
Jacobi-Davidson Type Methods

for Computing Rovibronic Energy Levels

of Triatomic Molecules

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

am Fachbereich Mathematik und Naturwissenschaften der
Bergischen Universität Wuppertal

genehmigte

Dissertation

von

Dipl.-Math. Peter Langer

aus Wuppertal

Tag der mündlichen Prüfung: 11. April 2008
Referent: Prof. Dr. Andreas Frommer
Koreferent: Prof. Dr. Bruno Lang

Diese Dissertation kann wie folgt zitiert werden:

urn:nbn:de:hbz:468-20090849
[http://nbn-resolving.de/urn/resolver.pl?urn=urn%3Anbn%3Ade%3Ahbz%3A468-20090849]

Abstract

The task of solving the stationary Schrödinger equation is a longstanding and enormous
challenge in many important areas of natural sciences. As explicit symbolic solutions of
the operator eigenvalue problem are only attainable in very rare cases, one mostly has
to resort to numerical techniques, especially to methods for giant Hermitian eigenvalue
problems. In this thesis we are concerned with the specific case of triatomic molecules
that exhibit the so called Double-Renner effect. To begin with, we explain the origin
and the theoretical background of the abstract Schrödinger problem and we discuss vi-
able techniques for the transition to suitable finite dimensional Hermitian matrices that
approximate the original Hamiltonian in a reasonable fashion, and thus, make it acces-
sible for a numerical treatment. However, due to tremendous storage requirements and
computing times, that may soon extend to a couple of weeks, the use of conventional
so-called direct solvers (QR method, RRR algorithm) is either not feasible or not advis-
able. Therefore, our main focus for the treatment of the matrix eigenvalue problem is
on Jacobi-Davidson type methods that belong to the alternative class of iterative pro-
jection algorithms. Our aim is to show that these methods may be successfully applied
in our context, in the sense that they are more efficient in terms of computing time than
direct eigensolvers on the one hand, and the fellow algorithms of the iterative projection
method class (Lanczos, Davidson, Olsen) on the other hand. To do so, we have to con-
struct and to identify suitable preconditioners for the arising shift-and-invert systems
that take advantage of the inherent information of the specific problem. Besides, effi-
cient and problem-adjusted routines for matrix-vector multiplication are decisive for the
success of our approach. Our ideas are illustrated and confirmed by extensive numerical
experiments and results.

�

Die Aufgabe, Lösungen der zeitunabhängigen Schrödinger-Gleichung zu bestimmen, ist
eine schon seit langem bestehende enorme Herausforderung in vielen wichtigen natur-
wissenschaftlichen Themenfeldern. Da symbolische Lösungen des Operator-Eigenwert-
problems nur in den seltensten Fällen explizit angegeben werden können, ist man zumeist
gezwungen, auf numerische Techniken – insbesonders auf Verfahren für gigantische her-
mitesche Eigenwertprobleme – zurückzugreifen. In der vorliegenden Arbeit befassen
wir uns mit dem speziellen Fall drei-atomiger Moleküle, die den sogenannten ”doppel-
ten Renner Effekt” aufweisen. Wir erläutern zunächst den Ursprung sowie den theo-
retischen Hintergrund des abstrakten Schrödinger Problems und diskutieren gangbare

iv

Techniken für den Übergang zu endlich dimensionalen hermiteschen Matrizen, die den
ursprünglichen Hamilton-Operator hinreichend gut approximieren und somit einer nu-
merischen Behandlung zugänglich machen. Auf Grund des enormen Speicherbedarfs
und der immensen Rechenzeiten, die sich schnell auf bis zu mehrere Wochen erstrecken
können, ist die Anwendung konventioneller, so genannter direkter Löser (QR Verfahren,
RRR Algorithmus) entweder nicht möglich oder nicht ratsam. Unser Hauptaugen-
merk bei der Behandlung des Matrix-Eigenwertproblems liegt daher auf Varianten des
Jacobi-Davidson Verfahrens, die zur alternativen Klasse der iterativen Projektionsmeth-
oden zählen. Unser Ziel ist es zu zeigen, dass diese Verfahren in unserem Kontext
erfolgreich angewendet werden können, d.h. dass sie – was die Rechenzeit anbelangt –
zumeist effizienter sind als direkte Eigenlöser einerseits und die übrigen Verfahren aus der
Klasse der iterativen Projektionsmethoden (Lanczos, Davidson, Olsen) andererseits. Um
dies bewerkstelligen zu können, müssen wir geeignete Präkonditionierer für die auftre-
tenden Shift-and-Invert Systeme identifizieren und konstruieren, welche die Problem-
spezifischen Informationen ausnutzen. Außerdem sind dem Problem angepasste Routi-
nen für die Matrix-Vektor Multiplikation entscheidend für den Erfolg unseres Ansatzes.
Wir erläutern unsere Ideen an Hand umfangreicher numerischer Experimente und Re-
sultate.

Contents

Contents v

1. Introduction 1

1.1. The General Problem for N -atomic Molecules 2

1.2. General Solution Strategies . 3

1.3. Objective of the Thesis . 5

1.4. Structure and Organization of the thesis 9

1.5. Acknowledgements . 10

I. Numerical Linear Algebra 11

2. Preliminaries 13

2.1. Eigensystems of General Matrices . 13

2.2. Eigensystems of Hermitian Matrices . 15

2.2.1. Basic Properties and Definitions 16

2.2.2. Variational Characterisations . 17

2.2.3. Perturbation Analysis and Error Bounds 21

2.3. Technical Tools . 25

2.3.1. Orthogonal and Unitary Matrices 25

2.3.1.1. Householder Reflections 25

2.3.1.2. Givens and Jacobi Rotations 27

2.3.2. QR Factorisation and Orthonormalisation of Vector Sets 28

2.3.3. Orthogonal Bases of Krylov Spaces 31

2.3.3.1. Arnoldi’s Procedure . 31

2.3.3.2. Lanczos Procedure . 32

vi CONTENTS

2.3.4. Singular Value Decomposition (SVD) 34

2.3.5. Kronecker Products . 35

3. Methods for Computing Partial Eigensystems of Hermitian Matrices 37

3.1. Iterative Single Vector Methods . 37

3.1.1. Power Method . 37

3.1.2. Inverse iteration (INVIT) . 39

3.1.3. Rayleigh Quotient Iteration (RQI) 40

3.2. Direct Methods . 41

3.2.1. Reduction to Tridiagonal Form 42

3.2.1.1. Standard Approach . 43

3.2.1.2. Two-stage Approach . 44

3.2.2. Methods for the Symmetric Tridiagonal Eigenproblem 45

3.2.2.1. QR Algorithm . 45

3.2.2.2. Bisection Method and Inverse Iteration 47

3.2.2.3. Divide-and-conquer Method 49

3.2.2.4. RRR Algorithm . 51

3.2.3. Jacobi’s Method . 52

3.2.4. Assessment and Summary . 55

3.2.4.1. Tridiagonalization Approaches 55

3.2.4.2. Tridiagonal Eigensolvers 55

3.2.4.3. Summary . 56

3.3. Iterative Projection Methods . 57

3.3.1. Information Extraction . 59

3.3.1.1. Standard Extraction . 60

3.3.1.2. Harmonic Extraction . 65

3.3.1.3. Refined Extraction . 68

3.3.2. Subspace Expansion . 70

3.3.2.1. Lanczos Method . 70

3.3.2.2. Implicitly Restarted Lanczos Method (IRLM) 72

3.3.2.3. Davidson’s Method . 75

CONTENTS vii

4. The Jacobi-Davidson Method and its Variants 77

4.1. Motivation of the Algorithm . 77

4.1.1. JOCC Method . 77

4.1.2. Davidson’s Method Revisited . 78

4.2. The Basic Jacobi-Davidson Method for Computing one Eigenpair 79

4.2.1. Consistency of the Correction Equation 81

4.2.2. Relation to Other Methods . 82

4.2.2.1. JD and RQI . 82

4.2.2.2. JD and Davidson . 83

4.2.2.3. JD and Olsen . 83

4.2.2.4. JD and Lanczos . 84

4.2.3. Solving the Correction Equation 84

4.2.3.1. Iterative Krylov Methods for Linear Systems 85

4.2.3.2. GMRES . 85

4.2.3.3. MINRES . 87

4.2.3.4. QMR and QMRS . 88

4.2.3.5. Preconditioners . 89

4.2.3.6. Preconditioning the Correction Equation 90

4.2.4. Convergence of the Jacobi-Davidson Method 93

4.3. The JDQR Variants for Computing Several Eigenpairs 94

4.3.1. Deflation . 94

4.3.2. Restarts . 95

4.3.3. Standard JDQR . 96

4.3.4. Convergence of the JDQR Method 98

4.3.5. Preconditioning the Deflated Correction Equation 99

4.3.6. Variants of JDQR Using a Fixed Preconditioner 102

4.3.6.1. Preconditioned Jacobi-Davidson Correction Equation . . 102

4.3.6.2. Preconditioned Standard JDQR 104

4.3.6.3. Preconditioned Refined JDQR 104

4.3.6.4. Preconditioned Harmonic JDQR 108

4.3.7. Storage Requirements and Computational Costs 108

4.4. Summary and Guidelines for the Practical Use 111

viii CONTENTS

4.4.1. Choice of the Parameters . 111

4.4.2. Choice of the Krylov Solver . 112

4.4.3. Choice of the Extraction Method 113

4.4.4. Related Approaches and Software Availability 115

II. Quantum Chemistry 119

5. Eigenvalue Problems in Theoretical Spectroscopy 121

5.1. Motivation and Introduction . 121

5.2. Prerequisites from Functional Analysis 124

5.2.1. Linear Operators on Hilbert Spaces 124

5.2.2. Tensor Products of Hilbert Spaces and Operators 132

5.3. Schrödinger Equation for One-Particle Systems 135

5.4. Molecular Hamiltonian . 138

5.5. Born-Oppenheimer Approximation . 139

5.6. Nuclear Motion and Coordinate Systems 142

5.7. Variational Approach and Matrix Eigenvalue Problem 147

5.8. Product vs. Contracted Basis and Direct vs. Iterative Eigensolver 151

5.8.1. Product Basis . 152

5.8.2. Contracted Basis . 155

5.8.3. Dichotomies and General Approaches 156

5.9. General Framework for the Computation of Energy Levels 157

6. The Double Renner Effect for Triatomic Molecules 159

6.1. Breakdown of the Born-Oppenheimer Approximation 159

6.2. The Double Renner Hamiltonian . 161

6.3. Choice of the Basis Set . 163

6.4. Construction and Structure of the Hamiltonian Matrix 165

6.4.1. Hierarchies and Partitioning into Blocks 165

6.4.2. Block and Problem Sizes . 167

6.4.3. Hamiltonian Matrix Blocks . 173

6.4.3.1. Basic diagonal K-blocks 174

CONTENTS ix

6.4.3.2. Diagonal and Off-Diagonal Perturbation K-blocks 176

6.4.4. Construction of the Hamiltonian Matrix 178

III. Application to the Problem 183

7. Eigensolvers for the Computation of Rovibronic Energy Levels 185

7.1. Matrix Properties and Specification of the Eigenproblem 185

7.2. Matrix-Vector Multiplication and Storage Scheme 189

7.2.1. Sparsity of the Off-Diagonal Hamiltonian Matrix Blocks 189

7.2.1.1. Sparsity and Compact Storage of the SO-Blocks 192

7.2.1.2. Sparsity and Compact Storage of the DK-Blocks 194

7.2.2. Storage Scheme for the Hamiltonian Matrix Blocks 196

7.2.2.1. Addressing the DIAG-blocks 196

7.2.2.2. Addressing the DK-blocks 197

7.2.2.3. Addressing the SO-blocks 197

7.2.3. Matrix-Vector Multiplication Exploiting Compact Storage 199

7.3. Contraction Scheme and Contracted Basis 203

7.4. Direct Solvers . 209

7.4.1. Product Basis Calculation . 209

7.4.2. Contracted Basis Calculation . 211

7.5. JDQR Product Basis Calculation . 213

7.5.1. Preconditioners for Exterior Eigenvalues 214

7.5.1.1. Specification and Properties 215

7.5.1.2. Numerical Results . 225

7.5.2. Preconditioners for Interior Eigenvalues 229

7.5.3. Comparison with Other Methods 236

7.6. JDQR Contracted Basis Calculation . 239

7.7. Parallelization . 242

8. Summary and Outlook 251

x CONTENTS

IV. Appendices and Surveys 255

A. Appendix 257

A.1. Conventions for the Usage of Fonts . 257

A.2. Romanization of Russian Names . 257

A.3. Mathematical Notation . 258

A.4. Technical Details and Implementation Issues 260

A.5. Input Files for DR . 266

Bibliography 271

List of Tables 285

List of Figures 287

List of Algorithms 289

List of Listings 291

List of Symbols 293

Index 296

Dimidum facti qui coepit habet.
(Half is done when the begin-
ning is done)

Horace, Epistulae I,2,40 [95]

1. Introduction

A fundamental principle of quantum mechanics (see [109] for instance) implies that
physical systems at atomic and sub-atomic level almost always (cf. Example 5.34) only
have discrete energy states which are characterized by the eigenvalues Em of the Hamilton
operator Ĥ in the famous Schrödinger equation

Ĥψm = Emψm (1.1)

Knowing its solutions Em enables one to explain the properties of atoms and molecules,
the systems that we are primarly interested in, and in principle, it is possible to predict
physical and chemical phenomena by purely computational means, without the help of
any additional experiments (ab initio calculation). This explains the central importance
of the Schrödinger equation and the fact that it has various applications in physics,
chemistry and astronomy. A transition between two allowed states Ei and Ej arises
when the energy difference

∆E = Ei − Ej = h · νij (1.2)

is absorbed or emitted in the form of radiation with the frequency νij. The resulting
characteristic absorption and emission spectra are ”finger prints” that allow for conclu-
sions with respect to the material, e.g. in astronomical observations.

The field of Theoretical Spectroscopy, a branch of quantum chemistry, is concerned with
the computational prediction of such spectra by solving (1.1), and in this thesis we
will specifically examine the numerical computation of rovibronic energy levels for tri-
atomic molecules that exhibit the so called Double Renner effect (see Section 6.1 for an
explanation as well as for the etymology of rovibronic). More precisely, we will consider

• the MgCN molecule (as a representative of ABC type molecules, i.e. molecules
with three different nuclei)

• the HOO molecule (as a representative of ABB type molecules, i.e. molecules
with two identical nuclei)

Our considerations are building upon the PhD thesis by Odaka [86] where a full theoret-
ical account is given. Before we go into the details, let us have a closer look at the general
problem for arbitrary N -atomic molecules and let us briefly outline the state-of-the-art
with respect to its solution.

1

2 Introduction

1.1. The General Problem for N-atomic Molecules

Unfortunately, the seeming simplicity of (1.1) by no means reflects the actual computa-
tional complexity of the problem and, about 80 years after Schrödinger formulated
his fundamental equation [105, 106, 107, 108], its solution still poses an enormous chal-
lenge. Even modern computers often have trouble to cope with the tremendous storage
requirements and computing times of several weeks are not unusal. The reasons for
these difficulties are manifold: First of all, apart from very few exceptions, such as
for the hydrogen atom, it is in general not possible to state explicit solutions in terms
of closed analytic expressions (cf. discussion in Example 5.34, Section 5.3). For more
complicated systems, one is forced to rely on a couple of compromises and approxima-
tions in order to make the problem tractable. This leads to simplified instances of the
Schrödinger equation that may be solved numerically, e.g. using a variational approach:
The Hamilton operator Ĥ is projected onto a finite dimensional subspace of L2(Rn)
by means of a Rayleigh-Ritz projection such that one arrives at an ordinary Hermitian
matrix eigenvalue problem

Hc̃ = Ẽmc̃ (1.3)

H is commonly referred to as an FBR (=”Finite Basis Representation”), because it is

the representation matrix of Ĥ with respect to the basis of a finite dimensional subspace
of L2(Rn). For reasons that will be explained in Section 5.8, it is natural to employ
a product basis with 3N − 6 factor bases for N -atomic molecules which explains that
one also speaks of a product basis problem. By MacDonald’s theorem (a well-known
variational principle in quantum chemistry, see Theorem 5.45 and Section 5.7) the Ritz

values Ẽm are known to be upper bounds to the true eigenvalues Em of Ĥ, and the larger
one chooses the size n of the Hamiltonian matrix H the better these approximations
Ẽm will be. The straightforward application of this variational approach, however, is
impeded by some obstacles:

• Due to the inherent product basis structure already simple systems may lead to
huge problem dimensions n and small changes in the sizes of the involved factor
bases can make the size n ”explode”, as the following example nicely illustrates: A
molecule with N = 5 nuclei has a matrix representation with respect to a product
basis made up of 9 factor bases which, for the sake of simplicity, we assume to have
equal sizes ni. The overall problem size for the choice ni = 3 is n = 39 = 19, 386
and corresponds to 2.8 GB memory required for storing the corresponding FBR
(provided that the matrix entries are represented by double precision variables).
However, the computed approximations may be still too crude, and to obtain
tighter upper bounds, one has to increase the basis sizes. The choices ni = 4 and
ni = 5 result in total dimensions of n = 49 = 262, 144 and n = 59 = 1, 953, 125,
respectively. Clearly, the corresponding storage requirements (512 G and 28422
G) are now far beyond the possibilites of many modern computers.

• the computation of the matrix elements Hij can be rather time consuming (due
to the underlying algorithms for numerical integration)

1.2 General Solution Strategies 3

A measure to cope with these difficulties may be a further reduction of the problem
size by means of an additional subsequent Rayleigh-Ritz projection (called contraction
scheme)

V∗HV = H̃ (1.4)

Consequently, the resulting eigenvalue problem

H̃˜̃c =
˜̃
Em
˜̃c (1.5)

is called a contracted basis problem. Obviously, the contraction defined by (1.4) is lossy,

because the approximations
˜̃
Em, in turn, are upper bounds to the solutions of the FBR

problem Ẽm and the original problem Em, i.e.

˜̃
Em ≥ Ẽm ≥ Em (1.6)

However, if one succeeds in finding a suitable contraction matrix V and in making a
reasonable trade-off between the problem size and the desired accuracy, this approach
may lead to satisfactory results. A general description of contraction schemes along with
a discussion of their pros and cons will be given in Section 5.8.

We have seen that the Schrödinger equation (1.1) can be reduced to ordinary finite-
dimensional Hermitian eigenproblems (1.3) and (1.5) in order to obtain approximate
solutions. Hence, apart from the construction of the matrix elements, the key prob-
lem lies in computing eigensystems and it is hardly surprising that efficient numerical
algorithms are crucial for the success of a computational approach.

1.2. General Solution Strategies

As for virtually any numerical task, there is no philosopher’s stone and there exists a
rather wide variety of different approaches for computing eigensystems. Essentially, one
can distinguish between

• direct methods

• iterative methods

If the problem under consideration is small, then direct methods, which are well-known
from standard textbooks on numerical analysis (see [121, 122], [49] or [91], for instance),
are preferred because they are black boxes and because they are superior in performance.
There exists a couple of well-established algorithms which are available in form of reliable
software, most notably the LAPACK library [2, 7]. The user only needs to supply the
problem size n, the part of the spectrum he (or she) is interested in and has to store the
matrix explicitly in memory. Whether or not a problem can be considered ”small”, in
turn, is a matter of the available computer architecture, and thus the answer will change

4 Introduction

from case to case and from year to year. Parlett [91] reports that in 1978 a matrix
with the size n = 12000 was regarded ”big” and that the computation of 30 eigenpairs
was highly expensive. By contrast, about 30 years later, in the year 2007, it is not
uncommon that computers have available several gigabytes of memory and the smallest
matrix arising in our numerical experiments (see Chapter 7) has the dimension n =
11952 ≈ 12000. Clearly, the storage requirements, 8 · 120002 Bytes = 1.06 GigaBytes,
are no problem for the SUN

TM
Fire workstation (with 32 GB memory), on which we

carried out our numerical experiments. Using an efficient state-of-the-art direct solver
the complete eigensystem can be computed in less than one hour. This example nicely
illustrates the amazing technical and scientific progress that has been made over the last
decades. Nevertheless, the principal limitations of direct methods still exist: Starting
from a certain size n, explicit storage of the matrix is no more possible and, rather soon,
the unfavorable time complexity O(n3) of direct solvers becomes a severe drawback.
Therefore, iterative methods (more precisely: iterative projection methods) may be an
interesting alternative, because they rely on a different concept: Information of the
matrix H is only accessed implicitly by means of matrix-vector products, and in fortunate
cases, e.g. if H has a regular sparsity pattern, it is only necessary to store a few non-
zero elements hij. The idea is to successively build up a small subspace K ⊂ Rn by
means of suitable expansions of K and to project the input matrix H onto K which,
again, is accomplished by means of Rayleigh-Ritz projections. The resulting interaction
matrices are small and their eigensystems can be easily computed using direct methods.
A detailed description of this general concept and its ingredients will be given in Section
3.3. On the other hand, the convergence behavior of iterative projection methods may
not be easy to predict, and in many cases quite a lot of knowledge on the properties
and the structure of H is required, which makes these methods more difficult to use
and less attractive for non-expert users. Furthermore, the methods are only suitable
for computing small partial eigensystems, which fortunately meets our demands, as one
is typically only interested in the lower part of the spectrum. An excellent state-of-
the-art survey of iterative projection methods may be found in [8], further interesting
material is collected in [100] and [125]. The historical evolution of eigenvalue methods
is summarized in [48].

Of course both, direct and iterative projection methods, may be applied to the Hermitian
eigenvalue problems (1.3) and (1.5) in our context, and to facilitate the discussion,
Carrington et al. [19] have introduced the following terminology for the four possible
combinations:

• direct-product approach, i.e. application of a direct solver to (1.3)

• direct-contracted approach, i.e. application of a direct solver to (1.5)

• iterative-product approach,
i.e. application of an iterative projection method to (1.3)

• iterative-contracted approach,
i.e. application of an iterative projection method to (1.5)

1.3 Objective of the Thesis 5

1.3. Objective of the Thesis

Let us now come back to our problem, the computation of energy levels for triatomic
molecules with the Double Renner effect. Apart from the theoretical analysis of the
Double Renner effect, Odaka describes in her thesis [86] the FORTRAN 90 [85] software
DR, which she developped to determine energy levels of arbitrary triatomic molecules.
Specifically, the numerical results for the MgCN and the HOO molecule (the examples
she examines in her thesis) have been computed with the aid of her software. After the
user has supplied some input data (see input files in Appendix A.5 for full detail), such
as

• the type of the molecule (ABC or ABB type)

• the masses of the involved nuclei

• a potential energy surface (see Sections 5.5 and 6.1)

• the sizes of the factor bases

• parameters/thresholds for numerical integration

the software proceeds in three steps:

1. it computes the non-zero blocks of the FBR H using numerical integration schemes

2. it determines a block diagonal contraction matrix V and computes the non-zero
blocks of the contracted Hamiltonian matrix H̃

3. it determines the energy levels of interest (specified by some upper bound) by

computing the eigenvalues of H̃ with the expert driver xSYEVX of the LAPACK
library [2].

Hence, with respect to our terminology, the program DR pursues a direct-contracted
approach. Of course, it is natural to ask about the use of the other algorithmic combi-
nations listed above and, secondly, what eigensolver one should choose as an ingredient
in each case. An attempt to answer the question for the direct-contracted case is made
in [87], where the authors optimize the numerical computation of energy levels in the
DR program. They propose to replace the LAPACK [2] standard approach by a com-
bination of the two-stage tridiagonalization introduced in [12] and [13] and the recent
RRR algorithm for symmetric tridiagonal eigenproblems [32]. In principle, the authors’
recommendation is not only valid for the rather specific problem of triatomic molecules,
but also carries over to all eigenproblems where a relatively small fraction of the to-
tal spectrum is sought-after (e.g. 6%-10% of the smallest eigenvalues). In other words,
product-basis problems may be addressed in the same fashion, provided that the com-
putation is not obviated by memory restrictions.

6 Introduction

Why should one consider product basis problems at all? First of all, the approximations
obtained are more accurate in the sense of (1.6), i.e. one obtains tighter upper bounds
to the exact solutions of (1.1). Even for high quality contraction schemes it may be
a delicate matter to figure out whether a computed approximation (especially the Ritz
vector) is trustworthy, as the Examples 7.6 and 7.7 in Section 7.3 impressively reveal.
Secondly, one should keep in mind that the construction and application of a contraction
can be rather time consuming as well. Then an iterative-product calculation may be even
more effective if one is only interested in a small part of the spectrum. Last but not
least, for triatomic molecules the situation is not as unfavorable as the above example
for molecules with N = 5 nuclei suggests. The total problem dimension increases less
rapidly and, exploiting the sparsity of the Hamiltonian matrix H, one can make use of an
iterative method which allows to tackle rather large problems. At any rate, considering
product basis problems gives one more flexibility and an additional means of verification.
So far, especially the Lanczos method has been studied rather intensively as a component
in the framework for iterative approaches, e.g. by Carrington and his co-workers
(see [18, 19], [92], [104] and [129, 130] for instance). In this context, one should also
mention Davidson’s method [29, 30], which was designed for eigenvalue computations
arising in quantum chemistry, but is only applicable under rather specific conditions (i.e.
the matrix must be strongly diagonal dominant, see Section 3.3.2.3 for more details).
Both, Davidson’s and the Lanczos method (which we will briefly outline in Section 3.3),
are often only a last resort in practical situations (when direct solvers are no more
applicable), because they are slow to converge and because they are no ”black boxes”.
This is the starting point and motivation for the investigations in this thesis, and similar
to direct solvers (the RRR method developped by Dhillon [32]) we can benefit from
the progress in the field of iterative projection methods that has been made during the
90s of the last century:

The Jacobi-Davidson method was proposed by Sleijpen and van der Vorst [114] as
an improvement over Davidson’s method, and it is an attempt to remove the conceptual
weaknesses of the hitherto methods. It attracted a great deal of attention since its
introduction in 1996 and it re-aroused the interest of numerical analysts in iterative
projection methods, because it turned out to be superior in a couple of important and
interesting applications (see [44], [45], e.g.) and is based on an interesting idea. Basically,
it can be regarded as an inexact Rayleigh-Quotient process where in every step of the
iteration a shift-and-invert system (called Jacobi-Davidson correction equation)

(I − uu∗)(A− θI)(I − uu∗)t = −(A− θI)u = −r (1.7)

with respect to an approximate eigenpair (θ, u) is solved approximately (with increasing
accuracy), e.g. by means of Krylov subspace methods. The approximate solution t is
used as a new direction for the search space K. A motivation, a detailed introduction,
and a theoretical discussion of the algorithm along with its variants will be given in
Chapter 4. In spite of its success, the JD method, which has been investigated for more
than one decade, is still far from well-understood. The algorithm is rather sophisticated
and its success seems to be highly depending upon the structure of the problem. This

1.3 Objective of the Thesis 7

opens up a wide and vital field of research, and the promising results in related fields of
applications are additional motivation for our considerations. A near-complete state-of-
the-art survey of material (sorted by topic, people, references and software) on Jacobi-
Davidson type methods may be found in the recently established web portal [54]. The
main concern of this thesis is to analyze to what extent the Jacobi-Davidson method
may successfully be applied to the Hermitian eigenproblems (1.3) and (1.5) arising in
the context of triatomic molecules with the Double Renner effect. To do so, we have to
answer a couple of questions:

• How can one take advantage of the sparsity of the Hamiltonian matrix H? We
will discuss this issue in Chapter 7, where we derive an optimized storage scheme,
which exploits the regular sparsity pattern of H (only non zero elements are stored)
and results in an efficient procedure for matrix-vector multiplications.

• How can the Jacobi-Davidson correction equation (1.7) be solved efficiently? Since
we will be using iterative Krylov solvers for this purpose, it is a key issue to find
suitable preconditionersK as a decisive ingredient for the success of these methods.
More precisely, these are matrices that approximate the coefficient matrix A well
(i.e. K ≈ A in some sense) and that are used to transform the equation Ax = b
into the equivalent linear system

K−1Ax = K−1b (1.8)

Applying the Krylov method to the preconditioned operator B := K−1A leads to
a faster convergence of the solver, provided that K is chosen appropriately and
that the additional costs for constructing and applying K are outweighed by an
overall reduction of computing time. A general description of the concept may be
found in Section 4.2.3.5. For the Jacobi-Davidson method things are more involved
because the projections (I − uu∗) in the correction equation have to be taken into
account and because the coefficient matrix changes in every step of the iteration
due to the shift parameter θ. We will derive and present preconditioned variants of
the JD method, that take into acount these special features, in Section 4.3.6. The
identification and construction of suitable preconditioners is discussed in Section
7.5.1.

• To assess the performance of the Jacobi-Davidson method, we have to compare it
to other iterative projection methods (Lanczos, Davidson). The numerical results
of our experiments in Chapter 7 reveal that the JD method is superior in many
cases, once a suitable preconditioner has been identified. Besides, we have to ana-
lyze under what circumstances the Jacobi-Davidson method can outperform direct
solvers. To this end, we will compare it with the performance of the optimized
direct solver which is suggested and employed in [87] and which is specifically de-
signed for our problem, the computation of rovibronic energy levels of triatomic
molecules (a description of the underlying ideas will be given in Section 3.2.1.2).

8 Introduction

• Is it feasible to compute eigenpairs at arbitrary regions of the spectrum (especially
interior eigenvalues)? This question is of general interest for iterative projection
methods, and not only important for our application. The further one moves
into the interior of the spectrum, the less satisfactory the convergence of iterative
projection methods in general becomes. The reason for these problems results
from a superposition of two general numerical difficulties:

– it is hard to obtain suitable approximations for internal eigenpairs by means of
an ordinary Rayleigh-Ritz procedure. We will analyze the general weaknesses
of the approach and present alternative extraction methods in Section 3.3.1.

– looking for interior eigenvalues inevitably leads to indefinite linear systems of
the type (A− θI)x = b. Solving them by means of Krylov solvers often leads
to disappointing results, because it is difficult to find suitable preconditioners.
This is also true of our situation, but we will outline some possible remedies
in Section 7.5.2.

• Finally, as an important by-product, in Section 7.7 we shall see how the Jacobi-
Davidson approaches may be parallelized on shared memory architectures. How-
ever, it will turn out that the essential restriction is the lack of preconditioners
with inherent parallelism for the computation of interior eigenvalues.

The main focus of our considerations will be on product-basis problems, as they are
more complicated to handle and as they exhibit more structure that may be exploited in
devising preconditioners. For the contracted case things are getting considerably simpler
(one only needs to exploit the block sparsity of H̃ and the preconditioners simplify as
well), and one proceeds analogously. Therefore, the corresponding description in Section
7.6 can be kept brief.

For the most part, the results of the JD-related numerical experiments in this thesis
were obtained by means of our software package JACDAV (written in the C program-
ming language [67]) which we specifically developped for our purposes. Basically, the
implementation follows the ideas and techniques used in Sleijpen’s MATLAB r© JDQR
package [112] and Geus’ JDBSYM package [46]. However, it incorporates important
additional features (option for harmonic and refined extraction, modified subspace ex-
pansion) which are important in our context and which have not been covered by the
state-of-the-art software so far. For more details, we refer to the corresponding descrip-
tion in the Appendix A.4. For very few exceptions, it was more appropriate to employ
the MATLAB r© environment (see the product website [5] and the introduction in [94]
for further information), especially when it comes to producing sparsity plots and when
the computing times of the experiments have no particular relevance (see Result 7.24 in
Section 7.5.2, for instance, where we employed Slejpen’s JDQR MATLAB r© software
[112] and the ILUPACK MATLAB r© driver [15] as a ”plug in” for the preconditioner to
be supplied by the user). The test results for the IRL method (Alg. 3.16, see Section
3.3.2.2) in Section 7.5.3 were produced using the FORTRAN 77 [85] software ARPACK
[75]. For our direct-product and direct-contracted experiments in Sections 7.4.1 and

1.4 Structure and Organization of the thesis 9

7.4.2, we developped simple driver routines (written in the C programming language
[67]) that connect to the required LAPACK [2] and SBR routines.

1.4. Structure and Organization of the thesis

The agenda shows that we do not only have to discuss general aspects from numerical
linear algebra (direct methods and iterative projection methods), but also the theoretical
background (quantum chemistry, theoretical spectroscopy) of the eigenvalue problems
we are dealing with. For this reason, it is sensible to subdivide the thesis into two
introductory parts, which are largely independent of each other, and a concluding part
that brings together numerical analysis and quantum chemistry:

• Part I: Chapters 2 - 4
We recall some basics on Hermitian eigenproblems as well as some important tech-
nical prerequisites (orthogonalization, orthogonal bases of Krylov spaces, singular
value decompositions and Kronecker products) in Chapter 2 before we begin with
the discussion of numerical algorithms in Chapter 3. The introductory remarks
already show that we are not only concerned with the JD method, but also with
the general dichotomy between direct and iterative solvers. Since we will be using
an optimized direct solver in our experiments (cf. [87]), it is appropriate to outline
the underlying framework and to give a survey of its components, including a brief
state-of-the-art review of the most important direct solvers for tridiagonal Her-
mitian matrices and a description of tridiagonalization strategies. Furthermore,
we briefly go into single-vector iteration methods (power method, inverse iteration
and Rayleigh quotient iteration) as they form the basis for the iterative projection
methods that we will describe in Section 3.3. In Chapter 4 we finally come to the
Jacobi-Davidson method and its variants.

• Part II: Chapters 5 - 6
Chapter 5 gives a survey of what theoretical spectroscopy is about and describes
for the general case of N atomic molecules how Hermitian eigenvalue problems
are derived. Furthermore, the dichotomy between product basis and contracted
basis problems is illustrated, and the resulting four general solution strategies are
discussed. In Chapter 6 we come to our concrete problem, i.e. triatomic molecules
that exhibit the Double Renner effect. We describe the construction and structure
of the Hamiltonian matrices in full detail.

• Part III: Chapters 7 - 8
In Chapter 7 we eventually combine the insights of the introductory parts, and we
show in detail how to apply the JD method in our context (efficient matrix-vector
multiplication, preconditioners, product basis vs. contracted basis) including ex-
tensive numerical results. Finally, Chapter 8 summarizes the essential results and
gives an outlook for future research.

10 Introduction

1.5. Acknowledgements

This thesis is the result of my research during my employment as a scientific assistant at
the University of Wuppertal from October 2002 until February 2007, and I would like to
express my gratitude to a couple of people who contributed to the success of my work,
professionally, as well as on a human level. First of all, thanks go to all members of
the Scientific Computing group for the pleasant and uncomplicated working atmosphere
during all these years. Especially, I would like to point out my dear colleagues Dr.
Thomas Beelitz, Dr. Karsten Blankenagel, Dr. Elton Bojaxhiu, Karsten
Kahl and Dr. Jean-Honoré Tapamo for their amicable helpfulness as well as for
their steady and sincere interest in my work. It would have been impossible to complete
this thesis without the support of the people from the Theoretical Spectroscopy group,
Prof. Dr. Per Jensen, Dr. Vladlen Melnikov and, especially, Dr. Tina Erica
Odaka. Their kindness, their willingness for discussions and their patience in answering
all my questions over and over again were decisive to understand the theoretical back-
ground and to be able to use the Double Renner software DR. I am also grateful for
helpful discussions with Prof. Dr. Bruno Lang, as an expert on direct eigensolvers,
and with Prof. Dr. Michiel Hochstenbach, as an expert on iterative projection
methods. Besides, I appreciate the kind support of Dr. Gerard Sleijpen and Prof.
Dr. Matthias Bollhöfer who did not hesitate to provide me with the latest versions
of their software, the JDQR MATLAB r© package and the ILUPACK library. Last but
not least, I am indebted to my advisor, Prof. Dr. Andreas Frommer, for accepting
me as a member in his group, for proposing this interesting topic and for his valuable
comments and corrections.

It was a nice co-incidence that many friends of mine were working on their doctoral
theses during the same time as I was. Their research has made them experts in such
interesting and exciting scientific branches as computer science, economics, historical sci-
ence and human medicine. I greatly benefited from the lively exchange on our projects
in innumerous inspiring discussions which broadened my intellectual horizon and en-
couraged me to continue my work in difficult stages. Therefore, I cordially thank Dr.
Jörn Grothe, Dr. Gero Lückemeyer, Dr. Christian Müller, Dr. Pascal
Nevries, Dr. Klaus Segbers, Miko laj Siemaszko and Dr. Benjamin Zemlin
for their friendship and their catching scientific enthusiasm.

Finally, I could not have succeded without the constant love and support of my family
– my parents and my brother. They always encouraged me to go my way, cheered me
up and gave me distraction whenever it was necessary. I am grateful to my parents that
they conveyed me the value of a good academic education.

Wuppertal, April 2009

Part I.

Numerical Linear Algebra

11

2. Preliminaries

In this chapter we briefly review the most important definitions and theoretical facts
on the numerics of eigenvalue problems with special emphasis on the Hermitian case.
Furthermore, some useful tools of trade including special matrix decompositions and
orthogonalization techniques are recalled.

2.1. Eigensystems of General Matrices

Definition 2.1 (Eigenpairs, eigenvalues, eigenvectors, eigensystems)
Let A ∈ Cn×n an arbitrary square matrix. The pair (λ, x) ∈ C×Cn is called an eigenpair
of A if

1. x 6= 0

2. Ax = λx

The scalar λ is called an eigenvalue and the vector x is called an eigenvector of A.
Furthermore, we call the set of all eigenpairs an eigensystem and a subset a partial
eigensystem. The task of finding one or more eigenpairs of a given matrix A is referred
to as an eigenproblem.

Definition 2.2 (Spectrum and spectral radius)
The set of all λ ∈ C that are eigenvalues of A ∈ Cn is called the spectrum of A and is
denoted by σ(A). The spectral radius of A is the nonnegative real number

κ(A) := max{ |λ| : λ ∈ σ(A) } (2.1)

This is just the radius of the smallest disc centered at the origin in the complex plane
that includes all the eigenvalues of A.

Theorem 2.3 (Algebraic characterization of eigenvalues)
For A ∈ Cn×n we call pA(µ) = det(A − µI) the characteristic polynomial of A. The
following conditions are equivalent

1. λ is an eigenvalue of A

2. pA(λ) = 0

Proof: well-known, see [71] e.g. 2

13

14 Preliminaries

Definition 2.4 (Similarity, Similarity transformation)
Two matrices A,B ∈ Cn×n are said to be similar, iff there is a non-singular T ∈ Cn×n,
such that

T−1AT = B (2.2)

One also says that B results from a similarity transformation of A.

Proposition 2.5 (Eigenvalues of similar matrices)
If A,B ∈ Cn×n are similar, then pA(µ) = pB(µ) and A and B have the same eigenvalues.

Proof: well-known, see [71] e.g. 2

Theorem 2.6 (Continuous dependence on the matrix coefficients)
The eigenvalues λ1, . . . , λn of A ∈ Cn×n depend continuously on the matrix coefficients
aij. More precisely, for any given ε > 0 there is a δ = δ(ε) > 0 such that for B ∈ Cn×n

with ‖B − A‖ ≤ δ we find an ordering of B’s eigenvalues µ1, . . . , µn with the property

|µj − λj| ≤ ε (j = 1, . . . , n)

Proof: It is clear that the coefficients of the characteristic polynomial pA(µ) =
det(A − µI) depend continuously on the matrix coefficients aij. Thus, it remains to
show that the zeros λ1, . . . , λn of a polynomial

q(z) = zn + bn−1z
n−1 + . . .+ b1z + b0

depend continuously on the coefficents bi of the polynomial as well. The proof uses
auxiliary results from the field of complex analysis (Rouché’s theorem, cf. [6]) and is
discussed in detail e.g. in [131]. 2

Remark 2.7
Notice, that by contrast eigenvectors are not necessarily continuous functions of the
matrix coefficients, as can be recognized from the following example which is due to
Parlett [91]: Consider the symmetric matrix

A =

[
ν + δ γ
γ ν − δ

]
, δ, γ, ν ∈ R (2.3)

whose eigenvalues λ1 and λ2 are computed according to Theorem 2.3 as

λ1 = ν − σ, λ2 = ν + σ (2.4)

where
σ =

√
δ2 + γ2 (2.5)

2.2 Eigensystems of Hermitian Matrices 15

Depending on the sign of δ the eigenvector x1 related to λ1 is

x1 =

[
1

±γ/(σ + |δ|)

]
(2.6)

Consider now the following particular cases

• δ = 0, γ = 0. Then

x1(δ, γ) =

[
1
0

]
(2.7)

• δ 6= 0, γ 6= 0. Then

x1(δ, γ)→
[

1
0

]
(γ → 0) (2.8)

• δ = 0, γ 6= 0. Then

x1(δ, γ)→
[

1
±1

]
(γ → 0, γ 6= 0) (2.9)

This shows, that the discontinuity arises when A has multiple eigenvalues, i.e. in the
neighborhood of (δ, γ) = (0, 0) 2

Theorem 2.8 (Geršgorin)
Let A = (aij) ∈ Cn×n. For i = 1, . . . , n we define the Geršgorin 1 discs

Gi := {z ∈ C : |z − aii| ≤ ri} where ri :=
∑
j=1
j 6=i

|aij| (2.10)

Then the following statements hold:

1. Any eigenvalue λ of A is located in one of the Geršgorin discs Gi.

2. Suppose that there are m Geršgorin discs Gi whose union S is disjoint from all
other discs. Then S contains exactly m eigenvalues (counted with their algebraic
multiplicities).

Proof: well known, see [56] and [100], e.g. 2

2.2. Eigensystems of Hermitian Matrices

Much more can be said, when dealing with Hermitian matrices. They exhibit very nice
and useful theoretical properties, and their eigensystems can be characterized in more
detail than it is the case for arbitrary square matrices. Fortunately, the matrices arising
in our considerations and computations later on are symmetric, i.e. real-Hermitian, such
that we will be able to take advantage of what is discussed in the following.

1see also remarks on transliteration of Russian names in Appendix A.2

16 Preliminaries

2.2.1. Basic Properties and Definitions

First of all, it is appropriate to distinguish some important classes of matrices:

Definition 2.9 (Adjoint matrix)
For A ∈ Cn×m its adjoint matrix A∗ is defined as

A∗ := A
T

(2.11)

where the conjugate-complex matrix A is defined component wise, i.e.

A := [aij] (2.12)

Definition 2.10 (Hermitian, symmetric, orthogonal, unitary)
1. A ∈ Cn×n is called Hermitian, iff A = A∗

2. For the special case that A ∈ Rn×n is Hermitian, it is called symmetric, i.e. it holds
A = AT .

3. U ∈ Cn×n is called unitary, iff U∗U = U
T
U = I

4. For the special case that U ∈ Rn×n is unitary, it is called orthogonal, i.e. it holds
UTU = I.

5. For the sake of simplicity, one often uses the neutral term orthonormal matrix
when referring to both orthogonal and unitary matrices. Sometimes also the ap-
pelation self-adjoint matrix may be found in the literature as a comprehensive
term for Hermitian and symmetrix matrices. Notice, however, that these terms
need not necessarily coincide in the context of unbounded linear operators acting
on arbitrary Hilbert spaces (see Def. 5.9 and the related discussion in Chapter 5).

The definition reveals that everything what is stated for complex-Hermitian matrices in
the following, is especially also valid for real-symmetric matrices and all one has to do is
replace the terms “Hermitian” by “symmetric” resp. “unitary” by “orthogonal” in the
corresponding theorems.

Proposition 2.11 (General properties of eigenpairs of Hermitian matrices)
Let A ∈ Cn×n be a Hermitian matrix.

1. All eigenvalues λi (i = 1, . . . , n) of A are real

2. For two eigenpairs (λi, ui) and (λj, uj) with λi 6= λj we have u∗iuj = 0

Proof: well known, see [71] e.g. 2

2.2 Eigensystems of Hermitian Matrices 17

Theorem 2.12 (Eigendecomposition of Hermitian matrices)
Any Hermitian matrix A ∈ Cn×n is unitarily similar to a real diagonal matrix, i.e. there
is a unitary matrix U ∈ Cn×n = [u1, . . . , un] whose columns ui are eigenvectors of A such
that

U∗AU = Λ = diag(λ1, . . . , λn) (2.13)

Unless otherwise stated we assume the eigenvalues λi ∈ R to be ordered by ascending
magnitude

λ1 ≤ λ2 ≤ . . . λn (2.14)

Proof: well-known, see [71] e.g. 2

2.2.2. Variational Characterisations

The Rayleigh quotient defined and discussed below is an important tool to obtain an
optimal eigenvalue approximation related to a given eigenvector approximation.

Definition 2.13 (Rayleigh quotient)
For a Hermitian matrix A ∈ Cn×n and an arbitrary non-zero vector u ∈ Cn we call the
ratio

ρ(u) ≡ ρ(u,A) ≡ u∗Au

u∗u
(2.15)

the Rayleigh quotient.
If u is an eigenvector of A the Rayleigh quotient obviously reproduces the associated
eigenvalue λ, i.e. ρ(u) = λ.

Proposition 2.14 (Minimal residual property of the Rayleigh quotient)
For each u ∈ Cn the residual

r(u, µ) = Au− µu (2.16)

is minimized in the ‖ · ‖2-norm if we choose µ to be the Rayleigh quotient ρ(u), i.e.

‖ Au− ρ(u)u ‖2 ≤ ‖ Au− µu ‖2 ∀µ ∈ C (2.17)

Furthermore, the residual r(u, ρ(u)) is perpendicular to u:

r(u, ρ(u)) = Au− ρ(u)u ⊥ u (2.18)

Proof: Without loss of generality we may assume that u is of norm unity. Let now
[u, U] be unitary and set [

u∗

U∗

]
A[u, U] =

[
ρ(u) h∗

g B

]
(2.19)

18 Preliminaries

Then[
u∗

U∗

]
r(u, µ) =

[
ρ(u) h∗

g B

]
·
[
u∗

U∗

]
u− µ ·

[
u∗

U∗

]
u =

[
ρ(u)− µ

g

]
(2.20)

As ‖ · ‖2 is unitarily invariant,

‖r(u, µ)‖22 = |ρ(u)− µ|2 + ‖g‖22 (2.21)

Clearly, the above expression takes its minimum for µ = ρ(u). (2.18) follows by direct
verification. 2

Proposition 2.15 (Rayleigh-Ritz)
Under the assumptions of Definition 2.13 the following properties hold: For non-zero
x ∈ Cn ρ(x) ranges over the interval I := [λ1, λn], i.e.

1. λ1x
∗x ≤ x∗Ax ≤ λnx

∗x for all x ∈ Cn

2. λmax = λn = max
x 6=0

x∗Ax
x∗x

= max
x∗x=1

x∗Ax

3. λmin = λ1 = min
x 6=0

x∗Ax
x∗x

= min
x∗x=1

x∗Ax

Proof: According to Theorem 2.12 there exists a unitary matrix U ∈ Cn×n such that
A = U∗ΛU with Λ = diag(λ1, λ2, . . . , λn). For any x ∈ Cn we have

x∗Ax = x∗UΛU∗x = (U∗x)∗Λ(U∗x) =
n∑

i=1

λi|(U∗x)i|2

As each term in the above sum is nonnegative, it follows

λmin

n∑
i=1

|(U∗x)i|2 ≤ x∗Ax =
n∑

i=1

λi|(U∗x)i|2 ≤ λmax

n∑
i=1

|(U∗x)i|2

Since U is unitary,
n∑

i=1

|(U∗x)i|2 =
n∑

i=1

|xi|2 = x∗x

and, hence, we have shown that

λ1x
∗x = λminx

∗x ≤ x∗Ax ≤ λmaxx
∗x = λnx

∗x

These inequalities are sharp, for if x is an eigenvector of A corresponding to the eigen-
value λ1, the Rayleigh quotient ρ(x) = x∗Ax

x∗x
reproduces λ1. The same argument applies

for λn. 2

2.2 Eigensystems of Hermitian Matrices 19

Remark 2.16
Proposition 2.15 shows that the Rayleigh quotient ρ(x) of an arbitrary vector x ∈ Cn

with respect to a Hermitian A ∈ Cn×n can take any value in the interval I = [λ1, λn].
As a trivial consequence, ρ(x) can be written as a convex combination of the extremal
eigenvalues λ1 and λn. We can say even more, i.e. the expansion of x by A’s eigenvectors

x =
n∑

i=1

ξiui (2.22)

uniquely determines a convex combination of all eigenvalues λi for the Rayleigh quotient

ρ(x) =
(Ax, x)

(x, x)
=

∑n
k=1 λk|ξk|2∑n

k=1 |ξk|2
=

n∑
k=1

βkλk, (2.23)

where obviously

0 ≤ βi =
|ξi|2∑n

i=1 |ξk|2
≤ 1, and

n∑
i=1

βi = 1 (2.24)

See [100] for a more general version of this relation. 2

Theorem 2.17 (Courant-Fischer, Min-Max principle)
Let A ∈ Cn×n be a Hermitian matrix with eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn, let k be a
given integer with 1 ≤ k ≤ n and let Cj resp. Sj denote subspaces of Cn with dimension
j. Then λk can be characterized by either of the two following relations:

λk = min
Sn−k

max
u⊥Sn−k

u∗Au

u∗u
(2.25)

λk = max
Ck−1

min
v⊥Ck−1

v∗Av

v∗v
(2.26)

Proof: Since

dimS⊥n−k + dim C⊥k−1 = k + (n− k + 1) = n+ 1 > n

it follows that the subspaces S⊥n−k and C⊥k−1 must have a non-empty intersection, i.e.
I := S⊥n−k ∩ C⊥k−1 6= ∅. Let w ∈ I, w 6= 0 any nonzero vector in both subspaces, so

min
v⊥Ck−1

ρ(v) ≤ ρ(w) ≤ max
u⊥Sn−k

ρ(u)

These inequalities hold for all choices of Sn−k and Ck−1, thus we can choose those sub-
spaces that maximize the left-hand side and minimize the right-hand side of the inequal-
ity:

max
Ck−1

min
v⊥Ck−1

ρ(v) ≤ min
Sn−k

max
u⊥Sn−k

ρ(u)

20 Preliminaries

To show equality, we use Zn−k = span{z1, . . . , zn−k} for Sn−k and Zk−1 for Ck−1 anal-
ogously (zk denotes the eigenvector associated with λk), and the chain of inequalities
extends to

min
x⊥Zk−1

ρ(x) ≤ max
Ck−1

min
v⊥Ck−1

ρ(v) ≤ min
Sn−k

max
u⊥Sn−k

ρ(u) ≤ max
w∈Zk

ρ(w)

and from the properties of a Rayleigh quotient we finally obtain

λk ≤ max
Ck−1

min
v⊥Ck−1

ρ(v) ≤ min
Sn−k

max
u⊥Sn−k

ρ(u) ≤ λk

2

The following two theorems are subsumed as so-called interlacing theorems resp. inter-
leaving theorems in the literature and will be of importance later on, when we consider
matrices that originate from deleting rows and columns of a larger matrix or from or-
thogonal projections on subspaces of smaller dimension.

Lemma 2.18 (Inclusion principle)
Let A ∈ Cn×n be a Hermitian matrix, let r be an integer with 1 ≤ r ≤ n, and let Ar

denote any r × r principal submatrix of A (obtained by deleting n − r rows and the
corresponding columns from A). For each integer k such that 1 ≤ k ≤ r we have

λk(A) ≤ λk(Ar) ≤ λk+n−r(A) (2.27)

Proof: Suppose that Ar ∈ Cn×n is formed by deleting rows i1, . . . , in−r and the
corresponding columns from A and let En−r = span{ei1 , . . . , ein−r} denote the subspace
spanned by the related canonical unit vectors. Application of Theorem 2.17 (first part)
yields:

λk+n−r(A) = min
Sr−k

max
u⊥Sr−k

u∗Au

u∗u
≥ min

Sr−k

max
u⊥Sr−k
u⊥En−r

u∗Au

u∗u
= min

Sr−k

max
u⊥Sr−k

u∗Aru

u∗u
= λk(Ar)

The lower estimate can be obtained with the same reasoning:

λk(A) = max
Sk−1

min
u⊥Sk−1

u∗Au

u∗u
≤ max

Sk−1

min
u⊥Sk−1
u⊥En−r

u∗Au

u∗u
= max

Sk−1

max
u⊥Sk−1

u∗Aru

u∗u
= λk(Ar)

2

Corollary 2.19 (Poincaré separation theorem)
Let A ∈ Cn×n be a Hermitian matrix, let r be a given integer with 1 ≤ r ≤ n, and let
Ur = [u1, . . . , ur] ∈ Cn×r be an orthonormal matrix, i.e. U∗

rUr = Ir. Let Br = U∗
rAUr. If

the eigenvalues of A and Br are arranged in increasing order, we have

λk(A) ≤ λk(Br) ≤ λk+n−r(A) (2.28)

2.2 Eigensystems of Hermitian Matrices 21

Proof: If r < n, supplement Ur by n− r additional vectors ur+1, . . . , un to obtain a
unitary matrix U ∈ Cn×n. U∗AU has the same eigenvalues as A and the matrix Br in
the statement of the corollary is a principal submatrix of U∗AU obtained by deleting
the last n− r rows and columns. The assertion now follows directly from Lemma 2.18.
2

2.2.3. Perturbation Analysis and Error Bounds

In the following, we collect and review some useful results on how perturbations in the
matrix coefficents may affect the eigenvalues. Furthermore, essential error bounds for
approximate eigenpairs (θ, u) are derived, which are of importance, when one has to
assess the quality of approximations obtained in numerical algorithms for eigensystems
we will be discussing later on.

Notation 2.20
Let x, y ∈ Cn. Then we denote

• |x| := [|xi|],
i.e. the vector |x| is formed from the moduli of its components.

• |x| ≤ |y|, iff |xi| ≤ |yi| for all i = 1, . . . , n,
i.e. the vectors |x| and |y| are compared component wise.

2

Definition 2.21 (Absolute and Monotone Norms)
A norm ‖ ·‖ is called monotone, iff ‖x‖ ≤ ‖y‖ for all x, y ∈ Cn with |x| ≤ |y|. It is called
absolute, iff ‖ |x| ‖ = ‖x‖ for all x ∈ Cn

Lemma 2.22
Let ‖ · ‖ be a norm resp. the associated matrix norm. Then the following statements
are equivalent:

1. ‖ · ‖ is a monotone norm, i.e. ‖x‖ ≤ ‖y‖ whenever |x| ≤ |y|

2. For any diagonal matrix D := diag(d1, . . . , dn) ∈ Cn×n it holds

‖D‖ = max
j=1,...,n

|dj|

3. ‖ · ‖ is an absolute norm, i.e. ‖ |x| ‖ = ‖x‖ for all x ∈ Cn

Proof: see [56] 2

22 Preliminaries

Proposition 2.23 (Bauer-Fike)
Let A ∈ Cn×n be diagonalizable and P ∈ Cn×n the non-singular matrix that transforms it
into diagonal form, i.e. P−1AP = diag(λ1, . . . , λn) =: D. Furthermore, let A+E ∈ Cn×n

be a perturbation of A and λ an eigenvalue of A+ E. Then

min
j=1,...,n

|λ− λj| ≤ ‖P−1EP‖ ≤ cond(P)‖E‖ (2.29)

Here ‖ · ‖ denotes the matrix norm related to an absolute vector norm and cond(P) :=
‖P‖‖P−1‖ the condition number of P with respect to this matrix norm.

Proof: Without loss of generality we can assume that λ 6= λj (for λ = λj the assertion
of the theorem is trivial) and we denote by x the eigenvector related to λ. Because of
(A+ E)x = λx we have

Ex = (λI − A)x = (λI − PDP−1)x = P (λI −D)P−1x

and it follows

P−1x = (λI −D)−1(P−1EP)P−1x

By Lemma 2.22 we obtain

‖P−1x‖ ≤ ‖(λI −D)−1‖ ‖P−1EP‖ ‖P−1x‖ = max
j=1,...,n

1

λ− λj

‖P−1EP‖ ‖P−1x‖

and the assertion follows readily. 2

Corollary 2.24
Let A ∈ Cn×n be Hermitian and A + E a perturbation of A. If λ1, . . . , λn are the
eigenvalues of A and λ an eigenvalue of A+ E then

min
j=1,...,n

|λ− λi| ≤ ‖E‖2 (2.30)

Proof: We choose the Euclidean norm ‖ · ‖2 as the absolute vector norm in Propo-
sition 2.23. Since A is Hermitian, it can be transformed to diagonal form by means of a
unitary matrix P . Now the assertion directly follows, as cond2(P) = 1. 2

Corollary 2.25
Let (θ, u) be an approximate eigenpair of A ∈ Cn×n where ‖u‖2 = 1. Then we can
establish the following bound, where r = Au − θu and λ is the eigenvalue of A closest
to θ:

|θ − λ| ≤ ‖r‖2 (2.31)

2.2 Eigensystems of Hermitian Matrices 23

Proof: Define E := (θu− Au)u∗. Then

(A+ E)u = Au+ (θu− Au)u∗u = θu

Thus, θ is an eigenvalue of A+ E. Then

‖E‖2 = κ(E∗E)
1
2 = ‖θu− Au‖2 = ‖r‖2 (2.32)

where κ is the spectral radius (see Definition 2.2). Corollary 2.24 immediately yields the
assertion. 2

Proposition 2.26 (Error bounds for approximate eigenpairs)
Let u ∈ Cn be an approximate eigenvector of norm unity of A ∈ Cn×n. We obtain an
approximate eigenpair (θ, u) by forming the associated Rayleigh quotient θ = u∗Au∗. Let
λ be the eigenvalue closest to θ and x the corresponding eigenvector. If we now define
the so-called “gap” δ by

δ = min
i
{ |λi − θ|, λi 6= λ } (2.33)

then we can relate the Euclidean norm of the residual r = Au−θu to the following error
bounds

|θ − λ| ≤ ‖r‖22
δ

(2.34)

sin θ(u, x) ≤ ‖r‖2
δ

(2.35)

Proof: The proof of (2.34) is elementary, but somewhat longish as it requires addi-
tional technical lemmas. We thus refer the reader to [91] and [100].
To verify (2.35) we decompose u = x cosϕ+ z sinϕ where z ⊥ u:

(A− θI)u = cosϕ(A− θI)x+ sinϕ(A− θI)z
= cosϕ(λ− θ)x + sinϕ(A− θI)z

The two vectors on the right hand side are orthogonal to each other, as

〈x, (A− θI)z〉 = 〈(A− θI)x, z〉 = (λ− θ)〈x, z〉 = 0

Thus,

‖r‖22 = ‖(A− θI)u‖22 = sin2 ϕ‖(A− θI)z‖22 + cos2 ϕ|λ− θ|2

≥ sin2 ϕ‖(A− θI)z‖22

Since z ⊥ u, ‖(A− θI)z‖2 is larger than the smallest eigenvalue of A− θI restricted to
the subspace 〈x〉T , which is exactly the gap δ. 2

We see that the quality of an eigenvector approximation u may be evaluated by means
of (2.35). However, the general difficulty is that in many cases no information on the

24 Preliminaries

distribution of the eigenvalues is available beforehand, such that nothing, or only little
can be said about the gap δ. Therefore, a small norm of the residual r = Au− θu does
not automatically imply that u approximates the exact eigenvector x well, unless it is
known that δ is sufficiently large.

As for the bounds on the approximate eigenvalue, we can always pick the better of the
two bounds (2.34) and (2.31), provided that we possess information about the gap δ
(e.g. a lower bound). This leads to the following

Corollary 2.27
Let (θ, u) be an approximate eigenpair of A ∈ Cn×n where ‖u‖2 = 1, then

|θ − λ| ≤ min

{
‖r‖2,

‖r‖22
δ

}
(2.36)

The following proposition is a useful tool to characterize the deviation of an approximate
eigenvector from its exact counterpart:

Proposition 2.28 (Cosine and scalar product)
Let u, v ∈ Rn. Then the angle φ = ∠(u, v) ∈ [0, π] is determined by

cosφ =
〈u, v〉

‖u‖2 · ‖v‖2
(2.37)

Proof: The assertion is a direct consequence of the well-known Law of Cosines from
trigonometry. 2

2.3 Technical Tools 25

2.3. Technical Tools

2.3.1. Orthogonal and Unitary Matrices

Orthogonal and unitary matrices Q ∈ Kn×n play a prominent role in numerical algo-
rithms for eigenvalue problems as they share several useful and important properties:

1. the inverse Q−1 is readily available, as Q∗Q = QQ∗ = In, i.e. Q∗ = Q−1 (cf. Def.
2.10)

2. the spectrum of A ∈ Kn×n is invariant w.r.t. orthogonal resp. unitary similarity
transformations Q∗AQ (cf. Prop. 2.5)

3. orthogonal transformations are numerically stable (cf. [91])

2.3.1.1. Householder Reflections

For any nonzero vector v ∈ Rn one can construct a related matrix Pv ∈ Rn×n, such that
its application to a vector x ∈ Rn effects a reflection in the hyperplane span{v}T (i.e.
the hyperplane that is perpendicualar to v). This is made precise by the following

Definition 2.29 (Householder matrix)
Let v ∈ Rn be nonzero. Then we call

Pv = In −
2

v∗v
vv∗ (2.38)

a Householder reflection (synonymous terms: Householder matrix, Householder trans-
formation) and the vector v Householder vector. It is easy to verify that Householder
matrices are both orthogonal and symmetric.

We are specifically interested in the Householder matrix Pv ∈ Rn that transforms a
given vector x ∈ Rn to a scalar multiple of the first unit vector, i.e. Pvx = α · e1. These
matrices are beneficial for computing matrix decompositions to be discussed later on.

Corollary 2.30 (Transformation x→ ±‖x‖2 · e1)
Let x ∈ Cn be nonzero. Define

v := x± ‖x‖2 · e1 and τ =
2

v∗v
(2.39)

Then application of the Householder reflection

P = In −
2

v∗v
vv∗ = In − τvv∗ (2.40)

on x yields
Px = ∓‖x‖2 · e1 = ∓(‖x‖2 , 0, . . . , 0)∗ (2.41)

26 Preliminaries

Proof: Straightforward verification. 2

Note that Householder matrices are never explicity computed, as for their application
knowledge of the Householder vector v and the related parameter τ = 2/(v∗v) is suffi-
cient. The following algorithm (cf. [49]) determines these parameters according to (2.39)
such that cancellation is avoided, v(1) = 1 and Pvx = +‖x‖2 · e1 (positive multiple of
e1):

Algorithm 2.1: Generation of a Householder matrix

function [v, τ] = house(x)1

n = length(x)2

σ = x(2 : n)∗x(2 : n)3

v =

[
1

x(2 : n)

]
4

if σ = 0 then5

τ = 06

else7

µ =
√
x(1)2 + σ8

if x(1) ≤ 0 then9

v(1) = x(1)− µ10

else11

v(1) = −σ/(x(1) + µ)12

end if13

τ = 2v(1)2/(σ + v(1)2)14

v = v/v(1)15

end if16

return [v, τ]17

Remark 2.31 (Applying Householder transformations)
Given a Householder transformation defined by P = I − βvv∗, it is important not to
explicitly perform a matrix-matrix multiplication. The pre-multiplication of P to a
matrix A is realized by

PA = A− vw∗ (2.42)

instead, where w = βAv, i.e. applying a Householder transform involves one matrix-
vector product and one outer product update. 2

Remark 2.32 (Generalization of Householder matrices to the complex case)
As is pointed out in [74], one has to be careful when trying to generalize Householder
reflections to the application on complex Hermitian matrices. Unlike the real case, it is
not always possible to find a Hermitian matrix H such that Hx = α · e1 for an arbitrary
non-zero vector x ∈ Cn. In general, it is only possible to construct a unitary matrix P
with the desired property. For further details on this issue and a discussion on software
implementations, e.g. in the form ofthe LAPACK [2] routine CLARFG, see [74]. 2

2.3 Technical Tools 27

2.3.1.2. Givens and Jacobi Rotations

Householder reflections are very helpful when several successive elements of a matrix
row or a matrix column are supposed to be annihilated. However, rather often the
situation arises, that one wishes to zero single elements and then Givens rotations are
the appropriate means:

Definition 2.33 (Givens rotation)
A Givens matrix G(i, k, θ) ∈ Rn×n, where i, k ∈ {1, . . . , n} and θ ∈ R is a rank-two
correction to the identity defined by

G(i, k, θ) =

1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · s · · · 0 i
...

...
. . .

...
...

0 · · · −s · · · c · · · 0 k
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1
i k

(2.43)

where c = cos θ and s = sin θ. Clearly, G(i, k, θ) is orthogonal.

Multiplication by G(i, k, θ)∗ results in a counterclockwise rotation by the angle θ in the
(i, k) plane. More precisely, if x ∈ Rn and y = G(i, k, θ)∗x then

yj =

cxi − sxk j = i
sxi + cxk j = k

xj j 6= i, k
(2.44)

More specifically, we are interested in Givens rotations that annihilate yj for j = i. The
following procedure, which avoids overflow (see [49]), determines the parameters c and
s, such that

[
c s
−s c

]∗ [
a
b

]
=

[
r
0

]
(2.45)

28 Preliminaries

Algorithm 2.2: Generation of a Givens rotation

function [c, s] = givens(a, b)1

if b = 0 then2

c = 1, s = 03

else4

if |b| > |a| then5

τ = −a/b; s = 1/
√

1 + τ 2; c = sτ6

else7

τ = −b/a; c = 1/
√

1 + τ 2; s = cτ8

end if9

end if10

return [c, s]11

Analogous to Householder transforms, the application of Givens rotations is never ac-
complished by means of explicit multiplication of the corresponding matrix, as only 2
columns resp. rows are affected. The update A→ G(i, k, θ)∗A defined by

A([i, k], :) =

[
c s
−s c

]
A([i, k], :) (2.46)

should be better realized by the following procedure

Algorithm 2.3: Application of a Givens rotation G(i, k, θ)

for j = 1, . . . , n do1

τ1 = A(i, j)2

τ2 = A(k, j)3

A(1, j) = cτ1 − sτ24

A(2, j) = sτ1 − cτ25

end for6

Remark 2.34 (Givens rotations vs. Jacobi rotations)
In Section 3.2.3, where we describe Jacobi’s method for computing eigensystems, we will
also encounter so-called Jacobi rotations which are employed to annihilate particular
elements of a given matrix by means of similarity transformations (cf. Def. 2.4). By
contrast, we speak of Givens rotations when referring to simple one-sided matrix-matrix
and matrix-vector multiplications. 2

2.3.2. QR Factorisation and Orthonormalisation of Vector Sets

The construction of orthonormal vectors sets is an important ingredient for a multitude of
algorithms in the field of numerical linear algebra, especially for the iterative projection
methods described in this thesis. The following definition gives an algebraic top-level
formulation for the relation of a vector set given by the columns of the matrix A and
the columns of Q originating from the orthogonalization of A:

2.3 Technical Tools 29

Definition 2.35
Let A ∈ Cn×m, where n ≥ m. If there exist a unitary matrix Q ∈ Cn×n, i.e. Q∗Q = I
and a matrix

R =

[
R1

0

]
∈ Cn×m (2.47)

where R1 ∈ Cm×m is upper triangular, such that A = QR, then the factorization A = QR
is called a QR decomposition of A.

The simplest way to orthonormalize the column vectors of a given matrix V ∈ Cn×m is
well-known under the name Gram-Schmidt procedure:

Algorithm 2.4: Classical Gram-Schmidt orthonormalisation (CGS)

Input: V = [v1, . . . , vm] ∈ Cn×m

compute r11 = ‖v1‖21

if r11 = 0 then2

stop3

else4

q1 = v1/r115

end if6

for j = 2, . . . ,m do7

for i = 1, . . . , j − 1 do8

rij = (vj, qi)9

end for10

q̂ = vj −
j−1∑
i=1

rijqi
11

rjj = ‖q̂‖212

if rjj = 0 then13

stop14

else15

qj = q̂/rjj16

end if17

end for18

Output: V ∗V = Im

It is easy to verify that the above algorithm does not break down, if and only if the
vectors v1, . . . , vm are linearly independent. From Lines 9–16 of Alg. 2.4 one can see
that the following relation holds

vj =

j∑
i=1

rijqi (2.48)

Letting Q1 = [q1, . . . , qm] and R1 be the upper m×m triangular matrix whose nonzero
elements are the rij defined in Alg. 2.4, then (2.48) can be re-written as V = Q1R1. If
we supplement Q1 by Q2 = [qm+1, . . . , qn] such that Q = [Q1, Q2] ∈ Cn×n is orthonormal

30 Preliminaries

and form R from R1 according to (2.47), we obtain a QR decomposition of V in the
sense of Definition 2.35, i.e. V = QR. These considerations prove the following

Theorem 2.36 (Existence of a QR decomposition)
Let A ∈ Cn×m and rank(A) = m, i.e. m ≤ n. Then there exists a QR factorization of
A, where R (resp. R1) has non-vanishing diagonal entries rii, i = 1, . . . ,m

It is known that the classical Gram-Schmidt algorithm is numerically unstable. Depend-
ing on the structure of A and the desired quality one should resort to better alternatives,
e.g. a Modified Gram-Schmidt procedure, which is obtained by a suitable reorganiza-
tion of Alg. 2.4, or QR decompositions obtained by means of Householder reflections or
Givens rotations. The latter is advantageous for the application to Hessenberg matrices.
For a more detailed discussion see [49].
The iterative projection algorithms for eigenvalue computations we will be dealing with
later on construct orthogonal vector sets successively, rather than in one batch for a
given vector set, as suggested in Alg. 2.4. We thus require specialized variants which
orthogonalize a given vector t against a matrix Q ∈ Cn×m whose columns are already or-
thonormal. It has proven advantageous (see [14]) to make use of a scheme that iteratively
applies the classical Gram-Schmidt procedure:

Algorithm 2.5: Iterative classical Gram-Schmidt orthonormalisation (ICGS)

function u = orth(Q, t)1

u = t2

α = 0.5, itmax = 3, it = 13

r0 = ‖u‖24

loop5

u = u−Q(Q∗u)6

r1 = ‖u‖27

if r1 > αr0 or it ≥ itmax then8

exit loop9

end if10

it = it+ 1, r0 = r111

end loop12

if r1 ≤ αr0 then13

error(’loss of orthogonality’)14

end if15

u = 1/r1 · u16

return u17

Output: span{Q, t} = span{Q, u}, [Q, u]∗[Q, u] = I

The orthogonalization can be done using matrix-vector operations (BLAS 2 [1] in a
computer code) and, in general, it is sufficient to perform two passes of the loop (Lines
5-9 in Alg. 2.5), where the quality of orthogonality is assessed by means of the parameter
α.

2.3 Technical Tools 31

2.3.3. Orthogonal Bases of Krylov Spaces

Krylov subspaces, i.e. subspaces of the form

Km(A, v) = {v, Av,A2v, . . . , Am−1v} (2.49)

have a prominent role to play in both iterative methods for eigenvalue problems and
linear systems. As one can recognize from the definition (2.49), they are associated with
a vector v 6= 0 and a matrix A ∈ Cn×n and obviously dim Km(A, v) ≤ m. We are
especially interested in constructing orthogonal bases for Km(A, v) and depending on
whether A is Hermitian or not we can state different algorithms for this purpose.

2.3.3.1. Arnoldi’s Procedure

Let us first consider the general case that the matrix A ∈ Cn×n is non-Hermitian. Then
Algorithm 2.6 which is referred to as Arnoldi’s procedure multiplies at each step the
previous Arnoldi vector vj by A and orthonormalizes the resulting vector wj against all
previous vi’s by means of a classical Gram-Schmidt procedure. It can be shown by a
simple induction argument that the Arnoldi procedure generates a basis of Km(A, v1)
whose vectors are assembled as columns in V ∈ Cn×m.

Algorithm 2.6: Arnoldi

choose a vector v1 such that ‖v1‖2 = 11

for j = 1, 2, . . . ,m do2

compute hij = (Avj, vi) for i = 1, 2, . . . , j3

compute wj := Avj −
∑j

i=1 hijvi4

hj+1,j = ‖wj‖25

if hj+1,j = 0 then6

stop7

end if8

vj+1 = wj/hj+1,j9

end for10

The following proposition is very useful for theoretical purposes as it provides a compact
matrix formulation for the relation between A and V :

Proposition 2.37 (Arnoldi relation)
Denote by Vm the n×m matrix with column vectors v1, . . . , vm; by H̄m the (m+1)×m
Hessenberg matrix whose nonzero entries hij are defined by Algorithm 2.6; and by Hm

the matrix obtained from H̄m by deleting its last row. Then the following relations hold:

AVm = VmHm + wme
∗
m (2.50)

= Vm+1H̄m (2.51)

V ∗
mAVm = Hm (2.52)

32 Preliminaries

Proof: From Lines 4, 5 and 9 of Algorithm 2.6 one easily recognizes that

Avj =

j+1∑
i=1

hijvi j = 1, 2, . . . ,m (2.53)

which proves (2.50) and (2.51).
(2.52) is readily obtained by multiplying both sides of (2.50) by V ∗

m and exploiting the
orthonormality of Vm. 2

2.3.3.2. Lanczos Procedure

For the case that A ∈ Cn×n is Hermitian things are getting considerably simpler and
this is explained in the following theorem:

Theorem 2.38
Assume that Arnoldi’s procedure (Alg. 2.6) is applied to a Hermitian matrix A ∈ Cn×n.
Then the coefficients hij generated by the algorithm are such that

hij = 0 for 1 ≤ i < j − 1 (2.54)

hj,j+1 = hj+1,j, j = 1, 2, . . . ,m (2.55)

It is important to note that all coefficients hij are real, even if the input matrix A has
complex entries. In other words, the matrix Hm obtained from the Arnoldi process is
tridiagonal and real-symmetric.

Proof: To see that Hm is Hermitian, apply the Arnoldi relation (2.52) and exploit
that A is Hermitian:

Hm = V ∗
mAVm = V ∗

mA
∗Vm = (V ∗

mAVm)∗ = H∗
m

SinceHm is not only Hermitian, but also upper Hessenberg, we see thatHm is tridiagonal,
i.e. we have (2.54). The diagonal entries hii of a Hermitian matrix Hm are known to be
real because of hii = hii. The fact that the entries hj,j+1 are real, too, follows from their
construction as a norm of a vector in Line 5 of the Arnoldi procedure (Alg. 2.6). 2

It is common to use the following

Notation 2.39

αj ≡ hjj and βj ≡ hj−1,j

2.3 Technical Tools 33

The resulting Hm matrix is denoted by

Tm =

α1 β2

β2 α2 β3

. . .
βm−1 αm−1 βm

βm αm

 (2.56)

2

The Gram-Schmidt orthogonalization in Alg. 2.6 obviously simplifies to a simple three-
term recurrence and along with the notation 2.39 we can formulate the following sim-
plification of Alg. 2.6 for the Hermitian case which is known as Lanczos algorithm:

Algorithm 2.7: Lanczos

choose a vector v1 such that ‖v1‖2 = 1. Set β1 ≡ 0, v0 ≡ 01

for j = 1, 2, . . . ,m do2

compute wj = Avj − βjvj−13

compute αj = (wj, vj)4

wj = wj − αjvj5

βj+1 = ‖wj‖2.6

if βj+1 = 0 then7

stop8

end if9

vj+1 = wj/βj+110

end for11

Proposition 2.37 directly carries over to the following analogon for the Lanczos procedure:

Proposition 2.40 (Lanczos relation, Lanczos factorization)
Denote by Vm the n×m matrix with column vectors v1, . . . , vm; by T̄m the (m+ 1)×m
triangular matrix whose nonzero entries αi and βi are defined by Algorithm 2.7; and by
Tm the matrix obtained from T̄m by deleting its last row. Then the following relations
hold:

AVm = VmTm + wme
∗
m (2.57)

= Vm+1T̄m (2.58)

V ∗
mAVm = Tm (2.59)

Remark 2.41
In exact arithmetic the above algorithm guarantees the orthonormality of the Lanczos
vectors assembled in V and for computational purposes it would be sufficient to store
the two most recent vectors vj−1 and vj in order to compute vj+1. However, in practice,
due to inevitable rounding errors, the Lanczos vectors vj rather soon lose their global

34 Preliminaries

orthogonality. Consequently, one may be forced to take measures in order to recover the
orthogonality and for this purpose several strategies have been developped, e.g. partial
or selective reorthogonalization (for more details on this issue see [91]). 2

2.3.4. Singular Value Decomposition (SVD)

Singular value decompositions are a generalization of the concept of eigendecompositions
to rectangular matrices A ∈ Cn×p and will turn out useful later on as a device to solve
least squares problems (see Section 3.3.1.3). The following theorem gives a precise
definition and guarantees the existence of such decompositions:

Theorem 2.42 (Singular value decomposition (SVD))
Let A ∈ Cn×p, where n ≥ p. Then there exist orthonormal matrices

U = [u1, . . . , un] ∈ Cn×n and V = [v1, . . . , vp] ∈ Cp×p (2.60)

such that

U∗AV =

[
Σ
0

]
∈ Rn×p (2.61)

where
Σ = diag(σ1, . . . , σp) ∈ Rp×p (2.62)

and
σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0 (2.63)

i.e. the scalars σi (i = 1, . . . , p) are always non-negative real numbers.

Proof: see [49] 2

Definition 2.43
We call

• σi (i = 1, . . . , p) singular values of A

• ui (i = 1, . . . , n) left singular vectors of A

• vi (i = 1, . . . , p) right singular vectors of A

• σmin the smallest singular value of A and vmin the related singular vector

• σmax the largest singular value of A and vmax the related singular vector

Corollary 2.44
Under the preliminaries of Theorem 2.42 it holds

Avi = σiui

A∗ui = σivi

}
i = 1, . . . , p (2.64)

2.3 Technical Tools 35

Proof: straightforward verification 2

The following corollary highlights the relation between singular value decompositions
and eigendecompositions:

Corollary 2.45
Let A ∈ Cn×p, where n ≥ p and U∗AV =

[
Σ
0

]
be an SVD of A. Then

V ∗A∗AV = Σ2 = diag(σ2
1, . . . , σ

2
m) ∈ Rp×p (2.65)

This shows that the squares of the singular values of A are the eigenvalues of the cross-
product matrix A∗A. The right singular vectors of A are the eigenvectors of A∗A.

Proof: simple verification 2

Corollary 2.45 allows us to derive an analogon of the variational characterization of
eigenvalues stated in Proposition 2.15 for the case of singular values:

Corollary 2.46
Let A ∈ Cn×p, where n ≥ p and A = U∗AV its SVD according to Theorem 2.42. Then

min
y∈Cm

‖y‖2=1

‖Ay‖2 = σmin and ‖Avmin‖2 = σmin (2.66)

max
y∈Cm

‖y‖2=1

‖Ay‖2 = σmax and ‖Avmax‖2 = σmax (2.67)

Proof: Application of Proposition 2.15 to B = A∗A results in

σmin(A)2 = λmin(B) = min
y 6=0

y∗A∗Ay

y∗y
= min

‖y‖2=1
y∗A∗Ay = min

‖y‖2=1
‖Ay‖22 (2.68)

Furthermore, because of (2.64)

‖Avmin‖2 = ‖σminumin‖2 = σmin‖umin‖2 = σmin (2.69)

which proves the second part of (2.66). The assertion (2.67) follows analogously. 2

2.3.5. Kronecker Products

Kronecker products of will turn out useful later on as matrix representations of abstract
operator tensor products (see Sections 5.8 and 6.4.3). A theoretical introduction with
respect to the use of Kronecker products in multilinear algebra is given e.g. in [79].

36 Preliminaries

Definition 2.47 (Kronecker product)
If B ∈ Cn×m and C ∈ Cp×q, then their Kronecker product is given by

A = B ⊗ C =

b11C b12C . . . b1nC
b21C b22C . . . b2nC

...
...

. . .
...

bn1C bm2C . . . bnmC

 ∈ C(np)×(mq) (2.70)

Some useful properties of Kronecker products are summarized in the following lemma:

Lemma 2.48 (Kronecker product properties)
1. The Kronecker product is associative, i.e. it holds

(A⊗B)⊗ C = A⊗ (B ⊗ C) (2.71)

2. If Ir ∈ Cr×r denotes the identity matrix of order r, then

Ip ⊗ (Iq ⊗ A) = Ipq ⊗ A (2.72)

3. The Kronecker product is distributive, i.e. it holds

A⊗ (B + C) = A⊗B + A⊗ C (2.73)

(A+B)⊗ C = A⊗ C +B ⊗ C (2.74)

provided that the arising ordinary matrix multiplications are defined.

4. Notice, that the Kronecker product is in general not commutative.

5. If the ordinary matrix multiplications AC and BD are defined, then

(A⊗B)(C ⊗D) = (AC)⊗ (BD) (2.75)

This property is often referred to as mixed-product property of the Kronecker prod-
uct.

6. If A and B are nonsingular square matrices, then

(A⊗B)−1 = A−1 ⊗B−1 (2.76)

Proof: straightforward verification by application of Def. 2.47, see [49] and [126] 2

3. Methods for Computing Partial
Eigensystems of Hermitian Matrices

In this chapter we give a general survey of different classes of eigensolvers and formulate
abstract generic algorithms to outline the similarities of the algorithms within a class.
The Jacobi-Davidson method, which is in the center of our interest, will be treated in
detail in the following chapter taking advantage of the preliminary work on iterative
projection methods in this chapter. Since the dichotomy between direct and iterative
methods will be of importance later on, and since the state-of-the-art situation is not
well-reflected in the standard textbooks, we will also give brief descriptions of the most
important direct methods along with useful references.

3.1. Iterative Single Vector Methods

Iterative single vector methods are the simplest algorithms for eigenvalue computations.
They are easy to understand and straightforward to implement in a computer code, but
they are in general only capable of computing one approximate eigenpair. As they are
often related to more sophisticated methods to be discussed later on, they are notwith-
standing of general interest, and a brief discussion of these methods shall be given below.
There are also iterative multiple vector methods (for details see [49], [91] or [100]), which
are generalizations of iterative single vector methods designed for the computation of
several eigenpairs. Their convergence, however, is often rather slow, and for this reason
they are seldomly used. In practice, one prefers to use the more efficient and modern
iterative projection methods instead which will be discussed later on.

3.1.1. Power Method

Let us without loss of generality assume that the eigenvalues λi ∈ R of a Hermitian
matrix A ∈ Cn×n be ordered by ascending magnitude of their moduli

|λ1| ≤ |λ2| ≤ . . . < |λn|

i.e. λn is the dominant eigenvalue of A and qn the associated eigenvector. If one chooses
an appropriate starting vector z0 (i.e. z0 is not orthogonal to qn), then the sequence of
vectors

q(i) =
Aiz0

‖Aiz0‖2

37

38 Methods for Computing Partial Eigensystems of Hermitian Matrices

Algorithm 3.1: Power method for Hermitian matrices

function (λ, u)=power(A, z(0))1

k = 02

repeat3

q(k) = z(k)/‖z(k)‖24

z(k+1) = Aq(k)
5

λ(k+1) = [q(k)]∗z(k+1)
6

r = z(k+1) − λ(k+1)q(k)
7

k = k + 18

until (‖r‖2 ≤ εM |λ|)9

return (λk, qk)10

converges to the sought-after eigenvector qn, i.e. the vectors q(i) become increasingly
parallel to qn.

Essentially, the convergence of this power method is linear and depends on the ratio
|λn−1/λn|. We cite the following theorem from [49], which renders this more precise for
the Hermitian case:

Theorem 3.1 (Convergence of the power method for Hermitian matrices)
Suppose A ∈ Cn×n is Hermitian and that

Q∗AQ = diag(λ1, . . . , λn)

where Q = [q1, . . . , qn] is unitary and |λ1| ≤ |λ2| ≤ |λn−1| < |λn|. Let the vectors q(k) be
specified by Algorithm 3.1 and define the “error-angle” θk ∈ [0, π/2] by

cos(θk) = |q∗nq(k)|

If cos(θ0) 6= 0, then

| sin(θk)| ≤ tan(θ0)

∣∣∣∣λn−1

λn

∣∣∣∣k
|λ(k) − λn| ≤ |λ1 − λn| tan2(θ0)

∣∣∣∣λn−1

λn

∣∣∣∣2k

Proof: see [49] 2

The power method (Alg. 3.1) is slow to converge, especially if λn and λn−1 are not well-
separated from each other, and it is only appropriate for finding the dominant eigenpair
(λn, qn). Nonetheless, it is of theoretical interest, as it is related to other algorithms,
such as the inverse iteration (Alg. 3.2) to be discussed in the following, the QR method
(Alg. 3.7) or the Lanczos method (Alg. 3.15).

3.1 Iterative Single Vector Methods 39

3.1.2. Inverse iteration (INVIT)

The disadvantages of the power method can be eliminated by a simple, but fundamental
idea. If an approximation σ 6= λk to an eigenvalue λk of A is available, such that

|λk − σ| < |λi − σ| ∀i 6= k

then obviously (λk − σ)−1 becomes the single dominant eigenvalue of B := (A− σI)−1.
In order to obtain an approximation to A’s eigenvector qk, it is now straightforward
to apply the power method to B. The resulting algorithm is called inverse iteration
or inverse power method and, apart from a starting vector z(0) 6= 0, it requires an
approximation σ to the sought-after eigenvalue λk:

Algorithm 3.2: Inverse iteration for Hermitian matrices (INVIT)

function (λ, u)=invit(A, σ, z(0))1

k = 02

repeat3

xk = zk/‖zk‖24

solve (A− σI)z(k+1) = x(k) for z(k+1)
5

θ(k+1) = [x(k)]∗z(k+1)
6

r = z(k+1) − θ(k+1)x(k)
7

k = k + 18

until (‖r‖2 ≤ ε)9

return (σ + 1/θ(k), x(k))10

Remark 3.2
• The parameter σ is usually referred to as a shift, and the idea behind the inverse

iteration is therefore called shift-and-invert-approach. Note that this a general
strategy, which also extends to other methods, and which may be used whenever
the convergence of a method is slow and unsatisfactory.

• As indicated in Line 5 of Algorithm 3.2, one does not explicitly compute the inverse
of (A − σI), but solves the arising linear systems in each step of the iteration.
Hence, a suitable decomposition (e.g. LU factorization) of (A − σI) is required,
which may be a drawback when such a factorization is expensive, e.g. when A is
large and dense.

• Unlike the power method, the inverse iteration is of great use in practice. Applying
Theorem 3.1 to (A− σI)−1 shows that the convergence rate of inverse iteration is
determined by the factor

κ =

∣∣∣∣λk − σ
λj − σ

∣∣∣∣
where λj−σ is the second smallest eigenvalue of (A−σI) in modulus. Thus, if σ is
a very good approximation to an eigenvalue λk, rapid convergence to the eigenpair
(λk, qk) can be expected.

40 Methods for Computing Partial Eigensystems of Hermitian Matrices

• At first glance, it appears to be dangerous to choose the shift σ too close to an
eigenvalue λk, since then (A − σI) is nearly singular and solving the associated
ill-conditioned linear systems seems almost inevitably to lead to erroneous results.
However, Parlett ([91], Chapter 4.3, “Advantages of an Ill-Conditioned Sys-
tem”) exposes in a detailed analysis that these fears are unjustified, as only the
“direction” of an eigenvector is of interest, and as the error introduced by solving
the nearly singular systems is almost entirely in the direction of the sought-after
eigenvector qk.

• Careful implementations of inverse iteration are available, e.g. in LAPACK [2, 7],
in the form of the routines xSTEIN, and these are employed to obtain eigenvector
approximations of high quality if only eigenvalue approximations are available (e.g.
obtained by means of bisection, see Paragraph 3.2.2.2).

2

3.1.3. Rayleigh Quotient Iteration (RQI)

A natural extension of the inverse iteration is to replace the constant shift σ in Alg.
3.2 by the Rayleigh quotient related to the current iterate x(k), which is known to be an
optimal eigenvalue approximation (cf. Prop. 2.14). Consequently, the shift now varies in
each iteration step, and the resulting Rayleigh quotient iteration scheme reads as given
in Alg. 3.3:

Algorithm 3.3: Rayleigh quotient iteration for Hermitian matrices (RQI)

function (λ, u)=RQI(A, x0)1

k = 0, µ0 = x∗0Ax02

repeat3

solve (A− µkI)z
(k+1) = xk for z(k+1)

4

x(k+1) = z(k+1)/‖z(k+1)‖25

µ(k+1) = [x(k+1)]∗Ax(k+1)
6

r = Ax(k+1) − µ(k+1)x(k+1)
7

k = k + 18

until (‖r‖2 ≤ ε)9

return (µ(k), x(k))10

Remark 3.3
• The RQI converges cubically in most cases. We refer to the book by Parlett

[91] for a detailed convergence analysis and an in-depth discussion of the topic.

• Despite its rapid convergence the RQI is seldomly used in practice, as the shift
µ now varies, and thus, in every iteration step a new factorization of (A − µI) is
required, which is often too expensive, and which is almost never compensated for
by possible savings in the number of iteration steps.

3.2 Direct Methods 41

• Nevertheless, the RQI is of importance in the following, as it is closely related to
the Jacobi-Davidson method (Alg. 4.2) which is in the focus of our interest.

2

3.2. Direct Methods

The term direct method for an eigenproblem is common in the literature, but somewhat
misleading, as looking for eigenvalues λ of A ∈ Cn×n is equivalent to determining the
roots of its characteristic polynomial pA(µ) (Theorem 2.3). For n > 4 a well-known result
from Galois theory [72] states, that there is in general no explicit formula for the roots
of pA(µ), which implies that any numerical method for computing eigenvalues λ must
necessarily have an iterative component. A more suitable explanation for direct lies in
the fact that methods of this class explicitly access and manipulate the matrix coefficients
aij, and that they “immediately” yield the sought-after eigensystems (at least for small
and medium-sized problems, say n < 2000). Most often, these methods rely on the fact
that the application of similarity transformations on A does not affect its eigenvalues
(Proposition 2.5), and thus, they attempt to obtain a matrix of simpler structure whose
eigenvalues are cheaper to compute. For this reason, one often also encounters the terms
transformation method or direct transformation method. If one is not only interested in
the eigenvalues of A alone, but also in all or some of their corresponding eigenvectors,
it is necessary to store the transformation matrix U in order to recover the eigenvectors
of A. To avoid computational overhead, it has proven advantageous to transform the
Hermitian matrix A ∈ Cn×n to tridiagonal form

T = U∗
ATAUAT =

d1 e1
e1 d2 e2

e2 d3 e3
.

en−2 dn−1 en−1

en−1 dn

∈ Rn×n (3.1)

by means of a suitable unitary UAT before carrying out the actual eigenvalue computa-
tion on T . It is important to note that the coefficients of T can always be achieved to
real, even if A is complex-Hermitian, which is analogous to the situation of the Lanczos
procedure (Alg. 2.7) which generates tridiagonal matrices Tm that are guaranteed to be
real-symmetric. This approach is formalized in the generic three-step algorithm, Alg.
3.4, when one is interested in the (partial) eigensystem of A with the index set for k ≤ n
eigenvectors of A given by I = {i1, . . . , ik}:

42 Methods for Computing Partial Eigensystems of Hermitian Matrices

Algorithm 3.4: Generic direct algorithm for dense Hermitian matrices

function [Λ, Q̂] = eigsys(A, I)
reduce A to tridiagonal form T by means of a suitable unitary transformation UAT :1

T = U∗
AT · A · UAT

compute eigendecomposition of T by an algorithm of choice:2

Λ = U∗
T · T · UT

Λ = diag(λ1, . . . , λn)

form ÛT = UT [[i1 : ik] , :] and back-transform ÛT to obtain the eigenvectors of A:3

Q̂ = UAT · ÛT

Algorithm 3.4 provides the framework for the LAPACK [2] driver routines for symmetric
and Hermitian eigenproblems (xSYEV, xSYEVX, xSYEVR and xSYEVD, cf. [7]).

The steps of of Algorithm 3.4 involve the following costs:

1. Tridiagonalization: O(4
3
n3) flops

2. Computation of the desired eigenpairs of T : O(n2) / O(k · n) flops
(depending on the choice of algorithm, see below)

3. Back-transformation: O(2kn2) flops

In what follows, we can only give a brief state-of-the-art survey and a rather rough outline
of how reduction of a general symmetric matrix to tridiagonal form and the solution of
the resulting eigenproblem can be accomplished. For a thorough and comprehensive
exposition of the matter we refer to [49], [91], [122] and the references in the following
paragraphs.

3.2.1. Reduction to Tridiagonal Form

As can be seen from the introductory part, the costs for the tridiagonalization of A
become dominant for k � n. Since this situation is typical of the eigenproblems we
are dealing with in this thesis, it is rewarding to have a closer look at the technical

3.2 Direct Methods 43

details. In the following, we will restrict ourselves to the case that the matrix to be
tridiagonalized is real-symmetric. However, paying attention to Remark 2.32 there is no
major difficulty in devising analogous algorithms for complex-Hermitian input matrices,
implementations of which are to be found e.g. in the form of the LAPACK [2] routines
xCHTRD (see [7]).

3.2.1.1. Standard Approach

The common approach to obtain (3.1) is to successively apply n− 2 Householder trans-
formations Hk on A. To see how a transformation Hk is computed, let us suppose
that we have already determined k − 1 Householder matrices H1, . . . , Hk−1 such that
Ak−1 = (H1 · · ·Hk−1)

∗A(H1 · · ·Hk−1) and

Ak−1 =

 Tk−1 a 0
a∗ δ b∗

0 b Rn−k

where the leading principal submatrix Tk−1 ∈ R(k−1)×(k−1) is tridiagonal, a ∈ Rk−1,
b ∈ Rn−k, δ ∈ R a scalar and Rn−k ∈ R(n−k)×(n−k) the remainder matrix. Let now
Pk ∈ R(n−k)×(n−k) be the Householder matrix, such that b̃ = Pk · b = ‖b‖2 · e1 ∈ Rn−k,
then the sought-after transformation Hk is made up by

Hk =

[
In−k 0

0 Pk

]
and one obtains

Ak = HkAk−1Hk =

 Tk−1 a 0

a∗ δ b̃∗

0 b̃ R̃n−k

Ak has the desired property, i.e. the leading k×k principal submatrix is now tridiagonal.
Clearly, if UAT = H1 · · ·Hn−2, then T = U∗

ATAUAT is tridiagonal. This is formalized in
the following algorithm which makes use of Alg. 2.1 to determine y and τ :

Algorithm 3.5: Householder tridiagonalization

for k = 1, . . . , n− 2 do1

[y, τ] = house(A(k + 1 : n, k))2

z = τA(k + 1 : n, k + 1 : n)y3

v = z − (τz∗y/2)y4

A(k + 1, k) = ‖A(k + 1 : n, k)‖2, A(k, k + 1) = A(k + 1, k)5

A(k + 1 : n, k + 1 : n) = A(k + 1 : n, k + 1 : n)− yv∗ − vy∗6

end for7

However, for an implementation in a computer code it is desirable to have a high fraction
of matrix-matrix operations (level 3 BLAS [1]), because the available computer archi-
tecture and memory hierarchy can efficiently be exploited, unecessary memory traffic is

44 Methods for Computing Partial Eigensystems of Hermitian Matrices

avoided and considerable gain in performance can be achieved. To this end, a blocked
version of Algorithm 3.5 has been proposed in [35], the main idea being to aggregate
p Householder transforms and to perform the matrix updates block-wise in (n − 2)/p
steps:

Algorithm 3.6: Blocked Householder tridiagonalization

N = (n− 2)/p1

Y = [], V = []2

for k = 1, N do3

s = (k − 1)p+ 14

for j = s, s+ p− 1 do5

aj = aj − Y V (j, :)∗ − V Y (j, :)∗ ; /* update column j of A */6

[yj+1, τj+1]=house(A(j + 1 : n, j))7

z = τjAyj − τjY (V ∗yj)− τjV (Y ∗yj)8

vj = z − (
τj

2
z∗yj)yj9

Y = [Y, yj], V = [V, vj]10

end for11

A = A− Y · V ∗ − V · Y ∗
12

end for13

This is essentially the algorithm used in the LAPACK [2] routine xSYTRD to reduce
an arbitrary real symmetric matrix to tridiagonal form. However, about 50% of the
operations are still matrix-vector operations, such that the advantage of Algorithm 3.6
over 3.5 may not be that great.

3.2.1.2. Two-stage Approach

Bischof, Lang and Sun [12, 13] have proposed a strategy which is more appropriate
for our situation, where the number of sought-after eigenpairs k is small as compared to
the problem size n. They suggest to do the tridiagonalization in two steps:

1. Reduce the full symmetric matrix A to a banded matrix B with semi-bandwith
b > 0 by means of a suitable unitary transformation UAB:

B = U∗
ABAUAB (3.2)

2. Tridiagonalize B by means of a unitary transformation UBT

T = U∗
BTBUBT (3.3)

The costs for the intermediate bandwidth reduction are almost as high as the costs
for the complete tridiagonalization in Algorithms 3.5 and 3.6. However, almost all

3.2 Direct Methods 45

of the involved operations now can be realized using matrix-matrix operations (level 3
BLAS [1]). The subsequent tridiagonalization of the banded matrix only takes additional
O(6bn) flops, but none of these can be done by means of level 3 BLAS [1] operations.
Although slightly more expensive in terms of flops, this two-step approach can lead
to a significant speedup, provided that the machine in use has fast processors and a
comparatively slow memory. It is important to note, however, that this advantage
only exists if one is interested in the tridiagonalization of A alone. If one also opts for
eigenvectors (after computing m relevant eigenpairs of the tridiagonal T), one has to
take into account the back-transformation, which now consists of 2 steps, each of them
involving O(2mn2) flops. Clearly, this is twice as expensive as the corresponding back-
transformation in the standard approach, and consequently, the two-stage approach can
only be competitive if the number of sought-after eigenpairs m is a small fraction of n.
Luckily, this meets our situation, as we are typically only interested in about 10% of the
lowest eigenvalues. Numerical experiments in [12] and especially in [87] demonstrate that
two-step reduction in combination with an efficient tridiagonal eigensolver (RRR method,
see below) applied to eigenproblems that are also examined in this thesis, is superior to
the corresponding combination of standard tridiagonalization and tridiagonal solver.

3.2.2. Methods for the Symmetric Tridiagonal Eigenproblem

We have already seen that it is sufficient to consider algorithms for computing eigensys-
tems of real-symmetric tridiagonal matrices T , as complex entries in T can be avoided
by an appropriate choice of the transformation matrix. There exists a number of well-
established methods for computing eigensystems of tridiagonals, most notably the QR
method, which was introduced in the beginning of the 60s of the last century, and for
which efficient and reliable software is available. In the meantime, a lot of progress has
been made in the theoretical understanding of symmetric tridiagonal eigenproblems, and
this has consequently lead to methods with even superior properties, e.g. the recent RRR
method. However, rather surprisingly, about ten years after its introduction, it is still
hard to find textbooks on numerical linear algebra that provide a comprehensive survey
of methods for the symmetric tridiagonal eigenproblem and almost always the RRR al-
gorithm is not even mentioned, although it is going to be the standard method in the
forthcoming LAPACK [2] release. Thus, for non-experts the state-of-the-art situation is
somewhat obscure, and for this reason, it is appropriate to give a brief survey of existing
methods, their software availability and their pros and cons.

3.2.2.1. QR Algorithm

For a long time, the QR method which is due to Francis [38, 39] and Kublanovskaâ1

[69] has been the standard approach for computing eigenpairs of small and medium-sized
matrices. Basically, it relies on the following simple iteration scheme:

1see also remarks on transliteration of Russian names in Appendix A.2

46 Methods for Computing Partial Eigensystems of Hermitian Matrices

Algorithm 3.7: QR iteration (explicitly shifted)

for k = 0, 1 . . . do1

choose a suitable shift σk ∈ R2

Tk − σkI = QkRk (QR decomposition)3

Tk+1 = RkQk + σkI4

end for5

Obviously, Algorithm 3.7 generates a sequence of unitarily similar matrices

Tk+1 = Q∗
kTkQ

k = (Q0 ·Q1 · · ·Qk)
∗T0(Q0 ·Q1 · · ·Qk) (3.4)

It is easy to see that all Tk are tridiagonal. More importantly, it can be shown (cf.
[49], [91] for details of the related proof and for a mathematically precise notion of
convergence in this context) that the matrices Tk generated by Algorithm 3.7 converge
to an eigendecomposition Λ = Q∗TQ, symbolically

Tk → Λ = diag(λ1, . . . , λn),
k∏

i=0

Qi → Q (k = 0, 1, . . .) (3.5)

We conclude with some remarks:

Remark 3.4
• The QR decomposition in Line 3 of Alg. 3.7 can be computed by applying a

sequence of n− 1 Givens rotations (cf. Section 2.3.1.2).

• The QR algorithm is closely related to the inverse iteration (Alg. 3.2), to the power
method (Alg. 3.1) and to the Rayleigh quotient iteration (Alg. 3.3). For a detailed
discussion of this matter we refer to [49],[91] and [122].

• In practical implementations one uses an implicitly shifted version of Algorithm
3.7, in which the matrix Tk−σkI is not explicitly formed. It can be shown that this
essentially leads to the same sequence of matrices Qk, and thus, does not affect the
convergence behavior. For full technical details on implicitly shifted QR iterations
and the resulting bulge chase mechanism see [49], [91] and [122]

• A popular choice for the shift σk in Line 2 of Alg. 3.7 is the so-called Wilkinson
shift, which is the eigenvalue of

Tk(n− 1 : n, n− 1 : n) =

[
dn−1 en−1

en−1 dn

]
(3.6)

closer to dn and given by

σk = dn + t− sign(t)
√
t2 − e2n−1, t =

dn−1 − dn

2
(3.7)

3.2 Direct Methods 47

• To obtain eigenvectors of T , it is necessary to accumulate the Qk in Alg. 3.7.

• The implicitly shifted QR method is part of the LAPACK [2] software in the form
of the routine xSTEQR, and it is used by the standard driver DSYEV for computing
eigensystems of arbitrary symmetric matrices. However, for future releases it is
expected that the QR algorithm will be superseded by the RRR method (which is
in general faster and requires less work space) as algorithm for the standard driver.

2

3.2.2.2. Bisection Method and Inverse Iteration

In practice, one is often interested in eigenpairs that lie in an interval [α, β] or in specific
subsets, say eigenpairs related to the range from the i-th to the j-th eigenvalue. In
these cases, bisection combined with subsequent inverse iteration may be an interesting
choice. The idea behind bisection methods for finding eigenvalues of a tridiagonal matrix
T is based on two observations:

1. The characteristic polynomial of a tridiagonal matrix T (3.1) may be expressed
recursively using the following relation

pr(x) = (dr − x)pr−1(x)− e2r−1pr−2(x), p0(x) = 1, p1(x) = d1 − x (3.8)

where pr(x) = det(Tr−xI) is the characteristic polynomial of T ’s leading principal
(r × r)-submatrix Tr (verification by induction).

2. The number N(µ) of T ’s eigenvalues being less than µ is characterized by the
following theorem:

Theorem 3.5 (Sturm sequence property)
If the tridiagonal matrix T in (3.1) has no zero subdiagonal entries, then the eigenvalues
of Tr−1 strictly separate the eigenvalues of Tr:

λ1(Tr) < λ1(Tr−1) < λ2(Tr) < λ2(Tr−1) < . . . < λr−1(Tr) < λr−1(Tr−1) < λr(Tr) (3.9)

Furthermore, the number N(µ) of T ’s eigenvalues that are less than µ is given by the
number of sign changes in the sequence

{p0(µ), p1(µ), . . . , pn(µ)} (3.10)

where pr are the polynomials defined by (3.8). If pr(µ) happens to be zero, then this is
counted as a sign change.

Proof: The fact that the eigenvalues of Tr−1 weakly separate those of Tr follows im-
mediately by applying the inclusion principle (Lemma 2.18). To see that the separation

48 Methods for Computing Partial Eigensystems of Hermitian Matrices

is also strict, suppose that pr(µ) = pr−1(µ) for some r and µ. As T is unreduced, it
follows from (3.8) that p0(µ) = p1(µ) = . . . = pr(µ), which is clearly a contradiction. A
proof for the assertion on N(µ) may be found in [132] 2

By Geršgorin’s disc theorem, Theorem 2.8, we know that all eigenvalues λk(T) are
guaranteed to lie in the interval [y, z] where

y = min
i=1,...,n

di − |ei| − |ei−1| z = max
i=1,...,n

di + |bi|+ |bi−1| (3.11)

This directly gives rise to the following surprisingly simple bisection procedure for de-
termining an eigenvalue λk (k ∈ {1, . . . , n}) of T :

Algorithm 3.8: Bisection for λk

function µ = bisec(T, k, ε)1

while |z − y| ≥ ε do2

µ = (y + 2)/23

if N(µ) < k then4

z = µ5

else6

y = µ7

end if8

end while9

return µ10

However, Algorithm 3.8 as presented above is prone to underflow. Careful implementa-
tions, e.g. the LAPACK [2] routines xSTEBZ (cf. [7]) use recurrences different from (3.8)
to avoid possible instabilities. The so-called LAPACK [2] expert driver xSYEVX, which
allows for the computation of selected eigenpairs, uses the bisection routine xSTEBZ to
determine the sought-after eigenvalues, and it subsequently calls xSTEIN to compute the
associated eigenvectors. A feature which makes bisection attractive for the computation
of partial eigensystems is the fact that only O(nk) flops are needed for the computation
of k eigenvalues. In case that the eigenvalues are well separated, the application of in-
verse iteration will also cost O(nk̇) flops, which is the best case. However, when dealing
with clustered eigenvalues, additional work in the form of explicit Gram-Schmidt orthog-
onalization has to be invested in order to make sure not to repeatedly obtain the same
eigenvectors. This involves additional O(nk2) flops and is the worst case. In the forth-
coming release of LAPACK [2] the expert driver will make use of the routine xSTEGR (an
implementation of the RRR method discussed below) instead of inverse iteration, which
will lead to a gain in performance as the RRR algorithm (see below) uses a strategy to
avoid explicit orthogonalization of eigenvectors.

3.2 Direct Methods 49

3.2.2.3. Divide-and-conquer Method

The Divide-and-conquer method for computing eigensystems of a tridiagonal matrix T
was proposed by Cuppen [28] in 1981. The basic idea can be described as follows:

1. Divide:
“Tear” T ∈ Rn×n in two halves T1 ∈ Rn1×n1 , T2 ∈ Rn2×n2 (n = n1 + n2) and
compute the corresponding eigensystems D1 = Q∗

1T1Q1 and D2 = Q∗
2T2Q2

2. Conquer :
“Glue” together the results for the smaller matrices T1 and T2 computed in the
divide step to obtain the eigensystem of the original matrix T .

Using the notation of (3.1) we first motivate how the divide step is accomplished. Define

v (where m = n1, e
(n1)
m denotes the mth unit vector of Rn1 and e

(n2)
1 the first unit vector

of Rn2) as follows

v =

[
e

(n1)
m

θe
(n2)
1

]
(3.12)

and observe that T̃ = T − ρvv∗ is identical to T , except for the 4 entries given by the
submatrix

T̃ (m : m+ 1,m : m+ 1) =

[
dm − ρ em − ρθ
em − ρθ dm+1 − ρθ2

]
(3.13)

Setting ρθ = em we obtain

T =

[
T1 0
0 T2

]
+ ρvv∗ (3.14)

Notice, that T1 and T2 are almost, but not quite submatrices of T , as T1(m,m) = d̃m =
dm − ρ and T2(1, 1) = d̃m+1 = dm+1 − ρθ2. Now we are in the desired situation that
eigendecompositions Q∗

1T1Q1 = D1 and Q∗
2T2Q2 = D2 can be computed independently

where Qi (i = 1, 2) are orthogonal and Di (i = 1, 2) are diagonal matrices. If we now
set U = diag(Q1, Q2) and denote D = diag(D1, D2) = diag(d1, d2, . . . , dn), we obtain

U∗TU = U∗
([

T1 0
0 T2

]
+ ρvv∗

)
U = D + ρzz∗ (3.15)

where

z = U∗v =

[
Q∗

1e
(n1)
m

θQ∗
2e

(n2)
1

]
(3.16)

50 Methods for Computing Partial Eigensystems of Hermitian Matrices

Unfortunately, this is still not what we are looking for.
To conquer the desired eigendecomposition of T from (3.15), we need to construct an
orthogonal matrix V such that

V ∗(D + ρzz∗)V = Λ = diag(λ1, . . . , λn) (3.17)

The following theorem tells us how to proceed:

Theorem 3.6 (Eigensystems of rank-1-modified diagonal matrices)
If d1 < d2 · · · < dn and the components of z are nonzero, then the eigenvalues λi of
D + ρzz∗ satisfy the secular equation

f(λ) = 1− ρ
n∑

i=1

z2
i

λ− di

= 0 (3.18)

The eigenvector associated with λi lies along the direction of (λiI − D)−1z, such that
the normalized eigenvector is given by

vi =
(λiI −D)−1z

‖(λiI −D)−1z‖2
(3.19)

Proof: see [49] or [122] 2

Hence, starting from (3.15) the conquer part of the algorithm comprises the following
three steps:

1. Solve the secular equation (3.18) to compute eigevalues λi

2. Compute eigenvectors vi according to (3.19) (rescale the components zi of z)

3. Compute Q = U · V to recover the eigenvectors of the original eigenproblem

Remark 3.7
• The secular equation (3.18) can be solved efficiently, e.g. by means of a Newton-like

method.

• The hypotheses in Theorem 3.6 seem rather restrictive. However, it can be shown
that the suggested principle also works if there are repeated di and/or zero zi (cf.
[49]).

• The implementation in a computer code is quite subtle and technical, as several as-
pects like accuracy, deflation, just to mention a few, have to be taken into account.
See [122] for more details.

3.2 Direct Methods 51

• The divide-and-conquer method (DAC) is attractive for problem sizes larger than
a certain point of break even mindac. For smaller problems, the QR method is in
general superior. Hence, DAC it is applied recursively, as long as the size of the
matrices T

(k)
i is greater than mindac. If it falls below this size, the eigensystem is

solved by means of an alternative eigensolver (e.g. the QR algorithm).

• The conquer part involves a memory overhead in Step 3 of the conquer part, as
additional O(n2) workspace is needed to store the matrix V .

• A state-of-the-art implementation of the Divide-and-Conquer method is available
in LAPACK [2, 7] in the form of the routine xSTEDC and the corresponding driver
routine xSYEVD.

2

3.2.2.4. RRR Algorithm

The RRR method (Relatively Robust Representation) was introduced by Dhillon in
his PhD thesis [32] in 1997 and has since then become the champion method in many
cases, as it is almost always faster than the other methods, and as it requires the least
workspace. A detailed explanation of the ideas is far beyond the scope of this thesis,
we can only give a very rough sketch. Essentially, the RRR algorithm can be regarded
as an improvement over inverse iteration. In a first step of the algorithm the spectrum
of T is analyzed, and existing clusters of eigenvalues are identified. Then the algorithm
uses an LDL∗ factorization (called representation) for a number of translates T − σI of
T , where σ is a shift near each cluster of eigenvalues. This procedure may be applied
recursively to each cluster, which leads to a representation tree. The decisive advantage
over inverse iteration is now that the RRR algorithm is guaranteed to consume only
O(kn) for determining k eigenvectors, as the outlined approach avoids Gram-Schmidt
orthogonalization when computing eigenvectors related to clustered eigenvalues.
The algorithm is implemented in the LAPACK [2, 7] routine xSTEGR and the corre-
sponding driver routine xSYEVR. For future LAPACK [2] releases it is expected that the
RRR method will replace the QR algorithm as eigensolver for the tridiagonal problem
in the standard driver DSYEV. Although particularly well suited for the computation of
partial eigensystems, LAPACK’s [2] current implementation of xSYEVR only uses xSTEGR
for complete eigensystems and switches to the combination of bisection (xSTEBZ) and
inverse iteration (xSTEIN) when partial eigensytems are desired by the user. This weak-
ness will be fixed in the release to come such that the expert driver is also expected to
make use of the RRR method. For a thorough description and the theory behind the
RRR algorithm we refer to Dhillon’s PhD-thesis [32] and the related survey papers
[33, 34].

52 Methods for Computing Partial Eigensystems of Hermitian Matrices

3.2.3. Jacobi’s Method

Jacobi’s method belongs to the oldest algorithms for symmetric eigenvalue problems and
is named after its inventor who proposed the algorithm in his famous article from 1846
[58]. As opposed to the previously presented methods, one typically does not transform
the matrix A into tridiagonal form in a preprocessing step, but directly applies the
algorithm to the unreduced matrix. The basic strategy of the algorithm is to construct
a sequence of similarity transformations which successively reduces the ”norm” of the
off-diagonal elements represented by

off(A) =

√√√√√ n∑
i=1

∑
j=1
j 6=i

a2
ij (3.20)

The smaller this quantity becomes, the better the eigenvalue approximations represented
by the diagonal entries of A will be, which is an obvious consequence from Geršgorin’s
disc theorem (Theorem 2.8). Jacobi’s basic idea was to construct a similarity transfor-
mation that annihilates the matrix entries apq and aqp associated with a given index pair
(p, q). The tools for this purpose are the rotation matrices which have already been in-
troduced in Section 2.3.1.2 and which are called Jacobi rotations in our context (see also
Remark 2.34). The essential element in a Jacobi eigenvalue procedure thus comprises
the following steps:

• choose an index pair (p, q), 1 ≤ p < q ≤ n

• compute a cosine-sine pair (c, s) such that[
bpp bpq

bqp bqq

]
=

[
c s
−s c

]T [
app apq

aqp aqq

] [
c s
−s c

]
(3.21)

is diagonal, i.e. bpq = bqp = 0

• overwrite A with B = JTAJ , where J = J(p, q, θ) is the Jacobi rotation related to
the cosine-sine pair (c, s)

B agrees with A, except in rows and columns p and q, and since the Frobenius norm is
left invariant under orthogonal similarity transformations, we have

a2
pp + a2

qq + 2a2
pq = b2pp + b2qq (3.22)

and, hence,

off(B)2 = ‖B‖F −
n∑

i=1

b2ii

= ‖A‖F −
n∑

i=1

a2
ii + (a2

pp + a2
qq − b2pp − b2qq)

= off(A)2 − 2a2
pq (3.23)

3.2 Direct Methods 53

Let us now turn to the computation of the rotational parameter pair (c, s): For B in
(3.21) to be diagonal we obviously require

0 = bpq = apq(c
2 − s2) + (app − aqq)cs (3.24)

If apq = 0, then we simply set (c, s) = (1, 0). Otherwise define

τ =
aqq − app

2apq

and t = s/c (3.25)

Some straightforward algebra turns (3.24) into the quadratic equation

t2 − 2τt− 1 = 0 (3.26)

It is advatageous to select the smaller of the two roots (see [49]). We now obtain (c, s)
using the well-known formulae

c = 1/
√

1 + t2 and s = tc (3.27)

The computational steps in order to determine the parameters for a Jacobi rotation are
summarized in Algorithm 3.9.

Algorithm 3.9: Generation of a Jacobi rotation

function [c, s] = jacobi(A, p, q)1

if apq 6= 0 then2

τ = (aqq − app)/(2apq)3

if τ ≥ 0 then4

t = 1/(τ +
√

1 + τ 2)5

else6

t = −1/(−τ +
√

1 + τ 2)7

end if8

c = 1/
√

1 + t29

s = tc10

else11

c = 1, s = 012

end if13

return [c, s]14

We finally have to specify how to actually choose the indices p and q of the matrix
element to be zeroed. Equation (3.23) motivates to choose the off-diagonal element with
the largest modulus |apq| because then the reduction of the quantity off(A) is maximal.

54 Methods for Computing Partial Eigensystems of Hermitian Matrices

This directly leads to the classical Jacobi algorithm:

Algorithm 3.10: Classical Jacobi

V = In; eps = tol‖A‖F1

while off(A) > eps do2

Choose (p, q) such that |apq| = max
i6=j
|aij|

3

(c,s)=jacobi(A,p,q)4

A = J(p, q, θ)TAJ(p, q, θ)5

V = V J(p, q, θ)6

end while7

Remark 3.8
• Matrix elements that have been annihilated once may re-obtain non-zero values

in later cycles of the while-loop. However, this does not affect the convergence
because the quantity off(A) is reduced in every cycle.

• Alg. 3.10 accumulates the transformations carried out in the matrix V , and thus,
also yields eigenvector approximations when the desired accuracy has been reached.

• With N = n(n− 1)/2 it easily follows by induction that

off(A(k))2 ≤
(

1− 1

N

)k

off(A(0))2 (3.28)

which implies that the classical Jacobi procedure converges linearly. However, it
can be shown that the asymptotic convergence rate is even quadratic. See [49] and
the references therein for more details.

• Searching for the largest off-diagonal element in modulus (Line 3 of Alg. 3.10)
is time-consuming (costs O(n2)), especially if n is large. A cheaper alternative,
which also leads to quadratic convergence, is to annihilate the matrix elements in
a row-by-row fashion instead. This referred to as a cyclic Jacobi procedure (see
[49] for further details).

• In general, Jacobi’s method is not competitive with the previously discussed al-
gorithms in terms of floating point operations. Jacobi needs 2sn3 multiplications
for s sweeps (N Jacobi updateds are customarily referred to as a sweep and s is
usually a number between 3 and ten), and this is clearly more than the 4/3n3 flops
required for tridiagonal reduction. Nonetheless, in the recent time the interest in
the method has re-aroused because it can deliver eigenvalue approximations with
a small error in the relative sense. This is an advantage over the methods based
on tridiagonalization, which only guarantee that the error is bounded relative to
the norm of the matrix (see [31]). Another interesting feature is the inherent
parallelism of the method which may be exploited in the implementation.

2

3.2 Direct Methods 55

3.2.4. Assessment and Summary

Let us now briefly summarize the pros and cons of the reviewed methods for the sym-
metric tridiagonal eigenproblems and the tridiagonalization approaches:

3.2.4.1. Tridiagonalization Approaches

Notice, that the discussion on the pros and cons comprises also the back-transformation
of (partial) eigensystems of tridiagonals:

1. standard approach (LAPACK [2, 7], name of the routine: xSYTRD)

Pros: – in general superior, if more than one third of the eigenpairs is requested

Cons: – in spite of blocking techniques about one half of the operations are still
matrix-vector multiplications, relatively small level 3 fraction

– exploitation of memory hierarchies not satisfactory

– inferior to SBR, if a small fraction of selected eigenpairs is sought after

2. two-stage approach (SBR Toolbox [13], name of the routine: xSYBTRD)

Pros: – often leads to a considerable gain in performance for small partial eigen-
systems

– takes advantage of memory hierarchy and performs well, especially on
computers with fast processors and relatively slow memory

Cons: – back-transformation twice as expensive as for the standard approach

– not competitive for the computation of a medium or large fraction (more
than one third) of eigenpairs

3.2.4.2. Tridiagonal Eigensolvers

1. QR method

Pros: – well-tried and reliable

Cons: – in general slower than RRR and DAC

2. Divide-and-conquer method (DAC)

Pros: – faster than QR for larger problems (problem size greater than certain
point of break even)

– inherent parallel structure

Cons: memory overhead

3. Bisection / inverse iteration (BISECT / INVIT)

56 Methods for Computing Partial Eigensystems of Hermitian Matrices

Pros: – designed for computation of partial eigensystems

– best case time complexity O(nk) for computation of k selected eigenpairs

Cons: – problems with clustered eigenvalues: requires explicit Gram-Schmidt or-
thogonalization

– may lead to worst case time complexity O(nk2)

4. RRR method

Pros: – in general superior to all other methods (it is faster and requires the least
workspace)

– particularly well-suited for the computation of partial eigensystems

– improvement over INVIT, because time-complexity of O(nk) guaranteed
even for clustered eigenvalues

Cons: – in some situations other methods (especially Jacobi’s method, cf. [31])
may deliver results with a higher relative accuracy

Table 3.1.: Direct methods for the symmetric tridiagonal eigenproblem

Costs LAPACK [2]
Method

Performance Storage
Part. eigsys

Routine Driver

QR + + No xSTEQR xSYEV

DAC ++ – No xSTDEC xSYEVD

BISECT / INVIT + Yes xSTEBZ / xSTEIN xSYEVX

RRR +++ ++ Yes xSTEGR xSYEVR

3.2.4.3. Summary

There is available a couple of methods for both, the solution of the tridiagonal eigenprob-
lem and the tridiagonalization of symmetric matrices. We are primarily interested in
computing partial eigensystems with a rather small fraction of eigenpairs (typically about
7-10 percent of all eigenpairs are sought-after). Thus, for our purposes the two-stage
approach (SBR Toolbox [13]) as a tridiagonalization method and the RRR Algorithm
[32],[7] as a tridiagonal eigensolver turns out to be the most favorable combination in
the generic eigensolver (Alg. 3.4). This is confirmed by the numerical results in [87],
where the eigensolver is applied to Hamiltonian matrices arising in the computation of
rovibronic energy levels for triatomic molecules which exhibit the Double Renner effect.

3.3 Iterative Projection Methods 57

3.3. Iterative Projection Methods

Direct methods are black-box methods, as one is neither required to possess any addi-
tional knowledge about the properties of the matrix (apart from its dimension n and
the fact that it is Hermitian), nor does one need theoretical knowledge on how the cho-
sen method works. The only thing the non-expert user has to care about is to provide
enough work space for the storage of A and to call the routine properly in a computer
code (choice of parameters etc.). Hence, for small and medium-sized problems direct
algorithms are the methods of choice, as they are available in technically mature soft-
ware libraries (most notably in LAPACK [2, 7]), work reliably and have a predictable
convergence behavior. However, for larger problem sizes n (say n > 10000) the time
complexity O(n3) increasingly becomes perceivable and as the workspace of a computer
is limited, one inevitably reaches the point, where eigenvalue computations are no more
feasible by means of direct methods. For this reason, iterative projection methods come
into play and may be a viable alternative. The fundamental difference with the direct
methods lies in the fact that iterative projection methods only implictly access informa-
tion of a given matrix A by matrix-vector multiplications Av. This feature very often –
especially for large-scaled problems – turns out to be a key advantage over direct meth-
ods, as explicit storage of all matrix entries in an (n× n) array is not necessary, and as
the sparsity and structure of A can be exploited in efficient matrix-vector multiplication
subroutines. As a consequence – and this is what one hopes for in practice – iterative
projection methods may scale much more favorably, i.e. like O(n) or O(n2), at least for
the computation of a few eigenpairs. The following example, which we will discuss in
detail later on, impressively illustrates the advantages of exploiting sparsity:

Example 3.9 (see also Fig. 6.4 and the exposition in Section 6.4)
For the rotational quantum number J = 13/2 and a ”big basis” (see Table 6.5) the
variational computation of rovibronic energy levels for the MgNC-molecule leads to a
symmetric matrix of the size n = 83328, which implies that (storage requirement for a
double variable in the C programming language is 8 bytes) (83328×83328×8)/10243 =
51.73 GB workspace is needed to store the complete matrix in memory. This is clearly
beyond the amount of 32 GB available to us on a SUN

TM
Fire machine. If, by contrast,

we exploit sparsity and only store the non-zero entries, we require 3.78 GB workspace.

The single vector iterations presented in Section 3.1 try to generate a sequence of iterates
q(i) ∈ Rn, q(i) → q (q is an eigenvector of A) and an iterate q(k) is computed from its
predecessor q(k−1), whereas the basic idea behind iterative projection methods is to take
into account all iterates generated so far and to look for an eigenvector approximation
u in the subspace

K = span{q(0), q(1), . . . , q(k−1)} ⊂ Rn, dim(K) = k < n (3.29)

This idea is also referred to as subspace acceleration in the literature, since it often
leads to faster convergence as compared to the corresponding single vector iterations.
Typically, after computing the residual r = Au− θu a new search direction q(k) = f(r)

58 Methods for Computing Partial Eigensystems of Hermitian Matrices

is derived from r and the subspace is expanded from K to K+span{q(k)}. One hopes to
obtain increasingly better approximations to the sought-after eigenvector q by iterating
this procedure. Hence, any successful iterative projection method will rely on the efficient
interplay of the two algorithmic components

1. information extraction

2. subspace expansion

These basic ideas are formalized in the following generic algorithmic template, where
the basis V of K is chosen to be orthogonal:

Algorithm 3.11: Generic iterative projection method for Hermitian matrices

function (λ, q)=eigpair(A, v0)1

V = [], choose starting vector t = v02

for m = 1, 2, . . . , ν do3

t = orth(V, t) ; /* orthonormalization by means of Alg. 2.5 */4

V = [V, t]5

compute approximate eigenvector6

u ∈ span{V }, ‖u‖2 = 1 (Information Extraction)
compute approximate eigenvalue7

via Rayleigh quotient θ = u∗Au
compute residual r = Au− θu8

if ‖r‖2 ≤ ε then9

(θ, u)10

end if11

compute update t = f(r) (Subspace Expansion)12

end for13

Essentially, any simple iterative projection method is based on this scheme, and so are
the basic instances of the algorithms discussed in this thesis. The more sophisticated
variants (see the related discussion in Sections 3.3.2.2 and 4.3) deviate in that they make
use of restart and deflation techniques in order to compute more than one approximate
eigenpair, and they keep the size of the search space K bounded. In fact, it will turn
out that the success of such restarted schemes depends to a great deal upon how well
information of interest can be “compressed” into a subspace K whose dimension m is
considerably smaller than n. In the following, we will explain in more detail how the
extraction of approximate eigenvectors from a subspace K in Line 6 and the construction
of suitable subspace expansions f(r) in Line 12 of the above template may be accom-
plished. The matrices we will be concerned with in our considerations are Hermitian,
and for this reason, we will develop and discuss algorithms taking advantage of this spe-
cific property. All algorithms discussed in the following also have counterparts for the
non-Hermitian case, a thorough survey and detailed description for both, the Hermitian
and the non-Hermitian case, may be found in [8], [100] and [125]. For a general overview
of existing software for iterative projection methods see [52].

3.3 Iterative Projection Methods 59

3.3.1. Information Extraction

Basically, we can distinguish between three general approaches to find an approximation
(θ, u) to an eigenpair (λ, x) of A in a prescribed subspace K ⊂ Cn

1. orthogonal projection methods
Here one imposes the Galërkin condition on the resdiual

Au− θu ⊥ K (3.30)

i.e. the residual is required to be orthogonal to the subspace K.

2. oblique projection methods
Olique projection methods employ an additional subspace L ⊂ Cn, which leads to
the Petrov-Galërkin condition

v∗ (A− θI) u = 0 ∀v ∈ L (3.31)

For the choice L = K (3.31) coincides with the Galërkin condition (3.30), which
shows that this definition is a generalization. We will be mainly concerned with
the case L = AK, so-called harmonic extraction methods.

3. refined projection methods
These methods attempt to find an improved (“refined”) approximation û of an
approximate eigenpair (θ, u) coming from an orthogonal projection method by
solving the least squares problem

‖(A− θI)û‖2 = min
v∈K

‖v‖2=1

‖(A− θI)v‖2 (3.32)

The solution û minimizes the residual over all possible v ∈ Cn of norm unity.

Normally, orthogonal projection is the approach of choice to extract eigeninformation
from a subspace. However, sometimes the approximations obtained are poor or even
completely misleading. This may be the case, when the eigenpairs of interest are clus-
tered or lie in the interior of the spectrum. The straightforward way out of this difficulty
is to apply orthogonal projection methods to an operator obtained by a shift-and-invert
spectral transformation of the original matrix, which is advocated in [110]. However,
storage requirements and the costs for solving the arsing linear systems can be pro-
hibitive. Then oblique or refined projection methods are valuable alternatives and,
although slightly more expensive, they often yield better results than the orthogonal
projection methods. We will give a brief survey and discussion of the problems arising
with orthogonal projection methods at the end of the following paragraph. The issue of
information extraction in the context of iterative projection methods is subject of intense
current research, which is reflected in the large number of both theoretical and practical
investigations on this topic (cf. [122] and refs. therein). Note that recently presented
approaches even go beyond the above ideas, e.g. refined harmonic extraction methods
(cf. [64]), which attempts to combine the advantages of oblique and refined projection
methods.

60 Methods for Computing Partial Eigensystems of Hermitian Matrices

3.3.1.1. Standard Extraction

Let A ∈ Cn×n and K be a subspace of Cn×n where dimK = m < n. Let us furthermore
assume that the columns of V ∈ Cn×m are an orthonormal basis of K, i.e. V ∗V = Im
and span{V } = K. We consider the Hermitian eigenvalue problem

Ax = λx (3.33)

and we are looking for approximate eigenpairs (θ, u) where u ∈ K. The key idea is now
to impose the Galërkin condition on the resdiual, i.e. we demand

Au− θu ⊥ K (3.34)

or, equivalently,
v∗(Au− θu) = 0 ∀v ∈ K (3.35)

Since u is supposed to be in K, we can express it as a linear combination of the basis
vectors

u = V y (3.36)

As (3.35) is especially valid for the basis vectors vj of K, plugging (3.36) into (3.35)
yields

v∗j (AV y − θV y) = 0, j = 1, . . . ,m (3.37)

and by collecting these equations (j = 1, . . . ,m) we obtain the following equivalent
matrix notation

Mmy = θy (3.38)

where
Mm = V ∗AV (3.39)

is an (m × m)-matrix. The orthogonality requirement (3.35) thus leads to a lower
dimensional Hermitian eigenvalue problem. Before we formalize the approach derived
above, we give some essential definitions:

Definition 3.10
Let A ∈ Cn×n and let V ∈ Cn×m be orthonormal, i.e. V ∗V = Im and let (θ, y) an
eigenpair of Mm = V ∗AV Then we call

• Mm the interaction matrix

• θ a Ritz value

• u = V y ∈ Rn a Ritz vector

• (θ, u) a Ritz pair

of A with respect to K = span{V }.
One often also finds the terms Rayleigh-Ritz approximation, Galërkin approximation or
Ritz-Galërkin approximation in the literature.

3.3 Iterative Projection Methods 61

The following algorithm is known under the name Rayleigh-Ritz procedure, and it sum-
marizes how to apply the above ideas in order to extract approximate eigenpairs from
K:

Algorithm 3.12: Standard extraction (Rayleigh-Ritz procedure)

compute an orthonormal basis {vi}i=1,...,m of the subspace K and let1

V = [v1, v2, . . . , vm]
compute2

Mm = V ∗AV (interaction matrix)
compute the eigenvalues3

θi of Mm (i = 1, . . . ,m) (Ritz values)
compute the eigenvectors4

yi of Mm (i = 1, . . . ,m)
compute as approximate eigenvectors of A5

ui = V yi (Ritz vectors)

Let us first note the following trivial but important corollary, which states that eigen-
vectors present in the subspace K are retrieved by the Rayleigh-Ritz procedure:

Corollary 3.11
Let (λ, x) be an eigenpair of A with x = V y. Then (λ, V y) is a Ritz pair.

Proof: Straightforward verification. 2

We now collect some essential properties of the Rayleigh-Ritz procedure:

Remark 3.12 (Basic properties of Rayleigh-Ritz procedure)
• Line 2 of Algorithm 3.12 shows that information on A is only needed in the form

of matrix-vector products A · vj.

• By the Poincaré separation theorem (Corollary 2.19) it is clear, that a Ritz value θi

is an upper bound to the corresponding eigenvalue λi, if we order both eigenvalues
λj (j = 1, . . . , n) and Ritz values θj (j = 1, . . . ,m) by ascending magnitude, i.e.

λi ≤ θi (i = 1, . . . ,m)

• Any Ritz value θ (related to the Ritz vector u) is as a convex combination of the
eigenvalues of A. To see this, express θ by the corresponding Rayleigh quotient

θ =
u∗Mmu

u∗u
=
u∗V ∗AV u

u∗u
=

(V u)∗AV u

(V u)∗V u
(3.40)

Letting x = V u we are in the situation of Remark 2.16 and can re-use equation
(2.23) such that

θ =
n∑

k=1

βkλk, 0 ≤ βk = 1,
n∑

i=1

βi = 1 (3.41)

62 Methods for Computing Partial Eigensystems of Hermitian Matrices

• The interaction matrix Mm = V ∗AV can be viewed as a generalized Rayleigh
quotient and in analogy to Proposition 2.14 one can show that

‖R(Mm)‖ ≤ ‖R(B)‖ ∀B ∈ Cn×n

where R(B) = BV − V B is the residual matrix and ‖ · ‖ the spectral norm. For
the related proof and the discussion in what sense the Rayleigh-Ritz procedure is
optimal we refer to the profound exposition in [91].

• The quality of a Ritz approximation (θ, u) may be assessed by the error bounds
(2.31), (2.34) and (2.35) presented in the introductory part of this thesis. However,
in general there is no information available in advance about the distribution of
the sought-after eigenvalues (separation and clusters), such that only the estimate
(2.31) is of practical use. Without any additional knowledge no reasonable error
bounds can be placed on the eigenvector approximations.

• The computational costs in Alg. 3.12 amount to

1. O(m2 · n) for the orthogonalization of the basis vectors
(e.g. by means of modified Gram-Schmidt)

2. O(` ·m · n) for computing W = AV
(` is the avarage number of nonzero elements per row of A

3. O(m2 · n) for computing Mm = V ∗W

4. O(m3) for computing the eigensystem of Mm

5. O(m2 · n) for computing m Ritz vectors ui = V yi

In practical situations A is often sparse and ` � n, such that the Rayleigh-Ritz
procedure in total is essentially an O(m2 · n)-process.

• The naming of the procedure is an acknowledgement of the fact that the approach
dates back to Rayleigh [77] and Ritz [99] who proposed it independently of each
other at the beginning of the last century.

2

As already indicated in the introductory part, the Rayleigh-Ritz procedure may produce
bad approximations or even miserably fail. A phenonemon that one often encounters in
this context, is that a certain Ritz value may be a good approximation to a corresponding
eigenvalue of the matrix A, whereas the associated Ritz vector has little in common with
the sought-after eigenvector. Such Ritz values are referred to as spurious eigenvalues,
ghost values, imposters or phantom values in the literature. Unfortunately, it is difficult
to figure out when this situation arises, because it is known from (2.35) that a small
residual alone does not guarantee that an eigenvector approximation is appropriate. We
cite the following example from [47] to illustrate the problem:

3.3 Iterative Projection Methods 63

Example 3.13
Let

A =

 −1 0 0
0 0.1 0
0 0 1

 (3.42)

and the subspace V = span{v1, v2} be given by

v1 =

 0.01
−0.90
−0.01

 and v2 =

 −1
0
1

 (3.43)

Then the subspace V obviously contains a suitable approximation (v1) to the eigenvector

x =

 0
1
0

related to the eigenvalue λ = 0.1 of the matrix A. The Rayleigh-Ritz procedure (Algo-
rithm 3.12) then yields (after orthonormalization of the basis vectors) the Ritz values
θ1 = 0.1 and θ2 = 0.0, as well as the Ritz vectors

u1 =

 0.0007697
1.0000000
−0.0007697

 and u2 =

 −1.0000000
0.0096224
1.0000000

 (3.44)

Both, θ1 and θ2, are good approximations to the eigenvalue λ = 0.1, but only the Ritz
vector u1 is an appropriate approximation to the eigenvector x. Thus, θ2 is a typical
imposter. 2

This example may seem somewhat artificial, but it reflects the general problem when
it comes to looking for eigenvalue approximations in the interior of the spectrum of
a given matrix A. There are different attempts to explain the possible failure of the
Rayleigh-Ritz procedure (an in-depth discussion of this issue may be found in [47]):

1. Scott [110] explains the possible problems by the fact that Ritz values are convex
combinations of the eigenvalues (cf. Remark 3.12). For Ritz values approximating
interior eigenvalues this has the consequence that there may be also major contri-
butions from exterior eigenvalues and that the resulting convex combination only
accidentially approximate the sought-after eigenvalue. As this also carries over to
the corresponding Ritz vectors, we are in the typical situation described above:
The Ritz value is a good approximation, whereas the corresponding Ritz vector is
completely erroneous. Clearly, for eigenvalues at the exterior this cannot happen
as, owing to the convexivity, there are only relevant contributions from exterior
eigenvalues.

64 Methods for Computing Partial Eigensystems of Hermitian Matrices

2. Sleijpen and van der Vorst [114] point out that Ritz values converge mono-
tonically to exterior eigenvalues of A. Hence, a Ritz value may temporarily ap-
proximate an eigenvalue in the interior, but is well on its way to converge to an
exterior eigenvalue. This has the consequence that the corresponding Ritz vector
already has strong contributions from exterior eigenvectors.

3. Stewart [122] stresses that apart from the convergence of the desired eigenvalues
one also needs their separation in order to have convergence of the Ritz space.
To illustrate this, let us come back to the example in Remark 2.7 where we dis-
cussed the possible discontinuity of eigenvectors (e.g. in a neighborhood of multiple
eigenvalues): We have seen that

A =

[
ν + δ γ
γ ν − δ

]
, δ, γ, ν ∈ R (3.45)

has the eigenvalues λ1 = ν − δ and λ2 = ν + δ where σ2 = δ2 + γ2. Applying the
Rayleigh-Ritz procedure with respect to the subspace K = span{V } where V = [e1]
we obtain

M = V ∗AV = ν + δ (3.46)

i.e. the Ritz value is θ = ν + δ. Furthermore, the ”true” eigenvector x and the
related Ritz vector u are

x =

[
1

±γ/(σ + |δ|)

]
and u =

[
1
0

]
(3.47)

As per Prop. 2.28, we can now compute the cosine of the acute angle φ between x
and u to measure the error:

cosφ = (1 + γ2/(σ + |δ|2)−1/2 −→
{

1 if δ 6= 0

1/
√

2 if δ = 0

}
as γ → 0 (3.48)

Obviously, one gets into trouble for δ = 0, because then the ”true” eigenvector is
x = (1,±1)∗ for all nonzero γ and the error angle is π/4. As explained in Remark
2.7, the problem is that for (δ, γ) = (0, 0) the eigenvalues λ1 and λ2 coincide.
Consequently, it is not sensible to ask for the error angle φ, because the Ritz
vector u cannot approximate both, x1 = (1, 1) and x2 = (1,−1), simultaneously.
Therefore, to ensure convergence, it is necessary that the eigenvalues be separated
sufficiently well from each other.

For a detailed convergence analysis of the Rayleigh-Ritz method we refer to [65], [122]
and [124]. The oblique and refined projection methods presented in the following may
be used as alternatives when facing difficulties with the Rayleigh-Ritz procedure.

3.3 Iterative Projection Methods 65

3.3.1.2. Harmonic Extraction

We consider two subspaces K ⊂ Cn and L ⊂ Cn of equal dimension m, where the
columns of V ∈ Cn×m form a basis of K and the columns of W ∈ Cn×m are a basis of L.

Imposing the Petrov-Galërkin condition

v∗ (A− θI) u = 0 ∀v ∈ L (3.49)

on the residual and expressing u as linear combination u = V y of the basis vectors in
V , some algebra leads us to the generalized eigenvalue problem

W ∗AV y = θ W ∗V y (3.50)

Note that one may derive a standard eigenproblem from (3.50) by demanding W ∗V = Im
(then the bases for K and L are biorthogonal).

In the following, we will focus on the particular case L = AK, i.e. W = AV . Then (3.50)
turns into

V ∗A∗AV y = θV ∗A∗V y (3.51)

As we are especially interested in finding approximations to interior eigenvalues of A
near a target value σ, we we generalize (3.51) by replacing A with (A− σI) with some
shift σ ≥ 0 which gives rise to the following definition:

Definition 3.14 (Harmonic Ritz pairs)
Let K be a subspace and V be an orthonormal matrix whose columns build a basis for
K. Then (σ + δ, V y) is a harmonic Ritz pair with shift σ, if

V ∗(A− σI)∗(A− σI)V y = δ V ∗(A− σI)∗V y (3.52)

θ = σ + δ is called harmonic Ritz value and u = V y harmonic Ritz vector.

First of all, it is important to note that eigenvectors that are exactly present in the
subspace K are retrieved by a harmonic extraction method:

Corollary 3.15
Let (λ, x) be an eigenpair of A with x = V y. Then (λ, V y) is a harmonic Ritz pair.

Proof: Straightforward verification by comparing left-hand and right-hand side in
(3.52). 2

Furthermore, we can immediately derive the following interesting

Corollary 3.16
Let (σ + δ, V y) be a harmonic Ritz pair of A with respect to K where ‖y‖2 = 1. Then
the following inequality holds

‖ (A− σI) V y ‖2 ≤ δ (3.53)

66 Methods for Computing Partial Eigensystems of Hermitian Matrices

Proof: On pre-multiplying (3.52) by y∗, we obtain

‖ (A− σI)V y ‖22 ≤ |δ| · ‖ (A− σI)V y ‖2 (3.54)

which proves the assertion. 2

Basically, this inequality says that for any harmonic Ritz pair around the shift σ (within
the radius δ) the pair must have a residual norm (with respect to σ) which is bounded
by |δ|. If, for instance, we consider a shift σ near a sougth-after eigenvalue λ and a
tiny δ, then we see that imposters, in principle, cannot occur. This property is one of
the reasons to favor harmonic projection methods when looking for eigenvalues in the
interior of the spectrum.

However, it is still not clear, how to compute harmonic Ritz pairs of a given matrix A
with respect to a prescribed subspace K. To this end, we will now derive a characteri-
zation, which is more suitable for this purpose, and we will turn (3.52) into a standard
eigenproblem by requiring W = (A− σI)V to be orthonormal, which implies

y = δV ∗(A− σI)∗V y
= δV ∗(A− σI)∗(A− σI)−1(A− σI)V y
= δW ∗(A− σ)−1Wy

or, equivalently,

W ∗(A− σI)−1Wy =
1

δ
y (3.55)

For this relation to hold, we have to ensure that the matrix V be transformed according
to the orthonormalization of W . Thus, computing a QR-decomposition W = QR and
letting W̃ = Q we have to use Ṽ = V R−1 to maintain the relation W̃ = (A − σI)Ṽ .
(3.55) reveals that the specific choice of L = (A−σI)K implicitly leads to an orthogonal
projection of (A − σI)−1 onto W . It is important to note that the inverse (A − σI)−1

is not explicitly computed. However, as W depends on A, and thus, cannot be chosen
arbitrarily, we cannot expect (3.55) to work equally well as an explicit inversion of (A−
σI). Numerical experiments show that harmonic extraction improves the convergence
behavior considerably as compared to the Rayleigh-Ritz method. This is also confirmed
by theoretical investigations in [89], where it is shown that for Hermitian A the harmonic
Ritz values converge monotonically to the the smallest non-zero eigenvalue in absolute
value. The above ideas are summarized in the following

Definition 3.17 (Harmonic Ritz pairs, alternative definition)
Let K be a subspace and let the columns of V form a basis of K such that the columns
of W = (A − σI)V are an orthonormal basis of L = (A − σI)K. Then (σ + δ, V y) is a
harmonic Ritz pair with shift σ, if

W ∗V = W ∗(A− σI)−1Wy =
1

δ
y (3.56)

θ = σ + δ is called harmonic Ritz value and u = V y harmonic Ritz vector.

3.3 Iterative Projection Methods 67

This definition gives rise to Algorithm 3.13 in which the computation of harmonic Ritz
pairs is described.

Algorithm 3.13: Harmonic extraction (harmonic Rayleigh-Ritz procedure)

compute an orthonormal basis W of the subspace1

L = (A− σI)K
and a basis V of the subspace K, such that

W = (A− σI)V .
compute2

Mm = W ∗V (interaction matrix)
compute the eigenvalues3

1
δi

of Mm (i = 1, . . . ,m)

compute eigenvalue approximations4

θi = σ + δi (harmonic Ritz values)
compute the eigenvectors5

yi of Mm (i = 1, . . . ,m)
compute approximate eigenvectors of A as6

ui = V yi (harmonic Ritz vectors)

We conclude with some remarks:

Remark 3.18
• The appellation harmonic can be explained by the following observation: Accord-

ing to Remark 3.12, Ritz values are convex combination of the eigenvalues, hence
in our case we have (for shift σ = 0):

1

δi
=

n∑
k=1

βk
1

λk

,
n∑

i=1

βi = 1

or, equivalently,

θi = δi =
1∑n

k=1 βk
1
λk

,
n∑

i=1

βi = 1

This shows that the harmonic Ritz values are weighted harmonic means of the
eigenvalues of A.

• In practice, one replaces the harmonic Ritz values computed in Alg. 3.13 by the
Rayleigh quotients ρ(ui) = u∗iAui which are known to be optimal with respect to
given eigenvector approximations (see Prop. 2.14).

• The computation of harmonic Ritz pairs is only slightly more expensive than the
computation of their unharmonic counterparts in Algorithm 3.12, the essential
difference being, that apart from the orthonormalization of W additional work has
to be invested in V in order to maintain the relation W = (A − σI)V . This can
be realized e.g. by a Gram-Schmidt procedure that simultaneously operates on W
and V .

68 Methods for Computing Partial Eigensystems of Hermitian Matrices

• A formal introduction of harmonic Ritz values was given in [89]. The references
[81],[113] especially point out their use as a device to find appropriate approx-
imations to interior eigenvalues of symmetric matrices. Interesting theoretical
investigations on the properties of harmonic Ritz values along with their relation
to refined Ritz values may be found in [113]. The characterization of harmonic
Ritz values by the Petrov-Galërkin condition

x ∈ K, (A− σI)x− δx ⊥ (A− σI)K

and the alternative Definition 3.17 is due to Sleijpen and van der Vorst [114],
whereas Stewart [122] prefers the equivalent Definition 3.14, which also leads to
a different computation technique. A recent convergence analysis of the harmonic
extraction may be found in [64].

• An example from our experiments comparing harmonic and standard extraction
will be given later on in Section 4.4.3, where we discuss the use of the different
extraction method in the context of the Jacobi-Davidson variants presented in
Chapter 4.

2

3.3.1.3. Refined Extraction

We have already seen that it is difficult to assess the quality of a Ritz vector computed in
Algorithm 3.12 and especially the associated norm of the residual is not guaranteed to be
minimal. Example 3.13 impressively illustrates the potential dangers arising in the use
of standard extraction. A straightforward remedy to this problem is to enforce that the
residual norm related to a Ritz value be minimal, which leads to an improved (“refined”)
eigenvector approximation. The following definition gives a concise formulation of the
arising optimization problem:

Definition 3.19 (Refined Ritz vector)
Let A ∈ Cn×n be Hermitian, K be a subspace and V be an orthonormal basis for K.
Furthermore, let (θ, u) be a Ritz approximation obtained by Algorithm 3.12. Then we
call the solution û of the minimization problem

‖(A− θI)û‖2 = min
v∈K

‖v‖2=1

‖(A− θI)v‖2 (3.57)

a refined Ritz vector and ρ(û) = û∗Aû the associated refined Ritz value.

To solve the least squares problem (3.57) we exploit that v can be written as a linear
combination of vectors in V , i.e. v = V y with an appropriate y ∈ Cm. Then

‖(A− θI)û‖2 = min
v∈K

‖v‖2=1

‖(A− θI)v‖2 = min
y∈Cm

‖y‖2=1

‖(A− θI)V y‖2 = min
y∈Cm

‖y‖2=1

‖Ŵy‖2 (3.58)

3.3 Iterative Projection Methods 69

By computing a singular value decomposition

Ŵ = (A− θI)V = R̂ΣŜ∗ (3.59)

and making use of the variational characterization (2.66) for the smallest singular value
σmin we can now derive a minimizer û = V ŷ from the formulation (3.58):

‖(A− θI)û‖2 = min
y∈Cm

‖y‖2=1

‖Ŵy‖2 = σmin(Ŵ) (3.60)

The minimum ŷ is taken for the right singular vector ŝmin, and we obtain a solution û
of the least squares problem (3.57) by:

û = V ŝmin (3.61)

Note that this solution need not necessarily be unique, as σmin may have a multiplicity
greater than one, such that any of the related right singular vectors can be employed
to construct a minimizer of (3.57). The above argumentation shows that we only need

the right singular vector ŝmin of the matrix Ŵ = (A − θI)V in order to determine the
refined Ritz vector. Extending the Rayleigh-Ritz procedure (Alg. 3.12) with the above
recipe for computing a refined Ritz vector we obtain the following

Algorithm 3.14: Refined extraction (refined Rayleigh-Ritz procedure)

compute Ritz pairs (θi, ui) of A with respect to the basis vectors V ∈ Cn×m of the1

subspace K using the Rayleigh-Ritz procedure (Alg. 3.12)
choose index2

r ∈ {1, . . . ,m} of the Ritz pair to be refined
compute3

Ŵr = (A− θrI)V
compute SVD4

Ŵr = R̂ΣŜ∗

compute5

ûr = V ŝmin (refined Ritz vector)
compute6

θ̂r = û∗rAûr (refined Ritz value)

Remark 3.20
• The above algorithmic template comprises the standard Rayleigh-Ritz procedure

and, hence, it will be more expensive in total. Fortunately, as the costs for comput-
ing the SVD of an n×m-matrix amount to O(n ·m2), the order of magnitude will
remain the same, since the Rayleigh-Ritz procedure is also an O(n ·m2) process.
Of course, it is possible to compute refined approximations to all, rather than only
to one Ritz pair. However, then m SVDs (one for each shifted matrix Ŵr) have to
be computed and, consequently, m · O(n ·m2) = O(n ·m3) additional work has to
be invested, which is often too expensive. We shall see later on, that is sufficient
for our purposes to compute only one refined Ritz pair.

70 Methods for Computing Partial Eigensystems of Hermitian Matrices

• To obtain the right singular vector associated with σmin, one can compute an SVD
of Ŵ , for instance by means of the LAPACK [2, 7] routine xGESVD. An alternative

is to compute the eigensystem of the cross-product matrix Ŵ ∗Ŵ and to use its
relation to the SVD of Ŵ according to Corollary 2.45. This is advocated in [122]
as a means to save computational effort when several refined approximations are of
interest. The analysis in [122] shows that in general there are no stability problems
using the cross-product approach in our context, because suitable criteria allow to
anticipate possible inaccuracies and to avoid difficulties.

• Refined extraction methods in the sense of the above definition were introduced
by Jia and examined in the context of different iterative projection methods ([63],
[36]). Related approaches are treated in [47], e.g.

2

3.3.2. Subspace Expansion

The subspace expansion in the generic template (Alg. 3.11) is the characteristic algorith-
mic component which actually distinguishes the different iterative projection methods
from each other. Rather surprisingly, there are only a few possibilites discussed in the
literature and for a long time, until about 1975, when Davidson proposed his method
[29], the only approach to be considered was the subspace expansion leading to the
Lanczos method.

3.3.2.1. Lanczos Method

The simplest conceivable way to expand a given subspace K is to choose the residual

t = f(r) = r = Au− θu (3.62)

with respect to the current eigenvector approximation u as a new search direction in
Algorithm 3.11. Starting from scratch with an arbitrary initial guess r 6= 0, it follows
by induction, that this choice leads to a Krylov space

Km = {r, Ar,A2r, . . . , Am−1r} (3.63)

In the following, however, we do not employ the generic scheme (Alg. 3.11) as a frame-
work, but we pursue a slightly different approach, since it is more appropriate to use
the Lanczos procedure (Alg. 2.7) to compute an orthonormal basis of the Krylov space
Km. Comparing (2.59) with (3.39) reveals that the interaction matrix Mm with respect
to the Lanczos vectors Vm in the Rayleigh-Ritz procedure (Alg. 3.12) coincides with the
tridiagonal matrix Tm. A clever combination of both algorithms results in the following
simple algorithm for computing several eigenpairs:

3.3 Iterative Projection Methods 71

Algorithm 3.15: Lanczos method for Hermitian eigenproblems

choose a vector v1 such that ‖v1‖2 = 1. Set β1 ≡ 0, v0 ≡ 01

for j = 1, 2, . . . ,m do2

compute rj = Avj − βjvj−13

compute αj = (rj, vj)4

rj = rj − αjvj5

reorthogonalize if necessary6

βj+1 = ‖rj‖2.7

compute approximate eigenvalues of A from eigendecomposition of8

Tj = SΘ(j)S∗ (Tj is defined as per Notation 2.39)
test bounds (residual norms) for convergence by means of (3.65) (see below)9

vj+1 = wj/βj+110

end for11

compute approximate eigenvectors X = VjS12

Using the Lanczos relation (2.57) the residual r
(j)
i (cf. Line 9) of a Ritz pair (θ

(j)
i , x

(j)
i)

in the jth pass of the for-loop in Algorithm 3.15 can be expressed as

r
(j)
i = Ax

(j)
i − θ

(j)
i x

(j)
i = AVjs

(j)
i − Vjs

(j)
i θ

(j)
i = (AVj − VjTj)s

(j)
i = vj+1βj+1s

(j)
j,i (3.64)

and, hence, the residual norm is determined from

‖r(j)
i ‖2 = |βj+1s

(j)
i,j | (3.65)

This shows that it is not necessary to compute the Ritz vectors xi = Vjsi during the
for-loop (Lines 2-11) in order to obtain the residual norms of the Ritz pairs. These
time-consuming matrix-vector multiplications can be postponed until the the end of the
algorithm when the Ritz values of interest have converged (Line 12).

Remark 3.21
• As pointed out in Section 2.3.3.2 one has to take into account that the Lanczos

vectors lose their global orthogonality. There are different approaches to deal with
this difficulty: Parlett and his co-workers have proposed reorthogonalization
strategies (partial and selective orthogonalization), which are described e.g. in [91].
Cullum and Willoughby [27], [26] suggest to do no reorthogonalization at all,
which results in multiple copies of already detected eigenvalues (so called spurious
eigenvalues). However they are able to state clever criteria, which allow for filtering
out these multiple copies after one run of the Lanczos algorithm. A general survey
of the Lanczos method and the pros and cons of the different strategies may be
found in [8].

• The Lanczos algorithm 3.15 can be interpreted as a subspace accelerated power
method and indeed it can be shown that it is superior to the single vector power
method discussed in Section 3.1.1 (for the related proof see [91] or [49]).

72 Methods for Computing Partial Eigensystems of Hermitian Matrices

• The Lanczos method, which was originally introduced in 1950 [70] as a means to
reduce the input matrix A to tridiagonal form, has been known for more than half
a century and a lot of research has been done to analyze its convergence properties.
In contrast to the algorithms to be discussed in the following there is a beautiful and
mature convergence theory available along with compelling quantitative results,
the so-called Kaniel-Paige-Saad bounds (for details see e.g. [91], [100] or [49]).
Essentially, one can say that convergence to eigenvalues at the ends of the spectrum
will be faster, i.e. these eigenvalues are in general the first ones to be detected. The
better these eigenvalues are separated from the rest of the spectrum, the faster the
convergence will be. Unfortunately, rather often this is not true in practice, and
in these cases the Lanczos method is slow to converge and the number of required
iterations can be high. As a consequence, the costs for storing all Lanczos vectors
in memory and keeping them orthogonal may become prohibitive. For this reason,
we derive a strategy which tries to remedy these disadvantages in the following.

2

3.3.2.2. Implicitly Restarted Lanczos Method (IRLM)

A general approach to limit storage requirements and computational effort is the in-
corporation of so-called restarts and a particularly simple way of doing so are explicit
restarts, in which one retains the most recent Lanczos vector vk, discards all previously
computed basis vectors v1, . . . , vk−1 and launches a new Lanczos process with ṽ1 = vk

as a starting vector. Clearly, this meets our requirements as the memory consumption
is bounded. On the other hand, one often loses valuable information, for which much
work had to be invested. A more sophisticated alternative is due to Lehoucq [73] and
Sorensen [117] who suggest an implicit restart scheme. Their basic idea can be de-
scribed as follows: The result of applying m = k + p steps in the basic Lanczos method
(Algorithm 3.15) is characterized by the following algebraic top-level formulation (cf.
(2.57)):

AVm = VmTm + rme
∗
m (3.66)

The objective is now to compress this (k+ p)-step factorization to a k-step Lanczos fac-
torization containing the most interesting information. This can be realized by applying
p implicitly shifted QR steps on Tm and leads to

AV +
m = V +

m T
+
m + rme

∗
mQ (3.67)

where

V +
m = VmQ, T+

m = Q∗TmQ and Q = Q1Q2 · · ·Qp (3.68)

Each of the orthogonal matrices Qj is associated with the shift µj during the shifted
QR algorithm. Since all Qj exhibit Hessenberg structure, the first k − 1 entries of the
vector e∗mQ are zero. This in turn shows that the k leading columns in (3.67) are still
in Lanczos relation and represent what we are looking for, an updated k-step Lanczos

3.3 Iterative Projection Methods 73

factorization

AV +
k = V +

k r
+
k e

∗
k (3.69)

where V +
k = V +

m (1 : k) is formed from the first k columns of V +
m . The updated residual

is of the form

r+
k = V +

m ek+1βk + rmQ(m, k) (3.70)

where Q(m, k) is the element which is located at the mth row and kth column of the
matrix Q defined in (3.68). The above ideas provide a general recipe for shrinking a
(k + p)-step Lanczos relation to a k-step factorization. Iterating this process eventually
leads to an algorithm called the implicitly restarted Lanczos method (IRLM) and is
described in Alg. 3.16.

Algorithm 3.16: IRLM for Hermitian eigenproblems

start with v1 = v/‖v‖2 where v 6= 0 is an arbitrary initial guess1

compute an m-step Lanczos factorization2

AVm = VmTm + rme
∗
m

repeat3

compute σ(Tm) and select p shifts µ1, µ2, . . . , µp4

initialize Q = Im5

for j = 1, 2, . . . , p do6

QR-factorize QjRj = Tm − µjI7

update Tm = Q∗
jTmQj, Q = QQj8

end for9

rk = vk+1βk + rmσk, with βk = Tm(k + 1, k) and σk = Q(m, k)10

Vk = VmQ(:, 1 : k), Tk = Tm(1 : k, 1 : k)11

beginning with the k-step Lanczos factorization12

AVk = VkTk + rke
∗
k

apply p additional steps of the Lanczos process to obtain
AVm = VmTm + rme

∗
m

until convergence, i.e. Tk = Dk diagonal13

Remark 3.22
• To compute the initial (k + p)-step Lanczos factorization in Line 1 one can make

use of Algorithm 3.15.

• The shifts µj in Line 4 are chosen according to the eigenvalues of interest. To
this end, the user typically specifies a “wanted set” of eigenvalues. Possible and
sensible choices are e.g. the k smallest or the k largest eigenvalues of the matrix
A.

• A popular choice for the shifts µj that has proven successful in practice are so-
called exact shifts. To this end the Ritz values, i.e. the eigenvalues θi of Tm are
partitioned in two disjoint sets of k wanted and p unwanted eigenvalues. The p

74 Methods for Computing Partial Eigensystems of Hermitian Matrices

unwanted eigenvalues are then used as shifts µ1, . . . , µp. Repeating this strategy
successively filters out the unwanted eigenvalues.

• An interesting theoretical property lies in the fact that one shift-cycle in Lines 6-9
of the IRLM (Alg. 3.16) can be viewed as the implicit application of a polynomial
ψ in A to the starting vector v1, i.e.

v1 ← ψ(A)v1 (3.71)

where the zeros of ψ are the the p shifts µ1, . . . , µp used in the QR process

ψ(λ) =

p∏
j=1

(λ− µj) (3.72)

For full details on this relation see [117]. This interpretation as a polynomial filter
also motivates other interesting choices of the shifts µj, the roots of Čebyšëv2

polynomials, the roots of Leja polynomials, the roots of least squares polynomials
or harmonic Ritz values. For the corresponding references see the related discussion
in [8].

• In analogy to the QR-algorithm discussed in Section 3.2.2.1 the application of p
shifted QR iteration steps should be done using implicitly shifted QR factoriza-
tions.

• All of the above ideas related to Lanczos factorizations (2.57) directly carry over
to Arnoldi factorizations (2.50) and, hence, they result in a straightforward gen-
eralization of the IRLM to a method for non-Hermitian matrices, the implicitly
restarted Arnoldi method (IRAM).

• There are careful implementations of both, the IRLM and the IRAM, freely avail-
able in the form of the state-of-the-art software package ARPACK [75], a detailed
description of which is given in the related user’s guide [76]. We will use the
ARPACK software later on, apply it to the eigenproblems we are interested in and
make comparsions with the results obtained by the Jacobi-Davidson methods to
be disussed in the following.

• We shall see that a key problem in the application of the ARPACK software is
how large to choose the maximal subspace dimension m = k + p relative to the
number of sought-after eigenvalues kmax. It is clear that m must be at least equal
to kmax, in [76] it is recommended to choose m ≥ 2·kmax. Unfortunately there is no
general recipe for a succesful adjustment of the parameter m and, even worse, the
computational effort to be invested in order to obtain kmax converged eigenpairs
depends rather sensitively on this choice.

2

2see also remarks on transliteration of Russian names in Appendix A.2

3.3 Iterative Projection Methods 75

3.3.2.3. Davidson’s Method

The Davidson method is named after its inventor, a quantum chemist, who proposed
the algorithm in 1975 [29]. He designed the method for the application to eigenvalue
computations in electronic structure calculations where the arising Hermitian matrices
are typically very large and almost diagonal, i.e. they are strongly diagonal dominant.
To take advantage of this specific property, he suggested to expand the search space K
by

t = f(r) = (DA − θ)−1r (3.73)

where DA is the diagonal matrix whose entries are the diagonal entries of A and

r = Au− θu (3.74)

is the residual r with respect to a given approximation (θ, u). Using (3.73) as sub-
space expansion and the Rayleigh-Ritz procedure (Alg. 3.12) as a method for information
extraction the, generic Algorithm 3.11 turns into a basic version of Davidson’s method:

Algorithm 3.17: Davidson’s method for λmin(A)

function (λ, q) = davidson(A, v0)1

choose a starting vector t = v02

M = [], V = [], W = []3

for m = 1, 2, . . . , ν1 do4

vm = orth(V, t) ; /* orthonormalization by means of Alg. 2.5 */5

wm = Avm6

M =

[
M V ∗wm

w∗V v∗mwm

]
7

V = [V, vm], W = [W,wm]8

compute smallest eigenpair (θ, s) of M (‖s‖2 = 1)9

u = V s10

w = Ws11

r = w − θu12

if ‖r‖2 ≤ ε then13

return (θ, u)14

end if15

solve t from:16

(DA − θI)t = r17

end for18

Remark 3.23
• Note, that in contrast to the Rayleigh-Ritz procedure (Alg. 3.12) only the Ritz

vector u (Line 10) related to the smallest eigenvalue approximation θ (Line 9) is
of interest and is actually computed in one pass of the for-loop.

76 Methods for Computing Partial Eigensystems of Hermitian Matrices

• As we consider Hermitian matrices A, we can adopt the Rayleigh-Ritz procedure
to this situation: It is sufficient to build up and store the upper triangular part of
the interaction matrix M . Thus, the update of M in every step of the Davidson
iteration can be realized by adding one column and an additional bottom element.

• In practice, one restricts the size of the search space by incorporating so called
restart techniques. Furthermore, computing more than one eigenpair may be
achieved by means of deflation. Further details on both, restart and deflation,
will be discussed in the corresponding Section 4.3 on the Jacobi-Davidson method
and can be applied without any significant modification to extend the Davidson
method.

• Further theoretical and practical investigations on the original version of David-
son’s method along with an explanation for its success when dealing with strongly
diagonal dominant matrices may be found in [30].

2

The algorithm is reported to work well in the context described above which explains its
popularity among quantum chemists and it is easy to implement. However, for a long
time it was not well understood, why Davidson’s method is successful and, until recently,
there was no satisfactory convergence theory available. The obvious and intuitive idea to
regard DA as a preconditioner K ≈ A is problematic. This becomes evident when trying
to generalize Davidson’s method to arbitrary approximations K ≈ A. In the asymptotic
case K = A we have

t = (K − θI)−1r = (A− θI)−1r = (A− θI)−1 · (A− θI)u = u (3.75)

and, clearly, this leads to stagnation, as no new information enters into the subspace.
Hence, the approximation K must not be too good, which is counterintuitive and shows
that the notion of K as a preconditioner for A is misleading in this context. Nonetheless,
there are also approaches with K different from DA, that yield satisfactory results (cf.
[103], [25]). Notice that for general choices of K a factorization of B := K − θI (line
17) is required in every pass of the for-loop in Alg. 3.17, which is often rather time-
consuming. Another interesting particluar case is the choice K = I, which leads to a
process that generates the same sequence of vectors as the Lanczos method. Hence,
Davidson’s method could be also viewed as a generalization of the Lanczos algorithm.

The above discussion reveals that Davidson’s method heavily relies on the diagonal dom-
inance of A and is only applicable, when this requirement is satisfied. Unlike e.g. the
Lanczos method, it is thus no multi-purpose eigensolver. Theoretical results on the
convergence of Davidson’s method, which also make more precise statements on how to
choose the approximation K, may be found in [103] and [25]. For a list of available
software for Davidson’s method see [52] and the references therein.

4. The Jacobi-Davidson Method and
its Variants

The Jacobi-Davidson method was proposed by Sleijpen and van der Vorst [114]
in 1996 as an improvement over Davidson’s method, which explains the second part of
the method’s name. The first part is an acknowledgement of its relation to a method
described by Jacobi in his famous article from 1846 [58], which we will call JOCC method
(acronym for Jacobi’s Orthogonal Complement Correction) in the following in order to
distinguish it from the well-known diagonalization method (cf. Section 3.2.3) introduced
in the same article. Like Davidson’s method or the Lanczos algorithm it belongs to the
family of iterative projection methods, and hence, from a systematic point of view, the
following description should have been placed into a corresponding subsection of the
previous chapter. However, as the Jacobi-Davidson method is in the center of interest
of this thesis, it is appropriate to dedicate it a chapter of its own right. We will first
give a motivation and we will present a basic version of the Jacobi-Davidson method for
computing one eigenpair. Besides, we will briefly comment on its convergence properties
as well as on its relation to other methods. Finally, we will develop more sophisticated
variants of the algorithm which are suited for the practical use and which we will actually
apply to the eigenvalue computations we are concerned with in this thesis.

4.1. Motivation of the Algorithm

4.1.1. JOCC Method

Originally, Jacobi did not use his plane rotations the same way as we are used to these
days. He only went half the way and employed them as a means to make the matrix
diagonally dominant. For the final diagonalization he used the JOCC method, which we
will now briefly describe:
Let A ∈ Cn×n be diagonally dominant and let us without loss of generality assume that
a11 = α is the largest diagonal element of A. Then α is an approximation to A’s largest
eigenvalue λ and e1 an approximation for the corresponding eigenvector. This leads to
the following notation of the eigenvalue problem

A

[
1
z

]
=

[
α cT

b F

] [
1
z

]
= λ

[
1
z

]
(4.1)

where α is a scalar, F ∈ C(n−1)×(n−1) is a square matrix and b, c and z vectors of
appropriate size. Denoting the eigenvector related to the sought-after eigenvalue λ by

77

78 The Jacobi-Davidson Method and its Variants

u = (1, z)T we can transform (4.1) into the equivalent system

λ = α+ c∗z (4.2)

(F − λI)z = −b (4.3)

Jacobi’s idea was now two solve (4.3) by turning the above equations into a related
two-step iteration scheme where DF is formed by the diagonal entries of F :

Algorithm 4.1: Jacobi’s orthogonal complement correction (JOCC)

θk = α+ c∗zk

(DF − θkI)zk+1 = (DF − F)zk − b

}
k = 0, 1, 2, . . . (4.4)

Alogrithm 4.1 belongs to the family of single vector iterations discussed in Section 3.1.
The main feature of the JOCC iteration scheme is that eigenvector corrections in the
orthogonal complement of the first unit vector (i.e. span{e1}T) are constructed in every
iteration step, which also explains the name of the method. Sleijpen and van der
Vorst [114] point out, that this is not quite the algorithm that Jacobi actually made
use of, but the above version is better suited for our purposes as we shall see in the
following.

4.1.2. Davidson’s Method Revisited

Let us now briefly review Davidson’s method (Alg. 3.17) in the context of the above
notation (4.1), where an iterate uk is again assumed to be scaled such that its first
coordinate is 1, i.e. uk = (1, z∗k)

∗. Furthermore, let θk be the associated eigenvalue
approximation. Then the residual is given by

rk = (A− θkI)uk =

[
α− θk + c∗zk

(F − θkI)zk + b

]
(4.5)

In Davidson’s method, a new search direction tk is now computed from

(DA − θkI)tk = −rk (4.6)

With tk = (γ, y∗k)
∗, where γ is a scalar and ŷk = (0, y∗k)

∗, the component of t orthogonal
to e1, we conclude from (4.6) and (4.5)

(DF − θkI)yk = −(F − θkI)zk − b = (DF − F)zk − (DF − θkI)zk − b (4.7)

or, equivalently,

4.2 The Basic Jacobi-Davidson Method for Computing one Eigenpair 79

(DF − θkI)(zk + yk) = (DF − F)zk − b (4.8)

A comparison of (4.8) and (4.4) now reveals that zk + yk is the zk+1 one would have
obtained by one step of JOCC applied to zk. However, after this point the iterates of
Davidson’s method differ from the JOCC scheme, as it does not take tk = (1, (zk +yk)

∗)∗

as the next eigenvector approximation, but expands the subspace K built up so far by
tk and then extracts the new approximation from span{K, tk} by means of the Rayleigh-
Ritz procedure. Clearly, this is an improvement over the JOCC method, as now more
information enters into the computation of the eigenvalue. However, Davidson’s method
also only constructs eigenvector corrections in the orthogonal complement of e1.

4.2. The Basic Jacobi-Davidson Method for Computing
one Eigenpair

The close relation between JOCC and Davidson’s method was the starting point for the
considerations of Sleijpen and van der Vorst [114], whose idea was to go beyond the
approach of Davidson by computing orthogonal corrections to the current iterate, rather
than to the unit vector e1 in every step of the iteration. This consequently leads to a
different kind of subspace expansion, which we will derive now:
Let us again consider the Hermitian eigenvalue problem

Ax = λx (4.9)

and suppose that an approximation (θ, u) to an eigenpair (λ, x) where θ = ρ(u) = ũ∗Au
and ‖u‖2 = 1 is available. We are now looking for an exact orthogonal correction t of u,
i.e.

A(u+ t) = λ(u+ t), t ⊥ u

or, equivalently,
(A− λI)t = −(A− λI)u

By pre-multiplying with the projector P = I − uu∗, we obtain

(I − uu∗)(A− λI)t = −(I − uu∗)(A− λI)u

Because of t ⊥ u the projector P = (I − uu∗) acts as identity on t and we can write

(I − uu∗)(A− λI)(I − uu∗)t = −(I − uu∗)(A− λI)u
= −(A− λI)u+ uu∗(A− λI)u
= −(A− λI)u+ u (u∗Au)− λu
= −(A− θI)u
= −r (4.10)

80 The Jacobi-Davidson Method and its Variants

Solving t from (4.10) yields the desired correction of u. However, in practical situations
one does not know λ beforehand, and hence, it is straightforward to replace λ by the
current eigenvalue approximation θ = u∗Au. This finally leads to the following relation,
which is referred to as the Jacobi-Davidson correction equation:

(I − uu∗)(A− θI)(I − uu∗)t = −(A− θI)u = −r (4.11)

Using a possibly approximate solution t of (4.11) as subspace expansion and the Rayleigh-
Ritz method (Alg. 3.12) as a device for information extraction, the algorithmic frame-
work (Alg. 3.11) yields a basic version of the Jacobi-Davidson method:

Algorithm 4.2: Jacobi-Davidson method for λmin(A) (JD)

function (λ, q) = jacobi-davidson(A, v0)1

choose a starting vector t = v02

for m = 1, 2, . . . , ν1 do3

vm = orth(V, t) ; /* orthonormalization by means of Alg. 2.5 */4

wm = Avm5

M =

[
M V ∗wm

w∗
mV v∗mwm

]
6

V = [V, vm], W = [W,wm]7

compute smallest eigenpair (θ, s) of M (‖s‖2 = 1)8

u = V s9

w = Ws10

r = w − θu11

if ‖r‖2 ≤ ε then12

return (θ, u)13

end if14

(approximately) solve the correction equation (4.11) for t ⊥ u:15

(I − uu∗)(A− θI)(I − uu∗)t = −r16

end for17

Of course, it is also possible to employ the above algorithm to compute eigenpairs other
than the smallest one. We will come back to this issue later on. The correction equation
in Line 16 of the above template is the core of the Jacobi-Davidson method and plays a
key role for the success of the algorithm. In practice, (4.11) is not solved exactly, and
even rather crude approximations may lead to success. Before we discuss in detail how
to solve the correction equation in practical situations, we make some comments on the
existence of solutions and on related methods in order to have a solid basis to build
upon.

4.2 The Basic Jacobi-Davidson Method for Computing one Eigenpair 81

4.2.1. Consistency of the Correction Equation

First of all, to put things precisely, it should be mentioned that – although it virtually
never leads to problems in practice – it cannot be guaranteed that (4.11) always has
unique a solution, as is highlighted in the following theorem from [36]:

Theorem 4.1
Assume that (ρ, u) is an approximate eigenpair of the matrix A with u ∈ K and ρ =

u∗Au, and select a matrix U⊥ ∈ Cn×(n−1) such that [u, U⊥] is unitary. Then the columns
of U⊥ form an orthonormal basis of span{u}⊥. Set r = (A − ρI)u. Then r ⊥ u, and
there exists a unique b such that r = U⊥b. For the linear system

(I − uu∗)(A− ρI)(I − uu∗)t = −r t ⊥ u (4.12)

the following results hold:

1. equation (4.12) has no solution if b /∈ Im(U∗
⊥AU⊥ − ρI)

2. equation (4.12) has at least one solution if b ∈ Im(U∗
⊥AU⊥ − ρI)

3. equation (4.12) has a unique solution, if and only if ρ is not an eigenvalue of U∗
⊥AU⊥

Proof: [u, U⊥][u, U⊥]∗ = I, hence

I − uu∗ = U⊥U
∗
⊥

and (4.12) can be written as

(U⊥U
∗
⊥AU⊥U

∗
⊥ − ρI)t = −r

Setting t = U⊥x we obtain

U⊥(U∗
⊥AU⊥ − ρI)x = −U⊥b

Pre-multiplying U∗
⊥ from the left then gives

(U∗
⊥AU⊥ − ρI)x = −b (4.13)

The assertions of the theorem now directly follow from (4.13) and the well-known criteria
for the existence of solutions of linear systems. 2

It is also interesting to see what happens when an eigenvalue approximation θ is getting
close to an eigenvalue λ of A, as it is the case when the iteration converges. A common
fear is that the shifted matrix A − θI becomes nearly singular and this might lead to
problems in the solution of the related linear systems. Parlett [91] could refute these
objections for the inverse iteration (Alg. 3.2) and the Rayleigh quotient iteration (Alg.

82 The Jacobi-Davidson Method and its Variants

3.3), where one is in a similar situation (see Remark 3.2). In case of the Jacobi-Davidson
iteration, a new aspect comes into play: The role of the projectors P = I − uu∗. In
[44] a heuristic analysis of the asymptotic case that the eigenvector x coincides with the
approximation u is made. To see what happens upon convergence (u → x) we make a
heuristic analysis (cf. [44]), i.e. we assume u = x in the left-hand side and u 6= x in the
right-hand side of (4.11). Then we have

(I − xx∗)(A− λI)(I − xx∗)t = −r (4.14)

and (A− λI) is singular. However, the eigenvector x, which is the singular direction, is
projected out by (I − xx∗), so that the solution t is in the orthogonal complement of x.
Thus, equation (4.14) is well-defined. Of course, the above argumentation is also valid
for the asymptotic case u = x in the right-hand side (cf. [114] for a related discussion).
The considerations in this paragraph and the experiences made in the practical use of
Alg. 3.2 show that there are no stability problems solving the correction equation (4.11).

4.2.2. Relation to Other Methods

The Jacobi-Davidson method exhibits interesting relations to other methods, as we shall
see in the following. To this end, we consider the more general situation that an approx-
imation M ≈ (A − θI) is available. Then using t ⊥ u we obtain the following instance
of (4.11)

(I − uu∗)Mt = −r
⇔Mt− uu∗Mt = −r
⇔Mt− αu = −r (4.15)

where α = u∗Mt.

4.2.2.1. JD and RQI

Let us first consider the case that we do not use any approximation at all, but work with
the exact correction equation, i.e. M = A− θI. Solving t from (4.15) then leads to

t = α(A− θI)−1u− (A− θI)−1r

= α(A− θI)−1u− u (4.16)

In the subsequent step of Algorithm 4.2 t is made orthogonal to the subspace K built
so far and since u ∈ K, the new search direction is actually

t̃ = (A− θI)−1u (4.17)

4.2 The Basic Jacobi-Davidson Method for Computing one Eigenpair 83

This shows that the Jacobi-Davidson method is related to inverse iteration (Algorithm
3.2) and especially to the Rayleigh quotient iteration for Hermitian matrices (Algorithm
3.3), provided that (4.11) is solved exactly. Notice, however, that the Jacobi-Davidson
method is not identical, but actually an improvement over RQI, as it is a subspace
accelerated process, i.e. all iterates generated so far are assembled in K and the new
eigenvector approximation is computed from K. Finally, the discussion in this para-
graph also makes more precise in what sense the JD algorithm can be viewed as an
improvement over Davidson’s method: As opposed to Davidson’s method (cf. discussion
in Section 3.3.2.3) there is no danger of stagnation when using an approximation M
which is very close or possibly even identical to A− θI. On the contrary, the better the
approximation is, the more satisfactory the convergence will be, and this shows that the
JD-approach removes the conceptual weakness of Davidson’s method in the context of
general approximations K ≈ A. Notay [84] directly compares the performance of the
JD and the Davidson method in a couple of numerical experiments, and in fact JD is
faster in most cases, except for matrices that are almost diagonal.

4.2.2.2. JD and Davidson

Using M = K−θI as an approximation and choosing α = 0 in (4.15) yields the subspace
expansion

t = (K − θI)−1r (4.18)

which leads to a (generalized) instance of Davidson’s method (Algorithm 3.17).

4.2.2.3. JD and Olsen

In many cases the exact solution of (4.11) is much too expensive. Therefore, one may
attempt to use a fixed approximation M ≈ (A − θI) for different values of θ instead.
Then solving for t in (4.15) leads to

t = αM−1u−M−1r, t ⊥ u (4.19)

We can now determine the parameter α by exploiting the orthogonality constraint t ⊥ u:

u∗t = αu∗M−1u− u∗M−1r = 0

⇐⇒ α =
u∗M−1r

u∗M−1u
(4.20)

This approach was proposed by Olsen and his co-authors in 1990 [88] in the context of
FCI calculations (Full Configuration Interaction) arising in quantum chemistry. Thus,
we will refer to the subspace expansion defined by (4.19) and (4.20) as Olsen’s method

84 The Jacobi-Davidson Method and its Variants

in the following. Note that the derivation of the parameter α is typical of our following
considerations and will come up repeatedly in different disguise.

4.2.2.4. JD and Lanczos

The simplest choice M = I and α = 0 results in a subspace expansion by the residual
r = Au− θu. Obviously, this results in a subspace with Krylov structure, i.e.

K = {v0, Av0, A
2v0, . . . , A

m−1v0} (4.21)

where v0 is the starting vector. In exact artihmetic the process obtained by using −r as
expansion in our framework, Alg. 3.11, generates the same sequence of approximations
as the Lanczos method.

4.2.3. Solving the Correction Equation

We have already pointed out that the efficiency of the Jacobi-Davidson method crucially
depends on whether one succeeds in solving the correction equation (4.11) appropriately.
According to the above discussion, the exact solution leads to a subspace accelerated
Rayleigh quotient iteration which has attractive convergence properties, but is in general
not feasible because the involved costs are prohibitive. The natural way out of this
difficulty is to resort to cheaper approximate solutions instead, e.g. obtained by means
of one-step approximations, like Olsen’s method previously discussed in Section 4.2.2.3,
or multi-step approximations using iterative solvers for linear systems which we will
present in the following. Before we go into detail, let us collect some general guidelines
which are borne out of experience and have proven successful in practice (for a detailed
motivation and discussion on this issue see e.g. [114], [8], [55]):

• The correction equation should not be solved too accurately. Especially in the
beginning of the iteration process relatively crude approximations are often suffi-
cient, and it would be even counterproductive to be particularly exact there. More
precisely speaking, the demanded accuracy should be gradually increased, e.g. by
imposing some rule on the norm of the residual like

‖rm‖2 = ‖tm − r‖2 ≤ 0.7m, (4.22)

where m denotes the number of the JD iteration step (for-loop in Algorithm 4.2).

• When working with an iterative Krylov solver, the number of solver steps should be
limited above by a small constant itsolvermax (e.g. itsolvermax = 5), regardless
of whether the demanded accuracy is reached or not.

• Any other approximation may be sensible and is admissible, provided that the
computational effort is limited. We actually make use of a mixture between Olsen’s

4.2 The Basic Jacobi-Davidson Method for Computing one Eigenpair 85

method and the two above principles in our computations. This means that we
expand the subspace K by means of (4.19) and (4.20) in the first two or three steps
of the JD-loop and then switch over to the solution of the correction equation using
Krylov methods.

4.2.3.1. Iterative Krylov Methods for Linear Systems

We consider a linear system

Ax = b, A ∈ Cn×n, b ∈ Cn (4.23)

where the coefficient matrix A is sparse, the size of the problem n is large and the solution
x ∈ Cn is sought-after. Analogously to the situation of eigenvalue problems discussed in
the sections 3.2 and 3.3, one can use either direct methods (LU factorisation, Gaussian
elimination) or iterative methods to solve (4.23). We will make use of specific iterative
methods, so called Krylov subspace methods, as they access information of the matrix
A only implicitly by means of matrix-vector products which makes them particularly
suited for our purposes. We can only describe the basic ideas and give a rough sketch of
the underlying principles. For a detailed and thourough discussion we refer to the books
by Saad [101] and Greenbaum [50], a brief survey for the practical use may be found
in [9].
Given a suitable initial guess x0 along with the related residual r0 = b−Ax0, the Krylov
subspace methods we are interested in successively build up an orthonormal basis of the
Krylov space

Km(A, r0) = span{r0, Ar0, A2r0, . . . , Ak−1r0} (4.24)

which results in a Lanczos or Arnoldi process (depending on whether A is Hermitian or
not) and attempt to construct an approximate solution

xm ∈ x0 +Km(A, r0) (4.25)

In the following, we will restrict ourselves to Krylov methods which minimize the corre-
sponding residual (GMRES/MINRES), i.e.

‖b− Axm‖2 = min
x∈x0+Km(A,r0)

‖b− Ax‖2 (4.26)

or try to minimize it in a certain sense (QMR/QMRS). Notice that there is a bewildering
variety of methods ([101], [50], [9]) all of which having their pros and cons. In principle,
any method which is designed for the use of general non-Hermitian matrices is admissible
(other possible choices thus may be CGS, BiCGstab etc.).

4.2.3.2. GMRES

Let us consider the general case that A ∈ Cn×n is not Hermitian. Then the orthonormal
basis Vm ∈ Cn×m of Km is obtained by the Arnoldi procedure (Alg. 2.6), and any vector

86 The Jacobi-Davidson Method and its Variants

x ∈ x0 +Km can be written as an affine linear combination

x = x0 + Vmy, y ∈ Cm (4.27)

We are looking for a minimizer ym of the functional J

J(y) = ‖b− Ax‖2 = ‖b− A(x0 + Vmy)‖2 (4.28)

Using (4.28) and the Arnoldi relation (2.51) gives

b− Ax = b− A(x0 + Vmy)

= r0 − AVmy

= βv1 − Vm+1H̄my

= Vm+1(βe1 − H̄my) (4.29)

Since the columns of Vm+1 are orthonormal, then

J(y) = ‖b− A(x0 + Vmy)‖2 = ‖βe1 − H̄my‖2 (4.30)

To obtain the solution xm = x0 + Vmy
m we have to solve the least squares problem

ym = argmin
y∈Cn

‖βe1 − H̄my‖2 (4.31)

This leads to the GMRES method (Generalized Minimal Residual) which was proposed
by Saad and Schultz [102] in 1986:

Algorithm 4.3: GMRES

compute r0 = b− Ax0, β := ‖r0‖2 and v1 = r0/β1

for j = 1, 2, . . . ,m do2

compute wj := Avj3

for i = 1, . . . , j do4

hij := (wj, vi)5

wj := wj − hijvi6

end for7

hj+1,j = ‖wj‖28

if hj+1,j = 0 then9

set m := j, goto 1410

end if11

vj+1 = wj/hj+1,j12

end for13

define the (m+ 1)×m Hessenberg matrix H̄m = {hij}1≤i≤m+1,1≤j≤m14

compute ym, the minimizer of ‖βe1 − H̄my‖2 and xm = x0 + Vmy
m

15

4.2 The Basic Jacobi-Davidson Method for Computing one Eigenpair 87

Remark 4.2
• In practical implementations the least squares problem in Line 15 is solved by

means of a QR decomposition of the upper Hessenberg matrix H̄m ∈ C(m+1)×m

H̄m = QmR̄m (4.32)

where Qm ∈ C(m+1)×(m+1) is obtained by the product

Qm = J1 · J2 . . . · Jm (4.33)

of the m Givens rotations Ji ∈ C(m+1)×(m+1) (cf. Section 2.3.1.2) that successively
annihilate the subdiagonal elements h̄i+1,i, and R̄m ∈ C(m+1)×m. Since Q is unitary,
one can transform the least squares problem into

min ‖βe1 − H̄my‖2 = min ‖ḡm − R̄my‖2 (4.34)

and the sought-after minimizer ym can now be readily determined from the trian-
gular system

Rym = gm (4.35)

where R = R̄(1 : m, 1 : m) and gm = ḡm(1 : m).

• The storage requirement for the m Arnoldi vectors in Vm and the Hessenberg
matrix H̄m amounts to O(mn+m2) which is a disadvantage when one is interested
in accurate solutions, and thus, a large number m of solver steps may be required.
In our situation, however, this is no problem, as modest accuracy of the solutions
is in general sufficient, and as we restrict the number of solver steps m a priori.

2

4.2.3.3. MINRES

The MINRES algorithm (Minimal Residual) was introduced by Paige and Saunders
[90] in 1975 and it can be regarded as a simplification of GMRES for the particular case
that A ∈ Cn×n is Hermitian. Then the Arnoldi process (Alg. 2.6) for the computation of
the orthonogonal basis V reduces to the Lanczos procedure (Alg. 2.7) and the orthonor-
malization of a new basis vector vj+1 can be done by means of three-term recurrences
which also implies that it is no more necessary to keep all basis vectors in memory. Fur-
thermore, the Hessenberg Matrix H̄m reduces to a tridiagonal matrix T̄m, the solution of
the minimization problem (4.31) simplifies, and the update xm = x0 + Vmy

m in Line 15
of Alg. 4.3 can be accomplished using short recurrences. For a more in-depth description
on how to derive MINRES from GMRES and the algorithmic details we refer to [42],
[50] and [9].

88 The Jacobi-Davidson Method and its Variants

4.2.3.4. QMR and QMRS

The main idea behind the QMR method (Quasi Minimal Residual) introduced by Fre-
und and Nachtigal [40] in 1991 is to use short recurrences also for non-Hermitian
matrices. To this end, they propose to pursue the same approach as for MINRES, but
to use an unsymmetric Lanczos process which produces bi-orthogonal bases Vm and
Wm for the Krylov spaces Km(A, r0) and Km(A∗, r0), i.e. V ∗

mWm = I resp. v∗iwj = δij.
Analogous to the standard Lanczos procedure (Alg. 2.7) the result is a relation of the
form

AVm = Vm+1T̄m (4.36)

in which T̄m is the (m+ 1)×m tridiagonal matrix

T̄m =

[
Tm

δm+1e
∗
m

]
(4.37)

Tm is unsymmetric and Vm is in general no more orthogonal, but by requiring ‖vi‖2 = 1
(i = 1, . . . ,m) we have

‖b− Axm‖2 = ‖b− A(x0 + Vmy
m)‖2

= ‖r0 − AVmy
m‖2

= ‖Vm+1(βe1 − T̄my
m)‖2

≤ ‖Vm+1‖2 · ‖(βe1 − T̄my)‖2
≤
√
m+ 1 · ‖(βe1 − T̄my)‖2 (4.38)

Following the same ideas as for GMRES/MINRES, one can now try to minimize the
second factor in (4.38), i.e.

J(y) = ‖(βe1 − H̄my)‖2 (4.39)

which leads to a quasi minimal residual and explains the name of the method.
The resulting QMR algorithm is twice as expensive as the corresponding MINRES
method, as now in every step two matrix-vector multiplications (involving A and A∗)
are required.
Fortunately, the unsymmetric Lanczos process simplifies considerably, if it is applied to
a J-Hermitian matrix B.

Definition 4.3
A matrix B ∈ Cn is called J-Hermitian, iff there is a matrix J ∈ Cn×n such that
B∗J = BJ

Then only one matrix-vector operation involving the operator B is needed in the unsym-
metric Lanczos process (including one additional operation involving J) (cf. [41]) and
this leads to a simplified version of the QMR method for J-symmetric matrices called
QMRS (Quasi Minimal Residual Simplified). This variant is also due to Freund and
Nachtigal [41] and was proposed in 1994. As we shall see in the following discussion
on preconditioners, the QMRS method is particularly well suited in our context.

4.2 The Basic Jacobi-Davidson Method for Computing one Eigenpair 89

4.2.3.5. Preconditioners

Unfortunately, Krylov subspace methods are often rather slow to converge and they
may exhibit an irregular behavior. On the other hand, it is known from the theory
(see [101], [50]) that the convergence rate of these methods strongly depends on the
spectral properties of the coefficient matrix A ∈ Cn×n. Hence, a possible way to improve
the convergence speed is to transform A into a better-suited matrix. To this end, it is
common to construct a matrix M ≈ A which is referred to as a preconditioner and to
consider the equivalent linear system

M−1Ax = M−1b (4.40)

Effectively, the Krylov method is now applied to the preconditioned operator B :=
M−1A, and consequently, a Krylov subspace

K(M−1A, r0) = span{r0,M−1Ar0, (M−1A)2r0, . . . , (M−1A)m−1r0} (4.41)

related to the preconditioned residual r0 = M−1(b−Ax0) is constructed. The approach in
(4.40) is referred to as left preconditioning. Other possibilities are right preconditioning,
i.e.

AM−1u = b, u = Mx (4.42)

or split preconditioning where a preconditioner is given in factored form M = M1M2.

M−1
1 AM−1

2 u = M−1
1 b, x = M−1

2 u (4.43)

It is natural to ask whether possible savings in the number of iteration steps (which are
not guaranteed) compensate for the costs of setting up M once and multiplying M−1 in
every step of the iteration. Hence, the general difficulty in devising a preconditioner is
to find a matrix M that approximates A reasonably well on the one hand, and which is
both, cheap to construct and cheap to invert, on the other hand. In most cases, one does
not invert M explicitly and realizes the application of the operator M−1 by means of a
user-supplied sub-routine. Preconditioners have emerged as a key ingredient for the suc-
cess of Krylov solvers, and it is no surprise that they represent a wide area for research.
For a general state-of-the-art survey of preconditioning techniques we refer to [11] and
[101]. Unfortunately, there is no general recipe on how to find a good preconditioner,
and often one is most successful in taking advantage of the problem specific situation.
As we employ Krylov solvers for the solution of the Jacobi-Davidson correction equation,
the construction and application of suitable preconditioners is of central importance in
this thesis and we will come back to this aspect later on when we analyze the properties
of the matrices we have to deal with.

When applying a Krylov method to a preconditioned operator B = M−1A one has to
take into account the requirements of the method. In case of MINRES the trouble is
that the preconditioned operator B will be in general no more Hermitian, even if A and

90 The Jacobi-Davidson Method and its Variants

M are. Hence, the method is only applicable, when a positive definite preconditioner
M = LL∗ is available and a split-preconditioning technique according to (4.43) with
B = L−1A(L−1)∗ is employed. Clearly, this is a prohibitive restriction for the case that
A is Hermitian and highly indefinite.

In our situation QMRS is to be preferred over MINRES as the matrices we are dealing
with are in general indefinite (due to the involved shift θ) and so are the preconditioners.
Then working with a Hermitian left preconditioner K and defining B = K−1A, J = K∗

implies
B∗J = A∗(K−1)∗K∗ = A∗ = K∗(K∗)−1A∗ = K∗K−1A = JB (4.44)

Hence, according to Definition 4.3 B = K−1A is J-Hermitian with J = K∗ and the
QMRS method is applicable to the preconditioned operator B.

4.2.3.6. Preconditioning the Correction Equation

We will now discuss in more detail how to use Krylov solvers along with preconditioners
to solve the Jacobi-Davidson correction equation (4.11). To this end, we define the
operator

Ã = (I − uu∗)(A− θI)(I − uu∗) (4.45)

We also have to take into account the projectors for the preconditioner

K̃ = (I − uu∗)K(I − uu∗) (4.46)

where K is an approximation to A such that we arrive at the preconditioned correction
equation

K̃−1Ãv = K̃−1r (4.47)

Before we proceed, it is appropriate to make the following remarks:

• Ã and K̃ are singular operators due to the projections involved. Hence, at first
glance, one has to be careful with the notion preconditioner in this context. For-
tunately, we are looking for solutions in span{u}T , i.e. we are operating in the
orthogonal complement of the singular direction u, such that our considerations in
the following are sensible and all operations are well-defined.

• From (4.46) one recognizes that A is first approximated by K and then the projec-
tions are carried out. As pointed out in [37], this need not necessarily lead to the
best approximation and one could also try to approximate the deflated operator
Ã directly. However, in general there is no straightforward way to do so.

Solving z ⊥ u from

K̃z = Ãv v ⊥ u (4.48)

4.2 The Basic Jacobi-Davidson Method for Computing one Eigenpair 91

seems rather complicated due to the involved projections at first glance. However, it
turns out, that everything amounts to a surprisingly simple computational scheme. First
of all, given an appropriate approximaton K for A let us assume that v ⊥ u (see remark

below). Then the right projector in the first step of the computation of Ãv can be
omitted:

p = (A− θI)v (4.49)

To obtain the final result of the multiplication, the remaining projector is pre-multiplied

Ãv = (I − uu∗)p (4.50)

such that

K̃z = (I − uu∗)p (4.51)

Computing the scalar products and collecting the resulting terms now leads to

Kz = (I − uu∗)p = p− αu
z = K−1p− αK−1u (4.52)

and we can use the already well-known trick (cf. (4.19), (4.20)) and exploit the orthog-
onality requirement z ⊥ u to determine the parameter α:

u∗z = u∗K−1p− αu∗K−1u = 0 (4.53)

α =
u∗K−1p

u∗K−1u
(4.54)

Applying the preconditioner K̃ to the right-hand side of (4.11), i.e. solving r̃ from

K̃r̃ = r (4.55)

can be done along similar lines, i.e.

(I − uu∗)Kr̃ = r

r̃ = K−1r − α′K−1u (4.56)

Following the familiar principle, we can obtain the paramter α′ by exploiting the orthog-
onality condition r̃ ⊥ u:

α′ =
u∗K−1r

u∗K−1u
(4.57)

We summarize the steps (4.49) – (4.57) in the following template for the solution of the
preconditioned correction equation (4.47):

92 The Jacobi-Davidson Method and its Variants

Algorithm 4.4: Solution of the JD correction equation (left-preconditioning)

define operators1

K̃ ≡ (I − uu∗)K(I − uu∗)
Ã ≡ (I − uu∗)(A− θI)(I − uu∗)

solve y from Ky = u , µ = u∗y2

compute r̃ ≡ K̃−1r as3

(a) solve r̂ from Kr̂ = r4

(b) r̃ = r̂ − u∗br
µ
y5

apply a Krylov solver with t0 = 0, operator K̃−1Ã,6

and right-hand side −r̃7

compute z = K̃−1Ãv as:8

(a) p = (A− θI)v9

(b) solve p̂ from Kp̂ = p10

(c) z = p̂− u∗bp
µ
y11

Remark 4.4
• To make sure that we operate in the orthogonal complement of u, it is easiest to

choose t0 = 0 as starting vector for a Krylov solver, as is suggested in the above
template.

• The arising preconditioner operations are highlighted by boxes. Suppose we want
to carry out nLS steps of a Krylov solver (e.g. GMRES) to (approximately) solve the
preconditioned correction equation. Then the number of involved preconditioner
solves amounts to

1 solve for y = K−1u
1 solve for r̂ = K−1r
nLS solves for p̂ = K−1(A− θI)v
nLS + 2 solves altogether

(4.58)

• Strictly speaking, one actually has to construct a new preconditioner K in every
pass of the JD-loop as θ varies and so does (A− θI). In practice, this is often too
time-consuming and luckily it turns out that in many cases it is possible to work
with a fixed approximation K for several shifts θ.

• One may also derive a similar template for the case that one wants to apply a
right preconditioner i.e. ÃK̃−1 (see [8] for details). We will restrict ourselves to
the template above as it is sufficient for our purposes.

2

4.2 The Basic Jacobi-Davidson Method for Computing one Eigenpair 93

4.2.4. Convergence of the Jacobi-Davidson Method

We have already seen that the Jacobi-Davidson method can be interpreted as a subspace
accelerated instance of the Rayleigh quotient iteration (cf. (4.16) and (4.17)), which
explains the rapid convergence of the method if the correction equation (4.11) is solved
exactly. However, as we have pointed out in the related discussion on the RQI in Section
3.1.3, this is only of little practical value, as the exact solution of the related system
is in general much too expensive. Hence, to understand and analyze the convergence
behavior of the JD process as it is actually used in practice, one has to take into account
the following aspects:

• influence of the inexact solution of the correction equation (4.11) involving variable
accuracy requirements

• influence of the preconditioners K

• influence of the subspace acceleration on the convergence behavior

It is not difficult to imagine that this turns out to be a rather complicated matter, and
the convergence theory available up to now (about 10 years after the introduction of
the JD method) is far from mature. For this reason, one can often only give heuristic
motivations for the success of the method. This is especially true of the JDQR method
(an extension of the JD method for computing several eigenpairs) to be discussed in
the sequel. Recent investigations on this topic try to reduce the problem to particular
cases that are easier to deal with. In [123] the Jacobi-Davidson method without subspace
acceleration by means of Rayleigh-Ritz (Alg. 3.12) is analyzed and related to inexact
Rayleigh quotient iterations, for which convergence results are available.
Another interesting observation lies in the fact that the Jacobi-Davidson method can be
interpreted as an inexact (subspace accelerated) Newton scheme, as pointed out in [115]:
The eigenvalue problem is nonlinear. For almost any fixed scaling vectors ũ and w, the
eigenvector x (scaled such that ũ∗x = 1) is the solution of the equation

F (x) = 0 where F (u) = Au− θu and θ = θ(u) =
w∗Au

w∗u
(4.59)

Clearly, the function F is nonlinear and maps the hyper-plane {u | ũ∗u = 1} to the
hyperspace w⊥. Particularly, this means that all residuals r = F (u) are orthogonal to
w. For a given approximation uk (step k) the next Newton approximate uk+1 is now
obtained by

uk+1 = uk + t, where t ⊥ ũ satisfies

(
∂F

∂u

∣∣∣∣
u

)
t = −r = −F (uk) (4.60)

where the Jacobi matrix of F operates on ũ⊥ and is given by(
∂F

∂u

∣∣∣∣
uk

)
t =

(
I − ukw

∗

w∗uk

)
(A− θkI)t t ⊥ ũ (4.61)

94 The Jacobi-Davidson Method and its Variants

This leads to the following correction equation for a Newton step

t ⊥ ũ and

(
I − ukw

∗

w∗uk

)
(A− θkI)t = −r (4.62)

which is already somewhat reminiscent of the Jacobi-Davidson correction equation (4.11),
the difference being that in our derivation ũ and w are kept fixed throughout the Newton
process. From the theory it is known that the iterates uk obtained from (4.62) converge
asymptotically quadratically towards x if the initial guess u1 (ũ∗u1 = 1) is sufficiently
close to x. Now that the error contracts quadratically if uk is close enough to x, the
non-stationary choice ũ = uk and w = uk also results in asymptotic quadratic conver-
gence, and the Newton correction equation (4.62) coincides with the Jacobi-Davidson
correction equation (4.11). Hence, the Jacobi-Davidson method is an inexact Newton
scheme with subspace acceleration. This interpretation also gives additional motivation
for the guidelines on how to solve the correction equation in Section 4.2.3, as solving
the correction equation with increasing accuracy has proven useful for inexact Newton
methods. A more profound and systematic discussion on the relation between Newton
schemes and the Jacobi-Davidson method is given in the book by Stewart [122].

4.3. The JDQR Variants for Computing Several
Eigenpairs

The Jacobi-Davidson method (Alg. 4.2) has attractive convergence properties, but it is
not well-suited for the practical use for the following reasons:

• It is only capable of computing one eigenpair. In practice, and especially in our
situation, we are interested in computing several eigenpairs.

• The dimension of the search space K is not bounded, and hence, one cannot
predict how much memory will be needed for the computation of one eigenpair
with reasonable accuracy.

In the following, we will derive a generalized version of the JD method which was intro-
duced in [37] to remedy these drawbacks.

4.3.1. Deflation

In order to compute more than one eigenpair, one may apply the Jacobi-Davidson method
to a deflated operator. More precisely speaking, we consider

B = (I −QQ∗)A(I −QQ∗) (4.63)

4.3 The JDQR Variants for Computing Several Eigenpairs 95

where

Q = [q1, . . . , qk] ∈ Cn×k (4.64)

holds the eigenvector approximations qi of A computed so far. When we now apply JD
to B, these eigenvectors qi are projected out and will no more appear in the computa-
tional process, provided that the approximations qi are accurate enough. This technique
is called explicit deflation and is recommended in [37], as it works reliably and is numer-
ically stable. Consequently, plugging (4.63) into (4.11) results in a modified correction
equation:

(I − uu∗)(B − θI)(I − uu∗)t = −r
(I − uu∗)(I −QQ∗)(A− θI)(I −QQ∗)(I − uu∗) = −r

or, equivalently,
(I − Q̃Q̃∗)(A− θI)(I − Q̃Q̃∗)t = −r (4.65)

where we define

Q̃ := [Q, u] (4.66)

Using (4.65) as correction equation and appending the detected approximations in Q
now enables us to use the Jacobi-Davidson process in order to compute several eigen-
pairs. The obvious disadvantage of this strategy, however, is that the computation of
subsquent approximations qj (j > k) is getting increasingly expensive the more approx-
imate eigenvectors qi (i = 1, . . . , k) have already been detected.

4.3.2. Restarts

The discussion in this section is somewhat reminiscent of the motivation for the implicitly
restarted Lanczos method (IRLM) in Section 3.3.2.2, the difference being that we need
not preserve any structure like the Lanczos relation (2.57), which is the backbone of
the IRLM. This gives us more freedom on how to accomplish a restart in case of the
Jacobi-Davidson method. As we shall see later on, when we compare the IRLM and
restarted JD variants, the approach discussed in the following turns out to be superior
in the context of our eigenvalue problems. In analogy to the related discussion on the
Lanczos method, one could make use of explicit restart techniques, which employ the
most recent approximation u in Alg. 4.2 as a new starting vector t0 and discard the
search space K built up so far, when the dimension of K reaches a pre-defined upper
boundmmax. However, we may lose hard-won information, when we remove the complete
subspace. In many cases the subspace K will already contain valuable information on
nearby eigenvectors to be computed in subsequent steps. Hence, it might be wiser not to
recompute K from scratch, but to impose a lower bound mmin > 1 on the dimension of K
and to retain mmin vectors of K potentially containing the most interesting information.
To this end, we will pursue a more sophisticated strategy, and to see how the restart
is accomplished, let us assume that we have computed an orthogonal matrix V whose

96 The Jacobi-Davidson Method and its Variants

columns are the basis of the search space K where dimK = mmax. Let W = AV , M be
the interaction matrix M = W ∗V = V ∗AV and

S∗MS = Θ = diag(θ1, θ2, . . . , θmmax), θ1 ≤ θ2 . . . ≤ θmmax (4.67)

the eigendecomposition of M . If we now use the mmin leading columns of S, i.e. the
eigenvectors related to the mmin smallest eigenvalues of M , and define

S̃ := S(: , 1 : mmin) (4.68)

then we obtain a basis Ṽ of the shrinked subspace by

Ṽ := V · S̃ (4.69)

and, correspondingly,
W̃ := W · S̃ (4.70)

In other words, we use the Ritz vectors obtained from the eigenvectors assembled in S̃ as
a new basis for the shrinked search space K̃. As the eigenvectors in S (and consequently

the eigenvectors in S̃) are stored according to the related eigenvalues which are presumed

to be ordered by ascending magnitude, the resulting Ritz vectors in Ṽ actually contain
the information of interest, i.e. the search directions related to the smallest eigenvalue
approximations. Furthermore, the scheme given by (4.69), (4.70) has the advantage that

we can easily compute the new interaction matrix M̃ :

M̃ = W̃ ∗Ṽ = S̃∗W ∗V S̃ = S̃∗MS̃ = diag(θ1, θ2, . . . , θmmin
) (4.71)

This restart approach allows to control the dimension of the search space by imposing

mmin ≤ dimK ≤ mmax (4.72)

As a by-product, the storage requirements for the basis vectors stored in V , the related
matrix W and the interaction matrix M are kept limited as well. Unlike the IRAM
or the IRLM methods implemented in the ARPACK software package [76] the JDQR
variants of the Jacobi-Davidson method presented in the following are almost insensitive
with regard to changes in these parameters. Another important difference is that the
dimension of the search space K need not be chosen to be larger than the number
of sought-after eigenvalues kmax as is the case for the IRLM/IRAM methods. In our
numerical experiments it was sufficient to work with mmin = 15 and mmax = 20, and
rather surprisingly, this choice worked constantly well, independent of the problem size
n and the number of desired eigenvalues kmax.

4.3.3. Standard JDQR

We are now in a position to formulate the JDQR method (Alg. 4.5) which incorporates
the deflation and restart techniques developped above and which is a straightforward

4.3 The JDQR Variants for Computing Several Eigenpairs 97

extension (see [37]) of the basic Jacobi-Davidson method (Alg. 4.2) introduced in Section
4.2:

Algorithm 4.5: Jacobi-Davidson method for the kmax eigenpairs (JDQR)

choose suitable parameters 1 < mmin < mmax < n, for example mmin = 15, mmax = 201

choose starting vector t = v0 and target value τ2

k = 0, m = 0, Q = [], M = [], V = [], W = []3

while k < kmax do4

m = m + 15

vm = orth(V, t) ; /* orthonormalization by means of Alg. 2.5 */6

wm = Avm7

M =
[

M V ∗wm

w∗
mV v∗mwm

]
8

V = [V, vm], W = [W,wm]9

compute sorted eigendecomposition M = SΘS∗:10

|θi − τ | ≥ |θi−1 − τ |, i = 1, . . . ,m
u = V s1, w = Ws1, r = w − θ1u11

while ‖r‖2 ≤ ε do12

λ̃k+1 = θ1, Q = [Q, u], k = k + 113

if k = kmax then14

stop15

end if16

V = V · S[: , 2 : m], W = W · S[: , 2 : m]17

M = diag(θ2, . . . , θm)18

m = m− 119

for i = 1, . . . ,m do20

θi = θi+121

end for22

u = v1, r = w1 − θ1u23

end while24

if m ≥ mmax then25

V = V · S[: , 1 : mmin], W = W · S[: , 1 : mmin]26

M = diag(θ1, . . . , θmmin)27

m = mmin28

end if29

θ = θ1, Q̃ = [Q, u]30

solve t ⊥ Q̃ (approximately) from:31

(I − Q̃Q̃∗) (A− θI) (I − Q̃Q̃∗) t = −r

end while32

To conclude, let us now briefly comment on some technicalities and details:

Remark 4.5
• To realize the restart scheme, we require a sorted eigendecomposition, i.e. the

eigenvalues have to be arranged by ascending magnitude and the eigenvectors
must be stored correspondingly (Line 10 of Alg. 4.5).

• Upon detection of an approximate eigenpair, the following steps have to be taken:
The detected approximate eigenvector u is appended to Q. Besides, the first col-

98 The Jacobi-Davidson Method and its Variants

umn of S, in which the related eigenvector of the interaction matrix M is stored,
has to be removed, i.e. S̃ = S[:, 2 : m] and V and W have to be shrinked using
(4.69) and (4.70). Finally, the interaction matrix M has to be updated corre-
spondingly (Lines 26-4.5 of 4.5).

• Furthermore, we introduce a target value τ , which aims at the computation of
kmax eigenpairs nearest τ . For τ = 0 the kmax smallest eigenpairs in modulus
are computed. Choosing some τ > 0 amounts to computing interior eigenvalues.
However, it will turn out that it is more advisable to choose the preconditioned
variants along with refined or harmonic extraction for this purpose.

• The appellation JDQR (cf. [37]) is an abbreviation for Jacobi-Davidson QR and
indicates that the method can be regarded as an iterative approach for the QR
method (Algorithm 3.7).

• Using the same restart and deflation techniques one can derive a related scheme
for the Davidson method (Alg. 3.17).

2

4.3.4. Convergence of the JDQR Method

Similar to the basic Jacobi-Davidson method we can again only give a heuristic mo-
tivation for the sucess of the method when it comes to computing several subsequent
eigenpairs, and to this end, we review the argumentation given in [37]. We consider the
case that A is symmetric and for the sake of simplicity let us assume that the eigenvalues
are all simple, ordered by ascending magnitude

λ1 < λ2 < . . . < λn (4.73)

and that the Jacobi-Davidson correction equation (4.11) is solved exactly. As discussed
in Section 4.2.2.1, this leads to the following subspace expansion

t = α(A− θI)−1u− u (4.74)

where the orthogonality constraint t ⊥ u implies that

α =
1

u∗(A− θI)−1u
(4.75)

Writing u as linear combination of the eigenvectors xi

u =
n∑

i=1

γixi (4.76)

we obtain

(A− θI)−1u =
n∑

i=1

γi

λi − θ
xi (4.77)

4.3 The JDQR Variants for Computing Several Eigenpairs 99

Without loss of generality we may assume that γi 6= 0, because u is a Ritz vector, which
means that from γi = 0 it follows that either ∠(xi, V) = 0 or ∠(xi, V) = π

2
. The

latter case is rather unlikely to happen due to rounding errors and the first case only
occurs upon full convergence. It is plain to see from (4.77) that eigenvector components
corresponding to eigenvalues closer to θ are more amplified. The component of the
resulting vector which is orthogonal to u is used as a new search direction and basis
vector for the Ritz basis V . When u is on its way to converge to x1, it has a large
component in direction of x1, and thus, makes a small angle with it. This in turn has
the consequence that other components than x1 in t necessarily become dominant, in
other words:

t ∼
n∑

i6=1

γi

λi − θ
xi (4.78)

This phenomenon is ilustrated in Figure 4.1 where the dash-dotted lines represent the
amplification factors 1/|λi − θ| for the components in the direction of xi (i = 2, 3, 4).
The same argumentation also carries over to the subsequent eigenpairs. If the angle
∠(x2, V) becomes very small, then the corresponding γ2 will be tiny as well, and other
components will become dominant due to orthogonalization. We see that convergence to
one eigenpair enriches the search space with valuable information on nearby eigenpairs
to be detected in subsequent steps of the iteration, which also justifies the need for a
restarting scheme that tries to retain information of interest.

Figure 4.1.: Amplification factors of eigenvectors

θ=u*Au

am
pl

ifi
ca

tio
n

fa
ct

or

1/|λ
2
−θ

curr
|

1/|λ
3
−θ

curr
|

1/|λ
4
−θ

curr
|

θ
curr

4.3.5. Preconditioning the Deflated Correction Equation

Again we need to discuss how a preconditioned Krylov solver like GMRES, QMR, MIN-
RES etc. may be applied to the deflated correction equation (4.65). Basically, we can

100 The Jacobi-Davidson Method and its Variants

follow the same ideas as for the single vector Jacobi-Davidson correction equation pre-
sented in Section 4.2.3.6. However, things are now more complicated due to the more
involved projections. We consider

Ã = (I − Q̃Q̃∗)(A− θI)(I − Q̃Q̃∗) (4.79)

along with a suitable approximation

K̃ = (I − Q̃Q̃∗)K(I − Q̃Q̃∗) (4.80)

and the preconditioned correction equation

K̃−1Ãv = K̃−1r (4.81)

We first consider the left-hand side, i.e. we solve z ⊥ Q̃ from

K̃z = Ãv, v ⊥ Q̃ (4.82)

To obtain Ãv we first compute
p = (A− θI)v (4.83)

where we can leave out the right projector (because v ⊥ Q̃), and finally,

Ãv = (I − Q̃Q̃∗)p (4.84)

such that we arrive at:
K̃z = (I − Q̃Q̃∗)p (4.85)

The difference with the single vector case is now that we make use of an auxiliary vector
~α instead of the corresponding scalar α in (4.52) to simplify the above equation:

Kz = p−Q~α
z = K−1p−K−1Q̃~α (4.86)

In analogy to (4.54) we can exploit the orthogonality constraint z ⊥ Q̃ in order to
determine ~α

Q̃∗z = Q̃∗K−1p− Q̃∗K−1Q̃~α = 0 (4.87)

~α = (Q̃∗K−1Q̃)−1Q̃∗K−1p (4.88)

The same ideas also apply for the right-hand side, hence

K̃r̃ = r

r̃ = K−1r −K−1Q̃~α′ (4.89)

and
~α′ = (Q̃∗K−1Q̃)−1Q̃∗K−1r (4.90)

We can now arrange the relations (4.83) – (4.90) in a scheme for the application of a
preconditioned Krylov method in one pass of the JDQR loop to solve the preconditioned
correction equation (4.81):

4.3 The JDQR Variants for Computing Several Eigenpairs 101

Algorithm 4.6: Solution of the deflated correction equation (left-preconditioning)

Define operators1

K̃ ≡ (I − Q̃Q̃∗)K(I − Q̃Q̃∗)

Ã ≡ (I − Q̃Q̃∗)(A− θI)(I − Q̃Q̃∗)

solve Ỹ from KỸ = Q̃2

compute H̃ = Q̃∗Ỹ3

LU-factorize H̃ = LU4

compute r̃ ≡ K̃−1r as5

(a) solve r̂ from Kr̂ = r6

(b) ~γ = Q̃∗r̂7

solve ~β from L~β = ~γ8

solve ~α from U~α = ~β9

(c) r̃ = r̂ − Ỹ ~α10

apply a Krylov solver with t0 = 0, operator K̃−1Ã,11

and right-hand side −r̃12

compute z = K̃−1Ãv as:13

(a) p = (A− θI)v14

(b) solve p̂ from Kp̂ = p15

(c) ~γ = Q̃∗p̂16

solve ~β from L~β = ~γ17

solve ~α from U~α = ~β18

(d) z = p̂− Ỹ ~α19

Remark 4.6
• Storing the approximate eigenvectors in the above computational scheme becomes

twice as expensive, since for every detected approximate eigenvector a precondi-
tioned counterpart is required.

• Applying nLS steps of a Krylov solver for the approximate solution of the correction
equation leads to the following number of preconditioning operations (highlighted
by boxes in the above template):

k + 1 solves for Ỹ = K−1Q̃
1 solve for r̂ = K−1r
nLS solves for p̂ = K−1(A− θI)v
nLS + k + 2 solves altogether

(4.91)

• In comparison to the related single-vector scheme described in Algorithm 4.4 (cf.
the related table in (4.58)) k additional operations for preconditioning the eigen-
vectors assembled in Q have to be invested. Furthermore, an LU factorization of

102 The Jacobi-Davidson Method and its Variants

H̃ is required to carry out the multiplication by H̃−1. Fortunately, the arising
costs O(k3) for the latter are negligible, provided that k � n.

2

4.3.6. Variants of JDQR Using a Fixed Preconditioner

Working with a variable preconditioner (for different shifts θ) implies that Ỹ and H̃ in
Algorithm 4.6 have to be recomputed each time K changes, which is cumbersome and
much too expensive. Hence, one will attempt to work with a fixed preconditioner as long
as possible to avoid computational overhead. On the other hand, the preconditioner K
cannot be expected to have constant qualitity, since it is constructed as an approximation
to a matrix A− τI with a fixed shift τ , and A− θI varies in every pass of the JD loop
such that the distance |θ − τ | gradually increases. However, rather surprisingly, our
experiments have shown that this approach enables us to compute several hundreds of
eigenpairs, even if K is held constant for a long time. We shall see this later on in Section
7.5 (see Table 7.14 and Fig. 7.15), when we discuss the application of the algorithm in
the context of our situation. Until now, no satisfactory theoretical explanation for this
phenomenon is available, and again, we have to resort to a heuristic motivation (cf. [37]):
Suppose that the preconditioner K is determined by the splitting

(A− τI) = K −R (4.92)

Then applying the projections it follows

(I − Q̃Q̃∗)(A− θI)(I − Q̃Q̃∗) =

(I − Q̃Q̃∗)K(I − Q̃Q̃∗)

− (I − Q̃Q̃∗)R(I − Q̃Q̃∗)− (τ − θ)(I − Q̃Q̃∗) (4.93)

On the one hand, the preconditioning error is enlarged by an additive part with small
shift (τ − θ), but on the other hand the projections reduce the error represented by
R by filtering out detected eigenvectors. In other words, if R is large with respect to
eigenvectors corresponding to eigenvalues near τ , then the projected error matrix (I −
Q̃Q̃∗)R(I − Q̃Q̃∗) will be significantly smaller. In these situations the only deterioration
is a small shift due to τ − θ.
Thus, the observations made in experiments along with the theoretical motivation in-
dicate that is rewarding to develop variants of the JDQR method working with a fixed
preconditioner K. They turn out to be well-suited and flexible for the practical use and
all our numerical experiments related to the Jacobi-Davidson approach will be based on
one of these variants.

4.3.6.1. Preconditioned Jacobi-Davidson Correction Equation

Under the assumption that the approximationK ≈ A is held fixed throughout the JDQR
algorithm it is possible to derive a preconditioned version of the deflated correction

4.3 The JDQR Variants for Computing Several Eigenpairs 103

equation (4.65). For the sake of simplicity we introduce the short-hand notations (as in

the definition of Q̃ in (4.66)), where matrices with a tilde denote temporarily expanded

matrices whose last columns (and in case of H̃ also the last row) change in every pass
of the iteration scheme:

y = K−1u (4.94)

Y = K−1Q (4.95)

Ỹ = K−1Q̃ = K−1(Q, u) = (K−1Q,K−1u) = (Y, y) (4.96)

H = Q∗Y (4.97)

H̃ = Q̃∗Ỹ (4.98)

First of all, the straightforward application of the above definitions in (4.98) reveals how

to determine H̃ from H:

H̃ = Q̃∗Ỹ = [Q, u]∗ [K−1Q,K−1u]

=

[
Q∗K−1Q Q∗K−1u
u∗K−1Q u∗K−1u

]
=

[
H Q∗y
u∗Y u∗y

]
(4.99)

Thus, all one has to do is append one row, one column and the right bottom element
which amounts to two matrix-vector operations and one inner product. Following the
same principles, one can also update H when a new eigenvector approximation has been
detected. Let us now again turn our attention to the computation of the left-hand side of
(4.81): Plugging (4.83) and (4.88) into (4.86) and using the abbreviations (4.98), (4.96)
yields:

K̃−1Ãv = K−1(A− θI)v −K−1Q̃(Q̃∗K−1Q̃)−1Q̃∗K−1(A− θI)v
= K−1(A− θI)v − Ỹ H̃−1Q̃∗K−1(A− θI)v
= (I − Ỹ H̃−1Q̃∗)K−1(A− θI)v (4.100)

As v ⊥ Q̃ we can again insert a skew projection, hence

K̃−1Ãv = (I − Ỹ H̃−1Q̃∗)K−1(A− θI)(I − Ỹ H̃−1Q̃∗)v (4.101)

The right-hand side of (4.81) can be computed more explicitly as well, and combining
(4.89), (4.90) with (4.98) and (4.96) gives:

K̃−1r = −(I − Ỹ H̃−1Q̃∗)K−1 r (4.102)

Equating the left-hand side (4.101) and the right-hand side (4.102) of (4.81), we finally
arrive at the preconditioned version of the deflated correction equation (4.65):

(I − Ỹ H̃−1Q̃∗)K−1 (A− θI) (I − Ỹ H̃−1Q̃∗) t = −(I − Ỹ H̃−1Q̃∗)K−1 r (4.103)

104 The Jacobi-Davidson Method and its Variants

4.3.6.2. Preconditioned Standard JDQR

We have to make the following extensions and changes in the template for the JDQR
algorithm (Alg. 4.5) to obtain a variant working with a fixed preconditioner K which is
described in Algorithm 4.7:

• in every pass of the loop one has to compute the temporarily expanded matrices
Ỹ by appending ỹ = K−1u and H̃ by means of (4.99)

• whenever an eigenpair (λ, q) is detected, one has to update Y by appending y =
K−1q and H has to be expanded following the principles in (4.99)

• the deflated correction equation (4.65) has to be replaced by its preconditioned
counterpart (4.103)

4.3.6.3. Preconditioned Refined JDQR

Let us now come back to the computation of eigenvalues in the interior of the spectrum.
In Section 3.3.1 we introduced alternatives to the Rayleigh-Ritz procedure (Alg. 3.12)
which may lead to better results when looking for interior eigenvalues of A near a target
value τ > 0. In the following, we will briefly discuss how to adapt the previously derived
preconditioned JDQR Algorithm 4.7 to a variant using refined extraction described in
Alg. 4.8:

• According to Algorithm 3.14, a singular value decomposition Ŵ = R̂∗ΣŜ of Ŵ =
W − θ1V is required in order to obtain a refined Ritz vector u = V ŝ1 related to the
smallest Ritz value θ1.

• As per Definition 3.19 one uses the Rayleigh quotient θ = u∗Au/‖u‖22 as refined
Ritz value and improved eigenvalue approximation.

• The main difference with Algorithm 4.7 now lies in the realization of restarts when
the maximal dimension mmax of the search space K is reached, or when an approx-
imate eigenpair is detected. To this end, one now uses the right singular vectors of
Ŵ , which are assembled in Ŝ, instead of the eigenvectors of the interaction matrix
M stored in S. Replacing all occurences of S by Ŝ the restart technique devel-
opped in Section 4.3.2 and incorporated in Alg. 4.7 almost directly carries over
to the refined variant. The only exception is the explicit re-computation of the
updated interaction matrix by the matrix-matrix product M = V ∗W on restart
(Line 31) resp. on detection of an approximate eigenpair (Line 25).

• The approach presented in Alg. 4.8 is novel and goes beyond the algorithm pro-
posed in [36], in which a refined variant of the basic Jacobi-Davidson method (Alg.
4.2) without preconditioning is described.

4.3 The JDQR Variants for Computing Several Eigenpairs 105

Algorithm 4.7: Standard JDQR incorporating left preconditioning

choose suitable parameters 1 < mmin < mmax < n1

choose starting vector t = v0 and target value τ2

k = 0, m = 0, Q = [], Y = [], H = [], M = [], V = [], W = []3

while k < kmax do4

m = m + 15

vm = orth(V, t) ; /* orthonormalization by means of Alg. 2.5 */6

wm = Avm7

M =
[

M V ∗wm

w∗
mV v∗mwm

]
8

V = [V, vm], W = [W,wm]9

compute sorted eigendecomposition M = SΘS∗:10

|θi − τ | ≥ |θi−1 − τ |
u = V s1, w = Ws1, r = w − θ1u11

while ‖r‖2 ≤ ε do12

λ̃k+1 = θ1,13

y = K−1u14

H =
[

H Q∗y
u∗Y u∗y

]
15

Q = [Q, u], Y = [Y, y], k = k + 116

if k = kmax then17

stop18

end if19

V = V · S[: , 2 : m], W = W · S[: , 2 : m]20

M = diag(θ2, . . . , θm)21

m = m− 122

for i = 1, . . . ,m do23

θi = θi+124

end for25

u = v1, r = w1 − θ1u26

end while27

if m ≥ mmax then28

V = V · S[: , 1 : mmin], W = W · S[: , 1 : mmin]29

M = diag(θ1, . . . , θmmin
)30

m = mmin31

end if32

ỹ = K−1u33

H̃ =
[

H Q∗ỹ
u∗Y u∗ỹ

]
34

Q̃ = [Q, u], Ỹ = [Y, ỹ], θ = θ135

solve t ⊥ Q̃ (approximately) from:36

(I − Ỹ H̃−1Q̃∗) K−1 (A− θI) (I − Ỹ H̃−1Q̃∗) t = −(I − Ỹ H̃−1Q̃∗) K−1 r37

end while38

106 The Jacobi-Davidson Method and its Variants

Algorithm 4.8: Refined JDQR incorporating left preconditioning

choose suitable parameters 1 < mmin < mmax < n1

choose starting vector t = v0 and target value τ2

k = 0, m = 0, Q = [], Y = [], H = [], M = [], V = [], W = []3

while k < kmax do4

m = m + 15

vm = orth(V, t) ; /* orthonormalization by means of Alg. 2.5 */6

wm = Avm7

M =
[

M V ∗wm

w∗
mV v∗mwm

]
8

V = [V, vm], W = [W,wm]9

compute sorted eigendecomposition M = SΘS∗:10

|θi − τ | ≥ |θi−1 − τ |
Ŵ = W − θ1V11

compute sorted singular value decomposition Ŵ = R̂∗ΣŜ12

Σ = diag (σ1, . . . , σm), σ1 ≤ σ2 ≤ . . . σm13

u = V ŝ1, w = Wŝ114

θ = u∗w/‖u‖22, r = w − θu15

while ‖r‖2 ≤ ε do16

λ̃k+1 = θ,17

y = K−1u18

H =
[

H Q∗y
u∗Y u∗y

]
19

Q = [Q, u], Y = [Y, y], k = k + 120

if k = kmax then21

stop22

end if23

V = V · Ŝ[: , 2 : m], W = W · Ŝ[: , 2 : m]24

M = V ∗W25

u = v1, θ = u∗w1/‖u‖22, r = w1 − θu26

m = m− 127

end while28

if m ≥ mmax then29

V = V · Ŝ[: , 1 : mmin], W = W · Ŝ[: , 1 : mmin]30

M = V ∗W31

m = mmin32

end if33

ỹ = K−1u34

H̃ =
[

H Q∗ỹ
u∗Y u∗ỹ

]
35

Q̃ = [Q, u], Ỹ = [Y, ỹ], θ = θ136

solve t ⊥ Q̃ (approximately) from:37

(I − Ỹ H̃−1Q̃∗) K−1 (A− θI) (I − Ỹ H̃−1Q̃∗) t = −(I − Ỹ H̃−1Q̃∗) K−1 r38

end while39

4.3 The JDQR Variants for Computing Several Eigenpairs 107

Algorithm 4.9: Harmonic JDQR incorporating left preconditioning

choose suitable parameters 1 < mmin < mmax < n1

choose starting vector t = v0 and target value τ2

k = 0, m = 0, Q = [], Y = [], H = [], M = [], V = [], W = [],3

while k < kmax do4

w = (A− τI)t5

for i = 1, . . . ,m do6

γ = w∗
i w, w = w − γwi, t = t− γvi7

end for8

m = m + 1, wm = w/‖w‖2, vm = t/‖w‖29

M =
[

M W ∗vm

v∗mW w∗
mvm

]
10

V = [V, vm], W = [W,wm]11

compute sorted eigendecomposition M = SΘ̃S∗:12

θ̃1 ≤ θ̃2 ≤ . . .
ũ = V s1, µ = ‖ũ‖2, u = ũ/µ, ϑ = θ̃1/µ213

w = Ws1, r = w̃/µ− ϑu14

while ‖r‖2 ≤ ε do15

λ̃k = ϑ + τ ,16

y = K−1u17

H =
[

H Q∗y
u∗Y u∗y

]
18

Q = [Q, u], Y = [Y, y], k = k + 119

if k = kmax then20

stop21

end if22

V = V · S[: , 2 : m], W = W · S[: , 2 : m]23

M = diag(θ̃2, . . . , θ̃m)24

m = m− 125

for i = 1, . . . ,m do26

θ̃i = θ̃i+127

end for28

µ = ‖v1‖2, ϑ = θ̃1/µ2, u = v1/µ, r = w1/µ− ϑu29

end while30

if m ≥ mmax then31

V = V · S[: , 1 : mmin], W = W · S[: , 1 : mmin]32

M = diag(θ̃1, . . . , θ̃mmin
)33

m = mmin34

end if35

ỹ = K−1u36

H̃ =
[

H Q∗ỹ
u∗Y u∗ỹ

]
37

Q̃ = [Q, u], Ỹ = [Y, ỹ], θ = ϑ + τ38

solve t ⊥ Q̃ (approximately) from:39

(I − Ỹ H̃−1Q̃∗) K−1 (A− θI) (I − Ỹ H̃−1Q̃∗) t = −(I − Ỹ H̃−1Q̃∗) K−1 r40

end while41

108 The Jacobi-Davidson Method and its Variants

4.3.6.4. Preconditioned Harmonic JDQR

To obtain a harmonic version (Alg. 4.9) of the preconditioned JDQR method, the fol-
lowing changes have to be made in Algorithm 4.7:

• Using the harmonic Rayleigh-Ritz procdure (Alg. 3.13), one has now to compute
shifted matrix-vector products (A− τI)v, and the columns of W are orthonormal-
ized along with the corresponding transformation of V (lines 6-9). This makes the
harmonic version slightly more expensive than the standard variant (Alg. 4.7). All
other costs remain identical.

• One has to be careful with a harmonic Ritz vector u = V s computed in compliance
with Definition 3.17. As the columns of V are not orthonormal, u has to be
normalized in Line 13 of Algorithm 4.9 in order to make it compatible for the
correction equation, where the current approximation u is required to have unit
norm. Furthermore, one does not use the harmonic Ritz value θ̃1 computed in line
12, but the Rayleigh quotient ϑ related to the normalized harmonic Ritz vector u:

ϑ =
ũ∗Aũ

‖ũ‖22
=
s∗1V

∗AV s∗1
‖ũ‖22

=
s∗1W

∗V s∗1
‖ũ‖22

=
s∗1Ms∗1
‖ũ‖22

=
θ̃1

‖ũ‖22
(4.104)

• When the residual r has reached the desired accuracy, then the actual eigenvalue
approximation λ̃ is obtained by re-adding the target value τ , i.e. λ̃ = ϑ+ τ .

4.3.7. Storage Requirements and Computational Costs

In the following, a summary and a brief discussion of the arising costs for the previously
derived preconditioned JDQR variants (Algorithms 4.7, 4.8 and 4.9) is given. Let us
remind that we denote by

• n the problemsize (i.e. the dimension of the matrix A under consideration)

• k the number of eigenpairs detected so far, where 0 ≤ k ≤ kmax

• m the current dimension of the search space, where mmin ≤ m ≤ mmax.

• ` the avarage number of nonzero elements per row of A

The following table gives a survey of the storage requirements, i.e. the amount of memory
that has to be allocated in a computer code for the matrices and vectors listed below.
Working with double-precision variables, for instance, implies that the proportionality
constant in the O-notation is 8, which is exactly the memory requirement in bytes for
storing one double variable.

4.3 The JDQR Variants for Computing Several Eigenpairs 109

Table 4.1.: Storage requirements for the preconditioned JDQR methods

Matrix Description / Formula Costs Std. Ref. Harm.

Q̃ eigenvector approximations O(kmax · n) X X X
Ỹ preconditioned eigenvector approximations O(kmax · n) X X X
H̃ H̃ = Q̃∗Ỹ O(k2

max) X X X
H̃−1 LU decomposition of H̃ is required O(k2

max) X X X
V basis vectors for K O(mmax · n) X X X
W W = AV O(mmax · n) X X X
M M = V ∗W = V ∗AV (interaction matrix) O(m2

max) X X X
S eigenvectors of M O(m2

max) X X X
Ŵ Ŵ = W − θ1V O(mmax · n) X
Ŝ right singular vectors of Ŵ O(mmax · n) X

u, v, w, y several vectors O(n) X X X

Finally, it is appropriate to have a closer look at the computational process in the pre-
conditioned standard JDQR method (Alg. 4.7). Most of what is stated in the following
is also true of the refined and harmonic variants. However, as already emphasized in
the preceding sections, the latter are slightly more expensive and we will point out the
differences at the corresponding positions in the following itemization. First of all, the
costs arising anyway in every pass of the JDQR loop amount to

• costs for updating the matrices V , W and M

1. orthogonalization of new basis vector vm against V O(nm)

2. update of matrix W by appending the vector wm = Avm O(`n)

3. update of interaction matrix M by

a) appending the column V ∗wm O(nm)

b) appending the right bottom element v∗mwm O(n)

Note that in case of the harmonic JDQR variant wm is made orthogonal to W
and vm is transformed accordingly, such that the corresponding costs in 1. are
about 11

2
times higher, the order of magnitude of work to be invested remaining

the same.

• costs for computing Ritz vectors, Ritz values and residual

1. complete eigensystem of M O(m3)

2. Ritz vector u = V s and related vector w = Ws O(nm)

3. residual r = w − θu O(n)

In case of the refined JDQR variant, additional work for computing an SVD of
Ŵ = W − θ1V (costs O(nm2)) and the computation of a refined Ritz vector (costs
O(nm)) has to be invested.

110 The Jacobi-Davidson Method and its Variants

• costs for solving the preconditioned correction equation

1. 2 preconditioner solves for ỹ = K−1u and r̃ = K−1r

2. update of auxiliary matrix H̃ by

a) appending the column Q∗ỹ O(nk)

b) appending the row u∗Y O(nk)

c) appending the right bottom element u∗ỹ O(n)

3. LU factorization of H̃ O(k3)

4. applying nLS steps of a Krylov solver

a) nLS preconditioner solves

b) nLS matrix-vector operations involving A O(nLS `n)

c) nLS skew projections I − Ỹ H̃−1Q̃∗ O((nLS (k2 + 2kn))

d) additional costs depending on the choice of solver

We see that keeping the preconditioner K fixed leads to the intended savings in the com-
putational process, since preconditioned eigenvector approximations detected in previous
steps can be saved in Y and re-used in the subsequent computations of the algorithm. In
other words, only two new preconditioner operations in one pass of the loop have to be
carried out, as it is the case for the single-vector scheme described in Alg. 4.4. However,
it also becomes evident that the required operations for solving the correction equation
depend on the number of detected approximations k. When k increases and is no more
small in comparison to n, this can become rather time-consuming. Thus, for the sake of
efficiency, the number of sought-after eigenpairs kmax should not be chosen to large.

In case of a restart, i.e. when m ≥ mmax we have to take into account

• costs for shrinking the matrices V and W

1. Ṽ = V · S[: , 1 : mmin] O(n mmax mmin)

2. W̃ = W · S[: , 1 : mmin] O(n mmax mmin)

• update of M no costs
Note that in the refined case M has to be explicitly
re-computed as M = V ∗W , involving O(nm2) additional work.

Finally, on detection of an approximate eigenpair (θ, u) one has to consider

• costs for shrinking the matrices V and W

1. Ṽ = V · S[: , 2 : m] O(n m2)

2. W̃ = W · S[: , 2 : m] O(n m2)

3. M is updated by shifting the diagonal entries by one position O(m)
Using the refined variant M has to be re-computed
as M = V ∗W , the costs being O(nm2)

4.4 Summary and Guidelines for the Practical Use 111

4.4. Summary and Guidelines for the Practical Use

The previously discussed JDQR variants working with a fixed preconditioner K (Al-
gorithms 4.7, 4.8 and 4.9) are the algorithms of choice for the practical use as they
are most flexible and contain all other variants discussed so far as particular cases.
For K = I the preconditioned JDQR algorithm simplifies to the basic JDQR method
(Alg. 4.5) and looking for only one eigenpair amounts to the originally introduced basic
Jacobi-Davidson method (Alg. 4.2). In principle, preconditioning need not necessarily
be incorporated, but all numerical experiments have shown that it is mandatory in our
situation to make the method converge at all. Thus, to apply the method the user has
to supply

• a subroutine for matrix-vector multiplication

• a subroutine for a preconditioner solve

and we will see that the proper implementation and efficient design of these algorithmic
ingredients is crucial for the success in practice.

4.4.1. Choice of the Parameters

Apart from the choice of a possible preconditioner and the implementation of the matrix-
vector multiplication, the user can influence the behavior of the preconditioned JDQR
methods by a couple of parameters and switches which are listed below along with the
choices that we actually employ in our numerical experiments:

1. required accuracy for JD-residual tol = 10−10

2. minimal dimension of search space V : mmin = 15

3. maximal dimension of search space V : mmax = 20

4. maximal number of solver steps : lmax = 5

5. use subspace expansion according to Olsen when ‖r‖2 ≥ 10−3, otherwise use Krylov
solver and demand tolLGS = 0.7k in the kth pass of the JD-loop

6. Krylov solvers: MINRES, GMRES, QMRS (see the following discussion)

7. extraction methods: standard, harmonic, refined (see the following discussion)

The parameter choices 1.-5. regarding subspace dimension, solver steps and accuracy
have proven of value in practice. For a more detailed discussion on how changes may
affect the convergence behavior see [114], [44]. In the following, we comment slightly in
more detail on the choice of the Krylov solver and the extraction method.

112 The Jacobi-Davidson Method and its Variants

We will give numerical evidence to the following recommendations by means of some
example computations. They all refer to the following medium-sized model problem,
which is an anticipation of our discussion in the Chapters 6 et seqq., the construction
will be explained in Section 6.4 and systematic numerical experiments will be presented
in Chapter 7.

Problem 4.7 (Model problem)
We consider an MgNC molecule and want to compute its rovibronic engery levels related
to the smallest rotational quantum number J = 1/2 and the parameters S = 1/2 and
Γrve = A′. To obtain results with reasonable accuracy we employ a large vibrational
basis set (”big basis”, cf. Table 6.5) whose size is determined by the parameters

N (lim)
r = 16, N

(lim)
R = 6, (va

2)
(lim) = 31, (vb

2)
(lim) = 31 (4.105)

In Section 6.3 (cf. Alg. 6.3) we will see that this choice leads to a real-symmetric matrix
H(J,S,Γrve) (called Hamiltonian matrix) with the dimension n = 11904. It consists of three
dense square blocks on the diagonal (two (2976 × 2976)-blocks and one (5952 × 5952)
block) whose Frobenius norms are large as compared to the off-diagonal blocks which
are either sparse or even zero. Full details on the structure of the Hamiltonian matrices
(sparsity pattern, distribution of information, etc.) arising in our computations will be
given in Chapter 6 and Section 7.1.
In the following examples we employ a simple block Jacobi preconditioner which is
constructed from the three dense blocks on the diagonal (a precise specification will be
given in Section 7.5.1.1, Def. 7.13). 2

4.4.2. Choice of the Krylov Solver

Formally, the MINRES method is suited for our purposes, because we are interested in
solving linear systems with symmetric indefinite coefficient matrices. However, as we
have already exposed in Section 4.2.3.5, a positive definite preconditioner is required in
order to assure the symmetry of the preconditioned operator. This is rather restrictive,
and only meets our situation when one wants to compute kmax smallest eigenvalues as
the initial fixed preconditioner is then positive definite. Our experiments have shown
that MINRES is applicable in this specific situation, even for the computation of more
than one hundred eigenpairs, but in general its performance is inferior in comparison to
GMRES or QMRS. Clearly, when interior eigenvalues of A, i.e. eigenvalues near a target
value τ > 0 are sought-after, then preconditioned MINRES cannot be used anymore as
A − τI is indefinite, and any reasonable preconditioner K will be as well. In general,
QMRS is best suited for our demands, as the preconditioner is allowed to be indefinite
and as it employs short recurrences which makes it slightly more efficient than GMRES
(although the advantage is in general only marginal). Puttin [93] reports stability
problems using QMR variants for the solution of the correction equation. We cannot
confirm these difficulties from our observations, but to play it safe one has the option to
resort to GMRES.

4.4 Summary and Guidelines for the Practical Use 113

Result 4.8
We applied the preconditioned standard JDQR method to the computation of the 100
smallest eigenvalues of the matrix H described in Problem 4.7 and obtained the following
timings depending on which method was employed for the solution of the correction
equation: 2

Table 4.2.: Influence of the Krylov solver

Krylov Solver Time (secs) MV-ops
MINRES 3800.680000 13852
GMRES 3485.450000 11602
QMRS 3475.840000 11516

4.4.3. Choice of the Extraction Method

The choice of the extraction method primarly depends on what part of the spectrum one
is interested in. For exterior eigenvalues, i.e. the kmax smallest eigenvalues in our case,
the use of standard extraction (Alg. 3.12) is recommended, since it yields satisfactory
results and exhibits a smooth and regular convergence behavior, as the following example
shows:

Result 4.9 (Exterior eigenvalues)
Computing the ten smallest eigenvalues of H(J,S,Γrve) (see Problem 4.7) by means of
the preconditioned standard JDQR variant (Alg. 4.7) produces the convergence history
as depicted in Figure 4.2: One can also recognize from the plot, that slightly more

Figure 4.2.: Exterior eigenvalues obtained by standard extraction

0 50 100 150 200 250 300 350 400 450
−15

−10

−5

0

Correction equation solved with QMRS.

JDQR with jmin=15, jmax=20, residual tolerance 1e−10.

log

10
 || r

#it
 ||

2

matrix-vector operations are needed for the detection of the first eigenpair than for the
computation of the subsequent eigenpairs, which is also typically true in general. 2

When computing eigenpairs in the interior of the spectrum things are more involved,
and the discussion in Section 3.3.1 anticipates that the use of standard extraction (Alg.

114 The Jacobi-Davidson Method and its Variants

3.12) may lead to problems. In order to illustrate the phenomena arising in the use of the
different extraction methods, we applied the corresponding variants of the preconditioned
JDQR algorithm to Problem 4.7:

Result 4.10 (Interior eigenvalues)
We are now interested in 10 eigenvalues nearest the target τ = 0.0196. Then 200
eigenvalues lie to the left of τ and the remaining part of the spectrum lies to its right.
Note that the block Jacobi preconditioner is now constructed from the shifted matrix
H(J,S,Γrve) − τI. Application of the three different extraction methods then yields the
results as shown in the Figures 4.3, 4.4 and 4.5.

Figure 4.3.: Interior eigenvalues obtained by standard extraction

0 50 100 150 200 250 300 350 400 450 500
−15

−10

−5

0

Correction equation solved with QMRS.

JDQR with jmin=15, jmax=20, residual tolerance 1e−10.

log

10
 || r

#it
 ||

2

Figure 4.4.: Interior eigenvalues obtained by refined extraction

0 50 100 150 200 250 300 350 400 450
−15

−10

−5

0

Correction equation solved with QMRS.

JDQR with jmin=15, jmax=20, residual tolerance 1e−10.

log

10
 || r

#it
 ||

2

Figure 4.5.: Interior eigenvalues obtained by harmonic extraction

0 50 100 150 200 250 300 350
−15

−10

−5

0

Correction equation solved with QMRS.

JDQR with jmin=15, jmax=20, residual tolerance 1e−10.

log

10
 || r

#it
 ||

2

4.4 Summary and Guidelines for the Practical Use 115

Standard extraction exhibits a highly oscillatory convergence behavior, and as a con-
sequence, considerably more matrix-vector operations are required to obtain the 10
sought-after eigenvalues. By contrast, harmonic extraction leads to the best results as
the convergence is smooth and regular and the least number of matrix-vector multipli-
cations is needed. Refined extraction is also better than the standard variant in terms
of matrix vector multiplications, however, the convergence is still somewhat oscillatory.
Note, that harmonic extraction need not always be better than the refined variant. The
potential danger in the use of harmonic extraction is its tendency to stagnate, which
sometimes could be observed in our experiments. It is important to notice that the
quality of the preconditioner also has a great influence on the convergence behavior as
we shall see later on. 2

4.4.4. Related Approaches and Software Availability

For the sake of completeness, we give a brief survey of available software for JD methods
and comment on some approaches that have been suggested as generalizations of the
Jacobi-Davidson method (see also [54] for the state-of-the-art situation):

1. The MATLAB r© [5] code by Sleijpen [112] provides routines for the precondi-
tioned standard and harmonic JDQR variants (Algorithms 4.7 and 4.9). It is user
friendly and provides a couple of switches to experiment with. Unfortunately, we
could not use it for our purposes, as it is too slow and as the currrent MATLAB r©

software [5] on the Sun Fire machine is only able to adress 4 GB memory.

2. Stathopoulos and McCombs [118, 120] have developped a recent software pack-
age called PRIMME (acronym for preconditioned iterative multimethod eigensol-
ver) which comprises robust implementations of Arnoldi’s/Lanczos’ method, the
(generalized) Davidson method and the Jacobi-Davidson/JDQR methods. It is
written in the C programming language (a FORTRAN 77 [85] interface is avail-
able, too) and may be obtained from [119]. The design of the code aims at an
improved interplay between the outer iteration (JD loop) on the one hand, and
the inner loop (Krylov method) on the other hand. To this end, more sophisticated
and reliable stopping criteria, as well as variants of Krylov solvers specialized for
the use in the context of Jacobi-Davidson methods are developped. In the current
version of the software, there is no option to use refined/harmonic extraction as
an alternative to the standard Rayleigh-Ritz procedure.

3. The software package JADAMILU (acronym for Jacobi-Davidson method with
multilevel ILU preconditioning) is due to Bollhöfer and Notay and may be
obtained from [16],[17] (including a related technical report and a user’s guide).
It is written in FORTRAN 77 [85] and particularly suited for the computation of
interior eigenvalues of sparse matrices. The authors’ intention is to provide a user-
friendly black-box solver, i.e. it automatically constructs an ILU-type precondi-

116 The Jacobi-Davidson Method and its Variants

tioner for the given matrix which based on the ILUPACK software by Bollhöfer
[15].

4. Notay [82] attempts to use the CG method (Conjugate Gradients) as a Krylov
solver for the correction equation (4.11). The CG method (see [50], [101], [43] for
theory and algorithmic details) is actually designed for the application to linear
systems with positive definite coefficient matrices, such that, at first glance (see
also the related discussion in Section 4.2.3.5), it does not seem to be suited for
solving the correction equation. However, a closer analysis reveals that due to
the effect of the projectors the method becomes applicable and leads to gain in
convergence speed. The MATLAB r© [5] code of his approach is available from
[83], and comparing it with the corresponding MATLAB r© code for the standard
preconditioned JDQR variant by Sleijpen [112] shows that Notay’s JDCG ap-
proach is only superior for a very small number (about 5-10) of eigenpairs. For a
larger number JDCG is clearly inferior. We thus do not pursue this approach in
this thesis either.

5. Goeke [47] and Geus [45] experiment with block variants, in which they attempt
to simultaneously compute nb approximations (θk

i , u
k
i) (where nb is an appropriately

chosen block size and k the number of the iteration step) and search directions tki .
This can be done using the following procedure

for i = 1, . . . , nb do
solve approximately(
I −

nb∑
j=1

uk
j (u

k
j)
∗

)
(A− θk

i)

(
I −

nb∑
j=1

uk
j (u

k
j)
∗

)
tki = −

(
I −

nb∑
j=1

uk
j (u

k
j)
∗

)
rk
i

end for

The use of block variants may be advantageous when dealing with clustered eigen-
values. In our experiments we could not observe any gain in performance, some-
times their use even resulted in slowing down convergence. We thus do not pursue
this approach in our experiments. The software package JDBSYM by Geus [46]
written in the programming language C [67] contains the preconditioned standard
variant (Alg. 4.7) as a special case for the choice nb = 1. However, the software is
not well suited for the computation of interior eigenvalues , since the information
extraction is only implemented in the form of the Rayleigh-Ritz procedure (Alg.
3.12).

6. Genseberger [44] examines a modified correction equation in which the new
search direction t is required to be orthogonal to the complete search space K built
up so far spanned by the basis vectors Vm:

(I − VmV
∗
m)(A− θI)(I − VmV

∗
m) = −r (4.106)

Depending on the dimension of the search space K, the involved projections are
now much more costly, and in practical situations the approach is even slower to

4.4 Summary and Guidelines for the Practical Use 117

converge than the basic Algorithm 4.2. Furthermore, if one tries to incorporate
preconditioners using the techniqes and ideas discussed in Section 4.3.5, it becomes
evident that all vectors of Vm have to be preconditioned, which results in a further
increase of storage and computational costs. In general this is too expensive, and
hence, not attractive for the practical use.

118 The Jacobi-Davidson Method and its Variants

Part II.

Quantum Chemistry

119

5. Eigenvalue Problems in Theoretical
Spectroscopy

In this chapter a brief and general survey of some important basic aspects in theoretical
spectroscopy will be given, including some elements from functional analysis, which are
required for the proper mathematical treatment. In particular, we will explain how
symmetric matrix eigenvalue problems arise from the theoretical framework, and what
factors may have an impact on their structure and complexity. Finally, we will outline
four general solution strategies, and in this context we will come back to the dichotomy
between direct and iterative projection methods for eigenvalue problems, which we have
already explained in Chapter 3.

5.1. Motivation and Introduction

First of all, we give a brief introduction to what theoretical spectroscopy is concerned
with, and towards this end, we review the motivation given in [61]: Let us consider the
simple experiment described in Figure 5.1

Figure 5.1.: Simple spectroscopic experiment

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

S C M−D

where C is a transparent cell containing some substance to be analyzed in the form of
a gas. The source of radiation S is emitting light, which is sent through the cell C.
The M−D apparatus of the experiment, a monochromator-detector, now receives the
incoming radiation from the cell C, evaluates the intensities I(ν) related to the frequen-
cies ν and plots the corresponding diagram Fig. 5.3. Repeating the same experiment
with an empty cell C , i.e. without the molecular gas, results in the diagram depicted in
Fig. 5.2, the so-called reference spectrum. By a spectrum in this context, we mean the
intensity I(ν) depending on the frequency ν (one could also use the wavelength λ or the
wavenumber ν̄ as physical units instead, see below). A comparison of the Figures 5.3
and 5.2 shows that at certain discrete frequencies the related intensities are noticably
reduced, because the molecular gas in C obviously absorbs these parts of the reference
spectrum. For this reason, the resulting diagram Fig. 5.3 is referred to as absorption
spectrum. The physical explanation for the observation made in the experiment is that

121

122 Eigenvalue Problems in Theoretical Spectroscopy

Figure 5.2.: Reference spectrum

ν

I(ν)

Figure 5.3.: Absorption spectrum

I(ν)

ν
νij

light (or radiation in general) exhibits both wave and particle properties, which is well-
known as wave-particle duality in the literature (see [109] for instance). This means
that monochromatic light with a certain frequency ν (wave property) can also be in-
terpreted as a stream of photons (particle property) each of which having an energy
E = hν (where h is Planck’s constant). Many of the photons related to characteristic
frequencies νij are obviously “swallowed” by the molecules M of the gas in the cell C

M + hνij →M∗ (5.1)

where the asterisk in the above notation symbolizes that the molecule M is in an excited
state, the energy being increased by hνij after absorbing the light quantum. We also see

5.1 Motivation and Introduction 123

that absorption does not occur for arbitrary frequencies ν and is only possible for two
allowed energy states Ei and Ej of the molecule M for which the condition

hνij = Ej − Ei (5.2)

is satisfied. The main concern of theoretical spectroscopy is now to predict these discrete

Figure 5.4.: Absorption of a Light quantum

Ei

Ej

∆E = Ei − Ej = hνij

energy levels Ei of a given molecule M (as far as it is possible) by purely theoretical
and computational means, the exception being the use of some physical constants (cf.
Table 5.1) which are only attainable by means of experiments. For this reason, one often
also speaks of ab initio theory in this context. The underlying physical concept in the
following considerations is quantum mechanics, which provides a theoretical framework
for the quantitative description of systems at atomic and subatomic levels. For an
introduction and a general account on the topic we refer to standard textbooks, such
as [109], for instance. For the case that atoms or molecules are the physical systems
of interest, the scientific discipline is called quantum chemistry, a branch of which is
the field of theoretical spectroscopy (see [21], [61]). In the following sections we will
see that using the principles of quantum mechanics the characteristic energy levels Ei

of a molecule can be characterized as the eigenvalues of the Hamiltonian (5.52) to be
defined and introduced in Section 5.3. It will turn out, that only in very rare cases it
is possible to explicitly state eigenvalues and eigenfunctions in terms of closed analytic
expressions. Consequently, one has to resort to numerical techniqes, and to this end,
general strategies will be derived.

Table 5.1.: Some constants of nature

Description Name Value Unit

Planck’s constant h 6.626176 · 10−34 Js
reduced Planck’s constant ~ = h

2π
1.05457168 · 10−34 Js

speed of light c 299 792 458 m/s
elementary charge e 1.602 176 53 · 10−19 C
mass of a proton mp 1.672 621 71 · 10−27 kg
mass of a neutron mn 1.674 927 29 · 10−27 kg
mass of an electron me 9.109 3826 · 10−31 kg
vacuum permittivity ε0 8.854 187 8176 · 10−12 C2/Jm

124 Eigenvalue Problems in Theoretical Spectroscopy

5.2. Prerequisites from Functional Analysis

The essential tool for the adequate mathematical formulation of quantum mechanics is
the theory of linear operators acting on Hilbert spaces, which is treated in the mathe-
matical branch of Functional Analysis. For a general survey and introduction as well
as a thorough discussion of the topics mentioned below (Hilbert space, L2-space, Her-
mitian, self-adjoint, etc.) we refer to the standard textbooks [96], [97], [24] and [80], a
specialized account with regard to quantum mechanics is given in the famous treatise
by von Neumann [128], for a brief survey see [66]. A detailed exposition with special
emphasis on Hamilton operators may be found in [53]. In the following, we collect the
key definitions and results which are of importance in our context.

5.2.1. Linear Operators on Hilbert Spaces

Definition 5.1 (Hilbert space)
A vector space H furnished with a scalar product 〈·, ·〉 → C is called Hilbert space, iff

it is complete with respect to the norm ‖ · ‖ =
√
〈·, ·〉 induced by the scalar product.

More precisely this means that for every Cauchy sequence {fn}∞i=1, fn ∈ H, i.e.

‖fn − fm‖ → 0 (m,n→∞) (5.3)

the limit f exists and is contained in H.

Definition 5.2 (Orthonormal system and orthonormal basis)
Let H be a Hilbert space. A subset T ⊂ H is called orthonormal system, iff 〈e, f〉 = δe,f
for all e, f ∈ T . An orthonormal system S is called orthonormal basis, iff

S ⊂ T, T orthonormal system =⇒ T = S (5.4)

An orthonormal system S is called separable, iff it is countable and dense in H.

Theorem 5.3 (Hilbert space L2(Rn), Fischer-Riesz)
The set of square-integrable functions

L2(Rn) =

{
f : Rn → C measurable and

(∫
|f(x)|2dx

) 1
2

<∞

}
(5.5)

is a Hilbert space equipped with the scalar product

〈f, g〉L2(Rn) =

∫
f̄gdx ∀f, g ∈ L2(Rn) (5.6)

Proof: see [96] 2

5.2 Prerequisites from Functional Analysis 125

Proposition 5.4 (Banach space L∞(Rn), essential supremum)
The set

L∞(Rn) = {f : Rn → C measurable and |f | ≤ C <∞ almost everywhere} (5.7)

is a Banach space, i.e. it is complete with respect to the norm

‖f‖∞ := inf

{
sup

x∈Rn\N
|f(x)| : N is a Lebesgue null set

}
(5.8)

which is referred to as essential supremum.

Proof: see [80] 2

Definition 5.5 (Operators on Hilbert spaces)
A linear map T between the Hilbert spaces H1 and H2

T : H1 → H2 (5.9)

is called bounded, iff there exists a constant c > 0, such that

‖Tx‖H2 ≤ c · ‖x‖H1 ∀x ∈ H1 (5.10)

The smallest such constant

‖T‖ := max
x 6=0

‖Tx‖H2

‖x‖H1

= sup
‖x‖H1

=1

‖Tx‖H2 (5.11)

is called operator norm of T . If no bound c can be placed in (5.10), then the operator
T is called unbounded.

Proposition 5.6 (Boundedness and continuity)
A linear operator T : H1 → H2 is bounded, iff T is continuous.

Proof: see [24] 2

Lemma 5.7
Let A : D(A) → H be an operator with dense domain D(A) ⊂ H. Then the following
assertions hold

1. D(A∗) = {y ∈ H : x 7−→ 〈Ax, y〉 is continuous on D(A)}
is a linear subspace of H

2. For any y ∈ D(A∗) there is a unique A∗y ∈ H, such that

〈Ax, y〉 = 〈x,A∗y〉 ∀x ∈ D(A) (5.12)

126 Eigenvalue Problems in Theoretical Spectroscopy

3. A∗ : D(A∗)→ H is linear.

Proof: see [80] 2

Definition 5.8 (Adjoint operator)
Let A : D(A) → H be an operator with dense domain D(A) ⊂ H. Then we call the
operator A∗ defined in Lemma 5.7 the adjoint of A.

Note, that in contrast to the theory of finite Hermitian matrices (cf. Definition 2.10), the
terms Hermitian and self-adjoint are not synonymous for unbounded partial differential
operators like the Laplacian defined in (5.21) or the Hamiltonian (5.52) to be discussed
in the following section. Unfortunately, this distinction is often missing in the standard
textbooks on quantum mechanics. For an operator A to be self-adjoint it is essential,
that its domainD(A) and the domainD(A∗) of the adjoint operator A∗ coincide, whereas
hermiticity in general only implies that D(A) ⊂ D(A∗). The following definition makes
this more precise:

Definition 5.9 (Hermitian, self-adjoint)
1. An operator A : D(A)→ H is called Hermitian, iff D(A) is dense in H and

〈Af, g〉 = 〈f, Ag〉 ∀f, g ∈ D(A) (5.13)

If A is Hermitian, then A ⊂ A∗, i.e. D(A) ⊂ D(A∗)

2. An operator A : D(A) → H is called self-adjoint, iff A is Hermitian and A = A∗,
i.e. D(A) = D(A∗).

It is important to stress, that the distinction between Hermitian and self-adjoint is
not just a mathematical subtleness, but essential for the proper application of spectral
theory, which is only valid for self-adjoint operators (see Theorem 5.12 below).

Definition 5.10 (Projectors)
A bounded operator P : H → H on a Hilbert space H is called projector, iff

• P is self-adjoint, i.e. P = P ∗

• P 2 = P

Definition 5.11 (Spectral family)
A spectral family (Eλ)λ∈R is a family of operator-valued functions with the following
properties:

1. Eλ is an orthogonal projection for all λ ∈ R

2. EλEµ = EµEλ for all λ, µ ∈ R with λ < µ

5.2 Prerequisites from Functional Analysis 127

3. lim
µ→λ+

Eµx = Eλx for all x ∈ H and for all λ ∈ R

4. lim
λ→∞

Eλx = x and lim
λ→−∞

Eλx = 0 for all x ∈ H

Theorem 5.12 (Spectral theorem for unbounded self-adjoint operators)
For any self-adjoint operator A : D(A)→ H with dense domain D(A) ⊂ H there exists
a unique spectral family of projection operators Eλ such that

〈φ,Aψ〉 =

+∞∫
−∞

λ d〈φ,Eλψ〉 ∀φ ∈ H, ψ ∈ D(A) (5.14)

One defines

A =

+∞∫
−∞

λ dEλ (5.15)

(5.15) is commonly referred to as spectral decompostion.

Proof: [96] 2

As opposed to the situation for finite dimensional Hermitian matrices (see Def. 2.2
and Thm. 2.12) or compact operators on Hilbert spaces, (see [24]) the spectra of un-
boundedself-adjoint operators need not necessarily consist of eigenvalues and may even
contain continuous intervals on the real line. The following definition of the spectrum
which is equivalent to the case of finite-dimensional matrices (see Def. 2.1 and 2.2) makes
more precise what situations may arise:

Definition 5.13 (Spectrum)
Let A be a linear operator on a Hilbert space H with domain D(A). The spectrum of
A, σ(A) is the set of all points λ ∈ C for which A− λI is not invertible. We distinguish
between the following cases:

1. The discrete spectrum of A, σd(A), is the set of all eigenvalues of A with finite
(algebraic) multiplicity and which are isolated points of σ(A)

2. The essential spectrum of A is defined as the complement of σd(A) in σ(A):
σess ≡ σ(A) \ σd(A).

The distinction between the two cases in Def. 5.13 is necessary because there are different
reasons why A− λI may fail to be invertible. See [96] and [53] for more details.

Remark 5.14 (Characterization of the spectrum by the spectral family)
• λ ∈ σd(A) ⇐⇒ E(·) is discontinuous at λ

128 Eigenvalue Problems in Theoretical Spectroscopy

• λ ∈ σess(A)⇐⇒ E(·) is continuous at λ but not constant

2

The Fourier transform, which is introduced in the following theorem, is a very important
tool in the theory of partial differential operators and equations:

Theorem 5.15 (Fourier-Plancherel)
The map

F : L2(Rn) → L2(Rn)

f 7→ f̂

defined by

f̂(ξ) = (Ff)(ξ) = l.i.m
n→∞

(2π)−
n
2

∫
‖x‖<Rn

e−i〈ξ,x〉 · f(x) dx (5.16)

is a unitary isomorphism on L2(Rn), i.e.

‖Ff‖2 = ‖f‖2 (5.17)

and its inverse is given by

g(x) = F−1f̂(x) = l.i.m
n→∞

(2π)−
n
2

∫
‖ξ‖<Rn

ei〈ξ,x〉 · f̂(ξ) dξ (5.18)

where Rn ↑ ∞ and “l.i.m.” (limit in mean) denotes the limit of a sequence of functions
in L2(Rn). F is commonly referred to as Fourier transform.

Proof: see [97] 2

Definition 5.16 (Schwartz space)
The Schwartz space (or space of rapidly decreasing functions) S on Rn is the function
space defined by

S(Rn) =

{
φ ∈ C∞(Rn) | ∀k ∈ N0, α ∈ (N0)

n : sup
x∈Rn

|xkDαφ(x) <∞
}

(5.19)

where α = (α1, . . . , αn) ∈ (N0)
n is a multi-index and Dα is a shorthand notation for the

differential operator

Dα :=
∂α1

∂xα1
1

. . .
∂αn

∂xαn
n

(5.20)

The Laplacian is of fundamental importance in quantum mechanics, as it is part of the
Hamiltonian (5.52) to be discussed in the following section:

5.2 Prerequisites from Functional Analysis 129

Proposition 5.17 (Laplacian)
The second order partial differential operator ∆ : S(Rn)→ S(Rn) defined by

∆ :=
n∑

i=1

∂2

∂x2
i

(5.21)

is called Laplacian and for any f ∈ S(Rn) it holds

F (∆f)(ξ) = ∆̂f(ξ) = −|ξ|2 · f̂(ξ) (5.22)

Proof: Property (5.22) follows by integration in parts and the fact that all boundary
terms vanish because f ∈ S(Rn):

F

(
∂2

∂x2
i

f

)
(ξ) = (2π)−

n
2

∫
Rn

e−i〈ξ,x〉 ·
(
∂2

∂x2
i

f

)
(x) dx

= (−1)2(2π)−
n
2

∫
Rn

∂2

∂x2
i

e−i〈ξ,x〉 · f(x) dx

= (−1)2(−i)2ξ2
i (2π)−

n
2

∫
Rn

e−i〈ξ,x〉 · f(x) dx

= −ξ2
i · f̂(ξ)

Summation over all xi finally yields the assertion. 2

The Schwartz space S(Rn) as a domain for the Laplacian (5.21) is not well-suited for
our consideration, since it is not complete with respect to the L2-norm. Property (5.22)
motivates the following definition, which remedies this drawback by introducing a more
general class of functions H2(Rn) in which S(Rn) is densly contained.

Proposition 5.18 (Sobolev space H2(Rn))
The space

H2(Rn) =
{
f ∈ L2(Rn) | (1 + |ξ|2)(Ff)(ξ) ∈ L2(Rn)

}
(5.23)

is a Hilbert space furnished with the scalar product

〈f, g〉H2(Rn) =

∫
(1 + |ξ|2)2f̂(ξ)ĝ(ξ)dξ ∀f, g ∈ L2(Rn) (5.24)

and is called Sobolev space of order two.

Proof: see [97], [53] 2

Lemma 5.19 (Citerion for self-adjointness)
Let A : D(A)→ H be Hermitian. A is self-adjoint, iff Ran(A± i) = H.

130 Eigenvalue Problems in Theoretical Spectroscopy

Proof: see [96] 2

Theorem 5.20 (Self-adjointness of the Laplacian)
The Laplacian ∆ : D(∆)→ L2(Rn) as defined in (5.21) is self-adjoint onD(∆) = H2(Rn)

Proof: To see the symmetry property (5.13), exploit that the Fourier transform is
an isometric isomorphism on L2(Rn)and use (5.22), thus

〈∆f, g〉 = 〈∆̂f, ĝ〉 =

∫
−|ξ|2f̂ ĝ dξ

=

∫
f̂ (−|ξ|2ĝ) dξ = 〈f̂ , ∆̂g〉 = 〈f,∆g〉 ∀f, g ∈ H2(Rn)(5.25)

To prove D(∆) = D(∆∗), we use Lemma 5.19, i.e. we have to show that for each
f ∈ L2(Rn)the equation

(∆± i)u = f (5.26)

has a solution u ∈ H2(Rn). To this end define

ũ :=
f̂

−|ξ|2 ± i
(5.27)

It is easy to see that u∗ := F−1ũ ∈ H2(Rn), because (cf. Prop. 5.18)

| (1 + |ξ|2)ũ | =
∣∣∣(1 + |ξ|2) f̂

−|ξ|2 ± i

∣∣∣ ≤ c|f̂ | ∈ L2(Rn) (5.28)

Now a straightforward computation shows that u = u∗ is a solution of (5.26) and the
proof is complete. 2

The following perturbation theorem is an important tool to prove the self-adjointness
of unbounded Hermitian operators arising in quantum mechanics, and it describes what
properties an additive perturbation B must have, such that the self-adjointness of an
operator A carries over to A+B:

Theorem 5.21 (Kato-Rellich)
Suppose that A is self-adjoint, B Hermitian with D(A) ⊂ D(B) and that there exist
positive constants a < 1 and b such that

‖Bφ‖ ≤ a‖Aφ‖+ b‖φ‖, ∀φ ∈ D(A) (5.29)

Then the operator A+B is self-adjoint on D(A).

5.2 Prerequisites from Functional Analysis 131

Proof: see [97], [53] 2

The following corollary characterizes a class of “admissible” perturbations V for the
negative Laplacian−∆:

Corollary 5.22 (Kato-Rellich potentials)
Let V ∈ L2(Rn) + L∞(Rn) and be real. Then the operator H ≡ −∆ + V , defined on
D(∆) = H2(Rn), is self-adjoint. Functions V with the described property are referred
to as Kato-Rellich potentials.

Proof: see [97], [53] 2

The following definition characterizes a special sub class of Kato-Rellich potentials which
we refer to as Kato potentials (see [53]):

Definition 5.23 (Kato potentials)
A Kato-Rellich potential V (x) is called a Kato potential, if V is real and V ∈ L2(Rn) +
L∞(Rn)ε, where the ε indicates that for any ε > 0 we can decompose V = V1 + V2 with
V1 ∈ L2(Rn) and V2 ∈ L∞(Rn) with ‖V2‖∞ ≤ ε.

Let us now come back to the characterization of spectra of self-adjoint unbounded op-
erators and give examples for possible situations:

Example 5.24 (Spectrum of the negative Laplacian)
The spectrum of the self-adjoint operator −∆ on H2(Rn) is purely essential, i.e.

σ(−∆) = σess(−∆) = [0,∞) (5.30)

2

Proof: see [53] 2

The following examples show what impact additional perturbations of the negative
Laplacian may have on the spectrum. This is of importance for our considerations in the
following sections where we introduce and define the Hamiltonian (5.52) as perturbation
of the negative Laplacian by a potential V .

Example 5.25 (Perturbation by a Kato potential)
If V is a Kato potential, then

σess(−∆ + V) = σess(∆) = [0,∞), (5.31)

i.e. the essential spectrum of −∆ is not affected by V . 2

132 Eigenvalue Problems in Theoretical Spectroscopy

Proof: see [53] 2

Example 5.26 (Perturbation by a Harmonic oscillator potential)
Let A ∈ Rn be a positive definite matrix and define

K(λ) = −∆ + λ2〈x,Ax〉 (5.32)

The operator defined by (5.32) is self-adjoint and its spectrum σ(K(λ)) is purely discrete,
i.e. it exclusively consists of eigenvalues. 2

Proof: see [53] 2

5.2.2. Tensor Products of Hilbert Spaces and Operators

Tensor products of Hilbert spaces and operators will turn out important later on (see
Section 5.8.1, for instance).

Definition 5.27 (Tensor products of Hilbert spaces)
Let Hi be Hilbert spaces furnished with scalar products 〈·, ·〉Hi

and orthonormal bases

Bi = {φi,ji
}∞ji=1 (i = 1, . . . , n) (5.33)

Then one can define

1. formal n-tuples of the basis elements

⊗n
i=1 φi,ji

:= φ1,j1 ⊗ φ2,j2 ⊗ . . .⊗ φn,jn (5.34)

2. formal n-tuples for arbitrary linear combinations ψi =
∑
ji=1

αji
φi ∈ Hi by

⊗n
i=1 ψi := ψ1 ⊗ ψ2 ⊗ . . .⊗ ψn :=

∑
j1,...,jn

αj1,...,jn ⊗n
i=1 φi,ji

(5.35)

3. the set of all such linear combinations by

H =
n⊗

i=1

Hi =

{
f | f =

∑
j1,...,jn

αj1,...,jn ⊗n
i=1 φi,ji

,
∑

j1,...,jn

|αj1,...,jn|2 <∞

}
(5.36)

By simple verification it follows that H is a Hilbert space with the orthonormal basis

B =
n⊗

i=1

Bi = {⊗n
i=1 φi,ji

}∞j1,...,jn
(5.37)

5.2 Prerequisites from Functional Analysis 133

and furnished with the scalar product

〈⊗n
i=1 ψi,⊗n

i=1 χi〉H :=
n∏

i=1

〈ψi, χi〉Hi
∀ψi, χi ∈ Hi i ∈ {1, . . . , n} (5.38)

It is common to use the following appellations:

• a formal tuple as defined in (5.34) is called tensor product.

• a Hilbert space H as constructed in (5.36) is called product space or tensor space.

• a basis B as constructed in (5.37) is called product basis.

The following corollary is an immediate consequence of the above definition and will be
of importance in our following considerations:

Corollary 5.28 (Dimension of a finite dimensional product space)
Let Hi (i = 1, . . . , n) be finite dimensional Hilbert spaces, i.e. dimHi < ∞ and let
H =

⊗n
i=1Hi be the resulting product space. Then the dimension of H is obtained by

dimH =
n∏

i=1

dimHi (5.39)

Proof: follows directly by counting all possible combinations in (5.37). 2

The principles from Definition 5.27 can also be used to define tensor products of opera-
tors:

Definition 5.29 (Tensor products of operators)
Let Ti : D(Ti) → Hi be operators with domains D(Ti) ⊂ Hi on the Hilbert spaces Hi

(i = 1, . . . , n). Then one can define the operator tensor product

T =
n⊗

i=1

Ti : D(T)→ H (5.40)

with domain D(T) =
⊗n

i=1D(Ti) on the product space H =
⊗n

i=1Hi by

Tψ =

(
n⊗

i=1

Ti

)
(⊗n

i=1 ψi) = ⊗n
i=1(Tiψi) (5.41)

where
ψ = ⊗n

i=1 ψi ∈ D(T) and ψi ∈ D(Ti) i = 1, . . . , n (5.42)

The following Corollary is a generalization of the mixed product property (2.75) for
Kronecker products in Lemma 2.48:

134 Eigenvalue Problems in Theoretical Spectroscopy

Corollary 5.30 (Mixed “product” property)
Let Si, Ti be operators acting on the Hilbert spacesHi (i = 1, . . . , n). Then the following
identity holds: (

n⊗
i=1

Si

)
·

(
n⊗

i=1

Ti

)
=

n⊗
i=1

(SiTi) (5.43)

For the ease of notation when dealing with matrix representations of operators acting on
finite dimensional Hilbert spaces we recall a fundamental principle from linear algebra:

Definition 5.31 (Matrix and vector representations)
Let H be a finite dimensional with an orthonormal basis B = {φi}mi=1 and

ι : H −→ Cm

ψ =
m∑

j=1

αjφj 7−→ c = (α1, . . . , αm)T

be the canonical isomorphism between H and Cm with respect to B. Furthermore, let
Â : H → H be an operator acting on H.
Following the well-known principles from linear algebra, the columns of the matrix rep-
resentation A are the coordinate vectors of the images of the basis vectors φi under
the operator Â. Therefore, it is sensible to extend the canonical isomorphism ι for the
definition of the matrix representation as follows:

A = ι(Â) := [ι(Âφ1), ι(Âφ2), . . . , ι(Âφm)] := [A1,A2, . . . ,Am] ∈ Cm×m (5.44)

These definitions imply that

ι(Âψ) = ι(Â)ι(ψ) = Ac (5.45)

The following corollary shows that tensor products on finite dimensional Hilbert spaces
isomorphically correspond to Kronecker products on Cm, which will be of importance
later on:

Corollary 5.32 (Matrix and vector representation of tensor products)
Let Hi be finite dimensional Hilbert spaces with orthonormal bases Bi = {φi,ji

}mi

ji=1.

1. Let ψi =
mi∑
j=1

αji
φi,ji

be elements in the Hilbert spaces Hi, ιi : Hi → Cmi the

canonical isomorphisms on Hi and ci = ιi(ψi) ∈ Cmi . Then

ι(⊗n
i=1 ψi) = ⊗n

i=1 ιi(ψi) = ⊗n
i=1 ci (5.46)

2. Let Âi : Hi → Hi be linear operators acting on Hi and Ai ∈ Cmi×mi their matrix
representations. Then

ι

{(
n⊗

i=1

Âi

)}
=

(
n⊗

i=1

Ai

)
(5.47)

5.3 Schrödinger Equation for One-Particle Systems 135

We will be primarily concerned with the following construction of product Hilbert spaces
(see also [96]):

Definition 5.33 (Tensor product of L2(R) spaces)
Let Hi = L2(R) (i = 1, . . . , n) and Bi = {fj(xi)}∞j=1 be the corresponding orthonormal
bases. Then the tensor product of basis elements may be defined as

⊗n
i=1 fj,i(xi) =

n∏
i=1

fj,i(xi) (5.48)

i.e. as a simple point-wise multiplication of the basis function with respect to different
variables xi. According to Definition 5.27 this construction leads to a product space H
which can be isomorphically identified with L2(Rn), i.e.

H =
n⊗

i=1

L2(R) ∼= L2(Rn) (5.49)

and the orthogonal basis

B =
n⊗

i=1

Bi =

{
n∏

i=1

fji
(xi)

}∞

j1,...,jn

(5.50)

5.3. Schrödinger Equation for One-Particle Systems

Let us again turn our attention to the computation of the discrete energy levels Ei of
a physical system. One of the fundamental principles in quantum mechanics is the fact
that the discrete energy levels Em of a given physical system at atomic level are the
real eigenvalues of the Hamiltonian Ĥ, which is formalized in the following operator
eigenvalue problem:

Ĥψm = Emψm (5.51)

(5.51) is known as time-independent Schrödinger equation. The eigenfunctions ψm ∈
L2(R3) also have a physical meaning, because |ψ(X, Y, Z)|2 may be interpreted as prob-
ability density functions. A concrete example will be given later on in Chapter 6 (see
Fig. 6.3) when the Double Renner effect is discussed. The partial differential operator

Ĥ : D(Ĥ)→ L2(R3)

Ĥ = T̂ + V (X, Y, Z) = − ~2

2m
∆ + V (X, Y, Z) (5.52)

is densely defined and self-adjoint on an appropriately chosen subset D(Ĥ) (see discus-

sion in Example 5.34 below) of the L2(R3). Ĥ is well-known as Hamilton operator or

Hamiltonian. The self-adjointness of Ĥ implies that all its eigenvalues are real (the proof
for the corresponding Theorem 2.11 on Hermitian matrices carries over almost literally).

Ĥ decomposes into

136 Eigenvalue Problems in Theoretical Spectroscopy

• the kinetic energy operator T̂

• the potential energy operator V (X, Y, Z)

The definition of Ĥ in (5.52) only covers the case that one particle with mass m and
the Cartesian coordinates (X, Y, Z) in a space fixed Cartesian coordiante system (“lab-
oratory system”) is considered. In the following section an extension of this definition
with respect to molecules is derived. The discussion in the previous section has shown
that, strictly speaking, one has to determine a domain D(Ĥ) on which Ĥ is self-adjoint
in order to be able to apply the spectral theory (Theorem 5.12 and the related charac-
terizations of the spectrum in Section 5.2.1). The following example demonstrates for
the simple case of the hydrogen atom what steps – at least in principle – have to be
carried out for a proper theoretical treatment:

Example 5.34 (Hydrogen atom)
The hydrogen atom is known to consist of one proton and one electron, and thus, provides
an example of a particularly simple molecule. Using the reduced mass

µ =
memp

me +mp

(5.53)

it can be treated as a one-particle system as per (5.52). Neglecting spin-orbit coupling
and relativistic effects due to the motion of the electron, the Hamiltonian is given by

Ĥ = − ~2

2µ
∆ +

e2

4πε0

1

R
(5.54)

where
R :=

√
X2 + Y 2 + Z2 (5.55)

See Table 5.1 for a description of the arising physical constants.

• Self-adjointness:
First of all, we need to prove that Ĥ is self-adjoint on a proper domain D(Ĥ).
Using the results from the previous section, it is possible to specify such a domain
explicitly. In Theorem 5.20 it was shown that the Laplacian −∆ is self-adjoint on
the domain

D(−∆) = H2(R3) ⊂ L2(R3) (5.56)

where H2(R3) is the Sobolev space of order two (Def. 5.18). To show that the
Hamiltonian (5.54) is self-adjoint on the same domain, one can apply the per-
turbation results from the previous section (the Kato-Rellich theorem 5.21 and
its Corollary 5.22). For the concrete case of the hydrogen atom the potential is
V (R) = 1/R (Coulomb potential, R = ‖x‖) and it is easy to see that it can be
decomposed as

V (R) = 1/R = χB1/R + (1− χB)1/R ∈ L2(R3) + L∞(R3) (5.57)

5.3 Schrödinger Equation for One-Particle Systems 137

where χB is the characteristic function of the unit ball B = {x ∈ R3 | ‖x‖ ≤ 1}
in R3. Hence, V (R) is a Kato-Rellich potential, and from Corollary 5.22 it follows

immediately that Ĥ is also self-adjoint on the domain of the Laplacian, i.e.

D(Ĥ) = H2(R3) ⊂ L2(R3) (5.58)

• Spectrum of the Hamiltonian and solutions of the Schrödinger equation:
Defining χε as the characteristic function of the set {x | ‖x‖ ≤ (cε)−1} and decom-
posing the potential as

V (x) = cχε(x)‖x‖−1 + c(1− χε(x)) ‖x‖−1 = V1(x) + V2(x) (5.59)

we have V1 ∈ L2(Rn) and

sup
x∈Rn

| c(1− χε(x)) ‖x‖−1 | ≤ ε, (5.60)

i.e. V (R) is actually a Kato potential in the sense of Def. 5.23 which implies that
the essential spectrum of the Hamiltonian for the hydrogen atom (5.54) is a non-
empty set and given by (as per Example 5.25):

σess(Ĥ) = [0,∞) (5.61)

This shows that the spectrum of the Hamiltonian is not purely discrete in case of
the hydrogen atom.
Let us now turn to the characterization of the discrete spectrum σd: The hydrogen
atom is one of the few cases, for which it is possible to solve the Schrödinger equa-
tion explicitly, i.e. it is possible to give closed analytic expressions for both, energy
levels Em (the discrete eigenvalues of (5.54)) and the corresponding eigenfunctions
ψm. To do so, one can express the Hamiltonian with respect to spherical coordi-
nates (by means of the chain rule of differential calculus) and exploit the radial
symmetry of the potential V . This allows to pursue a separation approach and
split the equation into three ordinary differential equations (each with respect to a
spherical coordinate), which can be treated independently. The total wavefunction
ψ as solution of the Schrödinger equation is then the product of the solutions of
the partial problems, and it can be shown that the discrete energy levels are

Em = − µ

~2

(
e2

4πε0

)
1

m2
(5.62)

so that the total spectrum is obtained as

σ(Ĥ) = σd(Ĥ) ∪ σess(Ĥ) = {Em |m ∈ N} ∪ [0,∞) (5.63)

For full details on the related computation see [109].

138 Eigenvalue Problems in Theoretical Spectroscopy

For more elaborate molecules consisting of several nuclei and electrons it will be in
general much more complicated to show the self-adjointness of the related molecular
Hamiltonian Ĥ and to determine a proper domain D(Ĥ). Further interesting examples
along with a detailed discussion on this issue may be found [97] and [53]. In the following,
we will, for pragmatic reasons, no more examine the self-adjointness of the Hamiltoni-
ans that we will be concerned with, because the involved potentials are in general not
available as analytic expressions which makes the analysis too complicated. The major
difficulty, however, is to solve the Schrödinger equation, i.e. to determine the discrete
spectrum σd of the Hamiltonian. The computation for the hydrogen atom leading to
(5.62) is already a rather complicated matter (see [109]), and for a general molecule
consisting of more than just one electron and one proton it is in general not feasible
to state solutions in terms of closed analytic expressions for eigenvalues and eigenfunc-
tions. Consequently, one is forced to rely on numerical techniques and approximations,
and this is what the description in the following sections will be dealing with.

5.4. Molecular Hamiltonian

The Hamiltonian defined in (5.52) only describes the simple case that the system under
consideration involves one particle. By contrast, the systems we are concerned with are
molecules, and these are known to be composed of more than one particle, more precisely
speaking

• N nuclei (consisting of protons and neutrons)

• n electrons

Thus, to derive the Hamiltonian of a general molecule, we have to take into account the
masses of the N nuclei Mη (η = 1, . . . , N) (obtained by summing up the masses of the
protons and neutrons according to the isotope for the nucleus under consideration, cf.
Table 5.1) and their coordinates

Rη = (Xη, Yη, Zη), η = 1, . . . , N (5.64)

in the Cartesian system. Analogously, the coordinates of the n electrons are given by

ri = (xi, yi, zi), i = 1, . . . , n (5.65)

The mass of an electron is given by me (cf. Table 5.1). For ease of notation we write R
for all nuclear coordinates Rη and r for all electronic coordinates ri.

In the following, we neglect the contribution made by the spin of the electrons and the
nuclei. Furthermore, we can assume the molecule to be isolated in space, i.e. there is no
interaction with other molecules (molecules in gases are sufficiently well separated from
each other) such that the Hamiltonian for a general molecule can be written as

5.5 Born-Oppenheimer Approximation 139

Ĥ = T̂n + T̂e + VCoulomb(R, r) (5.66)

where

T̂n = −~2

2

N∑
η=1

1

Mη

∂2

∂R2
η

=
~2

2

N∑
η=1

1

Mη

[
∂2

∂X2
η

+
∂2

∂Y 2
η

+
∂2

∂Z2
η

]
(5.67)

is the kinectic energy operator related to the motion of the nuclei and

T̂e = − ~2

2me

n∑
i=1

∂2

∂r2
i

=
~2

2me

n∑
i=1

[
∂2

∂x2
i

+
∂2

∂y2
i

+
∂2

∂z2
i

]
(5.68)

the kinetic energy operator related to the motion of the electrons. For the potential en-
ergy V (R, r) we have to take into account all coulomb interactions between all particles,
i.e.

• interaction between the electrons and nuclei (total electron-nucleus Coulombic
attraction in the system)

• interaction between the electrons (total electron-electron Coulombic repulsion)

• interaction between the nuclei (total nucleus-nucleus Coulombic repulsion)

which leads to the following expression for the potential:

VCoulomb(R, r) =
∑
η<η′

CηCη′e
2

‖Rη −Rη′‖2
+
∑
i<i′

e2

‖ri − ri′‖2
−

N∑
η=1

n∑
i=1

Cηe
2

‖Rη − ri‖2
(5.69)

The fact that the Hamiltonian now depends on n + N particles makes the solution of
the Schrödinger equation (5.51) complicated and rather often even untractable. For
this reason, one tries to find approximations that reduce the complexity of the problem
without losing too much accuracy. A common approach for this purpose is discussed in
the following section.

5.5. Born-Oppenheimer Approximation

The approach presented in the following, the so-called Born-Oppenheimer approxima-
tion, (briefly: BO approximation) relies on the fact that the nuclei of a molecule are 104

to 105 times heavier than the electrons, and consequently, the nuclei move around much
more slowly than the electrons do. This motivates to consider the nuclei to be fixed
in space for several (in principle infinitely many) geometries and to treat the motion of

140 Eigenvalue Problems in Theoretical Spectroscopy

the electrons and the nuclei seperately. To do so, we consider the previously derived
Schrödinger equation for the spatial motion of the particles of a molecule,

Ĥψne(R, r) = [T̂n + T̂e + VCoulomb(R, r)]ψne(R, r) = Eneψne(R, r) (5.70)

where the indices ne indicate, that energy contributions from the motion of both nuclei
and electrons are taken into account. We now write the sought-after eigenfunction ψne

as a product of two factors

ψne(R, r) = ψnuc(R)ψelec(R, r) (5.71)

where the wavefunction of rotation and vibration ψnuc(R) only depends on the nuclear
coordinates R, whereas the wavefunction of the electronic motion ψelec(R, r) depends
on the nuclear and electronic coordinates. The latter wavefunction is determined from
the so-called electronic Schrödinger equation

[T̂e + VCoulomb(R
(0), re)]ψelec(R

(0), r) = V (R(0))ψelec(R
(0), r) (5.72)

which is solved for fixed nuclear coordinates R = R(0), such that the eigenvalues V (R(0))
depend parametrically on the nuclear coordinates. The classical ab initio theory is ex-
clusively concerned with the solution of (5.72) and represents a wide field of research
of its own account (see [62], [51] for an introduction and more details). Solving (5.72)
for arbitrary nuclear geometries R(0) leads to the so called Born-Oppenheimer potential
function and is often referred to as Potential Energy Surface (briefly: PES).

Inserting (5.71) and (5.72) into (5.70) we obtain

[T̂n + V (R)]ψnuc(R)ψelec(R, r) = Eneψnuc(R)ψelec(R, r) (5.73)

We now introduce the following approximation in (5.73):

T̂n[ψnuc(R)ψelec(R, r)] ≈ ψelec(R, r)[T̂nψnuc(R)] (5.74)

In other words, the effect of the differential operators in T̂n on the electronic wave
funtion is neglected, which is the computational consequence of the above introductory
considerations to motivate the BO approximation. For a more in-depth discussion and
a detailed justification of the approximation made in (5.74) see [21] and [109].

We can now plug (5.74) into (5.73) and arrive at the following simplified Schrödinger
equation

[T̂n + V (R)]ψnuc(R) = Eneψnuc(R) (5.75)

which does not depend on the electronic coordinates r any longer. The effect of the
electronic motion is now incorporated in the potential energy surface V (R)

5.5 Born-Oppenheimer Approximation 141

Remark 5.35
• Of course, it is not possible to compute solutions of the electronic Schrödinger

equation (5.72) for infinitely many fixed molecular coordinates R(0). In practice,

one has to rely on sensible approximations, in which one determines V (R
(0)
j) for

a couple of selected geometries R
(0)
j . These discrete points (R

(0)
j , V (R

(0)
j)) are

then employed to construct an approximate PES (see Fig. 5.5). This can be
done by using Taylor expansions, interpolation, splines or further analytical fitting
techniques. We cannot go into detail here and refer to the standard literature for
a comprehensive account on the matter.

Figure 5.5.: Construction of a Potential Energy Surface (PES)

R

V (R)

• In this thesis we are exclusively concerned with the solution of the nuclear Schrö-
dinger equation (5.75), i.e. we have precomputed high-quality PES at hand for the
molecules we are dealing with.

• The BO approximation outlined above is not always appropriate. This is the
case when two PES related to different electronic states are close to each other in
energy, or if they are partially degenerate. Then one can no more neglect their
interaction and has to take into account both of them. The general strategy,
however, remains the same, i.e. in order to solve the general molecular Schrödinger
equation a 2-step-approach is pursued, i.e.

1. solve the electronic Schrödinger equation (5.72) for several fixed nuclear geo-
metries to construct an approximate PES V (R) (ab initio step)

2. Employ the PES V (R) obtained in step 1 (or combine several PES, if neces-
sary) to solve the nuclear Schrödinger equation (5.75)

2

142 Eigenvalue Problems in Theoretical Spectroscopy

5.6. Nuclear Motion and Coordinate Systems

As can be seen from the derivation of the nuclear Schrödinger equation (5.75), one has
to take into account the kinetic energy of the nuclei, whose contribution is incorporated
in the kinetic energy operator T̂n (cf. (5.67)) and describes the motion of the nuclei in
space. Consequently, molecules are not rigid entities, their nuclei perform

• vibrational motion (stretching and bending)
(the positions of the nuclei in space relative to each other are changing)

• rotational motion
(the molecule rotates about axes running through the center-of-mass of the nuclei)

• translation
(the molecule performs a translation in space, i.e. the center-of-mass of its nuclei
is moving in a certain direction with constant velocity)

The following description is geared to [61] and gives a brief outline on the choice of
coordinate systems, as far as it is of importance for the derivation and computational
complexity of the eigenvalue problem. For a full account see [21]. The space fixed coordi-
nate system we have made use of so far (“laboratory system”) is not always appropriate
for the adequate description of the vibrational and rotational motion of the nuclei, be-
cause it neither provides any information on how much the molecule deviates from its
equilibrum structure, nor does it allow for conclusions on how the molecule rotates in
space. To remedy this drawback, one introduces an additional Cartesian coordinate
system, a so-called molecule-fixed system, in a first step. A formal introduction of both
systems is given in the following definition:

Definition 5.36 (Space fixed and molecule fixed coordinate system)
We consider a molecule with N nuclei and masses Mη (η = 1, . . . , N).

1. The position of a nucleus in the space fixed coordinate system (“laboratory sys-
tem”), is given by its Cartesian coordiantes (in capital letters)

Rη = (Xη, Yη, Zη) (5.76)

The laboratory system is called space fixed, because it is attached to the observer
and does not follow the translational and rotational motion of the molecule.

2. By contrast, the position of a nucleus in a molecule fixed coordinate system given
by its Cartesian coordinates (in small letters)

rη = (xη, yη, zη) (5.77)

is described relative to a system having its origin in the center of mass of the N
nuclei of the molecule

R0 = (X0, Y0, Z0) (5.78)

5.6 Nuclear Motion and Coordinate Systems 143

and is given by its space fixed coordinates

X0 =
1

M

N∑
η=1

MηXη, Y0 =
1

M

N∑
η=1

MηYη, Z0 =
1

M

N∑
η=1

MηZη (5.79)

where

M =
N∑

η=1

Mη (5.80)

The molecule fixed system follows the rotational and translational motion of a
molecule in space (it is “attached” to the molecule).

Before we can show how to transform between both coordinate systems, we need the
following definition:

Definition 5.37 (Euler angles)
To describe the orientation of a molecule fixed systemM = (x, y, z) relative to a space
fixed system S = (X, Y, Z), it is common to use the so-called Euler angles (cf. Fig. 5.6).
Without loss of generality we may assume that both,M and S, have the same origin O
The Euler angles

E = (θ, φ, χ) (5.81)

are defined by the following steps that have to be carried out in order to make S coincide
withM:

• S is rotated about the Z-axis by the angle φ, such that the Y -axis coincides with
the so-called line of nodes ON (which is defined as the intersection between the
xy-plane and the XY -plane).

• The rotated coordinate system is now rotated about the ON -axis by the angle θ,
which transfers the Z-axis into the z-axis.

• Finally, the rotated coordinate system is rotated about the z-axis by the angle χ,
which carries over the ON -axis to the y-axis

We are now in a position to give an explicit formula for the transformation between
space fixed and molecule fixed coordinate system

Proposition 5.38 (Transformation space fixed ↔ molecule fixed system)
Let the space fixed coordinate system S and the molecule fixed coordinate system M
be defined according to Definition 5.36. Then a coordinate rη in M is obtained from
the corresponding coordinate Rη in S by

rη = S(θ, φ, χ) (Rη −R0) (5.82)

144 Eigenvalue Problems in Theoretical Spectroscopy

Figure 5.6.: Euler angles

Y

N

Z

X
O

χ

φ

θ

x

z

y

where θ, φ, χ are the Euler angles explained above in Definition 5.37 and S(θ, φ, χ) the
rotation matrix defined by

S(θ, φ, χ) = cos θ cosφ cosχ− sinφ sinχ − cos θ cosφ sinχ− sinφ cosχ sin θ cosφ
cos θ sinφ cosχ+ cosφ sinχ − cos θ sinφ sinχ+ cosφ cosχ sin θ sinφ
− sin θ cosχ sin θ cosχ cos θ

 (5.83)

Proof: simple verification 2

Remark 5.39 (Rotational, vibrational and translational coordinates)
• Obviously, the Euler angles E = (θ, φ, χ) describe the rotational motion of the

molecule under consideration, and therefore, they are also referred to as rotational
coordinates.

• The center-of-mass R0 = (X0, Y0, Z0) describes the translation of the molecule,
and thus, can be regarded as translational coordinate.

• The molecule fixed coordinate system M still does not reflect the vibrational
behavior of the molecule well, but it can be employed as a starting point for a more
suitable characterization. Independent of the concrete choice of the coordinate
system(s), 3N coordinates are required to determine the positions of the N nuclei
in space. As we have already consumed 3 coordinates for the center-of-mass R0

defined in Def. 5.36, and 3 further coordinates for the Euler angles in Def. 5.37,
there are only 3N − 6 degrees of freedom left for the definition of the vibrational

5.6 Nuclear Motion and Coordinate Systems 145

modes. Denoting the current position of a nucleus with index η by its molecule
fixed coordinate rη and its position in the equilibrum geometry of the molecule by
aη, it seems to be natural to define the vibration as current displacement dη, i.e.

dη = rη − aη η = 1, . . . , N (5.84)

Obviously, 6 of the N coordinates defined in (5.84) are redundant. This in turn
implies, that one can define 6 equations connecting all 3N components. The
resulting formulae are well-known as Eckart conditions and have the nice property
that the coupling between rotational and vibrational motion is minimized. We do
not discuss the derivation here and refer to [61] and [21].

• Note that the coordinates defined in (5.84) are not the only possible way to describe
the vibrational motion of the nuclei in a molecule and that there are other popular
choices that may be more appropriate. One example for such a set of vibrational
coordinates is provided by the so-called Jacobi coordinates, which are particularly
well-suited for the description of the bending motion within a triatomic molecule.
A definition is given below and we will make use of it later on, when the Double
Renner effect is discussed.

2

Figure 5.7.: Jacobi coordinates for a triatomic molecule

A B
M

C

τ

R

r

Definition 5.40 (Jacobi coordinates for triatomic molecules)
Let ABC be a generic triatomic molecule consisting of the the nuclei A, B and C along
with the masses mA, mB and mC . Let R be the bond-length of the AB moiety and M be
the center of mass with respect to the nuclei A and B. Furthermore, let r be the length
of the distance MC and the angle τ be defined as ∠(MB,MC) (cf. Fig. 5.7). Then
the vibrational motion of ABC can be described by the Jacobi coordinates (R, r, τ),
where R and r are referred to as stretching coordinates and τ as bending coordinate.
Note that this definiton is consistent with the allowed degrees of freedom for the number
of vibrational coordinates, since N = 3 and consequently 3N − 6 = 3 coordinates are
admissible.

146 Eigenvalue Problems in Theoretical Spectroscopy

We can now exploit the definition of space fixed and molecule fixed coordinates in Def.
5.36 to show that the translational motion of a molecule can be neglected in our consid-
erations:

Remark 5.41 (Separation of the translational motion)
Translation moves all nuclei in the same spatial direction with constant velocity, i.e. the
space fixed center-of-mass coordinate R0 is submitted to change, whereas the position
of the nuclei relative to each other is not affected, which means that their molecule
fixed coordinates rη are constant. The definition of the potential V in (5.69) only
involves Euclidean distances of particles. In other words, V is invariant with respect to
translation and rotation, and thus, only depends on the molecule fixed coordinates of
the particles (electrons and nuclei), such that we can write it as a function V (x, y, z).
The Hamiltonian of the molecule now can be re-arranged as

Ĥ = T̂ + V (x, y, z)

= T̂0 + T̂rel + V (x, y, z)

= Ĥtrans + Ĥrel (5.85)

where Ĥtrans = T̂0 is the Hamiltonian for the translational motion and

Ĥrel = T̂rel + V (x, y, z) (5.86)

denotes the Hamiltonian related to the realtive motion of the nuclei. Obviously, Ĥtrans

only depends on the space fixed coordinates X0, Y0, Z0, whereas Ĥrel only depends on the
molecule fixed coordinates x, y, z. By the separation of the coordinates we have achieved
that the Schrödinger equation can be split into two eigenvalue problems

Ĥtransψtrans(X0, Y0, Z0) = Etransψtrans(X0, Y0, Z0) (5.87)

and
Ĥrelψrel(x, y, z) = Erelψrel(x, y, z) (5.88)

that can be solved independently. The total Schrödinger equation

Ĥtrans−relψtrans−rel(X0, Y0, Z0, x, y, z) = Etrans−relψtrans−rel(X0, Y0, Z0, x, y, z) (5.89)

then gives the eigenvalues
Etrans−rel = Etrans + Erel (5.90)

and the corresponding wave functions

ψtrans−rel(X0, Y0, Z0, x, y, z) = ψtrans(X0, Y0, Z0)ψrel(x, y, z) (5.91)

Spectroscopic transitions (induced by electromagnetic radiation) as described in Figure
5.4 and Formula (5.1) cannot have any impact on the translation state, i.e. such a
transition combines two wave functions

ψtrans(X0, Y0, Z0)ψ
′′
rel(x, y, z) −→ ψtrans(X0, Y0, Z0)ψ

′
rel(x, y, z) (5.92)

5.7 Variational Approach and Matrix Eigenvalue Problem 147

with the same translation wave function, but two different wave functions ψ′′rel(x, y, z)
and ψ′rel(x, y, z) for the relative motion. Consequently, the related energy difference
amounts to

∆E = E ′
rel − E ′′

rel (5.93)

and the contribution of the translation energy Etrans cancels out. Consequently, we can
restrict ourselves to the solution of the Schrödinger equation for the relative motion
(5.88) in the following, as spectroscopists are primarly interested in differences between
energy levels. 2

Summary 5.42
Let us now briefly summarize the essential points from this section:
The motion of the nuclei of a molecule may be described by means of appropriately
chosen coordinates, a survey of which is given in Table 5.2.

Table 5.2.: Coordinates for the different kinds of nuclear motion

Type of motion Description by # coordinates

translation center-of-mass R0 = (X0, Y0, Z0) (see Def. 5.36) 3
rotation Euler angles E = (θ, φ, χ) (see Def. 5.37) 3
vibration several possibilities (cf. Rem. 5.39 and Def. 5.40) 3N − 6

Furthermore, the discussion in Remark 5.41 has shown that one can neglect the trans-
lational motion, such that the Schrödinger equation for the relative motion (5.88) only
depends on 3N − 6 + 3 = 3N − 3 vibrational and rotational coordinates. 2

5.7. Variational Approach and Matrix Eigenvalue
Problem

Let B = {φi}∞i=0 be an orthonormal basis of L2(Rn). In the following we approximate the

molecular Hamiltonian Ĥ by orthogonal projection onto a finite dimensional subspace

K = span{φ1, . . . , φM} (5.94)

spanned by the first M basis vectors of B in order to solve the Schrödinger equation

Ĥψm(q1, q2, . . . , qn) = Emψm(q1, q2, . . . , qn) (5.95)

numerically, where we use a set of arbitrary coordinates qi (i = 1, . . . , n) and the short-
hand notation dV = dq1dq2 . . . dqn for the differential volume element in integrals. Pro-
vided that the basis functions are chosen appropriately, this leads to a real-symmetric

148 Eigenvalue Problems in Theoretical Spectroscopy

matrix representation H ∈ RM×M which can be diagonalized using one of the eigen-
solvers discussed in Chapters 3 and 4. Obviously, this approach is an extension of the
Rayleigh-Ritz procedure (Alg. 3.12) to the more general situation that the vector space
under consideration is not finite-dimensional and we can proceed in almost complete
analogy: We are looking for approximate eigenpairs (Ẽ, ψ̃) where ψ̃ ∈ K. Then, impos-
ing the Galërkin condition

Ĥψ̃ − Ẽψ̃ ⊥ K (5.96)

on the residual implies that

〈χ, Ĥψ̃ − Ẽψ̃〉 = 0 ∀χ ∈ K (5.97)

The arising inner products are scalar products on L2(Rn) in the sense of (5.6).

Expressing ψ̃ as linear combination of the basis vectors

ψ̃ =
M∑

j=1

αjφj (5.98)

it follows from (5.97) that〈
φi, Ĥ

M∑
j=1

αjφj

〉
− Ẽ

〈
φi,

M∑
j=1

αjφj

〉
= 0 ∀i = 1, . . . ,M

M∑
j=1

αj〈 φi, Ĥφj 〉 = Ẽαi ∀i = 1, . . . ,M (5.99)

We now define H ∈ CM×M by its matrix elements

Hij = 〈φi, Ĥφj〉 =

∫
Rn

φ∗i Ĥφj dV ∀i, j = 1, . . . ,M (5.100)

and the coordinate vector c̃ as

c̃ = ι(ψ̃) = (α1, . . . , αM)T (5.101)

where ι : K → CM is the canonical isomorphism. Then (5.99) can be re-written as the
desired matrix eigenvalue problem:

Hc̃ = Ẽc̃ (5.102)

Definition 5.43 (Finite basis representation (FBR))
The matrix H ∈ CM×M is called Hamiltonian matrix or Finite Basis Representation

(FBR) of the molecular Hamiltonian Ĥ, which acknowledges that H is an approximation

of Ĥ obtained by using finite basis expansions of ψm in (5.98). It is important to note
that by a proper choice of the basis functions it can always be achieved that H has
only real matrix coefficients. The computational scheme suggested above to determine
eigenpairs of the molecular Hamiltonian Ĥ is commonly referred to as FBR approach or
variational approach and the terms introduced in Section 3.3.1.1 carry over as follows:

5.7 Variational Approach and Matrix Eigenvalue Problem 149

• H ∈ RM×M is the interaction matrix of Ĥ with respect to K

• Ẽm (m = 1, . . . ,M) are the Ritz values of Ĥ with respect to K.

• ψ̃m (m = 1, . . . ,M) are the Ritz functions of Ĥ with respect to K
(see (5.98))

• (Ẽm, ψ̃m) (m = 1, . . . ,M) are the Ritz pairs of Ĥ with respect to K.

Finally, the following lemma provides a compact formulation of the above considerations
which turns out useful for the formal derivation of FBRs with respect to product bases
in the following section. Furthermore, it clarifies the analogy between the interaction
matrix (3.39) defined in Section 3.3.1.1 and the Hamiltonian matrix H in (5.100) above
and shows that the projector P is the suitable generalization to the orthogonal matrix
V holding the basis vectors.

Lemma 5.44
Let the subspace K ⊂ L2(Rn) be defined as in (5.94) and define the cut-off projection
operator with respect to a fixed number M ∈ N

P : L2(Rn) → K

ψ =
∞∑
i=1

αiφi 7→ ψ̃ =
M∑
i=1

αiφi

Then the interaction operator

M̂ = P∗ĤP : K → K (5.103)

is the projection of Ĥ onto K and the Hamiltonian matrix defined by (5.100) can be
expressed as

H = ι(M̂) (5.104)

where ι is the extension of the canonical isomorphism between K and CM as per (5.44)
in Def. 5.31.

Hylleraas and Undheim [57] as well as MacDonald [78] were the first to realize
the variational character of the approach in the context of quantum chemical computa-
tions at the beginning of the 30’s of the last century and for this reason the following
theorem is well-known under the names MacDonald’s theorem or Hylleraas-Undheim-
MacDonald interleaving theorem. It is a generalization of the interleaving theorems for
finite dimensional Hermitian matrices discussed in Section 2.2.2:

Theorem 5.45 (Hylleraas, Undheim, MacDonald)
Let the eigenvalues Ei ∈ R of the molecular Hamiltonian Ĥ and the eigenvalues Ẽ

(N)
i ∈ R

of the Hamiltonian matrix H(N) ∈ RN×N with respect to a finite basis {φ}Ni=1 be ordered
by ascending magnitude. Then the following statements hold

150 Eigenvalue Problems in Theoretical Spectroscopy

1. Let H(N) ∈ RM×M , H(L) ∈ RL×L be Hamiltonian matrices w.r.t. to basis sizes
L,M ∈ N, where L > M . Then the kth eigenvalue Ẽ(M) of H(M) is an upper
bound to the kth eigenvalue Ẽ(L) of H(L), i.e.

Ẽ
(M)
k ≥ Ẽ

(L)
k k = 1, . . . ,M (5.105)

2. the kth eigenvalue of H(M) is an upper bound to the corresponding exact kth
eigenvalue of Ĥ, i.e.

Ẽ
(M)
k ≥ Ek k = 1, . . . ,M (5.106)

Proof: The first part of the theorem, where the spectra of finite dimensional matrices
are compared, is a direct consequence of the inclusion principle (Lemma 2.18) for Her-
mitian matrices, since H(M) can be obtained from H(L) by deleting the last L−M rows
and columns. For a mathematically satisfactory proof of the second assertion see [111],
where the variational characterisations for Hermitian matrices presented in Section 2.2.2
are generalized to unbounded self-adjoint operators acting on Hilbert spaces H. 2

Remark 5.46
• The variational approach discussed above provides a viable means for the numerical

solution of the Schrödinger equation. The computation of the matrix elements
defined in (5.100) involves integration over Rn, which is in general only feasible
by means of numerical techniques and requires enormous computational effort.
The arising costs scale rather unfavorably as O(n2) which becomes perceivable
especially for large problem sizes n. However, the overall costs are dominated by
the subsequent numerical eigenvalue computation, for which the costs are O(n3), if
one of the direct solvers discussed in Section 3.2 is employed. This gives additional
motivation for our investiagations on iterative projection methods in this context.

• MacDonald’s theorem 5.45 suggests that the sequence of the upper bounds Ẽ
(N)
k

converges monotonously from above to the corresponding exact eigenvalue Ek of
Ĥ as N tends to infinity

Ẽ
(N)
k ↓ Ek N →∞ (5.107)

A mathematically stringent convergence analysis for the case that the variational
approach is applied to the solution of the electronic Schrödinger equation (5.72)
may be found in [68] where further interesting references on the topic are given.
For a systematic and general discussion on the convergence theory for spectral
approximations of operators, see the monograph by Chatelin [23].

• MacDonald’s theorem 5.45 states that the approximations Ẽm are upper bounds
to the exact eigenvalues Em. Unfortunately, knowing that Ẽ

(N)
k is an upper bound

to Ek in general does not imply anything on the quality of the approximation Ẽ
(N)
k .

A common strategy in practical computations is thus to choose a reasonably large
basis with dimension N and to assess how much some successive approximations

5.8 Product vs. Contracted Basis and Direct vs. Iterative Eigensolver 151

Ẽ
(N+1)
k , Ẽ

(N+2)
k , . . . deviate from Ẽ

(N)
k . If the difference is only small or Ẽ

(M)
k seems

to be constant for M > N , then Ẽ
(N)
k can be assumed to be converged to Ek

which is called E-convergence in the literature (convergence of the energy levels
Em). Analogously, one speaks of ψ-convergence when monitoring the differences

of wavefunctions ψ̃
(M)
k with respect to the L2-norm. Of course, this is only a

heuristic guideline, and no convergence criterion in a strictly mathematical sense,
but experience has shown that it works rather reliably.

• To obtain reliable inclusions of energy levels one also requires lower bounds on the
related eigenvalues. Again, this is a general issue in the theory of self-adjoint oper-
ators. A theoretical exposition as well as practical hints for a possible realization
may be found in [10] and the references therein.

• The variational FBR approach described in this section is not the only way to
obtain a matrix eigenvalue problem. There are also grid-based methods, so called
Discrete Variable Representation (DVR) methods discussed in the literature, which
are formally related to the FBR approach by a transformation T involving Gaus-
sian quadrature points and weights of the (polynomial) basis functions. In general,
the variational character in a strict sense, as it is known from the FBR approach,
is lost for grid-based methods. However, these methods share the fortunate aspect
that the potential energy matrix is diagonal which makes the Hamiltonian matrix
very sparse. We cannot go into detail here and refer to [18], [19] and [20] for a
further discussion.

2

5.8. Product vs. Contracted Basis and Direct vs.
Iterative Eigensolver

In this section we combine the essential insights of the preceding sections in order to
discuss in more detail how the orthonormal basis {φ}∞i=1 of the H = L2(Rn) required
in the previously derived variational approach is actually constructed and what impact
this has on the complexity of the arising symmetric eigenvalue problems. Eventually,
we will outline four principle strategies for their solution. For the sake of generality,
the discussion will be held on an abstract level, as we are primarly interested in the
structure and the computational complexity. For related surveys with more emphasis on
the technical details related to theoretical spectroscopy and quantum chemistry along
with concrete examples of applications see [20] (Chapter 9, Jonathan Tennyson,
Variational calculations of rotation-vibration spectra), and the papers by Carrington
and his co-workers [19], [104], [129] and [130].

152 Eigenvalue Problems in Theoretical Spectroscopy

5.8.1. Product Basis

In Section 5.6 we have extensively discussed the choice of coordinates for the appropriate
description of the nuclear motion. For the sake of generality, let us first assume, that the
motion is described by n coordinates q1, . . . , qn. Using the so-called Podolsky trick (see

[21], [61]) it is possible to express the nuclear kinetic energy operator (KEO) T̂n in (5.75)
with respect to other than Cartesian coordinates. Depending on the concrete choice this
leads to different types of Hamiltonians (cf. [59], [60] and [20], for instance). The general

situation is that the kinectic energy operator T̂n may be expressed as a sum of operator
tensor products (cf. Def. 5.29) such that one obtains the following representation

Ĥ = T̂ + V =
k∑

j=1

n⊗
ij=1

Tij + V (q1, . . . , qn) (5.108)

where

Tij(qij) : Hij → Hij ij = 1, . . . , n (5.109)

denotes an operator acting on the Hij = L2(R) related to the coordinate qij . The
potential V depends on the same coordinates, but it may not always be possible to
expand it as a sum of tensor products. This is primarily depending on how the potential
energy surface (PES) discussed in Section 5.5 is actually constructed. If, for instance, a
polynomial expansion (e.g. Taylor approximation or a force field expression) is employed
as numerical approximation technique, it is possible to expand V accordingly. The
common strategy pursued in variational approaches (cf. [20], [19]) is to construct a
product basis

B =
n⊗

j=1

Bj = B1 ⊗ B2 ⊗ ...⊗ Bn (5.110)

of H = L2(Rn) as per Def. 5.33, where each basis Bi is related to one vibrational resp.
rotational coordinate. In general, one attempts to employ bases Bi whose functions give
an appropriate description of the molecular motion related to the coordinate qi. Typical
choices are the eigenfunctions of the harmonic oscillator (see [21] for a general descrip-
tion) or the eigenfunctions of the Morse oscillator [60] for bases related to stretching
coordinates qi. A frequent choice for basis functions related to the rotational coordi-
nates are the spherical harmonics as eigenfunctions of the angular momentum operator
(see [21],[133] for more details). To obtain the finite dimensional Hamiltonian matrix H
one now has to cut off each basis Bi in (5.110) after Mi ∈ N elements which results in
the truncated product basis of (5.110)

B(M) =
n⊗

j=1

B(Mj)
j = B(M1)

1 ⊗ B(M2)
2 ⊗ . . .⊗ B(Mn)

n (5.111)

5.8 Product vs. Contracted Basis and Direct vs. Iterative Eigensolver 153

and the correspnding cut-off projections

Pi : Hi → Ki i = 1, . . . , n (5.112)

onto the subspaces
Ki = span{B(Mi)

i } i = 1, . . . , n (5.113)

Consequently, the total projection is obtained by the tensor product

P :=
n⊗

i=1

Pi : H → K (5.114)

where

K :=
n⊗

i=1

Ki = span{B(M)} (5.115)

From Corollary 5.28 it is known that the problem size is M determined by

M = dimK = dim

{
n⊗

i=1

Ki

}
=

n∏
i=1

dimKi =
n∏

i=1

Mi (5.116)

Application of Lemma 5.44 to the operator Ĥ defined in (5.108) using the projection
P (5.114) and successive exploitation of the tensor product properties (see Corollary
5.30 and Lemma 5.32) then yields the finite basis representation H as a sum of matrix
Kronecker products for the kinetic energy matrix T and the potential matrix V:

H = T + V =
k∑

j=1

n⊗
ij=1

Tij + V (5.117)

where
H,T,V ∈ RM×M and Tij ∈ RMij

×Mij , ij = 1, . . . , n (5.118)

Relation (5.116) reveals the general and fundamental problem with the variational ap-
proach: To obtain reasonably accurate eigenvalue approximations, one has to choose
the product basis B(M) sufficiently large, which in turn is accomplished by choosing
the sizes Mi of factor bases B(Mi)

i appropriately. The concrete choice and weighting of
these limiting numbers is problem dependent, but in general all bases have to be rep-
resented adequately. A fortunate aspect is that rather often the Hamiltonian matrix
(5.117) becomes block diagonal with respect to suitably chosen bases related to the 3
rotational coordinates, i.e. each block can be considered seperately and the complexity
of the arising eigenvalue problems thus effectively depends on the n = 3N−6 vibrational
coordinates. In the following we will take this situation for granted, since it also applies
for the Double Renner Hamiltonian we will be discussing in detail in the subsequent
chapters. However, this is still bad enough, as the following example impressively illus-
trates: Given an N -atom molecule, assume moderate limiting numbers Mi = 5, Mi = 7

154 Eigenvalue Problems in Theoretical Spectroscopy

or Mi = 10 for all 3N − 6 vibrational bases. Table 5.3 shows what this implies for the
arising matrix dimensions.

The problem sizes rapidly increase for small molecules and even small changes in the
limiting parametersMi can make the dimension of the Hamiltonian matrix H explode. In
general, the arising eigenvalue problems become intractable for the direct eigensolvers
presented in Section 3.2 for N > 4 because of the tremendous storage requirements.
Iterative projection methods offer a way out of this difficulty, and from the discussion
in Section 3.3 it is known that the user-supplied matrix-vector multiplication is a key
ingredient for these algorithms. There are two possible scenarios in our context:

1. The potential matrix V is “factorizable”, i.e. it may be written as a sum of Kro-
necker products analogous to the matrix T in (5.117) arising from the kinetic

energy operator T̂ . Then iterative projection methods are particularly well-suited,
because the product basis structure can be exploited for the computation of matrix-
vector products. Let ` be the number of terms in V and g = k + `. Then the
Hamiltonian matrix may be expressed as

H =

g∑
j=1

n⊗
ij=1

Hij (5.119)

This has very favorable consequences for the storage requirements and the compu-
tational costs, because a matrix-vector product Hx may be evaluated by exploiting
the mixed-product property for Kronecker products (see Lemma 2.48, property 5),
i.e.

Hx =

 g∑
j=1

n⊗
ij=1

Hij

 · ⊗n
i=1 xi =

g∑
j=1

⊗n
ij=1(Hijxij) (5.120)

where x is also expressed as a tensor product.

x = ⊗n
i=1 xi (5.121)

Let us again assume all factor bases B(Mi)
i (i = 1, . . . , n) to be of equal dimension

m, such that dimH = M = mn. Then n · mn+1 = (m/ logm)M logM scalar

Table 5.3.: Dimensions of FBR Hamiltonian matrices

nuclei N n = 3N − 6 dim(H), Mi = 5 dim(H), Mi = 7 dim(H), Mi = 10

3 3 125 343 1000
4 6 15625 117649 1000000
5 9 1953125 40353607 10000000000
6 12 244140625 13841287201 10000000000000

5.8 Product vs. Contracted Basis and Direct vs. Iterative Eigensolver 155

multiplications are required, i.e. the computational costs amount to O(M logM).
Furthermore, it is only necessary to store g · n lower dimensional matrices Hij ∈
Rm×m and n vectors xi ∈ Rm, such the storage costs for the matrix entries are

O(n
√
M

2
). In many cases some of the factors Hij are identity matrices Im, such that

the computation further simplifies. For a detailed discussion on the complexity of
the matrix-vector multiplication see [18].

2. If the potential matrix V is not factorizable, it is no more possible to take advan-
tage of the product basis structure directly, but one can exploit the sparsity of H,
which in general exhibits a very regular structure due to the terms arising from the
Kronecker products in T and often reduces to a great deal memory consumption
and computational costs.

5.8.2. Contracted Basis

The examples in Table 5.3 show that the size of the Hamiltonian matrix H is often
too large for practical computations, even for molecules consisting of a small number of
nuclei. Hence, a common strategy is to construct a smaller matrix

V∗HV = H̃ ∈ Rk×k, k �M (5.122)

obtained by an additional subsequent application of the Rayleigh-Ritz procedure (Alg.
3.12). From the Poincaré separation theorem (Corollary 2.19) it is known that the

eigenvalues of H̃ are upper bounds to the eigenvalues of H, and consequently, also
upper bounds to the exact eigenvalues of the Hamiltonian Ĥ, such that the variational
character of the approach is maintained. The matrix H̃ is represented with respect to a
contracted basis C formed by the columns of V and the Rayleigh-Ritz procedure is often
referred to as a contraction scheme in this context. To carry out the projection, a suitable
orthogonal matrix V ∈ RM×k has to be constructed and for a good quality it is important
that the subspace K spanned by the columns of V and the related eigenspace X spanned
by the first k eigenvectors of H make a small angle. Fortunately, the Hamiltonian matrix
H is often dominant with respect to relatively large square blocks on its diagonal, i.e.
the Frobenius norms are large as compared to the norms of the off-diagonal blocks.
Thus, a general recipe for the construction of the projection matrix V is to compute
eigensystems of these blocks Bi and to use selected subsets of the eigenvectors stored in
the transformation matrices Ti to build up the projection matrix V. A concrete example
along with a detailed description of the construction (cf. Alg. 7.5) and application (cf.
Alg. 7.6) of such a projection V will be given later on in Section 7.3 in the context of the
Double Renner effect. A general problem with this approach is, however, how to control
the quality of the eigenapproximations: To play it safe, one actually has to compare
the results from the contracted and the related product basis computation. On the one
hand, this is often not feasible due to the problem size of the product basis problem
and on the other hand it obviates our efforts to reduce the computatinal costs. In [87]
this is discussed in detail for the concrete situation of triatomic molecules exhibiting the

156 Eigenvalue Problems in Theoretical Spectroscopy

Double Renner effect and a couple of numerical examples is given as a guideline on how
to construct the projection. Note that there are further, more sophisticated contraction
schemes discussed in the literature. For more details see [19], [129] and [130]. Owing to

their small size contracted matrices H̃ may be treated by direct solvers and this often
leads to reasonable results, provided that the quality of the constructed projection is
sufficiently good. Iterative projection methods are applicable as well, but the situation
is less favorable, because the product basis structure is destroyed, such that it is no more
possible to express the matrix-vector multiplication as a sum of Kronecker products and
in general only the sparsity on a block level is conserved.

5.8.3. Dichotomies and General Approaches

In Chapter 3 we have already pointed out the dichotomy between direct solvers and
iterative projection methods for eigenvalue problems. The above discussion shows that in
the context of eigenvalue problems in theoretical spectroscopy this dichotomy is enriched
by an additional “dimension”. According to the terminology used by Bramley and
Carrington [19] one can distinguish the following four general strategies:

1. direct-product approach
apply one of the direct solvers presented in Section 3.2 to the product-basis Hamil-
tonian matrix H (5.117)

2. direct-contracted approach
apply a direct solver to the contracted-basis Hamiltonian matrix H̃ (5.122)

3. iterative-product approach
apply one of the iterative projection methods discussed in Section 3.3 and Chapter
4 to the product-basis Hamiltonian matrix H (5.117)

4. iterative-contracted approach
apply an iterative projection method to the contracted-basis Hamiltonian matrix
H̃ (5.122)

Summary 5.47
We have seen, that the direct-contracted calculation is in general the least time-consuming
approach, but suffers from the drawback that it is often not clear how good the com-
puted eigenvalue approximations actually are. Direct-product computations are more
accurate, but often not feasible, because the problem size n is governed by the size of the
finite product basis, which impedes explicit storage of the Hamiltonian matrix H (cf.
Table 5.3). Furthermore, the huge matrix sizes make the time complexity of O(n3) a
severe drawback. Therefore, the iterative-product approach offers a valuable alternative
and is of great use as a means of verification, because one is often only intrested in a
relatively small fraction of the spectrum (some of the lowest eigenvalues) and one can
take advantage of the product basis structure or the sparsity structure in matrix-vector

5.9 General Framework for the Computation of Energy Levels 157

multiplications. Iterative-product approaches will be in the center of our interest when
we will discuss the Double Renner effect. It also may happen that the dimension of a
contracted problem is so large that iterative-contracted approaches become competetive
with their direct-contracted counterparts. Hence, depending on the type of problem and
the chosen projection, each of the four possibilities has its justification. A related and
extensive discussion on the pros and cons of the four approaches may be found in [19].
2

5.9. General Framework for the Computation of Energy
Levels

In this chapter we have so far collected the essential components for the numerical
solution of the time-independent Schrödinger equation and we have seen that the Born-
Oppenheimer approximation discussed in Section 5.5 allows to separate the contribution
of nuclei and electrons which simplifies the problem considerably. Furthermore, one can
ignore the contribution of translational motion, such that the complexity of the nuclear
Schrödinger equation depends on 3N − 3 vibrational and rotational coordinates. For
the sake of lucidity it is now appropriate to give a brief summary. To compute the
discrete energy levels Ei of a molecule consisting of N nuclei from the simplified nuclear
Schrödinger equation, the following ingredients are required:

• A potential energy surface (PES) (see Section 5.5 and Fig. 5.5) for the molecule un-
der consideration obtained by means of ab initio calculations and/or experimental
data

• A proper choice of 3N − 3 coordinates qi for the appropriate description of the
rotational and vibrational motion of the nuclei. The molecular Hamiltonian then
has to be expresssed with respect to these coordinates using the chain rule or the
so-called Podolsky trick .

• A choice of n bases Bi representing the rotational/vibrational motion in each co-
ordinate qi

Fortunately, the computational complexity often only depends on the n = 3N − 6
vibrational coordinates, because in many cases the arising Hamiltonian matrix is block
diagonal with respect to the rotational basis functions:

1. Choose finite bases B(Mi)
i by cutting off Bi after Mi ∈ N elements resulting in a

finite product basis B(M) =
⊗n

i=1 B
(Mi)
i of dimension M =

∏n
i=1Mi.

2. Compute the matrix elements for the various terms Tij and the potential V in the
Hamiltonian (5.108). This is done by using the relation (5.100) for a Hamiltonian

158 Eigenvalue Problems in Theoretical Spectroscopy

matrix element Hij and exploiting the definition of the operator tensor product
(Def. 5.29) and the scalar product (5.38) on the product H = L2(Rn) (cf. Def.
5.33). Depending on the choice of basis functions, some of these terms may be
evaluated by means of explict analytic formulae. However, in general, one has to
resort to numerical techniques. For the matrix elements Vij related to the potential
the situation is even worse, because rather often the potential function V cannot
be written as sum of tensor product expressions. This implies that simultaneous
numerical quadrature in all n coordinates is required for the computation of one
potential matrix element. Assuming K (typically 10-30) quadrature points in each
coordinate this leads to Kn evaluations and makes the computation of the matrix
elements an extremely demanding and time-consuming problem.

3. Collect the matrix blocks computed in the preceding step to construct the final
Hamiltonian matrix H.

4. Compute approximate eigenpairs by using one of the four recently presented gen-
eral approaches (application of direct/iterative solver to product/contracted-basis
representation, see Section 5.8.3).

6. The Double Renner Effect for
Triatomic Molecules

In this chapter we come to the problem, which is actually in the center of our interest, the
computation of energy levels of triatomic molecules with the Renner effect property. A
full theoretical account on this matter is given in the PhD thesis by Odaka [86], where all
ingredients (choice of coordinates, Hamiltonian, choice of basis functions, computation of
matrix elements, numerical integration and diagonalization of the Hamiltonian matrix)
required for the variational calculation of energy levels along with a software (FORTRAN
90 [85] code DR) are discussed in detail. In the following we will focus on those aspects
that are of importance to understand how the Hamiltonian matrix is constructed and
describe its structure and its properties.

6.1. Breakdown of the Born-Oppenheimer
Approximation

In the preceding chapter we have seen that the Born-Oppenheimer approximation plays
a key role in the variational computation of energy levels, because it allows one to treat
the motion of the electrons and the nuclei separately and greatly reduces the complexity
of the problem. The contribution of the electronic motion is represented by the potential
energy surface (PES), V (R) which is obtained in the ab initio step, i.e. by solving the
electronic Schrödinger equation (5.72) for several fixed nuclear geometries. A molecule
has infinitely many electronic states, for each of which – at least in principle – one could
determine a PES. When two such potential energy surfaces become close to each other in
energy or degenerate at certain molecular geometries, it is no more possible to neglect the
interaction of electronic motion and vibration of the nuclei, and consequently, the Born-
Oppenheimer approximation fails. Renner [98] was the first to give an example of such
a possible break-down. He realized, that if the electronic energy in a triatomic molecule is
doubly degenerate at linear geometries, it necessarily splits into two separate components
when the molecule bends. The two resulting electronic states are close in energy and the
Born-Oppenheimer approximation fails. If one linear molecular geometry is accessible at
which the degeneracy arises, this is called Renner effect . In case of two accessible linear
geometries this is referred to as Double Renner effect. An example of such a molecule
is provided by the MgNC/MgCN molecule. The sketch below illustrates the double
degeneracy at linear geometries and the splitting upon bending. Besides, it shows how
electronic energies change on isomerization from an MgNC molecule (τ = 0) to an
MgCN molecule (τ = π), where the Jacobi angle τ (cf. Def. 5.40 and Fig. 6.2 below)

159

160 The Double Renner Effect for Triatomic Molecules

describes the bending motion of the Mg nucleus.

Figure 6.1.: Degeneracy at linear geometries

Obviously, one has to modify the Born-Oppenheimer approach outlined in Section 5.5
in order to be able to compute the discrete energy levels using a variational approach.
The suitable remedy is to combine the two potential energy surfaces, which we will refer
to as “upper” V (+) and “lower” V (−) surface (see [86] for details on how this is accom-
plished). The drawback with this approach is that the resulting PES has more than
one local minimum and therefore it is not appropriate to approximate it by means of
Taylor expansions. This in turn means that the potential matrix may not be expanded
as a sum of tensor products, such that one can only exploit the sparsity of the Hamilto-
nian matrix for the design of matrix-vector multiplications (see the related discussion in
Section 5.8.1). The Renner effect also explains the technical term rovibronic, which is
a portmanteau made up of ro-tational, vib-rational and elect-ronic: Rovibronic energy
levels arise from the coupling of electronic motion and vibrational motion of the nuclei
(as the description of the Renner effect shows) as well as the rotation of the molecule.

It is appropriate to distinguish between two classes of molecules (we will examine one
example for each class),

1. ABC type molecules consisting of three different nuclei A, B and C.
Example: MgNC resp. MgCN molecule (see above)

2. ABB type molecules consisting of two identical nuclei B
Example: HOO molecule

This distinction allows to take advantage of molecular symmetry porperties and reduces
the computational effort for ABB type molecules (see [86]), as will become evident later

6.2 The Double Renner Hamiltonian 161

on.
In order to compute rovibronic energy levels we have to solve the Schrödinger equation
and to this end we have to follow the general procedure outlined in Section 5.9.

6.2. The Double Renner Hamiltonian

According to the list of ingredients in Section 5.9 one requires a potential energy sur-
face, which is obtained by computing two PES obtained in an ab initio step (see above
discussion). Then an appropriate coordinate system for the description of the nuclear
motion has to be chosen. The Jacobi coordinates (see Def. 5.40) turn out useful as vi-
brational coordinate system, because they adequately reflect the bending nature, e.g. in
the motion of the Mg nucleus (see Fig. 6.2). In order to describe the rotation of the
molecule we further need a space-fixed Cartesian xyz-coordinate system having its origin
in the center of mass O of the three involved nuclei. Both, molecule and space fixed
coordinate systems, are illustrated below for the case of an MgCN molecule, where the
z-axis points into the plane:

Figure 6.2.: MgCN molecule: coordinate systems

Mg

C N
M

O

R

r

τ

x

y

Using the Podolsky trick ([21], [61]) one can now express the molecular Hamiltonian

ĤDR with respect to these coordinates (the subscript DR stands for Double Renner):

162 The Double Renner Effect for Triatomic Molecules

ĤDR =
~2

2µRR2
{N̂2

x + N̂2
y + cot2 τ(N̂z − L̂z)

2 + N̂2
τ + N̂xN̂τ + N̂τ N̂x

+ cot τ(N̂y(N̂z − L̂z) + (N̂z − L̂z)N̂y)}

+
~2

2µrr2

{
1

sin2 τ
(N̂z − L̂z)

2 + N̂2
τ

}
− ~2

8

{
1

µRR2
+

1

µrr2

}{
1 +

1

sin2 τ

}
+

1

2µR

P̂ 2
R +

1

2µr

P̂ 2
r + ĤSO + V (R, r, τ) (6.1)

The following list gives a brief explanation of some symbols and expressions (see [86] for
details):

• µr and µR are the reduced masses in a Jacobi coordinate system:

µR =
mBmC

mB +mC

µr =
mA · (mB +mC)

mA +mB +mC

(Here we label the atoms of a molecule by A, B and C).

• L̂z is the projection of the angular momentum operator L̂ onto the z-axis.

• N̂x, N̂y, N̂z are the projections of the angular momentum operator N̂ onto the x-,
y- and z-axes respectively.

• N̂τ , P̂r, P̂R are kinetic energy operators.

• Ĥe is the part of the Hamiltonian related to the potential

• ĤSO is the spin-orbit coupling term

Figure 6.3.: HOO molecule: 395th energy state for J = 1/2 and Γrve = B2

1.0

2.0

3.0

4.0

r

30
60

90
120

150
180

τ

0.0

0.5

1.0

1.5

f

6.3 Choice of the Basis Set 163

Before we proceed, let us briefly come back to the physical interpretation of the eigen-
functions ψ of the Hamiltonian. In Section 5.3 it has already been mentioned that
|ψ|2 may be interpreted as a probability density function. Figure 6.3 shows a three-
dimensional plot (for a fixed stretching coordinate R) of |ψ|2, where ψ is an eigenfuction
of the Double Renner Hamiltonian (6.1) related to an HOO molecule. The peaks of the
plot indicate the most likely molecular geometries.

6.3. Choice of the Basis Set

For the sake of simplicity we introduce the so called bra-ket notation, which is widely
used in the field of quantum mechanics and quantum chemistry:

Notation 6.1 (Bra-ket)
Let V,W be a vector spaces and V ∗, W ∗ their dual spaces. Then

• | v〉 (ket) denotes an element v ∈ V

• 〈v | (bra) denotes an element v∗ ∈ V ∗

• |v〉|w〉 (ket-ket) denotes the tensor product v ⊗ w for elements v ∈ V and w ∈ W

• 〈w | v〉 (bra-ket) denotes the scalar product w∗v for elements v, w ∈ V

This notation has the advantage that it is coordinate-free and allows to include additional
parameters, e.g. quantum numbers. The ket |NR,ΓR〉, for instance, denotes the set of
all basis functions depending on the quantum number NR = 0, 1, . . . 2

The symmetry properties of a given molecule are described by its molecular symmetry
group, which has a prominent role to play in theoretical spectroscopy. Taking advan-
tage of it can simplify calculations and theoretical considerations to a great deal. The
theoretical background of group theory is beyond the scope of this thesis (a full account
may be found in [21]), we only require the following notation for our purposes:

Definition 6.2 (Molecular symmetry)
The molecular symmetry is labeled by

• Γrve ∈ {A1, A2, B1, B2} for ABB type molecules

• Γrve ∈ {A′, A′′} for ABC type molecules

In case of the Double Renner effect one makes use of a product-like basis, which differs
from the product basis described in the discussion of the general case (see Section 5.8.1)
in that one basis element is now defined by a sum of tensor products:

164 The Double Renner Effect for Triatomic Molecules

ΨJ,MJ ,S,Γrve
rve =

J+S∑
N=|J−S|

N∑
K=0

∑
Γrve,Nr,NR,η,vη

2

cJ,MJ ,S,Γrve

η,N,K,vη
2 ,Nr,NR,Γη

vib

× |NR,ΓR〉|Nr,Γr〉|vη
2 , K,Γ

η
v2
〉|η;N, J, S,K,MJ , p〉 (6.2)

The summation is nested and runs over several quantum numbers and one can see that
the total basis set is composed of four particular bases:

• |NR,ΓR〉 is the basis set describing the stretching motion along the R-bond labeled
by the quantum number NR.

• |Nr,Γr〉 is the basis set related to the r-bond stretching and labeled by the quantum
number Nr.

• The basis set |vη
2 , K,Γvη

2
〉 represents the bending motion along the Jacobi angle τ

together with K-type rotational angular momentum. The related quantum num-
beris vη

2 where the parameter η can take two different symbolic values, η = a and
η = b and splits the bending basis in two different parts.

• |η,N, J, S,K,MJ , p〉 describes the electronic motion, the effects of electron spin
and the rotation of the molecule. J is referred to as rotational quantum number.

• cJ,MJ ,S,Γrve

η,N,K,vη
2 ,Nr,NR,Γη

vib
are the coefficients which allow to construct any basis function

by just taking the corresponding linear combination.

To obtain a finite-dimensional basis one now has to choose appropriate limiting numbers
for cutting off of the factor bases. As we are only interested in the basis sizes and in
order to be consistent with the terminology employed in [87] we introduce the following
notation

Notation 6.3 (Quantum numbers, cut-off numbers and basis sizes)
The superscript (max) denotes the cut-off numbers, i.e. the maximum value of a quantum
number in a finite basis set. Since the quantum numbers start at zero one obtains the
actual size of the finite basis (lim) by adding 1:

NR = 0, 1, . . . , N
(max)
R N

(lim)
R = N

(max)
R + 1, (6.3)

Nr = 0, 1, . . . , N (max)
r N (lim)

r = N (max)
r + 1, (6.4)

va
2 = 0, 1 . . . , (va

2)
(max) (va

2)
(lim) = (va

2)
(max) + 1, (6.5)

vb
2 = 0, 1 . . . , (vb

2)
(max) (vb

2)
(lim) = (vb

2)
(max) + 1, (6.6)

2

6.4 Construction and Structure of the Hamiltonian Matrix 165

6.4. Construction and Structure of the Hamiltonian
Matrix

One of the advantageous properties of the basis set (6.2) lies in the following basic

Fact 6.4
The Hamiltonian matrix H is block diagonal with respect to the quantum numbers J ,
MJ , S and Γrve, which are therefore often referred to as good quantum numbers. We can
omit MJ in the following, since the matrix elements do not depend on it. Consequently,
the Hamiltonian matrix H splits into blocks H(J,S,Γrve), which are labeled by J , S and
Γrve and can be treated independently. There are

• 4 such diagonal matrix blocks in case of an ABB type molecule

• 2 such diagonal matrix blocks in case of an ABC type molecule

per J-quantum number, i.e. each matrix block is associated with one irreducible repre-
sentation in the corresponding molecular symmetry group (see Def. 6.2). 2

As a consequence, we can restrict ourselves to the analysis of a matrix eigenvalue problem
related to the block H(J,S,Γrve). Using the finite basis set defined by (6.2), the fixed triple
(J, S,Γrve) and the cut-off numbers (see Def. 6.3) the elements of the Hamiltonian matrix
block H(J,S,Γrve) now may be determined by means of the variational approach presented
in Section 5.7:

Hij
(J,S,Γrve) =

〈
ΨJ,MJ ,S,Γrve

i |ĤDR|ΨJ,MJ ,S,Γrve

j

〉
(6.7)

In the following we will describe the structure, properties and the construction of
H(J,S,Γrve) in more detail:

6.4.1. Hierarchies and Partitioning into Blocks

The dependencies of the N and K quantum numbers in the nested summation of
the total basis set (6.2) impose a partitioning of the Hamiltonian matrix H(J,S,Γrve)

into related matrix blocks, which we will describe in the following. For the ease of
presentation we introduce the following shorthand notation

Definition 6.5
For pairs of K quantum numbers (K ′, K ′′) and N quantum numbers (N ′, N ′′) we define:

∆N = |N ′ −N ′′| (6.8)

∆K = |K ′ −K ′′| (6.9)

To describe the structure of a Hamiltonian matrix block, we now define:

166 The Double Renner Effect for Triatomic Molecules

Definition 6.6 (J-blocks, N-blocks, K-blocks and addresses)
• The Hamiltonian matrix block H(J,S,Γrve) is called J-block

• A sub-block H
(J,S,Γrve)
N ′,N ′′ related to the N quantum number is called N-block and is

uniquely determined by its address N ′, N ′′

• A sub-block H
(J,S,Γrve)
(N ′,K′),(N ′′,K′′) related to the K quantum number is called K-block

and is uniquely determined by its address (N ′, K ′), (N ′′, K ′′).

• An N-block is called diagonal N-block, iff ∆N = 0 and is uniquely determined by
its address N = N ′ = N ′′, i.e. the block is notated as H

(J,S,Γrve)
N

• A K-block is called diagonal K-block, iff ∆K = 0 and ∆N = 0 and is uniquely
determined by its address N,K where N = N ′ = N ′′ and K = K ′ = K ′′. If there
is no danger of confusion with off-diagonal N blocks we denote it by H

(J,S,Γrve)
N,K for

the sake of brevity.

A full specification in terms of absolute coordinates and dimensions will be given in
Corollary 6.9 in the following section.

The following example clarifies the meaning of the definition:

Table 6.1.: Block partitioning of H(J,S,Γrve) for J = 5/2 and S = 1/2

N ′′ = 2 N ′′ = 3
K ′′ = 0 K ′′ = 1 K ′′ = 2 K ′′ = 0 K ′′ = 1 K ′′ = 2 K ′′ = 3

K
′
=

0

N
′
=

2

K
′
=

1
K

′
=

2
K

′
=

0

*

K
′
=

1

N
′
=

3

K
′
=

2
K

′
=

3

6.4 Construction and Structure of the Hamiltonian Matrix 167

Example 6.7
From the dependence of J and S in (6.2) it follows that N = 2, 3 and K = 0, . . . , N .
Table 6.1 shows the resulting partitioning into N - and K-blocks. According to the
terminology introduced in Def. 6.6 the Hamiltonian matrix can be partitioned into 4
N -blocks and 49 K-blocks. There are 2 diagonal N -blocks and 7 diagonal K-blocks.
The K-block marked by the asterisk has the address (3, 1), (2, 1). 2

6.4.2. Block and Problem Sizes

Obviously, we can restrict ourselves to analyze the dimensions of diagonal K-blocks
H

(J,S,Γrve)
N,K , which depend on the sizes of the finite vibrational basis sets N

(lim)
R , N

(lim)
r ,

(va
2)

(lim), (vb
2)

(lim). The difficulty is, that depending on the N and K quantum numbers,
different parts of the bending basis (which is composed of |a〉- and |b〉 functions) are
included such that the dimensions of the blocks can take different values. More precisely
speaking, one has to take into account the influence of the vibrational symmetry Γvib

(not to be confused with Γrve from Def. 6.2, see [86] and [21] for more details):

Definition 6.8 (Vibrational symmetry)
The vibrational symmetry of a molecule is labeled by

• Γvib ∈ {A1, B2} for ABB type molecules

• Γvib ∈ {A′} for ABC type molecules.

The following table gives a list of the different possibilities (three for an ABC type
molecule and six for an ABB type molecule) and shows how the corresponding sizes of
the bending basis are determined from (va

2)
(lim) and (vb

2)
(lim):

Table 6.2.: Size of the bending basis depending on K, Γvib and η

K η Γvib size of bending basis

0 a A′ (va
2)

(lim)

0 b A′ (vb
2)

(lim)

A
B

C

6= 0 a, b A′ (va,b
2)(lim) = (va

2)
(lim) + (vb

2)
(lim)

0 a A1 (va,A1

2)(lim) = (va
2)

(lim)/2

0 b A1 (vb,A1

2)(lim) = (vb
2)

(lim)/2

6= 0 a, b A1 (vA1
2)(lim) = (va,A1

2)(lim) + (vb,A1

2)(lim)

A
B

B

0 a B2 (va,B2

2)(lim) = (va
2)

(lim) − (va,A1

2)(lim)

0 b B2 (vb,B2

2)(lim) = (vb
2)

(lim) − (vb,A1

2)(lim)

6= 0 a, b B2 (vB2
2)(lim) = (va,B2

2)(lim) + (vb,B2

2)(lim)

Which of the above combinations (η and Γvib) actually arises, depends on the quantum
numbers Γrve, N and K and is explained in the Tables 6.3 and 6.4 below:

168 The Double Renner Effect for Triatomic Molecules

Table 6.3.: Combinations for an ABC type molecule

Γrve K = 0 K 6= 0
N even N odd

A′ η = a η = b η = a, b
A′′ η = b η = a η = a, b

Table 6.4.: Combinations for an ABB molecule

Γrve K = 0 K even K odd
N even N odd

A1 η = a η = b
Γvib = A1 Γvib = A1 Γvib = B2

A2 η = b η = a
Γvib = B2 Γvib = B2 Γvib = A1

B1 η = b η = a
Γvib = A1 Γvib = A1 Γvib = B2

B2 η = a η = b
Γvib = B2 Γvib = B2 Γvib = A1

We denote the different possibilities for the K-block dimensions in case of an ABC type
molecule by

da =N
(lim)
R ·N (lim)

r · (va
2)

(lim) (6.10)

db =N
(lim)
R ·N (lim)

r · (vb
2)

(lim) (6.11)

d =da + db (6.12)

and for an ABB type molecule by

da,A1 =N
(lim)
R ·N (lim)

r · (va,A1

2)(lim) (6.13)

db,A1 =N
(lim)
R ·N (lim)

r · (vb,A1

2)(lim) (6.14)

dA1 =da,A1 + db,A1 (6.15)

da,B2 =N
(lim)
R ·N (lim)

r · (va,B2

2)(lim) (6.16)

db,B2 =N
(lim)
R ·N (lim)

r · (vb,B2

2)(lim) (6.17)

dB2 =da,B2 + db,B2 (6.18)

Algorithm 6.1 determines the size of a diagonal K-block using the above definitions and
the Tables 6.2, 6.3 and 6.4:

6.4 Construction and Structure of the Hamiltonian Matrix 169

Algorithm 6.1: Dimension of a diagonal K-block (∆N = 0, ∆K = 0)

function d = dimK(Γrve, N, K, N
(lim)
R , N

(lim)
r , (va

2)(lim), (vb
2)

(lim), ABC)1

compute d, da, db, da,A1 , db,A1 , dA1 , da,B2 , db,B2 , dB2 ; /* ←−cf. formulae (6.10) - (6.18) */2

if (ABC=true) then ←−−−ABC type molecule?3

if (K = 0) then4

if (N mod 2 = 0) then ←−−−N even?5

if (Γrve = A′) then6

return da7

else8

return db9

end if10

else11

if (Γrve = A′′) then12

return da13

else14

return db15

end if16

end if17

else18

return d19

end if20

else21

if (Γrve = A1 or Γrve = B2) then22

if (K = 0) then23

if (N mod 2 = 0) then24

return da,A125

else26

return db,A127

end if28

else29

if (K mod 2 = 0) then30

return dA131

else32

return dB233

end if34

end if35

else36

if (K = 0) then37

if (N mod 2 = 0) then38

return db,B239

else40

return da,B241

end if42

else43

if (K mod 2 = 0) then44

return dB245

else46

return dA147

end if48

end if49

end if50

end if51

170 The Double Renner Effect for Triatomic Molecules

This in turn enables us to determine the dimension of a diagonal N -block (Alg. 6.2)
and the whole J-Block (Alg. 6.3):

Algorithm 6.2: Dimension of a diagonal N -block (∆N = 0)

function d = dimN(Γrve, N, N
(lim)
R , N

(lim)
r , (va

2)
(lim), (vb

2)
(lim), ABC)1

d = 02

for K = 0, . . . , N do3

d = d+ dimK(Γrve, N, K, N
(lim)
R , N

(lim)
r , (va

2)
(lim), (vb

2)
(lim), ABC)4

end for5

return d6

Algorithm 6.3: Dimension of the Hamiltonian J-block H(J,S,Γrve)

function d = dimJ(Γrve, S, J, N
(lim)
R , N

(lim)
r , (va

2)
(lim), (vb

2)
(lim), ABC)1

Nmin = |J − S|, Nmax = J + S2

d = 03

for N = Nmin, . . . , Nmax do4

d = d+ dimN(Γrve, N, N
(lim)
R , N

(lim)
r , (va

2)
(lim), (vb

2)
(lim), ABC)5

end for6

return d7

Besides, we can determine the starting position of a diagonal K-block with address
(K,N), which will turn out useful later on, when we discuss algorithms for the matrix-
vector multiplication:

Algorithm 6.4: Starting coordinate of a diagonal K-block within a J-block

function i = posK(Γrve, S, J, N, K, N
(lim)
R , N

(lim)
r , (va

2)
(lim), (vb

2)
(lim), ABC)1

Nmin = |J − S|2

i = 13

for N ′ = Nmin, . . . , N − 1 do4

for K ′ = 0, . . . , N ′ do5

i = i+ dimK(Γrve, N
′, K ′, N

(lim)
R , N

(lim)
r , (va

2)
(lim), (vb

2)
(lim), ABC)6

end for7

end for8

for K ′ = 0, . . . , K − 1 do9

i = i+ dimK(Γrve, N, K
′, N

(lim)
R , N

(lim)
r , (va

2)
(lim), (vb

2)
(lim), ABC)10

end for11

return i12

Algorithm 6.5: Starting coordinate of a diagonal N -block within a J-block

function i = posN(Γrve, S, J, N, N
(lim)
R , N

(lim)
r , (va

2)
(lim), (vb

2)
(lim), ABC)1

i = posK(Γrve, S, J, N, 0, N
(lim)
R , N

(lim)
r , (va

2)
(lim), (vb

2)
(lim), ABC)2

return i3

6.4 Construction and Structure of the Hamiltonian Matrix 171

Using these auxiliary procedures one can finally give a precise specification of the matrix
blocks introduced in Definition 6.6 in terms of absolute coordinates and dimensions:

Corollary 6.9 (Dimensions and positions of K- and N-blocks)
AnyK-block with the address (N ′, K ′), (N ′′, K ′′) within a Hamiltonian J-block H(J,S,Γrve)

is fully determined by

H
(J,S,Γrve)
(N ′,K′),(N ′′,K′′) = H(J,S,Γrve)[i : i+ d′ − 1, j : j + d′′ − 1] ∈ Rd′×d′′ (6.19)

where

d′ = dimK(Γrve, N
′, K ′, N

(lim)
R , N (lim)

r , (va
2)

(lim), (vb
2)

(lim), ABC) (6.20)

d′′ = dimK(Γrve, N
′′, K ′′, N

(lim)
R , N (lim)

r , (va
2)

(lim), (vb
2)

(lim), ABC) (6.21)

i = posK(S, J, Γrve, N
′, K ′, N

(lim)
R , N (lim)

r , (va
2)

(lim), (vb
2)

(lim), ABC) (6.22)

j = posK(S, J, Γrve, N
′′, K ′′, N

(lim)
R , N (lim)

r , (va
2)

(lim), (vb
2)

(lim), ABC) (6.23)

Using Algorithms 6.2 and 6.5 one obtains analogous assertions on N-blocks.

The knowledge of the dimensions of the diagonal K-blocks fully determines the dimen-
sions of all K-blocks, the N -blocks and the whole Hamiltonian matrix block H(J,S,Γrve).
In the following we demonstrate the consequences on the problem sizes for the basis sets
defined in Table 6.5, which we will employ in our numerical experiments.

Table 6.5.: Big and small basis sets

Type Molecule Size N
(lim)
R N

(lim)
r (va

2)
(lim) (vb

2)
(lim)

ABC MgNC big 6 16 31 31
ABC MgNC small 4 9 16 16
ABB HOO big 16 8 24 16

Table 6.6 shows the dimensions of theK-blocks and the whole J-block with respect to the
big basis for the HOO molecule (J = 5/2, S = 1/2 and the four different symmetries),
Table 6.7 gives a corresponding survey for the MgNC molecule (with respect to both,
big and small basis).

Fig. 6.4 shows that the problem size (i.e. the dimension of a J-block) grows linearly
with the J quantum number. Furthermore one can recognize the great gap between
the problem sizes for the ”small” and ”big” basis set, which is due to the unfavorable
product basis behavior discussed in Section 5.8.1.

172 The Double Renner Effect for Triatomic Molecules

Table 6.6.: J-block and K-block dimensions for J = 5/2, HOO molecule (big basis)

N K Γrve = A1 Γrve = A2 Γrve = B1 Γrve = B2

0 1536 1024 1024 1536
2 1 2560 2560 2560 2560

2 2560 2560 2560 2560

0 1024 1536 1536 1024
1 2560 2560 2560 2560

3
2 2560 2560 2560 2560
3 2560 2560 2560 2560

total 15360 15360 15360 15360

Table 6.7.: J-block and K-block dimensions for J = 5/2, MgNC molecule

small basis big basis
N K

Γrve = A′ Γrve = A′′ Γrve = A′ Γrve = A′′

0 1536 576 2976 2976
2 1 2560 1152 2976 5952

2 2560 1152 5952 5952

0 576 576 2976 2976
1 1152 1152 5952 5952

3
2 1152 1152 5952 5952
3 1152 1152 5952 5952

total 6912 6912 35712 35712

Figure 6.4.: Linear growth of J-block dimension (MgCN molecule)

1/2 3/2 5/2 7/2 9/2 11/2 13/2

20 000

40 000

60 000

80 000

100 000

J quantum number

J−
B

lo
ck

 d
im

en
si

on

big basis
small basis

6.4 Construction and Structure of the Hamiltonian Matrix 173

6.4.3. Hamiltonian Matrix Blocks

Now that it is known how to determine the block sizes, we need to describe how the
block elements are actually computed. The following discussion is also of central impor-
tance for the construction of suitable preconditioners for the Jacobi-Davidson method,
because it heavily relies on the construction principles for a Hamiltonian J-Block (see
following chapter). Using the relation N̂2 = N̂2

x + N̂2
y + N̂2

z one can derive the following
decomposition of the Hamiltonian, (6.1) which is more appropriate for the construction
of the Hamiltonian matrix blocks:

Ĥ = Ĥu + Ĥp (6.24)

Ĥu is the part of the Hamiltonian that produces diagonal K-blocks, which we will refer
to as basic information and Ĥp contains perturbation terms that produce contributions
to diagonal and off-diagonal K-blocks:

Ĥu = Ĥe︸︷︷︸
potential

+ ĤPr + ĤPR︸ ︷︷ ︸
stretching motion

+ Ĥb + Ĥba + Ĥbb︸ ︷︷ ︸
bending motion

(6.25)

Ĥp = Ĥnk + Ĥdk + ĤSO︸ ︷︷ ︸
perturbation terms

(6.26)

The corresponding terms are:

ĤPr =
1

2µr

P̂ 2
r (6.27)

ĤPR =
1

2µR

P̂ 2
R (6.28)

Ĥb =

{
~2

2µRR2
+

~2

2µrr2

}{
N̂2

τ −
1

4

(
1 +

1

sin2(τ)

)}
(6.29)

Ĥba =

{
~2

2µRR2
cot2(τ)

}
(N̂2

z + L̂2
z − 2N̂zL̂z) (6.30)

Ĥbb =

{
~2

2µrr2

1

sin2(τ)

}
(N̂2

z + L̂2
z − 2N̂zL̂z) (6.31)

Ĥnk =
~2

2µRR2
(N̂2 − N̂2

z) (6.32)

Ĥdk =
~2

2µRR2

{
N̂xN̂τ + N̂τ N̂x

+
N̂yN̂z + N̂zN̂y − (N̂yL̂z + L̂zN̂y)

tan(τ)

}
(6.33)

(6.34)

174 The Double Renner Effect for Triatomic Molecules

One can now define the multiplication operators

M̂r−2 =
~2

2µrr2
(6.35)

M̂R−2 =
~2

2µRR2
(6.36)

which are part of Ĥnk and Ĥdk, Ĥb, Ĥba and Ĥbb and rewrite these operators as:

Ĥb =
{
M̂R−2 + M̂r−2

}
Ĥ ′

b (6.37)

Ĥba = M̂R−2 Ĥ ′
ba (6.38)

Ĥbb = M̂r−2 Ĥ ′
bb (6.39)

Ĥdk = M̂R−2 Ĥ ′
dk (6.40)

Ĥnk = M̂R−2 Ĥ ′
nk (6.41)

This economizes the construction of matrix elements because Mr−2 and MR−2 have ma-
trix represenations of their own, which only need to be computed once (by means of
Gauß-Laguerre integration, see [86]) and can be re-used repeatedly for the computation
of matrix representations of the operators defined in (6.38)-(6.41). Note that the chain-
ing of operators with respect to different coordinates is a tensor product of operators.

6.4.3.1. Basic diagonal K-blocks

The advantage of the decomposition of the Double Renner Hamiltonian in (6.24) lies in
the following central fact (see [86] for details), which will also be of key importance in
the derivation of suitable preconditioners for the Jacobi-Davidson method later on:

Fact 6.10 (Basic diagonal K-blocks)
The matrix representation Hu of Ĥu (6.25) is block diagonal in K and N . The diagonal

blocks (Hu)
(S,J,Γrve)
N,K are referred to as basic K-blocks. Since their elements only depend

on the quantum numbers K, Γvib and η, it is appropriate to denote one such block by
BK,Γvib,η. Thus, it holds

(Hu)
(S,J,Γrve)
N,K = BK,Γvib,η (6.42)

where Γvib and η are determined from the rules in the Tables 6.4 and 6.3. 2

This directly leads to the following corollary:

Corollary 6.11 (Multiple occurences of basic K-blocks)
For spin multiplicity S = 1/2 (which is the case for both, the MgCN and the HOO
molecule), basic K-blocks w.r.t. K ≤ Nmin = |J − S| and K 6= 0 appear twice in Hu.
Analogous assertions can be made for spin multiplicities other than S = 1/2.

6.4 Construction and Structure of the Hamiltonian Matrix 175

Example 6.12 (J = 5/2 and S = 1/2)
For J = 5/2 and S = 1/2 we have Nmin = 2, i.e. the basic K-blocks with respect to

K = 1 and K = 2 appear twice in H(1/2, 5/2, Γrve) (see also Table 6.1). 2

As explained in Section 5.8.1 the kinetic energy operator (KEO) can be expressed as a
sum of tensor products (5.108), which we now exploit to derive the matrix representa-
tion for Ĥu (see (6.25)). To this end one first determines the matrix representations for
operators related to one particular vibrational coordinate (and the corresponding quan-

tum number), which are listed in Table 6.8, where v
(lim)
2 is the appropriate size of the

bending basis (according to the rules in the Tables 6.2, 6.4 and 6.3). In analogy to the
discussion of the general case in Section 5.8.1, where the operator tensor product (5.108)
carries over to the Kronecker product (5.117), the finite basis representation (FBR) of
Ĥu (6.25) with respect to the basis set defined in Notation 6.3 is now obtained as the
following expression by adding the terms listed in Table 6.9:

BK,Γvib,η = He + HPR + HPr + Hba + Hbb + Hb

= He + H′
PR ⊗ I

N
(lim)
r
⊗ I

v
(lim)
2

+ I
N

(lim)
R
⊗H′

Pr ⊗ I
v
(lim)
2

+ MR−2 ⊗ I
N

(lim)
r
⊗H′

ba + I
N

(lim)
R
⊗Mr−2 ⊗H′

bb

+ MR−2 ⊗ I
N

(lim)
r
⊗H′

b + I
N

(lim)
R
⊗Mr−2 ⊗H′

b

(6.43)

Unfortunately, due to the rather complex structure of the potential energy surface (PES)
the matrix related matrix term He cannot be written as a Kronecker product, which
makes it impossible to exploit the product basis structure in the design of a routine for
matrix-vector multiplication (see Scenarios 1 and 2 in Section 5.8.1). Furthermore, the
computation of its matrix elements is a time-consuming affair, because their computation
involves simultaneous numerical integration with respect to the three vibrational Jacobi
coordinates (R, r, τ) (see [86] for details). Since the the entries of the potential matrix
He are in general non-zero, the basic diagonal K-blocks are dense.

Remark 6.13 (Dependence of the matrix components on K, Γvib and η)
Table 6.8 shows that the dependence of the basic diagonal K-blocks BK,Γvib,η on the
quantum numbers K, Γvib and η is due to the operators related to the bending motion
(Ĥb, Ĥba and Ĥbb) and the potential Ĥe, whereas the operators related to the stretching
motion (HPR, HPr, MR−2 and Mr−2) exclusively depend on the stretching quantum num-
bers NR and Nr. If it is necessary to point out these dependencies, we denote the arising
matrices with the corresponding superscripts, e.g. HK,Γvib

b and HK,Γvib,η
e (analogous to

the notation for the basic diagonal K-blocks). 2

176 The Double Renner Effect for Triatomic Molecules

Table 6.8.: Matrix components for the construction of a basic K-block BK,Γvib,η

Dependence
Operator Formula Matrix Dimension

K Γvib η NR Nr vη
2

Ĥ ′
b (6.37) H′

b v
(lim)
2 × v(lim)

2 X X X

Ĥ ′
ba (6.38) H′

ba v
(lim)
2 × v(lim)

2 X X X

Ĥ ′
bb (6.39) H′

bb v
(lim)
2 × v(lim)

2 X X X

Ĥ ′
PR (6.28) H′

PR N
(lim)
R ×N (lim)

R X

Ĥ ′
Pr (6.27) H′

Pr N
(lim)
r ×N (lim)

r X

M̂R−2 (6.36) MR−2 N
(lim)
R ×N (lim)

R X

M̂r−2 (6.35) Mr−2 N
(lim)
r ×N (lim)

r X

Ĥe He (N
(lim)
R ·N (lim)

r · v(lim)
2)2 X X X X X X

Table 6.9.: Kronecker product representations of the terms in Ĥu

Operator Formula Matrix Kronecker Product

MR−2 ⊗ I
N

(lim)
r

⊗ H′
bĤb (6.37) Hb + I

N
(lim)
R

⊗ Mr−2 ⊗ H′
b

Ĥba (6.38) Hba MR−2 ⊗ I
N

(lim)
r

⊗ H′
ba

Ĥbb (6.39) Hbb I
N

(lim)
R

⊗ Mr−2 ⊗ H′
bb

ĤPr (6.27) HPr I
N

(lim)
R

⊗ H′
Pr ⊗ I

v
(lim)
2

ĤPR (6.28) HPR H′
PR ⊗ I

N
(lim)
r

⊗ I
v
(lim)
2

6.4.3.2. Diagonal and Off-Diagonal Perturbation K-blocks

Let us now discuss the matrix elements related to the perturbation part Ĥp of the Hamil-
tonian. Table 6.10 summarizes the block sparsity rules for the occurences of the matrix
blocks arising from Ĥp defined in (6.26). We see that the operators Ĥso and Ĥnk do not
only produce off-diagonal matrix blocks, but also involve perturbations to the diagonal
basic K-blocks, whereas Ĥdk exclusively has off-diagonal matrix representations. Table
6.12 shows what these rules imply for our standard example (S = 1/2 and J = 5/2).
Analogous to the way one proceeds for the basic diagonal K-blocks one can exploit for
the computation of the matrix blocks that the multiplication operator M̂R−2 (6.36) is
part of Ĥnk and Ĥnk. This is reflected in the Kronecker product expressions in Table
6.11 (see [86] for derivation and details), which induce regular sparsity patterns for the
off-diagonal matrix blocks originating from Ĥso and Ĥdk because of the involved identity

6.4 Construction and Structure of the Hamiltonian Matrix 177

matrices. We will discuss in more detail later on how to take advantage of the sparsity
for the design of an efficient matrix-vector multiplication algorithm and for compact
storage.

Table 6.10.: Block sparsity rules for perturbation K-blocks

Occurences
Operator

of matrix blocks

Ĥnk ∆K = 0 ∆N = 0

Ĥdk ∆K = 1 ∆N = 0

Ĥso ∆K = 0 ∆N = 0, 1

Table 6.11.: Kronecker product representations of the terms in Ĥp

Operator Formula Matrix Kronecker Product

Ĥdk (6.40) Hdk MR−2 ⊗ I
N

(lim)
r
⊗H′

dk

Ĥnk (6.41) Hnk f(N,K) ·MR−2 ⊗ I
N

(lim)
r
⊗ I

v
(lim)
2

Ĥso Hso g(J, S,N ′, N ′′, K ′) · I
N

(lim)
R
⊗ I

N
(lim)
r
⊗H′

so

The functions f and g in Table 6.11 are defined by

f(N,K) = ~{N(N + 1)−K2 } (6.44)

g(J, S,N ′, N ′′, K ′) = (−1)N ′+N ′′+S+J−K′√
(2S + 1)S(S + 1)(2N ′ + 1)(2N ′′ + 1)

×
(

N ′ 1 N ′′

−K ′ 0 K ′′

) {
N ′ S J
S N ′′ 1

}
(6.45)

where the expression in the parentheses is a 3j-symbol (cf. [133]) and the expression in
curly braces is a 6j-symbol (cf. [133]).

Remark 6.14 (Dependencies of the perturbation terms)
The matrix components H′

so and H′
dk have the following dependencies (see [86]):

• H′
so depends on K, Γvib and the bending quantum number vη

2

A comparison with the terms H′
b, H′

ba and H′
bb in Table 6.9 reveals that H′

so has
the same dependencies, which is exploited in the construction of the Hamiltonian
matrix H(J,S,Γrve) in the program DR (see [86]).

• H′
dk depends on N , K ′, K ′′ and vη

2

2

178 The Double Renner Effect for Triatomic Molecules

Table 6.12.: Occurences of perturbation blocks in H(S,J,Γrve) (S = 1/2, J = 5/2)

N = 2 N = 3
K = 0 K = 1 K = 2 K = 0 K = 1 K = 2 K = 3

so,nk dk so

K
=

0

dk so,nk dk so

N
=

2

K
=

1

dk so,nk so

K
=

2

so so,nk dk

K
=

0

so dk so,nk dk

K
=

1

so dk so,nk dkN
=

3

K
=

2

dk so,nk

K
=

3

6.4.4. Construction of the Hamiltonian Matrix

We now collect the explanations of the preceding sections and summarize the construc-
tion of a Hamiltonian J-block H(J,S,Γrve) in the form of two algorithms. Before we do
so, we make the following useful definition:

Definition 6.15 (DIAG-, DK- and SO-blocks)
We call

• the diagonal K-blocks of the final Hamiltonian matrix H(J,S,Γrve) DIAG blocks.
These are the sum of basic diagonal K-blocks and diagonal perturbation blocks
originating from the operators Ĥso and Ĥnk.

• the matrix blocks originating from the operator Ĥdk DK-blocks.

• the off-diagonal K-blocks originating from the operator Ĥso SO-blocks.
Note that the diagonal SO-blocks (cf. Table 6.12) are already comprised in the
DIAG-blocks.

6.4 Construction and Structure of the Hamiltonian Matrix 179

The block sparsity of the Hamiltonian matrix H(J,S,Γrve) (i.e. the occurrences of these
blocks) is determined by the rules in Table 6.13.

We have already seen that the basic diagonal K-blocks are the fundamental elements
in the construction of Hamiltonian matrices. If, for instance, one is interested in the
construction of Hamiltonian J-blocks H(J,S,Γrve) with respect to all molecular symmetries
Γrve and all J quantum numbers less or equal than a predefined bound Jmax, then one
can take advantage of the fact they turn up repeatedly for equal K quantum numbers
greater than zero (cf. Corollary 6.11). The program DR by Odaka [86] economizes the
J-block construction by computing all possible combinations of K, Γvib and η for the
diagonal K-blocks (see Table 6.2) related to K ≤ Jmax + S = Nmax once and storing
them on disk. Whenever a specific BK,Γvib,η is required in the course of the construction,
it can be loaded into memory. Furthermore, it pays off to store the matrices HPR, HPr,
MR−2 and Mr−2 . These ideas are summarized in Algorithm 6.6, where ABC is a boolean
parameter that indicates whether or not the molecule under consideration is ABC type.
Note that the dimensions of the arising matrices are either determined by Table 6.8 or
by Algorithm 6.1.

Algorithm 6.6: Construction of a basic diagonal K-block

procedure Construct-basic-K(S, Jmax, N
(lim)
R , N

(lim)
r , (va

2)
(lim), (vb

2)
(lim), ABC)1

construct matrix representations for operators that only depend on the stretching2

quantum numbers NR or Nr (see Table 6.8):
(a) HPR3

(b) HPr4

(c) MR−25

(d) Mr−26

Nmax = Jmax + S7

for K = 0, . . . , Nmax do8

for all Γvib do9

construct matrix representations for operators that depend on K and Γvib:10

(a) (H′
b)K,Γvib11

(b) (H′
ba)

K,Γvib12

(c) (H′
bb)

K,Γvib13

(d) (H′
so)

K,Γvib14

for η = a, b do15

construct matrix representations for operators depending on K, Γvib, η:16

(a) HK,Γvib,η
e (potential matrix)17

(b) BK,Γvib,η as per (6.43) (diagonal basic K-block)18

end for19

end for20

end for21

180 The Double Renner Effect for Triatomic Molecules

Finally, Algorithm 6.7 summarizes how one Hamiltonian J-block H(J,S,Γrve) related to a
fixed spin multiplicity S, a fixed molecular symmetry Γrve and a fixed rotational quantum
number J is constructed. Essentially, it adds perturbation terms to the basic diagonal
K-blocks resulting in the final DIAG-blocks and constructs the off-diagonal DK- and SO-
blocks. Note that the absolute block positions and dimensions are implicitly determined
by the block addresses according to Corollary 6.9.

Algorithm 6.7: Construction of the Hamiltonian J-block H(J,S,Γrve)

procedure Construct-J-Block(Γrve, S, J, N
(lim)
R , N

(lim)
r , (va

2)(lim), (vb
2)

(lim), ABC)1

if not yet computed then2

Construct-basic-K(S, J, N
(lim)
R , N

(lim)
r , (va

2)(lim), (vb
2)

(lim), ABC)3

end if4

Nmin = |J − S|, Nmax = J + S5

for N ′ = Nmin, . . . , Nmax do6

for K ′ = 0, . . . , N ′ do7

for N ′′ = Nmin, . . . , Nmax do8

for K ′′ = 0, . . . , N ′′ do9

∆N = |N ′ −N ′′ |, ∆K = |K ′ −K ′′ |10

/* DIAG-Block ? */
if (∆N = 0 and ∆K = 0) then11

determine Γvib and η as a function of N,K,Γrve12

from Tables 6.3 resp. 6.4
(Hso)(N ′,K′),(N ′′,K′′) = g(J, S, N ′, N ′′,K ′)·I

N
(lim)
R

⊗I
N

(lim)
r
⊗(H′

SO)K,Γvib
13

(Hnk)(N ′,K′),(N ′′,K′′) = f(N,K) ·MR−2 ⊗ I
N

(lim)
r
⊗ I

v
(lim)
2

14

H(N ′,K′),(N ′′,K′′) =15

BK,Γvib,η + (Hnk)(N ′,K′),(N ′′,K′′) + (Hso)(N ′,K′),(N ′′,K′′)

end if16

/* DK-Block ? */
if (∆N = 0 and ∆K = 1) then17

H(N ′,K′),(N ′′,K′′) = MR−2 ⊗ I
N

(lim)
r
⊗ (H′

dk)
N ′,K′,K′′,vη

218

end if19

/* SO-Block ? */
if (∆N = 1 and ∆K = 0) then20

H(N ′,K′),(N ′′,K′′) = g(J, S, N ′, N ′′,K ′) · I
N

(lim)
R

⊗ I
N

(lim)
r
⊗ (H′

SO)K,Γvib
21

end if22

end for23

end for24

end for25

end for26

Figure 6.5 shows the typical sparsity pattern of a Hamiltonian matrix block for our
standard example (S = 1/2, J = 5/2). The sparsity of the off-diagonal DK- and SO-
blocks will be analyzed in depth later on.

6.4 Construction and Structure of the Hamiltonian Matrix 181

Figure 6.5.: Sparsity pattern of the Hamiltonian matrix H(J,S,Γrve) (S = 1/2, J = 5/2)

Table 6.13.: Block sparsity rules

Term Rule for K Rule for N

DIAG-Block ∆K = 0 ∆N = 0
DK-Block ∆K = 1 ∆N = 0
SO-Block ∆K = 0 ∆N = 1

Remark 6.16 (Construction of J-blocks in the program DR)
As already explained above the program DR ([86]) does not only construct one specific

J-block, but all Hamiltonian matrices H(J,S,Γrve) for Jmin ≤ J ≤ Jmax and all symmetries
Γvib. This is described in Algorithm 6.8: 2

Algorithm 6.8: Construction of all Hamiltonian J-blocks H(J,S,Γrve)

procedure All-J-Blocks(S, Jmin, Jmax, N
(lim)
R , N

(lim)
r , (va

2)
(lim), (vb

2)
(lim), ABC)1

Construct-basic-K(S, Jmax, N
(lim)
R , N

(lim)
r , (va

2)
(lim), (vb

2)
(lim), ABC)2

for J = Jmin, . . . , Jmax do3

for all Γrve do4

Construct-J-Block(Γrve, S, J, N
(lim)
R , N

(lim)
r , (va

2)
(lim), (vb

2)
(lim), ABC)5

end for6

end for7

182 The Double Renner Effect for Triatomic Molecules

Part III.

Application to the Problem

183

7. Eigensolvers for the Computation of
Rovibronic Energy Levels

In this chapter we come back to the main concern of this thesis, the computation of
eigenvalues of the Hamiltonian J-Blocks H(J,S,Γrve), which correspond to the rovibronic
energy levels of the molecule under consideration. We will especially examine how to
apply the JDQR variants for computing several eigenpairs (see Section 4.3). To do so,
we have to provide

• a problem specific procedure for matrix-vector multiplication

• suitable and efficient preconditioners

The knowledge of these algorithmic ingredients allows to briefly highlight the use of al-
ternative iterative projection methods, such as the IRLM (Alg. 3.16), Davidson’s method
(Alg. 3.17) and Olsen’s method (see Section 4.2.2.3). Furthermore, we will discuss the
basis contraction scheme for the Double Renner Hamiltonian discussed in [86] and the
four general computational strategies presented in Section 5.8.3, the main focus being
on the product basis problems. In this context we will contrast the most efficient direct
eigensolver (combination of two-stage tridiagonalization and RRR method for tridiago-
nal matrices) with the preconditioned standard JDQR method. Finally, we comment
on the shared memory parallelization of our JDQR implementation using OpenMP

TM

([3],[22]).

7.1. Matrix Properties and Specification of the
Eigenproblem

Before we explain in more detail the algorithmic ingredients (matrix-vector multiplica-
tion, contraction scheme and preconditioners) let us briefly collect the most important
properties of a Hamiltonian matrix block H(J,S,Γrve):

Fact 7.1 (Properties of H(J,S,Γrve))
• H(J,S,Γrve) is positive definite.

This is a consequence of its construction in the program DR (see [86]), where a
physically motivated zero point energy is introduced such that all eigenvalues are
positive.

• H(J,S,Γrve) is ”block diagonally dominant” with respect to its diagonal K-blocks
H

(J,S,Γrve)
N,K , in the sense that the Frobenius norm of a diagonal K-block is greater

185

186 Eigensolvers for the Computation of Rovibronic Energy Levels

than the sum of the Frobenius norms of the off-diagonalK-blocks in the same block
row. This can be recognized from the Tables 7.1, 7.2 and 7.3, where the Frobenius
norms of the arising DIAG-, DK- and SO-blocks for J = 1/2, . . . , J = 13/2 are
listed (MgCN molecule, big basis).

• The diagonal K-blocks H
(J,S,Γrve)
N,K result from very tiny perturbations of the basic

K-blocks BK,Γvib,η (cf. Line 15 in Algorithm 6.7).
The additional NK- and SO-terms only slightly change the Frobenius norm of the
basicK-blocks (see Table 7.1). This property will turn out important for the design
of the contraction scheme and for the construction of effective preconditioners.

• H(J,S,Γrve) exhibits a block sparsity pattern according to the rules in Table 6.13.
However, the matrix in total is neither sparse nor dense in the classical sense,
i.e. the diagonal K-blocks H

(J,S,Γrve)
N,K are dense whereas the off-diagonal DK- and

SO-blocks are sparse (cf. Fig. 6.5). Their sparsity structure will be analyzed in
Section 7.2.1.

2

The following definition is useful for the specification of the eigenvalue problems we are
interested in:

Definition 7.2 (Hartree and cm−1)
In quantum chemical calculations it is common to use the atomic unit of energy

Eh =
mee

4

~2
(7.1)

which is referred to as hartree (see Table 5.1 for a survey of some constants of nature).
To obtain the results in this unit one divides both sides of the Schrödinger equation
by Eh. In spectroscopical considerations it is sometimes more appropriate to express
energies in terms of wavenumbers, the unit being cm−1. The conversion factor between
energies in hartree and the corresponding wavenumbers in cm−1 is

conv = 4.556333827 · 10−6 hartree

cm−1
(7.2)

The matrices we are dealing with are produced by the software DR ([86]) and based
on hartree. Consequently, the unit of the eigenvalues obtained in our computations is
hartree as well and to obtain the corresponding values in wavenumbers one has to divide
by the conversion factor (7.2).

7.1 Matrix Properties and Specification of the Eigenproblem 187

Table 7.1.: Frobenius norms of the DIAG-blocks

J N K = 0 K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7

1/2
0 128.05578
1 134.04131 186.19294

3/2
1 134.04131 186.19306
2 128.05624 186.19342 171.54983

5/2
2 128.05624 186.19348 171.54995
3 134.04210 186.19408 171.55051 157.66387

7/2
3 134.04209 186.19413 171.55059 157.66399
4 128.05731 186.19496 171.55139 157.66476 144.52929

9/2
4 128.05731 186.19500 171.55145 157.66485 144.52940
5 134.04349 186.19606 171.55248 157.66585 144.53039 132.19880

11/2
5 134.04349 186.19608 171.55253 157.66593 144.53048 132.19891
6 128.05899 186.19737 171.55379 157.66717 144.53171 132.20013 120.68041

13/2
6 128.05899 186.19739 171.55384 157.66723 144.53179 132.20022 120.68051
7 134.04552 186.19890 171.55532 157.66869 144.53324 132.20167 120.68198 109.92012

K Basic 134.04115 186.19291 171.54969 157.66361 144.52892 132.19831 120.67980 109.91938

Table 7.2.: Frobenius norms of the DK-blocks

J N K = 0 K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7

1/2
0
1 0.02011

3/2
1 0.02012
2 0.03250 0.02828

5/2
2 0.03250 0.02828
3 0.04928 0.04472 0.03577

7/2
3 0.04928 0.04472 0.03577
4 0.05934 0.05999 0.05464 0.04256

9/2
4 0.05933 0.05999 0.05464 0.04256
5 0.07791 0.07482 0.07154 0.06384 0.04895

11/2
5 0.07791 0.07482 0.07154 0.06384 0.04895
6 0.08599 0.08943 0.08762 0.08242 0.07261 0.05508

13/2
6 0.08599 0.08943 0.08762 0.08242 0.07261 0.05508
7 0.10645 0.10391 0.10326 0.09982 0.09288 0.08107 0.06102

Table 7.3.: Frobenius norms of the SO-blocks

J N K = 0 K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7

1/2
0
1 0.00445

3/2
1
2 0.00445 0.00544

5/2
2
3 0.00445 0.00592 0.00469

7/2
3
4 0.00445 0.00608 0.00545 0.00417

9/2
4
5 0.00445 0.00615 0.00577 0.00505 0.00379

11/2
5
6 0.00445 0.00619 0.00594 0.00546 0.00471 0.00350

13/2
6
7 0.00445 0.00622 0.00603 0.00570 0.00519 0.00443 0.00326

188 Eigensolvers for the Computation of Rovibronic Energy Levels

The following definition specifies what range of the spectrum one is typically interested
in:

Definition 7.3 (Specification of the eigenvalue problem)
We consider the eigendecomposition

H(J,S,Γrve) = V∗ΛV (7.3)

As usually we assume the eigenvalues λi in Λ = diag(λ1, . . . , λn) to be ordered by
ascending magnitude. The partial eigensystem of interest is specified by an energy limit
Emax (typical values for Emax in practical computations may be 2500 cm−1, 5000 cm−1

etc.), i.e. we are looking for eigenpairs (λi, vi) where λi ≤ Emax.

How large one actually chooses the energy limit Emax in Def. 7.3 depends on the purpose
of the calculation and the size of the product basis. The eigenvalues of the Hamiltonian
matrix H(J,S,Γrve), which are known to be upper bounds to the true eigenvalues of the
Hamiltonian Ĥ (see Thm. 5.45), are only good approximations below a certain energy
limit, which is difficult to predict in practical situations. To make sure that the eigenap-
proximations near Emax are appropriate one actually has to run a reference computation
with a larger basis. Figure 7.1 demonstrates the potential danger of choosing the basis
too small (as usually we use the bases defined in Table 6.5).
In general, for fixed sizes of the vibrational bases the number of eigenvalues below a fixed
energy limit Emax increases with the rotational quantum number J as can be recognized
from Table 7.4 and can amount to several thousands for larger values of J . We will see
that – in principle – the preconditioned standard JDQR variant (Alg. 4.7) is capable to
cope with this relatively large number of sought-after eigenpairs. However, in order to
better describe the complexity of the problem depending on J and for reasons that will
become evident later on we will often restrict ourselves to partial eigensystems with a
fixed number k of eigenpairs, say k = 200.

Table 7.4.: Number of eigenvalues below Emax = 5000 cm−1 (MgCN, big basis)

J Problem size n Storage # of λi ≤ Emax

1/2 11904 1.06 G 192
3/2 23808 4.22 G 374
5/2 35712 9.50 G 531
7/2 47616 16.89 G 668
9/2 59520 26.39 G 786
11/2 71424 38.00 G n.a.

7.2 Matrix-Vector Multiplication and Storage Scheme 189

Figure 7.1.: Spectra of H(1/2, 1/2, A′) for big and small basis

0 2000 4000 6000 8000 10000 12000
0

0.05

0.1

0.15

0.2

0.25

0.3

Eigenvalue Index i

big basis
small basis

7.2. Matrix-Vector Multiplication and Storage Scheme

We have already pointed out that, unfortunately, it is not possible to directly take
advantage of the product basis structure , because the potential matrix cannot be written
as a sum of Kronecker products, which impedes the application of the ideas described
in Secenario 1 in Section 5.8.1. Thus, it only remains to exploit the sparsity of the
Hamiltonian matrix block and a first straightforward but rather näıve approach exploits
the block sparsity rules in Table 6.13 which results in Algorithm 7.1. However, this
procedure does not take advantage of the sparsity of the DK- and SO-blocks and
working with the addresses (N ′, K ′), (N ′′, K ′′) (see Def. 6.6) to access the K-blocks is
not well-suited for the implementation in a computer code. For this reason we derive
a storage scheme for the Hamiltonian matrix blocks that allows to access the K-blocks
efficiently and which exploits the sparsity of the off-diagonal matrix blocks.

7.2.1. Sparsity of the Off-Diagonal Hamiltonian Matrix Blocks

Unlike the DIAG blocks an off-diagonal DK- or SO-block H(N ′,K′),(N ′′,K′′) ∈ Rd′×d′′ need
not necessarily be a square matrix. To facilitate notation we define the index sets

I ′ = {1, . . . , d′} (7.4)

I ′′ = {1, . . . , d′′} (7.5)

and the auxiliary variables

v
(lim)′

2 = d′ / (N
(lim)
R ·N (lim)

r) (7.6)

v
(lim)′′

2 = d′′ / (N
(lim)
R ·N (lim)

r) (7.7)

each of which can take three different values in case of an ABC type molecule ((6.10) -
(6.12)) and six different values in case of an ABB molecule ((6.13) - (6.18)), respectively.

190 Eigensolvers for the Computation of Rovibronic Energy Levels

Algorithm 7.1: Matrix-vector multiplication exploiting block sparsity (näıve)

function y = mult(H,x, Γrve, S, J, N
(lim)
R , N

(lim)
r , (va

2)
(lim), (vb

2)
(lim), ABC)1

y = 02

Nmin = |J − S|, Nmax = J + S3

for N ′ = Nmin, . . . , Nmax do4

for K ′ = 0, . . . , N ′ do5

i = posK(Γrve, S, J, N
′, K ′, N

(lim)
R , N

(lim)
r , (va

2)
(lim), (vb

2)
(lim), ABC)6

k = dimK(Γrve, N
′, K ′, N

(lim)
R , N

(lim)
r , (va

2)
(lim), (vb

2)
(lim), ABC)7

for N ′′ = Nmin, . . . , Nmax do8

for K ′′ = 0, . . . , N ′′ do9

j = posK(Γrve, S, J, N
′′, K ′′, N

(lim)
R , N

(lim)
r , (va

2)
(lim), (vb

2)
(lim), ABC)10

l = dimK(Γrve, N
′′, K ′′, N

(lim)
R , N

(lim)
r , (va

2)
(lim), (vb

2)
(lim), ABC)11

∆N = |N ′ −N ′′ |, ∆K = |K ′ −K ′′ |12

/* DIAG-block ? */

if (∆N = 0 and ∆K = 0) then13

DIAG := H(N ′,K′),(N ′′,K′′)14

y[i : i+ k − 1] += DIAG · x[j : j + l − 1]15

end if16

/* DK-block ? */

if (∆N = 0 and ∆K = 1) then17

if (K ′ > K ′′) then18

DK := H(N ′,K′),(N ′′,K′′)19

y[i : i+ k − 1] += DK · x[j : j + l − 1]20

else21

DK := H(N ′′,K′′),(N ′,K′)22

y[i : i+ l − 1] += DKT · x[j : j + k − 1]23

end if24

end if25

/* SO-block ? */

if (∆N = 1 and ∆K = 0) then26

if (N ′ > N ′′) then27

SO := H(N ′,K′),(N ′′,K′′)28

y[i : i+ k − 1] += SO · x[j : j + l − 1]29

else30

SO := H(N ′′,K′′),(N ′,K′)31

y[i : i+ l − 1] += SOT · x[j : j + k − 1]32

end if33

end if34

end for35

end for36

end for37

end for38

return y39

7.2 Matrix-Vector Multiplication and Storage Scheme 191

The off-diagonal DK- and SO-blocks exhibit a regular block sparsity pattern, which is
induced by identity matrices I arising as factors in the corresponding Kronecker product
representations (see Table 6.11). As a consequence, both DK- and SO-blocks have tiny

sub-blocks of the dimension (v
(lim)′

2 × v(lim)′′

2), which we call v2-blocks in the following.
Fortunately, to reduce memory consumption, it is not necessary to resort to conventional
storage schemes for sparse matrices such as CSR (”Compressed Sparse Row”) or CSC
(”Compressed Sparse Column”) (cf. [101], [43]) involving quite a lot of overhead due to
the need to hold index information in additional arrays. Instead, we will compress the
matrix block under consideration into a dense (and much smaller) rectangular matrix
by collecting the v2-blocks and derive suitable index mappings that (back-)transform an
index pair (̃i, j̃) of a compactly stored matrix block to its proper position (i, j) in the
original matrix block. These mappings σ ((7.27), (7.28)) and τ ((7.17), (7.18)) seem
somewhat cumbersome at first glance, but the underlying principle is straightforward
and easy to understand as we will illustrate graphically later on in Figs. 7.2 and 7.3.
Before we discuss how to proceed in detail we give some useful definitions and statements
about the sparsity of matrices (cf. [43], for instance):

Definition 7.4
For a rectangular matrix A ∈ Cm×n we define:

a) the index set associated with the non-zero entries of A

struct(A) = {(i, j) ∈ {1, . . . ,m} × {1, . . . , n} |Ai,j 6= 0} (7.8)

b) the number of non-zero entries of A

nnz(A) = | struct(A) | (7.9)

c) the sparsity ratio (density) of A

sr(A) = nnz(A)/(m · n) (7.10)

The following lemma shows how the number of non-zero elements of a Kronecker product
(cf. Def. 2.47) is related to the nnz of its Kronecker factors:

Lemma 7.5
Let Ai ∈ Kmi×ni (i = 1, . . . , k). Then the number of non-zero entries of the Kronecker
product

C =
k⊗

i=1

Ai (7.11)

can be expressed as:

nnz(C) = nnz

(
k⊗

i=1

Ai

)
=

k∏
i=1

nnz(Ai) (7.12)

192 Eigensolvers for the Computation of Rovibronic Energy Levels

Proof: The statement of the lemma is a direct consequence of the properties and the
definition of the Kronecker product. We will conduct the proof by induction over k:
k = 2: (induction basis)
We know that for k = 2, A := A1, B := A2 the result C = A ⊗B is a m1 × n1 block
matrix whose (i, j) block is the m2 × n2 matrix aijB. It is plain to see that there are
nnz(A) such non-zero blocks. For aij 6= 0 obviously nnz(aijB) = nnz(B). Thus,

nnz(A1 ⊗A2) = nnz(A1) · nnz(A2)

k− 1→ k (induction step)
Making use of the associativity of the Kronecker product (Lemma 2.48) we obtain

k⊗
i=1

Ai =

(
k−1⊗
i=1

Ai

)
⊗Ak

and, thus,

nnz

(
k⊗

i=1

Ai

)
= nnz

{(
k−1⊗
i=1

Ai

)
⊗Ak

}

= nnz

(
k−1⊗
i=1

Ai

)
· nnz(Ak)

=
k−1∏
i=1

nnz(Ai) · nnz(Ak)

=
k∏

i=1

nnz(Ai)

2

For the ease of presentation we introduce the following

Notation 7.6
• Fd′,d′′ ∈ Rd′×d′′ denotes a dense matrix whose entries are exclusively ones.

• The pattern matrix SA ∈ Rd′×d′′ of a matrix A ∈ Rd′×d′′ is defined as

SAij =

{
1 : Aij 6= 0
0 : Aij = 0

2

7.2.1.1. Sparsity and Compact Storage of the SO-Blocks

According to Table 6.11 the sparsity pattern of an SO-block (∆N = 1, ∆K = 0) JSO ∈
Rd′×d′′ can be described by the pattern matrix SSO ∈ Rd′×d′′ (under the assumption

7.2 Matrix-Vector Multiplication and Storage Scheme 193

that the matrix H′
SO is dense, which we can take for granted):

SSO = I
N

(lim)
R
⊗ I

N
(lim)
r
⊗ F

v
(lim)′
2 ,v

(lim)′′
2

= I
N

(lim)
R ·N(lim)

r
⊗ F

v
(lim)′
2 ,v

(lim)′′
2

(7.13)

This implies

nnz(SSO) = nnz(I
N

(lim)
R ·N(lim)

r
⊗ F

v
(lim)′
2 ,v

(lim)′′
2

)

= nnz(I
N

(lim)
R ·N(lim)

r
) · nnz(F

v
(lim)′
2 ,v

(lim)′′
2

)

= N
(lim)
R ·N (lim)

r · (v(lim)′

2 · v(lim)′′

2) (7.14)

and

sr(SSO) = nnz(SSO) / ((N
(lim)
R)2 · (N (lim)

r)2 · (v(lim)′

2 · v(lim)′′

2))

= 1 / (N
(lim)
R ·N (lim)

r) (7.15)

Hence, the density of an SO-block is determined by the parameters N
(lim)
R and N

(lim)
r .

Figure 7.2.: Sparsity and compact storage of an SO-block (N
(lim)
R = 7, N

(lim)
r = 5)

N
(lim)
R ·N

(lim)
r

N
(l

im
)

R
·
N

(l
im

)
r

N
(l

im
)

R
·
N

(l
im

)
r

CSOSO

194 Eigensolvers for the Computation of Rovibronic Energy Levels

From (7.13) and the definition of a Kronecker product one can easily conclude that

an SO-block is block-diagonal, consisting of N
(lim)
R ·N (lim)

r blocks of dimension (v
(lim)′

2 ·
v

(lim)′′

2). This directly gives rise to the compact storage in the matrix CSO by stacking
the blocks on the diagonal of SO in one block column as illustrated in Figure 7.2. More
precisely, this is realised by the following bijection τ , which enables us to identify an
index pair (̃i, j̃) of the matrix CSO with the proper position (i, j) in struct(SO):

τ : I ′ × {1, . . . , v(lim)′′

2 } −→ struct(SSO) ⊂ I ′ × I ′′

(̃i, j̃) 7−→ (τ1(̃i, j̃) , τ2(̃i, j̃)) =: (i, j) (7.16)

i = τ1(̃i, j̃) = ĩ (7.17)

j = τ2(̃i, j̃) =
⌊
ĩ/v

(lim)′

2

⌋
· v(lim)′′

2 + j̃ (7.18)

The inverse map τ−1 is given by:

τ−1 : struct(SSO) ⊂ I ′ × I ′′ −→ I ′ × {1, . . . , v(lim)′′

2 }
(i, j) 7−→ ((τ−1)1(i, j) , (τ−1)2(i, j)) =: (̃i, j̃) (7.19)

ĩ = (τ−1)1(i, j) = i (7.20)

j̃ = (τ−1)2(i, j) = j mod v
(lim)′′

2 (7.21)

7.2.1.2. Sparsity and Compact Storage of the DK-Blocks

As per Table 6.11 the sparsity pattern of a DK-block (∆N = 0, ∆K = 1) DK ∈ Rd′×d′′

can be described by the pattern matrix SDK ∈ Rd′×d′′ (assuming that H′
dk is dense):

SDK = F
N

(lim)
R
⊗ I

N
(lim)
r
⊗ F

v
(lim)′
2 ,v

(lim)′′
2

(7.22)

Thus, using (7.12) we obtain

nnz(SDK) = nnz(F
N

(lim)
R
⊗ I

N
(lim)
r
⊗ F

v
(lim)′
2 ,v

(lim)′′
2

)

= nnz(F
N

(lim)
R

) · nnz(I
N

(lim)
r

) · nnz(F
v
(lim)′
2 ,v

(lim)′′
2

)

= (N
(lim)
R)2 ·Nr · (v(lim)′

2 · v(lim)′′

2) (7.23)

and application of (7.10) yields

sr(SDK) = nnz(SDK) / ((N
(lim)
R)2 · (N (lim)

r)2 · (v(lim)′

2 · v(lim)′′

2))

= 1 / N (lim)
r (7.24)

7.2 Matrix-Vector Multiplication and Storage Scheme 195

Here the density of a DK-block solely depends on the parameter N
(lim)
r .

Owing to the associativity of a Kronecker product we can write (7.22) as

SDK = F
N

(lim)
R
⊗ (I

N
(lim)
r
⊗ F

v
(lim)′
2 ,v

(lim)′′
2︸ ︷︷ ︸

=:A

) (7.25)

and explain the structure of a DK-block in two steps:

1. A is block-diagonal (consisting of Nr blocks of dimension (v
(lim)′

2 · v(lim)′′

2)

2. As F
N

(lim)
R

is dense and has the dimension N
(lim)
R ×N (lim)

R , the resulting SDK is a

(N
(lim)
R ×N (lim)

R) block matrix whose blocks have the structure of A. Thus, there

are (N
(lim)
R)2 ·Nr non-zero v2-blocks, which is obviously consistent with (7.23). The

resulting sparsity pattern is illustrated in Figure 7.3.

Figure 7.3.: Sparsity and compact storage of a DK-block (N
(lim)
R = 7, N

(lim)
r = 5)

N
(lim)
R ·N

(lim)
r

N
(l

im
)

R
·
N

(l
im

)
r

N
(lim)
R

N
(l

im
)

R
·
N

(l
im

)
r

DK CDK

Although things are slightly more complicated for DK-blocks, we can employ the same
ideas as for SO-blocks, as we can find a bijection σ between struct(SDK) and the index

196 Eigensolvers for the Computation of Rovibronic Energy Levels

set of CDK (see Figure 7.3):

σ : I ′ × {1, . . . , N (lim)
R · v(lim)′′

2 } −→ struct(SDK) ⊂ I ′ × I ′′

(̃i, j̃) 7−→ (σ1(̃i, j̃) , σ2(̃i, j̃)) =: (i, j) (7.26)

i = σ1(̃i, j̃) = ĩ (7.27)

j = σ2(̃i, j̃) =
⌊
j̃/v

(lim)′′

2

⌋
· (N (lim)

r · v(lim)′′

2)

+
(⌊
ĩ/v

(lim)′

2

⌋
mod N (lim)

r

)
· v(lim)′′

2 + j̃ mod v
(lim)′′

2 (7.28)

The inverse map σ−1 is given by:

σ−1 : struct(SDK) ⊂ I ′ × I ′′ −→ I ′ × {1, . . . , N (lim)
R · v(lim)′′

2 }
(i, j) 7−→ ((σ−1)1(i, j) , (σ−1)2(i, j)) =: (̃i, j̃) (7.29)

ĩ = (σ−1)1(i, j) = i (7.30)

j̃ = (σ−1)2(i, j) =
⌊
j/(N (lim)

r · v(lim)′′

2)
⌋
· v(lim)′′

2 + j mod v
(lim)′′

2 (7.31)

7.2.2. Storage Scheme for the Hamiltonian Matrix Blocks

We are only interested in matrix blocks with non-zero entries, i.e. those blocks, whose
addresses satisfy one of the rules in Table 6.13. Since accessing a K-block by its address
(N ′, K ′), (N ′′, K ′′) is rather tedious and inefficient, we now derive a storage scheme
which is better suited for the design and implementation of an efficient matrix-vector
multiplication in a computer code. The natural and straightforward approach is to work
with three one-dimensional arrays JDIAG, JDK and JSO that enable direct or indirect
access (e.g. by means of pointers in a C-Code) to the DIAG-, DK- and SO-blocks. In
the following, we will show how the address (N ′, K ′), (N ′′, K ′′) of a matrix block can be
mapped to the corresponding index I in one of the three arrays (depending on the type
of the block).

7.2.2.1. Addressing the DIAG-blocks

We set K = K ′ and N = N ′.
For every N-Block with N ∈ {Nmin, . . . , Nmax} there are (N + 1) DIAG blocks, thus

#DIAG =
Nmax∑

`=Nmin

(`+ 1)

=
Nmax∑

`=Nmin+1

`+Nmax + 1 (7.32)

7.2 Matrix-Vector Multiplication and Storage Scheme 197

DIAG-blocks altogether. For convenience we let the index of the JDIAG array run from
zero, such that for any given pair (N,K) the index

I ∈

{
0, . . . ,

Nmax∑
`=Nmin+1

`+Nmax

}
(7.33)

is obtained by the following relation:

I =
N∑

`=Nmin+1

`+K (7.34)

7.2.2.2. Addressing the DK-blocks

We set K = max{K ′, K ′′} and N = N ′.
Differently from the DIAG-blocks there are N DK-blocks in an N-block associated with
the quantum number N ∈ {Nmin, . . . , Nmax} resulting in

#DK =
Nmax∑

`=Nmin

` (7.35)

DK-blocks altogether. Here it is more convenient to let the index I run from 1, such
that for a given pair (N,K) the corresponding index

I ∈

{
1, . . . ,

Nmax∑
`=Nmin

`

}
(7.36)

in JDK is given by

I =
N−1∑

`=Nmin

`+K (7.37)

7.2.2.3. Addressing the SO-blocks

We set K = K ′ and N = max{N ′, N ′′}.
There are (Nmax− 1) off-diagonal N-blocks for N ∈ {Nmin + 1, . . . , Nmax}, each of them
holding N SO-blocks. Hence, there are

#SO =
Nmax∑

`=Nmin+1

` (7.38)

198 Eigensolvers for the Computation of Rovibronic Energy Levels

SO-blocks altogether. Here again the index I starts at 0 and we can relate (N,K) to

I ∈

{
0, . . . ,

Nmax∑
`=Nmin+1

`− 1

}
(7.39)

by means of the following mapping:

I =
N−1∑

`=Nmin+1

`+K (7.40)

The Tables 7.5 and 7.6 for doublet (S = 1/2) and quartet (S = 3/2) spin multiplicity
show how the DIAG-, DK-, and SO-blocks are adressed by means of (7.34), (7.37),
(7.40).
Now combining compact storage and efficient addressing results in the storage scheme
for a Hamiltonian J-block H(J,S,Γrve) depicted in Fig. 7.4:

Figure 7.4.: Storage scheme for the matrix blocks (S = 1/2, J = 5/2)

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

JDIAG

JDK

JSO

0 1 2 3 4 5 6

1 2 3 4 5

0 1 2

7.2 Matrix-Vector Multiplication and Storage Scheme 199

Table 7.5.: Addressing the Hamiltonian blocks (S = 1/2, J = 5/2)

N 2 3
K 0 1 2 0 1 2 3

DIAG I 0 1 2 3 4 5 6
DK I 1 2 3 4 5
SO I 0 1 2

Table 7.6.: Addressing the Hamiltonian blocks (S = 3/2, J = 7/2)

N 2 3 4 5
K 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5

DIAG I 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
DK I 1 2 3 4 5 6 7 8 9 10 11 12 13 14
SO I 0 1 2 3 4 5 6 7 8 9 10 11

7.2.3. Matrix-Vector Multiplication Exploiting Compact Storage

We can now exploit our results from the previous subsections and derive an efficient
algorithm for the matrix-vector multiplication of the Hamiltonian matrix. To this end
we first formulate algorithms for the DK-block and SO-block multiplication that take
advantage of the compact storage of blocks discussed in Sections 7.2.1.1 and 7.2.1.2.

The Algorithms SO-mult and DK-mult given below perform the multiplication of an
SO-block or a DK-block, respectively. They require

• d′, d′′ (block dimension), N
(lim)
R , N

(lim)
r (basis set information)

• TRANSP (multiplication by the transpose (true/false))

• CSO ∈ Rd′×v
(lim)′′
2 resp. CDK ∈ Rd′×N

(lim)
R ·v(lim)′′

2 , x ∈ Rd′ or x ∈ Rd′′}

and compute

• y = SO · x resp. y = DK · x , if TRANSP=false and x ∈ Rd′′

• y = SOT · x resp. y = SOT · x , if TRANSP=true and x ∈ Rd′

200 Eigensolvers for the Computation of Rovibronic Energy Levels

Algorithm 7.2: DK-block-vector multiplication exploiting compact storage

function y = DK-mult(CDK,x, k, l, N
(lim)
R , N

(lim)
r ,TRANSP)1

v
(lim)′

2 = k/(N
(lim)
R ·N (lim)

r)2

v
(lim)′′

2 = l /(N
(lim)
R ·N (lim)

r)3

if (TRANSP=false) then4

for i = 1, . . . , (N
(lim)
R ·N (lim)

r) do5

ŷ := y[(i− 1) · v(lim)′

2 + 1 : i · v(lim)′

2]6

for j = 1, . . . , N
(lim)
R do7

ĈDK = CDK[(i− 1) · v(lim)′

2 +1 : i · v(lim)′

2 , (j− 1) · v(lim)′′

2 +1 : j · v(lim)′′

2]8

î = (j − 1) · (N
(lim)
r · v(lim)′′

2) + ((i− 1) · v(lim)′′

2) mod (N
(lim)
r · v(lim)′′

2)9

x̂ := x[î+ 1 : î+ v
(lim)′′

2]10

ŷ += ĈDK · x̂11

end for12

end for13

else14

for i = 1, . . . , (N
(lim)
R ·N (lim)

r) do15

ŷ := y[(i− 1) · v(lim)′′

2 + 1 : i · v(lim)′′

2]16

for j = 1, . . . , N
(lim)
R do17

q̂ = (j − 1) · (N
(lim)
r · v(lim)′

2) + ((i− 1) · v(lim)′

2) mod (N
(lim)
r · v(lim)′

2)18

r̂ = ((i− 1)/N
(lim)
r) · v(lim)′′

219

ĈDK = CDK[q̂ + 1 : q̂ + v
(lim)′

2 , r̂ + 1 : r̂ + v
(lim)′′

2]20

î = (j − 1) · (N
(lim)
r · v(lim)′

2) + ((i− 1) · v(lim)′

2) mod (N
(lim)
r · v(lim)′

2)21

x̂ := x[î+ 1 : î+ v
(lim)′

2]22

ŷ += ĈDK
T
· x̂23

end for24

end for25

end if26

return y27

To obtain the final matrix-vector multiplication (Algorithm 7.4) we simply have to re-
place the explicit DK-block and SO-block multiplications in Algorithm 7.1 by the cor-
responding block-multiplication Algorithms 7.2 and 7.3 and to use the storage scheme
(Figure 7.4) derived in Section 7.2.2. Figure 7.5 impressively illustrate the advantage of
exploiting sparsity for matrix-vector multiplication and storage (MgCN molecule, big
basis set, see Table 6.5): Both memory costs and computing time grow linearly with
the rotational quantum number J . By contrast, the quadratic growth of memory costs
when storing the Hamiltonian matrix blocks H(J,S,Γrve) explicitly makes eigenvalue com-
putations by means of direct solvers (see Section 3.2) intractable for values of J > 9/2
for the big basis (as defined in Table 6.5). Finally, the diagrams illustrate that it clearly

7.2 Matrix-Vector Multiplication and Storage Scheme 201

pays to exploit the sparsity of the off-diagonal Hamiltonian K-blocks (and not only the
block sparsity). A simple calculation shows that our scheme (Fig. 7.4) allows to store
FBRs (for the MgCN molecule with respect to the big basis) up to J = 31/2 with an
amount of 32 G memory available (cf. Fig. 7.5) on our SUN

TM
Fire workstation.

Algorithm 7.3: SO-block-vector multiplication exploiting compact storage

function y = SO-mult(CSO,x, d′, d′′, N
(lim)
R , N

(lim)
r ,TRANSP)1

v
(lim)′

2 = d′/(N
(lim)
R ·N (lim)

r)2

v
(lim)′′

2 = d′′ /(N
(lim)
R ·N (lim)

r)3

if (TRANSP=false) then4

for i = 1, . . . , (N
(lim)
R ·N (lim)

r) do5

x̂ := x[(i− 1) · v(lim)′′

2 + 1 : i · v(lim)′′

2]6

ŷ := y[(i− 1) · v(lim)′

2 + 1 : i · v(lim)′

2]7

ĈSO = CSO[(i− 1) · v(lim)′

2 + 1 : i · v(lim)′

2 , 1 : v
(lim)′′

2]8

ŷ += ĈSO · x̂9

end for10

else11

for i = 1, . . . , (N
(lim)
R ·N (lim)

r) do12

x̂ := x[(i− 1) · v(lim)′

2 + 1 : i · v(lim)′

2]13

ŷ := y[(i− 1) · v(lim)′′

2 + 1 : i · v(lim)′′

2]14

ĈSO = CSO[(i− 1) · v(lim)′

2 + 1 : i · v(lim)′

2 , 1 : v
(lim)′′

2]15

ŷ += ĈSO
T
· x̂16

end for17

end if18

return y19

Figure 7.5.: Comparison of the storage schemes (MgCN molecule, big basis)

1/2 3/2 5/2 7/2 9/2 11/2 13/2

10

20

30

40

50

60

J quantum number

m
em

or
y

(G
ig

aB
yt

es
)

sparsity
block sparsity
full matrix
memory limit (32 GB)

a) Storage costs

1/2 3/2 5/2 7/2 9/2 11/2 13/2

2

4

6

8

10

12

J quantum number

tim
e

(s
ec

s)

sparsity
block sparsity

b) Matrix-vector multiplication timings

202 Eigensolvers for the Computation of Rovibronic Energy Levels

Algorithm 7.4: Matrix-vector multiplication exploiting sparsity

function y = mult(H,x, Γrve, S, J, N
(lim)
R , N

(lim)
r , (va

2)(lim), (vb
2)

(lim), ABC)1

y = 02

Nmin = |J − S|, Nmax = J + S3

for N ′ = Nmin, . . . , Nmax do4

for K ′ = 0, . . . , N ′ do5

i = posK(Γrve, S, J, N ′, K ′, N
(lim)
R , N

(lim)
r , (va

2)(lim), (vb
2)

(lim), ABC)6

k = dimK(Γrve, N ′, K ′, N
(lim)
R , N

(lim)
r , (va

2)(lim), (vb
2)

(lim), ABC)7

for N ′′ = Nmin, . . . , Nmax do8

for K ′′ = 0, . . . , N ′′ do9

j = posK(Γrve, S, J, N ′′, K ′′, N
(lim)
R , N

(lim)
r , (va

2)(lim), (vb
2)

(lim), ABC)10

l = dimK(Γrve, N ′′, K ′′, N
(lim)
R , N

(lim)
r , (va

2)(lim), (vb
2)

(lim), ABC)11

∆N = |N ′ −N ′′ |, ∆K = |K ′ −K ′′ |12

if (∆N = 0 and ∆K = 0) then ←−−−−−−−−−−−−−−−−−−−−−−−−−DIAG block ?13

I =
N ′∑

`=Nmin+1

` + K ′′
14

y[i : i + k − 1] += JDIAG[I] · x[j : j + l − 1]15

end if16

if (∆N = 0 and ∆K = 1) then ←−−−−−−−−−−−−−−−−−−−−−−−−−−−DK block ?17

if (K ′ > K ′′) then18

I =
N ′−1∑

`=Nmin

` + K ′
19

y[i, . . . , i + k − 1] += DK-mult(JDK[I],x[j, . . . , j + l − 1], k, l,20

N
(lim)
R , N

(lim)
r , false)21

else22

I =
N ′−1∑

`=Nmin

` + K ′′
23

y[i : i + l − 1] += DK-mult(JDK[I],x[j : j + k − 1], k, l,24

N
(lim)
R , N

(lim)
r , true)25

end if26

end if27

if (∆N = 1 and ∆K = 0) then ←−−−−−−−−−−−−−−−−−−−−−−−−−−−SO block ?28

if (N ′ > N ′′) then29

I =
N ′−1∑

`=Nmin+1

` + K ′
30

y[i : i + k − 1] += SO-mult(JSO[I],x[j : j + l − 1], k, l,31

N
(lim)
R , N

(lim)
r , false)32

else33

I =
N ′′−1∑

`=Nmin+1

` + K ′,
34

y[i : i + l − 1] += SO-mult(JSO[I],x[j : j + k − 1], k, l,35

N
(lim)
R , N

(lim)
r , true)36

end if37

end if38

end for39

end for40

end for41

end for42

return y43

7.3 Contraction Scheme and Contracted Basis 203

7.3. Contraction Scheme and Contracted Basis

In this section we make more precise how the basis contraction according to the general
description in Section 5.8.2 is realized for the concrete case of the Double Renner Hamil-
tonian. The contraction scheme is proposed in Odaka’s PhD thesis [86] as a means to
make the eigenvalue computations viable and it is employed in the related software DR.
A detailed discussion along with numerical results may be found in [87]. The basic idea
can be described as follows

• Compute eigensystems of the arising basic K-blocks in Hu

(Hu)(N,K) = BK,Γvib,η = V∗
N,KΛN,KVN,K (7.41)

where we assume the eigenvalues to be ordered by ascending magnitude. Because
of the multiple occurences of basic K-blocks (cf. Fact 6.10 and Corollary 6.11)
this only needs to be done for one instance of BK,Γvib,η in each case.

• The contraction and its quality is controlled by an offset parameter Econt, which
we call contraction limit. More precisely, we only employ those columns of VN,K

whose related eigenvalues are less or equal than λ1 +Econt, i.e. TN,K = VN,K [1 : j],
where j is the largest index such that λj ≤ λ1 +Econt. The total projection is then
obtained as the block-diagonal matrix T whose blocks are VN,K [1 : j]. The larger
one chooses Econt the better the quality of the contracted Hamiltonian matrix will
be.

• The contracted Hamiltonian matrix H̃ is now simply obtained by the Rayleigh-Ritz
projection

H̃(J,S,Γrve) = T∗ H(J,S,Γrve) T (7.42)

These ideas are formalized by Algorithm 7.5 (Computation of the projection) and Algo-
rithm 7.6 (Application of the projection), where the blocks TN,K of the transformation
matrix T are addressed using the scheme for the DIAG blocks from Section 7.2.2.1.
Note that Algorithm 7.6 makes use of the block sparsity and returns the non-zero blocks
of the contracted Hamiltonian matrix H̃(J,S,Γrve). To this end it uses nearly the same
storage scheme as for the uncontracted Hamiltonian matrix H(J,S,Γrve), the difference
being that the contracted SO- and DK-blocks cannot be compressed any further since
their sparsity structure is lost upon contraction.

204 Eigensolvers for the Computation of Rovibronic Energy Levels

Algorithm 7.5: Computing the projection for the contraction scheme

function T = projection(H, Hu, Econt, S, J, Γrve,1

N
(lim)
R , N

(lim)
r , (va

2)
(lim), (vb

2)
(lim), ABC)

Nmin = |J − S|, Nmax = J + S2

for N = Nmin, . . . , Nmax do3

for K = 0, . . . , N do4

k = dimK(Γrve, N, K, N
(lim)
R , N

(lim)
r , (va

2)
(lim), (vb

2)
(lim), ABC)5

I =
N∑

`=Nmin+1

`+K
6

if (CONTDIM[I] = 0) then7

Determine Γvib and η as a function of N,K,Γrve8

from Tables 6.3 resp. 6.4
B := BK,Γvib,η9

Compute sorted eigendecomposition10

B = V∗ ·Λ ·V

V∗ ·V = Ik, Λ = diag(λ1, λ2, . . . , λk), λ1 ≤ λ2 ≤ . . . ≤ λk

j = 011

while (λj+1 ≤ λ1 + Econt) and (j < k) do12

j := j + 113

end while14

if (K > 0) then15

Nmax = Nmax16

else17

Nmax = N18

end if19

for N ′ = N, . . . , Nmax do20

I =
N ′∑

`=Nmin+1

`+K
21

CONTDIM[I] = j22

T[I] = V[:, 1 : j] ∈ Rk×j
23

end for24

end if25

end for26

end for27

return T28

7.3 Contraction Scheme and Contracted Basis 205

Algorithm 7.6: Contracting the Hamiltonian matrix blocks

function H̃ = contract(H, Hu, Econt, S, J, N
(lim)
R , N

(lim)
r , (va

2)(lim), (vb
2)

(lim), ABC)1

Nmin = |J − S|, Nmax = J + S2

T = projection(H, Hu, Econt, Γrve, S, J, N
(lim)
R , N

(lim)
r , (va

2)
(lim), (vb

2)
(lim), ABC)3

for N ′ = Nmin, . . . , Nmax do4

for K ′ = 0, . . . , N ′ do5

for N ′′ = Nmin, . . . , Nmax do6

for K ′′ = 0, . . . , N ′′ do7

∆N = |N ′ −N ′′ |, ∆K = |K ′ −K ′′ |8

if (∆N = 0 and ∆K = 0) then ←−Contraction of the DIAG blocks9

I =
N ′∑

`=Nmin+1

`+K ′′
10

DIAG := JDIAG[I], U = T[I]11

D̃IAG[I] = UT ·DIAG ·U12

end if13

if (∆N = 0 and ∆K = 1) then ←−−Contraction of the DK blocks14

if (K ′ > K ′′) then15

I ′ =
N ′−1∑

`=Nmin

`+K ′, I ′′ =
N ′−1∑

`=Nmin

`+K ′′
16

DK := JDK[I ′], U = T[I ′], V = T[I ′′]17

D̃K[I] = UT ·DK ·V18

end if19

end if20

if (∆N = 1 and ∆K = 0) then ←−−−Contraction of the SO blocks21

if (N ′ > N ′′) then22

I ′ =
N ′−1∑

`=Nmin+1

`+K ′, I ′′ =
N ′′−1∑

`=Nmin+1

`+K ′
23

SO := JSO[I], U = T[I ′], V = T[I ′′]24

S̃O[I] = UT · SO ·V25

end if26

end if27

end for28

end for29

end for30

end for31

return H̃ = [D̃IAG, D̃K, S̃O]32

In analogy to Corollary 6.9 we can also explicitly specify the dimensions and positions
of matrix blocks in the contracted Hamiltonian matrix H̃(N ′,K′),(N ′′,K′′), where we exploit
the information which is available in the auxiliary array CONTDIM determined in Alg.
7.5:

206 Eigensolvers for the Computation of Rovibronic Energy Levels

Corollary 7.7 (Dimensions and positions of contracted K-blocks)
Any K-block with the address (N ′, K ′), (N ′′, K ′′) within a contracted Hamiltonian J-

block H(J,S,Γrve) is fully determined by

H̃
(J,S,Γrve)
(N ′,K′),(N ′′,K′′) = H̃(J,S,Γrve)[i : i+ d′ − 1, j : j + d′′ − 1] ∈ Rd′×d′′ (7.43)

where

d′ = CONTDIM[I ′] i =
I′−1∑
m=0

CONTDIM[m] + 1 (7.44)

d′′ = CONTDIM[I ′′] j =
I′′−1∑
m=0

CONTDIM[m] + 1 (7.45)

and I ′ and I ′′ are the addresses of K-blocks as derived in Section 7.2.2.1, i.e.

I ′ =
N ′∑

`=Nmin+1

`+K ′ (7.46)

I ′′ =
N ′′∑

`=Nmin+1

`+K ′′ (7.47)

Remark 7.8 (Properties of the contracted Hamiltonian J-block H̃(J,S,Γrve))
• By the Poincaré separation theorem (Corollary 2.19) it is known that the eigenval-

ues λ̃i of the contracted Hamiltonian matrix H̃ are upper bounds to the eigenvalues
λi of the original Hamiltonian matrix H, and thus, also upper bounds to the exact
eigenvalues of the Double Renner Hamiltonian ĤDR defined by (6.1).

• A contracted Hamiltonian J-block H̃(J,S,Γrve) exhibits the same block sparsity struc-
ture as its uncontracted counterpart H(J,S,Γrve) (cf. Table 6.13). The sparsity pat-
tern of the off-diagonal SO- and DK-blocks as described in Sections 7.2.1.1 and
7.2.1.2, however, is destroyed in general.

• Note, that the ”complete” transformation T (i.e. the contraction limit is chosen to
be Econt =∞) does not turn the Hamiltonian DIAG-blocks into diagonal matrices,
because they are obtained as perturbations of the basic diagonal K-blocks BK,Γvib,η

(additional SO- and NK-terms, see Line 15 in Algorithm 6.7 which describes the
construction of the Hamiltonian J-block H(J,S,Γrve)). From (7.41) it follows that
for a ”completely” transformed diagonal K-block it holds

H̃(N,K) = V∗
N,KH(N,K)VN,K

= V∗
N,K

(
BK,Γvib,η + (Hnk)(N,K) + (Hso)(N,K)

)
VN,K

= V∗
N,K BK,Γvib,η VN,K + V∗

N,K (Hp)(N,K) VN,K

= diag(λ1, . . . , λk) + (H̃p)(N,K) (7.48)

7.3 Contraction Scheme and Contracted Basis 207

The Frobenius norms of the perturbation blocks (Hp)(N,K) are known to be small in
comparison to the norm of the basic diagonal K-block (see also Table 7.1) and due
to the invariance under orthogonal transformations this property carries over to
the Frobenius norms of the transformed perturbation blocks ‖(H̃p)(N,K)‖F . Hence,

the contracted diagonal K-blocks H̃(N,K) are ”near-diagonal”, i.e. the contraction

scheme makes the contracted Hamiltonian J-block H̃J,S,Γrve even more diagonally
dominant.

2

Table 7.7 shows the information determined by Algorithm 7.5 (i.e. the number of eigen-
values below the contraction limit Econt per basic diagonal K-block BK,Γvib,η) and Table
7.8 gives a survey of the sizes of the resulting contracted Hamiltonian J-blocks for dif-
ferent values of Econt. Both choices, Econt = 5000 cm−1 and Econt = 10000 cm−1, reduce
the arising J-block dimensions to a great deal and computing eigensystems by means
of direct solvers (see Section 3.2) now becomes also feasible for rotational J-quantum
numbers beyond J = 9/2 (see also Fig. 7.5).

Table 7.7.: Number of eigenvalues with λ ≤ λ1 + Econt in BK,η,Γvib (MgCN, big basis)

Basic K-blocks Number of λ ≤ λ1 + Econt for
K η Γvib

dim(BK,η,Γvib)
Econt = 5000 cm−1 Econt = 10000 cm−1

0 a A′ 2976 164 817
0 b A′ 2976 147 801
1 A′ 5952 274 1538
2 A′ 5952 290 1593
3 A′ 5952 308 1636
4 A′ 5952 326 1679
5 A′ 5952 343 1722
6 A′ 5952 359 1763
7 A′ 5952 374 1808

Table 7.8.: Sizes of contracted and uncontracted Hamiltonian J-blocks

H(J,S,Γrve) dim(H̃(J,S,Γrve))
J Γrve

dim(H(S,J,Γrve))
Econt = 5000 cm−1 Econt = 10000 cm−1

1/2 A′ 11904 585 3156
3/2 A′ 23808 1149 6287
5/2 A′ 35712 1747 9516
7/2 A′ 47616 2381 12831
9/2 A′ 59529 3050 16232
11/2 A′ 71424 3752 19717
13/2 A′ 83328 4485 23288

208 Eigensolvers for the Computation of Rovibronic Energy Levels

Figure 7.6.: Relative error of eigenvalues of H̃(1/2, 1/2, A′)

0 200 400 600
0

0.5

1

1.5

2

2.5

Eigenvalue index i

R
el

at
iv

e
E

rr
or

 in
 %

Relative Error in %

a) Econt = 5000 cm−1

0 1000 2000 3000
0

0.5

1

1.5

Eigenvalue index i

R
el

at
iv

e
E

rr
or

 in
 %

Relative Error in %

b) Econt = 10000 cm−1

Figure 7.7.: Cosine of angles between exact eigenvectors and Ritz vectors

0 200 400 600
0

0.2

0.4

0.6

0.8

1

Eigenvalue index i

|c
os

θ|

|cosθ |

a) Econt = 5000 cm−1

0 1000 2000 3000
0

0.2

0.4

0.6

0.8

1

Eigenvalue index i

|c
os

θ|

|cosθ |

b) Econt = 10000 cm−1

In Figures 7.6 and 7.7 we compare the quality of the exact eigenpairs of the uncontracted
Hamiltonian matrices H(J,S,Γrve) with the Ritz pairs related to the projections leading to
the contracted matrices H̃(J,S,Γrve). Fig. 7.6 shows the relative errors of the Ritz values
(as compared to the exact eigenvalues) and Fig. 7.7 shows the deviations of Ritz and
exact eigenvectors in terms of | cosφ|, where φ is the “error angle”. The corresponding
values are obtained using the well-known relation between cosine and scalar product
established in Lemma 2.28. These examples again reveal that assessing the quality of
Ritz vectors is a delicate matter. The plots for both contraction limits show that the
Ritz vectors sooner deviate from the related eigenvectors than the corresponding Ritz
values. For Econt = 5000 cm−1 the Ritz values around the index i = 400 have a very tiny
relative error whereas there are already large ”peaks” in the deviation of the Ritz vectors.
On the other hand, one can recognize that below a certain index number (i ≈ 350 for
Econt = 5000 cm−1 and i ≈ 2200 for Econt = 10000 cm−1) the Ritz approximations are of
excellent quality which demonstrates the value of the contracted basis approach.

7.4 Direct Solvers 209

7.4. Direct Solvers

To assess the potential of the preconditioned JDQR methods in the context of our quan-
tum chemical computations it is enlightening to see how optimized direct solvers perform
when applied to the same problem class. We therefore first present the corresponding re-
sults for both, product basis and contracted basis calculations, which we obtain using the
algorithmic combination of two-stage tridiagonalization and RRR tridiagonal eigensolver
(see discussion in Chapter 3.2). Essentially, the timings only depend on the matrix size
and for this reason, to demonstrate the limitations of direct approaches, we can restrict
ourselves to the most time consuming case in our experiments, i.e. computations w.r.t.
to the MgCN molecule and the big basis.

7.4.1. Product Basis Calculation

As we already know from the discussion in Section 3.2 the time complexity of eigenvalue
computations based on the generic approach (Alg. 3.4) is governed by the tridiagonal-
ization step for which the costs are known to be O(n3). Thus, it is hardly suprising that
the time required for the computation of a (partial) eigensystem of the Hamiltonian
matrix H(J,S,Γrve) grows cubically with respect to the rotational quantum number J ,
upon which the problem size n depends linearly (cf. Fig. 6.4). Using the big basis (cf.
Table 6.5) for the MgCN-molecule it is only possible to store Hamiltonian matrices for
J ≤ 9/2, because the SUN

TM
Fire workstation employed in our experiments is equipped

with 32 GB work space (cf. Fig. 7.5). Due to technical restrictions the limit for practical
computations is even less, i.e. J = 7/2.

Notation 7.9 (Two-stage tridiagonalization + RRR = TST-RRR)
The combination of the two-stage tridiagonalization (cf. Section 3.2.1.2) and the RRR
tridiagonal eigensolver (cf. Section 3.2.2.4) is our method of choice for the computation
of (partial) eigensystems. For the sake of brevity we refer to it as TST-RRR, the
corresponding driver routine in the SBR software by Bischof, Lang et al. [13] is called
DSYEVT. 2

Table 7.9 shows the timings for computing 200 eigenpairs using the TST-RRR solver.
The restriction on the number of eigenpairs seems somewhat arbitrary at first glance
and is motivated by the fact that about 200 (exact number: 197) eigenvalues are less or
equal than Emax = 5000 cm−1 for J = 1/2. As this number increases for larger values of
J (see Table 7.4) and in view of a better comparability with the JD computations to be
discussed in the following sections we decided to leave the number of sought-after eigen-
values fixed. The results impressively illustrate the unfavorable time complexity O(n3),
for a matrix with the dimension n = 47616 more than one day is needed, although the
problem size is rather moderate and the number of sought-after eigenpairs is small.

210 Eigensolvers for the Computation of Rovibronic Energy Levels

It is also interesting to have a closer look at the detailed timings for the involved inter-
mediate steps which are listed in Table 7.10. The following itemization gives a survey
of the related computational routines:

• xSYRDB (part of SBR, [13]) reduces the input matrix to banded form

• xSBRDX (part of SBR, [13]) tridiagonalizes the banded matrix obtained

• xSTEGR is the LAPACK [2] implementation [7] of the RRR tridiagonal eigensolver

• xSBACC (part of SBR, [13]) recovers the eigenvectors of the banded matrix

• xORMTR (BLAS [1] routine, included in LAPACK [2] [7]) recovers the eigenvectors
of the original input matrix

Essentially, the overall timings in Table 7.9 result from summing up the corresponding
particular timings in Table 7.10 (except for very tiny and negligible contributions due
to the auxiliary routine xSY2BC which is only of technical importance and therefore not
included in the results). The timings reveal that the main part of the computational
effort is due to the band reduction step xSYRDB. By contrast, the costs for the tridi-
agonalization are tiny. Also the contribution of the algorithmic part that depends on
the number of sought-after eigenpairs kmax, the back-transformation steps xSBACC and
xORMTR, is rather small, at least for a small ratio r = kmax/n, say r ≤ 0.1 (see discussion
in Section 3.2.1.2 for more details).

Table 7.9.: Overall Timings for 200 eigenpairs computed by TST-RRR

J Problem size n Storage Time required for 200 eigenpairs
1/2 11904 1.06 G 2470.68 secs = 0.69 h
3/2 23808 4.22 G 17782.44 secs = 3.39 h
5/2 35712 9.50 G 60612.72 secs = 16.84 h
7/2 47616 16.89 G 142644.83 secs = 39.62 h

Table 7.10.: Detailed timings for 200 eigenpairs computed by TST-RRR

Times in secs
J Problem size n

dsyrdb dsbrdx dstegr dsbacc dormtr

1/2 11904 2104.07 277.68 4.72 31.13 53.02
3/2 23808 16197.21 1243.33 11.30 90.96 239.23
5/2 35712 57016.81 2844.03 18.03 176.70 556.58
7/2 47616 136116.67 5088.03 25.89 311.88 1101.64

7.4 Direct Solvers 211

7.4.2. Contracted Basis Calculation

In Section 7.3 we have described a contraction scheme for the Hamiltonian matrices
arising in our context. A contracted basis calculation thus comprises the following three
parts:

1. computing the projection (by means of Alg. 7.5)

2. contracting the original matrix by applying the projection (see Alg. 7.6)

3. computing the (full) eigensystem of the contracted matrix by means of the LA-
PACK [2] RRR driver (cf. Section 3.2.2.4)

Furthermore, we have already analyzed the sizes of contracted matrices and the quality
of approximate eigensystems in dependance of the parameter Econt. Let us now turn
our attention to the quantitative aspect in terms of computing times. Table 7.11 gives
a survey for Econt = 5000 cm−1 and a comparison with the corresponding product basis
calculations (Table 7.9) reveals that the contracted counterparts are always cheaper, even
for the problem with the smallest size. On the other hand, the choice Econt = 5000 cm−1

may not always lead to the desired accuracy, especially if a larger number of approximate
eigenpairs is sought-after (cf. Figs. 7.6 and 7.7). Table 7.12 shows what impact higher
values for Econt have on the computing time for contracted calculations w.r.t. J = 1/2.
A possible danger when choosing Econt too large is that the contracted calculation can
be even more expensive in total than its uncontracted analogon as it is the case for
the choices Econt = 15000 cm−1 and Econt = 20000 cm−1 in our example. Clearly, it is
important to find a reasonable trade-off between accuracy and computing time.

Remark 7.10
Unfortunately, it is not possible to use one of the LAPACK [2] driver routines for partial
eigensystems when computing the projections (see Alg. 7.5, Line 10), because the range
of interest is determined by λ1 and the offset parameter Econt. For this reason we first
always computed the complete eigensystems of the basic diagonal K-blocks BK,Γvib,η and
determined the index j of the largest eigenvalue with λj ≤ Econt by means of a simple
while-loop (Alg. 7.5, Lines 12-14). For this reason the timings for the computation
of the projection (third column in Table 7.12) are constant apart from minor errors in
measurement. However, there should be no major difficulty in devising a driver routine
which is specialized for our purpose and reduces the computational overhead. 2

Finally, one should be aware that the contribution of computing and applying the pro-
jection is often not negligible and may amount to a considerable percentage of the overall
costs as the following example impressively illustrates:

212 Eigensolvers for the Computation of Rovibronic Energy Levels

Problem 7.11 (Contracted calculation for quantum numbers J ≥ 7/2)
We have seen that when using the big basis for the MgCN molecule it is no more
feasible to carry out product basis calculations for J ≥ 7/2 due to memory restrictions.
Consequently, one is forced to resort to contracted (direct or iterative) calculations. We
consider the case J = 13/2 for which the dimension of the Hamiltonian matrix is known
to be n = 83328 (as per Alg. 6.3). Using the paramter Econt = 10000cm−1 the contraction
scheme leads to a smaller matrix with the size ncont = 23288. The pie chart depicted in
Fig. 7.8 shows that 14% of the overall computing time is due to the computation and
application of the projection. Because of the large problem dimension ncont this example
will be also of interest later on, when we discuss the use of preconditioned JDQR variants
when applied to contracted problems. 2

Table 7.11.: Direct contracted calculation for Econt = 5000 cm−1

J n ncont Projection (Alg. 7.5) Contraction (Alg. 7.6) Eigsys. (RRR)
1/2 11904 585 988.28 secs 21.07 secs 1.26 secs
3/2 23808 1149 1769.68 secs 70.53 secs 6.26 secs
5/2 35712 1747 2576.47 secs 128.92 secs 21.99 secs
7/2 47616 2381 3362.88 secs 188.70 sces 52.92 secs

Table 7.12.: Effect of different contraction limits for J = 1/2

Econt ncont Projection (Alg. 7.5) Contraction (Alg. 7.6) Eigsys. (RRR)
5000 585 988.28 secs 21.07 secs 1.26 secs
10000 3156 987.21 secs 131.05 secs 121.64 secs
15000 6555 983.76 secs 327.68 secs 1044.62 secs
20000 9088 982.86 secs 504.53 secs 2917.35 secs

Figure 7.8.: Contracted calculation for J = 13/2 and Econt = 10000 cm−1

Solution of eigenproblem
(50276.35 secs = 86%)Computing projection

(5709.53 secs = 10%)

Contracting matrix
(2421.86 secs = 4%)

7.5 JDQR Product Basis Calculation 213

7.5. JDQR Product Basis Calculation

In this section we come to the main results of our investigations. We will explain how
to devise both memory and time efficient preconditioners for product basis Hamiltonian
matrices H(J,S,Γrve), which are – apart from the matrix-vector multiplication – the
second problem-dependent ingredient to be supplied by the user in order to use one of
the preconditioned JDQR methods (Algorithms 4.7, 4.8 and 4.9). We will illustrate the
use of our ideas by a couple of numerical results. To begin with, let us briefly sketch
some general strategies to tackle the eigenvalue problem specified in Def. 7.3 by means
of preconditioned JDQR methods since in contrast to direct eigensolvers (which can be
used as ”black boxes”) the situation is less clear:

1. Compute as many eigenpairs as possible in ”one batch”:
This is the most obvious approach, i.e. one constructs a fixed preconditioner K ≈
A−τI for a specific target value τ > 0 and applies a preconditioned JDQR method.
The discussion in Chapter 4.3.6, however, already anticipates that the quality of the
preconditioner gradually deteriorates, and hence, the convergence speed decreases
for eigenpairs to be computed in subsequent steps, especially if a relatively large
number of eigenpairs has already been detected. A further drawback is the fact
that the involved projections become increasingly expensive.

2. Use so-called ”spectral windows”, which is advocated in [47], for instance.
Given a range I = [α, β] which contains all eigenvalues of interest, the idea is to
sub-divide I into intervals Ik = (τk−εk, τk +εk) (”spectral windows”, radii εk > 0)
which need not necessarily be disjoint. One can now apply several instances of
the JDQR method of choice, one for each target value τk, provided that efficient
preconditioners Kk for Ak = A− τkI (which should be cheap to construct and to
apply) are available. Unfortunately, this is often not true in practice, because the
involved shifts τk > 0 make the matrices Ak indefinite and as a general wisdom
(see [11], [101], e.g.) it is difficult to find efficient preconditioners for such matrices.
Besides, it is advisable (see the related discussion in Section 4.4.3) to use the refined
or the harmonic preconditioned JDQR variant (Algorithms 4.8 and 4.9) for target
values τk > 0, because, as a consequence, interior eigenvalues are sought-after.
A general technical problem arising in this context lies in the fact that certain
eigenpairs may be missed or detected in an irregular order, which is an additional
drawback. On the other hand, the inherent paralellism (e.g. use one processor for
each window Ik, cf. [47]) may be an argument in favor of the approach.

3. Improve the approach outlined in 1. by updating the preconditioner periodically,
say after every 20 detected eigenpairs:
In Section 4.3.5 we have seen that the auxiliary matrices Ỹ (contains the precon-

ditioned eigenvectors) and H̃ (see Algorithms 4.7, 4.8, 4.9 and the preconditioned
correction equation (4.103)) have to be updated whenever the preconditioner K

214 Eigensolvers for the Computation of Rovibronic Energy Levels

changes. Suppose that k (approximate) eigenpairs (λi, qi) have already been de-
tected. Then the following steps have to be carried out after the construction of
an updated preconditioner Knew:

• compute Ỹnew = K−1
newQ̃ (k + 1 preconditioner calls)

• compute H̃new = Q̃∗Ỹnew

• compute LU factorization of H̃new

Obviously, this approach is only viable if both, construction and application, of
Knew are not too expensive and if the total number of sought-after eigenpairs is
not too large. In [116] some techniques for updates of preconditioners based on
algebraic techniques (ILU-type preconditioners) are outlined.

The discussion in the following sections will reveal that only the first strategy is a viable
option for our purposes, because preconditioners for interior eigenvalues are not efficient
enough.

7.5.1. Preconditioners for Exterior Eigenvalues

In Section 4.2.3.5 we have introduced the term ”preconditioner” and pointed out its
crucial importance as a convergence accelerator for Krylov methods. A state-of-the-art
survey of existing types of preconditioning techniques may be found in [11]. Basically,
one can distinguish between the following general approaches (cf. [44], [11]):

• preconditioners based on algebraic techniques:
The construction is based on algebraic properties (i.e. sparsity pattern, matrix
entries, etc.) of the matrix (for instance by means of incomplete factorizations like
incomplete Cholesky, ILU, MILU, cf. [11])

• preconditioners based on hierarchy and multilevel techniqes:
the preconditioner is constructed by transformation of the matrix to different scales
(e.g. FFT, algebraic/geometric multigrid, wavelets)

• model and structure oriented preconditioners
Unlike the above techniques, which are essentially ”black boxes” one tries to exploit
information from the underlying model

Note that these ”classes” are not necessarily disjoint, since model oriented or multilevel
based preconditioners in general also make use of algebraic techniques. In the following
we will see that the choice of an appropriate approach primarily depends on what part of
the spectrum of B = A−τI one is interested in. If one is looking for exterior eigenvalues,
then τ = 0 and B is positive definite. We will identify near-optimal block precondition-
ers that exploit information of the model (quantum numbers, location of information),

7.5 JDQR Product Basis Calculation 215

and hence, belong to the latter of the approaches listed above. They are conceptually
simple, easy to construct and have moderate storage requirements. For interior eigen-
values the situation is much less favorable, the shift τ > 0 makes B indefinite.We have
already pointed out above that devising appropriate preconditioners for the indefinite
case is rather difficult and often does not lead to satisfactory results. Unfortunately,
this is also true for our concrete case and it will turn out that the techniques derived for
exterior eigenvalues in general fail for the computation of interior eigenvalues. In our
experiments it became clear that only sophisticated algebraic multilevel techniques (e.g.
the ILUPACK software by Bollhöfer [15]) or extremely expensive block precondi-
tioners are appropriate. Conversely, it is an often-made experience that preconditioners
that do not lead to success for exterior eigenvalues will not work for interior eigenvalues
either.
An important aspect when dealing with preconditioners is the analysis of costs and
trade-offs, i.e. one has to answer the question whether it pays to incorporate precondi-
tioning: Does a possibly faster convergence of the method in terms of iteration steps
compensate for the costs of setting up and applying the preconditioner? This is typical
of the assessment of Krylov methods designed for the solution of one linear system. In
the context of Jacobi-Davidson methods working with a fixed preconditioner the situ-
ation is different, because several systems have to be solved (one in each step of the
JD/JDQR iteration) so that the costs for constructing a preconditioner are often neg-
ligable, especially if a large number of eigenpairs is computed. Besides, we will see
that preconditioning is mandatory for the Hamiltonian matrices we are dealing with,
i.e. the unpreconditioned JDQR and JD methods (Algorithms 4.2 and 4.5) generally
fail to converge. Consequently, the focus of our experiments will be on the comparison
of preconditioners that make the method converge. In the following two sections we
will comment more systematically on how to choose the preconditioner for exterior and
interior eigenvalues.

7.5.1.1. Specification and Properties

We recall the following elementary and important types of preconditioners:

Definition 7.12 (Jacobi and Block Jacobi preconditioner)
Let A,K ∈ Cn×n such that K ≈ A. K is called

• Jacobi preconditioner, if K = diag(a11, a22, . . . , ann) (i.e. K is a diagonal matrix
with kii = aii)

• block Jacobi preconditioner, if K = diag(A11, A22, . . . , Ann) (i.e. K is a block-
diagonal matrix with Kii = Aii and Kij = 0 for i 6= j)

When dealing with Hamiltonian matrices H(J,S,Γrve) it is advantageous to use the fol-
lowing terms:

216 Eigensolvers for the Computation of Rovibronic Energy Levels

Definition 7.13 (J-block, N-block and K-block preconditioners)
A block Jacobi preconditioner that approximates the Hamiltonian matrix H(J,S,Γrve) is
called

• J-block preconditioner, if it is the whole Hamiltonian matrix H(J,S,Γrve)

• N -block preconditioner, if its diagonal blocks are the diagonalN -blocks of H(J,S,Γrve)

• K-block preconditioner, if its diagonal blocks are the diagonalK-blocks of H(J,S,Γrve)

The Tables 7.1, 7.2 and 7.3 show that the main weight of the information is concentrated
in the diagonal K-blocks (cf. the description of the matrix properties in Section 7.1).
The off-diagonal DK- and SO-blocks can be regarded as a small perturbation E, and
the Bauer-Fike theorem (Prop. 2.23) implies that the matrix made up of the diagonal
K-blocks is a good approximation to the Hamiltonian matrix H(J,S,Γrve), in the sense
that corresponding eigenvalues at most deviate by the norm of the perturbation E. This
suggests to use K-block preconditioners, which are often also referred to as Approximate
Hamiltonian Preconditioners (briefly: AHP) in the literature (cf. [92], e.g.). The obvious
and severe disadvantage, however, are the costs for storing the LU factorizations of the
diagonal K-blocks, which can be prohibitive, especially for product basis computations
with respect to large rotational J quantum numbers and big vibrational basis sets. In
case of the MgCN-molecule, for instance, the basis set defined in Table 6.5 leads to
dense and huge (5952×5952)-blocks (K 6= 0), which illustrates the problem. Besides, as
a negative side-effect the preconditioning operations can be extremely time-consuming.
We therefore have to look for cheaper and less memory consuming variants which are
nevertheless not considerably worse than K-block preconditioners in terms of iteration
steps. Towards this end we will pursue a combination of the following two strategies

1. exploit multiple occurences of information (see Fact 6.10 and Corollary 6.11)

2. exploit hidden sub-blocks in diagonal K-blocks.

Corollary 6.11 and the decomposition of the Hamiltonian in (6.24) suggest to use the
basic diagonal K-blocks BK,Γvib,η introduced in Fact 6.10 as preconditioners. For large
rotational J quantum numbers and spin multiplicity S = 1/2 this almost halves the
storage requirements. However, it turns out, that this approximation is too crude and
consequently the preconditioned standard JDQR method fails to converge. Fortunately,
a slight modification of the idea leads to a preconditioner which is almost as efficient as
the original K-block preconditioner and which has the same favorable storage properties
as the original approach. This is made precise in the follwing

Definition 7.14 (Modified K-block preconditioner for S = 1/2)
For any given J quantum number we have Nmin = |J − S| and Nmax = J + S which
implies Nmax = Nmin + 1 for S = 1/2. Let P be the K-block preconditioner as per Def.

7.13. A modified K-block preconditioner P̃ is obtained as follows: Replace the blocks
PNmax,K by PNmin,K for 0 < K ≤ Nmin.

7.5 JDQR Product Basis Calculation 217

Remark 7.15
The above definition seems somewhat restrictive at first glance, because we only consider
the case S = 1/2. This is due to the fact that in our experiments only data for molecules
with S = 1/2 (MgCN and HOO) was available. From our results to be presented in
the following it may be expected that analogous ideas also work for molecules with spin
multiplicities S > 1/2. 2

The following example clarifies the meaning of Def. 7.14

Example 7.16
Let S = 1/2 and J = 5/2. Then the blocks P2,1 and P2,2 (see Table 6.1 for an illustration)

appear twice in the modified preconditioner P̃ , i.e.

• P̃2,1 = P2,1 and P̃3,1 = P2,1

• P̃2,2 = P2,2 and P̃3,2 = P2,2

The blocks P2,0, P3,0 and P3,3 only appear once. 2

As compared to ordinaryK-Block preconditioners, storage and factorization costs reduce
considerably. But we can even go a step further: Up to now, we have treated the diagonal
K-Blocks H

(J,S,Γrve)
N,K as dense matrices without any further structure. However, this is not

entirely true as we shall see in the following: The hidden structure can be made visible by
considering matrix entries whose moduli are greater than a certain threshold parameter
γ, e.g. γ = 0.01. For the ease of presentation we employ the following notation:

Definition 7.17 (A greater than γ)
For an arbitrary matrix A ∈ Cn×m we define

A>γ =

{
aij , if |aij| > γ
0 , otherwise

(7.49)

Figures 7.9 and 7.10 show the sparsity plots of the matrix
(
H

(1
2
, 1
2
,A′)

(1,1),(1,1)

)>0.01

for the big

and the small basis as defined in Table 6.5. The interesting observation (which can also
be made for the HOO-molecule) is the shimmering of the product basis structure. More
precisely, one can recognize a surprisingly sharp partitioning into (NR×NR) sub-blocks
which in turn motivates to use diagonal sub-blocks of a K-block, the number being a
divisor of N

(lim)
R .

218 Eigensolvers for the Computation of Rovibronic Energy Levels

Figure 7.9.: Sparsity pattern of
(
H

(1
2
, 1
2
,A′)

(1,1),(1,1)

)>0.01

(MgCN molecule, big basis)

Figure 7.10.: Sparsity pattern of
(
H

(1
2
, 1
2
,A′)

(1,1),(1,1)

)>0.01

(MgCN molecule, small basis)

0 200 400 600 800 1000

0

200

400

600

800

1000

nz = 93926

This leads to the following generalization of the block preconditioners specified in Def.
7.13 and Def. 7.14:

Definition 7.18 (K-block / modified K-block preconditioner, sub-blocks)
Let H(J,S,Γrve) be the FBR of ĤDR with respect to a given rotational quantum number

J and a given vibrational basis with the sizes N
(lim)
R , N

(lim)
r , (va

2)
(lim) and (vb

2)
(lim). Let

be nb ∈ N a divisor of N
(lim)
R , i.e. nb|N (lim)

R . Then we define

• a K(nb)-block preconditioner as the matrix Pnb
obtained by cutting out nb diagonal

sub-blocks with equal size in every K-block PN,K . Algorithm 7.7 formalizes the
construction and Algorithm 7.8 specifies how a Pnb

is applied to a given vector x
of appropriate dimension.

7.5 JDQR Product Basis Calculation 219

• a modified K(nb)-Block preconditioner, as the matrix P̃nb
obtained from Pnb

ac-
cording to the principles from Definition 7.14. A formal description of how to set
up and to apply P̃ (nb) is given in Algorithms 7.9 and 7.10.

Algorithm 7.7: Setting up K-block preconditioner using nb sub-blocks

function1

PREC = setupprec(H, Γrve, S, J, N
(lim)
R , N

(lim)
r , (va

2)(lim), (vb
2)

(lim), ABC, nb)
y = 02

Nmin = |J − S|, Nmax = J + S3

for N = Nmin, . . . , Nmax do4

for K = 0, . . . , N do5

k = dimK(Γrve, N, K, N
(lim)
R , N

(lim)
r , (va

2)(lim), (vb
2)

(lim), ABC)6

kb = k/nb7

I =
N∑

`=Nmin+1

` + K
8

DIAG := JDIAG[I]9

for j = 1, . . . , nb do10

D̂IAG = DIAG[(j − 1) · kb + 1 : j · kb, (j − 1) · kb + 1 : j · kb]11

D̂IAG = P · L ·U12

PREC[I][j] = [P,L,U]13

end for14

end for15

end for16

return PREC17

Algorithm 7.8: K-block preconditioner using nb sub-blocks

function y = prec(PREC,x, Γrve, S, J, N
(lim)
R , N

(lim)
r , (va

2)(lim), (vb
2)

(lim), ABC, nb)1

y = 02

Nmin = |J − S|, Nmax = J + S3

for N = Nmin, . . . , Nmax do4

for K = 0, . . . , N do5

i = posK(Γrve, S, J, N, K, N
(lim)
R , N

(lim)
r , (va

2)(lim), (vb
2)

(lim), ABC)6

k = dimK(Γrve, N, K, N
(lim)
R , N

(lim)
r , (va

2)(lim), (vb
2)

(lim), ABC)7

kb = k/nb8

I =
N∑

`=Nmin+1

` + K
9

for j = 1, . . . , nb do10

[P,L,U] := PREC[I][j]11

y[i + (j − 1) · kb : i + j · kb − 1]=U−1L−1PT · x[i + (j − 1) · kb : i + j · kb − 1]12

end for13

end for14

end for15

return y16

220 Eigensolvers for the Computation of Rovibronic Energy Levels

Example 7.19 (Preconditioners with respect to different basis sets)
1. For the big basis (cf. Table 6.5) we have N

(lim)
R = 6 and according to Def. 7.18 one

can use nb ∈ {1, 2, 3, 6} as a sub-block parameter such that there are 8 possible
K(nb)-block and modified K(nb)-block preconditioners.

2. In case of the small basis (cf. Table 6.5) it holds N
(lim)
R = 4. Because of nb|N (lim)

R

one can use nb ∈ {1, 2, 4}, and hence, there are 6 possible combinations, a survey
and illustration of which is given in Table 7.13 .

2

Remark 7.20
• Obviously, the choice nb = 1 leads to the preconditioners introduced in Def. 7.13

and Def. 7.18.

• At first glance the restriction on the number of sublocks nb as a divisor of N
(lim)
R in

Def. 7.18 seems somewhat artificial because any divisor s of the K-block dimension
d as per Alg. 6.1 is possible, too. However, our results show that these choices are
in general less efficient or may even lead to failure of convergence.

• The Algorithms 7.7 and 7.8 for ordinary K(nb)-block preconditioners make use of
the ideas presented in Section 7.2 in order to store and address the corresponding
LU factorizations (see Fig. 7.11). The storage scheme for modified K(nb)-block
preconditioners employed by the Algorithms 7.9 and 7.10 is a straight forward
adaption of these ideas and is illustrated in Fig. 7.12

2

Figure 7.11.: Storage scheme for the K(nb)-block preconditioner (S = 1/2, J = 5/2,
nb = 4)

0 1 2 3 4 5 6

PREC

7.5 JDQR Product Basis Calculation 221

Figure 7.12.: Storage scheme for the modified K(nb)-block preconditioner (S = 1/2,
J = 5/2, nb = 4)

0 1 2 3 4 5 6

PREC

Finally, it is clear that the times for both setting up (LU factorizations of the involved
blocks) and applying a K(nb)-block preconditioner depend linearly upon the rotational
quantum number J (see Fig. 7.13). However, savings for modified K(nb)-block precondi-
tioners can only be realized as far as their construction is concerned, whereas the timings
for the application of modified and standard K(nb)-block preconditioners are identical.
This is illustrated in Fig. 7.13, Part a) and b).

Figure 7.13.: Timings for K(nb)-block preconditioners (big basis, MgCN)

1/2 3/2 5/2 7/2 9/2 11/2 13/2

0.5

1

1.5

2

2.5

3

3.5

J quantum number

tim
e

(s
ec

s)
 fo

r p
re

co
nd

iti
on

er
 o

pe
ra

tio
n

n
b
=1

n
b
=2

n
b
=3

n
b
=6

a) Applying K(nb)-preconditioner

1/2 3/2 5/2 7/2 9/2 11/2 13/2
0

20

40

60

80

100

120

140

tim
e

(s
ec

s)
 fo

r s
et

tin
g

up
 p

re
co

nd
iti

on
er

J quantum number

K−block preconditioner
modified K−block preconditioner

b) Setting up K(3)-preconditioner

222 Eigensolvers for the Computation of Rovibronic Energy Levels

Algorithm 7.9: Setting up mod. K-block precond. using nb sub-blocks, S = 1/2

function1

PREC = setupprec(H, Γrve, S, J, N
(lim)
R , N

(lim)
r , (va

2)(lim), (vb
2)

(lim), ABC, nb)
y = 02

S = 1/23

Nmin = |J − S|, Nmax = J + S4

/* LU-Factorize representatives of "double" occurences */

for K = 1, . . . , Nmin do5

k = dimK(Γrve, Nmin, K, N
(lim)
R , N

(lim)
r , (va

2)(lim), (vb
2)

(lim), ABC)6

kb = k/nb7

I1 =
Nmin∑

`=Nmin+1

` + K
8

I2 =
Nmax∑

`=Nmax+1

` + K
9

DIAG := JDIAG[I]10

for j = 1, . . . , nb do11

D̂IAG = DIAG[(j − 1) · kb + 1 : j · kb, (j − 1) · kb + 1 : j · kb]12

D̂IAG = P · L ·U13

PREC[I1][j] = [P,L,U]14

PREC[I2][j] = [P,L,U]15

end for16

end for17

/* LU-Factorize "single" occurences */

for (N,K) ∈ { (Nmin, 0), (Nmax, 0), (Nmax, Nmax) } do18

k = dimK(Γrve, N, K, N
(lim)
R , N

(lim)
r , (va

2)(lim), (vb
2)

(lim), ABC)19

kb = k/nb20

I =
N∑

`=Nmin+1

` + K
21

for j = 1, . . . , nb do22

D̂IAG = DIAG[(j − 1) · kb + 1 : j · kb, (j − 1) · kb + 1 : j · kb]23

D̂IAG = P · L ·U24

PREC[I][j] = [P,L,U]25

end for26

end for27

return PREC28

7.5 JDQR Product Basis Calculation 223

Algorithm 7.10: Modified K-block preconditioner using nb sub-blocks for S = 1/2

function y = prec(PREC,x, Γrve, S, J, N
(lim)
R , N

(lim)
r , (va

2)(lim), (vb
2)

(lim), ABC, nb)1

y = 02

= 1/23

Nmin = |J − S|, Nmax = J + S4

/* Solve for "double" occurences */

for K = 1, . . . , Nmin do5

i1 = posK(Γrve, S, J, Nmin, K, N
(lim)
R , N

(lim)
r , (va

2)(lim), (vb
2)

(lim), ABC)6

i2 = posK(Γrve, S, J, Nmax, K, N
(lim)
R , N

(lim)
r , (va

2)(lim), (vb
2)

(lim), ABC)7

k = dimK(Γrve, N, K, N
(lim)
R , N

(lim)
r , (va

2)(lim), (vb
2)

(lim), ABC)8

kb = k/nb9

I =
Nmin∑

`=Nmin+1

` + K
10

for j = 1, . . . , nb do11

x1 = x[(i1 + (j − 1) · kb : i1 + j · kb − 1]12

x2 = x[(i2 + (j − 1) · kb : i2 + j · kb − 1]13

X = [x1,x2]14

[P,L,U] := PREC[I][j]15

Y=[y1,y2] = U−1L−1PT ·X16

y[(i1 + (j − 1) · kb : i1 + j · kb − 1] = y117

y[(i2 + (j − 1) · kb : i2 + j · kb − 1] = y218

end for19

end for20

/* Solve for "single" occurences */

for (N,K) ∈ { (Nmin, 0), (Nmax, 0), (Nmax, Nmax) } do21

i = posK(Γrve, S, J, N, K, N
(lim)
R , N

(lim)
r , (va

2)(lim), (vb
2)

(lim), ABC)22

k = dimK(Γrve, N, K, N
(lim)
R , N

(lim)
r , (va

2)(lim), (vb
2)

(lim), ABC)23

kb = k/nb24

I =
N∑

`=Nmin+1

` + K
25

for j = 1, . . . , nb do26

[P,L,U] := PREC[I][j]27

y[(i + (j − 1) · kb : i + j · kb − 1]=U−1L−1PT · x[(i + (j − 1) · kb : i + j · kb − 1]28

end for29

end for30

return y31

224 Eigensolvers for the Computation of Rovibronic Energy Levels

Table 7.13.: Exploited information and storage (J = 5/2, S = 1/2, N
(lim)
R = 4)

K(nb)-preconditioner Modified K(nb)-preconditioner

nb = 1

nb = 2

nb = 4

7.5 JDQR Product Basis Calculation 225

7.5.1.2. Numerical Results

First of all, the plots in Figure 7.14 show that the unpreconditioned standard JDQR
method (Alg. 4.5) fails to converge (when computing exterior eigenvalues) and that
employing a Jacobi preconditioner is not sufficient either (in spite of the diagonal domi-
nance of the Hamiltonian matrices). This again shows that appropriate preconditioners
are neccessary for the success of JDQR methods.

Figure 7.14.: Failure of the JDQR method (MgCN, J = 1/2, big basis)

0 20 40 60 80 100
−10

−5

0

JD iteration steps

log
10

 || r
#it

 ||
2

a) no preconditioner

0 20 40 60 80 100
−10

−5

0

JD iteration steps

log
10

 || r
#it

 ||
2

b) Jacobi preconditoner

Furthermore, we have repeatedly pointed out that the preconditioned JDQR variants are
capable of computing a relatively large number of eigenpairs although the preconditioner
is held fixed. This phenomenon is impressively confirmed by our experiments in which
we applied the preconditioned JDQR method (using a K(1)-preconditioner) in order to
determine all eigenpairs below Emax = 5000 cm−1. The results in Table 7.14 show that
the JDQR methods are capable of computing several hundreds of eigenpairs.

Table 7.14.: JDQR product basis calculation, MgCN, Emax = 5000 cm−1

J n Eigenpairs It.steps Mat-Vec mults Computing time
1/2 11904 192 2823 13076 2.81 h
3/2 23808 374 6638 32804 16.94 h
5/2 35712 531 10685 54484 47.34 h
7/2 47616 668 14716 76529 170.96 h
9/2 59520 786 18598 98017 349.12 h

On the other hand, the computational effort to be invested is rather high. This has
several reasons

• to play it safe we employed the K(1)-preconditioner as it is the best available and
reasonable block approximation to the Hamiltonian matrix. However, it will turn
out that it is also the least efficient choice.

226 Eigensolvers for the Computation of Rovibronic Energy Levels

• the computation becomes increasingly expensive because all detected eigenpairs
have to be projected out (”deflation”, see Section 4.3.1).

• the efficiency of the fixed preconditioner gradually deteriorates (cf. discussion in
Section 4.3.6) in terms of iteration steps (outer loop) and matrix-vector multipli-
cations required for the computation of one approximate eigenpair. This is nicely
illustrated in Fig. 7.15. The oscillatory behavior can be explained as follows: If
a large number of steps has to be invested to determine an eigenpair with the
desired accuracy the subspace will also be rich in information on eigenpairs to be
detected in subsequent steps. This in turn has the consequence that the effort will
be considerably smaller.

• we did not make use of any parallelization, which we will briefly discuss in Section
7.7 and which can reduce the computing times to a great deal.

Figure 7.15.: Deterioration of the K(1)-preconditioner (J = 9/2, big basis, MgCN)

0 200 400 600 800
10

15

20

25

30

35

40

45

eigenvalue index i

JD iterations per eigenvalue

a) JD steps per eigenvalue

0 200 400 600 800
0

50

100

150

200

250

eigenvalue index i

mat−vec mults per eigenvalue

b) matrix-vector multiplications per eigen-
value

Let us now come to the answer of the crucial question of which of the block precondi-
tioners one should actually make use of. To this end, we computed 200 eigenpairs for
J = 9/2 (MgCN-molecule, big basis). This problem is reasonably large (n = 59520)
on the one hand and allows for analyzing the differences between standard and modified
block preconditioners on the other hand (for smaller values of J possible effects may not
be distinct enough). The following observations can be made from the results in Table
7.15:

• Rather surprisingly, modified block preconditioners are always about as efficient
as (often even slightly better than) their standard counterparts.

• Clearly, the larger one chooses the blocking parameter nb the less information
is included in the corresponding K(nb)-block preconditioner which consequently

7.5 JDQR Product Basis Calculation 227

leads to a larger number of iteration steps and matrix-vector multiplications in the
computational process.

• On the other hand, the results impressively show that the modified K(6) precon-
ditioner is the most efficient choice (only about 75 % of the corresponding time for
the standard K(1)-preconditioner is needed).

• The explanation for these contradictory ovservations is given in the last column
of Table 7.15 where the ratio between the time required for a matrix-vector mul-
tiplication and a preconditioner operation is listed. For nb = 1 a preconditioner
call is two times as expensive as a matrix-vector multiplication whereas only a rel-
atively small fraction of 0.2 is required for nb = 6. Hence, the loss of information
is obviously compensated for by the cheaper preconditioner call.

Table 7.15.: Efficiency of Preconditioners for J = 9/2, 200 EV, big basis, MgCN

Preconditioner #it #mv Computing time ratio prec/mv
std. K(1) 2330 12224 17.45 h 1.9980

mod. K(1) 2345 12358 17.43 h 1.9980
std. K(2) 2860 14668 14.41 h 0.5694

mod. K(2) 2681 14619 15.08 h 0.5694
std. K(3) 2736 15115 13.66 h 0.4286

mod. K(3) 2733 15035 13.42 h 0.4286
std. K(6) 3053 17248 13.13 h 0.2012

mod. K(6) 3032 17140 12.82 h 0.2012

The above observations are made independent of the J quantum number, the basis set
and the type of molecule. Hence, one can clearly recommend to employ the modified
K(N

(lim)
R) preconditioner, and consequently, we will restrict our analysis to this choice in

what follows. The Tables 7.16 and 7.17 contain the detailed results for the computation
of 200 eigenpairs for both the MgCN and the HOO molecule. Additionally, the timings
in the last column are visualized in Fig. 7.16. We can make the following observations:

• The number of iteration steps and matrix-vector multiplications is almost constant,
independent of the J quantum number. This seems to be inherent to the structure
of the problem.

• Consequently, the computing time depends linearly upon J as illustrated in Fig.
7.16 (in contrast to the cubic behavior for direct solvers).

• A comparison with the corresponding direct calculation (cf. Table 7.9) shows that
the point of break even is reached for J = 5/2, i.e. starting from this value direct
computations are either far more expensive or no more feasible.

228 Eigensolvers for the Computation of Rovibronic Energy Levels

Table 7.16.: JDQR calculation, 200 EV, MgCN, big basis, modifiedK(6) preconditioner

J n It.steps Mat-Vec mults Computing time
1/2 11904 3079 17340 1.90 h
3/2 23808 3078 17365 4.71 h
5/2 35712 3050 17212 7.32 h
7/2 47616 3035 17194 10.16 h
9/2 59520 3032 17140 12.82 h
11/2 71424 3098 17672 16.41 h
13/2 83328 3113 17800 19.23 h

Table 7.17.: JDQR calculation, 200 EV, HOO, big basis, modified K(8) preconditioner

J n It.steps Mat-Vec mults Computing time
1/2 5120 2589 13450 0.33 h
3/2 10240 2557 13255 0.78 h
5/2 15360 2538 13122 1.42 h
7/2 20480 2498 12905 1.92 h
9/2 25600 2492 12795 2.47 h
11/2 30720 2510 13024 3.12 h

Figure 7.16.: Linear time behavior of preconditioned JDQR for 200 eigenpairs

1/2 3/2 5/2 7/2 9/2 11/2 13/2
0

5

10

15

20

J quantum number

co
m

pu
tin

g
tim

e
(h

ou
rs

)

a) MgCN, modified K(6)-
preconditioner

1/2 3/2 5/2 7/2 9/2 11/2
0

0.5

1

1.5

2

2.5

3

3.5

co
m

pu
tin

g
tim

e
(h

ou
rs

)

J quantum number

b) HOO, modified K(8)-preconditioner

7.5 JDQR Product Basis Calculation 229

7.5.2. Preconditioners for Interior Eigenvalues

As we have repeatedly pointed out computing interior eigenvalues by means of iter-
ative projection methods rather often becomes a complicated matter. One reason is
that the standard Rayleigh-Ritz procedure (Alg. 3.12) may yield bad or even unusable
approximations (see Section 3.3.1.1 for examples and an analysis of this problem). To
improve the situation we introduced the refined and the harmonic Rayleigh-Ritz proce-
dure (Algs. 3.13 and 3.14) which we applied to a small model problem (Problem 4.7,
J = 1/2 and big basis) in Section 4.4.3 (embedded in the corresponding preconditioned
JDQR variants, Algs. 4.8 and 4.9). The results obtained (Result 4.10) demonstrate the
use of the alternative projection methods when looking for interior eigenvalues because
the computation becomes more effective in terms of matrix-vector opterations and com-
puting time. However, these results must not mislead to the conclusion that the proper
choice of the extraction method may serve as a general remedy to arising convergence
difficulties. A closer look at the following analogous problem will reveal that this is not
sufficient in general.

Problem 7.21 (Interior eigenvalues for J = 5/2)
We consider an MgNC molecule and want to compute its rovibronic engery levels with
respect to the rotational quantum number J = 5/2, the parameters S = 1/2, Γrve = A′

and a large vibrational basis set (”big basis”, cf. Table 6.5) whose size is determined by
the parameters

N (lim)
r = 16, N

(lim)
R = 6, (va

2)
(lim) = 31, (vb

2)
(lim) = 31. (7.50)

From Section 6.3 (cf. Alg. 6.3) we know that the resulting FBR H(J,S,Γrve) has the
dimension n = 35712. We are interested in the 10 eigenpairs that are closest to the target
value τ = 0.022782. The preconditioner must approximate the shifted Hamiltonian
matrix, i.e. we require K ≈ H(J,S,Γrve) − τI. 2

Applying the three preconditioned JDQR variants to the problem and making use of the
K(1)-block preconditioner (as per Def. 7.18) we obtain the following results:

Result 7.22 (Interior eigenvalues, failure of the K(1)-block preconditioner)
As pointed out in Section 7.5.1.2 the K(1)-block preconditioner does not the contain
the most information of all K(nb)-block preconditioners. However, regardless of the
extraction method all JDQR variants fail to compute the 10 sought-after eigenpairs
within 200 JD iteration steps (outer loop) as the convergence plots (Figures 7.17, 7.18
and 7.19) clearly show.

230 Eigensolvers for the Computation of Rovibronic Energy Levels

Figure 7.17.: Failure of standard extraction, K(1)-block preconditioner

0 20 40 60 80 100 120 140 160 180 200

−10

−8

−6

−4

−2

0

Correction equation solved with QMRS

log

10
 || r

#it
 ||

2

Figure 7.18.: Failure of refined extraction, K(1)-block preconditioner

0 20 40 60 80 100 120 140 160 180 200

−10

−8

−6

−4

−2

0

Correction equation solved with QMRS

log

10
 || r

#it
 ||

2

Figure 7.19.: Failure of harmonic extraction, K(1)-block preconditioner

0 20 40 60 80 100 120 140 160 180 200

−10

−8

−6

−4

−2

0

Correction equation solved with QMRS

log

10
 || r

#it
 ||

2

2

Obviously, it is not the extraction method we have to blame for the failure of our meth-
ods. One reason lies in the choice of the preconditioner: The K(1)-block preconditioner
works perfectly well for all eigenproblems where exterior eigenvalues are sought-after,
but it seems to be problematic for interior eigenvalues near an arbitrary target value
τ . A possible way to cure the lack of convergence might be to increase the maximum
number of ”inner iterations” (i.e. the maximum number of iterations steps carried out
by the Krylov solver for one ”outer iteration” (i.e. one pass of the JD-loop). Of course,
we cannot expect the remaining standard and modified K(nb) variants (nb > 1) to work
better as they contain even less information.
As far as block preconditioners are concerned, it remains to analyze the N -block and

7.5 JDQR Product Basis Calculation 231

J-block preconditioners proposed in Def. 7.13, and towards this end, we employ the
N -block preconditioner to tackle Problem 7.21 (we omit the J-block preconditioner as
it leads to analogous results):

Result 7.23 (Interior eigenvalues, N-block preconditioner)
For the sake of simplicity we restrict ourselves to the refined and harmonic JDQR vari-
ants. As opposed to the situation for the K-block preconditioner both of them converge
rapidly (less than 35 matrix-vector multiplications per eigenvalue) to the desired eigen-
values without any remarkable difficulty.

Figure 7.20.: Interior eigenvalues obtained by refined extraction

0 50 100 150 200 250 300 350 400
−15

−10

−5

0

Correction equation solved with QMRS

log

10
 || r

#MV
 ||

2

Figure 7.21.: Interior eigenvalues obtained by harmonic extraction

0 50 100 150 200 250 300 350
−15

−10

−5

0

Correction equation solved with QMRS

log

10
 || r

#MV
 ||

2

2

The N -block preconditioner makes the JDQR methods converge, which in combination
with Result 7.22 shows that, obviously, the contribution of the DK blocks can no more be
neglected for interior eigenvalues. However, this is unsatisfactory for practical purposes,
because the LU factorizations of 2 huge matrix blocks are required and the ratio prec/mv
of the time required for a preconditioner solve and a matrix-vector multiplication (see
discussion for exterior eigenvalues in Section 7.5.1) is extremely unfavorable as compared
to the cheapK(6)-block preconditioner. Unfortunately, as long as we restrict ourselves to
block preconditioners we cannot take advantage of the sparsity structure (block sparsity
and sparsity of the DK-blocks), which would reduce the storage costs considerably.

232 Eigensolvers for the Computation of Rovibronic Energy Levels

What alternative options do we have at hand? A possible means to obtain precondition-
ers that exploit sparsity and include information of interest are algebraic techniques that
rely on so-called incomplete LU factorizations (briefly: ILU). The topic has emerged a
vital field of research and is beyond the scope of this thesis. Therefore, we can only
motivate the general principle and refer to [101], [11] and [9] for a detailed description
of the construction and the theory behind it. Basically, the idea is to compute a sparse
lower triangular matrix L and a sparse upper triangular matrix U so that the residual
matrix R = LU − A satisfies certain constraints. A rather simple way to do so is to
”drop” certain elements that are below a predefined threshold (drop tolerance) and to
compute the LU factorization of the resulting matrix. There is a multitude of other
possible approaches, all of them having in common that they attempt to make the resid-
ual matrix R small in some sense. For our experiments we make use of a sophisticated
multilevel approach which was developped by Bollhöfer and Saad (see the refer-
ences in [15] for more information) and for which a state-of-the-art software package,
the ILUPACK library [15], is available. Essentially, it can be used as a ”black box”
which makes it interesting for our purposes. The user only needs to supply the matrix
in CSR (compressed sparse row) storage format (see [101] for a specification) and has to
specify a threshold parameter for the construction of the preconditioner. The computed
factorization is stored using sparse techniques. For the sake of simplicity we always chose
the complete J-block as input matrix for the ILUPACK software, so that the SO-blocks
are taken into account as well.

The following example illustrates the general principle of the ILUPACK preconditioner
for a smaller problem for which enlightening sparsity plots are available. The experiment
was carried out in the MATLAB r© environment using Sleijpen’s JDQR implementation
[112] in combination with Bollhöfers’s ILUPACK toolbox [15] for MATLAB r©.

Result 7.24 (ILUPACK-preconditioner for a small problem)
We consider the Hamiltonian matrix H(1/2, 3/2, A′′) for the MgCN molecule with respect
to J = 3/2 and the small basis (cf. Table 6.5). From Alg. 6.3 we know that the problem
dimension is n = 4608. Besides, it is easy to check that the number of non zero elements
amounts to nnz(H(1/2, 3/2, A′′)) = 2665728 which corresponds to a sparsity ratio (7.9)
of sr(H(1/2, 3/2, A′′) ≈ 0.2472. The software takes advantage of the symmetry of the
input matrix such that only the lower triangular part (i.e. nnz = 2665728 elements)
has to be stored. We are interested in the 10 eigenvalues closest to the target value
τ = 0.01961. For the construction of the preconditioner we employed the parameters
σ = 0.01 (drop tolerance) and ` = 10 (ellbow factor) (see [15] for details on the meaning
of the parameters). In Figure 7.24 one can recognize that the refined JDQR variant
discovers the ten eigenvalues rather quickly (less than 25 matrix-vector multiplications
in average are required per eigenvalue). The Figures 7.22 and 7.23 show the sparsity
plots for the (shifted) Hamiltonian matrix Hτ := H(1/2, 3/2, A′′) − τ · I and the resulting
2-level preconditioner determined by the ILUPACK software which is symmetric as well.
Due to fill-ins the number of non-zero elements in the lower triangular part increases to
nnz = 2994838.

7.5 JDQR Product Basis Calculation 233

Figure 7.22.: Sparsity plot of Hτ := H(1/2, 3/2, A′′) − τ · I, small basis

Figure 7.23.: Sparsity plot of the ILUPACK preconditioner for Hτ

The preconditioner results from a recursive application of the PILUC strategy (inverse-
based ILU that controls ‖Lk‖−1 and ‖Uk‖−1, where k denotes the index of the level and
Uk resp. Lk denote the upper and lower unit triangular factors of the ILU of the leading
block Bk) along with a suitable preordering (permutation) of the original input matrix
A. The first level of the scheme is obtained as

P̂ ∗AQ̂ =

(
B F
E C

)
≈
(
LB 0
LE I

)(
DB 0
0 SC

)(
UB UF

0 I

)
(7.51)

234 Eigensolvers for the Computation of Rovibronic Energy Levels

where

SC ≈ C − LEDBUF (7.52)

is an approximation to the exakt Schur complement of C in P̂ ∗AQ̂. A second level of
the scheme now may be obtained by applying the PILUC strategy to SC (the blocks
LE and UF which are also colored red in Fig. 7.23 are discarded in the course of the
recursion). The factors Lk and Uk are colored green resp. blue in Fig. 7.23.

For a full account on the theory and the algorithms involved see [15] and the references
therein.

Figure 7.24.: Interior eigenvalues obtained by refined extraction

0 50 100 150 200 250
−15

−10

−5

0

Correction equation solved with QMRS

log

10
 || r

#MV
 ||

2

2

The ILUPACK approach may be an interesting alternative to the J- and N -block pre-
conditioners, because it works reliably and because the exploitation of sparsity allows
to tackle relatively sparse problems as the following example demonstrates. In contrast
to the previous experiment this time the computation again was carried out using a
compiled stand-alone code which combines our JACDAV software (see Appendix A.4
for more information) with the ILUPACK library [15] (C/FORTRAN 77 code).

Result 7.25 (ILUPACK-preconditioner for large problems)
We consider the Hamiltonian matrix for the MgCN molecule with respect to the big
basis (see Table 6.5) and J = 9/2. As we know from Alg. 6.3 the problem dimension
is n = 59529, which implies that 26.4 G memory is required for storing H(1/2, 9/2, A′).
Again 10 eigenvalues closest to the target value τ = 0.022782 are sought-after. The
convergence history (Fig. 7.25) shows that the refined JDQR variant (Alg. 4.8) detects
the sought-after eigenpairs. However, it also becomes clear that the computational effort
to be invested in terms of matrix-vector operations is rather high (c.a. 100 matrix-vector
multiplications in avarage per eigenvalue).

7.5 JDQR Product Basis Calculation 235

Figure 7.25.: Interior eigenvalues obtained by refined extraction

0 100 200 300 400 500 600 700 800 900 1000
−15

−10

−5

0

Correction equation solved with GMRES

log

10
 || r

#MV
 ||

2

2

Remark 7.26
As already pointed out in Section 4.4.4, one can use the JADAMILU software by Boll-
höfer and Notay [16],[17] which automatically generates suitable ILUPACK precon-
ditioners for the use in the Jacobi-Davidson method. 2

We now collect the observations and conclusions from the Results 7.22, 7.23, 7.24 and
7.25 in the following summary:

Summary 7.27
The problems arising in the computation of interior eigenvalues are due to the superpo-
sition of two general numerical difficulties:

1. the difficulty to extract sensible approximations to interior eigenpairs from a sub-
space

2. the difficulty to devise efficient preconditioners for indefinite matrices

In our experiments it became evident that the second of these difficulties is the deci-
sive one. It is no more possible to neglect the contribution of the DK-blocks, i.e. we
either have to employ expensive block preconditioners (N -block, J-block) or we have to
resort to algebraic approaches such as the ILUPACK software. Both preconditioning ap-
proaches along with the proper choice of the extraction method (refined/harmonic) and
the Krylov solver (GMRES) lead to convergence when looking for interior eigenvalues
near arbitrary target values τ . However, the price one has to pay is high:

• storage and set up costs are very high

• the ratio of time required for one preconditioner operation and one matrix-vector
multiplication is extremely unfavorable.

• especially for higher values of J and target values τ that make the shifted matrix
Hτ highly indefinite much more effort in terms of matrix-vector multiplications
per eigenvalue has to be invested (e.g. about 3 times as many in Result 7.25 as in
Result 7.24)

236 Eigensolvers for the Computation of Rovibronic Energy Levels

• the preconditioners exhibit only little (N -block preconditioners) or no inherent
parallelism at all (ILUPACK and J-block preconditioners) which is an additional
severe drawback.

Altogether, we can draw the conclusion that the computation is far more complicated
than for the exterior part of the spectrum and only advisable for a very small number of
eigenpairs. Nevertheless, it is worth while to point out the available options, because the
knowledge of eigenvalues at arbitrary interior points of the spectrum has important ap-
plications. E.g. it enables one to check the quality of contraction schemes by computing
some reference eigenpairs of the corresponding product basis problem. 2

7.5.3. Comparison with Other Methods

In what follows, we give a brief survey of how the JDQR variants compete with other
iterative methods that make use of restart techniques:

• Davidson’s method (see Section 3.3.2.3)

• Olsen’s method (see Section 4.2.2.3)

• the IRL method (see Section 3.3.2.2)

To be fair, it should be pointed out that the algorithmic framework of Davidson’s and
Olsen’s method is almost identical to the one of the JDQR method (apart from the
subspace expansion) whereas the restart technique used by IRLM is rather different (see
Section 3.3.2.2). This is also reflected in the numerical results. We shall see that it
is sufficient to consider the computation of 100 eigenpairs for a medium-sized problem
(J = 1/2, MgCN molecule, big basis) in order to outline the main differences.

First of all, it is no big surprise that Davidson’s method fails to converge (Fig. 7.26) as
the Jacobi preconditioner does not succeed for the preconditioned JDQR variants either
(see Fig. 7.14).

Figure 7.26.: Failure of Davidson’s method

0 20 40 60 80 100 120 140 160 180 200
−10

−8

−6

−4

−2

0

log
10

 || r
#it

 ||
2

Let us now turn our attention to a comparison of Olsen’s and the preconditioned JDQR
method. For our experiments we employed the K(6)-block preconditioner. According to

7.5 JDQR Product Basis Calculation 237

the results in Table 7.18 Olsen’s method is about as efficient as the JDQR method for the
computation of kmax = 100 eigenpairs but no more competetive if a larger number, e.g.
kmax = 200 is sought-after. A closer analysis of the required preconditioner solves and
matrix-vector multiplications for both methods (see Figure 7.27) reveals that Olsen’s
method is more effective in terms of matrix-vector multiplication and preconditioner
solves per eigenvalue in the very beginning of the iteration process. Whereas the number
of matrix-vector multiplications per eigenvalue required by Olsen’s method is smaller
or equal as compared to JDQR for a rather long time the corresponding number of
preconditioner solves very soon develops to the disadvantage of Olsen’s method. The
reason why Olsen’s method is still competetive for 100 eigenpairs in our example lies in
the fact that the K(6)-block preconditioner is extremely cheap and has a very favorable
time ratio prec/mv for a preconditioner operation and a matrix-vector multiplication
(cf. Table 7.15). Summing up, it can be said that Olsen’s method may be an interesting
alternative if a relatively small number of eigenpairs (about 20 in our case) is sought-
after.

Figure 7.27.: Olsen vs. JDQR: Number of operations required per eigenvalue

0 20 40 60 80 100
20

40

60

80

100

120

140

160

180

eigenvalue index i

m
at

rix
−v

ec
to

r m
ul

tip
lic

at
io

ns

Olsen
Jacobi−Davidson

a) matrix-vector multiplications

0 20 40 60 80 100
50

100

150

200

250

eigenvalue index i

pr
ec

on
di

tio
ne

r s
ol

ve
s

Olsen
Jacobi−Davidson

b) preconditioner solves

Table 7.18.: Timings for JDQR/Olsen

kmax Computing time (secs) #MV #PREC
Olsen 100 2817.76 6299 12639
JDQR 100 2690.50 7572 8995
Olsen 200 9520.46 19369 38879
JDQR 200 6501.36 17340 20655

238 Eigensolvers for the Computation of Rovibronic Energy Levels

For our experiments with the IRL method we made use of the ARPACK library [75]
which comprises robust and state-of-the-art implementations of both, the IRL and the
IRA method. The advantage with the IRL approach is that the user only has to supply a
routine for matrix-vector multiplications and need not worry about any preconditioning
(provided that only exterior eigenvalues are of interest). However, the restart concept
requires that the maximal size of the subspace ncv = k + p (see the description of the
method in Section 3.3.2.2) be at least equal to the number of sought-after eigenvalues,
because the complete Lanczos factorization must ”fit”. This is a fundamental difference
with the approaches of the Jacobi-Davidson family (JDQR, Olsen and Davidson) where
the maximal size of the search space K can always be chosen to be a small constant
(e.g. mmax = 20), regardless of the problem under consideration. By contrast, the
proper choice of the maximum size of the search space ncv turns out to be of crucial
importance for the success of the ARPACK software, and unfortunately, there is no way
to predict an optimal value ncv in relation to the number of sought-after eigenvalues
kmax. Furthermore, in our experiments it turned out that obtaining a relatively large
number of kmax = 100 converged eigenvalues by ARPACK is extremely time consuming
and far more expensive than the corresponding JDQR computation. Therefore, we had
to parallelize the code for the matrix-vector multiplication (by means of OpenMP

TM
, see

discussion in Section 7.7) and had to work with 8 processors in order to obtain converged
results within a reasonable period of time. In Figure 7.28 we see what happens when
we employ a fixed value of ncv = 1000 for different numbers of sought-after eigenpairs
(kmax = 20, 40, 60, 80, 100) on the one hand, and the effect of different choices of ncv
for the computation of 100 eigenpairs on the other hand. It is important to point out
that one has to be careful with the results obtained by ARPACK as one can see in Fig.
7.29: The software only yields reasonable results (i.e. 100 fully converged eigenpairs with
respect to a residual tolerance of tol = 10−8) for choices of ncv ≥ 700.

Figure 7.28.: ARPACK: Influence of the parameter ncv on the convergence behavior

20 40 60 80 100
0

0.5

1

1.5

2
x 10

4

Number of eigenpairs to be computed

C
om

pu
tin

g
tim

e
(s

ec
s)

a) ncv = 1000

200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

ncv

co
m

pu
tin

g
tim

e
(s

ec
s)

b) kmax = 100

7.6 JDQR Contracted Basis Calculation 239

Figure 7.29.: Accuracy of eigenpairs determined by ARPACK depending on ncv

0 20 40 60 80 100
−15

−10

−5

0

5

eigenvalue index i

lo
g1

0
of

 re
si

du
al

 n
or

m

ncv=200
ncv=400
ncv=600
ncv=700
tol=1E−8

Altogether, it can be seen that ARPACK is rather difficult to use and not competetive
in our context. However, it may be still an alternative for a very small number of
kmax � 100 exterior eigenpairs.

7.6. JDQR Contracted Basis Calculation

The description in the following can be kept rather brief as we can take over many of the
ideas for the product basis calculation without any significant modification. The main
differences are collected in the following itemization:

• the sparsity of the off-diagonal DK- and SO-blocks (see Sections 7.2.1.1 and 7.2.1.2)
is in general destroyed in the resulting contracted matrix blocks (cf. Alg. 7.6).
Consequently, only the block sparsity of the product basis problem carries over to
the contracted Hamiltonian matrix H̃(J,S,Γrve) and can be exploited in a suitable
algorithm for matrix-vector multiplication (Alg. 7.12). To do so, one can adopt the
algorithm (Alg. 7.1) for product basis problems and take over the storage scheme
for addressing the Hamiltonian blocks (see Section 7.2.2 and Fig. 7.4). Instead
of the Algorithms 6.1 and 6.4 for product basis problems we make use of the
information stored in the auxiliary array CONTDIM[] (set up in Alg. 7.5) in order
to determine the dimensions and positions of the contracted blocks according to
Corollary 7.7.

• analogously, the ”hidden” structure of the diagonal K-blocks (see Section 7.5.1.1,
Figs. 7.9 and 7.10) is destroyed upon contraction, such that it is no more sen-
sible to employ K(nb)-block preconditioners with nb > 1 sub-blocks. Using the
information in CONTDIM[] we can derive corresponding algorithms for set-up and
application of (modified)K-block preconditioners for the contracted case (see Algs.
7.11 and 7.11 for standard K-block preconditioners, the modified versions are ob-
tained analogously).

240 Eigensolvers for the Computation of Rovibronic Energy Levels

Result 7.28 (JDQR contracted basis calculation)
The results in terms of computing time, number of preconditioner solves and matrix-
vector multiplications along with some supplementary information are collected in Table
7.19.

The most important and interesting observations and conclusions are listed in the fol-
lowing itemization:

• As opposed to product basis problems Jacobi preconditioning leads to success
when applying the preconditioned JDQR variants to contracted basis problems
(a contraction limit of Econt = 5000 cm−1 seems to be sufficient). This is hardly
surprising as the diagonal K-blocks become near-diagonal upon contraction (see
Remark 7.8).

• Jacobi preconditioning is still not sufficient for the computation of interior eigen-
values, butK-block preconditioning makes the refined/harmonic method converge.

• The results for the computation of 200 exterior eigenvalues for J = 9/2, (big
basis) and Econt = 10000 cm−1 show that it is also worthwhile to apply JDQR
type methods to contracted basis problems as a comparison with the results for
the corresponding direct-product and direct-contracted problems (see Table 7.9
and Figure 7.8) shows. In other words, the point of break even is reached, which
is due to the fact that the size ncont = 23808 of the contracted basis problem is
rather big and the preconditioner extremely cheap.

2

Algorithm 7.11: Setting up K-block preconditioner (contracted calculation)

function PREC = setupprec(H̃, S, J, CONTDIM[])1

y = 02

Nmin = |J − S|, Nmax = J + S3

for N = Nmin, . . . , Nmax do4

for K = 0, . . . , N do5

I =
N∑

`=Nmin+1

` + K
6

DIAG := ˜JDIAG[I]7

D̂IAG = P · L ·U8

PREC[I] = [P,L,U]9

end for10

end for11

return PREC12

7.6 JDQR Contracted Basis Calculation 241

Algorithm 7.12: Matrix-vector multiplication for the contracted Hamiltonian ma-
trix

function y = mult(H̃,x, S, J, CONTDIM[])1

y = 02

Nmin = |J − S|, Nmax = J + S3

for N ′ = Nmin, . . . , Nmax do4

for K ′ = 0, . . . , N ′ do5

I ′ =
N ′∑

`=Nmin+1

`+K ′, i =
I′−1∑
m=0

CONTDIM[m] + 1, k = CONTDIM[I ′]
6

for N ′′ = Nmin, . . . , Nmax do7

for K ′′ = 0, . . . , N ′′ do8

I ′′ =
N ′′∑

`=Nmin+1

`+K ′′, j =
I′′−1∑
m=0

CONTDIM[m] + 1, l = CONTDIM[I ′′]
9

∆N = |N ′ −N ′′ |, ∆K = |K ′ −K ′′ |10

if (∆N = 0 and ∆K = 0) then ←−−−−−−−−−−−−−−−DIAG block ?11

y[i : i+ k − 1] += ˜JDIAG[I ′] · x[j : j + l − 1]12

end if13

if (∆N = 0 and ∆K = 1) then ←−−−−−−−−−−−−−−−−−DK block ?14

if (K ′ > K ′′) then15

I =
N ′−1∑

`=Nmin

`+K ′
16

y[i, . . . , i+ k − 1] += J̃DK[I] · x[j, . . . , j + l − 1]17

else18

I =
N ′−1∑

`=Nmin

`+K ′′
19

y[i : i+ l − 1] += J̃DK[I]T · x[j : j + k − 1]20

end if21

end if22

if (∆N = 1 and ∆K = 0) then ←−−−−−−−−−−−−−−−−−SO block ?23

if (N ′ > N ′′) then24

I =
N ′−1∑

`=Nmin+1

`+K ′
25

y[i : i+ k − 1] += J̃SO[I] · x[j : j + l − 1]26

else27

I =
N ′′−1∑

`=Nmin+1

`+K ′,
28

y[i : i+ l − 1] += J̃SO[I]T · x[j : j + k − 1]29

end if30

end if31

end for32

end for33

end for34

end for35

return y36

242 Eigensolvers for the Computation of Rovibronic Energy Levels

Algorithm 7.13: K-block preconditioner (contracted calculation)

function y = prec(PREC,x, S, J, CONTDIM[])1

y = 02

Nmin = |J − S|, Nmax = J + S3

for N = Nmin, . . . , Nmax do4

for K = 0, . . . , N do5

I =
N∑

`=Nmin+1

` + K
6

i =
I−1∑
m=0

CONTDIM[m] + 1
7

k = CONTDIM[I]8

[P,L,U] := PREC[I]9

y[(i : i + k − 1]=U−1L−1PT · x[(i : i + k − 1]10

end for11

end for12

return y13

7.7. Parallelization

In the previous sections we have seen that JDQR calculations are still very time-
consuming for higher J quantum numbers – in spite of the existing advantages over
other iterative methods and direct approaches. Therefore, it is important and interest-
ing to investigate the parallelization of JDQR product basis computations (the ideas also
apply for contracted calculations). Essentially, one can distinguish between two general
parallelization paradigms (for more details see [49], e.g.):

• parallelization on shared memory architectures
all processors pi operate and have access on the same memory unit M , in other
words they ”share” it. An example of such an architecture is provided by the
SUN

TM
Fire workstation on which we carried out our calculations and where the

workspace of 32 GB is shared by 8 processors. A shared memory system is relatively
simple to program since all processors share a single view of data. On the other
hand, the CPU-to-memory connection very often becomes a bottenleck because
many modern CPUs need fast access to memory which is in general obviated by
the restricted memory bandwidth.

• parallelization on distributed memory architectures
each processor pi operates on a memory block Mi of its own. In contrast to shared
memory architectures the main issue is the communication of information and data
between the single processors. In general the parallelization is sophisticated and
requires much more technical effort (suitable partitioning of the data into memory
units and assignment to the processors).

7.7 Parallelization 243

T
ab

le
7.

19
.:

JD
Q

R
co

nt
ra

ct
ed

ca
lc

u
la

ti
on

(M
g
C

N
,
b
ig

b
as

is
)

J
n

co
n
t

k
m
a
x
E

co
n
t

#
M

V
#

P
R

E
C

ti
m

e
(s

ec
s)

T
ar

ge
t

va
lu

e
τ

P
re

c.

1/
2

58
5

20
0

50
00

cm
−

1
70

30
98

42
13

.0
1

0
Ja

co
b
i

1/
2

58
5

20
0

50
00

cm
−

1
69

98
90

50
17

.8
0

0.
02

27
81

66
9

B
lo

ck

1/
2

58
5

20
0

50
00

cm
−

1
25

38
13

12
2

n
o

co
nv

.
0.

02
27

81
66

9
Ja

co
b
i

13
/2

23
28

8
20

0
10

00
0

cm
−

1
10

30
9

12
65

1
95

02
.4

4
0

Ja
co

b
i

244 Eigensolvers for the Computation of Rovibronic Energy Levels

In case of our JDQR type methods the success of these paradigms, of course, necessarily
depends on the inherent parallelism of the user-supplied procedures for matrix-vector
multiplications and preconditioner solves. The latter rather often obviates a success-
ful parallelization, especially when interior eigenvalues are sought-after as the available
preconditioners (N -block, J-block and ILUPACK preconditioners) exhibit little or no
parallel structure.The parallelization of JDQR type methods on distributed memory
architectures is examined in the PhD thesis by Goeke [47]. Unfortunately, only lit-
tle attention is paid to the construction and parallelization of suitable preconditioners,
i.e. only examples with simple Jacobi preconditioning or no preconditioning at all are
considered. However, Goeke’s ideas might be of interest for large contracted basis cal-
culations because Jacobi preconditioning is sufficient for exterior eigenpairs as we have
seen in the previous section.

In the following, we will focus on the shared memory parallelization of the precondi-
tioned standard JDQR algorithm for the computation of exterior eigenpairs. Therefore,
we only need to consider the block preconditioners specified in Def. 7.18. The par-
allelization approach for the (modified) K(nb)-block preconditioners and the matrix-
vector multiplication is rather obvious and straight-forward. The basic idea is to assign
one processor to each K-block row, provided that enough processors are available. In
case of the MgCN molecule, for instance, this is only possible for J quantum numbers
J ≤ 5/2 on our SUN

TM
Fire workstation with 8 processors, because there are at most 7

K-block rows altogether (see discussion in Section 7.2.2, Formula (7.32) and Table 7.5).
Of course, it is also possible to treat problems for J > 5/2. However, now more than
one K-block row has to be assigned to one processor. In our experiments we made use
of the following parallelization techniques:

• parallelization using OpenMP
TM

(see [3],[22])
For the sake of simplicity we employed the automatic for-loop parallelization of
OpenMP

TM
by marking the corresponding for-loop sections in Alg. 7.4 (matrix-

vector multiplication) and Algs. 7.9 and 7.10 (set-up and application of K(nb)-
block preconditioner) with #pragma omp parallel for (see [3],[22] for details).
The advantage with this approach is that the user need not further specify the as-
signment of processors and can leave the organizational details to the OpenMP

TM

software. On the other hand the results obtained may not always be fully satis-
factory.

• parallelization using the parallel SUN
TM

BLAS [1] routines (contained in the
SUN

TM
Performance Library).

Essentially, this is a black-box technique which exploits the parallelism of the BLAS
[1] routines but does not take advantage of any additional available information on
the structure of the problem. It is switched on by means of the option -XPARALLEL

when linking the code. Note that this technique is specific to SUN
TM

architectures
and only applicable when a parallelized version of the SUN

TM
performance library

is available.

7.7 Parallelization 245

In our analysis we proceed in two steps:

1. We first examine the speed-up

sp =
time required for 1 processor

time required for p processors
(7.53)

of the user-supplied matrix-vector routines depending on the number of processors
p for the MgCN molecule (big basis) with respect to different J quantum numbers
which is visualized by the plots in Figures 7.30-7.36. Table 7.20 gives a survey of
the related speedups and timings for both the OpenMP

TM
and the parallel SUN

TM

BLAS [1] parallelization.
The following observations can be made:

• the OpenMP
TM

technique is clearly superior in all cases which is hardly sur-
prising because existing information on inherent parallelism is exploited

• due to the obvious lack of parallelism in the implementation of the SUN
TM

BLAS [1] routines for solving triangular systems no speed-up is achieved for
the preconditioner solves. Note, however, that this is no general restriction
because there are parallel implementations of triangular solvers available.

• the plots show the typical speed-up behavior for shared memory paralleliza-
tion which is due to the limited memory band width, i.e. the maximal attain-
able speed-up is about sp = 4.5 in fortitious cases (e.g. for J = 13/2, see Fig.
7.36).

• there are characteristic ”bends” in the speed-up plots for the OpenMP
TM

approach. These arise when the number of K-block rows is not ”compatible”
to the number of available processors, i.e. when OpenMP

TM
does not succeed

in finding an appropriate assignment between available processors and K-
block rows to be distributed.

2. Finally, we are now in a position to assess the parallelization of the preconditioned
JDQR method by means of OpenMP

TM
.

To this end we consider the computation of 200 eigenpairs for the MgCN molecule
with respect to the big basis and J = 9/2. The plot in Figure 7.37 and the tim-
ings in Table 7.21 show that the speed-up behavior of the preconditioned JDQR
method is almost identical to the corresponding single matrix-vector operations
(see Fig. 7.34). The maximum speed-up of sp = 3.5 is achieved for p = 6 proces-
sors. Obviously, the impact of the serial component in the preconditioned JDQR
method (i.e. the part of the algorithm which cannot be parallelized) on the speed
up behavior is almost negligable. Of course, analogous observations can also be
made for all other values of J .

246 Eigensolvers for the Computation of Rovibronic Energy Levels

Figure 7.30.: Speedup for matrix-vector operations (J = 1/2)

1 2 3 4 5 6 7 8

1

1.5

2

2.5

3

3.5

4

4.5

number of processors

sp
ee

du
p

Parallelization using OpenMP
Paralellization using SUN−BLAS

a) matrix-vector multiplication

1 2 3 4 5 6 7 8

1

1.5

2

2.5

3

3.5

4

4.5

number of processors

sp
ee

du
p

Parallelization using OpenMP
Paralellization using SUN−BLAS

b) application of K(6)-prec

Figure 7.31.: Speedup for matrix-vector operations (J = 3/2)

1 2 3 4 5 6 7 8

1

1.5

2

2.5

3

3.5

4

4.5

number of processors

sp
ee

du
p

a) matrix-vector multiplication

1 2 3 4 5 6 7 8

1

1.5

2

2.5

3

3.5

4

4.5

number of processors

sp
ee

du
p

b) application of K(6)-prec

Figure 7.32.: Speedup for matrix-vector operations (J = 5/2)

1 2 3 4 5 6 7 8

1

1.5

2

2.5

3

3.5

4

4.5

number of processors

sp
ee

du
p

a) matrix-vector multiplication

1 2 3 4 5 6 7 8

1

1.5

2

2.5

3

3.5

4

4.5

number of processors

sp
ee

du
p

b) application of K(6)-prec

7.7 Parallelization 247

Figure 7.33.: Speedup for matrix-vector operations (J = 7/2)

1 2 3 4 5 6 7 8

1

1.5

2

2.5

3

3.5

4

4.5

number of processors

sp
ee

du
p

a) matrix-vector multiplication

1 2 3 4 5 6 7 8

1

1.5

2

2.5

3

3.5

4

4.5

number of processors

sp
ee

du
p

b) application of K(6)-prec

Figure 7.34.: Speedup for matrix-vector operations (J = 9/2)

1 2 3 4 5 6 7 8

1

1.5

2

2.5

3

3.5

4

4.5

number of processors

sp
ee

du
p

a) matrix-vector multiplication

1 2 3 4 5 6 7 8

1

1.5

2

2.5

3

3.5

4

4.5

number of processors

sp
ee

du
p

b) application of K(6)-prec

Figure 7.35.: Speedup for matrix-vector operations (J = 11/2)

1 2 3 4 5 6 7 8

1

1.5

2

2.5

3

3.5

4

4.5

number of processors

sp
ee

du
p

a) matrix-vector multiplication

1 2 3 4 5 6 7 8

1

1.5

2

2.5

3

3.5

4

4.5

number of processors

sp
ee

du
p

b) application of K(6)-prec

248 Eigensolvers for the Computation of Rovibronic Energy Levels

Figure 7.36.: Speedup for matrix-vector operations (J = 13/2)

1 2 3 4 5 6 7 8

1

1.5

2

2.5

3

3.5

4

4.5

number of processors

sp
ee

du
p

a) matrix-vector multiplication

1 2 3 4 5 6 7 8

1

1.5

2

2.5

3

3.5

4

4.5

number of processors

sp
ee

du
p

b) application of K(6)-prec

Table 7.21.: Computing times for 200 eigenpairs by JDQR (J = 9/2)

Number of processors Computing time (h) speedup

1 12.82 1
2 7.69 1.67
3 5.2 2.47
4 4.85 2.64
5 3.78 3.39
6 3.54 3.62
7 3.58 3.58
8 3.77 3.40

Figure 7.37.: Speedup for computation of 200 eigenpairs by JDQR (J = 9/2)

1 2 3 4 5 6 7 8

1

1.5

2

2.5

3

3.5

4

4.5

number of processors

sp
ee

du
p

Parallelization using OpenMP

7.7 Parallelization 249

Table 7.20.: Computing times and speedups for matrix-vector routines

J
Number OpenMP

TM
[3] parallel SUN

TM
BLAS [1]

of preconditioning MV multiplication preconditioning MV multiplication
processors tprec (secs) sprec tmv (secs) smv tprec (secs) sprec tmv (secs) smv

1/2

1 0.0640 1.0000 0.2580 1.0000 0.0640 1.0000 0.2600 1.0000
2 0.0480 1.3333 0.2220 1.3684 0.0780 0.8205 0.1900 1.3684
3 0.0460 1.3913 0.1740 1.3830 0.0740 0.8649 0.1880 1.3830
4 0.0460 1.3913 0.1480 1.3830 0.0680 0.9412 0.1880 1.3830
5 0.0460 1.3913 0.1320 1.3830 0.0700 0.9143 0.1880 1.3830
6 0.0480 1.3913 0.1280 1.3830 0.0700 0.9143 0.1880 1.3830
7 0.0460 1.3913 0.1240 1.3830 0.0700 0.9143 0.1880 1.3830
8 0.0460 1.3913 0.1320 1.3830 0.0780 0.8205 0.1880 1.3830

3/2

1 0.1480 1.0000 0.6720 1.0000 0.1460 1.0000 0.6640 1.0000
2 0.0940 1.5745 0.4300 1.5628 0.1700 0.8588 0.5840 1.1370
3 0.0660 2.2424 0.2980 2.2550 0.1520 0.9605 0.4520 1.4690
4 0.0620 2.3871 0.2540 2.6457 0.1440 1.0139 0.3920 1.6939
5 0.0540 2.7407 0.2420 2.7769 0.1500 0.9733 0.3580 1.8547
6 0.0520 2.8462 0.2440 2.7541 0.1540 0.9481 0.3540 1.8757
7 0.0520 2.8462 0.2420 2.7769 0.1520 0.9605 0.3440 1.9302
8 0.0520 2.8462 0.2420 2.7769 0.1660 0.8795 0.3500 1.8971

5/2

1 0.2340 1.0000 1.1100 1.0000 0.2320 1.0000 1.1040 1.0000
2 0.1420 1.6479 0.6760 1.6420 0.2660 0.8722 0.9760 1.1311
3 0.1120 2.0893 0.4880 2.2746 0.2460 0.9431 0.7820 1.4118
4 0.0980 2.3878 0.4600 2.4130 0.2400 0.9667 0.6780 1.6283
5 0.0780 3.0000 0.3080 3.6039 0.2360 0.9831 0.6080 1.8158
6 0.0740 3.1622 0.3100 3.5806 0.2400 0.9667 0.6060 1.8218
7 0.0660 3.5455 0.2860 3.8811 0.2420 0.9587 0.5920 1.8649
8 0.0660 3.5455 0.2840 3.9085 0.2520 0.9206 0.6080 1.8158

7/2

1 0.3260 1.0000 1.5520 1.0000 0.3280 1.0000 1.5460 1.0000
2 0.1960 1.6633 0.9280 1.6724 0.3680 0.8913 1.3700 1.1285
3 0.1420 2.2958 0.6740 2.3027 0.3240 1.0123 1.0700 1.4449
4 0.1160 2.8103 0.5440 2.8529 0.3240 1.0123 0.9660 1.6004
5 0.1120 2.9107 0.5060 3.0672 0.3200 1.0250 0.8740 1.7689
6 0.1180 2.7627 0.5120 3.0312 0.3240 1.0123 0.8620 1.7935
7 0.1140 2.8596 0.5120 3.0312 0.3240 1.0123 0.8380 1.8449
8 0.0880 3.7045 0.3560 4.3596 0.3440 0.9535 0.8680 1.7811

9/2

1 0.4080 1.0000 1.9920 1.0000 0.4100 1.0000 1.9880 1.0000
2 0.2500 1.6320 1.1740 1.6968 0.4600 0.8913 1.7560 1.1321
3 0.1780 2.2921 0.7820 2.5473 0.4280 0.9579 1.4020 1.4180
4 0.1600 2.5500 0.7540 2.6419 0.3980 1.0302 1.2280 1.6189
5 0.1240 3.2903 0.5560 3.5827 0.4160 0.9856 1.1140 1.7846
6 0.1220 3.3443 0.5400 3.6889 0.4180 0.9809 1.1220 1.7718
7 0.1300 3.1385 0.5420 3.6753 0.4240 0.9670 1.0880 1.8272
8 0.1360 3.0000 0.5760 3.4583 0.4400 0.9318 1.1120 1.7878

11/2

1 0.5280 1.0000 2.4440 1.0000 0.5000 1.0000 2.4280 1.0000
2 0.3060 1.7255 1.4300 1.7091 0.5580 0.8961 2.1520 1.1283
3 0.2180 2.4220 1.0180 2.4008 0.4960 1.0081 1.6900 1.4367
4 0.1780 2.9663 0.8180 2.9878 0.4880 1.0246 1.5320 1.5849
5 0.1720 3.0698 0.7800 3.1333 0.4920 1.0163 1.3600 1.7853
6 0.1360 3.8824 0.6120 3.9935 0.5040 0.9921 1.3900 1.7468
7 0.1360 3.8824 0.6060 4.0330 0.5120 0.9766 1.3480 1.8012
8 0.1440 3.6667 0.6240 3.9167 0.5280 0.9470 1.3840 1.7543

13/2

1 0.5920 1.0000 2.8620 1.0000 0.5980 1.0000 2.8600 1.0000
2 0.3460 1.7110 1.6540 1.7304 0.6500 0.9200 2.5340 1.1287
3 0.2580 2.2946 1.2280 2.3306 0.5880 1.0170 2.0200 1.4158
4 0.2140 2.7664 1.0200 2.8059 0.5820 1.0275 1.7900 1.5978
5 0.1720 3.4419 0.8080 3.5421 0.5660 1.0565 1.6160 1.7698
6 0.1740 3.4023 0.8220 3.4818 0.5800 1.0310 1.6120 1.7742
7 0.1480 4.0000 0.6400 4.4719 0.5820 1.0275 1.5560 1.8380
8 0.1380 4.2899 0.6180 4.6311 0.6080 0.9836 1.6020 1.7853

250 Eigensolvers for the Computation of Rovibronic Energy Levels

8. Summary and Outlook

In this concluding chapter we now summarize the essential results of the investigations
in this thesis. We have shown how to apply the preconditioned Jacobi-Davidson type
methods (preconditioned JDQR methods) to both, product basis and contracted basis
problems in order to compute energy levels of triatomic molecules that exhibit the Double
Renner effect. To this end we devised efficient matrix-vector multipliation algorithms
and storage schemes for the arising matrices. In case of product basis (FBR) problems
it is possible to avoid conventional storage techniques (CSR, CSC etc.) and to exploit
the regular sparsity pattern which is due to the fact that many of the matrix blocks
may be written as sums of Kronecker products. Of course, similar techniques carry
over to Kronecker products with more than 3 factors as it is the case for molecules
with N > 3 nuclei. Unfortunately, one cannot directly take advantage of the Kronecker
product structure, because the potential matrix cannot be expressed a sum of Kronecker
products in our case, which would reduce the computational complexity of a matrix-
vector multiplication to a great deal (see discussion in Section 5.8.1, Scenario 1).
In general, the user has to provide suitable preconditioners in order to make Jacobi-
Davidson type methods work. This is also true of our situation, i.e. the method fails
to converge without any preconditioning. The appropriate choice of a preconditioner
depends on

• the type of the problem (product basis or contracted basis)

• the part of the spectrum (interior eigenvalues or exterior eigenvalues)

For product basis problems we can make the following recommendations:

• use the modified/standard block preconditionersK(nb) introduced in Section 7.5.1.
They save memory by taking advantage of returning information (multiple oc-
curences of basic K-blocks, see Corollary 6.11 in Section 6.4.3) and using sub-
blocks the number being a divisor of the cut-off number for the vibrational basis
N

(lim)
R

• use ILU-type preconditioners (e.g. the ILUPACK software by Bollhöfer) for
arbitrary interior eigenvalues

For contracted basis problems things are getting considerably simpler (at least if the
contraction limit Econt is sufficiently large).

• it is now sufficient to use Jacobi preconditioning to obtain exterior eigenvalues

251

252 Summary and Outlook

• K-block and modified K-block preconditioners now also work for interior eigen-
values

What are the advantages of using Jacobi-Davidson type methods for the computation of
energy levels?

• it is possible to tackle much larger problems, because the Hamiltonian matrices
need not be stored explicitly and because the sparsity structure can be exploited
very efficiently (as explained above).

• the point of break even (i.e. the problem size when Jacobi-Davidson type methods
become more efficient than direct methods in terms of computing time, see Result
7.28 and Section 7.5.1.2) is perceivable and already reached for medium problem
sizes provided that the number of sought-after eigenpairs is not too large.

• Jacobi-Davidson type methods are in general superior to iterative projection meth-
ods that rely on the same framework (Davidson, Olsen). ARPACK (the state-
of-the-art implementation of the IRL method) is clearly inferior for more than
kmax = 50 sought-after eigenpairs.

• Jacobi-Davidson type methods may be employed as a means of verification, i.e. to
assess the quality of contraction schemes when direct methods are no more feasible.
To this end one can compute a couple of selected eigenvalues of the original product
basis problem near the contraction limit.

The following drawbacks are typical of iterative projection methods:

• Jacobi-Davidson type methods are only suited for the computation of small and
medium-sized partial eigensystems (up to about 200-500 eigenpairs). This is due
to the fact that the projections involved become increasingly expensive and that
the preconditioner gradually deteriorates

• the computation of interior eigenpairs is feasible, but rather complicated and ex-
pensive. Refined and harmonic extraction methods improve the convergence be-
havior but do not cure the lack of efficient and cheap preconditioners.

Summing up it can be said that the Jacobi-Davidson type methods presented and de-
velopped in this thesis offer a valuable alternative to direct (product and contracted)
approaches and should be more popular in the context of eigenvalue computations arising
in Theoretical Spectroscopy.

To conclude with, let us now give an outlook along with some suggestions for future
research:

• As a next step, it would be interesting to see how our methods perform for eigen-
value problems coming from molecules with N > 3 nuclei

253

• In this context it might be worthwhile to analyze to what extent the potential
matrix can be approximated by sums of Kronecker products (see [127] for hints on a
possible realization). This would allow for an efficient matrix-vector multiplication
as outlined in Scenario 1 in Section 5.8.1. Maybe it could also serve as a starting
point for devising even more efficient preconditioners.

• In our investigations it turned out that efficient and paralellizable preconditioners
for highly indefinite matrices are of crucial importance as they arise when looking
for interior eigenvalues. This issue is of general interest and not only specific to
our situation.

• Last but not least, it might be also rewarding to analyze whether or not hierar-
chical structures can be exploited in devising preconditioners. First experiments
in which we tried to employ contracted Hamiltonian matrices for the construction
of preconditioners to the original FBR matrix were not successful.

254 Summary and Outlook

Part IV.

Appendices and Surveys

255

A. Appendix

A.1. Conventions for the Usage of Fonts

For the sake of lucidity and a better readability we decided to use

• capital letters in normal fonts for software libraries, e.g. LAPACK [2], BLAS [1],
SBR [12], MATLAB r© [5] and OpenMP

TM
[3]

• capital letters in normal fonts for programming languages, i.e. FORTRAN 77 [85]
and the C programming language [67]

• typewriter font for names of particular routines in software libraries, e.g. xSYEV
(LAPACK [2] routine for computing complete eigensystems), xGEMV (BLAS routine
for computing general matrix-vector products), xSYBTRD (SBR routine for the two-
stage tridiagonalization) where x ∈ {S, D, Z, C}. For our purposes we almost always
have x = D because we are dealing with data made up of double precision entries.
See [7] for further information on LAPACK’s [2] naming conventions.

• bold letters for matrices in Chapters 5,6 and 7 in order to better distinguish ma-
trices and operators, e.g. H(J,S,Γrve) for the Hamiltonian matrix with respect to the
triple (J, S,Γrve).

• bold letters when referring to molecules, e.g. MgNC molecule, ABC-type molecule

• mathtype font in connection with a hat for operators, e.g. Ĥ, P̂R, etc.

A.2. Romanization of Russian Names

The transcription of slavonic names in cyrillic letters into latin alphabet is often a source
of confusion as it depends on the pronunciation rules of the target language. Besides, the
ignorance of Russian pronunciation rules also often leads to inappropriate transliteration
results. The following two examples illustrate possible ambiguities and inconsistencies:

• Pafnuti� L~voviq Qebyx�v
The transliteration of the surname leads to a great variety of possible results, e.g.
Chebyshev (in English), Tchebychev (in French) and Tschebyscheff, Tschebyschew
or Tschebyschow (in German). Only the latter of these reproduces the Russian
original adequately.

257

258 Appendix

• Boris Grigor~eviq Gal�rkin
This surname of this Russian mathematician is most commonly romanized as
Galerkin, although only the transliterations Galjorkin (in German) resp. Galyorkin
(in English) are appropriate and correspond to the actual Russian pronunciation.

To overcome these problems slavic philologists commonly make use of scientific translit-
eration (also called the International Scholarly System) which allows for a non-ambiguous
reconstruction of the original word. We decided to employ the ISO 9 standard [4] which
is widely identical to the scientific translation system but has the advantage that it
provides a one-to-one correspondence between Cyrillic letters and latin letters (with di-
acritic marks). Table A.1 summarizes the transliteration (in compliance with the ISO 9
norm) of the Russian names in this thesis.

A.3. Mathematical Notation

Apart from very rare exceptions we make use of the commonly accepted and wide-
spread notation standards. In some situations, for the sake of convenience, we make
use of MATLAB r©style notation (see List of Symbols) when referring to sub-matrices or
partial columns resp. rows of matrices.

In computer science it is very common to use the so-called Big Oh notation in order to
give a rough measure for time complexity of algorithms and their memory consumption.
Since we also make use of it at several occasions it is appropriate to give a precise
definition:

Definition A.1 (Big Oh notation, Landau notation)
Let f(x) and g(x) be two functions defined on some subset of R. We say

f(x) = O(g(x)) as x→∞ (A.1)

if and only if

lim sup
x→∞

∣∣∣∣f(x)

g(x)

∣∣∣∣ <∞ (A.2)

We are almost always concerned with the time complexity of matrix algorithms (espe-
cially eigensolvers and methods for the tridiagonalization of Hermitian matrices). In
this context it is usual to employ the number of rows (resp. the number of columns)
n ∈ N of the matrix as the problem size. The statement ”Algorithm X has the time
complexity O(g(n))” then actually means that for the (unknown) function f(n) that
exactly measures the time complexity of X it holds f(x) ∈ O(g(n)).

A.3 Mathematical Notation 259

T
ab

le
A

.1
.:

T
ra

n
sl

it
er

at
io

n
of

R
u
ss

ia
n

N
am

es
ac

co
rd

in
g

to
IS

O
9

[4
]

O
ri
gi

n
al

R
u
ss

ia
n

N
am

e
E

n
gl

is
h

T
ra

n
sc

ri
p
ti

on
IS

O
9

R
om

an
iz

at
io

n

P
af

nu
ti

�
L

~v
ov

iq
Q

eb
y
x

�v
P
af

n
u
ty

L
vo

v
ic

h
C

h
eb

y
sh

ev
P
af

n
u
ti
j
L
’v

ov
ič

Č
eb

yš
ëv

S
em

�n
A

r
an

ov
iq

G
er

x
go

r
in

S
em

yo
n

A
ra

n
ov

ic
h

G
er

sh
go

ri
n

S
em

ën
A

ra
n
ov

ič
G

er
šg

or
in

V
er

a
N

ik
ol

ae
vn

a
K
ub

la
no

vs
ka

�
V
er

a
N

ik
ol

ae
v
n
a

K
u
b
la

n
ov

sk
ay

a
V
er

a
N

ik
ol

ae
vn

a
K

u
bl
an

ov
sk

aâ
A

le
ks

e�
N

ik
ol

ae
vi

q
K
r
y
lo

v
A

le
x
ei

N
ik

ol
ae

v
ic

h
K

ry
lo

v
A

le
ks

ej
N

ik
ol

ae
vi

č
K

ry
lo

v
B

or
is

G
r
ig

or
~e

vi
q

G
al

�r
ki

n
B

or
is

G
ri
go

re
v
ic

h
G

al
er

k
in

B
or

is
G

ri
go

r’
ev

ič
G

al
ër

ki
n

G
eo

r
gi

�
I

va
no

vi
q

P
et

r
ov

G
eo

rg
i
Iv

an
ov

ic
h

P
et

ro
v

G
eo

rg
ij

Iv
an

ov
ič

P
et

ro
v

S
er

ge
�

L
~v

ov
iq

S
ob

ol
ev

S
er

ge
i
L
vo

v
ic

h
S
ob

ol
ev

S
er

ge
j
L
’v

ov
ič

S
ob

ol
ev

T
ab

le
A

.2
.:

T
ec

h
n
ic

al
sp

ec
ifi

ca
ti

on
of

th
e

V
12

80
S
U

N
T

M
F
ir

e
co

m
p
u
te

se
rv

er

N
u
m

b
er

of
p
ro

ce
ss

or
s

8
P

ro
ce

ss
or

ar
ch

it
ec

tu
re

U
lt

ra
S
P
A

R
C

II
IC

u
,
S
u
p
er

sc
al

ar
S
P
A

R
C

V
9,

E
C

C
P

ro
te

ct
ed

C
ac

h
e

p
er

p
ro

ce
ss

or

L
ev

el
1:

P
ar

it
y

p
ro

te
ct

e
32

K
B

in
st

ru
ct

io
n

an
d

64
K

B
d
at

a
on

ch
ip

(s
in

gl
e-

b
it

er
ro

rs
ar

e
co

rr
ec

te
d
)

L
ev

el
2:

8
M

B
ex

te
rn

al
ca

ch
e

M
ai

n
m

em
or

y
32

G
B

P
la

tf
or

m
n
am

e
S
U

N
W

,
N

et
ra

-T
12

260 Appendix

A.4. Technical Details and Implementation Issues

For our numerical experiments we developped and employed a software JACDAV written
in the C programming language [67]. Essentially, it is geared to the techniques and
ideas of the MATLAB r© software by Sleijpen [112] and the C code JDBSYM by Geus
[46]. As repeatedly already pointed out in this thesis, it incorporates several important
additional features and switches for our experiments:

• Davidson and Olsen type subspace expansion (see discussion in Sections 4.2.2.2
and 4.2.2.3)

• harmonic and refined extraction as described in the Algs. 3.13 and 3.14

• options for mixing JD type and Olsen type subspace expansion

To make the JD methods work we had to provide C code for the obligatory plug-ins

• matrix-vector multiplication

• preconditioning

Furthermore we developped C code for

• the contraction scheme described in Section 7.3

• the test of direct-product and direct-contracted calculations in Sections 7.4.1 -
7.4.2 (using the SBR driver xSYEVT for two-stage tridiagonalization and the the
LAPACK [2] RRR routine xSTEGR for the application of the RRR method)

We carried out our numerical experiments on a SUN
TM

Fire workstation (see Table A.2
for a concise technical specification) with 32 G main memory and 8 processors.

Let us now briefly comment on some technicalities with respect to the implementation
in the C programming language. As the BLAS and LAPACK routines (see [7], [1] and
[2] for a full account and an extensive documentation) are written in FORTRAN 77 (see
[85] for a documentation of the programming language) one has to provide an adapter
in order to be able to call the routines from a C code. This is necessary because the
FORTRAN 77 [85] compiler almost always (depending on the flag NOF77UNDERSCORE)
appends an an underscore to the routine’s name and using the original name would lead
to problems with the linker. The adapter is realised by the header fortran.h in Listing
A.1. The macro F77 appends – if required – an underscore, e.g. F77(dsymv) corresponds
to dsymv . For the sake of simplicity it is convenient to pre-define some often-required
int-valued and double-valued constants at the beginning of the program, such as 1,
-1, 0.0, 1.0 and -1.0 (see Listing A.4). Furthermore, one has to define prototypes for

A.4 Technical Details and Implementation Issues 261

all BLAS and LAPACK [2] routines that are called from the C code, which is done in
the header files blas.h (Listing A.2) and lapack.h (Listing A.3). Finally, Listing A.5
demonstrates some of the required memory allocations in terms of the problemsize n, the
maximum number of sought-after eigenvalues kmax and the maximum dimension mmax

of the search space K which corresponds to jmax in the C code (see also the related
survey in Section 4.4). The Listings A.6 and A.7 show how the skew projektion

P̃ = I − Ỹ H̃−1Q̃∗

and the projected preconditioned operator

Ã = (I − Ỹ H̃−1Q̃∗)K−1(A− θI)

which are crucial parts of our JDQR type algorithms (see general discussion in Section
4.3.6.1, Equations (4.101), (4.102), (4.103) and Algs. 4.7, 4.8 and 4.9) are realized in a
C code by means of BLAS and LAPACK [2] routines. We tested our implementation
JACDAV of the JD-type methods on both Linux and SUN

TM
Solaris platforms. Listings

A.8 and A.9 give a brief summary of the essential compiler and linker calls to be carried
out in order to produce executable binaries. In case of Linux platforms it is impor-
tant not to forget to link the library libg2c by means of -lg2c to make sure that the
FORTRAN 77 [85] routines are called properly. Our numerical experiments regarding
the computation of rovibronic energy levels, of course, were carried out on the SUN

TM

Fire workstation because of 32 G heap space and 8 processors being available which also
leads to the possibility of paralellizing the calculation by means of OpenMP

TM
(see [22]

and [3] for more details).

For hints on how to connect ILUPACK routines to our code see the project’s homepage
[15] and the information given therein. For the use of the SBR FORTRAN 77 [85]
routines in the context of TST-RRR calculations (cf. Section 7.4.1) one can follow the
same principles as explained above for LAPACK [2] and BLAS. The FORTRAN 77 [85]
code including all required interface information may be obtained from web site of the
corresponding paper [13].

Listing A.1: FORTRAN [85] adapter (fortran.h)

1 #ifndef FORTRAN H
2 #define FORTRAN H
3

4 #ifde f NOF77UNDERSCORE
5 #define F77 (s) s
6 #define F77 (s) s
7 #else
8 #define F77 (s) s ##
9 #define F77 (s) s ##

10 #endif
11

12 #endif

262 Appendix

Listing A.2: C interface for employed BLAS [1] routines (blas.h)

1 #ifndef BLAS H
2 #define BLAS H
3

4 #include ” f o r t r an . h”
5

6 /∗ BLAS−1 func t i on s ∗/
7 extern double F77 (dasum) (int∗ n , double x [] , int∗ incx) ;
8 extern double F77 (ddot) (int∗ n , double x [] , int∗ incx , double y [] ,
9 int∗ incy) ;

10 extern double F77 (dnrm2) (int∗ n , double x [] , int∗ incx) ;
11 extern int F77 (idamax) (int∗ n , double x [] , int∗ incx) ;
12

13 /∗ BLAS−1 sub rou t ine s ∗/
14 extern void F77 (daxpy) (int∗ n , double∗ a , double x [] , int∗ incx ,
15 double y [] , int∗ incy) ;
16 extern void F77 (dcopy) (int∗ n , double x [] , int∗ incx , double y [] ,
17 int∗ incy) ;
18 extern void F77 (drot) (int∗ n , double∗ x , int∗ incx , double∗ y , int∗ incy ,
19 double∗ c , double∗ s) ;
20 extern void F77 (d s ca l) (int∗ n , double∗ a , double x [] , int∗ incx) ;
21

22 /∗ BLAS−2 sub rou t ine s ∗/
23 extern void F77 (dgemv) (char∗ trans , int∗ m, int∗ n , double∗ alpha ,
24 double a [] , int∗ lda , double x [] , int∗ incx , double∗ beta ,
25 double y [] , int∗ incy , int l e n t r a n s) ;
26

27

28 extern void F77 (dsymv) (char∗ uplo , int∗ n , double∗ alpha ,
29 double a [] , int∗ lda , double x [] ,
30 int∗ incx , double∗ beta , double y [] ,
31 int∗ incy) ;
32 extern void F77 (dtr sv) (char∗ uplo , char∗ trans , char∗ diag , int∗ n ,
33 double a [] , int∗ lda , double x [] , int∗ incx) ;
34 /∗ BLAS−3 sub rou t ine s ∗/
35 extern void F77 (dgemm) (char∗ transa , char∗ transb , int∗ m, int∗ n , int∗ k ,
36 double∗ alpha , double a [] , int∗ lda , double b [] , int∗ ldb ,
37 double∗ beta , double c [] , int∗ ldc , int l en t ran sa ,
38 int l e n t r an sb) ;
39

40 #endif

Listing A.3: C interface for employed LAPACK [2] routines (lapack.h)

1 #ifndef LAPACK H
2 #define LAPACK H
3

4 #include ” f o r t r an . h”
5

6 extern void F77 (dsyev) (char∗ jobz , char∗ uplo , int∗ n , double a [] ,
7 int∗ lda , double w[] , double work [] , int∗ lwork , int∗ i n fo ,
8 int l en j obz , int l e n up l o) ;
9

A.4 Technical Details and Implementation Issues 263

10 extern void F77 (dge t r s) (char∗ trans , int∗ n , int∗ nrhs , double a [] ,
11 int∗ lda , int i p i v [] , double b [] , int∗ ldb , int∗ i n fo ,
12 int l e n t r a n s) ;
13

14 extern void F77 (dg e t r f) (int∗ m, int∗ n , double a [] , int∗ lda , int i p i v [] ,
15 int∗ i n f o) ;
16

17

18 extern void F77 (d s y t r f) (char ∗UPLO, int ∗N, double ∗A, int ∗LDA,
19 int IPIVOT [] , double WORK[] , int∗ LDWORK,
20 int∗ INFO) ;
21

22 extern void F77 (d sp t r f) (char ∗UPLO, int ∗N, double ∗A,
23 int IPIVOT [] , int∗ INFO) ;
24

25 extern void F77 (dsy t r s) (char ∗UPLO, int ∗N, int ∗NRHS, double ∗A,
26 int ∗LDA, int IPIVOT [] , double ∗B, int∗ LDB,
27 int∗ INFO) ;
28

29 extern void F77 (dspt r s) (char ∗UPLO, int ∗N, int ∗NRHS, double ∗A,
30 int IPIVOT [] , double ∗B, int∗ LDB,
31 int∗ INFO) ;
32

33 extern void F77 (dlarnv) (int ∗IDIST , int ∗ISEED , int ∗N, double ∗X) ;
34

35 extern void F77 (dsyevx) (char∗ jobz , char∗ range , char∗ uplo , int∗ n ,
36 double a [] , int∗ lda , double∗ vl , double∗ vu , int∗ i l , int∗ iu ,
37 double∗ absto l , int∗ m, double w[] , double z [] , int∗ ldz ,
38 double work [] , int∗ lwork , int iwork [] , int i f a i l [] , int∗ i n fo ,
39 int l en j obz , int l en range , int l e n up l o) ;
40

41 extern void F77 (dgesvd) (char∗ jobu , char∗ jobvt , int∗ m, int∗ n ,
42 double a [] , int∗ lda , double∗ s ing ,
43 double u [] , int∗ ldu ,
44 double vt [] , int∗ ldvt ,
45 double work [] , int∗ ldwork ,
46 int∗ i n f o) ;
47

48 extern void F77 (dlacpy) (char ∗UPLO, int ∗M, int ∗N, double ∗A, int ∗LDA,
49 double ∗B, int ∗LDB, int l e n up l o) ;
50

51 extern void F77 (d l a s e t) (char ∗UPLO, int ∗M, int ∗N, double ∗ALPHA,
52 double ∗BETA, double ∗A, int ∗LDA, int l e n up l o) ;
53

54 extern double F77 (dlamch) (char∗ name , int len name) ;
55

56 extern int F77 (i l a env) (int ∗ISPEC , char ∗NAME, char ∗OPTS, int ∗N1 ,
57 int ∗N2 , int ∗N3 , int ∗N4 , int len name ,
58 int l e n op t s) ;
59

60 #endif

264 Appendix

Listing A.4: Constants for LAPACK [2] /BLAS [1]

1 stat ic double DMONE = −1.0 , DZER = 0 .0 , DONE = 1 . 0 ;
2 stat ic int MONE = −1, ONE = 1 ;

Listing A.5: Memory allocation for matrices and vectors

1 double∗ Q=NULL; // matrix o f converged e i g en v e c t o r s
2 double∗ Y=NULL; // matrix o f p recond i t i oned e i g en v e c t o r s Y=Kˆ{−1}Q
3

4 double∗ H=NULL; // H=Qˆ{∗}Kˆ{−1}Q = Qˆ{∗}∗Y
5 double∗ Hlu=NULL; // matrix o f the LU f a c t o r i z a t i o n o f H
6 int∗ Hpiv=NULL; // in format ion on p i v o t i n g in LU f a c t o r i z a t i o n o f H
7

8 double ∗temp1=NULL,
9 ∗temp2=NULL,

10 ∗temp3=NULL; // a u x i l i a r y v e c t o r s
11

12 Q = (double ∗) mal loc (n ∗ kmax ∗ s izeof (double)) ;
13 Y = (double ∗) mal loc (n ∗ kmax ∗ s izeof (double)) ;
14

15 a s s e r t (Q && Y) ;
16

17 H = (double ∗) mal loc (kmax ∗ kmax ∗ s izeof (double)) ;
18 Hlu = (double ∗) mal loc (kmax ∗ kmax ∗ s izeof (double)) ;
19 Hpiv = (int ∗) mal loc (kmax ∗ s izeof (int)) ;
20

21 a s s e r t (H && Hlu && Hpiv) ;
22

23 temp1 = (double∗) mal loc (n ∗ s izeof (double)) ;
24 temp2 = (double∗) mal loc (n ∗ s izeof (double)) ;
25 temp3 = (double∗) mal loc (n ∗ s izeof (double)) ;
26

27 a s s e r t (temp1 && temp2 && temp2) ;
28

29 F77 (d l a s e t) (”a” , &kmax , &kmax , &DZER, &DZER , H, &jmax , 1) ;
30 F77 (d l a s e t) (”a” , &kmax , &kmax , &DZER, &DZER , Hlu , &jmax , 1) ;

Listing A.6: Application of the skew projection P̃ = I − Ỹ H̃−1Q̃∗

1 void SkewProj (double∗ Q, double∗ Y, double∗ Hlu , int Hpiv [] ,
2 double∗ r , double∗ rtemp1 , double∗ rtemp2 , int n ,
3 int k , int kmax)
4 {
5 int i n f o ;
6 i f (k>0) // Q i s a non−empty matrix
7 {
8 // rtemp=Q’∗ r
9 F77 (dgemv) (” t ” , &n , &k , &DONE, Q, &n , r , &ONE, &DZER,

10 rtemp1 , &ONE, 1) ;
11 // rtemp=Hˆ{−1} ∗ Q’ ∗ r
12 F77 (dge t r s) (”n” , &k , &ONE, Hlu , &kmax , Hpiv , rtemp1 , &kmax , &in fo , 1) ;
13 i f (i n f o !=0)

A.4 Technical Details and Implementation Issues 265

14 {
15 p r i n t f (”Error s o l v i n g the LES in SkewProj . . . \n”) ;
16 e x i t (0) ;
17 }
18 // rtemp=Y ∗ Hˆ{−1} ∗ Q’ ∗ r
19 F77 (dgemv) (”n” , &n , &k , &DONE, Y, &n , rtemp1 , &ONE, &DZER,
20 rtemp2 , &ONE, 1) ;
21 // r = r − Y ∗ Hˆ{−1} ∗ Q’ ∗ r
22 F77 (daxpy)(&n , &DMONE, rtemp2 , &ONE, r , &ONE) ;
23 }
24 }

Listing A.7: Application of the operator Ã = (I − Ỹ H̃−1Q̃∗)K−1(A− θI)
1 void mvp(double theta , double∗ Q, double∗ Y, double ∗Hlu , int Hpiv [] ,
2 double∗ v , double∗ u , double∗ vtemp1 ,
3 double∗ vtemp2 ,
4 void (∗ domatvec) (double∗ , double ∗) ,
5 void (∗ doprecon) (double∗ , double ∗) , int n , int k , int kmax)
6 {
7 double SCAL;
8 F77 (dlacpy) (”a” , &n , &ONE, v , &n , u , &n , 1) ; // v −−> u
9 // v = A∗u − t h e t a ∗ u

10 domatvec (u , v) ; MV++;
11 SCAL=−theta ;
12 F77 (daxpy)(&n , &SCAL, u , &ONE, v , &ONE) ;
13 doprecon (v , vtemp1) ; PS++;
14 F77 (dlacpy) (”a” , &n , &ONE, vtemp1 , &n , v , &n , 1) ; // vtemp1 −−> v
15 F77 (d l a s e t) (”a” , &n , &ONE, &DZER, &DZER , vtemp1 , &n , 1) ;
16 F77 (d l a s e t) (”a” , &n , &ONE, &DZER, &DZER , vtemp2 , &n , 1) ;
17 SkewProj (Q, Y, Hlu , Hpiv , v , vtemp1 , vtemp2 , n , k , kmax) ;
18 }

Listing A.8: Compiling and Linking of jacdav.c and DR test.c under Linux

1 gcc −I i n c l ud e −c jacdav . c
2 gcc −I i n c l ud e −c DR test . c
3 gcc −o DR TEST jacdav . o DR test . o −lm − l b l a s −l l apa ck −l g 2 c

Listing A.9: Compiling and Linking of jacdav.c and DR test.c under SUN
TM

Solaris

1 cc −I i n c l ud e −c jacdav . c −xarch=v9b −xautopar −xopenmp −x l oop in f o
2 cc −I i n c l ud e −c DR test . c −xarch=v9b −xautopar −xopenmp −x l oop in f o
3 cc −o DR TEST DR test . o jacdav . o
4 −xarch=v9b −x l i c l i b=sunper f −lm −x p a r a l l e l

266 Appendix

A.5. Input Files for DR

Finally, for the sake of completeness, we also present the input files which we employed
for the program runs of Odaka’s software DR in order to produce the data of the matrix
blocks H(J,S,Γrve) for both the MgCN and the HOO molecule. These provide several
switches to control important parameters, such as

• the sizes of the vibrational basis which are specified by the cut-off numbers N
(max)
R ,

N
(max)
r , (va

2)
(max) and (vb

2)
(max) as per Def. 6.3 (cf. Lines 28, 29, 31 and 33 in the

input file A.10 for the MgCN molecule)

• the maximum J quantum number for which matrix blocks have to be computed
(see Line 27). It holds MAXJ = 2 · Jmax

• the masses of the involved nuclei (see Line 6) and information on the molecular
equilibrum geometry (see Lines 21 and 24)

• several thresholds (see Lines 41 - 48) and further parameters, such as the maximum
number of iteration steps (see Lines 34 - 40) and the number of nodes (see Lines
30 and 32) to control the arising numerical integration schemes

• the contraction limit CONTMAX in Line 49 to control the contraction scheme

Listing A.10: DR input file for the MgCN molecule w.r.t. big basis

1 TITLE
2 SIGMA=1 i s lower p o t e n t i a l
3 SIGMA=2 i s the upper p o t e n t i a l
4 TITLE
5 ’MASSES ’
6 12 .0D+00 ,14.00307401D+00 ,23.98504187D+00
7 LAMBDA 1
8 MULTI 1
9 XSO 39 .D00

10 ’ znorenner ’
11 F
12 ’ z s t a r t f r om J ’
13 F
14 ’ z oppos i t e ’
15 F
16 ’ zabbf , zabb ’
17 F
18 F
19 NSP 6
20 Ntau 8
21 RE1(bohr) 2.20779841252920D00
22 DISS1 (h) 2 . 9D+01
23 WE1 (h)0 . 105D−01
24 RE2(bohr) 4.56695008781160D00
25 DISS2 (h) 0 . 5D+00

A.5 Input Files for DR 267

26 WE2 (h)0 . 25D−02
27 MAXJ 7
28 MAXV2A 30
29 MAXV2B 30
30 NPNT1 15
31 NMAX1 5
32 NPNT2 30
33 NMAX2 15
34 NSTINT 9999
35 NSERIN 230
36 NSERP 5
37 NSERQ 20
38 NSTNIN 1000
39 NPNTB 140
40 NSPB 50
41 THRSH1 0.50000000D+04
42 THRSH2 1.00000000D−06
43 THRSH3 1.00000000D+06
44 THRSH4 1.00000000D+03
45 THRSH5 1.00000000D−14
46 THRSH6 1.00000000D+10
47 THRSH7 1.00000000D+10
48 THRSH8 1.00000000D+10
49 CONTMAX 5.0D3
50 ’Vmin ’
51 1 .0D+02
52 ’Vmax ’
53 1 .0D+04
54 ’ a d i f ’
55 1 .0D+02
56 ’ bd i f ’
57 1 .5D+00
58 ’ c d i f ’
59 3 .0D+02
60 ’ znumpot ’
61 F
62 ’ zanaepot ’
63 T
64 ’ zpoteq ’
65 F
66 ’ z s i n g l e ’
67 F
68 ’RHOMAX,PNM1’
69 2 .00D+00 ,1.0D−2
70 ’ zhamilvv ’
71 T
72 ’ zmgCNharmf ’
73 F
74 ’zHOO f ’
75 F
76 ’zHOOBOWMAN f ’
77 F

268 Appendix

78 ’ zmgCNf ’
79 F
80 ’ zmgNCf ’
81 F
82 ’zMORBID ’
83 F
84 ’zmgNCCNf ’
85 T
86 ’zmgNCCNMIDDLE’
87 F
88 ’ zHCNf ’
89 F
90 ’zHCNbowmanf ’
91 F
92 ’ zMinimuEP ’
93 F
94 ’ zvmin ’
95 F
96 ’ zp r in tb ’
97 F
98 ’ zcheck ’
99 F

100 ’ZPOTCHECK’
101 F
102 ’ znohamilv ’
103 F
104 ’ z jdqz ’
105 F
106 ’ zmat ’
107 T
108 ’ zbass ’
109 F
110 ’ ziham ’
111 F 10
112 ’ zihamp1 ’
113 F 11
114 ’ z j ou t ’
115 F 500

Listing A.11: DR input file for the HOO molecule w.r.t. big basis

1 TITLE
2 SIGMA=1 i s lower p o t e n t i a l
3 SIGMA=2 i s the upper p o t e n t i a l
4 TITLE
5 ’MASSES ’
6 15 .99491463 ,15 .99491463 ,1 .00782505
7 LAMBDA 1
8 MULTI 1
9 XSO −160.1D00

10 ’ znorenner ’
11 F
12 ’ z s t a r t f r om J ’

A.5 Input Files for DR 269

13 F
14 ’ z oppos i t e ’
15 F
16 ’ zabbf , zabb ’
17 T
18 T
19 NSP 6
20 Ntau 8
21 RE1(bohr) 2 .5390409D00
22 DISS1 (h)1 . 75D−01
23 WE1 (h)4 . 000D−3
24 RE2(bohr) 2 .4840281D00
25 DISS2 (h) 1 . 5D+01
26 WE2 (h)1 . 25D−02
27 MAXJ 45
28 MAXV2A 35
29 MAXV2B 35
30 NPNT1 30
31 NMAX1 25
32 NPNT2 35
33 NMAX2 15
34 NSTINT 8000
35 NSERIN 200
36 NSERP 5
37 NSERQ 20
38 NSTNIN 2000
39 NPNTB 140
40 NSPB 50
41 THRSH1 0.50000000D+04
42 THRSH2 1.00000000D−05
43 THRSH3 1.00000000D+05
44 THRSH4 1.00000000D+03
45 THRSH5 1.00000000D−15
46 THRSH6 1.00000000D+10
47 THRSH7 1.00000000D+10
48 THRSH8 1.00000000D+10
49 CONTMAX 2.5D4
50 ’Vmin ’
51 1 .0D+03
52 ’Vmax ’
53 4D+05
54 ’ a d i f ’
55 2 .0D+02
56 ’ bd i f ’
57 1 .1D+00
58 ’ c d i f ’
59 1 .0D+03
60 ’ znumpot ’
61 F
62 ’ zanaepot ’
63 T
64 ’ zpoteq ’

270 Appendix

65 F
66 ’ z s i n g l e ’
67 F
68 ’RHOMAX,PNM1’
69 2 .00D+00 ,1.0D−2
70 ’ zhamilvv ’
71 T
72 ’ zmgCNharmf ’
73 F
74 ’zHOO f ’
75 T
76 ’zHOOBOWMAN f ’
77 F
78 ’ zmgCNf ’
79 F
80 ’ zmgNCf ’
81 F
82 ’zMORBID ’
83 F
84 ’zmgNCCNf ’
85 F
86 ’zmgNCCNMIDDLE’
87 F
88 ’ zHCNf ’
89 F
90 ’zHCNbowmanf ’
91 F
92 ’ zMinimuEP ’
93 F
94 ’ zvmin ’
95 F
96 ’ zp r in tb ’
97 F
98 ’ zcheck ’
99 F

100 ’ZPOTCHECK’
101 F
102 ’ znohamilv ’
103 T
104 ’ z jdqz ’
105 F
106 ’ zmat ’
107 F
108 ’ zbass ’
109 F
110 ’ ziham ’
111 F 10
112 ’ zihamp1 ’
113 F 11
114 ’ z j ou t ’
115 F 500

Bibliography

[1] BLAS (Basic Linear Algebra Subroutines) [online]. Available from: http://www.
netlib.org/blas/ [cited 09 October 2008]. 30, 43, 45, 210, 244, 245, 249, 257,
260, 262, 264, 291

[2] LAPACK (Linear Algebra Package) [online]. Available from: http://www.

netlib.org/lapack/ [cited 04 October 2008]. 3, 5, 9, 26, 40, 42, 43, 44, 45,
47, 48, 51, 55, 56, 57, 70, 210, 211, 257, 260, 261, 262, 264, 291

[3] Official website for OpenMP
TM

[online]. Available from: http://www.openmp.org
[cited 09 October 2008]. 185, 244, 249, 257, 261

[4] ISO 9:1995. Information and documentation - Transliteration of Cyrillic char-
acters into Latin characters - Slavic and non-Slavic languages, pages 230–
245. Bibliotheks- und Dokumentationswesen. Beuth, Berlin, 2002, ISBN

3-410-15311-X. 258, 259, 286

[5] Official website for MATLAB r© [online]. 2009. Available from: http://www.

mathworks.com/products/matlab/ [cited 14 March 2009]. 8, 115, 116, 257

[6] Ahlfors, L. V. Complex Analysis. McGraw Hill Higher Education, 3rd edition,
1978, ISBN 978-0070006577. 14

[7] Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Don-
garra, J., Croz, J. D., Greenbaum, A., Hammarling, S., McKenney,
A., Ostrouchov, S., and Sorensen, D. LAPACK Users’ Guide. SIAM,
Philadelphia, Third edition, 1999, ISBN 0-89871-294-7. 3, 40, 42, 43, 48, 51, 55,
56, 57, 70, 210, 257, 260

[8] Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., and van der Vorst,
H., Editors. Templates for the Solution of Algebraic Eigenvalue Problems: A
Practical Guide. SIAM, Philadelphia, 2000, ISBN 0-89871-471-0. Available from:
http://www.cs.ucdavis.edu/~bai/ET/contents.html [cited 12 October 2008].
4, 58, 71, 74, 84, 92

[9] Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Don-
garra, J., Eijkhout, V., Pozo, R., Romine, C., and Van der Vorst,
H. A. Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods. SIAM, Philadelphia, 2nd edition, 1994, ISBN 978-0898713282. Avail-
able from: http://www.netlib.org/linalg/html_templates/Templates.html.
85, 87, 232

271

http://www.netlib.org/blas/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/
http://www.openmp.org
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=3-410-15311-X
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-0070006577
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=0-89871-294-7
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=0-89871-471-0
http://www.cs.ucdavis.edu/~bai/ET/contents.html
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-0898713282
http://www.netlib.org/linalg/html_templates/Templates.html

272 BIBLIOGRAPHY

[10] Behnke, H., and Goerisch, F. Inclusions for Eigenvalues of Selfadjoint Prob-
lems. In Herzberger, J., Editor, Topics in Validated Computations, volume 5
of Studies in Computational Mathematics, pages 277–323. Elsevier, 1994, ISBN

978-0444816856. Proceedings of the IMACS-GAMM International Workshop on
Validated Computation, Oldenburg, Germany, 30 August - 3 September 1993. 151

[11] Benzi, M. Preconditioning Techniques for Large Linear Systems: A Survey.
Journal of Computational Physics, 182:418–477, 2002. doi:10.1006/jcph.2002.
7176. 89, 213, 214, 232

[12] Bischof, C. H., Lang, B., and Sun, X. A Framework for Symmetric Band Re-
duction. ACM Transactions on Mathematical Software, 26(4):581–601, December
2000. doi:10.1145/365723.365735. 5, 44, 45, 257

[13] . Algorithm 807: The SBR Toolbox – Software for Successive Band Re-
duction. ACM Transactions on Mathematical Software, 26(4):602–616, December
2000. doi:10.1145/365723.365736. 5, 44, 55, 56, 209, 210, 261

[14] Björck, Å. Numerics of Gram-Schmidt Orthogonalization. Linear Algebra and
Its Applications, 197/198:297–316, 1994. doi:10.1016/0024-3795(94)90493-6.
30

[15] Bollhöfer, M. ILUPACK V2.1, software package providing multilevel ILU
preconditioners [online]. 2006. Available from: http://www-public.tu-bs.de/

~bolle/ilupack/ [cited 09 October 2008]. 8, 116, 215, 232, 234, 261

[16] Bollhöfer, M., and Notay, Y. JADAMILU, software package for the Jacobi-
Davidson method incorporating multilevel ILU preconditioning [online]. 2006.
Available from: http://homepages.ulb.ac.be/~jadamilu/ [cited 09 October
2008]. 115, 235

[17] . JADAMILU: a software code for computing selected eigenvalues of large
sparse symmetric matrices. Computer Physics Communications, 177(12):951–
964, 2007. Available from: http://mntek3.ulb.ac.be/pub/docs/reports/pdf/
2007_CPC.pdf [cited 19 October 2008], doi:10.1016/j.cpc.2007.08.004. 115,
235

[18] Bramley, M. J., and Carrington, Jr., T. A general discrete variable method
to calculate vibrational energy levels of three- and four-atom molecules. Journal of
Chemical Physics, 99(11):8519–8541, 1993. doi:10.1063/1.465576. 6, 151, 155

[19] . Calculation of triatomic vibrational eigenstates: Product or contracted
basis sets, Lanczos or conventional eigensolvers? What is the most efficient com-
bination? Journal of Chemical Physics, 101(10):8494–8507, November 1994.
doi:10.1063/1.468110. 4, 6, 151, 152, 156, 157

http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-0444816856
http://dx.doi.org/10.1006/jcph.2002.7176
http://dx.doi.org/10.1006/jcph.2002.7176
http://dx.doi.org/10.1145/365723.365735
http://dx.doi.org/10.1145/365723.365736
http://dx.doi.org/10.1016/0024-3795(94)90493-6
http://www-public.tu-bs.de/~bolle/ilupack/
http://www-public.tu-bs.de/~bolle/ilupack/
http://homepages.ulb.ac.be/~jadamilu/
http://mntek3.ulb.ac.be/pub/docs/reports/pdf/2007_CPC.pdf
http://mntek3.ulb.ac.be/pub/docs/reports/pdf/2007_CPC.pdf
http://dx.doi.org/10.1016/j.cpc.2007.08.004
http://dx.doi.org/10.1063/1.465576
http://dx.doi.org/10.1063/1.468110

BIBLIOGRAPHY 273

[20] Bunker, P. R., and Jensen, P. Computational Molecular Spectroscopy. John
Wiley & Sons, LTD, 1st edition, 2001, ISBN 978-0471489986. 151, 152

[21] . Molecular Symmetry and Spectroscopy. NRC Research Press (Canada),
2nd edition, 2008, ISBN 978-0660175195. 123, 140, 142, 145, 152, 161, 163, 167

[22] Chandra, R., Menon, R., Dagum, L., Kohr, D., Maydan, D., and Mc-
Donald, J. Parallel Programming in OpenMP

TM
. Morgan Kaufmann, 2000, ISBN

1558606718. 185, 244, 261

[23] Chatelin, F. Spectral approximation of linear operators. Computer Science and
Applied Mathematics. Academic Press, 1983, ISBN 978-0121706203. 150

[24] Conway, J. B. A Course in Functional Analysis. Springer, Berlin, 4th edition,
1997, ISBN 978-0387972459. 124, 125, 127

[25] Crouzeix, M., Philippe, B., and Sadkane, M. The Davidson method. SIAM
Journal on Scientific Computing, 15(1):62–76, 1994. doi:10.1137/0915004. 76

[26] Cullum, J. K., and Willoughby, R. A. Programs, volume 2 of Lanczos
Algorithms for Large Symmetric Eigenvalue Computations. Birkhäuser, Boston,
1985, ISBN 978-0817630584. 71

[27] . Theory, volume 1 of Lanczos Algorithms for Large Symmetric Eigenvalue
Computations. Birkhäuser, Boston, 1985, ISBN 978-0817630584. 71

[28] Cuppen, J. J. M. A divide and conquer method for the symmetric eigenproblem.
Numerische Mathematik, 36:177–195, 1981. doi:10.1007/BF01396757. 49

[29] Davidson, E. R. The iterative calculation of a few of the lowest eigenvalues and
corresponding eigenvectors of large real symmetric matrices. Journal of Computa-
tional Physics, 17(1):87–94, 1975. doi:10.1016/0021-9991(75)90065-0. 6, 70,
75

[30] . Monster matrices: Their eigenvalues and eigenvectors. Computers in
Physics, 7(5):519–522, Sep/Oct 1993. 6, 76

[31] Demmel, J., and Veselić, K. Jacobi’s method is more accurate than QR.
SIAM Journal on Matrix Analysis and Applications, 13(4):1204–1245, 1992. doi:
10.1137/0613074. 54, 56

[32] Dhillon, I. S. A new O(n2) Algorithm for the Symmetric Tridiagonal Eigen-
value / Eigenvector Problem. PhD thesis, University of California, Berkeley, 1997
[cited 12 October 2008]. Available from: http://www.cs.utexas.edu/users/

inderjit/public_papers/thesis.pdf [cited 12 October 2008]. 5, 6, 51, 56

http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-0471489986
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-0660175195
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=1558606718
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-0121706203
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-0387972459
http://dx.doi.org/10.1137/0915004
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-0817630584
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-0817630584
http://dx.doi.org/10.1007/BF01396757
http://dx.doi.org/10.1016/0021-9991(75)90065-0
http://dx.doi.org/10.1137/0613074
http://dx.doi.org/10.1137/0613074
http://www.cs.utexas.edu/users/inderjit/public_papers/thesis.pdf
http://www.cs.utexas.edu/users/inderjit/public_papers/thesis.pdf

274 BIBLIOGRAPHY

[33] Dhillon, I. S., and Parlett, B. N. Multiple representations to compute
orthogonal eigenvectors of symmetric tridiagonal matrices. Linear Algebra and
its Applications, 387:1–28, 2004. Available from: http://www.cs.utexas.edu/

users/inderjit/public_papers/reptree.pdf, doi:10.1016/j.laa.2003.12.

028. 51

[34] . Orthogonal eigenvectors and relative gaps. SIAM Journal on Matrix
Analysis and Applications, 25(3):858–899, 2004. Available from: http://www.

cs.utexas.edu/users/inderjit/public_papers/relgaps.pdf, doi:10.1137/

S0895479800370111. 51

[35] Dongarra, J. J., Hammarling, S., and Sorensen, D. C. Block reduction
of matrices to condensed forms for eigenvalue computations. Journal of Computa-
tional and Applied Mathematics, 27(1–2):215–227, 1989. (LAPACK Working Note
#2). doi:10.1016/0377-0427(89)90367-1. 44

[36] Feng, S., and Jia, Z. A Refined Jacobi-Davidson Method and Its Correction
Equation. Computers and Mathematics with Applications, 49:417–427, 2005. doi:
10.1016/j.camwa.2003.01.018. 70, 81, 104

[37] Fokkema, D. R., Sleijpen, G. L. G., and van der Vorst, H. A. Jacobi-
Davidson style QR and QZ algorithms for the partial reduction of matrix pencils.
SIAM journal on Scientific Computing, 20:94–125, 1998. Available from: http:

//www.math.uu.nl/people/sleijpen/Reprints/SISC2098.ps.gz [cited 19 Oc-
tober 2008], doi:10.1137/S1064827596300073. 90, 94, 95, 97, 98, 102

[38] Francis, J. G. F. The QR transformation, A Unitary Analogue to the LR
Transformation – Part 1. The Computer Journal, 4(3):265–271, 1961. doi:10.

1093/comjnl/4.3.265. 45

[39] . The QR transformation – Part 2. The Computer Journal, 4(4):332–345,
1962. doi:10.1093/comjnl/4.4.332. 45

[40] Freund, R. W., and Nachtigal, N. M. QMR: A quasi-minimal residual
method for non-hermitian linear systems. Numerical Mathematics, (60):315–339,
1991. doi:10.1007/BF01385726. 88

[41] . Software for simplified Lanczos and QMR algorithms. Applied Numerical
Mathematics, 3(19):319–341, 1994. Special issue on iterative methods for linear
equations (Atlanta, GA, 1994). doi:10.1016/0168-9274(95)00089-5. 88

[42] Frommer, A. Iterationsverfahren. Lecture notes, Bergische Univer-
sität Wuppertal, Fachgruppe Mathematik, 2003 [cited 14 October 2008].
Available from: http://www.math.uni-wuppertal.de/~frommer/manuscripts/
iterationen.ps.gz [cited 14 October 2008]. 87

http://www.cs.utexas.edu/users/inderjit/public_papers/reptree.pdf
http://www.cs.utexas.edu/users/inderjit/public_papers/reptree.pdf
http://dx.doi.org/10.1016/j.laa.2003.12.028
http://dx.doi.org/10.1016/j.laa.2003.12.028
http://www.cs.utexas.edu/users/inderjit/public_papers/relgaps.pdf
http://www.cs.utexas.edu/users/inderjit/public_papers/relgaps.pdf
http://dx.doi.org/10.1137/S0895479800370111
http://dx.doi.org/10.1137/S0895479800370111
http://dx.doi.org/10.1016/0377-0427(89)90367-1
http://dx.doi.org/10.1016/j.camwa.2003.01.018
http://dx.doi.org/10.1016/j.camwa.2003.01.018
http://www.math.uu.nl/people/sleijpen/Reprints/SISC2098.ps.gz
http://www.math.uu.nl/people/sleijpen/Reprints/SISC2098.ps.gz
http://dx.doi.org/10.1137/S1064827596300073
http://dx.doi.org/10.1093/comjnl/4.3.265
http://dx.doi.org/10.1093/comjnl/4.3.265
http://dx.doi.org/10.1093/comjnl/4.4.332
http://dx.doi.org/10.1007/BF01385726
http://dx.doi.org/10.1016/0168-9274(95)00089-5
http://www.math.uni-wuppertal.de/~frommer/manuscripts/iterationen.ps.gz
http://www.math.uni-wuppertal.de/~frommer/manuscripts/iterationen.ps.gz

BIBLIOGRAPHY 275

[43] . Algorithmen auf Graphen und Dünn besetzte Matrizen. Lecture notes,
Bergische Universität Wuppertal, Fachgruppe Mathematik, 2004 [cited 14 Oc-
tober 2008]. Available from: http://www.math.uni-wuppertal.de/~frommer/

manuscripts/DBM.ps.gz [cited 14 October 2008]. 116, 191

[44] Genseberger, M. Domain decomposition in the Jacobi-Davidson
method for eigenproblems. PhD thesis, Universiteit Utrecht, 2001, ISBN

90-6196-507-1. Available from: http://homepages.cwi.nl/~genseber/

Thesis_M_Genseberger.pdf.gz. 6, 82, 111, 116, 214

[45] Geus, R. The Jacobi-Davidson algorithm for solving large sparse symmetric eigen-
value problems with application to the design of accelerator cavities. PhD the-
sis, Eidgenössische Technische Hochschule Zürich, 2002 [cited 09 October 2008].
Available from: http://e-collection.ethbib.ethz.ch/view/eth:26147 [cited
09 October 2008]. 6, 116

[46] . JDBSYM package for the Jacobi-Davidson method, library in the C pro-
gramming language, this reference is part of [54] [online]. 2002. Available from:
http://www.win.tue.nl/casa/research/topics/jd/software.html [cited 09
October 2008]. 8, 116, 260

[47] Goeke, A. Parallele Teilraumverfahren zur Bestimmung von Eigenwerten im
Inneren des Spektrums. PhD thesis, Zentralinstitut für Angewandte Mathematik,
Forschungszentrum Jülich, 2000 [cited 13. October 2008]. Available from: http:

//www.fz-juelich.de/jsc/docs/autoren2000/goeke [cited 13. October 2008].
62, 63, 70, 116, 213, 244

[48] Golub, G. H., and van der Vorst, H. A. Eigenvalue computation in the
20th century. Journal of Computational Applied Mathematics, 123(1–2):35–65,
2000. doi:10.1016/S0377-0427(00)00413-1. 4

[49] Golub, G. H., and van Loan, C. F. Matrix Computations. Johns Hopkins
Studies in the Mathematical Sciences. The Johns Hopkins University Press, Bal-
timore, 1996, ISBN 978-0801854149. 3, 26, 27, 30, 34, 36, 37, 38, 42, 46, 50, 53,
54, 71, 72, 242

[50] Greenbaum, A. Iterative Methods for Solving Linear Systems, volume 17 of Fron-
tiers in Applied Mathematics. SIAM, Philadelphia, 1997, ISBN 978-0898713961.
85, 87, 89, 116

[51] Hehre, W. J., Radom, L., von Schleyer, P. R., and Pople, J. A. Ab
Initio Molecular Orbital Theory. John Wiley & Sons, New York, 2nd edition, 1986,
ISBN 978-0471812418. 140

[52] Hernández, V., Román, J. E., Tomás, A., and Vidal, V. A Survey of
Software for Sparse Eigenvalue Problems [online]. December 2005. Available from:
http://www.grycap.upv.es/slepc [cited 09 October 2008]. 58, 76

http://www.math.uni-wuppertal.de/~frommer/manuscripts/DBM.ps.gz
http://www.math.uni-wuppertal.de/~frommer/manuscripts/DBM.ps.gz
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=90-6196-507-1
http://homepages.cwi.nl/~genseber/Thesis_M_Genseberger.pdf.gz
http://homepages.cwi.nl/~genseber/Thesis_M_Genseberger.pdf.gz
http://e-collection.ethbib.ethz.ch/view/eth:26147
http://www.win.tue.nl/casa/research/topics/jd/software.html
http://www.fz-juelich.de/jsc/docs/autoren2000/goeke
http://www.fz-juelich.de/jsc/docs/autoren2000/goeke
http://dx.doi.org/10.1016/S0377-0427(00)00413-1
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-0801854149
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-0898713961
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-0471812418
http://www.grycap.upv.es/slepc

276 BIBLIOGRAPHY

[53] Hislop, P. D., and Sigal, I. M. Introduction to Spectral Theory. With Appli-
cations to Schrödinger Operators, volume 113 of Applied Mathematical Sciences.
Springer, Berlin, 1st edition, 1995, ISBN 978-0387945019. 124, 127, 129, 131,
132, 138

[54] Hochstenbach, M. Jacobi-Davidson Gateway [online]. Available from: http:
//www.win.tue.nl/casa/research/topics/jd/ [cited 19 October 2008]. 7, 115

[55] Hochstenbach, M. E., and Notay, Y. The Jacobi–Davidson method. GAMM
Mitteilungen, 29(2):368–382, 2006. Available from: http://www.win.tue.nl/

~hochsten/pdf/jdgamm.pdf [cited 13. October 2008]. 84

[56] Horn, R. A., and Johnson, C. R. Matrix analysis. Cambridge University
Press, Reprint edition, 1990, ISBN 978-0521386326. 15, 21

[57] Hylleraas, E. A., and Undheim, B. Numerische Berechnung der 2S-Terme
von Ortho- und Par-Helium. Zeitschrift für Physik, 65(11–12):759–772, 1930. doi:
10.1007/BF01397263. 149

[58] Jacobi, C. G. J. Ueber ein leichtes Verfahren, die in der Theorie der Säcu-
larstörungen vorkommenden Gleichungen numerisch aufzulösen. Journal für die
reine und angewandte Mathematik, 30:51–94, 1846. Available from: http://www.
digizeitschriften.de/resolveppn/GDZPPN002144522 [cited 13. October 2008].
52, 77

[59] Jensen, P. The Nonrigid Bender Hamiltonian for Calculating the Rotation-
Vibration Energy Levels of a Triatomic Molecule. Computer Physics Reports,
1(1):1–55, 1983. doi:10.1016/0167-7977(83)90003-5. 152

[60] . A new morse oscillator-rigid bender internal dynamics (MORBID) Hamil-
tonian for triatomic molecules. Journal of Molecular Spectroscopy, 128(2):478–501,
1988. doi:10.1016/0022-2852(88)90164-6. 152

[61] . Theoretische Spektroskopie. Lecture notes, Bergische Univer-
sität Wuppertal, Fachgruppe Chemie, 1995 [cited 09 October 2008]. Avail-
able from: http://elpub.bib.uni-wuppertal.de/edocs/dokumente/fb09/

vorlesung/jensen/v090003.pdf [cited 09 October 2008]. 121, 123, 142, 145,
152, 161

[62] . Einführung in die Methoden der Quantenchemie. Lecture notes,
Bergische Universität Wuppertal, Fachgruppe Chemie, 1997 [cited 09 Octo-
ber 2008]. Available from: http://elpub.bib.uni-wuppertal.de/edocs/

dokumente/fb09/vorlesung/jensen/v090001.pdf [cited 09 October 2008]. 140

[63] Jia, Z. Refined iterative algorithms based on Arnoldi’s process for large unsym-
metric eigenproblems. Linear Algebra and Its Applications, 259(1):1–23, 1997.
doi:10.1016/S0024-3795(96)00238-8. 70

http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-0387945019
http://www.win.tue.nl/casa/research/topics/jd/
http://www.win.tue.nl/casa/research/topics/jd/
http://www.win.tue.nl/~hochsten/pdf/jdgamm.pdf
http://www.win.tue.nl/~hochsten/pdf/jdgamm.pdf
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-0521386326
http://dx.doi.org/10.1007/BF01397263
http://dx.doi.org/10.1007/BF01397263
http://www.digizeitschriften.de/resolveppn/GDZPPN002144522
http://www.digizeitschriften.de/resolveppn/GDZPPN002144522
http://dx.doi.org/10.1016/0167-7977(83)90003-5
http://dx.doi.org/10.1016/0022-2852(88)90164-6
http://elpub.bib.uni-wuppertal.de/edocs/dokumente/fb09/vorlesung/jensen/v090003.pdf
http://elpub.bib.uni-wuppertal.de/edocs/dokumente/fb09/vorlesung/jensen/v090003.pdf
http://elpub.bib.uni-wuppertal.de/edocs/dokumente/fb09/vorlesung/jensen/v090001.pdf
http://elpub.bib.uni-wuppertal.de/edocs/dokumente/fb09/vorlesung/jensen/v090001.pdf
http://dx.doi.org/10.1016/S0024-3795(96)00238-8

BIBLIOGRAPHY 277

[64] . The Convergence of Harmonic Ritz Values, Harmonic Ritz Vectors and
Refined Harmonic Ritz Vectors. Mathematics of Computation, 74(251):1441–1456,
2004. doi:10.1090/S0025-5718-04-01684-9. 59, 68

[65] Jia, Z., and Stewart, G. W. An Analysis of the Rayleigh-Ritz Method for
Approximating Eigenspaces. Mathematics of Computation, 70(234):637–647, 2001.
doi:10.1090/S0025-5718-00-01208-4. 64

[66] Jordan, T. F. Linear Operators for Quantum Mechanics. John Wiley & Sons
Inc., 1969, ISBN 978-0471450412. 124

[67] Kernighan, B., and Ritchie, D. The C Programming Language. Prentice
Hall, 2nd edition, 1988, ISBN 0-13-110362-8. 8, 9, 116, 257, 260

[68] Klahn, B., and Bingel, W. A. The Convergence of the Rayleigh-Ritz Method
in Quantum Chemistry. Theoretica Chimica Acta, 44(1):27–43, 1977. ISSN 1432-
881X (Print) 1432-2234 (Online). doi:10.1007/BF00548027. 150

[69] Kublanovskaya, V. N. On some algorithms for the solution of the complete
eigenvalue problem. Zhurnal Vychislitelnoi Matematiki i Matematicheskoi Fiziki,
1:637–657, 1962. In Russian. Translation in USSR Computational Mathematics
and Mathematical Physics. 45

[70] Lanczos, C. An iteration method for the solution of the eigenvalue problem
of linear differential and integral operators. Journal of Research of the National
Bureau of Standards, 45(4):255–282, 1950. Available from: http://nvl.nist.

gov/pub/nistpubs/jres/045/4/V45.N04.A01.pdf [cited 13. October 2008]. 72

[71] Lang, S. Linear Algebra. Undergraduate Texts in Mathematics. Springer, Berlin,
3rd edition, 2004, ISBN 978-0387964126. 13, 14, 16, 17

[72] . Algebra. Graduate Texts in Mathematics. Springer, Berlin, 3rd revised
edition, 2005, ISBN 978-0387953854. 41

[73] Lehoucq, R. B. Analysis and Implementation of an Implicitly Restarted Itera-
tion. PhD thesis, Rice University, Houston, Texas, 1995. Also available as Tech-
nical report TR95-13, Department of Computational and Applied Mathematics.
72

[74] . The Computation of Elementary Unitary Matrices. ACM Transactions
on Mathematical Software, 22(4):393–400, 1996. doi:10.1145/235815.235817.
26

[75] Lehoucq, R. B., Maschhoff, K., Sorensen, D. C., and Yang, C.
ARPACK Software [online]. 1996. Available from: http://www.caam.rice.edu/
software/ARPACK/ [cited 09 October 2008]. 8, 74, 238

http://dx.doi.org/10.1090/S0025-5718-04-01684-9
http://dx.doi.org/10.1090/S0025-5718-00-01208-4
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-0471450412
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=0-13-110362-8.
http://dx.doi.org/10.1007/BF00548027
http://nvl.nist.gov/pub/nistpubs/jres/045/4/V45.N04.A01.pdf
http://nvl.nist.gov/pub/nistpubs/jres/045/4/V45.N04.A01.pdf
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-0387964126
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-0387953854
http://dx.doi.org/10.1145/235815.235817
http://www.caam.rice.edu/software/ARPACK/
http://www.caam.rice.edu/software/ARPACK/

278 BIBLIOGRAPHY

[76] Lehoucq, R. B., Sorensen, D. C., and Yang, C. ARPACK users’
guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted
Arnoldi Methods (Software, Environment, Tools). SIAM, Philadelphia, 1998, ISBN
978-0898714074. 74, 96

[77] Lord Rayleigh (J. W. Strutt). On the calculation of the frequency of vibra-
tion of a system in its gravest mode, with an example from hydrodynamics. The
Philosophical Magazine, 47:556–572, 1899. 62

[78] MacDonald, J. K. L. Successive Approximations by the Rayleigh-Ritz Vari-
ation Method. Physical Review, 43(10):830–833, March 1933. doi:10.1103/

PhysRev.43.830. 149

[79] Marcus, M. Finite Dimensional Multilinear Algebra, Part I. Pure and Applied
Mathematics. Marcel Dekker, Inc. New York, 1973. 35

[80] Meise, R., and Vogt, D. Einführung in die Funktionalanalysis.
Vieweg Studium. Aufbaukurs Mathematik. Vieweg, Wiesbaden, 1992, ISBN

978-3528072629. 124, 125, 126

[81] Morgan, R. B. Computing Interior Eigenvalues of Large Matrices. Linear Al-
gebra and its Applications, 154/156:289–309, 1991. doi:10.1016/0024-3795(91)
90381-6. 68

[82] Notay, Y. Combination of Jacobi-Davidson and conjugate gradients for the
partial symmetric eigenproblem. Numerical Linear Algebra and its Applications,
9:21–44, 2002. Available from: http://mntek3.ulb.ac.be/pub/docs/reports/

pdf/2002_NLAA_1.pdf [cited 19 October 2008], doi:10.1002/nla.246. 116

[83] . MATLAB r© code for the JDCG algorithm [online]. 2002. Available from:
http://mntek3.ulb.ac.be/pub/docs/jdcg/ [cited 09 October 2008]. 116

[84] . Is Jacobi–Davidson Faster than Davidson? SIAM Journal on Ma-
trix Analysis and Applications, 26(2):522–543, 2005. Available from: http:

//mntek3.ulb.ac.be/pub/docs/reports/pdf/2005_SIMAX.pdf [cited 19 Octo-
ber 2008], doi:10.1137/S0895479803430941. 83

[85] Nyhoff, L., and Leetsma, S. FORTRAN 77 for Engineers and Scien-
tists with an Introduction to Fortran 90. Prentice Hall, 4th edition, 1995, ISBN
0-13-363003-X. 5, 8, 115, 159, 257, 260, 261, 291

[86] Odaka, T. E. The Double Renner Effect. PhD thesis, Ber-
gische Universität Wuppertal, 2003 [cited 09 October 2008]. Avail-
able from: http://elpub.bib.uni-wuppertal.de/edocs/dokumente/fb09/

diss2003/odaka/index.html [cited 09 October 2008]. 1, 5, 159, 160, 162, 167,
174, 175, 176, 177, 179, 181, 185, 186, 203

http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-0898714074
http://dx.doi.org/10.1103/PhysRev.43.830
http://dx.doi.org/10.1103/PhysRev.43.830
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-3528072629
http://dx.doi.org/10.1016/0024-3795(91)90381-6
http://dx.doi.org/10.1016/0024-3795(91)90381-6
http://mntek3.ulb.ac.be/pub/docs/reports/pdf/2002_NLAA_1.pdf
http://mntek3.ulb.ac.be/pub/docs/reports/pdf/2002_NLAA_1.pdf
http://dx.doi.org/10.1002/nla.246
http://mntek3.ulb.ac.be/pub/docs/jdcg/
http://mntek3.ulb.ac.be/pub/docs/reports/pdf/2005_SIMAX.pdf
http://mntek3.ulb.ac.be/pub/docs/reports/pdf/2005_SIMAX.pdf
http://dx.doi.org/10.1137/S0895479803430941
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=0-13-363003-X
http://elpub.bib.uni-wuppertal.de/edocs/dokumente/fb09/diss2003/odaka/index.html
http://elpub.bib.uni-wuppertal.de/edocs/dokumente/fb09/diss2003/odaka/index.html

BIBLIOGRAPHY 279

[87] Odaka, T. E., Melnikov, V. V., Jensen, P., Hirano, T., Lang, B.,

and Langer, P. A Theoretical Study of the Double Renner Effect for Ã2Π
MgNC/MgCN: Higher Excited Rotational States. Journal of Chemical Physics,
126(9):094301 (9 pages), 2007. doi:10.1063/1.2464094. 5, 7, 9, 45, 56, 155, 164,
203

[88] Olsen, J., Jørgensen, P., and Simons, J. Passing the one-billion limit
in full configuration-interaction (FCI) calculations. Chemical Physics Letters,
169(6):463–472, 1990. doi:10.1016/0009-2614(90)85633-N. 83

[89] Paige, C. C., Parlett, B. N., and van der Vorst, H. A. Approximate So-
lutions and Eigenvalue Bounds from Krylov Subspaces. Numerical Linear Algebra
with Applications, 2(2):115–133, 1995. doi:10.1002/nla.1680020205. 66, 68

[90] Paige, C. C., and Saunders, M. A. Solution of Sparse Indefinite Systems
of Linear Equations. SIAM Journal on Numerical Analysis, 12(4):617–629, 1975.
doi:10.1137/0712047. 87

[91] Parlett, B. The Symmetric Eigenvalue Problem. Classics in Applied Mathemat-
ics. Cambridge University Press, reprint edition, 1998, ISBN 978-0898714029. 3,
4, 14, 23, 25, 34, 37, 40, 42, 46, 62, 71, 72, 81

[92] Poirier, B., and Carrington, Jr., T. Accelerating the calculation of energy
levels and wave functions using an efficient preconditioner with the inexact spectral
transform method. Journal of Chemical Physics, 114(21):9254–9264, 2001. doi:

10.1063/1.1367396. 6, 216

[93] Puttin, R. Modulare und parallele Implementierung des Jacobi-Davidson-
Verfahrens. Master’s thesis, Forschungszentrum Jülich, Zentralinstitut für Ange-
wandte Mathematik, December 2005. Available from: http://www.fz-juelich.
de/zam/docs/autoren2005/puttin [cited 09 October 2008]. 112

[94] Quateroni, A., and Saleri, F. Scientific Computing with MATLAB r©and
Octave. Springer, 2006, ISBN 978-3-540-32612-0. 8

[95] Quintus Horatius Flaccus. Epistulae. In Shackleton Bailey, D. R.,
Editor, Quinti Horatii Flacci Opera, Bibliotheca Scriptorum Graecorum Et Ro-
manorum Teubneriana, Stutgardiae, 2008. de Gruyter, ISBN 978-3110202922. 1

[96] Reed, M., and Simon, B. Functional Analysis, volume I of Methods of Modern
Mathematical Physics. Academic Press, 1972, ISBN 978-0125850506. 124, 127,
130, 135

[97] . Fourier Analysis, Self-Adjointness, volume II of Methods of Modern Math-
ematical Physics. Academic Press, 1975, ISBN 978-0125850025. 124, 128, 129,
131, 138

http://dx.doi.org/10.1063/1.2464094
http://dx.doi.org/10.1016/0009-2614(90)85633-N
http://dx.doi.org/10.1002/nla.1680020205
http://dx.doi.org/10.1137/0712047
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-0898714029
http://dx.doi.org/10.1063/1.1367396
http://dx.doi.org/10.1063/1.1367396
http://www.fz-juelich.de/zam/docs/autoren2005/puttin
http://www.fz-juelich.de/zam/docs/autoren2005/puttin
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-3-540-32612-0
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-3110202922
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-0125850506
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-0125850025

280 BIBLIOGRAPHY

[98] Renner, R. Zur Theorie der Wechselwirkung zwischen Elektronen- und Kern-
bewegung bei dreiatomigen, stabförmigen Molekülen. Zeitschrift für Physik – A
Hadrons and Nuclei, 92(3):172–193, 1934. doi:10.1007/BF01350054. 159

[99] Ritz, W. Über eine neue Methode zur Lösung gewisser Variationsprobleme der
mathematischen Physik. Journal für die reine und angewandte Mathematik, 135:1–
61, 1909. Available from: http://www.digizeitschriften.de/resolveppn/

GDZPPN002166739 [cited 13. October 2008]. 62

[100] Saad, Y. Numerical methods for large eigenvalue problems. Algorithms and
Architectures for Advanced Scientific Computing. Manchester University Press,
1991, ISBN 978-0719033865. 4, 15, 19, 23, 37, 58, 72

[101] . Iterative Methods for Sparse Linear Systems. Cambridge University Press,
2003, ISBN 978-0898715347. 85, 89, 116, 191, 213, 232

[102] Saad, Y., and Schultz, M. H. GMRES: A generalized minimal residual algo-
rithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and
Statistical Computing, 7(3):856–869, 1986. doi:10.1137/0907058. 86

[103] Sadkane, M. Analyse Numérique de la Méthode de Davidson. PhD thesis, UER
mathématiques et Informatique, Rennes, France, 1989. 76

[104] Sarkar, P., Poulin, N., and Tucker Carrington, J. Calculating rovibra-
tional energy levels of a triatomic molecule with a simple lanczos method. Journal
of Chemical Physics, 110(21):10269–10274, 1999. doi:10.1063/1.478960. 6, 151

[105] Schrödinger, E. Quantisierung als Eigenwertproblem I. Annalen der Physik,
384(4):361 – 376, 1926. doi:10.1002/andp.19263840404. 2

[106] . Quantisierung als Eigenwertproblem II. Annalen der Physik, 384(6):489
– 527, 1926. doi:10.1002/andp.19263840602. 2

[107] . Quantisierung als Eigenwertproblem III. Annalen der Physik, 385(13):437
– 490, 1926. doi:10.1002/andp.19263851302. 2

[108] . Quantisierung als Eigenwertproblem IV. Annalen der Physik, 386(18):109
– 139, 1926. doi:10.1002/andp.19263861802. 2

[109] Schwabl, F. Quantum Mechanics. Advanced Texts in Physics. Springer, 3rd
edition, 2002, ISBN 978-3540431091. 1, 122, 123, 137, 138, 140

[110] Scott, D. S. The Advantages of Inverted Operators in Rayleigh-Ritz Approxi-
mations. SIAM Journal on Scientific and Statistical Computing, 3(1):68–75, 1982.
doi:10.1137/0903006. 59, 63

http://dx.doi.org/10.1007/BF01350054
http://www.digizeitschriften.de/resolveppn/GDZPPN002166739
http://www.digizeitschriften.de/resolveppn/GDZPPN002166739
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-0719033865
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-0898715347
http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1063/1.478960
http://dx.doi.org/10.1002/andp.19263840404
http://dx.doi.org/10.1002/andp.19263840602
http://dx.doi.org/10.1002/andp.19263851302
http://dx.doi.org/10.1002/andp.19263861802
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-3540431091
http://dx.doi.org/10.1137/0903006

BIBLIOGRAPHY 281

[111] Sharma, C. S., and SriRankanathan, S. A coordinate-free treatment of
the minimax and maximini theorems for eigenvalues of self-adjoint operators on
a Hilbert space. Journal of Physics A: Mathematical and General, 8:1853–1862,
1975. doi:10.1088/0305-4470/8/12/002. 150

[112] Sleijpen, G. L. G. MATLAB r© code for the JDQR algorithm [on-
line]. 2000. Available from: http://www.math.uu.nl/people/sleijpen/JD_

software/JDQR.html [cited 09 October 2008]. 8, 115, 116, 232, 260

[113] Sleijpen, G. L. G., and van den Eshof, J. On the use of harmonic Ritz
pairs in approximating internal eigenpairs. Linear algebra and its Applications,
358(1-3):115–137, 2003. doi:10.1016/S0024-3795(01)00480-3. 68

[114] Sleijpen, G. L. G., and van der Vorst, H. A. A Jacobi-Davidson method
for linear eigenvalue problems. SIAM Journal on Matrix Analysis and Applica-
tions, 17(2):401–425, 1996. Available from: http://www.math.uu.nl/people/

sleijpen/Reprints/SIREV4200.ps.gz [cited 19 October 2008], doi:10.1137/

S0036144599363084. 6, 64, 68, 77, 78, 79, 82, 84, 111

[115] . The Jacobi-Davidson method for eigenvalue problems and its relation with
accelerated inexact Newton schemes. In Margenov, S. D., and Vassilevski,
P. S., Editors, Iterative methods in Linear Algebra, II., volume 3 of IMACS Series
in Computational and Applied Mathematics, pages 377–389, New Brunswick, NJ,
U.S.A., 1996. IMACS. Proceedings of the Second IMACS International Symposium
on Iterative Methods in Linear Algebra, June 17-20, 1995, Blagoevgrad. Avail-
able from: http://www.math.uu.nl/people/sleijpen/JDaNEWTON.ps.gz [cited
18 October 2008]. 93

[116] Sleijpen, G. L. G., van der Vorst, H. A., and Meijerink, E. Efficient
expansion of subspaces in the Jacobi-Davidson method for standard and gener-
alized eigenproblems. Electronic Transactions on Numerical Analysis, 7:75–89,
1998. Available from: http://etna.mcs.kent.edu/vol.7.1998/pp75-89.dir/

pp75-89.html [cited 13. October 2008]. 214

[117] Sorensen, D. C. Implicit application of polynomial filters in a k-step Arnoldi
method. SIAM Journal on Matrix Analysis and Applications, 13(1):357–385, 1992.
doi:10.1137/0613025. 72, 74

[118] Stathopoulos, A. Nearly Optimal Preconditioned Methods for Hermitian
Eigenproblems under Limited Memory. Part I: Seeking One Eigenvalue. SIAM
Journal on Scientific Computing, 29(2):481–514, 2007. doi:10.1137/050631574.
115

[119] Stathopoulos, A., and McCombs, J. R. PRIMME [online]. Available from:
http://www.cs.wm.edu/~andreas/software/ [cited 09 October 2008]. 115

http://dx.doi.org/10.1088/0305-4470/8/12/002
http://www.math.uu.nl/people/sleijpen/JD_software/JDQR.html
http://www.math.uu.nl/people/sleijpen/JD_software/JDQR.html
http://dx.doi.org/10.1016/S0024-3795(01)00480-3
http://www.math.uu.nl/people/sleijpen/Reprints/SIREV4200.ps.gz
http://www.math.uu.nl/people/sleijpen/Reprints/SIREV4200.ps.gz
http://dx.doi.org/10.1137/S0036144599363084
http://dx.doi.org/10.1137/S0036144599363084
http://www.math.uu.nl/people/sleijpen/JDaNEWTON.ps.gz
http://etna.mcs.kent.edu/vol.7.1998/pp75-89.dir/pp75-89.html
http://etna.mcs.kent.edu/vol.7.1998/pp75-89.dir/pp75-89.html
http://dx.doi.org/10.1137/0613025
http://dx.doi.org/10.1137/050631574
http://www.cs.wm.edu/~andreas/software/

282 BIBLIOGRAPHY

[120] . Nearly Optimal Preconditioned Methods for Hermitian Eigenproblems
under Limited Memory. Part II: Seeking many Eigenvalues. SIAM Journal on
Scientific Computing, 29(5):2162–2188, 2007. doi:10.1137/060661910. 115

[121] Stewart, G. W. Basic Decompositions, volume I of Matrix Algorithms. SIAM,
Philadelphia, 1998, ISBN 978-0898714142. 3

[122] . Eigensystems, volume II of Matrix Algorithms. SIAM, Philadelphia, 2001,
ISBN 978-0898715033. 3, 42, 46, 50, 59, 64, 68, 70, 94

[123] van den Eshof, J. The convergence of Jacobi-Davidson iterations for hermitian
eigenproblems. Numerical Linear Algebra With Applications, 9(2):163–179, 2002.
doi:10.1002/nla.266. 93

[124] van der Sluis, A., and van der Vorst, H. A. The Convergence Behaviour
of Ritz Values in the Presence of Close Eigenvalues. Linear Algebra and Its Appli-
cations, 88/89:651–694, 1987. doi:10.1016/0024-3795(87)90129-7. 64

[125] van der Vorst, H. A. Computational methods for large eigenvalue problems.
In Ciarlet, P., and Lions, J., Editors, Solution of Equations in Rn (Part 4),
Techniques of Scientific Computing (Part 4), Numerical Methods for Fluids (Part
2), volume VIII of Handbook of Numerical Analysis, pages 3–179, Amsterdam,
2002. North-Holland (Elsevier), ISBN 978-0444509062. Available from: http:

//www.math.uu.nl/people/vorst/lecture.html [cited 09 October 2008]. 4, 58

[126] van Loan, C. F. Computational Frameworks for the Fast Fourier Transform,
volume 10 of Frontiers in applied mathematics. SIAM, Philadelphia, 1992, ISBN
978-0898712858. 36

[127] . The Ubiquitous Kronecker Product. Journal of Computational and
Applied Mathematics, 123:85–100, 2000. doi:10.1016/S0377-0427(00)00393-9.
253

[128] von Neumann, J. Mathematical Foundations of Quantum Mechanics. Princeton
University Press, Reprint edition, 1996, ISBN 978-0691028934. 124

[129] Wang, X.-G., and Carrington, Jr., T. New ideas for using contracted basis
functions with a Lanczos eigensolver for computing vibrational spectra of molecules
with four or more atoms. Journal of Chemical Physics, 117(15):6923–6934, 2002.
doi:10.1063/1.1506911. 6, 151, 156

[130] . A contracted basis-lanczos calculation of vibrational levels of methane:
Solving the Schrödinger equation in nine dimensions. Journal of Chemical Physics,
119(1):101–117, 2003. doi:10.1063/1.1574016. 6, 151, 156

[131] Werner, J. Numerische Mathematik 2. Vieweg, Wiesbaden, 1st edition, 1991,
ISBN 978-3528072339. 14

http://dx.doi.org/10.1137/060661910
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-0898714142
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-0898715033
http://dx.doi.org/10.1002/nla.266
http://dx.doi.org/10.1016/0024-3795(87)90129-7
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-0444509062
http://www.math.uu.nl/people/vorst/lecture.html
http://www.math.uu.nl/people/vorst/lecture.html
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-0898712858
http://dx.doi.org/10.1016/S0377-0427(00)00393-9
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-0691028934
http://dx.doi.org/10.1063/1.1506911
http://dx.doi.org/10.1063/1.1574016
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-3528072339

[132] Wilkinson, J. H. The Algebraic Eigenvalue Problem. Monographs on Numerical
Analysis. Oxford University Press, new edition, 1988, ISBN 978-0198534181. 48

[133] Zare, R. N. Angular Momentum. Understanding spatial aspects in chemistry
and physics. John Wiley & Sons, 1988, ISBN 978-0471858928. 152, 177

http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-0198534181
http://de.bookbutler.com/do/bookSearch?showMore=false&shipTo=de&amountIn=eur&zip=&sortBy=salesrank&pageNr=1&searchBy=isbn&searchIn=de&searchFor=978-0471858928

List of Tables

3.1. Direct methods for the symmetric tridiagonal eigenproblem 56

4.1. Storage requirements for the preconditioned JDQR methods 109

4.2. Influence of the Krylov solver . 113

5.1. Some constants of nature . 123

5.2. Coordinates for the different kinds of nuclear motion 147

5.3. Dimensions of FBR Hamiltonian matrices 154

6.1. Block partitioning of H(J,S,Γrve) . 166

6.2. Size of the bending basis depending on K, Γvib and η 167

6.3. Combinations for an ABC type molecule 168

6.4. Combinations for an ABB molecule . 168

6.5. Big and small basis sets . 171

6.6. J-block and K-block dimensions for J = 5/2, HOO molecule 172

6.7. J-block and K-block dimensions for J = 5/2, MgNC molecule 172

6.8. Matrix components for the construction of a basic K-block BK,Γvib,η . . . 176

6.9. Kronecker product representations of the terms in Ĥu 176

6.10. Block sparsity rules for perturbation K-blocks 177

6.11. Kronecker product representations of the terms in Ĥp 177

6.12. Occurences of perturbation blocks in H(S,J,Γrve) 178

6.13. Block sparsity rules . 181

7.1. Frobenius norms of the DIAG-blocks . 187

7.2. Frobenius norms of the DK-blocks . 187

7.3. Frobenius norms of the SO-blocks . 187

7.4. Number of eigenvalues below Emax = 5000 cm−1 188

7.5. Addressing the Hamiltonian blocks . 199

7.6. Addressing the Hamiltonian blocks . 199

285

286 LIST OF TABLES

7.7. Number of eigenvalues with λ ≤ λ1 + Econt 207

7.8. Sizes of contracted and uncontracted Hamiltonian J-blocks 207

7.9. Overall Timings for 200 eigenpairs computed by TST-RRR 210

7.10. Detailed timings for 200 eigenpairs computed by TST-RRR 210

7.11. Direct contracted calculation for Econt = 5000 cm−1 212

7.12. Effect of different contraction limits . 212

7.13. Exploited information and storage . 224

7.14. JDQR product basis calculation . 225

7.15. Efficiency of Preconditioners . 227

7.16. JDQR calculation, 200 EV, MgCN, big basis 228

7.17. JDQR calculation, 200 EV, HOO, big basis 228

7.18. Timings for JDQR/Olsen . 237

7.19. JDQR contracted calculation . 243

7.21. Computing times for 200 eigenpairs by JDQR (J = 9/2) 248

7.20. Computing times and speedups for matrix-vector routines 249

A.1. Transliteration of Russian Names according to ISO 9 [4] 259

A.2. Technical specification of the V1280 SUN
TM

Fire compute server 259

List of Figures

4.1. Amplification factors of eigenvectors . 99

4.2. Exterior eigenvalues obtained by standard extraction 113

4.3. Interior eigenvalues obtained by standard extraction 114

4.4. Interior eigenvalues obtained by refined extraction 114

4.5. Interior eigenvalues obtained by harmonic extraction 114

5.1. Simple spectroscopic experiment . 121

5.2. Reference spectrum . 122

5.3. Absorption spectrum . 122

5.4. Absorption of a Light quantum . 123

5.5. Construction of a Potential Energy Surface (PES) 141

5.6. Euler angles . 144

5.7. Jacobi coordinates for a triatomic molecule 145

6.1. Degeneracy at linear geometries . 160

6.2. MgCN molecule: coordinate systems . 161

6.3. HOO molecule: 395th energy state for J = 1/2 and Γrve = B2 162

6.4. Linear growth of J-block dimension . 172

6.5. Sparsity pattern of the Hamiltonian matrix 181

7.1. Spectra of H(1/2, 1/2, A′) for big and small basis 189

7.2. Sparsity and compact storage of an SO-block 193

7.3. Sparsity and compact storage of a DK-block 195

7.4. Storage scheme for the matrix blocks . 198

7.5. Comparison of the storage schemes . 201

7.6. Relative error of eigenvalues . 208

7.7. Cosine of angles between exact eigenvectors and Ritz vectors 208

7.8. Contracted calculation for J = 13/2 and Econt = 10000 cm−1 212

287

288 LIST OF FIGURES

7.9. Sparsity pattern of
(
H

(1
2
, 1
2
,A′)

(1,1),(1,1)

)>0.01

(MgCN molecule, big basis) 218

7.10. Sparsity pattern of
(
H

(1
2
, 1
2
,A′)

(1,1),(1,1)

)>0.01

(MgCN molecule, small basis) . . . 218

7.11. Storage scheme for the K-block preconditioner 220

7.12. Storage scheme for the modified K-block preconditioner 221

7.13. Timings for K(nb)-block preconditioners (big basis, MgCN) 221

7.14. Failure of the JDQR method . 225

7.15. Deterioration of the K(1)-preconditioner 226

7.16. Linear time behavior of preconditioned JDQR for 200 eigenpairs 228

7.17. Failure of standard extraction, K(1)-block preconditioner 230

7.18. Failure of refined extraction, K(1)-block preconditioner 230

7.19. Failure of harmonic extraction, K(1)-block preconditioner 230

7.20. Interior eigenvalues obtained by refined extraction 231

7.21. Interior eigenvalues obtained by harmonic extraction 231

7.22. Sparsity plot of Hτ := H(1/2, 3/2, A′′) − τ · I, small basis 233

7.23. Sparsity plot of the ILUPACK preconditioner for Hτ 233

7.24. Interior eigenvalues obtained by refined extraction 234

7.25. Interior eigenvalues obtained by refined extraction 235

7.26. Failure of Davidson’s method . 236

7.27. Olsen vs. JDQR: Number of operations required per eigenvalue 237

7.28. ARPACK: Influence of the parameter ncv on the convergence behavior . 238

7.29. Accuracy of eigenpairs determined by ARPACK depending on ncv 239

7.30. Speedup for matrix-vector operations (J = 1/2) 246

7.31. Speedup for matrix-vector operations (J = 3/2) 246

7.32. Speedup for matrix-vector operations (J = 5/2) 246

7.33. Speedup for matrix-vector operations (J = 7/2) 247

7.34. Speedup for matrix-vector operations (J = 9/2) 247

7.35. Speedup for matrix-vector operations (J = 11/2) 247

7.36. Speedup for matrix-vector operations (J = 13/2) 248

7.37. Speedup for computation of 200 eigenpairs by JDQR (J = 9/2) 248

List of Algorithms

2.1. Generation of a Householder matrix . 26

2.2. Generation of a Givens rotation . 28

2.3. Application of a Givens rotation G(i, k, θ) 28

2.4. Classical Gram-Schmidt orthonormalisation (CGS) 29

2.5. Iterative classical Gram-Schmidt orthonormalisation (ICGS) 30

2.6. Arnoldi . 31

2.7. Lanczos . 33

3.1. Power method for Hermitian matrices . 38

3.2. Inverse iteration for Hermitian matrices (INVIT) 39

3.3. Rayleigh quotient iteration for Hermitian matrices (RQI) 40

3.4. Generic direct algorithm for dense Hermitian matrices 42

3.5. Householder tridiagonalization . 43

3.6. Blocked Householder tridiagonalization . 44

3.7. QR iteration (explicitly shifted) . 46

3.8. Bisection for λk . 48

3.9. Generation of a Jacobi rotation . 53

3.10. Classical Jacobi . 54

3.11. Generic iterative projection method for Hermitian matrices 58

3.12. Standard extraction (Rayleigh-Ritz procedure) 61

3.13. Harmonic extraction (harmonic Rayleigh-Ritz procedure) 67

3.14. Refined extraction (refined Rayleigh-Ritz procedure) 69

3.15. Lanczos method for Hermitian eigenproblems 71

3.16. IRLM for Hermitian eigenproblems . 73

3.17. Davidson’s method for λmin(A) . 75

4.1. Jacobi’s orthogonal complement correction (JOCC) 78

4.2. Jacobi-Davidson method for λmin(A) (JD) 80

4.3. GMRES . 86

289

290 LIST OF ALGORITHMS

4.4. Solution of the JD correction equation (left-preconditioning) 92

4.5. Jacobi-Davidson method for the kmax eigenpairs (JDQR) 97

4.6. Solution of the deflated correction equation (left-preconditioning) 101

4.7. Standard JDQR incorporating left preconditioning 105

4.8. Refined JDQR incorporating left preconditioning 106

4.9. Harmonic JDQR incorporating left preconditioning 107

6.1. Dimension of a diagonal K-block (∆N = 0, ∆K = 0) 169

6.2. Dimension of a diagonal N -block (∆N = 0) 170

6.3. Dimension of the Hamiltonian J-block H(J,S,Γrve) 170

6.4. Starting coordinate of a diagonal K-block within a J-block 170

6.5. Starting coordinate of a diagonal N -block within a J-block 170

6.6. Construction of a basic diagonal K-block 179

6.7. Construction of the Hamiltonian J-block H(J,S,Γrve) 180

6.8. Construction of all Hamiltonian J-blocks H(J,S,Γrve) 181

7.1. Matrix-vector multiplication exploiting block sparsity (näıve) 190

7.2. DK-block-vector multiplication exploiting compact storage 200

7.3. SO-block-vector multiplication exploiting compact storage 201

7.4. Matrix-vector multiplication exploiting sparsity 202

7.5. Computing the projection for the contraction scheme 204

7.6. Contracting the Hamiltonian matrix blocks 205

7.7. Setting up K-block preconditioner using nb sub-blocks 219

7.8. K-block preconditioner using nb sub-blocks 219

7.9. Setting up mod. K-block precond. using nb sub-blocks, S = 1/2 222

7.10. Modified K-block preconditioner using nb sub-blocks for S = 1/2 223

7.11. Setting up K-block preconditioner (contracted calculation) 240

7.12. Matrix-vector multiplication for the contracted Hamiltonian matrix 241

7.13.K-block preconditioner (contracted calculation) 242

List of Listings

A.1. FORTRAN [85] adapter (fortran.h) . 261

A.2. C interface for employed BLAS [1] routines (blas.h) 262

A.3. C interface for employed LAPACK [2] routines (lapack.h) 262

A.4. Constants for LAPACK [2] /BLAS [1] . 263

A.5. Memory allocation for matrices and vectors 264

A.6. Application of the skew projection P̃ = I − Ỹ H̃−1Q̃∗ 264

A.7. Application of the operator Ã = (I − Ỹ H̃−1Q̃∗)K−1(A− θI) 265

A.8. Compiling and Linking of jacdav.c and DR test.c under Linux 265

A.9. Compiling and Linking of jacdav.c and DR test.c under SUN
TM

Solaris 265

A.10.DR input file for the MgCN molecule w.r.t. big basis 266

A.11.DR input file for the HOO molecule w.r.t. big basis 268

291

292 LIST OF LISTINGS

List of Symbols

Linear Algebra and Numerical Analysis

diag(a1, . . . , ap) diag(a1, . . . , ap) =

a1 0 . . . 0

0 a2
. . .

...
...

.
...

0 . . . 0 ap

 (diagonal matrix)

aij entry of matrix A in the i-th row and the j-th column

A(i, j) alternative notation for aij

A(i, :), A(:, j) i-th row, resp. j-th column of A

A([i1, i2, i3], :) submatrix consisting of rows i1, i2, i3 of A

A(:, [j1, j2, j3]) submatrix consisting of columns j1, j2, j3 of A

A>γ A>γ =

{
aij , if |aij| > γ
0 , otherwise

}
Q orthogonal matrix

U unitary matrix

v∗ complex conjugate transpose of v ∈ Cn

V ∗ complex conjugate transpose of V ∈ Cn×n

〈u, v〉 〈u, v〉 = u∗v, Euclidean scalar product of u, v ∈ Cn

||v||2 ||v||2 =
√
v∗v, Euclidean norm of v ∈ Rn

λ eigenvalue

x eigenvector

(λ, x) exact eigenpair

θ Ritz value

u Ritz vector

293

294 LIST OF SYMBOLS

(θ, u) Ritz pair

σ singular value

O(f) Big Oh notation, algorithm has order of f

G(i, k, θ) Givens rotation associated with angle θ and index pair (i, k)

J(p, q, θ) Jacobi rotation associated with angle θ and index pair (p, q)

K,L subspaces of Rn

Quantum Chemistry and Double Renner Effect

Ĥ Hamilton operator, Hamiltonian

T̂ Kinetic Energy Operator (KEO)

E exact eigenvalue of Ĥ

ψ exact eigenfunction of Ĥ

(E,ψ) exact eigenpair of Ĥ

H Finite Basis Representation (FBR) of Ĥ

Ẽ eigenvalue of H

c̃ eigenvector of H

(Ẽ, c̃) eigenpair of H

H̃ contracted Hamiltonian matrix H̃ = V∗HV˜̃
E eigenvalue of H̃˜̃c eigenvector of H̃

(
˜̃
E, ˜̃c) eigenpair of H̃

S spin multiplicity

J rotational quantum number

N quantum number related to angular momentum

K quantum number related to angular momentum

NR vibrational quantum number, stretching along the R-bond

Nr vibrational quantum number, stretching along the r-bond

LIST OF SYMBOLS 295

va
2 , v

b
2 vibrational quantum numbers, bending

Γrve molecular symmetry

Γvib vibrational symmetry

(N ′, N ′′) address of an N -block

∆K ∆K = |K ′−K ′′| (difference between K quantum numbers)

∆N ∆N = |N ′−N ′′| (difference between N quantum numbers)

(N ′, K ′), (N ′′, K ′′) address of a K-block

H(J,S,Γrve) J-block associated with the triple (J, S,Γrve)

H
(J,S,Γrve)
(N ′,K′),(N ′′,K′′) K-block determined by the address (N ′, K ′), (N ′′, K ′′)

Functional Analysis

H Hilbert space

F ,F−1 Fourier transform resp. inverse Fourier transform

L2(Rn) Hilbert space of square-integrable functions

L∞(Rn) Banach space of essentially bounded functions

C∞(Rn) space of infinetely often differentiable functions

S(Rn) Schwartz space, space of rapidly decreasing functions

H2(Rn) Sobolev space of order two

∆ ∆ =
n∑

i=1

∂2

∂x2
i

(Laplacian)

A∗ Adjoint operator of A

D(A) Domain of operator A

E(λ)λ∈R spectral family

σ(A) spectrum of operator A

σd(A) discrete spectrum of operator A

σess(A) essential spectrum of operator A

Index

A B C D E F G H I J K
L M N O P Q R S T U V
W X Y Z

A

ab initio
-calculation 1, 157
-step 141, 159, 161
-theory . 123, 140

address 166, 167, 170 f., 180, 189, 196, 206
adjoint

-matrix . 16
-operator . 126

AHP . 216
angular momentum 152, 162, 164
Approximate Hamiltonian Preconditioner

. see AHP
Arnoldi

-factorization . 74
-method .115
-package see ARPACK
-procedure . . . see Arnoldi’s procedure
-process see Arnoldi’s procedure
-relation 31, 32, 86
-vector . 31, 87

Arnoldi’s procedure 31 f., 85, 87
ARPACK74, 96, 238 f., 252

B

Banach space .125
basic information . 173
Basic Linear Algebra Subroutines

. see BLAS
basis

-contracted see contracted basis
-productsee product basis

basis set 164 f., 171, 175, 199 f., 216, 220,
227

Bauer-Fike theorem 22, 216
bending see bending motion

-basis 164, 167, 175
-coordinate . 145
-motion . . . 142, 145, 159 ff., 164, 173,

175
-quantum number 164, 177

best case . 48
Bi-Conjugate Gradients stabilized.

. see BiCGstab method
BiCGstab method . 85
bisection methodsee bisection
bisection 40, 47 f., 51, 55
black box . . .3, 6, 57, 115, 213 f., 232, 244
BLAS 210, 244 f., 249, 257, 260 ff.

-level 2 . 30
-level 3 . 43, 45

BLAS routine
-xORMTR . 210

block
-J . 166, 170 ff., 178 – 181, 198, 206 f.
-N 166, 167, 171, 197

diagonal 166, 170, 216
off-diagonal 166, 197

-K . .166, 167 f., 171 f., 177, 189, 196,
206, 216 ff., 220, 244 f.

basic 174 f., 175 f., 178 ff., 186, 203,
206 f., 211, 251

contracted . 206
diagonal167 – 171, 173, 176,

178 f., 185 f., 206 f., 216 f., 239 f.
off-diagonal 173, 178, 186

296

INDEX 297

-v2 .191, 195
-DIAG190, 205, 241
-DK . 190, 205, 241
-SO . 190, 205, 241
-DIAG 178, 180 f., 186 f., 189, 196 ff.,

203, 206
-DK 178, 181, 186 f., 189, 191,

194 – 200, 203, 231, 235
off-diagonal .180, 186, 206, 216, 239

-SO . .178, 181, 186 f., 189, 191 – 201,
203

diagonal . 178
off-diagonal .180, 186, 206, 216, 239

Born-Oppenheimer
-approximation 139, 157, 159 f.
-potential function 140

bra-ket .163
break even, point of 51, 55, 227, 240, 252
bulge chase .46

C

C∞(Rn) space . 128
C programming language . . . 8 f., 57, 115,

196, 234, 257, 260
canonical isomorphism134, 148 f.
Cartesian coordinates 136, 138, 142, 152,

161
CG method . 116
CGS method . 85
characteristic polynomial . . .13, 14, 41, 47
Čebyšëv polynomial 74
Compressed Sparse Column see CSC
Compressed Sparse Row see CSR
Conjugate Gradients see CG method
Conjugate Gradients Squared

. see CGS method
contracted basis 9, 155, 251

-approach . 208
-calculation . . 155, 209, 211, 240, 244
-problem 3, 9, 240, 251
-representation 158

contraction
-limit203, 206 ff., 212, 240, 251 f.

-scheme . . . 3, 6, 155 f., 185 f., 203 f.,
207, 211 f., 236, 252

E-convergence . 151
Ψ-convergence . 151
convex combination19, 61, 63, 67
coordinate system

-Cartesian . .see Cartesian coordinates
-Jacobi see Jacobi coordinates
-laboratory system.

see space fixed coordinate system
-molecule fixed142 – 146
-space fixed 136, 142 f., 146, 161
-vibrational .

see vibrational coordinate system
Coulomb potential 136
Coulombic

-attraction . 139
-repulsion . 139

Courant-Fischer theorem19
cross-product matrix 35, 70
CSC .191, 251
CSR .191, 251
cut-off

-number 164, 165, 251
-projection149, 153

D

DAC method .
. . see divide-and-conquer method

Davidson method . see Davidson’s method
Davidson’s method . . 6 f., 75, 76 – 79, 83,

115, 185, 236, 238, 252
deflation 50, 58, 76, 90, 94, 96, 98

-explicit .95
direct method 3 f., 6, 9 f.,

37, 41, 57, 121, 150, 154, 156, 185,
200, 207, 209, 213, 227, 242, 252

direct solver see direct method
direct transformation method

. see direct method
direct-contracted

-approach4, 5, 156, 157
-calculation . 156

298 INDEX

-problem . 240
direct-product

-approach .4, 156
-computation .156
-problem . 240

Discrete Variable Representation see DVR
divide-and-conquer

-driver .see xSYEVD

-method 49, 51, 55 f.
domain125 f., 127, 129, 133, 136 ff.
Double Renner

-effect . 1, 5, 7, 9, 56, 135, 145, 155 ff.,
159, 163, 251

-Hamiltonian 153, 163, 174, 185, 203,
206

-software . see DR
DR . .5, 10, 159, 177, 179, 181, 185 f., 203
driver

-divide-and-conquersee xSYEVD

-expert see xSYEVX

-QR . see xSYEV

-RRR . see xSYEVR

-SBR . see xSYEVT

-standard see xSYEV

drop tolerance . 232
DVR .151

E

Eckart conditions . 145
eigenapproximation 155, 188
eigendecomposition 17, 34 f., 42, 46, 49 f.,

71, 96 f., 105 ff., 188, 204
eigenfunction . . 123, 135, 137 f., 140, 152,

163
eigeninformation . 59
eigenpair . 4, 8, 13, 16,

37 ff., 42, 44 f., 47 f., 55 ff., 59 ff.,
65, 70, 74, 76 f., 79 f., 93 ff., 97 ff.,
102, 104, 108, 110 – 113, 116, 148,
185, 188, 209 f., 213 ff., 225 – 229,
234, 236 – 239, 245, 248, 252

-approximate . .6, 21 – 24, 37, 58 – 61,
81, 97, 104, 110, 148, 158, 211, 226

-clustered . 59

-exact . 208

eigenproblem . 2 – 5, 7,
9, 13, 25, 31, 41 f., 45, 50, 52, 60,
65 f., 71, 73 f., 77, 79, 85, 93, 95,
121, 135, 142, 146, 148, 151, 153 f.,
156, 165, 186, 188, 213, 230, 252

eigensolver 5, 37, 51, 56, 76, 148

-generic . 37

-generic direct41 f., 56, 209

-generic iterative . . . 58, 70, 75, 80, 84

eigenspace . 155

eigensystem . .4, 13, 15, 21, 28, 41, 45, 47,
49, 51, 55, 62, 70, 155, 203, 207

-approximate . 211

-complete 51, 109, 211

-full . 211

-partial . . .4, 13, 41, 48, 51, 55 f., 188,
209, 211, 252

eigenvalue 1 f., 5, 13, 14 – 24, 35,
37, 39 ff., 45 – 48, 50, 52, 61 – 64,
66 f., 71 – 74, 77, 79, 81, 96 f., 99,
102, 112 – 115, 123, 127, 132, 135,
137 f., 140, 146, 149 f., 155 f., 185 f.,
188, 203, 206 – 209, 211, 216, 226,
231 f., 234 – 238, 252

-approximate17, 24, 40,
52, 54, 58, 63, 67, 71, 75, 78, 80 f.,
104, 108, 153, 156

-clustered 48, 51, 56, 116

-exact150, 155, 188, 206, 208

-exterior . 63 f., 113, 214 f., 225, 230,
231, 236, 238 ff., 244, 251

-interior . . . 8, 59, 63 – 66, 68, 98, 104,
112 – 116, 213 ff., 229 ff., 234 ff.,
240, 244, 251 ff.

-simple . 98

-spurious 62 f., 66, 71

-unwanted . 73

-wanted . 73

eigenvalue computation . 6, 30, 37, 41, 57,
75, 77, 150, 200, 203, 209, 252

eigenvalue problem see eigenproblem

INDEX 299

eigenvector . 13, 14 f.,
17 – 20, 22 f., 35, 37 – 42, 45, 47 f.,
50 f., 57 f., 61 – 65, 67, 77 ff., 82,
95 – 99, 101 f., 104, 109, 155, 208,
210, 213

-approximate .17,
23 f., 40, 54, 57 f., 61 f., 67 f., 70 f.,
79, 83, 95, 97, 101, 103, 109 f.

-exact . 24, 208
-exterior .64

electron . . .123, 136, 138 ff., 146, 157, 159
electronic spin . 164
elementary charge 123
energy limit . 188
essential supremum125
essentialy bounded functions, space of . . .

. see L∞(Rn) space
Euclidean

-distance . 146
-norm . 22, 23

Euler angles143 f., 147
expert driver see xSYEVX

extraction
-harmonic . . . see harmonic extraction
-refined see refined extraction
-standard see standard extraction

extraction method 8, 111, 113 f.
-harmonic .

.see harmonic extraction method
-refined .

. . . see refined extraction method
-standard .

. see standard extraction method

F

FBR approach 148, 151
FBR .2 f., 5, 148, 149, 154, 175, 201, 218,

229, 251, 253
FCI . 83
Finite Basis Representation see FBR
Fischer-Riesz theorem 124
FORTRAN 77 8, 115, 234, 257, 260 f.
FORTRAN 90 . 5, 159

Fourier transform128, 130
Fourier-Plancherel theorem 128
Frobenius norm 52, 112, 155, 185 ff., 207
Full Configuration Interactionsee FCI
functional analysis 121, 124

G

Galërkin
-approximation . 60
-condition 59 f., 148

Gaussian elimination see LU factorization
Generalized Minimal Residual

. see GMRES method
Geršgorin disc . 15
Geršgorin’s disc theorem15, 48, 52
ghost value see spurious eigenvalue
Givens

-matrix .27
-rotation27 f., 30, 46, 87

GMRES method85, 86, 87 f., 92, 99,
111 f., 235

Gram-Schmidt procedure 48, 51, 56
-classial . 31
-classical .29 f., 33
-iterative classical 30, 58, 75, 80, 97,

105 f.
-modified .30, 62
-simultaneous . 67

H

Hamilton operatorsee Hamiltonian
Hamiltonian matrix 2, 5 ff.,

9, 112, 148 ff., 151 – 160, 165 ff.,
173, 177 – 181, 185, 188 f., 199 f.,
203, 205 f., 208 f., 211 ff., 215 f.,
225, 229, 232, 234, 239, 252 f.

Hamiltonian 1 f., 123 f., 126, 128, 131,
135 – 138, 138 f., 146, 148, 152,
155, 157, 159, 162 f., 173, 176, 188,
216

-Double Renner .
. see Double Renner Hamiltonian

-molecular138, 147 ff., 157, 161

300 INDEX

harmonic
-extraction method 59, 65, 111
-extraction . . 66, 68, 98, 114 f., 230 f.,

235, 252
-Rayleigh-Ritz procedure 67, 108, 229
-Ritz pair .65 ff.
-Ritz value65 – 68, 74, 108
-Ritz vector 65 ff., 108

harmonic oscillator 132, 152
hartree .186
Hermitian . 126

-eigenproblem . . see eigenproblem, see
Hermitian matrix

-matrix2 ff., 7, 9, 13, 15 ff.,
19 f., 22, 26, 31 ff., 37 – 42, 57 f.,
60, 66, 68, 71, 73, 75 f., 79, 83, 85,
87, 89 f., 127, 135, 149 f.

-operator 124, 126, 129 f.
J-Hermitian .88, 90
complex-Hermitian 16, 41, 43
non-Hermitian 31, 58, 74, 85, 88
real-Hermitian see symmetric matrix
Hessenberg matrix30 ff., 72, 86 f.
Hilbert space 16, 124 – 127, 129,

132 – 135, 150 ff., 158
Householder

-matrix . 25 f., 43
-reflection 25 ff., 30
-transform26, 28, 44
-transformation 25 f., 43
-vector . 25 f.

Householder tridiagonalization 43
-blocked . 44

I

ILU preconditioner 115 f., 214, 251
ILUPACK . 10, 116, 215, 232 – 236, 244,

251
impostersee spurious eigenvalue
incomplete LU factorization

. see ILU preconditioner
indefinite . 8

-matrix . 8, 90, 112, 213, 215, 235, 253

-preconditioner 112
information extraction . .58 f., 75, 80, 116
interaction

-matrix . . 4, 60, 62, 67, 70, 76, 96, 98,
104, 108 f., 149

-operator . 149
interlacing theorem .

.see interleaving theorem
interleaving theorem 20, 149

-Hylleraas-Undheim-MacDonald
. see MacDonald’s theorem

inverse iteration 9, 38, 39 f., 40, 46 ff., 51,
55 f., 81, 83

inverse power method see inverse iteration
INVITsee inverse iteration
IRA method74, 96, 238
IRAMsee IRA method
IRL method . .73, 74, 95 f., 185, 236, 238,

252
IRLM see IRL method
isotope . 138
iterative method

-for eigenvalues .
. .see iterative projection method

-for linear systems . . see Krylov solver
iterative projection method . . .3 f., 6 – 10,

28, 30, 37, 57 ff., 70, 77, 121, 150,
154, 156, 185, 229, 236, 242, 252

iterative-contracted
-approach 4, 156, 157

iterative-product
-approach 4, 156 f.
-calculation .6

J

Jacobi
-angle145, 159, 164
-coordinates145, 161 f., 175
-preconditioner . . . 215, 225, 236, 240,

251
-rotation . 28, 52 f.

Jacobi’s
-method 52, 54, 77

INDEX 301

-Orthogonal Complement Correction .
. see JOCC method

Jacobi-Davidson
-approach .8, 102
-correction equation 6 f., 80, 89 f., 94,

98, 100
-family . 238
-iteration . 82
-method .6 f., 9,

37, 41, 74, 76 f., 80, 82 ff., 93 – 98,
104, 111, 115, 173 f., 215, 235

-process . 95
-type method 251 f.
-variant . 68

JADAMILU . 115, 235
JDBSYM . 116
JDCG method . 116
JDQR method

-harmonic preconditioned96, 107,
108 f., 111, 114 f., 185, 209, 212 f.,
225, 229, 231, 236, 240, 251

-refined preconditioned 96, 106, 108 f.,
111, 114, 185, 209, 212 f., 225, 229,
231 f., 234, 236, 240, 251

-standard . . . 93, 96 ff., 102, 104, 111,
115, 215, 225, 236, 238

-standard preconditioned96, 104,
105, 108 f., 111, 113 – 116, 185,
188, 209, 212 f., 216, 225, 228 f.,
236, 240, 244 f., 251

JOCC method .77 ff.

K

Kato potential 131, 131, 137
Kato-Rellich potential 131, 137
Kato-Rellich theorem130
KEO . . .136, 139, 142, 152, 152, 154, 162,

175
kinetic energy operator see KEO
Kronecker product . 9,

35 f., 133 f., 153 – 156, 175 f., 189,
191 f., 194 f., 251, 253

Krylov

-method see Krylov solver
-solver . . . 7 f., 84, 85, 89 f., 92, 99 ff.,

110 f., 113, 115 f., 214 f., 230, 235
-space see Krylov subspace
-subspace method . . see Krylov solver
-subspace9, 31, 70, 84, 85, 88, 89

L

L2(Rn) space . . 2, 124, 128 – 131, 135 ff.,
147 ff., 151, 158

L∞(Rn) space125, 131, 137
Lanczos

-algorithmsee Lanczos procedure
-factorization 33, 72 ff., 238
-method . . 6 f., 38, 70, 71 f., 76 f., 84,

95, 115
-procedure33, 41, 70, 73, 85, 87 f.
-process see Lanczos procedure
-relation 33, 71 ff., 95
-vector . 33, 70 ff.

LAPACK 3, 5, 9, 26, 40, 42 – 45, 47 f., 51,
55 ff., 70, 210 f., 257, 260 f.

LAPACK routine
-CLARFG .26
-xCHTRD .43
-xGEVSD .70
-xSTEBZ 48, 51, 56
-xSTEDC . 51, 56
-xSTEGR48, 51, 56, 210
-xSTEIN40, 48, 51, 56
-xSTEQR . 47, 56
-xSYEVD 42, 51, 56
-xSYEVR42, 51, 56, 211
-xSYEVX 5, 42, 48, 51, 56
-xSYEV 42, 47, 51, 56
-xSYTRD . 44, 55

Laplace operator see Laplacian
Laplacian 126, 128 – 131, 136, 137
least squares

-polynomial . 74
-problem 34, 59, 68 f., 86 f.

Leja polynomial . 74
light quantum .122 f.

302 INDEX

line of nodes . 143
Linear Algebra Package see LAPACK
linear combination 60, 65, 68, 98, 132,

148, 164
-affine . 86

linear geometry . 159 f.
linear operator 124 f., 127, 134

-bounded . 125
-unbounded 16, 125, 126 f., 130 f., 150

linear system . . . 7, 31, 39 f., 59, 81, 84 f.,
89, 112, 116, 215

LU decomposition . . . see LU factorization
LU factorization . . 39, 85, 101, 109 f., 214,

216, 220 ff., 231 f.

M

MacDonald’s theorem2, 149 f.
MATLAB r© 8, 10, 115 f., 232, 257
matrix

-cross-product .
. see cross-product matrix

-Givens see Givens matrix
-Hermitian see Hermitian matrix
-Hessenberg . . . see Hessenberg matrix
-Householder . see Householder matrix
-indefinite see indefinite matrix
-interaction see interaction matrix
-orthogonal see orthogonal matrix
-orthonormal . see orthonormal matrix
-self-adjoint . . . see self-adjoint matrix
-symmetricsee symmetric matrix
-tridiagonal see tridiagonal matrix
-unitary see unitary matrix

matrix-vector
-multiplication . 4, 7, 9, 26, 28, 55, 57,

61, 71, 85, 88, 108, 111, 115, 154 f.,
156 f., 160, 170, 175, 177, 185, 190,
196, 199 ff., 202, 213, 226 f., 231 f.,
234 f., 237 – 240, 242, 244, 246 ff.,
251, 253

-operation30, 43, 45, 88, 103, 110,
113, 115, 229, 234, 245 – 248

-routine . 245, 249

Min-Max principle . . . see Courant-Fischer
theorem

Minimal Residual . . see MINRES method
MINRES method . 85, 87 f., 90, 99, 111 f.
mixed-product property 36
molecular symmetry

-group .163
-property .160

molecular symmetry 163,
164 – 172, 174 f., 177 – 181, 185,
188, 190, 198, 200, 202 – 209, 213,
215 – 219, 222 f., 229, 239

-group . 165
molecule

-ABB type 1, 5, 160, 163, 165, 167 f.,
171, 189

-ABC type . . 1, 5, 145, 160, 163, 165,
167 f., 171, 179, 189

-HOO . 1, 5, 160, 171, 174, 217, 227 f.
-MgCN 1, 5, 159 ff., 171 f.,

174, 186, 188, 200 f., 207, 209, 212,
216 ff., 221, 225 – 229, 232, 234,
236, 244 f.

Morse oscillator . 152
multi-index . 128

N

neutron .123, 138
Newton scheme .93 f.
norm

-L2(Rn) .129, 151
-L∞(Rn) see essential supremum
-|| · ||2 see Euclidean norm
-absolute . 21 f.
-Euclidean see Euclidean norm
-Frobenius see Frobenius norm
-matrix .21 f.
-monotone . 21
-spectral see spectral norm
-vector .22

nucleus 138 ff., 142, 144 – 147, 157, 159 ff.
numerical

-algorithm 3, 9, 21, 25

INDEX 303

-analysis . 3, 9
-analyst . 6
-approximation 138, 152
-computation . 1, 5
-difficulty . 8, 235
-example . 156
-experiment 4, 45, 66, 83, 96, 102,

111 f., 171
-integration 2, 5, 158 f., 175
-linear algebra9, 28, 45
-method . 41
-quadrature .see numerical integration
-result 5, 7, 9, 56, 203, 213, 236
-solution 2, 147, 150, 157
-task . 3
-technique 123, 138, 150, 158

O

O notation see time complexity
oblique projection method59, 64
Olsen’s method . .84 f., 185, 236, 238, 252
OpenMP

TM
. . .185, 238, 244 f., 249, 257,

261
operator

-adjointsee adjoint operator
-Hamilton see Hamiltonian
-Hermitian . . . see Hermitian operator
-interaction . . see interaction operator
-kinetic energysee KEO
-Laplace see Laplacian
-linear see linear operator

bounded .
. . . . see linear operator, bounded

unbounded .
. . see linear operator, unbounded

-self-adjoint . .see self-adjoint operator
orthogonal

-matrix . . .16, 25, 27, 49 f., 72, 88, 95,
149, 155

-projection 20, 59, 66, 126, 147
-projection method59
-transformation 25, 207

orthonormal

-basis 60 f., 66 ff., 70, 81, 85, 87, 124,
132, 134 f., 147, 151

-matrix . . . 16, 20, 30, 34, 60, 65 f., 86
-system .124

countable .124
dense . 124
separable . 124

P

pattern matrix192, 194
perturbation21, 22, 130 ff., 136, 173,

176 ff., 180, 186, 206 f., 216
PES140 f., 152, 157, 159 ff., 175
Petrov-Galërkin condition 59, 65, 68
phantom valuesee spurious eigenvalue
photon see light quantum
Planck’s constant 122 f.

-reduced 123, 135 ff., 139, 162, 173 f.,
177, 186

Podolsky trick 152, 157, 161
Poincaré separation theorem . 20, 61, 155,

206
polynomial

-Čebyšëvsee Čebyšëv polynomial
-characteristic .

. . . . see characteristic polynomial
-least squares .

.see least squares polynomial
-Leja see Leja polynomial

Potential Energy Surface see PES
potential matrix . . .153 ff., 158, 160, 175,

179, 189, 253
power method 9, 38, 39, 46, 71
preconditioner 7 ff., 76,

88, 89 f., 90 – 93, 102, 111 f., 115,
117, 173 f., 185 f., 213 – 216, 220,
225, 227, 229 f., 232 f., 235 f., 240,
244, 251 ff.

-J-block 216, 231, 234 ff., 244
-N -block 216, 231, 234 ff., 244
-K-block 216 f., 218, 231, 239 f., 242,

252
-K-block,modified . . . 216, 217 f., 239,

252

304 INDEX

-K(nb)-block . . .218, 219 ff., 226, 229,
239, 244

-K(nb)-block,modified 219, 220 – 223,
230, 244

-approximate Hamiltonian . . see AHP
-block 214 f., 218, 226, 230 f., 235, 244
-block Jacobi 112, 114, 215 f.
-call . 214, 227
-fixed 102, 104, 110 ff., 213, 215, 225 f.
-ILU see ILU preconditioner
-Jacobi see Jacobi preconditioner
-operation 110, 227, 235, 237
-PILUC . 233
-solve . 92, 110 f., 231, 237, 240, 244 f.
-variable .102

preconditioning
-left .89
-right . 89
-split .89

product basis 2, 9, 133, 149, 152 f., 156 f.,
163, 171, 188, 213, 251

-calculation 155, 209, 211 f., 216,
225, 239, 242

-problem 2, 6, 9, 155, 185, 236, 239 f.,
251 f.

-representation 158
-structure . . . 2, 154 ff., 156, 175, 189,

217
product space133, 135
projection method

-oblique see oblique projection method
-orthogonal .

see orthogonal projection method
-refined see refined projection method

projector .79, 79, 82, 90 f., 100, 116, 126,
149

proton . 123, 136, 138

Q

QMR method85, 88, 99, 112
QMRS method 85, 88, 90, 111 f.
QR

-decomposition 29, 30, 46, 74, 87

-driver . see xSYEV

-factorization . . see QR decomposition
-method38, 45 ff., 51, 55 f., 72
-step .72, 74

quantum
-chemist .75 f.
-chemistry 1 f., 6, 9, 83, 123, 149, 151,

163, 186, 209
-mechanics . . . 1, 123 f., 126, 128, 130,

135, 163
quantum number 163 ff., 214

-Γrvesee molecular symmetry
-Γvibsee vibrational symmetry
-MJ . 165
-S see spin multiplicity
-Jsee rotational quantum number
-N .165 ff., 197
-K165 ff., 174 f., 179
-NR . . see stretching quantum number
-Nr . . see stretching quantum number
-vη

2 see bending quantum number
-η164, 167, 174 f., 179
-rotational .

. see rotational quantum number
-stretching .

. see stretching quantum number
-bending .

. . . see bending quantum number
-vibrational see bending quantum

number, see stretching quantum
number, see vibrational quantum
number

-good . 165
Quasi Minimal Residual see QMR method
Quasi Minimal Residual simplified

. see QMRS method

R

rapidly decreasing functions, space of
. see Schwartz space

Rayleigh quotient . . .17 ff., 20, 23, 40, 58,
61 f., 67, 104, 108

Rayleigh quotient iteration . 9, 40, 41, 46,
81, 83 f., 93

INDEX 305

Rayleigh-Ritz
-approximation . 60
-method . see Rayleigh-Ritz procedure
-procedure . . . 8, 61, 61 – 64, 66, 69 f.,

75 f., 79 f., 93, 104, 115 f., 148,
155, 229

-projection 2 ff., 203
reduced mass 136, 162
refined

-extraction method70, 111
-extraction . 69, 98, 104, 114 f., 230 f.,

234 f., 252
-projection method 59, 59, 64
-Rayleigh-Ritz procedure 69, 229
-Ritz pair . 69
-Ritz value 68, 104
-Ritz vector68 f., 104, 109

Relatively Robust Representation
.see RRR method

Renner effect .159
reorthogonalization

-partial .34, 71
-selective . 34, 71

representation . 51
-tree . 51

residual 17, 23 f., 57 ff., 62, 65 f., 68, 70 f.,
73, 75, 78, 84 f., 88 f., 93, 108 f.,
111, 148, 238

restart 58, 72, 76, 95 f., 98
-explicit .72
-implicit . 72

Ritz
-approximation 68, 208
-basis . 99
-function . 149
-pair60 f., 69, 71, 149, 208
-space . 64
-value 2, 60, 61 – 64, 67 f., 71, 73, 104,

109, 149, 208
-vector . 6, 60, 61 – 64, 68, 71, 75, 96,

99, 109, 208
rotation see rotational motion
rotational

-basis function 157

-coordinate144, 147, 152 f., 157
-motion142 – 145, 157
-quantum number . .57, 112, 164, 165,

171, 179 f., 188, 200, 207, 209, 212,
216, 218, 221, 227, 229, 242, 244 f.

rovibronic . 1, 160
-energy level 1, 7, 56 f., 112, 160, 161,

185, 229
RQI see Rayleigh quotient iteration
RRR

-driver .see xSYEVR

-method 5 f., 45, 47, 48, 51, 55 f., 185,
209 f.

S

SBR 9, 55 f., 209 f., 257
SBR driver see xSYEVT

SBR routine
-xSBACC . 210
-xSBRDX . 210
-xSY2BC . 210
-xSYBTRD . 55
-xSYEVT . 209, 260
-xSYRDB . 210

scalar product . . . 24, 91, 124, 129, 132 f.,
148, 158, 163, 208

Schrödinger equation 1 ff., 135, 137 – 141,
146 f., 150, 157, 161, 186

-electronic 140 f., 150, 159
-nuclear 141 f., 157

Schwartz space 128, 129
search space . . . 6, 58, 75 f., 94 ff., 99, 104,

108, 111, 116, 238
secular equation . 50
self-adjoint . 126

-matrix . 16
-operator . . . 124, 126, 127, 129 – 132,

135 – 138, 150
shift 7, 39 f., 46, 51, 65 ff., 69, 72, 74, 81,

90, 102, 108, 114, 215, 229, 232,
235

-exact .73
-explicit .46

306 INDEX

-implicit46 f., 72, 74
-Wilkinson .46

shift-and-invert 6, 39, 59
similarity transformation . . 14, 25, 28, 41,

52
singular value34 f., 69
singular value decomposition 9, 34 f.,

69 f., 104, 109
singular vector .34

-left .34
-right 34 f., 69 f., 104, 109

skew projection 103, 110
Sobolev space129, 130 f., 136 f.
space

-C∞(Rn) see C∞(Rn) space
-H2(Rn) see Sobolev space
-L2(Rn)see L2(Rn) space
-L∞(Rn) see L∞(Rn) space
-S(Rn)see Schwartz space
-Banach see Banach space
-Hilbert see Hilbert space
-Schwartz see Schwartz space
-Sobolev see Sobolev space

sparsity 6 f., 57, 155 f., 160, 177, 180, 189,
191, 193, 195, 200 ff., 232, 234,
239

-block . 8, 179, 190, 201, 203, 231, 239
-pattern4, 7, 112, 176, 180 f., 186,

191 f., 194 f., 206, 214, 218, 251
-plot . 217, 232 f.
-ratio . 191, 232
-rule176 f., 181, 189
-structure 156, 186, 203, 206, 231, 252

spectral
-approximation 150
-decomposition 127
-family . 126 f.
-norm . 62
-properties . 89
-radius . 13, 23
-theory . 126, 136
-transformation 59
-window .213

spectrum . .3 – 6, 8, 13, 25, 51, 59, 63, 66,
72, 104, 113 f., 127, 131, 136 f.,
156, 188, 214, 236, 251

-discrete 127, 132, 137 f.
-essential127, 131, 137

spectrum . 121
-absorption 1, 121 f.
-emission . 1
-reference . 121 f.

speed of light .123
spin multiplicity 164 f., 165 f., 170 f., 174,

177 – 181, 185, 188, 198, 200, 203,
206 – 209, 213, 215 – 224, 240, 242

spin-orbit coupling 136, 162
square integrable functions, space of

. see L2(Rn) space
standard driver see xSYEV

standard extraction method 111
standard extraction 68, 113 ff., 230
stretching see stretching motion

-coordinate 145, 152, 163
-motion . 164
-motion 142, 164, 173, 175
-quantum number 163 f., 175, 179

subspace
-acceleration 57, 71, 83 f., 93 f.
-expansion . 58, 70, 75, 79 f., 83 f., 98,

111
SUN

TM
architecture 244

SUN
TM

Fire workstation . . 4, 57, 201, 209,
242, 244, 259, 260 f.

SUN
TM

Performance Library 244
SVDsee singular value decompostion
symmetric matrix5, 14 f., 16, 25, 32,

41 – 45, 47, 52, 55 ff., 68, 98, 112,
121, 148, 151, 232

T

target value . . .65, 97 f., 104 – 108, 112,
114, 213, 229 f., 232, 234 f., 243

tensor product 132 f., 133, 134 f., 152 ff.,
158, 160, 163, 174 f.

tensor space .133

INDEX 307

Theorem
-Bauer-Fike . . see Bauer-Fike theorem
-Courant-Fischer. .

. . . . see Courant-Fischer theorem
-Fischer-Riesz. .

. see Fischer-Riesz theorem
-Fourier-Plancherel

. . see Fourier-Plancherel theorem
-Geršgorin .

. . . . see Geršgorin’s disc theorem
-Kato-Rellich .

.see Kato-Rellich theorem
-MacDonald see MacDonald’s theorem
-Poincaré .

.see Poincaré separation theorem
theoretical spectroscopy 1, 9 f., 121, 123,

151, 156, 163, 252
time complexity 4, 42, 56 f., 156, 209
transformation method see direct method
translation see translational motion
translational

-coordinate .144
-motion 142 ff., 146 f., 157

triatomic molecule 1, 5 ff., 9, 56, 145, 155,
159 f., 251

tridiagonal
-eigenproblem 5, 45, 51, 55 f.
-eigensolver 45, 56, 209 f.
-matrix . 9, 32, 41 f., 45 ff., 49, 52, 55,

87 f., 185
tridiagonalization5, 9, 42, 54 ff., 185,

209 f., 260

U

unitary
-isomorphism . 128
-matrix 16, 17 f., 21 f., 25, 29, 38,

41 f., 44

V

vacuum permittivity 123, 136 f.
variational

-approach 2, 148, 150 – 153, 160, 165

-character 149, 151, 155
-characterization 35, 69, 150
-computation 57, 159
-principle . 2

vibration see vibrational motion
vibrational

-basis154, 218, 251
-basis set 112, 167, 216, 229
-coordinate . 145, 147, 152 f., 157, 175
-coordinate system 161
-motion 142, 145, 157, 160
-quantum number 175
-symmetry167, 174 – 177, 179 ff.,

204, 207

W

wave-particle duality 122
wavenumber .121, 186
worst case . 48, 56

Z

zero point energy . 185

	Titelseite
	Abstract
	Contents
	Introduction
	The General Problem for N-atomic Molecules
	General Solution Strategies
	Objective of the Thesis
	Structure and Organization of the thesis
	Acknowledgements

	Numerical Linear Algebra
	Preliminaries
	Eigensystems of General Matrices
	Eigensystems of Hermitian Matrices
	Basic Properties and Definitions
	Variational Characterisations
	Perturbation Analysis and Error Bounds

	Technical Tools
	Orthogonal and Unitary Matrices
	Householder Reflections
	Givens and Jacobi Rotations

	QR Factorisation and Orthonormalisation of Vector Sets
	Orthogonal Bases of Krylov Spaces
	Arnoldi's Procedure
	Lanczos Procedure

	Singular Value Decomposition (SVD)
	Kronecker Products

	Methods for Computing Partial Eigensystems of Hermitian Matrices
	Iterative Single Vector Methods
	Power Method
	Inverse iteration (INVIT)
	Rayleigh Quotient Iteration (RQI)

	Direct Methods
	Reduction to Tridiagonal Form
	Standard Approach
	Two-stage Approach

	Methods for the Symmetric Tridiagonal Eigenproblem
	QR Algorithm
	Bisection Method and Inverse Iteration
	Divide-and-conquer Method
	RRR Algorithm

	Jacobi's Method
	Assessment and Summary
	Tridiagonalization Approaches
	Tridiagonal Eigensolvers
	Summary

	Iterative Projection Methods
	Information Extraction
	Standard Extraction
	Harmonic Extraction
	Refined Extraction

	Subspace Expansion
	Lanczos Method
	Implicitly Restarted Lanczos Method (IRLM)
	Davidson's Method

	The Jacobi-Davidson Method and its Variants
	Motivation of the Algorithm
	JOCC Method
	Davidson's Method Revisited

	The Basic Jacobi-Davidson Method for Computing one Eigenpair
	Consistency of the Correction Equation
	Relation to Other Methods
	JD and RQI
	JD and Davidson
	JD and Olsen
	JD and Lanczos

	Solving the Correction Equation
	Iterative Krylov Methods for Linear Systems
	GMRES
	MINRES
	QMR and QMRS
	Preconditioners
	Preconditioning the Correction Equation

	Convergence of the Jacobi-Davidson Method

	The JDQR Variants for Computing Several Eigenpairs
	Deflation
	Restarts
	Standard JDQR
	Convergence of the JDQR Method
	Preconditioning the Deflated Correction Equation
	Variants of JDQR Using a Fixed Preconditioner
	Preconditioned Jacobi-Davidson Correction Equation
	Preconditioned Standard JDQR
	Preconditioned Refined JDQR
	Preconditioned Harmonic JDQR

	Storage Requirements and Computational Costs

	Summary and Guidelines for the Practical Use
	Choice of the Parameters
	Choice of the Krylov Solver
	Choice of the Extraction Method
	Related Approaches and Software Availability

	Quantum Chemistry
	Eigenvalue Problems in Theoretical Spectroscopy
	Motivation and Introduction
	Prerequisites from Functional Analysis
	Linear Operators on Hilbert Spaces
	Tensor Products of Hilbert Spaces and Operators

	Schrödinger Equation for One-Particle Systems
	Molecular Hamiltonian
	Born-Oppenheimer Approximation
	Nuclear Motion and Coordinate Systems
	Variational Approach and Matrix Eigenvalue Problem
	Product vs. Contracted Basis and Direct vs. Iterative Eigensolver
	Product Basis
	Contracted Basis
	Dichotomies and General Approaches

	General Framework for the Computation of Energy Levels

	The Double Renner Effect for Triatomic Molecules
	Breakdown of the Born-Oppenheimer Approximation
	The Double Renner Hamiltonian
	Choice of the Basis Set
	Construction and Structure of the Hamiltonian Matrix
	Hierarchies and Partitioning into Blocks
	Block and Problem Sizes
	Hamiltonian Matrix Blocks
	Basic diagonal K-blocks
	Diagonal and Off-Diagonal Perturbation K-blocks

	Construction of the Hamiltonian Matrix

	Application to the Problem
	Eigensolvers for the Computation of Rovibronic Energy Levels
	Matrix Properties and Specification of the Eigenproblem
	Matrix-Vector Multiplication and Storage Scheme
	Sparsity of the Off-Diagonal Hamiltonian Matrix Blocks
	Sparsity and Compact Storage of the SO-Blocks
	Sparsity and Compact Storage of the DK-Blocks

	Storage Scheme for the Hamiltonian Matrix Blocks
	Addressing the DIAG-blocks
	Addressing the DK-blocks
	Addressing the SO-blocks

	Matrix-Vector Multiplication Exploiting Compact Storage

	Contraction Scheme and Contracted Basis
	Direct Solvers
	Product Basis Calculation
	Contracted Basis Calculation

	JDQR Product Basis Calculation
	Preconditioners for Exterior Eigenvalues
	Specification and Properties
	Numerical Results

	Preconditioners for Interior Eigenvalues
	Comparison with Other Methods

	JDQR Contracted Basis Calculation
	Parallelization

	Summary and Outlook

	Appendices and Surveys
	Appendix
	Conventions for the Usage of Fonts
	Romanization of Russian Names
	Mathematical Notation
	Technical Details and Implementation Issues
	Input Files for DR

	Bibliography
	List of Tables
	List of Figures
	List of Algorithms
	List of Listings
	List of Symbols
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

