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Introduction

Let k be an algebraically closed field. Given an algebraic group G and a G-variety
X it is an interesting question how to describe the G-orbits in X. Moreover,
a standard fact from algebraic geometry guarantees that any G-orbit in X is a
locally closed subset of X, whose boundary is a union of G-orbits having strictly
smaller dimensions. In this context, if x, y are points in X such that G.y ⊆ G.x,
the G-orbit of y is called a degeneration of the G-orbit of x. This defines a partial
order on the set of orbits and poses the problem of a classification, the so called
degeneration problem. In general, neither the G-orbits nor their closures can be
computed systematically.

One of the most famous solved examples for a degeneration problem is the one of
GLd(C)-orbits in Cd×d where GLd(C) acts on Cd×d by conjugation. The orbits are
known well in this case. Any orbit has a representative in Jordan normal form J .
Therefore, it can be described by means of continuous parameters, the eigenvalues
of J , together with some discrete parameters, the partitions that encode the block
sizes of J with respect to the different eigenvalues.

To solve the degeneration problem it suffices to understand the degeneration
behaviour of the nilpotent orbits. There are two nice criteria, a partition criterion
and a rank criterion, to decide whether a nilpotent orbit lies in the closure of
another one. Both only use terms of representation theory to reach this decision.
If Jp and Jq are nilpotent corresponding to the partitions p, q, then it holds:

∀i ∈ {1, . . . , d} :
i∑

k=1

pk ≤
i∑

k=1

qk ⇔ GLd(C).Jp ⊆ GLd(C).Jq

⇔ ∀i ∈ {1, . . . , d} : Rank(J ip) ≤ Rank(J iq).

From another point of view, Cd×d can be interpreted as the variety ModdC[X](C)

of d-dimensional modules over C[X], the path algebra of the extended Dynkin
quiver with one point and one loop. The GLd(C)-orbits correspond to the isomor-
phism classes of C[X]-modules. Thus the just mentioned example is also called
the solution of the degeneration problem for isomorphism classes of d-dimensional
C[X]-modules.

A natural generalization is to consider a path algebra kQ over any extended
Dynkin quiver Q instead of the algebra C[X]. The GLd(k)-orbits in ModdkQ(k) were
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2 INTRODUCTION

classified independently by Donovan-Freislich and Nazarova (cp. [9], [13]), and
the correspondence between the isomorphism classes of d-dimensional kQ-modules
and the GLd(k)-orbits in ModdkQ(k) allows us again to speak of degenerations of
d-dimensional kQ-modules. We write M ≤deg N if the orbit corresponding to N
lies in the closure of the orbit corresponding to M .

If kQ is finite dimensional, the partition criterion and the rank criterion fortu-
nately have some kind of generalization, the partial orders ≤ext and ≤. Both are
defined in terms of representation theory and make the problem accessible for me-
thods of that domain. Furthermore, degenerations are built up of minimal disjoint
degenerations. N is called a minimal disjoint degeneration of M , if M and N are
adjacent relative to the degeneration order and have no common direct summands.
Then N is isomorphic to the direct sum of two indecomposables U and V . Hence,
the degeneration problem reduces to the classification of minimal disjoint degene-
rations, which leads, up to duality and tilting, to the distinction of the following
cases:

(a) U projective simple, V preprojective;

(b) U and V regular;

(c) U projective simple, V regular;

(d) U projective simple, V preinjective.

For (a) the combination of a periodicity theorem and computer calculations results
in a complete classification (see [6]) while (b) is equivalent to the degeneration
problem of nilpotent representations of some oriented cycle and can be found in
[11]. The remaining possibilities are investigated in parallel work with Wolters.
She treated the case (c) (see [16]).

The present dissertation considers mainly the case (d). On the search of all
modules M such that M <deg U ⊕V is minimal there arises one difficulty. Even in
small examples so many modules consisting of indecomposables of any connected
components of the Auslander-Reiten quiver have to be taken into account that one
easily loses track. It is due to the first major result of this work, a reduction theo-
rem, that we get a chance to avoid this complication. Any minimal degeneration
M <deg U ⊕ V is given by an exact sequence 0 → U

ε→ M
π→ V → 0. Choosing a

directed decomposition M = M1 ⊕M2 and denoting the component of ε that ends
in M1 by ε1 the reduction theorem says that Coker(ε1) is again indecomposable
and that M1 <deg U ⊕ Coker(ε1) is also a minimal disjoint degeneration.

A skillful combination of the reduction theorem with tilting theory enables us
to deduce an inductive codimension formula, which indicates that the codimension
of a general minimal disjoint degeneration M <deg U ⊕V can be written as a finite
sum of codimensions of certain minimal degenerations M ′ <deg U

′ ⊕ V ′ where M ′

has no proper directed decomposition. This leads in particular to the consideration
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of modules Mµ that come from a single regular tube and degenerate into U ⊕ V .
It turns out that this sort of degenerations has bounded codimension.

Exploiting this fact and the codimension formula yields the second main result
of this thesis. The codimension of any minimal M < U ⊕ V is bounded. Further-
more, the proof points out a method to gain the bound. It suffices to inspect all
regular Mµ of ”small” dimensions, what can be done with the help of a computer.
We achieve an improvement of the second main result: Any minimal degeneration
M <deg U ⊕ V has codimension one.

This circumstance has two nice consequences. First, from the geometrical point
of view a minimal disjoint degeneration is as simple as possible. In particular,
results of Bongartz and Zwara insure that the orbit corresponding to M is regular
at the point U ⊕ V (see [4], [21]).

Second, we obtain as in case (a) a minimality preserving periodicity theorem,
which reduces the classification of all minimal disjoint degenerations to a finite
problem.

Besides, together with results of Bongartz and Fritzsche in case (a) resp. Wolters
for the cases (b) and (c), it follows that the codimension of an arbitrary minimal
disjoint degeneration over a tame path algebra is at most 2 (see [6], [16]).

This dissertation consists of 5 chapters and an appendix. The first chapter
recalls some basic facts on the representation theory of extended Dynkin quivers
that are needed in the sequel. Furthermore, the degeneration problem and results
on it for tame path algebras are summarized.

The second chapter adapts some results originating from [6] to our situation.
It is shown that in case of a tame path algebra they hold with more generality.
The just mentioned reduction theorem is stated and proved. The chapter closes
with some remarks on the defect and the position of the preprojective and the
preinjective parts of M .

In the third chapter we introduce a general technique to analyse the codimension
of minimal disjoint degenerations. The inductive codimension formula is deduced
and its consequences for our situation are explained. Then we consider minimal
degenerations M < U ⊕ V with preprojective M . We show that their codimension
is always one.

The fourth part is devoted to the study of the regular part of M . We introduce a
test criterion for degenerations and solve the case −∂(U) = ∂(V ) = 1 completely by
means of theoretical arguments. Subsequently, we concentrate on the case where
−∂(U) ≥ 2 or ∂(V ) ≥ 2. We derive the periodicity theorem, which preserves
codimensions. But notice, its minimality preserving property is not clear at this
point. After that, the technically most complicated part of this thesis follows, the
consideration of minimal degenerations M <deg U⊕V where M comes from a single
regular tube. If the tube is homogeneous, we describe explicitly the shape of M
and show that the codimension is one. For the remaining three non-homogeneous
tubes we reduce the problem to the inspection of modules with ”small” dimension
and prove that the codimension is bounded in this case. The chapter closes with
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the derivation of the second main result of this dissertation. The codimension of
any minimal degeneration M <deg U ⊕ V is bounded.

The last chapter deals with the computer program that determines all minimal
Mµ < U⊕V , whereMµ comes from a single regular tube and has ”small” dimension.
We explain the strategy of the program and summarize the essential results of its
calculations. Finally, we reap the benefits of the previous work. Based on the
computer results we conclude that the codimension of any minimal degeneration
M <deg U ⊕ V is one. Moreover, we deduce the above mentioned consequences on
the singularities resp. the periodicity theorem and obtain a finite problem.

The appendix contains the lists produced by the computer program of the fifth
chapter and some further lists, which are needed in chapter 4.

At this point I wish to thank my advisor Prof. Dr. Klaus Bongartz for sug-
gesting me this interesting topic, for his great support during the research and for
many helpful discussions, especially on chapter 3. My special thanks also go to
Isabel Wolters for a good cooperation, in particular for providing me parts of her
computer program. This saved me much time and efforts. Furthermore, I want
to express my gratitude to Prof. Dr. W. Borho for employing me at his chair,
to Thomas Konrad for the good collaboration and to all members of the Research
Group Algebra/Number Theory for the pleasant working atmosphere.

I am grateful to my parents, my brother and my friends for much moral support
and that I always can rely on them. I wish to thank my lovely wife Jenia for checking
earlier versions of this dissertation on spelling and grammar and for never giving up
to improve my English. Furthermore, I am thankful to her for giving me strength,
for her love and her ability to put me into good humor.



Chapter 1

Basic notions and facts

1.1 Extended Dynkin quivers

Throughout this thesis let k be an algebraically closed field. We make the following
assumptions, that stay valid until the end of this paper:

• The quivers we talk about are always without oriented cycles.

• All considered modules are finite dimensional.

We will investigate degenerations of modules over tame path algebras. To do
this we first want to recall some basic facts about the representation theory of
extended Dynkin quivers (see [8], [15] or [7]), that will be used in the sequel.

Let Q be an extended Dynkin quiver, i.e. a quiver whose underlying graph |Q|
is one of the following:

Ãm,m ≥ 1 : 1 2 . . . m m+ 1

D̃n, n ≥ 4 :

1 n
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Ẽ7 :

8

1 2 3 4 5 6 7

Ẽ8 :

9

1 2 3 4 5 6 7 8

We denote the set of points by Q0 and the set of arrows by Q1. The projective
resp. injective indecomposable modules corresponding to the points x ∈ Q0 are de-
noted by P (x) resp. I(x). With their help, the dimension vector of a kQ-module X
can be defined. It is the vector dim(X) := ([(P (x), X])x∈Q0 = ([X, I(x)])x∈Q0 . Here
and in the following [X, Y ] resp. [X, Y ]1 are abbreviations of dimkHomkQ(X,Y )
resp. dimkExt

1
kQ(X,Y ).

Let 〈 , 〉 be the Euler form of Q and q be the Tits form. q is positive semi-
definite and its radical is generated by a uniquely determined vector δ ∈ N|Q0|, with
at least one entry equal to one.

Definition 1.1.1 The defect of a kQ-module X is ∂(X) := 〈δ, dim(X)〉.
Since for modules Y and X there is the relation 〈dim(Y ), dim(X)〉 = [Y,X] −

[Y,X]1, we derive ∂(X) = [E,X]− [E,X]1 for all modules E with dim(E) = δ.
The Auslander-Reiten translations DTr resp. TrD are written shortly τ resp.

τ−. We list some of their well known properties. Let X and Y be indecomposable
modules.

(a) If X is not projective, then τX is indecomposable, with τ−τX ∼= X and
∂(τX) = ∂(X).

(b) If X is not injective, then τ−X is indecomposable, with ττ−X ∼= X and
∂(τ−X) = ∂(X).

(c) X projective (resp. injective) implies τX = 0 (resp. τ−X = 0).

(d) Auslander-Reiten formula: Hom(X, τY ) ∼= DExt1(Y,X) ∼= Hom(τ−X,Y ).

The Auslander-Reiten quiver ΓkQ breaks up into a preprojective component
P , a P1(k)-family of regular connected components, the so called regular tubes
Tµ, and a preinjective one I. Therefore a kQ-module X can be decomposed into
X = XP ⊕

⊕
µ∈P1 Xµ ⊕ XI with XP ∈ add(P), Xµ ∈ add(Tµ) and XI ∈ add(I).

Recall, if X is a family of kQ-modules, add(X ) denotes the full subcategory of
mod(kQ) consisting of all modules that are isomorphic to direct summands of
finite direct sums of modules from X .

The preprojective component P of the Auslander-Reiten quiver is by definition
the connected component without oriented cycles whose points are the isomorphism
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classes of indecomposables X such that τ kX is projective for some k > 0. But also
the defect characterizes the modules of this component. It holds: An indecompo-
sable X is preprojective if and only if ∂(X) < 0. Nonzero homomorphisms in P
always go from the left to the right in the following sense: Let X and Y be two
preprojective indecomposables. If we have Hom(X, Y ) 6= 0, then there is a path
in the Auslander-Reiten quiver from X to Y .

Dually the preinjective component I has no oriented cycles and the points are
isomorphism classes of indecomposables X such that τ−kX is injective for a k > 0
or equivalently that have positive defect. If X, Y are indecomposable preinjective
modules, Hom(X,Y ) 6= 0 implies that there is a path from X to Y .

An indecomposable module X is called regular if for every k ∈ Z the module
τ kX is neither projective nor injective. Consequently, they can be characterized
as those indecomposables whose defects are zero. The full subcategory of regular
modules is denoted by R. It is abelian, closed under extensions and the Auslander-
Reiten translations are inverse equivalences in this subcategory. Every regular
module R can uniquely be written as R = ⊕µ∈P1(k)Rµ, where Rµ ∈ add(Tµ).

For each µ there exists a pµ ∈ N such that the full subcategory add(Tµ) is
equivalent to the category N (pµ) of nilpotent representations of the oriented cycle
with pµ points. To be more precise: add(Tµ) contains exactly pµ isomorphism
classes of - in this subcategory - simple modules. These modules are called regular
simple. They form a τ -orbit and the sum of their dimension vectors is δ.

Every R ∈ Tµ admits a unique composition series in R. There is exactly
one regular simple submodule S contained in R. This module is defined to be the
regular socle of R, denoted Soc(R). The regular composition factors are then (from
the bottom) S, τ−S, . . . , τ−lS, for some l ∈ N. We call Top(R) := τ lS the regular
top of R and l(R) := l+ 1 the regular length of R. In addition, the multiplicity of
any E ∈ Tµ in the regular composition series of R is abbreviated by lE(R). The
number pµ is also called period of the tube Tµ, since we have τ pµR = R for all
R ∈ Tµ and not only for the simple ones. For every quiver Q there are at most
three µ ∈ P1(k) with pµ 6= 1. The tubes with pµ = 1 are called homogeneous.

Between regular indecomposables of different tubes there are no nonzero ho-
momorphisms. To compute the homomorphism space dimensions between regular
indecomposables of the same tube there is the following lemma.

Lemma 1.1.2 Let R1 and R2 be regular indecomposable modules belonging to the
tube Tµ of period pµ, then

[R1, R2] = min(lTop(R1)(R2), lSoc(R2)(R1)).

In particular for homogeneous tubes [R1, R2] = min(l(R1), l(R2)).

Furthermore there are neither nonzero homomorphisms from preinjective to
preprojective or regular modules nor from regular to preprojective modules. We
can define a transitive relation 4 on the set of indecomposable kQ-modules. We
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denote X 4 Y and call X a predecessor of Y if there is a path of non-invertible
homomorphisms X = X1 → X2 → . . . → Xt = Y . This relation is a partial order
on the preprojective and the preinjective connected component of the Auslander-
Reiten quiver. Because of the previous we conclude, that Hom(X, Y ) 6= 0 for
indecomposable X, Y implies X 4 Y .

The additivity of the defect function ∂ on exact sequences gives rise to a pro-
perty of preprojective (resp. preinjective) modules with defect −1 (resp. 1), which
is of convenience.

Lemma 1.1.3 (a) Suppose 0 6= ϕ : X → Y is a homomorphism of preprojective
modules such that ∂(X) = −1, then ϕ is injective.

(b) If ϕ : X → Y is a non-zero homomorphism of preinjective modules such that
∂(Y ) = 1, then ϕ is injective.

Finally, let us denote the Coxeter transformation by C. C induces an automor-
phism of finite order p(Q) on Z|Q0|/Zδ. More details gives the following formula,
which holds for every indecomposable module X and which is for a certain natural
number ε(Q) of the form

Cp(Q)(dim(X)) = dim(X) + ε(Q)∂(X)δ. (1.1)

The positive integer p(Q) is the Coxeter number of Q, which should not be confused
with the definition of the Coxeter number in Lie Theory. Since for non-injective
indecomposables X there is the equality dim(τ−X) = C−1(dim(X)), this formula
shows that the dimension vectors on the preprojective component have some kind
of periodicity. The dual statement is valid for the preinjective component. Besides,
we have

Lemma 1.1.4 Let P be a projective and I be an injective indecomposable. If
k ∈ {0, 1, . . . , p(Q)− 1}, then

dim(τ−kP ) ≤ ε(Q)(−∂(P ))δ and dim(τ kI) ≤ ε(Q)(−∂(I))δ.

Proof. To avoid some minus signs the injective case will be shown. Assume
dim(τ iI) 6≤ ε(Q)∂(I)δ, then η := dim(τ iI) − ε′(Q)∂(I)δ 6≤ 0. On the other hand,
η is a root and it were positive for this reason. ∂(η) = ∂(I) would imply that η
is the dimension vector of an indecomposable preinjective module Z. But then we
would have dim(I) = cp(Q)−i(dim(Z)) = dim(τ p(Q)−iZ), which does not fit with the
injectivity of I. ¤

The following table collects some of the previously mentioned specific dates of
the extended Dynkin quivers. In almost all cases the informations are independent
from the orientation except of the case, where Q is of type Ãn. In the case we have
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to count the numbers p resp. q of arrows that go clockwise resp. anticlockwise.
We write Ãn(p, q) for this fact.

Q δ ε(Q) p(Q) periods of non-hom. tubes

Ãn(p, q) (1, 1, . . . , 1, 1) n
gcd(p,q)

lcm(p, q) p, q

D̃2n+1 (1, 1, 2, . . . , 2, 1, 1) 2 2(2n− 1) 2n− 1, 2, 2

D̃2n (1, 1, 2, . . . , 2, 1, 1) 1 2n− 2 2n− 2, 2, 2

Ẽ6 (1, 2, 3, 2, 1, 2, 1) 1 6 3, 3, 2

Ẽ7 (1, 2, 3, 4, 3, 2, 1, 2) 1 12 4, 3, 2

Ẽ8 (2, 4, 6, 5, 4, 3, 2, 1, 3) 1 30 5, 3, 2

1.2 Degenerations of d-dimensional modules

In this section the degeneration problem and some results on it for tame quiver
algebras will be explained.

Let A be a finite dimensional k-algebra. We choose a basis B = (a1 =
1, a2, . . . al) of A with the corresponding structure constants αijk defined by

aiaj =
l∑

k=1

αijkak.

To store the structure of a d-dimensional A-module M it suffices to memorize the
l-tuple m = (m1 = Ed,m2 . . .ml) of d × d-matrices whose components mi are the
matrix representations of the left multiplications with ai after fixing a basis on M .

Definition 1.2.1 The affine variety of d-dimensional A-modules is the set

ModdA(k) :=

{
m = (m1,m2, . . . ,ml) | mimj =

l∑

k=1

αijkmk

}
⊆ (kd×d)l.

The general linear group GLd(k) acts on ModdA(k) morphically by conjugation.
The orbits of this action correspond to the isomorphism classes of d-dimensional A-
modules. From algebraic geometry we know that each orbit GLd(k).m is a locally
closed subset of ModdA(k) whose dimension is d2− [M,M ] and whose boundary is a
union of orbits of strictly smaller dimensions. Thus the following defines a partial
order on the set of isomorphism classes of d-dimensional modules.

Definition 1.2.2 Let M and N be A-modules of dimension d.

(a) We write M ≤deg N and call N a degeneration of M if GLd(k).m ⊇ GLd(k).n.
Alternatively we call M a deformation of N .
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(b) A degeneration M <deg N is called minimal if there is no chain M <deg

L <deg N .

(c) The codimension of a degeneration M <deg N is defined by Codim(N,M) :=
dim(GLd(k).m) − dim(GLd(k).n) which is obviously the same as [N,N ] −
[M,M ].

It would be interesting to understand in which orbit closures the orbit corres-
ponding to a given module N is contained. Zwara gives in [19] a criterion that
translates the problem into terms of representation theory.

Theorem 1.2.3 (Zwara, [19], 1.1, p. 2) Let M and N be two A-modules of di-
mension d. Then M degenerates into N if and only if there exists some A-module
Z and an exact sequence 0 → Z → Z ⊕M → N → 0.

Nevertheless, for a general algebra A the explicit description of the orbit clo-
sures is an unsolved problem since not even the indecomposable modules are clas-
sified up to isomorphism. On the contrary, for modules over the path algebra of a
Dynkin quiver and for preprojective modules over a tame path algebra all minimal
degenerations are known (see [6], [12]). In these cases representation theoretical
descriptions of the ≤deg-order by the ≤ext-order and the ≤-order are very helpful.

Definition 1.2.4 Let M und N be A-modules with the same dimension vector.
We define as follows

(a) M ≤ext N if there are modules Mi, Ui, Vi, 1 ≤ i ≤ t and exact sequences
0 → Ui →Mi → Vi → 0 such that M1 = M , Mi+1 = Ui⊕Vi and N = Ut⊕Vt
for some t ∈ N.

(b) M ≤ N if the inequality [M,X] ≤ [N,X] holds for all X ∈ A-mod.

M ≤ N is equivalent to [X,M ] ≤ [X,N ] for all X ∈ A-mod, since for modules
M , N of the same dimension vector and all non-injective modules X there is a
formula of Auslander and Reiten (see [1]):

[N,X]− [M,X] = [τ−X,N ]− [τ−X,M ]. (1.2)

In general we have

M ≤ext N ⇒ M ≤deg N ⇒ M ≤ N,

but Bongartz showed in [5] that the reverse implications also hold for preprojective
modules. For extended Dynkin quivers the situation is even better. There is the
following

Theorem 1.2.5 Let A = kQ be a path algebra whose underlying graph is an ex-
tended Dynkin diagram. Then:
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(a) (Bongartz, [3], 5.1, p. 666) The partial orders ≤deg and ≤ coincide.

(b) (Zwara, [18], p. 72; [19], 1.5, p. 3) The partial orders ≤ext and ≤deg coincide.

Furthermore Bongartz proved in [4] a theorem that identifies the building blocks
of the minimal degenerations provided the three partial orders all agree as in the
preprojective and the tame case.

Theorem 1.2.6 ([4], 6.1, p. 593) Let A be an algebra, C be a full subcategory
of A-mod, which is closed under isomorphisms, extensions and direct sums, and
M,N be two modules in C. Assume the partial orders ≤ext and ≤ coincide on C.
Then N is a minimal degeneration of M if and only if there is an exact sequence
0 → U →M ′ → V → 0 with the following properties:

(a) U and V are indecomposable such that M = M ′ ⊕ Up−1 ⊕ V q−1 ⊕ X and
N = Up⊕V q⊕X. Here U⊕V and M ′⊕X have no common direct summands.

(b) U ⊕ V is a minimal degeneration of M ′.

(c) Any common indecomposable T direct summand of M and N that is not
isomorphic to V satisfies [T,N ] = [T,M ].

(d) Any common indecomposable T direct summand of M and N that is not
isomorphic to U satisfies [N, T ] = [M,T ].

The modules U, V, M ′ and the numbers p, q are uniquely determined by M and N .
Moreover, we have Codim(N,M) = Codim(U ⊕V,M ′)+h(p+ q−2), where h = 1
for V 6∼= U and h = 2 for V ∼= U .

Convention 1.2.7 (a) Let U and V be indecomposable modules and M be a
module such that M and U ⊕V have no common direct summand. If M <deg

U ⊕ V is minimal, we call U ⊕ V a minimal disjoint degeneration of M .

(b) If the partial orders ≤ext and ≤ are equivalent we simply write ≤.

Dynkin case: In the Dynkin case there are only preprojective modules. The
technique of shrinking appropriate arrows (see [12]) reduces the infinite families
Am resp. Dn to the cases m ≤ 3 resp. n ≤ 6. The equivalence of ≤ext and ≤
makes the problem finite and computable. Markolf determined in [12] all minimal
disjoint degenerations with the help of a computer. The codimension of a minimal
disjoint degeneration is always 1.
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Wild case: In contrast to the Dynkin case, a minimal disjoint degeneration of
preprojective modules over a wild path algebra can become any complicated. Ol-
bricht showed in [14] several oddities. One of them is the following: Given any
natural number k, there exists a wild quiver with indecomposables U and V such
that any i ∈ {2, . . . , k} occurs as codimension of some minimal deformation of
U ⊕ V . In particular, any natural number occurs as codimension.

Another question that arises in the geometric study of ModdA(k) should only be
briefly mentioned. It concerns singularities in the orbit closures. Let GLd(k).m ⊆
ModdA(k) be the orbit closure of some module M . If N is a module with M ≤deg N
it is a matter of interest wether the corresponding point n ∈ModdA(k) is a singular
point of GLd(k).m or not. Moreover, one is interested in identifying the ”type”
of singularity that occurs in n. For the purpose of such a classification, Hesselink
introduced the notion of smoothly equivalence (see [4], [10] or [21]). In case of
a representation finite or a tame path algebra there are some results pertaining
degenerations of codimension one and two due to Zwara (see [21], [17], [20]). But
here we only need the following theorem, which holds in general and is due to
Bongartz.

Theorem 1.2.8 ([4], 6.2, p. 597) Let A be an arbitrary finite dimensional k-
algebra, M and N be two disjoint modules corresponding to the points m,n ∈
ModdA(k). If M ≤deg N is of codimension Codim(N,M) = 1, then N is either
indecomposable or else the direct sum of two indecomposables. In the second case
n is a regular point of GLd(k).m.

1.3 Degenerations of modules over tame path al-

gebras

From now on we deal with an extended Dynkin quiver Q unless something else is
stated. Let A = kQ be the tame path algebra of Q. In view of the theorems 1.2.5
and 1.2.6 it is convenient to consider minimal disjoint degenerations M < U ⊕ V
with U, V indecomposable. Exploiting the technique of shrinking and inserting
suitable arrows it is moreover sufficient to consider the quivers Ãm, D̃8, Ẽ6, Ẽ7 and
Ẽ8 where m ≤ 3.

The structure of the Auslander-Reiten quiver for tame path algebras described
in section 1.1 leads, up to duality, to the distinction of the following cases:

(a) U , V preprojective.

(b) U , V regular.

(c) U preprojective, V regular.
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(d) U preprojective, V preinjective.

The case (b) is already known for a long time (see [11]). In the cases (a), (c)
and (d), i.e. where U is preprojective, a further simplification can be achieved with
the aid of tilting theory. Thereto we have to recall some notions and geometric
properties of tilting theory, which can originally be found in [4] resp. [15] and are
true actually for arbitrary A.

Let T be a tilting module and B := EndA(T )op be the opposite algebra of
EndA(T ). T induces a torsion theory on the mod(A), the category of finite dimen-
sional A-modules. It is one of the main results of tilting theory that the functors
F := Hom(TB, ) and G := TB⊗ induce inverse equivalences between the torsion
part T (T ) = Ker(Ext(T, )) of mod(A) and Y(T ) := Ker(TorB1 (T, )) in mod(B).
Furthermore the Grothendieck groups of mod(A) and mod(B) are isomorphic un-
der the map X 7→ FX − Ext1(T,X). In particular, for all X A-modules with
dimension vector d, the B-module FX has the same dimension vector e.

Definition 1.3.1 Using the above notations we define

T (T, d) := {M ∈ T (M)|dimM = d} and Y(T, e) := {X ∈ Y(T )|dim(X) = e}.

Theorem 1.3.2 ([4], 4.2, p. 586) Under the above assumptions there exists a
bijection between the GLd(k)-stable subsets of T (T, d) and the GLe(k)-stable subsets
of Y(T, e) that

• maps the orbit of M ∈ T (T, d) to the orbit corresponding to FM and

• preserves closures, inclusions, codimensions and types of singularities occur-
ring in orbit closures.

In our special case we choose the slice S in the preprojective component of
ΓkQ that has U as its only sink and define T by T :=

⊕
X∈S X. Part (a) of

the following lemma guarantees that any module M that degenerates into U ⊕ V
belongs to T (T, dim(U ⊕ V )).

Lemma 1.3.3 Let U be preprojective indecomposable, V be indecomposable with
U 4 V and M < U ⊕ V be a degeneration.

(a) If W is an indecomposable direct summand of M , then U ≺ W ≺ V .

(b) If V is regular, then M has at most one regular direct summand. It is a
proper submodule of V .

Proof. To verify (a) it remains to consider the inequalities

0 6= [W,M ] ≤ [W,U ⊕ V ] and 0 6= [M,W ] ≤ [U ⊕ V,W ].
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Hence, U 4 V supplies U ≺ W ≺ V .
(b) Now let V come from the regular tube Tµ and E1, . . . , Epµ be the regular simples
of Tµ. Suppose Soc(V ) = E1. Then it holds

[Ek,M ] ≤ [Ek, U ⊕ V ] =

{
1 if k = 1
0 if k ≥ 2.

So M has at most one regular direct summand MR. MR has the same regular
socle as V . Furthermore it is a submodule of V , because otherwise Top(MR) would
occur with greater multiplicity in the regular composition series of MR than in the
one of V , which is forbidden by

lTop(MR)(MR) = [MR,M ] ≤ [MR, U ⊕ V ] ≤ lTop(MR)(V ).

Finally, V = MR implies MP < U . This does not fit with theorem 1.2.6. ¤

Consequently, theorem 1.3.2 furnishes that the problem of finding all modules
degenerating to U ⊕ V can be transferred via tilting with F := Hom(T, ) to
the equivalent problem of finding all deformations of FU ⊕ FV . Since the tilting
module T was defined with the help of a slice, B is a path algebra whose underlying
graph is again |Q|. Thus we are allowed to assume that Q has only one source and
U is the only projective simple module of kQ.

Preprojective case: Bongartz and Fritzsche showed for (a) in [6] that the perio-
dicity of the preprojective component of the Auslander-Reiten quiver leads to a
periodic behaviour of the minimal disjoint degenerations in P . Thus their inves-
tigation is a finite problem. They ascertained the minimal disjoint degenerations
with a computer program. One further result the computer produced concerns the
codimension of a minimal disjoint degeneration: It is at most 2.

The remaining cases: The remaining possibilities are inspected in parallel by
Wolters and this thesis. She concentrates on the case (c), see [16].

Here, henceforth mainly the case (d) will be investigated. The determination of
all minimal disjoint degenerations of this type is a priori an infinite problem, since

• there is an infinite number of isomorphism classes of indecomposable modules
that one has to choose for V .

• there is no upper bound for the number of ”candidates” M that are to test
on M < U ⊕ V , that is valid for all V .

At this point, ”candidates” are all modules M with the same dimension vector
as U ⊕ V whose indecomposable direct summands are proper successors of U and
proper predecessors of V relative to 4. We approach to these problems by deriving
suitable necessary conditions on minimal disjoint degenerations of this type.



Chapter 2

Directed decompositions

In the present chapter the notion of a directed decomposition shall be introduced.
We generalize resp. adjust some results originated from the preprojective case (see
[6]) to our situation and derive some very useful consequences.

2.1 A reduction theorem

First we show a necessary condition on the minimality of a disjoint degenerations
that will be the key to get a grip on them. Let U be a projective simple module
and V be indecomposable.

Definition 2.1.1 Suppose M is a kQ-module. A decomposition M = M1⊕M2 is
called directed if no indecomposable direct summand of M2 is a predecessor relative
to 4 of a direct summand of M1.

In particular, the regular indecomposable direct summands of M that come
from the same regular tube all either belong to M1 or to M2. But notice, the above
definition differs slightly from the one in [6].

Theorem 2.1.2 (Reduction Theorem) Let U be projective simple, V be inde-
composable such that U 4 V and M be a module with a directed decomposition
M = M1 ⊕M2 such that M1 6= 0. Suppose M < U ⊕ V is a minimal degeneration
provided through the exact sequence

η : 0 −→ U
(ε1

ε2
)−→M = M1 ⊕M2

(π1,π2)−→ V −→ 0,

then the following holds:

(a) C := Coker(ε1) is indecomposable.

(b) M1 < U ⊕ C is a minimal degeneration.

15
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(c) The difference Codim(U ⊕ V,M) − Codim(U ⊕ C,M1) of the codimensions
of these two degenerations is given by

[V, V ]− [C,C]− [M2,M2]− [C,M2] + [C,M2]
1.

The dual statement is also true.

Proof. The proof of (a) is based on the main observation in [6]. If M2 vanishes,
the assertion is clear. From there we may assume M2 6= 0. Because U is simple, ε1
is zero or injective. If ε1 were zero, then ε2 would be injective, so

V ∼= M/(

(
ε1
ε2

)
(U)) ∼= M1 ⊕M2/ε2(U).

But V is indecomposable, so M2
∼= ε2(U) ∼= U and consequently η would split,

which contradicts M < U ⊕ V . Thus ε1 is injective. The injectivity of ε2 follows
analogical.
Regarding η as a pushout and pullback diagram we get that π1 and π2 are monomor-
phisms. For this reason there is the following commutative diagram:

0

²²

0

²²
M2

²²

M2

²²
0 // U // M1 ⊕M2

//

²²

V //

²²

0

0 // U // M1
//

²²

C //

²²

0

0 0

(2.1)

If we assume that C is not indecomposable, it is possible to write C = C1 ⊕ C2

with C1 indecomposable and C2 6= 0. This induces two commutative diagrams, the
second one by applying the snake lemma:
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0

²²

0

²²
0 // U // M ′

1
//

²²

C1
//

²²

0

0 // U // M1
//

²²

C //

²²

0

C2

²²

C2

²²
0 0

0

²²
0

²²

C2

²²
0 // M2

//

²²

V // C //

²²

0

0 // M ′
2

//

²²

V // C1
//

²²

0

C2

²²

0

0

In particular there are exact sequences

(i) 0 → U →M ′
1 → C1 → 0

(ii) 0 →M ′
1 →M1 → C2 → 0

(iii) 0 →M ′
2 → V → C1 → 0 and

(iv) 0 →M2 →M ′
2 → C2 → 0.

We want to conclude M1⊕M2 ≤M ′
1⊕M ′

2 ≤ U ⊕V . We use the partial order ≤ to
verify that. Note, that obviously dim(M) = dim(M ′

1⊕M ′
2) = dim(U⊕V ). Suppose

first, T is a non-injective indecomposable predecessor of V . Moreover assume that
T 6∈ Tµ in case of V ∈ Tµ. Since [C, T ] ≤ [V, T ] = 0 we can derive the following
exact sequences from the above ones

(i′) 0→Hom(M ′
1, T )→Hom(U, T )→Ext1(C1, T )→Ext1(M ′

1, T )
(ii′) 0→Hom(M1, T )→ Hom(M ′

1, T )→Ext1(C2, T )→Ext1(M1, T )
→ Ext1(M ′

1, T )→0
(iii′) 0→Hom(V, T )→Hom(M ′

2, T )→Ext1(C1, T )→Ext1(V, T )
(iv′) 0→Hom(M ′

2, T )→Hom(M2, T )→Ext1(C2, T )→Ext1(M ′
2, T ).

With the aid of (iv′) we have [M ′
2, T ] ≤ [M2, T ]. Hence, if [M2, T ] vanishes, we get

[M1 ⊕M2, T ] = [M1, T ]
(ii′)
≤ [M ′

1, T ] = [M ′
1 ⊕M ′

2, T ]
(i′)
≤ [U, T ] = [U ⊕ V, T ].

Otherwise [M2, T ] 6= 0 implies [M1, T ]1 = [τ−T,M1], since the decomposition is
directed. Consequently, using (ii), [M ′

1, T ] = 0 and we are able to deduce

[M1 ⊕M2, T ]
(ii′)&(iv)

≤ [M ′
1, T ]− [C2, T ]1 + [M ′

2, T ] + [C2, T ]1 = [M ′
1 ⊕M ′

2, T ]
(i′)&(iii′)
≤ [U, T ]− [C1, T ]1 + [V, T ] + [C1, T ]1 = [U ⊕ V, T ].
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Now let T be a non-injective indecomposable module, which is not a predecessor
of V . From the diagrams above we obtain inclusions

M2 ↪→M ′
2 ↪→ V and M ′

1 ↪→M1 ↪→ V,

which insure that all indecomposable direct summands of M and M ′ are predeces-
sors of V . Therefore T is not a predecessor of an indecomposable direct summand
of M or M ′, whence

[U ⊕ V, T ]− [M ′, T ] = [τ−T, U ⊕ V ]− [τ−T,M ′
1 ⊕M ′

2] = 0 and

[M ′
1 ⊕M ′

2, T ]− [M,T ] = [τ−T,M ′
1 ⊕M ′

2]− [τ−T,M ] = 0.

In the remaining case T and V are regular indecomposables of the same tube. Since
U ⊕ V is a degeneration of M with M2 6= 0 the regular summand belongs to M2.
Hence M1 is preprojective and the just stated inclusions yield

[U ⊕ V, T ]− [M ′
1 ⊕M ′

2, T ] = [τ−T, U ⊕ V ]− [τ−T,M ′
1 ⊕M ′

2]

= [τ−T, V ]− [τ−T,M ′
2]

≥ [τ−T, V ]− [τ−T,M2]

= [τ−T, U ⊕ V ]− [τ−T,M ] ≥ 0 and

[M ′
1 ⊕M ′

2, T ]− [M,T ] = [τ−T,M ′
1 ⊕M ′

2]− [τ−T,M ]

= [τ−T,M ′
2]− [τ−T,M2] ≥ 0.

So we have established M ≤ M ′
1 ⊕M ′

2 ≤ U ⊕ V . The minimality of M < U ⊕ V
forces M ′ ∼= M , since M ′ ∼= U ⊕ V would violate the assumption C1 6= 0. We

consider the exact sequence 0 →M2
i−→M ′

2 → C2 → 0 with C2 6= 0. M ∼= M ′
1⊕M ′

2

insures the existence of an indecomposable direct summand X of M ′
2 which also

occurs in M1. If V is regular, X as a direct summand of M1 is preprojective. Write
M2 = X1 ⊕ . . .⊕Xt with Xj indecomposable and consider for every j ∈ {1, . . . , t}
the commutative diagram

0 // M2
i // M ′

2
//

pX

²²²²

C2
// 0

Xi

αj //
?Â

εj

OO

X

By the definition of a directed decomposition we must have αj = 0 for every j.
Then i(M2) ∩ X = 0 and X is a direct summand of C2

∼= M ′
2/i(M2). Thus we

obtain X ≺ V 4 X, which is absurd. Accordingly, C is indecomposable.
(b) Again we consider the commutative diagram (2.1) with M2 6= 0. C is indecom-
posable and U ⊕ C is a proper degeneration of M1. Assume this is not a minimal
degeneration. Hence, there exists a module N with M1 < N < U ⊕ C such that
0 → U → N → C → 0 is minimal. N can be decomposed as follows:
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• N1 contains all indecomposable direct summands Y of N for which an inde-
composable direct summand X of M1 exists such that Y 4 X.

• N2 consists of the remaining direct summands.

0 < [M,M1] ≤ [N,M1] = [N1,M1] guarantees that N1 is non-zero. According to
(a) there is an injection N2 ↪→ C which induces the following commutative pullback
diagram

0 // M2
// P //

Ä _

²²

N2
//

Ä _

²²

0

0 // M2
// V // C // 0

In particular P degenerates into M2 ⊕N2.
We claimM < N1⊕P < U⊕V , that is a contradiction. Let T be an indecomposable
module. If M1 contains a direct summand X that is a successor of T we obtain
0 = [M2, T ] = [N2, T ]. Thus [P, T ] vanishes and consequently we get

[M,T ] = [M1, T ] ≤ [N1 ⊕N2, T ] = [N1 ⊕ P, T ] ≤ [U ⊕ C, T ] ≤ [U ⊕ V, T ].

If T is not injective and there is no such summand in M1, then 0 = [τ−T,M1] =
[τ−T,N1]. The injections M2 ↪→ P ↪→ V imply

[U ⊕ V, T ]− [N1 ⊕ P, T ] = [τ−T, U ⊕ V ]− [τ−T,N1 ⊕ P ]

≥ [τ−T, V ]− [τ−T, P ] ≥ 0 and

[N1 ⊕ P, T ]− [M,T ] = [τ−T,N1 ⊕ P ]− [τ−T,M ]

= [τ−T, P ]− [τ−T,M2] ≥ 0.

Finally, for injective T the equality of the dimension vectors leads to

[U ⊕ V, T ] = [N1 ⊕ P, T ] = [M,T ].

Assume M and N1 ⊕ P were isomorphic. By the definition of the decomposition
N = N1⊕N2 the module P would be a direct sum of M2 and perhaps certain direct
summands of M1. But the injection M2 ↪→ P would not permit the occurrence of a
direct summand of M1, which would lead to N2 = 0 and M1 = N , a contradiction.
On the other hand, under the assumption N1⊕P ∼= U⊕V the following possibilities
remain to be considered:
N1

∼= U : Then we would have N2
∼= C, which violates N < U ⊕ V .

N1
∼= V : This would force P ∼= U , whence M2

∼= U . This is impossible, since
M < U ⊕ V .
N1

∼= U ⊕ V : Then P = M2 = 0. This contradicts the assumption M2 6= 0.
This proves (b).
(c) From the projectivity of U we obtain Ext1(U, V ) = Ext1(U,C) = 0. Thus

[U, V ]− [U,C] = 〈dim(U), dim(V )− dim(C)〉 = 〈dim(U), dim(M2)〉.
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By definition of a directed decomposition the vector space Ext1(M1,M2) vanishes.
So we get [M1,M2] = 〈dim(M1), dim(M2)〉. Since the dimension vectors of U ⊕ V
and M coincide, the difference of these two terms is

−〈dim(C), dim(M2)〉 = −[C,M2] + [C,M2]
1.

The assertion now follows immediately from the codimension formula given in chap-
ter 1.2. ¤

Supposed for instance that V is preprojective, Bongartz and Fritzsche give a
refinement of part (a) of the reduction theorem.

Lemma 2.1.3 ([6], 3.2, p. 2020) Let U be projective simple, V be preprojective
with U 4 V and M < U ⊕ V be a minimal degeneration. If M = M1 ⊕M2 is a
directed decomposition such that ∂(U) = ∂(M1), it follows that dim(C) ≤ δ.

Let V be preinjective of arbitrary defect and M < U ⊕ V a minimal dege-
neration. Decomposing M = MP ⊕MR ⊕MI into its preprojective, regular and
preinjective parts we get

Corollary 2.1.4 In the situation stated before one has ∂(MP ) > ∂(U) and ∂(MI) <
∂(V ).

Proof. Choose in theorem 2.1.2 M1 = MP and M2 = MR ⊕MI . Now consider
the sequence

0 −→ U
ε1−→MP −→ C −→ 0.

The module C is a successor of V and thus again preinjective. This shows ∂(MP ) =
∂(U ⊕ C) > ∂(U). ¤

2.2 The root test and its consequences for the

preprojective and preinjective parts of mini-

mal deformations

Let U be projective simple and V be indecomposable. The next lemma is also a
consequence of part (a) of the reduction theorem. It holds for arbitrary indecom-
posable module V . But we will apply it only in the case where V is preinjective.

Lemma 2.2.1 (Root test) Let U be projective simple, V be indecomposable such
that U 4 V and M be a module with a directed decomposition M = M1⊕M2. Sup-
pose S is a slice in the preprojective resp. preinjective component of the Auslander-
Reiten quiver. Then:

(a) The vector σ := ([U,X]−[M1, X])X∈S is a root of Q. If V is not a predecessor
of some X ∈ S, this root is positive.
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(b) The vector ρ := ([U ⊕ V,X]− [M,X])X∈S is a positive root of Q or equal to
zero.

Proof. The proof is an adaption of [6], 2.1. As we will see, for tame path algebras
it works not only for preprojective V .
(a) Without loss of generality we may assume that each direct summand of M1 is a
predecessor of some module in S since the remaining summands do not contribute
to σ and could consequently also be put to M2. Denote T :=

⊕
X∈S X. T is a

tilting module and End(T ) = kQ̃ is a path algebra whose underlying graph is of
the same type as Q.
Suppose M1 vanishes. Thus σ = ([U,X])X∈S . Since S is a slice, there is at least
one X ∈ S such that [U,X] 6= 0. Consequently, there is an injective map U ↪→ T .
Dualizing the situation provides DT ³ DU , whence DU ∈ T (DT ). Applying the
functor F := Hom(DT, ) results in

σ = ([U,X])X∈S = ([DX,DU ])X∈S = ([FDX,FDU ])X∈S = dim(FDU).

The last equality holds, because the indecomposable direct summands of FDX are
exactly the indecomposable projective modules of End(DT ). This shows that σ is
a dimension vector, thus a root of Q.
Suppose now M1 6= 0. Using Theorem 2.1.2 (a) we obtain an exact sequence

0 → U →M1 → C → 0

where C is indecomposable. All X ∈ S come either from the preprojective or from
the preinjective component of the Auslander-Reiten quiver. So the assumption that
all indecomposable direct summands of M1 are predecessors of some module in S
provides Ext1(M1, X) = 0 for all X ∈ S. Accordingly, for X ∈ S the sequence

0 → Hom(C,X) → Hom(M1, X) → Hom(U,X) → Ext1(C,X) → 0

is exact. If [C,X] vanishes for all X ∈ S, then τC ∈ T (T ) and therefore there
exists an epimorphism T n ³ τC. We conclude that [C, T ]1 = [T, τC] is non-zero
and application of the functor F ′ := Hom(T, ) delivers

σ = ([X, τC])X∈S = ([F ′X,F ′τC])X∈S = dim(F ′τC).

So, σ is a positive root of Q.
If, on the other hand, there is some X ∈ S with [C,X] 6= 0, then [C,X ′]1 6= 0 is
impossible for any X ′ ∈ S. Assuming the contrary would result in

X ′ ≺ τ−X ′ 4 C 4 X.

This does not fit with the definition of a slice. Hence, DC ∈ T (DT ) and the
computation

σ = (−[C,X])X∈S = (−[FDX,FDC])X∈S = −dim(FDC)
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identifies σ as a negative root.
Suppose V is not a predecessor of a module in S, then [V,X] = 0 and consequently
[C,X] = 0 for all X ∈ S. Thus σ is positive.
For the proof of (b) decompose M = M1⊕M2 such that all indecomposable direct
summands of M that are predecessors of some module in S belong to M1. Assume
V is not a predecessor of some module in S, then ρ = [U,X] − [M1, X]. We can
apply (a) to yield the assertion. Otherwise, obviously we have M = M1, R = V
and ρ is zero. ¤

If V is preinjective, we are able to restrict the number of preprojective resp.
preinjective indecomposable modules that can occur as direct summands of a mi-
nimal degeneration M < U ⊕ V . There is an upper bound depending only on the
choice of |Q| and not on U and V . With the help of the root test this bound can
be sharpened for the direct summands whose defect is not ±1.

Definition 2.2.2 (a) The diameter d(Q) of Q is the number of edges in the
longest path without cycles in |Q|.

(b) The distance d(X,Y ) between two indecomposable modules X 4 Y belonging
to the same connected component of the Auslander-Reiten quiver is length of
a shortest path leading from X to Y . If X 64 Y , we set d(X, Y ) := −∞.

Lemma 2.2.3 Let U be projective simple, V be indecomposable preinjective and
M be a minimal deformation of U ⊕ V . We decompose M = MP ⊕MR ⊕MI into
its preprojective, regular and preinjective parts. Then:

(a) For every direct summand X of MP there is

d(U,X) <

{
2(p(Q) + d(Q)), ∂(X) < −1
4p(Q) + d(Q), ∂(X) = −1

.

(b) For every direct summand X of MI we have

d(X, V ) <

{
2(p(Q) + d(Q)), ∂(X) > 1
4p(Q) + d(Q), ∂(X) = 1

.

Proof. (a) Note, there is nothing to prove for ∂(U) = −1 since there is corollary
2.1.4. Thus we may require that Q is of type D̃8, Ẽ6, Ẽ7 or Ẽ8. Consequently, we
have ε(Q) = 1.
Assume there occurs some preprojective direct summandX with d(U,X) > 4p(Q)+
d(Q) in M . Hence we can write MP = M ′

P ⊕ X. Furthermore the existence of
the preprojective indecomposable modules τ p(Q)X and τ 2p(Q)X with the dimension
vectors

dim(τ p(Q)X) = dim(X) + ∂(X)δ and dim(τ 2p(Q)X) = dim(X) + 2∂(X)δ



THE ROOT TEST AND ITS CONSEQUENCES 23

is assured. Since the number of tubes that are involved in MR is finite, we can find
a homogeneous tube Tµ such that no module of Tµ is a direct summand of MR. We
choose the indecomposable module R ∈ Tµ whose dimension vector is (−∂(X))δ
and define M̃ := M ′

P ⊕ τ p(Q)X ⊕R⊕MR ⊕MI . We claim

M < M̃ < U ⊕ V,

which contradicts the minimality of M < U ⊕ V .
For M < M̃ it is enough to show X < τ p(Q)X ⊕ R. To do this it suffices to verify
[T, τ p(Q)X ⊕ R] − [T,X] ≥ 0 for all indecomposable predecessors T of X. Indeed,
this is evident since the dimension vectors of τ p(Q)X ⊕R and X coincide.
Thus it remains to prove M̃ < U ⊕ V . For this purpose let T be indecomposable.
If T is preprojective with τ p(Q)X 4 T , we have

[U, T ] = 〈dim(U), dim(T )〉 = 〈dim(U), dim(τ p(Q)T )− ε(Q)∂(T )δ〉
= [U, τ p(Q)T ] + ∂(T )∂(U),

[τ pX,T ] = 〈dim(τ p(Q)X), dim(T )〉 = 〈dim(X), dim(T )〉 − ε(Q)∂(T )

= 〈dim(X), dim(τ p(Q)T )〉 − 2∂(X)∂(T )

≤ [X, τ p(Q)T ]− 2∂(X)∂(T ),

[M ′
P , T ] = [M ′′

p , T ] = 〈dim(M ′′
p , dim(T )〉

≤ [M ′′
P , τ

p(Q)T ] + ∂(T )∂(M ′′
P ).

Here M ′′
P consists of those indecomposable direct summands of M ′

P which are pre-
decessors of T . Consequently we can compute

[U ⊕ V, T ]− [M̃, T ] = [U, T ]− [M ′
P , T ]− [τ p(Q)X,T ]

≥ [U, τ p(Q)T ]− [M, τ p(Q)T ]

+ ∂(T )︸︷︷︸
<0

(∂(U)− ∂(M ′′
P )− ∂(X) + 1︸ ︷︷ ︸
≤0

)

≥ [U, τ p(Q)T ]− [M, τ p(Q)T ] ≥ 0.

Suppose T is not a successor of τ p(Q)X. It follows thatX 64 T , whence [τ p(Q)X,T ] =
[X,T ] = 0. This implies

[U ⊕ V, T ]− [M̃, T ] = [U ⊕ V, T ]− [M,T ] ≥ 0.

For preinjective or regular T that do not come from Tµ, it is clear that

[T, U ⊕ V ]− [T, M̃ ] = [T, U ⊕ V ]− [T,M ] ≥ 0.

If T ∈ Tµ, we obtain

[U ⊕ V, T ]− [M̃, T ] = 〈dim(U)− dim(M ′
P ⊕ τ p(Q)X), dim(T )〉 − [R, T ]︸ ︷︷ ︸

=min(l(T ),−∂(X))

≥ l(T )(∂(M ′
P ) + ∂(X)− ∂(U)︸ ︷︷ ︸

≥1

)− l(T ) ≥ 0.
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Thus we have excluded preprojective modules X which are too far away from U as
direct summands of M .
Now we especially want to examine preprojective indecomposable direct summands
of M whose defects are smaller than −1. For them the bound can be improved.
But this, unfortunately, has to be checked case by case. We proceed as in the proof
of the preprojective case (see [6], 3.3). Nevertheless, corollary 2.1.4 simplifies the
situation a bit. We can restrict to the case ∂(U) ≤ −3, i.e. Q is of type Ẽ. So
assume there is an indecomposable direct summand X of MP with

d(U,X) > 2(p(Q) + d(Q)) and ∂(X) ≤ −2.

Moreover we may assume that X is 4-minimal with this property. The idea of
the proof is to lookup for trivial or indecomposable summand X ′ of MP and an
appropriate degeneration Z of X⊕X ′ such that M = M ′⊕X⊕X ′ and M < M ′⊕
Z < U⊕V . For this purpose it suffices to show for all preprojective indecomposable
modules T that

β(T ) := [Z, T ]− [X ⊕X ′, T ] ≤ γ(T ) := [U ⊕ V, T ]− [M,T ].

Recall the root test 2.2.1, which says that β and γ restricted to any slice in the
preprojective component of ΓkQ are zero or roots of Q. We define a directed
decomposition MP = M ′

P ⊕M ′′
P as follows:

• M ′′
P consists of the direct summands of MP that are successors of X.

• M ′
P is the direct sum of the remaining summands of MP .

Furthermore we use the following notations (r ≥ s ≥ t ≥ 1):

ct|
...
|
c1|

ar− . . . − a1− a0− b1− . . . − bs

In ΓkQ there exists a slice S that meets X and has only one source, namely in
the τ−-orbit the projective indecomposable P (ar). The module in S which is a τ−-
translated of P (y), y ∈ Q0, we simply denote by Y . There is a uniquely determined
module Y ≺ X in S maximal relative to 4 with this property, which we can write
as Y = τ−bP (y), b ≥ p(Q). By definition of the decomposition of MP we obtain

ε(Y ) = [U, Y ]− [M ′
P , Y ].

Suppose M1 vanishes, then (1.1) delivers γ(Y ) ≥ [U, Y ] = [U, τ p(Q)Y ] + δy ≥ δy.
On the other hand if M1 6= 0 we make use of the exact sequence

0 → U →M ′
P → C → 0
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given by theorem 2.1.2 (a). To this sequence we apply Hom( , Y ) and compute

[U, Y ]− [M ′
P , Y ] = [C, Y ]1 = [τ−Y,C] = [P (z), τa+b+1I] ≥ δz

where C = τaI and I is injective. Thus in general we have γ(Y ) ≥ δz.
Case (i): X = Ai for some 1 ≤ i < r. Suppose first γ(Aj) > 0 for all j > i. We
choose X ′ := 0 and Z := Ar ⊕ τ−Ai+1. Then β(T ) = 1 for T ∈ {Ar, . . . Ai−1}
and zero otherwise, whence β ≤ γ. Now we assume the existence of some index
j > i with γ(Aj) = 0. The knowledge about γ(Y ) ≥ δz, the root test 2.2.1
and a closer look on the roots of Q force the equality j = r. Since we have
d(U,X) > 2(p(Q)+d(Q)) the module τ p(Q)Ar is indecomposable, which guarantees
[U,Ar] 6= 0 and consequently M ′

P 6= 0. Moreover using the above exact sequence
of theorem 2.1.2 to apply the functor Hom( , Ar) on it we obtain

0 = γ(Ar) = [U,Ar]− [M ′
P , Ar] = [C,Ar]

1 − [M ′
P , Ar]

1 = [τ−Ar, C]− [τ−Ar,M ′
P ].

From there we have [τ−Ar,M ′
P ] = [τ−Ar, C] = [P (ar), τ

cI] ≥ 0 since c ≥ p(Q).
Accordingly, M ′

P has a direct summand Y which is no successor of Ai and satisfies
[τ−Ar, Y ] 6= 0. Testing the small number of successors of τ−Ar which are no
successors of Ai on that property delivers Y = τ−Aj, j > i+ 1. We choose Y such
that j is minimal and set X ′ := τ−Aj and Z := Aj−1 ⊕ τ−Ai+1. Then β(T ) = 1
for T ∈ {Aj−1, . . . Ai−1} and zero otherwise, hence β ≤ γ.
Case (ii): |Q| = Ẽ8, X = B1. In this case we have Y = A0 and γ(Y ) ≥ 6. So the
root test 2.2.1 and an inspection of the roots of Ẽ8 imply γ(τB2) 6= 0. Hence, it is
possible to set X ′ := 0 and Z := τB2 ⊕B2.
Case (iii): |Q| = Ẽ8, X = B2. Set S ′ := S ∪ {τ−(k+1)Ak|0 ≤ k ≤ 5}. If γ(T ) > 0
for all T ∈ S ′ we can replace X by Z := A5 ⊕ τ−7A5.
Otherwise, suppose there is some T ∈ S ′ such that γ(T ) = 0. This is only possible
for T = A5 or T = τ−6A5 due to γ(B1) ≥ 4.
It is impossible that γ vanishes in τ−6A5. Assuming the contrary would imply
[M ′′

P , τ
−6A5] 6= 0, because, if M ′

P 6= 0 we have

[U, τ−6A5]− [M ′
P , τ

−6A5] = [C, τ−6A5]
1 − [M ′

P , τ
−6A5]

1 = [τ−7A5, C] 6= 0.

This contradicts the definition of the directed decomposition MP = M ′
P ⊕M ′′

P .
Suppose γ(A5) = 0 and γ(τ−6A5) 6= 0. With the same calculation as in the first case
we obtain [τ−A5,M

′
P ] 6= 0. Thus M ′

P has some τ−Aj, j > 0, as direct summand.
We take j as small as possible and set X ′ := τ−Aj and Z := Aj−1 ⊕ τ−7A5. Thus

β(T ) =

{
1 T ∈ {Aj, . . . , A0, B1, C1, τ

−A0, . . . , τ
−6A5}

0 otherwise

and consequently β ≤ γ.
Case (iv): |Q| = Ẽ7, X = C1. If S lies in the support of γ we can choose
X ′ := 0 and Z := A3 ⊕ τ−B3. Otherwise, since γ(A0) ≥ 4, there remain only two
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possibilities, namely either γ(A3) = 0 or γ(B3) = 0. γ(B3) = 0 is forbidden, since
otherwise we would obtain [M ′′

P , B3] 6= 0. If M ′
P = 0 this is evident and if M ′

P 6= 0
the computation

[U,B3]− [M ′
P , B3] = [C,B3]

1 − [M ′
P , B3]

1 = [τ−B3, C] 6= 0

verifies it. But this does not fit with the choice of the directed decomposition
MP = M ′

P ⊕M ′′
P .

If γ(A3) = 0, ∂(M ′
P ) > ∂(U) ≥ −4 shows that τ−A3 is a direct summand of M ′

P .
We set X ′ := τ−A3 and Z := A3 ⊕ τ−B3.
Case (v): |Q| = Ẽ8, X = C1. The proof is similar to the last case.
The proof of (b) is dual. ¤

It might be possible to improve the bounds of the lemma even more. In the
whole proof we were never forced to use our knowledge of corollary 2.1.4 on the
defect of the preprojective resp. preinjective part of a minimal deformation of U⊕V
and in considered examples the bounds were always better. A good bound is of
practical interest. It reduces the complexity of the determination of all minimal
deformations of U ⊕ V .



Chapter 3

Analysis of the codimension

In this chapter we want to analyse the codimension of minimal disjoint degene-
rations by means of a more flexible approach. The idea is to permit techniques
that do not only vary V but also the orientation of the quiver Q. The method we
introduce now works for non-regular V and consists of a skillful combination of the
reduction theorem with an application of tilting with slices.

3.1 An inductive codimension formula

Let U be projective simple, V be a non-regular indecomposable and M be a module
with directed decomposition M = M1⊕M2 such that M1 6= 0 6= M2. If M < U⊕V
is a minimal degeneration, induced by the exact sequence 0 → U → M1 ⊕M2 →
V → 0, the reduction theorem 2.1.2 provides a commutative diagram

0

²²

0

²²
M2

²²

M2

²²
0 // U // M1 ⊕M2

//

²²

V //

²²

0

0 // U // M1
//

²²

C //

²²

0

0 0

in which the last row induces another minimal degeneration M1 < U ⊕ C with
indecomposable C. Thereby, ∆ := Codim(U ⊕ V,M)−Codim(U ⊕C,M1) equals

27
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to

[V, V ]− [C,C]− [C,M2] + [C,M2]
1 − [M2,M2].

Evidently, we have [V, V ] = 1 and [C,M2] = [V,M2] = 0. Supposed V is prein-
jective, then also C is, which implies [C,C] = 1. Otherwise, V is preprojective and
C can belong to any connected component of ΓkQ. For preprojective or preinjec-
tive C we obtain immediately [C,C] = 1. In the case where C is regular, i.e. M2

is preprojective of the same defect as V , lemma 2.1.3 insures that dim(C) ≤ δ,
whence [C,C] is again 1. Thus we have

∆ = [C,M2]
1 − [M2,M2] = [V,M2]

1 − [M2,M2]
1 ≥ 0.

Apart from that, dualization delivers the minimal degeneration DM = DM2⊕
DM1 < DV ⊕DU of kQop-modules. DV is non-regular, DU injective simple and
DM = DM2 ⊕DM1 a directed decomposition.

Aiming at a further application of the reduction theorem we choose a slice S
in ΓkQop that has DV as a source. Besides, we additionally assume that DV is the
only source of S, unless V is preprojective and no such slice exists. T :=

⊕
X∈S X

is a tilting module and B := End(T ) is a path algebra with the same underlying
graph as Q. We define F := Hom(T, ).

Notice, the defect behaves under application of the functor F in the following
way. If X is some in kQ-module such that DX ∈ T (T ), there is

∂(FDX) =

{ −∂(X), if V ∈ P
∂(X), if V ∈ I.

Furthermore, non-homogenenous tubes of period pµ are mapped into non-homogeneous
tubes of period pµ.

Tilting the above situation via F yields a directed decomposition FDM =
FDM2 ⊕ FDM1 and a minimal disjoint degeneration FDM < FDV ⊕ FDU ,
where FDV is projective simple. In addition, it holds

∆ = [V,M2]
1 − [M2,M2]

1

= [DM2, DV ]1 − [DM2, DM2]
1

= [FDM2, FDV ]1 − [FDM2, FDM2]
1 ≥ 0.

FDM < FDV ⊕ FDU is induced by an exact sequence 0 → FDV → FDM →
FDU → 0, which satisfies the assumptions of the reduction theorem 2.1.2. So, we
achieve the following commutative diagram
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0

²²

0

²²
FDM1

²²

FDM1

²²
0 // FDV // FDM2 ⊕ FDM1

//

²²

FDU //

²²

0

0 // FDV // FDM2
//

²²

L //

²²

0

0 0

together with the minimality of FDM2 < FDV ⊕ L. The codimension of this
degeneration is

Codim(FDV ⊕ L, FDM2) = [FDV ⊕ L, FDV ⊕ L]− [FDM2, FDM2]

= [FDV ⊕ L, FDV ⊕ L]− [FDM2, FDV ⊕ L]

+ [FDM2, FDV ⊕ L]− [FDM2, FDM2]

= 1 + [FDV ⊕ L,L]− [FDM2, L] + [FDM2, L]− [FDM2, FDM2]

= 1 + [FDV ⊕ L,L]− [FDM2, L] + [FDM2, FDV ]1 − [FDM2, FDM2]
1

= 1 + [L,L]1 + [FDM2, FDV ]1 − [FDM2, FDM2]
1,

which implies ∆ = Codim(FDV ⊕ L, FDM2) − 1 − [L,L]1. We have proved the
following theorem.

Theorem 3.1.1 (Inductive codimension formula) Under the above assump-
tions Codim(U ⊕ V,M) is equal to

Codim(U ⊕ C,M1) + Codim(FDV ⊕ L, FDM2)− 1− [L,L]1.

Definition 3.1.2 A maximal directed decomposition of a module M is a decom-
position M =

⊕r
k=1Xk such that

(i) each Xk is non-zero and has no proper directed decomposition and

(ii) M = (
⊕i

k=1Xk) ⊕ (
⊕r

k=i+1Xk) is a directed decomposition of M for any
1 ≤ i < r.

Remark 3.1.3 (a) Each module has a maximal directed decomposition, which is
uniquely determined up to isomorphism.

(b) Using the above notation, if M < U ⊕ V is minimal, the maximal directed
decompositions of M and FDM have the same number of summands.
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Preinjective case: Supposed V is preinjective, L is also preinjective, whence
[L,L]1 = 0. Thus, if r is the number of summands in the maximal directed decom-
position of M , the inductive application of theorem 3.1.1 delivers

Codim(U ⊕ V,M) = Codim(U1 ⊕ V1,M1) + . . .+ Codim(Ur ⊕ Vr,Mr) + (r − 1),

where Mi < Ui ⊕ Vi is a minimal degeneration of kQi-modules such that Ui is the
only projective simple, Vi is preinjective indecomposable, Mi has no proper directed
decomposition and |Qi| = |Q|. There are several possibilities for the Mi, namely

(i) Mi = X t where X is preprojective indecomposable,
(ii) Mi = X t where X is preinjective indecomposable or
(iii) Mi = Mµ ∈ add(Tµ) for some µ ∈ P1.

The codimensions of degenerations of these types cannot be broken up with the
aid of the introduced technique. So, we turn our further attention in particular on
these degenerations. Notice, the case (ii) is obviously dual to (i).

Preprojective case: If V is preprojective, the modules M1 and FDM2 of theo-
rem 3.1.1 are obviously preprojective, while L and C may also be regular or prein-
jective. Combining arguments of [6], [16], of this and the next section, enables us to
show with theoretical arguments what Bongartz and Fritzsche obtained in [6] with
the help of computer calculations: If V is preprojective, the codimension of any
minimal M < U ⊕ V is at most two. The proof will be contained in a forthcoming
joint article with Wolters.

3.2 Preprojective deformations of U⊕V

Let U be projective simple and V be indecomposable. Motivated by the last section,
we now want to focus on preprojective modules that degenerate into U ⊕ V . The
first result generalizes a proposition of Bongartz (see [4], 7.1, p. 604).

Proposition 3.2.1 Let M be a preprojective module such that M < U ⊕ V is
minimal. Suppose M =

⊕s
k=1M

rk
k is the decomposition into indecomposables. If

End(V ) = k and [Mk,Mj] = 0 for k 6= j, then Codim(U ⊕ V,M) ≤ [V, V ]1 + 1.

Proof. The proof is essentially the same as in [4]. Only some numbers in the
beginning have to be modified. Assume Codim(U ⊕ V,M) is not less or equal
to [V, V ]1 + 1. By minimality of M < U ⊕ V there exists an exact sequence
0 → U →M → V → 0, which induces

0 → Hom(V, V ) → Hom(M,V ) → Hom(U, V ) → Ext1(V, V ) → Ext1(M,V ).
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Since M is preprojective, Ext1(M,V ) vanishes. Furthermore [U,U ] = 1. Accor-
dingly, we have

[V, V ]1 + 2 ≤ [U ⊕ V, U ⊕ V ]− [M,M ]

= [U ⊕ V, U ⊕ V ]− [M,U ⊕ V ] + [M,U ⊕ V ]− [M,M ]

= 1 + [U, V ] + [V, V ]− [M,V ] + [M,V ]− [M,M ]

= 1 + [V, V ]1 + [M,V ]− [M,M ],

which is equivalent to
∑s

k=1 rk[Mk, V ] = [M,V ] > [M,M ] =
∑s

k=1 rk[Mk,M ].
Because of M < U ⊕ V , we already know that [Mk, V ] ≥ [Mk,M ] for any k ∈
{1, . . . , s}. Thus there is some index i that satisfies [Mi, V ] > [Mi,M ] = ri.
Without loss of generality i = 1 may be assumed. This allows us to choose a set
of linearly independent homomorphisms

• f1,1, f1,2, . . . , f1,n1+1 in Hom(M1, V ) resp.

• fk,1, fk,2, . . . , fk,nk
in Hom(Mk, V ), 2 ≤ k ≤ s.

We take two homomorphisms g1 : Mn1
1 → V, m 7→ (f1,1, . . . , f1,n1)(m), g2 :

Mn1
1 → V, m 7→ (f1,2, . . . , f1,n1+1)(m). For (a, b) ∈ k2 \ {(0, 0)} we define f(a,b) :

M =
⊕s

k=1M
rk
k → V as follows:

f(a,b)(m) =

{
(ag1 + bg2)(m), ,m ∈Mn1

1

(fk,1, . . . , fk,nk
)(m), ,m ∈Mnk

k , k ≥ 2.

In this context, it is sometimes more convenient to denote the l-th copy of Mk in M
by Mk,l and components of a map h starting or ending there by hk,l. We consider
the exact sequence

0 → K
(gk,l)−−−→M

f(a,b)−−−→ V

where K is the kernel of f(a,b). Let K ′ be a 4-maximal indecomposable direct
summand of K and K ′′ be its complement. We obtain the following commutative
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diagram with exact rows and columns:

0

²²
0

²²

K ′′

²²
0 // K ′ //

e

²²

M // C //

p

²²

0

0 // K
g=(gk,l)//

²²

M
f(a,b) // V

K ′′

²²
0

We claim that M < K ′ ⊕ C ≤ U ⊕ V , which implies by minimality K ′ ⊕ C ≤
U ⊕ V and therefore K ′ ∼= U , C ∼= V . Since End(V ) = k, it follows that p and
consequently also f(a,b) are surjective.
To prove the claim it is important to notice that the choice of the fk,l lets the
components of f(a,b) be linearly independent and forbids therefore the existence of
homomorphisms making the diagram

Mi,j
(f(a,b))i,j

))SSSSSSSSSSSSSSSSSS

V

⊕
(k,l)6=(i,j)Mk,l

(f(a,b))

55llllllllllllllll

commutative. M ≤ K ′⊕C is obvious. To see K ′⊕C ≤ U⊕V we take an arbitrary
T and apply Hom(T, ) to the first row resp. the last column of the above diagram.
The induced exact sequences are:

0 → Hom(T,K ′) → Hom(T,M) → Hom(T,C) → Ext1(T,K ′),

0 → Hom(T,K ′′) → Hom(T,C) → Hom(T, V ).

While [T,K ′]1 = 0 allows us to conclude immediately [T,M ] = [T,K ′ ⊕ C] ≤
[T, U⊕V ], [T,K ′]1 6= 0 leads toK ′ 4 T and therefore to [T,K ′] = 0 and [T,K ′′] = 0.
Thus we also have [T,K ′ ⊕ C] = [T,C] ≤ [T, U ⊕ V ].
The assumption M ∼= K ′⊕C would imply that the first row of the diagram splits.
In other words, there would exist some homomorphism h : M → K ′ such that
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idK′ = h ◦ g ◦ e =
∑

k,l hk,l ◦ gk,l ◦ e. Accordingly, we would obtain hi,j ◦ gi,j ◦ e 6= 0
for some indices i, j. Since K ′ and M are preprojective, the invertibility of gi,j ◦ e
would follow. But then we could express

(f(a,b))i,j ◦ gi,j ◦ e = −
∑

(k,l)6=(i,j)

(f(a,b))k,l ◦ gk,l ◦ e

and consequently

(f(a,b))i,j = −
∑

(k,l)6=(i,j)

(f(a,b))k,l ◦ gk,l ◦ e ◦ (gi,j ◦ e)−1,

which contradicts the above remark. So K ′ ⊕ C ∼= U ⊕ V and there is an exact
sequence

0 → U →M
f(a,b)−−−→ V → 0.

U is the projective indecomposable P (x) to some point x ∈ Q0. The simplicity of
U insures dim(U)x = 1 and dim(U)y = 0 for all y 6= x. Let ez be the primitive
idempotent in kQ belonging to the point z ∈ Q0. Now regard U , M and V as
representations of Q. Thereby, ezX denotes the vector space of the representation
X at the point z and g(z) denotes linear map that is obtained by restricting the
homomorphism of representations g : X → Y to g(z) : ezX → ezY . Since eyU = 0
for y 6= x and therefore eyM ∼= eyV , we can choose suitable bases of eyM and eyV
to represent the linear maps (g1, f

′)(y) = f(1,0)(y) resp. (g2, f
′)(y) = f(0,1)(y) by

the block matrices (
Ep 0
0 Eq

)
resp.

(
A 0
B Eq

)
.

Thus the matrix representation of a general f(a,b)(y) is

(
aEp + bA 0

bB (a+ b)Eq

)
.

But our field k is algebraically closed, so A has at least one eigenvalue. This
does not fit with the just shown bijectivity of f(a,−1). Hence, our assumption
Codim(U ⊕ V,M) ≥ [V, V ]1 + 2 at the beginning of the proof was wrong. ¤

Corollary 3.2.2 Supposed that V has no proper self extensions and M is a prepro-
jective module such that M = Xr with X indecomposable, then Codim(U ⊕ V,M)
is 1. In particular, if V is preinjective, the codimension is 1.

As mentioned before, the dual statements are also true. Thus, if V is preinjec-
tive and M is a minimal deformation of U ⊕V that has a regular direct summand,
we can, roughly speaking, disregard preprojective and preinjective summands for
the computation of codimension. Otherwise, if M has no such direct summand,
the codimension is 1.
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Chapter 4

The regular parts of minimal
deformations

From now on, we will concentrate on our main subject and assume that V is
preinjective. In the previous chapter we have pointed out that the codimension
of a minimal degeneration M < U ⊕ V is essentially determined by the regular
part of M . Furthermore we have already established some necessary conditions on
the preprojective and the preinjective part of M . But until now we know nothing
about the regular direct summands. Thus we now want to catch this up and take
a closer look on the regular summands.

4.1 A practical degeneration test

First of all, we derive a test criterion for degenerations that will be used in the
sequel for several times. Suppose U and V are indecomposable with ∂(U) < 0 and
∂(V ) > 0. Let M be a module with the same dimension vector as U ⊕ V . M can
be written in the form

M = MP ⊕
⊕

µ∈P1

Mµ ⊕MI ,

where MP ∈ add(P), Mµ ∈ add(Tµ) and MI ∈ add(I).

Proposition 4.1.1 (Degeneration Test) Under the above assumptions the mo-
dule M degenerates into U ⊕ V if and only if it satisfies the following conditions:

(a) [U, T ] − [MP , T ] ≥ 0 for any indecomposable preprojective T such that there
exists some direct summand X of MP with d(X,T ) ≤ 2(p(Q) + d(Q)).

(b) [T, V ]−[T,MI ] ≥ 0 for any indecomposable preinjective T such that there exists
some direct summand X of MI with d(T,X) ≤ 2(p(Q) + d(Q)).

35
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(c) In any tube Tµ any regular simple E ∈ Tµ occurs at most [U,E]− [MP , E]-times
as regular top of some direct summand of Mµ. In particular, each Mµ has at
most s := ∂(V )− ∂(MI) indecomposable direct summands.

Proof. We begin with the necessity of these conditions. Since M degenerates
into U ⊕ V , it follows for any preprojective resp. preinjective T that

[U, T ]− [MP , T ] = [U ⊕ V, T ]− [M,T ] ≥ 0 resp.

[T, V ]− [T,MI ] = [T, U ⊕ V ]− [T,M ] = [U ⊕ V, τT ]− [M, τT ] ≥ 0.

Hence, the conditions (a) and (b) hold. For (c), let M1
µ, . . . ,M

t
µ denote the in-

decomposable direct summands of Mµ. Suppose E ∈ Tµ is regular simple, then
lemma 1.1.2 says that

[M i
µ, E] =

{
1 Top(M i

µ) = E
0 Top(M i

µ) 6= E.

Accordingly, if E appeared more than [U,E]− [MP , E]-times as regular top of some
M i

µ’s, this would lead to

[U ⊕ V,E]− [M,E] = [U,E]− [MP , E]−
t∑

k=1

[Mk
µ , E] < 0.

So we come to the sufficiency of these conditions. We have to verify the inequality
[U⊕V, T ]− [M,T ] ≥ 0 for all indecomposable non-injective T . If T is preprojective
but no successor of any indecomposable direct summand of MP , the assertion is
clear. Supposed T is preprojective such that there is no indecomposable direct
summands X of MP with d(X,T ) ≤ 2(p(Q) + d(Q)), we choose k minimal with
d(X,T ) ≤ 2(k+1)(p(Q)+d(Q)) for at least one of these X. Then τ kp(Q)T satisfies
d(X, τ kp(Q)T ) ≤ 2(p(Q) + d(Q)) and by the minimality of k we obtain

[M,T ] = [MP , T ] = 〈dim(MP ), dim(T )〉
= 〈dim(MP ), dim(τ kp(Q)T )− kε(Q)∂(T )δ〉
= [MP , τ

kp(Q)T ] + kε(Q)∂(T )∂(MP )

≤ [U, τ kp(Q)T ] + kε(Q)∂(T )∂(U) = [U, T ] = [U ⊕ V, T ].

The dual argument works for preinjective indecomposables. The subsequent appli-
cation of the Auslander-Reiten formula yields the desired inequality for preinjective
but not injective T .
Finally, suppose T ∈ Tµ. Let E1, . . . , Epµ denote the regular simples in Tµ. Then

[U ⊕ V, T ]− [M,T ] = [U, T ]− [MP , T ]− [Mµ, T ]

≥
pµ∑

k=1

lEk
(T )([U,Ek]− [MP , T ])−

t∑
i=1

lTop(M i
µ)(T ).
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Because each regular simple Ek occurs at most [U,Ek] − [MP , Ek]-times as the
regular top of one of the Mi, we conclude

∑pµ

k=1 lEk
(T )([U,Ek] − [MP , Ek]) −∑t

i=1 lTop(M i
µ)(T ) ≥ 0. ¤

If our module M comes from a single tube Tµ, it is possible to sharpen up
Proposition 4.1.1. Notice, that in this case it holds −∂(U) = ∂(V ).

Corollary 4.1.2 (Degeneration test for regular modules) Under the require-
ments stated before, the following conditions are equivalent for a module M = Mµ ∈
add(Tµ):

(i) M < U ⊕ V .

(ii) dim(M) = dim(U ⊕ V ) and each Ek occurs at most [U,Ek]-times as regular
top of some indecomposable direct summand of M .

4.2 The case −∂(U) = ∂(V) = 1

If U is preprojective of defect −1 and V preinjective of defect 1, the deduced
degeneration test is sufficient to classify all degenerations into U ⊕ V . We do not
even have to tilt U to a projective simple indecomposable.

Suppose E1, . . . , Epµ are the regular simples of the regular tube Tµ. Observe
that we have

1 = −∂(U) = 〈dim(U), δ〉 =

pµ∑

k=1

[U,Ek], 1 = ∂(V ) = 〈δ, dim(V )〉 =

pµ∑

k=1

[Ek, V ].

Therefore, in any Tµ there exist uniquely determined regular simple modules Sµ
resp. Dµ such that [Sµi

, V ] = 1 = [U,Dµi
].

Corollary 4.2.1 Let M be a module with dim(M) = dim(U ⊕V ). With the above
notation, U⊕V is a degeneration of M if and only if M has the following properties:

• M = M1 ⊕ . . .⊕Mr with Mi ∈ Tµi
and Tµi

6= Tµj
for i 6= j.

• Top(Mi) = Dµi
.

The codimension of any degeneration is 1. In particular, any degeneration is mi-
nimal.

Proof. The first part of the claim follows immediately from corollary 4.1.2. It
only remains to compute the codimension. It is

[U ⊕ V, U ⊕ V ]− [M,M ] = 2 + [U, V ]−
r∑

ν=1

[Mν ,Mν ] = 2 + [U, V ]−
r∑

ν=1

[U,Mν ]

= 2 + [U, V ]− 〈dim(U), dim(U ⊕ V )〉 = 1. ¤
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The dimension vectors of the regular simples generate the kernel of the defect
function. Thereby only one relation holds: The dimension vectors of the regular
simples of any regular tube add up to δ. Consequently, the summands of M
belonging to non-homogeneous tubes are uniquely determined modulo δ.

We are able to state the number of direct summands of M which must at least
come from non-homogeneous tubes, cp. the following table. It depends on q(U⊕V )
resp. [U, V ]− [V, U ]1.

q(dim(U ⊕ V )) [U, V ]− [V, U ]1 summands in non-hom. tubes
0 −2 ≥ 0
1 −1 ≥ 1
2 0 ≥ 2
3 1 ≥ 3

In addition, the corollary also points out some periodicity for degenerations in
the above case. If we replace V by V ′ with dim(V ′) + δ, then any M ′ < U ⊕ V ′

can be constructed either by taking a suitable M < U ⊕ V and exchanging one
of the summands Mi ∈ Tµi

by M ′
i ∈ Tµi

with dim(M ′
i) = dim(Mi) + δ or by

choosing an indecomposable Mr+1 of a further tube Tµr+1 such that dim(Mr+1) = δ,
[U, Top(Mr+1)] 6= 0 and adding it to M . This procedure always delivers a minimal
M ′ < U ⊕ V ′.

4.3 A periodicity theorem

Let U be projective simple and V be preinjective indecomposable. In the previous
section we classified all degenerationsM < U⊕V provided that−∂(U) = ∂(V ) = 1.
Now we concentrate on the case where −∂(U) ≥ 2 or ∂(V ) ≥ 2. Hence, we may
assume that Q is of type D̃8, Ẽ6, Ẽ7 or Ẽ8 and consequently ε(Q) is 1. Although this
restriction on ε(Q) is irrelevant for the argumentation, it is convenient to simplify
the notation and the calculations.

The first theorem establishes a method how new degenerations can be con-
structed from a given one. This procedure does not work in general, but for a
special sort of degenerations. For that purpose, we fix a regular tube Tµ with
regular simples E1, . . . , Epµ .

Notation 4.3.1 (a) Let R ∈ Tµ be of regular length l(R) > pµ. The regular
indecomposable with the same regular socle and regular length l(R) − pµ is
denoted by R/δ. If l(R) = pµ, we set R/δ := 0.

(b) Let MI be a preinjective module. The module consisting of the τ p(Q)-translated
indecomposable direct summands of MI is simply denoted by τ p(Q)MI .

(c) Suppose R ∈ Tµ. The regular indecomposable with the same regular socle and
regular length l(R) + pµ we denote by R

δ
.
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Theorem 4.3.2 (Periodicity Theorem) Let MP be a preprojective and MI a
preinjective module such that

s = ∂(MP )− ∂(U) = ∂(V )− ∂(MI) > 0.

We fix indecomposables R1, . . . , Rs ∈ Tµ with l(Rk) ≥ pµ such that each regular
simple Ei ∈ Tµ occurs [U,Ei]− [MP , Ei]-times as regular top of some Rk. Suppose
MR is regular with no direct summand belonging to add(Tµ), then the following
statements are equivalent.

(i) MP ⊕MR ⊕
⊕s

k=1Rk ⊕ τ p(Q)MI < U ⊕ τ p(Q)V .

(ii) MP ⊕MR ⊕
⊕s

k=1Rk/δ ⊕MI < U ⊕ V .

Thereby, the codimensions coincide.

Proof. First of all, we make the following abbreviations:

M := MP ⊕MR ⊕
s⊕

k=1

Rk ⊕ τ p(Q)MI and M ′ := MP ⊕MR ⊕
s⊕

k=1

Rk/δ ⊕MI .

Obviously, dim(U ⊕ V ) = dim(M) is equivalent to dim(U ⊕ τ p(Q)V ) = dim(M ′).
(i) ⇒ (ii). We only have to show for all non-injective indecomposable T the relation
[U ⊕ V, T ]− [M ′, T ] ≥ 0. Observe that, if Rk/δ is non-zero, T ∈ Tµ satisfies

[Rk, T ]=min(lTop(Rk)(T ), lSoc(T )(Rk))≥min(lTop(Rk)(T ), lSoc(T )(Rk/δ))=[Rk/δ, T ].

Hence, if T is preprojective or regular, we obtain

[U ⊕ V, T ]− [M ′, T ] = [U, T ]− [MP , T ]− [MR, T ]−
s∑

k=1

[Rk/δ, T ]

≥ [U, T ]− [MP , T ]− [MR, T ]−
s∑

k=1

[Rk, T ]

= [U ⊕ τ p(Q)V, T ]− [M,T ] ≥ 0

Suppose now T ∈ I, but not injective. Using the formula (1.2) of Auslander and
Reiten results in

[U ⊕ V, T ]− [M ′, T ] = [τ−T, U ⊕ V ]− [τ−T,M ′] = [τ−T, V ]− [τ−T,MI ]

= [τ p(Q)−1T, τ p(Q)V ]− [τ p(Q)−1T, τ p(Q)MI ]

= [τ p(Q)−1T, U ⊕ τ p(Q)V ]− [τ p(Q)−1T,M ] ≥ 0.

(ii) ⇒ (i). To prove the reverse direction we make use of the degeneration test 4.1.1.
If T is preprojective indecomposable, we simply have [U ⊕ τ p(Q)V, T ] − [M,T ] =
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[U ⊕ V, T ]− [M ′, T ] ≥ 0 .
For preinjective T with T 4 τ p(Q)V we find

[T, U ⊕ τ p(Q)V ]− [M,T ] = [T, τ p(Q)V ]− [τ−T, τ p(Q)MI ]

= [τ−p(Q)T, V ]− [τ−p(Q)T,MI ] ≥ 0.

It remains to confirm that any regular simple E occurs at most [U,E] − [MP , E]-
times as regular top of some indecomposable summand ofM . Supposed that E does
not belong to Tµ, this is guaranteed by 4.1.1 applied to M ′ < U ⊕ V . Otherwise,
E is isomorphic to one of the Ei ∈ Tµ. For them we have assumed that property.
Now we come to the codimensions. We have to show

[U ⊕ τ p(Q)V, U ⊕ τ p(Q)V ]− [M,M ] = [U ⊕ V, U ⊕ V ]− [M ′,M ′].

Of course, we can leave out terms that appear on both sides. The obvious ones are
[U,U ] and [MP ⊕MR,MP ⊕MR]. But observe that

[U, τ p(Q)V ] = 〈dim(U), dim(τ p(Q)V )〉 = 〈dim(U), dim(V ) + ∂(V )δ〉
= [U, V ]− ∂(U)∂(V ).

In addition we have

[MP ,

s⊕

k=1

Rk ⊕ τ p(Q)MI ] = 〈dim(MP ),
s∑

k=1

dim(Rk) + dim(τ p(Q)MI)〉

= 〈dim(MP ),
s∑

k=1

dim(Rk/δ) + sδ)〉

+ 〈dim(MP ), dim(τ p(Q)MI) + ∂(MI)δ〉

= [MP ,

s⊕

k=1

Rk/δ ⊕MI ]− ∂(MP )(s+ ∂(MI)),

[MR, τ
p(Q)MI ] = [τ−p(Q)MR,MI ] = [MR,MI ]

and

[
s⊕
j=1

Rj,

s⊕

k=1

Rk ⊕ τ p(Q)MI ] = [
s⊕
j=1

Rj,

s⊕

k=1

Rk] + 〈
s∑

k=1

dim(Rk), dim(τ p(Q)MI)〉

=
s∑

j,k=1

([Rj/δ,Rk/δ]+)

+ 〈
s∑

k=1

dim(Rk)/δ, dim(MI) + s∂(MI)〉

= [
s⊕
j=1

Rj/δ,

s⊕

k=1

Rk/δ ⊕MI ] + s(s+ ∂(MI)).
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Therefore, the equation that remains to be verified is simply

−∂(U)∂(V ) + ∂(MP )(s+ ∂(MI))− s(s+ ∂(MI)) = 0.

Indeed, this follows from s = ∂(MP )− ∂(U) = ∂(V )− ∂(MI). ¤

The requirements on the multiplicities of the regular tops of the Rk’s are only
needed to come from (ii) to (i) provided that some of the Rk/δ vanish. Otherwise,
this condition is already included in the statements (i) and (ii).

Notice, if we want to apply the periodicity theorem on a minimal degeneration
M < U ⊕ V , we are in trouble for two reasons. It is not clear how many minimal
M actually satisfy the assumptions of the theorem. Furthermore, the periodicity
theorem says nothing about the preservation of minimality. We aim to solve these
problems. A first result is the following lemma.

Lemma 4.3.3 Suppose s := ∂(V ) = −∂(U). Let R1, . . . , Rs ∈ Tµ be indecom-
posable of regular length l(Ri) ≥ pµ. If

⊕s
k=1Rk < U ⊕ τ p(Q)V is a minimal

degeneration, then
⊕s

k=1Rk/δ < U ⊕ V is also minimal.

Proof. If R′ :=
⊕s

k=1Rk/δ < U ⊕ V is not minimal, then there exists a minimal
degeneration N ′ of

⊕s
k=1Rk/δ which has U ⊕ V in its orbit closure. According to

theorem 1.2.6 we know that there exist indecomposable modules U ′ and V ′ such
that N ′ is, up to a renumbering of the Rk/δ, of the form

N ′ = U ′ ⊕ V ′ ⊕
s⊕

k=t+1

Rk/δ, (t ≥ 1).

Moreover, the theorem says that
⊕t

k=1Rk/δ < U ′ ⊕ V ′ is a minimal disjoint dege-
neration.
Suppose U ′ is preprojective. This is the case if and only if V ′ is preinjective and
∂(V ′) = −∂(U ′). In view of proposition 4.1.1 N ′ < U ⊕V implies (s− t)+∂(V ′) ≤
∂(V ) and therefore ∂(V ′) ≤ t. On the other hand, since

⊕t
k=1Rk/δ degenerates

into U ′ ⊕ V ′ we must have t ≤ ∂(V ′). Thus we have t = ∂(V ′). Applying the
periodicity theorem 4.3.2 now yields the two degenerations

t⊕

k=1

Rk < U ′ ⊕ τ p(Q)V ′ and U ′ ⊕
s⊕

k=t+1

Rk ⊕ τ p(Q)V ′ < U ⊕ τ p(Q)V,

whence
⊕s

k=1Rk < U ′ ⊕ ⊕s
k=t+1Rk ⊕ τ p(Q)V ′ < U ⊕ τ p(Q)V . This violates the

assumption.
Otherwise, if U ′ and V ′ are regular, we find by means of a similar calculation t = 2.
But from R1/δ⊕R2/δ < U ′⊕V ′ it is easy to conclude R1⊕R2 <

U ′
δ
⊕ V ′

δ
. Apart from

that, the periodicity theorem insures U ′
δ
⊕ V ′

δ
⊕ ⊕s

k=3Rk < U ⊕ τ p(Q)V . Hence,
like in the first case, we get a contradiction to minimality, namely

⊕s
k=1Rk <

U ′
δ
⊕ V ′

δ
⊕⊕s

k=3Rk < U ⊕ τ p(Q)V . ¤
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4.4 Regular deformations of U⊕V

Suppose Q is a quiver of type D̃8, Ẽ6, Ẽ7 or Ẽ8. Let U be the only projective simple
module of kQ and V be preinjective indecomposable such that −∂(U) = ∂(V ) ≥ 2.
This section is devoted to the study of regular minimal deformations of U ⊕V . As
mentioned before, the study of this type of degenerations is also of interest for the
codimension of the general case.

Besides, by reason of substantially the same arguments as for the codimension
in chapter 3, the consideration of regular minimal deformations gives helpful in-
formations on the regular parts of minimal degenerations in general. We want to
explain this phenomenon.

Let M < U ⊕ V be a minimal degeneration. In particular, there is an exact
sequence

0 → U
ε−→M → V → 0.

M can be decomposed into M = MP ⊕
⊕

µ∈P1 Mµ ⊕MI , its preprojective, regular
and preinjective parts. Assume there is some ν with Mν 6= 0. Defining

M1 := MP ⊕Mν resp. M2 :=
⊕

µ6=ν
Mµ ⊕MI

we obtain a directed decomposition M = M1 ⊕M2. Hence, we can write ε =
(
ε1
ε2

)
,

where εi : U → Mi. An application of the reduction theorem 2.1.2 delivers a new
minimal degeneration MP ⊕Mν < U ⊕ C, where C := Coker(ε1).

Supposed MP is nonzero, our next aim is to discard the preprojective part with
the help of the dual version of the reduction theorem. To achieve this, we take
the slice S in the preinjective component of ΓkQ whose only sink is C. Let T be
the tilting module defined by T :=

⊕
X∈S X and F := Hom(T, ). B := End(T )

is again a path algebra with the same underlying graph as Q. FMP ⊕ FMν <
FU ⊕ FC is a minimal degeneration of B-modules given by an exact sequence

0 → FU → FMP ⊕ FMν
(π1,π2)−−−−→ FC → 0.

Thereby, FU and FMP are preprojective, FMν is regular and FC is injective
simple. This allows us to apply the dual version of theorem 2.1.2, which delivers a
minimal degeneration FMν < Ker(π1)⊕ FC. Tilting once again, by means of an
appropriate tilting module in the preprojective component of ΓB, we may assume
that Ker(π1) is projective simple. During the whole procedure only the orientation
of the arrows in Q changed, but not the underlying graph. In this way, the study
of regular deformations yields inferences on the regular parts of degenerations in
general.

We fix a regular tube Tµ of period pµ with regular simples E1, . . . , Epµ . Let
M = Mµ be a module coming from add(Tµ).
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Notation 4.4.1 Let R1, R2 be two regular indecomposable modules of the tube Tµ
such that the regular top of R1 is the τ -translated of the regular socle of R2. Then
R2

R1
denotes the regular indecomposable module R of regular length l(R1)+ l(R2) and

submodule R1.

Lemma 4.4.2 Suppose A, B and C are regular indecomposable modules belonging

to the tube Tµ and D ∈ add(Tµ) such that
C
B
A
⊕B ⊕D < U ⊕ V is a degeneration,

then
C
B
A
⊕B ⊕D <

B
A
⊕ C

B
⊕D < U ⊕ V.

Proof.
C
B
A
⊕ B ⊕ D <

B
A
⊕ C

B
⊕ D follows from the tubular structure of Tµ

since there is an exact sequence of the form 0 −→ B
A
−→ C

B
A
⊕ B −→ C

B
−→ 0.

B
A
⊕ C

B
⊕D < U ⊕ V is due to corollary 4.1.2, the degeneration test for regular

modules. ¤

Assume M = Mµ ∈ add(Tµ) such that M < U ⊕ V is minimal. We know
already that M = M1 ⊕ . . . ⊕Mt with Mk indecomposable t ≤ ∂(V ). Moreover,
the minimality insures that the regular lengths of the Mk differ only a little.

Notation 4.4.3 Let X be regular indecomposable of the tube Tµ. As in [18] we
denote by ϕ−X the quotient X/Soc(X) and by ψX the regular indecomposable with
regular radical X.

Lemma 4.4.4 If M =
⊕t

k=1Mk < U⊕V , Mk ∈ Tµ, is minimal, then for each pair
(Mi,Mj) of direct summands of M it holds Mi = ϕ−αψβMj with 0 ≤ α, β ≤ pµ.

Proof. Suppose for instance, there would occur two indecomposable direct sum-
mands M1, M2 of M such that M1 = ϕ−αψpµ+tM2, t > 0, 0 ≤ α ≤ pµ. Then
we could use lemma 4.4.2 and replace M1 by M ′

1 := ϕ−αψpµM2 resp. M2 by
M ′

2 := ψtM2 to obtain a degeneration between M and U ⊕ V . For the other possi-
bilities we proceed similarly. ¤

The statement of the above lemma can be visualized as follows. For each Mi the
remaining summands Mj do not lie outside the square of the picture down below
(resp. the part of the square that actually exists in case of l(Mi) < pµ).
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Corollary 4.4.5 Let M =
⊕∂(V )

k=1 Mk < U ⊕ V , Mk ∈ Tµ, be minimal such that
l(Mi) < pµ for at least one 1 ≤ i ≤ ∂(V ), then l(Mk) < 2pµ for all k. In particular
dim(U ⊕ V ) < 2∂(V )δ.

Proof. The assertion follows immediately from lemma 4.4.4. ¤

It cannot be expected that arguments, as above, within the tube Tµ are sufficient
to disprove the minimality of a degeneration M = Mµ < U ⊕ V . But there is
another effective method, which uses only modules of defect ±1 and is relatively
easy to handle.

Lemma 4.4.6 Let P be a preprojective module of defect −1 and i : U ↪→ P be an
injection. Then Coker(i) has no preprojective direct summand.

Proof. Consider the exact sequence 0 → U
i−→ P

π−→ Coker(i) → 0 and assume
Coker(i) had a preprojective direct summand X and p : Coker(i) → X were the
projection on X. Then the composition pπ would be surjective. Since ∂(P ) = −1,
lemma 1.1.3 says that pπ were injective and therefore P ∼= X. But U is non-zero,
so the assumption is absurd. ¤

Lemma 4.4.7 Let P be preprojective of defect −1 and R ∈ Tµ such that dim(R) ≥
dim(P ). If [P, Top(R)] is nonzero, then there is an exact sequence 0 → P → R→
I → 0, where I is preinjective of defect 1.

Proof. We denote the regular radical of R by R′. Since [P, Top(R)] 6= 0,
there exists a homomorphism ψ : P → R such that Im(ψ) 6⊆ R′. ψ cannot
be surjective due to dim(R) ≥ dim(P ). For this reason Im(ψ) has a preprojective
direct summand. Because ∂(P ) = −1, P must be isomorphic to it. Thus Ker(ψ) =
0, i.e. ψ is injective. We consider the exact sequence

0 // P
ψ // R // I := Coker(ψ) // 0

and assume I has a regular direct summand X ∈ Tµ. Since X is a quotient of R,
it is of the form X = R/R̃, where R̃ is a proper regular submodule of R. Hence,
we get the following diagram:

0 // P
Â Ä ψ // R

(π1
π2

)
// // I = X ⊕W //

pr
²²²²

0

X

The exactness of the above sequence implies π1 ◦ ψ = 0. Thus (pr ◦ π1) ◦ ψ = 0,
i.e. ψ(P ) ⊆ R̃ ⊆ R′, which does not fit with the choice of ψ. So I is preinjective of
defect −1. ¤
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Lemma 4.4.8 Let M = M1 ⊕ . . . ⊕Mt < U ⊕ V , Mk ∈ Tµ be a degeneration.
Suppose P is a preprojective module of defect −1 with [U, P ] 6= 0. If

(i) there is an exact sequence 0 → P → M1 → I → 0 such that I is preinjective
with [I, V ] 6= 0 and

(ii) P satisfies [P,E] ≤ [U,E] for any regular simple module E of an arbitrary
tube,

then M < P ⊕M2 ⊕ . . .⊕Mt ⊕ I < U ⊕ V .

Proof. Due to the exact sequence (i) M < P ⊕M2⊕ . . .⊕Mt is obvious. So, we
only have to show P ⊕M2 ⊕ . . .⊕Mt ⊕ I < U ⊕ V . For that purpose, we use the
degeneration test 4.1.1.
Since [U, P ] 6= 0, the simplicity of U guarantees the existence of injection i : U ↪→ P
whose cokernel has no preprojective direct summand, whence we conclude for any
preprojective T : [P, T ] ≤ [U, T ].
In the case where T is preinjective and T 4 V , we obtain

[T, U ⊕ V ]− [T, P ⊕M2 ⊕ . . .⊕Mt ⊕ I] = [T, V ]− [T, I].

To compute this difference we tilt V and I with the help of the slice in the prein-
jective component that has V as its only sink. Therefore we may assume that V
is injective simple. Thus, [I, V ] 6= 0 implies that there is a surjection whose kernel
has by the dual version of lemma 4.4.6 no preinjective direct summand. This allows
us to conclude [T, V ] ≥ [T, I]. If T is not a predecessor of V , there is nothing to
prove.
Finally, since M < U ⊕V , we know that each regular simple Ei ∈ Tµ is the regular
top of at most [U,Ei] indecomposable summands of M . Furthermore [P,Ei] 6= 0 if
and only if Ei = Top(M1). Hence, the substitution of M1 by P⊕I insures that each
Ei appears at most [U,Ei]− [P,Ei]-times as regular top of some Mj with j ≥ 2. ¤

4.4.1 Minimal deformations in homogeneous tubes

We write U = P (x) where x ∈ Q0. We aim to classify all minimal degenerations
M < U ⊕ V with M = Mµ ∈ add(Tµ) for homogeneous tubes Tµ.

To do this, we make an interesting observation on the dimension vectors of
the regular simples of the non-homogeneous tubes whose correctness can easily be
checked by a glance at these dimension vectors, cp. A.1.

Observation 4.4.9 Let Tν be a non-homogeneous tube and E ∈ Tν be regular
simple. The dimension vector of E has the following property. If y ∈ Q0 is an
extension point of Q, i.e. a point with δy = 1, then dim(E)y ≤ dim(E)x.
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Proposition 4.4.10 Let Tµ be a homogeneous tube and dim(U ⊕ V ) = kδ. Then
M = Mµ < U ⊕V , Mµ ∈ add(Tµ), is a minimal degeneration if and only if ∂(V )|k
and Mµ =

⊕∂(V )
k=1 R where R ∈ Tµ is the uniquely determined indecomposable with

dim(R) = k
∂(V )

δ. In this case Codim(U ⊕ V,Mµ) is one.

Proof. Suppose M =
⊕∂(V )

k=1 R. Referring to lemma 1.1.2 it follows at once that
we have for any T ∈ Tµ

[U, T ]− [M,T ] ≥ l(T )∂(V )− l(T )∂(V ) = 0,

whence M < U ⊕ V . We compute the codimension. It is

[U ⊕ V, U ⊕ V ]− [M,M ] = 1 + [U,U ⊕ V ]−
∂(V )∑

j,k=1

[R,R]

= 1 + k∂(V )− ∂(V )2 k

∂(V )
= 1.

Hence, the degeneration is minimal.
Conversely, let M = Mµ < U ⊕ V be minimal. Assume M 6= ⊕∂(V )

k=1 R. Because
Tµ is homogeneous, there is a direct summand R′ of M of maximal length such
that ∂(V )dim(R′)k > dim(V )k holds for any k. We choose an arbitrary projective
module P = P (y) of defect −1. We observe dim(P ) ≤ dim(R′) and [P, Top(R′)] =
−∂(P ) = 1. Therefore, lemma 4.4.7 implies the existence of an exact sequence
0 → P → R′ → I → 0. Due to this we obtain with dim(V ) = kδ − dim(U):

[I, V ] ≥ [I, V ]− [I, V ]1 = [R′, V ]− [P, V ] = l(R′)∂(V )− k

= ∂(V )dim(R′)y − dim(V )y > 0.

We want to apply lemma 4.4.8 for M1 := R′. Of course, [U, P ] is non-zero. Besides,
we can write U = P (x), x ∈ Q0, and get by means of observation 4.4.9

[P,E] = dim(E)y ≤ dim(E)x = [U,E]

for all regular simples E belonging to a non-homogeneous tube. ¤

4.4.2 Minimal deformations in non-homogeneous tubes

For non-homogeneous tubes the combinatorics is much more involved. Let Tµ be
such a tube of period pµ with regular simples E1, . . . , Epµ .

Lemma 4.4.11 (a) For any regular simple module Ei ∈ Tµ with [U,Ei] 6= 0
there exists a preprojective module P of defect −1 such that dim(P ) ≤ δ,
[P,Ei] 6= 0 and [U, P ] 6= 0.
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(b) If P is of minimal dimension with the properties in (a), then there is an
exact sequence 0 → U → P → C → 0 where C is preinjective. In particular,
[P,E] ≤ [U,E] for any regular simple modules E of any tube.

Proof. (a) Let Q be a projective module of defect −1. Then there exists exactly
one index k such that [Q,Ek] = 1. We can write Ek = τ lEi with 0 ≤ l < pµ.
Therefore, the modules τ−lQ, τ−l−pµQ, . . . , τ−l−(p(Q)−pµ)Q are those τ−-translates
of Q with [τ−kQ,Ei] = 1 and dim(τ−kQ) ≤ δ. Among these modules one can find
per case by case inspection some P that already satisfies [U, P ] 6= 0, e.g. using
the starting functions of [2], 1.3, p. 122 or by computing the dimension vectors of
τ−lQ, τ−l−pµQ, . . . , τ−l−(p(Q)−pµ)Q. Anyway, in each case there is some P of minimal
dimension with the desired properties given in the appendix A.2 because we will
use these modules in the sequel.
(b) If P is of minimal dimension satisfying the requirements of (a), we obtain an
exact sequence 0 → U → P → C → 0. C has no preprojective direct summand, so
we can decompose C = CR⊕CI and consider the following commutative diagram:

0 0

CR

OO

CR

OO

0 // U // P //

OO

C //

OO

0

0 // U //

OO

P̃ //

OO

CI //

OO

0

0

OO

0

OO

We claim that CR = 0. Otherwise, we would have dim(P̃ ) < dim(P ) and apply the
functor Hom( , E) to the diagram. If [C,E] = 0, then the middle column induces
0 = Hom(CR, E) → Hom(P,E) → Hom(P̃ , E). Because Hom(P,E) is non-zero,
this also holds for Hom(P̃ , E), which violates the minimality of dim(P ).
In the case [C,E]1 = 0 there are surjections Hom(P,E) → Hom(U,E) → 0
and Hom(P,E) → Hom(P̃ , E) → 0. Thanks to Hom(U,E) 6= 0 we obtain
Hom(P,E) 6= 0 and Hom(P̃ , E) 6= 0. This is impossible.
Finally, suppose [C,E] 6= 0 6= [C,E]1. We decompose CR = C ′ ⊕ C ′′ into C ′, the
part belonging to add(Tµ), and C ′′, the remaining part, and deduce

[C ′, Ek] = [C,Ek] ≤ [P,Ek] =

{
1 k = i

0 k 6= i.

For this reason C ′ is indecomposable with Top(C ′) = Ei. On the other hand,
0 6= [C ′, E] = [τ−E,C ′] means that Soc(C ′) = τ−Ei. Hence dim(C ′) ≥ δ, which
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contradicts dim(P ) ≤ δ. ¤

Since the proof of lemma 4.4.11 (a) requires anyway a closer look on the first
p(Q)−1 τ−-translated of the projective indecomposables having defect −1, it does
not make much more effort to determine the set of all P that are of minimal
dimension satisfying (a). We denote this set by H(Ei). For the convenience, all
regular simples Ei with [U,Ei] 6= 0 are collected in the appendix. There is also
given at least one preprojective module P of H(Ei). Notice, since dim(P ) ≤ δ,
it follows that [U, τP ] ≤ ∂(V ). But during the examination of the table in the
appendix we make an interesting

Observation 4.4.12 Let Tµ be a non-homogeneous tube.

(a) If −∂(U) = ∂(V ) = 2, then for any regular simple Ei ∈ Tµ we can take a
projective P ∈ H(Ei) with [U, τP ] = 0.

(b) In the remaining cases, we can always find a preprojective P ∈ H(Ei) that
satisfies moreover [U, τP ] ≤ 1.

(c) Except for four cases of type Ẽ8 there exists some P ∈ H(Ei) that already
satisfies dim(P ) ≤ dim(Ei). In the exceptional cases we find some dim(P ) ≤
dim( Ei

Ei−1
).

In view of the requirements of the periodicity theorem we achieve the following
worth knowing result.

Proposition 4.4.13 Let Tµ be a non-homogeneous tube and M =
⊕t

k=1Mk <
U ⊕ V , Mk ∈ Tµ, be minimal. Suppose t < ∂(V ), then for all k ∈ {1, . . . , t}

[Mk, V ] <

{
∂(V ) if ∂(V )− t ≥ 2 or − ∂(U) = ∂(V ) = 2,
2∂(V ) if ∂(V )− t = 1 and − ∂(U) = ∂(V ) > 2.

In particular, we have l(Mk) < pµ and dim(U ⊕ V ) < ∂(V )δ provided −∂(U) =
∂(V ) = 2 resp. l(Mk) < 2pµ and dim(U ⊕ V ) < 2∂(V )δ otherwise.

Proof. Without loss of generality we may assume that M1 is a direct summand
of M such that [M1, V ] is maximal. Suppose furthermore l(M1) ≥ 2 in the excep-
tional cases of 4.4.12 (c). Let P ∈ H(Top(M1)) be as in the observation. Since
dim(P ) ≤ dim(M1), we can consider the exact sequence 0 → P → M1 → I → 0
given by Lemma 4.4.7. [I, V ] 6= 0 would not allow M < U ⊕ V to be minimal. We
show now that [I, V ] = 0 forces M to have the claimed shape.
There exists an exact sequence 0 → U → M → V → 0, which induces by applica-
tion of Hom(P, ) the sequence

0 → Hom(P,M) → Hom(P, V ) → Ext1(P,U) → 0.
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We conclude [P, V ] =
∑t

k=1[P,Mi] + [U, τP ]. By reason of the exactness of 0 →
P →M1 → I → 0 it follows that

0 = [I, V ] ≥ [I, V ]− [I, V ]1 = [M1, V ]− [P, V ].

Write [M1, V ] = l1∂(V )+r1 with l1 ∈ N0 and 0 ≤ r1 < ∂(V ). Notice, [P,Mk] = l1+
1 means that the regular top of M1 occurs l1 +1-times as composition factor in the
regular composition series. But then lSoc(Mk)(Mk) = l1 + 1, whence lSoc(Mk)(M1) =
l1 + 1. According to proposition 4.1.1 there are at most r1 direct summands of M
with this property. We deduce

0 ≥ [M1, V ]− [P, V ] = [M1, V ]−
t∑

k=1

[P,Mi]− [U, τP ]

≥ l1∂(V ) + r1 −
t∑

k=1

l1 − r1 − [U, τP ]

= l1(∂(V )− t)− [U, τP ],

whence [U, τP ] ≥ l1(∂(V )− t). Supposed that ∂(V )− t ≥ 2 this inequality implies
l1 ≤ 1, while l1 ≤ 2 has to be provided in the case ∂(V )− t = 1 and [U, τP ] = 1. ¤

Unfortunately, the combinatorics of the non-homogeneous tubes is too compli-
cated to derive more detailed informations on the direct summands of a minimal
deformation M = Mµ ∈ add(Tµ) of U ⊕ V using general arguments.

Though, with the current state of knowledge we are prepared to give an upper
bound for the codimension. Recall that the choice of the only projective simple
module U determines uniquely the orientation of Q.

Proposition 4.4.14 There exists some smallest natural number c ∈ N such that
for any choice of U , any preinjective indecomposable V , any non-homogeneous tube
Tµ in ΓkQ and any minimal degeneration M < U ⊕ V with M = Mµ ∈ add(Tµ) it
holds: Codim(U ⊕ V,M) ≤ c.

Proof. Let U , V , Tµ and M = Mµ < U ⊕ V be given. Suppose there is some
indecomposable direct summand X ofM with l(X) ≥ 2pµ. Then proposition 4.4.13

and corollary 4.4.5 guarantee that M can be written in the form M =
⊕∂(V )

k=1
Rk

δ

for some indecomposable or zero Rk. We can apply lemma 4.3.3 and obtain a new
minimal degeneration

⊕∂(V )
k=1 Rk < U ⊕ τ p(Q)V of the same codimensions. Iteration

of this procedure reduces the problem to the consideration of the codimensions of
minimal degeneration M ′ < U⊕V ′ such that the regular lengths of all summands of
M ′ are smaller than 2pµ, i.e. dim(V ′) ≤ 2∂(V )δ. But there is only a finite number
of such degenerations. Furthermore the numbers of choices for U and Tµ are finite.
Thus we can take c as the maximal codimension of all these degenerations. ¤
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4.5 Boundedness of the codimension in the gen-

eral case

Now we come back to the analysis of the codimension in the general case. Let Q
be a quiver of type D̃8, Ẽ6, Ẽ7 or Ẽ8, U be projective simple, V be preinjective
indecomposable with −∂(U) ≥ 2 or ∂(V ) ≥ 2. Suppose M < U ⊕ V is a minimal
degeneration and M =

⊕r
k=1Xk is the maximal directed decomposition of M .

As explained in chapter 3, the codimension of U ⊕ V in M can be written by
means of theorem 3.1.1 in the form

Codim(U ⊕ V,M) = Codim(U1 ⊕ V1,M1) + . . .+ Codim(Ur ⊕ Vr,Mr) + (r − 1),

whereMi < Ui⊕Vi is a minimal degeneration of kQi-modules with |Qi| = |Q|. Each
Mi arises from Xi, just as Ui from V and Vi from U , by dualization and tilting
with the slice in the preprojective component of ΓkQop that has DV as its only
source. This procedure preserves indecomposability, directed decompositions, the
membership to homogeneous or non-homogeneous tubes of all involved modules,
but changes the sign of their defects.

Accordingly, Ui is the only projective simple, Vi is preinjective indecomposable
and Mi is of one of the following types:

(i) Mi = X t where X is preprojective indecomposable,
(ii) Mi = X t where X is preinjective indecomposable or
(iii) Mi = Mµ ∈ add(Tµ) for some µ ∈ P1.

In the first two cases, corollary 3.2.2 says that Codim(Ui ⊕ Vi,Mi) = 1. If Tµ is
homogeneous and Mi = Mµ ∈ add(Tµ) or if −∂(Ui) = ∂(Vi) = 1, we also have
Codim(Ui⊕Vi,Mi) = 1 thanks to corollary 4.4.10 and corollary 4.2.1. Since Q has
exactly three non-homogeneous tubes T1, T2 and T3, proposition 4.4.14 furnishes

Theorem 4.5.1 (Bounded codimension) The codimension of a minimal dege-
neration M < U ⊕ V is bounded. To be more precise: If c is the natural number of
proposition 4.4.14, then Codim(U ⊕ V,M) ≤ 3c− 2.

Since we now know that the codimension of a minimalM < U⊕V is bounded by
3c−2, we are certainly interested in the value of c. The proof of proposition 4.4.14
points out a way to gain c. For any choice of U and any preinjective indecomposable
V such that −∂(U) = ∂(V ) and dim(U ⊕ V ) ≤ 2∂(V )δ it suffices to determine all
minimal deformations in the three non-homogeneous tubes and to compute their
codimensions. The computer program presented in the next chapter serves that
purpose.



Chapter 5

Computer calculations and their
consequences

5.1 Strategy of the computer program

First, we give a short description of the strategy that was pursued in the computer
program. Let Q be a quiver of type D̃8, Ẽ6, Ẽ7 or Ẽ8 with only one sink. Let U be
the only projective simple kQ-module. and Tµ be an arbitrary non-homogeneous
tube of period pµ and regular simples E1, . . . , Epµ .

The aim of the program is to compute for any indecomposable preinjective V
with −∂(U) = ∂(V ) and dim(V ) ≤ 2∂(V )δ all M = Mµ ∈ add(Tµ) such that
M < U ⊕ V is minimal. Notice first, lemma 4.4.4 insures that all indecomposable
direct summands of such a minimal M have regular length less or equal to 3pµ. To
understand the program we first need two easy lemmas that are used in it.

Lemma 5.1.1 Let R and S be regular modules of add(Tµ) such that the length of
all indecomposable direct summands is at most 3pµ. Then the following statements
are equivalent.

(i) R ≤ S.

(ii) dim(R) = dim(S) and [R, T ] ≤ [S, T ] for all T ∈ Tµ with l(T ) ≤ 4ε(Q)pµ.

Proof. We only have to show that (ii) implies (i). Let T ∈ Tµ be given such that
4 < ε(Q)pµl(T ) ≤ 5ε(Q)pµ. Our requirement on the lengths of R and S guarantees

[R, T ] = lSoc(T )(R) = [R, T/δ] ≤ [S, T/δ] = lSoc(T )(S) = [S, T ].

Iteration of this procedure yields the claim. ¤

Lemma 5.1.2 Let R1, . . . , Rt ∈ Tµ such that R1 ⊕ . . . ⊕ Rt < U ⊕ V is a de-
generation. Suppose there exist some preprojective indecomposable P and some
preinjective indecomposable I with the properties

51
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• s := −∂(P ) = ∂(I) ≤ min(t, ∂(V )− 1),

• d(U, P ) ≤ 2p(Q) resp. d(I, V ) ≤ 2p(Q) and

• R1 ⊕ . . .⊕Rs < P ⊕ I.

Then P ⊕Rs+1⊕ . . .⊕Rt⊕ I < U ⊕V holds if and only if the following conditions
are satisfied:

(a) [P, T ] ≤ [U, T ] for all indecomposable T with d(U, T ) ≤ 2(p(Q) + d(Q)).

(b) [T, I] ≤ [T, I] for all indecomposable T with d(T, V ) ≤ 2(p(Q) + d(Q)).

Proof. The necessity of these conditions is trivial. It remains to show that
they are sufficient. For this purpose we use the degeneration test 4.1.1. We set
M ′ := P ⊕Rs+1 ⊕ . . .⊕Rt ⊕ I. The dimension vectors of M ′ and U ⊕ V coincide
by the assumption. Furthermore the criteria (a) and (b) of the degeneration are
fulfilled because of d(U, P ) ≤ 2p(Q) resp. d(I, V ) ≤ 2p(Q) together with the
conditions (a) and (b) of the requirement.
Thus it remains to show that each Ei ∈ Tµ occurs at most [U,Ei] − [P,Ei]-times
as regular top of Rs+1, . . . , Rt. Thanks to R1 ⊕ . . . ⊕ Rt < U ⊕ V , it follows that
each Ei is at most [U,Ei]-times the regular top of R1, . . . , Rt. On the other hand,
we have also presupposed that R1⊕ . . .⊕Rs < P ⊕ I. But s = −∂(P ), whence the
occurrence of Ei as regular top of R1 ⊕ . . . ⊕ Rs must be equal to [P,Ei]. So the
assertion is clear. ¤

Notation 5.1.3 For the regular indecomposable module with regular socle E and
regular length l we simply write E[l] below.

Now we come to the computer program. We fix V with the above properties
and describe how the program proceeds to compute all minimal deformations of
U ⊕ V that belong to add(Tµ).

Step 1: Initialization. Two lists are initialized. The first one is called Codim1

and will be filled with those Mµ < U ⊕ V that are of codimension one and there-
fore obviously minimal. The second list is called Potmin. This list contains in each
step those deformations Mµ < U ⊕ V whose minimality was not yet disproven and
whose codimension is not one. We call the entries of the first list ”codimension one
deformations” and those of the second one shortly ”potentially minimal deforma-
tions”.

Step 2: Filling of the lists. To fill the lists the program tests each module
consisting of up to ∂(V ) indecomposables with maximal length 3pµ belonging Tµ
whether it is a deformation of U⊕V or not. The test is done with the aid of of lemma
4.1.2. More formal: For each n ∈ {1, . . . , ∂(V )}, each i1, . . . , in ∈ {1, . . . , pµ} with
i1 ≤ . . . ≤ in and each j1, . . . , jn ∈ {1, . . . , 3ε(Q)pµ} such that jk ≤ jk+1 whenever
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ik = ik+1 the module Ei1 [j1]⊕ . . .⊕Ein [jn] is tested on the criteria of lemma 4.1.2.
If it is a deformation of U ⊕ V , then the program computes the codimension and
adds the module to the appropriate list.

Step 3: Comparison of the list entries among each other. In this
step the program compares any potentially minimal Mµ in Potmin with all other
members of Potmin and Codim1. It uses lemma 5.1.1 for this comparison. The
procedure stops when the program has found some M ′

µ with Mµ < M ′
µ, removes

Mµ from Potmin and goes on with the next entry of Potmin.

If −∂(U) = ∂(V ) = 2, the list Potmin is already empty after these three steps.
In the other cases there remains at most one potentially minimal deformation for
fixed V and Tµ. It has the very special form

Mµ = Ei1 [j]⊕ . . .⊕ Eis [j]⊕ Eis+1 [j
′]⊕ . . .⊕ Ei∂(V )

[j′],

where j > j′ ≥ 0, and its codimension is at most ∂(V ) − 1. The last step of the
program is devoted to this deformation.

Step 4: Replacement of regular summands by non-regular ones. For
each Mµ in Potmin, which has the shape as above, the program looks for inde-
composables P and I of defect ±s that satisfy the requirements of lemma 5.1.2.
To decide if Ei1 [j] ⊕ . . . ⊕ Eis [j] < P ⊕ I it uses as in step 2 lemma 4.1.2, while
P ⊕ Eis+1 [j

′]⊕ . . .⊕ Ei∂(V )
[j′]⊕ I < U ⊕ V is tested by means of lemma 5.1.2.

In all cases, there are no potentially minimal deformations left in Potmin after
these four steps. The defect of possible I in step 4 reaches independently from the
codimension of the corresponding Mµ also up to ∂(V )− 1. The computed minimal
degenerations are given in the appendix A.3.

5.2 Results and consequences

Now we come to the result of the computer calculations. Not to interrupt the
reading flow, the list with the computed minimal degenerations is shifted to the
appendix, cp. A.3. At this point only the most interesting results will be summa-
rized.

Observation 5.2.1 Let U be projective simple, V be preinjective indecomposable
with dim(U ⊕ V ) ≤ 2ε(Q)∂(V )δ and Tµ be a non-homogeneous tube. Then:

(a) There is at most one minimal degeneration M < U ⊕V such that M = Mµ ∈
add(Tµ).
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(b) If there exists some minimal degeneration as in (a), then M can be written in

the form M =
⊕∂(V )

k=1 Rk/δ with R1, . . . , R∂(V ) as in the periodicity theorem.

(c) If there exists some minimal degeneration as in (a), then its codimension is
one.

Needless to say that especially observation 5.2.1 (c) has far reaching conse-
quences. Using the observation in the proof of proposition 4.4.14 delivers the
codimension of any minimal deformation in Tµ and consequently the codimension
of any minimal degeneration in general.

Proposition 5.2.2 Suppose U is projective simple and V is preinjective indecom-
posable of arbitrary dimension. Then the codimension of any minimal degeneration
M = Mµ < U ⊕ V with M ∈ add(Tµ) is one.

Theorem 5.2.3 (Codimension 1) Let U be projective simple, V be preinjective
indecomposable and M < U ⊕ V . Then M < U ⊕ V is minimal if and only if
Codim(U ⊕ V,M) = 1.

Hence, from geometrical point of view the minimal disjoint degenerations are
as simple as possible. This has consequences for their singularities. In regard to
theorem 1.2.8 we obtain

Corollary 5.2.4 Let U be projective simple, V be preinjective indecomposable and
M be a module such that M < U ⊕ V is minimal. Then the orbit closure of M is
regular at U ⊕ V .

Recall, concerning the utility of the periodicity theorem 4.3.2 for minimal de-
generations we had two problems. It was not clear whether the theorem preserves
minimality or not and how many minimal M actually comply with the requirement
of the periodicity theorem. At this point, we are able to answer these questions.

Corollary 5.2.5 The periodicity theorem 4.3.2 preserves minimality.

Corollary 5.2.6 Let M be an arbitrary module and M < U ⊕ V be a minimal
degeneration. If Tµ is a non-homogeneous tube such that Mµ is non-zero or if Tµ is
homogeneous, then M satisfies the requirements (ii) of the periodicity theorem for
Tµ.
Proof. Referring to the arguments at the beginning of chapter 4.4, the claim
follows for homogeneous Tµ from proposition 4.4.10, whilst proposition 4.4.13 and
observation 5.2.1 (b) imply it in the case where Tµ is non-homogeneous. ¤

Using this minimality preserving property of the periodicity theorem and the
assertion of corollary 2.2.3 on the distances of the preprojective resp. preinjective
indecomposable direct summands of M to U resp. V we draw our final conclusion.
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Corollary 5.2.7 The classification of all minimal disjoint degenerations M <
U ⊕ V over a tame path algebra kQ with U preprojective indecomposable and V
preinjective indecomposable is a finite problem.

Proof. Due to tilting theory we may assume that U is the only projective simple
kQ-module. Let T1, T2, and T3 be the three non-homogeneous tubes of ΓkQ. It
suffices to compute all minimal degeneration M < U ⊕ V such that

M = MP ⊕M1 ⊕M2 ⊕M3 ⊕MI

where MP ∈ add(P), Mi ∈ add(Ti) and MI ∈ add(I). The remaining minimal
degenerations can be obtained by application of the periodicity theorem, which
preserves minimality. For the same reason we may assume that any indecomposable
direct summand X of Mi satisfies l(X) ≤ 2pi. Since Mi has at most ∂(V ) direct
summands, we conclude dim(M1 ⊕M2 ⊕M3) ≤ 6∂(V )δ ≤ 36δ .
Thanks to lemma 2.2.3 any summand X of MP satisfies d(U,X) < 4p(Q) + d(Q),
whence we generously estimate dim(MP ) ≤ −4∂(MP )δ ≤ 20δ.
Provided that t∂(V )δ ≤ dim(V ) < (t + 1)∂(V )δ for some t ∈ N, the same lemma
implies dim(MI) ≤ (t + 4)∂(MI)δ ≤ (t + 4)(∂(V ) − 1)δ. If we choose t such that
t > 78 there is no M < U ⊕V of the presumed type. So, the numbers of V and M
that are to test on M < U ⊕ V are finite. ¤
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Appendix

Now we have to append some tables that allow to comprehend the observations
4.4.9, 4.4.12 and 5.2.1 concerning the extended Dynkin quivers of type D̃8, Ẽ6, Ẽ7

or Ẽ8 and their non-homogeneous tubes. Throughout the whole appendix let Q be
a quiver of this type. Recall, we may reduce to the case that Q has only one sink
i, i.e. there exists exactly one projective simple U := P (i). Thus Q is uniquely
determined by the type of underlying graph |Q| together with the only projective
simple U . In the following lists Q is always given by these informations. For the
numbering of the points we refer to chapter 1.1

A.1 Lists of regular simples

ΓkQ has three non-homogeneous tubes T1, T2 and T3. The first table collects basic
dates of each Tk, i.e. the period and the dimension vectors of the regular simple
modules of Tk. Thereby, the regular simples E whose dimension vector are printed
in bold are those with [U,E] 6= 0.

|Q| U k pk Regular simples

D̃8 P (3) 1 6 S1 =
(0
0 00010 0

0
)

S2 =
(0
0 00001 0

0
)

S3=
(
0
0111111

1

)

S4=
(
1
1100000

0

)
S5 =

(0
0 01000 0

0
)

S6 =
(0
0 00100 0

0
)

2 2 S′
1=

(
1
0111111

0

)
S′

2=
(
0
1111110

1

)

3 2 S′′
1 =

(
1
0111110

1

)
S′′

2 =
(
0
1111111

0

)

P (4) 1 6 S1 =
(0
0 00010 0

0
)

S2 =
(0
0 00001 0

0
)

S3=
(
0
0011111

1

)

S4 =
(0
0 10000 0

0
)

S5=
(
1
1110000

0

)
S6 =

(0
0 00100 0

0
)

2 2 S′
1=

(
1
0111111

0

)
S′

2=
(
0
1111110

1

)

3 2 S′′
1 =

(
1
0111111

0

)
S′′

2 =
(
0
1111110

1

)

P (5) 1 6 S1 =
(0
0 00010 0

0
)

S2 =
(0
0 00001 0

0
)

S3=
(
0
0001111

1

)

S4 =
(0
0 01000 0

0
)

S5 =
(0
0 10000 0

0
)

S6=
(
1
1111000

0

)

2 2 S′
1=

(
1
0111111

0

)
S′

2=
(
0
1111110

1

)

57
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|Q| U k pk Regular simples

3 2 S′′
1 =

(
1
0111110

1

)
S′′

2 =
(
0
1111111

0

)

Ẽ6 P (2) 1 3 S1=
( 0

0
1 1 1 1 1

)
S2 =

( 0
1

0 0 1 0 0

)
S3=

( 1
1

0 1 1 1 0

)

2 3 S′
1=

( 1
1

1 1 1 0 0

)
S′2 =

( 0
0

0 0 1 1 0

)
S′

3=
( 0

1
0 1 1 1 1

)

3 2 S′′
1 =

( 0
1

1 1 1 1 0

)
S′′

2 =
( 1

1
0 1 2 1 1

)

P (3) 1 3 S1=
( 0

0
1 1 1 1 0

)
S2=

( 0
1

0 0 1 1 1

)
S3=

( 1
1

0 1 1 0 0

)

2 3 S′
1=

( 0
1

1 1 1 0 0

)
S′

2=
( 1

1
0 0 1 1 0

)
S′

3=
( 0

0
0 1 1 1 1

)

3 2 S′′
1 =

( 0
1

0 1 1 1 0

)
S′′

2 =
( 1

1
1 1 2 1 1

)

Ẽ7 P (2) 1 4 S1 =
(

0
0 0 0 1 1 0 0

)
S2=

(
1

0 1 1 1 1 1 0

)
S3=

(
0

1 1 1 1 1 1 1

)

S4 =
(

1
0 0 1 1 0 0 0

)

2 3 S′1 =
(

0
0 0 1 1 1 1 0

)
S′

2=
(

1
0 1 1 2 1 1 1

)
S′

3=
(

1
1 1 1 1 1 0 0

)

3 2 S′′
1 =

(
1

0 1 2 2 2 1 1

)
S′′

2 =
(

1
1 1 1 2 1 1 0

)

P (3) 1 4 S1 =
(

0
0 0 0 1 1 0 0

)
S2=

(
1

0 0 1 1 1 1 0

)
S3=

(
0

0 1 1 1 1 1 1

)

S4=
(

1
1 1 1 1 0 0 0

)

2 3 S′
1=

(
0

1 1 1 1 1 1 0

)
S′

2=
(

1
0 0 1 2 1 1 1

)
S′

3=
(

1
0 1 1 1 1 0 0

)

3 2 S′′
1 =

(
1

0 1 1 2 1 1 0

)
S′′

2 =
(

1
1 1 2 2 2 1 1

)

P (4) 1 4 S1=
(

1
0 0 0 1 1 1 0

)
S2=

(
0

0 0 1 1 1 1 1

)
S3=

(
1

0 1 1 1 0 0 0

)

S4=
(

0
1 1 1 1 1 0 0

)

2 3 S′
1=

(
1

0 0 1 1 1 0 0

)
S′

2=
(

0
0 1 1 1 1 1 0

)
S′

3=
(

1
1 1 1 2 1 1 1

)

3 2 S′′
1 =

(
1

0 1 1 2 2 1 1

)
S′′

2 =
(

1
1 1 2 2 1 1 0

)

P (8) 1 4 S1 =
(

0
0 0 0 1 1 1 0

)
S2=

(
1

0 0 1 1 1 1 1

)
S3 =

(
0

0 1 1 1 0 0 0
)

S4=
(

1
1 1 1 1 1 0 0

)

2 3 S′1 =
(

0
0 0 1 1 1 0 0

)
S′

2=
(

1
0 1 1 1 1 1 0

)
S′

3=
(

1
1 1 1 2 1 1 1

)

3 2 S′′
1 =

(
1

0 1 1 2 2 1 1

)
S′′

2 =
(

1
1 1 2 2 1 1 0

)

Ẽ8 P (1) 1 5 S1 =
(

0
0 0 1 1 1 0 0 0

)
S2=

(
1

1 1 1 1 1 1 0 0

)
S3 =

(
0

0 1 1 1 1 1 1 0
)

S4=
(

1
1 1 2 1 1 1 1 1

)
S5 =

(
1

0 1 1 1 0 0 0 0
)

2 3 S′1 =
(

1
0 1 2 1 1 1 0 0

)
S′

2=
(

1
1 1 2 2 1 1 1 0

)
S′

3=
(

1
1 2 2 2 2 1 1 1

)

3 2 S′′
1 =

(
1

1 2 3 3 2 2 1 1

)
S′′

2 =
(

2
1 2 3 2 2 1 1 0

)
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|Q| U k pk Regular simples

P (2) 1 5 S1 =
(

0
0 0 1 1 1 0 0 0

)
S2=

(
1

0 1 1 1 1 1 0 0

)
S3=

(
0

1 1 1 1 1 1 1 0

)

S4=
(

1
0 1 2 1 1 1 1 1

)
S5=

(
1

1 1 1 1 0 0 0 0

)

2 3 S′
1=

(
1

1 2 2 2 2 1 1 1

)
S′

2=
(

1
1 1 2 1 1 1 0 0

)
S′

3=
(

1
0 1 2 2 1 1 1 0

)

3 2 S′′
1 =

(
1

1 2 3 3 2 2 1 1

)
S′′

2 =
(

2
1 2 3 2 2 1 1 0

)

P (3) 1 5 S1=
(

1
0 0 1 1 1 1 0 0

)
S2=

(
0

0 1 1 1 1 1 1 0

)
S3=

(
1

1 1 2 1 1 1 1 1

)

S4=
(

1
0 1 1 1 0 0 0 0

)
S5=

(
0

1 1 1 1 1 0 0 0

)

2 3 S′
1=

(
1

1 2 2 1 1 1 0 0

)
S′

2=
(

1
1 1 2 2 1 1 1 0

)
S′

3=
(

1
0 1 2 2 2 1 1 1

)

3 2 S′′
1 =

(
1

1 2 3 3 2 2 1 1

)
S′′

2 =
(

2
1 2 3 2 2 1 1 0

)

P (4) 1 5 S1=
(

1
0 0 1 1 1 1 1 0

)
S2=

(
0

0 1 1 1 1 1 1 1

)
S3=

(
1

1 1 2 1 0 0 0 0

)

S4=
(

1
0 1 1 1 1 0 0 0

)
S5=

(
0

1 1 1 1 1 1 0 0

)

2 3 S′
1=

(
1

1 1 2 2 2 1 1 1

)
S′

2=
(

1
0 1 2 1 1 1 0 0

)
S′

3=
(

1
1 2 2 2 1 1 1 0

)

3 2 S′′
1 =

(
2

1 2 3 3 2 2 1 1

)
S′′

2 =
(

1
1 2 3 2 2 1 1 0

)

P (5) 1 5 S1=
(

1
0 0 1 1 1 1 1 1

)
S2 =

(
0

0 1 1 1 0 0 0 0
)

S3=
(

1
1 1 2 1 1 0 0 0

)

S4=
(

1
0 1 1 1 1 1 0 0

)
S5=

(
0

1 1 1 1 1 1 1 0

)

2 3 S′
1=

(
1

1 1 2 2 1 1 0 0

)
S′

2=
(

1
0 1 2 1 1 1 1 0

)
S′

3=
(

1
1 2 2 2 2 1 1 1

)

3 2 S′′
1 =

(
2

1 2 3 3 2 1 1 0

)
S′′

2 =
(

1
1 2 3 2 2 2 1 1

)

P (6) 1 5 S1 =
(

0
0 1 1 1 0 0 0 0

)
S2=

(
1

1 1 2 1 1 1 0 0

)
S3=

(
1

0 1 1 1 1 1 1 0

)

S4=
(

0
1 1 1 1 1 1 1 1

)
S5 =

(
1

0 0 1 1 1 0 0 0
)

2 3 S′
1=

(
1

1 1 2 2 1 1 1 0

)
S′

2=
(

1
0 1 2 1 1 1 1 1

)
S′

3=
(

1
1 2 2 2 2 1 0 0

)

3 2 S′′
1 =

(
2

1 2 3 3 2 2 1 1

)
S′′

2 =
(

1
1 2 3 2 2 1 1 0

)

P (7) 1 5 S1 =
(

0
0 1 1 1 0 0 0 0

)
S2=

(
1

1 1 2 1 1 1 1 0

)
S3=

(
1

0 1 1 1 1 1 1 1

)

S4 =
(

0
1 1 1 1 1 1 0 0

)
S5 =

(
1

0 0 1 1 1 0 0 0
)

2 3 S′
1=

(
1

1 2 2 2 2 1 1 0

)
S′

2=
(

1
1 1 2 2 1 1 1 1

)
S′3 =

(
1

0 1 2 1 1 1 0 0
)

3 2 S′′
1 =

(
2

1 2 3 3 2 2 1 0

)
S′′

2 =
(

1
1 2 3 2 2 1 1 1

)

P (9) 1 5 S1 =
(

0
0 1 1 1 0 0 0 0

)
S2=

(
1

1 1 1 1 1 0 0 0

)
S3 =

(
0

0 0 1 1 1 1 0 0
)

S4=
(

1
0 1 1 1 1 1 1 0

)
S5=

(
1

1 1 2 1 1 1 1 1

)

2 3 S′
1=

(
1

1 1 2 2 1 1 1 0

)
S′

2=
(

1
0 1 2 2 2 1 1 1

)
S′

3=
(

1
1 2 2 1 1 1 0 0

)

3 2 S′′
1 =

(
2

1 2 3 3 2 2 1 1

)
S′′

2 =
(

1
1 2 3 2 2 1 1 0

)

The following lists all refer to the choices made in the above table.
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A.2 Lists of some preprojective modules of de-

fect −1

Now, for each regular simple E ∈ Tk with [U,E] 6= 0, i.e. the bold printed regular
simples of the last table, we need some preprojective module P ∈ H(E). If Q is of
type D one easily finds a projective P ∈ H(E).

For Q of type E, the next list contains not all P ∈ H(E), but at least one of
them. The first two columns determine the quiver, the third resp. fourth column
give the preprojective module P of defect −1 together resp. the dimension of
Hom(U, τP ) and the last column contains all bold printed E with P ∈ H(E).

|Q| U P [U, τP ] Reg. simples S with P ∈ H(S), [U, S] 6= 0

Ẽ6 P (2) P (1)=
( 0

0
1 1 0 0 0

)
0 S1 =

( 0
0

1 1 1 1 1

)
S′1 =

( 1
1

1 1 1 0 0

)

S′′1 =
( 0

1
1 1 1 1 0

)

P (5)=
( 0

0
0 1 1 1 1

)
0 S′3 =

( 0
1

0 1 1 1 1

)
S′′2 =

( 1
1

0 1 2 1 1

)

P (7)=
( 1

1
0 1 1 0 0

)
0 S3 =

( 1
1

0 1 1 1 0

)
S′′2 =

( 1
1

0 1 2 1 1

)

P (3) P (1)=
( 0

0
1 1 1 0 0

)
0 S1 =

( 0
0

1 1 1 1 0

)
S′1 =

( 0
1

1 1 1 0 0

)

S′′2 =
( 1

1
1 1 2 1 1

)

P (5)=
( 0

0
0 0 1 1 1

)
0 S2 =

( 0
1

0 0 1 1 1

)
S′3 =

( 0
0

0 1 1 1 1

)

S′′2 =
( 1

1
1 1 2 1 1

)

P (7)=
( 1

1
0 0 1 0 0

)
0 S3 =

( 1
1

0 1 1 0 0

)
S′2 =

( 1
1

0 0 1 1 0

)

S′′2 =
( 1

1
1 1 2 1 1

)

τ−P (1)=
( 0

1
0 0 1 1 0

)
1 S2 =

( 0
1

0 0 1 1 1

)
S′2 =

( 1
1

0 0 1 1 0

)

S′′1 =
( 0

1
0 1 1 1 0

)

Ẽ7 P (2) P (1)=
(

0
1 1 0 0 0 0 0

)
0 S3 =

(
0

1 1 1 1 1 1 1
)

S′3 =
(

1
1 1 1 1 1 0 0

)

S′′2 =
(

1
1 1 1 2 1 1 0

)

P (7)=
(

0
0 1 1 1 1 1 1

)
0 S′2 =

(
1

0 1 1 2 1 1 1
)

τ−3P (1)=
(

1
0 1 1 1 1 0 0

)
0 S2 =

(
1

0 1 1 1 1 1 0
)

S′′1 =
(

1
0 1 2 2 2 1 1

)

P (3) P (1)=
(

0
1 1 1 0 0 0 0

)
0 S4 =

(
1

1 1 1 1 0 0 0
)

S′1 =
(

0
1 1 1 1 1 1 0

)

S′′2 =
(

1
1 1 2 2 2 1 1

)
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|Q| U P [U, τP ] Reg. simples S with P ∈ H(S), [U, S] 6= 0

P (7)=
(

0
0 0 1 1 1 1 1

)
0 S3 =

(
0

0 1 1 1 1 1 1
)

S′2 =
(

1
0 0 1 2 1 1 1

)

τ−P (7)=
(

1
0 1 1 1 0 0 0

)
1 S′3 =

(
1

0 1 1 1 1 0 0
)

S′′1 =
(

1
0 1 1 2 1 1 0

)

τ−2P (1)=
(

1
0 0 1 1 1 0 0

)
0 S2 =

(
1

0 0 1 1 1 1 0
)

S′3 =
(

1
0 1 1 1 1 0 0

)

P (4) P (1)=
(

0
1 1 1 1 0 0 0

)
0 S4 =

(
0

1 1 1 1 1 0 0
)

S′3 =
(

1
1 1 1 2 1 1 1

)

P (7)=
(

0
0 0 0 1 1 1 1

)
0 S2 =

(
0

0 0 1 1 1 1 1
)

S′3 =
(

1
1 1 1 2 1 1 1

)

τ−P (1)=
(

1
0 0 0 1 1 0 0

)
1 S1 =

(
1

0 0 0 1 1 1 0
)

S′1 =
(

1
0 0 1 1 1 0 0

)

S′′1 =
(

1
0 1 1 2 2 1 1

)

τ−P (7)=
(

1
0 0 1 1 0 0 0

)
1 S3 =

(
1

0 1 1 1 0 0 0
)

S′1 =
(

1
0 0 1 1 1 0 0

)

S′′2 =
(

1
1 1 2 2 1 1 0

)

τ−2P (1)=
(

0
0 0 1 1 1 1 0

)
1 S2 =

(
0

0 0 1 1 1 1 1
)

S′2 =
(

0
0 1 1 1 1 1 0

)

P (8) P (1)=
(

1
1 1 1 1 0 0 0

)
0 S4 =

(
1

1 1 1 1 1 0 0
)

S′3 =
(

1
1 1 1 2 1 1 1

)

S′′2 =
(

1
1 1 2 2 1 1 0

)

P (7)=
(

1
0 0 0 1 1 1 1

)
0 S2 =

(
1

0 0 1 1 1 1 1
)

S′3 =
(

1
1 1 1 2 1 1 1

)

S′′1 =
(

1
0 1 1 2 2 1 1

)

τ−2P (1)=
(

1
0 0 1 1 1 1 0

)
0 S2 =

(
1

0 0 1 1 1 1 1
)

S′2 =
(

1
0 1 1 1 1 1 0

)

S′′2 =
(

1
1 1 2 2 1 1 0

)

Ẽ8 P (1) P (8)=
(

0
1 1 1 1 1 1 1 1

)
0 S4 =

(
1

1 1 2 1 1 1 1 1
)

S′′1 =
(

1
1 2 3 3 2 2 1 1

)

τ−3P (8)=
(

1
1 1 1 1 1 0 0 0

)
0 S2 =

(
1

1 1 1 1 1 1 0 0
)

S′3 =
(

1
1 2 2 2 2 1 1 1

)

S′′2 =
(

2
1 2 3 2 2 1 1 0

)

τ−5P (8)=
(

1
1 1 2 1 1 1 1 0

)
0 S′2 =

(
1

1 1 2 2 1 1 1 0
)

P (2) P (8)=
(

0
0 1 1 1 1 1 1 1

)
0 S4 =

(
1

0 1 2 1 1 1 1 1
)

τ−P (8)=
(

1
1 1 1 0 0 0 0 0

)
1 S5 =

(
1

1 1 1 1 0 0 0 0
)

S′2 =
(

1
1 1 2 1 1 1 0 0

)

S′′2 =
(

2
1 2 3 2 2 1 1 0

)

τ−3P (8)=
(

1
0 1 1 1 1 0 0 0

)
0 S2 =

(
1

0 1 1 1 1 1 0 0
)

S′1 =
(

1
1 2 2 2 2 1 1 1

)

τ−4P (8)=
(

0
1 1 1 1 1 1 0 0

)
1 S3 =

(
0

1 1 1 1 1 1 1 0
)

S′′1 =
(

1
1 2 3 3 2 2 1 1

)

τ−5P (8)=
(

1
0 1 2 1 1 1 1 0

)
1 S′3 =

(
1

0 1 2 2 1 1 1 0
)

P (3) P (8)=
(

0
0 0 1 1 1 1 1 1

)
0 S3 =

(
1

1 1 2 1 1 1 1 1
)

τ−P (8)=
(

1
0 1 1 0 0 0 0 0

)
1 S4 =

(
1

0 1 1 1 0 0 0 0
)

S′1 =
(

1
1 2 2 1 1 1 0 0

)

S′′2 =
(

2
1 2 3 2 2 1 1 0

)
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|Q| U P [U, τP ] Reg. simples S with P ∈ H(S), [U, S] 6= 0

τ−2P (8)=
(

0
1 1 1 1 0 0 0 0

)
1 S5 =

(
0

1 1 1 1 1 0 0 0
)

S′2 =
(

1
1 1 2 2 1 1 1 0

)

S′′1 =
(

1
1 2 3 3 2 2 1 1

)

τ−3P (8)=
(

1
0 0 1 1 1 0 0 0

)
1 S1 =

(
1

0 0 1 1 1 1 0 0
)

S′3 =
(

1
0 1 2 2 2 1 1 1

)

τ−4P (8)=
(

0
0 1 1 1 1 1 0 0

)
1 S2 =

(
0

0 1 1 1 1 1 1 0
)

P (4) P (8)=
(

0
0 0 0 1 1 1 1 1

)
0 S2 =

(
0

0 1 1 1 1 1 1 1
)

S′1 =
(

1
1 1 2 2 2 1 1 1

)

τ−2P (8)=
(

1
0 1 1 1 0 0 0 0

)
0 S4 =

(
1

0 1 1 1 1 0 0 0
)

S′3 =
(

1
1 2 2 2 1 1 1 0

)

S′′1 =
(

2
1 2 3 3 2 2 1 1

)

τ−3P (8)=
(

0
1 1 1 1 1 0 0 0

)
1 S5 =

(
0

1 1 1 1 1 1 0 0
)

S′1 =
(

1
1 1 2 2 2 1 1 1

)

S′′2 =
(

1
1 2 3 2 2 1 1 0

)

τ−4P (8)=
(

1
0 0 1 1 1 1 0 0

)
1 S1 =

(
1

0 0 1 1 1 1 1 0
)

S′2 =
(

1
0 1 2 1 1 1 0 0

)

τ−6P (8)=
(

1
1 1 2 2 1 1 1 1

)
1 S3 =

(
1

1 1 2 1 0 0 0 0
)

P (5) P (8)=
(

0
0 0 0 0 1 1 1 1

)
0 S1 =

(
1

0 0 1 1 1 1 1 1
)

S′3 =
(

1
1 2 2 2 2 1 1 1

)

S′′2 =
(

1
1 2 3 2 2 2 1 1

)

τ−3P (8)=
(

1
0 1 1 1 1 0 0 0

)
0 S4 =

(
1

0 1 1 1 1 1 0 0
)

S′′1 =
(

2
1 2 3 3 2 1 1 0

)

τ−4P (8)=
(

0
1 1 1 1 1 1 0 0

)
1 S5 =

(
0

1 1 1 1 1 1 1 0
)

S′1 =
(

1
1 1 2 2 1 1 0 0

)

τ−5P (8)=
(

1
0 0 1 1 1 1 1 0

)
1 S′2 =

(
1

0 1 2 1 1 1 1 0
)

τ−7P (8)=
(

1
1 1 2 2 1 0 0 0

)
1 S3 =

(
1

1 1 2 1 1 0 0 0
)

P (6) P (8)=
(

0
0 0 0 0 0 1 1 1

)
0 S4 =

(
0

1 1 1 1 1 1 1 1
)

S′2 =
(

1
0 1 2 1 1 1 1 1

)

S′′1 =
(

2
1 2 3 3 2 2 1 1

)

τ−4P (8)=
(

1
0 1 1 1 1 1 0 0

)
0 S3 =

(
1

0 1 1 1 1 1 1 0
)

S′3 =
(

1
1 2 2 2 2 1 0 0

)

τ−5P (8)=
(

0
1 1 1 1 1 1 1 0

)
1 S′1 =

(
1

1 1 2 2 1 1 1 0
)

S′′2 =
(

1
1 2 3 2 2 1 1 0

)

τ−8P (8)=
(

1
1 1 2 2 1 1 0 0

)
0 S2 =

(
1

1 1 2 1 1 1 0 0
)

P (7) P (8)=
(

0
0 0 0 0 0 0 1 1

)
0 S3 =

(
1

0 1 1 1 1 1 1 1
)

S′2 =
(

1
1 1 2 2 1 1 1 1

)

S′′2 =
(

1
1 2 3 2 2 1 1 1

)

τ−5P (8)=
(

1
0 1 1 1 1 1 1 0

)
0 S′1 =

(
1

1 2 2 2 2 1 1 0
)

S′′1 =
(

2
1 2 3 3 2 2 1 0

)

τ−9P (8)=
(

1
1 1 2 2 1 1 1 0

)
0 S2 =

(
1

1 1 2 1 1 1 1 0
)

P (9) P (8)=
(

1
0 0 1 1 1 1 1 1

)
0 S5 =

(
1

1 1 2 1 1 1 1 1
)

S′2 =
(

1
0 1 2 2 2 1 1 1

)

τ−2P (8)=
(

1
1 1 1 1 0 0 0 0

)
0 S2 =

(
1

1 1 1 1 1 0 0 0
)

S′1 =
(

1
1 1 2 2 1 1 1 0

)

S′′1 =
(

2
1 2 3 3 2 2 1 1

)

τ−4P (8)=
(

1
0 1 1 1 1 1 0 0

)
0 S4 =

(
1

0 1 1 1 1 1 1 0
)

S′3 =
(

1
1 2 2 1 1 1 0 0

)
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|Q| U P [U, τP ] Reg. simples S with P ∈ H(S), [U, S] 6= 0

τ−7P (8)=
(

1
1 2 2 1 1 0 0 0

)
1 S′′2 =

(
1

1 2 3 2 2 1 1 0
)

Inspection of this list yields observation 4.4.12. As stated in the observation,
only in four cases, in which Q is of type Ẽ8, the given P ∈ H(E) does not satisfy
dim(P ) ≤ dim(E). These exceptions are each to find in the last row of the cases
U = P (4), U = P (5), U = P (6) and U = P (7). But then we have dim(P ) ≤
dim( E

τE
).

A.3 Lists of the computed minimal degenerations

The following lists contain the results of the computer program described in chapter
5.1. A closer look on them provides observation 5.2.1. We explain how the lists
have to be read. The lists include column by column the following informations:

1. the only projective simple U , which also determines the orientation of Q;

2. the preinjective indecomposables V and τ p(Q)V , separated by a ”/”;

3. the number t of the non-homogeneous tube Tk (for its period see table A.1);

4. the list of all modules Mk resp. M ′
k of add(Tk) that degenerate into U ⊕V resp.

U ⊕ τ p(Q)V , separated by a ”/”;

5. the codimensions of the degenerations of the fourth column, separated by a ”/”.

V and τ p(Q)V are given in the same row to point out the effect of the periodicity
theorem. But notice, V is only listed in the table if some Mk < U ⊕ V exists.

Type D̃8

U V k Mk c

P (3) τ0I(3)/τ6I(3) 1 S3[1]⊕ S4[1]/S3[7]⊕ S4[7] 1/1

τ1I(3)/τ7I(3) 1 S2[2]⊕ S3[2]/S2[8]⊕ S3[8] 1/1

τ2I(3)/τ8I(3) 1 S1[3]⊕ S2[3]/S1[9]⊕ S2[9] 1/1

τ3I(3)/τ9I(3) 1 S1[4]⊕ S6[4]/S1[10]⊕ S6[10] 1/1

τ4I(3)/τ10I(3) 1 S5[5]⊕ S6[5]/S5[11]⊕ S6[11] 1/1

τ5I(3)/τ11I(3) 1 S4[6]⊕ S5[6]/S4[12]⊕ S5[12] 1/1

τ5I(3)/τ11I(3) 2 S′1[2]⊕ S′2[2]/S′1[4]⊕ S′2[4] 1/1

τ5I(3)/τ11I(3) 3 S′′1 [2]⊕ S′′2 [2]/S′′1 [4]⊕ S′′2 [4] 1/1

τ0I(4)/τ6I(4) 1 S3[1]/S3[7]⊕ S5[6] 1/1
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Type D̃8

U V k Mk c

τ1I(4)/τ7I(4) 1 S2[2]⊕ S4[1]/S2[8]⊕ S4[7] 1/1

τ2I(4)/τ8I(4) 1 S1[3]⊕ S3[2]/S1[9]⊕ S3[8] 1/1

τ3I(4)/τ9I(4) 1 S2[3]⊕ S6[4]/S2[9]⊕ S6[10] 1/1

τ4I(4)/τ10I(4) 1 S1[4]⊕ S5[5]/S1[10]⊕ S5[11] 1/1

τ5I(4)/τ11I(4) 1 S4[6]⊕ S6[5]/S4[12]⊕ S6[11] 1/1

τ6I(5) 1 S3[7]⊕ S6[5] 1

τ1I(5)/τ7I(5) 1 S2[2]/S2[8]⊕ S5[6] 1/1

τ2I(5)/τ8I(5) 1 S1[3]⊕ S4[1]/S1[9]⊕ S4[7] 1/1

τ3I(5)/τ9I(5) 1 S3[2]⊕ S6[4]/S3[8]⊕ S6[10] 1/1

τ4I(5)/τ10I(5) 1 S2[3]⊕ S5[5]/S2[9]⊕ S5[11] 1/1

τ5I(5)/τ11I(5) 1 S1[4]⊕ S4[6]/S1[10]⊕ S4[12] 1/1

τ6I(6) 1 S1[4]⊕ S3[7] 1

τ7I(6) 1 S2[8]⊕ S6[5] 1

τ2I(6)/τ8I(6) 1 S1[3]/S1[9]⊕ S5[6] 1/1

τ3I(6)/τ9I(6) 1 S4[1]⊕ S6[4]/S4[7]⊕ S6[10] 1/1

τ4I(6)/τ10I(6) 1 S3[2]⊕ S5[5]/S3[8]⊕ S5[11] 1/1

τ5I(6)/τ11I(6) 1 S2[3]⊕ S4[6]/S2[9]⊕ S4[12] 1/1

τ6I(7) 1 S2[3]⊕ S3[7] 1

τ7I(7) 1 S1[4]⊕ S2[8] 1

τ8I(7) 1 S1[9]⊕ S6[5] 1

τ3I(7)/τ9I(7) 1 S6[4]/S5[6]⊕ S6[10] 1/1

τ4I(7)/τ10I(7) 1 S4[1]⊕ S5[5]/S4[7]⊕ S5[11] 1/1

τ4I(7)/τ10I(7) 2 S′1[1]⊕ S′2[1]/S′1[3]⊕ S′2[3] 1/1

τ4I(7)/τ10I(7) 3 S′′1 [1]⊕ S′′2 [1]/S′′1 [3]⊕ S′′2 [3] 1/1

τ5I(7)/τ11I(7) 1 S3[2]⊕ S4[6]/S3[8]⊕ S4[12] 1/1

P (4) τ0I(4)/τ6I(4) 1 S3[1]⊕ S5[1]/S3[7]⊕ S5[7] 1/1

τ1I(4)/τ7I(4) 1 S2[2]⊕ S4[2]/S2[8]⊕ S4[8] 1/1

τ2I(4)/τ8I(4) 1 S1[3]⊕ S3[3]/S1[9]⊕ S3[9] 1/1

τ3I(4)/τ9I(4) 1 S2[4]⊕ S6[4]/S2[10]⊕ S6[10] 1/1

τ4I(4)/τ10I(4) 1 S1[5]⊕ S5[5]/S1[11]⊕ S5[11] 1/1
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Type D̃8

U V k Mk c

τ5I(4)/τ11I(4) 1 S4[6]⊕ S6[6]/S4[12]⊕ S6[12] 1/1

τ5I(4)/τ11I(4) 2 S′1[2]⊕ S′2[2]/S′1[4]⊕ S′2[4] 1/1

τ5I(4)/τ11I(4) 3 S′′1 [2]⊕ S′′2 [2]/S′′1 [4]⊕ S′′2 [4] 1/1

τ0I(3)/τ6I(3) 1 S5[1]/S4[6]⊕ S5[7] 1/1

τ1I(3)/τ7I(3) 1 S3[1]⊕ S4[2]/S3[7]⊕ S4[8] 1/1

τ2I(3)/τ8I(3) 1 S2[2]⊕ S3[3]/S2[8]⊕ S3[9] 1/1

τ3I(3)/τ9I(3) 1 S1[3]⊕ S2[4]/S1[9]⊕ S2[10] 1/1

τ4I(3)/τ10I(3) 1 S1[5]⊕ S6[4]/S1[11]⊕ S6[10] 1/1

τ5I(3)/τ11I(3) 1 S5[5]⊕ S6[6]/S5[11]⊕ S6[12] 1/1

τ0I(5)/τ6I(5) 1 S3[1]/S3[7]⊕ S6[6] 1/1

τ1I(5)/τ7I(5) 1 S2[2]⊕ S5[1]/S2[8]⊕ S5[7] 1/1

τ2I(5)/τ8I(5) 1 S1[3]⊕ S4[2]/S1[9]⊕ S4[8] 1/1

τ3I(5)/τ9I(5) 1 S3[3]⊕ S6[4]/S3[9]⊕ S6[10] 1/1

τ4I(5)/τ10I(5) 1 S2[4]⊕ S5[5]/S2[10]⊕ S5[11] 1/1

τ5I(5)/τ11I(5) 1 S1[5]⊕ S4[6]/S1[11]⊕ S4[12] 1/1

τ6I(6) 1 S1[5]⊕ S3[7] 1

τ1I(6)/τ7I(6) 1 S2[2]/S2[8]⊕ S6[6] 1/1

τ2I(6)/τ8I(6) 1 S1[3]⊕ S5[1]/S1[9]⊕ S5[7] 1/1

τ3I(6)/τ9I(6) 1 S4[2]⊕ S6[4]/S4[8]⊕ S6[10] 1/1

τ3I(6)/τ9I(6) 2 S′1[1]⊕ S′2[1]/S′1[3]⊕ S′2[3] 1/1

τ3I(6)/τ9I(6) 3 S′′1 [1]⊕ S′′2 [1]/S′′1 [3]⊕ S′′2 [3] 1/1

τ4I(6)/τ10I(6) 1 S3[3]⊕ S5[5]/S3[9]⊕ S5[11] 1/1

τ5I(6)/τ11I(6) 1 S2[4]⊕ S4[6]/S2[10]⊕ S4[12] 1/1

τ6I(7) 1 S2[4]⊕ S3[7] 1

τ7I(7) 1 S1[5]⊕ S2[8] 1

τ2I(7)/τ8I(7) 1 S1[3]/S1[9]⊕ S6[6] 1/1

τ3I(7)/τ9I(7) 1 S5[1]⊕ S6[4]/S5[7]⊕ S6[10] 1/1

τ4I(7)/τ10I(7) 1 S4[2]⊕ S5[5]/S4[8]⊕ S5[11] 1/1

τ5I(7)/τ11I(7) 1 S3[3]⊕ S4[6]/S3[9]⊕ S4[12] 1/1

P (5) τ0I(5)/τ6I(5) 1 S3[1]⊕ S6[1]/S3[7]⊕ S6[7] 1/1
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Type D̃8

U V k Mk c

τ1I(5)/τ7I(5) 1 S2[2]⊕ S5[2]/S2[8]⊕ S5[8] 1/1

τ2I(5)/τ8I(5) 1 S1[3]⊕ S4[3]/S1[9]⊕ S4[9] 1/1

τ2I(5)/τ8I(5) 2 S′1[1]⊕ S′2[1]/S′1[3]⊕ S′2[3] 1/1

τ2I(5)/τ8I(5) 3 S′′1 [1]⊕ S′′2 [1]/S′′1 [3]⊕ S′′2 [3] 1/1

τ3I(5)/τ9I(5) 1 S3[4]⊕ S6[4]/S3[10]⊕ S6[10] 1/1

τ4I(5)/τ10I(5) 1 S2[5]⊕ S5[5]/S2[11]⊕ S5[11] 1/1

τ5I(5)/τ11I(5) 1 S1[6]⊕ S4[6]/S1[12]⊕ S4[12] 1/1

τ5I(5)/τ11I(5) 2 S′1[2]⊕ S′2[2]/S′1[4]⊕ S′2[4] 1/1

τ5I(5)/τ11I(5) 3 S′′1 [2]⊕ S′′2 [2]/S′′1 [4]⊕ S′′2 [4] 1/1

τ6I(3) 1 S5[5]⊕ S6[7] 1

τ1I(3)/τ7I(3) 1 S5[2]/S4[6]⊕ S5[8] 1/1

τ2I(3)/τ8I(3) 1 S3[1]⊕ S4[3]/S3[7]⊕ S4[9] 1/1

τ3I(3)/τ9I(3) 1 S2[2]⊕ S3[4]/S2[8]⊕ S3[10] 1/1

τ4I(3)/τ10I(3) 1 S1[3]⊕ S2[5]/S1[9]⊕ S2[11] 1/1

τ5I(3)/τ11I(3) 1 S1[6]⊕ S6[4]/S1[12]⊕ S6[10] 1/1

τ0I(4)/τ6I(4) 1 S6[1]/S4[6]⊕ S6[7] 1/1

τ1I(4)/τ7I(4) 1 S3[1]⊕ S5[2]/S3[7]⊕ S5[8] 1/1

τ2I(4)/τ8I(4) 1 S2[2]⊕ S4[3]/S2[8]⊕ S4[9] 1/1

τ3I(4)/τ9I(4) 1 S1[3]⊕ S3[4]/S1[9]⊕ S3[10] 1/1

τ4I(4)/τ10I(4) 1 S2[5]⊕ S6[4]/S2[11]⊕ S6[10] 1/1

τ5I(4)/τ11I(4) 1 S1[6]⊕ S5[5]/S1[12]⊕ S5[11] 1/1

τ0I(6)/τ6I(6) 1 S3[1]/S1[6]⊕ S3[7] 1/1

τ1I(6)/τ7I(6) 1 S2[2]⊕ S6[1]/S2[8]⊕ S6[7] 1/1

τ2I(6)/τ8I(6) 1 S1[3]⊕ S5[2]/S1[9]⊕ S5[8] 1/1

τ3I(6)/τ9I(6) 1 S4[3]⊕ S6[4]/S4[9]⊕ S6[10] 1/1

τ4I(6)/τ10I(6) 1 S3[4]⊕ S5[5]/S3[10]⊕ S5[11] 1/1

τ5I(6)/τ11I(6) 1 S2[5]⊕ S4[6]/S2[11]⊕ S4[12] 1/1

τ6I(7) 1 S2[5]⊕ S3[7] 1

τ1I(7)/τ7I(7) 1 S2[2]/S1[6]⊕ S2[8] 1/1

τ2I(7)/τ8I(7) 1 S1[3]⊕ S6[1]/S1[9]⊕ S6[7] 1/1
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Type D̃8

U V k Mk c

τ3I(7)/τ9I(7) 1 S5[2]⊕ S6[4]/S5[8]⊕ S6[10] 1/1

τ4I(7)/τ10I(7) 1 S4[3]⊕ S5[5]/S4[9]⊕ S5[11] 1/1

τ5I(7)/τ11I(7) 1 S3[4]⊕ S4[6]/S3[10]⊕ S4[12] 1/1

Ẽ6

U V k Mk c

P (2) τ2I(2)/τ8I(2) 1 S1[1]⊕ S2[2]/S1[4]⊕ S2[5] 1/1

τ2I(2)/τ8I(2) 2 S′1[1]⊕ S′2[2]/S′1[4]⊕ S′2[5] 1/1

τ2I(2)/τ8I(2) 3 S′′1 [1]⊕ S′′2 [1]/S′′1 [3]⊕ S′′2 [3] 1/1

τ5I(2)/τ11I(2) 1 S1[3]⊕ S2[3]/S1[6]⊕ S2[6] 1/1

τ5I(2)/τ11I(2) 2 S′1[3]⊕ S′2[3]/S′1[6]⊕ S′2[6] 1/1

τ5I(2)/τ11I(2) 3 S′′1 [2]⊕ S′′2 [2]/S′′1 [4]⊕ S′′2 [4] 1/1

τ1I(4)/τ7I(4) 1 S3[1]/S2[3]⊕ S3[4] 1/1

τ2I(4)/τ8I(4) 2 S′1[1]⊕ S′3[1]/S′1[4]⊕ S′3[4] 1/1

τ4I(4)/τ10I(4) 1 S2[2]⊕ S3[2]/S2[5]⊕ S3[5] 1/1

τ5I(4)/τ11I(4) 2 S′1[3]⊕ S′3[2]/S′1[6]⊕ S′3[5] 1/1

τ1I(6)/τ7I(6) 2 S′3[1]/S′2[3]⊕ S′3[4] 1/1

τ2I(6)/τ8I(6) 1 S1[1]⊕ S3[1]/S1[4]⊕ S3[4] 1/1

τ4I(6)/τ10I(6) 2 S′2[2]⊕ S′3[2]/S′2[5]⊕ S′3[5] 1/1

τ5I(6)/τ11I(6) 1 S1[3]⊕ S3[2]/S1[6]⊕ S3[5] 1/1

P (3) τ1I(3)/τ7I(3) 1 S1[1]⊕ S2[1]⊕ S3[1]/S1[4]⊕ S2[4]⊕ S3[4] 1/1

τ1I(3)/τ7I(3) 2 S′1[1]⊕ S′2[1]⊕ S′3[1]/S′1[4]⊕ S′2[4]⊕ S′3[4] 1/1

τ2I(3)/τ8I(3) 3 S′′1 [1]⊕ S′′2 [1]⊕ S′′2 [1]/S′′1 [3]⊕ S′′2 [3]⊕ S′′2 [3] 1/1

τ3I(3)/τ9I(3) 1 S1[2]⊕ S2[2]⊕ S3[2]/S1[5]⊕ S2[5]⊕ S3[5] 1/1

τ3I(3)/τ9I(3) 2 S′1[2]⊕ S′2[2]⊕ S′3[2]/S′1[5]⊕ S′2[5]⊕ S′3[5] 1/1

τ5I(3)/τ11I(3) 1 S1[3]⊕ S2[3]⊕ S3[3]/S1[6]⊕ S2[6]⊕ S3[6] 1/1

τ5I(3)/τ11I(3) 2 S′1[3]⊕ S′2[3]⊕ S′3[3]/S′1[6]⊕ S′2[6]⊕ S′3[6] 1/1

τ5I(3)/τ11I(3) 3 S′′1 [2]⊕ S′′1 [2]⊕ S′′2 [2]/S′′1 [4]⊕ S′′1 [4]⊕ S′′2 [4] 1/1
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Ẽ7

U V k Mk c

P (2) τ2I(2)/τ14I(2) 1 S1[2]/S1[6]⊕ S4[4] 1/1

τ3I(2)/τ15I(2) 2 S′2[1]⊕ S′3[1]/S′2[4]⊕ S′3[4] 1/1

τ5I(2)/τ17I(2) 1 S1[2]⊕ S2[2]/S1[6]⊕ S2[6] 1/1

τ7I(2)/τ19I(2) 2 S′1[2]⊕ S′2[2]/S′1[5]⊕ S′2[5] 1/1

τ8I(2)/τ20I(2) 1 S2[2]⊕ S3[4]/S2[6]⊕ S3[8] 1/1

τ11I(2)/τ23I(2) 1 S3[4]⊕ S4[4]/S3[8]⊕ S4[8] 1/1

τ11I(2)/τ23I(2) 2 S′1[3]⊕ S′3[3]/S′1[6]⊕ S′3[6] 1/1

τ11I(2)/τ23I(2) 3 S′′1 [2]⊕ S′′2 [2]/S′′1 [4]⊕ S′′2 [4] 1/1

τ13I(6) 1 S1[3]⊕ S2[5] 1

τ3I(6)/τ15I(6) 2 S′2[1]/S′1[3]⊕ S′2[4] 1/1

τ4I(6)/τ16I(6) 1 S2[1]⊕ S3[1]/S2[5]⊕ S3[5] 1/1

τ7I(6)/τ19I(6) 1 S3[1]⊕ S4[3]/S3[5]⊕ S4[7] 1/1

τ7I(6)/τ19I(6) 2 S′1[2]⊕ S′3[1]/S′1[5]⊕ S′3[4] 1/1

τ7I(6)/τ19I(6) 3 S′′1 [1]⊕ S′′2 [1]/S′′1 [3]⊕ S′′2 [3] 1/1

τ10I(6)/τ22I(6) 1 S1[3]⊕ S4[3]/S1[7]⊕ S4[7] 1/1

τ11I(6)/τ23I(6) 2 S′2[2]⊕ S′3[3]/S′2[5]⊕ S′3[6] 1/1

τ2I(8)/τ14I(8) 1 S2[1]/S2[5]⊕ S4[4] 1/1

τ5I(8)/τ17I(8) 1 S1[2]⊕ S3[1]/S1[6]⊕ S3[5] 1/1

τ8I(8)/τ20I(8) 1 S2[2]⊕ S4[3]/S2[6]⊕ S4[7] 1/1

τ11I(8)/τ23I(8) 1 S1[3]⊕ S3[4]/S1[7]⊕ S3[8] 1/1

P (3) τ1I(3)/τ13I(3) 1 S2[1]⊕ S3[1]/S1[4]⊕ S2[5]⊕ S3[5] 1/1

τ3I(3)/τ15I(3) 1 S1[2]⊕ S3[1]⊕ S4[1]/S1[6]⊕ S3[5]⊕ S4[5] 1/1

τ3I(3)/τ15I(3) 2 S′1[1]⊕ S′2[1]⊕ S′3[1]/S′1[4]⊕ S′2[4]⊕ S′3[4] 1/1

τ5I(3)/τ17I(3) 1 S1[2]⊕ S2[2]⊕ S3[2]/S1[6]⊕ S2[6]⊕ S3[6] 1/1

τ7I(3)/τ19I(3) 1 S1[3]⊕ S3[2]⊕ S4[3]/S1[7]⊕ S3[6]⊕ S4[7] 1/1

τ7I(3)/τ19I(3) 2 S′1[2]⊕ S′2[2]⊕ S′3[2]/S′1[5]⊕ S′2[5]⊕ S′3[5] 1/1

τ9I(3)/τ21I(3) 1 S1[3]⊕ S2[3]⊕ S3[4]/S1[7]⊕ S2[7]⊕ S3[8] 1/1

τ11I(3)/τ23I(3) 1 S1[4]⊕ S3[4]⊕ S4[4]/S1[8]⊕ S3[8]⊕ S4[8] 1/1

τ11I(3)/τ23I(3) 2 S′1[3]⊕ S′2[3]⊕ S′3[3]/S′1[6]⊕ S′2[6]⊕ S′3[6] 1/1
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τ11I(3)/τ23I(3) 3 S′′1 [2]⊕ S′′1 [2]⊕ S′′2 [2]/S′′1 [4]⊕ S′′1 [4]⊕ S′′2 [4] 1/1

τ1I(5)/τ13I(5) 1 S2[1]/S1[4]⊕ S2[5]⊕ S4[4] 1/1

τ3I(5)/τ15I(5) 1 S2[1]⊕ S3[1]⊕ S4[1]/S2[5]⊕ S3[5]⊕ S4[5] 1/1

τ5I(5)/τ17I(5) 1 S1[2]⊕ S2[2]⊕ S4[1]/S1[6]⊕ S2[6]⊕ S4[5] 1/1

τ6I(5)/τ18I(5) 3 S′′1 [1]⊕ S′′2 [1]⊕ S′′2 [1]/S′′1 [3]⊕ S′′2 [3]⊕ S′′2 [3] 1/1

τ7I(5)/τ19I(5) 1 S2[2]⊕ S3[2]⊕ S4[3]/S2[6]⊕ S3[6]⊕ S4[7] 1/1

τ9I(5)/τ21I(5) 1 S1[3]⊕ S2[3]⊕ S4[3]/S1[7]⊕ S2[7]⊕ S4[7] 1/1

τ11I(5)/τ23I(5) 1 S2[3]⊕ S3[4]⊕ S4[4]/S2[7]⊕ S3[8]⊕ S4[8] 1/1

P (4) τ2I(4)/τ14I(4) 1 S1[1]⊕ S2[1]⊕ S3[1]⊕ S4[1]/S1[5]⊕ S2[5]⊕ S3[5]⊕ S4[5] 1/1

τ3I(4)/τ15I(4) 2 S′1[1]⊕ S′2[1]⊕ S′3[1]⊕ S′3[1]/S′1[4]⊕ S′2[4]⊕ S′3[4]⊕ S′3[4] 1/1

τ5I(4)/τ17I(4) 1 S1[2]⊕ S2[2]⊕ S3[2]⊕ S4[2]/S1[6]⊕ S2[6]⊕ S3[6]⊕ S4[6] 1/1

τ5I(4)/τ17I(4) 3 S′′1 [1]⊕ S′′1 [1]⊕ S′′2 [1]⊕ S′′2 [1]/S′′1 [3]⊕ S′′1 [3]⊕ S′′2 [3]⊕ S′′2 [3] 1/1

τ7I(4)/τ19I(4) 2 S′1[2]⊕ S′2[2]⊕ S′2[2]⊕ S′3[2]/S′1[5]⊕ S′2[5]⊕ S′2[5]⊕ S′3[5] 1/1

τ8I(4)/τ20I(4) 1 S1[3]⊕ S2[3]⊕ S3[3]⊕ S4[3]/S1[7]⊕ S2[7]⊕ S3[7]⊕ S4[7] 1/1

τ11I(4)/τ23I(4) 1 S1[4]⊕ S2[4]⊕ S3[4]⊕ S4[4]/S1[8]⊕ S2[8]⊕ S3[8]⊕ S4[8] 1/1

τ11I(4)/τ23I(4) 2 S′1[3]⊕ S′1[3]⊕ S′2[3]⊕ S′3[3]/S′1[6]⊕ S′1[6]⊕ S′2[6]⊕ S′3[6] 1/1

τ11I(4)/τ23I(4) 3 S′′1 [2]⊕ S′′1 [2]⊕ S′′2 [2]⊕ S′′2 [2]/S′′1 [4]⊕ S′′1 [4]⊕ S′′2 [4]⊕ S′′2 [4] 1/1

P (8) τ1I(8)/τ13I(8) 2 S′2[1]/S′1[3]⊕ S′2[4] 1/1

τ2I(8)/τ14I(8) 1 S2[1]⊕ S4[1]/S2[5]⊕ S4[5] 1/1

τ3I(8)/τ15I(8) 2 S′2[1]⊕ S′3[1]/S′2[4]⊕ S′3[4] 1/1

τ5I(8)/τ17I(8) 1 S1[2]⊕ S3[2]/S1[6]⊕ S3[6] 1/1

τ5I(8)/τ17I(8) 2 S′1[2]⊕ S′3[1]/S′1[5]⊕ S′3[4] 1/1

τ5I(8)/τ17I(8) 3 S′′1 [1]⊕ S′′2 [1]/S′′1 [3]⊕ S′′2 [3] 1/1

τ7I(8)/τ19I(8) 2 S′1[2]⊕ S′2[2]/S′1[5]⊕ S′2[5] 1/1

τ8I(8)/τ20I(8) 1 S2[3]⊕ S4[3]/S2[7]⊕ S4[7] 1/1

τ9I(8)/τ21I(8) 2 S′2[2]⊕ S′3[3]/S′2[5]⊕ S′3[6] 1/1

τ11I(8)/τ23I(8) 1 S1[4]⊕ S3[4]/S1[8]⊕ S3[8] 1/1

τ11I(8)/τ23I(8) 2 S′1[3]⊕ S′3[3]/S′1[6]⊕ S′3[6] 1/1

τ11I(8)/τ23I(8) 3 S′′1 [2]⊕ S′′2 [2]/S′′1 [4]⊕ S′′2 [4] 1/1

τ2I(2)/τ14I(2) 1 S2[1]/S1[4]⊕ S2[5] 1/1
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Ẽ7

U V k Mk c

τ5I(2)/τ17I(2) 1 S2[1]⊕ S3[2]/S2[5]⊕ S3[6] 1/1

τ8I(2)/τ20I(2) 1 S3[2]⊕ S4[3]/S3[6]⊕ S4[7] 1/1

τ11I(2)/τ23I(2) 1 S1[4]⊕ S4[3]/S1[8]⊕ S4[7] 1/1

τ2I(6)/τ14I(6) 1 S4[1]/S3[4]⊕ S4[5] 1/1

τ5I(6)/τ17I(6) 1 S1[2]⊕ S4[1]/S1[6]⊕ S4[5] 1/1

τ8I(6)/τ20I(6) 1 S1[2]⊕ S2[3]/S1[6]⊕ S2[7] 1/1

τ11I(6)/τ23I(6) 1 S2[3]⊕ S3[4]/S2[7]⊕ S3[8] 1/1
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P (1) τ2I(1)/τ32I(1) 1 S2[1]/S2[6]⊕ S5[5] 1/1

τ4I(1)/τ34I(1) 2 S′2[1]/S′1[3]⊕ S′2[4] 1/1

τ5I(1)/τ35I(1) 1 S2[1]⊕ S4[1]/S2[6]⊕ S4[6] 1/1

τ8I(1)/τ38I(1) 1 S1[2]⊕ S4[1]/S1[7]⊕ S4[6] 1/1

τ9I(1)/τ39I(1) 2 S′2[1]⊕ S′3[1]/S′2[4]⊕ S′3[4] 1/1

τ11I(1)/τ41I(1) 1 S1[2]⊕ S3[2]/S1[7]⊕ S3[7] 1/1

τ14I(1)/τ44I(1) 1 S3[2]⊕ S5[3]/S3[7]⊕ S5[8] 1/1

τ14I(1)/τ44I(1) 2 S′1[2]⊕ S′3[1]/S′1[5]⊕ S′3[4] 1/1

τ14I(1)/τ44I(1) 3 S′′1 [1]⊕ S′′2 [1]/S′′1 [3]⊕ S′′2 [3] 1/1

τ17I(1)/τ47I(1) 1 S2[3]⊕ S5[3]/S2[8]⊕ S5[8] 1/1

τ19I(1)/τ49I(1) 2 S′1[2]⊕ S′2[2]/S′1[5]⊕ S′2[5] 1/1

τ20I(1)/τ50I(1) 1 S2[3]⊕ S4[4]/S2[8]⊕ S4[9] 1/1

τ23I(1)/τ53I(1) 1 S1[4]⊕ S4[4]/S1[9]⊕ S4[9] 1/1

τ24I(1)/τ54I(1) 2 S′2[2]⊕ S′3[3]/S′2[5]⊕ S′3[6] 1/1

τ26I(1)/τ56I(1) 1 S1[4]⊕ S3[5]/S1[9]⊕ S3[10] 1/1

τ29I(1)/τ59I(1) 1 S3[5]⊕ S5[5]/S3[10]⊕ S5[10] 1/1

τ29I(1)/τ59I(1) 2 S′1[3]⊕ S′3[3]/S′1[6]⊕ S′3[6] 1/1

τ29I(1)/τ59I(1) 3 S′′1 [2]⊕ S′′2 [2]/S′′1 [4]⊕ S′′2 [4] 1/1

τ32I(7) 1 S1[4]⊕ S2[6] 1
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τ5I(7)/τ35I(7) 1 S4[1]/S3[5]⊕ S4[6] 1/1

τ8I(7)/τ38I(7) 1 S1[2]/S1[7]⊕ S5[5] 1/1

τ11I(7)/τ41I(7) 1 S2[1]⊕ S3[2]/S2[6]⊕ S3[7] 1/1

τ14I(7)/τ44I(7) 1 S4[1]⊕ S5[3]/S4[6]⊕ S5[8] 1/1

τ17I(7)/τ47I(7) 1 S1[2]⊕ S2[3]/S1[7]⊕ S2[8] 1/1

τ20I(7)/τ50I(7) 1 S3[2]⊕ S4[4]/S3[7]⊕ S4[9] 1/1

τ23I(7)/τ53I(7) 1 S1[4]⊕ S5[3]/S1[9]⊕ S5[8] 1/1

τ26I(7)/τ56I(7) 1 S2[3]⊕ S3[5]/S2[8]⊕ S3[10] 1/1

τ29I(7)/τ59I(7) 1 S4[4]⊕ S5[5]/S4[9]⊕ S5[10] 1/1

P (2) τ2I(2)/τ32I(2) 1 S2[1]⊕ S3[1]/S1[5]⊕ S2[6]⊕ S3[6]⊕ S5[5] 1/1

τ5I(2)/τ35I(2) 1 S2[1]⊕ S3[1]⊕ S4[1]⊕ S5[1]/S2[6]⊕ S3[6]⊕ S4[6]⊕ S5[6] 1/1

τ8I(2)/τ38I(2) 1 S1[2]⊕ S2[2]⊕ S4[1]⊕ S5[1]/S1[7]⊕ S2[7]⊕ S4[6]⊕ S5[6] 1/1

τ9I(2)/τ39I(2) 2 S′1[1]⊕ S′1[1]⊕ S′2[1]⊕ S′3[1]/S′1[4]⊕ S′1[4]⊕ S′2[4]⊕ S′3[4] 1/1

τ11I(2)/τ41I(2) 1 S1[2]⊕ S2[2]⊕ S3[2]⊕ S4[2]/S1[7]⊕ S2[7]⊕ S3[7]⊕ S4[7] 1/1

τ14I(2)/τ44I(2) 1 S1[3]⊕ S3[2]⊕ S4[2]⊕ S5[3]/S1[8]⊕ S3[7]⊕ S4[7]⊕ S5[8] 1/1

τ14I(2)/τ44I(2) 3 S′′1 [1]⊕ S′′1 [1]⊕ S′′2 [1]⊕ S′′2 [1]/S′′1 [3]⊕ S′′1 [3]⊕ S′′2 [3]⊕ S′′2 [3] 1/1

τ17I(2)/τ47I(2) 1 S1[3]⊕ S2[3]⊕ S3[3]⊕ S5[3]/S1[8]⊕ S2[8]⊕ S3[8]⊕ S5[8] 1/1

τ19I(2)/τ49I(2) 2 S′1[2]⊕ S′2[2]⊕ S′3[2]⊕ S′3[2]/S′1[5]⊕ S′2[5]⊕ S′3[5]⊕ S′3[5] 1/1

τ20I(2)/τ50I(2) 1 S2[3]⊕ S3[3]⊕ S4[4]⊕ S5[4]/S2[8]⊕ S3[8]⊕ S4[9]⊕ S5[9] 1/1

τ23I(2)/τ53I(2) 1 S1[4]⊕ S2[4]⊕ S4[4]⊕ S5[4]/S1[9]⊕ S2[9]⊕ S4[9]⊕ S5[9] 1/1

τ26I(2)/τ56I(2) 1 S1[4]⊕ S2[4]⊕ S3[5]⊕ S4[5]/S1[9]⊕ S2[9]⊕ S3[10]⊕ S4[10] 1/1

τ29I(2)/τ59I(2) 1 S1[5]⊕ S3[5]⊕ S4[5]⊕ S5[5]/S1[10]⊕ S3[10]⊕ S4[10]⊕ S5[10] 1/1

τ29I(2)/τ59I(2) 2 S′1[3]⊕ S′2[3]⊕ S′2[3]⊕ S′3[3]/S′1[6]⊕ S′2[6]⊕ S′2[6]⊕ S′3[6] 1/1

τ29I(2)/τ59I(2) 3 S′′1 [2]⊕ S′′1 [2]⊕ S′′2 [2]⊕ S′′2 [2]/S′′1 [4]⊕ S′′1 [4]⊕ S′′2 [4]⊕ S′′2 [4] 1/1

τ2I(5)/τ32I(5) 1 S2[1]/S1[5]⊕ S2[6]⊕ S4[5]⊕ S5[5] 1/1

τ5I(5)/τ35I(5) 1 S2[1]⊕ S3[1]⊕ S4[1]/S1[5]⊕ S2[6]⊕ S3[6]⊕ S4[6] 1/1

τ8I(5)/τ38I(5) 1 S1[2]⊕ S3[1]⊕ S4[1]⊕ S5[1]/S1[7]⊕ S3[6]⊕ S4[6]⊕ S5[6] 1/1

τ11I(5)/τ41I(5) 1 S1[2]⊕ S2[2]⊕ S3[2]⊕ S5[1]/S1[7]⊕ S2[7]⊕ S3[7]⊕ S5[6] 1/1

τ14I(5)/τ44I(5) 1 S2[2]⊕ S3[2]⊕ S4[2]⊕ S5[3]/S2[7]⊕ S3[7]⊕ S4[7]⊕ S5[8] 1/1

τ17I(5)/τ47I(5) 1 S1[3]⊕ S2[3]⊕ S4[2]⊕ S5[3]/S1[8]⊕ S2[8]⊕ S4[7]⊕ S5[8] 1/1
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τ20I(5)/τ50I(5) 1 S1[3]⊕ S2[3]⊕ S3[3]⊕ S4[4]/S1[8]⊕ S2[8]⊕ S3[8]⊕ S4[9] 1/1

τ23I(5)/τ53I(5) 1 S1[4]⊕ S3[3]⊕ S4[4]⊕ S5[4]/S1[9]⊕ S3[8]⊕ S4[9]⊕ S5[9] 1/1

τ26I(5)/τ56I(5) 1 S1[4]⊕ S2[4]⊕ S3[5]⊕ S5[4]/S1[9]⊕ S2[9]⊕ S3[10]⊕ S5[9] 1/1

τ29I(5)/τ59I(5) 1 S2[4]⊕ S3[5]⊕ S4[5]⊕ S5[5]/S2[9]⊕ S3[10]⊕ S4[10]⊕ S5[10] 1/1

P (3) τ5I(3)/ 1 S1[1]⊕ S2[1]⊕ S3[1]⊕ S3[1]⊕ S4[1]⊕ S5[1]/ 1/

τ35I(3) S1[6]⊕ S2[6]⊕ S3[6]⊕ S3[6]⊕ S4[6]⊕ S5[6] 1

τ9I(3)/ 2 S′1[1]⊕ S′1[1]⊕ S′2[1]⊕ S′2[1]⊕ S′3[1]⊕ S′3[1]/ 1/

τ39I(3) S′1[4]⊕ S′1[4]⊕ S′2[4]⊕ S′2[4]⊕ S′3[4]⊕ S′3[4] 1

τ11I(3)/ 1 S1[2]⊕ S2[2]⊕ S2[2]⊕ S3[2]⊕ S4[2]⊕ S5[2]/ 1/

τ41I(3) S1[7]⊕ S2[7]⊕ S2[7]⊕ S3[7]⊕ S4[7]⊕ S5[7] 1

τ14I(3)/ 3 S′′1 [1]⊕ S′′1 [1]⊕ S′′1 [1]⊕ S′′2 [1]⊕ S′′2 [1]⊕ S′′2 [1]/ 1/

τ44I(3) S′′1 [3]⊕ S′′1 [3]⊕ S′′1 [3]⊕ S′′2 [3]⊕ S′′2 [3]⊕ S′′2 [3] 1

τ17I(3)/ 1 S1[3]⊕ S1[3]⊕ S2[3]⊕ S3[3]⊕ S4[3]⊕ S5[3]/ 1/

τ47I(3) S1[8]⊕ S1[8]⊕ S2[8]⊕ S3[8]⊕ S4[8]⊕ S5[8] 1

τ19I(3)/ 2 S′1[2]⊕ S′1[2]⊕ S′2[2]⊕ S′2[2]⊕ S′3[2]⊕ S′3[2]/ 1/

τ49I(3) S′1[5]⊕ S′1[5]⊕ S′2[5]⊕ S′2[5]⊕ S′3[5]⊕ S′3[5] 1

τ23I(3)/ 1 S1[4]⊕ S2[4]⊕ S3[4]⊕ S4[4]⊕ S5[4]⊕ S5[4]/ 1/

τ53I(3) S1[9]⊕ S2[9]⊕ S3[9]⊕ S4[9]⊕ S5[9]⊕ S5[9] 1

τ29I(3)/ 1 S1[5]⊕ S2[5]⊕ S3[5]⊕ S4[5]⊕ S4[5]⊕ S5[5]/ 1/

τ59I(3) S1[10]⊕ S2[10]⊕ S3[10]⊕ S4[10]⊕ S4[10]⊕ S5[10] 1

τ29I(3)/ 2 S′1[3]⊕ S′1[3]⊕ S′2[3]⊕ S′2[3]⊕ S′3[3]⊕ S′3[3]/ 1/

τ59I(3) S′1[6]⊕ S′1[6]⊕ S′2[6]⊕ S′2[6]⊕ S′3[6]⊕ S′3[6] 1

τ29I(3)/ 3 S′′1 [2]⊕ S′′1 [2]⊕ S′′1 [2]⊕ S′′2 [2]⊕ S′′2 [2]⊕ S′′2 [2]/ 1/

τ59I(3) S′′1 [4]⊕ S′′1 [4]⊕ S′′1 [4]⊕ S′′2 [4]⊕ S′′2 [4]⊕ S′′2 [4] 1

P (4) τ5I(4)/ 1 S1[1]⊕ S2[1]⊕ S3[1]⊕ S4[1]⊕ S5[1]/ 1/

τ35I(4) S1[6]⊕ S2[6]⊕ S3[6]⊕ S4[6]⊕ S5[6] 1

τ9I(4)/ 2 S′1[1]⊕ S′1[1]⊕ S′2[1]⊕ S′3[1]⊕ S′3[1]/ 1/

τ39I(4) S′1[4]⊕ S′1[4]⊕ S′2[4]⊕ S′3[4]⊕ S′3[4] 1

τ11I(4)/ 1 S1[2]⊕ S2[2]⊕ S3[2]⊕ S4[2]⊕ S5[2]/ 1/

τ41I(4) S1[7]⊕ S2[7]⊕ S3[7]⊕ S4[7]⊕ S5[7] 1
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Ẽ8

U V k Mk c

τ14I(4)/ 3 S′′1 [1]⊕ S′′1 [1]⊕ S′′1 [1]⊕ S′′2 [1]⊕ S′′2 [1]/ 1/

τ44I(4) S′′1 [3]⊕ S′′1 [3]⊕ S′′1 [3]⊕ S′′2 [3]⊕ S′′2 [3] 1

τ17I(4)/ 1 S1[3]⊕ S2[3]⊕ S3[3]⊕ S4[3]⊕ S5[3]/ 1/

τ47I(4) S1[8]⊕ S2[8]⊕ S3[8]⊕ S4[8]⊕ S5[8] 1

τ19I(4)/ 2 S′1[2]⊕ S′2[2]⊕ S′2[2]⊕ S′3[2]⊕ S′3[2]/ 1/

τ49I(4) S′1[5]⊕ S′2[5]⊕ S′2[5]⊕ S′3[5]⊕ S′3[5] 1

τ23I(4)/ 1 S1[4]⊕ S2[4]⊕ S3[4]⊕ S4[4]⊕ S5[4]/ 1/

τ53I(4) S1[9]⊕ S2[9]⊕ S3[9]⊕ S4[9]⊕ S5[9] 1

τ29I(4)/ 1 S1[5]⊕ S2[5]⊕ S3[5]⊕ S4[5]⊕ S5[5]/ 1/

τ59I(4) S1[10]⊕ S2[10]⊕ S3[10]⊕ S4[10]⊕ S5[10] 1

τ29I(4)/ 2 S′1[3]⊕ S′1[3]⊕ S′2[3]⊕ S′2[3]⊕ S′3[3]/ 1/

τ59I(4) S′1[6]⊕ S′1[6]⊕ S′2[6]⊕ S′2[6]⊕ S′3[6] 1

τ29I(4)/ 3 S′′1 [2]⊕ S′′1 [2]⊕ S′′2 [2]⊕ S′′2 [2]⊕ S′′2 [2]/ 1/

τ59I(4) S′′1 [4]⊕ S′′1 [4]⊕ S′′2 [4]⊕ S′′2 [4]⊕ S′′2 [4] 1

P (5) τ2I(5)/τ32I(5) 1 S3[1]⊕ S4[1]/S1[5]⊕ S2[5]⊕ S3[6]⊕ S4[6] 1/1

τ5I(5)/τ35I(5) 1 S1[1]⊕ S3[1]⊕ S4[1]⊕ S5[1]/S1[6]⊕ S3[6]⊕ S4[6]⊕ S5[6] 1/1

τ8I(5)/τ38I(5) 1 S1[1]⊕ S2[2]⊕ S3[2]⊕ S5[1]/S1[6]⊕ S2[7]⊕ S3[7]⊕ S5[6] 1/1

τ9I(5)/τ39I(5) 2 S′1[1]⊕ S′2[1]⊕ S′3[1]⊕ S′3[1]/S′1[4]⊕ S′2[4]⊕ S′3[4]⊕ S′3[4] 1/1

τ11I(5)/τ41I(5) 1 S2[2]⊕ S3[2]⊕ S4[2]⊕ S5[2]/S2[7]⊕ S3[7]⊕ S4[7]⊕ S5[7] 1/1

τ14I(5)/τ44I(5) 1 S1[3]⊕ S2[3]⊕ S4[2]⊕ S5[2]/S1[8]⊕ S2[8]⊕ S4[7]⊕ S5[7] 1/1

τ14I(5)/τ44I(5) 3 S′′1 [1]⊕ S′′1 [1]⊕ S′′2 [1]⊕ S′′2 [1]/S′′1 [3]⊕ S′′1 [3]⊕ S′′2 [3]⊕ S′′2 [3] 1/1

τ17I(5)/τ47I(5) 1 S1[3]⊕ S2[3]⊕ S3[3]⊕ S4[3]/S1[8]⊕ S2[8]⊕ S3[8]⊕ S4[8] 1/1

τ19I(5)/τ49I(5) 2 S′1[2]⊕ S′2[2]⊕ S′2[2]⊕ S′3[2]/S′1[5]⊕ S′2[5]⊕ S′2[5]⊕ S′3[5] 1/1

τ20I(5)/τ50I(5) 1 S1[4]⊕ S3[3]⊕ S4[3]⊕ S5[4]/S1[9]⊕ S3[8]⊕ S4[8]⊕ S5[9] 1/1

τ23I(5)/τ53I(5) 1 S1[4]⊕ S2[4]⊕ S3[4]⊕ S5[4]/S1[9]⊕ S2[9]⊕ S3[9]⊕ S5[9] 1/1

τ26I(5)/τ56I(5) 1 S2[4]⊕ S3[4]⊕ S4[5]⊕ S5[5]/S2[9]⊕ S3[9]⊕ S4[10]⊕ S5[10] 1/1

τ29I(5)/τ59I(5) 1 S1[5]⊕ S2[5]⊕ S4[5]⊕ S5[5]/S1[10]⊕ S2[10]⊕ S4[10]⊕ S5[10] 1/1

τ29I(5)/τ59I(5) 2 S′1[3]⊕ S′1[3]⊕ S′2[3]⊕ S′3[3]/S′1[6]⊕ S′1[6]⊕ S′2[6]⊕ S′3[6] 1/1

τ29I(5)/τ59I(5) 3 S′′1 [2]⊕ S′′1 [2]⊕ S′′2 [2]⊕ S′′2 [2]/S′′1 [4]⊕ S′′1 [4]⊕ S′′2 [4]⊕ S′′2 [4] 1/1

τ2I(2)/τ32I(2) 1 S3[1]/S1[5]⊕ S2[5]⊕ S3[6]⊕ S5[5] 1/1
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τ5I(2)/τ35I(2) 1 S3[1]⊕ S4[1]⊕ S5[1]/S2[5]⊕ S3[6]⊕ S4[6]⊕ S5[6] 1/1

τ8I(2)/τ38I(2) 1 S1[1]⊕ S2[2]⊕ S4[1]⊕ S5[1]/S1[6]⊕ S2[7]⊕ S4[6]⊕ S5[6] 1/1

τ11I(2)/τ41I(2) 1 S1[1]⊕ S2[2]⊕ S3[2]⊕ S4[2]/S1[6]⊕ S2[7]⊕ S3[7]⊕ S4[7] 1/1

τ14I(2)/τ44I(2) 1 S1[3]⊕ S3[2]⊕ S4[2]⊕ S5[2]/S1[8]⊕ S3[7]⊕ S4[7]⊕ S5[7] 1/1

τ17I(2)/τ47I(2) 1 S1[3]⊕ S2[3]⊕ S3[3]⊕ S5[2]/S1[8]⊕ S2[8]⊕ S3[8]⊕ S5[7] 1/1

τ20I(2)/τ50I(2) 1 S2[3]⊕ S3[3]⊕ S4[3]⊕ S5[4]/S2[8]⊕ S3[8]⊕ S4[8]⊕ S5[9] 1/1

τ23I(2)/τ53I(2) 1 S1[4]⊕ S2[4]⊕ S4[3]⊕ S5[4]/S1[9]⊕ S2[9]⊕ S4[8]⊕ S5[9] 1/1

τ26I(2)/τ56I(2) 1 S1[4]⊕ S2[4]⊕ S3[4]⊕ S4[5]/S1[9]⊕ S2[9]⊕ S3[9]⊕ S4[10] 1/1

τ29I(2)/τ59I(2) 1 S1[5]⊕ S3[4]⊕ S4[5]⊕ S5[5]/S1[10]⊕ S3[9]⊕ S4[10]⊕ S5[10] 1/1

P (6) τ31I(6) 1 S1[4]⊕ S2[6]⊕ S3[6] 1

τ3I(6)/τ33I(6) 1 S1[2]/S1[7]⊕ S4[5]⊕ S5[5] 1/1

τ5I(6)/τ35I(6) 1 S2[1]⊕ S3[1]⊕ S4[1]/S2[6]⊕ S3[6]⊕ S4[6] 1/1

τ7I(6)/τ37I(6) 1 S1[2]⊕ S2[2]/S1[7]⊕ S2[7]⊕ S5[5] 1/1

τ9I(6)/τ39I(6) 1 S3[1]⊕ S4[1]⊕ S5[3]/S3[6]⊕ S4[6]⊕ S5[8] 1/1

τ9I(6)/τ39I(6) 2 S′1[1]⊕ S′2[1]⊕ S′3[1]/S′1[4]⊕ S′2[4]⊕ S′3[4] 1/1

τ11I(6)/τ41I(6) 1 S1[2]⊕ S2[2]⊕ S3[2]/S1[7]⊕ S2[7]⊕ S3[7] 1/1

τ13I(6)/τ43I(6) 1 S1[3]⊕ S4[1]⊕ S5[3]/S1[8]⊕ S4[6]⊕ S5[8] 1/1

τ14I(6)/τ44I(6) 3 S′′1 [1]⊕ S′′1 [1]⊕ S′′2 [1]/S′′1 [3]⊕ S′′1 [3]⊕ S′′2 [3] 1/1

τ15I(6)/τ45I(6) 1 S2[2]⊕ S3[2]⊕ S4[4]/S2[7]⊕ S3[7]⊕ S4[9] 1/1

τ17I(6)/τ47I(6) 1 S1[3]⊕ S2[3]⊕ S5[3]/S1[8]⊕ S2[8]⊕ S5[8] 1/1

τ19I(6)/τ49I(6) 1 S3[2]⊕ S4[4]⊕ S5[4]/S3[7]⊕ S4[9]⊕ S5[9] 1/1

τ19I(6)/τ49I(6) 2 S′1[2]⊕ S′2[2]⊕ S′3[2]/S′1[5]⊕ S′2[5]⊕ S′3[5] 1/1

τ21I(6)/τ51I(6) 1 S1[3]⊕ S2[3]⊕ S3[5]/S1[8]⊕ S2[8]⊕ S3[10] 1/1

τ23I(6)/τ53I(6) 1 S1[4]⊕ S4[4]⊕ S5[4]/S1[9]⊕ S4[9]⊕ S5[9] 1/1

τ25I(6)/τ55I(6) 1 S2[3]⊕ S3[5]⊕ S4[5]/S2[8]⊕ S3[10]⊕ S4[10] 1/1

τ27I(6)/τ57I(6) 1 S1[4]⊕ S2[6]⊕ S5[4]/S1[9]⊕ S2[11]⊕ S5[9] 1/1

τ29I(6)/τ59I(6) 1 S3[5]⊕ S4[5]⊕ S5[5]/S3[10]⊕ S4[10]⊕ S5[10] 1/1

τ29I(6)/τ59I(6) 2 S′1[3]⊕ S′2[3]⊕ S′3[3]/S′1[6]⊕ S′2[6]⊕ S′3[6] 1/1

τ29I(6)/τ59I(6) 3 S′′1 [2]⊕ S′′2 [2]⊕ S′′2 [2]/S′′1 [4]⊕ S′′2 [4]⊕ S′′2 [4] 1/1

τ31I(9) 1 S1[4]⊕ S2[6]⊕ S4[5] 1
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Ẽ8

U V k Mk c

τ3I(9)/τ33I(9) 1 S2[1]/S2[6]⊕ S4[5]⊕ S5[5] 1/1

τ5I(9)/τ35I(9) 1 S2[1]⊕ S3[1]/S2[6]⊕ S3[6]⊕ S5[5] 1/1

τ7I(9)/τ37I(9) 1 S1[2]⊕ S3[1]/S1[7]⊕ S3[6]⊕ S5[5] 1/1

τ9I(9)/τ39I(9) 1 S1[2]⊕ S3[1]⊕ S4[1]/S1[7]⊕ S3[6]⊕ S4[6] 1/1

τ11I(9)/τ41I(9) 1 S1[2]⊕ S2[2]⊕ S4[1]/S1[7]⊕ S2[7]⊕ S4[6] 1/1

τ13I(9)/τ43I(9) 1 S2[2]⊕ S4[1]⊕ S5[3]/S2[7]⊕ S4[6]⊕ S5[8] 1/1

τ15I(9)/τ45I(9) 1 S2[2]⊕ S3[2]⊕ S5[3]/S2[7]⊕ S3[7]⊕ S5[8] 1/1

τ17I(9)/τ47I(9) 1 S1[3]⊕ S3[2]⊕ S5[3]/S1[8]⊕ S3[7]⊕ S5[8] 1/1

τ19I(9)/τ49I(9) 1 S1[3]⊕ S3[2]⊕ S4[4]/S1[8]⊕ S3[7]⊕ S4[9] 1/1

τ21I(9)/τ51I(9) 1 S1[3]⊕ S2[3]⊕ S4[4]/S1[8]⊕ S2[8]⊕ S4[9] 1/1

τ23I(9)/τ53I(9) 1 S2[3]⊕ S4[4]⊕ S5[4]/S2[8]⊕ S4[9]⊕ S5[9] 1/1

τ25I(9)/τ55I(9) 1 S2[3]⊕ S3[5]⊕ S5[4]/S2[8]⊕ S3[10]⊕ S5[9] 1/1

τ27I(9)/τ57I(9) 1 S1[4]⊕ S3[5]⊕ S5[4]/S1[9]⊕ S3[10]⊕ S5[9] 1/1

τ29I(9)/τ59I(9) 1 S1[4]⊕ S3[5]⊕ S4[5]/S1[9]⊕ S3[10]⊕ S4[10] 1/1

P (7) τ32I(7) 1 S1[7]⊕ S5[4] 1

τ4I(7)/τ34I(7) 2 S′1[1]/S′1[4]⊕ S′3[3] 1/1

τ5I(7)/τ35I(7) 1 S2[1]⊕ S3[1]/S2[6]⊕ S3[6] 1/1

τ8I(7)/τ38I(7) 1 S5[3]/S4[5]⊕ S5[8] 1/1

τ9I(7)/τ39I(7) 2 S′1[1]⊕ S′2[1]/S′1[4]⊕ S′2[4] 1/1

τ11I(7)/τ41I(7) 1 S1[2]⊕ S2[2]/S1[7]⊕ S2[7] 1/1

τ14I(7)/τ44I(7) 1 S3[1]⊕ S4[4]/S3[6]⊕ S4[9] 1/1

τ14I(7)/τ44I(7) 2 S′2[1]⊕ S′3[2]/S′2[4]⊕ S′3[5] 1/1

τ14I(7)/τ44I(7) 3 S′′1 [1]⊕ S′′2 [1]/S′′1 [3]⊕ S′′2 [3] 1/1

τ17I(7)/τ47I(7) 1 S1[3]⊕ S5[3]/S1[8]⊕ S5[8] 1/1

τ19I(7)/τ49I(7) 2 S′1[2]⊕ S′3[2]/S′1[5]⊕ S′3[5] 1/1

τ20I(7)/τ50I(7) 1 S2[2]⊕ S3[5]/S2[7]⊕ S3[10] 1/1

τ23I(7)/τ53I(7) 1 S4[4]⊕ S5[4]/S4[9]⊕ S5[9] 1/1

τ24I(7)/τ54I(7) 2 S′1[2]⊕ S′2[3]/S′1[5]⊕ S′2[6] 1/1

τ26I(7)/τ56I(7) 1 S1[3]⊕ S2[6]/S1[8]⊕ S2[11] 1/1

τ29I(7)/τ59I(7) 1 S3[5]⊕ S4[5]/S3[10]⊕ S4[10] 1/1
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τ29I(7)/τ59I(7) 2 S′2[3]⊕ S′3[3]/S′2[6]⊕ S′3[6] 1/1

τ29I(7)/τ59I(7) 3 S′′1 [2]⊕ S′′2 [2]/S′′1 [4]⊕ S′′2 [4] 1/1

τ32I(1) 1 S2[6]⊕ S5[4] 1

τ5I(1)/τ35I(1) 1 S2[1]/S2[6]⊕ S4[5] 1/1

τ8I(1)/τ38I(1) 1 S1[2]/S1[7]⊕ S4[5] 1/1

τ11I(1)/τ41I(1) 1 S1[2]⊕ S3[1]/S1[7]⊕ S3[6] 1/1

τ14I(1)/τ44I(1) 1 S3[1]⊕ S5[3]/S3[6]⊕ S5[8] 1/1

τ17I(1)/τ47I(1) 1 S2[2]⊕ S5[3]/S2[7]⊕ S5[8] 1/1

τ20I(1)/τ50I(1) 1 S2[2]⊕ S4[4]/S2[7]⊕ S4[9] 1/1

τ23I(1)/τ53I(1) 1 S1[3]⊕ S4[4]/S1[8]⊕ S4[9] 1/1

τ26I(1)/τ56I(1) 1 S1[3]⊕ S3[5]/S1[8]⊕ S3[10] 1/1

τ29I(1)/τ59I(1) 1 S3[5]⊕ S5[4]/S3[10]⊕ S5[9] 1/1

P (9) τ1I(9)/τ31I(9) 1 S4[1]/S1[5]⊕ S3[5]⊕ S4[6] 1/1

τ3I(9)/τ33I(9) 1 S2[1]⊕ S4[1]/S1[5]⊕ S2[6]⊕ S4[6] 1/1

τ5I(9)/τ35I(9) 1 S2[1]⊕ S4[1]⊕ S5[1]/S2[6]⊕ S4[6]⊕ S5[6] 1/1

τ7I(9)/τ37I(9) 1 S2[1]⊕ S3[2]⊕ S5[1]/S2[6]⊕ S3[7]⊕ S5[6] 1/1

τ9I(9)/τ39I(9) 1 S1[2]⊕ S3[2]⊕ S5[1]/S1[7]⊕ S3[7]⊕ S5[6] 1/1

τ9I(9)/τ39I(9) 2 S′1[1]⊕ S′2[1]⊕ S′3[1]/S′1[4]⊕ S′2[4]⊕ S′3[4] 1/1

τ11I(9)/τ41I(9) 1 S1[2]⊕ S3[2]⊕ S4[2]/S1[7]⊕ S3[7]⊕ S4[7] 1/1

τ13I(9)/τ43I(9) 1 S1[2]⊕ S2[3]⊕ S4[2]/S1[7]⊕ S2[8]⊕ S4[7] 1/1

τ14I(9)/τ44I(9) 3 S′′1 [1]⊕ S′′1 [1]⊕ S′′2 [1]/S′′1 [3]⊕ S′′1 [3]⊕ S′′2 [3] 1/1

τ15I(9)/τ45I(9) 1 S2[3]⊕ S4[2]⊕ S5[3]/S2[8]⊕ S4[7]⊕ S5[8] 1/1

τ17I(9)/τ47I(9) 1 S2[3]⊕ S3[3]⊕ S5[3]/S2[8]⊕ S3[8]⊕ S5[8] 1/1

τ19I(9)/τ49I(9) 1 S1[4]⊕ S3[3]⊕ S5[3]/S1[9]⊕ S3[8]⊕ S5[8] 1/1

τ19I(9)/τ49I(9) 2 S′1[2]⊕ S′2[2]⊕ S′3[2]/S′1[5]⊕ S′2[5]⊕ S′3[5] 1/1

τ21I(9)/τ51I(9) 1 S1[4]⊕ S3[3]⊕ S4[4]/S1[9]⊕ S3[8]⊕ S4[9] 1/1

τ23I(9)/τ53I(9) 1 S1[4]⊕ S2[4]⊕ S4[4]/S1[9]⊕ S2[9]⊕ S4[9] 1/1

τ25I(9)/τ55I(9) 1 S2[4]⊕ S4[4]⊕ S5[5]/S2[9]⊕ S4[9]⊕ S5[10] 1/1

τ27I(9)/τ57I(9) 1 S2[4]⊕ S3[5]⊕ S5[5]/S2[9]⊕ S3[10]⊕ S5[10] 1/1

τ29I(9)/τ59I(9) 1 S1[5]⊕ S3[5]⊕ S5[5]/S1[10]⊕ S3[10]⊕ S5[10] 1/1
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τ29I(9)/τ59I(9) 2 S′1[3]⊕ S′2[3]⊕ S′3[3]/S′1[6]⊕ S′2[6]⊕ S′3[6] 1/1

τ29I(9)/τ59I(9) 3 S′′1 [2]⊕ S′′2 [2]⊕ S′′2 [2]/S′′1 [4]⊕ S′′2 [4]⊕ S′′2 [4] 1/1

τ31I(6) 1 S2[4]⊕ S3[5]⊕ S4[6] 1

τ3I(6)/τ33I(6) 1 S2[1]/S1[5]⊕ S2[6]⊕ S5[5] 1/1

τ5I(6)/τ35I(6) 1 S4[1]⊕ S5[1]/S3[5]⊕ S4[6]⊕ S5[6] 1/1

τ7I(6)/τ37I(6) 1 S2[1]⊕ S3[2]/S1[5]⊕ S2[6]⊕ S3[7] 1/1

τ9I(6)/τ39I(6) 1 S1[2]⊕ S4[1]⊕ S5[1]/S1[7]⊕ S4[6]⊕ S5[6] 1/1

τ11I(6)/τ41I(6) 1 S2[1]⊕ S3[2]⊕ S4[2]/S2[6]⊕ S3[7]⊕ S4[7] 1/1

τ13I(6)/τ43I(6) 1 S1[2]⊕ S2[3]⊕ S5[1]/S1[7]⊕ S2[8]⊕ S5[6] 1/1

τ15I(6)/τ45I(6) 1 S3[2]⊕ S4[2]⊕ S5[3]/S3[7]⊕ S4[7]⊕ S5[8] 1/1

τ17I(6)/τ47I(6) 1 S1[2]⊕ S2[3]⊕ S3[3]/S1[7]⊕ S2[8]⊕ S3[8] 1/1

τ19I(6)/τ49I(6) 1 S1[4]⊕ S4[2]⊕ S5[3]/S1[9]⊕ S4[7]⊕ S5[8] 1/1

τ21I(6)/τ51I(6) 1 S2[3]⊕ S3[3]⊕ S4[4]/S2[8]⊕ S3[8]⊕ S4[9] 1/1

τ23I(6)/τ53I(6) 1 S1[4]⊕ S2[4]⊕ S5[3]/S1[9]⊕ S2[9]⊕ S5[8] 1/1

τ25I(6)/τ55I(6) 1 S3[3]⊕ S4[4]⊕ S5[5]/S3[8]⊕ S4[9]⊕ S5[10] 1/1

τ27I(6)/τ57I(6) 1 S1[4]⊕ S2[4]⊕ S3[5]/S1[9]⊕ S2[9]⊕ S3[10] 1/1

τ29I(6)/τ59I(6) 1 S1[5]⊕ S4[4]⊕ S5[5]/S1[10]⊕ S4[9]⊕ S5[10] 1/1
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