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1 INTRODUCTION

1 Introduction

Given an associative algebra A of dimension r over an algebraically closed field £,
we can identify the finite dimensional module structures to a fixed dimension d in a
very natural way with the points of an affine variety Mod?, by considering r-tuples
of d x d-matrices m = (my, ..., m,) representing the multiplication with the elements
of a fixed basis of A. The general linear group Glg(k) acts on Mod% by conjugation
and every orbit O(m) for m € Mod% corresponds to an isomorphism class of a module
structure M on k¢ given by m. In this situation we do not strictly differ the isomor-
phism class of M and the module M itself in the sense, that we use for both the same
notation. On account of the above identification we write O(M) for O(m) too. Since
Gly(k) is an algebraic group, we know that the closure of an orbit O(M) is a union
of the orbit itself together with orbits of strictly lower dimension. Our aim is to give
a characterization of the isomorphism classes, which belong to a given orbit closure.
This problem is called THE DEGENERATION PROBLEM and we say, that a module NV is
a DEGENERATION of a module M, respectively M is a DEFORMATION of N, if O(N)
belongs in the closure of O(M) and denote this fact by M <ge, V. This gives a partial
order on the isomorphism classes of modules of a fixed dimension.

For arbitrary algebras the degeneration problem is very hard even though Zwara has
characterized M <o, N by the existence of an exact sequence 0 — 27 — Z & M —
N — 0. But for certain algebras one can describe the degenerations explicitly because
the degeneration order is equivalent to two other partial orders defined on the set of

isomorphism classes of modules of fixed dimension. We define

o M <. N :& there are modules M;, U;, V; and short exact sequences
0—U; - M; - V; — 0such that M = My, M., =U;dV;, 1 <i < s, and

N = M, for some natural number s.

e M < N :& dimgHoma(M,X) < dimy Homy (N, X) holds for all modules
X. As from now on we denote dimy Homa(M,X) shorter by [M,X] and
dimy, Ext} (M, X) by [M, X]'.

The implications M <., N = M <4ee N = M < N hold for all algebras. By [1]
and [12] the reverse implications are also true for representation finite and tame quiver
algebras. So all three partial orders coincide in that case. Moreover, the partial order

< can really be computed, because all indecomposables and all homomorphism spaces
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are known. In particular, one can study the minimal degenerations M < N, where
no module L satisfies M < L < N. Here one can by [5] reduce to the case where M
and NV are disjoint, i.e. have no common direct summand. Then there is a short exact
sequence 0 — U — M — V — 0 with indecomposable modules U and V' whose direct
sum is N. So we are led to study more general deformations M of the direct sum U@V

of two indecomposables. The following questions are natural:
1. What is the codimension of the minimal deformations?
2. What deformations are extensions?
3. What singularities occur at U & V' for minimal deformations?

For representation-finite quivers all three questions are answered in [9]: The codimen-
sion is always one, all deformations are extensions and there are no singularities. For
tame quivers there are several cases depending on the nature of U and V. If both are
preprojective, the codimension is bounded by two and all deformations are extensions
as shown in [5]. So by [11] the singularities are known.

This article deals with the case where at least one of the modules say V is regular.
In case U is regular, the codimensions are bounded by two and the singularities are
known. This is already contained in Kempken (see [7]). We give in addition a precise
criterion when a deformation is an extension.

Up to duality, we can assume know that U is preprojective. We show by theoretical
means that we can restrict to the case where the dimension of V' is less or equal
to the null-root without affecting the codimension or the type of singularity. Thus
we are left with finitely many cases that we have analyzed completely with the help
of a computer. The codimensions are again bounded by two, so that the minimal
singularities are known again by [11]. Thanks to Lemma 4.2 and Theorem 4.1, it is
enough to look at the minimal deformations of U @ V', with dim V' is the null-root, to
get the result of the bounded codimensions. The degeneration diagrams for this cases
are given in the appendix.

In subsection 4.4 Theorem 4.9 we give an answer for question 2 for this case, but again
it is not only done with theoretical arguments. In most of the cases (namely for all
U, with defect(U) > —4) we marked the deformations, which are not extensions of
U @V, in the degeneration diagrams (see the appendix).

Finally we describe a tranversal slice that allows us (in principle) to give equations
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for the singularities of all deformations, but we have performed the necessary tedious
calculation only in a view cases. Unfortunately, we did not find a new interesting

singularity.
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Finally I wish to thank Jenny Krause for her support with translating this dissertation

and her encouragement all along the way.




2 BASICS ABOUT TAME PATH ALGEBRAS

2 Basics about tame path algebras

2.1 Quivers and their representations

A QUIVER @ = (Qo, Q1) consists a set of vertices )y and a set of arrows Q1. For a €
we denote by s(«) € @ its starting point and by n(a) € Q) its end. A nonempty PATH
of length r from z to y is a sequence «. ... a; of arrows with s(a;) = x, n(a,.) = y and
s(aiy1) = n(ay) for i < r. Additionally there is the empty path e; (of lentgh 0) for
each vertex 1.
For a field k£ the PATH ALGEBRA k() has as a basis the set of paths and the product
of two paths w; and ws is the composed path, if possible, otherwise 0. Now we have
the following statement:
The path algebra k() is finite dimensional if and only if
1.) the quiver @ is finite that is )y and @) are finite sets and
2.) there are no oriented cycles.
If @ is a quiver and k is a field, a finite dimensional REPRESENTATION V =
{Vi, fali € Qv, a € @1} of Q consists of finite dimensional vector spaces V; for each
i € Qo and f, € Hom(Vy), Vi) for each a € Q1. We get a morphism between
two representations by the obvious commutativity conditions. This defines a category
Repq of representations of (). An interesting aspect is that this category is equivalent
to the category Modyq of finite dimensional k£Q)-modules.
For a quiver @ = (Qo, Q1), where Qo = {1,...,n}, the EULER FORM or HOMOLOGICAL
BILINEAR FORM

(—, =) Z" XL —> 7
is defined by (z,y) = > %i¥%i— Y. Ts(a)¥n(a)- Thisisa (non symmetric) bilinear form.

1€Q0 acQ1
Thus we get the TITS FORM ¢ = ¢q by ¢q(z) = (z, z), which is an integral quadratic

form with corresponding symmetric bilinear form (-,-) defined by (z,y) = (z,y)+(y, x).
The radical radg of ¢ is the subspace {y € Z"|(y, —) = 0}.
The DIMENSION VECTOR of a module X is defined as dimX = (dim X (4));eq,-

Theorem 2.1:
Let QQ be a connected quiver with path algebra A = kQ) for some field k.

o A is representation finite if and only if qq is positive definite. The underlying
graph of Q is a Dynkin diagram A,(n > 1), D,(n > 4), Egs, Er, Eg in this case.
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® qq is positive semidefinite but not positive definite if and only if the underlaying
graph of Q is an Euclidean (or extended Dynkin) graph A,(n > 1),
[)n(n > 4),E6, E., Es. In this case A and Q are called tame and the radical of
q is one dimensional with a unique strictly positive generator 9§, having smallest

component 1.

o In all other cases qq is indefinite. Then Q) is called a wild quiver.

For two k@-modules X and Y we have
o (dim X, dimY) = [X,Y] - [X,Y]!

o (dim P(i),xz) = (r,dimI(i)) = z; for x € Z", where P(i), respectively I(i)
denotes the projective indecomposable to the vertex i € (g, respectively the

injective.

2.2 Auslander-Reiten Translation

For an A—module U the Auslander-Reiten translation is given by 7U= DTrU,
where D means the duality and Tr is defined by the exact sequence Homy (Fy, A) —
Homy (P, A) — TrU — 0 induced by a minimal projective solution P, — Py — U — 0.
We get 77 by TrD. It holds, that 7 gives a bijection from the non-projective indecom-
posables to the non-injective indecomposables with inverse 7.

There are two nice and important formulas due to Auslander-Reiten (see [8]):
Namely for two modules X and Y with the same dimension vector dim X = dim Y we

get for all indecomposables T’
[Xa T] - [Ya T] = [77T7 X] - [77T7 Y]

Hence, X <Y is also equivalent to [T, X| < [T, Y] for all indecomposables T'. Further-

more we get for a path algebra A always

D Homy (X,Y) ~ Ext} (Y, 7X).

2.3 Types of indecomposables

We have three types of indecomposable modules X for a path algebra.
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e X is preprojective < 7¢X =0 for i >> 0
e X is preinjective < 77X =0 for i >> 0
e X is regular &S 1 X#£0foralli€Z

and we say, that a module is preprojective, regular or preinjective if each indecom-
posable summand is. Thus every module X decomposes in its preprojective part Xp,
regular part X and preinjective part Xg, i.e. we have X = Xp @ X & Xo. Further-

more it holds the following result.

Lemma 2.2:
Let X, Y be indecomposable.

o IfY is preprojective and X is not, then Homa(X,Y) = 0 and Ext} (Y, X) =0
o [fY is preinjective and X is not, then Homa (Y, X) = 0 and Ext}(X,Y) =0

There is a nice characterization for modules being preprojective, regular or injective

over tame quivers.
So from now on A denotes a tame path algebra.

With ¢ from Theorem 2.1 we get the definition of the defect.

Definition 2.3:
The defect 9(X) of a module X is (§,dim X) = — (dim X, §).

Now it holds that
e If X is preprojective, then 9(X) < 0,
e If X is regular, then 9(X) =0,
e If X is preinjective, then 9(X) > 0 .
Finally, we collect some properties of regular modules

e The category R of regular modules is the product of uniserial categories 7,,
p € P, called TUBES.
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e Each tube 7, contains only finitely many, say p,, simples that are of the form

. Py )
X, 1 <1 <p,, for some simple X. We have ) dim7'X = § and 77+Y ~ Y for
i=1
all Y in 7,. p, is called the PERIOD of 7,,.
e There are at most 3 tubes with p, > 1. These tubes are called EXCEPTIONAL,
the others HOMOGENEOUS.
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3 Deformations of U@V for regular modules U and

v

3.1 First observations and notations

The category R of regular modules is the product of uniserial categories 7,. So non-
trivial deformations can only occur if U and V' belong to the same uniserial category
7,., where the Auslander-Reiten quiver is a stable tube of rank p. To describe an inde-
composable module X € 7, you only have to know the regular socle and length of X.

Namely for any simple module S € 7, there is a unique infinite path of monomorphisms
S=8(1) = S(2)—= S5(3)—....

So every indecomposable module X € 7, has up to isomorphism a unique form

X = S5(I) for a simple regular module S € 7, and we call [ = {(X) the regular length
of X and S the regular socle of X. It is convenient to define S(0) = 0.

It is well-known that 7, is equivalent to the category N, of nilpotent representations
of an oriented cycle with p points and arrows. The equivalence preserves the order
<, the existence of short exact sequences and the codimensions of the orbits. So we
can work with the category N, instead of 7, and reversely the same. This makes the
notations easier replacing the regular socle by the socle, the regular top by the top etc.
Furthermore the category N, is obviously self-dual.

Now the degenerations inside N, are already given in [7], but for the convenience of
the reader we include here a complete description of all deformations M of U & V' and
we determine, which of them are in the middle of an exact sequence with end terms U
and V.

In the first instance we declare for a module X € 7, the following: Let S be any simple
regular module in 7,,, then we denote by lg(X) the multiplicity of S as a composition
factor in the composition series of X in the category 7,. With this we get a nice
description for the dimension of Homy (X,Y") for indecomposable modules X, Y € 7,
(see for it Lemma 5.1 in [10]).

Lemma 3.1:
Using the above notations, if [(Y) > (X)), then we get

1. [X, Y] = lSoc(Y)(X) ’
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2. [V, X] = lnopv)(X) .

The next statement gives a precise criterion when a deformation is an extension of U

and V' and shows that the codimensions are bounded by two.

Lemma 3.2:

Let U = S;(k) and V = S;(l) be indecomposables in T, and let r be the minimal length
of an indecomposable module W with Top(W') = Top(V) and Soc(W) = 7~ Top(U).
Then the partially ordered sets S(V,U) = {m |meN I >r+mp>I1—k} and
EVU)={M|M<UaV , 3 exact sequence 0 - U — M — V — 0} are in bijec-
tion under the order-preserving map m — S;(k + 1+ mp) & S;(l —r —mp).

For the unique minimal element M in E(V,U) we have

2, forl(U) > 1(V) and Top(U) = Top(V')
codim(U @ V,M) =< 2  for l(U) < (V) and Soc(U) = Soc(V)

1, otherwise.

Proof. First we show that S;(k +r+mp) ® S;(l —r —mp) belongs to E(V,U) for m €
S(V,U). Set My = S;(k + r + mp), then we have Soc(M;) = U and I(M;) > I(U). So
there is a proper monomorphism ¢y : U — M;. Similarly we have Top(M;) = Top(V),
[(M;) > (V) and a proper epimorphism 7 : M; — V. For | = r 4+ mp there is an
obvious exact sequence 0 — U — M; — V — 0. In the other case K = kerm; is a
proper submodule of U with canonical projection €5 : U — U/K. Set My = U/K and
e = (%)) and look at the exact sequence 0 — U = M; & M, m=(m m2) C — 0. By
construction, Top(ez) : Top(U) — Top(Ms) is an isomorphism, whence

Top(U) — Top(M;) & Top(Msz) — Top(C) — 0 is exact and Top(m) is an isomor-
phism. Counting lengths we see that C' = S;(l) and My = S;({ —r — mp).

To see that the map is surjective we take a non-split exact sequence 0 — U = M 5
V' — 0. The induced exact sequence 0 — Soc(U) — Soc(M) — Soc(V) shows
[(Soc(M)) < I(Soc(U)) + I(Soc(V)) = 2. So M is indecomposable or the direct sum
M;® M, of two indecomposables. In the first case we have M = S;(k+1) = S;(k+r+mp)
with » +mp = [. So M is in the image of the map. For M = M; & M, we assume
[(My) > I(Ms) and decompose ¢ and m.Now, kere; # 0 for both ¢ implies directly
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Soc(U) C kere; Nkerey = kere = 0, a contradiction. So one ¢; is a monomorphism.
Similarly, if e(U) is contained in radM, then Top(e) = 0 implies Top(M) ~ Top(V),
a contradiction again. So one of the Top(e;) is an epimorphism, whence one ;. The
case i = j leads to ¢; is an isomorphism and the sequence splits. Thus we have i # j
and ¢; is a proper mono, ¢; is a proper epi. Finally the assumption [(M;) > (M)
implies ¢ = 1,5 = 2.

Dually, one 7 is a proper monomorphism, the other is a proper epimorphism. The
case m; monomorphism and 7 epimorphism leads to the inequalities [(U) < I(M;) <
L(V) <U(My) <I(U), a contradiction.

So we have My = S;(k +r + mp) and My = S;(I — r — mp) for some m with
[l >1r+mp>1— k. The injectivity of the map is obvious.

Now we take m < m + 1 in § and show that

X =Sik+r+(m+Dp)@S;(l—r—(m+1p) <Y = Si(k+r+mp)®S;(l—r—mp).
Take any indecomposable Z with [(Z) < k+r +mp. Then the image of any f : Z —
Si(k+7r+(m+1)p) has length < k+r+mp. So it factorizes through S;(k+r+mp) —
Si(k+r+(m-+1)p) and we have [Z, S;(k+r+mp)] = [Z, Si(k+r+ (m+1)p)]. Because
of [Z,5;(l —r —mp)] > [Z,5;(l —r — (m + 1)p)] the inequality [Z, X]| < [Z,Y] holds.
If I(Z) > k+r+mp we have [Z,Y] = lnop(2)(Y) = lrop(z)(X) > [Z, X] by Lemma 3.1.
Finally, to derive the codimension formula we can assume that £ > [ up to duality.
The minimal element in £(V, U) is then given by S;(k+r)® S;(k—r) = My & M,. We

calculate the codimension

c=[UeV,UaV]—[M,M]
=([UaeV,UsV]|—-[UsV,M])+ (U V,M]— M, M]).

Since M; has maximal length and 0 - U — M — V — 0 is exact we have

UV, My] = [M, My] = lsoc(ary)(M). The surjection M; = V induces an isomorphism
Homy (V, My) ~ Homp (M7, Ms) because any f : M; — M, has kerm in its kernel
because of I(ker f) > I(kerm). The surjection U =% M, also induces an isomorphism
Homy (U, Ms) ~ Homp (Ma, Ms). So we get [U &V, M| — [M, M] = 0.

The inclusion U — M; gives Homy (U,U) ~ Homa (U, M;) and Homa(V,U) =~
Homy (V, M;). We always have [V, V] — [V, M] = lropv)(V) — lropevy(M2) < 1 and
[V, V]—[V, M3] = 1 because the identity does not factor through the inclusion My — V.

10
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So we get
c=1+[U,V]— U, M,
=1+ lTop(U)<V) - lTop(U)(MZ) =1+ lTop(U)(V/M2)
= 1+ lropu) (M1 /U).
The wanted formula is now obvious. ]

3.2 Construction of a complete list of deformations of U & V

The proof of Lemma 3.2 has shown that every deformation M of U & V' has at most
two direct indecomposable summands, more precisely M = M; & My and for M; # 0
it holds:

Soc(M;) = Soc(U) or Soc(M;) = Soc(V). (1)

Dual to this we get for M; # 0:
Top(M;) = Top(U) or Top(M;) = Top(V)). (2)

By means of the map of Lemma 3.2 and the top-socle-conditions (1) and (2), we are

now going to describe, how we get a complete list of deformations of U ¢ V:

In the 1st step we construct all modules M®) = M 1(t) @Mét) which comply the conditions
of Lemma 3.2. For this we assume that S(V,U) is not empty and we take the unique

minimal element m,,;, of S(V,U). Then we set
Ml(l) D M2(1) = Si(k+ 71+ Mpinp) & S; (L — r — Mypinp).

To complete the list of the Ml(t) & MQ(t) we only have to decrease the length of MQ(D by
the period p as long as it is possible, which means that it has to be greater or equal
to zero. Then clearly M” has to be a module with length I(U) + (V') — {( M) and
the same socle as U. Dual to the 1st step we construct in the 2nd step modules M, (t),
M, © by using the minimal element of S(U, V).

In the 3rd step we adapt the same procedure from the 1st step to Ml(l) &) Mz(l). This
yields lists of modules N® = N @ NI and M? e N,®
with 3, @ 5,

Hence we covered all possibilities to get deformations of U @& V' from supermodules of

, similar in the 4th step

. But now we get again the same modules as in the 3rd step.

11
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U and submodules of V' by the M; & M,’s and the ]\71 &> ]\72’8. Dual the Ml ® ]\ng’s and
the N; @ Ny yields a complete list of deformations of U & V', which arose as a result
out of submodules of U with supermodules of V. Due to (1) and (2) there can be no
further deformations. The comparison of the lists among and with one another leads to

the following degeneration diagram (fig. 3.1), at this there are four cases to distinguish.

fig. 3.1: Degeneration-Diagram of U &V

Case 1: Soc(U) # Soc(V') and Top(U) # Top(V') obtain. Then all MP @ Mz(t) and
]\Zfl ) @b MQ(t) exist as middle terms of a short exact sequence between U and V.
Following Lemma 3.2 N @ N{* and M® & N,® cannot accomplish that.

Case 2: Soc(U) # Soc(V) and Top(U) = Top(V) obtain. In this case Mi(t) = Ni(t)
and M( = Ni(t) holds for all ¢, £ and i € {1,2}. Again following Lemma 3.2 we
have that Ml(t) @Mét) and Ml * @Mz(t)
between U and V.

are middle terms of short exact sequences

Case 3: SOC(U)~ Soc(V) and Top(U) # Top(V') obtain. This time it holds that
MO = N;" and M,

) (t) - . . . .
= N;” for all ¢, t and ¢ # j. The residual is analogous to
case 2.

Case 4: Soc(U) = Soc(V) and Top(U) = Top(V') obtain. It now holds that Ml(t) =
() @ 0 ~ @ ) a0 o (@ (t) 0 .
Ny = M, =Ny and My, " = N," =My’ =Ny ". All M;” @ M," are middle

terms of a short exact sequence between U and V.

12
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A detailed proof of this needs an elaborate notation and is unpleasantly technical (but
not really difficult). So we only want to discuss an example for the case 1 to get the

idea of the proof.

3.3 Example

We consider a tube of period 4. Thus we have four simple modules 51, Ss, S3,.5; and

get the following figure for the Auslander-Reiten quiver:

5'3 (3 54 (3)

"/\/\/\/\

51(2) S2(2) ..

7\/\/\/\/\

fig. 3.2: Tube of period 4

Now we set
U = S51(10) and V = S3(15) ,

thus we are in case 1 with Top(U) = Sy = 7 Soc(V') and Top(V') = S;. Figure 3.3 shows

all direct summands of the deformations of U @ V' in the Auslander-Reiten quiver.

In the notations of Lemma 3.2 we have t = 1,5 = 3,k = 10 and [ = 15. Thus we get

S(V,U)={1,2,3} (with r = 3) and
SWU,V)={0,1,2} (with r = 1).

1st step: List of the Ml(t) ® Mz(t)’s.

The minimal element of S(V,U) is My = 1, thus we set

Ml(l) = 51(17) and Mz(l) = S3(8).

18
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fig. 3.3: Deformations of U &V

14
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By decreasing the length of M2(1) by the period as long as it is possible, we get

MI(Q) = $1(21) and MY = S5(4) |
M1(3) :=51(25) and M2(3) =0.

Thanks to Lemma 3.2 and the construction we get that there are a short exact sequences
0—-U— Ml(t) S MQ(t) — V — 0 forall £ =1,2,3. For this take a look on the left side
of figure 3.3 (marked by lines).

2nd step: List of the Ml(t) e Mg(t)’s.

The minimal element of S(U, V') is my;, = 0, thus we set

Ml(l) = 53(]_6) and MQ(l) = Sl<9) s

M1 = 53(20) and MQ(Z) = Sl<5) s
M1 = 53(24) and M2(3) = Sl s

The successive application of the result to the minimal steps yields then figure 3.4:

M® @ MO W e,
M® & M® AR A
MY @ M AP AL
\ /
UaV

fig. 3.4: Degeneration-Diagram of U @ V after 1st and 2nd step

3rd step: List of the Nl(t) & NQ(t)’s and Nl(t) ® Ng(t)’s.

Now we have S(M", M{") = {2,3} (with » = 3) and S(Mél),Ml(l)) = {0,1} (with

15
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r = 1). Thus we get

Again the successive application of the result to the minimal steps yields then figure
3.5:

M1(3) @ M2(3) Ml(?’) ® M2(3)
|

NI(Q) @ NQ(Q) NI(Q) o N2(2)
|

MO & 4@ 7@ @
|
MOS0 O
| S
MY & " Y e "
\ /
UeV

fig. 3.5: Degeneration-Diagram of U & V' after 1st till 3rd step

4th step:

~ (1) =), . B M) M) .
We have S(M; ", My 7)) = {2,3} (with » = 1) and S(My ", M; ') = {0,1} (with
r = 3). Thus we get again the modules as constructed before and the following figure
3.6
If you go on step-by-step with this procedure, you get the last cross connections as in

figure 3.1.

16
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M® & MO ®) ®)

| M1 S Mz
|
N1(2) @ N2(2) ]\71(2) @ ]\72(2)
| |
M1(2) ® M2(2) ]\;[1(2) @ M2(2)
| |
Nl(l) o N2(1) Nl(l) @ ]\72(1)
e
M1(1) o M2(1) M1(1) @ Mg(l)
\ /
UV

fig. 3.6: Degeneration-Diagram of U & V after 1st till 4th step

17
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4 Deformations of U & V for preprojective U and

regular V

4.1 First observations and notations

In this chapter we want to study deformations of U & V', where U is an indecompos-
able preprojective A-module and V' an indecomposable regular A-module. Due to the

tilting-theory we can always assume that U is the only simple projective.

So from now on let U be simple projective and V' € 7,,, where 7, is a tube of period p.

Consider an A-module M = @ M;, where all M; are indecomposable, and assume

i=1
M < U @ V. This implies for all Q € Z:
[Q, M] < [Q,U]+1[Q,V] =0.

Hence no M; can be preinjective and therefore M decomposes into its preprojective
and regular parts
M = Mp & Mg.

Because of d(Mp) = [X, M]'—[X, M] = [X,U]'—[X,U] = 9(U) for an indecomposable
regular module X with dim X = §, we have Mp # 0. If we assume now that Mz # 0

and take S to be the regular socle of a summand of My, then
1<[S,M]=[S,Mg]<[S,UaV]=[5,V]<1

yields that Mz is indecomposable and that the regular socles of Mz and V' coincide.
We write from now on My in preference to Mgr. Thus Mg is a regular submodule of

V' and consequently there exists a short exact sequence
¥:0—Mr—V 5 R—-0 and R is again indecomposable regular. (3)
Using the above notation the following reduction result is crucial:

Theorem 4.1:
Mp® Mr <UDV is a minimal degeneration if and only if Mp < U @ R is a minimal

degeneration.

18
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This result is extremely useful, because combined with the following lemma it reduces
the classification of the minimal deformations to a finite problem that can be attacked
by a computer. The lemma in turn is an adaption of lemma 3 in [5]. With the previous

notations we get:

Lemma 4.2:
Assume that Mp @ Mr < U @V is a minimal degeneration, then dim R < § holds.

Proof. Because M = Mp @& Mpr < U @V is a minimal degeneration, we get a non-split
short exact sequence 0 — U = M — V — 0. Decompose now ¢ into (). If &, = 0,
then we get V' = Mp @ cokern(ey), which implies V' = Mp, a contradiction. So we
have £; # 0, whence ¢, injective, because U is simple. According to that we get the

following exact commutative diagram

D
0 0
|~ ]
Mp~Mp
-l

0—U—M—V—0
| |

o :0—»UZJ\T7>—»JI£—»0
0 0

Suppose now dim R > J, then there exist two short exact sequences

0—>R SR—Ry,—0 and O—>R1—>Rﬁ>li32—>0

with dim R = § = dim }%2. This means that Ry, respectively }%2 is the regular uniserial
submodule, respectively factor module of R that contains exactly once each simple
belonging to 7,. Now from o, and ¥ we get by obvious manipulations the following

two diagrams:

19
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o3 04
0 0 0 R,
[ l |
02 :0—U—Mp—Ri—0 Y:0—Mp—V—R—0
al ] D
o1 :0—U—Mp—R—0 05 10— Mr—V—R,—0
R2:>R2 )l(
|- |
0 0 0

and

So we obtain that Mp is preprojective, because Mp is preprojective, X =~ Ry is regular

and therefore 0 # My, is regular, too. Our aim is now to conclude
M<M=Mp&Mp<U&V .
First by equality of dimensionvectors for 1" injective we have
UeV,T]—[M,T]=0=[M,T] — [M,T]
and for T not injective we get

UeV,T)- [M,T)= [rT,U&V] - [r T, M]and (4)
[M,T] - [M,T] = [r"T,M] - [r~T,M] . (5)

Both equations (4) and (5) are identical to 0 for T preinjective and > 0 for T regular,
since Mg embeds in MR and MR embeds in V (see 04 and o5). Lastly we look at the

case where T' is preprojective. Now Homy (—,T') applies to oy and o3

Homy (R, T) = 0 — Homy (Mp,T) — Homy (U, T) and
Homy (R, T) = 0 — Homy (Mp, T) — Homp (Mp, T)

and hence we conclude M < M < U @ V. By the minimality condition of M < U @&V
we can deduce, that either M ~ M or M ~ U @ V must hold. But the first case is a
contradiction to o4 and By # 0 and similarly in the second case we get a contradiction
because of o5 and Ry # 0. O
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4.2 Proof of Theorem 4.1

We start with the assumption, that Mp < U @ R is a minimal degeneration. Out of the
minimality results the existence of a short exact sequence ¢ and together with ¥, in

particular the pullback along 7, we get the following commutative and exact diagram

As now Ext} (Mp, Mg) = 0 it must hold that E ~ Mp & Mp. Hence as a result from
o’ we get Mp@® Mpr < U@V and we want to show that this is minimal. Without loss of
generality let My # 0 and assume that there exists a module M’ = M, &M, < UGV,
which is a minimal deformation, with M < M’ in addition. From the additivity of the
defect it follows directly that 0 (Mp) = 0 (M}). Hence with Lemma 3.8(ii) in [12] it
results, that Mp is a submodule of M}, (so especially M}, # 0).

To infer a contradiction we first look at the case where Mg is a proper submodule of
M}, and My, is a proper submodule of V. This assertion will lead to a regular module
R" with 0 # R" C R and Mp < Mp & R” < U & R which is a contradiction to the
minimality condition of Mp.

Consider the short exact sequence ¥’ : 0 — Mp — V — R’ — 0, which follows
from Mj C V. As in the proof of Lemma 4.2 we have an exact sequence 0 — U —
Mp@®Mjp — V — 0. Again we get a short exact sequence 0’ : 0 — U LR My, — R —0
and the embedding €’ of Mg in M}, yields a short exact sequence ¢ and an epimorphism
RIL R
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0
T}
0 R//
l |
Y :0—Mr—V—R—0
€ l id l l '
o5 0—Mp—V—PR'—0

0

O(—X(—

Especially 0 # X ~ R” is indecomposable regular. Again the pullback from ¢’ along
7" implies M, @ R” < U @ R. What remains to be shown is that Mp < My, @ R" holds
too. So let T' be an indecomposable module. Then Homy (7, —) applied to o)) yields an
exact sequence 0 — Homa (T, Mr) — Homu (T, M) — Homyu (T, R”) and therewith

[T, Mg| > [T, Mp] — [T, R"] .

Due to M < M’ it now follows for all T indecomposable:

[T, Mp] + [T, Mg] < [T, Mp] + [T, My] — [T, R"] + [T, R"|
S [T7 M7/3] + [Ta MR] + [T7 RN]

and therefore [T, Mp| < [T, Mp] + [T, R"], thus
Mp < Mb@® R" .

As Mp < U@ R is minimal we get from Mp < M, R’ < U@ R either Mp ~ M, S R"
or My @ R" ~ U @ R. The first case is impossible because of R” # 0 and the second
because of R # R.

Consequently it must either be that Mp = My or M = V. In the case of
Mp = My, the split of M}, yields a short exact sequence 0 — U — Mp — R — 0
and therewith M; < U @ R on the one side. On the other side it results from
Mp & Mp =M < M = M, & My, that Mp < M. Due to the minimality of Mp it
follows that Mp ~ My, thus M ~ M’ too. The case of My =V leads immediately to
M~UaV.

Now we consider the reverse direction, so let M = Mp & Mrp < U @&V be a
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minimal degeneration and look at the exact sequences 0 — Mrp — V — R — 0 and
0—U — Mp — R — 0. Suppose Mp < U @ R is not minimal. Then there are proper
degenerations Mp < M,® R < U@ R where the last degeneration is minimal. So there
are exact sequences 0 - U — M, @ R — R —0and 0 - R' — R — R" — 0 where
the case R’ = 0 is possible. Let My, be the kernel of the composition of epimorphisms
V — R — R". We claim that Mp & Mr < My @& My < U @V holds. Indeed, all three
modules have the same dimension vector. For a preinjectice indecomposable module
T we have
T, Mp & Mg| = [T,Mp ® Mg =[T,U®V]=0.

For regular T" we have
[T, Mp & Mg) < [T,Mp & My < [T,U®V]=0,

because of Mp C M C V.

For preprojective T' we have [Mp & Mg, T| = [Mp,T] < [Mp & My, T < [U & V,T|
because of Mp < M; @ R’ < U @ R. Using the nice formula of Auslander-Reiten from
2.2 we conclude [T, Mp & Mpg| < [T, My, & Mp| < [T,U & V.

By minimality of Mp @ Mr < U @V we obtain Mp ® Mg ~ My, ® My, or My, ® Mp, ~
U @ V. The first case gives Mp =~ My, contradicty Mp < My @ R'. The second
case implies My ~ U and Mp ~ V, whence R' ~ R and M, & R' ~ U & R. Both

contradictions shows that Mp < U & R is minimal.

4.3 The Codimension

Following Theorem 4.1 the question comes up, what happens with the codimensions

for this reduction. The answer is given in Lemma 4.3: They remain the same!

Lemma 4.3:

Under the assumptions of Theorem 4.1 the codimensions on both sides coincide.
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Proof. We have to check the following equation

UaeV,.UaV]—[Mp& M, Mp & M,]=[U®R,U&R| — [Mp, Mp]
& U, V]+ [V,V] = [Mp, M,] — [Mg, Mg] = [U, R] + R, R]
= [U, Mg] — [Mp, Mg] = [R, R] + [Mg, Mg] — [V, V]

Because there exists a short exact sequence 0 — U — Mp — R — 0, we get via the

Euler form the equation we want to verify
— (dim R, dim Mg) = [R, R] + [Mg, Mg] — [V, V] (6)

On the right side of (6) we get for (V) = kyp + ry and {(Mg) = knp + 70y, Where
0 < rar, v < p, that

kv, +1  , for rpr, >0 ky+1  forry >0
. T ad V=9t o
kar

" , for rp, =0 kv , for ryy =0

[Mp, MR] =

Furthermore lemma 4.2 tells us, that
0 <U(R)=UV)=I(Mg) = (kv — ke )p +7v —Tar, < p

Now we consider two cases, namely dim(R) = § and dim(R) < §. In the first case
we have ky — ky, = 1 and ry = 7y, thus the left side of (6) is nothing more than
J(Mg) = 0 and on the right side we get with(7) and [R,R] = 1 (dimR < ¢ ) the
same. Now have a look at the second case. From dim R < § we infer [R,R]' = 0
and [R,V]' = [t7V,R] = 0 (because Top(V) = Top(R) and I(R) < p, so Top(r~V)
is not a regular composition factor of R). Together with the short exact sequence
Y:0— Mr—V — R — 0 we obtain — (dim R, dim Mg) = [R, R] — [R, V], thus (6)

reduces to
(R, V] =[V,V] = [Mg, Mpg] .

But this is obviously true, as Lemma 3.1 ({(R) < I(V)) and ¥ implies [R, V] = l5(R) =
Is(V) —ls(Mg) = [V, V] — [Mg, Mg], where S = Soc(V') = Soc(Mg). O

Since we only have to look at the finitely many modules V' with dim V' < ¢§ and finitely
many U, such that U is the only simple projective, we get with the help of a computer
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the following statement for minimal degenerations M < U & V.

Theorem 4.4:

If M <U &V is a minimal degeneration, then the codimension is at most 2.

In a forthcoming paper we give a theoretical argument for this theorem!

4.4 Deformations and extensions

The next aim is to describe for V' with dim V' < § the set
E ={M | 3 exact sequence 0 - U — M — V — 0}

of all extensions inside the set of all deformations of U@ V. First we give some sufficient
constraints for the existence of an exact sequences 0 - U — M — V — 0.

For the case of M = Mp ® Mr < U @V, where dim V' < § we refer to Lemma 4.4 in
[3], which is the following result.

Lemma 4.5:
Let a module M and an exact sequence 0 — U — N — V — 0 be given such that the

following three conditions are satisfied:
1. The orbit of V is open,
2. [U,N] =[U, M],
3. M degenerates to N .

Then there is an exact sequence 0 — U — M —V — 0

So we get for this case that the condition M degenerates to U & V' is equivalent to the
existence of an sequence 0 — U — M — V — 0. Particularly we get from dimV' < §
that 0 = Ext (V, V) = T,Mod% /T,O(v), so the orbit of V is open. Thus N = U & V.
in Lemma 4.5 yields the equivalence.

For dimV = § we get a further sufficient constraint for the existence of an exact
sequence by using the dual Version of Theorem 2.4(a) in [3], which is the following

statement.
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Lemma 4.6:
Let M, N and V be A-modules such that M degenerates to N and [M,V] = [N, V].
Then we have: If there exists an epimorphism N = V — 0, then there exists an

eptmorphism M LV =0 too.

With this we will see now, that every degeneration M < U @ V, which has a path in
the degeneration diagram of U & V' to a minimal deformation N < U & V', where N
is preprojective, is a middle term of a short exact sequence between U and V. So we
define the set IC to be

{M <U @V | M has a path to a minimal preprojective deformation or Mz # 0}

and see with the next statement that I C £.

Lemma 4.7:
1. IfM<NSU®V with N <U®®V minimal and N is preprojective, then there

exists a short exact sequence 0 - U — M — V — 0.

2. If M <U®V with Mgr # 0 and dim V' = §, then there exists an exact sequence
0—-U—-M-—->V —0.

Proof. To (1): As N < U @V is minimal, we get a short exact sequence 0 — U —
N — V — 0. Hence we only have to prove that [M, V] = [N, V] holds, then Lemma 4.6
gives the assertion. Because N is preprojective and M < N holds, M is preprojective

too. Thus we get
M,V] =[N, V]=[r"V,M]—[t"V,N]=0,

as 7V is regular.

To (2): Pick a minimal degeneration N < U @&V such that M < N holds. Then Mg is
a submodule of Ng and N is a proper submodule of V', so I(Mg) < [(Ng) <p=1(V)
holds. Again we deduce from [M, V] = [N, V] the assertion by using Lemma 4.6. Since
dim M = dim N we get with the Euler form

(dim N, dim V) = (dim M, dim V)
& [N,V]—[M,V] =[N, V]' = [M, V]!

and [M,V]' = [17V,Mg] =0=[r"V,Ng] = [N,V]" . O
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So if we want to answer the question, which deformations M of U@V are not extensions
of U and V in the case of dim V' = ¢, then, following Lemma 4.7, we have to examine
those preprojective M, that have no path in the degeneration diagram of U & V to
a minimal N < U & V with N preprojective. Consider now two deformations M
and M’ of U &V with the just mentioned properties. Then it results from M < M’
and M being no extension of U and V/, that M’ is no extension of U and V either,
because [M,V] = [M’', V] holds. Thus in the first instance we consider the ”highest”
deformations M in the degeneration diagram. Later on we discuss an example for
the quiver E; on the next paragraph. Sometimes there is the case, that only one
deformation M is to verify and that it is indecomposable. Thanks to Lemma 6.6 in [3]

we have a nice condition to handle this.

Lemma 4.8:
Let M be an indecomposable preprojective module such that M degenerates to UV and

denote by S the reqular socle of V. Then the following two statements are equivalent:
1. [S,UM#0
2. There exists an exact sequence 0 - U — M —V — 0 .

The examination of the deformations M ¢ K shows that the following holds

Theorem 4.9:

Using the above definitions we have:

i all cases.

Unfortunately, we have no theoretical argument for this. Observe however that for
homogeneous V' the set K = & consists already D, the set of all deformations of U@ V.
But up to the case, where £ is only the orbit of an indecomposable, we have always
E C D for V is not homogeneous. Furthermore there are cases, where no minimal
deformation M of U & V with M is preprojective exists, because for all M € £ it
holds that Mg # 0. See for this for example the cases of D,(n > 4) or E;(i = 6,7,8)
in the appendix. Moreover the ”"highest” deformations, which have to examine, are

not always on the same level in the degeneration diagram. For example the case of
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V = S5(4) (see figure 4.2) in the next subsection 4.5 shows this.

As the following example shows, the verification of this theorem requires a lot of non-
routine calculations. This is due to the fact that we do not know any efficient algorithms
to decide whether a given module V' is a quotient of another module M or whether M
is an extension of V' by U.

Note that the following example shows that the set of extensions is not a subvariety of

the set of all deformations but only a constructible subset.

4.5 Example: F;

Now we want to consider the quiver E; with the following orientation

C

l

a1 —>ag—>a3—>d<~—bg~—by<—0b;

Thus we have three regular tubes with period p > 1, in particular p € {2,3,4}, and we
denote by Si,...,S, the regular simples of the respective tube and a module 7" P(q)
shorter by 7"q.

4.5.1 Period 4

First we study the case of period p = 4. For the dimension vectors of the regular

simples we have:

dimS1 =[g901110] dimSa=[g019114]

dimS3=1[4117000] dimSi=1[;;191¢0]

In figure 4.1 we see the degeneration diagram of U @ V', where U = d and V = S;(4).
We mark with — the deformations of U & V' with a nonzero regular part and with
the preprojective deformations, which have no path in the degeneration diagram of
U@V in a minimal N < U @&V with N preprojective. The "highest” deformations

M; have the number ¢ inside of 5. So we want to verify that

M, = 73a3 ® a; and

Mg = 773b1 ) T72b3
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are no extensions of U and V. To get this statement we use that every epi from M; to

V iduces an epi from M; to every quotient of V', especially for the regular top Sy of V.

For M; we get Homa (M, Sy) ~ Hompy(ay, Sy), because [r73as, Sy = [az, 735y] =
[ ] L] L] L] L]

fig. 4.1: Degeneration diagram of d & S;(4)

[as, S1] = 0. But dima; =[; 11900 0] < dim Sy, so there is no epi a; — Sj.
For M, we get Homp (M, Sy) ~ Homp (772b3, S4), because [773by, S4] = [by, 735,] =
[01,51] = 0. But dim72b3 = [ 19491 1), thus (dim772b3),, = 0 < 1 = (dim Sy)a, -
So we conclude that every module signed with g in figure 4.1 is not an extension of
d@ Si(4).

Next we take a look at the case where V' = S5(4). There we see, that it is not true,
that the "highest” modules, which have at least to be examine, are all on the same

level at the degeneration diagram. Figure 4.2 shows the corresponding degeneration
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fig. 4.2: Degeneration diagram of d & S5(4)

diagram. There we have to consider three modules M;, namely

M, = T_3Cl2 BT as,
M2 = T74a2 D b2 and
M3 :T74b1 EBT72CEBCI/1 .

For M; we again use the regular top S; of S3(4) and obtain that Hompu (M, S;) ~
Homy (77 as, S1), because [T 3ay,S1] = [a9,7351] = [a3,S:] = 0. But dim7 ay =
(1113100 thus (dim 77 ag)p, < (dim Si),,. Similarly we proceed with M, and again
it is no extension. For M3 this argument does not work, because there exists an epi-
morphism from Mj to S;. So we regard the quotient Sy(2) of S3(4). Then dim S,(2) =
[1113210]) and Homga (Ms, S4(2)) ~ Homa (772¢ ® a1, S4(2)), because [r74by, S4(2)] =
[b1,54(2)] = 0. But dim 7 2c®a; = [ 99311 0> thus (dim 772cPay )y, < (dim S4(2))p,-
The case of V' = S3(4), respectively V' = S4(4), is symmetric to S;(4), respectively
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4.5.2 Period 3

For the tube of period 3 we have the following dimension vectors for the regular simples

@51:[001%100] @52:[011(1)110] @53:[111§111]'

The case of V' = S1(3) can be handled only with the observation of the dimension vector
of the regular top S3 of Si(3), so we do not discuss this and go on with V' = S5(3).

There we have again three modules to verify, namely

M, =730, ® 7 ay ,
M2 = T_3b2 D T_bg and
Ms=713a, ®1 c®T b .

The regular top of S3(3) is S; and we get Hompa (M, S;) ~ Homyu (7 az, S1), where
dim77as =1[;113100] Furthermore we take a quick glance at the orientation of our

quiver and conclude that every f = (fala fa27 fasa fda fb3) fb27 fb1a fc) € HomA(Tia% Sl)
fulfills f,, = 0. But (dim S),, = 1, thus f is never a epimorphism. For M, we get the
same (it is symmetrical to M) and for M3 we check the dimension vectors of 77 ¢ and

Sy like before.
Finally the case of V' = 55(3) affords two modules

M, = 77%a; ® 7 2a, and

M2 = T73b1 D 772b2 s

which are symmetrical to one other. Again we take the regular top Sy of S3(3) and
find for every f € Homy (M, S2) that f,, =0, but (dim Ss),, = 1.

4.5.3 Period 2

The dimension vectors for the regular simples of the tube of period 2 are given by

dimS1 =[g113911] dimSa=[;195710]
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fig. 4.3: Degeneration diagram of d & S;(2)

S1(2). The corresponding degeneration diagram is figure 4.3. For

We only discuss V'

this case we have to check four modules

-3 -2
My=7"a01 87 “as®ay,

My =7 @7 2%da ,
M3 = 7'_6b1 D T_bg

and

M4 = 7'75661 @Tibg Dap .

Homy (77 2%as @ aq, Ss), but if we regard intently the repre-

~

We have Homp (M7, Ss)

sentations of 772ay @ a; and Sy, we see that every f € Homa (7 2as ® a1, So) complies

fe

1. Particularly we get a

0. So f is never an epimorphism, because (dim S).

representation of 7 2as @ a; by the following
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k
a7 | g
1 9] 01 01186 [9] 0
k k k2 k3 k2 k 0
and for Sy we have
k
[1]
v Lol [69] ‘ 9] 1 0
k k k2 k2 k k<—0

Using the commutativity conditions we calculate for f € Homa (7 2ay @ a1, Ss):
fa1 :faz =T, fag = [2:6} ?fd: [2(2)(1)} 7fb3 = [yz] and sz =z,

where z,y, z € k. But now we get f, [(ﬂ =[,%.] =[1] f.. This implies f, = 0.

Next we want to study M,. Now we have Homa(Ms, Sy) =~ Homy (77 2%c @ ay, Ss)

and we choose the following representation of 772¢ @ ay:

k
9] | ) )
21 [6%1  lot) § % |6 | 0
k— k2 k2 k3 k k<=—0.
Set for f € Homp (77 2¢® ay,S9):
ftl1 :xfoLQ:[yz]a
where z,y,z € k. Then we get f,, = [§ 5], but if f is an epimorphism, then f,, must

be an isomorphism, which is never satisfied.
Finally we see that Homa (M3, S2) ~ Homa (77 b3, S2) and Homa (My, So) ~ Homa (77 be®
ap, Sa), thus by compare again the dimension vectors with dim S, we conclude, that

there is no epimorphism too.
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5 Some geometric aspects

The object of this section is to elucidate briefly how to analyse singularities in the
case of A being a tame path algebra. We therefore recall the definition of smooth

equivalence occurring in orbit closures of modules .

5.1 Types of singularities

In the first instance let A be a finitely generated associative k-algebra with unit.

Definition 5.1:
Two pointed varieties (X, z) and (Y,y) are called SMOOTHLY EQUIVALENT if there are
smooth morphisms of pointed varieties A : (Z,2) — (X,z) and u : (Z,2) — (Y,y).
This yields an equivalence relation ~ and the equivalence classes are called TYPES OF
SINGULARITIES.

Furthermore we denote by Sing(M, N) for A-modules M and N with M <y, N the
type of (O(m),n). The next theorem gives a first reduction for the examination of

Sing(M,N)(see [2]).

Theorem 5.2:
Let S, M, M’', Q) and Q' be finite dimensional modules such that the following condi-
tions are fulfilled:

1. [S,M] =[S, M].

2. (@8 -1Q,8] =@, 5" - [@,9].

3. Q) is the generic quotient of M by S, and M 1is the generic extension of () by S.
4. Q' is a quotient of M' by S

Then M degenerates to M’ if and only if QQ degenerates to Q' and
in that case Sing(M, M') ~ Sing(Q, Q') holds.

In the case of finite dimensional modules over a finite dimensional path algebra we

therewith get the following statement.
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Lemma 5.3:
Let U, V and M be modules over a finite dimensional path algebra A such that U is
mdecomposable preprojective, V' is indecomposable reqular and M = Mp® Mg, whereas

Mgz is a regular submodule of V and there exists a exact sequence 0 — U — M —

V — 0. Then
Sing(M, U® V) ~ Sing(Mp, U® R)
holds, whereas R is the quotient of V' by Mpz.

In paragraph 4.4 we have shown, that in the cases of M < U &V with Mz # 0, which

are to be examined, the conditions of Lemma 5.3 are always fulfilled.

Proof. Let S be the regular socle of V. In the notation of theorem 5.2 we now set
M =UaV,Q = MpdMg)/S = Mp ® (Mr/S) and Q' = U @& (V/S). The
conditions of theorem 5.2 are then fulfilled, as (1.) [S,M] = [S,M’'] =1, (2.) holds
always for path algebras by using the Euler form, as dim ) = dim @', (3.) @ is generic
quotient, since it is the only quotient of M by S and M is the generic extension of
Q) by S, as Homy (S, Mp) = 0 and (4.) by definition of @’. Thus Sing(M, U & V) ~
Sing(Mp & (M%/S), U & (V/S)) holds. Furthermore the embeddings of S in Mz and

Mz in V lead to the following diagram with exact rows and columns:

0 0

|

S S

| |

id | | |
0—U—Mp & (Mr/S)—V/S—0

é |

So we come upon the initial situation again and can go on with the same argumentation
till Mz = 0. O

Next we want to show that in the case of path algebras k() we can reduce our exami-
nation to representations of (). We therefore use a general reduction, that results from
the following consideration (see for example [4] example 5.18).

First of all let B, generated by by,...,b,, be a subalgebra of A, which is generated by
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ai,...,a,. Then there exist for any b; a polynomial P; in not-commuting variables,
such that b; = Pi(ay,...,a,) holds. Now regard 7 : Mod% — Mod%, given by evaluat-
ing the P;’s, then 7 is a Glg-equivariant morphism. Thus we get as a consequence of
7.8 in [6]

Lemma 5.4:

Use the above notations and take n € Mody with stabilizer H = Stabg(n). If we
denote by F the preimage of n under mw, then m induces a bijection between the H -
invariant subsets of F' and the G-invariant subsets of the preimage of O(n) under
. This bijection respects inclusions, closures and codimensions, we especially get for

m,m' € F:
m' € Gm & m' € Hm
and in this case Sing(Gm, m') ~ Sing(Hm, m') holds.

We want to adapt this to Mod% and Rep%, where A = kQ, d = (dy,...,d,) with
Yorgdi =d (Qo = (1,...,n)) and Rep%2 denotes the representations to a fixed di-

mension vector d. Therefore consider the orthogonal primitive idempotents e; and the
n

subalgebra B = @ ke; of A. Then every G-orbit in Mod% is closed, as all B-modules
are closed, becauls:elthey are semi-simple. Hence the G-orbits are the connected compo-
nents of Mod%. Now we look at the surjective 7 from Lemma 5.4, then the preimages
of the G-orbits in Mod% are the connected components of Mod% (on the one hand the
preimages of the G-orbits are open and closed, on the other hand it holds for every M

in the preimage that M <,., @ Sdl, where S; denotes the simple to the point i € Q).

7
=1

In particular we have:

Modh = { Ba= (Br,.... En) | By € k4 S0, By = By, By = 8,5}

Now choose the obvious normal form for E; and plug it for n in Lemma 5.4. Then
H is the product [, Gls,. Thus the examination of (Hm, m’) corresponds to the
examination of representations of Q).

As the last reduction of the problem we now introduce a definition and give a descrip-

tion of a transversal slice in the special case of quiver representations.

5.2 Transversal slices

Let A = k(@ be a finite dimensional path algebra over a quiver Q).
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Definition 5.5:

Let d be an element of NI%! D € Repg(d) and G(d) = [Tico,
SAL SLICE ON D in Repg(d) is a subspace S of Repg(d) such that the map

i Gd) x (D +8) = Repa(d) with (g:)icqn (Ma)acar) — (- g5 M(@)git, )
induces a bijective map on the tangent spaces at the point (1, D), respectively D.

Glg,. Then a TRANSVER-

For the motivation of this definition note that G(d) x (D + 5), as well as Repg(d)
are smooth. Hence p is smooth in an open neighberhood of (1,D) and D, if the
induced map on the tangent spaces is bijective. Assuming this we get for a degeneration

D' <4eq D in Repg(d) the following diagram:

G(d) x (D + §)——— Repo(d)

- g smooth U
oD

G(d) x (O(D")N (D + 5)) = p=H(O(D"))

smooth

o) N(D+S)

This shows Sing(D’, D) ~ Sing(O(D') N (D + S), D). We are left with the question,
how to calculate such a subspace S. For that purpose we consider the tangent space
TpRepg(d) at the point D and denote by T}, the induced tangent map at the point
(1,0). Now it holds that

Tu(TlG(d) X 0) = B(D’ D) - Z(D’ D) = TDRepQ(‘_i) = RBPQ(Q)

where B(D, D), respectively Z(D, D), denotes the coboundaries of D, respectively
cocycles of D. Thus we get a subspace S having the required characteristics, by
calculating a complement for B(D, D) in Z(D, D).

In those cases in which we want to use this technique, D will be a representation of a
tame quiver Q, that corresponds to a kQ-module U & V', whereat U is indecomposable

preprojective and V' is indecomposable regular with dim V' = §. Thus D decomposes
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into Dy @ Dy and with this we infer from Exto(Dy, Dy) = Exto(Dy, Dy) = 0 that:

Z(D, D)/B(D, D) = Exto(D, D) = Exto(Dy, Du) & Exto(Dy, Dy)
= (Z(Dv, Dy)/B(Dv, Dy)) ® (Z(Dv, Dv)/B(Dv, Dv))

So it especially suffices to find complements for these direct summands of B(D, D).

We now denote by e an extension vertex of Q, i.e. d, = 1. Therefore the quiver )’
obtained by deleting e is a corresponding Dynkin quiver to () and there is exactly one
arrow « € () with either s(a) = e or n(a) = e. Consider the embedding

v: @ — Q. Because V is indecomposable, we have 0 # V(«a) € k. Now v and Dy
imply a representation Dj, of @’. Assume that Dj, is again indecomposable. Then
Ext'Q(D(/,D{/) = 0, since )’ is Dynkin, and dim V' = ¢ yields Extg(Dy,Dy) = k.

Hence we get a commutative and exact diagram:

|
0 EV (a) k2 k

12

0—>B(Dv, Dv)—>Z(Dv, Dv)—>EXtQ(Dv, Dv)—>0

0——B(Dy,, Dy)——Z(Dy,, Dy))—0 = Exto(Dy, Dy)—0

l l

0 0
Thus for every b ¢ kV («) it holds, that kb is a complement of B(Dy, Dy ).

5.3 Example

Again we consider the quiver E; with the following orientation

Cc

v

Qg,q Qq, Qg ﬂbg ﬂbg /Bbl
al as as d b3 bz bl
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5 SOME GEOMETRIC ASPECTS

First we calculate a tranversal slice. We discus explicitly the case for V' = V[

[4] € PL. Therefore consider the representation

]{32
10
100 01 000
10 010 01 100 00

[1] [01} 001 11 010 [10} 2]

0 00 000 001 01 y
k k2 k3 k* 3 k2 k.

Then we get for B(V,U):

1 00 10 000
010 01 1 00
B(V,U)Z [91792;93794] 00 1 ,[91,92,93794] 0 1 ,[91792793;94] 01 0
000 1 1 001

{191, 92: 93], (g1 + 94, 92 + g3 + G4, (92, 93, 94) | 9 € K} CK®

={¢1([1,0,0],[1,0],[0,0,0]) + g2([0, 1,0], [0, 1], [1,0,0])

+ 93([0707 1]7 [O’ 1]’ [07 1’0]) +g4([070a0]7 [07 1]a [O’O’OD ’ 9i € k}

and see that

{[0,a,0], [b,¢c|,[0,d,0]|a,b,c,d € k}

T
Y

] )

| gi €k

is a complement of B(V,U). For a complement of B(V, V) we have to choose a vector
w ¢ k[y]. Thus we take w = [}] for y # 0 and w = [{] for x # 0. So finally we define

the two tranversal slices

0a
1 10 10
o ) Loloee]s |5l
y#0 - — 00
L Q9 (6%

(
10 76

o 1

Sez0 =9 ol [gg}}, 01
00

a,b,c,
d,e €k
y#0

a,b,c,
d,e €k
x#0

\

J

\

V

Now we want to explain, how we find equations, which describe O(M)N ((U® V) +5)

for a deformation M of U © V.
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For every indecomposable regular V' with dim V' = § and U = Ae, there exist seven

deformations M; of U @& V of codimension 4, namely we have:

M, =13cd 2% )

M2 = 7'_3&1 D T_2a3 and M5 = 7'_3bl D T_2b3 s
M3 = 7'73&3 D aq and M6 = 7'73193 D b1 s
M4 = 7'73&2 DT as and M7 = 773b2 D TibQ

As an example we discuss the case of M; = X @Y, with X = 773¢. Obviously, we
have [X, M;] # 0 and this holds by semi-continuity for all of O(M;). To find equations
expressing [X, M;] # 0 we take a projective resolution ¥ : 0 — P, = Py = X — 0,

particularly
P, = Aey ® Aey and Py = Ae,, ® Ae,, © Aey, B Aey, ® Ae.

Then we obtain kermy ~ k{(as — (3, azaeaq + a3z + B30201 — ). If we now apply
Homy (—, M;) to X, we get an exact sequence

Homy (e,M1)
— 5

0— HOIHA(X, Ml) — HOHlA(PO,Ml) HOHIA(Pl, Ml) — EXt}A(X, Ml) — 0

Furthermore [X, M;] = [X,X] = 1 and [X,M]' = [X,Y]! = 1, thus [Py, M;] =
[Py, M;], but Homy (e, M7) is not an isomorphism and we get that detHoma (¢, M;) = 0.
More precisely we have Homp (P, My) =~ eq, My & eq, My & ep, My & e, My & e.M; and
Homy (Py, My) ~ eqM; & eq My, so we get

0 —
det Homy (=, M,) — det [agcggm o3 B3 021 ’V] —0.

a3 —3 0 0

Thus we have

O(M,) CN (det

Q30001 (g 0  BsBf —v
0 a3 =3 0 0 ’

where N(P) for a polynomial P means the zero set of P. Similarly we calculate

conditions for the other M;’s and get the following table 1. Now we want explicitly

calculate equations, which describe O(M;) N ((U & V) 4+ S) and discuss the case of

O(M;) N ((U & V) + Syzo). The condition leads to:
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Deformation Condition
My =173cdT % asaoar a3 0 B30 —vy|
det =0
O Q3 —ﬁg 0 O
M, =773a, & 7 %ag det [y Bs0201 asas] =0
Ms =713a5® a; det [’y ﬂg] =0
My =130y T as det [ozg 5362] =0
Table 1: Conditions
(00 a0 0 0 0 dxz+e) —b —c]
1100 0 0 O 0 -1 0
0010 0O 0 O 0 0 -1
0001 0O 0 O T+e 0 -1
0000 O O O -1 -1
det Y —0,
0 0a 0O 0 —-d 0 0 0 0
0100 0O 0 O 0 0 0
0010 —1 0 0 0 0
0001 -1 0 0 0 0
0 00O 0 -1 0 0 0

and we get the following equation

0 = adx + ade + d*z + d*e + dby — dbe — cdx — cde + bay — bdy — adx — ade
= (d* + db — cd)(x + ¢) + (ba — bd)y
=dd+b—c)(x+e)+bla—dy.
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Now we use the variable substitutions (note that y # 0)

dw—d
d+b—c— ¢
r+er¢
b b
(a—dy

and get

dde +Va =0.

Note that this polynomial is irreducible. So we see that O(M,) N (U @ V) + S,0) is
an irreducible subset of N (d'ce’ 4+ V'a’), whence we have found reduced equations for
O(Mi) N (U@ V) + Syzo)-

In our case the occurring singularity coincides with the invariant ring of the three
dimensional torus acting by conjugation on the set of 3x3- matrices with diagonal
entries zero, as explained to us by M. Reineke. After a variable substitution we see
that the cases of Sy and S,z are equivalent. The results of the computation (after

variable substitutions) are given in tabel 2. As this simple example shows, the thorough

Deformation Condition

M, =713c® 1% dde +ba =0
My =713a1 ® 7 2%a5 ab +c =0
My =713a5® a4 a—b=0

My =73ay® 7 ay a =0

Table 2: Explicit equations

analysis of all the occurring singularities requires lots of partially delicate calculations
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with polynomials. For Eg we did all necessary calculations but there were no new

singularities showing up.
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A Degeneration diagrams

In the appendix we use the same notation as in the example (see section 4.5). The
given degeneration diagrams are ordered from top to bottom, which means, that the
deformations at the the top have higher codimension as at the bottom. The steps
between the immediate neighbouring different levels are always codimension one steps.
So it suffices to give the codimension of the root. To determine the inhomogeneous,
irreducible modules V' = S;(j), we give always at first the dimension vectors of the
regular simples of the regarded tube, but shorter by only writing 5; instead of dim 5;.
Note, that thanks to Lemma 4.2 and Theorem 4.1, it is enough to look at the degen-
eration diagrams of the U & V', with dim V' = ¢.

Up to the case of A, the orientation of the underlying graph is uniquely determined
by specification of U, because U is the only sink in the quiver. Apart from U with
O(U) = =5 and 0(U) = —6, we give all degeneration diagrams up to symmetries. The
other two cases of U yields too large degeneration diagrams, thus we only specify the

minimal deformations for these instances.
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A.1 Al

al a9

In this case we have only tubes of period 1 and there is only one deformation of U &V,

where dim V' = §, namely as. The codimension is 2.

A.2 A2

as

VAR

ap = az

A.2.1 U = al

Codim(U ® V,a3) =2

Period 2: Si(1) =[] S2(1) =[]
S1(1) ® a2

fig. A.1: Degeneration diagrams of a; @ S;(2), i € {1,2} in Period 2

A.3 A3
a3
I
A31 U=a
Codim(U @V, ay) =2
Period 3: Si1)=[19] S(1)=[59] Ss1)=1[3 2]
7%a
51(1)| @ as 53(2)| & as

fig. A.2: Degeneration diagrams of a; @ S;(3), i € {1,2,3} in Period 3
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A.4 D4

AV
a2/ \as

A4.1 U = ap

Codim(U & V, 77 %ay) = 2

Period 2: Si(1) = [1 1(1’} Sy(1) = [31;}
7’72(12 772(12
|
S1(1) @ aa

fig. A.3: Degeneration diagrams of a; @ S;(2), @ € {1,2} in Period 2

A42 U=b>D

Codim(Ua V,77b) =3

Period 2: Si(1) = [1 10} Sa(1) = [31 ﬂ

//\\

T a1 P ar T a2 @ a2 T a3®a3 7‘ a469a4|

.

S1(1) @ az @ aq

fig. A.4: Degeneration diagram of b @ S;(2) in Period 2

46



A DEGENERATION DIAGRAMS

A.5 D5

A
/N

az a3

A51 U= aj

Codim(U & V, 77 %ay) = 2

Period 3: 51(1)2{;111] 52(1):{(1)102} S3(1) = [0 g}

T 2as T 2%ay -
|
s

fig. A.5: Degeneration diagrams of a; @ S;(3), i € {1,2,3} in Period 3

Period 2: Si(1) = [111?} Sa(1) = {811;}
7 2az 7720,
S1(1) ® aq

fig. A.6: Degeneration diagrams of a; @ S;(2), i € {1,2} in Period 2

A5.2 U - b1

Codim(U®d V,77by) =3

Period 3: S1(1) = Elog] Sa(1) = [2013} S3(1) = [31 1 H
77201 @az T Za2 ®ar T 03@a3 T a4®a4|

e

S1(1) @ az @ aq

fig. A.7: Degeneration diagram of b; & S1(3) in Period 3
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T bo

//\\

|T al@a2||7 aQEBal T az® a3z T asa P as

~ |

S52(2) ® a1 @ az

fig. A.8: Degeneration diagram of b; @ S3(3) in Period 3

T

5o

T | T\

|Sg(1)€97'7a1€9a1| |Sg(1)€97'7a269a2| S3(2) @ b

fig. A.9: Degeneration diagram of b; @ S3(3) in Period 3

Period 2: s =[] sm=[l11]

Cwba  Twow
| /

S1(1) ® a2 @ as

fig. A.10: Degeneration diagram of b; & S;1(2) in Period 2
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A6 D6
al a4
by —c—by
TN
2 as

A6.1 U= aj

Codim(U ¢ V,77%a;) =

) 1 0
Period 4:
Sg(l):[ 010 } Sa(l) = 20012]
T a1 7'74a1 7'74(11 7'74(11
Si(1) & 7 %a2 | S53(3) @ a2 | | Si(2) @7 %my |

fig. A.11: Degeneration diagrams of a; @ S;(4), ¢ € {1,2,3,4} in Period 4

Period 2: Si1(1) = [1111?} Sa(1) = {2111;}
T *a ay
S1(1) ® aq

fig. A.12: Degeneration diagrams of a; @ S;(2), i € {1,2} in Period 2

A6.2 U - b1

Codim(U® V,77by) =3

Sa(1)
Period 4:
Sa(1)

Si(1) = [11003}
0
0

0 0
010
0 0
0 1
111
0 1

)

S3(1) = {3001 }
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//\\

T80 ®ar T 202D as T a3EBa3 T a4€Ba4|

|

So(1) ® az @ as

fig. A.13: Degeneration diagram of b; @ S;(4) in Period 4

//\\

| a169a1| | azEBaz T azdaz T asDas

~ |

S2(3) ® a1 ® a2

fig. A.14: Degeneration diagram of b; @ S3(4) in Period 4

T T

|Sg(2)@7'7a1€9a1 2)®7T a2 @ a2 | S3(3) @

{
X

w

| s

fig. A.15: Degeneration diagram of by @ S5(4) in Period 4

SW
~ e e

|S4(1)€9T_2a2€9a1| |S4()€97' a1€9a2| S4(2) @ b2

fig. A.16: Degeneration diagram of b; & S4(4) in Period 4

Period 2: S1(1) = [él ! 1(1)} 52(1) = [(1)111(1)}

50




A DEGENERATION DIAGRAMS

T by

usa| s e ®a

fig. A.17: Degeneration diagram of b; & S3(2) in Period 2

A6.3 U=c
Codim(U ¢ V,77%) = 3
Si(1) = [11103} Sa(1) = [3001 ]
Period 4:
53(1):[ ouﬂ 54(1):[3100 ]
7%

\//|></

S51(3) ® b1 |S1 YB T a4EBa4| |51(1)@T_a365a3|

fig. A.18: Degeneration diagram of ¢ & S1(4) in Period 4

//\\

-2
|7- a1€Ba2 7' azéBal 2a3 @ a4 204 ® a3

o~ |

S2(2) ® a1 @ a2

fig. A.19: Degeneration diagram of ¢ & S3(4) in Period 4

Period 2: S1(1) = [(1]1 ! 1(1)} S2(1) = {(1)11 1(1)}
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/726\
—2 —2 —2 —2
aoa taeu |G

S1(1) ® a2 @ a3

fig. A.20: Degeneration diagram of ¢ & S;(2) in Period 2

A.7T D7

a a4

N\ /

bi—c1—ca—0bs

a2 az

A.7.1 U = ap

Codim(U & V, 7 %ay) = 2

N Si(1) = [; 1111 ” Sa(1) = [? 1 0003}

az as
| |
S @ ar Ss@Wean|  [SE)eral  [SEer %)

fig. A.21: Degeneration diagrams of a; @ S;(5), i € {1,2,3,4,5} in Period 5

Period 2: Si(1) = {111112] Sa(1) = {21111;]
T a2 T %as
S1(1) ® ax

fig. A.22: Degeneration diagrams of a; @ S;(2), i € {1,2} in Period 2
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A7.2 U == b1

Codim(U & V,77by) =3

Si(1) = [201008} Sa(1) = [200108}
Period 5:

st = 20001 s=[201] s=[100o]

| 7'_4a1 D az | | 7'_4a2 D a1 | T a3 D as T a4 D as

>~ |

S1(4) ® a1 ®az

fig. A.23: Degeneration diagram of b; & S1(5) in Period 5

P

|5'2(3)69T_a1 @ a1 | S2(4) ® a1

/
!
i

52(3) BT a2 B az

fig. A.24: Degeneration diagram of b; @ S3(5) in Period 5

P I

S3(2) © 7 %a1 @ a2 | | S3(2) &1 a2 ® ax | S3(3) @ 2

fig. A.25: Degeneration diagram of b; & S3(5) in Period 5
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5 m@T

|S4 )BT az@a2| |S4()697'_3a1@a1| S54(2) @ b2

fig. A.26: Degeneration diagram of b; @ S4(5) in Period 5

sz

//\\

—4
T a1 D az Yaz @ an T a369a3| T a4€Ba4|

e

S5(1) ® as ® as

fig. A.27: Degeneration diagram of b; & S5(5) in Period 5

Period 2: Si1(1) = [él 1 1(1)] 5(1) = [?11 ' 1(13]

B oo Chee

S1(1) @ a2 @ aq

fig. A.28: Degeneration diagram of b; @ S;(2) in Period 2

A73 U= Cq

Codim(U @ V,77%¢,) =3

Period 5:

o4



A DEGENERATION DIAGRAMS

T_3a1 D a1

T30 ® a1

T T

730 ® as S1(1) ® 77 b2 7204 @ as

51(1)6977a369a3|

/

\

]
!

S1(4) @ by |sl(1)@fa4@a4|

fig. A.29: Degeneration diagram of ¢; @ S;(5) in Period 5

772
=8 =8 —2 —2
T a1 D a1 T “as@as| 7 “azsDas T “as4Dasz

.

2(3) ® a1 ® az

N

fig. A.30: Degeneration diagram of ¢; @ S(5) in Period 5

] T
S
53(2)@7'70,1@(11| |S;3(2)@T7a2@a2| 53(4)@02

fig. A.31: Degeneration diagram of ¢; & S3(5) in Period 5

Si@r o [Paeu] 0

54(1)@7'720/2@0/1 | |S4(1)EBT720,1 EBa2|

fig. A.32: Degeneration diagram of ¢; @ S4(5) in Period 5
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//\\

T30 ®ar T a2 ®as T a3®a4 72a4®a3|

|

S5(2) ® as ® as

fig. A.33: Degeneration diagram of ¢; @ S5(5) in Period 5

Period 2: Sl<1):[1111] Sg(l):{llll]
7
/N
e o s
S1(1) ®|a2 ®as /
fig. A.34: Degeneration diagram of ¢; @ S;(2) in Period 2
A.8 D8

a1 a4

bi—c1—d—co—by

as ag

A.8.1 U = ap

Codim(U & V, 7 %a;) =2

51(1):[ 11111 } Sa(1 :[ 100002} Sg(l):{gomoog}
Period 6:
S(l)—[ 001000} Ss( —[ 000100} 5(1):[0000010}
T 0 5(1) = 0 6 0 0
T_6a1 776a1 T_6a1 T_6a1 T_6a1
S511) S Taz [ @a]  [siworia| [s@erie| [S@ertw]

fig. A.35: Degeneration diagrams of a; & S;(6), ¢ € {1,2,3,4,5,6} in Period 6
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Period 2: 51(1)2[111111(1)} Sz(l):[glllllﬂ
7% 778y
So(1) ® aa

fig. A.36: Degeneration diagrams of a; & S;(2), ¢ € {1,2} in Period 2

A82 U=D>b

Codim(U ® V,77by) =3

Period 6:

T

o

|Sl(3)EB7'_2aQEBa1| |Sl(3)EB7'_2alEBag| 51(4)@d

fig. A.37: Degeneration diagram of b; @ S;(6) in Period 6

/ | \
Swor
T~ e e

S2(2) @7 %a1 D as | S2(2) &7 %a2 @ az | S2(3) @ 2

fig. A.38: Degeneration diagram of b; @ S3(6) in Period 6

57



A DEGENERATION DIAGRAMS

T~ > | T\

|53(1)®7_4a2®a1 | |5'3(1)®7'_4a1®a2| S53(2) @ b2

fig. A.39: Degeneration diagram of b; @ S3(6) in Period 6

//\\

T a1 ®ar T Pas®as 7' a36]9a3 Ta46]9a4|

o~ |

S4(1) ® az @ as

fig. A.40: Degeneration diagram of by @ 54(6) in Period 6

/T bQ\
|7'_5a1€Ba1 7' aQEBaz T az®az T as4Dag

|

|S5(5)69a1 ®a2|

fig. A.41: Degeneration diagram of b; @ S5(6) in Period 6

|
&

W
T~ e e

|Sﬁ(4)@7’a1€9a1| |S6(4)@T’a2€9a2| Se(5) ® 1

fig. A.42: Degeneration diagram of b; @ Sg(6) in Period 6

Period 2: S =[] s =T
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T bs

S1(1) @ a2 @ aq

fig. A.43: Degeneration diagram of b; @ S;(2) in Period 2

A83 U= C1

Codim(U @ V,77%¢;) =3

Period 6:

5o
~— e

|51 o7 a2€9a2| |S1()®T a1€9a1| S1(5) @

)
\

fig. A.44: Degeneration diagram of ¢; @ S;(6) in Period 6

T~ ><
|52(2)€B772a1 EBa2| |52(2)€BT a2®a1|

fig. A.45: Degeneration diagram of ¢; @ S5(6) in Period 6

)
\
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P

Se

53(1)@7'73(12@(12| |53(1)@773(11 @D ax | S3(3) @ b2

fig. A.46: Degeneration diagram of ¢; @ S3(6) in Period 6

7'7202
—4 —4 =2 =2
T a1 ®azx T Tax®ar |T “a3 D aa T “a4 B as

~ |

S4(2) @ as ® aq

fig. A.47: Degeneration diagram of ¢; @ S4(6) in Period 6

\
|

Ss(l)@Tibz T_2a3@a4

S5(5) @ by [Ss() @7 ar@ai S5(1) @7 as @ as |

T 204 ® as

fig. A.48: Degeneration diagram of ¢; @ S5(6) in Period 6

772
—4 —4 —2 —2
T ~a1 D az T ax@a1| 7 ‘azsDas T “as4Dasz

.

Se(4) © a1 & az

fig. A.49: Degeneration diagram of ¢; & Sg(6) in Period 6
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Period 2: 51(1):[(1]11111(1)} 52(1):[?11111;}

“tar Dy asEBa4 204 @ a3

S1(1) ® a2 ® aq

fig. A.50: Degeneration diagram of ¢; & S;(2) in Period 2

A84 U=d
Codim(U ¢ V,773d) = 3
0 0 0 0 0 1
51(1):[0000100} 32(1)2[0000010} 53(1)2[0001111]
Period 6:
0 0 0 0 1 0
S4(1):[0010000} 55(1):[0100000} 56(1)2[1111000]

//\\

| 77301 ® ax | | 7302 ® az | T 8as®as T lasDas

.

S1(1) @ a1 @ a2

fig. A.51: Degeneration diagram of d & S1(6) in Period 6

T73d
I e
S22 @1 b

|Sz DT al@a1| |Sg(2)€97’7a269a2| S2(5) @ c2

/

Q
)
— &
]
)

fig. A.52: Degeneration diagram of d @ S3(6) in Period 6
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\]
Q
S
@
Q
&
\]
o°
n
(%)
S
V]
=
[
=
®
\]
s
w
/@
Q
w
Q
S
I
Q
Ny

|53(1)®7'_2a269a1| |53()@T a169a2|

fig. A.53: Degeneration diagram of d @& S3(6) in Period 6

Period 2: 51(1):[311111?} 52(1):[(1)11111(1)}

a2 @ as asEBag 304 ® aa

S1(1) ® a1 ®as

fig. A.54: Degeneration diagram of d & S;(2) in Period 2

A9 L6

&1

C2

a1—ag—d—by—by

A.9.1 U = ap

Codim(U & V, 77 %) =2

Period 3: S1(1) = [00%10] Sa(1) = {11?11} S3(1) = {01100}

e

fig. A.55: Degeneration diagrams of a; @ S;(2), i € {1,2,3} in Period 3
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Period 2: Si(1) = [

fig. A.56: Degeneration diagrams of a; @ S;(2), i € {1,2} in Period

A.9.2 U = A

Codim(U & V, 7 %ay) = 3

Period 3: S1(1) = [1 1%11] S2(1) = [00?00} S3(1) = [01 % 10}
// \\
T7%a1 ® a1 a1 @7 3b1®cl B @b

| /

| Si()@er a1 @ |

fig. A.57: Degeneration diagram of ay & S1(3) in Period 3

Tagu] Caera rhea

. b et o B

fig. A.58: Degeneration diagram of ay @ S5(3) in Period 3

7'_3(12

e
B [soert
~ e _—

|Ss() @7 % ai | S3(2) @ c2 |Ss() @7 b @b |

fig. A.59: Degeneration diagram of ay & S3(3) in Period 3
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A DEGENERATION DIAGRAMS

Period 2: s1(1) = [1 1?10] S2(1) = [01; 1}

//\\

-5 -3 —3
T a1 @ ax 84 @172 b1€BCl| | c1 @b

I/

|Sl(1) 69772@1 D |

fig. A.60: Degeneration diagram of ay @ S1(2) in Period 2

//\\

= -3
T5l11€9a1 Sa1 T a1 b1 ®c S @b

\ |

So(1) ® 7 %a1 ® ax
| |

fig. A.61: Degeneration diagram of ay @& S5(2) in Period 2

A93 U=d

Codim(U & V,7%ay) = 4

Now the diagrams are a bit on the large side to give an explicit description in it. We
give in table 3 the preprojective deformations for d @ V', where V' is indecomposable,

regular with dim V' = 4.

Period 3: 51<1):[ 0 } 52(1):[001 } 53(1):[01% ]

04



A DEGENERATION DIAGRAMS

Codimension | Dot Preprojective deformations

4 1 T2d
2 720, @ T ay
3 20, ® @
4 7'72()1 @ 7 by

3 5 7'72b2 %) by
6 7%, © T o
7 7'_2(32 D C1
8 7'_2&1 S T aq () ai
9 7'_461 D Cy
10 T3b @ aq @ 1
11 7'72b1 D T b D by

2 12 7'74a1 b as
13 T_301 () ai b by
14 T2, & T D ¢
15 T_4b1 D b2
16 g & b B o

Table 3: Preprojective deformations of d ® V', with V indecomposable and dim V' = §

fig. A.62: Degeneration diagram of d & S1(3) in Period 3
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A DEGENERATION DIAGRAMS

Codimension | Dot | Deformations with nonzero regular part
2 Regy Si11) & 7b &
Reg, $(1) & % & o
1 Regs | S1(1) & 7bp & b @& ¢
Regy S12) & a @& a

Table 4: Deformations with nonzero regular part of d @ S;(3) in Period 3

Period 2:

2 3 4 5 6 7
8 9 11 12 14 15

fig. A.63: Degeneration diagram of d & S7(2) in Period 2

Codimension

Dot

Deformations with nonzero regular part

1

Regy

Si1(1) & ai & by P c

Table 5: Deformations with nonzero regular part of d & S;(2) in Period 2
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A DEGENERATION DIAGRAMS

Codimension | Dot | Deformations with nonzero regular part
2 Reg, Se(l) @ T7d
Regs Se(1) & 77a1 @ a9
1 Regs So(l) @ b @ by
Reg, Se(l) & 177 @ 2
Table 6: Deformations with nonzero regular part of d & S5(2) in Period 2

fig. A.64: Degeneration diagram of d & 55(2) in Period 2

A.10 ET7

C

al—ag—ag—d—bg—bg—bl

A10.1 U=a

Codim(U @ V,77%a;) =2

51(1):[000(1]100] 52(1):[111%110]
Period 4:

53(1):[011(1)111] 54(1):[001%000]

67
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— _ —12 -
T 12a1 T 12(11 T ai T 12a1

|si@ @7 Cu| (S0 | S4(3) ® by

fig. A.65: Degeneration diagrams of a; & S;(4), i € {1,2,3,4} in Period 4

Period 3: 51(1):[0019110] 52(1):[1115111] 53(1):[011%100}

—12 —12 —12

| Si2)er'a | | Sy(1) @ 7 %as |

fig. A.66: Degeneration diagrams of a; & S;(3), 7 € {1,2,3} in Period 3

Period 2: Si) =lp115110] M =[1123211]

—12 —12

fig. A.67: Degeneration diagrams of a; @ S;(2), ¢ € {1,2} in Period 2

A.10.2 U = a,

Codim(U @V, 77%by) =3

51(1):[000(1]100] 52(1>: [011%110]
Period 4:

53(1):[111?111] 54(1):[001%000]

T74b2
T
Fan]  [s@o-v] |[Hawsl
T~ e e

|sl(2)@f5a1@al| |sl(2)@fb1@b1| S1(3) @ e

fig. A.68: Degeneration diagram of as @ S1(4) in Period 4
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e
S = [

sWerhea| [SUermsh|  [S@er’s]

fig. A.69: Degeneration diagram of as @ S5(4) in Period 4

/7-_4[)2
7711a1 @ a1 T77b1 D by |7'78a1 @7’73(11 | |T74b1@7'73b1

.

| Ss(1) 7 %a1 @ 7% |

fig. A.70: Degeneration diagram of as @ S3(4) in Period 4

/’7—_4()2 \
T ual éBa1| |7’ 7b1€Bb1| T78a1 @T73a1 T 4b1€|97' 3b1

S1(3) Bar ® b

fig. A.71: Degeneration diagram of as & S4(4) in Period 4

Period 3:  S1(1)=1[p019110] S2(M)=1lp1:13111) Ss(M)=[1111100]

/7__4b2 \
7 e @ ay T " @by 784 ® 7 31 7% @ 773

| S12) @7 a1 dar |

fig. A.72: Degeneration diagram of ay @ 51(3) in Period 3
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’7'_4b2
P M
s [s0e e
T |

| So() @7 7b1 @ aa | S2(2) @ b2 | So(1) ® 7 %1 @ 7% |

fig. A.73: Degeneration diagram of ay @ S5(3) in Period 3

741)2

Faee [fheh] Cwer

| S3(1) @ 773b ® by |

fig. A.74: Degeneration diagram of ay & S3(3) in Period 3

Period 2: S1iD)=lp125211] Se(M)=[1112110]

_4b2

S1(1) @ 77201 @ aa
| |

fig. A.75: Degeneration diagram of ay @& S1(2) in Period 2

//_41)2\\
7711a1 D a1 | 7b1 @ by | |7’ a1 DT 3a1 | T74b1 (&5) T73b1

-

| Se(1) @7 %a1 ® by |

fig. A.76: Degeneration diagram of ay @& S5(2) in Period 2
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A.10.3 U = a;

Codim(U ¢ V, 77 %a3) = 4

Codimension | Dot Preprojective deformations

4 1 T %a,
2 79 @ T as
3 ™% B T34
4 7% B T by

3 5 %y, & ay
6 b @ 1%
7 4 @ by
8 ™%, ® 130 D T %04
9 T_7Cl1 ) 7_2a1 () aq
10 78, @ c
11 0%, @ as

2 12 7'78&1 ) bQ
13 T_5b1 D 72&1 D bl
14 T_6Cl1 @D T_bl @D b1
15 ™ & 3% &
16 T30, @ by @ c1

Table 7: Preprojective deformations of a3 @ V', with V' indecomposable and dim V' = §

51(1)2[000(1]100] 52(1): [001%110]
Period 4:

53(1):[011?111] 54(1):[111%000]

Codimension | Dot | Deformations with nonzero regular part
2 Reg; S1(2) & 17b @
Reg, S @ ' © a
1 Regs Si3) @ ¢ B
Regs | S1(2) @ 7bhh @ o ® b

Table 8: Deformations with nonzero regular part of az & S;(4) in Period 4
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(] |

[

Regs
fig. A.77: Degeneration diagram of az @ S1(4) in Period 4

fig. A.78: Degeneration diagram of as @ S3(4) in Period 4
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Codimension | Dot Deformations with nonzero regular part
3 Reg, So(l) @ 772by
Reg, Se(l) @ 7% @ Tc
Regs So(l) @® 772 @D Ty

2 Regy Sy(1) ® 7% @& w
Regs S2(2) & 1 %a3

Regs So(l) @ 7%, &
Regr So(l) & 7%, & 7%

Regs S(1) @ 77 @ by

Regg | So(1) & 7% @ b & a

1 Regio S(2) @& T4 B

Regiy Se(2) @ 17, @ c

Regz S2(3) @ b3

Table 9: Deformations with nonzero regular part of az @ S»(4) in Period 4

fig. A.79: Degeneration diagram of az @ S3(4) in Period 4
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Codimension | Dot | Deformations with nonzero regular part
2 R691 54(1) D T_3CL2 D b1
Regy | S4(1) @ 73%a; & 7% @® b
1 Regs Si(1) & 7% @ b
Reg, S:3) & ax & b

Table 11: Deformations with nonzero regular part of az & S,(4) in Period 4

Codimension | Dot | Deformations with nonzero regular part
2 Reg, S3(1) @& 7% & 1%

Regs S3(2) @ 7T%a; @D by

1 Regs | S3(1) @ 73, & 7% @&

Regy S3(1) @& 7%, @ c

Table 10: Deformations with nonzero regular part of az & S5(4) in Period 4

s

fig. A.80: Degeneration diagram of az @ S4(4) in Period 4

Period 3: 51(1)2[111(1]110] 52(1):[001%111] 53(1):[011%100]
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Codimension | Dot | Deformations with nonzero regular part
2 Reg, Sl( ) @ T2, © T by
Reg, S1(2) @ 7241 @ a9

1 Regs Si(1 ) @ 7% & c
Regs | S1(1) & 7% @ 7 @& I

Table 12: Deformations with nonzero regular part of ag & S1(3) in Period 3

N

Regl 15 16

\W\//

| Regg | Regg | Reg4

fig. A.81: Degeneration diagram of az & S1(3) in Period 3
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Codimension | Dot | Deformations with nonzero regular part
2 Regy So(l) @ 73as @ @
Regy | S2(1) & 7% & 7% ® o
1 Regs S2(1) & 7% @ a
Regy SH(2) @ by b a

Table 13: Deformations with nonzero regular part of az & S(3) in Period 3

[9] 10 12 13 14

X

| Rega | | Regs | | Rega |

fig. A.82: Degeneration diagram of a3 & S5(3) in Period 3
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Codimension | Dot | Deformations with nonzero regular part

2 Reg, S3(1) & 1% @ b
Reg, S3(2) @ c ®
1 R€g3 53(]_) b 7'_6(11 o, b1

Reg4 53(1) S7) Tigbl S¥ ay b by
Table 14: Deformations with nonzero regular part of az & S5(3) in Period 3

fig. A.83: Degeneration diagram of a3z & S3(3) in Period 3

Period 2: S =lp115110] S2(M)=[119%211]
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Codimension | Dot | Deformations with nonzero regular part
1 Regy | S1(1) @ 77%a1 @© 7 a1 © Iy
Table 15: Deformations with nonzero regular part of az @ S1(2) in Period 2

fig. A.84: Degeneration diagram of a3 & S1(2) in Period 2

20

| Rego | | Regs | | Rega |

fig. A.85: Degeneration diagram of as @ S3(2) in Period 2
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Table 16: Deformations with nonzero regular part of az @ S2(2) in Period 2

A.104 U=d

Codim(U @ V,773d) = 5

T111]
0011111

[
[

000%110] 52(1)

[

Si(1)

Period 4:

0
1111100

S4(1)

1
0111000

S3(1)

—

AN Vs
N

=12
Ja
= \ /8

M\
S

N
A

S8

fig. A.86: Degeneration diagram of d @ S;(4) in Period 4
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Codimension | Dot Preprojective deformations

5 1 T73d
2 T3a; D T 2as
3 T3 B by
4 T3as @ T lag

4 5 3¢ @® 1%
6 T_3b2 D T_lbg
7 7'_3CL3 () aq
8 730 B T 2%bs
9 7'_4a2 ) bz
10 ™% @ 1% @ by
11 ™~ ay @ by
12 7‘7561 ) Tﬁlag ) bl
13 T3by @ b1 o 7Y
14 T30 © T %0 B
15 T3b B T 2%b, @ by
16 T30, ® T lay B T ;4

3 17 b, & 12 & aq
18 T30 D a4 D T oy
19 7'_6b1 @& T_lbg
20 T%¢c @ c
21 T B a
22 T4, & T by @ aq
23 7%, @ 77lag
24 T30, & 17¢ @& 17°h
25 T30 @ T & 7
26 T_4a1 D b @& 7'_3a1
27 T_Gbl @ b2 EB T_lbl
28 7%, & c e 7204
29 78, @ ® b
30 |7 & e @ Tla © b
31 T_7bl @D as D b1
32 7'_5a1 ) aq () b1 ) T_lbl

9 33 [ 73, @ ay e v 'qy @ T2y
34 779b1 ) bg
35 7’77CL1 D b2 D a1
36 7'_3b1 D bl @ T_lbl D T_2b1
37 T_Sbl () C ) aq
38 7%, @ ao e 7 lgy
39 b, & ao e 73
40 7%, @ c @® Ty
41 7'_9611 D as

Table 17: Preprojective deformations of d ® V', with V' indecomposable and dim V' = §
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Table 18: Deformations with nonzero regular part of d & S;(4) in Period 4

Wiy

fig. A.87: Degeneration diagram of d & S3(4) in Period 4
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Table 19: Deformations with nonzero regular part of d & S9(4) in Period 4

Period 3:

1
1112111

1
0011100

S1(1)

- WATI 1=
»&../9 B

=

X

fig. A.88: Degeneration diagram of d & S1(3) in Period 3
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Deformations with nonzero regular part

Si(1)
Si(1)
S1(1)
S1(2)

by

D
D
D

T2 & aq
® T3
® T %4

D

by

D ao

a1

S by

by

ay

Dot

Regy

Regs

Regs

Reg,

Codimension

Table 20: Deformations with nonzero regular part of d @ S1(3) in Period 3
1
_ 5
>
’v\.

fig. A.89: Degeneration diagram of d @& S5(3) in Period 3
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D T_lbl

D
D

& 7 b
® 7
o Tt g
r1d

a1

a1
Sa(2)
c
by
& 7 lay

by

DO T lay
o 7

D
D
D
D
D

Sa(1)
Tﬁle
’7'74b1
a1
S(2)
S5(2)

D T’4a1

A DEGENERATION DIAGRAMS
S

® 71 lay

D
D

S (1)
So(1)
So(1)
S:(1)

Deformations with nonzero regular part
& 7oy

Sa(1)

Dot
Reg,
Regs
Regs
Reg,
Regs
Regs
Regr
Regs
Regy
Regio
Reg

Table 21: Deformations with nonzero regular part of d & Ss(3) in Period 3

Codimension

LB
NXANQ‘ 207
.o%\\ Y SV
57 Bl AAT R
) vx‘{/ E
i WALy
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5, ) !b« / )
/ V/ \V; \
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= - \V« <
VAN
/
&

fig. A.90: Degeneration diagram of d & S3(3) in Period 3
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Codimension | Dot Deformations with nonzero regular part
3 Regy S3(1) & 773
Regs S3(1) & 7% & 7 las
Regs S3(1) @ 772 @ 1
) Reg, S3(1) @& 7% B ap
Regs S:(1) @ 7% @ b
Regs S3(1) & 717%¢ & 71l
Regr S:(1) & 1% @ as
Regs Ss(1) @ 7% @ by
Regy S3(l) & 7% & a & T lg
Rego S3(1) @& 7% & by ® 7
1 Regny S3(1) @& 71724, @ c ® 72
Regio S3(2) @ as &5 bo

Table 22: Deformations with nonzero regular part of d @ S3(3) in Period 3

Period 2:

51(1):[0115211] 52(1):[112%110]

Codimension | Dot | Deformations with nonzero regular part
2 Reg, Si(1)y @& 7% &
Reg, $1) © 7% © a
1 Regs | S1(1) @ 7 @ bo ®
Regy | S1(1) @ 7%a; @ c D

Table 23: Deformations with nonzero regular part of d & S1(2) in Period 2
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) AR
A AKX/ /H

K

oy ‘\N@wﬂ E

T_Sbl D a1

]
]

1
0011111
1
1111100

[
[

7%, ® 7 %a;

/

| 51(2) & 7 2b1 B ay |

Sa(1)
S4(1)

N

]
]
86

0
0001110
0
0111000

[

S3(1) =

S1(1)

fig. A.91: Degeneration diagram of d & S;(2) in Period 2
fig. A.92: Degeneration diagram of ¢ & S1(4) in Period 4

T_Sal @ by

Period 4:

A.10.5 U=c¢




A DEGENERATION DIAGRAMS

\ /

BEER | Sa(1) @ 7-2b @ 7 2By | |SQ(1) BT % ®ar |

fig. A.93: Degeneration diagram of ¢ @ S3(4) in Period 4

Period 3: 51(1):[001?100] 52(1):[011%110] 53(1):[111%111]

e e

S1(2) ® a1 ® b

fig. A.94: Degeneration diagram of ¢ @ S1(3) in Period 3

|
e oo
T e _—
|SQ(1)€B7’74CL1@b1| |Sz(1)€97’74b1@a1|

fig. A.95: Degeneration diagram of ¢ @ S3(3) in Period 3

" Tworm oy

| S3(1) @ 7 %a1 &7 %by |

fig. A.96: Degeneration diagram of ¢ @ S3(3) in Period 3

Period 2: SiD)=lp115211) S2(M)=1[119%110]
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raen a e

| Si(1) @7 %0 @ ay |

fig. A.97: Degeneration diagram of ¢ @ S1(2) in Period 2

A.11 E8

Cc

a1—as—d—bs—bs—bg—by—b;

Al111 U=a

Codim(U @ V,77%%a;) =3

S11)=lo0%11000] S2(D)=[11111100]
Period 5:

53(1):[01(1)11110] 54(1):[11511111] 55(1):[01%10000]

e
| 77200 @ 7730 | | S1(2) @ 7% | | 7750 @778 |
T e _—

|S1(2) o7 N @by | |Sl(4) D71 3% | |Sl(2) ® 7, B0, |

fig. A.98: Degeneration diagram of a; & S;(5) in Period 5

—— |
R [coo-.] e
T e _—

| So(1) @7 b @ by | | 52(3) @& 73b, | | So(1) & 7~ 12by ® 7 5b, |

fig. A.99: Degeneration diagram of a; @ S3(5) in Period 5
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ZAN

T @ by |~ @73, | |70 @ 2| T @ 0,

|

| S3(2) ® 7%, © 73b |

fig. A.100: Degeneration diagram of a; @ S3(5) in Period 5

e [s0o v e

[Si() @ b @7, | [54(4) @2 [5i0) @b @7,

fig. A.101: Degeneration diagram of a; @ S4(5) in Period 5

| S5(3) @7'751)1 @D by |

fig. A.102: Degeneration diagram of a; @ S5(5) in Period 5

Period 3: 51(1):[01%11100] 52(1):[11521110] 53(1):[12%22111]

\\

o 7% T &7 %

S51(2) © 77301 @ by
| |

fig. A.103: Degeneration diagram of a; & S;1(3) in Period 3
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/\
\ [7=*%: @T‘3g<| Sa(1) ea| T‘1°a1|\lr—15bl Qi 1
[ 5:1

1B @b | | Sa(1) & 7%, @ 73, | | $2(2) & 75 |

fig. A.104: Degeneration diagram of a; @ S5(3) in Period 3

//\

7'723}}1 ® by 20b1 DT 3b1 _15b1 D T_Sbl | | T_lsbl (&) 7'_5b1 |

.

[ Ss(1) @7 b1 @70 |

fig. A.105: Degeneration diagram of a; & S3(3) in Period 3

Period 2: S1(1)=1[12832211] S2(1)=1[12322110]

—1
T 5(11

| Si()yer &1 % |

fig. A.106: Degeneration diagram of a; @ S1(2) in Period 2

2°61@T g [uern] T e

| S2(1) @ 751 @ by |

fig. A.107: Degeneration diagram of a; @ S5(2) in Period 2

Al112 U =a

Codim(U & V,775,) =

51(1)2[00(1)11000] S2(1):[01%11100]
Period 5:

53(1):[11(1)11110] 54(1):[01%11111} 55(1):[11%10000]

90



A DEGENERATION DIAGRAMS

Codimension | Dot Preprojective deformations

5 1 70y
2 7'7651 S5, 7'751)3
3 %3 @ 73,
4 9 & T ¢

4 5 8 @ b1
6 T79a1 S5, T75a1
7 % @& 7 b
8 T 6b2 S, ’7'_4b2
9 7'71851 S, Tﬁlb3
10 P @& 1%
11 e @ ai
12 7'_1062 D 7'_201
13 7'_12611 D by
14 T 9[)1 D 7'*4(11 D T7651
15 T @ Tt Pa; & b
16 7’710()1 D 7'750,1 S5, 7'73()1
17 T 9b1 D T_7CL1 D by

3 18 T 10&1 D by S5, 7'73()1
19 T_14b1 D T_lbg ) T_3b1
20 T 9()1 S T 152 S, T78171
21 by @ t% o by
22 T 6b1 o T 4b2 S, T_5b1
23 T 6()1 S T 5b2 D 7_351
24 T Gbg DS T 3b1 D 7'_4b1
25 T gbg D by D T7151
26 7'_2161 D bs
27 e T c
28 7'_23b1 D ay D by
29 T_20b1 D a1 D T_3b1
30 7’718()1 D ay S5, 7'7551
31 7'_7b1 D a2 D by
32 = @ al o 79
33 T_19b1 D T_2a1 D by

2 34 Py @ 1% © 7
35 T_lobl ©® T_2a1 ©® T_gbl
36 T_18b1 D bo © T 1b1
37 T_16b1 D by e T 3b1
38 T_13b1 D by & T Gbl
39 |7 @ b1 ® v @ 7173
40 7_11b1 D b1 D T_3b1 D T 4b1
41 7'76b1 D 7’73()1 D 7'7461 & T 5()1

Table 24: Preprojective deformations of a, ® V', with V' indecomposable and dim V' = ¢

91




A DEGENERATION DIAGRAMS

—
~

10 (=}
N <t

)

\ / x
N
gl
,‘Qﬁ?

S /B
,“4@4-
L/
N

e AN
f.,w A&I%XQ 4 B W«"Nﬂ’

j‘ﬁ» B
W/
/1 “ ‘_m A —
Nt
% ’/’/‘k//

T m

s
i

26

7‘7162
T_lbg
ay
T71b1
T71b2
b1
T_5b1
T_lbl
C
T71b1
ai

S
)
P
P
S
)
)
P
S

T75a1
7'_6b1
7‘76b2
b1
7'72a1
ay
a
bo
7'76b1
b1
7'72a1

S
D
2]
D
D
S

51(2)
S1(2)
51(2)
7'75611
51(3)
T_11b1
T_Gbl
T_Gbl
S1(3)
7'72(11
S1(4)

@
Table 25: Deformations with nonzero regular part of as @ S;(5) in Period 5

S
S

Deformations with nonzero regular part
92

S1(2)
S1(2)
S1(2)
S1(2)
S1(3)

Dot
Regy
Rego
Regs
Regy
Regs
Regg
Regr
Regs
Regy
Regio
Regi1

fig. A.108: Degeneration diagram of as @ S1(5) in Period 5

Codimension




A DEGENERATION DIAGRAMS

The case of U &V = ay @ S2(5) is a little bit too large to draw the degeneration
diagram, because there are 70’s deformations. All of the preprojective deformations
are not extensions of U & V for this case. So we only give a table with the minimal

deformations in table 26.

Codimension Minimal deformations

1 So(1) @ 777 @& a4 @© b
2 So(l) @ 7% o ax & T
3 So(l) @ 7% @ by o 7l
4 So(l) @ 7 @ ba & 7%,
5 S(2) @ 1772y @ c
6 $(2) & T @ T %01 @ b1

) 7 S(2) @ 173 @ by o 7y
8 S(3) @ 73 @ T %01
9 S3) @ 73k @ a
10 Sa(4) & by

Table 26: Minimal deformations as & So(5) in Period 5
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Table 27: Deformations with nonzero regular part of as @ S
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fig. A.109: Degeneration diagram of as @ S3(5) in Period 5

94



A DEGENERATION DIAGRAMS

2C — | | bl
N e L el e ol
,,Ta,b_,_b_b
£l [ (SIS [
S
o,
L |D|D|D D D D DD D DD
=
Gub11212 | -
g I e e RS S N
= sIsh e s
o]+t &k NS
N
m D DD DD D|D|D|D
&
h\l/\)\l/l\l/IDll.l.\l/l\l/
= QORI DN Y DN
S5 =F=T =7 0 =0 =
AN SN I PSS P o
=
S
= S5 D\ DD ©®
m —~ || ~—~
o — ™ | | (@]
3 = === =
A 95 N [ [N N
R RS EEEEEEE
Deeeeeeeeeee
S SV EMI S RS RS AR AR Al el [5
o
o
§%
=
m ™ —
5
oy
(@)

5) in Period 5

Table 28: Deformations with nonzero regular part of as @ Sy(
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fig. A.110: Degeneration diagram of as @ S4(5) in Period 5
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1
by
b1
b1

b3
T_3b1

b1
bo
by
b1
7'_3()1
b
7’74b1

S
S
b
S
S
D
S
b

a

by
T73bl

T7553
T79a1
T_4CL1
74()2
b1
T7153
7’715()1
T_1b2

T

S
D
S
S
S
D
S
b
S

)
7'_551
S5(4)

3
Table 29: Deformations with nonzero regular part of as @ S5(5) in Period 5

S5(1)
S5(1)
T_gbl
T75bl
7'_5()2
S5(3)
S5(1)
T_lobl
by
Ss

A DEGENERATION DIAGRAMS

D
S
S
D
S
S

)

S5(1)

S5(1)

S5(1)
3

S5(1)
7'75b1

Deformations with nonzero regular part
Ss(

D

S5(1)

Dot
Regi

Rega
Regs
Regy
Regs
Regs
Regr
Regs
Regyg
Regio
Regn
Regi2

Codimension
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fig. A.111: Degeneration diagram of ay @ S5(5) in Period 5

S1(1)

Period 3:
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Table 30: Deformations with nonzero regular part of as @& S

i\

\,c :'

b %\%
\

4!

2

,/ﬂ

\

%

V7N

M. s
il
.,V,i &//

AN

fig. A.112: Degeneration diagram of ay @ S;(3) in Period 3
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D
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7’720,1

bo
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D

A DEGENERATION DIAGRAMS
@

7’75a1
7'791)1
7'_6b1
7'7351

S
S
D

Deformations with nonzero regular part
S

Sa(1)
Sa(1)
Sa(1)
S2(2)

Dot
Regy
Regy
Regs
Regy

Codimension
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= A K KON =

fig. A.113: Degeneration diagram of as @& 55(3) in Period 3
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Table 32: Deformations with nonzero regular part of as & S3(3) in Period 3
fig. A.114: Degeneration diagram of ay @ S3(3) in Period 3
]

Period 2:
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7'7153
C
7'_3b1
7'7151

D
D
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D

7’73[)1
T79b1

ap
by

@
D

A DEGENERATION DIAGRAMS
@

S1(1)
S1(1)
7'_5b1
T73b1

D

Deformations with nonzero regular part
S

S1(1)
Si(1)

Dot
Reg,
Rego
Regs
Regy

Codimension

E
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iy
5 \ | 8 /‘, /‘\ \ = T
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fig. A.115: Degeneration diagram of as @ S1(2) in Period 2
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Deformations with nonzero regular part

© b3

7’761)1

Sa(1)
T_Sbl
7‘7451

by

a

D
D

2]
52

Sa(1)
Sa(1)

e b

7'72(11

Dot
Regy

Regy

Regs

Regy

Codimension

Table 34: Deformations with nonzero regular part of as & S»(2) in Period 2

fig. A.116: Degeneration diagram of as @& 55(2) in Period 2

A.11.3 U=d

Now we are in the case of (U) = —6, thus the degeneration diagrams are too large to

put information in it in a useful way. So we only write the minimal deformations down.
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51(1):[00%11100] 52(1):[01(1]11110]

Period 5:
Ss()="[11211111)] St =lo1110000] S5 =[11%11000]
Codimension Minimal deformations

1 1 @ bs & 7 1by
2 T & ¢ © b
3 120 @ bs & ' e 7%
4 b @ b3 & % & 1%

5 5 1y @ c @ by & %
6 120 @ c & % e 77
Tl e e b e T e 7
8 | 7% @ a1 @ b1 ® 7% @ 7%
9 Si(y @& 7Y% @& a @ b
10 Si1) @ 2 & a @& 17
11 S1(2) @ 20 @ c &) ay
12 S1(2) @ 777 @ c ® b & 172
13 S1(3) @ 177y @  bs
14 S1(3) @ 713 @  ag

1 15 S1(3) @ T2 @ by ® 7
16 S13) @ 1% @ c ® 72
17 S13) @ 1% @ a1 & 7 la
18 S14) @ by @ a1

Table 35: Minimal deformations d & S;(5) in Period 5
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Codimension Minimal deformations

1 T8 & a2 ® b

2 2 18 @ as ® 75,
3 So(l) @ 78y @ c & ay
4 So(1) @ 778Bh @ c ) b & T2
5 So(l) @ 778 @ c & b © T
6 | So(1) 78 @ ai ® b1 ® M @ T
7 Se(2) @ B @ by
8 S(2) @ 78 @  a & 773
9 S (2) @ 7% @ by & 7'
10 S (2) @ 7% o c ® T %m

1 11 Sp(2) @ 1% @& ¢ @ 12
12 S (2) @ % © a1 9 ',
13 S2(2) @ T3 @ by @ 1 @ 1%y
14 S(3) @ T84 @ Iy
15 S2(3) @ T @ by B wm
16 Sa(4) @ b3 @ c

Table 36: Minimal deformations d @ Ss(5) in Period 5
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Codimension Minimal deformations

1 7%b @ c > a
2 9%, o c ® b ® 72
3 4 o c ® b ® T b
4 My e a ® b1 ® 7% @ 773y

2 5 ™ @& a1 ® b @& 7t @ 78y
6 Uy @ ay @ b1 & 13 @ 1t
7 70, @ ay & 3% @ 1% @ 17
8 S3(1) @& 7Y @ by
9 S3(1) @ 7' @ as & 73
10 S3(1) @ 77%; @ az & 7%
11 S3(1) @ 7Y o by o 7l
12 S3(1) @ 77 o c ® T %0
13 S3(1) @ 7% @ b @® Tt @ 72
14 S3(1) @ 7% @ c ® 732 @ 1%

. 15081 @ 7% @ b o 7% @ 72 @© 7,
16 S3(2) @ Ty @ by
17 S3(2) @ 7% @ b3 e
18 S3(3) @ 77 @ by
19 S3(3) @ T @ c ® b
20 S3(4) @ as < ba

Table 37: Minimal deformations d & S;(5) in Period 5
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Codimension Minimal deformations

1 7% @ bs
2 20, @ as ® 773
3 % @ as o 78,
4 772 @ by o 7y
5 2% o c ® 7 2%
6 P @ b3 & % @& %,

2 7 B e ¢ @ 2 & i
8 1%, @ c & 172 &
9 1%, @ b & % & 12 & 173
10 | 7750, b1 & 7' @ 2 @ 3% @ '
11 Si(1) o %% o by ®© T
12 Si(1) © % o b3 & a
13 | S4(1) % & e ® b @ %% & 1%
14 S42) @ 7% @ by @ T l'by
15 Si(2) @ 7% @ c ® by

1 16 S42) @ T @ ¢ @ b & 17
17 Si(3) @ % @ as @ by
18 Si(3) @ 17 @ ay @ ba
19 Si(4) @ c ® ay ® by
Table 38: Minimal deformations d & Sy(5) in Period 5
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Codimension Minimal deformations

1 16, @ by ® 7
2 Uy @ by ® 7719
3 2y e by @& a
4 My e o e b e 7% o 7173

2 5 ™ @& a ® b ® 7t ® 78
6 b @ ay @ by & 73 & 17
7 5% @ ay & 7% e % & 7t
8 Ss(1) @ My @ by @ 1mlby
9 Ss(1) & 77 @ c @ bo
10 Ss(1) @ 7% @ b3 @ 1% @ 77
11 Ss(1) @ 7 @ c ® b o
12 Ss5(1) @ 7%, @ c & 7% & 1%,
13 S5(2) @ MU @ a @ by
14 S5(2) @ 7% @ as & 1

) 15 S5(2) @ T2 @ by @ T lhy
16 S5(3) @ 7% @ c o) ai
17 Ss3) @& 1% & ¢ @ b
18 S5(4) @ Tt O bs
19 Ss(4) @ 17'ar @ ap
20 Ss5(4) @ Tl @ c

Table 39: Minimal deformations d & S5(5) in Period 5
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Period 3: 51(1):[12%11100] 52(1):[11%21110} 53(1):[01%22111]

Codimension Minimal deformations

1 18 @ as @& 17
2 P @ as ® T8y
3 2 & b3 ®  m
4 7% @ c <) a1
5 7 @ b3 & ' @ T2y
6 12 @ b3 & 7% @ 775

2 7 % @ c & 12 & 1%
8 120 @ c © 1% @ 170
9 0 @ a1 &) b1 ® ' @ %M
10 7%, @ a1 ® 3 @ 1% @ 77
11 1%, @ bo ® ' @ 12 @ 173
12 Si(1) @ 7% @ b
13 Si1) @ % @ by ® T
14 Si(1) @ 72 @ c ® b
15 Si(1) o % @ c & b ® T2

1 16 512 @ Ty @ by
17 Si1(2) @ 773 © as & b
18 S12) @ 1% @ c © b

Table 40: Minimal deformations d & S;(3) in Period 3
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A DEGENERATION DIAGRAMS

Codimension Minimal deformations

1 77%b @ bs
2 160, @ by ® 770
3 7722h @ c &) ba
4 7 @ bs ® 7% @ 7175,

2 5 % o e @ b @ 72
6 1%, @ c e 12 @ 7%
7 10, @ b ® 7 @ 1t @ 713
8 So(l) @ 7B & a & h
9 So(l) @ 7% o as @ 773
10 So(y @ 7%, @ b @ T
11 So(1) @ 7h @ bs @ 7 lby
12 So(1) @ 779 o c ® T %0

) 13 So(1) @ 77 @ c e b o 7
14 | Sy(1) ™ e e @& b e % @ 7%
15 S2(2) @ 73 @ a
16 S(2) @ T @ b3 > ai
17 S (2) @ T @ c ®

Table 41: Minimal deformations d @ S5(3) in Period 3
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A DEGENERATION DIAGRAMS

Codimension Minimal deformations

1 8By @ ay @ b1
2 20, @ as & 773
3 772, @ by ® 7'
4 1 @ by ® 7719
) 1 @ bs & 71lby
6 2% @ c @ 1%y
7 1y @ c ® b & Tt

9 8 4 @ c P b1 & 7l
9 4 @ ay P b1 & % & 173
10 b @ ay @ b1 & 7' @& 78
11 b @ a1 &) b1 & 3% & 1M
12 % @ ay & 3% @ %% @ 1%
13| 77%; @ b1 ® ' @ 1% @ 73 & 1t
14 S3(1) @ 7%, @ as @ 75
15 S3(1) @& My @ by @ a
16 S3(1) @ 7%y @ c o ai
17 S3(1) @ 7% @ b3 & 7% @& 172

1 18 S3(1) @& 7% @ c ®© 7 @ 774
19 S3(2) @ T7%h @ bs
20 S5(2) @& 1% @ c O bo
21 S32) @ Tl @ o @ bo

Table 42: Minimal deformations d & S5(3) in Period 3
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A DEGENERATION DIAGRAMS

Period 2: S1D) =1[12332211) S2(1)=[12322110]
Codimension Minimal deformations

1 77250 @ bs
2 T 8bh @ as ) by
3 % @ as & 778
4 ™ @ by @ 7710
5 2 @ b3 @ a1
6 1 @ b3 & 7lby
7 % @ b3 & % & 172
8 b @ b3 & 1% @& 1%,
9 9% @ c @ by & T2

9 10 17y, @ c @ by ® 7%
11 15 @ c & 72 @ 1%
12 4 @ a1 &) b1 ® ' @ 173,
13 79 @ a ® by & 7 @ 1%
14 Uy e o« ® b ® 73 @ 77
15 1%, @ b @& 7% @ T @ 713,
16 | 770, @ by @ 7% o 2 @ 3 @ 1%
17 Si(1) & 7% @ as & 773
18 Si1) & 7% & b & T 'h

. 19 Si(1) @ % @ c e w
20 S1(1) & 7% @ c ® 7%
21 S @ 77h @ c ® b
Table 43: Minimal deformations d & S;(2) in Period 2
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A DEGENERATION DIAGRAMS

Codimension Minimal deformations

1 720, @ as ® 73
2 18 @ as ® 70
3 ™% ® by @® 7'h
4 1% @ b @ 7%
5 ™%b @ c @ a1
6 2 @ c & 7%,
7 7720 @ c P b
8 120 @ b3 @& 7' @ 770

9 9 4y @ c @ b1 & 77
10 1%, @ c @& 7 @ 10
11 120 @ c & 7% & 17
12 by @ a1 <) b1 & 7% @ 773
13 b @ a1 @ b1 ® 73 @ 7%
14 7% @ ay ® 73 @ % ®© Tt
15 10, @ by ® 7' @ 7% @ 773,
16 So(l) @ 7790 o bs
17 S(1) @ 78 © a @ b

) 18 S(1) @ 7% @ b @ a
19 Se(1) @ 772 @ by @ T b
20 S(1) @ 7% @ c & by ® 7%

Table 44: Minimal deformations d & S(2) in Period 2

A.11.4 U = bs

Again the case of 9(U) = —5 yields degeneration diagrams, which are too large to put

information in it in a useful way, so we only write the minimal deformations down.

51(1)2[00%11110] 52(1):[01911111]
Period 5:

S31) =[11310000] Ss(1)=lo1111000) S5sM=[11%11100]
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A DEGENERATION DIAGRAMS

Codimension Minimal deformations
1 18 @ bo ® 72bhy
2 772b @ c @ b1
3 18 @ c ® 7N
1 4 —13b @ bo & 12 @ 1%
) 78 @ b & 1% @& ',
6 S1(1) & 78y & a
7 Si(1y @ 778 o ai ® by o 772
8 Si(1) @ 7% o ai ® by o 7h
9 Si(1y @ 7% @ 7172 o by & 73
10 S12) @ 7% @ al & 7 1lgg
) 11 S1(2) @& % @& a @ 72
12 S1(2) @ 7% @ c ® 773
13 S13) @ 7% @ by
14 S13) @ 773 @ b3 & 72
15 S1(4) @ bs S ay
Table 45: Minimal deformations b5 @& S1(5) in Period 5
Codimension Minimal deformations
1 2%, @ as
2 ™% & o @ b e mh
3 ™M e @ b e T
1 4 Ty @ 772 @ by ® 773
5 9% @& T2y @ b1 ® 7%
6 So(l) @ My @ ay o Tl
7 So(l) @ 7y @ c ® 773
8 S(l) @ 7% @ c ® 7%
9 So(l) @ 7% © a1 ® 732 © 1%
10 S(2) @ ¥ o by
) 11 S (2) @ 7% @ @ b3 © 7%
12 S$(2) @& 1% @& by @ 72 @& 73
13 S2(3) & T84 & by
14 $H(3) © % @ a @ b
15 Sa(4) @ c ® by

Table 46: Minimal deformations b5 & S5(5) in Period 5
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A DEGENERATION DIAGRAMS

Codimension Minimal deformations
1 720, @ at ® 7'ag
2 20 @ c & 773
3 1% @ c e 7%
1 4 15 @ aq & 7% @ 7
) 10, @ aq ® 7% & 7N
6 S3(1) @ 70 @ by
7 S3(1) @ 7% o b3 ® 7%
8 S3(1) @ %% o by ® 7% @ 13
9181 @ 7 © b © T @ 9% o 17
10 S3(2) @ 7% @ b3
) 11 S32) @ % @& a @ b
12 S32) @ T © a1 @ b @ Tty
13 S3(3) @ 7723 @ by
14 S3(3) @ T @ c & by
15 S3(4) @ az @ by
Table 47: Minimal deformations b5 @& S5(5) in Period 5
Codimension Minimal deformations
1 =2 @ by
2 2 @ b3 & 72
3 % & b @ T & 7%
1 4 ™y e b @ 7 o 3 @ 1
5 %% @ 72 @ 3% @ 7% @ T
6 Sy(1) @© 7% & a @ by
7 Sy(1) o My @ b3 & 76
8 Sy(1) @ My @ ai ) by & 7%
9 Sy(1) @ 7%, @ ai & 7% @ 7%
10 Si2) @ 7% @ @ by ® T 2by
) 11 S4(2) @ My @ c ® b
12 S4(2) @ 7%, @ c ® T
13 Si3) @ 7% @ a
14 Si3) @ 77% @ ay ® by
15 Si(4) & c ® a

Table 48: Minimal deformations b5 & S4(5) in Period 5
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A DEGENERATION DIAGRAMS

Codimension Minimal deformations

1 20 e w ® bo
2 T717b1 & b3 b T76b1
3 125 @ bs ® 771

1 4 1y e a @ b1 I
5 125 @ aq & % @ 1%,
6 Ss(1) @ 772 @ by ® 7 2by
7 Ss5(1) @ 77V @ c & b
8 Ss(1) @ 772 @ c ® T
9 S5(1) @ 17 @ by e 72 @ 1%
10 S5(2) @ 772 @ as

) 11 S5(2) @ 73y @ T2 @ b
12 S52) & T & a ® b @ 12y
13 S5(3) @ T3hy @ c
14 Ss3) @ 1% © @ a & 71lm
15 Ss(4) @ T2 @ by

Table 49: Minimal deformations b5 @& S5(5) in Period 5

Period 3: 51(1):[11%22111] S2<1):[01%11100] 53(1):[12%21110]
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A DEGENERATION DIAGRAMS

Codimension Minimal deformations

1 % @ by
2 72 @ ay & 7'ay
3 17 @ bs ® 7%,
4 T5bh @ c  ® b
5 7205 @ c & 773
6 ™ & a @ b @ T

1 7 iy e a @ b @ b
8 8 @ by & 7% @& 7h
9 My @ 172 @ by @ 773
10 Uy @ b e 7% @ 73 @ 7174
11 Si(1) @ 7 @  a
12 Si(1y o 7% @ by & 72%by
13 Si (1) @ % @ b3 @ 712

2 14 Si(ly @& 7%, @ c @ 7N
15 Si(1) @ 7% @ aq @ 72 @ 1%
16 S1(2) @ 7% @ a1 @© by

Table 50: Minimal deformations b5 @& S1(3) in Period 3
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A DEGENERATION DIAGRAMS

Codimension Minimal deformations
1 77%b @ as
2 18 @ b & 72by
3 2 @ b3 © T2
4 125 @ b3 o 7 My
5 18 o c ® 7o
6 % @ c o 778,
1 7 % @ al ® 7 o 1
8 12b @ ay & 7% & 1%,
9 9 @& 1% @ by & 7%
10 % @ 2% @ % @ Tt @ 1%
11 So(ly @ 772 o ap ® b2
12 So(1) @ 7% ® a @ b @ 712
13 So(1) @ 7% @ by & 7% @ T
2 14 S (2) @ 7% @ by
15 S2) & e & e & b
16 S (2) @ T3 @ c & by
Table 51: Minimal deformations b5 @& S5(3) in Period 3
Codimension Minimal deformations
1 722, @ ay @ by
2 ™% & g @& b @ 72
3 10, @ ay & 72 &
1 4 16, @ by & 772 & 3%
5 T Bh @ ba ® 12 @ 7%,
6 S3(1) @ 717% o by
7 S3(1) @ 7% @ a ® 17 lg
8 S3(1) @& 7 @ by @ 1%
9 S3(1) @ 778n o ¢ & b
10 S3(1) @ 7% @ c @ T3
) 11 S3(1) ® 7 @© a1 & b © T4
12 S3(1) @ 7% @ 717%% © by & 73
13 S3(2) @ T @ a
14 S3(2) @ 7% @ by
15 S3(2) @ T2 @ c

Table 52: Minimal deformations b5 & S5(3) in Period 3
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A DEGENERATION DIAGRAMS

Period 2: S1() =1[12332211) S2(1)=[12322110]
Codimension Minimal deformations

1 2y @ bs & 72
2 17 @ b3 & 7%,
3 778 @ c @ b1
4 By @ c @ 78
5 9 @ aq @ by & 72
6 1 @ ay @ b1 & 7%

1 7 B & a © 2 @ 7
8 T 8h @ bo @ 72 @ 7%,
9 9% @ 772 @ b e 7%
10 b @ b1 & 7% @ 73 @ 1%
11 Si1) & 7% @  a
12 S1(1) @ 77Hy @ by
13 Si(1) & 7 @ a1 ® 7 'm

2 14 Sy @ 77 @& ® by
15 S1(1) @ 773 @ by ® 7 %b
16 Si(l)y @ 7% @ c & 773

Table 53: Minimal deformations b5 & S1(2) in Period 2

117




A DEGENERATION DIAGRAMS

Codimension Minimal deformations

1 T4y @ as
2 726, @ by
3 2, @ al & 1t lay
4 2y & a @ by
5 T @ b @ T
6 T2 @ by @ 7y
7 2 @ c & 73
8 18 @ c & 7%

. 9 M e @ b e T
10 1%, @ ay & 7 & 1%
11 2 & a1 & 7% & 1%
12 % @ b @ 172 o 173
13 78 @ ba e 7% @ 1,
14 My @ 2 O b1 o 773
15 76 @& 2 @ 30 @ 1'% @ 717
16 Sp(1) @ 7% @ b3 @ 72

9 17 So(l) @& 78 @ c ® b1
18 S(1) @ 77 o ap ® b1 ® T2

Table 54: Minimal deformations b5 & S(2) in Period 2

A.11.,5 U =b,

Codim(U @ V,77 %) =5

Period 5:

51(1)2[00%11111] 52(1):[01(1]10000]

53(1):[11%11000] 54(1):[01%11100} 55(1):[11(1)11110]
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A DEGENERATION DIAGRAMS

Codimension | Dot Preprojective deformations

5 1 7 %ay
2 7’712b1 D 7'751)3
3 793 @ by
4 9 @& 1 °

4 5 ¢ @ 71 °h
6 7'76a1 D T75a1
7 T_gbg D 7'_3(11
8 7841 © T b
9 7’715()1 S T 4b3
10 8 @ 1%
11 o @ ai
12 T_13b2 D by
13 7%, & 7173
14 7'712[)1 D T71a1 S T 9[)1
15 % & 130 @ 713
16 T 9b1 SV, 7'73611 S T 8()1
17 TP d T a4 D by

3 18 % @& 1% @© 71
19 8 @ 710 & 71
20 Tﬁloal D b1 D T73171
21 7_171)1 D 7'_4[)2 D by
22 7'_12()1 D T 4()2 D T_5b1
23 2 @ 1m0 & 71,
24 ’7'_9b1 D T Sbg D by
25 T791)2 D b1 D T77bl
26 T_27b1 D bs
27 = %bh O c
28 7_2351 D a D by
29 7.—20b1 D ai D T_3b1
30 7'718[)1 SV, a D 7'7551
31 T_15b1 D a1 o T Sbl
32 =22b @ ba ® 7
33 7'_18()1 D by D T_7b1

2 34 T 5Bb @ ba ® 17 %n
35 T_lgbl ©® T_3b2 ©® by
36 7'_15bl SY, 7'_352 D T_4b1
37 T_lobl D 7'_3()2 D T_gbl
38 7'_17b1 D by D T_Sbl D 7'_4b1
39 [ My @ b1 ® T3 @ T b
40 T_gbl D by D T_7b1 D T_Sbl
41 T712bl D 7'73b1 D 7’74()1 S T 5()1

Table 55: Preprojective deformations of by V', with V' indecomposable and dim V' = ¢
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b1
ba
by
by
T_3b1
b3
T_3b1
7’74b1
ba
by
by
in Period 5

S
S
D
S
D
S

)

5

7’75()3
7'76611
T_lal
7’74()2
b1
7’715()1
ba
7’73b1
7'_3CL1
ay
(

S
D
S
D
D
S
S

S2(2)
S2(2)
T_gbl
7’75()1
T_5b2
S2(3)
S2(2)
T_lobl
by

S2(3)
T_5b1

4)

Table 57: Deformations with nonzero regular part of by ® Sy

A DEGENERATION DIAGRAMS
Sa

D
@
D
D
@
@

So(2)
S2(2)
So(2)
So(2)
7'75()1

Deformations with nonzero regular part
S2(3)

D

S2(2)

Dot
Reg,
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Regs
Regy
Regs
Regs
Regr
Regs
Regg
Regio
Regii
Regio

Codimension
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fig. A.118: Degeneration diagram of by & Sy(5) in Period 5
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Table 58: Deformations with nonzero regular part of by & Sy(5) in Period 5
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fig. A.119: Degeneration diagram of by & S4(5) in Period 5
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Table 59: Deformations with nonzero regular part of by @ S5(5) in Period 5
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fig. A.120: Degeneration diagram of by @ S5(5) in Period 5

]

1
12221111

[

S3(1)

]

1
01211110

[

Sa(1)

]

1
11221100

[

Si(1)

Period 3:
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A DEGENERATION DIAGRAMS

Deformations with nonzero regular part

773b1
T73b1

D
@
2]

b1

7‘75(11
T7121)1
T_gbl
T73b1

52
2]
D
52

Si(1)
Si(1)
S1(1)
S1(2)

bo
T_3b2

by

D
D

b1

ai

Dot

Reg,

Rega

Regs

Regy

Codimension

Table 60: Deformations with nonzero regular part of by & S;(3) in Period 3
=1
]

fig. A.121: Degeneration diagram of by & S;(3) in Period 3
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Deformations with nonzero regular part

7'73&1

2]

7'74b2
7'76a1
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Table 61: Deformations with nonzero regular part of by & S2(3) in Period 3
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fig. A.122: Degeneration diagram of by & S5(3) in Period 3
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Deformations with nonzero regular part
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Table 62: Deformations with nonzero regular part of by @& S

fig. A.123: Degeneration diagram of by @ S3(3) in Period 3
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Period 2:
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Deformations with nonzero regular part

e b
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Table 63: Deformations with nonzero regular part of by & S;(2) in Period 2
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fig. A.124: Degeneration diagram of by @ S;(2) in Period 2
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Table 64: Deformations with nonzero regular part of by & S2(2) in Period 2

fig. A.125: Degeneration diagram of by & S3(2) in Period 2

A.11.6 U = bs

Codim(U & V, 7710, = 4
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Codimension | Dot Preprojective deformations

4 1 T_lobg
2 T_14b1 @D 7'_5a1
3 % @ 7
4 T718b1 D 7'75()2

3 5) 7710b1 D 779b2
6 T_lobz b 7'_8b1
7 T_14b2 @D b1
8 T_24b1 b ap
9 T_28b1 @D b2
10 T_20b1 D T_4b2

9 11 7'723b1 D by D 7'74b1
12 %, @ by ® T
13 ’7'_14b1 S by b T_13b1
14 7_—18b1 D T_4b1 @D T_5b1
15 7'_15b1 @D 7'_4b1 @D T_Sbl
16 Tﬁlobl D ’7'78[)1 D 779b1

Table 65: Preprojective deformations of b3 V', with V' indecomposable and dim V' = §

S11)=1[o1%10000] S2()=[11311100]
Period 5:

53(1):[01%11110] 54(1):[11(1)11111] 55(1):[00%11000]

fig. A.126: Degeneration diagram of bs @ S;(5) in Period 5
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A DEGENERATION DIAGRAMS

Codimension | Dot Deformations with nonzero regular part
3 Reg1 Sl(2> o T 6b3
Reg, S12) @ %, @& 1'ay
Regs S12) & 7% & b
2 Reg S12) & 7% @ 1 b
Reg5 S1 (2) S5 776b2 & T 4b1
Regﬁ Sl (3) ) T 2¢
Regr S1(2) @ 7% @ by
Regg Sp (2) ©® 7'_1161 S¥) by S¥ T_4b1
Regy | S1(2) ® 7% @ 1% @ 71°h
1 Regm Sl (3) D T_6b1 D aq
Regn Sl (3) ) 7'73(11 ) b1
R6912 81 (4) D C

Table 66: Deformations with nonzero regular part of b3 @ S1(5) in Period 5

fig. A.127: Degeneration diagram of b3 & S5(5) in Period 5
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A DEGENERATION DIAGRAMS

Codimension | Dot Deformations with nonzero regular part
3 Regy SH(l) @ 7%
Rego So(l) @ 7%, @& 1%
Regs So(l) & 77 & T 'Y
2 Reg, S0 ® 7% @ b
R695 Sg(l) S5 7'712171 b 7'75b2
Regg S(2) @ Tl
Reg7 Sg(l) S5 7'722171 D ba
Regs | S2(1) & 771h, @ by & 7
Regy | So(1) @& 772 @ 7 @ 7°h
1 Regm S2<2) () T_12b1 b ay
R@gn 32(2) ) 7'78[)2 %) b1
Regiz S(3) @ 717y

Table 67: Deformations with nonzero regular part of b3 @ S3(5) in Period 5

| Rego | | Regs | | Rega |

fig. A.128: Degeneration diagram of bs @ S3(5) in Period 5
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A DEGENERATION DIAGRAMS

Codimension | Dot Deformations with nonzero regular part
2 Regr S3(1) & 7% @ T oa,

Regs S3(1) @ ¥ o al
1 Regs 53(1) D T_ldbl D by D T_Sbl
Reg, S3(2) @ 1m0 @ 1 b

Table 68: Deformations with nonzero regular part of by & S3(5) in Period 5

Codimension | Dot Deformations with nonzero regular part
2 Regy Si(1) @ 7%, @ T
Regs S4(1) D 7'714()1 D 7'74b2
1 Regs | S4(1) @ 7771 @ 1'% @ 71 °h

Reg4 34(4) D 7’7451 D b

Table 69: Deformations with nonzero regular part of by @ S4(5) in Period 5

| Rego | | Regs | | Rega |

fig. A.129: Degeneration diagram of by @ S4(5) in Period 5
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A DEGENERATION DIAGRAMS

Codimension | Dot Deformations with nonzero regular part
2 Regy S5(3) @ T7hy @ by
RGQQ 55(3) D 7'7101)1 D by
1 Regs | S5(3) @& 7°b1 @ by o 7
Reg4 S5 (4) D al D bl

Table 70: Deformations with nonzero regular part of by & S5(5) in Period 5

fig. A.130: Degeneration diagram of b3 @ S5(5) in Period 5

Period 3:

51(1):[11%21110]

52(1):[01%21111}
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A DEGENERATION DIAGRAMS

Codimension | Dot Deformations with nonzero regular part
2 Regy Sl(l) D 7'75a1 D 7’74[)1
Rego Si(1) @ 9% @& 7%,
1 Regs [ S1(1) @ 7B @ b @ 7y

Reg4 31(2) D T74bl D a1

Table 71: Deformations with nonzero regular part of by & S1(3) in Period 3

| Rego | | Regs | | Rega |

fig. A.131: Degeneration diagram of bs & S;(3) in Period 3
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A DEGENERATION DIAGRAMS

Codimension | Dot Deformations with nonzero regular part
2 Regy 52(1) D 7’78[)1 D 7'7552

Rego So(1) @ % o al
1 Regs | S2(1) @& 7781 @ 7% @ 7 °h

Reg4 52(2) (S5) T78b1 D by

Table 72: Deformations with nonzero regular part of by & S3(3) in Period 3

| Rego | | Regs | | Rega |

fig. A.132: Degeneration diagram of b3 & S5(3) in Period 3
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A DEGENERATION DIAGRAMS

Codimension | Dot Deformations with nonzero regular part
2 R€g1 53(1) D 7'7952 D by
Reg2 Sg(l) (5] 7'718()1 D by
1 Regs | S3(1) @& 779 @ by e 7%
Reg4 33(2) (S5) 7'74192 D by

Table 73: Deformations with nonzero regular part of by & S3(3) in Period 3

| Reg» | | Regs | | Rega |

fig. A.133: Degeneration diagram of b3 & S3(3) in Period 3

Period 2:

51(1)2[12332211]

52(1):[1251’,22110]
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A DEGENERATION DIAGRAMS

Codimension | Dot | Deformations with nonzero regular part
2 Regy Sl(l) ©® 7'75()3
Regs Si(1) @ 9% @ ay
1 Regs 51(1) & T_ldbl D by
Reg, Sl(l) D T75bl D 7’7452

Table 74: Deformations with nonzero regular part of b3 & S;(2) in Period 2

fig. A.134: Degeneration diagram of bs & S;(2) in Period 2
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A DEGENERATION DIAGRAMS

Codimension | Dot | Deformations with nonzero regular part
1 Regy 52(1) D 7'7851 ® b P 7'7451
Table 75: Deformations with nonzero regular part of by & S2(2) in Period 2

fig. A.135: Degeneration diagram of by @ S3(2) in Period 2

A.11.7 U = b,

Codim(U @ V,771%by) = 3

S11)=101%10000] S2(1)=1[11311110]
Period 5:

53(1):[01%11111] 54(1):[11?11100} 55(1):[00%11000]

_mm
] [0 e

G@erThen] [E@snern] [E@era]

fig. A.136: Degeneration diagram of by & S;(5) in Period 5
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A DEGENERATION DIAGRAMS

=
ErTn e

S5 han] (G0 nar] [B@er

fig. A.137: Degeneration diagram of by & S5(5) in Period 5

715b2

N

| Sg(l) D T714b1 @ T79b1 |

fig. A.138: Degeneration diagram of by @ S3(5) in Period 5

—15b2

N T

S4(4) ®77°b1 @ b
| |

fig. A.139: Degeneration diagram of by @& S4(5) in Period 5

e I
[ v R

[SsB)erhen| |sE) e her | [Ss(4) @ a |

fig. A.140: Degeneration diagram of by & S5(5) in Period 5

Period 3: 51(1):[12%22110] 52(1):[11%21111] 53(1):[01%11100]
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A DEGENERATION DIAGRAMS

e
e e
T |

| Si(1) @ 779, @by | | S1(2) ® T %b, | | S1(1) @ 10 & %, |

fig. A.141: Degeneration diagram of by & S1(3) in Period 3

T_15b2

N T

T729b1 ® by T_24b1 D T_5b1 T720b1 D T79b1 | T_lsbl D 7'_14b1

So(l)® 7 b1 @7 %by
| |

fig. A.142: Degeneration diagram of by @ S5(3) in Period 3

T715b2

% T b &7 b T @ 771,

| S3(2) @ 7% ® by |

fig. A.143: Degeneration diagram of by & S3(3) in Period 3

Period 2: S1(1) =[12332210] S2(1)=1[12322111]

7'71562

N T

T724b1 (&) 7'7561 7_72061 (&) 77961 | T_lsbl (&) T_14b1

|S1(1) @7’71461 @ by |

fig. A.144: Degeneration diagram of by @ S;(2) in Period 2
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A DEGENERATION DIAGRAMS

T715b2

—

b @by |2 & 7, | |20, & 7%, | 715 @ vl

.

| Sa(1) @ 7%, & 75, |

fig. A.145: Degeneration diagram of by @ S2(2) in Period 2

A.11.8 U=Db

Codim(U & V, 77%%,) = 2

S1i1)=1lo0%11000] S2M)=[11111100]
Period 5:

33(1):[01(1]11110] 54(1):[11%11111] 55(1):[01%10000]

T_Sobl 7730b1 T_Sobl T_Sobl 7'_301)1

S1(2) @ 7~ 1%by (s ar | [Sierh| [SE)or |

fig. A.146: Degeneration diagrams of by @ S;(5), ¢ € {1,2,3,4,5} in Period 5

Period 3: 51(1):[01%11100] 52(1):[11%21110} 53(1):[12%22111]

T730b1 7'7301)1 T730b1

| $2(2) @ 710, | | S3(1) @& 7208, |

fig. A.147: Degeneration diagrams of by @ S;(3), 7 € {1,2,3} in Period 3

Period 2: S1(1)=1[19332211] S2(1)=1[12322110]

51(1) D T715b1

fig. A.148: Degeneration diagrams of by @ S;(2), i € {1,2} in Period 2
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A DEGENERATION DIAGRAMS

Codimension | Dot Preprojective deformations

4 1 10
2 7'_14b1 b T_5Cl1
3 1%, @& t7a,
4 7%, @& 77

3 5 7’712(11 ©® by
6 7'_12b1 ) 7'_5b2
7 T_lobg () T_2b1
8 7'_24171 ) ai
9 7_20b1 () T_2a1
10 7_22b1 (%) bg
11 T719b1 ) b1 () 7'72171

2 12 7'71761 D by D 7'74b1
13 T @ b @ T
14 7'_15171 D T_le ) 7'_4b1
15 T_lobl D T 2b1 () T_9b1
16 7'712{}1 D T 4b1 (%) 7'75171

Table 76: Preprojective deformations of ¢® V', with V' indecomposable and dim V' = §

A119 U=c¢c

Codim(U @ V, 77 %) =4

51(1)2[01(1)10000] 52(1):[11%11000]
Period 5:

53(1):[00(1)11100] 54(1):[01%11110} 55(1):[11%11111]
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A DEGENERATION DIAGRAMS

Codimension | Dot Deformations with nonzero regular part
2 Reg1 51(2) D 7'75[)2 D by
RGQQ 51(2) (&) T710b1 D by
1 Regs | S1(2) @& 77°01 @ b1 e 7
Reg, S1(4) @ ay ® b

Table 77: Deformations with nonzero regular part of ¢ & S;(5) in Period 5

[

[Fea]  [es]

fig. A.149: Degeneration diagram of ¢ @ S1(5) in Period 5
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A DEGENERATION DIAGRAMS

Codimension | Dot Deformations with nonzero regular part
3 Reg1 SQ(l) D T_Gbg
Regy S(1) @ 7% @& 7

Regs So(1) & 7% & b
2 Reg S(1) & 7% @& 1 b
Reg5 Sg(l) © T 6b2 @& 7'74b1
Regg S9(3) @ T %bs

Reg7 52(1) b 7'716171 @D ba
Regs | So(1) & 7Y @ b ® 7
Regy | So(1) @& 7% @ 1% @ 7°h

1 Regm S2<3) () T 6b1 D aq
Regn 32(3) D T 2()2 D b1

Regis S(4) @ 1%

Table 78: Deformations with nonzero regular part of ¢ @ S3(5) in Period 5

fig. A.150: Degeneration diagram of ¢ @ S3(5) in Period 5
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A DEGENERATION DIAGRAMS

Codimension | Dot Deformations with nonzero regular part
2 Regy 53(2) D T75a1 D 7'7251

Rego S3(2) @ 7 %h o al
1 Regs | S3(2) @ 701 & b1 & 7 °h
Regy S3(3) @ T 21 @ T b

Table 79: Deformations with nonzero regular part of ¢ & S3(5) in Period 5

fig. A.151: Degeneration diagram of ¢ @ S3(5) in Period 5
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A DEGENERATION DIAGRAMS

Codimension | Dot Deformations with nonzero regular part
3 Regy Sy(1) @& 7%
Rego Sy(1) @ 7% & 170
Regs S, (1) @& 7% @& 171
2 Reg, Si(1) & 7% & 7%
Reg5 S4(1) S5 7'78b2 ©® by
Regg S4(2) @ 7%
Reg; Sy(1) @ 7T By, @ ai
Regs | S4(1) & 778 & by o 72
Regy | S4(1) @& 7% @ by e 7 b
1 Regio S;(2) @& 7% @ 1 %0
Regn S4(2) b T 452 ) 7'72()1
R6912 84(4) D b3

Table 80: Deformations with nonzero regular part of ¢ @ S4(5) in Period 5

" =
/|
/ /“
‘\\\

fig. A.152: Degeneration diagram of ¢ @ S4(5) in Period 5
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A DEGENERATION DIAGRAMS

Codimension | Dot Deformations with nonzero regular part
2 Regi Ss(1) @ 7 a1 @ 71 b
Rego S5(1) @ 4y e %
1 Regs | S5(1) @& 7% @& 77200 @ 7 %

Reg4 55(3) D T74bl D by

Table 81: Deformations with nonzero regular part of ¢ & S5(5) in Period 5

—_

fig. A.153: Degeneration diagram of ¢ & S5(5) in Period 5

Period 3: 51(1):[11%21110] 52(1):[01%22111} 53(1):[12%11100]
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A DEGENERATION DIAGRAMS

Codimension | Dot Deformations with nonzero regular part
2 Regy Si(1) @ 7% @& T
Rego Si(1) @ 10 @ %0
1 Regs | Si(1) ® 7701 @ b & 7177

Regy 51(2) ©® T74bl D a1

Table 82: Deformations with nonzero regular part of ¢ & S;(3) in Period 3

fig. A.154: Degeneration diagram of ¢ @ 51(3) in Period 3
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A DEGENERATION DIAGRAMS

Codimension | Dot Deformations with nonzero regular part
2 Regy 52(1) D 7’75[)2 D 7'7251

Rego So(1) @ % o al
1 Regs | So(1) @ 77°b1 @ 77201 & 7 iy

Reg4 52(2) (S5) T72b1 D by

Table 83: Deformations with nonzero regular part of ¢ @ S3(3) in Period 3

fig. A.155: Degeneration diagram of ¢ & S5(3) in Period 3
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A DEGENERATION DIAGRAMS

Codimension | Dot Deformations with nonzero regular part
2 Regy S3(1) @& 774 @ by
Regs Sg(l) (5] 7'712()1 D by
1 Regs | S3(1) @& 779 @ b1 e 7%
Regy S3(2) @ T %41 © by

Table 84: Deformations with nonzero regular part of ¢ & S3(3) in Period 3

[

[fer]

[Feat]

fig. A.156: Degeneration diagram of ¢ & S3(3) in Period 3

Period 2:

51(1)2[12332211]

52(1):[1251’,22110]
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A DEGENERATION DIAGRAMS

Codimension | Dot | Deformations with nonzero regular part
2 Regy Si(1) @ T %¢
Regs Si(1) & 7% @ al
1 Regs Si1(1) @ 77 @ T %a,
Reg4 Sl(l) ©® 7'77[)1 D by
T

Table 85: Deformations with nonzero regular part of ¢ & 51(2) in Period 2

|Reg2| |Reg3| |Reg4|

fig. A.157: Degeneration diagram of ¢ @ 51(2) in Period 2
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A DEGENERATION DIAGRAMS

Codimension

Dot

Deformations with nonzero regular part

1

Reg,

52(1) D 7'7451 & b & 7'7251

Table 86: Deformations with nonzero regular part of ¢ & 55(2) in Period 2

fig. A.158: Degeneration diagram of ¢ & S5(2) in Period 2
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