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Kurzfassung
Die vorliegende Dissertation thematisiert ergodische Eigenschaften von spezifi-
schen ein- und zweidimensionalen affinen Prozessen. Grob gesagt, besteht die Klas-
se der affinen Prozesse, eingeführt von Duffie, Filipović, und Schachermayer (2013),
aus allen Markov-Prozessen in stetiger Zeit mit Wertebereich Rm

>0×Rn, deren loga-
rithmierte charakteristische Funktion affin vom Anfangszustandsvektor des Pro-
zesses abhängt. Eine wichtige Frage, die im Zusammenhang mit zeithomogenen
Markov-Prozessen auftitt, ist deren Langzeitverhalten wie die Ergodizität. Bisher
wurde die Ergodizität für affine Prozesse im Allgemeinen noch nicht untersucht.
In dieser Dissertation werden zunächst spezifische (nicht-triviale) affine Modelle,
wie der Sprung-Diffusions Cox-Ingersoll-Ross Prozess und ein zweidimensionales
Modell basierend auf dem α-Wurzel Prozess, bezüglich Ergodizität untersucht.
Aufgrund zahlreicher Anwendungen in der Finanzmathematik sind diese Modelle
auch für sich genommen von Interesse.

Im ersten Teil dieser Dissertation wird ein affines Zweifaktorenmodell studiert,
das auf den α-Wurzel Prozess basiert und von Barczy, Döring, Li und Pap (2014)
eingeführt wurde. Eine Komponente dieses zweidimensionalen Modells ist der α-
Wurzel Prozess. Es wird die exponentielle Ergodizität für das Zweifaktorenmodell
für α ∈ (1, 2) gezeigt. Die Methodik basiert dabei hauptsächlich auf einer An-
wendung des Foster-Lyapunov-Driftkriteriums, das von Meyn und Tweedie (1993)
entwickelt wurde. Als ein Hilfsmittel zum Beweisen der Ergodizität und als weite-
res Resultat ergibt sich die Existenz von positiven Übergangsdichten des α-Wurzel
Prozesses.

Im zweiten Teil dieser Dissertation wird der Sprung-Diffusions Cox-Inger-soll-
Ross Prozess vorgestellt, der als eine Erweiterung des klassischen Cox-Ingersoll-
Ross Modells verstanden werden kann. Die Sprünge des Sprung-Diffusions Cox-
Ingersoll-Ross Prozesses werden durch einen Subordinator beschrieben. Es werden
hinreichende Bedingungen an das Lévy-Maß des Subordinators bestimmt, so dass
der Sprung-Diffusions Cox-Ingersoll-Ross Prozess ergodisch bzw. exponentiell ergo-
disch ist. Zudem wird die Existenz der κ-Momente (κ > 0) des Sprung-Diffusions
Cox-Ingersoll-Ross Prozesses charakterisiert durch eine Integrabilitätsbedingung
an das Lévy-Maß des Subordinators. Als Konsequenz der Resultate ergibt sich
die Konvergenz der Momente für den Sprung-Diffusions Cox-Ingersoll-Ross Pro-
zess. Um eine Anwendung der Ergodizitätsresultate zu veranschaulichen, wer-
den schließlich asymptotische Eigenschaften von bedingten Kleinste-Quadrate-
Schätzern der Driftparameter des Sprung-Diffusions Cox-Ingersoll-Ross Prozesses
basierend auf zeitdiskreten Beobachtungen untersucht. Im subkritischen Fall wird
die Konsistenz und die asymptotische Normalität der Schätzer gezeigt.
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Abstract
This thesis is devoted to the study of ergodic properties of some one and two-
dimensional affine processes. Roughly speaking, the class of affine processes on the
canonical state space, introduced by Duffie, Filipović, and Schachermayer (2013),
consists of continuous-time Markov processes taking values in Rm

>0 × Rn, whose
log-characteristic function depends in an affine way on the initial state vector of
the process. A question of interest in the context of time-homogeneous Markov
processes is their long-time behavior such as the ergodicity. Unitl now, ergodicity
is not very well investigated for general affine processes. This is one reason why
we initially started to work on particular (non-trivial) affine models such as a
jump-type Cox-Ingersoll-Ross process and a two-factor model based on the α-root
process. A further reason is given by the fact that both models discussed in this
thesis provide interesting applications in financial mathematics.

In the first part of this thesis we study an affine two-factor model based on the
α-root process introduced by Barczy, Döring, Li, and Pap (2014). One component
of this two-dimensional model is the so-called α-root process. We manage to
prove exponential ergodicity of this two-factor model when α ∈ (1, 2) mainly by
stochastic methods, e.g. a Foster-Lyapunov drift criteria developed by Meyn and
Tweedie (1993). As a further result of our considerations, we obtain existence of
positive transition densities of the α-root process.

In the second part of the thesis we introduce the jump-diffusion Cox-Ingersoll-
Ross process, which is an extension of the Cox-Ingersoll-Ross model and whose
jumps are introduced by a subordinator. We provide sufficient conditions on the
Lévy measure of the subordinator under which the jump-diffusion Cox-Ingersoll-
Ross process is ergodic and exponentially ergodic, respectively. Furthermore, we
characterize the existence of the κ-moment (κ > 0) of the jump-diffusion Cox-
Ingersoll-Ross process by an integrability condition on the Lévy measure of the
subordinator. As a consequence of our results, we obtain a moment convergence
theorem for the jump-diffusion Cox-Ingersoll-Ross process. Eventually, to illus-
trate the use of our ergodic results, we study asymptotic properties of condi-
tional least squares estimators for the drift parameters of the jump-diffusion Cox-
Ingersoll-Ross process based on discrete time observations. In the subcritical case
we prove strong consistency and asymptotic normality of our parameter estima-
tors.
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Introduction

This thesis investigates the ergodic properties of some one and two-dimensional affine
processes. The first model (Y,X) := (Yt, Xt)t>0, studied in this thesis, is determined
by the following stochastic differential equation:{

dYt = (a− bYt)dt+ α
√
Yt−dLt, t > 0, Y0 > 0 a.s.,

dXt = (m− θXt)dt+
√
YtdBt, t > 0,

where α ∈ (1, 2), (Lt)t>0 is a spectrally positive α-stable Lévy process with the Lévy
measure (αΓ(−α))−1 z−1−α

1{z>0}dz, and (Bt)t>0 is an independent standard Brownian
motion. The process (Yt, Xt)t>0 was introduced by Barczy, Döring, Li, and Pap [4]. The
second model, this thesis deals with, is the jump-diffusion Cox-Ingersoll-Ross (shorted
as JCIR) process. The JCIR process Z = (Zt)t>0 is defined as the unique strong
solution to the stochastic differential equation

dZt = (a− bZt)dt+ σ
√
ZtdBt + dJt, t > 0, Z0 > 0 a.s.,

where (Bt)t>0 is a one-dimensional Brownian motion and (Jt)t>0 is a pure jump Lévy
process with its Lévy measure ν concentrating on (0,∞) and satisfying

∫∞
0 (z∧1)ν(dz) <

∞. Further assumptions to the parameters of both models are given in the respective
chapters hereafter.

Both processes, the two-factor model (Y,X) based on the α-root process and the
JCIR process Z, exhibit a log-characteristic function which depends linearly on the ini-
tial state vector of the respective process. Roughly speaking, processes arising with this
property are called affine processes. Strictly speaking, an affine process on Rm>0 × Rn
(for integers m > 0 and n > 0) is a continuous-time and stochastically continuous
Markov process taking values in Rm>0 × Rn, whose log-characteristic function depends
in an affine way on the initial state vector of the process, i.e. the log-characteristic
function is linear with respect to the initial state vector. Affine processes are partic-
ularly important in financial mathematics because of their computational tractability.
For example, the models of Cox, Ingersoll, and Ross [15], Heston [25] and Vasicek [64]
are all based on affine processes. In the case α = 2, the two-factor model (Y,X) was
used by Chen and Joslin [14] to price defaultable bonds with stochastic recovery rates.
As an application of the JCIR process, Barletta and Nicolato [9] recently studied a
stochastic volatility model with jumps for the sake of pricing of VIX options, where the
volatility (or instantaneous variance process) of the asset price process is modelled via
the JCIR process.

The general theory of affine processes on the canonical state space Rm>0 × Rn was
initiated by Duffie, Pan and Singleton [19] and further developed by Duffie, Filipović,
and Schachermayer [17]. This type of process unifies the notions of continuous-state
branching processes with immigration (shorted as CBI) (see, e.g., [38]) and Orn-
stein–Uhlenbeck (OU) type processes (e.g.,[59]). Due to Duffie et al. [17], the affine
processes with state space Rm>0 are CBI, and those with state space Rn are of OU type.
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2 Introduction

In their seminal article they also established a rigorous mathematical foundation to the
theory of affine processes, covering aspects, such as the characterization of an affine
process in terms of the admissible parameters and properties of the generalized Riccati
equations that are implied by the process. Apart from these pioneering results, many
authors provided further important results regarding affine processes or subclasses of
affine processes, respectively. For instance, Keller-Ressel, Schachermayer, and Teich-
mann [42] proved that the time-differentiability of the characteristic function of the
given affine process is implied by its stochastic continuity. Moreover, Keller-Ressel
and Mayerhofer [40] investigated the exponential moments of affine processes. For the
subclass of CBI processes, an identification as a pathwise unique strong solution of cer-
tain stochastic differential equations with jumps has been studied by Barczy, Li, and
Pap [5] as well as a moment formula [6]. In addition to these results, the existence of
fractional moments of one-dimensional CBI procsess has been investigated by Ji and
Li [29]. Another topic of great interest and a rather naturally arising question in the
context of Markov processes is the asymptotic behavior of the process. So one may ask
under which conditions does the affine process converge with respect to time to a limit
distribution. Closely related to this question is the existence of a (unique) invariant
measure for the affine process. This question has been investigated by some authors,
see, e.g., [24, 39,43,59].

However, among all the mentioned properties of affine processes or subclasses of affine
processes, the ergodicity property for general affine processes does not seem to have
been investigated as yet. For a time-homogeneous Markov process M = (Mt)t>0 with
state space E, let Pt(x, ·) := Px (Xt ∈ ·) denotes the distribution of Mt with the initial
condition M0 = x ∈ E. We call M ergodic if it admits a unique invariant probability
measure π such that

lim
t→∞

∥∥∥Pt(x, ·)− π
∥∥∥
TV

= 0, for all x ∈ E,

where ‖ · ‖TV stands for the total variation norm of a signed measure. The Markov
process M is called exponentially ergodic if it is ergodic and in addition there exists a
finite-valued function B on E and a positive constant δ such that∥∥∥Pt(x, ·)− π

∥∥∥
TV

6 B(x)e−δt, for all x ∈ E, t > 0.

One rather general result is due to Masuda [48], who provides sets of conditions under
which the OU type process is ergodic and exponentially ergodic as well. Jin, Mandrekar,
Rüdiger, and Trabelsi [32], Jin, Rüdiger, and Trabelsi [33,34] initially started to work on
particular CBI processes and managed to prove exponential ergodicity of these models,
which arise as extensions of the CIR model. The first affine two-factor model shown to
be exponentially ergodic is the affine two-factor model (Y,X) based on the square-root
process, i.e., α = 2, as recently investigated by Barczy, Döring, Li, and Pap, [4].1

Though derivation of the ergodic property is interesting in its own right, this thesis
was mainly motivated by statistical analysis for affine processes. Indeed, an important
issue for the application of affine processes is the calibration of their parameters. This
has been considered for some well known affine models, see e.g. [3, 7, 11, 54, 55]. To
study the asymptotic properties of estimators of the parameters, a comprehension of
the long-time behavior of the underlying affine processes is very often required. This

1That is, the first component Y of the two-factor model is the standard CIR process.



Introduction 3

is one of the reasons why the stationary, ergodic and recurrent properties of affine pro-
cesses have recently attracted many investigations, see e.g. [4,20,32–34,41,43,45], and
many others.

It was our intention in this work to take up loose ends from both, the article of
Barczy et al. [4] and Jin et al. [33], and to prove (exponential) ergodicity of the model
(Y,X) as well as Z in a quiet more general set-up. In part one of this thesis we study
the ergodicity problem for the two-factor model (Y,Z) based on the α-root process
when 1 < α < 2. As our main result in Part I of this thesis, we show that (Yt, Zt)t>0
is exponentially ergodic if α ∈ (1, 2), provided some further assumptions to the pa-
rameters, complementing the results of Barczy et al. [4], who already proved that the
two-factor model has a stationary distribution when α ∈ (1, 2) and is exponentially
ergodic if α = 2. We remark that only the case 1 < α < 2 allows for activity of jumps.
In Section 1.1 we briefly introduce the two-factor model as an affine process and derive
the Laplace transform of the α-root process Y . Our approach to obtain the exponential
ergodicity of the two-factor model (Y,Z) is motivated by that of Jin et al. [33]. As a
first step, in Section 1.2 we show the existence of positive transition densities of the
α-root process (Yt)t>0. To achieve this, we calculate explicitly the Laplace transform
of it. Through a careful analysis of the decay rate of the Laplace transform of the
α-root process at infinity, we manage to show the positivity of the density function of
the α-root process using the inverse Fourier transform. The positivity of the density
function of Y plays an essential role in the proof of the exponential ergodicity for the
two-factor model (Y,X), since it enables us to show that the Lebesgue measure is an
irreducibility measure for the skeleton chains of the model. Our method of proving
the existence of a positive density function for the α-root process Y is purely analytic.
In the second step, we construct a Foster-Lyapunov function for the two-factor model
(Y,X), see Section 1.3. Using the general theory of Meyn and Tweedie [50–52] on the
ergodicity of Markov processes, we are then able to derive in Section 1.4 the exponential
ergodicity of the two-factor model based on the α-root process.

Part II of this thesis is devoted to the study of the JCIR process (Zt)t>0, which is
an extension of the CIR model and whose jumps are introduced by a subordinator. As
mentioned before, to study the fine properties of the estimators, a comprehension of the
long-time behavior of the underlying process is required, but, eventually, it turns out
that also a knowledge of the moments is necessary for a construction of the different
estimators. The purpose of the second part is twofold. Firstly, in Chapter 2 we focus on
the ergodicity and moment characterization problem for the JCIR process (Zt)t>0 and
analyse their subtle dependence on the big jumps of the subordinator. In Section 2.1 we
derive the affine property of the JCIR process and, as a first step, using a decomposition
of its characteristic function, we show existence of positive transition densities of the
JCIR process, which improves a similar result in [33]. Section 2.2 contains our first
main result, namely a characterization of the existence of κ-moments (κ > 0) of the
JCIR process Z in terms of the Lévy measure, which is implied by the subordinator.
The second aim we pursue in this chapter is to improve the results of Jin et al. [33]
on the ergodicity of the JCIR process. Sections 2.3 and 2.4 are devoted to the proof
of the ergodicity and exponential ergodicity in question of the JCIR process (Zt)t>0,
respectively. In the second step to achieve this, we construct some Foster-Lyapunov
functions for (Zt)t>0, which enable us to prove the asserted (exponential) ergodicity
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by using the results of Meyn and Tweedie [50–52]. For the construction of the Foster-
Lyapunov functions we will use some ideas from Masuda [48]. To round out the picture
presented by our study of the moments of the JCIR process, in Section 2.5, we present
a moment convergence theorem for the JCIR process.

Finally, in Chapter 3 we turn towards the study of asymptotic properties of condi-
tional least squares estimators (CLSEs) for the drift parameters of the JCIR process
based on discrete-time observations in order to illustrate an application of our ergodic-
ity result. To achieve this, we start by introducing CLSEs for transformed parameters
of the drift of the JCIR process (Zt)t>0. As our main results, in Sections 3.1 and 3.2, in
the subcritical case (i.e., b > 0) we prove that the transformed CLSE is strongly con-
sistent and asymptotic normal. Eventually, we conclude in Section 3.3 with an explicit
calculation of a strongly consistent and asymptotic normal CLSE for the original drift
of Z based on the analogous properties of the transformed CLSE. Our approach is close
to that of Barcy, Pap, and Szabó [8] and Overbeck and Rydén [55], who build some
CLSEs based on discrete observations for the original CIR process. The parameter
estimation problem for the JCIR process is more complicated, since it has an addi-
tional parameter given by the Lévy measure of the driving noise and thus an infinite
dimensional object. Nevertheless, based on low frequency observations, Xu [65] pro-
posed some nonparametric estimators for ν, given that ν is absolutely continuous with
respect to the Lebesgue measure. Recently, Barczy, Ben-Alaya, Kebaier, and Pap [2]
studied also the maximum likelihood estimator for the growth rate of the JCIR process
based on continuous time observations.

Finally, we provide the reader with a short introduction to two-dimensional affine
processes, the basic definitions of properties of Markov chains on uncountable state
spaces used in this thesis, as well as a strong law of large numbers and a central limit
theorem for discrete time square-integrable martingales in the appendix of the thesis.

Credits. Most of the results in part one of this thesis are established in [31]. This
article is a joint work with P. Jin and B. Rüdiger. Apart from the above mentioned
we have to refer to other active researchers who are working on this particular model,
namely M. Barczy, L. Doering, Z. Li, and G. Pap, [4]. The proofs provided in the first
part of this thesis are taken from our joint article [31] with P. Jin and B. Rüdiger and
furnished with some details and explanations where we deem it appropriate. In order
to present the whole notion of the (two-dimensional) factor model based on the α-root
process, we occasionally recall results with proofs or sketches of proofs from Barcy et
al. [4] and Z. Li and C. Ma [45] (see also the references given in the specific sections).

The stated results about the (exponential) ergodicity of the JCIR process in part
two of this thesis are established in a joint work with P. Jin and B. Rüdiger [30].2 Our
considerations about ergodicity of the JCIR process are mainly based on a preparatory
work of P. Jin, B. Rüdiger and C. Trabelsi [33]. In our article [30] we managed to
improve the results in [33] and additionally to add the characterization of the moments.
In this thesis, we add to this chapter some result about the convergence of the moments
for the JCIR process which is new, at least to the authors’ knowledge.

The parameter estimation of the drift parameters of the JCIR process is motivated by
an article of M. Barczy, G. Pap, and T. Szabó [8]. We mimic the proof of [8, Theorem
3.2] with appropriate adjustments where this is necessary in order to transfer into our

2Submitted to an international journal.
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framework of the JCIR process. The elaboration of this chapter arose out of working
with P. Jin and B. Rüdiger. This part of the thesis is also new and not submitted to
an international journal yet.

Notation. Throughout this thesis, we use the following notations. Let N, Z>0,
R, R>0, R>0 and R60 denote the sets of positive integers, non-negative integers, real
numbers, non-negative real numbers, strictly positive real numbers, and negative real
numbers, respectively. Let C be the set of complex numbers as well as C2 the set of
two-dimensional complex numbers. For z ∈ C \ {0} we denote by Arg(z) the principal
value of its argument and by z̄ its conjugate. We define the following subset of C2:

U :=
{
u = (u1, u2) ∈ C2 : Reu1 6 0 and Reu2 = 0

}
.

Further, we define the following subsets of C:

C60 := {u ∈ C : Reu 6 0} , C>0 := {u ∈ C : Reu > 0} ,
C<0 := {u ∈ C : Reu < 0} , C>0 := {u ∈ C : Reu > 0} ,

and the set of purely imaginary numbers

iR := {u ∈ C : Reu = 0} , together with O := C \ {−x : x ∈ R>0}.

With that notation, clearly U = C60 × iR. For z ∈ C \ {0} let Log(z) be the principal
value of the complex logarithm of z, i.e., Log(z) = ln(|z|) + iArg(z). In this thesis, we
define Arg(x) := π for x ∈ (−∞, 0). For β ∈ R define the complex power function zβ

as
zβ := exp(β Log z), z ∈ C \ {0}. (0.0.1)

By C2(S,R), C2
c (S,R), C2

b (S,R), and C∞(S,C) we denote the sets of R-valued or
C-valued functions on S that are twice continuously differentiable, that are twice contin-
uously differentiable with compact support, that are bounded continuous with bounded
continuous first and second order partial derivatives, and that are smooth, respectively,
where the space S can be R, R>0, R>0×R or R>0×R>0×R in this thesis. We denote
the Borel σ-algebra on S simply by B(S). Similarly, we denote by Bb(S) the set of
bounded Borel measurable functions acting on S. We endow the Space S with the
inner product 〈·, ·〉. For a, b ∈ R, we denote by a ∧ b and a ∨ b the minimum and
maximum of a and b, respectively.

Throughout this thesis, we assume that (Ω,F , (Ft)t>0 ,P) is a filtered probability
space satisfying the usual conditions, i.e., (Ω,F ,P) is complete, the filtration (Ft)t>0 is
right-continuous and F0 contains all P-null sets in F .



Part I.

Exponential ergodicity of an
affine two-factor model based on

the alpha-root process



1. The affine two factor model based on
the alpha-root process

In this chapter we recall some important properties of the affine process (Y,X) :=
(Yt, Xt)t>0 defined as the (pathwise) unique strong solution of the stochastic differential
equation {

dYt = (a− bYt)dt+ α
√
Yt−dLt, t > 0, Y0 > 0 a.s.,

dXt = (m− θXt)dt+
√
YtdBt, t > 0,

(1.0.1)

where a > 0, b > 0, θ, m ∈ R, α ∈ (1, 2), (Lt)t>0 is a spectrally positive α-stable
Lévy process with the Lévy measure Cαz−1−α

1{z>0}dz, with Cα := (αΓ(−α))−1, and
(Bt)t>0 is an independent standard Brownian motion. The process (Yt, Xt)t>0 given by
(1.0.1) was introduced by Barczy et al. [4]. The strong solution Y = (Yt)t>0 of the first
stochastic differential equation,

dYt = (a− bYt)dt+ α
√
Yt−dLt, t > 0, Y0 > 0 a.s., (1.0.2)

is sometimes referred as α-root, α-stable or simply stable CIR process. Note, if α = 2
in (1.0.2) then (Lt)t>0 is a standard Brownian motion. In that case, due to the almost
surely continuity of the sample paths of a Brownian motion, instead of

√
Yt− one may

write
√
Yt in the stochastic differential equation (1.0.2), and Y is nothing but the CIR

process.

The following paragraph is intended to give the reader an insight into the notion of Itô
type stochastic integrals with respect to α-stable Lévy processes. We shed some light
on the notion of a spectrally positve α-stable Lévy process L := (Lt)t>0 in prior. A non-
subordinator1 is said to be spectrally positive if it has no negative jumps. An (Ft)t>0-
adapted stochastic process (Lt)t>0 is said to be an α-stable Lévy process, α ∈ (1, 2), if
L0 = 0 almost surely, Lt − Ls, 0 6 s < t, is stable distributed2 and for any finite time
points 0 6 t0 < t1 < · · · < tn <∞, the random variables Lt0 , Lt1 −Lt0 , . . . , Ltn −Ltn−1

are independent. Stable Lévy processes form a subclass of Lévy processes which are
widely studied in [59, Chapter 3]. In our framework, we assume that (Bt)t>0 is a
standard (Ft)t>0-Brownian motion and (Lt)t>0 is a spectrally positive α-stable (Ft)t>0-
Lévy process with the Lévy measure Cαz−1−α

1{z>0}dz, where 1 < α < 2.
A consequence of the absence of negative jumps and the stable property of L is that

the characteristic function of L1 reduces to

E
[
eiuL1

]
= exp

{∫ ∞
0

(
eiuz − 1− iuz

)
Cαz

−1−αdz
}
, u ∈ R.

1We call a Lévy process a subordinator if its sample paths are increasing.
2The random variable Lt − Ls is said to follow an α-stable distribution with α ∈ (1, 2), if it has

characteristic function given by

E
[
eiu(Lt−Ls)] = exp

{
−(t− s)|u|α(1− iβsgn(u) tan απ

2

}
, u ∈ R,

where β ∈ [−1, 1]. If in addition β = 0, Lt is called symmetric α-stable.

7
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Let N(ds,dz) be a Poisson random measure on R2
>0 with intensity measure given by

Cαz
−1−α

1{z>0}dsdz and N̂(ds,dz) be its compensator. Then the Lévy-Itô representa-
tion of L takes the form

Lt = γt+
∫ t

0

∫
{|z|<1}

zÑ(ds,dz) +
∫ t

0

∫
{|z|>1}

zN(ds,dz), t > 0, (1.0.3)

where γ := −E
[∫ 1

0
∫
{|z|>1} zN(ds,dz)

]
and Ñ(ds,dz) := N(ds,dz) − N̂(ds,dz), with

N̂(ds,dz) = Cαz
−1−α

1{z>0}dsdz, is the compensated Poisson random measure on R2
>0

that corresponds to N(ds,dz). We remark that γt = −
∫ t

0
∫
{|z|>1} zN̂(ds,dz) and∫ t

0

∫
{|z|>1}

zN(ds,dz) + γt, t > 0,

is thus a martingale with respect to the filtration (Ft)t>0.
Itô type stochastic integrals with respect to a (symmetric) α-stable Lévy process

have some history. It is worth to mention that they are extensively studied in [35], and
[36]. By [36, Theorem 3.1], a real-valued (Ft)t>0-predictable process X on Ω× R>0 is
integrable with respect to a (symmetric) α-stable Lévy process Lt, that is

∫ t
0 XsdLs ex-

ists for every t > 0, if and only if X satisfies the integrability condition
∫ t

0 |Xs|αds <∞
almost surely. A construction of stochastic integrals with respect to symmetric α-stable
processes is due to Rosinski and Woyczynski [58, Theorem 2.1]. Another way is to con-
sider L as a semimartingale, see e.g. Jacod and Shiryaev [27, Corollary II.4.19], so that
Theorems I.4.31 and I.4.40 in Jacod and Shiryaev [27] describe the classes of processes
which are integrable with respect to L, see also Remark 1.3 below.

We recall an inequality for moments of stochastic integrals driven by an α-stable
Lévy process Lt.

Remark 1.1 (Remark A.8 [45]). Let (Lt)t>0 be an α-stable Lévy process with α ∈ (0, 2]
and (Xt)t>0 a predictable process satisfying almost surely∫ T

0
|Xt|αds <∞, T > 0.

Let β ∈ (0, α). Then there exists a constant C = C(α, β) > 0 such that

E
[

sup
t∈[0,T ]

∣∣∣∣∫ t

0
XsdLs

∣∣∣∣β
]
6 CE

(∫ T

0
|Xt|α ds

)β/α . (1.0.4)

The moment inequality (1.0.4) for β = 1 follows from Rosinksi and Woyczynski
[57, Theorem 3.1 and 3.2] in the symmetric case and is extended to the non-symmetric
case by Liang [46, Lemma 2.4 and Remark 2.5]. The case β ∈ (0, α) could be considered
as a generalization of [46, Remark 2.5], using Hölder’s inequality.

As usual for the notion of Markov processes, the notation E(y,x)[·] means that the
process (Y,X) considered under the expectation is with initial condition (Y0, X0) =
(y, x). The following result is a consequence of Remark 1.1 and yields the existence of
moments of Yt up to a degree β ∈ (0, α). It turns out to play a substantial role in our
future considerations.
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Proposition 1.2. Consider the α-CIR process (Yt)t>0 with α ∈ (1, 2) defined by (1.0.2).
Then for any β ∈ (0, α), there exists a constant C > 0 and a locally bounded function
T 7→ C(T ) > 0 such that, for t, T > 0,

Ey
[
Y β
t

]
6 C

(
1 + yβe−βbt/α

)
.

and
Ey

[
sup
t∈[0,T ]

Y β
t

]
6 C(T )

(
1 + yβ

)
.

For a proof we refer to [45, Proposition 2.8]. A rather direct but important conse-
quence of Proposition 1.2 is the next result.

Remark 1.3. Following Ikeda and Watanabe [26, p.61-63], we define two classes:

F 1 :=
{
f(t, x, ω) : f is Ft-predictable and for each t > 0,

E
[∫ t

0

∫
{|x|>1}

|f(s, x, ·)|N̂(ds,dz)
]
<∞

}
;

F 2,loc :=
{
f(t, x, ω) : f is Ft-predictable and there exists a sequence of

Ft-stopping times τn such that τn ↑ ∞ almost surely and for each t > 0,

E
[∫ t∧τn

0

∫
{|x|<1}

|f(s, x, ·)|2N̂(ds,dz)
]
<∞, n = 1, 2, . . .

}
.

Let τn := inf{t ∈ R>0 : Yt− > n}, n ∈ N. Noting that (Yt)t>0 is predictable as the
strong solution of the stochastic differential equation (1.0.2) (see Theorem 1.4 below),
from

E
[∫ t∧τn

0

∫
{|z|<1}

(
z α
√
Ys−

)2
Cαz

−1−αdsdz
]
6 Cα

∫ 1

0
z1−αdz

∫ t

0
E
[
1{Ys−6n}Y

2/α
s−

]
ds

= Cα
2− αn

2/α <∞, (1.0.5)

it follows that R2
>0 × Ω 3 (s, z, ω) 7→ 1{|z|<1}z

α
√
Ys− ∈ F 2,loc. Similarly, since for any

0 < ε < α we have that Ey[Y ε
t ] 6 c1(1 + yεe−εbt/α) for t > 0 by Proposition 1.2, where

c1 > 0 is some constant, we obtain

E
[∫ t

0

∫
{|z|>1}

∣∣∣z α
√
Ys−

∣∣∣Cαz−1−αdsdz
]

= Cα

∫ ∞
1

z−αdz
∫ t

0
E
[
α
√
Ys−

]
ds

6
Cα
α− 1c1

∫ t

0

(
1 + Y

1/α
0 e−bs/α

2)ds <∞,

(1.0.6)

which verifies that R2
>0 × Ω 3 (s, z, ω) 7→ 1{|z|>1}z

α
√
Ys− ∈ F 1.

We now turn back to the two-dimensional process (Y,X) defined in (1.0.1). The next
Theorem indeed ensures the before mentioned (pathwise) uniqueness and existence of
a strong solution of the stochastic differential equation (1.0.2). Without any further
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specification, we always assume that (Y0, X0) is a random vector independent of (Lt)t>0.
The proof is very close to that of Barczy et al. [4, Theorem 2.2], although we allow
the parameter a = 0 in (1.0.2), which is different as in [4]. In that case the stochastic
differential equation (1.0.2) turns into

dYt = −bYtdt+ α
√
Yt−dLt, t > 0, Y0 > 0 a.s.. (1.0.7)

Theorem 1.4. Let (Y0, X0) be a random vector independent of (Lt, Bt)t>0 satisfying
Y0 > 0 almost surely. Then for all a > 0, b,m, θ ∈ R and α ∈ (1, 2), there is a (path-
wise) unique strong solution (Yt, Xt)t>0 of the stochastic differential equation (1.0.1).
If a ∈ R>0, then (Yt)t>0 is almost surely non-negative for all t > 0. Further, we have

Yt = e−btY0 + a

b

(
1− e−bt

)
+
∫ t

0
e−b(t−s) α

√
Ys−dLs, t > 0, (1.0.8)

and
Xt = e−θtX0 + m

θ

(
1− e−θt

)
+
∫ t

0
e−θ(t−s)

√
YsdBs, t > 0. (1.0.9)

Proof. Let a ∈ R>0. Applying a result of Fu and Li [23, Theorem 6.2 and Corollary
6.3], we get that a (pathwise) unique strong solution (Yt)t>0 of the SDE (1.0.2) exists
with any initial state value Y0 satisfying Y0 > 0 almost surely such that (Yt)t>0 stays
almost surely non-negative. In case a = 0, by [23, Theorem 6.2 and Corollary 6.3], a
unique strong solution of (1.0.7) also exists. Furthermore, using Itô’s formula to the
process (ebtYt)t>0 yields that

d
(
ebtYt

)
= bebtYtdt+ ebtdYt = bebtYtdt+ ebt

(
(a− bYt) dt+ α

√
Yt−dLt

)
= aebtdt+ ebt α

√
Yt−, t > 0. (1.0.10)

Hence, writing (1.0.10) in integral form, we get

ebtYt − Y0 = a

∫ t

0
ebsds+

∫ t

0
ebs α
√
Ys−dLs, t > 0,

yielding (1.0.8). Now, using Itô’s formula to (Xt)t>0 defined in (1.0.9), we obtain

dXt = −θe−θt
(
X0 +m

∫ t

0
eθsds+

∫ t

0
eθs
√
YsdBs

)
dt+ e−θt

(
meθtdt+ eθt

√
YtdBt

)
= −θe−θt

(
X0 +m

∫ t

0
eθsds+

∫ t

0
eθs
√
YsdBs

)
dt+mdt+

√
YtdBt, t > 0.

This implies that (Xt)t>0 is a strong solution of the second SDE in (1.0.1). As a
consequence, with our considerations concerning (Yt)t>0, we get the existence of the
strong solution of (1.0.1). Finally, assume (Xt)t>0 is a strong solution of the second
SDE in (1.0.1). Then, applying Itô’s formula to the process (eθtXt)t>0, we have

d
(
eθtXt

)
= θeθtXtdt+ eθtdXt = θeθtXtdt+ eθt

(
(m− θXt) dt+

√
XtdBt

)
= meθtdt+ eθt

√
YtdBt, t > 0. (1.0.11)

We rewrite the right-hand side of (1.0.11) into integral form,

eθtXt −X0 = m

∫ t

0
eθsds+

∫ t

0
eθs
√
YsdBs, t > 0,

yielding (1.0.9), and hence the second SDE in (1.0.1) is pathwise unique. Altogether,
it follows that the SDE (1.0.1) has a unique pathwise solution as well.
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1.1. Affine representation of (Y, X)

In this section we derive the Laplace transform of both, the α-stable CIR process (Yt)t>0
defined as the strong solution of the stochastic differential equation (1.0.2) and that of
the two-dimensional process (Yt, Xt)t>0 defined as the strong solution of the stochastic
differential equation (1.0.1). However, it turns out that we are able to compute an ex-
plicit formula for the Laplace transform of Y but not for the two-dimensional process
(Y,X). We leave it as an open problem. Some of the stated results in this section are
known, and indeed they go back to the seminal papers of Li and Ma [45] or Barzcy
et al. [4, Theorems 2.2 and 3.1], respectively. Where it is possible, we outline the
proofs so that the reader will not have to hunt for the different references. At least,
we will provide also complete proofs, since our approach differs from that of [45] and
in comparison with [4] we add explanations where we deem it appropriate, because we
use similar arguments to check some further results (see, e.g., Lemma 1.19 below).

The idea to obtain the Laplace transform of (Yt, Xt)t>0 is to use its affine represen-
tation. For a careful introduction to two-dimensional affine processes with state space
R>0 × R see Appendix A on two-dimensional affine processes below.

We start with a computation of the infinitesimal generator of (Yt, Xt)t>0.

Proposition 1.5. Consider the process (Yt, Xt)t>0 with parameter a ∈ R>0, b, m, θ ∈
R. Then its infinitesimal generator is given by

(Af) (y, x) = (a− by)∂f
∂y

(y, x) + (m− θx)∂f
∂x

(y, x) + 1
2y
∂2f

∂x2 (y, x)

+ y

∫ ∞
0

(
f(y + z, x)− f(y, x)− z ∂f

∂y
(y, x)

)
Cαz

−1−αdz, (1.1.1)

where (y, x) ∈ R>0 × R and f ∈ C2
c (R>0 × R,R).

Proof. The process (Yt, Xt)t>0 starts from (y, x), i.e., (Y0, X0) = (y, x) ∈ R>0 × R.
Then we can use the Lévy-Itô decomposition of (Lt)t>0 in (1.0.3) to obtain that for
each t > 0,

Yt = y +
∫ t

0 γ
α
√
Ysds+

∫ t
0(a− bYs)ds

+
∫ t

0
∫
{|z|<1} z

α
√
Ys−Ñ(ds,dz) +

∫ t
0
∫
{|z|>1} z

α
√
Ys−N(ds,dz),

Xt = x+
∫ t

0(m− θXs)ds+
∫ t

0
√
YsdBs,

where γ, N(ds,dz) and Ñ(ds,dz) are as in (1.0.3). Noting that R2
>0 × Ω 3 (t, z, ω) 7→

1{|z|<1}z
α
√
Yt− ∈ F 2,loc and R2

>0 × Ω 3 (t, z, ω) 7→ 1{|z|>1}z
α
√
Yt− ∈ F 1 (see Remark

1.3) we are able to apply Itô’s formula. In particular, by the Lévy-Itô decomposition
of (Yt, Xt)t>0 and applying Itô’s formula for f ∈ C2

c (R>0 × R,R) (see, e.g. Ikeda and
Watanabe [26, Theorem 5.1]), we obtain that for each t > 0,

f(Yt, Xt)− f(Y0, X0)

=
∫ t

0

∂f

∂y
(Ys, Xs)γ α

√
Ysds+

∫ t

0

∂f

∂y
(Ys, Xs)(a− bYs)ds

+
∫ t

0

∂f

∂x
(Ys, Xs)(m− θXs)ds+ 1

2

∫ t

0

∂2f

∂x2 (Ys, Xs)Ysds
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+
∫ t

0

∂f

∂x
(Ys, Xs)

√
YsdBs

+
∫ t

0

∫
{|z|<1}

(
f(Ys− + z α

√
Ys−, Xs−)− f(Ys−, Xs−)

)
Ñ(ds,dz)

+
∫ t

0

∫
{|z|>1}

(
f(Ys− + z α

√
Ys−, Xs−)− f(Ys−, Xs−)

)
N(ds,dz)

+
∫ t

0

∫
{|z|<1}

(
f(Ys + z α

√
Ys, Xs)− f(Ys, Xs)− z α

√
Ys
∂f

∂y
(Ys, Xs)

)
Cαz

−1−αdsdz

=
∫ t

0
(Lf)(Ys, Xs)ds+Mt (f) , (1.1.2)

where

Mt(f) :=
∫ t

0

∂f

∂x
(Ys, Xs)

√
YsdBs

+
∫ t

0

∫
{|z|<1}

(
f(Ys− + z α

√
Ys−, Xs−)− f(Ys−, Xs−)

)
Ñ(ds,dz)

+
∫ t

0

∫
{|z|>1}

(
f(Ys− + z α

√
Ys−, Xs−)− f(Ys−, Xs−)

)
N(ds,dz)

−
∫ t

0

∫
{|z|>1}

(
f(Ys + z α

√
Ys, Xs)− f(Ys, Xs)

)
N̂(ds,dz)

and the operator Lf is given by

(Lf)(y, x) := (a− by)∂f
∂y

(y, x) + (m− θx)∂f
∂x

(y, x) + 1
2y
∂2f

∂x2 (y, x)

+
∫
{|z|<1}

(
f(y + z α

√
y, x)− f(y, x)− z α

√
y
∂f

∂y
(y, x)

)
Cαz

−1−αdz

+
∫
{|z|>1}

(f(y + z α
√
y, x)− f(y, x))Cαz−1−αdz

+ γ α
√
y
∂f

∂y
(y, x)

= (a− by)∂f
∂y

(y, x) + (m− θx)∂f
∂x

(y, x) + 1
2y
∂2f

∂x2 (y, x)

+
∫
{|z|<1}

(
f(y + z α

√
y, x)− f(y, x)− z α

√
y
∂f

∂y
(y, x)

)
Cαz

−1−αdz

+
∫
{|z|>1}

(
f(y + z α

√
y, x)− f(y, x)− z α

√
y
∂f

∂y
(y, x)

)
Cαz

−1−αdz

+
∫
{|z|>1}

z α
√
y
∂f

∂y
(y, x)Cαz−1−αdz + γ α

√
y
∂f

∂y
(y, x)

= (a− by)∂f
∂y

(y, x) + (m− θx)∂f
∂x

(y, x) + 1
2y
∂2f

∂x2 (y, x)

+
∫ ∞

0

(
f(y + z α

√
y, x)− f(y, x)− z α

√
y
∂f

∂y
(y, x)

)
Cαz

−1−αdz

for (y, x) ∈ R>0 × R. By a change of variable z̃ := z α
√
y, we see that Lf = Af , where

A is given in (1.1.1). As a result, it follows from (1.1.2) that for each t > 0,

f(Yt, Xt)− f(Y0, X0) =
∫ t

0
(Af)(Ys, Xs)ds+Mt (f) . (1.1.3)
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We show that (Mt(f))t>0 is a martingale with respect to the filtration (Ft)t>0. To
achieve this, we can use the same argument as in [4, Theorem 2.1]. The details are as
follows: We define

Dt(f) :=
∫ t

0

∂f

∂x
(Ys, Xs)

√
YsdBs, t > 0,

Jt(f) :=
∫ t

0

∫
{|z|<1}

(
f(Ys− + z α

√
Ys−, Xs−)− f(Ys−, Xs−)

)
Ñ(ds,dz),

+
∫ t

0

∫
{|z|>1}

(
f(Ys− + z α

√
Ys−, Xs−)− f(Ys−, Xs−)

)
N(ds,dz)

−
∫ t

0

∫
{|z|>1}

(
f(Ys + z α

√
Ys, Xs)− f(Ys, Xs)

)
N̂(ds,dz), t > 0.

We start with the diffusion part (Dt(f))t>0. Note that the derivative of f with
respect to x is bounded as f ∈ C2

c (R>0×R,R). Hence, there exists a positive constant
c1 such that

E
[(∫ t

0

∂

∂x
f(Ys, Xs)

√
YsdBs

)2]
=
∫ t

0
E
[(

∂

∂x
f(Ys, Xs)

)2
Ys

]
ds

6 c1

∫ t

0
E[Ys]ds <∞, t > 0,

where the finiteness of the last integral holds, since there exists some further constant
c2 > 0 such that E[Yt] 6 c2(1+y exp{−bt/α}) for all t > 0 according to Proposition 1.2.
Consequently, we get that (Dt(f))t>0 is a square integrable martingale with respect to
the filtration (Ft)t>0.

We continue with the jump part. In order to check that (Jt(f))t>0 is a martingale
with respect to the filtration (Ft)t>0, we use a localization approach. Namely, we define

Jn∗,t(f) :=
∫ t

0

∫
{|z|<1}

(
f(Ys− ∧ n+ z α

√
Ys− ∧ n,Xs−)− f(Ys− ∧ n,Xs−)

)
Ñ(ds,dz),

J∗,nt (f) :=
∫ t

0

∫
{|z|>1}

(
f(Ys− ∧ n+ z α

√
Ys− ∧ n,Xs−)− f(Ys− ∧ n,Xs−)

)
N(ds,dz)

−
∫ t

0

∫
{|z|>1}

(
(f(Ys ∧ n+ z α

√
Ys ∧ n,Xs)− f(Ys ∧ n,Xs)

)
N̂(ds,dz)

for all t > 0 and first prove that (Jn∗,t(f))t>0 and (J∗,nt (f))t>0 are both martingales with
respect to the filtration (Ft)t>0, where n ∈ N is arbitrary.

We check that (Jn∗,t(f))t>0 is a square integrable martingale with respect to the
filtration (Ft)t>0. By Taylor’s theorem, we get∣∣∣f ((Ys− ∧ n) + z α

√
Ys− ∧ n,Xs−

)
− f (Ys− ∧ n,Xs−)

∣∣∣
6 z α

√
Ys− ∧ n sup

(y,x)∈R>0×R

∣∣∣∣ ∂∂yf(y, x)
∣∣∣∣ (1.1.4)

for z ∈ R>0. Thus, since

E
[∫ t

0

∫ 1

0

(
f((Ys− ∧ n) + z α

√
Ys− ∧ n,Xs−)− f(Ys− ∧ n,Xs−)

)2
Cαz

−1−αdsdz
]
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6

(
sup

(y,x)∈R>0×R

∣∣∣∣∂f∂y (y, x)
∣∣∣∣
) ∫ t

0

∫ 1

0
E
[
(Ys− ∧ n)2/α

]
z1−αdsdz

6 c3

∫ t

0
E
[
(Ys− ∧ n)2/α

]
ds
∫ 1

0
z1−αdz = c3n

2/α t

2− α <∞, t > 0,

with some constant c3 > 0, by [26, pp.62, 63], we get that (Jn∗,t(f))t>0 is a square
integrable martingale with respect to the filtration (Ft)t>0.

Next, we prove that (J∗,nt (f))t>0 is a martingale with respect to the filtration (Ft)t>0.
We proceed similar as before. Using (1.1.4), we estimate

E
[∫ t

0

∫ ∞
1

∣∣∣f(Ys− ∧ n) + z α
√
Ys− ∧ n,Xs−)− f(Ys− ∧ n,Xs−)

∣∣∣Cαz−1−αdsdz
]

6

(
sup

(y,x)∈R>0×R

∣∣∣∣∂f∂y (y, x)
∣∣∣∣
) ∫ t

0

∫ ∞
1

E
[
α
√
Ys ∧ n

]
Cαz

−αdsdz

6 c4

∫ t

0
E
[
α
√
Ys ∧ n

]
ds
∫ ∞

1
z−αdz = C4n

1/α t

α− 1 <∞, t > 0,

where c4 > 0 is some constant. This implies by [26, Lemma 3.1 in Chapter II and p.62]
that (J∗,nt (f))t>0 is a martingale with respect to the filtration (Ft)t>0.

It remains to check that (Jt(f))t>0 is indeed a martingale with respect to the filtration
(Ft)t>0. For each n ∈ N, we define

ηnt (f) := Jt(f)− Jn∗,t(f)− J∗,nt (f), t > 0. (1.1.5)

Similar to (1.1.4), by Taylor’s theorem, we have

f(Ys− + z α
√
Ys−, Xs−)− f(Ys−, Xs−) =

(
∂

∂y
f
(
Ys− + ζz α

√
Ys−, Xs−

))
z α
√
Ys−,

where ζ : Ω → R is a function which we will specify later. Furthermore, using the
Lévy-Itô decomposition in (1.0.3), for all t > 0, we obtain

ηnt (f) =
∫ t

0

∫
{|z|<1}

(
∂

∂y
f
(
Ys− + ζz α

√
Ys−, Xs−

))
z α
√
Ys−Ñ(ds,dz)

+
∫ t

0

∫
{|z|>1}

(
∂

∂y
f
(
Ys− + ζz α

√
Ys−, Xs−

))
z α
√
Ys−N(ds,dz)

−
∫ t

0

∫
{|z|>1}

(
∂

∂y
f
(
Ys− + ζz α

√
Ys−, Xs−

))
z α
√
Ys−N̂(ds,dz)

−
∫ t

0

∫
{|z|<1}

(
∂

∂y
f
(
Ys− ∧ n+ ζz α

√
Ys− ∧ n,Xs−

))
z α
√
Ys− ∧ nÑ(ds,dz)

−
∫ t

0

∫
{|z|>1}

(
∂

∂y
f
(
Ys− ∧ n+ ζz α

√
Ys− ∧ n,Xs−

))
z α
√
Ys− ∧ nN(ds,dz)

+
∫ t

0

∫
{|z|>1}

(
∂

∂y
f
(
Ys− ∧ n+ ζz α

√
Ys− ∧ n,Xs−

))
z α
√
Ys− ∧ nN̂(ds,dz)

=
∫ t

0

(
∂

∂y
f
(
Ys− + ζz α

√
Ys−, Xs−

))
α
√
Ys−dLs

−
∫ t

0

(
∂

∂y
f
(
Ys− ∧ n+ ζz α

√
Ys− ∧ n,Xs−

))
α
√
Ys− ∧ ndLs
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=
∫ t

0
1{Ys−>n}

(
∂

∂y
f
(
Ys− + ζz α

√
Ys−, Xs−

))
α
√
Ys−dLs

−
∫ t

0
1{Ys−>n}

(
∂

∂y
f
(
Ys− ∧ n+ ζz α

√
Ys− ∧ n,Xs−

))
α
√
Ys− ∧ ndLs

=
∫ t

0
1{Ys−>n}

(
∂

∂y
f
(
Ys− + ζz α

√
Ys−, Xs−

))
α
√
Ys−dLs,

where we used in the last equality that the integral∫ t

0
1{Ys−>n}

(
∂

∂y
f
(
Ys− ∧ n+ zζ α

√
Ys− ∧ n,Xs−

))
α
√
Ys− ∧ ndLs

vanishes for n large enough, because f has compact support. Noting that f(Ys− +
z α
√
Ys−, Xs−)−f(Ys−, Xs−) is a random variable, we obtain that its derivative (∂yf(Ys−+

ζz α
√
Ys−, Xs−))z α

√
Ys− is also a random variable (by equality of both expressions). In

the same way we deduce that (∂yf(Ys− + ζz α
√
Ys−, Xs−)s∈[0,t] is a predictable process.

Thus, we may use Remark 1.1 to deduce that for each t > 0, there exists some constant
c5 > 0 such that

E(y,x)

[
sup
s∈[0,t]

|ηns (f)|
]

6 c5E(y,x)

[(∫ t

0
1{Ys−>n}

(
∂

∂y
f
(
Ys− + ζz α

√
Ys−, Xs−

))α
Ysds

)1/α]

6 c6

(∫ t

0
E(y,x)

[
1{Ys−>n}Ys

]
ds
)1/α

,

for some further constant c6 > 0, where we used Jensen’s inequality together with the
fact that (∂yf(Ys−+ζz α

√
Ys−, Xs−)) is bounded to get the second inequality. In view of

Proposition 1.2 it follows that
∫ t

0 E(y,x) [Ys] ds <∞ and further
(∫ t

0 E(y,x) [Ys] ds
)1/α

<

∞. Then, by the dominated convergence theorem, we obtain

lim
n→∞

E(y,x)

[
sup
s∈[0,t]

|ηns (f)|
]
6 c6 lim

n→∞

(∫ t

0
E(y,x)

[
1{Ys>n}Ysds

])1/α
= 0. (1.1.6)

As shown in the proof of [4, Theorem 2.1], the martingale property of (Jt(f))t>0 now
follows from (1.1.5), (1.1.6)) and the fact that both (Jn∗,t(f))t>0 and (J∗,nt (f))t>0 are
martingales. In particular, for all 0 6 s 6 t and A ∈ Fs, by (1.1.6, we have

lim
n→∞

E [|ηnt (f)|1A] 6 lim
n→∞

E [|ηnt (f)|] = 0,

lim
n→∞

E [|ηns (f)|1A] 6 lim
n→∞

E [|ηns (f)|] = 0.

This yields, for all n ∈ N, 0 6 s 6 t and A ∈ Fs,

lim
n→∞

E
[
Jn∗,t(f)1A + J∗,nt (f)1A

]
= E [Jt(f)1A] ,

lim
n→∞

E
[
Jn∗,s(f)1A + J∗,ns (f)1A

]
= E [Js(f)1A] .

(1.1.7)

Consquently, using that both (Jn∗,t(f))t> and (J∗,nt (f))t>0 are martingales with respect
to the filtration (Ft)t>0 together with (1.1.7), for all n ∈ N, 0 6 s 6 t, and A ∈ Fs, we
get

E [Jt(f)1A] = lim
n→∞

E
[(
Jn∗,t(f) + J∗,nt (f)

)
1A

]
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= lim
n→∞

E
[(
Jn∗,s(f) + J∗,ns (f)

)
1A

]
= E [Js(f)1A] ,

yielding that (Jt(f))t>0 is a martingale with respect to the filtration (Ft)t>0. It is clear
that (Mt(f))t>0 = (Dt(f) + Jt(f))t>0 is also a martingale with respect to the filtration
(Ft)t>0. With this our proof is complete.

Remark 1.6. We note that, if one studies the proof of Proposition 1.5, it is easy to
see that the Lévy process (Lt)t>0 is a martingale with respect to the filtration (Ft)t>0,
using the same strategy. This simple observation leads to the fact that the expectation
of the α-root process Yt is given by

Ey [Yt] = e−bty + a

∫ t

0
e−bsds = e−bty + a

b

(
1− e−bt

)
, t > 0.

The following proposition provides the characteristic functions of (Yt, Xt)t>0. Namely,
we prove that (Yt, Xt)t>0 is a (conservative) regular affine process3 with state space
R>0×R. The results about affine processes we are going to apply stem essentially from
Duffie et al. [17] and are also introduced in the two-dimensional case in the Appendix
A on two-dimensional affine processes.

Proposition 1.7. Let a ∈ R>0, b, m, θ ∈ R. Then (Yt, Xt)t>0 is a regular affine
process with state space R>0 × R.

Proof. We follow the proof of [4, Theorem 2.1]. Note that we can associate a semigroup
(Pt)t>0 of operators defined in the bounded Borel functions to the time-homogeneous
Markov process (Yt, Xt)t>0 (see Appendix A for details). In order to obtain that the
transition semigroup (Pt)t>0 with state space R>0×R corresponding to (Yt, Xt)t>0 is a
regular affine semigroup with infinitesimal generator given by (1.1.1) we check that the
conditions of Theorem A.1 are satisfied. It only suffices to prove that the parameters
of the infinitesimal generator of (Pt)t>0 are admissible in the sense of Definition A.3.
We read off the parameters of the infinitesimal generator given by (1.1.1). Here, we see
that (0, αij , b, βij , 0, µ), i, j ∈ {1, 2}, is admissible, since(

α11 α12
α21 α22

)
:=
(

0 0
0 1

2

)
;

b = (b1, b2) := (a,m) ∈ R>0 × R;(
β11 β12
β21 β22

)
:=
(
b 0
0 −θ

)
;

µ(dy,dx) := Cαy
−1−αdyδ0(dx);

where δ0 denotes the Dirac measure concentrated on zero. As shown in the proof of
[4, Theorem 2.1] the Lévy measure µ indeed satisfies the admissible condition. For
completeness of exposition, we recall the arguments. One simply calculates∫

R>0

∫
R

(
|y| ∧ y2

)
µ(dy,dx) +

∫
R>0

∫
R

(
|x| ∧ x2

)
µ(dy,dx)

= Cα

∫ ∞
0

(
|y| ∧ y2

)
y−1−αdy + Cα

∫ ∞
−∞

(
|x| ∧ x2

)
δ0(x)

3see, e.g., Definition A.1
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= Cα

∫ ∞
0

(
|y| ∧ y2

)
y−1−αdy

= Cα

(∫ 1

0
|y|y−1−αdy +

∫ ∞
1

y2y−1−αdy
)

= Cα

(∫ 1

0
y1−αdy +

∫ ∞
1

y−αdy
)
<∞.

Hence, for this set of admissible parameters one can apply Theorem A.1 to obtain a
regular affine semigroup (Qt)t>0 with infinitesimal generator given by (1.1.1). It follows
also from Theorem A.1 that C∞c (R>0 × R,R) is a core of the infinitesimal generator
corresponding to the affine semigroup (Qt)t>0. Since the infinitesimal generators cor-
responding the semigroups (Pt)t>0 and (Qt)t>0 coincide on C∞c (R>0 × R,R), by the
definition of a core, they actually coincide also on the Banach space of bounded func-
tions on R>0×R. Consequently, by Theorem A.1, equation (A.0.1) holds, yielding that
(Yt, Xt)t>0 is a regular affine process with infinitesimal generator given by (1.1.1).

From Propositions 1.5 and 1.7 we immediately get the following corollary.

Corollary 1.8. Consider the α-stable CIR process defined by the strong solution of the
stochastic differential equation (1.0.2) with a ∈ R>0, b ∈ R. Then (Yt)t>0 is a regular
affine process with infinitesimal generator

(Af)(y) = (a− by)∂f
∂y

(y) + y

∫ ∞
0

(
f(y + z)− f(y)− z ∂f

∂y
(y)
)
Cαz

−1−αdz, (1.1.8)

where y ∈ R>0, and f ∈ C2
c (R>0,R).

Up to this point we constantly assumed α ∈ (1, 2). With the infinitesimal generator
A of Yt, we would like to clarify why (Yt, Xt)t>0 fails to be conservative and therefore,
it can not be exponentially ergodic when α ∈ (0, 1).

Remark 1.9. If α ∈ (0, 1), then the process Yt is no more conservative, namely, it
explodes (goes to +∞) in finite time, due to [21, Theorem 4.11]. We can understand
this phenomenon in the following way: Consider the generator A of (Yt) in (1.1.8) with
b > 0. If α ∈ (0, 1), then the second term (especially the effect coming from the big
jumps part) on the right-hand of (1.1.8) dominates the first one (the drift part), and
the process (Yt)t>0 is thus pushed to +∞ in finite time. Note that the situation reverses
if α ∈ (1, 2), namely, the drift part controls the jump part, and the process is always
driven back to a/b.

We use the affine property to calculate the representation of the joint Laplace trans-
form of (Yt, Xt)t>0 as far as possible.

Proposition 1.10. Let a, b ∈ R>0, m ∈ R, θ ∈ R>0. Then vt(λ1, λ2) is the unique
non-negative solution of the differential equation{

∂vt
∂t (λ1, λ2) = −bvt(λ1, λ2)− 1

α (vt(λ1, λ2))α + 1
2e
−2θtλ2

2, t > 0,
v0(λ1, λ2) = λ1,

(1.1.9)

where (λ1, λ2) ∈ R>0 × R. Moreover, the Laplace transform of (Yt, Xt)t>0 is given by

E(y,x)
[
e−λ1Yt+iλ2Xt

]
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= exp
{
−a

∫ t

0
vs(λ1, λ2)ds+ imλ2

1− e−θt

θ
− yvt(λ1, λ2) + ixe−θtλ2

}

for all t ∈ R>0 and (λ1, λ2) ∈ R>0 × R.

Proof. Our proof is motivated by the proof of [4, Theorem 3.1]. Since (Yt, Xt)t>0 is
an affine process, the corresponding characteristic functions of (Yt, Xt)t>0 are of affine
form, namely, supposing (Yt, Xt)t>0 has initial state vector (Y0, X0) = (y, x) ∈ R>0×R,
there exist functions φ and ψ on iR2 such that∫

R>0×R
e〈u,ξ〉Pt ((y, x),dξ) = E(y,x)

[
e〈u,(Yt,Xt)〉

]
= eφ(t,u)+〈(y,x),ψ(t,u)〉 (1.1.10)

for all u ∈ U , where (Pt)t>0 denotes the affine semigroup corresponding to (Yt, Xt)t>0.
The functions φ and ψ in turn are given as solutions of the generalized Riccati equations
(A.0.2), where F (u) and R(u), u ∈ U , are of Lévy-Khintchine representation (A.0.4)
and (A.0.5), respectively. In what follows, we calculate the representation of the com-
plex valued functions F and R first.

The formulas (A.0.4) and (A.0.5) yield F (u) = au1 +mu2 and

R(u) := −bu1 + u2
2

2 +
∫ ∞

0

∫ ∞
−∞

(
e〈u,ξ〉 − 1− 〈u, ξ〉

)
µ(dξ1,dξ2), u = (u1, u2) ∈ U ,

where the Lévy measure µ is given by µ(dξ1, dξ2) := Cαξ
−1−α
1 δ0(dξ2), where δ0 denotes

the Dirac measure concentrated on zero. Further, following the method of Sato [59,
p.46] (see also Applebaum [1, p.81]), namely applying the trick of writing a repeated
integral as a double integral and changing the order of integration, we obtain∫ ∞

0

∫ ∞
−∞

(
e〈u,ξ〉 − 1− 〈u, ξ〉

)
µ(dξ1,dξ2) = Cα

∫ ∞
0

(
eu1ξ1 − 1− u1ξ1

)
ξ−1−α

1 dξ1

= Cα

∫ ∞
0

(∫ ξ1

0
u
(
euζ − 1

)
dζ
)
ξ−1−α

1 dξ1

= Cα

∫ ∞
0

(∫ ∞
ζ

ξ−1−α
1 dξ

)
u1
(
eu1ζ − 1

)
dζ

= Cα
−u1
α

∫ ∞
0

ζ−α
(
eu1ζ − 1

)
dζ.

We employ the same trick once again such that we get

Cα

∫ ∞
0

(
eu1ξ1 − 1− u1ξ1

)
ξ−1−α

1 dξ1 = Cα
−u1
α

∫ ∞
0

(
−
∫ ζ

0
u1e

u1ηdη
)
ζ−αdζ

= Cα
u1
α

∫ ∞
0

(∫ ∞
η

ζ−αdζ
)
u1e

u1ηdη

= Cα
u2

1
α(α− 1)

∫ ∞
0

η1−αeu1ηdη

= Cα
u2

1(−u1)α−2

α

∫ ∞
0

η1−αe−ηdη

= Cα
(−u1)α

α(α− 1)Γ(2− α),
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where we used in the second last equation that Reu1 6 0 and α < 2. Finally, using
that Cα = (αΓ(−α))−1 = α(α− 1)/(αΓ(2− α)), we obtain the identity

Cα

∫ ∞
0

(
eu1ξ1 − 1− u1ξ1

)
ξ−1−α

1 dξ1 = (−u1)α

α
, u1 ∈ C60,

and summarized it follows that

F (u) = au1 +mu2 and R(u) = −bu1 + u2
2

2 + (−u1)α

α
(1.1.11)

for u = (u1, u2) ∈ U .

As far as possible, we will next solve the generalized Riccati differential equation{
∂
∂tψ(t, u) = R (ψ(t, u)) , ψ(0, u) = u1 ∈ C60, t > 0,
∂
∂tφ(t, u) = F (ψ(t, u)) , φ(0, u) = 0, t > 0.

Note that ψ(t, u) is vector-valued, i.e., for all u = (u1, u2) ∈ U , we have ψ(t, u) =
(ψ1(t, u), ψ2(t, u)), t ∈ R>0. Since the strong solution (Xt)t>0 of the second stochastic
differential equation in (1.0.1) has state space R, due to Proposition A.2, we have that

ψ2(t, u) = e−θtu2, (t, u2) ∈ R>0 × iR,

Furthermore, ψ1(t, u) and φ(t, u) are now solutions of the generalized Riccati differential
equations

∂
∂tψ1(t, u) = R

(
ψ1(t, u), e−θtu2

)
, ψ1(0, u) = u1 ∈ C60, t > 0,

∂
∂tφ(t, u) = F

(
ψ1(t, u), e−θtu2

)
, φ(0, u) = 0, t > 0,

where the complex-valued functions F and R are given by (1.1.11). Hence, for u ∈ U ,
we obtain  ∂

∂tψ(t, u) = −bψ1(t, u) + 1
α

(
ψ(1)(t, u)

)α
+ 1

2e
−2θtu2, t > 0,

ψ1(0, u) = u1 ∈ C60,

and

φ(t, u) =
∫ t

0
F
(
ψ1(s, u), e−θsu2

)
ds =

∫ t

0

(
aψ1(s, u) +me−θsu2

)
ds

= a

∫ t

0
ψ1(s, u)ds+mu2

1− e−θt

θ
, t > 0.

Note, for all u = (u1, u2) ∈ U and t ∈ R>0, the real part of ψ1(t, u) is less then or equal
to zero by Duffie et al. [17, Remark 2.2]. If u1 ∈ R60, then ψ1(t, u) is also less than
or equal to zero. Consequently, defining u1 := −λ1, u2 := iλ2, and introducing the
notation vt(λ1, λ2) := −ψ1(t, (−λ1, iλ2)), (λ1, λ2) ∈ R>0×R, we conclude with (1.1.9).
Furthermore, since ψ1(t, u) 6 0 for u1 ∈ R60, we have

vt(λ1, λ2) > 0 for all (λ1, λ2) ∈ R>0 × R.
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The uniqueness of the solutions of the differential equation (1.1.9) follows by Duffie et
al. [17, Proposition 6.1, 6.4, and Lemma 9.2]. Finally, by (1.1.10) and (1.1.9), we get

E(y,x)
[
e−λ1Yt+iλ2Xt

]
= exp {φ (t, (−λ1, iλ2)) + yψ1 (t, (−λ1, iλ2)) + xψ2 (t, (−λ1, iλ2))}

= exp
{
−a

∫ t

0
vs(λ1, λ2)ds+ imλ2

1− e−θt

θ
− yvt(λ1, λ2) + ixe−θtλ2

}
,

for all t ∈ R>0 and (λ1, λ2) ∈ R>0 × R.

Since we established explicit representations of F (u) and R(u) in the proof of Propo-
sition 1.10, we now continue to solve the Riccati differential equation in (A.0.2) with
respect to the α-stable CIR process Y . In the one-dimensional case we shall obtain an
explicit unique solution of the resulting generalized Riccati equations.

However, although our results stated in Proposition 1.10 stems from Barczy et al.
[4, Theorem 3.1], the explicit form of the solution to the genzeralized Riccati equation
(1.1.12) below has not been derived in [4]. In order to study the transition densities of
the α-stable CIR process, we will find the explicit form of the solution to (1.1.12) in
the following proposition.

Proposition 1.11. Let a ∈ R>0, b ∈ R>0. Define vt(λ1, 0) := vt(λ) := −ψ(t,−λ),
λ ∈ R>0. Then vt(λ) is the unique non-negative solution of the differential equation{

∂
∂tvt(λ) = −bvt(λ)− 1

α (vt(λ))α , t > 0,
v0(λ) = λ,

(1.1.12)

where λ ∈ R>0. The unique solution to (1.1.12) is given by

vt(λ) =
(( 1

αb
+ λ1−α

)
eb(α−1)t − 1

αb

)1/(1−α)
, t > 0. (1.1.13)

Moreover, supposing (Yt)t>0 has initial value Y0 = y ∈ R>0 almost surely, the Laplace
transform of Yt is given by

Ey
[
e−λYt

]
= exp

{
−a

∫ t

0
vs(λ)ds− yvt(λ)

}
= exp

{
−a

∫ t

0

(( 1
αb

+ λ1−α
)
eb(α−1)s − 1

αb

)1/(1−α)
ds

−y
(( 1

αb
+ λ1−α

)
eb(α−1)t − 1

αb

)1/(1−α)
}

(1.1.14)

for all t > 0 and λ ∈ R>0.

Proof. By Corollary 1.8 the α-CIR process (Yt)t>0 is a regual affine process. Therefore,
following the proof of Proposition 1.10, it follows that the equation (1.1.12) has a unique
non-negative solution. The equation (1.1.12) is a Bernoulli differential equation which
can be transformed into a linear differential equation through a change of variables.
More precisely, if we write ut(λ) := (vt(λ))1−α, then

∂
∂tut(λ) = (1− α) (vt(λ))−α ∂

∂tvt(λ)
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= (1− α) (vt(λ))−α
(
−bvt(λ)− 1

α (vt(λ))α
)

= b(α− 1)ut(λ) +
(
1− α−1

)
(1.1.15)

and u0(λ) = (v0(λ))1−α = λ1−α. By solving (1.1.15), we obtain

ut(λ) =
( 1
αb

+ λ1−α
)
eb(α−1)t − 1

αb
,

which leads to

vt(λ) =
(( 1

αb
+ λ1−α

)
eb(α−1)t − 1

αb

)1/(1−α)

for all t > 0 and λ ∈ R>0. By (1.1.10) and (A.0.2) and noting that vt(λ) = −ψ(t,−λ),
we get

Ey
[
e−λYt

]
= exp {φ(t,−λ) + yψ(t,−λ)}

= exp
{
a

∫ t

0
ψ(s,−λ)ds− yvt(λ)

}
= exp

{
−a

∫ t

0
vs(λ)ds− yvt(λ)

}
for all t > 0 and λ ∈ R>0.

We remark that we have assumed λ ∈ R>0 in Proposition 1.11. However, formula
(1.1.14) is true for the trivial case λ = 0 as well, which can be seen by taking the limit
λ ↓ 0.

1.2. Transition densities of the alpha-root process Y

In this section we show that the α-root process Y has positive and continuous tran-
sition densities. Our approach is essentially based on the inverse Fourier transform.
The necessity of that property will become apparent later (see part (b) of the proof of
Theorem 1.22).

Recall that the Laplace transform of the α-stable CIR process (Yt)t>0 with respect
to its initial value Y0 = y ∈ R>0 is given by

Ey
[
e−λYt

]
= exp

{
−a

∫ t

0
vs(λ)ds− yvt(λ)

}
, (t, λ) ∈ R>0 × R>0,

where the function vt is given by (1.1.13). In what follows, we give a specification of
the Laplace transform of Yt.

The solution of the stochastic differential equation (1.0.2) as well as the Laplace
transform of Yt depends obviously on its initial value Y0. From now on, we denote by
(Y y
t )t>0 the α-stable CIR process starting from a constant initial value y ∈ R>0, i.e.,

(Y y
t )t>0 satisfies

dY y
t = (a− bY y

t )dt+ α

√
Y y
t−dLt, t > 0, Y y

0 = y. (1.2.1)



22 Transition densities of the alpha-root process Y

and we have

E
[
e−λY

y
t

]
= exp

{
−a

∫ t

0
vs(λ)ds− yvt(λ)

}
, (t, λ) ∈ R>0 × R>0.

Let

ϕ1(t, λ, y) := exp
{
−y

(( 1
αb

+ λ1−α
)
eb(α−1)t − 1

αb

)1/(1−α)
}
,

ϕ2(t, λ) := exp
{
−a

∫ t

0

(( 1
αb

+ λ1−α
)
eb(α−1)s − 1

αb

)1/(1−α)
ds
}
.

Then
E
[
e−λY

y
t

]
= ϕ1(t, λ, y) · ϕ2(t, λ). (1.2.2)

Keeping this decomposition of the Laplace transform of Y y
t in mind, we take a closer

look at the following two special cases:

Special case i): a = 0. To avoid abuse of notations, we use (Zyt )t>0 to denote the
strong solution of the stochastic differential equation

dZyt = −bZyt dt+ α

√
Zyt−dLt, t > 0, Zy0 = y > 0. (1.2.3)

According to (1.1.14), the corresponding Laplace transform of Zyt coincides with ϕ1(t, λ, y).
Noting that b > 0, we get

lim
λ→∞

vt(λ) =
( 1
αb

(
eb(α−1)t − 1

))1/(1−α)
=: d(t) > 0 (1.2.4)

where d(t) ∈ (0,∞) for all t > 0. Furthermore, by dominated convergence theorem, we
have

e−yd(t) = lim
λ→∞

e−yvt(λ) = lim
λ→∞

E
[
e−λZ

y
t

]
= lim

λ→∞

(
E
[
e−λZ

y
t 1{Zyt =0}

]
+ E

[
e−λZ

y
t 1{Zyt >0}

])
= P (Zyt = 0) > 0 (1.2.5)

for all t > 0 and y > 0.

Special case ii): y = 0. Consider (Y 0
t )t>0 that satisfies

dY 0
t = (a− bY 0

t )dt+ α

√
Y 0
t−dLt, t > 0, Y 0

0 = 0. (1.2.6)

In view of (1.1.14), we easily see that the Laplace transform of Y 0
t degenerates to

ϕ2(t, λ).

Summarizing the results in case i) and case ii), we have the following proposition.

Proposition 1.12. Let a > 0 and b > 0. Consider the processes (Y y
t )t>0 and (Zyt )t>0

defined as the unique strong solutions of the stochastic differential equations (1.2.1) and
(1.2.3), respectively. Let µY yt and µZyt be the probability laws of Y y

t and Zyt induced on
(R>0,B(R>0)), respectively. Then µY yt = µY 0

t
∗µZyt , where ∗ denotes the convolution of

measures.
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Recall that the function vt(·) given by (1.1.13) is defined on R>0. By considering the
complex power functions, the domain of definition for vt(·) can be extended to C \ {0}.
Indeed, the function

vt(z) =
(( 1

αb
+ z(1−α)

)
eb(α−1)t − 1

αb

)1/(1−α)
, z ∈ C \ {0} , (1.2.7)

is well-defined, where the complex power function is given by (0.0.1).
We next establish two estimates on

∫ t
0 vs(z)ds.

Lemma 1.13. Let T > 1. Then there exists a sufficiently small constant ε0 > 0 such
that

Re
(∫ t

0
vs(z)ds

)
> −C1 + C2|z|2−α (1.2.8)

when |Arg(z)| ∈ [π/2− ε0, π/2 + ε0] and T−1 6 t 6 T , where C1, C2 > 0 are constants
depending only on a, b, α, ε0 and T .

Proof. We will complete the proof in three steps.

“Step 1 ”: Consider ρ > 2 and ϑ ∈ [π/2− ε, π/2 + ε], where ε > 0 is a small constant
whose exact value will be determined later. We introduce a change of variables

z :=
(( 1

αb
+
(
ρeiϑ

)
1−α

)
eb(α−1)s − 1

αb

)1/(1−α)

and define Γ0 : [0, t]→ C by

Γ0(s) :=
(( 1

αb
+
(
ρeiϑ

)1−α
)
eb(α−1)s − 1

αb

)1/(1−α)
, s ∈ [0, t].

Noting that

∂

∂s
Γ0(s) = −b

( 1
αb

+
(
ρeiϑ

)1−α
)
eb(α−1)s

(( 1
αb

+
(
ρeiϑ

)1−α
)
eb(α−1)s − 1

αb

)α/(1−α)

= −b
[( 1
αb

+
(
ρeiϑ

)1−α
)
eb(α−1)s − 1

αb
+ 1
αb

]
zα

= −b
(
z1−α + 1

αb

)
zα = −b

(
z + zα

αb

)
,

we obtain∫ t

0
vs
(
ρeiϑ

)
ds =

∫ t

0

(( 1
αb

+
(
ρeiϑ

)
1−α

)
eb(α−1)s − 1

αb

)1/(1−α)
ds

= −1
b

∫
Γ0
z

(
z + zα

αb

)−1
dz = −1

b

∫
Γ0

(
1 + zα−1

αb

)−1

dz. (1.2.9)

Next, we derive a lower bound for Re
( ∫ t

0 vs
(
ρeiϑ

)
ds
)
.

Let Γ∗0 be the range of Γ0. Since Γ∗0 ⊂ O and z 7→
(
1 + zα−1/(αb)

)−1 is analytic in
O, we have∫

Γ0

(
1 + zα−1

αb

)−1

dz =
∫ (( 1

αb
+(ρeiϑ)(1−α))eb(α−1)t− 1

αb)
1/(1−α)

ρeiϑ

(
1 + zα−1

αb

)−1

dz.

(1.2.10)
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Here and after, the notation

∫ w2

w1

(
1 + zα−1

αb

)−1

dz

means the integral
∫

Γ[w1,w2]

(
1 + zα−1/(αb)

)−1 dz, where Γ[w1,w2] is the directed segment
joining w1 and w2 and is defined by

Γ[w1,w2] : [0, 1]→ C with Γ[w1,w2](r) := (1− r)w1 + rw2, r ∈ [0, 1].

By (1.2.9), (1.2.10) and the holomorphicity of z 7→
(
1 + zα−1/(αb)

)−1 on O, we obtain

∫ t

0
vs
(
ρeiϑ

)
ds = 1

b

∫ ρeiϑ

eiϑ

(
1 + zα−1

αb

)−1

dz

+ 1
b

∫ eiϑ

(( 1
αb

+(ρeiϑ)(1−α))eb(α−1)t− 1
αb)

1/(1−α)

(
1 + zα−1

αb

)−1

dz.

(1.2.11)

Since the second term on the right-hand of (1.2.11) is continuous in (t, ρ, ϑ) ∈ [1/T, T ]×
[2,∞)× [π/2− ε, π/2 + ε] and converges to

1
b

∫ eiϑ

((eb(α−1)t−1) 1
αb)

1/(1−α)

(
1 + zα−1

αb

)−1

dz

(uniformly in (t, ϑ) ∈ [1/T, T ]× [π/2− ε, π/2 + ε]) as ρ→∞, it must be bounded, i.e.,
we have ∣∣∣∣∣∣1b

∫ eiϑ

((eb(α−1)t−1) 1
αb)

1/(1−α)

(
1 + zα−1

αb

)−1

dz

∣∣∣∣∣∣ 6 c3 (1.2.12)

for all t ∈ [1/T, T ], ϑ ∈ [π/2 − ε, π/2 + ε] and ρ > 2, where c3 = c3(ε, T ) > 0 is some
constant.

Now, define Γϑ : [0, 1]→ C by

Γϑ(r) := (1− r)eiϑ + rρeiϑ, r ∈ [0, 1],

and let Γ∗ϑ be the range of Γϑ. We can calculate the real part of the first integral
appearing on the right-hand side of (1.2.11) by

Re

∫ ρeiϑ

eiϑ

(
1 + zα−1

αb

)−1

dz


= Re

∫
Γϑ

(
1 + zα−1

αb

)−1

dz


= Re

∫ 1

0

(
1 + (Γϑ(r))α−1

αb

)−1

∂rΓϑ(r)dr


= Re

(∫ 1

0

(ρ− 1)eiϑ

1 + (Γϑ(r))α−1 (αb)−1
dr
)
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=
∫ 1

0

∣∣∣∣∣ (ρ− 1)eiϑ

1 + (Γϑ(r))α−1 (αb)−1

∣∣∣∣∣ cos
(

Arg
(

(ρ− 1)eiϑ

1 + (Γϑ(r))α−1 (αb)−1

))
dr. (1.2.13)

For r ∈ [0, 1], we have

Arg
(
1 + (Γϑ(0))α−1 (αb)−1

)
6 Arg

(
1 + (Γϑ(r))α−1 (αb)−1

)
6 Arg

(
1 + (Γϑ(1))α−1 (αb)−1

)
. (1.2.14)

Define δϑ by

δϑ := (α− 1)ϑ−Arg
(
1 + (Γϑ(0))α−1 (αb)−1

)
= (α− 1)ϑ−Arg

(
1 + ei(α−1)ϑ(αb)−1

)
∈ (0, (α− 1)ϑ). (1.2.15)

It is easy to see that

Arg
(
1 + (Γϑ(1))α−1 (αb)−1

)
< (α− 1)ϑ. (1.2.16)

By (1.2.14), (1.2.15) and (1.2.16), we get

Arg
(
1 + (Γϑ(r))α−1 (αb)−1

)
∈ [(α− 1)ϑ− δϑ, (α− 1)ϑ), r ∈ [0, 1].

As a result,

Arg
(

(ρ− 1)eiϑ

1 + (Γϑ(r))α−1 (αb)−1

)
∈ ((2− α)ϑ, (2− α)ϑ+ δϑ] , r ∈ [0, 1]. (1.2.17)

Note that 0 < δπ/2 < (α− 1)π/2 by (1.2.15). Since δϑ is continuous in ϑ, we see that

0 < lim
ϑ→π

2

{(2− α)ϑ+ δϑ} = (2− α)π2 + δπ
2
<
π

2 .

Set
c4 := π

2 −
(

(2− α)π2 + δπ
2

)
∈
(

0, π2

)
.

Now, we choose the constant ε0 > 0 small enough such that

0 < (2− α)ϑ < (2− α)ϑ+ δϑ ≤
π

2 −
c4
2 (1.2.18)

for all ϑ ∈ [π/2− ε0, π/2 + ε0]. It follows from (1.2.17) and (1.2.18) that for all ϑ ∈
[π/2− ε0, π/2 + ε0] and r ∈ [0, 1],

cos
(

Arg
(

(ρ− 1)eiϑ

1 + (Γϑ(r))α−1 (αb)−1

))
> cos

(
π

2 −
c4
2

)
=: c5 > 0. (1.2.19)

In view of (1.2.13) and (1.2.19), we get

Re

∫ ρeiϑ

eiϑ

(
1 + zα−1

αb

)−1

dz


> cos

(
π

2 −
c4
2

)∫ 1

0

∣∣∣∣∣ (ρ− 1)eiϑ

1 + (Γϑ(r))α−1 (αb)−1

∣∣∣∣∣ dr
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= c5

∫ 1

0

ρ− 1∣∣∣1 + (Γϑ(r))α−1 (αb)−1
∣∣∣dr > c5

∫ 1

0

ρ− 1
1 +

∣∣∣(Γϑ(r))α−1 (αb)−1
∣∣∣dr

= c5

∫ 1

0

ρ− 1
1 + (1− r + rρ)α−1 (αb)−1

dr = c5

∫ ρ−1

0

1
1 + (1 + r)α−1 (αb)−1

dr

>
c5

1 + (αb)−1

∫ ρ−1

0

1
(1 + r)α−1 dr = c5αb(1 + αb)−1(2− α)−1

(
ρ2−α − 1

)
. (1.2.20)

Combining (1.2.11), (1.2.12) and (1.2.20) yields

Re
(∫ t

0
vs
(
ρeiϑ

)
ds
)
> c6ρ

2−α − c7, ρ > 2, ϑ ∈
[
π

2 − ε0,
π

2 + ε0

]
, t ∈ [1/T, T ],

(1.2.21)
where c6, c7 > 0 are constants that depend only on a, b, α, ε0 and T .

“Step 2 ”: The case with ρ > 2 and ϑ ∈ [−π/2− ε0,−π/2 + ε0] can be similarly
treated, and we thus get

Re
(∫ t

0
vs
(
ρeiϑ

)
ds
)
> c8ρ

2−α − c9 (1.2.22)

for all ρ > 2, ϑ ∈ [−π/2− ε0,−π/2 + ε0] and t ∈ [1/T, T ], where c8, c9 > 0 are con-
stants depending only on a, b, α, ε0 and T .

“Step 3 ”: Since
∫ t

0 vs
(
ρeiϑ

)
ds is continuous in (t, ρ, ϑ), we can find a constant c10 > 0

such that
Re
(∫ t

0
vs
(
ρeiϑ

)
ds
)
> −c10 (1.2.23)

for all 0 6 ρ 6 2, ϑ ∈ [−π/2− ε0,−π/2 + ε0] ∪ [π/2− ε0, π/2 + ε0] and t ∈ [1/T, T ].
The estimate (1.2.8) now follows from (1.2.21), (1.2.22) and (1.2.23).

Lemma 1.14. Let ε0 be as in the previous lemma. Then for each t > 0, we can find
constants C3, C4 > 0, which depend only on a, b, α, ε0 and t, such that∣∣∣∣∫ t

0
vs(z)ds

∣∣∣∣ 6 C3 + C4|z|2−α

when Arg(z) ∈ [π/2 + ε0, π] and |z| > 0.

Proof. Let ρ ≥ 2 and ϑ ∈ [π/2 + ε0, π]. Our aim is to show∣∣∣∣∫ t

0
vs(ρeiϑ)ds

∣∣∣∣ 6 C3 + C4ρ
2−α (1.2.24)

for some constants C3, C4 > 0 that depend only on a, b, α, ε0 and t. Using the change
of variables

z :=
( 1
αb

+
(
ρeiϑ

)
(1−α)

)
eb(α−1)s − 1

αb
,

we get∫ t

0
vs(ρeiϑ)ds =

∫ t

0

(( 1
αb

+
(
ρeiϑ

)1−α
)
eb(α−1)s − 1

αb

)1/(1−α)
ds (1.2.25)
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= 1
b(α− 1)

∫ ( 1
αb

+(ρeiϑ)1−α
)
eb(α−1)t− 1

αb

(ρeiϑ)1−α z1/(1−α)
(
z + 1

αb

)−1
dz.

(1.2.26)

Since ϑ ∈ [π/2 + ε0, π], we have (1−α)ϑ ∈ [(1− α)π, (1− α)(π/2 + ε0)], which implies

|sin ((1− α)ϑ)| > min {sin ((α− 1)π) , sin ((α− 1)(π/2 + ε0))} =: c1 > 0. (1.2.27)

We first consider the case with 0 < ρ < 2. Note that for ρ ∈ (0, 2) and ϑ ∈ [π/2+ε0, π],∣∣∣∣( 1
αb

+
(
ρeiϑ

)1−α
)
eb(α−1)s − 1

αb

∣∣∣∣ > ∣∣∣∣Im(( 1
αb

+
(
ρeiϑ

)1−α
)
eb(α−1)s − 1

αb

)∣∣∣∣
= ρ1−αeb(α−1)s sin ((α− 1)ϑ)
> 21−αeb(α−1)sc1. (1.2.28)

Then, by (1.2.25) and (1.2.28), we get that for ρ ∈ (0, 2) and ϑ ∈ [π/2 + ε0, π],∣∣∣∣∫ t

0
vs
(
ρeiϑ

)
ds
∣∣∣∣ 6 ∫ t

0

∣∣∣∣( 1
αb

(
ρeiϑ

)1−α
)
eb(α−1)s − 1

αb

∣∣∣∣1/(1−α)
ds

6
∫ t

0
c

1/(1−α)
1 e−bsds = c

1/(1−α)
1

1
b

(
1− e−bt

)
.

We see that the estimate (1.2.24) holds for 0 < ρ < 2 and ϑ ∈ [π/2 + ε0, π].
We now consider ρ > 2. Note that z 7→ z1/(1−α) (z + 1/(αb))−1 is holomorphic on O.

So we have∫ ( 1
αb+(ρeiϑ)1−α)eb(α−1)t− 1

αb

(ρeiϑ)1−α
z1/(1−α)

(
z + 1

αb

)−1
dz

=
∫ (ρeiϑ)1−α+2

(ρeiϑ)1−α
z1/(1−α)

(
z + 1

αb

)−1
dz

+
∫ ( 1

αb+(ρeiϑ)1−α
)
eb(α−1)t− 1

αb

(ρeiϑ)1−α+2
z1/(1−α)

(
z + 1

αb

)−1
dz. (1.2.29)

Since

lim
ρ→∞

∫ ( 1
αb+(ρeiϑ)1−α

)
eb(α−1)t− 1

αb

(ρeiϑ)1−α+2
z1/(1−α)

(
z + 1

αb

)−1
dz

=
∫ 1/(αb)(eb(α−1)t−1)

2
z1/(1−α)

(
z + 1

αb

)−1
dz,

where the convergence is uniform in ϑ ∈ [π/2 + ε0, π], we can find a constant c2 > 0
such that ∣∣∣∣∣∣

∫ ( 1
αb+(ρeiϑ)1−α

)
eb(α−1)t− 1

αb

(ρeiϑ)1−α+2
z1/(1−α)

(
z + 1

αb

)−1
dz

∣∣∣∣∣∣ 6 c2 (1.2.30)

for all ρ > 2 and ϑ ∈ [π/2 + ε0, π].
We now proceed to estimate the first term on the right-hand side of (1.2.29). Define

Γϑ,ρ(r) :=
(
ρeiϑ

)1−α
+ r, r ∈ [0, 2] .
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By (1.2.27), we have

|ρ1−αe(1−α)iϑ + r| > ρ1−α| sin ((1− α)ϑ) | > c1ρ
1−α, (1.2.31)

where r ∈ [0, 2] and ϑ ∈ [π/2 + ε0, π]. If r ∈ [2ρ1−α, 2], then

|ρ1−αe(1−α)iϑ + r| > r − ρ1−α >
r

2 . (1.2.32)

It follows from (1.2.31) and (1.2.32) that for ρ > 2 and ϑ ∈ [π/2 + ε0, π],∣∣∣∣∣
∫ (ρeiϑ)1−α+2

(ρeiϑ)1−α
z1/(1−α)

(
z + 1

αb

)−1
dz
∣∣∣∣∣

=
∣∣∣∣∣
∫ 2

0
(Γϑ,ρ(r))1/(1−α)

(
Γϑ,ρ(r) + 1

αb

)−1
dr
∣∣∣∣∣

6 c3

∫ 2

0
|Γϑ,ρ(r)|1/(1−α)dr = c3

∫ 2

0

∣∣∣ρ1−αe(1−α)iϑ + r
∣∣∣1/(1−α)

dr

= c3

∫ 2ρ1−α

0

∣∣∣ρ1−αe(1−α)iϑ + r
∣∣∣1/(1−α)

dr

+ c3

∫ 2

2ρ1−α

∣∣∣ρ1−αe(1−α)iϑ + r
∣∣∣1/(1−α)

dr

6 c3

∫ 2ρ1−α

0

(
c1ρ

1−α
)1/(1−α)

dr + c321/(α−1)
∫ 2

2ρ1−α
r1/(1−α)dr

= 2c3c
1/(1−α)
1 ρ2−α + c321/(α−1) α−1

α−2r
(2−α)/(1−α)

∣∣∣2
r=2ρ1−α

6 c4ρ
2−α + c5, (1.2.33)

where c3, c4, c5 > 0 are some constants. Combining (1.2.26), (1.2.29), (1.2.30) and
(1.2.33) yields (1.2.24). This completes the proof.

Now, consider the process (Y 0
t )t>0 given by (1.2.6). The following properties are

probably well known in more general framework, but we do not have a reference. The
continuity of the function u 7→ E[exp{−uY 0

t }] on C>0 follows directly from domi-
nated convergence theorem. Let x0 > 0 be fixed. Consider u ∈ C with Re(u) > x0.
Let (un)n∈N ⊂ C be a sequence such that un converges to u as n tends to infinity
and Re(un) > x0. Since y 7→ y exp{−x0y} is a bounded function on R>0, we obtain
E[Y 0

t exp{−x0Y
0
t }] <∞. Noting that∣∣∣∣∣e−unY

0
t − e−uY 0

t

un − u

∣∣∣∣∣ 6 Y 0
t e
−x0Y 0

t ,

we can apply dominated convergence theorem to obtain

lim
n→∞

E
[
e−unY

0
t

]
− E

[
e−uY

0
t

]
un − u

= lim
n→∞

E
[
e−unY

0
t − e−uY 0

t

un − u

]
= E

[
Y 0
t e
−uY 0

t

]
. (1.2.34)

Hence u 7→ E[exp{−uY 0
t }] is holomorphic on C>0.

On the other hand, the function z 7→ vt(z) given in (1.2.7) is continuous on C>0 and
holomorphic on C>0 for each t > 0 as well. Therefore, we have

E
[
e−uY

0
t

]
= exp

{
−a

∫ t

0
vs(u)ds

}
, u ∈ C>0. (1.2.35)
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Indeed, the equality (1.2.35) is true at least for u ∈ R>0 by (1.1.14). This and the iden-
tity theorem for holomorphic functions (see e.g. [22, Theorem III.3.2]) imply (1.2.35)
for all u ∈ C>0, since both sides of (1.2.35) are functions that are continuous on C>0
and holomorphic on C>0. In particular, the characteristic function of Y 0

t with t > 0 is
given by

E
[
eiξY

0
t

]
= exp

{
−a

∫ t

0
vs(−iξ)ds

}
, ξ ∈ R.

Remark 1.15. Recall that the process (Zyt )t>0 is given in (1.2.3). By repeating the
same arguments as above for Zyt , we see that its characteristic function is given by

E
[
eiξZ

y
t

]
= exp {−yvt(−iξ)} , ξ ∈ R.

In the next lemma we obtain the existence of a density function for Y 0
t when t > 0.

Note that by Theorem 1.4, we have Y 0
t > 0 almost surely for each t > 0.

Lemma 1.16. Assume a > 0 and b > 0. Then for each t > 0, Y 0
t possesses a density

function fY 0
t

given by

fY 0
t

(x) := 1
2π

∫ ∞
−∞

e−ixξ exp
{
−a

∫ t

0
vs(−iξ)ds

}
dξ, x > 0. (1.2.36)

Moreover, the function fY 0
t

(x) is jointly continuous in (t, x) ∈ (0,∞) × R>0, and
fY 0

t
(·) ∈ C∞(R>0,C) for each t > 0.

Proof. Let T > 1 be fixed. By Lemma 1.13, there exist constants c1, c2 > 0 such that∣∣∣∣exp
{
−a

∫ t

0
vs(−iξ)ds

}∣∣∣∣ = exp
{

Re
(
−a

∫ t

0
vs(−iξ)ds

)}
6 c1e

−c2|ξ|2−α (1.2.37)

for all ξ ∈ R and t ∈ [1/T, T ], which implies that ξ 7→ exp{−a
∫ t
0 vs(−iξ)ds} is integrable

on R. Therefore, by the inversion formula of Fourier transform, Y 0
t has a density fY 0

t

given by (1.2.36). The joint continuity of the density fY 0
t

(x) in (t, x) follows from
(1.2.37), (1.2.36) and dominated convergence theorem. The smoothness property of
fY 0

t
(·) is a consequence of (1.2.37) and [59, Proposition 28.1].

We remark that for each t > 0, the function fY 0
t

(x) given in (1.2.36) is actually
well-defined also for x < 0, although fY 0

t
(x) ≡ 0 for x 6 0, which is due to the fact that

Y 0
t > 0 almost surely. Next, we would like to know if fY 0

t
(x) > 0 when x > 0. The

next lemma partly answers this question.

Lemma 1.17. Assume a > 0 and b > 0. For each t > 0, the density function fY 0
t

(·)
of Y 0

t is almost everywhere positive on R>0.

Proof. Basically, the idea of the proof is as follows. We will show the following:

Claim. The function x 7→ fY 0
t

(x), x ∈ R>0, can be extended to a holomorphic function
on C>0.

If this claim is true, then the set An := {x > 1/n : fY 0
t

(x) = 0} with n ∈ N must be
discrete, that is, for each x ∈ An, one can find a neighbourhood of x whose intersection
with An equals x; otherwise the identity theorem for holomorphic functions (see, e.g.
Freitag and Busam [22, Proposition III.3.1]) implies that fY 0

t
(x) ≡ 0 for x > 0. As a
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consequence, An is countable, which implies that A := ∪n∈NAn is also countable and
thus has Lebesgue measure 0.

Let x > 0 be fixed. We will complete the proof of the above claim in several steps.

“Step 1 ”: We derive a simpler representation for fY 0
t

(x). We have

fY 0
t

(x) = 1
2π

∫ ∞
−∞

e−ixξ exp
{
−a

∫ t

0
vs(−iξ)ds

}
dξ

= 1
2π

∫ ∞
0

e−ixξ exp
{
−a

∫ t

0
vs(−iξ)ds

}
dξ

+ 1
2π

∫ 0

−∞
e−ixξ exp

{
−a

∫ t

0
vs(−iξ)ds

}
dξ

= 1
2π

∫ 0

−∞
eixξ exp

{
−a

∫ t

0
vs(iξ)ds

}
dξ

+ 1
2π

∫ 0

−∞
e−ixξ exp

{
−a

∫ t

0
vs(−iξ)ds

}
dξ. (1.2.38)

For ξ < 0, we have

vs(−iξ) =
((

1
αb + (−iξ)1−α

)
eb(α−1)s − 1

αb

)1/(1−α)

=
((

1
αb + (iξ)1−α

)
eb(α−1)s − 1

αb

)1/(1−α)
= vs(iξ),

which implies

e−ixξ exp
{
−a

∫ t

0
vs(−iξ)ds

}
= eixξ exp

{
−a

∫ t

0
vs(iξ)ds

}
. (1.2.39)

By (1.2.38) and (1.2.39), we get

fY 0
t

(x) = Re
( 1
π

∫ 0

−∞
e−ixξ exp

{
−a

∫ t

0
vs(−iξ)ds

}
dξ
)
. (1.2.40)

For simplicity, let

I := 1
π

∫ 0

−∞
e−ixξ exp

{
−a

∫ t

0
vs(−iξ)ds

}
dξ. (1.2.41)

“Step 2 ”: We calculate I by contour integration. By a change of variables z := −iξ,
we get

I = −i
π

∫ i∞

0
exz exp

{
−a

∫ t

0
vs(z)ds

}
dz

= lim
K→∞

−i
π

∫ iK

iK−1
exz exp

{
−a

∫ t

0
vs(z)ds

}
dz. (1.2.42)

Define two paths Γ1,K and Γ2,K by

Γ1,K(ϑ) := Keiϑ, ϑ ∈
[
π

2 , π
]

and Γ2,K(ϑ) := K−1eiϑ, ϑ ∈
[
π

2 , π
]
.
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According to (1.2.7), we see that the function

z 7→ eyz exp
{
−a

∫ t

0
vs(z)ds

}
, z ∈ O1 :=

{
ρ exp (iϑ) : ρ > 0, ϑ ∈

[
π

2 , π
]}

,

can be extended to a holomorphic function on O2 := {ρ exp (iϑ) : ρ > 0, ϑ ∈ (0, 3π/2)}.
Therefore, we have∫ iK

iK−1
exz exp

{
−a

∫ t

0
vs(z)ds

}
dz (1.2.43)

=
∫ −K
−K−1

exz exp
{
−a

∫ t

0
vs(z)ds

}
dz −

∫
Γ1,K

exz exp
{
−a

∫ t

0
vs(z)ds

}
dz

+
∫

Γ2,K
exz exp

{
−a

∫ t

0
vs(z)ds

}
dz.

Since limz→0 e
xz exp

{
−a

∫ t
0 vs(z)ds

}
= 1, it follows that

lim
K→∞

∫
Γ2,K

exz exp
{
−a

∫ t

0
vs(z)ds

}
dz = 0. (1.2.44)

To estimate the second term on the right-hand side of (1.2.43), we divide the path
Γ1,K into two parts, namely

Γ11,K(ϑ) := Keiϑ, ϑ ∈
[
π

2 ,
π

2 + ε0

]
and Γ12,K(ϑ) =: Keiϑ, ϑ ∈

[
π

2 + ε0, π

]
,

with ε0 > 0 being the constant appearing in Lemmas 1.13 and 1.14. Then∫
Γ1,K

exz exp
{
−a

∫ t

0
vs(z)ds

}
dz

=
∫

Γ11,K
exz exp

{
−a

∫ t

0
vs(z)ds

}
dz +

∫
Γ12,K

exz exp
{
−a

∫ t

0
vs(z)ds

}
dz

:= II1(K) + II2(K).

If we can show that limK→∞ II1(K) = 0 and limK→∞ II2(K) = 0, then it follows from
(1.2.42), (1.2.43) and (1.2.44) that

I = −i
π

∫ −∞
0

exz exp
{
−a

∫ t

0
vs(z)ds

}
dz. (1.2.45)

“Step 3 ”: We show that limK→∞ II1(K) = 0. If ϑ ∈ [π/2, π/2 + ε0], then∣∣∣exKeiϑ∣∣∣ = eRe(xKeiϑ) = exK cos(ϑ) 6 1.

By Lemma 1.13, we get

|II1(K)| =
∣∣∣∣∣
∫ π/2+ε0

π
2

iKeiϑexKe
iϑ
e−a

∫ t
0 vs(Keiϑ)dsdϑ

∣∣∣∣∣
6 K

∫ π/2+ε0

π
2

∣∣∣∣e−a ∫ t0 vs(Keiϑ)ds
∣∣∣∣ dϑ 6 Kε0e

aC1−aC2K2−α
, (1.2.46)
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which implies
lim
K→∞

|II1(K)| 6 lim
K→∞

Kε0e
aC1−aC2K2−α = 0.

“Step 4 ”: We show that limK→∞ II2(K) = 0. In case ϑ ∈ [π/2 + ε0, π], then∣∣∣exKeiϑ∣∣∣ = eRe(xKeiϑ) = exK cos(ϑ) 6 exK cos(π2 +ε0) = e−xK sin(ε0). (1.2.47)

So

|II2(K)| =
∣∣∣∣∣
∫ π

π
2 +ε0

iKeiϑexKe
iϑ exp

{
−a

∫ t

0
vs
(
Keiϑ

)
ds
}

dϑ
∣∣∣∣∣

6 K

∫ π

π
2 +ε0

∣∣∣exKeiϑ ∣∣∣ ∣∣∣∣exp
{
−a

∫ t

0
vs
(
Keiϑ

)
ds
}∣∣∣∣ dϑ

6 Ke−xK sin(ε0)
∫ π

π
2 +ε0

exp
{
a

∣∣∣∣∫ t

0
vs
(
Keiϑ

)
ds
∣∣∣∣}dϑ.

By Lemma 1.14, we get

lim
K→∞

|II2(K)| 6 lim
K→∞

K
(
π
2 − ε0

)
e−xK sin(ε0)eaC3eaC4K2−α = 0.

“Step 5 ”: Finally, we prove that x 7→ fY 0
t

(x) is holomorphic on C>0. By (1.2.40),
(1.2.41) and (1.2.45), we get

fY 0
t

(x) = Re
(−i
π

∫ −∞
0

exz exp
{
−a

∫ t

0
vs(z)ds

}
dz
)

= Re
(
i

π

∫ ∞
0

e−xz exp
{
−a

∫ t

0
vs(−z)ds

}
dz
)

= −Im
( 1
π

∫ ∞
0

e−xz exp
{
−a

∫ t

0
vs(−z)ds

}
dz
)

= 1
π

∫ ∞
0

e−xz
{
−Im

(
exp

{
−a

∫ t

0
vs(−z)ds

})}
dz.

Let x0 > 0 be fixed. Consider x ∈ C with Re(x) > x0 and (xn) ⊂ C such that
Re(xn) > x0 and xn → x as n→∞. Noting that∣∣∣∣∣e−xnz − e−xzxn − x

∣∣∣∣∣ 6 ze−x0z,

we can use Lemma 1.14 to obtain

ze−x0z
∣∣∣∣Im( exp

{
−a

∫ t

0
vs(−z)ds

})∣∣∣∣ 6 ze−x0z
∣∣∣∣exp

{
−a

∫ t

0
vs(−z)ds

}∣∣∣∣
6 ze−x0z exp

{
aC3 + aC4|z|2−α

}
, (1.2.48)

where the right-hand side of (1.2.48) is an integrable function (with the variable z) on
R>0. Similarly to (1.2.34), by dominated convergence theorem, we see that the function

x 7→ 1
π

∫ ∞
0

e−xz
{
−Im

(
exp

{
−a

∫ t

0
vs(−z)ds

})}
dz, x ∈ C>0,
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is holomorphic, which means that x 7→ fY 0
t

(x) has a holomorphic extension on C>0.
This completes the proof.

With the help of the previous lemma, we are now able to prove the main result of
this section. Recall that the process (Y y

t )t>0 is given by (1.0.2).

Proposition 1.18. Assume a > 0 and b > 0. Then for each y > 0 and t > 0, Y y
t

possesses a density function fY yt given by

fY yt (x) := 1
2π

∫ ∞
−∞

e−ixξ exp
{
−a

∫ t

0
vs(−iξ)ds− yvt(−iξ)

}
dξ, x > 0, (1.2.49)

where fY yt (·) ∈ C∞(R>0,C) and fY yt (x) > 0 for all x > 0. Moreover, the function
fY yt (x) is jointly continuous in (t, y, x) ∈ (0,∞)× R>0 × R>0.

Proof. In view of Proposition 1.12, we have

E
[
eiξY

y
t

]
= E

[
eiξY

0
t

]
· E
[
eiξZ

y
t

]
= exp

{
−a

∫ t

0
vs(−iξ)ds− yvt(−iξ)

}
, (1.2.50)

where ξ ∈ R. It follows from (1.2.37) that∣∣∣E [eiξY yt ]∣∣∣ 6 ∣∣∣E [eiξY 0
t

]∣∣∣ ≤ c1e
−c2|ξ|2−α

for all ξ ∈ R and t ∈ [1/T, T ], where T > 1 and c1, c2 > 0 are constants depending
on T . It follows that for t > 0, Y y

t has a density fY yt given by (1.2.49). Proceeding
in the same way as in Lemma 1.16, we obtain the desired continuity and smoothness
properties of fY yt .

We next show that if t > 0, then fY yt (x) > 0 for all x > 0. According to (1.2.50),
we see that the law of Y y

t , denoted by µY yt , is the convolution of the laws of Zyt and
Y 0
t , which we denote by µZyt and µY 0

t
, respectively. So µY yt = µZyt ∗ µY 0

t
. From this we

deduce that for all x > 0,

fY yt (x) =
∫
R>0

fY 0
t

(x− z)µZyt (dz)

=
∫

(0,∞)
fY 0

t
(x− z)µZyt (dz) + fY 0

t
(x)µZyt ({0}) . (1.2.51)

By Lemma 1.17, the density function fY 0
t

(x) of Y 0
t is strictly positive for almost all

x > 0. In the following we consider a fixed x > 0 and distinguish between two cases.

“Case 1 ”: fY 0
t

(x) > 0. It follows from (1.2.51) that

fY yt (x) > fY 0
t

(x)µZyt ({0}) > 0, (1.2.52)

where we used the fact that µZyt ({0}) = P(Zyt = 0) > 0, as shown in (1.2.5).

“Case 2 ”: fY 0
t

(x) = 0. Then x ∈ An for a large enough n, where the set An is the
same as in the proof of Lemma 1.17. Since An is discrete, we can find a small enough
δ > 0 such that

fY 0
t

(x− z) > 0, (1.2.53)
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for all z ∈ (0, δ]. We next show that µZyt ((0, δ]) > 0. By (1.2.4), (1.2.5) and L’Hospital’s
Rule, we get

lim
λ→∞

(
E
[
e−λ(Zyt −δ)

]
− E

[
e−λ(Zyt −δ)1{Zyt =0}

] )
= lim

λ→∞
eλδ

(
E
[
e−λZ

y
t

]
− P(Zyt = 0)

)
= lim

λ→∞
eλδ

(
e−yvt(λ) − e−yd

)
= lim

λ→∞
δ−1eλδye−yvt(λ) (vt(λ))α eb(α−1)tλ−α =∞. (1.2.54)

Suppose that P(Zyt ∈ (0, δ]) = 0. Then we can use dominated convergence theorem
to get

lim
λ→∞

(
E
[
e−λ(Zyt −δ)

]
− E

[
e−λ(Zyt −δ)1{Zyt =0}

] )
= lim

λ→∞

(
E
[
e−λ(Zyt −δ)1{0<Zyt 6δ}

]
+ E

[
e−λ(Zyt −δ)1{Zyt >δ}

])
= 0,

which contradicts (1.2.54). Consequently, the assumption that P(Zyt ∈ (0, δ]) = 0 is
not true and we thus get P (Zyt ∈ (0, δ]) > 0. Now, by (1.2.51) and (1.2.53), we get

fY yt (x) >
∫

(0,δ]
fY 0

t
(x− z)µZyt (dz) > 0. (1.2.55)

Summarizing the above two cases, we have fY yt (x) > 0 for all x > 0. This completes
the proof.

1.3. A Foster-Lyapunov function for (Y, X)

We now turn back to the two-dimensional affine process (Y,X) = (Yt, Xt)t>0 defined
in (1.0.1). Our aim of this section is to construct a Foster-Lyapunov function for (Y,X).

For a functional Φ(Y,X) based on the process (Y,X), we use E(y,x)[Φ(Y,X)] to
indicate that the process (Y,X) considered under the expectation is with the ini-
tial condition (Y0, X0) = (y, x), where (y, x) ∈ R>0 × R is constant. The notation
P(y,x)(Φ(Y,X) ∈ ·) is similarly defined.

Lemma 1.19. Let h ∈ C∞(R,R) be such that h(x) > 1 for all x ∈ R and h(x) = |x|
whenever |x| > 2. Define

V (y, x) := βy + h(x), y > 0, x ∈ R,

where β > 0 is a constant. If β is sufficiently large, then V is a Foster-Lyapunov
function for (Y,X), that is, there exist constants c,M > 0 such that

E(y,x)[V (Yt, Xt)] 6 e−ctV (y, x) + M
c (1.3.1)

for all (y, x) ∈ R>0 × R and t > 0.
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Remark 1.20. To see the existence of a function h ∈ C∞(R,R) that fulfills the con-
ditions of Lemma 1.19, we can proceed in the following way: let ρ ∈ C∞(R,R) be such
that ρ(x) = 1 for x > 2, ρ(x) = 0 for x 6 1 and 0 6 ρ(x) 6 1 for 1 6 x 6 2. Define
F : R→ R by F (x) :=

∫ x
0 ρ(r)dr, x ∈ R. Then

F (x) =


0, x 6 1,
∈ [0, 1], 1 < x 6 2,
x− 2 +

∫ 2
1 ρ(r)dr, x > 2.

We now define h : R → R by h(x) := F (|x|) + 2 − F (2), x ∈ R. Then h satisfies the
conditions required in Lemma 1.19.

Proof of Lemma 1.19. Recall that R2
>0 × Ω 3 (s, z, ω) 7→ z1{|z|<1}

α
√
Ys− ∈ F 2,loc and

R2
>0 × Ω 3 (s, z, ω) 7→ z1{|z|>1}

α
√
Ys− ∈ F 1 by Remark 1.3. Define g(t, y, x) :=

exp{ct}V (y, x), where c > 0 is a constant to be determined later. It is easy to see
that g ∈ C2(R>0 × R>0 × R,R). We define the functions g′1, g′2, g′3 and g′′3,3 by

g′1(t, y, x) := ∂
∂tg(t, y, x) = cectV (y, x), g′2(t, y, x) := ∂

∂yg(t, y, x) = βect,

g′3(t, y, x) := ∂
∂xg(t, y, x) = ect ∂∂xh(x), g′′3,3(t, y, x) := ∂2

∂x2 g(t, y, x) = ect ∂
2

∂x2h(x).

Proceeding as in the proof of Proposition 1.5, we can apply Itô’s formula for g (see
[62, Theorem 94]) to obtain that for each t > 0,

g(t, Yt, Xt)− g(0, Y0, X0)

=
∫ t

0
g′1(s, Ys, Xs)ds+

∫ t

0
g′2(s, Ys, Xs)γ α

√
Ysds

+
∫ t

0
g′2(s, Ys, Xs)(a− bYs)ds+

∫ t

0
g′3(s, Ys, Xs)(m− θXs)ds

+ 1
2

∫ t

0
g′′3,3(s, Ys, Xs)Ysds+

∫ t

0
g′3(s, Ys, Xs)

√
YsdBs

+
∫ t

0

∫
{|z|<1}

(
g(s, Ys− + z α

√
Ys−, Xs−)− g(s, Ys−, Xs−)

)
Ñ(ds,dz)

+
∫ t

0

∫
{|z|>1}

(
g(s, Ys− + z α

√
Ys−, Xs−)− g(s, Ys−, Xs−)

)
N(ds,dz)

+
∫ t

0

∫
{|z|<1}

(
g(s, Ys + z α

√
Ys, Xs)

− g(s, Ys, Xs)− z α
√
Ysg
′
2(s, Ys, Xs)

)
Cαz

−1−αdsdz

=
∫ t

0
ecs(Lg)(s, Ys, Xs)ds+

∫ t

0
g′1(s, Ys, Xs)ds+Mt (g) , (1.3.2)

where

Mt(g) :=
∫ t

0
g′3(s, Ys, Xs)

√
YsdBs

+
∫ t

0

∫
{|z|<1}

(
g(s, Ys− + z α

√
Ys−, Xs−)− g(s, Ys−, Xs−)

)
Ñ(ds,dz)

+
∫ t

0

∫
{|z|>1}

(
g(s, Ys− + z α

√
Ys−, Xs−)− g(s, Ys−, Xs−)

)
N(ds,dz)
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−
∫ t

0

∫
{|z|>1}

(
g(s, Ys + z α

√
Ys, Xs)− g(s, Ys, Xs)

)
N̂(ds,dz)

by an easy computation (see the proof of Proposition 1.5), we see that the operator L
corresponds with the infinitesimal generator A given in (1.1.1). As a result, it follows
from (1.3.2) that for each t > 0,

g(t, Yt, Xt)− g(0, Y0, X0)

=
∫ t

0
ecs(Ag)(Ys, Xs)ds+

∫ t

0
g′1(s, Ys, Xs)ds+Mt (g) . (1.3.3)

The rest of the proof is divided into three steps:

“Step 1 ”: We show that (Mt(g))t>0 is a martingale with respect to the filtration
(Ft)t>0, where (Ft)t>0 is the filtration introduced in Section 1. To achieve this, we can
use a similar argument as in Proposition 1.5. Define

Dt(g) :=
∫ t

0
g′3(s, Ys, Xs)

√
YsdBs,

Jt(g) :=
∫ t

0

∫
{|z|<1}

(
g(s, Ys− + z α

√
Ys−, Xs−)− g(s, Ys−, Xs−)

)
Ñ(ds,dz),

+
∫ t

0

∫
{|z|>1}

(
g(s, Ys− + z α

√
Ys−, Xs−)− g(s, Ys−, Xs−)

)
N(ds,dz)

−
∫ t

0

∫
{|z|>1}

(
g(s, Ys + z α

√
Ys, Xs)− g(s, Ys, Xs)

)
N̂(ds,dz),

where t > 0. By noting that (t, y, x) 7→ g′2(t, y, x) is bounded for (t, y, x) ∈ [0, T ] ×
R>0×R, where T > 0 is constant, we can proceed in the same way as in Proposition 1.5
to prove that (Dt(g))t>0 is a square integrable martingale with respect to the filtration
(Ft)t>0. Note that g(s, y+ z, x)− g(s, y, x) = β exp{cs}z. Similarly to Remark 1.3 (see
equations (1.0.5) and (1.0.6)), we see that

1{|z|<1}
(
g(s, Ys− + z α

√
Ys−, Xs−)− g(s, Ys−, Xs−)

)
= βecs1{|z|<1}z

α
√
Ys− ∈ F 2,loc,

1{|z|>1}
(
g(s, Ys− + z α

√
Ys−, Xs−)− g(s, Ys−, Xs−)

)
= βecs1{|z|>1}z

α
√
Ys− ∈ F 1.

Following [26, pp. 62, 63], we obtain that

J∗,t(g) :=
∫ t

0

∫
{|z|<1}

(
g(s, Ys− + z α

√
Ys−, Xs−)− g(s, Ys−, Xs−)

)
Ñ(ds,dz), t > 0,

is a local square integrable martingale with respect to the filtration (Ft)t>0 and

J∗t (g) :=
∫ t

0

∫
{|z|>1}

(
g(s, Ys− + z α

√
Ys−, Xs−)− g(s, Ys−, Xs−)

)
N(ds,dz)

−
∫ t

0

∫
{|z|>1}

(
g(s, Ys + z α

√
Ys, Xs)− g(s, Ys, Xs)

)
N̂(ds,dz), t > 0,

is martingale with respect to the filtration (Ft)t>0. Therefore, (Jt(g))t>0 = (J∗,t(g) +
J∗t (g))t>0 is a local martingale with respect to the filtration (Ft)t>0. It remains to
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check that (Jt(g))t>0 is a martingale with respect to the filtration (Ft)t>0. Using the
Lévy-Itô decomposition in (1.0.3), we obtain

Jt(g) =
∫ t

0

∫
{|z|<1}

βecsz α
√
Ys−Ñ(ds,dz)

+
∫ t

0

∫
{|z|>1}

βecsz α
√
Ys−N(ds,dz)−

∫ t

0

∫
{|z|>1}

βecsz α
√
Ys−N̂(ds,dz)

=
∫ t

0
βecs α

√
Ys−dLs, t > 0.

We can use Remark 1.1 and Jensen’s inequality to obtain that for each T > 0, there
exists some constant c2 > 0 such that

E(y,x)

[
sup
s∈[0,T ]

|Js(g)|
]
6 c2E(y,x)

(∫ T

0
Ysds

)1/α
 6 c2

(∫ T

0
E(y,x) [Ys] ds

)1/α

<∞,

where finiteness follows from Proposition 1.2. Since (Jt(g))t>0 is a local martingale with
respect to the filtration (Ft)t>0, there exists an increasing sequence of stopping times
σn, n ∈ N with σn →∞ as n tends to infinity almost surely such that (Jt∧σn(g))t>0 is
a martingale with respect to the filtration (Ft)t>0. Then, by dominated convergence
theorem for conditional expectations, we get that for all 0 ≤ s ≤ t ≤ T ,

E [Jt(g) | Fs] = E
[

lim
n→∞

Jt∧σn(g)
∣∣∣ Fs]

= lim
n→∞

E [Jt∧σn(g) | Fs] = lim
n→∞

Js∧σn(g) = Js(g),

showing that Jt(g) is a martingale with respect to the filtration (Ft)t>0. As a re-
sult, (Mt(g))t>0 = (Dt(g) + Jt(g))t>0 is also a martingale with respect to the filtration
(Ft)t>0. This completes the proof of step one.

“Step 2 ”: We determine the constant c > 0 and find another constant M > 0 such
that

(AV )(y, x) 6 −cV (y, x) +M (1.3.4)

for all (y, x) ∈ R>0 × R, where A is given by (1.1.1). For the function V , we have
V ∈ C2(R>0 × R,R),

∂
∂yV (y, x) = β, ∂

∂xV (y, x) = ∂
∂xh(x) =


x
|x| , if |x| > 2
h′(x), if |x| 6 2,

and
∂2

∂x2V (y, x) = ∂2

∂x2h(x) :=
{

0, if |x| > 2,
h′′(x), if |x| 6 2,

where h′ and h′′ denote the first and second order derivatives of the function h, respec-
tively. So

(AV )(y, x) = (a− by)β + (m− θx) ∂
∂xh(x) + 1

2y
∂2

∂x2h(x)

+ y

∫ ∞
0

(β(y + z) + h(x)− βy − h(x)− zβ)Cαz−1−αdz
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= (a− by)β + (m− θx) ∂
∂xh(x) + 1

2y
∂2

∂x2h(x).

By choosing β > 0 large enough, we obtain that for all (y, x) ∈ R>0 × R,

(AV )(y, x) = aβ − byβ
2 − θx

∂
∂xh(x) +

(
− bβ

2 + 1
2
∂2

∂x2h(x)
)
y +m ∂

∂xh(x)

6 aβ − byβ
2 − θ

(
h(x)1{x>2} + h(x)1{x<−2}

)
+ 0 + c3

6 aβ − byβ
2 − θ

(
h(x)1{|x|>2} + h(x)1{|x|62}

)
+ c4

= aβ − byβ
2 − θh(x) + c4 = − bβ

2 y − θh(x) + c5, (1.3.5)

where we used the boundedness of |h′|, |h′′| and |h|1{|x|62} to get the first and second
inequality. Here c3, c4 and c5 are some positive constants. Now, we see that (1.3.4)
holds with c := min(b/2, θ) and M := c5.

“Step 3 ”: We prove (1.3.1). By (1.3.3), (1.3.4) and the martingale property of
(Mt(g))t>0, we obtain

ectE(y,x) [V (Yt, Xt)]− V (y, x)
= E(y,x) [g(t, Yt, Xt)]− E(y,x) [g(0, Y0, X0)]

= E(y,x)

[∫ t

0
(ecs(AV )(Ys, Xs) + cecsV (Ys, Xs)) ds

]
6 E(y,x)

[∫ t

0
(ecs(−cV (Ys, Xs) +M) + cecsV (Ys, Xs)) ds

]
= E(y,x)

[∫ t

0
Mecsds

]
6
M

c
ect

for all (y, x) ∈ R>0×R and t > 0, which implies (1.3.1). This completes the proof.

1.4. Exponential ergodicity of (Y, X)

The aim that we pursue in this section is to check the exponential ergodicity of the
affine two factor model (Y,X) = (Yt, Xt)t>0. So far, we have derived a lower bound for
the transition densities of the α-stable CIR process (Yt)t>0 and we have introduced a
Foster-Lyapunov function for the two-dimensional process (Yt, Xt)t>0 as well.

Certainly, in order to establish the aimed exponential ergodicity for (Y,X), we need
the existence of a unique invariant measure for (Y,X) in prior.

Proposition 1.21. Consider the process (Yt, Xt)t>0 with parameters a > 0, b > 0,
m ∈ R, θ > 0 and α ∈ (1, 2). Then (Yt, Xt) converges in law to a unique limit
distribution π as t → ∞. Moreover, π is independent of the initial value (Y0, X0) and
its characteristic function takes the form∫ ∞

0

∫ ∞
−∞

e〈(−λ1,iλ2),(y,x)〉π(dy,dx) = exp
{
−a

∫ ∞
0

vs(λ1, λ2)ds+ i
m

θ
λ2

}
for all (λ1, λ2) ∈ R>0 × R.
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Proof. The existence of the invariant measure as well as the form of its characteristic
function follows by the stationarity, see [4, Theoren 3.1]. According to the discussion in
[39, p.80], the limit distribution π is also the unique invariant distribution of (Yt, Xt)t>0.

Let ‖ · ‖TV denote the total variation norm for signed measures on R>0×R, namely,

‖µ‖TV := sup {|µ(A)|} ,

where µ is a signed measure on R>0 × R and the above supremum is running for all
Borel sets A in R>0 × R.

Let Pt(y, x, ·) := P(y,x) ((Yt, Xt) ∈ ·) denote the distribution of (Yt, Xt)t>0 with the
initial condition (Y0, X0) = (y0, x0) ∈ R>0 × R.

Roughly speaking, if for each (y, x) ∈ R>0 × R, the convergence of the distribution
Pt(y, x, ·) to π as t→∞ is exponentially fast with respect to the total variation norm,
then we say that the process (Yt, Xt)t>0 is exponentially ergodic.

Theorem 1.22. Consider the two-dimensional affine process (Y,X) = (Yt, Xt)t>0
defined by (1.0.1) with parameters α ∈ (1, 2), a > 0, b > 0, m ∈ R and θ > 0.
Then (Yt, Xt)t>0 is exponentially ergodic, that is, there exist constants δ ∈ (0,∞) and
B ∈ (0,∞) such that

‖Pt(y, x, ·)− π‖TV 6 B (V (y, x) + 1) e−δt (1.4.1)

for all t > 0 and (y, x) ∈ R>0 × R.

Proof. We basically follow the proof of [34, Theorem 6.3]. The essential idea is to
use the so called Foster-Lyapunov drift criteria developed in [52] for the geometric
ergodicity of Markov chains.

We first consider the skeleton chain (Yn, Xn)n∈Z>0 , which is a Markov chain on the
state space R>0×R with transition kernel Pn(y, x, ·). It is easy to see that the measure
π is also an invariant probability measure for the chain (Yn, Xn)n∈Z>0 .

Let the function V be the same as in Lemma 1.19 and the constant β > 0 there be
sufficiently large. The Markov property together with Lemma 1.19 implies that

E
[
V (Yn+1, Xn+1) | (Y0, X0), (Y1, X1), . . . , (Yn, Xn)

]
=
∫
R>0

∫
R
V (y, x)P1(Yn, Xn,dydx) 6 e−cV (Yn, Xn) + M

c
,

where c and M are the positive constants in Lemma 1.19. If we set V0 := V and
Vn := V (Yn, Xn), n ∈ N, then

E[V1 |Y0, X0] 6 e−cV0(Y0, X0) + M

c
(1.4.2)

and, for all n ∈ N,

E [Vn+1 | (Y0, X0), (Y1, X1), . . . (Yn, Xn)] 6 e−cVn + M

c
. (1.4.3)

It follows from (1.4.2) and (1.4.3) that condition (DD4) in [50, p.564] holds. In
order to apply [50, Theorem 6.3] for the chain (Yn, Xn)n∈Z>0 , it remains to verify the
following conditions:
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(a) the Lebesgue measure λ on R>0 × R is an irreducibility measure for the chain
(Yn, Xn)n∈Z>0 ;

(b) the chain (Yn, Xn)n∈Z>0 is aperiodic;

(c) all compact sets of the state space R>0 × R are petite.

The definitions of ‘irreducibility’, ‘aperiodicity’, and ‘petite sets’ can be found in the
Appendix B, see Definitions B.1, B.2, and B.3 therein. We now proceed to prove (a)-(c).

In order to prove (a), we will use the same argument as in [4, Theorem 4.1]. It is
enough to check that for each (y0, x0) ∈ R>0×R, the measure P1(y0, x0, ·) is absolutely
continuous with respect to the Lebesgue measure with a density function p1(y, x|y0, x0)
that is strictly positive for almost all (y, x) ∈ R>0 × R. Indeed, let A be a Borel set of
R>0 × R with λ(A) > 0. Then

P(y0,x0) (τA <∞) > P1 (y0, x0, A) =
∫∫

A
p0(y, x|y0, x0)dydx > 0

for all (y0, x0) ∈ R>0 × R, where the stopping time τA is defined by τA := inf{n > 0 :
(Yn, Xn) ∈ A}.

Next, we prove the existence of the density p1(y, x|y0, x0) with the required property.
Recall that

Y1 = e−b
(
y0 + a

∫ 1

0
ebsds+

∫ 1

0
ebs α
√
Ys−dLs

)
,

and
X1 = e−θ

(
x0 +m

∫ 1

0
eθsds+

∫ 1

0
eθs
√
YsdBs

)
,

provided that (Y0, X0) = (y0, x0) ∈ R>0 × R. For (ȳ, x̄) ∈ R>0 × R, we have

P(y0,x0) (Y1 < ȳ,X1 < x̄) = E(y0,x0)
[
P(y0,x0) (Y1 < ȳ,X1 < x̄ | Y1)

]
= E(y0,x0)

[
E(y0,x0)

[
1{Y1<ȳ}1{X1<x̄}

∣∣∣ Y1
]]

= E(y0,x0)
[
1{Y1<ȳ}E(y0,x0)

[
1{X1<x̄}

∣∣∣ Y1
]]
. (1.4.4)

Note that (Yt)t>0 and the Brownian motion (Bt)t>0 are independent, since (Lt)t>0 and
(Bt)t>0 are independent and (Yt)t>0 is a strong solution. Therefore, the conditional
distribution of X1 given (Yt)t∈[0,1] is a normal distribution with mean x0 exp{−θ} +
m(1 − exp{−θ})/θ and variance exp{−2θ}

∫ 1
0 Ys exp{2θs}ds. Hence, we get that for

x̄ ∈ R,

E(y0,x0)
[
1{X1<x̄}

∣∣∣ Y1
]

= E(y0,x0)
[
E(y0,x0)

[
1{X1<x̄}

∣∣∣ (Yt)06t61
] ∣∣∣ Y1

]
= E(y0,x0)

[∫ x̄

−∞
%

(
r − e−θx0 − m

θ

(
1− e−θ

)
; e−2θ

∫ 1

0
e2θsYsds

)
dr
∣∣∣∣ Y1

]
, (1.4.5)

where %(r;σ2) is the density of the normal distribution with variance σ2 > 0, i.e.,

%(r;σ2) := 1
σ
√

2π
e−

r2

2σ2 , r ∈ R.
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Note that the assumption a > 0 ensures that

P(y0,x0)

(∫ 1

0
e2θsYsds > 0

)
= 1.

By [37, Theorem 6.3] and considering the conditional distribution of
∫ 1

0 exp{2θs}Ysds
given Y1, we can find a probability kernel K(y0,x0)(·, ·) from R>0 to R>0 such that

P(y0,x0)

(∫ 1

0
e2θsYsds ∈ ·

∣∣∣∣ Y1

)
= K(y0,x0)(Y1, ·)

and
K(y0,x0)(z,R>0) = 1, for all z > 0. (1.4.6)

So

E(y0,x0)

[∫ x̄

−∞
%

(
r − e−θx0 − m

θ

(
1− e−θ

)
; e−2θ

∫ 1

0
e2θsYsds

)
dr
∣∣∣∣ Y1

]
=
∫ ∞

0

(∫ x̄

−∞
%
(
r − e−θx0 − m

θ

(
1− e−θ

)
; e−2θw

)
dr
)
K(y0,x0)(Y1,dw)

=
∫ x̄

−∞

(∫ ∞
0

%
(
r − e−θx0 − m

θ

(
1− e−θ

)
; e−2θw

)
K(y0,x0)(Y1,dw)

)
dr.

(1.4.7)

It follows from (1.4.4), (1.4.5) and (1.4.7) that for all (ȳ, x̄) ∈ R>0 × R,

P(y0,x0) (Y1 < ȳ,X1 < x̄) =
∫ ȳ

0

∫ x̄

−∞

(∫ ∞
0

%
(
r − e−θx0 − m

θ

(
1− e−θ

)
; e−2θw

)
·K(y0,x0)(z,dw)

)
fY y0

1
(z)drdz,

(1.4.8)

where fY y0
1

is given in (1.2.49). Define

p1(y, x|y0, x0) := fY y0
1

(y)
∫ ∞

0
%
(
x− e−θx0 − m

θ

(
1− e−θ

)
; e−2θw

)
K(y0,x0)(y,dw).

Since fY y0
1

(y) > 0 for all y > 0 and

0 = P(y0,x0)

(∫ 1

0
e2θsYsds = 0

)
=
∫ ∞

0
K(y0,x0)(y, {0})µY y0

1
(dy) =

∫ ∞
0

K(y0,x0)(y, {0})fY y0
1

(y)dy,

it follows that K(y0,x0)(y, {0}) = 0 for all y ∈ R>0 \ N , where N is some null set
under the Lebesgue measure. By modifying the definition of the kernel K(y0,x0)(y, ·)
for y ∈ N , we can make sure that K(y0,x0)(y, {0}) = 0 for all y ∈ R>0, or equivalently,
K(y0,x0)(y,R>0) = 1 for all y ∈ R>0. By (1.4.6) and the fact that fY y0

1
(y) is strictly

positive for all y > 0 (see Proposition 1.18), for each (y0, x0) ∈ R>0 × R, the density
p1(y, x|y0, x0) is strictly positive for almost all (y, x) ∈ R>0 × R. Moreover, by (1.4.8),
we have

P(y0,x0) (Y1 < ȳ,X1 < x̄) =
∫ ȳ

0

∫ x̄

−∞
p1(y, x|y0, x0)dydx
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for all (ȳ, x̄) ∈ R>0 × R. So p1(·, ·|y0, x0) is the density function of (Yt, Xt) given that
(Y0, X0) = (y0, x0).

To prove (b), i.e. the aperiodicity of the skeleton chain (Yn, Xn)n∈Z>0 , we use a
contradiction argument. Suppose that the period l of the chain (Yn, Xn)n∈Z>0 is greater
than 1 (see Definition B.2 for a definition of the period of a Markov chain). Then we
can find disjoint Borel sets A1, A2, · · · , Al such that

λ(Ai) > 0, i = 1, · · · , l, ∪li=1Ai = R>0 × R, (1.4.9)
P1(y0, x0, Ai+1) = 1 (1.4.10)

for all (y0, x0) ∈ Ai, i = 1, · · · , l − 1, and P1(y0, x0, A1) = 1 for all (y0, x0) ∈ Al. By
(1.4.10), we have ∫∫

(A2)c
p1(y, x|y0, x0)dydx = 0, (y0, x0) ∈ A1,

and further ∫∫
A1
p1(y, x|y0, x0)dydx = 0, (y0, x0) ∈ A1.

However, since for each (y0, x0) ∈ R>0×R, the density p1(y, x|y0, x0) is strictly positive
for almost all (y, x) ∈ R>0 × R, we must have λ(A1) = 0, which contradicts (1.4.9).
Therefore, the assumption that l > 2 is not true. So we have l = 1.

In view of [50, Theorem 3.4 (ii)], to prove (c) it is enough to check the Feller prop-
erty of the skeleton chain (Yn, Xn)n∈Z>0 . By Theorem A.1, the two-dimensional process
(Yt, Xt)t>0, as an affine process, possesses the Feller property. So the skeleton chain
(Yn, Xn)n∈Z>0 has also the Feller property.

Since (a), (b), and (c) hold true, we can apply [50, Theorem 6.3] and thus find
constants δ ∈ (0, 1), B ∈ (0,∞) such that

‖Pn(y, x, ·)− π‖TV 6 B (V (y, x) + 1) e−δn (1.4.11)

for all n ∈ Z>0, (y, x) ∈ R>0 × R. For the remainder of the proof, i.e., to extend the
inequality (1.4.11) to all t > 0, we can interpolate in the same way as in [52, p.536],
and we omit the details. This completes the proof.

Remark 1.23. According to the discussion after [13, Proposition 2.5], a direct but
important consequence of our ergodic result is the following: under the assumptions
of Theorem 1.22, for all Borel measurable functions f : R>0 × R → R satisfying∫
R>0

∫
R |f(y, x)|π(dy,dx) <∞, it holds

P
(

lim
T→∞

1
T

∫ T

0
f(Ys, Xs)ds =

∫ ∞
0

∫ ∞
−∞

f(y, x)π(dy,dx)
)

= 1. (1.4.12)

The convergence (1.4.12) may be very useful for parameter estimation of (Y,X).



Part II.

Moments and ergodicity of the
jump-diffusion CIR process and

parameter estimation for the
drift parameters based on
discrete time observations



2. The jump-diffusion CIR process

In this chapter, we study the jump-diffusion CIR (shorted as JCIR) process, which is
an extension of the Cox-Ingersoll-Ross model introduced in [15]. The JCIR process
X = (Xt)t>0 is defined as the unique strong solution to the stochastic differential
equation

dXt = (a− bXt)dt+ σ
√
XtdBt + dJt, t > 0, X0 > 0 a.s., (2.0.1)

where a > 0, b > 0, σ > 0 are constants, (Bt)t>0 is a one-dimensional Brownian motion
and (Jt)t>0 is a pure jump Lévy process1 with its Lévy measure ν concentrating on
(0,∞) and satisfying ∫ ∞

0
(z ∧ 1)ν(dz) <∞. (2.0.2)

We assume that X0, (Bt)t>0 and (Jt)t>0 are independent.

The principal aim we pursue in this chapter is to derive the ergodicity and expo-
nential ergodicity of the JCIR process, respectively. Our choice of the approach is the
same as for the two-dimensional affine model (Y,X) introduced in Chapter 1. To be
precise, we will establish a positive lower bound of the transition densities of (Xt)t>0,
prove existence of the fractional moments under a suitable integrability condition to the
Lévy measure ν, and based on this result, we prove the existence of a Foster–Lyapunov
function in order to apply the Foster-Lyapunov drift criteria which enables us to show
(exponential) ergodicity of X. Before we focus on these, we first recall some elementary
properties of the JCIR process in prior.

We let (Bt)t>0 be a standard (Ft)t>0-Brownian motion and (Jt)t>0 be a one-dimensional
(Ft)t>0-Lévy process whose characteristic function is given by

E
[
euJt

]
= exp

{
t

∫ ∞
0

(euz − 1) ν(dz)
}
, (t, u) ∈ R>0 × C60,

where ν satisfies (2.0.2) (see, e.g., [12, Theorem 1.2] or [56, pp.78-79]). The Lévy-Itô
representation of (Jt)t>0 takes the form

Jt =
∫ t

0

∫ ∞
0

zN(ds,dz), t > 0, (2.0.3)

where N(dt,dz) =
∑
s6t δ(s,∆Js)(dt,dz) is a Poisson random measure on R>0, where

∆Js := Js − Js−, s > 0, ∆J0 := 0, and δ(s,x) denotes the Dirac measure concentrated
at (s, x) ∈ R2

>0.

Remark 2.1. Following Filipović [21] and Jin et al. [34], the JCIR process defined by
(2.0.1) includes the so-called basic affine jump-diffusion (BAJD) as a special case, in

1i.e., (Jt)t>0 is a subordinator.

44
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which the drift takes the form a(θ − Xt) with parameters a ∈ R>0 and θ ∈ R>0, and
the Lévy process (Jt)t>0 is a pure-jump Lévy process with the Lévy measure

ν(dz) =
{
cde−dzdz, z > 0,
0, z < 0,

(2.0.4)

for some constants c, d ∈ R>0. The measure ν given by (2.0.4) satisfies the integrability
condition (2.0.2), since∫ ∞

0
(z ∧ 1)ν(dz) = c

∫ 1

0
zde−dzdz + c

∫ ∞
1

de−dzdz

=
c
(
1− (d+ 1)e−d

)
d

+ ce−d = c− ce−d

d
∈ R>0.

The BAJD has been introduced by Duffie and Gârleanu [18] to describe the dynamics of
default intensity. It was also used by Filipović [21] and Keller-Ressel and Steiner [43]
as a short-rate model.

The following proposition ensures the existence and uniqueness of a strong solution
of the stochastic differential equation (2.0.1).
Proposition 2.2. Consider the JCIR process defined by the SDE (2.0.1) with param-
eters a ∈ R>0, b ∈ R, σ ∈ R>0 and ν satisfying (2.0.2). Then there is a (pathwise)
unique strong solution X = (Xt)t>0 to the SDE (2.0.1) such that (Xt)t>0 is almost
surely non-negative for all t > 0. Further, we have

Xt = e−bt
(
X0 + a

∫ t

0
ebsds+ σ

∫ t

0
ebs
√
XsdBs +

∫ t

0
ebsdJs

)
, t > 0. (2.0.5)

Proof. By the Lévy-Itô representation of (Jt)t>0, we can rewrite the SDE (2.0.1) in

Xt = X0 +
∫ t

0
(a− bXs)ds+ σ

∫ t

0

√
XsdBs +

∫ t

0

∫ ∞
0

zN(ds,dz), t > 0.

It follows from [23, Theorem 5.1] that if X0 is independent of (Bt)t>0 and (Jt)t>0, then
there is a unique strong solution (Xt)t>0 to the SDE (2.0.1). Since the diffusion coef-
ficient in the SDE (2.0.1) is degenerate at zero and only positive jumps are possible,
the JCIR process (Xt)t>0 stays non-negative if X0 > 0. This fact can be shown rigor-
ously with the help of comparison theorems for SDEs, for more details we refer to [23].
Finally, using Itô’s formula to the process (exp{bt}Xt)t>0, we obtain

d
(
ebtXt

)
= bebtXtdt+ ebtdXt

= aebt + ebt
(
σ
√
XtdBt + dJt

)
, t > 0,

and hence,

ebtXt −X0 = a

∫ t

0
ebsds+ σ

∫ t

0
ebs
√
XsdBs +

∫ t

0
ebsdJs, t > 0,

yielding (2.0.5).

Finally, we introduce some notation. Note that the strong solution (Xt)t>0 of the
stochastic differential equation (2.0.1) obviously depends on its initial value X0. From
now on, we denote by (Xx

t )t>0 the JCIR process starting from a constant initial value
x ∈ R>0, i.e., (Xx

t )t>0 satisfies

dXx
t = (a− bXx

t )dt+ σ
√
Xx
t dBt + dJt, t > 0, Xx

0 = x ∈ R>0. (2.0.6)
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2.1. Affine representation of the JCIR process

In this section we show that the JCIR process belongs to the class of (conservative)
regular affine processes with state space R>0. We derive the infinitesimal generator as
well as the characteristic function of (Xx

t )t>0.

We first check that the JCIR process is a regular affine process. To do so, we shall
calculate the infinitesimal generator of the JCIR process.

Proposition 2.3. Let a ∈ R>0, b ∈ R, σ ∈ R>0, and the Lévy measure ν on R>0
satisfying (2.0.2). Then (Xx

t )t>0 is a regular affine process with infinitesimal generator
given by

(Af) (x) = (a− bx)∂f(x)
∂x

+ 1
2σ

2x
∂2f(x)
∂x2 +

∫ ∞
0

(f(x+ z)− f(x)) ν(dz), (2.1.1)

where f ∈ C2
c (R>0,R).

Before going to the proof, it is worth noting that the statement of Proposition 2.3
does appear in [33] and [2] but there is no proof stated in [33] and the proof in [2] goes
back to some results of [16]. Here is a simple direct proof.

Proof. Let x ∈ R>0 be fixed and assume that X0 = x almost surely. In view of the
Lévy-Itô decomposition of (Jt)t>0 in (2.0.3), we have

Xt = x+
∫ t

0
(a− bXs)ds+ σ

∫ t

0

√
XsdBs +

∫ t

0

∫ ∞
0

zN(ds,dz), t > 0,

where N(ds,dz) is defined in (2.0.3). Using Itô’s formula to f ∈ C2
c (R>0,R), we obtain

f (Xx
t )− f (X0) =

∫ t

0
(a− bXx

s ) ∂f
∂x

(Xx
s ) ds+ σ

∫ t

0

√
Xx
s

∂f

∂x
(Xx

s ) dBs

+ σ2

2

∫ t

0
Xx
s

∂2f

∂x2 (Xx
s ) ds

+
∫ t

0

∫ ∞
0

(
f
(
Xx
s− + z

)
− f

(
Xx
s−
))
N(ds,dz)

=:
∫ t

0
(Af) (Xx

s ) ds+Mt(f), t ∈ R>0,

where

Mt(f) := σ

∫ t

0

√
Xx
s

∂f

∂x
(Xx

s ) dBs +
∫ t

0

∫ ∞
0

(
f
(
Xx
s− + z

)
− f

(
Xx
s−
))
N(ds,dz)

−
∫ t

0

∫ ∞
0

(f (Xx
s + z)− f (Xx

s )) ν(dz)ds, t > 0,

and

(Af) (x) = (a− bx)∂f
∂x

(x) + 1
2σ

2x
∂2f

∂x2 (x) +
∫ ∞

0
(f(x+ z)− f(x)) ν(dz)

for x ∈ R>0 and f ∈ C2
c (R>0,R) is precisely corresponding to (2.1.1). Thus, it remains

to prove that (Mt(f))t>0 is a martingale with respect to the filtration (Ft)t>0. Defining

Dt(f) := σ

∫ t

0

∂f (Xx
s )

∂x

√
Xx
s dBs, t > 0, and
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Jt(f) :=
∫ t

0

∫ ∞
0

(
f
(
Xx
s− + z

)
− f

(
Xx
s−
))
N(ds,dz)

−
∫ t

0

∫ ∞
0

(f (Xx
s + z)− f (Xx

s )) ν(dz)ds, t > 0,

we check that (Mt(f))t>0 = (Dt(f) + Jt(f))t>0 is actually a sum of martingales with
respect to the filtration (Ft)t>0.

We first check that (Dt(f))t>0 is a square integrable martingale with respect to the
filtration (Ft)t>0. Indeed, since the derivative of f has compact support, for all t ∈ R>0,
we obtain

E
[(
σ

∫ t

0

√
Xx
s

∂f

∂x
(Xx

s ) dBs
)2]

= σ2
∫ t

0
E
[
Xx
s

(
∂f

∂x
(Xx

s )
)2]

ds <∞, t > 0,

which implies that (Dt(f))t>0 is a square integrable martingale with respect to the
filtration (Ft>0). Next, we prove that (Jt(f))t>0 is a martingale with respect to the
filtration (Ft)t>0. Notice that f ∈ C2

c (R>0), so supx∈R>0 |∂xf(x)| < ∞. By the mean
value theorem, we have

|f(x+ z)− f(x)| 6 z sup
x∈R>0

∣∣∣∣ ∂∂xf(x)
∣∣∣∣ <∞,

which in turn yields

E
[∫ t

0

∫ ∞
0
|f (Xx

s + z)− f (Xx
s )| ν(dz)ds

]
= E

[∫ t

0

∫
{z61}

|f (Xx
s + z)− f (Xx

s )| ν(dz)ds
]

+ E
[∫ t

0

∫
{z>1}

|f (Xx
s + z)− f (Xx

s )| ν(dz)ds
]

6 sup
x∈R>0

∣∣∣∣ ∂∂xf(x)
∣∣∣∣ t ∫ ∞

0
(z ∧ 1)ν(dz) <∞, t > 0,

where the finiteness of the integral follows by assumption (2.0.2). By [26, Lemma 3.1
in Chapter II and page 62], we get that (Jt(f))t>0 is a martingale with respect to the
filtration (Ft)t>0. Consequently, (Mt)t>0 is a martingale with respect to the filtration
(Ft)t>0 as asserted.

Noting that (0, α = 1/2σ2, b = a, β = −b, ν, 0) is a set of admissible parameters in
the sense of Definition A.3, the rest of the proof goes through as for Proposition 1.7,
with hardly any changes.

The following remark is about the representation of the functions F and R appearing
in the generalized Riccati equations (see Appendix A).

Remark 2.4. Since the JCIR process X is a conservative, regular affine process with
state space R>0, especially, it is a continuous-time branching process with immigrations
(shorted as CBI)2. The form of the infinitesimal generator A of X given in (2.1.1)

2see Appendix A the paragraph after Theorem A.1 for details.
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and the formulas (A.0.4) and (A.0.5) yield that X is a CBI process having branching
mechanism

R(u) = σ2u2

2 − bu, u ∈ C60, (2.1.2)

and immigration mechanism

F (u) = au+
∫ ∞

0
(euz − 1) ν(dz), u ∈ C60. (2.1.3)

The next proposition is about the characteristic function of the JCIR process.

Proposition 2.5. Consider the JCIR process (Xx
t )t>0 given in (2.0.6) with a ∈ R>0,

b, σ ∈ R>0, and ν satisfying (2.0.2). Then φ(t, u) and ψ(t, u) solve the generalized
Riccati equations {

∂
∂tφ(t, u) = F (ψ(t, u)) , φ(0, u) = 0,
∂
∂tψ(t, u) = R (ψ(t, u)) , ψ(0, u) = u ∈ C60,

where the functions F and R are given by (2.1.3) and (2.1.2), respectively. The unique
solution of the Riccati equations are given by

ψ(t, u) = ue−bt

1− σ2u
2b (1− e−bt)

, (2.1.4)

and

φ(t, u) = −2a
σ2 log

(
1− σ2u

2b
(
1− e−bt

))
+
∫ t

0

∫ ∞
0

(
ezψ(s,u) − 1

)
ν(dz)ds,

where (t, u) ∈ R>0 × C60. Moreover, the characteristic function of Xx
t has the form

E
[
euX

x
t

]
=
(
1− σ2u

2b

(
1− e−bt

))− 2a
σ2 · exp

{
ue−btx

1− σ2u
2b (1− e−bt)

}
(2.1.5)

· exp
{∫ t

0

∫ ∞
0

(
ezψ(s,u) − 1

)
ν(dz)ds

}
for all t > 0 and u ∈ C60.

Proof. Since Xx
t is affine, its characteristic function is of exponential affine form

E
[
euX

x
t

]
= exp {φ(t, u) + xψ(t, u)} , (t, u) ∈ R>0 × C60. (2.1.6)

In view of (2.1.3) and (2.1.2) the functions φ and ψ in question solve the differential
equations∂tφ(t, u) = aψ(s, u) +

∫∞
0

(
ezψ(t,u) − 1

)
νdz, φ(0, u) = 0,

∂tψ(s, u) = σ2

2 ψ(t, u)2 − bψ(t, u), ψ(0, u) = u ∈ C60.

The second equation is a Bernoulli differential equation. It is easy to see that its
solution is given explicitly by (2.1.4) and φ(t, u) is simply obtained by integration once
ψ(t, u) is known. After plugging this into (2.1.6), we conclude with (2.1.5).
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We recall a decomposition of the characteristic function of Xx
t established in [33]. As

mentioned in [33], the product of the first two terms on the right-hand side of (2.1.5)
is the characteristic function of the CIR process. More precisely, consider the unique
strong solution (Y x

t )t>0 of the following stochastic differential equation (2.0.1)

dY x
t = (a− bY x

t )dt+
√
Y x
t dBt, t > 0, Y x

0 = x ∈ R>0 a.s.. (2.1.7)

where a ∈ R>0, and b, σ ∈ R>0. So (Y x
t )t>0 is the CIR process starting from x. Note

that (2.1.7) is a special case of (2.0.6) with Jt ≡ 0 (corresponding to ν = 0). By (2.1.5),
we obtain

E
[
euY

x
t

]
=
(
1− σ2u

2b

(
1− e−bt

))− 2a
σ2 exp

{
xue−bt

1−σ
2u
2b (1−e−bt)

}
(2.1.8)

for all t > 0 and u ∈ C60.

We now turn to the third term on the right-hand side of (2.1.5). Let Z := (Zt)t>0
be the unique strong solution of the stochastic differential equation

dZt = −bZtdt+ σ
√
ZtdBt + dJt, t > 0, Z0 = 0 a.s., (2.1.9)

where σ ∈ R>0. It is easy to see that (2.1.9) is also a special case of (2.0.6) with
a = x = 0. Again by (2.1.5), we have

E
[
euZt

]
= exp

{∫ t

0

∫ ∞
0

(
ezψ(s,u) − 1

)
ν(dz)ds

}
, (t, u) ∈ R>0 × C60. (2.1.10)

It follows from (2.1.5), (2.1.8) and (2.1.10) that

E
[
euX

x
t

]
= E

[
euY

x
t

]
E
[
euZt

]
(2.1.11)

for all t > 0 and u ∈ C60. Let µY xt and µZt be the probability laws of Y x
t and Zt

induced on (R>0,B(R>0)), respectively. Then the probability law µXx
t

of Xx
t is given

by
µXx

t
= µY yt ∗ µZt , (2.1.12)

where ∗ denotes the convolution of two measures.

2.1.1. Transition densities of the JCIR process

We prove that the JCIR process X has positive transition densities. Our approach is
similar to that in Section 1.2 and is based on the representation of the law of Xx

t as the
convolution of two probability measures, one of which is the distribution of the normal
CIR process.

Proposition 2.6. Assume a > 0. For each x ∈ R>0 and t ∈ R>0, the random variable
Xx
t possesses a density function fXx

t
(y), y > 0 with respect to the Lebesgue measure.

Moreover, the density function fXx
t
(y) is strictly positive for all y ∈ R>0.

Proof. Recall that µXx
t

= µY yt ∗ µZt as shown in (2.1.12). Note that the CIR process
(Y x
t )t>0 possesses a density function fY xt (y) for t ∈ R>0, Y0 = x ∈ R>0, and y ∈ R>0.

More precisely, in case x > 0, we have

fY xt (y) = 2bebt
2a
σ2

σ2 (1− e−bt)

(
y

x

) 2a
σ2−1

exp

2b
(
yebt − x

)
σ2 (ebt − 1)

 I 2a
σ2−1

(
4b
√
xyebt

σ2 (ebt − 1)

)
, (2.1.13)
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where I(2a)/(σ2)−1 denotes the modified Bessel of the first kind of order (2a)/σ2−1, i.e.,

I 2a
σ2−1(y) =

∞∑
m=0

1
m!Γ(m+ 2a/σ2)

(
y

2

)2m+ 2a
σ2−1

, y ∈ R>0,

see, e.g., Cox et al. [15, Formula (18)] or Jeanblanc et al. [28, Proposition 6.3.2.1]. In
case x = 0, for all y ∈ R, the density function fY 0

t
is given by

fY 0
t

(y) = 1
Γ(2a/σ2)

( 2b
σ2 (1− e−bt)

) 2a
σ2
y

2a
σ2−1 exp

{ −2by
σ2 (1− e−bt)

}
1(0,∞)(y), (2.1.14)

due to Ikeda and Watanabe [26], since Y 0
t has gamma distribution with parameters

2a/σ2 and 2b/(1−exp{−bt}). We conclude that µXx
t

is also absolutely continuous with
respect to the Lebesgue measure and thus possesses a density function denoted by fXx

t

which is given by
fXx

t
(y) =

∫
R>0

fY xt (y − z)µZt(dz), y > 0.

We proceed to prove the strict positivity of fXx
t
(y) for all y ∈ R>0. Let t > 0 and

y > 0 be fixed. It follows that

fXx
t
(y) >

∫
[0,δ]

fY xt (y − z)µZt(dz),

where δ > 0 is small enough with δ < y. Noting that fY xt (y) > 0 for y > 0 and
fY xt (y) ≡ 0 for y < 0 (see, formula (2.1.13) in case x > 0 and formula (2.1.14) in case
x = 0), we have that fY xt (y− z) > 0 for all z ∈ [0, δ]. Hence, it is enough to check that
µZt([0, δ]) > 0. If P(Zt = 0) > 0, then we are done. So we now suppose

P(Zt = 0) = 0. (2.1.15)

Let
∆t(u) =

∫ t

0

∫ ∞
0

(
ezψ(s,u) − 1

)
ν(dz)ds, u ∈ C60,

where ψ is given in (2.1.4). By (2.1.15), we conclude

E
[
eu(Zt−δ)

]
− E

[
eu(Zt−δ)1{Zt=0}

]
= e−uδ

(
E
[
euZt

]
− E

[
euZt1{Zt=0}

])
= e−uδ

(
e∆t(u) − P (Zt = 0)

)
= e−uδ/2e∆t(u)−uδ/2. (2.1.16)

For all u ∈ (−∞,−1] and s ∈ [0, t], we have

∂

∂u

(
ezψ(s,u) − 1

)
= ze−bs(

1− σ2u
2b (1− e−bs)

)2 exp
{

zue−bs

1− σ2u
2b (1− e−bs)

}

6 ze−bs1{z61} + ze−bse−c1z1{z>1} 6 c2e
−bs(z ∧ 1), (2.1.17)

for some positive constants c1 and c2. By the differentiation lemma [10, Lemma 16.2],
we see that ∆t(u) is differentiable at u ∈ (−∞,−1] and

∂

∂u
(∆t(u)) =

∫ t

0

∫ ∞
0

∂

∂u

(
ezψ(s,u) − 1

)
ν(dz)ds, u ∈ (−∞,−1]. (2.1.18)
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Note that ∂/(∂u)(exp{zψ(s, u)} − 1) > 0 for z > 0, u ∈ (−∞,−1] and s ∈ [0, t].
Therefore, ∆t(u) is strictly increasing in u on (−∞,−1]. Moreover, we have

lim
u→−∞

∂

∂u

(
ezψ(s,u) − 1

)
= exp

{ −2bz
σ2 (ebs − 1)

}
lim

u→−∞

ze−bs(
1− σ2u

2b (1− e−bs)
)2 = 0.

By (2.1.17), (2.1.18) and the Lebesgue dominated convergence theorem, ∂/(∂u)∆t(u)→
0 as u → −∞. So ∂/(∂u)(∆t(u) − uδ/2) → −δ/2 as u → −∞, which implies that
∆t(u)− uδ/2 is monotone in u for sufficiently small u and thus

lim
u→−∞

e−uδ/2e∆t(u)−uδ/2 =∞. (2.1.19)

It follows from (2.1.16) and (2.1.19) that

lim
u→−∞

(
E
[
eu(Zt−δ)

]
− E

[
eu(Zt−δ)1{Zt=0}

] )
=∞.

Now, we must have P(Zt ∈ (0, δ]) > 0, otherwise

lim
u→−∞

(
E
[
eu(Zt−δ)

]
− E

[
eu(Zt−δ)1{Zt=0}

] )
= lim

u→−∞

(
E
[
eu(Zt−δ)1{0<Zt6δ}

]
+ E

[
eu(Zt−δ)1{Zt>δ}

])
= 0.

This completes the proof.

2.2. Moments of the JCIR process

In this section we characterize the existence of the κ-moment (κ > 0) of the JCIR
process by an integrability condition on the Lévy measure of the subordinator. For
these considerations it will be convenient to state beforehand a moment estimation for
the Bessel distribution. Moreover, we will calculate the first and second moment of the
JCIR process explicitly.

2.2.1. Bessel distribution

Suppose α and β are positive constants. We call a probability measure mα,β on
(R>0,B(R>0) a Bessel distribution with parameters α and β if

mα,β(dx) := e−αδ0(dx) + βe−α−βx
√
α(βx)−1I1

(
2
√
αβx

)
dx, x ∈ R>0, (2.2.1)

where δ0 denotes the Dirac measure at the origin and I1 is the modified Bessel function
of the first kind, namely,

I1(r) = r

2

∞∑
k=0

(
1
4r

2
)k

k!(k + 1)! , r ∈ R. (2.2.2)

Let m̂α,β(u) :=
∫
R>0

exp{ux}mα,β(dx) for u ∈ C60 denote the characteristic function
of the Bessel distribution mα,β. It follows from [34, Lemma 3.1] that

m̂α,β(u) = exp
{

αu

β − u

}
, u ∈ C60.

To study the moments of the JCIR process, the lemma below plays a substantial
role.
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Lemma 2.7. Let κ > 0 and δ > 0 be positive constants. Then

(i) there exists a positive constant C1 = C1(κ) such that for all α > 0 and β > 0,∫
R>0

xκmα,β(dx) 6 C1
1 + ακ

βκ
.

(ii) there exists a positive constant C2 = C2(κ, δ) such that for all α > δ and β > 0,∫
R>0

xκmα,β(dx) > C2
ακ

βκ
.

Proof. (i) If 0 < κ 6 1, then we can use Jensen’s inequality to obtain∫
R>0

xκmα,β(dx) 6
(∫

R>0
xmα,β(dx)

)κ
=
(
α

β

)κ
, (2.2.3)

where the last identity holds because of∫
R>0

xmα,β(dx) = ∂

∂u
m̂α,β(u)

∣∣∣∣
u=0

= α

β
.

For κ = n ∈ N with n > 2, by (2.2.1) and (2.2.2), we have for all α, β > 0,∫
R>0

xnmα,β(dx) =
∫
R>0

xn
(
e−αδ0(dx) + βe−α−βx

√
α(βx)−1I1

(
2
√
αβx

)
dx
)

= e−α
∞∑
k=0

(αβ)k+1

k!(k + 1)!

∫ ∞
0

xn+ke−βxdx

= e−α

βn

∞∑
k=0

αk+1(n+ k)!
k!(k + 1)!

= e−α

βn

n−2∑
k=0

αk+1(n+ k)!
k!(k + 1)!

+ e−ααn

βn

∞∑
k=n−1

αk+1−n

(k + 1− n)! ·
(k + 1) · · · (k + n)

(k + 2− n) · · · (k + 1) . (2.2.4)

Since
lim
k→∞

(k + 1) · · · (k + n)
(k + 2− n) · · · (k + 1) = 1,

it follows from (2.2.4) that∫
R>0

xnmα,β(dx) 6 c1
e−α

βn

(
α+ α2 + · · ·+ αn−1 + αn

∞∑
m=0

αm

m!

)

6 c2

( 1
βn

+ αn

βn

)
, for all α, β > 0, (2.2.5)

where c1 and c2 are positive constants depending on n.
For the remaining possible κ, namely, κ > 1 and κ /∈ N, we can find n ∈ N and

ε ∈ (0, 1] such that 2κ = n + ε. By (2.2.3), (2.2.5) and Hölder’s inequality, we get for
all α, β > 0,∫

R>0
xκmα,β(dx) 6

(∫
R>0

xnmα,β(dx)
) 1

2
(∫

R>0
xεmα,β(dx)

) 1
2
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6 c3

(1 + αn

βn

) 1
2
(
α

β

) ε
2
6 c4

αε/2 + α(n+ε)/2

β(n+ε)/2 6 c5
1 + ακ

βκ
,

where c3, c4 and c5 are positive constants depending on κ.
(ii) If κ > 1, using again Jensen’s inequality, we obtain for all α, β > 0,∫

R>0
xκmα,β(dx) >

(∫
R>0

xmα,β(dx)
)κ

=
(
α

β

)κ
.

Suppose now 0 < κ < 1 and let θ := 1− κ ∈ (0, 1). Consider a random variable η > 0
such that

η ∼
(
1− e−α

)−1 (
mα,β(dx)− e−αδ0(dx)

)
. (2.2.6)

Then for u > 0, we have

E
[
e−uη

]
=
(
1− e−α

)−1 (
m̂α,β(−u)− e−α

)
=
(
1− e−α

)−1
(

exp
{ −αu
β + u

}
− exp {−α}

)
.

Since, by the Fubini’s theorem,∫ ∞
0

∂

∂u
E
[
e−uη

]
uθ−1du = −

∫ ∞
0

E
[
Y e−uη

]
uθ−1du

= −E
[∫ ∞

0
ηe−uηuθ−1du

]
= −E

[
Γ(θ)η1−θ

]
,

it follows that

E [ηκ] = −1
Γ(θ)

∫ ∞
0

∂

∂u
E
[
e−uη

]
uθ−1du

= αβ

Γ(θ) (1− e−α)

∫ ∞
0

exp
{ −αu
β + u

}
uθ−1

(β + u)2 du. (2.2.7)

By (2.2.6) and (2.2.7), we see that∫
R>0

xκmα,β(dx) = αβ

Γ(θ)

∫ ∞
0

exp
{ −αu
β + u

}
uθ−1

(β + u)2 du, u ∈ R>0.

By a change of variables w := αu/β, we get

∫
R>0

xκmα,β(dx) = αβ

Γ(θ)

∫ ∞
0

exp
{
−α+ αβ

β + βw
α

} (
βw
α

)−κ
(
β + βw

α

)2
β

α
dw

= 1
Γ(θ)

(
α

β

)κ ∫ ∞
0

exp
{ −αw
α+ w

}
w−κ

(1 + w/α)2 dw

=: 1
Γ(θ)

(
α

β

)κ
I(α). (2.2.8)

By Fatou’s lemma,

lim inf
α→∞

I(α) >
∫ ∞

0
lim inf
α→∞

exp
{ −αw
α+ w

}
w−κ

(1 + w/α)2 dw

=
∫ ∞

0
exp {−w}w−κdw = Γ(1− κ) > 0.

On the other hand, the function (0,∞) 3 α 7→ I(α) is positive and continuous. So
we can find a positive constant c6 depending on κ and δ such that I(α) ≥ c6 for all
α ∈ [δ,∞), which, together with (2.2.8), implies the assertion.
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2.2.2. Moment characterization of the JCIR process

Recall that Z = (Zt)t>0 is the unique strong solution of the stochastic differential
equation (2.1.9) and its characteristic function is given by

E
[
euZt

]
= exp

{∫ t

0

∫ ∞
0

(
ezψ(s,u) − 1

)
ν(dz)ds

}
, (t, u) ∈ R>0 × C60,

see formula (2.1.10). Note that for all (t, u) ∈ R>0 × C60,

E
[
euZt

]
= exp

{∫ t

0

∫ ∞
0

(
ezψ(s,u) − 1

)
ν1(dz)ds

}
· exp

{∫ t

0

∫ ∞
0

(
ezψ(s,u) − 1

)
ν2(dz)ds

}
, (2.2.9)

where ν1(dz) := 1{z61}ν(dz) and ν2(dz) := 1{z>1}ν(dz). Similarly to (2.1.9), for
i = 1, 2, we define (Zit)t>0 as the unique strong solution of

dZit = −bZitdt+ σ
√
ZitdBt + dJ it , t > 0, Zi0 = 0 a.s., (2.2.10)

where (J it )t>0 is a subordinator of pure jump-type with Lévy measure νi. By (2.1.10),
we have

E
[
euZ

i
t

]
= exp

{∫ t

0

∫ ∞
0

(
ezψ(s,u) − 1

)
νi(dz)ds

}
, i = 1, 2, (t, u) ∈ R>0 × C60.

(2.2.11)
It follows from (2.2.9) and (2.2.11) that

µZt = µZ1
t
∗ µZ2

t
. (2.2.12)

Before we turn to check the aimed characterization of the fractional moments for the
JCIR process, we preface the proof with a technicality.

Proposition 2.8. The characteristic function of (Z2
t )t>0 given by (2.2.11) (i = 2), is

the characteristic function of a compound Poisson distribution.

The proof is a rather lengthy calculation. We just note that (J2
t )t>0 has only big

jumps. Then we direct the reader to [33, Lemma 2] for details.

Theorem 2.9. Consider the JCIR process X = (Xt)t>0 defined in (2.0.1). Let κ > 0
be a constant. Then the following three conditions are equivalent:

(i) Ex[Xκ
t ] <∞ for all x ∈ R>0 and t > 0,

(ii) Ex[Xκ
t ] <∞ for some x ∈ R>0 and t > 0,

(iii)
∫
{z>1} z

κν(dz) <∞.

Proof. “(iii)⇒(i)”: Let κ > 0 be a constant. Suppose that
∫
{z>1} z

κν(dz) < ∞. Let
x ∈ R>0 and t > 0 be arbitrary. We define f(y) := (|y| ∨ 1)κ, y ∈ R. Then f is locally
bounded and submultiplicative by [59, Proposition 25.4], i.e., there exists a constant
c1 > 0 such that f(y1 + y2) 6 c1f(y1)f(y2) for all y1, y2 ∈ R. Further, it is easy to see
that for any constant c > 0, there exists a constant c2 > 0 such that f(y) 6 c2 exp{c|y|},
y ∈ R. By (2.1.12) and (2.2.12), we get

E [f (Xx
t )] 6 c2

1E [f (Y x
t )]E

[
f
(
Z1
t

)]
E
[
f
(
Z2
t

)]
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6 c2
1c2E [f (Y x

t )]E
[
ecZ

1
t

]
E
[
f
(
Z2
t

)]
. (2.2.13)

By [11, Proposition 3], we have E[f(Y x
t )] < ∞. The finiteness of the exponential

moments of Z1
t , i.e., E[exp{cZ1

t }] <∞, follows by [40, Theorem 2.14 (b)], since (J1
t )t>0

has only small jumps.
We next show that E[f(Z2

t )] <∞. By Proposition 2.8, we know that Z2
t is compound

Poisson distributed, namely, we can find a probability measure ρt on R>0 such that

E
[
euZ

2
t

]
= eλt(ρ̂t(u)−1), (t, u) ∈ R>0 × C60,

where λt > 0 and ρ̂t denotes the characteristic function of the measure ρt. More
precisely, according to [33, see p.292], we have

ρt = λ−1
t

∫ t

0

∫
{z>1}

mα(z,s),β(z,s)ν(dz)ds,

where mα(z,s),β(z,s) is a Bessel distribution with parameters α(z, s) and β(z, s) given by

α(z, s) := 2bz
σ2 (ebs − 1) and β(z, s) := 2bebs

σ2 (ebs − 1) ,

and
λt =

∫ t

0

∫
{z>1}

(
1− e−α(z,s)

)
ν(dz)ds <∞.

By the Fubini’s theorem, we obtain∫
R>0

f(y)ρt(dy) = λ−1
t

∫ t

0

∫
{z>1}

(∫
R>0

f(y)mα(z,s),β(z,s)(dy)
)
ν(dz)ds. (2.2.14)

By Lemma 2.7, we have∫
R>0

f(y)mα(z,s),β(z,s)(dy) 6
∫
R>0

(1 + yκ)mα(z,s),β(z,s)(dy)

6 1 + C1
1 + α(z, s)κ

β(z, s)κ

6 1 + C1σ
2κ(2b)−κ(1− e−bs)κ + C1e

−κbszκ. (2.2.15)

It follows from (2.2.14) and (2.2.15) that∫
R>0

f(y)ρt(dy) <∞. (2.2.16)

Moreover, using (2.2.16) together with the submultiplicativity of f , we get∫
R>0

f(y)ρ∗nt (dy) =
∫
R>0
· · ·
∫
R>0

f(y1 + · · ·+ yn)ρt(dy1) · · · ρt(dyn)

6 cn1

(∫
R>0

f(y)ρt(dy)
)n

<∞, (2.2.17)

which implies

E
[
f
(
Z2
t

)]
=
∫
R>0

f(y)µZ2
t
(dy) = e−λt

∞∑
n=0

λnt
n!

∫
R>0

f(y)ρ∗nt (dy) <∞. (2.2.18)
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By (2.2.13) and (2.2.18), we obtain E [f (Xx
t )] <∞. It follows easily that E [(Xx

t )κ] <
∞.

“(i)⇒(ii)”: It is clear.
“(ii)⇒(iii)”: Suppose now that E [(Xx

t )κ] < ∞ for some x ∈ R>0 and t > 0. By
(2.1.12), we obtain

E [(Xx
t )κ] =

∫
R>0

∫
R>0

(y + z)κµY xt (dy)µZt(dz) <∞.

So
∫
R>0

(y + z)κµZt(dz) <∞ for some y ∈ R>0, which implies

E [Zκt ] =
∫
R>0

zκµZt(dz) 6
∫
R>0

(y + z)κµZt(dz) <∞. (2.2.19)

Similarly, we can use (2.2.19) and (2.2.12) to conclude that (Z2
t )t>0 has finite moment

of order κ. Let the function f be as above. Then E
[
f
(
Z2
t

)]
6 1 + E

[(
Z2
t

)κ]
< ∞.

Since now all the summands in the last identity of (2.2.18) are finite, the summand
corresponding to n = 1 is also finite and thus∫

R>0
yκρt(dy) 6

∫
R>0

f(y)ρt(dy) <∞.

By the Fubini’s theorem, we obtain

∫
R>0

yκρt(dy) = λ−1
t

∫ t

0

∫
{z>1}

(∫
R>0

yκmα(z,s),β(z,s)(dy)
)
ν(dz)ds <∞. (2.2.20)

Noting that for all s ∈ [0, t] and z > 1,

α(z, s) = 2bz
σ2 (ebs − 1) >

2b
σ2 (ebt − 1) .

By Lemma 2.7, we can find a constant c3 = c3(t) > 0 such that
∫
R>0

yκmα(z,s),β(z,s)(dy) > c3

(
α(z, s)
β(z, s)

)κ
= c3z

κe−κbs, s ∈ [0, t], z > 1. (2.2.21)

It follows from (2.2.20) and (2.2.21) that
∫
{z>1} z

κν(dz) <∞.

Remark 2.10. We remark that moments of general 1-dimensional CBI processes were
recently studied in [29]. If κ > 1 and x > 0, our Theorem 2.9 can be viewed as a special
case of [29, Theorem 2.2]. However, to the authors’ knowledge, the cases 0 < κ < 1
and κ > 0 with x = 0 can not be handled by the approach used in [29].

Based on the proof of Theorem 2.9 we get the following corollary.

Corollary 2.11. Let κ > 0 be a constant. Suppose
∫
{z>1} z

κν(dz) <∞. Then, for all
x ∈ R>0 and T > 0,

sup
t∈[0,T ]

Ex [Xκ
t ] <∞.
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Proof. Let f , Z1
t and Z2

t be as in the proof of Theorem 2.9. Note that |y|κ 6 f(y) ≤
|y|κ + 1 for all y ∈ R. Since supt∈R>0 E[(Y x

t )κ] < ∞ due to [11, Proposition 3], by
(2.2.13), it suffices to check that

sup
t∈[0,T ]

E
[
ecZ

1
t

]
<∞ and sup

t∈[0,T ]
E
[(
Z2
t

)κ]
<∞, T > 0,

where c > 0 is a constant to be chosen. It follows from [40, Theorem 2.14 (b)] that

E
[
ecZ

1
t

]
= exp

{∫ t

0

∫ 1

0

(
ezψ(s,c) − 1

)
ν1(dz)ds

}
<∞, c ∈ R,

where ψ is given in (2.1.4). Now, we choose c > 0 sufficiently small such that ψ(s, c) > 0
for all s ∈ R>0. Hence, supt∈[0,T ] E[exp{cZ1

t }] 6 E[exp{cZ1
T }] <∞. We next show that

supt∈[0,T ] E
[(
Z2
t

)κ]
<∞. By (2.2.14), (2.2.17) and (2.2.18), we have for all t ∈ [0, T ],

E
[
f
(
Z2
t

)]
6 exp

{
−λt + c1λt

∫
R>0

f(y)ρt(dy)
}

= exp
{
−λt + c1

∫ t

0

∫
{z>1}

(∫
R>0

f(y)mα(z,s),β(z,s)(dy)
)
ν(dz)ds

}

6 exp
{
c1

∫ T

0

∫
{z>1}

(∫
R>0

f(y)mα(z,s),β(z,s)(dy)
)
ν(dz)ds

}

= exp
{
c1λT

∫
R>0

f(y)ρT (dy)
}
. (2.2.22)

It follows from (2.2.16) and (2.2.22) that

sup
t∈[0,T ]

E
[(
Z2
t

)κ]
6 sup

t∈[0,T ]
E
[
f
(
Z2
t

)]
6 exp

{
c1λT

∫
R>0

f(y)ρT (dy)
}
<∞.

This completes the proof.

In Theorem 2.25 below we will improve the statement of Corollary 2.11 such that
supt∈R>0 Ex[Xκ

t ] <∞ using Foster-Lyapunov estimates.

2.2.3. First and second moment of the JCIR process

Finally, we calculate the first and second moment as well as their limits for t→∞. We
need this formulas in Chapter 3 in order to introduce least squares estimators.
Remark 2.12. It is worth mentioning that the moment formulas (2.2.23) and (2.2.28)
in Propositions 2.13 and 2.15 below are special cases of [6, Theorem 4.3], where an
explicit formula of integral moments of general CBI processes has been derived.

We start with the expectation of the JCIR process.
Proposition 2.13. Let a ∈ R>0 and b, σ ∈ R>0 and ν satisfying

∫
{z>1} zν(dz) < ∞.

Then, for all 0 6 s 6 t <∞, we have

Ex[Xt] = e−btx+ 1− e−bt

b

(
a+

∫ ∞
0

zν(dz)
)
, (2.2.23)

and hence

E [Xt | Fs] = e−b(t−s)Xs + 1− e−b(t−s)

b

(
a+

∫ ∞
0

zν(dz)
)
. (2.2.24)



58 Moments of the JCIR process

Proof. Noting that µXx
t

= µY xt ∗ µZt , we have

Ex [Xt] = Ex [Yt] + E [Zt] .

In view of Theorem 2.9, we know that Ex[Xt] exists and is finite. Therefore, we have

Ex [Yt] = ∂

∂u
Ex
[
euYt

]∣∣∣∣
u=0

= e−btx+ a

b

(
1− e−bt

)
, (2.2.25)

and we shall proceed to calculate the expectation of Zt. Recall that for all (t, u) ∈
R>0 × R60, by (2.1.10),

E [Zt] = ∂

∂u
E
[
euZt

]∣∣∣∣
u=0

= ∂

∂u
exp

{∫ t

0

∫ ∞
0

(
ezψ(s,u) − 1

)
ν(dz)ds

}∣∣∣∣
u=0

= exp {∆t(u)} ,

where ψ(t, u) is given by (2.1.4) and

∆t(u) =
∫ t

0

∫ ∞
0

(
ezψ(s,u) − 1

)
ν(dz)ds, t > 0.

Note that ψ(t, u) 6 0 for all t ∈ R>0 and u ∈ R60, and ψ(t, 0) = 0. Then, for all
u ∈ R60,

∂

∂u

(
ezψ(s,u) − 1

)
= zezψ(s,u) ∂

∂u

(
e−bsu

1− σ2u
2b (1− e−bs)

)

= ze−bs(
1− σ2u

2b (1− e−bs)
)2 6 ze−bs (2.2.26)

and
∫ t

0
∫∞

0 ze−bsν(dz)ds < ∞. We conclude that ∆t(u) is differentiable in u and
∂u∆t(0) = b−1(1 − exp{−bt})

∫∞
0 zν(dz) by Lebesgue’s differential theorem. We end

with
E [Zt] = ∂

∂u
E
[
euZt

]∣∣∣∣
u=0

= 1− e−bt

b

∫ ∞
0

zν(dz), (2.2.27)

and (2.2.23) follows from (2.2.25) together with (2.2.27).
To deduce (2.2.24) from (2.2.23), one simply uses the Markov property of Xx

t .

We immediately get the following corollary.

Corollary 2.14. Consider the JCIR process (Xt)t>0 with parameters a ∈ R>0, b, σ ∈
R>0, and ν satisfying

∫
{z>1} zν(dz) <∞. Then

lim
t→∞

Ex [Xt] =
(
a+

∫ ∞
0

zν(dz)
) 1
b
.

Proceeding further in this direction, we compute the second moment.

Proposition 2.15. Let a ∈ R>0, b, σ ∈ R>0 and ν satisfying
∫
{z>1} z

2ν(dz) < ∞.
Then, for all t ∈ R>0, we have

Ex[X2
t ] = e−2btx2 + 2a+ σ2

b
e−2bt

(
ebt − 1

)
x+ a(2a+ σ2)

2b2 e−2bt
(
ebt − 1

)2

+ x
2
b
e−2bt

(
ebt − 1

) ∫ ∞
0

zν(dz) + 2a
b2
e−2bt

(
ebt − 1

)2 ∫ ∞
0

zν(dz)
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+ 1− e−2bt

2b

∫ ∞
0

z2ν(dz) + σ2

2b2 e
−2bt

(
ebt − 1

)2 ∫ ∞
0

zν(dz)

+ (1− e−bt)2

b2

(∫ ∞
0

zν(dz)
)2
. (2.2.28)

Consequently,

lim
t→∞

Ex
[
X2
t

]
= a(2a+ σ2)

2b2 + 2a
b2

∫ ∞
0

zν(dz) (2.2.29)

+ 1
2b

∫ ∞
0

z2ν(dz) + σ2

2b

∫ ∞
0

zν(dz) + 1
b2

(∫ ∞
0

zν(dz)
)2
.

Proof. In view of Theorem (2.9) and (2.1.11) the second moment of the JCIR process
Xx
t could be derived by

Ex
[
X2
t

]
=
(
∂2

∂u2Ex
[
euYt

]
+ 2 ∂

∂u
Ex
[
euYt

] ∂
∂u

E
[
euZt

]
+ ∂2

∂u2E
[
euZt

])∣∣∣∣∣
u=0

,

where the first moment of the CIR process Y x
t is given by (2.2.25), the second moment

of Y x
t is given by

Ex
[
Y 2
t

]
= e−2btx2 + 2a+ σ2

b
e−2bt

(
ebt − 1

)
x+ a(2a+ σ2)

2b2 e−2bt
(
ebt − 1

)2
, (2.2.30)

and the first moment of Zt is computed in (2.2.27). Hence, by (2.2.25) and (2.2.27),
we obtain

2Ex [Yt]E [Zt] = 2 ∂

∂u
Ex
[
euYt

] ∂
∂u

E
[
euZt

]∣∣∣∣
u=0

= x
2
b
e−2bt

(
ebt − 1

) ∫ ∞
0

zν(dz) + 2a
b2
e−2bt

(
ebt − 1

)2 ∫ ∞
0

zν(dz). (2.2.31)

Next, we derive the second moment of Zt. As before, for t ∈ R>0, we define ∆t(u) :=∫ t
0
∫∞
0 (exp{ψ(s, u)} − 1) ν(dz)ds. It follows, for all u ∈ R60,

∂2

∂u2

(
ezψ(s,u) − 1

)
= zezψ(s,u)

(
∂2

∂u2ψ(s, u) + z

(
∂

∂u
ψ(s, u)

)2)

6 z

(
∂2

∂u2ψ(s, u) + ze−2bs
)

6 z

(
σ2

b
e−2bs

(
ebs − 1

)
+ ze−2bs

)
<∞, (2.2.32)

where we used the estimation (2.2.26) in the first inequality and (2.2.32) indeed holds,
since, for all u ∈ R60,

∂2

∂u2ψ(s, u) =
e−bs σ

2

b

(
1− e−bs

)
(
1− σ2u

2b (1− e−bs)
)3 6

σ2

b
e−2bs

(
ebs − 1

)
.

Consequently, an application of dominated convergence theorem yields the twice dif-
ferentiability of ∆t(u) with respect to u. Moreover, we obtain

∂2

∂u2 ∆t(0) = ∂2

∂u2

∫ t

0

∫ ∞
0

(
ezψ(s,u) − 1

)
ν(dz)ds

∣∣∣∣∣
u=0
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=
∫ t

0

∫ ∞
0

(
σ2

b
e−2bs

(
ebs − 1

)
z + e−2bsz2

)
ν(dz)ds

= 1− e−2bt

2b

∫ ∞
0

z2ν(dz) + σ2

2b2 e
−2bt

(
ebt − 1

)2 ∫ ∞
0

zν(dz), t > 0.

Note that

∂2

∂u2E
[
euZt

]∣∣∣∣∣
u=0

= exp {∆t(u)}|u=0

(
∂2

∂u2 ∆t(u)
∣∣∣∣∣
u=0

+
(
∂

∂u
∆t(u)

)2
∣∣∣∣∣
u=0

)
.

Using that ψ(s, 0) = 0, we conclude exp{∆t(0)} = 1. Hence, using (2.2.27) and domi-
nated convergence theorem,

∂2

∂u2E
[
euZt

]∣∣∣∣∣
u=0

=
∫ t

0

∫ ∞
0

z2e−2bsν(dz)ds+
∫ t

0

∫ ∞
0

z
σ2

b
e−2bs

(
ebs − 1

)
ν(dz)ds

+
(∫ t

0

∫ ∞
0

zebsν(dz)ds
)2

= 1− e−2bt

2b

∫ ∞
0

z2ν(dz) + σ2

2b2 e
−2bt

(
ebt − 1

)2 ∫ ∞
0

zν(dz)

+

(
1− ebt

)2

b2

(∫ ∞
0

zν(dz)
)2
, t > 0. (2.2.33)

Thus, combining (2.2.30), (2.2.31) and (2.2.33) yield (2.2.28). In view of (2.2.28), one
easily checks (2.2.29).

2.3. Ergodicity of the JCIR process

In this section we prove the ergodicity of the JCIR process X provided that∫
{z>1}

log zν(dz) <∞. (2.3.1)

Since ergodicity requires existence and uniqueness of an invariant measure for X, we
consider this property in prior.

Remark 2.16. Let a, b ∈ R>0. If (2.3.1) holds, then, by an application of [43,
Theorem 3.16] (see also [41, Theorem 2.6]), the JCIR process Xt converges in law to a
limit distribution π which is independent of X0 = x and whose characteristic function
takes the form

∫ ∞
0

euxπ(dx) =
(

1− σ2u

2b

)−2a
σ2

exp
{∫ ∞

0

∫ ∞
0

(
ezψ(s,u) − 1

)
ν(dz)ds

}

for all u ∈ C60. Moreover, by the argument in [39, p.80], the limit distribution π is
also the unique invariant distribution of the JCIR process.

Our approach to establish the ergodicity is based on the general theory of Meyn
and Tweedie [52] for the ergodicity of Markov processes. The essential step is to find
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a Foster-Lyapunov function in the sense of [52, condition (CD2)]. Recall that the
infinitesimal generator A of X is given by (2.1.1) as

(Af) (x) = (a− bx)∂f(x)
∂x

+ 1
2σ

2x
∂2f(x)
∂x2 +

∫ ∞
0

(f(x+ z)− f(x)) ν(dz),

for f ∈ C2
c (R>0,R). We introduce a useful decomposition of A. If we write

(Df) (x) = (a− bx)∂f(x)
∂x

+ 1
2σ

2x
∂2f(x)
∂x2 ,

(J f) (x) =
∫ ∞

0
(f(x+ z)− f(x)) ν(dz),

where x ∈ R>0 and f ∈ C2
c (R>0,R), we see that Af = Df + J f .

In view of (2.3.1), we choose the Foster-Lyapunov function to be V (x) = log(1 + x),
x ∈ R>0. Clearly, V is unbounded. So we first show that this function V is in the
domain of the extended generator of X which is defined as follows:

Definition 2.1. Let V : R>0 → R be a measurable function for which there exists a
measurable function UV : R>0 → R such that for each x ∈ R>0, t ∈ R>0,

Ex [V (Xt)] = V (x) + Ex
[∫ t

0
UV (Xs) ds

]
,

Ex
[∫ t

0
|UV (Xs)| ds

]
<∞.

We adhere to the convention that AV := UV and call A the extended generator of the
process Xt associated with V .

Lemma 2.17. Suppose (2.3.1) is true. Let V (x) := log(1 + x), x ∈ R>0. Then for all
t > 0 and x ∈ R>0, we have Ex

[∫ t
0 |AV (Xs)| ds

]
<∞ and

Ex [V (Xt)] = V (x) + Ex
[∫ t

0
AV (Xs) ds

]
, (2.3.2)

where A is given in (2.1.1). In other words, V is in the domain of the extended generator
of X.

Proof. It is easy to see that V ∈ C2(R>0,R) and

V ′(x) := ∂

∂x
V (x) = (1 + x)−1 and V ′′(x) := ∂2

∂x2V (x) = −(1 + x)−2.

Let x ∈ R>0 be fixed and assume that X0 = x almost surely. In view of the Lévy-Itô
decomposition of (Jt)t>0 in (2.0.3), we have

Xt = x+
∫ t

0
(a− bXs)ds+ σ

∫ t

0

√
XsdBs +

∫ t

0

∫ ∞
0

zN(ds,dz), t > 0,

where N(ds,dz) is defined in (2.0.3). By Itô’s formula, we obtain

V (Xt)− V (X0) =
∫ t

0
(a− bXs)V ′ (Xs) ds+ σ2

2

∫ t

0
XsV

′′ (Xs) ds
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+ σ

∫ t

0

√
XsV

′ (Xs) dBs

+
∫ t

0

∫ ∞
0

(V (Xs− + z)− V (Xs−))N(ds,dz)

=
∫ t

0
(a− bXs)V ′ (Xs) ds+ σ2

2

∫ t

0
XsV

′′ (Xs) ds

+
∫ t

0

∫ ∞
0

(V (Xs− + z)− V (Xs−)) ν(dz)ds

+ σ

∫ t

0

√
XsV

′ (Xs) dBs

+
∫ t

0

∫ ∞
0

(V (Xs− + z)− V (Xs−)) Ñ(ds,dz)

=
∫ t

0
(AV ) (Xs) ds+Mt(V ), t > 0, (2.3.3)

where Ñ(ds,dz) := N(ds,dz)− ν(dz)ds and

Mt(V ) := σ

∫ t

0

√
XsV

′ (Xs) dBs

+
∫ t

0

∫
{z61}

(V (Xs− + z)− V (Xs−)) Ñ(ds,dz)

+
∫ t

0

∫
{z>1}

(V (Xs− + z)− V (Xs−)) Ñ(ds,dz)

= Dt + J∗,t + J∗t .

Clearly, if (Mt(V ))t>0 is a martingale with respect to the filtration (Ft)t>0, by taking
the expectation of both sides of (2.3.3), we see that condition (2.3.2) holds.

We start to prove that (Mt(V ))t>0 is a martingale with respect to the filtration
(Ft)t>0. Since

Ex
[
(Dt)2

]
= σ2

∫ t

0
Ex
[
Xs (1 +Xs)−2

]
ds 6 σ2

∫ t

0
Ex
[
(1 +Xs)−1

]
ds 6 tσ2 <∞,

it follows that (Dt)t>0 is a square-integrable martingale. Note that

|V (y + z)− V (y)| 6 z sup
y∈R>0

∣∣V ′(y)
∣∣ 6 z, y, z ∈ R>0. (2.3.4)

Therefore,

Ex

[∫ t

0

∫
{z61}

(V (Xs− + z)− V (Xs−))2 ν(dz)ds
]
6 t

∫
{z61}

z2ν(dz) <∞,

which implies that (J∗,t)t>0 is also a square-integrable martingale by [26, pp. 62, 63].
If y∈ R>0 and z > 1, then

|V (y + z)− V (y)| = log
(

1 + z

1 + y

)
6 log(1 + z) 6 log(2) + log(z). (2.3.5)

So

Ex

[∫ t

0

∫
{z>1}

|V (Xs− + z)− V (Xs−)| ν(dz)ds
]
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6 t

∫
{z>1}

(log(2) + log(z)) ν(dz)

= t log(2)ν({z > 1}) + t

∫
{z>1}

log(z)ν(dz) <∞, t > 0,

and hence, by [26, Lemma 3.1 and p. 62], (J∗t )t>0 is a martingale. Consequently,
(Mt(V ))t>0 = (Dt + J∗,t + J∗t )t>0 is a martingale with respect to the filtration (Ft)t>0.

Next, we show that Ex
[∫ t

0 |AV (Xs)| ds
]
< ∞ for all t > 0. By the decomposition

of A into a diffusion part D and a jump part J as introduced in the preamble of this
section, we can write AV = DV + J V . Concerning the diffusion part DV , it is easy
to see that

sup
y∈R>0

|(DV )(y)| = sup
y∈R>0

∣∣∣∣∣(a− by)(1 + y)−1 − σ2

2 y(1 + y)−2
∣∣∣∣∣ <∞. (2.3.6)

For the jump part J V , we decompose it further as J V = J∗V + J ∗V , where

(J∗V )(y) =
∫
{z61}

(V (y + z)− V (y)) ν(dz), (2.3.7)

(J ∗V )(y) =
∫
{z>1}

(V (y + z)− V (y)) ν(dz). (2.3.8)

By (2.3.4), we have

|(J∗V )(y)| 6
∫
{z61}

zν(dz) <∞, y ∈ R>0. (2.3.9)

Concerning J ∗, it follows from (2.3.5) that

|(J ∗V )(y)| 6 log(2)ν({z > 1}) +
∫
{z>1}

log zν(dz) <∞, y ∈ R>0. (2.3.10)

Combining (2.3.6), (2.3.9) and (2.3.10) yields that |AV | is bounded on R>0, which
implies Ex

[∫ t
0 |AV (Xs)|ds

]
<∞ for all t > 0.

For the JCIR process X, we let Pt(x, ·) := Px (Xt ∈ ·) denote the distribution of Xt

with the initial condition X0 = x ∈ R>0.
We are ready to prove the ergodicity of the JCIR process (Xt)t>0 under (2.3.1).

Theorem 2.18. Consider the JCIR process (Xt)t>0 defined by (2.0.1) with parameters
a, b, σ and ν, where ν is the Lévy measure of (Jt)t>0. Assume a > 0. If (2.3.1) is
true, then X is ergodic, i.e.,

lim
t→∞

∥∥∥Pt(x, ·)− π
∥∥∥
TV

= 0

for all x ∈ R>0.

Proof. In view of [52, Theorem 5.1], to prove the ergodicity of the JCIR process (Xt)t>0,
it is enough to check that

(a) (Xt)t>0 is a Feller process;3

3Actually, according to [52, Theorem 5.1], it is enough to show that (Xt)t>0 is a non-explosive (Borel)
right process (see, e.g., [60, p.38] or [47, p.67] for a definition of a (Borel) right process). In view of
[47, Corollary 4.1.4], the Feller property implies that (Xt)t>0 is a right process.
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(b) all compact sets of the state space R>0 are petite for some skeleton chain (see
Definition B.3);

(c) there exist positive constants c, M such that

(AV )(x) 6 −c+M1K(x), x ∈ R>0, (2.3.11)

for some compact subset K ⊂ R>0, where V (x) = log(1 + x), x ∈ R>0.

We proceed to prove (a)-(c).

In view of [17, Theorem 2.7], (Xt)t>0 possesses the Feller property as an affine pro-
cess. This proves (a).

To prove (b), according to Proposition 2.6, we can proceed in the very same way as
in Jin et al. [33, Theorem 1] to see that for each n ∈ Z>0 the δ-skeleton chain Xnδ,
δ > 0 being a constant, is irreducible with respect to the Lebesgue measure on R>0.
Indeed, let A ∈ B(R>0) and λ(A) > 0. Then it follows from the positivity of the density
function of Xnδ that

Px (τA <∞) > Pnδ (x,A) =
∫
A
fXx

nδ
(y)dy > 0

for all x ∈ R>0 and y ∈ R>0, where the stopping time τA is defined by τA := inf{n >
0 : Xn ∈ A}, since fXx

nδ
(y) > 0 for any x ∈ R>0 and y > 0 as shown in Proposition

2.6. This implies that the chain (Xnδ)n∈Z>0 is irreducible with λ being an irreducibility
measure. By statement (a), (Xt)t>0 possesses the Feller property. So the skeleton chain
(Xnδ)n∈Z>0 has also the Feller property. The claim (b) now follows from [49, Proposi-
tion 6.2.8].

Finally, we prove (c). As shown in the proof of Lemma 2.17, |AV | is bounded on
R>0. Therefore, to get (2.3.11), it suffices to show that limx→∞AV (x) exists and is
negative. As before, we write AV = DV + J V . It is easy to see that

lim
x→∞

(DV )(x) = lim
x→∞

[
(a− bx)(1 + x)−1 − σ2

2 x(1 + x)−2
]

= −b.

Next, we consider the jump part J V . Note that

V (x+ z)− V (x) = log
(

1 + z

1 + x

)
−→ 0 as x→∞.

On the other hand, by (2.3.4) and (2.3.5), we have

|V (x+ z)− V (x)| 6 z1{z61} + [log(2) + log(z)]1{z>1},

where the function on the right-hand side is integrable with respect to ν. By the
dominated convergence theorem, we obtain limx→∞(J V )(x) = 0. This completes the
proof.

Remark 2.19. According to the discussion after [13, Proposition 2.5], a direct but
important consequence of our ergodic result is the following: under the assumptions of
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Theorem 2.18, for all Borel measurable functions f : R>0 → R with
∫
R>0
|f(x)|π(dx) <

∞, it holds

P
(

lim
T→∞

1
T

∫ T

0
f(Xs)ds =

∫
R>0

f(x)π(dx)
)

= 1. (2.3.12)

The convergence (2.3.12) may be very useful for parameter estimation of the JCIR
process.

We end this section with a time-discrete version of the statement in Remark 2.19.

Proposition 2.20. Under the assumptions of Theorem 2.18, for all Borel measurable
functions f : R>0 → R with

∫
R>0
|f(x)|π(dx) <∞, it holds

P
(

lim
n→∞

1
n

n−1∑
i=0

f(Xi) =
∫
R>0

f(x)π(dx)
)

= 1. (2.3.13)

Proof. We employ the continuous-time ergodicity of the JCIR process established in
Theorem 2.18 and [53, Proposition 4.3, pp. 19-20] to get that the tail σ-field

⋂
k∈Z>0

σ(Xi :
i > k) of the Markov chain (Xi)i∈Z>0 is trivial for any initial distribution, i.e., it consists
only of events having probability zero or one for any initial distribution on R>0. Now,
the proof goes along the very same lines as in [8, Theorem 2.4] (see also the discussion
after [13, Proposition 2.5]) without any substantial changes.

2.4. Exponential ergodicity of the JCIR process

Our aim of this section is to show that the JCIR process X is exponentially ergodic if∫
{z>1}

zκν(dz) <∞ for some κ > 0. (2.4.1)

As in previous chapter on the two-factor affine model based on the α-root process (see
Section 1.3) the following proposition will play an essential role in proving exponential
ergodicity of the JCIR process X, provided that (2.4.1) holds.

Proposition 2.21. Suppose (2.4.1) is true. Let V ∈ C2(R>0,R) be nonnegative and
such that V (x) = xκ∧1 for x > 1. Then there exist positive constants c,M such that

Ex [V (Xt)] 6 e−ctV (x) + M

c
(2.4.2)

for all (t, x) ∈ R2
>0.

Proof. If κ > 1, then it follows from (2.4.1) that
∫
{z>1} zν(dz) < ∞, which, together

with (2.2.23), implies

Ex [Xt] 6 xe−bt +M1, t > 0, x > 0,

for some constant 0 < M1 <∞. In this case, we have

Ex [V (Xt)] = Ex
[
V (Xt)1{Xt>1}

]
+ Ex

[
V (Xt)1{Xt61}

]
6 Ex [Xt] + sup

y∈[0,1]
|V (y)|
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6 xe−bt +M1 + sup
y∈[0,1]

|V (y)|

6 (V (x) + 1) e−bt +M1 + sup
y∈[0,1]

|V (y)|

6 V (x)e−bt +M2,

where M2 := 1 +M1 + supy∈[0,1] |V (y)| <∞ is a constant. Hence (2.4.2) is true when
κ > 1. So in the following we assume 0 < κ < 1.

Define g(t, x) := exp(ct)V (x), where c ∈ R>0 is a constant to be determined later.
Then,

g′t(t, x) := ∂

∂t
g(t, x) = cectV (x),

g′x(t, x) := ∂

∂x
g(t, x) =

{
κectxκ−1, x > 1,
ectV ′(x), x ∈ [0, 1],

g′′x(t, x) := ∂2

∂x2 g(t, x) =
{
κ(κ− 1)ectxκ−2, x > 1,
ectV ′′(x), x ∈ [0, 1].

Applying Itô’s formula for g(t,Xt), we obtain

g(t,Xt)− g(0, X0) =
∫ t

0
(Lg)(s,Xs)ds+

∫ t

0
g′s(s,Xs)ds+Mt(g), t > 0, (2.4.3)

where the operator L is given by (Lg)(s,Xs) = exp{cs}(AV )(Xs) with A as in (2.1.1)
and

Mt(g) := σ

∫ t

0

√
Xsg

′
x(s,Xs)dBs +

∫ t

0

∫ ∞
0

(g(s,Xs− + z)− g(s,Xs−)) Ñ(ds,dz)

= Dt(g) + Jt(g), for all t > 0.

We will complete the proof in three steps.

“Step 1 ”: We check that (Mt(g))t>0 is a martingale with respect to the filtration
(Ft)t>0. First, note that

Dt(g) := σ

∫ t

0

∂

∂x
g(s,Xs)

√
XsdBs, t > 0,

is a square-integrable martingale with respect to the filtration (Ft)t>0. Indeed, for each
t > 0, we have

Ex

[(
σ

∫ t

0

√
Xsg

′
x(s,Xs)dBs

)2]

= σ2
∫ t

0
e2csE

[
1{Xs61}XsV

′(Xs)
]

ds+ σ2κ2
∫ t

0
e2csE

[
1{Xs>1}X

2κ−1
s

]
ds. (2.4.4)

Clearly, we have |1{Xs61}XsV
′(Xs)| 6 supy∈[0,1] |V ′(y)| < ∞, which implies that the

first integral on the right-hand side of (2.4.4) is finite. Since |1{Xs>1}X
2κ−1
s | 6 |Xs|κ,

by (2.4.1) and Proposition 2.11, we see that the second integral on the right-hand side
of (2.4.4) is finite as well. Hence, (Dt(g))t>0 is a square-integrable martingale with
respect to the filtration (Ft)t>0.
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Next, we prove that Jt(g), t > 0, is a martingale with respect to the filtration (Ft)t>0.
We define

J∗,t(V ) :=
∫ t

0

∫
{z61}

ecs (V (Xs− + z)− V (Xs−)) Ñ(ds,dz), t > 0,

J∗t (V ) :=
∫ t

0

∫
{z>1}

ecs (V (Xs− + z)− V (Xs−)) Ñ(ds,dz), t > 0.

So Jt(g) = J∗,t(V ) + J∗t (V ) for t > 0. In what follows, we establish some elementary
inequalities for V . For y > 1, we have

1{z61}(z)|V (y + z)− V (y)| = 1{z61}(z) ((y + z)κ − yκ)

= 1{z61}(z)yκ
((

1 + z

y

)κ
− 1

)
6 1{z61}(z)κyκ−1z 6 1{z61}(z)z, (2.4.5)

where we used Bernoulli’s inequality to obtain the first inequality in (2.4.5). Moreover,
it is easy to see that for y > 1,

1{z>1}(z)|V (y + z)− V (y)| 6 1{z>1}(z) (yκ + zκ − yκ) 6 1{z>1}(z)zκ. (2.4.6)

For y ∈ [0, 1], using the mean value theorem, we get

1{z61}(z)|V (y + z)− V (y)| 6 z sup
y∈[0,2]

|V ′(y)| 6 c1z, (2.4.7)

for some constant c1 > 0. Finally, for y ∈ [0, 1], again by Bernoulli’s inequality, we
have

1{z>1}(z)|V (y + z)− V (y)| 6 1{z>1}(z) ((y + z)κ + |V (y)|)

6 1{z>1}(z)
(
zκ
(

1 + κ
y

z

)
+ |V (y)|

)
6 1{z>1}(z) (zκ + 1 + |V (y)|)
6 1{z>1}(z) (zκ + c2) , (2.4.8)

where c2 := 1 + supy∈[0,1] |V (y)| < ∞ is a positive constant. Now, from (2.4.5) and
(2.4.7), we deduce that

Ex

[∫ t

0

∫
{z61}

ecs|V (Xs− + z)− V (Xs−)|ν(dz)ds
]

6 (1 + c1)
∫ t

0
ecsds

∫
{z61}

zν(dz) <∞, t > 0.

It follows from [26, p.62 and Lemma 3.1] that (J∗,t(V ))t>0 is a martingale with respect
to the filtration (Ft)t>0. Using (2.4.6) and (2.4.8), we obtain

Ex

[∫ t

0

∫
{z>1}

ecs|V (Xs− + z)− V (Xs−)|ν(dz)ds
]

6
∫ t

0

∫
{z>1}

ecs (zκ + c2) ν(ds)ds
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=
∫ t

0
ecsds

(∫
{z>1}

zκν(dz) + c2ν({z > 1})
)
<∞, t > 0.

As a consequence, we see that (J∗t (V ))t>0 is also a martingale. Clearly, (Mt(g))t>0 =
(Dt(g) + Jt(g))t>0 is now a martingale with respect to the filtration (Ft)t>0.

“Step 2 ”: We determine the constant c ∈ R>0 and find another positive constant
M <∞ such that

(AV )(y) = (DV )(y) + (J V )(y) 6 −cV (y) +M, y ∈ R>0. (2.4.9)

Consider the jump part J V = J∗V +J ∗V , where J∗V and J ∗V are defined by (2.3.7)
and (2.3.8), respectively. For all x ∈ R>0, using (2.4.5) and (2.4.7), we obtain

(J∗V )(y) =
∫
{z61}

|V (y + z)− V (y)|ν(dz) 6 (1 + c1)
∫
{z61}

zν(dz) <∞.

For J ∗V , we can use (2.4.6) and (2.4.8) to obtain that for all y ∈ R>0,

(J ∗V )(y) =
∫
{z>1}

|V (y + z)− V (y)|ν(dz)

6
∫
{z>1}

zκν(dz) + c2ν({z > 1}) <∞.

Next, we estimate DV . Since,

V ′(x) = κxκ−1 and V ′′(x) = κ(κ− 1)xκ−2 for x > 1,

we see that

(DV )(x) = (a− bx)V ′(x) + σ2x

2 V ′′(x) (2.4.10)

= −bκxκ + κxκ−1
(
a+ σ2(κ− 1)

2

)
6 −bκxκ + c3 (2.4.11)

for all x > 1. Here c3 <∞ is a positive constant. After all we get that for all x > 1,

(AV )(x) 6 −bκV (x) + c4

where c4 <∞ is a positive constant. By noting that V ∈ C2(R>0,R), we see that

sup
y∈[0,1]

|V (y)| <∞ and sup
y∈[0,1]

|(AV )(y)| <∞.

Consequently, (2.4.9) holds for all x > 0.

“Step 3 ”: We prove (2.4.2). Note that (Lg)(s, x) = exp{cs}(AV )(x). By (2.4.3),
(2.4.9) and the martingale property of (Mt(g))t>0, we obtain that for all (x, t) ∈ R2

>0,

ectEx [V (Xt)]− V (x) = Ex [g(t,Xt)− g(0, X0)]

= Ex
[∫ t

0
(ecs(AV )(Xs) + cecsV (Xs)) ds

]
6 Ex

[∫ t

0
(ecs (−cV (Xs) +M) + cecsV (Xs)) ds

]
= Ex

[∫ t

0
ecsMds

]
6
M

c
ect.

So (2.4.2) is true. With this our proof is complete.
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Based on Proposition 2.21, we are now ready to prove the exponential ergodicity.

Theorem 2.22. Consider the JCIR process (Xt)t>0 defined by (2.0.1) with parameters
a, b, σ and ν, where ν is the Lévy measure of (Jt)t>0. Assume a > 0. If (2.4.1) is true,
then X is exponentially ergodic, i.e., there exist constants δ ∈ R>0 and B ∈ R>0 such
that ∥∥∥Pt(x, ·)− π

∥∥∥
TV

6 B (V (x) + 1) e−δt

for all t > 0 and x ∈ R>0.

Proof. In view of Proposition 2.6 and Proposition 2.21, to obtain the exponential er-
godicity of X, we can follow almost the very same lines as in the proof of [33, Theorem
1]. We remark that the strong aperiodicity condition used in the proof of [33, Theorem
1] can be safely replaced by the aperiodicity condition, due to [50, Theorem 6.3]. The
details are as follows:

We first consider the skeleton chain (Xn)n∈Z>0 , which is a Markov chain on the state
space R>0 with transition kernel Pn(x, ·). It is easy to see that the measure π is also
an invariant probability measure for the chain (Xn)n∈Z>0 .

Let the function V (x) be the Foster-Lyapunov function introduced in Proposition
2.21. The Markov property together with Proposition 2.21 implies that

E
[
V (Xn+1) |X0, X1, . . . , Xn

]
=
∫
R>0

V (x)P1(Xn, dx) 6 e−cV (Xn) + M

c
,

where c and M are the positive constants in Proposition 2.21. If we set V0 := V and
Vn := V (Xn), n ∈ N, then

E[V1] 6 e−cV0(X0) + M

c

and, for all n ∈ N,
E [Vn+1 |X0, X1, . . . , Xn] 6 e−cVn + M

c
.

In order to apply [50, Theorem 6.3] for the chain (Xn)n∈Z>0 , it remains to verify the
following conditions:

(a) the Lebesgue measure λ on R>0 is an irreducibility measure for the chain (Xn)n∈Z>0 ;

(b) the chain (Xn)n∈Z>0 is aperiodic;

(c) all compact sets of the state space R>0 are petite.

By what we have already proved in part (b) of the proof of Theorem 2.18, with δ = 1,
we obtain conditions (a) and (c).

To prove (b), i.e., the aperiodicity of the skeleton chain (Xn)n∈Z>0 , we proceed as
in the proof of 1.22 using a contradiction argument. Suppose that the period l of the
chain (Xn)n∈Z>0 is greater than 1. Then we can find disjoint Borel sets A1, A2, · · · , Al
such that

λ(Ai) > 0, i = 1, · · · , l, ∪li=1Ai = R>0, (2.4.12)
P1(x0, Ai+1) = 1 (2.4.13)

for all x0 ∈ Ai, i = 1, · · · , l − 1, and

P1(x0, A1) = 1
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for all x0 ∈ Al. By (2.4.13), we have∫
(A2)c

fXx0
1

(x)dx = 0, x0 ∈ A1,

and further ∫
A1
fXx0

1
(x)dx = 0, x0 ∈ A1.

However, since for each x0 ∈ R>0, the density fXx0
1

(x) is strictly positive for almost all
x ∈ R>0, we must have λ(A1) = 0, which contradicts (2.4.12). Therefore, the assump-
tion that l > 2 is not true. So we have l = 1.

Now, we can apply [50, Theorem 6.3] and thus find constants δ, B ∈ (0,∞) such
that

‖Pn(x, ·)− π‖TV 6 B (V (x) + 1) e−δn (2.4.14)

for all n ∈ Z>0, x ∈ R>0. For the remainder of the proof, i.e., to extend the inequality
(2.4.14) to all t > 0, we can interpolate in the same way as in [52, p.536]. This completes
the proof.

Remark 2.23. We remark that similar results on the ergodicity of Ornstein-Uhlenbeck
type processes were derived by Masuda, see [48, Theorem 2.6]. It is also worth men-
tioning that Jin et al. [33] already found a sufficient condition for the exponential
ergodicity of the JCIR process, namely, if a > 0,

∫
{z61} z log(1/z)ν(dz) < ∞ and∫

{z>1} zν(dz) < ∞. It is seen from our Theorem 2.22 that these conditions can be
significantly relaxed.

2.5. Convergence of moments for the JCIR process

In Corollary 2.14 and Proposition 2.15 we calculated the first and second moments of π
explicitly. In this section we study the existence of moments for the unique stationary
distribution π of the JCIR process.

Lemma 2.24. Suppose
∫
{z>1} z

2κ−1ν(dz) < ∞ for some κ > 1. Then, there exist
constants c ∈ R>0 and M <∞ such that

Ex [Xκ
t ] 6 e−ctxκ + M

c
(2.5.1)

for all (t, x) ∈ R2
>0.

Proof. We mimic the proof of Proposition 2.21 with appropriate adjustments in the
estimates. In particular, let f(x) = xκ and define g(t, x) := exp{ct}f(x), where c ∈ R>0
is a constant to be determined later. Using Itô’s formula for g(t,Xt), we get

g(t,Xt)− g(0, X0) =
∫ t

0
ecs (Af) (Xs)ds+

∫ t

0

∂

∂s
g(s,Xs)ds+Mt(g), t > 0,

where (Af)(Xs) is the infinitesimal generator given in (2.1.1), and, for all t > 0,

Mt(g) = σ

∫ t

0
g′(s,Xs)

√
XsdBs +

∫ t

0

∫ ∞
0

(g(s,Xs− + z)− g(s,Xs−)) Ñ(ds,dz)
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is a martingale with respect to the filtration (Ft)t>0. Indeed, the first stochastic integral
on the right-hand side, σ

∫ t
0 g
′(s,Xs))

√
XsdBs, t > 0, is a square integrable martingale,

since
σ2E

[∫ t

0
Xsg

′(s,Xs)2ds
]

= σ2κ2
∫ t

0
e2csE

[
X2κ−1
s

]
ds <∞, t > 0,

where we used that sups∈[0,t] Ex[X2κ−1
s ] < ∞ by Corollary 2.11 to get finiteness. We

introduce the following elementary inequality,

(x+ z)κ 6 xκ + κz(x+ z)κ−1 6 xκ + 2κ−1κz
(
xκ−1 + zκ−1

)
, (2.5.2)

which is satisfied for all x, z ∈ R>0 and κ > 1. Therefore,

E
[∫ t

0

∫ ∞
0

ecs |f(Xs− + z)− f(Xs−)| ν(dz)ds
]

6 2κ−1κ

∫ t

0

∫ ∞
0

ecs
(
E
[
Xκ−1
s

]
z + zκ

)
ν(dz)ds <∞, t > 0,

where the finiteness follows, since sups∈[0,t] Ex[Xκ−1
s ] <∞ by Corollary 2.11 and

∫∞
0 (z∨

zκ)ν(dz) < ∞ can be obtained by assumption. It follows from [26, Lemma 3.1 and p.
62] that (Mt(g))t>0 is a martingale with respect to the filtration (Ft)t>0.

Further, by (2.1.1) and (2.5.2), we obtain

(Af)(x) = (a− bx)f ′(x) + σ2x

2 f ′′(x) +
∫ ∞

0
(f(x+ z)− f(x)) ν(dz)

6 −bκxκ + κxκ−1
(
a+ σ2(κ− 1)

2

)
+ 2κ−1κ

∫ ∞
0

(
xκ−1z + zκ

)
ν(dz)

6 −bκxκ + c1x
κ−1 + 2κ−1κ

(∫ ∞
0

zκν(dz) + xκ−1
∫ ∞

0
zν(dz)

)
6 −bκxκ + c2x

κ−1 + c3

for all x > 1, with some positive constants c1, c2, and c3 (similar to (2.4.11)). We
conclude that for all x > 1,

(Af)(x) 6 −bκf(x) + c4,

where c4 <∞ is a positive constant. Notice that f ∈ C∞(R>0,R), we get that

sup
x∈[0,1]

|f(x)| <∞ and sup
x∈[0,1]

|(Af) (x)| <∞.

It follows that there exist constants c ∈ R>0 and M <∞ such that

(Af) (x) 6 −cf(x) +M

holds for all x ∈ R>0.
Finally, the asserted inequality (2.5.1) follows in the very same way as shown in step

three of the proof of Proposition 2.21.

Theorem 2.25. Consider the JCIR process (Xt)t>0 with parameters a, b, σ ∈ R>0.
Let κ > 0 be a constant. Then the following two statements hold:
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(a) Suppose
∫∞
1 zκν(dz) <∞ and E[Xκ

0 ] <∞. Then

sup
t∈R>0

E [Xκ
t ] <∞.

Consequently,
∫∞

0 xκπ(dx) <∞.

(b) Suppose
∫∞
1 zε+κν(dz) <∞ and E[Xε+κ

0 ] <∞ for ε > 0. Then

lim
t→∞

E [Xκ
t ] =

∫ ∞
0

xκπ(dx).

Proof. We start to prove finiteness of supt∈R>0 E[Xκ
t ]. If 0 < κ 6 1 there is nothing to

do, since then the statement follows immediately by an application of Proposition 2.21
together with the law of total expectation. Indeed, we have that

sup
t>0

E [(Xt)κ] = sup
t>0

∫ ∞
0

E [(Xt)κ | X0 = x]µX0(dx)

6 sup
t>0

∫ ∞
0

(
e−ctxκ + M

c

)
µX0(dx)

= sup
t>0

e−ctE [(X0)κ] + M

c
<∞. (2.5.3)

Now, let κ > 1. The idea to achieve the asserted is very little different from what can
already be found in Corollary 2.11. In particular, recall that (Zit)t>0 is defined as the
unique strong solution of the SDE (2.2.10). Similarly, for i = 1, 2, we define (Xi

t)t>0
as the unique strong solution of

dXi
t = (a− bXi

t)dz + σ
√
Xi
tdBt + dJ it , t > 0, X0 ∈ R>0 a.s.,

where (J it )t>0 is a subordinator of pure jump-type with Lévy measure νi defined by
ν1(dz) := 1{z61}ν(dz) and ν2(dz) := 1{z>1}ν(dz), respectively. So, µXt = µX1

t
∗ µZ2

t
.

It follows that

E [Xκ
t ] =

∫ ∞
0

∫ ∞
0

(x+ y)κµX1
t
(dx)µZ2

t
(dy)

6 2κ−1
(∫ ∞

0
xκµX1

t
(dx) +

∫ ∞
0

yκµZ2
t
(dy)

)
= 2κ−1

(
E
[(
X1
t

)κ]
+ E

[(
Z2
t

)κ])
.

Hence, it is enough to prove that

sup
t∈R>0

E
[(
X1
t

)κ]
<∞ and sup

t∈R>0

E
[(
Z2
t

)κ]
<∞.

Finiteness of supt∈R>0 E
[(
X1
t

)κ], follows by an application of Proposition 2.24, since
(J1
t )t>0 has only small jumps, together with the law of total expectation analogous

to (2.5.3). We next show that supt∈R>0 E[(Z2
t )κ] < ∞. Proceeding as in the proof of

Corollary 2.11 (see (2.2.22)), we obtain

sup
t>0

E
[(
Z2
t

)κ]
6 exp

{
c1

∫ ∞
0

∫
{z>1}

(∫
R>0

yκmα(z,s),β(z,s)(dy)
)
ν(dz)ds

}
, (2.5.4)
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with some constant c1 > 0. Hence, it suffices to check finiteness of the term on the right-
hand side of (2.5.4). Before proceeding, we first note the following simple observation.
Namely, the method of proof of Lemma 2.7 part (i) can be easily adapted such that

∫
R>0

xκmα,β(dx) 6

ακ

βκ , if 0 < κ 6 1,
C1

α+ακ
βκ , if κ > 1,

(2.5.5)

holds true with some constant C1 := C1(κ) > 0 and for all α > 0 and β > 0. Indeed,
if 0 < κ 6 1, the statement follows immediately from (2.2.3). If κ > 1, in the proof of
Lemma 2.7, we can safely replace the estimate (2.2.5) by the following estimate∫

R>0
xnmα,β(dx) 6 c1

e−α

βn

(
α+ α2 + · · ·+ αn−1 + αn

∞∑
m=0

αm

m!

)

6 c2

(
α

βn
+ αn

βn

)
, for all α, β > 0.

All the remaining arguments in the proof of Lemma 2.7 work throughout with the
appropriate adjustments. Recall that α(z, s) and β(z, s) are given by

α(z, s) := 2bz
σ2 (ebs − 1) and β(z, s) := 2bebs

σ2 (ebs − 1) .

Now, for κ > 1 the preceding observation (2.5.5) leads to∫
R>0

yκmα(z,s),β(z,s)(dy) 6 C1
α(z, s) + α(z, s)κ

β(z, s)κ

= C1zσ
2κ−2(2b)1−κe−κbs(ebs − 1)κ−1 + C1e

−κbszκ,

yielding finiteness of the term on the right-hand side of (2.5.4).
Finally, by Remark 2.16 and the continuous mapping theorem, Xκ

t converges in
distribution to a random variable Xκ

∞, say, which is distributed according to π, i.e.,
E[Xκ

∞] =
∫∞

0 xκπ(dx). Now, statement (a) is a consequence of the moment convergence
theorem, e.g., [63, Lemma 2.2.1 formula (2.2.2)], because∫ ∞

0
xκπ(dx) 6 lim inf

t→∞

∫ ∞
0

xκµXt(dx) <∞.

To prove (b), note that the assumption
∫
{z>1} z

ε+κν(dz) < ∞ for a constant κ > 0
and ε > 0 together with statement (a) ensures that

sup
t∈R>0

∫ ∞
0

xε+κµXt(dx) <∞ for some κ ∈ (0,∞).

For this reason and the preceding argument, we are allowed to apply the moment
convergence theorem [63, Lemma 2.2.1] from which claim (b) of the theorem follows.



3. Parameter estimation of the
jump-diffusion CIR process

In this chapter we study the asymptotic properties of CLSE for the drift parameters
(a, b) of the JCIR process based on discrete time observations (Xi)i∈N only in the
subcritical case, i.e., b ∈ (0,∞) is assumed. We will constantly suppose that σ ∈ (0,∞)
and the Lévy measure ν are known.

Remark 3.1. We remark that we do not estimate the parameter σ, since it could be
determined rather than estimated using an arbitrarily short continuous time observation
(Xt)t∈[0,T ] of X, where T > 0, see, e.g., [2, Remark 2.6]. At least, it will turn out that
for the calculation of the CLSEs for the drift (a, b), one does not need to know the value
of the volatility parameter σ.

Since the Lévy measure of the driving noise (Jt)t>0 is an infinite dimensional object,
estimation of it can be done using different methods. Nevertheless, based on low fre-
quency observations Xu [65] proposed some nonparametric estimators for ν, given that
ν is absolutely continuous with respect to the Lebesgue measure.

Since we will deal with moments of higher order, throughout this chapter we assume
that ∫

{z>1}
z4+δν (dz) <∞ (3.0.1)

and E[X4+δ
0 ] <∞ for a constant δ > 0 sufficiently small. Recall that condition (3.0.1)

together with E[X4+δ
0 ] < ∞ yield E[Xκ

t ] < ∞ for any κ ∈ (0, 4 + δ) by Theorem 2.9
combined with the law of total expectation.

We start with the computation of the CLSEs. Using (2.2.24), for all i ∈ N,

E [Xi | Fi−1] = e−bXi−1 + 1− e−b

b

(
a+

∫ ∞
0

zν(dz)
)
.

Further, using that σ(X1, . . . , Xi−1) ⊆ Fi−1, i ∈ N, by the tower rule of conditional
expectation, we obtain the first conditional moment with respect to σ(X1, . . . , Xi−1) of
the JCIR process, namely

E [Xi | σ(X1, . . . , Xi−1)] = E [E (Xi | Fi−1) | σ(X1, . . . , Xi−1)] = η0Xi−1 + η1,

where
η0 := e−b and η1 := 1− e−b

b

(
a+

∫ ∞
0

zν(dz)
)
,

according to Proposition 2.13. Hence, a CLSE of (a, b) based on discrete time observa-
tions (Xi)i∈N could be obtained by solving the extremum problem

arg min
(a,b)∈R2

n∑
i=1

(Xi − E [Xi | Fi−1])2 = arg min
(a,b)∈R2

n∑
i=1

(Xi − η0Xi−1 − η1)2 . (3.0.2)

74
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Moreover, defining

f(η0, η1) :=
n∑
i=1

(Xi − η0Xi−1 − η1)2 , (η0, η1) ∈ R2,

the first partial derivatives of f with respect to η0 and η1 are given by

∂f(η0, η1)
∂η0

= −2
n∑
i=1

Xi−1 (Xi − η0Xi−1 − η1) ,

∂f(η0, η1)
∂η1

= −2
n∑
i=1

(Xi − η0Xi−1 − η1) ,

and the second partial derivatives of f with respect to η0 and η1 are given by

∂2f(η0, η1)
∂η2

0
= 2

n∑
i=1

X2
i−1,

∂2f(η0, η1)
∂η2

1
= 2n, and

∂2f(η0, η1)
∂η0∂η1

= ∂2f(η0, η1)
∂η1∂η0

= 2
n∑
i=1

Xi−1.

The system of equations of the first order partial derivatives is then equal to zero if
and only if (∑n

i=1Xi−1Xi∑n
i=1Xi

)
=
(∑n

i=1X
2
i−1

∑n
i=1Xi−1∑n

i=1Xi−1 n

)(
η0
η1

)
,

yielding that the CLSE (η̂CLSE
0,n , η̂CLSE

1,n ) of (η0, η1) could be obtained by estimating
(
η̂CLSE

0,n
η̂CLSE

1,n

)
=
(∑n

i=1X
2
i−1

∑n
i=1Xi−1∑n

i=1Xi−1 n

)−1(∑n
i=1Xi−1Xi∑n

i=1Xi

)
(3.0.3)

provided that the Hessian matrix consisting of the second order partial derivatives of
f with respect to η0 and η1 is positive definite, that is n

∑n
i=1X

2
i−1 > (

∑n
i=1Xi−1)2.

The following Lemma ensures the positive definiteness of the Hessian matrix of f .

Lemma 3.2. Assume a and b ∈ R>0. Then, for all n > 2, n ∈ N, we have

P
(

n∑
i=1

X2
i−1 > 0

)
= 1 and P

n n∑
i=1

X2
i−1 >

(
n∑
i=1

Xi−1

)2
 = 1.

Proof. We follow the proof of [8, Lemma 3.1]. Note that
∑n
i=1X

2
i−1 > 0, and equality

holds if and only if X0 = X1 = . . . = Xn−1 = 0. Then, for all n > 2,

P (X0 = X1 = . . . = Xn−1) 6 P (X0 = X1) = P(X1 = x) = 0,

because the law of X1 is absolutely continuous as shown in the proof of Proposition 2.6.
Consequently,

∑n
i=1X

2
i−1 > 0 almost surely. Furthermore, an easy calculation yields

n
n∑
i=1

X2
i−1 −

(
n∑
i=1

Xi−1

)2

= n
n∑
i=1

X2
i−1 −

n∑
i=1

n∑
j=1

Xi−1Xj−1
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= n
n∑
i=1

Xi−1 −
1
n

n∑
j=1

Xj−1

2

> 0,

and equality holds if and only if

Xi−1 = 1
n

n∑
j=1

Xj−1, i = 1, . . . , n, (3.0.4)

It follows that identity (3.0.4) holds if and only if X0 = X1 = . . . = Xn−1, n > 2, and
for the same reasoning as before, we conclude that

P

n n∑
i=1

X2
i−1 >

(
n∑
i=1

Xi−1

)2
 = 1

holds under the given conditions.

As a consequence of Lemma 3.2, supposing η0, η1 ∈ R and σ ∈ R>0, there exists a
unique CLSE (η̂CLSE

0,n , η̂CLSE
1,n ) of (η0, η1), with (η̂CLSE

0,n , η̂CLSE
1,n ) given by (3.0.3).

3.1. Consistency of the LSE

In this section we study the asymptotic behavior of the CLSE (η̂CLSE
0,n , η̂CLSE

1,n ) of (η0, η1).

Recall that Xt converges in distribution to a random variable, say X∞, which is
distributed according to π given in Remark 2.16.

Theorem 3.3. Consider the JCIR process (Xt)t>0 defined by (2.0.1) with parameters
a, b, σ and ν, where ν is the Lévy measure of (Jt)t>0. Assume a > 0. Then, the CLSE
(η̂CLSE

0,n , η̂CLSE
1,n ) of (η0, η1) is strongly consistent, namely,

P
(

lim
n→∞

(
η̂CLSE

0,n , η̂CLSE
1,n

)
= (η0, η1)

)
= 1,

where (η̂CLSE
0,n , η̂CLSE

1,n ) are given by (3.0.3).

Proof. By (3.0.3) the CLSE (η̂CLSE
0,n , η̂CLSE

1,n ) of (η0, η1) is determined by(
η̂CLSE

0,n
η̂CLSE

1,n

)
=
(∑n

i=1X
2
i−1

∑n
i=1Xi−1∑n

i=1Xi−1 n

)−1(∑n
i=1Xi−1Xi∑n

i=1Xi

)
.

By an easy calculation (see also [8, formula (3.5)]),

(
η̂CLSE

0,n
η̂CLSE

1,n

)
=

 n∑
i=1

(
Xi−1

1

)(
Xi−1

1

)>−1(
n∑
i=1

(
Xi−1

1

)
Xi

)

=

 n∑
i=1

(
Xi−1

1

)(
Xi−1

1

)>−1(
η0
η1

)

+

 n∑
i=1

(
Xi−1

1

)(
Xi−1

1

)>−1
n∑
i=1

(
Xi−1

1

)
(Xi − η0Xi−1 − η1)
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=
(
η0
η1

)
+

 1
n

n∑
i=1

(
Xi−1

1

)(
Xi−1

1

)>−1
1
n

n∑
i=1

(
Xi−1

1

)
εi, (3.1.1)

where εi := Xi − η0Xi−1 − η1, i ∈ N. Our strategy to prove the asserted is now as
follows: First we prove that

1
n

n∑
i=1

(
Xi−1

1

)
εi → 0 a.s. as n→∞, (3.1.2)

by an application of the strong law of large numbers for discrete time square-integrable
martingales (see Theorem C.1). Second, by an application of the discrete time ergod-
icity, we show that

1
n

n∑
i=1

(
Xi−1

1

)(
Xi−1

1

)>
converges almost surely to a non-singular constant limit matrix as n tends to infinity.
Then it is clear that the product converges almost surely to the zero vector and we
obtain the asserted convergence of the CLSE in view of (3.1.1).

We proceed to prove (3.1.2). Since E[Xi | Fi−1] = η0Xi−1 + η1, i ∈ N, it holds that
E[εi | Fi−1] = 0, which implies that (εi)i∈N is a sequence of martingale differences with
respect to the filtration (Fi)i∈Z>0 . From Proposition 2.15 together with the Markov
property it follows

E
[
X2
i | Fi−1

]
= ξ0X

2
i−1 + ξ1Xi−1 + ξ2,

where

ξ0 = e−2b,

ξ1 =
e−2b

(
eb − 1

)
b

(
2a+ σ2 + 2

∫ ∞
0

zν(dz)
)
, and

ξ2 =
e−2b

(
eb − 1

)2

2b2
(
a(2a+ σ2) + (4a+ σ2)

∫ ∞
0

zν(dz)
)

+ 1− e−2b

2b

∫ ∞
0

z2ν(dz) +

(
1− e−b

)2

b2

(∫ ∞
0

zν(dz)
)2
,

according to formula (2.2.28). Hence, we derive

E
[
ε2
i | Fi−1

]
= E

[
X2
i | Fi−1

]
− (η0Xi−1 + η1)2

= ξ0X
2
i−1 + ξ1Xi−1 + ξ2 − (η0Xi−1 + η1)2

=
(
ξ0 − η2

0

)
X2
i−1 + (ξ1 − 2η0η1)Xi−1 + ξ2 − η2

1

=: C1Xi−1 + C2,

where C1 := ξ1 − 2η0η1 and C2 := ξ2 − η2
1. Thus, εi is a square integrable martingale

with respect to the filtration (Fi)i∈Z>0 .
Let M (ε)

n :=
∑n
i=1 εi, n ∈ N. By essentially the same argument as before, we see that

(M (ε)
n )n∈N is also a square integrable martingale with respect to the filtration (Fi)i∈Z>0
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and (M (ε)
n )n∈N has quadratic variation process

〈M (ε)〉n =
n∑
i=1

E
[
ε2
i | Fi−1

]
= C1

n∑
i=1

Xi−1 + nC2, n ∈ N,

by [61, Chapter VII, Section 1, formula (15)]. Applying the time-discrete ergodicity in
Proposition 2.20, where the limit is given due to Corollary 2.14, we obtain

1
n
〈M (ε)〉n = C1

1
n

n∑
i=1

Xi−1 + C2 −→ C1E[X∞] + C2 a.s. as n→∞.

Note, C1 and C2 are strictly positive, since

C1 =
e−2b

(
eb − 1

)
b

(
2a+ σ2 + 2

∫ ∞
0

zν(dz)
)
− 2e−b

(
a+

∫ ∞
0

zν(dz)
) 1− e−b

b

= σ2

b
e−2b

(
eb − 1

)
∈ R>0, (3.1.3)

and

C2 =
e−2b

(
eb − 1

)2

2b2
(
a(2a+ σ2) + (4a+ σ2)

∫ ∞
0

zν(dz)
)

+ 1− e−2b

2b

∫ ∞
0

z2ν(dz)

+

(
1− e−b

)2

b2

(∫ ∞
0

zν(dz)
)2
−
(
a+

∫ ∞
0

zν(dz)
)2
(
1− e−b

)2

b2

=
e−2b

(
eb − 1

)2

2b2
(
a(2a+ σ2) + (4a+ σ2)

∫ ∞
0

zν(dz)
)

+ 1− e−2b

2b

∫ ∞
0

z2ν(dz)

−
(
a2 + 2a

∫ ∞
0

zν(dz)
) (1− e−b

)2

b2

=
e−2b

(
eb − 1

)2

2b2
(
a(2a+ σ2) + σ2

∫ ∞
0

zν(dz)
)

+ 1− e−2b

2b

∫ ∞
0

z2ν(dz)

−
a2e−2b

(
eb − 1

)2

b2

=
e−2b

(
eb − 1

)2

2b2
(
aσ2 + σ2

∫ ∞
0

zν(dz)
)

+ 1− e−2b

2b

∫ ∞
0

z2ν(dz) ∈ R>0. (3.1.4)

Therefore, 〈M (ε)〉n converges almost surely to infinity as n tends to infinity. This allows
to apply Theorem C.1, which implies that the following convergence

1
n
M (ε)
n = 1

n

n∑
i=1

εi = M
(ε)
n

〈M (ε)〉n
〈M (ε)〉n

n
−→ 0 · (C1E[X∞] + C2) = 0 (3.1.5)

holds almost surely as n tends to infinity. Arguing similar, we also obtain

E
[
X2
i−1ε

2
i | Fi−1

]
= X2

i−1E
[
ε2
i | Fi−1

]
= C1X

3
i−1 + C2X

2
i−1, i ∈ N.
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Further, by the same reasoning as before,

P
(

lim
n→∞

1
n

n∑
i=1

Xi−1εi = 0
)

= 1.

Finally, applying the time-discrete ergodicity of Xi, i ∈ N, established in Proposition
2.20, we have

P

 lim
n→∞

(
1
n

n∑
i=1

(
X2
i−1 Xi−1

Xi−1 1

))−1

=
(
E[X2

∞] E[X∞]
E[X∞] 1

)−1
 = 1 (3.1.6)

provided that the limit matrix is positive definite. Note, the limit matrix is indeed
non-singular, since

E
[
X2
∞

]
− (E[X∞])2 = aσ2

2b2 + 1
2b

∫ ∞
0

z2ν(dz) + σ2

2b

∫ ∞
0

zν(dz) ∈ R>0. (3.1.7)

Thus, by (3.1.1), (η̂CLSE
0,n , η̂CLSE

1,n ) is a strongly consistent CLSE of (η0, η1).

3.2. Asymptotic behavior of least squares estimator

We continue to study the asymptotic behavior of the CLSE (η̂CLSE
0,n , η̂CLSE

1,n ) of (η0, η1)
and prove asymptotic normality.

Theorem 3.4. Consider the JCIR process (Xt)t>0 defined by (2.0.1) with parameters
a, b, σ and ν, where ν is the Lévy measure of (Jt)t>0. Assume a > 0. Then the CLSE
(η̂CLSE

0,n , η̂CLSE
1,n ) of (η0, η1) is asymptotically normal, i.e., the convergence

√
n
(
η̂CLSE

0,n − η0 η̂CLSE
1,n − η1

)>
−→ N2(0,E)

holds in distribution as n tends to infinity, where E is the 2× 2 covariance matrix.

Proof. Using (3.1.1), we calculate

√
n

(
η̂CLSE

0,n − η0
η̂CLSE

1,n − η1

)
=
(

1
n

n∑
i=1

(
X2
i−1 Xi−1

Xi−1 1

))−1 1√
n

n∑
i=1

(
Xi−1εi
εi

)
,

provided that
∑n
i=1X

2
i−1 > 1/n(

∑n
i=1Xi−1)2. Recall, provided that

∑n
i=1X

2
i−1 >

(1/n
∑n
i=1Xi−1)2, by (3.1.6) the first factor on the right hand side converges almost

surely, i.e.,(
1
n

n∑
i=1

(
X2
i−1 Xi−1

Xi−1 1

))−1

−→
(
E[X2

∞] E[X∞]
E[X∞] 1

)−1

=: L a.s. as n→∞.

Basically, the idea of the proof is now as follows. We will show the following:

Claim. The convergence

1√
n

n∑
i=1

(
Xi−1εi
εi

)
−→ N2(0,D)

holds in distribution, where D is a 2 × 2 real-valued, symmetric and positive definite
matrix to be determined later.
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If this claim is true, then by Slutsky’s theorem

√
n

(
η̂CLSE

0,n − η0
η̂CLSE

1,n − η1

)
−→ N2 (0,E)

holds in distribution as n tends to infinity, where the covariance matrix is given by
E = L−1DL−1.

We continue to prove the claim. We apply the martingale central limit theorem, see
Theorem C.2 with the following choices: d = 2, kn = n, n ∈ N, Fn,k = Fk, n ∈ N,
k ∈ {1, . . . , n} and

Mn,k = 1√
n

k∑
i=1

(
Xi−1εi
εi

)
, n ∈ N, k ∈ {1, . . . , n}.

Further, for all n ∈ N and k ∈ {1, . . . , n}, we have

E
[
(Mn,k −Mn,k−1) (Mn,k −Mn,k−1)>

∣∣∣ Fk−1
]

= 1
n
E

(Xk−1εk
εk

)(
Xk−1εk
εk

)> ∣∣∣∣∣∣ Fk−1


= 1
n
E
[
ε2
k

∣∣∣ Fk−1
](Xk−1

1

)(
Xk−1

1

)>
= 1
n

(C1Xk−1 + C2)

(Xk−1
1

)(
Xk−1

1

)> ,
where C1 and C2 are positive constants according to (3.1.3) and (3.1.4). Hence, applying
the time-discrete ergodicity (see Proposition (2.20)), the following convergence

n∑
k=1

E
[
(Mn,k −Mn,k−1) (Mn,k −Mn,k−1)>

∣∣∣ Fk−1
]

= 1
n

n∑
k=1

(C1Xk−1 + C2)
(
X2
k−1 Xk−1

Xk−1 1

)

= 1
n

n∑
k=1

C1

(
X3
k−1 X2

k−1
X2
k−1 Xk−1

)
+ 1
n

n∑
k=1

C2

(
X2
k−1 Xk−1

Xk−1 1

)

→ C1

(
E
[
X3
∞
]

E
[
X2
∞
]

E
[
X2
∞
]

E [X∞]

)
+ C2

(
E
[
X2
∞
]

E [X∞]
E [X∞] 1

)
=: D

holds almost surely as n tends to infinity. Since C1 and C2 are strictly positive constants,
it holds that D ∈ R2×2 is symmetric and positive definite. Indeed, by (3.1.7), we obtain
positive definiteness of the second matrix. For the first matrix, by Hölder’s inequality,
we have that

(E [X∞])1/2
(
E
[
X3
∞

])1/2
> E

[
X1/2
∞ X3/2

∞

]
= E[X2

∞], (3.2.1)

yielding the positive semi-definiteness of the first matrix. Consequently, D is positive
definite as desired.
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Next, we prove the Lindeberg condition, i.e., we check, for all ε > 0, it holds

lim
n→∞

P

∣∣∣∣∣∣
kn∑
k=1

E
[
‖Mn,k −Mn,k−1‖21{‖Mn,k−Mn,k−1‖>ε} | Fk−1

]∣∣∣∣∣∣ > ε

 = 0.

We fix δ > 0 sufficiently small. Notice that,

‖Mn,k −Mn,k−1‖2 1{‖Mn,k−Mn,k−1‖>ε} 6
‖Mn,k −Mn,k−1‖2+δ

εδ
,

and furthermore, by an elementary inequality,

‖Mn,k −Mn,k−1‖2+δ =
∥∥∥∥∥ 1√

n

(
Xk−1εk
εk

)∥∥∥∥∥
2+δ

=
( 1
n

(
X2
k−1ε

2
k + ε2

k

))1+δ/2

6
1 + δ/2
n1+δ/2

(
X2+δ
k−1ε

2+δ
k + ε2+δ

k

)
, n ∈ N, k ∈ {1, . . . , n}.

Hence, for δ > 0 sufficiently small, we obtain,
n∑
k=1

E
[
‖Mn,k −Mn,k−1‖21{‖Mn,k−Mn,k−1‖>ε}

∣∣∣ Fk−1
]

6
1 + δ/2
n1+δ/2

n∑
k=1

E
[
X2+δ
k−1ε

2+δ
k + ε2+δ

k

∣∣∣ Fk−1
]

= 1 + δ/2
n1+δ/2

n∑
k=1

(
X2+δ
k−1 + 1

)
E
[
ε2+δ
k

∣∣∣ Fk−1
]
, n ∈ N, k ∈ {1, . . . , n}.

Instead of convergence in probability for the Lindeberg condition, we prove L1 conver-
gence, i.e, it suffices to prove that

sup
k∈N

E
[(
X2+δ
k−1 + 1

)
E
[
ε2+δ
k

∣∣∣ Fk−1
]]
<∞.

By the law of total expectation,

E
[(
X2+δ
k−1 + 1

)
E
[
ε2+δ
k

∣∣∣ Fk−1
]]

= E
[(
X2+δ
k−1 + 1

)
ε2+δ
k

]
,

and hence, it is equivalent to check that

sup
k∈N

E
[(
X2+δ
k−1 + 1

)
ε2+δ
k

]
<∞.

Applying the Cauchy Schwarz inequality and the power mean inequality, we get,

E
[(
X2+δ
k−1 + 1

)
ε2+δ
k

]
6
(
E
[(
X2+δ
k−1 + 1

)2
]
E
[
ε4+2δ
k

])1/2

6
√

2
(
E
[
X4+2δ
k−1 + 1

]
E
[
ε4+2δ
k

])1/2
, k ∈ N.

Using again the power mean inequality, for all k ∈ N, we estimate

E
[
ε4+2δ
k

]
6 E

[
|Xk − η0Xk−1 − η1|4+2δ

]
6 E

[
(Xk + η0Xk−1 + η1)4+2δ

]
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6 33+2δE
[
X4+2δ
k + η4+2δ

0 X4+2δ
k−1 + η4+2δ

1

]
.

Consequently, it only suffices to prove that supk∈N E
[
X4+2δ
k

]
<∞, and, by our present

assumption, this readily follows from Theorem 2.25.

Altogether, by the martingale convergence theorem C.2, we obtain the following
convergence

Mn,n = 1√
n

n∑
k=1

(
εkXk−1 εk

)>
−→ N2 (0,D)

in distribution as n tends to infinity. Therefore, our claim is true.

Remark 3.5. Note that in Theorem 3.4 it is the assumption (3.0.1) which ensures
E[X3

∞] <∞, by Theorem 2.25.

Proposition 3.6. Assume a > 0. Let E ∈ R2×2 be as in Theorem 3.4. Then E is
symmetric and positive definite.

Proof. By the definition of L and D, the covariance matrix E = L−1DL−1 takes the
form

E = C1

(
E[X2

∞] E[X∞]
E[X∞] 1

)−1(
E[X3

∞] E[X2
∞]

E[X2
∞] E[X∞]

)(
E[X2

∞] E[X∞]
E[X∞] 1

)−1

+ C2

(
E[X2

∞] E[X∞]
E[X∞] 1

)−1(
E[X2

∞] E[X∞]
E[X∞] 1

)(
E[X2

∞] E[X∞]
E[X∞] 1

)−1

= C1(
E[X2

∞]− (E[X∞])2
)2 (3.2.2)

(
(E[X∞])3 − 2E[X2

∞]E[X∞] + E[X3
∞]

(
E[X2

∞]
)2 − E[X∞]E[X3

∞](
E[X2

∞]
)2 − E[X∞]E[X3

∞] −E[X∞]
((
E[X2

∞)
]2 − E[X∞]E[X3

∞]
))

+ C2

E[X2
∞]− (E[X∞])2

(
1 −E[X∞]

−E[X∞] E[X2
∞]

)
.

To prove that E is positive definite, it is enough to check that the matrix(
(E[X∞])3 − 2E[X2

∞]E[X∞] + E[X3
∞]

(
E[X2

∞]
)2 − E[X∞]E[X3

∞](
E[X2

∞]
)2 − E[X∞]E[X3

∞] −E[X∞]
((
E[X2

∞]
)2 − E[X∞]E[X3

∞]
))

is positive semi-definite and (
1 −E[X∞]

−E[X∞] E[X2
∞]

)
is positive definite. The positive definiteness of the second matrix readily follows by
(3.1.7). Moreover, the determinant of the first matrix is given by

−
(
(E[X∞])2 − E[X2

∞]
)2
((

E[X2
∞]
)2
− E[X∞]E[X3

∞]
)
,

where the first factor is again positive by (3.1.7) and in (3.2.1) we estimated the nega-
tivity of the second factor. Consequently, E is a symmetric positive definite 2×2-matrix
as asserted.
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3.3. Least square estimator of the drift parameters (a, b)

So far in the preamble of this chapter we introduced the CLSE (η̂CLSE
0,n , η̂CLSE

1,n ) of the
transformed parameters (η0, η1) as the unique solution of the extremum problem (3.0.2)
and proved strong consistency in Theorem 3.3 and asymptotically normality in Theo-
rem 3.4 as well.

Finally, a natural estimator of the drift parameters (a, b) obtained from (3.0.2) and
the definition of (η0, η1) may be introduced in the same way is in [8, formula (3.17)].
For completeness of exposition, we now recall the steps of [8] and fit them into the
framework of the JCIR process. We define the function g : R2

>0 → R>0 × (0, 1) by

g(a, b) =
(

(1− e−b)b−1 (a+
∫∞

0 zν(dz))
e−b

)
=
(
η1
η0

)
, (a, b) ∈ R2

>0.

It is easy to see that g is bijective having inverse

g−1(η0, η1) =
(

(η0 − 1)−1η1 log (η0)−
∫∞

0 zν(dz)
− log(η0)

)
=
(
a
b

)
, (3.3.1)

where (η0, η1) ∈ (0, 1)× R>0. Thus, by the strong consistency of (η̂CLSE
0,n , η̂CLSE

1,n ),

P
((
η̂CLSE

0,n , η̂CLSE
1,n

)
∈ (0, 1)× R>0

)
= 1

for n large enough, n ∈ N. Therefore, a natural estimator of (a, b) based on time-
discrete observations (Xi)i∈{1,...,n} can be obtained by applying g−1 to (η̂CLSE

0,n , η̂CLSE
1,n ),

namely (
ân, b̂n

)
:= g−1

(
η̂CLSE

0,n , η̂CLSE
1,n

)
for n ∈ N large enough and hence

P

(ân, b̂n) = arg min
(a,b)∈R2

>0

n∑
i=1

(Xi − η0Xi−1 − η1)2

 = 1

for sufficiently large n ∈ N.

The following theorem shows that (ân, b̂n) captures the properties of (η̂CLSE
0,n , η̂CLSE

1,n ).
An analogous theorem has been derived in [8, Theorem 3.4].

Theorem 3.7. Consider the JCIR process (Xt)t>0 determined by the SDE (2.0.1) with
parameters a, b, σ ∈ R>0 and Lévy measure ν satisfying (3.0.1). Then the sequence
(ân, b̂n), n ∈ N, is strongly consistent and asymptotically normal, where the covariance
matrix JEJ> ∈ R2×2, with E ∈ R2×2 is a symmetric, positive definite matrix given in
(3.2.2) and

J :=
(

(η0 − 1)−2 η−1
0 (−η1 (1− η0 + η0 log (η0))) (η0 − 1)−1 log (η0)

−η−1
0 0

)

being the Jacobian matrix of g−1 with respect to (η0, η1) ∈ (0, 1)× R>0.
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Proof. We proceed in the same way as in [8, Theorem 3.4]. Note that the inverse
function g−1 defined in (3.3.1) is continuous on (0, 1) × R>0. Hence, from the strong
consistency of the CLSE (η̂CLSE

0,n , η̂CLSE
1,n ), n ∈ N, of (η0, η1) (see Theorem 3.3), we deduce

the strong consistency of (ân, b̂n), n ∈ N.
With Theorem 3.4 in mind, to prove that (ân, b̂n), n ∈ N, is asymptotically normal, it

is enough to check that the delta method (see, e.g., [44, Theorem 11.2.14]) is applicable.
To do so, one simply extends g−1 to R2 by defining

g−1(η̂CLSE
0,n , η̂CLSE

1,n ) = 1{(0,1)×R>0}
(
η̂CLSE

0,n , η̂CLSE
1,n

)
·
(
b̂n, ân

)
, n ∈ N.

Finally, the representation of the Jacobian matrix J of g−1 with respect to (η0, η1) ∈
(0, 1)× R>0 could be easily determined. This completes our proof.
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A. Two-dimensional affine processes

We recall some important results in the theory of affine processes mainly due to Duffie
et al. [17]. In their seminal paper affine processes are defined and systematically studied
on the (m+n)-dimensional state space Rm>0×Rn. We will simplify notations where this
is possible in the two-dimensional case, when the state space is given by D := R>0×R.
In the one-dimensional case, i.e., if D is either R>0 or R, all definitions and results
stated in this chapter reduces in the obvious way. In the work of Duffie et al. the
affine processes are allowed to have explosions and killing. Since in this work we only
consider conservative affine processes, in terms of terminology and notation, we thus
follow mainly Keller-Ressel and Mayerhofer [40], where only the conservative case was
considered.

We start with a time-homogeneous Markov process with state space D and semigroup
(Pt), that is,

Ptf(y, x) =
∫
D
f(ξ)pt(y, x, dξ), f ∈ Bb(D).

Let ((Y,X), (P(y,x))(y,x)∈D) be the canonical realization of (Pt) on (Ω,F , (Ft)t>0),
where Ω is the set of all càdlàg paths in D and (Yt, Xt)(ω) = ω(t) for ω ∈ Ω. Here
(Ft)t>0 is the filtration generated by (Y,X) and F =

∨
t>0Ft. The probability measure

Px on Ω represents the law of the Markov process (Y,X) given (Y0, X0) = (y, x).

Definition A.1 (Definition 2.2 [40]). The Markov process (Y,X) is called conserva-
tive affine with state space D, if its transition kernel pt(y, x,A) = P(y,x)((Yt, Xt)∈A)
(t>0, (y, x)∈D, A ∈ B(D)) satisfies the following:

(i) it is stochastically continuous, that is, lims→t ps(y, x, ·) = pt(y, x, ·) weakly for all
t > 0, (y, x) ∈ D, and

(ii) (Y,X) is conservative, i.e., pt(y, x,D) = 1 for all t > 0, and
(iii) there exist functions φ : R>0 × iR2 → C and ψ : R>0 × iR2 → C2 such that∫

D
e〈u,ξ〉pt(y, x,dξ) = Ex

[
e〈(Yt,Xt),u〉

]
= exp {φ(t, u) + 〈(y, x), ψ(t, u)〉} (A.0.1)

for all t > 0, (y, x) ∈ D and u ∈ U , where Ex denotes the expectation with respect to
Px.

Definition A.2. An affine process is called regular if the right hand derivatives

F (u) := ∂

∂t
φ(t, u)

∣∣∣∣
t=0+

and R(u) := ∂

∂t
ψ(t, u)

∣∣∣∣
t=0+

exist for all u ∈ U , and are continuous at u = 0.

Since φ is scalar-valued and ψ vector-valued, we have that F : U → C and R : U →
C2, respectively. We remark that the stochastic continuity in (i) and the affine property
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in (iii) together imply the regularity of the functions φ and ψ (see [42, Theorem 5.1])
from which it is possible to infer that for u ∈ U the generalized Riccati equations{

∂
∂tφ(t, u) = F (ψ(t, u)) , φ(0, u) = 0,
∂
∂tψ(t, u) = R (ψ(t, u)) , ψ(0, u) = u ∈ U ,

(A.0.2)

are satisfied (see [17, Theorem 2.7]).

Duffie et al. [17] provide an equivalent characterization of the affine property (iii) in
terms of admissible parameters.

Definition A.3. A parameter set (a, αij , b, βij , ν, µ), i, j ∈ {1, 2} is called a set of
admissible parameters for a conservative affine process with state space D if

• a ∈ R>0 is a constant;
• αij is a (symmetric) positive semi-definite 2× 2-matrix;
• b = (b1, b2) ∈ D;
• βij is a 2× 2-matrix with β12 = 0;
• ν(dξ1, dξ2) is a Lévy measure on D such that∫

D\{0}

((
ξ1 + ξ2

2

)
∧ 1
)
ν(dξ1,dξ2) <∞;

• µ(dξ1,dξ2) is a Lévy measure on D such that∫
D\{0}

[
ξ1 +

(
|ξ2| ∧ ξ2

2

)]
µ (dξ1, dξ2) <∞.

We remark that our definition of the admissible parameters is a special case of
[17, Definition 2.6], since we require here that the set of admissible parameters does
not contain parameters corresponding to killing. A sufficient condition for (Yt, Xt) to
be conservative is given by [17, Lemma 9.2] which is included in our definition of the
admissible parameters.

The next theorem shows the announced characterization of affine processes through
the admissible parameters.

Theorem A.1 (Duffie et al. [17], Theorem 2.7). Suppose (Yt, Xt)t>0 is a conservative
affine process. Then (Yt, Xt)t>0 is a Feller process. Let A be its infinitesimal genera-
tor. Then C∞c (D) is a core of A, C2

c (D) ⊆ dom(A), and there exist some admissible
parameters (a, αij , b, βij , ν, µ), i, j ∈ {1, 2}, such that, for f ∈ C2

c (D),

(Af) (y, x) = a
∂2f

∂x2 (y, x) + α11y
∂2f

∂y2 (y, x) + 2α12y
∂2f

∂y∂x
(y, x) + α22y

∂2f

∂x2 (y, x)

+ (b1 + β11y) ∂f
∂y

(y, x) + (b2 + β21y + β22x) ∂f
∂x

(y, x)

+
∫
D\{0}

(
f(y + ξ1, x+ ξ2)− f(y, x)− ξ2

∂f

∂x
(y, x)

)
ν(dξ)

+ y

∫
D\{0}

(f(y + ξ1, x+ ξ2)− f(y, x)− 〈∇f(y, x), ξ〉)µ(dξ). (A.0.3)
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Moreover, (A.0.1) holds for all (t, u) ∈ R>0 × U where φ(t, u) and ψ(t, u) solve the
generalized Riccati equations (A.0.2) with

F (u) = b1u1 + b2u2 + au2
2 +

∫
D\{0}

(
eu1ξ1+u2ξ2 − 1− u2ξ2

)
ν (dξ1, dξ2) , (A.0.4)

R(u) = β11u1 + β21u2 + α11u
2
1 + 2α12u1u2 + α22u

2
2

+
∫
D\{0}

(
eu1ξ1+u2ξ2 − 1− u1ξ1 − u2ξ2

)
µ (dξ1, dξ2) . (A.0.5)

Conversely, let (a, αij , b, βij , ν, µ), i, j ∈ {1, 2}, be some admissible parameters. Then
there exists a unique, conservative, and regular affine semigroup (Pt)t>0 with infinites-
imal generator (A.0.3), and (A.0.1) holds for all (t, u) ∈ R>0 × U where φ(t, u) and
ψ(t, u) are given by (A.0.2).

We remark that our preceding formulas are in the spirit of [16]. We can not only char-
acterize the conservative, regular affine processes (Yt, Xt) with respect to the admissible
parameters, but also with respect to the state space (see Duffie et al. [17, Corollary
2.10]), roughly speaking. Following Kawazu and Watanabe [38], a conservative affine
process with state space R>0 is called a continuous time branching process with im-
migration (CBI process). In view of [17, Corollary 2.10], a conservative affine process
with state space R is an OU-type process, that is, X satisfies the Langevin stochastic
differential equation

dXt = β22Xtdt+ dLt, t > 0, X0 ∈ R,

where (Lt)t>0 is a Lévy process.

The latter fact motivates us to decouple the generalized Riccati equation for ψ. On
the state space D let us write ψ = (ψ1, ψ2) and R = (R1, R2), accordingly. We introduce
the following useful property.

Proposition A.2. Let (Yt, Xt)t>0 be an affine process with state space D. Then ψ2(t, u)
satisfies

ψ2(t, u) = eβ22tu2

for all t ∈ R>0 and u2 ∈ iR. Consequently, R2(u) = β22u2 for u2 ∈ iR.

For a proof we refer to [42] or [17, Theorem 2.7]. As a consequence of Proposition
A.2, we see that the two-dimensional affine process (Yt, Xt)t>0, for u = (u1, u2) ∈ U ,
satisfies the following generalized Riccati equations:

∂tφ(t, u) = F (ψ(t, u)) , φ(0, u) = 0

∂tψ1(t, u) = R1
(
ψ1(t, u), eβ22tu2

)
, ψ1(0, u) = u1

ψ2(t, u) = eβ22tu2.



B. Markov chains on uncountable state
spaces

We recall definitions of ‘irreducibility’, ‘aperiodicity’, and ‘petite sets’ in the notion of a
discrete-time Markov chain on general (uncountable) state spaces mainly due to Meyn
and Tweedie [49,50].

Here, we let (Mn)n∈Z>0 be a Markov chain evolving on (X ,B(X )), where X is a
locally compact separable metric space1 (in our framework X = R>0 × R or R>0, re-
spectively) and B(X ) denotes the Borel σ-algebra of X . Let Pn(x, ·) := Pn (Mn ∈ ·)
denote the distribution of Mn with the initial condition M0 = x ∈ X .

Intuitively, the classical definition of irreducibility means that the chain has positive
probability of eventually reaching any state from any other state. However, since the
state space X may be uncountable, this is impossible. We introduce a weaker definition
in the sense of [50].

Definition B.1. The chain (Xn)n∈Z>0 is said to be µ-irreducible, if for some σ-finite
measure µ on (X ,B(X ))

µ(A) > 0 implies Px(τA <∞) = Px (Xn enters A) > 0

for all initial values x ∈ X and A ∈ B(X ), where the stopping time τA is defined for a
set A ∈ B(X ) by τA = inf{n > 0 : Xn ∈ A}.

If a Markov chain is µ-irreducible, we refer to µ as an irreducibility measure for the
chain.

Definition B.2. A µ-irreducible Markov chain (Xn)n∈Z>0 is said to be aperiodic if there
do not exist l > 2 and disjoint Borel sets A1, A2, . . . , Al ⊆ B(X ) with Pn(x,Ai+1) = 1
for all x ∈ Ai, 1 6 i 6 l − 1, and Pn(x,A1) = 1 for all x ∈ Al, such that µ(A1) > 0
(and hence µ(Ai) > 0 for all i). Otherwise the chain (Xn)n∈Z>0 is said to be periodic
with period l.

Recall that a measure µ is the trivial measure (or null measure) if and only if µ(A) = 0
for all A ∈ B(X ).

Definition B.3. A nonempty set C ∈ B(X ) is said to be a νa-petite set for the chain
(Xn)n∈Z>0 if there is a probability distribution a on Z>0, and a nontrivial measure νa
such that ∞∑

n=0
Pn (x,A) a(n) > νa(A)

for all x ∈ C, A ∈ B(X ). If the specific measure νa is unimportant, we call the set C
simply petite.

1i.e., X is not necessarily countable
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C. Strong law of large numbers and
central limit theorem for discrete
time square-integrable martingales

Let (Ω,F , (Fn)n∈N,P) be a filtered probability space.

The following theorem can be considered as a strong law of large numbers for discrete
time square-integrable martingales.

Theorem C.1 (Shiryaev [61], Chapter VII, Section 5, Theorem 4; and Barczy et
al. [8] Theorem 2.5). Let (Mn)n∈N be a square-integrable martingale with respect to the
filtration (Fn)n∈N such that M0 = 0 almost surely and limn→∞〈M〉n =∞ almost surely,
where (〈M〉n)n∈N denotes the predictable quadratic variation process of M . Then

Mn

〈M〉n
a.s−→ 0 as n→∞.

The next theorem is a central limit theorem for discrete time square-integrable mar-
tingales.

Theorem C.2 (Jacod and Shiryaev [27], Chapter VII, Theorem 3.33; and Barczy et
al. [8] Theorem 2.6). Let {(Mn,k,Fn,k) : k = 0, 1, . . . , kn}n∈N be a sequence of d-
dimensional square-integrable martingales with Mn,0 = 0 such that there exists some
symmetric, positive semi-definite non-random matrix D ∈ Rd×d such that

kn∑
k=1

E
[
(Mn,k −Mn,k−1) (Mn,k −Mn,k−1)>

∣∣∣ Fn,k−1
]
→ D a.s. as n→∞,

and for all ε ∈ R>0,

kn∑
k=1

E
[
‖Mn,k −Mn,k−1‖2 1{‖Mn,k−Mn,k−1‖>ε}

∣∣∣ Fn,k−1
]
→ 0 a.s. as n→∞.

Then
∑kn
k=1 (Mn,k −Mn,k−1) = Mn,kn converges in distribution to a d-dimensional nor-

mal distribution with mean vector 0 and covariance matrix D.
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[21] Damir Filipović, A general characterization of one factor affine term structure models, Finance
Stoch. 5 (2001), no. 3, 389–412. MR1850789 (2002f:91041)

[22] Eberhard Freitag and Rolf Busam, Complex analysis, Second, Universitext, Springer-Verlag, Berlin,
2009. MR2513384

[23] Zongfei Fu and Zenghu Li, Stochastic equations of non-negative processes with jumps, Stochastic
Process. Appl. 120 (2010), no. 3, 306–330. MR2584896 (2011d:60178)

[24] Paul Glasserman and Kyoung-Kuk Kim, Moment explosions and stationary distributions in affine
diffusion models, Math. Finance 20 (2010), no. 1, 1–33. MR2599675

[25] Steven L. Heston, A closed-form solution for options with stochastic volatility with applications to
bond and currency options, Review of Financial Studies (1993). 6:327?343.

[26] Nobuyuki Ikeda and Shinzo Watanabe, Stochastic differential equations and diffusion processes,
Second, North-Holland Mathematical Library, vol. 24, North-Holland Publishing Co., Amsterdam;
Kodansha, Ltd., Tokyo, 1989. MR1011252

[27] Jean Jacod and Albert N. Shiryaev, Limit theorems for stochastic processes, Second, Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 288,
Springer-Verlag, Berlin, 2003. MR1943877

[28] Monique Jeanblanc, Marc Yor, and Marc Chesney, Mathematical methods for financial markets,
Springer Finance, Springer-Verlag London, Ltd., London, 2009. MR2568861

[29] L. Ji and Z. Li, Moments of continuous-state branching processes with or without immigration,
ArXiv e-prints (February 2017), available at 1702.08698.
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