symbols
are simulation results, whereas hollow symbols are obtained by Maxwell construction and
filled ones by Kofke integration, the solid lines are GL coexistence curves obtained by
lattice theory by solving equations (7.2.111) and (7.2.112) simultaneously and the thick-
dashed lines indicate the transition from the isotropic to ferroelectric liquid. Our mean
field theory contains two adjustable parameters. The parameter R = 4.1 introduced
in equation (7.2.72) is fixed by the rise of the GL critical temperature shown in figure
7.5. The second parameter is κ which reduces the Debye transition temperature to the
ferroelectric state, which is too high, to the value obtained by simulation (cf. chapter 8).
Obviously the transition to the ferroelectric state occurs at rather low temperatures. Of
the three typical phase diagrams discussed by Zhang and Widom [12] in their figure 2
only the topmost diagram appears to be realized in the ST system, except for the only
coexistence of an isotropic gas and a ferroelectric ordered liquid for temperatures below
the triple point for isotropic gas-isotropic liquid-ferroelectric ordered liquid coexistence.
We reported already in figure 6.15 a strong decrease of the nematic order parameter
in the GL coexistence region with dereasing density and the simple droplet simulations
in subsection 5.3.1 showed no evidence for ferroelectric order in droplets at very low
temperatures. So the only coexistence of an isotopic gas and a ferroelectric liquid below
a certain temperature seems to be rather unlikely. We also note that the other phase
diagrams obtained by Zhang and Widom in their figure 3 do follow from our mean field
model if the parameter κ is increased. However, this is not appropriate for the ST system.
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Figure 7.11: Comparison between GL coexistence curves obtained by simulation (symbols) and
lattice theory (lines) for the indicated dipole strength. Hollow symbols: Maxwell
construction; filled symbols: Kofke integration. The thick-dashed line indicates
the transition from the isotropic to the ferroelectric liquid. The inset shows a
comparison between the lattice theory for µ2 = 6.25 and the corresponding section
of the phase diagram obtained via simulation in reference [33] (dotted and short
dashed lines). The vertical dotted lines in plot for µ2 = 36 are explained in the
text.
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Figure 7.12: Simulation snapshots of the µ2 = 5-system. Left: T/Tc ≈ 0.49. Orientational
order of the dipoles is still not obvious. Right: T/Tc ≈ 0.36. Here the nematic
order parameter has increased to qnem ≈ 0.6. The mean orientation of the dipoles
is visible.

Notice that the inset in the panel for µ2 = 5 of figure 7.11 shows a partial phase diagram
obtained for µ2 = 6.25 and a slightly increased value of κ (κ = 0.186) in comparison to
a partial phase diagram obtained via simulation by Gao and Zeng [33]. These authors
primarily have studied the additional transition to the solid state not studied in this work.
The nematic order parameter computed during the simulations with µ2 = 5 and 16
increases significantly above zero for liquid densities at low temperatures, i.e. T/Tc . 0.55,
cf. figure 6.8. With increasing nematic order parameter these liquid densities appear to
deviate from the extrapolated coexistence curve based on the densities at higher T/Tc.
This is illustrated for µ2 = 5 by the two simulation snapshots shown in figure 7.12. The
right panel depicting a system configuration at T/Tc ≈ 0.36 exhibits visible orientational
order, while at T/Tc ≈ 0.49 (left panel) orientational order is still not obvious despite of
an already increasing nematic order parameter.
In summary, it is unlikely that the transition to ferroelectric order will cause the GL critical
point to disappear for the benefit of a tricritical point as found by Zhang and Widom [12].
Certainly this is not the case in the range of dipole strengths considered here. Note also
that even though, according to the Debye theory, the ferroelectric transition temperature
Tcf , increases proportional to µ2 at fixed ρ, the same dependence, i.e. Tc ∝ µ2 for large µ,
is found for the GL critical temperature (cf. equation 7.2.75). In addition the GL critical
point ”escapes” to lower densities.
Ferroelectric order, as considered thus far, is induced by the particle’s dipole moments.
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Figure 7.13: Mean aggregation number n versus particle number density ρ along the GL coexis-
tence curve for µ2 = 16. Symbols: simulation result obtained with rn = 1.0 (filled
circles) and rn = 1.2 (hollow circles); solid line: lattice theory. Note that the gap
in this curve indicates the critical point.

Another cause for possible orientational order, at least theoretically, is shape induced
interaction between reversible chains akin to the isotropic-to-nematic phase transition
studied originally by Onsager for rigid monodisperse rods or rodlike polyelectrolytes [34].
The transition to the nematic state occurs for volume fractions proportional to σr/L,
where σr is an effective rod-diameter and L is the rod length. For large L the transition
therefore occurs at small densities. Onsager’s approach can be extended to semiflexible
polymers [35,36] and to rod-like micelles [37]. In these theories an orientationally ordered
phase occurs for volume fractions proportional to σr/lp, where lp is the persistence length.
Notice that lp depends on temperature. The fact that such a transition is not observed
in ST systems with chain formation may be understood in terms of the small persistence
length, but for other models of equilibrium polymers this may be relevant [38,39].
Figure 7.13 shows the average chain length n along the GL coexistence curve obtained

for µ2 = 16. The symbols are simulation results, whereas the solid line is the theoretical
result. Here rn is again the separation within which two particles are considered to be
part of the same cluster. We note that there is qualitative agreement between the lattice
theory and the simulation similar to the case of the average chain length at criticality
shown in figure 7.7.
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In figure 7.14 we compare the temperature dependence of the isochoric heat capacity per
particle CV (omitting the contributions from the kinetic degrees of freedom) obtained via
canonical MC simulation in reference [40] for µ2 = 36, to the lattice theory, calculated via

− 1

T
CV =

∂2FL
∂T 2

∣∣∣∣
V,Ns

. (7.3.2)

Again there is qualitative agreement. It is important to note that our theoretical treatment
neglects the reversible formation of rings. In reference [40] it is shown, however, that there
may be a large fraction of rings at the thermodynamic conditions considered here. Notice
in this context that the theoretical CV is almost exclusively determined by the last term
in equation (7.2.47) (b0 and therefore φ is slightly dependent on temperature via equation
(7.2.93), i.e. CV is determined by the temperature dependence of the average chain length
n. The latter is shown in the bottom panel. The strongest curvature of n as function of
T , i.e. the onset of aggregation, corresponds to the maximum of the heat capacity. As
explained in subsection 7.2.2 the no-aggregation limit of the lattice theory is not n = 1
but n ≈ 2. We also note that the authors of reference [40] apparently do not notice phase
coexistence even though their isochors cross from the one-phase into the coexistence region
found in our simulations (as indicated by the vertical dotted lines in the bottom panel of
figure 7.11).

7.3.3 Relative Stability of chains and rings

Finally, we want briefly return to the issue of relative stability of chains and rings men-
tioned above. The probability for an ideal wormlike chain containing N dipoles to form
a ring is

pring =
1

4π

(
3

2πN

) 3
2

, (7.3.3)

cf. reference [41]. Notice that a random path maps out a sphere of radius ∼ N1/2 and
volume ∼ N3/2. The factor 1/(4π) accounts for the smoothness of the chain at the
junction point. The remaining factor results from the normalization of the random path’s
probability distribution. Using pchain = 1 − pring we obtain the entropy loss due to ring
closure

∆S = Sring − Schain = ln

[
pring
pchain

]
. (7.3.4)

The corresponding change of the free energy is

∆F = Tεi − T ln

[
pring
pchain

]
, (7.3.5)

where Tεi is the contribution of the contact interaction to the free energy (cf. equation
(7.2.92)). The condition ∆F = 0 thus defines the cross over length, Nx ∼ exp(−2εi/3), for
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Figure 7.15: Number fraction h(s) of clusters of different species and chain lengths for a system
with µ2 = 60, N = 2048, T = 16.5(≈ Tc) and ρ ≈ 0.005 from simulation. Here in
a certain chain length range (8 . s . 30) rings are the most likely clusters.

sufficiently large N . This means that for N > Nx the chain is more stable than the ring,
whereas for N < Nx the ring is more stable than the chain. On the other hand, according
to equation (7.2.46), the lattice model yields a mean chain length n ∼ φ1/2 exp(−εi/2). If
we are interested in the relative stability of chains versus rings close to GL criticality we
can make use of φc ∼ n

−1/2
c (cf. equation (7.2.62) for large nc corresponding to large µ2).

Therefore we find nc ∼ N
3/5
x , which means close to the GL critical point, for sufficiently

large µ2 and therefore large nc (cf. figure 7.7), rings are more stable than chains. This is
consistent with figure 7.15. Here simulation results for the number fraction of clusters of
different species and cluster lengths for a ST system with µ2 = 60, N = 2048, T = 16.5
and ρ ≈ 0.005 are shown. The considered temperature is close to the critical one, but
the density is much lower than the critical one, since at critical density the cluster size is
already limited by the chosen simulation box size. Contrary to results for smaller dipole
strength (cf. figure 5.13 and 6.18) rings become in the range of clusters size 8 . s . 30
dominant compared to chains. For larger cluster sizes mutants become predominant which
we did not include in our considerations. This is quite reasonable, since the larger a cluster
is the higher is the probability for knots or contacts to other clusters. Some examples for
small clusters are shown in figure 7.16. Even at high dipole strength threefold coordinated
crosslinks, as considered by Tlusty and Safran [42], seem to be rare. The mutants seem
to be rather chains or rings with knots. With increasing density the clusters appear to
be more and more interlooped. Notice that the formation of rings is not yet included
in our lattice theory. This may be a reason for the poor accordance between critical
density obtained by theory and simulation besides the choice of the cut off distance R
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Figure 7.16: Snapshots of mutants from a simulation with µ2 = 60, ρ = 0.0025 and T = 16.5.
The mutants look rather like knotted chains or rings, than like branched ones.
There are no obvious threefold coordinated crosslinks.

for the long-range contribution of the dipolar interactions. However, an additional phase
transition driven by the formation of rings and chains appears to be unlikely, since there
is no compelling reason to expect that rings and chains should phase separate under the
considered conditions.

7.4 Conclusion

In this chapter we adopted the FH like lattice theory for reversible assembled particles,
developed in [15, 16], to the ST system. We do find coexistence of the isotropic gas and
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the isotropic liquid for all dipole strengths studied, i.e. 0 ≤ µ2 ≤ 60. Systems with large
dipole strengths µ2 & 25 were believed previously to show no GL coexistence. With the
theory developed here we are able to explain quite reasonably the dependence of the GL
critical point in the ST fluid on µ2. The shift of the critical point to lower densities and
higher temperatures as function of dipole strength closely resembles the critical point shift
as function of chain length in ordinary linear polymer systems. The dependence of the
critical temperature on dipole strength may be explained without particle association, but
this explanation does not include the shift of the critical density. In particular the increase
of the critical density with increasing dipole strength is a consequence of the existence of
reversible chains near criticality. Contrary to the case of ordinary linear polymer systems,
where the Flory approach yields a finite critical temperature for infinite chain length,
the critical temperature continues to increase proportional to µ2 even for large average
chain length. In addition we do not find evidence, in neither simulation nor theory for an
abrupt disappearance of the GL critical point found to occur in earlier simulation work.
It is worth noting that the possible transition to ferroelectric liquid order is not expected
to interfere with this conclusion, a possibility that has been discussed in theories of phase
behaviour in dipolar fluids (e.g. [12,13]).
Investigating the vLS system at fixed dipole strength with varying parameter λ, we found
that the nonvanishing GL phase transition for the ST fluid with large dipole strength
is consistent with the nonexistence of GL phase separation in the DSS fluid. At fixed
dipole moment µ2

vLS = const, λ → 0 implies µ2 → ∞ in the ST system. With the
mapping between ST and vLS systems and Tc ∼ µ2 for large dipole strengths in the
ST system, we obtain Tc,vLS ∼ λ1/2 → 0 for λ → 0 at fixed dipole strength in the vLS
system. Since the simulations yield a monotonous decrease of the critical density with
increasing dipole strength in the ST system, we do expect a vanishing critical density
ρc,vLS = λ1/2 for λ → 0 in the vLS system. Lattice theory in fact yields ρc,vLS → 0 for
λ→ 0. Therefore we conclude that in the DSS limit a vanishing GL critical temperature
and a simultaneously vanishing GL critical density is in accordance with simulation and
theoretical data obtained thus far for the ST and vLS system.
Nevertheless there may be, for the ST and DSS system, other types of phases and phase
transitions. We showed that for dipole strength µ2 = 60 in a certain chain length region
rings become dominant, which is not yet included in the lattice theory and may explain the
large deviation of the critical density from theory and simulation for this dipole strength.
A different suggestion is due to Tlusty and Safran [42] who argued that reversible chains
may form reversible networks. The chain ends may participate in reversible, threefold
coordinated crosslinks or may be free. The authors construct a free energy based solely
on the network defects, i.e. the free ends and the crosslinks. They find that phase
separation into a free end-rich and a free end-poor phase can occur. The whole idea is
developed on the basis of the DHS model. The model is a much simplified theory for a
(reversible) polymer network. Other types of defects may be present and important, e.g.
physical crosslinks. In particular, as the authors remark themselves, a crucial prerequisite
is the observation of dipolar networks. However, the simulations presented in this work
as well as a number of exploratory simulations for µ2 = 100 at T = 26.5 do not reveal
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the formation of dipolar networks in the ST fluid. At very low densities the systems seem
to consist only of chains and rings which combine to mutants from time to time. At
higher densities the number fraction of mutants becomes much higher, but the interaction
between the linear chain-like sections of the mutants appear rather to be driven by the LJ
interaction or they appear simply to be interlooped. Real threefold coordinated crosslinks
have been observed very rarely even for very high dipole moments.



Bibliography

[1] P.G. de Gennes and P.A. Pincus. Pair correlations in a ferromagnetic colloid.
Zeitschrift für Physik B, 11(3):189–198, 1970.

[2] P.I.C. Teixeira, J.M. Tavares, and M.M. Telo da Gama. The effect of dipolar forces on
the structure and thermodynamics of classical fluids. Journal of Physics: Condensed
Matter, (33):R411–R434, 2000.

[3] P.J. Flory. Principles of Polymer Chemisty. Cornell University Press, Ithaca, 1953.
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8 Dielectric properties and the
ferroelectric transition of the
Stockmayer fluid via computer
simulation

8.1 Introduction

In this chapter we report extensive MD simulations of the ST and pST fluid aiming to
estimate the location of the transition from the isotropic fluid to the ferroelectric ordered
fluid via the divergence of the static dielectric constant. The dependence of the transition
on dipole strength µ2, temperature T and system size is investigated. The results are com-
pared to a large number of previous simulations in the literature on the ST as well as DSS
and DHS systems and Debye’s and Onsager’s approaches to calculate the static dielectric
constant. We also relate our findings to recent experiments in nitromethane/nitrobenzene
solutions containing ferroelectric domains under ambient conditions. In addition we study
the local field in relation to the structure and dynamics of the liquid phase as function
of temperature, dipole strength, and polarizability. These results include the significantly
less studied pST fluid. First we want to give a short historical overview of approaches
to calculate the static dielectric constant of materials from their molecular characteristics
and the evidence for a ferroelectric transition in fluids.

A historical overview

In 1912 Debye published an equation relating the static dielectric constant ε of gases and
liquids to their permanent molecular dipole moments µ and isotropic polarizabilities α (a
detailed discussion can be found in [1]). His formula can be found in every textbook on
physical chemistry. Applied properly the Debye formula is a valid means to determine
the aforementioned molecular quantities from bulk measurements of the static dielectric
constant. He assumed that the electrostatic interaction of a molecule with its surround-
ing can be described by a point dipole in the center of a spherical cavity, embedded in a
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homogeneous dielectric. More precisely, the standard derivation of Debye’s equation (cf.
section 4.5 in [2]) assumes that molecules in the immediate vicinity of the central molecule
do not contribute to its local electric field. These molecules are therefore omitted and the
cavity becomes much larger. However, the radius of the cavity is never specified because
it does not enter into the final result. The entire argument is lacking transparency and
rigor and so Debye’s approach has been criticized and improved. A major contribution is
due to Onsager [3]. His main criticism centers on the ferroelectric Curie point, indicating
the transition from the isotropic liquid to the ferroelectric ordered liquid, predicted by De-
bye’s equation. Especially the lack of experimental evidence for this transition to a large
extend [4] motivated Onsager to a new approach. In his analysis he still assumes a point
dipole placed in the center of a spherical cavity surrounded by a macroscopic dielectric,
but the orienting field is separated in a cavity field contributing to the alignment of the
permanent dipoles and a reaction field which does not. In his idea the spherical cavity is
a result from the volume expansion of the molecule itself. The result is an equation akin
to Debye’s, which in fact does not show a transition at finite temperature. It is worth
remarking that even though Onsager’s derivation is more transparent and, over a wide
range, his equation is a better approximation than the (linearized) Debye formula it does
not appear in any of the standard textbooks. The history of the Onsager equation in
relation to Debye’s equation is discussed in reference [5].
Shortly after Onsager’s paper Kirkwood published an extension of this work [6]. His treat-
ment combines continuum electrostatics with a statistical mechanical calculation of the
average dipole moment of a macroscopic volume containing polar molecules enclosed in
a homogeneous dielectric. Subsequently various additions and improvements were made
(see in particular reference [7]). Kirkwood’s approach became especially relevant when the
increasing power of computing machines allowed the simulation of simple polar liquids, in
particular the (polarizable) ST fluid (cf. [8] for MD or [9] for MC). Initial confusion re-
garding the proper handling of the long-range electrostatic interactions was resolved over
the years in a series of papers (e.g. [10–15]). The precise determination of the dielectric
constant of a liquid via computer simulation according to the above method requires to
compute the fluctuation correlation function of the vector sum of dipole moments con-
tributed by a large number of molecules. Because this is computationally very demanding,
simulation results for dielectric (and thermodynamic) properties of polar and especially
polarizable model fluids continue to be interesting.
Although we found Onsager’s approach to be more transparent than Debye’s, simula-
tion work by Wei and Patey [16] and Stevens and Grest [17] on the DSS fluid, Weis and
Levesque [18, 19] and Camp and Patey [20] on the DHS fluid, Houssa et al. on dipolar
Gay-Berne molecules [21], Stevens and Grest [17] and Gao and Zeng [22] on ST particles
provides evidence for a transition from the isotropic liquid to the ferroelectric liquid phase.
A fair number of theoretical studies, also reach the conclusion that the above liquid-to-
liquid orientational ordering transition should occur. For a comparative discussion of the
various approaches the reader is referred to reference [23]. Nevertheless, the experimental
verification remains a challenging problem. A number of experimental groups have stud-
ied the temperature dependence of the initial susceptibility in magnetic fluids (either in
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suspensions of coated magnetite [24–26] or cobalt particles [27].). None of these studies
do find Curie-Weis behavior nor an isotropic-to-nematic transition. However, the exper-
iments are plagued by polydispersity of the particle size, aggregation and solidification.
The more recent study on iron-nitride magnetic fluids by Mamiya et al. [28] thus far is
the only one which convincingly suggests that a transition to a ferromagnetic fluid phase
does exist in this system. However, these systems are not molecular fluids, but on the
other hand the ST model is not restricted to these. In this respect recent hyper-Rayleigh
scattering studies by Shelton [29] on nitromethane-nitrobenzene mixtures are of special
interest. From his data Shelton draws the conclusion that at ambient conditions (temper-
ature is 300K) his samples contain ferroelectric domains whose typical volume is 20nm3.
For neat nitromethane he finds an order parameter of around 0.9. With increasing mole
fraction of nitrobenzene this order parameter decreases to about 0.25 in pure nitroben-
zene. The two molecules are small and rather compact and thus the ST potential may not
be a bad approximation of intermolecular interaction. Shelton and Quine found similar
behaviour for liquid nitrobenzene doped with triflic acid [30].

8.2 Methods for determining the static dielectric
constant in fluids

It is useful to briefly discuss the simple prototypical models for calculating ε due to Debye
and Onsager in relation to the usual approach employed in computer modeling. All three
approaches have in common that spheres with different characteristics are embedded in
an infinite homogeneous dielectric.

8.2.1 The Onsager equation

Onsager considers in his approach a single point dipole ~m at the center of a spherical
cavity inside the dielectric. The spherical cavity here is a result of the volume expansion
of the particle itself, different to the point of view in subsection 3.7.3, where we considered
the cut off sphere embedded in a dielectric medium. This is a rough approximation, since
this implies that the dipolar short range interaction energy between neighboring dipoles is
negligible and only long-range forces will be considered . We have already shown that this
is rather unlikely for system parameters for the ST fluid chosen in the former chapters,
since we have observed a strong DD correlation between nearest neighbored dipoles (cf.
figure 6.15 for instance). The local field at the position of the dipole ~m (excluding the
dipole’s own field) is the sum of the cavity field

~Ecav =
3ε

2ε+ 1
~Eext , (8.2.1)
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arose in a spherical cavity in the dielectric with dielectric constant ε due to an external
field ~Eext and the reaction field

~ER =
2(ε− 1)

(2ε+ 1)a3
~m = g~m , (8.2.2)

due to the polarization of the surrounding dielectric by the dipole ~m, where a is the radius
of the cavity with only one dipole in its center, contrary to the considerations for equation
(3.7.12). Both fields can be obtained by applying the continuity relations of the tangential
component of the electric field and the normal component of the dielectric displacement
field at the surface of the cavity. The sum of both fields yields the local electric field at
the position of the dipole ~m

~Eloc = ~Ecav + ~ER (8.2.3)

=
3ε

2ε+ 1
~Eext + g~m . (8.2.4)

Note that we called the electric field calculated for MD simulation acting on one point
dipole ~E ′(~ri). Not to get confused we will call this for the further theoretical consider-

ations here the local electric field ~Eloc. It is tempting to eliminate the unknown cavity
radius in equation (8.2.2) via a−3 = (4π/3)ρ. However, this yields a qualitative incorrect

dependence of ~Eloc on ρ as we show below. Insertion of equation (8.2.4) into equation
(2.1.10) yields

~m =
3ε

2ε+ 1

α

1− αg
~Eext +

1

1− αg
~µ (8.2.5)

and this inserted into equation (8.2.4) again yields

~Eloc =
3ε

2ε+ 1

1

1− αg
~Eext +

g

1− αg
~µ . (8.2.6)

Onsager proceeds now by computing the thermal average 〈~m〉 in order to tie the local

polarization to the macroscopic polarization ~P via

ρ〈~m〉 = ~P =
ε− 1

4π
~Eext . (8.2.7)

The particular significance of equation (8.2.5) is that in order to obtain 〈~m〉 it is sufficient

to compute 〈~µ〉 using the Boltzmann weight exp[β~µ · ~Eloc], with reciprocal temperature
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β, via

〈~µ〉 = µ〈cos θ〉
~Eext∣∣∣ ~Eext∣∣∣ (8.2.8)

= µ
~Eext∣∣∣ ~Eext∣∣∣

π∫
0

dθ sin θ cos θeβ~µ·
~Eloc

π∫
0

dθ sin θeβ~µ· ~Eloc
(8.2.9)

= µ
~Eext∣∣∣ ~Eext∣∣∣ L (βµEloc) (8.2.10)

≈ 3ε

2ε+ 1

µ2

3T (1− αg)
~Eext , (8.2.11)

where we have used 〈~µ〉 || ~Eext, θ = �(~µ, ~Eloc) and L(x) ≈ x/3 for x→ 0. Note that L(x)
is the Langevin function. Combining this result with the thermal average of equation
(8.2.5) yields

〈~m〉 =
3ε

2ε+ 1

(
µ2

3T (1− αg)2 +
α

1− αg

)
~Eext. (8.2.12)

and insertion into equation (8.2.7) yields for vanishing external field, ~Eext → 0, Onsagers’s
equation (OE)

3

4πρ

(ε− 1)(2ε+ 1)

9ε
=

1

3T

(
µ

1− αg

)2

+
α

1− αg
. (8.2.13)

Setting ~µ = 0 or in the limit 1/T → 0 we obtain the usual Clausius-Mossotti relation
(3.7.14) between α and ε (or better ε∞).

8.2.2 The Debye equation

The approach underlying the Debye equation is different. He calculates the local field in
the center of the cavity by the Lorentz method

~E
(D)
loc = ~Eext + ~Epol + ~Eneigh , (8.2.14)

where ~Eext is again the field due to external sources, ~Epol is the field due to the polarization

charge distribution on the surface on the cavity and ~Eneigh is the field due to the nearest
neighbors inside the cavity. By geometric considerations it is argued that for aligned
dipoles arranged on a regular lattice inside the cavity their contribution to the local field
vanishes, implying ~Eneigh = 0, thus this should hold even for less symmetric cases (see
for details section 4.5 in [2]). Comparable to Onsager’s approach the aforementioned DD
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correlation of nearest neighbors shows that this rough approximation does not hold in
general. The field due to the polarization charge distribution is given by

~Epol =

∮
σpol d ~A

a2
=

4π

3
~P , (8.2.15)

where σpol is the array charge density, d ~A is an array element pointing to the center of
the cavity and a the radius of the cavity. This yields the local electric field in the center
of the cavity

~E
(D)
loc = ~Eext +

4π

3
~P =

4π

3

ε+ 2

ε− 1
~P , (8.2.16)

where we have used again equation (8.2.7) to substitute the external field ~Eext by the

macroscopic polarization ~P . We employed this approach already in the former chapter for
a simple theory for the ferroelectric phase transition, cf. equation (7.2.98). The difference
between this and Onsager’s local field becomes clear if we rewrite equation (8.2.16) in the
Onsager form, i.e.

~E
(D)
loc =

3ε

2ε+ 1
~Eext + ga3 4πρ

3
〈~m〉. (8.2.17)

Onsager’s local field is an instantaneous field, explicitly depending on the instantaneous
value of ~m, which is present even for vanishing external field ~Eext = 0. Here the local field
depends on the thermal average of ~m instead, and it vanishes if ~Eext = 0 unless 〈~m〉 6= 0.
Onsager’s local field virtually neglects the orientation correlation between the ~µ, whereas
here their orientation correlation is overestimated. We proceed via

~P = ρ〈~m〉 = ρ〈~µ〉+ ρα~E
(D)
loc , (8.2.18)

where 〈~µ〉 is again given by equation (8.2.10). Thus we obtain the well known equation

3

4πρ

ε− 1

ε+ 2
=
µL
(
βµE

(D)
loc

)
E

(D)
loc

+ α ≈ 1

3T
µ2 + α . (8.2.19)

For the purpose of reference we call the linear approximation (LDE) as opposed to the full
Debye equation (FDE). Note that in the limit µ2/T → 0 equations (8.2.13) and (8.2.19)
coincide.
Already the LDE predicts the divergence of the dielectric constant, i.e. we can write the
linearized version of equation (8.2.19) for α = 0 as

1

χ
= 3

(
Tr −

4π

9

)
, (8.2.20)

where

χ =
ε− 1

4π
(8.2.21)

is the susceptibility, and Tr = T/(ρµ2) is the reduced temperature. The same result may
be obtained in a more insightful manner via the canonical orientation partition function
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(7.2.101) for Debye’s approach, where ~E
(D)
loc is given by equation (8.2.17). The attending

orientation free energy is given by equation (7.2.104), where ga3 in the local field (8.2.17) is
set equal to unity. When the coefficient of the leading term changes sign an orientationally
ordered phase becomes stable compared to the isotropic fluid or vice versa (cf. subsection
7.2.3).

8.2.3 The fluctuation equation

The usual approach to compute ε via computer simulation, initially discussed by Kirkwood
[6] and later refined by Mandel and Mazur [7], consists of two steps. We consider a
system like in our approach for the reaction field (cf. figure 3.2 and subsection 3.7.3).

The homogeneous polarization ~Psphere inside a large spherical volume Vsphere containing

Nsphere molecules is related to a constant external field ~Eext, using equation (3.7.7) and
(8.2.7), via

ρ

Nsphere

〈 ~Msphere〉 =
ε− 1

4π
~Ei , (8.2.22)

where ~Msphere is the total dipole moment of the sphere, and ~Ei is the internal field inside
the sphere. Note that the dipole density ρ = Nsphere/Vsphere = N/V is constant for
the whole system. Applying again the continuity relations for the electric field and the
dielectric displacement field, we get for a spherical sample embedded in a homogeneous
dielectric with the same dielectric constant ε (εi = εa = ε in figure 3.2)

~Ei =
2ε+ 1

3ε
~Eext . (8.2.23)

Thus insertion in equation (8.2.22) yields

〈 ~Msphere〉 =
3Nsphere

4πρ

(ε− 1)(2ε+ 1)

9ε
~Eext (8.2.24)

The second step is the calculation of 〈 ~Msphere〉 from statistical mechanics via

〈 ~Msphere〉 =

∫
dΓ ~Msphere e

−βH∫
dΓe−βH

. (8.2.25)

Note that dΓ is the configurational phase space volume element, β the reciprocal temper-
ature and H the configurational Hamiltonian. Since we want only to sketch the derivation
of 〈 ~Msphere〉 phenomenologically, we may write the Hamiltonian in the form

H ≈ H0 − ~M0 · ~Eext −
1

2
αsample ~E

2
ext , (8.2.26)

whereH0 is the Hamiltonian in the absence of an external field and αsample the macroscopic

polarizability of the whole sample. Here ~M0 denotes the total dipole moment of the entire
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simulation box in the absence of an external field. For a more accurate derivation of
〈 ~Msphere〉 see references [7, 11, 15]. In principle care has to be taken that the Boltzmann
weight used to calculate the average is consistent with the Hamiltonian actually used in the
simulation from which the necessary averages are later obtained [15]. In the present case
H refers to the electrostatic potential energy of the cubic simulation cell (using reaction
field boundary conditions for the electrostatic interactions). Using

~Msphere ≈ ~M0,sphere + αsphere ~Eext (8.2.27)

we can write equation (8.2.25) including terms linear in ~Eext only〈
~Msphere

〉
0
≈
〈(

~M0,sphere + αsphere ~Eext

)(
1 + β ~M0 · ~Eext

)〉
0

(8.2.28)

=
〈
~M0,sphere

〉
0

+ αsphere ~Eext +
〈
β ~M0,sphere

~M0 · ~Eext
〉

0
. (8.2.29)

The subscript 0 refers to the limit for vanishing external field ~Eext → 0. Note that
〈 ~M0,sphere〉0 = 0 due to the missing preferential orientation and〈

~M0,sphere
~M0 · ~Eext

〉
0

=
〈(

~M0,sphere

)
z

(
~M0

)
z

〉
0

~Eext (8.2.30)

=
1

3

〈
~M0,sphere · ~M0

〉
0

~Eext (8.2.31)

for ~Eext||~ez. This yields in the limit of small polarizability〈
~Msphere

〉
=

1

3T

〈
~M0,sphere · ~M0

〉
~Eext + αsphere ~Eext . (8.2.32)

Insertion in equation (8.2.24), using αsphere ≈ Nsphere α and ~M0,sphere → ~Msphere, ~M0 → ~M

for ~Eext → 0

3

4πρ

(ε− 1)(2ε+ 1)

3ε
~Eext =

〈 ~Msphere · ~M〉0
TNsphere

~Eext + α~Eext . (8.2.33)

Using the Clausius-Mossotti like relation (3.7.15) yields the fluctuation equation (FE)

3

4πρ

(ε− 1)(2ε+ 1)

3ε
=
〈 ~Msphere · ~M〉0
TNsphere

+
3

4πρ

(ε∞ − 1)(2ε∞ + 1)

9ε∞
. (8.2.34)

Even though de Leeuw et al. [15] argue quite convincingly that 〈 ~Msphere · ~M〉0 should be

used recent simulation work frequently is based on 〈 ~M2〉0 instead (e.g. [31, 32]). This
point has also been dealt with in reference [33].
Notice that the radius of the spherical sample for calculating the dielectric constant has to
be chosen equal to the cut off radius rcut of the system [15]. In practise, to accelerate the
computation of the dielectric constant, we place several spheres with radius rcut at random
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positions in the simulation box and calculate its total dipole moment ~Msphere in order to

calculate the fluctuations 〈 ~Msphere · ~M〉0. Since the reaction field corrections depend on
the dielectric constant (cf. equation (3.7.12)) we use for these, as already mentioned, the
cumulative average of the dielectric constant obtained by the FE.
It is useful to emphasize the similarity between this and Onsager’s equation. Writing

〈
~Msphere · ~M

〉
0

=

〈 ∑
i∈sphere

∑
j∈box

~mi · ~mj

〉
0

(8.2.35)

≈ Nsphere

〈
~m1 ·

∑
j∈box

~mj

〉
0

(8.2.36)

≈ Nspherem
2
0

1 +

〈∑
j∈box
j 6=1

cos θ1,j

〉
0

 . (8.2.37)

Here θ1,j is the angle between the dipole moment 1 in the center of the sphere and another
dipole j. m2

0 is the mean square average of ~m1 in the absence of the external field. A
further approximation is the substitution of 〈

∑
j∈box

cos θ1,j〉0 by the average number of
dipoles in the nearest neighbor shell of a particle z times 〈cos θ〉nn,o, where θ is the angle
between this dipole and a nearest neighbor dipole. The index nn indicates that the average
is over nearest neighbors only. Using

~m0 =
1

1− αg
~µ (8.2.38)

from Onsager’s approach we may expect an improvement of Onsager’s equation if µ2

in equation (8.2.13) is replaced by µ2(1 + z〈cos θ〉nn,0) [6]. Here we will indicate this
modification of Onsager’s equation by the acronym EOE. In our system the factor (1 +
z〈cos θ〉nn,o) will lead to an increase of the predicted dielectric constant compared to
Onsager’s equation.

8.3 Results for vanishing polarizability

8.3.1 Static dielectric constant from different approaches

Figure 8.1 shows the dependence of the static dielectric constant ε on temperature T for
different dipole strengths, µ2 = 0.5, 1.0, and 3.0. Here we used the parameters N = 500,
ρ = 0.8, and rcut = 3 throughout unless stated otherwise. The left panel of figure 8.1
illustrates the effect on ε when 〈 ~Msphere · ~M〉0 ’box-and-sphere’ in the FE (8.2.34) is
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Figure 8.1: The static dielectric constant ε from the different approaches versus temperature T
for dipole strength µ2 = 0.5, 1 and 3 (N = 500, ρ = 0.8, rcut = 3). Left: Comparison
of FE ’box-and-sphere’ to FE ’box’ and FE ’sphere’ from simulation. For high
temperatures the deviations for the different equations diminish. For large dipole
strengths and low temperatures the deviations between ’sphere’ on the one hand and
’box-and-sphere’/’box’ on the other hand become significant. Right: Comparison
of results from the FE ’box-and-sphere’ to results from the approaches of Debye
(FDE, LDE) and Onsager (EOE, OE). For the smallest dipole strength (µ2 = 0.5)
all computation methods are in good agreement. For higher dipole strengths (µ2 = 1
and 3) the range of accordance is shifted to higher temperatures.
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replaced by 〈 ~M2〉0 ’box’ and 〈 ~M2
sphere〉0 ’sphere’, respectively. The deviations are rather

minor. In particular they appear to diminish for ’box-and-sphere’ and ’box’ on a relative
scale as the dipole strength increases. Only the deviations of these to ’sphere’ at large
dipole strength and low temperature become very significant. These differences, as is
discussed in reference [33], are system size dependent and reduce as the system size is
increased. The following results are ’box-and-sphere’ results, since it appears that this is
the adequate form for our simulations.
In the right panel of figure 8.1 we compare the static dielectric constant ε from the FE
’box-and-sphere’ to the approaches from Debye (FDE, LDE) and Onsager (EOE, OE) for
same system parameters as in the left panel. For the smallest dipole moment µ2 = 0.5
all methods of calculation are in good accordance, especially the LDE is close to the data
points for FE. Notice that the LDE is calculated from equation (8.2.19) without usage
of simulation data. Thus for simulations with small dipole moments only, computational
effort can be saved by applying the LDE to calculate the static dielectric constant for
the reaction field corrections from equation (3.7.12). For dipole strength µ2 = 1 the
LDE and OE hold only for very high temperatures. Here the FDE, using the local field
Eloc obtained by simulation, yields good accordance to the FE in the whole considered
temperature range. Usage of the FDE instead of the FE still reduces the computational
effort, since the local field has to be calculated for the torque anyway (cf. equation (3.2.5).
Furthermore, usage of the FDE yields faster good averages than usage of FE, as indicated
by the error bars. This is due to the fact that quite good averages of the local field can
be obtained already by one single configuration. For the fluctuation of the total dipole
moment we have to respect a long-range of the trajectory of the system in phase space.
For µ2 = 3 even the FDE is a valid approximation only for high temperatures above
the GL critical temperature. Here for low temperatures the EOE yields better results.
Nevertheless, the computational effort for applying the EOE is not less than for the FE
itself.

8.3.2 Inverse susceptibility and the ferroelectric transition

Simulation results for the Stockmayer fluid

Figure 8.2 shows our simulation data on the static dielectric constant, expressed via the
inverse susceptibility, together with 44 data points from previous simulations on ST flu-
ids (notice that a number of symbols are masked by others.): reference [10] (table II;
data shown as solid squares in figure 8.2), reference [12] (tables 2 and 5; solid down
triangles), reference [14] (figure 1; solid circles), reference [15] (table 1; open square
with filled triangle above diagonal), reference [36] (table 4; triangles pointing to the
lower right), reference [37] (table 1; solid diamonds), reference [31] (table 3; solid up-
triangle), reference [32] (figure 2; open squares with filled triangle below diagonal). Our
own data include the following combination of simulation parameters (µ2, N , rcut, ρ):
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Figure 8.2: Top: Inverse susceptibility χ−1 versus reduced temperature Tr = T/(ρµ2). The
symbols represent simulation results from this work (hollow symbols, pluses and
crosses) and the literature (solid and semi-solid symbols). The details are given in
the text. Solid line: OE; dashed line: LDE. The inset magnifies a portion of the
graph showing literature data only. The dotted line represents the RHNC theory
result taken from table 2 in reference [34]. Another good theoretical description
which provides a close form approximation for χ−1 can be found in reference [35].
Bottom: The symbols represent a subset of the above data. Solid line: OE; dashed
line: LDE; dotted line: power law approximation. The inset shows a magnified
portion of the main graph. Notice that χ−1 is plotted versus Tr − Tr,cf instead of
Tr.
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(0.5, 500, 3, 0.8; hollow circles), (1.0, 500, 3, 0.8; open squares), (2.0, 500, 3, 0.8; hollow di-
amonds), (3.0, 500, 3, 0.8; crosses), (4.0, 500, 3, 0.8; hollow squares with inscribed plus),
(4.0, 2000, 5, 0.8; pluses), (5.0, 500, 3, 0.1; hollow crosses), (5.0, 500, 3, 0.5; hollow right tri-
angles), (5.0, 500, 3, 0.8; hollow squares with diagonal line), (5.0, 2000, 5, 0.8; hollow up
triangles), (10.0, 2000, 5, 0.8; hollow left triangles), (36.0, 2000, 5, 0.8; hollow down tri-
angles). Our data were obtained at temperatures ranging from 1 to 10. The data in
reference [37] were calculated along the gas-to-liquid binodal line covering the density
range 0.016 ≤ ρ ≤ 0.76 and temperatures from 1.0 to 1.3 for µ2 = 1. Most of the other
simulations cover somewhat smaller parameter ranges (T from 0.8 to 1.35, µ2 between
0.25 and 4, and ρ between 0.8 and 0.85). However, overall there is a considerable range
of values for T , µ2, and ρ for which data are available. The approximate collapse of these
data, collected over 25 years, on a common curve is quite remarkable. However, the re-
duction of the dependence of χ−1 on ρ, µ2 and T to the quantity T/(ρµ2) is not exact.
See for instance the discussion by Joslin [38] on the third dielectric and pressure virial co-
efficients of dipolar hard sphere fluids or the more recent discussion of the static dielectric
properties of polar fluids in reference [35]. Nevertheless, it appears to yield a rather good
approximation in case of the ST potential. In particular it is difficult to separate out the
individual effect of ρ, µ, and T , based on the simulation data published thus far because
of considerable scatter especially at small χ−1. The arrow in the upper inset in figure 8.2
indicates four data points obtained in different works with exactly the same parameter
values (ρ = 0.822, µ2 = 3, T = 1.15; [12,31,32,36]). The respective χ−1-values range from
0.19 to 0.34.
Our estimate of the ferroelectric transition is based on a subset of the data obtained in
this work. We did exclude all data points under the GL binodal. An exception is the
data set for µ2 = 36, where the peculiar increase of χ−1 for Tr < 0.3 still occurs in the
one-phase region. In addition we did not find obvious difficulties during equilibration.
At such large dipole strengths the particles easily form reversible linear aggregates which
may interfere with the isotropic liquid-to-ferroelectric liquid transition. The conformation
as well as orientation dynamics of equilibrium polymers depends on their length and thus
may be extremely slow. However, at high densities chains are difficult to discern, and the
dipole orientation correlation functions did not show evidence for the expected temporal
or spatial increase of the correlation range. Nevertheless, this behavior may indicate the
termination of the isotropic-to-nematic transition. Essentially, however, the reason for
the above increase of χ−1 remains unclear. The remaining data are shown in the lower
panel of figure 8.2. The dotted line was obtained by fitting the data in the range χ−1 < 1
and Tr < 1 to the power law

1

χ
= A(Tr,cf − Tr)γ (8.3.1)

assuming a second order transition. Here Tr,cf is the value of Tr at the ferroelectric
transition. Setting γ = 1.37, this number is based on renormalization group work by
Aharony and Bruce on the critical exponents of ferromagnets with dipolar interactions
in addition to short range isotropic interactions on a cubic lattice (cf. the discussion
in reference [39]), we treat A and Tr,cf as adjustable parameters, for which we obtain
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A ≈ 1.91 and Tr,cf ≈ 0.19. Notice that this value for γ falls into the range of values for
the same exponent of the classical Heisenberg model in 3D (cf. table 23 in reference [40]).
This is reassuring in a way, because the aforementioned renormalization group calculation
based on the analysis of a recursion relation near a certain fixed point was focused on GL
criticality. It should be mentioned that the universality class of the long-range dipolar
interactions still is a matter of debate [41, 42]. If we use the mean field value γ = 1,
we obtain A ≈ 1.75 and Tr,cf ≈ 0.27. The mean field value may be motivated by the
suppression of long-range fluctuation near the transition. Nevertheless, decreasing γ from
1.37 to 1 is accompanied by a monotonous (but not severe) decrease of the quality of the
fit. We note that the reduced set of data points to which we apply the power law (8.3.1)
does include simulation data for ρ = 0.8 only. Thus, we cannot infer information on the
general dependence of Tr,cf on density for the ST fluid.
Previously Stevens and Grest [43] as well as Gao and Zeng [22] have observed the orien-
tational ordering transition in the ST fluid. Stevens and Grest obtain Tcf = 1.5, where
Tcf is the ferroelectric transition temperature, using N = 256 and µ2 = 6.25 for ρ = 0.9,
i. e. Tr,cf ≈ 0.27. Gao and Zeng use N ≈ 500, µ2 = 6.25. They determine three different
Tcf , i.e. Tcf ≈ 1.5, 1.7, 1.8, corresponding to ρ ≈ 0.90, 0.95, 1.0. Here Tr,cf is between
0.27 and 0.29. Both groups locate the transition by the requirement that the orientation
order parameter is close to 0.5 corresponding to half its value at perfect nematic order.
Physically this value has no special relevance if we assume a second order transition,
and therefore this method tends to yield larger transition temperatures. Nevertheless an
estimate of the error is difficult.

Comparison to simulation results for the dipolar soft sphere and dipolar hard
sphere fluid

The same technique is employed in most studies on the related dipolar systems. Wei and
Patey [16] obtain a transition to a liquid ferroelectric phase in a DSS fluid (for µ2 = 9
at T = 1.0 and T = 1.35) via MD simulation at Tr,cf ≈ 0.19 (lower temperature) and
0.23 (higher temperature). The lower temperature is probably less reliable due to the
difficult equilibration. Stevens and Grest [17] obtain somewhat higher values for Tr,cf for
the same system, i.e. Tr,cf ≈ 0.29 (µ2 = 4, T = 1), ≈ 0.24 (µ2 = 6.25, T = 1) and ≈ 0.2
to 0.25 (due to hysteresis) (µ2 = 9, T = 1). Weis and Levesque [18] find ferroelectric fluid
order for a DHS system at Tr ≈ 0.13. Subsequently they find Tr,cf bracketed by ≈ 0.14
and ≈ 0.2 varying the density at constant T/µ2 [19]. Camp and Patey [20] locate the
ferroelectric fluid transition at Tr,cf ≈ 0.26 (µ2 = 7.5, T ≈ 1) for the same system. Very
recently Weiss [44] and Weis and Levesque [41] have applied a variation of the Binder
cumulant method combined with histogram reweighting methods to precisely determine
the ferroelectric transition in a DHS system. In the density range 0.8 ≤ ρ ≤ 0.95 they
find a linear increase of Tr,cf from 0.265 to 0.33. They also deduce information on certain
critical exponent ratios using finite size scaling. The resulting ratios are close to the same
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quantities in the classical classical Heisenberg model.

Comparison to theoretical results

Theoretical values for Tr,cf are significantly higher. From the simple LDE, i.e. equation
(8.2.19) or (8.2.20) respectively, we directly obtain Tr,cf = 4π/9 ≈ 1.4. Zhang and Widom
[45] start from a mean field expression for the free energy of dipolar fluids composed of
a van der Waals contribution plus the orientation free energy (7.2.104). The resulting
Tr,cf is the same of course. Early DFT calculations of Groh and Dietrich [46] likewise
yield Tr,cf ≈ 1.5. We note that our simulations do not show evidence for a first order
isotropic liquid-to-nematic liquid transition as predicted by the aforementioned theories
under certain conditions. Among the best theories to date is the still earlier DFT work
by Wei, Patey and Perara [47]. They derive results for the DHS and DSS fluid which are
within a factor of 1.5 to 2 of the Tr,cf observed here. Nevertheless, considerable a priori
information on the liquid structure is needed. A fairly extensive discussion of the present
state of the theory discussed in this paragraph can be found in reference [23].
If we compare the ρ-dependence of Tr,cf found for the DHS system in references [41, 44]
with the same quantity in the ST system, including our own result and the results in
references [22, 43], we do find that T

(ST )
r,cf ≈ T

(DHS)
r,cf − 0.06. Even though the transition

from the isotropic liquid to the ferroelectric liquid is affected to lesser extend by the short
range isotropic interactions as compared to the GL critical point, there is no reason why
it should not change. While the critical exponents only depend on molecular detail as
long as it does not alter symmetry, the transition temperature is not universal. The above
theoretical work in particular shows that the neglect of molecular detail at short distances
leads to severe deviations in comparison to simulation. Thus one may expect that the
coupling between short range interaction and local order, which should be different in the
ST and DHS-systems is responsible for the differences in Tr,cf .

Comparison to experimental results

At this point we return to Shelton’s experimental work on nitromethane-nitrobenzene
solutions [29] and its relation to the ST system. For the sake of simplicity we concentrate
on nitromethane. Nitromethane has a GL critical point at Texp,c = 588K and ρexp,c =
0.353g cm−3 [48]. In order to compare this to the ST system we need to determine the
LJ parameters ε and σ explicitly. We have computed ab initio pair interaction energies
to second order Møller-Plesset perturbation theory (6-31G* basis set) using the program
Spartan [49]. The C− N bonds of the two molecules were parallel and the intermolecular
distance was the perpendicular distance between the C− N bonds. The resulting distance
dependence of the interaction energy was fitted to the ST potential using σ ≈ 4.7Å
determined from the calculated molecular volume (assumed spherical) and the likewise
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calculated single molecule dipole moment µ ≈ 3.3 D. The fit yields ε ≈ 1kJ/mol. The
resulting dipole moment in the usual LJ units is µ = µ(in Cm)/

√
4πε0εσ3 ≈ 2.5. The

corresponding ST fluid has a GL critical point at Tc ≈ 2.6 and ρc ≈ 0.28 (e.g. [43]). Using
the above values for σ and ε to convert the experimental critical point data to LJ units
we obtain Tc ≈ 4.9 and ρc ≈ 0.36. Finally we may compute the reduced temperature
Tr for nitromethane at the experimental conditions. The result is Tr ≈ 0.33. Note that
Tr does not depend on σ and ε. Overall this mapping of nitromethane onto the ST fluid
yields GL critical parameters and a value for Tr which are too large for ferroelectric order.
But the discrepancy does not rule out such a mapping entirely. The dipole moment
for nitromethane employed here, for instance, is the gas phase dipole moment. In the
bulk liquid phase polarization may increase this value significantly. In water this increase
appears to be 50 to 60% (e.g. [50]). If we repeat the above analysis with the nitromethane
dipole moment increased by 25 % then ε is raised to ≈ 3 kJ/ mol. Consequently the
nitromethane dipole moment in LJ units becomes ≈ 1.76. The GL critical point for this
ST fluid occurs at Tc ≈ 1.86 and ρc ≈ 0.29. The GL critical point of nitromethane
expressed in LJ units using this new ε-value is shifted to Tc ≈ 1.63 and ρ ≈ 0.36. In
addition the reduced temperature for nitromethane with the increased dipole moment is
Tr ≈ 0.21. This value now is close to where ferroelectric order is expected based on the
above analysis. Therefore an increase of the dipole moment due to polarization tends to
bring the ST system in much closer accord with the experiment. However, needless to say
that more careful analysis is needed.

8.3.3 The local electric field

We now return to simulation results on the local electric field inside the ST fluid. Figure 8.3
shows the contribution of a dipole’s ~µi neighborhood to the magnitude of the instantaneous
local electric field Eloc, i.e. Eloc(r) includes the contributions of neighbor dipoles inside
a sphere of radius r for dipole strength µ2 = 0.5, 1, 2 and 3 (T = 1 and 3). Here Eloc
is calculated via Eloc = 〈| ~E ′(~ri) |〉 from MD, where ~E ′(~ri) is computed according to
equation (3.7.16). Figure 8.3 shows that the first neighbor shell is the major contributor.
Only as the dipole strength increases a second ”step” appears contributed by the second
nearest neighbor shell. In other words, the spatial range of DD correlation is limited to
the first two neighbor shells for the dipole strengths and temperatures shown here. On
the one hand this is in good accordance with the DD correlation function for µ2 = 4,
shown in the lowest panel of figure 6.15, for the case without ferroelectric order. On the
other hand this is in contradiction with Debye’s assumption that the contribution of the
nearest neighbors to the local electric field should vanish.
Figure 8.4 shows the density dependence of the instantaneous local field strength Eloc, for
T = 8.0 (solid circles), 4.0 (open squares), 2.1 (solid diamonds), and 1.6 (solid triangles)
with µ2 = 4 via MD. It is interesting to compare these simulations to Onsager’s Eloc.
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Figure 8.3: Average magnitude of the instantaneous local electric field Eloc, contributed by
dipoles within a sphere of radius r centered on the reference point ~ri from simulation
for temperature T = 1 and 3. The different line types distinguish the indicated
dipole strengths µ2 = 0.5, 1, 2 and 3.

Combining equations (8.2.6) and (8.2.13) for ~Eext = 0 we obtain

Eloc =
(K − 4 +

√
K2 + 8)µ

(K + 2 +
√
K2 + 8)a3

(8.3.2)

with K = 1+4π/Tr. Here we obtain a = 0.66 by fitting equation (8.3.2) to the simulation
data for T = 1.6 at low and intermediate concentrations. Thus Eloc(T = 1.6) is described
quite well for densities below 0.5. Higher densities correspond to the regime in which
Tr < 1, where the Onsager theory significantly deviates from the simulation results for χ−1.
However, a single fixed value for a merely yields qualitative agreement with the simulation
(for Tr > 1) as is illustrated by the second solid line drawn for T = 8. Notice also that
with a−3 = 4πρ/3 the curvature of Eloc in the above equation changes. Expressing a in
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Figure 8.4: Magnitude of the instantaneous local field strength Eloc versus density ρ for T = 8
(solid circles), 4 (open squares), 2.1 (solid diamonds), and 1.6 (solid triangles) with
µ2 = 4 via MD. Solid lines: Onsager’s Eloc for T = 8 and T = 1.6 obtained
with a = 0.66; dashed line: simple approximation based on equation (8.3.11) for
randomly orientated dipoles.

terms of ρ therefore is not appropriate.
Figure 8.5 shows the temperature dependence of the local field strength Eloc = 〈| ~E ′(~ri) |〉

for the same conditions as in figure 8.1 including µ2 = 10. The shape of these curves
cannot be understood in terms of equation (8.3.2). This is because Eloc according to
equation (8.3.2) decreases monotonically with increasing T , i. e. equation (8.3.2) yields
the qualitative behavior for low temperatures only. Qualitatively the simulation results in
figure 8.5 can be understood as follows. Instead of 〈| ~E ′(~ri) |〉 we consider the simpler but

similar 〈( ~E ′(~ri))2〉1/2. We assume that we can calculate the electric field ~E ′(~ri) exactly for
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all interactions via equation (2.1.25) without applying long-range corrections.

~E ′(~ri) · ~E ′(~ri) =
∑
j 6=i

∑
k 6=i

T∼ ij ~µj ·
(

T∼ ik ~µk

)
(8.3.3)

=
∑
j 6=i

∑
k 6=i

(
9 (~rij · ~µj) (~rik · ~µk) (~rij · ~rik)

r5
ijr

5
ik

− 3 (~rik · ~µk) (~rik · ~µj)
r3
ijr

5
ik

−3 (~rij · ~µj) (~rij · ~µk)
r5
ijr

3
ik

− ~µk · ~µj
r3
ijr

3
ik

) (8.3.4)

=
∑
j 6=i

(
3 (~rij · ~µj)2

r8
ij

+
~µ 2
j

r6
ij

)
+
∑
j 6=i
j 6=k

∑
k 6=i
k 6=j

(
...

)
(8.3.5)

From equation (8.3.4) to (8.3.5) we have rearranged the double sum by factoring out the
terms for j = k. Treating the orientation of the dipoles as random, the terms in the
double sum of equation (8.3.5) can be omitted for the thermal average, since 〈~rij · ~µj〉 = 0
and 〈~µj〉 = 0 for random orientations. This assumption yields

〈
~E ′(~ri) · ~E ′(~ri)

〉
=
∑
j 6=i

〈
3 (~nij · ~µj)2 + ~µ 2

j

r6
ij

〉
= µ2(N − 1)

3 〈cos2 θ〉+ 1

〈r6〉
, (8.3.6)

where θ = �(~n, ~µ). Using

〈
cos2 θ

〉
=

π∫
0

dθ sin θ cos2 θ =
1

3
(8.3.7)

for randomly orientated dipoles and employing equation (3.7.2) yields

〈
~E ′(~ri) · ~E ′(~ri)

〉
= 8πµ2ρ

∞∫
0

dr
1

r4
g2(r) (8.3.8)

In addition the pair correlation function is approximated via

g2(r) ≈ exp [−(uLJ − 〈uDD〉)/T ] (8.3.9)

= exp

[(
−4

(
1

r12
− 1

r6

)
+

2

3

µ2

Tr6

)
/T

]
, (8.3.10)

where we have used equation (7.2.70) for the thermally averaged DD interaction. Nu-
merical integration yields the dashed lines in figure 8.5. We note that the qualitative
agreement is quite good. The increase of the local field at high temperature requires the
inclusion of repulsive interaction at small distances, which of course equation (8.3.2) does
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not describe.
A further crude approximation, i.e. replacing g2(r) by a step function, yields

E2
loc ∼ 8πρ

∞∫
a0

dr
1

r4
=

8πµ2ρ

3a0
3
, (8.3.11)

where a0 is a length equal to one. This expression produces the dashed line in figure
8.4. Inserting the values µ2 = 0.5, 1.0, 3.0 and 10.0 from figure 8.5 yields Eloc ∼ 1.8,
2.6, 4.5 and 8.2. These numbers are reasonably close to Eloc as obtained in the computer
simulation in the temperature range most relevant for realistic systems. We note that
inserting this expression for Eloc in the expansion of the Langevin function in equation
(8.2.19) yields the condition 8πµ4ρ/(45T 2) << 1 for the validity of the LDE. For example,
evaluating 8πµ4ρ/(45T 2) for water (µ = 1.85D) at 300K yields ∼ 4, whereas for camphor
(µ = 1.34D; this value is from an example on the application of the LDE in Atkins’
textbook on physical chemistry. The larger values listed in some tables do not alter this
argument.) we obtain ∼ 0.02. For liquid water the LDE does not apply, whereas for
campher it does.
The left panel of figure 8.6 compares the autocorrelation of the local field E−2

loc 〈 ~Eloc(0) ·
~Eloc(t)〉 to that of the individual dipole moments µ−2〈~µ(0) · ~µ(t)〉. For autocorrelation
functions 〈...〉 indicates averaging of the respective quantity for all particles and for sta-
tistical independent time intervals. The relaxation of the local field is closely tied to the
relaxation of the individual dipole moments. The same dynamical correlation is underly-
ing Onsager’s equation for the local field (cf. equation (8.2.6)). Apparently the relaxation
times of the two quantities are closest at low temperatures. For comparison the right
panel of figure 8.6 shows the normalized time-autocorrelation function of the total dipole
moment of the simulation box

〈 ~M(0) ~M(t)〉
〈 ~M(0) ~M(0)〉

.

Rotational relaxation, as expected, is slower at low temperatures and for large dipole
moments. Even though there is no mean field in the usual sense for the dipoles to move
in, the direct comparison of 〈cos �(~µ(t), ~Eloc(t))〉 with L(µEloc/T ) (where again Eloc = 〈|
~E ′(~ri) |〉) in figure 8.7 shows that the mean field average yields a good description. It is
in this limited local sense that we have used Eloc computed above in equation (8.2.19).

8.3.4 The self diffusion coefficient

The self diffusion coefficient D can be calculated from simulation data via the Einstein
relation

D =
1

6t

〈
|~r(t)− ~r(0)|2

〉
, (8.3.12)
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Figure 8.6: Left: Comparison of the autocorrelation functions µ−2〈~µ(0) · ~µ(t)〉 (dashed lines)
and Eloc−2〈 ~Eloc(0)· ~Eloc(t)〉 (solid lines) for dipole strength µ2 = 3 and temperatures
T = 1, 4 and 9. Right: Autocorrelation function of the total dipole moment for
dipole strengths µ2 = 0.5, 1, 2 and 3 and temperatures T = 1 and 3.

where ~r(t) denotes the trajectory of any particle. The top panel of figure 8.8 shows an
example for µ2 = 3, N = 500, ρ = 0.8 and T = 1...9. The arrow in the plot indicates
increasing temperature. The self diffusion coefficient is calculated from the slope of the
lines. For small dipole strength (here µ2 = 3) the statistical errors are rather minor,
the lines are almost perfect straight lines. The bottom panel of figure 8.8 shows the self
diffusion coefficient D computed as function of temperature for dipole strength µ2 = 0.5,
1, 3, 16 and 36. We note that for small dipole strength (µ2 = 0.5 and 1.0) the result is in
close accord with the temperature dependence of the self diffusion coefficient in the pure
LJ fluid [51] (cf. figure 6 in the reference), which for high densities is close to linear. A
close to linear dependence on temperature is observed for all dipole strengths considered.
For µ2 = 36 there is an apparent change of slope at T ≈ 6. This temperature corresponds
closely to the estimated transition temperature at 0.19ρµ2 ≈ 6.3 (even though we do
not observe the expected divergence of the dielectric constant as discussed above). The
significantly reduced diffusion coefficient indicates a structural change including chain
formation. Overall the diffusion coefficient is reduced with increasing dipole strength.
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Figure 8.9: Magnitude of the reduced instantaneous local electric field µ−1Eloc versus polariz-
ability α. Temperature and density are T = 3.0 and ρ = 0.8, respectively.

8.4 Results for positive polarizability

The following results are for the pST potential including a point polarizability α. The
dielectric properties of the pST fluid has been significantly less studied in the past than
the ordinary ST fluid [31, 32]. Figure 8.9 shows the variation of the magnitude of the
reduced instantaneous local field strength Eloc/µ with polarizability α for systems with
dipole strengths µ2 = 0.5, 1 and 3 at temperature T = 3 and density ρ = 0.8. We notice
the increasing dependence on polarizability with increasing permanent dipole moment.
Finally, figure 8.10 shows the dependence of the static dielectric constant on α. The
conditions are the same as above. Again we compare with the simple approximations
LDE and OE, which, as for the non polarizable case, bracket the results of the FE, FDE
and EOE approaches. Notice that at this temperature and density (T = 3, ρ = 0.8)
the FE, FDE and EOE are in close accord in the non polarizable case. For the large µ-
and α-values the deviations become significant. For µ2 = 3 and polarizabilities in the
range 0.06 ≤ α ≤ 0.08 the approaches due to Debye and Onsager fail. In particular the
FDE approach, which was shown to be in close accord to the FE over a wide range of
parameters, breaks down for large dipole strength and polarizability. A reason why the
FDE stops being useful when ε becomes large may be due to the peculiar form of the rhs
of equation (8.2.19). If we write this equation as (ε − 1)/(ε + 2) = K and if we assume
that the standard error of K is ∆K, then ∆K is related to ∆ε via ∆ε ∼ ε2∆K when
ε becomes large. Again we recognize that the modification of Onsager’s equation EOE,
which includes the nearest neighbor shell correlations approximately, improves over the
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Figure 8.10: Static dielectric constant ε versus polarizability α for µ2 = 0.5, 1.0, and 3.0 (T =
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For the non polarizable ST fluid the FDE and EOE are in close accord to the FE
for all shown dipole strengths at this state point (cf. right panel of figure 8.1)
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OE.

8.5 Conclusion

We found the FE with ’box-and-sphere’ symmetry to be the adequate method to determine
the static dielectric constant from MD computer simulation with reaction field long-range
corrections. Nevertheless, the deviations to the in literature often used ’box’ symmetry is
rather minor. We compared these results to the approaches of Debye (LDE) and Onsager
(OE) as well as two improved approaches FDE and EOE respectively. For small dipole
moments (µ2 = 0.5) all computation methods are in good accordance. For larger dipole
moments the FDE and the EOE respectively yield well improvements compared to the
LDE and OE. While the Onsager approach do not include ferroelectric order Debye’s
approach does. We obtained an estimate for the isotropic-to-ferroelectric transition in
ST fluids from simulation in terms of the reduced temperature Tr = T/(ρµ2) via the
divergence of the inverse susceptibility χ−1. Even though the exclusive dependence of
the transition on Tr is an approximation, we find that Tr,cf ≈ 0.19, where Tr,cf is the
value of Tr at the ferroelectric transition, for ρ = 0.8 yields a good estimate for the
location of the transition over a wide range of dipole strengths. Combination of this
result with previous simulation results on the ferroelectric transition implies that Tr,cf
increases with increasing ρ but lies below the same quantity found recently in DHS fluids.
We were able to relate our results to experimental work of Shelton on ferroelectric domains
in nitromethane-nitrobenzene solutions [29]. In addition we have studied the structural
and dynamic dependence of the local electric field. In particular we have compared the
instantaneous local field strength in the simulation with the corresponding quantity in
Onsager’s continuum approach. Finally, we investigated the self diffusion coefficient for
the ST fluid dependend on temperature and dipole strength. For small dipole strength
the self diffusion coefficient is in close accord to the one of the LJ fluid. With increasing
dipole strength the diffusion coefficient is reduced, indicating structural changes including
chain formation.
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9 Summary discussion

Here we want to briefly discuss the major results of this work and want to give an outlook
on the outstanding problems and tasks. In this work we provided GL phase diagrams for
dipolar fluids, in particular the ST fluid, including reversible chain formation and ferro-
electric order which has not been published thus far [1]. For the low density structure of
the ST fluid we showed, that a third-order virial expansion describes only systems with
intermediate dipole moments (µ2 = 3) in the whole gas phase well, for strongly dipolar
systems (µ2 = 36) this attempt fails due to chain formation. By single droplet simulations
we were able to confirm the vortex like arrangement of the dipole orientations inside the
clusters at low temperatures in agreement with references [2–5]. We found no evidence
neither for ferroelectric order [6] nor for a perpendicular orientation of the dipoles to the
surface [7]. In combination with the strongly decreasing nematic order parameter with
decreasing density inside the GL coexistence region, we can conclude that a coexistence
of an isotropic gas and a ferroelectric liquid, as supposed by reference [6], is rather un-
likely. Nevertheless, it should be mentioned that the single cluster simulations holds many
dangers due to metastable states and can only be taken as a low temperature limit. For
more meaningful results the internal structure of coexisting clusters at higher tempera-
tures should be investigated. By simulating coexisting clusters, we found a transition in
the scaling law of the radius of gyration dependend on particle number for clusters with
strong dipoles as already investigated by [8]. Clusters with strong dipoles (µ2 ≥ 16) scale
like stiff rings or chains for small particle numbers and like LJ clusters for large particle
numbers, due to the formation of globules with a more compact shape. We found the
transition to be independent of density and the scaling parameters to be independent of
temperature.
With the Maxwell construction we found a robust method to determine GL phase coexis-
tence for dipolar fluids. While it is in close accord with previous GEMC works for dipole
strengths µ2 ≤ 5 [9–11], it finds phase coexistence for dipole strengths µ2 & 25 for which
GEMC fails due to reversible chain formation [12]. It seems that the determination of GL
coexistence by Maxwell construction is only limited by the increasing computation effort
for increasing dipole strength, due to the larger cut off distances and system sizes neces-
sary. On the other hand Kofke’s integration method turned out to be infeasible for strong
dipoles (µ2 & 30) due to the slowly convergence of the simulation volumes. Additionally,
we adopted a FH like lattice theory for reversible assembled particles [13, 14] to the ST
system and included ferroelectric order by a simple Debye approximation. Comparison
to GL coexistence curves and GL critical data from simulation showed good accordance,
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in particular the non-vanishing GL critical point for µ2 & 25, as already found by [15].
With this model we were able to explain the decreasing critical density with increasing
dipole strength due to increasing chain length at the critical point, similar to ordinary
linear polymer systems. Contrary to ordinary linear polymer systems the Flory approach
yields no finite critical temperature for infinite chain length. For dipole strength µ2 = 60
the results for the critical density from simulation and lattice theory differ, possibly due
to predominant rings, which are not yet included in the lattice theory. On the other hand
we recognized deviations in isotherms for µ2 = 30 from simulation with larger cut off
distances. With increasing computer power the influence of the cut off on the investi-
gated systems should be studied in more detail. It is worth noting that the ferroelectric
transition is not expected to interfere with the critical point, as discussed in [6, 16].
The mapping of the critical data of the ST system onto the vLS system at fixed dipole
moment and varying dispersion interaction showed, that the non-vanishing GL critical
point for the ST fluid with large dipole strength is consistent with the non-existence
of the GL transition for vanishing dispersion interaction. From this we conclude that
we expect a vanishing GL critical temperature and a simultaneously vanishing critical
density in the DSS fluid. Direct simulation of the DSS fluid indicates that a GL transi-
tion may be an effect of a too short cut off distance. Nevertheless, simulations of other
groups [17, 18] indicate a GL transition for the DHS fluid. For further investigations to
solve this contradiction, it might be helpfull to compare the behaviour of the DSS and
DHS fluid directly by simulation. On the other hand there may be, for the ST and DSS
system, other types of phases and phase transitions. Evidence for a separation in a phase
with free end-rich chains and a phase with a free-end poor network, as suggested by [19],
was not found. Threefold coordinated crosslinks as predicted for such a network were
observed very rarely, even at very high dipole strength. To quantify this observation a
more sophisticated detection of these crosslinks from simulation should be useful.
Investigating the dielectric properties of the ST fluid we found the FE with ’box-and-
sphere’ symmetry to be the adequate method to determine the static dielectric constant
from MD computer simulation with reaction field long-range corrections. We compared
the results to the approaches of Debye (LDE) and Onsager (OE) as well as two improved
approaches FDE and EOE respectively. Both Debye’s and Onsager’s approach yield only
good results for small dipole moments. We found an isotropic-to-ferroelectric transition
in ST fluids via simulation and obtained an estimate of the transition temperature via
the divergence of the inverse susceptibility χ−1. Even though the exclusive dependence
of the transition on the reduced temperature Tr = T/(ρµ2) is an approximation, we find
that Tr,cf ≈ 0.19 for ρ = 0.8 yields a good estimate for the location of the transition
over a wide range of dipole strengths. On the other hand we found the nematic order
parameter for µ2 = 5 and µ2 = 16 along the binodal only to be in good agreement if
plotted versus the reduced temperature T/Tc, with Tc as the GL critical temperature.
This should be evaluated for more dipole strengths and densities. Additionally, we were
able to relate our results to experimental work of Shelton on ferroelectric domains in
nitromethane-nitrobenzene solutions [20].
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A Second virial coefficient for
polarizable Stockmayer particles

The virial expansion of the equation of state for the ST system (cf. equation (5.2.1) for
α = 0) is in literature a matter of common knowledge [1–5]. Here we want to derive
the second and third virial coefficients of the equation of state for the pST model. The
classical canonical partition function for a system of N ST dipoles is given by

Q =
N !∏

ν
Nν !

(
4π
∆Ω

)N
(2π~)5N

∫
d{qi}d{pi}e−βH , (A.0.1)

where the prefactor is analog to the orientation partition function (7.2.100), the Hamilto-
nian H is given by equation (3.5.17) and

∫
d{qi}d{pi} denotes integration over the whole

phase space, i.e. all generalized coordinates (3.5.14) and momenta (3.5.15). We now pro-
ceed in standard fashion by transforming the integrations over the momenta conjugate to
the Euler angles to the angular velocities ωj with respect to the major axes. Setting

ωi1 = θ̇i (A.0.2)

ωi2 = ϕ̇i sin θi (A.0.3)

we obtain

dpθidpφi =

∣∣∣∣∣
∂pθi
ωi1

∂pθi
ωi2

∂pϕi
ωi1

∂pϕi
ωi2

∣∣∣∣∣ = I2 sin θi dωi1dωi2 , (A.0.4)

cf. equations (3.5.12) and (3.5.13). Substitution of pθi and pϕi by ωi1 and ωi2 in equation
(A.0.1) yields

− lnQ = −N ln

[
2I
β~2

]
+N ln

[
4πΛ3

Tρ

∆Ω

]
+
∑
ν

(
Nν ln

Nν

N
−Nν

)
− ln

∫
d{~ri}
V N

d{ϕi}d{θi}{sin θi}e−βUST (A.0.5)

(cf. reference [6]), where the first term is due to rotational and the second due to transla-
tional motion. Additionally, we have made use of the Stirling approximation for the Nν .
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The quantity ΛT is the thermal wavelength, and ρ is the dipole number density. A second
order virial expansion yields the free energy

βF

N
= − ln

[
8πI
β~2

]
+ ln

[
Λ3
Tρ
]
− 1 +

∫
dΩ

4π
f(Ω) ln f(Ω) + ρB2(T ) +O(ρ2) , (A.0.6)

where the second virial coefficient is given by

B2(T ) = −1

2

∫
dΩi dΩj

(4π)2
f(Ωi)f(Ωj)

∫
d3r
(
e−βupST (~r,Ωi,Ωj) − 1

)
. (A.0.7)

Notice that Ωi denotes the dependence on ϕi and θi (dΩi = dϕi dθi sin θi), and ∆Ωf(Ων) =
4πNν/N is the dipole orientation distribution function (

∫
dΩf/4π = 1).

In the present case the pair interaction potential upST (~r,Ωi,Ωj) is given by equation
(2.1.11). In the case for two particles only we can write

~mi = ~µi − αT∼ ~mj and ~mj = ~µi − αT∼ ~mi , (A.0.8)

(cf. equation 2.1.10). Next we express uDD entirely in terms of the permanent moments
µ and the point polarizability α, we obtain

uDD =
1

2

[{(
1− α2 T∼

2
)−1 (

~µi − αT∼ ~µj

)}
T∼ ~µj (A.0.9)

+

{(
1− α2 T∼

2
)−1 (

~µj − αT∼ ~µi

)}
T∼ ~µi

]
. (A.0.10)

Using

~µi = µ

 sin θi cosϕi
sin θi sinϕi

cos θi

 . (A.0.11)

and expanding in small α yields

βuDD = a (cos ∆ϕ sin θi sin θj − 2 cos θi cos θj) (A.0.12)

− a

r3
(P2(cos θi) + P2(cos θj) + 2)α +

+
a

r6
(cos ∆ϕ sin θi sin θj − 8 cos θi cos θj)α

2 +O(α3) ,

where a = βµ2/r3, ∆ϕ = ϕi − ϕj, and P2 is the second order Legendre polynomial. We
may now carry out the integrations over ϕi and ϕj analytically. The result may then be
expanded in powers of a and the integration is carried out term by term. Notice that we
assume f(Ω) = 1, i.e. isotropic distribution of dipole orientations. Thus the second viral
coefficient B2(T, µ2, α) becomes

B2(T, µ2, α) = B
(LJ)
2 (T ) +

x2

3
h1 +

x4

25
h2 + . . . (A.0.13)

+

(
2xh1 +

4x3

5
h2 + . . .

)
α

+

(
21x2

5
h2 +

836x4

525
h3 + . . .

)
α2 +O(α3) .
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Here x = βµ2,

B
(LJ)
2 (T ) = −2π

∫ ∞
0

drr2 (exp[−βuLJ ]− 1) , (A.0.14)

and

hj = −2π

∫ ∞
0

drr2−6j exp[−βuLJ ] . (A.0.15)

Additional terms in equation (A.0.13) are listed in Table A.1.

Table A.1: Additional terms in the expression for B2(T, µ2, α) in equation (A.0.13)

O(α0) O(α1) O(α2)

x2

3
h1 2xh1

21x2

5
h2

x4

25
h2

4x3

5
h2

836x4

525
h3

29x6

11025
h3

58x5

525
h3

269x6

1225
h4

11x8

99225
h4

88x7

11025
h4

5794x8

363825
h5

13x10

4002075
h5

26x9

72765
h5

10139x10

14189175
h6

17x12

243486243
h6

68x11

6243237
h6

73732x12

3381753375
h7

523x14

456536705625
h7

1046x13

4347968625
h7

1246237x14

2587041331875
h8

. . . . . . . . .
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B Description of supplementary
information and programs included
on DVD

On the included DVD supplementary information on this work can be found. The LATEX-
sources of this document can be found in the directory diss, including all figures in pdf
format. The directory diss_Bilder provides some additional figures which were not in-
cluded in the final version of this work. The directory DPG-02-25-2008 contains sources
of a talk held at the DPG conference in February of 2008 on topic of this work. In the
directory Literature, publications related to this work can be found as well as the cited
papers. In Poster the sources for two posters can be found. The first was presented at
the DPG conference in 2005, the second was presented at the soft matter conference in
2007. The directory Programs contains the source codes of the most important simulation
and analysis programs for this work.
The programs PSTM_NPT.cpp and PSTM_NVT.cpp were used for the MD simulations done
for this work. The former is optimized for NPT simulation, the latter one for NVT simu-
lations. Necessary for simulation is an additional initfile here example.init providing
the simulation parameters. MD simulation is started by

./PSTM_NVT example.init .

The program writes thermodynamic quantities to example_ausgabe.dat and configura-
tions files to example_restart.conf. Configuration files can be analyzed with find-

cluster.cpp. Is is executed by calling

./findcluster example.init example_restart.conf example_restart.xyz

example_restart.dat example_restart_histo.dat .

findcluster.cpp converts the configuration file example_restart.conf to ex-

ample_restart.xyz, a readable format for most visualization programs. exam-

ple_restart.dat contain average values for single configurations like average chain
length, radius of gyration and other quantities. In example_restart_histo.dat
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quantities like radius of gyration, persistence length and so on are given dependend on
chain length. For analysis of example_ausgabe.dat, example_restart.dat and exam-

ple_restart_histo.dat there are plenty of scripts which are not explained in detail here.

The radial pair distribution function can be determined by

./PSTM_g2 example.init example_restart.conf example_g2.dat .

Here example_g2.dat is the file to which the radial pair distribution function dependend
on separation is written. This works analog for the DD correlation function with

./PSTM_dipol_r example.init example_restart.conf example_dipol_r.dat .

The script

./makeinit_maxwell.sh patternfile

produces a row of parameter files along an isotherm. Parameters like start and end density
or number of density steps have to be adjusted in the script, the remaining parameters
are taken from the patternfile. A simulation cycle for Kofke integration is initiated by

./kofke ,

which makes use of the PSTM_NPT.cpp program. This scripts needs two parameter files
phase_g_0_pre.init and phase_l_0_pre.init in its directory with suitable parameters
for one state point on the binodal on the gas side and one state point on the binodal on
the liquid side. All parameters for the integration step are adjusted inside the script.
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acceleration, 33
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momentum, 31, 32, 77
velocity, 32, 34, 42
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average
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Berendsen
barostat, 43
thermostat, 41, 43

binodal, 97
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chain, 60, 74, 86, 90, 164
charged hard dumbbell, 21
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Clausius-Clapeyron equation, 98, 103, 108
cluster, 60, 85, 87
compressibility, 44, 97, 100
constraint thermostat, 43
coordination number, 134
correlation length, 105
critical

density, 141
exponent, 104
fluctuations, 106
point, 97, 139
temperature, 141

Curie point, 174
cut off radius, 44, 115

DD correlation, 44, 46, 61, 111, 113, 114,
188

Debye, 173
approximation, 147
equation, 177, 182, 184, 197

density functional theory, 58, 77, 132
dielectric, 176
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displacement field, 47
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orientation distribution, 210
tensor, 26, 144

dispersion, 22, 27, 57, 156
droplet, 60, 71, 74

Einstein relation, 193
electric field, 22, 24, 47
energy conservation, 43
ensemble average, 37, 40, 45
enthalpy, 37, 39, 103
equal-areas construction, 101
equation

of motion, 31–33
of state, 139, 209

equilibrium polymerization, 60, 85, 98,
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ergodicity, 36, 37
Euler method, 33
Ewald summation, 49, 57, 58, 61
Ewald-Kornfeld summation, 62
external

field, 48, 176, 179
force, 40
virial, 41

ferroelectric
order, 98, 147, 159, 161
phase, 47, 59
transition, 61, 173, 183
transition temperature, 148

ferrofluid, 15, 59
finite size effect, 36, 59, 112
Flory-Huggins lattice theory, 60, 131
fluctuation equation, 48, 179, 182, 197
flying ice cube, 40
force, 31–34, 41

field, 15
friction, 43
full Debye equation, 178, 182, 197

gas-liquid
coexistence, 57, 97, 105
coexistence curve, 97–99, 102, 105, 106,

110, 112, 118, 120, 121, 159
critical density, 151, 157
critical parameters, 111
critical temperature, 151, 157, 158

generalized
coordinate, 37, 39, 209
momentum, 37, 39, 209

Gibbs
ensemble Monte Carlo, 57
free energy, 98, 100, 101

Gibbs-Duhem equation, 103
grand canonical Monte Carlo, 59

Hamilton equation of motion, 39, 40
Hamiltonian, 38, 179, 209
hard

core repulsion, 28
rod, 21
spheroid, 21

heat
bath, 42
capacity, 42, 60, 105, 164
current, 42

Heisenberg model, 186
Helmholtz free energy, 57, 101, 132, 139
high-frequency dielectric constant, 48
hypernetted-chain approximation, 62
hypothesis of analyticity, 101

ideal coil, 152
induced dipole moment, 24, 49
inter-aggregate interaction, 133

parameter, 142
internal

energy, 37, 39, 46
force, 40
virial, 41, 46

intra-aggregate interaction, 133
parameter, 143, 145, 146

inverse susceptibility, 183, 184
Ising model, 105
isotherm, 97, 115, 116, 118

kinetic energy, 33, 37, 41, 42
Kirkwood, 174

factor, 61, 62
relation, 61

Kofke integration, 43, 102

Ladd lattice summation, 63
Lagrangian, 38
Langevin function, 177, 193
lattice

energy, 132
entropy, 135
free energy, 143

Lennard-Jones
potential, 15, 21, 22, 46
units, 22
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linearized Debye equation, 178, 182, 184,
197

liquid crystal, 21
local field, 175, 177, 188, 191
long-range correction, 44–47
Lorentz method, 177

macroscopic quantities, 37
many-body interaction, 26
Maxwell construction, 99, 105
mean dipole moment, 147
metastable state, 37
micelle, 16, 162
microstate, 36
minimum image convention, 35, 36
modified Stockmayer model, 21, 27, 156
molecular dynamics, 31
moment of inertia, 32, 38

tensor, 77–80
momentum, 31
Monte Carlo, 36
mutant, 86, 166
Møller-Plesset perturbation theory, 156

neighbor list, 50–52
nematic order parameter, 84, 108, 114,

159
nucleation, 100
number fraction, 87

Onsager, 174
equation, 150, 175, 181, 182, 184, 197

order parameter, 105, 148
orientation

function, 23, 24
partition function, 148

orientational free energy, 148, 149
Ornstein-Zernike integral equation, 62

packing entropy, 132
Padé approximation, 57, 58
pair

correlation, 45, 58
distribution, 61, 62

interaction, 21
partition function, 209
Pauli exclusion principle, 22
periodic boundary conditions, 35, 36
permanent dipole moment, 24
persistence length, 87, 91, 142
perturbation theory, 57, 58
phase space, 36, 37

density, 37, 46
trajectory, 39

point dipole-point dipole pair interaction,
22

point polarizability, 24
polarizability, 197
polarizable Stockmayer model, 21
polarization, 47, 176, 179
polymer, 133
potential energy, 37
predictor-corrector integration, 103
pressure, 39, 41
principal

axis of rotation, 81
moment of inertia, 77

principle of corresponding states, 109, 120

radial pair distribution, 44, 45, 61, 111,
113, 114

radius of gyration, 79, 90
reaction field, 47, 48, 58, 176
relaxation time, 42, 44
renormalization group theory, 105, 185
ring, 86, 90, 164
rotating block of ice, 77, 83
rotational temperature, 40
Runge-Kutta method, 33

saturation
chemical potential, 101
pressure, 101, 108

scaling law, 27, 104
self diffusion, 193, 194, 199
self-field, 48
simple liquid limit, 139, 142
single super chain approximation, 62
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Stockmayer
interaction potential, 21, 23
model, 21

sublimation curve, 97
supercooled gas, 100
superheated liquid, 100
surfactant, 15
susceptibility, 174, 183, 184

Taylor expansion, 33
temperature, 39, 41
thermodynamic

integration, 39, 102
state, 37

thermostat, 41
time

average, 37
reversibility, 33

torque, 31, 32, 48
total

dipole moment, 24, 47–49
electric field, 48
potential energy, 26

transfer matrix, 131, 143, 144
translational temperature, 40
triple point, 97

universality class, 104, 186

van der Waals
equation, 99, 159
loop, 99, 122

vaporization curve, 97
velocity, 34, 41, 42

Verlet algorithm, 34
Verlet

algorithm, 33, 34
neighbor list, 51

virial, 41, 46
coefficient

first-order, 209
second-order, 209

equation of state, 58
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volume
bath, 44
current, 43
fraction, 133

vortex, 74


