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Kurzfassung

Die vorliegende Dissertation thematisiert ergodische Eigenschaften von spezifi-
schen ein- und zweidimensionalen affinen Prozessen. Grob gesagt, besteht die Klas-
se der affinen Prozesse, eingefiihrt von Duffie, Filipovi¢, und Schachermayer (2013),
aus allen Markov-Prozessen in stetiger Zeit mit Wertebereich R, xR™, deren loga-
rithmierte charakteristische Funktion affin vom Anfangszustandsvektor des Pro-
zesses abhéngt. Eine wichtige Frage, die im Zusammenhang mit zeithomogenen
Markov-Prozessen auftitt, ist deren Langzeitverhalten wie die Ergodizitat. Bisher
wurde die Ergodizitat fiir affine Prozesse im Allgemeinen noch nicht untersucht.
In dieser Dissertation werden zunéchst spezifische (nicht-triviale) affine Modelle,
wie der Sprung-Diffusions Cox-Ingersoll-Ross Prozess und ein zweidimensionales
Modell basierend auf dem a-Wurzel Prozess, beziiglich Ergodizitdt untersucht.
Aufgrund zahlreicher Anwendungen in der Finanzmathematik sind diese Modelle
auch fiir sich genommen von Interesse.

Im ersten Teil dieser Dissertation wird ein affines Zweifaktorenmodell studiert,
das auf den a-Wurzel Prozess basiert und von Barczy, Déring, Li und Pap (2014)
eingefithrt wurde. Eine Komponente dieses zweidimensionalen Modells ist der a-
Wurzel Prozess. Es wird die exponentielle Ergodizitat fiir das Zweifaktorenmodell
fir @ € (1,2) gezeigt. Die Methodik basiert dabei hauptsichlich auf einer An-
wendung des Foster-Lyapunov-Driftkriteriums, das von Meyn und Tweedie (1993)
entwickelt wurde. Als ein Hilfsmittel zum Beweisen der Ergodizitat und als weite-
res Resultat ergibt sich die Existenz von positiven Ubergangsdichten des a-Wurzel
Prozesses.

Im zweiten Teil dieser Dissertation wird der Sprung-Diffusions Cox-Inger-soll-
Ross Prozess vorgestellt, der als eine Erweiterung des klassischen Cox-Ingersoll-
Ross Modells verstanden werden kann. Die Spriinge des Sprung-Diffusions Cox-
Ingersoll-Ross Prozesses werden durch einen Subordinator beschrieben. Es werden
hinreichende Bedingungen an das Lévy-Maf} des Subordinators bestimmt, so dass
der Sprung-Diffusions Cox-Ingersoll-Ross Prozess ergodisch bzw. exponentiell ergo-
disch ist. Zudem wird die Existenz der x-Momente (k > 0) des Sprung-Diffusions
Cox-Ingersoll-Ross Prozesses charakterisiert durch eine Integrabilitdtsbedingung
an das Lévy-Mafl des Subordinators. Als Konsequenz der Resultate ergibt sich
die Konvergenz der Momente fiir den Sprung-Diffusions Cox-Ingersoll-Ross Pro-
zess. Um eine Anwendung der Ergodizitatsresultate zu veranschaulichen, wer-
den schlieBlich asymptotische Eigenschaften von bedingten Kleinste-Quadrate-
Schétzern der Driftparameter des Sprung-Diffusions Cox-Ingersoll-Ross Prozesses
basierend auf zeitdiskreten Beobachtungen untersucht. Im subkritischen Fall wird
die Konsistenz und die asymptotische Normalitdt der Schéitzer gezeigt.
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Abstract

This thesis is devoted to the study of ergodic properties of some one and two-
dimensional affine processes. Roughly speaking, the class of affine processes on the
canonical state space, introduced by Duffie, Filipovi¢, and Schachermayer (2013),
consists of continuous-time Markov processes taking values in R, x R", whose
log-characteristic function depends in an affine way on the initial state vector of
the process. A question of interest in the context of time-homogeneous Markov
processes is their long-time behavior such as the ergodicity. Unitl now, ergodicity
is not very well investigated for general affine processes. This is one reason why
we initially started to work on particular (non-trivial) affine models such as a
jump-type Cox-Ingersoll-Ross process and a two-factor model based on the a-root
process. A further reason is given by the fact that both models discussed in this
thesis provide interesting applications in financial mathematics.

In the first part of this thesis we study an affine two-factor model based on the
a-root process introduced by Barczy, Doring, Li, and Pap (2014). One component
of this two-dimensional model is the so-called a-root process. We manage to
prove exponential ergodicity of this two-factor model when a € (1,2) mainly by
stochastic methods, e.g. a Foster-Lyapunov drift criteria developed by Meyn and
Tweedie (1993). As a further result of our considerations, we obtain existence of
positive transition densities of the a-root process.

In the second part of the thesis we introduce the jump-diffusion Cox-Ingersoll-
Ross process, which is an extension of the Cox-Ingersoll-Ross model and whose
jumps are introduced by a subordinator. We provide sufficient conditions on the
Lévy measure of the subordinator under which the jump-diffusion Cox-Ingersoll-
Ross process is ergodic and exponentially ergodic, respectively. Furthermore, we
characterize the existence of the x-moment (k > 0) of the jump-diffusion Cox-
Ingersoll-Ross process by an integrability condition on the Lévy measure of the
subordinator. As a consequence of our results, we obtain a moment convergence
theorem for the jump-diffusion Cox-Ingersoll-Ross process. Eventually, to illus-
trate the use of our ergodic results, we study asymptotic properties of condi-
tional least squares estimators for the drift parameters of the jump-diffusion Cox-
Ingersoll-Ross process based on discrete time observations. In the subcritical case
we prove strong consistency and asymptotic normality of our parameter estima-
tors.
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Introduction

This thesis investigates the ergodic properties of some one and two-dimensional affine
processes. The first model (Y, X) := (Y%, X¢)>0, studied in this thesis, is determined
by the following stochastic differential equation:

dV; = (a —bYy)dt + ¢/Vi_dL;, t>0, Yy>0 as.,
dX; = (m — 0X;)dt + /YidB;, t>0,

where « € (1,2), (L¢)>0 is a spectrally positive a-stable Lévy process with the Lévy
measure (ol'(—a)) ™ 27171 y,-ydz, and (By)s»0 is an independent standard Brownian
motion. The process (Y;, X;)i>0 was introduced by Barczy, Doring, Li, and Pap [4]. The
second model, this thesis deals with, is the jump-diffusion Cox-Ingersoll-Ross (shorted
as JCIR) process. The JCIR process Z = (Z;)i>0 is defined as the unique strong
solution to the stochastic differential equation

dZt = (CL — bZt)dt + oV thBt + th, t 2 O, Z() 2 0 a.s.,

where (B¢)>0 is a one-dimensional Brownian motion and (J¢)i>0 is a pure jump Lévy
process with its Lévy measure v concentrating on (0, 0o) and satisfying [;°(zA1)r(dz) <
0o. Further assumptions to the parameters of both models are given in the respective
chapters hereafter.

Both processes, the two-factor model (Y, X) based on the a-root process and the
JCIR process Z, exhibit a log-characteristic function which depends linearly on the ini-
tial state vector of the respective process. Roughly speaking, processes arising with this
property are called affine processes. Strictly speaking, an affine process on RZj x R"
(for integers m > 0 and n > 0) is a continuous-time and stochastically continuous
Markov process taking values in RTj; x R", whose log-characteristic function depends
in an affine way on the initial state vector of the process, i.e. the log-characteristic
function is linear with respect to the initial state vector. Affine processes are partic-
ularly important in financial mathematics because of their computational tractability.
For example, the models of Cox, Ingersoll, and Ross [15], Heston [25] and Vasicek [64]
are all based on affine processes. In the case @ = 2, the two-factor model (Y, X) was
used by Chen and Joslin [14] to price defaultable bonds with stochastic recovery rates.
As an application of the JCIR process, Barletta and Nicolato [9] recently studied a
stochastic volatility model with jumps for the sake of pricing of VIX options, where the
volatility (or instantaneous variance process) of the asset price process is modelled via
the JCIR process.

The general theory of affine processes on the canonical state space R x R™ was
initiated by Duffie, Pan and Singleton [19] and further developed by Duffie, Filipovié¢,
and Schachermayer [17]. This type of process unifies the notions of continuous-state
branching processes with immigration (shorted as CBI) (see, e.g., [38]) and Orn-
stein—Uhlenbeck (OU) type processes (e.g.,|59]). Due to Duffie et al. [17], the affine
processes with state space RY) are CBI, and those with state space R" are of OU type.



2 Introduction

In their seminal article they also established a rigorous mathematical foundation to the
theory of affine processes, covering aspects, such as the characterization of an affine
process in terms of the admissible parameters and properties of the generalized Riccati
equations that are implied by the process. Apart from these pioneering results, many
authors provided further important results regarding affine processes or subclasses of
affine processes, respectively. For instance, Keller-Ressel, Schachermayer, and Teich-
mann [42] proved that the time-differentiability of the characteristic function of the
given affine process is implied by its stochastic continuity. Moreover, Keller-Ressel
and Mayerhofer [40] investigated the exponential moments of affine processes. For the
subclass of CBI processes, an identification as a pathwise unique strong solution of cer-
tain stochastic differential equations with jumps has been studied by Barczy, Li, and
Pap [5] as well as a moment formula [6]. In addition to these results, the existence of
fractional moments of one-dimensional CBI procsess has been investigated by Ji and
Li [29]. Another topic of great interest and a rather naturally arising question in the
context of Markov processes is the asymptotic behavior of the process. So one may ask
under which conditions does the affine process converge with respect to time to a limit
distribution. Closely related to this question is the existence of a (unique) invariant
measure for the affine process. This question has been investigated by some authors,
see, e.g., [241[39,43./59)].

However, among all the mentioned properties of affine processes or subclasses of affine
processes, the ergodicity property for general affine processes does not seem to have
been investigated as yet. For a time-homogeneous Markov process M = (M;)i>o with
state space E, let P(z,-) := P, (X; € -) denotes the distribution of M; with the initial
condition My = x € E. We call M ergodic if it admits a unique invariant probability
measure 7 such that

lim HPt(x, )= 7rH =0, forallz e FE,
t—00 TV

where || - [[7y stands for the total variation norm of a signed measure. The Markov
process M is called exponentially ergodic if it is ergodic and in addition there exists a
finite-valued function B on E and a positive constant ¢ such that

HPt(x, )= TrHTV < B(z)e ™, forallze E, t > 0.

One rather general result is due to Masuda [48], who provides sets of conditions under
which the OU type process is ergodic and exponentially ergodic as well. Jin, Mandrekar,
Riidiger, and Trabelsi [32], Jin, Riidiger, and Trabelsi [33}34] initially started to work on
particular CBI processes and managed to prove exponential ergodicity of these models,
which arise as extensions of the CIR model. The first affine two-factor model shown to
be exponentially ergodic is the affine two-factor model (Y, X) based on the square-root
process, i.e., @ = 2, as recently investigated by Barczy, Doring, Li, and Pap, [4]EI
Though derivation of the ergodic property is interesting in its own right, this thesis
was mainly motivated by statistical analysis for affine processes. Indeed, an important
issue for the application of affine processes is the calibration of their parameters. This
has been considered for some well known affine models, see e.g. [3}[7,/11,54,[55]. To
study the asymptotic properties of estimators of the parameters, a comprehension of
the long-time behavior of the underlying affine processes is very often required. This

'That is, the first component Y of the two-factor model is the standard CIR process.



Introduction 3

is one of the reasons why the stationary, ergodic and recurrent properties of affine pro-
cesses have recently attracted many investigations, see e.g. [4}20,/32-34,41,143./45], and
many others.

It was our intention in this work to take up loose ends from both, the article of
Barczy et al. [4] and Jin et al. |33], and to prove (exponential) ergodicity of the model
(Y, X) as well as Z in a quiet more general set-up. In part one of this thesis we study
the ergodicity problem for the two-factor model (Y, Z) based on the a-root process
when 1 < o < 2. As our main result in Part [I| of this thesis, we show that (Y7, Z;)i>0
is exponentially ergodic if a € (1,2), provided some further assumptions to the pa-
rameters, complementing the results of Barczy et al. [4], who already proved that the
two-factor model has a stationary distribution when « € (1,2) and is exponentially
ergodic if & = 2. We remark that only the case 1 < a < 2 allows for activity of jumps.
In Section [I.I] we briefly introduce the two-factor model as an affine process and derive
the Laplace transform of the a-root process Y. Our approach to obtain the exponential
ergodicity of the two-factor model (Y, Z) is motivated by that of Jin et al. [33]. As a
first step, in Section [1.2| we show the existence of positive transition densities of the
a-root process (Y;)i=0. To achieve this, we calculate explicitly the Laplace transform
of it. Through a careful analysis of the decay rate of the Laplace transform of the
a-root process at infinity, we manage to show the positivity of the density function of
the a-root process using the inverse Fourier transform. The positivity of the density
function of Y plays an essential role in the proof of the exponential ergodicity for the
two-factor model (Y, X)), since it enables us to show that the Lebesgue measure is an
irreducibility measure for the skeleton chains of the model. Our method of proving
the existence of a positive density function for the a-root process Y is purely analytic.
In the second step, we construct a Foster-Lyapunov function for the two-factor model
(Y, X), see Section Using the general theory of Meyn and Tweedie [50-52] on the
ergodicity of Markov processes, we are then able to derive in Section [I.4] the exponential
ergodicity of the two-factor model based on the a-root process.

Part [II) of this thesis is devoted to the study of the JCIR process (Z;);>0, which is
an extension of the CIR model and whose jumps are introduced by a subordinator. As
mentioned before, to study the fine properties of the estimators, a comprehension of the
long-time behavior of the underlying process is required, but, eventually, it turns out
that also a knowledge of the moments is necessary for a construction of the different
estimators. The purpose of the second part is twofold. Firstly, in Chapter [2] we focus on
the ergodicity and moment characterization problem for the JCIR process (Z;)¢>0 and
analyse their subtle dependence on the big jumps of the subordinator. In Section [2.1] we
derive the affine property of the JCIR process and, as a first step, using a decomposition
of its characteristic function, we show existence of positive transition densities of the
JCIR process, which improves a similar result in [33]. Section contains our first
main result, namely a characterization of the existence of k-moments (k > 0) of the
JCIR process Z in terms of the Lévy measure, which is implied by the subordinator.
The second aim we pursue in this chapter is to improve the results of Jin et al. [33]
on the ergodicity of the JCIR process. Sections [2.3] and [2.4] are devoted to the proof
of the ergodicity and exponential ergodicity in question of the JCIR process (Z;):>o,
respectively. In the second step to achieve this, we construct some Foster-Lyapunov
functions for (Z;):>0, which enable us to prove the asserted (exponential) ergodicity
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by using the results of Meyn and Tweedie [50-52]. For the construction of the Foster-
Lyapunov functions we will use some ideas from Masuda [48]. To round out the picture
presented by our study of the moments of the JCIR process, in Section [2.5] we present
a moment convergence theorem for the JCIR process.

Finally, in Chapter |3| we turn towards the study of asymptotic properties of condi-
tional least squares estimators (CLSEs) for the drift parameters of the JCIR process
based on discrete-time observations in order to illustrate an application of our ergodic-
ity result. To achieve this, we start by introducing CLSEs for transformed parameters
of the drift of the JCIR process (Z;)¢>0. As our main results, in Sections [3.1{and in
the subcritical case (i.e., b > 0) we prove that the transformed CLSE is strongly con-
sistent and asymptotic normal. Eventually, we conclude in Section with an explicit
calculation of a strongly consistent and asymptotic normal CLSE for the original drift
of Z based on the analogous properties of the transformed CLSE. Our approach is close
to that of Barcy, Pap, and Szabé [§] and Overbeck and Rydén [55], who build some
CLSEs based on discrete observations for the original CIR process. The parameter
estimation problem for the JCIR process is more complicated, since it has an addi-
tional parameter given by the Lévy measure of the driving noise and thus an infinite
dimensional object. Nevertheless, based on low frequency observations, Xu [65] pro-
posed some nonparametric estimators for v, given that v is absolutely continuous with
respect to the Lebesgue measure. Recently, Barczy, Ben-Alaya, Kebaier, and Pap [2]
studied also the maximum likelihood estimator for the growth rate of the JCIR process
based on continuous time observations.

Finally, we provide the reader with a short introduction to two-dimensional affine
processes, the basic definitions of properties of Markov chains on uncountable state
spaces used in this thesis, as well as a strong law of large numbers and a central limit
theorem for discrete time square-integrable martingales in the appendix of the thesis.

Credits. Most of the results in part one of this thesis are established in [31]. This
article is a joint work with P. Jin and B. Riidiger. Apart from the above mentioned
we have to refer to other active researchers who are working on this particular model,
namely M. Barczy, L. Doering, Z. Li, and G. Pap, [4]. The proofs provided in the first
part of this thesis are taken from our joint article [31] with P. Jin and B. Riidiger and
furnished with some details and explanations where we deem it appropriate. In order
to present the whole notion of the (two-dimensional) factor model based on the a-root
process, we occasionally recall results with proofs or sketches of proofs from Barcy et
al. |4] and Z. Li and C. Ma [45] (see also the references given in the specific sections).

The stated results about the (exponential) ergodicity of the JCIR process in part
two of this thesis are established in a joint work with P. Jin and B. Riidiger [30]E] Our
considerations about ergodicity of the JCIR process are mainly based on a preparatory
work of P. Jin, B. Riidiger and C. Trabelsi [33]. In our article [30] we managed to
improve the results in [33] and additionally to add the characterization of the moments.
In this thesis, we add to this chapter some result about the convergence of the moments
for the JCIR process which is new, at least to the authors’ knowledge.

The parameter estimation of the drift parameters of the JCIR process is motivated by
an article of M. Barczy, G. Pap, and T. Szabé [§]. We mimic the proof of [8, Theorem
3.2] with appropriate adjustments where this is necessary in order to transfer into our

2Submitted to an international journal.
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framework of the JCIR process. The elaboration of this chapter arose out of working
with P. Jin and B. Riidiger. This part of the thesis is also new and not submitted to
an international journal yet.

Notation. Throughout this thesis, we use the following notations. Let N, Z,
R, R>g, Ry and R¢g denote the sets of positive integers, non-negative integers, real
numbers, non-negative real numbers, strictly positive real numbers, and negative real
numbers, respectively. Let C be the set of complex numbers as well as C? the set of
two-dimensional complex numbers. For z € C\ {0} we denote by Arg(z) the principal
value of its argument and by Z its conjugate. We define the following subset of C?:

U= {u = (uy,ug2) € C? : Reuy <0 and Reuy = 0}.
Further, we define the following subsets of C:

Cco:={ueC:Reu<0}, Cso:={uecC: Reu>=0},
Cco:={ueC:Reu<0}, Csp:={uecC: Reu>0},

and the set of purely imaginary numbers
iR:={ueC: Reu=0}, together with O:=C\{—z: 2 € Ry}

With that notation, clearly i = C<y x iR. For z € C\ {0} let Log(z) be the principal
value of the complex logarithm of z, i.e., Log(z) = In(|z|) 4+ i¢Arg(z). In this thesis, we
define Arg(z) := 7 for x € (—00,0). For 3 € R define the complex power function z°
as

2% = exp(fLogz), zeC\{0}. (0.0.1)

By C?(S,R), C2(S,R), CZ(S,R), and C*°(S,C) we denote the sets of R-valued or
C-valued functions on S that are twice continuously differentiable, that are twice contin-
uously differentiable with compact support, that are bounded continuous with bounded
continuous first and second order partial derivatives, and that are smooth, respectively,
where the space S can be R, Ry, R>9 x R or Ry X R3¢ x R in this thesis. We denote
the Borel o-algebra on S simply by B(S). Similarly, we denote by By(S) the set of
bounded Borel measurable functions acting on S. We endow the Space S with the
inner product (-,-). For a, b € R, we denote by a A b and a V b the minimum and
maximum of a and b, respectively.

Throughout this thesis, we assume that (€2, F, (Ft);50,P) is a filtered probability
space satisfying the usual conditions, i.e., (2, F,P) is complete, the filtration (F3), is
right-continuous and Fy contains all P-null sets in F.



Part 1.

Exponential ergodicity of an
affine two-factor model based on
the alpha-root process



1. The affine two factor model based on
the alpha-root process
In this chapter we recall some important properties of the affine process (Y, X) :=

(Y, Xt)¢>0 defined as the (pathwise) unique strong solution of the stochastic differential
equation

AV = (a —bYy)dt + ¢VicdLy, t20, Y920 as, (1.0.1)

where a > 0, b > 0, 0, m € R, a € (1,2), (L¢)i>0 is a spectrally positive a-stable
Lévy process with the Lévy measure Coz ™1 "*1y,-qdz, with C, = (al'(—a))™*, and
(Bt)t>0 is an independent standard Brownian motion. The process (Yz, X¢)i>0 given by
(1.0.1)) was introduced by Barczy et al. |4]. The strong solution Y = (¥3)¢>0 of the first
stochastic differential equation,

dY, = (a —bY)dt + §/Yi_dL;, t>0, Yp>0 as, (1.0.2)

is sometimes referred as a-root, a-stable or simply stable CIR process. Note, if a = 2
in then (L¢)¢>0 is a standard Brownian motion. In that case, due to the almost
surely continuity of the sample paths of a Brownian motion, instead of 1/Y;_ one may
write v/Y; in the stochastic differential equation , and Y is nothing but the CIR
process.

The following paragraph is intended to give the reader an insight into the notion of It
type stochastic integrals with respect to a-stable Lévy processes. We shed some light
on the notion of a spectrally positve a-stable Lévy process L := (L) in prior. A non-
subordinatOIEI is said to be spectrally positive if it has no negative jumps. An (F;)i>0-
adapted stochastic process (L;);>0 is said to be an a-stable Lévy process, a € (1,2), if
Ly = 0 almost surely, L; — Ls, 0 < s < t, is stable distributedE] and for any finite time
points 0 < tp < t1 < -+ < ¢y, < 0o, the random variables L;,, Ly; — Ly, ..., Ly, — Lt,
are independent. Stable Lévy processes form a subclass of Lévy processes which are
widely studied in [59, Chapter 3]. In our framework, we assume that (B;)i>o is a
standard (F¢);o-Brownian motion and (L¢):>o is a spectrally positive a-stable (F¢), -
Lévy process with the Lévy measure Caz_l_o‘]l{z>0}dz, where 1 < a < 2.

A consequence of the absence of negative jumps and the stable property of L is that
the characteristic function of L1 reduces to

E [ei“Ll] = exp {/OOO (emz —-1- iuz) C’az_l_"‘dz} , uw€eR.

We call a Lévy process a subordinator if its sample paths are increasing.
2The random variable L; — L is said to follow an a-stable distribution with « € (1,2), if it has
characteristic function given by

E [6¢u(Lt—Ls)] — exp {7(75 — 8)|u|*(1 — iBsgn(u) tan %} , u€R,

where 8 € [—1,1]. If in addition 8 = 0, L; is called symmetric a-stable.
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Let N(ds,dz) be a Poisson random measure on R% with intensity measure given by
C’az_l_o‘ﬂ{z>0}dsdz and N (ds,dz) be its compensator. Then the Lévy-Itd representa-
tion of L takes the form

t N t
Ly =t +/ / zN(ds,dz) +/ / zN(ds,dz), t >0, (1.0.3)
0 J{lz[<1} 0 J{lz|>1}

where v := —E [fol S50y zN(ds,dz)} and N(ds,dz) := N(ds,dz) — N(ds,dz), with
N(ds,dz) = Caz 171 ,501dsdz, is the compensated Poisson random measure on RZ,
that corresponds to N(ds,dz). We remark that vt = — [3 Joei=13 zN(ds,dz) and

t
/ / zN(ds,dz) +~t, t >0,
0 J{lz>1}

is thus a martingale with respect to the filtration (F)>0.

Itd type stochastic integrals with respect to a (symmetric) a-stable Lévy process
have some history. It is worth to mention that they are extensively studied in [35], and
[36]. By |36, Theorem 3.1], a real-valued (F%):>o-predictable process X on Q x Ry is
integrable with respect to a (symmetric) a-stable Lévy process L;, that is fg XsdLs ex-
ists for every ¢t > 0, if and only if X satisfies the integrability condition f(f | Xs]%ds < o0
almost surely. A construction of stochastic integrals with respect to symmetric a-stable
processes is due to Rosinski and Woyczynski |58, Theorem 2.1]. Another way is to con-
sider L as a semimartingale, see e.g. Jacod and Shiryaev [27, Corollary I1.4.19], so that
Theorems 1.4.31 and 1.4.40 in Jacod and Shiryaev [27] describe the classes of processes
which are integrable with respect to L, see also Remark below.

We recall an inequality for moments of stochastic integrals driven by an a-stable
Lévy process L.

Remark 1.1 (Remark A.8 [45]). Let (Lt)¢>0 be an a-stable Lévy process with a € (0, 2]
and (Xt)t=0 a predictable process satisfying almost surely

T
/ | X¢|“ds < 00, T >=0.
0

Let B € (0,«t). Then there exists a constant C = C(a, ) = 0 such that

/Ot X.dL, (/OT IXt|ad5> ﬂ/a] . (1.0.4)

The moment inequality (1.0.4]) for 5 = 1 follows from Rosinksi and Woyczynski

[57, Theorem 3.1 and 3.2] in the symmetric case and is extended to the non-symmetric
case by Liang |46 Lemma 2.4 and Remark 2.5]. The case § € (0, ) could be considered
as a generalization of [46, Remark 2.5], using Holder’s inequality.

B
< CE

E | sup
te[0,T

As usual for the notion of Markov processes, the notation E(, ,)[-] means that the
process (Y, X) considered under the expectation is with initial condition (Yp, Xo) =
(y,x). The following result is a consequence of Remark and yields the existence of
moments of Y; up to a degree 8 € (0, «). It turns out to play a substantial role in our
future considerations.
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Proposition 1.2. Consider the a-CIR process (Yy)i=0 with o € (1,2) defined by (1.0.2]).
Then for any 8 € (0, ), there exists a constant C = 0 and a locally bounded function
T — C(T) > 0 such that, fort, T >0,

E, [v/] < C (1+y e e).
and

E, | sup Ytﬁ
te[0,7

<o) (1+y7).

For a proof we refer to [45, Proposition 2.8]. A rather direct but important conse-
quence of Proposition is the next result.

Remark 1.3. Following Ikeda and Watanabe |26, p.61-63], we define two classes:

F'.= {f(t,:c,w) . f is Fy-predictable and for each t > 0,

E [/Ot/{la:l}l}|f(s,x,.)\]\7(ds,dz) < oo};

Floc . — {f(t,x,w) . f is Fy-predictable and there exists a sequence of

Fi-stopping times T, such that 1, T oo almost surely and for each t > 0,

tATn 9
E [/0 /{de} |f(s,x,-)|*N(ds,dz)

Let 7, := inf{t € Rygp : Y;— > n}, n € N. Noting that (Yt)t>0 is predictable as the
strong solution of the stochastic differential equation (1.0.2)) (see Theorem |1./] - below),
from

tATh 2 1 t 2/
E / / (z ‘\’/Ys7_) Chz 17%dsdz| < C’a/ zlfadz/ E [Il{ysfgn}sta} ds
0 {l=l<1} 0 0

Ca_ o
= ¢ < o0, 1.0.
2_@ < (1.0.5)

<oo,n:1,2,...}.

it follows that R2 S0 X3 (s,z,w) — Il{|z‘<1}z ¢Y,_ € F2loc Similarly, since for any

0 < e < a we have that Ey[Yy] < c1(1 + ye gbt/o‘) fort >0 by Proposztzon where
c1 > 0 is some constant, we obtain

V /{|z>1} e

0

Ca t l/a 7b5/a2
aflcl/o (1—|—Y0 e )ds<oo,
(1.0.6)

o) t
VY| Cpz '™ Cydsdz] = Ca/ z_adz/ E {\“/YS_} ds
1

N

which verifies that R2>0 X Q3 (s,z,w) — Typzs1y2 VY- € F.

We now turn back to the two-dimensional process (Y, X) defined in . The next
Theorem indeed ensures the before mentioned (pathwise) uniqueness and existence of
a strong solution of the stochastic differential equation (1.0.2]). Without any further
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specification, we always assume that (Yy, Xo) is a random vector independent of (L;);>o.
The proof is very close to that of Barczy et al. |4, Theorem 2.2], although we allow
the parameter a = 0 in (1.0.2)), which is different as in [4]. In that case the stochastic
differential equation (1.0.2) turns into

dY; = —bY,dt + ¢/Yi_dL;, t>0, Yy>0as. (1.0.7)

Theorem 1.4. Let (Yy, Xo) be a random vector independent of (L, By)i=o satisfying
Yo = 0 almost surely. Then for all a > 0, b,m,0 € R and o € (1,2), there is a (path-
wise) unique strong solution (Yi, X¢)i=0 of the stochastic differential equation (1.0.1)).
If a € Ry, then (Yi)i>0 is almost surely non-negative for all t > 0. Further, we have

t
Y = e Y, + % (1 - e_bt) +/ e =) /Y, _dL,, >0, (1.0.8)
0
and
—6t m —6t ! —0(t—s)
Xi=eXo+ 2 (1) +/ . VY.dB,, t30. (1.0.9)
0

Proof. Let a € Rsg. Applying a result of Fu and Li [23, Theorem 6.2 and Corollary
6.3], we get that a (pathwise) unique strong solution (Y;):>0 of the SDE exists
with any initial state value Yj satisfying Yy > 0 almost surely such that (Y;)¢>0 stays
almost surely non-negative. In case a = 0, by |23, Theorem 6.2 and Corollary 6.3], a
unique strong solution of also exists. Furthermore, using [t6’s formula to the
process (ePY;)i=o yields that

d (e"V;) = bVt + e"dY; = b Vit + ¢ ((a — bY) dt + ¥/Vi—dLy)
= ae’dt + e Y, t>0. (1.0.10)
Hence, writing (1.0.10)) in integral form, we get

t t
Y, —Yo=ua / e ds + / e /Y,_dLs, t>0,
0 0
yielding (|1.0.8). Now, using It&’s formula to (X};)¢>¢ defined in (1.0.9)), we obtain

t t
dX, = —fe " (Xg +m / P ds + / 695\/Y5d35> dt + e (meetdt + eet\/?tdBt>
0 0

t t
= —fe O (Xg + m/ e ds +/ eesx/YSdBS> dt + mdt + /Y;dB;, t>0.
0 0

This implies that (X;)¢>0 is a strong solution of the second SDE in (L.0.I). As a
consequence, with our considerations concerning (Y;)¢>0, we get the existence of the
strong solution of (1.0.1)). Finally, assume (X;):>0 is a strong solution of the second
SDE in . Then, applying [t6’s formula to the process (eetXt)t>0, we have

d(e"X,) = 0e" Xydt + "X, = 0 Xdt + e (m — 0X,) dt + VXA B, )
= mePdt + /Y, dB;, t>0. (1.0.11)
We rewrite the right-hand side of ((1.0.11)) into integral form,

t t
X, — X = m/ e ds +/ e’ \/Y,dBs, t >0,
0 0

yielding ([1.0.9)), and hence the second SDE in (1.0.1]) is pathwise unique. Altogether,
it follows that the SDE ([1.0.1)) has a unique pathwise solution as well. O
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1.1. Affine representation of (Y, X)

In this section we derive the Laplace transform of both, the a-stable CIR process (Y;)=0
defined as the strong solution of the stochastic differential equation and that of
the two-dimensional process (Y, Xt)¢>0 defined as the strong solution of the stochastic
differential equation . However, it turns out that we are able to compute an ex-
plicit formula for the Laplace transform of Y but not for the two-dimensional process
(Y, X). We leave it as an open problem. Some of the stated results in this section are
known, and indeed they go back to the seminal papers of Li and Ma [45] or Barzcy
et al. [4, Theorems 2.2 and 3.1], respectively. Where it is possible, we outline the
proofs so that the reader will not have to hunt for the different references. At least,
we will provide also complete proofs, since our approach differs from that of [45] and
in comparison with [4] we add explanations where we deem it appropriate, because we
use similar arguments to check some further results (see, e.g., Lemma below).

The idea to obtain the Laplace transform of (Yz, X¢):>0 is to use its affine represen-
tation. For a careful introduction to two-dimensional affine processes with state space
R>o x R see Appendix @ on two-dimensional affine processes below.

We start with a computation of the infinitesimal generator of (Y, X;)i>0.

Proposition 1.5. Consider the process (Yy, Xt)i>0 with parameter a € R>g, b, m, 0 €
R. Then its infinitesimal generator is given by

2
(AF) (00) = (@ = )5 () + (m = 02) L () + 5y 5 L 0

+ y/ooo (f(y +z,2)— f(y,x) — gf (y,:c)) Cpz 179z, (1.1.1)

where (y,z) € Rsg x R and f € C3(Rso x R, R).

Proof. The process (Y, Xi)i>0 starts from (y,z), ie., (Y, Xo) = (y,x) € Ryg x R,
Then we can use the Lévy-1td6 decomposition of (L;);>p in (1.0.3) to obtain that for
each t > 0,

Y, =y + foy §/Ysds + [i(a— bYy)ds
+ Jo Jiz<ny 2 VYo N(ds, d2) + fo Jqpzs1y 2 /Y- N(ds, d2),
Xi=z+ fg(m —0X,)ds + fg VY,dB,,

where , N(ds,dz) and N(ds,dz) are as in . Noting that RZ; x Q> (¢, z,w) —
1{‘Z|<1}Z{X/K € F%loc and RQ}O x 3 (t,z,w) — 1{|Z|>1}ZQ‘/K € F! (see Remark
1.3) we are able to apply It6’s formula. In particular, by the Lévy-It6 decomposition
of (Y3, X¢)i=0 and applying Ito’s formula for f € C%(Rsg x R,R) (see, e.g. Tkeda and
Watanabe [26, Theorem 5.1]), we obtain that for each ¢ > 0,

f(Ye, Xt) = f (Yo, Xo)

Lof . o,

= | 5, (%) WYds+/ (Ye, X)(a — bY,)ds
t t 92

+/ 9 (v, X3)(m — 0X, )ds+ gj;(Ys,X)Yds
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t
+ [ L x) V¥,

+//{Zl<1} St 2/Yom, Xon) = [ (Yo, X, ))N(ds,dz)
Jr//{Z|>1} F¥om 42 9/Yor, Xoo) = f(¥ers X ))N(dsadz)
N B of .
+/0 /{z|<1}< Vet 2 Y Xo) = f (Ve Xo) \/?a (YS,X))C dsdz
t
:/O(ﬁf)(Ys,Xs)ds+Mt (f), (1.1.2)
where
M) = [ 2 X Vi,

// fYVor + 2V, Xoo) — f(Yee, X ))]\Nf(ds,dz)
{l= |<1}
// F¥or + 2 /Yer, Xoo) = f(Yer, X ))N(ds,dz)
{l= |>1}
// ;5 FZ\/isw-(s - )S,Xs)) ]/\\f(ds,dz)
0 {\2|>1}

and the operator Lf is given by
D= by)gjyf(y’x) (m= Hx)gf(y, z) + y;é(y, 7)
+ /{|z|<1} (f(y +2/y,x) = fly, @) — 2 w@(y’ x)> Cor1=0d,
[ Gt 2 5) = f(00)) oz
+ %/igg(y, z)
gi(y,xﬂ(m—ex)gf( o)+ oy g?};( )
w o (2050 = ) = 2055 ) ) o100
" /{Izl>1} <f(y te{y )~ fly,2) -z %/3725(% x)) C.2"172d
" /{Izl>1} ) wgz}/c(y’ #)Caz™ "zt i’/ﬂ?(y, z)

P 2
a%( ) + ya];(y,)

= (a — by)

—(a— by>f)§<

+/ ( W+z2942) - fly $>—z%/ﬂay(y,x)) Coz 17z

for (y,z) € R>o x R. By a change of variable z := z ¢/y, we see that Lf = Af, where
A is given in (1.1.1)). As a result, it follows from ([1.1.2) that for each ¢ > 0,

,x) + (m — 0x)

£V X0) = 1Yo, Xo) = [ (AR)(Yay Xo)ds + My (). (1.13)
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We show that (M(f))i=0 is a martingale with respect to the filtration (F;);>0. To
achieve this, we can use the same argument as in [4, Theorem 2.1]. The details are as
follows: We define

t 8f
Dy(f) := N X )VYdB,, t>0,
// (F(Yam + 2 Vs Xar) = F(Yer, Xo0)) N(ds, d2),
{l= |<1}
+// F(YVee 2 Vs, Xoo) = F(Yar, X)) N(ds, d2)
{IZ\>1}
—// f<1@+st,Xs>—f<Ys,Xs>) N(ds,dz), 120,
0 J{|z|>1}
We start with the diffusion part (D:(f))i>0. Note that the derivative of f with

respect to z is bounded as f € C?(R>o x R, R). Hence, there exists a positive constant
c1 such that

E [(/Ot aif(Y&XsNZst)Q] - ['® [((%fm,xg)zyg

t
< cl/ E[Ys]ds < oo, t>0,
0

ds

where the finiteness of the last integral holds, since there exists some further constant
¢z > 0 such that E[Y;] < co(1+yexp{—bt/a}) for all t > 0 according to Proposition[L.2]
Consequently, we get that (Dy(f))i>0 is a square integrable martingale with respect to
the filtration (F;)¢>o.

We continue with the jump part. In order to check that (Ji(f))i>0 is a martingale
with respect to the filtration (F;);>0, we use a localization approach. Namely, we define

// < fWso An+ 2 Yo An, Xs—) — f(Yso Any, X5 ))N(ds,dz),
{l=1<1}
J"(f // ( (Yoo An+2/Yso An, Xo_) — f(Yso A, X )>N(d3,dz)
{l=1>1}
- / / ((f(Ys An+ 2 Vo A, Xs) — F(Ys A n,XS))N(ds, dz)
0 J{|z|>1}

for all £ > 0 and first prove that (J7.(f))i=0 and (J;""(f)):z0 are both martingales with
respect to the filtration (F;);>0, where n € N is arbitrary.

We check that (J';(f))i=0 is a square integrable martingale with respect to the
filtration (F%)i=0. By Taylor’s theorem, we get

P (e Am) 4 2 YV A X)) = f (Yee An X))

zVYs— An sup
(y,x)ER5o xR

;yf(y’:v)

(1.1.4)

for z € R>p. Thus, since

E Uot/ol (F((Yae Am) 4 2 Vs A, Xom) = f(Yae A X, ))2Caz_1_adsdz]
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)// Y /\nQ/a} 217 %dsdz

t

—

< sup
(y,x)ER>o xR ay

t
< 03/ E [(YS_ /\n)2/0‘] ds/ 1=0qy = cqn?/@
0 0 2

< 00, t>0,
with some constant c3 > 0, by [26, pp.62, 63], we get that (J';(f))i>0 is a square
integrable martingale with respect to the filtration (F3):>o0.

Next, we prove that (J;""(f))i>0 is a martingale with respect to the filtration (F;)¢o-
We proceed similar as before. Using (1.1.4), we estimate

t [ee)
E[// (e An)+ 2 /Y Am, Xoo) = [(Yer An, X,o)| Caz ladsdz]
0 J1

g( sup )// Y/\nCzadsdz
(y,$)€R>OXR

! t
<C4/()]E[\/(¥Y:9/\n}d3/ z_o‘dz:C’4n1/aﬁ<oo, t >0,

1

3y (Y, x

where ¢4 > 0 is some constant. This implies by [26, Lemma 3.1 in Chapter IT and p.62]
that (J;""(f))e=0 is a martingale with respect to the filtration (F3)>o.

It remains to check that (J;:(f)):=>0 is indeed a martingale with respect to the filtration
(Ft)t=0- For each n € N, we define

e (f) = J(f) = T2 (f) = 0" (f), t=0. (1.1.5)
Similar to ((1.1.4]), by Taylor’s theorem, we have

F(Yae 4 2 /Vm, Xu) — f(Yeo, Xoo) = (gyf(n_+<z%?_,xs_))zﬁ,

where ¢ : @ — R is a function which we will specify later. Furthermore, using the
Lévy-Itd decomposition in ([1.0.3]), for all ¢ > 0, we obtain

— /Ot /{|Z<1} ((%f (ys_ + (2 §/Y,, XS_)> 2 {/Y,_N(ds,dz)

" /t /{z|>1} (ffyf (Yo €297y XS_)> 2 V¥ N(ds, d2)

/ /{ - (88yf (YS_ +C29Y, X, )) z‘{‘/Ysi_N(ds,dz)

- /0 /{z|<1} < f (Yo nn G2V A, XS)) 2 /Yoo AN (ds,d2)
_/ot/{z|>1} ((%f(ys_ At Cr /Yo A, XS_)) » ¢/Vo AnN(ds, dz)

- /ot /{z|>1} (861/*’0 (Yo An G2 ¥ m, X)) 2§/ AN (ds, d2)
= /Ot (;yf (Yoo +¢2 VYT_,XS_)) ¢/Ys—dLs

—/Ot (;yf(n_muz W,XS_D /Yo AndL,

0
Jy
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t 0
- /0 H{Y57>n} (8yf (Yrsf + (2 v }/57Xs)> VYs—dLs
t 0
B A ]1{Ys—>n} (ayf (n— An+ CZ OL\/ }{9— A naXS—)> a\/ }/:9— A ndLS
0
:/ {Ys—>n} (a (3/57 + (2 VY5, X )> VYs—dLs,

where we used in the last equality that the integral

t 0
/0 ﬂ{Y5—>TL} (ayf (}/S, An+ 20/ Ys— An, Xs)) VYs— AndLg

vanishes for n large enough, because f has compact support. Noting that f(Ys_ +

28/Ys—, Xs_)—f(Ys—, Xs—) is a random variable, we obtain that its derivative (9, f(Ys—+
(2 Y5, Xs-))z ¢/Ys_ is also a random variable (by equality of both expressions). In
the same way we deduce that (9, f(Ys— + ¢z /Y5, X —)sefo,) 18 a predictable process.
Thus, we may use Remark [I.1] to deduce that for each ¢ > 0, there exists some constant
c5 > 0 such that

Ey,e)

St[lp}lns( )I]
s€|(0

t o a 1/a
< 5By [(/0 . >n}(a (Voo ¥ X,) ) Vi) ]

t 1/a
< G (/0 E(y,x) {1{Y57>n}yvs} dS) ’

for some further constant cg > 0, where we used Jensen’s inequality together with the
fact that (0 f(Ys— +(z ¢/Ys—, Xs_)) is bounded to get the second inequality. In view of

1
Proposition it follows that [} E(y,2) [Ys] ds < oo and further (f(f By [Ys] ds) /o <
oo. Then, by the dominated convergence theorem, we obtain

t 1/a
< ¢ lim (/ E(y.) [H{YSM}YSdsD =0. (1.L6)
0

n—oo
As shown in the proof of [4 Theorem 2.1], the martingale property of (J¢(f))i=0 now

)=
follows from , ) and the fact that both (J%,(f))i=0 and (J;"(f))i=0 are
martingales. In partlcular for all0 < s <t and A € F, by m, we have

lim E ([ (£)| 1] < lim E [|n? ()] = 0.

lim IE(y,ac) [Sup ‘775( )‘

n—oo SG[ ]

T B (/)] 1] < i E (12 (/)] = 0.

This yields, for allmn € N, 0 < s <t and A € Fg,
lim B [J2,(F)La+ ;" (f)1a] =

n—oo

lim E[J" (F)la+ J"(f)La| =

n—oo

(1.1.7)
T4].

Consquently, using that both (J7,(f))s= and (J;""(f))t=0 are martingales with respect
to the filtration (F;)i0 together with (1.1.7), for all n € N, 0 < s < ¢, and A € Fg, we
get

E[Ji(f)1a] = lim E[(J2(f) + J;"(f)) 1a]
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= lim E[(J2.(f) + J2"(f)) 1] = E[L()1a].
yielding that (J:(f))i>0 is a martingale with respect to the filtration (F;)io. It is clear
that (Mi(f))i=0 = (De(f) + Ji(f))i=0 is also a martingale with respect to the filtration
(Ft)t=0- With this our proof is complete. O

Remark 1.6. We note that, if one studies the proof of Proposition it is easy to
see that the Lévy process (Li)i>o is a martingale with respect to the filtration (Fi)i>o,
using the same strategy. This simple observation leads to the fact that the expectation
of the a-root process Y; is given by

WV

t
Ey[Vi] = ey + a/ ePds = ey + 2 (1-e), 10

0 b
The following proposition provides the characteristic functions of (Y, X¢)¢>0. Namely,
we prove that (Yi, Xi)i>0 is a (conservative) regular affine processﬁ with state space
R>o xR. The results about affine processes we are going to apply stem essentially from
Duffie et al. |17] and are also introduced in the two-dimensional case in the Appendix
[A] on two-dimensional affine processes.

Proposition 1.7. Let a € Rxg, b, m, 0 € R. Then (Yy, Xi)i>0 is a regular affine
process with state space R>g x R.

Proof. We follow the proof of [4, Theorem 2.1]. Note that we can associate a semigroup
(P;)¢=0 of operators defined in the bounded Borel functions to the time-homogeneous
Markov process (Yi, Xi)i>0 (see Appendix [A| for details). In order to obtain that the
transition semigroup (P;);>o with state space R>¢ x R corresponding to (Yz, X¢)i>0 is a
regular affine semigroup with infinitesimal generator given by we check that the
conditions of Theorem [A ] are satisfied. It only suffices to prove that the parameters
of the infinitesimal generator of (P;);>¢ are admissible in the sense of Definition
We read off the parameters of the infinitesimal generator given by . Here, we see
that (0, a5, b, Bij,0, 1), 4, € {1,2}, is admissible, since

11 (12 L 0 0 .
an axn) \0 1)
b= (b1,b2) ;== (a,m) € Ryp x R;
fu P2\ _ (0 0.
Bar Ba2) \O 0]’
p(dy, dz) := Coy 1 7dydo(dx);
where 9y denotes the Dirac measure concentrated on zero. As shown in the proof of

[4, Theorem 2.1] the Lévy measure u indeed satisfies the admissible condition. For
completeness of exposition, we recall the arguments. One simply calculates

/R>O /R (‘?J! /\y2) p(dy, dx) + /R%J /R (\xy /\:UQ) p(dy, da)
= Ca /OOO (Iyl Ay2) y 1y + Cy /o:o (\x| mﬁ) So(x)

3see, e.g., Definition
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= Ca/ (lyl A y?) y~tody
0
1 ')
=C, (/0 Iyly‘l“‘der/1 yzy‘l‘“dy>
1 (e’
=C, </ yl_ady +/ y_ady> < 00
0 1

Hence, for this set of admissible parameters one can apply Theorem to obtain a
regular affine semigroup (Q;)¢>0 with infinitesimal generator given by . It follows
also from Theorem that C°(R>o x R,R) is a core of the infinitesimal generator
corresponding to the affine semigroup (Q¢)r=0. Since the infinitesimal generators cor-
responding the semigroups ()0 and (Q¢)i>0 coincide on C°(R>p x R,R), by the
definition of a core, they actually coincide also on the Banach space of bounded func-
tions on R>g x R. Consequently, by Theorem equation holds, yielding that
(Yy, Xt)t>0 is a regular affine process with infinitesimal generator given by . O

From Propositions [I.5 and [I.7] we immediately get the following corollary.

Corollary 1.8. Consider the a-stable CIR process defined by the strong solution of the
stochastic differential equation (1.0.2) with a € R, b € R. Then (Yi)e=0 is a regular
affine process with infinitesimal generator

of

ANW =@~ +u [ (#+2)— 1) - 250 W) Car o (118)

where y € Rsp, and f € CE(R>0,R).

Up to this point we constantly assumed « € (1,2). With the infinitesimal generator
A of Yy, we would like to clarify why (Y, Xy)i>0 fails to be conservative and therefore,
it can not be exponentially ergodic when a € (0, 1).

Remark 1.9. If o € (0,1), then the process Y; is no more conservative, namely, it
explodes (goes to +00) in finite time, due to |21, Theorem 4.11]. We can understand
this phenomenon in the following way: Consider the generator A of (Y;) in with
b>0. If « € (0,1), then the second term (especially the effect coming from the big
jumps part) on the right-hand of dominates the first one (the drift part), and
the process (Y)i>o is thus pushed to +oo in finite time. Note that the situation reverses
if o € (1,2), namely, the drift part controls the jump part, and the process is always
driven back to a/b.

We use the affine property to calculate the representation of the joint Laplace trans-
form of (Y%, Xt)t>0 as far as possible.

Proposition 1.10. Let a, b € Rog, m € R, 0 € Ryg. Then v (A1, A2) is the unique
non-negative solution of the differential equation

{%t (A, o) = =bur(Aa, o) = £ (0 (A1, Ao)* + 37203, £> 0, (1.1.9)

()‘l; )\2) - )‘1a
where (A1, A2) € R x R. Moreover, the Laplace transform of (Yy, Xt)t>0 is given by

E( |:6—)\1Y;5+i)\2Xt:|

Y,x)
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-0t

t . 1—ce¢
= exp {—a/ vs(A1, Ag)ds + imAg———
0

9 — yvt()\l, )\2) -+ i136_0t>\2}

for allt € Rxy and (A1, A2) € Ryg x R.

Proof. Our proof is motivated by the proof of [4, Theorem 3.1]. Since (Y%, X¢)i>0 is
an affine process, the corresponding characteristic functions of (Y, X;)¢>0 are of affine
form, namely, supposing (Y%, X¢):>0 has initial state vector (Y, Xo) = (y,z) € Ryo xR,
there exist functions ¢ and 1 on iR? such that

/ 8 P, ((y, x),d€) = By ) [e<u,(Yt,Xt)>} — S+ ((y2) W (tw) (1.1.10)
R>0><R

for all u € U, where (P,);>0 denotes the affine semigroup corresponding to (Y, X;)i>0.
The functions ¢ and ¥ in turn are given as solutions of the generalized Riccati equations
(A.0.2), where F(u) and R(u), u € U, are of Lévy-Khintchine representation
and @, respectively. In what follows, we calculate the representation of the com-
plex valued functions F' and R first.

The formulas (A.0.4) and (A.0.5) yield F'(u) = au; + musg and

R(u) :—bu1+—+/ / 8 1 — (u,€)) p(d€r, &), u= (ur,u2) €U,

where the Lévy measure p is given by p(d&y,d&s) := C’a&l_l_aég(dﬁg), where §y denotes
the Dirac measure concentrated on zero. Further, following the method of Sato [59,
p.46] (see also Applebaum [1, p.81]), namely applying the trick of writing a repeated
integral as a double integral and changing the order of integration, we obtain

L7 (9 -1 ) g dge) = Cao [T (€~ 1-mg) 671

=C, / (/ “4—1)dg>5—1 ode,
= Ca/ </< g;l—adg) u (6“14 - 1) ¢

ot [T e (e 1) e,

We employ the same trick once again such that we get

Co [ (e —1-mer) &g = Ca— [ (— A uleW"dn) ¢ed¢
—c, 7/ (/ ¢ adg) ure™dp

:Ca laulnd
a(a—l / K g

2 a—2

_0, uy(—u1) / =% dy
(e} 0

(—u1)®

- Caa(a - 1)

F(2 - Oé),
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where we used in the second last equation that Reu; < 0 and a < 2. Finally, using
that C,, = (al'(—a))~! = a(a — 1)/(al'(2 — @)), we obtain the identity

Co [T (98 —1-mg) e = T ey,
0 «

and summarized it follows that

2 )
F(u) = au; +muy and R(u) = —bu; + “2 (zu)®

5 (1.1.11)

for u = (u1,u2) € U.
As far as possible, we will next solve the generalized Riccati differential equation

0,
0

{gﬂ/)(tau) = R(w(t7u)) ’ ¢(0a u) =u € C<07 t >
%qb(tv ) =F (w(ta u))7 ¢(0au) =0, t >
Note that (¢, u) is vector-valued, i.e., for all u = (uy,us) € U, we have ¥(t,u) =

(1(t, ), Pa(t,u)), t € R>g. Since the strong solution (X)¢>¢ of the second stochastic
differential equation in ([1.0.1) has state space R, due to Proposition we have that

wg(t, u) = 679%@, (t,u2) € Ryg x iR,

Furthermore, 11 (¢, u) and ¢(¢, u) are now solutions of the generalized Riccati differential
equations

Sn(t,u) =R (wl(ta u), 6_9tu2) , 1(0,u) = uy € Cg,
Zo(tu) = F (va(tu),e "), 6(0,u) =0,

where the complex-valued functions F' and R are given by (1.1.11)). Hence, for v € U,
we obtain

Zo(tu) = b (tu) + L (O (L))" + LePhuy, ¢ 0,
¥1(0,u) = u; € Cgo,

and

t t
o(t,u) = / i (wl(s,u), 6_95’LL2) ds = / (awl(s,u) + me_esuz> ds
0 0
t et
= a/o P1(s,u)ds +mugT, t>0.

Note, for all u = (u1,u2) € U and t € Ry, the real part of 1 (¢, u) is less then or equal
to zero by Duffie et al. |17, Remark 2.2]. If u; € Rgp, then ¢1(¢,u) is also less than
or equal to zero. Consequently, defining u; := —A1, ug := A9, and introducing the
notation vy (A1, A2) := =41 (t, (—A1,iX2)), (A1, A2) € Rso x R, we conclude with (L.1.9).
Furthermore, since v (t,u) < 0 for u; € R<p, we have

’l)t()\l,)\g) >0 for all ()\1,)\2) € R>0 x R.
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The uniqueness of the solutions of the differential equation (1.1.9) follows by Duffie et
al. |17, Proposition 6.1, 6.4, and Lemma 9.2]. Finally, by (1.1.10) and (1.1.9)), we get

E(%x) |:e_>\1Yt+i)\2Xt:|

= exp {¢ (¢, (=A1,1A2)) + y¥1 (¢, (=A1,002)) + 2o (¢, (= A1,02))}
—0t

t . 1—e
= exp {—a/ vs(A1, A2)ds + imAg——
0

T yur(A, Ag) + ixe_‘%/\g} ,

for all t € R>p and (A1, \2) € R>o X R. O

Since we established explicit representations of F'(u) and R(u) in the proof of Propo-
sition we now continue to solve the Riccati differential equation in (A.0.2) with
respect to the a-stable CIR process Y. In the one-dimensional case we shall obtain an
explicit unique solution of the resulting generalized Riccati equations.

However, although our results stated in Proposition stems from Barczy et al.
[4, Theorem 3.1], the explicit form of the solution to the genzeralized Riccati equation
below has not been derived in [4]. In order to study the transition densities of
the a-stable CIR process, we will find the explicit form of the solution to in
the following proposition.

Proposition 1.11. Let a € Ryg, b € Rog. Define vi(A1,0) := v () :== —(t, =),
A € Rog. Then vi(\) is the unique non-negative solution of the differential equation

e} _
St (AN) = =bop(A) = 5 ((N)*, =0, (11.12)
’U[)()\) = )\,
where A € Rsg. The unique solution to is given by
1 1—a | Jb(a—1)t 1 )1/(1&)
({2 - = t>0. 1.1.1
u(N) <(ab A ) ’ — Ct>0 (1.1.13)

Moreover, supposing (Y;)i=0 has initial value Yy = y € Rxq almost surely, the Laplace
transform of Yy is given by

E, [e_AYt} = exp {—a/ot vs(A)ds — yvt()\)}

t 1/(1—)
= exp —a/ ((1 + )\10‘) ebla—1)s _ 1) ds
0 ab ab

(Y ey L )”“”
y((abJr)\ )e —~ (1.1.14)

Proof. By Corollary [1.8] the a-CIR process (Y;);>0 is a regual affine process. Therefore,
following the proof of Proposition it follows that the equation has a unique
non-negative solution. The equation is a Bernoulli differential equation which
can be transformed into a linear differential equation through a change of variables.
More precisely, if we write us(\) := (v;(A))' ™%, then

Fuul0) = (1) ()™ )

for allt >0 and X € Ryy.
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= (1= a) ()™ (=bu) = L (0 (V)"
=ba = Du(N) + (1-a™") (1.1.15)

and up(A) = (vo(N))' ™% = A=, By solving (L.1.15), we obtain

1 1
Ut()\) _ < + )\l—a> eb(a—l)t N

ab ab

which leads to e
_ i 1-a ) bla—1)t 1) -
ve(N) = ((ab-i-/\ )e

ab

forall t > 0 and A € Rsg. By ([1.1.10) and (A.0.2) and noting that v;(A) = —(t, —A),

we get
Ey [e 7] = exp {o(t, —A) + yu(t, —\)}
~ exp {a/ot (s, —A\)ds — yvt()\)}
— exp {—a /Ot ve(\)ds — yvt()\)}
for all £ > 0 and A € Ruo. O

We remark that we have assumed A € Ry in Proposition [[.1I] However, formula
(1.1.14)) is true for the trivial case A = 0 as well, which can be seen by taking the limit
210

1.2. Transition densities of the alpha-root process Y

In this section we show that the a-root process Y has positive and continuous tran-
sition densities. Our approach is essentially based on the inverse Fourier transform.
The necessity of that property will become apparent later (see part (b) of the proof of

Theorem ([1.22)).

Recall that the Laplace transform of the a-stable CIR process (Y;):>0 with respect
to its initial value Yy =y € Ry is given by

t
B, ] = ep {0 [ 0.(0ds —yu(N (1) € Roo x R,
0

where the function v is given by . In what follows, we give a specification of
the Laplace transform of Y;.

The solution of the stochastic differential equation as well as the Laplace
transform of Y; depends obviously on its initial value Yy. From now on, we denote by
(YY)i=0 the a-stable CIR process starting from a constant initial value y € R, i.e.,
(Y)=0 satisfies

AYY = (a — bYY)dt + {/YYdL;, t>0, Y{=y. (1.2.1)
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and we have

t
E [e"\yty} = exp {—a/ vs(A)ds — Z/Ut()\)} , (5,A) € Rz x Rso.
0

_ (Y g e L )1/““)
sol(t,/\,y).—eXp{ y<<ab+>\ >6 = ,

- ! 1 1-a | Jb(a—1)s 1 1/(1e)
wa(t, \) := exp{—a/o <<ab+)\ >€ _ozb> dsp.

E [e‘AYty} = @1(t, A\, y) - @a(t, ). (1.2.2)

Keeping this decomposition of the Laplace transform of Y} in mind, we take a closer
look at the following two special cases:

Let

Then

Special case i): a = 0. To avoid abuse of notations, we use (Z});>o to denote the
strong solution of the stochastic differential equation

A7y = —bZVdt + §/ZV dL,, t>0, ZV=y>0. (1.2.3)
According to (1.1.14]), the corresponding Laplace transform of Z} coincides with o1 (¢, A, y).
Noting that b > 0, we get

lim vi(\) = ( L (eb(afl)t - 1))1/(1a) =:d(t) >0 (1.2.4)

A—00 ab

where d(t) € (0,00) for all £ > 0. Furthermore, by dominated convergence theorem, we
have

e = Jim ¢ ¥V = lim E [e_AZty}

A—00 A—00
= Jim (B e g + B[00 ])
=P (Z/ =0)>0 (1.2.5)

for all £ > 0 and y > 0.

Special case ii): y = 0. Consider (Y,?);>0 that satisfies
dY? = (a —bY)dt + §/Y2dL;, t>0, Yy =0. (1.2.6)

In view of (1.1.14)), we easily see that the Laplace transform of Y, degenerates to
©2 (t, /\)

Summarizing the results in case i) and case ii), we have the following proposition.

Proposition 1.12. Let a > 0 and b > 0. Consider the processes (Y!)i=0 and (Z{)i=0
defined as the unique strong solutions of the stochastic differential equations and
, respectively. Let fyy and fzy be the probability laws of Y)Y and Z} induced on
(R>0, B(R>0)), respectively. Then fryy = pyo * juzy, where x denotes the convolution of
measures.
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Recall that the function v;(-) given by (1.1.13)) is defined on R+. By considering the
complex power functions, the domain of definition for v;(-) can be extended to C\ {0}.
Indeed, the function

1wy pleeny  LN\YE)
v(z) = @—i—z e - , zeC\{0}, (1.2.7)

is well-defined, where the complex power function is given by (00.0.1)).
We next establish two estimates on [j vs(z)ds.

Lemma 1.13. Let T > 1. Then there exists a sufficiently small constant eg > 0 such
that

t
Re (/ vs(z)ds> > 0y + Oyl (1.2.8)
0

when |Arg(2)| € [7/2 —e0,7/2+ 0] and T~ <t < T, where Cy, Co > 0 are constants
depending only on a, b, a, g and T.

Proof. We will complete the proof in three steps.

“Step 17: Consider p > 2 and ¥ € [1/2 — €,7/2 + €], where € > 0 is a small constant
whose exact value will be determined later. We introduce a change of variables

L i W\ 1—a | Jbla—1)s 1) 1/(1e)
z = ((ab—i-(,oe ) >e o

and define T'y : [0,¢] — C by

1 i\ 1 a—1)s 1 1/(1-a)
FO(S) = ((Od) + (pe 19) ) eb( 1) — Q{b) s S & [O,t]

Noting that

0 1 o\ 1—a 1 N1 1\ o/(1-a)
T — i b(a—1)s (< i ) b(a—1)s )
~To(s) = —b <ab + (pe) ) e =t (pe) " e ~

we obtain

/0 o, (pe?”) ds = /Ot ((Cylb + (pe'?) 1a> (a1 _ i >1/<1a) -

1 Pt -1 1 Za—l -1
- _Z i dz=—-= 1 dz. 1.2.
b I z (z + ab> z b I, ( + " ) z (1.2.9)

Next, we derive a lower bound for Re( [ v (,06“9) ds).

Let I'f; be the range of I'g. Since I'y € O and z — (1 + ,2""_1/(ab))71 is analytic in
O, we have

a-1\ ! L (pei?)(1=a))gbla—1)t_ L /(=) a—1\ ~1
[ (HZ ) o [l ) <Hz ) ,
To ab petd ab
(1.2.10)
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Here and after, the notation

w9 Oé—l -1
/ <1 + z ) dz
w: ab
means the integral fF[ | (1+ za_l/(ab))*1 dz, where I'f,;, ] is the directed segment
w1 ,wo )
joining w1 and wey and is defined by

Ll ws] 2 [0,1] = € with Ty y)(r) == (1 = r)wr +rwz, 7 €[0,1].

By (1.2.9), (1.2.10) and the holomorphicity of z — (1 + z:o‘_l/(ozb))_1 on O, we obtain
t . 1 pe'? yo—1 -1
0 _ =
/Ovs(pe )ds-b . <1+ ab) dz

eu? 1 Za—l -1 d
/((alb_i_(peiﬂ)(la))eb(a1)t_a1b)1/<10‘> + ab =
(1.2.11)

[N

_l’_

Since the second term on the right-hand of (1.2.11)) is continuous in (¢, p, ) € [1/T,T] x
[2,00) X [1/2 —e,7/2 + €] and converges to

1 et Lol -1
- 1+ — d
sy (14 55) 2

(uniformly in (¢,9) € [1/T,T] x [1/2 —¢e,m/2+¢]) as p — o0, it must be bounded, i.e.,

we have
9

—1
1 e Za—l
b/((eb(al)t_l) 1 )1/(1*&) <1 + ab > dZ

ab

<es (1.2.12)

for all t € [1/T,T), 9 € [7/2 —e,m/2+ €] and p > 2, where c3 = c3(¢,T) > 0 is some
constant.
Now, define I'y : [0, 1] — C by
Ly(r) == (1 —r)e?” +rpe”, rel0,1],

and let I'j; be the range of I'y. We can calculate the real part of the first integral
appearing on the right-hand side of (1.2.11)) by

Re (/;:m (1 =+ z;)l) dz)
= Re (/F <1 + Z;)l) dz)
= Re (/01 (1 + W) &«Ff}(r)dr>

_ ! (p—1)e”
e </ T ) <ab>—1d’”>
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(p — 1)e'”
cos <Arg (1 T (ab)_1>> dr.  (1.2.13)

Arg (14 (Dy(0)* " (ab) ™) <

(p—1)e”
L+ (Tp(r)* ™ (ab)~!

:/01

For r € [0, 1], we have

L+ (Dy(1)* " (ab) ™) (1.2.14)
Define g by
5 = (= 1)0 — Arg (1 + (D(0))*" (ab) )
= (a=1)9 — Arg (1+ @D (ab) ™) € (0, (a — 1)9). (1.2.15)
It is easy to see that

Arg (14 (Dy(1)* " (ab) ™) < (@ = 1)0. (1.2.16)

By (T.2.14), (T.2.15) and (T.2.16), we get

Arg (14 (Dy(r)* " (ab) ™) € [(a = 1)9 = 0y, (a = 1)9), 7€ [0,1].
As a result,

(p — 1)’
Are (1 (o))" (ab)

Note that 0 < 0,/9 < (v —1)7/2 by (1.2.15)). Since dy is continuous in 1, we see that

1>€((2—a)19,(2—a)19+519], rel0,1.  (1.2.17)

0< Jim {(2— )0 +4y)} = (2—0[)g+5g < g
Set
ey = g— ((2—a)g+5g) € (0,7;) :
Now, we choose the constant €y > 0 small enough such that
0<(2—a)19<(2—a)19+519§g—%4 (1.2.18)

for all ¥ € [1/2 — g9, m/2 4 €. It follows from (1.2.17) and (1.2.18]) that for all ¥ €
[7/2 — €9, m/2 + €p] and r € [0, 1],

-1 i
cos | Arg (p a)_el > cos (W — C4> =:c¢5 > 0. (1.2.19)
L+ (Ty(r)* ™ (ab)~? 2 2
In view of (1.2.13]) and (|1.2.19]), we get

peiﬁ Za_l -1
Re / <1 + ) dz
it ab
s (p—1)e?

L+ (Ty(r)* " (ab) ™
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Lo

0 14 |(T(r)*" (ab) |
1 1 p—1 1

= 05/ P — dr = C5/ —— dr
0 1+ (1 —r+rp)* " (ab)~! o 1+14+r*" (ab)~t

C5 p=1 1 —1 —1( 2—
> dr = b(1+ ab 2 — “—1). (1.2.20
) o (7). 02

dr

1 —1
205/ p - dr > c5
0 14 (Dy(r)* (ab) |

Combining (1.2.11)), (1.2.12)) and (1.2.20)) yields

t ,
Re </ v (pe?) d5> > —cr p2,0c [g 60,72T+50} te[1)T,T],
0
(1.2.21)
where cg, ¢ > 0 are constants that depend only on a, b, o, g and T'.

“Step 2”: The case with p > 2 and ¥ € [—7/2 —g¢, —7/2 + ¢¢] can be similarly
treated, and we thus get

t )
Re (/ Vs (pew) ds> > cgp? Y — ¢ (1.2.22)
0

forall p > 2,9 € [-7/2 — g9, —7/2+&o] and t € [1/T,T], where cg, cg > 0 are con-
stants depending only on a, b, o, €9 and T'.

“Step 8”: Since fg Vs (pew> ds is continuous in (¢, p, ), we can find a constant c¢19 > 0

such that .
Re (/ Vs (pew) ds) > —c1o (1.2.23)

0
forall 0 < p < 2,0 € [—n/2—¢cp,—7/2+¢e0)U[n/2 —¢e0,7/2+¢€0] and t € [1/T,T].
The estimate ([1.2.8]) now follows from ([1.2.21)), (1.2.22)) and (1.2.23). O

Lemma 1.14. Let ¢ be as in the previous lemma. Then for each t > 0, we can find
constants C3, Cy > 0, which depend only on a, b, a, g and t, such that

/Ot vs(z)ds

when Arg(z) € [1/2 + eg, 7| and |z| > 0.

<Cs+ 04’,2‘2_0‘

Proof. Let p > 2 and 9 € [7/2 + g, 7]. Our aim is to show

t .
/ vs(pe')ds| < Cy + Cyp? @ (1.2.24)
0

for some constants Cs, Cy > 0 that depend only on a, b, o, g and t. Using the change

of variables . 1
N W (1—a) b(a—1)s _ —
z: (ab + (pe ) ) e b

we get

¢ ) t 1 Nl-a 1\ 1/ (1-a)
i _ W b(a—1)s 1.9.9
/0 vs(pe'”)ds /0 ((ab + (pe ) ) e ab) ds ( 5)
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1 i) 1T pb(a—1)t _ L -1
_ ]. /(ab+(p ) ) ab zl/(l—a) (z + 1) dz
bl = 1) J(pein)' ab
(1.2.26)
Since ¥ € [1/2 + g, 7], we have (1 —a)0 € [(1 — a)m, (1 — a)(7/2 + €0)], which implies
Isin ((1 — @)¥)| = min {sin ((o« — 1)7) ,sin (@ — 1)(7/2 +€0))} =1 c1 > 0. (1.2.27)
We first consider the case with 0 < p < 2. Note that for p € (0,2) and ¥ € [r/2+¢g, 7],
1 w17 b(a—1)s 1 ’ ‘ (( 1 70 1a> bla—1)s 1 )’
— _ > _ _
’(ab—k(pe ) )e o > |Im ab—i-(pe ) e "
= pt=eeb @ Dsgin (o — 1)0)
> glagblalse (1.2.28)

Then, by (1.2.25) and (1.2.28)), we get that for p € (0,2) and ¥ € [7/2 + &, 7],

_ 1/(1-a)
119 W\ 1™ b(a—1)s 1
’/ vs ( pe*” ) ds| < (ab (pe ) )e b

ds
< /t /A=) g=bs g — cl/(l_a)1 (1 — e*bt) .
= 0 1 1 b

We see that the estimate ) holds for 0 < p <2 and ¥ € [7T/2 + €0, 7M.
We now consider p > 2. Note that 2 2079 (7 4 1/(ab)) " is holomorphic on O.
So we have

(ai_,'_(peiq?)l—a)eb(a—l)t_ai 1 -1
/ ' P R1/0e) (z + > dz

(pet?)1=

~X

etV)l—e 42 -1
= e PRA (z+1> dz
(peiﬁ)lfa ab
1 .
E+(Pelﬁ)1_a bla—1)t _ af —1
+/( ’ ) b A/(=a) <z+1> dz. (1.2.29)
(peit)l—ot2 ab
Since
L i bla—1)t_ L -1
lim (apr " ) " M0 <Z+ 1) dz
P00 J(peid)l—a 42 ab

a eb(a—1)t _ —1
e A oa) (:+5) e
9 ab ’

where the convergence is uniform in ¥ € [7/2 + £¢, 7], we can find a constant ca > 0
such that

< e (1.2.30)

L eityi—a ) gbla—1)t_ L 1
/((m(p ) % M=) (z + 1) dz
( (6%

pew)l—a+2

for all p > 2 and ¥ € [7/2 + o, 7.
We now proceed to estimate the first term on the right-hand side of (1.2.29)). Define

.9\ 1—
Ly p(r) == (pem) ¢ +r, rel0,2].
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By (1.2.27)), we have
1Pt e L p| > p % sin (1 — @)9) | = e1p 9, (1.2.31)
where 7 € [0,2] and ¥ € [7/2 + eo, 71]. If r € [2p*7%, 2], then

i 4 g > plma s (1.2.32)

m o=

It follows from (|1.2.31)) and (1.2.32)) that for p > 2 and ¥

/(Peiﬂ)la—f—z Zl/(l—a) <Z I 1> -1 &
(pei?)1—a ab
? 1/(1-a) 1\
| oo (Lo + ) ar
’ 1/(1—a) 1 1—a (1—a)i 1/(1=a)
<63/0 |Lg,p(7)] adr:c3/0 ‘p ag(l-a)i +7‘) dr
Qplfa ' 1/(1—
= 03/0 ‘plfae(l’o‘)m—kr‘ =9 4,

2
+ 63/
2p1—a
20t 1/(1-a 2
< 63/0 (Clpl_o‘) / )dr + g2t/ (a1 P1/(1=a)q,

2p1—a
_ 2C3c%/(17a),02_a + ¢321/(@=1) %T(Q—a)/(l—a)

[7/2 + o, 7],

. 1/(1—a
pl—ae(l—a)zﬁ + T“ /( ) dr

2
<eyp’ ™ +es, (1.2.33)

7.:2p1—a

where c3, ¢4, ¢5 > 0 are some constants. Combining (1.2.26]), (1.2.29), (1.2.30) and

(1.2.33)) yields (|1.2.24]). This completes the proof. ]

Now, consider the process (Y,?);>o given by . The following properties are
probably well known in more general framework, but we do not have a reference. The
continuity of the function u +— E[exp{—uY;"}] on Cso follows directly from domi-
nated convergence theorem. Let xzy > 0 be fixed. Consider u € C with Re(u) > .
Let (un)neny € C be a sequence such that u, converges to w as n tends to infinity
and Re(u,) > zo. Since y — yexp{—=zoy} is a bounded function on R>(, we obtain
E[Y? exp{—z0Y,"}] < co. Noting that

_uny'tO _ _u}/tO

e e

_ 0
< thﬂe Z'[)Y; ,

Up — U
we can apply dominated convergence theorem to obtain

lim E [eiunYto} —E [equtO} = lim E le_unyto — e_“YtO]

n—oo Up — U n—oo Up — U

=E Ve ], (1.2.34)

Hence u — E[exp{—uY,"}] is holomorphic on Cxy.
On the other hand, the function z — v(z) given in (|1.2.7)) is continuous on C>o and
holomorphic on Csg for each t > 0 as well. Therefore, we have

t
E [e—uYtO} = exp {—a/ vs(u)ds} , u€ Cso. (1.2.35)
0
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Indeed, the equality ([1.2.35) is true at least for u € Ry by (1.1.14)). This and the iden-
tity theorem for holomorphic functions (see e.g. [22, Theorem I11.3.2]) imply (|1.2.35)

for all u € Csg, since both sides of ([1.2.35]) are functions that are continuous on Csg
and holomorphic on Cs¢. In particular, the characteristic function of Y;? with ¢t > 0 is
given by

E [e’fyto] = exp {—a/ot vs(—iﬁ)ds} , E€eR.

Remark 1.15. Recall that the process (Z{)io is given in (1.2.3). By repeating the

same arquments as above for Z}, we see that its characteristic function is given by
E %] = exp {~yu(-if)}, €€R.

In the next lemma we obtain the existence of a density function for Y, when ¢ > 0.
Note that by Theorem we have Yto > 0 almost surely for each t > 0.

Lemma 1.16. Assume a > 0 and b > 0. Then for each t > 0, Y;? possesses a density
function fYtO given by

fyo(z) : ! /OO e exp {—a/ot vs(—if)ds} d¢, z>0. (1.2.36)

t 21 J_oo

Moreover, the function fyto(af:) is jointly continuous in (t,z) € (0,00) X Rxg, and
fyo () € C*(Rx0,C) for each t > 0.

Proof. Let T > 1 be fixed. By Lemma there exist constants c1, co > 0 such that

exp {—a /Ot US(—if)dsH = exp {Re (—a /Dt vs(—if)ds>} < cpe ke (1.2.37)

forall¢ € Randt € [1/T,T], which implies that £ — exp{—a fot vs(—i&)ds} is integrable
on R. Therefore, by the inversion formula of Fourier transform, Y,? has a density fYtO
given by (1.2.36). The joint continuity of the density fyo (z) in (t,z) follows from

(1.2.37)), (1.2.36)) and dominated convergence theorem. The smoothness property of
fyto(-) is a consequence of ((1.2.37) and [59, Proposition 28.1]. O

We remark that for each ¢ > 0, the function fYtO () given in ([1.2.36]) is actually
well-defined also for x < 0, although fﬂo (z) = 0 for < 0, which is due to the fact that

Y,? > 0 almost surely. Next, we would like to know if fyp(x) > 0 when z > 0. The
next lemma partly answers this question.

Lemma 1.17. Assume a > 0 and b > 0. For each t > 0, the density function fyto(-)

of Y is almost everywhere positive on Rx.

Proof. Basically, the idea of the proof is as follows. We will show the following;:

Claim. The function x +— szO (z), € Rsg, can be extended to a holomorphic function
on Csg.

If this claim is true, then the set Ayp :={z >1/n : fyo(x) = 0} with n € N must be
discrete, that is, for each = € A,,, one can find a neighbourhood of z whose intersection
with A,, equals x; otherwise the identity theorem for holomorphic functions (see, e.g.
Freitag and Busam [22, Proposition II1.3.1]) implies that fyp () =0for z > 0. As a
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consequence, A, is countable, which implies that A := U,cnA, is also countable and
thus has Lebesgue measure 0.
Let = > 0 be fixed. We will complete the proof of the above claim in several steps.

“Step 17: We derive a simpler representation for fYtO (z). We have

Frp@) = 5= [ e {—a [Cu-igas) ag

— 00

_ % /Ooo ¢~ exp {—a /Ot vs(—zvg)ds} de
b [ e {=a [[ut-ig)as} ag
_ % /_OOO 7 exp {—a/ot vs(if)ds} de
+ % /_OOO ¢ exp {—a /Ot vs(—if)ds} de. (1.2.38)

For ¢ < 0, we have

((ﬁ +W> ebla—1)s _ $>1/(1—a)

((ﬁ 4 (i€)1—a> ebla—D)s _ $>1/(1—a) _ ua(i€),

<
»
—~
L
o
~

I

which implies

e~ @€ exp {—a /Ot vs(—iﬁ)ds} = e exp {—a /Ot vs(if)ds} . (1.2.39)
By and , we get
fyp () = Re <1 /OOO e~ exp {—a/ot vs(—zf)ds} d§> . (1.2.40)

s

For simplicity, let

I:= 1 /Ooo e exp {a /Ot vs(if)ds} d¢. (1.2.41)

“Step 27: We calculate I by contour integration. By a change of variables z := —i¢,
we get

—i K t
= lim —/ emexp{—a/ vs(z)ds} dz. (1.2.42)
i 0

K—oo T K-1

Define two paths I'; k¢ and I's g by

Ty x(d) = Ke?, e [72%] and Ty x(9) = K1, ¢ [w} .
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According to ([1.2.7)), we see that the function

¢
2 eyzexp{—a/ vs(z)ds}, z€ O := {pexp (1) : p>0,9€ B,W} },
0

can be extended to a holomorphic function on Oy := {pexp (i¥) : p > 0,9 € (0,37/2)}.
Therefore, we have

iK t
/ e*® exp {—a/ vs(z)ds} dz (1.2.43)
iK1 0
K t t
= / e*® exp {—a/ vs(z)ds} dz — / e** exp {—a/ vs(z)ds} dz
—-K-1 0 FI,K 0
t
—l—/ e** exp {—a/ vs(z)ds} dz.
o i 0

Since lim,_.g e*% exp {—a fg vs(z)ds} =1, it follows that

t
lim e** exp {—a/ vs(z)ds} dz =0. (1.2.44)
0

K—oo s

To estimate the second term on the right-hand side of (|1.2.43]), we divide the path
I'1, x into two parts, namely
T

272

FH’K(ﬂ) = Kew, VRS l: 9

—1—60} and TI'ijg g(9) =: Ke", 9e [7( —i—eo,w} ,

with g > 0 being the constant appearing in Lemmas and Then

t
/ e** exp {—a/ vs(z)ds} dz
IN 0

t t

= e** exp {—a/ Us(z)ds} dz + e** exp {—a/ vs(z)ds} dz
INTW S 0 ISP 0

= 1, (K) + I 15 (K).

If we can show that limg oo I11(K) = 0 and limg_,o, II2(K) = 0, then it follows from

(T.2.42), (T.2.43) and (T.2.44) that

—1

I=— /OOO e*® exp {—a /Ot vs(z)ds} dz. (1.2.45)

“Step 3”: We show that limg_,oo I (K) =0. If ¥ € [7/2,7/2 + 9], then

i i .
eacKe _ eRe(mKe ) _ echos(ﬁ) < 1.

By Lemma [1.13] we get

[ (K)| =

w/2+e0 . s t 9
\/ﬂ- iKez'L?exKe e—afo 'Us(Ke )dsdﬁ
2

w/2+€0
< K/
T

e Jo (K3 g < KggeaCimaCak®™, (1.2.46)
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which implies

lim |[I1(K)| < lim Kege®@1m0C2K*" — g
K—o0 K—oo

“Step 47: We show that limp oo IT2(K) = 0. In case ¥ € [7/2 + €q, 7], then

ea:Kem _ eRe(zKem) _ echos(ﬁ) < ezK cos(g—&-so) — oK sin(so)‘ (1'2‘47)
So
n , . t .
|[I1(K)| = /7r iKewexKeﬂeXp{—a/ Vs (Ke“g) ds}dﬁ'
54—60 0

exKew

dv

} dd.
By Lemma we get

. < T T —xK sin(ep) ,aC3 ,aCq K2~ —-0.
KlgnOO]IIg(K)|\Kh_I>nOOK(2 £o) e e 0

exp {—a /Ot Vg (Kem> ds}
/Ot Vg (Kew) ds

T
<K ﬁ
§+€0

™
< Ke @i sin(z0) / exp {a
s
+eo0

2

“Step 57: Finally, we prove that x +— fy'tO () is holomorphic on Csy. By (/1.2.40)),
(1.2.41) and (1.2.45)), we get

fyo(@) = Re (;Z /0 T e exp {—a /0 t vs(z)ds} dz)
— Re (:r /OOO €% exp {—a/ot vs(—z)ds} dz)
— _Im (i /OOO e~ exp {—a /Ot vs(—z)ds} dz)
- i/ooo e {—Im (exp {—a /Ot vs(—z)ds}>}

Let g > 0 be fixed. Consider x € C with Re(z) > zo and (z,) C C such that
Re(x,) > xo and x,, — x as n — oco. Noting that

dz.

—Tnz —xz

e —e
—T0z
< ze ,

Ty — T

we can use Lemma [[.14] to obtain

Im(exp {—a /Ot vs(—z)ds} ) ‘ < ze 0% lexp {—a/ot vs(—z)dsH

< ze” %% exp {aC?, + aC'4|z|2_O‘} ,  (1.2.48)

Z€7$OZ

where the right-hand side of ((1.2.48)) is an integrable function (with the variable z) on
R>g. Similarly to (1.2.34]), by dominated convergence theorem, we see that the function

[e'e] t
T 1/ e *? {—Im (exp {—a/ vs(—z)ds}> } dz, =z € Csy,
™ Jo 0
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is holomorphic, which means that = — fYtO (z) has a holomorphic extension on Csg.
This completes the proof. O

With the help of the previous lemma, we are now able to prove the main result of
this section. Recall that the process (Y}Y)>0 is given by (1.0.2)).

Proposition 1.18. Assume a > 0 and b > 0. Then for each y > 0 and t > 0, Y}
possesses a density function fy'ty given by

o] . t
fyv(z): ! /_ e exp {—a/o vs(—i&)ds — yvt(—if)} d¢, >0, (1.2.49)

t ‘:ﬂ

where fys(-) € C*(Rx0,C) and fys(

x) 0 for all x > 0. Moreover, the function
fyy (@) is jointly continuous in (t,y,x) € (0,00)

X R>0 X R>0~

Proof. In view of Proposition [I.12] we have
, , , t
E [e’fyty} =E [ezgyto} -E {e’gzﬂ = exp {—a/ vs(—i&)ds — yvt(—if)} ) (1.2.50)
0
where £ € R. It follows from ([1.2.37)) that

B[] < fo 7] < i

for all £ € R and ¢t € [1/T,T], where " > 1 and ¢1, ¢ > 0 are constants depending
on T. Tt follows that for ¢ > 0, ¥;Y has a density fyp given by 1j Proceeding
in the same way as in Lemma |1.16| we obtain the desired continuity and smoothness
properties of fyty.

We next show that if ¢ > 0, then fYty () > 0 for all z > 0. According to 1'
we see that the law of Y}¥, denoted by ftyp, is the convolution of the laws of Z; and

Y,?, which we denote by p zv and Iy0, respectively. So Iy = Hzy * [iyo. From this we
deduce that for all x > 0,

fyty(x) = /R>0 fyto(x — Z)sz<d2)
N /(o ) Fyp(x = 2)pgy(dz) + fyo(@)pzy (10}) - (1.2.51)

By Lemma the density function fYtO (z) of Y0 is strictly positive for almost all
x > 0. In the following we consider a fixed x > 0 and distinguish between two cases.

“Case 17: fyo(z) > 0. It follows from (1.2.51)) that
Fyoo(a) > fya(igs ({0)) > 0, (1.2.52)
where we used the fact that v ({0}) = P(Z} = 0) > 0, as shown in (L.2.5).

“Case 27: fyto (x) = 0. Then z € A, for a large enough n, where the set A, is the
same as in the proof of Lemma Since A, is discrete, we can find a small enough
0 > 0 such that

Fyolw—2) >0, (1.2.53)
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for all z € (0, ). We next show that 1y ((0,6]) > 0. By (1.2.4), (1.2.5) and L’'Hospital’s
Rule, we get

ti (B [ 0] B[N H D1, ] )

A—00

= lim ¥ (E [e 4] (2} = 0))

A—00

= lim e (e_y”t(’\) e_yd)
A—00

= /\lim 51Ny ¥t N (py (X)) ¥ Pl DENTY = o0, (1.2.54)
—00

Suppose that P(Z} € (0,8]) = 0. Then we can use dominated convergence theorem
to get

i (B [ )~ B [ H1, y])

A—00

= lim (E[e? 700 0 g | +E [ 01, 0 ]) =0,

A—00

which contradicts (1.2.54)). Consequently, the assumption that P(Z! € (0,4]) = 0 is
not true and we thus get P(Z; € (0,4]) > 0. Now, by (1.2.51)) and (1.2.53), we get

fyy (z) > fyo (x — Z)/lzf (dz) > 0. (1.2.55)

(0,9]
Summarizing the above two cases, we have fyu (x) > 0 for all x > 0. This completes

the proof. O

1.3. A Foster-Lyapunov function for (Y, X)

We now turn back to the two-dimensional affine process (Y, X) = (Y%, X¢)i>0 defined
in (1.0.1). Our aim of this section is to construct a Foster-Lyapunov function for (Y, X).

For a functional ®(Y,X) based on the process (Y, X), we use E(,,)[®(Y, X)] to
indicate that the process (Y, X) considered under the expectation is with the ini-
tial condition (Yp, Xo) = (y,x), where (y,z) € R>g x R is constant. The notation
Py o) (®(Y, X) € -) is similarly defined.

Lemma 1.19. Let h € C®°(R,R) be such that h(z) > 1 for all x € R and h(x) = |x|
whenever |x| > 2. Define

V(y,z) =By +h(z), y=0zck,

where 8 > 0 is a constant. If B is sufficiently large, then V is a Foster-Lyapunov
function for (Y, X), that is, there exist constants ¢, M > 0 such that

E(yo) [V (Ye, X)] < e “V(y,z) + & (1.3.1)

for all (y,x) € Rzo xR and t > 0.
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Remark 1.20. To see the existence of a function h € C*°(R,R) that fulfills the con-
ditions of Lemma we can proceed in the following way: let p € C°(R,R) be such
that p(x) =1 forx 2 2, p(z) =0 forx <1 and 0 < p(x) < 1 for 1 <z < 2. Define
F:R—R by F(z) := [y p(r)dr, x € R. Then

0, r <1,
F(x)=<€]0,1], 1<x<2,
x—24 [Fp(r)dr, x> 2.

We now define h : R — R by h(z) := F(|z|) +2 — F(2), z € R. Then h satisfies the
conditions required in Lemma |1.19

Proof of Lemma[I.19 Recall that RZ; x Q > (s,2,w) > 21 <1} /Yoo € F2l¢ and
RZy x Q 3 (s,2,w) = zlf,=13 /Yo € F' by Remark |1 Define g(t,y,x) :=
exp{ct}V (y,x), where ¢ > 0 is a constant to be determined later. It is easy to see
that g € C?(Rxg x Rsg x R, R). We define the functions g/, g5, g5 and g3 3 by

gty w) = Fg(t.y,x) = ceV(y,x), gty x) == Lg(t,y,x) = Be,
2 2
gty x) = Lglt,y,x) = e Lh(x), gist,y,2) = L9t y,x) = e’ Lsh().

Proceeding as in the proof of Proposition we can apply It6’s formula for g (see
[62, Theorem 94]) to obtain that for each ¢ > 0,

g(t,Y;g,Xt) - g(oa}/(%XO)
t t
— / 4, (5, Ys, Xo)ds + / Gb(5, Yo, Xo)y /Yods
0 0

t t
+/ gg(s,y;,xs)(a—bn)dH/ Gh(s, Yo, Xo)(m — 0X,)ds
0
t
+2 / (s Yoo X)Yds + [ gh(s, Yo X)V¥idB,
// gs Yoo + 2/ Y, Xs—) — g(s,Ys—, X ))N(ds,dz)
{el<1)
// ngS_-i-z\/ s—y Xs—) —g(s, Ys—, X5 ))N(ds,dz)
{+l21)
+/ / (g(s,nﬂs/Ys,Xs)
0 J{z1<1}
— g5, Ve X) — 2 /Yagh(s, Yo, XS>)Oaz—1—adsdz

t t
:/ eCS(cg)(s,n,Xs)dH/ gi(s,Ys, X.)ds + M (g), (1.3.2)
0 0
where
t
M(g) == / dh(s,Ye, X,)\/YodB,
// 9(s, Yoo + 2 9/Vor, Xs_) — g(s,Yu_, X, ))N(ds,dz)
{|z\<1}
// 9(s, Yoo +2/Ys—, Xs—) —g(s, Ys—, X ))N(ds,dz)
{|z\>1}
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/ / (gs.Ye 2 /%2, X,) — g(5. Y, X)) N(ds,d2)
{|z\>1}

by an easy computation (see the proof of Proposition E , we see that the operator £
corresponds with the infinitesimal generator A given in (|1.1.1). As a result, it follows
from ((1.3.2)) that for each ¢ > 0,

(t )/;faXt) - (O Yv(]aXO)
—/ *(Ag) (Ya, X, ds+/ g5, Ya, X)ds + M, (g) (13.3)
The rest of the proof is divided into three steps:
“Step 17: We show that (M;(g))t>0 is a martingale with respect to the filtration

(Ft)t=0, where (F;)¢>o is the filtration introduced in Section |1} To achieve this, we can
use a similar argument as in Proposition Define

t
)= [ ghls. Ve Xo)VYidBL,
/ / (5. Yoe + 2 ¢/Vir, Xuo) — gls,Yar, Xo0)) N(ds, d2),
{\Z|<1}
// 9(8, Yoo + 2/ Vs, Xs—) — g(s, Ys—, X ))N(ds,dz)
{lz |>1}
// (s, Y, + 2 VY5, X,) SYS,X))N(ds,dz),
|Z\>1}
where t > 0. By noting that (¢,y,z) — g¢4(t,y,2) is bounded for (¢,y,z) € [0,T] x
R>0 xR, where T' > 0 is constant, we can proceed in the same way as in Proposition [I.5]

to prove that (Dy(g)):>0 is a square integrable martingale with respect to the filtration
(Ft)t=0- Note that g(s,y+z,2) — g(s,y,z) = fexp{cs}z. Similarly to Remark |1.3| (see

equations ((1.0.5)) and (1.0.6))), we see that

]l{|z|<1}( 8, Yso + 2/ Yoo, Xs—) — g(s, Ye, X )) — ﬁecsﬂ{|z\<1}zm e F2loc,
]l{|z|>1} ( S Yts— +Z\/T,X 3 Y; 7X‘ )) — ﬁecsl{lz|>l}zm c Fl.

Following [26, pp. 62, 63], we obtain that
// ( (8, Yoo 4+ 2/ Yoo, Xo_) — g(s, Ve, X ))N(ds,dz), t>0,
{lzl<1}
is a local square integrable martingale with respect to the filtration (F3):>0 and
// < (8, Yoo + 2V Y5, Xs—) —g(s,Ys—, X )>N(ds,dz)
{lz[=1}
// ( (5,Ys + 2 /Y5, X,) sYS,X)>zV(ds,dz), £>0,
{lz[>1}

is martingale with respect to the filtration (F;)¢>o. Therefore, (J¢(g))e=0 = (Jit(g) +
JF(g))i=0 is a local martingale with respect to the filtration (F;);>0. It remains to
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check that (J¢(g))i=0 is a martingale with respect to the filtration (F;):>0. Using the
Lévy-It6 decomposition in (1.0.3]), we obtain

t -
Ji(9) :/ / Be“z{/Ys_N(ds,dz)
0 J{z<1}
t t .
+/ / fe“z Y Ys—N(ds,dz) —/ / ez Ys—N(ds,dz)
0 J{lz[>1}

0 Jzz1)
t
:/ B¢ /Yo dL,,  t30.
0

We can use Remark and Jensen’s inequality to obtain that for each 7" > 0, there
exists some constant ¢y > 0 such that

1/a

T /o T
(/ sts> < e (/ E(y.z) [Y3] ds) < 00,
0 0

where finiteness follows from Proposition[1.2] Since (J¢(g)):>0 is a local martingale with
respect to the filtration (F;)¢>0, there exists an increasing sequence of stopping times
on, n € N with 0,, — 00 as n tends to infinity almost surely such that (Jire, (9))i>0 is
a martingale with respect to the filtration (F;);>0. Then, by dominated convergence
theorem for conditional expectations, we get that for all 0 < s <t < T,

Ey,2) l sup |Js(g)
s€[0,7T

S @Egyq)

E[Ji(g) | Fo] = E [ lim Jins, (9)| Fs]
= nhHHgoE [Jt/\an(g) | -/rs] = nh~>nolo Js/\an(g) = Js(g)7
showing that Ji(¢g) is a martingale with respect to the filtration (F)i>0. As a re-

sult, (M¢(9))e=0 = (Dt(g) + J:(g))=0 is also a martingale with respect to the filtration
(Ft)i=0- This completes the proof of step one.

“Step 27: We determine the constant ¢ > 0 and find another constant M > 0 such
that
(AV)(y,z) < —=cV(y, ) + M (1.3.4)

for all (y,x) € R>p x R, where A is given by ({l.1.1)). For the function V, we have
V € C?(Rso x R, R),

et if |z| > 2
9 3] 3] x| 1
ZV(y,x) = p, Viy,z) = £h(x) =
dy (y ) ox (y ) ox ( ) {h/( )7 lf‘ |<27

and

52 92 O, if ‘117| > 27
=V (y,z) = £=zh(z) :=
O0x2 (y ) Ox2 ( ) {h//(x), If ‘,Z'| g 27

where h' and h” denote the first and second order derivatives of the function h, respec-
tively. So

(AV)(y,2) = (= by) 3 + (m — 02) feh(@) + Jy b ()
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= (a—by)B+ (m — 0z) Zh(z) + Ly Lsh(z).

By choosing § > 0 large enough, we obtain that for all (y,z) € Ryg x R,

(AV)(y,2) = af — %2 — 0o Zh(z) + (=% + § Zh(@)) y + mZh(2)
<aB =2 — 0 (h(@) Lz + (@)L pezy) + 0+ cs
<af-% -9 (h(x)]l{|a:\>2} + h($)1{\x|<2}) + ¢4
=af — % —0h(z) + ¢y = —%y — Oh(zx) + cs, (1.3.5)

where we used the boundedness of ||, || and |h|1{|, <2} to get the first and second

inequality. Here c3, ¢4 and c¢5 are some positive constants. Now, we see that (1.3.4))
holds with ¢ := min(b/2,0) and M := cs.

“Step 3”7: We prove (1.3.1). By (1.3.3), (1.3.4) and the martingale property of

(M¢(g));>0, We obtain

By [V (Vi X1)] = V(y, @)
=Eq [9(t, Ye, Xo)] = Ey ) [9(0, Yo, Xo)]

rrt
B [ A0 ) V0 ) )

r ot
< E(y,x) /0 (ecs(_cv<Y;7Xs) +M> +C€CSV(Y;,XS))(18:|

o M
=Ky /0M668d8:| < ?e':t

for all (y,z) € Ryo x R and t > 0, which implies (1.3.1). This completes the proof. [

1.4. Exponential ergodicity of (Y, X)

The aim that we pursue in this section is to check the exponential ergodicity of the
affine two factor model (Y, X) = (Y%, X¢)i>0. So far, we have derived a lower bound for
the transition densities of the a-stable CIR process (Y;):>0 and we have introduced a
Foster-Lyapunov function for the two-dimensional process (Y, X¢)i>0 as well.

Certainly, in order to establish the aimed exponential ergodicity for (Y, X), we need
the existence of a unique invariant measure for (Y, X) in prior.

Proposition 1.21. Consider the process (Y, Xi)i=0 with parameters a > 0, b > 0,
m € R, 0 >0 and a € (1,2). Then (Y;, X¢) converges in law to a unique limit
distribution m as t — co. Moreover, 7 is independent of the initial value (Yo, Xo) and
its characteristic function takes the form

/ / el(FALiA2). (W2 1 (dy, da) = exp {—a/ vs(A1, A2)ds + 2'77;)\2}
0 —00 0

for all (A, A2) € Ry x R.
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Proof. The existence of the invariant measure as well as the form of its characteristic
function follows by the stationarity, see [4, Theoren 3.1]. According to the discussion in
[39, p.80], the limit distribution 7 is also the unique invariant distribution of (Y%, X¢):>0.

O

Let || - [[7yv denote the total variation norm for signed measures on Ry x R, namely,

lllry = sup {[u(A)]},

where p is a signed measure on R>¢ x R and the above supremum is running for all
Borel sets A in R>g x R.

Let P'(y,z,-) := P, ) ((Y:, X;) € -) denote the distribution of (Y3, X;)i>0 with the
initial condition (Yp, Xo) = (yo,x0) € Rxo x R.

Roughly speaking, if for each (y,z) € R>¢ x R, the convergence of the distribution
Pi(y,x, ) to m as t — oo is exponentially fast with respect to the total variation norm,
then we say that the process (Y;, X;)i>0 is exponentially ergodic.

Theorem 1.22. Consider the two-dimensional affine process (Y,X) = (Yi, Xt)t=0
defined by with parameters a € (1,2), a > 0, b > 0, m € R and 6 > 0.
Then (Yi, Xi¢)i=0 is exponentially ergodic, that is, there exist constants § € (0,00) and
B € (0,00) such that

1P (y, ,) = 7llov < B(V(y,2) + 1) e (1.4.1)
forallt >0 and (y,z) € Ry x R.

Proof. We basically follow the proof of |34, Theorem 6.3]. The essential idea is to
use the so called Foster-Lyapunov drift criteria developed in [52] for the geometric
ergodicity of Markov chains.

We first consider the skeleton chain (Y, Xy )nez.,, which is a Markov chain on the
state space R>o x R with transition kernel P"(y, z,-). It is easy to see that the measure
7 is also an invariant probability measure for the Chain (Yo, X )neZ>0

Let the function V' be the same as in Lemma, [1.19| and the constant B > 0 there be
sufficiently large. The Markov property together Wlth Lemma [T.19] implies that

B[V (Yns1, Xnt1) | (Yo, Xo), (Y1, X1), ..+, (Yo, X))

M
- / / V(y, 2)P (Yo, X, dydz) < eV (Y, X,) + o,
R>o

where ¢ and M are the positive constants in Lemma If we set Vp := V and
Vi i =V (Yn, Xp), n € N, then

M
E[V1 | Yo, Xo] < e Vo(Yo, Xo) + — (1.4.2)

and, for all n € N,

M
E Vit | (Y0, Xo), (Y, X1 .. (Yo, X)) < €7 Va4 —. (1.4.3)

It follows from ([1.4.2) and (1.4.3) that condition (DD4) in [50, p.564] holds. In
order to apply [50, Theorem 6.3] for the chain (Y;,, Xpn)nez.,, it remains to verify the
following conditions:
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(a) the Lebesgue measure A\ on R>p x R is an irreducibility measure for the chain
(Yna Xn)nEZ>0§

(b) the chain (Y, Xy )nez., is aperiodic;
(c) all compact sets of the state space R x R are petite.

The definitions of ‘irreducibility’, ‘aperiodicity’, and ‘petite sets’ can be found in the

Appendix [B] see Definitions and [B.3|therein. We now proceed to prove (a)-(c).

In order to prove (a), we will use the same argument as in [4, Theorem 4.1]. Tt is
enough to check that for each (yo, 7o) € Rsg x R, the measure P*(yo, 7, -) is absolutely
continuous with respect to the Lebesgue measure with a density function p; (y, z|yo, o)
that is strictly positive for almost all (y,x) € R>g x R. Indeed, let A be a Borel set of
R>0 x R with A(4) > 0. Then

P(yo,ﬂfo) (TA < OO) 2 Pl (?JO?@’O;A) = //APO(yaﬂ?JO?»TO)dydx > O

for all (yo, o) € R>g x R, where the stopping time 74 is defined by 74 := inf{n >0 :
(Yo, Xp) € A}
Next, we prove the existence of the density p1(y, x|yo, z¢) with the required property.

Recall that . .
Yy =e? (yo + a/ ePds +/ e \‘”/Kg_dLs> ,
0 0
and

1 1
X, =¢"? (mo +m / e ds + / ees\/stBs) ,
0 0

provided that (Yo, Xo) = (0, z0) € R0 x R. For (y,Z) € R x R, we have

P(yme) (Yi < ﬂ,Xl < .f) = E(yovxo) {P(ymxo) (Yi < ﬂ,Xl < .f’ Yﬂ}

gl

vil]. (1.4.4)

= IE(yo,ﬂfo) {E(yo,ﬂco) [1{Y1 <§}1{X1<i}

= E(yo,mo) {R{Y1<Z?}E(yo,ro) {1{X1<i}

Note that (Y;):>0 and the Brownian motion (Bj)¢=0 are independent, since (L;)¢>o and
(Bt)t>0 are independent and (Y;);>o is a strong solution. Therefore, the conditional
distribution of X; given (Y;);c(0,1) is @ normal distribution with mean z¢exp{—60} +
m(1l — exp{—0})/0 and variance exp{—26} fol Y; exp{20s}ds. Hence, we get that for
7 € R,

E(yo,20) [ Lix,<a) YI}

= E(yo,ro) {E(yo,wo) [H{X1<f} (Yt)ogtgl} ‘ Yl}

z 1
= ]E(y07x0) |:/OO Q (T - 6_9$0 f— % (1 _ 6_6) ;6_29/0 6268Y5d8> d""

where o(r;0?) is the density of the normal distribution with variance o2 > 0, i.e.,

Yl} . (145)

1 2

2
;o) = e ,
o(r;0%) oy
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Note that the assumption a > 0 ensures that

1
P (yo v0) ( /O e**Y,ds > 0) =1.

By [37, Theorem 6.3] and considering the conditional distribution of fol exp{260s}Y,ds
given Y1, we can find a probability kernel K, ,,)(:,-) from R>q to R>o such that

1
0s
IED(yo,ﬂl?o) (/0 e? Yids € - ‘ Y1> = K(yowo)(yla )

and
K(ypao) (2, Rs0) = 1, for all 2 > 0. (1.4.6)

So

z 1
E (yo,z0) [/_ 0 <r —e gy -1 (1 - e*‘)) ;6*29/0 eZGSYSds) dr

g

- OOO (/—:E © <T B 6_6{1:0 B % (1 N 6_9) ;e_zew) d?") K(yomo)(Yh dw)
_ /x (/OOO 0 (r —e gy —m (1 — 6—0) ;6—2%) K(yy o) (Y, dw)> dar.
- (1.4.7)

It follows from (1.4.4)), (1.4.5) and (1.4.7) that for all (y,z) € R>¢ x R,

Pyo,w0) 1<y, X1 <z)= /O?J /_xoo (/OOO 0 (T —e Vpy— 7 (1 - 679) ;e*QBw)

’ K(yO,Io)(Za dw))fyly() (Z)drdz,
(1.4.8)

where fylyo is given in (1.2.49)). Define

p1(Y, z|yo, vo) := fylyo (y)/o 1Y (35 —e ¥z - T (1 - 6*9) ;6729w> K (yo,20) (Y, dw).

Since fyvo (y) > 0 for all y > 0 and

1
0= IED(yo,aco) (/ 62QSY:sd'«“' = O>
0

= [ a0 0y 0(@0) = [ Ky 00D Sy (),

it follows that Ky, +0)(y,{0}) = 0 for all y € Ryp \ N, where N is some null set
under the Lebesgue measure. By modifying the definition of the kernel K, ..)(y, ")
for y € N, we can make sure that K, ,,)(y,{0}) = 0 for all y € R, or equivalently,
Kyo00)(y,R50) = 1 for all y € Ryo. By [1.4.6) and the fact that leyO (y) is strictly
positive for all y > 0 (see Proposition [1.18]), for each (yo,z9) € R>p x R, the density

p1(y, z|yo, xo) is strictly positive for almost all (y,x) € R>g x R. Moreover, by (1.4.8)),
we have

Y T
Pyoae) (Vi < 7, X1 < 7) = /O / D1y, 2y, wo)dyda
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for all (y,z) € Rxp x R. So p1(-,-|yo, o) is the density function of (Y, X;) given that
(Yo, Xo) = (3o, @o)-

To prove (b), i.e. the aperiodicity of the skeleton chain (Y, Xpn)nez.,, We use a
contradiction argument. Suppose that the period [ of the chain (Y, Xy )nez., is greater
than 1 (see Definition for a definition of the period of a Markov chain). Then we
can find disjoint Borel sets Ay, As, -+, A; such that

)‘(AZ) > 07 L= ]-7 e 7l) Ué:lAi = RZO X R, (149)
P'(yo, 0, Ait1) = 1 (1.4.10)

for all (yo,z0) € Aj, i = 1,--- ,1 — 1, and PY(yo, 29, A1) = 1 for all (yo,x0) € A4;. By
(1.4.10)), we have

//(A : p1(y, x|y, xo)dyde =0, (yo,z0) € A1,
2 C

and further
//A p1(Y, z|yo, vo)dydxr =0,  (yo,T0) € A1.
1

However, since for each (yo, zo) € R>¢ x R, the density p1(y, z|yo, zo) is strictly positive
for almost all (y,z) € R5p x R, we must have A(A;) = 0, which contradicts ((1.4.9).
Therefore, the assumption that [ > 2 is not true. So we have [ = 1.

In view of [50, Theorem 3.4 (ii)], to prove (c) it is enough to check the Feller prop-
erty of the skeleton chain (Y, Xn)n€Z>0. By Theorem the two-dimensional process
(Y;, Xi)i>0, as an affine process, possesses the Feller property. So the skeleton chain
(Yo, Xn)nezs, has also the Feller property.

Since (a), (b), and (c) hold true, we can apply [50, Theorem 6.3] and thus find
constants § € (0,1), B € (0,00) such that

IP"(y,2,) — 7llrv < B(V(y,z) +1)e " (1.4.11)

for all n € Z>o, (y,z) € R>o x R. For the remainder of the proof, i.e., to extend the
inequality ([1.4.11)) to all ¢ > 0, we can interpolate in the same way as in |52, p.536],
and we omit the details. This completes the proof. O

Remark 1.23. According to the discussion after |13 Proposition 2.5|, a direct but
important consequence of our ergodic result is the following: under the assumptions
of Theorem [1.22] for all Borel measurable functions f : Ry x R — R satisfying

fR;O fR |f(y, x)|7(dy, dz) < oo, it holds

P(Iim ;/Tf(YS,XS)ds:/DOO - f(y,:c)w(dy,dx)) _1 (1.4.12)

The convergence (1.4.12) may be very useful for parameter estimation of (Y, X).
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Moments and ergodicity of the
jump-diffusion CIR process and
parameter estimation for the
drift parameters based on
discrete time observations



2. The jump-diffusion CIR process

In this chapter, we study the jump-diffusion CIR (shorted as JCIR) process, which is
an extension of the Cox-Ingersoll-Ross model introduced in [15]. The JCIR process

X = (Xi)i>0 is defined as the unique strong solution to the stochastic differential
equation
dX; = (a — bXt)dt +ovXedBy+dJy, t>=0, Xg=0 a.s., (201)

where a > 0, b > 0, 0 > 0 are constants, (B;);>0 is a one-dimensional Brownian motion
and (J;)i>0 is a pure jump Lévy processﬂ with its Lévy measure v concentrating on
(0,00) and satisfying

/ (z A 1)v(dz) < oo. (2.0.2)
0
We assume that Xy, (Bt)¢>0 and (J;):>0 are independent.

The principal aim we pursue in this chapter is to derive the ergodicity and expo-
nential ergodicity of the JCIR process, respectively. Our choice of the approach is the
same as for the two-dimensional affine model (Y, X) introduced in Chapter |1l To be
precise, we will establish a positive lower bound of the transition densities of (X¢):>o,
prove existence of the fractional moments under a suitable integrability condition to the
Lévy measure v, and based on this result, we prove the existence of a Foster—Lyapunov
function in order to apply the Foster-Lyapunov drift criteria which enables us to show
(exponential) ergodicity of X. Before we focus on these, we first recall some elementary
properties of the JCIR process in prior.

We let (Bi):=0 be a standard (F;)¢>0-Brownian motion and (J¢)¢=0 be a one-dimensional
(Ft)e=0-Lévy process whose characteristic function is given by

B[e] —exp {t

where v satisfies (2.0.2]) (see, e.g., [12, Theorem 1.2] or [56, pp.78-79]). The Lévy-Itd
representation of (J;);>o takes the form

o0

(e"* —1) I/(dz)} ,  (t,u) € Ryp x Cgo,

t roo
Jr = / / zN(ds,dz), t>=0, (2.0.3)
0 Jo

where N(dt,dz) = 3 ,<;6(s,a7,)(dt,dz) is a Poisson random measure on Rxq, where
AJs:=Js—Js_, s>0, AJy:=0, and 5(3@) denotes the Dirac measure concentrated
at (s,z) € R,

Remark 2.1. Following Filipovié [21] and Jin et al. [34], the JCIR process defined by
(2.0.1) includes the so-called basic affine jump-diffusion (BAJD) as a special case, in

Y.e., (Je)tz0 is a subordinator.

44
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which the drift takes the form a(6 — Xy) with parameters a € Rsg and 0 € Rsg, and
the Lévy process (J¢)i>o0 is a pure-jump Lévy process with the Lévy measure

de—%d >0
y(dz):{ce z, z ,

2.04
0, z <0, ( )

for some constants ¢, d € Rsg. The measure v given by (2.0.4)) satisfies the integrability
condition (2.0.2)), since

0 1 0
/ (zA1)v(dz) = c/ zde”%dz + c/ de~%dz
0 0 1

c (1 —(d+ 1)e_d> , c—ced
= ] +ce = 7d € R}o.
The BAJD has been introduced by Duffie and Garleanu 18| to describe the dynamics of
default intensity. It was also used by Filipovié [21] and Keller-Ressel and Steiner [43]

as a short-rate model.

The following proposition ensures the existence and uniqueness of a strong solution
of the stochastic differential equation (2.0.1]).

Proposition 2.2. Consider the JCIR process defined by the SDE with param-
eters a € R>p, b € R, 0 € Ry and v satisfying . Then there is a (pathwise)
unique strong solution X = (X¢)i=0 to the SDE such that (X¢)i=0 s almost
surely non-negative for all t > 0. Further, we have

t t t
X, =e <X0+a/ ebsds—l—a/ ebS\/Xsst—i—/ ebSdJs>, t>0. (2.0.5)
0 0 0

Proof. By the Lévy-Ito representation of (J;);>0, we can rewrite the SDE (2.0.1)) in

t t t roo
Xt:Xo—i—/ (a—bXs)ds+a/ \/XSdBS—i—/ / zN(ds,dz), t=>=0.
0 0 0o Jo

It follows from [23, Theorem 5.1] that if X is independent of (Bi):>0 and (J;)¢>0, then
there is a unique strong solution (X;)¢>o to the SDE (2.0.1)). Since the diffusion coef-
ficient in the SDE is degenerate at zero and only positive jumps are possible,
the JCIR process (X¢)i>0 stays non-negative if Xy > 0. This fact can be shown rigor-
ously with the help of comparison theorems for SDEs, for more details we refer to [23].
Finally, using It6’s formula to the process (exp{bt}X})¢>0, we obtain

d (etht) — bebt X,dt + ePtd X,
= aebt + ebt (O’\/ XtdBt + th) y t> 0,

and hence,
t t t
X, — X = a/ ebds + a/ e¥\/X,dB; +/ edJ,, t>=0,
0 0 0

yielding (2.0.5)). O

Finally, we introduce some notation. Note that the strong solution (X;);>¢ of the
stochastic differential equation obviously depends on its initial value Xy. From
now on, we denote by (X7 ):>o the JCIR process starting from a constant initial value
x € R, i.e., (X7 )i=0 satisfies

AX? = (a — bXP)dt + 0/ XFdB + dJ;, t>0, X&=ux € Ray. (2.0.6)
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2.1. Affine representation of the JCIR process

In this section we show that the JCIR process belongs to the class of (conservative)
regular affine processes with state space R>o. We derive the infinitesimal generator as
well as the characteristic function of (X})¢>o0.

We first check that the JCIR process is a regular affine process. To do so, we shall
calculate the infinitesimal generator of the JCIR process.

Proposition 2.3. Let a E R>g, b € R, 0 € Ry, and the Lévy measure v on Rsq
satisfying - Then (X7 )i=0 is a regular affine process with infinitesimal generator
given by

T 2
(Af) (a:):(a—ba:)a“g(x) + 5ot a +/ (2 +2) — f@)p(dz), (21.1)

where f € C%(Rso,R).

Before going to the proof, it is worth noting that the statement of Proposition
does appear in [33] and |2] but there is no proof stated in [33] and the proof in |2] goes
back to some results of [16]. Here is a simple direct proof.

Proof. Let x € Ry be fixed and assume that Xy = x almost surely. In view of the
Lévy-Itd decomposition of (J;),, in (2.0.3)), we have

t t t roo
Xi=x +/ (a —bXs)ds +U/ v XdB; +/ / zN(ds,dz), t=>=0,
0 0 0 Jo
where N(ds,dz) is defined in (2.0.3)). Using It&’s formula to f € C?(Rxq, R), we obtain

FOG) 5 (%) = [ a=bxD) gf o

+*/ Xs (%2 ) ds
+/o /o (f (X +2) = f (X)) N(ds, dz)

= [ (AN (XD ds + M), 1 e R,

(X7) ds+/ X2 (x#y 4,

where

:a/t X;Ca‘f(Xf)st—i—/Ot/Ooo (F (X7 4 2) — f(X%)) N(ds, d2)
/ / FIXE 42) = f(XT) w(d2)ds, ¢30,

and

2
(AN @) = 0= b3 @)+ 3o 5@ + [ (fla+2) = 1) vide)

for z € Ryg and f € C?(Rxp,R) is precisely corresponding to . Thus, it remains
to prove that (M;(f))¢>o is a martingale with respect to the ﬁltratlon (Ft)i=0- Defining

t x
Dy(f) = a/ afa(XS) XrdB;, t>0, and
0 x
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= [T (2 - 5 (1) Nas, )
// FXT 4 2) = F(XP) w(dz)ds, >0,

we check that (M;(f))i=0 = (De(f) + Ji(f))i=0 is actually a sum of martingales with
respect to the filtration (F3)¢>o0.

We first check that (Dy(f)):>0 is a square integrable martingale with respect to the
filtration (F)¢>0. Indeed, since the derivative of f has compact support, for all ¢ € R,
we obtain

l( /\/ﬁ (X2) dB)]:cf?/OE[Xf(gf(Xx))

which implies that (D¢(f)):>0 is a square integrable martingale with respect to the
filtration (F¢>0). Next, we prove that (J;(f))i>0 is a martingale with respect to the
filtration (F;);>0. Notice that f € C?(Rxg), so SUP,eRr., [0z f(2)| < co. By the mean
value theorem, we have

ds < oo, t=>=0,

9 t()| < oo,

Fw+2) = f@)] <2 swp |

.Z‘ER;O

which in turn yields

B[ [T1r 00 - r (v
—u | [ ) itz

/ /{M} (XZ+2) — (Xf)\u(dz)ds]

%f(x) t/ooo(z/\l) v(dz) < 00, 130,

< sup
I€R>0

where the finiteness of the integral follows by assumption . By [26, Lemma 3.1
in Chapter II and page 62|, we get that (J;(f))¢>0 is a martingale with respect to the
filtration (F;)¢>0. Consequently, (My);>o is a martingale with respect to the filtration
(Ft)e=0 as asserted.

Noting that (0,a = 1/20%,b = a,3 = —b,v,0) is a set of admissible parameters in
the sense of Definition the rest of the proof goes through as for Proposition
with hardly any changes. O

The following remark is about the representation of the functions F' and R appearing
in the generalized Riccati equations (see Appendix .

Remark 2.4. Since the JCIR process X is a conservative, reqular affine process with
state space Rxq, especially, it is a continuous-time branching process with immigrations

(shorted as CBIE. The form of the infinitesimal generator A of X given in (2.1.1)

Zsee Appendix the paragraph after Theorem for details.
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and the formulas (A.0.4) and (A.0.5) yield that X is a CBI process having branching

mechanism

o?u?

R(u) = 5~ bu, wu e Cgo, (2.1.2)

and immigration mechanism
=au +/ v(dz), wu € Cgo. (2.1.3)

The next proposition is about the characteristic function of the JCIR process.

Proposition 2.5. Consider the JCIR process (X[)i>o given in (2.0.6) with a € R,
b, 0 € Ryo, and v satisfying (2.0.2). Then ¢(t,u) and (t,u) solve the generalized
Riccati equations

{(%¢(t7 u) =F (w(t’ u)) ’ ¢(07 u) =0,
%¢(t>u) =R (¢(t,u)) > 77/}(07 u) =uc (C<07

where the functions F' and R are given by (2.1.3)) and (2.1.2)), respectively. The unique
solution of the Riccati equations are given by

ue—bt

P(t,u) = gy p— (2.1.4)

and

o(t, ) :—%log (1—022;( ™) ) / / (€76 — 1) p(d2)ds,

where (t,u) € Rxg x C<g. Moreover, the characteristic function of X has the form

B [equ} — ( _ %u (1 _ ebt))ig .exp{ U;f(_ftf e_bt)} (2.1.5)

2b

- exp {/ / eVl 1) V(dz)ds}

forallt >0 and u € Cgyp.
Proof. Since X is affine, its characteristic function is of exponential affine form
E [e"¥7] = exp {g(t,u) + 2(t,u)},  (t,u) € Rxo x Cep. (2.1.6)

In view of (2.1.3) and (2.1.2]) the functions ¢ and % in question solve the differential
equations

Orp(t,u) = ah(s,u) + [5° ( 2p(tu) 1) vdz, ¢(0,u) =0,
8t¢(5? ) = T@Z)(tvu) - bw(tvu)v ¢(07u) =uc (CQO'
The second equation is a Bernoulli differential equation. It is easy to see that its

solution is given explicitly by (2.1.4) and ¢(¢, u) is simply obtained by integration once
¥ (t,u) is known. After plugging this into (2.1.6)), we conclude with (2.1.5)). O
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We recall a decomposition of the characteristic function of X} established in [33]. As
mentioned in [33], the product of the first two terms on the right-hand side of
is the characteristic function of the CIR process. More precisely, consider the unique
strong solution (Y;*)¢>o of the following stochastic differential equation

dY{* = (a — bYF)dt + VB, t>0, Y =x€Rsgas.. (2.1.7)

where a € R>g, and b,0 € Rxg. So (Y*)i>0 is the CIR process starting from z. Note

that (2.1.7) is a special case of (2.0.6) with J; = 0 (corresponding to v = 0). By ({2.1.5)),

we obtain )
a
uYF | _ _ du b)) o2 zue b
E {e ¢ } = ( 5T (1 e )) eXp{l”;b“(le—bt)} (2.1.8)
for all t > 0 and u € Cgy.

We now turn to the third term on the right-hand side of (2.1.5)). Let Z := (Z})i=0
be the unique strong solution of the stochastic differential equation

dZz; = -bZdt + o/ Z:dBy +dJ;, t2>20, Zy=0 a.s., (219)

where o0 € Ryg. It is easy to see that (2.1.9) is also a special case of ([2.0.6) with
a =z = 0. Again by (2.1.5)), we have

t roo
E {e“zt} = exp {/ / (ew(s’“) - 1) U(dz)ds} . (t,u) € Ryp x Cgo. (2.1.10)
0 Jo
It follows from (2.1.5)), (2.1.8]) and (2.1.10) that
E [¢"X7] = B[] E %] (2.1.11)

forallt > 0and v € C
induced on (Rxq, B(Rx0)
by

<0- Let pyz and pz, be the probability laws of V;* and Z;
), respectively. Then the probability law pxy of X is given

[Xp = fbyy * [z, (2.1.12)

where * denotes the convolution of two measures.

2.1.1. Transition densities of the JCIR process

We prove that the JCIR process X has positive transition densities. Our approach is
similar to that in Section[I.2]and is based on the representation of the law of X as the
convolution of two probability measures, one of which is the distribution of the normal
CIR process.

Proposition 2.6. Assume a > 0. For each x € R>g and t € Rsq, the random variable
X{' possesses a density function fxz (y), y = 0 with respect to the Lebesgue measure.
Moreover, the density function fxz (y) is strictly positive for all y € R-y.

Proof. Recall that pxz = pryy * puz, as shown in (2.1.12). Note that the CIR process
(Yi")t=0 possesses a density function fyg(y) for t € Ruo, Yo = 2 € Ry, and y € Ro.
More precisely, in case x > 0, we have

bti—g 2a 2h yebt —x T
fra(y) = g2 7 (y) 7 exp (—> oo [ 22VEYET ) 9 1 13)
i o2 (1 — e bt o2 (bt — 1) o2 (bt — 1)

T o2
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where I(54)/(52)—1 denotes the modified Bessel of the first kind of order (2a)/0%—1, i.e.,

. 1 y 2m+0*2*
T2 — 2 e
(%,1(9) mZ:O m!T(m + 2a/0?) <2) Y >0

see, e.g., Cox et al. |15, Formula (18)] or Jeanblanc et al. |28 Proposition 6.3.2.1]. In
case x = 0, for all y € R, the density function fYtO is given by

1 % & 2 2%
fyto(y) = I‘(2a/02) (02 (1 — e—bt)) yo? -1 exp {02(1_2_“)} ]1(0,00)(9)7 (2.1.14)

due to Tkeda and Watanabe [26], since Y, has gamma distribution with parameters
2a/0” and 2b/(1 —exp{—bt}). We conclude that yuxs is also absolutely continuous with
respect to the Lebesgue measure and thus possesses a density function denoted by fxs
which is given by

fxz(y / fyp(y —2)uz(dz), y=0.

We proceed to prove the strict positivity of fxz(y) for all y € R5o. Let t > 0 and
y > 0 be fixed. It follows that

e (y) > /[0 v = iz (d2)

where 6 > 0 is small enough with § < y. Noting that fys (y) > 0 for y > 0 and

frz(y) =0 for y <0 (see, formula (2.1.13) in case # > 0 and formula (2.1.14)) in case

x = 0), we have that fys(y —z) > 0 for all z € [0,4]. Hence, it is enough to check that
pz,([0,6]) > 0. If P(Z; = 0) > 0, then we are done. So we now suppose

P(Z; = 0) = 0. (2.1.15)

/ / (6 — 1) w(dz)ds, u e Cep,
where 1 is given in . By (2.1.15), we conclude
E [eu(Zt—é)} _E [eu(zt—é)ﬂ{ztzo}}

—e W (E [e"Zt] —E [e“ZfIL{ Zt=o}D

= ¢ (M) P (2, = 0))
o u8/2 oA (u)—ub /2. (2.1.16)

Let

For all u € (—oo0, —1] and s € [0,t], we have

—b —b
() (et
ou (1- (1= e)) — % (1—e™)
< zeibs]l{zgl} + zeibsefclz]l{zﬂ} <ce (2N 1), (2.1.17)

for some positive constants ¢; and co. By the differentiation lemma [10, Lemma 16.2],
we see that A;(u) is differentiable at u € (—oo, —1] and

w)) = /Ot /000 a% (6 1) u(dz)ds, u € (o0, 1], (2.1.18)
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Note that 0/(0u)(exp{z¢(s,u)} —1) > 0 for z > 0, u € (—o0,—1] and s € [0,1].
Therefore, A¢(u) is strictly increasing in w on (—oo, —1]. Moreover, we have

9 —2bz <€
: _ 2111(57”) — = N i -
uggloo 90 (6 1) eXp{0.2 (ebS — ]_) } uEIElOO (1 _ c%u (1 _ efbs))2
2b

By (2.1.17)), (2.1.18]) and the Lebesgue dominated convergence theorem, 9/(0u)A¢(u) —
0 as u — —oo. So 9/(0u)(A¢(u) —ud/2) — —d§/2 as u — —oo, which implies that
A¢(u) —ud/2 is monotone in u for sufficiently small v and thus

—bs

EIEl e U2 W)mud/2 —_ o (2.1.19)

It follows from (2.1.16)) and (2.1.19)) that

lim (E {e“(zﬁ‘s)} —E {e“(zﬁ‘s)]l{zt:o}} > = 00.

U——00
Now, we must have P(Z; € (0,4]) > 0, otherwise

lim (IE [#(%=0)] _E [e" %1, )] )

U—r—00

= lim_(E["P 1o gan| +E [ AL 54]) = 0.

U——00

This completes the proof. O

2.2. Moments of the JCIR process

In this section we characterize the existence of the k-moment (k > 0) of the JCIR
process by an integrability condition on the Lévy measure of the subordinator. For
these considerations it will be convenient to state beforehand a moment estimation for
the Bessel distribution. Moreover, we will calculate the first and second moment of the
JCIR process explicitly.

2.2.1. Bessel distribution

Suppose o and 3 are positive constants. We call a probability measure m, g on
(R=p, B(R>0) a Bessel distribution with parameters a and S if

Mep(de) == e %0p(dz) + e~ %\ Ja(Bz)~11; (2\/0451’) dz, zeRyg, (2.2.1)

where g denotes the Dirac measure at the origin and I; is the modified Bessel function
of the first kind, namely,

r & (iﬁ)k
L(r) =5 kgm r € R. (2.2.2)

Let ma,p(u) == [p_ exp{uz}mqg g(dr) for u € C<o denote the characteristic function
of the Bessel distribution mq g. It follows from [34, Lemma 3.1] that

_ au
Ma,g(u) = exp {ﬁ — u} , u€ Cg.

To study the moments of the JCIR process, the lemma below plays a substantial
role.
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Lemma 2.7. Let k > 0 and § > 0 be positive constants. Then
(i) there exists a positive constant Cy = C1(k) such that for all « >0 and 8 > 0,

1
/ z"me p(dz) < C1 ot
RZO

B

(ii) there exists a positive constant Coy = Ca(k, ) such that for all a > ¢ and § > 0,

K

/ z"mg g(dx) > CQ%.
Rxo p

Proof. (i) If 0 < k < 1, then we can use Jensen’s inequality to obtain

/R . 2 Mma,p(dr) < ( /R . xma,ﬁ(dx)>m = (g) (2.2.3)

where the last identity holds because of

0
/R>o xme p(de) = %maﬁ(u)

(0%

u=0 ﬁ
For k =n € N with n > 2, byand -, we have for all a;, 8 > 0,

/R>0 "M, p(dz) = /R>o z" (eaéo(dx) + ﬁe*afﬂw\/m_fl (2@) dx>

— @ Oéﬁ k+1 o n+k _—pBx
= Z R0k -+ 1)1 " e Prdx
B = kl(k + 1)!

ek (n 4 k)

T A ke 1)
e %" & afti-n (k+1)---(k+n)

- ' . (2.2.4)
[n et (k+1-n) (k+2-n)---(k+1)
Since
i (EED )
koo (k+2—mn)---(k+1)
it follows from ([2.2.4]) that
/ .’L'nma”g(dl') < Cli CE+062 + .. +an—1 +an i ﬂ
o g 0 m)!
1 a™
< C2 (m + 6”) 5 fOr all a’ B > 07 (225)

where ¢; and ¢y are positive constants depending on n.
For the remaining possible k, namely, x > 1 and k ¢ N, we can find n € N and
e € (0,1] such that 2k = n + . By (2.2.3), (2.2.5) and Holder’s inequality, we get for

all a, 8 > 0,
1
2
/ x°me g(dx)
Rso

/ " meq g(de) < / " meq g(dx)
R>0 R;O

NI
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ny = £ e/2 (n+e)/2 K
<o (1+0‘>2 (O‘)2 P e
B B B(n+5)/2 Br

where c3, ¢4 and ¢35 are positive constants depending on .
(ii) If k > 1, using again Jensen’s inequality, we obtain for all «, 5 > 0,

/R>0 Mg p(dr) > (/R}O xma,ﬁ(dx)>n B (g)n

Suppose now 0 < k < 1 and let § := 1 — k € (0,1). Consider a random variable n > 0
such that .
N~ (1—e ) " (map(de) — e %p(dz)) . (2.2.6)

Then for u > 0, we have

Ele™] = (1—e™®) " (Mas(—u) —e ™)

it follows that

E[n"] = F_(;) /OOO (‘ZE [eﬂm] W ldu
— af o0 —au uf1
—1“(0)(1—e—a)/0 eXP{,@+u} (ﬁ+u)2du' (2.2.7)

By (2.2.6) and (2.2.7), we see that

. af /OO { —au } uf~1
x"me, g(dx) = ex du, wue Ry
o, ¥t = gy |, P U5 @ .

By a change of variables w := au/, we get

fo'e) Bw "
SR

= () o) e

_. r(le) (BYI(O(). (2.2.8)

By Fatou’s lemma,

o0 _ —K
liminf I'(a) > / lim inf exp { v } v sdw
a—00 0 a—00 o+ w (1+w/a)

= / exp{—w}lw "dw =T(1— k) > 0.
0

On the other hand, the function (0,00) > « + I(«) is positive and continuous. So
we can find a positive constant ¢ depending on k and 0 such that I(a) > ¢¢ for all
a € [0,00), which, together with (2.2.8]), implies the assertion. O
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2.2.2. Moment characterization of the JCIR process

Recall that Z = (Z;)¢>0 is the unique strong solution of the stochastic differential
equation (2.1.9) and its characteristic function is given by

E uZt — exp {/ / zw su) _ 1) V(dz)ds}, (t,u) € Ry x Cg,

see formula (2.1.10)). Note that for all (t,u) € R>¢ x Co,

E “Zt = exp {/ / w su) _ 1) Vl(dz)ds}
exp{ / / (esbtem) — 1) ug(dz)ds}, (2.2.9)

where v1(dz) = ly<yv(dz) and vo(dz) = ly.5yv(dz). Similarly to (2.1.9), for
i = 1,2, we define (Z});>0 as the unique strong solution of

dZ} = —bZidt + o/ ZidB; +dJ}, t>0, Z{=0as., (2.2.10)

where (J});>0 is a subordinator of pure jump-type with Lévy measure v;. By (2.1.10)),
we have

E [ “Z = exp {/ / eV(s) 1) Vi(dz)ds}, i=1,2, (t,u) € Ry x Cgp.
(2.2.11)
It follows from and (| m ) that

[z, = Hz1 * g2 (2:2.12)

Before we turn to check the aimed characterization of the fractional moments for the
JCIR process, we preface the proof with a technicality.

Proposition 2.8. The characteristic function of (Z2)i=o0 given by [2.2.11) (i = 2), is
the characteristic function of a compound Poisson distribution.

The proof is a rather lengthy calculation. We just note that (J?)i>¢ has only big
jumps. Then we direct the reader to [33, Lemma 2] for details.

Theorem 2.9. Consider the JCIR process X = (Xt)i>0 defined in (2.0.1). Let k > 0
be a constant. Then the following three conditions are equivalent:

(1) Ex[X[] < 0o for all z € Rz and t > 0,
(ii) EL[XF] < oo for some x € R>g and t > 0,

(iii) [,1y 2"v(dz) < oo.

Proof. “(iii)=-(i)”: Let k > 0 be a constant. Suppose that [,y 2"v(dz) < co. Let
x € Ryp and ¢ > 0 be arbitrary. We define f(y) := (|y| V 1)*, y € R. Then f is locally
bounded and submultiplicative by [59, Propos1t10n 25.4], i.e., there exists a constant
c1 > 0 such that f(y1 + y2) < c1f(y1)f(y2) for all y1,y2 € R. Further, it is easy to see
that for any constant ¢ > 0, there exists a constant co > 0 such that f(y) < ca exp{c|y|},
y € R. By (2.1.12)) and (2.2.12), we get

E[f (X)) < AE[f (Y)]E [f (Ztl)} E [f (th)}
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< Aok [f (V) E [ecztl] E [f (Zf)} . (2.2.13)

By [11, Proposition 3], we have E[f(Y;")] < oo. The finiteness of the exponential
moments of Z}, i.e., Elexp{cZ}}] < oo, follows by [40, Theorem 2.14 (b)], since (J})¢=0
has only small jumps.
We next show that E[f(Z?)] < co. By Proposition we know that Z2 is compound
Poisson distributed, namely, we can find a probability measure p; on R such that
E {e“zﬂ = e)‘t(;’\t(u)_l), (t,u) € Ryg x Cgo,

where A\; > 0 and p; denotes the characteristic function of the measure p,. More
precisely, according to [33, see p.292], we have

t
:)\_1// Me(2.5) B(z5)V(d2)ds,
=N gy Mt 8oV (d2)
where My ) 8(z,s) 13 @ Bessel distribution with parameters a(z,s) and §(z, s) given by

2bz 2bebs

W=y e B Gy

t
At = / / (1 — e_o‘(z’s)) v(dz)ds < oco.
0 J{z>1}

By the Fubini’s theorem, we obtain

t
/ FW)pe(dy) = A / / ( / f(y)ma(z,s)ﬂ(z,s)(dy)> v(dz)ds.  (2.2.14)
R0 0 J{z>1} R>o
By Lemma we have

and

/R f(y)moa(z,s),ﬁ(z,s) (dy) < / (1 + ym)ma(z,s),ﬁ(zﬁ) (dy)
>0

R>0
1+ a(z,9)"
B(z, )"
<1+ Cro?(20) "1 — e P)F 4 Cre ™25 (2.2.15)

It follows from ([2.2.14]) and (2.2.15)) that

f@)pe(dy) < oco. (2.2.16)

Rxo

Moreover, using (2.2.16)) together with the submultiplicativity of f, we get

<1+ Ch

[ twerayy = [ [ fn ey )
R0 R R0

<el </R f<y>pt<dy>> < o0, (2.2.17)

which implies

E [f (Zf)} = /R20 fWnzz(dy) = ektrgg/%o fWpi"(dy) <oo.  (2:2.18)
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By (2.2.13) and (2.2.18)), we obtain E [f (X])] < oo. It follows easily that E [(X7)"] <
00

“(i)=(ii)”: It is clear.
“(ii)=-(iii)”: Suppose now that E[(X})"] < oo for some z € Rz and t > 0. By
(2.1.12), we obtain

E[(X;)" /]R /]R (y + 2)"pyz (dy)pz, (dz) <

So fR>0 (y+ 2)uz,(dz) < oo for some y € Rxp, which implies

E[ZF] — /]R g (d2) < /R (y + 2)" 1z, (dz) < oo, (2.2.19)
>0 >0

Similarly, we can use (2.2.19) and (2.2.12) to conclude that (Z?);>¢ has finite moment
of order . Let the function f be as above. Then E [f (Z?)] < 1+ E [(Zt) } < o0.

Since now all the summands in the last identity of (2.2.18) are finite, the summand
corresponding to n = 1 is also finite and thus

Y pr(dy) < /R Fy)pi(dy) < 0o

R>0

By the Fubini’s theorem, we obtain

/ Yy pe(dy) = / / < Y Ma(z8),8(z, 5)(dy)> v(dz)ds < co.  (2.2.20)
{Z>1} R>0

Noting that for all s € [0,¢] and z > 1,

2bz S 2b
o2 (ebs —1) 7 o2 (ebt — 1)’

a(z,8) =

By Lemma we can find a constant c3 = c3(t) > 0 such that

K Oé(Z?s))H K —kbs
Ma(z.6).8(z) (dY) = ¢ =c3z"e , se€l0,t], z>1. 2.2.21
L e sen(@) 2 e (55) = 0, (2221)

It follows from ([2.2.20]) and (2.2.21)) that f{z>1} z"r(dz) < oo. O

Remark 2.10. We remark that moments of general 1-dimensional CBI processes were
recently studied in [29]. If Kk > 1 and x > 0, our Theorem can be viewed as a special
case of [29, Theorem 2.2]. However, to the authors’ knowledge, the cases 0 < k < 1
and k> 0 with x = 0 can not be handled by the approach used in |29|.

Based on the proof of Theorem [2.9] we get the following corollary.

Corollary 2.11. Let k > 0 be a constant. Suppose f{z>1} 2"v(dz) < oo. Then, for all
x€Ryp and T > 0,

sup E; [X}] < 0.
t€[0,T]
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Proof. Let f, Z} and Z? be as in the proof of Theorem Note that |y|® < f(y) <
ly|" + 1 for all y € R. Since sup;cr. E[(Y;")"] < oo due to [11, Proposition 3], by
(2.2.13)), it suffices to check that

tes[%%]E{eCZtl}<oo and tes{té%}E[(Zf>ﬁ]<oo, T >0,

where ¢ > 0 is a constant to be chosen. It follows from [40, Theorem 2.14 (b)] that

E {ecztl} = exp {/t /1 (ezw(s’c) - 1) Vl(dz)ds} <00, c€R,

where v is given in . Now, we choose ¢ > 0 sufficiently small such that ¥ (s,c) > 0
for all s € Rx. Hence, SUPte[o 1] Elexp{cZ}}] < Elexp{cZ}}] < co. We next show that

sup;efo,7) E {(Zf)'{] < oo. By (2.2.14)), (2.2.17) and (2.2.18)), we have for all ¢ € [0, 77,
E [f (Zf)} < exp {—/\t + Cl)\t/ f(y)pt(dy)}
{ At + Cl/ /{z>1} </R>o ) a(z,s),ﬁ(z,s)(dy)> V(dz)ds}
eXp {Cl/ /{z>1} </]Ri>o )ma(z,s),ﬁ(z,s) (dy)> I/(dZ)dS}

= exp clx\T/ fly pT(dy)} (2.2.22)
>0
It follows from and (2.2.22) that
sup E [(Zt?)ﬁ} < sup E [f (Zf)} < exp {cl)\T/R f(y)pT(dy)} < 00.
>0

te[0,7) t€[0,T]

This completes the proof. O

In Theorem [2.25] below we will improve the statement of Corollary [2.11] such that
SUPseRr., Ko [X/] < 0o using Foster-Lyapunov estimates.

2.2.3. First and second moment of the JCIR process

Finally, we calculate the first and second moment as well as their limits for t — co. We
need this formulas in Chapter [3]in order to introduce least squares estimators.

Remark 2.12. It is worth mentioning that the moment formulas (2.2.23) and | m
in Propositions and |2 - below are special cases of [6l, Theorem 4 3], where an
explicit formula of integral moments of general CBI processes has been derived.

We start with the expectation of the JCIR process.

Proposition 2.13. Let a € R>y and b,0 € Rog and v satisfying f{z>1} zv(dz) < oo.
Then, for all 0 < s <t < 00, we have

bt

E.[X:] = e %z + ! be (a+ /Ooo zzx(dz)) , (2.2.23)

and hence

1— e—b(t s) 0o
E [X;| Fs) = e P09 X, + — (a —i—/ zu(dz)) . (2.2.24)
0
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Proof. Noting that pxy = pys * piz,, we have

In view of Theorem we know that E,[X;] exists and is finite. Therefore, we have

E. (V) = 2B, []

_ bt a /o bt
= a:+b(1 e, (2.2.25)

and we shall proceed to calculate the expectation of Z;. Recall that for all (¢,u) €
R;O X Rgo, by 2.1.10 s

_ 9 uZy zw(s u)
E[Z] = %E {e } - —exp {/ / - 1) V(dz)ds}

where ¥(t,u) is given by (2.1.4]) and

(u —/ / Zw(su —1) v(dz)ds, t=>0.

Note that ¥ (t,u) < 0 for all t € Ryp and u € Rgg, and ¥ (¢,0) = 0. Then, for all
u € Reo,

= exp{A¢(u)},
u=0

—bs
9 (vton) 1) — sevion & (™
ou ou — T (1 —eb)

—bs
= < ze7 (2.2.26)

(1- e e

and [5 [° ze ¥v(dz)ds < oo. We conclude that A¢(u) is differentiable in u and
OuD(0) = b7H(1 — exp{—bt}) [s° 2v(dz) by Lebesgue’s differential theorem. We end
with

d T u 1—e P roo
E[Z] = B[] = /O v(dz), (2.2.27)

and (2.2.23)) follows from ([2.2.25)) together with ([2.2.27)).

To deduce (2.2.24)) from ([2.2.23)), one simply uses the Markov property of X}. O

We immediately get the following corollary.

Corollary 2.14. Consider the JCIR process (X¢)i>0 with parameters a € Rxg, b, 0 €
R<g, and v satisfying f{z>1} zv(dz) < oco. Then

tlggo E, [X¢] = (a + /OOO zu(dz)) %

Proceeding further in this direction, we compute the second moment.

Proposition 2.15. Let a € Rxo, b, 0 € Rso and v satisfying [(,-1, 2?v(dz) < oo.
Then, for all t € R>g, we have

_ 2a 4+ 0% _ a(2a +a?%) _ 2
EI[XE] — e 2Wty2 o ; o 20t (ebt_l)x_'_ 502 o 20t <€bt_1)

+ x%e_%t (ebt - 1) /OOO v(dz) + b2 P (ebt - 1)2 /OOO zv(dz)
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1—e 2 oo, 0% opt (bt 2 [
+ T/o z°v(dz) + 25 (e - 1) /0 zv(dz)
1— —bt\2 [e') 2
I Gl (/ zv(dz)) . (2.2.28)
b2 0
Consequently,
. 2 7(1(2&"‘0'2) 2@/00
tlggoEz {Xt} = o + 7, zv(dz) (2.2.29)

2b/ v(dz) +22 OOO (dz)+612(/oozu(dz)>2,

Proof. In view of Theorem (12.9)) and (2.1.11)) the second moment of the JCIR process
X} could be derived by

E, |X7| = <62E ] 12, ] Op 2] 2k [e"Zt])

)

u=0

ou? ou ou ou?

where the first moment of the CIR process Y;* is given by (2.2.25]), the second moment
of V¥ is given by

- 2a+0° _ a(2a +0?) _ 2
E, [V?] = e 2% + e (" —1)z+ R (e =1)", (2230)

and the first moment of Z; is computed in (2.2.27). Hence, by (2.2.25)) and ({2.2.27)),

we obtain

oF,, [Y%] E [Zt] =92 ;LEJJ [euyt} aauE |:6UZt:| .

_ 2 ont (bt > 2a _opt (bt 2 [
=age (e —1)/0 zy(dz)+b—26 (e —1)/0 zv(dz). (2.2.31)

Next, we derive the second moment of Z;. As before, for t € R>g, we define As(u) :=
I3 J52 (exp{t(s,u)} — 1) v(dz)ds. Tt follows, for all u € Reg,

82 z S, u z S, u 82 a 2
Ewel <e Vlsu) _ 1) = ze?¥(sv) (Ww(s,u) +z <au¢(s,u)) )

<z 8—QQp(s u) + ze” 28
SO\ ou

Oj —2bs ( bs —2bs
<z 7€ e 1)+ ze < 00, (2.2.32)

where we used the estimation (2.2.26]) in the first inequality and (2.2.32)) indeed holds,
since, for all u € R,

aiw(s,u) = % (1 - 6_b8> < ";e—?bs (ebs — 1) .

ou? (1 _ % (1 _ e—bs))3

Consequently, an application of dominated convergence theorem yields the twice dif-
ferentiability of A;(u) with respect to u. Moreover, we obtain

82 Z S u
8u 8u2/ / %( — 1) v(dz)ds

u=0
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= / / ( _Qbs e — 1) z+ e_2bsz2> v(dz)ds

i % op [ b 2 [
:T/o zl/(dz)—}—ﬁe (e —1)/0 zv(dz), t>=0.

o 2
(eae)])

Using that 1(s,0) = 0, we conclude exp{A4(0)} = 1. Hence, using (2.2.27)) and domi-

nated convergence theorem,

// 22e 25y (dz ds+// z—ef%s bs—l) v(dz)ds
—i—(/o/o zebsl/(dz)ds>

1— e—th

2
_ * 2 o —obt (bt 2 [
= T/o z“v(dz) + 252 (e — 1) /0 zv(dz)

+ (1_(;“)2 </OOO zy(dz))27 t>0. (2.2.33)

Note that

(‘f;E [euzt}

82
= exp {A¢(u)},= 0( sA(u)|  +
u=0

82
E uZt
Ou?

Thus, combining (2.2.30)), (2.2.31)) and (2.2.33)) yield (2.2.28)). In view of (2.2.28)), one
easily checks (|2.2.29)). O

2.3. Ergodicity of the JCIR process

In this section we prove the ergodicity of the JCIR process X provided that

/ log zv(dz) < oo. (2.3.1)
{z>1}

Since ergodicity requires existence and uniqueness of an invariant measure for X, we
consider this property in prior.

Remark 2.16. Let a, b € Ryg. If ( holds, then, by an application of [43,
Theorem 3.16] (see also |41, Theorem 2.6}), the JCIR process Xy converges in law to a

limit distribution m which is independent of Xg = x and whose characteristic function
takes the form

/OOO er(dr) = (1 - ) exp {/ / 27/) (s;u) _ ) V(dz)ds}

for all u € C<y. Moreover, by the argument in [39, p.80], the limit distribution  is
also the unique invariant distribution of the JCIR process.

Our approach to establish the ergodicity is based on the general theory of Meyn
and Tweedie [52] for the ergodicity of Markov processes. The essential step is to find
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a Foster-Lyapunov function in the sense of [52, condition (CD2)]. Recall that the
infinitesimal generator A of X is given by (2.1.1) as

(AN (@) = (a—bn) 22D

2
37 s [% (w4 2) = fw)via),

for f € C2(Rx0,R). We introduce a useful decomposition of A. If we write

x 2 T
(D) (@) = (a—bn) 22D 4 252, )
- 5

/ (x +2) x))v(dz),

where x € Ry and f € C?(Rxq,R), we see that Af = Df + Jf.

In view of (2.3.1]), we choose the Foster-Lyapunov function to be V(x) = log(1 + x),
x € Ryp. Clearly, V' is unbounded. So we first show that this function V is in the
domain of the extended generator of X which is defined as follows:

Definition 2.1. Let V' : R>g — R be a measurable function for which there exists a
measurable function Uy : R>¢p — R such that for each z € R>g, t € Ry,

mW@M—W@H&M%w&mﬁ

V Uy (X |ds] < 0.

We adhere to the convention that AV := Uy and call A the extended generator of the
process Xy associated with V.

Lemma 2.17. Suppose (2.3.1) is true. Let V(z) :=log(l + x), x € Rsg. Then for all
t >0 and x € Rxg, we have E; {fé | AV (XS)|d5} < oo and

t
E, [V(Xy)] =V(x) + E, [/ AV (X5) ds} ) (2.3.2)
0
where A is given in (2.1.1]). In other words, V' is in the domain of the extended generator
of X.
Proof. Tt is easy to see that V € C?(R>0,R) and

V/(x) = QV(.I) — (1 _}_x)fl and V”(m) — 872
O 02

Let z € R3¢ be fixed and assume that Xy = = almost surely. In view of the Lévy-Itd
decomposition of (J;),5 in (2.0.3), we have

Xt—:v+/ a— bX, d8+0/ v XdBg +// N(ds,dz), t=>0,

where N (ds,dz) is defined in (2.0.3). By It6’s formula, we obtain

Viz)=—14z)2

t 0.2 t
V(Xy) — V(Xo) :/O (a—bX) V' (Xs)ds+?/0 XV (X,)ds
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+a/0t VX V' (X,)dB,
+ /0 |V (e 2) =V (X)) N(ds,02)
— /Ot (a—bX,) V' (X,)ds+ 022/; X, V" (X,)ds
+ t |0 (9 =V () s
+ a/ot VXV (X,)dB,
+/0t |V (a2 =V (X)) Mds,d2)
. /Ot(AV) (X,)ds + My(V), t>0, (2.3.3)
where N(ds,dz) := N(ds,dz) — v(dz)ds and
M) =0 [ VRV (X,)dB,
+ t /{ V(a2 =V (X)) Nds o)
| /0 t /{ oy V(e 42) = V(X)) N(ds, d2)

:Dt+J*7t+J£k

Clearly, if (M¢(V'))i=0 is a martingale with respect to the filtration (F;)¢>0, by taking
the expectation of both sides of (2.3.3)), we see that condition (2.3.2)) holds.

We start to prove that (My(V))i>0 is a martingale with respect to the filtration
(Ft)t=0- Since

E, [(Dy)?] = o /t E, [ X, (1+ X,) 7] ds < 0? /t E, [(1+ X,) 7] ds < to? < o0,
0 0

it follows that (Dy)i=0 is a square-integrable martingale. Note that

V(y+2)— V()| <zsup [V'(y)| <z y,z€Rs. (2.3.4)

YyeR>0

Therefore,

t
E, [/0 /{Z@} (V (Xoe 4 2) — V(X)) v(d2)ds| < t/ 22u(dz) < oo,

which implies that (J,¢)¢>0 is also a square-integrable martingale by [26, pp. 62, 63].
If ye Ryp and z > 1, then

[V(y+2) —V(y)| =log (1 + 1j—y> <log(1 + z) < log(2) + log(2). (2.3.5)

So

E, [ /0 /{ Ve ) V) u(dz)ds]
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<t /{  os(2) + log(2) ()

=tlog(2)v({z > 1}) + t/ log(z)v(dz) < oo, t=0,
{z>1}

and hence, by [26, Lemma 3.1 and p. 62], (J)¢>0 is a martingale. Consequently,

(M(V))i=0 = (D¢ + Jut + Jf )i=0 is a martingale with respect to the filtration (F)>o.

Next, we show that E, {fg AV (X)) ds} < oo for all t > 0. By the decomposition
of A into a diffusion part D and a jump part J as introduced in the preamble of this
section, we can write AV = DV + JV. Concerning the diffusion part DV, it is easy
to see that

0.2

Syl + y) 2| < 0. (2.3.6)

sup |[(DV)(y)| = sup |(a—by)(1+y)~" —

yER>g yER>0

For the jump part JV, we decompose it further as JV = 7.V + J*V, where

@V)0) = [ (Vl+2) = Vi) vids), (237)

TV = | (Vl+2) = V) vide) (238)
By (234), we have

(TV) ()] < /{ ) <o ye R (2:3.9)

Concerning J*, it follows from (2.3.5)) that

(T*V)(y)| < log(2)v({z > 1}) + ey log zv(dz) < 00, y € Rxp. (2.3.10)

Combining (2.3.6), (2.3.9) and (2.3.10]) yields that |AV| is bounded on R, which
implies B, [ fj | AV (X,)|ds| < oo for all £ > 0. O

For the JCIR process X, we let P!(z,-) := P, (X; € -) denote the distribution of X;
with the initial condition Xg = € Ryg.
We are ready to prove the ergodicity of the JCIR process (X;);>0 under ([2.3.1)).

Theorem 2.18. Consider the JCIR process (Xt)i>0 defined by (2.0.1)) with parameters
a, b, o and v, where v is the Lévy measure of (Ji)i=0. Assume a > 0. If (2.3.1) is
true, then X is ergodic, i.e.,

A HPt(x’ )= 7THTV =0
for all x € Rxy.

Proof. In view of [52, Theorem 5.1], to prove the ergodicity of the JCIR process (X¢):>0,
it is enough to check that

(a) (X¢)e=o0 is a Feller processﬂ

3 Actually, according to |52, Theorem 5.1], it is enough to show that (X;):>o is a non-explosive (Borel)
right process (see, e.g., |60, p.38] or [47} p.67] for a definition of a (Borel) right process). In view of
|47, Corollary 4.1.4], the Feller property implies that (X¢):>0 is a right process.
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(b) all compact sets of the state space R>o are petite for some skeleton chain (see

Definition |B.3|);

(c) there exist positive constants ¢, M such that
(AV)(z) < —c+ M1g(z), =z € Ry, (2.3.11)
for some compact subset K C Rxq, where V(z) = log(1 + z), z € Rxo.

We proceed to prove (a)-(c).

In view of [17, Theorem 2.7], (X;):>0 possesses the Feller property as an affine pro-
cess. This proves (a).

To prove (b), according to Proposition we can proceed in the very same way as
in Jin et al. [33, Theorem 1] to see that for each n € Z>( the d-skeleton chain X,
0 > 0 being a constant, is irreducible with respect to the Lebesgue measure on Rx.
Indeed, let A € B(R>p) and A(A) > 0. Then it follows from the positivity of the density
function of X5 that

P, (ra <00) > P (2, 4) = [ fxz,(y)dy >0
A n

for all z € R>g and y € R>p, where the stopping time 74 is defined by 74 := inf{n >
0 : X, € A}, since fxz (y) > 0 for any x € Rxp and y > 0 as shown in Proposition
This implies that the chain (Xné)n€Z>o is irreducible with A\ being an irreducibility
measure. By statement (a), (X¢)i>0 possesses the Feller property. So the skeleton chain
(Xn6)nezs, has also the Feller property. The claim (b) now follows from [49, Proposi-
tion 6.2.8].

Finally, we prove (c). As shown in the proof of Lemma |AV| is bounded on
R>¢. Therefore, to get (2.3.11)), it suffices to show that lim, ,~, AV (x) exists and is
negative. As before, we write AV =DV + JV. It is easy to see that

lim (DV)(z) = lim [(a —bx)(142z)"t = U;a:(l + 1‘)_2] = —b.

T—00 T—00

Next, we consider the jump part JV. Note that

z
— =1 14— .
Vix+2z)—V(x) og( —|—1+$>—>O as T — 00

On the other hand, by (2.3.4) and (2.3.5)), we have

V(z+2) = V(z)| < 21y + [log(2) + log(2)] 12513,

where the function on the right-hand side is integrable with respect to v. By the
dominated convergence theorem, we obtain limy_,o(JV)(z) = 0. This completes the
proof. O

Remark 2.19. According to the discussion after [13, Proposition 2.5], a direct but
important consequence of our ergodic result is the following: under the assumptions of
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Theorem for all Borel measurable functions f : Rzo — R with [p_ [f(z)|7(dz) <
oo, it holds B

T—oo T

1T - -
P < lim /0 F(X,)ds = /R>Of(:z:)7r(dx)> —1. (2.3.12)

The convergence (2.3.12) may be very useful for parameter estimation of the JCIR
process.

We end this section with a time-discrete version of the statement in Remark [2.19!

Proposition 2.20. Under the assumptions of Theorem[2.18, for all Borel measurable
functions f: Rx>o — R with [p_ |f(2)[r(dz) < oo, it holds

. 1n—1
P(gggon;)ﬂxz-)—/

R}O

f(x)w(dm)) = 1. (2.3.13)

Proof. We employ the continuous-time ergodicity of the JCIR process established in
Theorem ‘ﬁ?nd [53, Proposition 4.3, pp. 19-20] to get that the tail o-field ﬂk€Z>0 o(X; :
i > k) of the Markov chain (X;);cz., is trivial for any initial distribution, i.e., it consists

only of events having probability zero or one for any initial distribution on R>y. Now,
the proof goes along the very same lines as in |8, Theorem 2.4] (see also the discussion
after [13, Proposition 2.5]) without any substantial changes. O

2.4. Exponential ergodicity of the JCIR process

Our aim of this section is to show that the JCIR process X is exponentially ergodic if

/ z"v(dz) < oo for some K > 0. (2.4.1)
{z>1}

As in previous chapter on the two-factor affine model based on the a-root process (see
Section [1.3]) the following proposition will play an essential role in proving exponential
ergodicity of the JCIR process X, provided that (2.4.1)) holds.

Proposition 2.21. Suppose (2.4.1) is true. Let V € C%*(Rsg,R) be nonnegative and
such that V(z) = " for x > 1. Then there exist positive constants ¢, M such that

E, [V(X)] < eV () + % (2.4.2)

Jor all (t,x) € RZ,.

Proof. If k > 1, then it follows from ([2.4.1]) that f{z>1} zv(dz) < oo, which, together
with (2.2.23]), implies

E, [ X <xe ™+ M, t>0,2>0,
for some constant 0 < M; < oo. In this case, we have

E: [V(X0)] = Ex |V(Xe)Lixiony| +Ea [V(X)Lix<n)]

< Eg [Xi¢] + sup [V(y)l
yG[O,l]
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<xe ™ + M+ sup |V (y)]
y€[0,1]

< (V(z)+ 1) e + M+ sup |[V(y)]
yE[O,l]

< V(w)e_bt + Mo,
where My := 1+ M + supyeo1] |V (y)| < oo is a constant. Hence (2.4.2)) is true when
k 2= 1. So in the following we assume 0 < x < 1.

Define g(t,x) := exp(ct)V (z), where ¢ € Ry is a constant to be determined later.
Then,

i) = D gltx) = eV (@),

ot
kel 1z >1,
eV'(z), x€l0,1],

0? k(k — et =2 z>1
"tx) = ——=g(t,z) = ’ '
gu(t2) 53729( ) {eCtV”(x), x € [0,1].

G (1,7) = 5 glt0) = {

Applying 1t6’s formula for g(¢, X;), we obtain

g(t, X2) — (0, Xo) = /Ot(ﬁg)(s,Xs)ds+/0t (s, X)ds + My(g), >0, (2.4.3)

where the operator £ is given by (Lg)(s, Xs) = exp{cs}(AV)(X;) with A as in (2.1.1)
and
t t roo ~
Milg) =0 [ VXagh(s. X)dBo+ [ [ (gls Xem o+ 2) = g5, X)) N(ds, d2)
0 0 Jo
= D¢(g) + Ji(g), forallt > 0.

We will complete the proof in three steps.

“Step 17: We check that (M;(g))i>0 is a martingale with respect to the filtration
(Ft)e=0. First, note that

t
Dig) =0 [ ogls, X)VXdB,, 120,
o Ox

is a square-integrable martingale with respect to the filtration (F;);>0. Indeed, for each
t > 0, we have

t 2
E, [(a | VEgils. X.)aB, ) 1
0
t t
202/ 2R [1x, <)y XV (X,)] ds+02/{2/ R [1x oy X2 ds. (2.4.4)
0 0

Clearly, we have [17x, <13 XsV'(Xs)| < supyepo1)|V'(y)| < oo, which implies that the
first integral on the right-hand side of is finite. Since |Ly,>13 X2 < | X7,
by and Proposition we see that the second integral on the right-hand side
of is finite as well. Hence, (D¢(g))i=0 is a square-integrable martingale with
respect to the filtration (F)i=o.
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Next, we prove that Jy(g), t > 0, is a martingale with respect to the filtration (F3):>o.
We define

Joa( / / V(Xe_ +2) — V(X,_))N(ds,dz), t>0,
{z<1}

/ / V(Xse +2) — V(X,_) N(ds,dz), ¢ >0.
{z>1}

So Ji(g) = Jut (V) + JF(V) for t > 0. In what follows, we establish some elementary
inequalities for V. For y > 1, we have

La<y(2)V(y+2) = V(y)l = 1{z<1}(2) ((y

z < ]l{z<1}( ) (2.4.5)

where we used Bernoulli’s inequality to obtain the first inequality in (2.4.5). Moreover,
it is easy to see that for y > 1,

Losn@IV(y+2) = V() < Lesip(2) (07 + 27 —9%) < Lpsnp(2)2". (2.4.6)
For y € [0, 1], using the mean value theorem, we get

loany()|Vy+2) -V <=z 81[10p2] V'(y)] < a1z, (2.4.7)
ye

for some constant ¢; > 0. Finally, for y € [0,1], again by Bernoulli’s inequality, we
have

T2V +2) = V()] < Tiesyy

2"+ c9), (2.4.8)

where ¢z 1= 1 + sup,¢(o.1) [V (y)| < oo is a positive constant. Now, from (2.4.5) and
([2.4.7), we deduce that

E, l /0 /{ Ly IV 2) = V(X vlde)ds

t
< (1 +cl)/ ecsds/ zv(dz) < oo, t=0.
0 {z<1}

It follows from [26, p.62 and Lemma 3 1] that (J4+(V))i=0 is a martingale with respect
to the filtration (F)>0. Using (2.4.6) and (2.4.8)), we obtain

. [ [ e sa- v<xs_>u<dz>ds]
< /Ot /{Z>1} e (2" + c2) v(ds)ds
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t
= / e“ds (/ 2"v(dz) + cov({z > 1})) <oo, t=0.
0 {z>1}

As a consequence, we see that (J;(V))¢>0 is also a martingale. Clearly, (M:(g))i=0 =
(D¢(g) + J+(g))t=0 is now a martingale with respect to the filtration (F)=o.

“Step 27: We determine the constant ¢ € Ryy and find another positive constant
M < oo such that
(AV)(y) = (DV)(y) + (TV)(y) < =cV(y) + M, y € Rxo. (2.4.9)
Consider the jump part JV = T,V +7*V, where 7,V and J*V are defined by ([2.3.7))
and (2.3.8)), respectively. For all z € R, using (2.4.5) and (2.4.7)), we obtain

GV = [ IV+2) - V@) < (ke [ o(d) < oo

2<1

For J*V, we can use (2.4.6) and (2.4.8) to obtain that for all y € R,

TV = [ V(=) = Vi)

{z>1}

< / 2"v(dz) + cov({z > 1}) < oo.
{z>1}

Next, we estimate DV. Since,
V'(z) = k™! and V'(z)=k(k—1)z"2 forz > 1,

we see that
2

(DV)(z) = (a — bx)V'(z) + %xV”(x) (2.4.10)

o?(k —1)

= —bra" + k"t (a + 5

) < —brz"™ + c3 (2.4.11)

for all z > 1. Here c3 < oo is a positive constant. After all we get that for all x > 1,
(AV)(z) < =brV (x) + ¢4
where ¢4 < 00 is a positive constant. By noting that V' € C?(Rx,R), we see that

sup |[V(y)|<oo and sup [(AV)(y)| < oo.
y€[0,1] y€[0,1]

Consequently, (2.4.9)) holds for all x > 0.

“Step 8”: We prove (2.4.2)). Note that (Lg)(s,z) = exp{cs}(AV)(z). By (2.4.3)),
(2.4.9) and the martingale property of (M;(g))i=0, we obtain that for all (z,t) € RZ,

By [V(Xy)] — V() = Eq [9(t, X¢) — 9(0, Xo)]

_E, /0 (e (AV)(X,) + eV (X)) ds}

<E, /0 " (655 (—eV(X) 4 M) + e V(X)) ds}

o M
=E, / ecsts] < —e,
LJO

C

So (2.4.2) is true. With this our proof is complete. O
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Based on Proposition [2.21] we are now ready to prove the exponential ergodicity.

Theorem 2.22. Consider the JCIR process (Xi)i>o defined by (2.0.1) with parameters
a,b,o and v, where v is the Lévy measure of (J;)i=0. Assume a > 0. If (2.4.1)) is true,
then X is exponentially ergodic, i.e., there exist constants § € Rsg and B € Ryq such
that
t _ —6t
HP (z,) WHTV <B(V(x)+1)e

for allt >0 and x € Rxy.

Proof. In view of Proposition and Proposition to obtain the exponential er-
godicity of X, we can follow almost the very same lines as in the proof of |33, Theorem
1]. We remark that the strong aperiodicity condition used in the proof of [33, Theorem
1] can be safely replaced by the aperiodicity condition, due to [50, Theorem 6.3]. The
details are as follows:

We first consider the skeleton chain (Xn)n€Z>07 which is a Markov chain on the state
space R>g with transition kernel P"(z,-). It is easy to see that the measure 7 is also
an invariant probability measure for the chain (Xp)nez.,-

Let the function V' (z) be the Foster-Lyapunov function introduced in Proposition
[2:21] The Markov property together with Proposition [2.21] implies that

M
E[V(Xns1) | Xo, X1y, Xn] = A V(z)PY(Xp,dz) < eV (Xn) + —,
>0
where ¢ and M are the positive constants in Proposition 2.21} If we set V) := V and

Vo :=V(X,), n € N, then
M
E[Vi] < e~ Vo(Xo) +

and, for all n € N,

M
E[Vn+1 |X0,X1, ce ,Xn] <e V, + ?

In order to apply [50, Theorem 6.3] for the chain (X, )nez.,, it remains to verify the
following conditions:

(a) the Lebesgue measure A on R is an irreducibility measure for the chain (Xn)nEZ>g§
(b) the chain (Xp)nez., is aperiodic;
(c) all compact sets of the state space R> are petite.

By what we have already proved in part (b) of the proof of Theorem with § =1,
we obtain conditions (a) and (c).

To prove (b), i.e., the aperiodicity of the skeleton chain (Xp)nez.,, we proceed as
in the proof of using a contradiction argument. Suppose that the period [ of the

chain (Xp)nez., is greater than 1. Then we can find disjoint Borel sets Ay, Aa, -+, 4
such that

)‘(Al) > 07 i = 17 e 7l7 Ué:lAi = R}O; (2412)

Pl(zg, Aif1) =1 (2.4.13)

forall xg € 4;, i=1,---,1—1, and

Pl(xo, Al) =1
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for all g € A;. By (2.4.13)), we have
fxwo(z)dz =0, xg € Aj,
L, xol

and further

" foo (x)dx =0, zp€ A.

However, since for each xg € R, the density f X0 (x) is strictly positive for almost all

x € R>g, we must have \(A47) = 0, which contradicts (2.4.12). Therefore, the assump-
tion that [ > 2 is not true. So we have [ = 1.

Now, we can apply [0, Theorem 6.3] and thus find constants §, B € (0,00) such
that
IP™(z,) = 7llrv < B(V(z) +1)e " (2.4.14)

for all n € Z>g, x € Ryp. For the remainder of the proof, i.e., to extend the inequality
(2.4.14]) to all t > 0, we can interpolate in the same way as in [52, p.536]. This completes
the proof. O

Remark 2.23. We remark that similar results on the ergodicity of Ornstein-Uhlenbeck
type processes were derived by Masuda, see |48, Theorem 2.6]. It is also worth men-
tioning that Jin et al. |33| already found a sufficient condition for the exponential
ergodicity of the JCIR process, namely, if a > 0, [,y 2log(1/2z)v(dz) < oo and
Jizs1y 2v(dz) < oo. It is seen from our Theorem that these conditions can be
significantly relazed.

2.5. Convergence of moments for the JCIR process

In Corollary and Proposition [2.15] we calculated the first and second moments of
explicitly. In this section we study the existence of moments for the unique stationary
distribution 7 of the JCIR process.

Lemma 2.24. Suppose f{z>1} 22¢=1y(dz) < oo for some k > 1. Then, there eist
constants ¢ € Ryg and M < oo such that

M
E. [X}] < e 2" + - (2.5.1)

for all (t,x) € RZ,.

Proof. We mimic the proof of Proposition with appropriate adjustments in the
estimates. In particular, let f(x) = " and define g(¢, x) := exp{ct} f(x), where ¢ € R
is a constant to be determined later. Using It6’s formula for g(¢, X;), we get

t t o
g(t, X¢) — 9(0, Xo) = /O e (Af) (Xs)ds +/O 559(5, Xs)ds + Mi(g), ¢ >0,

where (Af)(X;) is the infinitesimal generator given in (2.1.1)), and, for all ¢ > 0,

t

My(g) = a/ g'(s, Xs)VXdB; + /Ot /0oo (9(s, Xo_ + 2) — g(s, X5_)) N(ds, dz)

0
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is a martingale with respect to the filtration (F;):>0. Indeed, the first stochastic integral
on the right-hand side, o fg g’ (5, X))V XsdBs, t > 0, is a square integrable martingale,
since

¢ t
o’R [/ ng’(s,Xs)st} = 0252/ >R {Xf”_l} ds < oo, t=0,
0 0

where we used that sup,cpo g Ez[X 2+=11 < 0o by Corollary to get finiteness. We
introduce the following elementary inequality,

(x4 2)" < a4 rz(z +2)" 1 <4+ 28 k2 (x“_l + z“_l) , (2.5.2)

which is satisfied for all x,z € Ry¢ and « > 1. Therefore,

B[ [ [T e 1500 ) £ vlaz)as]
< 2”_1/@/(: /Ooo e <E {Xf_l} z+ z”) v(dz)ds < oo, t>0,

where the finiteness follows, since sup¢jg 4 Ex[X #=1] < oo by Corollary and [;°(2V
2")v(dz) < oo can be obtained by assumption. It follows from |26, Lemma 3.1 and p.
62] that (M;(g))i>0 is a martingale with respect to the filtration (F;)i>o.

Further, by and , we obtain
o2 o0
(AN@) = (= b)) + 50" @) + [T (o +2) = f(a) v(d2)

2 -1 00
< —bka" 4 ka7t <a + U(HQ) + 2”_1#;/ (ac“_lz + z”) v(dz)
0

o0 [e.9]
< —bra™ + ™ 4 28 g </ 2Fu(dz) + 2"t / zu(dz)>
0 0
< —bkz" + ezt 4 ¢y

for all x > 1, with some positive constants ¢1, c2, and c3 (similar to (2.4.11)). We
conclude that for all z > 1,

(Af)(z) < —brf(x) + ca,
where ¢4 < 00 is a positive constant. Notice that f € C*°(R>o,R), we get that

sup |f(z)] <oo and sup |[(Af) (z)] < oc.
x€[0,1] z€[0,1]

It follows that there exist constants ¢ € Rsg and M < oo such that
(Af) (@) < —cf(x) + M

holds for all x € Rg.

Finally, the asserted inequality (2.5.1]) follows in the very same way as shown in step
three of the proof of Proposition [2.21] O

Theorem 2.25. Consider the JCIR process (X¢)i=0 with parameters a, b, o € Rsyp.
Let k > 0 be a constant. Then the following two statements hold:
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(a) Suppose [7° zFv(dz) < co and E[X{§] < co. Then

sup E[X[] < 0.
tER>0

Consequently, [;° z"r(dz) < co.

(b) Suppose [ 251Fv(dz) < 0o and E[X§TF] < 0o for e > 0. Then
tlggoE[Xt] :/0 zm(dx).

Proof. We start to prove finiteness of sup;cp_ E[X{]. If 0 < £ < 1 there is nothing to
do, since then the statement follows immediately by an application of Proposition [2.21]
together with the law of total expectation. Indeed, we have that

sup B[] = sup [~ B[] X0 = a] gy (d)

t=>0 t=0

00 M
< sup/o (6%” + C) pix, (da)

120

M
=supe “E[(Xo)"] + — <o (2.5.3)

t20

Now, let x > 1. The idea to achieve the asserted is very little different from what can
already be found in Corollary In particular, recall that (Z});>o is defined as the
unique strong solution of the SDE (2.2.10)). Similarly, for i = 1, 2, we define (X})i>0
as the unique strong solution of

dX! = (a — bX})dz + o/ XidB; + dJ{, t>0, Xo€Rsg a.s.,
where (Jf);>0 is a subordinator of pure jump-type with Lévy measure v; defined by

vi(dz) == I.<qyv(dz) and va(dz) := 1,5 1yv(dz), respectively. So, pux, = fix1 * pg2.
It follows that

et = [ [ @+ i @ )
<2t ([Toruan) + [ gy
— (e[ 46 ().
Hence, it is enough to prove that

t?lgoE [(th)”} < oo and tZEEOE [(th)ﬁ} < 00.

Finiteness of sup;cp_ E [(th)ﬂ, follows by an application of Proposition [2.24] since

(J})i=0 has only small jumps, together with the law of total expectation analogous
to (2.5.3). We next show that sup,cp_  E[(Z7)"] < co. Proceeding as in the proof of
Corollary [2.11] (see (2.2.22))), we obtain

il}lgE [(th) } < exp {01/0 /{Z>1} (/}R>0 y”ma(z,s)ﬁ(z’s)(dy)> V(dz)ds} , (2.5.4)
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with some constant ¢; > 0. Hence, it suffices to check finiteness of the term on the right-
hand side of (2.5.4)). Before proceeding, we first note the following simple observation.
Namely, the method of proof of Lemma part (i) can be easily adapted such that

if0< k<1,

ar
2 g(dx) <P 2.5.5
/R>O a,p(dz) {Olagg itk 1, (2:5.5)

holds true with some constant Cy := Cy(k) > 0 and for all @ > 0 and 5 > 0. Indeed,
if 0 < k < 1, the statement follows immediately from (2.2.3]). If £ > 1, in the proof of
Lemma we can safely replace the estimate (2.2.5) by the following estimate

/ "0 p(d2) < 1 (@t a4 a" 4+ an EOO o
rm r)XxC « « cee « (&%
R>o oF ! pn o m!

« a”
<c —i—), for all o, 8 > 0.
2<6” B

All the remaining arguments in the proof of Lemma [2.7] work throughout with the
appropriate adjustments. Recall that «(z, s) and 3(z, s) are given by

2bz 2bebs
O[(Z,S) = m and IB(Z, S) = m
Now, for k > 1 the preceding observation (2.5.5)) leads to

a(z,s) + a(z,s)"
K:ma z,8 z,8 d g C

— 0120_2572(2b)175675b5(6bs . 1)/471 + Clefmbszn’

yielding finiteness of the term on the right-hand side of (2.5.4]).
Finally, by Remark and the continuous mapping theorem, X/ converges in
distribution to a random variable X% , say, which is distributed according to =, i.e.,

E[X5] = [5° «"r(dz). Now, statement (a) is a consequence of the moment convergence
theorem, e.g., [63, Lemma 2.2.1 formula (2.2.2)], because

o oo
/ 2"m(dz) < liminf = px, (dz) < oo.
0 t—o0 0

To prove (b), note that the assumption [, 25Ty(dz) < oo for a constant k > 0
and £ > 0 together with statement (a) ensures that

o0
sup / 25y, (dx) < oo for some k € (0, 00).
t€R5( J0

For this reason and the preceding argument, we are allowed to apply the moment
convergence theorem [63, Lemma 2.2.1] from which claim (b) of the theorem follows. [



3. Parameter estimation of the
jump-diffusion CIR process

In this chapter we study the asymptotic properties of CLSE for the drift parameters
(a,b) of the JCIR process based on discrete time observations (X;);en only in the
subcritical case, i.e., b € (0,00) is assumed. We will constantly suppose that o € (0, c0)
and the Lévy measure v are known.

Remark 3.1. We remark that we do not estimate the parameter o, since it could be
determined rather than estimated using an arbitrarily short continuous time observation
(Xt)ejo,m) of X, where T >0, see, e.g., [2, Remark 2.6]. At least, it will turn out that
for the calculation of the CLSEs for the drift (a,b), one does not need to know the value
of the volatility parameter o.

Since the Lévy measure of the driving noise (Ji)i>o0 is an infinite dimensional object,
estimation of it can be done using different methods. Nevertheless, based on low fre-
quency observations Xu [65] proposed some nonparametric estimators for v, given that
v is absolutely continuous with respect to the Lebesgue measure.

Since we will deal with moments of higher order, throughout this chapter we assume
that

/ A0 (dz) < oo (3.0.1)
{z>1}

and E[X{] < oo for a constant § > 0 sufficiently small. Recall that condition (3.0.1)
together with E[X3*°] < oo yield E[X}] < oo for any k € (0,4 4 &) by Theorem
combined with the law of total expectation.

We start with the computation of the CLSEs. Using (2.2.24)), for all i € N,

1—e? o0
E[X;| Fiii] = e "X,y + be <a+/ zu(dz)).
0

Further, using that o(Xy,...,X;—1) € Fi_1, ¢ € N, by the tower rule of conditional
expectation, we obtain the first conditional moment with respect to o(Xy,..., X;_1) of
the JCIR process, namely

E[Xi|o(X1,....,Xi-1)] =E[E(X;| Fic1) | o(X1,..., Xi—1)] = noXi—1 +m,

1—e? o0
no:=e? and n = be <a+/0 ZV(dZ)>7

according to Proposition Hence, a CLSE of (a,b) based on discrete time observa-
tions (X;);en could be obtained by solving the extremum problem

where

argmmz (X; —E[X;]| Fic1]) argmlnz —noX;—1 — 771)2. (3.0.2)
(a, b)€R2Z’ 1 (a,b GRQZ. 1

74
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Moreover, defining

n

Ffoom) =Y (Xi —moXi—1 —m)*,  (n0,m) € R%,
=1

the first partial derivatives of f with respect to ng and n; are given by

af((;?g(,)m) =-2) Xi 1 (Xi —moXi1—m),

9f(no.m) _ =23 (Xi —moXi—1 —m),

om

and the second partial derivatives of f with respect to ng and n; are given by

9% f (o, m) L % f(no,m)
o = QZXZ'— , —ap =2n, and
O f(no,m) 3 f )
_ —925" X,
OnoOm On10no Z -

The system of equations of the first order partial derivatives is then equal to zero if

and only if
i Xz 1 X\ _ (X XE X Xie) (o
X v X n m)’

yielding that the CLSE (ﬁg%SE, ﬁ?%SE) of (1o, m) could be obtained by estimating

-1
U ENDYED GNPV ED | 2z Xi-1 X (3.0.3)
ﬁC%SE S X n > i1 X

provided that the Hessian matrix consisting of the second order partial derivatives of
f with respect to 79 and 7, is positive definite, that is n 3" X2 ; > (30, X;-1)%

The following Lemma ensures the positive definiteness of the Hessian matrix of f.
Lemma 3.2. Assume a and b € Rwg. Then, for alln > 2, n € N, we have
n n
P (ZXfl > o) =1 and P(nd X7, > <ZX, 1) =
i=1 i=1

Proof. We follow the proof of |8, Lemma 3.1]. Note that 37 ; X? ; > 0, and equality
holds if and only if Xg = X; =... = X,_1 = 0. Then, for all n > 2,

P(onXl =...=X,_ 1) P(X()—Xl) P(Xl :(L'):O,

because the law of X is absolutely continuous as shown in the proof of Proposition [2.
Consequently, >1* X * 1 > 0 almost surely. Furthermore, an easy calculation yields

n n 2 n n n
nZXz?fl - <Z Xi—l) = anf,l — ZZX,-_IX _
i=1 i=1 im1

i=1j=1
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=1

2
n 1 n
=ny, (Xi_l - nZXH) >0,

and equality holds if and only if

1 n
Xia==-> X1, i=1,...n, (3.0.4)
n i
It follows that identity (3.0.4)) holds if and only if Xo = X; =... = X,,_1, n > 2, and

for the same reasoning as before, we conclude that

n n 2
P (RZXE_I > (ZX11> ) =1
=1 =1

holds under the given conditions. O
As a consequence of Lemma [3.2] supposing 79,71 € R and o € R+, there exists a

unique CLSE (7CSE, 7ELSE) of (. my), with (355", 7CHSE) given by (503)

3.1. Consistency of the LSE

In this section we study the asymptotic behavior of the CLSE (ﬁg%SE, ﬁkaE) of (mo,m)-

Recall that X; converges in distribution to a random variable, say X, which is
distributed according to 7 given in Remark

Theorem 3.3. Consider the JCIR process (Xi)i=0 defined by (2.0.1) with parameters

a, b, o and v, where v is the Lévy measure of (J;)i>0. Assume a > 0. Then, the CLSE

(ﬁg%SE,ﬁg%SE) of (no,m) is strongly consistent, namely,

P (lim (75558, A5 = (no,m)) =1,

n—o0

where (ﬁg};SE,ﬁE%SE) are given by (3.0.3).

Proof. By (3.0.3)) the CLSE (ﬁg%SE,ﬁlCﬁSE) of (ng,m1) is determined by

1
" (X XE Y Xia i1 Xic1X; '
O i i1 Xio1 n =1 Xi

By an easy calculation (see also |8, formula (3.5)]),
~CLSE n ™ /n
Mom ) _ Xic1\ [ Xi—a 3 Xim1) y.
- 1
ﬁIC,%LSE i=1 1 1 i=1 L
n ™ !
- (> Xi—1) [ Xi—a us
o\ 1 1 mn
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1 & (Xie Xi— ! 711 " (X,
:<Z(1)>+(n;< 11>< 11> ) n;( 11>6¢, (3.1.1)

where g; :== X; — noX;—1 — n1, ¢ € N. Our strategy to prove the asserted is now as
follows: First we prove that

Z (Xil_1> ;=0 as. asn— oo, (3.1.2)

1
=
by an application of the strong law of large numbers for discrete time square-integrable
martingales (see Theorem |C.1)). Second, by an application of the discrete time ergod-

icity, we show that
n T
1 Z Xio1) [ Xio1
n - 1 1
=1

converges almost surely to a non-singular constant limit matrix as n tends to infinity.
Then it is clear that the product converges almost surely to the zero vector and we

obtain the asserted convergence of the CLSE in view of (3.1.1)).

We proceed to prove . Since E[X; | Fi—1] = noXi—1 +m, ¢ € N, it holds that
Elei | Fi—1] = 0, which implies that (&;);en is a sequence of martingale differences with
respect to the filtration (F;)iez.,. From Proposition m together with the Markov
property it follows

E {Xzz ’]:i—l} =6X2 66X+ &,

where
50 = e_Qba
e 2 (eb - 1) 00
& = — (Qa + 0%+ 2/ zu(dz)) , and
0
e 2 (eb — 1)2 00
&y = — (a(2a +0?) + (4a + 02)/ zu(dz))
0

1 — =20 poo (1 - e_b)2 oo 2
+ T/0 22v(dz) + BT </0 zy(dz)) )

according to formula (2.2.28)). Hence, we derive

E e} | Fit| =E[X}|Fi1] = (0 X1 +m)
= &X2 + 6 X1+ & — (nXi—1 +m)°
= (50 - 77(2)) X2+ (& —2nom) Xic1 + & — 0t
=: (1 X1 + Oy,

where C := & — 2nom and Cy := & — 3. Thus, ¢; is a square integrable martingale
with respect to the filtration (F;)iez.,-

Let M,(f) = > 1, &, n € N. By essentially the same argument as before, we see that
(Més))neN is also a square integrable martingale with respect to the filtration (F;);cz.,
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and (Mée))neN has quadratic variation process

n n
<M(E)>n = ZE [512 |]'—i—1} =C4 ZXZ',1 +nCsy, n €N,
=1 =1

by [61, Chapter VII, Section 1, formula (15)]. Applying the time-discrete ergodicity in
Proposition [2.20] where the limit is given due to Corollary [2.14] we obtain

1 n
(M), = Clﬁ ZXz;l +Cy — C1E[X ]+ C2  as. asn — oo,

1
" i=1

Note, C'y and C5 are strictly positive, since

6_2b <€b — 1) oo 00 1— e*b
Cl=—"———"7 <2a + 0%+ 2/ ZV(dZ)> —2e7? (a +/ ZV(dZ)>
b 0 0 b
2

- %e—% (eb — 1) € Ry, (3.1.3)

and

Cy = M <a(2a + %) + (4a + 0?) /oo zu(dz)) + 1_76_21) /OOO 22v(dz)

202 0 2b
2 2
(1 — 6_b> 0 2 () 2 (1 — e_b)
+ T </0 ZV(dZ)> - <a+/0 zu(dz)> e
2
6—2b (eb _ 1) 9 5 oo 1— 672b 0 )
T a— (a(2a+a )+ (da+o )/O Zy(dz)) +T/0 22u(d2)
2
2 * id (1-¢)
_ 92 AN
(a + a/o 2 z)) 2
2
e (eb _ 1) 2 2 [ 1—e? =,
=z (a(2a+a )+ o /0 zy(dz)> + T/o 22v(dz)
2
ale2b (eb — 1)
_ =
2
=z (aa +o /0 zy(dz)> + T/o z“v(dz) € Rsg. (3.1.4)

Therefore, (M(®)),, converges almost surely to infinity as n tends to infinity. This allows
to apply Theorem which implies that the following convergence

n (€) (e)
1 1 My’ (M'®))
“ME = = - n ) _
no " n ;& (M©),, n 0 (CLE[Xoo] + C2) =0 (3.1.5)

holds almost surely as n tends to infinity. Arguing similar, we also obtain

E (X2, Fia| = X2 E[F| Fi| = OXP, + GoX2y, Q€N
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Further, by the same reasoning as before,

L
1=

Finally, applying the time-discrete ergodicity of X;, ¢ € N, established in Proposition
2.20], we have

e GEQE )T ) ) e

provided that the limit matrix is positive definite. Note, the limit matrix is indeed
non-singular, since

g2 [
2
Thus, by (3.1.1]), ( ﬁg%SE,ﬁ?%SE) is a strongly consistent CLSE of (19, n1). O

3.2. Asymptotic behavior of least squares estimator
We continue to study the asymptotic behavior of the CLSE (ﬁg{;SE, ﬁlc%SE) of (n0,m1)
and prove asymptotic normality.

Theorem 3.4. Consider the JCIR process (X¢)i=0 defined by (2.0.1) with parameters

a, b, o and v, where v is the Lévy measure of (J¢)i=0. Assume a > 0. Then the CLSE

(ﬁg%SE,ﬁlc%SE) of (no,m) is asymptotically normal, i.e., the convergence

f(ﬁC%SE M0 ﬁCLSE—m) — N2(0,E)
holds in distribution as n tends to infinity, where E is the 2 X 2 covariance matriz.

Proof. Using (3 , we calculate
~CLSE n 2
Mo — N0 1 X1 Xi Xi 1€
n =|-
v (ﬁC%LSE 771) (n ; (Xi—l 1 Z

provided that 3" ; X2, > 1/n(X", X;-1)2. Recall, provided that >0 X2 ; >
(1/n>" 1 X;-1)%, by (3.1.6) the first factor on the right hand side converges almost
surely, i.e.,

—1 -1
1 (X2, Xiq E[X2] E[Xu]
— - — o0 o =:L as. asn — oo.
(n ; (Xil 1 E[XOO] 1
Basically, the idea of the proof is now as follows. We will show the following;:

Claim. The convergence

Z( i- 161) —>N2(0,D)

holds in distribution, where D is a 2 X 2 real-valued, symmetric and positive definite
matrixz to be determined later.
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If this claim is true, then by Slutsky’s theorem

g — ng
vn | tse — N2 (0,E)
Mn m

holds in distribution as n tends to infinity, where the covariance matrix is given by
E=L"'DL-L

We continue to prove the claim. We apply the martingale central limit theorem, see
Theorem @ with the following choices: d = 2, k, = n, n € N, F,,, = Fp, n € N,
ke{l,...,n} and

1 k X;_1€;
M, =— T, neN, ke{l,...,n}.
Further, for all n € N and k € {1,...,n}, we have

E [(Mag = Mag—1) (Mg = Mag—1)" | Fii
_ g [(Xk—15k> (Xk—15k>T fkl]
n €k €k
1 X X\
= EE {6%‘ ]:kfl} (( ]i_l> < ]i_1> )
1 X X\
= (C1Xp + C) (( ’i_l> ( Tl) ) |

where C and Cs are positive constants according to (3.1.3)) and (3.1.4)). Hence, applying
the time-discrete ergodicity (see Proposition (2.20))), the following convergence

n
SO (Mo = Mg1) (Mg = My g1) " | Fiea
k=1

1< X2, Xi
==Y (C1 X1+ (o) (Xk_l Ii '
"= k=1
n

1 X3 . X2 1 & X2 X
”kz:; 1 (Xlzl Xk-1) m 2. Cs Xp1 1

k=1
E[X%] E[XZ E[X%] E[Xo]) _
(8] 55 v B8 ) -

holds almost surely as n tends to infinity. Since C; and Cs are strictly positive constants,
it holds that D € R?*? is symmetric and positive definite. Indeed, by , we obtain
positive definiteness of the second matrix. For the first matrix, by Holder’s inequality,
we have that

(E[X])'? (E [XEODW > E | XY2X3?| = B[X2], (3.2.1)

yielding the positive semi-definiteness of the first matrix. Consequently, D is positive
definite as desired.
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Next, we prove the Lindeberg condition, i.e., we check, for all € > 0, it holds

kn
,}EEOP ( kz E {HM”J“ - Mn?k_l||2]]'{||Mn,k_Mn,k71||>€} |]:k—1} 5) = 0.
=1

We fix § > 0 sufficiently small. Notice that,

)
[ My g — My g ||*F
56

)

2
HMn,k - Mn,k—l” ﬂ{||Mn,k—Mn,k_1H>6} <
and furthermore, by an elementary inequality,

1 [ Xgoaek
\/ﬁ Ek

2+6

/1 y ) 1+6/2
= <n (Xk_15k + 5k)>

é
HMn,k*Mnk 1||2Jr ‘

1+6/2
<+7/<X,f+§s i+5+si+5), neN, ke{l,...,n}

= opl46/2

Hence, for § > 0 sufficiently small, we obtain,

ZE [HMM— o= P L0 M 26}

]:k—1]

14+46/2
< njf+6//2 ZE [X?f 245 2+5‘ F 1}

7”‘5/22()(2” ) [i+5‘fk,1}, neN, ke{l,....n

nl+d/2

Instead of convergence in probability for the Lindeberg condition, we prove L' conver-

gence, i.e, it suffices to prove that

ilégE [(X,%J_rf + 1) [ 2+6‘ Fi_ 1” 0.

By the law of total expectation,
S{(xEt 1) | £ - (b))
and hence, it is equivalent to check that

iggE [(X,%f‘f + 1) E%HS] < 00.

Applying the Cauchy Schwarz inequality and the power mean inequality, we get,

eflot )] < (o0t 0] )

<V2 (E [X‘*“‘S i 1} E [aﬁﬂ) . keN.
Using again the power mean inequality, for all k € N, we estimate

E et <E[1Xk = mXp1 — || <E[(X+ m0Xp1 +m) "]
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< 33+20 [ X;urza + 77§+26 Xﬁff‘s + nil+25 '

4424
Xk

Consequently, it only suffices to prove that sup,cy E [ } < 00, and, by our present

assumption, this readily follows from Theorem [2.25

Altogether, by the martingale convergence theorem [C.2] we obtain the following
convergence

M ! zn: (exx ' A3 (0,D)
nn = = EpAk—1 5k) — N2 (U,
Vo
in distribution as n tends to infinity. Therefore, our claim is true. O

Remark 3.5. Note that in Theorem it is the assumption (3.0.1)) which ensures
E[X3] < oo, by Theorem .

Proposition 3.6. Assume a > 0. Let E € R**2 be as in Theorem . Then E is
symmetric and positive definite.

Proof. By the definition of L and D, the covariance matrix E = L™'DL™! takes the
form

-1
E—C, (E[Xso] EplcoJ) <E[X§o] E[Xé]) (g[xso] Eplcoo]>

E[X o] E[XZ] E[X«] [Xo]
o (EIXE] B\ (EXZ] E[X) (BXZ] ElXa))
TOgx] 1 Ex.] 1 J\Ex. 1
= G (3.2.2)
E[X2] - (E[X.])*)
(E[Xo0))® — 2B[XZ]E[X o] + E[X3] (EIX2)])” - E[Xo]E[X3)]
( E[X2])* - E[XocE[X3] —E[Xo] ((B[X2))" - E[XOO]E[XEO])>
N Cy 1 —E[X ]
E[X2] - (E[Xx))? \“EXx] E[XZ] )
To prove that E is positive definite, it is enough to check that the matrix
(E[Xo))® — 2B[XZ]E[Xoo] + E[X3] (E[X2)])” - E[Xoo]E[X3)]
( (E[X2])” - E[Xoo]E[X3) —E[X«] ((E[Xio])2 - E[XOO]E[XS’O])>

is positive semi-definite and

1 E[X.]
~E[Xs] E[XZ]
is positive definite. The positive definiteness of the second matrix readily follows by
(3.1.7). Moreover, the determinant of the first matrix is given by

- (Ex)? - BIX2))” ((BXA]) - BB )

where the first factor is again positive by (3.1.7) and in (3.2.1) we estimated the nega-
tivity of the second factor. Consequently, E is a symmetric positive definite 2 x 2-matrix
as asserted. O
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3.3. Least square estimator of the drift parameters (a, b)

So far in the preamble of this chapter we introduced the CLSE (ﬁgI;LSE,ﬁE%SE) of the
transformed parameters (19, 71) as the unique solution of the extremum problem
and proved strong consistency in Theorem [3.3 and asymptotically normality in Theo-
rem [3.4] as well.

Finally, a natural estimator of the drift parameters (a,b) obtained from and
the definition of (19, 7n1) may be introduced in the same way is in [8, formula (3.17)].
For completeness of exposition, we now recall the steps of [§] and fit them into the
framework of the JCIR process. We define the function g : R%; — R+ x (0,1) by

byl o0
glapy = (F7elamfomad=D)) _(m) ) e pe)
€ 7o
It is easy to see that g is bijective having inverse
. (0 — 1)~ log (o) — Jg~ zv(d2) a
y = - 5 331
g~ (no,m) ( —log(no) b ( )

where (n9,m1) € (0,1) X Rsg. Thus, by the strong consistency of (ﬁg%SE,ﬁ%SE),

P (555,700 € (0,1) x Rsg) =1

for n large enough, n € N. Therefore, a natural estimator of (a,b) based on time-

discrete observations (X;);e(1,..n} can be obtained by applying g ! to (ﬁ&%SE, ﬁlcﬁSE),

namely
7 - LSE ~CLSE
(anabn) =g ! (ﬁ(?,ns 77/7\5718 )
for n € N large enough and hence

n

P (an,5n> = argmin »_(X; —noXi—1 —m)° | =1
(a,b)eRiO i=1

for sufficiently large n € N.

~

The following theorem shows that (a,, b,) captures the properties of (
An analogous theorem has been derived in [8, Theorem 3.4].

~CLSE ~CLSE
770,71 7771,71 )

Theorem 3.7. Consider the JCIR process (Xt)i>0 determined by the SDE (2.0.1)) with
parameters a,b,o € Rso and Lévy measure v satisfying (3.0.1). Then the sequence

(G, bn), n € N, is strongly consistent and asymptotically normal, where the covariance
matriz JEJT € R?*2, with E € R?*? is a symmetric, positive definite matriz given in

(3-2.2) and

5. ((770 = )70 (= (1= o+ log (1)) (1m0 — 1) "log (770)>
) 0

1

being the Jacobian matriz of g~ with respect to (ng,m1) € (0,1) x Rsg.
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Proof. We proceed in the same way as in |8 Theorem 3.4]. Note that the inverse
function ¢! defined in (3.3.1)) is continuous on (0,1) x Rso. Hence, from the strong
consistency of the CLSE (ﬁg%SE, ﬁg%SE), n € N, of (no,n1) (see Theorem, we deduce

o~

the strong consistency of (@, by), n € N.

With Theorem in mind, to prove that (an,Bn), n € N, is asymptotically normal, it
is enough to check that the delta method (see, e.g., [44, Theorem 11.2.14]) is applicable.
To do so, one simply extends g~! to R? by defining

—1/~CLSE ~CLSE
g (

Nom > ) = L{o,1)xRs0} (ﬁE%SEJf%SE)  (bny i),

a n € N.

Finally, the representation of the Jacobian matrix J of g~! with respect to (19,71) €

(0,1) x R5p could be easily determined. This completes our proof. ]
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A. Two-dimensional affine processes

We recall some important results in the theory of affine processes mainly due to Duffie
et al. |17]. In their seminal paper affine processes are defined and systematically studied
on the (m+n)-dimensional state space RZy x R". We will simplify notations where this
is possible in the two-dimensional case, when the state space is given by D := R>¢ x R.
In the one-dimensional case, i.e., if D is either Ry or R, all definitions and results
stated in this chapter reduces in the obvious way. In the work of Duffie et al. the
affine processes are allowed to have explosions and killing. Since in this work we only
consider conservative affine processes, in terms of terminology and notation, we thus
follow mainly Keller-Ressel and Mayerhofer [40], where only the conservative case was
considered.

We start with a time-homogeneous Markov process with state space D and semigroup
(P;), that is,

Pifwa) = [ F€ply.,d0). | € By(D).

Let ((Y,X),(P(y.2))(y,x)ep) be the canonical realization of (F;) on (2, F, (F¢)e=0),
where € is the set of all cadlag paths in D and (Y, X¢)(w) = w(t) for w € Q. Here
(Ft)e=0 is the filtration generated by (Y, X) and F = \/;5 F;. The probability measure
P, on  represents the law of the Markov process (Y, X) given (Yo, Xo) = (v, z).

Definition A.1 (Definition 2.2 [40]). The Markov process (Y, X) is called conserva-
tive affine with state space D, if its transition kernel p(y, z, A) = P, ) ((Ys, Xt)€A)
(t=0, (y,x)eD, A € B(D)) satisfies the following:

(i) it is stochastically continuous, that is, lims_,; ps(y, x, ) = pi(y, z, -) weakly for all
t>0, (y,x) € D, and

(ii) (Y, X) is conservative, i.e., p;(y,z, D) =1 for all t > 0, and

(iii) there exist functions ¢ : R>g x iR? — C and v : Rsq x iR? — C2 such that

/De<“’§>pt(y,x,d§) =E,; [e“yt’xt)’“q =exp{o(t,u) + ((y,2),¥(t,u))}  (A0.1)

forallt > 0, (y,x) € D and u € U, where E, denotes the expectation with respect to
P,.

Definition A.2. An affine process is called regular if the right hand derivatives

F(u) := gqb(t,u) and R(u) := %w(t,u)

ot =0+ =0+

exist for all u € U, and are continuous at u = 0.

Since ¢ is scalar-valued and v vector-valued, we have that F': i/ - Cand R: U —
C?, respectively. We remark that the stochastic continuity in (i) and the affine property

86
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in (iii) together imply the regularity of the functions ¢ and i (see [42, Theorem 5.1])
from which it is possible to infer that for v € U the generalized Riccati equations

{gtgb(t’u) =F (w(tvu))7 ¢(O7u) =0,
%w(tvu) = R(¢(tvu)) ) ¢(Ovu) =u€el,

are satisfied (see [17, Theorem 2.7]).

(A.0.2)

Duffie et al. |17] provide an equivalent characterization of the affine property (iii) in
terms of admissible parameters.

Definition A.3. A parameter set (a,;j,b, Bij,v, 1), i,7 € {1,2} is called a set of
admissible parameters for a conservative affine process with state space D if

e a € Ry is a constant;

a;j is a (symmetric) positive semi-definite 2 x 2-matrix;
b= (bl,bg) e D,

Bij is a 2 x 2-matrix with B2 = 0;

v(d&,dés) is a Lévy measure on D such that

/D\{(]} ((51 + f%) A 1) v(dé1,dé) < oo

wu(d€,dés) is a Lévy measure on D such that
[ e (1810 8)] e < .
D\{0}

We remark that our definition of the admissible parameters is a special case of
[17, Definition 2.6], since we require here that the set of admissible parameters does
not contain parameters corresponding to killing. A sufficient condition for (Y3, X;) to
be conservative is given by [17, Lemma 9.2] which is included in our definition of the
admissible parameters.

The next theorem shows the announced characterization of affine processes through
the admissible parameters.

Theorem A.1 (Duffie et al. [17], Theorem 2.7). Suppose (Yi, Xt)i=0 is a conservative
affine process. Then (Yy, Xi)i>0 is a Feller process. Let A be its infinitesimal genera-
tor. Then C°(D) is a core of A, C%(D) C dom(A), and there exist some admissible
parameters (a, cij, b, Bij, v, 1), i, j € {1,2}, such that, for f € C2(D),

0% f 0% f 0% f 0*f
(Af) (y,z) = am5(y2) + ozuya—yQ(y, z) + zamy@y@m (4, ) + a2y =5 (y,2)

+ (b1 + B11y) gi(y, x) + (ba + B21y + PBaox) gi(% )

of
+ /D\{O} (f(y +&nr+ &) — fly2) - 52(%(31,:1:)) v(d€)
+ y/ (fly+&,x+&)— fly,z) — (VFly,2), &) u(dé). (A.0.3)
D\{0}
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Moreover, (A.0.1) holds for all (t,u) € R>g X U where ¢(t,u) and ¥ (t,u) solve the
generalized Riccati equations (A.0.2)) with

F(u) = b1u1 + bgUz + au% -+ / (eu1§1+u2§2 —1-— U2£2) 14 (dgl, dgg) y (A04)

D\{0}
R(u) = Briur + Barug + anui + 20n12u1us + agous
+/ (6“151“‘252 —1—-wmé& — u2€2) p(dér, dé2) - (A.0.5)
D\{0}

Conversely, let (a, oj, b, Bij, v, 1), 1,7 € {1,2}, be some admissible parameters. Then
there exists a unique, conservative, and regular affine semigroup (P})i>o with infinites-
imal generator (A.0.3), and holds for all (t,u) € R>g x U where ¢(t,u) and
Y(t,u) are given by (A.0.2).

We remark that our preceding formulas are in the spirit of [16]. We can not only char-
acterize the conservative, regular affine processes (Y;, X) with respect to the admissible
parameters, but also with respect to the state space (see Duffie et al. |17, Corollary
2.10]), roughly speaking. Following Kawazu and Watanabe [38], a conservative affine
process with state space R> is called a continuous time branching process with im-
migration (CBI process). In view of |17, Corollary 2.10], a conservative affine process
with state space R is an OU-type process, that is, X satisfies the Langevin stochastic
differential equation

dX; = B Xydt +dLy, t >0, Xg €R,
where (L¢)¢>0 is a Lévy process.

The latter fact motivates us to decouple the generalized Riccati equation for 1. On
the state space D let us write ¢ = (¢1,12) and R = (R, Re), accordingly. We introduce
the following useful property.

Proposition A.2. Let (Y;, X¢)i>0 be an affine process with state space D. Then o(t, u)
satisfies
Yo(t,u) = eP22tuy

for allt € R>g and ug € iR. Consequently, Ra(u) = Pagug for ug € iR.

For a proof we refer to [42] or [17, Theorem 2.7]. As a consequence of Proposition
we see that the two-dimensional affine process (Y, X;)i>0, for u = (uj,u2) € U,
satisfies the following generalized Riccati equations:

o1 (t,u) = By <¢1(tau)7 6522tu2) o 1(0,u) =w
Yo(t, u) = eP22tuy.



B. Markov chains on uncountable state
spaces

We recall definitions of ‘irreducibility’, ‘aperiodicity’, and ‘petite sets’ in the notion of a
discrete-time Markov chain on general (uncountable) state spaces mainly due to Meyn
and Tweedie [49,50].

Here, we let (Mp)nez., be a Markov chain evolving on (X, B(X)), where X is a
locally compact separable metric spaceE] (in our framework X = R>o x R or Ry, re-
spectively) and B(X) denotes the Borel o-algebra of X. Let P"(z,-) := P, (M, € -)
denote the distribution of M, with the initial condition My = x € X.

Intuitively, the classical definition of irreducibility means that the chain has positive
probability of eventually reaching any state from any other state. However, since the
state space X may be uncountable, this is impossible. We introduce a weaker definition
in the sense of [50].

Definition B.1. The chain (Xn)nez20 is said to be p-irreducible, if for some o-finite
measure p on (X, B(X))

w(A) >0 implies Py(714 < 00) =Py (X,, enters A) >0

for all initial values x € X and A € B(X), where the stopping time 74 is defined for a
set A€ B(X) by 74 =inf{n >0 : X, € A}.

If a Markov chain is p-irreducible, we refer to p as an irreducibility measure for the
chain.

Definition B.2. A j-irreducible Markov chain (X;,)nez., is said to be aperiodic if there
do not exist [ > 2 and disjoint Borel sets Aj, Ao, ..., A; C B(X) with P"(x, 4,11) =1
forall x € A;; 1 <i<1l—1,and P*(z,A;) = 1 for all z € A;, such that u(A;) > 0
(and hence p(A;) > 0 for all 7). Otherwise the chain (X;)nez., is said to be periodic
with period .

Recall that a measure p is the trivial measure (or null measure) if and only if u(A) =0
for all A € B(X).

Definition B.3. A nonempty set C' € B(X) is said to be a v,-petite set for the chain
(Xn)nezs, if there is a probability distribution a on Z¢, and a nontrivial measure v,
such that

Z P" (z,A)a(n) = v,(A)
n=0

for all x € C, A € B(X). If the specific measure v, is unimportant, we call the set C
simply petite.

!i.e., X is not necessarily countable
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C. Strong law of large numbers and
central limit theorem for discrete
time square-integrable martingales

Let (Q, F, (Fn)nen, P) be a filtered probability space.

The following theorem can be considered as a strong law of large numbers for discrete
time square-integrable martingales.

Theorem C.1 (Shiryaev [61], Chapter VII, Section 5, Theorem 4; and Barczy et
al. [8] Theorem 2.5). Let (My,)nen be a square-integrable martingale with respect to the
filtration (Fp)nen such that My = 0 almost surely and limy, oo (M), = 0o almost surely,
where ((M)n)nen denotes the predictable quadratic variation process of M. Then

M,

250 asn— o0
(M)n '

The next theorem is a central limit theorem for discrete time square-integrable mar-
tingales.

Theorem C.2 (Jacod and Shiryaev [27], Chapter VII, Theorem 3.33; and Barczy et
al. [8] Theorem 2.6). Let {(Mpk, Fnr) : k = 0,1,...,kpn}nen be a sequence of d-
dimensional square-integrable martingales with M, o = O such that there exists some
symmetric, positive semi-definite non-random matriz D € R such that

kn
S E [(ank — My 1) (My gy — My jo1) " ] fnvk_l} D as asn — oo,
k=1

and for all ¢ € Ry,

kn

2
S OB [[Mog = Mgt > Lt o= 52
k=1

.7-"n7k,1} —0 a.s asn— oo.

Then Zgll (Mp i, — My jp—1) = My 1, converges in distribution to a d-dimensional nor-
mal distribution with mean vector 0 and covariance matriz D.
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