The Tree-Grid Method

Dissertation

zur Erlangung
des akademischen Grades
eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

der
Fakultat fiir Mathematik und Naturwissenschaften
der

Bergischen Universitdt Wuppertal (BUW)
vorgelegt von

Igor Kossaczky

geboren am 19.12.1989 in Bratislava

betreut von: Prof. Dr. Matthias Ehrhardt (BUW)
Prof. Dr. Michael Giinther (BUW)

Wuppertal, 2018

Die Dissertation kann wie folgt zitiert werden:

urn:nbn:de:hbz:468-20181029-153921-8
[http://nbn-resolving.de/urn/resolver.pl?2urn=urn%3Anbn%3Ade%3Ahbz%
3A468-20181029-153921-8]

Abstract

In this thesis we are concerned with the development of numerical schemes for solving the
stochastic control problems and the related Hamilton-Jacobi-Bellman (HJB) equations. In
the first part, we present the convergence theory and the standard finite difference methods
(FDMs) used for solving HJB equations. We present then our result on non-existence of
higher order monotone numerical methods. This result represents also the motivation for
the numerical methods presented in this thesis. Rather than aiming for an high-order
method, we focus on reducing the computational time.

The piecewise predicted policy timestepping method presented in this work represents a
modification of the well-established piecewise constant policy timestepping method. The
main idea of the method is reducing the control space based on the prediction computed
on a coarse grid in order to reduce the computational time. We show the efficiency of the
method on examples from finance.

The Tree-Grid methods represent the central topic of this thesis. The main essence of
these methods is the combination of the tree structure, similar to that from trinomial
tree methods, with the rectangular grid used in FDMs. We prove that these methods are
unconditionally stable and convergent on an arbitrary grid. On the other hand, as the
methods are explicit, they are faster and can be easily parallelized. We developed the
methods for the cases of a one-dimensional and two-dimensional state variable, and have
shown that for higher dimensions a monotone generalization is not feasible for a general
problem. An additional advantage of the Tree-Grid method in the two-dimensional case
is, that although the method uses a wide-stencil scheme, no interpolation is needed. For
the case of a one-dimensional state variable, we developed a useful modification leading to
a more efficient search for the optimal control. We tested all methods on examples from
finance.

In the conclusion we also propose possible further research directions emerging from this
thesis.

Acknowledgments

In the first place, I would like to express deepest thanks to my supervisors Prof. Matthias
Ehrhardt and Prof. Michael Giinther. They gave me the opportunity to write the Disserta-
tion Thesis at the Department of Applied Mathematics and Numerical Analysis (AMNA).
The discussions with them were inspiring, and their feedback and know-how was always
a great help.

I'm very grateful to Prof. Daniel Sevcovi¢ from the Comenius University in Bratislava for
the interesting discussions. He was my master thesis supervisor and introduced me to the
Hamilton-Jacobi-Bellman equation, the topic of this PhD Thesis.

Furthermore, I want to thank all my colleagues from AMNA for their friendly support in
various situations and for making my doctoral studies more enjoyable.

Next, I'm thankful to all the teachers from my bachelor and master studies at the Comenius
University for providing me with interesting insights into various areas of the applied
mathematics. The knowledge that I acquired during those years was essential to start my
PhD studies.

I'm most grateful to my beloved wife Tatiana for all her love. She was always my greatest
support, also during the first two years of my PhD studies in Wuppertal, being thousand
kilometers away.

I also want to express special thanks to my parents for all their support. Besides many
other things, they brought me a positive attitude towards education and encouraged me
to study in Germany.

Last but not least, I want to thank my siblings, family and my friends in Wuppertal and
in Bratislava for all the good moments I could spend with them.

II1

Contents

Abstract

Acknowledgements

Contents

Notation
Abbreviations

1 Introduction

1.1
1.2

Related scientific works
Outline of the thesis

2 Stochastic control problems and Hamilton-Jacobi-Bellman equations

2.1

2.2

General stochastic control problem
2.1.1 One-dimensional stochastic control problem and HJB equation
2.1.2 Two-dimensional stochastic control problem and HJB equation
Viscosity solutions and convergence theory

3 Finite difference numerical methods

3.1

3.2

Standard finite difference methods
3.1.1 Discretization of the Hamilton-Jacobi-Bellman equation
3.1.2 Classical implicit FDM with policy iteration
3.1.3 Piecewise constant policy timestepping method
Non-Existence of higher order monotone approximation schemes.
3.2.1 Main Results
3.2.2 Application of the results to the HJB equation

4 Piecewise predicted policy timestepping method

4.1
4.2
4.3

Main idea and algorithm
Numerical example: mean-variance optimal investment problem
Numerical example: passport option pricing problem

5 One-dimensional Tree-Grid method

5.1
5.2

Recapitulation: problem formulation
Construction of the Tree-Grid method
5.2.1 Thebasicidea
5.2.2 Excursion: FSG method 0.
5.2.3 The basic Tree-Grid method
5.2.4 The Tree-Grid method with artificial diffusion
5.2.5 The final Tree-Grid method algorithm
5.2.6 Relationship to other numerical methods

10
11
11

15
15
15
16
17
18
18
20

23
23
26
29

VI Contents
5.3 Convergence of the Tree-Grid method 43
5.3.1 Consistency of the scheme 44

5.3.2 Monotonicity, stability, convergence 48

5.4 Numerical example: uncertain volatility model 50
5.5 Numerical example: passport option pricing problem 52

6 Tree-Grid method with control independent stencil 55
6.1 Tree-Grid method revisited, 55
6.2 Modification: control-independent stencil 57
6.2.1 Derivation of the modified scheme 57

6.2.2 Analytical solution of the control problem in the modified scheme . 58

6.2.3 The Fibonacci algorithm for finding the optimal control 59

6.3 Numerical example: passport option pricing problem 60

7 Two-dimensional Tree-Grid method 63
7.1 Recapitulation: problem formulation 63
7.2 Construction of 2D Tree-Grid method 64
7.2.1 Notation e 65

7.2.2 Choosing the stencilnodes 65

7.2.3 Choosing the stencil weights (probabilities) 66

7.2.4 Artificial diffusion and covariance adjustment 67

7.2.5 Setting parameter K and stencil size reduction 69

7.2.6 The final 2D Tree-Grid method algorithm 70

7.2.7 Comparison to other wide stencil methods 71

7.3 Convergence of the 2D Tree-Grid method 73
7.4 Numerical example: two-factor uncertain volatility model 76

8 Restrictions for the higher dimensional generalization of the Tree-Grid method 81

8.1 P-dimensional stochastic control problem 81
8.2 Construction of the P-dimensional Tree-Grid scheme 81
8.2.1 Notation e 82
8.2.2 Choosing the stencilnodes 82
8.2.3 Choosing the stencil weights (probabilities) 83
8.3 Appearance of possibly negative weights 84
8.4 Ideas from Tree-Grid schemes applicable to other methods 85
Conclusion and outlook 87
9.1 Outlook of the futureresearch 87

References 91

Notation

Let us introduce the most important notation used in this thesis:
e { — time variable
e T — final time (maturity in case of option pricing)

e 5 — state-space variable with dimension higher than two, or space variable in general
(with undefined dimensionality)

e s — one-dimensional state-space variable

(z,y) — two-dimensional state-space variable (both x and y are one dimensional)

6 — control variable

e O — control set

e O - set of control functions (s, t)

W4, S; — possibly higher-dimensional Wiener process and state process

Wy, S¢ — one dimensional Wiener process and state process

(WEWY), (X, Y:) — two dimensional Wiener process and state process

e V(5,t) resp. V(s,t) or V(z,y,t) — Value function

E(-) — Expected value

VII

VIII

Notation

Abbreviations
BC boundary condition
BS Black-Scholes (model/equation)
CFL Courant-Friedrichs-Lewy (condition)
EOC experimental order of convergence
Err error
FDM Finite difference method
FSG Forward shooting grid (method)
HJB Hamilton-Jacobi-Bellman (equation)
HJBI Hamilton-Jacobi-Bellman-Isaacs (equation)
PCPT Piecewise constant policy timestepping (method)
PDE partial differential equation
PPPT Piecewise predicted policy timestepping (method)
RV random variable
SCP stochastic control problem
SDE stochastic differential equation
TG Tree-Grid (method)

Chapter 1

Introduction

In this thesis we are concerned with the development of the numerical schemes for solving
the stochastic control problems (SCPs) and the related Hamilton-Jacobi-Bellman equa-
tions. At first, before defining a SCP in a formal manner, let us intuitively explain what
a SCP is. A stochastic control problem can be defined as the problem of dynamically
adapting a control variable to a stochastic process that depends on this variable during
some finite (in our setting) time interval. The goal is to maximize the sum (in fact, the
integral) of profits implied by the evolution of the controlled stochastic process together
with the final profit depending only on the value of the controlled process at the final time.
Alternatively, we can replace the profits by costs and the maximization by minimization.
In our setting, we will model the uncertainty in the stochastic process by a Wiener process.
Figure 1.1 illustrates this concept of SCP. We should note, that the underlying stochas-

randomness
(modeled through
Wiener process W;)

control process
(chosen by us)

\ e/

controlled stochastic process

\
NV

instant profit + final profit
(resp. loss) (resp. loss)

\\/__/

to be maximized
(resp. minimized)

Figure 1.1: Schematic illustrating the SCP and its parts.

tic control process can also be multidimensional. However in this thesis, we will develop
schemes only for one and two dimensional underlying processes. The difficulties arising
by generalizing our numerical methods to higher dimensions are outlined in Chapter 8.
Our definition of the SCP is of course not exhaustive. Other concepts of the SCP are for
example:

2 1 Introduction

e Stochastic control problems with infinite time horizon [31],

e Stochastic control problems with uncertainty modeled with Lévy process (or some
other stochastic processes) [39],

e Optimal stopping time problems [31],
e Discrete SCPs [21].
Another possible generalization of the SCPs is the stochastic differential game [36, 38|.

Although it is possible to solve the SCPs directly, it is often more convenient to solve the
Hamilton-Jacobi-Bellman (HJB) equation. This is a nonlinear partial differential equation
(PDE), therefore modeling of the stochasticity is not needed. The formulation of the HJB
equation corresponding to the SCP is described in the next chapter.

Stochastic control problems and HJB equations arise in many applications. In this thesis
we will solve numerically the HJB equations corresponding to the following problems from
finance:

e Mean-variance optimal investment problem (Example 1, Chapter 4),

e Passport option pricing (Example 2, Chapters 4, 5, 6),

e Option pricing under uncertain volatility model (Example 3, Chapter 5),

e Option pricing under 2-factor uncertain volatility model (Example 4, Chapter 7).
Other SCPs or HJB equations arising in finance, but also in other areas are for example:

e Optimal portfolio allocation problem (see e.g. [24]),

e Gas storage valuation and optimal operation (see e.g. [10]),

e Optimal vaccination in SIR (Susceptible-Infectious-Recovered) model (see e.g. [23]),

e Monge-Ampére equation (see e.g. [32]).

As one can see, the SCPs play an important role in applied mathematics. In the following
section we present the overview of the related scientific work with special emphasis on the
numerical methods for HJB equations.

1.1 Related scientific works

For an overview on the general stochastic control theory, we refer the reader to (38, 50|. In
[31], beside the control theory also Markov chains and numerical methods are discussed.
For a reader interested in discrete optimal control theory we refer to [21|. For the study
of stochastic differential equations and stochastic calculus we recommend for example
[44] where the stochastic calculus is applied in finance, or a more theoretical work |[2].
As it will become clear from the examples in this thesis, the HJB equation and control
theory is also closely related to financial mathematics. For a reader interested in analytical
and numerical methods for nonlinear financial models we recommend [43] and [14]. Finite

1.1 Related scientific works 3

difference methods for option pricing can be found in [46] and also other numerical methods
with focus on the implementation in Matlab can be found in [20]. For the study of
numerical methods for PDE problems in general we refer to [19].

The Hamilton-Jacobi-Bellman (HJB) equation, as well as the other nonlinear PDEs may
not have solution in the classical sense. Therefore, Crandall, Ishi and Lions [11] introduced
in 1992 the concept of viscosity solution, suitable for HJB equations. For a brief intro-
duction to the theory of viscosity solutions we refer to [34]. However, it can be a problem
to find even such a viscosity solution analytically, therefore numerical methods are used.
To prove the convergence of the approximation computed with these numerical methods
to the viscosity solution often the theory of Barles and Souganidis [4] is used. Another,
probabilistic approach to the convergence proofs is presented in the book of Kushner and
Dupuis [31].

The numerical methods used to solve the above SCP can be divided into two classes, based
on the formulation they are exploiting. The main idea of methods based on the partial
differential equation (PDE) approach is to solve the HIB PDE with numerical methods
as for example finite differences. Here, the implicit finite difference methods (FDM) using
policy iteration were shown to be successful e.g. in the work of Forsyth and Vetzal [17]. An
alternative approach to the policy iteration used in this method is the piecewise constant
policy timestepping (PCPT) scheme used for example in [16], [41]. The basic idea of this
method is solving several different PDEs with different constant policies in each time layer
and then pick in each node the maximum result. A modification of this scheme leading to
experimentally faster algorithms was proposed by the authors in [25] and is presented also
in this thesis. An alternative approach based on the Ricatti transformation of the PDE
was proposed by Kilianova and Sevcovic in [24]. The advantage of using this approach is
that we don’t need to solve the optimization problem in each time-layer.

Whereas methods based on the PDE approach are typically implicit, methods based on
the original problem formulation (2.8),(2.9) are mostly explicit. Apparently the most
famous of these approaches are the methods based on Markov chain approximations of
the stochastic differential equation (SDE) (2.9) presented in the book of Kushner and
Dupuis [31]. In finance, binomial and trinomial tree methods [1, 3] are widely used. These
methods often present another viewpoint on the Markov chain approximation, and are
equivalent up to some order to explicit FDMs (see for example [1]). These methods are
known to suffer from instability if a certain condition on stepsizes is not met. This is also
the reason why implicit methods are used more often. In tree and Markov chain methods,
fulfilling this condition is achieved by a problem-specific construction of the grid or lattice.
And finally, also based on the original problem formulation, there are forward shooting
grid (FSG) methods [22], combining the tree lattice of binomial or trinomial method and
the grid of the FDM or Markov chain approximation method. The FSG methods are
typically used in path-dependent option pricing [5, 22|, but can be easily implemented
also for SCPs. These methods however may suffer from convergence problems as outlined
by Forsyth, Vetzal and Zvan in [18]. A new explicit and unconditionally stable Tree-Grid
method was developed in [28] and will be also presented in this thesis.

In two or more space dimensions, a generalization of the implicit unconditionally stable
method from [48] was presented in |35] and later used in [9]. The main idea of this method
is combining the wide and the fixed stencil depending on the correlation in the particular
time-space node. Alternatively, explicit methods based on the ideas from [31] presented
in papers [8, 12, 13| can be used. These are wide stencil schemes stable under some CFL

4 1 Introduction

condition. Moreover, linear interpolation of the grid values is needed in these methods.
In [29], a generalization of the Tree-Grid method for two space dimensions was developed.
This generalization of the Tree-Grid method, presented also in this thesis, also falls into
the class of the wide stencil schemes, however it is unconditionally stable for any grid and
no interpolation of the grid values is needed.

1.2 Qutline of the thesis

Let us now introduce the structure of the Thesis:

Chapter 1: In this chapter, we give the reader intuition on what a SCP is and for which
applications it is important. In Section 1.1 we provide the reader with an overview of
useful literature on numerical methods for solving SCPs and HJB equations and other
related topics. Finally in this Section 1.2 we present the outline of the thesis.

Chapter 2: In Section 2.1 we formally define the SCP together with the dynamic pro-
gramming equation and the HJB equation. We also look closer on the special cases of
problems with one or two space dimensions, which are the target problems of this the-
sis. In Section 2.2, we define the viscosity solution and present the main results of the
convergence theory of Barles and Souganidis [4].

Chapter 3: In Section 3.1 we describe the discretization of the HJB equation. Then we
present the algorithms of the standard implicit methods from [16]: the implicit method
with policy iteration and the PCPT method. The Section 3.2 is based on our paper [26].
We present here the result on non-existence of the higher order monotone schemes for
solving the HJB equations. This result motivates also the further direction of our work:
rather than aiming for higher order of consistency, we develop methods that are explicit
while remaining unconditionally stable (Tree-Grid methods) or introduce heuristics for the
search of the optimal control (PPPT method).

Chapter 4: In this chapter based on the paper [25] we introduce the PPPT method that
can be seen as a modification of the PCPT method. In contrast to the PCPT method,
we solve a smaller number of PDEs in most time layers, however non-constant control
policies will be used. We will “predict” these control policies from the solution of the
problem on a coarse grid. Because of smaller number of PDEs to solve in each time layer,
this method may be significantly faster. In the Sections 4.2, 4.3, we test this method on
two example problems from finance: on the mean-variance optimal investment problem
and on the passport option pricing problem.

Chapter 5: This chapter is based on the paper [28]. We introduce here the Tree-Grid
method for SCPs with one space dimensions. The name of the method is derived from the
tree structure similar to that of the trinomial tree methods, which is however in our case
defined on an arbitrary grid. The method is explicit, yet unconditionally stable, consistent
and monotone. These properties are achieved by making the stencil dependent on the time
step, but also by introducing the artificial diffusion in the numerical scheme. We prove the
convergence of the method in Section 5.3 and compare the method to other alternatives:
Finite difference methods, Markov chain approximation methods and FSG methods. In
Sections 5.4, 5.5, we compare the performance of this method and of the standard implicit
FDM on two example problems from finance: on the uncertain-volatility option pricing

1.2 Outline of the thesis 5

problem and on the passport option pricing problem.

Chapter 6: In this chapter based on the paper [27], we address the following issue: as
the stencil size changes for different values of the control in the Tree-Grid method, it is
difficult to search for the optimal control in a way different from brute-force approach.
Therefore, we propose here a modification of the Tree-Grid method leading to a scheme
with a stencil of constant size. This gives us the possibility for more efficient search of
the optimal control e.g. by using the Fibonacci algorithm, as we also illustrate on the
passport option pricing example in the Section 6.3. Moreover, we present in this chapter
a better way of introducing the artificial diffusion in the numerical scheme.

Chapter 7: Based on the paper [29], this chapter covers the generalization of the Tree-
Grid method to two space dimensions. Beside artificial diffusion, also the reduction of
covariance is introduced to keep the stencil as simple as possible, while still remaining
consistent. The scheme can be classified as a wide-stencil scheme, but in contrast to
other wide stencil schemes e.g. in [12], we do not need any interpolation. The method is
also unconditionally stable on any rectangular grid and we prove its convergence in the
Section 7.3. We exemplify usefulness of the method on two factor option pricing uncertain
volatility model in the Section 7.4.

Chapter 8: The generalization of the Tree-Grid method from Chapter 7 opens the ques-
tion, if also a generalization to higher dimensions is possible. In this chapter, we show that
the generalization to dimensions higher than two is not possible for an arbitrary problem.
The problem is, that for stronger covariance, negative weights may appear in the numerical
scheme, causing it to be non-monotone and possibly unstable. However, for some higher
dimensional problems with mild covariance, the generalization of the Tree-Grid method
sketched in this chapter may be possible. In Section 8.4, we discuss which ideas from the
Tree-Grid method can be employed also in other wide stencil schemes.

Chapter 9: In this last chapter we sum up the results of this thesis and provide the
outlook on the possible directions of the future research.

Chapter 2

Stochastic control problems and
Hamilton-Jacobi-Bellman equations

In the previous chapter, we intuitively formulated what a stochastic control problem (SCP)
is. Now, we will define it in a formal manner. We also present here the dynamic program-
ming equation and the Hamilton-Jacobi-Bellman equation. These equations are crucial
for development of the numerical schemes and for the proofs of convergence. At first,
we will describe the general P-dimensional stochastic control problem together with the
dynamic programming equation and the HJB equation. Then, we will look at the special
cases of the one-dimensional and the two-dimensional SCPs. In the last section, we define
the viscosity solution and present the convergence theory for the numerical methods for
nonlinear partial differentials equations that will be needed in our convergence proofs in
the later chapters.

2.1 General stochastic control problem

Let us now define the P-dimensional stochastic control problem (SCP):

T k
V(s,t) = max E /exp /T(SI,Z,G(SI,Z))dl f(Sk, k,0(Sy, k))dk
0(s,t)€© / /
T

+exp /rSk,k 0(Se, k))dk | Ve(So)ls =5], @)
t

dSt :ﬂ(gt, t, Q(St, t))dt + O'(St, t, Q(St,))th, (22)
0<t<T, 5eRF, PeN,
p(Si,t,0(Si, 1)) is the correlation matrix of W;.

At first we will explain the notation:

e Equation (2.1) represents the definition of the so-called value function V' (5,¢). The
value function can be interpreted as a function that assigns to each state § in each
time ¢ a specific numeric value. This value is defined as the expectation of the overall
future profit if the optimal control policy is used. The aim of our numerical methods
presented in this work is to provide us with reasonable approximation of this value
function.

e The stochastic differential equation (2.2) represents the P-dimensional controlled
stochastic Ité process S;.

8 2 Stochastic control problems and Hamilton-Jacobi-Bellman equations

e ¢ € [0,7] denotes time, T" denotes the final time.

5 € RY is called state variable. It represents the current value (state) of the
process.

W, denotes a P-dimensional Wiener process with correlation matrix p(s,¢,6) for
St = 5 and 0(5,t) = 6. The variance of each component is 1.

© denotes the control set. For our purposes, we will suppose that © is discrete. If
this is not the case, we can easily achieve this property by its discretization. Then,
0 € O is called control variable.

0(s,t) : RP x [0,T] — © is the control function. Its value changes in time and
depends on time as well as on the current value of the stochastic process (2.2). On
the other hand, the increment of the stochastic process (2.2) depends on the current
value of the control function in each time ¢.

e O is the space of all measurable control functions (5,).

e The function fi(5,¢,0) : RP x [0,7] x © — R represents the drift function of the
process S;. The function &(5,t,0) : R” x [0, T x © — D} p represents the volatility
function of the process S, where D;X p is the set of all diagonal P x P matrices
with non-negative entries.

Let p(5,t,0) = C(5,4,0)¢(5,1,0)T and 22 = ¢(5,1,0)5(5,,0). Then S = £1/251/2"
is the covariance matrix of the process S; for S; = 5 and 6(5,t) = 0.

We suppose that the functions i and %1/2 satisfy the following conditions (see [38]):

(51,11, 01) — (52, ta, 02)] + |SV2 (51,11, 01) — B/ (52, 12, 02)]
<151 = S + m([ts — o] + 61 — 62]), (2.3)
172(0,¢,0)| + |212(0,¢,0)| < K Vt,0 €[0,T] x O, (2.4)

where K,I € RT and m(-) is a bounded function.

e The function f(5,t,6) : R x [0,T] x © — R represents the increment of the instant
profit (also called instant reward) or of the instant loss in time ¢, state § and under
control . We suppose f(-) to be continuous in § and uniformly continuous in ¢ (see

[38]).

e The function 7(5,¢,0) : RY x [0,7] x © — R represents the discount factor in time
t, state s and under control . We suppose 7(+) to be continuous in § and uniformly
continuous in ¢ (see [38]).

e The function Vr(s) (also called terminal condition) represents the profit or loss at
the final time T in state §. It holds V(5,T) = Vp(3).

Let us note, that if the functions f(-), Vr(:) represent the loss (or costs), the maximization
should be replaced by minimization in (2.1).

Following the Bellman principle of optimality, introduced by Richard Bellman [6] (at
first for deterministic discrete dynamic systems) the so called dynamic programming

2.1 General stochastic control problem 9

equation holds:

tit1 k
V(s,t;) = max E /exp / (501,050)l | £(Se. k. 0(Se, k))dk
0(s.H)€0,
tjr1
+exp /r(S‘k,k,@(Sk,k))dk V(gtj+1,tj+1) gtjzg , (2.5)
tj

where 0 <t; < tj41 < T are some time-points and (:)tj is a set of control functions from ©
restricted to the R x [t;,t;41) domain. The dynamic programming equation provides us
with a formula for the value function in time ¢; depending only on the value function in
an arbitrary later time t; 1. Therefore, this equation is after discretization very suitable
for successive computation of the value function in different time layers (from final time
layer in t = T defined by Vp(8), up to the first in ¢ = 0). We employ this idea later in
Chapters 5-7. Using this dynamic programming equation (2.5), it can be shown [38], that
solving the SCP (2.1),(2.2) is equivalent to solving a specific partial differential equation
(PDE) the so-called Hamilton-Jacobi-Bellman (HJB) equation:

aa‘t/ + max <;tr (E(-)ai (%‘S/)) + (-)T% +r()V+ f(')> =0, (2.6)
V(5,T)=Vr(s), (2.7)

0<t<T, seRF,

where X(-), a(-), r(-), f(-) are functions of §,t,6 defined above. We remark, that if the
maximum operator is replaced by the minimum operator in the SCP (2.1)-(2.2), it should
be replaced by the minimum operator also in the HJB equation (2.6).

Possible generalizations of the stochastic control problems are the stochastic differential
games where maximization and minimization is done simultaneously. The PDEs corre-
sponding to this class of problems are the Hamilton-Jacobi-Bellman-Isaac equations [36].
In case of these equations, the single maximum operator is substituted by one maximum
and one minimum (resp. supremum and infimum) operator each defined on a different con-
trol set. Use of even more general operators is analyzed for example in [45]. However, in
this work we will restrict ourselves to the case of minimum and maximum operators. Let
us note that this covers also the case of omitting the operator completely, as this can be
seen as maximum through an one-element set. In that case, a relationship between (2.1),
(2.2) and (2.6), (2.7) is established by the classical Feynman-Kac formula. In financial
mathematics, this relationship is represented by a connection between the option pricing
problem and the Black-Scholes equation [7].

For a deeper understanding of the principles of the stochastic control theory and of the
HJB equation, we refer the reader to some classic literature on the topic e.g. [38, 31, 50].
Before moving to the next section, let us for convenience rewrite equations (2.1), (2.2)
and (2.5)-(2.7) for the one-dimensional and two-dimensional setting, as for these cases
numerical methods are developed in this thesis.

10 2 Stochastic control problems and Hamilton-Jacobi-Bellman equations

2.1.1 One-dimensional stochastic control problem and HJB equation

The one-dimensional stochastic control problem (2.1), (2.2) can be rewritten as follows:

T K
Vis.t) = max E /exp /r(s,,z,e(s,,mdz F(Ses b, 0(S, k) dk
0(s,t)€O
t
T
+exp /Y’(Sk, k,@(Sk, k))dk VT(ST) Sy =s s (2.8)
t
dSt :M(Stv t7 G(Slﬁ t))dt + U(Sta tv 0(8t7 t))th7 (29)

0<t<T, seR.

Here, s denotes the one-dimensional state variable, ¢ is time, and the stochastic process
Sy is also one-dimensional. The dynamic programming equation (2.5) following from
Bellman’s principle reads:

tit1 k
Vst = max /exp /r(sl,z,e(sl,mdz F(Ses b, 0(Sk, k) dk
0(s,t E@t]-
tj tj
tj+1
+ exp /T(Sk,k,G(Sk,k))dkz V(Stjstj+1)|Sy =s |, (2.10)
tj

and the Hamilton-Jacobi-Bellman equation (2.6) that can be derived from the dynamic
programming equation has in this setting the following form:

o ()2 52
G+ (TG +HO GOV 50) =0 (211
V(s,T) = Vr(s), (212)

0<t<T, seR,

where o(+), u(+), r(-), f(-) are functions of s,t, 0.

2.2 Viscosity solutions and convergence theory 11

2.1.2 Two-dimensional stochastic control problem and HJB equation

The two-dimensional stochastic control problem (2.1), (2.2) can be rewritten as follows:

T k
V(z,y,t) = max E /exp /r(*l)dl f (k) dk
0(z,y,t) €O
t t
T
+ exp /T(*k)dk VT(XT, YT) Xt =x, Y;g =Y, (2.13)
t
dXt :,U,:C<*t)dt + Uz(*t)thx, (214)
dYy =gy () dt + oy (x¢)dW} (2.15)
AWEAWY =02y (41) (00 (41) 7y (+1)) (2.16)

xe =(Xy, Yy, t,0(Xy, Ve, t), 0<t<T, zy€R,

where x € R,y € R are state variables, the stochastic processes X;, Y; are one-dimensional
(s = (z,y), St = (X,Y:)) and t is time. The dynamic programming equation (2.5)
following from Bellman’s principle reads:

tit1 k
V(z,y,t;)) = max_ E / exp /r(*l)dl f (k) dE
G(x,y,t)e@tj ; ;
J J
tj+1
+ exp / T(*k)dk V(th+17Y;fj+17tj+1) th = xa}/;fj =9Y1, (217)
t

and the Hamilton-Jacobi-Bellman equation (2.6) that can be derived from the dynamic
programming equation has in this setting the following form:

ov

o +1;1€aé{ (LV +r()V + f(-)) =0, (2.18)
_0.(1)? 0%V o?V oy(1)? 0%V ov oV

LV = 9 W"‘ny(')axay + 2 92 "‘N:c(')%"‘ﬂy()aya (2.19)

V(xvva) = VT(QJ,y), (220)

0<t<T, zyckR,

where 0;(-), 0y(-), 0uy(:), pa(-), py(:), r(-), f(-) are functions of x,y,t, 6.

2.2 Viscosity solutions and convergence theory

The Hamilton-Jacobi-Bellman equations are fully non-linear PDEs and might not posses a
solution in the classical sense. Therefore, the concept of viscosity solutions was developed.
However, as the closed form of the viscosity solution is rarely feasible, numerical methods
for its approximation are needed. In this section, we will at first present the definition of
the viscosity solution and then the convergence theory developed by Barles and Souganidis
[4]. This theory provides us with sufficient conditions for a numerical scheme to converge to

12 2 Stochastic control problems and Hamilton-Jacobi-Bellman equations

the viscosity solution. We will use it to prove the convergence of the numerical schemes for
solving the HJB equation, but we present here the theory for even more general nonlinear
differential operators. Let us note that the K-dimensional variable 5 used here is split for
the HJB equation into two parts, the 1-dimensional time variable ¢ and the P-dimensional
variable 5 (or s for P =1, resp. (z,y) for P = 2).

Let

_ 0 (0V(s)\ 0V(s) -

F =F| = = 2.21
v =r (5 (P) v <o (221
denote a fully nonlinear second order parabolic or elliptic PDE fulfilling the ellipticity

property:

F(A1,b,¢,d) < F(Ag,b,c,d) for all Ay > Ay, A, Ay € Sgxi, b€ RE ceR,de QCRE

where Sk« i is the space of all symmetric K x K matrices with natural ordering denoted
as “<” and Q C R¥ is the domain of definition of V(3). At first let us formulate the
definition of the viscosity solution:

Definition 1 (Viscosity solution [17]). The function V(5) : @ — R is called viscosity
subsolution (resp. supersolution) of (2.21) if for all 5 € Q and all C%-smooth test functions
¢(5) such that V- — ¢ has a local mazimum (resp. minimum) at 5 holds:

. ((;95 <3q;(§§)) ’ 3?(;) V(5), g) <0 (viscosity subsolution) (2.22)

resp. I <88_ (62(_5)) , aqg(_s),V((s), s> >0 (viscosity supersolution) (2.23)
3 3 S

The function V(5) : @ — R is called viscosity solution, if it is both viscosity subsolution

and viscosity supersolution.

Notice, that if a classical solution exists, it also fulfills the conditions of viscosity solutions.
However, the conditions can be also examined for function V(s) that is not sufficiently
smooth everywhere. Therefore, even equations of the form (2.21) that do not posses a
classical solution may still posses a viscosity solution. For a deeper understanding of the
theory behind the viscosity solutions we refer to [11]. A short intuitive explanation of the
concept can be also found in [17].

Let us now present the pioneering convergence theory of Barles and Souganidis [4] that
allows us to develop numerical schemes with solution approximations that are guaranteed
to converge to the viscosity solution. We assume that the equation F'V(5) = 0 has a
viscosity solution and denote this solution simply by V(s). To find some approximation
of this viscosity solution we define a discrete approximation scheme

Gu(5) = G(v(5),v(5 + bih),v(5 + boh), ..., v(5 + byh)), (2.24)
where v(5), 5 € RX is defined as (possibly) multidimensional function, b; € R¥, i =
1,2,...,nand h € RT.

Let us consider the system of sets called discretized domains

Sp={5 eRE|i=1,2,...,N,}, (2.25)

2.2 Viscosity solutions and convergence theory 13

defined for different values of h, which is often referred as step-size.

Definition 2 (Numerical scheme). The system of equations Gv(s) = 0 with § € Sy,
depending on a parameter h € R is called numerical scheme.

The numerical scheme is well-defined, if it possess an unique solution. We will assume that
this condition is met for any feasible h. By v(S), we will denote an approximation of the
solution of F'V(5) = 0, computed by solving the system of equations Gv(s) = 0, 5 € S,
In order to distinguish between approximations with different h, we will sometimes denote
v(3) as vp(8).

The monotonicity is an important property that a numerical scheme for solving the non-
linear PDEs should have. This property can be seen as a discrete version of the ellipticity.
Monotonicity represents an additional constraint for numerical schemes for non-linear
PDEs possessing only viscosity solutions in contrast to linear PDEs with classical solu-
tions. In case of the linear PDEs, only the consistency and the stability are needed for the
convergence. However, as shown in [17], the approximations computed with non-monotone
schemes may converge to wrong solutions in case of nonlinear PDEs.

Definition 3 (Monotonicity). A discrete approximation scheme
Gu(5) = G(v(5),v(5 + brh),v(5 + bah), ..., v(5 4 byh))

is monotone, if the function G is non-increasing in v(s + b;h) forb; #0,i=1,...,n and
increasing in v(s).

Before defining the consistency in the viscosity sense, we formulate here (for comparison
reasons) the classical definition of consistency. This is used by proving the convergence of
the numerical schemes for linear PDEs.

Definition 4 (Classical Consistency). The discrete scheme
GV (5) = G(V(5),V(5+ bih),V (5 + bgh),..., V(5 + byh))

is a consistent approzimation of FV(s), if limp_|[|[FV(8) — GV (3)|lcc = 0, where V(3)
is a solution of the equation FV(5) = 0. Further, GV (5) is said to be consistent of order
p> 0, if |FV(5) — GV(5)ow = O(R?), h — 0.

Now the definition of consistency in the viscosity sense follows:

Definition 5 (Consistency (in the viscosity sense)). The scheme Gv(s) = G(v(s),v(s +
bih),v(5+b2h),...,v(5+byh)) is a consistent approzimation of FV (5), if limp_,o |[F¢(5) —
Go(5)] =0, for any C*-smooth test function ¢(5).

A more general definition of consistency can be found in [4]. In this thesis we will call the
consistency in viscosity sense simply consistency, in contrast to the classical consistency,
that is used in the case of linear PDEs. Let us note, that the order of consistency in the
classical sense and in the viscosity sense may be different, as for example in the case of
the nine-point stencil from [42]. A scheme is consistent on a numerical domain, if it is
consistent in all points of this numerical domain. In such case we will call the scheme

14 2 Stochastic control problems and Hamilton-Jacobi-Bellman equations

consistent. In the literature, often C?-smooth test functions are used (as in the Definition
1). However, as shown for example in [33], this leads to an equivalent definition.

The last important property of a convergent numerical scheme is the stability. This pro-
perty is closely related to the monotonicity, and numerical schemes that are consistent and
monotone are in most cases also stable. On the other hand, stable non-monotone schemes
are very common: for example the Crank-Nicholson scheme or the numerical schemes with
higher order of consistency used for solving linear PDEs.

Definition 6 (Stability). The numerical scheme defined by the system of equations Gup,(§) =
0, § € Sy, with solution vy (5) is stable, if there exists some constant C' so that ||vp(8)]|co <
C, Vh > 0.

The following Theorem of Barles and Souganidis [4] is the key tool for proving convergence
of a numerical scheme approximating a nonlinear PDE:

Theorem 1 (Barles-Souganidis [4]). If the equation FV(5) = 0 satisfies the strong unique-
ness property (see [4]) and if the numerical scheme Guy(8) =0, § € Sy, approzimating the
equation FV (8) = 0 is monotone, consistent and stable, its solution vy (s) converges locally
uniformly to the solution V(5) of FV(5) = 0 with h — 0.

Remark 1. The above mentioned strong uniqueness property [4] is a property of the prob-
lem and not of the numerical scheme. Therefore, we will simply assume that our problem
possess this property without actually proving it.

Chapter 3

Finite difference numerical methods

The goal of this chapter is to present some standard approaches of solving the one-
dimensional HJB equation, as well as their limitations. In Section 3.1 we will present
two widely used finite-difference methods from [16], [48]. In Section 3.2, we will discuss
the fact, that the higher order schemes for solving the HJB equations are not monotone
and therefore might not converge. The Section 3.2 is based on the paper [26].

3.1 Standard finite difference methods

For convenience we repeat here the HJB equation to be solved:

o(-)2 §2
V(s,T) = Vr(s), (32)

0<t<T, seR,

where o(-), u(-), 7(-), f(-) are functions of s,¢,6 and Vp(s) is the terminal condition.
Now we can turn to the discretization of this equation. We suppose © to be discrete, i.e.

0= {91,92,...,9Q}.

3.1.1 Discretization of the Hamilton-Jacobi-Bellman equation

The first step for constructing the numerical algorithm is to discretize the equation to
be solved. We will use a rectangular grid with one time (¢) dimension and one space
(s) dimension. We will denote the nodes as (s;,t;), where indices ¢ € {0,1,...,N},
j € {0,1,..., M} indicate the position of the node in the grid. The distance between
nodes (s;,t;) and (s;,tj41) will be denoted as Ajt, and distance between nodes (s;, t;) and
(8i+1,t;) will be denoted as A;s. With Ug we will denote a pointwise approximation of the
solution of the HJB equation V'(s;, t;).

We must ensure that this discretizationl wi{ll be monotone. We denote the discretized
HJB equation in point (s;,t;) as G, (v}, o]t v, ... ,v)%) where (i, jx) # (i,7), Vk =

1 Y110 Yig ' Vi
1,2,..., K. Then this scheme is monotone, if the function G is non-increasing in
vt vf2, ... v]%. Monotonicity of a numerical scheme simply means that an increase in

input values would never lead to a decrease in the output. We will use the monotone
discretization introduced by Wang and Forsyth [48|, that can be consistent of second
order in space in an ideal case:

15

16 3 Finite difference numerical methods

87‘/(3. t) =~ o -l

ot 0T Y
82‘/(8. t) o~ v — 2v] Ui,
882 v Ai_lsAiS
ov ;

%(Siatj) ~ Di(vl_j,vl,vl,), where

Vi Uiy g sty) alsit,6)

D o0l) = Aiis+ A" Ajis+Ais T AjisAys
—12 Y, Y1) =] j j
s (€ + vl —260] + (€~ Do)

1+HAs+ (1 - f)Ai_lsiil’ § = sign(b(s;, t5,0)), else.

For simplicity, we will denote the (N + 1)-dimensional vector with i-th element vzj , as v,
Thus we can write the discretized HJB equation in the following form:

o)
————" = —max L; j gv’,
Ajt =e)
where
2 J J J
o°(si,t5,0) v;_1 — 2v; + U7 g g
Li,j,ev = "’N(Siatjae)Dl(Ui_la'UiaUH_l)

2 A;_18A;s
—|—’r‘(81,t],9)’05 +f(817t]79) (33)

Next we will present two different algorithms based on this discretization. In both algo-
rithms we will compute the values v} from the terminal time layer ta; back to the initial
time layer tp. That means, we will at first compute all values in the time layer ¢;,1 before
proceeding to the time layer ¢;. We will need the values in the last time layer ¢, as a
terminal condition. Moreover, we will need some boundary conditions (BCs). In our case,
we will use the Dirichlet boundary conditions that preserve the monotonicity. Therefore,
instead of equation (3.3) in nodes (so,t;), (sn,t;) we will use the simple equations

Ug = BCL(SO,tj), U’Jj\[= BCR(SNa t])a (34)

with some predefined functions BCL(s,t), BCg(s,1).

3.1.2 Classical implicit FDM with policy iteration

First we will introduce a standard FDM algorithm widely used to solve the HJB equations.
It’s similar to the classical implicit method for solving convection-diffusion equations,
however in order to find the optimal control, the policy iteration is needed. In this context
we understand under the term policy the (/N + 1)-dimensional vector of controls used in
one time layer with (N + 1) nodes.

3.1 Standard finite difference methods 17

Algorithm 1 Classical implicit FDM with policy iteration
M

1: v is determined by the terminal condition.
2 forj=M-1,M-2,...,0do

3 set v =it k=0

4: repeat {Policy iteration}

5: k=k+1

6: ng) = arg maxy Lm,gv(k_l) fori e {0,1,...,N}
7

Solve system of equations:
k j .
UZ() = Uf“ + Athi,j,ez(k)v(k) for ie{l,...,N -1}
o)) = BCL(so,ty), o = BCr(sw. ;)
8. until [|[v®) —o#D|, < TOL
9. vl =0k, H_f:9§k) for i€ {0,1,...,N}.
10: end for

(k)

Let us note, that it is possible to find the optimal control ;"' analytically, however we

i
search here for the optimal control 92@) by simply trying all possible controls. The repeat-
until part of the algorithm is called policy iteration. The vector 67 € RVN*T! with elements

ég is called optimal control policy in time layer j.

3.1.3 Piecewise constant policy timestepping method

The second algorithm that we will present here is the so-called piecewise constant policy
timestepping (PCPT) method. It is described for example in the papers [30], [16], [41].
Using this method, we completely avoid the policy iteration. Another advantage is, that
this method can be easily parallelized. The main idea of the method is solving in each
time layer Q PDEs with constant controls 6,,¢ = 1,2,...,Q and then choose in each node
s; the optimal control leading to the biggest value. The following Algorithm 2 will clarify
this approach.

Algorithm 2 PCPT method
M

1: v is determined by the terminal condition.

2 forj=M-1,M—-2,...,0do

33 forqg=1,2,...,Q do

4: Solve system of equations:
UZ-(q) = vf“ + Athi’jquv(Q) for ie{l,...,N—1}
U(()Q) = BCL(s0,tj), ’U](\?) = BCR(sn, t;)

5: end for

6: K; = argmaxyv

7: end for

@yl =) Gl =0, for i€{0,1,...,N}.

v) 7 7 ’

18 3 Finite difference numerical methods

3.2 Non-Existence of higher order monotone approximation
schemes

The standard methods presented in the previous section are consistent of order 1 in time
and up to 2 in space. Therefore, a question arises, if we can’t solve the HJB equation with
some higher order scheme. In this section we will prove that there is no monotone scheme
consistent of order higher than 2. This section is based on the paper [26].

At first, we will start with examining a general two-dimensional differential operator. Let
V(z,y) : R? = R be a locally C?-function (x,y € R are one-dimensional). We define the
differential operator £ : C?(R?) — C(R?)

62V o*V o0*V ov ov
92 T 12 920y + a2 9,2 + /81 + 527 +V. (3.5)

ﬁV(IE, y) =015

We assume a1 # 0 and investigate some properties of the linear operator L : C?(R?) —
C(R?) given by
LV (z,y) = ao(h)V(z,y) + a1(h)V(z + bih,y + c1h)
+ as(h)V(x 4 boh,y + co2h) + - -+ + an(h)V(x + byh,y + cyh), (3.6)

where b; # 0, or ¢; # 0, ¢ = 1,2,...,n and there exist j, k such that b; # 0, ¢, # 0. (3.6)
should be an approximation of the differential operator LV (x,y).

Definition 7 (Positive coefficients approximation [17]). The linear discrete approzimation
scheme (3.6) satisfies the positive coefficients condition if a;(h) >0 fori=1,2,...,n, for
all h > 0.

Often a scheme is monotone, if and only if its linear part satisfies the positive coefficient
condition.

3.2.1 Main Results

Theorem 2. There exist no discrete linear approzimation LV (x) of LV (x) satisfying the
positive coefficients condition which is consistent (in the viscosity sense) of order higher
than 2.

Proof. We rewrite Lo(x,y) in the form of a Taylor expansion up to order m:

Lgb(xa y) = ao(h)(,b(l’, y) + (11(]1)@5(33 + b1h7 Yy + Clh)
+ az(h)o(x + boh,y + cah) 4 - - + an(h)p(x 4 byh, y + ¢, h)

n 1
Wo.s) + 3 alh)(o(e.y) + Z (5) g ' en?)
=1

++m,;<)M@m ~i(;h)7) + O(h™ 1),

3.2 Non-Existence of higher order monotone approximation schemes 19

For an approximation of order p we have ||[Lo(x,y) — Lo(x,y)|lcc = O(RP). Using the
expansion (3.7), this yields the matrix equation

1 1 1 e 1 ~
0 bih boh -+ byh 3
0 ch ch - cnh n '
o @b’ (beh)? (bn)? aolh) P
0 b 2h2 b 2h2 b 2h2 a1(h) o
1€1 2€C1 o bpep ah) | = | a2 | 3.8
0 ah? (@ (b ; oz o
3 3 3 :
0 (b13f!l) (b%f!l) .. (b%’!l) an(h) O(hP)
6 (clh')m (CQh')m o (cn}z')m O(hP)

We can write (3.8) shortly as A(h)a(h) = g(h). Let us look at the fourth row of the system
A(h)a(h) = g(h):

al(h)@;)z+a2(h)(b2:)2+-~'+an(h)<%;)2 = aj. (3.9)

The right-hand side is of order O(h?), so should be the left hand side. Therefore, at
least one a;(h) should be of order O(h¥), k < —2 such that b; # 0. If for all b; # 0,
a;(h) = O(h?), 7 > —2 holds, then each non-zero term of the left-hand side of (3.9) is of
order h2O(h/) = O(h**7), where 2 + j > 0, so the whole left hand side is of order greater
than zero.

Now let us assume that we have a solution of A(h)a(h) = g(h) for p > 2 satisfying the
positive coefficients condition. We consider the 11th row of (3.8):

(b1h)* (b2h)*

ar(h) i + az(h) o + e+ an(h)

(bnh)*
4!

= O(h?). (3.10)

As we noted, there exists an i such that b; # 0 and a;(h) = O(h¥), k < —2. Then, also the
term in (3.10) a;(h) (biﬁ)4 is of order O(h?), ¢ = k+4 < 2. Due to the positive coefficients
condition, each term of (3.10) is non-negative and hence also the whole left-hand side of
(3.10) will be of order O(h®), ¢ < 2. However, the right hand side should be of order

higher than 2, which leads to a contradiction. O

Remark 2. The proof of the Theorem 2 does not take into account the case of schemes
without a node in x itself. However, this can be seen as a subcase of the above schemes

with fized ag(h) = 0.

Remark 3. The proof for a higher dimensional function V , with the corresponding second
order PDE operator LV can be done in a similar manner.

Remark 4. In the case of a linear differential operator with derivatives of order higher
than 2 similar results on the non-existence may be feasible, with higher mazximal order of
consistency (in the viscosity sense).

20 3 Finite difference numerical methods

Let us define

‘CQV(I‘? y)

0%V 0%V 0%V oV oV
e + ai2(6) 920y + as(0) = + B1(0)—=— + B2(0)— +v(0)V, (3.11)

= 0
o1(6) Oy? Ox Oy

where 6 is a parameter, z,y € R. We now formulate the main result of Chapter 3.

Theorem 3. There exist no monotone discrete approzimation

— r(gleaé((LQV(x, y)+6(0) of - r(?eaé((ﬁg‘/(x, y) +6(0))

consistent (in the viscosity sense) of order higher than 2.

Proof. Since the maximum is a non-decreasing function, LyV (z,y) has to satisfy the pos-
itive coefficients condition so that —maxgco(LgV (z,y) + 6(0)) will be monotone. Then,

- %éaéc(EQV(a:) +6(0)) = — %éaéc(L(;V(x, y) + O(h*) +4(6))

= — renea@x(LQV(x, y) + 5(9)) + O<hk)7

where according to Theorem 2, k& < 2. O

Remark 5. The non-existence of higher order monotone discrete approrimations of
f(EV(:U,y)) for a monotone non-increasing function f can be proven in the same way as
in Theorem 3.

3.2.2 Application of the results to the HJB equation

Now we apply this result to the HJB equation

AV (s, 1) 82V oV B
e rgleaé((a(s,t, 0) S + Blst,0) 5 + (5, L)V + (., 9)) —0, (3.12)

with one space dimension. The coefficients a, 3, v, § depend on 6 as well as on s and ¢.
However, in each particular time and space, we can treat them as constants with respect
to s, t. This allow us to write the HJB equation (3.12) in the form

max

(_av PV av
0cO

Sp T a0 55 + B8O T OV + 5(9)) ~0 (3.13)

for any particular values of ¢ and s. Now, Theorem 3 applied on the left hand side of
(3.13) with y :=t, x := s and

ov 0%V oV
ﬁgV(s,t) = —E + 06(9)@ + /8(9)% + 7(9)‘/
states, that we cannot obtain a monotone discrete linear scheme for the HJB equation

(3.13) consistent of order higher than 2 in the viscosity sense.

3.2 Non-Existence of higher order monotone approximation schemes 21

Remark 6. As noted in Remark 3, Theorem 8 can be proved also for higher dimensions.
Therefore, the same result can be obtained in the case of HJB equations with more space
dimensions.

In this section we showed that we cannot apply the convergence theory [4] to prove the
convergence of linear discrete schemes which are consistent of order higher than 2 (in the
viscosity sense), since this theory relies on the monotonicity of the scheme.

We used the Definition 5 of the consistency (viscosity sense) because for HJB equations the

standard Definition 4 cannot be used. For linear PDEs, also consistency in the classical

sense of higher order is feasible. A typical example is a monotone nine-point stencil for

the Poisson equation [42], which is O(h?*)-consistent in the classical sense. An interesting

qugg‘giotr)l that remains is, if any monotone scheme for the linear part of the HJIB equation
€,

— =5~ + LV (x,t) being consistent of order higher than 2 in the sense of Definition 4

exists.

Chapter 4

Piecewise predicted policy
timestepping method

In the previous chapter we proved that we cannot obtain a monotone scheme with order of
convergence higher than 2. Therefore, in this chapter we will try to make the convergence
faster (in means of computational time, not in the means of convergence order) by reduc-
tion of the number of possible controls in our algorithms. We introduce here the piecewise
predicted policy timestepping (PPPT) method, that can be seen as a modification of the
PCPT method from the previous Chapter 3. This chapter is based on the paper [25].

4.1 Main idea and algorithm

In the PCPT method we solved @) different PDEs in each time layer using constant policies
at first, and then compared the results to choose the optimal policy in each node of the
current time layer. Let us suppose that we already computed an approximation of the
solution on a coarse grid with some numerical method, and now we want to compute
a better approximation on a finer grid. To do this we can use for example the PCPT
method, and test all possible policies in each time layer. However, we already have some
approximation of the optimal policy from the coarse grid. If the true optimal control
policy is not far away from this approximation, then testing some of the constant policies
in the PCPT method will be redundant. Therefore, the idea of the piecewise predicted
policy timestepping (PPPT) method is to use this prediction on the coarse grid to check
only policies which are near to the “predicted” optimal policy from the coarse grid. We
should note, that in this context we will use the term policy rather loosely. According to
the context we may refer to the (N + 1)-dimensional vector of controls used in one time
layer with (N + 1) nodes, or to the whole (N + 1) x (M + 1) array of controls used on
the whole grid. By policy we also understand a two-dimensional function of variables s,t
or a one-dimensional function of variable s that assigns a value of control to any point
(s,t) on the computational domain, or (in the one-dimensional case) to any point s in the
particular time-layer.

As well as in the case of PCPT method, we will solve a few PDEs in each time layer.
However, constant policies will not be used anymore. Instead of them, we will use a set of
policies that are near to the predictions from the coarse grid. We can divide the algorithm
into 3 steps:

1. Compute the solution of HJB equation on the coarse grid with PCPT or classic
implicit method. Save the approximation of the optimal control used on this grid
-this will be the benchmark for predictions of the control policies for the fine grid.

2. Create a set of “predicted” two dimensional (space, time) control policy functions

23

24 4 Piecewise predicted policy timestepping method

from the optimal control approximation computed on the coarse grid

3. Compute the solution on the fine grid comparing in each node results of controls
determined by the predicted control functions evaluated in that node.

The control policies in a particular time layer are chosen in such manner, that they cover
in each node all “predicted” controls for that node. These “predicted” controls are chosen
as either controls that are between the two “predictor” controls for that node, or are
neighbors of the “predictor” controls. Here, the “predictor” controls in each space node
are the approximations of the optimal controls in that node from the nearest earlier and
nearest later time layer. Figure 4.1 illustrates the choice of control policies in the PPPT
method in a particular time layer as well as the comparison with the constant control
policies used in the PCPT method in each time layer. The exact construction of the
control policies in PPPT method is described in Algorithm 3. The computation of the
approximation of solution of the HJB equation on a fine grid using these predicted control
policies is described in Algorithm 4.

Convergence: By defining new controls z from the predicted control policy functions
0%(s,t) (see algorithm 4), we can consider the PPPT method to be a PCPT method
for these new controls. Therefore, stability of the PPPT method is a consequence of
the stability of the PCPT method. However, the answer on the question if the method
converges to the solution of the HJB equation depends on whether the the true optimal
control in each node really belongs to the set of predicted controls. As this cannot be
guaranteed, the method is rather heuristic, however seem to be converging in the numerical
examples presented in the following sections.

Possible generalizations: It is of course possible to create more predicted control poli-
cies, e.g. by taking more neighbors of predictor controls. Also, one may use similar control
prediction ideas also with classical implicit FDM or with the Tree-Grid methods presented
in the later chapters.

L1 ®
D

Figure 4.1: Illustration of the control policies in the PPPT method (left) and in the PCPT
method (right). The full red lines in the left figure represent approximations of
the optimal control policies in the j-th and (j 4 1)-th time layer of the coarse
grid (predictor control policies) and together with the dotted lines also the
control policies to be tested in all time layers of the fine grid lying between the
j-th and (j 4+ 1)-th coarse grid time layers. On the right figure, dotted lines
represent constant control policies to be tested in all time layers in case of the
PCPT method.

4.1 Main idea and algorithm 25

The Algorithm 3 for construction of the predicted control policy functions follows:

Algorithm 3 Construction of the predicted control functions for PPPT method

1:

Solve HJB PDE with classical or PCPT method on a coarse grid. The by-product
of this solution should be the array of optimal controls éi for all nodes (s;,t;) with
i€ {0,1,2,...,N}, j e {0,1,2,...,M}, where N + 1, M + 1 are dimensions of the
coarse grid. ‘ .

Define control indices z/, such that éf = 9213-

)

_ ' P
Determine number of control functions Z = max_ ‘zi -t ‘
(i5)el

where I ={1,2,..., N} x {1,2,...,M — 1}

4: Define M one-dimensional index functions in the layers of the coarse grid:

5. for j = 1,2,}...,]\2 do
6: 2/(s) =35 wherei=arg min _ ||s— skl
ke{0,1,...,N}

7: end for

8: Define:
up(s,t) = Z7(s) where j = arg ming oo i< |t — tg]
down(s,t) = #/(s) where j = arg ming oo it |t — tg]

9: Define Z — 2 two-dimensional index functions:

10: for z =1,2,...,Z —2 do

11: Z*(s,t) = round (g:éup(s, t) + %down(s, t))

12: end for

13: Determine neighbor index functions:
72-1(s,t) = min (maxze{m’m,z_Q} Z*(s,1), J)
22(5, t) = max (minze{mw’z,g} Z*(s,1), 1)

14: Create control functions:

15: for z =1,2,...,7Z do

16: 0%*(s,t) = 9§z(57t)

17: end for

The Algorithm 4 of the PPPT method using the predicted control policy functions follows.
The discrete operator L; j gv was defined in Section 3.1.1.

Algorithm 4 PPPT method

1:
2:
3:

6:
7
8:

vM is determined by the terminal condition.

for j=M-1,M—2,...,0do
for 2=1,2,...,Z do
Define 67%: 677 = 0%(s;,t;) (i € {0,1,2,..., N}
Solve system of equations:
UZ(Z) = vfl + Athi,j7§7’zv(Z) for ie{l,...,N—1}

U(()z) = BCO(S(),tj), 1)1(\?) = BCN(SN,tj)

end for
(2)

K; = argmaxy v; ', vg:fugm, 55:0,.%, ie€{0,1,...,N}.

end for

26 4 Piecewise predicted policy timestepping method

4.2 Numerical example: mean-variance optimal investment
problem

In this section we will compare the performance of the classical implicit FDM, PCPT
scheme and the PPPT scheme on a numerical example from finance. For comparison and
verification reasons, we will take the whole example with boundary conditions, and up to
small changes also with the discretization, from [41]. For reader’s convenience, we repeat
here the main characteristics of the problem.

Example 1 (Mean-variance optimal investment problem). We will start with a problem
of dynamic investment allocation between a stock and a risk-free asset in an mean-variance
framework. Let our stock follow a SDE of the form:

dSt = (T + fO’)Stdt + O'Stth, (41)

where Sy is a stock price process, r is the risk-free interest rate, o is the volatility, € is
the market price of risk and wy is the wealth process. Moreover, we will suppose that the
wnvestor contributes to the portfolio at a constant rate w. Then, our task is to solve the
following problem.:

rgleag)((Et:(] (wr) —)\Vartzo(wT)), (4.2)
dwi = ((r + 0wy, t)o)wy + m)dt + 0wy, t)ow,dWy, (4.3)
wo = K, (4.4)

where A is the investors coefficient of risk aversion (or also Lagrange multiplier similar as
in the Markowitz model, see [37]), 0(wy,t) is the proportion of investors wealth invested in
the stock in time t for a current wealth wy, P is the set of all admissible functions 0(wy,t),
K is some constant representing the terminal wealth and T is the final time.

For different values of \, we expect different Ey—owr. The set of all possible pairs

(N, Ei—owr) will be called “efficient frontier”. Note that often also set of pairs

(Et=owr, Var—owr) is referred as efficient frontier [37]. In [49], it is explained, how to
compute pairs on this efficient frontier numerically. The main part of that problem is
solving the HJB equation in the following form:

oV

il ; = 4.

ar + 0€minmas] LoV =0, (4:5)

L,V = 50 0“w) + (7 + (r + §o&)w) . (4.6)
()

where 7y is a parameter given in advance, and dependent on the unknown pair (A, Es—owr).
As solution, we will get besides the value function V(w,t) also the optimal control 6(w,t)
which is the optimal investment strategy for the unknown value X. This value of X, also with
Ei—owr can be computed afterwards, using the optimal investment strategy 6(w,t). For
more details see [49]. Here, we will be concerned with solving the HJB equation (4.5)-(4.7)
numerically.

Computational domain: For our problem we will use an equidistant discretization of

4.2 Numerical example: mean-variance optimal investment problem 27

the domain [0, wy] X [0, T], with M time-steps of size At and N space-nodes, with distance
between 2 neighboring nodes Aw. We use wy =5 and T = 20.

Terminal and boundary conditions: Let us assume a positive money inflow rate .
Then, as the left boundary is in wy = 0, we need no boundary condition, as the second
derivative from (4.6) vanishes and as 7 is positive we do not need any data from outside
the domain to approximate the first derivative. For the right boundary condition, we will
use an approximation from [41] in form of a Dirichlet boundary condition:

Viwn,7) = ga(r)ud + Br)wx +5(r), (4.8)
where

T = T—t,
a(t) = exp ((a2 + 2b)7’)7
B(t) = —(y+c)exp(br)+ cexp ((a2 + 2b)7’),

T c e 2

o(r) = %H(exp(bT) —-1)+ m(exp ((a2 + 2b)7’) — 1) + %’

c = 2n/(a®+D),

a = o0,

b = r+46d€.

The terminal condition is defined by equation (4.7).

Numerical results: For solving mean-variance optimal investment problem we imple-
mented the classical implicit method, the PCPT method and the PPPT method. We
implemented all methods in Matlab and tested on an Intel Core i7-4770 CPU 3.40GHz
computer with 8 GB RAM. For comparison reasons, we used the same parameter values
as in [41]: r = 0.03, 0 = 0.15, £ = 0.33, # = 0.1, v = 14.47. We use the time-step
size At = hi and space-step size Aw = 0.25h; where hj is a discretization parame-
ter. We use the control set © = [0, 1.5] equidistantly discretized on 31 different controls
0,0.05,0.1,...,1.5.

In Table 4.1 we can see the results of the numerical simulations. We tested the PCPT
method, the classical implicit method and two PPPT methods with a different approach
for predictions. We ran the methods with h; = 2% k = 1,2,...,10. To compute
the prediction of controls (control functions) for the PPPT methods, we used the PCPT
scheme. In our first approach we have done the predictions on a grid with mesh size
h = 27% (that is even finer than some of the main algorithm grids). This PPPT method
is denoted as PPPT (1).

To verify our results, we checked the values of the solutions in ¢ = 0,w = 1, which are
also computed in [41]. This values are denoted as Val. We will estimate the error of the
approximation Err with values from the final time layer A* (computed with stepsize hy).
The exact solution is not known, therefore we use an approximation of the final time layer
A computed with the classical implicit method and h = 2710 as reference solution. The
formula for estimating the error is

Err AR =] A% — AY . (4.9)

28 4 Piecewise predicted policy timestepping method

However, in [41] the error is estimated as absolute value of the difference of the values of
solutions in t = 0, w = 1 computed with stepsizes hi_1 and hg. As this pointwise error is
dependent only on the values Val, we will denote it as Err(Val).

The experimental order of convergence (EOC) will be computed as

log(Err AF=1) —log(ErrAF)
log(hg—1) — log(hg)

We will compute the experimental order of convergence using the above formula also
with error estimation Err(Val) and denote this experimental order of convergence as
EOC(Val). The computational time of each method (depending on the computer), is
denoted as Time. The time is measured in seconds and is just informative, as the value
varies with each new run. In case of the PPPT method, the time needed to compute the
prediction of the controls is added.

EOC AF = (4.10)

In the left plot of Figure 4.2 we show the logarithm of the computational time against the
logarithm of the error, to see how much time we need for each method to get the same level
of accuracy. We observe, that the PPPT (1) method is slower on a low level of accuracy at
first, what is caused by relatively high time-costs spent on computing prediction of control
in contrast to fast low-accuracy PCPT and classical implicit method. For higher levels of
accuracy that are more time-demanding for classical and PCPT methods, the prediction
already saves computational time and the PPPT (1) method is most effective.

&
&

log(Err)
log(Err)

classic classic
pept pept
pppt(1) pppt(2)

KR
o
.
KN
o

-2 0 2 4 6 -2 0 2 4 6
log(Time) log(Time)

Figure 4.2: Comparison of the classic and the PCPT methods (both plots) with the PPPT
(1) method on the left plot and PPPT (2) method on the right plot. In the
PPPT (1) method prediction is computed with the discretization parameter
h = 2~% and in the PPPT (2) method the prediction is computed with h = 4h;,
where hy is discretization parameter of the fine grid.

The previous analysis of results leads us to an idea of running a PPPT method with
different prediction on each refinement level, so that the prediction grid will be adjusted
to the desired level of accuracy. To do so, we will compute for each refinement level
k=1,2,...,10 new prediction of controls with a PCPT scheme with A = 4hj. Results of
this approach to the PPPT scheme is in Table 4.1 denoted as PPPT (2). The right plot
of Figure 4.2 illustrates the dependence of computational time and accuracy for this case.
We see, that this PPPT (2) method is allways the most efficient one. For higher levels of
accuracy it is 4.7 times faster than PCPT and 8 times faster than the classical implicit
method, what is a significant speed-up.

4.3 Numerical example: passport option pricing problem 29

Table 4.1: Error, experimental order of convergence, computational time, value, pointwise
error and pointwise convergence in t = 0,w = 1 for classical implicit method,
PCPT and PPPT methods, for different values of the discretization parameters

hy,
hi, 1 21 272 273 21 275 26 27 28 279
Classical
Err 3,03E+00 | 6,66E-01 | 1,51E-01 | 3,61E-02 | 8,58E-03 | 2,02E-03 | 4,48E-04 | 8,82E-05 | 1,26E-05 | 4,36E-07
EOC 2.185 2.146 2.058 2.075 2.085 2.175 2.344 2.809 4.852
Time 0.33 0.65 1.47 3.35 7.67 19.34 47.86 176.36 655.58 2570.57
Val 2.783 2.025 1.769 1.648 1.589 1.561 1.546 1.540 1.536 1.534
Err(Val) 0.7581 0.2558 0.1210 0.0586 0.0283 0.0144 0.0069 0.0034 0.0017
EOC(Val) 1.568 1.080 1.045 1.051 0.970 1.064 1.007 1.000
PCPT
Err 3,37E+00 | 7,13E-01 | 1,58E-01 | 3,77E-02 | 8,91E-03 | 2,10E-03 | 4,64E-04 | 9,17E-05 | 1,32E-05 | 4,51E-07
EOC 2.239 2.171 2.071 2.081 2.087 2.175 2.340 2.798 4.871
Time 0.08 0.16 0.36 0.94 2.58 8.00 25.38 93.19 365.59 1475.30
Val 3.050 2.109 1.799 1.660 1.595 1.564 1.548 1.540 1.536 1.535
Err(Val) 0.9409 0.3092 0.1392 0.0654 0.0312 0.0158 0.0076 0.0038 0.0019
EOC(Val) 1.606 1.152 1.089 1.067 0.983 1.064 1.008 1.001
PPPT(1)
Err 3,20E+00 | 6,85E-01 | 1,54E-01 | 3,64E-02 | 8,61E-03 | 2,09E-03 | 4,76E-04 | 9,88E-05 | 1,65E-05 | 1,38E-06
EOC 2.223 2.153 2.081 2.080 2.045 2.130 2.269 2.585 3.576
Time 2.71 2.72 2.74 2.81 3.05 3.78 6.61 17.55 61.57 238.09
Val 2.893 2.045 1.776 1.649 1.590 1.563 1.548 1.541 1.537 1.536
Err(Val) 0.8477 0.2691 0.1274 0.0591 0.0271 0.0144 0.0072 0.0036 0.0018
EOC(Val) 1.656 1.078 1.107 1.128 0.906 1.006 0.998 0.980
PPPT(2)
Err 4,35E400 | 9,92E-01 | 1,88E-01 | 4,20E-02 | 9,45E-03 | 2,16E-03 | 4,76E-04 | 9,28E-05 | 1,31E-05 | 4,43E-07
EOC 2.133 2.402 2.160 2.151 2.127 2.183 2.360 2.826 4.885
Time 0.06 0.10 0.20 0.40 0.88 2.35 6.53 21.48 77.60 310.84
Val 3.571 2.594 1.875 1.688 1.599 1.564 1.548 1.540 1.536 1.534
Err(Val) 0.9768 0.7193 0.1868 0.0883 0.0353 0.0159 0.0080 0.0039 0.0019
EOC(Val) 0.442 1.945 1.081 1.321 1.150 0.993 1.029 1.073

Table 4.2: Parallelized methods, computational time (2 time steps) and speed-up in % in
comparison to non-parallelized methods.

Space nodes: | 5 x 107 [5 x10% [5x 10% [5 x 10* | 5 x 10°
Classic implicit

-time 0.321 0.337 0.631 3.886 49.488
-% speed-up -401 -171 13 48 46
PCPT

-time 0.054 0.060 0.112 0.758 9.320
-% speed-up -521 -175 18 49 47
PPPT

-time 0,030 0.031 0.043 0.144 1.279
-% speed-up -941 -647 -142 10 32

4.3 Numerical example: passport option pricing problem

In this section we will test all three methods on the Hamilton-Jacobi-Bellman equation
for passport option pricing from [48]:

30 4 Piecewise predicted policy timestepping method

Example 2 (Passport option pricing problem). Passport options are contracts that allow
the buyer to run trading account for a certain amount of time. After the maturity, the
buyer of this contract can keep the profit, however the potential loss will be covered by
the seller. Here we will examine the case in which the buyer is allowed to invest in one
particular asset only. The price depends on buyer’s wealth w, current asset price S and
time to maturity t. According to [48], [47], the HIB equation for the current price of the
contract can be simplified to the form
ov <02 5 0%V oV

v T — 02 =)0 — (r—r—)a) S =4V) =0 (411
o i (S0 0+ (0 mrem 0= o) o —v) =0

Here, t is time, x = w/S and V is the option price divided by S. By r, we denote the
risk-free interest rate, 7y is the dividend rate, r. is the cost of carry rate, r¢ is the interest
rate for the trading account and o is the volatility. The number of shares that the investor
holds (control variable) is denoted by 6, and it does not have to be an integer. In this case

the seller of the option requires the constraint |§| < 1. For comparison reasons we used
the same parameter values as in [48]: r = 0.08,7 = 0.03,r. = 0.12,7, = 0.05,0 = 0.2.

As discrete control set ©, we took 41 equidistant points from the interval [—1, 1].

Computational domain: Maturity of the option will be one year, the space domain will
be restricted to [—3,4]. The grid will be equally spaced in time, and nonuniform in space
(nodes will be more dense near to zero)

Terminal and boundary conditions: According to [40], in the case of convex payoff
(terminal condition), it is always optimal to choose either ¢ = 1 or ¢ = —1. In that case
the PCPT method requires to solve only 2 PDEs in each time-step, and therefore it is
clearly better than our PPPT method. However, since we want to test also the PPPT
method, we will use the non-convex terminal condition:

Vr(z) = min (max(0, z), max(0, 0.8 + 0.2z)). (4.12)

This terminal condition can be easily interpreted: Buyer of the option pays 80% of the
profit above the current asset price to the seller. We should note that for validating our
implementation we tested the method also with the convex payoff and obtained results
similar to those in [48]. We use Dirichlet boundary conditions according to [48]:

V(Zmin,t) =0, V(Tmaz,t) = 0.8+ 0.2Tmazs [Tmin, Tmaz] = [—3,4]. (4.13)

Numerical results: We implemented three algorithms (classical implicit method, PCPT
and PPPT methods) for the problem of pricing the passport option with non-convex pay-
off. We ran our simulation on grids with different level of refinement, and compared our
estimation of error of the approximation, experimental order of convergence and compu-
tational time needed. The methods were implemented in Matlab and tested on an Intel
Core i7-4770 CPU 3.40GHz computer with 8 GB RAM.

The results of these numerical simulations are presented in Table 4.3. As a reference
solution, we used a solution computed with the classical implicit method on a grid with
12801 time layers and 3841 space layers. In case of the PPPT method we computed the

4.3 Numerical example: passport option pricing problem 31

control prediction for each simulation on a coarser grid with 10-times larger time-step size
and the same discretization in space. The error of the approximation is denoted as Err
and estimated by the formula

Err AF = 4% — AT, (4.14)

where A* denotes last time-layer of the approximation of the solution on the k-th refine-
ment level, and A" denotes the approximation of the solution that is used as reference
solution. The experimental order of convergence is denoted as EOC and computed using
the formula (4.10), where hy, is the step size on the k-th refinement level. The computa-
tional time is in Table 4.3 denoted simply as Time.

L0
12 F
s}
)
>
L .16 |
:8: classic
pcpt
-18 pppt
0 2 4
log(Time)

Figure 4.3: Comparison of natural logarithm of estimated absolute error of the approxima-
tion of solution against natural logarithm of computational time (in seconds)
for classic implicit, PCPT and PPPT method with different grids.

Table 4.3: Error, experimental order of convergence and computational time for classical
implicit method, PCPT and PPPT methods, for different numbers of nodes

k 1 2 3 4) 6 7
Time-layers 101 201 401 801 1601 3201 6401
Space-layers 31 61 121 241 481 961 1921
Classical

Err 1,95E-005 | 2,15E-006 | 7,82E-007 | 3,72E-007 | 1,46E-007 | 5,19E-008 | 4,35E-009
EOC 3.18 1.46 1.07 1.35 1.49 3.57
Time 0.909 1.906 4.587 11.708 33.974 107.869 387.558
PCPT

Err 2,01E-005 | 2,55E-006 | 1,05E-006 | 4,79E-007 | 1,83E-007 | 6,37E-008 | 6,16E-009
EOC 2.98 1.28 1.13 1.39 1.52 3.37
Time 0.519 1.243 2.912 7.231 20.899 67.107 234.978
PPPT

Err 2,05E-005 | 2,74E-006 | 1,21E-006 | 5,54E-007 | 2,12E-007 | 7,36E-008 | 7,63E-009
EOC 2.90 1.18 1.13 1.39 1.52 3.27
Time 0.204 0.336 0.865 2.004 9.236 26.084 87.292

Figure 4.3 illustrates the dependence between computational time and error for all three
methods. We observe, that the PPPT method is always the most effective. For a fine
discretization it is about 2 times faster than the PCPT method on the same level of

32 4 Piecewise predicted policy timestepping method

accuracy, and even faster than the classical implicit method. This argument for the PPPT
method is even stronger if we take into account that the reference solution was computed
with the classical implicit method, which means that the error estimation is negatively
biased towards the classical implicit method. We note that the increase of EOC for the
finest grids is also biased because we use a numerical approximation instead of an analytical
solution as the reference solution.

Chapter 5

One-dimensional Tree-Grid method

In Chapter 3 we proved that we cannot obtain a monotone scheme with order of con-
vergence higher than 2. Therefore, we tried to speed up the convergence (in means of
computational time, not in means of convergence order) by reduction of control space in
the piecewise predicted policy timestepping method in Chapter 4. In this chapter, we
present another approach on how to reduce the computational time - we will move from
the implicit methods to faster explicit methods. It is in fact easy to construct explicit
versions of the implicit methods from Chapter 3, however, these methods are not uncon-
ditionally stable and monotone. Here we present a method that is unconditionally stable,
monotone, consistent and explicit. This chapter is based on paper [28].

5.1 Recapitulation: problem formulation

For convenience we repeat here the problem formulation from Chapter 2. We are concerned
with searching for the value function V'(s,t) of the following general stochastic control
problem (SCP):

T k
V(s,t) = (mz;x_E /exp /T(SI,Z,G(SI,Z))dl f(Sk, k,0(Sk, k))dk
0(s,t)e©
t
T
e | [Sk oSk | Vecsn[si=s). G)
t
dSt :M(St,t, G(St,t))dt + O'(St,t, Q(St, t))th, (52)

0<t<T, seR,

where s is state variable and t is time. Here, © is space of all suitable control functions
from R x [0, 7] to a set ©. For our purpose, we will suppose © to be discrete. If this is not
the case, we can easily achieve this property by its discretization. We also suppose that
the functions 7, f, u, o, Vp are chosen suitably (see Chapter 2). Now following Bellman’s
principle, the dynamic programming equation holds:

tjt1 k
V(s,tj)ze(m)a% E /exp /T(SI,Z,H(SI,Z))CZZ f(Sk, k,0(Sk, k))dk
s,t)e t
tj tj
tj+1
exp / F(S b 0(Se, k) | VS ti)]Se = s |0 (53)
tj

33

34 5 One-dimensional Tree-Grid method

where 0 <t; < tj41 < T are some time-points and (:)tj is a set of control functions from ©
restricted to the R x [¢;,¢;41) domain. Using this equation (5.3), it can be shown [38|, that
solving the SCP (5.1),(5.2) is equivalent to solving the Hamilton-Jacobi-Bellman (HJB)
equation:

o()2 §2
V(s,T) = Vi(s), (5.5)

0<t<T, seR.

We repeat intentionally that the maximum operator in (5.1) and (5.4) can be replaced by
a minimum operator and the whole following analysis will hold analogously.

5.2 Construction of the Tree-Grid method

5.2.1 The basic idea

In our proposed method we compute the approximation of the solution on a rectangular
domain [sr,sgr] x [0,T] with some grid as in PDE-based schemes. The gridpoints are
denoted as [Si,th ie{l,2,...,N}, je{l,2,... M}, kE<l= Sp < sp,tp <t t] =
0,tpyy =T, s1 = sp,sy = sSr. For the step-sizes we use the following notation: A;s =
Si+1 — Si, Ajt = tj11 —t;. We point out that the grid defined in such manner is very
general, in contrast to grids or lattices used for Markov chain approximations or tree
methods. Later, we will show that in our new explicit method no additional restrictions
on the grid are required, in contrast to standard explicit methods. This gives us a lot of
freedom to choose the discretization not only according to the problem coefficients, but
also according to the terminal condition (5.5), being an important advantage of implicit
methods.

The numerical approximation of V'(s;,t;) will be denoted as v(s;, t;) or simply as vg . We
define a terminal condition v}¥ = Vr(s;) and some suitable boundary conditions. In this
paper we suppose that the solution on the intervals [—oo, s1] x [0, T] resp. [sn, 00| X [0, T]
can by approximated with known functions BC[,(s,t) resp. BCRr(s,t). This also includes
the case of Dirichlet boundary conditions, where BC}, and BCg are constant in s. In
case of Neumann boundary conditions, BCj, and BCpr can be set to linear functions with
a prescribed slope, fulfilling BCr(s2,t5) = v(s2,t;), BCr(sn—-1,t;) = v(sn-1,t;). Also
generalization of the method to other cases of boundary conditions will be straightforward.

The main idea of this scheme follows the same principle as most numerical methods for
this kind of problems: we will start in the last time layer ¢3; = T and then subsequently
compute values in the previous time layers ¢;. To intuitively derive the method we will
use the original problem formulation (5.1),(5.2) and the dynamic programming equation
(5.3). To prove the convergence we will however regard the scheme as an approximation
of the PDE-problem (5.4),(5.5).

Let us assume, we are at time ¢;, Stj = s; and we want to compute an approximation of

the current value of the value function v]. Also assume that we already somehow know
the values vlJJrl, Vi =1,2,..., N from the previous time layer ;1. Now we can compute

5.2 Construction of the Tree-Grid method 35

the approximate probability distribution of S;, , using the SDE (5.2) for the stochastic
process:

‘gt = Stj + N(Stj) tjv Q(Stj’tj))Ajt + U(Stj) tjv Q(Stj) tj))AjW
=5; —l—/,L(Si,tj,@)Ajt—I-O'(Si,tj,e)AjW (56)

Jj+1

Here, and also later if misunderstanding is not possible, we abbreviate 6(s;,t;) simply as
6 and A;W is a normally distributed random variable (RV) with mean 0 and variance
Ajt. Using this approximation, we want to compute vf , the approximation of V(s;,t;),
by using again some discrete approximation of the dynamic programming equation (5.3).
However, as we only know approximations of V' (s,¢;41) in discrete points s;, a continuous
RV S*tj 1 is not suitable and should be replaced by a discrete one. This is the main idea
of our method as well as of the forward shooting grid (FSG) methods, Tree methods, and
Markov chain approximation methods.

Problem: Discrete random variable (RV) with values from {s1, s2,..., sy} suitably ap-
proximating normally distributed S, from (5.6) should be found.

5.2.2 Excursion: FSG method

The FSG approach [5] to this problem is to approximate S, 41 With a RV S, ;41 that attains
a finite number (typically 2, 51 and 5_) of values with in-forward given probabilities (p4
and p_). These probabilities with Correspondmg values arise typically from a binomial
tree model, therefore the first two moments of Sy ;41 and of St 41 are matching, what is
a desirable property, as Stj 41 is normally distributed and thNerefore fully characterized by
its first two moments. However as the values 54 and s_ of St , typically do not coincide
with the gridpoints from the set {s1, s9, ..., sy}, approximations vifl, vj_+1, of V(54,tj41),
V(5-,tj+1) are not known. Therefore, these values are computed by some interpolation

formula from known values U{H v%H, . ,vaﬂ o = Zki L kivf::l. After that a
+

discrete version of the dynamic programming equation (5.3) will be used, and at this step
we will be interested only in an approximation of the expected value E(V(St ; +1t]~+1)), that
will be computed as

E(V(Stj+17tj+1)) ~ E(V(Stj+17tj+1)) ~ E(V(Sth?tj-l-l))

+
1 1
NP+U+ +p UH‘ § p+04k+ zk + § P—0y, UJ+7 (5.7)
k_=1

where the first approximation in (5.7) is with respect to time, second one is with respect
to space and the last approximation is an interpolation with the known values in the grid
points. However, the final approximation (5.7) can be again interpreted as an expected
value E(V(S{d Y tj+1)) where SéZJr , is a discrete RV taking values s;,, with "probabilities"
piaa. However in contrast to St ,, the moments of S’l{j o will most probably not match

with the moments of S’tj +1- This can be interpreted in such manner, that using this
approach we solve a SCP driven by an SDE different from (5.2). Moreover, depending
on the interpolation formula the "probabilities" might not sum up to 1 and even not be
non-negative anymore (not in the case of constant or linear interpolation), what may lead

36 5 One-dimensional Tree-Grid method

to instability of the whole scheme. This possible defect of the method is analogous to the
instability of explicit FDM schemes if the timestep-spacestep condition is not met: both
defects harm the monotonicity of the schemes. This makes such methods unsuitable for
searching for viscosity solutions and possibly even unstable.

We should note, that the above analysis was done for a FSG method based on S’tj T
attaining two values, but the case of more values is completely analogous. Of course
interpolation used in this method may be in many cases "good enough", meaning that the
moment matching is done in the limit case, and the whole method may converge to the
solution. However this is not automatic, and it is problem-specific. An analysis of when
FSG is successful and when not for the problem of path-dependent option pricing can be
found in [18].

5.2.3 The basic Tree-Grid method

In our new scheme we will also approximate gt]. ., from (5.6) with a discrete RV S'tj -
However, because of the problems with standard FSG schemes, we choose a different
approach to construct this RV. In order to avoid interpolation St , will attain only values

from the set {s1,s92,...,sn}. Exceptions arising close to a boundary will be discussed
later. In this section, we will derive a scheme where S, , attains three possible values
S_, 50,8+ € {81,82,...,8N}, S— < S, < Sy, with corresponding probabilities p_, p,, P+

Of course, because of (5.6), these values will depend on the current state s;, time ¢;
and control # and should be denoted as s_(s;,t5,0), so(si,tj,0), s4+(si,t5,6), p—(si,t5,0),
Po(Si,tj,0), p+(8i,t5,0), however for simplicity we prefer the shorter form. We will try to
choose the values in such manner, that the following conditions are satisfied:

P—;Pos P+ = 0, (5.8)
p—+po+pi =1, (5.9)
P-5— +PoSo + D5y = F, (5.10)
p_s® + posg —|—p+si = Var + E?, (5.11)
where
E:=E(S;,,,) = s; + pu(si, t;, 0)Ajt, (5.12)
Var := Var(gtjﬂ) = o(si, 1,0)*Ajt. (5.13)

The first two conditions (5.8),(5.9) state that p_, p,, p4 can be interpreted as probabilities
and, as we will see later, they also ensure stability and monotonicity of the scheme. The
following two conditions (5.10),(5.11) ensure that the first two moments of the RVs S’t], o
and S’tj ., are matching, and as shown later, together with (5.9) also ensure the consistency
of the scheme with the PDE (5.4). Solving equations (5.9)-(5.11) we get

(so— E)(s4+ — E)+ Var

T sl) o4
(5= —E)(sy —E)+Var

Do = (30 — 8_)(80 — S+) , (5.15)

s = (s— — E)(so — E)+ Var (5.16)

(54— s5-)(54 — So)-

5.2 Construction of the Tree-Grid method 37

The question remains, if we can choose s_, $o, 51 in such manner, that the non-negativity
condition (5.8) is also fulfilled.

Let us suppose without loss of generality that u(s;, ¢;,0) > 0= E > s;. If E < s_ or
E > sy then p, < 0. If Var > 0, also F = s_ or F = sy lead to p, < 0. Therefore, we will
choose s_, sy so that s_ < F < s;. As we will see later, for unconditional consistency of
the scheme, it is necessary that one of s_, s,, or s4 equals to s;. As s; < E < sy we can'’t
choose s; = s;. Analogously in case of a negative drift pu(s;,t;,6) < 0, we would not be
able to choose s_ = s;. To make a suitable choice in both cases we will choose s, = s;.
Now, (case of a positive drift), p4 > 0 automatically (in case of a negative drift it would
be p— > 0). The denominator of p_ is positive and hence we want a positive numerator.
The denominator of p, is negative therefore we want a negative numerator.

Since s_ only appears in the numerator of p, and not in the numerator of p_, for any
choice of s4 we can choose s_ small enough such that p, > 0 for any choice of s;. Choices
of s_ behind the boundary (s_— < s;) are also possible as a special case and will be
explained later. Therefore the only question remains, if we can choose such sy, that the
numerator of p_ will be positive. We will use abbreviations A;j4+s = s4 —s; = 54 — S,
and A_;s = s, — s_ = s, — s_. Moreover, we will use abbreviations p := u(si,tj,) and
o = o(s;,t;,0) if confusion is not possible. For the condition on numerator of p_ from
equation (5.14) holds

(50— E)(s4 — E) + Var >0 < —plAjt(Airs — pAjt) + oAt >0
& Ajs < pAjt+ o/ (5.17)

It should also hold s; > E = A;;s > pAjt. Combining this with (5.17), we get the
following condition: uA;t < Ajrs < puAjt+0?/p. A sufficient condition, under which s
leading to fulfillment of this inequality can be found, is

AS < U(Si,tj, 9)2

) 5.18
— u(si,t;,0) (5.18)

where As = max;e(1 2, n—1} Ais. This seems a good result, however as we will see later,
the convergence of this method depends on the distances A;ys, A_;s. Unfortunately, we
do not have any bound on A_;s now, we just know that it can be chosen to ensure that
po Will be positive. Therefore we will try another approach: we will try to minimize the
distances A;+s, A_;s while keeping p, positive. Then we will check, if also p_ is positive.
Problem:

min min (s — 8;,8 — S—) (5.19)
54,5-€{51,52,..,5n}
|(s— — E)(s+ — E)| > Var. (5.20)

Solving this problem may not be trivial in general, however an exact solution is also not
needed. If we assume E to be "close enough" to s;, then some "close to optimal" (and
possibly also optimal) solution will be:

s = LE —Var|, = |si + ujt — \/WJ , (5.21)

s

Sy = {E +VvVarls = [si + pAjt + v Var—‘ R (5.22)

38 5 One-dimensional Tree-Grid method

where []s denotes rounding to the nearest greater element from si,s2,...,sny, and ||
denotes rounding to nearest smaller element from s1, s2,...,sy. If such element does not
exist, [z]s and |z|s will return just z. This corresponds to the boundary cases where
xr < s1 or x > sy and will be discussed later. As we will see later, on an equidistant
or "locally equidistant" grid it may be advantageous to choose s and s_ symmetric
around s;. Therefore we propose here also another choices of si, s_, that will ensure
this symmetry, fulfill condition (5.20), however possibly lead to a greater value of the
minimized expression (5.19):

s_ = Lsi — 1/ (At)? + VarJ , (5.23)

s

Sy = {Si + 1/ (nAt)? + Varw . (5.24)

S

Now, for (5.21),(5.22) the following estimates hold

s— > s;+pAit —vVar — As, (5.25)
sy < 8+ pAjt+vVVar + As, (5.26)

and for (5.23),(5.24) the estimates hold

s— > s — 1/ (pA1)2 +Var — As > s; — |u|Ajt — VVar — As, (5.27)
s+ < si+ 4/ (pA1)2+ Var + As < s; + |u|Ajt + VVar + As. (5.28)

Let us now check if p_ is non-negative, that means, if its numerator is non-negative.
Substituting (5.22) or (5.24) into it, and further supposing u > 0, we get

(o — E)(s4+ — E) +Var = —pAjt(s4 — s, — pAjt) + Var
> —pAjt (\/ Var + As) +Var = —pAjt (a\/Ajt + As) +a?Ajt. (5.29)

This is greater than 0 if As < 02/pu — oy /Ajt. A completely analogous analysis can be
done for the case of negative drift © < 0 = E < z;. Joining both cases into one condition,
we get that if s, = s; and (5.21), (5.22) or (5.23), (5.24) holds, then

AS < O‘(Si,tj, 9)2

< ——2 L —g(s;,ti,0)\ /At 5.30
(st 0)] OOV A (5.80)

is a sufficient condition for the non-negativity of p_,p,,p+ defined in (5.14)-(5.16). The
last question is, if s < s, < s4 holds. This may be a problem in (5.21) (in case of a
positive drift) or in (5.22) (in case of a negative drift). However it is easy to check that
the condition (5.30) is sufficient for this inequality to be fulfilled. The condition (5.30) is
quite weak for o large enough. However for problems with vanishing ¢ it may be hard or
even impossible to fulfill. In the next section we will describe how to tackle this problem.

5.2.4 The Tree-Grid method with artificial diffusion

Let us now examine the case that condition (5.30) is not fulfilled. This can only happen
if the variance Var defined in (5.13) is not large enough to compensate the negative part

5.2 Construction of the Tree-Grid method 39

in (5.29). We solve this problem by redefining the variance Var in such manner that we
add to the variance (5.13) some additional positive term of higher order in Ajt:

Var = o(si, t;,0)° At + a(si, t;,0)% (A1) (5.31)

Here a(s;, tj,0)?(A;t)? is the so-called artificial diffusion term, and if large enough, use of
this new modified variance (5.31) should lead to positive weights. Moreover, as the whole
term should be vanishing with A;¢ — 0 and the true variance term o/; should dominate.
For this, we need however a(s;,t;,0) (later denoted simply as a) to be bounded. Now
assuming a positive u, we will repeat the analysis (5.29) of the numerator of p_ with the
new Var (results for p, and p; still hold).

(so = E)(s+ —E)+ Var > —pAjt (\/ Var + As) + Var (5.32)

= —ulAjt <\/U2Ajt +a2(Ajt)2 + As> + 02 Ajt + a?(Ajt)?
> —pdt (o/Bjt+aljt+ As) + o2 Mgt + a2 (A% (5.33)

In the last step, we decided that a is positive, so that we can do the above estimation.
Now in order to introduce as small artificial diffusion as needed, but still having (5.33)
non-negative, we will choose a as the root of —uA;t (U\/Ajt +alAjt + As) + o?Ajt +
a?(A;t)? = 0. Moreover, to ensure the positivity of a, we will choose the larger root:

B MAjt + \/M2(Ajt)2 — 4‘/1,‘Ajt (0'2/|M| — 0 Ajt — As)

34
20,1 (5:34)

a

We should note, that we substituted a non-negative p with |u| such that (5.34) holds also
as result of fully analogous analysis for negative p.

If 02/u — o\/Ajt — As > 0, then the condition (5.30) is fulfilled and we can switch to
a = 0. Let us now examine the case that o2 /y — o /At —As < 0; in that case, the whole
discriminant and therefore also a is positive. That means, the numerator of p_ as well as
p_ itself is positive and we found positive probabilities p_, p,, po. Now we will try to find
an upper bound on a, satisfying convergence of new variance to the true variance from the
problem setting. Following (5.34),

HAGE 1\ i2(Aj1)2 = Alul At ming g (02/|] — 0/~ As)
20t
pAGE+ /202 (D)% + Au]AjtAs
20t
_ BAGEF V202 (851 + AulAstAs
- QAjt

= (Wajt+z\/m¢m> . (5.35)
J

a <

Let us define the abbreviations:

my= (L+VDul/2, ma=2y/Jul. (5.36)

40 5 One-dimensional Tree-Grid method

Following the estimation, for the whole artificial diffusion term holds:

GQ(Ajt)Q = (mlAjt + mQ\/AthS)Q
= m%(Ajt)2 + lemgAjt\/AthS + m%Aths
<mi(Ajt)2 + mimaAjt(Ajt + As) + miAtAs
=my(mi + mg)(Ajt)2 + ma(my + TnQ)AthS
= O(At(At + As)), (5.37)
where At = max;jeq 9, pm—1} Ajt. Together with (5.31) we get finally the estimate

Var = O(At). (5.38)

We will use this estimation of the artificial diffusion term later to prove the consistency.

5.2.5 The final Tree-Grid method algorithm

In the following algorithm, we are interested in the values Uf +

S—, So and sy. Therefore, we define the following function:

corresponding to the states

if s€{s1,80,...,sn}: 07T (s) = vi“ so that s = s
else if s < s1: v/ (s) = BCL(s,tj41) (5.39)

else if s> sy :v/T(s)

BCR(S, tj+1>.

+1 ; 1 ;
Moreover, we define the short notation v/t = vit1(s_), o] = vit1(s,), f = v tl(sy)

and f7(0) = f(si, t;,0(si,t;)), 77(0) = (s, t;,0(si, ;). Now, assuming Sy; = s; in order

i
to discretize the equation (5.3) we use the following approximations:

o St exp ([(81,1005 0)dL) f(Sy, k. 0(Sk, K))dk = f1(0) At
o exp ([} r(Sk, b, 0(Sk, K)dk) = 1+ (8)Ast,
o | (V(Stjﬂ,tj_,_l)‘stj = s,-) ~ p_vj:rl —|—povg+1 + pt viﬂ.

Then the discretized version of the dynamic programming equation (5.3) for
1=2,3,...,N — 1 reads

J_ J) J) J+1 J+1
v] = Igléi@x(fi (O)Ajt+ (1 +17(0)Ajt) <p ' povi ™ 4+ py vy)) (5.40)
or
j j
v; =maxw; (9), (5.41)

wl(0) = (A + (1+ 1] (O)A;) (p-v 4 po ™ +pylT) (5.42)

5.2 Construction of the Tree-Grid method 41

We note that uniqueness of the maximum in (5.41) is not needed. For i = 1 and i = N
we employ the boundary conditions:

v{ = BCL(Sl,tj), Ugv = BCR(SN’tj)' (5'43>

Finally we can summarize the whole algorithm of the Tree-Grid method for solving the

SCP (5.1),(5.2) (and the HJB equation (5.4),(5.5)):

Algorithm 5 The Tree-Grid method
1: Set vM = Vp(s;) fori=1,2,...,N
2 forj=M-1,M-2,...,1do
3: Compute v{, va according to (5.43)

4: fori=23,...,N—1do

5: for 0 € © do

6: Compute E according to (5.12)

7: if Condition (5.30) holds then

8: Compute Var according to (5.13)

9: else

10: Compute a according to (5.34)

11: Compute Var according to (5.31)

12: end if

13: Set s, = s; and compute s_, s4 using (5.21)-(5.22) or (5.23)-(5.24)
14: Compute p_, po, p4 using (5.14)-(5.16)
15: Compute w] (0) using (5.39) and (5.42)
16: end for

17: Compute v} according to (5.41)

18: end for

19: end for

5.2.6 Relationship to other numerical methods

In this section we outline (very informally) the interesting relationships between our new
method and standard approaches, as well as point out the most relevant differences.

Forward shooting grid methods. We a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>