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Daneben möchte ich dem gesamten Sparkassen-Team 1300 meinen Dank sagen für die
herzliche Aufnahme und das angenehm neckische Arbeitsumfeld.

Zweifellos möchte ich gegenüber Michael Günther einen besonderen Dank dafür äußern,
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7.2 Density of Clayton Lévy copula . . . . . . . . . . . . . . . . . . . . . . . . 82
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Preface

Dependence prepares to play an important role in contemporary finance. One can hardly
imagine quantitative practices without the ground-breaking policies for interdependent
business lines or the glorifying market launch of multi-line products. The latest interdisci-
plinary approaches to risk profiling and global trading have raised competence standards
in the banking business by and by to staying abreast of dependence issues, which arise in
the market these days. The identification of dependence structures has emerged as a key
ingredient in simply all financial applications: portfolio management, risk assessment and
derivative pricing, to name just a few. In these disciplines, complexity keeps growing at the
pace of global market developments. The sound understanding of interrelations between
different fields of action gains truly vital importance.

By tradition, actuarial and financial theory revolves very much around the assumption
of normal markets, making the concept of linear correlation almost synonymous with that
of dependence. Both theorists and practitioners have long resorted to Brownian motion and
the Gaussian concept of dependence. In recent years however, authors have deviated from
the assumption of joint normality, paying tribute to the insufficiencies of linear correlation
in real-world applications. Empirical data was found to indicate a nontrivial degree of non-
normal dependence, such as extreme co-movements and asymmetry, which contradicts the
use of linear correlation as a summary statistic for complex dependence structures.

In a not necessarily normal world, copula functions prepare to cope with dependence
structures between financial instruments in a very flexible way. Having made first appear-
ance in Sklar [74], the notion of a copula is well known for some time in the stochastic
literature. It has regained a paramount importance for the modelling of static and dynamic
dependence in recent years. Copulas admit a universally valid approach to multidimen-
sional dependence structures and facilitate the description of complex dependence concepts
other than linear correlation.

This doctoral thesis is intended for a self-contained presentation of theoretical, nu-
merical and empirical research on the use of copula methods in the fields of static and
dynamic financial modelling. The motivation is precisely to offer methods of resolution for
multidimensional dependence models with emphasize on practical implementations. We
develop and combine techniques for the simulation, the estimation and the calibration of
dependence phenomena in response to the growing need of truly practicable solutions for
the increasingly complex financial instruments.
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There are two parts in this thesis. Chapter 1 through Chapter 5 constitute the first
part. They develop mostly fundamental results and techniques on the use of copula func-
tions in modelling dependence between static random variables. The goal is to furnish
a comprehensive scheme of how copula methods apply to high-dimensional dependence
problems in multivariate probability distributions. Here we are keenly interested in the
issue of scenario generation and model estimation for risk management purposes. Chapter
6 through Chapter 10 are the second part, which explains the use of copula methods in
stochastic process modelling. We approach the notion of a dynamic dependence struc-
ture using characteristic functions of multi-dimensional Lévy processes. Our intents are to
develop sophisticated simulation and calibration methods with regards to option pricing
applications. At the same time, this thesis serves as an introduction to financial modelling
with jump processes. The parts are widely independent from each other up to one of our
main contributions, which combines the two copula notions.

Our firm intention is to treat dependence issues on their own. Hence we barely touch
marginal distributions or processes in this thesis. The focus is knowingly set on the stand-
alone association inasmuch as we exclude stochastic modelling in one dimension except for
providing ourselves with the basics. Nor are dependence concepts or dependence measures
a matter, albeit summary statistics and relevance orderings are a growing field of research
in the scope of copula functions. As far as numerical examples are concerned, we do not
go beyond enterprize risk assessment and European option pricing. Other applications of
copula functions include portfolio management, credit derivatives and time series analysis.

Concerning the level of mathematical detail used to treat all the topics, we do not
provide an in-depth study of multivariate distribution functions or general Lévy processes,
as these already exist. Here we intend to elaborate on the mathematical tools necessary in
the context of pure dependence modelling. We emphasize a mere subset of models (some
of which are findings of our own) rather than surveying a catalogue of models, which can
be found in the literature. Our selection is targeted on numerical feasibility and omits
mathematically interesting topics other than (to us) practicable modelling tools.

This thesis grew out of a joint venture with Sparkasse Leverkusen, which aimed at the
development of a new management tool for the adequate assessment of the firm-wide risk
exposure. The achievement of these objectives are set down in Part I of this thesis. The
contents therein are deliberately held moderate in mathematical abstraction and techni-
cality in such a way as to serve in part as end-user support of the in-house implementation.
Hence this part comprises fairly applied research, which is readily accessible also for an
inexpert reader. Based on the application-oriented work, I began with the conceptually
similar research field of dynamic dependence structures. This interest was on the spot
drawn by Tankov’s pioneering in this direction. Hereafter, the development of dependence
methods for multidimensional Lévy processes paralleled the risk management concerns.
Not least by attending the AMaMeF Conference 2007 and the NMF Conference 2008, the
fascination for multidimensional Lévy processes was kept going inasmuch as it encouraged
me to continue researching in the hugely popularized option pricing applications. These
results are written down in Part II of this thesis. The contents therein are mathematically
more challenging and contain this thesis’ scientific research in large part.
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Basic tools and notation

Sets, measurable spaces and measures N,R and C are, respectively, the collections
of all positive integers, all real numbers, and all complex numbers. For z ∈ C, we denote
the real part of z by ℜz and the imaginary part of z by ℑz. R∞ (or R∞,+) is the collection
of all real numbers (or all nonnegative real numbers) extending to {∞}.

R
d is the d-dimensional Euclidian space. Its elements x = (x1, ..., xd), y = (y1, ..., yd)

are column vectors with d real components. The vector consisting entirely of ones is
denoted by 1. The vector consisting entirely of zeros is denoted by 0. The inner product
is x.y =

∑d
i=1 xiyi.

R
r×d is the (r × d)-dimensional space of real-valued matrices M with entries mij, i =

1, ..., r, j = 1, ..., d. The root M1/2 of a regular matrix M ∈ R
d×d is the matrix L ∈ R

d×d

such that L′L = M . The identity matrix is denoted by 1 (abusing notation).
R
d
∞ (or R

d
∞,+) is the d-dimensional space consisting of the elements x = (x1, ..., xd) with

xi ∈ R∞ (or xi ∈ R∞,+) for i = 1, ..., d. The word d-variate is used with the same meaning
as d-dimensional.

For sets A and B, A ⊂ B means that all elements of A belong to B. For A ⊂ R
d,

z ∈ R
d, A+ z = {x+ z : x ∈ A}. ♯A is the number of elements of a set A.

(E, E) denotes a measurable space, where E is a σ-algebra on E. For E ⊂ R
d, B(E)

denotes the Borel σ-algebra of E. An element A ∈ E is called a measurable set and, for a
measure µ on (E, E), µ(A) is called its measure.

A measure µ2 is said to be absolutely continuous with respect to a measure µ1 if for
any measurable set A it holds µ1(A) = 0 ⇒ µ2(A) = 0.

If µ2 is absolutely continuous with respect to µ1 then there exists a measurable function
Z : E → [0,∞) such that for any measurable set A it holds µ2(A) =

∫
A
Zdµ1 = µ1(Z1A).

The function Z is called the density or Radon-Nykodym derivative of µ2 with respect to
µ1 and denoted as dµ2/dµ1.

The Lebesgue-measure of a measurable set A ∈ B(Rd) is denoted as λ(A). λ(dx) is
written dx.

The symbol δx represents the probability measure concentrated at x.
µ|B denotes the restriction of µ to B.

Functions and operations The integral of a vector-valued function is a vector with
componentwise integrals.

For B ⊂ R
d, 1B is the indicator function of set B, i.e. 1B(x) = 1 for x ∈ B and

x



0 for x 6∈ B. The operation a ∧ b denotes the minimum min{a, b}, and a ∨ b denotes
the maximkum max{a, b} of two real numbers. The expression sgn(x) represents the sign
function, i.e. sgn(x) = 1 if x ≥ 0 or sgn(x) = −1 if x < 0.

Probability spaces, random variables and processes (Ω,F , {Ft}, P ) is a filtered
probability space, i.e. a complete probability space (Ω,F , P ) consisting of a measurable
space (Ω,F) and a probability measure P , endowed with a right continuous filtration
{Ft : t ∈ [0, T ]} such that F = FT and all the null sets of F are contained in F0, where
T ≥ 0 is a terminal time. {Ft} is interpreted as the information flow.

A ∈ F (or A ∈ Ft) is an event, P [A] (or P|Ft [A]) is the probability of the event A, and
P [A|Fs] (or P|Ft [A|Fs]) is the probability of the event A conditional on the information
Fs.

For a probability space (Ω,F , P ), a mapping X from Ω into R
d is an R

d-valued random
variable (or random variable on R

d), if it is F -measurable, that is, {ω ∈ Ω : X(ω) ∈ B} is
in F for each B ∈ B(Rd), where B(Rd) is the Borel σ-algebra of R

d.
For a R

d-valued random variable X = (X1, ..., Xd) and an index set I ⊂ {1, ..., d} of
cardinality |I|, we call the random variable XI = (X i)i∈I on R

|I| the I-margin of X. The
one-dimensional random variables X{i} = X i are referred to as margins.

We write P [{ω ∈ Ω : X(ω) ∈ B}] as P [X ∈ B]. As a mapping of B, this is a probability
measure on B(Rd), which we denote by PX(B) and call the distribution of X.

If PX is absolutely continuous with respect to the Lebesgue measure λ, then we call X
a continuous random variable.

Two random variables X, Y on R
d are identically distributed, denoted by X

d
= Y , if

PX(B) = PY (B) for all B ∈ B(Rd).
For a filtered probability space (Ω,F , {Ft}, P ), a family {Xt : t ∈ [0, T ]} of random

variables on R
d is called a stochastic process and denoted by {Xt} (or ({Xt}, P ) stressing

the probability measure P ). We assume that {Xt} is {Ft}-adapted, that is non-anticipating
with respect to the information flow.

For any fixed 0 ≤ t1 < t2, ..., tn ≤ T , P [Xt1 ∈ B1, ..., Xtn ∈ Bn] determines a probability
measure on B((Rd)n). The family of the probability measures over all choices of n and
t1, ..., tn is called the system of finite-dimensional distributions of {Xt}. For any t ∈ [0, T ],
in particular, Xt is a random variable on R

d and P [Xt ∈ B] defines a probability measure
on B(Rd), which we denote by PXt and call the distribution of Xt.

If X is a random variable on R
d, and h is a measurable function on R

d such that the
integral

∫
Rd h(x)P

X(dx) =
∫

Ω
h(X(ω))P (dω) exists, then h(X) is said to be P -integrable

and we call
∫

Rd h(x)P
X(dx) its expectation (with respect to P ) denoted by EP [h(X)]. The

expectation with respect to the probability measure P conditioned on information Ft is
written as EP [h(X)|Ft].

The choice h(x1, ..., xd) = (x1, ..., xd) gives the expectation EP [X] of X. The choice
h(x) = eiz.x, seen as a function of z ∈ R

d, gives the characteristic function of the distri-
bution PX of a random variable X, denoted by ϕX , that is ϕX(z) =

∫
Rd e

iz.xPX(dx) =
EP [eiz.X ]. Allowing complex arguments z ∈ C we denote the extended characteristic func-

xi



tion by ϕX(z).
For equivalent measures P,Q, the restrictions P|Ft and Q|Ft are equivalent and there

exists a positive stochastic process, called the density process of Q with respect to P
and denoted by {dQ|Ft/dP|Ft}, such that, for any random variable Z on R

d, EQ[Z|Ft] =
EP [ZdQ/dP |Ft].

Increasing, grounded and distribution functions For a, b ∈ R
d
∞ we write a ≤ b

if ai ≤ bi, i = 1, ..., d. In this case let (a, b] denote the right-closed left-open interval
(a1, b1] × ...× (ad, bd] in R

d
∞.

To any R∞-valued function on S = S1 × ... × Sd ⊂ R
d
∞ and a, b ∈ S with a ≤ b and

(a, b] ⊂ S, we associate the F -volume of (a, b], denoted by VF ((a, b]),

(1) VF ((a, b]) =
∑

u∈{a1,b1}×...×{ad,bd}
(−1)N(u)F (u),

where N(u) = ♯{k : uk = ak}.
F is said to be d-increasing, if VF ((a, b]) ≥ 0 for all such intervals (a, b] ⊂ R

d
∞.

Given that Si has a least element si for i = 1, ..., d, F is called grounded if F (u) = 0
for all (u1, ..., ud) ∈ S1 × ... × Sd such that ui = si for at least one i ∈ {1, ..., d}. In other
words, a grounded function vanishes on the lower bounds of its domain.

For any non-empty index set I ⊂ {1, ..., d}, the I-margin of F is the function

FI((ui)i∈I) = sup
ai,bi∈Si:i∈Ic

∑

(uj)j∈Ic∈
Q

j∈Ic{ai,bi}
F (u1, ..., ud)

∏

j∈Ic

sgn(uj),

where Ic = {1, ..., d} \ I.
Probability distributions are closely linked with certain increasing functions. We asso-

ciate to every distribution PX of a R
d-valued random variable X a [0, 1]-valued cumulative

distribution function (cdf) on R
d
∞, denoted by F (or FX stressing the random variable),

FX(x) = PX((−∞, x1] × ...× (−∞, xd]).

The cdf FX of a R
d-valued random variable X is d-increasing as VFX (B) = PX(B) ≥ 0 for

all B ∈ B(Rd).
The Radon-Nykodym derivative of PX with respect to λ (if it exists) is called the

probability density function (pdf) of X and denoted by f (or fX stressing the random
variable). It holds

fX(x1, ..., xd) =
∂dFX(x1, ..., xd)

∂x1...∂xd

in every point x ∈ R
d, where PX (or FX or X) is continuous. In all other points, PX (or

FX or X) is said to be singular. One can show that any cdf FX is singular only on a set
with zero Lebesgue measure, i.e. almost everywhere (a.e.).
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The distribution function FXI
of the I-margin XI of a random variable X on R

d is
given by

FXI

((xi)i∈I) = FX(y1, ..., yd),

where yi = xi, i ∈ I and yi = ∞, i ∈ Ic. With a view to increasing functions, we write FX
I

for the I-margins and FX
i for the margins of FX .

For two distinct index sets I, J ⊂ {1, ..., d} we denote by FX
I|J the conditional cdf of

(X i)i∈I given (X i)i∈J , defined by

FI|J((xi)i∈I |(xi)i∈J) = P (X i
≤ xi, i ∈ I|X i = xi, i ∈ J).

If FX (or fX) depend on some set θ of parameters, we write FX(x; θ) (or fX(x; θ)).

Standard probability distributions and transforms For a R-valued random variable
X, we write X ∼ UNF (a, b) if X is uniformly distributed on the interval [a, b], X ∼

EXP (λ) if X is exponentially distributed with intensity λ > 0, X ∼ POIS(λ) if X has a
Poisson distribution with intensity λ > 0, X ∼ GAM(α, β) if X has a Gamma distribution
with parameters α and β, or X ∼ CHI2(ν) if X has a χ2-distribution with ν > 0 degrees
of freedom.

For a R
d-valued random variable X, we write X ∼ MVN(µ,Σ) if X has a (mul-

tivariate) normal distribution with mean µ ∈ R
d and covariance matrix Σ ∈ R

d×d, X ∼

MV T (µ,Σ, ν) if X has a (multivariate) t-distribution with mean µ ∈ R
d, covariance matrix

Σ ∈ R
d×d and ν degrees of freedom.

For a cdf FX of a random variable X on R, let (FX)−1 denote its generalized inverse
(or quantile function), i.e. the strictly increasing function defined by (FX)−1(y) = inf{x ∈

R : FX(x) ≥ y}. If X is absolutely continuous, then there exists the inverse (FX)−1 in the
usual sense.

If F is some cdf and U ∼ UNF (0, 1) has standard uniform distribution, then the ran-
dom variable F−1(U) is F -distributed. This result is known as the quantile transformation.

If X is a random variable on R with absolutely continuous cdf FX , then FX(X) has
standard uniform distribution. This transformation is known as the probability integral
transform.
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Part I

Ordinary copula methods
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Chapter 1

Introduction

Owing to a mutual consent to abandon the assumption of joint normality for the increas-
ingly complex behavior of financial markets, copula based models have recently gained
popularity among academics and practitioners in the field of finance. They are becoming
the most significant new tool to handle the dependence between financial phenomena in a
flexible way.

The persistent departure from normality in mathematical finance is the consequence of
a growing evidence against joint normality of real markets. The markets exhibit smiles,
skewness, excess kurtosis, jumps and extreme events, such as crashes or defaults. Nor-
mality seems unrealistic regarding the association between single phenomena, too. It is
acknowledged that the co-movements in extreme situations, such as market crashes or
credit crunches, is quite different from a normal behavior. The observable deviations in-
clude tail dependence, orthant dependence and asymmetry, to name just a few pieces of
evidence against linear correlation as a summary statistic for complex dependence struc-
tures. Hence the empirical distributions are non-normal in two respects: as to the marginal
factors and to the dependence structure. At the level of univariate phenomena, people have
given competent answers, as they deviated from the classical principles. With a view to
the emergence of multi-name financial products and multi-line business perspectives, aca-
demics and practitioners engage increasingly in the modelling of dependent distributions.
New challenges are, for example, the profiling of risk exposures across all business lines
of a financial institution or the pricing of derivatives written on a basket of names. This
makes the handling of dependence structures among non-normally distributed variables
unavoidable.

Here copula functions prove useful to decouple marginal aspects of a joint distribution
from its dependence structure. Hence, they provide a flexible way to cope with non-normal
marginal distributions and complex dependence structures in a separate manner. In other
words, copula functions allow us to concentrate on the subject matter of dependence on its
own. This is in tune with the univariate techniques already used at the level of single line
perspectives. Our motivation is then to provide parsimonious and practicable approaches to
multivariate copula modelling. We take account of the challenge that growing dimensions
impose the controversial issue of a simple but rich dependence structure. Important ideas
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in this part include

• the use of ordinary copula functions as an appropriate summary of the dependence
in a multivariate distribution separate from univariate margins,

• the parametric construction of copula based dependence models with emphasis on
the elliptical and the pair type pattern,

• the structural properties of parametric copula families, which are conducive to sim-
ulation and estimation purposes,

• the development of model-intrinsic inference methods, especially the fitting of esti-
mated parameters,

• the explicit documentation of the algorithmic handling as a walkthrough to imple-
mentations,

• the application of ordinary copula methods to the business assessment of the firm-
wide risk exposure.

With this agenda we fall into line with a shower of publications on multivariate dependence
structures and applied copula modelling.

The basic original reference on ordinary copula functions is Sklar [74]. A comprehen-
sive summary of the history of copula functions (alias uniform representations [47] alias
dependence functions [21]) is given in Schweizer [72]. Nelson’s recent book [57] is an ex-
cellent monograph on copulas, featuring a comprehensive register of standard families and
dependence properties. Joe [43] is a recurring reference and contains a more thorough
classification of multivariate models with emphasis on distributional features of numerous
construction patterns and on marginal perspectives. Orderings and measures of various
dependence concepts is detailed there. Embrecht et al. [33] give a brief guide to the need of
complex dependence structures, presenting fallacies from an illegitimate use of the normal-
ity assumption. Other standard literature comprising a qualitative inspection of empirical
dependence phenomena is Embrecht et al. [32] and Mashal and Zeevi [53]. The fundamental
textbooks by Cherubini et al. [16] and Embrecht et al. [31] give a comprehensive overview of
copula based models, including parametric construction, simulation techniques, inference
methods and applications. Related works are Bouyé et al. [13], Melchiori [55] and Lindskog
[49]. It is interesting to see that some authors [e.g. 57, 16] make a sharp distinction between
bivariate and multivariate dependence models, both in terms of definition and methodol-
ogy, when deviating from elliptical copulas. Researchers and practitioners [e.g. 63] often
restrict themselves to the bivariate case and leave the matter of multidimensional depen-
dence concepts scarcely touched. Beyond this limitation, only a few authors have tackled
the problem of high-dimensional dependence structures, answering to the growing need of
a methodology for involved multivariate models. In this regard, Savu and Trede [70] give
an elaborate extension of the Archimedean construction so as to incorporate hierarchical
dependence structures. They extend the profound ideas in Joe [43]. But their findings do
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not provide the appropriate techniques for simulation and estimation of the model. The
sampling problem is in turn taken up by Whelan [83], who provides some limited redress
from this delicate task. But still, the literature on Archimedean copula functions shows a
severe imbalance of available models and practical implementations. Aas et al. [1] contains
a very practical alternative, that builds a multivariate model from families of conditional
bivariate copulas. It pioneers the formulation of intrinsic sampling and inference methods
for markedly ample dependence structures. Nelson [57] and Joe [43] make observations
about copulas in the context of stochastic processes (discrete Markov chains). Patton [63]
first introduced copulas in the conditional sense and thus paved the way for time varying
dependence structures. Subsequent applications to discrete time series processes is found
in Rockinger and Jondeau [65], Dias [22] and Palaro and Hotta [60]. Cherubini and Lu-
ciano [15] and Wakefield [81] use copula functions for multi-asset option pricing. Still, risk
management is among the most frequently discussed fields of application. Along with the
afore mentioned textbooks, Bouyé et al. [13] and Embrecht et al. [32, 33] provide with
a plain mathematical formulation of risk measurement with copulas. Eberlein et al. [24]
gives an overview of mathematical models and methods used in financial risk management.
From there, Beck and Lesko [8], Beck et al. [9] and Schumacher et al. [71] give extensive
studies on the copula approach in financial risk aggregation. The present part is most
similar to those papers.

We pursue the targets, which we outlined before, single-minded with regard to the busi-
ness application at Sparkasse Leverkusen. The goal is to explain ordinary copula methods
to a team of economists and to offer some unmitigated resolutions for the in-house risk
assessment across a growing number of business lines. The status quo of risk management
practices at Sparkasse Leverkusen is described by self-contained solutions for the separate
assessment of various risk factors. Hence our only worry is the efficient determination of
the overall capital adequacy in the sense of a top-down dependence structure. In this part
we distance ourselves from

• the parametric modelling of marginal distributions as to the rejected assumption of
normality,

• an exhaustive survey of existent copula models or the development of new dependence
models,

• a guide to dependence measures and orderings.

As a consequence, we mainly reproduce existent copula methods here. Then our contribu-
tion is (aside from a revised parameter test) the business application of efficient practices
to the measurement issue of the overall risk exposure at Sparkasse Leverkusen.

The part is organized as follows. In Chapter 2 we define an ordinary copula function
as a specific multivariate distribution. We overlook its basic properties and give reasons
for the integrity of ordinary copula functions in multivariate models. Then we review
some state-of-the-art copula models. Here the focus is on the elliptical and the pair copula
construction. The popular Archimedean family is described in Section A.1.
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In Chapter 3 we treat the generation of random numbers from ordinary copula functions.
The goal is to offer efficient sampling procedures with parsimonious computations. We
argue in particular that the conditional sampling approach is the right choice for pair
copula functions, while the transformation method is very effective for elliptical copula
functions.

We discuss model estimation in Chapter 4. We describe how to extract model para-
meters from a set of sample data by the maximum likelihood method. This is applied to
the elliptical and the pair copula models. Then we go into detail about testing the fitted
parameters. We derive explicit goodness-of-fit tests for elliptical and pair copula functions.

In Chapter 5 the methods discussed in Chapters 2, 3 and 4 are applied to assessing a
book of risk lines at Sparkasse Leverkusen. We explain the regulative risk drill in contem-
porary banking business and show how ordinary copula methods apply to the quantitative
risk management. The closing section contains a documentation of the risk management
tool CopRisk, which we personally have implemented for business use at Sparkasse Lev-
erkusen.

For publication, the actual risk figures of Sparkasse Leverkusen were made anonymous
to comply with existing non-disclosure agreements. This is done by normalizing all risk data
in the graphics to actual values as of July 31st 2008, with the original wording retained in
the explanation of such. The empirical findings described are then not perfectly consistent
with the graphics but reflect actual results.
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Chapter 2

Ordinary copula functions

In this chapter we model the dependence between random variables by means of copula
functions. Then we analyze two common classes of copula functions.

Section 2.1 defines a copula function and discusses the fundamentals. Here the main re-
sult, which is due to Sklar [74], isolates the description of the dependence structure between
associated random variables. Section 2.2 introduces the elliptical construction pattern as
a direct consequence of Sklar’s theorem. Then two standard examples of elliptical copu-
las are given. Section 2.3 develops the modern pair copula approach, which is based on
the recursive use of building block copula functions. Then two particular recursions are
detailed.

The presentation in this chapter mainly builds on the standard textbooks by Cherubini
et al. [16], Embrecht et al. [31], Joe [43] and Nelson [57]. Aas et al. [1] is the major reference
in the subject matter of pair copulas.

2.1 Definition and basic properties

Copula functions reopened recently as the primary tool in the analysis of multivariate
dependence structures. We give definitions, properties and fundamental examples of copula
functions.

Definition 2.1. A d-dimensional copula1 function C (or d-copula or copula) is a mapping
of the form C : [0, 1]d → [0, 1] such that

(1) C is grounded

(2) C is d-increasing and

(3) C(1, ..., 1, ui, 1, ..., 1) = ui, for all i ∈ {1, ..., d}, ui ∈ [0, 1]

1The word copula is Latin for the English nouns link, tie or bond. It is used in grammar as a type of
word, which connects a subject with its complements.
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Properties (1) and (2) are necessary and sufficient conditions for a function C to be a
multivariate cdf [cf. 43, Section 1.4.2]. Property (3) is the extra requirement of uniformity
of the margins Ci, i = 1, ..., d. Hence copulas are joint cdfs on the unit hypercube [0, 1]d

with standard uniform marginal distributions.2 More precisely, a d-copula C is the cdf of
a random variable U = (U1, ..., Ud) on R

d,

(2.1) C(u1, ..., ud) = P [U1
≤ u1, ..., U

d
≤ ud],

where U i
∼ UNF (0, 1), i = 1, ..., d is standard uniformly distributed. We reserve the

notation C (instead of FU) for joint cdfs that are copulas. We index a d-copula C = C1,...,d,
whenever it is appropriate to stress dimensions.

The following result was proven by Sklar [74]. It shows, on the one hand, that all
multivariate cdfs contain copula functions and, on the other hand, that copula functions
may be used in conjunction with marginal cdfs to construct multivariate cdfs:

Theorem 2.2 ([57], Theorem 2.10.9). Let F be a joint cdf with margins F1, ..., Fd. Then
there exists a d-copula C such that, for all x1, ..., xd ∈ R∞,

(2.2) F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)).

If the margins are continuous, then C is unique. Conversely, if C is a d-copula and
F1, ..., Fd are univariate cdfs, then the function F defined by (2.2) is a joint cdf with margins
F1, ..., Fd.

Theorem 2.2 shows that copula functions describe the interrelations between the mar-
gins of a joint distributions. In turn, copula functions themselves are determined by the
joint and marginal distributions:

Corollary 2.3 ([57], Theorem 2.10.10). Let F be a multivariate cdf with margins F1, ..., Fd
and copula C. Then, for any (u1, ..., ud) ∈ [0, 1]d,

(2.3) C(u1, ..., ud) = F (F−1
1 (u1), ..., F

−1
d (ud)).

Corollary 2.3 shows how to isolate the copula function from a multivariate distribution
with given margins. For a random variable X = (X1, ..., Xd) on R

d with joint cdf F
and margins F1, ..., Fd, the copula in (2.2) (or in (2.3)) is called the copula of X (or the
copula of X1, ..., Xd−1 and Xd) and is denoted by CX (or CX1,...,Xd , whenever indexing is
advantageous).

In the sense of a dependence structure in its own right, the copula of a random variable
somehow ignores the marginal distributions:

Theorem 2.4 (cf. [57], Theorem 2.4.3). Let X1, ..., Xd be continuous random vari-
ables with copula CX1,...,Xd. If Ti : R → R, i = 1, ..., d are strictly increasing, then
T1(X1), ..., Tn(Xd) have copula CX1,...,Xd.

2Copula functions belong to the Fréchet classes, i.e. to the classes of multivariate distributions with
given margins [cf. 43].
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Theorem 2.4 states that copulas of random variables are invariant under strictly in-
creasing transformations of the margins. After all, copula functions are pure dependence
structures of joint distributions.3

Understood as a joint cdf, the pdf c of C exists in all points u ∈ R
d, where C is

continuous [cf. 16, Theorem 2.10]. Using (2.2) and the chain rule, we then have, for a joint
cdf F with margins F1, ..., Fd, the canonical representation [cf. 16, Section 2.6]

(2.4) f(x1, ..., xd) = c(F1(x1), ..., Fd(xd))
d∏

i=1

fi(xi)

of the pdf f of F in all points x ∈ R
d, where F is continuous.

Fundamental copula functions Analogue to the Fréchet bounds for joint cdfs [cf.
31, 35, 43], copula functions are bounded from below and above:

Theorem 2.5 ([57], Theorem 2.10.12). If C is a d-copula, then, for every (u1, ..., ud) ∈

[0, 1]d,

(2.5) max(u1 + ...+ ud − d+ 1, 0) ≤ C(u1, ..., ud) ≤ min(u1, ..., ud).

The Fréchet upper bound, called the maximum copula, is a d-copula for all d ≥ 2 [cf. 43,
Theorem 3.2]. The lower bound is a copula, called the minimum copula, only in the case
d = 2 [cf. 43, Theorem 3.3] but fails to satisfy property (2) of Definition 2.1 for d > 2 [cf.
31, Example 5.21]. The maximum copula is the cdf of the [0, 1]d-valued random variable
(U, ..., U), where U ∼ UNF (0, 1) [cf. 31, Section 5.1.2]. The minimum copula is the cdf of
the random variable (U, 1−U) on [0, 1]2, where U ∼ UNF (0, 1). This characterizes perfect
positive and perfect negative dependence in some sense.4

The minimum and the maximum copula belong to the class of fundamental copula
functions. Another fundamental copula is the d-variate product function

(2.6) Π(u1, ..., ud) = u1 · ... · ud.

It follows from Theorem 2.2 that continuous random variables X1, ..., Xd are independent,
if and only if the copula CX1,...,Xd of X1, ..., Xd is (2.6). Hence Π is referred to as the
independence copula.

Figure 2.1 shows the maximum, the independence and the minimum 2-copula over the
unit square.

3Copula functions also go by the name dependence functions [21] or uniform representations [47].
4The technical term for perfect positive dependence (perfect negative dependence) is comonotonicity

(countermonotonicity). The margins Fi, i = 1, ..., d (Fi, i = 1, 2) are comonotone (countermonotone), if
and only if they are coupled by the maximum copula (minimum copula) [cf. 16, Section 2.4]. See Joe [43]
for a thorough discours on dependence concepts, measures and orderings.
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Figure 2.1: Surface of the minimum copula (left), the independence copula (center), and
the maximum copula (right).

• The independence copula lays ”in between5” the minimum and the maximum copula;
the inequality (2.5) is satisfied.

• The independence copula is a smooth function; it is absolutely continuous on the
unit square.

• Both the minimum and the maximum copula have a kink; they are singular on a
non-empty set of points.

2.2 Elliptical copula functions

The copula functions most widely bespoken in contemporary literature are elliptical cop-
ulas. We motivate the general construction pattern and give the Gauss copula and the t
copula as examples.

Using Corollary 2.3, elliptical copula functions are derived from multivariate elliptical
distributions6:

Definition 2.6. Let X = (X1, ..., Xd) ∼ ELL(µ,Σ, φ) be an elliptically distributed ran-
dom variable on R

d. Then

(2.7) C(u1, ..., ud;µ,Σ, φ) = FX((FX
1 )−1(u1), ..., (F

X
d )−1(ud))

is a proper d-copula by Corollary 2.3. It is called an elliptical copula.

Basically, numerous copulas can be constructed by elliptical implication. The Gauss
copula and the t copula have become generally accepted in this respect.

5Nelson [57] motivates graphically that, for a 2-copula C, the level sets {(u, v) ∈ [0, 1]2|C(u, v) = t}
are contained in the region whose boundaries are the level sets determined by max(u + v − 1, 0) = t and
min(u, v) = t.

6Elliptical distributions are described in Section A.3.
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Gauss copula functions The Gauss copula is derived from the multivariate normal
distribution with standard normal margins:

Definition 2.7. Let Σ ∈ R
d×d be a symmetric, positiv-definite matrix with Σii = 1, i =

1, ..., n and ΦΣ the centered joint normal cdf with covariance matrix Σ. Then the Gauss
copula is defined by

(2.8) C(u1, ..., un; Σ) = ΦΣ(Φ−1(u1), ...,Φ
−1(un)),

where Φ−1 is the inverse of the standard normal cdf Φ.

As a consequence [cf. 16, Section 4.8.1], the Gauss copula is absolutely continuous on
[0, 1]d with pdf

(2.9) c(u1, ..., ud; Σ) = |Σ|

− 1
2 exp

(
−

1

2
x.(Σ−1

− 1)x

)
,

where x = (x1, ..., xd) = (Φ−1(u1), ...,Φ
−1(ud)) and |Σ| is the determinant of Σ. Regard-

ing Theorem 2.2, the Gauss copula may then be used in conjunction with marginal cdfs
F1, ..., Fd to generate a joint cdf F with a Gauss dependence structure.7

The fundamental copulas are special cases of the Gauss copula [cf. 31, Section 5.1.2].
If Σ ∈ R

d×d is equal to the identity matrix 1, then the Gauss copula degenerates to the
independence copula (2.6). If else Σ ∈ R

d×d tends to the matrix consisting entirely of plus
ones, the maximum copula (2.5) is obtained in the limit. Conversely, if Σ ∈ R

2×2 tends to
the matrix, whose off-diagonal elements are negative ones, then the minimum copula (2.5)
is obtained in the limit. Hence, in two dimensions, the Gauss copula interpolates between
the Fréchet bounds.

Example 2.8. Consider a random variable U = (U1, U2, U3) on R
3 with uniform margins

U i
∼ UNF (0, 1), i = 1, 2, 3. Assume that the copula C of U is the Gauss copula with

correlation matrix

Σ =




1 0.7 0.2
0.7 1 −0.5
0.2 −0.5 1


 .

Then the joint cdf of U is given by (2.8) and the joint pdf of U is given by (2.9). Moreover,
it can be shown (which we do at a later time) that the Gauss copula is closed under the
taking of margins. Hence the marginal pdfs of (U i, U j) are given by

(2.10) c(ui, uj; ρij) =
1√

1 − ρ2
ij

exp

(
ρ2
ij(x

2
i + x2

j) − 2ρijxixj

(1 − ρ2
ij)

)
, i, j ∈ {1, ..., 3}, i 6= j,

where xi = Φ−1(ui), xj = Φ−1(uj) and ρij = Σij. Then we may just as well view this
example from a bivariate perspective, only.
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Figure 2.2: Contours of the Gauss copula density using parameters ρ = 0.7 (left), ρ = 0.2
(center), and ρ = −0.5 (right).

Figure 2.2 shows the contour lines of the Gauss 2-copula pdf according to Example 2.8
using various correlation coefficients ρ.8

• The contours of c follow, for ρ < 0, the diagonal with slope −1 and, for ρ < 0, the
diagonal with slope 1; the correlation coefficient describes the sign of the dependence.

• The higher the absolute value of ρ the narrower the level curves of c; the correlation
coefficient is responsible for the degree of the dependence.

• The contours of c are mirror imaged; the dependence is symmetric.

Hence the Gauss copula describes the familiar concept of linear dependence.

t copula functions The t copula function is deduced from the multivariate Student t
distribution with standard Student t-distributed margins:

Definition 2.9. Let Σ ∈ R
d×d be a symmetric, positiv-definite matrix with Σii = 1, i =

1, ..., d and tΣ,ν the standard joint Student t cdf with covariance matrix Σ and ν degrees
of freedom. Then the t copula is defined by

(2.11) C(u1, ..., ud; Σ, ν) = tΣ,ν(t
−1
ν (u1), ..., t

−1
ν (ud)),

where t−1
ν is the inverse of the standard Student t cdf tν with ν degrees of freedom.

7It follows from Definition 2.7 and Theorem 2.2 that the Gauss copula C generates the standard joint
normal distribution F = ΦΣ, if and only if the margins Fi = Φ, i = 1, ..., d are taken standard normal [cf.
16, Proposition 4.1].

8Figure 2.3 is comparable to Bouyé et al. [13, Figure 13], who plotted the contours of the Gauss copula
density using both uniform and non-uniform marginal distributions.
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As a consequence [cf. 16, Section 4.8.2], the t copula function is absolutely continuous
on [0, 1]d with pdf

(2.12) c(u1, ..., ud; Σ, ν) = |Σ|

− 1
2
Γ(ν+d

2
)

Γ(ν
2
)

[
Γ(ν

2
)

Γ(ν+1
2

)

]d (1 + x.Σ−1x
ν

)−
ν+d
2

∏d
i=1(1 +

x2
i

ν
)−

ν+1
2

,

where x = (t−1
ν (u1), ..., t

−1
ν (ud))

′. Regarding Theorem 2.2, the t copula may then be used
in conjunction with marginal cdfs F1, ..., Fd to generate a joint cdf F with a t dependence
structure.9

Similar to the Gauss copula, if Σ ∈ R
d×d tends to the matrix, that consists entirely

of ones, then the limit is the maximum copula (2.5). But the choice Σ = 1 does not
yield the independence copula. This is due to the fact that uncorrelated multivariate
t-distributed random variables are not independent [cf. 31, Lemma 3.5]. The minimum
copula is unattainable by the same argument.10

Example 2.10. Consider a random variable U = (U1, U2, U3) on R
3 with uniform margins

U i
∼ UNF (0, 1), i = 1, 2, 3. Assume that the copula C of U is the t copula with ν degrees

of freedom and correlation matrix

Σ =




1 0.7 0.2
0.7 1 −0.5
0.2 −0.5 1


 .

Then the joint cdf of U is given by (2.11) and the joint pdf of U is given by (2.12). Moreover,
it can be shown (which we do at a later time) that the t copula is closed under the taking
of margins. Hence the marginal pdfs of (U i, U j) are given by

c(u1, u2; ρij, ν) =
Γ(ν+2

2
)Γ(ν

2
)√

1 − ρ2
ijΓ(ν+1

2
)2

(
1 +

x2
i +x2

j−2ρijxixj

ν(1−ρ2ij)

)− ν+2
2

[(1 +
x2

i

ν
)(1 +

x2
j

ν
)]−

ν+1
2

, i, j ∈ {1, ..., 3}, i 6= j,

where xi = t−1
ν (ui), xj = t−1

ν (uj) and ρij = Σij. Then we may just as well view this example
from a bivariate perspective, only.

Figure 2.3 shows the contours of the t 2-copula pdf according to Example 2.10 using
various correlation coefficients ρ and degrees of freedom ν.11

• The correlation coefficient describes linear dependence to the same effect as in Figure
2.2.

9It follows from Definition 2.9 and Theorem 2.2 that the t copula C generates the standard joint t
distribution F = tΣ,ν , if and only if the margins Fi = tν , i = 1, ..., d are standard t-distributed.

10Bouyé et al. [13] give graphical support to the convergence of the t copula to the Gauss copula in the
limit ν → ∞.

11Figure 2.3 is comparable to Bouyé et al. [13, Figure 14], who plotted the contours of the t copula
densities using both uniform and non-uniform marginal distributions.
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Figure 2.3: Contours of the t copula density using parameters ρ = 0.7, ν = 10 (upper
left),ρ = 0.2, ν = 10 (upper center), ρ = −0.5, ν = 10 (upper right), ρ = 0.7, ν = 3 (lower
left),ρ = 0.2, ν = 3 (lower middle), and ρ = −0.5, ν = 3 (lower right).

• The lower the ν the denser the contours of c in the corners; the degrees of freedom
determine the tail dependence12.

Hence the t copula allows to describe symmetric linear and extreme dependence.

2.3 Pair copula functions

The pair copula approach represents a radically new way of modelling multivariate copu-
las with highly complex dependence structures. We elaborate the involved building block
pattern and go into details about two specific pair copula constructions.

The decomposition of a multivariate copula into simple blocks allows for a flexible but
parsimonious dependence structure. We indicate the pattern in the three dimensional case:

12Joe [43] says that, if a bivariate copula C is such that limu→1 C(u, u)/(1−u) = λ exists, then C has up-
per tail dependence for λ ∈ (0, 1] and no upper tail dependence for λ = 0. Similarly, if limu→0 C(u, u)/u = λ
exists, then C has lower dependence for λ ∈ (0, 1] and no upper tail dependence for λ = 0. And Bouyé
et al. [13] gives graphical support to tail dependence of the t copula relating to the degrees of freedom ν.
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Example 2.11 (cf. [1], Section 2). Consider a random variable X = (X1, X2, X3) on R
3

with joint pdf f . Then

f(x1, ..., xd) = f(x3)f(x2|x3)f(x1|x2, x3).

It follows from (2.4) that

f(x2|x3) = c2,3(F2(x2), F3(x3))f2(x2)

for some bivariate copula density c2,3. Similarly, we have

f(x1|x2, x3) = c1,3|2(F1|2(x1|x2), F3|2(x3|x2))f1|2(x1|x2),

where c1,3|2 another 2-copula density. The conditional pdf f1|2(x1|x2) admits a pair copula
representation similar to (2.13). Altogether

f(x1, x2, x3) = f(x1)f(x2)f(x3)(2.13)

· c1,2(F (x1), F (x2))c2,3(F (x2), F (x3))

· c1,3|2(F (x1|x2), F (x3|x2)).

Hence the joint density decomposes into bivariate building blocks, so-called pair copulas.

For general random variables X on R
d, the pdf f of X allows of a similar decomposition.

This involves the conditional pdfs

f(y|z) = cy,zj |z−j
(F (y|z−j), F (zj|z−j))f(y|z−j),

where y is a single component and z is some conditioning vector.13 Here zj is an arbitrary
component of z and z−j denotes the vector z excluding component zj. Each conditional
pdf consists of a pair copula pdf cy,zj |z−j

and two conditional marginal cdfs of the form

(2.14) F (y|z) =
∂Cy,zj |z−j

(F (y|z−j), F (zj|z−j))

∂F (zj|z−j)
,

where Cy,zj |z−j
are again bivariate copulas. By recursive use of formula (2.14), the con-

ditioning argument goes one-dimensional in the end. This leads to the (unconditional)
margin representations

(2.15) F (y|z) =
∂Cy,z(F (y), F (z))

∂F (z)
,

where Cy,z is a bivariate copula.
The iterative design depends on the choice of the vector z and the (dropped) component

zj in each cascade. This offers many different ways to factorize the original density. These
can be tracked by graph theoretic tools, called vines14. For appropriate choices (vines),
the pair copula decomposition becomes very tractable:

13Joe [cf. 43, Chapter 9] gives a similar construction via conditional density specifications detailing
distributions in exponential families without the use of copula functions.

14Bedford and Cooke [10] introduce the concept of vines, which is taken up by Aas et al. [1] for the pair
copula construction pattern.
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Definition 2.12. Let X = (X1, ..., Xd) be a random variable on R
d with pdf f . The

decomposition of f corresponding to a D-vine (or D-vine decomposition of f) is given by
[cf. 1, Section 2]
(2.16)

f(x1, ..., xd) =
d∏

k=1

f(xk)
d−1∏

j=1

d−j∏

i=1

ci,i+j(F (xi|xi+1, ..., xi+j−1), F (xi+j|xi+1, ..., xi+j−1)),

where the conditional marginal cdfs are evaluated according to

F (xj|xi, ..., xj−1) =
∂Cj,i|i+1,...,j−1(F (xj|xi+1, ..., xj−1), F (xi|xi+1, ..., xj−1))

∂F (xi|xi+1, ..., xj−1)
(2.17)

and F (xj|xj+1, ..., xi) =
∂Cj,i|j+1,...,i−1(F (xj|xj+1, ..., xi−1), F (xi|xj+1, ..., xi−1))

∂F (xi|xj+1, ..., xi−1)
.

In the case d = 3, the D-vine decomposition of f coincides with (2.13), while f admits
the decomposition [cf. 1, p.6]

f(x1, x2, x3, x4) = f(x1)f(x2)f(x3)f(x4)

· c1,2(F (x1), F (x2))c2,3(F (x2), F (x3))c3,4(F (x3), F (x4))

· c1,3|2(F (x1|x2), F (x3|x2))c2,4|3(F (x2|x3), F (x4|x3))

· c1,4|2,3(F (x1|x2, x3), F (x4|x2, x3))

in the case d = 4.

Definition 2.13. Let X = (X1, ..., Xd) be a random variable on R
d with pdf f . The

decomposition of f corresponding to a canonical vine (or canonical vine decomposition of
f) is given by [cf. 1, Section 2]

(2.18) f(x1, ..., xd) =
d∏

k=1

f(xk)
d−1∏

j=1

d−j∏

i=1

cj,j+i(F (xj|x1, ..., xj−1), F (xj+i|x1, ..., xj−1)),

where the marginal conditional cdfs are evaluated according to

(2.19) F (xj|x1, ..., xi−1) =
∂Cj,i−1|1,...,i−2(F (xj|x1, ..., xi−2), F (xi−1|x1, ..., xi−2))

∂F (x1|x2, ..., xi−1)

In the case d = 3, the canonical vine decomposition of f coincides with (2.13), while f
admits the decomposition [cf. 1, Section 2]

f(x1, x2, x3, x4) = f(x1)f(x2)f(x3)f(x4)

· c1,2(F (x1), F (x2))c1,3(F (x1), F (x3))c1,4(F (x1), F (x4))

· c2,3|1(F (x2|x1), F (x3|x1))c2,4|1(F (x2|x1), F (x4|x1))

· c3,4|1,2(F (x3|x1, x2), F (x4|x1, x2))
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Figure 2.4: Contours of the (conditional) pair copula density using parameters ρ1,2 = 0.7
(left), ρ1,3|2 = 0.2, u2 = 0.5 (middle), and ρ1,3|2 = 0.2, u2 = 0.9 (right).

in the case d = 4. In each case, (2.17) and (2.19) reallocate the pair copulas used, respec-
tively, in (2.16) and (2.18).

Having discussed the decomposition of general (continuous) distributions, we concern
the pair copula construction on its own right. By (2.1), copula functions are recognized
as joint cdfs with uniform margins. Hence, if F (u) = u in (2.15), then (2.16) and (2.18)
produce copula pdfs corresponding to a D-vine and a canonical vine decomposition, re-
spectively. We write

(2.20) h(y, z) =
∂Cy,z(y, z)

∂z

instead of (2.15), whenever the margins are uniform. For some bivariate copula functions,
(2.20) admits a closed form representation [cf. 1, Appendix B ff.]:

Example 2.14. Consider a random variable U = (U1, U2, U3) on R
3 with uniform margins

U i
∼ UNF (0, 1), i = 1, 2, 3. Regarding (2.13) and (2.20), the pdf c of U decomposes into

(2.21) c1,2,3(u1, u2, u3) = c1,2(u1, u2)c2,3(u2, u3)c1,3|2(h(u1, u2), h(u2, u3)).

Assume that all bivariate building blocks have a Gauss 2-copula pdf as defined in (2.10),
that is

c12(u1, u2) = c(u1, u2; ρ12), c23(u2, u3) = c(u2, u3; ρ23), c13|2(u1, u3) = c(u1, u3; ρ13|2).

Then it follows from (2.8) [cf. 1, Section C.1] that

h(u1, u2) = Φ

(
Φ−1(u1) − ρ12Φ

−1(u2)

1 − ρ2
12

)
and h(u2, u3) = Φ

(
Φ−1(u2) − ρ23Φ

−1(u3)

1 − ρ2
23

)
.

Figure 2.4 shows the contours of the copula pdfs of the building blocks, that are involved
in Example 2.14.15

15Figure 2.4 is comparable to Aas et al. [1, Figure 9], who plotted the contours of the pair copula
densities using empirical data of the Norwegian stock index, the MSCI world stock index, the Norwegian
bond index and the SSBWG hedged bond index.
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• The contours of c1,2 (or c2,3, which we omit in good faith) are identical with Figure
2.2; the unconditioned building blocks are Gauss copulas.

• The level curves of c1,3|2 follow a dislocated diagonal; the conditioned building block
describes conditional linear dependence.

• The level curves of c1,3|2 conditioned on a centered u2 are mirror imaged; the Gauss
copula blocks produce symmetric dependence.

2.4 Summary

In this chapter we argued for the convenience of ordinary copula functions in decoupling
the dependence structure and the margins of a joint distribution. Then we analyzed the
elliptical and the pair copula family.

We showed at the beginning that copula functions, which are multivariate cdfs with
standard uniform margins, cope with isolating the dependence structure between some
univariate distributions. Moreover, the characterization of the dependence structure of a
multivariate random variable turned out to be independent of the distributional shape of
its margins.

Then we derived the Gauss and the t copula function implicitly from their eponymous
multivariate elliptical distributions. Both copulas were characterized by their parametric
pdfs, which are available in closed form due to construction. By graphical illustration of
the pdf contours, we recognized that the Gauss copula can handle linear dependence only,
while the t copula allows us to model tail dependence.

After motivating a conditional decomposition of general pdfs, we formulated two specific
patterns, that can be used to construct parametric multivariate copula pdfs from cascades
of some bivariate building blocks. Here we have gone into details about the complex
but parsimonious allocation of the cascades. We illustrated the pdf contours of the two
decompositions using Gauss building block copulas. Here the concept of linear dependence
was rediscovered, although the association of the Gauss parameters were not so obvious.
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Chapter 3

Simulation of copula functions

In this chapter we explain the basic techniques for the simulation of random scenarios from
an ordinary copula set up. These are subsequently applied to the elliptical and the pair
copula fucntions.

Section 3.1 describes the transformation method for elliptical copulas. Here the ap-
proach is to use stochastic representations of elliptically distributed random variables.
Section 3.2 gives the conditional sampling method, which is generally applicable. The
recursive pattern used to construct pair copulas is very much suited to this approach.
Detailed algorithms are given and implemented.

The procedures discussed in this chapter follow closely along the methods described in
Aas et al. [1], Cherubini et al. [16] and Embrecht et al. [31].

3.1 Transformation method

The implicit construction of an elliptical copula makes the sampling from it very efficient.
The prevailing approach uses stochastic representations of elliptical distributions. We de-
scribe the method by instance of the Gauss and the t copula.

Elliptically distributed random variables can be represented by affine transformations
of a uncorrelated random variables:1

Lemma 3.1 (cf. [34], Section 2.5). Let X ∼ ELL(µ,Σ, φ) with Σ nonsingular. Then X
can be represented as

X
d
= µ+ Σ1/2Y,

where Y ∼ SPH(φ).

Lemma 3.1 shows that a random variable X on R
d with an elliptical distribution is

reducible to some spherically distributed random variables Y 1, ..., Y d. Hence univariate

1For our purposes, we introduced elliptical distributions using non-singular matrices Σ ∈ R
d×d only.

[34] is a thorough study on more general elliptical distributions based on potentially singular covariance
matrices.
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number generators can be used to draw from the dependent random variable. As to (2.7),
the R

d-valued random variable U = (U1, ..., Ud), which obtains from X ∼ ELL(µ,Σ, φ)
by Ui = FX

i (X i), i = 1, ..., d, has an elliptical copula distribution. Then the simulation of
elliptical copula distributions returns to a transformation of spherically distributed random
draws.

Gauss copula simulation Lemma 3.1 applies to a multivariate normally distributed
random variable:

Corollary 3.2. Let X ∼ MVN(0,Σ) be a normally distributed random variable on R
d.

Then
X

d
= Σ1/2Z,

where Z is a random variable on R
d with independent standard normal margins Zi ∼

MVN(0, 1), i = 1, ..., d.

Proof. Corollary 3.2 follows directly from Lemma 3.1.

By (2.8), the cdf of the random variable U = (U1, ..., Ud) on R
d with U i = Φ(X i), i =

1, ..., d, where X is as in Corollary 3.2, is the Gauss copula function with covariance matrix
Σ. This is exploited in Algorithm 1, which can be used to generate a draw from the Gauss
copula.

Algorithm 1: Sampling from Gauss copula

Samples (u1, ..., ud) from the Gauss copula with correlation matrix Σ.;

Sample zi, i = 1, ..., d independent normal;
x = Σ1/2z;
for i = 1 to d do

ui = Φ(xi);
end

We implement Algorithm 1 in the context of Example 2.8. Figure 3.1 shows the mar-
ginal pairs of 5000 simulated draws from the Gauss 3-copula.2

• The sampled pairs follow, for ρ < 0, the diagonal with slope −1 and, for ρ > 0, the
diagonal with slope 1; the concept of linear dependence is preserved in the simulation.

• There is only moderate clustering of points in the respective corners; the draws are
not tail dependend.

Hence the analysis of the Gaussian copula density of Section 2.2 is reaffirmed.

2Figure 3.1 is comparable with Embrecht et al. [31, Figure 5.3 (a)], who also plots Gauss copula draws
using ρ = 0.7
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Figure 3.1: 5000 samples from the Gauss 3-copula function using parameters ρ1,2 =
0.7, ρ2,3 = −0.5, ρ1,3 = 0.2 in cross section of (1, 2)-margin (left), (1, 3)-margin (center),
and (2, 3)-margin (right).

t copula simulation A multivariate t-distributed random variable can be represented
as a transformed multivariate normally distributed random variable:

Lemma 3.3 (cf. Fang et al. [34], Example 2.5). Let X ∼MV T (µ,Σ, ν) be a t-distributed
random variable on R

d. Then

X
d
=

√
ν

S
Y,

where Y ∼ MVN(µ,Σ) is a normally distributed random variable on R
d, and S ∼

CHI2(ν) is chi-squared distributed and independent of Y .

Then a multivariate t-distributed random variable is reducible to independent standard
normally distributed random variables:

Corollary 3.4. Let X ∼MV T (ν,0,Σ) be a t-distributed random variable on R
d. Then

X
d
=

√
ν

S
Σ1/2Z,

where Z is a random variable on R
d whose margins Zi ∼ MVN(0, 1), i = 1, ..., d are

independent standard normal, and S ∼ CHI2(ν) is chi-squared distributed and independent
of Zi, i = 1, ..., d.

Proof. Corollary 3.4 follows directly from Lemma 3.1 and Lemma 3.3.

Regarding (2.11), the cdf of the random variable U = (U1, ..., Ud) on R
d with U i =

tν(X
i), i = 1, ..., d, where X is as in Corollary 3.4, is the t copula function with covariance

matrix Σ and ν degrees of freedom. This is exploited in Algorithm 2, that can be used to
generate a random draw from the t copula.
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Algorithm 2: Sampling from t copula

Samples (u1, ..., ud) from the t copula with correlation matrix Σ and ν degrees of
freedom.;

Sample zi, i = 1, ..., d independent t;
Sample s from CHI2 independent of z1, ..., zd;
y = Σ1/2z;
x =

√
ν√
s
y;

for i = 1 to d do
ui = tν(xi);

end

Figure 3.2: 5000 samples from the t 3-copula function using parameters ν = 3, ρ1,2 =
0.7, ρ2,3 = −0.5, ρ1,3 = 0.2 in cross section of (1, 2)-margin (left), (1, 3)-margin (center),
and (2, 3)-margin (right).

We implement Algorithm 2 in the context of Example 2.10. Figure 3.2 shows the
marginal pairs of 5000 simulated draws from the t 3-copula.3

• The sampled pairs follow, for ρ < 0, the diagonal with slope −1 and, for ρ > 0, the
diagonal with slope 1; the concept of linear dependence is preserved in the simulation.

• There is heavy clustering of points in the respective corners; the draws are severely
tail dependend.

• The clustering of points is still present in the case |ρ| ≪ 1; the dependence is strong
even though correlation is not.

These results coincide with the observations about the t copula density in Section 2.2.

3Figure 3.2 is comparable with Embrecht et al. [31, Figure 5.3 (d)], who plots t copula draws using
ρ = 0.71 and ν = 4.
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3.2 Conditional sampling

In the context of copulas, the most concentraded simulation method is conditional sam-
pling. We state the general procedure, following which we point out why conditional
sampling is very well suited to the pair copula approach.

The conditional sampling approach involves subsequent probability transformations by
conditional margin distributions:

Proposition 3.5 (cf. [66]). Let X = (X1, ..., Xd) be a random variable on R
d with ab-

solutely continuous cdf F and Fi|1,...,i−1 denote the conditional cdf of Xi given X1, ..., X i−1

for all i = 1, ..., d. Consider the d transformations Ti : R → R defined by

T1(x1) = F1(x1)

T2(x2) = F2|1(x2|x1)

... =
...

Td(xd) = Fd|1,...,d−1(xd|x1, ..., xd−1).

Then the random variables Zi = Ti(X
i), i = 1, ..., d are uniformly and independently dis-

tributed on [0, 1]d.
Conversely, if Zi, i = 1, ..., d are uniformly and independently distributed random vari-

ables and F is a continuous cdf on R
d, then the random variable X = (X1, ..., Xd), which

is successively defined by X i = T−1
i (Zi), i = 1, ..., d, has cdf F .

Proposition 3.5 can be seen as a multivariate extension of the probability integral
transform. This involves the conditional cdfs of the original distribution. For a R

d-valued
random variable U with continuous (copula) distribution C, the conditional cdf of U i given
U1, ..., U i−1 is [cf. 16, Section 6.3]

(3.1) Ci|1,...,i−1(ui|u1, ..., ui−1) =
[∂i−1C1,...,i(u1, ..., ui)]/[∂u1...∂ui−1]

[∂i−1C1,...,i−1(u1, ..., ui−1)]/[∂u1...∂ui−1]
.

We assume the nominator and denominator in (3.1) to exist and the denominator to be
nonzero. Then Proposition 3.5 (2nd part) and (3.1) prepare to generate random numbers
from a copula distribution in the following way:

(1) Sample z1, ..., zd independent uniform on [0, 1].

(2) Define u1 = z1.

(3) For i = 2, ..., d, set u2 = C−1
i|1,...,i−1(zi|u1, ..., ui−1).

The conditional approach is very elegant, but it may not be possible to compute C−1
i|1,...,i−1

analytically.4 In this case, numerical root finders are required. This may be computation-
ally intensive, for (3.1) involves high order derivatives.5

4Cherubini et al. [16] makes the conditional sampling procedure explicit for Archimedean copula families
including the Clayton copula, the Gumbel copula and the Frank copula.

5Whelan [83] finds an elegant way to draw from multidimensional Archimedean copula functions in
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Pair copula sampling The pair copula construction allows us to manage the simulation
without computing high order derivatives:

Example 3.6 (cf. [1]). Reconsider the random variable (U1, U2, U3) on R
3 as specified

in Example 2.14. The goal is to sample a realization (u1, u2, u3) from (U1, U2, U3) by the
conditional method. This requires the following steps. First, sample z1, z2, z3 independent
uniform on [0, 1]. Then set u1 = z1. By (2.14), we have C2|1(u2|u1) = h(u2, u1). Hence put
u2 = h−1(z2, u1), where [cf. 1, Section B.1]

h−1(u2, u1) = Φ

(
Φ−1(u2)

√
1 − ρ2

12 + ρ12Φ
−1(u1)

)
.

It holds C3|1,2(u3|u1, u2) = h(h(u3, u1), h(u2, u1)) by recursion of (2.14). Hence put u3 =
h−1(h−1(z3, h(u2, u1)), u1), where [cf. 1, Section B.1]

h−1(u3, u1) = Φ
(
Φ−1(u3)

√
1 − ρ2

13|2 + ρ13|2Φ
−1(u1)

)

and h−1(u3, u2) = Φ

(
Φ−1(u3)

√
1 − ρ2

23 + ρ23Φ
−1(u2)

)
.

For general random variables U on R
d with cdf C, the pair copula decomposition reduces

the conditional cdfs (2.14) (or (3.1)) to some cascades of bivariate conditional cdfs (2.20).
Hence one way to invert the conditional copula cdf (3.1) is by recursive inversion of the
pair building blocks (2.20). This facilitates the conditional sampling of random numbers.

The recursive pattern is again dependent on which cascade (vine) is used. In the case
of a D-vine decomposition of the copula pdf as to Definition 2.12, the recursion is initiated
at

(3.2) Ci|1,...,i−1(ui|u1, ..., ui−1) =
∂C1,i|2,...,i−1(F (xi|x2, ..., xi−1), F (x1|x2, ..., xi−1))

∂F (x1|x2, ..., xi−1)

and followed according to (2.17). Aas et al. [cf. 1, Algorithm 2] propose Algorithm 3, which
can be used to randomly draw from the pair copula function corresponding to a D-vine
decomposition.

In the case of a canonical vine decomposition of the copula density as to Definition
2.13, the start is at

(3.3) Ci|1,...,i−1(ui|u1, ..., ui−1) =
∂Ci,i−1|1,...,i−2(F (xi|x1, ..., xi−2), F (xi−1|x1, ..., xi−2))

∂F (xi−1|x2, ..., xi−1)

and the recursion is followed according to (2.19). Aas et al. [cf. 1, Algorithm 1] have
formulated Algorithm 4, which can be used to sample from the pair copula function cor-
responding to a canonical vine decomposition. Algorithms 3 and 4 make extensive use of
the reallocation of pair copulas used for factorization.

that he partitions and scales one-dimensional draws to the right multivariate distribution. His paper
complements that by Savu and Trede [70] on hierarchical Archimedean copulas.
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Algorithm 3: Sampling from pair copula based on D-vine decomposition

Samples (u1, ..., ud) from the pair copula based on a D-vine density decomposition
with (conditional) correlation matrix Σ.;

Sample wi, i = 1, ..., independent uniform on [0, 1];
u1 = z1,1 = w1;
u2 = z2,1 = h−1(w2, z1,1; θ1,1;
z2,2 = h(z1,1, z2,1; θ1,1);
for i = 3 to d do

zi,1 = wi;
for k = i-1 to 2 do

zi,1 = h−1(zi,1, zi−1,2k−2; θk,i−k);
end
zi,1 = h−1(zi,1, zi−1,1; θ1,i−1);
ui = zi,1;
if i=d then

Stop;
end
zi,2 = h(zi−1,1, zi,1; θ1,i−1);
zi,3 = h(zi,1, zi−1,1; θ1,i−1);
if i > 3 then

for j=2 to i-2 do
zi,2j = h(zi−1,2j−2, zi,2j−1; θj,i−j);
zi,2j+1 = h(zi,2j−1, zi−1,2j−2; θj,i−j);

end
end
zi,2i−2 = h(zi−1,2i−4, zi,2i−3; θi−1,1);

end
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Algorithm 4: Sampling from pair copula based on canonical vine decomposition

Samples (u1, ..., ud) from the pair copula based on a canonical vine density
decomposition with (conditional) correlation matrix Σ.;

Sample wi, i = 1, ..., independent uniform on [0, 1];
u1 = z1,1 = w1;
for i = 2 to d do

zi,1 = wi;
for k = i-1 to 1 do

zi,1 = h−1(zi,1, zk,k; θk,i−k);
end
ui = zi,1;
if i=d then

Stop;
end
for j=1 to i-1 do

zi,j+1 = h(zi,j, zj,j; θj,i−j);
end

end

We implement Algorithm 3 in the context of Example 3.6. Figure 3.3 shows the scat-
tered (unconditional) marginal pairs of 5000 random draws.6

• The clustering of points is moderate and symmetric; the Gauss building blocks induce
normal dependence only.

• The (1, 2)-margin and the (2, 3)-margin pairs are comparable with Figure 3.1.

• The (1, 3)-margin draws can not be associated exactly with Figure 3.1.

In conclusion, the pair copula construction (using Gauss building blocks) describes a de-
pendence structure that is very similar to the Gauss copula in terms of symmetry and
extremes. However it reveals a more complex association between the copula parameters
and the resulting dependence structure.

3.3 Summary

In this chapter we developed explicit methods for the convenient simulation of elliptical
and pair copula distributed random variables.

6Figure 3.3 is comparable with the scatter plots of some empirical data sets provided by Aas et al. [cf.
1, Figure 10].
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Figure 3.3: 5000 samples from the pair 3-copula function using parameters ρ1,2 = 0.7, ρ2,3 =
−0.5, ρ1,3|2 = 0.2 in cross section of (1, 2)-margin (left), (2, 3)-margin (center), and (1, 3)-
margin (right).

Regarding the implicit construction of elliptical copula functions, we proved a trans-
formation method to be useful to sample from the Gauss and the t copula. This relied on
stochastic representations of normally and Student t distributed random variables.

Then we sampled from the two elliptical copulas using the derived algorithms and
rediscovered the properties of the copula pdf in both cases. Specifically, we observed from
the simulations that the t copula function gives rise to scenarios, which are more severe in
the extremes as opposed to the Gauss copula draws.

We found out that the conditional sampling approach is the method of choice for the
generation of random draws from a pair copula distribution. In this respect we argued
that the building block principle suits very well a conditional approach. The involved but
explicit sampling algorithms were written out.

Then we revisited the example of a pair 3-copula function constructed from Gauss
building blocks. Here the properties of the copula pdf turned out to be reinforced by
the simulation. Specifically, we observed that the samples have an evidently ample but
moderate dependence structure whose association with the Gauss parameters is somewhat
hidden.
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Chapter 4

Inference for copula functions

This chapter is devoted to the problem of estimating the model parameters from a set of
realizations. We are keenly interested in the testing of these estimators, too.

Section 4.1 describes the maximum likelihood estimation for a copula based model in
its canonical version. This is elaborated for the elliptical and the pair copula functions.
Then Section 4.2 deals with the testing of some given estimates. The goal is to develop
efficient inference methods to assess how good an estimated model fits the data. This is
straight forward in the case of pair copulas but involved in the case of elliptical copulas.
Detailed algorithms are given and implemented.

The methods treated in this chapter follow the standard references Cherubini et al. [16]
and Embrecht et al. [31] as to parameter estimation. The goodness-of-fit test is refined on
the basis of Fang et al. [34], Embrecht et al. [33].

4.1 Maximum likelihood method

Maximum likelihood is the method of choice to estimate the parameters of a copula based
model. We elaborate the general principle and particularize a canonical version by instance
of the elliptical and the pair copulas.

Let ℵ = {x1,t, ..., xd,t}
T
t=1 denote a sample data matrix, which contains independent

observations from the R
d-valued random variable X = (X1, ..., Xd). Hence, for each t ∈

{1, ...T}, (x1,t, ..., xd,t) is a realization of (X1, ..., Xd) and independent from (x1,s, ..., xd,s), s 6=
t. This assumption will be referred to as the usual assumptions. For the cdf F of X, assume
a copula based model of the form

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)),

where Fi is the cdf of X i for each i = 1, ..., d and C is a copula function. Introduce the set
Θ = Θ0 × Θ1 × ... × Θd of all admissible model parameters θ. Hence the copula function
and the marginal distribution functions depend on θ:

(4.1) C(u1, ..., ud) = C(u1, ..., ud; θ0) and Fi(xi) = Fi(xi; θi), i = 1, ..., d.
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By (2.4), we have

f(x1, ..., xd; θ) = c(F1(x1; θ1), ..., Fd(xd; θd); θ0)
d∏

i=1

fi(xi; θi).

It follows from the independence of the (x1,t, ..., xd,t), t = 1, ..., T that the likelihood (or
likelihood function) L : Θ → R of the observed data ℵ under model (4.1) with parameter
θ is obtained as

L(θ) =
T∏

t=1

f(x1,t, ..., xd,t; θ).

The likelihood function measures the probability of the event ℵ, if θ was the true set
of parameters. Then a maximum likelihood estimator tries to find the optimal set of
parameters θ ∈ Θ, which maximizes L(θ). It is convenient to consider the logarithmic
transformation of the likelihood function:

Definition 4.1. Let X = (X1, ..., Xd) be a random variable on R
d with joint pdf f(·; θ),

where θ ∈ Θ an admissible set of model parameters. Further let ℵ = {x1,t, ..., xd,t}
T
t=1 be

a sample data matrix of X satisfying the usual assumptions. Then the log-likelihood (or
log-likelihood function) l : Θ → R is defined as

l(θ) =
T∑

t=1

ln f(x1,t, ..., xd,t; θ).

Regarding (2.4), there exists a canonical representation of the log-likelihood function:

Proposition 4.2 (cf. [16], Section 5.2). Let X = (X1, ..., Xd) be a random variable on
R
d with cdf F (·; θ), marginal cdf ’s Fi(·; θ), i = 1, ..., d and copula C(·; θ), where θ ∈ Θ is

an admissible set of model parameters. Further let ℵ = {x1,t, ..., xd,t}
T
t=1 be a sample data

matrix of X satisfying the usual assumptions. Then

(4.2) l(θ) =
T∑

t=1

ln c(F1(x1,t; θ1), ..., Fd(xd,t; θd); θ0) +
T∑

t=1

d∑

i=1

ln fi(xi,t; θi).

The logarithmic function is strictly increasing. Thus the log-likelihood obtains its
maximum wherever the likelihood does. The exact maximum likelihood estimator is defined
by

θ̂EML = arg max
θ∈Θ

l(θ).

This is the optimal set of parameters with respect to the (log-)likelihood.1 The estimator
is said to be exact, because optimization is over the whole set of model parameters Θ.

1We assume in this section that the maximum likelihood estimators exist, are consistent and asymp-
totically efficient [cf. 73, 43].
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Inference for margins (4.2) distinguishes a copula density term and d marginal density
terms. This motivates a split optimization strategy, which is known as the inference for
margins method [cf. 84].

The second term on the right-hand side of (4.2) is the sum of the marginal log-likelihood
functions

li(θi) =
T∑

t=1

ln fi(xi,t; θi)

over all i ∈ {1, ..., d}. These are maximized, in a first step and separately, over all θi ∈ Θi:

θ̂i = arg max
θi∈Θi

T∑

t=1

ln fi(xi,t; θi).

In a second step, the term on the right-hand side of (4.2) containing the copula density
is maximized. This involves the values Fi(xi,t; θi), i = 1, ..., d, t = 1, ..., T . Here we employ

the former estimates θ̂i as an approximation to the optimal θi. This allows to maximize
the likelihood over θ0 alone:

θ̂0 = arg max
θ0∈Θ0

T∑

t=1

ln c(F1(x1,t; θ̂1), ..., Fd(xd,t; θ̂d); θ0).

Then the overall2 estimate is given by

θ̂IFM = (θ̂0, θ̂1, ..., θ̂d).

Canonical maximum likelihood Empirical margins are used in (4.2) whenever a para-
metric specification of the marginal distributions is to be avoided. This is referred to as
the canonical maximum likelihood method.

Dropping the parametric models Fi(·; θi), i = 1, ..., d for the marginal cdfs, we consider
the empirical margins, denoted by F̂i,

F̂i(y) =
1

T

T∑

t=1

1xi,t≤y.

These are determined by the columns of the sample data matrix ℵ alone. As a consequence,
(4.2) is independent of θi ∈ Θi, i = 1, ..., d. Hence

l(θ0) =
T∑

t=1

ln c(û1,t, ..., ûd,t); θ0),

2Bouyé et al. [13] refers to θ1, ..., θd as specific parameters and θ0 as common parameters.
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where ûi,t = F̂i(xi,t), i = 1, ..., d, t = 1, ..., T are the so-called pseudo-observations. Then
the canonical maximum likelihood estimator is given by

(4.3) θ̂CML = arg max
θ0∈Θ0

T∑

t=1

ln c(û1,t, ..., ûd,t; θ0).

Canonical maximum likelihood estimation is sufficient for our purposes.3 We assume
the pseudo-observations ûi,t, i = 1, ..., d, t = 1, ..., T to be given from the sample data
matrix ℵ and consider the estimation of the copula model on its own.

Gauss copula estimation Using representation (2.9) of the pdf of the Gauss copula,
the (canonical) log-likelihood function has a closed form representation:

Lemma 4.3 (cf. [31], Example 5.58). For the Gauss copula with correlation matrix Σ, the
canonical log-likelihood function is given by

(4.4) l(Σ) =
T∑

t=1

ln
1√
|Σ|

e−
1
2
ξt.(Σ−1−1)ξt = −

T

2
ln |Σ| −

1

2

T∑

t=1

ξt(Σ
−1

− 1).ξt,

where ξt = (Φ−1(û1,t), ...,Φ
−1(ûd,t))

′.

In this case, there exists an analytical solution to (4.3). The optimal symmetric positive
definite correlation matrix Σ̂ is

Σ̂CML =
1

T

T∑

t=1

ξt.ξt .
4

where ξt is as in Lemma 4.4. This is exploited in Algorithm 5, that can be used to calibrate
the Gauss copula to a sample data matrix.

We run Algorithm 5 on the 5000 Gaussian 3-copula draws sampled in Section 3.1. The
resulting estimate is

Σ̂ =




1 0.7034 −0.4946
0.7034 1 0.2009
−0.4946 0.2009 1


 .

That is to say that the correlation matrix, which was used for simulation, is adequately
regained.

3Bouyé et al. [13] performs a Monte-Carlo study to test the three methods on the basis of a bivariate
Gauss copula with exponential and gamma distributed margins.

4The explicit estimate (4.5) formulates the usual linear correlation matrix (or Pearson’s linear corre-
lation) of the pseudo-sample (Φ−1(û1,t), ...,Φ

−1(ûd,t)), t = 1, ..., T , Embrecht et al. [cf. 31, Example 5.53]
shows further how to calibrate a Gauss copula using Spearman’s rho.
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Algorithm 5: CML for Gauss copula parameters

Estimates the correlation matrix Σ of the Gauss copula for a random variable
(X1, ..., Xd) by means of the sample (x1,t, ..., xd,t), t = 1, ..., T .;

for t = 1 to T do
for i = 1 to d do

ûi,t = F̂i(xi,t);

ξ̂i,t = Φ−1(ûi,t);
end

end
Σ̂ = 1

T

∑T
t=1 ξ̂t.ξ̂t;

t copula estimation Using representation (2.12) of the pdf of the t copula, the (canon-
ical) log-likelihood has a closed form representation:

Lemma 4.4 (cf. [31], Example 5.59). In the case of t copula with correlation matrix Σ
and ν degrees of freedom, the canonical log-likelihood function is given by

l(Σ, ν) =
T∑

t=1

ln
1√
|Σ|

Γ(ν+d
2

)

Γ(ν
2
)

[
Γ(ν

2
)

Γ(ν+1
2

)

]d (1 + ξt.Σ−1ξt
ν

)−
ν+d
2

∏d
i=1(1 +

ξ2i,t
ν

)−
ν+1
2

,(4.5)

where ξt = (t−1
ν (û1,t), ..., t

−1
ν (ûd,t))

′.

The log-likelihood function (4.5) is more involved than (4.4) and the additional degrees
of freedom parameter prevents us solving (4.3) analytically. Thus we have to resort to
numerical optimization procedures [cf. 31, Example 5.59]. Here the notion of Kendall’s tau
proves very useful:

Definition 4.5. For a random variable X = (X1, ..., Xd), the Kendall’s tau matrix5 is
given by

τ(X) = Cov(sgn(X − X̃)),

where X̃ an independent copy of X (that is a second random variable on R
d with the same

distribution but independent of the first).

In the case of elliptically distributed random variables, Kendall’s tau can be related
pairwise to Pearson’s linear correlation coefficient:

Proposition 4.6 (cf. [31], Proposition 5.37). Let X ∼ ELL(0,Σ, ψ) be an elliptically
distributed random variable on R

2 with correlation matrix Σ, whose off-diagonal element
is ρ, and assume that P [X = 0] = 0. Then it holds

(4.6) ρ = sin(πτ/2).

5For a R
d-valued random variable X, Kendall’s tau can be understood as a measure of concordance [cf.

31] between components.

31



Hence Proposition 4.6 enables us to extract the linear correlation matrix of an elliptical
distribution from the Kendall’s tau values, regardless of the margins (or the elliptical
generator, in fact). For a sample data matrix ℵ = {x1,t, ..., xd,t}

T
t=1, the empirical version

of Kendall’s tau is given pairwise by

(4.7) τ̂i,j =
2

T (T − 1)

T∑

t=1

∑

s>t

Aijts, i, j = 1, ..., d,

where Aijts = sgn(xi,t − xi,s)(xj,t − xj,s). This gives an estimator6 of the linear correlation
matrix, which can be computed analytically from the sample data by (4.6) and (4.7). Then
the canonical maximum likelihood method for the t copula may be described as follows:

(1) compute Σ̂ from the Kendall’s tau matrix of the data ℵ by (4.6),

(2) estimate ν̂ by numerical maximization of (4.5), using the preestimate Σ̂.

This is formulated in Algorithm 6, that can be used to calibrate the t copula to a sample
data matrix. Here we did not dwell the numerical optimization routine.

Algorithm 6: CML for t copula parameters

Estimates the correlation matrix Σ and the degrees of freedom ν of the t copula for a
random variable (X1, ..., Xn) by means of the sample (x1,t, ..., xd,t), t = 1, ..., T .;

for t = 1 to T do
for i = 1 to d do

ûi,t = F̂i(xi,t);
end
for i = 1 to d do

for j = 1 to d do
τ̂i,j = 2

T (T−1)

∑T
t=1

∑
s>t sgn(ûi,t − ûi,s)(ûj,t − ûj,s);

Σ̂ij = sin(πτ̂ij/2);
end

end
end
Maximize the log-likelihood l(Σ̂, ν) over ν numerically;

We run Algorithm 6 on the 5000 Student 3-copula draws sampled in Section 3.1. The
resulting estimates are

Σ̂ =




1 0.6959 −0.5121
0.6959 1 0.1925
−0.5121 0.1925 1,


 and ν̂ = 2.9823.

Hence we are able to win back the correlation matrix and the degrees-of-freedom.

6It is not guaranteed that the transformation (4.6) retains a positive definite linear correlation matrix
[see 31, Section 5.5.1, for a workaround].
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Pair copula estimation The pair copula construction is premised on the decomposi-
tion of the copula density into cascades of simple building blocks. This facilitates the
computation of the log-likelihood function.

In the case of a D-vine decomposition as to Definition 2.12, the log-likelihood function
may be evaluated by parsimonious recursions:

Lemma 4.7 (cf. [1], Section 5.1). For a pair copula corresponding to the D-vine decom-
position as in (2.16), the log-likelihood function can be evaluated as to the following rule:

(4.8)
d−1∑

j=1

d−j∑

i=1

T∑

t=1

log (ci,i+j(F (xi,t|xi+1,t, ..., xi+j−1,t), F (xi+j,t|xi+1,t, ..., xi+j−1,t))) .

If the conditional cdf’s in (4.8) are computed according to (2.17), then the reallocation
of bivariate copula blocks spares much of the computational costs. This is exploited in
Algorithm 7 [cf. 1, Algorithm 3], which can be used to evaluate the log-likelihood function
at the sample data matrix ℵ = {x1,t, ..., xd,t}

T
t=1 in the case of a D-vine decomposition.

Algorithm 7 can now be readily used in numerical schemes in order to get the canonical
maximum likelihood estimator (4.3). This is applied to the sample drawn in Section 3.2.
We get

ρ1,2 = 0.7051, ρ2,3 = 0.2036 and ρ1,3|2 = 0.5058.

Hence we regain the starting configuration.
In a similar way, the density decomposition according to a canonical vine as in Definition

2.12 prepares an explicit computation of the log-likelihood function:

Lemma 4.8 (cf. [1], Section 5.2). In the case of a pair copula corresponding to the canon-
ical vine decomposition as in (2.18), the log-likelihood function can be evaluated as to the
following rule:

d−1∑

j=1

d−j∑

i=1

T∑

t=1

log (cj,j+i(F (xj,t|x1,t, ..., xj−1,t), F (xj+i,t|x1,t, ..., xj−1,t))) .

If the conditional cdf’s in (4.9) are computed according to (2.19), then the reallocation
of bivariate copula blocks spares again much of the computational costs. This is written
out in Algorithm 7 [cf. 1, Algorithm 3], which can be used to evaluate the log-likelihood
function at the sample data matrix ℵ = {x1,t, ..., xd,t}

T
t=1 in the case of a canonical vine

decomposition.
Algorithm 7 can now be readily used in numerical schemes in order to get the canonical

maximum likelihood estimator (4.3). This is applied to the sample drawn in Section 3.2.
The result is

ρ1,2 = 0.7051, ρ2,3 = 0.2076 and ρ1,3|2 = 0.5045.

Hence we obtain (almost) the starting configuration.
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Algorithm 7: Likelihood for pair copula based on D-vine decomposition

Computes the log-likelihood of the sample (x1,t, ..., xd,t), t = 1, ..., T for the pair
copula based on a D-vine density decomposition with the set θ of (conditional)
parameters.;

L = 0;
for i = 1 to d do

z0,i = xi;
end
for i = 1 to d− 1 do

L = L+ ln(c1,i(z0,i, z0,i+1; θ1,i));
end
z1,1 = h(z0,1, z0,2; θ1,1);
for k = 1 to d-3 do

z1,2k = h(z0,k+2, z0,k+1; θ1,k+1);
z1,2k+1 = h(z0,k+1, z0,k+2; θ1,k+1);

end
z1,2d−4 = h(z0,d, z0,d−1; θ1,d−1);
for j=1 to d-j do

for i = 1 to d-j do
L = L+ ln(cj,i(zj−1,2i−1, zj−1,2i; θj,i));

end
if j=d-1 then

Stop;
end
zj,1 = h(zj−1,1, zj−1,2; θj,1);
if d > 4 then

for i=1 to d-j-2 do
zj,2i = h(zj−1,2i+2, zj−1,2i+1; θj,i+1);
zj,2i+1 = h(zj−1,2i+1, zj−1,2i+2; θj,i+1);

end
end
zj,2d−2j−2 = h(zj−1,2d−2j, zj−1,2d−2j−1; θj,d−j);

end
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Algorithm 8: Likelihood for pair copula based on canonical vine decomposition

Computes the log-likelihood of the sample (x1,t, ..., xd,t), t = 1, ..., T for the pair
copula based on a D-vine density decomposition with the set θ of (conditional)
parameters.;

L = 0;
for i = 1 to d do

z0,1 = xi;
end
for j = 1 to d-1 do

for i=1 to d-j do
L = L+ ln(cj,i(zj−1,1, zj−1,i+1; θj,i));

end
if j=d-1 then

Stop;
end
for i=1 to d-j do

zj,i = h(zj−1,i+1, zj−1,1; θj,i);
end

end

4.2 Goodness-of-fit test

The methods described in Section 4.1 output the best parametrization only relative to a
chosen model and its likelihood7. We now target the estimates’ absolute goodness-of-fit to
the sample data on its own and ways to test it.

Suppose that a copula model of the form (4.1) has been calibrated to a sample data
matrix ℵ = {x1,t, ..., xd,t}

T
t=1.

Remark 4.9. Proposition 3.5 defined the d transformations Ti(xi), i = 1, ..., d, whereby we
may obtain uniformly and independently distributed random variables Zi, i = 1, ..., d from
a multivariate (dependent) random variable X = (X1, ..., Xd) on R

d.

It follows from Theorem 2.2 [cf. 22, Section 1.6] that the Zi’s in Remark 4.9 can be
represented as

(4.9) Zi = Ci|1,...,i−1(Fi(X
i)|F1(X

1), ..., Fi−1(X
i−1)).

7Other than by pure likelihood values, Dias [22] and Embrecht et al. [31] suggest a ranking of dependence
models according to the Akaike information criterion [cf. 3]

AIC(C(·; θ0)) = −2 exp
T∑

t=1

ln c(û1,t, ..., ûd,t; θ0) + 2|θ0|,

that imposes a penalty equal to the number of model parameters |θ0|.
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Then the quantile transformed random variables Φ−1(Zi), i = 1, ..., d are independently
and standard normally distributed, and the sum of squares S =

∑d
i=1(Φ

−1(Zi))2 has a χ2

distribution with d degrees of freedom. The variable S may then be used to test whether
(or not) the basic model (4.9) fits the data ℵ. This requires to compute

(4.10) st =
d∑

i=1

(Φ−1(zi,t))
2, t = 1, ..., T,

as test statistics, where zi,t = Ci|1,...,i−1(Fi(xi,t)|F1(x1,t), ..., Fi−1(xi−1,t)), t = 1, ..., T, i =
1, ..., d. Then it is to be checked whether the st’s can be understood as samples from
a χ2 distribution.8 Analogous to the canonical maximum likelihood method, we use the
pseudo-versions

(4.11) ẑi,t = Ci|1,...,i−1(ûi,t|û1,t, ..., ûi−1,t))

where the ûi,t are defined as in (4.3). Then the test requires the following steps:

(1) compute the pseudo-samples ûi,t = F̂i(xi,t), i = 1, ..., d, t = 1, ..., T

(2) evaluate the probability integral transforms (4.11)

(3) calculate the summary statistics st =
∑d

i=1(Φ
−1(zi,t))

2, t = 1, ..., T

(4) test whether the st, t = 1, ..., T have a χ2 distribution.

Step (2) is the crucial problem here. After we achieved to avoid the explicit computation of
the conditional cdf Ci|1,...,i−1 of an elliptical copula C in Section 3.1, this is our designated
target in the following.

Gauss copula fit To our knowledge, the goodness-of-fit test for a Gauss copula has
not yet been described in a detailed manner.9 Hence the development of an incremental
evaluation method for the conditional Gauss copula functions is fairly new.

The multivariate normal distribution is closed under the taking of margins:

Theorem 4.10 (cf. [49], Example 5.1). Let X ∼ MVN(µ,Σ) be a normally distributed
random variable on R

d with mean µ and covariance matrix Σ. Partition X, µ and Σ into

X =

(
X1

X2

)
, µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

with X1, µ1 ∈ R
m×1,Σ11 ∈ R

m×m, 0 < m < d. Then X i
∼MVN(µi,Σii), i = 1, 2.

8We employ the Kolmogorov-Smirnov goodness-of-fit hypothesis test [cf. 54] of the distribution of a
single sample (KS-test). The test returns whether (or not) to reject the hypothesis that the st’s are

χ2-distributed, the asymptotic p-value and the KS-statistic maxx>0(
1
T

∑T

t=1 1st≤x − χ2(x)).
9Embrecht et al. [33, 31] give the very basic properties of conditional elliptical distributions and refer

the interested reader to the groundwork by Fang et al. [34].
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The partition of X, µ and Σ in Corollary 4.11 is hereafter called the usual partition (or
d by m partition, if stressing the dimensions) of X (or X, µ and Σ). In the same sense,
we denote by

XI =

(
XI

1

XI
2

)
, µI =

(
µI1
µI2

)
, ΣI =

(
ΣI

11 ΣI
12

ΣI
21 ΣI

22

)

with XI
1 , µ

I
1 ∈ R

m×1,ΣI
11 ∈ R

m×m, 0 < m < |I|, the |I| by m partition of the I-margin XI

of X, where XI = X1, µI = µ1 and ΣI = Σ11 from the d by |I| partition of X, µ and Σ.
For I = {1, ..., i}, i ∈ {1, ..., d} in particular, we write X i, µi and Σi for XI , µI and ΣI ,
respectively.

The following result shows that the multivariate normal distribution is also closed under
conditioning:

Corollary 4.11 (cf. [34], Theorem 2.16 ff.). Let X ∼ MVN(µ,Σ) be a normally dis-
tributed random variable on R

d with the usual partition of µ and Σ. Then the conditional
distribution of X2 given X1 is MVN(µ2|1,Σ2|1), where µ2|1 and Σ2|1 are defined as follows:

µ2|1 = µ2 + Σ21Σ
−1
11 (X1

− µ1)(4.12)

Σ2|1 = Σ22 − Σ21Σ
−1
11 Σ12.(4.13)

Proof. The corollary follows directly from Theorem 2.16 and the following corollary in [34]
through permutation of the components of (X1, ..., Xd).

It follows from Corollary 4.11 that the Gauss copula is closed under conditioning except
for a shift in the mean:

Proposition 4.12. Let C be the Gauss d-copula with correlation matrix Σ. For I =
{1, ..., i} and the i by i− 1 partition of ΣI it holds

(4.14) Ci|1,...,i−1(ui|u1, ..., ui−1) = ΦµI
2|1
,ΣI

2|1
(Φ−1(ui)),

where

µI2|1 = ΣI
21(Σ

I
11)

−1(Φ−1(u1), . . . ,Φ
−1(ui−1))

′(4.15)

ΣI
2|1 = ΣI

22 − ΣI
21(Σ

I
11)

−1ΣI
12.(4.16)

Proof. Let (U1, ..., Ud) be a random variable with normal copula distribution C. For I =
{1, ..., i}, it is clear [cf. 34] that the cdf of the I-margin (U1, ..., U i) is the Gauss i-copula
function with correlation matrix ΣI . Then the transformed random variable (X1, ..., X i)
with X i = Φ−1(U i), i = 1, ..., i has a joint normal distribution with correlation matrix ΣI .
By Corollary 4.11, the conditional distribution of Xi given X1, ..., X i−1 is a (univariate)
normal distribution with mean (4.15) and variance (4.16). Then (4.14) holds by reversing
the margin transformation.
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Algorithm 9: PIT for Gauss copula function

Computes, for t = 1, ..., T , the probability integral transforms (z1,t, ..., zd,t) of
(u1,t, ..., ud,t) by the Gauss copula with correlation matrix Σ.;

for t = 1 to T do
z1,t = u1,t;
for i = 2 to d do

µi = Σi
21(Σ

i
11)

−1(Φ−1(u1,t), . . . ,Φ
−1(ui−1,t))

′;
Σi = Σi

22 − Σi
21(Σ

i
11)

−1Σi
12;

zi,t = Φµi
2|1
,Σi

2|1
(Φ−1(ui,t));

end
end

Proposition 4.12 leads to Algorithm 9, that can be used to successively transform some
sample data.

We implement Algorithm 9 in the context of the general procedure, using all the random
draws simulated in Chapter 3. This requires to estimate beforehand the correlation matrix
of the Gauss copula by applying Algorithm 5 to the Gauss, the t and the pair 3-copula
samples. Figure 4.1 shows the quantile-quantile plots of the test distribution (of sums st)
and a χ2 distribution.

• The quantiles of the test statistics st computed from the Gauss copula samples align
with those of the χ2-distribution; the fit to the Gauss copula sample is good.

• The quantiles of the test statistics st computed from the t copula samples diverge
from the χ2-quantiles; the fit to the t copula sample is rejectable.

• The quantiles of the test statistics st computed from the pair copula samples deviate
from the χ2-distribution only in the very upper tail; the fit to the pair copula sample
is moderate.

This shows that the Gauss copula function captures the moderate dependence structures,
even if those are modelled conditionally in original. But heavy clustering is poorly fitted.

t copula fit The probability integral transformation for the t copula function has barely
been touched in the literature. Then the explicit representation of the conditional t copula
function is innovative.

Multivariate t distributions belong to a more general subclass of elliptical distributions:

Definition 4.13. A random variable X ∼ ELL(µ,Σ, g) on R
d is said to have a symmetric

multivariate Pearson Type VII distribution, if it has a density generator g, where

g(t) =
Γ(N)

(πν)d/2Γ(N − d/2)
(1 + t/ν)−N , N > d/2, ν > 0.
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Figure 4.1: Quantile-quantile plot of χ2-distribution and test statistics computed from
Gauss copula fitted to Gauss copula samples (left), t copula samples (center), and pair
copula samples (right).

For X of this type we write X ∼MPV II(µ,Σ, gN,ν).

Symmetric multivariate Pearson Type VII distributions include a number of important
distributions such as the multivariate t-distribution (for N = 1

2
(d+ν) and the multivariate

Cauchy distribution (for ν = 1, N = 1
2
(d+ 1)).

Theorem 4.14 ([34], Theorem 3.7). Let X ∼MPV II(µ,Σ, gN,ν) with the usual partition
of X, µ and Σ. Then we have

X1
∼MPV II(µ1,Σ11, gN−(d−m)/2,ν).

Theorem 4.14 shows us that a symmetric multivariate Pearson type VII distribution is
closed under the taking of margins. In particular, if X has a d-dimensional t distribution
with density generator g(d+ν)/2,ν , then X1 has density generator g(m+ν)/2,ν , hence has a
m-dimensional t distribution. Similarly, X2 has a (d−m)-dimensional t distribution.

There exists a closed form representation of conditional densities for this class of dis-
tributions, too:

Proposition 4.15 (cf. [34], Theorem 3.7). Let X ∼ MPV II(0,1, gN,ν) with the usual
partition of X, 0 and 1. Then the conditional pdf f of X2 given X1 is

(4.17) f(x2|x1) =
Γ(N)(1 + s

ν
)−(d−m)/2

(πν)(d−m)/2Γ(N − (d−m)/2)

(
1 +

t

ν + u

)−N
,

where s = x1.x1 and t = x2.x2.

Proof. As to Theorem 4.14, the density of X1 is

f(x1) =
Γ(N − (d−m)/2)

(πν)m/2Γ(N − d/2)

(
1 +

s

ν

)−N+(d−m)/2

,
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where s = x1.x1. Then, for t = x2.x2, we have

f(x2|x1) =
Γ(N)

(πν)d/2Γ(N − d/2)

(
1 +

s+ t

ν

)−N
(πν)m/2Γ(N − d/2)

Γ(N − (d−m)/2)

(
1 +

s

ν

)N−(d−m)/2

=
Γ(N)

(πν)(d−m)/2Γ(N − (d−m)/2)

(
1 +

s

ν

)−(d−m)/2
(

1 + (s+ t)/ν

1 + s/ν

)−N

=
Γ(N)

(πν)(d−m)/2Γ(N − (d−m)/2)

(
1 +

s

ν

)−(d−m)/2
(

1 +
t

ν + s

)−N
.

The conditional pdf (4.17) is not of type MPVII (even though it is spherical). Hence
MPVII distributions are not closed under conditioning. We would very much like to gen-
eralize this result to non-standard means µ 6= 0 and Σ 6= 1. This requires the following
auxiliary results:

Lemma 4.16 (cf. [34], Theorem 3.7 ff.). Let X ∼ MPV II(0,1, gN,m) with the usual
partition of X,0 and 1. Then the conditional distribution of X2 given X1 has the following
stochastic representation:

X2
|X1 d

= RuU,

where U a (d−m)-dimensional uniform random vector and Rs a generating variable such
that w = R2

s/(ν + s) has a Bessel II distribution with parameters (d−m)/2 and N − (d−
m)/2).10

Lemma 4.17 ([34], Theorem 3.8). Let X ∼ MPV II(µ,Σ, gN,ν) with the usual partition
of X,µ and Σ. Then the distribution of X2 given X1 has the following stochastic repre-
sentation:

X2
|X1 d

= µ2|1 +RsΣ
1/2
2|1U,

where s = X1.X1, U a (d −m)-dimensional uniform random vector and Rs a generating
variable such that w = R2

s/(ν + s) has a Bessel II distribution with parameters (d−m)/2
and N − (d−m)/2).

Lemma 4.16 and Lemma 4.17 show that the conditional pdf of a general distribution
of MPVII type is given by the common affine transformation of the conditional pdf of a
standard distribution of MPVII type. This enables us to formulate Proposition 4.15 in
general terms:

Proposition 4.18. Let X ∼ MPV II(µ,Σ, gN,ν) with the usual partition of X,µ and Σ.
Then the conditional pdf of X2 given X1 is

f(x2|x1) =
Γ(N)|Σ2|1|

−1/2

(πν)(d−m)/2Γ(N − (d−m)/2)

(
1 +

s

ν

)−(d−m)/2
(

1 +
t

ν + s

)−N
,

10A R-valued random variable X has a Bessel II distribution with parameters a and b if fX(x) =
Γ(a+ b)/[Γ(a)Γ(b)]xa−1(1 + x)−(a+b).
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with s = x1.x1 and t = (x2 − µ2|1).Σ
−1
2|1(x2 − µ2|1), where µ2|1 and Σ2|1 are given by (4.12)

and (4.13), respectively.

Proof. Proposition 4.18 follows from Proposition 4.15, Lemma 4.16 and Lemma 4.17.

Given the conditional pdf of a MPVII type distribution, the conditional cdf is obtained
by integration:

Proposition 4.19. Let I = {1, ..., i} and X ∼ MPV II(µ,Σ, gN,ν) with the i by i − 1
partition of XI , µI and ΣI . Then the conditional cdf F of X i given X1, ..., X i−1 is

F (xi|x1, ..., xi−1) =
1

2
+

Γ(N −

d−i
2

)
(
1 + s

ν

)−1/2
t

(πν)1/2Γ(N −

d−i
2

− 1/2)
h

(
1

2
, N −

d− i

2
,
3

2
,
−t2

ν + s

)
,

where t = (xi − µI2|1)/Σ
I
2|1, s =

∑i
j=1 x

2
j , h the Gaussian hypergeometric function11 and

µI2|1 = ΣI
21(Σ

I
11)

−1(x1, ..., xi−1)
′

ΣI
2|1 = ΣI

22 − ΣI
21(Σ

I
11)

−1ΣI
12.

Proof. By Theorem 4.14 and Proposition 4.18, we have

(4.18) f(xi|x1, ..., xi−1) =
Γ(N −

d−i
2

)

ΣI
2|1(πν)

1/2Γ(N −

d−(i−1)
2

)

(
1 +

s

ν

)−1/2
(

1 +
t

ν + s

)−(N− d−i
2

)

,

where s =
∑i

j=1 x
2
j and t = (xi − µI2|1/Σ

I
2|1)

2. Then integration with respect to variable xi
leads to

F (xi|x1, ..., xi−1) =

∫ xi

−∞
f(xi|x1, ..., xi−1)dxi

=
Γ(N −

d−i
2

)
(
1 + s

ν

)−1/2

ΣI
2|1(πν)

1/2Γ(N −

d−(i−1)
2

)

∫ xi

−∞


1 +

(
x−µI

2|1

ΣI
2|1

)2

s+ ν




−(N− d−i
2

)

dx

=
Γ(N −

d−i
2

)
(
1 + s

ν

)−1/2

ΣI
2|1(πν)

1/2Γ(N −

d−(i−1)
2

)

∫ xi−µI
2|1

ΣI
2|1

−∞

(
1 +

y2

s+ ν

)−(N− d−i
2

)

ΣI
2|1dy

=
Γ(N −

d−i
2

)
(
1 + s

ν

)−1/2

(πν)1/2Γ(N −

d−(i−1)
2

)

[
yh

(
1

2
, N −

d− i

2
,
3

2
,−

y2

ν + s

)]xi−µI
2|1

ΣI
2|1

−∞

=
1

2
+

Γ(N −

d−i
2

)
(
1 + s

ν

)−1/2

(πν)1/2Γ(N −

d−(i−1)
2

)

xi − µI2|1
ΣI

2|1
h


N −

d− i

2
,
−(

xi−µI
2|1

ΣI
2|1

)2

ν + s


 .

11Abramowitz and Stegun [2] gives the definition and some basic examples of the Gaussian hypergeo-
metric function (or series). Section A.4 appends the particular case on hand.
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Proposition 4.19 facilitates to formulate the conditional cdf of the t copula analogously
to Proposition 4.12:

Proposition 4.20. Let C be the t d-copula with correlation matrix Σ and ν degrees of
freedom. For I = {1, ..., i} and the i by i− 1 partition of ΣI , it holds
(4.19)

Ci|1,...,i−1(ui|u1, ..., ui−1) =
1

2
+

Γ( i+ν
2

)
(
1 + s

ν

)−1/2

(πν)1/2Γ( (i−1)+ν
2

)

(
t− µI2|1

ΣI
2|1

)
h




1

2
,
i+ ν

2
,
3

2
,
−(

t−µI
2|1

ΣI
2|1

)2

ν + s


 ,

where s =
∑i−1

j=1 t
−1
ν (uj), t = t−1

ν (ui) and

µI2|1 = ΣI
21(Σ

I
11)

−1(t−1
ν (u1), . . . , t

−1
ν (ui−1))

′

ΣI
2|1 = ΣI

22 − ΣI
21(Σ

I
11)

−1ΣI
12.

Proof. Let (U1, ..., Ud) be a random variable with a t copula distribution C. For I =
{1, ..., i}, it is clear that the cdf of the I-margin (U1, ..., U i) is the t i-copula function
with correlation matrix ΣI and ν degrees freedom. Then the transformed random variable
(X1, ..., Xi) withXi = t−1

ν (U i), i = 1, ..., d has a joint Student t distribution with correlation
matrix ΣI and ν degrees of freedom. By Proposition 4.19, the conditional cdf of X i given
X1, ..., X i−1 is (4.18). Then (4.19) holds by reversing the margin transformation.

Proposition 4.20 leads to Algorithm 10, that can be used to successively transform some
sample data.

Algorithm 10: PIT for t copula function

Computes, for t = 1, ..., T , the probability integral transforms (z1,t, ..., zd,t) of
(u1,t, ..., ud,t) by the t copula with correlation matrix Σ and ν degrees of freedom.;

for t = 1 to T do
z1,t = u1,t;
for i = 2 to d do

µi2|1 = Σi
21(Σ

i
11)

−1(t−1
ν (u1,t), . . . , t

−1
ν (ui−1,t))

′;

Σi
2|1 = Σi

22 − Σi
21(Σ

i
11)

−1Σi
12;

t = t−1
ν (ui,t);

s =
∑i−1

j=1 t
−1
ν (uj,t);

zi,t = 1
2

+
Γ( i+ν

2
)(1+ s

ν )
−1/2

(πν)1/2Γ( ν
2
)

(
t−µi

2|1

Σi
2|1

)h


1

2
, i+ν

2
, 3

2
,
−(

t−µi
2|1

Σi
2|1

)2

ν+s


;

end
end
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Figure 4.2: Quantile-quantile plot of χ2-distribution and test statistics computed from t
copula fitted to Gauss copula samples (left), t copula samples (center), and pair copula
samples (right).

We implement Algorithm 10 in the context of the general procedure, using all the
random draws simulated in Chapter 3. This requires again to estimate beforehand the
correlation matrix and the degrees of freedom of the t copula by applying Algorithm 6 to
the Gauss, the t and the pair 3-copula samples. Figure 4.2 shows the quantile-quantile
plots of the test distribution (of sums st) and a χ2 distribution.

• The quantiles of the test statistics st computed from the Gauss copula samples align
with those of the χ2-distribution; the fit to the Gauss copula sample is good.

• The quantiles of the test statistics st computed from the Gaussian copula samples
align with those of the χ2-distribution; the fit to the t copula sample is good.

• The quantiles of the test statistics st computed from the pair copula samples deviate
from the χ2-distribution only in the very upper tail; the fit to the pair copula sample
is moderate.

These results signify that the t copula function contains a fairly wide range of dependence
structures.

Pair copula fit Chapter 3 showed already how to evaluate the conditional cdf corre-
sponding to a pair copula decomposition. Hence the probability integral transform can
easily be specialized to the pair copula approach.

For the D-vine decomposition as described in Definition 2.12, the complex conditional
cdf (3.1) can be stripped down to cascades of bivariate conditional cdfs (2.20) with starting
point (3.2). This is exploited in Algorithm 11, which can be used to compute the conditional
probability transform at some sample data.

In the case of the pair copula decomposition corresponding to a canonical vine as to
Definition 2.13, we start iterating at (3.3) and recur to cascades of bivariate conditional
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Algorithm 11: PIT for pair copula function based on D-vine decomposition

Computes, for t = 1, ..., T , the probability integral transforms (z1,t, ..., zd,t) of
(u1,t, ..., ud,t) by the pair copula based on D-vine density decomposition with
(conditional) correlation matrix Σ.;

for t = 1 to T do
z1,t = x1,t;
z2,t = h(x2,t, x1,t; θ1,1);
w2,1 = x2,t;
w2,2 = h(x1,t, x2,t; θ1,1);
for i = 3 to d do

zi,t = h(xi,t, xi−1,t; θ1,i−1);
for j = 2 to i-1 do

zi,t = h(zi,t, wi−1,2(j−1); θj,i−j);
end
if j=d-1 then

Stop;
end
wi,1 = xi,t;
wi,2 = h(wi−1,1, wi,1; θ1,i−1);
wi,3 = h(wi,1, wi−1,1; θ1,i−1);
for j=1 to i− 3 do

wi,2j+2 = h(wi−1,2j, wi,2j+1; θj+1,i−j−1);
wi,2j+3 = h(wi,2j+1, wi−1,2j; θ1,i−j−1);

end
wi,2i−2 = h(wi−1,2i−4, wi,2i−3; θi−1,1);

end
end
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Figure 4.3: Quantile-quantile plot of χ2-distribution and test statistics computed from pair
copula fitted to Gauss copula samples (left), t copula samples (center), and pair copula
samples (right).

copulas of the form (2.20) in the end. This is written out in Algorithm 12, that can be
used to perform the conditional probability transformations on some sample data.

Algorithm 12: PIT for pair copula function based on canonical vine decomposition

Computes, for t = 1, ..., T , the probability integral transforms (z1,t, ..., zd,t) of
(u1,t, ..., ud,t) by the pair copula based on a canonical vine density decomposition with
(conditional) correlation matrix Σ.;

for t = 1 to T do
z1,t = x1,t;
for i = 2 to d do

zi,t = xi,t;
for j = 1 to i-1 do

zi,t = h(zi,t, zj,t; θj,i−j);
end

end
end

We implement Algorithm 12 in the context of the general procedure to back transform
and test all the copula samples simulated in Chapter 3 (almost identical results would
apply to using Algorithm 11 instead). This requires again to estimate beforehand the
(conditional) correlation matrix of the pair copula by applying Algorithm 8 (or 7) to the
Gauss, the t and the pair 3-copula samples. Figure 4.3 presents the results in form of
quantile-quantile plots of the resulting distributions (of sums st) and a χ2 distribution.

• The quantiles of the test statistics st computed from the Gauss copula samples align
with those of the χ2-distribution; the fit to the Gauss copula sample is good.
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• The quantiles of the test statistics st computed from the t copula samples diverge
from the χ2-quantiles; the fit to the t copula sample is poor.

• The quantiles of the test statistics st computed from the pair copula samples align
with those of the χ2-distribution; the fit to the pair copula sample is good.

Hence the pair copula function (with Gauss building blocks) can indeed reproduce a normal
dependence structure, but it fails to get the extremes of the t copula function.

4.3 Summary

In this chapter we estimated the parameters of the Gauss, the t and the pair copula function
on the basis of a given realization by the canonical maximum likelihood method. Then we
developed testing methods to assess how good the estimates fit the data.

Having explained the canonical maximum likelihood method, we derived (almost) ex-
plicit estimation procedures for the Gauss and the t copula. Here the closed form pdf
representations facilitated the formulation of the estimators, although the additional de-
grees of freedom prevented an analytical solution of the estimation problem in the case of
the t copula.

Similarly, the pair copula construction turned out to be well suited to the likelihood
method. The conditional construction via reallocated cascades of bivariate building block
copulas enabled us to evaluate the likelihood function by a recursive pattern.

Then the derived methods were tested. All estimation methods stood up to the quality
check on the sampled data of Chapter 3 in that the initial configurations were adequately
reproduced.

Continuing, we showed a keen interest in testing procedures for the goodness-of-fit of
the estimated models. This involved the multivariate probability integral transform. One
of our major contributions here was the development of analytical transformations in the
case of the Gauss and the t copula. Regarding pair copulas, we once more used the specific
construction by building block copula functions for a sophisticated but direct method.

Then we successfully applied the goodness-of-fit testing schemes to the sample data,
which we estimated before. The findings had us to see that only the t copula captures a
wide range of dependence structures, while the Gauss and the pair copula functions fail to
handle extreme scenarios.
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Chapter 5

Risk management applications

In this chapter we describe the quantitative approaches to risk management in the context
of a new regulatory framework. These are subsequently implemented in the savings bank
sector, applying the whole copula machinery to business.

Section 5.1 clarifies the risk perspective in up-to-date banking competence and cata-
logues the main risk types. Section 5.2 puts the current practices onto a firmer mathemat-
ical footing. Formal definition to some common risk notions is given. The use of copula
methods is important here. Then Section 5.3 applies the risk measurement techniques
to business at Sparkasse Leverkusen. Here the risk management tool CopRisk, which is
currently being installed for risk profiling and controlling, is described in detail.

The presentation in this chapter is based on the consultative documents by Hendricks
et al. [41] and Hendricks and Cole [40]. These contain the status-quo of the regulatory
framework. The standard reference for quantitative risk management practice is Embrecht
et al. [31]. See Beck and Lesko [8], Schumacher et al. [71], Friedberg and Schumacher
[36] for insights into business implementations in the savings bank sector. The software
solution is self-elaborated.

5.1 Integrated risk management

The integrated risk management has received a lot of recent attention1 in contemporary
banking business. The managing and monitoring of capital adequacy in relation to the
risk profile arrived2 at the core competence (and duty) of institutional practice.

The goal of integrated risk management is to ensure an awareness of the financial risks
across the range of diverse business activities.

An integrated risk management system seeks to have in place management
policies and procedures that are designed to help ensure an awareness of, and

1Hendricks and Cole [40] survey the latest trends.
2Embrecht et al. [31, Section 1.2] present the historical ruling of the financial sector and describe the

conceptual changes over the years of supervision.
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accountability for, the risks taken throughout the financial firm, and also to
develop the tools needed to address those risks. A key objective is to ensure
that the firm does not ignore any material source of risk.3

The recent approaches [cf. 41, 40, 31] to the management of the major individual risks
in the banking sector allocate three main types of uncertainty : market risk, credit risk
and operational risk. Surely the most observable source is market risk, that is the risk
associated with the change in value of a financial position due to changes in the value
of the underlying components, on which this position depends. Credit risk is the risk of
counterparty default and lost repayments on outstanding investments. Operational risk,
which draws increasing attention in banking, is the risk of losses resulting from inadequate
or failed internal processes, people and systems, or from external events [cf. 31, Section
1.1].4 The actual contour of each type is very much subjective to the bank’s specific
businesses. The same holds for the quantitative impact on the overall exposure.5 Moreover,
the boundaries of the risk categories are somewhat floating.

The new challenge regarding capital adequacy is comprised in the multivariate nature of
risk. Not least by legal requirements, the financial institutions are required to internalize
holistic capital standards, that dwell on the bank’s entire economic loss potential and
overall risk exposure. For market risk, credit risk or even portfolio risk on enterprize level,
the driving risk factors such as individual asset prices, risky loans or sectorial loss potentials
assemble to multidimensional vectors of risky positions. Then aggregation of sectorial loss
potentials becomes an inevitable step towards total risk assessment and a discipline of
integrated risk management sine qua non.

Broadly, risk aggregation refers to efforts by firms to develop quantitative risk
measures that incorporate multiple types or sources of risk. The most common
approach is to estimate the amount of economic capital that a firm believes
is necessary to absorb potential losses associated with each of the included
risks. This is typically accomplished via mathematical or statistical techniques
designed to assess the likelihood of potential adverse outcomes (...)6

Up to date practitioners in the savings bank sector monitor and manage different types
of risk in a more silo-based manner [cf. 8, 39]. That is, the risk categories are profiled
separately from each other. Commercial software is set in place to assess most of the
individual risk exposures, the others being profiled by sophisticated in-house solutions. The
resulting numbers on individual exposures are then simply added up to get an aggregate
exposure. It is obvious from the preceding chapters that simple methods like this only

3Quote taken from the opening paragraphs in Hendricks and Cole [40, Paragraph 2]. Kloman [48] writes
integrated risk management down very concisely as a discipline for living with the possibility that future
events may cause adverse effects.

4Some authors [e.g. 9] extend the catalogue of major risks by liquidity risk
5Beck et al. [9] sketch qualitative properties of the exposure to market and credit risks, and Friedberg

and Schumacher [36] give a quantitative example of risk numbers in the Sparkasse sector.
6Quote taken from the opening paragraphs in Hendricks and Cole [40, Paragraph 2].
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mark a first step towards true integrated risk management. We take on this fallacy and set
up the mathematical framework for the aggregation of dependent risk lines in the following.

5.2 Quantitative risk profile

We consider the quantitative assessment of capital charges in relation to a bank’s overall
exposure in the style of Embrecht et al. [31, Chapter 2].

Consider a portfolio of risky positions such as a book of risky loans, a collection of stocks
or bonds or even an overall position of risky assets. Introduce a calender time t ∈ [0, T ],
measured in years, and model the risky factors by a stochastic process {Zt} on R

d. It is
convenient to consider process movements over a fixed horizon ∆. This leads us to the
discrete process {Z∆

τ }, τ = 0, 1, ..., T/∆, which follows from the generic process {Zt} by
Z∆
τ = Zτ∆. For daily movements, for example, set ∆ = 1/365 (or ∆ = 1/250, considering

working days).
The value of the portfolio is modelled as a function of time and the risky factors. It is

a stochastic process {Vt} on R with

Vt = f(t, Zt), t ∈ [0, T ]

for some measurable function f : R × R
d
→ R. The choice of the risk factors and of f

is of course a modelling issue and depends on the portfolio at hand. Frequently used risk
factors are logarithmic prices of financial assets, yields and logarithmic exchange rates.
The discrete portfolio process, denoted by {V ∆

τ }, is defined by V ∆
τ = f(τ∆, Zτ∆) for

τ = 0, 1, ..., T/∆. For a given time horizon ∆, the loss process {L∆
τ+1} of the portfolio over

the period [τ, τ + ∆] is defined as

L∆
τ+1 = −(V ∆

τ+1 − V ∆
τ )

= −(f((τ + 1)∆, Z(τ+1)∆) − f(τ∆, Zτ∆)).

The portfolio losses are defined retrospectively. Hence the loss over the period [τ∆, (τ+1)∆]
is known at time (τ + 1)∆ but random as from time τ∆.

The series of risk factor changes {X∆
τ } is defined by X∆

τ = Z∆
τ −Z∆

τ−1 for τ = 1, ..., T/∆.
Then

L∆
τ+1 = −(f((τ + 1)∆, Z∆

τ +X∆
τ+1) − f(τ∆, Zτ∆)).

At time τ∆, Z∆
τ is known and the portfolio loss over the next period ∆ is a function of the

random variable X∆
τ+1. Hence, we may introduce the so called loss operator l∆τ+1 : R

d
→ R,

that maps risk factor changes into period ahead losses. It is defined as

l∆τ (x) = −(f((τ + 1)∆, Z∆
τ + x) − f(τ∆, Zτ∆)), x ∈ R.

Example 5.1 (cf. [31], Example 2.4). Consider a fixed portfolio of d stocks. Denote by ωi
the number of shares of stock i in the portfolio at all times t ∈ [0, T ] and the price process
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of stock i by {St,i}. Using the logarithmic prices Zt,i = ln(St,i), 1 ≤ i ≤ d as risk factors
and fixing time horizon ∆ > 0, the risk factor changes X∆

τ+1,i = ln(S∆
τ+1,i) − ln(S∆

τ,i) then

correspond to the log-returns of the stocks in the portfolio. Then Vt =
∑d

i=1 ωie
Zt,i and

L∆
τ+1 = −

d∑

i=1

ωiS
∆
τ,i(e

X∆
τ+1,i

− 1).

Moreover, the loss operator is given by

l∆τ (x1, ..., xd) = −

d∑

i=1

ωiS
∆
τ,i(e

xi
− 1).

Loss distributions using copulas Copula functions apply for the distributional de-
scription of the period ahead loss.

Fix a current time τ and a time horizon ∆. Consider the distribution PL∆
τ+1 of L∆

τ+1,
termed the loss distribution. Using the loss operator notation, the loss distribution is
determined by the distribution PX∆

τ+1 of the risk factor changes X∆
τ+1:

P [L∆
τ+1 ∈ B] = P [l∆τ (X∆

τ+1) ∈ B], B ∈ B(R).

It is relevant in this respect to separate conditional and unconditional viewpoints ac-
cording to the time series properties of the risk factor changes {X∆

τ+1}. Suppose that the
risk factor changes {X∆

τ+1} are invariant under shifts of time. That is equivalent to saying
that the random variables X∆

τ+1, τ = 1, ..., T/∆ are equally distributed:

X∆
τ+1

d
= X, τ = 1, ..., T/∆,

where X is some generic risk factor change on R
d with stationary distribution PX . The

unconditional loss distribution PL∆
τ+1 is then defined as the distribution of l∆τ (·) under the

stationary distribution PX of the generic risk factor change X:

(5.1) P [L∆
τ+1 ∈ B] = P [l∆τ (X) ∈ B], B ∈ B(R).

Then
FL∆

τ+1(l) = P [l∆τ (X) ≤ l], l ∈ R∞.

Capital adequacy decisions based on the unconditional loss distribution are referred to as
static risk management.

If dynamic structures are to be incorporated, introduce the information flow {F

∆
τ }

given by F

∆
τ = F∆τ and consider the conditional risk factor change X∆

τ+1 over period
[τ, τ + 1] given the current information F

∆
τ . In this case, the conditional loss distribution

PL∆
τ+1 is determined by the distribution of l∆τ (·) under the conditional distribution of X∆

τ+1

given F

∆
τ :

P [L∆
τ+1 ∈ B|F

∆
τ ] = P [l∆τ (X∆

τ+1) ∈ B|F

∆
τ ], B ∈ B(R).
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Then
FL∆

τ+1|F∆
τ (l) = P [l∆τ (X∆

τ+1) ≤ l|F∆
τ ], l ∈ R∞.

Techniques based on the conditional loss distribution are referred to as dynamic risk man-
agement.

In either case, the loss operator in conjunction with the distribution of the risk factor
changes gives the distribution of the one period ahead loss of our portfolio. Then it is a
prime concern of risk managers to describe the distributional aspects of risk factor changes
X∆
τ+1 as from time τ . We follow the static approach in this work.

As to Theorem 2.2, the cdf FX of the stationary distribution of the generic risk factor
changes X = (X1, ..., Xd) may then be modelled using copulas:

FX(x1, ..., xd) = C(FX
1 (x1), ..., F

X
d (xd)),

where the marginal cdf’s FX
i , i = 1, ..., d and the copula C may certainly depend on

parameters θ ∈ Θ as discussed in Section 4.1.7 In consequence of our designated target,
here we assume a predefined model for the marginal cdf’s FX

i for i = 1, ..., d, which comes
either non-parametric in form of an empirical distribution or in parametric form depending
on some set θi ∈ Θi of admissible parameters.

Remark 5.2. This assumption corresponds to the silo-based risk management, which is
already practised in business to handle individual exposures.

We denote the fitted i-margin by F̂i(·), dropping the eventual parametrization. Then

(5.2) FX(x1, ..., xd) = C(F̂1(x1), ..., F̂d(xd)).

This prepares the distributional description of the random losses L∆
τ+1 as to (5.1).

Risk measures based on loss distributions One of the principle functions of risk
management in the financial sector is to determine the amount of capital needed as a
buffer against potential losses. This requires the definition of measures, that quantify the
firm’s belief in its overall risk. It is common in this respect to use statistical quantities
of the loss distribution as a summary of the portfolio risk over some time period ∆. We
restrict ourselves to the value-at-risk measure and the mean value-at-risk measure, which
are most widely used among practitioners in the savings bank sector.8

Definition 5.3. Given some confidence level α ∈ (0, 1), the Value-at-Risk of our portfolio
at the confidence level α is defined by the smallest number l such that the probability that
the loss L exceeds l is no larger than (1 − α):

VaRα(L) = inf{l ∈ R : P [L > l] ≤ 1 − α}.

7A dynamic perspective on portfolio risk management requires the notion of a conditional copula
functions C(·|F) as to Patton [63] who proved Sklar’s Theorem in the conditional setting. His conditional
approach is in turn taken up by numerous authors [e.g. 22, 65] for time series modelling. The conditional
copula approach is briefly described in Section A.2.

8Due to its prevalence in financial institutions around the world, the value-at-risk measure is incorpo-
rated in the Basel II capital-adequacy framework [cf. 41, Part 2].
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Thus the VaRα at confidence level α is the (1−α)-quantile of the loss distribution PL:

VaRα(L) = (FL)−1(1 − α).

Typical values for α are α = 0.95 or α = 0.99. Sometimes the statistic VaRmean
α =

VaRα−E
P [L], called the mean Value at Risk, is used for capital-adequacy purposes instead

of ordinary VaR. The mean-VaR statistic can be interpreted as the economic capital needed
as a buffer against unexpected losses. It is clear from Definition 5.3 that the VaRα (or
VaRmean

α ) at confidence level α disregards all those potential losses, which occur with a
probability less than 1 − α. Hence no information about the severity of the worst cases is
included. This is an acknowledged drawback of VaR (or VaRmean

α ) as a risk measure.9

Regarding (5.1), both quantities, VaRα and VaRmean
α , are distributional statistics of the

loss operator lt, which are generally not given in closed form.10 Using (5.2), Monte Carlo
methods are employed here to estimate the distributional statistics from generated loss
scenarios. This involves the following steps [cf. 31, Section 2.3.3]:

(1) calibrate FX (or copula C of FX , in fact) to historical risk factor change data ℵ =
{x1,s, ..., xd,s}

τ
s=τ−n+1

(2) generate independent realizations x(1), ..., x(M) of (Rd-valued) risk factor changes

(3) apply the loss operator lt to the simulated risk factor changes to get the sample losses

L
∆(k)
τ+1 = l∆τ (x

∆ (k)
τ+1 ), k = 1, ...,M.

(4) approximate the mean loss by EP [L∆
τ+1] = 1

M

∑M
k=1 L

∆ (k)
τ+1 and compute the empirical

risk measures

Chapter 4 explained how to estimate a copula based model from some sample data. In-
ference methods for given margins have been offered there. These apply readily to the
calibration of the risk factor change distribution (step 1). Chapter 3 formulated the simu-
lation methods for ordinary copulas. These may now be readily applied to produce sample
vectors of risk factor changes according to the chosen model (step 2). Steps 3 and 4 involve
only simple calculations.

Concluding, the machinery developed in the previous chapters enables us to assess the
overall loss potential of portfolio, that consists of several risk lines.

9Many practitioners prefer to implement the related expected shortfall measure

ESα(L) =
1

1 − α

∫ 1

α

(FL)−1(u)du

which is (other than VaR) a coherent measure in the sense of Artzner et al. [4], too.
10Embrecht et al. [31] discusses some parametric models that come up with closed value-at-risk measures.
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Figure 5.1: Time series and profit-loss distribution of the treasury book (normalized to
July 31st, 2008).

5.3 Sparkasse Leverkusen:

Business in a savings bank

We document the business application of copula based methods to the risk landscape at
Sparkasse Leverkusen11. The aim is to quantify the one year overall loss distribution PL∆

τ+1

as seen from the present time τ . Hence the time horizon is ∆ = 1 (we omit the horizon
∆ in notations). Currently, the in-house risk team allocates three sectorial risk exposures
on enterprize level. Then, as to (5.2), the multivariate risk factor under discussion is a
R

3-valued random variable Xτ+1 = (X1
τ+1, X

2
τ+1, X

3
τ+1). We touch the individual risk ac-

counting just barely, following which we detail the in-house software solution.

The bulkiest exposure is treasury risk, that is the possibly adverse effects on the cash
value of a book of loans subjective to yield curve movements (excluding credit events). A
savings bank profits mainly from the transformation of loan maturities so that a shift of
the curve and a change of its slope may cause a severe slump in the yields. Then X1

τ+1

is the random variable describing the absolute differences in cash values of the loan book
over the period [τ, τ + 1]. In order to cope with potential losses from interest rate risk, the
celebrated software solution S-Treasury12 has been installed. The tool returns historical
cash equivalents x1,τ−n, ..., x1,τ of the present book as well as the year ahead distribution

PX1
τ+1 over changes in cash values of the loan portfolio. Figure 5.1 illustrates the time

series and the profit-loss distribution.
Another major source of uncertainty is credit risk, that is the risk of drops in the fair

market value of the loan portfolio due to credit events. Typical cases are the actual default
of debtors, the degree migration of creditworthiness and the changes in the market’s risk
aversion. In this respect, X2

τ+1 is the random variable describing the absolute change in the

11Sparkasse Leverkusen is a local savings bank and group member of the Rheinische Sparkessen- und
Giroverband. Visit [75] for more information.

12S-Treasury is a cash-flow based tool for balancing and financial controlling. Visit [38] for more infor-
mation.
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Figure 5.2: Time series of the itraxx index and profit-loss distribution of the credit book
(normalized to July 31st, 2008).

value of the credit book in terms of cash equivalents. The individual profiling of these risks
is accomplished by the commercial tool CreditPortfolioView13, which is as well common in
the public banking sector. CPV copes with the afore mentioned risk sources and returns
the one year ahead probability distribution PX2

τ+1 over possible changes in market values
of the credit book. But it fails to offer historic cash values x2,τ−n, ..., x2,τ of the present
book. The insufficient availability of time series of credit risk data is an acknowledged (and
so far unsolved) problem. The following assumption is a first workaround:

Assumption 5.4. There exists an increasing transformation T : R → R such that X2
τ+1

d
=

T (X̃2
τ+1), where X̃2

τ+1 the random variable describing the negative absolute returns of the
itraxx crossover index.14

This allows us to find remedy in the use of historic index changes, which are available
for the itraxx family. In this case, it follows from Theorem 2.4 that the copula C of
(X1

τ+1, X
2
τ+1, X

3
τ+1) is equal to the copula C of (X1

τ+1, X̃
2
τ+1, X

3
τ+1). Hence the itraxx time

series x̃2
τ−n, ..., x̃

2
τ may be used to estimate the model (5.2), while it is still appropriate to

run CPV for the purpose of the (true) marginal risk distribution PX2
τ+1 . Figure 5.2 shows

the index time series and the profit-loss distribution.
The third exposure to risk steams from uncertain investments in stock and fund shares,

termed Depot A. Hence, X3
τ+1 is the random variable describing the change in the value

of equity shares due to adverse market price movements. It is acknowledged that capi-
tal market assets have long reported time series so that historic portfolio price changes
x3,τ−n, ..., x3,τ are certainly available. The year ahead distribution PX3

τ+1 of portfolio price
changes is assessed in-house by a historical simulation15 approach. Figure 5.3 shows the
historic portfolio prices and charts the profit-loss distribution.

13Credit Portfolio View (CPV) is a software tool for the assessing, measuring and illustration of risks in
the credit book. Visit Sparkassen Rating und Risikosysteme GmbH-site [76] for more information.

14The itraxx index familiy is published by markit [52]. The itraxx crossover index is composed of the
premia of credit default swaps written on companies in the subinvestment class. Then Assumption 5.4 is
reasonable due to the similarity to the credit book names.

15Embrecht et al. [31, Section 2.3] discusses hisorical simulation as a standard method for market risks.
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Figure 5.3: Time series and profit-loss distribution of the Depot-A book (normalized to
July 31st, 2008).

Business implementation Only a handful of institutions in the Sparkasse group have
sophisticated in-house solutions to the aggregation problem in use. Hence Sparkasse Lev-
erkusen somehow pioneers the implementation of a copula based model in this sector.

Regarding the (short) catalogue of risky business lines, the objective cdf of risk factor
changes is

FX(x1, x2, x3) = C(F̂X
1 (x1), F̂

X
2 (x2), F̂

X
3 (x3); θ),

where X = (X1, X2, X3) is characterized as above, F̂X
i is derived from PXi for i = 1, ..., 3,

and C(·; θ) is a parametric ordinary 3-copula of choice. Which copula to use has more
than once been resumed during discussion rounds. The risk team at Sparkasse Leverkusen
finalized the Gauss, the t and the pair copula family, because these were the ones most
manageable. Then the final management solution requires the following steps:

(1) Choose a parametric copula C(·; θ) from the Gaussian, the t and the pair copula
family.

(2) Estimate the optimal set of copula parameters θ̂ from the historic time series ℵ =
{x1,s, x2,s, x3,s}

τ
s=τ−n+1.

(3) Test the hypothesis that C(·; θ̂) is the true copula of X by means of a goodness-of-fit
test.

(4) Simulate M independent realizations x
(1)
τ+1, ..., x

M)
τ+1 of risk factor changes for the pe-

riod ahead.

(5) Evaluate the loss operator lτ for each simulated risk factor change to provide the loss

distribution L
(k)
τ+1 = lτ (x

(k)
τ+1), k = 1, ...,M.

(6) Compute the mean, the VaRα and the VaRmean
α from the sample L

(k)
τ+1, k = 1, ...,M.

This solution can in principle be implemented in Microsoft-Excel alone, but we decided
to use the MatLab Toolbox ExcelLink. Then all the functionality of MatLab is available
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Figure 5.4: Screen-shot of MS-Excel worksheet Einstellungen showing the default setup.

from the Excel environment. This allows us to edit and analyze the data with the familiar
Excel user interface, while the computational kernel is outsourced to MatLab.

The file CopRisk.xls16 shows a possible realization. It contains the five worksheets
Einstellungen, Zeitreihen, Einzelrisiken, Abhängigkeit and Gesamtrisiko.

On the Einstellungen-sheet, screen-shot in Figure 5.4, the user makes the program
settings. Here the user selects which copula function to use. The options are the Gauss
Copula, the t Copula, the canonical vine pair copula and the D-vine pair copula (default is
the Gauss copula). The user also assigns the roll over period ∆, which is measured in days
(default is a one year horizon ∆ = 250), and the number M of simulated loss scenarios
(default is M = 1000). Additionally, the user chooses what risk types to incorporate. Here
we forego all the alternatives to selecting the risk categories Zinsbuch, Kreditbuch and
Depot-A.

Figure 5.5 is a screen-shot of the Zeitreihen-sheet, that shows the time series data
{Z1,t, Z2,t, Z3,t} of historic risk factor values. These are entered on a daily scale in a
previous step. On this sheet, the user sets the periods of the historic time series. It is
essential here to mark synchronous series {Z1,t, Z2,t, Z3,t}

τ
t=τ−m+1, albeit the time lag m

is so long arbitrary, as it exceeds the roll over period ∆. The risk factor change data
ℵ = {x1,s, x2,s, x3,s}

τ
s=τ−n+1, where n = ∆ is the time stretch, is then worked out internally

as the absolute return with a ∆-day roll over:

xi,s = Zi,s − Zi,s−∆, s = τ − n+ 1, ..., τ

16The file CopRisk.xls features some additional functionality not discussed in the course of this work.
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Figure 5.5: Screen-shot of MS-Excel worksheet Zeitreihen showing the exemplary selec-
tion of risk series of factors Zinsbuch, Itraxx, Depot A (normalized to July 31st, 2008).

On the worksheet Einzelrisiken, screen-shot in Figure 5.6, the user must in the first
instance fill the individual (non-parametric) risk distributions. Then the user selects the
data to be used in scenario generation. The discrete margin draws xi, i = 1, 2, 3 need not
necessarily have equal lengths, because the kernel uses them separately to reconstruct the
marginal cdf’s F̂X

i , i = 1, 2, 3.
The worksheet Abhängigkeit offers fitting and testing functionality. Here the user

initiates the respective procedure, which estimates the selected copula model from the
historic data. This is done by pushing the Kalibriere Abhängigkeit-button, which runs one
of the Algorithms 5, 6, 8 or 7. The estimated set of parameters is immediately displayed on
the worksheet. The true (historic) risk factor change series are further compared graphically
to some stylized copula samples. Then the user tests the found estimators for their goodness
of historical fit. Depending on the copula function of choice, the user runs one of the
procedures 9, 10, 11 or 12 by clicking the Teste Abhängigkeit-button. The test statistics
are printed on the worksheet. The numerical results are enforced by a quantile-quantile
diagram, that shows significant divergence (if ever existent) of the test statistics (4.10)
from a χ2-distribution. Figures 5.7, 5.8, 5.9 and 5.10 give screen-shots of the calibration
and testing interface.

The worksheet Gesamtrisiko features some conclusive summary statistics of the indi-
vidual risk types. In detail, the mean return, the value-at-risk measure at the confidence
levels α = 95% and α = 99%, and the corresponding mean value-at-risk measures are
displayed for all selected margins. By clicking the Aggregiere Risiken-button, the user
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Figure 5.6: Screen-shot of MS-Excel worksheet Einzelrisiken showing the exemplary
selection of sample losses in lines Zinsbuch, Kreditbuch, Depot A (normalized to July
31st, 2008).

Figure 5.7: Screen-shot of MS-Excel worksheet Abhängigkeit showing the fitted parame-
ters of a t copula and results of the ks-test.
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Figure 5.8: Screen-shot of MS-Excel worksheet Abhängigkeit showing real (1,2)-marginal
pseudo-observations and fitted t copula draws, and t copula ks-test plot.

Figure 5.9: Screen-shot of MS-Excel worksheet Abhängigkeit showing real (2,3)-marginal
pseudo-observations and fitted t copula draws.
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Figure 5.10: Screen-shot of MS-Excel worksheet Abhängigkeit showing real (1,3)-marginal
pseudo-observations and fitted t copula draws.

Figure 5.11: Screen-shot of MS-Excel worksheet Gesamtrisiko showing the risk measures
on individual and enterprize level.
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Figure 5.12: Screen-shot of MS-Excel worksheet Gesamtrisiko showing the overall loss
distribution, if individual factors are simply added.

Figure 5.13: Screen-shot of MS-Excel worksheet Gesamtrisiko showing the overall loss
distribution, if individual factors are aggregated by fitted t copula.
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copula ρ1,2 ρ2,3 ρ1,3(|2) ν hyp. l. p ks
Gauss -0.20 0.03 0.19 n.a n.r. 22.429 0.12 0.07

t -0.38 -0.04 0.21 5.81 n.r. 38.423 0.46 0.05
d-vine -0.20 0.03 0.20 n.a n.r. 22.431 0.08 0.08
c-vine -0.20 0.07 0.19 n.a n.r. 22.431 0.09 0.07

Table 5.1: Calibration and testing results (n.a. = not available, n.r. = not rejected).

commands to do the aggregation of risks. Here the kernel generates M independent sam-
ples x

(k)
τ+1, k = 1, ...,M , using one of the Algorithms 1, 2, 3 or 4. These are subsequently

transformed into samples L
(k)
τ+1, k = 1, ...,M of the integrated loss distribution by the spe-

cific loss operator

lτ (x) =
3∑

i=1

xi.

Then the above risk measures are computed and printed on the worksheet. The distrib-
utional statistics, that correspond to complete dependence between the margins, are also
printed out for comparison. Figure 5.11 gives a screen-shot of the aggregation interface.
The respective frequency bar charts are given for graphical user support. This is screen-shot
in Figures 5.12 and 5.13.

Empirical Results We run the over-all machinery on real business data and examine
the risk statistics at Sparkasse Leverkusen with respect to the dependence structure at a
one year horizon.

Table 5.1 shows the numerical results of the parameter estimation and the goodness-
of-fit test for the cases of the Gauss copula, the t copula, the canonical pair copula and
the Dvine pair copula. The estimations are based on risk factor series, which date from
the 21st of June 2004 through the 31st of July 2007, and a one year roll over ∆ = 250.

• The business lines Treasury and Credit have a significant negative dependence, the
risk factors Credit and Depot-A are merely independent (in the sense of linear cor-
relations), and the factors Treasury and Depot-A show a moderate positive linear
dependence.

• The degrees of freedom ν of the t copula is quite low; there is some extreme depen-
dence present in the data.

• All of the p-values are greater than 0.05; the tests result in not to disclaim the
hypothesis that the estimated copula function is the true dependence concept between
the empirical margins.

• The likelihood of the estimated t copula function is well ahead those of the Gauss,
the Dvine or the canonical pair copula, which are about at the same level.
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• The p-statistic (or the ks-statistic) is optimal for the t copula; the t copula is of best
absolute fit, followed by the Cvine copula, the Dvine copula and the Gauss copula.

Thus the t copula function fits best to business at Sparkasse Leverkusen. Then we
forego the aggregation of individual risk distributions on the basis of the Gauss copula, the
canonical and the D-vine pair copula.

Figures 5.8, 5.9, 5.10 (which we already used for documentation) give further graphical
support of the goodness-of-fit of the t copula with respect to the empirical data set.

• The stylized scatters are comparable to the real data pairs; the t copula captures the
major characteristics of the empirical (margin) copulas such as tendency and extreme
value dependence.

• The quantiles of the ks-test statistics do not diverge from the quantiles of the χ2-
distribution; the goodness-of-fit of the t copular is satisfactory.

Altogether, the t copula sustains a graphical comparison with the historical values.
Figures 5.11, 5.12 and 5.13 (which we already used for documentation) screen-shot the

conclusions of the enterprize risk distribution. These are found by Monte-Carlo simulation
with 1000 scenarios of coupled risk factor changes using the fitted t copula model. The
statistics of the individual risk distributions and the rudimentary addition of these serve
as a benchmark for the copula based integration.

• The institute’s loss distribution, that results from a pragmatic summation of sectors,
has heavier tails compared to the aggregated losses.

• The value-at-risk measure at the confidence level α = 95% is reduced by more than
50% when including a (non-trivial) dependence structure.

• The value-at-risk measure at the confidence level α = 99% is reduced by more than
50% on account of the interrelations between the various business activities.

• The mean value-at-risk measure at both confidence levels α = 95% and α = 99% is
cut down almost by half, if we use a copula based risk management approach.

5.4 Summary

In this chapter we applied the copula methodolgy, which was derived in the previous
Chapters 2, 3 and 4, to real business at Sparkasse Leverkusen. Our major achievement
here is the implementation of a sophisticated risk management solution.

With a view to the supervisory standards, we came across modern risk management as a
quantitative discipline, that involves capital adequacy decisions based on multidimensional
risk change distributions. We deemed copula models to be appropriate here to assess the
overall loss distribution by separately coupling some individually profiled risk types. This
was related to the traditional accountancy of one-factor risk silos.
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After formulating the multi-source risk distribution on enterprize level, we discussed
how the value-at-risk statistic may be used to quantify the charges on the firm specific risk
exposure and to meet the regulatory capital requirements.

Using the MS-Excel interface together with the MatLab functionality, we built the user
friendly implementation CopRisk 1.0, which makes use of the entire machinery developed
before. The dedicated task therein was to design extensible modules for the estimation,
simulation and evaluation of the overall risk situation. We subdivided the programm into
several worksheets to account for

• the update of historical and distributional properties of individual risks

• the estimation and testing of a copula based model on the basis of historical risk
series

• the simulation of the estimated risk model and

• the compiling of distributional facts of the overall year ahead risk exposure.

We documented each of these modules by way of screen-shots.
Finally, we ran CopRisk 1.0 on some actual (but anonymized) risk data. This revealed

that the t copula suits best the risk landscape at Sparkasse Leverkusen. Moreover, the
subsequent Monte Carlo simulation of risk scenarios showed that the copula based method
cuts down the overall risk exposure massively.
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Part II

Lévy copula methods
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Chapter 6

Introduction

The modern theory of stochastic processes is undergoing an evident renaissance of interest
in Lévy processes. In view of non-Gaussian phenomena in fields as diverse as meteorology,
finance and insurance, researchers and practitioners have rediscovered the convenience
of Lévy processes to cope with the rapidly evolving ramifications of Brownian motion
in a simple and flexible way. Multidimensional stochastic modelling still continues to
be dominated by Gaussian processes. This produces an undesirable imbalance between
available models and possible applications.

Brownian motion has long played the dominant role as the driving process for modelling
price movements. This was mainly due to the known technology for handling diffusion
processes. During the past several years, Lévy processes have become increasingly popular
in the theory of continuous-time processes. The keen interest in discontinuous models is
mainly drawn by the eminent presence of jumps in observed prices movements. These
diffusions can not handle. Another peace of evidence for discontinuous price behavior is
seen from option quotes. The very existence of a market for (out-of-the money) short-
term options proves that the market participants recognize large price movements over
short periods of time. Diffusion based models do not get the implied volatility surfaces of
these options unless by unrealistic high values of volatility of volatility. This is avoided
in the wider class of Lévy processes, which cope with structural breaks and extremely
irregular behavior including jumps, bursts and spikes; Lévy processes prepare to provide
a better fit to real life data. In this regards, the literature became very innovative as for
univariate phenomena. The scene of multidimensional stochastic processes still resorts in
large parts to diffusion based models and a Gaussian concept of dependence. But the
normality assumption becomes more and more obsolete in a joint sense, too.

Here, Lévy copulas offer a versatile modelling approach insofar as they enable to sep-
arate the dependence structure and the marginal aspects of a multidimensional stochastic
process. Thus Lévy copulas handle non-normality of the dependence structure apart from
the possibly extreme marginal behavior. This responds to the downright need for a flexible
coupling of one-dimensional Lévy models, that cope with non-Gaussian margins already.
Hence Lévy copula functions allow to model dependence on its own. Then our designated
target is to develop practicable Lévy copula methods for multidimensional processes. Im-
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portant issues in the part include:

• the use of Lévy copula functions as an appropriate summary of the dynamic depen-
dence structure in multidimensional Lévy processes separate from marginal aspects,

• the up-to-date construction patterns of parametric dependence models including the
Archimedean, the modular and the canonical type Lévy copula,

• the emphasis on structural properties of parametric Lévy copulas with regard to
numerical simulation,

• the development of a multidimensional modelling framework for option pricing with
Lévy processes,

• the application of Lévy copula methods to the pricing of foreign exchange options
and the tracking of market implied dependence structures.

With this agenda, we fit into the fairly novel discussion on modelling complex jump de-
pendence with Lévy copulas, which was pioneered by Tankov [77]. The issue of derivative
pricing in Lévy models is dealt with in a multitude of publications.

The basic properties of Lévy processes have been well understood for a long time from
Paul Lévy’s characterization in the 1930’s. Recent discourses on the basic knowledge of
Lévy processes include the standard textbooks by Bertoin [12] and Sato [69], of which the
latter gives special emphasis to the correspondence between Lévy processes and infinitely
divisible distributions. Another adequate reference is Raible [64]’s celebrated dissertation,
that touches upon theoretical, numerical and empirical issues. The textbook edited by
Barndorff-Nielsen et al. [5] offers a state-of-the art survey on the theory, generalization
and application of Lévy processes. A cross-referenced collection of various articles devoted
to distributional and path properties as well as to the problems of simulation and statis-
tical estimation is given there. In this collection, a large interest is taken in the use of
Lévy processes in finance. Here Barndorff-Nielson and Shephard [7] deal with the transfer
of the main stylized features of financial series into Lévy model logic. Eberlein [23] takes
up the issue of reproducing empirical finance data, where he focuses on generalized hyper-
bolic Lévy motions for asset price models. The estimation of parameters in Lévy models
is discussed in Nolan [58]. The methods derived therein are applied to exchange rate and
stock price data. Series representations of Lévy processes, which are explained in Rosinski
[67], prepare the simulation of sample paths. Then Cont and Tankov [20] have taken on
the writing of an all-embracing discourse of financial modelling with jump processes in
textbook format. They present an understandable and convenient overview of the use of
Lévy processes in financial modelling. Their analysis specifically expands to the numerical
calibration of a Lévy motion to market data and to the separate modelling of dependence
structures via copula functions. In these points the book reviews the main contents of
Tankov [77]’s pathbreaking dissertation. A detailed characterization of dependence of mul-
tidimensional Lévy processes using Lévy copulas can also be found in Kallsen and Tankov
[45]. Tankov [78] applies the concept of Lévy copulas to the valuation of multi-asset options
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for the first time. Luciano and Schoutens [51] gives an alternative approach to multi-asset
jump modelling on the basis of subordination and ordinary copulas with application to eq-
uity and credit. In contrast, the articles by Eberlein and Raible [30], Eberlein and Özkan
[28] and Eberlein and Koval [27] are the basis of another collection of publications. These
involve many discourses on the theory and valuation of multidimensional Lévy processes
in term structure modelling. The main result is an extension of the Libor market model to
the Lévy world. Change of measure techniques and pricing methods in multidimensional
Lévy models are treated therein on the way. Building on these works, Eberlein and Papa-
pantoleon [29] and Eberlein et al. [26] discover symmetries in the pricing of non-standard
derivatives. This reference includes, for example, the valuation of multi-asset options in
terms of plain vanilla contracts, that are written on some (artificial) one-dimensional un-
derlying. In the present part we choose a combination of these subjects so as to develop a
deep methodology for using Lévy copula functions in finance.

Our declared intention is to merge, on a firm theoretical groundwork, the conceptual
properties of a Lévy copula with numerical issues. The application of dynamic dependence
structures to the pricing of complex options is a secondary objective. One-dimensional
models are already available from an abundance of publications (partly mentioned above).
So we address the integration of dependence issues and univariate pricing techniques. In
this part we distance ourselves from:

• the parametric modelling of univariate Lévy processes as for the generalization of
Brownian motion,

• the compound Poisson processes and the related non-copula based dependence struc-
tures,

• a guide to dependence measures and orderings.

In consequence, we mostly forego the debate on one-dimensional Lévy processes and target
Lévy copula methods on their own. Our main contribution is twofold. On the one hand, we
develop complex Lévy copula models (further) with emphasis on probabilistic interpreta-
tions and numerical convenience. We make good use of the model features in order to help
on the sampling of multidimensional Lévy processes. On the other hand, we formulate the
calibration of a Lévy copula on the basis of pricing symmetries in exponential Lévy models.
Using a non-parametric approach, we accomplish to back out the dependence structures
from option quotes in the foreign exchange market.

The part is organized as follows. On the basis of a concise guide to multidimensional
Lévy processes, in Chapter 7 we introduce Lévy copula functions as the conceptual analogue
to ordinary copulas for modelling dependence between dynamic Lévy motions. We overlook
basic properties and echo how Lévy copulas facilitate the formulation of dependence. We
survey the (as yet) short list of existing parametric models. Then we go into details about
the sophisticated modular design and the self-issued canonical approach.

In Chapter 8 we treat the subject matter of path generation with Lévy copula functions.
We focus on series representations of multidimensional Lévy processes here and give both
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reasons for and instances of their use in simulation. We argue in particular that the modular
and the canonical construction is very much suited to simulation by series representations.

In Chapter 9 we set up the financial market environment and establish exponential Lévy
processes for asset price modelling. Then we go into details about measure transformations.
Here we describe the relation between the martingale property and the characteristics
of a Lévy process. Then we concern the option pricing problem and discuss symmetry
techniques for the valuation of multi-name derivatives. Semi-analytical pricing methods,
which are based on Fourier inversions, apply here.

In Chapter 10 the findings of Chapters 7 and 9 are applied to the calibration of a two-
rate foreign exchange market model. We examine how to extract the model parameters
from market quotes via a least-squares approximation. This involves the regularization
of the eventual instabilities in an ill-posed problem. In closing this part, we then present
the numerical results of fitting a dependence structure between the USD/JPY rate and
the EUR/JPY rate. Here we search for the market implied Lévy copula, that reproduces
liquid prices of options written on the USD/EUR cross rate.
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Chapter 7

Lévy copula functions

In Chapter 2 we introduced the notion of a copula function to model the dependence in
a multivariate distribution. This chapter transfers the main results on the coupling of
static random variables to the case of multidimensional Lévy processes. We give a precise
definition of Lévy copula functions and discuss the basic properties. Then we examine
fundamental and advanced approaches to dynamic dependence modelling.

Section 7.1 defines Lévy copula functions of general Lévy processes and gives the basic
properties and interpretations. Section 7.2 introduces the Archimedean type construction
of Lévy copulas modelled after A.1. The bivariate Clayton Lévy copula is analyzed here.
Then Section 7.3 is devoted to high dimensional modular Lévy copulas. It is shown that
a building block design, which is due to Tankov [77], enables to arrange general copula
functions by way of simple ones. Then Section 7.4 develops the new family of canonical
Lévy copulas, which are made from ordinary and bivariate Lévy copula functions.

The derivations in this chapter follow the pioneering thesis by Tankov [77] and the se-
quel textbook by Cont and Tankov [20]. We remain also close to Kallsen and Tankov [45]’s
publication on Lévy copulas for multidimensional jump processes. The model findings of
Sections 7.3 and 7.4 present new material in large parts.

The following guide to Lévy processes prepares for the modelling of dynamic dependence
structures. We explain general definitions and basic properties enough for what is to come
[see 12, 69, for ample discourses].

Definition 7.1. A stochastic process {Xt} on R
d with X0 = 0 is a Lévy process, if the

following conditions are satisfied:

(1) For any choice of n ≥ 1 and 0 ≤ t0 < t1 < ... < tn ≤ T , the random variables
Xt0 , Xt1 − Xt0 , Xt2 − Xt1 , ..., Xtn − Xtn−1 are independent (independent increments
property).

(2) The distribution of Xt+s−Xt does not depend on t (stationary increment property).

(3) For every t ∈ [0, T ] and ε > 0 it holds lims→t P [|Xs − Xt| > ε] = 0 (stochastic
continuity property).
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(4) There is Ω0 ∈ F with P [Ω0] = 1 such that, for every ω ∈ Ω0, Xt(ω) is right-continuous
in t ∈ [0, T ] and has left limits in t ∈ [0, T ].1

The most fundamental example of a Lévy process is the Brownian motion. A stochastic
process {Xt} on R

d is a Brownian motion, if it is a Lévy process, and if, for t ∈ (0, T ],
Xt has a Gaussian distribution with mean 0 and covariance matrix t1 and {Xt} is almost
surely continuous in t ∈ [0, T ]. We reserve the notation {Bt} for the Brownian motion. As
shown in Sato [69, Proposition 5.2], for every i ∈ {1, ..., d}, the component {Bi

t} of {Bt} is
a Brownian motion on R and {B1

t }, ..., {B
d
t } are independent. For γ ∈ R

d and a symmetric
positive definite matrix A ∈ R

d×d, we call the process γt+A1/2Bt a Brownian motion with
drift γ and covariance matrix A.

Other than Brownian motion itself, condition (4) in Definition 7.1 allows a Lévy process
{Xt} to have discontinuities ∆Xt := Xt −Xt−, that are seen as sudden events. The jump
behavior is described by the jump measure µ, which is defined on [0, T ] × R

d by

µ(A) = ♯{(t,∆Xt) ∈ A}.

For every measurable set A ⊂ R
d, µ([t1, t2]×A) counts the number of jump times of {Xt}

between t1 and t2 such that their jump sizes are in A. Averaging this number over the unit
time interval leads us to the celebrated Lévy measure ν, which is defined on R

d by

(7.1) ν(A) = E[♯{t ∈ [0, 1] : ∆Xt 6= 0,∆Xt ∈ A}], A ∈ B(Rd)

For every measurable set A ⊂ R
d, ν(A) is the expected number, per unit time, of jumps

whose size belongs to A. The Lévy measure is a not necessarily finite Radon measure on
R
d. Hence {Xt} may have an infinite number of small jumps on [0, T ] while ν(A) is finite

for any compact set A such that 0 6∈ A.
The continuous and the discontinuous part of a sample path are distinct and can be

decomposed:

Theorem 7.2 ([20], Proposition 3.7). Let {Xt} be a Lévy process on R
d and ν its Lévy

measure. Then

(1) ν is a Radon measure on R
d and verifies:

ν({0}) = 0 and

∫

Rd

(1 ∧ |x|2)ν(dx) <∞

(2) The jump measure µ of {Xt} is a Poisson random measure2 on [0, T ] × R
d with

intensity measure ν(dx)dt.

1This is equivalent to saying that {Xt} (or at least a unique modification of it) is a cadlag stochastic
process [cf. 20, Definition 3.1].

2Poisson random measures are uniquely determined by their intensity measure as described in Cont
and Tankov [20].
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(3) There exist a Brownian motion {Bt} on R
d with drift γ ∈ R

d and covariance matrix
A ∈ R

d×d such that

Xt = γt+ A1/2Bt +X l
t + lim

ε↓0
X̃ε
t , where(7.2)

X l
t =

∫

|x|≥1,s∈[0,t]

xµ(ds× dx) and

X̃ε
t =

∫

ε≤|x|<1,s∈[0,t]

x(µ(ds× dx) − ν(dx)ds).

The terms in (7.2) are independent, and the convergence in the last term is almost
sure and uniform in t on [0, T ].

Property (3) in Proposition 7.2, called the Lévy-Ito decomposition of {Xt}, allows us
to distinguish between the continuous and the discontinuous part of a Lévy process. Let
us therefore denote by {XC

t } the continuous part and by {XJ
t } the jump part of a Lévy

process. Proposition 7.2 also states that every Lévy process {Xt} is uniquely defined by a
drift γ, a covariance matrix A and a Lévy measure ν. The triplet (γ,A, ν) is hence called
the characteristic triplet3 of {Xt}.

The characteristic triplet is also a determinant of the characteristic function of a Lévy
process:

Theorem 7.3 ([20], Theorem 3.1). Let {Xt} be a Lévy process on R
d with characteristic

triplet (γ,A, ν). Then

E[eiz.Xt ] = etψ(z), z ∈ R
d

with ψ(z) = −

1

2
z.Az + iγ.z +

∫

Rd

(eiz.x − 1 − iz.x1|x|≤1)ν(dx).(7.3)

The function ψ in (7.3) is continuous [cf. 20, Proposition 3.2] and called the characteris-
tic exponent of {Xt}. The exponential structure shows in particular that the characteristic
function of a Lévy processes is multiplicative in t. That is to say a Lévy process has an
infinitely divisible distribution4 for every t. We denote by ψC and ψJ those parts of the
characteristic exponent, that are associated to the continuous and the jump part of the
Lévy process, respectively.

(7.2) and (7.3) require a compensation of small jumps in general. If the Lévy measure
satisfies

(7.4)

∫

|x|≤1

|x|ν(dx) <∞,

3Sato [69] uses the term generating triplet, instead.
4Sato [69] gives a comprehensive discourse of the interrelation of Lévy processes and infinitely divisible

distributions.
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then the discontinuities of the path of {Xt} may be expressed as the sum of jumps between
0 and t [cf. 20, Corollary 3.1]:

(7.5) XJ
t =

∫

[0,t]×Rd

xµ(ds× dx) =

∆Xs 6=0∑

s∈[0,t]

∆Xs.

As a consequence, the characteristic exponent of {Xt} may be written as [cf 20, Corollary
3.1]

ψ(z) = −

1

2
z.Az + iγb.z +

∫

Rd

(eiz.x − 1)ν(dx),

where γb = γ −

∫
|x|≤1

xν(dx) is called the drift of {Xt}. Condition (7.4) relates to the

behavior of ν around the origin.5 If the tails of the Lévy measure ν satisfy
∫

|x|>1

|x|ν(dx) <∞

instead, then the characteristic exponent of {Xt} may be written as [cf 20, Section 3.4]

ψ(z) = −

1

2
z.Az + iγc.z +

∫

Rd

(eiz.x − 1 − iz.x)ν(dx),

where γc = γ +
∫
|x|>1

xν(dx) is called the center of {Xt}. By convention, the character-

istic triplet is always expressed in terms of γ rather than γb or γc. Next, we give some
fundamental Lévy processes, stressing the various representations.

Example 7.4. Let {Xt} be a Brownian motion on R
d with drift γ ∈ R

d and variance A ∈

R
d×d. Then the characteristic triplet of {Xt} is (γ,A, 0) and the characteristic exponent

can be represented as

ψ(z) = −

1

2
z.Az + iγ.z.

Example 7.5. Let {Xt} be a Lévy process on R
d with triplet (γ,A, ν) and discrete Lévy

measure of the form

(7.6) ν =
N∑

k=1

νkδx(k) ,

where δx(k) the Dirac-measure at x(k)
∈ R

d. With a view to (7.1), measure (7.6) certainly is
a proper Lévy measure, and it satisfies condition (7.4). Hence, its characteristic exponent
has the following representation:

ψ(z) = −

1

2
z.Az + iγb.z +

N∑

k=1

(eiz.x
(k)

− 1)νk,
6

5Cont and Tankov [20] show that a Lévy process {Xt} on R
d with triplet (γ,A, ν) is of finite variation

if and only if A = 0 and (7.4) is satisfied.
6Cont and Tankov [20] argue that Lévy processes of this kind are superpositions of independent Poisson

processes with different jump sizes.
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where γb is as in Corollary (7.6). This {Xt} surely satisfies condition (7.6) on the tail
integrability of ν. Consequently, we may just as well express the characteristic exponent
as

ψ(z) = −

1

2
z.Az + iγc.z +

N∑

k=1

(eiz.x
(k)

− 1 − iz.x(k))νk.

Example 7.6. Let {Xt} be a R-valued Lévy process with triplet (γ,A, ν) and discrete
Lévy measure of the form

(7.7) ν(x) =
λ

δ
√

2π
e−

(x−µ)2

2δ2 ,

where λ, δ > 0 and µ ∈ R. With a view to (7.1), measure (7.6) certainly is a proper
Lévy measure, and it satisfies condition (7.4). Hence, its characteristic exponent has the
following representation:

ψ(z) = −

1

2
σ2z2 + iγbz + λ(e−δ

2z2/2+iµz−1),

where γb is as in Corollary (7.6). The process {Xt} is known as the Merton process.

Example 7.7. Let {Xt} be a R-valued Lévy process with triplet (γ,A, ν) and Lévy mea-
sure of the form

(7.8) ν(x) =
λ+

x1+α
1x>0 +

λ−
x1+α

1x<0,

where λ+, λ− are positive constants and 0 < α < 2. In this case, one can show [cf. 69,
Theorem 14.15] that there exists a triplet (β, τ, c) with c > 0, β ∈ [−1, 1], and τ ∈ R such
that

ψ(z) = −

1

2
A2z2 + iτz − czα(1 − iβ tan(

πα

2
) sgn(z) for α 6= 1,

ψ(z) = −

1

2
A2z2 + iτz − cz(1 + iβ

2

π
sgn(z) log(|z|)) for α = 1.

The parameter τ is identical with the drift γb if 0 < α < 1, and with the center γc if
1 < α < 2. The parameter β represents non-symmetry of the Lévy measure. In this sense,
ν is symmetric, if and only if β = 0, and σ is the scaling parameter. The process {Xt} is
called an α-stable process and α is called the stability index.

The findings to come will involve linear transformations of Lévy processes, which are
again Lévy processes:

Proposition 7.8 ([69], Proposition 11.10). Let {Xt} be a Lévy process on R
d with gener-

ating triplet (γ,A, ν) and let U ∈ R
r×d be a matrix. Then {UXt} is a Lévy process on R

r
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with generating triplet (γU , AU , νU) given by

γU = Uγ +

∫

Rd

Ux (1E(Ux) − 1D(x)) ν(dx)

AU = UAU ′

νU = [νU−1]|R\{0},

where νU−1(B) = ν({x : Ux ∈ B}), D = {x ∈ R
d : |x| ≤ 1}, E = {y ∈ R

r : |y| ≤ 1} and
[νU−1]|R\{0} is the restriction of νU−1 to R \ {0}.

As a special case, projections of Lévy processes are again Lévy processes.

7.1 Definition and basic properties

Lévy copulas have proven advantageous to model complex dependence structures of mul-
tivariate jump processes. We give definitions, properties and fundamental representatives
of dependence functions of this kind.

The tail integrals of a Lévy measure are defined similar to the cdf of a probability
distribution:

Definition 7.9. Let {Xt} be a Lévy process on R
d with Lévy measure ν. The tail integral

of ν is the function U : (R\0)d → R defined by

U(x1, ..., xd) = ν

(
d∏

i=1

I(xi)

)
d∏

i=1

sgn(xi),

where

I(x) =

{
[x,∞), x > 0;
(−∞, x], x < 0.

Although the definition of the tail integral spares the axes, it can be shown [cf. 45,
Lemma 3.5] that the Lévy measure is uniquely determined by the set {UI : I ⊂ {1, ..., d}}
of its marginal tail integrals and vice versa.

Lévy copulas are defined on the analogy of copulas, which we refer to as ordinary
copulas for distinction in the following:

Definition 7.10. A function F : R
d
∞ → R∞ is called a Lévy d-copula function (or Lévy

d-copula or Lévy copula), if

(1) F (u1, ..., ud) 6= ∞ for (u1, ..., ud) 6= (∞, ..,∞)

(2) F (u1, ..., ud) = 0 if ui = 0 for at least one i ∈ {1, ..., d}

(3) F is d-increasing
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(4) Fi(u) = u for any i ∈ {1, ..., d}, u ∈ R.

Sometimes it is useful to limit the notion of a Lévy copula to Lévy processes whose
Lévy measures ν are supported by R

d
+:

Definition 7.11. A function F : R
d
∞,+ → R∞,+ is called a Lévy copula, if

(1) F (u1, ..., ud) 6= ∞ for (u1, ..., ud) 6= (∞, ..,∞)

(2) F (u1, ..., ud) = 0 if ui = 0 for at least one i ∈ {1, ..., d}

(3) F is d-increasing

(4) Fi(u) = u for any i ∈ {1, ..., d}, u ∈ R∞,+.

We call a Lévy copula of this kind positive and denote it by F+ for distinction. It can
be shown [cf. 77, Section 4.5] that, if F+ is a Lévy copula on R

d
∞,+, then it can be extended

to a Lévy copula F on R
d
∞ by

F (u1, ..., ud) =

{
F+(u1, ..., ud), (u1, ..., ud) ∈ R

d
∞,+;

0, otherwise.

As a consequence, the results on general Lévy copulas also hold for the positive ones.
The next theorem parallels Sklar’s theorem in the context of tail integrals instead of

probability distributions:

Theorem 7.12 ([77], Theorem 4.8). Let ν be a Lévy measure on R
d. Then there exists a

Lévy copula F such that the tail integrals of ν satisfy

UI((xi)i∈I) = FI((Ui(xi))i∈I)

for any non-empty I ⊂ {1, ..., d} and any (xi)i∈I ∈ R
|I|. Conversely, if F is a d-dimensional

Lévy copula and ν1, ..., νd are Lévy measures on R with tail integrals integrals U1, ..., Ud,
then there exists a unique Lévy measure R

d with one-dimensional marginal tail integrals
U1, ..., Ud.

Theorem 7.12 shows that Lévy copula functions characterize the dependence struc-
ture between marginal tail integrals. Conversely, Lévy copula functions are themselves
determined by the joint and marginal tail integrals.7

Lévy copulas allow of a probabilistic interpretation, which is explained in the following.
Let therefore F be a Lévy copula on R

d
∞, that satisfies the following continuity condition

at infinity:

(7.9) lim
(ui)i∈I→∞

F (u1, ..., ud) = F (u1, ..., ud)|(ui)i∈I=∞

7Barndorff-Nielsen and Lindner [6] show that any Lévy copula function itself defines a proper Lévy
measure.
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for all I ⊂ {1, ..., d}. This Lévy copula defines a positive measure µ on R
d with Lebesgue

margins such that for each a, b ∈ R
d with a ≤ b,

VF ((a, b]) = µ((a, b]),

where VF the volume function of F . The Lévy measure ν is described by the measure µ
via

(7.10) ν(A) = µ({u ∈ R
d : f(u) ∈ A}),

where f : (u1, ..., ud) 7→ (U−1
1 (u1), ..., U

−1
d (ud)). By Tankov [cf. 77, and references therein],

there exists a family, indexed by ξ ∈ R, of positive Radon measures K(ξ, ·) on R
d−1, such

that ξ 7→ K(ξ, du2, ..., dud) is Borel measurable and

(7.11) µ(du1, du2, ..., dud) = λ(du1) ⊗K(u1, du2, ..., dud).

{K(ξ, ·)}ξ∈R is called the family of conditional probability distributions associated to the
Lévy copula F . K(ξ, ·) is a probability distribution for almost all ξ ∈ R. Its (conditional)
cdf, denoted by Kξ, has an explicit representation:

Theorem 7.13 ([77], Lemma 5.5). Let F be a Lévy copula on R∞, satisfying (7.9), and
{K(ξ, ·)}ξ∈R be the family of conditional probability distributions associated to F . Then,
there exists a nullset N such that for every ξ ∈ R \N , Kξ is a cdf represented by

(7.12) Kξ(u2, ..., ud) = sgn(ξ)
∂

∂ξ
VF ((ξ ∧ 0, ξ ∨ 0] × (−∞, u2] × ...× (−∞, ud])

in every point (u2, ..., ud) where Kξ is continuous.

Theorem 7.13 associates a family of cdfs Kξ to every general Lévy copula function F .
In particular, the conditional cdf associated to a positive Lévy copula F+ on R

d
∞,+, denoted

by K+
ξ , is of the form

(7.13) K+
ξ (u2, ..., ud) =

∂

∂ξ
K+(ξ, u2, ..., ud).

The conditioning in (7.12) (and in (7.13)) is usually on the first variable, albeit the choice
is arbitrary.

On account of Theorem 7.12, there exists a canonical representation of the density of
a Lévy measure ν. We extend (omitting the proof in good faith) the results in Cont and
Tankov [20, Proposition 5.8], that target the 2-dimensional case only:

Proposition 7.14. Let F be a Lévy d-copula, continuous on R
d
∞, such that the density

∂dF (u1, ..., ud)/∂u1...∂ud exists on R
d, and let U1, ...Ud be one-dimensional tail integrals

with densities ν1, ..., ν2. Then

ν(dx1, ..., dx2) =
∂dF

∂u1...∂ud
(U1(x1), ..., Ud(xd))ν1(dx1) . . . νd(dxd)

is the Lévy density of a Lévy measure with marginal Lévy measures ν1, ..., νd and Lévy
copula F .
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Proposition 7.14 enables us to construct d-dimensional Lévy densities from 1-dimensional
Lévy densities in conjunction with a smooth Lévy copula. If the Lévy copula and the Lévy
measures are not sufficiently smooth, then the tail integrals are used instead of the densities
[cf. 20, Section 5.6]. This is discussed only by way of example in the following:

Example 7.15. Let ν1, ν2 be discrete Lévy measures on R in the sense of Example 7.5
supported by a centered equidistant grid {xk = (k − (N + 1)/2)∆, k = 1, ..., N} with grid
size ∆ > 0, hence

(7.14) νi =
N∑

k=1

νki δxk
,

with weights νki ∈ R, k = 1, ..., N for i = 1, 2. Then, for i = 1, 2, the tail integral Ui of νi is

(7.15) Ui(x) = sgn(x)
N∑

k=1

νki 1I(xk)(x).

Further let F be a Lévy 2-copula function, which is continuous on R
2
∞. Similar to Propo-

sition 7.14, ν1, ν2 and F define a Lévy measure ν12 on R
2:

ν12 =
N∑

i,j=1

νij12δ(xi,yj),

where the weights νij12, for xi, yj > 0 say, are given by

νij12 = F (U1(xi), U2(yj)) − F (U1(xi), U2(yj + ∆))

− F (U1(xi + ∆), U2(yj)) + F (U1(xi + ∆), U2(yj + ∆)).(7.16)

If f(u, v) = ∂F (u, v)/∂u∂v exists on R
2, then, for small step sizes ∆,

νij12 ≈ f(U1(xi), U2(yj))ν
i
1ν

j
2, i, j = 1, ..., N

is an approximation of (7.16).

Fundamental Lévy copula functions Similar to the ordinary case, there exist Lévy
copulas, that correspond to complete negative dependence, independence and complete
positive dependence of the jump behavior.

Independence among the components of a Lévy process is very much a Lévy measure
property:

Lemma 7.16 ([77], Lemma 4.2). Let {Xt} be a Lévy process. Then {X1
t }, ..., {X

d
t } are

independent, if and only if their continuous martingale parts are independent and the Lévy
measure ν is supported by the axes

(7.17) ν(B) =
d∑

i=1

νi(Bi), for all B ∈ B(Rd
\ {0}),
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where for every i, νi denotes the i-th margin of ν and Bi = {x ∈ R : (0, ..., 0, x, 0, ..., 0) ∈
B}.

This says that the marginal tail integrals UI((xi)i∈I) vanish for all I ⊂ {1, ..., d} and
all (xi)i∈I ∈ (R \ {0})|I|:

Theorem 7.17 ([77], Theorem 4.10). Let {Xt} be a Lévy process on R
d. Then the inde-

pendence copula is given by

(7.18) F⊥(u1, ..., ud) =
d∑

i=1

ui
∏

j 6=i
1∞(uj).

Note that Lévy copula (7.18) fulfills the conditions of Definition 7.10 but is discontin-
uous at positive infinity.

Definition 7.18. Define S+ = {x ∈ R
d : sgn(x1) = ... = sgn(xd)} and S− = {x ∈ R

2 :
sgn(x1) 6= sgn(x2)}. Let {Xt} be a Lévy process on R

d. Its jumps are considered completely
positive dependent, if there exists an increasing set D of S+ such that ∆Xt ⊂ D, t ≥ 0. For
d = 2, the jumps of {Xt} are completely negative dependent, if there exists a decreasing8

set D of S− such that ∆Xt ⊂ D, t ≥ 0.

Complete dependence of jumps is not a Lévy measure property in general, but it can
be described by the Lévy copula:

Theorem 7.19 (cf. [77], Theorem 4.11). Let {Xt} be a Lévy process on R
d, whose Lévy

measure is supported by an ordered set D ⊂ S. Then the complete positive dependence
Lévy copula is given by

F‖(u1, ..., ud) = min(|u1|, ..., |ud|)1S+(u1, ..., ud)
d∏

i=1

sgn(ui).

If d = 2, then the complete negative dependence Lévy copula is given by

F|(u1, u2) = −min(|u1|, |u2|)1S−(u1, u2).

Conversely, if F‖ or F| is a Lévy copula of {Xt}, then the Lévy measure is supported by
a strictly ordered subset D ⊂ S. If, in addition, the tail integrals Ui of X i are continuous
and satisfy limx→0 Ui(x) = ∞, i = 1, ..., d, then the jumps of Xt are completely dependent.

Theorem 7.19 shows that the complete positive dependence and the complete negative
dependence Lévy copula both resemble the complete positive dependence ordinary copula
(2.5).

Remark 7.20. There exists a positive complete positive dependence Lévy copula in a natural
way. The complete negative dependence Lévy copula does not possess a positive companion
Lévy copula.

8Increasing and decreasing sets (or strictly ordered sets) are defined in [77]
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Figure 7.1: Surface of the complete negative dependence Lévy copula (left), the indepen-
dence Lévy copula (center), and the complete positive dependence Lévy copula (right).

Figure 7.1 illustrates the complete negative dependence, the independence and the
complete positive dependence Lévy 2-copula over a finite square.

• The complete dependence Lévy copulas are supported by two opposing quadrants
each; complete dependence characterizes jumps of either unequal or equal signs.

• The graphs of the complete dependence Lévy copulas consist of pyramidal bricks; the
complete dependence Lévy copulas extend the pattern of the maximum (ordinary)
copula.

• The complete dependence Lévy copulas have a kink; they do not possess a continuous
density.

• The independence Lévy copula is zero everywhere (except at positive infinity).

7.2 Archimedean Lévy copula functions

We have introduced the Archimedean construction to ordinary copulas just barely in Sec-
tion A.1. This pattern applies to Lévy copulas, as well.

Definition 7.21 (cf. [77], Theorem 5.2). Let φ : [−1, 1] → [−∞,∞] be a strictly in-
creasing continuous function with φ(1) = ∞, φ(0) = 0, φ(−1) = −∞, having nonnegative
derivatives of order up to d on (−1, 0) and (0, 1), and satisfying

∂dφ(et)

∂td
≥ 0,

∂dφ(−et)

∂td
≤ 0.

Let φ̃(t) = 2d−2
{φ(t) − φ(−t)} for t ∈ [−1, 1]. Then

(7.19) F (u1, ..., ud) = φ

(
d∏

i=1

φ̃−1(ui)

)
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is called a general Archimedean Lévy copula.9

The function φ is referred to as (general) Archimedean copula generator (in the sense
of Lévy copulas). The Archimedean construction of positive Lévy copulas is simpler:

Definition 7.22 (cf. [77], Theorem 5.1). Let ψ : [0, 1] → [0,∞] be a strictly decreasing
continuous function with φ(0) = ∞, φ(∞) = 0, having derivatives of order up to d on
(0, 1), and satisfying

(−1)d
∂dψ(t)

∂td
≥ 0.

Then

(7.20) F+(u1, ..., ud) = ψ

(
d∑

i=1

ψ−1(ui)

)

is called an Archimedean Lévy copula.10

The function ψ is referred to as Archimedean copula generator (in the sense of Lévy
copulas). Lévy copulas of the form (7.19) or (7.20) are just about the only parametric
Lévy copulas, which are discussed in the literature.

Clayton Lévy copula functions The Lévy Clayton copula resembles the ordinary
Clayton copula in terms of constructions, hence the naming:

Definition 7.23. Let ψ(t) = t−1/θ. Then ψ is an Archimedean generator producing the
one-parameter Archimedean Lévy d-copula

(7.21) F+(u1, ..., ud) =

(
d∑

i=1

u−θi

)−1/θ

,

which is called the Clayton Lévy copula function. Let

φ(t) = η(− log(|t|))−1/θ1t≥0 − (1 − η)(− log(|t|))−1/θ1t<0, θ > 0, η ∈ (0, 1).

Then φ is a general Archimedean generator with

φ̃(t) = 2d−2
{− log(|t|)}−1/θ sgn(t),

and φ̃−1(t) = e−|22−dt|−θ

sgn(t).

φ produces the two parameter general Archimedean Lévy d-copula

F (u1, ..., ud) = 22−d

(
d∑

i=1

|ui|
−θ

)−1/θ

(η1u1...ud≥0 − (1 − η)1u1...ud<0),

which is referred to as the general Clayton Lévy copula.

9The function (7.19) is a Lévy copula and φ̃ is used to preserve uniformity at the margins [cf. 77].
Moreover, Tankov [77, Remark 5.1] gives sufficient conditions to satisfy (7.19). These are comparable to
the notion of complete monotonicity as defined in Appendix A.1.

10The function (7.20) really is a Lévy copula [cf. 77].
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Figure 7.2: Contours of the Gauss copula density using parameters η = 1, θ = 6 (upper
left), η = 0.5, θ = 6 (upper center), η = 0, θ = 6 (upper right), η = 0.5, θ = 6 (lower left),
η = 0.5, θ = 0.5 (lower center), η = 0.5, θ = 0.05 (lower right).

For d = 2, the general Lévy Clayton copula is

(7.22) F (u, v) =
(
|u|−θ + |v|−θ

)−1/θ
(η1uv≥0 − (1 − η)1uv<0),

and its density

f(u, v) = sgn(u) sgn(v)
(
|u|−θ + |v|−θ

)− 2θ+1
θ

|u|−θ−1
|v|−θ−1(η1uv≥0 − (1 − η)1uv<0)

exists on R
2.

We analyze the role of the parameters on the basis of Figure 7.2, that shows the contours
of the Lévy Clayton 2-copula density over various configurations.

• The jumps tend to have, for η ≫ 0, the same directions and, for η ≪ 1 opposite
directions; η is responsible for the sign dependence of jumps.

• The higher θ the more associated are the absolute values of the jumps; θ determines
the size dependence of of jumps.

• The contours are balanced; the dependence structure is symmetric.
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Hence the Lévy Clayton copula models a wide range of ample dependence, albeit this is
symmetric whatsoever.

7.3 Modular Lévy copula functions

In view of positive Lévy copulas, the idea to model the jump dependence structure of a R
d-

valued Lévy process separately in each of the 2d corners is obvious. We analyze a modular
Lévy copula design with emphasis on the probabilistic interpretation of its component
parts [cf. 80].

Definition 7.24 (cf. [77], Theorem 5.3). For α = {α1, ..., αd} ∈ {−1, 1}d let gα(u) :
[0,∞] → [0, 1] be a nonnegative, increasing function satisfying

(7.23)
∑

α∈{−1,1}d with αk=−1

gα(u) = 1 and
∑

α∈{−1,1}d with αk=1

gα(u) = 1

for all u ∈ [0,∞] and all k ∈ {1, ..., d}. Moreover, let Fα be positive Lévy copulas that
satisfy the following continuity property at infinity: for all I ⊂ {1, ..., d}, (ui)i∈Ic ∈ [0,∞]|I

c|

we have
lim

(ui)i∈I→(∞,...,∞)
Fα(u1, ..., ud) = Fα(v1, ..., vd),

where vi = ui for i ∈ I and vi = ∞ otherwise. Then we call

F (u1, ..., ud) = Fα(|u1|g
α(|u1|), ..., |ud|g

α(|ud|))
d∏

i=1

sgn(ui)

a modular Lévy copula.11

We refer to the Lévy copulas Fα, α ∈ {−1, 1}d as the modules and to the set of functions
{gα, α ∈ {−1, 1}d} as the joinder.

Example 7.25. Consider the case d = 3. Let the module copulas Fα be given by (7.20)
for all α ∈ {−1, 1}3 and

(7.24) gα(u) =

{
1, for α1 = α2 = α3;
0, otherwise.

for all u ∈ [0,∞]. This produces the modular Lévy copula F on R
3
∞ with

F (u1, u2, u3) =
(
|u1|

−θ + |u2|
−θ + |u3|

−θ)−1/θ
(1u1>0,u2>0,u3>0 − 1u1<0,u2<0,u3<0),

a co-moving Clayton Lévy copula so to say.

11Tankov [77] shows that the condition (7.23) ensures uniformity of the margins.
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Example 7.25 uses a piecewise constant joinder in combination with equal modules.
Regarding parsimony of the copula model (and notational ease), we resort to equal modules
Fα

≡ F+ in the following. As far as the joinder is concerned, we restrict ourselves to
piecewise constant functions gα(u) ≡ gα ∈ R

+. We formulated a constructive approach to
gα in [80].

Remark 7.26. In the context of Example 7.25 the joinder gα = g{α1,α2,α3} is a probability
distribution, only if we condition on one of the values αi, i ∈ {1, 2, 3}. For instance,
(α2, α3) 7→ g{1,α2,α3} is a probability distribution function on {−1, 1}2.

Probabilistic interpretation The modules and the joinder of a general modular Lévy
copula allow of probabilistic interpretations in answer to Note 7.26.

Example 7.27. Take a look at the probability of, say, opposing jumps U2 < 0, U3 ≥ 0
given U1 = ξ under the conditional probability distribution Pξ[·] := P [·|U1 = ξ], that is
determined by (7.12). Identifying g(u1,u2,u3) with g(α1,α2,α3), it follows from

Kξ(0,∞) =
∂F+

∂u1

(|ξ|g(ξ,1,1), 0,∞)g(ξ,1,1) +
∂F+

∂u1

(|ξ|g(ξ,1,−1), 0,∞)g(ξ,1,−1)

+
∂F+

∂u1

(|ξ|g(ξ,−1,1),∞,∞)g(ξ,−1,1) +
∂F+

∂u1

(|ξ|g(ξ,−1,−1),∞,∞)g(ξ,−1,−1)

Kξ(0, 0) =
∂F+

∂u1

(|ξ|g(ξ,1,1), 0,∞)g(ξ,1,1) +
∂F+

∂u1

(|ξ|g(ξ,1,−1), 0,∞)g(ξ,1,−1)

+
∂F+

∂u1

(|ξ|g(ξ,−1,1),∞, 0)g(ξ,−1,1) +
∂F+

∂u1

(|ξ|g(ξ,−1,−1),∞,∞)g(ξ,−1,−1)

lim
c→∞

Kξ(−c, a) = 0 ∀a ∈ R∞

that

Pξ[U2 < 0, U3 ≥ 0] = Kξ(0,∞) − lim
c→∞

Kξ(−c,∞) −Kξ(0, 0) + lim
c→∞

Kξ(−c, 0)

=
∂F+

∂u1

(|ξ|g(ξ,−1,1),∞,∞)g(ξ,−1,1).

Further we have

∂F+

∂u1

(|ξ|g(ξ,−1,1),∞,∞)g(ξ,−1,1) =
∂F+

1

∂u1

(|ξ|g(ξ,−1,1))g(ξ,−1,1)

= g(ξ,−1,1),

because of the uniformity of F+ at the margins (as part of Definition 7.11). The argu-
mentation used here does not depend on a specific sign vector, and so the result can be
generalized to

Pξ[sgn(U2) = α2, sgn(U3) = α3] = g(ξ,α2,α3).

84



In the multidimensional case, (7.23) allows likewise of the interpretation of gα as a
conditional distribution function given αk ∈ {−1, 1} for one k ∈ {1, ..., d}:

Theorem 7.28. Let F be a modular Lévy copula on R
d
∞ with joinder gα ∈ R

+ and modules
Fα = F+. Further let U1 = ξ be a given realization. Then it holds

(7.25) Pξ[sgn(U2) = α2, ..., sgn(Ud) = αd] = g(ξ,α2,...,αd).

Proof. The proof is essentially the same as in the three-dimensional case. Suppose αi =
1, i = 2, ..., d, the other cases being derived analogously. It holds

Pξ[sgn(U2) = α2, ..., sgn(Ud) = αd] =
∑

(u2,...,ud)∈{0,∞}d−1

(−1)N(u2,...,ud)Kξ(u2, ..., ud)

=
∂F+

∂u1

(|ξ|g(ξ,α2,...,αd),∞, ...,∞)g(ξ,α2,...,αd)

by cancellation of terms, where we denote N(u2, ..., xd) = ♯{k : uk = 0}. Then uniformity
of F+ at the margins gives the desired result.

Theorem 7.28 distinguishes the piecewise constant joinder gα of a modular Lévy copula
as the joint jump sign probabilities. This suggests to analyze the conditional absolute
jumps size distribution of (U2, ..., Ud) given their signs (α2, ..., αd) and U1.

Example 7.29. Assume (α2, α3) = (−1, 1). Then

Pξ[U2 ∈ I

c(u2), U3 ∈ I

c(u3)|α2, α3] =
Pξ([0 ≥ U2 ≥ u2, 0 ≤ U3 ≤ u3]

g(ξ,−1,1)
,

where

I

c(x) =

{
[0, x), x > 0;
(−x, 0], x < 0.

By (7.12), it holds

Pξ[0 ≥ U2 ≥ u2, 0 ≤ U3 ≤ u3] = Kξ(0, u3) −Kξ(u2, u3) −Kξ(0, 0) +Kξ(u2, 0)

=
∂F+

∂u1

(|ξ|g(ξ,−1,1), |u2|g
(ξ,−1,1), |u3|g

(ξ,−1,1))g(ξ,−1,1).

Then the absolute jump size probability conditional on the jump signs is

Pξ[0 ≥ U2 ≥ u2, 0 ≤ U3 ≤ u3|α2, α3] =
∂F+

∂u1

(|ξ|g(ξ,−1,1), |u2|g
(ξ,−1,1), |u3|g

(ξ,−1,1)).

This result is not unexpected due to the modular design.

The arguments used in the three-dimensional case apply just as well for arbitrary di-
mensions:
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Theorem 7.30. Let F be a modular Lévy copula on R
d with joinder gα ∈ R

+ and modules
Fα = F+. Further let ξ = U1 be a given realization. Then it holds
(7.26)

Pξ[Ui ∈ I

c(ui), i = 2, ..., d|α2, ..., αd] =
∂F+

∂u1

(|ξ|gξ,α2,...,αd , |u2|g
(ξ,α2,...,αd), ..., |ud|g

(ξ,α2,...,αd)).

Proof. The proof is essentially the same as in the three-dimensional case. Suppose αi =
1, i = 2, ..., d, the other cases being derived analogously. By formula (7.12), we have

Pξ[Ui ∈ I

c(ui), i = 2, ..., d|α2, ..., αd] =
∑

vi∈{0,ui}
(−1)N(v2,...,vd)Kξ(v2, ..., vd)

=
∂F+

∂u1

(|ξ|g(ξ,α2,...,αd), u2, ..., ud)g
(ξ,α2,...,αd)

due to cancellation of terms. Together with formula (7.25), we conclude

Pξ[Ui ∈ I

c(ui), i = 2, ..., d|α2, ..., αd] =
∂F+

∂u1

(|ξ|g(ξ,α2,...,αd), u2, ..., ud)

for the stand-alone probability of the conditional size vector.

Theorem 7.30 shows that the distribution of the transformed absolute values of jumps
(|U2|g

α, ..., |Ud|g
α) conditional on the realized jump U1 = ξ and jump signs α is that

associated to the module F+ in the sense of (7.13) given |ξ|gα. This reinforces the idea of
a modular design in a way that jump sizes are close upon separated from jump signs.

Modular Clayton Lévy copula The modular Clayton Lévy copula is obtained from
using Clayton modules:

Example 7.31. For all α ∈ {−1, 1}3, let Fα = F+ be the positive Clayton Lévy 3-copula
given by (7.21),

F+(u1, u2, u3) =
(
u−θ1 + u−θ2 + u−θ3

)−1/θ
,

and gα(u1, u2, u3) ≡ gα the constant joinder defined by

(7.27) gα =

{
27
36
, α1 = α2, α1 6= α3;

3
36
, otherwise.

According to Definition 7.24, F+ and gα give the following modular Lévy copula F on R
3
∞:

(7.28) F (u1, u2, u3) =

{ (∑3
i=1(|ui|

27
36

)−θ
)−1/θ∏3

i=1 sgn(ui), α1 = α2, α1 6= α3;(∑3
i=1(|ui|

3
36

)−θ
)−1/θ∏3

i=1 sgn(ui), otherwise.

As to Theorem 7.28, the conditional probability of sign vector {α2, α3} ∈ {−1, 1}2 given
U1 = ξ is

(7.29) Pξ[sgn(Ui) = αi, i = 2, 3] =

{
27
36
, α1 = α2, α1 6= α3;

3
36
, otherwise.
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Figure 7.3: Contours of the (conditional) modular Lévy copula density in (1,2)-marginal
cross section at u3 = 50 using θ = 0.5 (left), (1,3)-marginal cross section at u2 = 50 using
θ = 0.5 (center), and (1,2)-marginal cross section at u3 = 50 using θ = 6 (right).

Regarding Theorem 7.30, the conditional probability distribution of jump sizes is deter-
mined by

Pξ[Ui ∈ I

c(ui), i = 2, 3|α2, α3] =

{ (∑3
i=1(|ui|

27
36

)−θ
)− 1+θ

θ (|u1|
27
36

)−1−θ, α1 = α2, α1 6= α3;(∑3
i=1(|ui|

3
36

)−θ
)− 1+θ

θ (|u1|
3
36

)−1−θ, otherwise.

We have plotted the contours for the bivariate marginal densities of copula (7.28) over
different module parameters in Figure 7.3. Each plot shows a 2-dimensional cross section
of the trivariate copula density from a different perspective but at the same level ui = 50
of the hidden ith variable.

• Given u3 = 50, the (1,2)-margin has greater mass in the 3rd quadrant than in the
others; a co-movement of the 1st and 2nd component in negative direction is more
likely than jumps in other directions.

• Given u2 = 50, the (1,3)-margin (or the (2,3)-margin, which we omit in good faith)
has greater mass in the 4th quadrant than in the others; negative jumps in the 3rd
component are most likely to go together with positive jumps in the 1rd (and 2nd)
component.

• Given u3 = 50, the level curves are the more clustered around 50 the higher the θ;
the probability masses into the absolute value of the hidden variable, if θ increases.

These findings are feasible with respect to Example 7.31 and the aforementioned notices of
the Lévy Clayton copula. In conclusion, the modularly designed Lévy copula generalizes
the Archimedean construction insofar as it allows for a more complex yet separate modelling
of jump sign and jump size dependence.
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7.4 Canonical Lévy copula functions

Using the family of conditional probability distributions associated to a Lévy copula, we
develop a new Lévy copula model and discuss some relevant properties [cf. 79].

Theorem 7.13 related conditional probability measures and Lévy copulas. This sug-
gests an alternative modelling approach: instead of designing the generic Lévy copula F ,
from which Kξ can be derived, we propose to define an implicit dependence structure by
modelling the conditional probability distribution Kξ in the first place. From there, the
multivariate Lévy measure obtains via the interrelations (7.10) and (7.11). Here the crux is
to keep the jump dependence structure separate from the marginal process evolution. This
is certainly not fulfilled per se. The following result establishes a sufficient (and necessary)
design of a qualified conditional measure:

Theorem 7.32. Let νi, i = 1, ..., d be marginal Lévy measures on R with corresponding
tail integrals Ui and f : (u1, ..., ud) 7→ (U−1

1 (u1), ..., U
−1
d (ud)). Further let K(ξ, ·) be a

conditional measure on R
d−1 such that ν = µ(f) in the sense of (7.10) and (7.11) is a Lévy

measure on R
d with margins νi. Then there exist Lévy copulas F i : R

2
∞ → R∞, i = 2, ..., d

and a family, indexed by ξ ∈ R, of ordinary copula functions Cξ : [0, 1]d−1
→ [0, 1] such

that

(7.30) Kξ(u2, ..., ud) = Cξ
(
G2
ξ(u2), ..., G

d
ξ(ud)

)
,

where

(7.31) Gi
ξ(u) := sgn(ξ)

∂

∂ξ
VF i((0 ∧ ξ, 0 ∨ ξ] × (−∞, u]).

Conversely, if F i : R
2
∞ → R∞, i = 2, ..., d Lévy copulas, Cξ : [0, 1]d−1

→ [0, 1], ξ ∈ R

ordinary copula functions and conditional measure K on R
d−1 defined as in (7.30), then

ν = µ(f) in the sense of (7.10) and (7.11) is a Lévy measure on R
d with margins νi.

Proof. First part. For all ξ ∈ R \N , there exists by Sklar’s theorem a (d− 1)-dimensional
ordinary copula Cξ and univariate marginal distribution functions Gi

ξ, i = 2, ..., d such that

Kξ(u2, ..., ud) = Cξ(G
2
ξ(u2), ..., G

d
ξ(ud)).

The Gi
ξ’s are distribution functions by (7.12) and the arguments used therefore. Our goal

is to represent the Gi
ξ’s by (7.31). For this purpose, let i ∈ {2, ..., d} and consider the

bivariate tail integral U1,i
ν . By Theorem 7.12, there exists a Lévy copula F i on R

2
∞ so that

(7.32) U1,i
ν (x1, xi) = F i(U1(x1), Ui(xi)).
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It follows from the construction of the Lévy measure ν that, for x1 < 0, xi ≥ 0 say,12

U1,i
ν (x1, xi) = −µ({u ∈ R

d : u1 ∈ (U1(x1), 0], ui ∈ (0, Ui(xi)]})

= −

∫ 0

U1(x1)

∫ Ui(xi)

0

∫

Rd−2

K(ξ, dx2, ...dxd)dξ

=

∫ U1(x1)

0

Kξ(∞, .., Ui(xi)..,∞) −Kξ(∞, .., 0, ..,∞)dξ.

By (7.12) and uniformity at the margins of an ordinary copula, the bivariate tail integral
can be written as

(7.33) U1,i
ν (x1, xi) =

∫ U1(x1)

0

Gi
ξ(Ui(xi)) −Gi

ξ(0)dξ.

Equating (7.32) and (7.33) leads to
∫ U1(x1)

0

Gi
ξ(Ui(xi)) −Gi

ξ(0)dξ = F i(U1(x1), Ui(xi)),

where we express the right hand side in terms of volume functions as follows

F i(U1(x1), Ui(xi)) = −VF i((U1(x1), 0] × (−∞, Ui(xi)])

+VF i((U1(x1), 0] × (−∞, 0]).

Differentiation then yields Gi
ξ(u) := −

∂
∂ξ
VF i((ξ, 0] × (−∞, u]). The general case x1, xi ∈ R

can be derived analogously.
Second part. In order to show that ν = µ(f) has margins νi, i = 1, ..., d, it suffices to

consider its marginal tail integrals U i
ν , i = 1, ..., d. The goal is to prove equality between

the input tail integrals Ui and the implicit tail integrals U i
ν . Similar to the first part, it

holds, for xi < 0 say,

U i
ν(xi) = −µ({u ∈ R

d : ui ∈ (Ui(xi), 0]}).

Since K(ξ, ·) is a probability measure on R
d−1, the first tail integral turns out to be

U1
ν (x1) = −µ({u ∈ R

d : u1 ∈ (U1(x1), 0)]})

=

∫ U1(x1)

0

∫

Rd−1

K(ξ, dx2, ...dxd)dξ

= U1(x1).

We further have, for the i-th tail, i ∈ {2, ..., d},

U i
ν(xi) = −µ({u ∈ R

d : ui ∈ (Ui(xi), 0]})

= −

∫

R

∫ 0

Ui(xi)

∫

Rd−2

K(ξ, dx2, ..., dxd)dξ.

=

∫

R

(Kξ(∞, .., Ui(xi), ..,∞) −Kξ(∞, .., 0, ..,∞)) dξ,

12The first identity is also used for the proof of Theorem 7.12 [cf. 45, Theorem 3.6].
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by means of the same arguments as used in the previous case. By (7.12) and uniformity
at the margins of an ordinary copula, it follows that

U i
ν(xi) =

∫

R

Gi
ξ(Ui(xi)) −Gi

ξ(0)dξ.

Since Gi
ξ(yi) is the derivative with respect to the integration variable, the desired result

follows from uniformity at the margins of a Lévy copula:
∫

R

(Gi
ξ(Ui(xi)) −Gi

ξ(0))dξ = −VF i(R∞ × (Ui(xi), 0])

= F i(∞, Ui(xi)) − F i(−∞, Ui(xi))

= F i
2(Ui(xi))

= Ui(xi).

The general case x1, xi ∈ R can be derived analogously. It is not yet concluded that ν
really is a Lévy measure satisfying the integrability condition

∫
Rd(|x|

2
∧ 1)ν(dx) <∞. But

this is automatically [cf. 77, Proof of Theorem 4.8] fulfilled, if its one-dimensional margins
are Lévy measures:

∫

Rd

(|x|2 ∧ 1)ν(dx) ≤

∫

Rd

d∑

i=1

(x2
i ∧ 1)ν(dx) ≤

d∑

i=1

∫

R

(x2
i ∧ 1)νi(dxi) <∞.

Remark 7.33. It is worth noting that Theorem 7.32 imposes a dependence structure be-
tween the marginal Lévy measures without mention of the Lévy copula. There still exists
a corresponding Lévy copula by Theorem 7.12, but it is only given implicitly through the
designed measure ν.

In the sense of Remark 7.33, we call the implicit Lévy copula the canonical Lévy copula
and the implicit pattern the canonization.13 Moreover, Theorem 7.32 distinguishes the first
margin, which we hereafter call the canon.

The proof (first part) of Theorem 7.32 also provides the groundwork for the following
result on the side:

Corollary 7.34. Let Cξ, ξ ∈ R be arbitrary ordinary copulas, F i, i = 2, ..., d Lévy copulas
and ν as in the previous theorem. Then the marginal Lévy copulas satisfy F 1,i = F i, ∀i ∈
{2, ..., d}.

Corollary 7.34 indicates that the building block Lévy copulas F i, i = 1, ..., d coincide
with the bivariate marginal Lévy copulas F 1,i, i = 2, ..., d, called the canon dependence
structures. The following lemma targets the bivariate Lévy copulas F i,j, i, j = 2, ..., d,
called the non-canon dependence structures, in a particular case. First reasons for our
naming is given thereby:

13Luciano and Schoutens [51] and Tankov [77] give two alternative approaches to bringing together
ordinary and Lévy copula models.
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Lemma 7.35. Let Cξ, ξ ∈ R be arbitrary ordinary copulas, F i = F‖, i = 2, ..., d and ν as in
the previous theorem. Then the marginal Lévy copulas satisfy F i,j = F‖, ∀i, j ∈ {1, ..., d}.

Proof. Let F i = F‖ = min{|x1|, |xi|}1S+(x1, xi) sgn(x1) sgn(xi). Then

(7.34) Gi
ξ(xi) = 1xi≥ξ≥0 + 1ξ<0 − 10>ξ≥xi

.

It suffices again to consider the tail integrals. We want to show that the implicit bivariate
tail integral U i,j

ν can be represented as the univariate tails Ui, Uj, that are coupled by the
complete dependence copula F‖. For this purpose, we renew the argumentation from the
proof of the second part of Theorem 7.32 and obtain

U i,j
ν (xi, xj) =

∫

R

[Kξ(∞, Ui(xi), Uj(xj),∞) −Kξ(∞, ., Ui(xi), 0, .,∞)

−Kξ(∞, ., 0, Uj(xj), .,∞) +Kξ(∞, ., 0, 0, .,∞)]dξ.

Assuming ξ < 0, we have

Kξ(∞, .., Ui(xi), .., Uj(xj), ..,∞) = Ci,j
ξ ({1Uk(xk)≥ξ≥0 + 1ξ<0 − 10>ξ≥Uk(xk)}k=i,j)

= (1ξ<0 − 10>ξ≥Ui(xi)) · (1ξ<0 − 10>ξ≥Uj(xj))

= 1ξ≤Ui(xi),ξ≤Uj(xj)

Kξ(∞, .., Ui(xi), .., 0, ..,∞) = Ci,j
ξ (1Ui(xi)≥ξ≥0 + 1ξ<0 − 10>ξ≥Ui(xi), 1ξ<0)

= (1ξ<0 − 10>ξ≥Ui(xi)) · 1ξ<0

= 1ξ≤Ui(xi)

Kξ(∞, .., 0, .., Uj(xj), ..,∞) = Ci,j
ξ (1ξ<0, 1Ui(xi)≥ξ≥0 + 1ξ<0 − 10>ξ≥Ui(xi))

= 1ξ<0 · (1ξ<0 − 10>ξ≥Uj(xj))

= 1ξ≤Uj(xj)

Kξ(∞, .., 0, .., 0, ..,∞) = Ci,j
ξ (1ξ<0, 1ξ<0)

= 1,

by (7.30), (7.34) and the properties of ordinary copula functions. This gives us immediately
the characteristic integrand

1ξ≤Ui(xi),ξ≤Uj(xj) − 1ξ≤Ui(xi) − 1ξ≤Uj(xj) + 1 = 1ξ≥Ui(xi),ξ≥Uj(xj).

In a similar way, we obtain 1ξ≤Ui(xi),ξ≤Uj(xj) for ξ > 0. Then

U i,j
ν (xi, xj) =

∫ 0

−∞
1ξ≥Ui(xi),ξ≥Uj(xj)dξ +

∫ ∞

0

1ξ≤Ui(xi),ξ≤Uj(xj)dξ

= min{|Ui(xi)|, |Uj(xj)|}1S+(xi, xj).

Lemma 7.35 demonstrates that canonization carries complete dependence to any bi-
variate margin, no matter what the association between the non-canon variables may be.
This is a very strong result and enforces the interpretation of the projected variable as the
system’s rule, the canon.
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Canonical Clayton Lévy copula The canonical Clayton Lévy copula is the combina-
tion of the Clayton ordinary and the general Clayton Lévy copula function.

Example 7.36. For ξ ∈ R, let Cξ be the ordinary Clayton 2-copula given by

(7.35) Cξ(u1, u2;κ) = (u−κ1 + u−κ2 − 1)−1/κ,

and F i, i = 2, 3 be general Clayton Lévy 2-copula functions given by

(7.36) F i(u1, ui) =
(
|u1|

−θ + |ui|
−θ)−1/θ

(η1u1ui≥0 − (1 − η)1u1ui<0).

As to Tankov [cf. 77, p.180], a straight forward computation leads to

Gi
ξ(ui) := sgn(ξ)

∂

∂ξ
VF ((0 ∧ ξ, 0 ∨ ξ] × (−∞, ui])

=



(1 − η) +

(
1 +

|ξ|

|ui|

θ
)−1−1/θ

(η − 1ui<0)



 1ξ≥0

+



η +

(
1 +

|ξ|

|ui|

θ
)−1−1/θ

(1ui≥0 − η)



 1ξ<0.

Hence, the conditional cdf Kξ associate to the canonical Clayton Lévy copula is given in
closed form by

(7.37) Kξ(u2, u3) = (G2
ξ(u2)

−κ +G3
ξ(u3)

−κ
− 1)−1/κ,

where Gi
ξ as in (7.37).

Figure 7.4 illustrates the implicit Lévy copula associate to the conditional cdf (7.37).
It shows the level curves of its (2,3)-marginal density (the other margins being clear from
Proposition 7.34 and our findings on the general Clayton Lévy copula) over various para-
meter choices. Each plot represents a bivariate cross section of the trivariate density as
viewed from the (2, 3)-perspective at the angle u1 = 50. We observe that

• Given u1 = 50, the (2,3)-margin has greater mass in the 1st quadrant than in the
others; a co-movement of the 2nd and 3rd component in positive direction is more
likely than jumps in other directions.

• Given u1 = 50, the level curves are the more clustered around 50 the higher the θ;
the probability masses into the absolute value of the hidden variable, if θ increases.

• If κ increases, then the contours become arrow shaped; the dependence structure is
asymmetric.

As to Lemma 7.35, these observations enforce the typical jump sign and jump size de-
pendence structures of the Lévy Clayton copula function. The asymmetric dependence
structure of the ordinary Clayton copula [cf. Section A.1 and 31] are obvious, too. Alto-
gether, the canonically designed Lévy copula offers a radically new way to non-standard
dependence patterns and models asymmetries as well as driving jump forces.
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Figure 7.4: Contours of the (conditional) canonical Lévy copula density in (2,3)-marginal
cross section at u1 = 50 using η = 0.75, θ = 0.5, κ = 0.5 (left), (2,3)-marginal cross section
at u1 = 50 using η = 0.75, θ = 6, κ = 0.5 (center), and (2,3)-marginal cross section at
u1 = 50 using η = 0.75, θ = 6, κ = 6 (right).

7.5 Summary

In this chapter we isolated the jump dependence structure of multidimensional Lévy
processes using Lévy copula functions. With only a few parametric models available, we
developed new Lévy copulas and gave innovative probabilistic interpretations for existent
ones.

Building on a short and precise guide to Lévy processes, we decoupled the dependence
structure of a multidimensional jump processes from its marginal dynamics using Lévy
copula functions (much in the same way as in the case of ordinary copulas). We gave basic
properties and made ourselves familiar with the fundamental and the Archimedean Lévy
copulas.

Then we came to appreciate a clear distinction of jump sign and jump size depen-
dence by instance of the general Lévy Clayton copula. We elaborated on this idea in the
context of modularly designed Lévy copulas, that universalize the separate modelling of
jump sign and jump size dependence. Our contribution here is the interpretation of the
model’s two component parts as jump sign and jump size probabilities. We recognised this
interpretation by the contour lines of the density of the modular Lévy copula.

Then we developed the new canonical design of a Lévy copula. Our main contribution
here was a representation result, that gives sufficient and necessary model conditions for
the canonical Lévy copula function. Continuing, we gave proof to the built-in projection of
a driving jump force component. This model feature was then reinforced by the graphical
illustration of the contours of the canonical Lévy copula density.
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Chapter 8

Simulation of Lévy processes

In this chapter we simulate Lévy processes whose dependence structure is given by a Lévy
copula function. Here series representations prove very useful in sampling from copula
based models. We reveal, in particular, that the modular and the canonical design are
very well suited to this approach.

Section 8.1 expands a general Lévy process into a series of random variables. This
suggests the simulation approach. Full detail is given to the representation of a R

d-valued
symmetric α-stable process. Then multivariate Lévy processes are represented in the spe-
cific case of the Clayton, the modular and the canonical Lévy copula. Section 8.2 develops
the explicit sampling procedure for general Lévy processes. This is applied to the R

d-valued
symmetric α-stable process first. Then the trajectories from coupled Lévy processes are
generated. Here the modular and the canonical construction of Lévy copulas prepare effi-
cient sampling approaches.

The use of series representations in conjunction with Lévy copulas originates mostly in
Cont and Tankov [20] and Tankov [77]. The implementation of modularly and canonically
coupled Lévy processes presents merely new material.

8.1 Series representations

For general Lévy processes, infinite variation processes in particular, simulation is a delicate
problem, because jumps may arrive infinitely often in every time interval. This excludes
a simple adding of jumps to the Brownian component as suggested by (7.5). Here series
representations provide a natural sampling approach.

A general representation theorem The original representation theorem is due to
Rosinski [67]:

Theorem 8.1 ([20], Theorem 6.2). Let {Vk : k ≥ 1} be i.i.d. sequence of random variables
on a measurable space S. Assume that {Vk : k ≥ 1} is independent of the sequence
{Γk : k ≥ 1} of jumping times of a standard Poisson process [cf. 20, Section 2.5.3]. Let
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{Uk : k ≥ 1} be a sequence of independent random variables, uniformly distributed on [0, 1]
and independent from {Vk : k ≥ 1} and {Γk : k ≥ 1}. Let

H : (0,∞) × S → R
d

be a measurable function. We define measures on R
d by

σ(r, B) = P [H(r, Vk) ∈ B], r > 0, B ∈ B(Rd)

ν(B) =

∫ ∞

0

σ(r, B)dr

and denote

A(s) =

∫ s

0

∫

|x|≤1

xσ(r, dx)dr, s > 0.

(1) If ν is a Lévy measure on R
d, that is,

ν({0}) = 0 and

∫

Rd

(|x|2 ∧ 1)ν(dx) <∞

and the limit γ = lims→∞A(s) exists in R
d then the series

∞∑

k=1

H(Γk, Vk)1Uk≤t

converges almost surely and uniformly on t ∈ [0, 1] to a Lévy process with character-
istic triplet (γ, 0, ν), that is, with characteristic exponent

ψ(z) = iz.γ +

∫

Rd

(eiz.x − 1 − iz.x1|x|≤1)ν(dx).

(2) If ν is a Lévy measure on R
d and for each v ∈ S the function

r → |H(r, v)| is nondecreasing

then ∞∑

k=1

H(Γk, Vk)1Uk≤t − t[A(k) − A(k − 1)]

converges almost surely and uniformly on t ∈ [0, 1] to a Lévy process with character-
istic triplet (0, 0, ν).

Theorem 8.1 shows us how to expand a multivariate Lévy process into an infinite series
of random variables.1 A closed form series representation is available for an R-valued
α-stable process. This requires to reformulate the Lévy density of an α-stable process:

1Cont and Tankov [cf. 20, Remark 6.6] show that the truncated series

Xτ
t =

∑

k:Γk≤τ

H(Γk, Vk)1Uk≤t − t[A(k) −A(k − 1)]

is a compound Poisson process with characteristic triplet (0, 0, ντ ), where ντ (A) =
∫ τ

0
σ(r,A)dr. An

alternative approximation of an infinite activity Lévy processes by a compound Poisson process is discussed
there [cf. 20, Section 6.3], too.
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Lemma 8.2 (cf. [20], Example 6.15). Consider a symmetric random variable V such that
E[|V |

α] <∞. Denote the distribution of V by P V . Then we can write for any measurable
set B ∫ ∞

0

r
1
αP V (r

1
αB)dr =

α

2
E[|V |

α]

∫

B

dx

|x|1+α
,

where the set r
1
αB contains all points such that r−

1
αx ∈ B.

Using Lemma 8.2, the series representation of an α-stable Lévy process follows direct
from Theorem 8.1:

Example 8.3. Let ν be a symmetric α-stable process on R with density (7.8), choosing

λ+ = λ− = 1, and tail integral U . Define σ(r, B) = 1
α
r

1
αP V (r

1
αB) and V as a random

variable taking values 1 or −1 with equal probability. Then Lemma 8.2 applies:

∫ ∞

0

σ(r, I(x)) =
1

2

∫

I(x)

ν(dx)

=
1

2
U(x).

On the other hand, for H(r, v) = U (−1)(r)v, we have

∫ ∞

0

σ(r, I(x)) =

∫ ∞

0

P [U (−1)(r)Vi ∈ I(x)]dr

=

∫ U(x)

0

P [sgn(Vk) = sgn(x)]dr

=
1

2
U(x)

by Theorem 8.1. Because P V is symmetric, A(s) = 0 and we find by application of Theorem
8.1 that ∞∑

k=1

(αΓk)
− 1

αVk1Uk≤t

is an α-stable process on the interval [0, 1], where Vk, k ≥ 1 are independent and distributed
with the same law as V , and Uk, k ≥ 1 are independent uniform on [0, 1].

There are other R-valued Lévy processes, which admit explicit series representations
[cf. 20, Example 6.4 and Example 6.16]. However, it is cumbersome to find closed form
expansions of general (dependent) Lévy processes, although Theorem 8.1 is formulated for
the multidimensional case already.
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A representation using Lévy copulas Tankov [77] has reformulated the representa-
tion theorem to incorporate Lévy copulas:

Theorem 8.4 ([77], Theorem 5.6). Let ν be a finite variational Lévy measure2 on R
d with

marginal tail integrals Ui, i = 1, ..., d, Lévy copula F and conditional probability distribution
K(ξ, ·). Let {Vk : k ≥ 1} be a sequence of independent random variables, uniformly dis-
tributed on [0, 1]. Introduce d random sequences {Γ1

k : k ≥ 1}, ..., {Γdk : k ≥ 1}, independent
from {Vk : k ≥ 1} such that

(1) N =
∑∞

k=1 δΓ1
k

is a Poisson random measure on R with intensity measure λ.

(2) Conditionally on Γ1
k, the random variable (Γ2

k, ...,Γ
d
k) is independent from Γil with

l 6= k and all i and is distributed on R
d−1 with law K(Γ1

k, dx2, ..., dxd).

Then {Xt : 0 ≤ t ≤ 1} with

(8.1) X i
t =

∞∑

k=1

U−1
i (Γik)1[0,t](Vk), i = 1, ..., d

is a Lévy process on the time interval [0, 1] with characteristic exponent

ψXt(z) =

∫

Rd

(eiz.x − 1)ν(dx).

Theorem 8.4 involves the conditional probability distribution associated to the Lévy
copula inasmuch as it supports the separation of the dependence structure and the margins.

Remark 8.5. The conditional probability distribution Kξ is known from Theorem 7.13.

The following lemma constructs an initial series {Γ1
k : k ≥ 1} so that condition (1) in

Theorem 8.4 is satisfied:

Lemma 8.6 (cf. [77], Remark 5.4). Let {Γ1
k, k ≥ 1} be an alternating series of jump times

{Tk : k ≥ 1} of a Poisson processes with intensity equal to 2, hence Γ1
k = Tk(−1)k, k ≥ 1.

Then N =
∑∞

k=1 δΓ1
k

is a Poisson random measure on R with intensity measure λ.

The series representation of a symmetric α-stable process in Example 8.3 is slightly
different from using (8.1):

Example 8.7. Let ν be a univariate α-stable Lévy measure with density (7.8) using
λ+ = λ− = 1 and tail integral U . It follows from Theorem 8.4 that

∞∑

k=1

(αΓk)
− 1

α 1[0,t]Vk

is an α-stable process on the interval [0, 1], where Vk, k ≥ 1 are independent and uniformly
distributed on [0, 1], and Γk, k ≥ 1 are Poisson arrivals as described in Lemma 8.6.

2Tankov [77, Theorem 5.7] generalizes this result to the case of an infinite variational Lévy measure
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Of course, there is no need of a K(Γ1
k, ·)-distributed random variable (Γ2

k, ...,Γ
d
k) for all

k ≥ 1 in the 1-dimensional case. Then let us expand a Lévy process {Xt} on R
2 with

symmetric α-stable margins and an Archimedean dependence structure:

Example 8.8. Let ν1, ν2 be univariate α-stable Lévy measures with density (7.8) using
λ+ = λ− = 1 and tail integral U1, U2. Further let K(ξ, ·) be the conditional probability
measure (7.37) associated to the general Clayton Lévy 2-copula (7.22). By Theorem 8.4,
we have that ∞∑

k=1

(αΓik)
− 1

α 1[0,t]Vk, i = 1, 2

is an α-stable process on R
2 with general Clayton Lévy copula, where Vk, k ≥ 1 are

independent and uniformly distributed on [0, 1], Γ1
k, k ≥ 1 are Poisson arrivals as described

in Lemma 8.6, and the cdf of Γ2
k, k ≥ 1 is Kξ.

The following examples give in the same manner the series representations of Lévy
processes {Xt} on R

3 with modular and canonical type dependence structures as defined,
respectively, in Section 7.3 and Section 7.4:

Example 8.9. Let ν1, ν2, ν3 be univariate α-stable Lévy measures with densities (7.8)
using λ+ = λ− = 1, and K(ξ, ·) be the conditional measure induced by the probabilities
(7.29) and (7.30). Let Γ1

k, k ≥ 1 be as in the previous Example, and for all k ≥ 1, let the
conditional cdf of (Γ2

k,Γ
3
k) given Γ1

k be KΓ1
k
. By Theorem 8.4, the process {Xt : 0 ≤ t ≤ 1}

on R
3 with

X i
t =

∞∑

k=1

(αΓik)
− 1

α 1[0,t](Vk), i = 1, ..., 3

is a Lévy process on the time interval [0, 1] with α-stable margins and modular Lévy copula
(7.28).

Example 8.10. Let ν1, ν2, ν3 be univariate α-stable Lévy measures with densities (7.8)
using λ+ = λ− = 1, and K(ξ, ·) be the conditional distribution given explicitly by its cdf
(7.37). Define the series {Γik}, i = 1, ..., 3 as in the previous example. Then the process
{Xt : 0 ≤ t ≤ 1} on R

3 with

X i
t =

∞∑

k=1

(αΓik)
− 1

α 1[0,t](Vk), i = 1, ..., 3

is a Lévy process on the time interval [0, 1] with α-stable margins and a canonical Clayton
Lévy copula induced by (7.35) and (7.36).

Examples 8.7 through 8.10 show that series representations of dependent Lévy processes
with equal margins only differ in terms of the conditional probability distribution associated
to the Lévy copula.
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8.2 Sampling dependent jumps

With regard to Examples 8.7, 8.8, 8.9 and 8.10, we simulate (dependent) Lévy processes
by series representations. Efficiency of the sampling methods is concerned, too.

Together, Theorem 8.4 and Lemma 8.6 form a constructive approach to the generation
of dependent Lévy paths. What is left is truncation of the infinite series (8.1). Here Tankov
[cf. 77, Section 5.3] suggests to randomly truncate the series in the following way:

(8.2) X i
t =

∑

k:Γ1
k<τ

U−1
i (Γik)1[0,t](Vk), i = 1, ..., d,

where τ > 0 is some truncation level. This is employed in Algorithm 13, which contains
the general procedure to sample paths of a dependent Lévy process {Xt} on R

d with
dependence specified by some Lévy copula F (which is given either explicitly or implicitly).
Starting from the scratch, we instance the sampling of a R-valued Lévy process {Xt} in

Algorithm 13: Simulation of dependent Lévy processes

Generates trajectory of a Lévy process {Xt} on R
d via series representation. The

dependence is given by a Lévy copula F , endowed with its associated conditional cdf
K(ξ, ·). The marginal Lévy measures have tails U1, ..., Ud. Let a number τ be fixed
depending on the required precision and computational capacity.;

Initialize k = 0,Γ1
0 = 0;

while |Γ1
k| < τ do

Set k = k + 1;
Simulate exponential(2) Tk and set Γ1

k = (−1)k(|Γ1
k−1| + Tk);

Simulate (Γ2
k, ...,Γ

d
k) from distribution K(Γ1

k, ·);
Simulate Vk uniform on [0, 1];

end
The trajectory is then given by X i

t =
∑

k:Γ1
k<τ

U−1
i (Γik)1[0,t](Vk), i = 1, ..., d.;

the context of Example 8.7.3 The resulting is plotted in Figure 8.4.

• The higher the α the more frequent occur the jumps; α determines the jump activity.

• The lower the τ the more jumps are discarded; τ is the truncation level of small
jumps.

Hence α is responsible for the jump intensity and τ determines the jump threshold.

3The Lévy measure ν of an α-stable process is of finite variation, if and only if α ∈ [0, 1]. Hence, for
α > 1, Theorem 8.4 does not apply. Even so we stick with Algorithm 13 by thinking of the truncated Lévy
measure νε(x) = ν(x)1|x|>ε where ε = U−1(τ)., which produces finite variational processes in any case.
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Figure 8.1: Sample paths of α-stable Lévy process on R using α = 0.5, τ = 10000 (left),
α = 1.5, τ = 10000 (center), and α = 1.5, τ = 100 (right).

Having discussed the simulation of an α-stable process, let us now turn to the generation
of sample paths from dependent Lévy processes. Here the simulation from the conditional
measure associate to a Lévy copula was found to be crucial. That is why we forego the
implementation details on the sampling of the marginal process in the following.

Lévy Clayton copula sampling After the conditional cdf Kξ associated to the general
Lévy Clayton 2-copula was given by (7.37), the quantile functionK−1

ξ can also be evaluated
in closed form [cf. 77, Section 5.3]:

K−1
ξ (u) = B(ξ, u)|ξ|

{
C(ξ, u)−

θ
θ+1

− 1
}−1/θ

(8.3)

with B(ξ, u) = sgn(u− 1 + η)1ξ≥0 + sgn(u− η)1ξ<0

and C(ξ, u) =

{
u− 1 + η

η
1u≥1−η +

1 − η − u

1 − η
1u<1−η

}
1ξ≥0

+

{
u− η

1 − η
1u≥η +

η − u

η
1u<η

}
1ξ<0.

As a consequence, for every conditioning realization Γ1
k in Algorithm 13, a K(Γ1

k, ·)-
distributed random variable on R can be obtained by the quantile transformation of a
uniform random variable U ∼ UNF (0, 1).

We implement Algorithm 13 in the context of Example 8.8, using (8.3). Figure 8.2
shows the trajectories of two dependent α-stable processes over various configurations,
where we keep the stability index α = 1.5 and the truncation level τ = 10000 fixed.4

• If η ≫ 0 and θ ≫ 0, then the trajectories are merely congruent; together, strong
jump sign and jump size dependence leads to almost identical jump behavior.

4Figure 8.2 can be compared to the dependent variance gamma processes pictured in Luciano and
Schoutens [cf. 51, Figure 1] and Tankov [cf. 78, Figure 1]
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Figure 8.2: Sample paths of 1.5-stable Lévy process on R
2 with Clayton Lévy copula using

η = 1, θ = 6 (left), η = 0.5, θ = 6 (center), and η = 0.5, θ = 0.5 (right).

• If η = 0.5 and θ ≫ 0, then there are congruent as well as mirror-inverted partial
trajectories; weak jump sign dependence and strong jump size dependence produces
divergent jump processes.

• If η ≪ 1 and θ the trajectories are close to being decoupled from each other; weak
jump sign and jump size dependence results in an almost independent jump behavior.

Reconsidering the roles of the Lévy Clayton copula parameters from Section 7.2, these
findings are not unexpected. The sample paths indicate the same distinction between
jump sign and jump size dependence, which we analyzed before.

Quantile transforms of the conditional measures associated with Lévy copulas are gen-
erally not available in closed form. This makes numerical sampling procedures necessary.
It is true that we know the conditional distribution K(Γ1

k, ·) associated with any Lévy cop-
ula F by formula (7.12), but its complexity interferes in most cases with a simple random
number generation.

Modular Lévy copula sampling The probabilistic interpretations of the modular Lévy
copula are derived on the assumption of a given realization. This goes obviously along with
the conditional perspective of point (2) in Theorem 8.4.

Regardless of the underlying Lévy copula, the conditional measure K(ξ, ·) on R
d−1 is

totally described by the probabilities Pξ[Xi ∈ I

c(xi), 2 ≤ i ≤ d], (x2, ..., xd) ∈ R
d−1. By a

simple conditioning argument, we have

Pξ[Xi ∈ I

c(xi), i = 2, ..., d] = Pξ[|Xi| ≤ |xi|, i = 2, ..., d|α2, ..., αd]

· Pξ[sgn(Xi) = αi, i = 2, ..., d].

In the case of the modular Lévy copula, the terms on the right hand side are given explicitly
by (7.25) and (7.26). Then the general sampling procedure is as follows:

(1) pick a corner α according to gα given α1 = sgn(ξ),
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Figure 8.3: Sample paths of 1.5-stable Lévy process on R
3 with modular Lévy copula using

gα as in (7.27), θ = 0.5 (left), gα as in (7.27), θ = 6 (center), gα as in (7.24), θ = 6 (right).

(2) and simulate absolute jump sizes (|x2|, ..., |xd|) according to Fα given |x1| = ξ.

This is formulated in Algorithm 14, which can be used to sample from the conditional
measure associate to a modular Lévy copula.

Algorithm 14: Simulation of conditional measure associated to modular Lévy copula

Samples (x2, ..., xd) from conditional measure K(x1, ·) given a realization x1, a Lévy
copula F+ on [0,∞]d and constant joinder gα.;

Pick corner α according to the conditional probability function associated to gα;
Simulate absolute jump sizes (y2, ..., yd) from the conditional distribution
associated to F+ with conditioning argument |x1|g

α;
Set xi = αiyi/g

α, i = 2, ..., d;
The conditional sample vector is given by (x2, ..., xd);

Of course, we can not free ourselves from the conditional distribution associated to a
Lévy copula by conditioning arguments. However we do produce relief in a way that the
distribution is now associated to a positive Lévy copula, which is more manageable. The
corner picking should not be harmful either, because, in most cases, one is dealing with
simple discrete probability distributions.

Then Algorithm 14 fits well into Algorithm 13. We implement Algorithm 14 to sample
a R

3-valued Lévy process with modular Lévy copula in the context of Examples 8.9 and
7.31 over various dependence configurations, where we fix α = 1.5 and τ = 1000. The
results are shown in Figure 8.3.

• If θ < 1 and gα as defined in (7.27), then the trajectories are divergent; a moderate
sign coupling and a weak jump size dependence induce a loose overall coupling.
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• If θ ≫ 1 and gα as defined in (7.27), then the 1st and the 2nd trajectories are nearly
aligned while either of these and the 3rd trajectory are rather mirror-inverted; for
deeply dependent jump sizes, gα determines the jump behavior.

• If θ ≫ 1 and gα as defined in (7.24), then the trajectories are almost congruent; strong
jump sign and strong jump size dependence yields almost completely dependent
jumps.

These observations are comparable to the analysis of the modularly designed Lévy copula
in Section 7.3. Here the separate modelling of jump sign and jump size dependence is
reinforced. We plotted the scatters of the respective random jump draws in [80].

Canonical Lévy copula sampling Theorem 8.4 requires a slight modification in order
to match Tankov’s series representations of generally dependent Lévy processes with a
canonically designed dependence structure:

Theorem 8.11. Let vi be marginal Lévy measures on R with tail integrals Ui, i = 1, ..., d
and K(ξ, ·) be a conditional probability measure on R

d−1, such that ν = f(µ) with µ
and f as before is a Lévy measure preserving the margins. Further let {Vk : k ≥ 1} be
a sequence of independent random variables, uniformly distributed on [0, 1]. Introduce d
random sequences {Γ1

k : k ≥ 1}, ..., {Γdk : k ≥ 1}, independent from {Vk : k ≥ 1} such that

(1) N =
∑∞

k=1 δΓ1
k

is a Poisson random measure on R with intensity measure λ

(2) Conditionally on Γ1
k, the random vector (Γ2

k, ...,Γ
d
k) is independent from {Γil} with

l 6= k and all i and is distributed on R
d−1 with law K(Γ1

k, dx2, ..., dxd).

Then {Xt} defined by

X i
t =

∞∑

k=1

U−1
i (Γik)1[0,t](Vk), i = 1, ..., d

is a Lévy process on the time interval [0, 1] with characteristic exponent

ψXt(z) =

∫

Rd

(eiz.x − 1)ν(dx).

Proof. The proof is essentially the same as given in Tankov [77] for the case of a generic
Lévy copula. The only difference is that the copula is given implicitly, although it exists
by Theorems 7.12 and 7.32, and so the proof applies.

Hence Algorithm 13 applies, where simulation of the conditional probability measure
K(Γ1

k, ·) remains crucial. Here the canonical approach (7.30) is advantageous insofar as
the sampling from a Kξ only requires the following two steps:

(1) simulate (v2, ..., vd) from the ordinary copula function Cξ,
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Algorithm 15: Simulation of conditional measure associate to canonical Lévy copula

Samples (x2, ..., xd) from conditional measure K(x1, ·) given a canon realization x1,
an ordinary copula C and Lévy copulas F i, i = 2, ..., d.;

Generate sample (u2, ..., ud) from ordinary copula Cx1 ;
Set xi = (Gi

x1
)−1(ui), i = 2, ..., d with

Gi
x1

(x) = sgn(ξ) ∂
∂ξ
VF i((0 ∧ ξ, 0 ∨ ξ] × (−∞, x]);

The conditional sample vector is given by (x2, ..., xd);

(2) and compute the quantile transforms ui = (Gi
ξ)

−1(vi) for i = 2, ..., d.

This idea is formulated in Algorithm 15, that may be used to sample from a conditional
measure K(ξ, ·) associated to a canonical Lévy copula.

It is worth mentioning that simulation from the conditional distribution associated to
a canonical Lévy copula can be managed without high dimensional Lévy copulas. All we
need to worry about is Lévy 2-copulas and ordinary (d− 1)-copulas. This produces relief
to the simulation problem, which is complex otherwise [cf. 79, Section 3.2].

Remark 8.12. We discussed the sampling from ordinary copula functions in Chapter 3.

Remark 8.13. We gave the inverse of the conditional distribution function Gi
x1

associated
to the bivariate Lévy Clayton copula analytically in (8.3).

Then Algorithm 15 fits well into Tankov’s Algorithm 13. We implement Algorithm 13
to sample a R

3-valued Lévy process with canonical Lévy copula in the context of Example
8.10 over various dependence configurations, where we keep α = 1.5 and τ = 1000 fixed.
Figure 8.3 shows the resulting sample paths, where we restrict ourselves to perfect jump
sign dependence η = 1 for the better interpretation.

• If θ < 1 and κ < 1, then the trajectories are merely decoupled from one another,
albeit the 2nd and the 3rd margin signify a minimum of interdependence; neither
the canon nor the non-canon dependence is strong and so the margins are nearly
independent unless the nested structures add up.

• When increasing the κ, the 2nd and 3rd trajectory converge, while the 1st marginal
trajectory is still divergent; the ordinary copula parameter κ is responsible for the
stand alone (conditional) dependence of the non-canon variables.

• When increasing the θ instead, the 2nd and the 3rd component converge to the
1st; the dependence on the canon overcomes the conditional association between the
non-canon margins.

These results correspond to our analytical findings on the canonical Lévy copula of Section
7.4. Moreover, we detected graphically that the conditional dependence, which is induced
by the ordinary copula parameter, is carried forward to the association between non-canon
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Figure 8.4: Sample paths of 1.5-stable Lévy process on R
3 with canonical Lévy copula

using θ = 0.5, κ = 0.5 (left), θ = 0.5, κ = 6 (center), θ = 6, κ = 0.5 (right).

margins only. The canon dependence, which is characterized by the Lévy copulas, proves
relevant for all pairwise associations. This supports the idea of a driving force component.
We plotted the scatters of the respective random jump draws in [79].

8.3 Summary

In this chapter we developed simulation procedures for multidimensional Lévy processes on
the basis of truncated series representations. Having discussed the general procedure, we
showed a large interest in sampling modularly and canonically dependent Lévy processes.

First, we thoroughly expanded a 1-dimensional α-stable process to an infinite series of
random variables in the light of the general representation theorem.

Then we came to appreciate that Tankov’s modified series expansion offers a very
elegant way to include dependence issues. This was explained using the example of α-
stable margins in combination with the general Clayton, the modular and the canonical
Lévy copula.

We formulated the respective sampling approaches. Our contribution here is that we
worked out tailor-made solutions for the modular and the canonical Lévy copula. Specif-
ically, we exploited the probabilistic interpretation of the modular Lévy copula in so far
as it allows us to simulate the jump signs and the jump sizes separately. The canonical
design, instead, proved advantageous by the use of ordinary copula methods.

Finally, we implemented the procedures so-devised. Regarding the dependent sample
paths, we rediscovered the analytical features of both Lévy copula models, such as the sharp
distinction of jump sign and jump size or the implication of a driving jump component.
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Chapter 9

Lévy processes in finance

In this chapter we introduce exponential Lévy processes into derivative pricing models.
This entails measure transformations in Lévy models and semianalytical pricing techniques.

Having prepared financial markets with exponential Lévy assets, Section 9.1 describes
the equivalent change of measure in full detail with regard to the martingale property of
an exponential Lévy process. This is subsequently matched with price relations between
plain vanilla and exotic options. Section 9.2 then targets semianalytical pricing techniques.
Here Fourier inversion is the approach of choice.

The presentation of exponential Lévy models in this chapter follows closely along Cont
and Tankov [20] and Eberlein and Papapantoleon [29]. The pricing techniques originate
mainly from Raible [64] and Carr and Madan [14].

Keeping to the standard assumptions in the literature [cf. 64, 29], we restrict ourselves
to Lévy processes, which satisfy the following integrability conditions:

Assumption 9.1 (cf. [64], Section 3.2). For a Lévy process {Xt} on R
d with characteristic

triplet (γ,A, ν), it holds ∫

|x|≤1

|x|ν(dx) <∞,

and there exists M > 1 such that
∫

|x|>1

eu.xν(dx) <∞ ∀u ∈ [−M,M ]d.

Assumption 9.1 characterizes finite variational Lévy processes {Xt} on R
d with expo-

nential moments up to an order M > 1.

Remark 9.2. α-stable processes are of finite variation, only if α < 1 but fail to have an
exponential moment of any order. In contrast, Lévy processes whose Lévy measure is either
discrete or of Merton type are of finite variation in all cases.
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9.1 Exponential Lévy models

Exponential models have long been considered in the theory of stochastic finance, the most
prominent of which is the geometric Brownian motion. We go into details about the an-
alytical properties relating to measure transformations and martingales, following which
pricing relations are given for plain vanilla and Margrabe options.

The characterization of exponential models due to Karatzas and Shreve [46] will be
useful for us:

Definition 9.3. An exponential Lévy model on (Ω,F , {Ft}, P ) consists of

(1) a d-dimensional Lévy process ({Xt}, P ) with triplet (γ,A, ν)

(2) a constant risk-free rate r ≥ 0

(3) a constant dividend rate δ ∈ R
d

(4) a vector of positive, constant initial asset prices S0 ∈ R
d.

We refer to this financial market as M = {S0, γ, A, ν, r, δ}. M involves the 1-dimensional
price process ({S0

t }, P ), which accounts for the money market process given by

(9.1) S0
t = ert, t ≥ 0,

and d asset price processes ({Sit}, P ) given by

(9.2) Sit = Si0e
(r−δi)t+Xi

t , t ≥ 0, i = 1, ..., d.

We will mainly use 2-asset models in the context of stock and foreign exchange markets:

Example 9.4. Let M = ((S1
0 , S

2
0), A, ν, r, (δ1, δ2)) be a 2-dimensional market model on

(Ω,F , P ) with money account price S0
t = ert, t ∈ [0, T ] and stock prices

S1
t = e(r−δ1)+X1

t , S2
t = e(r−δ2)+X2

t , t ∈ [0, T ],

where Xt = (X1
t , X

2
t ) a Lévy process on R

2 with triplet (γ,A, ν) satisfying (9.4), r > 0
the risk-free interest rate and δ ∈ R

2 the dividend vector. This market is referred to as
the (2-dimensional) stock market model in the following. The covariance matrix consists
of σ1, σ2 and ρ in the usual way:

A =

(
σ2

1 σ1σ2ρ
σ1σ2ρ σ2

2

)
.

σ1, σ2 are the volatility parameters of S1
t , S

2
t and ρ is the linear correlation coefficient.
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Example 9.5. Let M =
(
(R1

0, R
2
0), A, ν, rh, (r

1
f , r

2
f )
)

be a 2-dimensional market model on
(Ω,F , Q) with money account price S0

t = ert, t ∈ [0, T ] and foreign exchange rates

R1
t = e(rh−r

1
f )+X1

t , R2
t = e(rh−r

2
f )+X2

t , t ∈ [0, T ],

where Xt = (X1
t , X

2
t ) a Lévy process on R

2 with triplet (γ,A, ν) satisfying (9.4), rh > 0
the domestic risk-free rate and r1

f , r
2
f > 0 the foreign risk-free rates. This market is referred

to as the (2-dimensional) foreign exchange market model in the following. The covariance
matrix consists of σ1, σ2 and ρ in the usual way:

A =

(
σ2

1 σ1σ2ρ
σ1σ2ρ σ2

2

)
.

σ1, σ2 are the volatility parameters of R1
t , R

2
t and ρ is the linear correlation coefficient. The

quotient process {Rc
t} defined by

Rc
t = R2

t /R
1
t = R2

0/R
1
0e

(r1f−r2f )t+X2
t −X1

t

is referred to as the cross rate.

The notion of the martingale property of the market M will be important:

Definition 9.6 (cf. [20], Proposition 9.1). Let M be a financial market on (Ω,F , P ). A
measure Q ≈ P on (Ω,F) such that

(9.3) EQ

[
eδi(T−t)

SiT
S0
T

|Ft

]
=
Sit
S0
t

, ∀i = 1, ..., d,

is called an equivalent martingale measure. Moreover, for i = 1, ..., d, the process ({S̄t}, Q)
with S̄t = eδitSit/S

0
t is said to be martingale (or a martingale).

It follows from the deterministic money market account (9.1) that the martingale con-
dition (9.3) can be written as

e−(r−δi)(T−t)EQ
[
SiT |Ft

]
= Sit .

Hence the asset prices ({Sit}, Q), discounted at rate r and reinvested at rate δi, have mean
rate of return equal to zero. This is equal to saying that {eX

i
t
} fulfills the martingale

condition
EQ
[
eX

i
T
|Ft

]
= eX

i
t , i = 1, ..., d.

Existence and uniqueness of an equivalent martingale measure correspond to the notions of
an arbitrage-free and an complete market. We use these relations to define arbitrage-free
and complete markets:

Definition 9.7. A market model M on (Ω,F , P ) is arbitrage-free if and only if there
exists a martingale measure Q ≈ P . A market model M on (Ω,F , P ) is complete if and
only if there is a unique martingale measure Q ≈ P .
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The martingale property of (exponential) Lévy processes is related to the characteristic
triplet of {Xt}:

Proposition 9.8 (cf. [29], Section 2). Let {Xt} be a Lévy process on R
d with characteristic

triplet (γ,A, ν).

(1) {X i
t} is a martingale if and only if

∫
|x|≥1

|x|ν(dx) <∞ and

γi +

∫

|x|≥1

xiν(dx) = 0.

(2) {eX
i
t
} is a martingale if and only if

∫
|x|≥1

exiν(dx) <∞ and

(9.4)
1

2
Aii + γi +

∫

Rd

(exi
− 1 − xi1|x|≤1)ν(dx) = 0.

Proof. The proof follows directly from eX
i
t = ϕXt((0, ...,−i, ..., 0)) and Theorem 7.3. Note

that the requirements of the conditions (1) and (2) are met by Assumption 9.1.

Measure transformations Following Sato [69], the equivalence of two probability mea-
sures is related to the characteristic triplet of the Lévy process:

Theorem 9.9 ([69], Theorem 33.1). Let ({Xt}, P ) and ({Xt}, P̂ ) be two Lévy processes

on R
d with generating triplets (γ,A, ν) and (γ̂, Â, ν̂), respectively. Then the following two

statements (1) and (2) are equivalent:

(1) P |Ft ≈ P̂ |Ft for every t ∈ (0, T ].

(2) The generating triplets satisfy

A = Â,

ν ≈ ν̂

and γ̂ − γ −

∫

|x|≤1

x(ν̂ − ν)(dx) ∈ {Ax : x ∈ R
d
}

with the function φ(x) defined by φ(x) = ln dbν
dν

satisfying

∫

Rd

(eφ(x)/2
− 1)2ν(dx) <∞.

Theorem 9.9 describes the equivalence of the two probability measures P and P̂ in
terms of existing triplets (γ,A, ν) and (γ̂, Â, ν̂). The following result prepares the ground
for a constructive approach to equivalent measures:
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Theorem 9.10 ([69], Theorem 33.2). Let ({Xt}, P ) and ({Xt}, P̂ ) be two Lévy processes on

R
d with generating triplets (γ,A, ν) and (γ̂, Â, ν̂), respectively. Suppose that the equivalent

conditions (1) and (2) in the previous theorem are satisfied. Choose η ∈ R
d such that

(9.5) γ̂ − γ −

∫

|x|≤1

x(ν̂ − ν)(dx) = Aη.

Then we define, P -a.s.,

Ut = η.(Xc
t ) −

t

2
η.Aη − tγ.η(9.6)

+ lim
ε↓0




∑

(s,∆Xs)∈(0,t]×{|x|>ε}
φ(∆Xs) − t

∫

|x|>ε
(eφ(x)/2

− 1)2ν(dx)


 ,

where φ is the function in (2), ({XC
t }, P ) the continuous part of ({Xt}, P ) and the con-

vergence in the right-hand side of (9.6) is uniform in t on any bounded interval, P -a.s.
Moreover, for every t ∈ [0, T ],

EP [eUt ] = E
bP [e−Ut ] = 1

and
dP

dP̂
|Ft = eUt , P -a.s.

The process ({Ut}, P ) is a Lévy process on R with generating triplet (γU , AU , νU) expressed
by

γU = −

1

2
η.Aη −

∫

R

(ey − 1 − y10<|y|≤1(y)(νφ
−1)(dy).a

AU = η.Aη

νU = [νφ−1]|R\{0}

Theorem 9.10 may be used to build a new Lévy process ({Xt}, P̂ ) from ({Xt}, P ) by

an equivalent measure transformation from P to P̂ [cf. 69, Definition 33.4]:

Definition 9.11. Let ({Xt}, P ) be a Lévy process on R
d with generating triplet (γ,A, ν).

Given φ(x) satisfying (9.5) and given η ∈ R
d, define Â = A, ν̂(dx) = eφ(x)ν(dx) and γ̂ by

(9.5). This gives us Ut as in Theorem 9.10 and the probability measure P̂ by

P̂ |Ft [B] = EP [eUt1B] for B ∈ Ft.

Then ({Xt}, P̂ ) is a Lévy process, which has generating triplet (γ̂, Â, ν̂).

We call this construction of ({Xt}, P̂ ) by ({Xt}, P ) density transformation with φ(x)
and η, and φ(x) and η the Girsanov quantities [cf. 82, Theorem 1.20]. The following result
relates the existence of an equivalent martingale measure to the Girsanov quantities:
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Theorem 9.12 (cf. [82], Theorem 1.22). Let ({Xt}, P ) be a Lévy process on R
d with triplet

(γ,A, ν), and let ({Xt}, P̂ ) be constructed from ({Xt}, P ) via the density transformation

with φ(x) and η. Then ({eXt
}, P̂ ) is a martingale if and only if

(9.7) γ + Aη +
1

2
diag(A) +

∫

Rd

(ex − 1)eφ(x)
− x1|x|≤1ν(dx) = 0.

From Theorem 9.12, we can easily show existence of an equivalent martingale measure
in the case of a regular Brownian part.

Corollary 9.13. Let ({Xt}, P ) be a Lévy process on R
d with triplet (γ,A, ν), where A a

regular matrix. Then for any ξ ∈ [−(M − 1),M − 1]d there exists an η ∈ R
d such that

({Xt}, P̂ ) constructed from ({Xt}, P ) via density transformation by φ(x) = ξ.x and η is a
martingale.

Proof. By Assumption 9.1, for φ(x) = ξ.x, ξ ∈ [−(M − 1),M − 1]d, the integral
∫

Rd

(ex − 1)eξ.x − x1|x|≤1ν(dx) = 0

is finite. Hence, condition (9.7) turns into a linear equation for η, which has a unique
solution if A is regular.

Corollary 9.13 in conjunction with (9.5) shows that, for Lévy processes with regular
Brownian part, an equivalent martingale process can be constructed by a simple change
of the drift, whatever the transformation of the Lévy measure.1 This is equivalent to
saying that there exists a generally non-unique equivalent martingale measure in merely
all cases of interest. Then exponential Lévy models are arbitrage-free but incomplete in
general. Moreover, the findings reveal a clear connection of a probability measure P to
the characteristic triplet (γ,A, ν). Hence we denote P = P (γ,A, ν) whenever indexing is
advantageous.

The density transformation discussed most frequently in finance literature is the Esscher
transform of a probability measure:

Example 9.14 (Sato [69], Example 33.14). Given a Lévy process ({Xt}, P ) with (γ,A, ν),
let η 6= 0 and φ(x) = η.x. If further EP [eη.Xt ] < ∞ is satisfied, we can determine a new

Lévy process ({Xt}, P̂ ) by the density transformation by our η and φ. It follows from the
definition of Ut and from the Levy-Ito decomposition that

Ut = η.Xt − t

∫

Rd

(eη.x − 1 − η.x1|x|≤1(x))ν(dx) +
1

2
η.Aη + γ.η

= η.Xt − tψ(−iη),

where ψ the characteristic exponent of ({Xt}, P ). This density transformation is known as
the Esscher transform. By (9.4), if the eX

i
t are martingales for i = 1, ..., d, then the density

process {Ut} reduces to Ut = η.Xt.

1The existence result can be generalized onto the case of non-regular (or vanishing) Brownian part [cf.
20, Section 9.5, for the one-dimensional case].
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Next, linear transformations of a Lévy process ({Xt}, P ) on R
d under an equivalent

change of measure are characterized:

Proposition 9.15 ([29], Proposition 6.1). Let ({Xt}, P ) be a Lévy process on R
d with

triplet (γc, A, ν), let u, v be vectors in R
d such that v ∈ [−M,M ]d. Moreover, let P̂ ≈ P ,

with density

dP̂ |Ft

dP |Ft

=
ev.Xt

EP [ev.Xt ]
.

Then, the 1-dimensional process ({X̂t}, P̂ ) defined by X̂t := u.Xt is a Lévy process on R
d

with the characteristic triplet (γ̂c, Â, ν̂) given by

γ̂c = u.γc +
1

2
(u.Av + v.Au) +

∫

Rd

u.x(ev.x − 1)ν(dx)

Â = u.Au

ν̂ = T (µ),

where T is a mapping T : R
d
→ R such that x 7→ T (x) = u.x, and µ is a measure defined

by

µ(B) =

∫

B

ev.xν(dx)

Proposition 9.15 allows us to compute the characteristic triplet of a linearly transformed
Lévy process under some equivalent probability measure explicitly.2 This is now matched
with the martingale property in the 2-dimensional case:

Corollary 9.16. Let ({Xt}, P ) be a Lévy process on R
2 and such that eXt is a P -martingale.

Define P̂ ≈ P by the density dP̂ |Ft/dP |Ft = eX
1
t . Then ({X̂t}, P̂ ) defined by X̂t := X2

t −X
1
t

is a Lévy process and e
bXt is a P̂ -martingale.

Proof. Suppose ({Xt}, P ) has characteristic triplet (γc, A, ν). By the martingale condition,
it holds

γic = −

1

2
Aii −

∫

R2

(exi
− 1 − xi)ν(dx), i = 1, 2.

For u = (−1, 1) and v = (1, 0), Proposition 9.15 then gives us the characteristic triplet

(γ̂c, Â, ν̂) of X̂t under P̂ . We show that (γ̂c, Â, ν̂) fulfills the martingale condition by

2Papapantoleon [61] discusses linearly transformed time-inhomogeneous Lévy process under equivalent
measure transformations.
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comparing the Brownian motion and the jump characteristics separately:

γ̂Cc = u.γCc +
1

2
(u.Av + v.Au)

= −

1

2
u.diag(A) +

1

2
(u.Av + v.Au)

=
1

2
{(2u1v1 − u1)A11 + (2u2v1 + 2u1v2)A12 + (2u2v2 − u2)A22}

=
1

2
{−A11 + 2A12 − A22}

= −

1

2
{u1u1A11 + 2u1u2A12 + u2u2A22}

= −

1

2
u.Au

= −

1

2
Â

and

γ̂Jc = u.γJc +

∫

Rd

u.x(ev.x − 1)ν(dx)

=

∫

R2

(ex1
− 1 − x1) − (ex2

− 1 − x2)ν(dx) +

∫

R2

(x2 − x1)(e
x1

− 1)ν(dx)

=

∫

R2

(ex1
− ex2 + (x2 − x1)e

x1)ν(dx)

= −

∫

R2

(ex2−x1
− 1 − (x2 − x1))e

x1ν(dx)

= −

∫

R

(ey − 1 − y)ν̂(dy).

Altogether, we have

γ̂c = −

1

2
Â−

∫

R

(ey − 1 − y)ν̂(dy).

This characterizes e
bXt as a P̂ -martingale.

Corollary 9.16 shows that, for an exponential martingale process ({Xt}, P ) on R
2, the

ratio process eX
2
t /eX

1
t is a martingale under the measure P̂ , which results from the Esscher

transform by η = (1, 0).3

Remark 9.17. It is worth stressing that Proposition 9.15 produces 1-dimensional Lévy
processes. The characteristic triplet (γ,A, ν) of an R

d-valued Lévy process ({Xt}, P ) gen-

erates the characteristic triplet (γ̂, Â, ν̂) of the R-valued Lévy process ({X̂t}, P̂ ).

3Corollary 9.16 can alternatively be proved using change of numeraire techniques [cf. 11].
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As to Remark 9.17, what comes to mind immediately in the context of Lévy copulas is
how the dependence structure of measure ν is involved in the construction of measure ν̂.
This is explain in terms of a discrete Lévy measure ν on R

2 in the sense of Example 7.15:

Corollary 9.18. Let ν12 be the discrete Lévy measure on R
2 constructed in Example 7.15.

Define P̂ ≈ P by the density dP̂ /dP = eX
1
T /E[eX

1
T ]. Then, the Lévy measure ν̂ of ({X̂t}, P̂ )

with X̂t = X2
t has discrete support

{zk, k = 1, ..., N}, where zk = (k −
N + 1

2
)∆

and weights

(9.8) ν̂k =
N∑

i=1

exiνik12

Proof. Proposition 9.15 applied to Lévy measure ν12 gives, for u = (0, 1) and v = (1, 0),

ν̂(B) =

∫

R

ex
∫

y∈B
ν12(dx, dy)

=
N∑

i=1

exi

∑

j:yj∈B
νij12, B ∈ B(R).

Due to the constraint yj ∈ B, the measure ν̂ has again discrete support 9.8. The weights
9.8 then result from the inner product of the discrete integrant (ex1 , ..., exN ) and the k-th
row of the weight matrix νij12, i, j = 1, ..., N .

Corollary 9.19. Let ν12 be the discrete Lévy on R
2 constructed in Example 7.15. Define

P̂ ≈ P by the density dP̂ /dP = eX
1
T /E[eX

1
T ]. Then, the Lévy measure ν̂ of ({X̂t}, P̂ ) with

X̂t = X2
t −X1

t has (extended) discrete support

(9.9) {zk, k = 1, ..., 2 ∗N − 1}, where zk = (k −N)

and weights

(9.10) ν̂k =
∑

l

exlν
l,c(l)
12 ,

where summation is from s := max{N+1
2

− (k− 1), 1} to s := min{N − (k− N+1
2

), N} and
c(l) = l − s+ 1 + max{k − N−1

2
}.

Proof. Proposition 9.15 applied to Lévy measure ν12 gives, for u = (−1, 1) and v = (1, 0),

ν̂(B) =

∫

R

ex
∫

y∈B+x

ν12(dx, dy)

=
N∑

i=1

exi

∑

j:yj∈B+xi

νij12, B ∈ B(R2).
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Due to the constraint yj ∈ B+xi, the measure ν̂ has discrete support (9.9). Weights (9.10)
then result from the (partial) inner product of the discrete integrant (ex1 , ..., exN ) and the
(k − (N + 1)/2)-th diagonal of weights νij12, i, j = 1, ..., N . The assignement of indices is
purely technical.

Symmetries for pricing derivatives There is a one-to-one correspondence between
arbitrage-free pricing rules and equivalent martingale measures:

Proposition 9.20 ([20], Proposition 9.1). In a financial market M on (Ω,F , P ) any
arbitrage-free linear pricing rule V for a payoff H can be represented as

V H
t = e−r(T−t)EQ[H|Ft],

where Q an equivalent martingale measure.

In other words, the fair price of a contract is its discounted payoff as expected under
an equivalent martingale measure and the current information.

Remark 9.21. We have shown how to construct equivalent martingale measures in nearly
all cases of interest4 by the Esscher transform. This has characterized exponential Lévy
markets as arbitrage-free models in the context of Definition 9.7.

In view of Remark 9.21, we assume existence of an equivalent martingale measure Q
and model the financial market M on (Ω,F , Q) arbitrage-free. Then the asset prices have
mean rates of return µi = r − δi, i = 1, ..., d such that the price processes e−(r−δi)tSit ,
discounted at rate r and reinvested at rate δi, are martingales under Q. We assume t = 0
for convenience in the following.

Example 9.22. Let M = ((S1
0 , S

2
0), A, ν, r, (δ1, δ2)) be the 2-dimensional stock market on

(Ω,F , Q) as defined in Example 9.4, where Q a martingale measure. Then the value of a
European plain vanilla put option V p

0 on stock price Sit with strike K and maturity T is
given by

V p
0 (K,T ;Si0, Aii, νi, r, δi) = e−rTEQ[(K − SiT )+]

for i = 1, 2. The value of a Margrabe option V m
0 on stock prices S1

t , S
2
t with maturity T is

given by
V m

0 (T ;S1
0 , S

2
t , A, ν, r, δ1, δ2) = e−rTEP [(S1

T − S2
T )+].

Eberlein and Papapantoleon [29] have proven a symmetry between the values of a Mar-
grabe and some plain vanilla option in exponential Lévy models. We adopt the arguments
used therein5 for the case of homogeneous Lévy processes:

4One can show that if the trajectories of ({Xt}, P ) are neither almost surely increasing nor almost
surely decreasing, then there exists an equivalent martingale measure.

5Eberlein and Papapantoleon [29] use time-inhomogeneous Lévy processes, which are briefly addressed
in Section B.1.
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Theorem 9.23 (cf. [29], Theorem 6.2). The value of a Margrabe and a European plain
vanilla option are related via the following symmetry:

V m
0 (T ;S1

0 , S
2
0 , A, ν, r, δ1, δ2) = S1

0V
p
0 (1, T ;S2

0/S
1
0 , Â, ν̂, δ1, δ2),

where Â and ν̂ are defined as in 9.15 for v = (1, 0) and u = (−1, 1).

Proof. Expressing the value of the Margrabe option in terms of asset S1, we get:

V m
0 (T ;S1

0 , S
2
0 , A, ν, r, δ1, δ2) = e−rTEQ[(S1

T − S2
T )+]

= e−rTEQ[S1
T (1 −

S2
T

S1
T

)+]

= S1
0e

−δ1TEQ[eX
1
T (1 − ŜT )+],(9.11)

where ŜT = e(δ1−δ2)T+X2
T−X1

T . As to Definition 9.11 and Example 9.14, we can construct a
new Lévy process ({Xt}, Q̂) by the linear density transformation

dQ̂|Ft

dQ|Ft

= eX
1
t .

Then the right-hand side in (9.11) may be rewritten as

S1
0e

−δ1TEQ[eX
1
T (1 − ŜT )+] = S1

0e
−δ1TE

bQ[(1 − ŜT )+].

By Corollary 9.16, the exponential Lévy process e−(δ1−δ2)tŜt is a martingale under Q̂. By
9.20, we then have that e−δ1TE

bQ[(1−ŜT )+] is a pricing formula for a European plain vanilla

put option on asset Ŝt with strike K = 1, risk-free rate δ1 and dividend rate δ2.

The line of argumentation used in the proof of Theorem 9.23 provides an elegant in-
terpretation of the pricing symmetry as an equivalent change between the arbitrage-free
markets M and M̂ = (Ŝ0, Â, ν̂, δ1, δ2), where M̂ is 1-dimensional.6

Example 9.24. Let M =
(
(R1

0, R
2
0), A, ν, rh, (r

1
f , r

2
f )
)

be the 2-dimensional foreign ex-
change market on (Ω,F , Q) as defined in Example 9.5, where Q a martingale measure.
Then the value of a European plain vanilla call option V c

0 on foreign exchange rate Ri
t with

strike K and maturity T is given by

V c
0 (K,T ;Ri

0, Aii, νi, rh, r
i
f ) = e−rhTEQ[(Ri

T −K)+]

for i = 1, 2. Let us in this context denote the value of an European plain vanilla call option
on the cross exchange rate Rc

t associated to R1
t and R2

t with strike K and maturity T by
V c

0 (K,T ;Rc
0, A, ν, rh, r

1
f , r

2
f ).

6In fact, we have used a change-of-numeraire technique as described in [11]. Papapantoleon [61] refers
to this technique as duality method. One can show similar symmetries for asset-or-nothing options and
quanto-options [cf. 29, Theorem 6.3 and Theorem 6.4].
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An arbitrage-free pricing rule for the call option on the cross exchange rate is obtained
similarly to Theorem 9.23:

Theorem 9.25. The value of a European call option on the cross exchange rate associated
to R1 and R2 is given by

(9.12) V c
0 (K,T ;Rc

0, A, ν, rh, r
1
f , r

2
f ) = V c

0 (K,T ;R2
0/R

1
0, Â, ν̂, r

1
f , r

2
f ),

where Â and ν̂ are defined as in 9.15 for v = (1, 0) and u = (−1, 1).

Proof. The proof of Theorem 9.25 follows the argumentation used in the previous proof.
As to Definition 9.11 and Example 9.14, choosing η = (1, 0), we can construct a new Lévy

process ({Xt}, Q̂) by the linear density transformation

dQ̂|Ft

dQ|Ft

= eX
1
t .

By Corollary 9.16, the exponential Lévy process e−(r1f−r2f )tRc
t is a martingale under Q̂. By

9.20, we then have that e−r
1
fTE

bQ[(Rc
T − K)+] is a pricing formula for a European plain

vanilla call option on the cross rate Rc
t with strike K, domestic risk-free rate r1

f and foreign
risk-free rate r2

f .

The equivalent martingale transformation in the proof of Theorem 9.25 may again
be interpreted as an equivalent change between the arbitrage-free markets M and M̂ =
(Rc

t , Â, ν̂, r
1
f , r

2
f ), where M̂ is now 1-dimensional.

Remark 9.26. Theorems 9.23 and 9.25 indicate, in particular, that both the Margrabe
option in the context of a stock market and the call option on the cross rate in a foreign
exchange market are redundant assets. Hence option prices should be fixed by option prices
of the primary assets.

9.2 Semi-analytical option pricing

Different from the Black-Scholes model, closed form solutions of option prices are generally
not available in exponential Lévy models. This is mainly due to the fact that the pdf of
Lévy processes are not known in most cases. Instead, the characteristic function of a Lévy
process is given explicitly by the Levy-Khintchin representation. This has lead to the
development of Fourier based option pricing methods.

Definition 9.27. Let h be a complex-valued integrable function on R
d. The Fourier trans-

form Fh of h is a complex-valued function on R
d defined by

(Fh)(v) =

∫

Rd

eiv.xh(x)dx, v ∈ R
d.
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Note that for a random variable X on R
d with pdf fX the Fourier transform (FfX)

is the characteristic function ϕX of X. We will need to invert the Fourier transform for
pricing purposes:

Proposition 9.28 ([69], Proposition 37.2). Let h be a complex-valued integrable function
on R

d. Then, Fh is continuous and bounded. If Fh is integrable, then

h(x) = (2π)−d
∫

Rd

e−ix.v(Fh)(v)dv

for almost every x ∈ R
d and the function on the right-hand side is continuous and bounded.

In other words, under certain continuity and integrability conditions we may transform
a function h back and forth between the Fourier space and the original space. This is the
key to semi-analytical pricing methods.

Convolution representation The value of an option can be represented by the convo-
lution of the Laplace transform of the option payoff and the characteristic function of the
underlying price process.

Definition 9.29. Let h(x) be a real-valued function. The bilateral (or two-sided) Laplace
transform of h is defined as

Lh(z) :=

∫

R

e−zxh(x)dx, z ∈ C.

The bilateral Laplace transform of plain vanilla put and call options can be written out
explicitly:

Example 9.30 (cf. [62], Example 15.3). Consider the modified payoff function h(x) =
(e−x −K)+ of a plain vanilla call option. The bilateral Laplace transform of h at z ∈ C

Lh(z) =

∫

R

e−zx(e−x −K)+dx

=

∫

R

e−(z+1)x
−Ke−zxdx

is finite, only if ℜz ∈ (−∞,−1). In this case

(9.13) Lh(z) = Kz+1 1

z(z + 1)
.

In an analogous way, for z ∈ C with ℜz ∈ (0,∞), 9.13 is the bilateral Laplace transform
of the modified payoff function h(x) = (K − e−x)+ of a plain vanilla put option.

Proposition 9.20 gives the value of a payoff in terms of the expectation under a martin-
gale measure. The following result, which is due to Raible [64], shows how this is written
in terms of convolutions. Here we extend the argumentation to incorporate for dividend
yields:
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Theorem 9.31 (cf. [64], Theorem 3.2). Consider a European option with payoff H(ST )
at time T. Let h(x) := H(e−x) denote the modified payoff function. Assume that x 7→

e−Rx|h(x)| is bounded and integrable for some R ∈ R such that |R| < M . Let V h
0 (ξ)

denote the time-0 price of this option taken as a function of the negative log forward price
ξ := −ln{e(r−δ)TS0}. Then we have

V h
0 (ξ) =

eξR−rT

2π

∫ ∞

−∞
eiuξLh(R + iu)ϕXT (iR− u)du,

whenever the integral on the r. h. s. exists (at least as a Cauchy principal value).

Proof. Raible’s proof can easily be adopted to the case of dividend payments.

Remark 9.32. Theorem 9.31 allows for different representations of the inverse Fourier inte-
gral. The choice of R corresponds to shifting the contour of integration along the complex
plane.7

Theorem 9.31 then allows to represent, for example, the value of a Margrabe option
in the context of a stock market model by convolutions8, using the symmetry proved in
Theorem 9.23:

Corollary 9.33. Let M = ((S1
0 , S

2
0), A, ν, r, (δ1, δ2)) be the 2-dimensional stock market on

(Ω,F , Q) as defined in Example 9.4, where Q a martingale measure. Then the value of a
Margrabe option V m

0 on stock prices S1
t , S

2
t with maturity T is given by

(9.14) V m
0 (T ;S1

0 , S
2
t , A, ν, r, δ1, δ2) =

S1
0e
ξR−δ1T

2π

∫ ∞

−∞

eiuξ

(R + iu)(R + iu+ 1)
ϕ

bXT (iR−u)du,

where ξ = − ln(e(δ1−δ2)TS2
0/S

1
0), R ∈ (0,M) and φ

bXT the characteristic function for time

T of the martingale process ({X̂t}, Q̂) with Â and ν̂ as defined in Theorem 9.23.

Proof. Corollary 9.33 follows directly from Theorems 9.23 and 9.31.

The integral in (9.14) is in fact a Fourier transform. Hence FFT methods9 apply for
its calculation.

Fourier inversion In a similar way, Carr and Madan express the value of an European
option on the basis of another Fourier transform.

Let us extend their reasoning, which is described in Cont and Tankov [20, Section
11.1.3], by dividend payments. Hence consider the price of a European call option

V c
0 (k) = e−rTE[(e(r−δ)T+XT

− ek)+],

7Kahl and Lord [44] discuss optimal contours of integration from a numerical perspective.
8Eberlein and Özkan [28], Eberlein and Koval [27] apply Raible’s convolution representation to the

pricing of interest rate caps and cross-currency derivatives.
9Fast Fourier transform methods are described in Carr and Madan [14].
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in terms of the logarithmic strike k = log(K), on a dividend paying asset with normalized
initial value S0 = 1. We would like to express its Fourier transform in terms of the
characteristic function ϕXT of XT to find the prices by Fourier inversion. This requires to
proceed to the modified time value of the option,

(9.15) v(k) = e−rTE[(e(r−δ)T+XT
− ek)+] − (e−δT − ek−rT )+,

due to the integrability constraint in Definition 9.27. Then the Fourier transform of (9.15)
may be worked out in the style of Cont and Tankov [20], where we extend their line of
argumentation by dividend payments (which is not trivial):

Theorem 9.34 (cf. [20], Section 11.1.3). The Fourier transform of the modified time value
of a European call option on a dividend paying asset is given by

(9.16) (Fv)(z) = e−rT e(iz+1)(r−δ)T ϕ
XT (z − i) − 1

iz(iz + 1)
.

Proof. Let St = e(r−δ)t+Xt be the price process for a dividend paying asset, modelled under
some arbitrage-free pricing measure. That is equivalent to saying that e−(r−δ)tSt = eXt is
a martingale. By ∫

R

ρT (x)e−δT+x1k≤(r−δ)Tdx = e−δT1k≤(r−δ)T ,

we then have

v(k) = e−rTEQ[(e(r−δ)T+XT
− ek)+] − (e−δT − ek−rT )+

= e−rT
∫

R

ρT (x)(e(r−δ)T+x
− ek)1k≤(r−δ)T+xdx

−

∫

R

ρT (x)(e−δT+x
− ek−rT )1k≤(r−δ)Tdx

= e−rT
∫

R

ρT (x)(e(r−δ)T+x
− ek)(1k≤(r−δ)T+x − 1k≤(r−δ)T )dx.

Hence it holds

(Fv)(z) =

∫

R

eizke−rT
∫

R

ρT (x)(e(r−δ)T+x
− ek)(1k≤(r−δ)T+x − 1k≤(r−δ)T )dxdk

= e−rT
∫

R

ρT (x)

∫ (r−δ)T+x

(r−δ)T
eizk(e(r−δ)T+x

− ek)dkdx,
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by interchanging integrals. The inner integral
∫ (r−δ)T+x

(r−δ)T eizk(e(r−δ)T+x
− ek)dk is

[
eizk+(r−δ)T+x

iz
−

e(iz+1)k

iz + 1

](r−δ)T+x

(r−δ)T
=

e(iz+1)((r−δ)T+x)

iz
−

e(iz+1)((r−δ)T+x)

iz + 1

−

e(iz+1)(r−δ)T+x

iz
+
e(iz+1)(r−δ)T

iz + 1

=
(iz + 1)e(iz+1)((r−δ)T+x)

− ize(iz+1)((r−δ)T+x)

iz(iz + 1)

−

(iz + 1)e(iz+1)(r−δ)T+x + ize(iz+1)(r−δ)T

iz(iz + 1)

=
e(iz+1)((r−δ)T+x)

iz(iz + 1)
−

e(iz+1)(r−δ)T+x

iz(iz + 1)

+
e(iz+1)(r−δ)T (1 − ex)

iz + 1
.

Then

(Fv)(z) = e−rT
∫

R

ρT (x)

{
e(iz+1)((r−δ)T+x)

iz(iz + 1)
−

e(iz+1)(r−δ)T+x

iz(iz + 1)
+
e(iz+1)(r−δ)T (1 − ex)

iz + 1

}
dx

= e−rT
{
e(iz+1)(r−δ)T

iz(iz + 1)
E[e(iz+1)XT ] −

e(iz+1)(r−δ)T

iz(iz + 1)
E[eXT ] +

e(iz+1)(r−δ)T

iz + 1
E[1 − eXT ]

}

= e−rT e(iz+1)(r−δ)T ϕ
XT (z − i) − 1

iz(iz + 1)
.

Given the Fourier transform of the modified time value of the call option in closed form
by (9.16), the original value can be found by Fourier inversion:

(9.17) v(k) =
1

2π

∫

R

e−izk(Fv)(z)dz.

As to (9.15), the put option price is obtained by simply adding (e−δT − ek−rT )+ to (9.17).
Theorem 9.34 may then be used to represent, for example, the value of a call option

on the cross rate in the context of a foreign exchange market model by Fourier transforms,
taking into account the symmetry established in Theorem 9.25.

Corollary 9.35. Let M =
(
(R1

0, R
2
0), A, ν, rh, (r

1
f , r

2
f )
)

be the 2-dimensional foreign ex-
change market on (Ω,F , Q) as defined in Example 9.5, where Q a martingale measure.
Then the value of a call option on the cross exchange rate Rc associated to R1 and R2 is
given by

(9.18) V c
0 (K,T ;Rc

0, A, ν, rh, r
1
f , r

2
f ) =

e−r
1
fTRc

0

2π

∫

R

e−izke(iz+1)(r1f−r2f )T ϕ
bXT (z − i) − 1

iz(iz + 1)
dz,
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where k = − ln(K) and ϕ
bXT the characteristic function at time T of the martingale process

({X̂t}, Q̂) with Â and ν̂ as defined in Theorem 9.25.

Proof. Corollary 9.35 follows directly from Theorems 9.25 and 9.34.

The integral in (9.18) is in fact a Fourier transform. Hence, we will again be able to
apply FFT methods for its calculation.

9.3 Summary

In this chapter we described exponential Lévy models for use in finance applications. We
called detailed attention to the martingale property of a Lévy process with regard to pricing
measure transformations.

First, we introduced exponential Lévy processes into financial asset price modelling.
We gave both a stock market and a foreign exchange market as instances of a coupled
process environment.

Then we explained equivalent measure transformations in exponential Lévy models,
emphasizing the relation between equivalent martingale measures and the characteristic
Lévy triplet. It was interesting to see that we may construct infinitely many equivalent
measures (or Lévy processes, in fact), that are martingale, in merely all cases of interest.
This rendered exponential Lévy models incomplete in general.

Continuing, we detailed the change of measure technique using the example of discrete
Lévy characteristics in two dimensions. Specifically, we proved the martingale property
for the quotient of the two processes under some equivalent measure resulting from the
Esscher transform.

Having mentioned the principles of arbitrage-free option pricing, we denoted the fair
value of a plain vanilla and a Margrabe option written on stock prices or foreign exchange
rates. Using the change of measure technique, pricing symmetries could be found. Our
contribution here is that we related the value of a call option written on the cross rate of
two exchange rates to the value of a call option written on their quotient rate. This made
the cross rate a redundant asset in the foreign exchange model.

In the end, we showed that the fair value of an option can basically be represented as
the inverse Fourier transform of the characteristic function of the underlying Lévy process.
Our contribution here is to generalize the existent representations to include dividend
payments. This was subsequently applied to the call option on the cross exchange rate
using the previous symmetry result.
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Chapter 10

Option pricing applications

In this chapter we explain how to back out the parameters of an exponential Lévy model
from liquid option prices. Our goal here is to detect the dependence structure implied in
a foreign exchange market.

Section 10.1 is devoted to the inverse problem of calibrating a specified model to market
data in the least-squares sense. The calibration method is elaborated on a non-parametric
approach. Here semi-analytical pricing techniques prove useful for the efficient dealing with
implied Lévy copulas. In response to the ill-posedness of the inverse calibration problem,
regularization is treated in Section 10.2. Then Section 10.3 analyzes how the options on
the cross rate are redundant in the context of a liquid triangular foreign exchange market.
Specifically, Lévy copulas cope with nearly reproducing option prices on the cross rate.

The non-parametric calibration approach dealt with in this chapter follows the exhaus-
tive presentation in Cont and Tankov [20]. The handling of market implied dependence
structures and the application to the foreign exchange market is new.

10.1 Copula model calibration

We have mentioned that an exponential Lévy model M as to Definition 9.3 is arbitrage-free
but incomplete in general. This prevents the identification of a unique price V H for a claim
H on the asset price process {St} by arbitrage arguments alone. Following Proposition
9.20, the value V H of a claim H is given by the discounted expected payoff under an
(equivalent) martingale measure Q, however different choices of the martingale measure
lead to a range of possible prices.1 Whenever option prices are traded on the market,
the market quotes can be used as a source of information to help selecting the equivalent
pricing measure Q. Extracting the model parameters from observed market quotes so as
to reproduce the prices of traded options is referred to as model calibration. We explain
how to calibrate a 2-dimensional financial market in the following.

1It is proved by Eberlein and Jacod [25] that, for a European call option with strike K and maturity T ,
the range of option prices under all possible equivalent martingale measures spans the whole no-arbitrage
interval [(S0 −Ke−rT )+, S0].
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Let therefore Vj, j ∈ J be prices quoted on the market for a set of benchmark options.
Then we search for an arbitrage-free model M on (Ω,F , Q) which prices these options
market-consistently:

Vj = e−r(T−t)EQ[Hj|Ft], ∀j ∈ J.

The calibration problem as such is ill-posed: there may be many pricing models which
reproduce the benchmark prices. In other words, there need not be a unique solution.
Therefore calibration constraints are added to the effect that all candidate models M

belong to a certain class of models. Then it is no longer guaranteed that the models in the
chosen class are consistent with the benchmark options. A more realistic interpretation of
the calibration problem is to achieve the best approximation of market prices of options
within a given model class.

In our context, we understand the approximation problem in a least-squares sense.
Hence we consider a market model M = M(θ) = {S0, γ(θ), A(θ), ν(θ), r, δ} on (Ω,F , Q(θ)),
where S0, r, δ are observed from the market and θ ∈ Θ is some set of triplet parameters
such that Q(θ) = Q(γ(θ), A(θ), ν(θ)) is a martingale measure. Then we try to minimize
the quadratic pricing error ε(θ) over all parameterizations θ ∈ Θ in the following sense:

Definition 10.1. Let Vj, j ∈ J be market quotes of European call options with strike
Kj and maturity Tj. Define a financial market M(θ) = {S0, γ(θ), A(θ), ν(θ), r, δ} as in
Definition 9.3, where θ ∈ Θ arbitrage-free model parameters. Then the quadratic pricing
error ε : Θ 7→ R is defined by

(10.1) ε(θ) =
∑

j∈J
|V (Hj; θ) − Vj|

2,

where V (Hj; θ) are the model prices corresponding to payoff Hj.
2

The best model calibration θ∗ ∈ Θ is then defined as θ∗ = arg minθ∈Θ ε(θ). This is
the set of parameters most consistent with the market quotes. The corresponding triplet
(γ(θ∗), A(θ∗), ν(θ∗)) so obtained is referred to as the implied characteristic triplet. It in-
volves the implied covariance matrix A(θ∗) and the implied Lévy measure ν(θ∗).

Remark 10.2. Recall that γ(θ) is determined by A(θ) and ν(θ) through Proposition 9.8, if
θ corresponds to an arbitrage-free market parametrization.

If the implied characteristic triplet corresponds to a R
d-valued Lévy process, then we

call the correlation matrix contained in A(θ∗) the implied correlation matrix and the Lévy
copula inherent in ν(θ∗) the implied Lévy copula.

Let us now be more specific about the actual pricing rule for V (Hj; θ) by instance of
the foreign exchange market of Example 9.5:

Example 10.3. Let M(θ) =
(
(R1

0, R
2
0), A(θ), ν(θ), rh, (r

1
f , r

2
f )
)

be the 2-dimensional for-
eign exchange market on (Ω,F , Q(θ)) as defined in Example 9.5, where θ ∈ Θ arbitrage-free

2Cont and Tankov [20] and Cont and Luciano [19] use the weighted pricing error ε(θ) =∑
j∈J ωj |V (Kj , Tj ; θ) − Vj |

2, instead, to take into account the reliability of quotes.
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model parameters. If Vj, j ∈ J correspond to market quotes of European call options on
rate {Ri

t} with strike Kj and maturity Tj, then the quadratic pricing error ε : Θ 7→ R is

ε(θ) =
∑

j∈J
|V c

0 (Kj, Tj;R
i
0, Aii(θ), νi(θ), rh, r

i
f ) − Vj|

2,

where V c
0 (Kj, Tj;R

i
0, Aii(θ), νi(θ), rh, r

i
f ) is given by (9.12). If Vj, j ∈ J correspond to

market quotes of European call options on the cross rate {Rc
t} with strike Kj and maturity

Tj, then the quadratic pricing error ε : Θ 7→ R is

ε(θ) =
∑

j∈J
|V c

0 (Kj, Tj;R
2
0/R

1
0, Â(θ), ν̂(θ), r1

f , r
2
f ) − Vj|

2,

where V c
0 (Kj, Tj;R

2
0/R

1
0, Â(θ), ν̂(θ), r1

f , r
2
f ) is given by (9.12).

Gradient based methods A convenient way to search for the optimal model para-
metrization θ∗ ∈ Θ numerically is using a gradient descent method3. This requires the
computation of the quadratic pricing error and its gradient. It can be seen from (10.1)
that the evaluation of model prices V (Hj; θ) and gradients ∂V (Hj; θ)/∂θ is the only crucial
problem in this respect. We concentrate on European call options for benchmark products
Vj in the following.4.

By Theorem 9.34, the price V c
0 of a European plain vanilla call option on asset price St

with strike K and maturity T can be written in terms of the logarithmic strike k = ln(K).
Denoting V (k) = V c

0 (ek, T ;S0, γ(θ), σ(θ), ν(θ), r, δ), we have

(10.2) V (k) =
e−rTS0

2π

∫

R

e−izke(iz+1)(r−δ)T ϕ
XT (z − i) − 1

iz(iz + 1)
dz,

where ϕXT the characteristic function of the Lévy process with triplet (γ(θ), σ(θ), ν(θ))
associated to θ ∈ Θ.

Remark 10.4. We have argued before that FFT methods are a very efficient way to compute
(10.2) over all benchmark strikes Ki.

This enables us to compute the quadratic pricing error immediately. However the
computation of the gradient is cumbersome in general. In this respect, Cont and Tankov
[20] argue that a non-parametric Lévy model allows of vast savings in computation of the
gradient. Then fix a 1-dimensional financial market M(θ) = (S0, γ(θ), A(θ), ν(θ), r, δ) on
(Ω,F , Q(θ)) to begin with, where Q(θ) is a martingale measure and ν(θ) is a discrete Lévy
measure defined on an equidistant grid by (7.14) in Example 7.15. Then Θ is the set of
no-arbitrage parameters θ = (σ, ν1, ..., νN).

There are explicit expressions available for the derivatives of the call prices with respect
to the model parameters σ and νj, j = 1, ..., N . The following lemma will be used:

3The principal algorithm is the BFGS quasi-Newton method offered by the MatLab Optimization
Toolbox routines. See the MatLab Help for more insights.

4Eberlein and Koval [27] treats cross-currency derivatives in the context of a Lévy Libor market model.

125



Lemma 10.5. Let w(k) = (e−δT−ek−xj−rT )+
−(e−δT−ek−rT )+. Then the Fourier transform

Fw of w is given by

(Fw)(z) = e−rT
e(iz+1)(r−δ)T (eizxj

− 1)

iz(iz + 1)
.

Proof. Consider xj > 0, the other case being derived analogously. Then

∫

R

eizkw(k)dk =

∫ (r−δ)T

−∞
eizkek(e−rT − e−xj−rT )dk +

∫ (r−δ)T+xj

(r−δ)T
eizk(e−δT − ek−xj−rT )dk.

Exact computation of the integrals on the right hand side leads to

∫ (r−δ)T

−∞
eizkek(e−rT − e−xj−rT )dk = (e−rT − e−xj−rT )

[
e(iz+1)k

iz + 1

](r−δ)T

−∞

= e−rT
e(iz+1)(r−δ)T (1 − e−xj)

iz + 1

and

∫ (r−δ)T+xj

(r−δ)T
eizk(e−δT − ek−xj−rT )dk = e−δT

[
eizk

iz

](r−δ)T+x

(r−δ)T
+ e−xj−rT

[
e(iz+1)k

iz + 1

](r−δ)T+x

(r−δ)T

= e−δT
eiz((r−δ)T+xj)

− eiz((r−δ)T+xj)

iz

− e−xj−rT e
(iz+1)((r−δ)T+xj)

− e(iz+1)((r−δ)T+xj)

iz

= e−rT
e(iz+1)(r−δ)T (eizxj

− 1)

iz

− e−rT
e(iz+1)(r−δ)T (eizxj

− e−xj)

iz + 1

= e−rT
e(iz+1)(r−δ)T (eizxj

− 1)

iz(iz + 1)

− e−rT
e(iz+1)(r−δ)T (1 − e−xj)

iz + 1
.

By cancellation of terms, we have

∫

R

eizkw(k)dk = e−rT
e(iz+1)(r−δ)T (eizxj

− 1)

iz(iz + 1)
.
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Lemma 10.5 is used to differentiate the option price with respect to the volatility and
the Lévy measure weights. We extend the result by Cont and Tankov [20] to incorporate
for dividend rates:

Proposition 10.6 (cf. [20], Section 13.4). The derivative of the option price with respect
to the the volatility σ is

∂V

∂σ
(k) = Tσe−rT

1

2π

∫

R

e−izke(iz+1)(r−δ)TϕXT (z − i)dz

The derivative with respect to the discretized variable νj is

∂V

∂νj
(k) = T (1 − exj)

1

2π

∫

R

e−izke(iz+1)(r−δ)T ϕ
XT (z − i)

(iz + 1)
dz + Texj

1

2π
{V (k − xj) − V (k)} .

Proof. First observe that the derivative of the option price with respect to the model
parameters σ and νj is equal to the derivative of the modified time value v as given in
(9.17). Using Theorem 9.34, the derivative with respect to the volatility σ of the Fourier
transform Fv of v is

∂Fv

∂σ
(z) = Te−rT e(iz+1)(r−δ)T ϕ

XT (z − i)

iz(iz + 1)
{σiz(iz + 1)}

= Tσe−rT e(iz+1)(r−δ)TϕXT (z − i).

Similarly, for j = 1, ..., N , the derivative with respect to the parameter νj of the Fourier
transform Fv of v is given by

∂Fv

∂νj
(z) = Te−rT e(iz+1)(r−δ)T ϕ

XT (z − i)

iz(iz + 1)

{
iz(1 − exj) + exj(eizxj

− 1)
}

= Te−rT e(iz+1)(r−δ)T (1 − exj)
ϕXT (z − i)

(iz + 1)

+ Texjeizxj

{
(Fz)(z) −

e−rT e(iz+1)(r−δ)T

iz(iz + 1)

}

− Texj

{
(Fz)(z) −

e−rT e(iz+1)(r−δ)T

iz(iz + 1)

}

= Te−rT e(iz+1)(r−δ)T (1 − exj)
ϕXT (z − i)

(iz + 1)

+ Texj
{
eizxj(Fz)(z) − (Fz)(z)

}

− Texj

{
e−rT eizxje(iz+1)(r−δ)T

iz(iz + 1)
−

e−rT e(iz+1)(r−δ)T

iz(iz + 1)

}
.
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We invert the Fourier transform term by term and get

∂v

∂σ
(k) = Tσe−rT

1

2π

∫

R

e−izke(iz+1)(r−δ)TϕXT (z − i)dz

and

∂v

∂νj
(k) = Te−rT (1 − exj)

1

2π

∫

R

e−izke(iz+1)(r−δ)T ϕ
XT (z − i)

(iz + 1)
dz

+ Texj
1

2π

∫

R

e−izk
{
eizxj(Fz)(z) − (Fz)(z)

}
dz

− Texj
1

2π

∫

R

e−izk
{
e−rT e(iz+1)(r−δ)T eizxj

− 1

iz(iz + 1)

}
dz

= T (1 − exj)
1

2π

∫

R

e−izke(iz+1)(r−δ)T ϕ
XT (z − i)

(iz + 1)
dz(10.3)

+ Texj
1

2π
{v(k − xj) − v(k)}

− Texj
1

2π

{
(e−δT − ek−xj−rT )+

− (e−δT − ek−rT )+
}

= T (1 − exj)
1

2π

∫

R

e−izke(iz+1)(r−δ)T ϕ
XT (z − i)

(iz + 1)

+ Texj
1

2π
{V (k − xj) − V (k)} ,

respectively, where we used Lemma 10.5 for (10.3).

Proposition 10.6 allows us to decompose the derivatives of plain vanilla option prices
with respect to each of the model parameters into a difference of option prices themselves
and another Fourier transform, which involves the characteristic function ϕXT of the Lévy
exponent. Hence FFT methods apply again and prepare to compute the gradient in a very
efficient manner. Then computation of the gradient requires only twice as much evaluations
as the price computation itself.

Having discussed 1-dimensional calibration, consider now the 2-dimensional market
M(θ) = (S0, γ(θ), A(θ), ν(θ), r, δ) on (Ω,F , Q(θ)), where Q(θ) is a martingale measure
and ν(θ) the discrete Lévy measure defined by (7.16) in Example 7.15 with discrete Lévy
measures ν1

i , ν
2
j , i, j = 1, ..., N as before and a parametric Lévy 2-copula F (·;κ).

Using Proposition 10.6 in combination with a gradient based optimization routine, we
may calibrate each marginal market Mi(θi) = (Si0, γi(θi), Aii(θi), νi(θi), ri, δi), i = 1, 2, over
all (θi) = (σi, ν

1
i , ..., ν

N
i ) to a set of benchmark options, whose underlyings are the marginal

asset price process {Sit}. As regards Corollary 9.19 and Theorem 9.23 (or 9.25), we may

just as well fit the changed market model M̂(θ) = (Ŝ0, γ̂(θ), Â(θ), ν̂(θ), δ1, δ2) to a set of

benchmark options, whose underlyings are the process {Ŝt}.

Remark 10.7. Model prices in the changed market M̂ are available as to Corollary 9.33 or
Corollary 9.35.
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Remark 10.8. By Corollary 9.19, ν̂ is again discrete (on an extended grid). Hence Proposi-

tion 10.6 applies to the differentiation of plain vanilla options written on {Ŝt} with respect
to the new model parameters (σ̂, ν̂1, ..., ν̂2∗N−1).

The derivative of the model prices with respect to the primary market parameters
(σ1, σ2, ρ, ν

1
1 , ..., ν

N
1 , ν

1
2 , ..., ν

N
2 , κ) is obtained via the chain rule. It is clear from Proposition

9.15 that σ1, σ2 and ρ correspond to σ̂, whereas ν1, ν2 and κ determine ν̂ (and γ̂ is defined
by the martingale condition on the way). Specifically, we have

(10.4)
∂σ̂

∂σ1

=
σ1 − ρσ2√

σ2
1 − 2ρσ1σ2 + σ2

2

,
∂σ̂

∂σ2

=
σ2 − ρσ1√

σ2
1 − 2ρσ1σ2 + σ2

2

and

(10.5)
∂σ̂

∂ρ
= −

σ1σ2√
σ2

1 − 2ρσ1σ2 + σ2
2

.

The derivatives of ν̂ with respect to ν1, ν2 and κ are more involved. The following
lemma will be used:

Lemma 10.9. Let ν1, ν2 and ν12 be as in Example 7.15 (using the approximation). Then

∂νij12
∂ν1

l

=
∂f(U1(xi), U2(xj);κ)

∂U1(xi)
ν1
i ν

2
j 1i∈I(l) + f(U1(xi), U2(xj);κ)ν

2
j 1i=l,

∂νij12
∂ν2

l

=
∂f(U1(xi), U2(xj);κ)

∂U2(xj)
ν1
i ν

2
j 1j∈I(l) + f(U1(xi), U2(xj);κ)ν

1
i 1j=l,

∂νij12
∂κ

=
∂f(U1(xi), U2(yj);κ)

∂κ
ν1
i ν

2
j

for i, j, l = 1, ..., N .

Proof. From Example 7.15 we have approximately νij12 = f(U1(xi), U2(yj);κ)ν
i
1ν

j
2, i, j =

1, ..., N. By the chain rule, it follows that

∂νij12
∂ν1

l

=
∂(f(U1(xi), U2(yj);κ)ν

1
i ν

2
j )

∂ν1
l

=
∂f(U1(xi), U2(yj);κ)

∂ν1
l

ν1
i ν

2
j + f(U1(xi), U2(yj);κ)

∂ν1
i ν

2
j

∂ν1
l

=
∂f(U1(xi), U2(yj);κ)

∂U1(xi)
ν1
i ν

2
j 1i∈I(l) + f(U1(xi), U2(yj);κ)ν

2
j 1i=l,

where the tail integrals Ui, i = 1, 2 are given by (7.15). The derivatives ∂νij12/∂ν
2
l and

∂νij12/∂κ are derived analogously.

Lemma 10.9 allows us to compute the derivative of ν12 with respect to all its building
blocks. As to Corollary 9.18 and 9.19, this facilitates the direct differentiation of ν̂ with
respect to ν1, ν2 and κ:
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Proposition 10.10. Let ν be a discrete Lévy measure on R
2 and let ν̂ be constructed from

ν via (9.8) in Proposition 9.15. Then

∂ν̂k

∂νi1
=
∑

l

exl
∂ν

l,c(l)
12

∂νi1
,

∂ν̂k

∂νj2
=
∑

l

exl
∂ν

l,c(l)
12

∂νj2
,

∂ν̂k

∂κ
=
∑

l

exl
∂ν

l,c(l)
12

∂κ
,

where ∂ν
l,c(l)
12 /∂νi1, ∂ν

l,c(l)
12 /∂νj2 and ∂ν

l,c(l)
12 /∂κ are given by Lemma 10.9, and summation is

as in Corollary 9.19.

Proof. Proposition 10.10 follows directly from Corollary 9.19 and the chain rule.

Together with Proposition 10.6, these latest results enable us to compute the gradient
of the model price of a European call written on some transformed asset price with respect
to all primary model parameters.

10.2 Regularization using prior views

Cont and Tankov [cf. 20, Section 13.3] warn that reformulating the calibration problem as
a nonlinear least-squares problem does not resolve the uniqueness and stability issues. One
way to obtain a unique solution in a stable manner is to introduce a regularization method.
This is achieved by adding a penalization term to the least-squares criterion (10.1):

(10.6) ε(θ) =
N∑

i=1

|V (Ki, Ti; θ) − Vi|
2 + αD(Q(θ), P ),

where P an equivalent probability measure and α is the so-called regularization parameter.
Here P corresponds to any prior believe in the model configuration, which is obtained
from a historical time series analysis for example [cf. 20, Section 13.1]. The regularization
parameter α characterizes the importance of the information contained in option prices
relative to the prior knowledge of the Lévy measure.

The penalization function D is most commonly taken as the relative entropy of the
pricing measure Q with respect to the prior measure P :

Definition 10.11. For two equivalent probability measures P,Q on (Ω,F) the relative
entropy of Q w.r.t. P is

E(Q,P ) = EQ[ln
dQ

dP
] = EP [

dQ

dP
ln
dQ

dP
].

Relative entropy is often used as a measure of proximity of two equivalent probability
measures (hence referred to as the Kullback-Leibler distance). Then (10.6) penalizes huge
distances between the prior and the pricing model.

In exponential Lévy models, relative entropy is related to the characteristic triplets:
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Proposition 10.12 ([20], Proposition 9.10). Let P and Q be equivalent measures on (Ω,F)
generated by exponential Lévy models with Lévy triplets (γP , AP , νP ) and (γQ, AQ, νQ, ),
where AQ = AP = A with A > 0. The relative entropy E(Q,P ) is then given by:

E(Q,P ) =
T

2A

(
γQ − γP −

∫

|x|≤1

x(νQ − νP )(dx)

)2

+ T

∫

Rd

(
dνQ

dνP
ln
dνQ

dνP
+ 1 −

dνQ

dνP

)
νP (dx).

If P and Q correspond to arbitrage-free Lévy models, the relative entropy reduces to:

E(Q,P ) =
T

2A

(∫

Rd

(ex − 1)(νQ − νP )(dx)

)2

+ T

∫

Rd

(
dνQ

dνP
ln
dνQ

dνP
+ 1 −

dνQ

dνP

)
νP (dx).

Proposition 10.12 shows that the relative entropy between two equivalent (martingale)
measures is very much a Lévy measure property. It is worth stressing that penalization by
relative entropy reduces the number of free parameters, because equivalence of the prior
and the optimal configuration sets the volatility parameters per se. This motivates the
following functional interpretation [cf. 20, Section 9.6]:

Definition 10.13. Let P and Q be equivalent martingale measures on (Ω,F) generated
by exponential Lévy models with Lévy triplets (γP , AP , νP ) and (γQ, AQ, νQ), where AQ =
AP = A with A > 0. Then, for a given reference measure νP , expression (10.7) viewed as a
function of νQ defines a positive (possibly infinite) functional on the set of Lévy measures
L(Rd):

H : L(Rd) → [0,∞], νQ 7→ H(νQ) = E(Q(γQ, A, νQ), P (γP , A, νP )).

H is called the relative entropy functional and is a positive convex functional of νQ, which
is equal to zero, only if νQ ≡ νP .

Convexity of the relative entropy functional then makes the difference between (10.1)
and (10.6) in view of regularity. If α is large, the convexity properties of the entropy
functional stabilize the solution, while for vanishing α we recover the non-regularized least
squares problem. The right parameter value cannot be given a priori, because it is very
much subjective to the actual data at hand and the level of error present in it.

Example 10.14. Let P and Q be equivalent measures on (Ω,F) generated by exponential
Lévy models with Lévy triplets (γP , AP , νP ) and (γQ, AQ, νQ, ), where AQ = AP = A with
A > 0 and νQ, νP are discrete on R with

νQ =
N∑

j=1

νQj δxj
, νP =

N∑

j=1

νPj δxj
.
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If we assume that P and Q correspond to arbitrage-free markets, then

E(Q,P ) =
T

2A

N∑

j=1

(exj
− 1)(νQj − νPj )(10.7)

+ T

N∑

j=1

(
νQj
νPj

ln
νQj
νPj

+ 1 −

νQj
νPj

)
νPj .

Then Proposition 10.12 enables us to compute the regularized quadratic pricing error
(10.6) explicitly in the context of Example 10.14.5 Regarding the use of gradient based
methods, we would very much like to have closed form representations of the derivatives
of the penalization term with respect to the model parameters. These are available for
discrete Lévy measures:

Proposition 10.15. Let P and Q be equivalent measures on (Ω,F) generated by exponen-
tial Lévy models with Lévy triplets (γP , AP , νP ) and (γQ, AQ, νQ, ), where AQ = AP = A
with A > 0 and νQ, νP are discrete on R with

νQ =
N∑

j=1

νQj δxj
νP =

N∑

j=1

νPj δxj
.

Then

∂H(νQ)

∂νQk
=

T

A
(exk

− 1)
N∑

j=1

(exj
− 1)(νQj − νPj ) + T ln

νQk
νPk
.

Proof. The proof follows directly from differentiating (10.7) with respect to the weights
νQk , k = 1, ..., N .

Proposition 10.15 then rounds out the analytical means for numerical minimization of
the penalized quadratic pricing error.

10.3 Foreign Exchange:

Redundancy of a liquid market

The foreign exchange (or forex or fx) market is the most actively traded market in the world
with more than a trillion worth of transactions each day. The trading is in currencies and

(...) involves the simultaneous purchase of one currency while selling another
currency. Currencies are traded in pairs, such as U.S. dollar/Euro or Japanese

5Cont and Luciano [19] exemplify the explicit penalty computation in the case of tempered stable Lévy
measures.
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Yen/British Pound. (...) fx traders include governments, corporations and
fund managers doing business with foreign countries, that need to exchange one
currency for another, and speculators, who seek to profit from price movements
in the markets.6

The most liquid currencies include the U.S. dollar (USD), the euro (EUR), the Japanese
yen (JPY), the British pound, the Swiss franc, the Australian dollar and the Canadian
dollar. Traders do business with fx products as diverse as spot and futures transactions or
options. Exchange rate transactions take mostly place over-the-counter (OTC) with only
a few regularized marketplaces existent.7

Our belief is that the fx market is liquid enough to expose not only the implied dynamics
of the traded exchange rates but also the implied dependence structure between them. We
have explained in the previous sections how the dependence structure (in terms of a Lévy
copula function) influences the fair value of an option, that is written on the cross rate.

An exchange rate transaction is termed a cross rate when the home country
currency is not a party in the trade. For example, for a trader in the U.S., a
cross rate would be euro/yen, or the euro against the Japanese yen.8

This suggests to back out the dependence parameters from cross rate related products in
the context of a real connected foreign exchange market.

A real fx model Consider the case of Example 10.3 in a real world foreign exchange
market, focusing on the JPY/USD rate and the JPY/EUR rates. Hence we play a trader
who operates a Japanese business with international currency exposure in the U.S. Dollar
and the Euro. Then the USD/EUR rate acts the counterpart of the cross rate.

Let us fix the 29th of June 2008 as the current date. Figure 10.1 shows the recent
historical development [cf. 59] of the delta-connected U.S. dollar-euro-Japanese yen market.
The current spot market rates [cf. 75] are 106.13 JPY = 1 USD, 167.61 JPY = 1 EUR and
1.5793 USD = 1 EUR.

For the time being, the (domestic) Japanese money market offers very low interest
rates compared to the (foreign) U.S. and European currency accounts. Table 10.1 shows
the international short-term interest rate curves [cf. 75].

(in %) 1 day 1 month 3 month 6 month
JPY 3.71 4.44 4.95 5.13
USD 2.25 2.45 3.00 3.15
EUR 0.25 0.63 0.85 0.94

Table 10.1: Interest rates offered in currencies JPY, USD and EUR.

6Quote taken from [17, Trading CME fx].
7A fraction of the worldwide volume is traded on exchanges like the Philadelphia Stock exchange [56]

or the Chicago Mercantile Exchange [17].
8Quote taken from [17, Trading CME fx].
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Figure 10.1: Time series of the JPY/USD rate (left), the JPY/EUR rate (center), and the
USD/EUR rate (right).

Figure 10.2: Market quotes for European style call options written on the JPY/USD
exchange rate (left), the JPY/EUR exchange rate (center), and the USD/EUR cross rate
(right).

We refer to market quotes [cf. 59] of OTC-traded European style call options written
on the JPY/USD rate and the JPY/EUR rate with a 80 days maturity T = 80/365 for
benchmark prices. Reference prices of cross rate based products are taken from market
quotes [cf. 59] of OTC-trading in European style call options written on the USD/EUR
rate with the same lifetime. Figure 10.2 illustrates the available price information.

This set of real data defines a 2-dimensional exponential Lévy model, featuring the
exchange rate dynamics

R1
t = 106.13e(0.0084−0.0286)t+X2

t

and R2
t = 167.61e(0.0084−0.0490)t+X1

t ,

where {Xt} is a Lévy process on R
2 with characteristic triplet (γ,A, ν). Here we inter-

polated the interest rate curves at the T = 80/365 years duration for the risk free rates
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rh = .0084, r1
f = .0286 and r2

f = .0490 offered in the domestic and the foreign markets.
The corresponding cross rate dynamics are (consistently) given by

R̂t = 1.5793e(0.0286−0.0490)t+ bXt ,

where {X̂t}, defined by X̂t = X2
t − X1

t , is a R-valued Lévy process with triplet (γ̂, Â, ν̂).
The benchmark price chains V 1, V 2, V c are given according to the above quotes.

We assume the marginal Lévy measures ν1, ν2 to be discrete and coupled by a general
Lévy Clayton copula F . Hence (γ,A, ν) = (γ(θ), A(θ), ν(θ)) with model parameter vector
θ = (σ1, σ2, ρ, ν

1
1 , ..., ν

N
1 , ν

1
2 , ..., ν

N
2 , κ, η). Our goal is to calibrate the characteristic triplet

(γ(θ), A(θ), ν(θ)) (or θ, indeed) so as to keep the pricing error(s) as low as possible.9

Numerical implementation Given the available information, the non-regularized ob-
jective (error) function in our triangular foreign exchange model is

(10.8) ε(θ) =
23∑

j=1

|V 1(Kj; θ1) − V 1
j |

2 +
11∑

j=1

|V 2(Kj; θ2) − V 2
j |

2 +
23∑

j=1

|V c(Kj; θ) − V c
j |

2,

where θ1 = (σ1, ν
1
1 , ..., ν

N
1 ) and θ2 = (σ2, ν

1
2 , ..., ν

N
2 ). Here (10.4), (10.5) and Propositions

10.6, 10.15 and 10.10 apply to the evaluation of (10.8) and its differentiation with respect
to all parameters θ = (σ1, σ2, ρ, ν

1
1 , ..., ν

N
1 , ν

1
2 , ..., ν

N
2 , κ, η).

The exact model calibration θ∗EMC ∈ Θ is then given by the optimal argument

θ∗EMC = arg min
θ∈Θ

ε(θ).

The estimator is said to be exact, because optimization is over the complex 2-dimensional
model. The exact calibration is computationally expensive, because it estimates 2N + 2
parameters simultaneously.

Another strategy is to split optimizations similar to the inference for margins method
in maximum likelihood estimations. That is why we refer to the split approach as the
calibration of margins method. Considering the first and the second term on the right-
hand side of (10.8), we recognize the pricing errors

(10.9) ε1(θ1) =
23∑

j=1

|V 1(Kj; θ1) − V 1
j |

2 and ε2(θ2) =
11∑

j=1

|V 2(Kj; θ2) − V 2
j |

2,

which correspond to the separate problems of calibrating θ1, θ2 to the individual benchmark
price chains V 1 and V 2. This suggests to calibrate, in a first step, the parameters θi
associated to the margin {Ri

t} to the price chain V i in the following sense:

θ̂i = arg min
θi∈Θi

εi(θi).

9Salmon and Schleicher [68] proceed in a similar way using bivariate ordinary copulas in the style of
Cherubini and Luciano [15] to preserve the (as they called it) triangular no-arbitrage relation.
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In a second step, the term on the right-hand side of (10.8), which penalizes price differences
to the cross rate benchmark, is minimized. This involves the model prices V c(Ki; θ) =
V c(Ki; θc, θ1, θ2), where θc = (κ, η) the Clayton Lévy copula parameters. Here we employ
the previously calibrated (marginal) parameters θ̂i = (σ̂i, ν̂

1
i , ..., ν̂

N
i ), i = 1, 2 to evaluate

the dependence error

(10.10) εc(θc) =
23∑

j=1

|V c(Kj; θc, θ̂1, θ̂2) − V c
j |

2.

From there, the optimal dependence structure is parameterized by

θ̂c = arg min
θc∈Θc

εc(θc).

Then the calibration for margins method gives the best model parametrization

θ̂CFM = (θ̂c, θ̂1, θ̂2).

The reduced calibration problems (10.9) remain particularly ill-posed, even though they
are moderated to marginal perspectives.

Remark 10.16. In Section 10.2 we have discussed how to regularize the uniqueness and
stability issues of the calibration problem by prior views on the pricing measure (or the
model parameters, in fact).

Regularization by relative entropy changes the (marginal) objective functions (10.9)
into

(10.11) εj(θi) =
∑

j

|V (Kj; θi) − V i
j |

2 + αE(Q(θi), P (θPi )),

where α the regularization parameter and θPi the prior belief in the model parameters. We
do not use historical price data for choosing the prior in this study. Instead we calibrate
a simple (few parameter) Merton jump-diffusion model to the benchmark prices to obtain
an estimate of the volatility and a candidate νP for the Lévy measure [cf. 20, Section 13.4].
With a view to Proposition 10.12, the prior νP must also be discretized on the same grid,
using, for example, the formula

νPi =

∫ xi+∆x

xi−∆x

νP (dx)

for the points x1, ..., xN−1 and integrating up to plus infinity or minus infinity for the
points x0, xN . Then the calibrated Lévy measure will be equivalent to the discretized Lévy
measure [cf. 20, Section 13.4] and not to the Merton prior. But if the grid is sufficiently
fine, the approximation to the continuous prior is quite good.

The regularization parameter α is chosen so as to achieve an effective trade-off between
precision and stability of the calibration. One possible solution [cf. 20, Section 13.3] is to
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increase the importance of regularization (α, so to say) so long as to stay approximately
within model precision. To do so, we first minimize the quadratic pricing error (10.11) with
zero regularization α = 0.10 This produces the least squares error ε0, which is interpreted
as the distance of the market to the model and gives an a priori error level that one can
not really hope to improve upon while staying in the same class of models. The optimal α
is then defined as the maximal value to stay within the same order of magnitude as ε0:

(10.12) α̂ = sup
α
{εi(θ̂i(α)) ≤ δε0

}, δ > 1,

where θi(α) is the optimal argument resulting from the minimization of (10.11) with regu-
larization parameter α. Here δ indicates the sacrifice of accuracy for the benefit of stability.
Typical values for δ so as to produce satisfactory results are in the interval 1 < δ < 1.5.

The following steps summarize the final calibration method as implemented in the
numerical examples of the next section:11

(1) For i = 1, 2, fit a Merton jump-diffusion model to the benchmark price chains V i and
discritize it in order to get a prior parametrization (σi, ν

P
i ).

(2) For i = 1, 2, fix σ̂i = σi and run the optimization routine on (10.11) with αi = 0 to
get an estimate of the model error.

(3) For i = 1, 2, choose a trade-off δ between precision and stability, and compute the
optimal regularization parameter α̂i as to (10.12) by running the optimization routine
several times.

(4) For i = 1, 2, solve the minimization problem (10.11) with optimal α̂i.

(5) Fix σ̂1, ν̂
1
1 , ..., ν̂

N
1 , σ̂2, ν̂

1
2 , ..., ν̂

N
2 and solve the variational problem (10.10).

We have only discussed the penalization of large prior discrepancy in the calibration of
the marginal markets, leaving aside uniqueness and stability issues of the calibration of the
Lévy copula. This will be resumed with regard to the empirical results in the next section.

Empirical results We apply the regularized calibration procedure to the delta con-
nected fx market and examine the implied Lévy measures and the implied Lévy copulas
so-obtained.

We assess the marginal results first. Table 10.2 shows the Merton parameters of the
candidate Lévy processes, that were fitted to the references options in a prior calibration
(we add the prior calibration of the cross rate products for later reference).

• The marginal Lévy measures are non-trivial; the market anticipates some jumps of
the foreign exchange rates.

10Using regularization with α = 0 is different from omitting the regularization term entirely in that the
volatility parameter is kept fixed.

11Cont and Luciano [19] enclose a testing of the original algorithm over a range of model examples in
the univariate case.

137



σ λ µ δ ε
νP1 0.0759 0.5158 -0.1679 0.1674 1.1738e-6
νP2 0.0732 0.2457 -0.2231 0.2757 2.5419e-6
νP3 0.0826 0.1943 -0.0959 0.3149 6.4952e-6

Table 10.2: Parameters of the Merton-prior as fitted to market implied volatilities.

• The mode is located left to the origin; the market fears a downgrading of the Japanese
yen.

• The jump intensity is higher for the JPY/USD rate, while jump diffusion is higher
for the JPY/EUR rate; the market anticipates a more frequent but moderate down-
grading of Japanese yen compared to U.S. dollar, and a seldom but potentially heavy
drop of the JPY/EUR rate.

• The prior implied volatilities are lower than the at-the-money market implied volatil-
ities; the existence of jumps alone produces additional volatility.

Remark 10.17. Regarding Proposition 10.12, the diffusion parameters are from now on kept
fixed at the level of the prior because of the equivalence constraints for the regularizing
and the regularized measure.

The errors made in reproducing the benchmark prices by Merton’s jump diffusion are
εP1 = 1.1738 · 10−6 and εP2 = 2.5419 · 10−6. The model distances to the marginal markets
are ε0

1 = 1.0664 · 10−6 and ε0
2 = 2.0530 · 10−6, which is found by running the unregularized

calibration method on a grid with step size ∆x = 2π(1024 − 1)/(600 ∗ 1024) ≃ 0.0105
and 256 points12. The optimal trade-off between pricing accuracy and stability is found by
running the optimization repeatedly. We choose a tolerance δ = 1.01 (meaning, that we
allow for a 1%-loss of accuracy) and halve the regularization parameter α in each run till
the error constraint is met. The outcome is illustrated in Figure 10.3, which gives reason to
fixing the relative importance parameters at α1 = 6 · 10−6 and α2 = 5 · 10−7. Figure 10.4
shows the final outcome of marginal calibrations to the JPY/USD rate and the JPY/EUR
rate with optimal regularization by a Merton prior.13

• The implied market volatilities are adequately reproduced; the fit to the market
quotes is better with the non-parametric approach as with the prior fitting.

• The left tails of the Lévy measures are much heavier than the right tails; the jump
behavior is strongly asymmetric.

• The Lévy measure calibrated to the JPY/USD rate and its prior are almost coinci-
dent; the Merton model is rich enough to capture the rate’s market implied charac-
teristic.

12The grid size here is due to the constraints in using FFT methods.
13Figure 10.4 can be compared to the calibration results in Tankov [cf. 77, Figures 3.8 to 3.11].
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Figure 10.3: Trade off between accuracy and stability of the regularized calibration problem
for the JPY/USD rate (left) and JPY/EUR rate (right).

Figure 10.4: Calibrated marginal Lévy measures (right) and corresponding implied volatil-
ities (left) in the case of JPY/USD rate (upper) and JPY/EUR rate (lower).
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Figure 10.5: Surface of the pricing error at the optimal ρ = 0.3055 (left), error function at
ρ = 0.3055, κ = 1.4791 (upper right), and error function at ρ = 0.3055, η = 0.7281 (lower
right).

Figure 10.6: Calibrated marginal Lévy measures (right) and corresponding implied volatil-
ities (left) in the case of the USD/EUR cross rate.
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• The Lévy measure calibrated to the JPY/EUR rate is trimodal14 with two alternate
modes sharply nearby the origin and a low mode in the left tail; the Merton model
is incapable of reproducing the diverging market perceptions.

Then we fit the model’s dependence parameters so as to reproduce the quotes corre-
sponding to the EUR/USD cross rate based on the previously calibrated margins. In the
least-squares sense, the best fit to market quotes is achieved by ρ = 0.3055, η = 0.7281 and
κ = 1.4791. Hence the market prices some positive normal dependence, a significant sign
dependence of sudden jumps in the rates and a moderate size dependence of simultaneous
bursts.

While the introduction of a convex prior discrepancy term has worked as a stabilizer
for margin calibrations, the calibration of the dependence parameters to option quotes by
minimal least squares is found sufficiently stable on its own. Figure 10.5 shows the surface
(left graph) of the least square error (10.10) over a range of Lévy copula parameters at
ρ = 0.3055. The error development over a changing sign (upper right graph) or size
dependence (lower right graph) is plotted for additional visualization. Here every other
Lévy copula parameter is kept fixed at its optimal value.

• The error is a smooth function of jump sign and jump size dependence in the region
at hand.

• Around its minimal value, the error is a strictly convex function of the jump sign
dependence η but exhibits a flat yet convex behavior in direction of the jump size
dependence κ.

Figure 10.6 shows the fitted conjugate Lévy measure and how accurate option prices
are reproduced. For reasons of validity, we have redone a prior fitting of the EUR/USD
related option prices to the same effect as before.

• The implied market volatilities are adequately reproduced; the calibration accuracy
of the conjugate Lévy measure does not rank behind a direct approach.

• The calibrated Lévy measure is multimodal with one spike precisely at the origin,
one clear mode in the left tail and some plateau building on the line.

10.4 Summary

In this chapter we have solved the inverse problem of calibrating the characteristics of an
exponential Lévy model to market quotes. Our main contribution here is to extract the
dependence structure, that is implied in a liquid two rate foreign exchange market.

First, we formulated the general calibration problem in the style of a least-squares
approximation to observable option prices. This was subsequently applied to a discrete

14the extremal mode in the very left tail is due to numerical procedure and was already encountered in
Cont and Tankov [cf. 20, Section 13.3] for the case of Dax option prices.
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2-rate foreign exchange model, that features call options written on the primary exchange
rates and the cross rate.

It proved to be crucial for the use of gradient based optimization routines that we are
able to determine the derivatives of the approximation error with respect to the model
parameters. Our contribution here is that we differentiated the semi-analytical representa-
tion of the fair value of a call option written on a primary exchange rate with respect to the
diffusion and the Lévy measure parameters in the event of dividend payments. Moreover,
we determined the derivatives of the fair model value of a call option written on the cross
rate with respect to the Lévy copula parameters.

On account of uniqueness and stability concerns, we included a regularization term
in the objective error function, that penalizes large entropy distances of the candidate
parameters from some prior belief. We deduced the derivatives of the penalty term with
respect to all model parameters involved.

Having described the real delta-connected USD-EUR-JPY exchange rates market in
short, we incorporated the previous results into a gradient based optimization scheme. A
split strategy to calibrate the marginal parameters to the exchange rates related quotes
and the dependence parameters to the cross rate related quotes proved to be useful.

We implemented the margin calibrations first. The volatilities implied in European
call options written on the USDJPY and the EURJPY exchange rate were accurately re-
produced. Specifically, the calibrated Lévy measures exposed the markets worries about
negative jumps of both exchange rates, although the jump behavior of the EURJPY ex-
change rate seemed more erratic.

Next, we implemented the dependence calibration. The resulting fit to the volatilities
implied in European call options written on the EURUSD cross rate turned out to be
fairly adequate. Specifically, we recognized that a (in every respect) moderate dependence
structure produces the best fit to the cross rate data.

We also argued for the stability of the dependence calibration (as opposed to the margin
calibration) graphically. This validated the use of penalty terms in the marginal error
functions only.
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Appendix A

Ordinary copula related topics

A.1 Archimedean copula functions

We study briefly the pre-eminent class of Archimedean copulas and present the Clayton
copula for reference.

Definition A.1. A function f is said to be completely monotonic on an interval [a, b] if it
satisfies

(−1)k
dk

dtk
f(t) ≥ 0, k ∈ N, t ∈ (a, b),

i.e. the derivatives alternate in sign.

Let φ : [0, 1] → [0,∞] be a continuous and strictly decreasing function such that
φ(1) = 0 and φ(0) ≤ ∞. Then the inverse function φ−1 exists on [0, φ(0)], and is continuous
and strictly decreasing. We extend the notion of the inverse function to the domain [0,∞].

Definition A.2. Suppose φ : [0, 1] → [0,∞] is continuous and strictly decreasing with
φ(1) = 0 and φ(0) ≤ ∞. We define a pseudo-inverse of φ with domain [0,∞] by

(A.1) φ[−1](t) =

{
φ−1(t), 0 ≤ t ≤ φ(0);
0, φ(0) ≤ t ≤ ∞.

One can show [cf. 57, Section 4.6] that if the pseudo-inverse φ[−1] of φ is completely
monotonic, then φ(0) = ∞, and the usual inverse φ−1 exists on [0,∞].

Theorem A.3 ([57], Theorem 4.6.2). Let φ : [0, 1] → [0,∞] be continuous and strictly
decreasing with φ(1) = 0 and φ(0) = ∞, and let φ−1 denote the inverse of φ. Then

(A.2) C(u1, ..., ud) = φ−1(φ(u1) + ...+ φ(ud))

is a copula if and only if φ−1 is completely monotonic on [0,∞).
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A function φ, such that φ−1 is completely monotonic, is referred to as a generator
and the copula functions generated as to (A.2) are classified as Archimedean1. In fact,
generators φ fulfilling φ(0) = ∞ are termed strict generators. We relate strict generators
to the Laplace transform of some univariate distribution in the following.

Lemma A.4 (cf. [43], Appendix 1). A function ψ on [0,∞) is the Laplace transform of a
distribution P , if and only if ψ is completely monotonic and ψ(0) = 1.

As a consequence, any Laplace transform ψ is positive on [0,∞) and ψ(∞) = 0. Then
the inverse ψ−1 of Laplace transforms ψ (that exists on [0, 1]) determine generators 2 of
Archimedean copulas.

Example A.5. Let X ∼ GAM(1
θ
, 1) be a gamma distributed random variable on R with

θ > 0. Then the Laplace transform ψX of X is

ψ(t) = (1 + t)−
1
θ , t > 0.

Hence φ(t) = ψ−1(t) = t−θ − 1 is a strict generator and φ produces the Archimedean
d-copula

(A.3) C(u1, ..., ud; θ) = (u−θ1 + ...+ u−θd − d+ 1)−
1
θ .

The function φ is called the (strict) Clayton generator and copula (A.3) is called the
Clayton 3 copula.

In the limit θ → 0 we arrive at the independence copula. Conversely, in the limit
θ → ∞ the Clayton copula tends to the maximum copula. The Fréchet lower bound is
unattainable in our setting for all d ≥ 2.

In Figure A.1 we plotted the generator (left) and the contour lines of the Clayton copula
density over a range of dependence parameters θ.

• Depending on θ, the Clayton generator is a slow or fast decreasing function

• For θ = 0.5 and θ = 6, the density is highest in the lower left corner; the Clayton
copula induces asymmetric and positive dependence only.4

• The higher the θ the denser is the mass in the corner; θ is responsible for the degree
of (tail) dependence.5

1The term Archimedean is due to Ling [50] who proofed that for an Archimedean 2-copula C and any

u1, u2 ∈ [0, 1], there exists a positive integer n ∈ N such that u
(n)
1 < u2, where u

(n)
1 the C-powers defined

recursively by u
(1)
1 = u1 and u

(n+1)
1 = C(u1, u

(n)
1 ).

2Some authors [e.g. 43] use the alternative notation C(u1, ..., ud) = ψ(ψ−1(u1) + ... + ψ−1(ud)) for
defining Archimedean copula functions.

3Clayton [18] introduced this type of dependence function that was also called the Cook and Johnson
copula [37] or the Pareto copula [42].

4Archimedean copulas generated by any strict φ have always positive dependence structures [see 43,
for an extension to negatively dependent margins].

5Joe [43] and Nelson [57] give dependence orderings of Archimedean (one-parameter) families.
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Figure A.1: Generators (left) and contours of the Clayton copula density using θ = 0.5
(center), and θ = 6 (right).

Thus the Clayton copula contrasts the elliptical family regarding symmetry and sign
of the attainable dependence structures. It is worth stating that the Clayton copula fam-
ily is uniparametric. Hence the copula function uses a single parameter θ whatever the
dimension.

A.2 Conditional copula functions

Following Patton [63], there exists a natural extension of the concept of an ordinary copula
to a conditional copula.

Definition A.6. For any σ-algebra G ⊂ F , a conditional d-dimensional copula function
C (or conditional d-copula or conditional copula) given G is a mapping of the form C :
[0, 1]d → [0, 1] such that

(1) C(·, |G) is grounded

(2) C(·, |G) is d-increasing and

(3) C(1, ..., 1, ui, 1, ..., 1|G) = ui for all i ∈ {1, ..., d}, ui ∈ [0, 1]

Theorem 2.2 can be extended to incorporate for conditional distributions:

Theorem A.7 (cf. [63], Theorem 3). Let F be a joint cdf with margins F1, ..., Fd and
F some conditioning set. Then there exists a conditional d-copula C such that, for all
x1, ..., xd ∈ R∞,

(A.4) F (x1, ..., xd|F) = C(F1(x1|F), ..., Fd(xd|F)|F).

If the margins are continuous, then C is unique. Conversely, if C is a conditional d-copula
and F1, ..., Fd are univariate conditional cdf ’s, then the function F defined by A.4 is a joint
conditional cdf with margins F1, ..., Fd.

Referring to Patton [63], the reader may be confirmed that conditional copulas are
handled much the same way as ordinary copulas. Then the results on the static case can
be readily applied to the dynamic perspective.
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A.3 Elliptical distributions

Elliptical distributions are heavily used in this work. We give a very short introduction.

Definition A.8. A random variable X on R
d is said to have a spherically symmetric

distribution (or simply spherical distribution) if for every orthogonal matrix Γ ∈ R
d×d

ΓX
d
= X.

Definition A.8 shows that spherically distributed random variables are distributionally
invariant under rotations. That is to say they have uncorrelated (not necessarily indepen-
dent) components and identical, symmetric marginal distributions. The following result
characterizes a spherical distribution by means of its characteristic functions:

Theorem A.9 (cf. [31], Theorem 3.19). A random variable X on R
d has a spherical

distribution, if and only if its characteristic function ϕ(t) satisfies one of the following
equivalent conditions:

• ϕ(Γ′t) = ϕ(t) for any orthogonal matrix Γ ∈ R
d×d

• there exists a function φ of a scalar variable such that ϕ(t) = φ(t.t).

If existent, the function φ is referred to as the characteristic generator of the spherical
distribution. It is convenient to write X ∼ SPH(φ) for a spherically distributed random
variable X on R

d with characteristic generator φ. The pdf of X, if it exists, must be of
the form fX(x) = g(x.x) for some nonnegative function g of a scalar variable. In this case,
g is called the pdf generator. Then we may write X ∼ SPH(g) instead of X ∼ SPH(φ)
whenever the distribution is specified by its pdf.

Example A.10 (cf. [31], Example 3.20). Let X ∼ MVN(0,1). Then the characteristic
function ϕX of X is

ϕX(u) = e−
1
2
(u.u).

From Theorem A.9 it follows that X has a spherical distribution with characteristic gen-
erator φ(t) = e−

1
2
t. The pdf fX of X is given by

fX(x) = (2π)d/2e−
1
2
(x.x),

and can thus be written as fX(x) = g(x.x) with scalar function g(t) = (2π)d/2e−
1
2
t.

Example A.11. Let X ∼MV T (0,1, ν). Then the pdf fX of X is

fX(x) =
Γ(1

2
(ν + d))

Γ(1
2
ν)(πν)d/2

(
1 +

x.x

ν

)−(ν+d)/2

By Theorem A.9, X has a spherical distribution with pdf generator

g(t) =
Γ(1

2
(ν + d))

Γ(1
2
ν)(πν)d/2

(
1 +

t

ν

)−(ν+d)/2

.
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The class of elliptical distributions results from affine transformations of spherical dis-
tributions:

Definition A.12. A random variable X on R
d is said to have an elliptically symmetric

distribution (or simply elliptical distribution) with parameters µ ∈ R
d and Σ ∈ R

d×d (and
φ) if

X = µ+ A′Y, Y ∼ SPH(φ),

where A ∈ R
k×d such that A′A = Σ with rank(Σ) = k.

We write X ∼ ELL(µ,Σ, φ) for elliptically distributed random variables X on R
d with

parameters µ and Σ, and characteristic generator φ. In the course of this work, we only
consider elliptically distributed random variables X ∼ ELL(µ,Σ, φ) whose parameter Σ is
of full rank d. Given that Y possesses a pdf generator g, the pdf of X exists and is of the
form [cf. 31, Section 3.3.2]

(A.5) fX(x) = |Σ−1/2
|g((x− µ).Σ−1(x− µ)).

In this case we shall sometimes use the notation ELL(µ,Σ, g) instead of ELL(µ,Σ, φ).

Example A.13. Let X ∼MVN(µ,Σ). Then we clearly have

X = µ+ Σ1/2Y, Y ∼MVN(0,1).

Regarding (A.5), the pdf of X is given by

fX(x) = (2π)−d/2|Σ|

−1/2e−
1
2
((x−µ).Σ−1(x−µ)).

Example A.14. Let X ∼MV T (µ,Σ, ν). Then we have

X = µ+ Σ1/2Y, Y ∼MV T (0,1, ν).

Regarding (A.5), the pdf of X is given by

fX(x) =
Γ(1

2
(ν + d))

|Σ|
1/2Γ(1

2
ν)(πν)d/2

(
1 +

(x− µ).Σ−1(x− µ))

ν

)−(ν+d)/2

.

A.4 Gaussian hypergeometric function

Proposition 4.19 involves the Gaussian hypergeometric function [cf. 2, Chapter 15]. This
is analyzed (in part graphically) in order to support the proof of Proposition 4.19.

Definition A.15. For a, b, c ∈ R, the Gaussian hypergeometric series h(a, b, c; z) is defined
as

h(a, b, c; z) =
∞∑

k=1

Γ(k + a)

Γ(a)

Γ(k + b)

Γ(b)

Γ(c)

Γ(k + c)

zk

k!
.

Its circle of convergence is the unit circle |z| < 1.
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Figure A.2: Line graphs of the Gaussian hypergeometric function and its variant including
the Pearson type VII characteristic coefficient.

The Gaussian hypergeometric function h(a, b, c; z) with a = 1/2, b = N − (d− i)/2, c =
3/2 may be used to rewrite the integral (we found this representation of the integral using
the MatLab Symbolic Toolbox)

∫ (
1 +

y2

s+ ν

)−(N− d−i
2

)

dy = yh

(
1

2
, N −

d− i

2
,
3

2
,
−y2

ν + s

)
,

which comes up in the proof of Proposition 4.19. Another term, that steams from the
multivariate Pearsom type VII density is involved there. Then we are interested in the
properties of the mapping

(A.6) t 7→
Γ(N −

d−i
2

)
(
1 + s

ν

)−1/2
t

(πν)1/2Γ(N −

d−i
2

− 1/2)
h

(
1

2
, N −

d− i

2
,
3

2
,
−t2

ν + s

)
.

For graphical support of the proof of Proposition 4.19, Figure A.2 plots the Gaussian
hypergeometric function h(1

2
, N−

d−i
2
, 3

2
, −t2
ν+s

) and its variant (A.6) over t usingN = 1
2
(d+ν).

• The Gaussian hypergeometric function h(1
2
, N −

d−i
2
, 3

2
, −t2
ν+s

), seen as a function of t,
is a convex function tending to 0 for |t| → ∞.

• The variant function (A.6) is a concave function with limit value 1/2 for |t| → ∞.

This validates the proof of Proposition 4.19.
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Appendix B

Lévy copula related topics

B.1 Time inhomogeneous Lévy process

Time inhomogeneous Lévy processes are obtained from relaxing the condition of stationary
increments. They are special examples of additive processes.

Definition B.1. A stochastic process {Xt} on R
d with X0 = 0 is an additive process if

the following conditions are satisfied:

(1) For any choice of n ≥ 1 and 0 ≤ t0 < t1 < ... < tn ≤ T , the random variables
Xt0 , Xt1 − Xt0 , Xt2 − Xt1 , ..., Xtn − Xtn−1 are independent (independent increments
property).

(2) For every t ∈ [0, T ] and ε > 0 it holds lims→t P [|Xs − Xt| > ε] = 0 (stochastic
continuity property).

(3) There is Ω0 ∈ F with P [Ω0] = 1 such that, for every ω ∈ Ω0, Xt(ω) is right-continuous
in t ∈ [0, T ] and has left limits in t ∈ [0, T ].

In an obvious way, Lévy processes are additive. Additive processes admit a generaliza-
tion of the Levy-Khintchin representation:

Theorem B.2 ([20], Theorem 14.1). Let {Xt} be an additive process on R
d. Then Xt has

infinitely divisible distribution for all t. The law of {Xt} is uniquely determined by its spot
characteristics (γt, At, νt)t≥0:

E[eiz.Xt ] = eψt(z), z ∈ R
d

ψt(z) = −

1

2
z.Atz + iγt.z +

∫

Rd

(eiz.x − 1 − iz.x1|x|≤1)νt(dx).(B.1)

The spot characteristics satisfy the following conditions:

(1) For all t, At is a positive definite d×d-matrix and νt is a positive Radon measure on
R
d satisfying νt({0}) = 0 and

∫
Rd(|x|

2
∧ 1)νt(dx) <∞.
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(2) γ0 = 0, A0 = 0, ν0 = 0 and for all s, t, such that s ≤ t, At − As is a positive definite
matrix and νt(B) ≥ νs(B) for all measurable sets B ∈ B(Rd) (positiveness property).

(3) if s→ t then As → At, γs → γt and νs(B) → νt(B) for all measurable sets B ∈ B(Rd)
such that B ⊂ {x : |x| ≥ ε} for some ε > 0 (continuity property).

Conversely, for a family of triplets (γt, At, νt) satisfying the above conditions there exists
an additive process {Xt} with (γt, At, νt)t≥0 as spot characteristics.

A fundamental additive process encountered for in many finance applications is the
Brownian motion with time dependent volatility [cf. 20, Example 14.1.]. For {Bt} a
standard Brownian motion on R, σ(t) : R+ → R+ a measurable function such that∫ t

0
σ2(s)ds <∞ for all t ∈ [0, T ] and b(t) : R+ → R a continuous function, the process

Xt = b(t) +

∫ t

0

σ(s)dBs

is an additive process. The Brownian motion with time dependent drift and volatility is
still pathwise continuous. A simple time inhomogeneity can also be incorporated into the
jump part of a Lévy process:

Lemma B.3 (cf. [20], Section 14.1). Let (γt, At, µt)t≥0 be defined by

(1) At =
∫ t

0
σ2(s)ds, where σ : [0, T ] → R

d×n a matrix valued function such that σ(t) is

symmetric and verifies
∫ T

0
σ2(t)dt <∞.

(2) µt(B) =
∫ t

0
νs(B)ds, ∀B ∈ B(Rd), where {νt}t∈[0,T ] a family of Lévy measures

verifying
∫ T

0
dt
∫

Rd(1 ∧ |x|2)νt(dx) <∞.

(3) Γt =
∫ t

0
γ(s)ds, where γ : [0, T ] → R a deterministic function with finite variation.

Then (γt, At, µt)t≥0 are spot characteristics and define a unique additive process {Xt}.
(γ(t), σ2(t), νt) are called local characteristics of the additive process.

An additive process {Xt} with local characteristics (γ(t), σ2(t), νt) is usually called
time-inhomogeneous Lévy process1. Note that the time inhomogeneous Lévy process is a
special case of an additive process.

It is straight forward to imagine Lévy copula functions for time-inhomogeneous Lévy
processes:

Definition B.4. Let {Xt} be a time-inhomogeneous Lévy process on R
d with local char-

acteristics (γ(t), σ2(t), νt). By 7.12 there exists, for each t ∈ [0, T ], a Lévy copula function
Ft of νt. We call {Ft}t∈[0,T ] the family of local Lévy copulas of {Xt}.

Then many of the findings on Lévy copula functions should apply naturally to a family
of local Lévy copulas.

1Time inhomogeneous Lévy processes arise naturally in the context of the Lévy Libor market model
pioneered by Eberlein and Özkan [28]
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Finance: Duality and Valuation, Ph.D. thesis, Albert Ludwigs Universität Freiburg.

[62] Papapantoleon, A. (2008), An introduction to Lévy processes in finance. Lecture
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[64] Raible, S. (2000), Lévy Processes in Finance: Theory, Numerics and Empirical
Facts, Ph.D. thesis, Albert Ludwigs Universität Freiburg.

[65] Rockinger, M., E. Jondeau (2002), Conditional dependency of financial series:
an application of copulas. Research Paper, International Center for Financial Asset
Management and Engineering.

[66] Rosenblatt, M. (1986), Remarks on a multivariate transformation, The Ann. of
Math. Stat., 40, 470–472.

[67] Rosinski, J. (2001), Series representations of Lévy processes from the perspective
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