
The Tree-Grid Method

Dissertation

zur Erlangung
des akademischen Grades

eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

der
Fakultät für Mathematik und Naturwissenschaften

der
Bergischen Universität Wuppertal (BUW)

vorgelegt von

Igor Kossaczký

geboren am 19.12.1989 in Bratislava

betreut von: Prof. Dr. Matthias Ehrhardt (BUW)
Prof. Dr. Michael Günther (BUW)

Wuppertal, 2018

Die Dissertation kann wie folgt zitiert werden:

urn:nbn:de:hbz:468-20181029-153921-8
[http://nbn-resolving.de/urn/resolver.pl?urn=urn%3Anbn%3Ade%3Ahbz%
3A468-20181029-153921-8]

Abstract

In this thesis we are concerned with the development of numerical schemes for solving the
stochastic control problems and the related Hamilton-Jacobi-Bellman (HJB) equations. In
the first part, we present the convergence theory and the standard finite difference methods
(FDMs) used for solving HJB equations. We present then our result on non-existence of
higher order monotone numerical methods. This result represents also the motivation for
the numerical methods presented in this thesis. Rather than aiming for an high-order
method, we focus on reducing the computational time.

The piecewise predicted policy timestepping method presented in this work represents a
modification of the well-established piecewise constant policy timestepping method. The
main idea of the method is reducing the control space based on the prediction computed
on a coarse grid in order to reduce the computational time. We show the efficiency of the
method on examples from finance.

The Tree-Grid methods represent the central topic of this thesis. The main essence of
these methods is the combination of the tree structure, similar to that from trinomial
tree methods, with the rectangular grid used in FDMs. We prove that these methods are
unconditionally stable and convergent on an arbitrary grid. On the other hand, as the
methods are explicit, they are faster and can be easily parallelized. We developed the
methods for the cases of a one-dimensional and two-dimensional state variable, and have
shown that for higher dimensions a monotone generalization is not feasible for a general
problem. An additional advantage of the Tree-Grid method in the two-dimensional case
is, that although the method uses a wide-stencil scheme, no interpolation is needed. For
the case of a one-dimensional state variable, we developed a useful modification leading to
a more efficient search for the optimal control. We tested all methods on examples from
finance.

In the conclusion we also propose possible further research directions emerging from this
thesis.

I

Acknowledgments

In the first place, I would like to express deepest thanks to my supervisors Prof. Matthias
Ehrhardt and Prof. Michael Günther. They gave me the opportunity to write the Disserta-
tion Thesis at the Department of Applied Mathematics and Numerical Analysis (AMNA).
The discussions with them were inspiring, and their feedback and know-how was always
a great help.

I’m very grateful to Prof. Daniel Ševčovič from the Comenius University in Bratislava for
the interesting discussions. He was my master thesis supervisor and introduced me to the
Hamilton-Jacobi-Bellman equation, the topic of this PhD Thesis.

Furthermore, I want to thank all my colleagues from AMNA for their friendly support in
various situations and for making my doctoral studies more enjoyable.

Next, I’m thankful to all the teachers from my bachelor and master studies at the Comenius
University for providing me with interesting insights into various areas of the applied
mathematics. The knowledge that I acquired during those years was essential to start my
PhD studies.

I’m most grateful to my beloved wife Tatiana for all her love. She was always my greatest
support, also during the first two years of my PhD studies in Wuppertal, being thousand
kilometers away.

I also want to express special thanks to my parents for all their support. Besides many
other things, they brought me a positive attitude towards education and encouraged me
to study in Germany.

Last but not least, I want to thank my siblings, family and my friends in Wuppertal and
in Bratislava for all the good moments I could spend with them.

III

Contents

Abstract I

Acknowledgements III

Contents V

Notation VII
Abbreviations . VIII

1 Introduction 1
1.1 Related scientific works . 2
1.2 Outline of the thesis . 4

2 Stochastic control problems and Hamilton-Jacobi-Bellman equations 7
2.1 General stochastic control problem . 7

2.1.1 One-dimensional stochastic control problem and HJB equation . . 10
2.1.2 Two-dimensional stochastic control problem and HJB equation . . 11

2.2 Viscosity solutions and convergence theory 11

3 Finite difference numerical methods 15
3.1 Standard finite difference methods . 15

3.1.1 Discretization of the Hamilton-Jacobi-Bellman equation 15
3.1.2 Classical implicit FDM with policy iteration 16
3.1.3 Piecewise constant policy timestepping method 17

3.2 Non-Existence of higher order monotone approximation schemes 18
3.2.1 Main Results . 18
3.2.2 Application of the results to the HJB equation 20

4 Piecewise predicted policy timestepping method 23
4.1 Main idea and algorithm . 23
4.2 Numerical example: mean-variance optimal investment problem 26
4.3 Numerical example: passport option pricing problem 29

5 One-dimensional Tree-Grid method 33
5.1 Recapitulation: problem formulation . 33
5.2 Construction of the Tree-Grid method . 34

5.2.1 The basic idea . 34
5.2.2 Excursion: FSG method . 35
5.2.3 The basic Tree-Grid method . 36
5.2.4 The Tree-Grid method with artificial diffusion 38
5.2.5 The final Tree-Grid method algorithm 40
5.2.6 Relationship to other numerical methods 41

V

VI Contents

5.3 Convergence of the Tree-Grid method . 43
5.3.1 Consistency of the scheme . 44
5.3.2 Monotonicity, stability, convergence 48

5.4 Numerical example: uncertain volatility model 50
5.5 Numerical example: passport option pricing problem 52

6 Tree-Grid method with control independent stencil 55
6.1 Tree-Grid method revisited . 55
6.2 Modification: control-independent stencil 57

6.2.1 Derivation of the modified scheme 57
6.2.2 Analytical solution of the control problem in the modified scheme . 58
6.2.3 The Fibonacci algorithm for finding the optimal control 59

6.3 Numerical example: passport option pricing problem 60

7 Two-dimensional Tree-Grid method 63
7.1 Recapitulation: problem formulation . 63
7.2 Construction of 2D Tree-Grid method . 64

7.2.1 Notation . 65
7.2.2 Choosing the stencil nodes . 65
7.2.3 Choosing the stencil weights (probabilities) 66
7.2.4 Artificial diffusion and covariance adjustment 67
7.2.5 Setting parameter K and stencil size reduction 69
7.2.6 The final 2D Tree-Grid method algorithm 70
7.2.7 Comparison to other wide stencil methods 71

7.3 Convergence of the 2D Tree-Grid method 73
7.4 Numerical example: two-factor uncertain volatility model 76

8 Restrictions for the higher dimensional generalization of the Tree-Grid method 81
8.1 P-dimensional stochastic control problem 81
8.2 Construction of the P-dimensional Tree-Grid scheme 81

8.2.1 Notation . 82
8.2.2 Choosing the stencil nodes . 82
8.2.3 Choosing the stencil weights (probabilities) 83

8.3 Appearance of possibly negative weights 84
8.4 Ideas from Tree-Grid schemes applicable to other methods 85

9 Conclusion and outlook 87
9.1 Outlook of the future research . 87

References 91

Notation

Let us introduce the most important notation used in this thesis:

• t – time variable

• T – final time (maturity in case of option pricing)

• s̄ – state-space variable with dimension higher than two, or space variable in general
(with undefined dimensionality)

• s – one-dimensional state-space variable

• (x, y) – two-dimensional state-space variable (both x and y are one dimensional)

• θ – control variable

• Θ – control set

• Θ̄ – set of control functions θ(s̄, t)

• W̄t, S̄t – possibly higher-dimensional Wiener process and state process

• Wt, St – one dimensional Wiener process and state process

• (W x
t ,W

y
t), (Xt, Yt) – two dimensional Wiener process and state process

• V (s̄, t) resp. V (s, t) or V (x, y, t) – Value function

• E(·) – Expected value

VII

VIII Notation

Abbreviations

BC boundary condition

BS Black-Scholes (model/equation)

CFL Courant-Friedrichs-Lewy (condition)

EOC experimental order of convergence

Err error

FDM Finite difference method

FSG Forward shooting grid (method)

HJB Hamilton-Jacobi-Bellman (equation)

HJBI Hamilton-Jacobi-Bellman-Isaacs (equation)

PCPT Piecewise constant policy timestepping (method)

PDE partial differential equation

PPPT Piecewise predicted policy timestepping (method)

RV random variable

SCP stochastic control problem

SDE stochastic differential equation

TG Tree-Grid (method)

1 Chapter 1

Introduction

In this thesis we are concerned with the development of the numerical schemes for solving
the stochastic control problems (SCPs) and the related Hamilton-Jacobi-Bellman equa-
tions. At first, before defining a SCP in a formal manner, let us intuitively explain what
a SCP is. A stochastic control problem can be defined as the problem of dynamically
adapting a control variable to a stochastic process that depends on this variable during
some finite (in our setting) time interval. The goal is to maximize the sum (in fact, the
integral) of profits implied by the evolution of the controlled stochastic process together
with the final profit depending only on the value of the controlled process at the final time.
Alternatively, we can replace the profits by costs and the maximization by minimization.
In our setting, we will model the uncertainty in the stochastic process by a Wiener process.
Figure 1.1 illustrates this concept of SCP. We should note, that the underlying stochas-

Figure 1.1: Schematic illustrating the SCP and its parts.

tic control process can also be multidimensional. However in this thesis, we will develop
schemes only for one and two dimensional underlying processes. The difficulties arising
by generalizing our numerical methods to higher dimensions are outlined in Chapter 8.
Our definition of the SCP is of course not exhaustive. Other concepts of the SCP are for
example:

1

2 1 Introduction

• Stochastic control problems with infinite time horizon [31],

• Stochastic control problems with uncertainty modeled with Lévy process (or some
other stochastic processes) [39],

• Optimal stopping time problems [31],

• Discrete SCPs [21].

Another possible generalization of the SCPs is the stochastic differential game [36, 38].

Although it is possible to solve the SCPs directly, it is often more convenient to solve the
Hamilton-Jacobi-Bellman (HJB) equation. This is a nonlinear partial differential equation
(PDE), therefore modeling of the stochasticity is not needed. The formulation of the HJB
equation corresponding to the SCP is described in the next chapter.

Stochastic control problems and HJB equations arise in many applications. In this thesis
we will solve numerically the HJB equations corresponding to the following problems from
finance:

• Mean-variance optimal investment problem (Example 1, Chapter 4),

• Passport option pricing (Example 2, Chapters 4, 5, 6),

• Option pricing under uncertain volatility model (Example 3, Chapter 5),

• Option pricing under 2-factor uncertain volatility model (Example 4, Chapter 7).

Other SCPs or HJB equations arising in finance, but also in other areas are for example:

• Optimal portfolio allocation problem (see e.g. [24]),

• Gas storage valuation and optimal operation (see e.g. [10]),

• Optimal vaccination in SIR (Susceptible-Infectious-Recovered) model (see e.g. [23]),

• Monge-Ampère equation (see e.g. [32]).

As one can see, the SCPs play an important role in applied mathematics. In the following
section we present the overview of the related scientific work with special emphasis on the
numerical methods for HJB equations.

1.1 Related scientific works

For an overview on the general stochastic control theory, we refer the reader to [38, 50]. In
[31], beside the control theory also Markov chains and numerical methods are discussed.
For a reader interested in discrete optimal control theory we refer to [21]. For the study
of stochastic differential equations and stochastic calculus we recommend for example
[44] where the stochastic calculus is applied in finance, or a more theoretical work [2].
As it will become clear from the examples in this thesis, the HJB equation and control
theory is also closely related to financial mathematics. For a reader interested in analytical
and numerical methods for nonlinear financial models we recommend [43] and [14]. Finite

1.1 Related scientific works 3

difference methods for option pricing can be found in [46] and also other numerical methods
with focus on the implementation in Matlab can be found in [20]. For the study of
numerical methods for PDE problems in general we refer to [19].

The Hamilton-Jacobi-Bellman (HJB) equation, as well as the other nonlinear PDEs may
not have solution in the classical sense. Therefore, Crandall, Ishi and Lions [11] introduced
in 1992 the concept of viscosity solution, suitable for HJB equations. For a brief intro-
duction to the theory of viscosity solutions we refer to [34]. However, it can be a problem
to find even such a viscosity solution analytically, therefore numerical methods are used.
To prove the convergence of the approximation computed with these numerical methods
to the viscosity solution often the theory of Barles and Souganidis [4] is used. Another,
probabilistic approach to the convergence proofs is presented in the book of Kushner and
Dupuis [31].

The numerical methods used to solve the above SCP can be divided into two classes, based
on the formulation they are exploiting. The main idea of methods based on the partial
differential equation (PDE) approach is to solve the HJB PDE with numerical methods
as for example finite differences. Here, the implicit finite difference methods (FDM) using
policy iteration were shown to be successful e.g. in the work of Forsyth and Vetzal [17]. An
alternative approach to the policy iteration used in this method is the piecewise constant
policy timestepping (PCPT) scheme used for example in [16], [41]. The basic idea of this
method is solving several different PDEs with different constant policies in each time layer
and then pick in each node the maximum result. A modification of this scheme leading to
experimentally faster algorithms was proposed by the authors in [25] and is presented also
in this thesis. An alternative approach based on the Ricatti transformation of the PDE
was proposed by Kilianová and Ševčovič in [24]. The advantage of using this approach is
that we don’t need to solve the optimization problem in each time-layer.

Whereas methods based on the PDE approach are typically implicit, methods based on
the original problem formulation (2.8),(2.9) are mostly explicit. Apparently the most
famous of these approaches are the methods based on Markov chain approximations of
the stochastic differential equation (SDE) (2.9) presented in the book of Kushner and
Dupuis [31]. In finance, binomial and trinomial tree methods [1, 3] are widely used. These
methods often present another viewpoint on the Markov chain approximation, and are
equivalent up to some order to explicit FDMs (see for example [1]). These methods are
known to suffer from instability if a certain condition on stepsizes is not met. This is also
the reason why implicit methods are used more often. In tree and Markov chain methods,
fulfilling this condition is achieved by a problem-specific construction of the grid or lattice.
And finally, also based on the original problem formulation, there are forward shooting
grid (FSG) methods [22], combining the tree lattice of binomial or trinomial method and
the grid of the FDM or Markov chain approximation method. The FSG methods are
typically used in path-dependent option pricing [5, 22], but can be easily implemented
also for SCPs. These methods however may suffer from convergence problems as outlined
by Forsyth, Vetzal and Zvan in [18]. A new explicit and unconditionally stable Tree-Grid
method was developed in [28] and will be also presented in this thesis.

In two or more space dimensions, a generalization of the implicit unconditionally stable
method from [48] was presented in [35] and later used in [9]. The main idea of this method
is combining the wide and the fixed stencil depending on the correlation in the particular
time-space node. Alternatively, explicit methods based on the ideas from [31] presented
in papers [8, 12, 13] can be used. These are wide stencil schemes stable under some CFL

4 1 Introduction

condition. Moreover, linear interpolation of the grid values is needed in these methods.
In [29], a generalization of the Tree-Grid method for two space dimensions was developed.
This generalization of the Tree-Grid method, presented also in this thesis, also falls into
the class of the wide stencil schemes, however it is unconditionally stable for any grid and
no interpolation of the grid values is needed.

1.2 Outline of the thesis

Let us now introduce the structure of the Thesis:

Chapter 1: In this chapter, we give the reader intuition on what a SCP is and for which
applications it is important. In Section 1.1 we provide the reader with an overview of
useful literature on numerical methods for solving SCPs and HJB equations and other
related topics. Finally in this Section 1.2 we present the outline of the thesis.

Chapter 2: In Section 2.1 we formally define the SCP together with the dynamic pro-
gramming equation and the HJB equation. We also look closer on the special cases of
problems with one or two space dimensions, which are the target problems of this the-
sis. In Section 2.2, we define the viscosity solution and present the main results of the
convergence theory of Barles and Souganidis [4].

Chapter 3: In Section 3.1 we describe the discretization of the HJB equation. Then we
present the algorithms of the standard implicit methods from [16]: the implicit method
with policy iteration and the PCPT method. The Section 3.2 is based on our paper [26].
We present here the result on non-existence of the higher order monotone schemes for
solving the HJB equations. This result motivates also the further direction of our work:
rather than aiming for higher order of consistency, we develop methods that are explicit
while remaining unconditionally stable (Tree-Grid methods) or introduce heuristics for the
search of the optimal control (PPPT method).

Chapter 4: In this chapter based on the paper [25] we introduce the PPPT method that
can be seen as a modification of the PCPT method. In contrast to the PCPT method,
we solve a smaller number of PDEs in most time layers, however non-constant control
policies will be used. We will “predict” these control policies from the solution of the
problem on a coarse grid. Because of smaller number of PDEs to solve in each time layer,
this method may be significantly faster. In the Sections 4.2, 4.3, we test this method on
two example problems from finance: on the mean-variance optimal investment problem
and on the passport option pricing problem.

Chapter 5: This chapter is based on the paper [28]. We introduce here the Tree-Grid
method for SCPs with one space dimensions. The name of the method is derived from the
tree structure similar to that of the trinomial tree methods, which is however in our case
defined on an arbitrary grid. The method is explicit, yet unconditionally stable, consistent
and monotone. These properties are achieved by making the stencil dependent on the time
step, but also by introducing the artificial diffusion in the numerical scheme. We prove the
convergence of the method in Section 5.3 and compare the method to other alternatives:
Finite difference methods, Markov chain approximation methods and FSG methods. In
Sections 5.4, 5.5, we compare the performance of this method and of the standard implicit
FDM on two example problems from finance: on the uncertain-volatility option pricing

1.2 Outline of the thesis 5

problem and on the passport option pricing problem.

Chapter 6: In this chapter based on the paper [27], we address the following issue: as
the stencil size changes for different values of the control in the Tree-Grid method, it is
difficult to search for the optimal control in a way different from brute-force approach.
Therefore, we propose here a modification of the Tree-Grid method leading to a scheme
with a stencil of constant size. This gives us the possibility for more efficient search of
the optimal control e.g. by using the Fibonacci algorithm, as we also illustrate on the
passport option pricing example in the Section 6.3. Moreover, we present in this chapter
a better way of introducing the artificial diffusion in the numerical scheme.

Chapter 7: Based on the paper [29], this chapter covers the generalization of the Tree-
Grid method to two space dimensions. Beside artificial diffusion, also the reduction of
covariance is introduced to keep the stencil as simple as possible, while still remaining
consistent. The scheme can be classified as a wide-stencil scheme, but in contrast to
other wide stencil schemes e.g. in [12], we do not need any interpolation. The method is
also unconditionally stable on any rectangular grid and we prove its convergence in the
Section 7.3. We exemplify usefulness of the method on two factor option pricing uncertain
volatility model in the Section 7.4.

Chapter 8: The generalization of the Tree-Grid method from Chapter 7 opens the ques-
tion, if also a generalization to higher dimensions is possible. In this chapter, we show that
the generalization to dimensions higher than two is not possible for an arbitrary problem.
The problem is, that for stronger covariance, negative weights may appear in the numerical
scheme, causing it to be non-monotone and possibly unstable. However, for some higher
dimensional problems with mild covariance, the generalization of the Tree-Grid method
sketched in this chapter may be possible. In Section 8.4, we discuss which ideas from the
Tree-Grid method can be employed also in other wide stencil schemes.

Chapter 9: In this last chapter we sum up the results of this thesis and provide the
outlook on the possible directions of the future research.

2 Chapter 2

Stochastic control problems and
Hamilton-Jacobi-Bellman equations

In the previous chapter, we intuitively formulated what a stochastic control problem (SCP)
is. Now, we will define it in a formal manner. We also present here the dynamic program-
ming equation and the Hamilton-Jacobi-Bellman equation. These equations are crucial
for development of the numerical schemes and for the proofs of convergence. At first,
we will describe the general P -dimensional stochastic control problem together with the
dynamic programming equation and the HJB equation. Then, we will look at the special
cases of the one-dimensional and the two-dimensional SCPs. In the last section, we define
the viscosity solution and present the convergence theory for the numerical methods for
nonlinear partial differentials equations that will be needed in our convergence proofs in
the later chapters.

2.1 General stochastic control problem

Let us now define the P -dimensional stochastic control problem (SCP):

V (s̄, t) = max
θ(s,t)∈Θ̄

E

 T∫
t

exp

 k∫
t

r(S̄l, l, θ(S̄l, l))dl

 f(S̄k, k, θ(S̄k, k))dk

+ exp

 T∫
t

r(S̄k, k, θ(S̄k, k))dk

VT (S̄T)
∣∣∣S̄t = s̄

 , (2.1)

dS̄t =µ̄(S̄t, t, θ(S̄t, t))dt+ σ̄(S̄t, t, θ(S̄t, t))dW̄t, (2.2)

0 < t < T, s̄ ∈ RP , P ∈ N,
ρ̄(S̄t, t, θ(S̄t, t)) is the correlation matrix of W̄t.

At first we will explain the notation:

• Equation (2.1) represents the definition of the so-called value function V (s̄, t). The
value function can be interpreted as a function that assigns to each state s̄ in each
time t a specific numeric value. This value is defined as the expectation of the overall
future profit if the optimal control policy is used. The aim of our numerical methods
presented in this work is to provide us with reasonable approximation of this value
function.

• The stochastic differential equation (2.2) represents the P -dimensional controlled
stochastic Itô process S̄t.

7

8 2 Stochastic control problems and Hamilton-Jacobi-Bellman equations

• t ∈ [0, T] denotes time, T denotes the final time.

• s̄ ∈ RP is called state variable. It represents the current value (state) of the
process.

• W̄t denotes a P -dimensional Wiener process with correlation matrix ρ̄(s̄, t, θ) for
S̄t = s̄ and θ(s̄, t) = θ. The variance of each component is 1.

• Θ denotes the control set. For our purposes, we will suppose that Θ is discrete. If
this is not the case, we can easily achieve this property by its discretization. Then,
θ ∈ Θ is called control variable.

• θ(s̄, t) : RP × [0, T] → Θ is the control function. Its value changes in time and
depends on time as well as on the current value of the stochastic process (2.2). On
the other hand, the increment of the stochastic process (2.2) depends on the current
value of the control function in each time t.

• Θ̄ is the space of all measurable control functions θ(s̄, t).

• The function µ̄(s̄, t, θ) : RP × [0, T] × Θ → RP represents the drift function of the
process S̄t. The function σ̄(s̄, t, θ) : RP × [0, T]×Θ→ D+

P×P represents the volatility
function of the process S̄t, where D+

P×P is the set of all diagonal P × P matrices
with non-negative entries.

Let ρ(s̄, t, θ) = ζ(s̄, t, θ)ζ(s̄, t, θ)> and Σ1/2 = ζ(s̄, t, θ)σ̄(s̄, t, θ). Then Σ = Σ1/2Σ1/2>

is the covariance matrix of the process S̄t for S̄t = s̄ and θ(s̄, t) = θ.

We suppose that the functions µ̄ and Σ1/2 satisfy the following conditions (see [38]):

|µ̄(s̄1, t1, θ1)− µ̄(s̄2, t2, θ2)|+ |Σ1/2(s̄1, t1, θ1)− Σ1/2(s̄2, t2, θ2)|
≤ l|s̄1 − s̄2|+m(|t1 − t2|+ |θ1 − θ2|), (2.3)

|µ̄(0, t, θ)|+ |Σ1/2(0, t, θ)| ≤ K ∀t, θ ∈ [0, T]×Θ, (2.4)

where K, l ∈ R+ and m(·) is a bounded function.

• The function f(s̄, t, θ) : RP × [0, T]×Θ→ R represents the increment of the instant
profit (also called instant reward) or of the instant loss in time t, state s̄ and under
control θ. We suppose f(·) to be continuous in s̄ and uniformly continuous in t (see
[38]).

• The function r(s̄, t, θ) : RP × [0, T] × Θ → R represents the discount factor in time
t, state s̄ and under control θ. We suppose r(·) to be continuous in s̄ and uniformly
continuous in t (see [38]).

• The function VT (s̄) (also called terminal condition) represents the profit or loss at
the final time T in state s̄. It holds V (s̄, T) = VT (s̄).

Let us note, that if the functions f(·), VT (·) represent the loss (or costs), the maximization
should be replaced by minimization in (2.1).

Following the Bellman principle of optimality, introduced by Richard Bellman [6] (at
first for deterministic discrete dynamic systems) the so called dynamic programming

2.1 General stochastic control problem 9

equation holds:

V (s, tj) = max
θ(s,t)∈Θ̄tj

E

 tj+1∫
tj

exp

 k∫
tj

r(S̄l, l, θ(S̄l, l))dl

 f(S̄k, k, θ(S̄k, k))dk

+ exp

 tj+1∫
tj

r(S̄k, k, θ(S̄k, k))dk

V (S̄tj+1 , tj+1)
∣∣∣S̄tj = s̄

 , (2.5)

where 0 ≤ tj < tj+1 ≤ T are some time-points and Θ̄tj is a set of control functions from Θ̄
restricted to the R × [tj , tj+1) domain. The dynamic programming equation provides us
with a formula for the value function in time tj depending only on the value function in
an arbitrary later time tj+1. Therefore, this equation is after discretization very suitable
for successive computation of the value function in different time layers (from final time
layer in t = T defined by VT (s̄), up to the first in t = 0). We employ this idea later in
Chapters 5-7. Using this dynamic programming equation (2.5), it can be shown [38], that
solving the SCP (2.1),(2.2) is equivalent to solving a specific partial differential equation
(PDE) the so-called Hamilton-Jacobi-Bellman (HJB) equation:

∂V

∂t
+ max

θ∈Θ

(
1

2
tr
(

Σ(·) ∂
∂s̄

(
∂V

∂s̄

))
+ µ̄(·)>∂V

∂s̄
+ r(·)V + f(·)

)
= 0, (2.6)

V (s̄, T) = VT (s̄), (2.7)

0 < t < T, s ∈ RP ,

where Σ(·), µ̄(·), r(·), f(·) are functions of s̄, t, θ defined above. We remark, that if the
maximum operator is replaced by the minimum operator in the SCP (2.1)-(2.2), it should
be replaced by the minimum operator also in the HJB equation (2.6).

Possible generalizations of the stochastic control problems are the stochastic differential
games where maximization and minimization is done simultaneously. The PDEs corre-
sponding to this class of problems are the Hamilton-Jacobi-Bellman-Isaac equations [36].
In case of these equations, the single maximum operator is substituted by one maximum
and one minimum (resp. supremum and infimum) operator each defined on a different con-
trol set. Use of even more general operators is analyzed for example in [45]. However, in
this work we will restrict ourselves to the case of minimum and maximum operators. Let
us note that this covers also the case of omitting the operator completely, as this can be
seen as maximum through an one-element set. In that case, a relationship between (2.1),
(2.2) and (2.6), (2.7) is established by the classical Feynman-Kac formula. In financial
mathematics, this relationship is represented by a connection between the option pricing
problem and the Black-Scholes equation [7].

For a deeper understanding of the principles of the stochastic control theory and of the
HJB equation, we refer the reader to some classic literature on the topic e.g. [38, 31, 50].
Before moving to the next section, let us for convenience rewrite equations (2.1), (2.2)
and (2.5)-(2.7) for the one-dimensional and two-dimensional setting, as for these cases
numerical methods are developed in this thesis.

10 2 Stochastic control problems and Hamilton-Jacobi-Bellman equations

2.1.1 One-dimensional stochastic control problem and HJB equation

The one-dimensional stochastic control problem (2.1), (2.2) can be rewritten as follows:

V (s, t) = max
θ(s,t)∈Θ̄

E

 T∫
t

exp

 k∫
t

r(Sl, l, θ(Sl, l))dl

 f(Sk, k, θ(Sk, k))dk

+ exp

 T∫
t

r(Sk, k, θ(Sk, k))dk

VT (ST)
∣∣∣St = s

 , (2.8)

dSt =µ(St, t, θ(St, t))dt+ σ(St, t, θ(St, t))dWt, (2.9)
0 <t < T, s ∈ R.

Here, s denotes the one-dimensional state variable, t is time, and the stochastic process
St is also one-dimensional. The dynamic programming equation (2.5) following from
Bellman’s principle reads:

V (s, tj) = max
θ(s,t)∈Θ̄tj

E

 tj+1∫
tj

exp

 k∫
tj

r(Sl, l, θ(Sl, l))dl

 f(Sk, k, θ(Sk, k))dk

+ exp

 tj+1∫
tj

r(Sk, k, θ(Sk, k))dk

V (Stj+1 , tj+1)
∣∣∣Stj = s

 , (2.10)

and the Hamilton-Jacobi-Bellman equation (2.6) that can be derived from the dynamic
programming equation has in this setting the following form:

∂V

∂t
+ max

θ∈Θ

(
σ(·)2

2

∂2V

∂s2
+ µ(·)∂V

∂s
+ r(·)V + f(·)

)
= 0, (2.11)

V (s, T) = VT (s), (2.12)
0 < t < T, s ∈ R,

where σ(·), µ(·), r(·), f(·) are functions of s, t, θ.

2.2 Viscosity solutions and convergence theory 11

2.1.2 Two-dimensional stochastic control problem and HJB equation

The two-dimensional stochastic control problem (2.1), (2.2) can be rewritten as follows:

V (x, y, t) = max
θ(x,y,t)∈Θ̄

E

 T∫
t

exp

 k∫
t

r(∗l)dl

 f(∗k)dk

+ exp

 T∫
t

r(∗k)dk

VT (XT , YT)
∣∣∣Xt = x, Yt = y

 , (2.13)

dXt =µx(∗t)dt+ σx(∗t)dW x
t , (2.14)

dYt =µy(∗t)dt+ σy(∗t)dW y
t , (2.15)

dW x
t dW

y
t =σxy(∗t)/(σx(∗t)σy(∗t)) (2.16)
∗t =(Xt, Yt, t, θ(Xt, Yt, t)), 0 < t < T, x, y ∈ R,

where x ∈ R, y ∈ R are state variables, the stochastic processes Xt, Yt are one-dimensional
(s̄ = (x, y), S̄t = (Xt, Yt)) and t is time. The dynamic programming equation (2.5)
following from Bellman’s principle reads:

V (x, y, tj) = max
θ(x,y,t)∈Θ̄tj

E

 tj+1∫
tj

exp

 k∫
tj

r(∗l)dl

 f(∗k)dk

+ exp

 tj+1∫
tj

r(∗k)dk

V (Xtj+1 , Ytj+1 , tj+1)
∣∣∣Xtj = x, Ytj = y

 , (2.17)

and the Hamilton-Jacobi-Bellman equation (2.6) that can be derived from the dynamic
programming equation has in this setting the following form:

∂V

∂t
+ max

θ∈Θ
(LV + r(·)V + f(·)) = 0, (2.18)

LV =
σx(·)2

2

∂2V

∂x2
+ σxy(·)

∂2V

∂x∂y
+
σy(·)2

2

∂2V

∂y2
+ µx(·)∂V

∂x
+ µy(·)

∂V

∂y
, (2.19)

V (x, y, T) = VT (x, y), (2.20)
0 < t < T, x, y ∈ R,

where σx(·), σy(·), σxy(·), µx(·), µy(·), r(·), f(·) are functions of x, y, t, θ.

2.2 Viscosity solutions and convergence theory

The Hamilton-Jacobi-Bellman equations are fully non-linear PDEs and might not posses a
solution in the classical sense. Therefore, the concept of viscosity solutions was developed.
However, as the closed form of the viscosity solution is rarely feasible, numerical methods
for its approximation are needed. In this section, we will at first present the definition of
the viscosity solution and then the convergence theory developed by Barles and Souganidis
[4]. This theory provides us with sufficient conditions for a numerical scheme to converge to

12 2 Stochastic control problems and Hamilton-Jacobi-Bellman equations

the viscosity solution. We will use it to prove the convergence of the numerical schemes for
solving the HJB equation, but we present here the theory for even more general nonlinear
differential operators. Let us note that the K-dimensional variable s̄ used here is split for
the HJB equation into two parts, the 1-dimensional time variable t and the P -dimensional
variable s̄ (or s for P = 1, resp. (x, y) for P = 2).

Let
FV (s̄) := F

(
∂

∂s̄

(
∂V (s̄)

∂s̄

)
,
∂V (s̄)

∂s̄
, V (s̄), s̄

)
= 0 (2.21)

denote a fully nonlinear second order parabolic or elliptic PDE fulfilling the ellipticity
property :

F (A1, b, c, d) ≤ F (A2, b, c, d) for all A1 ≥ A2, A1, A2 ∈ SK×K , b ∈ RK , c ∈ R, d ∈ Ω ⊆ RK

where SK×K is the space of all symmetric K ×K matrices with natural ordering denoted
as “≤” and Ω ⊆ RK is the domain of definition of V (s̄). At first let us formulate the
definition of the viscosity solution:

Definition 1 (Viscosity solution [17]). The function V (s̄) : Ω → R is called viscosity
subsolution (resp. supersolution) of (2.21) if for all s̄ ∈ Ω and all C2-smooth test functions
φ(s̄) such that V − φ has a local maximum (resp. minimum) at s̄ holds:

F

(
∂

∂s̄

(
∂φ(s̄)

∂s̄

)
,
∂φ(s̄)

∂s̄
, V (s̄), s̄

)
≤ 0 (viscosity subsolution) (2.22)

resp. F
(
∂

∂s̄

(
∂φ(s̄)

∂s̄

)
,
∂φ(s̄)

∂s̄
, V (s̄), s̄

)
≥ 0 (viscosity supersolution) (2.23)

The function V (s̄) : Ω → R is called viscosity solution, if it is both viscosity subsolution
and viscosity supersolution.

Notice, that if a classical solution exists, it also fulfills the conditions of viscosity solutions.
However, the conditions can be also examined for function V (s̄) that is not sufficiently
smooth everywhere. Therefore, even equations of the form (2.21) that do not posses a
classical solution may still posses a viscosity solution. For a deeper understanding of the
theory behind the viscosity solutions we refer to [11]. A short intuitive explanation of the
concept can be also found in [17].

Let us now present the pioneering convergence theory of Barles and Souganidis [4] that
allows us to develop numerical schemes with solution approximations that are guaranteed
to converge to the viscosity solution. We assume that the equation FV (s̄) = 0 has a
viscosity solution and denote this solution simply by V (s̄). To find some approximation
of this viscosity solution we define a discrete approximation scheme

Gv(s̄) = G
(
v(s̄), v(s̄+ b1h), v(s̄+ b2h), . . . , v(s̄+ bnh)

)
, (2.24)

where v(s̄), s̄ ∈ RK is defined as (possibly) multidimensional function, bi ∈ RK , i =
1, 2, ..., n and h ∈ R+.

Let us consider the system of sets called discretized domains

Sh = {s̄i ∈ RK |i = 1, 2, . . . , Nh}, (2.25)

2.2 Viscosity solutions and convergence theory 13

defined for different values of h, which is often referred as step-size.

Definition 2 (Numerical scheme). The system of equations Gv(s̄) = 0 with s̄ ∈ Sh
depending on a parameter h ∈ R+ is called numerical scheme.

The numerical scheme is well-defined, if it possess an unique solution. We will assume that
this condition is met for any feasible h. By v(s̄), we will denote an approximation of the
solution of FV (s̄) = 0, computed by solving the system of equations Gv(s̄) = 0, s̄ ∈ Sh.
In order to distinguish between approximations with different h, we will sometimes denote
v(s̄) as vh(s̄).

The monotonicity is an important property that a numerical scheme for solving the non-
linear PDEs should have. This property can be seen as a discrete version of the ellipticity.
Monotonicity represents an additional constraint for numerical schemes for non-linear
PDEs possessing only viscosity solutions in contrast to linear PDEs with classical solu-
tions. In case of the linear PDEs, only the consistency and the stability are needed for the
convergence. However, as shown in [17], the approximations computed with non-monotone
schemes may converge to wrong solutions in case of nonlinear PDEs.

Definition 3 (Monotonicity). A discrete approximation scheme

Gv(s̄) = G
(
v(s̄), v(s̄+ b1h), v(s̄+ b2h), . . . , v(s̄+ bnh)

)
is monotone, if the function G is non-increasing in v(s̄+ bih) for bi 6= 0, i = 1, . . . , n and
increasing in v(s̄).

Before defining the consistency in the viscosity sense, we formulate here (for comparison
reasons) the classical definition of consistency. This is used by proving the convergence of
the numerical schemes for linear PDEs.

Definition 4 (Classical Consistency). The discrete scheme

GV (s̄) = G
(
V (s̄), V (s̄+ b1h), V (s̄+ b2h), . . . , V (s̄+ bnh)

)
is a consistent approximation of FV (s̄), if limh→0 ‖FV (s̄) − GV (s̄)‖∞ = 0, where V (s̄)
is a solution of the equation FV (s̄) = 0. Further, GV (s̄) is said to be consistent of order
p > 0, if ‖FV (s̄)−GV (s̄)‖∞ = O(hp), h→ 0.

Now the definition of consistency in the viscosity sense follows:

Definition 5 (Consistency (in the viscosity sense)). The scheme Gv(s̄) = G(v(s̄), v(s̄ +
b1h), v(s̄+b2h), . . . , v(s̄+bnh)) is a consistent approximation of FV (s̄), if limh→0 |Fφ(s̄)−
Gφ(s̄)| = 0, for any C∞-smooth test function φ(s̄).

A more general definition of consistency can be found in [4]. In this thesis we will call the
consistency in viscosity sense simply consistency, in contrast to the classical consistency,
that is used in the case of linear PDEs. Let us note, that the order of consistency in the
classical sense and in the viscosity sense may be different, as for example in the case of
the nine-point stencil from [42]. A scheme is consistent on a numerical domain, if it is
consistent in all points of this numerical domain. In such case we will call the scheme

14 2 Stochastic control problems and Hamilton-Jacobi-Bellman equations

consistent. In the literature, often C2-smooth test functions are used (as in the Definition
1). However, as shown for example in [33], this leads to an equivalent definition.

The last important property of a convergent numerical scheme is the stability. This pro-
perty is closely related to the monotonicity, and numerical schemes that are consistent and
monotone are in most cases also stable. On the other hand, stable non-monotone schemes
are very common: for example the Crank-Nicholson scheme or the numerical schemes with
higher order of consistency used for solving linear PDEs.

Definition 6 (Stability). The numerical scheme defined by the system of equations Gvh(s̄) =
0, s̄ ∈ Sh with solution vh(s̄) is stable, if there exists some constant C so that ‖vh(s̄)‖∞ <
C, ∀h > 0.

The following Theorem of Barles and Souganidis [4] is the key tool for proving convergence
of a numerical scheme approximating a nonlinear PDE:

Theorem 1 (Barles-Souganidis [4]). If the equation FV (s̄) = 0 satisfies the strong unique-
ness property (see [4]) and if the numerical scheme Gvh(s̄) = 0, s̄ ∈ Sh approximating the
equation FV (s̄) = 0 is monotone, consistent and stable, its solution vh(s̄) converges locally
uniformly to the solution V (s̄) of FV (s̄) = 0 with h→ 0.

Remark 1. The above mentioned strong uniqueness property [4] is a property of the prob-
lem and not of the numerical scheme. Therefore, we will simply assume that our problem
possess this property without actually proving it.

3 Chapter 3

Finite difference numerical methods

The goal of this chapter is to present some standard approaches of solving the one-
dimensional HJB equation, as well as their limitations. In Section 3.1 we will present
two widely used finite-difference methods from [16], [48]. In Section 3.2, we will discuss
the fact, that the higher order schemes for solving the HJB equations are not monotone
and therefore might not converge. The Section 3.2 is based on the paper [26].

3.1 Standard finite difference methods

For convenience we repeat here the HJB equation to be solved:

∂V

∂t
+ max

θ∈Θ

(
σ(·)2

2

∂2V

∂s2
+ µ(·)∂V

∂s
+ r(·)V + f(·)

)
= 0, (3.1)

V (s, T) = VT (s), (3.2)
0 < t < T, s ∈ R,

where σ(·), µ(·), r(·), f(·) are functions of s, t, θ and VT (s) is the terminal condition.
Now we can turn to the discretization of this equation. We suppose Θ to be discrete, i.e.
Θ = {θ1, θ2, . . . , θQ}.

3.1.1 Discretization of the Hamilton-Jacobi-Bellman equation

The first step for constructing the numerical algorithm is to discretize the equation to
be solved. We will use a rectangular grid with one time (t) dimension and one space
(s) dimension. We will denote the nodes as (si, tj), where indices i ∈ {0, 1, . . . , N},
j ∈ {0, 1, . . . ,M} indicate the position of the node in the grid. The distance between
nodes (si, tj) and (si, tj+1) will be denoted as ∆jt, and distance between nodes (si, tj) and
(si+1, tj) will be denoted as ∆is. With vji we will denote a pointwise approximation of the
solution of the HJB equation V (si, tj).

We must ensure that this discretization will be monotone. We denote the discretized
HJB equation in point (si, tj) as Gi,j(v

j
i , v

j1
i1
, vj2i2 , . . . , v

jK
iK

) where (ik, jk) 6= (i, j), ∀k =
1, 2, . . . ,K. Then this scheme is monotone, if the function G is non-increasing in
vj1i1 , v

j2
i2
, . . . , vjKiK . Monotonicity of a numerical scheme simply means that an increase in

input values would never lead to a decrease in the output. We will use the monotone
discretization introduced by Wang and Forsyth [48], that can be consistent of second
order in space in an ideal case:

15

16 3 Finite difference numerical methods

∂V

∂t
(si, tj) ≈

vj+1
i − vji

∆jt
,

∂2V

∂s2
(si, tj) ≈

vji−1 − 2vji + vji+1

∆i−1s∆is
,

∂V

∂s
(si, tj) ≈ D1(vji−1, v

j
i , v

j
i+1), where

D1(vji−1, v
j
i , v

j
i+1) =


vji+1 − v

j
i−1

∆i−1s+ ∆is
, if

b(si, tj , θ)

∆i−1s+ ∆is
≤ a(si, tj , θ)

∆i−1s∆is

(ξ + 1)vji+1 − 2ξvji + (ξ − 1)vji−1

(1 + ξ)∆is+ (1− ξ)∆i−1s
, ξ = sign(b(si, tj , θ)), else.

For simplicity, we will denote the (N + 1)-dimensional vector with i-th element vji , as v
j .

Thus we can write the discretized HJB equation in the following form:

vj+1
i − vji

∆jt
= −max

θ∈Θ
Li,j,θv

j ,

where

Li,j,θv
j =

σ2(si, tj , θ)

2

vji−1 − 2vji + vji+1

∆i−1s∆is
+ µ(si, tj , θ)D1(vji−1, v

j
i , v

j
i+1)

+ r(si, tj , θ)v
j
i + f(si, tj , θ). (3.3)

Next we will present two different algorithms based on this discretization. In both algo-
rithms we will compute the values vji from the terminal time layer tM back to the initial
time layer t0. That means, we will at first compute all values in the time layer tj+1 before
proceeding to the time layer tj . We will need the values in the last time layer tM as a
terminal condition. Moreover, we will need some boundary conditions (BCs). In our case,
we will use the Dirichlet boundary conditions that preserve the monotonicity. Therefore,
instead of equation (3.3) in nodes (s0, tj), (sN , tj) we will use the simple equations

vj0 = BCL(s0, tj), vjN = BCR(sN , tj), (3.4)

with some predefined functions BCL(s, t), BCR(s, t).

3.1.2 Classical implicit FDM with policy iteration

First we will introduce a standard FDM algorithm widely used to solve the HJB equations.
It’s similar to the classical implicit method for solving convection-diffusion equations,
however in order to find the optimal control, the policy iteration is needed. In this context
we understand under the term policy the (N + 1)-dimensional vector of controls used in
one time layer with (N + 1) nodes.

3.1 Standard finite difference methods 17

Algorithm 1 Classical implicit FDM with policy iteration
1: vM is determined by the terminal condition.
2: for j = M − 1,M − 2, . . . , 0 do
3: set v(0) = vj+1, k = 0
4: repeat {Policy iteration}
5: k = k + 1
6: θ

(k)
i = arg maxθ Li,j,θv

(k−1) for i ∈ {0, 1, . . . , N}
7: Solve system of equations:

v
(k)
i = vj+1

i + ∆jtLi,j,θ(k)i

v(k) for i ∈ {1, . . . , N − 1}

v
(k)
0 = BCL(s0, tj), v

(k)
N = BCR(sN , tj)

8: until ‖v(k) − v(k−1)‖2 < TOL

9: vj = v(k), θ̄ji = θ
(k)
i for i ∈ {0, 1, . . . , N}.

10: end for

Let us note, that it is possible to find the optimal control θ(k)
i analytically, however we

search here for the optimal control θ(k)
i by simply trying all possible controls. The repeat-

until part of the algorithm is called policy iteration. The vector θ̄j ∈ RN+1 with elements
θ̄ji is called optimal control policy in time layer j.

3.1.3 Piecewise constant policy timestepping method

The second algorithm that we will present here is the so-called piecewise constant policy
timestepping (PCPT) method. It is described for example in the papers [30], [16], [41].
Using this method, we completely avoid the policy iteration. Another advantage is, that
this method can be easily parallelized. The main idea of the method is solving in each
time layer Q PDEs with constant controls θq, q = 1, 2, . . . , Q and then choose in each node
si the optimal control leading to the biggest value. The following Algorithm 2 will clarify
this approach.

Algorithm 2 PCPT method
1: vM is determined by the terminal condition.
2: for j = M − 1,M − 2, . . . , 0 do
3: for q = 1, 2, . . . , Q do
4: Solve system of equations:

v
(q)
i = vj+1

i + ∆jtLi,j,θqv
(q) for i ∈ {1, . . . , N − 1}

v
(q)
0 = BCL(s0, tj), v

(q)
N = BCR(sN , tj)

5: end for
6: κi = arg maxq v

(q)
i , vji = v

(κi)
i , θ̄ji = θκi , for i ∈ {0, 1, . . . , N}.

7: end for

18 3 Finite difference numerical methods

3.2 Non-Existence of higher order monotone approximation
schemes

The standard methods presented in the previous section are consistent of order 1 in time
and up to 2 in space. Therefore, a question arises, if we can’t solve the HJB equation with
some higher order scheme. In this section we will prove that there is no monotone scheme
consistent of order higher than 2. This section is based on the paper [26].

At first, we will start with examining a general two-dimensional differential operator. Let
V (x, y) : R2 → R be a locally C2-function (x, y ∈ R are one-dimensional). We define the
differential operator L : C2(R2)→ C(R2)

LV (x, y) = α1
∂2V

∂x2
+ α12

∂2V

∂x∂y
+ α2

∂2V

∂y2
+ β1

∂V

∂x
+ β2

∂V

∂y
+ γV. (3.5)

We assume α1 6= 0 and investigate some properties of the linear operator L : C2(R2) →
C(R2) given by

LV (x, y) = a0(h)V (x, y) + a1(h)V (x+ b1h, y + c1h)

+ a2(h)V (x+ b2h, y + c2h) + · · ·+ an(h)V (x+ bnh, y + cnh), (3.6)

where bi 6= 0, or ci 6= 0, i = 1, 2, . . . , n and there exist j, k such that bj 6= 0, ck 6= 0. (3.6)
should be an approximation of the differential operator LV (x, y).

Definition 7 (Positive coefficients approximation [17]). The linear discrete approximation
scheme (3.6) satisfies the positive coefficients condition if ai(h) ≥ 0 for i = 1, 2, . . . , n, for
all h > 0.

Often a scheme is monotone, if and only if its linear part satisfies the positive coefficient
condition.

3.2.1 Main Results

Theorem 2. There exist no discrete linear approximation LV (x) of LV (x) satisfying the
positive coefficients condition which is consistent (in the viscosity sense) of order higher
than 2.

Proof. We rewrite Lφ(x, y) in the form of a Taylor expansion up to order m:

Lφ(x, y) = a0(h)φ(x, y) + a1(h)φ(x+ b1h, y + c1h)

+ a2(h)φ(x+ b2h, y + c2h) + · · ·+ an(h)φ(x+ bnh, y + cnh)

= a0(h)φ(x, y) +
n∑
i=1

ai(h)(φ(x, y) +
1

1!

1∑
j=0

(
1

j

)
∂1φ

∂x1−j∂yj
(bih)1−j(cih)j

+ · · ·+ 1

m!

m∑
j=0

(
m

j

)
∂mφ

∂xm−j∂yj
(bih)m−j(cih)j) +O(hm+1).

(3.7)

3.2 Non-Existence of higher order monotone approximation schemes 19

For an approximation of order p we have ‖Lφ(x, y) − Lφ(x, y)‖∞ = O(hp). Using the
expansion (3.7), this yields the matrix equation

1 1 1 · · · 1
0 b1h b2h · · · bnh
0 c1h c2h · · · cnh

0 (b1h)2

2
(b2h)2

2 · · · (bnh)2

2
0 b1c1h

2 b2c1h
2 · · · bncnh

2

0 (c1h)2

2
(c2h)2

2 · · · (cnh)2

2

0 (b1h)3

3!
(b2h)3

3! · · · (bnh)3

3!
...

...
0 (c1h)m

m!
(c2h)m

m! · · · (cnh)m

m!


·


a0(h)
a1(h)
a2(h)

...
an(h)

 =



γ
β1

β2

α1

α12

α2

O(hp)
...

O(hp)


. (3.8)

We can write (3.8) shortly as A(h)a(h) = g(h). Let us look at the fourth row of the system
A(h)a(h) = g(h):

a1(h)
(b1h)2

2
+ a2(h)

(b2h)2

2
+ · · ·+ an(h)

(bnh)2

2
= α1. (3.9)

The right-hand side is of order O(h0), so should be the left hand side. Therefore, at
least one ai(h) should be of order O(hk), k ≤ −2 such that bi 6= 0. If for all bi 6= 0,
ai(h) = O(hj), j > −2 holds, then each non-zero term of the left-hand side of (3.9) is of
order h2O(hj) = O(h2+j), where 2 + j > 0, so the whole left hand side is of order greater
than zero.

Now let us assume that we have a solution of A(h)a(h) = g(h) for p > 2 satisfying the
positive coefficients condition. We consider the 11th row of (3.8):

a1(h)
(b1h)4

4!
+ a2(h)

(b2h)4

4!
+ · · ·+ an(h)

(bnh)4

4!
= O(hp). (3.10)

As we noted, there exists an i such that bi 6= 0 and ai(h) = O(hk), k ≤ −2. Then, also the
term in (3.10) ai(h) (bih)4

4! is of order O(hq), q = k+ 4 ≤ 2. Due to the positive coefficients
condition, each term of (3.10) is non-negative and hence also the whole left-hand side of
(3.10) will be of order O(hc), c ≤ 2. However, the right hand side should be of order
higher than 2, which leads to a contradiction.

Remark 2. The proof of the Theorem 2 does not take into account the case of schemes
without a node in x itself. However, this can be seen as a subcase of the above schemes
with fixed a0(h) = 0.

Remark 3. The proof for a higher dimensional function V , with the corresponding second
order PDE operator LV can be done in a similar manner.

Remark 4. In the case of a linear differential operator with derivatives of order higher
than 2 similar results on the non-existence may be feasible, with higher maximal order of
consistency (in the viscosity sense).

20 3 Finite difference numerical methods

Let us define

LθV (x, y)

= α1(θ)
∂2V

∂x2
+ α12(θ)

∂2V

∂x∂y
+ α2(θ)

∂2V

∂y2
+ β1(θ)

∂V

∂x
+ β2(θ)

∂V

∂y
+ γ(θ)V, (3.11)

where θ is a parameter, x, y ∈ R. We now formulate the main result of Chapter 3.

Theorem 3. There exist no monotone discrete approximation

−max
θ∈Θ

(
LθV (x, y) + δ(θ)

)
of −max

θ∈Θ

(
LθV (x, y) + δ(θ)

)
consistent (in the viscosity sense) of order higher than 2.

Proof. Since the maximum is a non-decreasing function, LθV (x, y) has to satisfy the pos-
itive coefficients condition so that −maxθ∈Θ(LθV (x, y) + δ(θ)) will be monotone. Then,

−max
θ∈Θ

(
LθV (x) + δ(θ)

)
= −max

θ∈Θ

(
LθV (x, y) +O(hk) + δ(θ)

)
= −max

θ∈Θ

(
LθV (x, y) + δ(θ)

)
+O(hk),

where according to Theorem 2, k ≤ 2.

Remark 5. The non-existence of higher order monotone discrete approximations of
f
(
LV (x, y)

)
for a monotone non-increasing function f can be proven in the same way as

in Theorem 3.

3.2.2 Application of the results to the HJB equation

Now we apply this result to the HJB equation

∂V (s, t)

∂t
+ max

θ∈Θ

(
α(s, t, θ)

∂2V

∂s2
+ β(s, t, θ)

∂V

∂s
+ γ(s, t, θ)V + δ(s, t, θ)

)
= 0, (3.12)

with one space dimension. The coefficients α, β, γ, δ depend on θ as well as on s and t.
However, in each particular time and space, we can treat them as constants with respect
to s, t. This allow us to write the HJB equation (3.12) in the form

max
θ∈Θ

(
−∂V
∂t

+ α(θ)
∂2V

∂s2
+ β(θ)

∂V

∂s
+ γ(θ)V + δ(θ)

)
= 0 (3.13)

for any particular values of t and s. Now, Theorem 3 applied on the left hand side of
(3.13) with y := t, x := s and

LθV (s, t) = −∂V
∂t

+ α(θ)
∂2V

∂s2
+ β(θ)

∂V

∂s
+ γ(θ)V

states, that we cannot obtain a monotone discrete linear scheme for the HJB equation
(3.13) consistent of order higher than 2 in the viscosity sense.

3.2 Non-Existence of higher order monotone approximation schemes 21

Remark 6. As noted in Remark 3, Theorem 3 can be proved also for higher dimensions.
Therefore, the same result can be obtained in the case of HJB equations with more space
dimensions.

In this section we showed that we cannot apply the convergence theory [4] to prove the
convergence of linear discrete schemes which are consistent of order higher than 2 (in the
viscosity sense), since this theory relies on the monotonicity of the scheme.

We used the Definition 5 of the consistency (viscosity sense) because for HJB equations the
standard Definition 4 cannot be used. For linear PDEs, also consistency in the classical
sense of higher order is feasible. A typical example is a monotone nine-point stencil for
the Poisson equation [42], which is O(h4)-consistent in the classical sense. An interesting
question that remains is, if any monotone scheme for the linear part of the HJB equation
−∂V (x,t)

∂t + LθV (x, t) being consistent of order higher than 2 in the sense of Definition 4
exists.

4 Chapter 4

Piecewise predicted policy
timestepping method

In the previous chapter we proved that we cannot obtain a monotone scheme with order of
convergence higher than 2. Therefore, in this chapter we will try to make the convergence
faster (in means of computational time, not in the means of convergence order) by reduc-
tion of the number of possible controls in our algorithms. We introduce here the piecewise
predicted policy timestepping (PPPT) method, that can be seen as a modification of the
PCPT method from the previous Chapter 3. This chapter is based on the paper [25].

4.1 Main idea and algorithm

In the PCPT method we solved Q different PDEs in each time layer using constant policies
at first, and then compared the results to choose the optimal policy in each node of the
current time layer. Let us suppose that we already computed an approximation of the
solution on a coarse grid with some numerical method, and now we want to compute
a better approximation on a finer grid. To do this we can use for example the PCPT
method, and test all possible policies in each time layer. However, we already have some
approximation of the optimal policy from the coarse grid. If the true optimal control
policy is not far away from this approximation, then testing some of the constant policies
in the PCPT method will be redundant. Therefore, the idea of the piecewise predicted
policy timestepping (PPPT) method is to use this prediction on the coarse grid to check
only policies which are near to the “predicted” optimal policy from the coarse grid. We
should note, that in this context we will use the term policy rather loosely. According to
the context we may refer to the (N + 1)-dimensional vector of controls used in one time
layer with (N + 1) nodes, or to the whole (N + 1) × (M + 1) array of controls used on
the whole grid. By policy we also understand a two-dimensional function of variables s, t
or a one-dimensional function of variable s that assigns a value of control to any point
(s, t) on the computational domain, or (in the one-dimensional case) to any point s in the
particular time-layer.

As well as in the case of PCPT method, we will solve a few PDEs in each time layer.
However, constant policies will not be used anymore. Instead of them, we will use a set of
policies that are near to the predictions from the coarse grid. We can divide the algorithm
into 3 steps:

1. Compute the solution of HJB equation on the coarse grid with PCPT or classic
implicit method. Save the approximation of the optimal control used on this grid
-this will be the benchmark for predictions of the control policies for the fine grid.

2. Create a set of “predicted” two dimensional (space, time) control policy functions

23

24 4 Piecewise predicted policy timestepping method

from the optimal control approximation computed on the coarse grid

3. Compute the solution on the fine grid comparing in each node results of controls
determined by the predicted control functions evaluated in that node.

The control policies in a particular time layer are chosen in such manner, that they cover
in each node all “predicted” controls for that node. These “predicted” controls are chosen
as either controls that are between the two “predictor” controls for that node, or are
neighbors of the “predictor” controls. Here, the “predictor” controls in each space node
are the approximations of the optimal controls in that node from the nearest earlier and
nearest later time layer. Figure 4.1 illustrates the choice of control policies in the PPPT
method in a particular time layer as well as the comparison with the constant control
policies used in the PCPT method in each time layer. The exact construction of the
control policies in PPPT method is described in Algorithm 3. The computation of the
approximation of solution of the HJB equation on a fine grid using these predicted control
policies is described in Algorithm 4.

Convergence: By defining new controls z from the predicted control policy functions
θz(s, t) (see algorithm 4), we can consider the PPPT method to be a PCPT method
for these new controls. Therefore, stability of the PPPT method is a consequence of
the stability of the PCPT method. However, the answer on the question if the method
converges to the solution of the HJB equation depends on whether the the true optimal
control in each node really belongs to the set of predicted controls. As this cannot be
guaranteed, the method is rather heuristic, however seem to be converging in the numerical
examples presented in the following sections.

Possible generalizations: It is of course possible to create more predicted control poli-
cies, e.g. by taking more neighbors of predictor controls. Also, one may use similar control
prediction ideas also with classical implicit FDM or with the Tree-Grid methods presented
in the later chapters.

Figure 4.1: Illustration of the control policies in the PPPT method (left) and in the PCPT
method (right). The full red lines in the left figure represent approximations of
the optimal control policies in the j-th and (j + 1)-th time layer of the coarse
grid (predictor control policies) and together with the dotted lines also the
control policies to be tested in all time layers of the fine grid lying between the
j-th and (j + 1)-th coarse grid time layers. On the right figure, dotted lines
represent constant control policies to be tested in all time layers in case of the
PCPT method.

4.1 Main idea and algorithm 25

The Algorithm 3 for construction of the predicted control policy functions follows:

Algorithm 3 Construction of the predicted control functions for PPPT method
1: Solve HJB PDE with classical or PCPT method on a coarse grid. The by-product

of this solution should be the array of optimal controls θ̃ji for all nodes (si, tj) with
i ∈ {0, 1, 2, . . . , Ñ}, j ∈ {0, 1, 2, . . . , M̃}, where Ñ + 1, M̃ + 1 are dimensions of the
coarse grid.

2: Define control indices z̃ji , such that θ̃ji = θ
z̃ji

3: Determine number of control functions Z = max
(i,j)∈Ĩ

∣∣∣z̃ji − z̃j+1
i

∣∣∣,
where Ĩ = {1, 2, . . . , Ñ} × {1, 2, . . . , M̃ − 1}

4: Define M̃ one-dimensional index functions in the layers of the coarse grid:
5: for j = 1, 2, . . . , M̃ do
6: z̃j(s) = s̃ji where i = arg min

k∈{0,1,...,Ñ}
‖s− sk‖∞

7: end for
8: Define:
up(s, t) = z̃j(s) where j = arg mink∈{1,2,...,M̃},t≤tk |t− tk|
down(s, t) = z̃j(s) where j = arg mink∈{1,2,...,M̃},t≥tk |t− tk|

9: Define Z − 2 two-dimensional index functions:
10: for z = 1, 2, . . . , Z − 2 do
11: z̃z(s, t) = round

(
z−1
Z−3up(s, t) + Z−2−z

Z−3 down(s, t)
)

12: end for
13: Determine neighbor index functions:

z̃Z−1(s, t) = min
(
maxz∈{1,2,...,Z−2} z̃

z(s, t), J
)

z̃Z(s, t) = max
(
minz∈{1,2,...,Z−2} z̃

z(s, t), 1
)

14: Create control functions:
15: for z = 1, 2, . . . , Z do
16: θz(s, t) = θz̃z(s,t)

17: end for

The Algorithm 4 of the PPPT method using the predicted control policy functions follows.
The discrete operator Li,j,θv was defined in Section 3.1.1.

Algorithm 4 PPPT method
1: vM is determined by the terminal condition.
2: for j = M − 1,M − 2, . . . , 0 do
3: for z = 1, 2, . . . , Z do
4: Define θ̄j,z: θ̄j,zi = θz(si, tj) (i ∈ {0, 1, 2, . . . , N}
5: Solve system of equations:

v
(z)
i = vj+1

i + ∆jtLi,j,θ̄j,zi
v(z) for i ∈ {1, . . . , N − 1}

v
(z)
0 = BC0(s0, tj), v

(z)
N = BCN (sN , tj)

6: end for
7: κi = arg maxk v

(z)
i , vji = v

(κi)
i , θ̄ji = θκi , i ∈ {0, 1, . . . , N}.

8: end for

26 4 Piecewise predicted policy timestepping method

4.2 Numerical example: mean-variance optimal investment
problem

In this section we will compare the performance of the classical implicit FDM, PCPT
scheme and the PPPT scheme on a numerical example from finance. For comparison and
verification reasons, we will take the whole example with boundary conditions, and up to
small changes also with the discretization, from [41]. For reader’s convenience, we repeat
here the main characteristics of the problem.

Example 1 (Mean-variance optimal investment problem). We will start with a problem
of dynamic investment allocation between a stock and a risk-free asset in an mean-variance
framework. Let our stock follow a SDE of the form:

dSt = (r + ξσ)Stdt+ σStdWt, (4.1)

where St is a stock price process, r is the risk-free interest rate, σ is the volatility, ξ is
the market price of risk and wt is the wealth process. Moreover, we will suppose that the
investor contributes to the portfolio at a constant rate π. Then, our task is to solve the
following problem:

max
θ∈Θ

(
Et=0(wT)− λV art=0(wT)

)
, (4.2)

dwt =
(
(r + θ(wt, t)ξσ)wt + π

)
dt+ θ(wt, t)σwtdWt, (4.3)

w0 = K, (4.4)

where λ is the investors coefficient of risk aversion (or also Lagrange multiplier similar as
in the Markowitz model, see [37]), θ(wt, t) is the proportion of investors wealth invested in
the stock in time t for a current wealth wt, P is the set of all admissible functions θ(wt, t),
K is some constant representing the terminal wealth and T is the final time.

For different values of λ, we expect different Et=0wT . The set of all possible pairs
(λ,Et=0wT) will be called “efficient frontier”. Note that often also set of pairs
(Et=0wT , V art=0wT) is referred as efficient frontier [37]. In [49], it is explained, how to
compute pairs on this efficient frontier numerically. The main part of that problem is
solving the HJB equation in the following form:

∂V

∂t
+ min
θ∈[θmin,θmax]

LθV = 0, (4.5)

LpV =
1

2
σ2θ2w2∂

2V

∂w2
+
(
π + (r + θσξ)w

)∂V
∂w

, (4.6)

V (w, T) =
(
w − γ

2

)2
, (4.7)

where γ is a parameter given in advance, and dependent on the unknown pair (λ,Et=0wT).
As solution, we will get besides the value function V (w, t) also the optimal control θ(w, t)
which is the optimal investment strategy for the unknown value λ. This value of λ, also with
Et=0wT can be computed afterwards, using the optimal investment strategy θ(w, t). For
more details see [49]. Here, we will be concerned with solving the HJB equation (4.5)-(4.7)
numerically.

Computational domain: For our problem we will use an equidistant discretization of

4.2 Numerical example: mean-variance optimal investment problem 27

the domain [0, wN]×[0, T], withM time-steps of size ∆t and N space-nodes, with distance
between 2 neighboring nodes ∆w. We use wN = 5 and T = 20.

Terminal and boundary conditions: Let us assume a positive money inflow rate π.
Then, as the left boundary is in w0 = 0, we need no boundary condition, as the second
derivative from (4.6) vanishes and as π is positive we do not need any data from outside
the domain to approximate the first derivative. For the right boundary condition, we will
use an approximation from [41] in form of a Dirichlet boundary condition:

V (wN , τ) =
1

2
α(τ)w2

N + β(τ)wN + δ(τ), (4.8)

where

τ = T − t,
α(τ) = exp

(
(a2 + 2b)τ

)
,

β(τ) = −(γ + c) exp(bτ) + c exp
(
(a2 + 2b)τ

)
,

δ(τ) = −π(γ + c)

b

(
exp(bτ

)
− 1) +

πc

a2 + b

(
exp

(
(a2 + 2b)τ

)
− 1
)

+
γ2

4
,

c = 2π/(a2 + b),

a = σθ,

b = r + θσξ.

The terminal condition is defined by equation (4.7).

Numerical results: For solving mean-variance optimal investment problem we imple-
mented the classical implicit method, the PCPT method and the PPPT method. We
implemented all methods in Matlab and tested on an Intel Core i7-4770 CPU 3.40GHz
computer with 8 GB RAM. For comparison reasons, we used the same parameter values
as in [41]: r = 0.03, σ = 0.15, ξ = 0.33, π = 0.1, γ = 14.47. We use the time-step
size ∆t = hk and space-step size ∆w = 0.25hk where hk is a discretization parame-
ter. We use the control set Θ = [0, 1.5] equidistantly discretized on 31 different controls
0, 0.05, 0.1, . . . , 1.5.

In Table 4.1 we can see the results of the numerical simulations. We tested the PCPT
method, the classical implicit method and two PPPT methods with a different approach
for predictions. We ran the methods with hk = 21−k, k = 1, 2, . . . , 10. To compute
the prediction of controls (control functions) for the PPPT methods, we used the PCPT
scheme. In our first approach we have done the predictions on a grid with mesh size
h = 2−4 (that is even finer than some of the main algorithm grids). This PPPT method
is denoted as PPPT (1).

To verify our results, we checked the values of the solutions in t = 0, w = 1, which are
also computed in [41]. This values are denoted as Val. We will estimate the error of the
approximation Err with values from the final time layer Ak (computed with stepsize hk).
The exact solution is not known, therefore we use an approximation of the final time layer
A11 computed with the classical implicit method and h = 2−10 as reference solution. The
formula for estimating the error is

Err Ak = ‖Ak −A11‖2. (4.9)

28 4 Piecewise predicted policy timestepping method

However, in [41] the error is estimated as absolute value of the difference of the values of
solutions in t = 0, w = 1 computed with stepsizes hk−1 and hk. As this pointwise error is
dependent only on the values Val, we will denote it as Err(Val).

The experimental order of convergence (EOC) will be computed as

EOC Ak =
log(ErrAk−1)− log(ErrAk)

log(hk−1)− log(hk)
. (4.10)

We will compute the experimental order of convergence using the above formula also
with error estimation Err(Val) and denote this experimental order of convergence as
EOC(Val). The computational time of each method (depending on the computer), is
denoted as Time. The time is measured in seconds and is just informative, as the value
varies with each new run. In case of the PPPT method, the time needed to compute the
prediction of the controls is added.

In the left plot of Figure 4.2 we show the logarithm of the computational time against the
logarithm of the error, to see how much time we need for each method to get the same level
of accuracy. We observe, that the PPPT (1) method is slower on a low level of accuracy at
first, what is caused by relatively high time-costs spent on computing prediction of control
in contrast to fast low-accuracy PCPT and classical implicit method. For higher levels of
accuracy that are more time-demanding for classical and PCPT methods, the prediction
already saves computational time and the PPPT (1) method is most effective.

log(Time)

-2 0 2 4 6

lo
g(

E
rr

)

-10

-5

0

classic
pcpt
pppt(1)

log(Time)

-2 0 2 4 6

lo
g(

E
rr

)

-10

-5

0

classic
pcpt
pppt(2)

Figure 4.2: Comparison of the classic and the PCPT methods (both plots) with the PPPT
(1) method on the left plot and PPPT (2) method on the right plot. In the
PPPT (1) method prediction is computed with the discretization parameter
h = 2−4 and in the PPPT (2) method the prediction is computed with h = 4hk
where hk is discretization parameter of the fine grid.

The previous analysis of results leads us to an idea of running a PPPT method with
different prediction on each refinement level, so that the prediction grid will be adjusted
to the desired level of accuracy. To do so, we will compute for each refinement level
k = 1, 2, . . . , 10 new prediction of controls with a PCPT scheme with h = 4hk. Results of
this approach to the PPPT scheme is in Table 4.1 denoted as PPPT (2). The right plot
of Figure 4.2 illustrates the dependence of computational time and accuracy for this case.
We see, that this PPPT (2) method is allways the most efficient one. For higher levels of
accuracy it is 4.7 times faster than PCPT and 8 times faster than the classical implicit
method, what is a significant speed-up.

4.3 Numerical example: passport option pricing problem 29

Table 4.1: Error, experimental order of convergence, computational time, value, pointwise
error and pointwise convergence in t = 0, w = 1 for classical implicit method,
PCPT and PPPT methods, for different values of the discretization parameters
hk

hk 1 2−1 2−2 2−3 2−4 2−5 2−6 2−7 2−8 2−9

Classical
Err 3,03E+00 6,66E-01 1,51E-01 3,61E-02 8,58E-03 2,02E-03 4,48E-04 8,82E-05 1,26E-05 4,36E-07
EOC 2.185 2.146 2.058 2.075 2.085 2.175 2.344 2.809 4.852
Time 0.33 0.65 1.47 3.35 7.67 19.34 47.86 176.36 655.58 2570.57
Val 2.783 2.025 1.769 1.648 1.589 1.561 1.546 1.540 1.536 1.534
Err(Val) 0.7581 0.2558 0.1210 0.0586 0.0283 0.0144 0.0069 0.0034 0.0017
EOC(Val) 1.568 1.080 1.045 1.051 0.970 1.064 1.007 1.000
PCPT
Err 3,37E+00 7,13E-01 1,58E-01 3,77E-02 8,91E-03 2,10E-03 4,64E-04 9,17E-05 1,32E-05 4,51E-07
EOC 2.239 2.171 2.071 2.081 2.087 2.175 2.340 2.798 4.871
Time 0.08 0.16 0.36 0.94 2.58 8.00 25.38 93.19 365.59 1475.30
Val 3.050 2.109 1.799 1.660 1.595 1.564 1.548 1.540 1.536 1.535
Err(Val) 0.9409 0.3092 0.1392 0.0654 0.0312 0.0158 0.0076 0.0038 0.0019
EOC(Val) 1.606 1.152 1.089 1.067 0.983 1.064 1.008 1.001
PPPT(1)
Err 3,20E+00 6,85E-01 1,54E-01 3,64E-02 8,61E-03 2,09E-03 4,76E-04 9,88E-05 1,65E-05 1,38E-06
EOC 2.223 2.153 2.081 2.080 2.045 2.130 2.269 2.585 3.576
Time 2.71 2.72 2.74 2.81 3.05 3.78 6.61 17.55 61.57 238.09
Val 2.893 2.045 1.776 1.649 1.590 1.563 1.548 1.541 1.537 1.536
Err(Val) 0.8477 0.2691 0.1274 0.0591 0.0271 0.0144 0.0072 0.0036 0.0018
EOC(Val) 1.656 1.078 1.107 1.128 0.906 1.006 0.998 0.980
PPPT(2)
Err 4,35E+00 9,92E-01 1,88E-01 4,20E-02 9,45E-03 2,16E-03 4,76E-04 9,28E-05 1,31E-05 4,43E-07
EOC 2.133 2.402 2.160 2.151 2.127 2.183 2.360 2.826 4.885
Time 0.06 0.10 0.20 0.40 0.88 2.35 6.53 21.48 77.60 310.84
Val 3.571 2.594 1.875 1.688 1.599 1.564 1.548 1.540 1.536 1.534
Err(Val) 0.9768 0.7193 0.1868 0.0883 0.0353 0.0159 0.0080 0.0039 0.0019
EOC(Val) 0.442 1.945 1.081 1.321 1.150 0.993 1.029 1.073

Table 4.2: Parallelized methods, computational time (2 time steps) and speed-up in % in
comparison to non-parallelized methods.

Space nodes: 5× 101 5× 102 5× 103 5× 104 5× 105

Classic implicit
-time 0.321 0.337 0.631 3.886 49.488
-% speed-up -401 -171 13 48 46
PCPT
-time 0.054 0.060 0.112 0.758 9.320
-% speed-up -521 -175 18 49 47
PPPT
-time 0,030 0.031 0.043 0.144 1.279
-% speed-up -941 -647 -142 10 32

4.3 Numerical example: passport option pricing problem

In this section we will test all three methods on the Hamilton-Jacobi-Bellman equation
for passport option pricing from [48]:

30 4 Piecewise predicted policy timestepping method

Example 2 (Passport option pricing problem). Passport options are contracts that allow
the buyer to run trading account for a certain amount of time. After the maturity, the
buyer of this contract can keep the profit, however the potential loss will be covered by
the seller. Here we will examine the case in which the buyer is allowed to invest in one
particular asset only. The price depends on buyer’s wealth w, current asset price S and
time to maturity t. According to [48], [47], the HJB equation for the current price of the
contract can be simplified to the form

∂V

∂t
+ max
|θ|≤1

(σ2

2
(x− θ)2∂

2V

∂x2
+
(

(r − rc − γ)θ − (r − rt − γ)x
)∂V
∂x
− γV

)
= 0 (4.11)

Here, t is time, x = w/S and V is the option price divided by S. By r, we denote the
risk-free interest rate, γ is the dividend rate, rc is the cost of carry rate, rt is the interest
rate for the trading account and σ is the volatility. The number of shares that the investor
holds (control variable) is denoted by θ, and it does not have to be an integer. In this case
the seller of the option requires the constraint |θ| ≤ 1. For comparison reasons we used
the same parameter values as in [48]: r = 0.08, γ = 0.03, rc = 0.12, rt = 0.05, σ = 0.2.

As discrete control set Θ, we took 41 equidistant points from the interval [−1, 1].

Computational domain: Maturity of the option will be one year, the space domain will
be restricted to [−3, 4]. The grid will be equally spaced in time, and nonuniform in space
(nodes will be more dense near to zero)

Terminal and boundary conditions: According to [40], in the case of convex payoff
(terminal condition), it is always optimal to choose either q = 1 or q = −1. In that case
the PCPT method requires to solve only 2 PDEs in each time-step, and therefore it is
clearly better than our PPPT method. However, since we want to test also the PPPT
method, we will use the non-convex terminal condition:

VT (x) = min
(

max(0, x),max(0, 0.8 + 0.2x)
)
. (4.12)

This terminal condition can be easily interpreted: Buyer of the option pays 80% of the
profit above the current asset price to the seller. We should note that for validating our
implementation we tested the method also with the convex payoff and obtained results
similar to those in [48]. We use Dirichlet boundary conditions according to [48]:

V (xmin, t) = 0, V (xmax, t) = 0.8 + 0.2xmax, [xmin, xmax] = [−3, 4]. (4.13)

Numerical results: We implemented three algorithms (classical implicit method, PCPT
and PPPT methods) for the problem of pricing the passport option with non-convex pay-
off. We ran our simulation on grids with different level of refinement, and compared our
estimation of error of the approximation, experimental order of convergence and compu-
tational time needed. The methods were implemented in Matlab and tested on an Intel
Core i7-4770 CPU 3.40GHz computer with 8 GB RAM.

The results of these numerical simulations are presented in Table 4.3. As a reference
solution, we used a solution computed with the classical implicit method on a grid with
12801 time layers and 3841 space layers. In case of the PPPT method we computed the

4.3 Numerical example: passport option pricing problem 31

control prediction for each simulation on a coarser grid with 10-times larger time-step size
and the same discretization in space. The error of the approximation is denoted as Err
and estimated by the formula

Err Ak = ‖Ak −Aref‖2, (4.14)

where Ak denotes last time-layer of the approximation of the solution on the k-th refine-
ment level, and Aref denotes the approximation of the solution that is used as reference
solution. The experimental order of convergence is denoted as EOC and computed using
the formula (4.10), where hk is the step size on the k-th refinement level. The computa-
tional time is in Table 4.3 denoted simply as Time.

log(Time)

0 2 4

lo
g(

E
rr

)

-18

-16

-14

-12

classic
pcpt
pppt

Figure 4.3: Comparison of natural logarithm of estimated absolute error of the approxima-
tion of solution against natural logarithm of computational time (in seconds)
for classic implicit, PCPT and PPPT method with different grids.

Table 4.3: Error, experimental order of convergence and computational time for classical
implicit method, PCPT and PPPT methods, for different numbers of nodes

k 1 2 3 4 5 6 7
Time-layers 101 201 401 801 1601 3201 6401
Space-layers 31 61 121 241 481 961 1921
Classical
Err 1,95E-005 2,15E-006 7,82E-007 3,72E-007 1,46E-007 5,19E-008 4,35E-009
EOC 3.18 1.46 1.07 1.35 1.49 3.57
Time 0.909 1.906 4.587 11.708 33.974 107.869 387.558
PCPT
Err 2,01E-005 2,55E-006 1,05E-006 4,79E-007 1,83E-007 6,37E-008 6,16E-009
EOC 2.98 1.28 1.13 1.39 1.52 3.37
Time 0.519 1.243 2.912 7.231 20.899 67.107 234.978
PPPT
Err 2,05E-005 2,74E-006 1,21E-006 5,54E-007 2,12E-007 7,36E-008 7,63E-009
EOC 2.90 1.18 1.13 1.39 1.52 3.27
Time 0.204 0.336 0.865 2.004 9.236 26.084 87.292

Figure 4.3 illustrates the dependence between computational time and error for all three
methods. We observe, that the PPPT method is always the most effective. For a fine
discretization it is about 2 times faster than the PCPT method on the same level of

32 4 Piecewise predicted policy timestepping method

accuracy, and even faster than the classical implicit method. This argument for the PPPT
method is even stronger if we take into account that the reference solution was computed
with the classical implicit method, which means that the error estimation is negatively
biased towards the classical implicit method. We note that the increase of EOC for the
finest grids is also biased because we use a numerical approximation instead of an analytical
solution as the reference solution.

5 Chapter 5

One-dimensional Tree-Grid method

In Chapter 3 we proved that we cannot obtain a monotone scheme with order of con-
vergence higher than 2. Therefore, we tried to speed up the convergence (in means of
computational time, not in means of convergence order) by reduction of control space in
the piecewise predicted policy timestepping method in Chapter 4. In this chapter, we
present another approach on how to reduce the computational time - we will move from
the implicit methods to faster explicit methods. It is in fact easy to construct explicit
versions of the implicit methods from Chapter 3, however, these methods are not uncon-
ditionally stable and monotone. Here we present a method that is unconditionally stable,
monotone, consistent and explicit. This chapter is based on paper [28].

5.1 Recapitulation: problem formulation

For convenience we repeat here the problem formulation from Chapter 2. We are concerned
with searching for the value function V (s, t) of the following general stochastic control
problem (SCP):

V (s, t) = max
θ(s,t)∈Θ̄

E

 T∫
t

exp

 k∫
t

r(Sl, l, θ(Sl, l))dl

 f(Sk, k, θ(Sk, k))dk

+ exp

 T∫
t

r(Sk, k, θ(Sk, k))dk

VT (ST)
∣∣∣St = s

 , (5.1)

dSt =µ(St, t, θ(St, t))dt+ σ(St, t, θ(St, t))dWt, (5.2)
0 < t < T, s ∈ R,

where s is state variable and t is time. Here, Θ̄ is space of all suitable control functions
from R× [0, T] to a set Θ. For our purpose, we will suppose Θ to be discrete. If this is not
the case, we can easily achieve this property by its discretization. We also suppose that
the functions r, f, µ, σ, VT are chosen suitably (see Chapter 2). Now following Bellman’s
principle, the dynamic programming equation holds:

V (s, tj) = max
θ(s,t)∈Θ̄tj

E

 tj+1∫
tj

exp

 k∫
tj

r(Sl, l, θ(Sl, l))dl

 f(Sk, k, θ(Sk, k))dk

+ exp

 tj+1∫
tj

r(Sk, k, θ(Sk, k))dk

V (Stj+1 , tj+1)
∣∣∣Stj = s

 , (5.3)

33

34 5 One-dimensional Tree-Grid method

where 0 ≤ tj < tj+1 ≤ T are some time-points and Θ̄tj is a set of control functions from Θ̄
restricted to the R× [tj , tj+1) domain. Using this equation (5.3), it can be shown [38], that
solving the SCP (5.1),(5.2) is equivalent to solving the Hamilton-Jacobi-Bellman (HJB)
equation:

∂V

∂t
+ max

θ∈Θ

(
σ(·)2

2

∂2V

∂s2
+ µ(·)∂V

∂s
+ r(·)V + f(·)

)
= 0, (5.4)

V (s, T) = VT (s), (5.5)
0 < t < T, s ∈ R.

We repeat intentionally that the maximum operator in (5.1) and (5.4) can be replaced by
a minimum operator and the whole following analysis will hold analogously.

5.2 Construction of the Tree-Grid method

5.2.1 The basic idea

In our proposed method we compute the approximation of the solution on a rectangular
domain [sL, sR] × [0, T] with some grid as in PDE-based schemes. The gridpoints are
denoted as [si, tj], i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . ,M}, k < l ⇒ Sk < sl, tk < tl, t1 =
0, tM = T , s1 = sL, sN = sR. For the step-sizes we use the following notation: ∆is =
si+1 − si, ∆jt = tj+1 − tj . We point out that the grid defined in such manner is very
general, in contrast to grids or lattices used for Markov chain approximations or tree
methods. Later, we will show that in our new explicit method no additional restrictions
on the grid are required, in contrast to standard explicit methods. This gives us a lot of
freedom to choose the discretization not only according to the problem coefficients, but
also according to the terminal condition (5.5), being an important advantage of implicit
methods.

The numerical approximation of V (si, tj) will be denoted as v(si, tj) or simply as vji . We
define a terminal condition vMi = VT (si) and some suitable boundary conditions. In this
paper we suppose that the solution on the intervals [−∞, s1]× [0, T] resp. [sN ,∞]× [0, T]
can by approximated with known functions BCL(s, t) resp. BCR(s, t). This also includes
the case of Dirichlet boundary conditions, where BCL and BCR are constant in s. In
case of Neumann boundary conditions, BCL and BCR can be set to linear functions with
a prescribed slope, fulfilling BCL(s2, tj) = v(s2, tj), BCR(sN−1, tj) = v(sN−1, tj). Also
generalization of the method to other cases of boundary conditions will be straightforward.

The main idea of this scheme follows the same principle as most numerical methods for
this kind of problems: we will start in the last time layer tM = T and then subsequently
compute values in the previous time layers tj . To intuitively derive the method we will
use the original problem formulation (5.1),(5.2) and the dynamic programming equation
(5.3). To prove the convergence we will however regard the scheme as an approximation
of the PDE-problem (5.4),(5.5).

Let us assume, we are at time tj , Stj = si and we want to compute an approximation of
the current value of the value function vji . Also assume that we already somehow know
the values vj+1

l , ∀l = 1, 2, . . . , N from the previous time layer tj+1. Now we can compute

5.2 Construction of the Tree-Grid method 35

the approximate probability distribution of Stj+1 using the SDE (5.2) for the stochastic
process:

Ŝtj+1 = Stj + µ(Stj , tj , θ(Stj , tj))∆jt+ σ(Stj , tj , θ(Stj , tj))∆jW

= si + µ(si, tj , θ)∆jt+ σ(si, tj , θ)∆jW. (5.6)

Here, and also later if misunderstanding is not possible, we abbreviate θ(si, tj) simply as
θ and ∆jW is a normally distributed random variable (RV) with mean 0 and variance
∆jt. Using this approximation, we want to compute vji , the approximation of V (si, tj),
by using again some discrete approximation of the dynamic programming equation (5.3).
However, as we only know approximations of V (s, tj+1) in discrete points si, a continuous
RV Ŝtj+1 is not suitable and should be replaced by a discrete one. This is the main idea
of our method as well as of the forward shooting grid (FSG) methods, Tree methods, and
Markov chain approximation methods.

Problem: Discrete random variable (RV) with values from {s1, s2, . . . , sN} suitably ap-
proximating normally distributed Ŝtj+1 from (5.6) should be found.

5.2.2 Excursion: FSG method

The FSG approach [5] to this problem is to approximate Ŝtj+1 with a RV S̃tj+1 that attains
a finite number (typically 2, s̃+ and s̃−) of values with in-forward given probabilities (p+

and p−). These probabilities with corresponding values arise typically from a binomial
tree model, therefore the first two moments of Ŝtj+1 and of S̃tj+1 are matching, what is
a desirable property, as Ŝtj+1 is normally distributed and therefore fully characterized by
its first two moments. However as the values s̃+ and s̃− of S̃tj+1 typically do not coincide
with the gridpoints from the set {s1, s2, . . . , sN}, approximations vj+1

+ , vj+1
− , of V (s̃+, tj+1),

V (s̃−, tj+1) are not known. Therefore, these values are computed by some interpolation
formula from known values vj+1

1 , vj+1
2 , . . . , vj+1

N : vj+1
± =

∑K±
k±=1 α

±
k±
vj+1
ik±

. After that a
discrete version of the dynamic programming equation (5.3) will be used, and at this step
we will be interested only in an approximation of the expected value E

(
V (Stj+1tj+1)

)
, that

will be computed as

E(V (Stj+1 , tj+1)) ≈ E(V (Ŝtj+1 , tj+1)) ≈ E(V (S̃tj+1 , tj+1))

≈ p+v
j+1
+ + p−v

j+1
− =

K+∑
k+=1

p+α
+
k+
vj+1
ik+

+

K−∑
k−=1

p−α
−
k−
vj+1
ik−

, (5.7)

where the first approximation in (5.7) is with respect to time, second one is with respect
to space and the last approximation is an interpolation with the known values in the grid
points. However, the final approximation (5.7) can be again interpreted as an expected
value E

(
V (S̃′tj+1

, tj+1)
)
where S̃′tj+1

is a discrete RV taking values sik± with "probabilities"
p±α

±
k±

. However in contrast to S̃tj+1 , the moments of S̃′tj+1
will most probably not match

with the moments of Ŝtj+1 . This can be interpreted in such manner, that using this
approach we solve a SCP driven by an SDE different from (5.2). Moreover, depending
on the interpolation formula the "probabilities" might not sum up to 1 and even not be
non-negative anymore (not in the case of constant or linear interpolation), what may lead

36 5 One-dimensional Tree-Grid method

to instability of the whole scheme. This possible defect of the method is analogous to the
instability of explicit FDM schemes if the timestep-spacestep condition is not met: both
defects harm the monotonicity of the schemes. This makes such methods unsuitable for
searching for viscosity solutions and possibly even unstable.

We should note, that the above analysis was done for a FSG method based on S̃tj+1

attaining two values, but the case of more values is completely analogous. Of course
interpolation used in this method may be in many cases "good enough", meaning that the
moment matching is done in the limit case, and the whole method may converge to the
solution. However this is not automatic, and it is problem-specific. An analysis of when
FSG is successful and when not for the problem of path-dependent option pricing can be
found in [18].

5.2.3 The basic Tree-Grid method

In our new scheme we will also approximate Ŝtj+1 from (5.6) with a discrete RV S̃tj+1 .
However, because of the problems with standard FSG schemes, we choose a different
approach to construct this RV. In order to avoid interpolation S̃tj+1 will attain only values
from the set {s1, s2, . . . , sN}. Exceptions arising close to a boundary will be discussed
later. In this section, we will derive a scheme where S̃tj+1 attains three possible values
s−, so, s+ ∈ {s1, s2, . . . , sN}, s− < so < s+, with corresponding probabilities p−, po, p+.
Of course, because of (5.6), these values will depend on the current state si, time tj
and control θ and should be denoted as s−(si, tj , θ), so(si, tj , θ), s+(si, tj , θ), p−(si, tj , θ),
po(si, tj , θ), p+(si, tj , θ), however for simplicity we prefer the shorter form. We will try to
choose the values in such manner, that the following conditions are satisfied:

p−, po, p+ ≥ 0, (5.8)
p− + po + p+ = 1, (5.9)

p−s− + poso + p+s+ = E, (5.10)

p−s
2
− + pos

2
o + p+s

2
+ = V ar + E2, (5.11)

where

E := E(Ŝtj+1) = si + µ(si, tj , θ)∆jt, (5.12)

V ar := V ar(Ŝtj+1) = σ(si, tj , θ)
2∆jt. (5.13)

The first two conditions (5.8),(5.9) state that p−, po, p+ can be interpreted as probabilities
and, as we will see later, they also ensure stability and monotonicity of the scheme. The
following two conditions (5.10),(5.11) ensure that the first two moments of the RVs S̃tj+1

and Ŝtj+1 are matching, and as shown later, together with (5.9) also ensure the consistency
of the scheme with the PDE (5.4). Solving equations (5.9)-(5.11) we get

p− =
(so − E)(s+ − E) + V ar

(s− − so)(s− − s+)
, (5.14)

po =
(s− − E)(s+ − E) + V ar

(so − s−)(so − s+)
, (5.15)

p+ =
(s− − E)(so − E) + V ar

(s+ − s−)(s+ − so).
(5.16)

5.2 Construction of the Tree-Grid method 37

The question remains, if we can choose s−, so, s+ in such manner, that the non-negativity
condition (5.8) is also fulfilled.

Let us suppose without loss of generality that µ(si, tj , θ) ≥ 0 ⇒ E ≥ si. If E < s− or
E > s+ then po < 0. If V ar > 0, also E = s− or E = s+ lead to po < 0. Therefore, we will
choose s−, s+ so that s− < E < s+. As we will see later, for unconditional consistency of
the scheme, it is necessary that one of s−, so, or s+ equals to si. As si ≤ E < s+ we can’t
choose s+ = si. Analogously in case of a negative drift µ(si, tj , θ) ≤ 0, we would not be
able to choose s− = si. To make a suitable choice in both cases we will choose so = si.
Now, (case of a positive drift), p+ ≥ 0 automatically (in case of a negative drift it would
be p− ≥ 0). The denominator of p− is positive and hence we want a positive numerator.
The denominator of po is negative therefore we want a negative numerator.

Since s− only appears in the numerator of po and not in the numerator of p−, for any
choice of s+ we can choose s− small enough such that po ≥ 0 for any choice of s+. Choices
of s− behind the boundary (s− < s1) are also possible as a special case and will be
explained later. Therefore the only question remains, if we can choose such s+, that the
numerator of p− will be positive. We will use abbreviations ∆i+s = s+ − si = s+ − so
and ∆−is = si − s− = so − s−. Moreover, we will use abbreviations µ := µ(si, tj , θ) and
σ = σ(si, tj , θ) if confusion is not possible. For the condition on numerator of p− from
equation (5.14) holds

(so − E)(s+ − E) + V ar ≥ 0⇔ −µ∆jt(∆i+s− µ∆jt) + σ2∆jt ≥ 0

⇔ ∆i+s ≤ µ∆jt+ σ2/µ. (5.17)

It should also hold s+ > E ⇒ ∆i+s > µ∆jt. Combining this with (5.17), we get the
following condition: µ∆jt < ∆i+s ≤ µ∆jt+ σ2/µ. A sufficient condition, under which s+

leading to fulfillment of this inequality can be found, is

∆s ≤ σ(si, tj , θ)
2

µ(si, tj , θ)
, (5.18)

where ∆s = maxi∈{1,2,...,N−1}∆is. This seems a good result, however as we will see later,
the convergence of this method depends on the distances ∆i+s, ∆−is. Unfortunately, we
do not have any bound on ∆−is now, we just know that it can be chosen to ensure that
po will be positive. Therefore we will try another approach: we will try to minimize the
distances ∆i+s, ∆−is while keeping po positive. Then we will check, if also p− is positive.
Problem:

min
s+,s−∈{s1,s2,...,sn}

min (s+ − si, si − s−) (5.19)

|(s− − E)(s+ − E)| ≥ V ar. (5.20)

Solving this problem may not be trivial in general, however an exact solution is also not
needed. If we assume E to be "close enough" to si, then some "close to optimal" (and
possibly also optimal) solution will be:

s− =
⌊
E −

√
V arcs = bsi + µ∆jt−

√
V ar

⌋
s
, (5.21)

s+ =
⌈
E +

√
V ares = dsi + µ∆jt+

√
V ar

⌉
s
, (5.22)

38 5 One-dimensional Tree-Grid method

where des denotes rounding to the nearest greater element from s1, s2, . . . , sN , and bcs
denotes rounding to nearest smaller element from s1, s2, . . . , sN . If such element does not
exist, dxes and bxcs will return just x. This corresponds to the boundary cases where
x < s1 or x > sN and will be discussed later. As we will see later, on an equidistant
or "locally equidistant" grid it may be advantageous to choose s+ and s− symmetric
around si. Therefore we propose here also another choices of s+, s−, that will ensure
this symmetry, fulfill condition (5.20), however possibly lead to a greater value of the
minimized expression (5.19):

s− =
⌊
si −

√
(µ∆jt)2 + V ar

⌋
s
, (5.23)

s+ =
⌈
si +

√
(µ∆jt)2 + V ar

⌉
s
. (5.24)

Now, for (5.21),(5.22) the following estimates hold

s− ≥ si + µ∆jt−
√
V ar −∆s, (5.25)

s+ ≤ si + µ∆jt+
√
V ar + ∆s, (5.26)

and for (5.23),(5.24) the estimates hold

s− ≥ si −
√

(µ∆jt)2 + V ar −∆s ≥ si − |µ|∆jt−
√
V ar −∆s, (5.27)

s+ ≤ si +
√

(µ∆jt)2 + V ar + ∆s ≤ si + |µ|∆jt+
√
V ar + ∆s. (5.28)

Let us now check if p− is non-negative, that means, if its numerator is non-negative.
Substituting (5.22) or (5.24) into it, and further supposing µ ≥ 0, we get

(so − E)(s+ − E) + V ar = −µ∆jt(s+ − so − µ∆jt) + V ar

≥ −µ∆jt
(√

V ar + ∆s
)

+ V ar = −µ∆jt
(
σ
√

∆jt+ ∆s
)

+ σ2∆jt. (5.29)

This is greater than 0 if ∆s ≤ σ2/µ − σ
√

∆jt. A completely analogous analysis can be
done for the case of negative drift µ < 0⇒ E < xi. Joining both cases into one condition,
we get that if so = si and (5.21), (5.22) or (5.23), (5.24) holds, then

∆s ≤ σ(si, tj , θ)
2

|µ(si, tj , θ)|
− σ(si, tj , θ)

√
∆jt (5.30)

is a sufficient condition for the non-negativity of p−,po,p+ defined in (5.14)-(5.16). The
last question is, if s− < so < s+ holds. This may be a problem in (5.21) (in case of a
positive drift) or in (5.22) (in case of a negative drift). However it is easy to check that
the condition (5.30) is sufficient for this inequality to be fulfilled. The condition (5.30) is
quite weak for σ large enough. However for problems with vanishing σ it may be hard or
even impossible to fulfill. In the next section we will describe how to tackle this problem.

5.2.4 The Tree-Grid method with artificial diffusion

Let us now examine the case that condition (5.30) is not fulfilled. This can only happen
if the variance V ar defined in (5.13) is not large enough to compensate the negative part

5.2 Construction of the Tree-Grid method 39

in (5.29). We solve this problem by redefining the variance V ar in such manner that we
add to the variance (5.13) some additional positive term of higher order in ∆jt:

V ar := σ(si, tj , θ)
2∆jt+ a(si, tj , θ)

2(∆jt)
2. (5.31)

Here a(si, tj , θ)
2(∆jt)

2 is the so-called artificial diffusion term, and if large enough, use of
this new modified variance (5.31) should lead to positive weights. Moreover, as the whole
term should be vanishing with ∆jt→ 0 and the true variance term σ∆t should dominate.
For this, we need however a(si, tj , θ) (later denoted simply as a) to be bounded. Now
assuming a positive µ, we will repeat the analysis (5.29) of the numerator of p− with the
new V ar (results for po and p+ still hold).

(so − E)(s+ − E) + V ar ≥ −µ∆jt
(√

V ar + ∆s
)

+ V ar (5.32)

= −µ∆jt

(√
σ2∆jt+ a2(∆jt)2 + ∆s

)
+ σ2∆jt+ a2(∆jt)

2

≥ −µ∆jt
(
σ
√

∆jt+ a∆jt+ ∆s
)

+ σ2∆jt+ a2(∆jt)
2. (5.33)

In the last step, we decided that a is positive, so that we can do the above estimation.
Now in order to introduce as small artificial diffusion as needed, but still having (5.33)
non-negative, we will choose a as the root of −µ∆jt

(
σ
√

∆jt+ a∆jt+ ∆s
)

+ σ2∆jt +
a2(∆jt)

2 = 0. Moreover, to ensure the positivity of a, we will choose the larger root:

a =
µ∆jt+

√
µ2(∆jt)2 − 4|µ|∆jt

(
σ2/|µ| − σ

√
∆jt−∆s

)
2∆jt

(5.34)

We should note, that we substituted a non-negative µ with |µ| such that (5.34) holds also
as result of fully analogous analysis for negative µ.

If σ2/µ − σ
√

∆jt − ∆s ≥ 0, then the condition (5.30) is fulfilled and we can switch to
a = 0. Let us now examine the case that σ2/µ−σ

√
∆jt−∆s < 0; in that case, the whole

discriminant and therefore also a is positive. That means, the numerator of p− as well as
p− itself is positive and we found positive probabilities p−, po, p+. Now we will try to find
an upper bound on a, satisfying convergence of new variance to the true variance from the
problem setting. Following (5.34),

a ≤
µ∆jt+

√
µ2(∆jt)2 − 4|µ|∆jtminσ∈R+

(
σ2/|µ| − σ

√
∆jt−∆s

)
2∆jt

=
µ∆jt+

√
2µ2(∆jt)2 + 4|µ|∆jt∆s

2∆jt

≤
µ∆jt+

√
2µ2(∆jt)2 +

√
4|µ|∆jt∆s

2∆jt

=
1

∆jt

(
(1 +

√
2)|µ|

2
∆jt+ 2

√
|µ|
√

∆jt∆s

)
. (5.35)

Let us define the abbreviations:

m1 = (1 +
√

2)|µ|/2, m2 = 2
√
|µ|. (5.36)

40 5 One-dimensional Tree-Grid method

Following the estimation, for the whole artificial diffusion term holds:

a2(∆jt)
2 = (m1∆jt+m2

√
∆jt∆s)

2

= m2
1(∆jt)

2 + 2m1m2∆jt
√

∆jt∆s+m2
2∆jt∆s

≤ m2
1(∆jt)

2 +m1m2∆jt(∆jt+ ∆s) +m2
2∆jt∆s

= m1(m1 +m2)(∆jt)
2 +m2(m1 +m2)∆jt∆s

= O
(
∆t(∆t+ ∆s)

)
, (5.37)

where ∆t = maxj∈{1,2,...,M−1}∆jt. Together with (5.31) we get finally the estimate

V ar = O(∆t). (5.38)

We will use this estimation of the artificial diffusion term later to prove the consistency.

5.2.5 The final Tree-Grid method algorithm

In the following algorithm, we are interested in the values vj+1
i corresponding to the states

s−, so and s+. Therefore, we define the following function:

if s ∈ {s1, s2, . . . , sN} : vj+1(s) = vj+1
k so that s = sk

else if s < s1 : vj+1(s) = BCL(s, tj+1) (5.39)

else if s > sN : vj+1(s) = BCR(s, tj+1).

Moreover, we define the short notation vj+1
− = vj+1(s−), vj+1

o = vj+1(so), v
j+1
+ = vj+1(s+)

and f ji (θ) = f(si, tj , θ(si, tj)), r
j
i (θ) = r(si, tj , θ(si, tj)). Now, assuming Stj = si in order

to discretize the equation (5.3) we use the following approximations:

•
∫ tj+1

tj
exp

(∫ k
tj
r(Sl, l, θ(Sl, l))dl

)
f(Sk, k, θ(Sk, k))dk ≈ f ji (θ)∆jt,

• exp
(∫ tj+1

tj
r(Sk, k, θ(Sk, k))dk

)
≈ 1 + rji (θ)∆jt,

• E
(
V (Stj+1 , tj+1)

∣∣∣Stj = si

)
≈ p−vj+1

− + pov
j+1
o + p+v

j+1
+ .

Then the discretized version of the dynamic programming equation (5.3) for
i = 2, 3, . . . , N − 1 reads

vji = max
θ∈Θ

(
f ji (θ)∆jt+ (1 + rji (θ)∆jt)

(
p−v

j+1
− + pov

j+1
o + p+v

j+1
+

))
. (5.40)

or

vji = max
θ∈Θ

wji (θ), (5.41)

wji (θ) =f ji (θ)∆jt+ (1 + rji (θ)∆jt)
(
p−v

j+1
− + pov

j+1
o + p+v

j+1
+

)
. (5.42)

5.2 Construction of the Tree-Grid method 41

We note that uniqueness of the maximum in (5.41) is not needed. For i = 1 and i = N
we employ the boundary conditions:

vj1 = BCL(s1, tj), vjN = BCR(sN , tj). (5.43)

Finally we can summarize the whole algorithm of the Tree-Grid method for solving the
SCP (5.1),(5.2) (and the HJB equation (5.4),(5.5)):

Algorithm 5 The Tree-Grid method
1: Set vMi = VT (si) for i = 1, 2, . . . , N
2: for j = M − 1,M − 2, . . . , 1 do
3: Compute vj1, v

j
N according to (5.43)

4: for i = 2, 3, . . . , N − 1 do
5: for θ ∈ Θ do
6: Compute E according to (5.12)
7: if Condition (5.30) holds then
8: Compute V ar according to (5.13)
9: else

10: Compute a according to (5.34)
11: Compute V ar according to (5.31)
12: end if
13: Set so = si and compute s−, s+ using (5.21)-(5.22) or (5.23)-(5.24)
14: Compute p−, po, p+ using (5.14)-(5.16)
15: Compute wji (θ) using (5.39) and (5.42)
16: end for
17: Compute vji according to (5.41)
18: end for
19: end for

5.2.6 Relationship to other numerical methods

In this section we outline (very informally) the interesting relationships between our new
method and standard approaches, as well as point out the most relevant differences.

Forward shooting grid methods. We already discussed FSG methods in Section 5.2.2
in order to motivate the Tree-Grid approach. We can see the Tree-Grid method in its sim-
plest version (no artificial diffusion) as modification of the FSG method with 3 “branches”
instead of 2, non-constant probabilities, and, most importantly with no need to perform
any interpolation. This differences however make the method convergent in contrast to
the (general) FSG.

Tree methods. The Tree-Grid method inherits many similarities with binomial and
especially trinomial tree methods mostly used in option pricing. Both approaches are
based on approximating the continuum of possible outcomes after 1 time-step by a RV
gaining only 3 (in case of Tree-Grid and trinomial tree methods) values, graphically often
represented by three new “branches“ of the ”tree“. However, in contrast to the trinomial
tree method where the branches are growing only from nodes on the tree, in the Tree-Grid
method, 3 branches are ”planted“ in each gridpoint of an arbitrary grid. Therefore, we
also chose the name ”Tree-Grid“ method. In trinomial tree methods, we get the value of

42 5 One-dimensional Tree-Grid method

Figure 5.1: Illustration of the flexibility of the Tree-Grid structure. The node A represents
a node with lower volatility, whereas node B exhibits higher volatility. Blue
nodes are passing its values to node A and red nodes are passing its values to
node B. Purple nodes have impact on both A and B. Node C passes its value
to four different nodes in the previous time level whereas node D passes its
value only to one node in the previous time level.

the value function (e.g. option price) only in 1 space point in the first time layer, whereas
in the Tree-Grid method, we get the value of value function on a whole set of space points.
One may correctly comment, that also trinomial tree method works on some lattice that
can be easily extended so that more values are computed in the first time-layer. This
is true, however this lattice is constructed depending on the problem, space-steps are
already determined by timestep (can’t be chosen according to terminal condition) and
the time-step size also can’t be determined for each layer arbitrarily. On the other hand
the Tree-Grid method works on an arbitrary grid. Besides artificial diffusion, one of the
most obvious technical differences is the following: in trinomial tree methods from each
node grow 3 branches, and each (”inner“) node also passes its value into 3 earlier nodes.
However in tree grid method only the first statement holds: each node may pass it’s value
to different number of earlier nodes –depending on the problem and on the grid. The ”tree
structure“ in Tree-Grid method is then much more flexible. This flexibility is illustrated
in Figure 5.1.

Finite difference methods. FDMs are used to solve the HJB equation (5.4),(5.5) instead
of the original SCP. However, in the next section, we will also prove the convergence of the
approximation computed by the Tree-Grid method to the solution of the HJB equation,
despite the fact that the derivation of the method was based on the original formulation
(5.1),(5.2). This motivates us to try to look at the method through a finite difference
perspective. As so = si (and therefore vj+1

o = vj+1
i) it can be shown:

p−v
j+1
− + pov

j+1
o + p+v

j+1
+ = vj+1

o + µ∆jtD1v
j+1
i + 1/2

(
V ar + (µ∆jt)

2
)
D2v

j+1
i , (5.44)

where D1 and D2 denote standard finite difference approximations of first and second

5.3 Convergence of the Tree-Grid method 43

derivative on nonuniform grids:

D1v
j+1
i =

(
s+ − si
s+ − s−

)
vj+1
i − vj+1

−
si − s−

+

(
si − s−
s+ − s−

)
vj+1

+ − vj+1
i

s+ − s−
, (5.45)

D2v
j+1
i =

(
vj+1

+ − vj+1
i

s+ − si
−
vj+1
i − vj+1

−
si − s−

)/(s+ − s−
2

)
. (5.46)

Now if we substitute (5.44) into (5.40) and suppose that no artificial diffusion is used, and
for the discount rate holds rji (θ) = 0, the only difference between the Tree-Grid scheme
and an explicit finite difference approximation with a wide stencil on the nodes s−, si, s+

is the term 1/2(µ∆jt)
2D2v

j+1
i . This term can be interpreted as some inherent artificial

diffusion that comes into the scheme directly from numerical modeling, and is also making
the scheme more stable than explicit FDMs (it in fact makes the derivation of condition
(5.30) possible). Therefore, even in this simplest case this scheme can’t be viewed as just
FDM on specifically chosen nodes, although the similarity is clear. Let us note that such
inherent artificial diffusion term is also present in tree methods (therefore they are not
equivalent to FDMs as sometimes stated in literature, only equivalent up to certain order),
but not present in Markov chain approximation methods from [31].

Markov chain approximation methods. The basic idea of Markov chain approxima-
tion methods is to construct a Markov chain (in discrete time) approximating a Markov
process (5.2) (in continuous time) and then using this chain to find an approximation of
the solution to the SCP -an idea very similar to Tree methods, however in literature used
in more general frameworks as tree-methods are used mostly only in option pricing. From
this viewpoint Tree-Grid method can be also seen as Markov chain approximation method
as by constructing variable S̃tj+1 gaining values s−, so, s+ with probabilities p−, po, p+. In
Section 5.2.3 we in fact constructed a Markov chain approximating (5.2). However, in
standard Markov chain methods [31], (as well as in tree methods), the grid can’t be cho-
sen arbitrarily, is problem-dependent and the space step is determined by the time step.
Moreover, these methods can be often linked to explicit FDMs and (as stated earlier) also
do not possess the inherent artificial diffusion term.

5.3 Convergence of the Tree-Grid method

In the previous section we directly discretized the SDE (5.2) and the dynamic programming
equation (5.3) to find the approximation of the solution of the SCP. However, in order
to show the convergence of this approximation to the viscosity solution as the stepsizes
tend to zero we will look at the above algorithm as on a method for solving the HJB
equation (5.4),(5.5). Figure 5.2 illustrates these relationships between Tree-Grid method
and stochastic control problem, dynamic programming equation and HJB equation.

At first, we will present the required definitions and the convergence theorem for general
nonlinear problems from [4].

44 5 One-dimensional Tree-Grid method

Figure 5.2: The Tree-Grid method is derived from the SCP where the dynamics is rep-
resented by stochastic differential equations (SDEs). The core of the method
is the discretized stochastic process St plugged into the discretized dynamic
programming equation, that follows from the SCP by application of Bellmans
principle of optimality. Using the dynamic programming equation, the HJB
PDE can be derived (via Feynman-Kac-like transformation), which solution is
equivalent to the solution of the original SCP. We employ this fact by proving
the convergence of the approximation computed using the Tree-Grid method
to the solution of this HJB equation.

5.3.1 Consistency of the scheme

For the purposes of following analysis we rewrite (5.40) it in the form Gv(si, tj) = 0:

Gv(si, tj) =G(v(si, tj), v(s−, tj+1), v(so, tj+1), v(s+, tj+1))

=
1

∆jt

(
vji −max

θ∈Θ

(
f ji (θ)∆jt+ (1 + rji (θ)∆jt)

·
(
p−v

j+1
− + pov

j+1
o + p+v

j+1
+

)))
= 0. (5.47)

Using the theory from Section 2.2, our goal is to show that equation (5.47) is a monotone,
consistent, and stable approximation of the nonlinear differential operator F defined by
the PDE (5.4):

FV (s, t) = −∂V
∂t
−max

θ∈Θ

(
σ(·)2

2

∂2V

∂s2
+ µ()

∂V

∂s
+ r(·)V + f(·)

)
. (5.48)

Let us note that we multiplied both sides of (5.4) with −1 so that the operator F is
elliptic as in the theory of Barles and Souganidis [4]. The variable x from Section 2.2 is
here represented by a 2-dimensional vector [s, t]. Let us recall ∆s = maxi∈{1,2,...,N−1}∆is
and ∆t = maxj∈{1,2,...,M−1}∆jt. Then the stepsize parameter h from the Section 2.2 is in
our case defined as h = min(∆s,∆t).

At first we prove the consistency of the scheme (5.47) with the HJB equation (5.4). We
define ∆i−s = s− − si = −∆−is, ∆ios = so − si, ∆i+s = s+ − si and rewrite (5.14)-(5.16)

5.3 Convergence of the Tree-Grid method 45

equivalently as

p− =
(∆ios− µ∆jt)(∆i+s− µ∆jt) + V ar

(∆i−s−∆ios)(∆i−s−∆i+s)
, (5.49)

po =
(∆i−s− µ∆jt)(∆i+s− µ∆jt) + V ar

(∆ios−∆i−s)(∆ios−∆i+s)
, (5.50)

p+ =
(∆i−s− µ∆jt)(∆ios− µ∆jt) + V ar

(∆i+s−∆i−s)(∆i+s−∆ios)
. (5.51)

Now we can see that p−, po, p+ is also a solution of the system of equations

p− + po + p+ = 1, (5.52)
p−∆i−s+ po∆ios+ p+∆i+s = µ∆jt, (5.53)

p−(∆i−s)
2 + po(∆ios)

2 + p+(∆i+s)
2 = V ar + (µ∆jt)

2. (5.54)

Now a lemma about a remainder-terms that will be used in our consistency proof follows.

Lemma 4 (Rest terms). Let ∆ios = 0 (so = si). Then for s−, s+ computed according to
(5.21),(5.22) or (5.23),(5.24) we have

R3 := p−(∆i−s)
3 + po(∆ios)

3 + p+(∆i+s)
3 = O (∆t (∆t+ ∆s)) , (5.55)

and for s−, s+ computed according to (5.23),(5.24) on equidistant grid, we have

R3 = O
(
∆t
(
∆t+ (∆s)2

))
. (5.56)

Moreover, for s−, s+ computed either by formulas (5.21),(5.22), or by (5.23),(5.24) it holds

Rb4 := b−p−(∆i−s)
4 + bopo(∆ios)

4 + b+p+(∆i+s)
4

= O
(
∆t
(
∆t+ (∆s)2

))
, (5.57)

Rb2 := b−p−(∆i−s)
2 + bopo(∆ios)

2 + b+p+(∆i+s)
2 = O (∆t) , (5.58)

where b−, bo, b+ ∈ R are arbitrary constants.

Proof. From (5.49)-(5.51) follows:

R3 = ∆i−s∆ios∆i+s− µ∆jt∆ios∆i+s− µ∆jt∆i−s∆i+s− µ∆jt∆i−s∆ios

+V ar∆i+s+ V ar∆ios+ V ar∆i−s

+µ2(∆jt)
2∆i+s+ µ2(∆jt)

2∆ios+ µ2(∆jt)
2∆i−s. (5.59)

According to (5.38) V ar = O(∆t). Substituting this into (5.21),(5.22) or (5.23),(5.24)
using the inequality si < so = si < s+ and using definitions of ∆i−s,∆i+s, we get

∆i+s = O(
√

∆t+ ∆s), ∆i−s = O(
√

∆t+ ∆s), ∆i−s+ ∆i+s = O(∆s). (5.60)

46 5 One-dimensional Tree-Grid method

As ∆ios = 0 for so = si, by using formulas (5.21),(5.22) we get

R3 =− µ∆jt∆i−s∆i+s+ V ar∆i+s+ V ar∆i−s

+ µ2(∆jt)
2∆i+s+ µ2(∆jt)

2∆i−s = O
(
∆t (∆t+ ∆s)

)
, (5.61)

where we used (5.38), (5.60). By using formulas (5.23),(5.24) on an equidistant grid, it
holds ∆i−s = −∆i+s and therefore

R3 =− µ∆jt∆i−s∆i+s = µ∆jt(∆i+s)
2 = O

(
∆t
(
∆t+ (∆s)2

))
. (5.62)

Let us define R4 := p−(∆i−s)
4 +po(∆ios)

4 +p+(∆i+s)
4. Now by using either (5.21),(5.22)

or (5.23),(5.24) we can prove that R4 = O
(
∆t
(
∆t+ (∆s)2

))
in the same manner as in

the case of R3. Now it holds

O
(
∆t
(
∆t+ (∆s)2

))
= min(b−, bo, b+)R4 ≤ Rb4
≤ max(b−, bo, b+)R4 = O

(
∆t
(
∆t+ (∆s)2

))
,

and therefore also Rb4 = O
(
∆t
(
∆t+ (∆s)2

))
. Finally, following (5.54), (5.38) it holds

O (∆t) = min(b−, bo, b+)
(
V ar + (µ∆jt)

2
)
≤ Rb2

≤ max(b−, bo, b+)
(
V ar + (µ∆jt)

2
)

= O (∆t) ,

and therefore Rb2 = O (∆t).

The lemma establishing the consistency of our scheme follows.

Lemma 5 (Consistency). If the parameters p−, po, p+ in the scheme (5.47) satisfy the
conditions (5.9)-(5.11), so = si and s−, s+ are computed according to (5.21),(5.22) then
the scheme (5.47) is consistent with the PDE (5.48).

Proof. Let φ : R × [0, T] → R be a C∞-smooth function. Let us define φji = φ(si, tj),
φj− = φ(s−, tj), φ

j
o = φ(so, tj), φ

j
+ = φ(s+, tj). Now it holds

φj+1
∗ = φji +

∂φji
∂s

∆i∗s+
∂φji
∂t

∆jt+
1

2

∂2φji
∂s2

(∆i∗s)
2 +

∂2φji
∂s∂t

∆i∗s∆jt

+
1

6

∂3φji
∂s3

(∆i∗s)
3 +

1

2

∂3φji
∂s2∂t

(∆i∗s)
2∆jt

+
1

24

∂4φj+ε∗i+δ∗
∂s4

(∆i∗s)
4 +

1

6

∂4φj+ε∗i+δ∗
∂s3∂t

(∆i∗s)
3∆jt+O

(
(∆jt)

2
)
, (5.63)

where the index ∗ should be substituted by either − or o or +, and φj+ε∗i+δ∗ = φ(si +
δ∗∆i∗s, tj + ε∗∆jt), and δ∗, ε∗ ∈ [0, 1]. Now, using (5.52)-(5.54) and the definitions from

5.3 Convergence of the Tree-Grid method 47

Lemma 4 we get:

p−φ
j+1
− + poφ

j+1
o + p+φ

j+1
+ = φji +

∂φji
∂s

µ∆jt+
∂φji
∂t

∆jt

+
1

2

∂2φji
∂s2

(
V ar + (µ∆jt)

2
)

+
∂2φji
∂s∂t

µ(∆jt)
2 +

1

6

∂3φji
∂s3

R3

+
1

2

∂3φji
∂s2∂t

(
V ar + (µ∆jt)

2
)

∆jt+Rb4 +Rb
′

2 ∆jt+O
(

(∆jt)
2
)
, (5.64)

where

b∗ =
1

24

∂4φj+ε∗i+δ∗
∂s4

, b′∗ =
1

6

∂4φj+ε∗i+δ∗
∂s3∂t

∆i∗s, for ∗ = −, o,+. (5.65)

Now, using Lemma 4, and the definition of V ar (5.31) we can rewrite (5.64) as

p−φ
j+1
− + poφ

j+1
o + p+φ

j+1
+ = φji +

∂φji
∂s

µ∆jt+
∂φji
∂t

∆jt

+
1

2

∂2φji
∂s2

(
σ2∆jt+ (a2 + µ2)(∆jt)

2
)

+
∂2φji
∂s∂t

µ(∆jt)
2 +

1

6

∂3φji
∂s3

R3

+
1

2

∂3φji
∂s2∂t

(
σ2∆jt+ (a2 + µ2)(∆jt)

2
)

∆jt+O
(
∆t
(
∆t+ (∆s)2

))
= φji +

∂φji
∂s

µ∆jt+
∂φji
∂t

∆jt+
1

2

∂2φji
∂s2

σ2∆jt

+
1

6

∂3φji
∂s3

R3 +Ra +O
(
∆t
(
∆t+ (∆s)2

))
, (5.66)

with the remainder term

Ra =
1

2

∂2φji
∂s2

a2(∆jt)
2 +

1

2

∂3φji
∂s2∂t

a2(∆jt)
2, (5.67)

and according to (5.37) Ra = O
(
∆t (∆t+ ∆s)

)
if a > 0 and Ra = 0 if a = 0 (artificial

diffusion not needed). Now, substituting (5.66) to Gφ(si, tj) (defined according to (5.47))
we get

Gφ(si, tj) =
1

∆jt

(
φji −max

θ∈Θ

(
f ji (θ)∆jt+ (1 + rji (θ)∆jt)

(
φji +

∂φji
∂s

µ∆jt

+
∂φji
∂t

∆jt+
1

2

∂2φji
∂s2

σ2∆jt+
1

6

∂3φji
∂s3

R3 +Ra +O
(
∆t
(
∆t+ (∆s)2

)))))
= −

∂φji
∂t
−max

θ∈Θ

(
f ji (θ) + rji (θ)φ

j
i +

∂φji
∂s

µ+
1

2

∂2φji
∂s2

σ2

+
1

6

∂3φji
∂s3

(
rji (θ)R3 +

R3

∆jt

)
+Ra +O

(
∆t+ (∆s)2

))
= −

∂φji
∂t
−max

θ∈Θ

(
σ2

2

∂2φji
∂s2

+ µ
∂φji
∂s

+ rji (θ)φ
j
i + f ji (θ)

)
+R, (5.68)

where, according to the estimation of R3 in Lemma 4 and according to estimation of Ra,
R = O

(
∆t+ (∆s)2

)
if artificial diffusion is not present (a = 0), formulas (5.23), (5.24)

were used and the space-grid is equidistant.

48 5 One-dimensional Tree-Grid method

According to (5.48), we have

Fφ(si, tj) = −
∂φji
∂t
−max

θ∈Θ

(
σ2

2

∂2φji
∂s2

+ µ
∂φji
∂s

+ rji (θ)φ
j
i + f ji (θ)

)
. (5.69)

Comparing (5.68) and (5.69) we see that |Fφ(si, tj)−Gφ(si, tj)| is of order O (∆t+ ∆s)
resp. O

(
∆t+ (∆s)2

)
and therefore vanishing with h = min(∆s,∆t)→ 0.

Remark 7 (Order of consistency). The original paper of Barles and Souganidis [4] does
not define the order of convergence to the viscosity solution, it just presents a theory for
convergence. Therefore, the impact of the order of the scheme (or “consistency order”)
on the convergence rate is not clear. Moreover, as shown in [26] the maximal order of a
monotone scheme is 2. However, in the work of Wang and Forsyth [48] it is experimen-
tally shown that a higher order of the scheme leads to faster convergence for a particular
problem. Therefore following the proof of the previous Lemma on an equidistant space-grid
it may be advantageous to use formulas (5.23), (5.24) leading to an order of the scheme
O
(
∆t+ (∆s)2

)
(if artificial diffusion is not needed) rather than formulas (5.21), (5.22)

leading to an order of the scheme O (∆t+ ∆s). On the other hand, formulas (5.21), (5.22)
may lead to smaller space-steps ∆i−,∆i+ which may theoretically also lead to a higher con-
vergence rate. Therefore, the optimal choice between formulas (5.21), (5.22) and (5.23),
(5.24) needs deeper examination.

5.3.2 Monotonicity, stability, convergence

Next, we will prove the monotonicity and stability of the method (5.47). Together with
the already proven consistency we get the convergence result for the Tree-Grid method.
The lemma establishing the monotonicity property of our method follows.

Lemma 6 (Monotonicity). If the parameters p−, po, p+ in the scheme (5.47) satisfy the
condition (5.8) and if 1 + rji (θ)∆jt ≥ 0 for all θ ∈ Θ then this scheme is monotone.

Proof. In our case, monotonicity means that (5.47) is non-increasing in vj+1
− , vj+1

o , vj+1
+ .

This follows directly from the non-negativity of the p−, po, p+ -condition (5.8).

Remark 8. Even if 1 + rji (θ)∆jt < 0 for some θ, we can get a monotone scheme if we
substitute 1 + rji (θ)∆jt by 1/(1 − rji (θ)∆jt) in (5.47) for these parameters θ. Note that
this change does not harm the consistency, nor the stability of the scheme.

The next step is to prove the stability of the method. At first we will pose some conditions
on the problem that will be needed for the stability proof.

Property 1 (Stability condition on the problem). We assume that:

1. There exist constants Cf , Cr, ∀s, t, θ : |f(s, t, θ)| < Cf , |r(s, t, θ)| < Cr.

2. There exist a constant CL, |BCL(s, t)| < CL, ∀t and for all possible values s < s1 of
the variables s−, so, s+ for any grid.

3. There exist a constant CR, |BCR(s, t)| < CR, ∀t and for all possible values s > sN
of the variables s−, so, s+ for any grid.

5.3 Convergence of the Tree-Grid method 49

The first condition simply establish boundedness of functions r(·), f(·), and the second
and third condition establish boundedness of the values that can flow into the model from
behind the boundary. Checking if this condition is fulfilled is in most cases trivial. Now
we state an inequality that will be used for the stability proof.

Lemma 7 (Inequality recurrence).

xj ≤ ajxj+1 + bj , j < M ⇒ xj ≤

M−1∏
k=j

ak

xM +

M−1∑
k=j

k−1∏
l=j

al

 bk

 .

Proof. Proof can be done easily by induction, therefore we omit here the details.

Lemma about the stability of the method follows.

Lemma 8 (Stability). If the parameters p−, po, p+ in the scheme (5.47) satisfy the
conditions (5.8),(5.9), and the problem satisfies Property 1 then this scheme is stable.

Proof. Let us define

Cj = max

(
CL, CR, max

i∈{1,2,...,N}

(
vji

))
.

Then, it holds:

Cj = max
(
CL, CR, max

i∈{1,2,...,N}

(
f ji (θ)∆jt+ (1 + rji (θ)∆jt)

·
(
p−v

j+1
− + pov

j+1
o + p+v

j+1
+

)))
≤max

(
CL, CR, max

i∈{1,2,...,N}

(
Cf∆jt+ (1 + Cr∆jt)

·max
(
CL, CR, max

i∈{1,2,...,N}

(
vj+1
i

))))
=Cf∆jt+ (1 + Cr∆jt)Cj+1

≤Cf∆jt+ exp(Cr∆jt)Cj+1.

Using Lemma 7 we obtain

Cj =

M−1∏
k=j

exp(Cr∆kt)

CM +

M−1∑
k=j

k−1∏
l=j

exp(Cr∆lt)

Cf∆kt


= exp (Cr(tM − tj))CM +

M−1∑
k=j

(exp (Cr(tk − tj))Cf∆kt)

≤ exp (CrT)CM + exp (CrT)
M−1∑
k=j

(Cf∆kt)

= exp (CrT) (CM + CfT) =: C.

50 5 One-dimensional Tree-Grid method

Let v be the vector of all values vji . Then it holds

‖v‖∞ = max
j∈{1,2,...,M}

max
i∈{1,2,...,N}

|vji | ≤ max
j∈{1,2,...,M}

Cj ≤ C.

As this estimation is independent of the grid spacing, the scheme (5.47) is stable.

Theorem 9 (Convergence of Tree-Grid method). The approximation computed by the
Tree-Grid method defined by Algorithm 5 for solving the SCP (5.1),(5.2) and the corre-
sponding HJB equation (5.4),(5.5) satisfying the strong uniqueness property (see [4]) and
stability conditions defined in Property 1 converges to the viscosity solution of this SCP
(and HJB equation).

Proof. The proof follows from Theorem 1 and Lemmas 5, 6, 8.

Remark 9. Actually the approximation converges to the viscosity solution of the HJB
equation restricted to the domain [sL, sR] × [0, T] with boundary conditions defined by
functions BCL(s, t), BCR(s, t). We silently assumed that these boundary functions are
chosen consistently with the viscosity solution - an assumption that is frequently done in
literature, as choosing boundary conditions is problem specific.

5.4 Numerical example: uncertain volatility model

In this as well as in the following section we will compare the performance of the Tree-Grid
method with the classic implicit finite difference method for the HJB equation presented
in [16] on examples from finance. In the first example no artificial diffusion is needed
in contrast to the second example in Section 5.5. We note that in order to validate the
Tree-Grid method, we tested it also with an uncontrolled Black-Scholes equation, which
posses an closed-form formula for solution. The method was convergent, however standard
FDMs provided better results in this case. The numerical methods were implemented in
Matlab and tested on an Intel Core i7-4770 CPU 3.40GHz computer with 8 GB RAM.

Our first example of the usefulness of Tree-Grid method is the problem of option pricing
under the uncertain volatility model:

Example 3 (Uncertain volatility model). The setting of the uncertain volatility model
is similar to the famous Black-Scholes model, the only difference is that the volatility is
uncertain, only known to lie in some interval. Using this model, we can compute maximal
(best case) and minimal (worst case) option prices. Here we present the results for the
best case option price V that can be, according to [17], computed using the HJB equation

∂V

∂t
+ max

θ∈Θ

(θ2S2

2

∂2V

∂S2
+ S

∂V

∂S
− rV

)
= 0. (5.70)

Here, t represents time, S is asset price, θ (control variable) is volatility, Θ = {σmin, σmax}
are the minimal and maximal values of the volatility and r is the risk-free interest rate.
For comparison reasons we used the parameters from [17]: r = 0.04 and Θ = {0.3, 0.45}.

Computational domain: The maturity of the option will be six months (T = 0.5), the
space domain will be restricted to S ∈ [0, 500]. The grid will be uniformly spaced in time,

5.4 Numerical example: uncertain volatility model 51

and non-uniformly in space (nodes will be more dense near to “edges” of terminal condition
and less dense near to boundaries of the computational domain)

Terminal and boundary conditions: Terminal and boundary conditions will be also
set as in [17]. We will use a butterfly-spread payoff around 100 as the terminal condition:

V (T, S) = VT (S) =


S − 95 if 95 < x ≤ 100

105− S if 100 < S ≤ 105

0 else.
,

and the Dirichlet boundary conditions:

V (Smin, t) = BCL(S) = 0, V (Smax, t) = BCR(S) = 0,

[Smin, Smax] = [0, 500].

Numerical results: Now we will present results of numerical solutions of the option
pricing problem in uncertain volatility model computed on grids with different levels of
refinement. With Ak, let us denote the approximation computed on the k-th refinement
level. Nk

t will denote number of time-nodes on the k − th refinement level, and Nk
s will

denote number of space-nodes on the k − th refinement level. The error of the approxi-
mation on the k-th space- and time-refinement level is denoted as Err Ak and estimated
by the formula

Err Ak = ‖Ak −Aref‖1, (5.71)

where Aref denotes a reference solution. The experimental order of convergence on the
k-th space- and time-refinement level is denoted denoted as EOC Ak and computed using
the formula (4.10).

Table 5.1: Uncertain volatility model, ∆t = c ·∆s. Error, EOC and computational time
of the approximation Ak,k for the classic implicit and the Tree-Grid methods,
for different numbers of nodes.

Classic Implicit Tree-Grid
k Nk

t Nk
s Err EOC Time Err EOC Time

1 51 100 6.03E-005 - 0.0398 4.29E-005 - 0.0031
2 101 199 1.50E-005 2.01 0.0854 2.09E-006 4.36 0.0033
3 201 397 4.07E-006 1.88 0.1990 2.19E-006 -0.07 0.0068
4 401 793 1.10E-006 1.88 0.5138 4.56E-007 2.26 0.0157
5 801 1585 2.89E-007 1.93 1.4758 1.77E-007 1.36 0.0386
6 1601 3169 7.11E-008 2.02 5.3508 2.43E-008 2.87 0.1057
7 3201 6337 1.60E-008 2.15 19.7059 1.32E-008 0.87 0.3350
8 6401 12673 2.99E-009 2.42 78.0347 2.30E-009 2.53 1.1445
9 12801 25345 3.36E-010 3.16 312.6208 2.88E-010 3.00 4.3767

As reference solution we will use an approximation computed on a grid with 25601 time-
nodes and 50689 space nodes using the classic implicit method with maximal use of central
differences [48]. The Tables 5.1 and 5.2 present the results for approximations computed
with fixed ratio between time-step size and space-step size (∆t = c · ∆s) and with fixed
ratio between time-step size and square of space-step size (∆t = c · (∆s)2). Figure 5.3
illustrates the results.

52 5 One-dimensional Tree-Grid method

Table 5.2: Uncertain volatility model, ∆t = c ·(∆s)2. Error, EOC and computational time
of the approximation Ak,k for the classic implicit and the Tree-Grid methods,
for different numbers of nodes.

Classic Implicit Tree-Grid
k Nk

t Nk
s Err EOC Time Err EOC Time

1 51 1585 3.43E-005 - 0.1406 1.16E-005 - 0.0204
2 201 3169 3.63E-006 3.24 0.7650 4.95E-007 4.55 0.0515
3 801 6337 2.82E-007 3.69 5.0952 4.84E-008 3.35 0.1524
4 3201 12673 1.59E-008 4.15 40.3774 7.27E-009 2.74 0.6655
5 12801 25345 3.36E-010 5.57 312.6208 2.88E-010 4.66 4.3767

log(Time)

-5 0 5

lo
g(

E
rr

)

-20

-18

-16

-14

-12

-10
" t= c " s

classic
Tree-grid

log(Time)

-2 0 2 4

lo
g(

E
rr

)

-20

-18

-16

-14

-12

" t= c (" s) 2

classic
Tree-grid

Figure 5.3: Uncertain volatility model. Comparison of natural logarithm of estimated
absolute error of the approximation of solution against natural logarithm of
computational time (in seconds) for the classic implicit and Tree-Grid method
(Illustration of the results from Tables 5.1, 5.2).

From Tables 5.1 and 5.2 and Figure 5.3, it is clear that the Tree-Grid method was not
only significantly faster than the classic implicit FDM, but also its error was slightly
smaller. Therefore the Tree-Grid method is clearly superior for this model. We note that
in this example the condition (5.30) was always met and therefore no artificial diffusion
was needed.

5.5 Numerical example: passport option pricing problem

In this second example, we will test the Tree-Grid method and the classic implicit method
on the HJB equation for passport option pricing. This setting is described in Example 2
from Chapter 4.

Computational domain: The maturity of the option will be one year (T = 1), the
space domain will be restricted to [−3, 4]. The grid will be uniformly spaced in time, and
non-uniformly in space (nodes will be more dense near to zero and less dense near to the

5.5 Numerical example: passport option pricing problem 53

boundaries of the computational domain)

Terminal and boundary conditions: As terminal condition we will use the “capped”
payoff:

V (T, x) = VT (x) =


0 if x ≤ 0

x if 0 < x ≤ 1

1 if x > 1

,

and the Dirichlet boundary conditions:

V (xmin, t) = BCL(x) = 0, V (xmax, t) = BCR(x) = 1,

[xmin, xmax] = [−3, 4].

Numerical results: In this part we use the same definitions of Ak, Err, EOC and as in
previous numerical model.

Table 5.3: Passport option pricing, ∆t = c ·∆s. Error, experimental order of convergence
and computational time of the approximation Ak,k for the classic implicit and
the Tree-Grid methods, for different numbers of nodes.

Classic Implicit Tree-Grid
k Nk

t Nk
s Err EOC Time Err EOC Time

1 51 24 3.42E-007 - 0.0301 1.65E-005 - 0.0037
2 101 47 1.03E-006 -1.59 0.0569 1.64E-006 3.33 0.0051
3 201 93 3.41E-007 1.59 0.1205 1.00E-006 0.71 0.0089
4 401 185 6.26E-007 -0.88 0.2825 2.73E-006 -1.45 0.0177
5 801 369 4.32E-007 0.53 0.8047 2.04E-006 0.42 0.0393
6 1601 737 1.89E-007 1.19 2.0047 9.29E-007 1.13 0.0983
7 3201 1473 8.75E-008 1.11 5.8793 3.99E-007 1.22 0.2735
8 6401 2945 3.76E-008 1.22 21.2013 1.62E-007 1.30 0.8108
9 12801 5889 1.44E-008 1.38 77.8576 6.23E-008 1.38 2.8490
10 25601 11777 4.48E-009 1.68 312.0041 2.15E-008 1.53 11.2965
11 51201 23553 7.83E-010 2.52 1080.4906 6.01E-009 1.84 38.0828

Table 5.4: Passport option pricing, ∆t = c · (∆s)2. Error, experimental order of conver-
gence and computational time of the approximation Ak,k for the classic implicit
and the Tree-Grid methods, for different numbers of nodes.

Classic Implicit Tree-Grid
k Nk

t Nk
s Err EOC Time Err EOC Time

1 51 737 2.01E-007 - 0.0759 1.50E-006 - 0.0073
2 201 1473 9.01E-008 1.16 0.3969 5.00E-007 1.59 0.0239
3 801 2945 3.81E-008 1.24 2.6518 1.83E-007 1.45 0.1148
4 3201 5889 1.45E-008 1.39 19.4999 6.65E-008 1.46 0.7204
5 12801 11777 4.50E-009 1.69 157.2967 2.22E-008 1.58 5.0818
6 51201 23553 7.83E-010 2.52 1080.4906 6.01E-009 1.89 38.0828

As reference solution we will use the approximation computed on a grid with 102401

54 5 One-dimensional Tree-Grid method

log(Time)

-5 0 5

lo
g(

E
rr

)

-20

-18

-16

-14

-12

" t= c " s

classic
Tree-grid

log(Time)

-4 -2 0 2 4 6

lo
g(

E
rr

)

-20

-19

-18

-17

-16

-15

-14

" t= c (" s) 2

classic
Tree-grid

Figure 5.4: Passport option pricing, “capped” payoff. Comparison of natural logarithm
of estimated absolute error of the approximation of solution against natural
logarithm of computational time (in seconds) for the classic implicit, and Tree-
Grid method. (Illustration of results from Tables 5.3, 5.4)

time-nodes and 47105 space nodes using again the classic implicit method with maximal
use of central differences. As in the previous numerical example, the Tables 5.3 and 5.4
and Figure 5.4 illustrate the results. However, as the diffusion is vanishing in this case,
artificial diffusion was needed in Tree-Grid method in contrast to the uncertain volatility
model. The error was smaller in the case of classic implicit FDM, however, taking into
account the low computational time of the Tree-Grid method, the Tree-Grid method was
still superior on some grids. Moreover one should note that both examples were done with
a reference solution computed with implicit FDM, so the implicit method was favored.
This larger error of the Tree-Grid method can be probably explained by the additional
artificial diffusion term needed to stabilize the scheme. The growth of experimental order
of convergence with grid refinement results from using solution computed on finest grid
as reference solution. For solutions computed on fine grid, the error computed using such
reference solution is smaller than in case of using the exact solution as a reference solution.
However this difference is not so huge in case of the coarse grid solution for which the finest
grid solution is a good approximation of exact solution.

In this chapter we presented the Tree-Grid method for solving one-dimensional stochastic
control-problems and related HJB equations. Being explicit, this method is much faster
than the standard implicit FDMs, while still remaining unconditionally stable and con-
vergent on any time-space-grid. However, the method relays on brute-force search of the
optimal control, and therefore may be slow for very large numbers of control. We will
address and solve this issue in the next chapter.

6 Chapter 6

Tree-Grid method with control
independent stencil

The advantages of the Tree-Grid method is its independence on the space-stepping of the
grid, as well as its unconditional convergence and explicitness. However, as well as in FDMs
and Markov chain methods, an optimization problem needs to be solved in each step. In
the original Tree-Grid method from the previous Chapter 5, solving this optimization
problem is done by a brute-force search in the control space, what may be time consuming
if this control space is large. In this chapter, we present a modification of the Tree-Grid
method, that will allow us to solve the optimization problem more effectively. This chapter
is based on the paper [27].

6.1 Tree-Grid method revisited

At first we will quickly recapitulate the Tree-Grid method algorithm. We compute the
approximation of the solution on a rectangular domain [sL, sR] × [0, T] with some grid
as in usual finite difference schemes for PDEs. The grid-points are denoted as [si, tj],
i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . ,M}, k < l ⇒ sk < sl, tk < tl, t1 = 0, tM = T , s1 =
sL, sN = sR. The grid is possibly non-equidistant in space with space-steps ∆is = si+1−si
and ∆s = maxi ∆is. We will use an equidistant discretization in time with a time-step
∆t. A generalization to non-equidistant time-stepping is straightforward, however the
implementation is less effective in means of computational time in that case. The numerical
approximation of V (si, tj) will be denoted by vji . To underline the dependence of stencil
nodes, probabilities and values in these stencil nodes defined in the previous chapter on
the control variable and current state si, we will denote:

• s+, sos− as s(i+,θ), si, s(i−,θ),

• p+, po, p− as p(i+,θ), p(i,θ), p(i−,θ),

• vj+1
− , vj+1

o , vj+1
+ as vj+1

(i−,θ), v
j+1
i , vj+1

(i+,θ).

Here we use so = si to get a consistent scheme according to Lemma 5.

The whole scheme is then defined by the discrete approximation of the dynamic program-
ming equation (5.3)

vji = max
θ∈Θ

(
f ji (θ)∆t+ (1 + rji (θ)∆t)

·
(
p(i−,θ)v

j+1
(i−,θ) + p(i,θ)v

j+1
i + p(i+,θ)v

j+1
(i+,θ)

))
. (6.1)

55

56 6 Tree-Grid method with control independent stencil

for i = 2, 3, . . . , N − 1 and

vj1 = BCL(s1, tj), vjN = BCR(sN , tj). (6.2)

Here, f ji (θ) = f(si, tj , θ), r
j
i (θ) = r(si, tj , θ) and

vj+1
(i∗,θ) =


vj+1
k so that sk = s(i∗,θ) if s(i∗,θ) ∈ {s1, s2, . . . , sN}
BCL(s(i∗,θ), tj+1) if s(i∗,θ) < s1

BCR(s(i∗,θ), tj+1) if s(i∗,θ) > sN

for the ∗ ∈ {−,+}. Here BCL(s, t) and BCR(s, t) are functions defining an approximation
of the value function behind the boundaries and s(i−,θ), si, s(i+,θ) are states that the
discretized process may attain with the probabilities p(i−,θ), pi, p(i+,θ) under the control
θ after the time-step ∆t if the previous state was si. It holds s(i−,θ) < si < s(i+,θ). In
order to match the moments of this discretized process with the original time-continuous
process (5.2) the probabilities are chosen in the following manner:

p(i−,θ) =
−µ∆t(∆i+s− µ∆t) + V ar

∆−is(∆−is+ ∆i+s)
, (6.3)

p(i,θ) =
(−∆−is− µ∆t)(∆i+s− µ∆t) + V ar

−∆−is∆i+s
, (6.4)

p(i+,θ) =
(−∆−is− µ∆t)(−µ∆t) + V ar

(∆i+s+ ∆−is)∆i+s
. (6.5)

Here, ∆i+s = s(i+,θ) − si, ∆−is = si − s(i−,θ), µ := µ(si, tj , θ) and V ar := V ar(si, tj , θ)
is chosen in such manner, that V ar/∆t is equal or at least converges to σ2(si, tj , θ) with
∆t,∆s → 0. As explained in Chapter 5, these probabilities sum up to one. However, we
need to choose states s(i−,θ), s(i+,θ) such that all probabilities are positive. Let us assume
that the drift µ is positive. Then p(i+,θ) is positive, and p(i−,θ), p(i,θ) are positive if the
following condition holds:

∆−is∆i+s+ µ∆t(∆i+s−∆−is) ≥ (µ∆t)2 + V ar ≥ µ∆t∆i+s. (6.6)

We choose

s(i−,θ) =
⌊
si −

√
(µ(si, tj , θ)∆t)2 + V ar(si, tj , θ)

⌋
s
, (6.7)

s(i+,θ) =
⌈
si +

√
(µ(si, tj , θ)∆t)2 + V ar(si, tj , θ)

⌉
s
, (6.8)

where des and bcs were defined in Section 5.2.3. Now it holds√
(µ∆t)2 + V ar ≤ ∆−is,∆i+s ≤

√
(µ∆t)2 + V ar + ∆s (6.9)

and the first inequality in (6.6) holds. For the second inequality in (6.6) it is sufficient if

(µ∆t)2 + V ar ≥
(√

(µ∆t)2 + V ar + ∆s
)
µ∆t. (6.10)

For V ar = A(si, tj , θ) with

A(si, tj , θ) = 1/2
(
−(µ∆t)2 + 2|µ|∆t∆s+ |µ|∆t

√
(µ∆t)2 + 4|µ|∆t∆s

)
(6.11)

6.2 Modification: control-independent stencil 57

condition (6.10) is fulfilled as equality, for larger V ar as inequality. Therefore we set

V ar = max
(
σ2(si, tj , θ)∆t, A(si, tj , θ)

)
(6.12)

and compute s(i−,θ), s(i+,θ) according to (6.7), (6.8) using this value. We should note, that
in (6.11) we replaced µ with |µ| to cover also the analogous case of a negative drift µ. Now,
also the second part of the inequality (6.6), is fulfilled. It holds V ar/∆t → σ2(si, tj , θ)
with ∆t,∆s → 0 and it is easy to check that the difference |V ar − σ2(si, tj , θ)∆t| is
smaller or equal than in Chapter 5. Following Chapter 5, the scheme is then consistent
and formula (6.12) is even better than the original version from [28] presented in Chapter
5, as potentially less artificial diffusion is added.

6.2 Modification: control-independent stencil

The dependence of the possible states s(i−,θ), s(i+,θ) on the control variable θ implies also
a dependence of vj+1

(i−,θ), v
j+1
(i+,θ) on θ and makes the optimization problem in (6.1) harder

to solve. Therefore, our goal now is to find a θ-independent choice of possible states si−,
si+, while preserving condition (6.6) (and its analogue for negative drift).

6.2.1 Derivation of the modified scheme

We will assume a positive drift µ(si, tj , θ), the case of negative drift is treated analogously.

Let us define

WM = max
θ∈Θ

(
σ2(si, tj , θ)∆t+ (µ(si, tj , θ)∆t)

2
)

= σ2(si, tj , θM)∆t+ (µ(si, tj , θM)∆t)2, (6.13)
E = max

θ∈Θ
|µ(si, tj , θ)∆t| , (6.14)

WE = 1/2
(
E2 + 2∆sE + E

√
E2 + 4∆sE

)
. (6.15)

It holds WE = E(
√
WE + ∆s) and for all W ≥ WE : W > E(

√
W + ∆s). Finally, let us

define

W = max (WE ,WM) (6.16)

and

si− =
⌊
si −

√
W
⌋
s
≥ si − (

√
W + ∆s), (6.17)

si+ =
⌈
si +

√
W
⌉
s
≤ si + (

√
W + ∆s). (6.18)

Moreover, we redefine also the variance V ar(si, tj , θ):

V ar = max
(
σ2∆t, |µ∆t| (

√
W + ∆s)− (µ∆t)2

)
, (6.19)

where σ = σ(si, tj , θ), µ = µ(si, tj , θ). It is easy to check that V ar/∆t→ σ2 as ∆t,∆s→ 0

58 6 Tree-Grid method with control independent stencil

and therefore the consistency is preserved. Now it holds

∆−is, ∆i+s ≥
√
W ≥

√
WM =

√
σ2(si, tj , θM)∆t+ (µ(si, tj , θM)∆t)2.

Therefore it also holds

∆−is∆i+s+ µ∆t(∆−is−∆i+s) ≥ σ2(si, tj , θM)∆t+ (µ(si, tj , θM)∆t)2

≥ σ2(si, tj , θ)∆t+ (µ(si, tj , θ)∆t)
2. (6.20)

It also holds

∆−is∆i+s+ µ∆t(∆−is−∆i+s) ≥W ≥ E(
√
W + ∆s) ≥ |µ∆t|(

√
W + ∆s). (6.21)

From (6.20) and (6.21) the first inequality of (6.6) holds. The second inequality of (6.6)
holds, because

V ar + (µ(si, tj , θ)∆t)
2 ≥ µ∆t∆i+s. (6.22)

Equation (6.22) also holds if we replace µ∆t∆i+s with |µ∆t|∆−is which is important for
the case of a negative drift. Now substituting s(i−,θ), s(i+,θ) with si−, si+ for all values of
θ, we get also θ-independent values vj+1

(i−,θ), v
j+1
(i+,θ) (that can be written as vj+1

i− , vj+1
i+ , and

the scheme (6.1) still remains consistent and monotone (p(i−,θ), pi, p(i−,θ) ≥ 0). In the next
section, we employ this “modified scheme” to effectively solve the control problem arising
in each node in equation (5.3).

6.2.2 Analytical solution of the control problem in the modified scheme

According to Section 5.2.6 where also relationship of the Tree-Grid method with the FDMs
is discussed, the numerical scheme (6.1) can be written as

vji = max
θ∈Θ

(
f ji (θ)∆t+ (1 + rji (θ)∆t)

·
(
vj+1
i + µji (θ)∆jtD1v

j+1
i + 1/2

(
V arji (θ) + (µji (θ)∆jt)

2
)
D2v

j+1
i

))
:= max

θ∈Θ
F ji (θ), (6.23)

where µji (θ) = µ(si, tj , θ), V ar
j
i (θ) = V ar(si, tj , θ) and D1, D2 are standard finite differ-

ence approximations of the first and second derivative on nonuniform grids:

D1v
j+1
i =

(
si+ − si
si+ − si−

)
vj+1
i − vj+1

i−
si − si−

+

(
si − si−
si+ − si−

)
vj+1
i+ − vj+1

i

si+ − si−
, (6.24)

D2v
j+1
i =

(
vj+1
i+ − vj+1

i

si+ − si−
−
vj+1
i − vj+1

i−
si − si−

)/(si+ − si−
2

)
. (6.25)

Now, under the modification presented in the previous section, si+ and si− are control-
independent and hence also D1v

j+1
i and D2v

j+1
i are control independent. Then, for a

fixed node (si, tj) the function F ji (θ) is some combination of the functions f ji (θ), rji (θ),
µji (θ) and V arji (θ). As these functions are typically in closed form, it should be possible
to search for the maxθ∈Θ F

j
i (θ) analytically, and it is not necessary to discretize Θ (if it is

6.2 Modification: control-independent stencil 59

for example an interval).

However, V arji (θ) is defined as the maximum of two different functions in (6.19) and
therefore may switch its form in several points of the interval Θ. This can make the
analytical computation of maxθ∈Θ F

j
i (θ) quite difficult. This problem is not present, if we

can assure V arji (θ) = σ(si, tj , θ)
2∆t. That condition is typically fulfilled for a relatively

large diffusion coefficient σ compared to the drift coefficient µ.

6.2.3 The Fibonacci algorithm for finding the optimal control

Because of the possible complications arising by the search for the analytical solution of
the control problem maxθ∈Θ F

j
i (θ) presented in the previous section, our aim is now to

present another, more straightforward approach. Let us suppose:

1. Θ is a one-dimensional interval.

2. Discount rate rji (θ) is constant in θ.

3. Increment rate f ji (θ) and drift µji (θ) are linear in θ.

4. Volatility σ2(si, tj , θ) is convex in θ.

These conditions are fulfilled in many applications. Under these conditions, it is easy to
verify, that also 1/2(V arji (θ) + (µji (θ)∆jt)

2) is convex. Then, F ji (θ) is convex or concave
and therefore has at most one local (and global) extreme inside the interval Θ and has at
least one extreme on the boundary. This makes the problem maxθ∈Θ F

j
i (θ) suitable for

the Fibonacci algorithm for maximum search [15]:

Algorithm 6 Fibonacci algorithm for finding the optimal control
1: Discretize the interval Θ into Φn points θ1, θ2, . . . θΦn where Φn is the n-th Fibonacci

number.
2: Set a = 1, b = Φn, c1 = Φn−2, c2 = Φn−1

3: for j = n− 1, n− 2, . . . , 3 do
4: if F ji (θc1) > F ji (θc1) then
5: b := c2;
6: c2 := c1;
7: c1 := a− 1 + Φj−2;
8: else
9: a := c1;

10: c1 := c2;
11: c2 := a− 1 + Φj−1;
12: end if
13: end for
14: maxθ∈Θ F

j
i (θ) ≈ max(F ji (θa), F

j
i (θc1), F ji (θc2), F ji (θb), F

j
i (θ1), F ji (θΦn))

In the last step of the algorithm we included for testing also values F ji (θ1), F ji (θΦn) for
the case that the function F ji (θ) is convex and the maximum is on the boundary. The

60 6 Tree-Grid method with control independent stencil

computational time of the Fibonacci algorithm is O(n) = O(log(Φn)) which is much better
than the computational time of the brute-force search approach from Chapter 5 that is
O(Φn) for Φn controls.

6.3 Numerical example: passport option pricing problem

We will test this modified Tree-Grid method with a control-independent stencil and the
Fibonacci algorithm for control search on a Passport option pricing problem with the same
parameters, terminal and boundary conditions as in previous chapter. The equation for
passport option pricing is described in the Example 2 in Chapter 4.

Computational domain: The maturity of the option will be one year (T = 1), the spatial
domain will be restricted to [−3, 4]. The grid will be uniformly spaced in time, and non-
uniformly in space. On the coarsest grid, the time-step size is 0.01. At each refinement, a
four-times smaller time-step is taken. The basis for the space grid is the vector of nodes:

S0 = [− 3,−2,−1.5,−1,−0.75,−0.5,−0.375,−0.25,−0.1875,−0.125,

− 0.0625, 0, 0.0625, 0.125, 0.1875, 0.25, 0.375, 0.5, 0.75, 1, 1.5, 2, 3, 4] (6.26)

On the coarsest grid 15 another nodes are equidistantly inserted between each two neigh-
bouring nodes of S0. Moreover, at each refinement a new space-node is inserted between
each two neighbouring space-nodes.

Terminal and boundary conditions: As terminal condition we use the “capped” payoff:

V (T, x) = VT (x) =


0 if x ≤ 0

x if 0 < x ≤ 1

1 if x > 1

,

and the Dirichlet boundary conditions:

V (xmin, t) = BCL(xmin) = 0, V (xmax, t) = BCR(xmax) = 1,

xmin = −3, xmax = 4.

Results: In Figure 6.1 we illustrate the results of numerical simulations. The left figure
presents a comparison of error and computational time of the original Tree-Grid method
with the modified Tree-Grid method with control-independent stencil for different dis-
cretizations. To compute the error, we used as a benchmark solution a solution computed
on a very fine grid (having twice as much space and time nodes as the grid at the last
refinement level) with an implicit FDM from [48]. In both cases, the control interval was
discretized into 9 different controls, and we used brute-force search for the optimal con-
trol. We see that the modified Tree-Grid (TG) method converges, however the original
method performs better. This may be of course compensated for finer discretizations of
the control interval, if the optimal control is searched analytically or with a Fibonacci
search algorithm in the modified scheme.

This illustrates the right figure. Here we used a coarse grid with 24 space-nodes defined
by (6.26), 100 (equidistant) time-steps and a varying number of controls. As number of

6.3 Numerical example: passport option pricing problem 61

log(Time)

-4 -2 0 2

lo
g(

E
rr

)

-9.5

-9

-8.5

-8

-7.5

" t= c (" s) 2

original TG
modified TG

Controls

200 400 600

T
im

e

5

10

15

20

25

30

Modified TG, " t, " s fixed

brute-force search
Fibonacci search

Figure 6.1: Left: Comparison of the natural logarithm of estimated absolute error of nu-
merical solution against natural logarithm of computational time (in seconds)
for the original Tree-Grid (TG) method and the modified Tree-Grid method
with control independent stencil. Brute-force search for optimal control is done
in both cases. Right: Computational time (in seconds) of the modified Tree-
Grid method with control independent stencil for different number of controls
in cases of brute-force search and Fibonacci search for optimal control.

controls (on the x-axis), we used the Fibonacci numbers from the fifth (8) to the 14th
(610). We compared the computational time of the modified Tree-Grid method with a
brute-force search for control and with a Fibonacci search for control. We observe that
for a large number of controls the Fibonacci search performs better due to its logarithmic
time-complexity (in contrast to the linear time complexity of brute-force search). We note
that the actual values presented here in the figure are strongly implementation dependent,
but they are sufficient in illustrating the proof of concept.

7 Chapter 7

Two-dimensional Tree-Grid method

Up to now we were concerned only with numerical methods for problems with one space
dimension. In this chapter we will present our Tree-Grid method for two space dimensions.
This method is again explicit and unconditionally convergent for any grid. This chapter
is based on the paper [29].

7.1 Recapitulation: problem formulation

For convenience, we repeat here the problem formulation from Chapter 2. We are con-
cerned with searching for the value function V (x, y, t) of the following 2-dimensional gen-
eral stochastic control problem (SCP):

V (x, y, t) = max
θ(x,y,t)∈Θ̄

E

 T∫
t

exp

 k∫
t

r(∗l)dl

 f(∗k)dk

+ exp

 T∫
t

r(∗k)dk

VT (XT , YT)
∣∣∣Xt = x, Yt = y

 , (7.1)

dXt =µx(∗t)dt+ σx(∗t)dW x
t , (7.2)

dYt =µy(∗t)dt+ σy(∗t)dW y
t , (7.3)

dW x
t dW

y
t =σxy(∗t)/(σx(∗t)σy(∗t)) (7.4)
∗t =(Xt, Yt, t, θ(Xt, Yt, t)), 0 < t < T, x, y ∈ R,

where x, y are state variables and t is time. Here, Θ̄ is the space of all suitable control
functions (see e.g. [31, 50]) from R2×[0, T] to a set Θ. For our purpose, we will assume Θ to
be discrete. If this is not the case, we can easily achieve this property by its discretization.
Now following the Bellman’s principle, the dynamic programming equation holds:

V (x, y, tj) = max
θ(x,y,t)∈Θ̄tj

E

 tj+1∫
tj

exp

 k∫
tj

r(∗l)dl

 f(∗k)dk

+ exp

 tj+1∫
tj

r(∗k)dk

V (Xtj+1 , Ytj+1 , tj+1)
∣∣∣Xtj = x, Ytj = y

 , (7.5)

where 0 ≤ tj < tj+1 ≤ T are some time-points and Θ̄tj is a set of control functions from
Θ̄ restricted to the R2× [tj , tj+1) domain. Using this equation (7.5), it can be shown [38],
that solving the SCP (7.1)-(7.4) is equivalent to solving the two-dimensional Hamilton-

63

64 7 Two-dimensional Tree-Grid method

Jacobi-Bellman (HJB) equation:

∂V

∂t
+ max

θ∈Θ
(LV + r(·)V + f(·)) = 0, (7.6)

LV =
σx(·)2

2

∂2V

∂x2
+ σxy(·)

∂2V

∂x∂y
+
σy(·)2

2

∂2V

∂y2
+ µx(·)∂V

∂x
+ µy(·)

∂V

∂y
(7.7)

V (x, y, T) = VT (x, y), (7.8)
0 < t < T, x, y ∈ R

where σx(·), σy(·), σxy(·), µx(·), µy(·), r(·), f(·) are functions of x, y, t, θ. We should note
that the maximum operator in (7.1) and (7.6) can be replaced by a minimum operator
and the whole following analysis will hold analogously.

7.2 Construction of 2D Tree-Grid method

In this section we will derive the two-dimensional Tree-Grid algorithm for solving the
problem (7.1)-(7.4). We will use the ideas that were widely explained in chapters 5, 6. We
will work on a three-dimensional rectangular domain with two space dimensions and one
time-dimension. For a fixed control θ, the candidate for a value in each node V (xi, yj , tk)
will be computed from seven values from the next time-layer tk+1. Figure 7.1 illustrates
this approach. We will denote these seven values in this context simply as stencil located
at (xi, yj , tk). The weights of these seven values can be interpreted as probabilities and
therefore we demand, that the moments of such discrete random variable are matching
with the moments of the increment of the two-dimensional stochastic process (7.2)-(7.4)
with the fixed control θ at least asymptotically. Then, the actual value V (xi, yj , tk) will
be computed as a maximum of the candidates. For handling nodes close to the boundary
we suppose that we know, how the solution behaves in the outer neighborhood of the
boundaries, and that we can describe this behavior with a boundary function BC(x, y, t).
The terminal condition in the time-layer tM = T reads V (x, y, tM) = VT (x, y).

Figure 7.1: Illustration of the two-dimensional Tree-Grid structure. Only the red nodes
in later time layer impact the blue node. On the other hand, the red nodes
can be interpreted as possible future states if we are in the blue node state.
The figure illustrates a situation with positive correlation and a variance that
is larger in the x-direction than in the y-direction. The stencil size in each
direction is roughly proportional to the square root of the variance coefficient
in that direction multiplied by the discretization parameter h.

7.2 Construction of 2D Tree-Grid method 65

7.2.1 Notation

At first, before discussing how to choose the stencil nodes around node (xi, yj , tk), and the
proper weights, we present here the notation used in the sequel:

• x1, x2, . . . , xNx -space discretization in the space 1. dimension.
y1, y2, . . . , yNy -space discretization in the space 2. dimension.
t1, t2, . . . , tM -time discretization .

• ∆kt = tk+1 − tk -(current) time-step. We will use equidistant timestepping, ∆kt =
∆t for all k = 1, 2, . . . ,M − 1. Generalization to non-equidistant timestepping is
straightforward.

• ∆ix = xi+1−xi, ∆jy = yj+1−yj space-steps in the 1. and the 2. dimension (possibly
non-equidistant).

• ∆x = maxi ∆ix, ∆y = maxi ∆iy.

• h = max(K max(∆x,∆y),∆t). where K > 0 is a parameter used for regulating the
stencil size. In the non-equidistant case, ∆t should be replaced by ∆kt.

• b = h/∆t. In the non-equidistant case, this should be replaced by b = h/∆kt in the
following algorithm.

• (xi, yj , tk) -the node for which the stencil is constructed.

• E∗ = µ∗(xi, yj , tk, θ)∆t for ∗ = x, y.

• V ar∗ = (σ2
∗(xi, yj , tk, θ) +O(h))∆t for ∗ = x, y, will be determined later.

• ρ(xi, yj , tk, θ) = σxy(xi, yj , tk, θ)/(σx(xi, yj , tk, θ)σy(xi, yj , tk, θ))

• σ̃xy(xi, yj , tk, θ) = σxy(xi, yj , tk, θ) +O
(√

h
)
, will be determined later.

• Cov =
(
σxy(xi, yj , tk, θ) +O

(√
h
))

∆t, will be determined later.

• W∗ = V ar∗ + E2
∗ for ∗ = x, y.

• Wxy = Cov + ExEy.

• vki,j -numerical approximation of V (xi, yj , tk).

7.2.2 Choosing the stencil nodes

Next, we describe how to choose the stencil nodes around an arbitrary node (xi, yj , tk) for
a fixed control θ. The values in these nodes will impact the value in the node (xi, yj , tk).

If Ex > 0,

x− =
⌊
xi −

√
2Wxb

⌋
x
, x+ =

⌈
max

(
xi +

√
2Wxb, xi + (xi − x−)

)⌉
x
, (7.9)

66 7 Two-dimensional Tree-Grid method

else if Ex < 0,

x+ =
⌈
xi +

√
2Wxb

⌉
x
, x− =

⌊
min

(
xi −

√
2Wxb, xi − (x+ − xi)

)⌋
x
, (7.10)

else (Ex = 0),
x+ =

⌈
xi +

√
2Wxb

⌉
x
, x− =

⌊
xi −

√
2Wxb

⌋
x
. (7.11)

where dex resp. bcx denotes rounding to the nearest greater resp. smaller element from
x1, x2, . . . , xNx . If such element does not exist, dzex resp. bzcx will return just z.

If Ey > 0,

y− =
⌊
yj −

√
2Wyb

⌋
y
, y+ =

⌈
max

(
yj +

√
2Wyb, yj + (yj − y−)

)⌉
y
, (7.12)

else if Ey < 0,

y+ =
⌈
yj +

√
2Wyb

⌉
y
, y− =

⌊
min

(
yj −

√
2Wyb, yj − (y+ − yj)

)⌋
y
, (7.13)

else (Ey = 0),
y+ =

⌈
yj +

√
2Wyb

⌉
y
, y− =

⌊
yj −

√
2Wyb

⌋
y
. (7.14)

where dey, bcy are defined analogously.

The following nodes with the respective weights (probabilities) will be used in the stencil
located at (xi, yj , tk):

• node (xi, yj , tk+1) with the probability po,

• nodes (x+, yj , tk+1) and (x−, yj , tk+1) with the probabilities px+ and px−,

• nodes (xi, y+, tk+1) and (xi, y−, tk+1) with the probabilities py+ and py−,

• nodes (x+, y+, tk+1) and (x−, y−, tk+1), both with the probability pxy if Wxy is non-
negative, and nodes (x+, y−, tk+1) and (x−, y+, tk+1) both with the probability pxy if
Wxy is negative. In the following algorithm we will focus on the case of non-negative
Wxy, the case of a negative Wxy is treated analogously.

Moreover, we define the difference operators

∆+x = x+ − xi, ∆−x = xi − x−, (7.15)
∆+y = y+ − yi, ∆−y = yi − y−. (7.16)

7.2.3 Choosing the stencil weights (probabilities)

To match the first two moments of the approximative increment of the stochastic process
and of the increment of the discrete process defined by the “stencil nodes” and their
probabilities and to ensure that the probabilities are non-negative and sum up to 1, we

7.2 Construction of 2D Tree-Grid method 67

demand:

po + px+ + px− + py+ + py− + 2pxy = 1, (7.17)
(px+ + pxy)∆+x− (px− + pxy)∆−x = Ex, (7.18)
(py+ + pxy)∆+y − (py− + pxy)∆−y = Ey, (7.19)

(px+ + pxy)(∆+x)2 + (px− + pxy)(∆−x)2 = Wx, (7.20)

(py+ + pxy)(∆+y)2 + (py− + pxy)(∆−y)2 = Wy, (7.21)
pxy(∆+x∆+y + ∆−x∆−y) = Wxy, (7.22)
po, px+, px−, py+, py−, pxy ≥ 0. (7.23)

For negative Wxy, only the condition (7.22) changes to

pxy(∆+x∆−y + ∆−x∆+y) = |Wxy|. (7.24)

The solution of the six equations (7.17)-(7.22) reads

po =
∆+x∆−x∆+y∆−y −∆+x∆−xWy −∆+y∆−yWx

∆+x∆−x∆+y∆−y

+
Ey(∆+y −∆−y)

∆+y∆−y
+
Ex(∆+x−∆−x)

∆+x∆−x
+

2|Wxy|
∆c

, (7.25)

px+ =
Wx + Ex∆−x

(∆+x)2 + ∆+x∆−x
− |Wxy|

∆c
, (7.26)

px− =
Wx − Ex∆+x

(∆−x)2 + ∆+x∆−x
− |Wxy|

∆c
, (7.27)

py+ =
Wy + Ey∆−y

(∆+y)2 + ∆+y∆−y
− |Wxy|

∆c
, (7.28)

py− =
Wy − Ey∆+y

(∆−y)2 + ∆+y∆−y
− |Wxy|

∆c
, (7.29)

pxy =
|Wxy|

∆c
, (7.30)

where ∆c = ∆+x∆+y+ ∆−x∆−y for non-negative (σ̃xy(xi, yj , tk, θ)∆t+ExEy) and ∆c =
∆+x∆−y + ∆−x∆+y for negative (σ̃xy(xi, yj , tk, θ)∆t+ ExEy).

Following the construction of x+, x−, y+, y−, it is easy to check that po is always non-
negative. The same holds for pxy. To ensure also the non-negativity of px+, px−, py+ and
py− we have to properly choose the variables V arx, V ary, and Cov to get non-negative
weights, while still remaining consistent with the original problem as h→ 0. This is done
in the next section.

7.2.4 Artificial diffusion and covariance adjustment

Let us assume Ex ≥ 0. Now, the first fraction of px+ is positive, however the first fraction
of px− may be negative. We will set V arx (and hence Wx) in such way, that it will be also
positive. It holds

Wx − Ex∆+x > V arx + E2
x − Ex(

√
2b(V arx + E2

x) + 2∆x). (7.31)

68 7 Two-dimensional Tree-Grid method

The right-hand side of the inequality (7.31) is 0 for V arx = Ax and greater than 0 for
V arx > Ax with

Ax = 1/2
(
|Ex|

√
4b2E2

x + 16b∆x|Ex| − (2b− 2)E2
x + 4∆x|Ex|

)
. (7.32)

We replaced here Ex with |Ex| to cover also the analogous case Ex < 0 and possibly
negative px+. Now, if we set

V arx = max(σ2
x(xi, yj , tk, θ)∆t, Ax, E

2
x), (7.33)

V ary = max(σ2
y(xi, yj , tk, θ)∆t, Ay, E

2
y), (7.34)

where Ay is defined analogously, the first fraction in px+, px−, py+ and py− will be non-
negative. The possible difference between V arx resp. V ary and the variances from the
original problem σ2

x∆t resp. σ2
y∆t is called artificial diffusion. Now, taking into account

the correlation coefficient in the current node, following these definitions of variances V arx,
V ary we define also new covariance

σ̃xy = ρ

√
V arxV ary

∆t
(7.35)

and

Cxy := min
(Wx + Ex∆−x

(∆+x)2 + ∆+x∆−x
∆c,

Wx − Ex∆+x

(∆−x)2 + ∆+x∆−x
∆c,

Wy + Ey∆−y

(∆+y)2 + ∆+y∆−y
∆c,

Wy − Ey∆+y

(∆−y)2 + ∆+y∆−y
∆c,

|σ̃xy(xi, yj , tk, θ)∆t+ ExEy|
)
, (7.36)

Now, we define Cov as

Cov =

{
Cxy − ExEy if (σ̃xy(xi, yj , tk, θ)∆t+ ExEy) ≥ 0,

−Cxy − ExEy if (σ̃xy(xi, yj , tk, θ)∆t+ ExEy) < 0.
(7.37)

This covariance Cov is consistent with the variances V arx, V ary defined by (7.33), (7.34)
as for σ̃xy(xi, yj , tk, θ)∆t+ ExEy ≥ 0 it holds

−
√
V arxV ary ≤ −ExEy ≤ Cov ≤ σ̃xy(xi, yj , tk, θ)∆t ≤

√
V arxV ary, (7.38)

and for σ̃xy(xi, yj , tk, θ)∆t+ ExEy < 0 it holds

−
√
V arxV ary ≤ σ̃xy(xi, yj , tk, θ)∆t ≤ Cov ≤ −ExEy ≤

√
V arxV ary. (7.39)

Now it also holds |Wxy| = Cxy, what implies that px+, px−, py+ and py− are all positive.
It is easy to check that it holds

V arx
∆t

= σ2
x(xi, yj , tk, θ) +O(h),

V ary
∆t

= σ2
y(xi, yj , tk, θ) +O(h). (7.40)

and
V arx
∆t

= σ2
x(xi, yj , tk, θ), resp.

V ary
∆t

= σ2
y(xi, yj , tk, θ) (7.41)

7.2 Construction of 2D Tree-Grid method 69

for σ2
x(xi, yj , tk, θ) 6= 0 resp. σ2

y(xi, yj , tk, θ) 6= 0 and h small enough. It holds

Wx + Ex∆−x =
(
σ2
x +O

(√
h
))

∆t, (7.42)

(∆+x)2 + ∆+x∆−x = 4hσ2
x +O(h3/2), (7.43)

∆c = 4hσxσy +O(h3/2). (7.44)

It follows that

Wx + Ex∆−x

(∆+x)2 + ∆+x∆−x
∆c =

(
σxσy +O

(√
h
))

∆t (7.45)

and the same holds also for the second, third and fourth maximum candidate in (7.36).
Moreover,

|σ̃xy∆t+ ExEy| = |σ̃xy|∆t+O((∆t)2) =
(
|σxy|+O

(√
h
))

∆t. (7.46)

Therefore,

Cxy =
(
|σxy|+O

(√
h
))

∆t, ⇒ Cov

∆t
= σxy +O

(√
h
)

(7.47)

and it is easy to check that

Cov

∆t
= σxy (7.48)

for σ2
x 6= 0, σ2

y 6= 0, |σxy| 6= σxσy and h small enough. Following (7.40),(7.47), the modified
variances and the modified covariance are consistent with the variances and the covariance
from the original problem. Moreover, for σx, σy 6= 0 and |σxy| < σxσy, the modified
variances and the covariance will be equal to the original ones for h small enough.

7.2.5 Setting parameter K and stencil size reduction

In the formula for h = max(K max(∆x,∆y),∆t), the part K max(∆x,∆y) is responsible
for the consistency of the correlation in the numerical model with the correlation of the
original problem. Here, the parameter K > 0 can be chosen arbitrarily, however for a
large (relatively to problem parameters) K, the stencil is large, what typically increases
the error. On the other hand, for too small K, the correlation may start being exact (or
exact enough) only for very fine grids, while not being sufficiently exact on the coarse
grids, resulting in larger errors on these coarse grids. For K = 0 we can’t guarantee
the convergence of the correlation. However, the correlation in the numerical model may
match with the correlation from the original problem even for small K or K = 0. This
motivates the following multiple K modification of the Tree-Grid method;
For each control in each node:

1. set l = 1 and use K = K0, K0 ≥ 0 to compute x∗, y∗, p∗.

2. compute the correlation of the numerical model: ρ̃ = Cov/
√
V arxV ary.

3. if ρ̃ 6= ρ: recompute x∗, y∗, p∗ with K = Kl, Kl > Kl−1 and set l:=l+1
else break.

70 7 Two-dimensional Tree-Grid method

4. if l < lmax: go to step 2,
else break.

Using this modification, we will use smaller stencil size as much as possible. This approach
can be seen as some analogy to the approach in paper [35] where fixed (and thus small)
stencil is used as much as possible. However, here we will not increase the convergence
rate, but possibly reduce the error.

Another approach, the non-constant K modification, is to use non-constant K =
K(x, y, θ). This can be smaller in nodes with large volatilities σx, σy and larger in nodes
with smaller σx, σy, regulating the stencil size to not explode in case of large volatilities.

Both modifications can be also combined and it is easy to check, that they do not harm
the consistency. In our numerical simulation, these modifications didn’t lead to significant
improvement, therefore we used just a constant K = 1/400. However, they may be useful
for other stochastic control problems.

7.2.6 The final 2D Tree-Grid method algorithm

Finally, we can use the stencil nodes and weights to construct the 2D Tree-Grid algorithm.

We define the function vk+1:

If (x, y) ∈ {x1, x2, . . . , xNx} × {y1, y2, . . . , yNy} :

vk+1(x, y) = vk+1
i,j so that (x, y) = (xi, yj), (7.49)

else: vk+1(x, y) = BC(x, y, tk+1).

For a given space-node (xi, yj) and a given control θ we define

vk+1
o = vk+1(xi, yj), vk+1

x+ = vk+1(x+, yj), vk+1
x− = vk+1(x−, yj), (7.50)

vk+1
y+ = vk+1(xi, y+), vk+1

y− = vk+1(xi, y−), (7.51)

If Wxy ≥ 0 : vk+1
xy+ = vk+1(x+, y+), vk+1

xy− = vk+1(x−, y−). (7.52)

If Wxy < 0 : vk+1
xy+ = vk+1(x+, y−), vk+1

xy− = vk+1(x−, y+). (7.53)

fki,j(θ) = f(xi, yj , tk, θ), rki,j(θ) = r(xi, yj , tk, θ). (7.54)

Now, the discretized version of the dynamic programming equation for
i = 2, 3, . . . , Nx − 1, j = 2, 3, . . . , Ny − 1, k = 1, 2, . . . ,M − 1 reads

vki,j = max
θ∈Θ

wki,j(θ) (7.55)

wki,j(θ) =fki,j(θ)∆t+ (1 + rki,j(θ)∆t)

·
(
px+v

k+1
x+ + px−v

k+1
x− + py+v

k+1
y+ + py−v

k+1
y−

+ pov
k+1
o + pxy(v

k+1
xy+ + vk+1

xy−)
)
. (7.56)

For boundary nodes (xi, yj) (i ∈ {1, Nx} or j ∈ {1, Ny}) we employ the boundary condi-

7.2 Construction of 2D Tree-Grid method 71

tion:

vki,j = BC(xi, yj , tk). (7.57)

The terminal condition is defined as

vMi,j = VT (xi, yj). (7.58)

Finally we can summarize the whole algorithm of the 2D Tree-Grid method:

Algorithm 7 The 2D Tree-Grid method
1: Set vMi,j = VT (xi, yj) for i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny;
2: for k = M − 1,M − 2, . . . , 1 do
3: for i = 1, 2, 3, . . . , Nx do
4: for j = 1, 2, 3, . . . , Ny do
5: if i ∈ {1, Nx} or j ∈ {1, Ny} then
6: Compute vki,j according to (7.57);
7: else
8: for θ ∈ Θ do
9: Determine Ex, Ey according to Section 7.2.1;

10: Compute Ax, Ay according to (7.32);
11: Compute V arx, V ary according to (7.33), (7.34);
12: Determine Wx, Wy according to Section 7.2.1;
13: Determine x+, x−, y+, y− according to (7.9)-(7.14);
14: Determine ∆+x, ∆−x, ∆+y, ∆−y according to (7.15)-(7.16);
15: Compute σ̃xy according to (7.35);
16: Compute Cxy according to (7.36);
17: Compute Cov according to (7.37);
18: Determine Wxy according to Section 7.2.1;
19: Compute po, px+, px−, py+, py−, pxy according to (7.25)-(7.30);
20: Using (7.49), compute all variables defined by (7.50)-(7.54);
21: Compute wki,j(θ) according to (7.56);
22: end for
23: Compute vki,j according to (7.55);
24: end if
25: end for
26: end for
27: end for

7.2.7 Comparison to other wide stencil methods

As the stencil size gets wider with ∆x, ∆y, the 2D Tree-Grid method can be classified
as an explicit wide stencil method. Wide stencil methods are presented for example in
[31] or in the papers [8, 12, 13]. A similar but implicit method leading to wide stencil
only in some nodes can be found in [35]. Let us therefore state the two most important
advantages of the 2D Tree-Grid method:

1. Unconditional stability. In contrast to other explicit wide stencil method, the 2D
Tree-Grid method is unconditionally stable. The unconditional stability is achieved

72 7 Two-dimensional Tree-Grid method

by making the stencil size dependent not only on the space steps but also on the time
step. The method from [35] is also unconditionally stable, however this property is
achieved by making the method implicit in that case.

2. No interpolation is needed. In order to get a 7-point wide stencil without interpola-
tion, we possibly need to artificially increase the variance and decrease the covariance
of the system (see Section 7.2.4). However, the approximation is still consistent as
this artificial increase and decrease vanishes with grid refinement and in standard
cases even reaches zero at some point. We should note, that even in standard wide
stencil schemes [12], the variance is increased and covariance altered due to the use
of interpolation. Moreover in that case, this behavior is present for any grid refine-
ment, in contrast to the case of the Tree-Grid method presented in this work. The
comparison of the stencil in 2D Tree-Grid scheme and of the standard wide stencil
scheme is illustrated in Figure 7.2.

Figure 7.2: Illustration of the stencil of the standard wide-stencil scheme compared to
the stencil of the 2D Tree-Grid scheme. In the case of standard wide stencil
scheme, value in the green points is computed by interpolation using the red
grid-nodes. In this example 13 grid-node values are needed in the computation
of the value in the blue node (the upper figure). On the other hand, we only
need 7 (red) nodes and no interpolation to compute the value of the blue node
using the 2D Tree-Grid method (the bottom figure).

Important advantage of the standard wide-stencil schemes is the possibility of generaliza-
tion to dimensions higher that two. As we will see in the next chapter, the Tree-Grid
method cannot be generalized to higher dimensions for an arbitrary problem setting.

7.3 Convergence of the 2D Tree-Grid method 73

7.3 Convergence of the 2D Tree-Grid method

In this section, we will prove the convergence of the 2D Tree-Grid method. In the first
part, we will quickly summarize the convergence theory of Barles and Souganidis [4] and
in the second part of this section we will use this theory to prove the convergence of our
scheme. Let us note that the Algorithm 7 was derived by discretizing the dynamics in
the original SCP (7.1)-(7.4), but we will prove that the scheme is consistent with the HJB
equation (7.6)-(7.8).

Now, we will prove the convergence of the 2D Tree-Grid method. For the purpose of this
convergence analysis we will rewrite equations (7.55),(7.56) as

Gv(xi, yj , tk) =G(vk+1
o , vk+1

x+ , vk+1
x− , vk+1

y+ , vk+1
y− , vk+1

xy+, v
k+1
xy−)

=
1

∆t

(
vki,j −max

θ∈Θ

(
fki,j(θ)∆t+

(
1 + rki,j(θ)∆t

)
·
(
px+v

k+1
x+ + px−v

k+1
x− + py+v

k+1
y+ + py−v

k+1
y−

+ pov
k+1
o + pxy(v

k+1
xy+ + vk+1

xy−)
)))

= 0. (7.59)

Using the theory from Section 2.2, our goal is to show that the equation (7.59) is a
monotone, consistent, and stable approximation of the nonlinear differential operator F
defined by the PDE (7.6):

FV (x, y, t) = −∂V
∂t
−max

θ∈Θ

(
LV + r(·)V + f(·)

)
. (7.60)

Let us define the difference operators

∆o+z = ∆+z, ∆o−z = −∆−z, (7.61)

for z ∈ {x, y}. At first, we will show the consistency of the scheme in an arbitrary point
(xi, yj , tk):

Lemma 10 (Consistency). The discrete scheme (7.59) is consistent with the PDE operator
(7.60).

Proof. Let φ : R2 × [0, T] → R be a C∞-smooth function. Let us define φk(x, y) =
φ(x, y, tk) and use short notation defined by (7.50)-(7.54) for φk+1 instead of vk+1. At
first, let us sketch the main idea of the proof of consistency in an arbitrary point (xi, yj , tk):
We will write all values φk+1

α for α ∈ {x+, x−, y+, y−, xy+, xy−} as Taylor expansions
around φki,j . We will substitute these Taylor expansions into the discrete scheme (7.59),
group terms with the same derivatives together and estimate the sum of coefficients in
front of them. We will end up with the PDE operator (7.60) and some terms of order
O(hλ), where λ = 1/2 if |ρ| = 1 or σx = 0 or σy = 0 and λ = 1 else. Let us suppose
that Wxy ≥ 0 in (xi, yj , tk). The case of negative Wxy can be treated analogously. For

74 7 Two-dimensional Tree-Grid method

∗ ∈ {+,−}, let us define the operators:

Axy∗φ =
∂φ

∂x
∆o∗x+

∂φ

∂y
∆o∗y +

1

2

∂2φ

∂x2
(∆o∗x)2 +

∂2φ

∂x∂y
∆o∗x∆o∗y

+
1

2

∂2φ

∂y2
(∆o∗y)2, (7.62)

Bxy∗φ =
1

6

∂3φ

∂x3
(∆o∗x)3 +

1

2

∂3φ

∂x2∂y
(∆o∗x)2∆o∗y +

1

2

∂3φ

∂x∂y2
∆o∗x(∆o∗y)2

+
1

6

∂3φ

∂y3
(∆o∗y)3, (7.63)

Cxy∗φ =
1

24

∂4φ

∂x4
(∆o∗x)4 +

1

6

∂4φ

∂x3∂y
(∆o∗x)3∆o∗y +

1

4

∂4φ

∂x2∂y2
(∆o∗x)2, (∆o∗y)2

+
1

6

∂4φ

∂x∂y3
∆o∗x(∆o∗y)3 +

1

24

∂4φ

∂y4
(∆o∗y)4. (7.64)

Now we can expand φk+1
xy∗ around φki,j as follows:

φk+1
xy∗ =φki,j +

∂

∂t
φki,j∆t+Axy∗φ

k
i,j +

∂

∂t

(
Axy∗φ

k
i,j

)
∆t+Bxy∗φ

k
i,j

+
∂

∂t
(Bxy∗Rxy∗) ∆t+ Cxy∗Rxy∗ +O((∆t)2), (7.65)

where

Rxy∗ = φ(xi + εxy∗∆o∗x, yj + δxy∗∆o∗y, tk + γxy∗∆t), (7.66)

for some εxy∗, δxy∗, γxy∗ ∈ [0, 1]. We expand φk+1
x∗ , φk+1

y∗ , ∗ ∈ {+,−} in the same manner:
for φk+1

x∗ we only need to substitute ∆o∗y with 0 and for φk+1
y∗ we only need to substitute

∆o∗x with 0 in the Taylor expansion (7.65) and change the index xy∗ to x∗ resp. y∗ in
all expressions (7.62)-(7.66). Now, by substituting the Taylor expansions into the scheme
Gφki,j defined by (7.59) we get:

Gφki,j =
1

∆t

(
φki,j −max

θ∈Θ

(
fki,j(θ)∆t+

(
1 + rki,j(θ)∆t

)
·
(
φki,j +

∂φki,j
∂t

∆t+ (Lφki,j +O(hλ))∆t
)))

= Fφki,j +O(hλ), (7.67)

where λ = 1/2 if |ρ| = 1 or σx = 0 or σy = 0 and λ = 1 else. In the first equation
of (7.67) we used the estimates of the linear combinations of higher order terms from
the Taylor expansions. The coefficients of these linear combinations are the probabilities
po, px+, px−, py+, py−, pxy+, pxy− (according to the definition of G (7.59)). We describe
here these estimates:

1. For the linear combinations of the terms included in Aαφki,j ,
α ∈ {x+, x−, y+, y−, xy+, xy−} we used the properties of the scheme (7.17)-(7.22).
After summing all expressions obtained by applying (7.17)-(7.22) we get(
Lφki,j +O(h1/2)

)
∆t. Moreover, following Section 7.2, if |ρ| 6= 1, σx 6= 0, σy 6= 0, for

h small enough we end up just with Lφki,j∆t.

7.3 Convergence of the 2D Tree-Grid method 75

2. In the same way, for the linear combinations of the terms included in
∂
∂t

(
Aαφ

k
i,j

)
∆t we get

(
L
(
∂φki,j/∂t

)
+O(hλ)

)
(∆t)2 = O(h)∆t.

3. For the linear combinations of the terms included in Bαφ
k
i,j we used the following

estimates:

(px+ + pxy+)(∆o+x)3 + (px− + pxy+)(∆o−x)3

= Wx(∆o+x+ ∆o−x)− Ex∆o+x∆o−x = O(h)∆t, (7.68)

pxy+(∆o+x)2∆o+y + pxy−(∆o−x)2∆o−y =

Wxy

(
(∆o+x)2∆o+y + (∆o−x)2∆o−y

)
∆o+x∆o+y + ∆o−x∆o−y

= O(h)∆t. (7.69)

Here we used that ∆o+x + ∆o−x = O(h), (∆o+x)2∆o+y + (∆o−x)2∆o−y = O(h2).
We used analogous estimates also for the terms where x and y are switched sym-
metrically.

4. As (∆o∗x)2 = O(h), (∆o∗y)2 = O(h) it is clear that all terms in
∂
∂t (BαRα) ∆t are of order O(h)∆t.

5. For the linear combinations of the terms included in CαRα we constructed the esti-
mate in the following way: Let us define

ψ = (px+ax+ + pxy+axy+)(∆o+x)2 + (px−ax− + pxy−axy−)(∆o−x)2.

Then, it holds:

m
(
σ2
x +O(h)

)
∆t ≤ ψ ≤M

(
σ2
x +O(h)

)
∆t,

m = min (ax+, ax−, axy+, axy−) , M = max (ax+, ax−, axy+, axy−) .

If m = O(h), M = O(h) then ψ = O(h)∆t. Now for (ax+, ax−, axy+, axy−) equal to

• 1
24

∂4

∂x4

(
(∆o+x)2Rx+, (∆o−x)2Rx−, (∆o+x)2Rxy+, (∆o−x)2Rxy−

)
,

• 1
6

∂4

∂x3∂y
(0, 0,∆o+x∆o+yRxy+,∆o−x∆o−yRxy−),

• 1
4

∂4

∂x3∂y

(
0, 0, (∆o+y)2Rxy+, (∆o−y)2Rxy−

)
,

which are all O(h), we get that the linear combinations of the first three terms in
CαRα are of order O(h)∆t. Using analogous estimates, also the linear combinations
of the fourth and fifth term are of order O(h)∆t.

Using the estimates above, we proved (7.67) which is the first order consistency of our
scheme if |ρ| < 1, σx > 0, σy > 0 and consistency of order 1/2 else.

Now the lemma establishing monotonicity of the scheme (7.59) follows:

Lemma 11 (Monotonicity). If 1 + rki,j(θ)∆t ≥ 0 for all possible i, j, k, θ, then the discrete
scheme (7.59) is monotone.

Proof. Monotonicity is in this case a direct implication of the non-negativity of po, px+,

76 7 Two-dimensional Tree-Grid method

px−, py+, py−, pxy+, pxy−.

Remark 10. As already mentioned in Chapter 5, even if 1 + rki,j(θ)∆t < 0 for some
i, j, k, θ, we can get a monotone scheme if we substitute 1 + rki,j(θ)∆t by
1/(1 − rki,j(θ)∆t) in (7.59) for these parameters i, j, k, θ. Note that this change does not
harm the consistency, nor the stability of the scheme.

The stability analysis of the 2D Tree-Grid method is basically identical to the stability
analysis of the one-dimensional Tree-Grid method done in Chapter 5. Therefore we state
here just the stability condition and the Lemma about stability of the scheme.

Property 2 (Stability condition of the problem). We suppose that:

1. There exist constants Cf , Cr such that for all x, y, t, θ ∈ [x1, xNx]×[y1, yNy]×[t1, tM]×
Θ holds: |f(x, y, t, θ)| < Cf , |r(x, y, t, θ)| < Cr.

2. There exist constant CBC such that |BC(x, y, t)| < CBC holds for all t ∈ [t1, tM] and
for all possible outer-domain values (x, y) of the variables (x+, yj), (x−, yj), (xi, y+), (xi, y−),
(x+, y+), (x+, y−), (x−, y+), (x−, y−) for any grid.

The lemma about stability of the scheme follows:

Lemma 12 (Stability). If the problem satisfies the stability conditions defined in Property
2, then the scheme (7.59) is stable.

Proof. The proof of this lemma can be found in Chapter 5.

Finally, the convergence theorem follows:

Theorem 13 (Convergence of the 2D Tree-Grid method). The approximation computed
with the 2D Tree-Grid method (defined by Algorithm 7) for solving the SCP (7.1)-(7.4) and
the corresponding HJB equation (7.6)-(7.8) satisfying the strong uniqueness property (see
[4]) and the stability conditions defined in Property 2 converges to the viscosity solution of
this SCP (and the HJB equation).

Proof. The proof follows from the Theorem 1 and Lemmas 10, 11, 12.

7.4 Numerical example: two-factor uncertain volatility model

In this section, we will use the 2D Tree-Grid method for pricing options on two different
risky assets under uncertain volatility:

Example 4 (Two-factor uncertain volatility model). In this setting, the volatilities and
the correlation of the assets are only known to lie in certain bounds. The maximal option

7.4 Numerical example: two-factor uncertain volatility model 77

price can be in this case computed as solution of the HJB equation

∂V

∂t
+ max

θ∈Θ
(LV − rV) = 0, (7.70)

LV =
σ2
x

2
x2∂

2V

∂x2
+ ρσxσyxy

∂2V

∂x∂y
+
σ2
y

2
y2∂

2V

∂y2
+ rx

∂V

∂x
+ ry

∂V

∂y
, (7.71)

V (x, y, T) = VT (x, y), (7.72)
0 < t < T, x, y ∈ R.

Here, x, y, t denote the first, the second asset price and the time, r denotes the risk-free
interest rate, T is maturity time, the terminal condition VT (x, y) is payoff function and
for the control variable holds θ = (σx, σy, ρ), where σx, σy, ρ are uncertain volatilities of
the first and the second asset, and their correlation. For the set of possible controls holds:

Θ = [σx,min, σx,max]× [σy,min, σy,max]× [ρmin, ρmax]. (7.73)

To obtain the minimal option price, we have to replace max by min in HJB equation (7.70).
This model was discussed for example in [40] and later solved with a hybrid (combining
fixed and wide stencils) implicit method in [35]. As explained in [35], the optimal control
lies in a subset of Θ,

Θ̃ =
(

({σx,min, σx,max} × [σy,min, σy,max])

∪ ([σx,min, σx,max]× {σy,min, σy,max})
)
× {ρmin, ρmax}. (7.74)

Therefore, we will search for the control in Θ̄, a discretized version of Θ̃.

To verify the implementation, we will also solve a problem with an one-element set Θ̄ =
{(σx, σy, ρ)}. In this case, the equation (7.70) is simply the 2-dimensional Black-Scholes
equation [7] for which the analytical solution is known.

Terminal condition: As a terminal condition, we use the payoff function in the form of
a butterfly spread on the maximum of two assets:

VT (x, y) = (M −K1)+ − 2 (M − (K1 +K2)/2)+ + (M −K2)+

with M = max(x, y), K1 = 34, K2 = 46.

Boundary conditions: We will use Dirichlet boundary conditions. On the upper and
the right boundary, we will set the value to 0:

BC(x > xmax, y, t) = 0, BC(x, y > ymax, t) = 0, xmax = ymax = 144

To verify that our computational domain is large enough, we solved the HJB and the Black-
Scholes equation also for xmax = ymax = 400 and obtained in node (x, y, t) = (40, 40, 0) the
same values as for xmax = ymax = 144. On the lower (y = 0) and left (x = 0) boundary,
the equation (7.70) degenerates to a HJB equation for one-dimensional uncertain volatility
model from [17]. We solve it with the one-dimensional Tree-Grid method, from chapter
Chapter 5 with artificial diffusion defined as in Chapter 6. For the case that the values from
outside of the computational domain [0, xmax]× [0, ymax] are needed, we artificially define

78 7 Two-dimensional Tree-Grid method

the solution for x < 0, y < 0 to have the same values as the solution on the boundary:

BC(x < 0, y) = BC(0, y), BC(x, y < 0) = BC(x, 0), BC(x < 0, y < 0) = 0.

Numerical results: Here we present the experimental convergence results of the 2D
Tree-Grid method applied to the Black-Scholes model and the uncertain volatility model.
We implemented our method in Python 1 and tested on Intel Core i7-4770 CPU 3.40GHz
computer with 16 GB RAM. We performed the simulations on four different sets of pa-
rameters:

• Black-Scholes model with moderate volatility and correlation: σx = 0.3, σy = 0.5, ρ =
0.4. Results of the simulation are in Table 7.1.

• Black-Scholes model with extreme parameters: σx = 0.05, σy = 0.05, ρ = −0.95.
Results of the simulation are in Table 7.2.

• Uncertain volatility model, maximal option price (worst case scenario) with param-
eters σx,min = σy,min = ρmin = 0.3, σx,max = σy,max = ρmax = 0.5. Results of the
simulation are in Table 7.3.

• Uncertain volatility model, minimal option price (best case scenario). The max
operator is replaced by min in equation (7.70), all other parameters are the same as
in the worst case scenario. Results of the simulation are in Table 7.4.

In all models we used the parameters T = 0.25, r = 0.05. For each model we computed
the approximations of the solution on different refinement levels. Let us denote the final
time-layer (t=0) of the approximation of the solution on the k-th refinement level as
Ak, and final time-layer of the reference solution as Aref . We measured the error of the
approximation on each refinement level in two different ways:

1. the L1 error - the error was computed using the formula:

Err Ak = ‖Ak −Aref‖1, (7.75)

2. the error in (x = 40, y = 40), computed using the formula

Err Ak = |Ak(40, 40)−Aref (40, 40)|. (7.76)

We use this error and the value in (x = 40, y = 40) to compare our results with
results from the paper [35], where the same parameters are used for the uncertain
volatility model.

To compute the experimental order of convergence (EOC) we used the formula (4.10).
In all refinement levels we used a (rectangular) grid with equidistant time-stepping and
non-equidistant space-stepping with more nodes near to the non-smooth regions of the
terminal conditions. The refinements were done uniformly.

From Table 7.2 we can deduce, that the numerical solution converges also in the case of
very small volatility and large correlation, although the convergence is not as smooth as
in the case of moderate parameters (Table 7.1). As we can see in Tables 7.1, 7.3, the

1The code can be downloaded from https://github.com/igor-vyr/Tree-Grid-method

7.4 Numerical example: two-factor uncertain volatility model 79

Table 7.1: Black-Scholes model, σx = 0.3, σy = 0.5, ρ = 0.4. M -number of timesteps, N
-number of space nodes. Value, error and experimental order of convergence
(EOC) in the final time layer in the point (x, y) = (40, 40) and error, EOC in L1

norm in the final time layer. As reference solution the exact solution (computed
with R-library fExoticOptions) was used.

Convergence in (x, y) = (40, 40) Convergence in L1

M N Value Err EOC Err EOC
25 352 1.9910 1.77E-01 - 1.21E-02 -
50 692 1.8211 7.02E-03 4.66 1.84E-03 2.72
100 1372 1.8229 8.88E-03 -0.34 7.16E-04 1.36
200 2732 1.8177 3.67E-03 1.27 3.02E-04 1.25
400 5452 1.8141 5.31E-05 6.11 1.24E-04 1.28
800 10892 1.8138 1.96E-04 -1.89 5.11E-05 1.28
1600 21772 1.8139 1.38E-04 0.51 2.54E-05 1.01

Table 7.2: Black-Scholes model, σx = 0.05, σy = 0.05, ρ = −0.95. M -number of timesteps,
N -number of space nodes. Value, error and experimental order of convergence
(EOC) in the final time layer in the point (x, y) = (40, 40) and error, EOC in L1

norm in the final time layer. As reference solution the exact solution (computed
with R-library fExoticOptions) was used.

Convergence in (x, y) = (40, 40) Convergence in L1

M N Value Err EOC Err EOC
25 352 3.3619 1.28E+00 - 3.60E-02 -
50 692 3.8702 7.71E-01 0.73 1.96E-02 0.88
100 1372 4.3095 3.31E-01 1.22 7.62E-03 1.37
200 2732 4.6339 6.91E-03 5.58 5.53E-04 3.78
400 5452 4.6465 5.73E-03 0.27 3.86E-05 3.84
800 10892 4.6468 5.97E-03 -0.06 4.61E-05 -0.26
1600 21772 4.6416 8.35E-04 2.84 9.85E-06 2.22

Table 7.3: Uncertain volatility model, worst case scenario (maximization). M -number
of timesteps, N -number of space nodes, Q -number of controls. Value, error
and experimental order of convergence (EOC) in the final time layer in the
point (x, y) = (40, 40) and error, EOC in L1 norm in the final time layer. As
reference solution, a solution computed on a fine grid with 400 timesteps, 5452

space nodes and 256 controls was used.

Convergence in (x, y) = (40, 40) Convergence in L1

M N Q Value Err EOC Err EOC
25 352 16 2.8364 1.59E-01 - 1.17E-02 -
50 692 32 2.6619 1.53E-02 3.38 3.64E-03 1.68
100 1372 64 2.6784 1.19E-03 3.68 1.17E-03 1.64
200 2732 128 2.6784 1.20E-03 -0.01 3.07E-04 1.93

80 7 Two-dimensional Tree-Grid method

Table 7.4: Uncertain volatility model, best case scenario (minimization). M -number of
timesteps, N -number of space nodes, Q -number of controls. Value, error
and experimental order of convergence (EOC) in the final time layer in the
point (x, y) = (40, 40) and error, EOC in L1 norm in the final time layer. As
reference solution, a solution computed on a fine grid with 400 timesteps, 5452

space nodes and 256 controls was used.

Convergence in (x, y) = (40, 40) Convergence in L1

M N Q Value Err EOC Err EOC
25 352 16 0.9847 6.95E-02 - 4.29E-03 -
50 692 32 0.9475 3.23E-02 1.11 2.01E-03 1.09
100 1372 64 0.9270 1.18E-02 1.46 7.59E-04 1.41
200 2732 128 0.9173 2.07E-03 2.50 1.31E-04 2.53

point-wise convergence may be quite non-smooth, even if the approximation is converging
relatively smoothly in L1. In the uncertain volatility model, the values in (x = 40, y = 40)
are similar to the values from paper [35], what verifies our method. The experimental order
of convergence in the Tables 7.1, 7.3, 7.4 seems to be slightly better than the theoretical
order 1, the experimental order of convergence in Table 7.2 is quite non-smooth.

The increase of the experimental order of convergence in the last refinement level in the
uncertain volatility model results from using a solution computed on a fine grid as reference
solution (that is disproportionally closer to the solution on the last refinement level in
contrast to the solutions on previous refinement levels).

In Figure 7.3, we see the final time layer (t=0) of the approximation of option prices under
the uncertain volatility model for both best and worst case scenario.

x
0 20 40 60 80100

y
020406080100

V(
x,

y)

0.0
0.5
1.0
1.5
2.0
2.5

Worst case scenario

0.0
0.5
1.0
1.5
2.0
2.5

x
0 20 40 60 80100

y
020406080100

V(
x,

y)

0.0
0.2
0.4
0.6
0.8
1.0

Best case scenario

0.0
0.2
0.4
0.6
0.8
1.0

Figure 7.3: Final time layers (t=0) of the approximations of the worst case option price
(maximization) and of the best case option price (minimization) from the
uncertain volatility model computed with the 2D Tree-Grid method with 50
timesteps, 692 space nodes and 32 controls.

8 Chapter 8

Restrictions for the higher
dimensional generalization of the
Tree-Grid method

In the previous chapter we introduced the Tree-Grid method for solving the stochastic
control problems with two space dimensions. The question that clearly arises is, whether
this approach could be generalized to more space dimensions. In this chapter we will show
that the most natural generalization of the Tree-Grid method to higher space-dimensions
using the ideas that were presented in the previous chapter for two dimensions fails in
providing non-negative weights for larger correlations. Therefore, this generalization can-
not be proven to be convergent according to Theorem 1 in general. To understand the
principles behind this chapter we advise the reader to start reading with Chapter 7.

8.1 P-dimensional stochastic control problem

For readers convenience, we repeat here the formulation of the general P -dimensional
stochastic control problem from Chapter 2:

V (s̄, t) = max
θ(s,t)∈Θ̄

E

 T∫
t

exp

 k∫
t

r(S̄l, l, θ(S̄l, l))dl

 f(S̄k, k, θ(S̄k, k))dk

+ exp

 T∫
t

r(S̄k, k, θ(S̄k, k))dk

VT (S̄T)
∣∣∣S̄t = s̄

 , (8.1)

dS̄t =µ̄(S̄t, t, θ(S̄t, t))dt+ σ̄(S̄t, t, θ(S̄t, t))dW̄t, (8.2)

0 <t < T, s̄ ∈ RP , P > 2

Here, s̄ denotes the P -dimensional state variable, W̄t is a P -dimensional Wiener process
with a correlation matrix ρ̄(S̄t, t, θ(S̄t, t)), S̄t is a P -dimensional Itô process, µ̄(·) is a
suitable drift vector function, σ̄(·) is a suitable P × P volatility matrix function with
volatilities σ̄l(·), l = 1, 2, . . . , P , on the diagonal and zeros elsewhere and Θ̄ is the space of
all suitable control functions mapping from RP × [0, T] to a set Θ.

8.2 Construction of the P-dimensional Tree-Grid scheme

As in Chapter 7, we will try to approximate the increment of the process during a time
step ∆t with a stencil of possible future states with weights that can be interpreted as

81

82 8 Restrictions for the higher dimensional generalization of the Tree-Grid method

probabilities (see Figure 7.1). These states will be some of the nodes from a rectangular P -
dimensional space grid that is in fact one time layer of the (p+ 1)-dimensional time-space
grid.

8.2.1 Notation

At first, before discussing how to generalize the stencil from Chapter 7 and how to choose
the proper weights, we present here the notation used in the sequel (similar to the notation
from the previous Chapter 7):

• s̄(l)
1 , s̄

(l)
2 , . . . , s̄

(l)
Nl

-space discretization in the space l-th dimension (l ≤ P).

• t1, t2, . . . , tM -time discretization.

• ∆t -the time-step. For simplicity we use equidistant time-stepping.

• ∆s -space step between two neighboring nodes in direction of any of the P axis.
For simplicity we use equidistant space stepping with space-steps of the same size in
each direction.

• h = max(K∆s,∆t), where K > 0 is a parameter used for regulating the stencil size.

• b = h/∆t.

• (s̄o, tk) with s̄o = (s̄
(1)
o1 , s̄

(2)
o2 , . . . , s̄

(P)
op) -the node for which the stencil is constructed.

• El = µ̄l(s̄o, tk, θ)∆t for l = 1, 2, . . . , P .

• V arl = σ̄2
l (s̄o, tk, θ)∆t for l = 1, 2, . . . , P .

• ρ̄i,j(s̄o, tk, θ) -the element in i-th row and j-th column of the correlation matrix ρ̄,
the correlation between the increment in the i-th and the j-th dimension, i, j ∈
{1, 2, . . . , P}.

• Covi,j = ρi,j(s̄o, tk, θ)σ̄i(s̄o, tk, θ)σ̄j(s̄o, tk, θ)∆t for i, j ∈ {1, 2, . . . , P}.

• Wl = V arl + E2
l for l = 1, 2, . . . , P .

• Wi,j = Covi,j + EiEj for i, j ∈ {1, 2, . . . , P}.

8.2.2 Choosing the stencil nodes

Next, we describe how to choose the stencil nodes around an arbitrary node (s̄o, tk) for a
fixed control θ, using the same approach as in Chapter 7. First, we define the following
stencil coordinates for any l ∈ {1, 2, . . . , P}:

If El > 0,

sl− =
⌊
s(l)
ol
−
√
PWlb

⌋
l
, sl+ =

⌈
max

(
s(l)
ol

+
√
PWlb, s

(l)
ol

+ (s(l)
ol
− sl−)

)⌉
l
, (8.3)

8.2 Construction of the P-dimensional Tree-Grid scheme 83

else if El < 0,

sl+ =
⌈
s(l)
ol

+
√
PWlb

⌉
l
, sl− =

⌊
min

(
s(l)
ol
−
√
PWlb, s

(l)
ol
− (sl+ − s(l)

ol
)
)⌋

l
, (8.4)

else (El = 0),
sl+ =

⌈
s(l)
ol

+
√
PWlb

⌉
l
, sl− =

⌊
s(l)
ol
−
√
PWlb

⌋
l
, (8.5)

where del resp. bcl denotes rounding to the nearest greater resp. smaller element from
s̄

(l)
1 , s̄

(l)
2 , . . . , s̄

(l)
Nl
. If such element does not exist, dzel resp. bzcl will return just z.

The following nodes with the respective weights (probabilities) will be used in the stencil
located at (s̄o, tk):

• Node (s̄o, tk+1) with the weight po.

• For l = 1, 2, . . . , P : node (s̄o,l+, tk+1), where s̄o,l+ is equal to s̄o up to the element
on l-th position that is equal to sl+. The corresponding weights of these nodes are
denoted as pl+.

• For l = 1, 2, . . . , P : node (s̄o,l−, tk+1), where s̄o,l− is equal to s̄o up to the element
on l-th position that is equal to sl−. The corresponding weights of these nodes are
denoted as pl−.

• For i = 1, 2, . . . , P , j = 1, 2, . . . , P − 1, j < i : node (s̄o,i,j+, tk+1), where s̄o,i,j+ is
equal to s̄o up to the elements on the i-th and j-th positions. The element on the
i-th position is equal to si+, and the element on the j-th position is equal to sj+ for
non-negative Wi,j and to sj− for negative Wi,j . The corresponding weights of these
nodes are denoted as pi,j .

• For i = 1, 2, . . . , P , j = 1, 2, . . . , P − 1, j < i : node (s̄o,i,j−, tk+1), where s̄o,i,j− is
equal to s̄o up to the elements on the i-th and j-th positions. The element on the
i-th position is equal to si−, and the element on the j-th position is equal to sj− for
non-negative Wi,j and to sj+ for negative Wi,j . The weights of these nodes are the
same as weights of the nodes (s̄o,i,j+, tk+1) denoted as pi,j .

Now, let us define the difference operators

∆l+s = sl+ − s(l)
ol
, ∆l−s = s(l)

ol
− sl−, (8.6)

for l = 1, 2, . . . , P . As we assume equidistant grid in the space domain in this chapter,
it holds ∆l+s = ∆l−s and therefore we will sometimes denote this distance just as ∆ls
(∆ls := ∆l+s = ∆l−s).

8.2.3 Choosing the stencil weights (probabilities)

To match the first two moments of the approximative increment of the stochastic process
and of the increment of the discrete process defined by the “stencil nodes” and their weights
and to ensure that the weights can be interpreted as probabilities (are non-negative and

84 8 Restrictions for the higher dimensional generalization of the Tree-Grid method

sum up to 1), we require:

po +
P∑
l=1

(pl+ + pl−) + 2
P∑

i,j=1
j<i

pi,j = 1, (8.7)

pl+ +
∑
j<l

pl,j +
∑
l<i

pi,l

∆l+s−

pl− +
∑
j<l

pl,j +
∑
l<i

pi,l

∆l−s = El, (8.8)

for l = 1, 2, . . . , P.pl+ +
∑
j<l

pl,j +
∑
l<i

pi,l

 (∆l+s)
2 +

pl− +
∑
j<l

pl,j +
∑
l<i

pi,l

 (∆l−s)
2 = Wl, (8.9)

for l = 1, 2, . . . , P.

pi,j(∆i+s∆j+s+ ∆i−s∆j−s) = Wi,j (8.10)
for i = 1, 2, . . . , P, j = 1, 2, . . . , P − 1, j < i and Wi,j ≥ 0

pi,j(∆i+s∆j−s+ ∆i−s∆j+s) = |Wi,j | (8.11)
for i = 1, 2, . . . , P, j = 1, 2, . . . , P − 1, j < i and Wi,j < 0

po, pl+, pl−, pi,j ,≥ 0 (8.12)
for l = 1, 2, . . . , P, i = 1, 2, . . . , P, j = 1, 2, . . . , P − 1, j < i.

The formula for the analytical solution of the P 2 + P + 1 equations (8.7)-(8.11) is very
long, but can be simplified under the assumption of equidistant spatial grid (∆ls = ∆l+s =
∆l−s). The solution for such equidistant spatial grid reads:

po =

∏P
i=1(∆is)

2 +
∑P

i,j=1
j<i

((∏P
l=1
l 6=i,j

(∆ls)
2

)
∆is∆js|Wi,j |

)
∏P
l=1(∆ls)2

−

∑n
i=1

((∏P
j=1
j 6=i

(∆js)
2

)
Wi

)
∏P
l=1(∆ls)2

, (8.13)

pi,j =
|Wi,j |

2∆is∆js
, (8.14)

pl± =

(∏P
i=1
i 6=l

∆is

)
Wl −

∑P
i=1
i 6=l

((∏P
j=1
j 6=i

∆js

)
|Wl,i|

)
±
(∏P

i=1 ∆is
)
El

2(∆ls)2
∏P
i=1
i 6=l

∆is
. (8.15)

8.3 Appearance of possibly negative weights

The weight po (8.13) is positive due to the construction of the stencil. The weights pi,j
(8.14) are also clearly positive. The problem may however appear in the case of weights
pl+, pl− defined by (8.15). Let us for example assume El = 0 for l = 1, 2, . . . , P , Wi =
Wj = Wi,j for i, j = 1, 2, . . . , P . Then, also ∆is = ∆js for i, j = 1, 2, . . . , P and pl± are

8.4 Ideas from Tree-Grid schemes applicable to other methods 85

negative for l = 1, 2, . . . , P ≥ 3. We can artificially increase the diffusion Wl or reduce
the covariance Wi,j while still preserving consistency with the original problem in some
similar way as in Chapter 7, Section 7.2.4. Then Wl will be replaced by Wl + O(hz)∆t
and Wi,j will be replaced with Wi,j +O(hz)∆t, z > 0. However, it is clear that even such
modification will not restore the non-negativity of pl± for vanishing h and P ≥ 3. Of
course, for smaller covariance terms Wi,j the weights (probabilities) may be non-negative,
but we cannot ensure the non-negativity for an arbitrary problem. As the non-negativity
of weights is equivalent to the monotonicity of the scheme, a property that is needed for
convergence proof according to the theory of Barles and Souganidis [4], we also cannot
ensure the convergence of the P -dimensional Tree-Grid method for an arbitrary problem.

Although the Tree-Grid method cannot be generalized to higher dimensions (at least not
in such a straightforward manner) for an arbitrary problem, the generalization described
here may be monotone and thus feasible for control problems with smaller terms Wi,j .

8.4 Ideas from Tree-Grid schemes applicable to other
methods

Some of the ideas presented for the Tree-Grid method can be reused also for other wide
stencil methods (e.g. methods from [12]) that are feasible also in higher dimensions:

• By making the stencil dependent also on the time-step ∆t in similar manner as
in this or in the previous chapter, unconditional stability and monotonicity can be
achieved. For larger time steps that would violate the CFL condition, the stencil
will simply get wider.

• By following the Remarks 8, 10 one can avoid conditions on the time step regarding
the discount factor. This is applicable also in the implicit finite difference methods
(e.g. [16, 9]), if one solves in each time layer the corresponding PDE without dis-
counting (that means with zero-coefficient in front of V -term) and then discounts
the whole time layer as proposed here.

The remaining drawback of the higher-dimensional (dimension higher than 2) wide-stencil
methods after applying the tricks described above in contrast to the Tree-Grid method is
the necessity of interpolation.

9 Chapter 9

Conclusion and outlook

In this thesis, we presented new approaches for solving the SCPs and the related HJB
equations. We introduced a modification of the PCPT scheme, the so-called PPPT scheme.
Although we cannot prove the convergence of this method to the correct solution in general,
as the method relays on prediction made on a coarse grid, we have shown experimentally
on two numerical examples from finance the superiority of the method compared to the
PCPT method.

However, the main contributions of this thesis are undoubtedly the Tree-Grid methods.
These new methods are constructed for the cases of one or two space dimensions. We
proved the convergence of these methods in both cases. The methods are explicit, but still
unconditionally stable and convergent for an arbitrary grid. The unconditional stability is
not common among the explicit methods, as these need some CFL condition to be fulfilled
in most cases. Therefore, the Tree-Grid methods are methods of choice if explicitness is
desirable - either because of the lower time complexity or if parallelization of the algorithm
is needed. Moreover, the 2D Tree-Grid method posses another advantage - while falling
into the class of the explicit wide stencil schemes, it doesn’t use any interpolation in
contrast to other schemes in this class. A disadvantage that is also addressed in this thesis
is, that we cannot generalize the Tree-Grid method to dimensions higher than two for
an arbitrary problem. For the 1D Tree-Grid method we developed also an modification
leading to stencil of control-independent size, allowing us to use more effective algorithms
for the search of optimal control. We have shown the convergence of all Tree-Grid methods
(one dimensional, two dimensional and modified one-dimensional) on numerical examples
from finance. To verify our results, we used in the problem formulations parameters from
the literature.

9.1 Outlook of the future research

New approaches in this thesis give rise to many interesting questions and ideas. Let us
introduce some of the possible directions of the future research related to this thesis:

1. Convergence conditions for the PPPT method. The PPPT method from
Chapter 4 is rather heuristic in the sense that it is stable and also convergent, but
we cannot be sure that the method converges to the actual (viscosity) solution of
the SCP. Therefore, it would be interesting to find some conditions of convergence
to the correct solution, or at least some bounds on the error of the approximation.

2. Analytical solution of the optimization part. In Chapter 6, we state that
it should be possible to find also analytical (closed-form) solution of the optimiza-
tion problem under the control independent stencil modification of the Tree-Grid
method. However, this is not trivial due to the artificial diffusion making the target

87

88 9 Conclusion and outlook

function more complicated. Deriving such closed-form solution would speed up the
computations significantly.

3. Control independent stencil for the 2D Tree-Grid method. In Chapter 6, we
introduced the control-independent stencil only for the one-dimensional Tree-Grid
method. It would be interesting to examine, if one can use some similar technique
also in the case of 2D Tree-Grid method. This could again lead to an significant
speed-up.

4. Optimal time-step space-step ratio. CFL conditions are not needed for the
Tree-Grid methods, as these are unconditionally stable. Therefore, as also in the
case of the implicit FDMs, the question arises, what the optimal ratio between the
time-step and the space steps is. This can be easily examined experimentally, but
also an analytic result on this question would be interesting.

5. Boundary conditions. By handling the boundary conditions in the Tree-Grid
method, we supposed that we know, (or can artificially define) the solution behind
the boundaries. This approach was numerically successful, but for example in [35]
another approach is proposed: the stencil shrinks near to the boundary, so that
no data from outside of the numerical domain is needed. Would it be possible to
introduce a similar modification to the Tree-Grid methods?

6. Parallelization. As the Tree-Grid methods are explicit they can be easily paral-
lelized. Beside the standard parallelization technique with communication after each
time layer, also another approach may be possible: there may exist sets of nodes
(“subtrees”) in the computational domain that are completely independent in the
sense, that none of the values in a node in one set can influence the value in any
other node from a different set. Such situation is illustrated in Figure 9.1. If one can
find decomposition of the discretization domain into such independence sets, one can
run an separate Tree-Grid algorithm on each of this sets with no communication.
This idea is applicable also to other wide-stencil schemes. We should note, that there
may be just one independence set (all node values impact one another), in which
case such parallelization is not feasible.

Figure 9.1: Illustration of independence sets of nodes. Blue nodes are connected only with
other blue nodes, therefore values in blue nodes do not depend on the values
in red nodes. The same holds for the red-nodes.

7. Monotonicity conditions for higher dimensions. In Chapter 8, we have shown
that a generalization of the Tree-Grid method to dimensions higher than two is not

9.1 Outlook of the future research 89

possible for an arbitrary problem, however might still be possible for some problems
with mild covariances. A formulation of the exact conditions on the problem param-
eters leading to a monotone Tree-Grid scheme in arbitrary dimension would be an
interesting contribution.

8. Modification of the wide-stencil schemes. In Section 8.4, we discussed ap-
proaches used in the construction of the Tree-Grid method that could be employed
also in other wide-stencil methods, leading to unconditional stability. However, pre-
cise examination and implementation of these ideas is still needed.

9. HJBI equations. Another possible future research direction is the application of
the Tree-Grid method to the HJBI equations resulting from the stochastic differential
games. The adaptation of the method to this setting should be straightforward.

We hope that beside the presented results, the reader could find in this thesis also new ideas
for future research in the field of numerical methods for the stochastic control problems
and the HJB equations.

References

[1] J. Ahn and M. Song. Convergence of the trinomial tree method for pricing Eu-
ropean/American options. Applied Mathematics and Computation, 189(1):575–582,
2007.

[2] D. Applebaum. Lévy processes and stochastic calculus. Cambridge University Press,
2009.

[3] M. Avellaneda, A. Levy, and A. Parás. Pricing and hedging derivative securities in
markets with uncertain volatilities. Applied Mathematical Finance, 2(2):73–88, 1995.

[4] G. Barles and P. E. Souganidis. Convergence of approximation schemes for fully
nonlinear second order equations. In Asymptotic Analysis, number 4, pages 2347–
2349, 1991.

[5] J. Barraquand and T. Pudet. Pricing of American path-dependent contingent claims.
Mathematical Finance, 6(1):17–51, 1996.

[6] R. E. Bellman. Dynamic Programming. Courier Dover Publications, 1957.

[7] F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal of
political economy, 81(3):637–654, 1973.

[8] J. F. Bonnans and H. Zidani. Consistency of generalized finite difference schemes for
the stochastic HJB equation. SIAM Journal on Numerical Analysis, 41(3):1008–1021,
2003.

[9] Y. Chen and J. W. L. Wan. Monotone mixed narrow/wide stencil finite difference
scheme for Monge-Ampère equation. arXiv preprint arXiv:1608.00644, 2016.

[10] Z. Chen and P. A. Forsyth. A Semi-Lagrangian approach for natural gas storage
valuation and optimal operation. SIAM Journal on Scientific Computing, 30(1):339–
368, 2007.

[11] M. G. Crandall, H. Ishii, and P-L. Lions. User’s guide to viscosity solutions of second
order Partial Differential Equations. Bulletin of the American Mathematical Society,
27(1):1–67, 1992.

[12] K. Debrabant and E. R. Jakobsen. Semi-Lagrangian schemes for linear and fully non-
linear diffusion equations. Mathematics of Computation, 82(283):1433–1462, 2013.

[13] K. Debrabant and E. R. Jakobsen. Semi-Lagrangian schemes for linear and fully non-
linear Hamilton-Jacobi-Bellman equations. arXiv preprint arXiv:1403.1217, 2014.

[14] M. Ehrhardt, editor. Nonlinear models in mathematical finance: new research trends
in option pricing. Nova Science, Hauppauge, 2008.

91

92 References

[15] D. E. Ferguson. Fibonaccian searching. Communications of the ACM, 3(12):648,
1960.

[16] P. A. Forsyth and G. Labahn. Numerical methods for controlled Hamilton-Jacobi-
Bellman PDEs in finance. Journal of Computational Finance, 11(2):1, 2007.

[17] P. A. Forsyth and K. R. Vetzal. Numerical methods for nonlinear PDEs in finance.
In Handbook of Computational Finance, pages 503–528. Springer, 2012.

[18] P. A. Forsyth, K. R. Vetzal, and R. Zvan. Convergence of numerical methods for
valuing path-dependent options using interpolation. Review of Derivatives Research,
5(3):273–314, 2002.

[19] Ch. Grossmann, H-G. Roos, and M. Stynes. Numerical treatment of partial differential
equations. Springer, 2007.

[20] M. Günther and A. Jüngel. Finanzderivate mit MATLAB: mathematische Model-
lierung und numerische Simulation. Springer-Verlag, second edition, 2010.

[21] M. Halická, P. Brunovský, and P. Jurča. Optimálne riadenie. EPOS, 2009.

[22] J. C. Hull and A. D. White. Efficient procedures for valuing European and American
path-dependent options. The Journal of Derivatives, 1(1):21–31, 1993.

[23] M. Ishikawa. Optimal vaccination strategy under saturated treatment using the
stochastic SIR model. Transactions of the Institute of Systems, Control and Infor-
mation Engineers, 26:382–388, 2013.

[24] S. Kilianová and D. Ševčovič. A transformation method for solving the Hamilton-
Jacobi-Bellman equation for a constrained dynamic stochastic optimal allocation
problem. The ANZIAM Journal, 55(01):14–38, 2013.

[25] I. Kossaczký, M. Ehrhardt, and M. Günther. Modifications of the PCPT method for
HJB equations. In Application of Mathematics in Technical and Natural sciences: 8th
International Conference for Promoting the Application of Mathematics in Technical
and Natural Sciences-AMiTaNS’16, volume 1773, page 030002. AIP Publishing, 2016.

[26] I. Kossaczký, M. Ehrhardt, and M. Günther. On the non-existence of higher order
monotone approximation schemes for HJB equations. Applied Mathematics Letters,
52:53–57, 2016.

[27] I. Kossaczký, M. Ehrhardt, and M. Günther. The Tree-Grid Method with control-
independent stencil. In Proceedings of Equadiff 2017 Conference, pages 79–88, 2017.

[28] I. Kossaczký, M. Ehrhardt, and M. Günther. A new convergent explicit Tree-Grid
method for HJB equations in one space dimension. Numerical Mathematics: Theory,
Methods and Applications, 11:1–29, 2018.

[29] I. Kossaczký, M. Ehrhardt, and M. Günther. The Two-dimensional Tree-Grid
Method. Preprint 18/02 on www.imacm.uni-wuppertal.de, 2018.

[30] N. V. Krylov. Approximating value functions for controlled degenerate diffusion pro-
cesses by using piece-wise constant policies. Electronic Journal of Probability, 4(2):1–

References 93

19, 1999.

[31] H. Kushner and P. G. Dupuis. Numerical methods for stochastic control problems
in continuous time, volume 24 of Applications of Mathematics. Springer Science &
Business Media, 2013.

[32] P-L. Lions. Hamilton-Jacobi-Bellman equations and the optimal control of stochastic
systems. In Proceedings of the International Congress of Mathematicians, volume 1,
1983.

[33] P-L. Lions. Optimal control of diffusion processes and Hamilton–Jacobi–Bellman
equations part 2: viscosity solutions and uniqueness. Communications in Partial
Differential Equations, 8(11):1229–1276, 1983.

[34] Q. Liu and X. Zhou. An introduction to viscosity solution theory. Introductory notes,
2013.

[35] K. Ma and P. A. Forsyth. An unconditionally monotone numerical scheme for the two-
factor uncertain volatility model. IMA Journal of Numerical Analysis, 37(2):905–944,
2016.

[36] S. Mataramvura and B. Øksendal. Risk minimizing portfolios and HJBI equations
for stochastic differential games. Stochastics An International Journal of Probability
and Stochastic Processes, 80(4):317–337, 2008.

[37] R. C. Merton et al. An analytic derivation of the efficient portfolio frontier. Journal
of Financial and Quantitative Analysis, 7(4):1851–1872, 1972.

[38] M. Nisio. Stochastic control theory: dynamic programming principle, volume 72 of
Probability Theory and Stochastic Modelling. Springer, 2014.

[39] B. Øksendal and A. Sulem. Stochastic control of Itô-Lévy processes with applications
to finance. Communications on Stochastic Analysis, 8(1), 2014.

[40] D. M. Pooley, P. A. Forsyth, and K. R. Vetzal. Numerical convergence properties of
option pricing PDEs with uncertain volatility. IMA Journal of Numerical Analysis,
23(2):241–267, 2003.

[41] Ch. Reisinger and P. A. Forsyth. Piecewise constant policy approximations to
Hamilton-Jacobi-Bellman equations. Applied Numerical Mathematics, 103:27–47,
2016.

[42] J. B. Rosser. Nine-point difference solutions for Poisson’s equation. Computers &
Mathematics with Applications, 1(3):351–360, 1975.

[43] D. Ševcovic, B. Stehlíková, and K. Mikula. Analytical and numerical methods for
pricing financial derivatives. Nova Science, Hauppauge, 2011.

[44] S. E. Shreve. Stochastic calculus for finance II: Continuous-time models, volume 11.
Springer Science & Business Media, 2004.

[45] Q. S. Song. Convergence of Markov chain approximation on generalized HJB equation
and its applications. Automatica, 44(3):761–766, 2008.

94 References

[46] D. Tavella and C. Randall. Pricing Financial Instruments: The Finite Difference
Method. Wiley Series in Financial Engineering. Wiley, 2000.

[47] J. Topper. A finite element implementation of passport options. Master’s thesis, 2003.

[48] J. Wang and P. A. Forsyth. Maximal use of central differencing for Hamilton-Jacobi-
Bellman PDEs in finance. SIAM Journal on Numerical Analysis, 46(3):1580–1601,
2008.

[49] J. Wang and P. A. Forsyth. Numerical solution of the Hamilton–Jacobi–Bellman
formulation for continuous time mean variance asset allocation. Journal of Economic
Dynamics and Control, 34(2):207–230, 2010.

[50] J. Yong and X. Y. Zhou. Stochastic controls: Hamiltonian systems and HJB equa-
tions, volume 43 of Stochastic Modelling and Applied Probability. Springer Science &
Business Media, 1999.

	Abstract
	Acknowledgements
	Contents
	Notation
	Abbreviations

	1 Introduction
	1.1 Related scientific works
	1.2 Outline of the thesis

	2 Stochastic control problems and Hamilton-Jacobi-Bellman equations
	2.1 General stochastic control problem
	2.1.1 One-dimensional stochastic control problem and HJB equation
	2.1.2 Two-dimensional stochastic control problem and HJB equation

	2.2 Viscosity solutions and convergence theory

	3 Finite difference numerical methods
	3.1 Standard finite difference methods
	3.1.1 Discretization of the Hamilton-Jacobi-Bellman equation
	3.1.2 Classical implicit FDM with policy iteration
	3.1.3 Piecewise constant policy timestepping method

	3.2 Non-Existence of higher order monotone approximation schemes
	3.2.1 Main Results
	3.2.2 Application of the results to the HJB equation

	4 Piecewise predicted policy timestepping method
	4.1 Main idea and algorithm
	4.2 Numerical example: mean-variance optimal investment problem
	4.3 Numerical example: passport option pricing problem

	5 One-dimensional Tree-Grid method
	5.1 Recapitulation: problem formulation
	5.2 Construction of the Tree-Grid method
	5.2.1 The basic idea
	5.2.2 Excursion: FSG method
	5.2.3 The basic Tree-Grid method
	5.2.4 The Tree-Grid method with artificial diffusion
	5.2.5 The final Tree-Grid method algorithm
	5.2.6 Relationship to other numerical methods

	5.3 Convergence of the Tree-Grid method
	5.3.1 Consistency of the scheme
	5.3.2 Monotonicity, stability, convergence

	5.4 Numerical example: uncertain volatility model
	5.5 Numerical example: passport option pricing problem

	6 Tree-Grid method with control independent stencil
	6.1 Tree-Grid method revisited
	6.2 Modification: control-independent stencil
	6.2.1 Derivation of the modified scheme
	6.2.2 Analytical solution of the control problem in the modified scheme
	6.2.3 The Fibonacci algorithm for finding the optimal control

	6.3 Numerical example: passport option pricing problem

	7 Two-dimensional Tree-Grid method
	7.1 Recapitulation: problem formulation
	7.2 Construction of 2D Tree-Grid method
	7.2.1 Notation
	7.2.2 Choosing the stencil nodes
	7.2.3 Choosing the stencil weights (probabilities)
	7.2.4 Artificial diffusion and covariance adjustment
	7.2.5 Setting parameter K and stencil size reduction
	7.2.6 The final 2D Tree-Grid method algorithm
	7.2.7 Comparison to other wide stencil methods

	7.3 Convergence of the 2D Tree-Grid method
	7.4 Numerical example: two-factor uncertain volatility model

	8 Restrictions for the higher dimensional generalization of the Tree-Grid method
	8.1 P-dimensional stochastic control problem
	8.2 Construction of the P-dimensional Tree-Grid scheme
	8.2.1 Notation
	8.2.2 Choosing the stencil nodes
	8.2.3 Choosing the stencil weights (probabilities)

	8.3 Appearance of possibly negative weights
	8.4 Ideas from Tree-Grid schemes applicable to other methods

	9 Conclusion and outlook
	9.1 Outlook of the future research

	References

