Krylov subspace methods for shifted unitary matrices and eigenvalue deflation applied to the Neuberger Operator and the matrix sign function

Zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften
am Fachbereich Mathematik der
Bergischen Universität Wuppertal
genehmigte
Dissertation
von
Dipl.-Math. Katrin Schäfer

Tag der mündlichen Prüfung:	29. 8. 2008
Referent:	Prof. Dr. A. Frommer
Korreferent:	Prof. Dr. M. Günther

Die Dissertation kann wie folgt zitiert werden:
urn:nbn:de:hbz:468-20080520
[http://nbn-resolving.de/urn/resolver.pl?urn=urn\%3Anbn\%3Ade\%3Ahbz\%3A468-20080520]

Danke

Ich danke meinem Doktorvater Prof. Dr. Andreas Frommer sowie Prof. Dr. Bruno Lang, Prof. Dr. Michael Günther, Prof. Dr. Francesco Knechtli, Brigitte Schultz, Dr. Holger Arndt sowie der gesamten Gruppe FGAngInf, von denen mich jeder auf seine Weise unterstützt hat. Meiner Familie und meinen Freunden danke ich für ihre Geduld und ihr Verständnis.

Contents

Preface 1
1 Introduction 5
1.1 Krylov subspace methods 5
1.1.1 Krylov subspaces 5
1.1.2 Iteration methods 7
1.1.3 Krylov bases 8
1.1.4 Classical Krylov subspace methods 11
1.1.5 Inexact methods 15
1.2 Matrix functions 17
1.2.1 Matrix sign function 19
1.2.2 Rational approximation of the sign function 20
1.3 Neuberger Overlap operator 23
2 Krylov subspace methods for shifted unitary matrices 26
2.1 The Faber-Manteuffel theorem 26
2.2 Short recurrence Arnoldi 29
2.2.1 Unitary Arnoldi 29
2.2.2 Isometric Arnoldi 32
2.3 Shifted unitary methods 35
2.3.1 SUOM 35
2.3.2 SHUMR 37
2.3.3 SUFOM 41
2.3.4 SUMR 48
2.4 Discussion 52
3 Deflation for multishift methods 54
3.1 Shifts and restarts 55
3.2 Augmented subspaces 61
3.3 Schur-Deflation 64
3.3.1 FOM-Schur 66
3.3.2 GMRES-Schur 68
3.3.3 BiCG-Schur 73
3.3.4 QMR-Schur 74
3.4 LR-deflation 75
3.4.1 FOM-LR 77
3.4.2 GMRES-LR 78
3.4.3 BiCG-LR 80
3.4.4 QMR-LR 81
3.5 Eliminating converged systems 83
3.6 Deflation of the rational approximation 84
3.7 Discussion 87
3.8 Other deflation techniques 88
4 Numerical results 89
4.1 Matrices 89
4.2 Shifted unitary methods 92
4.3 Deflation 95
A Gamma matrices 102

List of Tables

1 Notation 4
1.1 Classical Krylov subspace methods 15
1.2 Precision of the matrix vector product 17
1.3 Number of poles necessary to achieve an accuracy of 10^{-8} 23
2.1 Shifted unitary methods 53
3.1 Computation of residual norms 84
3.2 Number of poles needed for the matrix MAT3 86
3.3 Number of poles needed for the matrix MAT4 87
3.4 Advantages and disadvantages of Schur- and LR-deflation 87
4.1 Precision of the matrix vector product 93
4.2 Time (in seconds) needed for GMRES (without restarts) with Schur- and LR-deflation 98
4.3 Time (in seconds) needed for GMRES (with restart after 50 iterations) with Schur- and LR-deflation 99
4.4 Time (in seconds) needed for QMR with Schur- and LR- deflation 99
4.5 Time (in seconds) needed for the LR deflated methods (FOM and GMRES with restart after 50 iterations) 100

List of Figures

2.1 Stability of the isometric Arnoldi method 35
3.1 Decrease of the number of systems to solve 84
3.2 Eliminating converged systems - effect on the cost 85
4.1 MAT1: eigenvalues of the matrix M 90
4.2 MAT1: eigenvalues of the matrix $\rho I+\Gamma_{5} \operatorname{sign}(Q), \rho=1.01$ 90
4.3 MAT2: eigenvalues of the matrix M 91
4.4 MAT1: eigenvalues of the matrix $\rho I+\Gamma_{5} \operatorname{sign}(Q), \rho=1.01$ 91
4.5 MAT3: eigenvalues of the matrix Q 92
4.6 MAT4: eigenvalues of the matrix Q 92
4.7 SUOM and SHUMR for MAT1 93
4.8 SUFOM and SUMR for MAT1 93
4.9 SUOM and SHUMR for MAT1 94
4.10 SUFOM and SUMR for MAT1 94
4.11 SUOM and SHUMR for MAT2 95
4.12 SUFOM and SUMR for MAT2 95
4.13 SUMR with $\rho=1.1$ for MAT1 and MAT2 95
4.14 Schur deflated FOM for MAT3 96
4.15 Schur deflated GMRES for MAT3 96
4.16 LR deflated FOM for MAT3 97
4.17 LR deflated GMRES for MAT3 97
4.18 BICG for MAT3 97
4.19 QMR for MAT3 97
4.20 LR deflated FOM for MAT4 100
4.21 LR deflated GMRES for MAT4 100
4.22 LR deflated BiCG and QMR for MAT4 101

Preface

The solution of linear systems $A x=b$ with a large and sparse matrix A plays an important role in numerical linear algebra. There is no strict definition of when a matrix is called sparse or large. With view on the methods used to solve the linear system one should call a matrix sparse when it has enough zero entries to exploit this fact and large when it is too large to be handled with direct methods. The combination of being large and sparse usually allows to use a matrix vector product with A, though.
Linear systems with large sparse matrices thus cannot be solved with direct methods. These matrices exist only as their action on a vector. The methods of choice are therefore iteration methods: Starting with an initial guess, an (improved) approximation is computed in each step. In this work we concentrate on Krylov subspace methods, projection methods choosing the approximation in each step from certain subspaces of \mathbb{C}^{n}, the Krylov subspaces. Krylov subspaces depend on the matrix A. Building a basis for a Krylov subspace requires matrix vector products with A in a way that in the respective iteration methods as well the matrix A is needed only as its action on a vector.

As motivation and example for the methods presented in this thesis we use an application from lattice QCD (quantum chromodynamics). QCD is the theory of the interaction of quarks, the physical particles that build protons and neutrons, for example. This interaction is called strong interaction. Lattice QCD gives a formulation of QCD on a 4 -dimensional space-time lattice. On each lattice site there are 12 unknowns, so that for a lattice of size N in each direction we have $12 \cdot N^{4}$ unknowns.
An important property in QCD is the so-called chiral symmetry. On the lattice chiral symmetry can only be fulfilled in the continuum limit, i.e, for lattice spacing $a \rightarrow 0$. To achieve this, the Ginsparg-Wilson relation is required. Therefore we use the Neuberger overlap operator $\rho I+\Gamma_{5} \operatorname{sign}(Q)$ which fulfills the Ginsparg-Wilson relation and thus realizes chiral symmetry on the lattice.

Actually, the Neuberger overlap operator is not sparse. Even though the matrix Q is sparse, $\operatorname{sign}(Q)$ is not sparse. The matrix vector product with
$\operatorname{sign}(Q)$ can thus not be computed directly. To use iteration methods we have to compute an approximate matrix vector product with $\operatorname{sign}(Q)$. This is done with iteration methods as well, now requiring matrix vector products with the sparse matrix Q. The result is a nested iteration: The inner iteration approximates the action of $\operatorname{sign}(Q)$ on a vector, the outer iteration uses the result of the inner iteration to approximate the solution of a linear system with the Neuberger overlap operator.

We have to distinguish the Neuberger overlap operator at zero chemical potential from the one at non-zero chemical potential. The chemical potential being zero or non-zero results in different properties of the Dirac matrix $D=\Gamma_{5} Q$. Depending on the properties of the Dirac matrix the Neuberger operator shows properties we can exploit - or leaves us without any utilizable structure.

At zero chemical potential the Dirac matrix D is Γ_{5}-symmetric which leads to $Q=\Gamma_{5} D$ being hermitian and $\Gamma_{5} \operatorname{sign}(Q)$ being unitary. This can be exploited in the outer iteration as well as in the inner iteration. For the outer iteration the shifted unitary structure of the Neuberger overlap operator allows iteration methods with short recurrences. Following the FaberManteuffel theorem this seemed to be impossible since (shifted) unitary matrices do not fulfil the requirement of this theorem, i.e., unitary matrices are in general not normal (s) for small s. But it was shown more recently that using a different reccurence scheme a bigger class of matrices allows for short recurrences.
The inner iteration profits from Q being hermitian since that leads to a small number of poles in a rational approximation and allows to use short recurrence multishift methods.
At non-zero chemical potential the Dirac matrix is no longer Γ_{5}-symmetric. Therefore, the Neuberger overlap operator shows no structure to allow for short recurrence iterations for the outer or inner iteration. In addition, the number of poles required for an accurate rational approximation of $\operatorname{sign}(Q) b$ for non-hermitian Q is significantly higher than in the case of Q hermitian.

This thesis is organized as follows.
In Chapter 1 the fundamental principles of iteration methods and Krylov subspaces are presented. Classical Krylov subspace methods are introduced. We present the extension of scalar functions to matrix functions and the matrix sign function. The Neuberger operator is introduced for zero and non-zero chemical potential and the fundamental symmetries of QCD, $\Gamma_{5^{-}}$ symmetry and chiral symmetry are explained.

In Chapter 2 we investigate iteration methods for shifted unitary matrices. Two versions of the Arnoldi method are presented. For unitary matrices these methods build Krylov subspace bases with short recurrences. In combination with the minimal residual or Galerkin condition we obtain four Krylov subspace methods to solve linear systems with shifted unitary matrices. Three of these methods (SUOM, SHUMR and SUMR) are already known $[1,7,8,9]$. We complete the set of methods by combining the isometric Arnoldi method with a Galerkin condition, resulting in SUFOM (shifted unitary FOM). In addition, we give a more detailed theoretic foundation for SUOM and SHUMR than found in the literature up to now. Finally, we modify SHUMR and present a breakdown-free version.

In Chapter 3 we invesigate multishift methods to compute rational approximations to the matrix sign function. We concentrate on methods for non-hermitian matrices with regard to the Neuberger overlap operator at non-zero chemical potential. To accelerate convergence we use eigenvalue information. Two variants of eigenvalue deflation, Schur-deflation and LRdeflation are presented. The idea is to augment Krylov subspaces by some Schur vectors or eigenvectors to eigenvalues with small real part. These deflation methods are applied to multishift versions of FOM, GMRES, BiCG, and QMR to accelerate the rational approximation of $\operatorname{sign}(Q) v$. For the long recurrence methods FOM and GMRES we investigate restarts to limit storage requirements. In this case we combine thus restarts, multishifts and deflation. Finally we reduce the number of poles for the rational approximation of the matrix sign function using the information of the eigenvalue deflation. It turns out that this is only possible for LR-deflation.

In Chapter 4 we give numerical results for the methods presented in the previous two chapters. The shifted unitary methods are tested with the Neuberger overlap operator at zero chemical potential. The sample matrices are taken from matrix market ${ }^{1}$ and refer to 4^{4}-lattices. The deflation methods are tested for the rational approximation of the matrix sign function for a non-hermitian matrix, the Dirac operator at non-zero chemical

[^0]potential. The sample matrices refer to a 4^{4}-lattice and a 6^{4}-lattice, respectively.

Throughout the thesis the following notation is used:

$\langle\cdot, \cdot\rangle$	inner product (Euclidean if not indicated otherwise)						
e_{i}	i-th unit vector						
$\delta_{i, j}$	Kronecker delta function: $\delta_{i, j}=\left\{\begin{array}{ll\|}1 \begin{array}{l}\text { for } i=j \\ 0 \\ \text { for } i \neq j\end{array} \\ \hline\\|\cdot\\|_{2} & \begin{array}{l}\text { the Euclidian vector norm or the induced matrix } \\ \text { norm }\end{array} \\ \hline\\|\cdot\\|_{F} & \text { the Frobenius (matrix) norm } \\ \hline\\|\cdot\\|_{A} & \text { norm induced by the inner product }\langle\cdot, \cdot\rangle_{A}=\langle A \cdot, \cdot\rangle_{2} \\ \hline I_{n} & \begin{array}{l}n \times n \text { unit matrix; if } n \text { is suppressed, the dimension } \\ \text { is obvious from the context }\end{array} \\ \hline A^{H}, v^{H} & \text { the Hermitian adjoint of a matrix or vector } \\ \hline A^{T}, v^{T} & \text { the transpose of a matrix or vector } \\ \hline A^{\dagger} & \text { the Moore-Penrose pseudo inverse } \\ \hline[\cdot] & \text { matrix or vector composed of submatrices or -vectors }\end{array}\right.$						
(\cdot)	matrix or vector given elementwise						
$A \otimes B$	the Kronecker product of the matrices A and B						
$\operatorname{span}(S), S \subseteq \mathbb{C}^{n}$	the set of all linear combinations of vectors in S						
$\operatorname{rank}(A)$	the rank of the matrix A, i.e. the dimension of the space spanned by its rows $/$ columns						
$\operatorname{spec}(A)$	the spectrum of the matrix A, i.e. the set of eigenval- ues of the matrix A						
$\operatorname{range}(A)$	the range of the matrix A, i.e. the space spanned by the columns of the matrix A						
null (A)	the nullspace of the matrix A, i.e. the set of vectors x with $A x=0$						
Π_{n}	polynomials of degree at most n						

Table 1: Notation

Part of this thesis was supported by DFG project Fr755 "Effiziente Löser für das Overlap-Modell der Fermion Diskretisierung in der QCD" (efficient solvers for the overlap model of the fermion discretization in QCD).

Chapter 1

Introduction

1.1 Krylov subspace methods

Let $A \in \mathbb{C}^{n \times n}$ be a non-singular complex matrix. We consider the linear system

$$
\begin{equation*}
A x=b \tag{1.1}
\end{equation*}
$$

with A being large, so that it is not possible to solve (1.1) with direct methods. Iteration methods require the computation of matrix vector products with A though. Therefore we assume A to be sparse or at least involve a structure that allows to compute the desired matrix vector product up to a given accuracy.

Iteration methods compute in step k an approximation x_{k} to the solution of (1.1). This can be done in several ways. In projection methods the approximation x_{k} is chosen from an affine k-dimensional subspace K_{k} of \mathbb{C}^{n}, the search space. The approximation is chosen such that the residual $r_{k}=b-A x_{k}$ is orthogonal to a second k-dimensional subspace L_{k} of \mathbb{C}^{n}, the so-called test space. In every step of the iteration, the test and search space are enlarged so that the next approximation x_{k+1} is chosen from the $(k+1)$-dimensional search space $K_{k+1} \supseteq K_{k}$ such that r_{k+1} is orthogonal to the $(k+1)$-dimensional test space $L_{k+1} \supseteq L_{k}$. Both search and test space thus have to be built iteratively.

1.1.1 Krylov subspaces

Krylov subspaces are perfectly suited to be built iteratively using only one matrix vector multiplication per iteration step. In addition, it turns out that when using Krylov subspaces only one subspace has to be built and used as search and test space.

Definition 1.1. For a matrix $A \in \mathbb{C}^{n \times n}$ and a vector $r \in \mathbb{C}^{n}$ the m-th Krylov subspace generated by A and r is

$$
K_{m}(A, r)=\operatorname{span}\left\{r, A r, A^{2} r, \ldots, A^{m-1} r\right\} .
$$

Obviously, Krylov subspaces are shift invariant, i.e. for a shifted matrix $\rho I+A$ it holds

$$
K_{m}(\rho I+A, r)=K_{m}(A, r) .
$$

The dimension of a Krylov subspace with regard to A and r is bounded by the degree of the minimal polynomial of r in the following way.

Definition 1.2. A minimal polynomial p_{r} of r with regard to A is a polynomial with

$$
\operatorname{deg}\left(p_{r}\right)=\min _{p \in \Pi_{n}}\{\operatorname{deg}(p): p \neq 0, p(A) r=0\} .
$$

The minimal polynomial is unique up to scaling, so its degree is unique. So we call $\operatorname{deg}\left(p_{r}\right)$ the degree of r (with regard to A).

Lemma 1.3. Let $A \in \mathbb{C}^{n \times n}$ and $r \in \mathbb{C}^{n}, r \neq 0$, and let m_{0} be the degree of the minimal polynomial of r with regard to A. Then it holds

$$
\operatorname{dim}\left(K_{m}(A, r)\right)=m \quad \text { for } m \leq m_{0}
$$

and

$$
K_{m}(A, r)=K_{m_{0}}(A, r) \quad \text { for } m \geq m_{0}
$$

Proof. See [41].
Thus, from m_{0} on the Krylov subspaces are A-invariant. The solution of (1.1) is then contained in a shifted Krylov subspace.

Lemma 1.4. Let $A \in \mathbb{C}^{n \times n}$ be nonsingular and $b \in \mathbb{C}^{n}$. For every $x_{0} \in \mathbb{C}^{n}$ it holds

$$
\begin{equation*}
A^{-1} b \in x_{0}+K_{m_{0}}\left(A, r_{0}\right), \tag{1.2}
\end{equation*}
$$

where $r_{0}=b-A x_{0}$ and m_{0} the degree of r_{0}, and

$$
\begin{equation*}
A^{-1} b \notin x_{0}+K_{m}\left(A, r_{0}\right), \quad \text { for } m<m_{0} . \tag{1.3}
\end{equation*}
$$

Proof. Let $p_{m_{0}}$ be a minimal polynomial of r_{0}, i.e. $p_{m_{0}}(A) r_{0}=0$ and $\operatorname{deg}\left(p_{m_{0}}\right)=m_{0}$. Without loss of generality we assume $p_{m_{0}}(0)=1$ such that $p_{m_{0}}(t)=1-t q_{m_{0}-1}(t)$ with $\operatorname{deg}\left(q_{m_{0}-1}\right)=m_{0}-1$. The residual for $x_{m_{0}}=x_{0}+q_{m_{0}-1}(A) r_{0} \in K_{m_{0}}\left(A, r_{0}\right)$ is

$$
\begin{aligned}
b-A x_{m_{0}} & =r_{0}-A q_{m_{0}-1}(A) r_{0} \\
& =p_{m_{0}}(A) r_{0} \\
& =0 .
\end{aligned}
$$

Therefore (1.2) holds. Since the degree of $p_{m_{0}}$ is minimal, it follows (1.3).

1.1.2 Iteration methods

Krylov subspace methods are projection methods for solving systems of the form (1.1) using affine Krylov subspaces as search spaces: In every iterative step an iterate x_{m} is chosen from an affine Krylov subspace

$$
x_{m} \in x_{0}+K_{m}\left(A, r_{0}\right),
$$

where x_{0} is the initial guess and $r_{0}=b-A x_{0}$. The initial guess is often chosen as $x_{0}=0$ which gives $r_{0}=b$. Since we will need non-zero x_{0} when investigating restarts in the following, we assume a general, not necesarrily zero, initial guess.

From the definition of Krylov subspaces it is clear that the iterates can be written as

$$
x_{m}=x_{0}+q_{m-1}(A) r_{0},
$$

with a polynomial q_{m-1} of degree less or equal to $m-1$. The corresponding residuals are

$$
\begin{equation*}
r_{m}=b-A x_{m}=p_{m}(A) r_{0}, \tag{1.4}
\end{equation*}
$$

with a polynomial $p_{m}(t)=1-t q_{m-1}(t)$ of degree less or equal m and $p_{m}(0)=1$. From (1.4) it directly follows that $r_{m} \in K_{m+1}\left(A, r_{0}\right)$. For the error it holds

$$
e_{m}=A^{-1} b-x_{m}=A^{-1} r_{m}
$$

and using the same polynomials p_{m} as for the residuals it holds same as for the residuals

$$
e_{m}=p_{m}(A) e_{0}
$$

The various Krylov subspace methods differ in the way the iterates are chosen from the Krylov subspace. For this purpose we can either demand for $x_{m} \in x_{0}+K_{m}\left(A, r_{0}\right)$ a (Petrov-)Galerkin condition

$$
\begin{equation*}
r_{m} \perp L \tag{1.5}
\end{equation*}
$$

with a subspace L or the minimal residual condition

$$
\begin{equation*}
\left\|r_{m}\right\|_{2}=\min _{x \in x_{0}+K_{m}\left(A, r_{0}\right)}\|b-A x\| . \tag{1.6}
\end{equation*}
$$

Definition 1.5. The condition (1.5) for choosing $x_{m} \in x_{0}+K_{m}\left(A, r_{0}\right)$ is called

- Galerkin condition if $L=K_{m}\left(A, r_{0}\right)$,
- Petrov-Galerkin condition if $L \neq K_{m}\left(A, r_{0}\right)$.

Obviously, using a (Petrov-)Galerkin condition, the subspace L is the test space. In fact, choosing the iterate with the minimal residual condition (1.6) results in residuals orthogonal to $A K_{m}\left(A, r_{0}\right)$. The minimal residual condition can thus be seen as a Petrov-Galerkin condition with the test space $L=A K_{m}\left(A, r_{0}\right)$.

For hermitian matrices both Galerkin and minimal residual condition result in a minimization of the errors e_{m}, in different norms though. While for the Galerkin condition

$$
\left\|e_{m}\right\|_{A}=\min _{x \in x_{0}+K_{m}\left(A, r_{0}\right)}\left\|A^{-1} b-x\right\|_{A},
$$

see [41], for the minimal residual condition it holds

$$
\left\|e_{m}\right\|_{A^{H} A}=\min _{x \in x_{0}+K_{m}\left(A, r_{0}\right)}\left\|A^{-1} b-x\right\|_{A^{H} A} .
$$

1.1.3 Krylov bases

Krylov subspace bases are naturally built iteratively by multiplying the last basis vector with A and orthogonalizing against the previous vectors.

Let A be non hermitian. Using the modified Gram-Schmidt orthogonalization to produce orthonormal vectors $v_{k}, k=1, \ldots, m$ that span $K_{m}\left(A, r_{0}\right)$ leads to the so-called Arnoldi method [2].

```
Algorithm 1.6. Arnoldi
    \(\left\{\right.\) Input \(\left.m \leq m_{0}, r_{0}, A\right\}\)
    \(\tilde{v}_{1}=r_{0}\)
    \(h_{1,0}=\left\|\tilde{v}_{1}\right\|_{2}\)
    for \(k=1, \ldots, m\) do
        \(v_{k}=\tilde{v}_{k} / h_{k, k-1}\)
        \(\tilde{v}_{k+1}=A v_{k}\)
        for \(i=1, \ldots, k\) do
            \(h_{i, k}=\left\langle\tilde{v}_{k+1}, v_{i}\right\rangle\)
            \(\tilde{v}_{k+1}=\tilde{v}_{k+1}-h_{i, k} v_{i}\)
        end for
        \(h_{k+1, k}=\left\|\tilde{v}_{k+1}\right\|_{2}\)
    end for
```

The matrices $V_{m}=\left[v_{1}, \ldots, v_{m}\right]$ and $H_{m}=\left(h_{i, j}\right) \in \mathbb{C}^{m \times m}$ satisfy the Arnoldi relations

$$
\begin{equation*}
V_{m}^{H} A V_{m}=H_{m} \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
A V_{m}=V_{m} H_{m}+h_{m+1, m} v_{m+1} e_{m}^{T}=V_{m+1} \widehat{H}_{m}, \tag{1.8}
\end{equation*}
$$

with

$$
\widehat{H}_{m}=\left[\begin{array}{c}
H_{m} \\
h_{m+1, m} e_{m}^{T}
\end{array}\right] \in \mathbb{C}^{(m+1) \times m} .
$$

The Arnoldi method has a breakdown when $k=m_{0}$. In this situation the vectors $v_{1}, \ldots, v_{m_{0}}$ already span an A-invariant subspace of \mathbb{C}^{n} such that $A v_{m_{0}} \in K_{m_{0}}\left(A, r_{0}\right)$. Therefore it holds $\tilde{v}_{m_{0}+1}=0$ and thus $h_{m_{0}+1, m_{0}}=0$. According to Lemma 1.4 this is the natural situation to stop the iteration anyway and the solution of (1.1) is contained in the corresponding affine Krylov subspace.

The matrix \widehat{H}_{m} has rank m for $m \leq m_{0}$. This is due to its $(m+1) \times m$ Hessenberg structure with non-zero subdiagonal. The matrix H_{m} can be singular, though. However, if A is positive real, H_{m} is positive real, too. This is because

$$
\left\langle H_{m} x, x\right\rangle=\left\langle V_{m}^{H} A V_{m} x, x\right\rangle=\left\langle A V_{m} x, V_{m} x\right\rangle
$$

and V_{m} has full rank.
A disadvantage of the Arnoldi method is its long recursion. For the orthogonalization of a new Arnoldi vector, all previous Arnoldi vectors have to be stored. To circumvent storage problems one can bound the number of vectors to be stored by restarting after $m<m_{0}$ steps which results in blocks of m orthogonal vectors. Alternatively, instead of demanding the basis $\left\{v_{1}, \ldots, v_{m}\right\}$ of $K_{m}\left(A, r_{0}\right)$ to be orthogonal we can demand $\left\{v_{1}, \ldots, v_{m}\right\}$ to be orthogonal to a basis $\left\{w_{1}, \ldots, w_{m}\right\}$ of $K_{m}\left(A^{H}, \tilde{r}_{0}\right)$, i.e. we build biorthogonal bases $\left\{v_{1}, \ldots, v_{m}\right\}$ and $\left\{w_{1}, \ldots, w_{m}\right\}$. This is done in the unsymmetric Lanczos method. Note that we have to invest two matrix vector products instead of one to gain the short recurrence.

```
Algorithm 1.7. Unsymmetric Lanczos
    \(\left\{\right.\) Input \(\left.m \leq m_{0}, r_{0}, A\right\}\)
    \(\tilde{v}_{1}=r_{0}, \tilde{w}_{1}=\tilde{r}_{0} \neq 0 \in \mathbb{C}^{n}, v_{0}=w_{0}=0\)
    for \(k=1, \ldots, m\) do
        chose \(\beta_{k}, \gamma_{k}: \beta_{k} \gamma_{k}=\left\langle\tilde{v}_{k}, \tilde{w}_{k}\right\rangle\)
        \(v_{k}=\tilde{v}_{k} / \gamma_{k}\)
        \(w_{k}=\tilde{w}_{k} / \bar{\beta}_{k}\)
        \(\alpha_{k}=\left\langle A v_{k}, w_{k}\right\rangle\)
        \(\tilde{v}_{k+1}=A v_{k}-\alpha_{k} v_{k}-\beta_{k} v_{k-1}\)
        \(\tilde{w}_{k+1}=A^{H} w_{k}-\bar{\alpha}_{k} w_{k}-\bar{\gamma}_{k} w_{k-1}\)
    end for
```

With $V_{m}=\left[v_{1}, \ldots, v_{m}\right], W_{m}=\left[w_{1}, \ldots, w_{m}\right]$ the biorthogonality reads $V_{m}^{H} W_{m}=W_{m}^{H} V_{m}=0$, and with

$$
T_{m}=\left(\begin{array}{cccc}
\alpha_{1} & \beta_{2} & & 0 \\
\gamma_{2} & \alpha_{2} & \ddots & \\
& \ddots & \ddots & \beta_{m} \\
0 & & \gamma_{m} & \alpha_{m}
\end{array}\right)
$$

the following relations hold:

$$
\begin{align*}
A V_{m} & =V_{m} T_{m}+\gamma_{m+1} v_{m+1} e_{m}^{T} \tag{1.9}\\
A^{H} W_{m} & =W_{m} T_{m}^{H}+\bar{\beta}_{m+1} w_{m+1} e_{m}^{T} \\
W_{m}^{H} A V_{m} & =T_{m}
\end{align*}
$$

The unsymmetric Lanczos method has a breakdown when $k=m_{0}$, since $v_{1}, \ldots, v_{m_{0}}$ span an A-invariant subspace and $A v_{m_{0}} \in K_{m_{0}}\left(A, r_{0}\right)$. Therefore it holds $\tilde{v}_{m_{0}+1}=0$ and thus $\left\langle\tilde{v}_{m_{0}+1}, \tilde{w}_{m_{0}+1}\right\rangle=0$. Again, this is the natural situation to stop the iteration, see Lemma 1.4. Actually, the unsymmetric Lanczos method can have a breakdown for $k<m_{0}$, namely when $\tilde{w}_{k+1}=0$, i.e., when $K_{k+1}\left(A^{H}, \tilde{r}_{0}\right)=K_{k}\left(A^{H}, \tilde{r}_{0}\right)$ or even when $\left\langle\tilde{v}_{k+1}, \tilde{w}_{k+1}\right\rangle=0$ while $\tilde{v}_{k+1} \neq 0$ and $\tilde{w}_{k+1} \neq 0$.

Breakdowns with $\tilde{v}_{m}=0$ or $\tilde{w}_{m}=0$ are thus called lucky, other breakdowns are called serious. Most of the serious breakdowns can be avoided using look-aheads, [14].

As long as no breakdowns occur, the matrix

$$
\widehat{T}_{m}=\left[\begin{array}{c}
T_{m} \\
\gamma_{m+1} e_{m}^{T}
\end{array}\right]
$$

is non-singular since $\gamma_{i} \neq 0$ for $i=1, \ldots, m+1$. The matrix T_{m} might be singular though.

In the case of a symmetric matrix $A=A^{H}$ both the Arnoli and the unsymmetric Lanczos method reduce to the same symmetric method when $\tilde{r}_{0}, \gamma_{k}$, and β_{k} are chosen right. The inner for-loop of the Arnoldi method $i=1, \ldots, k$ reduces to $i=k-1, k$ such that H_{m} is tridiagonal. In the unsymmetric Lanczos method, choosing $\tilde{r}_{0}=r_{0}$ and $\beta_{k}=\gamma_{k}$, we get $V_{m}=W_{m}$. Actually, it even holds $T_{m}=H_{m}, T_{m}$ and H_{m} resulting from the unsymmetric Lanczos method and the Arnoldi method, respectively. The symmetric method is called Lanczos method.

For shifted matrices $A=\rho I+U$ the Krylov subspaces are built with regard to the matrix U since $K_{m}\left(A, r_{0}\right)=K_{m}\left(U, r_{0}\right)$. Therefore, the Arnoldi relations (1.7), (1.8) and (1.9), respectively, hold with regard to U.

We get Arnoldi relations for the shifted matrix A directly by shifting the respective relations for the unitary matrix U. This is summarized in the following lemma, the proof of which is trivial.
Lemma 1.8. Let $V_{m}=\left[v_{1}, \ldots, v_{m}\right]$ and $H_{m}^{(U)}=V_{m}^{H} U V_{m}$ be obtained from the Arnoldi method. Then

$$
H_{m}^{(A)}=V_{m}^{H} A V_{m}=\rho I+H_{m}^{(U)}
$$

and

$$
A V_{m}=V_{m}\left(\rho I+H_{m}^{(U)}\right)+h_{m+1, m} v_{m+1} e_{m}^{T}
$$

Let $V_{m}=\left[v_{1}, \ldots, v_{m}\right], W_{m}=\left[w_{1}, \ldots, w_{m}\right]$ and $T_{m}^{(U)}=W_{m}^{H} U V_{m}$ be obtained by the Lanczos biorthogonalization method. Then

$$
\begin{aligned}
A V_{m} & =V_{m}\left(\rho I+T_{m}^{(U)}\right)+\gamma_{m+1} v_{m+1} e_{m}^{T}, \\
A^{H} W_{m} & =W_{m}\left(\bar{\rho} I+T_{m}^{(U)^{H}}\right)+\bar{\beta}_{m+1} w_{m+1} e_{m}^{T}, \\
T_{m}^{(A)} & =\rho I+T_{m}^{(U)} .
\end{aligned}
$$

1.1.4 Classical Krylov subspace methods

Up to now a large number of Krylov subspace methods exist. Most of them are variants of a few basic methods. These basic methods differ in the underlying method to build the Krylov basis and the condition used to choose the iterate from the Krylov subspace.

Let A be non hermitian. There exist four basic Krylov subspace methods combining the Arnoldi method or the unsymmetric Lanczos method with a (Petrov-)Galerkin condition or a minimal residual condition.

Having a basis $\left\{v_{1}, \ldots, v_{m}\right\}$ for $K_{m}\left(A, r_{0}\right)$ given, computed with the Arnoldi method, the iterates read

$$
x_{m}=x_{0}+V_{m} y_{m},
$$

where $V_{m}=\left[v_{1}, \ldots, v_{m}\right]$ and $y_{m} \in \mathbb{C}^{m}$, and the corresponding residuals are

$$
r_{m}=r_{0}-A V_{m} y_{m} .
$$

The Galerkin condition $r_{m} \perp K_{m}\left(A, r_{0}\right)$ translates to $V_{m}^{H} r_{m}=0$ such that y_{m} is the solution of the $m \times m$ linear system

$$
\begin{equation*}
V_{m}^{H} A V_{m} y_{m}=H_{m} y_{m}=V_{m}^{H} r_{0} . \tag{1.10}
\end{equation*}
$$

Computing the iterates this way leads to the so called full orthogonalization method (FOM) [40].

The FOM iterates exist when A is positive real since then H_{m} is positive real and thus non-singular. On the other hand, when A is indefinite, H_{m} can be singular and the FOM iterates do not necessarily exist.

The FOM residuals are always multiples of Arnoldi vectors.
Lemma 1.9. The FOM residuals are

$$
r_{m}=-h_{m+1, m} e_{m}^{T} y_{m} v_{m+1} .
$$

Proof. Using the Arnoldi relation (1.8) it holds

$$
\begin{aligned}
r_{m} & =r_{0}-A V_{m} y_{m} \\
& =r_{0}-V_{m} H_{m} y_{m}-h_{m+1, m} e_{m}^{T} y_{m} v_{m+1} .
\end{aligned}
$$

Since $r_{0}=\left\|r_{0}\right\|_{2} v_{1}$ and y_{m} is the solution of (1.10), it holds

$$
r_{0}-V_{m} H_{m} y_{m}=0 .
$$

For the minimal residual condition we minimize in the Arnoldi case

$$
\begin{aligned}
\left\|r_{m}\right\|_{2}=\left\|r_{0}-A V_{m} y_{m}\right\|_{2} & =\left\|r_{0}-V_{m+1} \widehat{H}_{m} y_{m}\right\|_{2} \\
& =\left\|V_{m+1}\left(\beta e_{1}-\widehat{H}_{m} y_{m}\right)\right\|_{2} \\
& =\left\|\beta e_{1}-\widehat{H}_{m} y_{m}\right\|_{2} .
\end{aligned}
$$

The least squares problem

$$
\begin{equation*}
\left\|\beta e_{1}-\widehat{H}_{m} y_{m}\right\|_{2}=\min _{y \in \mathbb{C}^{m}}\left\|\beta e_{1}-\widehat{H}_{m} y\right\|_{2} \tag{1.11}
\end{equation*}
$$

is usually solved using the QR-decomposition $\widehat{H}_{m}=Q_{m+1} \widehat{R}_{m}$, where

$$
\widehat{R}_{m}=\left[\begin{array}{c}
R_{m} \\
0
\end{array}\right] .
$$

Since Q_{k+1} is unitary, (1.11) is equivalent to

$$
\begin{equation*}
\left\|\beta e_{1}-\widehat{H}_{m} y_{m}\right\|_{2}=\min _{y \in \mathbb{C}^{m}}\left\|\beta Q_{k+1}^{H} e_{1}-\widehat{R}_{m} y\right\|_{2} . \tag{1.12}
\end{equation*}
$$

The resulting method is called generalized minimum residual method (GMRES), see [42].

In contrast to the FOM iterates the GMRES iterates always exist if $m<m_{0}$. This is because $\operatorname{rank}\left(\widehat{H}_{m}\right)=m$.

Obviously, for the norm of the GMRES residuals it holds

$$
\left\|r_{m}\right\|_{2}=\left|\beta e_{k+1}^{T} Q_{k+1}^{H} e_{1}\right| .
$$

Equivalently, y_{m} can be expressed using the Moore-Penrose pseudo-inverse $\widehat{H}_{m}^{\dagger}$ of \widehat{H}_{m} :

Lemma 1.10. The least squares problem (1.11) is equivalent to

$$
\begin{equation*}
\widehat{H}_{m}^{H} \widehat{H}_{m} y_{m}=\widehat{H}_{m}^{H} \beta e_{1}, \tag{1.13}
\end{equation*}
$$

i.e.

$$
y_{m}=\widehat{H}_{m}^{\dagger} \beta e_{1}=\left(\widehat{H}_{m}^{H} \widehat{H}_{m}\right)^{-1} \widehat{H}_{m}^{H} \beta e_{1} .
$$

Proof. (1.13) is the normal equation for (1.11) and $\operatorname{rank}\left(\widehat{H}_{m}\right)=m$.

Using the Lanczos biorthogonalization and a Petrov-Galerkin condition with L the span of the columns of W_{m}, the orthogonality condition translates thus to $W_{m}^{H} r_{m}=0$, and y_{m} is the solution of the linear system of size $m \times m$

$$
\begin{equation*}
W_{m}^{H} A V_{m} y_{m}=T_{m} y_{m}=W_{m}^{H} r_{0} . \tag{1.14}
\end{equation*}
$$

From the system (1.14) short recurrence updates for $x_{m}=V_{m} y_{m}$ can be obtained by exploiting the tridiagonal structure of T_{m}. The resulting method is called BiCG, see [20].

In addition to the breakdowns of the Lanczos biorthogonalization, the BiCG iterates do not necessarily exist since T_{m} might be singular.

Anologous to the FOM residuals being multiples of the Arnoldi vectors, the BiCG residuals are multiples of the Lanczos vectors for $K_{m}\left(A, r_{0}\right)$.

Lemma 1.11. The BiCG residuals are

$$
r_{m}=-\gamma_{m+1} e_{m}^{T} y_{m} v_{m+1} .
$$

Proof. Using relation (1.9) it holds

$$
\begin{aligned}
r_{m} & =r_{0}-A V_{m} y_{m} \\
& =r_{0}-V_{m} T_{m} y_{m}-\gamma_{m+1} e_{m}^{T} y_{m} v_{m+1} \\
& =r_{0}-V_{m} W_{m}^{H} r_{0}-\gamma_{m+1} e_{m}^{T} y_{m} v_{m+1} .
\end{aligned}
$$

Since $r_{0}=\gamma_{1} v_{1}$ and $W_{m}^{H} v_{1}=e_{1}$ it holds

$$
r_{0}-V_{m} W_{m}^{H} r_{0}=0
$$

To derive a method analogous to GMRES based on the Lanczos biorthogonalization the minimal residual condition has to be weakend. This is because

$$
\begin{equation*}
\left\|r_{m}\right\|_{2}=\left\|r_{0}-A V_{m} y_{m}\right\|_{2}=\left\|V_{m+1}\left(\gamma_{1} e_{1}-\widehat{T}_{m} y_{m}\right)\right\|_{2} \neq\left\|\gamma_{1} e_{1}-\widehat{T}_{m} y_{m}\right\|_{2} \tag{1.15}
\end{equation*}
$$

since V_{m+1} is not orthogonal in this case. Still, we can demand

$$
\begin{equation*}
\left\|r_{0}-A V_{m} y_{m}\right\|_{2}=\min _{y \in \mathbb{C}^{m}}\left\|\gamma_{1} e_{1}-\widehat{T}_{m} y\right\|_{2} \tag{1.16}
\end{equation*}
$$

instead of the minimal residual condition (1.11). The condition (1.16) is called quasi minimal residual condition. As for GMRES, (1.16) is usually solved using the QR-decomposition $\widehat{T}_{m}=Q_{m+1} \widehat{R}_{m}$. Since \widehat{T}_{m} is tridiagonal, the unitary matrix Q_{m+1} can be written as a product of m Givens matrices, each one chosen to zero out one subdiagonal element of \widehat{T}_{m}. In this way, exploiting the tridiagonal structure of \widehat{T}_{m} leads to short recurrences for $x_{m}=V_{m} y_{m}$. The resulting method is called quasi minimum residual method (QMR), see [15].

As long as $m<m_{0}$ and no breakdown occurs, $\operatorname{rank}\left(\widehat{T}_{m}\right)=m$ and thus the QMR iterates exist.

Due to the inequality in (1.15), the QMR residuals are not as simply obtained as the GMRES residuals.

Lemma 1.12. Let Q_{m+1} be written as a product of Givens matrices

$$
Q_{m+1}=G_{1}\left(c_{1}\right) \ldots G_{m}\left(c_{m}\right)
$$

with

$$
G_{i}\left(c_{i}\right)=\left[\begin{array}{cccc}
I_{i-1} & & & \\
& -c_{i} & s_{i} & \\
& s_{i} & \bar{c}_{i} & \\
& & & I_{m-i-1}
\end{array}\right] .
$$

Then for the QMR residuals it holds

$$
r_{m}=s_{m} \frac{\eta_{m}}{\eta_{m-1}} r_{m-1}+\eta_{m} \bar{c}_{m} v_{m+1}
$$

with $\eta_{m}=\gamma_{1} e_{m+1}^{T} Q_{m+1}^{H} e_{1}$.
Proof. The QMR residuals are

$$
r_{m}=V_{m+1} Q_{m+1}\left(\gamma_{1} Q_{m+1}^{H} e_{1}-\widehat{R}_{m} y_{m}\right) .
$$

Since y_{m} is the solution of (1.16) it holds

$$
\gamma_{1} Q_{m+1}^{H} e_{1}-\widehat{R}_{m} y_{m}=\left(\gamma_{1} e_{m+1}^{T} Q_{m+1}^{H} e_{1}\right) e_{m+1}=\eta_{m} e_{m+1}
$$

such that

$$
\begin{aligned}
r_{m} & =\eta_{m} V_{m+1} Q_{m+1} e_{m+1} \\
& =\eta_{m}\left[V_{m} v_{m+1}\right]\left[\begin{array}{cc}
Q_{m} & \\
& 1
\end{array}\right]\left(0, \ldots, 0, s_{m}, \bar{c}_{m}\right)^{T} \\
& =\eta_{m}\left[s_{m} V_{m} Q_{m} e_{m}+\bar{c}_{m} v_{m+1}\right] \\
& =s_{m} \frac{\eta_{m}}{\eta_{m-1}} r_{m-1}+\eta_{m} \bar{c}_{m} v_{m+1} .
\end{aligned}
$$

For hermitian matrices FOM and BiCG reduce to the conjugate gradient method (CG), see [22], and GMRES and QMR reduce to the minimum residual method (MINRES), see [37]. Table 1.1 gives an overview over the presented six classical Krylov subspace methods.

method/condition	Galerkin	(quasi) minimal residual
Arnoldi	FOM	GMRES
Lanczos biorthogonalization	BiCG	QMR
Lanczos	CG	MINRES

Table 1.1: Classical Krylov subspace methods

1.1.5 Inexact methods

All Krylov subspace methods contain a matrix vector multiplication as the core computation in each step. When we apply the methods of the preceding sections, e.g. to the Neuberger operator $\rho I+\Gamma_{5} \operatorname{sign}(Q)$ we cannot compute this matrix vector product directly $\operatorname{since} \operatorname{sign}(Q)$ is large but not sparse even though Q is sparse. So we cannot directly compute the exact product $U v=\Gamma_{5} \operatorname{sign}(Q) v$ for a vector v.

Replacing the exact product by an approximation, for example using a rational approximation to the sign function, leads to so-called inexact Krylov subspace methods [10, 44, 46]. When the approximation is obtained from an iterative method, we get a nested iteration with an inner iteration for the approximation of the matrix vector product run in every step of the outer iteration.

An inexact matrix vector product can be viewed as a pertubation of the exact product, i.e.

$$
w=A v+g
$$

with a perturbation $g,\|g\|_{2} \leq \eta\|A\|_{2}\|v\|_{2}$. The question that arrises is: How does this perturbation (i.e. η) influence the convergence of the inexact method?

Running the Arnoldi process with an inexact matrix vector product changes the Arnoldi relation (1.8) to

$$
A V_{m}+G_{m}=V_{m+1} \widehat{H}_{m}
$$

where

$$
G_{m}=\left[g_{1}, \ldots, g_{m}\right], \quad\left\|g_{i}\right\|_{2} \leq \eta_{i},
$$

since $\left\|v_{i}\right\|_{2}=1$. This is equivalent to running the Arnoldi method with the perturbed matrix $\tilde{A}=A+G_{m} V_{m}^{H}$:

$$
\left(A+G_{m} V_{m}^{H}\right) V_{m}=V_{m+1} \widehat{H}_{m} .
$$

The iterates, which are approximations to the matrix vector product in this case, can again be chosen by using a minimal residual or Galerkin condition. Independent from the chosen condition, the (true) residuals are

$$
\begin{align*}
b-(\rho I+A) x_{m} & =r_{0}-(\rho I+A) V_{m} y_{m} \\
& =r_{0}-\rho V_{m} y_{m}-V_{m+1} \widehat{H}_{m} y_{m}+G_{m} y_{m} . \tag{1.17}
\end{align*}
$$

Note that $r_{m}=r_{0}-\rho V_{m} y_{m}-V_{m+1} \widehat{H}_{m} y_{m}$ are the residuals computed in the iteration. The vector $G_{m} y_{m}=\left(b-(\rho I+A) x_{m}\right)-r_{m}$ is called residual gap.

The computed residuals can be monitored during the iteration, while we are actually interested in the true residuals. From (1.17) we get the obvious bound

$$
\left\|b-(\rho I+A) x_{m}\right\|_{2} \leq\left\|r_{m}\right\|_{2}+\left\|G_{m} y_{m}\right\|_{2} .
$$

Therefore, to assure that for the true residual we have

$$
\left\|b-(\rho I+A) x_{m}\right\|_{2}=\mathcal{O}(\epsilon),
$$

we should choose the η_{i} such that for the residual gap

$$
\begin{equation*}
\left\|G_{m} y_{m}\right\|_{2}=\mathcal{O}(\epsilon) \tag{1.18}
\end{equation*}
$$

This can be achieved by choosing $\eta_{i}=\epsilon$ throughout the iteration. Actually, it suffices to demand less. By choosing η_{i} as shown in Table 1.2 the inexact method starts with a matrix vector product approximated to high accuracy, but the accuracy may be decreased during the iteration, i.e. η_{j} grows with the residual norm getting smaller. Still (1.18) is achieved. For a detailed argumentation see [44].

Inexact methods with this property are called relaxed [46]. The obvious advantage of relaxation is, that computing the matrix vector product to lower accuracy causes less computational cost.

condition	tolerance η_{j}		
Galerkin	$\epsilon \cdot \sqrt{\sum_{i=0}^{j}\left\\|r_{i}\right\\|_{2}^{-2}}$		
minimal residual	$\epsilon /\left\\|r_{j}\right\\|_{2}$		

Table 1.2: Precision of the matrix vector product

1.2 Matrix functions

There are several ways to extend functions to matrix functions, i.e. to extend a function $f: \mathbb{C} \rightarrow \mathbb{C}$ to a function $f: \mathbb{C}^{n \times n} \rightarrow \mathbb{C}^{n \times n}$. A compact overview is given in [18], for a thorough treatment see [23]. One definition uses Cauchy's integral formula:

Definition 1.13. Let f be analytic on and inside a closed contour C that encloses $\operatorname{spec}(A)$. Then the matrix function is defined as

$$
f(A)=\frac{1}{2 \pi i} \int_{C} f(\zeta)(\zeta I-A)^{-1} d \zeta
$$

An alternative definition of matrix functions uses the Jordan decomposition. The Definitions 1.14 and 1.13 are consistent, see [18, 23].

Definition 1.14. Let $A \in \mathbb{C}^{n \times n}$ and $A=X \operatorname{diag}\left(J_{1}\left(\lambda_{1}\right), \ldots, J_{t}\left(\lambda_{t}\right)\right) X^{-1}$ the Jordan decomposition of A with Jordan blocks $J_{i} \in \mathbb{C}^{m_{i} \times m_{i}}$. Assume that the function $f: \mathbb{C} \rightarrow \mathbb{C}$ is $m_{i}-1$ times differentiable at $\lambda_{i}, i=1, \ldots, t$. Then the matrix function is defined as

$$
f(A)=X \operatorname{diag}\left(f\left(J_{1}\left(\lambda_{1}\right)\right), \ldots, f\left(J_{t}\left(\lambda_{t}\right)\right)\right) X^{-1}
$$

where

$$
f\left(J_{i}\left(\lambda_{i}\right)\right)=\left(\begin{array}{ccccc}
f\left(\lambda_{i}\right) & f^{(1)}\left(\lambda_{i}\right) & \ldots & \ldots & \frac{f^{\left(m_{i}-1\right)}\left(\lambda_{i}\right)}{\left(m_{i}-1\right)!} \\
0 & f\left(\lambda_{i}\right) & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & f^{(1)}\left(\lambda_{i}\right) \\
0 & \ldots & \ldots & 0 & f\left(\lambda_{i}\right)
\end{array}\right) \in \mathbb{C}^{m_{i} \times m_{i}}
$$

The matrix $J=\operatorname{diag}\left(J_{1}\left(\lambda_{1}\right), \ldots, J_{t}\left(\lambda_{t}\right)\right)$ is unique up to ordering of the $J_{i}\left(\lambda_{i}\right)$ along the diagonal while X is not unique [20, 23]. Anyway, the matrix function $f(A)$ is independent from the actual choice of the Jordan decomposition [25].

Obviously, when $m_{i}=1$ for $i=1, \ldots, t$, for example when A is normal, no differentiability assumption on f is needed.

In the following proposition we summarize some properties of matrix functions.

Proposition 1.15. Let $A \in \mathbb{C}^{n \times n}$ and let $f(A)$ be defined. Then $f(A)$ has the following properties:
a) If the matrix X commutes with A then X commutes with $f(A)$.
b) For non-singular X it holds $f\left(X A X^{-1}\right)=X f(A) X^{-1}$.
c) The eigenvalues of $f(A)$ are $f\left(\lambda_{i}\right)$ where the λ_{i} are the eigenvalues of A.

Proof. See [23].
For some functions the extension to matrix functions is quite intuitive:
Proposition 1.16. Let $f(A)$ and $g(A)$ be defined.
a) If $f(x)=c \in \mathbb{C}$ then $f(A)=c \cdot I$.
b) If $f(x)=x$ then $f(A)=A$.
c) If $h(x)=f(x)+g(x)$ then $h(A)=f(A)+g(A)$.
d) If $h(x)=f(x) \cdot g(x)$ then $h(A)=f(A) \cdot g(A)$.

Proof. a) and b) follow directly from the Definition 1.14. For the proof of c) and d) see [23].

From Definition 1.14 it follows directly that for any two functions f and g it holds

$$
\begin{equation*}
f(A)=g(A) \Leftrightarrow f^{(j)}\left(\lambda_{i}\right)=g^{(j)}\left(\lambda_{i}\right) \tag{1.19}
\end{equation*}
$$

for $i=1, \ldots, t$ and $j=0, \ldots, m_{i}-1$. In particular, (1.19) shows the existence of a polynomial p with $\operatorname{deg}(p) \leq n-1$ and $f(A)=p(A)$ since (1.19) holds for the polynomial which interpolates f at λ_{i} in the Hermite sense. The polynomial depends on A, of course, so that in general there will be no polynomial p with $f(A)=p(A)$ for any matrix A.

If g is an approximation to f then $g(A)$ is an approximation to $f(A)$. If $A=T J T^{-1}$ is diagonalizable and

$$
|f(x)-g(x)| \leq \epsilon \text { for } x \in \operatorname{spec}(A)
$$

then for the matrix function it holds

$$
\|f(A)-g(A)\|_{2} \leq \epsilon\|T\|_{2} \cdot\left\|T^{-1}\right\|_{2}
$$

1.2.1 Matrix sign function

One matrix function of special interest, e.g., for the Neuberger overlap operator, is the matrix sign function. The matrix sign function is the extension of the scalar sign function

$$
\operatorname{sign}(z)= \begin{cases}+1 & \text { for } \operatorname{Re}(z)>0 \\ -1 & \text { for } \operatorname{Re}(z)<0\end{cases}
$$

Note that the (scalar) sign function is not defined for z with $\operatorname{Re}(z)=0$.
Since outside the imaginary axis $\operatorname{sign}(z)$ is infinitely often differentiable with all derivatives equal to zero, the definition of the matrix sign function using the Jordan decomposition is quite simple.

Definition 1.17. Let $A \in \mathbb{C}^{n \times n}$ and let $A=X J X^{-1}$ be the Jordan decomposition of A with

$$
J=\left[\begin{array}{cc}
J_{+} & 0 \\
0 & J_{-}
\end{array}\right],
$$

where the eigenvalues of J_{+}lie in the right half plane and the eigenvalues of J_{-}lie in the left half plane. Then the matrix sign function is

$$
\operatorname{sign}(A)=X\left[\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right] X^{-1}
$$

Analogous to the scalar sign function not being defined for $\operatorname{Re}(z)=0$, the matrix sign function is not defined if A has eigenvalues on the imaginary axis.

For the integral definition of the matrix sign function we therefore have to look at the positive and negative real part seperately, see [38].

Definition 1.18. Let A be a matrix without eigenvalues on the imaginary axis. Let C^{+}be a closed contour enclosing the eigenvalues of A with positive real part and C^{-}a closed contour enclosing the eigenvalues of A with negative real part. Then

$$
\operatorname{sign}(A)=\frac{1}{2 \pi i}\left(\int_{C^{+}}(\zeta I-A)^{-1} d \zeta-\int_{C^{-}}(\zeta I-A)^{-1} d \zeta\right)
$$

If the matrix sign function is defined, the following properties are obvious:

- $A \cdot \operatorname{sign}(A)=\operatorname{sign}(A) \cdot A$.
- $(\operatorname{sign}(A))^{2}=I$.
- $(\operatorname{sign}(A))^{-1}=\operatorname{sign}(A)$.
- If $A=A^{H}$ then $\operatorname{sign}(A)=\operatorname{sign}(A)^{H}$.

The matrix sign function can be computed using the Jordan decomposition for example, even though its computation is numerically instable, since the size of the Jordan blocks is of no importance. Only the sign of the the eigenvalues is needed.

For an approximative computation, there exist several iteration schemes, see for example $[3,23,28]$. One simple iteration scheme is the Newton iteration:

$$
\begin{equation*}
X_{i+1}=\frac{1}{2}\left(X_{i}+X_{i}^{-1}\right), \quad X_{0}=A \tag{1.20}
\end{equation*}
$$

The Newton iteration results from Newton's method applied to the equation $X^{2}-I=0$ and converges quadratically and globally. A iteration scheme with more matrix multiplications instead of the matrix inversion is given by the Newton-Schulz iteration:

$$
\begin{equation*}
X_{i+1}=\frac{1}{2} X_{i}\left(3 I+X_{i}^{2}\right), \quad X_{0}=A \tag{1.21}
\end{equation*}
$$

The Newton-Schulz (1.21) iteration converges quadratically same as the Newton iteration (1.20) but only locally.

In practice, i.e. if rounding errors are involved, the Newton method can be unstable. Since the matrix A is involved in the iteration only as starting matrix, the error depends on the condition number of the iterates X_{i} and accumulated rounding errors, see [23].

Actually, we are mostly more interested in the action of $\operatorname{sign}(A)$ on a vector than in computing $\operatorname{sign}(A)$ itself.

1.2.2 Rational approximation of the sign function

Having a rational approximation for the (scalar) sign function given in the form

$$
\begin{equation*}
\operatorname{sign}(t) \approx r(t)=\sum_{i=1}^{s} \omega_{i} \frac{t}{t^{2}-\sigma_{i}}, \tag{1.22}
\end{equation*}
$$

the action of $\operatorname{sign}(Q)$ on a vector v can be approximated as

$$
\begin{equation*}
\operatorname{sign}(Q) v \approx Q \sum_{i=1}^{s} \omega_{i}\left(Q^{2}-\sigma_{i} I\right)^{-1} v \tag{1.23}
\end{equation*}
$$

The right-hand side of the approximation (1.23) involves the solution of s linear systems $\left(Q^{2}-\sigma_{i} I\right) x^{(i)}=v$. The systems only differ in the shift σ_{i},
all s systems have the same right-hand side. This is a useful quality when the solutions to these systems are approximated in Krylov subspaces. Since Krylov subspaces are shift-invariant, i.e.

$$
K_{m}\left(A, r_{0}\right)=K_{m}\left(A-\sigma I, r_{0}\right),
$$

only one Krylov subspace has to be built for all s systems. For all classical Krylov subspace methods there exist multishift variants to solve s shifted systems simultaneously in the same Krylov subspace, see Section 3.1 and [13, 16, 17, 43].

Let $x_{m}^{(i)} \in x_{0}+K_{m}\left(Q^{2}, r_{0}\right), i=1, \ldots, s$, be approximations to $x^{(i)}$, computed with a multishift method. Then the rational/multishift approximation to the action of the sign function is

$$
\operatorname{sign}(Q) v \approx Q \sum_{i=1}^{s} \omega_{i}\left(Q^{2}-\sigma_{i} I\right)^{-1} v \approx Q \sum_{i=1}^{s} \omega_{i} x_{m}^{(i)}
$$

To achieve a required accuracy ϵ for the error, the two approximation levels have to be investigated. How accurate does the rational approximation have to be and when can the multishift iteration be stopped?

For the error of the rational/multishift approximation it holds

$$
\begin{aligned}
\left\|e_{m}^{s}\right\|_{2} & =\left\|\operatorname{sign}(Q) v-Q \sum_{i=1}^{s} \omega_{i} x_{m}^{(i)}\right\|_{2} \\
& \leq\|\operatorname{sign}(Q) v-r(Q) v\|_{2}+\left\|r(Q) v-Q \sum_{i=1}^{s} \omega_{i} x_{m}^{(i)}\right\|_{2} .
\end{aligned}
$$

Therefore, to achieve the error bound

$$
\left\|e_{m}^{s}\right\|_{2} \leq \epsilon\|v\|_{2}
$$

we require for the rational approximation

$$
\begin{equation*}
\|\operatorname{sign}(Q) v-r(Q) v\|_{2} \leq \frac{\epsilon}{2}\|v\|_{2} \tag{1.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|r(Q) v-Q \sum_{i=1}^{s} \omega_{i} x_{m}^{(i)}\right\|_{2} \leq \frac{\epsilon}{2}\|v\|_{2} \tag{1.25}
\end{equation*}
$$

for the multishift approximation.

For the rational approximation $r(t)$, Neuberger [35, 36] proposed

$$
\begin{equation*}
r_{m}(t)=\frac{(t+1)^{2 m}-(t-1)^{2 m}}{(t+1)^{2 m}+(t-1)^{2 m}} . \tag{1.26}
\end{equation*}
$$

Actually, (1.26) just summarizes $\log _{2}(m)+1$ steps of the iteration (1.20), more precisely $X_{m}=\frac{1}{r_{2} m-1}$. The rational approximation (1.26) can be written in the form (1.22), see [35], with

$$
\omega_{i}=\frac{1}{s} \cos ^{-2}\left(\frac{\pi}{2 s}\left(i-\frac{1}{2}\right)\right), \quad \sigma_{i}=\tan ^{2}\left(\frac{\pi}{2 s}\left(i-\frac{1}{2}\right)\right) .
$$

Hermitian matrices can be approximated with less poles using the Zolotarev best rational approximation, $[26,44,47]$. Let $\mathcal{R}_{i, j}$ denote the space of rational functions $r=p / q$ with polynomials p, q and $\operatorname{deg}(p) \leq i, \operatorname{deg}(q) \leq j$. An approximation $r \in \mathcal{R}_{i, j}$ is called best approximation for a function f on the set \mathcal{J} if it minimizes

$$
\sup _{t \in \mathcal{J}}|f(t)-r(t)| .
$$

The Zolotarev best approximation is a best rational approximation for $\operatorname{sign}(A)$ on the set $\left[-\lambda_{\max },-\lambda_{\min }\right] \cup\left[\lambda_{\min }, \lambda_{\max }\right] \supset \operatorname{spec}(A)$.
Proposition 1.19. (Zolotarev [47]) Let $\tilde{r} \in \mathcal{R}_{m-1, m}$ be the best relative approximation to $t^{-1 / 2}$ on $\left[1,\left(\lambda_{\max } / \lambda_{\min }\right)^{2}\right]$. Then the best approximation to the sign function from $\mathcal{R}_{2 m-1,2 m}$ on $\left[-\lambda_{\max } / \lambda_{\min },-1\right] \cup\left[1, \lambda_{\max } / \lambda_{\min }\right]$ is

$$
r(t)=t \tilde{r}\left(t^{2}\right)
$$

and on $\left[-\lambda_{\max },-\lambda_{\min }\right] \cup\left[\lambda_{\min }, \lambda_{\max }\right]$ the best approximation to the sign function is $r\left(t / \lambda_{\min }\right)$.

The rational approximation $\tilde{r}(t)$ is given in terms of the Jacobian elliptic function $\operatorname{sn}(w, \kappa)$ which is defined by the elliptic integral

$$
w=\int_{0}^{x} \frac{1}{\sqrt{\left(1-t^{2}\right)\left(1-\kappa^{2} t^{2}\right)}} d t .
$$

Theorem 1.20. (Zolotarev [47]) The best relative approximation $\tilde{r}(t)$ from $\mathcal{R}_{m-1, m}$ for $t^{-1 / 2}$ on $\left[1,\left(\lambda_{\max } / \lambda_{\text {min }}\right)^{2}\right]$ is given by

$$
\tilde{r}(t)=D \frac{\prod_{i=1}^{m-1}\left(t+c_{2 i}\right)}{\prod_{i=1}^{m}\left(t+c_{2 i-1}\right)},
$$

where

$$
c_{i}=\frac{\operatorname{sn}^{2}(i K /(2 m) ; \kappa)}{1-\mathrm{sn}^{2}(i K /(2 m) ; \kappa)},
$$

with $\kappa=\sqrt{1-\left(\lambda_{\min } / \lambda_{\max }\right)^{2}}$ and K is the complete elliptic integral. The constant D is uniquely determined by the condition

$$
\max _{t \in\left[1,\left(\lambda_{\max } / \lambda_{\min }\right)^{2}\right]}(1-\sqrt{t} \cdot \tilde{r}(t))=-\min _{t \in\left[1,\left(\lambda_{\max } / \lambda_{\min }\right)^{2}\right]}(1-\sqrt{t} \cdot \tilde{r}(t)) .
$$

$\lambda_{\min } / \lambda_{\max }$	number of poles (Neuberger)	number of poles (Zolotarev)
10^{-1}	15	8
10^{-2}	48	13
10^{-3}	152	17
10^{-4}	478	22
10^{-5}	1512	26

Table 1.3: Number of poles necessary to achieve an accuracy of 10^{-8}

The number of poles needed to achieve a required accuracy is significantly smaller using the Zolotarev rational approximation than using the Neuberger rational approximation, see Table 1.3.

1.3 Neuberger Overlap operator

The application we use to motivate and demonstate the methods presented in the following chapters arrises from lattice QCD (quantum chromodynamics). Here a core numerical task is the solution of a linear system with the Neuberger overlap operator [34]. The Neuberger overlap operator implements chiral symmetry on the lattice since it provides an exact solution of the Ginsparg-Wilson relation [19] $\gamma_{5} D+D \gamma_{5}=a D \gamma_{5} D$ (a is the lattice spacing, γ_{5} and D as defined below).

The Neuberger overlap operator reads

$$
\begin{equation*}
D=\rho I+\Gamma_{5} \operatorname{sign}(Q) \tag{1.27}
\end{equation*}
$$

with a mass parameter $\rho \in \mathbb{R}, \rho>1$, and $Q=\Gamma_{5} D_{W}, D_{W} \in \mathbb{C}^{n \times n}$ being the Wilson-Dirac operator ${ }^{1}$.

The Wilson-Dirac operator $D_{W}=I-\kappa M \in \mathbb{C}^{12 N^{4} \times 12 N^{4}}$ represents a nearest neighbour coupling on a four-dimensional space-time lattice

$$
\Omega=\left\{x=\left(x_{i}, x_{j}, x_{k}, x_{l}\right), \quad 1 \leq i, j, k, l \leq N\right\}
$$

The coupling parameter $\kappa \in \mathbb{R}$ corresponds to the quark mass m_{q} in the following way

$$
\kappa=\frac{\kappa_{c}}{2 m_{q} \kappa_{c}+1},
$$

with κ_{c} defined by the eigenvalues λ_{i} of $D_{W}, i=1, \ldots, n$,

$$
\kappa_{c}=\frac{1}{\max \operatorname{Re}\left(\lambda_{i}\right)}
$$

[^1]Obviously, small quark masses correspond to κ values close to κ_{c}.
The definition of the hopping term M of the Wilson-Dirac operator involves the matrices $\gamma_{1}, \ldots, \gamma_{4}{ }^{2}$ and the lattice gauge fields represented by matrices $U_{i} \in \mathrm{SU}(3), i=1, \ldots, 4$.

Definition 1.21. The special unitary Group $S U(3) \subset \mathbb{C}^{3 \times 3}$ is defined as

$$
\mathrm{SU}(3)=\left\{U \in \mathbb{C}^{3 \times 3}: U^{H} U=I_{3}, \operatorname{det}(U)=1\right\}
$$

The hopping term $M=\left((M)_{x y}\right)_{x, y=1, \ldots, N^{4}}$ consists of the 12×12-blocks

$$
(M)_{x y}=\sum_{i=1}^{4}\left(I-\gamma_{i}\right) \otimes U_{i}(x) \delta_{x, y-e_{i}}+\left(I+\gamma_{i}\right) \otimes U_{i}^{H}\left(x-e_{i}\right) \delta_{x, y+e_{i}}
$$

where $x, y \in \Omega$ such that $x \pm e_{i}$ describes the neighbours of x with respect to the i-th dimension.

Additionaly, a chemical potential can be introduced. For non-zero chemical potential μ the Wilson-Dirac operator reads $D_{W}^{\mu}=I-\kappa M^{\mu}$ with

$$
\begin{aligned}
\left(M^{\mu}\right)_{x y}= & \sum_{i=1}^{3}\left(I-\gamma_{i}\right) \otimes U_{i}(x) \delta_{x, y-e_{i}}+\left(I+\gamma_{i}\right) \otimes U_{i}^{H}\left(x-e_{i}\right) \delta_{x, y+e_{i}} \\
& +e^{\mu}\left(I-\gamma_{4}\right) \otimes U_{4}(x) \delta_{x, y-e_{4}}+e^{-\mu}\left(I+\gamma_{4}\right) \otimes U_{4}^{H}\left(x-e_{4}\right) \delta_{x, y+e_{4}}
\end{aligned}
$$

The definitions of D_{W} and D_{W}^{μ} are consistent, i.e. $D_{W}^{0}=D_{W}$.
Whether the chemical potential μ is zero or non-zero influences the basic properties of the Wilson-Dirac operator and thus of the Neuberger overlap operator D. One important property that is influenced is the Γ_{5}-symmetry:

Definition 1.22. A matrix D is called Γ_{5}-symmetric or Γ_{5}-hermitian if

$$
\Gamma_{5} D=D^{H} \Gamma_{5}
$$

At zero chemical potential, i.e. $\mu=0$, we find

- the Wilson-Dirac operator D_{W}^{0} is Γ_{5}-hermitian,
- $Q=\Gamma_{5} D_{W}^{0}$ is hermitian,
- $\operatorname{sign}(Q)$ is hermitian,
- $\Gamma_{5} \operatorname{sign}(Q)$ is unitary,

[^2]- the Neuberger overlap operator D is shifted unitary.

Since at zero chemical potential the Neuberger operator is not hermitian, one could expect that Krylov subspace methods require long recurrences. But the structure as a shifted unitary matrix can be exploited to build effective Krylov subspace methods with short recurrences, see Chapter 2. These methods need a matrix vector product with $\operatorname{sign}(Q)$ in every step. Since the matrix Q is hermitian there exist effective approximation methods for the matrix vector product with $\operatorname{sign}(Q)$: The Zolotarev best rational approximation can be used resulting in a small number of shifts, and for the multishift approximation multishift CG works with short recurrences.

At non-zero chemical potential, i.e. $\mu \neq 0$, we find

- the Wilson-Dirac operator D_{W}^{μ} is not Γ_{5}-hermitian,
- neither Q nor $\operatorname{sign}(Q)$ are hermitian,
- $\Gamma_{5} \operatorname{sign}(Q)$ is not unitary.

Since at non-zero chemical potential the Neuberger overlap operator has no structure to exploit, classical Krylov subspace methods for non-hermitian matrices have to be used. Long recurrences cannot be avoided. Since Q is not hermitian either, the matix vector product with $\operatorname{sign}(Q)$ needed in every step of these methods cannot be approximated with the Zolotarev rational approximation. The number of poles is thus significantly higher. Furthermore, for the multishift approximation of the rational approximation, CG has to be replaced by FOM or GMRES resulting in long recurrences or by BiCG or QMR .
In Chapter 3 we investigate the two eigenvalue deflation methods to reduce the computational cost for approximating $\operatorname{sign}(Q) b$. Applied to FOM and GMRES they are combined with restarts.

Chapter 2

Krylov subspace methods for shifted unitary matrices

Computing a basis for a Krylov subspace is a central task in Krylov subspace methods. For hermitian matrices we have with the Lanczos method and its three term recurrence a relatively cheap method compared to the Arnoldi method. While for general non-hermitian matrices there is no such method with short recurrence, there is one for a special class of non-hermitian matrices, namely unitary matrices.

Since Krylov subspaces are shift invariant, short recurrence methods to build a Krylov subspace basis therefore exist for matrices of the form

$$
A=\rho I+U
$$

with U a unitary matrix.

2.1 The Faber-Manteuffel theorem

The theorem of Faber and Manteuffel [12] gives a characterization for matrices that allow a short recurrence to build an orthogonal basis for $K_{m}\left(A, r_{0}\right)$. At first glance this famous theorem seems to doom all effort concerning unitary matrices to fail as it states A being normal (s) as a necessary condition for the existence of a short s-term recurrence. And unitary matrices are not normal (s) for s small, in general.

Definition 2.1.

1. A matrix A is normal if $A^{H}=p(A)$ for some polynomial p.
2. A matrix A is normal(s) if

$$
s=\min \left\{d=\operatorname{deg}(p): p \text { polynomial, } A^{H}=p(A)\right\} .
$$

Hermitian matrices - for which with the Lanczos iteration we already know a short recursion - are normal (1) as $A^{H}=A=p(A)$ with $p(t)=t$ and $\operatorname{deg}(p)=1$ is minimal.

For unitary matrices we have $A^{H}=A^{-1}$, such that $A^{H}=p(A)$ with $\operatorname{deg}(p) \leq n-1$. In this case, the degree of the polynomial p is related to the degree of the minimal polynomial of A :

Proposition 2.2. If m is the degree of the minimal polynomial of the nonsingular matrix A, then $A^{-1}=p(A)$ with $\operatorname{deg}(p)=m-1$.

Proof. Let $q_{m}(t)=\alpha_{0}+\alpha_{1} t+\cdots+\alpha_{m} t^{m}$ be the mimimal polynomial of A, thus

$$
q_{m}(A)=\alpha_{0}+\alpha_{1} A+\cdots+\alpha_{m} A^{m}=0
$$

Since A is non-singular, α_{0} is non-zero and we can write

$$
A\left(\alpha_{1}+\cdots+\alpha_{m} A^{m-1}\right)=-\alpha_{0} I
$$

Therefore

$$
A^{-1}=\frac{-1}{\alpha_{0}}\left(\alpha_{1}+\cdots+\alpha_{m} A^{m-1}\right)=p_{m-1}(A)
$$

with $\operatorname{deg}\left(p_{m-1}\right)=m-1$.

Thus, unitary matrices are $\operatorname{normal}(m-1)$ for m the degree of the mimimal polynomial, but of course, m depends on the actual matrix such that unitary matrices are not normal (s) for small s in general.

The theorem of Faber and Manteuffel tells for which matrices, namely those which are normal (s), an $(s+2)$-term recurrence is possible.

Theorem 2.3 (Faber-Manteuffel).
A matrix A allows a $(s+2)$-term recurrence of the form

$$
\begin{equation*}
v_{j+1}=A v_{j}-\sum_{i=j-s}^{j} h_{i, j} v_{i} \quad, \quad h_{i, j}=\frac{v_{i}^{H} A v_{j}}{v_{i}^{H} v_{i}} \tag{2.1}
\end{equation*}
$$

to construct an orthogonal basis $\left\{v_{1}, \ldots, v_{m}\right\}$ of $K_{m}\left(A, r_{0}\right)$ if and only if A is normal (s).

Proof. [11, 29]
For hermitian matrices Theorem 2.3 guarantees a 3 -term-recurrence ($s=1$), and the Lanczos method gives a realization of such.

For unitary matrices a short recurrence of the form (2.1) is thus impossible. But it is in fact possible to construct an orthogonal basis of $K_{m}\left(A, r_{0}\right)$ for A unitary with a short recurrence, using a recurrence formula of a different form than (2.1). Gragg [21] presented a realization of such a short recurrence for unitary matrices and Barth and Manteuffel [4] gave a theoretical foundation using a generalized definition of being normal.

Definition 2.4. A matrix A is normal (ℓ, m) if A is normal and

$$
A^{H} q_{m}(A)=p_{\ell}(A)
$$

for polynomials p and q of degree ℓ and m, respectively.
Obviously normal $(\ell, 0)$ matrices are normal (ℓ). Hermitian matrices are thus normal $(1,0)$. Unitary matrices are normal $(0,1)$ as in this case we have $A^{H} q(A)=p(A)$ with $q(t)=t$ and $p(t)=1$.

Barth and Manteuffel showed in [4] that being normal (ℓ, m) is a sufficient condition for a short recursion, though of a form different from that in (2.1).

Theorem 2.5. If a matrix A is $\operatorname{normal}(\ell, m)$, it allows an $\ell+m+2$ recurrence to construct an orthogonal basis $\left\{v_{1}, \ldots, v_{m}\right\}$ of $K_{m}\left(A, r_{0}\right)$ of the form

$$
\begin{equation*}
v_{j+1}=\sum_{i=j-m}^{j} \widehat{h}_{i, j} A v_{i}-\sum_{i=j-\ell}^{j} h_{i, j} v_{i} . \tag{2.2}
\end{equation*}
$$

Proof. [4]
For hermitian matrices (2.2) results in the well known form of its 3 -term recurrence, while for unitary matrices we get a 3 -term recurrence of the form

$$
\begin{equation*}
v_{j+1}=\sum_{i=j-1}^{j} \widehat{h}_{i, j} A v_{i}-h_{j, j} v_{j} . \tag{2.3}
\end{equation*}
$$

The $\ell+m+2$-recurrence (2.2) can be reformulated as a coupled recursion. For unitary matrices this leads to the formulation of Gragg [21, 27]:

$$
\begin{align*}
\sigma_{j} v_{j+1} & =A v_{j}+\gamma_{j} \widehat{v}_{j} \tag{2.4}\\
\widehat{v}_{j+1} & =\sigma_{j} \widehat{v}_{j}+\bar{\gamma}_{j} v_{j+1}
\end{align*}
$$

In [4], a possible breakdown of the single recursion (2.2) was identified that does not occur in the coupled formulation.

In the following section two realizations of such short recurrences to construct a basis for $K_{m}\left(A, r_{0}\right)$ with unitary A are presented. The first one (unitary Arnoldi) uses a single recursion of the form (2.3) while the second
one (isometric Arnoldi) uses a coupled recursion (2.4). Both are thus realizations of the recursion (2.2).

These methods can then be combined with the Galerkin or the minimal residual condition to gain tailor-made methods for shifted unitary matrices.

2.2 Short recurrence Arnoldi

2.2.1 Unitary Arnoldi

The unitary Arnoldi method was introduced by Borici in [7, 8, 9]. As a foundation, the following statement found in [39] was used.

Almost every orthogonal matrix U has a decomposition $U=$ $L R^{-1}$, where L is lower and R upper triangular matrix.
The idea is to apply this decomposition to the matrix $H_{m_{0}}=V_{m_{0}}{ }^{H} U V_{m_{0}}$ that is computed in the last step of the Arnoldi method, i.e., when the columns of $V_{m_{0}}$ span an A-invariant subspace. While for $k<m_{0}$ the matrices H_{k} are not unitary, $H_{m_{0}}$ is unitary.

Lemma 2.6. Let U be a unitary matrix and V_{m} the matrix obtained by the Arnoldi method started with $\tilde{v}_{1}=r_{0}$. Then the matrix $H_{m_{0}}=V_{m_{0}}{ }^{H} U V_{m_{0}}$ is unitary for m_{0} the degree of r_{0} with respect to U.

Proof. While for $k<m$ the Arnoldi relation (1.8) holds, for $k=m_{0}$ it holds

$$
U V_{m_{0}}=V_{m_{0}} H_{m_{0}} .
$$

Therefore

$$
H_{m_{0}}^{H} H_{m_{0}}=H_{m_{0}}^{H} V_{m_{0}}^{H} V_{m_{0}} H_{m_{0}}=V_{m_{0}}^{H} U^{H} U V_{m_{0}}=I .
$$

What we need to know is, whether an LU-decomposition for $H_{m_{0}}$ exists or not. It does, if $H_{m_{0}}$ and its minors, i.e., the matrices H_{k} are regular for $k=1, \ldots, m_{0}$. The following lemma (see [8]) helps to answer this question.

Lemma 2.7. For a unitary matrix U, the matrix \widehat{H}_{k} resulting from the Arnoldi method has orthogonal columns.

Proof. Multiplying both sides of the Arnoldi relation

$$
U V_{k}=V_{k+1} \widehat{H}_{k}=V_{k} H_{k}+h_{k+1, k} v_{k+1} e_{k}^{T}
$$

from the left by $\left(U V_{k}\right)^{H}$ results in

$$
\begin{aligned}
I & =V_{k}^{H} U^{H} V_{k} H_{k}+h_{k+1, k} V_{k}^{H} U^{H} v_{k+1} e_{k}^{T} \\
& =H_{k}^{H} H_{k}+h_{k+1, k}\left(v_{k+1}^{H} U V_{k}\right)^{H} e_{k}^{T} \\
& =H_{k}^{H} H_{k}+h_{k+1, k} h_{k+1, k} e_{k} e_{k}^{T} \\
& =\widehat{H}_{k}^{H} \widehat{H}_{k} .
\end{aligned}
$$

From Lemma 2.7 we can read under which circumstances the desired LUdecomposition exists.

Theorem 2.8. For a unitary matrix U the matrices $H_{k}=V_{k}^{H} U V_{k}$ resulting from the Arnoldi method are regular if and only if $v_{i}^{H} U v_{k} \neq 0$ for at least one index $i \leq k$.

Proof. From Lemma 2.7 we know that

$$
H_{k}^{H} H_{k}=I-h_{k+1, k}^{2} e_{k} e_{k}^{T}
$$

This shows that H_{k} is regular iff $h_{k+1, k} \neq 1$. By construction it is

$$
h_{k+1, k}=\left\|U v_{k}-\sum_{i=1}^{k} v_{i}^{H} U v_{k} v_{i}\right\|_{2} .
$$

Since $\left\|U v_{k}\right\|_{2}=1$ and $\sum_{i=1}^{k} v_{i}^{H} U v_{k} v_{i}$ is the orthogonal projection of $U v_{k}$ onto $K_{k}\left(U, r_{0}\right)$, this proves that $h_{k+1, k}=1$ iff $v_{i}^{H} U v_{k}=0, i=1, \ldots, k$.

Theorem 2.8 tells that not all unitary matrices have an LU-decomposition. From now on we assume $h_{k+1, k} \neq 1$ for $k=1, \ldots, m_{0}$.

Following Rutishauser - and assuming that the LU-decomposition for $H_{m_{0}}$ exists - we write $H_{m_{0}}=L_{m_{0}} R_{m_{0}}^{-1}$ with a lower triangular matrix $L_{m_{0}}=\left(l_{i, j}\right)$ and an upper triangular matrix $R_{m_{0}}=\left(r_{i, j}\right)$. Furthermore, $H_{m_{0}}$ is upper Hessenberg so that $L_{m_{0}}$ is in fact bidiagonal, and since $H_{m_{0}}$ is unitary, $L_{m_{0}}$ and $R_{m_{0}}$ satisfy

$$
L_{m_{0}}^{H} L_{m_{0}}=R_{m_{0}}^{H} R_{m_{0}}
$$

so that $R_{m_{0}}$ is bidiagonal, too.
To find short recurrences for the Arnoldi vectors we use the LU-decomposition of $H_{m_{0}}$ to write the Arnoldi relations as

$$
\begin{equation*}
V_{m_{0}}{ }^{H} U V_{m_{0}} R=L \tag{2.5}
\end{equation*}
$$

or

$$
\begin{equation*}
U V_{m_{0}} R=V_{m_{0}} L . \tag{2.6}
\end{equation*}
$$

W.l.o.g. let R have entries 1 on the diagonal. With (2.5) we get

$$
\begin{aligned}
l_{1,1} & =v_{1}^{H} U v_{1} \\
l_{2,1} & =v_{2}^{H} U v_{1} \\
\tilde{v}_{2} & =U v_{1}-l_{11} v_{1}
\end{aligned}
$$

and the following recursions for $r_{i, j}, l_{i, j}$ and \tilde{v}_{i} :

$$
\begin{aligned}
r_{k-1, k} & =-\frac{v_{k-1}^{H} U v_{k}}{v_{k-1}^{H} U v_{k-1}} \\
l_{k, k} & =r_{k-1, k} v_{k}^{H} U v_{k-1}+v_{k}^{H} U v_{k} \\
l_{k, k-1} & =r_{k-2, k-1} v_{k}^{H} U v_{k-2}+v_{k}^{H} U v_{k-1} \\
\tilde{v}_{k+1} & =r_{k-1, k} U v_{k-1}+U v_{k}-l_{k, k} v_{k} .
\end{aligned}
$$

The orthonormal vectors v_{i} result from normalizing \tilde{v}_{i}. The norm of \tilde{v}_{i} directly gives $l_{i, i-1}$ as the following lemma shows.

Lemma 2.9. With $l_{k+1, k}$ and \tilde{v}_{k} as above the following holds

$$
l_{k+1, k}=\left\|\tilde{v}_{k+1}\right\|_{2} .
$$

Proof. Obviously $l_{k+1, k}=v_{k+1}^{H} \tilde{v}_{k+1}$. As $v_{k+1}=\tilde{v}_{k+1} /\left\|\tilde{v}_{k+1}\right\|_{2}$, the proof is completed.

```
Algorithm 2.10. Unitary Arnoldi method
    \(\left\{\right.\) Input \(m \leq m_{0}, r_{0}\), unitary matrix \(\left.U\right\}\)
    \(v_{1}=r_{0}\)
    \(l_{1,1}=v_{1}^{H} U v_{1}\)
    \(\tilde{v}_{2}=U v_{1}-l_{1,1} v_{1}\)
    \(l_{2,1}=\left\|\tilde{v}_{2}\right\|_{2}\)
    for \(\mathrm{k}=2,3, \ldots, \mathrm{~m}\) do
        \(v_{k}=\tilde{v}_{k} / l_{k, k-1}\)
        \(r_{k-1, k}=-\frac{v_{k-1}^{H} U v_{k}}{v_{k-1}^{H} U v_{k-1}}\)
        \(l_{k, k}=v_{k}^{H} U v_{k-1} r_{k-1, k}+v_{k}^{H} U v_{k}\)
        \(\tilde{v}_{k+1}=U v_{k-1} r_{k-1, k}+U v_{k}-l_{k, k} v_{k}\)
        \(l_{k+1, k}=\left\|\tilde{v}_{k+1}\right\|_{2}\)
    end for
```


2.2.2 Isometric Arnoldi

The isometric Arnoldi method was first introduced by Gragg [21]. The basic idea is to write the upper Hessenberg matrix

$$
H_{m_{0}}=V_{m_{0}}{ }^{H} U V_{m_{0}}
$$

that we get in the last step of the ordinary Arnoldi method as a product of unitary matrices. To see that this is possible, let $H_{m_{0}}=Q_{m_{0}} R_{m_{0}}$ be the QR-decomposition of $H_{m_{0}}$. From Lemma 2.6 we know that $H_{m_{0}}$ is unitary and thus

$$
R_{m_{0}}^{H} R_{m_{0}}=R_{m_{0}}^{H} Q_{m_{0}}^{H} Q_{m_{0}} R_{m_{0}}=H_{m_{0}}^{H} H_{m_{0}}=I,
$$

i.e., $R_{m_{0}}$ is unitary (and therefore diagonal).

Realizing the QR-decompostion with Givens rotations it is actually

$$
H_{m_{0}}=G_{1}\left(\gamma_{1}\right) G_{2}\left(\gamma_{2}\right) \cdots G_{m_{0}-1}\left(\gamma_{m_{0}-1}\right) \tilde{G}_{m_{0}}\left(\tilde{\gamma}_{m_{0}}\right),
$$

where $G_{i}\left(\gamma_{i}\right)$ are the Givens matrices

$$
G_{i}\left(\gamma_{i}\right)=\left[\begin{array}{cccc}
I_{i-1} & & & \\
& -\gamma_{i} & \sigma_{i} & \\
& \sigma_{i} & \bar{\gamma}_{i} & \\
& & & I_{m_{0}-i-1}
\end{array}\right] \in \mathbb{C}^{m_{0} \times m_{0}}
$$

with $\gamma_{i} \in \mathbb{C}, \sigma_{i} \in \mathbb{R}^{+}$and $\left|\gamma_{i}\right|^{2}+\sigma_{i}^{2}=1$, and

$$
\tilde{G}_{m_{0}}\left(\tilde{\gamma}_{m_{0}}\right)=\operatorname{diag}\left(1, \ldots, 1,-\tilde{\gamma}_{m_{0}}\right)
$$

with $\tilde{\gamma}_{m_{0}} \in \mathbb{C},\left|\tilde{\gamma}_{m_{0}}\right|=1$.
Thus in the last step it holds

$$
U V_{m_{0}}=V_{m_{0}} H_{m_{0}}=V_{m_{0}} G_{1}\left(\gamma_{1}\right) G_{2}\left(\gamma_{2}\right) \ldots G_{m_{0}-1}\left(\gamma_{m_{0}-1}\right) \tilde{G}_{m_{0}}\left(\tilde{\gamma}_{m_{0}}\right) .
$$

By comparing columns we get for $k<m_{0}$

$$
\begin{equation*}
U V_{k}=V_{k+1} \widehat{H}_{k}, \tag{2.7}
\end{equation*}
$$

where

$$
\widehat{H}_{k}=G_{1}\left(\gamma_{1}\right) G_{2}\left(\gamma_{2}\right) \ldots G_{k-1}\left(\gamma_{k-1}\right) \widehat{G}_{k}\left(\gamma_{k}\right)
$$

and

$$
\widehat{G}_{k}\left(\gamma_{k}\right)=\left[\begin{array}{cc}
I_{k-1} & \\
& -\gamma_{k} \\
& \sigma_{k}
\end{array}\right] \in \mathbb{C}^{(k+1) \times k}
$$

Note that now the Givens matrices are $G_{i}\left(\gamma_{i}\right) \in \mathbb{C}^{(k+1) \times(k+1)}$.

To determine the desired recurrences we take a look at (2.7). The first Givens matrix $G_{1}\left(\gamma_{1}\right)$ produces

$$
V_{k} G_{1}\left(\gamma_{1}\right)=\left[-\gamma_{1} v_{1}+\sigma_{1} v_{2}, \sigma_{1} v_{1}+\bar{\gamma}_{1} v_{2}, v_{3}, \ldots, v_{k}\right] .
$$

Writing $\widehat{v}_{2}=\sigma_{1} v_{1}+\bar{\gamma}_{1} v_{2}$, the second Givens matrix $G_{2}\left(\gamma_{2}\right)$ produces

$$
V_{k} G_{1}\left(\gamma_{1}\right) G_{2}\left(\gamma_{2}\right)=\left[-\gamma_{1} v_{1}+\sigma_{1} v_{2},-\gamma_{2} \widehat{v}_{2}+\sigma_{2} v_{3}, \sigma_{2} \widehat{v}_{2}+\bar{\gamma}_{2} v_{3}, v_{4}, \ldots, v_{k}\right],
$$

Further investigating the effect of the Givens matrices on V_{k}, we get

$$
\widehat{v}_{k+1}=\sigma_{k} \widehat{v}_{k}+\bar{\gamma}_{k} v_{k+1}
$$

and

$$
v_{k+1}=\sigma_{k}^{-1}\left(U v_{k}+\gamma_{k} \widehat{v}_{k}\right)
$$

with $-\gamma_{k}=\widehat{v}_{k}^{H} U v_{k}$.
These coupled recurrences of v_{k} and \widehat{v}_{k} allow short recurrences in this case. As mentioned before, the coupled recursion could be written as a single recursion, see [4].

```
Algorithm 2.11. Isometric Arnoldi method
    \(\left\{\right.\) Input \(m \leq m_{0}, r_{0}\), unitary matrix \(\left.U\right\}\)
    \(v_{1}=\frac{r_{0}}{\left\|r_{0}\right\|_{2}} ; \widehat{v}_{1}=v_{1}\)
    for \(k=1,2, \ldots, m-1\) do
        \(u=U v_{k}\)
        \(\gamma_{k}=-\widehat{v}_{k}^{H} u\)
        \(\sigma_{k}=\left(\left(1-\left|\gamma_{k}\right|\right)\left(1+\left|\gamma_{k}\right|\right)\right)^{1 / 2}=\left\|u+\gamma_{k} \widehat{v}_{k}\right\|_{2}\)
        \(v_{k+1}=\sigma_{k}^{-1}\left(u+\gamma_{k} \widehat{v}_{k}\right)\)
        \(\widehat{v}_{k+1}=\sigma_{k} \widehat{v}_{k}+\bar{\gamma}_{k} v_{k+1}\)
    end for
    \(\gamma_{m}=-\widehat{v}_{m}^{H} U v_{m} ; \sigma_{m}=\left(\left(1-\left|\gamma_{m}\right|\right)\left(1+\left|\gamma_{m}\right|\right)\right)^{1 / 2}\)
```

The vectors v_{1}, \ldots, v_{m} and the vectors $\widehat{v}_{1}, \ldots, \widehat{v}_{m}$ computed with the isometric Arnoldi method are normal as the following lemma shows. The vectors v_{1}, \ldots, v_{m} are of course orthogonal.

Lemma 2.12. In the isometric Arnoldi method the following holds

$$
v_{j}^{H} v_{j}=\widehat{v}_{j}^{H} \widehat{v}_{j}=1 \quad \text { and } \quad v_{j+1}^{H} \widehat{v}_{j}=0 .
$$

Proof. It holds:

$$
\widehat{v}_{1}^{H} \widehat{v}_{1}=v_{1}^{H} v_{1}=r_{0}^{H} r_{0} /\left\|r_{0}\right\|_{2}^{2}=1
$$

$$
v_{2}^{H} \widehat{v}_{1}=\frac{1}{\sigma_{1}}\left(u+\gamma_{1} \widehat{v}_{1}\right)^{H} \widehat{v}_{1}=\frac{1}{\sigma_{1}}\left(u^{H} \widehat{v}_{1}+\bar{\gamma}_{1} \widehat{v}_{1}^{H} \widehat{v}_{1}\right)=\frac{1}{\sigma_{1}}\left(-\bar{\gamma}_{1}+\bar{\gamma}_{1}\right)=0
$$

Via induction we get:

$$
\begin{aligned}
& v_{j+1}^{H} v_{j+1}=\frac{1}{\sigma_{j} \bar{\sigma}_{j}}\left(u+\gamma_{j} \widehat{v}_{j}\right)^{H}\left(u+\gamma_{j} \widehat{v}_{j}\right) \\
&=\frac{1}{\sigma_{j} \bar{\sigma}_{j}}\left(u^{H} u+\gamma_{j} u^{H} \widehat{v}_{j}+\bar{\gamma}_{j} \widehat{v}_{j}^{H} u+\bar{\gamma}_{j} \gamma_{j} \widehat{v}_{j}^{H} \widehat{v}_{j}\right) \\
&=\frac{1}{\sigma_{j} \bar{\sigma}_{j}}\left(1+\gamma_{j}\left(-\bar{\gamma}_{j}\right)+\bar{\gamma}_{j}\left(-\gamma_{j}\right)+\bar{\gamma}_{j} \gamma_{j}\right) \\
&=\frac{1}{\sigma_{j} \bar{\sigma}_{j}}\left(1-\gamma_{j} \bar{\gamma}_{j}\right) \\
&=1 \\
& \begin{aligned}
\widehat{v}_{j+1}^{H} \widehat{v}_{j+1} & =\left(\sigma_{j} \widehat{v}_{j}+\bar{\gamma}_{j} v_{j+1}\right)^{H}\left(\sigma_{j} \widehat{v}_{j}+\bar{\gamma}_{j} v_{j+1}\right) \\
& =\bar{\sigma}_{j} \sigma_{\sigma_{j}} \widehat{v}_{j}^{H} \widehat{v}_{j}+\bar{\sigma}_{j} \bar{\gamma}_{j} \widehat{v}_{j}^{H} v_{j+1}+\gamma_{j} \sigma_{j} v_{j+1}^{H} \widehat{v}_{j}+\gamma_{j} \bar{\gamma}_{j} v_{j+1}^{H} v_{j+1} \\
& =\bar{\sigma}_{j} \sigma_{j}+\gamma_{j} \bar{\gamma}_{j} \\
& =1 \\
& 1 \\
v_{j+2}^{H} \widehat{v}_{j+1} & \frac{1}{\bar{\sigma}_{j+1}}\left(u+\gamma_{j+1} \widehat{v}_{j+1}\right)^{H} \widehat{v}_{j+1} \\
= & \frac{1}{\bar{\sigma}_{j+1}}\left(u^{H} \widehat{v}_{j+1}+\bar{\gamma}_{j+1} \widehat{v}_{j+1}^{H} \widehat{v}_{j+1}\right) \\
= & \frac{1}{\bar{\sigma}_{j+1}}\left(-\bar{\gamma}_{j+1}+\bar{\gamma}_{j+1}\right) \\
& =0
\end{aligned}
\end{aligned}
$$

If implemented as in Algorithm 2.11 the isometric Arnoldi method suffers from numerical instabilities:
In each step we have $\sigma_{j}=\left\|u+\gamma_{j} \widehat{v}_{j}\right\|_{2}=\left\|v_{j+1}\right\|_{2}$. Therefore v_{j+1} has norm one, and this is obtained by explicit normalization. The normalization of \widehat{v}_{j+1} is only implicit and not done explicitly in the algorithm. It actually vanishes during the iteration due to rounding errors. At the same time we lose the orthogonality of the vectors v_{j}. The right plot of Figure 2.1 shows that even the orthogonality of the last four vectors gets lost soon when we rely on the implicit normalization of Algorithm 2.11.

To preserve orthogonality, \widehat{v}_{j+1} has to be normalized explicitly in each step. Of course, we can not expect to prevent the general loss of orthogonality, i.e., the last vectors will not be orthogonal to the first ones after a certain number of steps, see left plot of Figure 2.1. But every vector will be orthogonal to a reasonable number of its predecessors, see right plot of Figure 2.1.

Figure 2.1: The isometric Arnoldi method with (solid line) and without (dashed line) explicit normalization. Left plot shows $\left\|V^{H} V-I\right\|_{F}$, right plot shows $\left\|\left[v_{i-3}, \ldots, v_{i}\right]^{H}\left[v_{i-3}, \ldots, v_{i}\right]-I\right\|_{F}$.

2.3 Shifted unitary methods

2.3.1 SUOM

In this section we combine the unitary Arnoldi method with a Galerkin condition. The resulting method is called SUOM (Shifted Unitary Orthogonal Method) $[7,8,9]$. We will see that not only the basis of the Krylov subspace can be calculated with a short recurrence by the unitary Arnoldi method but also the SUOM iterates can be calculated by a simple update. Therefore, only a constant number of basis vectors of the Krylov subspace has to be stored.

Let $A=\rho I+U$ with a unitary matrix U so that the unitary Arnoldi method can be applied, i.e., the decomposition $V_{m_{0}}{ }^{H} U V_{m_{0}}=L_{m_{0}} R_{m_{0}}^{-1}$ exists.

To solve

$$
V_{k}^{H}(\rho I+U) V_{k} y_{k}=V_{k}^{H} b
$$

we set $y_{k}=R_{k} \zeta_{k}$. Instead of solving a system with the upper Hessenberg matrix $V_{k}{ }^{H}(\rho I+U) V_{k}=\rho I+H_{k}$, the system to solve is then

$$
\left(\rho R_{k}+L_{k}\right) \zeta_{k}=V_{k}^{H} b
$$

with $\left(\rho R_{k}+L_{k}\right)$ tridiagonal. This system can be solved using its LUdecomposition.

Lemma 2.13. If the shift parameter $\rho>1$ and therefore A is positive real, the LU-decomposition $\left(\rho R_{k}+L_{k}\right)=\Lambda_{k} \Psi_{k}$ exists.

Proof. If the matrix A is positive real, so are the matrices $H_{k}^{(A)}=V_{k}{ }^{H} A V_{k}$ for $k=1, \ldots, m_{0}$. Thus, all minors of $H_{m_{0}}^{(A)}$ are non-singular and $H_{m_{0}}^{(A)}$ has an LU-decomposition $H_{m_{0}}^{(A)}=\Lambda_{m_{0}} \widehat{\Psi}_{m_{0}}$. Since $\left(\rho R_{m_{0}}+L_{m_{0}}\right)=H_{m_{0}}^{(A)} R_{m_{0}}$ it has an LU-decomposition $\left(\rho R_{m_{0}}+L_{m_{0}}\right)=\Lambda_{m_{0}} \Psi_{m_{0}}$ with $\Psi_{m_{0}}=\widehat{\Psi}_{m_{0}} R_{m_{0}}$.

Since $\left(\rho R_{k}+L_{k}\right)$ is tridiagonal, Λ_{k} and Ψ_{k} are bidiagonal. W.l.o.g we can assume Λ_{k} having ones on the diagonal. The other entries $\lambda_{i, j}$ and $\psi_{i, j}$ can be calculated easily with the following recurrences:

$$
\begin{aligned}
\psi_{1,1} & =\rho+l_{1,1} \\
\psi_{k-1, k} & =\rho r_{k-1, k} \\
\lambda_{k, k-1} & =l_{k, k-1} / \psi_{k-1, k-1} \\
\psi_{k, k} & =\rho+l_{k, k}-\lambda_{k, k-1} \psi_{k-1, k}
\end{aligned}
$$

With these notations we can write the SUOM iterates as

$$
\begin{aligned}
x_{k} & =V_{k} R_{k}\left(\rho R_{k}+L_{k}\right)^{-1} V_{k}{ }^{H} b \\
& =V_{k} R_{k} \Psi_{k}{ }^{-1} \Lambda_{k}{ }^{-1} V_{k}{ }^{H} b .
\end{aligned}
$$

To see that x_{k+1} can be calculated by a simple update of x_{k}, we seperately investigate

$$
\omega_{k}=\Lambda_{k}{ }^{-1} V_{k}{ }^{H} b
$$

and

$$
Z_{k}=V_{k} R_{k} \Psi_{k}^{-1} .
$$

For $\omega_{k}=\left(w_{1}, \ldots, w_{k}\right)^{T}$ we directly get, since $V_{k}^{H} b=\beta e_{1}$,

$$
\begin{aligned}
w_{1} & =\beta \\
w_{i} & =-\lambda_{i, i-1} w_{i-1}, \quad i=2, \ldots, k .
\end{aligned}
$$

For Z_{k} we compare columns in $V_{k} R_{k}=Z_{k} \Psi_{k}$

$$
\left[V_{k-1} R_{k-1}, r_{k-1, k} v_{k-1}+v_{k}\right]=\left[Z_{k-1} \Psi_{k-1}, \psi_{k-1, k} z_{k-1}+\psi_{k+1, k+1} z_{k}\right]
$$

and get

$$
\begin{aligned}
z_{1} & =\psi_{1,1}^{-1} v_{1} \\
z_{i} & =\psi_{i, i}^{-1}\left(r_{i-1, i} v_{i-1}+v_{i}-\psi_{i-1, i} z_{i-1}\right), \quad i=2, \ldots, k .
\end{aligned}
$$

The iterates are therefore updated as

$$
x_{k+1}=\left[Z_{k} \mid z_{k+1}\right]\left(\omega_{k}, w_{k+1}\right)^{T}=x_{k}+w_{k+1} z_{k+1} .
$$

The SUOM residuals are thus

$$
r_{k}=-h_{k+1, k} e_{k}^{T} y_{k} v_{k+1}=-l_{k+1, k} \frac{1}{\psi_{k, k}} w_{k} v_{k+1} .
$$

```
Algorithm 2.14. SUOM
    \(\left\{\right.\) Input \(\left.m \leq m_{0}, x_{0} r_{0}=b-A x_{0}, \epsilon\right\}\)
    \(v_{1}=r_{0}\)
    \(\beta=\left\|v_{1}\right\|_{2}\)
    \(l_{1,1}=v_{1}^{H} U v_{1}\)
    \(\tilde{v}_{2}=U v_{1}-l_{1,1} v_{1}\)
    \(l_{2,1}=\left\|\tilde{v}_{2}\right\|_{2}\)
    \(\psi_{1,1}=\rho+l_{1,1}\)
    \(w_{1}=\beta\)
    \(z_{1}=\psi_{1,1}^{-1} v_{1}\)
    \(x_{1}=x_{0}+w_{1} z_{1}\)
    for \(\mathrm{k}=2,3, \ldots, \mathrm{~m}\) do
        \(v_{k}=\tilde{v}_{k} / l_{k, k-1}\)
        \(r_{k-1, k}=-\frac{v_{k-1}^{H} U v_{k}}{v_{k-1}^{H} U v_{k-1}}\)
        \(l_{k, k}=v_{k}^{H} U v_{k-1} r_{k-1, k}+v_{k}^{H} U v_{k}\)
        \(\psi_{k-1, k}=\rho r_{k-1, k}\)
        \(\lambda_{k, k-1}=l_{k, k-1} / \psi_{k-1, k-1}\)
        \(\psi_{k, k}=\rho+l_{k, k}-\lambda_{k, k-1} \psi_{k-1, k}\)
        \(w_{k}=-\lambda_{k, k-1} w_{k-1}\)
        \(z_{k}=\psi_{k, k}^{-1}\left(r_{k-1, k} v_{k-1}+v_{k}-\psi_{k-1, k} z_{k-1}\right)\)
        \(x_{k}=x_{k-1}+w_{k} z_{k}\)
        \(\tilde{v}_{k+1}=U v_{k-1} r_{k-1, k}+U v_{k}-l_{k, k} v_{k}\)
        \(l_{k+1, k}=\left\|\tilde{v}_{k+1}\right\|_{2}\)
    end for
```

Note that for the derivation of the SUOM method, we assumed A to be positive real. If A is not positive real, the combination of the unitary Arnoldi method and a Galerkin condition can be realized using a QR-decomposition of $\left(\rho R_{k}+L_{k}\right)$ instead of using the LU-decomposition. Nevertheless, the resulting method can have breakdowns, since its iterates do not necessarily exist due to the possibility of H_{k} being singular.

2.3.2 SHUMR

In this section we combine the unitary Arnoldi method with the minimal residual condition instead of a Galerkin condition. As proposed by Borici [8], the resulting method is called SHUMR (SHifted Unitary Minimal Residual), although we present here a slightly different realization than the one proposed by Borici. The original SHUMR algorithm (see [8]) involves the SUOM iterates to obtain a simple update for its iterates. Since the SUOM iterates do not necessarily exist when A is not positive real, this introduces
possible breakdowns to SHUMR. As the derivation below shows, it is not necessary to use the SUOM iterates. The version we present here is thus breakdown free, even for A not positive real.

With the minimal residual condition we demand for the SHUMR iterates

$$
\begin{equation*}
\left\|r_{k}\right\|_{2}=\left\|b-(\rho I+U) x_{k}\right\|_{2}=\min _{x \in x_{0}+K_{k}\left(U, r_{0}\right)}\|b-(\rho I+U) x\|_{2}, \tag{2.8}
\end{equation*}
$$

and requiring $x_{k}=V_{k} y_{k}$ leads to

$$
\begin{aligned}
r_{k} & =b-(\rho I+U) V_{k} y_{k} \\
& =\beta V_{k+1} e_{1}-V_{k+1}\left(\rho \widehat{I}_{k}+\widehat{H}_{k}\right) y_{k},
\end{aligned}
$$

where $\widehat{I}_{k} \in \mathbb{R}^{(k+1) \times k}$ is the identity matrix expanded by an extra row of zeros.

Assuming that the unitary Arnoldi method can be applied, we know that $H_{k}=L_{k} R_{k}^{-1}$ and we get

$$
\widehat{H}_{k}=\widehat{L}_{k} R_{k}^{-1}
$$

with

$$
\widehat{L}_{k}=\left[\begin{array}{c}
L_{k} \\
0 \ldots 0 l_{k+1, k}
\end{array}\right] \in \mathbb{C}^{(k+1) \times k}
$$

As in SUOM, we set $y_{k}=R_{k} z_{k}$ and get

$$
\begin{aligned}
r_{k} & =V_{k+1}\left(\beta e_{1}-\left(\rho \widehat{I}_{k}+\widehat{L}_{k} R_{k}^{-1}\right) R_{k} z_{k}\right) \\
& =V_{k+1}\left(\beta e_{1}-\left(\rho \widehat{R}_{k}+\widehat{L}_{k}\right) z_{k}\right)
\end{aligned}
$$

with $\widehat{R}_{k}=\widehat{I}_{k} R_{k}$.
To construct z_{k} we use the QR-decomposition

$$
\left(\rho \widehat{R}_{k}+\widehat{L}_{k}\right)=Q_{k} \widehat{\Theta}_{k}, \widehat{\Theta}_{k}=\left[\begin{array}{c}
\Theta_{k} \\
0
\end{array}\right]
$$

with $Q_{k} \in \mathbb{C}^{(k+1) \times(k+1)}$ unitary and $\Theta_{k} \in \mathbb{C}^{k \times k}$ an upper tridiagonal matrix. The least squares problem (2.8) reads thus

$$
\begin{equation*}
\left\|\beta_{k} Q_{k}^{H} e_{1}+\widehat{\Theta}_{k} z_{k}\right\|_{2}=\min _{z \in \mathbb{C}^{k}}\left\|\beta_{k} Q_{k}^{H} e_{1}+\widehat{\Theta}_{k} z\right\|_{2} \tag{2.9}
\end{equation*}
$$

We can recursively write Q_{k}^{H} as a product of Givens matrices

$$
G_{k}\left(c_{k}\right)=\left[\begin{array}{ccc}
I_{k-1} & & \\
& -c_{k} & s_{k} \\
& s_{k} & \bar{c}_{k}
\end{array}\right],\left|c_{k}\right|^{2}+s_{k}^{2}=1
$$

such that

$$
\beta Q_{k}^{H} e_{1}=\beta G_{k}\left(c_{k}\right)\left[\begin{array}{ll}
Q_{k-1}^{H} & \\
& 1
\end{array}\right] e_{1}=\left(\tau_{1}, \ldots, \tau_{k}, \widehat{\tau}_{k+1}\right)^{T},
$$

with

$$
\begin{aligned}
\widehat{\tau}_{1} & =\beta \\
\tau_{k} & =-c_{k} \widehat{\tau}_{k} \\
\widehat{\tau}_{k+1} & =s_{k} \widehat{\tau}_{k} .
\end{aligned}
$$

With the recursion for τ_{k} the least squares problem (2.9) is further simplified and we have

$$
z_{k}=\Theta_{k}^{-1}\left(\tau_{1}, \ldots, \tau_{k}\right)^{T}
$$

Recall that $\rho \widehat{R}_{k}+\widehat{L}_{k}$ is tridiagonal such that column k is only affected by the Givens matrices G_{k}, G_{k-1}, and G_{k-2}. The k-th column of Θ_{k} therefore consists of the three non-zero entries

$$
\begin{aligned}
\theta_{k-2, k} & =s_{k-2} \rho r_{k-1, k} \\
\theta_{k-1, k} & =-c_{k-1} \bar{c}_{k-2} \rho r_{k-1, k}+s_{k-1}\left(\rho+l_{k, k}\right) \\
\theta_{k, k} & =-c_{k} \widehat{\theta}_{k}+s_{k} l_{k+1, k}
\end{aligned}
$$

with $\widehat{\theta}_{k}=s_{k-1} \bar{c}_{k-2} \rho r_{k-1, k}+\bar{c}_{k-1}\left(\rho+l_{k, k}\right)$ and

$$
\bar{c}_{k}=\frac{\widehat{\theta}_{k}}{\left(\left|\widehat{\theta}_{k}\right|^{2}+l_{k+1, k}^{2}\right)^{1 / 2}}, \quad s_{k}=\frac{-l_{k+1, k}}{\left(\left|\widehat{\theta}_{k}\right|^{2}+l_{k+1, k}^{2}\right)^{1 / 2}}
$$

After all, we have to compute $V_{k} R_{k} z_{k}$, therefore we need a short recurrence formula for $P_{k}=\left[p_{1}, \ldots, p_{k}\right]=V_{k} R_{k} \Theta_{k}^{-1}$. By comparing columns in

$$
P_{k} \Theta_{k}=V_{k} R_{k},
$$

we get the following recurrence

$$
\begin{aligned}
& p_{1}=v_{1} / \theta_{1,1} \\
& p_{2}=\left(v_{2}+r_{1,2} v_{1}-\theta_{1,2} p_{1}\right) / \theta_{2,2} \\
& p_{k}=\left(v_{k}+r_{k-1, k} v_{k-1}-\theta_{k-1, k} p_{k-1}-\theta_{k-2, k} p_{k-2}\right) / \theta_{k, k} .
\end{aligned}
$$

For our SHUMR iterate we get thus

$$
x_{k}=x_{k-1}+\tau_{k} p_{k} .
$$

Since SHUMR uses the minimal residual condition, we get the norm of the residual r_{k} as

$$
\left\|r_{k}\right\|_{2}=\left|\beta e_{k+1}^{T} Q_{k+1}^{H} e_{1}\right|=\left|\widehat{\tau}_{k+1}\right|
$$

```
Algorithm 2.15. SHUMR
    \(\left\{\right.\) Input \(\left.m \leq m_{0}, x_{0}, r_{0}=b-A x_{0}, \epsilon\right\}\)
    \(\theta_{0,2}=0, c_{0}=1, p_{0}=0\)
    \(v_{1}=r_{0}, \beta=\left\|v_{1}\right\|_{2}, w_{1}=\beta, \widehat{\tau}_{1}=\beta\)
    \(l_{1,1}=v_{1}^{H} U v_{1}\)
    \(\tilde{v}_{2}=U v_{1}-l_{1,1} v_{1}\)
    \(l_{2,1}=\left\|\tilde{v}_{2}\right\|_{2}\)
    \(s_{1}=\frac{-l_{2,1}}{\left(l_{2,1}^{2}+\left|\rho+l_{1,1}\right|^{2}\right)^{1 / 2}}\)
    \(\bar{c}_{1}=\frac{\rho+l_{1,1}}{\left(l_{2,1}^{2}+\left|\rho+l_{1,1}\right|^{2}\right)^{1 / 2}}\)
    \(\tau_{1}=-c_{1} \widehat{\tau}_{1}\)
    \(\widehat{\tau}_{2}=s_{1} \widehat{\tau}_{1}\)
    \(\theta_{1,1}=-c_{1}\left(\rho+l_{1,1}\right)+s_{1} l_{2,1}\)
    \(p_{1}=v_{1} / \theta_{1,1}\)
    \(x_{1}=x_{0}+\tau_{1} p_{1}\)
    for \(\mathrm{k}=2,3, \ldots, \mathrm{~m}\) do
        \(v_{k}=\tilde{v}_{k} / l_{k, k-1}\)
        \(r_{k-1, k}=-\frac{v_{k-1}^{H} U v_{k}}{v_{k-1}^{H} U v_{k-1}}\)
        \(l_{k, k}=v_{k}^{H} U v_{k-1} r_{k-1, k}+v_{k}^{H} U v_{k}\)
        \(\tilde{v}_{k+1}=U v_{k-1} r_{k-1, k}+U v_{k}-l_{k, k} v_{k}\)
        \(l_{k+1, k}=\left\|\tilde{v}_{k+1}\right\|_{2}\)
        \(\widehat{\theta}_{k}=s_{k-1} \bar{c}_{k-2} \rho r_{k-1, k}+\bar{c}_{k-1}\left(\rho+l_{k, k}\right)\)
        \(s_{k}=\frac{-l_{k+1, k}}{\left(\left|\widehat{\theta}_{k}\right|^{2}+l_{k+1, k}^{2}\right)^{1 / 2}}\)
        \(\bar{c}_{k}=\frac{\widehat{\theta}_{k}}{\left(\left|\widehat{\theta}_{k}\right|^{2}+l_{k+1, k}^{2}\right)^{1 / 2}}\)
        \(\tau_{k}=-c_{k} \widehat{\tau}_{k}\)
        \(\widehat{\tau}_{k+1}=s_{k} \widehat{\tau}_{k}\)
        \(\theta_{k-2, k}=s_{k-2} \rho r_{k-1, k}\)
        \(\theta_{k-1, k}=-c_{k-1} \bar{c}_{k-2} \rho r_{k-1, k}+s_{k-1}\left(\rho+l_{k, k}\right)\)
        \(\theta_{k, k}=-c_{k} \widehat{\theta}_{k}+s_{k} l_{k+1, k}\)
        \(p_{k}=\left(v_{k}+r_{k-1, k} v_{k-1}-\theta_{k-1, k} p_{k-1}-\theta_{k-2, k} p_{k-2}\right) / \theta_{k, k}\)
        \(x_{k}=x_{k-1}+\tau_{k} p_{k}\)
    end for
```

Not using the SUOM iterates the SHUMR iterates always exist. Note that this holds of course under the assumption that the unitary Arnoldi method has no breakdown, i.e., the LU-decomposition needed for the unitary Arnoldi method exists. If the LU-decomposition in the unitary Arnoldi method does not exist, both SUOM and SHUMR have a breakdown.

2.3.3 SUFOM

In this section we combine the isometric Arnoldi method with a Galerkin condition. The resulting method is called SUFOM (Shifted Unitary FOM).

With the notations from the isometric Arnoldi method we can write the upper Hessenberg matrix H_{k} as

$$
H_{k}=D_{k}^{-1}\left(\begin{array}{ccccc}
-\bar{\gamma}_{0} \gamma_{1} & -\bar{\gamma}_{0} \gamma_{2} & \ldots & -\bar{\gamma}_{0} \gamma_{k-1} & -\bar{\gamma}_{0} \gamma_{k} \\
\sigma_{1}^{2} & -\bar{\gamma}_{1} \gamma_{2} & \ldots & -\bar{\gamma}_{1} \gamma_{k-1} & -\bar{\gamma}_{1} \gamma_{k} \\
& \sigma_{2}^{2} & \ldots & -\bar{\gamma}_{2} \gamma_{k-1} & -\bar{\gamma}_{2} \gamma_{k} \\
& & \ddots & \vdots & \vdots \\
& & & \sigma_{k-1}^{2} & -\bar{\gamma}_{k-1} \gamma_{k}
\end{array}\right) D_{k}
$$

where $\gamma_{0}=1$ and $D_{k}=\operatorname{diag}\left(\delta_{0}, \delta_{1}, \ldots, \delta_{k-1}\right)$ with $\delta_{0}=\beta$ and $\delta_{i}=\delta_{i-1} \sigma_{i}$ for $i \geq 1$, see [21, 27]. The quantities γ_{i} and σ_{i} are computed in the isometric Arnoldi method.

The matrix H_{k} can be written as

$$
H_{k}=\left[\begin{array}{cc}
H_{k-1} & -\gamma_{k} \delta_{k-1} D_{k-1}^{-1}\left(\bar{\gamma}_{0}, \ldots, \bar{\gamma}_{k-2}\right)^{T} \\
\sigma_{k-1} e_{k-1}^{T} & -\bar{\gamma}_{k-1} \gamma_{k}
\end{array}\right]
$$

For the computation of $y_{k}=\left(H_{k}+\rho I\right)^{-1} V_{k}^{H} b=\beta\left(H_{k}+\rho I\right)^{-1} e_{1}$ we use the QR-decomposition

$$
Q_{k}^{H}\left(H_{k}+\rho I\right)=\widehat{R}_{k},
$$

where the unitary matrix Q_{k}^{H} can be written as a product of Givens matrices

$$
Q_{k}^{H}=G_{k-1}\left(c_{k-1}\right) \cdots G_{1}\left(c_{1}\right)
$$

with

$$
G_{i}\left(c_{i}\right)=\left[\begin{array}{cccc}
I_{i-1} & & & \\
& -c_{i} & s_{i} & \\
& s_{i} & \bar{c}_{i} & \\
& & & I_{k-i-1}
\end{array}\right],\left|c_{i}\right|^{2}+s_{i}^{2}=1
$$

In order to update \widehat{R}_{k} we have to know how the Givens matrices affect the last column of $H_{k}+\rho I$ and the $(k-1, k-1)$ element.

Starting with $\widehat{\phi}_{1}=\bar{\gamma}_{0} / \delta_{0}$ we see that

$$
G_{k-2}\left(c_{k-2}\right) \cdots G_{1}\left(c_{1}\right) D_{k-1}^{-1}\left(\bar{\gamma}_{0}, \ldots, \bar{\gamma}_{k-2}\right)^{T}=\left(\phi_{1}, \ldots, \phi_{k-2}, \widehat{\phi}_{k-1}\right)^{T}
$$

where

$$
\begin{aligned}
\phi_{i} & =-c_{i} \widehat{\phi}_{i}+s_{i} \bar{\gamma}_{i} / \delta_{i} \\
\widehat{\phi}_{i+1} & =s_{i} \widehat{\phi}_{i}+\bar{c}_{i} \bar{\gamma}_{i} / \delta_{i}
\end{aligned}
$$

This leads to
$G_{k-2}\left(c_{k-2}\right) \cdots G_{1}\left(c_{1}\right)\left(H_{k}+\rho I\right)=\left[\begin{array}{c|c}\widehat{R}_{k-1} & -\gamma_{k} \delta_{k-1}\left(\phi_{1}, \ldots, \phi_{k-2}\right)^{T} \\ \hline \sigma_{k-1} e_{k-1}^{T} & -\gamma_{k} \delta_{k-1} \widehat{\phi}_{k-1} \\ \hline \bar{\gamma}_{k-1} \gamma_{k}+\rho\end{array}\right]$.
The $(k-1)$-st Givens matrix is chosen to zero out the $(k, k-1)$ element, i.e. σ_{k-1} and thus

$$
\bar{c}_{k-1}=\frac{\widehat{r}_{k-1, k-1}}{\left(\left|\widehat{r}_{k-1, k-1}\right|^{2}+\sigma_{k-1}^{2}\right)^{1 / 2}}, \quad s_{k-1}=\frac{\sigma_{k-1}}{\left(\left|\widehat{r}_{k-1, k-1}\right|^{2}+\sigma_{k-1}^{2}\right)^{1 / 2}} .
$$

The last Givens matrix $G_{k-1}\left(c_{k-1}\right)$ affects $-\gamma_{k} \delta_{k-1} \widehat{\phi}_{k-1}$ and $-\bar{\gamma}_{k-1} \gamma_{k}+\rho$ in the following way

$$
\begin{aligned}
G_{k-1}\binom{-\gamma_{k} \delta_{k-1} \widehat{\phi}_{k-1}}{-\bar{\gamma}_{k-1} \gamma_{k}+\rho} & =\binom{\gamma_{k} \delta_{k-1} c_{k-1} \widehat{\phi}_{k-1}-s_{k-1} \bar{\gamma}_{k-1} \gamma_{k}+\rho s_{k-1}}{-\gamma_{k} \delta_{k-1} s_{k-1} \hat{\phi}_{k-1}-\bar{c}_{k-1} \bar{\gamma}_{k-1} \gamma_{k}+\rho \bar{c}_{k-1}} \\
& =\binom{-\gamma_{k} \delta_{k-1} \phi_{k-1}+s_{k-1} \rho}{-\gamma_{k} \delta_{k-1} \widehat{\phi}_{k}+\bar{c}_{k-1} \rho},
\end{aligned}
$$

such that the following structure is produced

$$
\widehat{R}_{k}=Q_{k}^{H}\left(H_{k}+\rho I\right)=\left[\begin{array}{c|c}
R_{k-1} & -\gamma_{k} \delta_{k-1}\left(\phi_{1}, \ldots, \phi_{k-2}\right)^{T} \\
\hline 0 & r_{k-1, k}
\end{array}\right]
$$

with

$$
\begin{aligned}
r_{k-1, k} & =-\gamma_{k} \delta_{k-1} \phi_{k-1}+s_{k-1} \rho, \\
\widehat{r}_{k, k} & =-\gamma_{k} \delta_{k-1} \widehat{\phi}_{k}+\bar{c}_{k-1} \rho, \\
r_{k-1, k-1} & =-c_{k-1} \widehat{r}_{k-1, k-1}+s_{k-1} \sigma_{k-1} .
\end{aligned}
$$

Algorithm 2.16 summarizes the computation of the QR decomposition of $\left(H_{k}+\rho I\right)$.

```
Algorithm 2.16. QR-decomposition for \(\left(\rho I+H_{k}\right)\)
    \(\left\{\right.\) Input \(m \leq m_{0}, r_{0}\), unitary matrix \(\left.U, \rho\right\}\)
    \(v_{1}=\frac{r_{0}}{\left\|r_{0}\right\|_{2}} ; \widehat{v}_{1}=v_{1} ; \delta_{0}=\left\|r_{0}\right\|_{2} ; \widehat{\phi}_{1}=1 / \delta_{0} ; \phi_{0}=s_{0}=0 ; c_{0}=1\)
    \(u=U v_{1}\)
    \(\gamma_{1}=-\widehat{v}_{1}^{H} u\)
    \(\widehat{r}_{1,1}=-\gamma_{1}+\rho\)
    \(\sigma_{1}=\left\|u+\gamma_{1} \widehat{v}_{1}\right\|_{2}\)
    \(\delta_{1}=\delta_{0} \sigma_{1}\)
    \(v_{2}=\sigma_{1}^{-1}\left(u+\gamma_{1} \widehat{v}_{1}\right)\)
    \(\widehat{v}_{2}=\sigma_{1} \widehat{v}_{1}+\bar{\gamma}_{1} v_{2}\)
    \(\widehat{v}_{2}=\widehat{v}_{2} /\left\|\widehat{v}_{2}\right\|_{2}\)
    for \(k=2, \ldots, m-1\) do
        \(u=U v_{k}\)
        \(\gamma_{k}=-\widehat{v}_{k}^{H} u\)
        \(\bar{c}_{k-1}=\widehat{r}_{k-1, k-1} /\left(\left|\widehat{r}_{k-1, k-1}\right|^{2}+\sigma_{k-1}^{2}\right)^{1 / 2}\)
        \(s_{k-1}=-\sigma_{k-1} /\left(\left|\widehat{r}_{k-1, k-1}\right|^{2}+\sigma_{k-1}^{2}\right)^{1 / 2}\)
        \(\phi_{k-1}=-c_{k-1} \widehat{\phi}_{k-1}+s_{k-1} \bar{\gamma}_{k-1} / \delta_{k-1}\)
        \(\widehat{\phi}_{k}=s_{k-1} \widehat{\phi}_{k-1}+\bar{c}_{k-1} \bar{\gamma}_{k-1} / \delta_{k-1}\)
        \(r_{k-1, k-1}=-c_{k-1} \widehat{r}_{k-1, k-1}+s_{k-1} \sigma_{k-1}\)
        \(r_{k-1, k}=-\gamma_{k} \delta_{k-1} \phi_{k-1}+s_{k-1} \rho\)
        \(\widehat{r}_{k, k}=-\gamma_{k} \delta_{k-1} \widehat{\phi}_{k}+\bar{c}_{k-1} \rho\)
        \(\sigma_{k}=\left(\left(1-\left|\gamma_{k}\right|\right)\left(1+\left|\gamma_{k}\right|\right)\right)^{1 / 2}=\left\|u+\gamma_{k} \widehat{v}_{k}\right\|_{2}\)
        \(\delta_{k}=\delta_{k-1} \sigma_{k}\)
        \(\phi_{k}=-c_{k} \widehat{\phi}_{k}+s_{k} \bar{\gamma}_{k} / \delta_{k}\)
        \(\widehat{\phi}_{k+1}=s_{k} \widehat{\phi}_{k}+\bar{c}_{k} \bar{\gamma}_{k} / \delta_{k}\)
        \(v_{k+1}=\sigma_{k}^{-1}\left(u+\gamma_{k} \widehat{v}_{k}\right)\)
        \(\widehat{v}_{k+1}=\sigma_{k} \widehat{v}_{k}+\bar{\gamma}_{k} v_{k+1}\)
        \(\widehat{v}_{k+1}=\widehat{v}_{k+1} /\left\|\widehat{v}_{k+1}\right\|_{2}\)
    end for
```

For σ_{k} it holds $0 \leq\left\|u+\gamma_{k} \tilde{v}_{k}\right\|=\sigma_{k}=\left(1-\left|\gamma_{k}\right|^{2}\right)^{1 / 2} \leq 1$. Therefore $\delta_{k}=\left\|r_{0}\right\| \prod_{i=1}^{k} \sigma_{i}$ might be very small, in which case $\widehat{\phi}_{k}=s_{k-1} \widehat{\phi}_{k-1}+$ $\bar{c}_{k-1} \bar{\gamma}_{k-1} / \delta_{k-1}$ is very large while only the product $\delta_{k-1} \widehat{\phi}_{k}$ is needed. The same holds for ϕ_{k}. This could cause numerical instabilities.

For practical implementation we therefore suggest a (slight) modification of the Algorithm 2.16: Computing the quantities $\delta_{k}, \widehat{\phi}_{k}$ and ϕ_{k} can be circumvented by computing

$$
\begin{aligned}
\tilde{\delta}_{k}=\delta_{k} \widehat{\phi}_{k} & =\delta_{k}\left(s_{k-1} \widehat{\phi}_{k-1}+\bar{c}_{k-1} \bar{\gamma}_{k-1} / \delta_{k-1}\right) \\
& =s_{k-1} \delta_{k} \widehat{\phi}_{k-1}+\sigma_{k} \bar{c}_{k-1} \bar{\gamma}_{k-1} \\
& =s_{k-1} \sigma_{k} \delta_{k-1} \widehat{\phi}_{k-1}+\sigma_{k} \bar{c}_{k-1} \bar{\gamma}_{k-1} \\
& =s_{k-1} \sigma_{k} \tilde{\delta}_{k-1}+\sigma_{k} \bar{c}_{k-1} \bar{\gamma}_{k-1}
\end{aligned}
$$

Obviously $\tilde{\delta}_{k}$ can be obtained via the recursion

$$
\begin{aligned}
\tilde{\delta}_{1} & =\sigma_{1} \\
\tilde{\delta}_{k} & =s_{k-1} \sigma_{k} \tilde{\delta}_{k-1}+\sigma_{k} \bar{c}_{k-1} \bar{\gamma}_{k-1}
\end{aligned}
$$

This changes the computation of $r_{k-1, k}$ and $\widehat{r}_{k, k}$ to

$$
\begin{aligned}
r_{k-1, k} & =-\gamma_{k} \delta_{k-1} \varphi_{k-1}+s_{k-1} \rho \\
& =-\gamma_{k} \delta_{k-1}\left(-c_{k-1} \widehat{\phi}_{k-1}+s_{k-1} \bar{\gamma}_{k-1} / \delta_{k-1}\right)+s_{k-1} \rho \\
& =\gamma_{k} c_{k-1} \tilde{\delta}_{k-1}-\gamma_{k} s_{k-1} \bar{\gamma}_{k-1}+s_{k-1} \rho \\
\widehat{r}_{k, k} & =-\gamma_{k} \delta_{k-1} \widehat{\phi}_{k}+\bar{c}_{k-1} \rho \\
& =-\gamma_{k} \delta_{k-1}\left(s_{k-1} \widehat{\phi}_{k-1}+\bar{c}_{k-1} \bar{\gamma}_{k-1} / \delta_{k-1}\right)+\bar{c}_{k-1} \rho \\
& =-\gamma_{k} s_{k-1} \tilde{\delta}_{k-1}-\gamma_{k} \bar{c}_{k-1} \bar{\gamma}_{k-1}+\bar{c}_{k-1} \rho
\end{aligned}
$$

Computing $r_{k-1, k}$ and $\widehat{r}_{k, k}$ like this, it is thus not necessary anymore to calculate ϕ_{i} and $\widehat{\phi}_{i}$.

Finally, we want to obtain the SUFOM iterates

$$
\widehat{x}_{k}=x_{0}+V_{k} \widehat{y}_{k}
$$

with

$$
\widehat{y}_{k}=\left(H_{k}+\rho I\right)^{-1} V_{k}^{H} b=\beta \widehat{R}_{k}^{-1} Q_{k}^{H} e_{1}
$$

Note that $\beta Q_{k}^{H} e_{1}=\left(\tau_{1}, \ldots, \tau_{k-1}, \widehat{\tau}_{k}\right)^{T}=\widehat{t_{k}}$ can be easily updated by

$$
\begin{aligned}
\tau_{k} & =-c_{k} \widehat{\tau}_{k} \\
\widehat{\tau}_{k+1} & =s_{k} \widehat{\tau}_{k}
\end{aligned}
$$

with $\widehat{\tau}_{1}=\beta$.

So we have to solve

$$
\begin{equation*}
\widehat{R}_{k} \widehat{y}_{k}=\left(\tau_{1}, \ldots, \tau_{k-1}, \widehat{\tau}_{k}\right)^{T} \tag{2.10}
\end{equation*}
$$

For the moment we ignore the changes we just made for stability reasons. It will be easy to apply them afterwards.

With $\widehat{y}_{k}=\left(\widehat{\eta}_{1}, \ldots, \widehat{\eta}_{k}\right)^{T}$ and $t_{k-1}=\left(\tau_{1}, \ldots, \tau_{k-1}\right)^{T}$ equation (2.10) reads

$$
\begin{aligned}
R_{k-1}\left(\widehat{\eta}_{1}, \ldots, \widehat{\eta}_{k-1}\right)^{T}+\left(-\gamma_{k} \delta_{k-1} \phi_{1}, \ldots,-\gamma_{k} \delta_{k-1} \phi_{k-2}, r_{k-1, k}\right)^{T} \widehat{\eta}_{k} & =t_{k-1} \\
\widehat{r}_{k, k} \widehat{\eta}_{k} & =\widehat{\tau}_{k}
\end{aligned}
$$

and we get

$$
\begin{aligned}
\left(\widehat{\eta}_{1}, \ldots, \widehat{\eta}_{k-1}\right)^{T} & =R_{k-1}^{-1} t_{k-1}-R_{k-1}^{-1}\left(-\gamma_{k} \delta_{k-1} \phi_{1}, \ldots,-\gamma_{k} \delta_{k-1} \phi_{k-2}, r_{k-1, k}\right)^{T} \widehat{\eta}_{k} \\
\widehat{\eta}_{k} & =\widehat{\tau}_{k} / \widehat{r}_{k, k}
\end{aligned}
$$

In the same way we obtain for $y_{k}=\left(\eta_{1}, \ldots, \eta_{k}\right)^{T}=R_{k}^{-1} t_{k}$

$$
\begin{aligned}
\left(\eta_{1}, \ldots, \eta_{k-1}\right)^{T} & =R_{k-1}^{-1} t_{k-1}-R_{k-1}^{-1}\left(-\gamma_{k} \delta_{k-1} \phi_{1}, \ldots,-\gamma_{k} \delta_{k-1} \phi_{k-2}, r_{k-1, k}\right)^{T} \eta_{k} \\
\eta_{k} & =\tau_{k} / r_{k, k}
\end{aligned}
$$

We need $g_{k-1}=R_{k-1}^{-1}\left(-\gamma_{k} \delta_{k-1} \phi_{1}, \ldots,-\gamma_{k} \delta_{k-1} \phi_{k-2}, r_{k-1, k}\right)^{T}$ for both \widehat{y}_{k} and y_{k}. With the definition of $r_{k-1, k}$ we can split

$$
\begin{aligned}
g_{k-1} & =R_{k-1}^{-1}\left(-\gamma_{k} \delta_{k-1} \phi_{1}, \ldots,-\gamma_{k} \delta_{k-1} \phi_{k-2},-\gamma_{k} \delta_{k-1} \phi_{k-1}+s_{k-1} \rho\right)^{T} \\
& =-\gamma_{k} \delta_{k-1} R_{k-1}^{-1}\left(\phi_{1}, \ldots, \phi_{k-1}\right)^{T}+s_{k-1} \rho R_{k-1}^{-1} e_{k-1}
\end{aligned}
$$

In the same way as for \widehat{y}_{k} we get recursions for $z_{k}=\left(\widehat{z}_{k-1}, \zeta_{k}\right)^{T}=R_{k}^{-1} e_{k}$ and $l_{k}=\left(\widehat{l}_{k-1}, \lambda_{k}\right)^{T}=R_{k}^{-1}\left(\phi_{1}, \ldots, \phi_{k}\right)^{T}$:

$$
\begin{aligned}
\lambda_{k} & =\phi_{k} / r_{k, k} \\
\widehat{l}_{k-1} & =l_{k-1}-g_{k-1} \lambda_{k} \\
\zeta_{k} & =1 / r_{k, k} \\
\widehat{z}_{k-1} & =-1 / r_{k, k} g_{k-1}
\end{aligned}
$$

The iterates therefore read

$$
\begin{aligned}
\widehat{x}_{k} & =x_{0}+V_{k} \widehat{y}_{k} \\
& =x_{0}+V_{k-1}\left(\widehat{\eta}_{1}, \ldots, \widehat{\eta}_{k-1}\right)^{T}+\widehat{\eta}_{k} v_{k} \\
& =x_{0}+V_{k-1}\left(y_{k-1}-g_{k-1} \widehat{\eta}_{k}\right)+\widehat{\eta}_{k} v_{k} \\
& =x_{k-1}-V_{k-1} g_{k-1} \widehat{\eta}_{k}+\widehat{\eta}_{k} v_{k}
\end{aligned}
$$

with

$$
\begin{aligned}
x_{k} & =x_{0}+V_{k} y_{k} \\
& =x_{0}+V_{k-1}\left(\eta_{1}, \ldots, \eta_{k-1}\right)^{T}+\eta_{k} v_{k} \\
& =x_{0}+V_{k-1}\left(y_{k-1}-g_{k-1} \eta_{k}\right)+\eta_{k} v_{k} \\
& =x_{k-1}-V_{k-1} g_{k-1} \eta_{k}+\eta_{k} v_{k} .
\end{aligned}
$$

For $w_{k}=V_{k} g_{k}$ it holds

$$
\begin{aligned}
w_{k} & =V_{k}\left(-\gamma_{k+1} \delta_{k} l_{k}+s_{k} \rho z_{k}\right) \\
& =-\gamma_{k+1} \delta_{k}\left(V_{k-1} l_{k-1}-V_{k-1} g_{k-1} \lambda_{k}+\lambda_{k} v_{k}\right)+s_{k} \rho\left(-\frac{1}{r_{k, k}} w_{k-1}+\frac{1}{r_{k, k}} v_{k}\right) \\
& =-\gamma_{k+1} \delta_{k} V_{k-1} l_{k-1}+\frac{\gamma_{k+1} \delta_{k} \phi_{k}-s_{k} \rho}{r_{k, k}}\left(w_{k-1}-v_{k}\right) \\
& =-\gamma_{k+1} \delta_{k} V_{k-1} l_{k-1}-r_{k, k+1} / r_{k, k}\left(w_{k-1}-v_{k}\right) .
\end{aligned}
$$

Introducing $p_{k}=V_{k} l_{k}$ we get

$$
\begin{aligned}
p_{k} & =V_{k-1} \widehat{l}_{k-1}+\lambda_{k} v_{k} \\
& =p_{k-1}-\lambda_{k}\left(w_{k-1}-v_{k}\right)
\end{aligned}
$$

which completes the short recurrence for the SUFOM iterates \widehat{x}_{k}.
Finally, taking into account the changes we suggested for the stability of the QR-decomposition, we see that the computation of w_{k} is the only one that involves the quantities δ_{k} and ϕ_{k}, the latter through p_{k} and λ_{k}.

Introducing $\widehat{p}_{k-1}=-\gamma_{k+1} \delta_{k} p_{k-1}$ with the recurrence

$$
\begin{aligned}
\widehat{p}_{k-1} & =-\gamma_{k+1} \delta_{k}\left(p_{k-2}-\lambda_{k-1}\left(w_{k-2}-v_{k-1}\right)\right) \\
& =\frac{\gamma_{k+1}}{\gamma_{k}} \sigma_{k} \widehat{p}_{k-2}+\gamma_{k+1} \sigma_{k} \delta_{k-1} \phi_{k-1} / r_{k-1, k-1}\left(w_{k-2}-v_{k-1}\right) \\
& =\frac{\gamma_{k+1}}{\gamma_{k}} \sigma_{k} \widehat{p}_{k-2}+\gamma_{k+1} \sigma_{k} \frac{-c_{k-1} \tilde{\delta}_{k-1}+s_{k-1} \bar{\gamma}_{k-1}}{r_{k-1, k-1}}\left(w_{k-2}-v_{k-1}\right)
\end{aligned}
$$

eliminates both δ_{k} and ϕ_{k}.
Finally, the SUFOM residuals are

$$
r_{k}=-h_{k+1, k} e_{k}^{T} \widehat{y}_{k} v_{k+1}=-\sigma_{k} \widehat{\eta}_{k} v_{k+1} .
$$

```
Algorithm 2.17. SUFOM
    \(\left\{\right.\) Input \(\left.m \leq m_{0}, x_{0}, r_{0}=b-A x_{0}, \epsilon\right\}\)
    \(v_{1}=r_{0} /\left\|r_{0}\right\|_{2}, \widehat{v}_{1}=v_{1}, \delta_{0}=\left\|r_{0}\right\|_{2}, \gamma_{0}=1, w_{0}=0, \widehat{\tau}_{1}=\left\|r_{0}\right\|_{2}, s_{0}=0\),
    \(c_{0}=1, \widehat{p}_{0}=0\)
    \(u=U v_{1}\)
    \(\gamma_{1}=-\widehat{v}_{1}^{H} u\)
    \(\widehat{r}_{1,1}=-\gamma_{1}+\rho\)
    \(\widehat{\eta}_{1}=\widehat{\tau}_{1} / \widehat{\gamma}_{1,1}\)
    \(\widehat{x}_{1}=x_{0}+\widehat{\eta}_{1} v_{1}\)
    \(\sigma_{1}=\left\|u+\gamma_{1} \widehat{v}_{1}\right\|_{2}\)
    \(\tilde{\delta}_{1}=\sigma_{1}\)
    \(v_{2}=\sigma_{1}^{-1}\left(u+\gamma_{1} \widehat{v}_{1}\right)\)
    \(\widehat{v}_{2}=\sigma_{1} \widehat{v}_{1}+\bar{\gamma}_{1} v_{2}\)
    \(\widehat{v}_{2}=\widehat{v}_{2} /\left\|\widehat{\widehat{v}}_{2}\right\|_{2}\)
    for \(k=2,3, \ldots, m\) do
        \(u=U v_{k}\)
        \(\gamma_{k}=-\widehat{v}_{k}^{H} u\)
        if \(k \geq 3\) then
            \(\widehat{p}_{k-2}=\sigma_{k-1} \frac{\gamma_{k}}{\gamma_{k-1}} \widehat{p}_{k-3}+\gamma_{k} \sigma_{k-1} \frac{\left(-c_{k-2} \tilde{\delta}_{k-2}+s_{k-2} \bar{\gamma}_{k-2}\right)}{r_{k-2, k-2}}\left(w_{k-3}-v_{k-2}\right)\)
        end if
        \(\bar{c}_{k-1}=\widehat{r}_{k-1, k-1} /\left(\left|\widehat{r}_{k-1, k-1}\right|^{2}+\left|\sigma_{k-1}\right|^{2}\right)^{1 / 2}\)
        \(s_{k-1}=-\sigma_{k-1} /\left(\left|\widehat{r}_{k-1, k-1}\right|^{2}+\left|\sigma_{k-1}\right|^{2}\right)^{1 / 2} ;\)
        \(r_{k-1, k-1}=-c_{k-1} \widehat{r}_{k-1, k-1}+s_{k-1} \sigma_{k-1}\)
        \(\tau_{k-1}=-c_{k-1} \widehat{\tau}_{k-1}\)
        \(\eta_{k-1}=\tau_{k-1} / r_{k-1, k-1}\)
        \(x_{k-1}=x_{k-2}-\eta_{k-1} w_{k-2}+\eta_{k-1} v_{k-1}\)
        \(r_{k-1, k}=\gamma_{k} c_{k-1} \tilde{\delta}_{k-1}-\gamma_{k} s_{k-1} \bar{\gamma}_{k-1}+s_{k-1} \rho\)
        \(\widehat{r}_{k, k}=-\gamma_{k} s_{k-1} \tilde{\delta}_{k-1}-\gamma_{k} \bar{c}_{k-1} \bar{\gamma}_{k-1}+\bar{c}_{k-1} \rho\)
        \(w_{k-1}=\widehat{p}_{k-2}-r_{k-1, k} / r_{k-1, k-1}\left(w_{k-2}-v_{k-1}\right)\)
        \(\widehat{\tau}_{k}=s_{k-1} \widehat{\tau}_{k-1}\)
        \(\widehat{\eta}_{k}=\widehat{\tau}_{k} / \widehat{r}_{k, k}\)
        \(\widehat{x}_{k}=x_{k-1}-\widehat{\eta}_{k} w_{k-1}+\widehat{\eta}_{k} v_{k}\)
        \(\sigma_{k}=\left\|u+\gamma_{k} \widehat{v}_{k}\right\|_{2}\)
        \(\tilde{\delta}_{k}=s_{k-1} \sigma_{k} \tilde{\delta}_{k-1}+\sigma_{k} \bar{c}_{k-1} \bar{\gamma}_{k-1}\)
        \(v_{k+1}=\sigma_{k}^{-1}\left(u+\gamma_{k} \widehat{v}_{k}\right)\)
        \(\widehat{v}_{k+1}=\sigma_{k} \widehat{v}_{k}+\bar{\gamma}_{k} v_{k+1}\)
        \(\widehat{v}_{k+1}=\widehat{v}_{k+1} /\left\|\widehat{v}_{k+1}\right\|_{2}\)
    end for
```


2.3.4 SUMR

In this section we combine the isometric Arnoldi method with the minimal residual condition. The resulting method was first presented by Jagels and Reichel [27] and called SUMR (Shifted Unitary Minimal Residual) in [1].

The least squares problem resulting from the minimal residual condition is

$$
\begin{equation*}
\left\|\beta e_{1}-\left(\rho I+\widehat{H}_{k}\right) y_{k}\right\|_{2}=\min _{y \in \mathbb{C}^{k}}\left\|\beta e_{1}-\left(\rho I+\widehat{H}_{k}\right) y\right\|_{2} . \tag{2.11}
\end{equation*}
$$

With $D_{k}=\operatorname{diag}\left(\delta_{0}, \delta_{1}, \ldots, \delta_{k-1}\right)$, where $\delta_{0}=\beta, \delta_{i}=\delta_{i-1} \sigma_{i}$ for $i \geq 1$, and $\gamma_{0}=1$ we can write

$$
\rho I+\widehat{H}_{k}=\left[\begin{array}{cc}
\rho I+H_{k-1} & -\gamma_{k} \delta_{k-1} D_{k-1}^{-1}\left(\bar{\gamma}_{0}, \ldots, \bar{\gamma}_{k-2}\right)^{T} \\
\sigma_{k-1} e_{k-1}^{T} & -\bar{\gamma}_{k-1} \gamma_{k}+\rho
\end{array}\right] .
$$

The quantities γ_{i} and σ_{i} are computed in the isometric Arnoldi method.
The least squares problem (2.11) is solved via the QR-decomposition

$$
Q_{k+1}^{H}\left(\rho I+\widehat{H}_{k}\right)=\left[\begin{array}{c}
R_{k} \\
0
\end{array}\right]=\widehat{R}_{k},
$$

where the unitary matrix Q_{k+1}^{H} can be written as a product of Givens matrices

$$
Q_{k+1}^{H}=G_{k}\left(c_{k}\right) G_{k-1}\left(c_{k-1}\right) \cdots G_{1}\left(c_{1}\right)
$$

In order to update R_{k} we have to know how the Givens matrices affect the last column of $\rho I+\widehat{H}_{k}$. Starting with $\widehat{\phi}_{1}=\bar{\gamma}_{0} / \delta_{0}=1 / \beta$ we see that

$$
G_{k-2}\left(c_{k-2}\right) \cdots G_{1}\left(c_{1}\right) D_{k-1}^{-1}\left(\bar{\gamma}_{0}, \ldots, \bar{\gamma}_{k-2}\right)^{T}=\left(\phi_{1}, \ldots, \phi_{k-2}, \widehat{\phi}_{k-1}\right)^{T},
$$

where

$$
\begin{aligned}
\phi_{i} & =-c_{i} \widehat{\phi}_{i}+s_{i} \bar{\gamma}_{i} / \delta_{i}, \\
\widehat{\phi}_{i+1} & =s_{i} \widehat{\phi}_{i}+\bar{c}_{i} \bar{\gamma}_{i} / \delta_{i} .
\end{aligned}
$$

The next Givens matrix $G_{k-1}\left(c_{k-1}\right)$ affects the entries $-\gamma_{k} \delta_{k-1} \widehat{\phi}_{k-1}$ and $-\bar{\gamma}_{k-1} \gamma_{k}+\rho$ in the following way

$$
G_{k-1}\binom{-\gamma_{k} \delta_{k-1} \widehat{\phi}_{k-1}}{-\bar{\gamma}_{k-1} \gamma_{k}+\rho}=\binom{-\gamma_{k} \delta_{k-1} \phi_{k-1}+s_{k-1} \rho}{-\gamma_{k} \delta_{k-1} \widehat{\phi}_{k}+\bar{c}_{k-1} \rho} .
$$

The first $k-1$ Givens matrices produce thus the following structure

$$
Q_{k}^{H}\left(\rho I+\widehat{H}_{k}\right)=\left[\begin{array}{c|c}
R_{k-1} & -\gamma_{k} \delta_{k-1}\left(\phi_{1}, \ldots, \phi_{k-2}\right)^{T} \\
\hline 0 & r_{k-1, k} \\
0 & \widehat{r}_{k, k}
\end{array}\right]
$$

with $r_{k-1, k}=-\gamma_{k} \delta_{k-1} \phi_{k-1}+s_{k-1} \rho$ and $\widehat{r}_{k, k}=-\gamma_{k} \delta_{k-1} \widehat{\phi}_{k}+\bar{c}_{k-1} \rho$.
Finally, the last Givens matrix $G_{k}\left(c_{k}\right)$ has to zero out σ_{k}. Therefore it is calculated as

$$
\bar{c}_{k}=\frac{\widehat{r}_{k, k}}{\left(\left|\widehat{r}_{k, k}\right|^{2}+\sigma_{k}^{2}\right)^{1 / 2}}, \quad s_{k}=\frac{\sigma_{k}}{\left(\left|\widehat{r}_{k, k}\right|^{2}+\sigma_{k}^{2}\right)^{1 / 2}}
$$

to obtain the QR-decomposition

$$
Q_{k+1}^{H}\left(\rho I+\widehat{H}_{k}\right)=\left[\begin{array}{c|c}
R_{k-1} & -\gamma_{k} \delta_{k-1}\left(\phi_{1}, \ldots, \phi_{k-2}\right)^{T} \\
\hline 0 & r_{k-1, k} \\
0 & r_{k, k}
\end{array}\right]
$$

with $r_{k, k}=-c_{k} \widehat{r}_{k, k}+s_{k} \sigma_{k}$.
Therefore, the least squares problem (2.11) reduces to

$$
\left\|\beta Q_{k+1}^{H} e_{1}-\widehat{R}_{k} y_{k}\right\|_{2}=\min _{y \in \mathbb{C}^{k}}\left\|\beta Q_{k+1}^{H} e_{1}-\widehat{R}_{k} y\right\|_{2} .
$$

Note that $\beta Q_{k+1}^{H} e_{1}=\left(\tau_{1}, \ldots, \tau_{k}, \widehat{\tau}_{k+1}\right)^{T}$ can be easily updated by

$$
\begin{aligned}
\tau_{k} & =-c_{k} \widehat{\tau}_{k} \\
\widehat{\tau}_{k+1} & =s_{k} \widehat{\tau}_{k}
\end{aligned}
$$

with $\widehat{\tau}_{1}=\beta$.
Algorithm 2.18. QR-decomposition for $\rho I+\widehat{H}_{k}$
$\left\{\right.$ Input $m \leq m_{0}, r_{0}$, unitary matrix $\left.U, \rho\right\}$
$v_{1}=\frac{r_{0}}{\left\|r_{0}\right\|} ; \widehat{v}_{1}=v_{1} ; \delta_{0}=\left\|r_{0}\right\| ; \widehat{\phi}_{1}=1 / \delta_{0} ; \phi_{0}=s_{0}=0 ; c_{0}=1$
for $k=1,2, \ldots, m-1$ do

$$
u=U v_{k}
$$

$$
\gamma_{k}=-\widehat{v}_{k}^{H} u
$$

$$
\sigma_{k}=\left(\left(1-\left|\gamma_{k}\right|\right)\left(1+\left|\gamma_{k}\right|\right)\right)^{1 / 2}=\left\|u+\gamma_{k} \widehat{v}_{k}\right\|_{2}
$$

$$
r_{k-1, k}=-\gamma_{k} \delta_{k-1} \phi_{k-1}+s_{k-1} \rho
$$

$$
\widehat{r}_{k, k}=-\gamma_{k} \delta_{k-1} \hat{\phi}_{k}+\bar{c}_{k-1} \rho
$$

$$
\bar{c}_{k}=\widehat{r}_{k, k} /\left(\left|\widehat{r}_{k, k}\right|^{2}+\sigma_{k}^{2}\right)^{1 / 2}, \quad s_{k}=-\sigma_{k} /\left(\left|\widehat{r}_{k, k}\right|^{2}+\sigma_{k}^{2}\right)^{1 / 2}
$$

$$
r_{k, k}=-c_{k} \widehat{r}_{k, k}+s_{k} \sigma_{k}
$$

$$
\delta_{k}=\delta_{k-1} \sigma_{k}
$$

$$
\phi_{k}=-c_{k} \hat{\phi}_{k}+s_{k} \bar{\gamma}_{k} / \delta_{k}
$$

$$
\hat{\phi}_{k+1}=s_{k} \hat{\phi}_{k}+\bar{c}_{k} \bar{\gamma}_{k} / \delta_{k}
$$

$$
v_{k+1}=\sigma_{k}^{-1}\left(u+\gamma_{k} \widehat{v}_{k}\right), \widehat{v}_{k+1}=\sigma_{k} \widehat{v}_{k}+\bar{\gamma}_{k} v_{k+1}, \widehat{v}_{k+1}=\widehat{v}_{k+1} /\left\|\widehat{v}_{k+1}\right\|_{2}
$$

end for

For the same reasons as in SUFOM, the QR-decompostion for $\rho I+H_{k}$ can be numerically instable if implemented like Algorithm 2.18.

We therefore suggest to avoid the explicit computation of the quantities δ_{k}, $\widehat{\phi}_{k}$ and ϕ_{k} and replace them by $\tilde{\delta}_{k}=\delta_{k} \widehat{\phi}_{k}$, which can be obtained via the recursion

$$
\begin{aligned}
& \tilde{\delta}_{1}=\sigma_{1} \\
& \tilde{\delta}_{k}=s_{k-1} \sigma_{k} \tilde{\delta}_{k-1}+\sigma_{k} \bar{c}_{k-1} \bar{\gamma}_{k-1}
\end{aligned}
$$

This changes the computation of $r_{k-1, k}$ and $\widehat{r}_{k, k}$ to

$$
\begin{aligned}
r_{k-1, k} & =-\gamma_{k} \delta_{k-1} \varphi_{k-1}+s_{k-1} \rho \\
& =\gamma_{k} c_{k-1} \tilde{\delta}_{k-1}-\gamma_{k} s_{k-1} \bar{\gamma}_{k-1}+s_{k-1} \rho \\
\widehat{r}_{k, k} & =-\gamma_{k} \delta_{k-1} \widehat{\phi}_{k}+\bar{c}_{k-1} \rho \\
& =-\gamma_{k} s_{k-1} \tilde{\delta}_{k-1}-\gamma_{k} \bar{c}_{k-1} \bar{\gamma}_{k-1}+\bar{c}_{k-1} \rho
\end{aligned}
$$

Finally, to obtain the iterate $x_{k}=x_{0}+V_{k} y_{k}$, we have to solve

$$
\begin{equation*}
R_{k} y_{k}=t_{k}=\left(\tau_{1}, \ldots, \tau_{k}\right)^{T} \tag{2.12}
\end{equation*}
$$

For the derivation of recursions for y_{k} and x_{k}, we first ignore the modifications we just made for stability reasons. It will be easy to apply them afterwards.

With $y_{k}=\left(\widehat{y}_{k-1}, \eta_{k}\right)^{T}$ and $\widehat{y}_{k-1} \in \mathbb{C}^{k-1},(2.12)$ reads

$$
\begin{aligned}
R_{k-1} \widehat{y}_{k-1}+\left(-\gamma_{k} \delta_{k-1} \phi_{1}, \ldots,-\gamma_{k} \delta_{k-1} \phi_{k-2}, r_{k-1, k}\right)^{T} \eta_{k} & =\left(\tau_{1}, \ldots, \tau_{k-1}\right)^{T} \\
r_{k, k} \eta_{k} & =\tau_{k}
\end{aligned}
$$

and we get

$$
\begin{aligned}
\widehat{y}_{k-1} & =y_{k-1}-R_{k-1}^{-1}\left(-\gamma_{k} \delta_{k-1} \phi_{1}, \ldots,-\gamma_{k} \delta_{k-1} \phi_{k-2}, r_{k-1, k}\right)^{T} \eta_{k} \\
\eta_{k} & =\tau_{k} / r_{k, k}
\end{aligned}
$$

For $g_{k-1}=R_{k-1}^{-1}\left(-\gamma_{k} \delta_{k-1} \phi_{1}, \ldots,-\gamma_{k} \delta_{k-1} \phi_{k-2}, r_{k-1, k}\right)^{T}$ we find

$$
\begin{aligned}
g_{k-1} & =R_{k-1}^{-1}\left(-\gamma_{k} \delta_{k-1} \phi_{1}, \ldots,-\gamma_{k} \delta_{k-1} \phi_{k-2},-\gamma_{k} \delta_{k-1} \phi_{k-1}+s_{k-1} \rho\right)^{T} \\
& =-\gamma_{k} \delta_{k-1} R_{k-1}^{-1}\left(\phi_{1}, \ldots, \phi_{k-1}\right)^{T}+s_{k-1} \rho R_{k-1}^{-1} e_{k-1}
\end{aligned}
$$

In the same way as for y_{k} we get recursions for $z_{k}=\left(\widehat{z}_{k-1}, \zeta_{k}\right)^{T}=R_{k}^{-1} e_{k}$ and $l_{k}=\left(\widehat{l}_{k-1}, \lambda_{k}\right)^{T}=R_{k}^{-1}\left(\phi_{1}, \ldots, \phi_{k}\right)^{T}$:

$$
\begin{aligned}
\lambda_{k} & =\phi_{k} / r_{k, k} \\
\widehat{l}_{k-1} & =l_{k-1}-g_{k-1} \lambda_{k} \\
\zeta_{k} & =1 / r_{k, k} \\
\widehat{z}_{k-1} & =-1 / r_{k, k} g_{k-1} .
\end{aligned}
$$

The iterates x_{k} are finally

$$
\begin{aligned}
x_{k} & =x_{0}+V_{k} y_{k}=x_{0}+V_{k-1} \widehat{y}_{k-1}+\eta_{k} v_{k} \\
& =x_{k-1}+V_{k-1}\left(\widehat{y}_{k-1}-y_{k-1}\right)+\eta_{k} v_{k} \\
& =x_{k-1}+\left(-V_{k-1} g_{k-1}+v_{k}\right) \eta_{k} .
\end{aligned}
$$

Introducing $w_{k}=V_{k} g_{k}$ and $p_{k}=V_{k} l_{k}$ which fulfil the recursions

$$
\begin{aligned}
w_{k} & =-\gamma_{k+1} \delta_{k} p_{k-1}-r_{k, k+1} / r_{k, k}\left(w_{k-1}-v_{k}\right) \\
p_{k} & =p_{k-1}-\lambda_{k}\left(w_{k-1}-v_{k}\right)
\end{aligned}
$$

results in a recurrence for x_{k}.
Taking into account the changes we suggested for the stability of the QRdecomposition, we introduce - as in SUFOM $-\widehat{p}_{k-1}=-\gamma_{k+1} \delta_{k} p_{k-1}$ with the recurrence

$$
\widehat{p}_{k-1}=\frac{\gamma_{k+1}}{\gamma_{k}} \sigma_{k} \widehat{p}_{k-2}+\gamma_{k+1} \sigma_{k} \frac{-c_{k-1} \tilde{\delta}_{k-1}+s_{k-1} \bar{\gamma}_{k-1}}{r_{k-1, k-1}}\left(w_{k-2}-v_{k-1}\right)
$$

to eliminate δ_{k} and ϕ_{k} and thus preserve stability.
The norm of the residuals r_{k} is

$$
\left\|r_{k}\right\|_{2}=\left|\beta e_{k+1}^{T} Q_{k+1}^{H} e_{1}\right|=\left|\widehat{\tau}_{k+1}\right|,
$$

so its computation does not cause any additional cost.

```
Algorithm 2.19. SUMR
    \(\left\{\right.\) Input \(\left.m \leq m_{0}, x_{0}, r_{0}=b-A x_{0}, \epsilon\right\}\)
    \(\widehat{\tau}_{1}=\left\|r_{0}\right\|_{2} ; w_{-1}=v_{0}=0 ; s_{0}=0\)
    \(r_{0,0}=\gamma_{0}=\sigma_{0}=c_{0}=1 ; v_{1}=\tilde{v}_{1}=r_{0} /\left\|r_{0}\right\|_{2}\)
    \(\widehat{p}_{1}=0 ; \tilde{\delta}_{0}=0\)
    for \(k=1,2, \ldots, m\) do
        \(u=U v_{k}\)
        \(\gamma_{k}=-\tilde{v}_{k}^{H} u\)
        \(\sigma_{k}=\left(\left(1-\left|\gamma_{k}\right|\right)\left(1+\left|\gamma_{k}\right|\right)\right)^{1 / 2} ;\)
        \(r_{k-1, k}=\gamma_{k} c_{k-1} \tilde{\delta}_{k-1}-\gamma_{k} s_{k-1} \bar{\gamma}_{k-1}+s_{k-1} \rho\)
        \(\widehat{r}_{k, k}=-\gamma_{k} s_{k-1} \tilde{\delta}_{k-1}-\gamma_{k} \bar{c}_{k-1} \bar{\gamma}_{k-1}+\bar{c}_{k-1} \rho\)
        \(\bar{c}_{k}=\widehat{r}_{k, k} /\left(\left|\widehat{r}_{k, k}\right|^{2}+\left|\sigma_{k}\right|^{2}\right)^{1 / 2}\)
        \(s_{k}=-\sigma_{k} /\left(\left|\widehat{r}_{k, k}\right|^{2}+\left|\sigma_{k}\right|^{2}\right)^{1 / 2}\)
        \(r_{k, k}=-c_{k} \widehat{r}_{k, k}+s_{k} \sigma_{k}\)
        \(\tau_{k}=-c_{k} \widehat{\tau}_{k}\)
        \(\widehat{\tau}_{k+1}=s_{k} \widehat{\tau}_{k}\)
        \(\eta_{k}=\tau_{k} / r_{k, k}\)
        \(\kappa_{k-1}=r_{k-1, k} / r_{k-1, k-1}\)
        if \(k>1\) then
            \(\widehat{p}_{k}=\frac{\gamma_{k} \sigma_{k-1}}{\gamma_{k-1}} \widehat{p}_{k-1}+\frac{\left(-c_{k-2} \tilde{\delta}_{k-2}+s_{k-2} \bar{\gamma}_{k-2}\right) \gamma_{k} \sigma_{k-1}}{r_{k-2, k-2}}\left(w_{k-3}-v_{k-2}\right)\)
        end if
        \(w_{k-1}=\widehat{p}_{k}-\left(w_{k-2}-v_{k-1}\right) \kappa_{k-1}\)
        \(x_{k}=x_{k-1}-\left(w_{k-1}-v_{k}\right) \eta_{k}\)
        \(\tilde{\delta}_{k}=s_{k-1} \sigma_{k} \tilde{\delta}_{k-1}+\sigma_{k} \bar{c}_{k-1} \bar{\gamma}_{k-1}\)
        \(v_{k+1}=\sigma_{k}^{-1}\left(u+\gamma_{k} \tilde{v}_{k}\right)\)
        \(\tilde{v}_{k+1}=\sigma_{k} \tilde{v}_{k}+\bar{\gamma}_{k} v_{k+1}\)
        \(\tilde{v}_{k+1}=\tilde{v}_{k+1} /\left\|\tilde{v}_{k+1}\right\|_{2}\)
    end for
```


2.4 Discussion

For the unitary Arnoldi method we have to assume the existence of the LUdecomposition of the unitary matrix U. If for one index $k<m_{0}$ the product $U v_{k}$ is orthogonal to $v_{i}, i \leq k$, then the LU-decomposition does not exist, see Lemma 2.8 . Although this is not very likely to happen, especially from the numerical point of view, we have to consider this as a weak point of the unitary Arnoldi method. The isometric Arnoldi method does not have this disadvantage.

Of course, problems of the underlying Arnoldi process communicate to the shifted unitary methods. Therefore, SUOM and SHUMR have to be used
always keeping in mind the possibility of a breakdown if the assumptions for the unitary Arnoldi method are not fulfilled.

Another cause for a breakdown can be the use of a Galerkin condition if A is not positive real, i.e., if $\rho \leq 1$. In this case there is no guarantee that $V_{k}^{H} A V_{k}$ is non-singular and therefore, the SUOM and SUFOM iterates do not necessarily exist.

From this point of view SUMR is the method of choice for A not positive real, since it is based on the isometric Arnoldi method and uses the minimal residual condition, such that its iterates always exist. For A positive real SUFOM is a safe alternative.

method/condition	Galerkin	minimal residual
unitary Arnoldi	SUOM	SHUMR
isometric Arnoldi	SUFOM	SUMR

Table 2.1: Shifted unitary methods

If no breakdowns occur, the numerical results of Chapter 4.2 show an equal performance of all four methods.

Chapter 3

Deflation for multishift methods

Although multishift methods play a role in other contexts too we will focus here on the rational approximation of $\operatorname{sign}(Q) b$ where they are of greatest importance.

Given a rational approximation $\operatorname{sign}(t) \approx \sum_{i=1}^{s} \frac{\omega_{i} t}{t^{2}-\sigma_{i}}$ for all $t \in \operatorname{spec}(Q)$ we get the approximation

$$
\operatorname{sign}(Q) b \approx Q \sum_{i=1}^{s} \omega_{i} x^{(i)}
$$

where the $x^{(i)}, i=1, \ldots, s$, are solutions of the s systems

$$
\left(Q^{2}-\sigma_{i} I\right) x^{(i)}=b
$$

For hermitian Q, e.g., the Wilson-Dirac operator at zero chemical potential, the Zolotarev rational approximation in combination with short recurrence multishift methods (CG, MINRES) have been investigated for example in [45].

At non-zero chemical potential the Wilson-Dirac operator is non-hermitian. In this case the short recurrences of CG and MINRES turn to long recurrences. In addition the Zolotarev approximation can not be used for non-hermitian matrices. We therefore have to face two problems.

- Replacing CG by FOM or MINRES by GMRES leads to long recurrences. Restarts bound the size of the Krylov subspaces and thus reduce storage problems. Still the computing efford is much higher than for a short recurrence. Alternatively we can replace Arnoldi by Lanczos biorthogonalization and use BiCG or QMR.
- Using the Neuberger rational approximation instead of Zolotarev increases the number s of poles significantly.

In the following sections we present a deflation approach which uses eigenvalue information to both accelerate convergence of the chosen Krylov subspace method and reduce the number of poles. We will add some eigenvectors to the Krylov subspaces and apply the restarted multishift methods (FOM and GMRES) and the short recurrence multishift methods (BiCG and QMR) to these augmented subspaces. In Section 3.3 we use Schur vectors to small eigenvalues to span the augmenting subspace while in Section 3.4 we use left and right eigenvectors to small eigenvalues instead. In Section 3.6 we show how to reduce the number of poles.

3.1 Shifts and restarts

Instead of solving one system we now have to solve s systems with the same right hand side:

$$
\left(A-\sigma_{i} I\right) x^{i}=b, i=1, \ldots, s
$$

In the Krylov subspace context we get the approximations

$$
x_{m}^{i} \in x_{0}^{i}+K_{m}\left(A-\sigma_{i} I, r_{0}^{i}\right), r_{0}^{i}=b-\left(A-\sigma_{i} I\right) x_{0}^{i} .
$$

Of course, as in the non-shifted case, we can express both iterates and residuals in terms of polynomials in $A-\sigma_{i} I$:

$$
x_{m}^{i}=x_{0}^{i}+q_{m-1}^{i}\left(A-\sigma_{i} I\right) r_{0}^{i}
$$

with q_{m-1}^{i} a polynomial of degree less or equal $m-1$ and

$$
r_{m}^{i}=b-\left(A-\sigma_{i} I\right) x_{m}^{i}=p_{m}^{i}\left(A-\sigma_{i} I\right) r_{0}^{i}
$$

with $p_{m}^{i}(t)=1-t q_{m-1}^{i}(t)$ and $p_{m}^{i}(0)=1$. Obviously $r_{m}^{i} \in K_{m+1}\left(A-\sigma_{i} I, r_{0}^{i}\right)$.
Since Krylov subspaces are shift invariant we can use the same subspace for all s systems if the r_{0}^{i} are collinear.

In case of a zero initial guess $x_{0}^{i}=0$ for all systems $i=1, \ldots, s$, the starting residuals are $r_{0}^{i}=b-\left(A-\sigma_{i} I\right) x_{0}^{i}=b$. Considering restarts we do not have zero initial guesses, not even the same initial guesses for all systems. The initial guess of a restarted run is the last approximation of the preceding run, so the same holds for the residuals. For restarted methods, the crucial question thus is: Are the residuals collinear?

Whether they are or not depends on the way we choose the iterates from the Krylov subspace. Using the minimal residual condition, the residuals will in general not be collinear while using a (Petrov-) Galerkin condition, the residuals are automatically collinear as the following result from [16] shows.

Theorem 3.1. Let $W_{1} \subseteq W_{2} \subseteq \cdots \subseteq W_{k} \subseteq \mathbb{C}^{n}$ with $\operatorname{dim}\left(W_{m}\right)=m$ and $W_{m} \cap\left(K_{m+1}\left(A, r_{0}^{i}\right)\right)^{\perp}=\{0\}, m=1, \ldots, k$. Let the approximations $x_{m}^{i} \in x_{0}+K_{m}\left(A, r_{0}^{i}\right)$ to the solution of

$$
\left(A-\sigma_{i} I\right) x=b, \quad i=1, \ldots, s
$$

be chosen such that the residuals $r_{m}^{i}=b-\left(A-\sigma_{i} I\right) x_{m}^{i}=p_{m}^{i}\left(A-\sigma_{i} I\right) r_{0}^{i}$ fulfil the Petrov-Galerkin condition

$$
r_{m}^{i} \perp W_{m}, m=1, \ldots, k
$$

Then r_{m}^{i} and r_{m}^{j} are collinear if the starting residuals r_{0}^{i} and r_{0}^{j} are collinear.
Proof. See [16]
Theorem 3.1 directly applies to FOM where $W_{m}=K_{m}\left(A, r_{0}^{i}\right)$. A formulation of restarted multishift FOM can be found in [43].

When the residuals are collinear, i.e., $r_{m}^{(i)}=\rho_{m}^{(i)} r_{m}^{(1)}$, then the collinearity factor $\rho_{m}^{(i)}$ can be expressed in terms of the polynomial p :

Lemma 3.2. Let the starting residuals be collinear, i.e., $r_{0}^{(i)}=\rho_{0}^{(i)} r_{0}^{(1)}$. If $r_{m}^{(i)}=\rho_{m}^{(i)} r_{m}^{(1)}$, then it holds

$$
\begin{equation*}
\rho_{m}^{(i)}=\frac{\rho_{0}^{(i)}}{p_{m}^{(1)}\left(\sigma_{i}-\sigma_{1}\right)} \tag{3.1}
\end{equation*}
$$

Proof. It holds

$$
r_{m}^{(i)}=p_{m}^{(i)}\left(A-\sigma_{i} I\right) r_{0}^{(i)}=\rho_{m}^{(i)} r_{m}^{(1)}=\rho_{m}^{(i)} p_{m}^{(1)}\left(A-\sigma_{1} I\right) r_{0}^{(1)}
$$

Since $r_{0}^{(1)}, A r_{0}^{(1)}, A^{2} r_{0}^{(1)}, \ldots$ are linearly independent it follows

$$
\rho_{0}^{(i)} p_{m}^{(i)}\left(t-\sigma_{i}\right)=\rho_{m}^{(i)} p_{m}^{(1)}\left(t-\sigma_{1}\right)
$$

and with $p_{m}^{(i)}(0)=1$ we get (3.1).
In case of methods like GMRES the residuals do not fulfil a Petrov-Galerkin condition. The minimal residual condition is used instead to choose the iterates from the Krylov subspace.
For such methods the residuals are in general not collinear. To use restarts, we have to either drop the aim of solving all s systems using one Krylov
subspace or demand the minimal residual condition for no more than one (the "worst") of the s systems.

The latter was proposed in [17]: drop the minimal residual condition for all except one system and force the residuals of the s systems to be collinear instead.

Let the starting residuals be collinear, such that $r_{0}^{(i)}=\rho_{0}^{(i)} r_{0}^{(1)}, i=2, \ldots, s$. Let further be V_{m} and \widehat{H}_{m} the matrices resulting from the Arnoldi method with starting vector $r_{0}^{(1)}$.
For the first system we demand the minimal residual condition and since $r_{0}^{(1)}-\left(A-\sigma_{1} I\right) V_{m} y_{m}^{(1)}=\beta V_{m+1} e_{1}-V_{m+1}\left(\widehat{H}_{m}-\sigma_{1} I\right) y_{m}^{(1)}$ we therefore solve

$$
\left\|\beta e_{1}-\left(\widehat{H}_{m}-\sigma_{1} I\right) y_{m}^{(1)}\right\|_{2}=\min _{y \in \mathbb{C}^{m}}\left\|\beta e_{1}-\left(\widehat{H}_{m}-\sigma_{1} I\right) y\right\|_{2}
$$

This system is therefore solved by ordinary GMRES.
For the other systems $i=2, \ldots, s$ we want to force the residuals to be collinear to the one of the first system, i.e.

$$
r_{m}^{(i)}=\rho_{0}^{(i)} r_{0}^{(1)}-\left(A-\sigma_{i} I\right) V_{m} y_{m}^{(i)}=\rho_{m}^{(i)} r_{m}^{(1)}
$$

which gives

$$
V_{m+1}\left(\rho_{0}^{(i)} \beta e_{1}-\left(\widehat{H}_{m}-\sigma_{i} I\right) y_{m}^{(i)}\right)=\rho_{m}^{(i)} r_{m}^{(1)}
$$

and after multiplication with V_{m+1}^{H}

$$
\begin{equation*}
\rho_{0}^{(i)} \beta e_{1}-\left(\widehat{H}_{m}-\sigma_{i} I\right) y_{m}^{(i)}=V_{m+1}^{H} \rho_{m}^{(i)} r_{m}^{(1)} \tag{3.2}
\end{equation*}
$$

Obviously, (3.2) is solved by the solution of

$$
\left[\widehat{H}_{m}-\sigma_{i} I \mid V_{m+1}^{H} r_{m}^{(1)}\right]\left[\begin{array}{c}
y_{m}^{(i)} \tag{3.3}\\
\rho_{m}^{(i)}
\end{array}\right]=\rho_{0}^{(i)} \beta e_{1}
$$

which provides both the subspace approximation $y_{m}^{(i)}$ and the scalar $\rho_{m}^{(i)}$. In [17] it is shown that if (3.3) has a solution, it is unique.

Although only for the system $i=1$ a minimal residual property is demanded, all systems converge if $A-\sigma_{1} I$ is positive real and the shifts are real with $\sigma_{i}<\sigma_{1}, i=2, \ldots, s$.

Theorem 3.3. Let $A-\sigma_{1} I$ be positive real and $\sigma_{i}<\sigma_{1}, i=2, \ldots, s$. Then the restarted multishift GMRES converges for $i=1, \ldots, s$ and

$$
\left\|r^{(i)}\right\|_{2} \leq\left|\rho_{0}^{(i)}\right| \cdot\left\|r^{(1)}\right\|_{2}
$$

Proof. Theorem 3.3 in [17].

```
Algorithm 3.4. GMRES(m)-Sh
    \(\left\{\right.\) Input \(\left.A,\left\{\sigma_{1}, \ldots, \sigma_{s}\right\}, b\right\}\)
    \(x^{(i)}=0, i=1, \ldots, s\)
    \(r=b\)
    \(\rho^{(i)}=1, i=1, \ldots, s\)
    \(\beta=\|r\|\)
    while not all systems converged do
        \(v_{1}=r / \beta\)
        compute \(V_{m}, \widehat{H}_{m}\) by running Arnoldi
        compute GMRES approximation \(y_{m}^{(1)}\)
        for \(i=1, \ldots, s\) do
            compute \(y_{m}^{(i)}\) and \(\rho_{m}^{(i)}\) from (3.3)
        end for
        \(x^{(i)}=x^{(i)}+V_{m} y_{m}^{(i)}\)
        \(r=r-V_{m+1}\left(\widehat{H}_{m}-\sigma_{1} I\right) y_{m}^{(1)}\)
        \(\beta=\|r\|\)
    end while
```

Unfortunately, even though only one Krylov subspace has to be built for all shifts, for FOM and GMRES there is still a lot of additional cost for each system as there is no simple update of the iterates. So in each step a linear system or least squares problem of increasing size has to be solved. In addition to the computational cost, storage increases by $\mathcal{O}(s \cdot n)+\mathcal{O}(s \cdot m)$.

Finally there exist multishift versions for BiCG [16] and QMR [13]. Both methods are based on the Lanczos biorthogonalization which builds the matrices V_{m}, W_{m} and H_{m} or \widehat{H}_{m}, respectively, with H_{m} or \widehat{H}_{m} being tridiagonal instead of full upper Hessenberg:

$$
\widehat{H}_{m}=\left[\begin{array}{c}
H_{m} \\
\gamma_{m} e_{m}^{T}
\end{array}\right]=\left(\begin{array}{ccccc}
\alpha_{0} & \beta_{1} & & & \\
\gamma_{1} & \alpha_{1} & \beta_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & \beta_{m-1} \\
& & & \ddots & \alpha_{m-1} \\
& & & & \gamma_{m}
\end{array}\right)
$$

To obtain the multishift version of BiCG we use the residual recurrence

$$
r_{k+1}=-\alpha_{k} A r_{k}+\left(1-\frac{\alpha_{k} \beta_{k}}{\alpha_{k-1}}\right) r_{k}+\frac{\alpha_{k} \beta_{k}}{\alpha_{k-1}} r_{k-1}
$$

Since the iterates are chosen using a Petrov-Galerkin condition, we know from Theorem 3.1 that the residuals are collinear, such that $r_{k}^{(i)}=\rho_{k}^{(i)} r_{k}$, with r_{k} being the residual with respect to a non-shifted system. Note that for Algorithm 3.5 we used $\pi^{(i)}=1 / \rho^{(i)}$, i.e., $\pi_{k}^{(i)} r_{k}^{(i)}=r_{k}$.
For a detailed description how this information can be combined to get a simple update for the iterates $x_{m}^{(i)}$ such that all s systems can be solved for basically the cost of one see [16].

Algorithm 3.5. BiCG-Sh
$\left\{\right.$ Input $\left.A,\left\{\sigma_{1}, \ldots, \sigma_{s}\right\}, b\right\}$

$$
\begin{aligned}
& x^{(i)}=0, \quad i=1, \ldots, s \\
& r=b, \tilde{r}=r \\
& u=\tilde{u}=0 \\
& u^{(i)}=0, \quad i=1, \ldots, s \\
& \rho_{\mathrm{old}}=1, \quad \alpha_{\mathrm{old}}=1 \\
& \pi_{\mathrm{old}}^{(i)}=1, \quad i=1, \ldots, s \\
& \pi^{(i)}=1, \quad i=1, \ldots, s
\end{aligned}
$$

while not all systems converged do

$$
\rho=\tilde{r}^{H} r
$$

$$
\beta=-\rho / \rho_{\mathrm{old}}
$$

$$
u=r-\beta u, \tilde{u}=\tilde{r}-\bar{\beta} \tilde{u}
$$

$$
q=A u
$$

$$
\alpha=\rho /\left(\tilde{r}^{H} q\right)
$$

$$
\text { for } i=1, \ldots, s \text { do }
$$

$$
\pi_{\text {new }}^{(i)}=\left(1-\alpha \sigma_{i}\right) \pi^{(i)}+(\alpha \beta) / \alpha_{\mathrm{old}}\left(\pi_{\mathrm{old}}^{(i)}-\pi^{(i)}\right)
$$

$$
\beta^{(i)}=\left(\pi_{\mathrm{old}}^{(i)} / \pi^{(i)}\right)^{2} \beta, \alpha^{(i)}=\pi^{(i)} / \pi_{\text {new }}^{(i)} \alpha
$$

$$
u^{(i)}=1 / \pi^{(i)} r-\beta^{(i)} u^{(i)}
$$

$$
x^{(i)}=x^{(i)}+\alpha^{(i)} u^{(i)}
$$

end for
$r=r-\alpha q, \tilde{r}=\tilde{r}-\bar{\alpha} A^{H} \tilde{u}$
$\alpha_{\mathrm{old}}=\alpha, \rho_{\mathrm{old}}=\rho, \pi_{\mathrm{old}}^{(i)}=\pi^{(i)}, \pi^{(i)}=\pi_{\mathrm{new}}^{(i)}$
end while

For multishift QMR, the least squares problems

$$
\left\|\rho_{0}^{(i)} r_{0}^{(1)}-\left(\widehat{H}_{m}-\sigma_{i} I\right) y_{m}^{(i)}\right\|_{2}=\min _{y \in \mathbb{C}^{m}}\left\|\rho_{0}^{(i)} r_{0}^{(1)}-\left(\widehat{H}_{m}-\sigma_{i} I\right) y\right\|_{2}
$$

are solved using the QR-decompositions

$$
\left(\widehat{H}_{m}-\sigma_{i} I\right)=Q_{m}^{(i)}{ }^{H}\left[\begin{array}{c}
R_{m}^{(i)} \\
0
\end{array}\right]
$$

where

$$
R_{m}^{(i)}=\left(\begin{array}{ccccc}
\delta_{1}^{(i)} & \epsilon_{2}^{(i)} & \theta_{3}^{(i)} & & 0 \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & \theta_{m}^{(i)} \\
& & & \ddots & \epsilon_{m}^{(i)} \\
0 & & & & \delta_{m}^{(i)}
\end{array}\right)
$$

and $Q_{m}^{(i)}$ is the product of m Givens rotations. The QR-decomposition for the different shifts can be updated simultaneously, see [13] for details.

```
Algorithm 3.6. QMR-Sh
    \(\left\{\right.\) Input \(\left.A,\left\{\sigma_{1}, \ldots, \sigma_{s}\right\}, b\right\}\)
    \(x^{(i)}=0, \quad i=1, \ldots, s\)
    \(\tilde{v}=\tilde{w}=b\)
    \(\gamma=\|\tilde{v}\|_{2}\)
    \(\eta^{(i)}=\gamma, \quad i=1, \ldots, s\)
    \(c_{\text {old }}^{(i)}=c^{(i)}=1, s n_{\text {old }}^{(i)}=s n^{(i)}=0, p_{\text {old }}^{(i)}=p^{(i)}=0 \quad i=1, \ldots, s\)
    \(w_{\text {old }}=v_{\text {old }}=0\)
    while not all systems converged do
        \(\beta=\langle\tilde{v}, \tilde{w}\rangle / \gamma, v=1 / \gamma \tilde{v}, w=1 / \bar{\beta} \tilde{w}\)
        \(q=A v, \alpha=\langle q, w\rangle, \tilde{q}=A^{H} w\)
        \(\tilde{v}=q-\alpha v-\beta v_{\text {old }}\)
        \(\tilde{w}=\tilde{q}-\bar{\alpha} w-\bar{\gamma} w_{\text {old }}\)
        \(\gamma=\|\tilde{v}\|_{2}\)
        for \(i=1, \ldots, s\) do
            \(\theta^{(i)}=s n_{\text {old }}^{(i)} \beta, \tilde{\epsilon}^{(i)}=c_{\text {old }}^{(i)} \beta\)
            \(\epsilon^{(i)}=c^{(i)} \tilde{\epsilon}^{(i)}+s n^{(i)}\left(\alpha-\sigma_{i}\right)\)
            \(\tilde{\delta}^{(i)}=-\bar{s}^{(i)} \tilde{\epsilon}^{(i)}+c^{(i)}\left(\alpha-\sigma_{i}\right)\)
            \(\mu^{(i)}=\left(\left|\tilde{\delta}^{(i)}\right|^{2}+|\gamma|^{2}\right)^{1 / 2}\)
            \(c_{\mathrm{old}}^{(i)}=c^{(i)}, s n_{\mathrm{old}}^{(i)}=s n^{(i)}\)
            \(c^{(i)}=\left|\tilde{\delta}^{(i)}\right| / \mu^{(i)}\)
            \(\overline{s n}^{(i)}= \begin{cases}c^{(i)} \gamma / \tilde{\delta}^{(i)} & \text { if } \tilde{\delta}^{(i)} \neq 0 \\ 1 & \text { else }\end{cases}\)
            \(\delta^{(i)}=c^{(i)} \tilde{\delta}^{(i)}+s n^{(i)} \gamma\)
            \(p_{\text {new }}^{(i)}=\left(v-\epsilon^{(i)} p^{(i)}-\theta^{(i)} p_{\mathrm{old}}^{(i)}\right) / \delta^{(i)}, p_{\mathrm{old}}^{(i)}=p^{(i)}, p^{(i)}=p_{\text {new }}^{(i)}\)
            \(\tilde{\eta}^{(i)}=c^{(i)} \eta^{(i)}, \eta^{(i)}=-\bar{s}^{(i)} \eta^{(i)}\)
            \(x^{(i)}=x^{(i)}+\tilde{\eta}^{(i)} p^{(i)}\)
        end for
        \(v_{\text {old }}=v, w_{\text {old }}=w\)
    end while
```

As BiCG and QMR work with short recurrences, there is no need of restarting. Nevertheless, as for the methods above, BiCG preserves collinearity of residuals - Theorem 3.1 applies with $W_{m}=K_{m}\left(A^{H}, r_{0}^{i}\right)$ - while QMR residuals are not collinear.

3.2 Augmented subspaces

Eigenvalues with small real part cause problems in two ways. First they slow down convergence as the condition number of the matrix is most likely large, and second we need more poles in the rational approximation. If we have information about eigenvalues with small real part and their eigenvectors, we can use this information to deflate these eigenvalues in two ways:

1. Add the eigenvalue information to the Krylov subspace methods to accelerate their convergence.
2. Split the rational approximation and use less poles whereever possible.

In this section we investigate the first possibility. Based on the results of this section and Sections 3.3 and 3.4 we will address the second possibility in Section 3.6.

Let $\Omega \subseteq \mathbb{C}^{n}$ be the subspace we want to deflate, e.g., the subspace spanned by some eigenvectors of A. The basic idea is to search for an approximation x_{m} to the solution of $A x=b$ in the augmented subspace

$$
x_{m} \in x_{0}+\Omega+K_{m}\left(A, r_{0}\right)
$$

such that the iterate splits into $x_{m}=x_{0}+x_{m}^{\Omega}+x_{m}^{\text {Krylov }}$ with $x_{m}^{\Omega} \in \Omega$, $x_{m}^{\text {Krylov }} \in K_{m}\left(A, r_{0}\right)$.

Of course, if $K_{m}\left(A, r_{0}\right) \cap \Omega \neq\{0\}$, computing $x_{m}^{\text {Krylov }}$ would still involve the small eigenvalues and there would not be any advantage of doing so. To construct the Krylov subspace we therefore have to project out the parts lying in the subspace Ω. Depending on the projection P, this has to be done only once for the starting vector r_{0} or in every single step of the Arnoldi method.

Let P be any projector on Ω. Then

$$
x_{0}+\Omega+K_{m}\left(A, r_{0}\right)=x_{0}+\Omega+(I-P) K_{m}\left(A, r_{0}\right),
$$

and $(I-P) K_{m}\left(A, r_{0}\right) \cap \Omega=\{0\}$.
The first question that arises is whether $(I-P) K_{m}\left(A, r_{0}\right)$ is still a Krylov subspace or not.

Lemma 3.7. If range $(P)=\Omega$ is A-invariant, then

$$
(I-P) K_{m}\left(A, r_{0}\right)=K_{m}\left((I-P) A,(I-P) r_{0}\right),
$$

i.e., $(I-P) K_{m}\left(A, r_{0}\right)$ is a Krylov subspace.

Proof. If range (P) is A-invariant, then for any $y \in \mathbb{C}^{n}$ there is a $\tilde{y} \in \mathbb{C}^{n}$ such that $A P y=P \tilde{y}$ and thus

$$
\begin{aligned}
(I-P) A y & =(I-P) A[(I-P) y+P y] \\
& =(I-P) A(I-P) y+(I-P) P \tilde{y} \\
& =(I-P) A(I-P) y .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& (I-P) K_{m}\left(A, r_{0}\right) \\
= & \operatorname{span}\left\{(I-P) r_{0},(I-P) A r_{0}, \ldots,(I-P) A^{m-1} r_{0}\right\} \\
= & \operatorname{span}\left\{(I-P) r_{0},(I-P) A(I-P) r_{0}, \ldots,((I-P) A)^{m-1}(I-P) r_{0}\right\} \\
= & K_{m}\left((I-P) A,(I-P) r_{0}\right) .
\end{aligned}
$$

For the projections that we investigate in the following sections, range(P) is always A-invariant.
Lemma 3.7 tells that to build a basis $V_{m}=\left[v_{1}, \ldots, v_{m}\right]$ of $(I-P) K_{m}\left(A, r_{0}\right)$, we have to start with $v_{1}=(I-P) r_{0} /\left\|(I-P) r_{0}\right\|_{2}$ and project out the Ω-parts after every multiplication with A.

Note that projecting out in every step of the Arnoldi method means running it with $(I-P) A$ instead of A, so the Arnoldi relations (1.7) and (1.8) change to

$$
\begin{equation*}
(I-P) A V_{m}=V_{m+1} \widehat{H}_{m} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{m}^{H}(I-P) A V_{m}=H_{m} \tag{3.5}
\end{equation*}
$$

respectively, while $V_{m}^{H}(I-P) r_{0}=\left\|(I-P) r_{0}\right\|_{2} e_{1}$.
If P is an orthogonal projector, then $V_{m}^{H} P=0$ because the columns of V_{m} span $K_{m}\left((I-P) A,(I-P) r_{0}\right) \subseteq \operatorname{range}(I-P)$ and range $(I-P) \perp \operatorname{range}(P)$. In this case, the second Arnoldi relation (3.5) reads just the same as without projection as in this case $V_{m}^{H} P=0$ and thus

$$
V_{m}^{H}(I-P) A V_{m}=V_{m}^{H} A V_{m}=H_{m} .
$$

The projections in every step are not necessary when range $(I-P)$ is A invariant:

Lemma 3.8. If range $(I-P)$ is A-invariant, then

$$
(I-P) K_{m}\left(A, r_{0}\right)=K_{m}\left(A,(I-P) r_{0}\right),
$$

i.e., $(I-P) K_{m}\left(A, r_{0}\right)$ is a Krylov subspace.

Proof. Obviously, if range $(I-P)$ is A-invariant, then $(I-P) A y=A y$ for all $y \in \operatorname{range}(I-P)$.

In this case the Arnoldi relations (1.7) and (1.8) do not change but of course $V_{m}^{H}(I-P) r_{0}=\left\|(I-P) r_{0}\right\|_{2} e_{1}$ still holds.

Having a basis W for Ω and a basis V_{m} for $(I-P) K_{m}\left(A, r_{0}\right)$, the approximations in the augmented space read

$$
x_{m}=x_{0}+W y_{1}+V_{m} y_{2} .
$$

The residuals are from an augmented subspace of the same kind as well.
Lemma 3.9. When the iterates are chosen from an augmented Krylov subspace

$$
x_{m} \in x_{0}+\Omega+K_{m}\left((I-P) A,(I-P) r_{0}\right)
$$

and Ω is A-invariant, then for the residuals $r_{m}=b-A x_{m}$ it holds

$$
r_{m} \in \Omega+K_{m+1}\left((I-P) A,(I-P) r_{0}\right) .
$$

Proof. Using Lemma 3.7 we get

$$
\begin{aligned}
r_{m} & =b-A\left(x_{0}+W y_{1}+V_{m} y_{2}\right) \\
& =r_{0}-A W y_{1}-A V_{m} y_{2} \\
& =P r_{0}-A W y_{1}-P A V y_{2}+(I-P) r_{0}-(I-P) A V y_{2} \\
& \in \Omega+K_{m+1}\left((I-P) A,(I-P) r_{0}\right) .
\end{aligned}
$$

For methods using a (Petrov-)Galerkin condition we can apply Theorem 3.1 to the augmented case to see that the residuals stay collinear:
Lemma 3.10. Let $\operatorname{dim}(\Omega)=k$ and let $W_{1} \subseteq W_{2} \subseteq \cdots \subseteq W_{j} \subseteq \mathbb{C}^{n}$ with $\operatorname{dim}\left(W_{m}\right)=k+m$ and $W_{m} \cap\left(\Omega+K_{m+1}\left(A, r_{0}^{i}\right)\right)^{\perp}=\{0\}, m=1, \ldots, j$. Let the approximations $x_{m}^{i} \in x_{0}+\Omega+K_{m}\left(A, r_{0}^{i}\right)$ to the solution of

$$
\left(A-\sigma_{i} I\right) x=b
$$

be chosen such that the residuals $r_{m}^{i}=b-\left(A-\sigma_{i} I\right) x_{m}^{i}$ fulfil the PetrovGalerkin condition

$$
r_{m}^{i} \perp W_{m} .
$$

Then r_{m}^{i} and r_{m}^{j} are collinear if the starting residuals r_{0}^{i} and r_{0}^{j} are collinear.

Proof. If r_{0}^{i} and r_{0}^{j} are collinear, then $K_{m+1}\left(A, r_{0}^{i}\right)=K_{m+1}\left(A, r_{0}^{j}\right)$, so r_{m}^{i} and r_{m}^{j} are both from the same space

$$
r_{m}^{i}, r_{m}^{j} \in\left(\Omega+K_{m+1}\left(A, r_{0}^{i}\right)\right) \cap\left(W_{m}\right)^{\perp} .
$$

It holds $W_{m}^{\perp}+\Omega+K_{m+1}\left(A, r_{0}^{i}\right)=\mathbb{C}^{n}$ since $W_{m} \cap\left(\Omega+K_{m+1}\left(A, r_{0}^{i}\right)\right)^{\perp}=\{0\}$. Since $\operatorname{dim}\left(K_{m+1}\left(A, r_{0}^{i}\right)\right)=m+1$ and $\operatorname{dim}\left(\left(W_{m}\right)^{\perp}\right)=n-m-k$, we get

$$
\operatorname{dim}\left(\left(\Omega+K_{m+1}\left(A, r_{0}^{i}\right)\right) \cap\left(W_{m}\right)^{\perp}\right)=1
$$

The way we choose our approximations in the following sections either forces r_{m} to be orthogonal to Ω or zero out its Ω-part by minimization, so that actually $r_{m} \in K_{m+1}\left((I-P) A,(I-P) r_{0}\right)$.

We will investigate two variants of this deflation, namely Schur- and LRdeflation, and show how they apply to FOM, GMRES, BiCG and QMR.

3.3 Schur-Deflation

Let $S_{k}=\left[s_{1}, \ldots, s_{k}\right]$ be the matrix the columns s_{i} of which are the Schur vectors of the k smallest eigenvalues of the matrix A. So we have $S_{k}^{H} S_{k}=I_{k}$ and

$$
\begin{equation*}
A S_{k}=S_{k} T_{k} \tag{3.6}
\end{equation*}
$$

where T_{k} is an upper triangular matrix with the k smallest eigenvalues of A on the diagonal.

In the case of a shifted matrix $A=M-\sigma I$ and S_{k}, T_{k} computed with respect to M we have

$$
A S_{k}=M S_{k}-\sigma S_{k}=S_{k}\left(T_{k}-\sigma I_{k}\right) .
$$

As projector onto the subspace $\Omega_{S}=\operatorname{span}\left\{s_{1}, \ldots, s_{k}\right\}$ we use the orthogonal projection $P=S_{k} S_{k}^{H}$.

Theorem 3.11. For the orthogonal projector $P=S_{k} S_{k}^{H}$ onto the subspace $\Omega_{S}=\operatorname{span}\left\{s_{1}, \ldots, s_{k}\right\}$ it holds

1. $\operatorname{range}(P)=\operatorname{span}\left\{s_{1}, \ldots, s_{k}\right\}$ is A-invariant,
2. range $(I-P)$ is not A-invariant in general.

Proof.

1. Follows directly from (3.6).
2. Let $S_{n}=\left[s_{1}, \ldots, s_{n}\right]$ be the matrix of all Schur vectors, i.e.

$$
A S_{n}=S_{n} T_{n}
$$

with T_{n} upper triangular with the eigenvalues of A on the diagonal. Every $y \in \operatorname{range}(I-P)$ can be written as

$$
\sum_{i=k+1}^{n} \alpha_{i} s_{i}
$$

with some α_{i}. Since $A s_{i}=\sum_{j=1}^{i} T_{j, i} s_{j}$, multiplication with A will introduce Schur vectors s_{i} with index $i \leq k$.

Thus, to build a basis for $K_{m}\left((I-P) A,(I-P) r_{0}\right)$ projection will be necessary in every step.

For the Lanczos biorthogonalization we have to build a basis for the Krylov subspace $K_{m}\left(((I-P) A)^{H}, r\right)=K_{m}\left(A^{H}(I-P), r\right)$ for a starting vector r. Even though A^{H} and P do not commute, $K_{m}\left(A^{H}(I-P), r\right)$ is still orthogonal to Ω_{S} if $r \in \operatorname{range}(I-P)$, i.e., if we choose $r=(I-P) r_{0}$, for example.

Theorem 3.12. For the orthogonal projector $P=S_{k} S_{k}^{H}$ onto the subspace $\Omega_{S}=\operatorname{span}\left\{s_{1}, \ldots, s_{k}\right\}$ it holds

1. range $(P)=\operatorname{span}\left\{s_{1}, \ldots, s_{k}\right\}$ is not A^{H}-invariant in general,
2. range $(I-P)$ is A^{H}-invariant.

Proof.

1. Analogous to the proof of Theorem 3.11 with $A^{H} S_{n}=S_{n} T_{n}^{H}$ and T_{n}^{H} a lower triangular matrix.
2. For $w=(I-P) y \in \operatorname{range}(I-P)$ it holds

$$
S_{k}^{H} A^{H}\left(I-S_{k} S_{k}^{H}\right) y=T_{k}^{H} S_{k}^{H}\left(I-S_{k} S_{k}^{H}\right) y=0,
$$

thus $A^{H} w \in \operatorname{null}(P)=\operatorname{range}(I-P)$.

Theorem 3.12 shows that $K_{m}\left(A^{H}(I-P),(I-P) r_{0}\right)=K_{m}\left(A^{H},(I-P) r_{0}\right)$ and no projection, except for the starting vector, is needed to build a basis for this subspace.

In the following subsections we will investigate Schur-deflation for FOM, GMRES, BiCG and QMR. It will turn out that in all methods the Ω_{S}-part of the approximation depends on the Krylov-part. This is because every multiplication with A or M respectively introduces an additional Ω_{S}-part. The Ω_{S}-part does not have to be recomputed again and again in every step of the Krylov iteration, though. It can be computed once when the Krylovpart converged to the desired accuracy. The convergence of the Krylov iteration can be monitored cheaply using the residuals, which are actually the residuals with respect to the complete approximation, including the $\Omega_{S^{-}}$ part.

3.3.1 FOM-Schur

Let now S_{k} and T_{k} be calculated with respect to M and let the columns of V_{m} span $K_{m}\left((I-P) A,(I-P) r_{0}\right)$. To choose the Schur deflated FOM approximation $x_{m} \in x_{0}+\Omega_{S}+(I-P) K_{m}\left(A, r_{0}\right)$ to the solution of $A x=b$, $A=M-\sigma I$, we use the Galerkin condition

$$
\begin{equation*}
r_{m} \perp \Omega_{S}+K_{m}\left((I-P) A,(I-P) r_{0}\right) . \tag{3.7}
\end{equation*}
$$

The projection P is orthogonal and thus $S_{k}^{H} V_{m}=0$; the columns of V_{m} span $K_{m}\left((I-P) A,(I-P) r_{0}\right)$. Therefore, from (3.7) and Theorem 3.9 it directly follows that $r_{m} \in K_{m+1}\left((I-P) A,(I-P) r_{0}\right)$.

The chosen iterates are $x_{m}=x_{0}+S_{k} y_{m}^{1}+V_{m} y_{m}^{2}$ with $y_{m}^{1} \in \mathbb{C}^{k}$ and $y_{m}^{2} \in \mathbb{C}^{m}$ resulting from

$$
\left[S_{k} V_{m}\right]^{H} A\left[S_{k} V_{m}\right]\left[\begin{array}{l}
y_{m}^{1} \\
y_{m}^{2}
\end{array}\right]=\left[\begin{array}{c}
S_{k}^{H} r_{0} \\
V_{m}^{H} r_{0}
\end{array}\right] .
$$

Due to $V_{m}^{H} S_{k}=0$, the representation of the projection and restriction of A onto the augmented subspace simplifies to block triangular structure

$$
\left[S_{k} V_{m}\right]^{H} A\left[S_{k} V_{m}\right]=\left[\begin{array}{cc}
T_{k}-\sigma I_{k} & S^{H} A V_{m} \\
0 & H_{m}-\sigma I_{m}
\end{array}\right] \in \mathbb{C}^{(k+m) \times(k+m)}
$$

For an arbitrary r_{0} which might not lie in the orthogonal complement of Ω_{S} one therefore has
$y_{m}^{2}=\left(H_{m}-\sigma I\right)^{-1}\left(V_{m}^{H} P r_{0}+V_{m}^{H}(I-P) r_{0}\right)=\left(H_{m}-\sigma I_{m}\right)^{-1}\left\|(I-P) r_{0}\right\|_{2} e_{1}$
and

$$
y_{m}^{1}=\left(T_{k}-\sigma I_{k}\right)^{-1}\left(S_{k}^{H} r_{0}-S_{k}^{H} A V_{m} y_{m}^{2}\right)
$$

As a part of y_{m}^{1}, namely $\left(T_{k}-\sigma I_{k}\right)^{-1} S_{k}^{H} r_{0}$, can be calculated beforehand, we can choose

$$
\hat{x}_{0}=x_{0}+S_{k}\left(T_{k}-\sigma I_{k}\right)^{-1} S_{k}^{H} r_{0}
$$

as starting vector. The starting residual

$$
\hat{r}_{0}=r_{0}-A S_{k}\left(T_{k}-\sigma I_{k}\right)^{-1} S_{k}^{H} r_{0}=(I-P) r_{0}
$$

then lies in the orthogonal complement of Ω_{S} and therefore y_{m}^{1} simplifies to

$$
y_{m}^{1}=-\left(T_{k}-\sigma I_{k}\right)^{-1} S_{k}^{H} A V_{m} y_{m}^{2} .
$$

The iterate then reads

$$
x_{m}=\hat{x}_{0}-S_{k}\left(T_{k}-\sigma I_{k}\right)^{-1} S_{k}^{H} A V_{m} y_{m}^{2}+V_{m}\left(H_{m}-\sigma I_{m}\right)^{-1}\left\|\hat{r}_{0}\right\|_{2} e_{1} .
$$

From now on we assume w.l.o.g that r_{0} lies in the orthogonal complement of Ω_{S}, i.e., we assume that the \hat{x}_{0} is taken as the starting vector. With this assumption we do not have to distinguish between the overall starting residual and the starting residuals after restarts.

Having multiple shifts $\sigma_{i}, i=1, \ldots, s$, we start with collinear but not necessarily equal residuals $r_{0}^{(i)}=\rho_{0}^{(i)} r_{0}^{(1)}, i=1, \ldots, s$. Obviously $\rho_{0}^{(1)}=1$. We choose $r_{0}^{(1)}$ as starting vector for the Krylov subspace such that $y_{m}^{1(i)}$ and $y_{m}^{2(i)}$ are

$$
\begin{gathered}
y_{m}^{2(i)}=\rho_{0}^{(i)}\left(H_{m}-\sigma_{i} I_{m}\right)^{-1}\left\|r_{0}^{(1)}\right\|_{2} e_{1}, i=1, \ldots, s, \\
y_{m}^{1(i)}=-\left(T_{k}-\sigma_{i} I_{k}\right)^{-1} S_{k}^{H}\left(M-\sigma_{i} I\right) V_{m} y_{m}^{2(i)}, i=1, \ldots, s .
\end{gathered}
$$

The residuals $r_{m}^{(i)}$ are collinear as well. This can be seen by directly applying Lemma 3.10 with $r_{m}^{(i)} \perp W_{m}$ where $W_{m}=\Omega_{S}+(I-P) K_{m}\left(A, r_{0}^{(1)}\right)$ and $W_{m} \cap\left(\Omega_{S}+(I-P) K_{m+1}\left(A, r_{0}^{(1)}\right)\right)^{\perp}=\{0\}$.

Besides the theoretical knowledge about the residuals staying collinear it will be necessary to compute the collinearity factors.
Proposition 3.13. For each $i=1, \ldots, s$ let $x_{m}^{(i)}=x_{0}^{(i)}+S_{k} y_{m}^{1{ }^{(i)}}+V_{m} y_{m}^{2(i)}$ be the Schur deflated FOM approximation to $\left(M-\sigma_{i} I\right) x=r_{0}^{(i)}=\rho_{0}^{(i)} r_{0}^{(1)}$. Then

$$
\begin{equation*}
r_{m}^{(i)}=-h_{m+1, m}\left(y_{m}^{2}{ }^{(i)}\right)_{m} v_{m+1} . \tag{3.8}
\end{equation*}
$$

Proof. In the case of starting residuals without a part in Ω_{S}, i.e $r_{0}^{(i)}=\hat{r}_{0}^{(i)}$, we have for $i=1, \ldots, s$

$$
\begin{aligned}
r_{m}^{(i)} & =r_{0}^{(i)}-\left(M-\sigma_{i}\right) x_{m}^{(i)} \\
& =r_{0}^{(i)}-\left(M-\sigma_{i}\right)\left(S_{k} y_{m}^{1}{ }^{(i)}+V_{m} y_{m}^{2(i)}\right) \\
& =r_{0}^{(i)}+S_{k} S_{k}^{H}\left(M-\sigma_{i} I\right) V_{m} y_{m}^{2(i)}-\left(M-\sigma_{i}\right) V_{m} y_{m}^{2(i)} \\
& =r_{0}^{(i)}-\left(I-S_{k} S_{k}^{H}\right)\left(M-\sigma_{i} I\right) V_{m} y_{m}^{2(i)} \\
& =r_{0}^{(i)}-V_{m}\left(H_{m}-\sigma_{i} I_{m}\right) y_{m}^{2}{ }^{(i)}-h_{m+1, m}\left(y_{m}^{2}{ }^{(i)}\right)_{m} v_{m+1} \\
& =-h_{m+1, m}\left(y_{m}^{2}{ }^{(i)}\right)_{m} v_{m+1} .
\end{aligned}
$$

Setting $\rho_{m}^{(i)}=-h_{m+1, m}\left(y_{m}^{2}{ }^{(i)}\right)_{m}, i=1, \ldots, s$, we have $r_{m}^{(i)}=\rho_{m}^{(i)} v_{m+1}$.
The collinearity factor is given by (3.8) if $S_{k} S_{k}^{H} r_{0}^{(i)} \neq 0$, too. In this case we have for $i=1, \ldots, s$

$$
\begin{aligned}
r_{m}^{(i)} & =r_{0}^{(i)}-\left(M-\sigma_{i}\right) x_{m}^{(i)} \\
& =-h_{m+1, m}\left(y_{m}^{2}{ }^{(i)}\right)_{m} v_{m+1}+S_{k} S_{k}^{H} r_{0}^{(i)}-\left(M-\sigma_{i}\right) S_{k}\left(T-\sigma I_{k}\right)^{-1} S_{k}^{H} r_{0}^{(i)} \\
& =-h_{m+1, m}\left(y_{m}^{2}{ }^{(i)}\right)_{m} v_{m+1}+S_{k} S_{k}^{H} r_{0}^{(i)}-S_{k} S_{k}^{H} r_{0}^{(i)} \\
& =-h_{m+1, m}\left(y_{m}^{2}{ }^{(i)}\right)_{m} v_{m+1} .
\end{aligned}
$$

The residuals are thus not only in $K_{m+1}\left((I-P) A,(I-P) r_{0}\right)$, they are even multiples of the computed basis vectors.

```
Algorithm 3.14. FOM-Schur(k,m)
    \(\left\{\right.\) Input \(\left.A=M-\sigma_{i} I,\left\{\sigma_{1}, \ldots, \sigma_{s}\right\}, b, S=S_{k}, T=T_{k}\right\}\)
    \(b^{S}=S S^{H} b\)
    \(x^{(i)}=S\left(T-\sigma_{i} I\right)^{-1} S^{H} b^{S}, i=1, \ldots, s\)
    \(r=b-b^{S}\)
    \(\rho^{(i)}=1, i=1, \ldots, s\)
    \(\beta=\|r\|_{2}\)
    while not all systems converged do
        \(v_{1}=r / \beta\)
        compute \(V_{m}, H_{m}\) by running Arnoldi with \(\left(I-S S^{H}\right) M\)
        for \(i=1, \ldots, s\) do
            \(y_{m}^{2}{ }^{(i)}=\beta \rho^{(i)}\left(H_{m}-\sigma_{i} I_{m}\right)^{-1} e_{1}\)
            \(y_{m}^{1(i)}=-\left(T-\sigma_{i} I\right)^{-1} S^{H}\left(M-\sigma_{i} I\right) V_{m} y_{m}^{2(i)}\)
            \(x^{(i)}=x^{(i)}+S y_{m}^{1(i)}+V_{m} y_{m}^{2(i)}\)
        end for
        \(r=v_{m+1}\)
        \(\rho^{(i)}=-h_{m+1, m}\left(y_{m}^{2}{ }^{(i)}\right)_{m}, i=1, \ldots, s\)
        \(\beta=h_{m+1, m}\)
    end while
```


3.3.2 GMRES-Schur

Again, let S_{k} and T_{k} be calculated with respect to M. To choose the Schur deflated GMRES approximation $x_{m} \in x_{0}+\Omega_{S}+(I-P) K_{m}\left(A, r_{0}\right)$ to the solution of $A x=b, A=M-\sigma I$, we now use the minimal residual condition.

The chosen iterates are $x_{m}=x_{0}+S_{k} y_{m}^{1}+V_{m} y_{m}^{2}$ with $y_{m}^{1} \in \mathbb{C}^{k}$ and $y_{m}^{2} \in \mathbb{C}^{m}$ and the residual that has to be minimized is

$$
r_{m}=b-(M-\sigma I)\left(x_{0}+S_{k} y_{m}^{1}+V_{m} y_{m}^{2}\right) .
$$

From the Arnoldi relation (3.4) we get

$$
(M-\sigma I) V_{m} y_{m}^{2}=V_{m+1}\left(\widehat{H}_{m}-\sigma I\right) y_{m}^{2}+P(M-\sigma I) V_{m} y_{m}^{2}
$$

such that we can separate the parts of r_{m} lying in Ω_{S} from those lying in $K_{m+1}\left((I-P) A,(I-P) r_{0}\right):$
$r_{m}=P r_{0}-S_{k}\left(T_{k}-\sigma I\right) y_{m}^{1}-P(M-\sigma I) V_{m} y_{m}^{2}+(I-P) r_{0}-V_{m+1}\left(\widehat{H}_{m}-\sigma I\right) y_{m}^{2}$.
Thus $r_{m}=S_{k} u+V_{m+1} w$ for some $u \in \mathbb{C}^{k}, w \in \mathbb{C}^{m+1}$ and S and V_{m+1} are orthogonal. Although the Krylov part influences the Ω_{S} part, the Ω_{S} part can be made zero for any choice of y_{m}^{2} by solving

$$
\begin{equation*}
\left(T_{k}-\sigma I\right) y_{m}^{1}=S_{k}^{H} r_{0}-S_{k}^{H}(M-\sigma I) V_{m} y_{m}^{2} \tag{3.9}
\end{equation*}
$$

To minimize $\left\|r_{m}\right\|_{2}$ we therefore first choose the Krylov part y_{m}^{2} such that it minimizes $\left\|(I-P) r_{0}-V_{m+1}\left(\widehat{H}_{m}-\sigma I\right) y_{m}^{2}\right\|_{2}$. Afterwards y_{m}^{1} can be computed by solving (3.9).

The residual is then actually just $r_{m}=(I-P) r_{0}-V_{m+1}\left(\widehat{H}_{m}-\sigma I\right) y_{m}^{2}$, so as in the FOM case, the residuals are from $K_{m+1}\left((I-P) A,(I-P) r_{0}\right)$ and orthogonal to Ω_{S}.

In the same manner as in the FOM case, a part of y_{m}^{1} can be calculated beforehand. Starting with $\hat{x}_{0}=x_{0}+S_{k}\left(T_{k}-\sigma I\right)^{-1} S_{k}^{H} r_{0}$ leads to a corresponding starting residual $\hat{r}_{0}=(I-P) r_{0}$ and y_{m}^{1} simplifies to

$$
y_{m}^{1}=-\left(T_{k}-\sigma I\right)^{-1} S_{k}^{H}(M-\sigma I) V_{m} y_{m}^{2} .
$$

From now on we assume w.l.o.g that r_{0} lies in the orthogonal complement of Ω_{S}.

Concerning multiple shifts we assume to have collinear starting residuals, i.e. $r_{0}^{(i)}=\rho_{0}^{(i)} r_{0}^{(1)}, i=1, \ldots, s$. As starting vector for the Krylov subspace we choose $r_{0}^{(1)}$.
The latter computations to obtain $y_{m}^{1(i)}$ and $y_{m}^{2(i)}$ are done for the system $i=1$ only, while for the systems $i=2, \ldots, s$ we demand, similarly to the non-deflated version,

$$
\begin{equation*}
r_{m}^{(i)}=\rho_{0}^{(i)} r_{0}^{(1)}-\left(M-\sigma_{i} I\right)\left(S_{k} y_{m}^{1(i)}+V_{m} y_{m}^{2(i)}\right)=\rho_{m}^{(i)} r_{m}^{(1)} \tag{3.10}
\end{equation*}
$$

As $r_{m}^{(1)}$ is orthogonal to Ω_{S}, so are the $r_{m}^{(i)}, i=2, \ldots, s$. So we keep for $y_{m}^{1{ }^{(i)}}$

$$
\left(T_{k}-\sigma_{i} I\right) y_{m}^{1(i)}=-S_{k}^{H}\left(M-\sigma_{i} I\right) V_{m} y_{m}^{2(i)}
$$

such that equation (3.10) reads

$$
\rho_{0}^{(i)} r_{0}^{(1)}-V_{m+1}\left(\widehat{H}_{m}-\sigma_{i} I\right) y_{m}^{2(i)}=\rho_{m}^{(i)} r_{m}^{(1)} .
$$

Therefore, $y_{m}^{2}{ }^{(i)}$ and $\rho_{m}^{(i)}$ are obtained from the system

$$
\left[\widehat{H}_{m}-\sigma_{i} I \mid V_{m+1}^{H} r_{m}^{(1)}\right]\left[\begin{array}{c}
y_{m}^{2(i)} \tag{3.11}\\
\rho_{m}^{(i)}
\end{array}\right]=\rho_{0}^{(i)}\left\|r_{0}^{(1)}\right\|_{2} e_{1}
$$

```
Algorithm 3.15. GMRES-Schur(k,m)
    \(\left\{\right.\) Input \(\left.A=M-\sigma_{i} I,\left\{\sigma_{1}, \ldots, \sigma_{s}\right\}, b, S=S_{k}, T=T_{k}\right\}\)
    \(b^{S}=S S^{H} b\)
    \(x^{(i)}=S\left(T-\sigma_{i} I\right)^{-1} S^{H} b^{S}, i=1, \ldots, s\)
    \(r=b-b^{S}\)
    \(\rho^{(i)}=1, i=1, \ldots, s\)
    \(\beta=\|r\|_{2}\)
    while not all systems converged do
        \(v_{1}=r / \beta\)
        compute \(V_{m}, H_{m}\) by running Arnoldi with \(\left(I-S S^{H}\right) M\)
        compute \(y_{m}^{2(1)}\) by minimizing \(\left\|r-V_{m+1}\left(\widehat{H}_{m}-\sigma_{1} I\right) y_{m}^{2}{ }^{(1)}\right\|_{2}\)
        for \(i=2, \ldots, s\) do
            compute \(y_{m}^{2}{ }^{(i)}\) and \(\rho_{m}^{(i)}\) from (3.11)
        end for
        for \(i=1, \ldots, s\) do
            compute \(y_{m}^{1}{ }^{(i)}=-\left(T-\sigma_{i} I\right)^{-1} S^{H}\left(M-\sigma_{i} I\right) V_{m} y_{m}^{2}{ }^{(i)}\)
        end for
        \(x^{(i)}=x^{(i)}+S y_{m}^{1(i)}+V_{m} y_{m}^{2}{ }^{(i)}\)
        \(r=r-V_{m+1}\left(\widehat{H}_{m}-\sigma_{1} I\right) y_{m}^{2}{ }^{(1)}\)
        \(\beta=\|r\|_{2}\)
    end while
```

Same as without deflation, see Theorem 3.3, in the Schur deflated version the first system (i.e. $M-\sigma_{1} I$) rules the convergence of all systems. To show that, we follow the proof of Theorem 3.3, see [17].

In ordinary GMRES the iterates x_{m} are chosen from an affine Krylov subspace and can be represented as

$$
x_{m}=x_{0}+q_{m-1}(A) r_{0},
$$

with q_{m-1} a polynomial of degree at most $m-1$.
In Schur deflated GMRES this is no longer the case, as the iterates involve an additional part belonging to the deflated eigenvalues:

$$
x_{m}=x_{0}+S y_{m}^{1}+V_{m} y_{m}^{2}=x_{0}+S y_{m}^{1}+q_{m-1}((I-P) A) r_{0},
$$

with $P=S S^{H}$.
Nevertheless, for the corresponding residuals it holds, just as for ordinary GMRES,

$$
\begin{aligned}
r_{m} & =b-A x_{0}-(I-P) A V_{m} y_{m}^{2} \\
& =r_{0}-(I-P) A V_{m} y_{m}^{2} \\
& =r_{0}-(I-P) A q_{m-1}((I-P) A) r_{0} \\
& =p_{m}((I-P) A) r_{0},
\end{aligned}
$$

where $p_{m}(t)=1-t q_{m-1}(t)$ is a polynomial of degree at most m with $p_{m}(0)=1$.

For the shifted systems this reads

$$
r_{m}^{(i)}=p_{m}^{(i)}\left((I-P)\left(M-\sigma_{i} I\right)\right) r_{0}^{(i)},
$$

and as we required $r_{m}^{(i)}=\rho_{m}^{(i)} r_{m}^{(1)}$ and $r_{0}^{(i)}=\rho_{0}^{(i)} r_{0}^{(1)}$, we get

$$
\begin{equation*}
\rho_{0}^{(i)} p_{m}^{(i)}\left((I-P)\left(M-\sigma_{i} I\right)\right) r_{0}^{(1)}=\rho_{m}^{(i)} p_{m}^{(1)}\left((I-P)\left(M-\sigma_{1} I\right)\right) r_{0}^{(1)} . \tag{3.12}
\end{equation*}
$$

Fortunately, since P is a projection and $(I-P) r_{0}=r_{0}$, the following holds:

$$
\begin{aligned}
p_{m}^{(1)}\left((I-P)\left(M-\sigma_{1} I\right)\right) r_{0}^{(1)} & =p_{m}^{(1)}\left((I-P)\left(M-\sigma_{i} I+\sigma_{i} I-\sigma_{1} I\right)\right) r_{0}^{(1)} \\
& =p_{m}^{(1)}\left((I-P)\left(M-\sigma_{i} I\right)+\left(\sigma_{i}-\sigma_{1}\right) I\right) r_{0}^{(1)}
\end{aligned}
$$

Therefore, (3.12) is equivalent to

$$
\rho_{0}^{(i)} p_{m}^{(i)}(t)=\rho_{m}^{(i)} p_{m}^{(1)}\left(t+\left(\sigma_{i}-\sigma_{1}\right)\right) .
$$

Obviously $p_{m}^{(i)}(0)=1$ is satisfied if and only if $\rho_{0}^{(i)}=\rho_{m}^{(i)} p_{m}^{(1)}\left(\sigma_{i}-\sigma_{1}\right)$ and this is fulfilled if and only if $p_{m}^{(1)}\left(\sigma_{i}-\sigma_{1}\right) \neq 0$ and $\rho_{m}^{(i)}=\rho_{0}^{(i)} / p_{m}^{(1)}\left(\sigma_{i}-\sigma_{1}\right)$.

The following lemma and theorem are the Schur deflated versions of the ones found in [17]. For the deflated versions the proofs had to be modified.

Lemma 3.16. Let $r_{m}=p_{m}((I-P) A) r_{0}$ be the Schur deflated GMRES residual and let A be positive real. Then all zeros ζ of p_{m} satisfy

$$
\begin{equation*}
\frac{1}{\zeta} \in \mathrm{~F}\left(A^{-H}\right) \tag{3.13}
\end{equation*}
$$

with $\mathrm{F}(A)=\left\{\langle A x, x\rangle \mid x \in \mathbb{C}^{n},\|x\|_{2}=1\right\}$ being the field of values and

$$
\begin{equation*}
\operatorname{Re}(\zeta)>0 \tag{3.14}
\end{equation*}
$$

Proof. Since $p_{m}(0)=1$, we know that $\zeta \neq 0$ for any zero ζ of p_{m}, so we can write

$$
p_{m}(t)=\left(1-\frac{t}{\zeta}\right) \widehat{p}_{m-1}(t)
$$

with $\widehat{p}_{m-1}(0)=1$. Writing $u=\widehat{p}_{m-1}((I-P) A) r_{0}$ and $w=(I-P) A u$ gives

$$
\left\|r_{m}\right\|_{2}=\left\|p_{m}((I-P) A) r_{0}\right\|_{2}=\left\|u-\frac{1}{\zeta} w\right\|_{2}
$$

which is minimized for

$$
\frac{1}{\zeta}=\frac{\langle w, u\rangle}{\langle w, w\rangle}
$$

It holds $(I-P) A^{-1} w=(I-P) A^{-1}(I-P) A u$ and since range (P) is A^{-1} invariant, it follows $(I-P) A^{-1} w=(I-P) u$. Therefore, we get

$$
\begin{aligned}
\langle w, u\rangle & =\langle A u,(I-P) u\rangle \\
& =\left\langle A u,(I-P) A^{-1} w\right\rangle \\
& =\left\langle(I-P) A u, A^{-1} w\right\rangle \\
& =\left\langle A^{-H} w, w\right\rangle,
\end{aligned}
$$

and thus

$$
\frac{1}{\zeta}=\frac{\langle w, u\rangle}{\langle w, w\rangle}=\frac{\left\langle A^{-H} w, w\right\rangle}{\langle w, w\rangle} \in \mathrm{F}\left(A^{-H}\right)
$$

which proves (3.13).
For $y=A x$ it holds

$$
\left\langle A^{-H} y, y\right\rangle=\langle A x, x\rangle,
$$

so if $\mathrm{F}(A)$ is contained in the right half-plane, so is $\mathrm{F}\left(A^{-H}\right)$. Therefore, $\operatorname{Re}\left(\frac{1}{\zeta}\right)>0$ and thus $\operatorname{Re}(\zeta)>0$, which proves (3.14).

Theorem 3.17. Let $\left(M-\sigma_{1} I\right)$ be positive real and $0>\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{s}$. Then the restarted shifted Schur deflated GMRES method converges for all shifted systems and for every restart value. The iterates for all shifted systems always exist, and we have

$$
\begin{equation*}
\left\|r_{m}^{(i)}\right\|_{2} \leq\left|\rho_{0}^{(i)}\right| \cdot\left\|r_{m}^{(1)}\right\|_{2} \tag{3.15}
\end{equation*}
$$

Proof. Although the matrix $(I-P)\left(M-\sigma_{1} I\right)$ is singular, the matrices $V_{m}^{H}(I-P)\left(M-\sigma_{1} I\right) V_{m}=V_{m}^{H}\left(M-\sigma_{1} I\right) V_{m}=H_{m}-\sigma_{1} I$ are positive real because $\operatorname{rank}\left(V_{m}\right)=m$. Therefore, the convergence of the first system is a well-known result on restarted shifted GMRES, see [42, 41].

For (3.15) we have to show that $\left|\rho_{m}^{(i)}\right| \leq\left|\rho_{0}^{(i)}\right|$. We know that

$$
\rho_{m}^{(i)}=\rho_{0}^{(i)} / p_{m}^{(1)}\left(\sigma_{i}-\sigma_{1}\right),
$$

so we have to show $\left|p_{m}^{(1)}\left(\sigma_{i}-\sigma_{1}\right)\right| \geq 1$. For $\sigma_{i}=\sigma_{1}$ there is nothing to show since $p_{m}^{(1)}(0)=1$. Therefore we assume $\sigma_{i} \neq \sigma_{1}$.

From Lemma 3.16 we know that

$$
p_{m}^{(1)}(t)=\prod_{i=1}^{m}\left(1-t / \zeta_{i}\right) \text { with } \operatorname{Re}\left(\zeta_{i}\right)>0, i=1, \ldots, m
$$

For a $\tau<0$ obviously $\left|1-\tau / \zeta_{i}\right|>1$ holds so that

$$
\left|p_{m}^{(1)}\left(\sigma_{i}-\sigma_{1}\right)\right|=\prod_{i=1}^{m}\left|1-\left(\sigma_{i}-\sigma_{1}\right) / \zeta_{i}\right|>1
$$

since $\sigma_{i}-\sigma_{1}<0$.

Theorem 3.17 tells us that the system with eigenvalues closest to the imaginary axis is the system with the slowest convergence. Monitoring the residual of this system is thus a safe way of controlling the overall convergence.

3.3.3 BiCG-Schur

Let S_{k} and T_{k} be calculated with respect to M. Let the columns of V_{m} span $K_{m}\left((I-P) A,(I-P) r_{0}\right)$ and the columns of W_{m} span $K_{m}\left(A^{H},(I-P) r_{0}\right)$ with $V_{m}^{H} W_{m}=I$. To choose the Schur deflated BiCG approximation $x_{m} \in$ $x_{0}+\Omega_{S}+K_{m}\left((I-P) A,(I-P) r_{0}\right)$ to the solution of $A x=b, A=M-\sigma I$, we use the Petrov-Galerkin condition

$$
\begin{equation*}
r_{m} \perp \Omega_{S}+K_{m}\left(A^{H},(I-P) r_{0}\right) . \tag{3.16}
\end{equation*}
$$

As in the FOM case, the residual lies in $K_{m+1}\left((I-P) A,(I-P) r_{0}\right)$.
The chosen iterates are $x_{m}=x_{0}+S_{k} y_{m}^{1}+V_{m} y_{m}^{2}$ with $y_{m}^{1} \in \mathbb{C}^{k}$ and $y_{m}^{2} \in \mathbb{C}^{m}$ resulting from

$$
\left[S_{k} W_{m}\right]^{H} A\left[S_{k} V_{m}\right]\left[\begin{array}{c}
y_{m}^{1} \\
y_{m}^{2}
\end{array}\right]=\left[\begin{array}{c}
S_{k}^{H} r_{0} \\
W_{m}^{H} r_{0}
\end{array}\right] .
$$

Due to $W_{m}^{H} S_{k}=0$, the representation of the projection and restriction of A onto the augmented subspace simplifies to block triangular structure in the same way as in the FOM case

$$
\left[S_{k} W_{m}\right]^{H} A\left[S_{k} V_{m}\right]=\left[\begin{array}{cc}
T_{k}-\sigma I_{k} & S_{k}^{H} A V_{m} \\
0 & H_{m}-\sigma I_{m}
\end{array}\right] \in \mathbb{C}^{(k+m) \times(k+m)}
$$

such that for arbritrary r_{0}

$$
\begin{aligned}
y_{m}^{1} & =\left(T_{k}-\sigma I_{k}\right)^{-1}\left(S_{k}^{H} r_{0}-S_{k}^{H} A V_{m} y_{m}^{2}\right), \\
y_{m}^{2} & =\left(H_{m}-\sigma I_{m}\right)^{-1} W_{m}^{H} r_{0} .
\end{aligned}
$$

Starting with

$$
\hat{x}_{0}=x_{0}+S_{k}\left(T_{k}-\sigma I_{k}\right)^{-1} S_{k}^{H} r_{0},
$$

the starting residual

$$
\hat{r}_{0}=r_{0}-A S_{k}\left(T_{k}-\sigma I_{k}\right)^{-1} S_{k}^{H} r_{0}=(I-P) r_{0}
$$

lies in the orthogonal complement of Ω_{S}. In this case $r_{0}=\gamma V_{m} e_{1}$ and $W_{m}^{H} r_{0}=\gamma e_{1}$, thus

$$
y_{m}^{2}=\gamma\left(H_{m}-\sigma I_{m}\right)^{-1} e_{1} .
$$

```
Algorithm 3.18. BiCG-Schur(k,m)
    \(\left\{\right.\) Input \(\left.A=M-\sigma_{i} I,\left\{\sigma_{1}, \ldots, \sigma_{s}\right\}, b, S=S_{k}, T=T_{k}\right\}\)
    \(b^{S}=S S^{H} b\)
    \(x^{(i)}=S\left(T-\sigma_{i} I\right)^{-1} S^{H} b^{S}, i=1, \ldots, s\)
    \(r=b-b^{S}\)
    \(\beta=\|r\|_{2}\)
    while not all systems converged do
        \(\tilde{v}_{1}=\tilde{w}_{1}=r\)
        for \(i=1, \ldots, s\) do
            compute \(V_{m} y_{m}^{2(i)}\) by BiCG-Sh using \((I-P) M\) for building \(V_{m}\)
            compute \(y_{m}^{1(i)}=-\left(T-\sigma_{i} I\right)^{-1} S^{H}\left(M-\sigma_{i} I\right) V_{m} y_{m}^{2}{ }^{(i)}\)
            \(x^{(i)}=x^{(i)}+S y_{m}^{1(i)}+V_{m} y_{m}^{2(i)}\)
        end for
    end while
```


3.3.4 QMR-Schur

Let S_{k} and T_{k} be calculated with respect to M. Let the columns of V_{m} span $K_{m}\left((I-P) A,(I-P) r_{0}\right)$ and the columns of W_{m} span $K_{m}\left(A^{H},(I-P) r_{0}\right)$ with $V_{m}^{H} W_{m}=I$. To choose the Schur deflated QMR approximation $x_{m} \in$
$x_{0}+\Omega_{S}+(I-P) K_{m}\left(A, r_{0}\right)$ to the solution of $A x=b, A=M-\sigma I$, we split the residual

$$
r_{m}=r_{0}-S_{k} T_{k} y_{m}^{1}-A V_{m} y_{m}^{2}
$$

as we did for the GMRES case

$$
r_{m}=P r_{0}-S_{k} T_{k} y_{m}^{1}-P A V_{m} y_{m}^{2}+(I-P) r_{0}-V_{m+1} \widehat{H}_{m} y_{m}^{2}
$$

Minimizing the Ω_{S}-part of the residual by solving

$$
T_{k} y_{m}^{1}=S_{k}^{H} r_{0}-S_{k}^{H} A V_{m} y_{m}^{2}
$$

leaves

$$
r_{m}=(I-P) r_{0}-V_{m+1} \widehat{H}_{m} y_{m}^{2}=\left\|(I-P) r_{0}\right\|_{2} V_{m+1} e_{1}-V_{m+1} \widehat{H}_{m} y_{m}^{2}
$$

As V_{m+1} is not orthogonal, we demand the quasi minimal residual property instead of the minimal residual property

$$
\begin{equation*}
\left\|\left\|(I-P) r_{0}\right\|_{2} e_{1}-\widehat{H}_{m} y_{m}\right\|_{2}=\min _{y \in \mathbb{C}^{m}}\| \|(I-P) r_{0}\left\|_{2} e_{1}-\widehat{H}_{m} y\right\|_{2} \tag{3.17}
\end{equation*}
$$

```
Algorithm 3.19. QMR-Schur( \(\mathrm{k}, \mathrm{m}\) )
    \(\left\{\right.\) Input \(\left.A=M-\sigma_{i} I,\left\{\sigma_{1}, \ldots, \sigma_{s}\right\}, b, S=S_{k}, T=T_{k}\right\}\)
    \(b^{S}=S S^{H} b\)
    \(x^{(i)}=S\left(T-\sigma_{i} I\right)^{-1} S^{H} b^{S}, i=1, \ldots, s\)
    \(r=b-b^{S}\)
    \(\beta=\|r\|_{2}\)
    while not all systems converged do
        \(\tilde{v}_{1}=\tilde{w}_{1}=r\)
        for \(i=1, \ldots, s\) do
            compute \(V_{m} y_{m}^{2}{ }^{(i)}\) by QMR-Sh using \((I-P) M\) for building \(V_{m}\)
            compute \(y_{m}^{1{ }^{(i)}}=-\left(T-\sigma_{i} I\right)^{-1} S^{H}\left(M-\sigma_{i} I\right) V_{m} y_{m}^{2}{ }^{(i)}\)
            \(x^{(i)}=x^{(i)}+S y_{m}^{1(i)}+V_{m} y_{m}^{2(i)}\)
            \(r^{(i)}=r-V_{m+1}\left(\widehat{H}_{m}-\sigma_{i} I\right) y_{m}^{2}{ }^{(i)}\)
        end for
    end while
```


3.4 LR-deflation

Using both left and right eigenvalues leads to an alternative deflation scheme where additional projection is no longer necessary during the Arnoldi iteration.

Let $R_{k}=\left[r_{1}, \ldots, r_{k}\right]$ be the matrix containing the right eigenvectors corresponding to the k smallest eigenvalues of the matrix A and $L_{k}^{H}=\left[l_{1}, \ldots, l_{k}\right]^{H}$ the matrix containing the left eigenvectors. With Λ_{k} the diagonal eigenvalue matrix, the left and right eigenvectors satisfy

$$
A R_{k}=R_{k} \Lambda_{k}
$$

and

$$
L_{k}{ }^{H} A=\Lambda_{k} L_{k}{ }^{H}
$$

If $A=M-\sigma I$ is a shifted matrix and R_{k}, L_{k} and Λ_{k} are calculated with respect to M, then

$$
A R_{k}=R_{k}\left(\Lambda_{k}-\sigma I\right)
$$

and

$$
L_{k}{ }^{H} A=\left(\Lambda_{k}-\sigma I\right) L_{k}{ }^{H} .
$$

Left and right eigenvectors corresponding to different eigenvalues are orthogonal [24]. Let the eigenvectors be furthermore normalized such that

$$
L_{k}{ }^{H} R_{k}=I_{k}
$$

As projector onto $\Omega_{R}=\operatorname{span}\left\{r_{1}, \ldots, r_{k}\right\}$ we use $P=R_{k} L_{k}^{H}$. Obviously P is an oblique projector. More precisely, P is projector onto Ω_{R} along a subspace containing the remaining eigenvectors since

$$
\operatorname{range}(P)=\operatorname{span}\left\{r_{1}, \ldots, r_{k}\right\}
$$

and $\operatorname{null}(P)=\operatorname{span}\left\{r_{k+1}, \ldots, r_{n}\right\}=\operatorname{null}\left(L_{k}{ }^{H}\right)$.
For our purpose, the following properties of P are important.
Lemma 3.20. The projector $P=R_{k} L_{k}{ }^{H}$ and A commute.
Proof. Obviously, the following holds

$$
A R_{k} L_{k}{ }^{H}=R_{k} \Lambda_{k} L_{k}^{H}=R_{k} L_{k}^{H} A
$$

Lemma 3.21. For the oblique projector $P=R_{k} L_{k}{ }^{H}$ both range (P) and range $(I-P)$ are A-invariant.

Proof. Given $y=P v \in \operatorname{range}(P)$ we get

$$
A y=A P v=P A v \in \operatorname{range}(P)
$$

The proof for $(I-P)$ is just the same.

Therefore, when taking $P=R_{k} L_{k}^{H}$, there is no need of additional projection to build a basis for $(I-P) K_{m}\left(A, r_{0}\right)=K_{m}\left(A,(I-P) r_{0}\right)$.

Again, for the Lanczos biorthogonalization it will be necessary to build a basis for the Krylov subspace $K_{m}\left(((I-P) A)^{H}, r\right)$ for a starting vector r. In this case, as P and A commute, $K_{m}\left(((I-P) A)^{H}, r\right)=K_{m}\left((I-P)^{H} A^{H}, r\right)$.

Theorem 3.22. For the oblique projector $P=R_{k} L_{k}{ }^{H}$ both range $\left(P^{H}\right)$ and range $\left((I-P)^{H}\right)$ are A^{H}-invariant.

Proof. As A and P commute, so do A^{H} and P^{H}.
Theorem 3.22 shows that starting with $r=(I-P)^{H} r_{0}$ no further projection is necessary to build a basis of $(I-P) K_{m}\left(A^{H}, r_{0}\right)=K_{m}\left(A^{H},(I-P)^{H} r_{0}\right)$.

In the following subsections we will investigate LR-deflation for FOM, GMRES, BiCG and QMR. It will turn out that the Ω_{R}-part can be computed before starting the Krylov iteration. This is no surprise as neither by multiplication with A nor by multiplication with A^{H}, additional parts lying in Ω_{R} are produced.

3.4.1 FOM-LR

Let R_{k}, L_{k} and Λ_{k} be calculated with respect to M and let the columns of V_{m} span $K_{m}\left(A,(I-P) r_{0}\right)$. To choose the LR deflated FOM approximation $x_{m} \in x_{0}+\Omega_{R}+K_{m}\left(A,(I-P) r_{0}\right)$ to the solution of $A x=b, A=M-\sigma I$, we use the subspaces $\Omega_{R}=\operatorname{span}\left\{r_{1}, \ldots, r_{k}\right\}$ and $\Omega_{L}=\operatorname{span}\left\{l_{1}, \ldots, l_{k}\right\}$ and the Petrov-Galerkin condition

$$
\begin{equation*}
r_{m} \perp \Omega_{L}+K_{m}\left(A,(I-P) r_{0}\right) \tag{3.18}
\end{equation*}
$$

Theorem 3.23. The LR-deflated FOM approximation is

$$
x_{m}=x_{0}+R_{k} y_{m}^{1}+V_{m} y_{m}^{2}
$$

where $y_{m}^{1} \in \mathbb{C}^{k}$ and $y_{m}^{2} \in \mathbb{C}^{m}$ are the solutions of the independent linear systems

$$
\begin{equation*}
L_{k}^{H} A R_{k} y_{m}^{1}=\left(\Lambda_{k}-\sigma I\right) y_{m}^{1}=L_{k}{ }^{H} r_{0} \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{m}^{H} A V_{m} y_{m}^{2}=V_{m}^{H}(I-P) r_{0}=\beta e_{1} \tag{3.20}
\end{equation*}
$$

Proof. (3.18) leads to

$$
\left[\begin{array}{cc}
\Lambda_{k}-\sigma I & 0 \\
V_{m}^{H} A R_{k} & V_{m}^{H} A V_{m}
\end{array}\right]\left[\begin{array}{c}
y_{m}^{1} \\
y_{m}^{2}
\end{array}\right]=\left[\begin{array}{c}
L_{k}{ }^{H} r_{0} \\
V_{m}^{H} r_{0}
\end{array}\right]
$$

For the system for y_{m}^{1} there is nothing more to show. For y_{m}^{2} we get

$$
V_{m}^{H} A V_{m} y_{m}^{2}=V_{m}^{H} r_{0}-V_{m}^{H} R_{k}\left(\Lambda_{k}-\sigma I\right) y_{m}^{1}=V_{m}^{H}(I-P) r_{0} .
$$

The system (3.19) can be solved before starting the Arnoldi iteration and does not have any influence on y_{m}^{2}. To compute y_{m}^{2}, a (non-deflated) FOM is run with starting vector $(I-P) r_{0}$ instead of r_{0}.

As LR-deflation does not change the FOM iteration, applying multishifts and restarts is straightforward.

```
Algorithm 3.24. FOM-LR(k,m)
    \(\left\{\right.\) Input \(\left.A=M-\sigma_{i} I,\left\{\sigma_{1}, \ldots, \sigma_{s}\right\}, b, L=L_{k}, R=R_{k}, \Lambda=\Lambda_{k}\right\}\)
    \(x^{(i)}=R\left(\Lambda-\sigma_{i} I\right)^{-1} L^{H} b, i=1, \ldots, s\)
    \(r=b-R L^{H} b\)
    \(\rho^{(i)}=1, i=1, \ldots, s\)
    \(\beta=\|r\|_{2}\)
    while not all systems converged do
        \(v_{1}=r / \beta\)
        compute \(V_{m}, H_{m}\) by running Arnoldi with \(M\)
        for \(i=1, \ldots, s\) do
            \(y_{m}{ }^{(i)}=\beta \rho^{(i)}\left(H_{m}-\sigma_{i} I_{m}\right)^{-1} e_{1}\)
            \(x^{(i)}=x^{(i)}+V_{m} y_{m}{ }^{(i)}\)
        end for
        \(r=v_{m+1}\)
        \(\rho^{(i)}=-h_{m+1, m}\left(y_{m}{ }^{(i)}\right)_{m}, i=1, \ldots, s\)
        \(\beta=h_{m+1, m}\)
    end while
```


3.4.2 GMRES-LR

Let again R_{k}, L_{k} and Λ_{k} be calculated with respect to M and let the columns of V_{m} span $K_{m}\left(A,(I-P) r_{0}\right)$. To choose the LR deflated GMRES approximation $x_{m} \in x_{0}+\Omega_{R}+K_{m}\left(A,(I-P) r_{0}\right)$ to the solution of $A x=b$, $A=M-\sigma I$, the intention is to use the minimal residual condition. Since the LR-projection is not orthogonal, it turns out that only a quasi minimal residual condition can be demanded.

Let $x_{m}=x_{0}+\left[R_{k} V_{m}\right] y_{m}$ with $y_{m}=\left[y_{m}^{1}, y_{m}^{2}\right]^{T}$ and $y_{m}^{1} \in \mathbb{C}^{k}, y_{m}^{2} \in \mathbb{C}^{m}$. The
corresponding residual is

$$
\begin{aligned}
r_{m} & =r_{0}-A\left[R_{k} V_{m}\right] y_{m} \\
& =r_{0}-\left[R_{k} V_{m+1}\right]\left[\begin{array}{cc}
\Lambda_{k}-\sigma I & 0 \\
0 & \widehat{H}_{m}-\sigma I
\end{array}\right] .
\end{aligned}
$$

Since $\beta v_{1}=(I-P) r_{0}$ it holds

$$
r_{0}=P r_{0}+(I-P) r_{0}=\left[R_{k} V_{m+1}\right]\left[\begin{array}{c}
L_{k}^{H} r_{0} \\
\beta e_{1}
\end{array}\right]
$$

and thus

$$
r_{m}=\left[R_{k} V_{m+1}\right]\left(\left[\begin{array}{c}
L_{k}^{H} r_{0} \\
\beta e_{1}
\end{array}\right]-\left[\begin{array}{cc}
\Lambda_{k}-\sigma I & 0 \\
0 & \widehat{H}_{m}-\sigma I
\end{array}\right] y_{m}\right) .
$$

Since $\left[R_{k} V_{m+1}\right]$ is not orthogonal, it holds

$$
\left\|r_{m}\right\|_{2} \neq\left\|\left[\begin{array}{c}
L_{k}^{H} r_{0} \\
\beta e_{1}
\end{array}\right]-\left[\begin{array}{cc}
\Lambda_{k}-\sigma I & 0 \\
0 & \widehat{H}_{m}-\sigma I
\end{array}\right] y_{m}\right\|_{2}
$$

Demanding the quasi minimal residual condition and thus minimizing

$$
\left\|\left[\begin{array}{c}
L_{k}^{H} r_{0} \\
\beta e_{1}
\end{array}\right]-\left[\begin{array}{cc}
\Lambda_{k}-\sigma I & 0 \\
0 & \widehat{H}_{m}-\sigma I
\end{array}\right] y_{m}\right\|_{2}
$$

splits the least squares problem into a $k \times k$ linear system

$$
\left(\Lambda_{k}-\sigma I\right) y_{m}^{1}=L_{k}^{H} r_{0}
$$

and the smaller least squares problem

$$
\left\|\beta e_{1}-\left(\widehat{H}_{m}-\sigma I\right) y_{m}^{2}\right\|_{2}=\min _{y \in \mathbb{C}^{m}}\left\|\beta e_{1}-\left(\widehat{H}_{m}-\sigma I\right) y_{m}^{2}\right\|_{2} .
$$

Actually, since V_{m+1} is orthogonal, y_{m}^{2} is the non-deflated GMRES approximation with starting vector $(I-P) r_{0}$ instead of r_{0}.

As for FOM, LR-deflation does not change GMRES. Therefore, applying multishifts and restarts is straightforward here as well.

```
Algorithm 3.25. GMRES-LR(k,m)
    \(\left\{\right.\) Input \(\left.A=M-\sigma_{i} I,\left\{\sigma_{1}, \ldots, \sigma_{s}\right\}, b, L=L_{k}, R=R_{k}, \Lambda=\Lambda_{k}\right\}\)
    \(x^{(i)}=R\left(\Lambda-\sigma_{i} I\right)^{-1} L^{H} b, i=1, \ldots, s\)
    \(r=b-R L^{H} b\)
    \(\rho^{(i)}=1, i=1, \ldots, s\)
    \(\beta=\|r\|_{2}\)
    while not all systems converged do
        \(v_{1}=r / \beta\)
        compute \(V_{m}, \widehat{H}_{m}\) by running Arnoldi
        compute GMRES approximation \(y_{m}^{2}{ }^{(1)}\)
        for \(i=2, \ldots, s\) do
            compute \(y_{m}^{2}{ }^{(i)}\) and \(\rho_{m}^{(i)}\) from (3.3)
        end for
        \(x^{(i)}=x^{(i)}+V_{m} y_{m}^{2}{ }^{(i)}\)
        \(r=r-V_{m+1}\left(\widehat{H}_{m}-\sigma_{1} I\right) y_{m}^{2}{ }^{(1)}\)
        \(\beta=\|r\|_{2}\)
    end while
```


3.4.3 BiCG-LR

Let R_{k}, L_{k} and Λ_{k} be calculated with respect to M and let the columns of V_{m} span $K_{m}\left(A,(I-P) r_{0}\right)$ while the columns of W_{m} span $K_{m}\left(A^{H},(I-P)^{H} r_{0}\right)$ with $V_{m}^{H} W_{m}=I$. To choose the LR deflated BiCG approximation $x_{m} \in$ $x_{0}+\Omega_{R}+K_{m}\left(A,(I-P) r_{0}\right)$ to the solution of $A x=b, A=M-\sigma I$, we use the Petrov-Galerkin condition

$$
r_{m} \perp \Omega_{L}+K_{m}\left(A^{H},(I-P)^{H} r_{0}\right)
$$

The chosen iterates are $x_{m}=x_{0}+R_{k} y_{m}^{1}+V_{m} y_{m}^{2}$ with $y_{m}^{1} \in \mathbb{C}^{k}$ and $y_{m}^{2} \in \mathbb{C}^{m}$ resulting from

$$
\left[\begin{array}{ll}
L_{k} & W_{m}
\end{array}\right]^{H} A\left[\begin{array}{ll}
R_{k} & V_{m}
\end{array}\right]\left[\begin{array}{c}
y_{m}^{1} \\
y_{m}^{2}
\end{array}\right]=\left[\begin{array}{c}
L_{k}^{H} r_{0} \\
W_{m}^{H} r_{0}
\end{array}\right]
$$

As $W_{m}^{H} R_{k}=0$ and $L_{k}^{H} V_{m}=0$, the representation of the projection and restriction of A reduces to block diagonal structure

$$
\left[L_{k} W_{m}\right]^{H} A\left[R_{k} V_{m}\right]=\left[\begin{array}{cc}
\Lambda_{k}-\sigma I_{k} & 0 \\
0 & H_{m}-\sigma I_{m}
\end{array}\right] \in \mathbb{C}^{(k+m) \times(k+m)}
$$

such that for arbritrary r_{0}

$$
\begin{aligned}
y_{m}^{1} & =\left(\Lambda_{k}-\sigma I_{k}\right)^{-1} L_{k}^{H} r_{0} \\
y_{m}^{2} & =\left(H_{m}-\sigma I_{m}\right)^{-1} W_{m}^{H} r_{0}
\end{aligned}
$$

Here the Ω_{R}-part and the Krylov-part of the approximation are completely independent. The Ω_{R}-part can be calculated beforehand and included in x_{0}

$$
\hat{x}_{0}=x_{0}+R_{k}\left(\Lambda_{k}-\sigma I_{k}\right)^{-1} L_{k}^{H} r_{0}
$$

such that the starting residual is

$$
\hat{r}_{0}=r_{0}-A R_{k}\left(\Lambda_{k}-\sigma I_{k}\right)^{-1} L_{k}^{H} r_{0}=(I-P) r_{0}
$$

We can therefore assume to start with a residual $r_{0} \in \operatorname{null}(P)$. In this case, $r_{0}=\gamma V_{m} e_{1}$ and $W_{m}^{H} r_{0}=\gamma e_{1}$, yielding

$$
y_{m}^{2}=\gamma\left(H_{m}-\sigma I_{m}\right)^{-1} e_{1}
$$

```
Algorithm 3.26. BiCG-LR(k,m)
    \(\left\{\right.\) Input \(\left.A=M-\sigma_{i} I,\left\{\sigma_{1}, \ldots, \sigma_{s}\right\}, b, L=L_{k}, R=R_{k}, \Lambda=\Lambda_{k}\right\}\)
    \(b^{S}=R L^{H} b\)
    \(x^{(i)}=R\left(\Lambda-\sigma_{i} I\right)^{-1} L^{H} b, i=1, \ldots, s\)
    \(r=b-b^{S}\)
    \(\beta=\|r\|_{2}\)
    while not all systems converged do
        \(\tilde{v}_{1}=\left(I-R L^{H}\right) b, \tilde{w}_{1}=\left(I-L R^{H}\right) b\)
        for \(i=1, \ldots, s\) do
            compute \(V_{m} y_{m}^{2(i)}\) by BiCG-Sh
            \(x^{(i)}=x^{(i)}+V_{m} y_{m}^{2}{ }^{(i)}\)
            \(r^{(i)}=r-V_{m+1}\left(\widehat{H}_{m}-\sigma_{i} I\right) y_{m}^{2}{ }^{(i)}\)
        end for
    end while
```


3.4.4 QMR-LR

Let R_{k}, L_{k} and Λ_{k} be calculated with respect to M and let the columns of V_{m} span $K_{m}\left(A,(I-P) r_{0}\right)$ while the columns of W_{m} span $K_{m}\left(A^{H},(I-P)^{H} r_{0}\right)$ with $V_{m}^{H} W_{m}=I$. To choose the LR deflated QMR approximation $x_{m} \in$ $x_{0}+\Omega_{R}+K_{m}\left(A,(I-P) r_{0}\right)$ to the solution of $A x=b, A=M-\sigma I$, we use the quasi minimal residual condition.

Let $x_{m}=x_{0}+\left[R_{k} V_{m}\right] y_{m}$, with $y_{m}=\left[y_{m}^{1}, y_{m}^{2}\right]^{T}$ and $y_{m}^{1} \in \mathbb{C}^{k}, y_{m}^{2} \in \mathbb{C}^{m}$. The
corresponding residual is

$$
\begin{aligned}
r_{m} & =r_{0}-A\left[R_{k} V_{m}\right] y_{m} \\
& =r_{0}-\left[R_{k} V_{m+1}\right]\left[\begin{array}{cc}
\Lambda_{k}-\sigma I & 0 \\
0 & \widehat{H}_{m}-\sigma I
\end{array}\right] \\
& =\left[R_{k} V_{m+1}\right]\left(\left[\begin{array}{c}
L_{k}^{H} r_{0} \\
\beta e_{1}
\end{array}\right]-\left[\begin{array}{cc}
\Lambda_{k}-\sigma I & 0 \\
0 & \widehat{H}_{m}-\sigma I
\end{array}\right] y_{m}\right) .
\end{aligned}
$$

Since $\left[R_{k} V_{m+1}\right]$ is not orthogonal, we demand the quasi minimal residual condition and minimize

$$
\left\|\left[\begin{array}{c}
L_{k}^{H} r_{0} \tag{3.21}\\
\beta e_{1}
\end{array}\right]-\left[\begin{array}{cc}
\Lambda_{k}-\sigma I & 0 \\
0 & \widehat{H}_{m}-\sigma I
\end{array}\right] y_{m}\right\|_{2}
$$

The least squares problem indicated by (3.21) splits thus into a $k \times k$ linear system

$$
\left(\Lambda_{k}-\sigma I\right) y_{m}^{1}=L_{k}^{H} r_{0}
$$

and the smaller least squares problem

$$
\left\|\beta e_{1}-\left(\widehat{H}_{m}-\sigma I\right) y_{m}^{2}\right\|_{2}=\min _{y \in \mathbb{C}^{m}}\left\|\beta e_{1}-\left(\widehat{H}_{m}-\sigma I\right) y_{m}^{2}\right\|_{2}
$$

Different to GMRES-LR, y_{m}^{2} is now the QMR approximation with starting vector $(I-P) r_{0}$ instead of r_{0}, since V_{m+1} is not orthogonal.

```
Algorithm 3.27. QMR-LR(k,m)
    \(\left\{\right.\) Input \(\left.A=M-\sigma_{i} I,\left\{\sigma_{1}, \ldots, \sigma_{s}\right\}, b, L=L_{k}, R=R_{k}, \Lambda=\Lambda_{k}\right\}\)
    \(b^{S}=R L^{H} b\)
    \(x^{(i)}=R\left(\Lambda-\sigma_{i} I\right)^{-1} L^{H} b, i=1, \ldots, s\)
    \(r=b-b^{S}\)
    \(\beta=\|r\|_{2}\)
    while not all systems converged do
        \(\tilde{v}_{1}=\left(I-R L^{H}\right) b, \tilde{w}_{1}=\left(I-L R^{H}\right) b\)
        for \(i=1, \ldots, s\) do
            compute \(V_{m} y_{m}^{2(i)}\) by QMR-Sh
            \(x^{(i)}=x^{(i)}+V_{m} y_{m}^{2(i)}\)
            \(r^{(i)}=r-V_{m+1}\left(\widehat{H}_{m}-\sigma_{i} I\right) y_{m}^{2}{ }^{(i)}\)
        end for
    end while
```


3.5 Eliminating converged systems

With the (deflated) multishift methods presented in Sections 3.3 and 3.4 we simultaneously solve s systems

$$
A-\sigma_{i} I=b, \quad i=1, \ldots, s .
$$

Although we use the same Krylov subspace for all s systems and therefore have no additional cost to build the subspace for additional systems, the cost still increases with the number s of systems to solve.
While for BiCG and QMR additional systems cause only little and above all constant additional cost, for FOM and GMRES the cost increases not only with s but with the iteration as well. The reason is that for each system a small but with the iteration number increasing system or least squares problem has to be solved. In the unsymmetric case, i.e., BiCG or QMR, a simple update of the iterates exists such that the (small) linear system or least squares problem, respectively, can be updated with little additional cost. In the symmetric case, i.e., FOM or GMRES, the inverse or least squares solution has to be computed seperately for each system as the matrix is non-hermitian and there is no simple update for the iterates. FOM and GMRES will therefore profit from any reduction of the number of systems to be solved.

Some of the systems will converge faster than others. Systems that have already reached a desired accuracy can be eliminated and no further computations have to be done for those systems.

To decide whether a system can be eliminated or not we use the residual norm. When combined with a rational approximation of the sign function, for example, the systems with small residual norm contribute only little to the error since

$$
Q \sum_{i=1}^{s} \omega_{i}\left(Q^{2}-\sigma_{i} I\right)^{-1} b-Q \sum_{i=1}^{s} \omega_{i} x_{m}^{(i)}=Q \sum_{i=1}^{s} \omega_{i}\left(Q^{2}-\sigma_{i} I\right)^{-1} r_{m}^{(i)} .
$$

For all methods we get $\left\|r_{m}^{(i)}\right\|_{2}$, or at least an upper bound, with basically no extra effort. No matter whether Schur- or LR-deflation is used, the residual norms are computed as listed in Table 3.1.

To get an idea of the benefits of elimination, Figure 3.1 shows how the number of systems to solve decreases in the course of the iteration. We used the matrix MAT3 ${ }^{1}$ for this example and ran FOM with LR-deflation. The shifts σ_{i} were chosen to approximate $\operatorname{sign}(Q)$ to an accuracy of 10^{-10}. The

[^3]| method | residual norm $\left\\|r_{m}^{(i)}\right\\|_{2}$ |
| :--- | :--- |
| FOM | $\left\|h_{m+1, m}\left(y_{m}^{2(i)}\right)_{m}\right\|$ |
| GMRES | $\left\\|r_{0}^{(i)}-V_{m+1}\left(\widehat{H}_{m}-\sigma_{1}\right) y_{m}^{2(1)}\right\\|_{2}, i=1$ |
| | $\left\|\rho_{m}^{(i)}\right\| \cdot\left\\|r_{m}^{(1)}\right\\|_{2}$, |
| BiCG | $\left\|h_{m+1, m}\left(y_{m}^{2(i)}\right)_{m}\right\|$ |
| QMR | $(\leq)\left\\|r_{0}\right\\|_{2} \sqrt{m+1}\left\|s n_{1} \cdots \cdots s n_{m}\right\|$ |

Table 3.1: Computation of residual norms

Figure 3.1: Decrease of the number of systems to solve
effect is the same no matter whether FOM or GMRES is used with Schuror LR-deflation.

Of course the effect on the actual computational cost depends on the Krylov subspace size, i.e., the size of the systems to solve. But even when the size is bounded by using restarts, the cost is reduced significantly as Figure 3.2 shows, for the same sample matrix and shifts as chosen for Figure 3.1. For these plots we estimate the cost by taking into account only the linear system of size i in step i. As it is of Hessenberg form, the cost for m iteration steps sums up to

$$
\operatorname{cost}(m)=\sum_{i=1}^{m} \operatorname{systems}(i) \cdot i^{2},
$$

where systems (i) denotes the number of systems to solve in step i.

3.6 Deflation of the rational approximation

To approximate the matrix sign function $\operatorname{sign}(Q)$ of a non-hermitian matrix Q, we have to use a rational approximation with significantly more poles

Figure 3.2: Effect on the cost without restart (left) and with restart (right)
than the Zolotarev approximation. Although only one Krylov subspace is built for all shifted systems, solving more systems still increases the computational cost significantly for FOM and GMRES, as discussed in the previous section. The aim in this section is therefore to reduce the number of poles by using the deflation applied to the multishift solver. Of course this would apply to the Zolotarev rational approximation as well.

The number of poles gets higher the closer some eigenvalues of Q lie to the imaginary axis. As some of those small eigenvalues are deflated by Schuror LR-deflation, the idea is to split the rational approximation and use less poles for those parts that do not involve the deflated eigenvalues. It turns out that only LR-deflation is suitable for this pole reduction.

To approximate

$$
\operatorname{sign}(Q) b \approx Q \sum_{i=1}^{s} \omega_{i}\left(Q^{2}-\sigma_{i} I\right)^{-1} b
$$

we choose $r(t)=\sum_{i=1}^{s} \omega_{i} \frac{t}{t^{2}-\sigma_{i}}$ such that

$$
|\operatorname{sign}(t)-r(t)| \leq \epsilon / 2 \quad \forall t \in \operatorname{spec}(Q) .
$$

When approximating $\left(Q^{2}-\sigma_{i} I\right)^{-1} b$ in a Krylov subspace for example by (ordinary) FOM as $\left(Q^{2}-\sigma_{i} I\right)^{-1} b \approx V_{m}\left(H_{m}-\sigma_{i} I\right)^{-1} V_{m}^{H} b$, we compute

$$
\operatorname{sign}(Q) b \approx Q V_{m} \sum_{i=1}^{s} \omega_{i}\left(H_{m}-\sigma_{i} I\right)^{-1} V_{m}^{H} b,
$$

so r could as well be chosen with respect to $\operatorname{spec}\left(H_{m}\right)$.
Usually that does not make a big difference and does not help to reduce the number of poles, but in the augmented context the spectrum of H_{m} does not include the k smallest eigenvalues of Q due to the projection. Therefore, the rational approximation with respect to H_{m} will be as accurate as before with less poles. Of course, when reducing the number of poles, the shifts σ_{i}

size k of the augmented subspace	$\lambda_{\min }$	number s of poles
0	$4.2313 \cdot 10^{-3}$	168
8	0.0570	46
16	0.0950	36
32	0.1887	25
64	0.3195	19

Table 3.2: Number of poles needed for the matrix MAT3
and weights ω_{i} will change as well.
So, splitting in the LR case

$$
\operatorname{sign}(Q) b \approx Q R_{k} \sum_{i=1}^{s} \omega_{i} y_{m}^{1(i)}+Q V_{m} \sum_{i=1}^{s} \omega_{i} y_{m}^{2(i)},
$$

we can use an approximation with less poles for the second sum. The crucial property of LR-deflation in this context is that the Ω_{R}-part and Krylov part of the approximation are independent.

In the Schur case, the Krylov part influences the Ω_{S}-part. Here as well, we can split

$$
\begin{equation*}
\operatorname{sign}(Q) b \approx Q S_{k} \sum_{i=1}^{s} \omega_{i} y_{m}^{1(i)}+Q V_{m} \sum_{i=1}^{s} \omega_{i} y_{m}^{2(i)}, \tag{3.22}
\end{equation*}
$$

and we could use an approximation with less poles for the second sum. But (3.22) actually reads
$\operatorname{sign}(Q) b \approx Q S_{k} \sum_{i=1}^{s} \omega_{i}\left(T_{k}-\sigma_{i} I\right)^{-1} S_{k}^{H}\left(b-\left(M-\sigma_{i} I\right) V_{m} y_{m}^{2}{ }^{(i)}\right)+Q V_{m} \sum_{i=1}^{s} \omega_{i} y_{m}^{2(i)}$,
so that if we reduced the number of poles in the second sum we had to compute $y_{m}^{2(i)}$ for the big number of poles again for the first sum.

Therefore, reducing the number poles is possible only for LR-deflation. Instead of eigenvalue information of H_{m} we use the available eigenvalue information of A : Since the k smallest eigenvalues are deflated, we take $\lambda_{\text {min }}$ the $(k+1)$-smallest eigenvalue for the calculation of the number of poles, the shifts, and the weights. Tables 3.2 and 3.3 show how many poles are actually needed to achieve an accuracy of 10^{-8} for the the matrix sign function of the matrices ${ }^{2}$ MAT3 and MAT4.

[^4]| size k of the augmented subspace | $\lambda_{\min }$ | number s of poles |
| :---: | :---: | ---: |
| 0 | $3.0838 \cdot 10^{-4}$ | 582 |
| 16 | 0.0237 | 67 |
| 32 | 0.0431 | 50 |
| 64 | 0.0802 | 36 |
| 128 | 0.1483 | 27 |

Table 3.3: Number of poles needed for the matrix MAT4

3.7 Discussion

Looking at the numerical results, see Chapter 4.3, Schur- and LR-deflation show an equal performance with respect to iteration numbers. With respect to computation time, LR-deflation works significantly faster.

Of course, for LR-deflation both left and right eigenvectors have to be computed while for Schur-deflation only one set of Schur vectors is needed - we did not include this precalculation in the time measurements. In addition, the computation of Schur vectors is numerically stable in contrast to the computation of eigenvectors.

On the other hand, for Schur-deflation the number of poles cannot be reduced. That does not matter (much) when BiCG-Schur or QMR-Schur are used, but for FOM-Schur and GMRES-Schur it means a great increase of computational cost.
Regarding computation time, Schur-deflation has the second disadvantage that in each iteration step the Ω_{S}-part has to be projected out. The numerical results show clearly that this alone slows down the computation extremely.

	advantages	disadvantages
Schur-deflation	one set of (Schur-)vectors stable Schur vectors	projection in each step big number of poles
LR-deflation	no extra projection reduced number of poles	two sets of eigenvectors instable eigenvectors

Table 3.4: Advantages and disadvantages of Schur- and LR-deflation

Using the deflated methods for a rational approximation of the matrix sign function, the shifted matrices $M-\sigma I=Q^{2}-\sigma I$ are positive real. The (deflated) FOM iterates therefore exist and even for (deflated) multishift

GMRES we have a guarantee for convergence. Of course, deflated BiCG and QMR still contain the possibility of breakdowns inherited from the underlying Lanczos process.

3.8 Other deflation techniques

Closest related to the approach presented in this work is the one given in $[5,6]$ where the matrix sign function is approximated using both Schur- and LR-deflation. Instead of using a rational approximation to the sign function they approximate

$$
\operatorname{sign}(Q) b \approx V_{m} \operatorname{sign}\left(H_{m}\right) V_{m}^{H} b
$$

which gives for Schur-deflation

$$
\operatorname{sign}(Q) b \approx\left[S_{k} V_{m}\right]\left[\begin{array}{cc}
\operatorname{sign}\left(T_{k}\right) & Y \\
0 & \operatorname{sign}\left(H_{m}\right)
\end{array}\right]\left[S_{k} V_{m}\right]^{H} b,
$$

where Y is the solution of the Sylvester equation

$$
T_{k} Y-Y H_{m}=\operatorname{sign}\left(T_{k}\right) S_{k}^{H} A V_{m}-S_{k}^{H} A V_{m} \operatorname{sign}\left(H_{m}\right)
$$

For LR-deflation they yield

$$
\operatorname{sign}(Q) b \approx R_{k} \operatorname{sign}\left(\Lambda_{k}\right) L_{k}^{H} b+\beta V_{m} \operatorname{sign}\left(H_{m}\right) e_{1} .
$$

The sign function of the smaller submatrices is computed by Roberts' iterative method [38].

Morgan [30, 31, 32, 33] uses Ritz and harmonic Ritz vectors for the augmenting subspace and implicit restarts to include them. With Ω being spaned by (harmonic) Ritz vectors the augmented subspace $\Omega+K_{m}\left(A, r_{0}\right)$ is a Krylov subspace as well.

Chapter 4

Numerical results

4.1 Matrices

For the numerical experiments we use four matrices:

- MAT1, MAT2: zero chemical potential

The shifted unitary methods of Chapter 2 are tested with Γ_{5}-hermitian Wilson-Dirac operators on a 4^{4}-lattice, i.e., a lattice with 4^{4} lattice sites. The hopping matrices are taken from Matrix Market

```
http://math.nist.gov/MatrixMarket/data/misc/qcd/.
```

Note that for these matrices the γ-matrices were taken in Dirac representation, see Appendix A.

- MAT3, MAT4: non-zero chemical potential

The eigenvalue deflation methods of Chapter 3 are tested with a non-Γ_{5}-hermitian Wilson-Dirac operator on a 4^{4}-lattice and a 6^{4}-lattice, respectively. Note that for these matrices the γ-matrices were taken in Weyl representation, see Appendix A.
The matrices MAT3 and MAT4 were provided by Jacques Bloch from the Institute for Theoretical Physics at the University of Regensburg.

MAT1 uses the Matrix Market configuration conf6.0-0014x4-2000.mtx $\kappa_{c}=0.15968$
$\kappa=4 / 3 \kappa_{c}=0.2129$
$\min _{\lambda \in \operatorname{spec}(Q)}(|\lambda|)=0.0767$
$\max _{\lambda \in \operatorname{spec}(Q)}(|\lambda|)=2.4855$
The eigenvalues of the hopping term $M=I-\kappa D_{W}$ are plotted in Figure 4.1.

Figure 4.1: MAT1: eigenvalues of the matrix M

The eigenvalues of the Neuberger operator $D=\rho I+\Gamma_{5} \operatorname{sign}(Q)$ for $\rho=1.01$ are plotted in Figure 4.2.

Figure 4.2: MAT1: eigenvalues of the matrix $\rho I+\Gamma_{5} \operatorname{sign}(Q), \rho=1.01$

MAT2 uses the Matrix Market configuration conf5.0-0014x4-2600.mtx
$\kappa_{c}=0.2107$
$\kappa=4 / 3 \kappa_{c}=0.2809$
$\min _{\lambda \in \operatorname{spec}(Q)}(|\lambda|)=8.8923 \cdot 10^{-4}$
$\max _{\lambda \in \operatorname{spec}(Q)}(|\lambda|)=2.7868$

The eigenvalues of the hopping term $M=I-\kappa D_{W}$ are plotted in Figure 4.3.

Figure 4.3: MAT2: eigenvalues of the matrix M

The eigenvalues of the Neuberger operator $D=\rho I+\Gamma_{5} \operatorname{sign}(Q)$ for $\rho=1.01$ are plotted in Figure 4.2.

Figure 4.4: MAT1: eigenvalues of the matrix $\rho I+\Gamma_{5} \operatorname{sign}(Q), \rho=1.01$

MAT3

lattice size: 4^{4}
$\min _{\lambda \in \operatorname{spec}(Q)}(|\lambda|)=4.2313 \cdot 10^{-3}$
$\max _{\lambda \in \operatorname{spec}(Q)}(|\lambda|)=5.2161$
The eigenvalues of $Q=\Gamma_{5} M$ are plotted in Figure 4.5.

Figure 4.5: MAT3: eigenvalues of the matrix Q

MAT4

lattice size: 6^{4}
$\min _{\lambda \in \operatorname{spec}(Q)}(|\lambda|)=3.0838 \cdot 10^{-4}$
$\max _{\lambda \in \operatorname{spec}(Q)}(|\lambda|)=4.5599$
The eigenvalues of $Q=\Gamma_{5} M$ are plotted in Figure 4.6.

Figure 4.6: MAT4: eigenvalues of the matrix Q

4.2 Shifted unitary methods

For the shifted unitary methods we use the matrices MAT1 and MAT2, the right hand side is a complex random vector of unit length. For the inner iteration we require an accuracy of $\epsilon=10^{-8}$. The matrix vector product is approximated by PFE/CG with the Zolotarev best approximation with 10 poles for MAT1 and 19 poles for MAT2, respectively. Note that the plots show matrix vector products instead of iteration numbers.

Figures 4.7 and 4.8 show the true and the computed residual. The norm of the true residual (solid) stagnates around the required accuracy while the computed residual (dashed) decreases further. To obtain the true residual, we computed the exact sign function of the hermitian matrix Q via a full singular value decomposition.

Figure 4.7: SUOM (left) and SHUMR (right) for MAT1

Figure 4.8: SUFOM (left) and SUMR (right) for MAT1
For relaxation we use the tolerances η_{j} as shown in Table 4.1. Note that these are the relaxation strategies proposed for FOM and GMRES. Since in exact arithmetic the shifted unitary methods are equivalent to FOM and GMRES, this is a reasonable choice. Nevertheless, better stategies might be possible taking into account the underlying short recurrence Arnoldi versions.

method	tolerance η_{j}		
SUOM	$\epsilon \cdot \sqrt{\sum_{i=0}^{j}\left\\|r_{i}\right\\|_{2}^{-2}}$		
SHUMR	$\epsilon /\left\\|r_{j}\right\\|_{2}$		
SUFOM	$\epsilon \cdot \sqrt{\sum_{i=0}^{j}\left\\|r_{i}\right\\|_{2}^{-2}}$		
SUMR	$\epsilon /\left\\|r_{j}\right\\|_{2}$		

Table 4.1: Precision of the matrix vector product

For demonstration reasons we plot the true residuals computed as described above. For problems of a realistic size, the true residual is not known in general. In this case the computed residuals can be used for a stopping criteria but of course one should not iterate further once the accuracy of the inner iteration is reached.

The following plots (Figures 4.9 and 4.10) show the convergence of the relaxed and unrelaxed versions of the four shifted unitary methods using the matrix MAT1 and $\rho=1.01$. We compare the unrelaxed version (solid) with the relaxed verion (dashed).

Figure 4.9: SUOM (left) and SHUMR (right) for MAT1

Figure 4.10: SUFOM (left) and SUMR (right) for MAT1
For MAT1 and $\rho=1.01$ relaxation saves about 40% matrix vector multiplications while the loss in accuracy is negligible. No difference can be observed between the four methods. Although Figure 4.9 does not show it, SUOM and SHUMR stagnate at about the inner accuracy same as SUFOM and SUMR do.

The following plots (Figures 4.11 and 4.12) show the convergence of the four shifted unitary methods using the matrix MAT2 and $\rho=1.01$. Again, we compare the unrelaxed version (solid) with the relaxed verion (dashed).

Figure 4.11: SUOM (left) and SHUMR (right) for MAT2

Figure 4.12: SUFOM (left) and SUMR (right) for MAT2
For MAT2 and $\rho=1.01$ relaxation does not save much. The final accuracy reached with SUFOM and SUMR is slightly better than for SUOM and SHUMR.

The convergence of the shifted unitary methods does not only rely on the matrix Q but also on the shift parameter ρ. Figure 4.13 shows the convergence of SUMR for MAT1 and MAT2 with $\rho=1.1$. The difference to $\rho=1.01$ is little, but the convergence is faster - not surprisingly since the eigenvalues of $\Gamma_{5} \operatorname{sign}(Q)$ are shifted further away from the imaginary axis.

Figure 4.13: SUMR with $\rho=1.1$ for MAT1 (left) and MAT2 (right)

4.3 Deflation

As sample matrices for the deflation methods we use the non-hermitian matrices MAT3 and MAT4. We compute the multishift approximations \tilde{y}
to the rational approximation of $y=\operatorname{sign}(Q) b$ with $b=(1, \ldots, 1)^{T}$ to an accuracy of 10^{-8}. The error plotted in the convergence plots of Figures 4.14 - 4.22 is the relative error

$$
\frac{\|\tilde{y}-y\|_{2}}{\|y\|_{2}}
$$

Since the matrices are non-hermitian we cannot use the Zolotarev best approximation. We use the Neuberger rational approximation instead, which works for hermitian matrices as well since it summarises a certain number of steps of the Newton iteration. To achieve an accuracy of η we use

$$
s=\left\lceil\frac{1}{2} \cdot \log \left(\frac{\eta}{2-\eta}\right) / \log \left(\frac{\sqrt{\lambda_{\max } / \lambda_{\min }}-1}{\sqrt{\lambda_{\max } / \lambda_{\min }}+1}\right)\right\rceil
$$

poles, see [45]. The number of poles needed to achieve the required accuracy is shown in Tables 3.2 and 3.3. The number of poles can be quite large. We therefore use pole reduction for all plots.

Figures 4.14 to 4.19 show the convergence plots for the Schur and LR deflated methods. In Figures 4.14 to 4.17 we compare the non-restarted and restarted versions of FOM and GMRES. The results for Schur and LR deflated BiCG and QMR are shown in Figures 4.18 and 4.19.

Figure 4.14: Schur deflated FOM for MAT3 - without restart (left) and with restart (right)

Figure 4.15: Schur deflated GMRES for MAT3 - without restart (left) and with restart (right)

Figure 4.16: LR deflated FOM for MAT3 - without restart (left) and with restart (right)

Figure 4.17: LR deflated GMRES for MAT3 - without restart (left) and with restart (right)

Figure 4.18: BICG for MAT3 - Schur deflated (left) and LR deflated (right)

Figure 4.19: QMR for MAT3 - Schur deflated (left) and LR deflated (right)
Schur- and LR-deflation produce the same convergence behaviour. No significant difference in iteration numbers can be detected in the Figures 4.14 -
4.19. Still, there are diffenences between the Schur and LR deflated methods that can not be conveyed in those plots:

- For LR-deflation we have to compute left and right eigenvectors while for Schur-deflation we only need Schur vectors. This is an advantage of Schur-deflation. We do not investigate this difference further.
- In the Schur deflated methods, every new Arnoldi vector has to be orthogonalized against the augmenting Schur vectors, i.e. its Ω_{S}-part has to be projected out.
- LR-deflation allows a reduction of the number of poles in the rational approximation. As can be seen in Tables 3.2 and 3.3, the required number of poles is thus significantly higher using Schur-deflation.

Therefore even if they need the same number of iterations to achieve a given accuracy, Schur deflated methods and LR deflated methods differ in the computing time.

To demonstrate the effect of pole reduction and orthogonalization against the augmenting subspace on the computing time, we compare Schur deflated and LR deflated GMRES for the matrix MAT3. Table 4.2 shows the times in seconds to achieve an accuracy of 10^{-8} without restarts, Table 4.3 shows the resulting times for restarts after 50 iterations. The time messurements were done on an Intel Pentium 4, 2.8 GHz , using the tic and toc functions of MATLAB 7.5(2007b).

Schur deflated GMRES has to run with 168 poles no matter how many eigenvalues are deflated. LR deflated GMRES needs only $64 / 36 / 25 / 19$ poles depending on the number of deflated eigenvalues $(8 / 16 / 32 / 64)$. The last column of Tables 4.2 and 4.3 show the results for this reduced number of poles while for the second last column we ran GMRES-LR without pole reduction.

deflated eigenvalues	GMRES-Schur	GMRES-LR	GMRES-LR (reduced poles)
8	10881.3	3282.4	1013.7
16	4701.2	977.9	226.8
32	1798.6	258.4	52.0
64	855.6	71.2	15.7

Table 4.2: Time (in seconds) needed for GMRES (without restarts) with Schur- and LR-deflation

deflated eigenvalues	GMRES-Schur	GMRES-LR	GMRES-LR (reduced poles)
8	1320.7	220.4	100.3
16	880.6	89.9	36.4
32	455.1	38.1	13.4
64	396.2	22.2	6.9

Table 4.3: Time (in seconds) needed for GMRES (with restart after 50 iterations) with Schur- and LR-deflation

Though there are no differences in iteration numbers, the computing time differs significantly. Even without pole reduction, LR deflated GMRES is by a factor of 3-12 faster than Schur deflated GMRES, and even 6-18 times faster in the restarted version. With pole reduction the factor is $10-54,13-57$ in the restarted version. The more eigenvalues are deflated the bigger the difference between Schur-deflation and LR-deflation.

Table 4.4 shows that the same holds for QMR: QMR-LR is by a factor of 19-25 faster than QMR-Schur, by a factor of up to 124 when the number of poles is reduced.

deflated eigenvalues	QMR-Schur	QMR-LR	QMR-LR (reduced poles)
8	1953.7	102.3	15.7
16	1302.3	60.5	14.1
32	703.1	36.4	7.9
64	515.7	20.7	4.2

Table 4.4: Time (in seconds) needed for QMR with Schur- and LR-deflation

Finally, we compare the four LR deflated methods, see Table 4.5. Again, we use the matrix MAT3 and an accuracy of 10^{-8}. FOM-LR and GMRES-LR are restarted after 50 iterations, all methods are run with pole reduction. Even tough for the same number of iterations BiCG and QMR need twice as many matrix vector multiplications than FOM and GMRES, the short recurrence methods BiCG and QMR are significantly faster.

deflated eigenvalues	FOM-LR	GMRES-LR	BiCG-LR	QMR-LR
8	72.5	100.3	13.1	15.7
16	27.0	36.4	12.6	14.1
32	10.5	13.4	7.3	7.9
64	6.3	6.9	4.3	4.2

Table 4.5: Time (in seconds) needed for the LR deflated methods (FOM and GMRES with restart after 50 iterations)

For the 6^{4}-lattice MAT4 we only show the convergence behaviour of the LR deflated methods since the results for MAT3 show that Schur-deflation cannot compete with LR-deflation. In Figures 4.20 to 4.22 we compare the LR deflated methods for the matrix of the 6^{4}-lattice MAT4 with a required accuracy of 10^{-8}.

Figure 4.20: LR deflated FOM for MAT4 - without restart (left) and with restart (right)

Figure 4.21: LR deflated GMRES for MAT4 - without restart (left) and with restart (right)

Figure 4.22: LR deflated BiCG (left) and QMR (right) for MAT4
Again, no difference in the convergence behaviour can be observed between the different methods. Using restarts obviously bears the risk of losing convergence as can be seen in Figures 4.20 and 4.21 for $k=16$. Unfortunately we do not know beforehand how many eigenvalues we have to deflate to retain convergence for the restarted versions. As indicated by the time measurements of MAT3, without restarts FOM and GMRES are by far too slow to take them into consideration. BiCG and QMR on the other hand bear the risk of breakdowns. This is compensated by the fact that BiCG and QMR do not need restarts and are significantly faster.

The LR deflated methods, especially with pole reduction, are significantly faster than the Schur deflated methods. Note that for the presented results we ignored the precalculation required to obtain the Schur- or eigenvectors. Computing left and right eigenvalues will take longer than computing only one set of Schur vectors. If the left and right eigenvalues are not available and Schur-deflation has to be used, for the same reasons as in LR-deflation the methods of choice are BiCG and QMR.

Appendix A

Gamma matrices

The γ-matrices are not unique, there are several representations. All definitions use the Pauli matrices $\sigma_{1}, \sigma_{2}, \sigma_{3}$:

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

In the Dirac or Dirac-Pauli representation the Euclidean γ-matrices are defined as

$$
\gamma_{k}=\left(\begin{array}{cc}
0 & -i \sigma_{k} \\
i \sigma_{k} & 0
\end{array}\right) \quad \text { for } k=1,2,3
$$

and

$$
\gamma_{4}=\left(\begin{array}{cccc}
-1 & & & \\
& -1 & & \\
& & +1 & \\
& & & +1
\end{array}\right)
$$

A fifth matrix γ_{5} is defined as

$$
\gamma_{5}=\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}=\left(\begin{array}{cccc}
& & +1 & \\
& & & +1 \\
+1 & & & \\
& +1 & &
\end{array}\right)
$$

In the Weyl or chiral representation the matrix γ_{4} is replaced by

$$
\gamma_{4}=\left(\begin{array}{cccc}
& & +1 & \\
& & & +1 \\
+1 & & & \\
& +1 & &
\end{array}\right)
$$

such that

$$
\gamma_{5}=\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}=\left(\begin{array}{cccc}
+1 & & & \\
& +1 & & \\
& & -1 & \\
& & & -1
\end{array}\right)
$$

The matrix Γ_{5} is defined as

$$
\Gamma_{5}=I_{n / 12} \otimes\left(\gamma_{5} \otimes I_{3}\right)
$$

Note that the matrices MAT1 and MAT2 use the Dirac representation while MAT3 and MAT4 use the Weyl representation.

Bibliography

[1] G. Arnold, N. Cundy, J. van den Eshof, A. Frommer, S. Krieg, Th. Lippert, and K. Schäfer. Numerical Methods for the QCD Overlap Operator: II. Optimal Krylov Subspace Methods. In $Q C D$ and Numerical Analysis III, volume 47 of Lecture Notes in Computational Science and Engineering, pages 153-167. Springer Berlin Heidelberg, 2005.
[2] W. E. Arnoldi. The Principle of Minimized Iterations in the Solution of the Matrix Eigenvalue Problem. Quarterly of Applied Mathematics, 9:17-29, 1951.
[3] Zh. Bai and J. W. Demmel. Design of a parallel nonsymmetric eigenroutine toolbox, Part I. In R. F. Sincovec, D. E. Keyes, M. R. Leuze, L. R. Petzold, and D. A. Reed, editors, Proceedings of the Sixth SIAM Conference on Parallel Processing for Scientific Computing, Volume I, pages 391-398. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1993.
[4] T. Barth and Th. Manteuffel. Multiple recursion conjugate gradient algorithms part I: sufficient conditions. SIAM J. Matrix Anal. Appl., 21:768-796, 2000.
[5] J. Bloch, A. Frommer, B. Lang, and T. Wettig. An iterative method to compute the overlap Dirac operator at nonzero chemical potential. Proceedings of Science, 2007. arXiv:hep-lat/0710.0341v1.
[6] J. Bloch, A. Frommer, B. Lang, and T. Wettig. An iterative method to compute the sign function of a non-Hermitian matrix and its application to the overlap Dirac operator at nonzero chemical potential. Computer Physics Communications, 177:933-943, 2007.
[7] A. Borici. The two-grid algorithm confronts a shifted unitary orthogonal method. Nuclear Physics B Supplement, 140:850-852, 2005.
[8] A. Borici and A. Allkoci. A fast minimal residual solver for overlap fermions. arXiv:hep-lat/0602015v1, 2006.
[9] A. Borici and A. Allkoci. Shifted unitary orthogonal methods for the overlap inversion. arXiv:hep-lat/0601031v1, 2006.
[10] N. Cundy, J. van den Eshof, A. Frommer, S. Krieg, Th. Lippert, and K. Schäfer. Numerical methods for the QCD overlap operator: III. Nested iterations. Computer Physics Communications, 165:221-242, 2005.
[11] V. Faber, J. Liesen, and P. Tichy. The Faber-Manteuffel theorem for linear operators. SIAM J. on Numerical Analysis, 46(3):1323-1337, 2008.
[12] V. Faber and Th. Manteuffel. Necessary and sufficient conditions for the existence of a conjugate gradient method. SIAM J. Numer. Anal., 21:352-362, 1984.
[13] R. W. Freund. Solution of Shifted Linear Systems by Quasi-Minimal Residual Iterations. In L. Reichel, A. Ruttan, and R. S. Varga, editors, Numerical Linear Algebra, pages 101-121. W. de Gruyter, 1993.
[14] R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal. An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices. SIAM Journal on Scientific Computing, 14(1):137-158, 1993.
[15] R. W. Freund and N. M. Nachtigal. QMR: a Quasi-Minimal Residual Method for Non-Hermitian Linear Systems. Numer. Math., 60:315-339, 1991.
[16] A. Frommer. BiCGStab(1) for families of shifted linear systems. Computing, 70(2):87-109, 2003.
[17] A. Frommer and U. Glässner. Restarted GMRES for shifted linear systems. SIAM J. Sci. Comput., 19:15-26, 1998.
[18] A. Frommer and V. Simoncini. Matrix functions. To appear in "Model Order Reduction: Theory, Research Aspects and Applications", Mathematics in Industry, Schilders, Wil H. A. and van der Vorst, Henk A. eds, Springer, Heidelberg.
[19] P. H. Ginsparg and K. G. Wilson. A remnant of chiral symmetry on the lattice. Phys. Rev. D25, pages 2649-2657, 1982.
[20] G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins University Press, 1996.
[21] W. Gragg. Positive definite Toeplitz matrices, the Arnoldi process for isometric operators, and Gaussian quadrature on the unit circle. J. of Comput. and Appl. Mathematics, 46:183-198, 1993.
[22] M. R. Hestenes and E. Stiefel. Methods of Conjugate Gradients for Solving Linear Systems. J. Res. Nat. Bur. Stand., 49:409-436, 1952.
[23] N. J. Higham. Functions of Matrices: Theory and Computation. Society for Industrial and Applied Mathematics, 2008.
[24] R. Horn and Ch. R. Johnson. Matrix Analysis. Cambridge University Press, 1985.
[25] R. Horn and Ch. R. Johnson. Topics in Matrix Analysis. Cambridge University Press, 1991.
[26] D. Ingerman, V. Druskin, and L. Knizhnerman. Optimal finite difference grids and rational approximations of the square root. I. Elliptic problems. Comm. Pure Appl. Math., 53(8):1039-1066, 2000.
[27] C. Jagels and L. Reichel. A fast minimal residual algorithm for shifted unitary matrices. Numerical Linear Algebra with Applications, 1(6):555-570, 1994.
[28] Ch. Kenney and A. Laub. The Matrix Sign Function. IEEE Transactions on Automatic Control, 40(8):1330-1348, 1995.
[29] J. Liesen and Z. Strakos. On optimal short recurrences for generating orthogonal Krylov subspace bases. accepted for publication in SIAM Review.
[30] R. Morgan. A restarted GMRES method augmented with eigenvectors. SIAM J. Matrix Anal. Appl., 16:1154-1176, 1995.
[31] R. Morgan. Implicitly restarted GMRES and Arnoldi methods for nonsymmetric systems of equations. SIAM J. Matrix Anal. Appl., 21(4):1112-1135, 2000.
[32] R. Morgan. GMRES with deflated restarting. SIAM J. Sci. Comp., 24, 2002.
[33] R. Morgan and W. Wilcox. Deflated iterative methods for linear equations with multiple right hand sides. arXiv:0707.0505, 2007.
[34] R. Narayanan and H. Neuberger. An alternative to domain wall fermions. Phys. Rev., 2000. arXiv:hep-lat/0005004v2.
[35] H. Neuberger. A Practical Implementation of the Overlap Dirac Operator. Phys. Rev. Lett., 81(19):4060-4062, 1998.
[36] H. Neuberger. Overlap Dirac operator. In A. Frommer, Th. Lippert, B. Medeke, and K. Schilling, editors, Numerical challenges in Lattice Quantum Chromodynamics. Springer Berlin, 2000.
[37] C. C. Paige and M. A. Saunders. Solution of Sparse Indefinite Systems of Linear Equations. SIAM J. Num. Anal., 12:617-629, 1975.
[38] J. D. Roberts. Linear model reduction and solution of the algebraic Riccati equation by use of the sign function. Internat. J. Control, 32:677687, 1980.
[39] H. Rutishauser. Bestimmung der Eigenwerte orthogonaler Matrizen. Numerische Mathematik, 9:104-108, 1966.
[40] Y. Saad. Krylov subspace methods for solving large unsymmetric linear systems. Math. Comp., 37:105-126, 1981.
[41] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing, 1996.
[42] Y. Saad and M. Schultz. GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. SIAM J. Sci. Statist. Comp., 7:856-869, 1986.
[43] V. Simoncini. Restarted full orthogonalization method for shifted linear systems. BIT Numerical Mathematics, 43:459-466, 2003.
[44] G. Sleijpen and J. van den Eshof. Inexact Krylov subspace methods for linear systems. SIAM J. on Matrix Analysis and Applications, 26:125153, 2005.
[45] J. van den Eshof, A. Frommer, Th. Lippert, K. Schilling, and H. van der Vorst. Numerical methods for the QCD overlap operator: I. signfunction and error bounds. Comput. Phys. Commun., 146:203-224, 2002.
[46] J. van den Eshof, G. Sleijpen, and M. van Gijzen. Relaxation strategies for nested Krylov methods. SIAM J. of Computational and Applied Mathematics, 177:347-365, 2005.
[47] E. I. Zolotarev. Application of elliptic functions to the question of functions deviating least and most from zero. Zap. Imp. Akad. Nauk. St. Petersburg, 30(5), 1877.

[^0]: ${ }^{1}$ http://math.nist.gov/MatrixMarket/data/misc/qcd/

[^1]: ${ }^{1}$ For the definition of Γ_{5} see Appendix A.

[^2]: ${ }^{2}$ For the definition of $\gamma_{1}, \ldots, \gamma_{4}$ see Appendix A.

[^3]: ${ }^{1}$ See Chapter 4.1 for the definition of MAT3.

[^4]: ${ }^{2}$ See Chapter 4.1 for the definition of MAT3 and MAT4.

