
Krylov subspace methods for shifted unitary
matrices and eigenvalue deflation

applied to the Neuberger Operator and the
matrix sign function

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

am Fachbereich Mathematik der
Bergischen Universität Wuppertal

genehmigte

Dissertation

von

Dipl.-Math. Katrin Schäfer

Tag der mündlichen Prüfung: 29. 8. 2008
Referent: Prof. Dr. A. Frommer
Korreferent: Prof. Dr. M. Günther

Die Dissertation kann wie folgt zitiert werden:

urn:nbn:de:hbz:468-20080520
[http://nbn-resolving.de/urn/resolver.pl?urn=urn%3Anbn%3Ade%3Ahbz%3A468-20080520]

Danke

Ich danke meinem Doktorvater Prof. Dr. Andreas Frommer sowie Prof. Dr.
Bruno Lang, Prof. Dr. Michael Günther, Prof. Dr. Francesco Knechtli,
Brigitte Schultz, Dr. Holger Arndt sowie der gesamten Gruppe FGAngInf,
von denen mich jeder auf seine Weise unterstützt hat. Meiner Familie und
meinen Freunden danke ich für ihre Geduld und ihr Verständnis.

Contents

Preface 1

1 Introduction 5
1.1 Krylov subspace methods . 5

1.1.1 Krylov subspaces . 5
1.1.2 Iteration methods . 7
1.1.3 Krylov bases . 8
1.1.4 Classical Krylov subspace methods 11
1.1.5 Inexact methods . 15

1.2 Matrix functions . 17
1.2.1 Matrix sign function 19
1.2.2 Rational approximation of the sign function 20

1.3 Neuberger Overlap operator 23

2 Krylov subspace methods for shifted unitary matrices 26
2.1 The Faber-Manteuffel theorem 26
2.2 Short recurrence Arnoldi . 29

2.2.1 Unitary Arnoldi . 29
2.2.2 Isometric Arnoldi . 32

2.3 Shifted unitary methods . 35
2.3.1 SUOM . 35
2.3.2 SHUMR . 37
2.3.3 SUFOM . 41
2.3.4 SUMR . 48

2.4 Discussion . 52

3 Deflation for multishift methods 54
3.1 Shifts and restarts . 55
3.2 Augmented subspaces . 61
3.3 Schur-Deflation . 64

3.3.1 FOM-Schur . 66
3.3.2 GMRES-Schur . 68
3.3.3 BiCG-Schur . 73

iii

CONTENTS iv

3.3.4 QMR-Schur . 74
3.4 LR-deflation . 75

3.4.1 FOM-LR . 77
3.4.2 GMRES-LR . 78
3.4.3 BiCG-LR . 80
3.4.4 QMR-LR . 81

3.5 Eliminating converged systems 83
3.6 Deflation of the rational approximation 84
3.7 Discussion . 87
3.8 Other deflation techniques . 88

4 Numerical results 89
4.1 Matrices . 89
4.2 Shifted unitary methods . 92
4.3 Deflation . 95

A Gamma matrices 102

List of Tables

1 Notation . 4

1.1 Classical Krylov subspace methods 15
1.2 Precision of the matrix vector product 17
1.3 Number of poles necessary to achieve an accuracy of 10−8 . . 23

2.1 Shifted unitary methods . 53

3.1 Computation of residual norms 84
3.2 Number of poles needed for the matrix MAT3 86
3.3 Number of poles needed for the matrix MAT4 87
3.4 Advantages and disadvantages of Schur- and LR-deflation . . 87

4.1 Precision of the matrix vector product 93
4.2 Time (in seconds) needed for GMRES (without restarts) with

Schur- and LR-deflation . 98
4.3 Time (in seconds) needed for GMRES (with restart after 50

iterations) with Schur- and LR-deflation 99
4.4 Time (in seconds) needed for QMR with Schur- and LR-

deflation . 99
4.5 Time (in seconds) needed for the LR deflated methods (FOM

and GMRES with restart after 50 iterations) 100

v

List of Figures

2.1 Stability of the isometric Arnoldi method 35

3.1 Decrease of the number of systems to solve 84
3.2 Eliminating converged systems - effect on the cost 85

4.1 MAT1: eigenvalues of the matrix M 90
4.2 MAT1: eigenvalues of the matrix ρI + Γ5sign(Q), ρ = 1.01 . 90
4.3 MAT2: eigenvalues of the matrix M 91
4.4 MAT1: eigenvalues of the matrix ρI + Γ5sign(Q), ρ = 1.01 . 91
4.5 MAT3: eigenvalues of the matrix Q 92
4.6 MAT4: eigenvalues of the matrix Q 92
4.7 SUOM and SHUMR for MAT1 93
4.8 SUFOM and SUMR for MAT1 93
4.9 SUOM and SHUMR for MAT1 94
4.10 SUFOM and SUMR for MAT1 94
4.11 SUOM and SHUMR for MAT2 95
4.12 SUFOM and SUMR for MAT2 95
4.13 SUMR with ρ = 1.1 for MAT1 and MAT2 95
4.14 Schur deflated FOM for MAT3 96
4.15 Schur deflated GMRES for MAT3 96
4.16 LR deflated FOM for MAT3 97
4.17 LR deflated GMRES for MAT3 97
4.18 BICG for MAT3 . 97
4.19 QMR for MAT3 . 97
4.20 LR deflated FOM for MAT4 100
4.21 LR deflated GMRES for MAT4 100
4.22 LR deflated BiCG and QMR for MAT4 101

vi

Preface

The solution of linear systems Ax = b with a large and sparse matrix A plays
an important role in numerical linear algebra. There is no strict definition of
when a matrix is called sparse or large. With view on the methods used to
solve the linear system one should call a matrix sparse when it has enough
zero entries to exploit this fact and large when it is too large to be handled
with direct methods. The combination of being large and sparse usually
allows to use a matrix vector product with A, though.
Linear systems with large sparse matrices thus cannot be solved with di-
rect methods. These matrices exist only as their action on a vector. The
methods of choice are therefore iteration methods: Starting with an initial
guess, an (improved) approximation is computed in each step. In this work
we concentrate on Krylov subspace methods, projection methods choosing
the approximation in each step from certain subspaces of Cn, the Krylov
subspaces. Krylov subspaces depend on the matrix A. Building a basis for
a Krylov subspace requires matrix vector products with A in a way that in
the respective iteration methods as well the matrix A is needed only as its
action on a vector.

As motivation and example for the methods presented in this thesis we use
an application from lattice QCD (quantum chromodynamics). QCD is the
theory of the interaction of quarks, the physical particles that build protons
and neutrons, for example. This interaction is called strong interaction.
Lattice QCD gives a formulation of QCD on a 4-dimensional space-time lat-
tice. On each lattice site there are 12 unknowns, so that for a lattice of size
N in each direction we have 12 ·N4 unknowns.
An important property in QCD is the so-called chiral symmetry. On the
lattice chiral symmetry can only be fulfilled in the continuum limit, i.e, for
lattice spacing a → 0. To achieve this, the Ginsparg-Wilson relation is re-
quired. Therefore we use the Neuberger overlap operator ρI + Γ5sign(Q)
which fulfills the Ginsparg-Wilson relation and thus realizes chiral symme-
try on the lattice.

Actually, the Neuberger overlap operator is not sparse. Even though the
matrix Q is sparse, sign(Q) is not sparse. The matrix vector product with

1

2

sign(Q) can thus not be computed directly. To use iteration methods we
have to compute an approximate matrix vector product with sign(Q). This
is done with iteration methods as well, now requiring matrix vector prod-
ucts with the sparse matrix Q. The result is a nested iteration: The inner
iteration approximates the action of sign(Q) on a vector, the outer iteration
uses the result of the inner iteration to approximate the solution of a linear
system with the Neuberger overlap operator.

'

&

$

%

Outer iteration

(ρI + Γ5sign(Q))x = b�
�

�
�

Inner iteration

p = sign(Q)v

We have to distinguish the Neuberger overlap operator at zero chemical po-
tential from the one at non-zero chemical potential. The chemical potential
being zero or non-zero results in different properties of the Dirac matrix
D = Γ5Q. Depending on the properties of the Dirac matrix the Neuberger
operator shows properties we can exploit – or leaves us without any utiliz-
able structure.

At zero chemical potential the Dirac matrix D is Γ5-symmetric which leads
to Q = Γ5D being hermitian and Γ5sign(Q) being unitary. This can be
exploited in the outer iteration as well as in the inner iteration. For the
outer iteration the shifted unitary structure of the Neuberger overlap oper-
ator allows iteration methods with short recurrences. Following the Faber-
Manteuffel theorem this seemed to be impossible since (shifted) unitary
matrices do not fulfil the requirement of this theorem, i.e., unitary matrices
are in general not normal(s) for small s. But it was shown more recently
that using a different reccurence scheme a bigger class of matrices allows for
short recurrences.
The inner iteration profits from Q being hermitian since that leads to a
small number of poles in a rational approximation and allows to use short
recurrence multishift methods.
At non-zero chemical potential the Dirac matrix is no longer Γ5-symmetric.
Therefore, the Neuberger overlap operator shows no structure to allow for
short recurrence iterations for the outer or inner iteration. In addition, the
number of poles required for an accurate rational approximation of sign(Q)b
for non-hermitian Q is significantly higher than in the case of Q hermitian.

3

This thesis is organized as follows.

In Chapter 1 the fundamental principles of iteration methods and Krylov
subspaces are presented. Classical Krylov subspace methods are introduced.
We present the extension of scalar functions to matrix functions and the
matrix sign function. The Neuberger operator is introduced for zero and
non-zero chemical potential and the fundamental symmetries of QCD, Γ5-
symmetry and chiral symmetry are explained.

In Chapter 2 we investigate iteration methods for shifted unitary matrices.
Two versions of the Arnoldi method are presented. For unitary matrices
these methods build Krylov subspace bases with short recurrences. In com-
bination with the minimal residual or Galerkin condition we obtain four
Krylov subspace methods to solve linear systems with shifted unitary ma-
trices. Three of these methods (SUOM, SHUMR and SUMR) are already
known [1, 7, 8, 9]. We complete the set of methods by combining the isomet-
ric Arnoldi method with a Galerkin condition, resulting in SUFOM (shifted
unitary FOM). In addition, we give a more detailed theoretic foundation for
SUOM and SHUMR than found in the literature up to now. Finally, we
modify SHUMR and present a breakdown-free version.

In Chapter 3 we invesigate multishift methods to compute rational ap-
proximations to the matrix sign function. We concentrate on methods for
non-hermitian matrices with regard to the Neuberger overlap operator at
non-zero chemical potential. To accelerate convergence we use eigenvalue
information. Two variants of eigenvalue deflation, Schur-deflation and LR-
deflation are presented. The idea is to augment Krylov subspaces by some
Schur vectors or eigenvectors to eigenvalues with small real part. These de-
flation methods are applied to multishift versions of FOM, GMRES, BiCG,
and QMR to accelerate the rational approximation of sign(Q)v. For the
long recurrence methods FOM and GMRES we investigate restarts to limit
storage requirements. In this case we combine thus restarts, multishifts and
deflation. Finally we reduce the number of poles for the rational approxi-
mation of the matrix sign function using the information of the eigenvalue
deflation. It turns out that this is only possible for LR-deflation.

In Chapter 4 we give numerical results for the methods presented in the
previous two chapters. The shifted unitary methods are tested with the
Neuberger overlap operator at zero chemical potential. The sample matri-
ces are taken from matrix market1 and refer to 44-lattices. The deflation
methods are tested for the rational approximation of the matrix sign func-
tion for a non-hermitian matrix, the Dirac operator at non-zero chemical

1http://math.nist.gov/MatrixMarket/data/misc/qcd/

4

potential. The sample matrices refer to a 44-lattice and a 64-lattice, respec-
tively.

Throughout the thesis the following notation is used:

〈·, ·〉 inner product (Euclidean if not indicated otherwise)

ei i-th unit vector

δi,j Kronecker delta function: δi,j =

{
1 for i = j

0 for i 6= j

‖ · ‖2 the Euclidian vector norm or the induced matrix
norm

‖ · ‖F the Frobenius (matrix) norm

‖ · ‖A norm induced by the inner product 〈·, ·〉A = 〈A·, ·〉2
In n × n unit matrix; if n is suppressed, the dimension

is obvious from the context
AH , vH the Hermitian adjoint of a matrix or vector

AT , vT the transpose of a matrix or vector

A† the Moore-Penrose pseudo inverse

[·] matrix or vector composed of submatrices or -vectors

(·) matrix or vector given elementwise

A⊗B the Kronecker product of the matrices A and B

span(S), S ⊆ Cn the set of all linear combinations of vectors in S

rank(A) the rank of the matrix A, i.e. the dimension of the
space spanned by its rows/columns

spec(A) the spectrum of the matrix A, i.e. the set of eigenval-
ues of the matrix A

range(A) the range of the matrix A, i.e. the space spanned by
the columns of the matrix A

null(A) the nullspace of the matrix A, i.e. the set of vectors
x with Ax = 0

Πn polynomials of degree at most n

Table 1: Notation

Part of this thesis was supported by DFG project Fr755 ”Effiziente Löser
für das Overlap-Modell der Fermion Diskretisierung in der QCD” (efficient
solvers for the overlap model of the fermion discretization in QCD).

Chapter 1

Introduction

1.1 Krylov subspace methods

Let A ∈ Cn×n be a non-singular complex matrix. We consider the linear
system

Ax = b (1.1)

with A being large, so that it is not possible to solve (1.1) with direct meth-
ods. Iteration methods require the computation of matrix vector products
with A though. Therefore we assume A to be sparse or at least involve a
structure that allows to compute the desired matrix vector product up to a
given accuracy.

Iteration methods compute in step k an approximation xk to the solution
of (1.1). This can be done in several ways. In projection methods the
approximation xk is chosen from an affine k-dimensional subspace Kk of
Cn, the search space. The approximation is chosen such that the residual
rk = b − Axk is orthogonal to a second k-dimensional subspace Lk of Cn,
the so-called test space. In every step of the iteration, the test and search
space are enlarged so that the next approximation xk+1 is chosen from the
(k+1)-dimensional search space Kk+1 ⊇ Kk such that rk+1 is orthogonal to
the (k + 1)-dimensional test space Lk+1 ⊇ Lk. Both search and test space
thus have to be built iteratively.

1.1.1 Krylov subspaces

Krylov subspaces are perfectly suited to be built iteratively using only one
matrix vector multiplication per iteration step. In addition, it turns out
that when using Krylov subspaces only one subspace has to be built and
used as search and test space.

5

1.1. KRYLOV SUBSPACE METHODS 6

Definition 1.1. For a matrix A ∈ Cn×n and a vector r ∈ Cn the m-th
Krylov subspace generated by A and r is

Km(A, r) = span{r,Ar,A2r, . . . , Am−1r}.

Obviously, Krylov subspaces are shift invariant, i.e. for a shifted matrix
ρI +A it holds

Km(ρI +A, r) = Km(A, r).

The dimension of a Krylov subspace with regard to A and r is bounded by
the degree of the minimal polynomial of r in the following way.

Definition 1.2. A minimal polynomial pr of r with regard to A is a poly-
nomial with

deg(pr) = min
p∈Πn

{deg(p) : p 6= 0, p(A)r = 0}.

The minimal polynomial is unique up to scaling, so its degree is unique. So
we call deg(pr) the degree of r (with regard to A).

Lemma 1.3. Let A ∈ Cn×n and r ∈ Cn, r 6= 0, and let m0 be the degree of
the minimal polynomial of r with regard to A. Then it holds

dim(Km(A, r)) = m for m ≤ m0

and
Km(A, r) = Km0(A, r) for m ≥ m0.

Proof. See [41].

Thus, from m0 on the Krylov subspaces are A-invariant. The solution of
(1.1) is then contained in a shifted Krylov subspace.

Lemma 1.4. Let A ∈ Cn×n be nonsingular and b ∈ Cn. For every x0 ∈ Cn

it holds
A−1b ∈ x0 +Km0(A, r0), (1.2)

where r0 = b−Ax0 and m0 the degree of r0, and

A−1b /∈ x0 +Km(A, r0), for m < m0. (1.3)

Proof. Let pm0 be a minimal polynomial of r0, i.e. pm0(A)r0 = 0 and
deg(pm0) = m0. Without loss of generality we assume pm0(0) = 1 such
that pm0(t) = 1 − tqm0−1(t) with deg(qm0−1) = m0 − 1. The residual for
xm0 = x0 + qm0−1(A)r0 ∈ Km0(A, r0) is

b−Axm0 = r0 −Aqm0−1(A)r0

= pm0(A)r0

= 0.

Therefore (1.2) holds. Since the degree of pm0 is minimal, it follows (1.3).

1.1. KRYLOV SUBSPACE METHODS 7

1.1.2 Iteration methods

Krylov subspace methods are projection methods for solving systems of the
form (1.1) using affine Krylov subspaces as search spaces: In every iterative
step an iterate xm is chosen from an affine Krylov subspace

xm ∈ x0 +Km(A, r0),

where x0 is the initial guess and r0 = b − Ax0. The initial guess is often
chosen as x0 = 0 which gives r0 = b. Since we will need non-zero x0 when
investigating restarts in the following, we assume a general, not necesarrily
zero, initial guess.

From the definition of Krylov subspaces it is clear that the iterates can be
written as

xm = x0 + qm−1(A)r0,

with a polynomial qm−1 of degree less or equal to m−1. The corresponding
residuals are

rm = b−Axm = pm(A)r0, (1.4)

with a polynomial pm(t) = 1 − tqm−1(t) of degree less or equal m and
pm(0) = 1. From (1.4) it directly follows that rm ∈ Km+1(A, r0). For the
error it holds

em = A−1b− xm = A−1rm

and using the same polynomials pm as for the residuals it holds same as for
the residuals

em = pm(A)e0.

The various Krylov subspace methods differ in the way the iterates are
chosen from the Krylov subspace. For this purpose we can either demand
for xm ∈ x0 +Km(A, r0) a (Petrov-)Galerkin condition

rm ⊥ L (1.5)

with a subspace L or the minimal residual condition

‖rm‖2 = min
x∈x0+Km(A,r0)

‖b−Ax‖. (1.6)

Definition 1.5. The condition (1.5) for choosing xm ∈ x0 + Km(A, r0) is
called

• Galerkin condition if L = Km(A, r0),

• Petrov-Galerkin condition if L 6= Km(A, r0).

1.1. KRYLOV SUBSPACE METHODS 8

Obviously, using a (Petrov-)Galerkin condition, the subspace L is the test
space. In fact, choosing the iterate with the minimal residual condition (1.6)
results in residuals orthogonal to AKm(A, r0). The minimal residual con-
dition can thus be seen as a Petrov-Galerkin condition with the test space
L = AKm(A, r0).

For hermitian matrices both Galerkin and minimal residual condition result
in a minimization of the errors em, in different norms though. While for the
Galerkin condition

‖em‖A = min
x∈x0+Km(A,r0)

‖A−1b− x‖A,

see [41], for the minimal residual condition it holds

‖em‖AHA = min
x∈x0+Km(A,r0)

‖A−1b− x‖AHA.

1.1.3 Krylov bases

Krylov subspace bases are naturally built iteratively by multiplying the last
basis vector with A and orthogonalizing against the previous vectors.

Let A be non hermitian. Using the modified Gram-Schmidt orthogonaliza-
tion to produce orthonormal vectors vk, k = 1, . . . ,m that span Km(A, r0)
leads to the so-called Arnoldi method [2].

Algorithm 1.6. Arnoldi
{Input m ≤ m0, r0, A}

ṽ1 = r0

h1,0 = ‖ṽ1‖2
for k = 1, . . . ,m do
vk = ṽk/hk,k−1

ṽk+1 = Avk
for i = 1, . . . , k do
hi,k = 〈ṽk+1, vi〉
ṽk+1 = ṽk+1 − hi,kvi

end for
hk+1,k = ‖ṽk+1‖2

end for

The matrices Vm = [v1, . . . , vm] and Hm = (hi,j) ∈ Cm×m satisfy the Arnoldi
relations

V H
m AVm = Hm (1.7)

1.1. KRYLOV SUBSPACE METHODS 9

and
AVm = VmHm + hm+1,mvm+1e

T
m = Vm+1Ĥm, (1.8)

with

Ĥm =
[

Hm

hm+1,me
T
m

]
∈ C(m+1)×m.

The Arnoldi method has a breakdown when k = m0. In this situation the
vectors v1, . . . , vm0 already span an A-invariant subspace of Cn such that
Avm0 ∈ Km0(A, r0). Therefore it holds ṽm0+1 = 0 and thus hm0+1,m0 = 0.
According to Lemma 1.4 this is the natural situation to stop the iteration
anyway and the solution of (1.1) is contained in the corresponding affine
Krylov subspace.

The matrix Ĥm has rank m for m ≤ m0. This is due to its (m + 1) × m
Hessenberg structure with non-zero subdiagonal. The matrix Hm can be
singular, though. However, if A is positive real, Hm is positive real, too.
This is because

〈Hmx, x〉 = 〈V H
m AVmx, x〉 = 〈AVmx, Vmx〉

and Vm has full rank.

A disadvantage of the Arnoldi method is its long recursion. For the orthog-
onalization of a new Arnoldi vector, all previous Arnoldi vectors have to
be stored. To circumvent storage problems one can bound the number of
vectors to be stored by restarting after m < m0 steps which results in blocks
of m orthogonal vectors. Alternatively, instead of demanding the basis
{v1, . . . , vm} of Km(A, r0) to be orthogonal we can demand {v1, . . . , vm} to
be orthogonal to a basis {w1, . . . , wm} of Km(AH , r̃0), i.e. we build biorthog-
onal bases {v1, . . . , vm} and {w1, . . . , wm}. This is done in the unsymmetric
Lanczos method. Note that we have to invest two matrix vector products
instead of one to gain the short recurrence.

Algorithm 1.7. Unsymmetric Lanczos
{Input m ≤ m0, r0, A}

ṽ1 = r0, w̃1 = r̃0 6= 0 ∈ Cn, v0 = w0 = 0
for k = 1, . . . ,m do

chose βk, γk: βkγk = 〈ṽk, w̃k〉
vk = ṽk/γk
wk = w̃k/β̄k
αk = 〈Avk, wk〉
ṽk+1 = Avk − αkvk − βkvk−1

w̃k+1 = AHwk − ᾱkwk − γ̄kwk−1

end for

1.1. KRYLOV SUBSPACE METHODS 10

With Vm = [v1, . . . , vm], Wm = [w1, . . . , wm] the biorthogonality reads
V H
mWm = WH

m Vm = 0, and with

Tm =

α1 β2 0

γ2 α2
. . .

. βm
0 γm αm

the following relations hold:

AVm = VmTm + γm+1vm+1e
T
m (1.9)

AHWm = WmT
H
m + β̄m+1wm+1e

T
m

WH
mAVm = Tm

The unsymmetric Lanczos method has a breakdown when k = m0, since
v1, . . . , vm0 span an A-invariant subspace and Avm0 ∈ Km0(A, r0). Therefore
it holds ṽm0+1 = 0 and thus 〈ṽm0+1, w̃m0+1〉 = 0. Again, this is the natural
situation to stop the iteration, see Lemma 1.4. Actually, the unsymmetric
Lanczos method can have a breakdown for k < m0, namely when w̃k+1 = 0,
i.e., when Kk+1(AH , r̃0) = Kk(AH , r̃0) or even when 〈ṽk+1, w̃k+1〉 = 0 while
ṽk+1 6= 0 and w̃k+1 6= 0.

Breakdowns with ṽm = 0 or w̃m = 0 are thus called lucky, other breakdowns
are called serious. Most of the serious breakdowns can be avoided using
look-aheads, [14].

As long as no breakdowns occur, the matrix

T̂m =
[

Tm
γm+1e

T
m

]
is non-singular since γi 6= 0 for i = 1, . . . ,m + 1. The matrix Tm might be
singular though.

In the case of a symmetric matrix A = AH both the Arnoli and the un-
symmetric Lanczos method reduce to the same symmetric method when
r̃0, γk, and βk are chosen right. The inner for-loop of the Arnoldi method
i = 1, . . . , k reduces to i = k−1, k such that Hm is tridiagonal. In the unsym-
metric Lanczos method, choosing r̃0 = r0 and βk = γk, we get Vm = Wm.
Actually, it even holds Tm = Hm, Tm and Hm resulting from the unsymmet-
ric Lanczos method and the Arnoldi method, respectively. The symmetric
method is called Lanczos method.

1.1. KRYLOV SUBSPACE METHODS 11

For shifted matrices A = ρI +U the Krylov subspaces are built with regard
to the matrix U since Km(A, r0) = Km(U, r0). Therefore, the Arnoldi rela-
tions (1.7), (1.8) and (1.9), respectively, hold with regard to U .

We get Arnoldi relations for the shifted matrix A directly by shifting the
respective relations for the unitary matrix U . This is summarized in the
following lemma, the proof of which is trivial.

Lemma 1.8. Let Vm = [v1, . . . , vm] and H(U)
m = V H

m UVm be obtained from
the Arnoldi method. Then

H(A)
m = V H

m AVm = ρI +H(U)
m

and
AVm = Vm(ρI +H(U)

m) + hm+1,mvm+1e
T
m.

Let Vm = [v1, . . . , vm], Wm = [w1, . . . , wm] and T (U)
m = WH

mUVm be obtained
by the Lanczos biorthogonalization method. Then

AVm = Vm(ρI + T (U)
m) + γm+1vm+1e

T
m,

AHWm = Wm(ρ̄I + T (U)
m

H
) + β̄m+1wm+1e

T
m,

T (A)
m = ρI + T (U)

m .

1.1.4 Classical Krylov subspace methods

Up to now a large number of Krylov subspace methods exist. Most of them
are variants of a few basic methods. These basic methods differ in the un-
derlying method to build the Krylov basis and the condition used to choose
the iterate from the Krylov subspace.

Let A be non hermitian. There exist four basic Krylov subspace methods
combining the Arnoldi method or the unsymmetric Lanczos method with a
(Petrov-)Galerkin condition or a minimal residual condition.

Having a basis {v1, . . . , vm} for Km(A, r0) given, computed with the Arnoldi
method, the iterates read

xm = x0 + Vmym,

where Vm = [v1, . . . , vm] and ym ∈ Cm, and the corresponding residuals are

rm = r0 −AVmym.

The Galerkin condition rm ⊥ Km(A, r0) translates to V H
m rm = 0 such that

ym is the solution of the m×m linear system

V H
m AVmym = Hmym = V H

m r0. (1.10)

1.1. KRYLOV SUBSPACE METHODS 12

Computing the iterates this way leads to the so called full orthogonalization
method (FOM) [40].

The FOM iterates exist when A is positive real since then Hm is positive
real and thus non-singular. On the other hand, when A is indefinite, Hm

can be singular and the FOM iterates do not necessarily exist.

The FOM residuals are always multiples of Arnoldi vectors.

Lemma 1.9. The FOM residuals are

rm = −hm+1,me
T
mymvm+1.

Proof. Using the Arnoldi relation (1.8) it holds

rm = r0 −AVmym
= r0 − VmHmym − hm+1,me

T
mymvm+1.

Since r0 = ‖r0‖2v1 and ym is the solution of (1.10), it holds

r0 − VmHmym = 0.

For the minimal residual condition we minimize in the Arnoldi case

‖rm‖2 = ‖r0 −AVmym‖2 = ‖r0 − Vm+1Ĥmym‖2
= ‖Vm+1(βe1 − Ĥmym)‖2
= ‖βe1 − Ĥmym‖2.

The least squares problem

‖βe1 − Ĥmym‖2 = min
y∈Cm

‖βe1 − Ĥmy‖2 (1.11)

is usually solved using the QR-decomposition Ĥm = Qm+1R̂m, where

R̂m =
[
Rm
0

]
.

Since Qk+1 is unitary, (1.11) is equivalent to

‖βe1 − Ĥmym‖2 = min
y∈Cm

‖βQHk+1e1 − R̂my‖2. (1.12)

The resulting method is called generalized minimum residual method (GM-
RES), see [42].

1.1. KRYLOV SUBSPACE METHODS 13

In contrast to the FOM iterates the GMRES iterates always exist if m < m0.
This is because rank(Ĥm) = m.

Obviously, for the norm of the GMRES residuals it holds

‖rm‖2 = |βeTk+1Q
H
k+1e1|.

Equivalently, ym can be expressed using the Moore-Penrose pseudo-inverse
Ĥ†m of Ĥm:

Lemma 1.10. The least squares problem (1.11) is equivalent to

ĤH
m Ĥmym = ĤH

mβe1, (1.13)

i.e.
ym = Ĥ†mβe1 = (ĤH

m Ĥm)−1ĤH
mβe1.

Proof. (1.13) is the normal equation for (1.11) and rank(Ĥm) = m.

Using the Lanczos biorthogonalization and a Petrov-Galerkin condition with
L the span of the columns of Wm, the orthogonality condition translates thus
to WH

m rm = 0, and ym is the solution of the linear system of size m×m

WH
mAVmym = Tmym = WH

m r0. (1.14)

From the system (1.14) short recurrence updates for xm = Vmym can be ob-
tained by exploiting the tridiagonal structure of Tm. The resulting method
is called BiCG, see [20].

In addition to the breakdowns of the Lanczos biorthogonalization, the BiCG
iterates do not necessarily exist since Tm might be singular.

Anologous to the FOM residuals being multiples of the Arnoldi vectors, the
BiCG residuals are multiples of the Lanczos vectors for Km(A, r0).

Lemma 1.11. The BiCG residuals are

rm = −γm+1e
T
mymvm+1.

Proof. Using relation (1.9) it holds

rm = r0 −AVmym
= r0 − VmTmym − γm+1e

T
mymvm+1

= r0 − VmWH
m r0 − γm+1e

T
mymvm+1.

Since r0 = γ1v1 and WH
m v1 = e1 it holds

r0 − VmWH
m r0 = 0.

1.1. KRYLOV SUBSPACE METHODS 14

To derive a method analogous to GMRES based on the Lanczos biorthogo-
nalization the minimal residual condition has to be weakend. This is because

‖rm‖2 = ‖r0−AVmym‖2 = ‖Vm+1(γ1e1−T̂mym)‖2 6= ‖γ1e1−T̂mym‖2 (1.15)

since Vm+1 is not orthogonal in this case. Still, we can demand

‖r0 −AVmym‖2 = min
y∈Cm

‖γ1e1 − T̂my‖2 (1.16)

instead of the minimal residual condition (1.11). The condition (1.16) is
called quasi minimal residual condition. As for GMRES, (1.16) is usually
solved using the QR-decomposition T̂m = Qm+1R̂m. Since T̂m is tridiagonal,
the unitary matrix Qm+1 can be written as a product of m Givens matri-
ces, each one chosen to zero out one subdiagonal element of T̂m. In this
way, exploiting the tridiagonal structure of T̂m leads to short recurrences
for xm = Vmym. The resulting method is called quasi minimum residual
method (QMR), see [15].

As long as m < m0 and no breakdown occurs, rank(T̂m) = m and thus the
QMR iterates exist.

Due to the inequality in (1.15), the QMR residuals are not as simply obtained
as the GMRES residuals.

Lemma 1.12. Let Qm+1 be written as a product of Givens matrices

Qm+1 = G1(c1) . . . Gm(cm)

with

Gi(ci) =

Ii−1

−ci si
si c̄i

Im−i−1

 .
Then for the QMR residuals it holds

rm = sm
ηm
ηm−1

rm−1 + ηmc̄mvm+1

with ηm = γ1e
T
m+1Q

H
m+1e1.

Proof. The QMR residuals are

rm = Vm+1Qm+1(γ1Q
H
m+1e1 − R̂mym).

Since ym is the solution of (1.16) it holds

γ1Q
H
m+1e1 − R̂mym = (γ1e

T
m+1Q

H
m+1e1)em+1 = ηmem+1

1.1. KRYLOV SUBSPACE METHODS 15

such that

rm = ηmVm+1Qm+1em+1

= ηm [Vmvm+1]
[
Qm

1

]
(0, . . . , 0, sm, c̄m)T

= ηm [smVmQmem + c̄mvm+1]

= sm
ηm
ηm−1

rm−1 + ηmc̄mvm+1.

For hermitian matrices FOM and BiCG reduce to the conjugate gradient
method (CG), see [22], and GMRES and QMR reduce to the minimum
residual method (MINRES), see [37]. Table 1.1 gives an overview over the
presented six classical Krylov subspace methods.

method/condition Galerkin (quasi) minimal residual
Arnoldi FOM GMRES
Lanczos biorthogonalization BiCG QMR
Lanczos CG MINRES

Table 1.1: Classical Krylov subspace methods

1.1.5 Inexact methods

All Krylov subspace methods contain a matrix vector multiplication as the
core computation in each step. When we apply the methods of the pre-
ceding sections, e.g. to the Neuberger operator ρI + Γ5sign(Q) we cannot
compute this matrix vector product directly since sign(Q) is large but not
sparse even though Q is sparse. So we cannot directly compute the exact
product Uv = Γ5sign(Q)v for a vector v.

Replacing the exact product by an approximation, for example using a ra-
tional approximation to the sign function, leads to so-called inexact Krylov
subspace methods [10, 44, 46]. When the approximation is obtained from
an iterative method, we get a nested iteration with an inner iteration for the
approximation of the matrix vector product run in every step of the outer
iteration.

An inexact matrix vector product can be viewed as a pertubation of the
exact product, i.e.

w = Av + g

1.1. KRYLOV SUBSPACE METHODS 16

with a perturbation g, ‖g‖2 ≤ η‖A‖2‖v‖2. The question that arrises is:
How does this perturbation (i.e. η) influence the convergence of the inexact
method?

Running the Arnoldi process with an inexact matrix vector product changes
the Arnoldi relation (1.8) to

AVm +Gm = Vm+1Ĥm,

where
Gm = [g1, . . . , gm], ‖gi‖2 ≤ ηi,

since ‖vi‖2 = 1. This is equivalent to running the Arnoldi method with the
perturbed matrix Ã = A+GmV

H
m :

(A+GmV
H
m)Vm = Vm+1Ĥm.

The iterates, which are approximations to the matrix vector product in this
case, can again be chosen by using a minimal residual or Galerkin condition.
Independent from the chosen condition, the (true) residuals are

b− (ρI +A)xm = r0 − (ρI +A)Vmym
= r0 − ρVmym − Vm+1Ĥmym +Gmym. (1.17)

Note that rm = r0−ρVmym−Vm+1Ĥmym are the residuals computed in the
iteration. The vector Gmym = (b− (ρI +A)xm)− rm is called residual gap.

The computed residuals can be monitored during the iteration, while we are
actually interested in the true residuals. From (1.17) we get the obvious
bound

‖b− (ρI +A)xm‖2 ≤ ‖rm‖2 + ‖Gmym‖2.
Therefore, to assure that for the true residual we have

‖b− (ρI +A)xm‖2 = O(ε),

we should choose the ηi such that for the residual gap

‖Gmym‖2 = O(ε). (1.18)

This can be achieved by choosing ηi = ε throughout the iteration. Actually,
it suffices to demand less. By choosing ηi as shown in Table 1.2 the inexact
method starts with a matrix vector product approximated to high accuracy,
but the accuracy may be decreased during the iteration, i.e. ηj grows with
the residual norm getting smaller. Still (1.18) is achieved. For a detailed
argumentation see [44].

Inexact methods with this property are called relaxed [46]. The obvious
advantage of relaxation is, that computing the matrix vector product to
lower accuracy causes less computational cost.

1.2. MATRIX FUNCTIONS 17

condition tolerance ηj

Galerkin ε ·
√∑j

i=0 ‖ri‖
−2
2

minimal residual ε/‖rj‖2

Table 1.2: Precision of the matrix vector product

1.2 Matrix functions

There are several ways to extend functions to matrix functions, i.e. to extend
a function f : C→ C to a function f : Cn×n → Cn×n. A compact overview is
given in [18], for a thorough treatment see [23]. One definition uses Cauchy’s
integral formula:

Definition 1.13. Let f be analytic on and inside a closed contour C that
encloses spec(A). Then the matrix function is defined as

f(A) =
1

2πi

∫
C
f(ζ)(ζI −A)−1dζ.

An alternative definition of matrix functions uses the Jordan decomposition.
The Definitions 1.14 and 1.13 are consistent, see [18, 23].

Definition 1.14. Let A ∈ Cn×n and A = Xdiag(J1(λ1), . . . , Jt(λt))X−1

the Jordan decomposition of A with Jordan blocks Ji ∈ Cmi×mi . Assume
that the function f : C→ C is mi− 1 times differentiable at λi, i = 1, . . . , t.
Then the matrix function is defined as

f(A) = Xdiag(f(J1(λ1)), . . . , f(Jt(λt)))X−1

where

f(Ji(λi)) =

f(λi) f (1)(λi) f (mi−1)(λi)
(mi−1)!

0 f(λi)
. . .

...
...

.
...

...
. f (1)(λi)

0 0 f(λi)

∈ Cmi×mi .

The matrix J = diag(J1(λ1), . . . , Jt(λt)) is unique up to ordering of the
Ji(λi) along the diagonal while X is not unique [20, 23]. Anyway, the matrix
function f(A) is independent from the actual choice of the Jordan decom-
position [25].

1.2. MATRIX FUNCTIONS 18

Obviously, when mi = 1 for i = 1, . . . , t, for example when A is normal, no
differentiability assumption on f is needed.

In the following proposition we summarize some properties of matrix func-
tions.

Proposition 1.15. Let A ∈ Cn×n and let f(A) be defined. Then f(A) has
the following properties:

a) If the matrix X commutes with A then X commutes with f(A).

b) For non-singular X it holds f(XAX−1) = Xf(A)X−1.

c) The eigenvalues of f(A) are f(λi) where the λi are the eigenvalues of
A.

Proof. See [23].

For some functions the extension to matrix functions is quite intuitive:

Proposition 1.16. Let f(A) and g(A) be defined.

a) If f(x) = c ∈ C then f(A) = c · I.

b) If f(x) = x then f(A) = A.

c) If h(x) = f(x) + g(x) then h(A) = f(A) + g(A).

d) If h(x) = f(x) · g(x) then h(A) = f(A) · g(A).

Proof. a) and b) follow directly from the Definition 1.14. For the proof of
c) and d) see [23].

From Definition 1.14 it follows directly that for any two functions f and g
it holds

f(A) = g(A)⇔ f (j)(λi) = g(j)(λi) (1.19)

for i = 1, . . . , t and j = 0, . . . ,mi − 1. In particular, (1.19) shows the exis-
tence of a polynomial p with deg(p) ≤ n − 1 and f(A) = p(A) since (1.19)
holds for the polynomial which interpolates f at λi in the Hermite sense.
The polynomial depends on A, of course, so that in general there will be no
polynomial p with f(A) = p(A) for any matrix A.

If g is an approximation to f then g(A) is an approximation to f(A). If
A = TJT−1 is diagonalizable and

|f(x)− g(x)| ≤ ε for x ∈ spec(A)

then for the matrix function it holds

‖f(A)− g(A)‖2 ≤ ε‖T‖2 · ‖T−1‖2.

1.2. MATRIX FUNCTIONS 19

1.2.1 Matrix sign function

One matrix function of special interest, e.g., for the Neuberger overlap oper-
ator, is the matrix sign function. The matrix sign function is the extension
of the scalar sign function

sign(z) =

{
+1 for Re(z) > 0
−1 for Re(z) < 0.

Note that the (scalar) sign function is not defined for z with Re(z) = 0.

Since outside the imaginary axis sign(z) is infinitely often differentiable with
all derivatives equal to zero, the definition of the matrix sign function using
the Jordan decomposition is quite simple.

Definition 1.17. Let A ∈ Cn×n and let A = XJX−1 be the Jordan de-
composition of A with

J =
[
J+ 0
0 J−

]
,

where the eigenvalues of J+ lie in the right half plane and the eigenvalues
of J− lie in the left half plane. Then the matrix sign function is

sign(A) = X

[
I 0
0 −I

]
X−1.

Analogous to the scalar sign function not being defined for Re(z) = 0, the
matrix sign function is not defined if A has eigenvalues on the imaginary axis.

For the integral definition of the matrix sign function we therefore have to
look at the positive and negative real part seperately, see [38].

Definition 1.18. Let A be a matrix without eigenvalues on the imaginary
axis. Let C+ be a closed contour enclosing the eigenvalues of A with posi-
tive real part and C− a closed contour enclosing the eigenvalues of A with
negative real part. Then

sign(A) =
1

2πi

(∫
C+

(ζI −A)−1dζ −
∫
C−

(ζI −A)−1dζ

)
.

If the matrix sign function is defined, the following properties are obvious:

• A · sign(A) = sign(A) ·A.

• (sign(A))2 = I.

• (sign(A))−1 = sign(A).

1.2. MATRIX FUNCTIONS 20

• If A = AH then sign(A) = sign(A)H .

The matrix sign function can be computed using the Jordan decomposition
for example, even though its computation is numerically instable, since the
size of the Jordan blocks is of no importance. Only the sign of the the eigen-
values is needed.

For an approximative computation, there exist several iteration schemes, see
for example [3, 23, 28]. One simple iteration scheme is the Newton iteration:

Xi+1 =
1
2

(Xi +X−1
i), X0 = A. (1.20)

The Newton iteration results from Newton’s method applied to the equation
X2 − I = 0 and converges quadratically and globally. A iteration scheme
with more matrix multiplications instead of the matrix inversion is given by
the Newton-Schulz iteration:

Xi+1 =
1
2
Xi(3I +Xi

2), X0 = A. (1.21)

The Newton-Schulz (1.21) iteration converges quadratically same as the
Newton iteration (1.20) but only locally.

In practice, i.e. if rounding errors are involved, the Newton method can be
unstable. Since the matrix A is involved in the iteration only as starting
matrix, the error depends on the condition number of the iterates Xi and
accumulated rounding errors, see [23].

Actually, we are mostly more interested in the action of sign(A) on a vector
than in computing sign(A) itself.

1.2.2 Rational approximation of the sign function

Having a rational approximation for the (scalar) sign function given in the
form

sign(t) ≈ r(t) =
s∑
i=1

ωi
t

t2 − σi
, (1.22)

the action of sign(Q) on a vector v can be approximated as

sign(Q)v ≈ Q
s∑
i=1

ωi(Q2 − σiI)−1v. (1.23)

The right-hand side of the approximation (1.23) involves the solution of s
linear systems (Q2 − σiI)x(i) = v. The systems only differ in the shift σi,

1.2. MATRIX FUNCTIONS 21

all s systems have the same right-hand side. This is a useful quality when
the solutions to these systems are approximated in Krylov subspaces. Since
Krylov subspaces are shift-invariant, i.e.

Km(A, r0) = Km(A− σI, r0),

only one Krylov subspace has to be built for all s systems. For all classical
Krylov subspace methods there exist multishift variants to solve s shifted
systems simultaneously in the same Krylov subspace, see Section 3.1 and
[13, 16, 17, 43].

Let x(i)
m ∈ x0+Km(Q2, r0), i = 1, . . . , s, be approximations to x(i), computed

with a multishift method. Then the rational/multishift approximation to
the action of the sign function is

sign(Q)v ≈ Q
s∑
i=1

ωi(Q2 − σiI)−1v ≈ Q
s∑
i=1

ωix
(i)
m .

To achieve a required accuracy ε for the error, the two approximation levels
have to be investigated. How accurate does the rational approximation have
to be and when can the multishift iteration be stopped?

For the error of the rational/multishift approximation it holds

‖esm‖2 = ‖sign(Q)v −Q
s∑
i=1

ωix
(i)
m ‖2

≤ ‖sign(Q)v − r(Q)v‖2 + ‖r(Q)v −Q
s∑
i=1

ωix
(i)
m ‖2.

Therefore, to achieve the error bound

‖esm‖2 ≤ ε‖v‖2,

we require for the rational approximation

‖sign(Q)v − r(Q)v‖2 ≤
ε

2
‖v‖2 (1.24)

and

‖r(Q)v −Q
s∑
i=1

ωix
(i)
m ‖2 ≤

ε

2
‖v‖2 (1.25)

for the multishift approximation.

1.2. MATRIX FUNCTIONS 22

For the rational approximation r(t), Neuberger [35, 36] proposed

rm(t) =
(t+ 1)2m − (t− 1)2m

(t+ 1)2m + (t− 1)2m
. (1.26)

Actually, (1.26) just summarizes log2(m) + 1 steps of the iteration (1.20),
more precisely Xm = 1

r2m−1
. The rational approximation (1.26) can be

written in the form (1.22), see [35], with

ωi =
1
s

cos−2

(
π

2s
(i− 1

2
)
)
, σi = tan2

(
π

2s
(i− 1

2
)
)
.

Hermitian matrices can be approximated with less poles using the Zolotarev
best rational approximation, [26, 44, 47]. Let Ri,j denote the space of ratio-
nal functions r = p/q with polynomials p, q and deg(p) ≤ i, deg(q) ≤ j. An
approximation r ∈ Ri,j is called best approximation for a function f on the
set I if it minimizes

sup
t∈I
|f(t)− r(t)|.

The Zolotarev best approximation is a best rational approximation for sign(A)
on the set [−λmax,−λmin] ∪ [λmin, λmax] ⊃ spec(A).

Proposition 1.19. (Zolotarev [47]) Let r̃ ∈ Rm−1,m be the best relative
approximation to t−1/2 on [1, (λmax/λmin)2]. Then the best approximation
to the sign function from R2m−1,2m on [−λmax/λmin,−1]∪ [1, λmax/λmin] is

r(t) = tr̃(t2),

and on [−λmax,−λmin] ∪ [λmin, λmax] the best approximation to the sign
function is r(t/λmin).

The rational approximation r̃(t) is given in terms of the Jacobian elliptic
function sn(w, κ) which is defined by the elliptic integral

w =
∫ x

0

1√
(1− t2)(1− κ2t2)

dt.

Theorem 1.20. (Zolotarev [47]) The best relative approximation r̃(t) from
Rm−1,m for t−1/2 on [1, (λmax/λmin)2] is given by

r̃(t) = D

∏m−1
i=1 (t+ c2i)∏m
i=1(t+ c2i−1)

,

where

ci =
sn2(iK/(2m);κ)

1− sn2(iK/(2m);κ)
,

with κ =
√

1− (λmin/λmax)2 and K is the complete elliptic integral. The
constant D is uniquely determined by the condition

max
t∈[1,(λmax/λmin)2]

(1−
√
t · r̃(t)) = − min

t∈[1,(λmax/λmin)2]
(1−

√
t · r̃(t)).

1.3. NEUBERGER OVERLAP OPERATOR 23

λmin/λmax number of poles
(Neuberger)

number of poles
(Zolotarev)

10−1 15 8
10−2 48 13
10−3 152 17
10−4 478 22
10−5 1512 26

Table 1.3: Number of poles necessary to achieve an accuracy of 10−8

The number of poles needed to achieve a required accuracy is significantly
smaller using the Zolotarev rational approximation than using the Neuberger
rational approximation, see Table 1.3.

1.3 Neuberger Overlap operator

The application we use to motivate and demonstate the methods presented
in the following chapters arrises from lattice QCD (quantum chromodynam-
ics). Here a core numerical task is the solution of a linear system with the
Neuberger overlap operator [34]. The Neuberger overlap operator imple-
ments chiral symmetry on the lattice since it provides an exact solution of
the Ginsparg-Wilson relation [19] γ5D + Dγ5 = aDγ5D (a is the lattice
spacing, γ5 and D as defined below).

The Neuberger overlap operator reads

D = ρI + Γ5sign(Q) (1.27)

with a mass parameter ρ ∈ R, ρ > 1, and Q = Γ5DW , DW ∈ Cn×n being
the Wilson-Dirac operator1.

The Wilson-Dirac operatorDW = I−κM ∈ C12N4×12N4
represents a nearest

neighbour coupling on a four-dimensional space-time lattice

Ω = {x = (xi, xj , xk, xl), 1 ≤ i, j, k, l ≤ N}.

The coupling parameter κ ∈ R corresponds to the quark mass mq in the
following way

κ =
κc

2mqκc + 1
,

with κc defined by the eigenvalues λi of DW , i = 1, . . . , n,

κc =
1

max Re(λi)
.

1For the definition of Γ5 see Appendix A.

1.3. NEUBERGER OVERLAP OPERATOR 24

Obviously, small quark masses correspond to κ values close to κc.

The definition of the hopping term M of the Wilson-Dirac operator involves
the matrices γ1, . . . , γ4

2 and the lattice gauge fields represented by matrices
Ui ∈ SU(3), i = 1, . . . , 4.

Definition 1.21. The special unitary Group SU(3) ⊂ C3×3 is defined as

SU(3) = {U ∈ C3×3 : UHU = I3, det(U) = 1}.

The hopping term M = ((M)xy)x,y=1,...,N4 consists of the 12× 12-blocks

(M)xy =
4∑
i=1

(I − γi)⊗ Ui(x)δx,y−ei + (I + γi)⊗ UHi (x− ei)δx,y+ei

where x, y ∈ Ω such that x ± ei describes the neighbours of x with respect
to the i-th dimension.

Additionaly, a chemical potential can be introduced. For non-zero chemical
potential µ the Wilson-Dirac operator reads Dµ

W = I − κMµ with

(Mµ)xy =
3∑
i=1

(I − γi)⊗ Ui(x)δx,y−ei + (I + γi)⊗ UHi (x− ei)δx,y+ei

+eµ(I − γ4)⊗ U4(x)δx,y−e4 + e−µ(I + γ4)⊗ UH4 (x− e4)δx,y+e4 .

The definitions of DW and Dµ
W are consistent, i.e. D0

W = DW .

Whether the chemical potential µ is zero or non-zero influences the basic
properties of the Wilson-Dirac operator and thus of the Neuberger overlap
operator D. One important property that is influenced is the Γ5-symmetry:

Definition 1.22. A matrix D is called Γ5-symmetric or Γ5-hermitian if

Γ5D = DHΓ5.

At zero chemical potential, i.e. µ = 0, we find

• the Wilson-Dirac operator D0
W is Γ5-hermitian,

• Q = Γ5D
0
W is hermitian,

• sign(Q) is hermitian,

• Γ5sign(Q) is unitary,
2For the definition of γ1, . . . , γ4 see Appendix A.

1.3. NEUBERGER OVERLAP OPERATOR 25

• the Neuberger overlap operator D is shifted unitary.

Since at zero chemical potential the Neuberger operator is not hermitian,
one could expect that Krylov subspace methods require long recurrences.
But the structure as a shifted unitary matrix can be exploited to build
effective Krylov subspace methods with short recurrences, see Chapter 2.
These methods need a matrix vector product with sign(Q) in every step.
Since the matrix Q is hermitian there exist effective approximation methods
for the matrix vector product with sign(Q): The Zolotarev best rational
approximation can be used resulting in a small number of shifts, and for the
multishift approximation multishift CG works with short recurrences.

At non-zero chemical potential, i.e. µ 6= 0, we find

• the Wilson-Dirac operator Dµ
W is not Γ5-hermitian,

• neither Q nor sign(Q) are hermitian,

• Γ5sign(Q) is not unitary.

Since at non-zero chemical potential the Neuberger overlap operator has no
structure to exploit, classical Krylov subspace methods for non-hermitian
matrices have to be used. Long recurrences cannot be avoided. Since Q is
not hermitian either, the matix vector product with sign(Q) needed in every
step of these methods cannot be approximated with the Zolotarev rational
approximation. The number of poles is thus significantly higher. Further-
more, for the multishift approximation of the rational approximation, CG
has to be replaced by FOM or GMRES resulting in long recurrences or by
BiCG or QMR.
In Chapter 3 we investigate the two eigenvalue deflation methods to reduce
the computational cost for approximating sign(Q)b. Applied to FOM and
GMRES they are combined with restarts.

Chapter 2

Krylov subspace methods for
shifted unitary matrices

Computing a basis for a Krylov subspace is a central task in Krylov subspace
methods. For hermitian matrices we have with the Lanczos method and its
three term recurrence a relatively cheap method compared to the Arnoldi
method. While for general non-hermitian matrices there is no such method
with short recurrence, there is one for a special class of non-hermitian ma-
trices, namely unitary matrices.

Since Krylov subspaces are shift invariant, short recurrence methods to build
a Krylov subspace basis therefore exist for matrices of the form

A = ρI + U

with U a unitary matrix.

2.1 The Faber-Manteuffel theorem

The theorem of Faber and Manteuffel [12] gives a characterization for matri-
ces that allow a short recurrence to build an orthogonal basis for Km(A, r0).
At first glance this famous theorem seems to doom all effort concerning uni-
tary matrices to fail as it states A being normal(s) as a necessary condition
for the existence of a short s-term recurrence. And unitary matrices are not
normal(s) for s small, in general.

Definition 2.1.

1. A matrix A is normal if AH = p(A) for some polynomial p.

2. A matrix A is normal(s) if

s = min{d = deg(p) : p polynomial, AH = p(A)}.

26

2.1. THE FABER-MANTEUFFEL THEOREM 27

Hermitian matrices – for which with the Lanczos iteration we already know
a short recursion – are normal(1) as AH = A = p(A) with p(t) = t and
deg(p) = 1 is minimal.

For unitary matrices we have AH = A−1, such that AH = p(A) with
deg(p) ≤ n − 1. In this case, the degree of the polynomial p is related
to the degree of the minimal polynomial of A:

Proposition 2.2. If m is the degree of the minimal polynomial of the non-
singular matrix A, then A−1 = p(A) with deg(p) = m− 1.

Proof. Let qm(t) = α0 +α1t+ · · ·+αmt
m be the mimimal polynomial of A,

thus
qm(A) = α0 + α1A+ · · ·+ αmA

m = 0.

Since A is non-singular, α0 is non-zero and we can write

A(α1 + · · ·+ αmA
m−1) = −α0I.

Therefore
A−1 =

−1
α0

(α1 + · · ·+ αmA
m−1) = pm−1(A)

with deg(pm−1) = m− 1.

Thus, unitary matrices are normal(m− 1) for m the degree of the mimimal
polynomial, but of course, m depends on the actual matrix such that unitary
matrices are not normal(s) for small s in general.

The theorem of Faber and Manteuffel tells for which matrices, namely those
which are normal(s), an (s+ 2)-term recurrence is possible.

Theorem 2.3 (Faber-Manteuffel).
A matrix A allows a (s+ 2)-term recurrence of the form

vj+1 = Avj −
j∑

i=j−s
hi,jvi , hi,j =

vHi Avj

vHi vi
(2.1)

to construct an orthogonal basis {v1, . . . , vm} of Km(A, r0) if and only if A
is normal(s).

Proof. [11, 29]

For hermitian matrices Theorem 2.3 guarantees a 3-term-recurrence (s = 1),
and the Lanczos method gives a realization of such.

2.1. THE FABER-MANTEUFFEL THEOREM 28

For unitary matrices a short recurrence of the form (2.1) is thus impossible.
But it is in fact possible to construct an orthogonal basis of Km(A, r0) for
A unitary with a short recurrence, using a recurrence formula of a different
form than (2.1). Gragg [21] presented a realization of such a short recur-
rence for unitary matrices and Barth and Manteuffel [4] gave a theoretical
foundation using a generalized definition of being normal.

Definition 2.4. A matrix A is normal(`, m) if A is normal and

AHqm(A) = p`(A)

for polynomials p and q of degree ` and m, respectively.

Obviously normal(`, 0) matrices are normal(`). Hermitian matrices are thus
normal(1, 0). Unitary matrices are normal(0, 1) as in this case we have
AHq(A) = p(A) with q(t) = t and p(t) = 1.

Barth and Manteuffel showed in [4] that being normal(`, m) is a sufficient
condition for a short recursion, though of a form different from that in (2.1).

Theorem 2.5. If a matrix A is normal(`, m), it allows an ` + m + 2-
recurrence to construct an orthogonal basis {v1, . . . , vm} of Km(A, r0) of
the form

vj+1 =
j∑

i=j−m
ĥi,jAvi −

j∑
i=j−`

hi,jvi. (2.2)

Proof. [4]

For hermitian matrices (2.2) results in the well known form of its 3-term
recurrence, while for unitary matrices we get a 3-term recurrence of the
form

vj+1 =
j∑

i=j−1

ĥi,jAvi − hj,jvj . (2.3)

The `+m+ 2-recurrence (2.2) can be reformulated as a coupled recursion.
For unitary matrices this leads to the formulation of Gragg [21, 27]:

σjvj+1 = Avj + γj v̂j (2.4)
v̂j+1 = σj v̂j + γ̄jvj+1

In [4], a possible breakdown of the single recursion (2.2) was identified that
does not occur in the coupled formulation.

In the following section two realizations of such short recurrences to con-
struct a basis for Km(A, r0) with unitary A are presented. The first one
(unitary Arnoldi) uses a single recursion of the form (2.3) while the second

2.2. SHORT RECURRENCE ARNOLDI 29

one (isometric Arnoldi) uses a coupled recursion (2.4). Both are thus real-
izations of the recursion (2.2).

These methods can then be combined with the Galerkin or the minimal
residual condition to gain tailor-made methods for shifted unitary matrices.

2.2 Short recurrence Arnoldi

2.2.1 Unitary Arnoldi

The unitary Arnoldi method was introduced by Borici in [7, 8, 9]. As a
foundation, the following statement found in [39] was used.

Almost every orthogonal matrix U has a decomposition U =
LR−1, where L is lower and R upper triangular matrix.

The idea is to apply this decomposition to the matrix Hm0 = Vm0
HUVm0

that is computed in the last step of the Arnoldi method, i.e., when the
columns of Vm0 span anA-invariant subspace. While for k < m0 the matrices
Hk are not unitary, Hm0 is unitary.

Lemma 2.6. Let U be a unitary matrix and Vm the matrix obtained by the
Arnoldi method started with ṽ1 = r0. Then the matrix Hm0 = Vm0

HUVm0

is unitary for m0 the degree of r0 with respect to U .

Proof. While for k < m the Arnoldi relation (1.8) holds, for k = m0 it holds

UVm0 = Vm0Hm0 .

Therefore

HH
m0
Hm0 = HH

m0
V H
m0
Vm0Hm0 = V H

m0
UHUVm0 = I.

What we need to know is, whether an LU-decomposition for Hm0 exists or
not. It does, if Hm0 and its minors, i.e., the matrices Hk are regular for
k = 1, . . . ,m0,. The following lemma (see [8]) helps to answer this question.

Lemma 2.7. For a unitary matrix U , the matrix Ĥk resulting from the
Arnoldi method has orthogonal columns.

Proof. Multiplying both sides of the Arnoldi relation

UVk = Vk+1Ĥk = VkHk + hk+1,kvk+1e
T
k

2.2. SHORT RECURRENCE ARNOLDI 30

from the left by (UVk)H results in

I = V H
k UHVkHk + hk+1,kV

H
k UHvk+1e

T
k

= HH
k Hk + hk+1,k(vHk+1UVk)

HeTk

= HH
k Hk + hk+1,khk+1,keke

T
k

= ĤH
k Ĥk.

From Lemma 2.7 we can read under which circumstances the desired LU-
decomposition exists.

Theorem 2.8. For a unitary matrix U the matrices Hk = V H
k UVk resulting

from the Arnoldi method are regular if and only if vHi Uvk 6= 0 for at least
one index i ≤ k.

Proof. From Lemma 2.7 we know that

HH
k Hk = I − h2

k+1,keke
T
k .

This shows that Hk is regular iff hk+1,k 6= 1. By construction it is

hk+1,k = ‖Uvk −
k∑
i=1

vHi Uvkvi‖2.

Since ‖Uvk‖2 = 1 and
∑k

i=1 v
H
i Uvkvi is the orthogonal projection of Uvk

onto Kk(U, r0), this proves that hk+1,k = 1 iff vHi Uvk = 0, i = 1, . . . , k.

Theorem 2.8 tells that not all unitary matrices have an LU-decomposition.
From now on we assume hk+1,k 6= 1 for k = 1, . . . ,m0.

Following Rutishauser – and assuming that the LU-decomposition for Hm0

exists – we write Hm0 = Lm0R
−1
m0

with a lower triangular matrix Lm0 = (li,j)
and an upper triangular matrix Rm0 = (ri,j). Furthermore, Hm0 is upper
Hessenberg so that Lm0 is in fact bidiagonal, and since Hm0 is unitary, Lm0

and Rm0 satisfy
LHm0

Lm0 = RHm0
Rm0 ,

so that Rm0 is bidiagonal, too.

To find short recurrences for the Arnoldi vectors we use the LU-decomposition
of Hm0 to write the Arnoldi relations as

Vm0
HUVm0R = L (2.5)

2.2. SHORT RECURRENCE ARNOLDI 31

or
UVm0R = Vm0L. (2.6)

W.l.o.g. let R have entries 1 on the diagonal. With (2.5) we get

l1,1 = vH1 Uv1

l2,1 = vH2 Uv1

ṽ2 = Uv1 − l11v1

and the following recursions for ri,j , li,j and ṽi:

rk−1,k = −
vHk−1Uvk

vHk−1Uvk−1

lk,k = rk−1,kv
H
k Uvk−1 + vHk Uvk

lk,k−1 = rk−2,k−1v
H
k Uvk−2 + vHk Uvk−1

ṽk+1 = rk−1,kUvk−1 + Uvk − lk,kvk.

The orthonormal vectors vi result from normalizing ṽi. The norm of ṽi di-
rectly gives li,i−1 as the following lemma shows.

Lemma 2.9. With lk+1,k and ṽk as above the following holds

lk+1,k = ‖ṽk+1‖2.

Proof. Obviously lk+1,k = vHk+1ṽk+1. As vk+1 = ṽk+1/‖ṽk+1‖2, the proof is
completed.

Algorithm 2.10. Unitary Arnoldi method
{Input m ≤ m0, r0, unitary matrix U}

v1 = r0

l1,1 = vH1 Uv1

ṽ2 = Uv1 − l1,1v1

l2,1 = ‖ṽ2‖2
for k = 2, 3, . . . , m do
vk = ṽk/lk,k−1

rk−1,k = − vH
k−1Uvk

vH
k−1Uvk−1

lk,k = vHk Uvk−1rk−1,k + vHk Uvk
ṽk+1 = Uvk−1rk−1,k + Uvk − lk,kvk
lk+1,k = ‖ṽk+1‖2

end for

2.2. SHORT RECURRENCE ARNOLDI 32

2.2.2 Isometric Arnoldi

The isometric Arnoldi method was first introduced by Gragg [21]. The basic
idea is to write the upper Hessenberg matrix

Hm0 = Vm0
HUVm0

that we get in the last step of the ordinary Arnoldi method as a product of
unitary matrices. To see that this is possible, let Hm0 = Qm0Rm0 be the
QR-decomposition of Hm0 . From Lemma 2.6 we know that Hm0 is unitary
and thus

RHm0
Rm0 = RHm0

QHm0
Qm0Rm0 = HH

m0
Hm0 = I,

i.e., Rm0 is unitary (and therefore diagonal).

Realizing the QR-decompostion with Givens rotations it is actually

Hm0 = G1(γ1)G2(γ2) · · ·Gm0−1(γm0−1)G̃m0(γ̃m0),

where Gi(γi) are the Givens matrices

Gi(γi) =

Ii−1

−γi σi
σi γ̄i

Im0−i−1

 ∈ Cm0×m0

with γi ∈ C, σi ∈ R+ and |γi|2 + σ2
i = 1, and

G̃m0(γ̃m0) = diag(1, . . . , 1,−γ̃m0)

with γ̃m0 ∈ C, |γ̃m0 | = 1.

Thus in the last step it holds

UVm0 = Vm0Hm0 = Vm0G1(γ1)G2(γ2) . . . Gm0−1(γm0−1)G̃m0(γ̃m0).

By comparing columns we get for k < m0

UVk = Vk+1Ĥk, (2.7)

where
Ĥk = G1(γ1)G2(γ2) . . . Gk−1(γk−1)Ĝk(γk),

and

Ĝk(γk) =

 Ik−1

−γk
σk

 ∈ C(k+1)×k.

Note that now the Givens matrices are Gi(γi) ∈ C(k+1)×(k+1).

2.2. SHORT RECURRENCE ARNOLDI 33

To determine the desired recurrences we take a look at (2.7). The first
Givens matrix G1(γ1) produces

VkG1(γ1) = [−γ1v1 + σ1v2, σ1v1 + γ̄1v2, v3, . . . , vk].

Writing v̂2 = σ1v1 + γ̄1v2, the second Givens matrix G2(γ2) produces

VkG1(γ1)G2(γ2) = [−γ1v1 + σ1v2,−γ2v̂2 + σ2v3, σ2v̂2 + γ̄2v3, v4, . . . , vk],

Further investigating the effect of the Givens matrices on Vk, we get

v̂k+1 = σkv̂k + γ̄kvk+1

and
vk+1 = σ−1

k (Uvk + γkv̂k)

with −γk = v̂Hk Uvk.

These coupled recurrences of vk and v̂k allow short recurrences in this case.
As mentioned before, the coupled recursion could be written as a single
recursion, see [4].

Algorithm 2.11. Isometric Arnoldi method
{Input m ≤ m0, r0, unitary matrix U}

v1 = r0
‖r0‖2 ; v̂1 = v1

for k = 1, 2, . . . ,m− 1 do
u = Uvk
γk = −v̂Hk u
σk = ((1− |γk|)(1 + |γk|))1/2 = ‖u+ γkv̂k‖2
vk+1 = σ−1

k (u+ γkv̂k)
v̂k+1 = σkv̂k + γ̄kvk+1

end for
γm = −v̂HmUvm; σm = ((1− |γm|)(1 + |γm|))1/2

The vectors v1, . . . , vm and the vectors v̂1, . . . , v̂m computed with the isomet-
ric Arnoldi method are normal as the following lemma shows. The vectors
v1, . . . , vm are of course orthogonal.

Lemma 2.12. In the isometric Arnoldi method the following holds

vHj vj = v̂Hj v̂j = 1 and vHj+1v̂j = 0.

Proof. It holds:
v̂H1 v̂1 = vH1 v1 = rH0 r0/‖r0‖22 = 1

2.2. SHORT RECURRENCE ARNOLDI 34

vH2 v̂1 =
1
σ1

(u+ γ1v̂1)H v̂1 =
1
σ1

(uH v̂1 + γ̄1v̂
H
1 v̂1) =

1
σ1

(−γ̄1 + γ̄1) = 0

Via induction we get:

vHj+1vj+1 =
1

σj σ̄j
(u+ γj v̂j)

H (u+ γj v̂j)

=
1

σj σ̄j

(
uHu+ γju

H v̂j + γ̄j v̂
H
j u+ γ̄jγj v̂

H
j v̂j

)
=

1
σj σ̄j

(1 + γj(−γ̄j) + γ̄j(−γj) + γ̄jγj)

=
1

σj σ̄j
(1− γj γ̄j)

= 1

v̂Hj+1v̂j+1 = (σj v̂j + γ̄jvj+1)H (σj v̂j + γ̄jvj+1)

= σ̄jσj v̂
H
j v̂j + σ̄j γ̄j v̂

H
j vj+1 + γjσjv

H
j+1v̂j + γj γ̄jv

H
j+1vj+1

= σ̄jσj + γj γ̄j

= 1

vHj+2v̂j+1 =
1

σ̄j+1
(u+ γj+1v̂j+1)H v̂j+1

=
1

σ̄j+1
(uH v̂j+1 + γ̄j+1v̂

H
j+1v̂j+1)

=
1

σ̄j+1
(−γ̄j+1 + γ̄j+1)

= 0

If implemented as in Algorithm 2.11 the isometric Arnoldi method suffers
from numerical instabilities:
In each step we have σj = ‖u+ γj v̂j‖2 = ‖vj+1‖2. Therefore vj+1 has norm
one, and this is obtained by explicit normalization. The normalization of
v̂j+1 is only implicit and not done explicitly in the algorithm. It actually
vanishes during the iteration due to rounding errors. At the same time we
lose the orthogonality of the vectors vj . The right plot of Figure 2.1 shows
that even the orthogonality of the last four vectors gets lost soon when we
rely on the implicit normalization of Algorithm 2.11.

To preserve orthogonality, v̂j+1 has to be normalized explicitly in each step.
Of course, we can not expect to prevent the general loss of orthogonality, i.e.,
the last vectors will not be orthogonal to the first ones after a certain number
of steps, see left plot of Figure 2.1. But every vector will be orthogonal to
a reasonable number of its predecessors, see right plot of Figure 2.1.

2.3. SHIFTED UNITARY METHODS 35

0 50 100 150 200 250
10

−15

10
−10

10
−5

10
0

iterations

de
vi

at
io

n
fr

om
 o

rt
ho

go
na

lit
y

0 50 100 150 200 250
10

−15

10
−10

10
−5

10
0

iterations

de
vi

at
io

n
fr

om
 o

rt
ho

go
na

lit
y

Figure 2.1: The isometric Arnoldi method with (solid line) and without
(dashed line) explicit normalization. Left plot shows ‖V HV − I‖F , right
plot shows ‖[vi−3, . . . , vi]H [vi−3, . . . , vi]− I‖F .

2.3 Shifted unitary methods

2.3.1 SUOM

In this section we combine the unitary Arnoldi method with a Galerkin con-
dition. The resulting method is called SUOM (Shifted Unitary Orthogonal
Method) [7, 8, 9]. We will see that not only the basis of the Krylov subspace
can be calculated with a short recurrence by the unitary Arnoldi method but
also the SUOM iterates can be calculated by a simple update. Therefore,
only a constant number of basis vectors of the Krylov subspace has to be
stored.

Let A = ρI+U with a unitary matrix U so that the unitary Arnoldi method
can be applied, i.e., the decomposition Vm0

HUVm0 = Lm0R
−1
m0

exists.

To solve
Vk

H(ρI + U)Vkyk = Vk
Hb,

we set yk = Rkζk. Instead of solving a system with the upper Hessenberg
matrix VkH(ρI + U)Vk = ρI +Hk, the system to solve is then

(ρRk + Lk)ζk = Vk
Hb

with (ρRk + Lk) tridiagonal. This system can be solved using its LU-
decomposition.

Lemma 2.13. If the shift parameter ρ > 1 and therefore A is positive real,
the LU-decomposition (ρRk + Lk) = ΛkΨk exists.

Proof. If the matrix A is positive real, so are the matrices H(A)
k = Vk

HAVk

for k = 1, . . . ,m0. Thus, all minors of H(A)
m0 are non-singular and H

(A)
m0 has

an LU-decomposition H
(A)
m0 = Λm0Ψ̂m0 . Since (ρRm0 + Lm0) = H

(A)
m0 Rm0 it

has an LU-decomposition (ρRm0 + Lm0) = Λm0Ψm0 with Ψm0 = Ψ̂m0Rm0 .

2.3. SHIFTED UNITARY METHODS 36

Since (ρRk + Lk) is tridiagonal, Λk and Ψk are bidiagonal. W.l.o.g we can
assume Λk having ones on the diagonal. The other entries λi,j and ψi,j can
be calculated easily with the following recurrences:

ψ1,1 = ρ+ l1,1

ψk−1,k = ρrk−1,k

λk,k−1 = lk,k−1/ψk−1,k−1

ψk,k = ρ+ lk,k − λk,k−1ψk−1,k

With these notations we can write the SUOM iterates as

xk = VkRk(ρRk + Lk)−1Vk
Hb

= VkRkΨk
−1Λk−1Vk

Hb.

To see that xk+1 can be calculated by a simple update of xk, we seperately
investigate

ωk = Λk−1Vk
Hb

and
Zk = VkRkΨk

−1.

For ωk = (w1, . . . , wk)T we directly get, since V H
k b = βe1,

w1 = β

wi = −λi,i−1wi−1, i = 2, . . . , k.

For Zk we compare columns in VkRk = ZkΨk

[Vk−1Rk−1, rk−1,kvk−1 + vk] = [Zk−1Ψk−1, ψk−1,kzk−1 + ψk+1,k+1zk]

and get

z1 = ψ−1
1,1v1

zi = ψ−1
i,i (ri−1,ivi−1 + vi − ψi−1,izi−1), i = 2, . . . , k.

The iterates are therefore updated as

xk+1 = [Zk|zk+1](ωk, wk+1)T = xk + wk+1zk+1.

The SUOM residuals are thus

rk = −hk+1,ke
T
k ykvk+1 = −lk+1,k

1
ψk,k

wkvk+1.

2.3. SHIFTED UNITARY METHODS 37

Algorithm 2.14. SUOM
{Input m ≤ m0, x0 r0 = b−Ax0, ε}

v1 = r0

β = ‖v1‖2
l1,1 = vH1 Uv1

ṽ2 = Uv1 − l1,1v1

l2,1 = ‖ṽ2‖2
ψ1,1 = ρ+ l1,1
w1 = β
z1 = ψ−1

1,1v1

x1 = x0 + w1z1

for k = 2, 3, . . . , m do
vk = ṽk/lk,k−1

rk−1,k = − vH
k−1Uvk

vH
k−1Uvk−1

lk,k = vHk Uvk−1rk−1,k + vHk Uvk
ψk−1,k = ρrk−1,k

λk,k−1 = lk,k−1/ψk−1,k−1

ψk,k = ρ+ lk,k − λk,k−1ψk−1,k

wk = −λk,k−1wk−1

zk = ψ−1
k,k(rk−1,kvk−1 + vk − ψk−1,kzk−1)

xk = xk−1 + wkzk
ṽk+1 = Uvk−1rk−1,k + Uvk − lk,kvk
lk+1,k = ‖ṽk+1‖2

end for

Note that for the derivation of the SUOM method, we assumed A to be
positive real. If A is not positive real, the combination of the unitary Arnoldi
method and a Galerkin condition can be realized using a QR-decomposition
of (ρRk + Lk) instead of using the LU-decomposition. Nevertheless, the
resulting method can have breakdowns, since its iterates do not necessarily
exist due to the possibility of Hk being singular.

2.3.2 SHUMR

In this section we combine the unitary Arnoldi method with the minimal
residual condition instead of a Galerkin condition. As proposed by Borici
[8], the resulting method is called SHUMR (SHifted Unitary Minimal Resid-
ual), although we present here a slightly different realization than the one
proposed by Borici. The original SHUMR algorithm (see [8]) involves the
SUOM iterates to obtain a simple update for its iterates. Since the SUOM
iterates do not necessarily exist when A is not positive real, this introduces

2.3. SHIFTED UNITARY METHODS 38

possible breakdowns to SHUMR. As the derivation below shows, it is not
necessary to use the SUOM iterates. The version we present here is thus
breakdown free, even for A not positive real.

With the minimal residual condition we demand for the SHUMR iterates

‖rk‖2 = ‖b− (ρI + U)xk‖2 = min
x∈x0+Kk(U,r0)

‖b− (ρI + U)x‖2, (2.8)

and requiring xk = Vkyk leads to

rk = b− (ρI + U)Vkyk
= βVk+1e1 − Vk+1(ρÎk + Ĥk)yk,

where Îk ∈ R(k+1)×k is the identity matrix expanded by an extra row of
zeros.

Assuming that the unitary Arnoldi method can be applied, we know that
Hk = LkR

−1
k and we get

Ĥk = L̂kR
−1
k

with

L̂k =
[

Lk
0 . . . 0 lk+1,k

]
∈ C(k+1)×k.

As in SUOM, we set yk = Rkzk and get

rk = Vk+1(βe1 − (ρÎk + L̂kR
−1
k)Rkzk)

= Vk+1(βe1 − (ρR̂k + L̂k)zk)

with R̂k = ÎkRk.

To construct zk we use the QR-decomposition

(ρR̂k + L̂k) = QkΘ̂k, Θ̂k =
[

Θk

0

]
with Qk ∈ C(k+1)×(k+1) unitary and Θk ∈ Ck×k an upper tridiagonal matrix.
The least squares problem (2.8) reads thus

‖βkQHk e1 + Θ̂kzk‖2 = min
z∈Ck

‖βkQHk e1 + Θ̂kz‖2. (2.9)

We can recursively write QHk as a product of Givens matrices

Gk(ck) =

 Ik−1

−ck sk
sk c̄k

 , |ck|2 + s2
k = 1.

2.3. SHIFTED UNITARY METHODS 39

such that

βQHk e1 = βGk(ck)
[
QHk−1

1

]
e1 = (τ1, . . . , τk, τ̂k+1)T ,

with

τ̂1 = β

τk = −ckτ̂k
τ̂k+1 = skτ̂k.

With the recursion for τk the least squares problem (2.9) is further simplified
and we have

zk = Θ−1
k (τ1, . . . , τk)T .

Recall that ρR̂k + L̂k is tridiagonal such that column k is only affected by
the Givens matrices Gk, Gk−1, and Gk−2. The k-th column of Θk therefore
consists of the three non-zero entries

θk−2,k = sk−2ρrk−1,k

θk−1,k = −ck−1c̄k−2ρrk−1,k + sk−1(ρ+ lk,k)

θk,k = −ckθ̂k + sklk+1,k

with θ̂k = sk−1c̄k−2ρrk−1,k + c̄k−1(ρ+ lk,k) and

c̄k =
θ̂k

(|θ̂k|2 + l2k+1,k)
1/2

, sk =
−lk+1,k

(|θ̂k|2 + l2k+1,k)
1/2

.

After all, we have to compute VkRkzk, therefore we need a short recurrence
formula for Pk = [p1, . . . , pk] = VkRkΘ−1

k . By comparing columns in

PkΘk = VkRk,

we get the following recurrence

p1 = v1/θ1,1

p2 = (v2 + r1,2v1 − θ1,2p1)/θ2,2

pk = (vk + rk−1,kvk−1 − θk−1,kpk−1 − θk−2,kpk−2)/θk,k.

For our SHUMR iterate we get thus

xk = xk−1 + τkpk.

Since SHUMR uses the minimal residual condition, we get the norm of the
residual rk as

‖rk‖2 = |βeTk+1Q
H
k+1e1| = |τ̂k+1|.

2.3. SHIFTED UNITARY METHODS 40

Algorithm 2.15. SHUMR
{Input m ≤ m0, x0, r0 = b−Ax0, ε}

θ0,2 = 0, c0 = 1, p0 = 0
v1 = r0, β = ‖v1‖2, w1 = β, τ̂1 = β
l1,1 = vH1 Uv1

ṽ2 = Uv1 − l1,1v1

l2,1 = ‖ṽ2‖2
s1 = −l2,1

(l22,1+|ρ+l1,1|2)1/2

c̄1 = ρ+l1,1

(l22,1+|ρ+l1,1|2)1/2

τ1 = −c1τ̂1

τ̂2 = s1τ̂1

θ1,1 = −c1(ρ+ l1,1) + s1l2,1
p1 = v1/θ1,1

x1 = x0 + τ1p1

for k = 2, 3, . . . , m do
vk = ṽk/lk,k−1

rk−1,k = − vH
k−1Uvk

vH
k−1Uvk−1

lk,k = vHk Uvk−1rk−1,k + vHk Uvk
ṽk+1 = Uvk−1rk−1,k + Uvk − lk,kvk
lk+1,k = ‖ṽk+1‖2
θ̂k = sk−1c̄k−2ρrk−1,k + c̄k−1(ρ+ lk,k)
sk = −lk+1,k

(|bθk|2+l2k+1,k)1/2

c̄k =
bθk

(|bθk|2+l2k+1,k)1/2

τk = −ckτ̂k
τ̂k+1 = skτ̂k
θk−2,k = sk−2ρrk−1,k

θk−1,k = −ck−1c̄k−2ρrk−1,k + sk−1(ρ+ lk,k)
θk,k = −ckθ̂k + sklk+1,k

pk = (vk + rk−1,kvk−1 − θk−1,kpk−1 − θk−2,kpk−2)/θk,k
xk = xk−1 + τkpk

end for

Not using the SUOM iterates the SHUMR iterates always exist. Note that
this holds of course under the assumption that the unitary Arnoldi method
has no breakdown, i.e., the LU-decomposition needed for the unitary Arnoldi
method exists. If the LU-decomposition in the unitary Arnoldi method does
not exist, both SUOM and SHUMR have a breakdown.

2.3. SHIFTED UNITARY METHODS 41

2.3.3 SUFOM

In this section we combine the isometric Arnoldi method with a Galerkin
condition. The resulting method is called SUFOM (Shifted Unitary FOM).

With the notations from the isometric Arnoldi method we can write the
upper Hessenberg matrix Hk as

Hk = D−1
k

−γ̄0γ1 −γ̄0γ2 . . . −γ̄0γk−1 −γ̄0γk
σ2

1 −γ̄1γ2 . . . −γ̄1γk−1 −γ̄1γk
σ2

2 . . . −γ̄2γk−1 −γ̄2γk
. . .

...
...

σ2
k−1 −γ̄k−1γk

Dk

where γ0 = 1 and Dk = diag(δ0, δ1, . . . , δk−1) with δ0 = β and δi = δi−1σi for
i ≥ 1, see [21, 27]. The quantities γi and σi are computed in the isometric
Arnoldi method.

The matrix Hk can be written as

Hk =
[

Hk−1 −γkδk−1D
−1
k−1(γ̄0, . . . , γ̄k−2)T

σk−1e
T
k−1 −γ̄k−1γk

]
.

For the computation of yk = (Hk + ρI)−1V H
k b = β(Hk + ρI)−1e1 we use the

QR-decomposition
QHk (Hk + ρI) = R̂k,

where the unitary matrix QHk can be written as a product of Givens matrices

QHk = Gk−1(ck−1) · · ·G1(c1)

with

Gi(ci) =

Ii−1

−ci si
si c̄i

Ik−i−1

 , |ci|2 + s2
i = 1.

In order to update R̂k we have to know how the Givens matrices affect the
last column of Hk + ρI and the (k − 1, k − 1) element.

Starting with φ̂1 = γ̄0/δ0 we see that

Gk−2(ck−2) · · ·G1(c1)D−1
k−1(γ̄0, . . . , γ̄k−2)T = (φ1, . . . , φk−2, φ̂k−1)T

where

φi = −ciφ̂i + siγ̄i/δi,

φ̂i+1 = siφ̂i + c̄iγ̄i/δi.

2.3. SHIFTED UNITARY METHODS 42

This leads to

Gk−2(ck−2) · · ·G1(c1)(Hk+ρI) =

 R̂k−1
−γkδk−1(φ1, . . . , φk−2)T

−γkδk−1φ̂k−1

σk−1e
T
k−1 −γ̄k−1γk + ρ

 .
The (k − 1)-st Givens matrix is chosen to zero out the (k, k − 1) element,
i.e. σk−1 and thus

c̄k−1 =
r̂k−1,k−1

(|r̂k−1,k−1|2 + σ2
k−1)1/2

, sk−1 =
σk−1

(|r̂k−1,k−1|2 + σ2
k−1)1/2

.

The last Givens matrix Gk−1(ck−1) affects −γkδk−1φ̂k−1 and −γ̄k−1γk + ρ
in the following way

Gk−1

(
−γkδk−1φ̂k−1

−γ̄k−1γk + ρ

)
=

(
γkδk−1ck−1φ̂k−1 − sk−1γ̄k−1γk + ρsk−1

−γkδk−1sk−1φ̂k−1 − c̄k−1γ̄k−1γk + ρc̄k−1

)

=
(
−γkδk−1φk−1 + sk−1ρ

−γkδk−1φ̂k + c̄k−1ρ

)
,

such that the following structure is produced

R̂k = QHk (Hk + ρI) =

 Rk−1
−γkδk−1(φ1, . . . , φk−2)T

rk−1,k

0 r̂k,k

with

rk−1,k = −γkδk−1φk−1 + sk−1ρ,

r̂k,k = −γkδk−1φ̂k + c̄k−1ρ,

rk−1,k−1 = −ck−1r̂k−1,k−1 + sk−1σk−1.

Algorithm 2.16 summarizes the computation of the QR decomposition of
(Hk + ρI).

2.3. SHIFTED UNITARY METHODS 43

Algorithm 2.16. QR-decomposition for (ρI +Hk)
{Input m ≤ m0, r0, unitary matrix U , ρ}

v1 = r0
‖r0‖2 ; v̂1 = v1; δ0 = ‖r0‖2; φ̂1 = 1/δ0; φ0 = s0 = 0; c0 = 1

u = Uv1

γ1 = −v̂H1 u
r̂1,1 = −γ1 + ρ
σ1 = ‖u+ γ1v̂1‖2
δ1 = δ0σ1

v2 = σ−1
1 (u+ γ1v̂1)

v̂2 = σ1v̂1 + γ̄1v2

v̂2 = v̂2/‖v̂2‖2
for k = 2, . . . ,m− 1 do
u = Uvk
γk = −v̂Hk u
c̄k−1 = r̂k−1,k−1/(|r̂k−1,k−1|2 + σ2

k−1)1/2

sk−1 = −σk−1/(|r̂k−1,k−1|2 + σ2
k−1)1/2

φk−1 = −ck−1φ̂k−1 + sk−1γ̄k−1/δk−1

φ̂k = sk−1φ̂k−1 + c̄k−1γ̄k−1/δk−1

rk−1,k−1 = −ck−1r̂k−1,k−1 + sk−1σk−1

rk−1,k = −γkδk−1φk−1 + sk−1ρ

r̂k,k = −γkδk−1φ̂k + c̄k−1ρ
σk = ((1− |γk|)(1 + |γk|))1/2 = ‖u+ γkv̂k‖2
δk = δk−1σk
φk = −ckφ̂k + skγ̄k/δk
φ̂k+1 = skφ̂k + c̄kγ̄k/δk
vk+1 = σ−1

k (u+ γkv̂k)
v̂k+1 = σkv̂k + γ̄kvk+1

v̂k+1 = v̂k+1/‖v̂k+1‖2
end for

For σk it holds 0 ≤ ‖u + γkṽk‖ = σk = (1 − |γk|2)1/2 ≤ 1. Therefore
δk = ‖r0‖

∏k
i=1 σi might be very small, in which case φ̂k = sk−1φ̂k−1 +

c̄k−1γ̄k−1/δk−1 is very large while only the product δk−1φ̂k is needed. The
same holds for φk. This could cause numerical instabilities.

For practical implementation we therefore suggest a (slight) modification
of the Algorithm 2.16: Computing the quantities δk, φ̂k and φk can be
circumvented by computing

2.3. SHIFTED UNITARY METHODS 44

δ̃k = δkφ̂k = δk

(
sk−1φ̂k−1 + c̄k−1γ̄k−1/δk−1

)
= sk−1δkφ̂k−1 + σk c̄k−1γ̄k−1

= sk−1σkδk−1φ̂k−1 + σk c̄k−1γ̄k−1

= sk−1σkδ̃k−1 + σk c̄k−1γ̄k−1.

Obviously δ̃k can be obtained via the recursion

δ̃1 = σ1

δ̃k = sk−1σkδ̃k−1 + σk c̄k−1γ̄k−1.

This changes the computation of rk−1,k and r̂k,k to

rk−1,k = −γkδk−1ϕk−1 + sk−1ρ

= −γkδk−1

(
−ck−1φ̂k−1 + sk−1γ̄k−1/δk−1

)
+ sk−1ρ

= γkck−1δ̃k−1 − γksk−1γ̄k−1 + sk−1ρ

r̂k,k = −γkδk−1φ̂k + c̄k−1ρ

= −γkδk−1

(
sk−1φ̂k−1 + c̄k−1γ̄k−1/δk−1

)
+ c̄k−1ρ

= −γksk−1δ̃k−1 − γk c̄k−1γ̄k−1 + c̄k−1ρ

Computing rk−1,k and r̂k,k like this, it is thus not necessary anymore to
calculate φi and φ̂i.

Finally, we want to obtain the SUFOM iterates

x̂k = x0 + Vkŷk,

with
ŷk = (Hk + ρI)−1V H

k b = βR̂−1
k QHk e1.

Note that βQHk e1 = (τ1, . . . , τk−1, τ̂k)T = t̂k can be easily updated by

τk = −ckτ̂k
τ̂k+1 = skτ̂k

with τ̂1 = β.

So we have to solve
R̂kŷk = (τ1, . . . , τk−1, τ̂k)T . (2.10)

2.3. SHIFTED UNITARY METHODS 45

For the moment we ignore the changes we just made for stability reasons.
It will be easy to apply them afterwards.

With ŷk = (η̂1, . . . , η̂k)T and tk−1 = (τ1, . . . , τk−1)T equation (2.10) reads

Rk−1(η̂1, . . . , η̂k−1)T + (−γkδk−1φ1, . . . ,−γkδk−1φk−2, rk−1,k)T η̂k = tk−1

r̂k,kη̂k = τ̂k,

and we get

(η̂1, . . . , η̂k−1)T =R−1
k−1tk−1 −R−1

k−1(−γkδk−1φ1, . . . ,−γkδk−1φk−2, rk−1,k)T η̂k
η̂k = τ̂k/r̂k,k.

In the same way we obtain for yk = (η1, . . . , ηk)T = R−1
k tk

(η1, . . . , ηk−1)T =R−1
k−1tk−1 −R−1

k−1(−γkδk−1φ1, . . . ,−γkδk−1φk−2, rk−1,k)T ηk
ηk = τk/rk,k.

We need gk−1 = R−1
k−1(−γkδk−1φ1, . . . ,−γkδk−1φk−2, rk−1,k)T for both ŷk

and yk. With the definition of rk−1,k we can split

gk−1 = R−1
k−1(−γkδk−1φ1, . . . ,−γkδk−1φk−2,−γkδk−1φk−1 + sk−1ρ)T

= −γkδk−1R
−1
k−1(φ1, . . . , φk−1)T + sk−1ρR

−1
k−1ek−1.

In the same way as for ŷk we get recursions for zk = (ẑk−1, ζk)T = R−1
k ek

and lk = (l̂k−1, λk)T = R−1
k (φ1, . . . , φk)T :

λk = φk/rk,k

l̂k−1 = lk−1 − gk−1λk

ζk = 1/rk,k
ẑk−1 = −1/rk,kgk−1.

The iterates therefore read

x̂k = x0 + Vkŷk

= x0 + Vk−1(η̂1, . . . , η̂k−1)T + η̂kvk

= x0 + Vk−1(yk−1 − gk−1η̂k) + η̂kvk

= xk−1 − Vk−1gk−1η̂k + η̂kvk

2.3. SHIFTED UNITARY METHODS 46

with

xk = x0 + Vkyk

= x0 + Vk−1(η1, . . . , ηk−1)T + ηkvk

= x0 + Vk−1(yk−1 − gk−1ηk) + ηkvk

= xk−1 − Vk−1gk−1ηk + ηkvk.

For wk = Vkgk it holds

wk = Vk(−γk+1δklk + skρzk)

= −γk+1δk(Vk−1lk−1 − Vk−1gk−1λk + λkvk) + skρ(− 1
rk,k

wk−1 +
1
rk,k

vk)

= −γk+1δkVk−1lk−1 +
γk+1δkφk − skρ

rk,k
(wk−1 − vk)

= −γk+1δkVk−1lk−1 − rk,k+1/rk,k(wk−1 − vk).

Introducing pk = Vklk we get

pk = Vk−1 l̂k−1 + λkvk

= pk−1 − λk(wk−1 − vk)

which completes the short recurrence for the SUFOM iterates x̂k.

Finally, taking into account the changes we suggested for the stability of the
QR-decomposition, we see that the computation of wk is the only one that
involves the quantities δk and φk, the latter through pk and λk.

Introducing p̂k−1 = −γk+1δkpk−1 with the recurrence

p̂k−1 = −γk+1δk(pk−2 − λk−1(wk−2 − vk−1))

=
γk+1

γk
σkp̂k−2 + γk+1σkδk−1φk−1/rk−1,k−1(wk−2 − vk−1)

=
γk+1

γk
σkp̂k−2 + γk+1σk

−ck−1δ̃k−1 + sk−1γ̄k−1

rk−1,k−1
(wk−2 − vk−1)

eliminates both δk and φk.

Finally, the SUFOM residuals are

rk = −hk+1,ke
T
k ŷkvk+1 = −σkη̂kvk+1.

2.3. SHIFTED UNITARY METHODS 47

Algorithm 2.17. SUFOM
{Input m ≤ m0, x0, r0 = b−Ax0, ε}

v1 = r0/‖r0‖2, v̂1 = v1, δ0 = ‖r0‖2, γ0 = 1, w0 = 0, τ̂1 = ‖r0‖2, s0 = 0,
c0 = 1, p̂0 = 0
u = Uv1

γ1 = −v̂H1 u
r̂1,1 = −γ1 + ρ
η̂1 = τ̂1/r̂1,1

x̂1 = x0 + η̂1v1

σ1 = ‖u+ γ1v̂1‖2
δ̃1 = σ1

v2 = σ−1
1 (u+ γ1v̂1)

v̂2 = σ1v̂1 + γ̄1v2

v̂2 = v̂2/‖v̂2‖2
for k = 2, 3, . . . ,m do
u = Uvk
γk = −v̂Hk u
if k ≥ 3 then
p̂k−2 = σk−1

γk
γk−1

p̂k−3 + γkσk−1
(−ck−2δ̃k−2+sk−2γ̄k−2)

rk−2,k−2
(wk−3 − vk−2)

end if
c̄k−1 = r̂k−1,k−1/(|r̂k−1,k−1|2 + |σk−1|2)1/2

sk−1 = −σk−1/(|r̂k−1,k−1|2 + |σk−1|2)1/2;
rk−1,k−1 = −ck−1r̂k−1,k−1 + sk−1σk−1

τk−1 = −ck−1τ̂k−1

ηk−1 = τk−1/rk−1,k−1

xk−1 = xk−2 − ηk−1wk−2 + ηk−1vk−1

rk−1,k = γkck−1δ̃k−1 − γksk−1γ̄k−1 + sk−1ρ
r̂k,k = −γksk−1δ̃k−1 − γk c̄k−1γ̄k−1 + c̄k−1ρ
wk−1 = p̂k−2 − rk−1,k/rk−1,k−1(wk−2 − vk−1)
τ̂k = sk−1τ̂k−1

η̂k = τ̂k/r̂k,k
x̂k = xk−1 − η̂kwk−1 + η̂kvk
σk = ‖u+ γkv̂k‖2
δ̃k = sk−1σkδ̃k−1 + σk c̄k−1γ̄k−1

vk+1 = σ−1
k (u+ γkv̂k)

v̂k+1 = σkv̂k + γ̄kvk+1

v̂k+1 = v̂k+1/‖v̂k+1‖2
end for

2.3. SHIFTED UNITARY METHODS 48

2.3.4 SUMR

In this section we combine the isometric Arnoldi method with the mini-
mal residual condition. The resulting method was first presented by Jagels
and Reichel [27] and called SUMR (Shifted Unitary Minimal Residual) in [1].

The least squares problem resulting from the minimal residual condition is

‖βe1 − (ρI + Ĥk)yk‖2 = min
y∈Ck

‖βe1 − (ρI + Ĥk)y‖2. (2.11)

With Dk = diag(δ0, δ1, . . . , δk−1), where δ0 = β, δi = δi−1σi for i ≥ 1, and
γ0 = 1 we can write

ρI + Ĥk =

 ρI +Hk−1 −γkδk−1D
−1
k−1(γ̄0, . . . , γ̄k−2)T

σk−1e
T
k−1 −γ̄k−1γk + ρ

σk

 .
The quantities γi and σi are computed in the isometric Arnoldi method.

The least squares problem (2.11) is solved via the QR-decomposition

QHk+1(ρI + Ĥk) =
[
Rk
0

]
= R̂k,

where the unitary matrix QHk+1 can be written as a product of Givens ma-
trices

QHk+1 = Gk(ck)Gk−1(ck−1) · · ·G1(c1).

In order to update Rk we have to know how the Givens matrices affect the
last column of ρI + Ĥk. Starting with φ̂1 = γ̄0/δ0 = 1/β we see that

Gk−2(ck−2) · · ·G1(c1)D−1
k−1(γ̄0, . . . , γ̄k−2)T = (φ1, . . . , φk−2, φ̂k−1)T ,

where

φi = −ciφ̂i + siγ̄i/δi,

φ̂i+1 = siφ̂i + c̄iγ̄i/δi.

The next Givens matrix Gk−1(ck−1) affects the entries −γkδk−1φ̂k−1 and
−γ̄k−1γk + ρ in the following way

Gk−1

(
−γkδk−1φ̂k−1

−γ̄k−1γk + ρ

)
=

(
−γkδk−1φk−1 + sk−1ρ

−γkδk−1φ̂k + c̄k−1ρ

)
.

The first k − 1 Givens matrices produce thus the following structure

QHk (ρI + Ĥk) =

 Rk−1
−γkδk−1(φ1, . . . , φk−2)T

rk−1,k

0 r̂k,k
0 σk

2.3. SHIFTED UNITARY METHODS 49

with rk−1,k = −γkδk−1φk−1 + sk−1ρ and r̂k,k = −γkδk−1φ̂k + c̄k−1ρ.

Finally, the last Givens matrix Gk(ck) has to zero out σk. Therefore it is
calculated as

c̄k =
r̂k,k

(|r̂k,k|2 + σ2
k)

1/2
, sk =

σk
(|r̂k,k|2 + σ2

k)
1/2

to obtain the QR-decomposition

QHk+1(ρI + Ĥk) =

 Rk−1
−γkδk−1(φ1, . . . , φk−2)T

rk−1,k

0 rk,k
0 0

with rk,k = −ckr̂k,k + skσk.

Therefore, the least squares problem (2.11) reduces to

‖βQHk+1e1 − R̂kyk‖2 = min
y∈Ck

‖βQHk+1e1 − R̂ky‖2.

Note that βQHk+1e1 = (τ1, . . . , τk, τ̂k+1)T can be easily updated by

τk = −ckτ̂k
τ̂k+1 = skτ̂k

with τ̂1 = β.

Algorithm 2.18. QR-decomposition for ρI + Ĥk

{Input m ≤ m0, r0, unitary matrix U , ρ}

v1 = r0
‖r0‖ ; v̂1 = v1; δ0 = ‖r0‖; φ̂1 = 1/δ0; φ0 = s0 = 0; c0 = 1

for k = 1, 2, . . . ,m− 1 do
u = Uvk
γk = −v̂Hk u
σk = ((1− |γk|)(1 + |γk|))1/2 = ‖u+ γkv̂k‖2
rk−1,k = −γkδk−1φk−1 + sk−1ρ

r̂k,k = −γkδk−1φ̂k + c̄k−1ρ
c̄k = r̂k,k/(|r̂k,k|2 + σ2

k)
1/2, sk = −σk/(|r̂k,k|2 + σ2

k)
1/2

rk,k = −ckr̂k,k + skσk
δk = δk−1σk
φk = −ckφ̂k + skγ̄k/δk
φ̂k+1 = skφ̂k + c̄kγ̄k/δk
vk+1 = σ−1

k (u+ γkv̂k), v̂k+1 = σkv̂k + γ̄kvk+1, v̂k+1 = v̂k+1/‖v̂k+1‖2
end for

2.3. SHIFTED UNITARY METHODS 50

For the same reasons as in SUFOM, the QR-decompostion for ρI +Hk can
be numerically instable if implemented like Algorithm 2.18.

We therefore suggest to avoid the explicit computation of the quantities δk,
φ̂k and φk and replace them by δ̃k = δkφ̂k, which can be obtained via the
recursion

δ̃1 = σ1

δ̃k = sk−1σkδ̃k−1 + σk c̄k−1γ̄k−1.

This changes the computation of rk−1,k and r̂k,k to

rk−1,k = −γkδk−1ϕk−1 + sk−1ρ

= γkck−1δ̃k−1 − γksk−1γ̄k−1 + sk−1ρ

r̂k,k = −γkδk−1φ̂k + c̄k−1ρ

= −γksk−1δ̃k−1 − γk c̄k−1γ̄k−1 + c̄k−1ρ.

Finally, to obtain the iterate xk = x0 + Vkyk, we have to solve

Rkyk = tk = (τ1, . . . , τk)T . (2.12)

For the derivation of recursions for yk and xk, we first ignore the modifi-
cations we just made for stability reasons. It will be easy to apply them
afterwards.

With yk = (ŷk−1, ηk)T and ŷk−1 ∈ Ck−1, (2.12) reads

Rk−1ŷk−1 + (−γkδk−1φ1, . . . ,−γkδk−1φk−2, rk−1,k)T ηk = (τ1, . . . , τk−1)T

rk,kηk = τk,

and we get

ŷk−1 = yk−1 −R−1
k−1(−γkδk−1φ1, . . . ,−γkδk−1φk−2, rk−1,k)T ηk

ηk = τk/rk,k.

For gk−1 = R−1
k−1(−γkδk−1φ1, . . . ,−γkδk−1φk−2, rk−1,k)T we find

gk−1 = R−1
k−1(−γkδk−1φ1, . . . ,−γkδk−1φk−2,−γkδk−1φk−1 + sk−1ρ)T

= −γkδk−1R
−1
k−1(φ1, . . . , φk−1)T + sk−1ρR

−1
k−1ek−1.

2.3. SHIFTED UNITARY METHODS 51

In the same way as for yk we get recursions for zk = (ẑk−1, ζk)T = R−1
k ek

and lk = (l̂k−1, λk)T = R−1
k (φ1, . . . , φk)T :

λk = φk/rk,k

l̂k−1 = lk−1 − gk−1λk

ζk = 1/rk,k
ẑk−1 = −1/rk,kgk−1.

The iterates xk are finally

xk = x0 + Vkyk = x0 + Vk−1ŷk−1 + ηkvk

= xk−1 + Vk−1(ŷk−1 − yk−1) + ηkvk

= xk−1 + (−Vk−1gk−1 + vk)ηk.

Introducing wk = Vkgk and pk = Vklk which fulfil the recursions

wk = −γk+1δkpk−1 − rk,k+1/rk,k(wk−1 − vk)
pk = pk−1 − λk(wk−1 − vk)

results in a recurrence for xk.

Taking into account the changes we suggested for the stability of the QR-
decomposition, we introduce – as in SUFOM – p̂k−1 = −γk+1δkpk−1 with
the recurrence

p̂k−1 =
γk+1

γk
σkp̂k−2 + γk+1σk

−ck−1δ̃k−1 + sk−1γ̄k−1

rk−1,k−1
(wk−2 − vk−1)

to eliminate δk and φk and thus preserve stability.

The norm of the residuals rk is

‖rk‖2 = |βeTk+1Q
H
k+1e1| = |τ̂k+1|,

so its computation does not cause any additional cost.

2.4. DISCUSSION 52

Algorithm 2.19. SUMR
{Input m ≤ m0, x0, r0 = b−Ax0, ε}

τ̂1 = ‖r0‖2; w−1 = v0 = 0; s0 = 0
r0,0 = γ0 = σ0 = c0 = 1; v1 = ṽ1 = r0/‖r0‖2
p̂1 = 0; δ̃0 = 0
for k = 1, 2, . . . ,m do
u = Uvk
γk = −ṽHk u
σk = ((1− |γk|)(1 + |γk|))1/2;
rk−1,k = γkck−1δ̃k−1 − γksk−1γ̄k−1 + sk−1ρ
r̂k,k = −γksk−1δ̃k−1 − γk c̄k−1γ̄k−1 + c̄k−1ρ
c̄k = r̂k,k/(|r̂k,k|2 + |σk|2)1/2

sk = −σk/(|r̂k,k|2 + |σk|2)1/2

rk,k = −ckr̂k,k + skσk
τk = −ckτ̂k
τ̂k+1 = skτ̂k
ηk = τk/rk,k
κk−1 = rk−1,k/rk−1,k−1

if k > 1 then
p̂k = γkσk−1

γk−1
p̂k−1 + (−ck−2δ̃k−2+sk−2γ̄k−2)γkσk−1

rk−2,k−2
(wk−3 − vk−2)

end if
wk−1 = p̂k − (wk−2 − vk−1)κk−1

xk = xk−1 − (wk−1 − vk)ηk
δ̃k = sk−1σkδ̃k−1 + σk c̄k−1γ̄k−1

vk+1 = σ−1
k (u+ γkṽk)

ṽk+1 = σkṽk + γ̄kvk+1

ṽk+1 = ṽk+1/‖ṽk+1‖2
end for

2.4 Discussion

For the unitary Arnoldi method we have to assume the existence of the LU-
decomposition of the unitary matrix U . If for one index k < m0 the product
Uvk is orthogonal to vi, i ≤ k, then the LU-decomposition does not exist,
see Lemma 2.8. Although this is not very likely to happen, especially from
the numerical point of view, we have to consider this as a weak point of the
unitary Arnoldi method. The isometric Arnoldi method does not have this
disadvantage.

Of course, problems of the underlying Arnoldi process communicate to the
shifted unitary methods. Therefore, SUOM and SHUMR have to be used

2.4. DISCUSSION 53

always keeping in mind the possibility of a breakdown if the assumptions
for the unitary Arnoldi method are not fulfilled.

Another cause for a breakdown can be the use of a Galerkin condition if A
is not positive real, i.e., if ρ ≤ 1. In this case there is no guarantee that
V H
k AVk is non-singular and therefore, the SUOM and SUFOM iterates do

not necessarily exist.

From this point of view SUMR is the method of choice for A not positive
real, since it is based on the isometric Arnoldi method and uses the minimal
residual condition, such that its iterates always exist. For A positive real
SUFOM is a safe alternative.

method/condition Galerkin minimal residual
unitary Arnoldi SUOM SHUMR
isometric Arnoldi SUFOM SUMR

Table 2.1: Shifted unitary methods

If no breakdowns occur, the numerical results of Chapter 4.2 show an equal
performance of all four methods.

Chapter 3

Deflation for multishift
methods

Although multishift methods play a role in other contexts too we will focus
here on the rational approximation of sign(Q)b where they are of greatest
importance.

Given a rational approximation sign(t) ≈
s∑
i=1

ωit

t2 − σi
for all t ∈ spec(Q) we

get the approximation

sign(Q)b ≈ Q
s∑
i=1

ωix
(i)

where the x(i), i = 1, . . . , s, are solutions of the s systems

(Q2 − σiI)x(i) = b.

For hermitian Q, e.g., the Wilson-Dirac operator at zero chemical potential,
the Zolotarev rational approximation in combination with short recurrence
multishift methods (CG, MINRES) have been investigated for example in
[45].

At non-zero chemical potential the Wilson-Dirac operator is non-hermitian.
In this case the short recurrences of CG and MINRES turn to long re-
currences. In addition the Zolotarev approximation can not be used for
non-hermitian matrices. We therefore have to face two problems.

• Replacing CG by FOM or MINRES by GMRES leads to long recur-
rences. Restarts bound the size of the Krylov subspaces and thus
reduce storage problems. Still the computing efford is much higher
than for a short recurrence. Alternatively we can replace Arnoldi by
Lanczos biorthogonalization and use BiCG or QMR.

54

3.1. SHIFTS AND RESTARTS 55

• Using the Neuberger rational approximation instead of Zolotarev in-
creases the number s of poles significantly.

In the following sections we present a deflation approach which uses eigen-
value information to both accelerate convergence of the chosen Krylov sub-
space method and reduce the number of poles. We will add some eigen-
vectors to the Krylov subspaces and apply the restarted multishift methods
(FOM and GMRES) and the short recurrence multishift methods (BiCG
and QMR) to these augmented subspaces. In Section 3.3 we use Schur vec-
tors to small eigenvalues to span the augmenting subspace while in Section
3.4 we use left and right eigenvectors to small eigenvalues instead. In Section
3.6 we show how to reduce the number of poles.

3.1 Shifts and restarts

Instead of solving one system we now have to solve s systems with the same
right hand side:

(A− σiI)xi = b, i = 1, . . . , s

In the Krylov subspace context we get the approximations

xim ∈ xi0 +Km(A− σiI, ri0), ri0 = b− (A− σiI)xi0.

Of course, as in the non-shifted case, we can express both iterates and
residuals in terms of polynomials in A− σiI:

xim = xi0 + qim−1(A− σiI)ri0

with qim−1 a polynomial of degree less or equal m− 1 and

rim = b− (A− σiI)xim = pim(A− σiI)ri0

with pim(t) = 1−tqim−1(t) and pim(0) = 1. Obviously rim ∈ Km+1(A−σiI, ri0).

Since Krylov subspaces are shift invariant we can use the same subspace for
all s systems if the ri0 are collinear.

In case of a zero initial guess xi0 = 0 for all systems i = 1, . . . , s, the starting
residuals are ri0 = b− (A− σiI)xi0 = b. Considering restarts we do not have
zero initial guesses, not even the same initial guesses for all systems. The
initial guess of a restarted run is the last approximation of the preceding
run, so the same holds for the residuals. For restarted methods, the crucial
question thus is: Are the residuals collinear?

3.1. SHIFTS AND RESTARTS 56

Whether they are or not depends on the way we choose the iterates from the
Krylov subspace. Using the minimal residual condition, the residuals will
in general not be collinear while using a (Petrov-)Galerkin condition, the
residuals are automatically collinear as the following result from [16] shows.

Theorem 3.1. Let W1 ⊆ W2 ⊆ · · · ⊆ Wk ⊆ Cn with dim(Wm) = m
and Wm ∩ (Km+1(A, ri0))⊥ = {0}, m = 1, . . . , k. Let the approximations
xim ∈ x0 +Km(A, ri0) to the solution of

(A− σiI)x = b, i = 1, . . . , s

be chosen such that the residuals rim = b − (A − σiI)xim = pim(A − σiI)ri0
fulfil the Petrov-Galerkin condition

rim ⊥Wm, m = 1, . . . , k.

Then rim and rjm are collinear if the starting residuals ri0 and rj0 are collinear.

Proof. See [16]

Theorem 3.1 directly applies to FOM where Wm = Km(A, ri0). A formula-
tion of restarted multishift FOM can be found in [43].

When the residuals are collinear, i.e., r(i)
m = ρ

(i)
m r

(1)
m , then the collinearity

factor ρ(i)
m can be expressed in terms of the polynomial p:

Lemma 3.2. Let the starting residuals be collinear, i.e., r(i)
0 = ρ

(i)
0 r

(1)
0 . If

r
(i)
m = ρ

(i)
m r

(1)
m , then it holds

ρ(i)
m =

ρ
(i)
0

p
(1)
m (σi − σ1)

. (3.1)

Proof. It holds

r(i)
m = p(i)

m (A− σiI)r(i)
0 = ρ(i)

m r
(1)
m = ρ(i)

m p
(1)
m (A− σ1I)r(1)

0 .

Since r(1)
0 , Ar

(1)
0 , A2r

(1)
0 , . . . are linearly independent it follows

ρ
(i)
0 p(i)

m (t− σi) = ρ(i)
m p

(1)
m (t− σ1),

and with p
(i)
m (0) = 1 we get (3.1).

In case of methods like GMRES the residuals do not fulfil a Petrov-Galerkin
condition. The minimal residual condition is used instead to choose the
iterates from the Krylov subspace.
For such methods the residuals are in general not collinear. To use restarts,
we have to either drop the aim of solving all s systems using one Krylov

3.1. SHIFTS AND RESTARTS 57

subspace or demand the minimal residual condition for no more than one
(the ”worst”) of the s systems.

The latter was proposed in [17]: drop the minimal residual condition for all
except one system and force the residuals of the s systems to be collinear
instead.

Let the starting residuals be collinear, such that r(i)
0 = ρ

(i)
0 r

(1)
0 , i = 2, . . . , s.

Let further be Vm and Ĥm the matrices resulting from the Arnoldi method
with starting vector r(1)

0 .
For the first system we demand the minimal residual condition and since
r

(1)
0 − (A− σ1I)Vmy

(1)
m = βVm+1e1−Vm+1(Ĥm− σ1I)y(1)

m we therefore solve

‖βe1 − (Ĥm − σ1I)y(1)
m ‖2 = min

y∈Cm
‖βe1 − (Ĥm − σ1I)y‖2.

This system is therefore solved by ordinary GMRES.

For the other systems i = 2, . . . , s we want to force the residuals to be
collinear to the one of the first system, i.e.

r(i)
m = ρ

(i)
0 r

(1)
0 − (A− σiI)Vmy(i)

m = ρ(i)
m r

(1)
m ,

which gives
Vm+1(ρ(i)

0 βe1 − (Ĥm − σiI)y(i)
m) = ρ(i)

m r
(1)
m

and after multiplication with V H
m+1

ρ
(i)
0 βe1 − (Ĥm − σiI)y(i)

m = V H
m+1ρ

(i)
m r

(1)
m . (3.2)

Obviously, (3.2) is solved by the solution of

[
Ĥm − σiI|V H

m+1r
(1)
m

] [y
(i)
m

ρ
(i)
m

]
= ρ

(i)
0 βe1 (3.3)

which provides both the subspace approximation y(i)
m and the scalar ρ(i)

m . In
[17] it is shown that if (3.3) has a solution, it is unique.

Although only for the system i = 1 a minimal residual property is demanded,
all systems converge if A − σ1I is positive real and the shifts are real with
σi < σ1, i = 2, . . . , s.

Theorem 3.3. Let A−σ1I be positive real and σi < σ1, i = 2, . . . , s. Then
the restarted multishift GMRES converges for i = 1, . . . , s and

‖r(i)‖2 ≤ |ρ(i)
0 | · ‖r

(1)‖2

3.1. SHIFTS AND RESTARTS 58

Proof. Theorem 3.3 in [17].

Algorithm 3.4. GMRES(m)-Sh
{Input A, {σ1, . . . , σs}, b}

x(i) = 0, i = 1, . . . , s
r = b
ρ(i) = 1, i = 1, . . . , s
β = ‖r‖
while not all systems converged do
v1 = r/β
compute Vm, Ĥm by running Arnoldi
compute GMRES approximation y

(1)
m

for i = 1, . . . , s do
compute y(i)

m and ρ
(i)
m from (3.3)

end for
x(i) = x(i) + Vmy

(i)
m

r = r − Vm+1(Ĥm − σ1I)y(1)
m

β = ‖r‖
end while

Unfortunately, even though only one Krylov subspace has to be built for
all shifts, for FOM and GMRES there is still a lot of additional cost for
each system as there is no simple update of the iterates. So in each step a
linear system or least squares problem of increasing size has to be solved.
In addition to the computational cost, storage increases by O(s·n)+O(s·m).

Finally there exist multishift versions for BiCG [16] and QMR [13]. Both
methods are based on the Lanczos biorthogonalization which builds the ma-
trices Vm, Wm andHm or Ĥm, respectively, withHm or Ĥm being tridiagonal
instead of full upper Hessenberg:

Ĥm =
[

Hm

γme
T
m

]
=

α0 β1

γ1 α1 β2

.
. βm−1

. . . αm−1

γm

To obtain the multishift version of BiCG we use the residual recurrence

rk+1 = −αkArk + (1− αkβk
αk−1

)rk +
αkβk
αk−1

rk−1.

3.1. SHIFTS AND RESTARTS 59

Since the iterates are chosen using a Petrov-Galerkin condition, we know
from Theorem 3.1 that the residuals are collinear, such that r(i)

k = ρ
(i)
k rk,

with rk being the residual with respect to a non-shifted system. Note that
for Algorithm 3.5 we used π(i) = 1/ρ(i), i.e., π(i)

k r
(i)
k = rk.

For a detailed description how this information can be combined to get a
simple update for the iterates x(i)

m such that all s systems can be solved for
basically the cost of one see [16].

Algorithm 3.5. BiCG-Sh
{Input A, {σ1, . . . , σs}, b}

x(i) = 0, i = 1, . . . , s
r = b, r̃ = r
u = ũ = 0
u(i) = 0, i = 1, . . . , s
ρold = 1, αold = 1
π

(i)
old = 1, i = 1, . . . , s
π(i) = 1, i = 1, . . . , s
while not all systems converged do
ρ = r̃Hr
β = −ρ/ρold

u = r − βu, ũ = r̃ − β̄ũ
q = Au
α = ρ/(r̃Hq)
for i = 1, . . . , s do
π

(i)
new = (1− ασi)π(i) + (αβ)/αold(π

(i)
old − π

(i))
β(i) = (π(i)

old/π
(i))2β, α(i) = π(i)/π

(i)
newα

u(i) = 1/π(i)r − β(i)u(i)

x(i) = x(i) + α(i)u(i)

end for
r = r − αq, r̃ = r̃ − ᾱAH ũ
αold = α, ρold = ρ, π(i)

old = π(i), π(i) = π
(i)
new

end while

For multishift QMR, the least squares problems

‖ρ(i)
0 r

(1)
0 − (Ĥm − σiI)y(i)

m ‖2 = min
y∈Cm

‖ρ(i)
0 r

(1)
0 − (Ĥm − σiI)y‖2

are solved using the QR-decompositions

(Ĥm − σiI) = Q(i)
m

H

[
R

(i)
m

0

]
,

3.1. SHIFTS AND RESTARTS 60

where

R(i)
m =

δ
(i)
1 ε

(i)
2 θ

(i)
3 0

.
. θ

(i)
m

. . . ε
(i)
m

0 δ
(i)
m

and Q

(i)
m is the product of m Givens rotations. The QR-decomposition for

the different shifts can be updated simultaneously, see [13] for details.

Algorithm 3.6. QMR-Sh
{Input A, {σ1, . . . , σs}, b}
x(i) = 0, i = 1, . . . , s
ṽ = w̃ = b
γ = ‖ṽ‖2
η(i) = γ, i = 1, . . . , s
c

(i)
old = c(i) = 1, sn(i)

old = sn(i) = 0, p(i)
old = p(i) = 0 i = 1, . . . , s

wold = vold = 0
while not all systems converged do
β = 〈ṽ, w̃〉/γ, v = 1/γṽ, w = 1/β̄w̃
q = Av, α = 〈q, w〉, q̃ = AHw
ṽ = q − αv − βvold

w̃ = q̃ − ᾱw − γ̄wold

γ = ‖ṽ‖2
for i = 1, . . . , s do
θ(i) = sn

(i)
oldβ, ε̃(i) = c

(i)
oldβ

ε(i) = c(i)ε̃(i) + sn(i)(α− σi)
δ̃(i) = −s̄n(i)ε̃(i) + c(i)(α− σi)
µ(i) = (|δ̃(i)|2 + |γ|2)1/2

c
(i)
old = c(i), sn(i)

old = sn(i)

c(i) = |δ̃(i)|/µ(i)

s̄n(i) =

{
c(i)γ/δ̃(i) if δ̃(i) 6= 0
1 else

δ(i) = c(i)δ̃(i) + sn(i)γ

p
(i)
new = (v − ε(i)p(i) − θ(i)p

(i)
old)/δ

(i), p(i)
old = p(i), p(i) = p

(i)
new

η̃(i) = c(i)η(i), η(i) = −s̄n(i)η(i)

x(i) = x(i) + η̃(i)p(i)

end for
vold = v, wold = w

end while

3.2. AUGMENTED SUBSPACES 61

As BiCG and QMR work with short recurrences, there is no need of restart-
ing. Nevertheless, as for the methods above, BiCG preserves collinearity
of residuals – Theorem 3.1 applies with Wm = Km(AH , ri0) – while QMR
residuals are not collinear.

3.2 Augmented subspaces

Eigenvalues with small real part cause problems in two ways. First they slow
down convergence as the condition number of the matrix is most likely large,
and second we need more poles in the rational approximation. If we have
information about eigenvalues with small real part and their eigenvectors,
we can use this information to deflate these eigenvalues in two ways:

1. Add the eigenvalue information to the Krylov subspace methods to
accelerate their convergence.

2. Split the rational approximation and use less poles whereever possible.

In this section we investigate the first possibility. Based on the results of
this section and Sections 3.3 and 3.4 we will address the second possibility
in Section 3.6.

Let Ω ⊆ Cn be the subspace we want to deflate, e.g., the subspace spanned
by some eigenvectors of A. The basic idea is to search for an approximation
xm to the solution of Ax = b in the augmented subspace

xm ∈ x0 + Ω +Km(A, r0)

such that the iterate splits into xm = x0 + xΩ
m + xKrylov

m with xΩ
m ∈ Ω,

xKrylov
m ∈ Km(A, r0).

Of course, if Km(A, r0) ∩ Ω 6= {0}, computing xKrylov
m would still involve

the small eigenvalues and there would not be any advantage of doing so.
To construct the Krylov subspace we therefore have to project out the parts
lying in the subspace Ω. Depending on the projection P , this has to be done
only once for the starting vector r0 or in every single step of the Arnoldi
method.

Let P be any projector on Ω. Then

x0 + Ω +Km(A, r0) = x0 + Ω + (I − P)Km(A, r0),

and (I − P)Km(A, r0) ∩ Ω = {0}.

The first question that arises is whether (I − P)Km(A, r0) is still a Krylov
subspace or not.

3.2. AUGMENTED SUBSPACES 62

Lemma 3.7. If range(P) = Ω is A-invariant, then

(I − P)Km(A, r0) = Km((I − P)A, (I − P)r0),

i.e., (I − P)Km(A, r0) is a Krylov subspace.

Proof. If range(P) is A-invariant, then for any y ∈ Cn there is a ỹ ∈ Cn

such that APy = P ỹ and thus

(I − P)Ay = (I − P)A[(I − P)y + Py]
= (I − P)A(I − P)y + (I − P)P ỹ
= (I − P)A(I − P)y.

Therefore

(I − P)Km(A, r0)
= span{(I − P)r0, (I − P)Ar0, . . . , (I − P)Am−1r0}
= span{(I − P)r0, (I − P)A(I − P)r0, . . . , ((I − P)A)m−1(I − P)r0}
= Km((I − P)A, (I − P)r0).

For the projections that we investigate in the following sections, range(P)
is always A-invariant.
Lemma 3.7 tells that to build a basis Vm = [v1, . . . , vm] of (I−P)Km(A, r0),
we have to start with v1 = (I − P)r0/‖(I − P)r0‖2 and project out the
Ω-parts after every multiplication with A.

Note that projecting out in every step of the Arnoldi method means running
it with (I−P)A instead of A, so the Arnoldi relations (1.7) and (1.8) change
to

(I − P)AVm = Vm+1Ĥm (3.4)

and
V H
m (I − P)AVm = Hm (3.5)

respectively, while V H
m (I − P)r0 = ‖(I − P)r0‖2e1.

If P is an orthogonal projector, then V H
m P = 0 because the columns of Vm

span Km((I−P)A, (I−P)r0) ⊆ range(I−P) and range(I−P) ⊥ range(P).
In this case, the second Arnoldi relation (3.5) reads just the same as without
projection as in this case V H

m P = 0 and thus

V H
m (I − P)AVm = V H

m AVm = Hm.

The projections in every step are not necessary when range(I − P) is A-
invariant:

3.2. AUGMENTED SUBSPACES 63

Lemma 3.8. If range(I − P) is A-invariant, then

(I − P)Km(A, r0) = Km(A, (I − P)r0),

i.e., (I − P)Km(A, r0) is a Krylov subspace.

Proof. Obviously, if range(I − P) is A-invariant, then (I − P)Ay = Ay for
all y ∈ range(I − P).

In this case the Arnoldi relations (1.7) and (1.8) do not change but of course
V H
m (I − P)r0 = ‖(I − P)r0‖2e1 still holds.

Having a basis W for Ω and a basis Vm for (I − P)Km(A, r0), the approxi-
mations in the augmented space read

xm = x0 +Wy1 + Vmy2.

The residuals are from an augmented subspace of the same kind as well.

Lemma 3.9. When the iterates are chosen from an augmented Krylov sub-
space

xm ∈ x0 + Ω +Km((I − P)A, (I − P)r0)

and Ω is A-invariant, then for the residuals rm = b−Axm it holds

rm ∈ Ω +Km+1((I − P)A, (I − P)r0).

Proof. Using Lemma 3.7 we get

rm = b−A(x0 +Wy1 + Vmy2)
= r0 −AWy1 −AVmy2

= Pr0 −AWy1 − PAV y2 + (I − P)r0 − (I − P)AV y2

∈ Ω +Km+1((I − P)A, (I − P)r0).

For methods using a (Petrov-)Galerkin condition we can apply Theorem 3.1
to the augmented case to see that the residuals stay collinear:

Lemma 3.10. Let dim(Ω) = k and let W1 ⊆ W2 ⊆ · · · ⊆ Wj ⊆ Cn with
dim(Wm) = k +m and Wm ∩ (Ω +Km+1(A, ri0))⊥ = {0}, m = 1, . . . , j. Let
the approximations xim ∈ x0 + Ω +Km(A, ri0) to the solution of

(A− σiI)x = b

be chosen such that the residuals rim = b − (A − σiI)xim fulfil the Petrov-
Galerkin condition

rim ⊥Wm.

Then rim and rjm are collinear if the starting residuals ri0 and rj0 are collinear.

3.3. SCHUR-DEFLATION 64

Proof. If ri0 and rj0 are collinear, then Km+1(A, ri0) = Km+1(A, rj0), so rim
and rjm are both from the same space

rim, r
j
m ∈

(
Ω +Km+1(A, ri0)

)
∩ (Wm)⊥.

It holds W⊥m +Ω+Km+1(A, ri0) = Cn since Wm∩(Ω+Km+1(A, ri0))⊥ = {0}.
Since dim(Km+1(A, ri0)) = m+ 1 and dim((Wm)⊥) = n−m− k, we get

dim((Ω +Km+1(A, ri0)) ∩ (Wm)⊥) = 1.

The way we choose our approximations in the following sections either forces
rm to be orthogonal to Ω or zero out its Ω-part by minimization, so that
actually rm ∈ Km+1((I − P)A, (I − P)r0).

We will investigate two variants of this deflation, namely Schur- and LR-
deflation, and show how they apply to FOM, GMRES, BiCG and QMR.

3.3 Schur-Deflation

Let Sk = [s1, . . . , sk] be the matrix the columns si of which are the Schur
vectors of the k smallest eigenvalues of the matrix A. So we have SHk Sk = Ik
and

ASk = SkTk (3.6)

where Tk is an upper triangular matrix with the k smallest eigenvalues of A
on the diagonal.

In the case of a shifted matrix A = M − σI and Sk, Tk computed with
respect to M we have

ASk = MSk − σSk = Sk(Tk − σIk).

As projector onto the subspace ΩS = span{s1, . . . , sk} we use the orthogonal
projection P = SkS

H
k .

Theorem 3.11. For the orthogonal projector P = SkS
H
k onto the subspace

ΩS = span{s1, . . . , sk} it holds

1. range(P) = span{s1, . . . , sk} is A-invariant,

2. range(I − P) is not A-invariant in general.

Proof.

1. Follows directly from (3.6).

3.3. SCHUR-DEFLATION 65

2. Let Sn = [s1, . . . , sn] be the matrix of all Schur vectors, i.e.

ASn = SnTn

with Tn upper triangular with the eigenvalues of A on the diagonal.
Every y ∈ range(I − P) can be written as

n∑
i=k+1

αisi

with some αi. Since Asi =
∑i

j=1 Tj,isj , multiplication with A will
introduce Schur vectors si with index i ≤ k.

Thus, to build a basis for Km((I − P)A, (I − P)r0) projection will be nec-
essary in every step.

For the Lanczos biorthogonalization we have to build a basis for the Krylov
subspace Km(((I − P)A)H , r) = Km(AH(I − P), r) for a starting vector
r. Even though AH and P do not commute, Km(AH(I − P), r) is still
orthogonal to ΩS if r ∈ range(I − P), i.e., if we choose r = (I − P)r0, for
example.

Theorem 3.12. For the orthogonal projector P = SkS
H
k onto the subspace

ΩS = span{s1, . . . , sk} it holds

1. range(P) = span{s1, . . . , sk} is not AH -invariant in general,

2. range(I − P) is AH -invariant.

Proof.

1. Analogous to the proof of Theorem 3.11 with AHSn = SnT
H
n and THn

a lower triangular matrix.

2. For w = (I − P)y ∈ range(I − P) it holds

SHk A
H(I − SkSHk)y = THk S

H
k (I − SkSHk)y = 0,

thus AHw ∈ null(P) = range(I − P).

Theorem 3.12 shows that Km(AH(I − P), (I − P)r0) = Km(AH , (I − P)r0)
and no projection, except for the starting vector, is needed to build a basis
for this subspace.

3.3. SCHUR-DEFLATION 66

In the following subsections we will investigate Schur-deflation for FOM,
GMRES, BiCG and QMR. It will turn out that in all methods the ΩS-part
of the approximation depends on the Krylov-part. This is because every
multiplication with A or M respectively introduces an additional ΩS-part.
The ΩS-part does not have to be recomputed again and again in every step
of the Krylov iteration, though. It can be computed once when the Krylov-
part converged to the desired accuracy. The convergence of the Krylov
iteration can be monitored cheaply using the residuals, which are actually
the residuals with respect to the complete approximation, including the ΩS-
part.

3.3.1 FOM-Schur

Let now Sk and Tk be calculated with respect to M and let the columns
of Vm span Km((I − P)A, (I − P)r0). To choose the Schur deflated FOM
approximation xm ∈ x0 + ΩS + (I −P)Km(A, r0) to the solution of Ax = b,
A = M − σI, we use the Galerkin condition

rm ⊥ ΩS +Km((I − P)A, (I − P)r0). (3.7)

The projection P is orthogonal and thus SHk Vm = 0; the columns of Vm span
Km((I−P)A, (I−P)r0). Therefore, from (3.7) and Theorem 3.9 it directly
follows that rm ∈ Km+1((I − P)A, (I − P)r0).

The chosen iterates are xm = x0 +Sky1
m+Vmy2

m with y1
m ∈ Ck and y2

m ∈ Cm

resulting from

[Sk Vm]HA[Sk Vm]
[
y1
m

y2
m

]
=
[
SHk r0

V H
m r0

]
.

Due to V H
m Sk = 0, the representation of the projection and restriction of A

onto the augmented subspace simplifies to block triangular structure

[Sk Vm]HA[Sk Vm] =
[
Tk − σIk SHAVm

0 Hm − σIm

]
∈ C(k+m)×(k+m).

For an arbitrary r0 which might not lie in the orthogonal complement of ΩS

one therefore has

y2
m = (Hm−σI)−1(V H

m Pr0 +V H
m (I −P)r0) = (Hm−σIm)−1‖(I −P)r0‖2e1

and
y1
m = (Tk − σIk)−1(SHk r0 − SHk AVmy2

m).

As a part of y1
m, namely (Tk − σIk)−1SHk r0, can be calculated beforehand,

we can choose
x̂0 = x0 + Sk(Tk − σIk)−1SHk r0

3.3. SCHUR-DEFLATION 67

as starting vector. The starting residual

r̂0 = r0 −ASk(Tk − σIk)−1SHk r0 = (I − P)r0

then lies in the orthogonal complement of ΩS and therefore y1
m simplifies to

y1
m = −(Tk − σIk)−1SHk AVmy

2
m.

The iterate then reads

xm = x̂0 − Sk(Tk − σIk)−1SHk AVmy
2
m + Vm(Hm − σIm)−1‖r̂0‖2e1.

From now on we assume w.l.o.g that r0 lies in the orthogonal complement
of ΩS , i.e., we assume that the x̂0 is taken as the starting vector. With
this assumption we do not have to distinguish between the overall starting
residual and the starting residuals after restarts.

Having multiple shifts σi, i = 1, . . . , s, we start with collinear but not nec-
essarily equal residuals r(i)

0 = ρ
(i)
0 r

(1)
0 , i = 1, . . . , s. Obviously ρ

(1)
0 = 1. We

choose r(1)
0 as starting vector for the Krylov subspace such that y1

m
(i) and

y2
m

(i) are

y2
m

(i) = ρ
(i)
0 (Hm − σiIm)−1‖r(1)

0 ‖2e1 , i = 1, . . . , s ,

y1
m

(i) = −(Tk − σiIk)−1SHk (M − σiI)Vmy2
m

(i)
, i = 1, . . . , s .

The residuals r(i)
m are collinear as well. This can be seen by directly apply-

ing Lemma 3.10 with r(i)
m ⊥Wm where Wm = ΩS + (I − P)Km(A, r(1)

0) and
Wm ∩ (ΩS + (I − P)Km+1(A, r(1)

0))⊥ = {0}.

Besides the theoretical knowledge about the residuals staying collinear it
will be necessary to compute the collinearity factors.

Proposition 3.13. For each i = 1, . . . , s let x(i)
m = x

(i)
0 +Sky

1
m

(i) + Vmy
2
m

(i)

be the Schur deflated FOM approximation to (M − σiI)x = r
(i)
0 = ρ

(i)
0 r

(1)
0 .

Then
r(i)
m = −hm+1,m(y2

m
(i))mvm+1. (3.8)

Proof. In the case of starting residuals without a part in ΩS , i.e r(i)
0 = r̂

(i)
0 ,

we have for i = 1, . . . , s

r(i)
m = r

(i)
0 − (M − σi)x(i)

m

= r
(i)
0 − (M − σi)(Sky1

m
(i) + Vmy

2
m

(i))

= r
(i)
0 + SkS

H
k (M − σiI)Vmy2

m
(i) − (M − σi)Vmy2

m
(i)

= r
(i)
0 − (I − SkSHk)(M − σiI)Vmy2

m
(i)

= r
(i)
0 − Vm(Hm − σiIm)y2

m
(i) − hm+1,m(y2

m
(i))mvm+1

= −hm+1,m(y2
m

(i))mvm+1.

3.3. SCHUR-DEFLATION 68

Setting ρ(i)
m = −hm+1,m(y2

m
(i))m, i = 1, . . . , s, we have r(i)

m = ρ
(i)
m vm+1.

The collinearity factor is given by (3.8) if SkSHk r
(i)
0 6= 0, too. In this case we

have for i = 1, . . . , s

r(i)
m = r

(i)
0 − (M − σi)x(i)

m

= −hm+1,m(y2
m

(i))mvm+1 + SkS
H
k r

(i)
0 − (M − σi)Sk(T − σIk)−1SHk r

(i)
0

= −hm+1,m(y2
m

(i))mvm+1 + SkS
H
k r

(i)
0 − SkS

H
k r

(i)
0

= −hm+1,m(y2
m

(i))mvm+1.

The residuals are thus not only in Km+1((I−P)A, (I−P)r0), they are even
multiples of the computed basis vectors.

Algorithm 3.14. FOM-Schur(k,m)
{Input A = M − σiI, {σ1, . . . , σs}, b, S = Sk, T = Tk}

bS = SSHb
x(i) = S(T − σiI)−1SHbS , i = 1, . . . , s
r = b− bS
ρ(i) = 1, i = 1, . . . , s
β = ‖r‖2
while not all systems converged do
v1 = r/β
compute Vm, Hm by running Arnoldi with (I − SSH)M
for i = 1, . . . , s do
y2
m

(i) = βρ(i)(Hm − σiIm)−1e1

y1
m

(i) = −(T − σiI)−1SH(M − σiI)Vmy2
m

(i)

x(i) = x(i) + Sy1
m

(i) + Vmy
2
m

(i)

end for
r = vm+1

ρ(i) = −hm+1,m(y2
m

(i))m, i = 1, . . . , s
β = hm+1,m

end while

3.3.2 GMRES-Schur

Again, let Sk and Tk be calculated with respect to M . To choose the Schur
deflated GMRES approximation xm ∈ x0 + ΩS + (I − P)Km(A, r0) to the
solution of Ax = b, A = M−σI, we now use the minimal residual condition.

3.3. SCHUR-DEFLATION 69

The chosen iterates are xm = x0 +Sky1
m+Vmy2

m with y1
m ∈ Ck and y2

m ∈ Cm

and the residual that has to be minimized is

rm = b− (M − σI)(x0 + Sky
1
m + Vmy

2
m).

From the Arnoldi relation (3.4) we get

(M − σI)Vmy2
m = Vm+1(Ĥm − σI)y2

m + P (M − σI)Vmy2
m

such that we can separate the parts of rm lying in ΩS from those lying in
Km+1((I − P)A, (I − P)r0):

rm = Pr0−Sk(Tk−σI)y1
m−P (M−σI)Vmy2

m+(I−P)r0−Vm+1(Ĥm−σI)y2
m.

Thus rm = Sku+ Vm+1w for some u ∈ Ck, w ∈ Cm+1 and S and Vm+1 are
orthogonal. Although the Krylov part influences the ΩS part, the ΩS part
can be made zero for any choice of y2

m by solving

(Tk − σI)y1
m = SHk r0 − SHk (M − σI)Vmy2

m. (3.9)

To minimize ‖rm‖2 we therefore first choose the Krylov part y2
m such that

it minimizes ‖(I −P)r0−Vm+1(Ĥm−σI)y2
m‖2. Afterwards y1

m can be com-
puted by solving (3.9).

The residual is then actually just rm = (I − P)r0 − Vm+1(Ĥm − σI)y2
m, so

as in the FOM case, the residuals are from Km+1((I − P)A, (I − P)r0) and
orthogonal to ΩS .

In the same manner as in the FOM case, a part of y1
m can be calculated

beforehand. Starting with x̂0 = x0 + Sk(Tk − σI)−1SHk r0 leads to a corre-
sponding starting residual r̂0 = (I − P)r0 and y1

m simplifies to

y1
m = −(Tk − σI)−1SHk (M − σI)Vmy2

m.

From now on we assume w.l.o.g that r0 lies in the orthogonal complement
of ΩS .

Concerning multiple shifts we assume to have collinear starting residuals,
i.e. r(i)

0 = ρ
(i)
0 r

(1)
0 , i = 1, . . . , s. As starting vector for the Krylov subspace

we choose r(1)
0 .

The latter computations to obtain y1
m

(i) and y2
m

(i) are done for the system
i = 1 only, while for the systems i = 2, . . . , s we demand, similarly to the
non-deflated version,

r(i)
m = ρ

(i)
0 r

(1)
0 − (M − σiI)(Sky1

m
(i) + Vmy

2
m

(i)) = ρ(i)
m r

(1)
m . (3.10)

3.3. SCHUR-DEFLATION 70

As r(1)
m is orthogonal to ΩS , so are the r(i)

m , i = 2, . . . , s. So we keep for y1
m

(i)

(Tk − σiI)y1
m

(i) = −SHk (M − σiI)Vmy2
m

(i)
,

such that equation (3.10) reads

ρ
(i)
0 r

(1)
0 − Vm+1(Ĥm − σiI)y2

m
(i) = ρ(i)

m r
(1)
m .

Therefore, y2
m

(i) and ρ
(i)
m are obtained from the system[

Ĥm − σiI|V H
m+1r

(1)
m

] [y2
m

(i)

ρ
(i)
m

]
= ρ

(i)
0 ‖r

(1)
0 ‖2e1. (3.11)

Algorithm 3.15. GMRES-Schur(k,m)
{Input A = M − σiI, {σ1, . . . , σs}, b, S = Sk, T = Tk}

bS = SSHb
x(i) = S(T − σiI)−1SHbS , i = 1, . . . , s
r = b− bS
ρ(i) = 1, i = 1, . . . , s
β = ‖r‖2
while not all systems converged do
v1 = r/β
compute Vm, Hm by running Arnoldi with (I − SSH)M
compute y2

m
(1) by minimizing ‖r − Vm+1(Ĥm − σ1I)y2

m
(1)‖2

for i = 2, . . . , s do
compute y2

m
(i) and ρ

(i)
m from (3.11)

end for
for i = 1, . . . , s do

compute y1
m

(i) = −(T − σiI)−1SH(M − σiI)Vmy2
m

(i)

end for
x(i) = x(i) + Sy1

m
(i) + Vmy

2
m

(i)

r = r − Vm+1(Ĥm − σ1I)y2
m

(1)

β = ‖r‖2
end while

Same as without deflation, see Theorem 3.3, in the Schur deflated version
the first system (i.e. M −σ1I) rules the convergence of all systems. To show
that, we follow the proof of Theorem 3.3, see [17].

In ordinary GMRES the iterates xm are chosen from an affine Krylov sub-
space and can be represented as

xm = x0 + qm−1(A)r0,

3.3. SCHUR-DEFLATION 71

with qm−1 a polynomial of degree at most m− 1.

In Schur deflated GMRES this is no longer the case, as the iterates involve
an additional part belonging to the deflated eigenvalues:

xm = x0 + Sy1
m + Vmy

2
m = x0 + Sy1

m + qm−1((I − P)A)r0,

with P = SSH .

Nevertheless, for the corresponding residuals it holds, just as for ordinary
GMRES,

rm = b−Ax0 − (I − P)AVmy2
m

= r0 − (I − P)AVmy2
m

= r0 − (I − P)Aqm−1((I − P)A)r0

= pm((I − P)A)r0,

where pm(t) = 1 − tqm−1(t) is a polynomial of degree at most m with
pm(0) = 1.

For the shifted systems this reads

r(i)
m = p(i)

m ((I − P)(M − σiI))r(i)
0 ,

and as we required r
(i)
m = ρ

(i)
m r

(1)
m and r

(i)
0 = ρ

(i)
0 r

(1)
0 , we get

ρ
(i)
0 p(i)

m ((I − P)(M − σiI))r(1)
0 = ρ(i)

m p
(1)
m ((I − P)(M − σ1I))r(1)

0 . (3.12)

Fortunately, since P is a projection and (I −P)r0 = r0, the following holds:

p(1)
m ((I − P)(M − σ1I))r(1)

0 = p(1)
m ((I − P)(M − σiI + σiI − σ1I))r(1)

0

= p(1)
m ((I − P)(M − σiI) + (σi − σ1)I)r(1)

0 .

Therefore, (3.12) is equivalent to

ρ
(i)
0 p(i)

m (t) = ρ(i)
m p

(1)
m (t+ (σi − σ1)).

Obviously p
(i)
m (0) = 1 is satisfied if and only if ρ(i)

0 = ρ
(i)
m p

(1)
m (σi − σ1) and

this is fulfilled if and only if p(1)
m (σi − σ1) 6= 0 and ρ

(i)
m = ρ

(i)
0 /p

(1)
m (σi − σ1).

The following lemma and theorem are the Schur deflated versions of the
ones found in [17]. For the deflated versions the proofs had to be modified.

3.3. SCHUR-DEFLATION 72

Lemma 3.16. Let rm = pm((I − P)A)r0 be the Schur deflated GMRES
residual and let A be positive real. Then all zeros ζ of pm satisfy

1
ζ
∈ F(A−H) (3.13)

with F(A) = {〈Ax, x〉|x ∈ Cn, ‖x‖2 = 1} being the field of values and

Re(ζ) > 0. (3.14)

Proof. Since pm(0) = 1, we know that ζ 6= 0 for any zero ζ of pm, so we can
write

pm(t) = (1− t

ζ
)p̂m−1(t)

with p̂m−1(0) = 1. Writing u = p̂m−1((I −P)A)r0 and w = (I −P)Au gives

‖rm‖2 = ‖pm((I − P)A)r0‖2 = ‖u− 1
ζ
w‖2,

which is minimized for
1
ζ

=
〈w, u〉
〈w,w〉

.

It holds (I − P)A−1w = (I − P)A−1(I − P)Au and since range(P) is A−1-
invariant, it follows (I − P)A−1w = (I − P)u. Therefore, we get

〈w, u〉 = 〈Au, (I − P)u〉
= 〈Au, (I − P)A−1w〉
= 〈(I − P)Au,A−1w〉
= 〈A−Hw,w〉,

and thus
1
ζ

=
〈w, u〉
〈w,w〉

=
〈A−Hw,w〉
〈w,w〉

∈ F(A−H)

which proves (3.13).

For y = Ax it holds
〈A−Hy, y〉 = 〈Ax, x〉,

so if F(A) is contained in the right half-plane, so is F(A−H). Therefore,
Re(1

ζ) > 0 and thus Re(ζ) > 0, which proves (3.14).

Theorem 3.17. Let (M−σ1I) be positive real and 0 > σ1 ≥ σ2 ≥ . . . ≥ σs.
Then the restarted shifted Schur deflated GMRES method converges for all
shifted systems and for every restart value. The iterates for all shifted
systems always exist, and we have

‖r(i)
m ‖2 ≤ |ρ

(i)
0 | · ‖r

(1)
m ‖2. (3.15)

3.3. SCHUR-DEFLATION 73

Proof. Although the matrix (I − P)(M − σ1I) is singular, the matrices
V H
m (I − P)(M − σ1I)Vm = V H

m (M − σ1I)Vm = Hm − σ1I are positive real
because rank(Vm) = m. Therefore, the convergence of the first system is a
well-known result on restarted shifted GMRES, see [42, 41].

For (3.15) we have to show that |ρ(i)
m | ≤ |ρ(i)

0 |. We know that

ρ(i)
m = ρ

(i)
0 /p(1)

m (σi − σ1),

so we have to show |p(1)
m (σi− σ1)| ≥ 1. For σi = σ1 there is nothing to show

since p(1)
m (0) = 1. Therefore we assume σi 6= σ1.

From Lemma 3.16 we know that

p(1)
m (t) =

m∏
i=1

(1− t/ζi) with Re(ζi) > 0, i = 1, . . . ,m.

For a τ < 0 obviously |1− τ/ζi| > 1 holds so that

|p(1)
m (σi − σ1)| =

m∏
i=1

|1− (σi − σ1)/ζi| > 1

since σi − σ1 < 0.

Theorem 3.17 tells us that the system with eigenvalues closest to the imagi-
nary axis is the system with the slowest convergence. Monitoring the residual
of this system is thus a safe way of controlling the overall convergence.

3.3.3 BiCG-Schur

Let Sk and Tk be calculated with respect to M . Let the columns of Vm span
Km((I − P)A, (I − P)r0) and the columns of Wm span Km(AH , (I − P)r0)
with V H

mWm = I. To choose the Schur deflated BiCG approximation xm ∈
x0 + ΩS +Km((I −P)A, (I −P)r0) to the solution of Ax = b, A = M − σI,
we use the Petrov-Galerkin condition

rm ⊥ ΩS +Km(AH , (I − P)r0). (3.16)

As in the FOM case, the residual lies in Km+1((I − P)A, (I − P)r0).

The chosen iterates are xm = x0 +Sky1
m+Vmy2

m with y1
m ∈ Ck and y2

m ∈ Cm

resulting from

[Sk Wm]HA[Sk Vm]
[
y1
m

y2
m

]
=
[
SHk r0

WH
m r0

]
.

3.3. SCHUR-DEFLATION 74

Due to WH
m Sk = 0, the representation of the projection and restriction of A

onto the augmented subspace simplifies to block triangular structure in the
same way as in the FOM case

[Sk Wm]HA[Sk Vm] =
[
Tk − σIk SHk AVm

0 Hm − σIm

]
∈ C(k+m)×(k+m)

such that for arbritrary r0

y1
m = (Tk − σIk)−1(SHk r0 − SHk AVmy2

m),
y2
m = (Hm − σIm)−1WH

m r0.

Starting with
x̂0 = x0 + Sk(Tk − σIk)−1SHk r0,

the starting residual

r̂0 = r0 −ASk(Tk − σIk)−1SHk r0 = (I − P)r0

lies in the orthogonal complement of ΩS . In this case r0 = γVme1 and
WH
m r0 = γe1, thus

y2
m = γ(Hm − σIm)−1e1.

Algorithm 3.18. BiCG-Schur(k,m)
{Input A = M − σiI, {σ1, . . . , σs}, b, S = Sk, T = Tk}

bS = SSHb
x(i) = S(T − σiI)−1SHbS , i = 1, . . . , s
r = b− bS
β = ‖r‖2
while not all systems converged do
ṽ1 = w̃1 = r
for i = 1, . . . , s do

compute Vmy2
m

(i) by BiCG-Sh using (I − P)M for building Vm
compute y1

m
(i) = −(T − σiI)−1SH(M − σiI)Vmy2

m
(i)

x(i) = x(i) + Sy1
m

(i) + Vmy
2
m

(i)

end for
end while

3.3.4 QMR-Schur

Let Sk and Tk be calculated with respect to M . Let the columns of Vm span
Km((I − P)A, (I − P)r0) and the columns of Wm span Km(AH , (I − P)r0)
with V H

mWm = I. To choose the Schur deflated QMR approximation xm ∈

3.4. LR-DEFLATION 75

x0 + ΩS + (I−P)Km(A, r0) to the solution of Ax = b, A = M −σI, we split
the residual

rm = r0 − SkTky1
m −AVmy2

m

as we did for the GMRES case

rm = Pr0 − SkTky1
m − PAVmy2

m + (I − P)r0 − Vm+1Ĥmy
2
m.

Minimizing the ΩS-part of the residual by solving

Tky
1
m = SHk r0 − SHk AVmy2

m

leaves

rm = (I − P)r0 − Vm+1Ĥmy
2
m = ‖(I − P)r0‖2Vm+1e1 − Vm+1Ĥmy

2
m.

As Vm+1 is not orthogonal, we demand the quasi minimal residual property
instead of the minimal residual property

‖‖(I − P)r0‖2e1 − Ĥmym‖2 = min
y∈Cm

‖‖(I − P)r0‖2e1 − Ĥmy‖2. (3.17)

Algorithm 3.19. QMR-Schur(k,m)
{Input A = M − σiI, {σ1, . . . , σs}, b, S = Sk, T = Tk}

bS = SSHb
x(i) = S(T − σiI)−1SHbS , i = 1, . . . , s
r = b− bS
β = ‖r‖2
while not all systems converged do
ṽ1 = w̃1 = r
for i = 1, . . . , s do

compute Vmy2
m

(i) by QMR-Sh using (I − P)M for building Vm
compute y1

m
(i) = −(T − σiI)−1SH(M − σiI)Vmy2

m
(i)

x(i) = x(i) + Sy1
m

(i) + Vmy
2
m

(i)

r(i) = r − Vm+1(Ĥm − σiI)y2
m

(i)

end for
end while

3.4 LR-deflation

Using both left and right eigenvalues leads to an alternative deflation scheme
where additional projection is no longer necessary during the Arnoldi itera-
tion.

3.4. LR-DEFLATION 76

Let Rk = [r1, . . . , rk] be the matrix containing the right eigenvectors corre-
sponding to the k smallest eigenvalues of the matrix A and LHk = [l1, . . . , lk]H

the matrix containing the left eigenvectors. With Λk the diagonal eigenvalue
matrix, the left and right eigenvectors satisfy

ARk = RkΛk

and
Lk

HA = ΛkLkH .

If A = M − σI is a shifted matrix and Rk, Lk and Λk are calculated with
respect to M , then

ARk = Rk(Λk − σI)

and
Lk

HA = (Λk − σI)LkH .

Left and right eigenvectors corresponding to different eigenvalues are or-
thogonal [24]. Let the eigenvectors be furthermore normalized such that

Lk
HRk = Ik.

As projector onto ΩR = span{r1, . . . , rk} we use P = RkL
H
k . Obviously

P is an oblique projector. More precisely, P is projector onto ΩR along a
subspace containing the remaining eigenvectors since

range(P) = span{r1, . . . , rk}

and null(P) = span{rk+1, . . . , rn} = null(LkH).

For our purpose, the following properties of P are important.

Lemma 3.20. The projector P = RkLk
H and A commute.

Proof. Obviously, the following holds

ARkLk
H = RkΛkLkH = RkLk

HA

Lemma 3.21. For the oblique projector P = RkLk
H both range(P) and

range(I − P) are A-invariant.

Proof. Given y = Pv ∈ range(P) we get

Ay = APv = PAv ∈ range(P).

The proof for (I − P) is just the same.

3.4. LR-DEFLATION 77

Therefore, when taking P = RkL
H
k , there is no need of additional projection

to build a basis for (I − P)Km(A, r0) = Km(A, (I − P)r0).

Again, for the Lanczos biorthogonalization it will be necessary to build a
basis for the Krylov subspace Km(((I−P)A)H , r) for a starting vector r. In
this case, as P and A commute, Km(((I−P)A)H , r) = Km((I−P)HAH , r).

Theorem 3.22. For the oblique projector P = RkLk
H both range(PH)

and range((I − P)H) are AH -invariant.

Proof. As A and P commute, so do AH and PH .

Theorem 3.22 shows that starting with r = (I−P)Hr0 no further projection
is necessary to build a basis of (I − P)Km(AH , r0) = Km(AH , (I − P)Hr0).

In the following subsections we will investigate LR-deflation for FOM, GM-
RES, BiCG and QMR. It will turn out that the ΩR-part can be computed
before starting the Krylov iteration. This is no surprise as neither by mul-
tiplication with A nor by multiplication with AH , additional parts lying in
ΩR are produced.

3.4.1 FOM-LR

Let Rk, Lk and Λk be calculated with respect to M and let the columns of
Vm span Km(A, (I −P)r0). To choose the LR deflated FOM approximation
xm ∈ x0 + ΩR +Km(A, (I − P)r0) to the solution of Ax = b, A = M − σI,
we use the subspaces ΩR = span{r1, . . . , rk} and ΩL = span{l1, . . . , lk} and
the Petrov-Galerkin condition

rm ⊥ ΩL +Km(A, (I − P)r0). (3.18)

Theorem 3.23. The LR-deflated FOM approximation is

xm = x0 +Rky
1
m + Vmy

2
m,

where y1
m ∈ Ck and y2

m ∈ Cm are the solutions of the independent linear
systems

Lk
HARky

1
m = (Λk − σI)y1

m = Lk
Hr0 (3.19)

and
V H
m AVmy

2
m = V H

m (I − P)r0 = βe1. (3.20)

Proof. (3.18) leads to[
Λk − σI 0
V H
m ARk V H

m AVm

] [
y1
m

y2
m

]
=
[
Lk

Hr0

V H
m r0

]
.

3.4. LR-DEFLATION 78

For the system for y1
m there is nothing more to show. For y2

m we get

V H
m AVmy

2
m = V H

m r0 − V H
m Rk(Λk − σI)y1

m = V H
m (I − P)r0.

The system (3.19) can be solved before starting the Arnoldi iteration and
does not have any influence on y2

m. To compute y2
m, a (non-deflated) FOM

is run with starting vector (I − P)r0 instead of r0.

As LR-deflation does not change the FOM iteration, applying multishifts
and restarts is straightforward.

Algorithm 3.24. FOM-LR(k,m)
{Input A = M − σiI, {σ1, . . . , σs}, b, L = Lk, R = Rk, Λ = Λk}

x(i) = R(Λ− σiI)−1LHb, i = 1, . . . , s
r = b−RLHb
ρ(i) = 1, i = 1, . . . , s
β = ‖r‖2
while not all systems converged do
v1 = r/β
compute Vm, Hm by running Arnoldi with M
for i = 1, . . . , s do
ym

(i) = βρ(i)(Hm − σiIm)−1e1

x(i) = x(i) + Vmym
(i)

end for
r = vm+1

ρ(i) = −hm+1,m(ym(i))m, i = 1, . . . , s
β = hm+1,m

end while

3.4.2 GMRES-LR

Let again Rk, Lk and Λk be calculated with respect to M and let the columns
of Vm span Km(A, (I − P)r0). To choose the LR deflated GMRES approx-
imation xm ∈ x0 + ΩR + Km(A, (I − P)r0) to the solution of Ax = b,
A = M − σI, the intention is to use the minimal residual condition. Since
the LR-projection is not orthogonal, it turns out that only a quasi minimal
residual condition can be demanded.

Let xm = x0 + [RkVm]ym with ym = [y1
m, y

2
m]T and y1

m ∈ Ck, y2
m ∈ Cm. The

3.4. LR-DEFLATION 79

corresponding residual is

rm = r0 −A[RkVm]ym

= r0 − [RkVm+1]
[

Λk − σI 0
0 Ĥm − σI

]
.

Since βv1 = (I − P)r0 it holds

r0 = Pr0 + (I − P)r0 = [RkVm+1]
[
LHk r0

βe1

]
and thus

rm = [RkVm+1]
([

LHk r0

βe1

]
−
[

Λk − σI 0
0 Ĥm − σI

]
ym

)
.

Since [RkVm+1] is not orthogonal, it holds

‖rm‖2 6= ‖
[
LHk r0

βe1

]
−
[

Λk − σI 0
0 Ĥm − σI

]
ym‖2.

Demanding the quasi minimal residual condition and thus minimizing

‖
[
LHk r0

βe1

]
−
[

Λk − σI 0
0 Ĥm − σI

]
ym‖2

splits the least squares problem into a k × k linear system

(Λk − σI)y1
m = LHk r0

and the smaller least squares problem

‖βe1 − (Ĥm − σI)y2
m‖2 = min

y∈Cm
‖βe1 − (Ĥm − σI)y2

m‖2.

Actually, since Vm+1 is orthogonal, y2
m is the non-deflated GMRES approx-

imation with starting vector (I − P)r0 instead of r0.

As for FOM, LR-deflation does not change GMRES. Therefore, applying
multishifts and restarts is straightforward here as well.

3.4. LR-DEFLATION 80

Algorithm 3.25. GMRES-LR(k,m)
{Input A = M − σiI, {σ1, . . . , σs}, b, L = Lk, R = Rk, Λ = Λk}

x(i) = R(Λ− σiI)−1LHb, i = 1, . . . , s
r = b−RLHb
ρ(i) = 1, i = 1, . . . , s
β = ‖r‖2
while not all systems converged do
v1 = r/β
compute Vm, Ĥm by running Arnoldi
compute GMRES approximation y2

m
(1)

for i = 2, . . . , s do
compute y2

m
(i) and ρ

(i)
m from (3.3)

end for
x(i) = x(i) + Vmy

2
m

(i)

r = r − Vm+1(Ĥm − σ1I)y2
m

(1)

β = ‖r‖2
end while

3.4.3 BiCG-LR

Let Rk, Lk and Λk be calculated with respect to M and let the columns of Vm
span Km(A, (I −P)r0) while the columns of Wm span Km(AH , (I −P)Hr0)
with V H

mWm = I. To choose the LR deflated BiCG approximation xm ∈
x0 + ΩR +Km(A, (I −P)r0) to the solution of Ax = b, A = M − σI, we use
the Petrov-Galerkin condition

rm ⊥ ΩL +Km(AH , (I − P)Hr0).

The chosen iterates are xm = x0 +Rky1
m+Vmy2

m with y1
m ∈ Ck and y2

m ∈ Cm

resulting from

[Lk Wm]HA[Rk Vm]
[
y1
m

y2
m

]
=
[
LHk r0

WH
m r0

]
.

As WH
mRk = 0 and LHk Vm = 0, the representation of the projection and

restriction of A reduces to block diagonal structure

[Lk Wm]HA[Rk Vm] =
[

Λk − σIk 0
0 Hm − σIm

]
∈ C(k+m)×(k+m)

such that for arbritrary r0

y1
m = (Λk − σIk)−1LHk r0

y2
m = (Hm − σIm)−1WH

m r0.

3.4. LR-DEFLATION 81

Here the ΩR-part and the Krylov-part of the approximation are completely
independent. The ΩR-part can be calculated beforehand and included in x0

x̂0 = x0 +Rk(Λk − σIk)−1LHk r0

such that the starting residual is

r̂0 = r0 −ARk(Λk − σIk)−1LHk r0 = (I − P)r0.

We can therefore assume to start with a residual r0 ∈ null(P). In this case,
r0 = γVme1 and WH

m r0 = γe1, yielding

y2
m = γ(Hm − σIm)−1e1.

Algorithm 3.26. BiCG-LR(k,m)
{Input A = M − σiI, {σ1, . . . , σs}, b, L = Lk, R = Rk, Λ = Λk}

bS = RLHb
x(i) = R(Λ− σiI)−1LHb, i = 1, . . . , s
r = b− bS
β = ‖r‖2
while not all systems converged do
ṽ1 = (I −RLH)b, w̃1 = (I − LRH)b
for i = 1, . . . , s do

compute Vmy2
m

(i) by BiCG-Sh
x(i) = x(i) + Vmy

2
m

(i)

r(i) = r − Vm+1(Ĥm − σiI)y2
m

(i)

end for
end while

3.4.4 QMR-LR

Let Rk, Lk and Λk be calculated with respect to M and let the columns of Vm
span Km(A, (I −P)r0) while the columns of Wm span Km(AH , (I −P)Hr0)
with V H

mWm = I. To choose the LR deflated QMR approximation xm ∈
x0 + ΩR +Km(A, (I −P)r0) to the solution of Ax = b, A = M − σI, we use
the quasi minimal residual condition.

Let xm = x0 +[RkVm]ym, with ym = [y1
m, y

2
m]T and y1

m ∈ Ck, y2
m ∈ Cm. The

3.4. LR-DEFLATION 82

corresponding residual is

rm = r0 −A[RkVm]ym

= r0 − [RkVm+1]
[

Λk − σI 0
0 Ĥm − σI

]
= [RkVm+1]

([
LHk r0

βe1

]
−
[

Λk − σI 0
0 Ĥm − σI

]
ym

)
.

Since [RkVm+1] is not orthogonal, we demand the quasi minimal residual
condition and minimize

‖
[
LHk r0

βe1

]
−
[

Λk − σI 0
0 Ĥm − σI

]
ym‖2. (3.21)

The least squares problem indicated by (3.21) splits thus into a k× k linear
system

(Λk − σI)y1
m = LHk r0

and the smaller least squares problem

‖βe1 − (Ĥm − σI)y2
m‖2 = min

y∈Cm
‖βe1 − (Ĥm − σI)y2

m‖2.

Different to GMRES-LR, y2
m is now the QMR approximation with starting

vector (I − P)r0 instead of r0, since Vm+1 is not orthogonal.

Algorithm 3.27. QMR-LR(k,m)
{Input A = M − σiI, {σ1, . . . , σs}, b, L = Lk, R = Rk, Λ = Λk}

bS = RLHb
x(i) = R(Λ− σiI)−1LHb, i = 1, . . . , s
r = b− bS
β = ‖r‖2
while not all systems converged do
ṽ1 = (I −RLH)b, w̃1 = (I − LRH)b
for i = 1, . . . , s do

compute Vmy2
m

(i) by QMR-Sh
x(i) = x(i) + Vmy

2
m

(i)

r(i) = r − Vm+1(Ĥm − σiI)y2
m

(i)

end for
end while

3.5. ELIMINATING CONVERGED SYSTEMS 83

3.5 Eliminating converged systems

With the (deflated) multishift methods presented in Sections 3.3 and 3.4 we
simultaneously solve s systems

A− σiI = b, i = 1, . . . , s.

Although we use the same Krylov subspace for all s systems and therefore
have no additional cost to build the subspace for additional systems, the
cost still increases with the number s of systems to solve.
While for BiCG and QMR additional systems cause only little and above all
constant additional cost, for FOM and GMRES the cost increases not only
with s but with the iteration as well. The reason is that for each system
a small but with the iteration number increasing system or least squares
problem has to be solved. In the unsymmetric case, i.e., BiCG or QMR,
a simple update of the iterates exists such that the (small) linear system
or least squares problem, respectively, can be updated with little additional
cost. In the symmetric case, i.e., FOM or GMRES, the inverse or least
squares solution has to be computed seperately for each system as the ma-
trix is non-hermitian and there is no simple update for the iterates. FOM
and GMRES will therefore profit from any reduction of the number of sys-
tems to be solved.

Some of the systems will converge faster than others. Systems that have
already reached a desired accuracy can be eliminated and no further com-
putations have to be done for those systems.

To decide whether a system can be eliminated or not we use the residual
norm. When combined with a rational approximation of the sign function,
for example, the systems with small residual norm contribute only little to
the error since

Q

s∑
i=1

ωi(Q2 − σiI)−1b−Q
s∑
i=1

ωix
(i)
m = Q

s∑
i=1

ωi(Q2 − σiI)−1r(i)
m .

For all methods we get ‖r(i)
m ‖2, or at least an upper bound, with basically no

extra effort. No matter whether Schur- or LR-deflation is used, the residual
norms are computed as listed in Table 3.1.

To get an idea of the benefits of elimination, Figure 3.1 shows how the num-
ber of systems to solve decreases in the course of the iteration. We used
the matrix MAT31 for this example and ran FOM with LR-deflation. The
shifts σi were chosen to approximate sign(Q) to an accuracy of 10−10. The

1See Chapter 4.1 for the definition of MAT3.

3.6. DEFLATION OF THE RATIONAL APPROXIMATION 84

method residual norm ‖r(i)
m ‖2

FOM |hm+1,m(y2
m

(i))m|
GMRES ‖r(i)

0 −Vm+1(Ĥm−σ1)y2
m

(1)‖2, i = 1

|ρ(i)
m | · ‖r(1)

m ‖2, i 6= 1
BiCG |hm+1,m(y2

m
(i))m|

QMR (≤)‖r0‖2
√
m+ 1|sn1 · · · · · snm|

Table 3.1: Computation of residual norms

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

iteration

nu
m

be
r

of
 s

ys
te

m
s

FOM
−
LR(32,500)

FOM
−
LR(32,50)

Figure 3.1: Decrease of the number of systems to solve

effect is the same no matter whether FOM or GMRES is used with Schur-
or LR-deflation.

Of course the effect on the actual computational cost depends on the Krylov
subspace size, i.e., the size of the systems to solve. But even when the size
is bounded by using restarts, the cost is reduced significantly as Figure 3.2
shows, for the same sample matrix and shifts as chosen for Figure 3.1. For
these plots we estimate the cost by taking into account only the linear system
of size i in step i. As it is of Hessenberg form, the cost for m iteration steps
sums up to

cost(m) =
m∑
i=1

systems(i) · i2,

where systems(i) denotes the number of systems to solve in step i.

3.6 Deflation of the rational approximation

To approximate the matrix sign function sign(Q) of a non-hermitian matrix
Q, we have to use a rational approximation with significantly more poles

3.6. DEFLATION OF THE RATIONAL APPROXIMATION 85

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10
x 10

9

iteration

co
st

FOM
−
LR(32,500) converged systems eliminated

FOM
−
LR(32,500) no elimination

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10
x 10

7

iteration

co
st

FOM
−
LR(32,50) converged systems eliminated

FOM
−
LR(32,50) no elimination

Figure 3.2: Effect on the cost without restart (left) and with restart (right)

than the Zolotarev approximation. Although only one Krylov subspace is
built for all shifted systems, solving more systems still increases the compu-
tational cost significantly for FOM and GMRES, as discussed in the previous
section. The aim in this section is therefore to reduce the number of poles
by using the deflation applied to the multishift solver. Of course this would
apply to the Zolotarev rational approximation as well.

The number of poles gets higher the closer some eigenvalues of Q lie to the
imaginary axis. As some of those small eigenvalues are deflated by Schur-
or LR-deflation, the idea is to split the rational approximation and use less
poles for those parts that do not involve the deflated eigenvalues. It turns
out that only LR-deflation is suitable for this pole reduction.

To approximate

sign(Q)b ≈ Q
s∑
i=1

ωi(Q2 − σiI)−1b,

we choose r(t) =
∑s

i=1 ωi
t

t2−σi
such that

|sign(t)− r(t)| ≤ ε/2 ∀t ∈ spec(Q).

When approximating (Q2 − σiI)−1b in a Krylov subspace for example by
(ordinary) FOM as (Q2 − σiI)−1b ≈ Vm(Hm − σiI)−1V H

m b, we compute

sign(Q)b ≈ QVm
s∑
i=1

ωi(Hm − σiI)−1V H
m b,

so r could as well be chosen with respect to spec(Hm).

Usually that does not make a big difference and does not help to reduce the
number of poles, but in the augmented context the spectrum of Hm does
not include the k smallest eigenvalues of Q due to the projection. Therefore,
the rational approximation with respect to Hm will be as accurate as before
with less poles. Of course, when reducing the number of poles, the shifts σi

3.6. DEFLATION OF THE RATIONAL APPROXIMATION 86

size k of the augmented subspace λmin number s of poles
0 4.2313 · 10−3 168
8 0.0570 46
16 0.0950 36
32 0.1887 25
64 0.3195 19

Table 3.2: Number of poles needed for the matrix MAT3

and weights ωi will change as well.

So, splitting in the LR case

sign(Q)b ≈ QRk
s∑
i=1

ωiy
1
m

(i) +QVm

s∑
i=1

ωiy
2
m

(i)
,

we can use an approximation with less poles for the second sum. The crucial
property of LR-deflation in this context is that the ΩR-part and Krylov part
of the approximation are independent.

In the Schur case, the Krylov part influences the ΩS-part. Here as well, we
can split

sign(Q)b ≈ QSk
s∑
i=1

ωiy
1
m

(i) +QVm

s∑
i=1

ωiy
2
m

(i)
, (3.22)

and we could use an approximation with less poles for the second sum. But
(3.22) actually reads

sign(Q)b ≈ QSk
s∑
i=1

ωi(Tk−σiI)−1SHk (b−(M−σiI)Vmy2
m

(i))+QVm
s∑
i=1

ωiy
2
m

(i)
,

so that if we reduced the number of poles in the second sum we had to
compute y2

m
(i) for the big number of poles again for the first sum.

Therefore, reducing the number poles is possible only for LR-deflation. In-
stead of eigenvalue information of Hm we use the available eigenvalue infor-
mation of A: Since the k smallest eigenvalues are deflated, we take λmin the
(k + 1)-smallest eigenvalue for the calculation of the number of poles, the
shifts, and the weights. Tables 3.2 and 3.3 show how many poles are actually
needed to achieve an accuracy of 10−8 for the the matrix sign function of
the matrices2 MAT3 and MAT4.

2See Chapter 4.1 for the definition of MAT3 and MAT4.

3.7. DISCUSSION 87

size k of the augmented subspace λmin number s of poles
0 3.0838 · 10−4 582
16 0.0237 67
32 0.0431 50
64 0.0802 36
128 0.1483 27

Table 3.3: Number of poles needed for the matrix MAT4

3.7 Discussion

Looking at the numerical results, see Chapter 4.3, Schur- and LR-deflation
show an equal performance with respect to iteration numbers. With respect
to computation time, LR-deflation works significantly faster.

Of course, for LR-deflation both left and right eigenvectors have to be com-
puted while for Schur-deflation only one set of Schur vectors is needed – we
did not include this precalculation in the time measurements. In addition,
the computation of Schur vectors is numerically stable in contrast to the
computation of eigenvectors.

On the other hand, for Schur-deflation the number of poles cannot be re-
duced. That does not matter (much) when BiCG-Schur or QMR-Schur are
used, but for FOM-Schur and GMRES-Schur it means a great increase of
computational cost.
Regarding computation time, Schur-deflation has the second disadvantage
that in each iteration step the ΩS-part has to be projected out. The nu-
merical results show clearly that this alone slows down the computation
extremely.

advantages disadvantages
Schur-deflation one set of (Schur-)vectors projection in each step

stable Schur vectors big number of poles
LR-deflation no extra projection two sets of eigenvectors

reduced number of poles instable eigenvectors

Table 3.4: Advantages and disadvantages of Schur- and LR-deflation

Using the deflated methods for a rational approximation of the matrix sign
function, the shifted matrices M − σI = Q2 − σI are positive real. The
(deflated) FOM iterates therefore exist and even for (deflated) multishift

3.8. OTHER DEFLATION TECHNIQUES 88

GMRES we have a guarantee for convergence. Of course, deflated BiCG
and QMR still contain the possibility of breakdowns inherited from the
underlying Lanczos process.

3.8 Other deflation techniques

Closest related to the approach presented in this work is the one given in
[5, 6] where the matrix sign function is approximated using both Schur- and
LR-deflation. Instead of using a rational approximation to the sign function
they approximate

sign(Q)b ≈ Vmsign(Hm)V H
m b

which gives for Schur-deflation

sign(Q)b ≈ [SkVm]
[

sign(Tk) Y
0 sign(Hm)

]
[SkVm]Hb,

where Y is the solution of the Sylvester equation

TkY − Y Hm = sign(Tk)SHk AVm − SHk AVmsign(Hm).

For LR-deflation they yield

sign(Q)b ≈ Rksign(Λk)LHk b+ βVmsign(Hm)e1.

The sign function of the smaller submatrices is computed by Roberts’ iter-
ative method [38].

Morgan [30, 31, 32, 33] uses Ritz and harmonic Ritz vectors for the augment-
ing subspace and implicit restarts to include them. With Ω being spaned by
(harmonic) Ritz vectors the augmented subspace Ω + Km(A, r0) is a Krylov
subspace as well.

Chapter 4

Numerical results

4.1 Matrices

For the numerical experiments we use four matrices:

• MAT1, MAT2: zero chemical potential
The shifted unitary methods of Chapter 2 are tested with Γ5-hermitian
Wilson-Dirac operators on a 44-lattice, i.e., a lattice with 44 lattice
sites. The hopping matrices are taken from Matrix Market

http://math.nist.gov/MatrixMarket/data/misc/qcd/.

Note that for these matrices the γ-matrices were taken in Dirac rep-
resentation, see Appendix A.

• MAT3, MAT4: non-zero chemical potential
The eigenvalue deflation methods of Chapter 3 are tested with a non-
Γ5-hermitian Wilson-Dirac operator on a 44-lattice and a 64-lattice,
respectively. Note that for these matrices the γ-matrices were taken
in Weyl representation, see Appendix A.
The matrices MAT3 and MAT4 were provided by Jacques Bloch from
the Institute for Theoretical Physics at the University of Regensburg.

MAT1 uses the Matrix Market configuration conf6.0-00l4x4-2000.mtx
κc = 0.15968
κ = 4/3κc = 0.2129
minλ∈spec(Q)(|λ|) = 0.0767
maxλ∈spec(Q)(|λ|) = 2.4855

The eigenvalues of the hopping term M = I − κDW are plotted in
Figure 4.1.

89

4.1. MATRICES 90

−0.5 0 0.5 1 1.5 2 2.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

real part

im
ag

in
ar

y
pa

rt

Figure 4.1: MAT1: eigenvalues of the matrix M

The eigenvalues of the Neuberger operator D = ρI + Γ5sign(Q) for
ρ = 1.01 are plotted in Figure 4.2.

0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

real part

im
ag

in
ar

y
pa

rt

Figure 4.2: MAT1: eigenvalues of the matrix ρI + Γ5sign(Q), ρ = 1.01

MAT2 uses the Matrix Market configuration conf5.0-00l4x4-2600.mtx
κc = 0.2107
κ = 4/3κc = 0.2809
minλ∈spec(Q)(|λ|) = 8.8923 · 10−4

maxλ∈spec(Q)(|λ|) = 2.7868

The eigenvalues of the hopping term M = I − κDW are plotted in
Figure 4.3.

4.1. MATRICES 91

−0.5 0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

real part

im
ag

in
ar

y
pa

rt

Figure 4.3: MAT2: eigenvalues of the matrix M

The eigenvalues of the Neuberger operator D = ρI + Γ5sign(Q) for
ρ = 1.01 are plotted in Figure 4.2.

0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

real part

im
ag

in
ar

y
pa

rt

Figure 4.4: MAT1: eigenvalues of the matrix ρI + Γ5sign(Q), ρ = 1.01

MAT3
lattice size: 44

minλ∈spec(Q)(|λ|) = 4.2313 · 10−3

maxλ∈spec(Q)(|λ|) = 5.2161
The eigenvalues of Q = Γ5M are plotted in Figure 4.5.

4.2. SHIFTED UNITARY METHODS 92

−6 −4 −2 0 2 4 6
−0.1

−0.05

0

0.05

0.1

real part

im
ag

in
ar

y
pa

rt

−0.1 −0.05 0 0.05 0.1 0.15
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

real part

im
ag

in
ar

y
pa

rt

Figure 4.5: MAT3: eigenvalues of the matrix Q

MAT4
lattice size: 64

minλ∈spec(Q)(|λ|) = 3.0838 · 10−4

maxλ∈spec(Q)(|λ|) = 4.5599
The eigenvalues of Q = Γ5M are plotted in Figure 4.6.

−6 −4 −2 0 2 4 6
−0.1

−0.05

0

0.05

0.1

real part

im
ag

in
ar

y
pa

rt

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

real part

im
ag

in
ar

y
pa

rt

Figure 4.6: MAT4: eigenvalues of the matrix Q

4.2 Shifted unitary methods

For the shifted unitary methods we use the matrices MAT1 and MAT2, the
right hand side is a complex random vector of unit length. For the inner
iteration we require an accuracy of ε = 10−8. The matrix vector product is
approximated by PFE/CG with the Zolotarev best approximation with 10
poles for MAT1 and 19 poles for MAT2, respectively. Note that the plots
show matrix vector products instead of iteration numbers.

Figures 4.7 and 4.8 show the true and the computed residual. The norm of
the true residual (solid) stagnates around the required accuracy while the
computed residual (dashed) decreases further. To obtain the true residual,
we computed the exact sign function of the hermitian matrix Q via a full
singular value decomposition.

4.2. SHIFTED UNITARY METHODS 93

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

matrix vector multiplications

||
r m

 ||
2

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

10
−10

10
−5

10
0

matrix vector multiplications

||
r m

 ||
2

Figure 4.7: SUOM (left) and SHUMR (right) for MAT1

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

10
−10

10
−5

10
0

matrix vector multiplications

||
r m

 ||
2

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

10
−10

10
−5

10
0

matrix vector multiplications

||
r m

 ||
2

Figure 4.8: SUFOM (left) and SUMR (right) for MAT1

For relaxation we use the tolerances ηj as shown in Table 4.1. Note that these
are the relaxation strategies proposed for FOM and GMRES. Since in exact
arithmetic the shifted unitary methods are equivalent to FOM and GMRES,
this is a reasonable choice. Nevertheless, better stategies might be possible
taking into account the underlying short recurrence Arnoldi versions.

method tolerance ηj

SUOM ε ·
√∑j

i=0 ‖ri‖
−2
2

SHUMR ε/‖rj‖2

SUFOM ε ·
√∑j

i=0 ‖ri‖
−2
2

SUMR ε/‖rj‖2

Table 4.1: Precision of the matrix vector product

For demonstration reasons we plot the true residuals computed as described
above. For problems of a realistic size, the true residual is not known in
general. In this case the computed residuals can be used for a stopping
criteria but of course one should not iterate further once the accuracy of the
inner iteration is reached.

4.2. SHIFTED UNITARY METHODS 94

The following plots (Figures 4.9 and 4.10) show the convergence of the re-
laxed and unrelaxed versions of the four shifted unitary methods using the
matrix MAT1 and ρ = 1.01. We compare the unrelaxed version (solid) with
the relaxed verion (dashed).

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

matrix vector multiplications

||
r m

 ||
2

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

matrix vector multiplications

||
r m

 ||
2

Figure 4.9: SUOM (left) and SHUMR (right) for MAT1

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

matrix vector multiplications

||
r m

 ||
2

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

matrix vector multiplications

||
r m

 ||
2

Figure 4.10: SUFOM (left) and SUMR (right) for MAT1

For MAT1 and ρ = 1.01 relaxation saves about 40% matrix vector mul-
tiplications while the loss in accuracy is negligible. No difference can be
observed between the four methods. Although Figure 4.9 does not show it,
SUOM and SHUMR stagnate at about the inner accuracy same as SUFOM
and SUMR do.

The following plots (Figures 4.11 and 4.12) show the convergence of the four
shifted unitary methods using the matrix MAT2 and ρ = 1.01. Again, we
compare the unrelaxed version (solid) with the relaxed verion (dashed).

4.3. DEFLATION 95

0 1 2 3 4 5 6 7 8 9 10

x 10
5

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

matrix vector multiplications

||
r m

 ||
2

0 1 2 3 4 5 6 7 8 9 10

x 10
5

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

matrix vector multiplications

||
r m

 ||
2

Figure 4.11: SUOM (left) and SHUMR (right) for MAT2

0 1 2 3 4 5 6 7 8 9 10

x 10
5

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

matrix vector multiplications

||
r m

 ||
2

0 1 2 3 4 5 6 7 8 9 10

x 10
5

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

matrix vector multiplications

||
r m

 ||
2

Figure 4.12: SUFOM (left) and SUMR (right) for MAT2

For MAT2 and ρ = 1.01 relaxation does not save much. The final accuracy
reached with SUFOM and SUMR is slightly better than for SUOM and
SHUMR.

The convergence of the shifted unitary methods does not only rely on the
matrix Q but also on the shift parameter ρ. Figure 4.13 shows the con-
vergence of SUMR for MAT1 and MAT2 with ρ = 1.1. The difference to
ρ = 1.01 is little, but the convergence is faster – not surprisingly since the
eigenvalues of Γ5sign(Q) are shifted further away from the imaginary axis.

0 0.5 1 1.5 2 2.5 3

x 10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

matrix vector multiplications

||
r m

 ||
2

0 1 2 3 4 5 6 7

x 10
5

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

matrix vector multiplications

||
r m

 ||
2

Figure 4.13: SUMR with ρ = 1.1 for MAT1 (left) and MAT2 (right)

4.3 Deflation

As sample matrices for the deflation methods we use the non-hermitian
matrices MAT3 and MAT4. We compute the multishift approximations ỹ

4.3. DEFLATION 96

to the rational approximation of y = sign(Q)b with b = (1, . . . , 1)T to an
accuracy of 10−8. The error plotted in the convergence plots of Figures 4.14
- 4.22 is the relative error

‖ỹ − y‖2
‖y‖2

.

Since the matrices are non-hermitian we cannot use the Zolotarev best ap-
proximation. We use the Neuberger rational approximation instead, which
works for hermitian matrices as well since it summarises a certain number
of steps of the Newton iteration. To achieve an accuracy of η we use

s =

⌈
1
2
· log

(
η

2− η

)
/ log

(√
λmax/λmin − 1√
λmax/λmin + 1

)⌉

poles, see [45]. The number of poles needed to achieve the required accuracy
is shown in Tables 3.2 and 3.3. The number of poles can be quite large. We
therefore use pole reduction for all plots.

Figures 4.14 to 4.19 show the convergence plots for the Schur and LR de-
flated methods. In Figures 4.14 to 4.17 we compare the non-restarted and
restarted versions of FOM and GMRES. The results for Schur and LR de-
flated BiCG and QMR are shown in Figures 4.18 and 4.19.

0 100 200 300 400 500 600 700 800 900 1000

10
−8

10
−6

10
−4

10
−2

10
0

iterations

er
ro

r

k = 64 k = 32 k = 16 k = 8

k = 0

0 100 200 300 400 500 600 700 800 900 1000

10
−8

10
−6

10
−4

10
−2

10
0

iterations

er
ro

r

k = 64 k = 32 k = 16

k = 8

k = 0

Figure 4.14: Schur deflated FOM for MAT3 – without restart (left) and with
restart (right)

0 100 200 300 400 500 600 700 800 900 1000

10
−8

10
−6

10
−4

10
−2

10
0

iterations

er
ro

r

k = 64 k = 32 k = 16 k = 8

k = 0

0 100 200 300 400 500 600 700 800 900 1000

10
−8

10
−6

10
−4

10
−2

10
0

iterations

er
ro

r

k = 64 k = 32 k = 16

k = 8

k = 0

Figure 4.15: Schur deflated GMRES for MAT3 – without restart (left) and
with restart (right)

4.3. DEFLATION 97

0 100 200 300 400 500 600 700 800 900 1000

10
−8

10
−6

10
−4

10
−2

10
0

iterations

er
ro

r

k = 64 k = 32 k = 16

k = 0

k = 8

0 100 200 300 400 500 600 700 800 900 1000

10
−8

10
−6

10
−4

10
−2

10
0

iterations

er
ro

r

k = 0

k = 8

k = 16k = 32k = 64

Figure 4.16: LR deflated FOM for MAT3 – without restart (left) and with
restart (right)

0 100 200 300 400 500 600 700 800 900 1000

10
−8

10
−6

10
−4

10
−2

10
0

iterations

er
ro

r

k = 0

k = 8k = 16k = 32k = 64

0 100 200 300 400 500 600 700 800 900 1000

10
−8

10
−6

10
−4

10
−2

10
0

iterations

er
ro

r

k = 64 k = 32 k = 16

k = 8

k = 0

Figure 4.17: LR deflated GMRES for MAT3 – without restart (left) and
with restart (right)

0 100 200 300 400 500 600 700 800 900 1000

10
−8

10
−6

10
−4

10
−2

10
0

iterations

er
ro

r

k = 64 k = 32 k = 16 k = 8

k = 0

0 100 200 300 400 500 600 700 800 900 1000

10
−8

10
−6

10
−4

10
−2

10
0

iterations

er
ro

r

k = 64 k = 32 k = 16 k = 8

k = 0

Figure 4.18: BICG for MAT3 – Schur deflated (left) and LR deflated (right)

0 100 200 300 400 500 600 700 800 900 1000

10
−8

10
−6

10
−4

10
−2

10
0

iterations

er
ro

r

k = 0

k = 64 k = 16 k = 8k = 32

0 100 200 300 400 500 600 700 800 900 1000

10
−8

10
−6

10
−4

10
−2

10
0

iterations

er
ro

r

k = 64 k = 32 k = 16 k = 8

k = 0

Figure 4.19: QMR for MAT3 – Schur deflated (left) and LR deflated (right)

Schur- and LR-deflation produce the same convergence behaviour. No sig-
nificant difference in iteration numbers can be detected in the Figures 4.14 -

4.3. DEFLATION 98

4.19. Still, there are diffenences between the Schur and LR deflated methods
that can not be conveyed in those plots:

• For LR-deflation we have to compute left and right eigenvectors while
for Schur-deflation we only need Schur vectors. This is an advantage
of Schur-deflation. We do not investigate this difference further.

• In the Schur deflated methods, every new Arnoldi vector has to be
orthogonalized against the augmenting Schur vectors, i.e. its ΩS-part
has to be projected out.

• LR-deflation allows a reduction of the number of poles in the rational
approximation. As can be seen in Tables 3.2 and 3.3, the required
number of poles is thus significantly higher using Schur-deflation.

Therefore even if they need the same number of iterations to achieve a given
accuracy, Schur deflated methods and LR deflated methods differ in the
computing time.

To demonstrate the effect of pole reduction and orthogonalization against
the augmenting subspace on the computing time, we compare Schur deflated
and LR deflated GMRES for the matrix MAT3. Table 4.2 shows the times
in seconds to achieve an accuracy of 10−8 without restarts, Table 4.3 shows
the resulting times for restarts after 50 iterations. The time messurements
were done on an Intel Pentium 4, 2.8 GHz, using the tic and toc functions
of MATLAB 7.5(2007b).

Schur deflated GMRES has to run with 168 poles no matter how many
eigenvalues are deflated. LR deflated GMRES needs only 64/36/25/19 poles
depending on the number of deflated eigenvalues (8/16/32/64). The last col-
umn of Tables 4.2 and 4.3 show the results for this reduced number of poles
while for the second last column we ran GMRES-LR without pole reduction.

deflated GMRES-Schur GMRES-LR GMRES-LR
eigenvalues (reduced poles)

8 10881.3 3282.4 1013.7
16 4701.2 977.9 226.8
32 1798.6 258.4 52.0
64 855.6 71.2 15.7

Table 4.2: Time (in seconds) needed for GMRES (without restarts) with
Schur- and LR-deflation

4.3. DEFLATION 99

deflated GMRES-Schur GMRES-LR GMRES-LR
eigenvalues (reduced poles)

8 1320.7 220.4 100.3
16 880.6 89.9 36.4
32 455.1 38.1 13.4
64 396.2 22.2 6.9

Table 4.3: Time (in seconds) needed for GMRES (with restart after 50
iterations) with Schur- and LR-deflation

Though there are no differences in iteration numbers, the computing time
differs significantly. Even without pole reduction, LR deflated GMRES is
by a factor of 3-12 faster than Schur deflated GMRES, and even 6-18 times
faster in the restarted version. With pole reduction the factor is 10-54, 13-57
in the restarted version. The more eigenvalues are deflated the bigger the
difference between Schur-deflation and LR-deflation.

Table 4.4 shows that the same holds for QMR: QMR-LR is by a factor of
19-25 faster than QMR-Schur, by a factor of up to 124 when the number of
poles is reduced.

deflated QMR-Schur QMR-LR QMR-LR
eigenvalues (reduced poles)

8 1953.7 102.3 15.7
16 1302.3 60.5 14.1
32 703.1 36.4 7.9
64 515.7 20.7 4.2

Table 4.4: Time (in seconds) needed for QMR with Schur- and LR-deflation

Finally, we compare the four LR deflated methods, see Table 4.5. Again, we
use the matrix MAT3 and an accuracy of 10−8. FOM-LR and GMRES-LR
are restarted after 50 iterations, all methods are run with pole reduction.
Even tough for the same number of iterations BiCG and QMR need twice
as many matrix vector multiplications than FOM and GMRES, the short
recurrence methods BiCG and QMR are significantly faster.

4.3. DEFLATION 100

deflated FOM-LR GMRES-LR BiCG-LR QMR-LR
eigenvalues

8 72.5 100.3 13.1 15.7
16 27.0 36.4 12.6 14.1
32 10.5 13.4 7.3 7.9
64 6.3 6.9 4.3 4.2

Table 4.5: Time (in seconds) needed for the LR deflated methods (FOM
and GMRES with restart after 50 iterations)

For the 64-lattice MAT4 we only show the convergence behaviour of the
LR deflated methods since the results for MAT3 show that Schur-deflation
cannot compete with LR-deflation. In Figures 4.20 to 4.22 we compare the
LR deflated methods for the matrix of the 64-lattice MAT4 with a required
accuracy of 10−8.

0 500 1000 1500 2000 2500 3000
10

−8

10
−6

10
−4

10
−2

10
0

iterations

er
ro

r

k = 128 k = 64 k = 32
k = 16

0 500 1000 1500 2000 2500 3000

10
−8

10
−6

10
−4

10
−2

10
0

iterations

er
ro

r

k = 128 k = 64 k = 32

k = 16

Figure 4.20: LR deflated FOM for MAT4 – without restart (left) and with
restart (right)

0 500 1000 1500 2000 2500 3000
10

−8

10
−6

10
−4

10
−2

10
0

iterations

er
ro

r

k = 128 k = 64 k = 32
k = 16

0 500 1000 1500 2000 2500 3000

10
−8

10
−6

10
−4

10
−2

10
0

iterations

er
ro

r

k = 128 k = 64 k = 32

k = 16

Figure 4.21: LR deflated GMRES for MAT4 – without restart (left) and
with restart (right)

4.3. DEFLATION 101

0 500 1000 1500 2000 2500 3000

10
−5

10
0

iterations

er
ro

r

k = 32

k = 16

k = 128 k = 64
0 500 1000 1500 2000 2500 3000

10
−8

10
−6

10
−4

10
−2

10
0

iterations

er
ro

r

k = 128 k = 64 k = 32

k = 16

Figure 4.22: LR deflated BiCG (left) and QMR (right) for MAT4

Again, no difference in the convergence behaviour can be observed between
the different methods. Using restarts obviously bears the risk of losing con-
vergence as can be seen in Figures 4.20 and 4.21 for k = 16. Unfortunately
we do not know beforehand how many eigenvalues we have to deflate to
retain convergence for the restarted versions. As indicated by the time mea-
surements of MAT3, without restarts FOM and GMRES are by far too slow
to take them into consideration. BiCG and QMR on the other hand bear
the risk of breakdowns. This is compensated by the fact that BiCG and
QMR do not need restarts and are significantly faster.

The LR deflated methods, especially with pole reduction, are significantly
faster than the Schur deflated methods. Note that for the presented results
we ignored the precalculation required to obtain the Schur- or eigenvectors.
Computing left and right eigenvalues will take longer than computing only
one set of Schur vectors. If the left and right eigenvalues are not available
and Schur-deflation has to be used, for the same reasons as in LR-deflation
the methods of choice are BiCG and QMR.

Appendix A

Gamma matrices

The γ-matrices are not unique, there are several representations. All defini-
tions use the Pauli matrices σ1, σ2, σ3:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

In the Dirac or Dirac-Pauli representation the Euclidean γ-matrices are de-
fined as

γk =
(

0 −iσk
iσk 0

)
for k = 1, 2, 3

and

γ4 =

−1

−1
+1

+1

 .

A fifth matrix γ5 is defined as

γ5 = γ1γ2γ3γ4 =

+1

+1
+1

+1

 .

In the Weyl or chiral representation the matrix γ4 is replaced by

γ4 =

+1

+1
+1

+1

102

103

such that

γ5 = γ1γ2γ3γ4 =

+1

+1
−1

−1

 .

The matrix Γ5 is defined as

Γ5 = In/12 ⊗ (γ5 ⊗ I3).

Note that the matrices MAT1 and MAT2 use the Dirac representation while
MAT3 and MAT4 use the Weyl representation.

Bibliography

[1] G. Arnold, N. Cundy, J. van den Eshof, A. Frommer, S. Krieg, Th.
Lippert, and K. Schäfer. Numerical Methods for the QCD Overlap Op-
erator: II. Optimal Krylov Subspace Methods. In QCD and Numerical
Analysis III, volume 47 of Lecture Notes in Computational Science and
Engineering, pages 153–167. Springer Berlin Heidelberg, 2005.

[2] W. E. Arnoldi. The Principle of Minimized Iterations in the Solution
of the Matrix Eigenvalue Problem. Quarterly of Applied Mathematics,
9:17–29, 1951.

[3] Zh. Bai and J. W. Demmel. Design of a parallel nonsymmetric eigenrou-
tine toolbox, Part I. In R. F. Sincovec, D. E. Keyes, M. R. Leuze, L. R.
Petzold, and D. A. Reed, editors, Proceedings of the Sixth SIAM Confer-
ence on Parallel Processing for Scientific Computing, Volume I, pages
391–398. Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 1993.

[4] T. Barth and Th. Manteuffel. Multiple recursion conjugate gradient
algorithms part I: sufficient conditions. SIAM J. Matrix Anal. Appl.,
21:768–796, 2000.

[5] J. Bloch, A. Frommer, B. Lang, and T. Wettig. An iterative method
to compute the overlap Dirac operator at nonzero chemical potential.
Proceedings of Science, 2007. arXiv:hep-lat/0710.0341v1.

[6] J. Bloch, A. Frommer, B. Lang, and T. Wettig. An iterative method to
compute the sign function of a non-Hermitian matrix and its application
to the overlap Dirac operator at nonzero chemical potential. Computer
Physics Communications, 177:933–943, 2007.

[7] A. Borici. The two-grid algorithm confronts a shifted unitary orthogonal
method. Nuclear Physics B Supplement, 140:850–852, 2005.

[8] A. Borici and A. Allkoci. A fast minimal residual solver for overlap
fermions. arXiv:hep-lat/0602015v1, 2006.

104

BIBLIOGRAPHY 105

[9] A. Borici and A. Allkoci. Shifted unitary orthogonal methods for the
overlap inversion. arXiv:hep-lat/0601031v1, 2006.

[10] N. Cundy, J. van den Eshof, A. Frommer, S. Krieg, Th. Lippert, and
K. Schäfer. Numerical methods for the QCD overlap operator: III.
Nested iterations. Computer Physics Communications, 165:221–242,
2005.

[11] V. Faber, J. Liesen, and P. Tichy. The Faber-Manteuffel theorem for
linear operators. SIAM J. on Numerical Analysis, 46(3):1323–1337,
2008.

[12] V. Faber and Th. Manteuffel. Necessary and sufficient conditions for
the existence of a conjugate gradient method. SIAM J. Numer. Anal.,
21:352–362, 1984.

[13] R. W. Freund. Solution of Shifted Linear Systems by Quasi-Minimal
Residual Iterations. In L. Reichel, A. Ruttan, and R. S. Varga, editors,
Numerical Linear Algebra, pages 101–121. W. de Gruyter, 1993.

[14] R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal. An implementa-
tion of the look-ahead Lanczos algorithm for non-Hermitian matrices.
SIAM Journal on Scientific Computing, 14(1):137–158, 1993.

[15] R. W. Freund and N. M. Nachtigal. QMR: a Quasi-Minimal Residual
Method for Non-Hermitian Linear Systems. Numer. Math., 60:315–339,
1991.

[16] A. Frommer. BiCGStab(l) for families of shifted linear systems. Com-
puting, 70(2):87–109, 2003.

[17] A. Frommer and U. Glässner. Restarted GMRES for shifted linear
systems. SIAM J. Sci. Comput., 19:15–26, 1998.

[18] A. Frommer and V. Simoncini. Matrix functions. To appear in ”Model
Order Reduction: Theory, Research Aspects and Applications”, Math-
ematics in Industry, Schilders, Wil H. A. and van der Vorst, Henk A.
eds, Springer, Heidelberg.

[19] P. H. Ginsparg and K. G. Wilson. A remnant of chiral symmetry on
the lattice. Phys. Rev. D25, pages 2649–2657, 1982.

[20] G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins
University Press, 1996.

[21] W. Gragg. Positive definite Toeplitz matrices, the Arnoldi process for
isometric operators, and Gaussian quadrature on the unit circle. J. of
Comput. and Appl. Mathematics, 46:183–198, 1993.

BIBLIOGRAPHY 106

[22] M. R. Hestenes and E. Stiefel. Methods of Conjugate Gradients for
Solving Linear Systems. J. Res. Nat. Bur. Stand., 49:409–436, 1952.

[23] N. J. Higham. Functions of Matrices: Theory and Computation. Society
for Industrial and Applied Mathematics, 2008.

[24] R. Horn and Ch. R. Johnson. Matrix Analysis. Cambridge University
Press, 1985.

[25] R. Horn and Ch. R. Johnson. Topics in Matrix Analysis. Cambridge
University Press, 1991.

[26] D. Ingerman, V. Druskin, and L. Knizhnerman. Optimal finite differ-
ence grids and rational approximations of the square root. I. Elliptic
problems. Comm. Pure Appl. Math., 53(8):1039–1066, 2000.

[27] C. Jagels and L. Reichel. A fast minimal residual algorithm for
shifted unitary matrices. Numerical Linear Algebra with Applications,
1(6):555–570, 1994.

[28] Ch. Kenney and A. Laub. The Matrix Sign Function. IEEE Transac-
tions on Automatic Control, 40(8):1330–1348, 1995.

[29] J. Liesen and Z. Strakos. On optimal short recurrences for generating
orthogonal Krylov subspace bases. accepted for publication in SIAM
Review.

[30] R. Morgan. A restarted GMRES method augmented with eigenvectors.
SIAM J. Matrix Anal. Appl., 16:1154–1176, 1995.

[31] R. Morgan. Implicitly restarted GMRES and Arnoldi methods for
nonsymmetric systems of equations. SIAM J. Matrix Anal. Appl.,
21(4):1112–1135, 2000.

[32] R. Morgan. GMRES with deflated restarting. SIAM J. Sci. Comp., 24,
2002.

[33] R. Morgan and W. Wilcox. Deflated iterative methods for linear equa-
tions with multiple right hand sides. arXiv:0707.0505, 2007.

[34] R. Narayanan and H. Neuberger. An alternative to domain wall
fermions. Phys. Rev., 2000. arXiv:hep-lat/0005004v2.

[35] H. Neuberger. A Practical Implementation of the Overlap Dirac Oper-
ator. Phys. Rev. Lett., 81(19):4060 – 4062, 1998.

[36] H. Neuberger. Overlap Dirac operator. In A. Frommer, Th. Lippert,
B. Medeke, and K. Schilling, editors, Numerical challenges in Lattice
Quantum Chromodynamics. Springer Berlin, 2000.

BIBLIOGRAPHY 107

[37] C. C. Paige and M. A. Saunders. Solution of Sparse Indefinite Systems
of Linear Equations. SIAM J. Num. Anal., 12:617–629, 1975.

[38] J. D. Roberts. Linear model reduction and solution of the algebraic Ric-
cati equation by use of the sign function. Internat. J. Control, 32:677–
687, 1980.

[39] H. Rutishauser. Bestimmung der Eigenwerte orthogonaler Matrizen.
Numerische Mathematik, 9:104–108, 1966.

[40] Y. Saad. Krylov subspace methods for solving large unsymmetric linear
systems. Math. Comp., 37:105–126, 1981.

[41] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing,
1996.

[42] Y. Saad and M. Schultz. GMRES: A Generalized Minimal Residual
Algorithm for Solving Nonsymmetric Linear Systems. SIAM J. Sci.
Statist. Comp., 7:856–869, 1986.

[43] V. Simoncini. Restarted full orthogonalization method for shifted linear
systems. BIT Numerical Mathematics, 43:459–466, 2003.

[44] G. Sleijpen and J. van den Eshof. Inexact Krylov subspace methods for
linear systems. SIAM J. on Matrix Analysis and Applications, 26:125–
153, 2005.

[45] J. van den Eshof, A. Frommer, Th. Lippert, K. Schilling, and H. van der
Vorst. Numerical methods for the QCD overlap operator: I. sign-
function and error bounds. Comput. Phys. Commun., 146:203–224,
2002.

[46] J. van den Eshof, G. Sleijpen, and M. van Gijzen. Relaxation strategies
for nested Krylov methods. SIAM J. of Computational and Applied
Mathematics, 177:347–365, 2005.

[47] E. I. Zolotarev. Application of elliptic functions to the question of
functions deviating least and most from zero. Zap. Imp. Akad. Nauk.
St. Petersburg, 30(5), 1877.

