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Abstract

Due to limited computing resources choosing the parameters for a full lattice QCD simulation
always amounts to a compromise between the competing objectives of a lattice spacing as small,
quarks as light, and a volume as large as possible. Aiming at pushing unquenched simulations
with the standard Wilson action towards the computationally expensive regime of small quark
masses, the GRAL project addresses the question whether computing time can be saved by
sticking to lattices with rather modest numbers of grid sites and extrapolating the finite-volume
results to the infinite volume (prior to the usual chiral and continuum extrapolations). In
this context we investigate in this work finite-size effects in simulated light hadron masses.
Understanding their systematic volume dependence may not only help saving computer time in
light quark simulations with the Wilson action, but also guide future simulations with dynamical
chiral fermions which for a foreseeable time will be restricted to rather small lattices.

We analyze data from hybrid Monte Carlo simulations with the Ny = 2 Wilson action at two
values of the coupling parameter, 3 = 5.6 (lattice spacing a =~ 0.08fm) and § = 5.32144
(a = 0.13fm). The larger (3 corresponds to the coupling used previously by SESAM/TyL. The
considered hopping parameters k = 0.1575,0.158 (at the larger ) and x = 0.1665 (at the smaller
B) correspond to quark masses of 85, 50 and 36% of the strange quark mass, respectively. At
each quark mass we study at least three different lattice extents in the range from L = 10 to
L = 24 (0.85-2.04fm). Estimates of autocorrelation times in the stochastic updating process
and of the computational cost of every run are given. For each simulated sea quark mass we
calculate quark propagators and hadronic correlation functions in order to extract the pion,
rho and nucleon masses as well as the pion decay constant and the quark mass from the PCAC
relation. We examine to what extent the volume dependence of the masses can be parameterized
by simple functions based on M. Liischer’s analytic formula and previous numerical findings by
other groups. The applicability of results for the pion and the nucleon from chiral effective
theory in the parameter regime covered by our simulations is discussed. Cut-off effects in the
PCAC quark mass are found to be under control.
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Introduction

Most of the matter around us is made out of protons and neutrons which are bound by the
strong force to form the nuclei of atoms. In the current view, nucleons (and hadrons in general)
are themselves bound states and the strong force between them is, fundamentally, an interaction
between quarks, mediated by gluons. The masses of the three valence quarks that form a nucleon
are astonishingly small compared to the total mass of the bound state: taken together, the masses
of the constituent quarks account for only about one percent of the nucleon mass [1]. This, in
turn, has the remarkable implication that 99% of the nucleon mass are a consequence of the
strong interaction.

The commonly accepted theory of the strong interaction, formulated in terms of gluons and
quarks, is Quantum Chromodynamics (QCD) [2]. Together with the Glashow-Weinberg-Salam
(GWS) theory [3] of the electroweak interactions it constitutes today’s Standard Model of ele-
mentary particle physics [4, 5]. Like the GWS model, QCD is a renormalizable quantum field
theory built on the principle of local gauge invariance [6, 7]. At first sight the QCD Lagrangian
appears relatively simple, because it has only few parameters and possesses a number of conve-
nient symmetry properties. But while the masses and many other properties of light hadrons
(like the nucleon) are very precisely known from experiment, it turns out that on the theoretical
side it is difficult to calculate them from first principles.

This is, on the one hand, due to the fact that the “color” gauge group SU(3) of QCD is non-
Abelian. Unlike the photon in Quantum Electrodynamics (QED) with Abelian gauge group
U(1), the gluons as the gauge bosons of QCD interact with themselves. This renders the basic
equations non-linear. On the other hand, the strong coupling constant ay is simply not small
at low energies, so that perturbation theory, which has proven so immensely successful in QED,
cannot be applied e.g. in the calculation of light hadron masses. This generally prevents us from
testing QCD to the precision that has been achieved in the electroweak sector—perhaps with
the notable exception of some aspects that are governed by the (approximate) chiral and flavor
symmetries. But there is another important difference between QED and QCD that rescues
the Feynman calculus as a legitimate tool for QCD at least in the high energy regime: while in
QED the coupling strength grows—though only weakly—with increasing energy, QCD is asymp-
totically free, meaning that towards large energies the strong coupling vanishes and the quarks
behave at short distances like “quasi” free particles [8]. Nevertheless it is an experimentally
well-established fact that neither quarks nor gluons are asymptotic states, and even in the in-
coming and outgoing states of short-distance “hard” processes like deep inelastic scattering they
appear only confined within hadrons, color-singlet objects composed of two (mesons) or three
(baryons) valence quarks.! Confinement involves the long-range, infrared behavior of the quark-
quark interaction, but this is precisely where perturbation theory fails. To really show that,

!Similarly, gluons are presumed to exist only within hadrons, and possibly as color-neutral glueballs.



8 Introduction

as it is widely believed, QCD entails a dynamical explanation for quark confinement [9], and
that the same Lagrangian that correctly describes the interaction between quarks and gluons at
high energies also explains the spectrum and the properties of light hadrons, obviously requires
a non-perturbative approach. Currently, the only non-perturbative method for solving rather
than just modeling the theory is the numerical simulation of Lattice QCD (LQCD) [10, 11, 12].

The formulation of QCD on a discrete lattice in Euclidean space-time was first proposed by
Wilson in 1974 [13]. The starting point of the lattice approach is the functional quantization of
the classical theory. In the Feynman path-integral framework, expectation values of observables
are obtained by integrating over all possible system “configurations”, weighted according to their
relative “importance” [14]. After an analytic continuation of the time variable to imaginary
values the weight of a given configuration is determined by a real-valued exponential of the
Euclidean action analogous to the Boltzmann factor in statistical mechanics. Discretizing space-
time now renders the theory mathematically well-defined in two respects: First of all, the discrete
space-time grid provides a non-perturbative, gauge invariant regularization scheme. The lattice
spacing a introduces an ultraviolet momentum cut-off at 7/a, so that for finite values of a
there are no infinities. Secondly, it reduces the functional integral to a large but finite number
of bounded integrals over the compact gauge group that can be evaluated stochastically using
well-established Monte Carlo methods. In practice, these methods are implemented on massively
parallel computers in order to generate importance-sampled sets of gauge field configurations
that are to serve as “background” fields for the calculation of quark propagators, hadronic
correlation functions and, eventually, expectation values of observables. Apart from the number
of grid sites the only physically relevant, tunable input parameters of such a computer simulation
are the bare parameters of the QCD Lagrangian, i.e. the quark masses and the gauge coupling.

Due to deeper physical insight, improved algorithmic strategies and increased computer power,
lattice gauge theory has by now matured into a powerful tool for non-perturbative ab initio
calculations in QCD that can often be compared to experiment (see e.g. [15]). Since no heuristic
model assumptions or uncontrolled approximations are needed, the lattice theory retains the
fundamental character of QCD and thus provides a reliable test bed for the theory. However,
computer resources are still a limiting factor for the accuracy of the numerical results, so that
apart from the statistical errors that inevitably occur in any stochastic simulation, there are
a number of systematic uncertainties. Perhaps the most obvious source of systematic error is
the nonzero lattice spacing a. As it is connected to the bare coupling g through the renormal-
ization group equation, the Callan-Symanzik S-function governs the flow of g as a function of
the associated momentum cut-off a=!. There is compelling evidence that in QCD the strong
coupling g approaches zero as a — 0 without a phase transition at intermediate values of g,
and so the continuum limit can in principle be obtained by computing the quantities of interest
for several values of a¢ and extrapolating the results to a = 0. Since the computational cost
grows with decreasing a, one cannot perform numerical simulations at arbitrary small lattice
spacings, however. In fact, current lattice spacings in hadron mass calculations, for example, are
usually not much smaller than 0.1 fm. Recent years have seen a number of attempts to reduce
discretization errors and accelerate the approach to the continuum limit by “improving” the
lattice action and operators.? Most of these methods have been built around Symanzik’s early
idea of including additional operators into the action to systematically remove lattice artefacts
up to a given order in the lattice spacing [16]. The disadvantage of improved actions, however,
is that they are computationally more demanding and in general more complicated to handle.

2The way in which the action is regularized by discretization is not unique. In principle, any bare action in
the same universality class as QCD will produce universal results in the continuum limit.



Another limitation of lattice QCD lies in the quark masses that can be simulated on current
computers. In order to accommodate light hadrons in currently feasible lattice volumes of about
(2—3fm)3, the simulated quarks must be considerably heavier than the physical v and d quarks.
While, typically, their masses are of the order of the strange quark mass, recent exploratory
simulations by UKQCD [17], the qq+q collaboration [18] and CP-PACS [19] have reached sea
quark masses as small as m,/3, ms/4 and ms/7, respectively.®> The computational argument
for simulating unphysically heavy quarks is twofold: First of all, the generation of gluon field
configurations with the widely used Hybrid Monte Carlo (HMC) algorithm [20] necessitates the
repeated inversion of a huge Dirac matrix, the cost of which grows significantly towards smaller
quark masses [21, 22, 23]. Secondly, simulations with Wilson’s action are increasingly affected
by statistical fluctuations as the quark mass is decreased. The first problem can be circumvented
by using the “quenched approximation” in which the fermionic determinant is omitted from the
action, and which in physical terms amounts to completely neglecting sea quark polarization
effects in the QCD vacuum (Ny = 0). It has the advantage of reducing the computational cost
by about three orders of magnitude compared to a “full” QCD simulation, but at the prize
of uncontrolled systematic errors of the order of 10% in the resulting hadronic spectrum [24].
Originally adopted solely for reasons of expediency, the quenched approximation has been more
and more abandoned in favor of QCD simulations with dynamical sea quarks after the advent of
sufficiently fast computers. While the first obstacle can thus be overcome, in principle, by sheer
computer power, the problem of fluctuations is more fundamental, as it is connected to the fact
that the Wilson action breaks—at finite a—the chiral symmetry of the original QCD action.
This breaking of chiral symmetry is a consequence of Wilson’s fix of the notorious “fermion
doubling” problem inherent in the naive discretization of the quark action [25].* Promising
approaches that preserve an exact lattice chirality also at finite values of the lattice spacing
and thus allow—at least in principle—for simulations at arbitrary small quark masses, are the
domain-wall [29] and the overlap [30] formulations. Although dynamical simulations using these
methods with realistic parameters are still prohibitively expensive (about a factor of 100 times
the cost for the Wilson action), there is little doubt that more years will bring the computer
power needed to do the calculations right (see e.g. [31, 32]). Until then, however, simulations
with the Wilson action remain an important tool in studying full QCD.

While first results of simulations with three dynamical quark flavors are becoming available from
a few collaborations [33, 34], most full QCD simulations so far have been obtained with only
two mass-degenerate flavors [35, 36, 37, 38, 39, 40, 41, 66|, which are usually identified with
exactly isospin-symmetric v and d quarks. The original limitation to Ny = 2 primarily owes
to the fact that the standard HMC algorithm can handle only even numbers of quark flavors,
but nevertheless it is believed to be a reasonably good approximation in those cases in which
only the light quarks are relevant. Physical results for quantities involving light quarks are
usually obtained by extrapolating in the quark mass using functional forms derived from chiral
perturbation theory (ChPT), a low-energy effective field theory in which the dynamics of the
Goldstone bosons is described by an expansion in terms of momenta and quark masses [42, 43].

3The natural light quark mass is m = (Mmu + ma)/2 ~ ms/25.

4An alternative approach to the solution of the doubling problem is the Kogut-Susskind (staggered) action
[26]. It retains a remnant of chiral symmetry also at finite lattice spacing, but at the prize of an unwanted
four-fold degeneracy in flavor (“tastes”). An improved variant of the staggered action is extensively used by the
HPQCD-MILC-UKQCD collaboration [27]. Very recently they have reported on three-flavor simulations with
dynamical light quark masses below ms/2 and down to ms/8 [28]. There is, however, a fundamental concern
associated with the need to take the fourth root of the quark determinant in their action to convert the four-fold
duplication of “tastes” into one quark flavor.
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In practice, however, there is a limited range of quark masses where both lattice simulations
are feasible and ChPT is applicable. This problem can be somewhat alleviated by exploiting
a particular merit of lattice QCD, namely that the valence quark masses in quark propagator
calculations can be reduced independently of the sea quark mass that has been used for the
generation of the underlying gluon field configurations. This is computationally less demanding
and may be used in combination with partially quenched ChPT (PQChPT) to extrapolate
to light valence quark masses [44, 45, 46]. PQChPT is one example for recent extensions of
ChPT aiming at bridging the gap between results from the lattice and phenomenology. Another
promising development in this respect is ChPT for Wilson-type quarks (WChPT), which takes
the finite lattice spacing into account and in this way leads to an improved chiral extrapolation
[47, 48, 49, 50].

Besides the finite lattice spacing and unphysically large quarks, the third main source of system-
atic error in lattice QCD is the lattice volume, which in any numerical simulation is necessarily
finite. The finite lattice size is responsible, for example, for systematic shifts in the numerically
calculated masses or decay constants of light hadrons, and exactly these shifts are what we will
be mainly concerned with in this work. Since the size of a hadron may be characterized by
its Compton wavelength which is inversely proportional to its mass m, and as the pion is the
lightest particle in the theory, it is convenient to consider the linear spatial extent of a given
lattice in units of the Compton wave length of the pion, i.e. in terms of m;L. In summary, the
physical picture of how finite-size effects emerge is as follows: If L is much larger than the size
of a pion (m,L > 1), then a single hadron is practically unaffected by the finite volume (except
that its momentum must be an integer multiple of 27r/L). Then, if the box size is decreased until
the hadron barely fits into the box, the virtual pion cloud surrounding the particle is slightly
distorted, and a pion may be exchanged “around the world” (provided that periodic boundary
conditions have been imposed). A consequence of this effect is that the mass of the hadron is
shifted relative to its asymptotic value by terms of order e~ At still smaller values of L the
quark wave functions of the enclosed hadron are squeezed and one observes rapidly increasing
finite volume effects, approximately proportional to some negative power of L.

The ultimate goal of lattice QCD is of course to make physically relevant predictions at “realistic”
values of the fundamental parameters, and in particular of the quark masses. In view of lim-
ited computer resources, however, the selection of parameters for numerical simulations always
remains a compromise between large volume, small lattice spacing and small quark masses.
Usually, in the context of spectrum calculations, extrapolations are attempted in the lattice
spacing and the quark mass, whereas the physical volume is mostly chosen such that finite-size
effects can be largely neglected right from the start. In this work we take a complementary
approach in that we investigate, for various fixed values of the gauge coupling and quark mass,
the functional volume dependence of the light hadron masses. Against the background of our
“GRAL” project, whose name is an acronym for “Going Realistic And Light”, we address in
particular the question if and under what conditions an extrapolation in the lattice volume is
possible [51, 52]. This issue is interesting in at least two respects: First of all, if one can get
away with simulations on small or medium-sized lattices (followed by an extrapolation to the
infinite volume), this may be helpful in reaching lighter quark masses with the Wilson action.
Secondly, given that simulations with chiral fermions will become feasible in due course, they
will initially be restricted to rather small volumes. Extrapolations in the lattice size will then
be inevitable to obtain infinite-volume estimates of the quantities of interest.

While in recent years the chiral extrapolation and the reduction of discretization errors (by both
improvement and extrapolation) have been at the center of many theoretical and numerical
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studies, there have been rather few systematic investigations into the lattice size dependence of
light hadron masses. These include, first of all, a seminal analytic work by M. Liischer of 1986,
in which he proved a universal formula for the asymptotic volume dependence of stable particle
masses in arbitrary massive quantum field theories [53]. Later on, in a series of papers published
between 1992 and 1994, Fukugita et al. carried out a systematic numerical investigation of finite-
size effects in pion, rho and nucleon masses from quenched and unquenched simulations (with
the staggered action) [56, 57, 58, 59, 60]. Related numerical studies with staggered quarks came
also, at about the same time, from the MILC collaboration [61, 62, 63]. Today it appears that
the systematic dependence of the light hadron masses on the lattice volume is receiving renewed
attention. Beside our own work with its rather heuristic approach there have recently been
important analytical contributions from effective field theory [64, 65, 66, 67, 68, 69, 70]. These
include, on the one hand, a determination of the pion mass shift in finite volume using Liischer’s
asymptotic formula with input from ChPT (in infinite volume) up to next-to-next-to-leading
order [65]. On the other hand, the finite-size mass shift of the nucleon has been calculated
using baryon ChPT in finite volume up to next-to-next-to-leading order [66]. Comparing the
pion and nucleon masses from our simulations with these calculations it will be interesting to
check to what extent the theoretical formulae can account for our numerical results. As it turns
out, the formula for the nucleon is a promising example of how suitable parameterizations for
infinite-volume extrapolations with controlled errors may possibly be found quite generally by
calculating finite-size effects consistently within the very effective field theories that also describe
the quark mass dependence [71, 72, 73].

The numerical investigation of finite-volume effects described in this work requires data from
simulations that differ only in the lattice volume while all other bare parameters are kept fixed.
The GRAL project therefore builds on and extends previous SESAM/TxL simulations [35, 36]
in which gauge field configurations for 163 and 243 lattices have been generated with the Wilson
action at 3 = 5.6 (a =~ 0.8fm from the Sommer parameter ro [74]). The SESAM/TxL data
at £ = 0.1575 and k = 0.158 (corresponding to quark masses of roughly 85 and 50% of the
strange quark mass) have been complemented with GRAL ensembles at various smaller lattice
volumes in the range from 103 to 163, using the same unimproved N ¢+ = 2 Wilson action.
All of the gauge field configurations considered here have been generated with variants of the
SESAM HMC code in which a parallel 1I-SSOR. preconditioned BiCGStab solver is used for the
fast inversion of the quark matrix [75, 76]. To check on the feasibility of HMC simulations
with the standard Wilson action at lighter quark masses around mg/3 (mg/m, ~ 0.5) we
have conducted exploratory simulations on three different lattice volumes (123, 14% and 163)
at a stronger coupling of f = 5.32144 (a =~ 1.5fm). Recent related work includes that of
the qq+q collaboration which employs the same unimproved Ny = 2 Wilson action, but uses
the two-step multi-boson (TSMB) instead of the HMC algorithm [77, 78]. At a rather strong
coupling of 8 = 5.1 (a ~ 0.2fm) they have succeeded in simulating at slightly less than a third
of the strange quark mass, but as they use only one lattice volume (16%) the issue of finite-
size effects is not addressed [18]. The UKQCD and JLQCD/CP-PACS collaborations, which
are working with improved actions, have also tried to push their simulations towards lighter
quarks [17, 19]. They have reported earlier on potential instabilities in the molecular dynamics
evolution of the HMC algorithm in the regime of m,/m, < 0.5 when using step sizes that
were too large [79, 80]. It is therefore an interesting question whether we will encounter such
difficulties, too. The total range of linear lattice sizes covered by our simulations is approximately
0.85 — 2.04fm. For our investigations, more than 80000 gauge field configurations have been
newly generated on APE machines at DESY Zeuthen [81, 82] and on the cluster computer
ALiCE at the University of Wuppertal [83] in addition to the readily available SESAM /TxL
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ensembles. A conservative estimate of the total cost spent on the production of the GRAL
ensembles results in approximately 260 Tflops-hours. All of the required quark propagators and
hadronic correlation functions have been calculated on the Cray T3E [84] at FZ Jiilich.

The outline of the thesis is as follows:

QCD on the Lattice

The purpose of the first chapter is to introduce the main concepts of lattice QCD and to fix the
notation. After the derivation of the QCD Lagrangian we introduce the Feynman path integral as
a convenient way of quantizing the classical theory such that the close analogy between quantum
field theory and statistical mechanics becomes apparent. Wilson’s approach to discretizing and
thus regularizing the continuum QCD action in Euclidean space-time is explained. We give a
cursory overview of improvement and recent developments regarding alternative actions. The
basic features of the Hybrid Monte Carlo algorithm are described. We close the chapter with a
list of the most important uncertainties in lattice results.

Volume Dependence of the Light Hadron Masses

In the second chapter we review the main theoretical and numerical findings published to
date about the functional form and physical origin of finite-size effects in light hadron masses.
Liischer’s exponential formula for the asymptotic mass shift in finite volume is quoted and dis-
cussed in some detail for the special cases of the pion and the nucleon. We recapitulate possible
explanations for the observation made by Fukugita et al. that at small volumes the volume-
dependence of the pion, rho and nucleon masses can be described by a power law. A recent
result by Ali Khan et al. for the nucleon mass-shift from baryon chiral perturbation theory in
finite volume is presented.

Numerical Simulation

The third chapter deals with the numerical aspects of our work. We describe the main features
of the specific implementation of the HMC algorithm that we use for the generation of gauge
field configurations, and list the run parameters of our simulations. For reference and compari-
son we also quote the corresponding numbers for all previous SESAM/TxL runs. Estimates of
the computational costs for each run are given. We discuss the main aspects of the computation
of smeared quark propagators and hadronic correlation functions and introduce the parameter-
izations to which these correlation functions are fitted in order to obtain the desired physical
quantities. We close the chapter with an account of our methods for fitting and error analysis.

Light Hadron Spectroscopy

The fourth chapter is dedicated to the main results of this work, the analysis of finite-size effects.
To set the physical scale in our simulations at 3 = 5.32144 we first determine the Sommer
parameter 7o from a fit of the static quark potential. We describe in detail how we obtain
hadron masses and decay constants by fitting the mesonic and baryonic two-point functions
to appropriate parameterizations, and how the fit ranges are optimized. The resulting masses
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of the pion and rho mesons and of the nucleon (before chiral or continuum extrapolation) are
given. We also present results for the (unrenormalized) pion decay constant and the bare PCAC
quark mass. The role of spatial Polyakov-type loops in finite volume is discussed. To investigate
the functional form of the volume-dependence of our calculated hadron masses we first examine
various “naive” parameterizations motivated by Liischer’s formula and the observations made
by Fukugita et al.. In a second step we check on the validity of available theoretical predictions
from effective field theory in the parameter regime covered by our simulations. The issue of the
feasibility of infinite-volume extrapolations (based on data from small and intermediate lattices)
is discussed. Finally we use the PCAC quark mass to check on the role of discretization errors
in our simulations.






Chapter 1

QCD on the Lattice

Quantum chromodynamics (QCD) is a renormalizable quantum field theory of the strong in-
teraction observed between hadrons. Together with quantum electrodynamics (QED) and the
Glashow-Salam-Weinberg (GWS) theory of electroweak processes it constitutes today’s Standard
Model of elementary particle physics. The Standard Model has the remarkable and aesthetically
appealing feature that all fundamental interactions (except gravity) follow from a single general
principle, the requirement of local gauge invariance. This requirement leads, respectively, to the
appearance of interacting massless vector bosons that couple to appropriately charged massive
fermions.! The gauge symmetry group of QCD is the non-Abelian “color” group SU(3), and the
corresponding gauge bosons, called gluons, belong to its adjoint representation. The massive
constituents of QCD are the spin-1/2 quarks which transform according to the fundamental
representation of the gauge group. In nature, quarks come in Ny = 6 different flavors called
up (u), down (d), strange (s), charm (c), bottom (b) and top (¢). As the latter three have masses
above the GeV-scale they effectively decouple at the energy scale we are interested in, which is
a few hundred MeV. In this work we will be concerned exclusively with light hadrons consisting
primarily of v and d quarks (namely the pion, the rho and the nucleon), so that for our purpose
it will be sufficient to consider the case Ny = 2.

One of the fundamental properties of QCD is the phenomenon of asymptotic freedom: Inside a
hadron (i.e. at very short short distances) the quarks behave like quasi-free particles, because
at the associated high momenta the strong coupling constant g tends to zero. This can be seen
most clearly from the running of the coupling as expressed by the leading order perturbative
solution to the renormalization group equation,

872
(11 — 2/3Ny) log(A/Aqep)’

g = (1.1)
where A is the momentum scale and Aqcp ~ 200 MeV the characteristic reference scale at which
g becomes strong as A is decreased. Asymptotic freedom implies that perturbation theory is
applicable in the description of hard processes such as deep inelastic scattering, when Aqcp < A.
At intermediate and low energies, however, when A < Aqcp and g is large, more and more
diagrams in the Feynman diagram expansion contribute and perturbation theory breaks down.
In order to calculate low-energy properties of light hadrons (like their masses or decay constants),
one has to revert to a non-perturbative method like lattice QCD.

!The heavy mediators of the weak interaction, the W* and Z°, acquire their masses by the Higgs mechanism
[85].



16 Chapter 1. QCD on the Lattice

The present chapter is intended to give a brief overview of the main aspects of lattice QCD
relevant to this work. We begin with the derivation of the classical QCD Lagrangian in the
continuum, using a notation that will facilitate the subsequent transcription to a lattice. Setting
out from free quarks we will see how the gluons emerge as a consequence of the postulate of local
gauge symmetry. We will then introduce the Feynman path integral as a way of quantizing the
classical theory that is particularly convenient for lattice theories. A further ingredient of the
lattice formulation is the analytic continuation of the time variable to imaginary values (Wick
rotation). The discretization of the QCD action in Euclidean space-time will then both serve
us as a non-perturbative regularization scheme and allow for the numerical treatment of the
theory with Monte Carlo methods. In this context we will also discuss some alternatives to and
modifications of the Wilson formulation of lattice QCD used in this work. We then give a brief
introduction to the Hybrid Monte Carlo algorithm that we employ for the numerical evaluation
of the path integral, before we conclude the chapter with a summary of typical sources of error
in lattice simulations.

1.1 The QCD Lagrangian

The local Lagrangian for a free quark of flavor ¢ with mass m,, represented by the color-spinor
field ¢%(x) with SU(3) color index ¢ = 1,2,3 and Dirac spinor index a = 0,1,2,3 (we suppress
these indices in the following) is given by

Liree = () (i7" O — mg)q (), (1.2)

with § = ¢'7° being the corresponding antiquark field.? The Dirac ~-matrices are defined
such that they satisfy the anti-commutation relation {7*,7"} = 2¢*”, where ¢g"¥ = g, =
diag(1,—1,—1,—1) is the metric tensor in Minkowski space.

Postulating local gauge invariance, we demand that the Lagrangian (1.2), which is invariant
under the global gauge transformation ¢ — exp(ia®t®)q, be also symmetric under the local
transformation

q(z) — V(x)q(x), where V(z)=exp(ia®(z)t?). (1.3)

The previously constant coefficients a® are now arbitrary functions of x, while the matrices t%,
a=1,...8, are in both cases the Hermitian generators of SU(3) (see also Appendix A.1).

In order to achieve local gauge symmetry of the free Lagrangian we need to replace the ordinary
derivative in direction of the unit vector n,

n0uq(x) = o [o(ar + an) — gfx — an)], (1.4)

by the covariant derivative

n*D,q(x) = ilir(l) 2171, [U(z,x + an)q(x + an) — U(x,x — an)q(z — an)], (1.5)

where we have introduced the unitary parallel transporter U(y,z) € SU(3) to account for the
generally different gauge transformations at different space-time points; we set U(y,y) = 1. The
comparator Uy, x) itself transforms under a local gauge transformation as

Uly,z) — V(yU(y,2)V(2). (1.6)

?For simplicity we consider only one quark flavor here. The generalization to Ny flavors is straightforward.
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For small a it can be expanded in terms of the group generators t,

U(x+an,z) = 1+igantAj(z)t* + O(a?) (1.7)

= Pexp [ig /P d:):“A#(x)], (1.8)

where the factor g (the bare coupling constant) has been extracted for convenience. The second
expression holds for any path P connecting = and z + an (for any finite a); P indicates path-
ordering.

Inserting Eq. (1.7) into Eq. (1.5) we obtain for the covariant derivative
Dy, = 8, — igA%t®. (1.9)
The new fields A, (z) = Afj(x)t? (called gauge fields and identified with the gluons) transform
like .
Aa) = V() (Ay0) + 10, ) Vi) (1.10

their very existence is a consequence of the postulate of local gauge symmetry. As the covariant
derivative transforms just like the quark field itself,

D, — V(z)D,, (1.11)
any combination of the fields and their covariant derivatives that is invariant under a global
gauge transformation is also locally invariant.

In order to complete the construction of a gauge symmetric Lagrangian we must find a kinetic
energy term for the fields A, that is locally invariant and depends only on A, and its derivatives.
Such a term can be obtained from the commutator of covariant derivatives,

[D,,D,] = —z’gFﬁl,t“7 (1.12)
where the gluonic field tensor F),, = F}j, ¢ is explicitely given by

Fu = 0,A,—0,A, —ig[Au, A (1.13)
= 0 AUt" — O, At + gf e Ab AC 1" (1.14)

(See Appendix A.1 for the definition of the SU(3) structure constants f?*¢.) The transformation
law for F},, is
Fou(z) = V(2)Fu(x)Vi(z). (1.15)

The non-vanishing gauge-field commutator [A,, A, in Eq. (1.13) reflects the fact that in contrast
to the photon in QED the gluons interact with themselves, a fact that renders the theory
mathematically considerably more complicated than QED.

From the infinitesimal forms of Eqns. (1.3), (1.10) and (1.15) one can show that any globally
symmetric function of ¢, Fj, and their covariant derivatives is also locally symmetric. However,
the most general gauge-invariant Lagrangian for QCD with terms up to dimension 4 that is
renormalizable and also invariant under parity transformation and time-reversal is (for one
quark flavor) given by

. 1, .
L =q(iv"D, —my)q — Z(FW)Q. (1.16)
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1.2 Functional Quantization

The construction of the classical QCD Lagrangian is only the first step in the process of relating
the idea of non-Abelian gauge invariance to the real interactions of particle physics. In this
section we introduce the Feynman path integral, an ingenious alternative to the “second quan-
tization” of the classical fields. As it builds on the Lagrangian rather than the Hamiltonian it
preserves explicitly all the symmetries of the theory. With regard to lattice gauge theories the
functional integral formalism offers a particular advantage: appropriately defined it reveals the
close analogy between quantum field theory and statistical mechanics, thus making the powerful
techniques of the latter readily available for non-perturbative, ab-initio calculations in QCD.

In the path integral formalism, the fundamental quantity is the action S = [ d*z L, which for
QCD is explicitly given by the space-time integral over the Lagrangian density (1.16),

. P,
S =84+ 8 = /d4x [q(w"D“ —mg)q — Z(F’“’)Q . (1.17)

The expectation value of a physical observable O is given by the functional integral
(0) = % / DgDgDA O[g, q, A] 1044, (1.18)
normalized by the partition function
7 = / DgDqDA S@aAl (1.19)

The idea of integrating over all possible “paths” (contributing to a given outcome according
to their relative “importance”) goes back to the superposition principle in quantum mechanics,
stating that if a process can take place in more than one way, its total amplitude is the co-
herent sum of the amplitudes for each way. A practical aspect facilitating actual (numerical)
calculations is that the functional integral is an integral over ordinary functions, not operators.
But there is a caveat, because in the case of anticommuting fermions even the classical fields
in the functional integral must be replaced by anticommuting numbers (so-called Grassmann
numbers). The Gaussian integration over the Grassmannian quark fields can then be carried
out analytically, however, leading to the appearance of the fermionic functional determinant,

/Dqu exp [z /d4x qu} = det M, (1.20)

where we have set M = iv*D,, — mq4. It can be shown that the functional determinant is, in
fact, equivalent to the sum of vacuum Feynman diagrams.

In practice, an observable O is typically given in terms of time-ordered products of gauge and
quark fields, the latter of which can be re-expressed in terms of quark propagators using Wick’s
theorem for the contraction of fields. As the quark propagator, M[A]~!, does not explicitly
depend on the quarks as dynamical fields, we can write for the expectation value of O:

1 . .
(0) = Z/DA O[A] MW with 7 = /DA 'S, (1.21)
where we have defined the effective action

5= / d'a [log det M — i(ng)Q} . (1.22)
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In order to give the path integral a well-defined mathematical meaning we need to suitably regu-
larize the measure, DA, by discretizing space-time. Moreover, in order to make the exponential
weight factor real we will continue the time variable to imaginary values in the next section.

1.3 Euclidean Space-Time

The Wick rotation in configuration space is defined by a rotation of the time coordinate in the
complex plane,

t=a — r=a4=—ia?, 2 — z;=2" (i=1,2,3), (1.23)

yielding a Euclidean scalar product:

= (29?2 —x* — 2% =2 fad+ad =2t (1.24)

The covariant and contravariant components of a Euclidean 4-vector are identical, z* = x,,
and the metric tensor is just d,,. The Euclidean y-matrices are related to their counterparts in
Minkowski space, 'y]ﬁ}, by

= = Y =i (6= 1,2,3). (1.25)
(See Appendix A.2 for our explicit choice of Euclidean y-matrices.)

After Wick rotation, the Euclidean action Sg is real and given by
S +— Sp =-S5, (1.26)

or, more explicitly,

1

s5= [ [quu+mq>q+4<F5»2 . (1.27)

The QCD partition function now takes the form
Zp = /Dqu DA e 9F, (1.28)

which is analogous to a partition function in statistical mechanics with a real weight correspond-
ing to the Boltzmann factor.? Unless otherwise stated we will exclusively work in Euclidean
space-time from now on and therefore drop the subscript F.

In order to illustrate how one can extract physical observables like masses or decay constants
from expectation values of operators, we consider the Euclidean two-point function

(0|T [Of(x,7)0;(0,0)]|0), (1.29)

where T is the time-ordered product, for 7 > 0. The creation operator O; and the annihilation
operator Oy are, typically, currents. The two-point correlation function gives the amplitude for
the creation of a state with the quantum numbers of the source operator O; out of the vacuum at
space-time point 0, the propagation of this state to the space-time point x, and its annihilation
by the sink operator Of. If we insert a complete set of energy eigenstates and integrate over

3The reality of the action is actually only guaranteed if the functional determinant of the Dirac operator is
positive. We will come back to this point in Section 1.6.
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the space-like coordinates we obtain a sum over all intermediate zero-momentum states with the
right quantum numbers, exponentially damped in Euclidean time:

(0101 (n|0:]0) o, ,

1.30
o8 (1.30)

<o\/d3x O5(x,7)0;(0,0)[0) = >

n

If there is a single-particle state |1) in the given channel, then the lowest energy, F1, is equal to
its mass M, and the asymptotic behavior of the correlation function for large times is
004 DIO0) s

2M .

(0\/d3x Oy (x,7)0;(0,0)[0) —= < (1.31)
Using this relation the mass of a particle can be extracted from the rate of the exponential fall-off
in Euclidean time of a suitable correlation function, because it can be shown that the mass M
in Eq. (1.31) corresponds precisely to the pole mass of the particle’s propagator in Minkowski
space.

We note in passing that if a Euclidean correlation function obeys the Osterwalder-Schrader
reflection positivity it can, in principle, be translated back to Minkowski space by analytic
continuation|[86].

1.4 Discretization

Having introduced the path integral and the QCD action in Euclidean space-time we are now
prepared to finally define the lattice theory. To this end we need to discretize space-time and,
accordingly, the fields, the action and the operators. We have seen in the previous section that
there is a close analogy between Euclidean field theory and statistical mechanics, and how one
can obtain physical information from the calculation of Euclidean correlation functions. Dis-
cretizing the continuum theory now serves two purposes: First, a discretized path integral is
mathematically well-defined and allows for the numerical computation of exactly those corre-
lation functions. Second, it provides a non-perturbative regularization scheme, with a hard
ultraviolet (UV) momentum cut-off given by the inverse of the lattice spacing.

Let us, then, define a finite, isotropic hypercubic space-time grid with lattice spacing a and L
sites in the spatial directions and 7 sites in temporal direction. This discretization introduces a
UV cut-off because the allowed momenta on the lattice are discrete,

2mn;
La’

so that the maximum momentum is 7/a. At the opposite end of the momentum scale we have
an infrared cut-off at 27w /La, corresponding to the smallest non-zero momentum that can be
realized on a finite lattice.

The quark field ¢%(z) in Euclidean space-time with SU(3) color index ¢ = 1, 2, 3 and Dirac spinor
index aw = 1,2, 3,4 is simply defined at the lattice sites x = an, with ny,ng,ng € {0,1,...,L—1}
and ngy € {0,1,...,7 — 1}. The construction of gauge fields on the lattice is, on the other
hand, less straightforward. In Eq. (1.7) the continuum gauge fields A, () naturally appeared
when we expanded the parallel transporter, U(z + an, x), around the space-time point x for an
infinitesimally small a in the direction of an arbitrary unit vector n. The parallel transporter was
introduced in order to make the derivative gauge-covariant. Let us, then, consider the lattice
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version of the covariant derivative, with the shortest distance between any two sites being the
finite lattice spacing a. In fact, if we denote by (i a unit vector along the grid-axis in the u’th
dimension (p € {1,2,3,4}), then the lattice covariant derivative in the corresponding direction
is given by the finite form of its continuum counterpart, Eq. (1.5), as

1

Dua(@) = 5 |Uu@)a(a + a) = U} (@)a(z — )| (133)

where we conveniently defined U, (z) = U(x,z + ajt) and used the fact that U,Jﬂ(:v) =U_,(z).
As they are associated with the connecting links between neighboring sites, the SU (3)-matrices
U,(x) are called gauge links. In order to write down the path integral for lattice QCD we need a
locally gauge invariant, discrete version of the QCD action. In the next section we will see that
it is convenient to formulate the gauge part of this action directly in terms of the gauge links.

1.4.1 Gauge Action

There are only two gauge invariant objects one can construct on a lattice: First, so-called strings,
path-ordered products of links that either have a fermion on one end and an antifermion at the
other, or, in case of periodic boundary conditions, wind around the lattice. If a string goes
around the lattice in temporal direction it is called a Polyakov line (or loop), otherwise it is a
so-called Wilson line. We will come back to these objects in Chapter 4. The second class of
gauge-invariant objects consists of closed Wilson loops. The simplest Wilson loop is the product
of comparators around the smallest possible square on the lattice:

W (@) = Up(2)Uy(z + ap) Ul (z + a2)UJ (). (1.34)

This object is the so-called plaquette variable. For convenience we will use the term plaquette
also for the real part of the mean diagonal entry of the SU(3)-matrix W' (z), averaged over
all smallest squares of a given lattice:

1 11
D:ﬁzézgReTrWl}VXl(:n). (1.35)
x u<v

A possible discrete representation of the gluonic part of the action in terms of the plaquette
variable, originally due to Wilson, is given by

Se = BY. D [1—;ReTYWl},fl(:r) (1.36)
r pu<v

= i > a' B (2)FS,(x) + O(a®) (1.37)

— 1/614;5 (F5,)°. (1.38)

This so-called plaquette action, Eq. (1.36), reproduces the gluonic continuum action, Eq. (1.38),
in the limit @ — 0, with O(a?) corrections at finite a.

The parameter 3(a) = 6/g*(a) in Eq. (1.36) is proportional to the inverse bare gauge coupling
squared. In the context of numerical simulations it is an input parameter that (in a mass-
independent renormalization scheme) implicitly sets the lattice spacing. The relation between
the bare coupling ¢ and the momentum scale, characterized by the inverse lattice spacing a~*,

is described by the renormalization group equation.
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1.4.2 Fermionic Action

Just as in the gluonic case one would like to write down a discrete action for the quarks that
preserves the fundamental properties of QCD not only in the continuum limit but also at finite
lattice spacing. This refers in particular to gauge invariance and chiral symmetry. There is,
however, a “no-go” theorem by Nielsen and Ninomiya proving quite generally that, on a lattice,
there is no local, Hermitian quark action that is chirally symmetric and, at the same time,
provides an unambiguous one-to-one correspondence between lattice and continuum fields [87].
This becomes manifest when one writes down the naive, straightforward discretization of the
fermionic quark action, using the covariant derivative of Eq. (1.33):

42 ) (YD +mq)q(x) =

A Z g [Un@ale +ap) — Ul @ale — ap)] + ma@a(e). (139

While this fermion action is chirally invariant in the limit m, = 0, it exhibits the problem of
doublers: When we compare the inverse of the massless free fermion propagator (obtained by a
Fourier transform of the massless naive lattice Dirac operator with all U,(z) = 0),

G raive( Z Yusinpya, (1.40)

to that, in the continuum,

Groons(P) = Vs (1.41)
then it is evident that on a 4-dimensional lattice the naive propagator has 2* = 16 poles in a
Brillouin zone instead of just one in the continuum.*

Faced with the choice of tolerating either spurious doubler states or explicit chiral symmetry
breaking, Wilson opted for the latter by adding the following irrelevant, gauge-symmetric di-
mension 5 operator (in form of a second derivative, —r/2 a® > g q) to Eq. (1.39):

—fa52 Py [Un@)ate + af) — 2q(e) + Uf@)a(x — ap)]. (1.42)

Due to this term the 15 doublers of the naive action aquire heavy masses proportional to 2r/a
and decouple in the continuum limit. If we define the quark mass parameter x (also called
hopping parameter) as

1
=— (1.43)
2amg + 87
and rescale the quark fields according to
a3/2(amq + 47“)1/2 qg — q, (1.44)
we can write the resulting Wilson action for fermions as
Sq =Y _q(@)M(x,y)q(y), (1.45)

x?y

4One important consequence of the existence of doublers in the naive fermion action is the absence of the
Adler-Bell-Jackiw anomaly: The axial current, which is conserved for gauge theories at the classical level but not
conserved at the quantum level in the continuum theory, is conserved for naive lattice fermions.
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where the quark interaction matrix M (x,y) is explicitly given by
M(‘T7 y) = 5xy - KZ [(T - ’7#)U#($)5a:+aﬂ,y + (T + FYM)U;E(:U - aﬂ)éw—aﬂ,y] . (1'46)
o

The parameter r is usually set equal to one, because this choice results in a particularly con-
venient spin structure of M(x,y).> Chiral symmetry is explicitly broken by the Wilson term
(1.42) at finite a, but can be recovered in the continuum limit.

According to Eq. (1.43) the mass of a Wilson quark is given by

1 1 1
amg = — —4r=— — ;
2K 2k 2K

(1.47)

it vanishes in the free case for kK = k. = 1/8r. We define am, = 1/2x — 1/2k, also for the
interacting theory, so that k. becomes dependent on the lattice spacing a. As a consequence the
quark mass receives not only multiplicative but also additive renormalizations.

In practice there are two ways to determine k. at any given a, which may differ in general by
corrections of O(a): First, assume the chiral relation m2 o my, calculate m2 as a function of
1/2k and extrapolate to zero. Or, second, calculate the quark mass using the PCAC relation
(based on the axial vector Ward identity) as a function of 1/2x and again extrapolate to zero.
In this work we will consider the PCAC quark mass in a slightly different context: as the PCAC
relation is an operator identity it holds irrespective of the lattice volume and other parameters
of the simulation, as long as the gauge coupling 8 and the bare quark mass parameter x are kept
constant. The PCAC quark mass thus depends on the lattice size only through O(a) effects and

may be used to assess the impact of these effects on a given simulation (see Section 4.5).

1.4.3 Improvement and Alternative Actions

The main drawbacks of the Wilson action are the explicit violation of the chiral symmetry of
the original continuum action, and the relatively large discretization errors. These are only
of order a? in the plaquette action, but the Wilson term in the quark action degrades this
to O(a). In recent years there have been many attempts to find better (so-called improved)
discretizations of both the gauge and the quark part of the action with reduced errors, i.e. errors
of higher order in the lattice spacing a. An early approach that goes by the name of Symanzik’s
improvement program is to remove lattice artefacts order by order in a by incorporating higher-
dimensional, irrelevant terms (i.e. those that vanish in the continuum limit) in both the action
and the considered operators [16]. A widely used example of an O(a) improved quark action
is the Sheikholeslami-Wohlert (clover) action [89]. For the involved coefficient cgw mean-field
improved perturbative values can be used [90], but non-perturbative values (determined with the
help of the Schréodinger functional method [91]) are also available [92]. There are, furthermore,
improved actions inspired by the renormalization group [93], ranging from the Iwasaki gauge
action [94] over blocking transformations to (classically) perfect actions in the gauge and quark
sectors [95]. A recent innovation is the use of “fat” links in fermionic actions which is based on
the idea that discretization errors from a smooth cut-off are less severe than those associated
with a hard lattice cut-off. The currently most popular variants of fat-link actions are the Asqtad
(“a® tadpole”) improved [96] and the HYP (hypercubic) actions [97].

SRecently, Frezzotti et al. have shown how this parameter can be used to improve the chiral behavior and the
approach to the continuum limit of correlation functions [88].
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There are, in principle, strong arguments for improvement: reducing discretization errors should,
for instance, improve the scaling behavior of observables, i.e. one should be able to work on
coarser lattices without losing accuracy.® One should also observe a better restoration of rota-
tional and internal symmetries, like e.g. chiral invariance. But the downside of improved actions
is that they are more complicated than the standard Wilson action, both theoretically and in
practice. In particular, many of them are less local than the Wilson action and thus include not
only nearest-neighbor interactions. This is reflected in an increased complexity of the numerical
calculations and, consequently, longer simulation times.

Besides the Wilson quark action there is the so-called staggered (Kogut-Susskind) action [26],
which is also widely used. In contrast to the Wilson action its discretization errors are only
O(a?). More interesting, though, is the fact that it keeps a remnant chiral symmetry, albeit
at the expense of a 4-fold increase in the number of flavors (so-called “tastes”), and spurious
“taste”-changing interactions. An Asqtad improved version of a staggered fermion action is used
by the HPQCD-MILC-UKQCD collaboration [27]. There are, however, unresolved fundamental
concerns associated with this action, based on the need to take the fourth root of the quark
determinant to convert the four-fold duplication of “tastes” into one quark flavor. This procedure
may potentially lead to non-localities in the continuum limit which would spoil the claim that
this action is a valid description of QCD [28].

Ultimately, with increasing computer power, approaches with exact lattice chirality that evade
the Nielsen-Ninomiya theorem will become more and more attractive. The relevant developments
in this direction are domain-wall fermions [29] and the overlap formulation [30] which satisfies
the Ginsparg-Wilson relation [99]. However, dynamical simulations on sufficiently large and fine
lattices using these actions are currently still prohibitively expensive.

Despite the above mentioned drawbacks, a very convenient feature of the Wilson fermion action
is after all that the spin and flavor degrees of freedom are in one-to-one correspondence with
continuum fermions. This renders the construction of interpolating field operators (see also
Section 3.3) quite straightforward. The same holds true for the implementation of the Wilson
action in computer programs that are to evaluate the path integral with Monte Carlo methods,
as we will see in Section 1.6. We will therefore refer exclusively to the Wilson action throughout
the rest of this work.

1.5 Group Integration

Before moving on to the issue of numerical lattice simulations we need to define the measure
DU for the integration over the gauge degrees of freedom in the path integral. As the real and
imaginary parts of the entries of the SU(3) matrices U, (x) lie in the closed interval [0, 1], the
U,(x) are elements of a compact Lie group. We can therefore take the integral over the gauge
group to be the invariant Haar measure which, for any V € SU(3) and f : SU(3) — SU(3), is
uniquely defined such that

/dU FU) = /dU FUV) = /dU FVU) (1.48)

5Regarding the particular combination of O(a) improved quark and standard plaquette action, some concern
has been expressed recently that current Ny = 2 simulations at a ~ 0.1fm might be close to a phase transition,
manifesting itself in unexpectedly large O(a?) cut-off effects [98].
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and
/dU =1. (1.49)

Property (1.48) guarantees gauge invariance, while (1.49) normalizes the measure.

For the path integral on the lattice we define

DU = [[dUpu(), (1.50)
T,p

where the product is over all lattice sites, x, and all positive coordinate directions, wu; it thus
covers all the gauge links of the lattice.

A very convenient consequence of the fact that we integrate over a compact group is that
we encounter no divergences. Hence, unless we want to do perturbative calculations, the path
integral approach is well defined without fixing of a gauge. Another important point is that only
gauge invariant quantities can have a non-zero expectation value. This is due to Elitzur’s theorem
[100], stating that a local invariance in a Euclidean gauge theory with a positive Euclidean weight
in the path integral cannot be broken spontaneously.”

1.6 Lattice Simulations

The goal of a typical lattice simulation is the numerical computation of the expectation value
of an operator O that is, in general, a correlation function involving gluonic fields and quark
bilinears (see Eq. (1.29)). The operators that are relevant for this work will be specified in detail
in Section 3.3. We assume that, after Wick contraction of the fermion fields, O depends on the
quarks only through the fermion matrix M[U]. Then, having integrated out the quark degrees
of freedom, the expectation value of O[U] is given by the purely bosonic path integral

(0) = ;/DU O[U] det M[U] e~ 5%l (1.51)

with the partition function
Z = /DU det M[U] e~ %], (1.52)

The gauge invariant measure DU was defined in the previous section; the Wilson Dirac matrix
M and the gauge action S, were given in Eqns. (1.46) and (1.36), respectively. As we work
in Euclidean space-time, the exponential exp(—S,) is real and positive and can thus act as a
statistical weight. Because of the “ys-Hermiticity” M = v5M~s the determinant det M is also
real, but it is not in general positive. If we consider two mass-degenerate flavors of quarks,
however, we have (det M)? > 0, and the expression

(det M)? exp(—Sg) = exp(log(det M)? — Sy) = exp(—Segr) (1.53)

can be considered altogether as a weight function, analogous to the Boltzmann factor in a statis-
tical mechanics system.® Computing the path integral then amounts to generating importance-
sampled gauge field configurations {[U;],i = 1,..., Neont} according to the probability distribu-
tion

P[U] = z7 e Senll] (1.54)

"See Ref. [101] for a recent re-examination of Elitzur’s theorem.
8Physically we interpret the two mass-degenerate quark flavors as exactly isospin symmetric u and d quarks.
The isospin symmetric mass is defined as mq = (my + mq)/2.
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with
7 = /DU e~ SerlU] (1.55)
and calculating the expectation value of O by simply averaging over the ensemble:
1 Neong
(0) ~ N nzl O[U,). (1.56)

1.6.1 The Hybrid Monte Carlo Algorithm

There are a number of Monte-Carlo based algorithms that can be used to generate samples of
gauge field configurations. For simulations with dynamical fermions, the most widely and in this
work exclusively used is the Hybrid Monte Carlo (HMC) algorithm [20], a combination of the
Metropolis algorithm with heatbath and classical molecular dynamics methods. In contrast to
a local updating algorithm the HMC algorithm uses conjugate momenta and a Hamiltonian to
generate a globally updated trial configuration which then undergoes a Metropolis accept-reject
decision.

In every lattice simulation with fermions, the computation of the determinant in Eq. (1.53)
represents the main challenge, as it is a highly non-local object and represents as such a major
obstacle to any effective implementation on a parallel computer. For this reason the fermionic
determinant is often simply set to a constant, which in physical terms corresponds to giving the
fermions an infinite mass, so that vacuum polarization effects from virtual quark-antiquark pairs
are fully suppressed. It must be stressed that, being an essentially uncontrolled simplification,
this so-called quenched approrimation is almost exclusively motivated by the requirement of
computational expediency. If possible one will always prefer a full lattice QCD simulation with
dynamical quarks, i.e. with the fermionic determinant taken into account.

A practical tool for this purpose is the HMC algorithm. We consider it here for two flavors of
dynamical quarks with equal mass, in which case the fermion determinant can be written as

(det M)? = det MTM = / DpIDp e 5t (1.57)

where Spr is given by
Spt = ¢T(MTM) "¢, (1.58)

¢! and ¢ are bosonic fields with exactly the same number of degrees of freedom as the original
fermion fields; they are therefore called pseudo-fermions. One arrives thus at a purely bosonic,
effective lattice representation of the QCD action:

Seff[Uv ¢Ta¢] = Sg[U] + Spf[Uv ¢T7¢] (159)

The expectation value of O is now given by
1
(0) = 5 / D DDU O[U] e SerrlU:o'4], (1.60)
with the partition function

7= /D¢TD¢DU e~ SenlU:6".6] (1.61)
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Introducing a momentum field II canonically conjugate to the gauge field U, we define a con-
servative dynamical system with the Hamiltonian

H[ILU, ¢!, ¢] = T[] + Sg[U] + Spe[¢', ¢, U], (1.62)
where the kinetic term is
1
T=3 > TrIL(x). (1.63)
T,

The canonical momenta II,(x) are elements of the Lie algebra of SU(3) and can thus be written
as linear combinations of the eight Gell-Mann matrices A* (see Appendix A.1). Only the gauge
field will be updated by a dynamical process, while the pseudofermion fields ¢f, ¢ are randomly
generated from a heatbath at the beginning of each “trajectory” and then kept constant as a
static “background field” until the new gauge configuration has been either accepted or rejected.
We therefore do not need to introduce conjugate momenta also for the pseudofermion fields.

We note that the expectation value
(0) = % / Do DPDU O[U] e~ HILU:4' 4] (1.64)
with the partition function
7 = / DI DDU e~ HILU" 9] (1.65)

is equivalent to Eq. (1.60) because the constant from the Gaussian integration over the canonical
momenta is canceled by the normalization.

Hamilton’s equations, U, = 0H /91, and 11, = —9H /AU, imply that U, (x) and TI,,(z) satisfy
the equations of motion

U, = ill,U,, (1.66a)
I, = —iF, (1.66b)

with respect to a (fictitious) molecular dynamics time ¢. In Eq. (1.66b), F,,(z) is the force on
the momentum field, the form of which is found by imposing the constraint of conservation of

energy, H = 0, on the dynamical system; it reads

Fu(@) = (Up(@)Fp(w) ~ he.) - % T [ (Up(@)Fp() ~ )] (1.67)
with
Fu(e) = =2 @ua) + W, (@), (1.68)
where

Gu(x) =Y Un(z + ap)Ul(z + ap)U(x)
Zan (169)
+ Ul(x + afi — aﬁ)UjL(:v —av)Uy(x — ab)
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stands for the sum over the upper and lower staples at each lattice site . Defining the fields X
and Y as

X = (M'M)™'e, (1.70a)

Yy = (M7, (1.70D)

the part of the force (1.67), (1.68) involving the fermionic matrix M, W, (x), can be written as
Wi(@) = Tr [(1+3)Y (@ + af) X' (@) + (1 = 3) X (2 + ap)Y ()] (1.71)

where the trace is over the spin indices.

The Hybrid Monte Carlo algorithm now proceeds by the following steps:

1. Heatbath: Given an initial gauge configuration U at time ¢t = tg, generate the pseudofermion
field ¢ according to the Gaussian distribution

Pgt, ¢, U] o e~ Setlé" 0], (1.72)

This can be done by generating a random spin-color vector £ with a Gaussian distribution
of zero mean and unit variance, and then putting ¢ = MT¢.

Similarly, generate the momentum field IT randomly with the Gaussian distribution

P[] o e~ 711, (1.73)

2. Dynamical evolution: Use a symmetric symplectic numerical integration scheme (e.g. the
leapfrog scheme) to integrate the equations of motion (1.66). Applying the scheme Nyp
times with a step size §t we find trial updates I, U’ of the fields at a time Nypdt later.
Symmetric symplectic integration schemes are reversible and phase-space area preserving
and thus ensure that the algorithm satisfies the detailed balance condition. The time
evolution of the fields over some length of time is called the trajectory, and Nypdt is the
trajectory length.

3. Metropolis step: Accept the new gauge configuration with the probability
PA([II,U'] « [IL,U]) = min (1,e 27, (1.74)

where

AH = H[II',U'] — H[IL, U]. (1.75)

Otherwise reject it and restore the original configuration of ¢ = #3. This step renders
the numerical algorithm exact in the sense that it defines a Markov process with the
distribution Z~'e™H as its fixed point. Since IT and U are decoupled in H we obtain the
desired distribution of U.

The computational challenge of a full QCD simulation with the HMC algorithm lies in the
calculation of the fermionic force (1.71) in each step of the dynamical evolution. In order to
obtain a single new trial configuration, the integration of the equations of motion (1.66) typically
requires Nyp = O(100) steps in each of which the linear systems (1.70) must be solved. Also, the
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calculation of Spy (¢!, ¢, U] in the Hamiltonian requires a matrix inversion. To give an example,
for a typical lattice with L3 x T = 163 x 32 sites the Wilson Dirac operator M is a complex matrix
of dimension 1572864 x 1572864. In any case the rank of M is too large to consider direct
solvers for its inversion, but as it couples only nearest-neighbor sites we can exploit its sparseness
to use iterative Krylov subspace methods like the conjugate gradient (CG) or the stabilized bi-
conjugate gradient (BiCGStab) algorithm [75]. The convergence behavior of an optimal Krylov
subspace solver is solely governed by the condition number of the matrix, which is defined as the
ratio of the largest to the smallest eigenvalue: the larger this number, the harder is the matrix
inversion. Preconditioning the matrix in general reduces the condition number and can therefore
considerably speed up the solver; in this work we use the locally-lexicographic SSOR method
[76]. The computational cost of producing a given number of statistically independent gauge
configurations grows significantly with decreasing quark mass and increasing lattice volume:
Assuming the temporal lattice extent 1" to be twice as large as the spatial extent L, the cost of
a Ny = 2 simulation roughly scales like L5M1§SZ , where the pseudoscalar mass Mpg characterizes
the quark mass and z = 2.8(2)..4.3(2) [21].

1.6.2 Errors in Lattice Results

Expectation values obtained from numerical lattice QCD simulations are subject to both sta-
tistical and systematic errors. Of course, this is in the very nature of a stochastic evaluation of
a finite and discrete approximation to an infinite continuous system. In order to obtain reliable
lattice QCD results that can be compared with “real” experimental data we must have control
over the various error sources, the most important ones of which we will list in the following.

Statistical Errors

The Monte Carlo method we use to compute the high-dimensional path integral over the lattice
gauge fields involves statistical sampling. The results, therefore, have statistical errors. However,
the naive assumption that the statistical errors should decrease as 1/v/N, where N is the size of
the sample, holds only for statistically independent measurements, whereas in a typical lattice
simulation the configurations generated by the updating process are correlated. In a reliable
error analysis this correlation has to be taken into account. A suitable error estimator serving
this purpose is, for instance, the blocked jackknife method which we will discuss in more detail
in Section 3.8.

In practice it is convenient to know, at least approximately, the autocorrelation times of the
observables one is interested in, because it helps saving computer time when the cost intensive
calculation of the quark propagator is done only for a subsample. Choosing a subsample essen-
tially amounts to choosing a certain separation in Monte Carlo time between successive elements
of the subsample, which is in general a trade-off between high statistics and available computing
resources, with the estimated autocorrelation times taken into account.

Finite Volume

In any numerical lattice simulation, the lattice volume is necessarily finite and restricted by
the available computer power. In order to control potential finite-size effects on measurable
quantities such as masses one either has to ensure that they are negligible by making the lattice
large enough, or eliminate them by a suitable extrapolation to the infinite volume. In either
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case one has to compare results from different lattice volumes, with all other parameters held
fixed. Finite volume effects are the main subject of this work, and we will discuss them in detail
in the next chapters.’

In a lattice simulation, the physical box-size can be enlarged either by increasing the number of
spatial lattice sites at fixed lattice spacing a, or by increasing a for fixed L. This, however, also
increases the associated discretization errors.

Finite Lattice Spacing

In a mass-independent renormalization scheme the lattice spacing a in a simulation is implicitly
determined by the choice of the gauge coupling parameter (. It can be determined in physical
units by matching the lattice result for a chosen observable (the Sommer parameter ro [74] is the
most popular choice) with the corresponding experimental value. At finite values of a the size
of the cut-off effects depends on the order in a of the leading corrections to the chosen lattice
action; for the Wilson action it is O(a). In order to obtain continuum results one has to perform
simulations at a number of values for a and extrapolate the results to a = 0. One generally
expects discretization errors to be smaller for low-energy quantities like Goldstone boson masses
or decay constants than for the nucleon, for instance, which is expected to be stronger affected
by a low cut-off.

Unphysically Large Quark Masses

In summary, the previous two requirements of sufficiently large physical volume La and small
lattice spacing a read
a < 1/mpg < La, (1.76)

where 1/mpg is the correlation length of the pseudoscalar meson (the lightest hadronic state).
In view of this relation the physical u and d quark masses are clearly too small to simulate them
with currently feasible lattice volumes. Moreover, the condition number of the Dirac matrix
grows with decreasing quark mass. In terms of the Wilson quark mass parameter s a decreasing
quark mass is equivalent to k approaching k., the critical value where the quark mass vanishes
(see Eq. (1.47)). However, for a given set of simulation parameters (3, ) the critical hopping
parameter k. is uniquely defined only as a statistical average over the whole gauge field ensemble,
while its value on individual configurations fluctuates. From this, another complication arises: If
the fluctuating value of k. gets close to k, the quark matrix may become singular. This problem
becomes increasingly severe with decreasing quark mass, 3 and L.1°

The standard way out of this dilemma is to choose the simulated quark mass sufficiently large
and extrapolate the results to the regime of physical quark masses using low-order polynomials
or functional forms derived from chiral perturbation theory (ChPT). However, statistical and

9 Another consequence of the finite lattice volume is a finite momentum resolution. As can be seen from
Eq. (1.32), the smallest non-zero momentum on the lattice is 27/La. While this is not problematic for the
determination of ground state masses at zero momentum, one needs a rather fine resolution for the investigation
of dispersion relations or decays.

9The problem of fluctuating zero modes (leading to so-called “exceptional configurations”) is most severe in the
context of quenched simulations. In full lattice QCD zero modes are suppressed by the functional determinant in
the path integral. (However, they may still occur in the stochastic updating process, where they lead to an excep-
tionally low acceptance rate.) A recent development that prevents the appearance of exceptional configurations
for Ny = 2 is “twisted mass” QCD [102, 103].
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systematic uncertainties in lattice results often make it difficult to apply the full ChPT formulae
or to assess the size of various higher order chiral corrections. Some recent developments seeking
to improve on this situation are partially quenched ChPT (PQChPT) [44, 45, 46] or ChPT with
Wilson-type fermions (WChPT) [47, 48, 49, 50]. These are effective theories that incorporate
the effects of different valence and sea quark masses, and also account for a finite lattice spacing.
Reports on promising numerical results with these schemes have been published recently by the
qq+q [18] and the CP-PACS [19] collaborations.






Chapter 2

Volume Dependence of the Light
Hadron Masses

In this chapter we review the main theoretical and numerical findings published to date about
the nature of finite-size effects in light hadron masses. Although as a source of systematic error
the finite volume has in principle always been an important issue in lattice QCD, there have
been surprisingly few systematic investigations up to now into the lattice size dependence of
simulated hadron masses. Usually one seeks to avoid finite-size effects altogether by working
on sufficiently large lattices (where, as a rule of thumb, a lattice size of five times the Compton
wave length of the pion, ML 2 5, is commonly considered “large”).

Perhaps the most important theoretical contribution to the subject dates back to the year 1986
when M. Liischer proved, for stable particles in largely arbitrary quantum field theories, a formula
predicting an exponential suppression of the finite-size mass shift towards large volumes [53].
With input from an effective theory like chiral perturbation theory Liischer’s formula can be
used to describe the asymptotic finite-size mass shifts for stable light hadrons like the pion or the
nucleon [54]. The first systematic numerical investigations of finite volume effects in full lattice
QCD were carried out by Fukugita et al. in 1992 [56]. Observing, rather unexpectedly, a power-
law behavior of their data for the pion, rho and nucleon masses, they also made suggestions as
to the underlying mechanism. Liischer’s formula, on the one hand, deals with asymptotically
large lattice volumes where finite-size effects arise from a squeezing of the virtual pion cloud that
surrounds the hadron due to vacuum polarization. In a box with periodic boundary conditions
these pions can travel “around the world” and interact with each other. Thus, the finite-size
mass shift is related to an (infinite volume) elastic forward scattering amplitude. In contrast,
the power-law behavior of the data as observed by Fukugita et al. is due to a distortion of the
hadron wave-function itself, as it is expected for rather small box volumes.

Recently, alongside with progress that has been made in relating effective field theory to the lat-
tice, finite-size effects have attracted more attention again. A particularly promising new result
for the volume dependence of the nucleon mass has emerged from (baryon) chiral perturbation
theory [66]. We will show later in this work that it compares well with our data, over a wide
range of lattice sizes.

We will now introduce the theoretical aspects of the different approaches in turn. Numerical
details and comparisons with our findings are deferred to Chapter 4.
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2.1 Luscher’s Formula

Liischer’s formula is a universal quantum field theoretic formula for the shift in the mass of a
stable particle enclosed in a box with periodic boundary conditions. For a field theory in finite
volume the spectrum of the Hamiltonian (or the transfer matrix on the lattice) is discrete, and
energies associated with zero momentum eigenstates are interpreted as masses of single stable
particles at rest. In a large volume these masses are close, but not equal, to the rest masses of
the particles in infinite volume. Liischer’s formula states that for asymptotically large volumes
the finite-size mass-shift vanishes exponentially with increasing box size at a rate that depends
on the particle under consideration and on the spectrum of light particles in the theory.

The physical origin of the mass shift of a pointlike stable particle is that such a particle polarizes
the vacuum around it, so that it is surrounded by a cloud of virtual particles. The diameter
of this cloud is roughly of the order of the Compton wave length, A, of the lightest particle
in the theory. When enclosed in a box, the mass of the particle starts to deviate from its
value in infinite volume as soon as the box size approaches A. In this physical picture the
size dependence of the particle’s mass arises from an exchange of virtual particles “around the
world”. Using abstract graph theory and complex contour integration, Liischer calculates the
asymptotic volume-dependence of the self-energy diagrams contributing to the particle’s full
propagator, and hence of the pole mass of the propagator, in finite volume and to all orders in
perturbation theory. The resulting formula relates the shift in the pole mass to the amplitude
for elastic forward scattering of the particle with the lightest particle(s) in the quantum field
theory under consideration. The detailed proof of this relation is given in Ref. [53].

What we are interested in here is the application of Liischer’s formula to hadronic states in
lattice QCD.! Let us therefore consider a stable hadron H (where H stands either for the pion,
7, or the nucleon, N) on a lattice with lattice spacing a, spatial volume (La)? and sufficiently
large (Euclidian) time-extent T'a (ideally, T — o0). We assume periodic boundary conditions
in the spatial directions. For the rest of this chapter we set the lattice spacing a equal to
one, so that the mass my of H, which is defined through the leading exponential decay of an
appropriate Euclidean 2-point function at large times, is dimensionless. Keeping both the bare
gauge coupling g and the quark mass fixed, the hadron mass my depends on the number of
lattice sites in spatial direction, L, in a particular way. If we define the infinite-volume mass at
fixed lattice spacing and quark mass as

mg = lim mg(L), (2.1)
L—oo

then, for large L, my (L) is supposed to become a universal function of m, L in the finite-volume
continuum limit, which is obtained by taking ¢ — 0 and simultaneously L — oo, while keeping
m,L fixed. However, since finite-size effects probe the system at large distances L > 1 and are

"Remarks: 1. The proof in Ref. [53] is given to all orders in perturbation theory, but the result itself is believed
to be true beyond perturbation theory, as it is independent of the precise form of the Lagrangian of the theory
and refers only to the physical masses and scattering amplitudes of the particles. In particular it is independent of
a possible fixed UV cut-off, so that it should also hold for a lattice theory. In the original proof of the formula it is
assumed that all the involved fields are massive. Although this is not the case for QCD, where perturbation theory
in the gauge coupling constant involves massless fields, one can always describe the low energy properties of QCD
by effective Lagrangians (like the chiral Lagrangian), which are of exactly the type that the Feynman diagram
technique used in the proof can be applied to. 2. Although hadrons can be seen as bound states of valence quarks,
due to confinement the leading finite size effect on hadron masses originates from the same mechanism as for
pointlike particles, namely to the squeezing of the virtual pion cloud. 3. We exclusively refer to full lattice QCD
here. As the formula describes vacuum polarization effects, it does not apply to the quenched approximation.
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thus insensitive to short-distance effects, this function is expected to be largely independent of
the form and magnitude of a possible ultraviolet cut-off. In particular it is then expected to
hold also for finite lattice spacings.

Liischer’s formula relates the finite volume mass shift,
Amg(L) =mpg(L) — mpy, (2.2)

to the (infinite volume) elastic forward scattering amplitude Fj . Let us consider the elastic

scattering process
w(p)H"(q) — = () H" (¢), (2.3)

where the pion has 4-momentum p and isospin a and the particle H carries 4-momentum ¢ and
quantum numbers b (isospin, spin). The primed quantities refer to the corresponding outcoming
states. All ingoing and outcoming particles are on their mass shell, respectively, so that the
energy components of the 4-momenta (in Minkowski space) are given by p’ = Ep, p 0 - Ey

etc., with
Ep =/ 1 p2, (2.4

where m is the mass of the particle and p its 3-momentum. General one-particle states |H?(p))
on their mass-shell are normalized such that

(H" (p)|H" (p)) = 2By (2m)° 6@ (p' — p) 67 (2.5)

The S-matrix for elastic wH scattering is given by
out (7 () H” (¢) |7 (0) H' (@) )in = (= (W) H" (¢) | S| =*(p) H' (9)), (2.6)

and as usual we define the T-matrix (the part that accounts for interactions in the scattering
event) by S = 1 +4T. Matrix elements of T' can be written in terms of the invariant matrix
element M as

(= () H (¢') [iT| “(p) H"(¢)) =
(2m)* s (W + ¢ —p—q)iM(x*(p)H'(q) — = (W) H" (). (2.7)
We are interested in the forward scattering amplitude

Fry =) M(x*(p)H"(q) — 7*(p)H"(q)), (2.8)

which in all cases considered here is a Lorentz scalar depending only on the crossing variable

pq

. (2.9)
mg

vV =

2.1.1 Pion

For the pion (H = m) the mass shift Am(L) is given in terms of the nm forward scattering
amplitude Fy, by

mn(L) — my = 3 / dy e VLR (iy) + O(e ™). (2.10)

C16m2maL ) o
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Figure 2.1: Integration contour in the complex v-plane. The poles at v = v are due to 1-particle
exchange reactions which do occur for the nucleon, but not for the pion.

Eq. (2.10) is Liischer’s formula for the asymptotic finite-size effect of the pion. Because of
m > +/3/2mg, the error term is exponentially suppressed compared to the first term. Due
to the negative intrinsic parity of the pion and parity conservation in QCD there is no 3-pion
vertex, so that the term referring to a 3-particle coupling in the original formula of Ref. [53] is
absent. Hence the scattering amplitude Fy(v), which is analytic in the complex v-plane with
branch cuts between —oo and —m,; and between m, and co, has no isolated singularities from
1-particle exchange reactions. Fy.(v) is integrated over along the imaginary axis in the v-plane
(see Fig. 2.1).

The crossing variable v and the invariant matrix element M for elastic w7 scattering can be
written in terms of the Mandelstam variables

s=(p+q? t=( -9 u=I(d~-p)? (2.11)

(satisfying s+t +u = 4m2) and the isospin-invariant amplitude A(s,t,u) as

s
v = s My (2.12)
and
M(r(p)r*(q) — 7 ()7 (¢)) =
5ab5a’b’A(57 t, u) + 5aa’5bb’A(t7 u, 3) + (5ab’5ba/A(uv S, t)a (213)

respectively. Eq. (2.13) is a consequence of crossing symmetry, isospin conservation and Bose
statistics. Following Eq. (2.8) we sum over isospin to obtain the following expression for the
forward amplitude:

Frr(v) = A(s(v),0,u(v)) + 3A(0,u(v), s(v)) + A(u(v), s(v),0) (2.14)



2.1. Liischer’s Formula 37

where
s(v) = 27713r +2mqr, t=0, ulv)= 2mfr — 2mgu. (2.15)

The scattering amplitude A(s, t,u) is known consistently from current algebra calculations [104]
and chiral perturbation theory [43]; at leading order ChPT it reads

s—m
IE
™

where f; is the pion decay constant. Substituting this result into Eq. (2.14) and using (2.15)
we obtain the constant value

2
s

A(s,t,u) = (2.16)

m2

Dr
7
For this simple case the integral in Eq. (2.10) can be solved analytically, and we arrive at the
relative pion finite size mass shift

Fror = — (2.17)

my(L) —my B iﬁKl(mﬂL) (2.18)
My LO 872 f2 m,L '
2 —myL
N o3 M e (2.19)

4(2m)3/2 f2 (m,L)3/?
where K7 is a modified Bessel function, and the second expression follows from its asymptotic
behavior, Ki(x) ~ e~ */4/z, for large z.

In Chapter 4 we will investigate the importance of higher order chiral corrections to the ampli-
tude A and find that in the parameter region where finite size corrections to the pion mass are
significant, the leading order result (2.16) is not sufficient to account for the full effect.

2.1.2 Nucleon

In case of the nucleon (H = N) the crossing variable (2.9) is defined as v = pg/my. The forward
amplitude Fn(v) has isolated singularities at v = +vp, where

2
m
= s 2.20
VB 2mN, ( )
with the residue
lim (V2 —v3)Frn(v) = —6g2yv%. (2.21)

v—tuvp

The poles come from one-nucleon exchange diagrams, because for v = +vp the intermediate
4-momenta in these diagrams are just on the nucleon’s mass shell. They give rise to the first
term in Liischer’s formula for the nucleon mass shift:

9 2 g2
my(L) —my = 4[:;;] —Z;]ze_ mi—vpL

3 My [ —\/m2+4y2L ;
T16m2m-L miN dye ™ Frn(iy)
™ — 0o

+0(e™™h), (2.22)
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Note that the second term has, up to the suppression factor m,/my, the same form as the pion
formula (2.10). 7 is now some mass with m > /3/2my, while for the 7N forward scattering
amplitude we have F;n(v) = 6my[AT (v)+vB*(v)] with the usual Lorentz invariant amplitudes
AT and BT (see e.g. Ref. [105]).

In order to estimate Fyx(v) near v = 0, one can separate out the pseudovector Born term [54],

692 12 _
Fﬂ'N(V) - Vgﬂiﬁlﬂ +F7TN(V)7 (223)
B

and expand the remainder in a convergent power series,

_ e v\ 2k
F = — .
) =3 ome(om) s M <me (2.24)
k=0
with the coefficients
ro=—60.7, 11 =453, ry=38.1 (2.25)

and the effective coupling g2 /47 = 14.3 (from 7N dispersion analyses, see Ref. [106]). It is
instructive to look separately at the various contributions to the nucleon mass shift. Writing

the truncated series F 7&}[\({)(”) for finite K as

_ () K U\ 2k

FB () = Z'rk<m—> o lv| < ma, (2.26)
k=0 T

the three contributions due to one-nucleon exchange diagrams, the pseudovector Born term and
Fg\i) read

9 [m 2 92 e~ m2—viL

A(L) = = |—Z| &N 2.27

1(z) 4 [mN] A L (2.272)
9 ms 921\7 /Oo e~ Vmaty?L

Ay(L) = - — dy ———————— 2.27b

2(L) mm.L my 47 [, Y L+y2/v3’ ( )
3 Mg —/m2 2L oK), .

A(K) Ly = ———— — / d maty LF( . 2.27

3 (1) 1672maL my J < ve wy () (2.27¢)

Fig. 2.2 displays the different terms in units of the nucleon mass my as a function of m,L,
at the physical mass ratio m;/my = 0.147. The powers of this ratio in Eqns. (2.27a)—(2.27¢)
lead to a strong suppression of all three contributions, so that Liischer’s formula predicts a very
small mass shift of only a little more than 2% even for m,L = 1.2 Besides the presence of
powers of m,/my another reason for the smallness of the predicted effect is that for realistic
my/mp the positive contribution A; is almost canceled by the integral over the pole term in
Frn, As. The nucleon mass shift is therefore almost entirely accounted for by the integral over
the non-pole contribution Fjy, here given by Agz). (It comes out positive because the integrand
is negative for small values of |y|.) It is also remarkable that even if Fyn(v) is kept constant at

Frn(0) = —60.7 (which is equivalent to truncating the series (2.26) at K = 0) one still obtains

2We will see in Chapter 4 that the predicted mass shift is too small to account for the effect observed in our
simulations.
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Figure 2.2: Contributions to the relative finite-size mass shift of the nucleon at the physical value of
my/my. A1, Ag and Az(f) are due to one-nucleon exchange diagrams, the pseudovector Born term and
Fg\),, respectively.
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Figure 2.3: Comparison of the leading non-pole contribution Aéo) with A:(f) and the complete sum of
all contributions to Liischer’s formula for the nucleon mass-shift at the physical value of m,/my.
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a qualitatively acceptable description of the predicted nucleon mass shift. This is demonstrated
in Fig. 2.3, where we compare the resulting “zeroth” approximation

AP (mL) _ 3 [my]? Ki(myL)
Ant) g0y 2 [me] e o
=~ 3 My 2 emmal
= —F(0) 4(2m)3/2 [mN] (M L)3/2 (229)

with Az(f) and the complete sum of all contributions (2.27) (normalized by my, respectively).
Note that in their functional form the approximations (2.28) and (2.29) correspond, up to the
different amplitude and the factors (m./my)?, precisely to the pion mass shift formulae (2.18)
and (2.19).

2.2 Previous Results from Full QCD Simulations

Finite-size effects in the masses of the pion, rho and nucleon were extensively studied in numerical
simulations with dynamical staggered quarks about twelve years ago by Fukugita et al. [56, 57,
58, 59, 60]. On the one hand it was found that finite-size effects in full lattice QCD are much
larger than those in quenched simulations. Based on a comprehensive study of the dependence of
hadron masses on the boundary conditions the difference was ascribed to a partial cancellation
of the finite-size effects among Z(3)-related gauge configurations in quenched lattice QCD. Such
a cancellation does not occur in full QCD, as the center-symmetry of the pure gauge action is
broken by dynamical quarks. On the other hand, the finite-size effects of hadron masses in full
QCD simulations turned out to be much larger than predicted by Liischer’s asymptotic formula.
In fact, in the parameter regime studied by Fukugita et al. they could be well described by a
power law

Ampg(L) x L™ with n~2.3. (2.30)

This and the fact that the nucleon was found to show a larger finite-size effect than the pion
(which has the larger Compton wave length) was considered as supportive of the idea that the
origin of the effect was a distortion of the hadronic wave-function, as opposed to Liischer’s
picture of a squeezed cloud of virtual pions surrounding point-like hadrons. To corroborate this
assumption, antiperiodic spatial boundary conditions where imposed in the calculation of the
quark propagator on their smallest lattice and at their lightest quark mass. The observation that
the resulting masses of the - and p-mesons now displayed a negative finite-size effect lead them
to the conclusion that the finite-size effects in their hadron masses were indeed a consequence
of the finite hadron extent: if it had been caused by virtual mesons going around the lattice,
the mesonic correlation functions should have been unaffected by the sign flip in the quark
propagator.

Fukugita et al. proposed two possible explanations for the observed power law, which we will
briefly summarize in the following. First they examined how the effect of virtual particles going
around the lattice is modified when the finite extent of hadrons is taken into account. Let us
consider a hadron in a box of size L. If we assume periodic boundary conditions, the hadron
will see mirror images of itself at distances nL, with n being a 3-dimensional vector with integer
components. If V(x) is the potential between two hadrons, the self-energy JF of the hadron is



2.3. Finite-Size Effects in the Nucleon from Chiral Perturbation Theory 41

given by
0E =) V(nL). (2.31)

For large L this can be approximated by V(0) + 6V (L). If we further assume a one-particle
exchange potential which is, asymptotically, proportional to exp(—mr)/r (where m is the mass
of the exchanged particle), we essentially recover, at least qualitatively, the exponential behavior
of the finite-size mass shift predicted by Liischer.

One can now incorporate the effect of the finite spatial extent of the hadron by rewriting

Eq. (2.31) as
1 N 2

where the Fourier-transformed one-particle exchange potential V(k) is given by

F(k?)

Vi) = k2 4+ m?

(2.33)
and F(k?) is a model-dependent form factor. Independently of the concrete choice of the form
factor one can assume that in the regime of small and intermediate lattice sizes L, where the
minimal allowed non-zero momentum 27 /L is quite large, the form factor should cause a rather
strong suppression. The n = 0 contribution would then be the dominant term in (2.32), and the
finite-size corrections to the masses of hadrons can be expected to be proportional to 1/L3. For
sufficiently large sizes L, however, the 1/L3 behavior of the finite-size mass shift is expected to
disappear in favor of an exponential correction proportional to exp(—mZL)/L. Numerical tests
have shown that the lattice size L where this happens depends on the behavior of the assumed
form factor.

An alternative picture also producing a power-law is based on the following non-relativistic
argument: If we suppose that the quarks inside a hadron are bound by some confining potential
and characterize the asymptotic decrease of the wave function ¢ (r) by the length scale r’, then a
small finite box with Dirichlet-type boundary conditions would lead to a reduced characteristic
length " o< L. As a consequence of the steeper fall-off of the squeezed wave-function the kinetic
energy of the ground state is increased as 1/L?. While the details of the exponent of the
power law depend on the adopted model assumptions, the power law behavior itself is a general
feature of such a simple non-relativistic quark model picture. In the argument given above
we have assumed Dirichlet-type boundary conditions, meaning that the wave function at the
boundary is kept small. Fukugita et al. argue that this situation is given if periodic boundary
conditions are used for both the valence quarks in the calculation of hadron correlators and the
sea quarks in the generation of gauge configurations, which is the case for all the simulations
considered in this work.

2.3 Finite-Size Effects in the Nucleon from Chiral Perturbation
Theory

In a recent publication Ali Khan et al. calculate the volume dependence of the nucleon mass
in the framework of Ny =2 relativistic baryon chiral perturbation theory up to and including
O(p*) in the chiral expansion [66]. Their analysis is based on the fundamental observation
that finite-size effects in hadron masses can be calculated from the same effective field theories
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that also describe the quark mass dependence [71, 72, 73]. As we have already argued in the
previous sections, if the volume is not too small, the finite-size effects originate from virtual
pions propagating “around the world”. In ChPT this is the regime of the so-called p-expansion
which is valid for small pion masses m, = O(p) and large volumes L3 with 1/L = O(p), so that
myL = 0(1).3

Replacing the continuous integral over the spatial loop momentum in the relevant O(p?) contri-
bution to the nucleon mass by a discrete sum over the allowed momenta in a finite volume of
linear size L, Ali Khan et al. obtain

?)gzlmom2

M) = 5 /Oooda: 3 Ko (L|n|\/mg:c2 +m2(1— 1‘)) (2.34)

n

for the nucleon finite-size mass shift my(L)—my at NLO. Here and in the following the constants
ga and fr are to be taken in the chiral limit, mg is the nucleon mass in the chiral limit and
the pion mass m, parameterizes the quark mass via the Gell-Mann-Oakes-Renner relation. The
pion decay constant fr is normalized such that its physical value is 92.4 MeV. Kj is a modified
Bessel function, and the sum extends over all spatial 3-vectors n with integer components n;,
1=1,2,3, except n = 0. n; can be interpreted as the number of times the pion goes around the
lattice in the i-th direction.

Similarly, at O(p?) an additional contribution to the difference between the nucleon mass in a
volume of size L? and in infinite volume is given by

aL K aL
Ay(L Z [%103 1|(|n|m ) | o, RellmimeL) | (2.35)

7T2f2 n|lm,L (InlmxL)?
where c¢1, co and c3 are effective coupling constants and K; and K» are again modified Bessel
functions. The complete result for the nucleon finite-size mass shift at NNLO is thus

ma(L) = my = Aa(L) + Ay(L) + O(). (2.36)

Compared with Liischer’s asymptotic formula an important merit of (2.36) is that virtual pions
which cross the boundaries of the finite box (with periodic boundary conditions) more than just
once are taken into account. This is crucial to the applicability of the formula also at rather small
box volumes, that we will demonstrate in Chapter 4. The numerical evaluation of Eq. (2.36)
does indeed show that unless m,L is rather large the sub-leading terms with |n| > 1 are not
negligible. The other advantage is that (2.36) incorporates information from chiral perturbation
theory on the quark mass dependence of my, gy and the scattering amplitude. Liischer’s
formula (2.22) can be recovered, however, by restricting the sums in (2.34) and (2.35) to those
vectors n with |n| = 1.4

In Ref. [66] the parameters of the chiral expansion in (2.34) and (2.35) are taken partly from
phenomenology and partly from a fit of numerical data for my from relatively fine and large

3The chiral series can also be organized in form of the so-called e-expansion, which is valid for m,L < 1 [107].
*Actually only up to a factor of two in the first term (A; in (2.27a)) which in Liischer’s derivation originates
from one-nucleon exchange diagrams.
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lattices to the (infinite volume) O(p*) formula [108]

2 393 3
™ 32mf2 T

my = mg—4cim

3 A © 3 9 ma| 4
T(\) — Jga 2 JA g des ) In 27
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3905 Oomd), (2.37)
2567 f2mE " T
which has been derived using infrared regularization [109]; the counterterm ef () is taken at the
renormalization scale \. With all parameters fixed in this way, the formulae (2.34) and (2.35)
provide parameter-free predictions of the finite-volume effects in the nucleon mass.






Chapter 3

Numerical Simulation

Aiming at the simulation of QCD with light quarks, but faced with limited computing resources,
it is an interesting question if one can possibly get away with simulations on small and medium-
sized lattices and yet obtain infinite-volume results through extrapolation or directly calculable
finite-size corrections. One goal of the GRAL project is to address this question by an investiga-
tion into the volume dependence of the light hadron masses in the currently accessible parameter
regime. This chapter deals with the simulation aspects of the project. We present details about
the generation of the gauge field configurations, describe the calculation of quark propagators
and hadronic correlation functions and finally introduce the parameterizations to which these
correlation functions were fitted to obtain the desired physical quantities. Finally we introduce
our methods for fitting and error analysis. The results of our simulations will then be presented
and discussed in the next chapter.

A numerical investigation of finite-size effects requires data from simulations that differ only
in the physical lattice volume, while all other parameters (gauge coupling and quark mass) are
kept fixed. Although most of the gauge configurations that we analyze in this work have been
newly generated, the GRAL project has benefited substantially from the fruitful work of its
forerunners, the SESAM and TxL projects [35, 36].

This is reflected, on the one hand, in the Hybrid Monte Carlo (HMC) code that we could freely
borrow from the SESAM/TxL project. The most recent version of the original TAO code was
employed on the APE100 (QH4) parallel computer [81] at DESY Zeuthen until the machine
finally broke down in January 2003. As the code had been ported to the newer APEmille [82]
already some time before, production could smoothly be shifted to this machine. In fact, some
GRAL runs were already under way on APEmille at this time. In addition, a C/MPI version
of the SESAM HMC code [110] had been developed for the cluster computer ALiCE [83] at
the University of Wuppertal. Since its first employment for production runs in November 2002
this code version has been running very efficiently on ALiCE. Like the original TAO code it
features the locally-lexicographic SSOR preconditioned BiCGStab solver for a fast inversion of
the fermion matrix [75, 76]. While the bulk of the code is written in C (using the standard
MPICH-library [111] for message-passing), some time-critical core routines are coded in assem-
bler for further acceleration [112]. A lot of effort has also been invested into the optimization of
the parallelization and the data layout [113].

On the other hand, gauge field ensembles from SESAM and TxL runs have directly entered
our analysis. As the data from both SESAM/TxL and GRAL were produced using the same
unimproved Ny = 2 Wilson action they could be analyzed on an equal footing.
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In the following we specify the parameters of our simulations in detail. For reference and for
comparison we include in the tables also those SESAM simulations that have not been used for
this work.

3.1 Simulation Parameters

We have performed a large-scale simulation of full QCD with two degenerate Wilson quarks at
two different values of the gauge coupling parameter, 8 = 5.32144 and 3 = 5.6, for one and
two different values of &, respectively. The larger [ corresponds to the SESAM/TxL value.
The smaller 8 and the corresponding x of 0.1665 result from a linear extrapolation of lines of
constant Mpg/My and 1/(MpgL) in the (3, k)-plane, based on SESAM/TxL data and aiming
at Mps/My < 0.5 and 1/(MpgL) ~ 0.2 on a 163-lattice [51]. For every (83, x)-combination
considered in this work we have produced gauge field configurations for at least three different
lattice volumes (La)? with L varying between 10 and 16, thus complementing ensembles from
SESAM and TxL with L = 16 and 24, respectively. Generating the configurations we imposed
periodic boundary conditions in all four space-time dimensions for the gauge field, while for the
pseudofermions we used periodic boundary conditions in the spatial directions and antiperiodic
boundary conditions in the temporal direction. In addition to the original SESAM code that was
employed on the 512-node APE100 (QH4) we used a modified code version on APEmille [82].
On APEmille, a 128-node partition (“crate”) was used to generate the 16% x 32-lattices, while
the 123 x 32-lattices were produced on a “unit” consisting of 32 nodes. On ALiCE, the 128-node
“Alpha Linux Cluster Engine” at the University of Wuppertal, a C/MPI-version of the SESAM
code (written mainly by Z. Sroczynski) was employed on partitions of 16 (123 x 32 and 143 x 32
lattices) and 8 processors (103 x 32 lattice). All the codes are implementations of the ®-version
[114] of the HMC algorithm for two degenerate quark flavors as discussed in Section 1.6.1. The
bulk of the CPU costs for full QCD simulations with the HMC algorithm goes into the time
consuming repeated inversion of the quark matrix M. Throughout the simulations we employed
the Bi-Conjugate Gradient stabilized (BiCGStab) algorithm with 1I-SSOR preconditioning for
the solve of the linear system (MTM)X = ¢. This was done in a two-step procedure: first we
solved MY = ¢ for Y and then solved MX =Y for X. The TAO code on APE additionally
features an implementation of the chronological start vector guess proposed in [115].

Tables 3.1-3.3 give a detailed overview over the production runs we have carried out (referred to
as GRAL). For reference and to allow for direct comparison we also list the respective figures for
all previous SESAM/TxL runs. Configurations from the SESAM/TxL simulations at (3, k, L) =
(5.6,0.1575,16), (5.6,0.1575,24) and (5.6,0.158,24) have been included in our analysis of finite-
size effects. Alongside the gauge coupling parameter [ of Eq. (1.36) and the hopping parameter
k of Eq. (1.46) we display the simulated lattice volumes. While the number of lattice sites in
the spatial directions, L, was varied, the time-like extent 7" was kept fixed at 32 (7" = 40 in the
case of TxL).

Except for some early SESAM simulations (or parts thereof) featuring an even-odd represen-
tation of the quark matrix, lI-SSOR preconditioning was used in all later runs. The depth of
the extrapolation in the chronological start vector guess, Ncsg, was fixed to 7 in all the GRAL
runs on APE machines. The step size 0t in the leapfrog integration and the average number
of integration steps in the molecular dynamics update, Nyp, were generally chosen such as to
yield an acceptance rate of 60-90% in the accept-reject step at the end of each trajectory in the
HMC. The trajectory lengths Nyp were uniformly varied in the intervals given in Table 3.1 in
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’ 8 | K | L3T | Precnd. | Nesg | Nuvb | | Acc. | (Niter) | (d) ‘
12332 ~[ 125 £20 [ 0.004 | 71% | 147(6) | 0.53949(14)
a1t | 01665 14332 . | 125420 | 0.004 | 64% | 130(6) | 0.53879(15)
16332 7 200:£40 1 0.005 | 41% 315(9) | 0.538290(65)
125 4+20 | 0.004 | 65%
0.1580 | 16332 | SSOR 71100220 | 0.010 | 77% | 45(1) | 0.555471(45)
0.1590 | 16332 | SSOR 71 100£20 | 0.010 | 71% | 85(1) | 0.558164(38)
55 0.1596 | 16332 | SSOR 71 100420 | 0.010 | 61% | 138(2) | 0.559745(58)
0.1600 | 16332 | SSOR 7| 1004+ 20 | 0.010 | 40% | 216(3) | 0.560776(47)
0.1560 | 16332 e/o 6 | 100+=20 | 0.010 | 82% | 86(1) | 0.569879(25)
0.1565 | 16332 | SSOR 71100420 | 0.010 | 77% | 90(1) | 0.570721(22)
0.1570 | 1632 | SSOR 71100 £20 | 0.010 | 67% | 133(1) | 0.571592(27)
10332 | SSOR ~1100+20 [ 0.010 | 87% | 63(1) | 0.573114(27)
12332 | SSOR 71 100420 | 0.010 | 76% | 146(2) | 0.572771(30)
14332 | SSOR -1 100420 | 0.010 | 62% 79(1) | 0.572598(22)
5.6 0.1575 Loty | 0 1110020 | 0.010 | 78% | 293(6) | S—
SSOR 3| 71+12 | 0.007 | 73% | 160(6) '
24340 | SSOR 6 | 125420 | 0.004 | 80% | 109(1) | 0.572476(13)
12332 71125420 | 0.008 | 85% 150(5) 0.573793(32)
14332 -1 100 £20 | 0.005 | 88% | 113(1) | 0.573677(25)
0-1580 | g3gq | SSOR 71125 +20 | 0.006 | 66% | 302(5) | 0.573461(25)
24340 6 | 125420 | 0.004 | 62% | 256(7) | 0.573375(16)

Table 3.1: Overview of the GRAL simulation parameters in the context of all previous SESAM/TyL
simulations. Note that for ALICE runs (see also Table 3.2) the slanted numbers for (Njie) refer to the
solve of MY = ¢ only, whereas in the case of APE runs they refer to the full two-step solution of
(MTM)X = ¢. Details are explained in the text.

order to avoid deadlocks in periodic orbits of phase space due to the presence of well defined
Fourier modes [116]. Both for decreasing quark mass and increasing lattice volume (all other
parameters kept fixed, respectively) we observe a drop in the acceptance rate as anticipated.
(Niter) denotes the average number of iterations the Krylov-subspace solver needs to converge
when the fermionic matrix is inverted. The stopping accuracy R = |[MX — ¢||/||X]|| for the
solve of the linear system MX = ¢ was constantly set to R = 10~® in all GRAL runs. For the
runs on ALiCE the slanted numbers for (Njter) quoted in Table 3.1 refer to the solve of M Yy = 10}
only, whereas for the APE runs they refer to the full two-step solution of (MTM)X = ¢ (see
Table 3.2 for machines). For a comparison a relative factor of k ~ 2 must therefore be taken
into account. () in the last column is the ensemble average of the plaquette as defined in
Eq. (1.35). In order to boost the initially low acceptance rate of only 41% in the simulation at
(8, k, L) = (5.32144,0.1665, 16) we decreased the step size dt from 0.005 to 0.004 and reduced
Nyp from 200 + 40 to 125 4+ 20 at some stage of the simulation.

Table 3.2 shows estimates of the simulation costs for all runs on ALiCE and for those (parts
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p K L3T [ (}Sél)sz(/is] J&ﬁt [Tgoosg-h] Machine | Nproc | Project
12332 3.3 | 8875 30 | ALIiCE 16
14332 3.2 | 8014 26 | ALiCE 16

5.32144 | 0.1665 . 105 | 5575 50| QH “19 GRAL
6.1 | 2449 15 | APEm 128

0.1580 | 16332 10.4 | 349 4| QH4 512 | SESAM

0.1590 | 16332 10.3 987 10 | QH4 512 | SESAM

55 0.1596 | 16332 9.1 | 1683 15| QH4 512 | SESAM

0.1600 | 16332 10.5 | 2296 24 | QH4 512 | SESAM

0.1560 | 16332 QH2 256 | SESAM

0.1565 | 16332 7.0 | 1534 11| QH2 256 | SESAM

0.1570 | 16332 6.7 | 2350 16 | QH2 256 | SESAM

10332 1.8 | 5638 10 | ALiCE 8 | GRAL

12332 1.5 | 6487 10 | APEm 32 | GRAL

0.1575 | 14332 2.9 | 7570 22 | ALiCE 16 | GRAL

56 16332 5.4 | >932 >5| QH2 256 | SESAM

24340 8.9 | 6962 62 | QH4 512 | TxL

12332 1.5 | 3136 5| APEm 32 | GRAL

14332 3.1 9240 29 | ALiCE 16 | GRAL

0-1580 16332 6.1 | 8455 52 | APEm 128 | GRAL

24340 10.0 | 11151 112 | QH4 512 | TyL

Table 3.2: Estimates of the HMC code performances on the various machines used for the generation
of gauge fields, including previous SESAM/TyL simulations. Details are explained in the text.

of) runs on APE machines in which SSOR preconditioning was used. We have estimated the
code/machine performance on the basis of available run log data according to

Tvc
Speed & 4 - 1404 - L*T Y ~ kNijer(t) Nain () / Tho (3.1)
t=1
where
Tyvc
Tio = ) T(t) (3.2)
t=1

is the integrated simulation time needed for the generation of Tyic trajectories. In each of the
Nup (t) molecular dynamics steps in trajectory ¢, kNiier(t) BiCGStab iterations are needed (on
average) for the inversion of MYM (to the required accuracy R). The inversion is done in 2
steps, respectively, each of which comprises a forward and a backward solve of the 1I-SSOR
preconditioned system. This yields a total of 4 calls to the forward/backward solver, each of
which requires 1404 floating point operations (“flop”) per lattice site. The factor k in front of
Niter(t) has been inserted for convenience; it is equal to 1 for simulations on APE machines and
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8 | s | T | Tuc | Tinenm | Tequi | At | Noous
12332 | 10100 1500 | 8600 | 50 £ 6 170
5.32144 | 0.1665 | 14332 5900 800 | 5100 | 40 +4 129
16332 | 15300 8600 | 6700 | 40+4 169
0.1580 | 16332 | 4000 1000 | 3000 | 25+ 3 119
0.1590 | 16332 6000 1000 | 5000 | 25+ 3 200

55 0.1596 | 16332 | 5500 500 | 5000 | 25 +3 199
0.1600 | 16232 | 5500 500 | 5000 | 25 £3 200

0.1560 | 16332 | 5700 600 | 5100 | 25 198

0.1565 | 16332 | 5900 700 | 5200 | 24 208

0.1570 | 16332 | 6000 1000 | 5000 | 25 201

10332 | 16000 | 2600 | 13400 | 48 + 4 278

12332 | 8000 700 | 7300 | 304 243

0.1575 | 14332 | 8400 1400 | 7000 | 30 =4 231

>0 16332 | 6500 1400 | 5100 | 25 206
24340 | 5100 500 | 4600 | 25 185

12332 | 3000 500 | 2500 | 24+ 2 103
14332 | 9100 1300 | 7800 | 40 =4 195
16332 | 6500 1100 | 5400 | 30 +4 181
24340 | 4500 700 | 3800 | 24 158

0.1580

Table 3.3: Overview of the various HMC run lengths, thermalization times and numbers of equilibrium
configurations. Ncont is the number of analyzed gauge configurations, separated in Monte Carlo time by
AT. See the text for details.

set to 2 for runs on ALiCE. As the remaining program overhead of the HMC (energy calculations,
computation of the fermionic force etc.) has not been added to the flop count, the numbers for
both speed and cost in Table 3.2 have to be considered as lower bounds to the true speed and
cost. They do, however, provide reasonably good estimates as the solver part is by far the most
cost-intensive part of a dynamical fermion simulation.

Table 3.3 shows some more simulation details. Tyic denotes the total number of generated tra-
jectories, the first Tiperm of which we attribute to the thermalization phase and therefore discard,
so that we are left with Tequ; equilibrium configurations, respectively.! Neone configurations out
of these, separated by At trajectories (with a uniform, random variation as given in Table 3.3),
have been analyzed further. In determining Tiperm and At we let ourselves be guided by the
autocorrelation analysis to be discussed next.

'In the thermalization phase of each production run we approached the respective target quark mass adiabat-
ically from larger quark masses. These initial trajectories are in general not counted here. An exception to this
rule is the run at (8, k, L) = (5.32144,0.1665, 16) where a rather long initial tuning phase incorporated several
changes of the simulation parameters.
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3.2 Autocorrelation Times

Because successive elements of a time-series? resulting from an updating process are correlated,

it is convenient to analyze the autocorrelation in the observables one is interested in. This
serves two purposes: First, the ezponential autocorrelation time is related to the length of
the thermalization phase of the Markov chain, i.e. the time that the system needs to converge
from its initial state to equilibrium. In order to avoid systematic errors in the final results
due to an initialization bias one should discard the data from the initial transient (of length
Tiherm, Say). Second, the variance of the sample mean in a dynamic Monte Carlo method (like
the HMC) is a factor of two times the integrated autocorrelation time higher than it would
be for independent sampling. Put differently, if we consider an observable A, a run of length
Tvc contains only Tyic/ 2Ti‘§t effectively independent data points. If a method like the blocked
jackknife is used in the error analysis, this is, in general, not a problem, because one can just use
the full sample to calculate means, choose an appropriate block size and then let the jackknife
take care of autocorrelations in the statistical error analysis.> This has the obvious advantage
that no statistics is lost. However, if A is a derived quantity and its computation expensive (as
it is the case for all quantities based on the quark propagator M ~!) it is possible (and desirable)
to save computer time by calculating A only on a subsample, consisting of ensemble elements
with a certain separation At in Monte Carlo time.

For choosing both Tinerm and At it is helpful to have some knowledge of Tgip and Tifl‘t for
suitable observables A. In order to facilitate the autocorrelation analysis for our simulations we
generally saw to it that the run parameters were not changed after the initial tuning phase so
as to have the HMC evolve under stable conditions. (The one exception to this rule is the run
at (6, k, L) = (5.32144,0.1665, 16) where the acceptance rate was at first so low that we had to
readjust 6t and Nyp at some point. The autocorrelation times for the resulting sub-samples
have been determined separately.) In Appendix B the time-series of the plaquette and the
average number of solver iterations, Niter, are shown for all GRAL runs. A suitable estimator of

the true autocorrelation (or autocovariance) function for a finite time-series A;, t = 1,..., Tyc,
is given by
1 Tyvic—t
CAt) = —— As—(A) ) (Age — (A 3.3
0= g 2 e ()0) (o= (), 3
where the use of the “left” and “right” mean-value estimators
1 Tyvc—t 1 Tyvc—t
Ay, = —— A d (A),=—— A 3.4
(AL TMC_t; rand (A), TMC—t; Pt (3.4)

in general leads to a faster convergence of C4(t) to the true autocorrelation function for
Tvc — oo [117]. In Figures B.1-B.10 we plot the estimator for the normalized autocorrela-
tion function,

p(t) = CA(1)/C(0), (3.5)

for A=1-0 (called “1 — P” in the appendix) and A = Njte;. From fits of p? to an exponential

we extract estimates for the respective exponential autocorrelation times Tg?(p, defined as

A = 1lim sup

A . S— 3.6
exp = Hmsup =3 ) (3.6)

2Monte-Carlo “time”, measured in trajectories.
3The blocked jackknife can even be used to estimate 714, (see Section 3.8).
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[ 6 [« o7 [ [ [ A0 [0
12332 | 103(16) | 116( 9) | 106(18) | 99( 5)

39144 | 0.1665 14332 | 90(14)| 77( 6)| 91(13)| 52( 3)
' ' . 97(14) | 105( 7)| 77( 9)| 54( 4)
187(43) | 154(24) | 147(20) | 113(10)

0.1580 | 16332 | 21( 5)| 20( 1)| 27( 3)| 16( 1)

0.1590 | 16332 | 25( 7)| 25( 1)| 31( 3)| 13( 1)

o5 0.1596 | 16332 | 74(12)| 38( 2)| 37(11)| 17( 1)
0.1600 | 16332 | 56( 6)| 46( 3)| 64( 7)| 34( 2)

0.1560 | 16332 | 49(11)| 24( 2)| 10( 2)| 6( 1)

0.1565 | 16332 | 29( 6)| 19( 4)| 7( 1)| 5( 1)

0.1570 | 16332 | 35( 6)| 25( 5)| 9( 3)| 6( 1)

10332 | 62( 7)| 28( 2)| 15(3)| 5(1)

12332 | 24( 3)| 20( 1)| 15( 3)| 6( 1)

0.1575 | 14332 | 88(27)| 34( 3)| 26( 8)| 8( 1)

>0 16332 | 47( 7)| 33( 4)| 18( 6)| 7( 4)
24340 | 51( 7)| 36( 4)| 11( 2)| 7( 3)

12332 | 25( 5)| 24( 1)| 9( 3)| 4(1)

14332 | 27( 3)| 24( 2)| 19( 2)| 8( 2)

015801 1633 | s7(20)| 32( 3)| 19( 5)| 11( 3)

24340 | 61(19)| 50( 5)| 20(10)| 20( 2)

Table 3.4: Measured exponential and integrated autocorrelation times for the average number of solver
iterations, Njier, and the plaquette.

The notorious difficulty of determining autocorrelation times for relatively short time-series is
apparent in most of the plots of p(t) in the appendix. We therefore aim for rough estimates
of the exponential autocorrelation time only and refrain from an elaborate optimization of the
fit ranges. We have checked, however, that the differencing method described in Ref. [117] gives
consistent results. The measured values for Té’?(p, displayed in Table 3.4, are generally larger than
the integrated autocorrelation times Tiﬁt that we measure with the help of Sokal’s “windowing”
procedure and which are also shown in the table. We use the finite sum

Teut
1 cu

T =5+ >0 (1) (3.7)
t=1

with a variable cut-off T, to estimate T{f}t. Plotting the resulting values against Ty does,

ideally, reveal a plateau for T, — Tnmc. If a plateau does not emerge, we typically either
find a maximum, or Ti‘f}t(Tcut) is monotonously rising. If there is a maximum, we choose the
corresponding value as best estimate of Tiﬁt. Otherwise we reverse Sokal’s proposal to choose
Teut larger than 4 to 6 times Ti’éti we assume Tiﬁt to lie in the interval defined by the intersections

of the straight lines with slopes Ty /4 and Tiyt /6, respectively, with the curve Tiﬁt(Tcut).

Comparing autocorrelation times for runs with different lattice volumes it must be kept in mind
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that the step size Nypdt of the molecular dynamics update was not the same for all simulations;
in fact it varied between 0.5 and 1.0 (see Table 3.1). At (8,x) = (5.6,0.1575), however, the
step size was the same for L = 10,12, 14, so we can directly compare these runs and find, on
the whole, only a weak increase of the autocorrelation times with increasing volume. More
striking is the difference in the autocorrelation times between the simulations at § = 5.6 and
0 = 5.32144. At the latter value, which corresponds to a stronger gauge coupling, the relatively
large autocorrelation times reflect the long-ranged statistical fluctuations that we observe in
Figures B.7-B.10. These fluctuations are more severe on the smaller lattices where, moreover,
zero modes of the Dirac matrix start playing a role. On the largest volume at this (3 the situation
is somewhat better: While the autocorrelation times are comparable to those on the smaller
volumes, we see no indication of exceptional configurations on the 163 lattice. (Note that from
the first to the second line of the (5, x, L) = (5.32144,0.1665, 16) entry in Table 3.4 Nypdt has
been halved.)

In order to determine empirically when equilibrium had been achieved we first of all looked at
the time series of the plaquette and Njter and noted when the initial transient appeared to end.
We discarded approximately Tiherm = 107exp to 207eyp, initial configurations, where we have

conservatively chosen 7oy, = rNiter because Niger is closely related to the smallest eigenvalue

ex
of the Dirac matrix M, which ig known to be among the slowest modes in the system (see
e.g. [118]). Choosing the separation At two main aspects have been taken considered: On the
one hand, estimates of Tiflt for Nijer and the plaquette. These were based on autocorrelation
studies at early stages of the simulations, however, when the statistical basis was still small
and autocorrelation times were difficult to measure. The other aspect was the overall number
of produced gauge configurations versus available computing time on the Cray T3E at Jiilich,

where the quark propagators and hadronic correlation functions were calculated.

3.3 Interpolating Operators

At the end of Section 1.3 we saw how the mass of a zero-momentum one-particle state can be
extracted from the exponential decay of a suitable correlation function in Euclidean time. In the
following we show how the left-hand side of Eq. 1.31 can be calculated on the lattice, so that we
can obtain the particle mass from a fit of appropriate exponential functions to the lattice data.

In this work we investigate hadronic zero-momentum 2-point correlation functions of the form

(O()(0)) = 3~ (0/0(x,7).1(0,0)[0), (3.8)

X
where the spatial Fourier integral of Eq. (1.31) has been replaced by a discrete sum over the
spatial lattice sites and <> is understood as the ensemble average. More specifically, for the

source J(z) and the sink O(x) we use the flavor non-singlet meson and baryon octet local
interpolating fields (z = (x, 7))

P(z) = q(z)vsq(x) (pseudo-scalar) (3.9a)
V(@) = q()ruala) (vector) (3.9)
Au(x) = q(z)v57uq(x) (axial-vector) (3.9¢)

N(2) = eate(] (2)Csan()) gc () (octet baryon) (3.9d)
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where C = 7472 is the usual charge conjugation matrix, and consider the following zero-
momentum 2-point correlation functions (I'()) = (O(7)J(0)):

<Ff> = <PT(7')P(0)> (pseudo-scalar) (3.10a)
(Y = (VI (1) V3(0)) (vector) (3.10b)
<Fiv> = (N(7)N(0)) (octet baryon) (3.10c)

In addition we consider the following pseudoscalar correlators involving the fourth component
of the axial current:

(1) = (Al(7) Au(0)) (3.11a)
(r7) = (Al(7)P(0)) (3.11b)
(D7) = (P(1)A4(0)) (3.11c)

Inserting the operators (3.9) into the correlators (3.10) and (3.11), performing all possible Wick-
contractions (using the fact that the quark propagator is given by {q(y)q(z)) = M~'(y,z)) and
projecting onto zero-momentum states we obtain e.g. the pseudo-scalar correlation function

<PT(T)P(0)> = <ZTr [75M1(070;X,T)75M1(x,7’;0,0)]>

— <ZT1~[ (x,7;0,0)) M_l(X,T;0,0):|>, (3.12)

where the trace is over spin and color indices and the last equation is due to the relation
My, x) = 75 (M (z,y)) s. (3.13)

Similarly, the vector correlator reads

(Vi) = <ZTr M0, 0, )M <X’“°’0”>

= <Z Tr { (x,7;0,0)) ’}/5’)/kM_1(X,T;O,O)’yk’Y5} > (3.14)

All of the other mesonic 2-point functions are obtained analogously. For details on the calculation
of the baryonic nucleon correlator see Refs. [12] or [119].

3.4 Wuppertal Smearing

In lattice simulations, operator smearing is essential for achieving ground state dominance before
the signal is lost in the noisy large time limit. The smearing of the local operators (3.9), acting
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as source and/or sink in Eq. (3.8), can be implemented by directly smearing the source and sink
of the quark propagator M1 (see e.g. Eq. (3.12)). To this end we employ the approximately
Gaussian Wuppertal smearing [120] at the source only (Is) or at both source and sink (ss). We

start with a point source?, qﬁéo) (x) = 0xxq, &t X = X¢ in timeslice 7 = 0, and apply the following

iterative scheme to create a smeared source: Define qﬁéN) (x) = ¢o(x), and forn =0,1,...,N—1
let

1

(n+1) _
% (x) = 1+ 6

3
0" (x)+ay (Uk(x, 0)¢8" (x + k) + Ul (x — k, 0)g{"” (x — 12))] :
k=1

(3.15)

The initial point source is thus smeared by N times adding to each lattice site the respective
contributions from its six spatial neighbors with relative weight «, in a gauge invariant way.

We then solve
ZM(X,O;y,T)S(y,T) = ¢0(X) (316)
Yy, T

for S, where M is the Wilson quark matrix of Eq. (1.46), to obtain the “local-smeared” propa-
gator

S(y,m) =D M~ (y,7:x,0)¢0(x) (3.17)

describing the propagation from a smeared source in timeslice 0 to the sink in timeslice 7. To
obtain the fully smeared propagator, SgN) (y), we set Sgo) (y) = S(y,7) and apply the smearing

procedure for n =0,1,..., N — 1 again:

1
Sﬁnﬂ)(Y) “1+6a

3
SM(y)+a) (Uk(}’7 7Sy + k) + Ul(y —k, 7)™ (y — l3))] :
k=1

(3.18)

The pseudoscalar 2-point function, for instance, with a local sink and a smeared source is then
calculated via

(PH(r)P(0))" = <Z T [(S0(3)) 50 (v)] > , (3.19)
y

while the smeared-smeared correlator is obtained from
(P (r)P(0))" = <Z Tr | (S8 ()) s (y)] > . (3.20)
y

The trace is again over spin and color indices. Other ls or ss correlation functions can be
calculated analogously.

In all SESAM/TxL simulations, N = 50 smearing steps were used with a weight av = 4.0. These
parameters were originally optimized for the 163 SESAM lattice and then adopted for the larger
243 TxL lattice, too. In order to adapt these parameters to the smaller lattices considered in

4Spin and color indices are suppressed. The described procedure is carried out separately for each of the 4 x 3
independent spin-color components of ¢g.
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— L=24, a=4.0, N=50
R L=16, a=4.0, N=50
\ ---- L=14, a=3.0, N=40
N\ -- L=12,a=2.0,N=30
----- L=10, a=1.0, N=20

0.8

10™0,0x) / 16™(0,0,0)

Figure 3.1: The parameters IV, « for the Wuppertal smearing scheme were chosen such as to yield
approximately the same wave function shapes for both the smaller lattices and the SESAM lattice (L =
16).

this work we have investigated the effect of smearing on the various volumes. We applied the
smearing procedure described above to point sources ¢(?) (x) of size L3 with L = 24, 16,14, 12, 10.
We set ¢(9)(x) = 0 except for the point at (L/2, L/2, L/2), which we conveniently define as the
origin of the respective lattice and where we set ¢(©) (0) = 1. ®> Applying the smearing procedure
(3.15) to #) with all Uu(x) = 1 we plot the amplitude of the “wave function” #N) along the
(0,0, 1)-direction relative to its maximum at the origin, i.e. |¢p(V)(0,0, z3)[?/|¢™)(0)|2, versus
x3/ L, for various values of N and «. The z3-direction has been chosen arbitrarily. On inspection
of the resulting wave function shapes we select the parameters N and « for our simulated volumes
so as to make the the respective wave function profile look approximately like the SESAM one.
The selected smearing parameters are listed in Table 3.5, while the corresponding wave function
profiles are displayed in Fig. 3.1.

L1012 1416 24 |
al1.0[20]30]40]40
N | 20|30 40 | 50 | 50

Table 3.5: Smearing parameters.

® Again, this is done for every spin-color degree of freedom of ¢.
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3.5 Quark Propagators

The smeared quark propagators (3.17) and hadronic 2-point functions (Is and ss) have been
computed on the Cray T3E at the John von Neumann Institute for Computing (NIC) in Jiilich.
For the flavor non-singlet correlators considered here it is sufficient to calculate just one column of
the quark propagator for a given source vector (see Eq. (3.17)), corresponding to the propagation
from this source to all other lattice sites.

Calculating the quark propagator for a given gauge field configuration from the Wilson quark
matrix M, the quark mass parameter x in M does not need to be identical to the k-value
that was used in the generation of the underlying gauge field. We refer to the former as the
“valence” quark mass parameter, Ky,, and to the latter as the “sea” quark mass parameter,
Fsea-0 Varying s for fixed rgea # 0 is known as the partially quenched approzimation; as it is
computationally less demanding to reduce kv, this approximation is often used to extrapolate
lattice QCD results to physical (valence) quark masses. We have calculated s and ss quark
propagators and hadronic 2-point functions for the Kgea-#val combinations listed in Table 3.6.
In this work we consider only the symmetric case, Kya = Ksea, While the other combinations are
intended for future use.

3.6 Parameterization of the Two-Point Functions

For asymptotically large Euclidean times the 2-point functions (3.8) are dominated by the lowest
mass state in the given channel, i.e.

(0101 1) (21710) _ss»
2M

<(’)(T)J(())> — for 7— oo, (3.21)
where |h) is the appropriate hadronic state with mass M that saturates the correlator at large
7. Calculating the quark propagator on a finite lattice, boundary conditions must be specified;
we choose them to be periodic in the space directions and antiperiodic in time. For any given
hadronic state this leads to an additional contribution from the corresponding anti-state prop-
agating in the opposite direction. In case of a meson the antiparticle is degenerate in mass, so
that we can average the lattice results for the 2-point function at 7 and T'— 7 and account for
the antiparticle’s effect by choosing the parameterization

£(C, M) =C (e*MT i e*M(T*T)> , (3.22)

where M corresponds to the (anti-)particle mass and C' ~ (0|O| h)(h|J|0)/2M to the ampli-
tude. In particular, the pseudoscalar and vector meson masses are obtained from fits of the
local-smeared and smeared-smeared pseudoscalar and vector lattice correlators, <PT(7')P(O)>IS,

(PT(r)P(0))” and (V| (1)Vi(0))", (Vi (r)V&(0))**, to the function (3.22).

In case of the nucleon we anti-symmetrize the correlator at 7 and T'— 7. The backwards propa-
gating negative parity partner N* of the nucleon is an excited state with higher mass, so that
its contribution is exponentially suppressed. The nucleon mass is therefore obtained from fits of

5Valence quarks are those which appear in external states, while sea quarks are those which appear in dynamical
loops.
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LB ke [T WG] el [ s | e | oD [ AT
12332

5.32144 | 0.1665 | 14332 | 0.1660 | 0.1662 | 0.1665 | 0.1667 | 0.1670 -
16332

0.1580 | 16332 | 0.1580 | 0.1590 | 0.1596 | 0.1600 | 0.1604 -
0.1590 | 16232 | 0.1580 | 0.1590 | 0.1596 | 0.1600 | 0.1604 -

5 0.1596 | 16332 | 0.1580 | 0.1590 | 0.1596 | 0.1600 | 0.1604 -
0.1600 | 16332 | 0.1580 | 0.1590 | 0.1596 | 0.1600 | 0.1604 -
0.1560 | 16332 | 0.1560 | 0.1570 | 0.1575 | 0.1580 | 0.1585 -
0.1565 | 16332 | 0.1560 | 0.1565 | 0.1570 | 0.1575 | 0.1580 -
0.1570 | 16332 | 0.1555 | 0.1560 | 0.1565 | 0.1570 | 0.1575 -
10332 | 0.1555 | 0.1560 | 0.1565 | 0.1570 | 0.1575 | 0.1580
12332 | 0.1555 | 0.1560 | 0.1565 | 0.1570 | 0.1575 | 0.1580
“ 6 0.1575 | 14332 | 0.1555 | 0.1560 | 0.1565 | 0.1570 | 0.1575 | 0.1580

16332 | 0.1555 | 0.1565 | 0.1570 | 0.1575 - -

24340 | 0.1555 | 0.1560 | 0.1565 | 0.1570 | 0.1575 | 0.1580
12332
14332
16332
24340

0.1580 0.1555 | 0.1560 | 0.1565 | 0.1570 | 0.1575 | 0.1580

Table 3.6: Combinations of Kge, and kv, for which quark propagators and hadronic 2-point functions
have been computed.

the local-smeared and smeared-smeared lattice correlators (N (T)N(O)ys, (N(1)N(0))™ to the
single exponential
fr(C, M) = Ce M7, (3.23)

A useful parameter to control the contribution of excited states to the observed signal is the
effective mass Mg, which for mesonic states is computed iteratively from the implicit equation

(O(1)J(0)) e Men(T) | o= (T—7)Megt(7)

(Ot + 1)J(0)) e CFDMea() 4 o= (T—7—1)Mea(r) (3.24)
For the nucleon it is simply defined as the logarithmic derivative
O(r)J(0
Mg (1) = log LO(n7(0) (3.25)

(O(T +1)J(0))

The effective mass is a measure for the local exponential decay of the correlator; for 7 — oo it
is expected to converge to the ground state mass M. The onset of a plateau in Mg (7) thus
represents an important criterion for the choice of a lower boundary for the fitted time interval.

In the following we will denote the pseudoscalar mass and amplitude from a fit of <PT(T)P(O)>IS
to (3.22) by MY and C%, those from a fit of <A£(7’)P(O)>sS by M3 and C%’p, and so on.
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Amplitudes for local source and sink (Il) can generally be obtained from ls and ss amplitudes
according to the factorization formula

Cls)2
ot = 3.26
- (3.26)
The definition of the pseudoscalar decay constant on the lattice is (for p = 0)

A (0[A4| PS) = MpgFps, (3.27)

where Z4 is a renormalization constant. Using Eq. (3.26) and the asymptotic relation (3.21),
the unrenormalized decay constant can e.g. be obtained from

Fps 2C% .
=4/ 4 g 2
Mpsg = Ca Mp CSS’ (3.28)

where the pseudoscalar mass Mpg = M} is taken from a fit of (PT(7)P(0))*". Alternatively it
can be calculated from e.g.

F 1|CY 1 CSS C 1 CSS 2
DS _ |4 + : (3.29)
Z A 2 2 \ /Css A /CSS Mpg
where this time the pion mass Mpg is taken to be the average
1
Mps = ¢ (M;S+M38+MAP+ME+MAP+M§A). (3.30)

Another quantity that can be obtained from pseudoscalar correlation functions is the quark mass
as defined via the PCAC relation on the lattice,

Mps Z4 (0|A4| PS)
> Zp (0|P|PS)

(3.31)

amg = —
In practice we calculate the unrenormalized quark mass according to

Mps [CY  MpsCY [CF
anmq = T Cij:l) 2 CZS 01545, (332)

where the renormalization constant is defined as Z, = Zp/Z4 and the pseudoscalar mass is
obtained from

(Mfs + M+ MY+ Mjf) . (3.33)

AN

Mps =

3.7 Fitting Procedure

Let N = Ncont be the number of gauge configurations selected from a MC time-series for which we
calculate the quark propagator M ! (see Section 3.1). On every configuration U,, n =1,..., N,
we compute the desired local-smeared and smeared-smeared hadronic 2-point functions

T = ZO(X, T)J(0,0)|Un, r=1,....T, (3.34)
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where in each time-slice we sum over the space-like coordinates to project onto the zero-
momentum state. The correlator (I';) = (O(7)J(0)) is then the ensemble average over the
individual time-slices,

Tr) ==Y Try, 7=1,...,T. (3.35)

In order to obtain the mass M and amplitude C of a hadronic state we fit the averaged correlator
(I';) in the range [Tmin, Tmax] to the function

C (e_MT + e_M(T_T)) for mesons, and
Ce Mt for baryons
by minimizing the y2-function
X2 = Z (<FT> - fT(C, M))Q;—I'«FT’) - fT’(Cv M)): (3'37)
where the covariance matrix
1 N
Qrp = ———— F‘rn - 117’ FT/TL - FT’ .
= N -1y 2= T = (0) (Form = (T7) (3.38)

n=1

characterizes the correlations between the time-slices. The minimization itself is done with the
MINUIT package [122] from the CERN library [123]. In order to estimate the errors in the fit
parameters C;, M we use the jackknife method described in the next section.

3.8 Error Analysis

Let us consider a sample of N measurements of a primary quantity X (N = Ny and X =T,
say). From the original sample X, Xo,..., Xy we create N, = N/b subsamples with N — b
elements each, where the k-th subsample is obtained from the original sample by leaving out
the b elements (block) X(x—1)p41;-- -, Xko- Then, if the k-th block average is given by

b
1
(X)) = 5 ZX(k—l)b+i7 k=1,..., Ny, (3.39)
i=1

the average of the k-th subsample is

(X) = N, Z (X)) = JbZXi, (3.41)
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is identical to the usual sample mean that serves as an estimate of the true population mean pu.
The variance of the resampled statistics with blocksize b is defined as

Ny

SEN =t Y (g - () (3.42)
k=1

and agrees with the usual sample mean for b = 1:

) N-1 2 1 < 2 2
SN === 2 (W0 —0) = gy L K- (P =8N 3a)
k=1 i=1

If the sample elements are statistically independent, S7 /N is a good estimate of the true variance
o?/N. If, on the other hand, the data are correlated, then the true variance o2 is given by (see
Section 3.2)

o2 ~ 218 52 (3.44)

int

The correlation between the sample elements can be eliminated by choosing the blocksize b
large enough (b > Tifft) such that Sg — o2, An appropriate blocksize b may be found self-
consistently without any prior knowledge of 7,y by plotting the b-dependence of Sg (or Sp) and
observing where it becomes independent of b. In this way one can even obtain an estimate of

the autocorrelation time 7% using the relation”

int

Sy

o2 for b large. (3.45)
1

X ~
2Tint ~

Suppose now we want to estimate the mean and error of a secondary quantity y, i.e. of a function
of the primary quantity X (the parameters C' and M from a fit to a correlator, say). The best
estimate of a secondary quantity is (y) = y((X)), not (y(X)). A robust error estimate for
(y) can be obtained by calculating y on the N, subsample means (3.40), yielding the jackknife
estimators

Yk) = y(<X>(k))7 k=1,..., Ny, (3.46)
with an average
1 &
W =5 kz_ly(k)- (3.47)

The variance of the jackknife estimators is obtained in analogy to (3.42) from

Sy/N = N, Z (y(k) <Z/>) . (3.48)
k=1

For large enough b we take S,/v/N as an estimate of the standard error o/v'N of (y).

"This is usually a “remnant” autocorrelation time in the sense that the considered sample elements (actually
configurations) are already separated by a number of HMC trajectories. To obtain the “full” autocorrelation
time, 75, has to be multiplied by this separation, ANcont (see Section 3.1).
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Light Hadron Spectroscopy

In this chapter we present the main results of this work. We will describe in detail how we have
obtained the light hadron masses by fitting the corresponding mesonic and baryonic two-point
functions to the parameterizations introduced in the previous chapter. The resulting masses
(before chiral or continuum extrapolation) of the pseudoscalar (pion) and vector (rho) mesons
and of the nucleon are given. We also present results for the (unrenormalized) pseudoscalar decay
constant and the bare PCAC quark mass. The Sommer parameter r( is used to set the physical
scale. After a discussion of the role of spatial Polyakov-type loops in finite volume we will
examine various “naive” parameterizations of the finite-size mass shifts motivated by Liischer’s
formula and the observations made by Fukugita et al.. We will then check on the validity of
available theoretical formulae from effective field theory in the parameter regime covered by our
simulations. The issue of infinite-volume extrapolations will be discussed. Finally we will exploit
the volume-independence of the PCAC quark mass to check on the importance of discretization
errors in our simulations.

4.1 Static Quark Potential

We calculate the static quark potential in order to determine the Sommer scale [74] that we use
to set the scale in our simulations. For the SESAM/TxL simulations at § = 5.5 and 8 = 5.6
the Sommer radii Ry = ro/a as listed in Table 4.1 have been determined by G. Bali; they have
previously been published in Refs. [124] and [125], respectively. Since the lattice-size dependence
of Ry is assumed to be small and as we want to have a common length scale for the different
simulated lattice volumes at fixed gauge coupling and quark mass, we adopt the Rg-value from
the largest available lattice, respectively, also for the smaller ones.

In order to determine the Sommer radius for the 163 lattice at (3,x) = (5.32144,0.1665) we
measure the Wilson loops W (R, 7) with temporal extents of up to 7 = 8 and spatial separations
of up to R = v/3 - 7 ~ 12 lattice units on the same configurations that we use for spectroscopy.
We employ the modified Bresenham algorithm of Ref. [126] to include all possible lattice vectors
R to a given separation R = |R|. Using the spatial APE smearing as described in Ref. [127],
we apply

link — a x link + staples (4.1)

to the gauge links of each configuration before actually calculating the Wilson loops. We use
a = 2.3 and perform N = 26 iterations, followed by a projection back into the gauge group [128].
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25 !
L o0 R=11.09
L =0 R =9.38 1
N o0 R =8.06 ]
B A A R = 648 7]
oL << R=5.00 ]
— B O oo Rosae ]
: L T S R = 200 7
O e
3 T b _
E R @
; N e B |
,l:): 15 L e QL N e ]
T B M e g 1
; | T A B A N
8 | B VRS UUT B TR S PR Qoo 7
e Gt P e G, —
L Bttt e SRRSO B 8
L | | | | i
0.5
1 2 3 4

Figure 4.1: The effective potential, Vg, at (8,k) = (5.32144,0.1665) on the 163 lattice, for selected
values of R in the range 7 = 1,...,4. Larger values of 7 are dominated by statistical noise.

The asymptotic behavior of the static potential V (R) for sufficiently large times 7 is given by
W(R,7) ~ C(R) e VT, (4.2)
so that one can define an effective “local” potential

W(R,T)

of (R, 7) =In —————.
Vesr (1, 7) "W(R T+ 1)

(4.3)

Figure 4.1 shows the 7-dependence of the effective potential Veg(R,7) for various values of
R. At 7 = 3 the effective potential is already largely independent of 7 while the statistical
errors are moderate, so that we determine V(R) from a single exponential fit in the range
[Tmin, Tmax] = [3,4]. As can be seen from Figure 4.2, the resulting values for V(R) show the
expected behavior. We observe no indication of string breaking and therefore fit the data in the
range [Rmin, Rmax] = [2.5, 8] to

V(R) =V — % +oR. (4.4)

The upper boundary of the fitted range has been set to Rpax = 8 because up to this value the
data correspond nicely to the expected linear behavior, with small statistical errors. With Ryax
held fixed the lower boundary has been determined by investigating the Rpin-dependence of rg
for various values Ry, = 2. (Below this value we observe a violation of rotational symmetry due
to the finite lattice spacing.) From the fit we obtain the following parameters for the potential

!The quality of the statistical signal does not allow to extend the upper boundary of the fitted range beyond
Tmax = 4.
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1.5+

0.5

Figure 4.2: The static quark potential obtained from Wilson loops at (8, k) = (5.32144,0.1665) on the
163 lattice.

(in lattice units):

Vo = 0.8378(87), e =0.440(18), o = 0.08187(97). (4.5)

The Sommer scale Ry, which is defined through the force between two static quarks at some
intermediate distance,
R? av

=1. 4,
o 65, (4.6)

R=Ro

is obtained from these parameters according to

Ro— /20 —¢ (4.7)
g

Our result for the simulation at (5,x,L) = (5.32144,0.1665,16) is given in Table 4.1. The
quoted uncertainty corresponds to the statistical error.

In various nonrelativistic potential models the definition (4.6) consistently amounts to a physical
value of 79 = 0.5fm [74]. We use this value to set the scale in our simulations. The resulting
physical values for the momentum cut-off a~!, the lattice spacing a and the box size La are
displayed in Table 4.1. As expected, the smallest simulated 8 of 5.32144 is associated with the
largest lattice spacing (0.13 fm, corresponding to a relatively low momentum cut-off of 1.52 GeV).
While we have to look out for potentially large O(a) discretization errors at this coupling, the
physical volume is the biggest of all simulated volumes. With a linear extension of slightly more
than 2 fm it is comparable in size with the TxL lattice at (3, k) = (5.6,0.1575).
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’ Ié] | Ksea | L3T | ro/a |a_1 [GeV] | a [fm] | La [fm)] ‘
5.32144 | 0.1665 | 16332 | 3.845(37) | 1.517(15) | 0.1300(13) | 2.081(21)
0.1580 | 1632 | 4.027(24) | 1.5893(95) | 0.12416(74) | 1.987(12)
0.1590 | 16332 | 4.386(26) | 1.731(11) | 0.11400(68) | 1.824(11)
5 0.1596 | 16°32 | 4.675(34) | 1.845(14) | 0.10695(78) | L.711(13)
0.1600 | 16332 | 4.889(30) | 1.929(12) | 0.10227(63) | 1.636(10)
0.1560 | 16°32 | 5.104(29) | 2.014(12) | 0.09796(56) | 1.5674(89)
0.1565 | 16°32 | 5.283(52) | 2.085(21) | 0.09464(93) | L.514(15)
0.1570 | 1632 | 5.475(72) | 2.161(29) | 0.0913(12) | 1.461(20)
>0 16332 | 5.959(77) | 2.352(31) | 0.0839(11) | 1.343(18)
01575 1 94340 | 5.802(27) | 2.325(11) | 0.08486(39) | 2.0367(94)
0.1580 | 24340 | 6.230(60) | 2.459(24) | 0.08026(78) | 1.926(19)

Table 4.1: Sommer scale and resulting momentum cut-off, lattice spacing and lattice size for ry = 0.5 fm.

4.2 Light Hadron Masses

As described in Section 3.6, hadron masses and decay constants can be obtained by fitting
the simulated mesonic and baryonic two-point functions to the parameterizations (3.22) and
(3.23), respectively. In doing so it is important to tune the fitted interval in such a way as to
avoid systematic errors coming e.g. from excited state contributions at small Euclidean times.
Therefore the lower boundary of the fitted range, mnin, should correspond to the onset of the
asymptotic region in which these contaminations can be neglected and the desired ground state
dominates. The upper boundary Tax, on the other hand, is normally kept fixed at 7'/2 for
mesonic states. (Due to the symmetrization of the mesonic correlators at 7 and T'— 7 an upper
boundary Tiax > T'/2 does not lead to any further improvement.) In case of the nucleon we
choose Tax = T/2 — 1 by default in order to avoid potential contaminations coming from the
backwards propagating anti-particle. Both in the mesonic and the baryonic case it may happen,
however, that due to statistical fluctuations and hence large error bars the correlator at large
is compatible with zero. In such cases we sometimes have to shift 7.« to smaller values of 7 in
order to avoid potential systematic errors from this source.

In practice we consider three different criteria to find the optimal fit interval for a given correlator.
First we examine a plot of the effective mass M g as defined by (3.24) for mesons and (3.25)
for the nucleon. Since Mg is a measure for the local exponential decay of the 2-point function,
a plateau is expected to emerge when ground state dominance is reached. The convergence to
the asymptotic mass value can be from above or from below depending on the choice of the
interpolating source and sink operators J and O. Only for Of = J is the correlation function
positive definite and the convergence is monotonic and from above. In this work this is the case
for all the correlators used for the determination of the pseudoscalar and vector meson masses
and the nucleon mass. The upper left plot in Figure 4.3 shows as an example the effective masses
for the pseudoscalar correlator at (3, x, L) = (5.6,0.158,16). The contribution of excited states
is most obvious at small 7 where M g decreases rapidly before flattening out. In the flat plateau
region one assumes that, within the numerical precision, only the lowest mass contribution is
significant. In case of a finite statistical sample, however, correlated statistical fluctuations occur
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Figure 4.3: Plots used for the determination of the optimal 7-intervals in the correlator fits (here for
(PT(1)P(0))™ at (B,k,L) = (5.6,0.158,16)). The plots show, clockwise, the effective mass Meg(7), the
fit result M and the x?/dof-value of the fit versus 7in, and the standard error of M versus the jackknife
blocksize b. The horizontal lines indicate the fit result, the goodness of fit and the standard error of the
result, respectively, for the chosen 7-interval (here [6,15]) and blocksize (here b = 8). In the upper left

graph we also plot, for comparison, the effective mass from the local-smeared correlator <PJr (T)P(O)>l8.
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(PIOPO)™ | (WEOV0)™ | (N()N(0)™

B | Rsea | IPT | 0] [oinTmax) | X3/Af | [Tiin,Tinax] | X2/dF | [Tonin,Tma] | x2/dE
12332 | 7 4,14 0.89 6,14 0.88 4,12 0.57

5.32144 | 0.1665 | 14332 | 7 8,14 2.48 4,14 1.51 4,11 0.80
16332 | 7 3,15 1.16 3,15 1.36 3,14 1.34

0.1580 | 16332 | 7 6,15 0.87 6,15 1.05 4,14 0.95

0.1590 | 16332 | 8 4,15 1.09 4,15 0.77 4,14 0.88

55 0.1596 | 16332 | 5 4,15 1.24 4,15 1.08 4,14 1.21
0.1600 | 16332 | 6 7,15 1.78 4,15 0.75 6,14 0.80

0.1560 | 16332 | 5 4,15 0.43 4,15 0.59 4,14 0.60

0.1565 | 16332 | 7 11,15 1.96 7,15 1.56 7,14 0.85

0.1570 | 16332 | 7 4,15 0.45 6,15 0.50 6,14 0.91

10332 | 9 6,15 1.90 12,15 0.79 6,14 0.72

12332 1 9 8,15 0.90 6,15 0.37 7,14 1.47

0.1575 | 14332 | 6 8,15 1.42 8,15 0.41 5,14 0.58

56 16332 | 4 7,15 0.40 9,15 0.61 7,14 0.99
24340 | 7 7,19 0.81 7,19 1.31 7,18 0.40

12332 | 3 6,15 1.07 6,15 1.31 5,14 0.94

14332 | 5 6,15 1.54 7,15 0.85 7,14 0.60

0-1580 16332 | 8 6,15 0.51 10,15 1.72 4,14 0.34

24340 | 9 6,19 1.08 7,19 1.54 10,18 0.45

Table 4.2: Fit parameters for the fully smeared pseudoscalar, vector and nucleon correlators. b denotes
the blocksize for the jackknife, [Timin, Tmax] i the fitted interval and x?/df indicates the fit quality.

also in the plateau region. The effective mass plot in Figure 4.3 demonstrates that the same
asymptotic value is reached faster by the fully smeared correlation function than by the local-
smeared correlator, which is usually reflected in smaller values for 7y,;,. While this is exactly the
desired effect it comes at a prize, though, because the statistical fluctuations around the plateau
mass and the error bars are in general larger in case of the fully smeared correlator. With the
exception of the pseudoscalar correlator the statistical noise in the data generally grows with
7, until it may eventually dominate over the signal. This effect can also be controlled via the
effective mass plot and accounted for by adapting mnax appropriately.

The second control parameter used to find a suitable Ty, is the fit parameter M itself. Plotted
against Tyin (for fixed Tnax) it should, within the statistical uncertainty, show no bias with
respect to the choice of Tpin. (Often, however, due to the statistical noise at large values of
7, a plateau can only be identified at intermediate values of 7,in.) Finally, the third criterion
is supplied by the corresponding values of x2/dof which, ideally, should exhibit a distinctive
minimum near 1.

Besides the boundaries of the fit interval we also tune the blocksize b for the jackknife as intro-
duced in Section 3.8. Plotting the standard error o (M) versus b we look for a plateau indicating
where the error becomes independent of the blocksize. Due to the fact that our samples are
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| B | kea | IPT | MpsL | Mps/My | Mps | My | My |
12332 | 3.18(8) | 0.521(23) | 0.2648(67) | 0.508(26) | 0.788(26)

5.32144 | 0.1665 | 14332 | 3.6(1) | 0.497(20) | 0.2577(87) | 0.518(12) | 0.779(16)
16332 | 4.42(7) | 0.552(11) | 0.2760(42) | 0.4999(78) | 0.727(11)

0.1580 | 16332 | 8.85(6) | 0.8506(31) | 0.5534(39) | 0.6506(46) | 1.026(18)

0.1590 | 16332 | 7.09(4) | 0.8010(53) | 0.4429(26) | 0.5529(54) | 0.8718(78)

5 0.1596 | 16332 | 5.89(4) | 0.7512(51) | 0.3682(27) | 0.4902(52) | 0.7640(75)
0.1600 | 16332 | 4.89(5) | 0.6725(93) | 0.3058(34) | 0.4547(61) | 0.703(10)

0.1560 | 16332 | 7.15(4) | 0.8330(16) | 0.4469(23) | 0.5365(36) | 0.8533(62)

0.1565 | 16332 | 6.32(6) | 0.7912(72) | 0.3948(38) | 0.4989(54) | 0.785(10)

0.1570 | 16332 | 5.52(5) | 0.7627(58) | 0.3452(29) | 0.4527(52) | 0.7095(90)

10332 | 4.92(6) | 0.838(30) | 0.4919(55) | 0.587(20) | 1.042(20)

12332 | 4.3(1) | 0.724(11) | 0.3576(89) | 0.494(12) | 0.817(16)

0.1575 | 14332 | 4.27(6) | 0.691(11) | 0.3048(44) | 0.4413(66) | 0.719(16)

56 16332 | 4.49(6) | 0.6952(99) | 0.2806(35) | 0.4036(68) | 0.6254(89)
24340 | 6.64(6) | 0.7010(62) | 0.2765(26) | 0.3944(38) | 0.5920(75)

12332 | 4.6(1) | 0.722(20) | 0.387(12) | 0.535(17) | 0.882(25)

14332 | 4.13(8) | 0.630(13) | 0.2949(60) | 0.4677(90) | 0.717(19)

0-1580 1 16339 3.72(8) | 0.627(21) | 0.2325(51) | 0.371(13) | 0.622(12)

24340 | 4.78(8) | 0.566(17) | 0.1991(33) | 0.3519(86) | 0.500(12)

Table 4.3: Masses of the pseudoscalar and vector mesons and of the nucleon in lattice units.

finite, o(M) does of course show statistical fluctuation even when it does not display an overall
tendency to rise with increasing 0. In this case we assume that the elements of the chosen
subsample are, at least with regard to the considered observable, statistically independent. If,
on the other hand, we observe a significant initial increase of the error on top of the fluctua-
tions and before saturation, we take this as a hint that the elements of the sub-sample are still
correlated, meaning that the separation in MC time between the selected gauge configurations,
At, has been chosen too small for the configurations to be truly independent. This remnant
autocorrelation time is however eliminated by the blocked jackknife.

Figure 4.3 shows examples of the plots that we have used to determine the boundaries of the fit
intervals, Tmin and Tmax, and the blocksize b for the jackknife. The selected values for the fully
smeared pseudoscalar, vector and nucleon 2-point functions are displayed in Table 4.2, together
with the y2/dof-values the fits. The numbers for the corresponding Is correlation functions and
for the pseudoscalar correlators (3.11) (ss and ls) are listed in Tables C.1-C.3 in Appendix C.
Although a priori the onset of plateau formation is not independent of the considered correlator
it has always been possible to find—at a given 3, k and L— a universal blocksize b such as to
account for the errors of all the respective hadron masses together.

The masses (in lattice units) of the pseudoscalar and vector mesons and of the nucleon are given
in Table 4.3. Having checked that the masses obtained from the local-smeared and the fully
smeared correlators are consistent we only quote the values obtained from the latter here and
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| B8 | ksa | LPT | Lalfm] | (romps)? | mps[GeV] | my[GeV] | my[GeV] |
12332 [ 1.56(2) | 1.037(57) | 0.402(11) | 0.771(40) | 1.195(42)

5.32144 | 0.1665 | 14332 | 1.82(2) | 0.982(68) | 0.391(14) | 0.786(20) | 1.182(26)
16332 | 2.08(2) | 1.126(43) | 0.4188(75) | 0.759(14) | 1.104(20)

0.1580 | 16332 [ 1.99(1) | 4.97(20) | 0.8795(81) | 1.0340(95) | 1.631(30)

0.1590 | 16332 [ 1.82(1) | 3.77(12) | 0.7666(64) | 0.957(11) | 1.509(16)

o5 0.1596 | 16332 [ 1.71(1) | 2.96(10) | 0.6793(70) | 0.904(12) | 1.410(17)
0.1600 | 16332 | 1.64(1) | 2.235(85) | 0.5901(75) | 0.877(13) | 1.356(21)

0.1560 | 16332 | 1.567(9) | 5.20(18) | 0.9002(69) | 1.0807(94) | 1.719(16)

0.1565 | 16332 | 1.51(1) | 4.35(25) | 0.823(11) | 1.040(15) | 1.637(27)

0.1570 | 16332 | 1.46(2) | 3.57(21) | 0.746(12) | 0.978(17) | 1.533(28)

10332 | 0.849(4) | 8.40(59) | 1.144(14) | 1.365(48) | 2.424(47)

12332 | 1.018(5) | 4.44(48) | 0.832(21) | 1.149(27) | 1.901(38)

0.1575 | 14332 | 1.188(5) | 3.22(18) | 0.709(11) | 1.026(16) | 1.671(39)

>0 16332 | 1.358(6) | 2.73(12) | 0.6524(86) | 0.938(16) | 1.454(22)
24340 | 2.037(9) | 2.654(90) | 0.6429(67) | 0.9171(98) | 1.377(19)

12332 | 0.963(9) | 5.80(88) | 0.951(30) | 1.316(44) | 2.167(66)

14332 | 1.12(1) | 3.37(28) | 0.725(16) | 1.150(25) | 1.763(50)

015801 16339 | 1.98(1) | 2.10015) | 0.572(14) | 0.912(33) | 1.530(32)

24340 | 1.93(2) | 1.539(74) | 0.4896(94) | 0.865(23) | 1.228(31)

Table 4.4: Masses of the pseudoscalar meson, the vector meson and the nucleon in physical units (using
ro = 0.5fm).

in the following. The quoted errors are statistical in nature and of the order of one percent.
Table 4.3 also shows Mpg(L)L, the linear box size in units of the pseudoscalar correlation length
1/Mpg(L), where Mpg(L) is the pion mass in the given finite volume. It should be borne
in mind that for sub-asymptotic volumes this value is in general different from MpgL, where
Mpg is the pseudoscalar mass in infinite volume. The ratios Mpg/My are a measure of the
simulated quark mass, respectively.? At (3, k) = (5.32144,0.1665) we attain our lightest quark
mass, with Mpg/My being close to the vector meson decay threshold of Mpg/My = 0.5. Using
ro = 0.5 fm to set the scale the hadron masses of Table 4.3 translate into the physical values listed
in Table 4.4.3 It shows also the physical box sizes La, where the lattice spacings a have been
determined on the largest available lattice, respectively (see also Table 4.1). The dimensionless
quantity

M, = (rompg)? (4.8)

2The physical value is m/m, = 0.178.

3 Although the Sommer scale is in general quark mass dependent we neglect this dependence here because we
have only one quark mass at 8 = 5.32144 (and because we assume that the dependence is weak). The dimensionful
quantities in Table 4.4 have been calculated using 7o as obtained on the largest lattice for the respective quark
mass, i.e. without chiral extrapolation. A chiral extrapolation might yield slightly larger values for ro than
those given in Table 4.1. This would mean that quantities with the dimension of a length (a, La) are somewhat
overestimated, whereas those with dimension of a mass (mps, mv, my) are rather underestimated. See Ref. [98]
for a recent discussion of the quark mass dependence of rg.
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B | ke | T | EJza | R/Za | ZuMy
12332 | 0.062(10) | 0.058(15) | 0.0106(33)

5.32144 | 0.1665 | 14332 | 0.0757(56) | 0.0774(73) | 0.0152(18)
16332 | 0.0843(62) | 0.0771(44) | 0.0155(12)

0.1580 | 16332 | 0.1073(42) | 0.1062(49) | 0.0821(35)

0.1590 | 16332 | 0.0945(23) | 0.0930(27) | 0.0544(12)

5 0.1596 | 16332 | 0.0815(16) | 0.0766(14) | 0.03724(81)
0.1600 | 16332 | 0.0750(23) | 0.0746(39) | 0.0279(15)

0.1560 | 16332 | 0.0843(19) | 0.0823(21) | 0.0620(11)

0.1565 | 16332 | 0.0805(18) | 0.0757(20) | 0.0467(15)

0.1570 | 16332 | 0.0726(16) | 0.0704(18) | 0.0391(15)

10332 | 0.0284(30) | 0.0256(37) | 0.0209(32)

12332 | 0.0429(34) | 0.0425(31) | 0.0249(19)

0.1575 | 14332 | 0.0566(30) | 0.0559(44) | 0.0261(22)

50 16332 | 0.0626(26) | 0.0640(34) | 0.0275(16)
24340 | 0.0646(18) | 0.0623(19) | 0.02680(68)

12332 | 0.022(12) | 0.016(10) | 0.0113(88)

14332 | 0.0233(32) | 0.0216(34) | 0.0099(17)

0-1580 1 6359 0.0469(26) | 0.0456(34) | 0.0141(11)

24340 | 0.0602(39) | 0.0578(34) | 0.0157(11)

Table 4.5: The pseudoscalar decay constant and the PCAC quark mass. FSS) /Z 4 has been obtained
according to Eq. (3.29), FF(,zs) /Z 4 according to Eq. (3.28).

is another measure of the quark mass, since for m, — 0 the pion mass behaves like my o< |/mq
[78]. At the physical strange quark mass it gives M, ~ 3.1. For those of our parameter sets
where we have simulated several lattice volumes the value of M, ranges between M, =~ 2.65 and
M, =~ 1.13, corresponding to about 85 and 36% of the value for the strange quark mass.

Table 4.5 shows our lattice results for the unrenormalized pseudoscalar decay constant Fpg/Z4
as obtained in the two different ways introduced in Section 3.6. Within the statistical errors (of
comparable size) the two methods yield consistent results. The normalization of the pseudoscalar
decay constant is such that the physical value is f; = 92.4MeV. The bare PCAC quark mass
ZyM,, where Z, = Zp/Z 4 is the multiplicative renormalization factor, is given in the last column
of Table 4.5.

4.3 Polyakov Loops

An investigation into finite-size effects requires data from a number of simulations with different
lattice volumes, and with respect to the computational cost it is of course preferable to use rather
small lattices. However, since we want do do spectroscopy in the hadronic zero-temperature
phase of QCD, we should make sure that the lattices we investigate are not too small, because in
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B8 | ke | PT | (ReR) | (ImP) |
12332 | -0.00056433(3) | -0.0003573(2)

5.32144 | 0.1665 | 14332 | -0.0000179(2) | -0.00003209(4)
16332 | 0.00012251(3) | -0.00021856(4)

10332 | -0.0131032(3) | -0.006341(8)

12332 | -0.0029148(3) 0.0012405(6)

0.1575 | 14332 | -0.00083854(3) | 0.00008748(3)

16332 | 0.00020948(3) | 0.00004254(5)

5.6 24340 | -0.000078415(8) | -0.00009462(1)
12332 | -0.003798(2) 0.005014(3)

14332 | -0.00135725(6) | 0.0003214(3)

0-1580 1 6339 -0.00037040(4) | -0.00022400(4)

24340 | -0.00010810(2) | 0.00012503(1)

Table 4.6: Ensemble averages of the mean Wilson line in z-direction.

this case we would expect the generated gauge fields to resemble more those at finite temperature.
In the absence of dynamical quarks, i.e. in quenched QCD, the expectation value of the Polyakov

loop, which is defined as
T
1
(P) = <L32TrH U4(x,7')> ,
X T=1

is zero in the confined phase, while in the deconfined phase (P) # 0. Therefore in pure gauge
theory (P) is an order parameter for the deconfining phase transition. This is due to the
global Z(3) symmetry of the pure SU(3) gauge theory which is spontaneously broken at the
phase transition.* In full QCD the Polyakov loop is not an order parameter because the Z(3)
symmetry of the gluonic action is explicitly broken by the quark action, so that (P) is not exactly
zero in the hadronic phase. In our simulations it is not the time extent T which is varied, but
the spatial lattice size L. Due to the space-time symmetry of the Euclidean metric, however,
similar considerations also apply to Polyakov-type loops in the spatial directions (which we also
call Wilson lines). Let us, for definiteness, consider the mean Wilson line in z-direction, which
is defined configuration-wise as

(4.9)

L
1
Pz == ﬁ Z Tr H Ug(xl,.%'g,l'g,T). (410)

r1,72,7  x3=1

As can be seen from Table 4.6, the expectation values (P;) for all GRAL simulations are indeed
significantly different from zero, even on the largest lattices. While for the larger lattices the

4A Z(3) transformation is applied by multiplying all links originating from a given x, = const. hyperplane
in direction p by an element z € Z(3). The group Z(3) is the center of SU(3), i.e. it contains those elements
of SU(3) that commute with every U € SU(3). These elements are explicitly given by the complex numbers
z = e*™/3 L = 0,1,2. The pure gauge action Sg is left invariant by a Z(3) transformation, similarly any
closed (Wilson-type) loop that crosses the x,, = const. plane the same number of times in the positive and in the
negative p-direction. Under a Z(3) transformation of the time-like links on a 7 = const. hyperplane, Polyakov
loops transform according to P +— zP.
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Figure 4.4: Distribution in the complex plane of the Wilson line P, for the different lattices simulated
at (8, k) = (5.6,0.1575). The lines indicate the three Z(3) directions 1, e2™*/3 and e*™/3.

deviation from zero is relatively small it becomes more pronounced as the box size shrinks.
(Re P,) in particular takes increasingly negative values towards the smaller lattice sizes. This
can be understood by looking at the distribution of P,.

Figure 4.4 shows the distribution in the complex plane of P, for the lattice volumes simulated at
(8,K) = (5.6,0.1575). The lines in the plots indicate the three Z(3) directions 1, e*™/3 and e*™/3,
Apart from the L-dependent fluctuations we observe for the larger lattices an approximately
point-symmetric accumulation of the Wilson line around zero. This is reflected in the smallness
of |(P.)| and the corresponding statistical errors at large L (see Table 4.6). The situation is
somewhat different for the smallest, 10® lattice, where the distribution of Wilson lines is shifted
towards the Z(3) directions e2™/3 and e*™/3, which leads to the relatively large negative value
of (Re P;).

The observed behavior of the Wilson line distribution as well as its implications for finite-size
effects in hadron masses have been explained at length by S. Aoki et al. in the context of their
comparative study of finite-size effects in quenched and full QCD simulations [60]. Here we
briefly recapitulate their arguments for our choice of boundary conditions. Let us consider a
meson propagator I'(7) on a lattice of size L with a sufficiently large time extent 7. A hopping
parameter expansion of I'(7) yields a representation of the meson propagator in terms of closed
valence quark loops C going through the meson source and sink. If we denote the corresponding
link factors Tr [ [, U; by P(C) for Polyakov-type loops that wind around the lattice in a spatial
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direction, and W (C) for ordinary Wilson-type loops, the meson propagator can be written as
L(C L(C
—(r(m) =Y kW) + 3 ko (P(C)), (4.11)
C C

where L(C) is the length of the respective loop and the sign factor oy, is equal to +1 for the
periodic spatial boundary conditions used for valence quarks in our simulations. Our observed
distribution of Wilson lines (spatial Polyakov loops) can be understood with the help of the 3-d
Potts model with magnetic field that we recover when we expand the full QCD action first in the
gauge coupling [ and then in inverse powers of the sea quark mass [130]. Introducing the quark
action in QCD is then equivalent to switching on a magnetic field h in the Potts model that
breaks the Z(3) symmetry of the system. Considering the phase of the spatial Polyakov loop as
a spin that can take one of the three possible values 1, 27%/3 4mi/3 the magnetic field aligns
the spins to preferred directions depending on the sign of h: for h = —|h| (corresponding to
antiperiodic spatial boundary conditions for sea quarks) the positive real axis is favored, whereas
for h = +|h| (periodic spatial boundary conditions for sea quarks) the two directions ¢*™/3 and
elmi/3 (pointing towards negative values) are preferred. If we recall that we have used periodic
boundary conditions for sea quarks this explains the plot for L = 10 in figure 4.4. The discussion
above shows, moreover, that in the case of periodic spatial boundary conditions for both sea
and valence quarks the contribution of Polyakov-type loops to the meson propagator (4.11) is
negative. Since mean values of Wilson-type loops are always positive, the two contributions in
(4.11) have opposite sign, which leads to a faster decrease of the correlator and thus to a larger
meson mass.

and e

For fixed sea and valence quark mass this effect grows weaker for increasing lattice size because
the contribution of the Polyakov-type loops decreases on the average. On the other hand, in a
fixed lattice volume with periodic boundary conditions finite-size effects in hadron masses get
increasingly significant both for decreasing sea and valence quark mass. This has indeed been
observed e.g. in Ref. [124], where partially quenched chiral extrapolations of the pseudoscalar
and vector masses were studied for the different kge,-values at 3 = 5.5 and 5.6 (see Table 3.6).
The sea quark mass dependence of the expectation value of the Wilson line can also be seen in
Table 4.6 if one compares at G = 5.6 the value for a given lattice size at Kkgen = 0.1575 with the
corresponding value at rge, = 0.158. We find that in the same volume (Re P,) is more negative
for the larger kgea, corresponding to a smaller quark mass. This leads to a stronger cancellation
of the two terms in (4.11) and hence to a larger finite-size effect in the hadron masses.

For completeness, Figures 4.5 and 4.6 show the distribution of the Wilson line for the simulated
volumes at (3, k) = (5.6,0.158) and (5.32144,0.1665). For the smallest, 123 lattice at (3,x) =
(5.6,0.158) one might suspect a slight deviation from the rotation-symmetric pattern centered
approximately around zero, as it is displayed by the other distributions. For a definite statement
the statistical basis is probably too small, however.

4.4 Volume Dependence of the Light Hadron Masses

Let us now take a closer look at the actual lattice size dependence of our measured hadron masses.
The three parameter sets for which we have simulated several lattice volumes, namely (3, k) =
(5.6,0.1575), (5.6,0.158) and (5.32144,0.1665), are characterized by the quark mass, which in
turn can be expressed in terms of the pion mass via the GMOR relation. Therefore we sometimes
quote the pion mass measured on the largest lattice, respectively, when we refer to a particular
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Figure 4.5: Same as Figure 4.4 for (8, k) = (5.6,0.158).
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Figure 4.6: Same as Figure 4.4 for (8, x) = (5.32144,0.1665).
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Mp
3 Faea | DT | e FpsjzA Rps | Ry | Ry
12332 | 0.34(6) -0.04(3) | 0.02(5) | 0.08(4)
5.32144 | 0.1665 | 14332 | 0.27(2) -0.07(3) | 0.04(3) | 0.07(3)
16332 | 0.26(2) 0 0 0
10332 | 1.4(1) 0.78(3) | 0.49(5) | 0.76(4)
12332 | 0.66(6) 0.29(3) | 0.25(3) | 0.38(3)
0.1575 | 14332 | 0.43(2) 0.10(2) | 0.12(2) | 0.21(3)
16332 | 0.36(2) 0.01(2) | 0.02(2) | 0.06(2)
5.6 24340 | 0.341(10) 0 0 0
12332 | 1.4(8) 0.94(7) | 0.52(6) | 0.76(7)
14332 | 1.0(1) 0.48(4) | 0.33(4) | 0.44(5)
0-1580 | 16339 | 0.30(2) 0.17(3) | 0.05(5) | 0.25(4)
24340 | 0.26(2) 0 0 0

Table 4.7: Ratios of the pseudoscalar mass to the chiral symmetry breaking scale, and the relative
finite-size effects according to Eq. (4.12).

simulation point ((, k) (bearing in mind that it is only a—sufficiently good—approximation to
the true infinite volume pion mass). Hence we investigate the volume dependence of the pion,
rho and nucleon for pion masses of approximately 643 MeV, 490 MeV and 419 MeV in the ranges
0.85fm-2.04 fm, 0.96 fm-1.93 fm and 1.56 fm—2.08 fm, respectively. Although to our knowledge
there is no theoretical prediction of the finite-size effect of the rho resonance we include it in our
empirical analysis.®

Figures 4.7-4.9 show, for the three different quark masses, the pion, rho and nucleon masses in
physical units as functions of the box-size.® Before we go into the details of the fits that are also
shown in the plots, let us first discuss the general features of the data. In Table 4.7 we list the
relative differences of the masses measured at L and Lyax,

My (L) — Mg (Lmax)
M (Lmax) ’

where H = PS,V,N and Lpax = 24 (Lmax = 16) for g = 5.6 (6 = 5.32144). In the plots and
the table we find for both quark masses at § = 5.6 a large variation of the hadron masses over
the considered range of lattice sizes. While the finite-size effects in the pion, rho and nucleon
masses are relatively small if one compares only the two largest lattices at k = 0.1575 (of the
order of a few percent, in case of the pion it is not even significant), they rapidly grow on
the smaller volumes (~ 50-80% at L = 10). The rate of the increase is hadron dependent:
While at large L the pion has the smallest relative finite-size effect, the relative shift in the
pion mass grows strongest with decreasing L, until it exceeds the effect in the rho mass from

Rpu(L) = (4.12)

’Due to angular momentum conservation the decay p — 7 is suppressed on small lattices where the minimum
non-zero momentum 27 /L is large.

5 As we use the same scale ro/a for all lattices at a given (3, k) the conversion to physical units using ro = 0.5 fm
simply amounts to a rescaling of the lattice sizes L by the same constant factor (0.5fm)/(ro/a), while the raw
lattice masses M = am are multiplied by the inverse of this factor.
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Figure 4.7: Box-size dependence of the pseudoscalar and vector meson masses and of the nucleon mass
at (8,k) = (5.6,0.1575). The solid lines correspond to exponential fits to (4.15) with c¢o = mpg, while
the dashed lines represent fits to the power law (4.13) with ¢z = 3. Outside the fitted interval the curves
are dotted.
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Figure 4.8: Same as Figure 4.7 for (3, k) = (5.6,0.158).
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Figure 4.9: Same as Figure 4.7 for (8, k) = (5.32144,0.1665).

L = 12 and that in the nucleon mass from L = 10 downwards. Considering the finite-size
effects at k = 0.158 (corresponding to a lower quark mass) we notice that at a given value
of L the finite-size effects are generally much larger at x = 0.158 than at 0.1575. Again we
observe that the pion is subject to the strongest relative effect in the regime of small volumes.
Finally, at (5, k) = (5.32144,0.1665) (corresponding to the lightest of our quark masses), we find
rather small finite-size effects of only a few percent in the simulated L-range, for all considered
hadrons. In view of the small MpgL values (see Table 4.4) this is rather striking: if the finite-
size effects were a function of MpgL only we would expect the effects at 8 = 5.32144 to match
those on the smaller volumes at 3 = 5.6. On the other hand, due to the large lattice spacing
at # = 5.32144, the simulated boxes are, in physical units, also quite large. Both the pion and
the rho show no clear increase of the finite-size effect towards decreasing box-size, which we
attribute to the smallness of the effect and statistical fluctuations (recall that the simulations
with the smaller lattices at 8 = 5.32144 were affected by sizeable fluctuations). In case of the
nucleon the finite-size effect is more significant. In view of these peculiarities we concentrate
in the following investigations on § = 5.6 and defer a more detailed discussion of the data at
(6, k) = (5.32144,0.1665) to Section 4.4.2.

4.4.1 Simple Parameterizations of the Volume Dependence

In order to investigate empirically the functional form of the box-size dependence of our hadron
mass data we first examine two “naive” parameterizations motivated by the formulae introduced
in Chapter 2. It is important to realize that the formulae of Chapter 2 have their limited range of
validity, respectively, which probably does not coincide with the entire parameter regime spanned
by our simulations. In particular those formulae involving results from chiral perturbation theory
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require rather small quark masses, and Liischer’s asymptotic formula moreover requires large
volumes. As we are first of all interested in the question whether we can find a parameterization
of the finite-size effects that connects small and medium-sized volumes to the asymptotic regime
we defer a more detailed discussion of the applicability of the ChPT-related formulae until we
have seen how well the volume dependence of our data can be described by simpler functions.
In the following we focus on the data sets at (4, x) = (5.6,0.1575) and (5.6,0.158). While on
the basis of the Polyakov loop distributions considered in Section 4.3 one might suspect that the
smallest lattices at these parameters are already too small, an unbiased look at the measured
hadron masses does not immediately confirm this suspicion. We therefore do not exclude these
data points a priori from the following fits.

Power Law
The first ansatz that we study is a power law of the form
pow: mu(La) = mg + c1(La)” . (4.13)

We first keep the parameter c¢; fixed at 3. The parameters my and ¢; as determined by fitting the
pion (PS), rho (V) and nucleon (N) data to (4.13) are listed in Tables D.1-D.3 in the appendix.
For each of the 2-parameter fits we use at least three data points. The last two columns of
the tables show the relative deviations of mp(Lmaxa) and my = mpg(La = 0o0) (as obtained
from the fits) from the hadron mass measured on the largest available lattice, respectively.” We
examine the effect of the fit range [L1, Lo] on the quality of the fits by first keeping L fixed and
increasing Lo up to its maximal value, and then varying L, for fixed Lo. On inspection of the fit
results for (3, k) = (5.6,0.1575) we observe that for the same number of degrees of freedom >
is in general smaller in the region of small L than in the asymptotic regime. The same is true
for the pion and the nucleon at (5, k) = (5.6,0.158) (where the rho data cannot be fitted very
well in general). The fit results for the maximal fit ranges, [Lmin, Lmax], are displayed for all our
B, k combinations in Figures 4.7-4.9 (dashed curves). On the whole we find that the power law
with fixed co = 3 provides an acceptable description of the data at our two larger quark masses
as long as the box-size is small (< 1.5fm) and the relative finite-size effects are of the order of
at least several percent. From our results at (5, %) = (5.6,0.1575) and (5.6,0.158) we infer that
in terms of MpgL the L™3 behavior holds within the regime of

MpgL < 4.5..4.8. (4.14)

In view of this result it is clear that the power law cannot correctly predict the asymptotic finite-
size effect. As we assume the largest, 243 volume at (3, x) = (5.6,0.1575) to be—for all practical
purposes—iree of finite-size effects, it is obvious from Table D.1 that an extrapolation of the
power law from its validity domain at small volumes to the infinite volume grossly overestimates
the true finite-size effect.

The next ansatz we consider is the power law (4.13) with ¢y as a free parameter. The parameter
values resulting from different fits of the data are listed in Tables D.4-D.6 in the appendix.
We find acceptable descriptions of the data with x?/dof ranging between 2.24 (pion) and 3.82
(nucleon) at (8,x) = (5.6,0.1575), while at (8,x) = (5.6,0.158) the fit quality is somewhat

"By Lmax = Lmax (8, k) we denote the largest linear lattice size we have simulated for a given (3, k combination:
Lyax = 24 for the two k-values at 8 = 5.6, and Lmax = 16 for 8 = 5.32144. Similarly, Lmin(5.6,0.1575) = 10 and
Lin(5.6,0.158) = Limin(5.32144,0.1665) = 12.
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worse (x?/dof = 4.18 for the pion and 9.23 for the rho). On the other hand, just as it was
the case with our previous ansatz, the nucleon data at (3,x) = (5.6,0.158) fit the power law
particularly well (x?/dof = 0.02). The general improvement in the fit quality as compared to the
parameterization with fixed co is of course due to the increased number of degrees of freedom.
At the larger quark mass the values for ¢y obtained from the fits are significantly larger than 3;
they range from approximately 4 (nucleon) to 6 (pion). This is an effect of the 243 lattice with
ML = 6.6. In contrast, ML = 4.8 at L = 24 for the lower quark mass, and so the exponents
are close to or even compatible with 3.

Single Exponential

Let us now, for comparison, consider the exponential formula

e—cha

T (4.15)

exp: mp(La) =myg + 1
with three fit parameters: mpg, ¢; and cs. The values obtained from the fits of our data are
again summarized in the appendix (Tables D.7-D.9). The overall quality of the fits is better
than that of the 3-parameter power law fits, and the relative deviations of the exponential fit
functions at L = Lyax and L = oo from the data at L.y are substantially reduced compared
to the power law.

Since for (3, k) = (5.6,0.1575) as well as for (5.6,0.158) the obtained values for ¢ are close to or
even consistent with the respective infinite-volume pseudoscalar mass mpg we are encouraged to
try out the parameterization (4.15) with the constraint co = mpg. ® The parameters obtained
from these fits are displayed in Tables 4.8-4.10, complemented for comparison by the parameters
from the power law fits with co = 3. The corresponding fit functions are plotted in Figures 4.7—
4.9 (solid: exponential with co = mpg; dashed: power law with co = 3). We clearly observe that
over the entire range of simulated lattice sizes the exponential ansatz is superior to the cubic
power law. (Note that the number of free parameters is the same in both cases.) Moreover,
except for the case of the pion mass at (,x) = (5.6,0.1575) the quality of the exponential
fits with co = mpg is comparable to or even better than that of the previous fits without this
constraint. We find that with this ansatz all predicted asymptotic masses at (3, x) = (5.6,0.1575)
are compatible with the measured masses from the 243 lattice (see Table 4.4), in accordance
with our presumption that this rather large lattice should bear no significant finite-size effects.
For the masses at (5,x) = (5.6,0.158) small effects between 1.6% for the nucleon and 4.9% in
case of the pion are predicted for the 243 lattice. In order to study the stability of these results
with regard to the fitted L-range we varied the lower boundary L; for fixed Lo = Ly ax; the
results are summarized in Tables D.10-D.12 in the appendix.

Extrapolation

In order to check whether we can use this ansatz for an extrapolation from the small lattices
to the infinite volume we again focus on our data sets at (3, x) = (5.6,0.1575) and (5.6,0.158).
Figures 4.10 and 4.11 show fits of the measured masses to the exponential (4.15) with co = mpsg.
The different curves correspond to different lower boundaries Ly of the fitted range [L1, Lo|, with

8At (B,k) = (5.32144,0.1665), corresponding to our smallest quark mass, the finite-size effect in the pseu-
doscalar mass is small. We can therefore fit the three available data points with the two constraints ¢; = C' and
c2 = mpsg, so that the infinite-volume pion mass mpg remains the only free parameter.
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Fit type H | [L1,Lo) | mp [GeV] | e1[GeV™Y | x?/df | A(Lmax) | A(L=00)
pow (c2=3) | PS| 10,24 | 0.570(35) | 41.2(7.1) | 31.65| -5.57% | -11.40%
pow (cz=3) V | 10,24 | 0.872(19) | 35.1(5.3) 3.34 | -1.38% -4.87%
pow (ca=3) N | 10,24 | 1.255(43) | 88.5(9.3) 5.83 | -2.99% -8.84%
exp (co=mps) | PS | 10,24 | 0.624(13) | 65.9(4.2) 5.59 | -2.41% -2.91%
exp (co=mpg) | V | 10,24 | 0.9125(92) | 63.5(5.6) 1.19 | -0.17% -0.51%
exp (co=mps) | N | 10,24 | 1.372(22) | 142.7(9.5) 237 | 0.18% -0.32%

Table 4.8: Fit parameters for ([, k)

(5.6,0.1575). d = 2 for “pow” (Eq.

(4.13)) and d = 1/2 for “exp”

(Eq. (4.15)).
Fit type H | [L1,Lo) | my [GeV] | ¢1 [GeV™Y | x2/df | A(Lmax) | A(L=00)
pow (c2=3) | PS| 12,24 | 0.417(33) | 55.3(9.2) | 855 | -2.67% | -14.81%
pow (2=3) | V | 1224 | 0.780(59) | 62.5(13.1) | 5.22| -2.10% | -9.86%
pow (c2=3) | N | 12,24 | 1.0894(92) | 124.0(2.3) | 0.07 | -0.44% | -11.30%
exp (ca=mps) | PS | 12,24 | 0.466(20) | 47.9(4.2) | 3.86| -1.50% | -4.91%
exp (ca=mps) | V | 12,24 | 0.836(45) | 53.1(10.0) | 4.31| -1.27% | -3.41%
exp (ca=mpg) | N | 12,24 | 1.208(20) | 104.1(5.1) | 050 | 1.30% | -1.65%
Table 4.9: Same as Table 4.8 for (5, x) = (5.6,0.158).
Fit type H | [L1,Lo) | mu [GeV] | ¢ [GeV™Y | x2/df | A(Lmax) | A(L=00)
pow (co=3) PS | 12,16 | 0.428(22) |-15.0(16.3) | 2.09 | -0.83% 2.23%
pow (c2=3) V | 12,16 | 0.743(32) | 23.3(29.0) | 077 | 0.54% | -2.08%
pow (ca=3) N | 12,16 | 1.037(63) | 90.9(52.8) | 1.87| 0.98% | -6.05%
exp (e1=C,ca=mps) | PS | 12,16 | 0.4089(81) 2.04 -2.36% -2.36%
exp (ca=mps) V | 12,16 | 0.756(20) 18.4(26.7) 0.86 0.64% -0.31%
exp (ca=mps) N | 12,16 | 1.088(42) | 74.9(50.5) | 2.32 | 1.19% | -1.46%

Table 4.10: Same as Table 4.8 for (3, k) = (5.32144, 0.1665).
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Figure 4.10: Infinite-volume extrapolation of the masses at (3,x) = (5.6,0.1575). The solid lines
correspond to exponential fits according to (4.15) with ca = mpg. Outside the fitted intervals the curves
are dotted.
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Figure 4.11: Same as Figure 4.10 for (3, k) = (5.6,0.158).
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Lo kept fixed at 16 (see Tables D.13 and D.14 for numbers). All the fits (again except for the
case of the vector meson at k = 0.158) describe the data well within the fitted regime. Let us
first take a closer look at Figure 4.10, where we take the deviation of the fit curves from the data
points at Lyax = 24 as a measure of the quality of the extrapolation (Table D.13). We find that,
while mpg(Lmaxa) is underestimated by 6.3—-7.4%, the predictions for the rho and the nucleon
are consistent with the data at L.y, respectively, if the data are fitted from L = 10. On the
other hand, the fit of the pseudoscalar mass is quite stable with regard to the left boundary of
the fitted L-range, whereas in case of both the vector meson and the nucleon the deviation of
the fitted function from the data at L.x increases significantly with larger Li. At x = 0.1575,
corresponding to the smaller quark mass at § = 5.6, mpg(Lmaxa) is underestimated even more
(by 21-28%). While the vector meson mass also comes out too low (by at least 12%), the
prediction of the nucleon mass at Lyax agrees remarkably well with the data.

Conclusion

Our findings suggest that we are in an intermediate, sub-asymptotic regime where we see a tran-
sition behavior in the volume dependence of the light hadron masses . “Naive” approaches like
the cubic power law or the single exponential function provide satisfactory empirical descriptions
of the finite-size dependence in limited ranges of L. We can confirm that the power law works
well in the regime of small volumes, while it fails at larger L where the finite-size effects become
small. There we clearly see an exponential behavior in our data for the light hadron masses.
Unless we include data points with quite small finite-size effects (of the order of a few percent)
into the fits, the asymptotic masses are generally underestimated considerably (more so for the
pion, less for the nucleon). However, we can at least obtain lower bounds for the infinite-volume
masses, the systematic errors of which may be estimated by varying the boundaries of the fitted
L-intervals.

4.4.2 Discussion of the Applicability of ChPT Formulae

In order to understand why it is so problematic to extrapolate reliably from small volumes to
the infinite volume on the basis of the simple formulae (4.13) and (4.15) (at the quark masses
and lattice volumes considered so far), we need to appreciate their respective origin and scope.
The power law (4.13) is, in fact, expected to hold only for small volumes, where it is supposed to
originate from a distortion of the hadronic wave function (or, alternatively, from a modification
of the effect of virtual particles traveling around the lattice by a model-dependent form factor
that accounts for the finite hadron extent). Consequently, the L~3-behavior cannot be expected
to persist towards large volumes, and this is indeed borne out by our data. On the other hand,
the formula (4.15) essentially corresponds to Liischer’s asymptotic formulae for the pion and
the nucleon. Liischer’s general formula for the volume dependence of stable particles in a finite
volume is designed to yield the leading term in a large L expansion, meaning that whenever the
relative suppression factor

subleading —(M=M)L
— w 4.1
leading 0 (e ) (4.16)

is not small, subleading effects may be of practical relevance.
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Pion

In the case of the pion we furthermore rely on chiral perturbation theory to provide us with an
analytic expression for the 7m elastic forward scattering amplitude F,,. At leading order in the
chiral expansion this amplitude is given by the constant expression Fyr, = —m?2/f2. Inserted into
the Liischer formula this leads to (2.19), which then has the functional form of our exponential
ansatz (4.15). We have seen that the data can be well described by the parameterization (4.15)
with the constraint co = mpgs. It is therefore instructive to compare our results for the parameter

c1 to the constant

3/2
3 Mpg

C = 12 (fos/Za)?

(see Eq. (2.19)), when for each (5, k) we take mps and fps/Z4 from the largest available lat-

(4.17)

tice, respectively (see Tables 4.3 and 4.5; for definiteness we use ff()ls) /Z4). For our simulation
points (8, k) = (5.6,0.1575), (5.6,0.158) and (5.32144,0.1665) we have C'/GeV~1/2 = 1.089(61),
0.745(98) and 0.79(12), respectively.® Comparing the first two of these values to the results for
c1 in Tables 4.8 and 4.9 (PS) we see that the relative factor between ¢; and C' is O(10) provided
that, as we expect, Z4 = O(1). The discrepancy is generally larger for smaller L; and decreases
for increasing values of the left fit boundary.

The large discrepancies between the coefficients ¢; from the fits to our pion data and C' from
the Liischer formula (with LO ChPT input) reflect the fact that not all of our data sets for
the different volumes at (5,x) = (5.6,0.1575) and (5.6,0.158) comply with the conditions of
applicability of this formula. Recall that these conditions are: (i) sufficiently large lattice volumes
(because the the Liischer formula corresponds to the leading term in a large L expansion), and
(ii) small pion masses (because we take the pion scattering amplitude from chiral perturbation
theory).

Quite recently, G. Colangelo and S. Diirr have determined the finite-size shift of the pion mass
using Liischer’s formula with the w7 forward scattering amplitude taken from two-flavor chiral
perturbation theory up to NNLO in the chiral expansion [65]. These results have then been
compared to the leading order chiral expression for the pion mass in finite volume (including
the large-L suppressed terms neglected by the Liischer formula) in order to estimate the effect
of subleading terms in the large L expansion.'® Both aspects of their investigation rely on chiral
perturbation theory as an expansion in the pion mass m, and the particle momenta p, both of
which have to be small compared to the chiral symmetry breaking scale that is usually identified
with 47 fr. The conditions of applicability thus read [65]

mx
1 4.1
47rf,r<< (4.18)
and
P <1 (4.19)
A fr

In a finite box of size La (with periodic boundary conditions), where the particles’ momenta can
only take discrete values py = 2mny/(La) with ng € Z, the second condition directly translates

9Using mx = 137MeV and fr = 92.4 MeV the natural value is C = 0.283 GeV /2.
9A calculation of the next to leading term (in L) of the general Liischer formula is a non-trivial task that has
not been tackled yet (see also Liischer’s concluding remarks in Ref. [53]).
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Figure 4.12: Volume dependence of our pion masses in the regime La 2 1.3fm. The circles, squares
and diamonds represent our data at (3,x) = (5.6,0.1575) (m, = 643MeV), (8,x) = (5.6,0.158)
(my = 490MeV) and (5, k) = (5.32144,0.1665) (m, = 419 MeV), respectively. The curves correspond to
Liischer’s formula with input from ChPT at LO (dashed), NLO (long-dashed) and NNLO (solid). The
dotted curves show the full LO chiral expression. The dash-dotted curve is the full LO result shifted by
the difference between the NNLO and the LO Liischer formula.

into a bound on the box size:!!

La> 2; ~ 1fm. (4.20)
Although a priori it is not clear what the practical significance of the relations (4.18) and (4.20)
is, we can identify on the basis of the Tables 4.7 and 4.4 those data sets that stand the greatest
chance of meeting these criterions. From Table 4.7 we see that the ratios Mps(L)/(47Z " Fps(L))
for all simulated volumes at (3, k) = (5.32144,0.1665) are relatively small and compatible with
each other. The corresponding ratio at (3, x) = (5.6,0.158) is also relatively small for L = Lyax
(and, moreover, comparable to the numbers at (5.32144,0.1665)), but the value for the second
largest lattice is already significantly larger. Considering only the largest lattice, respectively,
Mps/(4nZ ;' Fpg) is largest at (3, k) = (5.6,0.1575), but here the value at L = 16 is still consis-
tent with the one at Ly, = 24. In the light of these findings and recalling the relative finite-size
mass shifts R (Table 4.7) we infer from Table 4.4 that for m, = 643MeV and m, = 490 MeV
we can trust ChPT only on the largest volumes with La ~ 2fm (and possibly the 16 lattice
with La ~ 1.4 fm at m, = 643 MeV), while the lattices with La < 1.4 fm are most probably too
small. At (5,x) = (5.32144,0.1665), on the other hand, where m, = 419MeV, all lattices are
larger than 1.5 fm due to the relatively large lattice spacing, and hence appear large enough for
ChPT to be applicable.

' As illustrated in Ref. [65], the pion mass dependence of f, predicted by ChPT at NNLO is rather mild. We
use the physical value here.
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In order to corroborate these observations let us see how our simulated pion masses mpg(La),
for La 2 1.3fm, relate to the results of Ref. [65]. There, the chiral expression for the elastic mm
forward scattering amplitude Fi, is written as an expansion in powers of &,

Frn = 1672 [€F5 + E2Fy + & Fs + 0(¢Y)] (4.21)

where the parameter £ is defined as

- < 47:;)2 . (4.22)

Inserting the expansion (4.21) up to Fy or Fg into Liischer’s formula (2.10) for the pion and using
the chiral expression for the isospin invariant amplitude A of Ref. [131], the leading term in the
large-L expansion is obtained up to NLO and NNLO in the chiral expansion. (Correspondingly,
inserting (4.21) into (2.10) only up to F» yields the LO expression (2.18).) In order to calculate
the predicted finite size shift for the pion numerically for our three different pion masses we
need to know the numerical value of the expansion parameter £, respectively. In order to avoid
the difficulties associated with the renormalization of the pion decay constant one can use the
analytic expression for the pion mass dependence of f; which is known to NNLO in ChPT. If we
take the pion mass from the largest lattice as a first approximation to the asymptotic pion mass
my, respectively, we obtain the curves displayed in Figure 4.12. The dashed curves correspond
to Liischer’s formula (2.18) with Fy, from ChPT at leading order. The long-dashed and solid
curves show the NLO and NNLO predictions, respectively. For comparison, the dotted curves
show the full leading-order chiral expression (N = 2) for the pion mass in finite volume, given

by [65]
Ki(v/nmgLa)
vnmgLa |’

where the multiplicity m(n) counts the number of integer vectors n satisfying n? + n3 + n?,) =n.
Since the modified Bessel function K;(z) falls off exponentially for large x, the sum in (4.23)
is rapidly converging. For n = 1 Eq. (4.23) corresponds precisely to the LO Liischer formula
(2.18). Finally, the dash-dotted curve in Figure 4.12 represents an estimate of the full finite-size
effect obtained by adding to the Liischer formula with F.; at NNLO the difference between
equation (4.23) and the Liischer formula with F, at LO. This is the best theoretical estimate
currently available.

mx(La) =mg |14+¢ Z m(n) (4.23)
n=1

The main conclusion we draw from the plot is that for all our three pion masses and for our
lattices with La 2 1.3 fm the finite-size effects predicted by ChPT are considerably smaller than
our statistical errors. On the largest lattices with La ~ 2fm the maximal predicted finite-size
correction (corresponding to the dash-dotted curve in the plot) is about 0.3% for the lightest
pion and 0.05% for the heaviest one. This is in accordance with our presumption that for all
practical purposes the finite-size effects in the pion masses are negligible on our largest lattices.
At La ~ 1.3fm the finite-size shift ranges between 1% for the heaviest and about 3% for the
lightest pion, which is of the order of the statistical uncertainties. For La 2 1.3 fm the differences
between the full one-loop ChPT result and Liischer’s formula with F, at LO are comparably
small, indicating that here the use of Liischer’s asymptotic formula is indeed justified; the
maximal difference in the relative effects is about 50% at La ~ 1.3fm for the smallest pion
mass. By contrast, the difference between the relative effects predicted by Liischer’s formula
with Fr, at NNLO and LO amounts, for the same lattice size, to a factor of 3.2 for the lightest
and 4.5 for the heaviest pion.
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Figure 4.13: Relative box-size dependence of the pseudoscalar meson mass and decay constant at
(8,K) = (5.6,0.1575).
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Figure 4.14: Same as Figure 4.13 for (3, k) = (5.6,0.158).
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Figure 4.15: Same as Figure 4.13 for (3, k) = (5.32144,0.1665).

Incidentally, a formula similar to (4.23) exists also for the pion decay constant fr.!2 The only
difference is that the relative finite size effect is negative and (for Ny = 2) four times as large as
that of the pion mass:

K1 (y/nmgLa)
vnmgLa

We have already seen that the volume dependence of our pion masses can be accounted for by
chiral perturbation theory on the largest lattices at most, and there is no reason to believe that
this should be different for the decay constant. We can check, however, whether the relative
factor of minus four also holds on smaller lattices. Figures 4.13-4.15 show the volume dependence
of the shifts in fr(La) and mr(La) relative to fr(Lmaxa) and mxy(Lmyaxa), respectively, for our
three different quark masses. While the finite-size effect of the pion decay constant is indeed
negative, its magnitude is, on the smaller lattices at (3, k) = (5.6,0.1575) and (5.6, 0.158), about
the same as that of the pion mass shift; on the second largest volume at (3, ) = (5.6,0.1575)
the relative shift in fr(La) is about twice as big as the shift in m,(La). Unfortunately at
(6, k) = (5.32144,0.1665), corresponding to our smallest quark mass, the statistical basis is too
poor to make a definite statement, but on the smallest lattice the relative factor is (at least in
terms of magnitude) compatible with 4.

fo(La) = fx [1-46 Y m(n) (4.24)
n=1

Nucleon

In case of the nucleon mass, replacing the single exponential motivated by the approxima-
tion (2.28) by an ansatz corresponding to the full formula (2.22) might be considered as the

120nly recently, also an asymptotic formula ¢ la Liischer has been derived for f, [70].
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Figure 4.16: Nucleon mass data from various collaborations as a function of m2 o« m,, including our
data. All data points are from simulations on relatively large and fine lattices. The curve corresponds to
a fit of the data represented by the solid symbols to equation (2.37). Note that the fit result is consistent
with the physical pion and nucleon masses (indicated by the star).
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next logical step towards a better description of the volume dependence. (Recall that our as-
sumption that Eq. (2.28) is a good approximation of Eq. (2.22) is actually only justified for
the physical value of m,/my.) Alternatively one could use the formula (2.22) (or rather the
decomposition (2.27)) directly, with the phenomenological value of g,y or g4. However, since
Eq. (2.22) is in fact only a special case of the formula (2.35), let us instead confront our data for
the nucleon mass directly with the formulae (2.34) and (2.35) from baryon chiral perturbation
theory. Following Ref. [66] we fix g4 and fr to the physical values g4 = 1.267, fr = 92.4 MeV,
and set the couplings ¢z and c3 to ¢ = 3.2GeV ™!, ¢5 = —3.4GeV~!. The remaining parameters
mo, ¢ and e](A) (where the renormalization scale A is chosen to be 1 GeV) are taken from a fit
of data from various unquenched simulations with

a<015fm, M;L>5 and m, < 800MeV (4.25)

to Eq. (2.37). In Ref. [66], data from the UKQCD [38], CP-PACS [39], JLQCD [40] and QCDSF
[66] collaborations have been used. These data are plotted in Figure 4.16, complemented with
the results from our largest lattices, namely the TxL results at (5.6,0.1575,24), (5.6,0.158,24)
and the GRAL result at (5.32144,0.1665, 16). We also include the SESAM result at (5, k, L) =
(5.6,0.1575,16). Although the conditions (4.25) are to some extent arbitrary we stick to them for
definiteness. Consequently we refrain from repeating the fits of Ref. [66] with our data, because
only the TxL point at (3, k, L) = (5.6,0.1575, 24) meets all of the requirements in (4.25). Instead
we quote the result of fit 1 in Ref. [66] yielding mo = 0.89(6) GeV, ¢; = —0.93(5) GeV~! and
el (A = 1GeV) = 2.8(4) GeV~3, consistent with phenomenology. The corresponding fit curve
is represented by the solid line in Figure 4.16.13 The fact that the TxL point at (8,k, L) =
(5.6,0.1575,24) lies close to the fit curve without including it into the fit hints to a small
O(a) effect at this point. We emphasize here that we use the standard Wilson plaquette and
quark action with errors at O(a), whereas the data from the other collaborations have all been
generated with O(a) improved actions: UKQCD, QCDSF and JLQCD employ the clover quark
action with a non-perturbatively determined improvement parameter csw, and CP-PACS work
with a mean-field improved clover quark action on top of the renormalization-group improved
Iwasaki gauge action. The other TxL point at (8, k,L) = (5.6,0.158,24), corresponding to a
smaller pion mass, lies somewhat below the curve. Correcting it for the presumed finite-size
effects in the pion and the nucleon mass would shift it even slightly further away from the curve
(recall that in this regime of larger L the finite-size effect is bigger for the nucleon than for the
pion). The SESAM point at (3, x, L) = (5.6,0.1575,16) illustrates how finite-size effects show
up in such a plot. Correcting it for the finite-size effects in the pion and the nucleon masses (see
Table 4.7) would shift it to the lower left, towards the corresponding TxL point with L = 24.
Our (finite-size corrected) data points generally tend to lie somewhat below the curve, and
this is also true for the GRAL point with (5, k) = (5.32144,0.1665). In view of the statistical
fluctuations in m(La) at this parameter set we plot in Figure 4.16 the mean of the respective
pion masses at L = 12,14, 16, with a corresponding error bar along the m2 axis. Even with this
uncertainty taken into account the deviation of the GRAL point from the fit curve is significant.
In view of the relatively low cut-off of only about 1.5 GeV at this point (to be compared to a
nucleon mass of 1.1 GeV) we assume that discretization errors are responsible for the deviation.
In case of the TxL data cut-off effects are expected to be less important, due to the smaller
lattice spacings in these simulations (see Table 4.1).

13Strictly speaking, in the fit to equation (2.37) the chiral-limit values of ga and f, should be used as input.
However, replacing the physical values of g4 and f, with gff) = 1.2 and f7(r0) = 88 MeV does not alter the fit
result significantly. A more detailed error analysis has been attempted in Ref. [132].



4.4. Volume Dependence of the Light Hadron Masses 89

2.6 T

241

22

m,, [GeV]

1.8

1.6—

1.4 -

Il Il Il Il I Il Il Il Il I Il Il Il Il I Il Il Il Il
1'%.5 1 1.5 2 2.5

Figure 4.17: Volume dependence of the nucleon mass for m, = 643 MeV. The dashed curve represents
the O(p3) term only, while the solid curve also includes the O(p*) contribution. The dotted curve results
if the pion mass is reduced by 10% in the O(p*) formula.

Using the parameters corresponding to the solid curve in Figure 4.16 we can evaluate the finite-
size formulae (2.34) and (2.35) and compare the results to our data. Our three sets of simulations
with different lattice sizes correspond to pion masses of approximately 643 MeV, 490 MeV and
419 MeV. Note that the latter two masses are even lighter than the lightest of the pion masses
investigated in Ref. [66] (732MeV, 717MeV and 545MeV). The curves in Figures 4.17-4.19
have been computed from equations (2.34) and (2.35) with no free parameters. Like in Ref. [66]
the solid curves correspond to the O(p*) prediction

mpy(La) = mpy + Ag(La) + Ap(La), (4.26)

where my has been determined such that the calculated value my(Lmaxa) equals the simulated
mass from the largest lattice with L = Ly, respectively. Similarly, for the pion masses m,
we also take the simulated value from the largest lattice. For the dotted curve, corresponding
to the O(p3) prediction, the O(p?) contribution from A, in (4.26) has been left out, while my
has been left unchanged. For all our pion masses we find a remarkably good overall description
of our data by the O(p*) prediction down to lattice sizes of about 1fm. Replacing m, from
the largest, L = 16 lattice at (3, k) = (5.32144,0.1665) by the mean of the pion masses from
the L = 12,14, 16 lattices (as we have done in the context of Figure 4.16) does not lead to a
significant difference in the resulting curve. Since both the statistical and the theoretical error
of the simulated my(La) are smallest for the largest lattice, we consider the O(p*) finite-size
corrected nucleon mass

my(La) = my(La) — Ay(La) — Ap(La), (4.27)
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| B | Fsea | mps[GeV] | iy (Limaxa) [GeV] | my(Limaxa) [GeV] | A |

0.1575 | 0.6429(67) 1.370(19) 1.377(19) 0.53%
>0 0.1580 | 0.4896(94) 1.204(31) 1.228(31) 2.02%
5.32144 | 0.1665 | 0.4188(75) 1.081(20) 1.104(20) 2.08%

Table 4.11: Finite-size shift of the nucleon mass on the largest lattice, respectively, as inferred from
Eq. (4.26). A = (my —my)/my is the relative deviation of the Monte Carlo value my from the shifted
mass my = my — A, — Ay (all values to be taken at Lyaxa). We believe my(Lmaxa) to be our best
estimate of the true asymptotic mass.

taken at L= L.y, as our best estimate of the asymptotic nucleon mass. Table 4.11 shows the
predicted infinite-volume masses for our simulations. The last column gives the relative mass
shift on the largest lattice, respectively. Just as it was the case for the pion, the finite size
effect in the nucleon at (3, k, L) = (5.6,0.1575,24) is considerably smaller than the statistical
uncertainty. On the other hand, at (3, x, L) = (5.6,0.158,24) and (5.32144, 0.1665, 16) the finite-
size effects amount to about 2% of the respective asymptotic mass, which is comparable to the
statistical errors.

How can these findings be used in practice? We have seen previously that our nucleon data can
be fitted quite well to a simple exponential ansatz, with the corresponding asymptotic pion mass
as input. Moreover, in the case of our simulations at (3, ) = (5.6,0.1575), where the finite-size
effects in the masses from the second largest lattice are already of the order of a few percent only,
it was even possible to reproduce the large-volume nucleon mass by an extrapolation. Although
the asymptotic pion mass that we need as input for the fit of the nucleon mass generally comes
out too small when it is estimated on the basis of the smaller volumes alone, the extrapolation
of the nucleon mass is not so much affected by this, as even with this smaller value as input
it works remarkably well. This is, however, a purely empirical result, the caveats being that
we have no control over the error, and that we need data from several volumes (at least three)
before we can have some confidence in the extrapolation. The fact that the O(p*) formula (4.26)
describes our Monte Carlo data so well without any free parameters opens up a more direct way
to estimate the asymptotic nucleon mass. Once we have convinced ourselves that we are in a
parameter regime where the formula applies, we can directly calculate the amount by which we
have to shift the nucleon mass in order to compensate for the finite-size effect associated with
the given volume. Our simulations together with the results of Ref. [66] suggest that at least
for asymptotic pion masses larger than 400 MeV the formula provides a good description of the
nucleon mass data down to physical lattice sizes of approximately 1fm. For a direct calculation
of the finite-size shift in the nucleon mass one needs to know the pion mass in infinite volume,
however. If one is already in a parameter regime where the finite-size effect in the pion mass
is small (of the order of a few percent) one may apply the results of Ref. [65] to obtain an
estimate of the asymptotic pion mass. If this is not the case one can still revert to a “naive”
exponential fit (provided that the pion mass is known for more than two different volumes) and
extrapolate. Since we have learned that a naive extrapolation systematically underestimates
the true pion mass in infinite volume we illustrate, as an example, the impact of a 10% smaller
pion mass by the dotted curves in Figures 4.17-4.19. Although in relation to the very shift the
systematic error associated with the pion mass grows with L, its absolute value becomes less
and less significant compared to the statistical uncertainties of the data. This means, on the
one hand, that (assuming the formula to exactly reproduce the volume dependence of the data
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Figure 4.20: Finite-size corrected nucleon masses for m, = 643 MeV. The solid line results from a fit
of the data represented by the solid symbols. The gray band indicates the error associated with the fit.

and the statistical uncertainties to be all of comparable size) in order to predict the asymptotic
nucleon mass correctly (within the statistical errors) one needs to know m, the more accurately
the smaller the physical size of the largest available lattice. On the other hand it means that if
L is sufficiently large so that one can reliably extrapolate the pion mass, the asymptotic nucleon
mass can also be determined quite accurately.

While the formula (4.26) can already be used to estimate the asymptotic nucleon mass on
the basis of a single lattice, one can of course also combine data from several lattice volumes
to obtain a more reliable prediction. Figures 4.20—4.22 show our finite-size corrected nucleon
masses my(La) for the simulated lattice volumes and pion masses. The solid lines correspond
to fits of the corrected masses in the range 0.9fm < La < 1.9fm (solid symbols) to a constant,
mf]i\‘;, leaving out the largest available lattice, respectively.'* The associated uncertainties (from
the fit) are indicated by the gray error bands. Table 4.12 shows the values of fn?\? resulting
from these fits and their deviation from the corrected nucleon mass as obtained on the largest
lattice, respectively. Both the plots and the table show that—within errors—the extrapolations
are consistent with the corrected values from the largest lattices. The relative deviations A
are comparable in size to the deviations we found for the “naive” extrapolations (A(L=00) in
Tables D.13 and D.14), but using the formula (4.26) we have, in principle, a much better control
over the involved uncertainties.

14 Alternatively, one could directly fit the unshifted data to Eq. (4.26), with my as a free parameter.
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Figure 4.22: Same as Figure 4.20 for m, = 419 MeV.
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| B8 | ksea | mps[GeV] | iy (Limaxa) [GeV] | mf [GeV] | A |

0.1575 | 0.6429(67) 1.370(19) 1.350(25) | -1.5%
56 0.1580 | 0.4896(94) 1.204(31) 1.245(39) | 4.1%
5.32144 | 0.1665 | 0.4188(75) 1.081(20) 1.118(24) | 3.4%

Table 4.12: Estimates of the asymptotic nucleon masses without taking the largest lattice, respectively,
into account. The Mmf! values result from fits of the corrected nucleon masses my(La) in the range
0.9fm < La < 1.9fm to a constant. A = (fnff\} — My (Lmaxa))/Mn(Lmaxa) gives the relative deviation of
these estimates from the finite-size corrected values my (Lmaxa), which we believe to be the best estimates

of the true asymptotic values.

4.5 Discretization Errors

One way to check on the importance of O(a) lattice artefacts in our simulations is to consider
the PCAC relation

(%Aﬁ(:r:) = 2mP%(z) (4.28)
between the isovector axial current
a — 1 a
Au(x) =q(@)n55m(2) (4.29)
and the associated density
1
P%(z) = q(@)s5m(x), (4.30)

where 7® denotes a Pauli matrix acting on the flavor indices of the quark fields ¢. On the lattice,
the bare quark mass Z,am, can be extracted from ratios of correlation functions,

1 (8, A% ()T

Za0Mg = 5 (Pa(x)Je)

+0(a), (4.31)

where the (smeared) source J® is a suitable polynomial in the quark and gluon fields, and
Zy=Zp/Z4. The PCAC relation (4.28) is an operator identity that holds for the Wilson action
up to O(a) effects. Consequently, its lattice version holds—up to those effects—for any choice of
boundary conditions, source operators and lattice sizes. This means in particular that at fixed
B and k any residual lattice size dependence of the PCAC quark mass (4.31) must be a lattice
artefact. Figures 4.23-4.25 show the volume dependence of the relative deviation of the PCAC
quark mass mgq(La) from its value mg, on the largest lattices, for our three (3, ) combinations.

We find that at (8, k) = (5.6,0.1575) the discretization errors appear to be small for La 2 1fm,
while for (5,x) = (5.6,0.158) and (5.32144,0.1665) they are small only for La 2 1.3fm and
La 2 1.8 fm, respectively. On the smaller lattices the cut-off shows up in quark mass shifts of
20-40% (with large error bars on the smallest lattices). The fact that the cut-off effects are small
for (8,k) = (5.6,0.1575) and somewhat larger for (3, k) = (5.6,0.158) and (5.32144,0.1665) is
consistent with our observations in the previous section. In Figure 4.16 we saw no significant
lattice artifacts in the nucleon mass for m, = 643 MeV, while for m, = 490 MeV and m, =
419MeV the nucleon mass displayed some deviation from the curve (which was obtained from
a fit to O(a) improved data).
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Figure 4.23: Box-size dependence of the relative shift in the PCAC quark mass at (3, k) = (5.6,0.1575).
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Figure 4.24: Same as Figure 4.23 for (8, k) = (5.6,0.158).
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Figure 4.25: Same as Figure 4.23 for (53, k) = (5.32144,0.1665).



Summary and Conclusions

In this work we have investigated finite-size effects in light hadron masses as obtained from
lattice QCD simulations with two degenerate flavors of dynamical Wilson fermions. We have
complemented previous SESAM/TxL simulations at quark masses corresponding roughly to 85
and 50% of the strange quark mass with several runs at the same values of $ and x, but on
smaller lattices. In addition we have carried out exploratory simulations with three different
lattice volumes at a stronger coupling of § = 5.32144 in order to push our analysis towards the
regime of lighter quark masses. We have succeeded in simulating near m/3, which in terms of
mx/m, is very close to the rho decay threshold of 0.5. The physical extent of the investigated
lattices ranges between 0.85fm and 2.04 fm.

The gauge field configurations investigated in this work were produced on APE machines at
DESY Zeuthen and the cluster computer ALICE at the University of Wuppertal. While on
APE we have used the readily available Hybrid Monte Carlo code from the SESAM collaboration
(with some modifications for APEmille), on ALiCE a new HMC code was employed. For all
of the new production runs we have measured the computational cost and the autocorrelation
times of the mean plaquette and average number of solver iterations. We have found that at
[ = 5.32144 statistical fluctuations are quite large and zero modes start playing a role on the
smaller volumes (123 and 143). This is reflected in rather long autocorrelation times. The
simulation on a 163 lattice, however, is less affected by such problems, and we have not observed
any severe instabilities in the molecular dynamics part of the updating process at this lattice
size.

While in this work we have focused on the symmetric case Ky, = Kgea We have calculated, for
subsets of the new gauge field ensembles, quark propagators and hadronic correlation functions
for up to six different valence quark masses per given sea quark mass. In a further step these
can be used for partially quenched analyses. For source and sink smearing we have adapted the
previously determined parameters for the Wuppertal smearing method to the smaller volumes
used in this work. Hadron masses and amplitudes of correlation functions have been obtained by
fits of the local-smeared and smeared-smeared correlators, with correlations between time-slices
and among configurations taken into account.

We have determined the Sommer radius rg for the largest lattice at 8 = 5.32144 from a fit of
our data for the static quark potential to a “Coulomb + linear” ansatz. Although our general
conclusions do not depend on this, a possible improvement at this point could be to include
a lattice correction to the Coulomb term in order to account for the violation of rotational
invariance at small distances due to the relatively large lattice spacing. As a qualitative check
on whether the simulated system remains in the zero-temperature phase of QCD as the lattice
size is decreased we have monitored the distributions and means of the Polyakov loops for all
investigated parameter sets. Only on the smallest lattice for the heavier quark mass at 3 = 5.6 is
a deviation from the expected, approximately point-symmetric distribution around zero clearly
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visible. Using the data from all simulated volumes we have addressed the question to what extent
the volume dependence of the computed pion, rho and nucleon masses can be parameterized
by simple functions, and if an extrapolation from small and intermediate lattices to the infinite
volume is possible. To this end we have compared an exponential ansatz motivated by Liischer’s
formula to the power law observed by Fukugita et al.. On the basis of various fits we conclude
that while the power law may be used to describe the volume dependence of the masses at small
volumes smaller than roughly 1.5 fm, over the full range of simulated lattices and in particular
with respect to the asymptotic behavior the exponential ansatz is superior. The extrapolation
of simple exponential fits to the infinite volume in general provides only a lower bound to the
asymptotic mass, but this bound may be close to the true asymptotic value if the relative
difference between the masses from the largest volumes incorporated in the fit is already quite
small (of the order of a few percent). For small volumes alone, however, this is in general not
the case.

The simple exponential parameterization corresponds in its functional form to the asymptotic
Liischer formula for the pion (with input from leading order ChPT in infinite volume). Although
empirically we have found that the single exponential allows for a good description of our light
hadron masses over a wide range of lattice volumes, a large coefficient multiplying the exponential
attests to the fact that the data points from the small lattices lie outside the parameter regime
in which the formula holds. We have illustrated this by a comparison of our pion mass data
to Liischer’s formula with input from continuum ChPT up to NNLO and to the full LO ChPT
result for the pion mass in finite volume. Of course, if a reliable analytic prediction with
controllable errors is available it is always preferable to an extrapolation based on a fit with free
parameters. We have shown, however, that in the parameter regime of our simulations even
the best currently available estimate for the pion finite-size effect, based on a combination of
the asymptotic Liischer formula with NNLO ChPT input and the full (but LO) ChPT result,
yields mass shifts of a few percent only. This is comparable in size to the typical statistical
errors and therefore hard to detect in practice. Our simulations at § = 5.32144 probably are
in a pion mass regime where the box-size dependence can be described by such a formula, but
more statistics would be needed to corroborate this assumption. While Liischer’s formula with
input at next-to-leading and next-to-next-to-leading order in ChPT can be used to control the
convergence of the chiral expansion, a full higher order result from ChPT for the pion mass in
finite volume would be useful to fully assess the role of the sub-leading terms in the large-L
expansion.

For the nucleon, a full finite-size mass formula from relativistic baryon ChPT up to NNLO has
recently become available. We have shown for three different pion masses (two of which are
smaller than the ones considered in Ref. [66]) that it describes our simulated nucleon masses
remarkably well even down to box-sizes of about 1fm. We have also seen that above this size it
can, in principle, be used to estimate the infinite-volume mass already on the basis of a single
measurement, provided that the asymptotic pion mass is known. If, as in our case, data from
several lattice volumes are available, they can be combined to obtain a reliable estimate with
controllable errors. We could thus corroborate and extend the findings of Ali Khan et al..

Perspectives

In view of our original goal, “Going Realistic And Light”, an important result of this work is
that simulations with Wilson quarks at a relatively light quark mass are feasible. Statistical
fluctuations and autocorrelation times are under control if the chosen lattice size is not chosen
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too small. The same holds true for the performance of the HMC algorithm if the integration
step size in the molecular dynamics updates is adequately small. Since with currently available
formulae reliable extrapolations from small volumes to the infinite volume are problematic at
least in the case of the pion, we suggest to simulate on lattices so large that the pion masses
computed on two different volumes differ only by a few percent and the results of Ref. [65] can
be applied. The finite-size corrected pion mass can then be used as input for an estimate of
the asymptotic nucleon mass. As we have demonstrated with our simulations at 3 = 5.32144,
even with a moderate number of lattice sites we can make the physical volume large enough to
accommodate a relatively light pion by choosing the gauge coupling (and thus the lattice spacing)
appropriately. Incidentally, such an approach has also been chosen by the qq+q collaboration.
Using a large lattice spacing may of course lead to large discretization errors, which for our
unimproved Wilson action are O(a). While at our smallest pion mass we have observed an effect
in the nucleon mass that might be due to the low lattice cut-off at this point, one generally
expects the cut-off effect to be less severe for low-energy quantities like the pion mass and decay
constant. This assumption is supported by results from the qq+q collaboration. Considering
the volume-independent PCAC quark mass we observe potentially large lattice artefacts on the
small lattices, but see no indication of significant O(a) effects on the larger lattices.

As the GRAL project builds on and extends the previous SESAM and TxL projects we have
concentrated in this work on the original, unimproved Ny = 2 Wilson action. We do believe,
however, that our results may also be interesting for upcoming full QCD simulations with chiral
fermions. Using the overlap formalism with dynamical quarks, for example, is computationally
still extremely expensive and will for a foreseeable time be restricted to rather small volumes.
A—possibly naive—extrapolation in the volume may in such simulations be the only way to
extract approximate infinite-volume results.

In the light of our findings at (3, k) = (5.32144,0.1665), the next steps towards the regime of
lighter quark masses with the Wilson action could be the following (see also Ref. [51]): First,
simulate at the same 3, but with a larger hopping parameter of k = 0.1673 (say). This particular
value should yield a quark mass well below m,/m, = 0.4. A first run can be conducted with a
lattice of size L = 16, corresponding to a physical lattice extent of approximately 2 fm. Although
for k = 0.1665 we have observed no significant finite-size effects at this size, we expect them to
become more pronounced as the quark mass is decreased. As long as there is no sub-asymptotic
formula for the pion mass-shift in finite volume that would allow for a reliable direct correction
of the calculated pion mass (and, then, also of the nucleon mass), at least one other run with,
for example, L = 18 (La ~ 2.35fm) or L = 20 (La ~ 2.6 fm) is needed to learn about the actual
magnitude of finite-size effects. (The alternative of simulating a smaller volume of L = 14,
for example, appears less favorable due to the expected increase in fluctuations.) Depending
on the outcome one may then deal with these effects as explained in this work. In a second
step, further (intermediate or even smaller) quark masses at 3 = 5.32144 can be simulated
to set the stage for a chiral extrapolation, preferably using WChPT to account for the finite
lattice spacing. The UKQCD and JLQCD collaborations have pointed out ways of dealing with
potential instabilities in the updating process with the HMC that are expected to occur along the
road (64 bit arithmetic for field storage and matrix vector-multiplications, smaller integration
step size, improvement of the BiCGStab solver). Finally, in view of the fact that we are using
an unimproved action at a relatively large lattice spacing, as a third step one might attempt a
scaling analysis by going to larger values of 3 and, thus, smaller values of a.

To give a rough estimate of the computational cost of such a program we refer to our simulation
at (0, k) = (5.32144,0.1665) with L = 16 and m,/m, ~ 0.55, where the cost for producing 6700
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gauge field configurations in thermal equilibrium was approximately 75 Tflops-hrs. If we assume
the cost to scale like (my/m,)~% with z = 6 we arrive at an increase by a factor of 6.8 in going
from mx/m, = 0.55 to 0.4. In addition, relative factors of 1.8 or 3 must be taken into account
in switching from a 163 x 32 to a 182 x 36 or 20° x 40 lattice (assuming the cost to behave like
L5, and T = 2L). This increase in effort (a factor of 12-20) is matched by the current increase
in available computing time. For example, the next-generation cluster computer ALiCEnext at
the University of Wuppertal will very soon provide at least 20 times more compute power than
its predecessor ALiCE (roughly a factor of two on a per-node basis, and with 1024 processors
about ten times as many nodes), while the IBM p690 installation at FZ Jiilich already delivers 50
times the performance of ALiCE (5.6 Tflops from the LINPACK benchmark). Although these
numbers provide only hints as to the real performance of our HMC code on these machines, we
conclude that the regime of lighter quark masses is within reach, even with the standard Wilson
action.



Appendix A

Conventions

A.1 SU(3) Generators

The Hermitian generators t*, a = 1,...,8, of the Lie group SU(3) satisfy the commutation
relations

[t9, %] = i fabere, (A.1)

The numbers f%¢ are called structure constants. Together with their commutation relations and
the Jacobt identity,
[tav [tb7tc“ + [tb7 [tcvta“ + [tcv [tavtb“ =0, (A.2)

the group generators t* define a Lie algebra. They are conventionally written in terms of the
Gell-Mann matrices:

01 0 0 —i 0 1 0 0
=100, =i 0 0o, =(0 -1 0],
00 0 0 0 0 0 0 0
00 1 00 —i
M=[000]), s5=[00 0 |, (A.3)
100 i 0 0
00 0 00 0 10 0
=|l0011], »=[o00 —i ,)\8:% 01 0
01 0 0 i 0 3\ 0 0 -2

These matrices are normalized so that Tr \;A\; = 20;;.
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A.2 Euclidean Gamma Matrices

We use the following representation of the Euclidean gamma matrices:

0 0 0 i 0 0 0 1
[ o 0o io o 0o -10
M= 0o 00| ™ 1o =1 0 o]
i 0 00 1 0 0 0
(A.4)
0 0 i 0 10 0 0
[ o 00 =i o1 0 o
B=L 00 0o | 100 -1 0
0 i 0 0 00 0 -1
and
0010
000 1
s=]lw={1 00 0 (A.5)
a 0100



Appendix B

Time Series and Autocorrelation
Analysis

The plots on the following pages show (from top left to bottom right, respectively) the time
series of the average plaquette value and number of solver iterations, the respective normalized
autocorrelation functions and the corresponding integrated autocorrelation times as functions
of Teyt. The inset graphs show, on a logarithmic scale, the exponential fits from which we have
extracted the exponential autocorrelation time defined in Eq. (3.6). For all analyses in this work
only configurations right from the vertical line in the upper two plots were used. The vertical
lines in the upper two plots indicate the respective mean value and standard error. The results
of the autocorrelation analysis are summarized and discussed in Section 3.2.
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Appendix C

Parameters of the Correlator Fits

(PY(7)P(0))" Vi) Vi(0)® (N(r)N(0))"*

L B | ksea | ZPT | 0| [rninsTmax) | X3/Af | [insTinax] | X2/df | [Timin,Tax] | x2/dE
12332 | 7 5,14 0.48 5,14 2.25 5,12 0.82

5.32144 | 0.1665 | 14332 | 7 8,14 0.88 5,14 0.41 6,11 0.81
16332 | 7 5,15 1.12 6,15 1.74 5,14 0.75

0.1580 | 16332 | 7 9,15 0.69 9,15 0.77 6,14 0.94

0.1590 | 16332 | 8 7,15 1.17 9,15 1.16 9,14 0.72

5:5 0.1596 | 16332 | 5 7,15 1.47 7,15 2.30 7,14 1.18
0.1600 | 16332 | 6 7,15 1.09 7,15 0.56 8,14 0.54

0.1560 | 16332 | 5 7,15 2.33 11,15 0.90 7,14 1.31

0.1565 | 16332 | 7 10,15 1.58 8,15 1.66 9,14 0.81

0.1570 | 16332 | 7 10,15 0.34 8,15 1.51 8,14 2.49

10332 | 9 7,15 1.24 10,15 0.95 7,14 0.82

12332 | 9 10,15 1.73 8,15 0.70 10,14 0.38

0.1575 | 14332 | 6 7,15 0.42 10,15 0.32 7,14 0.45

5.6 16332 | 4 8,15 0.29 10,15 0.15 9,14 0.68
24340 | 7 10,19 1.50 10,19 1.72 10,18 0.76

12332 | 3 6,15 1.17 9,15 2.18 9,14 0.69

14332 | 5 7,15 0.79 10,15 0.59 9,14 0.17

0-1980'| 16339 | g 7,15 0.54 11,15 1.66 7,14 0.74

24340 | 9 10,19 2.15 10,19 1.33 12,18 1.04

Table C.1: Fit parameters for the local-smeared pseudoscalar, vector and nucleon correlators. b denotes
the blocksize for the jackknife, [Tinin, Tmax] is the fitted interval and x?2/df indicates the fit quality.
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(AL A0))™ | (ALP©O)" | (PHr)A(0))

LB | Rsea | IPT | 0] [oinTmax) | X3/Af | [Toin,Tinax] | X2/dF | [Fonin,Tma] | x2/dE
12332 | 7 4,14 0.65 6,14 0.44 5,12 0.88

5.32144 | 0.1665 | 14332 | 7 4,14 1.34 4,14 1.86 4,11 1.46
16332 | 7 7,15 1.42 7,15 0.81 5,14 1.00

0.1580 | 16332 | 7 4,15 1.06 3,15 1.03 6,14 0.98

0.1590 | 16332 | 8 5,15 1.24 5,15 1.33 8,14 1.05

55 0.1596 | 16332 | 5 3,15 0.91 3,15 1.87 9,14 1.16
0.1600 | 16332 | 6 8,15 1.95 3,15 1.86 3,14 1.43

0.1560 | 16332 | 5 4,15 0.67 3,15 0.70 3,14 0.58

0.1565 | 16332 | 7 3,15 0.69 3,15 0.83 3,14 1.02

0.1570 | 16332 | 7 3,15 0.59 3,15 0.41 8,14 0.11

10232 | 9 4,15 1.52 3,15 0.79 5,14 1.36

12332 | 9 6,15 1.11 3,15 0.97 3,14 1.26

0.1575 | 14332 | 6 5,15 0.45 6,15 0.86 5,14 1.41

5.6 16232 | 4 4,15 0.80 7,15 0.48 3,14 0.98
24340 | 7 7,19 1.31 7,19 1.16 4,18 0.98

12332 | 3 5,15 1.04 3,15 0.92 4,14 1.27

14332 | 5 6,15 0.63 6,15 1.32 4,14 0.61

0.1580 16332 | 8 4,15 0.84 4,15 1.21 6,14 1.03

24340 | 9 9,19 1.02 3,19 2.48 3,18 2.09

Table C.2: Fit parameters for the fully smeared pseudoscalar correlators involving Ay.
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(Al A0)* | (AmPO)* | (Pi(r)As0)"

B | Fsea | LT | b [Foin,Tinax] | X2/df | [Fenin e | X2/ | [Tonin Tnax) | X2/dlf
12332 | 7 5,14 1.81 6,14 1.53 6,12 0.39

5.32144 | 0.1665 | 14332 | 7 4,14 1.81 4,14 1.23 4,11 0.78
16332 | 7 7,15 1.12 8,15 0.95 8,14 1.09

0.1580 | 16332 | 7 5,15 1.10 3,15 0.97 9,14 0.77

0.1590 | 16332 | 8 6,15 1.52 4,15 2.08 9,14 0.89

55 0.1596 | 16332 | 5 4,15 1.89 3,15 1.93 8,14 0.63
0.1600 | 16332 | 6 3,15 1.16 3,15 1.31 8,14 0.92

0.1560 | 16332 | 5 6,15 1.62 3,15 1.60 8,14 1.74

0.1565 | 16332 | 7 3,15 1.19 3,15 1.04 6,14 0.45

0.1570 | 16332 | 7 3,15 1.17 8,15 0.58 9,14 0.05

10332 | 9 5,15 1.42 3,15 1.21 5,14 1.09

12332 | 9 6,15 1.10 6,15 1.01 5,14 0.86

0.1575 | 14332 | 6 6,15 0.74 6,15 0.91 10,14 1.20

56 16332 | 4 9,15 1.24 9,15 0.67 5,14 0.66
24340 | 7 8,19 1.13 7,19 1.25 7,18 0.93

12332 | 3 5,15 1.66 3,15 1.03 5,14 1.25

14332 | 5 6,15 1.26 7,15 1.47 4,14 1.06

0-1580 16332 | 8 3,15 0.94 4,15 1.26 5,14 1.25

24340 | 9 10,19 0.39 10,19 2.16 6,18 1.43

Table C.3: Fit parameters for the local-smeared pseudoscalar correlators involving Ay.






Appendix D

Fits of the Volume Dependence

The tables on the following pages show the parameters from fits of our data for the pseudoscalar
meson (PS), the vector (V) meson and the nucleon masses to the power law (4.13) and the
exponential (4.15) as discussed in Section 4.4.1.
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D.1 Power Law

Fit type | H | [L1,Lo] | my [GeV] | ¢; [GeV 2] | x2/df | A(Lpax) | A(L=00)
pow (ca=3) | PS| 10,14 | 0.455(19) | 54.5(2.3) | 1.09| -21.46% | -29.17%
pow (c2=3) | PS| 10,16 |0.484(17) | 51.7(2.6) | 242 -17.38% | -24.70%
pow (c2=3) | PS| 10,24 |0.570(35) | 41.2(7.1) | 31.65| -5.57% | -11.40%
pow (c2=3) | PS| 12,24 |0.612(26) | 21.8(8.3) | 10.28 | -1.70% | -4.78%
pow (c2=3) | PS| 14,24 |0.625(23) | 14.6(8.5) | 6.94| -0.68% | -2.75%
pow (c2=3) | V | 10,14 |0.8310(94) | 42.9(1.5) | 0.06| -5.14% | -9.39%
pow (c2=3) | V | 10,16 |0.806(16) | 46.2(3.1) | 0.44 | -7.54% | -12.12%
pow (c2=3) | V | 10,24 | 0.872(19) | 35.1(5.3) | 3.34| -1.38%| -4.87%
pow (c2=3) | V | 12,24 |0.879(24) | 32.1(7.4) | 4.11| -0.99% | -4.18%
pow (c2=3) | V | 14,24 |0.889(28) | 26.3(10.8) | 4.88| -0.49% | -3.10%
pow (ca=3) | N | 10,14 |1.228(31) | 94.5(3.8) | 0.25| -4.56% | -10.80%
pow (c2=3) | N | 10,16 |1.155(32) |102.1(5.3) | 1.05| -9.38% | -16.12%
pow (ca=3) | N | 10,24 | 1.255(43) | 88.5(9.3) | 5.83| -2.99% | -8.84%
pow (c2=3) | N | 12,24 | 1.276(54) | 79.2(16.0) | 6.83| -2.06% | -7.29%
pow (c2=3) | N | 14,24 |1.307(74) | 62.0(29.2) | 8.74| -0.95% | -5.04%

Table D.1: Parameters of L~3-fits in various L-intervals at (3, k) = (5.6,0.1575).

Fit type | H | [L1,Lo] | my [GeV] | ¢1 [GeV 2] | x2/df | A(Lmax) | A(L=00)
pow (c2=3) | PS| 12,16 |0.294(26) | 77.7(5.1) 0.63 | -22.84% | -39.91%
pow (c2=3) | PS| 12,24 |0.417(33) | 55.3(9.2) 8.55 | -2.67%| -14.81%
pow (c2=3) | PS| 14,24 |0.430(41) | 49.0(13.2) | 10.75 | -1.43% | -12.19%
pow (c2=3) | V | 12,16 | 0.67(16) 81.3(28.5) | 6.55 | -12.85% | -22.95%
pow (c2=3) | V | 12,24 |0.780(59) | 62.5(13.1) | 5.22| -210% | -9.86%
pow (co=3) | V | 14,24 | 0.779(93) | 62.7(24.8) | 10.44 | -2.13% | -9.93%
pow (c2=3) | N | 12,16 | 1.0655(38) | 128.28(75) | <0.01 | -2.02% | -13.25%
pow (c2=3) | N | 12,24 |1.0894(92) | 124.0(2.3) 0.07 | -0.44% | -11.30%
pow (c2=3) | N | 14,24 |1.095(11) |121.6(3.3) 0.07| -0.19% | -10.84%

Table D.2: Parameters of L~3-fits in various L-intervals at (3, k) = (5.6, 0.158).
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Fit type | H | [L1,Lo] | my [GeV] | ¢ [GeV ™2 | x2/df | A(Lyax) | A(L=00)
pow (c2=3) | PS| 12,16 |0.428(22) |-15.0(16.3) | 2.09 | -0.83% 2.23%
pow (cg=3) | V | 12,16 |0.743(32) | 23.3(29.0) | 0.77| 0.54% | -2.08%
pow (co=3) | N | 12,16 |1.037(63) | 90.9(52.8) | 1.87| 0.98% | -6.05%

Table D.3: Parameters of L~3-fits in various L-intervals at (8, k) = (5.32144,0.1665).

Fit type | H | [L1,La] | mp [GeV] | ¢; [GeV ™Y ca x?/df | A(Lmax) | A(L=00)
pow PS| 10,24 |0.635(11) |2954(3063) | 5.94(72) | 2.31| -0.77%| -1.21%
pow V | 10,24 |0.901(20) | 248(335) |4.27(88)| 2.24| -048%| -1.74%
pow N | 10,24 |1.331(51) | 408(444) |4.05(75)| 3.82| -0.95%| -3.29%

Table D.4: Parameters of general power-law fits at (3, k) = (5.6,0.1575) (full L-range). d = ¢o — 1.

Fit type | H | [L1,Lo] | my [GeV] | ¢; [GeV ™) 2 X2/df | A(Lpax) | A(L=00)
pow | PS| 12,24 |0.471(28) |1241(2338) |4.9(1.2) | 4.18| -055% | -3.86%
pow V| 1224 [082(12) | 270(1222) |3.9(2.9) | 9.23| -1.10%| -5.06%
pow N | 1224 | 1.114(10) | 173(23) |3.218(85)| 0.02] -0.04%| -9.28%

Table D.5: Parameters of general power-law fits at (3, k) = (5.6,0.158) (full L-range). d = ¢y — 1.

Fit type | H | [L1,Lo] | mpy [GeV] | c1[GeVTY | x| x%/df | A(Lmax) | A(L=00)
pow PS| 12,16 | 0.410 |100.1 27.4 -2.22% -2.22%
pow V| 12,16 |-26.3 27.3 0.004 0.36% | -3564.89%
pow N | 12,16 |-84.4 86.4 0.004 0.59% | -7746.92%

Table D.6: Parameters of general power-law fits at (3, k) = (5.32144,0.1665) (full L-range). d = co — 1.
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D.2 Exponential

Fit type | H | [L1,Lo] | mu [GeV] | e [GeVTV2 | ¢y | x2/df | A(Lpax) | A(L=00)
exp PS | 10,24 |0.6385(73) | 210.7(94.5) | 0.89(10) | 1.30 | -0.60% -0.70%
exp V | 10,24 |0.909(14) | 50.5(34.4) |0.58(14) | 1.68| -0.40% -0.84%
exp N | 10,24 |1.355(36) | 96.5(51.5) |0.53(12) | 2.78| -0.74% -1.59%

Table D.7: Parameters of general exponential fits at (8, k) = (5.6,0.1575) (full L-range).

Fit type | H | [L1,Lo] | my [GeV] | ¢1[GeV™1/2] co x2/df | A(Lyay) | A(L=00)
exp PS| 12,24 |0.481(20) |133.6(121.6) | 0.66(18) 317 | -0.46% | -1.83%
exp V| 12,24 |0.841(90) | 64.1(154.8) | 0.50(49) 8.56 | -1.01%| -2.78%
exp N | 12,24 | 1.1655(16) | 61.22(90) | 0.3553(30) | <0.01 | -0.01% | -5.10%

Table D.8: Parameters of general exponential fits at (3, k) = (5.6,0.158) (full L-range).

Fit type | H | [L1,Lo] | my [GeV] | e1 [GeVTV2) | er | x2/df | A(Lmax) | A(L=00)
exp PS| 12,16 | 0.410 111.99 6.695 2.22% | -2.22%
exp V | 12,16 | 0.694 1.69 -0.03 0.45% |  -8.48%
exp N | 12,16 | 0.857 6.39 -0.03 0.77% | -22.40%

Table D.9: Parameters of general exponential fits at (5, k) = (5.32144,0.1665) (full L-range).
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Fit type H | [L1,Lo] | my [GeV] | ¢1 [GeVTV2] | x2/df | A(Lmax) | A(L=00)
exp (c2=mps) | PS| 10,24 |0.624(13) | 65.9(4.2) 559 | 241% | -2.91%
exp (ca=mps) | V | 10,24 | 0.9125(92) | 63.5(5.6) 119 -017%| -0.51%
exp (c2=mps) | N | 10,24 | 1.372(22) | 142.7(9.5) 237 018%| -0.32%
exp (cg=mps) | PS| 12,24 |0.632(12) 52.7(9.4) 3.70 | -1.28% -1.64%
exp (ca=mpg) | V | 12,24 |0.9092(98) | 72.6(8.7) 1.18 | -0.52% -0.87%
exp (co=mps) | N | 12,24 |1.361(22) |167.917.8) | 1.99| -0.59% | -1.13%
exp (co=mps) | PS| 14,24 | 0.637(13) | 42.3(14.9) | 3.78| -0.66%| -0.94%
exp (co=mps) | V | 14,24 |0.910(15) | 73.1(19.8) | 2.32| -0.46%| -0.80%
exp (co=mps) | N | 14,24 | 1.357(35) |184.9(53.3) | 3.69| -0.88% | -1.44%
exp (ca=mps) | PS| 16,24 |0.642 15.1 -0.09%
exp (co=mpg) | V | 16,24 |0.916 34.1 -0.15%
exp (co=mpg) | N | 16,24 | 1.372 123.8 -0.36%

Table D.10: Parameters of exp(—mpsL)/L%/?-fits in various L-intervals at (3, ) = (5.6,0.1575).

Fit type H | [L1,Ly] | my [GeV] | e1 [GeVTV2) | x2/df | A(Lmax) | A(L=00)
exp (co=mpg) | PS| 12,24 |0.466(20) | 47.9(4.2) 3.86 | -1.50% -4.91%
exp (ca=mps) | V | 12,24 |0.836(45) | 53.1(10.0) 431 -127% | -3.41%
exp (co=mpg) | N | 12,24 |1.208(20) | 104.1(5.1) 0.50 | 1.30% -1.65%
exp (ca=mps) | PS| 14,24 | 0.469(27) | 46.1(6.6) 6.29 | -1.06% | -4.22%
exp (co=mps) | V | 14,24 |0.827(66) | 58.6(19.6) 775 -212% | -4.40%
exp (co=mpg) | N | 14,24 |1.195(15) | 114.1(5.4) 0.21| 0.39% -2.74%
exp (co=mpg) | PS| 16,24 |0.479 34.8 -2.17%
exp (ca=mps) | V | 16,24 |0.859 19.7 -0.70%
exp (ca=mps) | N | 16,24 |1.189 127.9 -3.18%

Table D.11: Parameters of exp(—mpgL)/L3/?-fits in various L-intervals at (8, x) = (5.6,0.158).

Fit type H | [L1,Lo] | mp [GeV] | 1 [GeVTY2] | x2/df | A(Lmay) | A(L=00)
exp (e1=C,ca=mps) | PS| 12,16 | 0.4093(79) 199 -229% | -2.29%
exp (co=mps) V| 12,16 |0.756(20) | 18.4(26.8) 0.86| 0.64% | -0.31%
exp (co=mps) N | 12,16 | 1.088(42) | 75.0(50.6) 2.32| 1.19% | -1.46%
exp (c1=C,co=mps) | PS | 14,16 | 0.412(12) 3.22 | -1.58% -1.58%
exp (co=mps) V | 14,16 |0.733395 | 66.446 -3.31%
exp (co=mps) N | 14,16 |1.03317 | 186.934 -6.41%

Table D.12: Parameters of exp(—mpgL)/L3/?-fits in var. L-intervals at (3, k) = (5.32144, 0.1665).
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Fit type H | [L1,Lo) | mpy[GeV] | ¢ [GeVTV2] | x2/df | A(Lmax) | A(L=00)
PS| 10,16 |0.5912(48) | 62.35(85) 0.22] -7.39%| -8.04%
V | 10,16 | 0.902(20) | 56.7(7.1) 152 -1.19% | -1.61%
N | 10,16 | 1.363(40) | 124.3(11.1) | 3.09| -0.38%| -0.99%
PS| 12,16 |0.59829(24) | 59.909(72) | <0.01 -6.36% -6.95%
V| 12,16 |0.883(22) | 71.2(10.7) | 1.00| -3.25% | -3.74%
N | 12,16 |1.331(53) |151.2(25.6) | 3.12| -2.62% | -3.31%

Table D.13: Parameters of infinite-volume extrapolation at (3, k) = (5.6,0.1575).

Fit type H | [L1,Lo) | mpy[GeV] |1 [GeVTV2] | x2/df | A(Lmax) | A(L=00)
exp (co=mpg) | PS| 12,16 |0.343(50) | 35.8(5.3) 0.54 | -21.46% | -29.84%
exp (co=mpg) | V | 12,16 |0.72(14) 37.2(12.8) 6.31 | -11.75% | -16.68%
exp (co=mpg) | N | 12,16 | 1.15393(39) | 58.440(40) | <0.01| -0.59% -6.05%

Table D.14: Parameters of infinite-volume extrapolation at (3, k) = (5.6,0.158).
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