
Waveform-relaxation methods for
ordinary and stochastic differential

equations with applications in
distributed neural network

simulations

Dissertation

Bergische Universität Wuppertal
Fakultät für Mathematik und Naturwissenschaften

eingereicht von
Jan Hahne, M. Sc.

zur Erlangung des Grades eines Doktors der Naturwissenschaften

Betreut durch Prof. Dr. Matthias Bolten

Wuppertal, 29.05.2018

Die Dissertation kann wie folgt zitiert werden:

urn:nbn:de:hbz:468-20180727-140556-2
[http://nbn-resolving.de/urn/resolver.pl?urn=urn%3Anbn%3Ade%3Ahbz%
3A468-20180727-140556-2]

Acknowledgments

First of all, I would like to thank Matthias Bolten for raising my interest in the
Human Brain Project in the first place and for giving me the opportunity to
work in this project under his supervision. I am grateful to Andreas Frommer for
enabling me to do my studies in his research group and for his generous help in
the transitions between funding phases of the project.

I wish to sincerely thank Markus Diesmann and Moritz Helias for introducing me
to the field of computational neuroscience and for suggesting several interesting
topics for collaborations, which made this thesis possible. I have benefited greatly
from the knowledge of David Dahmen and Jannis Schuecker on rate-based models
and enjoyed the very pleasant working atmosphere during our several meetings.

I also wish to thank all my colleagues and former colleagues of the Applied Com-
puter Science Group, many of whom became friends over the years. I particularly
thank Sarah Huber for proofreading this thesis.

Finally, I wish to thank my family and friends for their continuous support.

I

Foreword

The work presented in this thesis is in parts based on the following publications:

• J. Hahne, M. Helias, S. Kunkel, J. Igarashi, M. Bolten, A. From-
mer, and M. Diesmann, A unified framework for spiking and gap-junction
interactions in distributed neuronal network simulations., Front. Neuroinfor-
matics, 9 (2015)

• J. Hahne, M. Helias, S. Kunkel, J. Igarashi, I. Kitayama, B. Wylie,
M. Bolten, A. Frommer, and M. Diesmann, Including gap junctions
into distributed neuronal network simulations, in Brain-Inspired Computing:
Second International Workshop, BrainComp 2015, Cetraro, Italy, July 6-10,
2015, Revised Selected Papers, K. Amunts, L. Grandinetti, T. Lippert, and
N. Petkov, eds., Springer International Publishing, Cham, 2016, pp. 43–57

Parts of these publications are incorporated in Chapters 1 and 5.

• J. Hahne, D. Dahmen, J. Schuecker, A. Frommer, M. Bolten,
M. Helias, and M. Diesmann, Integration of continuous-time dynamics
in a spiking neural network simulator, Front. Neuroinformatics, 11 (2017)

Parts of this publication are incorporated in Chapters 2 and 6. The neuro-
scientific applications in Subsec. 6.4.3 of this thesis have been developed by
the coauthors David Dahmen and Jannis Schuecker.

III

Contents

Acknowledgments I

Foreword III

Contents V

1 Introduction 1

2 Review of basic material 5

2.1 Ordinary differential equations . 5

2.1.1 Runge-Kutta methods . 6

2.2 Stochastic differential equations 8

2.2.1 Selected numerical methods 11

2.2.2 Stochastic delay differential equations 15

2.3 Spiking neural network simulators 16

2.3.1 NEST - NEural Simulation Tool 17

V

CONTENTS

3 Waveform-relaxation methods for ODEs 21

3.1 Literature review . 23

3.2 An ODE-waveform-relaxation method suitable for spiking neural
network simulators . 26

3.2.1 Restrictions and requirements 26

3.2.2 The method . 27

3.2.3 Convergence analysis . 28

4 Waveform-relaxation methods for SDEs 31

4.1 Literature review . 32

4.2 A SDE-waveform-relaxation method suitable for spiking neural
network simulators . 34

4.2.1 Restrictions and requirements 34

4.2.2 The method . 35

4.2.3 Convergence analysis . 37

5 Application in computational neuroscience I:
Including gap junctions in a spiking neural network simulator 43

5.1 Framework . 48

5.1.1 Algorithmic and numerical implementation 48

5.1.2 Connection infrastructure 53

5.1.3 Communication infrastructure 56

5.1.4 Iterative neuronal updates 58

5.2 Neuron model . 61

5.3 User interface . 63

5.4 Numerical results . 67

5.4.1 Setup . 67

5.4.2 Pair of gap-junction coupled neurons 72

5.4.3 Network with combined dynamics of chemical synapses and
gap junctions . 76

5.4.4 Performance of the gap-junction framework in NEST . . . 80

VI

CONTENTS

5.5 Discussion . 88

6 Application in computational neuroscience II:
Including rate models in a spiking neural network simulator 93

6.1 Rate models . 97

6.2 Framework . 100

6.2.1 Restrictions . 100

6.2.2 Implementation . 101

6.2.3 Reduction of communication using waveform-relaxation tech-
niques . 103

6.3 User interface . 107

6.4 Numerical results . 110

6.4.1 Stability and accuracy of integration methods 110

6.4.2 Performance of the NEST implementation 116

6.4.3 Applications . 121

6.5 Discussion . 127

7 Conclusions & Outlook 131

List of Figures 133

List of Tables 135

List of Algorithms & Scripts 136

List of Notations 137

Bibliography 138

VII

Chapter 1
Introduction

From a mathematical point of view this thesis deals with the efficient solution of
large systems of ordinary

y′ = f(t, y)

and stochastic

dX = a(t,X) dt+ b(t,X) dW

differential equations with waveform-relaxation techniques in a restricted dis-
tributed setting, where communication between predefined subsystems is only
possible on an equidistant time grid. The size of the systems considered ranges
from small systems with less than 100 equations up to systems with 3.15 · 109

equations.

From a more workflow-inspired point of view this thesis evolved from work in
the Horizon 2020 FET Flagship Project “Human Brain Project” and deals with
the inclusion of new features in spiking neural network simulators. This task
ranges from the analysis of the already existing structures of these simulators to
the determination, development and analysis of suitable mathematical methods
for desired new features and their implementation into existing spiking neural
network simulator code. Most of the results of this thesis have already been
published in journal articles with a neuroscientific focus [72, 73, 74]. The corre-
sponding implementations of the algorithms are available as open source software
in the NEST simulator [14, 110, 145].

Parallel spiking neuronal network simulators distribute the neurons over the com-
putation nodes. The parallelization makes use of the fact that the dynamics of

1

1 Introduction

the neurons with chemical synapses is decoupled for the duration of the minimal
network delay dmin and thus can be solved independently for this duration. The
solver for the differential equations describing the single-neuron dynamics is spec-
ified on the single-neuron level and may be different for different cell types. The
MPI communication between compute nodes happens collectively for all neurons
on the node and only once for the duration of the minimal delay dmin. These
fundamental structural decisions are crucial for the performance of neuronal sim-
ulators and their scalability on supercomputers where communication is expensive
because it is associated with considerable latency.

In this thesis we aim to include two fundamental new features in these simulators:
electrical synapses, so-called gap junctions, and rate models, which describe neu-
rons or entire populations of neurons in terms of continuous variables, e.g. firing
rates. Creating a gap junction or a connection between two rate models causes a
coupling of the corresponding single-neuron dynamics at all time, resulting in one
inseparable larger system of differential equations which, in a realistic network
simulation, contains the dynamics of all or almost all neurons.

Although there are solvers which are specialized to the distributed solution of very
large systems of differential equations like PVODE [27] of the software package
SUNDIALS [90], they cannot be employed in the context of distributed neuronal
network simulations, due to the incompatible overall workflow: these solvers re-
ceive the entire system of differential equations as input and integrate the dy-
namics by some user specified numerical method. In the more common case of
an implicit numerical method, the resulting system of nonlinear algebraic equa-
tions is either solved by fixed-point iteration or by Newton iteration. The latter
requires the solution of a linear system of equations. The idea of parallelization is
to distribute the system of ODEs over the available computation nodes such that
each node is solving a contiguous subset of the system. This is achieved by cor-
respondingly distributing all vector operations (e.g. dot products, the calculation
of norms, and linear sums) over the computation nodes. Each node computes
the local part of each vector operation followed, if necessary, by a global MPI
reduce operation (see [27] for further details on CVODE). Thus, this software
conceptually uses one instance of the employed ODE solver and distributes its
vector computations across the computation nodes, which is an entirely different
approach from that employed in spiking neural network simulators.

We therefore develop problem-specific waveform-relaxation methods that enable
the solution of the entire systems of differential equations with an overall workflow
that is compatible with the restrictions of spiking neural network simulators.

The structure of this thesis can be outlined as follows: first in Chapter 2 we
present some basic material with the goal to make this thesis as self-contained as
possible. This includes a short introduction to the numerical solution of ordinary

2

and stochastic differential equations and a more detailed introduction on spiking
neural network simulators. Subsequently in Chapter 3, we introduce waveform-
relaxation methods for ordinary differential equations and develop a method suit-
able for the integration of gap junctions into spiking neural network simulators.
After a review of important previous results, we describe our method of choice
and analyze its convergence. In this chapter, we follow a purely mathematical
perception and provide descriptions in a universal manner. We do, however, of
course consider the restrictions of our application. Chapter 4 follows the same
logic but deals with waveform-relaxation methods for stochastic differential equa-
tions. Again, we first give an introduction to the corresponding field and then
develop a suitable method for the integration of rate models in spiking neural
network simulators. Afterwards, we derive important theorems which give in-
sight into the convergence of the method and its convergence speed. Chapters 5
and 6 then present our applications. Both chapters start with a neuroscientific
introduction motivating the new feature, followed by a detailed description of the
developed framework that enables their incorporation in the NEST simulator.
This includes practical details on the implementation of the waveform-relaxation
methods introduced in Chapters 3 and 4. Both chapters comprise an extensive
numerical results section, investigating the accuracy of the developed methods
and the performance of the framework. The chapters also include a description
of necessary changes to the user interface and a concluding discussion with neu-
roscientific focus. Finally, Chapter 7 discusses the results of this thesis from a
more general point of view and gives an outlook on possibly interesting follow-up
research.

3

Chapter 2
Review of basic material

This chapter gives an overview of basic material that is employed in the remain-
der of this thesis. First, we introduce ordinary differential equations (ODEs) and
stochastic differential equations (SDEs) along with some selected numerical meth-
ods. The introductions are mainly based on the textbooks [75, 176] in the ODE-
and [61, 103, 135] in the SDE-case and do not claim to be full introductions to
the corresponding fields, but rather explain our notation and specific aspects that
are used in the later developed methods.

Secondly, we turn to spiking neural network simulators, which are the main ap-
plication for the methods developed in this thesis. Based on [19], we explain their
general workflow and concepts. Then, we discuss a specific simulator, the NEST
simulator, in more detail. Again, we skip some details and features of the sim-
ulators that are not important in the context of this thesis. For further reading
on the NEST simulator, we refer to [147], which is also the main source for its
introduction in this chapter.

2.1 Ordinary differential equations

An ordinary differential equation in its most general form reads

dy(t)

dt
= y′(t) = f(t, y(t)). (2.1)

If (2.1) satisfies an initial condition y(t0) = y0 it is called an initial value problem.
From here on we consider systems of N ordinary differential equations

5

2 Review of basic material

y′(t) = f(t, y(t)) (2.2)

with initial condition y(t0) = y0. Here, y(t) = (y1(t), . . . , yi(t), . . . , yN(t))T de-
notes anN -dimensional vector and f : [t0, t0 + T]×RN → RN is anN -dimensional
function.

A function y represents a solution of this initial value problem if and only if

y(t) = y0 +

∫ t

t0

f(s, y(s)) ds. (2.3)

The Picard-Lindelöf theorem (see e.g. [75], their Chapter I.8) ensures the (local)
existence and uniqueness of the solution, under the assumption that the function
f is Lipschitz continuous with Lipschitz constant L, i.e. that f satisfies

‖ f(t, x)− f(t, y) ‖ ≤ L ‖x− y ‖ (2.4)

in some suitable norm for all t ≥ t0 and x, y ∈ RN .

2.1.1 Runge-Kutta methods

Most nonlinear ODEs cannot be solved analytically. We therefore rely on approx-
imate numerical schemes to obtain the solution of a given initial value problem.
We restrict our introduction to the class of Runge-Kutta methods.

Let ∆t denote the (for now fixed) step size, tk = t0 + k∆t the equidistant grid
points of the discretization for k = 0, . . . , n, and yk the approximation for y(tk)
obtained by some numerical method. Then, the class of Runge-Kutta methods
can be defined in the following way:

Definition 2.1. Let s be an integer and let A ∈ Rs×s, b ∈ Rs and c ∈ Rs contain
real coefficients. Then the method

y1 = y0 + ∆t
s∑
l=1

bl f(t∗1,l, y
∗
1,l) (2.5)

with

t∗1,q = t0 + cq∆t , q = 1, . . . , s

y∗1,q = y0 + ∆t
s∑
l=1

aql f(t∗1,l, y
∗
1,l) , q = 1, . . . , s

(2.6)

is called an s-stage Runge-Kutta method for the solution of (2.2).

6

2.1 Ordinary differential equations

The approximate solution for yn can therefore be determined by repeatedly ap-
plying (2.5), i.e.

yk+1 = yk + ∆t
s∑
l=1

bl f(t∗k+1,l, y
∗
k+1,l) (2.7)

for k = 0, . . . , n− 1.

Remark 2.2. A Runge-Kutta method is uniquely determined by its coefficients,
which can be written in a so-called Butcher-tableau

c A

bT

with c ∈ Rs, b ∈ Rs and A ∈ Rs×s. For explicit Runge-Kutta methods A is a
strictly lower triangular matrix and c1 = 0.

Definition 2.3. A Runge-Kutta method (2.5) has order p if for sufficiently
smooth problems (2.2), i.e. f ∈ Cp

‖y(t0 + ∆t)− y1‖ ≤ K∆t p+1 (2.8)

holds for some constant K.

Remark 2.4. For a p-order Runge-Kutta method

i) the Taylor series for the exact solution y(t0 + ∆t) and y1 coincide up to and
including the term ∆t p.

ii) the local discretization error

τ(∆t) =
y(t0 + ∆t)− y1

∆t
(2.9)

satisfies ‖τ(∆t)‖ = O(∆t p). Thus the method is consistent of order p.

iii) the global discretization error

en = y(tn)− yn (2.10)

satisfies ‖en‖ = O(∆t pmax), where ∆tmax = max(∆t1, . . . ,∆tn). Thus the
method is convergent of order p.

7

2 Review of basic material

In order to control the local error, we can employ an adaptive step size control.
Let ∆tk denote the step size in step k and tk = tk−1 + ∆tk the corresponding
grid point of the discretization for k = 1, . . . , n. Our goal is to choose ∆t1 (and
analogically all subsequent ∆tk) such that

| y(∆t1)
1,i − yi(t0 + ∆t1) | ≤ TOL (2.11)

holds for each component i = 1, . . . , N and some given error tolerance TOL.

If y
(∆t1)
1,i is computed with a Runge-Kutta method of order p, a second Runge-

Kutta method of order p + 1 can be used to obtain an estimator of order p + 1
for the error (2.11) of the former method.

Embedded schemes can be applied to keep the additional computational effort for
the estimator low. In this case, both methods only differ in the choice of the real
coefficients b1,. . ., bs. Table 2.1 gives the Butcher tableau of the Runge-Kutta-
Fehlberg 4(5) method, which will be employed at a later point in this thesis.

0
1
4

1
4

3
8

3
32

9
32

12
13

1932
2197

−7200
2197

7296
2197

1 439
216

−8 3680
513

− 845
4104

1
2
− 8

27
2 −3544

2565
1859
4104

−11
40

25
216

0 1408
2565

2197
4104

−1
5

0

16
135

0 6656
12825

28561
56430

− 9
50

2
55

Table 2.1: Runge-Kutta-Fehlberg 4(5) Butcher tableau of the Runge-Kutta-
Fehlberg 4(5) method.

2.2 Stochastic differential equations

Stochastic ordinary differential equations (SDEs) contain an additional random
component, often referred to as noise. This noise is described by a Wiener process,
also called Standard Brownian motion.

Definition 2.5. The Wiener process is a continuous stochastic process (W (t), t ≥
0) that satisfies

8

2.2 Stochastic differential equations

i) W (0) = 0 almost surely,

ii) W (t)−W (s) ∼ N (0, t− s) for all 0 ≤ s ≤ t, i.e. W (t)−W (s) is normally
distributed with mean 0 and variance t− s,

iii) W (t)−W (s) is independent of W (r)−W (q) for all 0 ≤ q < r < s < t, i.e.
W (t)−W (s) is independent of the past values.

Remark 2.6. The Wiener process can be interpreted as the definite integral∫ t

0

ξ(t′)dt′ = W (t) ,

of a Gaussian white noise ξ(t) with E [ξ(t)] = 0 and Cov [ξ(t), ξ(t′)] = δ(t − t′).
Here δ denotes the Dirac delta function. This is a paradox, as one can also show
that W (t) is not differentiable (see e.g. [61], their Chapter 3).

Again we consider initial value problems with initial condition X(t0) = X0. Note
that here X0 can also be a random number. X(t) is the solution of a (for now
one-dimensional) Itô-SDE if and only if it satisfies the corresponding stochastic
integral equation

X(t) = X0 +

∫ t

t0

a(s,X(s)) ds+

∫ t

t0

b(s,X(s)) dW (s) . (2.12)

Here the second integral is an Itô integral

∫ t

t0

Y (s) dW (s) := lim
n→∞

n∑
k=1

Yk−1 · (Wk −Wk−1)

with Yk = Y (t0 + k · t−t0
n

) and Wk = W (t0 + k · t−t0
n

). We obtain a different kind
of SDE, if the second integral is chosen as a Stratonovich integral, indicated by
the symbol ◦,

∫ t

t0

Y (s) ◦ dW (s) := lim
n→∞

n∑
k=1

Yk−1 + Yk
2

(Wk −Wk−1)

which approximates Y (s) with the mid-point rule. Then the corresponding SDE
is called a Stratonovich-SDE. In the case of additive noise (b(t,X(t)) = b(t))
the Itô and Stratonovich integrals coincide. Furthermore, if the noise is constant
(b(t,X(t)) = σ = const.) the integrals can be solved analytically

9

2 Review of basic material

∫ t

t0

σ dW (s) =

∫ t

t0

σ ◦ dW (s) = lim
n→∞

σ ·
n∑
k=1

(Wk −Wk−1) = σ · (W (t)−W (t0))

with W (t)−W (t0) ∼ N (0, t− t0). We refer to [103] and [61] for a derivation and
deeper discussion on the differences between the two types of stochastic integrals
and focus only on Itô-SDEs in the remainder of this thesis.

As opposed to the case of ODEs, the differential notation corresponding to (2.12)

dX(t) = a(t,X(t)) dt+ b(t,X(t)) dW (t) (2.13)

only denotes an informal way of expressing the integral equation. There is, how-
ever, another widely used differential notation, called the Langevin form of the
SDE, which is mostly employed in physics. It is motivated by the relation between
the Wiener process and a Gaussian white noise ξ(t) as described in Remark 2.6
and reads

dX(t)

dt
= a(t,X(t)) + b(t,X(t)) ξ(t) . (2.14)

As the value of ξ(t) at a certain point in time t cannot be defined as a real-valued
random variable we prefer the representations (2.12) and (2.13) and will use them
in the remainder of this thesis. It is, however, worth noticing that the stochastic
integral equation corresponding to (2.14),

X(t) = X0 +

∫ t

t0

a(s,X(s)) ds+

∫ t

t0

b(s,X(s)) ξ(s) ds

can be interpreted consistently with (2.12) as dW (t) ≡ ξ(t)dt.

From here on, we consider systems of N stochastic differential equations

dX(t) = a(t,X(t)) dt+ b(t,X(t)) dW (t) (2.15)

with initial condition X(t0) = X0. Here, X(t) = (X1(t), . . . , Xi(t), . . . , XN(t))T

and W (t) = (W1(t), . . . ,Wi(t), , . . . ,WN(t))T denote N -dimensional vectors and
a : [t0, t0 + T]× RN → RN and b : [t0, t0 + T]× RN → RN×N are N and N ×N -
dimensional functions respectively. W (t) is an N -dimensional Wiener process,
i.e., the components Wi(t) are independent and identically distributed.

The existence and uniqueness of the solution X(t) to (2.15) can be shown (see
e.g. [135], their Chapter 5) under the assumption that

10

2.2 Stochastic differential equations

i) the functions a and b are Lipschitz continuous, i.e. that

‖a(t, x)− a(t, y)‖ + ‖b(t, x)− b(t, y)‖ ≤ L ‖x− y‖

holds for some constant L and any t ≥ t0 and x, y ∈ RN ,

ii) the functions a and b satisfy a linear growth condition, such that

‖a(t, x)‖ + ‖b(t, x)‖ ≤ K (1 + ‖x‖)

for some constant K and any t ≥ t0 and x ∈ RN ,

iii) the initial value X0 is a random variable with finite variance defined on the
same probability space as W (t) , i.e.

E
[
‖X0‖2

]
<∞ .

2.2.1 Selected numerical methods

This section presents some basic numerical methods for SDEs that are employed
in the remainder of this thesis.

Let again ∆t denote the fixed step size, tk = t0 + k∆t the grid points of the
discretization for k = 0, . . . , n, and Xk the approximation for X(tk) obtained
by some numerical method, at which X0 is the given initial value. Then strong
convergence for numerical methods for SDEs can be defined in the following way:

Definition 2.7. A numerical method for SDEs is called strongly convergent of
order p if the expected value of the global discretization error

ε = E [|X(tn)−Xn|] (2.16)

satisfies ‖ε‖ = O(∆t pmax), with ∆tmax = max(∆t1, . . . ,∆tn).

2.2.1.1 Euler-Maruyama

The Euler-Maruyama method is a generalization of the Forward Euler method
for ODEs. It approximates the integrands in (2.12) with their left-sided values
accordingly.

Definition 2.8. The method

Xk+1 = Xk + a(tk, Xk) ·∆t+ b(tk, Xk) ·∆Wk (2.17)

with ∆Wk = W (tk+1) − W (tk) ∼ N (0,∆t) for k = 0, . . . , n − 1 is called the
Euler-Maruyama method for the solution of (2.13).

For general SDEs, the Euler-Maruyama method is strongly convergent with order
1/2. In the case of additive noise, it has strong convergence of order 1.

11

2 Review of basic material

2.2.1.2 Semi-implicit Euler

The semi-implicit Euler method is a generalization of the backward Euler method
for ODEs.

Definition 2.9. The method

Xk+1 = Xk + a(tk+1, Xk+1) ·∆t+ b(tk, Xk) ·∆Wk. (2.18)

is called the semi-implicit Euler method for the solution of (2.13).

This method requires the solution of a system of nonlinear algebraic equations
in every step. Basic techniques for the solution of the system are, e.g., Newton
iteration or fixed-point iteration [101]. The method is called semi-implicit because
the function b is still evaluated at (tk, Xk) instead of (tk+1, Xk+1). A fully implicit
Euler scheme for SDEs is not practical, which can be observed from the simple
one-dimensional test equation

dX(t) = aX(t) dt+ bX(t) dW (t)

A fully implicit Euler scheme would imply

Xn = X0 ·
n−1∏
k=1

1

1− a∆t− b∆Wk

Some of the factors of this expression may become infinite depending on the
specific realizations of ∆Wk. It can be shown that E(|Xn|) does not exist for this
method (see e.g. [103], their Chapter 9.8). Thus the term implicit Euler usually
refers to the semi-implicit method (2.18) and is used in the remainder of this
thesis.

The implicit Euler method is strongly convergent of order 1/2 in the case of
multiplicative noise and of order 1 for additive noise.

2.2.1.3 Exponential Euler

The exponential Euler method relies on the assumption that a(t,X(t)) consists
of a linear part and a nonlinear remainder, i.e.,

a(t,X(t)) = A ·X(t) + f(t,X(t))

12

2.2 Stochastic differential equations

with A ∈ RN×N . The idea is to solve the linear part exactly and to approximate
the integral of the nonlinear remainder and the Itô integral with an Euler-like
approach. Variation of constants for (2.15) yields

X(t) = eA(t−t0)X0 +

∫ t

t0

eA(t−s)f(s,X(s)) ds+

∫ t

t0

eA(t−s)b(s,X(s)) dW (s) .

There are several versions of stochastic exponential Euler methods that differ in
the approximation of the integrals. Unfortunately, a standardized nomenclature
to distinguish the methods is so far missing. The simplest approach, sometimes
named the stochastic Lawson-Euler scheme (e.g. in [106]), approximates the in-
tegrands with their left-sided values:

Xk+1 = eA∆tXk + eA∆tf(tk, Xk) ·∆t+ eA∆tb(tk, Xk) ·∆Wk .

More advanced schemes approximate the nonlinear part by keeping f(s,X(s))
constant for [t0, t) and solving the remaining integral analytically as

∫ t

t0

eA(t−s)f(s,X(s)) ds ≈
∫ t

t0

eA(t−s)f(t0, X(t0)) ds

= A−1(eA(t−t0) − I) · f(t0, X(t0)) .

Here I denotes the N ×N identity matrix. The same technique can be used for
the Itô integral

∫ t

t0

eA(t−s)b(s,X(s)) dW (s) ≈
∫ t

t0

eA(t−s)b(t0, X(t0)) dW (s) . (2.19)

For a single SDE, Shoji [171] proposed a method where the remaining integral∫ t
t0
ea(t−s) dW (s) with a ∈ R is approximated by

∫ t
t0
α dW (s), such that α ∈ R is

chosen to minimize the mean-square error. This results in a similar approximation
as for the nonlinear part. Komori and Burrage [106] adapted this approach for
systems of SDEs. The scheme reads

Xk+1 = eA∆tXk + A−1(eA∆t − I) · f(tk, Xk)

+
1

∆t
· A−1(eA∆t − I) · b(tk, Xk) ·∆Wk .

13

2 Review of basic material

Alternatively, calculating the variance of X(t) within the approximation (2.19),
amounts to

Var (X(t)) = b(t0, X(t0))2 ·Var

(∫ t

t0

eA(t−s) dW (s)

)
= b(t0, X(t0))2 · A−1

(
e2A(t−t0) − I

2

)
.

The corresponding method proposed by [3] can be defined in the following way:

Definition 2.10. The method

Xk+1 = eA∆tXk + A−1(eA∆t − I) · f(tk, Xk)

+

√
A−1

(
e2A∆t − I

2

)
· b(tk, Xk) · ηk

(2.20)

with ηk ∼ N (0, 1) is called the exponential Euler method for the solution of (2.13)
with partially linear a(t,X(t)) = A ·X(t) + f(t,X(t)).

In the remainder of this thesis we exclusively employ (2.20) and just refer to it as
the stochastic exponential Euler scheme. Numerical experiments in [3] indicate
that the method is strongly convergent of order 1/2 for SDEs with multiplicative
noise.

For more detailed reviews on the different stochastic exponential Euler methods
available, we refer to [3] and [106].

14

2.2 Stochastic differential equations

2.2.2 Stochastic delay differential equations

If the function a (or b) of a SDE is not only dependent on X(t), but also on the
values of the function X at previous times, i.e.

dX(t) = a (t,X(t), X(t− d1), . . . , X(t− dl)) dt+ b(t,X(t)) dW (t) (2.21)

with positive constants d1, . . . , dl, then the corresponding SDE is called stochastic
delay differential equation (SDDE). Let dmax = max(d1, . . . , dl) denote the longest
and dmin = min(d1, . . . , dl) the shortest delay. For SDDEs, the initial condition
needs to be defined on the entire interval [t0 − dmax, t0], i.e. X(t) = υ(t), t ∈
[t0 − dmax, t0], where υ : [t0 − dmax, t0]→ RN is an N -dimensional function.

The solution of SDDEs is usually obtained in a stepwise manner: with the initial
condition, we can calculate the solution on the interval [t0, t0 + dmin], which is
then needed to obtain the solution on the interval [t0 + dmin, t0 + 2 · dmin] and so
on.

The numerical schemes presented in Subsec. 2.2.1 can thus be analogously used
for SDDEs in this stepwise manner, as long as all delays di are multiples of the
fixed step size ∆t.

15

2 Review of basic material

2.3 Spiking neural network simulators

One strategy to describe networks of neurons in computational neuroscience is
by modeling them with a spiking neural network model. This approach is moti-
vated by the microscopic dynamics of individual neurons and is therefore called
a bottom-up approach. The idea is to model the individual neuron dynamics and
their interaction with each other. The individual neurons can be described as
hybrid systems :

dy

dt
= f(y(t)) (2.22)

y(t) ← gi(y(t)) upon spike from synapse i (2.23)

Here the state y of the neuron evolves continuously to some biophysical equations
(2.22) and a spike received by the neuron triggers a change in some state variable
yj (2.23). The neuron emits a spike if its membrane potential V satisfies some
threshold condition, e.g. V > θ. Typically the membrane potential is taken as
the first state variable, i.e. y1 = V .

The focus of spiking neural network simulators ranges from detailed neuron mor-
phology (NEURON : [29], GENESIS : [15]) to an abstraction of neurons without
spatial extent (NEST : [14], BRIAN : [68]). In this thesis we will focus on the
latter. In this case, the biophysical equations (2.22) of the individual neurons are
ODEs (or SODEs), only dependent on the time t. Due to the missing spatial
dimensions, the neurons in this setup are also called point neurons.

In networks of point neurons each chemical synapse has its own synaptic delay
dij, which depends on the emitting neuron i and the receiving neuron j. These
delays are the result of different biological processes which cannot be modeled
more accurately for point neurons, e.g. the time the postsynaptic potential needs
to travel from the synapse on a dendrite to the soma. Thus, a spike which is
emitted at time t1 in neuron i affects the connected neuron j at time t1 + dij.
In a network, the dynamics of all neurons is decoupled for the duration of the
minimal network delay dmin = minij(dij). Hence, the dynamics of each neuron can
be propagated independently for the duration dmin without requiring information
from other neurons.

Efficient simulators make use of the delayed and point-event like nature of the
spike interaction by distributing neurons across available processes and commu-
nicating spikes only after this period [129]. In the following subsection we explain
setup and implementation of a specific simulator, the NEST simulator, in more
detail.

16

2.3 Spiking neural network simulators

2.3.1 NEST - NEural Simulation Tool

We start our introduction of NEST by quoting the following short descriptive
summary of NEST from the simulator website www.nest-simulator.org:

“NEST is a simulator for spiking neural network models that focuses on the dy-
namics, size and structure of neural systems rather than on the exact morphology
of individual neurons. [...] NEST is ideal for networks of spiking neurons of any
size, for example:

• Models of information processing, e.g. in the visual or auditory cortex of
mammals,

• Models of network activity dynamics, e.g. laminar cortical networks or bal-
anced random networks,

• Models of learning and plasticity.”

The simulator is implemented in object-oriented C++ code and provides a Python
front-end, called PyNEST [51]. We will explain the functionality of NEST with
the help of an example, which is given as a PyNEST script in Script 2.1.

Script 2.1: Example network in the PyNEST syntax. The example
network consists of nine model neurons of type iaf neuron, a Poisson spike
generator and a voltmeter recording device. The script uses the syntax of
the PyNEST interface of the NEST simulator as of version 2.12.0 [110].

1 import nest

2
3 # set number of virutal processes

4 nest.SetKernelStatus ({’total_num_virtual_procs ’: 4})

5
6 # create spike generator , neurons and recording device

7 pg = nest.Create(’poisson_generator ’)

8 n = nest.Create(’iaf_neuron ’, 9)

9 vm = nest.Create(’voltmeter ’)

10
11 # define sources and targets

12 s = ([pg[0], pg[0], n[0], n[0], n[1], n[2], n[2], n[3],

13 n[4], n[5], n[5], n[6], n[7], n[8], vm[0]])

14 t = ([n[0], n[2], n[1], n[5], n[3], n[3], n[4], n[6],

15 n[7], n[4], n[7], n[8], n[8], n[5], n[8]])

16
17 # create connections

18 nest.Connect(s, t, ’one_to_one ’, ’static_synapse ’)

19
20 # start simulation

21 nest.Simulate (50.)

17

www.nest-simulator.org

2 Review of basic material

A network model in NEST consists of three basic elements: nodes, connections
and events, each of which is represented by an abstract base class. Neuron models
described by hybrid systems inherit from class Node and implement the state vec-
tor, the internal dynamics (2.22), and the responses to different types of events
(2.23). Other derived classes of base class Node include devices of any kind, such
as recording devices or spike generators. NEST distributes all nodes over the
available virtual processes. A virtual process is a thread that can arise either
from multithreading via OpenMP [137] or MPI parallelization [124]. The total
number of virtual processes NVP is the number of MPI processes times the num-
ber of OpenMP threads per MPI process and can be specified by the user as
demonstrated in line 4 of Script 2.1.

Each created node is assigned a unique integer gid that serves as a global iden-
tifier. The distribution of the nodes is done by a simple modulo operation: a
node with global identifier gid is assigned to the virtual process gid mod NVP.
Thus, the order in which nodes are created influences the load-balancing of the
simulator. Fig. 2.1 shows the nodes created for our example network along with
their global identifier and the number of the virtual process they are assigned to.

poisson generator

gid: 1
vp: -

iaf neuron

gid: 2
vp: 2

iaf neuron

gid: 3
vp: 3

iaf neuron

gid: 4
vp: 0

iaf neuron

gid: 5
vp: 1

iaf neuron

gid: 6
vp: 2

iaf neuron

gid: 7
vp: 3

iaf neuron

gid: 8
vp: 0

iaf neuron

gid: 9
vp: 1

iaf neuron

gid: 10
vp: 2

voltmeter

gid: 11
vp: -

c1

c2

c3

c4

c5

c6

c7 c8

c9

c10

c11 c12

c13

c14

c15

Figure 2.1: Nodes and connections of the example network as a directed graph.
The orange boxes indicate the created nodes. The corresponding white boxes show their
global identifier gid and the number of the virtual process they are assigned to in the
simulation of Script 2.1 with four virtual processes. Nodes with “vp: -” are created
for each virtual process. The edges ci indicate the connections between the nodes with
index according to the order in which they have been created.

18

2.3 Spiking neural network simulators

All virtual processes living on the same MPI process share the same memory.
Therefore, NEST creates a look-up table for each MPI process storing whether
a specific node is a local node, and thus stored on the memory belonging to this
MPI process, or a proxy node, and thus associated with another MPI process.
Assuming our example is executed with two MPI processes P1 = {vp0∪ vp2} and
P2 = {vp1 ∪ vp3}, then the nodes with gids 1, 2, 4, 6, 8, 10 and 11 are local nodes
on P1, while the nodes with gids 1, 3, 5, 7, 9 and 11 are local nodes on P2. The
nodes with gids 1 and 11 are local nodes to both MPI processes, as for devices,
which often write data to memory, an own instance of the node is created for each
virtual process.

Connections, which are the second basis element, inherit from the abstract base
class Connector. They are used to model synaptic connections between neurons
and to connect devices of any kind to neurons. All derived connection classes share
the same four basic characteristics: a sending and a receiving node, specified by
their gids, and a weight and a delay, specified by positive real numbers.

Each virtual process only stores the incoming connections of its local nodes. This
way, the memory requirements for the storage of the connections are kept on
the lowest possible level. Each class derived from Connector stores all connec-
tions of this type with local target nodes in a suitable data structure. We again
consider an execution of our example with two MPI processes. Then connec-
tions c1, c2, c7, c8, c10, c13 and c15 are known on P1 but unknown on P2, while the
opposite holds for the remaining connections.

The events, the third basic element, are used to transmit spikes and other point
events between connected nodes. Event classes are derived from the base class
Event and only contain the gid of the sending node and the time at which the
event occurred. Due to the massive amount of events, each virtual process first
collects all events of its local nodes for the duration of the minimal network delay
dmin and then communicates them all in one single MPI communication. For
the communication across MPI processes, NEST uses MPI Allgather; thus all
events are communicated to all MPI processes and are available at every virtual
process. After the communication, each virtual process goes through all events
and checks if the events are associated with connections that have local target
nodes. If this is the case, the time at which the event occurred is sent to the
receiving neuron along with the weight and the delay of the connection. This
way, the number of communications is kept to a very low level. As the amount
of communicated data per spike is very low, the buffer sizes of the collective
many-to-many communications are still negligible.

The actual implementation of the look-up table, the data structures to store the
connections, and the communication of events is an active field of research and
has been improved several times over the last years. The implementation of the

19

2 Review of basic material

4th generation NEST kernel, which was the foundation for the work on NEST
in this thesis, is described in [112] (for the very recently released 5th generation
NEST kernel see [96]).

Another important concept of NEST is that all times are restricted to a time
grid with fixed step size h. This means that every spike time and all information
on the current state of a node is restricted to this grid, and that every delay of
a synaptic connection has to be a multiple of h. Fig. 2.2 shows the progress of
NEST over one interval of duration dmin, the minimal network delay, from the
single neuron perspective.

time

dmin

h communication
of spike events

× ××××× × × ×

threshold

Figure 2.2: Time course of the membrane potential of a single neuron during
one dmin-interval. Black dots mark the values of the membrane potential at the
grid points. The red dot indicates the point in time where the spike triggered by the
threshold crossing is registered. The enlarged rectangle shows the gray marked internal
grid points used by the model specific numerical method solving the neuron dynamics.

A numerical method solving the single neuron dynamics (2.22) is thus required
to produce approximations of the state of the neuron at each grid point. This
does, however, still allow the use of a method with adaptive step size within one
interval of duration h. The state of the neuron at those additional evaluation
points within the interval cannot, however, be recorded by any NEST device.

20

Chapter 3
Waveform-relaxation methods for ODEs

The term waveform-relaxation methods describes a set of iterative methods to
solve systems of ordinary differential equations by dividing them into subsystems.
The name and the concept were first introduced in the early 1980s by Lelarasmee,
who employed a method of this kind for the simulation of large scale electric
circuits [113, 114]. For any given initial value problem y′(t) = f(t, y(t)) with
initial value y(t0) = y0, the basic idea is to divide the ODE-system into v ≤ N
preferably weakly coupled subsystems

y′i(t) = fi(t, y1(t), . . . , yv(t)) i = 1, . . . , v (3.1)

and to solve each subsystem independently by treating the influence of the other
subsystems as given input. For v < N the resulting method is called a block
method.

Starting with an initial guess y
(0)
i (t) for the solution of each subsystem over the

entire iteration interval [t0, t0 + T], the solution of the original ODE-system is
determined by iteratively solving the independent subsystems, where for the i-th
subsystem y1(t), ..., yi−1(t), yi+1(t), ..., yv(t) is based on previously obtained solu-
tions from the current or any of the previous iterations and hence acts as a given
input to the i-th system. In order to fulfill the initial value condition, the initial
guess y

(0)
i (t) is usually chosen to be constant as y

(0)
i (t) = y0 for all t ∈ [t0, t0 + T].

Two prominent examples of waveform-relaxation methods are

i) the (block) Jacobi waveform-relaxation method

y′i
(m)

(t) = fi(t, y
(m−1)
1 (t), ..., y

(m−1)
i−1 (t), y

(m)
i (t), y

(m−1)
i+1 (t), ..., y(m−1)

v (t)) (3.2)

21

3 Waveform-relaxation methods for ODEs

with i = 1, . . . , v, where the input for the m-th iteration is completely based
on the solutions of the (m− 1)-th iteration. For each iteration this strategy
enables parallel processing of all subsystems and is hence well-suited for
distributed simulations.

ii) the (block) Gauss-Seidel waveform-relaxation method

y′i
(m)

(t) = fi(t, y
(m)
1 (t), ..., y

(m)
i−1(t), y

(m)
i (t), y

(m−1)
i+1 (t), ..., y(m−1)

v (t)) (3.3)

with i = 1, . . . , v, where the input of subsystem i is taken from the cur-
rent iteration for all systems j < i and from the previous iteration for the
remaining subsystems. Compared to the Jacobi version, this strategy is ex-
pected to speed up the convergence, but comes at the price of less potential
for parallel processing.

Waveform-relaxation methods can be seen as an extension of the Picard-Lindelöf
iteration

y′
(m)

(t) = f(t, y(m−1)(t)) (3.4)

which plays an important part in the proof of the Picard-Lindelöf theorem (see
Sec. 2.1) and was first mentioned almost one century before the first waveform-
relaxation methods were developed [115]. Therefore some works, e.g. [131, 132],
also refer to waveform-relaxation methods as the (generalized) Picard-Lindelöf it-
eration. Another quite commonly used term is dynamic iteration, e.g. in [11, 12].
This name explores the common ground between waveform-relaxation methods for
linear ODEs and iterative methods for the solution of linear systems of algebraic
equations (e.g. the Jacobi or Gauss-Seidel method), which in this view can be
seen as the static iteration counterpart. Due to their setup, waveform-relaxation
methods are particularly interesting for parallel simulations of large-scale prob-
lems. In the class of parallelizable methods, they can be classified as parallel
across the system (see [26] for a review of parallelizable methods for ODEs).

Waveform-relaxation methods for ODEs and their convergence have been studied
by various authors (for a quite extensive list see the introduction of [54]). In
general one can distinguish between studies of continuous and discrete waveform-
relaxation methods. The former investigate the application of the waveform-
relaxation method directly to the continuous problem. The corresponding results
are mostly of theoretical interest, as for most ODEs the solution cannot be ob-
tained analytically. Therefore the solutions y(m)(t) are not available in continuous
times but only at discrete grid points, depending on the used numerical method.

22

3.1 Literature review

The latter studies, therefore, first apply some numerical method to the continu-
ous formulation of the problem and investigate the convergence and behavior of
the resulting waveform-relaxation method in comparison with the solution of the
applied numerical scheme without the use of the waveform-relaxation technique.

In both cases, a formulation of the method with a so-called splitting function
allows the simultaneous analysis of different waveform-relaxation methods. One
considers the problem

y′
(m)

(t) = F (t, y(m)(t), y(m−1)(t)) (3.5)

where F : [t0, t0 + T] × RN × RN → RN denotes the splitting function which
fulfills

F (t, y, y) = f(t, y) ∀t ∈ [t0, t0 + T] and ∀y ∈ RN . (3.6)

The choice F (t, y, z) = f(t, z) yields the Picard-Lindelöf iteration (3.4), while
Fi(t, y, z) = fi(t, z1, ..., zi−1, yi, zi+1, ..., zv) results in the block Jacobi (v < N) or
Jacobi (v = N) waveform-relaxation method (3.2). The universal formulation
also includes non-standard waveform-relaxation methods where a particular part
of a function f containing yi(t) is evaluated with information from the current
iteration, and the remaining part is evaluated with information from the previous
iteration. For example, for the one-dimensional problem f(t, y) = y2 the splitting
function F (t, y, z) = 0.7y2 + 0.3z2 defines such a non-standard method.

In the following section we summarize the most important results from literature
with respect to our application. Later, we develop our own method suitable for
the inclusion of gap junctions in a spiking neural network simulator and analyze
its convergence using already existing theorems from Bellen and Zerrano [10].

3.1 Literature review

For the continuous waveform-relaxation method we restrict our review to a the-
orem that has been stated by many authors (e.g. in [10, 12, 26, 95, 131]) and
ensures the superlinear convergence of the method (3.5).

Theorem 3.1. Let the splitting function F satisfy

‖F (t, x, y)− F (t, x̂, y)‖2 ≤ K1‖x− x̂‖2 ∀x, x̂, y ∈ RN , t ≥ t0

‖F (t, x, y)− F (t, x, ŷ)‖2 ≤ K2‖y − ŷ‖2 ∀x, y, ŷ ∈ RN , t ≥ t0

23

3 Waveform-relaxation methods for ODEs

for some constants K1 and K2. Then the sequence y(m)(t), m = 0, 1, . . . produced
by the waveform-relaxation method (3.5) converges superlinearly to the solution
y(t) of the corresponding initial value problem, such that

sup
t0≤t≤t0+T

‖y(m)(t)− y(t)‖2 ≤ eK1T (K2T)m

m!
sup

t0≤t≤t0+T
‖y(0)(t)− y(t)‖2 . (3.7)

Proof. A general proof is included in [12] (see the proof of their Theorem 1.1).
A proof for autonomous linear ODEs using an integral operator can be found in
[131].

Remark 3.2. The former condition on F in Theorem 3.1 can be relaxed to a
one-sided Lipschitz condition

(x− x̂)T (F (t, x, y)− F (t, x̂, y)) ≤ K1‖x− x̂‖2 ∀x, x̂, y ∈ RN , t ≥ t0

which for some functions F allows for a negative constant K1. This can signifi-
cantly improve the error estimate.

For discrete waveform-relaxation methods the situation is more varied. First, the
choice of the numerical method varies from study to study. While an early study
by Nevanlinna [132] assumes a discretization with a linear multistep method, most
authors use some kind of Runge-Kutta method for the discretization [9, 10, 95,
160]. Secondly in most studies the investigated systems of ODEs have specific
properties that allow for new results. For example Bellen et al. [9] investigate sys-
tems that are dissipative in the maximum norm, Sand and Burrage [160] present
an (in principle) universal method that is, however, only tested for linear systems
with a tridiagonal matrix structure and in’t Hout [95] analyzes the convergence
for systems of stiff nonlinear ODEs.

Here, we restrict our review to studies that apply Runge-Kutta methods and do
not pose any strong restrictions on the structure of the initial value problem.
First, we state a basic theorem about the convergence of the discrete waveform
relaxation using explicit Runge-Kutta methods formulated by, e.g., Bjørhus [12].

Theorem 3.3. Let y
(m)
k denote the approximate solution produced by the m-th

iteration of the waveform-relaxation method that discretizes the continuous prob-
lem (3.5) with an explicit s-stage Runge-Kutta method (2.5) and let yk denote the
result of the same Runge-Kutta method applied to the corresponding initial value
problem. Furthermore let F satisfy

‖F (t, x, y)− F (t, x̂, y)‖2 ≤ K1‖x− x̂‖2 ∀x, x̂, y ∈ RN , t ≥ t0

‖F (t, x, y)− F (t, x, ŷ)‖2 ≤ K2‖y − ŷ‖2 ∀x, y, ŷ ∈ RN , t ≥ t0

24

3.1 Literature review

for some constants K1 and K2. Then the solution of the waveform-relaxation
method with T = n · ∆t converges to the solution of the original Runge-Kutta
scheme within s · n iterations such that for all m ≥ sn

y
(m)
k = yk ∀k = 0, . . . , n . (3.8)

Proof. See [12] for the main arguments.

Secondly, we turn to Bellen and Zerrano [10], who investigate the convergence of
the discrete waveform-relaxation method using continuous Runge-Kutta methods.
They considered the waveform-relaxation method

ỹ(m)(tk+1) = ỹ(m)(tk)

+ ∆tk+1

s∑
l=1

bl F̃
(
t∗k+1,l, y

∗(m)
k+1,l, ỹ

(m)(t∗k+1,l), ỹ
(m−1)(t∗k+1,l)

) (3.9)

with

y
∗(m)
k+1,q = ỹ(m)(tk) + ∆tk+1

s∑
l=1

aql F̃
(
t∗k+1,l, y

∗(m)
k+1,l, ỹ

(m)(t∗k+1,l), ỹ
(m−1)(t∗k+1,l)

)

for q = 1, . . . , s. Here, ỹ(m)(t) denotes the continuous approximation in the m-th
iteration. Its values at the grid points t1, . . . , tn are determined by scheme (3.9),
while the values ỹ(m)(tk + θ∆tk+1) at intermediate points in time (θ ∈ (0, 1))
are interpolated by some kind of interpolation scheme. The extended splitting
function F̃ is assumed to satisfy

F̃ (t, y, y, z) = F (t, y, z) ∀t ∈ [t0, t0 + T] and ∀y, z ∈ RN . (3.10)

Bellen and Zerrano consider the particularly interesting case where different sub-
systems use different grid points t

(m)
1,i , . . . , t

(m)
n(i,m),i

which also change while iterating,

thus they investigate a use of the method with an adaptive step size control and
individual handling of different subsystems. They show that there exists a step
size ∆t∗ such that (3.9) converges to some limit function ỹ(t), provided that

i) F̃ satisfies the Lipschitz conditions

‖F̃ (t, x, y, z)− F̃ (t, x̂, y, z)‖2 ≤ K1‖x− x̂‖2 ∀x, x̂, y, z ∈ RN , t ≥ t0

‖F̃ (t, x, y, z)− F̃ (t, x, ŷ, z)‖2 ≤ K2‖y − ŷ‖2 ∀x, y, ŷ, z ∈ RN , t ≥ t0

‖F̃ (t, x, y, z)− F̃ (t, x, y, ẑ)‖2 ≤ K3‖z − ẑ‖2 ∀x, y, z, ẑ ∈ RN , t ≥ t0

for some constants K1, K2, K3,

25

3 Waveform-relaxation methods for ODEs

ii) the employed interpolation scheme is included in a very general class of
interpolation schemes (see [10], their equation (2.14)) that amongst others
includes Lagrange and Hermite interpolation,

iii) the time meshes satisfy max
k,i,m

∆t
(m)
k,i ≤ ∆t∗ and some other basic assump-

tions, which are expected to be met by any reasonable step size control
mechanism (see [10], their assumptions 2.4 and 2.5 and equation (2.18)).

In addition, they state the following theorem regarding the so-called limit method
that generates the limit function ỹ(t):

Theorem 3.4. If the Runge-Kutta method employed in (3.9) has order p, the
(uniform) order of the interpolation procedure is q ≥ p − 1 and the waveform-
relaxation method (3.9) is convergent, then the limit method which generates the
limit function ỹ(t) is of order min(p, q).

Proof. See [10] for the outline of the proof.

Remark 3.5. The limit method of scheme (3.9) is no longer a classical Runge-
Kutta method. In [9] Bellen et al. investigate several limit methods that arise
from discrete waveform-relaxation methods with Runge-Kutta methods and show
that this type of implementation can in general improve the stability properties
of the underlying Runge-Kutta methods.

3.2 An ODE-waveform-relaxation method suitable
for spiking neural network simulators

With the knowledge of the above stated results in mind, we now describe the
restrictions and requirements of our application and derive and analyze a suitable
waveform-relaxation method.

3.2.1 Restrictions and requirements

In our application we consider systems of N ordinary differential equations that
are arranged in many small homogeneous subsystems

y′i(t) = fi(t, y1(t), . . . , yv(t)) i = 1, . . . , v (3.11)

which are weakly coupled to each other. Each subsystem contains a couple of com-
ponents, only one of which contributes to the solution of the other subsystems.

26

3.2 An ODE-waveform-relaxation method suitable for spiking neural network
simulators

The number of subsystems v can be assumed to be of order N/10. The subsystems
are distributed over all available compute nodes and expected to be solved simul-
taneously with an explicit method. Communication between the subsystems is
only permitted on an equidistant time grid with step size h, but desired to occur
only in larger intervals of length dmin. We are thus able to apply a waveform-
relaxation method successively on several intervals of length T = h or T = dmin.
Depending on the current state y the subsystems (3.11) constitute stiff problems.
The stiff behavior is, however, only observed in small time intervals.

3.2.2 The method

Because of the stiff behavior in small time intervals we decide against an ex-
plicit Runge-Kutta method with fixed step size h and instead follow the idea of
Bellen and Zerrano, employing an explicit Runge-Kutta method with adaptive
step size control to advance the state of the subsystems. In a distributed setting
where communication is only permitted on a fixed time grid with step size h,
the communication of interpolations between grid points t

(m)
1,i , . . . , t

(m)
n(i,m),i

is nei-

ther reasonable, due to the massive amount of communicated data, nor possible,
due to the restrictions on the communication points. We therefore create our
own method, which uses Hermite interpolation between potential communication
points. In order to make our interpolation scheme possible we force the adaptive
step size control to include the time points t0 +uh, u = 0, . . . , dmin

h
. Thus for each

u, there exists some index k such that t
(m)
k,i = t0 + uh. We denote this particular

index by ku. Due to the requirement of a parallel simulation, we choose a block
Jacobi waveform-relaxation method. The final method reads

y
(m)
k+1,i = y

(m)
k,i + ∆t

(m)
k+1

s∑
l=1

bl fi

(
t
∗(m)
k+1,i,l, ỹ

(m−1)
1 (t

∗(m)
k+1,i,l), . . . , ỹ

(m−1)
i−1 (t

∗(m)
k+1,i,l),

y
∗(m)
k+1,i,l, ỹ

(m−1)
i+1 (t

∗(m)
k+1,i,l), . . . , ỹ

(m−1)
v (t

∗(m)
k+1,i,l)

)
(3.12)

with

y
∗(m)
k+1,i,q = y

(m)
k,i + ∆t

(m)
k+1

q−1∑
l=1

aql fi

(
t
∗(m)
k+1,i,l, ỹ

(m−1)
1 (t

∗(m)
k+1,i,l), . . . , ỹ

(m−1)
i−1 (t

∗(m)
k+1,i,l),

y
∗(m)
k+1,i,l, ỹ

(m−1)
i+1 (t

∗(m)
k+1,i,l), . . . , ỹ

(m−1)
v (t

∗(m)
k+1,i,l)

)
for q = 1, . . . , s and

ỹ
(m)
i (t0 + (u+ θ)h) = y

(m)
ku,i
· p1(θ) + y

(m)
ku+1,i

· p2(θ) + hf(t0 + uh, y
(m)
ku,i

) · p3(θ)

+ hf(t0 + (u+ 1)h, y
(m)
ku+1,i

) · p4(θ) (3.13)

27

3 Waveform-relaxation methods for ODEs

for u = 0, . . . , dmin

h
− 1 and θ ∈ (0, 1). Here p1, p2, p3 and p4 are the Hermite basic

polynomials, which read

p1(θ) = 1− 3θ2 + 2θ3, p2(θ) = 3θ2 − 2θ3,

p3(θ) = θ − 2θ2 + θ3, p4(θ) = −θ2 + θ3.

Remark 3.6. In comparison to (3.9) the continuous approximation ỹ
(m)
i of our

method (3.12) discards the information of all grid points between y
(m)
ku,i

and y
(m)
ku+1,i

.
This discarded information is, however, used beforehand for the computation of
y

(m)
ku,i

and y
(m)
ku+1,i

. Therefore, the continuous approximation ỹ
(m)
i is more accurate

than one obtained from a Hermite interpolation of a method with fixed step size
h. This is due to the more reliable approximation of the exact solution at the
grid points.

In Chapter 5, we employ method (3.12) with the Runge-Kutta-Fehlberg 4(5)
method (see Table 2.1). We investigate the convergence of the method in the
next section.

3.2.3 Convergence analysis

For convergence analysis, we make use of the fact that our method is closely
related to (3.9). We argue why particular conclusions about the method from
Bellen and Zerrano are also valid for our method (3.12), instead of repeating
their technical and not very illustrative proof. First, we notice that our block
Jacobi waveform-relaxation method, specified with the original function f , is
included in the more general formulation with a splitting function F and that
our time grids also satisfy the conditions formulated by Bellen and Zerrano, as
they arise from a standard step size control mechanism. If we assume the same
Lipschitz conditions for F (and thus for f), the only difference is located in the
interpolation scheme. Although Hermite interpolation is also included in the
class of interpolations considered by Bellen and Zerrano, their scheme ensures
that ỹi

(m)(tk,i + ∆tk+1,i) = y
(m)
k+1,i holds for each k = 1, . . . , n. In our scheme, on

the other hand, it only holds that ỹ
(m)
i (t0 + uh) = y

(m)
ku,i

for each u = 1, . . . , dmin

h
.

The proof of the convergence of method (3.9) to some limit function ỹ for suffi-
cient small ∆t∗ (see [10], proof of their Theorem 2.2) is based on the contraction
principle. The idea is to show that the sequence of mappings

ỹ(m) = Φ(m)(ỹ(m−1)), m > 0, ỹ(0) given,

28

3.2 An ODE-waveform-relaxation method suitable for spiking neural network
simulators

is contractive on the space S of all continuous functions φ(t) of [t0, t0 + T] such
that φ(t0) = y0. In order to show that

‖ã(m) − b̃(m)‖
!
< ‖ã(m−1) − b̃(m−1)‖

with ã(m−1), b̃(m−1) ∈ S holds for some suitable norm, one needs to find an esti-
mate for the difference ã(m) − b̃(m) dependent on ∆t∗. It is obvious that for our
method, this difference can be bounded in the same manner, except that the es-
timate depends on h instead of ∆t∗. The remaining proof can then be performed
completely analogously. We thus conclude that our method also converges to
some limit function ỹ if conditions i) and iii) from Sec. 3.1 are satisfied and h is
sufficiently small.

The limit method which generates the limit function ỹ is defined by the iteration
process and is described by (3.13) with the iteration index suppressed, i.e.

ỹi(t0 + (u+ θ)h) = yku,i · p1(θ) + yku+1,i · p2(θ) + hf(t0 + uh, yku,i) · p3(θ)

+ hf(t0 + (u+ 1)h, yku+1,i) · p4(θ) (3.14)

for u = 0, . . . , dmin

h
− 1 and θ ∈ (0, 1). Here the yku,i are the values obtained with

the underlying Runge-Kutta-method on the limit mesh

yk+1,i = yk,i + ∆tk+1

s∑
l=1

bl fi
(
t∗k+1,i,l, ỹ1(t∗k+1,i,l), . . . , ỹi−1(t∗k+1,i,l),

y∗k+1,i,l, ỹi+1(t∗k+1,i,l), . . . , ỹv(t
∗
k+1,i,l)

) (3.15)

where

y∗k+1,i,q = yk,i + ∆tk+1

q−1∑
l=1

aql fi
(
t∗k+1,i,l, ỹ1(t∗k+1,i,l), . . . , ỹi−1(t∗k+1,i,l),

y∗k+1,i,l, ỹi+1(t∗k+1,i,l), . . . , ỹv(t
∗
k+1,i,l)

)
for q = 1, . . . , s.

Note that this is an implicit method across the intervals [t0 + uh, t0 + (u+ 1)h],
as all intermediate values between time points tku,i and tku+1,i

are dependent of

yku+1,i for all u = 0, . . . , dmin

h
− 1.

It seems reasonable to expect that, if the underlying Runge-Kutta-method is of
order p and the waveform-relaxation method is convergent, the error of ỹ with
respect to the exact solution satisfies

‖y(t)− ỹ(t)‖ = O(h4) +O(∆t∗p) ∀t ∈ [t0, t0 + T] . (3.16)

This assumption will be investigated in the numerical tests in Sec. 5.4.

29

Chapter 4
Waveform-relaxation methods for SDEs

Recently, researchers have started to investigate waveform-relaxation methods for
stochastic differential equations. The main challenge of the extension to SDEs is
to determine the influence of the additional stochastic part on the convergence
of the well-established waveform-relaxation methods for ODEs. In addition, the
stochastic part renders advanced approaches using interpolation (see, e.g. our
method from Subsec. 3.2.2) infeasible: as the numerical solution of each time
step involves a random number whose distribution depends on the step size ∆t of
the employed numerical method, waveform-relaxation methods for SDEs are only
possible with a fixed step size. Maybe this is why, to our knowledge, there are so
far very few publications on waveform relaxation for SDEs [53, 54, 55, 167].

Schurz and Schneider [167] derive sufficient conditions for the linear Lp conver-
gence of the continuous waveform-relaxation methods for SDEs in a particular
Banach space. Fan [54] presents a convergence proof for the continuous waveform-
relaxation method for SDDEs and also proves the superlinear convergence of the
method for a splitting function where the entire delayed part is taken from the pre-
vious iteration. The same author also investigates the convergence of the discrete
waveform-relaxation method for SDDEs using a class of methods called semi-
implicit Euler methods, which include the Euler-Maruyama and implicit Euler
method [53].

In the following section we summarize the most important results with respect to
our application. We then develop our own method suitable for usage in a spiking
neural network simulator and analyze its convergence.

31

4 Waveform-relaxation methods for SDEs

4.1 Literature review

In this section we state two theorems from the publications [53, 54] by Zhencheng
Fan. The author considers stochastic delay differential equations with a fixed
delay d > 0 and t0 = 0 on a complete probability space (Ω,F , {Ft}t≥t0 , P) with
a filtration {Ft}t≥t0 :

dX(t) = a (t,X(t), X(t− d)) dt+ b(t,X(t), X(t− d)) dW (t), t ∈ (0, T]

X(t) = υ(t), t ∈ [−d, 0]
(4.1)

where υ ∈ LpF0

(
[−d, 0] ;RN

)
holds for the initial function υ = {υ(t) : −d ≤

t ≤ 0}. Here, LpF0

(
[−d, 0] ;RN

)
denotes the family of

(
F0,B

(
C
(
[−d, 0] ,RN

)))
-

measurable C
(
[−d, 0] ,RN

)
-valued random variables ξ = {ξ(t) : −d ≤ t ≤ 0}

such that

E
[

sup
−d≤θ≤0

‖ξ(θ)‖p2
]
<∞ . (4.2)

C
(
[−d, 0] ,RN

)
is the family of continuous functions from [−d, 0] to RN and

B
(
C
(
[−d, 0] ,RN

))
denotes the Borel σ-algebra of C.

For the continuous waveform-relaxation method,

dX(t)(m) = A
(
t,X(t)(m), X(t)(m−1), X(t− d)(m−1)

)
dt

+B
(
t,X(t)(m), X(t)(m−1), X(t− d)(m−1)

)
dW (t), t ∈ (0, T]

X(m)(t) = υ(t), t ∈ [−d, 0]

(4.3)

where the splitting functions A and B fulfill

A (t,X(t), X(t), X(t− d)) = a (t,X(t), X(t− d))

B (t,X(t), X(t), X(t− d)) = b (t,X(t), X(t− d))

for all t ∈ [0, T] and for all X ∈ RN . Fan shows the superlinear convergence of
the method in the following theorem:

32

4.1 Literature review

Theorem 4.1. Let the splitting functions A and B satisfy

(x− x̂)T (A(t, x, y, z)− A(t, x̂, y, z)) ≤ K1‖x− x̂‖2
2

‖A(t, x, y, z)− A(t, x, ŷ, ẑ)‖2
2 ≤ K2‖y − ŷ‖2

2 +K3‖z − ẑ‖2
2

‖B(t, x, y, z)−B(t, x̂, ŷ, ẑ)‖2
2 ≤ K4‖x− x̂‖2

2 +K5‖y − ŷ‖2
2 +K6‖z − ẑ‖2

2

for some constants K1, . . . , K6 and any t ≥ 0, x, x̂, y, ŷ, z, ẑ ∈ RN . Additionally
assume that υ ∈ L2

F0
, i.e. p = 2 in (4.1). Then the sequence X(m)(t), m = 0, 1, . . .

produced by the waveform-relaxation method (4.3) converges superlinearly to the
solution X(t) of (4.1), such that

sup
0≤s≤t

E
[
‖X(m)(s)−X(s)‖2

2

]
≤ et(2K1+K4+1) t

m

m!
(K2 +K3 +K5 +K6)m max

0≤s≤t
E
[
‖X(0)(s)−X(s)‖2

2

]
(4.4)

holds for every t ∈ [0, T]

Proof. For the proof we refer to [54] (see the proof of their Theorem 3.1).

Furthermore, Fan studies the convergence of the following discrete waveform-
relaxation method that arises from the solution of (4.1) with the semi-implicit
Euler method:

X
(m)
k+1 = X

(m)
k + θÃ

(
tk+1, X

(m)
k+1, X

(m−1)
k+1 , X

(m)

k− d
∆t

+1
, X

(m−1)

k− d
∆t

+1

)
·∆t

+ (1− θ)Ã
(
tk, X

(m)
k , X

(m−1)
k , X

(m)

k− d
∆t

, X
(m−1)

k− d
∆t

)
·∆t

+ B̃
(
tk, X

(m)
k , X

(m−1)
k , X

(m)

k− d
∆t

, X
(m−1)

k− d
∆t

)
·∆Wk

X
(m)
l = υ(l∆t), l = − d

∆t
,
d

∆t
+ 1, . . . , 0 .

(4.5)

The method requires 0 ≤ θ ≤ 1 and obviously results in the implicit Euler method
for θ = 1 and the Euler-Maruyama method for θ = 0. Ã and B̃ denote the splitting
functions which this time fulfill

Ã (t,X(t), X(t), X(t− d), X(t− d)) = a (t,X(t), X(t− d))

B̃ (t,X(t), X(t), X(t− d), X(t− d)) = b (t,X(t), X(t− d))

for all t ∈ [0, T] and for all X ∈ RN . Regarding the convergence of the method
(4.5) Fan provides the following theorem:

33

4 Waveform-relaxation methods for SDEs

Theorem 4.2. Let X
(m)
k denote the approximate solution produced by the m-th

iteration of the waveform-relaxation method (4.5) and let Xk denote the solution
of the non-iterative standard semi-implicit Euler scheme. Furthermore let the
splitting functions Ã and B̃ satisfy

‖Ã(t, w, x, y, z)− Ã(t, ŵ,x̂, ŷ, ẑ)‖2
2

≤K
(
‖w − ŵ‖2

2 + ‖x− x̂‖2
2 + ‖y − ŷ‖2

2 + ‖z − ẑ‖2
2

)
and

‖B̃(t, w, x, y, z)− B̃(t, ŵ,x̂, ŷ, ẑ)‖2
2

≤K
(
‖w − ŵ‖2

2 + ‖x− x̂‖2
2 + ‖y − ŷ‖2

2 + ‖z − ẑ‖2
2

)
for some constant K and any t ≥ 0, w, ŵ, x, x̂, y, ŷ, z, ẑ ∈ RN . Additionally
assume that υ ∈ L1

F0
, i.e. p = 1 in (4.1). Then the solution of the waveform-

relaxation method with ∆t = T /n converges to the solution of the original scheme
in the limit of ∆t→ 0 and m→∞, i.e.

lim
m→∞
n→∞

max
0≤k≤n

E
[
‖X(m)

k −Xk‖2
2

]
= 0 (4.6)

Proof. For the proof we refer to [53] (see the proof of their Theorem 2.1).

4.2 A SDE-waveform-relaxation method suitable for
spiking neural network simulators

With the knowledge of the above stated results in mind, we now once again
describe the restrictions and requirements of our application, and derive and
analyze a suitable waveform-relaxation method.

4.2.1 Restrictions and requirements

In our application we consider systems of N stochastic delay differential equations

dX(t) = [−A ·X(t) + f(t,X(t), X(t− d1), . . . , X(t− dl))] dt+ b(t) dW (t) (4.7)

where A = diag(a1, . . . , aN) ∈ RN×N is a matrix with positive real coefficients
ai on the diagonal and zeros everywhere else. Thus, each equation contains a

34

4.2 A SDE-waveform-relaxation method suitable for spiking neural network
simulators

self-dependent linear part, a nonlinear remainder with additional delayed cou-
pling, with delays d1, . . . , dl ≥ 0, and additive noise, independent of X(t). We
are interested in a distributed simulation where each equation can be solved si-
multaneously. For our application the length of the iteration interval T of the
waveform-relaxation method is, by design, less than or equal to the shortest of
the involved delays di. Thus, the delayed terms X(t − di) are the same in each
iteration of the waveform-relaxation method.

We employ the waveform-relaxation method successively on several intervals of
length T . Thus, beginning at t0 + dmax the initial function υ(t) for the cur-
rent interval is given by the results from previous intervals. At the start of the
simulation, υ(t) is zero on the interval [t0 − dmax, t0) for technical reasons and
υ(t0) = X0.

4.2.2 The method

For the sake of readability we assume from now on that all ai are equal and denote
them by a. It is easy to see that the following statements also hold for distinct
ai. Due to the requirement of a fully parallel simulation (v = N) we employ a
Jacobi waveform relaxation

dX(t)(m) =
[
−aI ·X(t)(m) + f(t,X(t)(m−1), X(t− d1), . . . , X(t− dl))

]
dt

+ b(t) dW (t) (4.8)

where in the m-th iteration the contributions of X(t) to the nonlinear remainder
are evaluated from the last iteration m− 1, and the linear part is taken from the
current iteration. The conditions for superlinear convergence of this continuous
scheme are given by Theorem 4.1 in Sec. 4.1. Theorem 4.2 gives conditions under
which the solution of (4.8) with the Euler-Maruyama or implicit Euler method
converges to the non-iterative standard solution of these schemes in the limit of
∆t → 0 and m → ∞. Due to the involved linear part we do, however, consider
the stochastic exponential Euler method

X
(m)
k+1 = e−a∆tX

(m)
k +

1

a

(
1− e−a∆t

)
f(tk, X

(m−1)
k , X

k− d1
∆t

, . . . , X
k− dl

∆t

)

+

√
1

2a
(1− e−2a∆t) · b(tk) · ηk (4.9)

35

4 Waveform-relaxation methods for SDEs

for the solution which, in this setup, does not contain a matrix exponential or
matrix square root due to the diagonal structure of A. The convergence of the dis-
crete waveform-relaxation method using the stochastic exponential Euler method
will therefore be investigated in the next section.

Remark 4.3. In this setup, the similarity of the exponential Euler and the Euler-
Maruyama method

Xeuler
k+1 = Xk − a∆tXk + f(tk, Xk, . . .)∆t+ b(tk) ·∆Wk

can be easily explored by expressing the exponential functions ez with their defin-

ing power series
∞∑
j=0

zj

j!
= 1 + z+ z2

2
+ The exponential Euler scheme (4.9) can

be written as

Xexp
k+1 = Xk − a∆tXk +

∞∑
j=2

(−a∆t)j

j!
Xk

+
1

a

(
1−

(
1 +−a∆t+

∞∑
j=2

(−a∆t)j

j!

))
f(tk, Xk, . . .)

+

√√√√∆t− 1

2a

∞∑
j=2

(−2a∆t)j

j!
· b(tk) · ηk

= Xk − a∆tXk + f(tk, Xk, . . .)∆t+
∞∑
j=2

(−a∆t)j

j!

(
Xk −

1

a
f(tk, Xk, . . .)

)

+

√√√√∆t

(
1 +

∞∑
j=2

(−2a∆t)j−1

j!

)
· b(tk) · ηk

Together with
√

∆t · ηk = ∆Wk, we can calculate the difference between both
schemes as

‖Xexp
k+1 −X

euler
k+1 ‖2 = ‖ O(∆t2)

(
Xk −

1

a
f(tk, Xk)

)
+
(√

1− a∆t+O(∆t2) − 1
)
· b(tk) ·∆Wk ‖2

Thus, both schemes differ in the handling of both the deterministic and the
stochastic part.

36

4.2 A SDE-waveform-relaxation method suitable for spiking neural network
simulators

4.2.3 Convergence analysis

First, we want to derive a result similar to Theorem 4.2, but for our specific
setup with the stochastic exponential Euler method and the choice of the Ja-
cobi waveform-relaxation method. It turns out that the additive noise and the
purely explicit method allow a statement without the expected value and with
less restrictive conditions on m and ∆t.

Theorem 4.4. Let X
(m)
k denote the approximate solution produced by the m-th

iteration of the waveform-relaxation method (4.9), and let Xk denote the solution
of the non-iterative standard exponential Euler scheme. Furthermore, let f satisfy

‖f(t, x, z1, . . . , zl)− f(t, y, z1, . . . , zl)‖2
2 < C · ‖x− y‖2

2 (4.10)

for some constant C and any t ≥ t0, x, y, z1, . . . , zl ∈ RN . Then the solution of
the waveform-relaxation method with T = n ·∆t converges to the solution of the
original scheme within n iterations in the sense that for all m ≥ n

max
0≤k≤n

‖X(m)
k −Xk‖2

2 = 0 . (4.11)

Proof. Following (4.9), the difference between the waveform-relaxation method in
iteration m and the original scheme is

X
(m)
k+1 −Xk+1 = e−a∆t

(
X

(m)
k −Xk

)
+
(
1− e−a∆t

)(
f(tk, X

(m−1)
k , X

k− d1
∆t

, . . . , X
k− dl

∆t

)

− f(tk, Xk, Xk− d1
∆t

, . . . , X
k− dl

∆t

)
)

=: e−a∆tα +
(
1− e−a∆t

)
β (4.12)

Accordingly,

‖X(m)
k+1 −Xk+1‖2

2 = e−2a∆t‖α‖2
2 +

(
1− e−a∆t

)2 ‖β‖2
2 + 2e−a∆t ·

(
1− e−a∆t

)
αTβ

≤ e−2a∆t‖α‖2
2 +

(
1− 2e−a∆t + e−2a∆t

)
‖β‖2

2

+
(
2e−a∆t − 2e−2a∆t

)
·
(
‖α‖2

2 + ‖β‖2
2

)
=

(
2e−a∆t − e−2a∆t

)
‖α‖2

2 +
(
1− e−2a∆t

)
‖β‖2

2 . (4.13)

37

4 Waveform-relaxation methods for SDEs

Using condition (4.10) we obtain

‖X(m)
k+1 −Xk+1‖2

2 ≤
(
2e−a∆t − e−2a∆t

)︸ ︷︷ ︸
C1

‖X(m)
k −Xk‖2

2

+C ·
(
1− e−2a∆t

)︸ ︷︷ ︸
C2

‖X(m−1)
k −Xk‖2

2 .

By defining y
(m)
k = ‖X(m)

k −Xk‖2
2, this can be rewritten as

y
(m)
k+1 ≤ C1y

(m)
k + C2y

(m−1)
k

and (due to y
(m)
0 = 0 for all m ∈ N) with y(m) = (y

(m)
1 , . . . , y

(m)
n) as

Py(m) ≤ Qy(m−1) (4.14)

respectively with n× n-matrices

P =

1

−C1
. . .
.

−C1 1

 and Q =

0

C2
. . .
.

C2 0

 .

Rearranging (4.14) yields

y(m) ≤ P−1Qy(m−1)

≤ (P−1Q)my(0) . (4.15)

Now we apply the maximum norm to (4.15)

‖y(m)‖∞ ≤ ‖(P−1Q)my(0)‖∞
≤ ‖(P−1Q)m‖∞ · ‖y(0)‖∞ .

We complete the proof by showing that (P−1Q)n = 0, i.e. that P−1Q is a nilpotent
matrix. From

P−1 =

1
C1 1

C2
1

.

C3
1

.
...

.

Cn−1
1 . . . C3

1 C2
1 C1 1

38

4.2 A SDE-waveform-relaxation method suitable for spiking neural network
simulators

we obtain

P−1Q =

0
C2 0

C2C1
.

C2C
2
1

.
...

.

C2C
n−2
1 . . . C2C

2
1 C2C1 C2 0

which is a strictly lower triangular matrix and therefore nilpotent.

Remark 4.5. Theorem 4.4 shows the convergence of scheme (4.9) for any step
size ∆t > 0. This convergence holds even for those step sizes where the expo-
nential Euler method is unstable and yields inaccurate results. The number of
iterations needed to obtain full convergence increases with decreasing step size
∆t or increasing length T of the iteration interval.

Theorem 4.4 thus guarantees the convergence of the method and also provides an
upper bound for the number of iterations that are required. It does not, however,
provide any information on the evolution of the error over the iterations. There-
fore, we follow a idea by Bjørhus, who derives error estimates for two discrete
waveform-relaxation methods for ODEs that arise from the usage of the forward
and the backwards Euler method [12]. As the proof is also based on the exami-

nation of the difference ‖X(m)
k+1−Xk+1‖, where the additive noise disappears from

the equation (see (4.12)), we can easily adapt the idea for our method. In prepa-
ration, we state the following definition and specific discrete version of Gronwalls
Lemma given in [12].

Definition 4.6. We denote by z(n,RN) the space of all sequences Z =
{Z0, Z1, . . . , Zn} where Zi ∈ RN .

Lemma 4.7 (Gronwall). Let Z,Ψ ∈ z(∞,R) and C > −1. If

Zk+1 − Zk ≤ CZk + Ψk for k = 0, 1, 2, . . . (4.16)

then

Zk ≤ (1 + C)k

(
Z0 +

k∑
j=1

(1 + C)−jΨj−1

)
for k = 1, 2, 3, . . . (4.17)

Now we can state the following result that provides an estimate for the error after
m iterations with respect to the initial error.

39

4 Waveform-relaxation methods for SDEs

Theorem 4.8. Let again X
(m)
k denote the approximate solution produced by the

m-th iteration of the waveform-relaxation method (4.9) and Xk the solution of the
non-iterative standard exponential Euler scheme. Furthermore, let ‖·‖ denote an
arbitrary norm on RN and f satisfy

‖f(t, x, z1, . . . , zl)− f(t, y, z1, . . . , zl)‖ < C · ‖x− y‖ (4.18)

in this arbitrary norm for some constant C and any t ≥ t0, x, y, z1, . . . , zl ∈ RN .
Then the error of the waveform-relaxation method with T = n·∆t can be estimated
for m < n as

max
0≤k≤n

‖X(m)
k −Xk‖

≤
(
C · (1− e−a∆t)

)m(n
m

)
ea∆t max

0≤k≤n−m
‖X(0)

k −Xk‖ .
(4.19)

Proof. In order to use Lemma 4.7 to derive an estimate for the sequence ‖X(m)
k −

Xk‖ ∈ z(∞,R), we first need to find an appropriate estimate for the difference

‖X(m)
k+1 −Xk+1‖ − ‖X(m)

k −Xk‖.

Since

‖X(m)
k+1 −Xk+1‖ − ‖X(m)

k −Xk‖ ≤ ‖X(m)
k+1 −Xk+1 −

(
X

(m)
k −Xk

)
‖

we can estimate it by the right hand side term, which can be written as

‖
(
e−a∆t − 1

) (
X

(m)
k −Xk

)
+
(
1− e−a∆t

) (
f(tk, X

(m−1)
k , . . .)− f(tk, Xk, . . .)

)
‖ .

Applying condition (4.18) thus yields the desired estimate

‖X(m)
k+1 −Xk+1‖ − ‖X(m)

k −Xk‖

≤ ‖
(
e−a∆t − 1

) (
X

(m)
k −Xk

)
+ C ·

(
1− e−a∆t

) (
X

(m−1)
k −Xk

)
‖

≤
(
e−a∆t − 1

)
‖X(m)

k −Xk‖+ C ·
(
1− e−a∆t

)
‖X(m−1)

k −Xk‖ .

(4.20)

From Lemma 4.7 we then get

40

4.2 A SDE-waveform-relaxation method suitable for spiking neural network
simulators

‖X(m)
k −Xk‖ ≤ C · (1− e−a∆t)

k∑
j=1

(e−a∆t)k−j‖X(m−1)
j−1 −Xj−1‖ . (4.21)

The recursive application of (4.21) yields

‖X(m)
k −Xk‖

≤
(
C · (1− e−a∆t)

)m k∑
j1=1

j1−1∑
j2=1

. . .

jm−1−1∑
jm=1

(e−a∆t)k−m−jm‖X(0)
jm−1 −Xjm−1‖ .

Next, we want to estimate the summands of the sum by its maximum. Since
e−a∆t is real valued between 0 and 1, this factor is maximal if its exponent is
minimal, i.e. if jm takes its maximal value k −m+ 1. Hence,

‖X(m)
k −Xk‖

≤
(
C · (1− e−a∆t)

)m · ea∆t

k∑
j1=1

j1−1∑
j2=1

. . .

jm−1−1∑
jm=1

‖X(0)
jm−1 −Xjm−1‖ .

(4.22)

We now calculate the maximum over all k ∈ 0, 1, . . . n from the iteration interval.

max
0≤k≤n

‖X(m)
k −Xk‖

≤
(
C · (1− e−a∆t)

)m · ea∆t max
0≤k≤n−m

‖X(0)
k −Xk‖

n∑
j1=1

j1−1∑
j2=1

. . .

jm−1−1∑
jm=1

1

(4.23)

Finally, we complete the proof by recognizing that the sum in (4.23) adds up ones
for all unique, decreasing sequences of m integers between 1 and n, which is a
descriptive definition of the binomial coefficient

(
n
m

)
.

The insights of both theorems are employed in Chapter 6 in the context of inte-
grating rate-based models in a spiking neural network simulator. While The-
orem 4.4 is mostly used to guarantee accurate results and to justify using a
waveform-relaxation method in this context, the error bound from Theorem 4.8
is employed in the numerical results in Subsec. 6.4.2 to explain and estimate the
behavior for different kinds of rate-unit networks.

41

Chapter 5
Application in computational
neuroscience I:
Including gap junctions in a spiking
neural network simulator

This chapter presents the first of our two major use cases for waveform-relaxation
methods in computational neuroscience. Here we describe how to include gap
junctions in a spiking neural network simulator.

Electrical synapses, or gap junctions, were classically regarded as a primitive
form of neural signaling that played roles mostly in invertebrate neural circuits.
Recently, advances in molecular biology revealed their widespread existence in
the mammalian nervous system, such as visual cortex, auditory cortex, sensory
motor cortex, thalamus, thalamic reticular nucleus, cerebellum, hippocampus,
amygdala, and the striatum of the basal ganglia [34, 94], which suggests their
diverse roles in learning and memory, movement control, and emotional responses
[34, 45, 94]. The functional roles of gap junctions in network behavior are still not
fully understood, but they are widely believed to be crucial for synchronization
and generation of rhythmic activity. Recent results suggest that their contribution
to synchronization is versatile, as the synchronization mediated by them depends
on the intrinsic currents and morphology of the neurons as well as their interaction
with inhibitory synapses [78]. A classification of this diversity of synchronization
behaviors is addressed by the study of phase response curves [36, 78, 118], which
describe a neuronal oscillator by its phase response to a perturbation. However,
other prominent works also study more specific functional roles of gap junctions
and combine the detailed simulation of small networks with experiments [181].

Even though brain-scale neural network simulations approach the size of the brain
of small primates [88], and many biological features are already included, such

43

5 Application in computational neuroscience I:
Including gap junctions in a spiking neural network simulator

as the layer-specific connectivity and spike-timing dependent synaptic plasticity,
simulations with correct cell densities are still lacking gap junctions. This is due
to the absence of efficient algorithms to simulate gap junctions on large parallel
computers.

Parallelized simulators for networks of spiking neurons like NEST suffer from
conceptional difficulty in the handling of gap junctions, as they exploit the de-
layed and point-event like nature of the spike interaction between neurons: the
dynamics of each neuron can be propagated independently for the duration dmin

without requiring information from other neurons. This delayed communication
scheme is crucial for the performance of the NEST simulator and its scalability to
supercomputers, where communication is expensive, because it is associated with
a considerable latency. Gap junctions, however, are typically represented by an
instantaneous interaction between pairs of neurons of the form

Igap,i(t) = gij (Vj(t)− Vi(t)) and Igap,j(t) = −Igap,i(t) . (5.1)

gap junction with
conductance gij

chemical synapse
with delay dik

Vi Vj

Igap,j = gij(Vi − Vj)Igap,i = gij(Vj − Vi)

virtual process 0 virtual process 1

Hodgkin-Huxley neuron i
V ′
i

Cm
= −Iionic,i(Vi,mi, hi, ni, pi)

+Iapplied,i(Iex,i, Iin,i)
+Igap,i(Vi, Vj)

Hodgkin-Huxley neuron j
V ′
j

Cm
= −Iionic,j(Vj ,mj , hj , nj , pj)

+Iapplied,j(Iex,j , Iin,j)
+Igap,j(Vj , Vi)

Figure 5.1: Representation of two point neurons coupled by a gap junction.
The biophysical equation of the membrane potential refers to the later introduced new
NEST model hh psc alpha gap. The dashed lines indicate that neurons connected by
a gap junction might be located on different virtual processes.

This current occurs in both cells at the site of the gap junction. In point-neuron
models where equipotentiality is assumed the gap-junction current immediately

44

affects the membrane potential. Implementing a gap junction between neuron i
and j in a time-driven simulation scheme therefore requires that neuron i knows
the membrane potential of neuron j and vice versa at all times. The nature of
the coupling between two neurons mediated by a gap junction depends on the
difference of their membrane potentials; one neuron is excited, the other one
inhibited.

Fig. 5.1 illustrates the effect of a gap junction on the systems of ODEs describing
the single neuron dynamics. The originally decoupled hybrid systems of neurons
i and j are combined as an interdependent system of ODEs. An additional gap-
junction connection between another neuron and either i or j adds a further
set of equations to the coupled system. In a biologically realistic simulation of
a local cortical network, each neuron has dozens of gap-junction connections.
Consequently, the dynamics of almost all neurons are likely interrelated by one
large system of ODEs.

At present, time-driven simulators supporting gap junctions implement the in-
stantaneous interaction with a simplification, effectively decoupling the neurons
for the duration of the computation time step h: the membrane potentials of
gap-junction coupled neurons are communicated at the beginning of each time
step and for the purpose of integration are assumed to be constant for the du-
ration of the time step (for NEURON simulation software see [93]). There is no
communication for the duration of the computation time step and no repeated
communication of improved membrane potential values for a given point on the
computation-time grid. We refer to this approach as the single-step method.

time

dmin

h communication
of spike events

communication of
constant membrane

potential extrapolations

Figure 5.2: Progress of the single-step method during one dmin-interval. Black
dots mark the values of the membrane potential at the grid points, which are commu-
nicated to the connected neurons after every interval of duration h.

Fig. 5.2 shows the progress of the single-step method over one interval of the
duration of the minimal network delay dmin from the single neuron perspective.

45

5 Application in computational neuroscience I:
Including gap junctions in a spiking neural network simulator

Note that in this framework, a solver may still use adaptive step-size control to
cover the interval h. The single-step method has two major disadvantages: First,
communication is needed in every time step instead of in intervals of the minimal
delay, which can slow down the simulation due to the latency of the employed
MPI communication. Secondly the step size of the approach needs to be small.
Otherwise the error causes a systematic shift of the membrane potential time
course. This can be easily demonstrated by a two-neuron network: two identical
model neurons that are coupled by a gap junction should behave exactly the same
as an uncoupled pair since Igap(t) = 0 holds at all times.

However, Fig. 5.3 shows that the single-step approach produces a significant shift
within only 1 s of biological time, even when simulated with a step size that is
already small compared to the time constants of the model neuron. This shift
results from the calculation of Igap at intermediate points in an interval of length
h: As the membrane potential of the local neurons evolves over time while the
membrane potential of the connected neuron stays constant an artefactual gap
current Igap 6= 0 introduces an error to the solution. To yield accurate results the
time step would have to be exceedingly small, requiring even more communication
and thereby further slowing down the simulation.

1000 1050 1100

t (ms)

−80

−40

0

40

80

V
(m

V
)

Figure 5.3: Artefactual shift when using the single-step method. The black
curve shows the reference time course of the membrane potential of a Hodgkin-Huxley
point-neuron model subject to a constant input current of 200 pA after simulating 1 s
of biological time. The other curves indicate the time course of the membrane potential
of the same neuron with the same input for the case that the neuron is coupled by a gap
junction to a second model neuron with exactly the same properties, and the simulation
is carried out with the single-step approach using a Runge-Kutta-Fehlberg solver with
an adaptive step-size control to cover the interval of one computational time step h.
The orange curve displays the result for a step size of h = 0.1 ms and the blue curve for
0.02 ms.

46

The iterative method based on waveform relaxation presented in Sec. 3.2 can be
employed for the solution of the dynamics of spiking neural networks including
gap junctions. It provides higher accuracy than the single-step implementation
and additionally allows the continued usage of the delayed communication scheme.
Sec. 5.1 describes how the approach can be smoothly integrated into the already
existing structures of NEST as of version 2.8.0 [52], which uses the 4th generation
kernel of NEST (see [112]). Then we provide details on the implemented neuron
model (Sec. 5.2) and discuss required improvements of the user interface arising
from the inclusion of gap junctions (Sec. 5.3). The following numerical results
section comprises of four different subsections: the first subsection gives details
on test cases, computers and measures of accuracy, Subsec. 5.4.2 and Subsec. 5.4.3
focus on the accuracy of the new iterative method in comparison to the single-step
method and Subsec. 5.4.4 is concerned with the performance of the gap-junction
framework in NEST. Finally, Sec. 5.5 discusses limitations and application areas.
The technology described in this chapter is available as open source software under
GNU General Public License (Version 2 or later). It was first released with NEST
2.10.0 [14]; several improvements have been added with NEST 2.12.0 [110]. Some
of the figures and parts of the text in this chapter have already been used in the
original research articles on the topic [73, 74].

47

5 Application in computational neuroscience I:
Including gap junctions in a spiking neural network simulator

5.1 Framework

The waveform-relaxation method described in Sec. 3.2 enables the efficient nu-
merical solution of a system of ODEs on a parallel computing system, where each
of the parallel processes is responsible for a particular subsystem. It therefore con-
stitutes a promising way of implementing continuous electrical coupling between
neurons through gap junctions in distributed simulations of neuronal networks.
In this context, we identify the dynamics of the single neurons as the subsystems
yi = (Vi, . . .) and the membrane potentials from other neurons Vj as the influ-
ences from the other subsystems on system i. From here on we denote by N the
total number of neurons (instead of the total number of components of a vector).
Following Sec. 3.2 we consider the (block) Jacobi waveform-relaxation method

y′i
(m)

(t) = fi(V
(m−1)

1 (t), . . . , V
(m−1)
i−1 (t), y

(m)
i (t), V

(m−1)
i+1 (t), . . . , V

(m−1)
N (t)) (5.2)

where the subsystems (with ≥ 1 component, depending on the neuron model) are
solved with a Runge-Kutta method with adaptive step size control and the mem-
brane potentials of the subsystems are interpolated on the intervals of length h
between the grid points (see (3.12)). Subsec. 5.1.1 specifies the missing practical
details regarding the management of the interpolation, the choice of the commu-
nication intervals and the iteration control of the employed waveform-relaxation
method. To implement the method in a spiking neural network simulator, how-
ever, the simulator also needs to provide adequate infrastructure: gap-junction
coupled neurons need to repeatedly update their state variables until a certain ac-
curacy criterion is fulfilled. This implies that the scheduler of the simulator needs
to support the repetition of neuronal updates. Subsec. 5.1.4 addresses this issue
in more detail. Beforehand Subsec. 5.1.2 and Subsec. 5.1.3 describe the necessary
changes to the fundamental data structures and discuss the potential impact of
these changes on run time and memory consumption. During the design of the
novel framework, we also kept in mind its potential for later extensions (one of
which is presented in Chapter 6).

5.1.1 Algorithmic and numerical implementation

Applying the waveform-relaxation method specified in Sec. 3.2 to the current
problem requires i) conveying the interpolation of the membrane potential of one
neuron to another, ii) the definition of a communication protocol, in particular,
the time points when information is exchanged between neurons and iii) the def-
inition of an error estimate of the solution, to be used as a stopping criterion.
These three points are described in the current section.

48

5.1 Framework

5.1.1.1 Interpolation of the membrane potential

The application of method (3.12) in context (5.2) requires a cubic Hermite inter-
polation of the membrane potentials Vi. For our numerical tests we are however
also interested in investigating the method with different interpolations for the
membrane potential. We thus also consider a simple constant interpolation and
a linear interpolation. If we denote the interpolation of order norder in the time
interval [kh, (k + 1)h] as

Vi((k + θ)h) =

norder∑
s=0

ai,sθ
s (5.3)

with θ ∈ [0, 1], the coefficients of the interpolation polynomial can be determined
as stated in Table 5.1.

norder ai,0 ai,1 ai,2 ai,3
0 V0

1 V0 V1 − V0

3 V0 hV ′0 −3V0 + 3V1 − h(2V ′0 + V ′1) 2V0 − 2V1 + h(V ′0 + V ′1)

Table 5.1: Coefficients of the interpolation polynomial depending on the
interpolation order. The entries use the following abbreviation: V0 ≡ Vi(kh),
V1 ≡ Vi((k + 1)h), V ′0 ≡ f(Vi(kh)) and V ′1 ≡ f(Vi((k + 1)h)).

Table 5.2 shows the communication and storage demands generated by the use of
the different interpolation orders. The communication effort is hardly surprising,
since each neuron has to communicate the coefficients of the approximating poly-
nomial to the gap-junction coupled neurons. Even though each neuron usually
has multiple gap-junction connections, the incoming interpolation coefficients can
be summed. If we denote the interpolation of the membrane potential Vj in the
time interval [kh, (k + 1)h], as in (5.3), the total gap current Igap,i reads:

number of values to...
interpolation communicate per time step store per time step

constant 1 2
linear 2 3
cubic 4 5

Table 5.2: Storage and communication demand for different interpolation or-
ders. The storage and communication demands only differ by the sum of the gap
weights gij , which needs to be stored in order to be able to sum up the incoming
gap-junction connections.

49

5 Application in computational neuroscience I:
Including gap junctions in a spiking neural network simulator

Igap,i =
∑
j

gij(Vj − Vi)

= −Vi ·
∑
j

gij +
∑
j

gij · Vj

= −Vi ·
∑
j

gij +
∑
j

gij ·
norder∑
s=0

aj,sθ
s. (5.4)

It is obvious that within this time step, the effect of all incoming gap junctions
can be reduced to the norder + 2 parameters

ḡi :=
∑
j

gij and g∗i,s :=
∑
j

gij · aj,s , s = 0, . . . , norder.

The sums appearing in ḡi and g∗i,0, . . . , g
∗
i,norder

over the connected neurons j can
hence be performed once for each iteration step, and the total gap current (5.4)
in each time step takes the form

Igap,i = −ḡiVi +

norder∑
s=0

g∗i,sθ
s. (5.5)

0.0 0.2 0.4 0.6 0.8 1.0

t (ms)

−40

0

40

80

V
(m

V
)

Figure 5.4: Approximations of the membrane potential. The dashed black curve
shows the membrane potential representing an action potential (spike) and the black
dots indicate the grid points used for the interpolation (step size 0.1 ms). The displayed
interpolations are: piecewise constant (orange), linear (dark-red) and cubic (blue).

Fig. 5.4 shows the fit of the different interpolations for an exemplary course of
the membrane potential. The piecewise constant interpolation is obviously a bad
fit for the membrane potential. The choice between linear and cubic is investi-
gated in Subsec. 5.4.2. Due to the fact that the linear interpolation requires less
computation and has a lower communication and storage effort it could possibly
achieve a better accuracy/simulation time trade-off.

50

5.1 Framework

5.1.1.2 Communication strategy

There are two different ways to use the waveform-relaxation method (3.12) in a
time-driven simulator, as illustrated in Fig. 5.5.

A

time

dmin

h communication
of spike events

Iteration communication of
membrane potential

interpolations

B

time

dmin

h communication
of spike events

communication of
membrane potential

interpolationsIteration

Figure 5.5: Two communication strategies using the waveform-relaxation
technique in a time-driven simulator. (A) The membrane potentials are com-
municated in intervals equal to the minimal synaptic delay. (B) Potentials are com-
municated in every computation time step h.

The choice between the strategies is simply a question of the simulation time, since
– given the convergence of the method – both strategies deliver nearly identical
results for a given set of parameters. In this context it is worth noticing that
the general convergence of the method does not depend on the length T of the
iteration interval (see the analysis in Subsec. 3.2.3). The convergence speed,
however, is expected to be much faster for shorter T , as indicated by (3.7) in
Theorem 3.1. The decoupling of the neurons for the duration of the minimal delay
is exploited by iterating over the entire interval with minimal delay length, i.e.
T = dmin. This approach allows us to keep the benefit of only one communication
per minimal delay and is therefore expected to achieve the shorter simulation time
- especially for simulations on large supercomputers, where the communication
latency is important. The other obvious choice for the duration of an iteration

51

5 Application in computational neuroscience I:
Including gap junctions in a spiking neural network simulator

is T = h. Due to the shorter iteration intervals, the latter choice is expected to
need fewer iterations per time step and could for that reason be beneficial. We
denote this strategy as h-step communication or communication in every step.
Both communication strategies are investigated in Subsec. 5.4.4.

5.1.1.3 Iteration control

The convergence speed of the waveform-relaxation method (3.12) is dependent
on multiple parameters. First, and most intuitively, the gap weights gij have
an important influence, since they determine the coupling strength between the
neurons that constitute the subsystems. It is obvious that stronger interaction
causes slower convergence speed, since the extra iterations are only needed due
to the external influences. Another important influence is the duration T of
the iteration interval, as suggested by the error estimate (3.7) for the continuous
waveform relaxation. This means that depending on the chosen communication
strategy, either the choice of h (for T = h) or the value of the minimal delay (for
T = dmin) has an influence on the number of iterations needed. As a consequence
of these multiple influences, the number of necessary iterations to achieve a certain
accuracy may differ depending on the network being simulated and may be hard
to determine for the user of the simulator. We therefore employ an adaptive
iteration control which guarantees a certain accuracy, while avoiding unnecessary
iterations. We introduce a new parameter prelim tol and stop iterating if

|V (m)
i (tk)− V (m−1)

i (tk)| ≤ prelim tol

holds for every grid point k = 1, . . . , n of every neuron i = 1, . . . , N
within the iteration interval, or if the maximal number of iterations
(max num prelim iterations) is reached. The choice of those parameters is
up to the user. The default settings are 10−4 for the prelim tol and 15 for
max num prelim iterations. This kind of stopping criterion guarantees that if
the first convergence criterion is met, further iteration would only improve the so-
lution within the given error bound. The second criterion can be used to limit the
computation time at time points that show slow convergence. If the iteration pro-
cess is terminated by the second criterion, the user is notified by a warning. That
way, the user can identify if the setting of the maximal number of iterations is
adequate for the simulation. The max num prelim iterations parameter should
be increased if the maximal number of iterations is reached in more than a few
iteration intervals.

The convergence control does not, however, protect from inaccuracies caused by
the interpolated membrane potential V

(m−1)
j (t) of the other neurons. Therefore,

52

5.1 Framework

the choice of h is also relevant for the communication strategy with T = dmin,
even if it does not influence the number of iterations for this particular strategy.

5.1.2 Connection infrastructure

In the context of adaptations of the simulation kernel to current supercomputers,
the connection infrastructure of NEST has undergone major changes to reduce
the memory usage. The state-of-the-art prior to the inclusion of gap junctions is
described in [112]. In NEST, connection objects are stored on the machine that
hosts the target neuron of the particular connection. The corresponding data
structure is required on each thread to provide efficient access to local connection
objects of a given source neuron during event delivery (filled pink and turquoise
squares in Fig. 5.6). Previously, these data structures were tailored to the deliv-
ery of spike events to local targets. The redesign presented here still supports the
delivery of these events as described in [111] and [112] without compromising on
performance. The delivery of data to mediate gap-junction coupling is different
from the exchange of spiking activity in two respects: first, gap junctions require
us to convey interpolation parameters of the membrane potentials from the send-
ing to the receiving neuron. Secondly, the mechanism of data exchange should be
generalizable, i.e. it should not be restricted to the implementation of gap junc-
tions, but also applicable to other forms of interaction that require the exchange
of data between neurons. The latter point implies the need to distinguish dif-
ferent connection types and events, called secondary connections and secondary
or payload events, respectively. In contrast we will call spiking events primary
events. We decided on a one-to-one correspondence between a secondary synapse
type and the type of secondary event that can be sent via such a connection:
A secondary event of a given type will be delivered only to the targets that are
connected by the matching synapse type. The concrete implementation of gap
junctions requires the definition of the new connection object GapJunction that
is derived from the Connection base class, as well as a class GapJEvent that is
derived from SecondaryEvent.

The extended connection infrastructure shown in Fig. 5.6A enables the storage
of secondary connections. The parts of the structure that are new compared to
Fig. 3 in [112] are drawn in turquoise. The two main objectives of the presented
design are small memory footprint and only marginal impact on the performance
of the delivery of the primary spiking events. Each received primary or secondary
event carries the global identifier (gid) of the sending neuron. The sparse table
indicates at a given gid if the sending neuron has at least one (primary or sec-
ondary) connection on the local machine. That given, the sparse table provides
a pointer to the attached connection containers. A spike event to be delivered is
passed to all primary connections that are found below the pointer. Even though

53

5 Application in computational neuroscience I:
Including gap junctions in a spiking neural network simulator

4 424 4payload payload86

73 314 4payload payload

A

B

used connection types

of this source neuron

HomConnector

static synapse

HomConnector

STDP synapse

neurons with

local targets

local

connections

of this type

HomConnector

gap junction

vtable

last spike

start

finish

end of storage

primary end

HetConnector

HomConnector

static synapse

source neuron has

local connections

of a single type

MPI send buffers

rank 0

rank 1

Figure 5.6: Data structures for the representation of gap junctions. Turquoise
elements indicate necessary changes to the fundamental data structures with respect
to the 4g simulation kernel of NEST (cf. [112]). (A) Thread-local connection infras-
tructure. For all neurons a sparse table (dark orange) encodes whether at least one
thread-local target is present or not. If a neuron has local targets, the sparse table
stores a pointer (turquoise square with arrow) to a connection container (light orange
data structure), where the least significant bits of this pointer encode whether gap junc-
tions are present or not. The container is either a HomConnector or a HetConnector

depending on whether the neuron has only one or more than one type of local connec-
tion. A HomConnector directly stores the connection objects, whereas a HetConnector

stores a vector of HomConnectors, one per connection type. The HomConnectors for
spiking connections come first in the vector and the member primary end is the num-
ber of spiking connection types in the vector. (B) MPI send buffers accumulating
outgoing events in the scheduler. Toy example for a particular communication interval
with two MPI processes, where rank 0 hosts the neurons with even global IDs (gids)
and rank 1 hosts the neurons with odd gids. Each buffer consists of two parts: the
data related to spiking connections (blue boxes) followed by the data related to gap
junctions (turquoise boxes).

there are different connection types, such as to distinguish static connections from
those exhibiting spike-timing dependent plasticity, all primary connections convey

54

5.1 Framework

spike events. The situation is different for the secondary events, because an event
containing the interpolation parameters for a gap-junction current should only be
delivered to a neuron that expects this information. The latter is indicated by an
existing gap-junction connection from the sending neuron. The identification be-
tween secondary events and the corresponding connection is achieved by a unique
identifier that is assigned to each secondary synapse type and its corresponding
event type upon registration at the simulation kernel.

The adaptive data structure presented in [112] in the limit of large machines
collapses along the dimension of synapse type, realized by the homogeneous con-
nector HomConnector in Fig. 5.6A. As a consequence, if a given source neuron
only has a single target connection on a given machine or several connections of
the same type, the additional infrastructure provided by the HetConnector (the
linear searchable array of different connection types, the member primary end)
is not available. In this case, we need a separate mechanism to decide whether or
not a received primary or secondary event is to be delivered to a particular target.
For reasons of performance, this decision is done in two steps. In the first check,
in the case of a primary (spiking) event, we determine if the target neuron has
at least one primary connection; correspondingly, for a secondary event if it has
at least one secondary connection. To perform this test as early as possible and
without the use of either an additional data member or the need to parse the full
connection structure below the pointer, we make use of redundant information
in the pointer contained in the sparse table. As pointer addresses are aligned
to at least double word boundaries, their two lowest significant bits are always
zero. We use the lowest significant bit to indicate whether or not the sending
neuron has at least one primary connection, the second lowest significant bit to
indicate the existence of at least one secondary connection. This first test can
hence be done directly after retrieval of the pointer from the sparse table, which
only happens if the neuron has at least one connection of any type, be it primary
or secondary. To access the pointed to data structure we disregard the two lowest
significant bits. The second decision depends on the container being homogeneous
(containing only connections of a unique type) or heterogeneous. Delivering a pri-
mary event to a homogeneous or heterogeneous connector does not require any
additional checks. The delivery of a secondary event to a homogeneous connector
requires the comparison of the secondary event identifier to match the identifier
of the stored connections which by definition are all the same. For heterogeneous
connectors this requires a linear search in the list of secondary connections to
find the connection type that matches the secondary event type. This is typically
affordable, as each neuron typically only has a few different incoming secondary
connection types, if any at all. To find the initial point of the linear search in
the list of targets shown in Fig. 5.6A, the heterogeneous connector HetConnector
holds the index primary end of the last primary connection type.

55

5 Application in computational neuroscience I:
Including gap junctions in a spiking neural network simulator

5.1.3 Communication infrastructure

The payload events, introduced in Subsec. 5.1.2 represent the path by which neu-
rons exchange arbitrary data. In contrast to primary spiking events that only
carry the gid of the sending neuron and the time stamp of event occurrence, a
payload event transports additional information. We use this concept as an ab-
straction layer to the underlying MPI-based [124] data exchange. To this end,
payload events support serialization of their contents into the MPI send buffers
and de-serialization of these events from the MPI receive buffer. For reasons of
performance, these buffers are homogeneous arrays of unsigned integers. Upon
serialization, the payload event first writes out its unique type identifier, fol-
lowed by its length as measured in multiples of unsigned integers, followed by its
payload. Upon reception, this process can without ambiguities be inverted, as
the unique type identifier of the payload events allows the identification of the
corresponding event type on the receiver side. Syntactically we use streaming op-
erators (GapJEvent::operator>>(vector<unsigned int>::forward iterator

&), and the corresponding operator<<) to encapsulate the serialization and de-
serialization, which requires static type casting. To avoid the duplication of data,
the GapJEvent does not hold the array of coefficients for interpolation directly,
but rather holds iterators for the beginning and end of the corresponding co-
efficient arrays. On the sending side, these iterators point to the interpolation
coefficients that are stored in the neuron. Upon collation of the send buffers (in
function gather events of the scheduler, see Algorithm 5.3), these coefficients
are directly copied once from their respective neurons to the MPI send buffer.
On the receiving side, the same iterators point to the positions in the receive
buffer that hold the corresponding coefficients. The iterator class internally rep-
resents the positions as vector<unsigned int>>::iterator to allow fast copy
into the MPI send buffers by standard algorithms (std::copy). In addition, for
convenience on the side of the neuron, it defines an iterator interface (with func-
tionality to increment and dereferenciation) for the represented data type, in case
of the GapJEvent for double.

Algorithm 5.1 shows the use of the GapJEvent in the update loop of the neu-
ron. After the interpolation coefficients have been collected during a preliminary
update, the coefficient array is passed to a newly created GapJEvent, which inter-
nally sets the iterators accordingly, and is then sent to the network via the method
send secondary that registers the event in the scheduler. When the above men-
tioned streaming operators are employed, upon registration, secondary events
are directly serialized into a separate buffer of unsigned integers for each thread.
Prior to the communication step, the final send buffer is collocated by the call
of the function gather events (see Algorithm 5.3) by first collecting the spiking
events grouped according to the time slices in which they occurred, as illustrated
in Fig. 5.6B. The buffers may not be completely filled, as they are adapted as

56

5.1 Framework

Algorithm 5.1: Update function of a neuron model supporting
gap junctions. The update neuron function propagates the state of the

neuron from tleft to tright. The state of the neuron at time t is the vector

y = (yV , . . . , ysyn), where yV (t) denotes the membrane potential that includes

the gap current Igap(t). Igap(t) is given by (5.5) and depends on the chosen

method of interpolation. The analytic solution in line 13 symbolically represents

the integrator for the differential system. ysyn represents the component of the

synaptic input current, which is affected by incoming synaptic impulses in line

15. The function returns true if the stopping criterion is satisfied.

1 bool update_neuron(tleft, tright, bool prelim_update)

2
3 // neuron is in state y(tleft)
4
5 done = true

6 n_steps = (tright - tleft)/h
7 n_coeff = (norder + 1) · n_steps

8 new_coefficients[i] = 0 ∀i ∈ {0,. . .,n_coeff -1}
9

10 for k ∈ {1,. . .,n_steps }:
11 // solve differential equation y′(t) = f(y(t))
12 // using ḡ and g̃i (see Alg. 5.2 for definition of g̃i) according to (5.5)

13 y(tleft + kh) = y(tleft + (k − 1)h) +
∫ tleft+kh
tleft+(k−1)h f(y(s)) ds

14
15 ysyn = ysyn + input buffer[tlag] // set new synaptic input current

16
17 if (not prelim_update):

18 // check for threshold and refractoriness

19 if not refractory:

20 if yV > Θ:

21 emit spike and set neuron refractory for time τr
22 else:

23 decrease refractory counter

24 else: // preliminary update

25 // collect coefficients of membrane potential interpolation

26 for s ∈ {0,. . .,norder}:

27 new coefficients[(k − 1) · (norder + 1) + s] = ai,s // as shown in (Tab. 5.1)
28 // check if stopping criterion is violated

29 if(| V last[k − 1]− yV | ≥ prelim tol):

30 done = false

31 V last[k − 1] = yV
32
33 if (not prelim_update):

34 for k ∈ {1,. . .,n_steps }:
35 new_coefficients[(k − 1) · (norder + 1)] = yV (tright) // constant extrapolation

36 V_last[k − 1] = 0 // reset V last

37
38 // send interpolation coefficients to network as gap event

39 GapJEvent ge(new_coefficients);

40 send_secondary(ge);

41
42 // reset data for interpolation

43 ḡ = 0

44 g̃i = 0 ∀i ∈ {0,. . .,n_coeff -1}
45
46 return done

57

5 Application in computational neuroscience I:
Including gap junctions in a spiking neural network simulator

Algorithm 5.2: handle function algorithm. The handle function re-

ceives the GapJEvents and collects the gap weights and interpolation coefficients

according to (5.5). In contrast to (5.5) the vector g̃ holds the values for all time

steps s within one iteration interval, instead of just for one fixed time step, i.e.

g̃s+(k−1)·(norder+1) := g∗k,i,s

1 handle(GapJEvent e)

2
3 // n coeff given as in (Alg. 5.1)
4
5 ḡ = ḡ + e.g
6 for i ∈ {0, . . . , n coeff− 1}:
7 g̃i = g̃i + e.g · e.coefficients[i]

soon as more data needs to be transmitted but are not reduced in size in the
case of less data. The number of time slices dmin/h per communication interval
of duration dmin is, however, fixed and the end of each time slice is marked by a
special identifier (shown as gray square). Consequently, the receiving side knows
when all spiking events have been read. Therefore, in direct succession to the
spiking data, the secondary events buffer for each thread is appended to the send
buffer. A reserved identifier, invalid id, marks the end of the secondary events,
followed by a boolean value, indicating whether or not the desired accuracy has
been achieved in the current iteration step, as explained in Subsec. 5.1.4.

5.1.4 Iterative neuronal updates

On the scheduler level, the iterative simulation of a time interval is implemented
in lines 9-20 of Algorithm 5.3. Instead of just once, the update function of the
involved neurons (Algorithm 5.1) is called several times to perform so-called pre-
liminary updates before the final update is done and the time of the simulation
is advanced. The precise number of preliminary calls to the update function is
determined by the iteration control, as introduced in Subsec. 5.1.1. Each neu-
ron returns to the scheduler if its solution achieved the desired accuracy. The
scheduler summarizes the feedback and sends the information to the other MPI
processes. The result over all MPI processes is then returned to the scheduler to
determine if a further preliminary iteration is needed.

The discrimination between the preliminary updates and the final update is nec-
essary, since during a preliminary update the neuron will not issue any spiking
events, as shown in Algorithm 5.1. The incoming spiking events in each itera-
tion are hence the same. On the other hand, only within a preliminary update
a neuron will send secondary events conveying the interpolation of its membrane

58

5.1 Framework

Algorithm 5.3: Pseudo code of the simulate function in the sched-
uler. Lines 9-20 show the additional code due to the new preliminary up-

dates. An additional boolean value passed to the update function of a neuron

distinguishes a preliminary update (true) from the final update (false). The

gather events() function builds the send buffer including the boolean value of

the variable done, that indicates whether or not additional iterations are needed,

and performs the MPI communication. The deliver events() function dis-

tributes the received events locally and returns true only if all MPI processes

indicated that the desired accuracy was achieved. The function advance time()

updates the values of tleft and tright to the boundaries of the next time interval.

1 simulate ()

2
3 [...]

4
5 //tleft, tright given

6
7 deliver_events ()

8
9 // preliminary updates

10 for i ∈ {1, . . . , max num prelim iterations}:
11 // done indicates if iteration has converged

12 // or more preliminary updates are needed

13 done = true

14 for all neuron that need prelim_update:

15 done = update_neuron(tleft, tright, true) and done

16
17 gather_events(done)

18 done = deliver_events ()

19 if(done):

20 break

21
22 //final update

23 for all neurons:

24 update_neuron(tleft, tright, false)

25 gather_events(true);

26 advance_time ()

27
28 [...]

potential to its peers. The final, non-preliminary update conveys the extrapola-
tion of the membrane potential to the other neurons, which will be used in the
first iteration of the next time step. Fig. 5.7 shows the realization of the iterative
update process for two neurons with special focus on the communication of the
interpolation coefficients.

The first computation of the time step is calculated with a constant extrapolation

59

5 Application in computational neuroscience I:
Including gap junctions in a spiking neural network simulator

A B C

Figure 5.7: Iterative neuronal updates. Communication of spikes and gap-junction
related data is carried out in steps of dmin (long gray lines), which denote the minimum
synaptic transmission delay in the network. Within each communication interval, neu-
rons update their dynamics in steps of h (shorter light gray lines); here dmin = 4h at time
t̂. Turquoise curves show the approximation of the membrane potential, which is used
by the connected neuron to compute the solution in the current interval. (A) First
iteration with constant approximation for the membrane potential of the connected
neuron. At the end, a new approximation of the just computed membrane potential is
passed to the connected neurons. (B) Further iteration with the approximation of the
membrane potential from last iteration. This part is the actual iteration process, which
can be done multiple times. (C) After the final iteration a constant extrapolation for
the next time step is communicated.

of the membrane potential of the connected neurons. In every further iteration of
the same time interval the interpolation generated with the last iteration is used.
Accordingly, the interpolation of the current membrane potential is computed
during preliminary iterations, while for the final iteration a constant extrapo-
lation is send to the scheduler. The interpolation coefficients are computed as
described in Subsec. 5.1.1 and saved in an array. The same applies for the receiv-
ing side (Algorithm 5.2), where the coefficients from the incoming connections are
accumulated as described in Subsec. 5.1.1.

The neuron update function shown in Algorithm 5.1 has a boolean parameter to
distinguish if the current call is a preliminary or the final update. The implemen-
tation can be used with both communication strategies, since communication in
every time step is only a special case (dmin = h) that can be induced manually
by creating an unused primary connection with delay h and therefore does not
require further adaptation to the code.

60

5.2 Neuron model

5.2 Neuron model

The neuron model used for our study is a point-neuron model with Hodgkin-
Huxley dynamics. The model was introduced by Mancilla et al. [118] to investigate
the synchronization of electrically coupled pairs of inhibitory interneurons in the
neocortex. We prefer this model over a leaky integrate-and-fire model (see e.g.
[65], their Chapter 4.1) because the former naturally includes the time course
of an action potential, while this is a point-event in the latter. The membrane
potential of the model fulfills the ordinary differential equation

V ′ =
−Iionic(V,m, h, n, p) + Iex + Iin + Igap

Cm

with

Iionic = gNam
3h(V − VNa)

+ (gKv3p
2 + gKv1n

4)(V − VK)

+ gleak(V − Vleak)

Igap =
∑
j

gij(Vj − V) .

The channel dynamics is given by

m′ = αm(1−m)−mβm
h′ = αh(1− h)− hβh
n′ = αn(1− n)− nβn
p′ = αp(1− p)− pβp.

A spike is transmitted to the network if a non-refractory neuron passes the thresh-
old. The time of the spike is defined as the first grid point after the time where V
has reached its maximum value. Without restricting the generality of the results,
we model synaptic events as currents described by alpha functions (see [153], their
Sec. 3.1.2). The total excitatory and inhibitory synaptic input currents read

Iex(t) =
nex∑
k=1

Jk ·H (t− tex,k) · e
t− tex,k

τex

· exp

(
− (t− tex,k)

τex

)
(5.6)

Iin(t) =

nin∑
k=1

Jk ·H (t− tin,k) · e
t− tin,k
τin

· exp

(
− (t− tin,k)

τin

)
, (5.7)

61

5 Application in computational neuroscience I:
Including gap junctions in a spiking neural network simulator

where the Jk denotes the synaptic weight and H(x) =
{

0
1

x<0
x≥0 denotes the Heav-

iside step function. The times at which spikes arrive at the neuron are indicated
by {tex,k}k=1,...,nex and {tin,k}k=1,...,nin

. In the time interval between two subsequent
spike times tex,k and tex,k+1 the current (5.6) (and analogously also (5.7)) can be
expressed as the solution of two additional ordinary differential equations

I ′ex(t) = Iex2(t)− Iex(t)

τex

(5.8)

I ′ex2(t) = −Iex2(t)

τex

(5.9)

with initial conditions

Iex(tex,k) = Iold
ex (tex,k)

Iex2(tex,k) = Iold
ex2(tex,k) + Jk ·

e

τex

where Iold
ex (tex,k) and Iold

ex2(tex,k) denote the solutions from the previous interval
between tex,k−1 and tex,k. For the first interval we define Iold

ex (tex,1) = Iold
ex2(tex,1) = 0.

The equivalence of the formulations (5.6) and (5.8) can be verified by looking at
the analytical solutions of (5.8) and (5.9)

Iex(t) =

(
Iold

ex (tex,k) + Iold
ex2(tex,k)(t− tex,k) + Jk · e

t− tex,k

τex

)
exp

(
− (t− tex,k)

τex

)
Iex2(t) =

(
Iold

ex2(tex,k) + Jk · e
1

τex

)
exp

(
− (t− tex,k)

τex

)
.

By starting with the first interval and successively applying the solution from one
interval to the subsequent interval one obtains (5.6).

In total, the neuron model therefore consists of a system of nine ODEs. Further
information on the parameters and settings can be found in [118]. The NEST im-
plementation hh psc alpha gap of the model uses the GNU Scientific Library im-
plementation (gsl odeiv step rkf45) of the Runge-Kutta-Fehlberg 4(5) method
(see Table 2.1) with adaptive step-size control (gsl odeiv control y new) to ad-
vance the state of an individual neuron by the interval h. Thus, the solver may
use finer steps to cover the interval according to the demands of the dynamics.
The accuracy parameter for the absolute predicted error made in each interval h
is chosen as 10−6; the parameter for the relative predicted error is not used and
set to 0. Therefore, there is no use in choosing the prelim tol parameter of the
waveform relaxation below the former value.

62

5.3 User interface

5.3 User interface

The NEST Connect routine enables neuroscientists to express a partial net-
work structure through the connections between two sets of neurons. One dic-
tionary specifies the connection rule and the rule-specific parameters, a sec-
ond the dynamics of the interaction. The implementation as of version 2.10.0
[110] accepts various connection rules from simple ones, like all to all and
one to one, to random connections between the sets, such as fixed indegree

and fixed total number. Chemical synapses, the original research domain of
NEST, imply a directed interaction. Therefore, the Connect routine is designed
to specify directed graphs. Gap junctions, however, mediate a bidirectional inter-
action. Simulation code for spiking neuronal networks exploits the directedness
of chemical synapses by representing synapses only on the compute node where
the postsynaptic neuron resides. This enables network creation to be organized as
an ideally parallelized activity without communication between nodes (see Sub-
sec. 2.3.1). In this framework, gap junctions need partial representations on the
postsynaptic as well as on the presynaptic side to mediate the bidirectional in-
teraction on the undirected subgraph. Hence, in order to connect two neurons
through a gap junction, connections in both directions need to be created.

Script 5.4 shows various ways to connect two previously created neurons with
a single gap junction in NEST 2.10.0 and 2.12.0 in the PyNEST [51] syntax.
In order to prevent the creation of incomplete or non-symmetric gap junctions,
NEST 2.12.0 introduces a make symmetric flag with default value false to the
connection algorithm. This flag provides the option to create both connections
with a single call to Connect, as in the second variant of Script 5.4, by creating the
reverse connection internally. With the introduction of the flag, the creation of
gap junctions is restricted to one to one connections with true make symmetric

flag and to all to all connections with equal source and target populations and
default or scalar parameters. Therefore, the first variant cannot be used in NEST
2.12.0 or later. The third variant, starting at line 14, generalizes to all-to-all
connected networks of an arbitrary number of neurons, independent of whether
a network of chemical synapses or gap junctions is desired. Self connections are
excluded by setting the autapses flag to false. All three variants ideally and
automatically parallelize, relying on the NEST implementation of Connect.

The restriction on the creation of gap junctions is mostly motivated by more
complex random networks, where we need to take special care. Let us consider
an example where the total number of gap junctions in a given volume of cortical
tissue is known. These gap junctions are randomly distributed over all possible
pairs of neurons in the volume without any further constraints. In particular, a
neuron does not have a gap junction with itself, but a given pair of neurons may
be coupled by more than one gap junction.

63

5 Application in computational neuroscience I:
Including gap junctions in a spiking neural network simulator

Script 5.4: Various ways to create a gap junction between two
neurons. Two connections are required; one for each direction. Here and in the

following scripts we use the syntax of the PyNEST interface [51] of the NEST

simulation software. By convention, in Connect(i,j) the interaction is from i

to j; i exerts an influence on j. Create returns an n-tuple and Connect accepts

n-tuples, lists, and arrays of the numpy module as arguments for i and j. The

third positional argument of Connect specifies the connection algorithm; use of a

dictionary for the connection algorithm enables the specification of more details.

The make symmetric flag introduced with NEST 2.12.0 provides the possibility

to create both connections with a single call. In this case the reverse connection

is created internally. An autapse is a connection a neuron forms with itself,

which is here forbidden in the all to all-version (line 16). The fourth positional

argument specifies the dynamics of the connection; here we just specify the model

name gap junction. While the first two alternatives are only meaningful for a

single gap junction, the third generalizes to networks with all-to-all connectivity.

1 import nest

2
3 n = nest.Create(’hh_psc_alpha_gap ’, 2)

4
5 # only works with NEST 2.10.0

6 nest.Connect ([n[0]], [n[1]], ’one_to_one ’, ’gap_junction ’)

7 nest.Connect ([n[1]], [n[0]], ’one_to_one ’, ’gap_junction ’)

8
9 # works with NEST 2.12.0 (or later)

10 nest.Connect ([n[0]], [n[1]],

11 {’rule’: ’one_to_one ’, ’make_symmetric ’: True},

12 ’gap_junction ’)

13
14 # works with both versions

15 nest.Connect(n, n,

16 {’rule’: ’all_to_all ’, ’autapses ’: False},

17 ’gap_junction ’)

Script 5.5 shows a script implementing this network using the fixed total number

algorithm of the Connect command. At line 14 the network is created as a di-
rected graph; the interaction is mediated only in one direction. Connect efficiently
generates this network, instantiating the relevant subgraphs in parallel on all of
the compute nodes using parallel random number generators. Therefore on the
level of the interpreter executing the script, the actual connectivity is not known.
In order to create the complementary directed graph, we need to retrieve the
existing connections from the simulation kernel, exchange the roles of pre- and
postsynaptic neurons, and in addition create this subnetwork. GetConnections,
however, only returns the set of incoming connections of the neurons represented

64

5.3 User interface

Script 5.5: Creation of a network with a predetermined total num-
ber of gap junctions between randomly chosen pairs of neurons
using a predefined connection algorithm. As a first step (line 14) the

random network is created as a directed graph. The second step (lines 17-19) ob-

tains the list of connected neuron pairs from the simulator and reshapes the data

to corresponding lists of pre- and postsynaptic neurons. The final step (line 21)

adds the transposed connectivity matrix to the network by supplying Connect

with the lists of the pre- and postsynaptic neurons of the original network in

reversed order. The parameters in the script result in a binomially distributed

number of gap junctions per neuron with a mean of 60. The script does not

work in a distributed simulation as the function GetConnections only returns

the part of the network represented on the node executing the command: the

set of incoming connections of the locally represented neurons. The successful

execution of the script is only possible with NEST 2.10.0; starting with NEST

2.12.0 the Connect call in line 14 issues an error.

1 import nest

2 import numpy as np

3
4 # total number of neurons

5 N = 100

6 # total number of gap junctions

7 K = 3000

8
9 n = nest.Create(’hh_psc_alpha_gap ’, N)

10
11 r = {’rule’: ’fixed_total_number ’, ’N’: K, ’autapses ’: False}

12 g = {’model’: ’gap_junction ’, ’weight ’: 0.5}

13
14 nest.Connect(n, n, r, g)

15
16 # get source and target of all connections

17 m = np.transpose(

18 nest.GetStatus(nest.GetConnections(n),

19 [’source ’, ’target ’]))

20
21 nest.Connect(m[1], m[0], ’one_to_one ’, g)

on the local compute node. The transpose of this subnetwork generally, therefore,
has mainly non-local postsynaptic neurons which the Connect command ignores.
Hence, Script 5.5 does not work in a distributed simulation. This problem occurs
for any type of network where the realization is only known to the simulation en-
gine. Users without in-depth knowledge of the connection infrastructure of NEST
might therefore create potentially incomplete gap junctions with this or similar

65

5 Application in computational neuroscience I:
Including gap junctions in a spiking neural network simulator

Script 5.6: Creation of a network with a predetermined total num-
ber of gap junctions using an explicit list of random neuron pairs.
Same parameters as in Script 5.5. The random module of the Python Standard

Library is used to independently draw K pairs of random samples from the list of

all neurons (line 17). The data is in the same line reshaped into two correspond-

ing lists of pre- and postsynaptic neurons. The subsequent Connect call uses the

syntax of PyNEST as of NEST 2.12.0. The script does work in a distributed

simulation.

1 import nest

2 import random

3 import numpy as np

4
5 # total number of neurons

6 N = 100

7 # total number of gap junctions

8 K = 3000

9
10 n = nest.Create(’hh_psc_alpha_gap ’, N)

11
12 r = {’rule’: ’one_to_one ’, ’make_symmetric ’: True}

13 g = {’model ’: ’gap_junction ’, ’weight ’: 0.5}

14
15 random.seed (0)

16
17 m = np.transpose ([random.sample(n, 2) for _ in range(K)])

18
19 nest.Connect(m[0], m[1], r, g)

scripts in NEST 2.10.0. Starting with NEST 2.12.0, the Connect call in line 14
therefore issues an error due to the new restriction mentioned above.

Random connections of gap junctions must therefore be created on the level of
the interpreter executing the script before handing them down to the Connect

command. Script 5.6 illustrates this approach using the random module of the
Python Standard Library. The drawback of this script is the serialization of the
connection procedure in terms of computation time and memory. Each compute
node participating in the simulation needs to draw the same full set of random
numbers and temporarily represent the total connectivity in variable m. In the
subsequent call to Connect, each compute node only considers those neuron pairs
where the postsynaptic neuron is local.

66

5.4 Numerical results

5.4 Numerical results

We employ three network models to study different aspects of the iterative method
in comparison with the single-step method. In Subsec. 5.4.2 we investigate the
pair of neurons coupled by a gap junction which was already presented in the in-
troduction of this chapter to demonstrate the problems of the single-step method
in contrast to the advanced method based on waveform relaxation. For the
waveform-relaxation method, we compare the results with linear and cubic in-
terpolation. This approach discloses the general behavior of the methods and
provides access to the single-neuron integration error not measurable in recurrent
networks with chaotic dynamics (see [81] and [87] for earlier uses of this technique).
Subsequently in Subsec. 5.4.3, a network of inhibitory neurons is investigated to
demonstrate the simultaneous integration of spiking and gap-junction dynamics
and to confirm the accuracy of the iterative method in capturing a parameter
value at which a qualitative change in network activity occurs. Finally, in Sub-
sec. 5.4.4 the scalable network model of Kunkel et al. [112] is used to assess the
influence of the gap-junction framework on memory consumption and simulation
speed in simulations that exclusively use spiking synapses. The performance in
simulations with gap junctions is measured with a scaled version of the two neu-
ron test case. Details on the test cases employed, computers and measures of
accuracy are summarized in Subsec. 5.4.1. All performance tests in Subsec. 5.4.4
use NEST 2.10.0 [14]. All other numerical tests use a slightly earlier prototype
branch of NEST.

5.4.1 Setup

5.4.1.1 Test cases

Test case 1a: pair of neurons coupled by a gap junction The setup consists
of two hh psc alpha gap neurons i and j connected by a gap junction with weight
gij = 30.0 nS. Both neurons receive a constant current of 200.0 pA. All other
parameters are kept at their default values (see [118]) for both neurons. The
minimum delay of spike interaction is set to 1.0 ms.

Test case 1b: scalable network with gap junctions only The test case 1a is
extended to N neurons to investigate the scaling of the gap-junction framework.
Each neuron is coupled by gap junctions of uniform weight g = 0.5 nS to 60
other neurons. For the sake of simplicity neuron i is coupled to the neurons from
index (i−30+N) mod N to (i+30) mod N , where mod denotes the modulo
operator. Thus the 30 prior and the 30 subsequent neurons are coupled if one

67

5 Application in computational neuroscience I:
Including gap junctions in a spiking neural network simulator

considers the neurons aligned in a ring. All other inputs and parameters are the
same as in test case 1a.

Test case 2: inhibitory network We investigate a network of 500 neurons of
type hh psc alpha gap with random initial membrane potentials between−40 mV
and −80 mV. Each neuron receives 50 inhibitory synaptic inputs that are ran-
domly selected from all other neurons, each with synaptic weight JI = −50.0 pA
and synaptic delay d = 1.0 ms. Each neuron receives an excitatory external Pois-
sonian input of 500.0 Hz with synaptic weight JE = 300.0 pA and the same delay
d. In addition, 60·500

2
gap junctions are added randomly to the network, resulting

in an average of 60 gap-junction connections per neuron. The weight g of each
gap-junction connection is chosen uniformly and will be varied within our tests.

Test case 3: scalable network without gap junctions The setup consists of
a balanced random network model [20] of 80% excitatory and 20% inhibitory
leaky integrate-and-fire model neurons with alpha-shaped post-synaptic currents
studied by Kunkel et al. [112] in a maximum-filling scenario. Both cell types are
represented by the NEST implementation iaf neuron with a homogeneous set of
parameters. All excitatory-excitatory connections exhibit spike-timing dependent
plasticity and all other synapses are static. In [112] the network is used to char-
acterize the differences between the 3rd- and 4th-generation simulation kernel of
NEST. We use parameter set 1 of [112] to assess the overhead of the gap-junction
framework in simulations where no gap junctions are present.

5.4.1.2 Computers

The numerical results in this chapter are obtained with three different computer
systems: a workstation computer, a single shared memory node of a cluster and
two distributed-memory supercomputing systems. The workstation is used for
the simulation of small networks investigating the accuracy of the methods (test
cases 1a and 2), while the simulations on the shared memory cluster and the
supercomputers benchmark the scalability of the new approach in terms of run
time and memory usage (test cases 1b and 3).

The workstation computer comprises a 4-core Intel(R) Core(TM) i7-4770 pro-
cessor, which runs at 3.4 GHz and supports simultaneous multithreading with 2
threads per core. 32 GB of random access memory (RAM) are available. The
shared memory node of the cluster HAMBACH at the Jülich Research Centre
in Germany includes compute nodes with 4 AMD Magny-Cours 12-core Opteron
6174 with 2.2 GHz and 256 GB RAM. For our study the parallelization on both
systems is carried out by OpenMP [137].

68

5.4 Numerical results

The employed supercomputers are the JUQUEEN BlueGene/Q [98] at the Jülich
Research Centre in Germany and the K computer [126] at the Advanced Institute
for Computational Science (AICS) in Kobe, Japan. The former comprises 28, 672
nodes, each with a 16-core IBM PowerPC A2 processor which runs at 1.6 GHz.
The latter consists of 88, 128 nodes, each with an 8-core SPARC64 VIIIfx proces-
sor which operates at a clock frequency of 2 GHz.

Both systems support a hybrid simulation scheme: distributed-memory parallel
computing with MPI [124] and multithreading (OpenMP) on the processor level.
16 GB RAM are available per compute node for both systems. In the case of
JUQUEEN the nodes are connected through a five-dimensional torus interconnect
network with a bandwidth of 2 GB/s per link. In case of the K computer, they
are connected with the “Tofu” (torus connected full connection) interconnect
network, which is a six-dimensional mesh/torus network. The bandwidth per
link is 5 GB/s.

In this chapter, all supercomputer benchmarks were run with 8 OpenMP threads
per compute node and the pool allocator (see [112] for details). These are the
same settings as in the former work of Kunkel et al. [112], which allow us to
compare with previous results (see Subsec. 5.4.4).

For the remainder of this chapter, simulation results on different hardware sys-
tems are distinguished in the figures by color: shades of green for workstations
and shared memory clusters, shades of blue for the JUQUEEN BlueGene/Q and
shades of red for the K computer.

5.4.1.3 Measures of accuracy

Different measures are used to determine the accuracy of the solution. The initial
two measures compare the membrane potential V (t) to a known reference solution

V̂ (t). To demonstrate that the integration method can qualitatively change the
network dynamics, we also use further measures which characterize the emergent
properties of the network such as the firing rate and synchrony.

Error in membrane potential time course First, we employ the well known
root mean square error (RMSE)

ε =

√
1

T

∫ T

0

(V̂ (t)− V (t))2dt, (5.10)

which measures the deviation of the solution V (t) for the membrane potential

from a reference solution V̂ (t) on a time interval [0, T].

69

5 Application in computational neuroscience I:
Including gap junctions in a spiking neural network simulator

Since the solution is unknown in continuous time, a discrete approximation with
linear interpolation between the grid points is used as in [87]. This first order

approximation with n grid points at times t1, ..., tn with ∆Vk = V̂ (tk)−V (tk) and
∆tk = tk − tk−1 can be determined as

ε ≈

√√√√ 1

3T

n−1∑
k=1

∆tk+1(∆V 2
k + ∆V 2

k+1 + ∆Vk∆Vk+1). (5.11)

In contrast to the mean relative error measure

l2 =

√∫ T
0

(V̂ (t)− V (t))2dt√∫ T
0
V̂ (t)2dt

=
ε√

1

T

∫ T
0
V̂ (t)2dt

,

which was employed to determine the error in the membrane potential time course
in [153], the RMSE calculates the mean absolute error. We decided to use the
latter as our error measure ε, since the behavior of the membrane potential in
our test cases is well known, which makes the absolute error a more descriptive
measure.

Temporal displacement Secondly, we introduce a measure for the shift δ be-
tween V (t) and the reference solution V̂ (t). This measure determines the relative
time shift τ between the two signals that minimizes the RMSE

δ = argmin
0≤τ≤τ∗

√
1

T

∫ T

0

(V̂ (t)− V (t+ τ))2dt. (5.12)

Of course, this error measure is only reasonable if the RMSE is indeed caused by
a shift. In addition, periodic signals can lead to misleading results if, for example,
there is a shift of exactly one period. Nevertheless, the shift is a descriptive
measure if the neurons under consideration match the required conditions. For
practical usage, we employ the same discretization as for the RMSE and calculate
V (tk + τ) through linear interpolation between the grid points.

Network synchrony For a network of N neurons with membrane potentials
V1, ..., VN , we determine the degree of synchrony of the network state as in [78]
and [130] by the temporal fluctuations σVav of the average membrane potential

70

5.4 Numerical results

Vav(t) =
1

N

N∑
i=1

Vi(t)

normalized by the average temporal fluctuation σVi of the single cells in the pop-
ulation. The resulting measure χ(N) reads

χ(N) =

√√√√√ σ2
Vav

1

N

∑N
i=1 σ

2
Vi

(5.13)

and covers the interval from 0 to 1, where 1 denotes a fully synchronized network
and 0 denotes the asynchronous state. The variance σ2

Vav
(and analogously σ2

Vi
)

can be estimated as

σ2
Vav
≈ 1

T

∫ T

0

[Vav(t)]2 dt−
[

1

T

∫ T

0

Vav(t) dt

]2

.

For our calculations, the occurring integrals are approximated by the trapezoidal
rule

1

T

∫ T

0

x(t)dt =̇
1

n− 1

(
x(t1) + x(tn)

2
+

n−1∑
k=2

x(tk)

)
.

Average spike rate For a given spike train S(t) with spikes at time t1, . . . , tn,
the spike count function η(t) counting the number of spikes that have occurred
up to and including time t can be written as

η(t) =
n∑
k=1

H(t− tk)

where again H(x) denotes the Heaviside step function. We determine the spike
rate ν in the interval (0, T] as

ν =
η(T)

T
,

71

5 Application in computational neuroscience I:
Including gap junctions in a spiking neural network simulator

and denote the average spiking rate of a network of N neurons as

ν̄ =
1

N

N∑
i=1

νi.

This estimate of the spike rate ν is consistent with the assumption that n(t) is a
homogeneous Poisson process with fixed intensity, for which we try to estimate
the intensity by the given realization (see [99], their Chapter 19).

5.4.2 Pair of gap-junction coupled neurons

We employ a pair of gap-junction coupled neurons with identical parameters and
constant input current (test case 1a) to investigate the accuracy on the single neu-
ron level. Since both neurons behave exactly the same, their membrane voltages
are identical and consequently Igap = 0 holds at all times. Therefore the results of
a consistent gap-junction implementation should be exactly the same as for two
uncoupled neurons with the same properties. In this setting, the results of the
uncoupled pair of neurons can be used as a reference solution to determine the
quality of the investigated integration methods. The employed gap weight g of
30.0nS represents the typical total coupling of a single neuron with the remainder
of the network: the natural weight of a single gap junction is much smaller, but
each neuron is connected to dozens of other neurons. The test case exposes how
the numerical methods operate on networks of synchronized neurons coupled by
gap junctions. In the absence of any chemical synapses, the minimum delay of
spike interaction is set to 1.0 ms in order to obtain realistic results for the inte-
gration scheme that only communicates when spike times need to be exchanged.

Fig. 5.8A shows the functionality of the iterative method by measuring the error
ε in the membrane potential for different numbers of iterations. The RMSE de-
creases with every iteration until it converges to some plateau error. The plateau
error depends on the used interpolation order and is independent of the employed
communication strategy. Its origin will be discussed later in Fig. 5.10. As ex-
pected, a faster convergence is reached with the h-step communication, while
the communication in intervals of the minimal delay takes a few more iterations.
The lower panel (Fig. 5.8B) shows the mean number of iterations when the same
simulation is run with the iteration control described in section Subsec. 5.1.1.
The number of needed iterations is mostly independent of the step size h and
the used interpolation order, but differs by about four iterations for the different
communication strategies.

72

5.4 Numerical results

A

B

0 2 4 6 8
iterations

10-2

10-1

100

101

102

ǫ
(m

V
)

10-2 10-1

h (ms)

3

5

7

9

m
ea
n
n
u
m
b
er

it
er
at
io
n
s
ι

Figure 5.8: Integration error as a function of the number of iterations. Solid
curves indicate cubic interpolation, dashed curves linear interpolation. Filled circles
show results for the communication interval of NEST communication, open circles show
the results for communication in every time step h. Color indicates the hardware system;
in this and all subsequent figures shades of green represent workstations (here) or shared
memory cluster node. The RMSE ε of the membrane potential was measured over 1 s
of biological time. The step size h was chosen as 0.05 ms leading to r = 1.0

0.05 = 20
time steps within one minimal delay communication interval. (A) RMSE for different
numbers of iterations. (B) Mean number of iterations when using the iteration control
with default settings (prelim tol chosen as 10−4 and a maximum of 15 iterations,
which was not reached for any simulation interval).

In simulations with distributed memory the total number of communications is
an important quantity, as each communication is associated with a considerable
latency. If we denote with ιh and ιdmin

the mean number of iterations with the
corresponding strategy and define as r = dmin

h
the number of time steps per

minimal delay interval, the total numbers of communications in each step Ch and
after each minimum delay Cdmin

relate to each other as

Ch ≈
ιh
ιdmin

· r · Cdmin
. (5.14)

As the coupling strength of the test case relates to the total coupling of a single

73

5 Application in computational neuroscience I:
Including gap junctions in a spiking neural network simulator

neuron, the simulation provides a realistic estimate for the number of iterations
needed within larger network simulations. For this given estimate, Ch exceeds
Cdmin

for r ≥ 3. Since r = 10 or r = 20 are more likely for an average simulation,
we have Ch � Cdmin

. Therefore communication after each minimum delay is
beneficial for the reduction of the total number of communications despite the
faster convergence of the h-step communication strategy.

A B

C D
10
-3

10
-2

10
-1

h (ms)

10-6

10-4

10-2

100

102

δ
(m

s)

10
-3

10
-2

10
-1

h (ms)

10-6

10-4

10-2

100

102

ǫ
(m

V
)

10
-3

10
-2

10
-1

h (ms)

10-2

10-1

100

101

102

T
si
m

(s
)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

ǫ (mV)

10-2

10-1

100

101

102

T
si
m

(s
)

Figure 5.9: Efficiency of a two-neuron simulation. Triangles show results with
the single-step method, while circles indicate results obtained by the iterative method.
Again solid curves indicate cubic interpolation and dashed curves were obtained with
linear interpolation. The used communication scheme is indicated by open (h-step
communication) and filled symbols (communication in intervals of the minimal delay).
The iteration control was used with prelim tol chosen as 10−6. (A) Shift of the spike
times after 1 s of biological time plotted against used step size h. (B) RMSE ε measured
over 1 s of biological time plotted against the step size h. (C) Simulation time of the
different approaches for 1 s of biological time. (D) Simulation time versus RMSE ε of
the corresponding simulation.

Fig. 5.9 compares the results of the iterative method with the results of the sin-
gle step methods in terms of accuracy and simulation time. Panel B measures
the error ε of both methods for different step sizes h. For any given step size
h the RMSE of the iterative method is much smaller than the RMSE of the
single-step approach, which does not even reach a satisfying accuracy for step

74

5.4 Numerical results

size h = 0.001 ms. Within the iterative method, cubic interpolation leads to a
higher accuracy. For the cubic interpolation the RMSE reduces from 0.52 for
h = 0.1 to 1.01 · 10−4 for h = 0.01. Fig. 5.9A shows that the error relates to
a shift in comparison to the reference solution. This shift can be reduced up to
10−6 ms for the iterative method with cubic interpolation and step size 0.01 ms.
For a given step size h and leaving accuracy considerations aside, the single step
method is the fastest implementation for any given step size, since no additional
iterations are needed to compute the results. The iterative approach with linear
interpolation saves some time in comparison to the version with cubic interpo-
lation, since less interpolation data needs to be computed and communicated.
For this simple test case, h-step communication outperforms the communication
strategy in intervals of the minimal delay by a factor of 1.5, due to the very low
amount of communicated data and because the communication in the employed
shared memory system is fast compared to the computation. Further simulation
time results for simulations on supercomputers are presented in Subsec. 5.4.4.
Fig. 5.9D compares the methods in terms of efficiency. To this purpose we an-
alyze the simulation time as a function of the integration error [130], measured
through the RMSE. There are two ways of reading this graph: horizontally, one
can find the most accurate method for a given simulation time. Vertically one can
find the fastest method for a desired accuracy. The results show that the iterative
method delivers better results in shorter time than the single step method. Also,
the additional effort of the cubic simulation pays off, since the method computes
more accurate results in the same simulation time and reaches an accuracy which
cannot be reached with the linear interpolation.

A B

10
-2

10
-1

h (ms)

10-3

10-2

10-1

100

101

ǫ a
p
p
ro
x

(m
V
)

10
-3

10
-1

10
1

ǫapprox (mV)

10-3

10-1

101

ǫ s
im

(m
V
)

Figure 5.10: Effect of membrane potential interpolation on network error. (A)
RMSE εapprox of linear (dashed curves) and cubic (solid curves) interpolation for the
action potential shown in Fig. 5.4 as a function of the computation step size h. (B)
Integration error for the two-neuron network (Fig. 5.9) as a function of the interpolation
error shown in (A).

75

5 Application in computational neuroscience I:
Including gap junctions in a spiking neural network simulator

We observe from Fig. 5.8 and Fig. 5.9 that the error of the iterative method
converges to a certain plateau whose magnitude depends on the step size. Fig. 5.10
shows that the approximation of the membrane potential is the reason for this
inaccuracy. The left panel shows the error when approximating the reference
spike shape in Fig. 5.4 with different step sizes. The right panel compares this
error to the NEST RMSE when using the corresponding interpolation and same
step size h. It turns out that the errors are basically the same, as indicated by the
dashed line. The approximation error of the cubic interpolation is slightly higher
than the mean simulation error, since the approximation of a spike is the most
difficult part of the interpolation. The membrane potential between two spikes
can be approximated almost perfectly with a cubic interpolation, although the
spike shape still deviates from cubic behavior.

The contour plots in Fig. 5.11 show the influence of gap weight, step size and
desired accuracy prelim tol on the error ε and the number of iterations. Panel
A demonstrates that the order of magnitude of the parameter prelim tol only
relates to that of the RMSE if the step size h is sufficiently small. For larger
step sizes the accuracy is limited by the interpolation error. Panel B shows that
the error is also influenced by the gap weight, i.e. by the coupling strength in
the network. Especially for step sizes h > 0.05 ms, a weaker coupling between
the neurons results in a higher accuracy. Fig. 5.11C and D show that the mean
number of iterations is dependent on both the parameter prelim tol and the gap
weight g for both communication strategies. As already indicated by Fig. 5.8, the
number of iterations is lower for h-step communication, regardless of the exact
choice of both parameters.

5.4.3 Network with combined dynamics of chemical synapses
and gap junctions

The results in Subsec. 5.4.2 show the functionality of the iterative approach in
purely gap-junction coupled networks. This section now investigates whether the
numerical method based on waveform relaxation also captures the global network
dynamics correctly, when both chemical synapses and gap junctions are involved,
which is another important aspect for the employed method. In order to do so,
we turn to population measures like the spike rate and synchrony in the network
and study a network with a phase transition. Capturing the correct parameter
value at which the transition occurs is a good indication that not only the single
neuron error is low but also the global error. This idea and the network setting
have a history in [79], [130], [36] and [78]. The employed network (test case
2) consists of 500 neurons with external excitatory Poissonian input, which are
coupled by inhibitory synapses and gap junctions with uniform gap weight g.
Without the gap junctions (i.e. for g = 0 nS) the network shows an asynchronous

76

5.4 Numerical results

A B

C D

0.02 0.04 0.06 0.08 0.10

h (ms)

10-6
10-5
10-4
10-3
10-2
10-1

p
r
e
l
i
m
_
t
o
l

g=30.0 nS

0.02 0.04 0.06 0.08 0.10

h (ms)

5
10
15
20
25
30

g
(n
S
)

prelim_tol=10−6

10-6 10-5 10-4 10-3 10-2 10-1

prelim_tol

5
10
15
20
25
30

g
(n
S
)

h=0.05 ms

10-6 10-5 10-4 10-3 10-2 10-1

prelim_tol

5
10
15
20
25
30

g
(n
S
)

h=0.05 ms

ǫ (mV)

10-1

10-2

10-3

10-4

10-5

ǫ (mV)

10-1

10-2

10-3

10-4

10-5

ιdmin

5

7

9

11
ιh

5

7

9

11

Figure 5.11: Influence of gap weight, step size and desired accuracy on the
error ε and the number of iterations. The data for the contour plot is obtained by
several simulations of test case 1a with various gap weights g, different desired accuracies
prelim tol and different step sizes h. All simulations run for 100 ms of biological time
and use cubic interpolation. Panels (A), (B) and (C) employ communication in intervals
of the minimal delay and panel (D) employs h-step communication. (A) RMSE in
dependency of step size h and desired accuracy prelim tol. The gap weight is fixed at
g = 30.0 nS. (B) RMSE in dependency of step size h and gap weight g. The desired
accuracy prelim tol is fixed at 10−6. (C) The mean number of iterations ιdmin

in
dependency of desired accuracy prelim tol and gap weight g. The step size is fixed at
h = 0.05 ms. (D) Same setup as in panel (C) but with mean iterations measured for
the case of h-step communication.

irregular state [21] that is caused by the external excitatory Poissonian drive being
balanced by the inhibitory feedback within the network. The network is expected
to synchronize with increasing g. A qualitatively similar synchronization has been
observed previously [36]. In this setup it is natural to regard the gap weight g as
the bifurcation parameter.

Fig. 5.12 shows the spiking behavior of the employed network for different choices
of the gap weight g. For a lower gap weight g = 0.3 nS the network remains in
an asynchronous state. In panel B (g = 0.54 nS) the network switches randomly
between the asynchronous and synchronous state, while for the highest gap weight

77

5 Application in computational neuroscience I:
Including gap junctions in a spiking neural network simulator

A

B

C

0 500 1000 1500 2000 2500 3000

t (ms)

0
10
20
30
40
50

N
eu
ro
n
n
o.

0 500 1000 1500 2000 2500 3000

t (ms)

0
10
20
30
40
50

N
eu
ro
n
n
o.

0 500 1000 1500 2000 2500 3000

t (ms)

0
10
20
30
40
50

N
eu
ro
n
n
o.

Figure 5.12: Spike patterns for different gap weights. The panels show the spike
times of the first 50 neurons of the inhibitory network (test case 2) over 3 s of biological
time for JI = −25 pA. All results were obtained with the iterative method with
cubic interpolation and step size 0.05 ms. (A) gap weight g = 0.3 nS (B) gap weight
g = 0.54 nS (C) gap weight g = 0.7 nS

g = 0.7 nS, a stable synchronous state is reached. The exact transition between
these two states as a function of the gap weight and choice of integration method is
visualized in Fig. 5.13. To overcome statistical fluctuations caused by the random
transitions between the asynchronous and the synchronous state, which can be
observed in Fig. 5.12B, the system needs to be simulated for a prolonged time.
The transition is investigated for two different choices of the synaptic weight of the
inhibitory synapses to demonstrate the influence of the chemical synapses on the
location of the transition. The shift of the transition point between both choices
of JI guarantees the influence of the chemical synapses on the global network
dynamics, which is needed in order to show the correctness of the new iterative
method for networks with chemical synapses and gap junctions.

As expected, an increase of the gap weight leads to a higher network synchrony,
which also influences the spike rate. For the two choices of JI Fig. 5.13 shows
differences in the gap weight at which the network turns from the partly synchro-
nized state to the almost fully synchronized state. In order to demonstrate the

78

5.4 Numerical results

A

B

0.0 0.2 0.4 0.6 0.8

g (nS)

0

5

10

15

20

25

30

ν̄
(H

z)

A B C

A B C

JI =−50 pA

JI =−25 pA

0.0 0.2 0.4 0.6 0.8

g (nS)

0.2

0.4

0.6

0.8

1.0

χ
(N

)

JI =−50 pA

JI =−25 pA

10-3 10-2 10-1

h (ms)

1.0

2.0

3.0

ǫ
(H

z)

Figure 5.13: Network behavior depending on the gap weight g. The average spike
rate ν̄ (A) and the synchrony χ (5.13) of the neurons in the network (B), depending on
the gap weight. The results for the iterative method with cubic interpolation are shown
as solid curves (step size 0.05 ms) and for the single-step method with dashed (step
size 0.05 ms) and dotted (step size 0.001 ms) curves. Two different synaptic amplitudes
JI = −50 pA and JI = −25 pA were used, as indicated by the figure legend. The
prelim tol was chosen as 10−5 and the maximum number of iterations was not used
as a stopping criterion. The simulation duration was 100 s (JI = −25 pA), respectively
180 s (JI = −50 pA) of biological time. The inset of panel A shows the difference
between the results of the iterative method (step size 0.05 ms) and the results of the
single-step method for different step sizes h measured by the RMSE. The dashed vertical
lines correspond to the panels of Fig. 5.12.

correctness of the new iterative method over the single-step method, the latter
is simulated for different step sizes h. The inset of Fig. 5.13A shows the differ-
ence of the spike rate (measured through the RMSE) between the two methods,
depending on the step size. It demonstrates that the solution of the single-step
method converges to the solution of the iterative method. In agreement with the
results presented in Subsec. 5.4.2, the convergence is slow: even for the step size
h = 0.001 ms the difference is still apparent.

79

5 Application in computational neuroscience I:
Including gap junctions in a spiking neural network simulator

Regardless of the parameter value at which the transition occurs, the inaccuracy of
the single-step method is also noticeable in the spike rate for higher gap weights
(g > 0.6 nS), as the influence of the employed method increases with the gap
weight used. The lower spike rate of the single-step method is an immediate
consequence of the previously seen shift. The shift goes along with a longer
distance between two spikes, which leads to the observed lower spike rate.

5.4.4 Performance of the gap-junction framework in NEST

The design of the framework for gap junctions in NEST, as described in Sec. 5.1,
is guided by the goal to neither impair code maintainability or impose penalties on
run time or memory usage for simulations that exclusively use chemical synapses.
The first requirement is addressed by the design choice to tightly integrate the
novel framework with the existing connection and communication infrastructure
of NEST instead of developing an independent pathway for gap-junction related
data. Therefore, we are interested in the performance of i) simulations exclusively
using chemical synapses and ii) simulations including gap junctions.

We employ the balanced random network model from [20] (test case 3) to investi-
gate simulations exclusively using chemical synapses. We measure the deviation
in simulation time and memory usage between the last release without the gap-
junction framework (NEST 2.8.0, [52]) and NEST 2.10.0. Although NEST 2.10.0
also contains other changes and new features, like a framework for structural plas-
ticity, the most time- and memory-sensitive changes are due to the gap-junction
framework. Fig. 5.14 shows results for the network in a maximum-filling scenario,
where for a given machine size NVP we simulate the largest possible network that
completely fills the memory of the machine. Although the simulation scenario is
maximum filling, we were able to simulate the same network size as before, as
the increase in memory usage is within the safety margin of our maximum-filling
procedure (see [112] for details on the procedure). Measured in percentage of the
prior memory usage (Fig. 5.14B), the consumption increases by 0.2 to 1.5 percent
depending on the number of virtual processes NVP. The behavior on JUQUEEN
and the K computer is almost identical. The run time of the simulation increases
up to 4.0 percent for simulations with a low number of virtual processes, with an
average of 1.1 and 0.7 percent on JUQUEEN and the K computer respectively.
The simulation times on the K computer show slightly higher fluctuations, al-
though the measurements are averaged over three runs on both supercomputers.
The small increase of memory usage is caused by changes to the thread-local con-
nection infrastructure and the communication buffer described in Subsec. 5.1.2
and Subsec. 5.1.3. In case of primary events only (no use of gap junctions) the
only extra data member is primary end, which only affects the connection con-
tainer called HetConnector. As the HetConnector is only instantiated if there

80

5.4 Numerical results

A

B

51
2

20
48

81
92

32
76
8
98
30
4

NVP

105

106

107

108

109

N
m
ax

51
2

20
48

81
92

32
76
8
98
30
4

NVP

−2

0

2

4

in
cr
ea
se

(%
)

102

103

104

105

106

T
si
m

(s
)

Figure 5.14: Overhead of the gap-junction framework for network with only
chemical synapses. NVP denotes the overall number of processes used in line with
our distribution strategy, as described in Subsec. 5.4.1.2. In this and all subsequent
figures, shades of blue indicate the JUQUEEN supercomputer and shades of red show
the results for the K computer. (A) Triangles show the maximum network size that
can be simulated in the absence of gap junctions (test case 3). Circles show the cor-
responding wall-clock time required to simulate the network for 1 s of biological time.
Left semicircles indicate the results with NEST 2.8.0 without the gap-junction frame-
work and right semicircles are obtained with the framework included (NEST 2.10.0).
(B) Increase of time (circles) and memory consumption (triangles) of NEST 2.10.0 in
percent as compared to NEST 2.8.0.

are two or more synapse types targeting neurons on a given machine and having
the same source neuron, this additional data member is irrelevant in the limit
of large machines (sparse limit), where practically all connections are stored in
HomConnectors; the latter containers only hold connections of identical types and
do not have the additional data member primary end. The small increase of the
run time is due to an additional check for existence of secondary connections,
which has to be done during the delivery of the events. The check is done directly
after retrieving the pointer address from the sparse table and does not require ad-
ditional memory, as this information is encoded in redundant bits of the pointer

81

5 Application in computational neuroscience I:
Including gap junctions in a spiking neural network simulator

address itself (see Subsec. 5.1.2 for details). The reduced increase of the run time
at higher numbers of virtual processes NVP is due to the prolonged simulation
time, as some part of the overhead is caused by the initialization in the beginning
of the simulation.

103 104

N

102

103
T
si
m

(s
)

Figure 5.15: Comparison of simulation times on different systems. Simulation
of the scaled version of the pair of neurons (test case 1b) with different network sizes
N . Open symbols show the results for communication in every step (T = h) while filled
symbols show the results for the original NEST communication scheme (T = dmin). The
simulations on the workstation (green) are executed with 8 virtual processes (8 threads).
The JUQUEEN simulations (blue) use 128 virtual processes (16 MPI processes a 8
threads). 500 ms of biological time are simulated with step size h = 0.05 ms.

Next we turn to simulations with gap junctions. The benchmarks use a scaled
version of the network simulating a pair of neurons (test case 1b), where each
neuron is coupled to 60 other neurons by gap junctions. The number of neurons
performing the computation and the amount of communicated data increase with
N . We keep the conductance of a neuron accumulated over all gap junctions the
same as in the case of the network comprised of a single pair (test case 1a). As
a consequence, the computations carried out by the integrator of each individual
neuron are the same, and hence its dynamics is independent of N . Thus, the
performance of the gap-junction framework can be measured in a setting with
fixed single neuron dynamics despite the presence of additional neurons.

Fig. 5.15 compares the run time of both communication strategies on JUQUEEN
with their performance on workstations. On the workstation, the h-step commu-
nication performs better due to the smaller number of iterations per interval and
the fast communication through shared memory. On JUQUEEN, however, the
communication in dmin steps outperforms communication in every step. As dis-
cussed in Subsec. 5.4.2, the total number of communications (5.14) of the h-step
communication strategy Ch exceeds Cdmin

. Due to the latency of the communi-
cation in a system with distributed memory, the original NEST communication

82

5.4 Numerical results

strategy performs better on JUQUEEN despite the comparatively small number
of 16 MPI processes.

A

B

C

51
2

10
24

20
48

40
96

81
92

16
38
4

NVP

100

101

102

103

T
si
m
,
T
ga
p

(s
)

25
6

10
24

40
96

16
38
4

NVP

101

102

103

T
si
m
,
T
ga
p

(s
)

1 2 4 8 16 24 48

NVP

101

102

103

T
si
m
,
T
ga
p

(s
)

25

100

200

300

ρ

5

25

45

65

ρ

2

4

6
ρ

Figure 5.16: Costs of the gap-junction dynamics. Open symbols show the results
with h-step communication (T = h), while filled symbols show the results with the
original NEST communication scheme (T = dmin, here dmin = 1 ms). The solid curves
with triangles indicate the simulation time Tsim in the absence of gap junctions. The
corresponding darker curves with asterisks show the ratio ρ of Tsim with and without gap
junctions, while gray curves with asterisks show the difference Tgap of both simulation
times. Simulations represent 50 ms of biological time for panel A and B and 100 ms for
panel C at a step size of h = 0.05 ms. All simulations use only a single iteration per
time interval. (A) Weak scaling of test case 1b on JUQUEEN and the K computer
with N = 185 · NVP neurons. (B) Strong scaling of test case 1b on JUQUEEN and
the K computer with N = 185 · 16384 = 3, 031, 040 neurons. (C) Strong scaling of test
case 1b run on the shared memory cluster node with N = 100, 000 neurons.

There are two major differences between simulations with and without gap junc-
tions. First, the iterative waveform-relaxation method requires the repetition of
neuronal updates. Since this repetition only multiplies the run time by the num-
ber of iterations, it does not affect scalability. Secondly, the approximation of

83

5 Application in computational neuroscience I:
Including gap junctions in a spiking neural network simulator

the membrane potential of each neuron needs to be computed and communicated
to its gap-junction coupled partners. As NEST uses MPI Allgather to commu-
nicate data between the MPI processes, the receive buffer grows proportionally
with the number of neurons. The size of the approximation data D of a single
neuron depends on the ratio r between the step size h and the minimal delay of
the network as

D = r · (norder + 1) · 8 (Bytes), (5.15)

because each time step requires norder +1 double values to represent the interpola-
tion polynomial between two adjacent time points. All interpolation coefficients
are stored as 8 Bytes double variables. Consequently, the number of neurons N is
a crucial parameter for simulations with gap junctions, as even in a weak-scaling
scenario the local memory consumption increases with the global number of neu-
rons. The growth is dominated by the receive buffer and affects both maximum
network size and run time. This is not a particular issue of the new iterative
method, but rather a general property of the communication by MPI Allgather

that also appears in the single-step algorithm.

Fig. 5.16 investigates the slowdown due to gap-junction dynamics. This is done
by simulating test case 1b with a single iteration per time interval. The ob-
tained results are then compared to the run time of a simulation without gap
junctions but with an otherwise identical setup. This way, the difference of the
two run times Tgap can be interpreted as the time required for the additional
computational load and communication. Fig. 5.16A is a weak-scaling scenario.
It demonstrates that the scalability of the method is impaired by the additional
communication. Despite the constant number of neurons per virtual process and
constant MPI send-buffer size the run time increases substantially. This is due to
the increasing total number of neurons, which has an effect on the MPI receive
buffer size and thereby on the communication time. Fig. 5.16B studies the same
setup in strong scaling with N ≈ 3 · 107 neurons. In this scenario, the receive
buffer size is constant, while the size of the send buffer shrinks with increasing
number of virtual processes. Here, the additional time required for MPI com-
munication is almost constant. Tgap decreases at first and then almost stagnates
for more than 2048 virtual processes. The saturation is explained by the addi-
tional MPI-communication, which constitutes the major contribution to Tgap in
this setup. As the simulation without gap junctions uses exactly the same pattern
of MPI communication, this is not an issue of latency but an issue of bandwidth.
The initial decrease is due to the parallelization of the gap-junction dynamics:
the computations on the single-neuron level, like the handling of incoming gap
events, the calculation of the interpolation coefficients, and their central storage
are parallelized. For both scalings the behavior on JUQUEEN and the K com-
puter is similar. The K computer benefits from the faster processors (2 GHz vs.

84

5.4 Numerical results

1.6 GHz) and the higher bandwidth per link (5 GB/s vs. 2 GB/s), but otherwise
shows the same scaling behavior as JUQUEEN.

In conclusion, the additional time required by simulations with gap junctions on
both supercomputers is determined by the total number of neurons N . As the
increase in run time is dominated by MPI bandwidth it cannot be eliminated
by using more virtual processes NVP. Therefore, it is advisable to use as few
compute nodes as possible. In this optimal setting, the communication required
for gap junctions increases the simulation time of one iteration for a network of
N ≈ 3 · 107 neurons by a factor of ρ = 5.0. One can multiply this factor ρ from
Fig. 5.16 with the average number of iterations ιh or ιdmin

to receive an estimate
of the overall increase in run time.

Fig. 5.16C shows a strong scaling scenario for a smaller network with N = 100, 000
neurons simulated on a shared memory compute node. This setup differs from
the one in panels A and B as the parallelization is implemented by OpenMP
and no MPI communication is needed. Here the impact of additional virtual
processes on ρ is more moderate. ρ increases from ρ = 2 for 2 threads up to
ρ = 3 for 48 threads in the case where communication takes place in intervals
of the minimal delay length. The scalability of NEST is preserved and the time
for a single iteration per time interval decreases from 1366 s with 1 thread to
56 s with 48 threads. In contrast to Fig. 5.16B the additional time Tgap is not
dominated by a constant overhead and decreases due to the parallelization of the
gap-junction dynamics. In the case of h-step communication, however, a scaling
limit is observed again. The limit is not dominated by the communication between
threads but due to the serial component of event delivery in NEST; all threads
inspect all incoming events.

In the following part, we employ the memory consumption model of Kunkel et
al. [112] to predict the maximum network size which can be simulated with both
communication strategies. The model divides the overall memory into three com-
ponents. M0(M) denotes the base memory usage of the simulator, including
external libraries such as MPI, and for the sake of convenience also contains the
buffers of the MPI communication. Mn(M, N) is the additional memory usage
that accrues when neurons are created, and Mc(M,T, N,K) denotes the addi-
tional memory usage that accrues when neurons are connected. The memory
consumption per MPI process is thus given by

M(M,T, N,K) =M0(M) +Mn(M, N) +Mc(M,T, N,K) (5.16)

where M denotes the number of compute nodes, T the number of threads per
node, N the number of neurons and K the number of synapses per neuron.

85

5 Application in computational neuroscience I:
Including gap junctions in a spiking neural network simulator

A

B

C

0

5

10

15

0

5

10

15
m
e
m
o
ry
 u
sa
g
e
 M

(G
B
)

102 103 104 105

NVP

0

5

10

15

106

107

108

109

106

107

108

109

N
m
ax

106

107

108

109

Figure 5.17: Predicted cumulative memory usage as a function of number of
virtual processes for a maximum-filling scaling. Contributions of different data
structure components to total memory usage M of NEST for test case 3 with a net-
work size that just fits on NVP cores of JUQUEEN. The dashed black curves indicate
the corresponding network size Nmax. Contributions of synapse objects and relevant
components of connection infrastructure are shown in pink and shades of orange, re-
spectively. The contributions of the base memory usage, in particular containing the
receive buffer, are marked in gray. Other contributions, such as the neuron objects and
neuron infrastructure are significantly smaller and hence not visible at this scale. Dark
orange: sparse table, orange: intermediate infrastructure containing exactly 1 synapse,
light orange: intermediate infrastructure containing more than 1 synapse. The cumu-
lative memory usage is calculated using the memory-consumption model of [112]. The
horizontal dashed black line indicates 2 GB limit of a single MPI communication. Ver-
tical lines indicate the largest number of virtual processes possible, due to either the
full utilization of JUQUEEN or exceeding a 2 GB communication buffer. (A) Test
case 3 without gap junctions (B) Test case 3 with additional gap junctions between
inhibitory neurons (60 gap junctions per neuron). The communication is carried out in
intervals of the minimal delay (dmin = 1.5 ms and h = 0.1 ms) (C) Same setup as (B)
with communication in every time step.

Here we extend the model to include the effect of gap junctions on memory con-
sumption. The memory overhead of neurons with more than one local target m>1

c

increases by 1 Byte due to the extra data member primary end. The memory

86

5.4 Numerical results

consumption of a connection object of type gap junction mgap
c is the same as

for a static synapse mstat
c . The memory usage of a single neuron supporting gap

junctions mgap
n differs from the usage of another neuron mn by 2D + 8r, as the

current interpolation needs to be stored while the new interpolation coefficients
are calculated (thus the factor 2), and the values from the last iteration are needed
for the iteration control. In addition, the base memory usageM0(M, Ngap) is de-
pendent on the number of neurons supporting gap junctions Ngap, as it increases

by (Ngap + Ngap

M
) ·D due to the increases of the send and receive buffer.

Fig. 5.17 shows the contributions of gap junctions to the memory consumption
under maximum filling for the network model introduced by Brunel [20]. This is
test case 3 with the addition of gap junctions between inhibitory neurons. We use
this network model here to simplify the comparison to existing benchmarks [112].
Dynamically, the network model as is would not be able to support gap-junction
coupling, as the leaky integrate-and-fire model (iaf neuron) employed in this
test case does not produce the shape of the action potential. Hence, the interac-
tions across gap junctions exerted by the large and positive membrane potential
excursions are missing; see below for the range of neuron models available in the
literature for the study of networks with gap junctions. Nevertheless the test case
provides a good estimate for the additional memory usage caused by gap junc-
tions, as the memory usages of neuron models iaf neuron and hh psc alpha

do not differ significantly relative to the total amount of memory consumed by
chemical synapses and gap junctions. The figure shows that with increasing num-
ber of virtual processes NVP, the base memory component containing the MPI
communication buffers becomes the dominant consumer. This is particularly ap-
parent for communication in intervals of the minimal delay, as the volume of data
communicated at once is r times higher than for the h-step communication. As
communication in NEST is carried out in a single MPI Allgather call, there is
another relevant limit to the MPI buffer size. According to the MPI standard
[124] the recvcount parameter counting the elements in the receive buffer is an
integer value. This limits the largest possible receive buffer size to 2 GB for ma-
chines with 32 bit integer values. Therefore, the maximum network size decreases
from 8 · 108 for the case without gap junctions to 2 · 107 for the communication
in intervals of the minimal delay and to 3.5 · 108 for the h-step communication.
This is, however, not a limitation of the iterative numerical method described in
this thesis, but a consequence of the overall communication scheme of the NEST
simulation software.

87

5 Application in computational neuroscience I:
Including gap junctions in a spiking neural network simulator

5.5 Discussion

It may seem odd to discuss the integration of neuronal networks coupled by gap
junctions in the context of a simulation code for which the major application area
is large networks of highly simplified spiking neuron models. In these models
the occurrence of an action potential is often abstracted to a threshold operation
and the shape of the action potential is neglected because it has no influence on
network dynamics. This changes, however, in the presence of gap junctions as
the gap current depends on the difference of the membrane potentials, mediating
an instantaneous coupling. The sign of the coupling depends on the time courses
of the two membrane potentials. The positive exertion during an action poten-
tial of one cell creates an excitatory drive, while the fast after-hyperpolarization
immediately following the depolarization has the opposite effect. Components of
the after-hyperpolarization with a longer time constant but low amplitude still
have, on average, an inhibitory effect. The network level dynamics may depend
not only on the integral effects of action potential and after-hyperpolarization,
but also on the time course of the interaction pattern.

Nevertheless, simulation codes designed to faithfully represent the architecture
of neuronal networks typically contain a phenomenological step in their neuron
models that extracts a spike time to trigger synaptic events and organize com-
munication between the computational nodes participating in a simulation. This
is independent of whether the neuron model employed is an integrate-and-fire
type model or a model based on the morphological reconstruction of thousands
of compartments and a detailed representation of the spiking dynamics generated
by the interplay of voltage-gated ion channels. Therefore, these simulation codes
have to solve the common problem of how to combine the exchange of spikes as
point events with gap-junction coupling without losing the performance capabil-
ity which originally motivated the design. The algorithms and data structures
from our implementation in the NEST simulator and the accompanying analysis
can be transferred to other simulation codes and also to digital neuromorphic
hardware like SpiNNaker [59].

The developed iterative method based on waveform relaxation guarantees a high
accuracy for network simulations with gap junctions, regardless of the coupling
strength. For networks with relatively weak coupling, a sufficient accuracy can
also be achieved using the less time consuming single-step method (Fig. 5.13, be-
fore the transition phase). Here the additional expenses of the iterative method
are, however, low, due to the integrated iteration control. For networks with
sufficiently strong coupling the single-step approach causes a shift in the mem-
brane potentials time course (Fig. 5.3). This temporal shift reduces with the
step size of the simulation. In practice, however, a researcher may not be able
to judge whether the coupling strength in the network model under considera-

88

5.5 Discussion

tion is weak enough to achieve sufficiently accurate results with the single-step
method. Furthermore, when the step size of the single-step approach is reduced
to improve accuracy, the iterative method eventually achieves a better tradeoff
between computation time and accuracy (Fig. 5.9D).

To facilitate generalization, we use as an example a neuron model with Hodgkin-
Huxley dynamics that intrinsically generates an action-potential time course and
was used to study the synchronization dynamics of networks with gap junctions
[118]. However, the literature contains a range of point-neuron models suitable for
interaction by gap junctions. These include alternative models of similar complex-
ity, such as the Wang-Buzáki model [184] that represents a fast spiking interneu-
ron in hippocampus or cortex, but also reduced models that combine analytical
tractability with the salient features of action-potential generation, including a
brief after-hyperpolarization, such as the absolute integrate-and-fire model ([100],
reviewed in [36]), and finally, the exponential integrate-and-fire model [58] and
the quadratic integrate-and-fire model [77] representing an intermediate level of
complexity. Although the gap-junction current Igap in this study is implemented
within the employed neuron model as gij (Vi − Vj), the novel gap-junction frame-
work in general is able to process any form of gap junction that depends only on
the involved neurons states and parameters. The necessary changes are limited
to an adaptation of the neuron model and the creation of a new connection type
in the hierarchy of data structures (Fig. 5.6) to distinguish the different represen-
tations of gap junctions. A prominent example for a more complex gap-junction
model are voltage dependent gap junctions [143]. For these, the optimized sum-
mation of coefficients (5.5) is no longer possible, resulting in a higher storage
load of the single neuron. Due to the modular structure of NEST, researchers
interested in understanding network dynamics can start with a detailed, possibly
multi-compartmental, neuron model and then change to a more abstract and ana-
lytically tractable model while investigating the network dynamics for qualitative
changes. Different parts of the network may also be described at a different level
of detail.

Prior to our work simulation studies with gap junctions have only been carried
out with network sizes up to a few hundred neurons and extremely simplified
topologies such as all-to-all connectivity and only one or two cell types. For
example the seminal work of Pfeuty et al. [146] investigates a network of 1600
neurons with random gap-junction coupling and an average of 10 gap junctions
per neuron. The numerical integration of the entire network is done using a
second-order Runge-Kutta scheme and a fixed step size of 0.01 ms. Although the
approach yields accurate results it is not parallelizable and therefore not applicable
to substantially larger networks. These initial studies were useful to understand
fundamental properties of networks with gap junctions and to verify that the new
analytical tools developed are accurate. For neocortical networks, however, this

89

5 Application in computational neuroscience I:
Including gap junctions in a spiking neural network simulator

size constitutes a dramatic downscaling. The number of chemical synapses per
neuron is of order 10,000 and the average connection probability within a volume
of a cubic millimeter where a neuron can in principle contact any other neuron is
about 0.1. Thus, the minimal network size where both of these parameters can
simultaneously be realized is 100,000; two orders of magnitudes larger than the
networks studied up to now. The need to study neuronal networks at their natural
scale has recently gained urgency by the finding that when downscaled, first order
measures, such as spike rate, can often be well preserved but already second order
measures, like the correlation coefficient of the spike times of two neurons, are
generally not preservable [179]. We assume that the primary reason for the present
restriction of network size found in the literature is simply due to the technical
difficulties in efficiently simulating larger systems, and the absence of a commonly
available simulation code providing such capabilities for point-neuron models.
The NEURON simulation software [29] provides two multiprocessor solvers for gap
junctions between electrical compartments. One incorporates the here presented
single-step method using the modified Euler integration scheme into the first
order backward Euler integration scheme for tree cables [93]. The other uses
the Sundials variable time step, variable order, ODE solver (CVODE, [33]) to
solve the global set of equations for all cells. The latter is generally too costly
for large spiking network simulations, as the arrival of every spike constitutes a
new initial value problem. Nevertheless, the solver was successfully used in the
simulation of a gap-junction coupled heart cell network [30]. The novel technology
presented here overcomes this limitation; now networks with gap junctions can
be studied at full scale. As above in the discussion of the complexity of neuron
models, this does not mean that researchers have to carry out all simulations at
full scale. Simulation results should simply be checked with full-scale simulations
to verify that they do not occur as an artifact of downscaling. The same is true
for analytical results derived in the limit of infinite network size. Researchers
should verify that the results hold for networks of natural size.

The additional run time costs due to the inclusion of gap junctions in an ex-
isting network simulation depend on the number of neurons in the model, as
well as the kind of parallelization and the coupling strength of the gap junc-
tions in combination with the desired accuracy. Let us look at a model of the
cortical microcircuit as published by Potjans and Diesmann [149] and available
as open source (www.opensourcebrain.org/projects/potjansdiesmann2014).
The model represents a surface area of about 1 square millimeter of cortex and has
approximately the same number of neurons as the test case studied in Fig. 5.16C.
The model can easily be simulated on a single node of the compute cluster used in
the present study, but is time expensive because of the short synaptic delays. The
simulation takes 128 seconds with a single thread for 100 ms of biological time
and about 16 seconds using 16 threads (data not shown). Fig. 5.16C shows that,
for a network of the same size with gap junctions, using the same computational

90

www.opensourcebrain.org/projects/potjansdiesmann2014

5.5 Discussion

resources, and the same communication interval of 0.05 ms, the time consumed
by the gap-junction dynamics in a single iteration is reduced from 804 seconds
to about 215 seconds. The single threaded simulations show that the additional
numerical computations required for gap junctions increase run time by a factor
of 128+804

128
· ιh ≈ 7.3 · ιh. In a realistic application, the number of iterations ιh

required to reach the desired accuracy goal is below 9 (Fig. 5.11D) and does not
affect the scaling because no additional communication is done. At 16 threads,
the scaling of the network with gap junctions reaches saturation due to the large
number of communication steps. Communication with a minimal delay of 1 ms
reduces Tgap of a single iteration by a factor of 3.4 to 63 seconds and restores
scaling. This corresponds to the reduction of the simulation time by a factor of
11 relative to the single threaded simulation. In conclusion, networks of the size
of 100, 000 neurons can comfortably be simulated on a single node of a compute
cluster in the presence of gap junctions. The simulation time stays within the
same order of magnitude, and with increasing communication interval length the
difference diminishes. However, looking at a single iteration in our test case, using
an expensive single neuron model, the contribution of gap-junction dynamics to
the total run time increases from 51% at a single thread to 77% at 16 threads.
For the simple neuron model used in the study of the cortical microcircuit, the
initial contribution of gap junctions is already 86% and at 16 threads reaches
93%. Thus, for the latter network model, the additional costs of gap junctions
are perceived as more painful.

The component limiting network size is the receive buffer of a computational
node, which needs to store on the order of 100 Bytes for each neuron in the
network (5.15). With memory in the gigabyte range on a computational node,
this limits network size to the order of 10 million (107) neurons (see Fig. 5.17).
Thus, entire areas of the neocortex can be represented. This is promising because
larger networks coupled by long-range connections should be under the influence
of chemical synapses only. This opens the possibility to exploit the modularity of
neuronal networks in future communication algorithms to reach the human brain
scale.

There is still further potential for optimization. In terms of performance, it might
be possible to save some computation time by applying a less time consuming
solver to the cell equations during the iterations. The benefit of such an approach
is, however, limited, as the simulation time is mainly dominated by communica-
tion (see Fig. 5.16). In terms of accuracy, given a suitable neuron model, it is
possible to combine the gap-junction framework with the capability of NEST to
handle spike times independently of the grid spanned by the computation time
step [81]. A requirement on the neuron model is that an incoming synaptic im-
pulse causes no step in the membrane potential or in its first derivative, since such
discontinuities would preclude an accurate cubic interpolation of the membrane

91

5 Application in computational neuroscience I:
Including gap junctions in a spiking neural network simulator

potential within one time step. The neuron model studied in the manuscript
satisfies these requirements, as it features alpha-shaped synaptic currents.

The framework for representing and simulating gap junctions extends the ca-
pabilities of a simulation engine for neuronal networks like NEST and widens
the domain of applications. However, this comes at the price of a decrease in
simulation speed by up to 4.0 percent and an increase of memory consumption
of up to 1.5 percent even if no gap junctions are used. This is in contrast to
the general strategy of NEST development that a researcher should only pay for
features actually needed in a simulation, and that a new release should not be
slower or consume more memory than the previous one. The software releases
prior to 2.10.0 (2.2.0 and 2.6.0) documented in [83, 112] have concentrated on
the reduction of memory consumption and also increased simulation speed. In
relation to these advances the overhead of the gap-junction framework is only a
minor regression; nevertheless, it constitutes a nuisance future work should strive
to overcome.

The limits on the maximal network size that can be studied with the frame-
work presented here arise from the need to communicate approximations of the
membrane potential time courses between neurons. As the employed commu-
nication scheme uses collective MPI calls, these approximations are sent to all
nodes that take part in the simulation, irrespective of whether or not they harbor
neurons that require this information. This situation is qualitatively similar to
the spike times being collectively communicated. However, there are two quanti-
tative differences, the number of connections per neuron (order 10,000 vs. order
100) and the amount of information communicated (4 Byte per spike / order 100
Bytes per minimum delay). A yet more extreme scenario occurs in simulations
of multi-compartment neuron models, where the approximation of the membrane
potential time course of a particular compartment is relevant for only a few (order
10 down to 1) other compartments. Future work on the simulation code should
assess the potential of targeted communication. Due to the low number of con-
nections and their locality, directed communication will be particularly beneficial
for gap-junction coupling.

Neuroscience is still challenged by the heterogeneity of the constituents of the
neuronal tissue. We hope that the progress reported here adds gap junctions as
another type of brick to the Lego kit of the computational neuroscientist. The
network sizes reachable with the technology described in this chapter, combined
with the supercomputers available today, enable researchers to investigate the
functional role of gap junctions in the context of an anatomically accurate cir-
cuitry.

92

Chapter 6
Application in computational
neuroscience II:
Including rate models in a spiking neural
network simulator

This chapter presents our second major use case for waveform-relaxation methods
in computational neuroscience. Here we describe how to include rate models in a
spiking neural network simulator.

Spiking neural network simulators are based on bottom-up approaches that are
motivated by the microscopic dynamics of individual neurons. Biophysically
grounded spiking neuron models that simulate the time points of action potentials
can explain a variety of salient features of microscopic neural activity observed in
vivo, such as spike-train irregularity [7, 170, 173, 180], membrane-potential fluc-
tuations [46], asynchronous firing [20, 50, 141, 151], correlations in neural activity
[62, 85, 136], self-sustained activity [107, 134], rate distributions across neurons
[69, 105, 157] and across laminar populations [149], as well as resting state activ-
ity [42]. Furthermore, in population-density approaches, statistical descriptions
of neuronal populations neglect the identities of individual neurons and describe
the dynamics of homogeneous populations in terms of probability densities (re-
viewed e.g. in [44]). These approaches capture the time-dependent population
activity enabling the investigation of phenomena like desynchronization [39] and
computational properties of cortical circuits [28].

In contrast, functionally inspired so-called top-down approaches typically describe
neurons or neuronal populations in terms of continuous variables, e.g. firing rates
[89, 163]. Rate-based models originate from the seminal works by Wilson and
Cowan [186] and Amari [5] and were introduced as a coarse-grained descrip-
tion of the overall activity of large-scale neuronal networks. Being amenable to

93

6 Application in computational neuroscience II:
Including rate models in a spiking neural network simulator

mathematical analysis and exhibiting rich dynamics such as multistability, oscilla-
tions, traveling waves, and spatial patterns (see e.g. [155]), rate-based models have
fostered progress in the understanding of memory, sensory and motor processes
including visuospatial working memory, decision making, perceptual rivalry, geo-
metric visual hallucination patterns, ocular dominance and orientation selectivity,
spatial navigation, and movement preparation (reviewed in [16, 35, 102]). On the
brain scale, rate models have been used to study resting-state activity [43] and
hierarchies of time scales [31]. Ideas from functional network models have further
inspired the field of artificial neuronal networks in the domain of engineering [82].

Simulation of rate-based models goes back to the works by Grossberg [70], Mc-
Clelland and Rumelhart [122], Feldman and Ballard [56], and the PDP group
[158]. Various specialized tools have been developed since then [138], such as
PDP++ [123, 140], the Neural Simulation Language [185], emergent [139], the
simulation platforms DANA [154], TheVirtualBrain [161], Topographica [8] and
the Neural Field Simulator [133]. Similarly, efficient simulators for population-
density approaches (MIIND : [40], DiPDE : [28]) as well as spiking neural networks
(see [19] for a review) have evolved. The foci of the latter range from detailed neu-
ron morphology (NEURON : [29], GENESIS : [15]) to an abstraction of neurons
without spatial extent (NEST : see Subsec. 2.3.1 and Chapter 5, BRIAN : [68]).
Such open-source software, combined with interfaces and simulator-independent
languages [38, 47, 48], supports maintainability, reproducibility, and exchange-
ability of models and code, as well as community driven development. However,
these tools are restricted to either rate-based or spike-based models only.

Currently, bottom-up and top-down strategies are still mostly disjointed. A major
challenge in neuroscience is to form a bridge between the spike- and rate-based
models [1], and, more generally, between the fields of computational neuroscience
and cognitive science. From a practical point of view, a common simulation
framework would allow the exchange and combination of concepts and code be-
tween the two descriptions and trigger interaction between the corresponding
communities. This is in particular important since recent advances in simulation
[49, 83, 91, 92, 108, 112] and computing technology [98, 126] enable full-density
bottom-up models of complete circuits [119, 149]. In particular, it has become
feasible to build spiking models [162] that describe the same macroscopic system
as rate-based descriptions [31].

The relation between the different model classes is one focus of theoretical neu-
roscience. Assuming homogeneity across neurons, population-density methods
reformulate the spiking dynamics as a dynamical equation for the probability
density that captures the time evolution of the population activity [63, 64, 104].
Under certain assumptions allowing the neglect of fluctuations in the input to
neurons, a set of coupled differential equations for the population-averaged firing
rate and membrane potential can be derived [127]. For asynchronous irregular

94

activity, input fluctuations can be taken into account in a diffusion approxima-
tion, which leads to Fokker-Planck mean-field theory that can be used to deter-
mine homogeneous stationary state activities of spiking networks [20, 172]. The
Fokker-Planck ansatz is, however, not limited to the population level, but can
yield a heterogeneous stationary state firing rate across individual neurons in the
network [159]. The dynamics of rate fluctuations around the background activity
can be obtained using linear response theory on the population level [21] or the
level of individual neurons [71, 116, 142, 164, 178], yielding effective rate models
on the population or single-neuron level. An alternative to linear response theory
is given by moment expansions for mode decompositions of the Fokker-Planck
operator [44, 120, 121].

An alternative derivation of rate-based dynamics aims at a closure of equations
for synaptic currents of spiking networks in a coarse-graining limit by replacing
spiking input with the instantaneous firing rate [16]. Using field-theoretical meth-
ods [23] that were originally developed for Markovian network dynamics [24, 25]
allows a generalization of this approach to fluctuations in the input [17].

In any case, the cascade of simplifications from the original spiking network to the
rate-based model involves a combination of approximations which are routinely
benchmarked in comparative simulations of the two models. A unified code base
that features both models would highly simplify these validations, rendering du-
plication of code obsolete.

In many cases, rate models represent populations of spiking neurons. Thus, a hy-
brid model, employing both types of models in a multi-scale modeling approach,
would contain a relatively large number of spiking neurons compared to the num-
ber of rate units. Despite the large size of the spiking network, the dynamics still
features finite-size fluctuations [66, 85, 121, 125, 168], and a downscaling of the
network can generally not be performed without changing correlations [179]. It
is thus crucial that a common simulation framework is able to handle real-sized
spiking networks. In addition, the employed mean-field theories exploit the large
number of neurons in biological networks. In fact, they are strictly valid only in
the thermodynamic limit N → ∞ [86], where N denotes the number of units.
Therefore, in the above mentioned validation studies, the spiking networks are
typically large. Thus, a common simulation framework should be optimized for
spiking neurons rather than rate-based models.

This chapter provides the concepts and a NEST implementation for the em-
bedding of continuous-time dynamics in a spiking network simulator. Although
rate-based models require communication of continuous state variables, they are
in general compatible with the delayed dmin-communication scheme of current
spiking neural network simulators as long as these interactions have a delay.
However, many rate-based models consider instantaneous interactions between

95

6 Application in computational neuroscience II:
Including rate models in a spiking neural network simulator

units (see [16] and references therein), typically for analytical convenience in
quasi-static situations where delays do not matter. A priori, these interactions
require communication between units at each time step and impair the per-
formance and scalability of the simulators, especially on supercomputers where
communication is particularly expensive because it is associated with a consider-
able latency. Therefore we introduce an (optional) additional iterative approach
based on waveform-relaxation techniques that allows us to use the original dmin-
communication scheme also when instantaneous interactions are present. The
scheme builds on the waveform-relaxation technique for SDEs from Chapter 4
and uses the framework already employed for gap-junction interactions in Chap-
ter 5.

This chapter begins with a description of the class of rate models considered in
this work in Sec. 6.1. Subsequently in Sec. 6.2, we describe the concepts for em-
bedding rate-based network models into a simulation code for spiking networks.
This includes the development of an extendable implementation framework for
rate models in terms of templates and details on the usage of the waveform-
relaxation method from Chapter 4. After that, Sec. 6.3 gives a brief summary
of the user interface for rate models in NEST. The following numerical results
section (Sec. 6.4) is structured as follows: first, different numerical schemes for
SDEs are evaluated in order to find the most suitable method in the context of
spiking neural network simulators. Then, the scalability of the NEST implemen-
tation is investigated with special focus on the comparison between the standard
implementation and the use of the waveform-relaxation approach. Finally, the
applicability of the framework to a broad class of network models is illustrated on
the examples of a linear network model [71], a nonlinear network model [67, 174],
a neural field model [155], and a mean-field description [188] of the stationary
activity in a model of the cortical microcircuit [149, 166]. The chapter concludes
with the discussion in Sec. 6.5. The technology described in this chapter was re-
leased with NEST 2.14.0 [145] and is available as open source under GNU General
Public License (Version 2 or later). Some of the figures and parts of the text in
this chapter have already been used in the original research article on the topic
[72].

96

6.1 Rate models

6.1 Rate models

We restrict our investigation to a class of rate models, which covers a large variety
of rate models used in neuroscience today. We consider networks of N rate-based
units where each unit receives recurrent input from the network. The system
fulfills the Itô-SDEs

τidXi(t) =

[
−Xi(t) + µi + φ

(
N∑
j=1

wijψ (Xj(t− dij))

)]
dt

+
√
τiσi dWi(t) i = 1, . . . , N

(6.1)

with possibly nonlinear input-functions φ(x) and ψ(x), connection weights wij,
mean input µi, and optional delays dij ≥ 0. The corresponding Fokker-Planck
equation shows that the parameter σi ≥ 0 controls the variance of Xi(t) and
the time constant τi > 0 its temporal evolution. For readability, from here on
we omit unit indices for σ, τ, µ, and d. The considered class of rate models only
contains additive noise. Therefore we might as well interpret (6.1) as a system of
Stratonovich-SDEs (see Sec. 2.2).

For illustrative purposes we explicitly state the different solution schemes pre-
sented in Subsec. 2.2.1 for the network dynamics (6.1) with d = 0. The Euler-
Maruyama update step reads

Xk+1,i = Xk,i +

[
−Xk,i + µ+ φ

(
N∑
j=1

wijψ (Xk,j)

)]
1

τ
∆t+

1√
τ
σ∆Wk,i . (6.2)

The implicit Euler update formula evaluates X (within the square brackets) at
k+1 instead of k. This turns (6.2) into a system of nonlinear algebraic equations,
which in fixed-point form is given as

Xk+1,i = Φi (Xk+1) (6.3)

with

Φi (Xk+1) =
Xk,i +

[
µ+ φ

(∑N
j=1wijψ (Xk+1,j)

)]
1
τ
∆t+ 1√

τ
σ∆Wk,i

1 + ∆t/τ
. (6.4)

We can perform the fixed-point iteration

X
(m+1)
k+1,i = Φi

(
X

(m)
k+1

)
(6.5)

97

6 Application in computational neuroscience II:
Including rate models in a spiking neural network simulator

with initial value X
(0)
k+1 = Xk to obtain Xk+1,i, provided that (6.5) converges.

For nonlinear φ(x) or ψ(x) the exponential Euler update step is

Xk+1,i = e−∆t/τXk,i +
(
1− e−∆t/τ

) [
µ+ φ

(
N∑
j=1

wijψ (Xk,j)

)]

+

√
1

2
(1− e−2∆t/τ)σηk,i

(6.6)

with ηk,i ∼ N (0, 1). As in this case each rate unit (6.1) only contains a self-
dependent linear part the exponential Euler scheme (2.20) does not rely on a
matrix exponential, but decomposes into N equations with scalar exponential
functions (A = −I is a diagonal matrix). Note that with a linear choice, φ(x) =
ψ(x) = x, the system of SDEs can be written in matrix notation as

τdX(t) = [A ·X(t) + µ] dt+
√
τσI dW (t) (6.7)

with A = −I + W and W = (wij)N×N . In this case the stochastic exponential
Euler scheme (2.20) contains a matrix exponential and a matrix square root.

These numerical schemes can analogously be used for stochastic delay differential
equations (SDDEs) (d > 0), if the delay d is a multiple of the step size ∆t (see
Subsec. 2.2.2). For the calculation of the approximation Xk+1,i in time step k+1,
the recurrent input is evaluated from d

∆t
steps earlier, i.e. from Xk− d

∆t
,j for the

explicit methods.

Characteristic features of the rate models considered in this chapter are the leaky
dynamics, i.e the linear term −Xi(t) in (6.1) and the additive coupling and noise.
However, the framework to be presented later does not exclude the possibility to
use more general rate models. It can easily be extended to rate models with

i) nonlinear dynamics

τdXi(t) =

[
a(Xi(t)) + φ

(
N∑
j=1

wijψ (Xj(t− dij))

)]
dt+

√
τσdWi(t)

where a characterizes the intrinsic rate dynamics, as for example used by
Stern et al. [175].

ii) multiplicative coupling between units as, for example, employed in [60] or
the original works of Wilson and Cowan [186, 187]. In the most general
form, this amounts to

τdXi(t) =

[
−Xi(t) +H(Xi) · φ

(
N∑
j=1

wijψ (Xj(t− dij))

)]
dt+
√
τσdWi(t) .

98

6.1 Rate models

iii) multiplicative noise. The linear rate model considered in the numerical
results section (especially in Subsec. 6.4.3.1) describes the dynamics around
a stationary state and due to the stationary baseline, the noise amplitude
is constant. However, one might relax the stationarity assumption, which
would render the noise amplitude proportional to the time dependent rate,
i.e. a multiplicative noise amplitude.

As a byproduct in this chapter we also implement rate models with so-called
output noise. Grytskyy et al. [71] show that there is a mapping between a network
of leaky integrate-and-fire models and a network of linear rate models with output
noise. Here the noise is added to the output rate of the afferent units

τ
dXi(t)

dt
= −Xi(t) + µ+ φ

(
N∑
j=1

wijψ
(
Xj(t− dij) +

√
τσξj(t)

))
(6.8)

for i = 1, . . . , N and we cannot write the equations as SDEs of type (2.13), as
the nonlinearities φ(x) and ψ(x) are also applied to the white noise ξj. For these
models, the numerical methods considered here cannot be employed. Instead our
solver assumes the noise ξj to be constant over the update interval which leads
for d = 0 to the update formula

Xk+1,i = e−∆t/τXk,i +
(
1− e−∆t/τ

) [
µ+ φ

(
N∑
j=1

wijψ

(
Xk,j +

√
τ

∆t
σηk,j

))]
.

(6.9)

The term Xk,j +
√

τ
∆t
σηk,j with ηk,j ∼ N (0, 1) is calculated beforehand in the

sending unit j.

99

6 Application in computational neuroscience II:
Including rate models in a spiking neural network simulator

6.2 Framework

This section describes the embedding of rate-based models of type (6.1) in a sim-
ulation code for spiking neuronal networks. The software architecture for rate
models is based on existing concepts: Morrison et al. [129] describe distributed
buffers for the storage of delayed interactions and the technique to consistently
generate random numbers in a distributed setting, and our Sec. 5.1 introduces
so-called secondary events that allow the communication of continuous state vari-
ables, like membrane potentials or rates, between neurons or rate units respec-
tively (first published in [73]). Events provide an abstraction layer on top of the
MPI communication, which allows the implementation of neuron models without
explicit reference to MPI calls. Unlike primary events, which are used to transmit
the occurrence of spikes at discrete points in time, secondary events occur on a
regular time grid. These concepts are designed to be compatible with the parallel
and distributed operation of a simulation kernel for spiking neuronal networks, en-
suring an efficient use of clusters and supercomputers [83]. This allows researchers
to easily scale up network sizes to more realistic number of neurons. The highly
parallelizable structure of modern simulation codes for spiking neuronal networks,
however, also poses restrictions on the utilizable numerical methods.

6.2.1 Restrictions

Parallelization of spiking neuronal networks is achieved by distributing neurons
over compute nodes. Since the dynamics of spiking neurons (in the absence of
gap junctions) is decoupled for the duration of the minimal synaptic delay dmin

of the connections in the network, the states of the neurons can be propagated
independently for this time interval. Thus it is sufficient to specify solvers on
the single-neuron level. The spike times, i.e. the mediators of interaction between
neurons, are then communicated in steps of dmin.

As a result of this structure, the global connectivity of the network is unknown
to the single neuron. The neuron object sends and receives events handled by an
object on the compute node harboring the neuron termed network manager. How-
ever, the network manager only knows the incoming connections of the neurons
on the compute node.

This poses restrictions on the use of implicit schemes. It is impossible to em-
ploy the implicit Euler scheme (2.18) with Newton iteration, since this would
require the simultaneous solution of a system of nonlinear algebraic equations
with information distributed over all compute nodes. The use of the implicit Eu-
ler scheme with fixed-point iteration is, however, compatible with this structure.
To this end, the scheme (2.18) needs to be formulated as a fixed-point iteration

100

6.2 Framework

on the single-unit level (6.5) and the updated rates need to be communicated to
the connected units after every iteration until some convergence criterion is met.
The convergence of the fixed-point iteration is, however, only guaranteed if the
scheme Φ is contractive (see e.g. [101], their Sec. 4.2), which (as shown below
in Subsec. 6.4.1) limits the size of the step size ∆t. Subsec. 6.4.1 investigates if
the implementation can gain stability or accuracy from using the implicit Euler
method with fixed-point iteration and if the payoff is large enough to justify the
additional effort of an iterative solution scheme.

The restricted knowledge of connectivity also limits the usage of the exponential
Euler method. In the case of a linear rate model, we are unable to add the
influence from all other rate units to the matrix A in (6.7), because most of
these connections are unknown at the single-unit level. Therefore, we use the
exponential Euler method with A = −I resulting in the update formula (6.6).
This also has the benefit of avoiding the need to numerically evaluate a general
matrix exponential, as A is a diagonal matrix.

6.2.2 Implementation

This section describes the additional data structure required for the implemen-
tation of rate-based models. While the naming convention refers to our imple-
mentation in NEST, the employed algorithms and concepts are portable to other
parallel spiking network simulators. As a result of the previous section and our
analysis of the numerical schemes in the numerical results section below (see in
particular Subsec. 6.4.1) we restrict the final implementation in NEST to the ex-
ponential Euler method, where we assume A = −I and identify ∆t = h, with h
denoting the global computation step size [129]. We have to distinguish the cases
of connections with delay (d > 0) and connections without delay (d = 0). The
former case is similar to spiking interaction: assuming a connection from unit
i to unit j, the rate of unit i needs to be available at unit j after d

h
additional

time steps. This can be ensured if the delay of the connection is considered in
the calculation of the minimal delay dmin that determines the communication in-
terval. After communication, the rate values are stored in a ring buffer of unit
j until they are due [128]. This way we obtain the solution to the rate-neuron
dynamics with delay (6.1) in a stepwise manner, as described in Subsec. 2.2.2. In
the case of an instantaneous connection, the rate of unit i at time t0 needs to be
known at time t0 at the process which updates unit j from t0 to t0 +h. Therefore,
communication in every step is required for instantaneous rate connections, i.e.
one has to set dmin = h.

Due to the conceptual differences between instantaneous and delayed inter-
actions, we employ two different connection types (rate connection delayed

and rate connection instantaneous) and associated secondary events

101

6 Application in computational neuroscience II:
Including rate models in a spiking neural network simulator

(DelayedRateConnectionEvent and InstantaneousRateConnectionEvent).
This distinction simplifies the discrimination of connections on the single-unit
level, while still allowing for simultaneous use of instantaneous and delayed con-
nections in the same rate model.

The large diversity of rate models (6.1) imposes a challenge for code maintenance
and efficiency: each combination of nonlinearities φ(x) and ψ(x) constitutes its
own model. All of these models can be implemented in exactly the same way, ex-
cept for the evaluation of the nonlinearities. A template class (rate neuron ipn),
providing a base implementation for rate models of category (6.1), avoids code du-
plication. Nevertheless, we restrict the NEST implementation to one nonlinearity
per model. This keeps the collection of rate models small while still covering the
majority of rate models.

The template rate-model class is instantiated with an object that represents the
nonlinearity. Being instantiated at compile time, this template solution does not
incur additional overhead at run time compared to a solution using polymorphy
(inheritance). A boolean class member linear summation determines if the non-
linearity should be interpreted as φ(x) (true, default value) or ψ(x) (false). The
respective other function is assumed to be the identity function. The boolean pa-
rameter is evaluated in every update step of each unit. Deciding upon the type of
nonlinearity at compile time would improve efficiency. In the present architecture
this would, however, result in twice as many template instances for a given set
of gain functions. With the future capabilities of code generation in NEST [148]
in mind, it might be beneficial to elevate the constant boolean member object to
a constant template parameter, to allow compilers efficient preprocessing and at
the same time profit from the code reliability achievable by modern C++ syntax.
The present base implementation reduces the effort of creating a specific rate
model of category (6.1) to the specification of an instance of the template class.
Afterwards, an actual rate model can be instantiated in a single line of code.

gain model φ(x) or ψ(x)

lin rate g · x with g ∈ R
tanh rate tanh(g · x) with g ∈ R

threshold lin rate g · (x− θ) ·H(x− θ) with g, θ ∈ R

Table 6.1: Template-derived rate-based models. Gain functions of the rate-based
models available in the NEST implementation. The name of a particular rate model
is formed by <gain model> ipn. The ending ipn indicates input noise, as the noise
directly enters the r.h.s. of (6.1). H denotes the Heaviside function.

Table 6.1 gives an overview of template-derived rate models of the implementation
in NEST. These models serve as examples for customized rate models. Activity
of rate units can be recorded using the multimeter and the recordable rate.

102

6.2 Framework

In addition to these template-derived models of category (6.1), our implemen-
tation also contains a rate model called siegert neuron. This model, de-
scribed by (6.26) in Subsec. 6.4.3.4, is used for mean-field analysis of com-
plex networks and constitutes a special case with respect to the recurrent in-
put from the network. First, it requires a numerically stable implementation
of the Siegert formula (see Appendix A.1 in [72]). Secondly, (6.24) and (6.25)
in Subsec. 6.4.3.4 demonstrate that for this model the input rates are weighted
by separate factors. Thus for connections between instances of this model, two
different weights need to be specified and the rate model must be able to han-
dle this anomaly. Therefore the siegert neuron does not derive from our base
class rate neuron ipn, but constitutes an independent class. It comes with con-
nection type diffusion connection providing the weight parameters. Sec. 6.3
below motivates the parameter names and shows the usage of the model in NEST.

6.2.3 Reduction of communication using waveform-relaxation
techniques

Instantaneous connections between rate-based models require communication af-
ter every time step, thus in intervals of the global computation step size h. This re-
quires setting dmin = h and impairs the performance and scalability, especially on
supercomputers where communication is particularly expensive because it is asso-
ciated with a considerable latency. Therefore, for simulations with instantaneous
connections, we additionally study an iterative approach based on waveform-
relaxation techniques that, upon convergence, produces the same results as the
standard approach, but allows us to use communication on a coarser time grid.

In a simulator for spiking neuronal networks the minimal delay dmin in the net-
work defines the communication interval. By employing the waveform-relaxation
method with T = dmin, we retain this communication interval for simulations
with instantaneous rate connections. To control the iteration interval T of the
waveform-relaxation method, instantaneous connections contribute to the calcu-
lation of the minimal delay with an arbitrary user specified value given by the pa-
rameter wfr comm interval (see Table 6.2). Consequently, the actual communi-
cation interval for waveform relaxation then is T = min (dmin, wfr comm interval).

The update step of a single rate unit in the m-th iteration of the waveform-
relaxation method reads

X
(m)
k+1,i = e−∆t/τX

(m)
k,i +

(
1− e−∆t/τ

) [
µ+ φ

(
N∑
j=1

wijψ
(
X

(m−1)
k,j

))]

+

√
1

2
(1− e−2∆t/τ)σηk,i .

(6.10)

103

6 Application in computational neuroscience II:
Including rate models in a spiking neural network simulator

Theorem 4.4 guarantees the full convergence of the scheme against the solution
obtained with the standard approach after T /h iterations, regardless of the chosen
step size h.

A

time

h
communication

B

time

min (dmin, wfr comm interval)

h

no
communication

Iteration

Figure 6.1: Different communication strategies for distributed simulations.
Distance between neighboring dashed orange lines indicates computation time step of
size h. Distance between neighboring dashed red lines symbolizes one communication
interval where rates (and other events like spike events) are communicated at the end
of the interval. (A) Standard solution for rate-based models: rates are communicated
in every time step. (B) Iterative approach using waveform relaxation: rates are com-
municated only after Th steps and the entire interval is solved repeatedly.

Fig. 6.1B illustrates the concept of the waveform-relaxation scheme in contrast to
the standard procedure in panel A. The iterative approach requires the repeated
solution of all time steps in the communication interval and converges to the so-
lution obtained with the standard approach (Fig. 6.1A). The iteration terminates
when a user chosen convergence tolerance wfr tol (see Table 6.2) is met. If the
method needs less than the maximal T /h iterations to reach the desired accuracy,
the approach reduces the overall number of communications required to obtain
the solution. In conclusion, the avoidance of communication in every step comes
with the price of additional computational load.

The coupling of neurons via gap junctions from Chapter 5 is also instantaneous
and continuous in time, and thus constitutes a very similar problem to the rate dy-
namics. In order to combine gap junctions with spiking dynamics, we have already
used a waveform-relaxation method and devised a suitable framework, which is
described in Sec. 5.1. This framework can also be employed for the simulation
of rate-based models with instantaneous connections. The dynamics of a neuron
model supporting gap junctions is solved with an adaptive step-size ODE-solver,
routinely carrying out several steps of the employed numerical method within one

104

6.2 Framework

parameter name type default description

use wfr bool true

Boolean parameter to enable (true) or
disable (false) the use of the
waveform-relaxation technique. If disabled
and any rate-based units (or neurons
supporting gap junctions) are present,
communication in every step is
automatically activated (dmin = h).

wfr comm interval double 1.0 ms

Instantaneous rate connections (and gap
junctions) contribute to the calculation of
the minimal network delay with
min (dmin, wfr comm interval). This way
the length of the iteration interval of the
waveform relaxation can be regulated.

wfr tol double 10−4

Convergence criterion for waveform
relaxation. The iteration is stopped if the
rates of all units change less than wfr tol

from one iteration to the next.

wfr max iterations int 15

Maximum number of iterations performed
in one application of the waveform
relaxation. If the maximum number of
iterations has been carried out without
reaching the accuracy goal, the algorithm
advances system time and NEST issues a
warning.
Additional speed-up in the simulation of
rate-based units can only be achieved by
wfr max iterations < T /h.

wfr interpolation order int 3

This parameter is exclusively used for gap
junctions (see Subsec. 5.1.1) and has no
influence on the simulation of rate-based
models.

Table 6.2: Parameters of the waveform-relaxation algorithm. The different pa-
rameters of the waveform-relaxation algorithm together with their C++ data-type,
default value, and a brief description.

global computation time step h. The communication of a cubic interpolation of
the membrane potential provides the solver with additional information, resulting
in a more accurate solution than the one obtained from the standard approach.
For rate-based models this additional benefit cannot be gained: the combination
of an iterative method with an adaptive step-size solver is not applicable to SDEs,
where the noise in each time step constitutes a random number. We thus use a
fixed step size ∆t = h and need to ensure that the random noise applied to the
units remains the same in every iteration. In Subsec. 6.4.2 we investigate the
performance of the waveform-relaxation (Fig. 6.1B) and the standard approach
(Fig. 6.1A) with a focus on large network simulations on supercomputers. In our
implementation in NEST, waveform relaxation can be enabled or disabled by a

105

6 Application in computational neuroscience II:
Including rate models in a spiking neural network simulator

parameter use wfr. Note that in the traditional communication scheme for spik-
ing neuronal networks [129], the first communication occurs earliest at the end
of the first update step. Therefore, in the absence of waveform relaxation, the
initial input to units from the network is omitted.

Table 6.2 summarizes the parameters of our implementation of the
waveform-relaxation technique. A subset (wfr interpolation order,
wfr max iterations, wfr tol) was previously introduced with the gap-
junction framework described in Chapter 5, but we renamed them during
the development of the rate-model framework to arrive at more descriptive
names. The remaining parameters (use wfr, wfr comm interval) result from
the generalization to rate-based models.

106

6.3 User interface

6.3 User interface

We here give a brief description of how to use the implementation of the continuous-
time dynamics in the simulation code NEST with the syntax of the PyNEST in-
terface [51]. Complete simulation scripts are available in the corresponding NEST
release 2.14.0 [145]. The description here focuses on rate model specific aspects.

Script 6.1: Simulation of an excitatory-inhibitory network of lin-
ear rate units. Here and in the following scripts we use the syntax

of the PyNEST interface [51] of the NEST simulation software as of version

2.14.0 [145]. The script does not contain the definitions of the parameters

(h,NE,NI,mu,sigma,tau,T start,w,d,g,KE,KI,T).

1 import nest

2
3 # Disable usage of waveform -relaxation method

4 nest.SetKernelStatus ({’resolution ’: h, ’use_wfr ’: False})

5
6 # Create rate units and recording device

7 n_e = nest.Create(’lin_rate_ipn ’, NE ,

8 params = {’linear_summation ’: True ,

9 ’mean’: mu , ’std’: sigma , ’tau’: tau})

10 n_i = nest.Create(’lin_rate_ipn ’, NI ,

11 params = {’linear_summation ’: True ,

12 ’mean’: mu , ’std’: sigma , ’tau’: tau})

13 mm = nest.Create(’multimeter ’, params = {’record_from ’:

14 [’rate’], ’interval ’: h, ’start ’: T_start })

15
16 # Specify synapse and connection dictionaries

17 syn_e = {’weight ’: w, ’delay ’: d,

18 ’model ’: ’rate_connection_delayed ’}

19 syn_i = {’weight ’: -g * w, ’delay ’: d,

20 ’model ’: ’rate_connection_delayed ’}

21 conn_e = {’rule’: ’fixed_outdegree ’, ’outdegree ’: KE}

22 conn_i = {’rule’: ’fixed_outdegree ’, ’outdegree ’: KI}

23
24 # Connect rate units

25 nest.Connect(n_e , n_e , conn_e , syn_e)

26 nest.Connect(n_i , n_i , conn_i , syn_i)

27 nest.Connect(n_e , n_i , conn_i , syn_e)

28 nest.Connect(n_i , n_e , conn_e , syn_i)

29
30 # Connect recording device to rate units

31 nest.Connect(mm , n_e + n_i)

32
33 # Start simulation

34 nest.Simulate(T)

107

6 Application in computational neuroscience II:
Including rate models in a spiking neural network simulator

Script 6.1 shows the creation of an excitatory-inhibitory network of linear rate
units. Researchers already familiar with the PyNEST interface will notice that
there is no fundamental difference to scripts for the simulation of spiking neural
networks. Line 4 illustrates how to disable the usage of the waveform-relaxation
method. This is advisable for simulations on local workstations or clusters, where
the waveform-relaxation method typically does not improve performance (see Sub-
sec. 6.4.2). The usage of the method is enabled by default, as it is also employed
for simulations with gap junctions, where it improves performance and even accu-
racy of the simulation, regardless of network size and parallelization (see Sec. 5.4).
Instances of the linear rate-based model are created by calling nest.Create in
the usual way with model type lin rate ipn. The parameter linear summation

characterizes the type of nonlinearity (φ or ψ, see Subsec. 6.2.2) of the rate model.
In this particular example the explicit specification of the parameter is added for
illustrative purposes only, as i) the employed model is a linear rate model, where
regardless of the choice of the parameter, φ(x) = ψ(x) = x holds and ii) the
default value is True anyway. Lines 13-14 and 31 demonstrate how to record the
rate activity with the multimeter. The record from parameter needs to be set to
rate to pick up the corresponding state variable. As this particular network model
includes delayed rate connections the synapse model rate connection delayed

is chosen (lines 17-20). In order to create instantaneous rate connections instead,
one changes the synapse model to rate connection instantaneous and removes
the parameter delay from the synapse dictionary. For the simultaneous use of
delayed and instantaneous connections one duplicates lines 17-28 and adapts the
synapse and connection dictionaries of the copy according to the needs of the
additional instantaneous connections.

Script 6.2: Connecting units of type siegert neuron. The script

shows how connections between units of type (6.26) are created in PyNEST.

Again the code snippet does not contain the definitions of the parameters

(tau m,K,w) for brevity.

1 import nest

2
3 # Create one siegert_neuron for the excitatory population

4 s_ex = nest.Create(’siegert_neuron ’, 1)

5 # Create one siegert_neuron for the inhibitory population

6 s_in = nest.Create(’siegert_neuron ’, 1)

7
8 [...]

9
10 # Create connections originating from the excitatory unit

11 syn_e = {’drift_factor ’: tau_m * K * w,

12 ’diffusion_factor ’: tau_m * K * w * w,

13 ’model ’: ’diffusion_connection ’}

14 nest.Connect(s_ex , s_ex + s_in , ’all_to_all ’, syn_e)

108

6.3 User interface

Script 6.2 shows a code snippet from a simulation script employing model (6.26)
used for mean-field analysis of complex networks in Subsec. 6.4.3.4. Here, single
rate units of type siegert neuron represent an entire population of spiking neu-
rons (lines 3-6). The units are coupled by connections of type diffusion connection.
This connection type is identical to type rate connection instantaneous for in-
stantaneous rate connections except for the two parameters drift factor and
diffusion factor substituting the parameter weight (lines 11-13). These two
parameters reflect the prefactors in front of the rate variable in (6.24) and (6.25).
In general the prefactors differ from these well known forms, as for example, in
the case of distributed connection weights (see [84], their eq. 33). Therefore,
we prefer a generic parameterization over more specific alternatives like the pair
weight and convergence.

109

6 Application in computational neuroscience II:
Including rate models in a spiking neural network simulator

6.4 Numerical results

In the following section, we assess the accuracy and stability of different numerical
solution schemes and benchmark the performance of the NEST implementation
on large-scale machines, with special focus on scalability and the comparison be-
tween the standard solution and the iterative approach using waveform relaxation
for simulations with instantaneous connections. The iterative approach is only
discussed with respect to efficiency, as the iteration always converges to the re-
sults of the standard approach within only a couple of iterations (for details see
Subsec. 6.2.3). The remainder of the section illustrates the application of the
simulation framework to a selection of prominent problems in the neuroscientific
literature.

6.4.1 Stability and accuracy of integration methods

In this section, we investigate numerical methods for the solution of SDEs that
can be employed to solve the dynamics of rate-based units (see Sec. 6.1). We
analyze the accuracy and stability of the different numerical methods to choose
the best-suited method for application in a distributed simulation scheme of a
spiking network simulation code. The analysis only covers methods compatible
with a spiking neural network simulator, namely i) the Euler-Maruyama method,
ii) the implicit Euler method solved with a parallelizable fixed-point iteration,
and iii) the exponential Euler method where the linear part is restricted to be
−I, from now on called scalar exponential Euler. The distributed representation
of the global connectivity of the network rules out both the regular exponential
Euler method with a nondiagonal matrix A and the implicit Euler method solved
with Newton iteration (see Subsec. 6.2.1 for details).

We consider a network of N linear rate units with µ = 0

τdX(t) = A ·X(t) dt+
√
τσI dW (t) . (6.11)

For this system of SDEs the regular exponential Euler scheme (2.20)

Xk+1 = eA∆t/τXk +

√
A−1

(
e2A∆t/τ − I

2

)
·
√
τσI · ηk

produces a very accurate approximation to the exact solution. We analyze two test
cases, i.e. two different choices of A, to demonstrate different stability constraints.
First, an all-to-all connected network with inhibitory connections of weight wij =
−1√
N

and hence A = −I + −1√
N
· 1, with 1 denoting an N ×N all-ones matrix [32].

110

6.4 Numerical results

Secondly, a sparse balanced excitatory-inhibitory network where the number of
excitatory units is four times larger than the number of inhibitory units. In this
network, each unit receives input from a fixed number of 0.8 ·p ·N excitatory and
0.2 · p ·N inhibitory randomly chosen source units with connection probability p
and connection weights 1√

N
and −4√

N
, respectively. We will refer to the test cases

as the inhibitory all-to-all and the sparse balanced e/i test case.

First, we turn to the accuracy analysis. Although the approximation produced by
the regular exponential Euler scheme (2.20) cannot be obtained with a distributed
representation of A, we can compute it using methods for numerical matrix com-
putations implemented in MATLAB or Python (both provide an implementation
of the same state-of-the-art algorithms, see [4, 41]). This way, we obtain a good

reference solution X̂ for the computation of the root mean square error

RMSE =

√√√√ 1

NT

N∑
i=1

n∑
k=1

(X̂k,i −Xk,i)2 (6.12)

of the different approximate methods on the time interval [t0, t0 + T]. To employ
the root mean square error in the context of stochastic differential equations,
we determine the reference solution for every tested step size and use the same
random numbers for both the reference solution and the approximative schemes.

Fig. 6.2 shows the root mean square error of the different numerical schemes
for the two test cases with N = 400 units. In both test cases, all investigated
methods with decreasing step size converge towards the reference solution with
convergence order 1, which is consistent with the established theory for SDEs
with additive noise [103]. Fig. 6.2A shows the results for the inhibitory all-to-all
test case. Here, all three methods require a step size ∆t ≤ 0.1 to deliver reliable
results. The implicit Euler scheme solved with fixed-point iteration even requires
a step size ∆t ≤ 0.05. Within the stable region ∆t ≤ 0.1 the scalar exponential
Euler scheme yields more accurate results than the two other methods. Fig. 6.2B
shows the results for the sparse balanced e/i test case. Here all three methods
achieve almost identical accuracy for ∆t ≤ 0.1 and stability problems only occur
for the Euler-Maruyama method for step sizes ∆t > 0.5. For step sizes ∆t > 0.1,
the implicit Euler method is more accurate than the other two methods.

To understand the stability issues shown in Fig. 6.2, we now turn to stabil-
ity analysis. We assume that A is diagonalizable, i.e. A = T−1DT with T =
(tij)N×N ∈ CN×N and D = diag(λ1, . . . , λN), and transform the system of SDEs
with Z(t) = T X(t). It follows that

τdZ(t) = D · Z(t) dt+
√
τσT dW (t)

111

6 Application in computational neuroscience II:
Including rate models in a spiking neural network simulator

A

B

10-3 10-2 10-1 100

∆t

10-4

10-3

10-2

10-1

100

R
M
S
E

10-3 10-2 10-1 100

∆t

10-2

10-1

100

101

R
M
S
E

Figure 6.2: Accuracy of numerical methods for two networks of linear rate
units. RMSE of the solution X obtained by the approximate solvers (blue curve:
Euler-Maruyama method, black curve: implicit Euler method solved with fixed-point
iteration, red curve: scalar exponential Euler method) with respect to the reference
solution as a function of step size in double logarithmic representation. The respectively
colored vertical lines mark the largest tested step size for which the corresponding
methods deliver a solution with RMSE ≤ 1010. RMSE computed over 200.0 ms of
biological time. (A) Inhibitory all-to-all test case. Network parameters: N = 400,
µ = 0, σ = 10 and τ = 1 ms. (B) Sparse balanced e/i test case. Network parameters:
N = 400, p = 0.2, µ = 0, σ = 10 and τ = 0.5 ms.

and Z(t0) = TX0. The transformed system consists of N equations of the form

τdZi(t) = λi · Zi(t) dt+
N∑
j=1

√
τσtij dWj(t) i = 1, . . . , n (6.13)

that depend on the eigenvalues λi of A and are pairwise independent except for
the common contributions of the Wiener processes Wj(t). We will only consider
networks with bounded activity, which requires eigenvalues λi ∈ C with negative
real part, i.e. Re(λi) < 0. For two different initial values Z0,i and Z̃0,i and assuming

112

6.4 Numerical results

the usage of the same random numbers, the solution of the i-th transformed
equation then satisfies

|Zi(t)− Z̃i(t)| = eλi(t−t0)/τ |Z0,i − Z̃0,i| < |Z0,i − Z̃0,i| . (6.14)

It is a desirable stability criterion that a numerical method applied to (6.11)
conserves this property. This requirement is closely related to the concept of A-
stability for SDEs (see [103], their Chapter 9.8) as well as A- and B-stability for
ODEs [76]. To derive stability conditions for the numerical schemes, we apply one
update step (t0 to t1 = t0 + ∆t) of the methods to (6.13) and investigate under
which circumstances the property |Z1,i−Z̃1,i| < |Z0,i−Z̃0,i| is conserved. Here Z1,i

denotes the approximation to the exact solution Zi(t1) obtained by the numerical
scheme. A straightforward calculation shows that the Euler-Maruyama method
retains the property if |1 + λi · ∆t/τ | < 1 holds. We conclude that the Euler-
Maruyama scheme is stable for maxλi ζEM(λi) < 1 with ζEM(λi) = |1 + λi ·∆t/τ |.

The scalar exponential Euler method demands a splitting of A = −I+W into −I
and W . Here, the stability condition is derived from the modified transformed
system

τdZi(t) = (−1 + λ̃i) · Zi(t) dt+
N∑
j=1

√
τσtij dWj(t) i = 1, . . . , n (6.15)

where λ̃i are the eigenvalues of the matrix W . The scalar exponential Euler
method conserves the property (6.14) if |e−∆t/τ +λ̃i(1−e−∆t/τ)| < 1. We conclude
that the scalar exponential Euler scheme is stable for maxλi ζEXP(λi) < 1 with
ζEXP(λi) = |1 + λi · (1− e−∆t/τ)|.

The implicit Euler method solved with fixed-point iteration is stable, provided
the fixed-point iteration converges. For the transformed system, the employed
fixed-point iteration on the single-unit level (6.4) reads

Φi(Z
(m)
k+1,i) =

1

1 + ∆t/τ
(Zk,i + λ̃i Z

(m)
k+1,i ∆t/τ +

N∑
j=1

1√
τ
σtij∆Wk,j) .

It converges if the scheme Φi is contractive, i.e. if the inequality

|Φi(Z
(m)
k+1,i)− Φi(Z̃

(m)
k+1,i)| ≤ C · |(Z(m)

k+1,i − Z̃
(m)
k+1,i)|

holds for all m and any two initial values Z
(0)
k+1,i and Z̃

(0)
k+1,i with a constant C < 1.

It follows that the fixed-point iteration converges if | ∆t/τ
1+∆t/τ

λ̃i| < 1. Thus the

113

6 Application in computational neuroscience II:
Including rate models in a spiking neural network simulator

implicit Euler method solved with fixed-point iteration is stable if maxλi ζIE(λi) <

1 with ζIE(λi) = ∆t/τ
1+∆t/τ

|λi + 1|. Hence for all investigated methods the stability
depends on the eigenvalues of the matrix A, the time constant τ and the step
size ∆t. To conclude restrictions on the step size ∆t, we therefore analyze the
eigenvalues of A for our examples.

For the inhibitory all-to-all test case we determine the eigenvalues λ1 = −1−
√
N

and λ2 = . . . = λN = −1 of the matrix A = −I + −1√
N
· 1 analytically. It follows

that the Euler-Maruyama scheme satisfies the stability criterion for ∆t ≤ 2τ√
N+1

,

the scalar exponential Euler method demands ∆t ≤ −τ ·ln(
√
N−1√
N+1

) and the implicit
Euler method with fixed-point iteration requires ∆t ≤ τ√

N−1
. For the example

of 400 units with τ = 1 in Fig. 6.2A, this yields step size restrictions of ∆t ≤ 2
21

for the Euler-Maruyama method, ∆t ≤ − ln(19
21

) ≈ 0.1 for the scalar exponential
Euler method and ∆t ≤ 1

19
for the implicit Euler method. This is consistent with

the numerically obtained result (see vertical lines). For all methods, the stability
criterion implies that the step size ∆t needs to be reduced with increasing network
size N or decreasing time constant τ .

This fully connected network, however, constitutes the worst case test for the class
of rate-based models (6.1), as the absolute value of the negative eigenvalue quickly
increases with the number of units N . Our second test case, the sparse balanced
e/i network does not suffer from this problem, as it is a perfectly balanced network
of excitatory and inhibitory units. In a scaling of the connection weights as 1√

N
,

the spectral radius ρ(A) of A and therefore the subsequent stability analysis is
independent of N (see [150]) and only depends on the connection probability p.
Here, the stability analysis is more complicated, as most of the eigenvalues of A
are complex and we compute them numerically. Fig. 6.3A shows the eigenvalues
of A for a network of 2000 units with p = 0.2. Fig. 6.3B demonstrates that
for this test case, the scalar exponential Euler method and the implicit Euler
method are stable regardless of the step size ∆t. For the Euler-Maruyama the
step size is restricted to ∆t < 1.03τ . This is again consistent with the results
obtained in Fig. 6.2B, where τ = 0.5 and therefore the stability criterion of the
Euler-Maruyama method yields ∆t < 0.515.

Random inhibition-dominated networks exhibit characteristics of both examples.
First, the matrix A contains a real eigenvalue λ1 = −1− α

√
N which scales with

the network size, however, it scales with a proportionality constant 0 < α < 1,
which is reduced compared to the fully connected inhibitory network and deter-
mined by the sparseness and the imbalance between excitation and inhibition.
Secondly, the matrix A contains eigenvalues which constitute a cloud in the com-
plex plane that is determined by the randomness of the connectivity. For these
random networks λmax = argmaxλi ζ(λi) is a real eigenvalue.

114

6.4 Numerical results

A

B

−2 −1 0

Re(λi)

−1

0

1

Im
(λ

i)

0 1 2

∆t/τ

0

1

2

m
ax λ
i

ζ(
λ
i)

1.00 1.05
0.9

1.0

1.1

Figure 6.3: Stability analysis for the sparse balanced e/i test-case. (A) Black
circles show the eigenvalues λi of the matrix A. Network parameters: N = 2000,
p = 0.2. (B) The curves show the maximum of the stability function ζ(λi) over all
eigenvalues λi for the investigated methods (ζEM: blue, ζIE: black, ζEXP: red) with
respect to ∆t/τ . The gray area indicates the region where the stability criterion is met.

Fig. 6.4 shows the step size restrictions of the different numerical methods with
respect to the absolute value of λmax. For |λmax| < 2 the scalar exponential
Euler scheme and the implicit Euler scheme are stable regardless of the step size
∆t. Starting at |λmax| ≥ 2.8, the scalar exponential Euler scheme is more stable
than the implicit Euler method solved with fixed-point iteration. With increasing
|λmax| the step size restrictions of the scalar exponential Euler method converges
to the step size restriction of the Euler-Maruyama method.

Based on the results in this section we choose the scalar exponential Euler to
solve rate-based model dynamics (6.1) in our NEST implementation. Fig. 6.4
demonstrates that it is the most stable algorithm compatible with the constraints
of the distributed simulation scheme for spiking neural networks. Furthermore,
the results in Fig. 6.2 indicate that it is the most accurate method in the case
of an all-to-all connected network with inhibitory connections. For the sparse
balanced excitatory-inhibitory network, the analysis exhibits an accuracy similar

115

6 Application in computational neuroscience II:
Including rate models in a spiking neural network simulator

100 101 102 103

|λmax|

10-3

10-2

10-1

100

101

∆
t/
τ

AB

Figure 6.4: Step size restrictions of the numerical methods. Largest ra-
tio ∆t/τ for which the different numerical methods (blue curve: Euler-Maruyama
method, black curve: implicit Euler method solved with fixed-point iteration, red
curve: scalar exponential Euler method) are stable shown against the absolute value of
λmax = argmaxλi ζ(λi) ∈ R. The gray area indicates the region where the scalar expo-
nential Euler method and the implicit Euler method are stable without any restrictions
on ∆t/τ . The dashed vertical lines correspond to the examples presented in the panels
of Fig. 6.2.

to the implicit Euler method. However, the solution of the implicit Euler method
with fixed-point iteration requires the application of an iterative scheme in each
single time step, with communication between the units after every iteration.
This algorithm is therefore more time consuming than the scalar exponential
Euler scheme. Besides the choice of method, the analysis in this section indicates
that numerical stability is an issue for all tested methods depending on step size
∆t and time constant τ . Although the applications in Subsec. 6.4.3 show that
many practical examples do not suffer from stability issues when a commonly
used simulation step size is employed, the inevitable restrictions on the step size
∆t should be taken into account in simulations of rate-model networks. For
simulations of linear rate models, an appropriate step size can be determined by
an analysis of the eigenvalues of A.

6.4.2 Performance of the NEST implementation

This section investigates the performance of the rate-model implementation in
NEST. We are interested in i) the scalability of the rate-model framework and
ii) the comparison between the standard implementation with communication in
every computation time step and the iterative approach using waveform relaxation
(see Subsec. 6.2.3 for details). We perform the simulations on the JUQUEEN
BlueGene/Q supercomputer [98] at the Jülich Research Centre in Germany (see
Subsec. 5.4.1.2 for details on JUQUEEN). As a test case we employ the sparse

116

6.4 Numerical results

balanced e/i test case of linear rate units (φ(x) = ψ(x) = x) introduced in
Subsec. 6.4.1, but with a fixed number of 2000 inputs per unit independent of
the overall number of units to allow for an unbiased weak scaling. Thus the
connection probability p is decreasing with increasing overall network size.

A

B

64 25
6

10
24

40
96

16
38
4

NVP

102

103

T
si
m
(s
)

25
6

10
24

40
96

16
38
4

NVP

102

103

T
si
m
(s
)

Figure 6.5: Scaling behavior of an excitatory-inhibitory network. Simulation
time with waveform relaxation (red curves, wfr comm interval: 1.0 ms, wfr tol:
10−4) and without waveform relaxation (blue curves) as a function of the number of
virtual processes in double logarithmic representation. The simulations span 100 ms of
biological time at a computation step size of h = 0.1 ms. Sparse balanced e/i test case
but with a fixed number of 2000 inputs per unit. Other parameters: µ = 0, σ = 1 and
τ = 10 ms (A) Weak scaling with 100 units per virtual process. (B) Strong scaling
with a total number of N = 51, 200 units.

A weak scaling (Fig. 6.5A) shows that the scalability of the standard implemen-
tation is impaired by the massive amount of communication. While for perfect
scaling the simulation time should be constant over the number of virtual pro-
cesses, the actual simulation time is increased by 15− 25% each time the number
of virtual processes is doubled for NVP < 256 and further up to 83% when we go
from 8, 192 to 16, 384 virtual processes. For the waveform-relaxation method, the
scaling behavior is close to constant up to 1, 024 virtual processes. When more

117

6 Application in computational neuroscience II:
Including rate models in a spiking neural network simulator

processes are employed, the simulation time increases. However, the waveform-
relaxation method shows better scaling behavior, as the increase is weaker com-
pared to the standard approach, due to the lower total number of communication
steps. Due to the higher computational load of the iterative method (see Sub-
sec. 6.2.3), the simulation time is larger compared to the straight forward approach
for a small number of virtual processes, where communication is not that crucial.
For NVP ≥ 1024, the iterative approach is superior with a speed up factor close
to three for 16, 384 virtual processes (1209 s vs. 3231 s).

The strong scaling scenario with a fixed total number of N = 51, 200 units in
Fig. 6.5B gives a similar result. The iterative approach is beneficial for more than
1, 024 virtual processes and the scaling behavior of the iterative method outper-
forms that of the standard computation. Starting at 4, 096 virtual processes, the
savings in computation time decrease, which is explained by the very low work-
load of each single compute node. Again, for a smaller number of virtual processes
the amount of additional computations is too high to outperform the standard
implementation.

Despite the overall good scaling behavior, the performance in terms of absolute
compute time is inferior to a simulator specifically designed for rate-based models
alone (not shown). In such simulators it increases performance if one collects the
states of all units in one vector. If furthermore the connectivity is available in
form of a matrix and the delays are zero or homogeneous, the network can be
efficiently updated with a single matrix-vector multiplication. Thus the increased
functionality and flexibility of having rate- and spiking models unified in one
simulator comes with the price of a loss of performance for the rate-based models.
However, as noted in the introduction of this chapter, the number of units in
rate-based network models is usually small and therefore performance is not as
critical as for spiking network models.

Nevertheless, we want to develop a better understanding of the conditions un-
der which the use of the waveform-relaxation method is beneficial for large-scale
simulations of rate-based networks. Obvious requirements are i) that the overall
number of communications is reduced by the method and ii) that the communi-
cation of NEST on the computing system is expensive enough that the additional
computational effort is justified. While Fig. 6.5 demonstrates that the latter is
true for JUQUEEN and that the former is true for the considered test case, we are
interested in whether the former requirement is also met for other linear rate-unit
networks.

For the analysis we employ the error bound (4.19) from Theorem 4.8. For networks
of linear rate units of type (6.11), we identify the constants in (4.19) as a = 1/τ
and C = ‖W‖/τ , where ‖·‖ denotes a matrix norm that is compatible with the

vector norm used for the measurement of the error em = max0≤k≤T /∆t ‖X(m)
k −

118

6.4 Numerical results

Xk‖. From standard numerical analysis (see e.g. [176], their Chapter 6.9) we
know that ‖W‖ ≥ ρ(W) holds for every matrix norm and that there exists a
vector norm ‖·‖ε for each matrix W such that the induced matrix norm satisfies
ρ(W) ≤ ‖W‖ε ≤ ρ(W) + ε. Choosing this ε-norm with ε very close to zero for the
calculation of the error bound thus enables us to estimate C by the eigenvalues
λ̃i = λi + 1 of W . The downside of this choice is that we cannot compute the
ε-norm for very small ε due to numerical instabilities, and thus cannot compute
the initial error e0. We can, however, observe the reduction of the initial error
over the iterations, which is also a good indicator for the convergence speed.

0 5 10 15 20

iterations

104 e0
e0

10−4 e0
10−8 e0
10−12 e0
10−16 e0
10−20 e0
10−24 e0

e
rr
o
r
b
o
u
n
d
 f
o
r
e m

Figure 6.6: Error bound for the error em = max0≤k≤T /∆t ‖X
(m)
k −Xk‖. Evolu-

tion of the error bound for em (see Theorem 4.8, (4.19)) depending on the number of
iterations. Orange curves display the bound for step size ∆t = 0.1 and blue curves for
∆t = 0.05 at an iteration interval length of T = 1.0 ms. The dashed vertical lines in-
dicate the number of iterations where full convergence is reached for the corresponding
step size. Different markers belong to different combinations of a and C in error bound
(4.19) (a = 1 and C = 20 (circles), a = 1 and C = 10 (triangles), a = 2 and C = 2
(squares), a = 2 and C = 1 (stars) and a = 2 and C = 0.2 (hexagons)).

Fig. 6.6 shows the error bound for different combinations of a and C. The com-
binations a = 1 and C = 10, respectively C = 20 correspond to the inhibitory
all-to-all test case with τ = 1 ms and N = 100 and N = 400. In both setups, the
error bound indicates that the error em increases over the first couple of iterations
for both tested step sizes. A reduction of the initial error e0 earlier than after T /h
iterations, where full convergence is reached, can only be guaranteed for the case
of N = 100 simulated with step size h = ∆t = 0.05 ms. As C quickly increases
with the network size the behavior is even worse for larger networks. Thus for the
inhibitory all-to-all test case, the usage of the waveform-relaxation method does
not pay off.

The combination a = 2 and C = 2 corresponds to the sparse balanced e/i test case

119

6 Application in computational neuroscience II:
Including rate models in a spiking neural network simulator

with p = 0.2 and τ = 0.5 ms. As indicated by Fig. 6.3 the connection probability
p = 0.2 results in a spectral radius ρ(W) ≈ 0.95 and ‖W‖ε can therefore be
safely estimated by one, regardless of the network size N . Here a first reduction
of the initial error can be guaranteed after six of maximally ten iterations for
∆t = h = 0.1 ms, and after eight of maximally 20 iterations for ∆t = h = 0.05 ms.
The actual number of iterations in a network simulation in NEST is determined
by the magnitude of the initial error e0 and the desired accuracy wfr tol. A
reduction of the initial error by a factor of 10−5 as achieved after 15 iterations
with step size 0.05 ms might, however, be sufficient and indicates that the number
of communications can be reduced with the waveform-relaxation method for this
test case.

The remaining combinations with a = 2 and smaller values for C correspond to the
sparse balanced e/i test case with a fixed number of inputs per unit investigated
in Fig. 6.5. In the limit of large networks, this is the most realistic test case, as
the number of incoming connections of a single unit is usually limited by some
biologically justified threshold. The result of a fixed number of inputs at an
increasing network size is a more sparse matrix W and a decreasing connection
probability p. Numerically, we obtain the spectral radius of sufficiently large
matrices W as ρ(W) ≈ 0.47 for p = 0.05 and as ρ(W) ≈ 0.075 for p = 0.001,
which motivate the remaining choices of C in Fig. 6.6. In the latter case, the
initial error is already reduced by a factor of 10−5 or 10−12 after half of the
maximal number of iterations. The error bound thus gives another reason besides
expensive communication as to why the waveform-relaxation method is particular
beneficial with a large number of virtual processes NVP in the weak scaling shown
in Fig. 6.5A: the waveform-relaxation method is expected to need fewer iterations
if the network size is increased, and thus the connection probability p is reduced.
However, as the strong scaling with a fixed connection probability in Fig. 6.5B
shows a very similar behavior, the expensive communication still is the main
criterion here.

In conclusion the convergence speed of the waveform-relaxation method depends
on the time constant τ and the eigenvalues of the matrix W . Fast convergence
can be obtained for networks with large time constant τ and a matrix W with
a small spectral radius ρ(W). Following the stability analysis in Subsec. 6.4.1,
those networks are exactly the kind of networks which can be simulated in NEST
without or with only moderate step size restrictions due to stability issues.

120

6.4 Numerical results

6.4.3 Applications

This section demonstrates the use of the framework on different neuroscientific
applications. First, we discuss a random inhibition-dominated network of linear
rate units, then include nonlinear rate dynamics in a random network and spa-
tially structured connectivity in a functional neural-field model. In each case,
simulation results are compared to analytical predictions. Furthermore, we sim-
ulate a mean-field model of a spiking model of a cortical microcircuit and discuss
possible generalizations.

6.4.3.1 Linear model

In the asynchronous irregular regime which resembles cortical activity, the domi-
nant contribution to correlations in networks of nonlinear units is given by effective
interactions between linear response modes [37, 71, 144, 178]. Networks of such
noisy linear rate models have been investigated to explain features such as oscil-
lations [13] or the smallness of average correlations [85, 177]. We here consider a
prototypical network model of excitatory and inhibitory units following the linear
dynamics given by (6.1) with φ(x) = ψ(x) = x, µ = 0, and noise amplitude σ,

τdXi(t) =

(
−Xi +

N∑
j=1

wijXj(t)

)
dt+

√
τσdWi(t) . (6.16)

Due to the linearity of the model, the cross-covariance between units i and j can
be calculated analytically and is given by [37, 61, 66, 152]

c(t) =
∑
i,j

vTi σ
2vj

λi + λj
uiu

T
j

(
H(t)

1

τ
e−λi

t
τ +H(−t)1

τ
eλj

t
τ

)
, (6.17)

where H denotes the Heaviside function. The λi indicate the eigenvalues of the
matrix I − W corresponding to the i-th left and right eigenvectors vi and ui
respectively. Non-zero delays yield more complex analytical expressions for cross-
correlations. In the population-averaged case, theoretical predictions are still
analytically tractable ([71], their eq. 18). Fig. 6.7 shows the cross-covariance
functions for pairs of instantaneously coupled units in a large network, as well as
population-averaged covariance functions in a network of excitatory and inhibitory
units with delayed interactions. In both cases, simulations are in good agreement
with the theoretical predictions.

121

6 Application in computational neuroscience II:
Including rate models in a spiking neural network simulator

A B

−2 0 2

time lag t (ms)

co
rr

e
la

ti
o
n

−1 0 1

time lag t (ms)

co
rr

e
la

ti
o
n

Figure 6.7: Linear rate model of a random excitatory-inhibitory network.
(A) Cross-correlation functions of two pairs of excitatory units (black, red) and an
excitatory-inhibitory unit pair (blue) in a network without delay. The variability across
correlation functions arises from heterogeneity in network connections (difference be-
tween black and red curves) and from different combinations of cell types (e.g. difference
between black and blue curves). (B) Population-averaged autocorrelation function for
excitatory (black) and inhibitory units (red), and cross-correlation function between
excitatory and inhibitory units (blue) in a network with delay d = 2 ms. Symbols
denote simulation results, curves show theoretical predictions. Parameters: NE = 80
excitatory and NI = 20 inhibitory units, random connections with fixed out-degree, con-
nection probability p = 0.1, excitatory weight wE = 1/

√
NE +NI , inhibitory weight

wI = −6wE , τ = 1 ms, µ = 0, σ = 1. Step size h = 0.1 ms.

6.4.3.2 Nonlinear model

In the presence of nonlinearities qualitatively new features appear. One of the
most prominent examples is the emergence of chaotic dynamics [174] in a network
of non-linearly coupled rate units. The original model is deterministic and has
been recently extended to stochastic dynamics [67]. The model definition follows
from (6.1) with µ = 0, φ(x) = x, ψ(x) = tanh(x), i.e.

τdXi(t) =

(
−Xi(t) +

N∑
j=1

wij tanh (Xj(t))

)
dt+

√
τσ dWi(t) , (6.18)

where wij ≈ N (0, g2/N) are Gaussian random couplings. In the thermodynamic
limit N →∞, the population averaged autocorrelation function c(t) can be deter-
mined within dynamic mean-field theory [67, 165, 174]. Comparing c(t) obtained
by simulation of a network (6.18) with the analytical result ([67], their eqs. 6
and 8) demonstrates excellent agreement (Fig. 6.8). The simulated network is

122

6.4 Numerical results

two orders of magnitude smaller than the cortical microcircuit, illustrating that
in this context finite-size effects are already negligible at this scale.

A B

210 220

time t (ms)

−1

0

1

a
ct

iv
it

y
 X

i

−10 −5 0 5 10

time lag t (ms)

0.0

0.1

a
u
to

co
rr

e
la

ti
o
n
 c

Figure 6.8: Nonlinear network model. Simulation of the network specified by (6.18)
with N = 1000 units. (A) Noisy example trajectories of two units. (B) Autocorrelation
function obtained by simulation averaged over all units (dots) and theory (solid curve).
Other parameters: τ = 1 ms, σ = 0.5, g = 0.5. Step size h = 0.1 ms.

6.4.3.3 Functional model

Complex dynamics arises not only from nonlinear single-unit dynamics but also
from structured network connectivity [189]. One important nonrandom feature
of brain connectivity is the spatial organization of connections [117, 183]. In
spatially structured networks, delays play an essential role in shaping the col-
lective dynamics [155, 182]. Patterns of activity in such networks are routinely
investigated using neural-field models. In contrast to the models discussed above,
field models require a discretization of space for numerical simulation. Such dis-
cretization can be done in the real space, leading effectively to a network of units
at discrete positions in space, or alternatively, for particular symmetries in the
couplings in k-space [156]. Here, we follow the more general approach of dis-
cretization in real space.

A prototypical model of a spatial network is given by Roxin et al. [155], where
the authors consider the neural-field model

τdX(ϕ, t) =

(
−X(ϕ, t) + φ

[
Iext +

∫ π

−π
dϕ′w(|ϕ− ϕ′|)X(ϕ′, t− d)

])
dt (6.19)

with delayed (delay d) interactions, constant input Iext, threshold-linear activation
function φ = x ·H(x) and periodic Mexican-hat shaped connectivity

w(|ϕ− ϕ′|) = w0 + w1 cos(ϕ− ϕ′). (6.20)

123

6 Application in computational neuroscience II:
Including rate models in a spiking neural network simulator

A B

C D
0 5 10 15 20

0

40

80

ne
ur
on

s
0 5 10 15 20

0

40

80

0 5 10 15 20
time t (ms)

0

40

80

ne
ur
on

s

0 5 10 15 20
time t (ms)

0

40

80

Figure 6.9: Spatial patterns in functional neural-field model. Vertical axis shows
unit indices organized according to ascending angle ϕ ∈ [−π, π). Activity Xi(t) =
X(ϕi, t) encoded by gray scale with white denoting no activity. Initial transients not
shown. Patterns reproduce the analytically derived phase diagram in the original study
by Roxin et al. [155]. Parameters: N = 100, d = 0.1 ms, τ = 1 ms, Iext = 1, w0 = −80,
w1 = 15 (A), w1 = 5 (B), w1 = −46 (C), w1 = −86 (D). Initial condition: Xi(0) =
X(ϕi, 0) = π2 − ϕ2

i .

The spatial variable ϕ can also be interpreted as the preferred orientation of a set
of units, thus rendering (6.19) a model in feature space [80]. Discretizing space
into N segments yields the following set of coupled ODEs

τdX i =

(
−X i + φ

[
Iext +

N∑
j=1

wijXj(t− d)

])
dt (6.21)

with connectivity wij = 2π
N
w(|ϕi − ϕj|), ϕi = −π + 2π

N
· i for i ∈ [1, N] and dis-

cretization factor 2π
N

that scales the space constants w0 and w1 with the neuron
density. The spatial connectivity together with a delay in the interaction intro-
duces various spatial activity patterns depending on the shape of the Mexican-hat
connectivity. To illustrate applicability of the simulation framework to neural-field
models, we reproduce various patterns (Fig. 6.9) observed by Roxin et al. [155].
Although the discrete and continuous networks strictly coincide only in the ther-
modynamic limit N → ∞, the numerically obtained patterns shown in Fig. 6.9
well agree with the analytically derived phase diagram of the continuous model
[155] already for network sizes of only N = 100 units.

6.4.3.4 Mean-field analysis of complex networks

A network of spiking neurons constitutes a high dimensional and complex sys-
tem. To investigate its stationary state, one can describe the activity in terms

124

6.4 Numerical results

of averages across neurons and time, leading to population averaged stationary
firing rates [20]. Here, the spatial average collapses a large number of neurons
into a single population, which is interpreted as a single rate unit. The ability
to represent spiking as well as rate dynamics by the same simulation framework
allows a straight-forward analysis of the spiking network by replacing the spiking
neuron populations with single rate-based units.

In more formal terms, we now consider networks of neurons structured into N
interconnected populations. A neuron in population α receives Kαβ incoming
connections from neurons in population β, each with synaptic efficacy wαβ. Ad-
ditionally, each neuron in population α is driven by Kα,ext Poisson sources with
rate Xext and synaptic efficacy wext. We assume leaky integrate-and-fire model
neurons with exponentially decaying post-synaptic currents. The dynamics of
membrane potential V and synaptic current Is is [57]

τm
dVi
dt

= −Vi + Is,i

τs
dIs,i

dt
= −Is,i + τm

N∑
j=1

wij
∑
k

δ(t− tk,j − d) , (6.22)

where tk,j denotes the k-th spike-time of neuron j, and τm and τs are the time
constants of membrane and synapse, respectively. The membrane resistance has
been absorbed in the definition of the current. Whenever the membrane poten-
tial V crosses the threshold θ, the neuron emits a spike and V is reset to the
potential Vr, where it is clamped for a period of length τr. Given that all neu-
rons have identical parameters, a diffusion approximation, assuming asynchronous
and Poissonian spiking statistics as well as small synaptic couplings, leads to the
population-averaged firing rates Xα [57]

1

Xα

= τr + τm

√
π

∫ (θ−µα)/σα+γ
√
τs/τm

(Vr−µα)/σα+γ
√
τs/τm

eu
2

(1 + erf(u)) du

=: 1/Φα(X) (6.23)

µα = τm

∑
β

KαβwαβXβ + τmKα,extwextXext (6.24)

σ2
α = τm

∑
β

Kαβw
2
αβXβ + τmKα,extw

2
extXext. (6.25)

Here, γ = |ζ(1/2)|/
√

2, with ζ denoting the Riemann zeta function [2]. We find
the fixed points of (6.23) by solving the first-order differential equation [166, 188]

τ
dXα

dt
= −Xα + Φα(X), (6.26)

125

6 Application in computational neuroscience II:
Including rate models in a spiking neural network simulator

which constitutes a network of rate units with dimension equal to the number of
populations N .

B

C D

450 550
time t (ms)

L23
L4
L5L6

0 20 40 60
time t (ms)

0

8
ra
te
 (1

/s
)

other background input

Th

th
a
la
m
o
-c
or
ti
ca
l
in
p
u
t

excitatory
inhibitory

other background input

Th

th
a
la
m
o
-c
or
ti
ca
l
in
p
u
t

excitatory
inhibitory

A

Figure 6.10: Reduction of spiking microcircuit model to rate dynamics. (A)
Sketch of a microcircuit model [149] with excitatory (blue triangles) and inhibitory (red
disks) neuron populations, each consisting of a large number of neurons indicated by
the small triangles and disks respectively. Arrows between populations indicate the
in-degree K. (B) Sketch of the corresponding reduced model where each population
is replaced by a single rate unit. (C) Spiking activity in the different layers. (D)
Dynamics of the eight units of the rate network (6.26) (curves) and comparison to
population-averaged firing rates obtained from direct simulations of the spiking network
(diamonds).

Next we apply this framework to a cortical microcircuit model [149] constitut-
ing roughly 80, 000 spiking neurons structured into 8 populations across 4 layers
[L23, L4, L5, L6], with one excitatory and one inhibitory cell type each (Fig. 6.10).
The model exhibits irregular and stationary spiking activity (Fig. 6.10C). Re-
placing each population by a single rate unit (Fig. 6.10B) results in an eight-
dimensional rate network described by differential equation (6.26). If the mean-
field approach is valid, the solution of (6.26) converges to a fixed point corre-
sponding to the population-averaged firing rates obtained from direct simula-
tion of the spiking model. Fig. 6.10D shows that the rate network captures the
population-averaged firing rates of the spiking model quite well and thus validates
the mean-field approach.

The analysis only considers the stationary state of the microcircuit, which can
as well be determined using the population-density approach [28]. While the

126

6.5 Discussion

mean-field approach presented is strictly valid only in the thermodynamic limit,
finite-size fluctuations around this state are accessible using the noisy linear-rate
model (Subsec. 6.4.3.1) as elaborated by [13] or within the population-density
approach [168].

6.5 Discussion

This chapter presents an efficient way to integrate rate-based models in a neu-
ronal network simulator that was originally designed for models with delayed
spike-based interactions. The advantage of the latter is a decoupling of neu-
ron dynamics between spike events. This is used by current parallel simulators
for large-scale networks of spiking neurons which reduce communication between
simulation processes to significantly increase performance and scaling capabili-
ties up to supercomputers [129]. In contrast, rate-based models interact in a
continuous way. For delayed interactions, rate dynamics are still decoupled for
the minimal delay of the network, such that information can be exchanged on a
coarse time-grid. For instantaneous coupling, communication in every time step
is required. This is feasible for small networks that can be simulated on small
machines and thus require only a small amount of communication. For improved
efficiency of simulations of large networks on supercomputers, we implement the
waveform-relaxation method which we developed in Sec. 4.2. Furthermore, we
investigate several standard methods for the solution of rate-model equations and
demonstrate that the scalar exponential Euler method is the best choice in the
context of a neuronal network simulator that was originally designed for models
with delayed spike-based interactions. Afterwards, we show the applicability of
the numerical implementation to a variety of well-known and widely-used rate
models.

Our implementation in NEST uses an exponential Euler scheme with a diago-
nal matrix A (scalar exponential Euler): the leaky dynamics of single neurons
are integrated exactly, while the network input to the rate units as well as the
additive noise is approximated. The analysis in Subsec. 6.4.1 demonstrates that
the scalar exponential Euler method is the most accurate, stable and efficient
standard-method for SDEs that is applicable to a distributed spiking simulator.
In particular, for all-to-all connected networks of linear rate units the distributed
design renders implicit methods less feasible, as the convergence of the involved
fixed-point iteration requires small time-steps. For all methods, the computation
step size needs to be compared against the time constant τ . Therefore, stable
solutions for small values τ � 1 may require a decrease of the step size below a
default value.

127

6 Application in computational neuroscience II:
Including rate models in a spiking neural network simulator

Unlike in our first application of waveform-relaxation methods in a spiking neural
network simulator (see Chapter 5) the usage of such a method is only optional for
rate-based models. The waveform-relaxation method from Sec. 4.2 can be used for
rate-model networks with instantaneous rate connections to improve scalability
in large-scale simulations by reducing communication at the cost of additional
computations. As a consequence, the optimal method (standard vs. waveform-
relaxation) depends on the numbers of compute nodes and virtual processes. In
our test case, the use of the waveform-relaxation technique is beneficial for 1024
or more virtual processes. It is therefore recommended to use the iterative scheme
for large-scale simulations on supercomputers but to disable it for smaller rate-
model simulations on local workstations or laptops. In our implementation this
can easily be achieved by the parameter use wfr (see Subsec. 6.2.3 for details).
In general, the scalability for simulations of rate models is worse than for spiking
network simulations [112] and comparable to simulations with gap junctions (as
shown in Chapter 5). This is to be expected, since for rate connections as well as
for gap junctions, a large amount of data needs to be communicated compared to
a spiking simulation. Future work should assess whether this bottleneck can be
overcome by a further optimized communication scheme.

While our implementation uses NEST as a platform, the employed algorithms
can be ported to other parallel spiking network simulators. Furthermore, the
implementation of the example rate models as templates allows customization
to arbitrary gain functions. Researchers can create additional models without
in-depth knowledge of simulator specific data structures or numerical methods.
In addition, the infrastructure is sufficiently general to allow for extensions to
other categories of rate models, as shown explicitly for nonlinear dynamics, mul-
tiplicative coupling, and other types of noise. This design enables the usage of
the framework for a large body of rate-based network models. The generality of
the model equations also supports applications beyond neuronal networks, as e.g.
computational gliascience [6] or artificial intelligence [82].

Some design decisions for our implementation come with up- and downsides and
may at the present state of knowledge and experience constitute judgment calls:
the choice to determine the type of nonlinearity of the recurrent network input
with a boolean parameter is based on the assumption that this implementation
covers the majority of rate models used in neuroscience today. The solution has an
advantage in maintainability, as it results in half as many template instances for a
given set of gain functions than the alternative solution discussed in Subsec. 6.2.2.
It also avoids the introduction of potentially confusing names of rate models
encoding the nature of the nonlinearity. On the downside, models that do actually
employ both nonlinearities at once cannot be expressed. Furthermore, a decision
that can already be made at the time when the model instance is created is delayed
to the simulation phase. The decision to create a separate connection type for

128

6.5 Discussion

mean-field models of the siegert type is made with the goal of avoiding memory
overhead. This comes at the price that units of this type cannot be connected to
instances of rate models using the generic rate connection. Adapter elements like
the parrot neuron (see [109] for a recent application) are one way to overcome
this problem. Only the experience of researchers with the present implementation
will inform us on whether characteristics and user interface serve the purpose of
the community or whether particular decisions need revision.

Mean-field theory has built a bridge between networks of spiking neurons and rate-
based units that either represent single neurons or populations [16, 22, 25, 71, 142].
In the latter case, the rate-based approach comes with a considerable reduction of
dimensionality (Subsec. 6.4.3.4). Due to a possibly large number of populations,
the fixed-point solution of the stationary activity can generally not be determined
analytically but can still be found by evolving a pseudo-time dynamics. Within
the presented framework, this approach is much faster than the spiking counter-
part and thus facilitates the calibration of large-scale spiking network models
[166].

Our unifying framework allows researchers to easily switch between rate-based
and spiking models in a particular network model requiring only minimal changes
to the simulation script. This facilitates an evaluation of the different model types
amongst each other and increases reproducibility in the validation of reductions
of spiking networks to rate-based models. Furthermore, it is instructive to study
whether and how the network dynamics changes with the neuron model [18]. In
particular, functional networks being able to perform a given task are typically
designed with rate-based units. Their validity can now be evaluated by going from
a more abstract rate-based model to a biologically more realistic spiking neuron
model. The present implementation in NEST does not allow for interactions be-
tween spiking and rate-based units. While this is technically trivial to implement,
the proper conversion from spikes to rates and vice versa is a conceptual issue
that has to be explored further by theoretical neuroscience.

The presented joined platform for spike-based and rate-based models hopefully
triggers new research questions by facilitating collaboration and translation of
ideas between scientists working in the two fields. The work presented in this
chapter therefore contributes to the unification of both modeling routes in multi-
scale approaches, combining large-scale spiking networks with functionally in-
spired rate-based elements to decipher the dynamics of the brain.

129

Chapter 7
Conclusions & Outlook

In this thesis we developed waveform-relaxation methods suitable for application
in spiking neural network simulators. The main achievements of this thesis are the
identification of suitable methods, their efficient implementation in the existing
structures of the parallel simulator NEST and their numerical and theoretical
analysis.

For the inclusion of gap junctions, i.e. our use case for a waveform-relaxation
method applied to ordinary differential equations, we were able to build on a
variety of results from a scientifically well researched field. Therefore it is not
surprising that our method has common ground with previously developed meth-
ods, especially with a class of methods from Bellen and Zerrano (see Sec. 3.1).
Nevertheless, the combination of a Runge-Kutta method with adaptive step size
control combined with the interpolation on a coarser fixed grid constitutes, to
the best of our knowledge, a new approach. This approach is perfectly suited for
the application in distributed neural network simulations, as demonstrated by the
numerical results in Sec. 5.4.

Beside the mathematical aspects of the inclusion of gap junctions, this part of the
thesis contains a lot of conceptional work that can be classified as computer sci-
ence or more specific, as computational neuroscience. We developed a framework
within the existing structures that enables the application of iterative methods
in spiking neural network simulators and also enables the communication of ar-
bitrary data that occurs on a regular basis and is not triggered by a spike event.
Furthermore, we improved the user interface in order to satisfy the requirements
of bidirectional connections.

The inclusion of rate models, i.e. our use case for a waveform-relaxation method
applied to stochastic differential equations, raised different challenges. Here we

131

7 Conclusions & Outlook

investigate the choice of the numerical method in detail by analyzing the accu-
racy and stability properties of a variety of numerical methods for SDEs that
are compatible with the general workflow of a spiking neural network simula-
tor. This part, and the entire developed framework, is independent of the use
of the waveform-relaxation technique. We do, however, show that large-scale
simulations on supercomputers benefit from the use of the waveform-relaxation
scheme developed in Sec. 4.2. To this purpose we first prove the convergence of
the method in a fixed number of iterations dependent on the step size and the
length of the iteration interval, and then demonstrate the benefits by comparing
the simulation times of large-scale simulations in the numerical results section.
Furthermore, we investigate the benefit of the waveform-relaxation method with
respect to the specific rate-unit network with an error bound that is developed in
Subsec. 4.2.3.

The release of the developed technology in the NEST simulator makes the results
of this thesis visible to the large community of computational neuroscientists.
First related publications [97, 169] already indicate that the community will most
likely benefit from the new features of the simulator.

In future research, it would be interesting to investigate the performance of more
advanced waveform-relaxation schemes in the context of spiking neural network
simulators. In this thesis, we restricted the discussion to Jacobi-like waveform-
relaxation methods, as this scheme is best suited for the parallel processing that
is employed in these simulators. However, other less parallel waveform-relaxation
schemes, such as e.g. the Gauss-Seidel scheme, are known to converge significantly
faster. It would be interesting to see if a method that represents a compromise
between parallel processing and fast convergence can be beneficial in a spiking neu-
ral network simulator. Most promising seems a Red-Black Gauss-Seidel scheme,
an approach that analyzes the structure of the underlying neural network (sub-
systems) and identifies groups of neurons (subsystems) that can be processed
in parallel, although the underlying scheme in general is Gauss-Seidel. In this
context, it needs to be investigated whether the reduction in the number of iter-
ations is significant enough to outdo the additional effort due to pre-processing
and increased number of communications per iteration for typical neural network
simulations.

132

List of Figures

2.1 Nodes and connections of the example network as a directed graph 18

2.2 Time course of the membrane potential of a single neuron during
one dmin-interval . 20

5.1 Representation of two point neurons coupled by a gap junction . . 44

5.2 Progress of the single-step method during one dmin-interval 45

5.3 Artefactual shift when using the single-step method 46

5.4 Approximations of the membrane potential 50

5.5 Two communication strategies using the waveform-relaxation tech-
nique in a time-driven simulator 51

5.6 Data structures for the representation of gap junctions 54

5.7 Iterative neuronal updates . 60

5.8 Integration error as a function of the number of iterations 73

5.9 Efficiency of a two-neuron simulation 74

5.10 Effect of membrane potential interpolation on network error . . . 75

5.11 Influence of gap weight, step size and desired accuracy on the error
ε and the number of iterations . 77

5.12 Spike patterns for different gap weights 78

5.13 Network behavior depending on the gap weight g 79

5.14 Overhead of the gap-junction framework for network with only
chemical synapses . 81

133

LIST OF FIGURES

5.15 Comparison of simulation times on different systems 82

5.16 Costs of the gap-junction dynamics 83

5.17 Predicted cumulative memory usage as a function of number of
virtual processes for a maximum-filling scaling 86

6.1 Different communication strategies for distributed simulations . . 104

6.2 Accuracy of numerical methods for two networks of linear rate units112

6.3 Stability analysis for the sparse balanced e/i test-case 115

6.4 Step size restrictions of the numerical methods 116

6.5 Scaling behavior of an excitatory-inhibitory network 117

6.6 Error bound for the error em = max0≤k≤T /∆t ‖X(m)
k −Xk‖ 119

6.7 Linear rate model of a random excitatory-inhibitory network . . . 122

6.8 Nonlinear network model . 123

6.9 Spatial patterns in functional neural-field model 124

6.10 Reduction of spiking microcircuit model to rate dynamics 126

134

List of Tables

2.1 Runge-Kutta-Fehlberg 4(5) . 8

5.1 Coefficients of the interpolation polynomial depending on the in-
terpolation order . 49

5.2 Storage and communication demand for different interpolation orders 49

6.1 Template-derived rate-based models 102

6.2 Parameters of the waveform-relaxation algorithm 105

135

List of Algorithms & Scripts

2.1 Example network in the PyNEST syntax 17

5.1 Update function of a neuron model supporting gap junctions 57

5.2 handle function algorithm . 58

5.3 Pseudo code of the simulate function in the scheduler 59

5.4 Various ways to create a gap junction between two neurons 64

5.5 Creation of a network with a predetermined total number of gap
junctions between randomly chosen pairs of neurons using a prede-
fined connection algorithm . 65

5.6 Creation of a network with a predetermined total number of gap
junctions using an explicit list of random neuron pairs 66

6.1 Simulation of an excitatory-inhibitory network of linear rate units . 107

6.2 Connecting units of type siegert neuron 108

136

List of Notations

Throughout this thesis, scalars and deterministic vectors are denoted by lower-
case letters, and matrices and stochastic elements are denoted by upper-case
letters. Subscript �k denote time indices, subscript �i and �j denote component
indices and parenthesized superscript �(m) indicate iteration indices. In addition,
the following abbreviations and notations are used across all chapters:

C the set of complex numbers
dmin minimal network delay
∆t step size of numerical methods
∆W Wiener increment (∼ N (0,∆t))
h NEST simulator step size
H Heaviside step function
Hz hertz
I identity matrix
ms millisecond
mV millivolt
n total number of time steps
N total number of components (neurons)
NVP total number of virtual processes
nS nanosiemens
pA picoampere
R the set of real numbers
�T transpose of a matrix or vector
T interval length of the simulation (biological time simulated)
T interval length of the waveform relaxation method
Tsim duration of a simulation (simulation time)

137

Bibliography

[1] L. Abbott, B. DePasquale, and R.-M. Memmesheimer, Building
functional networks of spiking model neurons, Nat. Neurosci., 19 (2016),
pp. 350–355.

[2] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Func-
tions: with Formulas, Graphs, and Mathematical Tables, Dover Publica-
tions, New York, 1974.

[3] I. A. Adamu, Numerical approximation of SDEs and stochastic Swift-
Hohenberg equation, PhD thesis, Heriot-Watt University, 2011.

[4] A. H. Al-Mohy and N. J. Higham, A new scaling and squaring algo-
rithm for the matrix exponential., SIAM J. Matrix Analysis Applications,
31 (2009), pp. 970–989.

[5] S.-I. Amari, Dynamics of pattern formation in lateral-inhibition type neu-
ral fields, Biol. Cybern., 27 (1977), pp. 77–87.

[6] M. Amiri, F. Bahrami, and M. Janahmadi, Functional contributions
of astrocytes in synchronization of a neuronal network model, Journal of
Theoretical Biology, 292 (2012), pp. 60 – 70.

[7] D. J. Amit and N. Brunel, Model of global spontaneous activity and
local structured activity during delay periods in the cerebral cortex, Cereb.
Cortex, 7 (1997), pp. 237–252.

[8] J. A. Bednar, Topographica: Building and analyzing map-level simula-
tions from Python, C/C++, MATLAB, NEST, or NEURON components,
Front. Neuroinformatics, 24 (2009).

138

BIBLIOGRAPHY

[9] A. Bellen, Z. Jackiewicz, and M. Zennaro, Contractivity of wave-
form relaxation Runge-Kutta iterations and related limit methods for dissi-
pative systems in the maximum norm, SIAM Journal on Numerical Analysis,
31 (1994), pp. 499–523.

[10] A. Bellen and M. Zennaro, The use of Runge-Kutta formulae in
waveform relaxation methods, Applied Numerical Mathematics, 11 (1993),
pp. 95–114.

[11] M. Bjørhus, On dynamic iteration for delay differential equations, BIT
Numerical Mathematics, 34 (1994), pp. 325–336.

[12] M. Bjørhus, A note on the convergence of discretized dynamic iteration,
BIT Numerical Mathematics, 35 (1995), pp. 291–296.

[13] H. Bos, M. Diesmann, and M. Helias, Identifying anatomical origins
of coexisting oscillations in the cortical microcircuit, PLoS Comput. Biol.,
12 (2016), pp. 1–34.

[14] H. Bos, A. Morrison, A. Peyser, J. Hahne, M. Helias, S. Kunkel,
et al., NEST 2.10.0. http://dx.doi.org/10.5281/zenodo.44222, Dec.
2015.

[15] J. M. Bower and D. Beeman, GENESIS (simulation environment),
Scholarpedia, 2 (2007), p. 1383.

[16] P. C. Bressloff, Spatiotemporal dynamics of continuum neural fields,
Journal of Physics A: Mathematical and Theoretical, 45 (2012), p. 033001.

[17] , Path-integral methods for analyzing the effects of fluctuations in
stochastic hybrid neural networks, Journal of Mathematical Neuroscience, 5
(2015).

[18] R. Brette, Philosophy of the spike: Rate-based vs. spike-based theories of
the brain, Frontiers in Systems Neuroscience, 9 (2015).

[19] R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman,
J. M. Bower, M. Diesmann, Morrison, et al., Simulation of net-
works of spiking neurons: A review of tools and strategies, J. Comput. Neu-
rosci., 23 (2007), pp. 349–398.

[20] N. Brunel, Dynamics of sparsely connected networks of excitatory and
inhibitory spiking neurons, J. Comput. Neurosci., 8 (2000), pp. 183–208.

[21] N. Brunel and V. Hakim, Fast global oscillations in networks of
integrate-and-fire neurons with low firing rates, Neural Comput., 11 (1999),
pp. 1621–1671.

139

http://dx.doi.org/10.5281/zenodo.44222

BIBLIOGRAPHY

[22] M. A. Buice and C. C. Chow, Correlations, fluctuations, and stabil-
ity of a finite-size network of coupled oscillators, Phys. Rev. E, 76 (2007),
p. 031118.

[23] , Dynamic finite size effects in spiking neural networks, PLoS Comput
Biol, 9 (2013), pp. 1–21.

[24] M. A. Buice and J. D. Cowan, Field-theoretic approach to fluctuation
effects in neural networks, Phys. Rev. E, 75 (2007), p. 051919.

[25] M. A. Buice, J. D. Cowan, and C. C. Chow, Systematic fluctuation
expansion for neural network activity equations, Neural Comput., 22 (2010),
pp. 377–426.

[26] K. Burrage, Parallel methods for initial value problems, Applied Numer-
ical Mathematics, 11 (1993), pp. 5–25.

[27] G. D. Byrne and A. C. Hindmarsh, PVODE, an ODE solver for par-
allel computers, International Journal of High Performance Computing Ap-
plications, 13 (1999), pp. 354–365.

[28] N. Cain, R. Iyer, C. Koch, and S. Mihalas, The computational prop-
erties of a simplified cortical column model, PLoS Comput. Biol., 12 (2016),
p. e1005045.

[29] T. Carnevale and M. Hines, The NEURON Book, Cambridge Univer-
sity Press, Cambridge, 2006.

[30] A. Casaleggio, M. L. Hines, and M. Migliore, Computational model
of erratic arrhythmias in a cardiac cell network: The role of gap junctions,
PloS one, 9 (2014), p. e100288.

[31] R. Chaudhuri, K. Knoblauch, M.-A. Gariel, H. Kennedy, and
X.-J. Wang, A large-scale circuit mechanism for hierarchical dynamical
processing in the primate cortex, Neuron, 88 (2015), pp. 419–431.

[32] A. Cichocki, R. Zdunek, A. H. Phan, and S.-i. Amari, Nonnegative
matrix and tensor factorizations: Applications to exploratory multi-way data
analysis and blind source separation, John Wiley & Sons, Chichester, 2009.

[33] S. D. Cohen and A. C. Hindmarsh, CVODE, a stiff/nonstiff ODE
solver in C, Computers in Physics, 10 (1996), pp. 138–143.

[34] B. W. Connors and M. A. Long, Electrical synapses in the mammalian
brain, Annu. Rev. Neurosci., 27 (2004), pp. 393–418.

140

BIBLIOGRAPHY

[35] S. Coombes, Waves, bumps, and patterns in neural field theories, Biol.
Cybern., 93 (2005), pp. 91–108.

[36] S. Coombes and M. Zachariou, Gap junctions and emergent rhythms,
in Coherent Behavior in Neuronal Networks, K. Josic, J. Rubin, M. Matias,
and R. Romo, eds., vol. 3 of Springer Series in Computational Neuroscience,
Springer New York, 2009, pp. 77–94.

[37] D. Dahmen, H. Bos, and M. Helias, Correlated fluctuations in
strongly coupled binary networks beyond equilibrium, Phys. Rev. X, 6 (2016),
p. 031024.

[38] A. Davison, D. Brüderle, J. Eppler, J. Kremkow, E. Muller,
D. Pecevski, L. Perrinet, and P. Yger, PyNN: A common interface
for neuronal network simulators, Front. Neuroinformatics, 2 (2008).

[39] M. de Kamps, A generic approach to solving jump diffusion equations with
applications to neural populations, ArXiv e-prints, 1309.1654v2 [q-bio.NC]
(2013).

[40] M. de Kamps, V. Baier, J. Drever, M. Dietz, L. Mösenlechner,
and F. van der Felde, The state of miind, Neural Networks, 21 (2008),
pp. 1164–1181.

[41] E. Deadman, N. J. Higham, and R. Ralha, Blocked Schur algorithms
for computing the matrix square root, in PARA, P. Manninen and P. Öster,
eds., vol. 7782 of Lecture Notes in Computer Science, Heidelberg, 2012,
Springer, pp. 171–182.

[42] G. Deco and V. K. Jirsa, Ongoing cortical activity at rest: Criticality,
multistability, and ghost attractors, J. Neurosci., 32 (2012), pp. 3366–3375.

[43] G. Deco, V. K. Jirsa, and A. R. McIntosh, Emerging concepts for
the dynamical organization of resting-state activity in the brain, Nat. Rev.
Neurosci., 12 (2011), pp. 43–56.

[44] G. Deco, V. K. Jirsa, P. A. Robinson, M. Breakspear, and
K. Friston, The dynamic brain: From spiking neurons to neural masses
and cortical fields, PLoS Comput. Biol., 4 (2008), p. e1000092.

[45] E. Dere and A. Zlomuzica, The role of gap junctions in the brain in
health and disease., Neurosci. Biobehav. Rev., 36 (2011), pp. 206–217.

[46] A. Destexhe and D. Paré, Impact of network activity on the integrative
properties of neocortical pyramidal neurons in vivo, J. Neurophysiol., 81
(1999), pp. 1531–1547.

141

BIBLIOGRAPHY

[47] M. Djurfeldt, A. P. Davison, and J. M. Eppler, Efficient gener-
ation of connectivity in neuronal networks from simulator-independent de-
scriptions, Front. Neuroinformatics, 8 (2014).

[48] M. Djurfeldt, J. Hjorth, J. M. Eppler, N. Dudani, M. Helias,
T. C. Potjans, U. S. Bhalla, M. Diesmann, J. Hellgren Ko-
taleski, and O. Ekeberg, Run-time interoperability between neuronal
network simulators based on the MUSIC framework, Neuroinformatics, 8
(2010), pp. 43–60.

[49] M. Djurfeldt, M. Lundqvist, C. Johansson, M. Rehn, O. Eke-
berg, and A. Lansner, Brain-scale simulation of the neocortex on the
IBM Blue Gene/L supercomputer, IBM Journal of Research and Develop-
ment, 52 (2008), pp. 31–41.

[50] A. S. Ecker, P. Berens, G. A. Keliris, M. Bethge, and N. K.
Logothetis, Decorrelated neuronal firing in cortical microcircuits, Science,
327 (2010), pp. 584–587.

[51] J. M. Eppler, M. Helias, E. Muller, M. Diesmann, and
M. Gewaltig, PyNEST: A convenient interface to the NEST simulator,
Front. Neuroinformatics, 2 (2009).

[52] J. M. Eppler, R. Pauli, A. Peyser, T. Ippen, A. Morrison,
J. Senk, W. Schenck, et al., NEST 2.8.0. http://dx.doi.org/10.

5281/zenodo.32969, Sept. 2015.

[53] Z. Fan, Discrete time waveform relaxation method for stochastic delay dif-
ferential equations, Applied Mathematics and Computation, 217 (2010),
pp. 3903–3909.

[54] , Waveform relaxation method for stochastic differential equations with
constant delay, Applied Numerical Mathematics, 61 (2011), pp. 229–240.

[55] , SOR waveform relaxation methods for stochastic differential equations,
Appl. Math. Comput., 219 (2013), pp. 4992–5003.

[56] J. A. Feldman and D. H. Ballard, Connectionist models and their
properties, Cognitive science, 6 (1982), pp. 205–254.

[57] N. Fourcaud and N. Brunel, Dynamics of the firing probability of noisy
integrate-and-fire neurons, Neural Comput., 14 (2002), pp. 2057–2110.

[58] N. Fourcaud-Trocmé, D. Hansel, C. van Vreeswijk, and
N. Brunel, How spike generation mechanisms determine the neuronal re-
sponse to fluctuating inputs, J. Neurosci., 23 (2003), pp. 11628–11640.

142

http://dx.doi.org/10.5281/zenodo.32969
http://dx.doi.org/10.5281/zenodo.32969

BIBLIOGRAPHY

[59] S. Furber, D. Lester, L. Plana, J. Garside, E. Painkras, S. Tem-
ple, and A. Brown, Overview of the spinnaker system architecture, IEEE
Trans. Comp., 62 (2013), pp. 2454–2467.

[60] G. Gancarz and S. Grossberg, A neural model of the saccade generator
in the reticular formation, IEEE Trans. Neural Netw., 11 (1998), pp. 1159–
1174.

[61] C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry
and the Natural Sciences, Springer Series in Synergetics, Springer, Berlin,
3rd ed., 2004.

[62] L. Gentet, M. Avermann, F. Matyas, J. F. Staiger, and C. C.
Petersen, Membrane potential dynamics of GABAergic neurons in the
barrel cortex of behaving mice, Neuron, 65 (2010), pp. 422–435.

[63] W. Gerstner, Time structure of the activity in neural network models,
Phys. Rev. E, 51 (1995), pp. 738–758.

[64] , Population dynamics of spiking neurons: fast transients, asyn-
chronous states, and locking, Neural Comput., 12 (2000), pp. 43–89.

[65] W. Gerstner and W. Kistler, Spiking Neuron Models: Single Neurons,
Populations, Plasticity, Cambridge University Press, 2002.

[66] I. Ginzburg and H. Sompolinsky, Theory of correlations in stochastic
neural networks, Phys. Rev. E, 50 (1994), pp. 3171–3191.

[67] S. Goedeke, J. Schuecker, and M. Helias, Noise dynamically sup-
presses chaos in neural networks, ArXiv e-prints, 1603.01880v2 [q-bio.NC]
(2016).

[68] D. Goodman and R. Brette, Brian simulator, Scholarpedia, 8 (2013),
p. 10883.

[69] J. S. Griffith and G. Horn, An analysis of spontaneous impulse activity
of units in the striate cortex of unrestrained cats, J. Physiol. (Lond.), 186
(1966), pp. 516–534.

[70] S. Grossberg, Contour enhancement, short term memory, and constan-
cies in reverberating neural networks, Stud. Appl. Math., 52 (1973), pp. 213–
257.

[71] D. Grytskyy, T. Tetzlaff, M. Diesmann, and M. Helias, A unified
view on weakly correlated recurrent networks, Front. Comput. Neurosci., 7
(2013).

143

BIBLIOGRAPHY

[72] J. Hahne, D. Dahmen, J. Schuecker, A. Frommer, M. Bolten,
M. Helias, and M. Diesmann, Integration of continuous-time dynamics
in a spiking neural network simulator, Front. Neuroinformatics, 11 (2017).

[73] J. Hahne, M. Helias, S. Kunkel, J. Igarashi, M. Bolten,
A. Frommer, and M. Diesmann, A unified framework for spiking
and gap-junction interactions in distributed neuronal network simulations.,
Front. Neuroinformatics, 9 (2015).

[74] J. Hahne, M. Helias, S. Kunkel, J. Igarashi, I. Kitayama,
B. Wylie, M. Bolten, A. Frommer, and M. Diesmann, Includ-
ing gap junctions into distributed neuronal network simulations, in Brain-
Inspired Computing: Second International Workshop, BrainComp 2015,
Cetraro, Italy, July 6-10, 2015, Revised Selected Papers, K. Amunts,
L. Grandinetti, T. Lippert, and N. Petkov, eds., Springer International
Publishing, Cham, 2016, pp. 43–57.

[75] E. Hairer, S. Nørsett, and G. Wanner, Solving Ordinary Differential
Equations I: Nonstiff problems, Springer, Berlin, 2nd ed., 2000.

[76] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II,
Springer, Berlin, 1991.

[77] D. Hansel and G. Mato, Asynchronous states and the emergence of
synchrony in large networks of interacting excitatory and inhibitory neurons,
Neural Comput., 15 (2003), pp. 1–56.

[78] D. Hansel, G. Mato, and P. Benjamin, The role of intrinsic cell prop-
erties in synchrony of neurons interacting via electrical synapses, in Phase
Response Curves in Neuroscience: Theory, Experiment, and Analysis, N. W.
Schultheiss, A. A. Prinz, and R. J. Butera, eds., vol. 6 of Springer Series in
Computational Neuroscience, Springer, 1st ed., 2012, ch. 15, pp. 361–398.

[79] D. Hansel, G. Mato, C. Meunier, and L. Neltner, On numeri-
cal simulations of integrate-and-fire neural networks, Neural Comput., 10
(1998), pp. 467–483.

[80] D. Hansel and H. Sompolinsky, Modeling feature selectivity in local
cortical circuits, in Methods in Neuronal Modeling, C. Koch and I. Segev,
eds., MIT Press, Cambridge, Massachusetts, 2nd ed., 1998, pp. 499–567.

[81] A. Hanuschkin, S. Kunkel, M. Helias, A. Morrison, and M. Dies-
mann, A general and efficient method for incorporating precise spike times
in globally time-driven simulations, Front. Neuroinformatics, 4 (2010).

144

BIBLIOGRAPHY

[82] S. S. Haykin, Neural Networks and Learning Machines, Prentice Hall, New
York, 3rd ed., 2009.

[83] M. Helias, S. Kunkel, G. Masumoto, J. Igarashi, J. M. Eppler,
S. Ishii, T. Fukai, A. Morrison, and M. Diesmann, Supercomputers
ready for use as discovery machines for neuroscience, Front. Neuroinfor-
matics, 6 (2012).

[84] M. Helias, S. Rotter, M.-O. Gewaltig, and M. Diesmann, Struc-
tural plasticity controlled by calcium based correlation detection, Front. Com-
put. Neurosci., 2 (2008).

[85] M. Helias, T. Tetzlaff, and M. Diesmann, Echoes in correlated neu-
ral systems, New J. Phys., 15 (2013), p. 023002.

[86] , The correlation structure of local cortical networks intrinsically results
from recurrent dynamics, PLoS Comput. Biol., 10 (2014), p. e1003428.

[87] S. Henker, J. Partzsch, and R. Schüffny, Accuracy evaluation of
numerical methods used in state-of-the-art simulators for spiking neural net-
works, J. Comput. Neurosci., 32 (2012), pp. 309–326.

[88] S. Herculano-Houzel, The human brain in numbers: A linearly scaled-
up primate brain, Front. Hum. Neurosci., 3 (2009).

[89] J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory
of Neural Computation, Perseus Books, 1991.

[90] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Ser-
ban, D. E. Shumaker, and C. S. Woodward, SUNDIALS: Suite of
nonlinear and differential/algebraic equation solvers., ACM Trans. Math.
Softw., 31 (2005), pp. 363–396.

[91] M. Hines, H. Eichner, and F. Schürmann, Neuron splitting in
compute-bound parallel network simulations enables runtime scaling with
twice as many processors, J Comput Neurosci., 25 (2008), pp. 203–210.

[92] M. Hines, S. Kumar, and F. Schürmann, Comparison of neuronal
spike exchange methods on a Blue Gene/P supercomputer, Front. Comput.
Neurosci., 5 (2011). 10.3389/fncom.2011.00049.

[93] M. L. Hines, H. Markram, and F. Schürmann, Fully implicit parallel
simulation of single neurons, J. Comput. Neurosci., 25 (2008), pp. 439–448.

[94] S. Hormuzdi, M. Filippov, G. Mitropoulou, H. Monyer, and
R. Bruzzone, Electrical synapses: A dynamic signaling system that shapes
the activity of neuronal networks, Biochim Biophys Acta, 1662 (2004),
pp. 113–137.

145

BIBLIOGRAPHY

[95] K. J. in’t Hout, On the convergence of waveform relaxation methods for
stiff nonlinear ordinary differential equations, Applied Numerical Mathe-
matics, 18 (1995), pp. 175–190.

[96] J. Jordan, T. Ippen, M. Helias, I. Kitayama, M. Sato,
J. Igarashi, M. Diesmann, and S. Kunkel, Extremely scalable spik-
ing neuronal network simulation code: From laptops to exascale computers,
Front. Neuroinformatics, 12 (2018).

[97] J. Jordan, P. Weidel, and A. Morrison, Closing the loop between
neural network simulators and the OpenAI Gym, ArXiv e-prints, 1709.05650
[q-bio.NC] (2017).

[98] Jülich Supercomputing Centre, JUQUEEN: IBM Blue Gene/Q R© su-
percomputer system at the Jülich Supercomputing Centre, Journal of large-
scale research facilities, 1 (2015).

[99] R. E. Kaas, U. Eden, and E. N. Brown, Analysis of Neural Data,
Springer Series in Statistics, Springer, 2014.

[100] J. Karbowski and N. Kopell, Multispikes and synchronization in a
large neural network with temporal delays, Neural Comput., 12 (2000),
pp. 1573–1606.

[101] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations,
no. 16 in Frontiers in Applied Mathematics, SIAM, 1995.

[102] Z. P. Kilpatrick, Wilson-Cowan model, in Encyclopedia of Computa-
tional Neuroscience, D. Jaeger and R. Jung, eds., Springer, New York, 2015,
pp. 3159–3163.

[103] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Dif-
ferential Equations, Springer, Berlin, 1992.

[104] B. W. Knight, Dynamics of encoding in a population of neurons, J. Gen.
Physiol., 59 (1972), pp. 734–766.

[105] K. W. Koch and J. M. Fuster, Unit activity in monkey parietal cortex
related to haptic perception and temporary memory, Exp. Brain Res., 76
(1989), pp. 292–306.

[106] Y. Komori and K. Burrage, A stochastic exponential Euler scheme for
simulation of stiff biochemical reaction systems, BIT Numerical Mathemat-
ics, 54 (2014), pp. 1067–1085.

146

BIBLIOGRAPHY

[107] B. Kriener, H. Enger, T. Tetzlaff, H. E. Plesser, M.-
O. Gewaltig, and G. T. Einevoll, Dynamics of self-sustained
asynchronous-irregular activity in random networks of spiking neurons with
strong synapses., Front. Comput. Neurosci., 8 (2014).

[108] S. Kumar, P. Heidelberger, D. Chen, and M. Hines, Optimization
of applications with non-blocking neighborhood collectives via multisends on
the blue gene/p supercomputer, IPDPD, (2010), pp. 1–11.

[109] S. Kunkel, M. Diesmann, and A. Morrison, Limits to the develop-
ment of feed-forward structures in large recurrent neuronal networks, Front.
Comput. Neurosci., 4 (2011).

[110] S. Kunkel, A. Morrison, P. Weidel, J. M. Eppler, A. Sinha,
W. Schenck, M. Schmidt, S. B. Vennemo, J. Jordan, A. Peyser,
D. Plotnikov, S. Graber, T. Fardet, D. Terhorst, H. Mørk,
G. Trensch, A. Seeholzer, R. Deepu, J. Hahne, et al., NEST
2.12.0. https://doi.org/10.5281/zenodo.259534, Mar. 2017.

[111] S. Kunkel, T. C. Potjans, J. M. Eppler, H. E. Plesser, A. Mor-
rison, and M. Diesmann, Meeting the memory challenges of brain-scale
simulation, Front. Neuroinformatics, 5 (2012).

[112] S. Kunkel, M. Schmidt, J. M. Eppler, G. Masumoto, J. Igarashi,
S. Ishii, T. Fukai, A. Morrison, M. Diesmann, and M. Helias,
Spiking network simulation code for petascale computers, Front. Neuroin-
formatics, 8 (2014).

[113] E. Lelarasmee, The waveform relaxation method for time domain analy-
sis of large scale integrated circuits: theory and applications, Memorandum
No. UCB/ERL M82/40, (1982).

[114] E. Lelarasmee, A. E. Ruehli, and A. L. Sangiovanni-Vincentelli,
The waveform relaxation method for time-domain analysis of large scale in-
tegrated circuits., IEEE Trans. on CAD of Integrated Circuits and Systems,
1 (1982), pp. 131–145.

[115] E. Lindelöf, Sur l’application de la méthode des approximations succes-
sives aux équations différentielles ordinaires du premier ordre, Comptes
rendus hebdomadaires des séances de l’Académie des sciences, 116 (1894),
pp. 454–457.

[116] B. Lindner, B. Doiron, and A. Longtin, Theory of oscillatory firing
induced by spatially correlated noise and delayed inhibitory feedback, Phys.
Rev. E, 72 (2005), p. 061919.

147

https://doi.org/10.5281/zenodo.259534

BIBLIOGRAPHY

[117] R. Malach, Y. Amir, M. Harel, and A. Grinvald, Relationship
between intrinsic connections and functional architecture revealed by optical
imaging and in vivo targeted biocytin injections in primate striate cortex,
Proc. Natl. Acad. Sci. USA, 90 (1993), pp. 10469–10473.

[118] J. G. Mancilla, T. J. Lewis, D. J. Pinto, J. Rinzel, and B. W.
Connors, Synchronization of electrically coupled pairs of inhibitory in-
terneurons in neocortex, J. Neurosci., 27 (2007), pp. 2058–2073.

[119] H. Markram, E. Muller, S. Ramaswamy, M. W. Reimann, M. Ab-
dellah, C. A. Sanchez, A. Ailamaki, L. Alonso-Nanclares,
N. Antille, S. Arsever, et al., Reconstruction and simulation of neo-
cortical microcircuitry, Cell, 163 (2015), pp. 456–492.

[120] M. Mattia and P. Del Guidice, Population dynamics of interacting
spiking neurons, Phys. Rev. E, 66 (2002), p. 051917.

[121] , Finite-size dynamics of inhibitory and excitatory interacting spiking
neurons, Phys. Rev. E, 70 (2004), p. 052903.

[122] J. L. McClelland and D. E. Rumelhart, An interactive activation
model of context effects in letter perception: I. an account of basic findings.,
Psychological review, 88 (1981), pp. 375–407.

[123] , Explorations in parallel distributed processing: A handbook of models,
programs, and exercises, MIT press, Cambridge, 1989.

[124] Message Passing Interface Forum, MPI: A message-passing interface
standard, version 2.2, tech. rep., MPI Forum, 2009.

[125] C. Meyer and C. van Vreeswijk, Temporal correlations in stochastic
networks of spiking neurons, Neural Comput., 14 (2002), pp. 369–404.

[126] H. Miyazaki, Y. Kusano, N. Shinjou, S. Fumiyoshi, M. Yokokawa,
and T. Watanabe, Overview of the K computer System, Fujitsu Scientific
and Technical Journal, 48 (2012), pp. 255–265.

[127] E. Montbrió, D. Pazó, and A. Roxin, Macroscopic description for
networks of spiking neurons, Phys. Rev. X, 5 (2015), p. 021028.

[128] A. Morrison and M. Diesmann, Maintaining causality in discrete time
neuronal network simulations, in Lectures in Supercomputational Neuro-
sciences: Dynamics in Complex Brain Networks, P. b. Graben, C. Zhou,
M. Thiel, and J. Kurths, eds., Springer, Berlin, Heidelberg, 2008, pp. 267–
278.

148

BIBLIOGRAPHY

[129] A. Morrison, C. Mehring, T. Geisel, A. Aertsen, and M. Dies-
mann, Advancing the boundaries of high connectivity network simulation
with distributed computing, Neural Comput., 17 (2005), pp. 1776–1801.

[130] A. Morrison, S. Straube, H. E. Plesser, and M. Diesmann, Exact
subthreshold integration with continuous spike times in discrete time neural
network simulations, Neural Comput., 19 (2007), pp. 47–79.

[131] O. Nevanlinna, Remarks on Picard-Lindelöf iteration, Part I, BIT Nu-
merical Mathematics, 29 (1989), pp. 328–346.

[132] , Remarks on Picard-Lindelöf iteration, Part II, BIT Numerical Math-
ematics, 29 (1989), pp. 535–562.

[133] E. J. Nichols and A. Hutt, Neural field simulator: Two-dimensional
spatio-temporal dynamics involving finite transmission speed, Front. Neu-
roinformatics, 9 (2015).

[134] M. Ohbayashi, K. Ohki, and Y. Miyashita, Conversion of working
memory to motor sequence in the monkey premotor cortex, Science, 301
(2003), pp. 233–236.

[135] B. Øksendal, Stochastic differential equations, Springer, Berlin, 6th ed.,
2003.

[136] M. Okun and I. Lampl, Instantaneous correlation of excitation and in-
hibition during ongoing and sensory-evoked activities, Nat. Neurosci., 11
(2008), pp. 535–537.

[137] OpenMP Architecture Review Board, OpenMP application pro-
gram interface, specification, OpenMP ARB, http://www.openmp.org/

mp-documents/spec30.pdf, 2008.

[138] R. C. O’Reilly, Comparison of neural network simulators.
https://grey.colorado.edu/emergent/index.php/Comparison_of_

Neural_Network_Simulators, 2014. Accessed: 2016-10-14.

[139] R. C. O’Reilly, Y. Munakata, M. J. Frank, T. E. Hazy, and
Contributors, Computational Cognitive Neuroscience, Wiki Book, 1st
Edition, URL: http://ccnbook.colorado.edu, 2012.

[140] R. C. O’Reilly, Y. Munakata, and J. L. McClelland, Computa-
tional Explorations in Cognitive Neuroscience: Understanding the Mind by
Simulating the Brain, MIT Press, Cambridge, 1st ed., 2000.

[141] S. Ostojic, Two types of asynchronous activity in networks of excitatory
and inhibitory spiking neurons, Nat. Neurosci., 17 (2014), pp. 594–600.

149

http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
https://grey.colorado.edu/emergent/index.php/Comparison_of_ Neural_Network_Simulators
https://grey.colorado.edu/emergent/index.php/Comparison_of_ Neural_Network_Simulators
http://ccnbook.colorado.edu

BIBLIOGRAPHY

[142] S. Ostojic and N. Brunel, From spiking neuron models to linear-
nonlinear models, PLoS Comput. Biol., 7 (2011), p. e1001056.

[143] N. Paulauskas, H. Pranevicius, J. Mockus, and F. F. Bukauskas,
Stochastic 16-state model of voltage gating of gap-junction channels enclos-
ing fast and slow gates, Biophysical journal, 102 (2012), pp. 2471–2480.

[144] V. Pernice, B. Staude, S. Cardanobile, and S. Rotter, How struc-
ture determines correlations in neuronal networks, PLoS Comput. Biol., 7
(2011), p. e1002059.

[145] A. Peyser, A. Sinha, S. B. Vennemo, T. Ippen, J. Jordan,
S. Graber, A. Morrison, G. Trensch, T. Fardet, H. Mørk,
J. Hahne, et al., NEST 2.14.0. https://doi.org/10.5281/zenodo.

882971, Oct. 2017.

[146] B. Pfeuty, G. Mato, D. Golomb, and D. Hansel, Electrical synapses
and synchrony: The role of intrinsic currents, J. Neurosci., 23 (2003),
pp. 6280–6294.

[147] H. E. Plesser, J. M. Eppler, A. Morrison, M. Diesmann, and
M.-O. Gewaltig, Efficient parallel simulation of large-scale neuronal net-
works on clusters of multiprocessor computers, in Euro-Par 2007: Parallel
Processing, A.-M. Kermarrec, L. Bougé, and T. Priol, eds., vol. 4641 of
Lecture Notes in Computer Science, Berlin, 2007, Springer, pp. 672–681.

[148] D. Plotnikov, I. Blundell, T. Ippen, J. M. Eppler, A. Morrison,
and B. Rumpe, NESTML: a modeling language for spiking neurons, in
Modellierung 2016 Conference, vol. 254 of LNI, Bonn, 2016, Bonner Köllen
Verlag, pp. 93–108.

[149] T. C. Potjans and M. Diesmann, The cell-type specific cortical micro-
circuit: Relating structure and activity in a full-scale spiking network model,
Cereb. Cortex, 24 (2014), pp. 785–806.

[150] K. Rajan and L. F. Abbott, Eigenvalue spectra of random matrices for
neural networks, Phys. Rev. Lett., 97 (2006), p. 188104.

[151] A. Renart, J. De La Rocha, P. Bartho, L. Hollender, N. Parga,
A. Reyes, and K. D. Harris, The asynchronous state in cortical circuits,
Science, 327 (2010), pp. 587–590.

[152] H. Risken, The Fokker-Planck Equation, Springer Verlag Berlin, 1996.

[153] S. Rotter and M. Diesmann, Exact digital simulation of time-invariant
linear systems with applications to neuronal modeling, Biol. Cybern., 81
(1999), pp. 381–402.

150

https://doi.org/10.5281/zenodo.882971
https://doi.org/10.5281/zenodo.882971

BIBLIOGRAPHY

[154] N. P. Rougier and J. Fix, Dana: Distributed numerical and adaptive
modelling framework, Network: Computation in Neural Systems, 23 (2012),
pp. 237–253.

[155] A. Roxin, N. Brunel, and D. Hansel, The role of delays in shaping
spatio-temporal dynamics of neuronal activity in large networks, Phys. Rev.
Lett., 94 (2005), p. 238103.

[156] , Rate models with delays and the dynamics of large networks of spiking
neurons, Progress of Theoretical Physics Supplement, 161 (2006), pp. 68–85.

[157] A. Roxin, N. Brunel, D. Hansel, G. Mongillo, and C. van
Vreeswijk, On the distribution of firing rates in networks of cortical neu-
rons, J. Neurosci., 31 (2011), pp. 16217–16226.

[158] D. E. Rumelhart, J. L. McClelland, and the PDP Research
Group, Parallel Distributed Processing, Explorations in the Microstructure
of Cognition: Foundations, vol. 1, MIT Press, Cambridge, Massachusetts,
1986.

[159] S. Sadeh and S. Rotter, Orientation selectivity in inhibition-dominated
networks of spiking neurons: Effect of single neuron properties and network
dynamics, PLoS Comput Biol, 11 (2015), p. e1004045.

[160] J. Sand and K. Burrage, A Jacobi waveform relaxation method for
ODEs, SIAM J. Scientific Computing, 20 (1998), pp. 534–552.

[161] P. Sanz Leon, S. Knock, M. Woodman, L. Domide, J. Mersmann,
A. McIntosh, and V. Jirsa, The virtual brain: A simulator of primate
brain network dynamics, Front. Neuroinformatics, 7 (2013).

[162] M. Schmidt, R. Bakker, M. Diesmann, and S. J. van Albada, Full-
density multi-scale account of structure and dynamics of macaque visual
cortex, ArXiv e-prints, 1511.09364v3 [q-bio.NC] (2016).

[163] G. Schöner, J. Spencer, and D. Group, Dynamic Thinking: A Primer
on Dynamic Field Theory, Oxford Series in Developmental Cognitive Neu-
roscience, Oxford University Press, Oxford, 2015.

[164] J. Schuecker, M. Diesmann, and M. Helias, Modulated escape from a
metastable state driven by colored noise, Phys. Rev. E, 92 (2015), p. 052119.

[165] J. Schuecker, S. Goedeke, D. Dahmen, and M. Helias, Functional
methods for disordered neural networks, ArXiv e-prints, 1605.06758v2 [cond-
mat.dis-nn] (2016).

151

BIBLIOGRAPHY

[166] J. Schuecker, M. Schmidt, S. J. van Albada, M. Diesmann, and
M. Helias, Fundamental activity constraints lead to specific interpretations
of the connectome, PLoS Comput. Biol., 13 (2017), p. e1005179.

[167] H. Schurz and K. R. Schneider, Waveform relaxation methods for
stochastic differential equations, International Journal of Numerical Analy-
sis and Modeling, 3 (2005), pp. 232–254.

[168] T. Schwalger, M. Deger, and W. Gerstner, Towards a theory of
cortical columns: From spiking neurons to interacting neural populations of
finite size, PLOS Computational Biology, 13 (2017), pp. 1–63.

[169] M. Senden, J. Schuecker, J. Hahne, M. Diesmann, and
R. Goebel, [Re] A neural model of the saccade generator in the reticu-
lar formation, ReScience, 4 (2018).

[170] M. N. Shadlen and W. T. Newsome, The variable discharge of cor-
tical neurons: Implications for connectivity, computation, and information
coding, J. Neurosci., 18 (1998), pp. 3870–3896.

[171] I. Shoji, A note on convergence rate of a linearization method for the dis-
cretization of stochastic differential equations, Communications in Nonlinear
Science and Numerical Simulation, 16 (2011), pp. 2667–2671.

[172] A. J. Siegert, On the first passage time probability problem, Phys. Rev.,
81 (1951), pp. 617–623.

[173] W. R. Softky and C. Koch, The highly irregular firing of cortical cells
is inconsistent with temporal integration of random EPSPs, J. Neurosci., 13
(1993), pp. 334–350.

[174] H. Sompolinsky, A. Crisanti, and H. J. Sommers, Chaos in random
neural networks, Phys. Rev. Lett., 61 (1988), pp. 259–262.

[175] M. Stern, H. Sompolinsky, and L. F. Abbott, Dynamics of random
neural networks with bistable units, Phys. Rev. E, 90 (2014), p. 062710.

[176] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer,
New York, 1st ed., 1980.

[177] T. Tetzlaff, M. Helias, G. Einevoll, and M. Diesmann, Decor-
relation of neural-network activity by inhibitory feedback, PLoS Comput.
Biol., 8 (2012), p. e1002596.

[178] J. Trousdale, Y. Hu, E. Shea-Brown, and K. Josic, Impact of
network structure and cellular response on spike time correlations., PLoS
Comput. Biol., 8 (2012), p. e1002408.

152

BIBLIOGRAPHY

[179] S. J. van Albada, M. Helias, and M. Diesmann, Scalability of asyn-
chronous networks is limited by one-to-one mapping between effective con-
nectivity and correlations, PLoS Comput. Biol., 11 (2015), p. e1004490.

[180] C. van Vreeswijk and H. Sompolinsky, Chaos in neuronal net-
works with balanced excitatory and inhibitory activity, Science, 274 (1996),
pp. 1724–1726.

[181] K. Vervaeke, A. Lőrincz, Z. Nusser, and R. A. Silver, Gap junc-
tions compensate for sublinear dendritic integration in an inhibitory net-
work, Science, 335 (2012), pp. 1624–1628.

[182] N. Voges and L. U. Perrinet, Complex dynamics in recurrent cortical
networks based on spatially realistic connectivities, Front. Comput. Neu-
rosci., 6 (2012).

[183] N. Voges, A. Schüz, A. Aertsen, and S. Rotter, A modeler’s view
on the spatial structure of intrinsic horizontal connectivity in the neocortex,
Prog. Neurobiol., 92 (2010), pp. 277–292.

[184] X.-J. Wang and G. Buzsáki, Gamma oscillation by synaptic inhibi-
tion in a hippocampal interneuronal network model, J. Neurosci., 16 (1996),
pp. 6402–6413.

[185] A. Weitzenfeld, M. A. Arbib, and A. Alexander, The neural simu-
lation language: A system for brain modeling, MIT Press, Cambridge, 2002.

[186] H. R. Wilson and J. D. Cowan, Excitatory and inhibitory interactions
in localized populations of model neurons, Biophys. J., 12 (1972), pp. 1–24.

[187] , A mathematical theory of the functional dynamics of cortical and tha-
lamic nervous tissue, Kybernetik, 13 (1973), pp. 55–80.

[188] K.-F. Wong and X.-J. Wang, A recurrent network mechanism of time
integration in perceptual decisions, J. Neurosci., 26 (2006), pp. 1314–1328.

[189] P. Yger, S. El Boustani, A. Destexhe, and Y. Frégnac, Topolog-
ically invariant macroscopic statistics in balanced networks of conductance-
based integrate-and-fire neurons, J. Comput. Neurosci., 31 (2011), pp. 229–
245.

153

	Acknowledgments
	Foreword
	Contents
	Introduction
	Review of basic material
	Ordinary differential equations
	Runge-Kutta methods

	Stochastic differential equations
	Selected numerical methods
	Stochastic delay differential equations

	Spiking neural network simulators
	NEST - NEural Simulation Tool

	Waveform-relaxation methods for ODEs
	Literature review
	An ODE-waveform-relaxation method suitable for spiking neural network simulators
	Restrictions and requirements
	The method
	Convergence analysis

	Waveform-relaxation methods for SDEs
	Literature review
	A SDE-waveform-relaxation method suitable for spiking neural network simulators
	Restrictions and requirements
	The method
	Convergence analysis

	Application in computational neuroscience I: Including gap junctions in a spiking neural network simulator
	Framework
	Algorithmic and numerical implementation
	Connection infrastructure
	Communication infrastructure
	Iterative neuronal updates

	Neuron model
	User interface
	Numerical results
	Setup
	Pair of gap-junction coupled neurons
	Network with combined dynamics of chemical synapses and gap junctions
	Performance of the gap-junction framework in NEST

	Discussion

	Application in computational neuroscience II: Including rate models in a spiking neural network simulator
	Rate models
	Framework
	Restrictions
	Implementation
	Reduction of communication using waveform-relaxation techniques

	User interface
	Numerical results
	Stability and accuracy of integration methods
	Performance of the NEST implementation
	Applications

	Discussion

	Conclusions & Outlook
	List of Figures
	List of Tables
	List of Algorithms & Scripts
	List of Notations
	Bibliography

