
Multigrid methods
for structured grids
and their application
in particle simulation

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

am Fachbereich Mathematik der
Bergischen Universität Wuppertal

genehmigte

Dissertation

von

Dipl.-Inf. Matthias Bolten

Tag der mündlichen Prüfung: 8. Juli 2008
Referent: Prof. Dr. A. Frommer
Korreferent: Prof. Dr. Dr. Th. Lippert
Korreferent: Prof. J. Brannick, PhD

Diese Dissertation kann wie folgt zitiert werden:

urn:nbn:de:hbz:468-20080543

[http://nbn-resolving.de/urn/resolver.pl?urn=urn%3Anbn%3Ade%3Ahbz%3A468-20080543]

Contents

List of Figures iii

List of Tables v

1 Introduction 1

2 Partial Differential Equations 3
2.1 Introduction . 3

2.1.1 Boundary conditions . 4
2.2 Elliptic partial differential equations . 5

2.2.1 Prerequisites from functional analysis 5
2.2.2 Prerequisites from Fourier analysis 9
2.2.3 Weak formulation of a PDE . 10
2.2.4 Existence and uniqueness of the weak solution 11
2.2.5 Regularity of the solution for PDEs with Dirichlet boundary con-

ditions . 13
2.2.6 Construction of the solution for PDEs with open boundary conditions 13
2.2.7 Construction of the solution for PDEs on the torus 16

2.3 Numerical solution . 18
2.3.1 Solution of PDEs on the torus or on subsets of Rd with Dirichlet

boundary conditions using finite differences 18
2.3.2 Finite volume discretization-based solution of PDEs defined on Rd 22

3 Multigrid Methods 39
3.1 Iterative methods . 39

3.1.1 Linear iterative methods . 39
3.1.2 Splitting methods . 41
3.1.3 Relaxation methods . 43

3.2 Geometric Multigrid . 44
3.2.1 Motivation . 45
3.2.2 Twogrid methods . 47
3.2.3 Multigrid methods . 53
3.2.4 FAS and FAC . 57

3.3 Algebraic Multigrid Theory for Structured Matrices 58
3.3.1 Convergence theory for multigrid methods for hermitian positive

definite problems . 59
3.3.2 Replacement of the Galerkin operator 66
3.3.3 Application to circulant matrices 74

i

Contents

3.3.4 Circulant matrices . 75
3.3.5 Multigrid methods for circulant matrices 76
3.3.6 Replacement of the Galerkin operator for circulant matrices 77
3.3.7 Replacement strategies for the Galerkin operator for circulant ma-

trices with compact stencils . 81
3.3.8 Numerical Examples . 84

3.4 Parallelization . 88
3.4.1 Data distribution for banded matrices 88
3.4.2 Example results on Blue Gene/L and Blue Gene/P 90
3.4.3 Further parallelization issues . 91

4 Particle Simulation 95
4.1 Introduction . 95
4.2 Mathematical formulation . 95

4.2.1 Open systems . 97
4.2.2 Periodic systems . 98
4.2.3 Relation to the Poisson equation 98

4.3 Numerical solution . 99
4.3.1 Mesh-free methods . 99
4.3.2 Mesh-based methods . 99

4.4 Meshed continuum method . 102
4.4.1 Derivation of the method . 102
4.4.2 Point symmetric densities described by B-splines 105
4.4.3 Numerical experiments . 106

5 Conclusion 113

Acknowledgments 115

Bibliography 117

ii

List of Figures

2.1 Coarsened grid in 2D . 25
2.2 Conservative discretization at the interface in 2D 26
2.3 Cut through computed solution and analytic point-wise error on 643 grid 35
2.4 Behavior of the error of the original method and of the modification . . . 36

3.1 Error of 5-point Laplacian after 0, 1 and 3 iterations of damped Jacobi . . 46
3.2 Damping factors for 1D Laplacian . 48
3.3 Algebraically smooth error for mixture of PDE and integral equation . . . 61
3.4 Generating symbols of Galerkin operator, replacement operator, and their

ratio . 85
3.5 Convergence of multigrid for 5-point Laplacian using Galerkin operator

and the replacement operator . 85
3.6 Convergence of multigrid for mixed PDE and integral equation using Galer-

kin operator and the replacement operator 86
3.7 Pattern of 1D nearest neighbor communication 89
3.8 Speedup for the V-cycle and the W-cycle compared 91
3.9 Blue Gene/L speedup and efficiency for 7-point discretization of Laplacian

and 1283 unknowns . 92
3.10 Blue Gene/P speedup and efficiency for 7-point discretization of Laplacian

and 10243 unknowns . 93
3.11 Blue Gene/L weak scaling for 7-point Laplacian and 64 × 128 × 128 un-

knowns per processor . 93

4.1 Influence of the width of the charge distribution for various grid spacings
for the 7-point discretization of the Laplacian 106

4.2 Influence of the width of the charge distribution for various grid spacings
for the compact fourth-order discretization of the Laplacian 109

4.3 Scaling behavior of Algorithm 4.2 . 110

iii

List of Figures

iv

List of Tables

2.1 Error and timings for different various sizes 34
2.2 Error norms for a 333-problem with h = 1/32 and various refinements . . 36
2.3 Error norms for a 333-problem with h = 1/32 and various refinements

using the method of Washio and Oosterlee 37

3.1 Convergence Galerkin coarse grid operator 7-point Laplacian 87
3.2 Convergence replacement coarse grid operator 7-point Laplacian 87
3.3 Blue Gene/L timings for 7-point Laplacian and 1283 unknowns 92
3.4 Blue Gene/P timings for 7-point Laplacian and 10243 unknowns 93
3.5 Blue Gene/L weak scaling for 7-point Laplacian and 64 × 128 × 128 un-

knowns per processor . 94

4.1 Error of second-order discretization of calculated distribution’s potential
for different distribution widths and grid spacings 107

4.2 Error of fourth-order discretization of calculated distribution’s potential
for different distribution widths and grid spacings 107

4.3 Influence of the width of the charge distribution for various grid spacings
for the 7-point discretization of the Laplacian 108

4.4 Influence of the width of the charge distribution for various grid spacings
for the compact fourth-order discretization of the Laplacian 108

4.5 Scaling behavior and accuracy of Algorithm 4.2 for randomly distributed
particles and compact fourth-order discretization 109

4.6 Relative error of the electrostatic energy of a DNA fragment calculated for
various grid spacings using the compact fourth-order discretization 111

v

List of Tables

vi

1 Introduction

This work is focussed on the application of multigrid methods to particle simulation
methods. Particle simulation is important for a broad range of scientific fields, like
biophysics, astrophysics or plasma physics, to name a few. In these fields computer
experiments play an important role, either supporting real experiments or replacing them.
The first can significantly reduce costs, e.g. in the pharmaceutic industry, where possible
agents can be checked for an effect in advance of real and expensive experiments. The
latter has an important role in astrophysics, where most experiments just cannot be
carried out in a laboratory. In the cases we are interested in, the interaction of particles
can be evaluated by pairwise potentials, where short-ranged potentials, e.g. potentials
describing chemical bonds, are easy to be implemented efficiently. But the very important
Coulomb potential and the gravitational potential are not short-ranged, thus an intuitive
implementation has to evaluate all pairwise interactions, yielding an O(N2) algorithm,
where N is the number of particles to be simulated. The key to reduce this complexity
is the use of approximate algorithms for the evaluation of the long-ranged potentials.

In the Coulomb or gravitational potential case we have a variety of options. One
option is the use of tree-codes, that approximate particles that are far away by a bigger
pseudo-particle. Furthermore, in the periodic case we have the option of calculating the
convolution with the influence function given by the potential in Fourier space. We are
exploiting the fact that the Coulomb or gravitational potential is strongly connected to
the Poisson equation, i.e. up to a constant the Green’s function of the Poisson equation
and these potentials are the same. Given this fact, we are able to solve the problem
numerically by sampling a special right hand side onto a mesh describing either a torus
or a section of the open space and solving the equation numerically. After the solution
is available on the mesh, the electrostatic quantities of interest can be obtained from
this discrete solution by interpolating it back to the particles and applying a correction
scheme. Given these considerations the problem can be reduced to using a fast Poisson
solver for the numerical solution of the Poisson equation on the mesh. Multigrid method
are known to be very efficient solvers for the Poisson equation and similar PDEs, so we
choose to use Multigrid methods for that purpose.

In the open boundary case the Poisson equation has to be solved in open space. The
problem is that this leads to infinitely large systems. The number of grid points can
be reduced easily, as far away from the system the solution will change only very little.
Washio and Oosterlee [87] were able to provide an error analysis for such a hierarchically
coarsened grid. They suggest to calculate a finite subvolume, only, while setting the
boundary values to zero, assuming that the induced error can be neglected if the volume
is large enough. They did not provide an estimate for this error, though. We extend
their method to impose certain boundary conditions at the boundary of the system and
provide an estimate for the error of the modified method. This estimate shows that

1

1 Introduction

the modified method is of the desired accuracy. Additionally we show that the method
is still optimal for a number of refinement steps that can be precomputed easily. The
resulting system can be solved using the well-known FAC method, which is an extension
of standard geometric multigrid methods for adaptive grids.

For molecular dynamics simulation, the periodic case is of special importance. The
solution of the Poisson equation with constant coefficients on an equidistant regular grid
using a discretization technique like finite differences leads to circulant matrices. Circu-
lant matrices form a matrix algebra and can be analyzed elegantly. Recently, multigrid
methods for circulant matrices have been developed, see e.g. [2, 74]. The theory for these
methods is based on a variational property which is fulfilled when the Galerkin operator
is used. This operator gets denser when going down to coarser levels, i.e. we end up with
a fully filled stencil after a few coarsening steps, even if the original stencil was sparse.
Motivated by the fact that this is not necessary in geometric multigrid methods using a
rediscretization of the system with finite differences, and motivated by a stencil collapsing
technique introduced in [4] we develop necessary conditions for the V-cycle convergence
of multigrid methods not using the Galerkin operator but rather a replacement. We ap-
ply these theoretical considerations to certain circulant matrices and present schemes for
these matrices that fulfill these properties. As a result we obtain very efficient solvers for
circulant matrices.

The rest of this work is structured as follows: In Chapter 2 we will cover partial dif-
ferential equations. After the definition and classification of partial differential equations
we will present various results for the existence, uniqueness and regularity of the solution
of elliptic partial differential equations. We present different discretization techniques,
namely finite differences, compact discretizations of higher order and the finite volume
discretization. The chapter closes with an overview of Washio’s and Oosterlee’s method
and the modification to it, as well as with some numerical examples. After that, in Chap-
ter 3 we introduce iterative solvers and multigrid methods. After a short introduction to
general iterative methods and geometric multigrid methods including FAS and FAC, we
continue with algebraic multigrid theory for structured matrices. As part of this theory
we present the new theoretical considerations for non-Galerkin coarse grid operators and
the application to circulant matrices. Thereafter, a short overview over the paralleliza-
tion of multigrid methods and some results for our parallel code for circulant matrices
are presented. Chapter 4 deals with particle simulation. After an introduction to the
problem and a brief overview over available methods we give a mathematical formula-
tion of the problem that consistently uses the Poisson equation and which allows the
use of multigrid methods for the solution of these problems. We finish this work with a
conclusion in Chapter 5.

2

2 Partial Differential Equations

The development of multigrid methods is strongly connected to their application to the
solution of partial differential equations. As the simulation of particle systems leads to
a partial differential equation as well, in this chapter we will give a short overview over
partial differential equations and the associated theory.

2.1 Introduction

Unlike ordinary differential equations which involve univariate functions, partial differ-
ential equations involve multivariate functions. In the following, we call an open and
connected subset of Rd a domain. By Ω we denote a bounded domain and its boundary
by ∂Ω or Γ. A formal definition of a partial differential equation is given by the following:

Definition 2.1 (Partial differential equation) Let Ω ⊂ Rd. An equation of the form

F
(

x, u(x),
∂

∂x1
u(x), . . . ,

∂

∂xd
u(x),

∂2

∂x2
1

u(x),
∂2

∂x2∂x1
u(x), . . .

)
= 0

with x ∈ Rd and u ∈ Ck(Ω) and where F depends only on x and the value of u and the
partial derivatives of u at x is called a partial differential equation or PDE for short.

Partial differential equations are classified by their order k, i.e. the maximum occurring
order of the derivatives. Furthermore PDEs are distinguished by the type of linearity.
If F depends only linearly on u and all partial derivatives, i.e. the coefficient functions
depend only on x, the PDE is called linear. If it depends only linearly on the partial
derivatives of highest order but non-linearly on u and all other partial derivatives it
is called semilinear. It is called quasilinear, if the coefficient functions of the partial
derivatives of highest degree depend only on lower-order derivatives and u. Otherwise
the equation is called a non-linear PDE.

Linear partial differential equations are well studied and a number of different numerical
methods exist for their solution. Many physical problems, e.g. heat conduction or wave
propagation, lead to second-order linear PDEs. These are classified in the following way:

Definition 2.2 (Classification of linear PDEs of second order) Considering a
linear PDE of second order of the form

Lu(x) = −
d∑

i,j=1

ai,j(x)
∂2

∂xi∂xj
u(x) +

d∑
j=1

bj(x)
∂

∂xj
u(x) + c(x)u(x) = f(x).

Depending on the eigenvalues of the coefficient matrix A = (ai,j)di,j=1 these PDEs are
called:

3

2 Partial Differential Equations

• elliptic - all eigenvalues of A have same sign,

• parabolic - all eigenvalues of A, except for one vanishing eigenvalue, have same
sign,

• hyperbolic - all eigenvalues of A have same sign, except for one eigenvalue that has
the opposite sign.

As geometric multigrid methods are optimal methods for certain elliptic PDEs, in the
remaining sections we focus on this class of problems.

A PDE by itself usually has multiple solutions. In order to obtain a unique solution, we
need boundary conditions or initial conditions, i.e. given values on the domain’s boundary
or parts of the boundary of the domain. This leads to boundary value problems or initial
value problems, respectively.

2.1.1 Boundary conditions

Various different boundary conditions are known in literature. In this work, we are using
the following conditions:

• Open boundary conditions
Open boundary conditions are not very common, although they can be handled
very elegantly in theory. If a partial differential equation Fu = f is defined on
Ω = Rd, the solution usually is still not unique. Therefore, a value of u can be
prescribed for x ∈ ∂Ω, which in this case we consider to be the point ∞ in the 1-
point compactification of Ω = Rd. In order for the solution u to have nice analytical
properties, e.g. u ∈ L2, the following condition is usually required:

u(x)
‖x‖→∞−→ 0.

• Dirichlet boundary conditions
Let the partial differential equation Fu = f be defined on its domain Ω. Boundary
conditions of the form

u = g on Γ

are known as Dirichlet boundary conditions. PDEs with Dirichlet boundary condi-
tions are well-analyzed and a lot of theory exists for existence, uniqueness etc. of
the solution, especially with respect to the properties of the boundary and to the
smoothness of g.

• Periodic boundary conditions
If a partial differential equation is defined on the torus Rd/Zd, boundary conditions
are not needed. Nevertheless, in this case one often speaks of periodic boundary
conditions. PDEs can be analyzed very elegantly and solved efficiently on the torus
using Fourier techniques.

4

2.2 Elliptic partial differential equations

2.2 Elliptic partial differential equations

A large class of important stationary problems leads to elliptic PDEs, namely diffusion-
like problems like those described by the electrostatic or the gravitational potential. In
accordance to the introductory book by Larsson and Thomée [61], which is the basis of
this introduction, we study the equation

Lu := −a∆u+ b · ∇u+ cu = f

in larger detail. In order to keep the analysis of this equation consistent with all kinds of
boundary conditions needed here, we choose a variational formulation. So in the following
the domain Ω of the PDE is either equal to or a subset of Rd or it is the d-dimensional
torus Rd/Zd unless noted otherwise. In case that Ω is a subset of Rd, the solution u shall
fulfill u = g on Γ and for Ω = Rd u shall vanish as ‖x‖ goes to infinity.

2.2.1 Prerequisites from functional analysis

In order to handle PDEs formally correctly, we need a few prerequisites from functional
analysis, as existence and uniqueness results can be formulated elegantly using function
spaces.

Vector spaces

Given an R-vector space V , we can define a linear functional from V to the underlying
field R.

Definition 2.3 (Linear functional) Let V be a vector space over R. A linear func-
tional L on V is a function L : V → R, such that for all u, v ∈ V and for all λ, µ ∈ R we
have

L(λu+ µv) = λL(u) + µL(v).

It is called bounded if there exists a constant c ∈ R, such that for all v ∈ V we have

‖L(v)‖V ≤ c‖v‖V .

The set of all bounded linear functionals on a vector space V is called the dual space (of
V) and denoted by V ∗. The norm of an element L ∈ V ∗ is given by

‖L‖V ∗ = sup
u∈V

‖L(v)‖V
‖v‖V

.

Definition 2.4 (Bilinear form) Let V be a vector space over R. A bilinear form a(·, ·)
on V is a function a : V × V → R such that it is linear in each argument, i.e.

a(λu+ µv,w) = λa(u,w) + µa(v, w),
a(u, λv + µw) = λa(u, v) + µa(u,w),

for all u, v, w ∈ V and λ, µ ∈ R. The bilinear form a is called symmetric, iff for all
u, v ∈ V

a(u, v) = a(v, u),

5

2 Partial Differential Equations

it is named positive definite, iff for all u ∈ V, u 6= 0 we have

a(u, u) > 0.

A symmetric and positive definite bilinear form on V is called scalar product. Each scalar
product induces a norm ‖u‖a :=

√
a(u, u) on V . A vector space with scalar product is

called Hilbert space, as usual.
Further on, if V is a Hilbert space with induced norm ‖ · ‖V , a bilinear form a is called

coercive, iff
a(u, u) ≥ α‖u‖2V

for all u ∈ V , where α > 0.

Using these definitions, the following theorem states an important property of Hilbert
spaces:

Theorem 2.1 (Riesz representation theorem) Let V be a Hilbert space with scalar
product (·, ·)V and induced norm ‖ · ‖V . For each bounded linear functional L on V there
exists a unique u ∈ V , such that for all v ∈ V we have

L(v) = (v, u).

Moreover, the norm of the operator can be expressed in terms of the norm of this unique
representation:

‖L‖V ∗ = ‖u‖V .

Proof. See e.g. [89], pp. 90–91. �

This theorem helps us to prove the following lemma.

Lemma 2.1 Let V be a Hilbert space. Assume that we are given a symmetric coercive
bilinear form a and a bounded linear functional L. Then there exists a unique solution
u ∈ V of

a(u, v) = L(u), for all v ∈ V.

Proof. From a being symmetric and coercive it follows that a is symmetric and positive
definite. So a is a scalar product on V and (V, a) is a Hilbert space. The linear func-
tional L is bounded on (V, a), so we can apply Theorem 2.1 and the assertion holds true. �

Often, a bilinear form is only coercive, but not symmetric. The following theorem can be
seen as a generalization of the Riesz representation theorem that covers this case.

Theorem 2.2 (Lax-Milgram Lemma [62]) Let V be a Hilbert space, let a be a bound-
ed coercive bilinear form and let L be a bounded linear functional. Then there exists a
unique vector u ∈ V , such that

a(u, v) = L(u), for all v ∈ V.

Proof. See e.g. [89], pp. 92–93. �

6

2.2 Elliptic partial differential equations

Sobolev spaces

Later on we will present a variational approach for the analysis of partial differential
equations that is based on the results introduced in the previous section. In this frame-
work the solution of a PDE has to be a member of a function space that is a Hilbert
space. The most natural choice for a solution would be a function in Ck(Ω) which is
defined as follows.

Definition 2.5 The space Ck(Ω) is the space of functions that are continuous up to at
least all derivatives of order k. Depending on the domain Ω and boundary conditions
Ck0 (Ω) denotes either the set of functions that vanish on the boundary if Ω is a proper
subset of Rd, the sets of functions that vanish as the norm of the argument goes to infinity
if Ω is equal to Rd, or the set of functions f defined on Ω = Rd/Zd whose integral vanishes,
i.e. ∫

Ω

f dx = 0.

Obviously, the spaces Ck(Ω) and the spaces Ck0 (Ω) form vector spaces. Equipped with
the usual norm of Ck(Ω), namely

‖u‖Ck(Ω) = sup
x∈Ω

u(x),

they are not Hilbert spaces, since this norm is not induced by a scalar product. So we
need function spaces that are Hilbert spaces. The common Hilbert spaces used for the
theory of PDEs are the spaces L2(Ω), where the norm

‖u‖L2(Ω) =
∫
Ω

|u(x)|2dx

is induced by the scalar product

(u, v)L2(Ω) =
∫
Ω

u(x)v(x)dx.

As the functions in L2 are in general not differentiable, we generalize the notion of partial
derivative. Let therefore either Ω ⊆ Rd or Ω = Rd/Zd. First we assume that u ∈ C1(Ω),
where ∂Ω has a piecewise smooth boundary, thus the expression

∂u

∂xi

is meaningful. For all ϕ ∈ C1
0 (Ω), applying integration by parts yields∫

Ω

∂u

∂xi
ϕdx =

∫
∂Ω

uϕ~ni ds−
∫
Ω

u
∂ϕ

∂xi
dx, (2.1)

where ~n is the surface normal of ∂Ω. The first summand vanishes in both cases. For
Ω ⊆ Rd, with ∂Ω being piecewise smooth in the case Ω (Rd, we have that u vanishes

7

2 Partial Differential Equations

at the boundary or in infinity. For Ω = Rd/Zd the value on the hyperplane of the d-
dimensional unit hypercube that represents the torus is equal to the corresponding value
on the opposite boundary and the normal ~n is the same on both planes, except for the
sign. So for all ϕ ∈ C1

0 (Ω) we have∫
Ω

∂u

∂xi
ϕdx = −

∫
Ω

u
∂ϕ

∂xi
dx.

This motivates the definition of the weak derivative for functions in L2:

Definition 2.6 (Weak derivative) Let Ω ⊆ Rd or Ω = Rd/Zd and let v ∈ L2(Ω). The
weak derivative of v is defined to be the linear functional

∂v

∂xi
(ϕ) = −

∫
Ω

v
∂ϕ

∂xi
dx ,

for ϕ ∈ C1
0 (Ω). We define weak derivatives of higher and mixed order accordingly.

That allows the definition of the Sobolev spaces W k
p :

Definition 2.7 (Sobolev space) Let Ω ⊆ Rd and open or Ω = Rd/Zd. The Sobolev
space W k

p (Ω) is the space of all function which are in Lp(Ω) and whose partial derivatives
∂α up to the order |α| ≤ k, α ∈ N are in Lp(Ω) as well. The spaces W k

p have the norms

‖u‖Wk
p

:=

 k∑
|α|=0

∫
Ω

|∂αu|pdx

1/p

and the half-norms, i.e. positive semi-definite linear functionals,

‖̂u‖̂Wk
p

:=

∑
|α|=k

∫
Ω

|∂αu|pdx

1/p

.

Additionally, we denote W k
2 by Hk.

As L2 is complete, the W k
2 are complete as well. So the spaces Hk form Hilbert spaces

with the scalar products

(u, v)Hk :=
k∑
|α|=0

∫
Ω

∂αu ∂αv dx.

It remains to note, that if the spaces W 1
p,0(Ω) are defined analogously to the spaces Ck0 ,

the half-norms ‖̂ · ‖̂W 1
p,0(Ω) are norms, as they map only constant functions to zero and

except for the zero function these are not part of the spaces W 1
p,0(Ω).

8

2.2 Elliptic partial differential equations

2.2.2 Prerequisites from Fourier analysis

As mentioned before, partial differential equations with periodic boundary conditions can
be analyzed elegantly on the torus Rd/Zd. In order to do so, the right hand side and
the solution are expanded into their respective Fourier series. In the following the most
important definitions and Lemmata from Fourier analysis are repeated, for a detailed
introduction we refer to the books of Körner [59] and González-Velasco [43].

Definition 2.8 (Fourier series) Let f ∈ L2(Rd/Zd). Disregarding convergence the
‘symbolic’ series ∑

k∈Zd
f̂(k)e2π ik·x

with
f̂(k) =

∫
Rd/Zd

f(x) e−2π ik·x dx

is called the Fourier series of f , the f̂ are called Fourier coefficients of f . For ease of
notation the operator F and its inverse F−1 are defined as

F : L2(Rd/Zd)→ l2,

f 7→ F(f) := f̂ ,

F−1 : l2 → L2(Rd/Zd),

f̂ 7→ F−1(f̂) := f.

The Fourier series can be defined for functions that are not square-integrable, but for
the sake of simplicity it is convenient to stick to that space. One of the most important
theorems states the connection between square-integrable functions and their Fourier
coefficients:

Theorem 2.3 (Riesz-Fischer theorem) Let {f̂(k)}k,k ∈ Zd be absolutely square in-
tegrable, i.e. ∑

k∈Zd
|f̂(k)|2 <∞.

Then there exists a function f ∈ L2(Rd/Zd), whose Fourier coefficients are these f̂(k).

Proof. For d = 1 see e.g. Theorem 6.9 in [43]. We can extend the result to d > 1 by
d-fold application. �

In many cases a stronger concept of convergence is needed. In order to interchange
differentiation and summation of a Fourier sum, uniform convergence is necessary.

Lemma 2.2 Let f ∈ C(Rd/Zd) and let∑
k∈Zd

|f̂(k)| <∞.

Then the Fourier series of f converges uniformly to f .

9

2 Partial Differential Equations

Proof. For d = 1 the Fourier series converges uniformly by the convergence criterion
of Weierstraß, as the series of the Fourier coefficients of f is an absolutely convergent
majorant of the Fourier series. Again, we can extend the result to d > 1 by repeated
application. �

Now we can prove the following lemma that is necessary in order to analyze partial
differential equations on the torus.

Lemma 2.3 Let f ∈ L2(Rd/Zd) with absolutely converging Fourier coefficients and let
∂/∂xjf ∈ L2(Rd/Zd), j = 1, . . . , d. The Fourier series of the partial derivative of f is
given by

∂

∂xj
f(x) =

∑
k∈Zd

2π i kj f̂(k) e2π ik·x.

Proof. By Lemma 2.2 the Fourier series of f is uniformly convergent, so it can be differ-
entiated element-wise, yielding the desired result. �

2.2.3 Weak formulation of a PDE

We consider the partial differential equation

Lu := −a∆u+ b∇ · u+ cu = f in Ω (2.2)

for the domain and boundary conditions set to either

Ω ⊂ Rd and u(x) = 0 for all x ∈ ∂Ω, (2.2a)

Ω = Rd and u(x)
‖x‖→∞−→ 0, (2.2b)

Ω = Rd/Zd. (2.2c)

Let further

a(x) ≥ a0 > 0 and c(x)− 1
2
∇ · b(x) ≥ 0 for all x ∈ Ω, (2.3)

so the PDE is elliptic. Now we derive the variational formulation in the same way as the
weak derivative. Under the assumption that the solution u is in C2(Ω) we multiply (2.2)
by v ∈ C1

0 (Ω) and integrate over the whole domain Ω, yielding∫
Ω

Lu v dx =
∫
Ω

f v du for all v ∈ C1
0 (Ω).

Applying the first Green’s identity gives∫
Ω

(a∇u · ∇v + b · ∇u v + c u v) dx−
∫
∂Ω

a∇u · ~n v ds =
∫
Ω

f v dx.

10

2.2 Elliptic partial differential equations

Like in (2.1) the boundary integral vanishes, so that∫
Ω

(a∇u · ∇v + b · ∇u v + c u v) dx =
∫
Ω

f v dx for all v ∈ C1
0 .

As Larsson and Thomée denote that C1
0 is dense in H1

0 for sufficiently smooth boundaries
(see p. 248 in [61]), the following holds true as well:∫

Ω

(a∇u · ∇v + b · ∇u v + c u v) dx =
∫
Ω

f v dx for all v ∈ H1
0 . (2.4)

Therefore one defines:

Definition 2.9 (Weak solution) Let Fu = 0 be a partial differential equations in do-
main Ω with boundary conditions defined as in (2.2a), (2.2b) or (2.2c). A function u
fulfilling ∫

Ω

Fu v dx = 0 for all v ∈ H1
0 (Ω)

is called a weak solution of the partial differential equation.

As the derivation of this definition started with a classical solution of the problem, it
is clear that a classical solution is always a weak solution. If a weak solution of the
model problem, i.e. if u ∈ H1

0 (Ω) fulfills (2.4), is in C0(Ω) and if the right hand side f is
continuous, then this u is a classical solution. This can be seen by applying Green’s first
identity in the opposite direction:∫

Ω

(a∇u · ∇v + b · ∇u v + c u v) dx =
∫
Ω

f v dx for all v ∈ H1
0

⇔
∫
Ω

(a∇ · ∇uv + b · ∇u v + c u v) dx =
∫
Ω

f v dx for all v ∈ H1
0

⇔
∫
Ω

Fu v dx =
∫
Ω

f v dx for all v ∈ H1
0

⇔
∫
Ω

(Fu− f) v dx = 0 for all v ∈ H1
0 .

As both Fu and f are continuos functions, it follows, that their difference also vanishes
point-wise.

2.2.4 Existence and uniqueness of the weak solution

Having the definition of a weak solution at hand it is possible to show that the model
problem in (2.2) has a unique weak solution. To prove that we need the Poincaré inequal-
ity.

11

2 Partial Differential Equations

Theorem 2.4 (Poincaré inequality) Let Ω ⊂ Rd be an open and bounded domain.
Then there exists a constant c such that for all v ∈ H1

0 (Ω) we have

‖v‖ ≤ c‖∇v‖.

Proof. For the case Ω = [0, 1]× [0, 1] see the proof of Theorem A.6 in [61]. �

Now we are ready to show the main result of this section.

Theorem 2.5 (Existence and uniqueness of the weak solution) Let f ∈ L2(Ω),
Ω as in (2.2a), (2.2b) or (2.2c), and let the coefficient functions of (2.2) fulfill the require-
ments in (2.3). Then there exists a unique weak solution u ∈ H1

0 (Ω) that accomplishes
(2.2) with boundary conditions (2.2a), (2.2b) or (2.2c). Moreover, there exists a constant
C independent of f , such that

‖u‖H1 ≤ C‖f‖L2 .

Proof. Define a linear functional

L(v) =
∫
Ω

f v dx

and a bilinear form

g(u, v) =
∫
Ω

(a∇u · ∇v + b · ∇u v + c u v) dx.

The linear functional is bounded, as with help of the Cauchy-Schwarz inequality and the
Poincaré inequality we show

|L(v)| ≤ ‖f‖L2‖v‖L2 ≤ ‖f‖L2‖v‖H1 ≤ c‖f‖L2 ‖̂v‖̂H1
0
,

and g(·, ·) is bounded and coercive in H1
0 (Ω) as for all v ∈ H1

0 (Ω)

g(v, v) =
∫
Ω

(a|∇v|2 + (c− 1
2
∇ · b)|v|2) dx

≥ a0‖v‖2H1(Ω).

The spaces Hk form Hilbert spaces, so the Lax-Milgram Lemma (Theorem 2.2) is appli-
cable, i.e. the equation

g(u, v) = L(v)

has a unique solution for each v ∈ H1
0 (Ω). �

Now that we know, that a unique weak solution exists, we want to know if the solution is
regular, i.e. if it depends continuously on the data of the partial differential equation. The
answer to this question heavily depends on the domain and on the boundary conditions
of the problem at hand, so in the following it will be treated separately for boundary
conditions (2.2a), (2.2b) and (2.2c).

12

2.2 Elliptic partial differential equations

2.2.5 Regularity of the solution for PDEs with Dirichlet boundary conditions

Partial differential equations with Dirichlet boundary conditions are very well analyzed.
The associated theory requires tools from functional analysis that are beyond the scope
of our brief overview, e.g. it depends on Sobolev inequalities and similar estimates. More
details can be found in the books of Friedman [36], Gilbarg and Trudinger [41], Gustafson
[47], Jost [58] and various other textbooks on PDEs. For the purpose of this work it is
sufficient to know about some of the most important results that can be found in the
book of Larsson and Thomée [61]. For problem (2.2) with boundary conditions (2.2a)
they note in Chapter 3.7 that it is possible to show that for Γ being either smooth or
described by finitely many convex piecewise polynomials, a solution u of (2.2) is in H2,
and that a constant c exists such that

‖u‖H2 ≤ c‖f‖. (2.5)

For the plain Poisson equation
−∆u = f (2.6)

this means that the second derivatives of the solution are bounded by a combination of
special second derivatives. Another consequence of (2.5) is that small changes in the right
hand side lead to relatively small changes in the solution.

Obviously neither being in H1(Ω) nor being in H2(Ω) is sufficient for applications
from engineering or physics. Larsson and Thomée mention that for Γ being smooth and
f ∈ Hk the weak solution u is in Hk+2(Ω). With the Sobolev inequality (see Theorem
A.5 in [61]), we obtain Hk+2(Ω) ⊂ C2(Ω∪Γ) for k > d/2. That implies that the solution
has the desired properties. Similar results can be obtained for domains whose boundaries
are convex polynomial and for four-dimensional hypercubes.

2.2.6 Construction of the solution for PDEs with open boundary conditions

For some partial differential equations with open boundary conditions given by (2.2b) it
is possible to construct the solution analytically, so a regularity analysis is not necessary.
For that purpose, let L be as in (2.2) with open boundary conditions as in (2.2b) and
b = 0, so

−a∆u+ cu = f in Rd,

u(x)
‖x‖→∞−→ 0.

(2.7)

In order to construct a solution for this problem, we need the so-called fundamental
solution.

Definition 2.10 (Fundamental solution) Let L be defined as (2.2) with open bound-
ary conditions given in (2.2b). A function U that fulfills∫

Rd

U Lϕdx = ϕ(0) for all ϕ ∈ C∞0 (Rd) (2.8)

13

2 Partial Differential Equations

and that is smooth for x 6= 0, having a singularity at x = 0, such that U ∈ L1(B) with
B := {x ∈ Rd | |x| < 1 } and such that

|∂αU(x)| ≤ Cα|x|2−d−|α|, for |α| > 0, (2.9)

is called fundamental solution of L.

In order to make the purpose of the fundamental solution more obvious, we need the
definition of the Dirac delta distribution.

Definition 2.11 (Dirac delta distribution) Let Ω ⊂ Rd. The Dirac delta distribu-
tion δ is defined to be a linear functional acting on smooth test functions as

δ(ϕ) = ϕ(0) for all ϕ ∈ C0(Ω).

Using δ as the right hand side f in L it follows that the fundamental solution fulfills

LU = δ

in the weak sense. To proceed we need the definition of the convolution of two functions.

Definition 2.12 (Convolution) Let f, g ∈ L2(Rd). We define the convolution of f
and g as

(f ∗ g)(x) :=
∫
Rd

f(x− y)g(y)dy.

Given the fundamental solution and its motivation, we can construct a solution for L
with open boundary conditions as given by the following theorem.

Theorem 2.6 Let L be defined as (2.2) with open boundary conditions given in (2.2b),
U be a fundamental solution and f ∈ C1

0 (Rd). Then the unique solution u given by

u(x) = (U ∗ f)(x) =
∫
Rd

U(x− y) f(y) dy.

Proof. Due to (2.8) it holds∫
Rd

U(x− y)Lϕ(x) dx =
∫
Rd

U(z)Lϕ(z + y) dz = ϕ(y).

Using an arbitrary test function ϕ ∈ C∞0 (Rd) the definition of u gives∫
Rd

uLϕdx =
∫
Rd

∫
Rd

U(x− y) f(y) dyLϕ(x) dx

=
∫
Rd

∫
Rd

U(x− y)Lϕ(x) dx f(y) dy

=
∫
Rd

ϕ(y) f(y) dy.

14

2.2 Elliptic partial differential equations

Since ∂/∂xiU ∈ L1(Rd) and ∂/∂xjf ∈ C0(Rd) ⊂ L1(Rd) the Fourier transformations of
these functions exist. Thus their convolution can be carried out in Fourier space and the
convolution exists. Furthermore

∂

∂xi
U ∗ ∂

∂xj
f =

∂2

∂xi∂xj
(U ∗ f) =

∂2

∂xi∂xj
u,

see e.g. Proposition 1 on page 156 in [89]. Thus all second partial derivatives of u exist,
so by partial integration the following holds∫

Rd

uLϕdx =
∫
Rd

Luϕdx,

thus ∫
Rd

(Lu− f)ϕdx = 0,

for all ϕ ∈ C∞0 . Therefore Lu = f . �

We can summarize this theorem as follows: Given a fundamental solution of a partial
differential equation with open boundary conditions, the classical solution can be con-
structed for sufficiently smooth right hand sides f vanishing at infinity. As mentioned
before, a classical solution is always a weak solution, which is unique. The solution is
also regular, as it depends smoothly on the right hand side.

This section closes with the fundamental solution of a particular partial differential
equation, the Green’s function of the Poisson equation in R3.

Theorem 2.7 Let U : R3 → R,

U(x) =
1

4π|x|
. (2.10)

Then U is a fundamental solution of

−∆u = f in R3,

u(x)
‖x‖→∞−→ 0.

Proof. Differentiation of U at x 6= 0 yields

∂U

∂xi
= − xi

4π|x|3
∂2U

∂x2
i

, =
3x2

i − |x|2

4π|x|5
,

so −∆U = 0 for x 6= 0. Equation (2.9) is fulfilled, as (d/dr)α1/r = cr−1−α. It remains
to show, that (2.8) is valid as well. For that purpose let ϕ ∈ C∞0 (R3). We set n := x/|x|
and apply Green’s second identity:∫

|x|>ε

U(−∆ϕ) dx =
∫
|x|>ε

(−∆U)ϕdx−
∫
|x|=ε

(
ϕ
∂U

∂n
− ∂ϕ

∂n
U

)
ds.

15

2 Partial Differential Equations

Now ∫
|x|>ε

(−∆U)ϕdx = 0,

∫
|x|=ε

ϕ
∂U

∂n
ds =

1
4πε2

∫
|x|=ε

ϕds ε→0−→ ϕ(0)

and ∣∣∣∣∣∣∣
∫
|x|=ε

(−∂ϕ
∂n

U) ds

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1

4πε

∫
|x|=ε

∂ϕ

∂n
ds

∣∣∣∣∣∣∣ ≤ ε‖∇ϕ‖C0(R3)
ε→0−→ 0,

so ∫
R3

U(−∆ϕ) dx = lim
ε→0

∫
|x|>ε

U(−∆ϕ) dx = ϕ(0).

�

2.2.7 Construction of the solution for PDEs on the torus

As for the partial differential equations in the previous section the solution of partial
differential equations on the torus is constructed analytically, though the tools needed
differ a lot from the ones used previously. We consider the problem (2.2) with boundary
conditions (2.2c), i.e.

−a∆u+ b∇ · u+ cu = f in Rd/Zd,

with constant coefficients a, b, c ∈ R and with f ∈ L2(Rd/Zd). The solution of this partial
differential equation can be given in terms of its Fourier series as stated in the following
theorem.

Theorem 2.8 Let
−a∆u+ b∇ · u+ cu = f in Rd/Zd,

with f ∈ L2(Rd/Zd) be a given partial differential equation and let f̂(k) be the Fourier
coefficients of the right hand side with∑

k∈Zd
|f̂(k)| <∞.

Assuming that either c 6= 0 or that the Fourier coefficient f̂(0) vanishes, the solution u
can be given in terms of its uniformly convergent Fourier series as

u(x) =
∑
k∈Zd

û(k)e−2π ik·x,

16

2.2 Elliptic partial differential equations

where

û(k) =
f̂(k)

d∑
j=1

a k2
j + b i kj + c

.

Proof. The series ∑
k∈Zd

û(k)e−2π ik·x

has a convergent majorant series, as

|û(k)| =

∣∣∣∣∣∣∣∣∣
f̂(k)

d∑
j=1

a k2
j + b i kj + c

∣∣∣∣∣∣∣∣∣ < c0

∣∣∣f̂(k)
∣∣∣ , ∀k 6= 0.

Therefore it converges uniformly to u by the convergence criterion of Weierstraß. That
allows to analyze the partial differential equation by developing both sides of the equation
into the respective Fourier series:

F(−a∆u+ b∇ · u+ cu)(x) = F(f)(x)

⇔
∑
k∈Zd

̂(−a∆u+ b∇ · u+ cu)(k)e2π ik·x =
∑
k∈Zd

f̂(k)e2π ik·x.

Applying Lemma 2.3 twice gives

∑
k∈Zd

d∑
j=1

(a k2
j + b i kj + c) û(k)e2π ik·x =

∑
k∈Zd

f̂(k)e2π ik·x.

Comparison of coefficients yields:

û(k) =
f̂(k)

d∑
j=1

a k2
j + b i kj + c

.

Now we have to consider two cases: If c 6= 0, this equation is always true. For c = 0, we
need more, namely f̂(0) = 0, required in the assumptions. �

So under the premises of the previous theorem the classical solution of the partial differ-
ential equation can be constructed. It remains to mention that the constructed solution
is also regular, as the dependence on the right hand side of the PDE is smooth.

17

2 Partial Differential Equations

2.3 Numerical solution

We have shown that unique solutions of a PDE of the form (2.2) with Dirichlet bound-
ary conditions (2.2a) or periodic boundary conditions (2.2c) and of a PDE with open
boundary conditions as given in (2.7) exist. Furthermore they are regular, so a numerical
approximation of the solution is meaningful. Various different methods for the numeri-
cal solution of partial differential equations exist. In the following we will examine two
methods in larger detail. The first method under investigation will be the discretization
using finite differences which is probably the easiest method for the numerical solution
of PDEs. After that we will discuss the discretization of PDEs using finite volumes.
The first method is perfectly suited for simply shaped domains like cuboids with either
Dirichlet or periodic boundary conditions, where in the periodic case the cuboid is just
a representative of the torus. When the partial differential equation at hand has con-
stant coefficients, the resulting linear systems are easy to analyze, for details we refer to
Chapter 3. The second discretization technique is especially well suited for the numeri-
cal solution of the Poisson equation with open boundary conditions. Together with the
method an extension of the error analysis of Washio and Oosterlee [87] is presented here.

Various other discretization and solution techniques for PDEs exist, that we do not
mention here. One of the most important techniques missing in this work is the finite ele-
ment method, which is strongly connected to the variational approach that was presented
in Section 2.2.3.

2.3.1 Solution of PDEs on the torus or on subsets of Rd with Dirichlet
boundary conditions using finite differences

The use of finite differences for the solution of partial differential equations is straightfor-
ward as it is directly connected to the definition of the derivative. To motivate the use of
finite differences for the solution of partial differential equations, we will start with one
dimension.

Finite differences in one dimension

The derivative of a function is defined via the difference quotient

f ′(x) := lim
h→0

f(x+ h)− f(x)
h

.

Motivated by this definition the discretization of a derivative on an equispaced grid with
grid width h can be given by

f ′(x)=̇
f(x+ h)− f(x)

h
.

Using the Taylor expansion it can be shown that the error involved is of order h, as

f(x+ h) = f(x) + f ′(x)h+O(h2)

⇔ f ′(x) =
f(x+ h)− f(x)

h
+O(h).

18

2.3 Numerical solution

Using Taylor expansion at additional grid points, e.g.

f(x+ h) = f(x) + f ′(x)h+
f ′′(x)

2
h2 +

f ′′′(x)
6

h3 +O(h4) (2.11)

and

f(x− h) = f(x)− f ′(x)h+
f ′′(x)

2
h2 − f ′′′(x)

6
h3 +O(h4), (2.12)

allows the definition of higher-order approximations of the first derivative, e.g. by sub-
tracting (2.12) from (2.11) and dividing the result by 2 we have

f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2), (2.13)

and of approximations of higher derivatives, e.g. the order h2-approximation of the second
derivative given by adding (2.11) and (2.11) given by

f ′′(x) =
f(x− h)− 2 f(x) + f(x+ h)

h2
+O(h2). (2.14)

Higher order approximations can be constructed by using more grid points, e.g. not only
x− h, x and x+ h, but x− 2h, x+ 2h,

For the one-dimensional analogue of the Poisson equation with Dirichlet boundary
conditions, i.e.

−u′′(x) = f(x) for allx ∈ Ω, u(0) = g0, u(1) = g1,

discretization with the approximation in (2.14) with ui = u(ih), fi = f(ih) and h = 1/n
leads to the linear system

u0 = g0,
1
h2

(ui−1 − 2ui + ui+1) = fi, for i = 1, . . . , n− 1,

un = g1.

After elimination of the boundary values this linear system leads to a tridiagonal linear
system. Analogously, for periodic boundary conditions we get

1
h2

(un − 2u0 + u1) = f0,

1
h2

(ui−1 − 2ui + ui+1) = fi, for i = 1, . . . , n− 1

1
h2

(un−1 − 2un + u0) = fn.

The resulting system has a singular coefficient matrix that is circulant. Both systems can
be solved using multigrid methods. This will be described in Chapter 3.

19

2 Partial Differential Equations

Finite differences for higher dimensions and the stencil notation

The usage of finite differences for the approximation of derivatives is not limited to
one dimension but can easily be extended to more dimensions. The occurring partial
derivatives are approximated as before, yielding a linear system that has to be solved
in order to obtain the approximate solution of the partial differential equation. So for
a second order accurate approximation of the Laplacian in two dimensions we combine
(2.14) in x1- and x2-direction and obtain

∆u(x) =
1
h2

[u(x− he1) + u(x− he2)− 4u(x)

+u(x + he1) + u(x + he2)] +O(h2),
(2.15)

where ei is the i-th unit vector. For the sake of clarity we introduce the stencil notation.
In this notation the coefficients belonging to neighboring grid points are written in squared
brackets, where the coefficient in the center is belonging to the actual grid point itself.
The stencil for (2.15) is

1
h2

 1
1 −4 1

1

 . (2.16)

The same can be used for higher dimensions, e.g. an approximation of the Laplacian in
three dimensions is given by

∆u(x) =
1
h2

[u(x− he1) + u(x− he2) + u(x− he3)− 6u(x

+u(x + he1) + u(x + he2) + u(x + he3)] +O(h2),
(2.17)

or in stencil notation by

1
h2

 1

 1
h2

 1
1 −6 1

1

 1
h2

 1

 .
To simplify the representation we write ui,j,k and fi,j,k to denote the value of u respectively
f at the grid point xi,j,k, and we introduce the notation ∂2

x1
ui,j,k, which is defined as the

central finite difference approximation to the second partial derivative in x-direction, i.e.

∂2
x1
ui,j,k :=

u(xi−1,j,k)− 2u(xi,j,k) + u(xi+1,j,k)
h2

. (2.18)

Here h = ‖xi,j,k − xi−1,j,k‖2 = ‖xi+1,j,k − xi,j,k‖2. We define ∂2
x2
ui,j,k and ∂2

x3
ui,j,k in the

same manner, so we may write for (2.17):

∆ui,j,k = ∂2
x1
ui,j,k + ∂2

x2
ui,j,k + ∂2

x3
ui,j,k +O(h2).

If one orders variables lexicographically, the linear systems that belong to these discretiza-
tions are blocked systems, where the occurring blocks can be derived directly from the
stencil. So in two dimensions the three diagonals of the block on the main diagonal are
given by the row in the center of the stencil and the diagonal entries of the blocks on the
secondary diagonals are given by the lower row for the lower diagonal block respectively
by the upper row for the upper diagonal block.

20

2.3 Numerical solution

Compact discretizations of higher order

We will now continue with compact discretizations of higher order, i.e. discretizations
not only taking into account the direct neighbors, but all nearest neighbors. These
discretizations are often referred to as compact discretizations, as the stencil describing
them still has the compact 9-point representation in two dimensions, respectively a 27-
point stencil in 3D. Nevertheless, the stencil has more non-zero entries than the original
stencil of the discretization of order h2. The main advantage of these stencils is that they
achieve higher order but still only nearest neighbors are needed. This is a nice property
especially when considering PDEs with Dirichlet boundary conditions, as the nearest
neighbors are always available, which might not be the case for the next layer. Another
advantage is the reduced amount of communication for parallel solvers, which use ghost
cells. The approach presented here can be found in the work of Spotz and Carey, who
derived the discretization in [75].

To define compact schemes of higher order, we now take a closer look at the error term
in (2.17), while still using the notation as in (2.18). For the Poisson equation

−∆u = f, (2.19)

we get
∂2
xui,j,k + ∂2

yui,j,k + ∂2
zui,j,k − τi,j,k = fi,j,k,

with

τi,j,k =
h2

12

[
∂4u

∂x4
1

+
∂4u

∂x4
2

+
∂4u

∂x4
3

]
i,j,k

+
h4

360

[
∂6u

∂x6
1

+
∂6u

∂x6
2

+
∂6u

∂x6
3

]
i,j,k

+O(h6). (2.20)

Taking the appropriate partial derivatives of (2.19) we get

∂4u

∂x4
1

=
∂2f

∂x2
1

− ∂4u

∂x2
1∂x

2
2

− ∂4u

∂x2
1∂x

2
3

,

∂4u

∂x4
2

=
∂2f

∂x2
2

− ∂4u

∂x2
1∂x

2
2

− ∂4u

∂x2
2∂x

2
3

,

∂4u

∂x4
3

=
∂2f

∂x2
3

− ∂4u

∂x2
1∂x

2
3

− ∂4u

∂x2
2∂x

2
3

.

When we substitute these into (2.20), we obtain

τi,j,k =
h2

12
∆fi,j,k −

h2

6

[
∂4u

∂x2
1∂x

2
2

+
∂4u

∂x2
1∂x

2
3

+
∂4u

∂x2
2∂x

2
3

]
i,j,k

+
h4

360

[
∂6u

∂x6
1

+
∂6u

∂x6
2

+
∂6u

∂x6
3

]
i,j,k

+O(h6).

Now for all terms that are multiplied by h2 and thus contribute to our h2 error term,
we are able to provide h2-accurate approximations. Thus the resulting approximation to

21

2 Partial Differential Equations

(2.19) is given by[
∂2
x1

+ ∂2
x2

+ ∂2
x3

+
h2

6
(∂2
x1
∂2
x2

+ ∂2
x1
∂2
x3

+ ∂2
x2
∂2
x3

)
]
ui,j,k =

fi,j,k +
h2

12
[
∂2
x1

+ ∂2
x2

+ ∂2
x3

]
fi,j,k +O(h4) (2.21)

and is h4-accurate.
Provided that the analytical derivatives of the right hand side f are available, Spotz

and Carey derived h6-accurate approximations in the same manner. For details, we refer
to [75]. Their work was recently reviewed and extended by Sutmann and Steffen in [83].

2.3.2 Finite volume discretization-based solution of PDEs defined on Rd

While finite difference methods are easy to understand and to implement for standard
geometries leading to equispaced grids, they are hard to deal within the case of unstruc-
tured grids as they occur in many engineering applications. One option to avoid the
problems related to the use of finite difference methods is the finite volume method.

Finite volume discretization

The purpose of the finite volume method is the same as that of the finite differences, i.e.
discretizing a PDE in order to gain a solution of it at defined points, but the derivation of
the methods is completely different. Whereas in the finite difference method we started
with the discrete points and discretizations of the occurring partial derivatives directly
yielding the algebraic equations, in the finite volume method the domain is partitioned
into several small volumes and the PDE is rewritten at the interior of these volumes
using the divergence theorem. This is a common approach for hyperbolic PDEs, but it
is feasible for the solution of the Poisson equation in free space, as well.

For this purpose we consider L as in (2.2) with b = −∇a, i.e.

−a(x)∆u(x)−∇a(x) · ∇u(x) + c(x)u(x) = f(x) for x ∈ Ω (2.22)

with boundary conditions as in (2.2a), (2.2b) or (2.2c). Now we may write

−a(x)∆u(x)−∇a(x) · ∇u(x) + c(x)u(x) = −∇ · (a(x)∇u(x)) + c(x)u(x),

yielding (2.22) in divergence form

−∇ · (a(x)∇u(x)) + c(x)u(x) = f(x) for x ∈ Ω. (2.23)

The domain Ω is partitioned into smaller closed volumes vi, i = 1, . . . , n, such that⋃
i=1,...,n

vi = Ω, (2.24)

while
vi ∩ vj = ∅ for all i 6= j. (2.25)

22

2.3 Numerical solution

By V we denote this partitioning of Ω. For each subvolume vi ⊂ Ω, i = 1, . . . , n the
following holds true ∫

vi

−∇ · (a(x)∇u(x)) + c(x)u(x)dx =
∫
vi

f(x)dx.

Applying Gauß’ divergence theorem yields∫
∂vi

−(a(s)∇u(s)) · ~n ds +
∫
vi

c(x)u(x)dx =
∫
vi

f(x)dx, (2.26)

where ~n is the outer normal of ∂vi. On the basis of this equation and with the help
of finite difference approximations of the gradient a proper discretization of the partial
differential equation can be given for domain Ω. The gradient in the boundary integral
in (2.26) is called the flux. The flux out of one subvolume over the boundary to a
neighboring subvolume is equal to the flux over this boundary into that subvolume. This
is true for a symmetric discretization of the gradients as well, which by this observation
is conservative.

Consider the simple case of equation (2.22) in d = 2 dimensions with Dirichlet boundary
on the unit square, i.e. Ω = [0, 1]2. For h = 1/n we define the partitioning

Vh = {vhi,j |vhi,j = [(i− 1)h, ih]× [(j − 1)h, jh], i, j = 1, . . . , n}.

This partitioning fulfills (2.24) and (2.25). We discretize the boundary integral by the
value of the gradient in the middle of one side times its length, i.e.∫

∂vhi,j

(a(s)∇u(s)) · ~n ds .= h

(
a((i− 1)h, (j − 1

2)h)
∂u((i− 1)h, (j − 1

2)h)
∂x1

− a(ih, (j − 1
2)h)

∂u(ih, (j − 1
2)h)

∂x1

+ a((i− 1
2)h, (j − 1)h)

∂u((i− 1
2)h, (j − 1)h)
∂x2

− a((i− 1
2)h, jh)

∂u((i− 1
2)h, jh)

∂x2

)
,

and the volume integrals by the value of u and f at the center times the volume, i.e.∫
vhi,j

c(x)u(x)dx .= h2c((i− 1
2)h, (j − 1

2)h)u((i− 1
2)h, (j − 1

2)h)

and
∫

vhi,j

f(x) .= h2f((i− 1
2)h, (j − 1

2)h).

23

2 Partial Differential Equations

Both quadrature formulas are order h2 accurate. If we discretize the partial derivatives
using the second order accurate discretization in (2.13), i.e.

∂u((i− 1)h, (j − 1
2)h)

∂x1

.=
ui,j − ui−1,j

h
,

∂u(ih, (j − 1
2)h)

∂x1

.=
ui+1,j − ui,j

h
,

∂u((i− 1
2)h, (j − 1)h)
∂x2

.=
ui,j − ui,j−1

h
,

and
∂u((i− 1

2)h, jh)
∂x2

.=
ui,j+1 − ui,j

h
,

where ui,j = u((i − 1/2)h, (j − 1/2)h), for i, j = 1, . . . , n, we obtain for the subvolume
centered around ((i− 1/2)h, (j − 1/2)h):

(h2ci,j − 4)ui,j + ui−1,j + ui,j−1 + ui,j+1 + ui+1,j = h2fi,j . (2.27)

Except for the boundary conditions, which either have to be given in terms of the values
of u at a distance of h

2 away from the boundary or in terms of the normal derivative of u,
this yields the same system as the discretization using finite differences. The same is true
for higher dimensions. As both the quadrature formulae and the approximation of the
first derivatives are second order accurate, the overall accuracy of this method is of order
O(h2), higher order quadrature formulae and partial derivative discretization can be used
yielding higher accuracy. The main advantage of the finite volume method over the finite
differences discretization is the potential to discretize a partial differential equation in
irregular domains or adaptively as it depends on approximating the flow between two
volumes and discretizing the integral over the right hand side, only.

Washio’s and Oosterlee’s finite volume discretization of the Poisson equation on Rd

In the following we will derive an adaptive discretization for the solution of the Pois-
son equation with open boundary conditions that is based on a work of Washio and
Oosterlee [87]. The following covers the case that the solution of

−∆u(x) = f(x), x ∈ R3

u(x)→ 0, ||x|| → ∞,
(2.28)

is sought for in Ω0 = [−1
2 ,

1
2]3, only, where supp(f) ⊂ Ω0. To solve this problem numeri-

cally, we discretize Ω0 using a regular grid with mesh-width h and ∆ using finite volumes,
i.e. the 3D analogue of (2.27).

To properly handle the boundary conditions the original grid is extended with the help
of a grid extension rate α ∈ (1, 2) in the following way: The grid on the finest level is
defined to be the discretization of domain Ω1 with grid-width h1, where

Ω1 :=
[
−β1

2
,
β1

2

]3

,

β1 ≥ α,
h1 := h.

(2.29)

24

2.3 Numerical solution

Figure 2.1: Coarsened grid in 2D. Highlighted is the original fine grid, in which the solu-
tion is of interest.

As a result Ω1 is just an extension of the original domain Ω. The domain is then extended
and the grid is coarsened recursively as

Ωl :=
[
−βl

2
,
βl
2

]3

,

βl ≥ αl,
hl := 2(l−1) h.

(2.30)

The additional parameters βl are introduced in order to enable the extended grids to have
common grid points with the fine grids. Furthermore we define the set of grid points Gl
of level l to be

Gl := { x ∈ Ωl | x = hlz, z ∈ Z } .

An example of how a coarsened grid might look like in 2D can be found in Figure 2.1. We
remark that Washio and Oosterlee continue the extension and coarsening process up to
infinity, which is nice for the analysis of the discretization but not suitable for an actual
implementation.

The Laplacian is now discretized on the domains Ω1,Ω2\Ω1,Ω3\Ω2, . . . using the finite
volume method, except for the interfaces. For a complete discretization of R3 we have to
give a discretization of the problem on the composite grid

G := G1 ∪ G2 ∪ · · · ,

including the interfaces between Ωl and Ωl+1\Ωl. Using the finite volume discretization
this can be done relatively straightforwardly. As an example consider the two-dimensional
discretization using finite volumes at the refinement boundary that is depicted in Fig.
2.2 (the extension to 3D is straightforward). Here the flux Fs can be approximated by

25

2 Partial Differential Equations

Fs

(x + h, y)(x− h, y)

Fl Fr

(x, y)

Figure 2.2: Conservative discretization at the interface in 2D.

interpolating linearly from the left and the right neighbors, i.e.

Fs =
1
2

(Fl + Fr). (2.31)

Now we are ready to show that for a suitable grid-extension rate α the error of this
method is of the same order as it would be if the whole grid was discretized using the
finest grid size.

In order to analyze the error of such a discretization we define the discrete analogue of
a Green’s function.

Definition 2.13 (Discrete Green’s function) Let ∆h be a discretization of the La-
place operator on the grid { x | x = h z, z ∈ Z3} and let δh(x,y) be defined as

δh(x,y) :=
{

1, x = y,
0 otherwise.

Then the discrete Green’s function is defined by

∆hGh(x,y) := δh(x,y),

where ∆h is w.r.t. the first argument x, only.

Conforming to the discretization using the partitioning of the domain, we measure the
error in terms of the difference to the cell-average of the analytic Green’s function, which
is derived in Theorem 2.7.

Definition 2.14 (Cell-averaged Green’s function) Let G(x,y) be the Green’s func-
tion of the Laplace operator ∆ and let Ωx be defined as the cube with volume h3 centered
at x, i.e.

Ωx :=
{

y
∣∣∣∣ ||x− y||∞ ≤

h

2

}
.

26

2.3 Numerical solution

The cell-averaged Green’s function G̃ is given by

G̃(x,y) =
1
h3

∫
Ωx

G(z,y)dz.

As we chose a conservative discretization, Green’s identity holds for the discrete case as
well. Thus we obtain∫

Ω

[u(∆hv)− (∆hu)v]dx =
∮
∂Ω

[u(∇hv)− (∇hu)v] · ~nds.

Therefore, for the discrete Green’s function Gh it holds true that∫
Ω

Gh(x,y)[−∆Ψh(y)]dy =

Ψh(x)−
∮
∂Ω

[Gh(x, s)(∇hΨh(s))− (∇hGh(x, s))Ψh(s)] · ~nds, (2.32)

for a function Ψh. With this observation, we are now ready to provide an error analysis
for Washio’s and Oosterlee’s method.

Theorem 2.9 Using the described grid coarsening strategy with a grid extension rate
α ≥ 22/3 the error e(x,p), defined as

e(x,p) := |G̃(x,p)−Gh(x,p)|, (2.33)

is of order h2 for all x ∈ G0.

Proof. By applying the discrete version of Green’s identity, i.e. inserting e(x,p) into
(2.32), we get

e(x,p) =

∣∣∣∣∣
∫
Ωl

Gh(x,y)[−∆h(G̃(y,p)−Gh(y,p))] dy +

∮
∂Ωl

[
Gh(x, s)∇h(G̃(s,p)−Gh(s,p))−

∇hGh(x, s)(G̃(s,p)−Gh(s,p))
]
· ~nds

∣∣∣∣∣ (2.34)

for any domain Ωl. Letting l → ∞ the second integral vanishes due to the boundary
conditions. So the error due to the integration over the finest grid is bounded by

|e0(x,p)| ≤ c0h
2.

27

2 Partial Differential Equations

Washio and Oosterlee showed in [87] that the error e1 due to the region outside the finest
grid, but not including the non-cubic-cells is bounded by

|e1(x,p)| ≤ c1
α3 − 1

1− 22/α3

h2

dxd5
p

and that the error e2 due to the non-cubic cells is bounded by

|e2(x,p)| ≤ c2
1

1− 22/α3

h2

dxd4
x

,

where dx and dp are the minimum distances from the boundary of the finest grid of x
and p, respectively. The proof depends on the fact that there exist constants ck, (k =
0, 1, 2, . . .), such that

|∆k−m
y ∆m

p G(y,p)| ≤ ck
|y − p|k+1

, (m ≤ k),

where ∆y and ∆p act on y and p, respectively. For further details we refer to [87].
Overall, the first integral can thus be estimated as:∣∣∣∣∣∣∣

∫
Ωl

Gh(x,y)[−∆h(G̃(y,p)−Gh(y,p))] dy

∣∣∣∣∣∣∣ ≤ e0 + e1 + e2 = O(h2).

The limit l→∞ yields the desired result. �

Modification of Washio’s and Oosterlee’s method

Although the proposed method of Washio and Oosterlee is of the right accuracy it does
not provide a practical numerical scheme as the error analysis only holds for infinitely
many refinement levels. In practice the refinement process is stopped at an arbitrary
but finite number of refinements, but we cannot be sure, that the error produced by this
alteration is of the required accuracy. To tackle this problem, we have two options:

1. Estimate the error induced by stopping the refinement process at a given level.

2. Provide a modification of the method which does not exhibit this problem.

As the first would strongly depend on the number of refinements and the grid size of the
finest mesh, we decided to use the latter approach. The extension was published by the
author in [8]. For our purpose we define lmax to be the index of the maximum coarsening
level and we denote the discretized domain by Ωlmax . At that level the Dirichlet boundary
conditions of the original problem are imposed, i.e.

u(x∂) =
1

4π

∫
Ω

f(x)
||y − x∂ ||2

dy for x∂ ∈ ∂Ωlmax . (2.35)

28

2.3 Numerical solution

So the boundary conditions of the Dirichlet problem that is solved numerically are set
with the help of the fundamental solution. We immediately obtain the new problem to
solve:

∆u(x) = f(x), x ∈ Ω, supp(f) ⊂ Ω ⊂ R3,

u(x∂) =
1

4π

∫
Ω

f(x)
||y − x∂ ||2

dy for x∂ ∈ ∂Ω. (2.36)

The solution of this Dirichlet problem, which can be interpreted as a slice of the origi-
nal problem with open boundary conditions, is the same as the solution of the original
problem in that region, as stated by the following lemma:

Lemma 2.4 Let f ∈ C0(R3) ∩ L2(R3) with supp(f) (R3 and let u be the solution of
(2.28) with that right hand side f . Then u also is the unique solution of (2.36) in any
bounded domain Ω ⊃ supp(f).

Proof. Let Ω be any domain that is a superset of supp(f). With Theorem 2.6 u fulfills
(2.36) for all x∂ ∈ ∂Ω. Uniqueness follows from Theorem 2.5. �

Imposing the boundary conditions with the help of the continuous problem does not yield
the same solution as solving the discrete problem on the unrestricted domain. So as an
extension to Theorem 2.9 we have to provide an error estimate for this step as well.

Theorem 2.10 Assume that the discrete Green’s function can be bounded by

Gh(x,p) ≤ 1
4π

[
1

||x− p||2
+

c1

||x− p||32

]
.

Using the described grid coarsening strategy with a grid extension rate α ≥ 22/3 up to an
arbitrary level lmax ∈ N and setting the boundary conditions at that level as in (2.35) the
error e(x,p), defined in (2.33), is of order h2 for all x ∈ G0.

Proof. For an arbitrary domain Ωl the estimate of the volume integral in (2.34) holds as
in the proof of Theorem 2.9. It remains to estimate the value of the surface integral. For
that purpose let d be the minimum distance of a point of the original domain Ω0 to the
boundary of the domain discretized using the coarsest grid. As both, x and p are inside

29

2 Partial Differential Equations

of the original domain, we can estimate the second integral:∣∣∣∣∣
∮

∂Ωlmax

[
Gh(x, s)∇h(G̃(s,p)−Gh(s,p))− ∇hGh(x, s)(G̃(s,p)−Gh(s,p))

]
· ~nds

∣∣∣∣∣
≤ α3lmax max

s∈∂Ωlmax

[∣∣∣Gh(x, s)∇h(G̃(s,p)−Gh(s,p)) · ~n
∣∣∣+∣∣∣∇hGh(x, s) · ~n (G̃(s,p)−Gh(s,p))

∣∣∣]
≤ α3lmax

[(∣∣∣∣ 1
4π

1
d

∣∣∣∣+

∣∣∣∣∣c1h
2
lmax

d3

∣∣∣∣∣
) ∣∣∣∣∣3c1h

2
lmax

d4

∣∣∣∣∣+(∣∣∣∣ 1
4π

1
d2

∣∣∣∣+

∣∣∣∣∣3c1h
2
lmax

d4

∣∣∣∣∣
) ∣∣∣∣∣c1h

2
lmax

d3

∣∣∣∣∣
]

= α3lmax

[∣∣∣∣∣ 1
4π

3c1h
2
lmax

d5

∣∣∣∣∣+

∣∣∣∣∣3c2
1h

4
lmax

d6

∣∣∣∣∣+

∣∣∣∣∣ 1
4π

3c1h
2
lmax

d6

∣∣∣∣∣+

∣∣∣∣∣3c2
1h

4
lmax

d7

∣∣∣∣∣
]
.

Obviously, for α ≥ 22/3 we can estimate d as

d =
αl − 1

2
≥ αl

4

and for hlmax we have
hlmax = 2(l−1)h1 = 2(l−1)h.

So we get

α3lmax

[∣∣∣∣∣ 1
4π

3c1h
2
lmax

d5

∣∣∣∣∣+

∣∣∣∣∣3c2
1h

4
lmax

d6

∣∣∣∣∣+

∣∣∣∣∣ 1
4π

3c1h
2
lmax

d6

∣∣∣∣∣+

∣∣∣∣∣3c2
1h

4
lmax

d7

∣∣∣∣∣
]

≤ α3lmax

[∣∣∣∣∣ 1
4π

3072c1h
2

α5

(
22

α5

)(l−1)
∣∣∣∣∣+

∣∣∣∣∣12288c2
1h

4

α6

(
24

α6

)(l−1)
∣∣∣∣∣+∣∣∣∣∣ 1

4π
12288c1h

2

α6

(
22

α6

)(l−1)
∣∣∣∣∣+

∣∣∣∣∣49152c2
1h

4

α7

(
24

α7

)(l−1)
∣∣∣∣∣
]
.

This is order h2 for α > 22/3. �

Remark 2.1 The assumption that the discrete Green’s function Gh is bounded, i.e.

Gh(x,p) ≤ 1
4π

[
1

||x− p||2
+

c1

||x− p||32

]
,

is justified in the delight of an asymptotic expansion of the five-point discretization of the
Laplacian given by Burkhart in [16]. This expansion is missing terms of even powers, so
our assumption is fulfilled.

30

2.3 Numerical solution

Implementation of the grid coarsening

As noted in the definition of the different domains in (2.29) and (2.30) we introduced
additional parameters βl to simplify letting the different domains have common grid
points. In the following we assume that the original domain Ω0 = [−1

2 ,
1
2]3 is discretized

using grid spacing h = 2−m, where m > 2. Therefore the domain of interest consists of
23m grid points. Furthermore we want to double the grid spacing hl on each coarsening
level, i.e.

hl = 2−m+l−1.

We define the domain on refinement level l as

Ωl :=
[
−βl

2
,
βl
2

]3

,

where βl is the length of domain Ωl. So for a conservative discretization of the flux as in
(2.31) we need that the new domain has at least length

βl ≥ βl−1 + 4hl. (2.37)

For the error analysis to hold we need a grid extension rate of at least αl, i.e. the length
has to fulfill

βl ≥ αl (2.38)

on each level l. To fit (2.37) and (2.38) and to simplify the implementation we choose
β1 = 2 and

βl := max
(
βl−1 + 4hl, 2dlog2(αl)e

)
for l > 1.

On level l we now have

nl =
2dlog2 α

le)

2−k+l−1

grid points in each direction and the grid points on that level are given by

xli,j,k = hl(i− nl−1
2 , j − nl−1

2 , k − nl−1
2)T , i, j, k = 0, . . . , nl − 1.

With that choice we can always reduce the problem to a coarse discretization with 93

unknowns in a finite number of coarsening steps, as stated by the following lemma.

Lemma 2.5 Let 22/3 ≤ α < 2, m ≥ 3 and let the hierarchical coarsening be defined by

β0 = 2,

βl = max
(
βl−1 + 4hl, 2dlog2(αl)e

)
for l > 1, (2.39)

Ωl =
[
−βl

2
,
βl
2

]3

and

hl = 2−m+l−1.

Then we have that only 9 grid points are present in each direction on level

lmax :=
⌈

2−m
log2 α− 1

⌉
+ 1 (2.40)

and on all subsequent levels.

31

2 Partial Differential Equations

Proof. We start assuming
βl = 2dlog2(αl)e for l > 1,

neglecting the formation of the maximum in (2.39). Using that definition a level l at
which only 93 or fewer grid points are left is reached when

2dlog2(αl)e ≤ 8hl

⇔ 2dlog2(αl)e

2−m+l+1
≤ 8

⇔ 2dl log2(α)−l+m+1e ≤ 8
⇔ l(log2(α)− 1) +m+ 1 ≤ 3

⇔ l ≥ 2−m
log2(α)− 1

If we show for levels below or equal to such an l that βl−1 + 4hl is not always larger than
2dl log2(α)e we have shown the first part of the proposition. For that purpose we note that

β1 = 2dlog2(α)e = 2 and
β2 = β1 + 4h2.

Now for any level l + 1 with

βl−1 = 2d(l−1) log2(α)e and
βl = βl−1 + 4hl

it holds true that

βl+1 = 2d(l+1) log2(α)e ⇔ βl + 4hl+1 ≤ 2d(l+1) log2(α)e,

as

βl + 4hl+1 = βl−1 + 4hl + 8hl

= 2d(l−1) log2(α)e + 12 · 2−m+l−1.

With (2.40) for any level l ≤ lmax we have

l ≤
⌈

2−m
log2 α− 1

⌉
+ 1,

such that
12 · 2−m+l−1 ≤ 3 · 2l−2+(l−1)(log2(α)−1)+1 ≤ 3 · 2d(l−1) log2(α)e.

So we get

βl + 4hl+1 ≤ 2d(l−1) log2(α)e + 3 · 2d(l−1) log2(α)e

= 2d(l−1) log2(α)e+2

≤ 2d(l+1) log2(α)e.

32

2.3 Numerical solution

To summarize: Up to level lmax each time βl is equal to βl−1 + 4hl, on the following
refinement level we have βl+1 = 2d(l+1) log2(α)e. It remains to show that once refinement
level lmax is reached, all subsequent levels possess 93 grid points as well. This is easy
to see for any level l possessing 93 grid points, as after doubling the grid spacing 5 grid
points are left in the domain Ωl. Thus adding 4hl+1 in each direction doubles the length
resulting in a domain eight times as big with 9 grid points in each direction. This length
is the maximum, as α < 2. So the next refinement level still possesses 9 grid points in
each direction. �

The modified method not only has the same order of the discretization error than the
original method with refinement up to infinitely many levels but also only a finite number
of refinement steps depending linearly on the number of unknowns on the finest discretiza-
tion level is necessary to reduce the problem to 93 grid points. As a consequence only
O(N), where N is the total number of unknowns on the finest level, steps are required
to impose the boundary conditions on the coarsest refinement level. Now it remains to
show that the number of grid points grows linearly with the number of grid points of the
innermost box.

Lemma 2.6 Let α, m, βl, Ωl and hl, l = 1, . . . , lmax be defined as in Lemma 2.5. Then
the total number of grid points on all grids separately depends linearly on the number of
grid points inside of the original domain Ω0, namely (2m + 1)3.

Proof. We show the assertion by induction over m. We set d to the maximum of the
total number of grid points divided by 23m for m = 3 and 64

7 c, where c is the number of
additional levels when we go from m to m+ 1, i.e.

d := max

 1
23m

lmax(m)∑
l=1

#Gl

∣∣∣∣∣∣
m=3

,
64
7
c

 ,

with

lmax(m) :=
⌈

2−m
log2 α− 1

⌉
+ 1.

We like to note that c is a constant, as lmax(m) is bounded by a linear function in m. Now
we show that

lmax(m)∑
l=1

#Gl ≤ d23m, (2.41)

which is obviously true for m = 3. Assume (2.41) holds for some m ∈ N, then it holds
for m+ 1 as well, since:

lmax(m+1)∑
l=1

#Gl =
lmax(m)∑
l=1

#Gl +
lmax(m+1)∑

l=max(m)+1

#Gl

≤ d23m +
lmax(m+1)∑

l=max(m)+1

#Gl

33

2 Partial Differential Equations

#G0 h #refinements ||u− u∗||∞ ||u− u∗||2/#G0 time

173 1/16 8 2.110010 · 10−2 2.162535 · 10−5 1.66 s
333 1/32 11 5.078421 · 10−3 1.810825 · 10−6 12.84 s
653 1/64 14 1.251313 · 10−3 1.580911 · 10−7 104.61 s

1293 1/128 17 3.112553 · 10−4 1.392736 · 10−8 909.64 s

Table 2.1: Error and timings for different various sizes. The∞-norm of the error decreases
as predicted and the method scales linearly with the number of grid points.

Obviously, the number of grid points on each of the c additional levels going from m to
m+ 1 is bounded by 23m+6, yielding

lmax(m+1)∑
l=1

#Gl ≤ d23m + c23m+6

= (
d

8
+ 8c)23(m+1)

≤ d 23(m+1).

�

Combining the results we have shown that we have constructed an optimal method of
the desired accuracy in the following sense: The number of arithmetical operations per
unknown on the finest level is bounded from above by a constant and the number of
coarsening steps is predetermined by the size of the finest grid. At the same time the
order of the reached accuracy is not influenced by the number of coarsening steps, but
depends on the grid spacing on the finest level, only.

Comparison of the unmodified method and our modification

We like to conclude this chapter with a numerical comparison of the original method by
Washio and Oosterlee and our method. For that purpose we implemented the method in
C, using the FAC method introduced later in Chapter 3.2.4 as a solver for the resulting
linear system. The performance was measured on a machine with an 1.7 GHz Power4+
CPU. The grid extension rate α was set to 1.6 > 22/3 and for practical reasons β has
been chosen as

β := d2dlog2(αl)ee.

We used a point symmetric density described by a translated cubic B-Spline as defined
later in Chapter 4 as right hand side f . So the exact solution u∗ to the problem is known
analytically. The computed solution on a 643 grid and the error of this test case can
be found in Figure 2.3. Timings and error norms for various grid sizes are shown in
Table 2.1. Obviously, the method scales linearly and the ∞-norm of the error decreases
as expected. As it can be seen in Table 2.2 the number of refinement steps does not

34

2.3 Numerical solution

0
0.5

1 0
0.5

1

0

0.5

1

0
0.5

1 0
0.5

1

!2

!1

0

1

x 10
!3

Figure 2.3: A cut through the computed solution of the test case and its analytic point-
wise error on a 643 grid. Every fourth grid point is plotted.

influence the method’s accuracy, although the timings vary a lot. This is a consequence
of the reduction of the number of boundary points, when the number of refinement steps
is increased. We ran the same test using the original method presented in [87], thus not
setting the boundary values to the values of the continuous problem. The results in Table
2.3 and Fig. 2.4 show that this method behaves as expected: Increasing the number of
grid refinements increases the accuracy of the method up to the same level than our
modification.

The presented method is a useful extension of Washio’s and Oosterlee’s method. The
number of coarsening steps is known a priori and using a multigrid solver for the solution
of the linear system the computational cost grows linearly with the number of unknowns as
intended by Washio and Oosterlee. The error analysis presented shows that independent
of the number of refinement steps the method is of the desired order of accuracy. In
contrast to that the original method lacks this independence, as the error analysis is based
on the assumption that infinitely many coarsening steps are carried out. In practice this
number is an additional parameter that has to be provided by the user. As clearly seen
in the numerical examples, the accuracy of the original method depends on the number
of coarsening steps.

35

2 Partial Differential Equations

#refinements #Glmax ||u− u∗||∞ ||u− u∗||2/#G0

2 653 5.089194 · 10−3 2.023222 · 10−6

3 653 5.085428 · 10−3 1.857736 · 10−6

4 373 5.066483 · 10−3 1.927579 · 10−6

5 333 5.063288 · 10−3 1.840964 · 10−6

6 333 5.079554 · 10−3 1.815541 · 10−6

7 213 5.067220 · 10−3 1.815151 · 10−6

8 173 5.070326 · 10−3 1.811852 · 10−6

9 173 5.084148 · 10−3 1.812722 · 10−6

10 133 5.084021 · 10−3 1.812488 · 10−6

11 93 5.078421 · 10−3 1.810825 · 10−6

12 93 5.084541 · 10−3 1.812455 · 10−6

13 93 5.088087 · 10−3 1.813763 · 10−6

14 93 5.089895 · 10−3 1.814523 · 10−6

15 93 5.090805 · 10−3 1.814928 · 10−6

16 93 5.091260 · 10−3 1.815137 · 10−6

17 93 5.091489 · 10−3 1.815244 · 10−6

18 93 5.091603 · 10−3 1.815297 · 10−6

19 93 5.091660 · 10−3 1.815324 · 10−6

20 93 5.091688 · 10−3 1.815337 · 10−6

Table 2.2: Error norms for a 333-problem with h = 1/32 and various refinements. The
error of the method is only marginally affected by the number of refinement
steps.

5 10 15 20
10

!6

10
!5

10
!4

10
!3

refinements

||e
|| 2/3

23

original method
modified method

5 10 15 20
10

!3

10
!2

10
!1

refinements

||e
|| !

original method
modified method

Figure 2.4: Behavior of the error of the original method and of the modification. Using the
original method both, the error in the 2-norm and in the ∞-norm, depend
heavily on the number of grid refinements. The accuracy converges to the
accuracy of our modification, that is almost independent of the number of
refinements.

36

2.3 Numerical solution

#refinements #Glmax ||u− u∗||∞ ||u− u∗||2/#G0

2 653 3.653597 · 10−2 1.915066 · 10−4

3 653 1.783026 · 10−2 9.573523 · 10−5

4 373 1.584892 · 10−2 8.508257 · 10−5

5 333 8.995442 · 10−3 4.779984 · 10−5

6 333 4.631318 · 10−3 2.383245 · 10−5

7 213 3.762046 · 10−3 1.905511 · 10−5

8 173 2.929352 · 10−3 1.192743 · 10−5

9 173 4.014153 · 10−3 6.073405 · 10−6

10 133 4.375166 · 10−3 4.211756 · 10−6

11 93 4.554064 · 10−3 3.346295 · 10−6

12 93 4.821822 · 10−3 2.248768 · 10−6

13 93 4.956727 · 10−3 1.902828 · 10−6

14 93 5.024221 · 10−3 1.821841 · 10−6

15 93 5.057969 · 10−3 1.809017 · 10−6

16 93 5.074843 · 10−3 1.809788 · 10−6

17 93 5.083280 · 10−3 1.811972 · 10−6

18 93 5.087498 · 10−3 1.813512 · 10−6

19 93 5.089608 · 10−3 1.814394 · 10−6

20 93 5.090662 · 10−3 1.814863 · 10−6

Table 2.3: Error norms for a 333-problem with h = 1/32 and various refinements using the
method of Washio and Oosterlee. The error of the method heavily depends
on number of refinement steps, reaching the same accuracy as the modified
method.

37

2 Partial Differential Equations

38

3 Multigrid Methods

3.1 Iterative methods

In the following we are interested in the solution of linear systems using iterative methods.
For that purpose let A ∈ Rn×n, n ∈ N, regular and let b ∈ Rn. Later on, we will use
the field C instead of R, as it simplifies representation. We are interested in the solution
x ∈ Rn of linear systems of the form

Ax = b. (3.1)

A lot of different methods exist to solve this system directly or iteratively. Examples
for direct solution methods are Gaussian elimination or the Cholesky decomposition.
Besides roundoff errors and memory requirements the main drawback of direct solvers is
their high arithmetical complexity, e.g. the Gaussian elimination is of order O(n3) if one
cannot exploit the sparsity of A. In this work we are interested in iterative methods, the
arithmetic complexity of which should be significantly smaller. This short introduction
to iterative methods is based on the books by Meister [67] and Hackbusch [54], for further
details we refer their works. In our case (3.1) is solved using an iterative method φ.

Definition 3.1 An iterative method is a mapping

φ : Rn × Rn → Rn.

In the following we denote by x(0) ∈ Rn the initial approximation. The new iterate x(k+1)

is computed with the help of x(k) and b as

x(k+1) = φ(x(k),b).

We demand from a numerical method that it converges against the solution of the system
and that the solution of the system is a fixed point of the method.

Definition 3.2 An iterative method φ is called consistent with A iff for all b ∈ Rn

A−1b is a fixed point of φ(·,b). It is called convergent iff for all b ∈ Rn and for all
initial approximations x(0) ∈ Rn the sequence {x(k)}∞k=0 has the limit A−1b.

Both consistency and convergence are necessary conditions for an iterative method to be
a meaningful method.

3.1.1 Linear iterative methods

Definition 3.3 An iterative method φ is called a linear iterative method iff there exist
matrices M,N ∈ Rn×n such that

φ(x,b) = Mx +Nb.

The matrix M is called iteration matrix.

39

3 Multigrid Methods

For a linear iterative method necessary and sufficient conditions for consistency and
convergence can be given as stated by the following two theorems.

Theorem 3.1 A linear iterative method φ is consistent iff we can write

M = I −NA.

Proof. Let x∗ = A−1b. Assume that x∗ is a fixed point of φ(·,b), so we have

x∗ = φ(x∗,b) = Mx∗ +Nb = (M +NA)x∗.

This is the case for all b ∈ Rn, i.e. for all x∗ ∈ Rn, iff I = M +NA. �

Theorem 3.2 A linear iterative method φ is convergent iff the spectral radius of the
iteration matrix is bounded from above by 1, i.e.

ρ(M) < 1.

Proof. See e.g. the proof of Theorem 3.2.7 in [54]. �

For the analysis of multigrid methods which use linear iterative methods as smoothers
the following lemma is helpful.

Lemma 3.1 The k-th iterate of the linear iterative method φ can be written as

xk = Mkx(0) +
k−1∑
l=0

M lNb. (3.2)

Proof. We prove the statement by induction. For k = 1 equation (3.2) holds. Assume
that (3.2) holds for k − 1. Inserting the definitions yields

x(k) = M

(
Mk−1x(0) +

k−2∑
l=0

M lNb

)
+Nb = Mkx(0) +

k−1∑
l=0

M lNb

�

So applying k iterations of a linear iterative method results in multiplying the current
approximation by the k-th power of the method’s iteration matrix and adding a modifi-
cation of the right hand side. Starting with a zero approximation we can give an explicit
formula for x(k).

Lemma 3.2 Let φ : Rn×Rn → Rn be a consistent linear iteration method with iteration
matrix M = I −NA. If we start with a zero approximation for the solution of Ax = b,
we can write the k-th iterate as

x(k) = (I −Mk)A−1b.

40

3.1 Iterative methods

Proof. For A we can write A = N−1(I −M) ⇔ A−1 = (I −M)−1N . As x(0) = 0, we
have

x(k) = (I +M +M2 + · · ·+Mk−1)Nb

= (I −Mk)(I −M)−1Nb

= (I −Mk)A−1b.

�

3.1.2 Splitting methods

From Definition 3.3 it is not obvious how to choose either M or N . One way to construct
a linear iterative method is the splitting of the matrix A, i.e. with regular B ∈ Rn×n we
write

A = B + (A−B).

Now we can define the iterative method φ by

φ(x,b) = B−1(B −A)x +B−1b = (I −B−1A)x +B−1b,

thus we set M = (I − B−1A) and N = B−1. Obviously the defined iterative method is
consistent, as B is regular. The key idea is to define B to be similar to A and easy to
invert. One of the first ideas is to set B to the product of the identity and an arbitrary
value, resulting in the Richardson method.

Definition 3.4 Let θ > 0. Then the Richardson method is defined as the linear iterative
method

φRichardson,θ(x,b) = (I − θA)x + θb.

Theorem 3.3 Let A be symmetric and positive definite, let λmin be the smallest and
let λmax be the largest eigenvalue of A. Then the Richardson method converges iff θ ∈
(0, 2/λmax) and the convergence rate is

ρ(MRichardson,θ) = max{|1− θλmin|, |1− θλmax|}. (3.3)

Proof. Let λA be an eigenvalue of A, then obviously 1−θλ is an eigenvalue of MRichardson,θ.
As the function 1− θλ has no local maxima, we immediately obtain (3.3). Now assume
that θ ∈ (0, 2/λmax), so we have

−1 < 1− θλmax ≤ 1− θλmin < 1,

so ρ(MRichardson,θ) < 1. This shows sufficiency. To show necessity we assume
ρ(MRichardson,θ) < 1. With

1 > ρ(MRichardson,θ) ≥ |1− θλmax| ≥ 1− θλmax

41

3 Multigrid Methods

we have θ > 0, from

−1 < ρ(MRichardson,θ) ≤ −|1− θλmax| ≤ 1− θλmax

we obtain θ < 2/λmax. �

Another well-known splitting method is the Jacobi method, where B is chosen to contain
only the diagonal of A.

Definition 3.5 Let A = D+L+U , where D is the matrix containing only the diagonal
of A, L contains only the lower triangular part and U only the upper triangular part. The
Jacobi method is the linear iterative method given by

φJacobi(x,b) = −D−1(L+ U)x +D−1b.

Its iteration matrix is denoted by MJacobi = −D−1(L+ U).

A number of convergence criterions exists. We just would like to mention the criterion for
positive definite matrices. Here and in the following, for A and B being two symmetric
matrices the expression “A > B” denotes that A−B is symmetric and positive definite,
“A ≥ B” denotes that A−B is symmetric and positive semi-definite. For some symmetric
and positive definite matrix C and matrices D and E that are such that CD and CE are
positive definite, by “D >C E” and “D ≥C E” we denote that CD − CE is symmetric
and positive definite and symmetric and positive semi-definite, respectively.

Theorem 3.4 Let both A be symmetric positive definite and let the relation

2D > A > 0

hold. Then the Jacobi method converges and its convergence rate is given by

ρ(MJacobi) = ‖MJacobi‖A = ‖MJacobi‖D < 1.

Proof. Obviously we have

2D > A > 0⇔ 2I > D−
1
2AD−

1
2︸ ︷︷ ︸

=:A′

> 0.

So σ(A′) ⊂ (0, 2). Now the matrix

M ′ := I −A′ = I −D−
1
2AD−

1
2 = D

1
2MJacobiD

− 1
2

is similar to MJacobi, so
σ(MJacobi) = σ(M ′) ⊂ (−1, 1).

Additionally

ρ(MJacobi) = ρ(M ′) = ‖M ′‖2 = ‖D−
1
2M ′D

1
2 ‖D = ‖MJacobi‖D.

Using the similar symmetric matrix A
1
2MJacobiA

− 1
2 , we obtain

ρ(MJacobi) = ρ(A
1
2MJacobiA

− 1
2) = ‖A

1
2MJacobiA

− 1
2 ‖2 = ‖MJacobi‖A.

�

42

3.1 Iterative methods

Remark 3.1 Writing the Jacobi method component-wise yields

x
(k+1)
i =

1
aii

bi − n∑
j=1
j 6=i

aijx
(k)
j

 .

Using not only components of the old iterate x(k) but the available components of the new
iterate x(k+1) results in

x
(k+1)
i =

1
aii

bi − i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

 ,

which is the component-wise version of the Gauss-Seidel method. In matrix form it reads

φGS(x,b) = −(D + L)−1Ux + (D + L)−1b.

3.1.3 Relaxation methods

The new iterate of a linear iteration method can be written in terms of the residual vector
r := b−Ax as

x(k+1) = (I −NA)x(k) +Nb = x(k) +N(b−Ax(k)) = x(k) +Nr(k).

By weighting the correction we get

x(k+1) = x(k) + ωNr(k),

resulting in a new linear iterative method. The additional parameter ω allows us to
optimize the spectral radius of the original method’s iteration matrix. By introducing
the parameter to the Jacobi method we get the JOR method.

Definition 3.6 Let A, D, L and U be as in Definition 3.5. The Jacobi overrelaxation
method or for short JOR is the linear iterative method given by

φJOR,ω(x,b) = x− ωD−1(Ax + b).

For the JOR method we can formulate the following convergence criterion.

Theorem 3.5 Let A be symmetric and and positive definite and let ω fulfill

0 < ω < 2/ρ(D−1A). (3.4)

Then the JOR method converges, and its convergence rate is given by

ρ(MJOR,ω) = ‖MJOR,ω‖A = ‖MJOR,ω‖D < 1.

43

3 Multigrid Methods

Proof. We have (D−1A)−1 ≥ 1/ρ(D−1A)I. Thus, with condition (3.4) we have

0 < ωI < 2/ρ(D−1A)I ≤ 2(D−1A)−1 = 2A−1D.

This in turn implies
0 < ωA < 2D.

The rest of the proof proceeds like the proof of Theorem 3.4, which states the convergence
criterion for the Jacobi method. �

Remark 3.2 The Gauss-Seidel method mentioned in Remark 3.1 can be extended by a
relaxation parameter in a similar way as the Jacobi method, the main difference being the
component-wise introduction of ω. The resulting method is the well-known SOR method.

Linear iterative methods like the Richardson method or the Jacobi and JOR method,
respectively, are easy to analyze and to implement. The convergence rate directly depends
on the eigenvalues of the original system. For example the eigenvalues of the iteration
matrix of the Richardson method are given as

λMRichardson,θ
= 1− θλA,

where λA is an eigenvalue of A. So for an ill-conditioned system with an eigenvalue close
to zero the convergence rate of the Richardson iteration will be smaller than one, but
very close to it. As a consequence it will be unsatisfactory. Other methods like Jacobi
and Gauss-Seidel and their relaxed variants behave in the same way. This is in contrast
to Multigrid methods which do not share this downside for certain classes of matrices.

3.2 Geometric Multigrid

Multigrid methods are optimal, i.e. O(n), methods for the solution of certain linear sys-
tems arising from the discretization of elliptic PDEs. Additionally, they are efficient,
i.e. the constant factor that is multiplied with the leading n-term is small. Multigrid is a
universal principle that can be applied to a wide range of elliptic problems, e.g. problems
with non-constant coefficients, different discretizations, etc. and to non-elliptic problems
as well. The origins of multigrid go back to the workings of Fedorenko [30, 31], who
analyzed the convergence of a multigrid method solving a discretized elliptic PDE of sec-
ond order with Dirichlet boundary conditions. Further on Bakhvalov [6] is to be named,
who mentioned the use of nested iterations in order to improve the initial approximation.
Brandt used the ideas contained in these papers in his work on adaptive rediscretization
and showed their practical efficiency [11]. Later, he published a very detailed work on
multigrid methods [12]. Simultaneous to these developments, Hackbusch worked on multi-
grid methods for the solution of elliptic PDEs as well [48, 49, 50, 51], putting particular
emphasize on mathematical rigor.

We stick to the standard model problem and definitions as most introductory multigrid
books that are much more detailed, see e.g. [15, 84].

44

3.2 Geometric Multigrid

3.2.1 Motivation

As aforementioned, iterative methods like the Richardson method or the Jacobi method
converge very slowly for ill-conditioned systems. We want to analyze this effect a little
more in detail. Although this observation can be made for a large class of problems, we
restrict ourselves to the Poisson equation (2.5) with Dirichlet boundary conditions (2.2a)
on the unit square, where u vanishes on the boundary, i.e.

−∆u(x) = f(x) for x ∈ [0, 1]2

and
u(x) = 0 for x1 = 0 ∨ x1 = 1 ∨ x2 = 0 ∨ x2 = 1.

Now we discretize the domain using n+ 1 points in each direction, where n = 2k. Using
the 5-point formula (2.15) for the discretization of the Laplacian we get

1
h2
k

(4ui,j − ui−1,j − ui,j−1 − ui+1,j − ui,j+1) = fi,j

with hk = 2−k for i, j = 1, . . . , nk and for i = 0 ∨ i = n ∨ j = 0 ∨ j = n we have

(uk)i,j = 0.

This results in the linear system
Lkuk = fk, (3.5)

where Lk ∈ Rnk×nk ,nk = (2k − 1)2 and uk, fk ∈ Rnk . To determine the convergence
factor of the Richardson method and the Jacobi method, we need the eigenvalues of Lk.
One easily verifies that the vectors ϕ(k)

l,m with the components

(ϕ(k)
l,m)i,j = sin(lπih) sin(mπjh), for i, j, l,m = 1, . . . , nk (3.6)

are the eigenvectors of Lk. The associated eigenvalues are

λ
(k)
l,m = 4− 2 cos(lπh)− 2 cos(mπh), for l,m = 1, . . . , nk.

So the smallest eigenvalue of Lk is

λ
(k)
min = 4(1− cos(πhk)).

By Theorem 3.3 and Theorem 3.5 we easily find that the convergence rate for the Richard-
son method is

ρ(MRichardson,θ) = 1− θ(1− cos(πhk)),

and for the Jacobi method we get

ρ(MJacobi) = cos(πhk).

Therefore both methods converge slowly for large k, which is not surprising, as the system
is asymptotically ill-conditioned.

45

3 Multigrid Methods

0
0.5

1

0
0.5

1

0.2
0.4
0.6
0.8
1

0
0.5

1

0
0.5

1

0.2
0.4
0.6
0.8
1

0
0.5

1

0
0.5

1

0.2
0.4
0.6
0.8
1

Figure 3.1: Error of an arbitrarily chosen initial approximation and right hand side of
the Laplacian discretized on the unit square using 152 grid points before and
after application of one and three iterations of a damped Jacobi method with
ω = 4/5.

As the entries on the main diagonal of the coefficient matrix are constant, for this
problem the Richardson method is equivalent to the damped Jacobi method. In the
following we will cover the Jacobi method in larger detail. Looking more closely at the
convergence rate of the Jacobi method for the different eigenvectors, we find that it
depends on the associated eigenvalue. If we represent the error

ek = u∗k − uk,

where u∗k is the exact solution in terms of the eigenvectors, we can immediately determine,
which parts of the error are reduced efficiently and which are not. We find out that the
part belonging to the eigenvalue λ(k)

l,m is damped by a factor of |12(cos(lπhk) cos(mπhk))|.
So the parts belonging to eigenvalues with indices l and m somewhere in the middle be-
tween 1 and nk are damped efficiently, while parts belonging to eigenvalues with extreme
indices are hardly damped at all. Now we analyze, which parts of the error are damped
by the JOR method. We obtain that the part belonging to the eigenvalue with index l,m
is damped by a factor of ∣∣∣1− ω

2
(2− cos(lπhk)− cos(mπhk))

∣∣∣ .
So for an ω < 1 we can achieve that parts of the error belonging to eigenvalues with large
indices l and m are damped efficiently by a factor of at least |1−2ω|. The parts of the error
belonging to eigenvalues with small indices are still damped very inefficiently, as they are
at least asymptotically not damped at all. Now, we observe that the eigenvectors (3.6)
belonging to eigenvalues with high coefficients l andm are geometrically highly oscillatory.
This means that high frequency parts are damped very efficiently by the Jacobi method,
while low frequencies are damped much slower. The error is becoming smooth after only
a few iterations of the Jacobi method. This is the fundamental observation that lead to
the development of multigrid methods. This behavior can be easily verified by plotting
the error before and after applying a few iterations of the Jacobi method, c.f. Figure 3.1.

Another fundamental observation that has to be made in order to construct a twogrid
method is that a smooth error is well-represented on a coarser grid. That means a smaller

46

3.2 Geometric Multigrid

number of grid points is sufficient. Given a current approximation uk to the solution of
(3.5), we can compute the residual rk as

rk = fk − Lkuk.

The actual iterate can then be updated by adding the approximate solution ek of the
defect equation

Lkek = rk. (3.7)

This approximate solution can be obtained from the coarse grid, as it is well represented
on that level.

On this coarser grid the low frequency components of the finer grid can be differenti-
ated into low and high frequency components, again. The Jacobi method still has the
smoothing property on this level, resulting in a very efficient damping of the high fre-
quency parts of the error, which have been low frequency parts on the fine grid. As a
consequence, a recursive application of the twogrid idea is possible, leading to a multigrid
method.

Now, we will continue to formally define the twogrid and multigrid methods.

3.2.2 Twogrid methods

Twogrid methods consist of three main ingredients: the smoother, the restriction and
prolongation operators, and the coarse grid correction operator.

Smoothers

Essentially, all iterative methods that smooth the error in a geometrical sense, i.e. damp
the high frequency components efficiently and independently of h, are possible smoothers
for a twogrid method. The most common smoothers are the damped JOR method and
the SOR method, as defined in Theorem 3.6 and Remark 3.2. We will now give formal
definitions of high and low frequencies and of the smoothing factor of the JOR method
for (3.5).

Definition 3.7 Let Lk be defined as in (3.5). An eigenvector ϕ(k)
l,m given in (3.6) is called

low frequency, if max(l,m) < (nk + 1)/2,
high frequency, if (nk + 1)/2 ≤ max(l,m).

Definition 3.8 Let Lk be defined as in (3.5) and let

χ
(k)
l,m(ω) := 1− ω

2
(2− cos(lπh)− cos(mπh))

be the factor by which the eigenvector ϕ
(k)
l,m is damped by the JOR method. Then the

smoothing factor µk(ω) of the JOR method is defined as

µk(ω) := max{|χ(k)
l,m(ω)| : (nk + 1)/2 ≤ max(l,m) ≤ nk},

47

3 Multigrid Methods

0 0.2 0.4 0.6 0.8 1
!1

!0.5

0

0.5

1

low frequencies

high frequencies

frequency

da
m

pi
ng

! = 1
! = 1/2
! = 2/3

Figure 3.2: Damping factors χl,m for h → 0 of the JOR method for the 1D analogon to
our model problem for different relaxation parameters ω. The choice ω = 2/3
is optimal and all high frequency components are damped by a factor of at
least 1/3.

i.e. the worst factor by which a high frequency is damped. Further we define its suprenum
over k as

µ(ω) = sup
k∈N

µk(ω).

Thus the relaxation parameter is optimal if we choose ω as the minimizer of µ(ω). In
our case ω = 4/5 is optimal. For the 1D analogon of our problem the choice ω = 2/3 is
optimal, as depicted in Figure 3.2.

Remark 3.3 The eigenvectors of the iteration matrix of the Gauss-Seidel and SOR meth-
ods are not the same as the eigenvectors of Lk. So the analysis of these smoothers is more
involved, requiring other tools as presented here, e.g. the local Fourier analysis (LFA).
For details see [84].

In the following we do not restrict ourselves to the JOR method as a smoother, but we
just assume that some appropriate smoothing method S was chosen. S is a linear iterative
method, although other methods have been used as smoothers in multigrid methods. To
simplify the representation we define (φ(k)

S)ν to represent ν iterations of the smoothing
method on the grid with grid spacing hk. This is possible, as due to Lemma 3.1 ν ≥ 1
iterations of one linear iterative method define another linear iterative method.

Restriction and prolongation operators

So far, we have not mentioned how to transfer the residual from the fine grid to the
coarse grid and the result of the solution of the defect equation (3.7) on the coarse grid
back to the fine grid. In the following we assume that the grid spacing is doubled on the
coarse grid. So counting only the unknowns but not the boundary points, we have only
(nk + 1)/2− 1 variables in each direction on the coarse grid, while we have nk variables
on the fine grid. Under this assumption reasonable operators can be defined.

48

3.2 Geometric Multigrid

We begin with the restriction operators. To simplify the representation we use the
stencil notation introduced in section 2.3.1. The meaning of a stencil for a restriction
operator is that its elements define by which extent the elements of the fine grid contribute
to the value on the coarse grid. The point at the center is the fine grid point that
corresponds to the current coarse grid point. To emphasize that the operator maps a
vector from the fine grid using grid width hk to the coarse grid with width hk−1 we add
the k to the right bottom of the stencil and the k − 1 to the right top.

Definition 3.9 The injection operator is given by the stencil 1

k−1

k

.

The injection operator is the most easy to implement operator and the computationally
least expensive one, as only copying is involved. No floating point operations are needed.
Due to this fact, it is an option for optimizing the computational cost of a multigrid cycle.
Alternatively, in order to improve the representation of the error on the coarse grid we
can distribute the values of a non-coarse grid point to its neighbors, which are part of
the coarse grid, resulting in the full-weighting operator.

Definition 3.10 By the stencil

1
16

 1 2 1
2 4 2
1 2 1

k−1

k

we define the full-weighting operator.

A cheaper variant of the full-weighting operator is the half-weighting operator, which does
not take grid points into account that have no neighbors belonging to the coarse grid in
x- or y-direction.

Definition 3.11 The half-weighting operator is given by the stencil

1
8

 1
1 4 1

1

k−1

k

.

Of course, one can define three dimensional versions of these operators as well.
For prolongation we define the bilinear interpolation. In order to emphasize that it

works in the opposite direction as the restriction, we denote its stencil with open brackets,
i.e.] · [, and we add the k and k − 1 in reverse order. Intuitively this accentuates that
the prolongation operator gives to the fine grid, while the restriction operator takes from
the fine grid. With the help of the stencil notation we immediately obtain which share
of a coarse grid point is distributed to which fine grid point. Again, the center point is
the fine grid point that corresponds to the coarse grid point.

49

3 Multigrid Methods

Definition 3.12 The bilinear interpolation operator is given by the stencil

1
4

 1 2 1
2 4 2
1 2 1

k
k−1

.

We would like to denote that the bilinear interpolation operator is the adjoint of the full-
weighting operator up to a constant factor. This is an important feature in the context
of the variational formulation of the multigrid theory that will be described later.

We denote the matrix representation of the restriction operator from the grid with grid
spacing hk to the grid with spacing hk−1 by Ik−1

k ∈ Rnk×nk−1 . Analogously the matrix
representation of the prolongation operator is denoted by Ikk−1 ∈ Rnk−1×nk .

Coarse grid correction operator

As the error is represented on the coarse grid reasonably well, the defect equation (3.7)
is solved on the coarse grid. This is done by the coarse grid correction operator. The
coarse grid correction consists of the following steps:

1. Compute residual: rk ← fk − Lkuk

2. Restrict residual: rk−1 ← Ik−1
k rk

3. Solve defect equation: ek−1 ← L−1
k−1rk−1

4. Prolongate correction: ek ← Ikk−1ek−1

5. Correct current approximation: xk ← xk + ek

Using this description we can define the coarse grid correction as a linear iterative method.

Definition 3.13 Let Lk and Lk−1 be two discretizations of the model problem as defined
above. Let further Ik−1

k be a restriction operator and Ikk−1 be a prolongation operator.
Then the coarse grid correction is defined as

φ
(k)
CGC(uk, fk) = uk + Ikk−1L

−1
k−1I

k−1
k (fk − Lkuk).

An immediate consequence of this definition is the fact that the iteration matrix of the
coarse grid correction is given by

Tk = I − Ikk−1L
−1
k−1I

k−1
k Lk. (3.8)

Remark 3.4 The coarse grid correction is consistent with the linear system Lkuk = fk,
but it is not convergent, as some eigenvalues are equal to one. The rank of the prolongation
is at most nk−1.

50

3.2 Geometric Multigrid

The twogrid cycle

Combining the smoother with the coarse grid correction yields the twogrid cycle.

Definition 3.14 Let φ(k)
S be an iterative method that smoothes the high frequencies of

the error and let ν1, ν2 ∈ N be the number of presmoothing respectively postsmoothing
iterations. Assume that φ(k)

CGC is the coarse grid correction. Then the twogrid cycle with
ν1 presmoothing iterations and ν2 postsmoothing iterations is given by

φ
(k)
TGM(uk, fk) = (φ(k)

S)ν2(φ(k)
CGC((φ(k)

S)ν1(uk, fk), fk), fk).

By this definition we obtain the iteration matrix of the twogrid cycle. Given the iteration
matrix Sk of the smoother and the iteration matrix Tk of the coarse grid correction in
(3.8) we obtain the iteration matrix

Sν2k TkS
ν1
k = Sν2k (I − Ikk−1L

−1
k−1I

k−1
k Lk)Sν1k .

The twogrid cycle in algorithmic form can be found in Algorithm 3.1.

Algorithm 3.1 Twogrid cycle uk ← φ
(k)
TGM(uk, fk)

uk ← (φ(k)
S)ν1(uk, fk)

rk ← fk − Lkuk
rk−1 ← Ik−1

k rk
ek−1 ← (Lk−1)−1rk−1

ek ← Ikk−1ek−1

uk ← uk + ek
uk ← (φ(k)

S)ν2(uk, fk)

Convergence of the two-grid cycle

There are various ways to prove convergence of the two-grid cycle in different settings. We
will outline Hackbusch’s proving technique here, as it is closely related to the proofs for
algebraic multigrid convergence presented later. Other proof techniques include the use
of Fourier transforms or the interpretation of multigrid methods as subspace correction
methods. For an overview over these approaches we refer to the book of Trottenberg,
Oosterlee and Schüller [84]. Hackbusch provides two properties that together give a
sufficient criterion for the convergence of the twogrid method. These are the smoothing
property and the approximation property.

The smoothing property is motivated by the fact that the error is smoothed as seen
before. We have seen that the high frequencies are the eigenvectors belonging to the large
eigenvalues. As a consequence we measure the smoothness of the error in terms of the
L2
k-norm. So an iterative method φ(k)

S is a good smoother if the L2
k-norm of an arbitrary

vector ek after one iteration step is sufficiently smaller than before, i.e. if

‖Skek‖L2
k

= ‖LkSkek‖2 < ‖Lkek‖2 = ‖ek‖L2
k
.

This motivates the following definition.

51

3 Multigrid Methods

Definition 3.15 (Smoothing property) An iterative method φkS with iteration matrix
Sk fulfills the smoothing property, if there exists a function η(ν), such that

‖LkSνk‖2 ≤ η(ν)‖Lk‖2 for all 0 ≤ ν ≤ ∞ with k ≥ 0,
lim
ν→∞

η(ν) = 0.

It can be shown that for our model problem that the Richardson method [54] and the
damped JOR method [52] satisfy the smoothing property with η(ν) = νν/(ν+ 1)ν+1 and
η(ν) = c/(ν + 1

2), respectively.
Since the inverse of the operator is approximated on the coarse level, the approximation

property is defined as a measure for the quality of this approximation.

Definition 3.16 (Approximation property) Let Ikk−1 and Ik−1
k be the interpolation

and restriction operators and let Lk be the discretization of the underlying partial dif-
ferential equation as defined above. The twogrid method using these operators is said to
fulfill the approximation property, if there exists a constant c, such that for all k ∈ N we
have

‖L−1
k − I

k
k−1L

−1
k−1I

k−1
k ‖2 ≤

c

‖Lk‖2
.

Various problems arising from the discretization of partial differential equations fulfill the
approximation property, for details we refer to the work of Hackbusch [48, 49, 50, 51, 52,
53, 54].

Given the smoothing and the approximation property the twogrid method converges,
as stated by the following theorem.

Theorem 3.6 Let the twogrid method φ
(k)
TGM,ν,0 with ν presmoothing iterations of the

iterative method φ
(k)
S fulfill the smoothing and the approximation property. Then for all

0 < ζ < 1 there exists a lower bound ν̃, such that for all ν > ν̃ and for all h < hmax we
have

‖TkSνk‖2 ≤ cη(ν) ≤ ζ.
Proof. Choose ν̃ such that η(ν) ≤ ζ

c for all ν > ν̃. Then we have

‖TkSνk‖2 = ‖(I − Ikk−1L
−1
k−1I

k−1
k Lk)Sνk‖2

= ‖(L−1
k − I

k
k−1L

−1
k−1I

k−1
k)LkSνk‖2

≤ ‖(L−1
k − I

k
k−1L

−1
k−1I

k−1
k)‖2‖LkSνk‖2

≤ c

‖Lk‖2
η(ν)‖Lk‖2 = cη(ν) ≤ ζ.

�

It is sufficient to analyze either pre- or post-smoothing here, as for two-grid methods
the spectra of two methods having a different number ν1 of pre-smoothing iterations
and another number ν2 of post-smoothing iterations but having the same sums ν1 + ν2

coincide, c.f. Lemma 4.4 in [74].
Now that we have defined everything we need for the twogrid method, and that we

have given an overview over one proving technique for the convergence of the two grid
method, we are ready to apply the same idea recursively, leading to multigrid methods.

52

3.2 Geometric Multigrid

3.2.3 Multigrid methods

The twogrid cycle provides a very efficient iterative method for the solution of linear
systems arising in the discretization of partial differential equations. The most important
feature is the h-independent convergence factor, a feature not provided by the previously
considered methods. On the other hand the exact solution of the system on the coarse
grid is needed to achieve that behavior. The direct solution on the coarse level is still very
expensive, so iterative methods should be used to solve that system. Simple solvers like
JOR still expose the same problem on the coarse grid as on the fine grid, although the
problem is not as severe, since the smallest eigenvalue is larger on coarser grids. So we use
γ iterations of a twogrid method on the coarse grid again, to solve the defect equation.
This is a consistent application of the twogrid idea, leading to multigrid methods if
applied recursively. On the coarsest level reached, a direct solver is used to solve the
system. This coarsest level may contain one unknown only, so the direct solution on that
system is computationally cheap. The multigrid cycle can then be defined recursively

Definition 3.17 Let φ(k)
S be a linear iterative method with iteration matrix Sk smoothing

the high frequencies. Let ν1, ν2 ∈ N be the number of pre- and postsmoothing iterations
and let γ ∈ N be the number of multigrid cycles used to solve (3.7). Then the multigrid
cycle is defined as

φ
(0)
MGM(u0, f0) = L−1

0 f0

for k = 0 and

φ
(k)
MGM(uk, fk) = (φ(k)

S)ν2((φ(k)
S)ν1(uk, fk) + Ikk−1((φ(k−1)

MGM)γ(0, Ik−1
k (fk − Lkuk))), fk)

for k = 1, 2,

With the help of Lemma 3.2 we immediately obtain the recursive definition of the iteration
matrix Mk of the multigrid cycle.

Mk =

{
0 for k = 0
Sν2k (I − Ikk−1(I − (Mk−1)γ)L−1

k−1I
k−1
k Lk)Sν1k for k = 1, 2, . . .

.

Given Definition 3.17 we can extend Algorithm 3.1 to Algorithm 3.2 for the multigrid
cycle.

V-cycles and W-cycles

Depending on how often we apply the twogrid cycle to solve the defect equation (3.7),
we get different types of multigrid cycles. They are named according to the following
definition.

Definition 3.18 Depending on the number γ of multigrid cycles recursively used to solve
the defect equation (3.7) on the coarse grid, the multigrid cycle is called V-cycle, for γ = 1
or W-cycle for γ = 2. We denote the V-cycle multigrid operator by φ(k)

V and the W-cycle
operator by φ(k)

W .

53

3 Multigrid Methods

Algorithm 3.2 Multigrid cycle uk ← φ
(k)
MGM(uk, fk)

uk ← (φ(k)
S)ν1(uk, fk)

rk ← fk − Lkuk
rk−1 ← Ik−1

k rk
ek−1 ← 0
if k − 1 = 0 then

e0 ← L−1
0 r0

else
for i = 1 to γ do

ek−1 ← φ
(k−1)
MGM(ek−1, rk−1)

end for
end if
ek ← Ikk−1ek−1

uk ← uk + ek
uk ← (φ(k)

S)ν2(uk, fk)

Computational complexity

We will now discuss the computational complexity of different values of γ according to
[84], especially of the V- and the W-cycles. We will stick to our standard 2D problem, i.e.
we assume that the grid spacing is doubled on each level. Now we can derive the number
of arithmetical operations for each multigrid cycle. We define Wk to be the number of
arithmetical operations needed for a multigrid cycle starting on level k. Further on we
define W̃k to be the number of arithmetical operations needed on level k, excluding the
solution of the defect equation using the recursive application of the multigrid cycle. Thus
we get

W1 = W̃1 +W0 Wk+1 = W̃k+1 +Wk, k = 1, 2,

From that we obtain

Wk =
k−1∑
l=1

γk−lW̃l + γk−1W0 (3.9)

Again we let nk be the number of unknowns on level k. Neglecting boundary effects we
have that nk = 1

4nk+1. For the work on each level excluding the solution of the defect
equation we have W̃k ≤ cnk, where c is a small constant independent of nk. So from (3.9)

54

3.2 Geometric Multigrid

we get

Wk =
k−1∑
l=1

γk−lW̃l + γk−1W0

≤
k−1∑
l=1

γk−l
(

1
4

)k−l
cnk + γk−1W0

= cnk
k−1∑
l=1

(γ
4

)l
+ γk−1W0

The last summand grows logarithmically with the number of unknowns on the finest grid,
the first summand is a geometric series, so we can subsume

Wk ≤


4
3cnk +O(log nk) for γ = 1,
2cnk +O(log nk) for γ = 2,
4cnk +O(log nk) for γ = 3.

For γ = 4 the work on each level is constant, as the number of unknowns is quartered up
to boundary effects but we spend 4 cycles on each level, so the advantage of quartering
the number of unknowns is lost. As the number of levels is an order log(nk)-term, we then
have a complexity ofO(nk log nk). We like to conclude mentioning that the computational
complexity depends on the reduction r of the number of unknowns going from level k to
level k − 1, on the complexity ck per unknown, which may grow while going to a coarser
level, and on the number of recursive applications of multigrid cycles γ. As long γrck < 1
we have linear complexity.

Convergence of the W-cycle

Now we have that the twogrid method converges and that one multigrid cycle is com-
putationally optimal, it remains to show that a multigrid method converges where the
convergence rate is bounded from above by a bound that is independent of the number
of unknowns. A multigrid method can be interpreted as a twogrid method, where the
defect equation (3.7) is solved only approximately. This approximate solution is calcu-
lated using a multigrid method, which is an iterative method. Under the assumption,
that the twogrid convergence rate is bounded for all grid spacings and that the involved
prolongation, restriction and smoothing operators are bounded as well, we can derive
that the multigrid method converges uniformly for γ ≥ 2, i.e. that independent of the
number of unknowns the convergence rate is bounded from above.

Theorem 3.7 Let

‖Sν2k TkS
ν1
k ‖∗ ≤ σ, ‖Sν2k I

k
k−1‖∗‖L−1

k−1I
k−1
k LkS

ν1
k ‖∗ ≤ c

hold uniformly for all grid spacings h for some norm ‖ · ‖∗. Then the ∗-norm of the
iteration matrix Mk is bounded by ηk, where ηk is defined recursively as

η0 = σ, ηk = σ + cηγk−1 (k = 1, 2, . . .), (3.10)

55

3 Multigrid Methods

where c, σ > 0. For γ = 2 and
4cσ ≤ 1

the ∗-norm of the iteration matrix Mk is bounded from above by

‖Mk‖∗ ≤ η =
1
2c

(1−
√

1− 4cσ) ≤ 2σ,

so for σ < 1
2 the method converges with a uniformly bounded convergence rate.

Proof. First we show that the norm of the iteration matrix is bound by ηk as defined in
(3.10). We have

‖Mk‖∗ = ‖Sν2k (I − Ikk−1(I −Mγ
k−1)L−1

k−1I
k−1
k Lk)Sν1k ‖∗

= ‖Sν2k (I − Ikk−1L
−1
k−1I

k−1
k Lk)Sν1k + Sν2k I

k
k−1M

γ
k−1L

−1
k−1I

k−1
k LkS

ν1
k ‖∗

≤ ‖Sν2k (I − Ikk−1L
−1
k−1I

k−1
k Lk)Sν1k ‖∗ + ‖Sν2k I

k
k−1M

γ
k−1L

−1
k−1I

k−1
k LkS

ν1
k ‖∗

≤ ‖Sν2k (I − Ikk−1L
−1
k−1I

k−1
k Lk)Sν1k ‖∗ + ‖Sν2k I

k
k−1‖∗‖M

γ
k−1‖∗‖L

−1
k−1I

k−1
k LkS

ν1
k ‖∗

= σ + cηγk−1.

Now γ = 2 and forming the limit yields η = σ + cη2. So for 4cσ ≤ 1 we have

η =
1
2c

(1−
√

1− 4cσ) =
1−
√

1− 4cσ
4cσ

2σ ≤ 2σ,

since

1− 4cσ ≤
√

1− 4cσ

⇔ 1−
√

1− 4cσ ≤ 4cσ

⇔ 1−
√

1− 4cσ
4cσ

≤ 1.

Obviously η0 = σ ≤ (1−
√

1− 4cσ)/(2c). Assuming that ηk−1 ≤ (1−
√

1− 4cσ)/(2c) we
have

ηk ≤ σ + cη2
k−1

≤ σ + c

(
1−
√

1− 4cσ
2c

)2

= σ +
1
4c

(1− 2
√

1− 4cσ + 1− 4cσ)

=
1−
√

1− 4cσ
2c

.

So (1−
√

1− 4cσ)/(2c) is an upper bound for the convergence rate of the W-cycle. �

So under a few additional assumptions the convergence of the multigrid method is a
consequence of the convergence of the twogrid method. The convergence of the V-cycle
requires more advanced techniques of proof. As we will present an algebraic proof of the
convergence of the V-cycle later, for proofs that are more related to geometric multigrid
we refer to the work of Braess and Hackbusch [10] and to the book of Trottenberg,
Oosterlee and Schüller [84].

56

3.2 Geometric Multigrid

3.2.4 FAS and FAC

While multigrid methods originally have been developed for the use of linear problems,
they have been adopted to non-linear problems as well. We will not deal with non-linear
problems here, but we need some ideas from the full approximate storage approach in
order to motivate a multigrid technique that efficiently solves problems with local grid
refinements. This will allow us to define a fast multigrid method for the solution of the
system resulting from the hierarchical grid refinement introduced in section 2.3.2. When
dealing with non-linear problems the solution of the defect equation (3.7) is not feasible,
as the correction carried out later directly depends on the linearity of the operator, i.e.
we make use of

u∗k = L−1
k Lk(uk + (u∗k − uk)) = uk + L−1

k (fk − Lkuk) = uk + L−1
k rk.

This is obviously not possible for the solution of non-linear problems. To avoid this,
we rather transfer the current approximation to the coarse level. We compute a new
approximate solution on the coarse level using the restricted current approximation as a
start value. The right hand side is constructed as the sum of the current restricted fine
level residual and the operator applied to the restricted current fine level approximation.
Then we subtract the restricted fine level solution from the new coarse level solution in
order to get a correction. That correction is then transferred to the fine level and added to
the current approximate solution on that level. That way we avoided using the linearity of
the operator, nevertheless the resulting method is equivalent to the unmodified multigrid
cycle for linear operators. So we define the full approximate storage cycle in accordance
to the multigrid cycle.

Definition 3.19 Let φ(k)
S be an iterative method smoothing the high frequencies. Let

ν1, ν2 ∈ N be the number of pre- and postsmoothing iterations and let γ ∈ N be the
number of recursive calls used to solve the coarse level system. Then the full approximate
storage cycle or FAS cycle is defined as

φ
(0)
FAS(u0, f0) = L−1

0 f0

for k = 0 and

φ
(k)
FAS(uk, fk) = (φ(k)

S)ν2((φ(k)
S)ν1(uk, fk) + Ikk−1((φ(2h)

FAS)γ(Ik−1
k (φ(k)

S)ν1(uk, fk),

Ik−1
k (fk − Lkuk) + Lk−1I

k−1
k (φ(k)

S)ν1(uk, fk))− Ik−1
k (φ(k)

S)ν1(uk, fk)), fk)

for k = 1, 2,

The implementation can be found in Algorithm 3.3.
In Section 2.3.2 we extended the hierarchical refined grid discretization for the solution

of the Poisson equation in free space. The multigrid method just developed is directly
applicable to solve the system. If that approach is chosen to solve the system, on each
level the composite grid up to that level would have to be used. We notice that the parts
that are not refined will not benefit a lot from the solution on a finer level, as they are

57

3 Multigrid Methods

Algorithm 3.3 FAS cycle uk ← φ
(k)
FAS(uk, fk)

uk ← (φ(k)
S)ν1(uk, fk)

dk ← fk − Lkuk
dk−1 ← Ik−1

k dk
uk−1 ← Ik−1

k uk
fk−1 ← dk−1 + Lk−1uk−1

vk−1 ← uk−1

if k − 1 = 0 then
v0 ← L−1

0 f0

else
for i = 1 to γ do

vk−1 ← φ
(2h)
FAS(vk−1, fk−1)

end for
end if
vk−1 ← vk−1 − uk−1

vk ← Ikk−1vk−1

uk ← uk + vk
uk ← (φ(k)

S)ν2(uk, fk)

already treated properly on the lower levels. So we only apply the smoother on the finer
levels to that part of the grid that is discretized using the current finest grid size. The
only remaining question is then how to treat the correction. In the standard V-cycle the
defect equation is solved on the coarse level, so Dirichlet zero boundary conditions are
used. This is not an option as parts of the information on the current approximation is
contained in the coarse grid approximation, only. So we use the FAS cycle, i.e. we transfer
our current residual plus the discretized operator applied to our current approximation
to the coarse level and solve the system there. The correction is then formed as described
above and our current approximation is updated. This technique is an application of
McCormick’s fast adaptive composite grid method (FAC) [66, 65]. Washio and Oosterlee
used the multilevel adaptive technique (MLAT) by Brandt [11, 13] that involves high order
interpolation constructed from the discretization at the interface in their work [87]. A
more general approach to adaptive multigrid methods can be found in the work of Rüde
[68].

3.3 Algebraic Multigrid Theory for Structured Matrices

While geometric multigrid methods are easy to develop for problems arising from partial
differential equations with simple geometries, it can be very hard to generate a grid
hierarchy for more complex geometries. The problem is to find coarser levels for the
multigrid method. While in most cases it is easy to provide a finer discretization for
a given geometry which is already discretized, it can be very hard to find a reasonable
coarser discretization. Therefore the problem on the coarsest level might still be too

58

3.3 Algebraic Multigrid Theory for Structured Matrices

expensive to be solved directly. Another problem exists when geometry information is
not available at all, which might be the case if multigrid should be used as a black box
solver, for example in a commercial code, or when the underlying problem is not geometric
at all. To tackle these problems algebraic multigrid methods, or AMG methods for
short, have been developed as black box multigrid solvers. Unlike in geometric multigrid
methods, in algebraic multigrid methods the smoother is fixed and the coarsening process
is fully automatic, i.e. given a matrix the interpolation and restriction operators are
constructed such that the resulting method converges. Due to the construction of the
coarser levels the algebraic multigrid methods can be split into a setup phase and a
solution phase. One of the main concerns by AMG critics is the setup phase, as it can
be quite expensive. Additionally, the coarse level construction is hard to parallelize.
Nevertheless AMG allows the use of multigrid methods where it would not be possible at
all to use a geometric multigrid method. The standard algebraic multigrid theory is valid
for M-matrices. Introductions to algebraic multigrid can be found in the book chapter by
Ruge and Stüben [69], in the appendix written by Stüben [78] or in his reports [77, 76].

The rest of this section is structured as follows: We will first give an overview over the
convergence theory for hermitian positive definite problems. After that we will present
some theory regarding the replacement of the Galerkin operator that has been developed
during the work leading to this thesis. Finally, we will present multigrid methods for
matrices from matrix algebras and the application of the new theory to the circulant
case.

3.3.1 Convergence theory for multigrid methods for hermitian positive
definite problems

The following presentation of the convergence theory is similar to the one in the book
chapter of Ruge and Stüben [69], parts are clarified in the introduction of Stüben [78].
Their theory is based on the works of Brandt [14], Mandel [63], McCormick [64] and
others.

Basic definitions and results

While in the presentation of geometric multigrid methods we denoted the matrices by
L, the right hand sides by f and the solutions by u as they are connected to partial
differential equations, we will now use A, b and x, respectively, again to underline, that
the presented theory is not only applicable to problems resulting from the discretization of
partial differential equations, but rather applicable to classes of problems, where only the
algebraic properties of the associated system matrices are of interest. We are interested
in the solution of the system

Ax = b,

A ∈ Cn×n hermitian and positive definite and x,b ∈ Cn using a multigrid method. For
that purpose we assume that a sequence of systems of equations

Akxk = bk,

59

3 Multigrid Methods

with the corresponding sequences of dimensions {nk}kmax
k=1 , nk ∈ N, system matri-

ces {Ak}kmax
k=1 , Ak ∈ Cnk×nk , hermitian and positive definite, right hand side vectors

{bk}kmax
k=1 ,bk ∈ Cnk and solution vectors {xk}kmax

k=1 ,xk ∈ Cnk exists, where

Akmax = A, xkmax = x, bkmax = b.

Furthermore we assume the existence of prolongation operators

Pk ∈ Cnk×nk−1 , k = 1, . . . , kmax

and restriction operators

Rk ∈ Cnk−1×nk , k = 1, . . . , kmax.

Besides these transfer operators we let φkS be a linear iterative method with iteration
matrix MS that is used as a smoother. In analogy to Definition 3.13 we define the coarse
grid correction.

Definition 3.20 Let Ak ∈ Cnk×nk , Ak−1 ∈ Cnk−1×nk−1 be two system matrices, let Pk ∈
Cnk×nk−1 be the prolongation operator from level k − 1 to level k and let Rk ∈ Cnk−1×nk

be the restriction operator from level k to level k − 1. Then the coarse grid correction is
defined as

φ
(k)
CGC(xk,bk) = xk + PkA

−1
k−1Rk(bk −Akxk).

The iteration matrix Tk is given by

Tk = I − PkA−1
k−1RkAk. (3.11)

In the same fashion we define the twogrid method and the multigrid method on the basis
of Definition 3.14 and 3.17, respectively, depending on the definition of the coarse grid
correction just given.

Definition 3.21 Let φ(k)
S be a linear iterative method that is used as a smoother and let

ν1, ν2 ∈ N be the number of presmoothing respectively postsmoothing iterations. Assume
that φ(k)

CGC is the coarse grid correction. Then the twogrid cycle with ν1 presmoothing
iterations and ν2 postsmoothing iterations is given by

φ
(k)
TGM(xk,bk) = (φ(k)

S)ν2(φ(k)
CGC((φ(k)

S)ν1(xk,bk),bk),bk).

Definition 3.22 Let φ(k)
S be an iterative method used as a smoother. Let ν1, ν2 ∈ N be

the number of pre- and postsmoothing iterations and let γ ∈ N be the number of multigrid
cycles used to solve the defect equation

Akek = rk.

Then the multigrid cycle is defined as

φ
(0)
MGM(x0,b0) = A−1

0 b0

for k = 0 and

φ
(k)
MGM(xk,bk) = (φ(k)

S)ν2((φ(k)
S)ν1(xk,bk) + Pk((φ

(k−1)
MGM)γ(0, Rk(bk −Akxk))),bk)

for k = 1, . . . , kmax.

60

3.3 Algebraic Multigrid Theory for Structured Matrices

0
0.5

1

0

0.5

1

!0.05

0

0.05

Figure 3.3: Algebraically smooth error of a mixture of a differential equation in x-direction
and an integral equation in y-direction after application of 10 iteration of the
JOR method with ω = 4/5.

In analogy to the Definition 3.15 and 3.16, we define the smoothing property and the
approximation property. For that purpose we need an arbitrary norm that has to be the
same in both definitions. That norm will be denoted by ‖ · ‖∗. In the classical work of
Ruge and Stüben the energy norm with respect to Ak diag(Ak)−1Ak is used. Aricò and
Donatelli noted in [2] that this choice is not necessary, as long as the same norm is used
in both properties.

Definition 3.23 An iterative method φ(k)
S with iteration matrix Sk fulfills the smoothing

property if there exists an α > 0 such that for all ek ∈ Cnk it holds

‖Skek‖2Ak ≤ ‖ek‖
2
Ak
− α‖ek‖2∗. (3.12)

We like to note that this definition of smoothness does not necessarily mean that an error
is geometrically smooth. As an example consider a problem similar to the model problem
that is discretized on the unit square and described by the stencil 1

−1 4 −1
1

 .
A plot of the error of the JOR-method after a couple of iterations can be be found in Figure
3.3. Although the error is smooth regarding the previous definition, it is geometrically
highly oscillatory, so we prefer to call the error algebraically smooth. An error that is
algebraically smooth fulfills the property that the ∗-norm of the error is small compared
to the Ak-norm. We now continue with the definition of the approximation property.

Definition 3.24 Let Tk be the iteration matrix of the coarse grid correction φ
(k)
CGC. If

there exists a β for all ek ∈ Cnk such that

‖Tkek‖2Ak ≤ β‖ek‖
2
∗, (3.13)

then φ
(k)
CGC fulfills the approximation property.

61

3 Multigrid Methods

Combining the smoothing and the approximation property yields the convergence of the
twogrid method using postsmoothing, only, as stated by the following lemma.

Lemma 3.3 Let φ(k)
S be an iterative method with iteration matrix Sk fulfilling the smooth-

ing property with some norm ‖ · ‖∗ and let φ(k)
CGC be the coarse grid correction fulfilling

the approximation property using the same norm, denoting its iteration matrix by Tk and
let Tk ≤Ak I hold. Then we have

β ≥ α

and

‖SkTk‖2Ak ≤
√

1− α/β‖Tk‖2Ak .

Proof.

‖SkTkek‖2Ak ≤ ‖Tkek‖
2
Ak
− α‖Tkek‖2∗

≤ ‖Tkek‖2Ak − α/β‖T
2
k ek‖2Ak

≤ (1− α/β)‖ek‖2Ak
This proves β ≥ α. �

So for
√

1− α/β < 1 we have a convergent twogrid method.

Variational property of the coarse grid correction using the Galerkin operator on the
coarser level

For the theoretical considerations we first consider the Galerkin operator as the operator
on the coarse grid, only. It is given by the following definition.

Definition 3.25 Let Ak ∈ Cnk×nk be the system matrix of level k, Pk the related pro-
jection operator and Rk the related restriction operator. Then we define the Galerkin
operator as

Ak−1 = RkAkPk.

In the following we are only treating hermitian matrices and we define the projection to
be the adjoint of the restriction, i.e.

Pk = RHk .

Methods using the Galerkin operator on the coarser level have some nice properties,
since due to the use of the Galerkin operator the iteration matrix Tk of the coarse grid
correction is an Ak-orthogonal projector.

Definition 3.26 Let A ∈ Cn×n be a hermitian positive definite matrix. Then a matrix
Q ∈ Cn×n is called A-orthogonal projector, if Q is symmetric with respect to the scalar
product induced by A, i.e. for all x,y ∈ Cn we have

〈Qx,y〉A = xHQHAy = xAQy = 〈x, Qy〉A,

and if Q2 = Q.

62

3.3 Algebraic Multigrid Theory for Structured Matrices

Tk with the Galerkin operator on the coarse level and the adjoint of the restriction
operator as prolongation operator is an Ak-orthogonal projector.

Lemma 3.4 Let Ak ∈ Cnk×nk be an hermitian positive definite matrix. Then Tk as given
by (3.11) with the Galerkin operator on the coarse level and the adjoint of the restriction
operator as prolongation operator is an Ak-orthogonal projector. Further we have

ran(I − Tk) = ran(Pk). (3.14)

Proof. Equation (3.14) is obvious for a projection having full rank. Regarding the first
part we have

T 2
k = (I − PkA−1

k−1RkAk)
2

= I − PkA−1
k−1RkAk − PkA

−1
k−1RkAk

+ PkA
−1
k−1RkAkPkA

−1
k−1RkAk

= I − PkA−1
k−1RkAk − PkA

−1
k−1RkAk

+ PkA
−1
k−1RkAkPk(RkAkPk)

−1RkAk

= I − PkA−1
k−1RkAk − PkA

−1
k−1RkAk + PkA

−1
k−1RkAk

= I − PkA−1
k−1RkAk

= Tk.

Now for all x,y ∈ Cnk

xHTHk Aky = xH(I −AkPkA−1
k−1Rk)Aky

= xHAk(I − PkA−1
k−1RkAk)y

= xHAkTky,

which completes the proof. �

We like to recall some properties of orthogonal projectors:

Lemma 3.5 Let A ∈ Cn×n be a hermitian positive definite matrix and let Q ∈ Cn×n be
an A-orthogonal projector. Then the following holds true:

1. ran(Q)⊥A ran(I −Q).

2. For all u ∈ ran(Q) and for all u ∈ ran(I −Q) it holds ‖u + v‖2A = ‖u‖2A + ‖v‖2A.

3. ‖Q‖A = 1.

4. For all u ∈ Cn we have ‖Qu‖2A = min
v∈ran(I−Q)

‖u− v‖2A.

Proof. The first statement holds, as for all u,v ∈ C we have

〈Qu, (I −Q)v〉A = 〈u, Q(I −Q)v〉A = 〈u,0〉A = 0,

63

3 Multigrid Methods

the second statement is an immediate consequence of this observation. For the third
statement we have

‖Q‖2A = sup
u6=0

‖Qu‖2A
‖u‖2A

= sup
u6=0

‖Qu‖2A
‖Qu‖2A + ‖(I −Q)u‖2A

≤ 1.

Choosing u ∈ ran(Q) yields ‖Q‖A = 1. For the last statement the following holds true:

min
v∈ran(I−Q)

‖u− v‖2A = min
v∈ran(I−Q)

‖Qu + (I −Q)u− v‖2A

= min
v∈ran(I−Q)

‖Qu− v‖2A

= min
v∈ran(I−Q)

(‖Qu‖2A + ‖v‖2A)

= ‖Qu‖2A.

�

A consequence of these basic properties of the coarse grid correction is that it fulfills
a variational property regarding ran(Pk), i.e. minimizes the A-norm of the error with
respect to all variations in ran(Pk), as due to the last statement of the previous lemma
we have for all ek ∈ Cnk

‖Tkek‖2Ak = min
ek−1∈ran(Pk)

‖ek − ek−1‖2Ak .

For methods involving the Galerkin operator on the coarse grid the Lemma 3.3 holds as
‖Tk‖Ak = 1, so the two-grid method converges. We now carry over the convergence result
to the multigrid case.

Theorem 3.8 Let Tk be the coarse grid correction with iteration matrix Tk, using the
Galerkin operator Ak−1 = RkAkPk on the coarser level and the adjoint of the restriction
as prolongation, i.e. Pk = RHk . Now we assume a coarse grid correction φ̄

(k)
CGC where we

solve the defect equation not directly, but rather with a linear iterative method

φ̄(k−1)(xk−1,bk−1) = M̄k−1xk−1 + N̄k−1xk−1,

using zero as start approximation and assume furthermore that

η̄ := ‖I − N̄k−1Ak−1‖Ak−1
< 1, (3.15)

that φ(k)
S fulfills the smoothing property (3.12) and that φ(k)

CGC fulfills the approximation
property (3.13). Then the (post-smoothing) two grid method using the modified coarse
grid correction T̄k using the zero initial approximation, i.e.

T̄k = I − PkN̄k−1RkAk,

converges with convergence factor of at most max{η̄,
√

1− δ}, i.e.

‖Sν2k T̄kek‖Ak ≤ max{η̄,
√

1− δ}‖ek‖Ak ,

where δ = α/β with α and β from the smoothing and approximation property.

64

3.3 Algebraic Multigrid Theory for Structured Matrices

Proof. Given a fine level error ek we define the coarse level defects as

Ak−1dk−1 = RkAkek
respectively d̄k−1 = N̄k−1RkAkek.

Thus with (3.15) for the error of the approximate defect we can write

‖dk−1 − d̄k−1‖Ak−1
= ‖A−1

k−1RkAkek − N̄k−1RkAkek‖Ak−1

= ‖A−1
k−1RkAkek − N̄k−1Ak−1A

−1
k−1RkAkek‖Ak−1

= ‖(I − N̄k−1Ak−1)A−1
k−1RkAkek‖Ak−1

≤ ‖I − N̄k−1Ak−1‖Ak−1
‖A−1

k−1RkAkek‖Ak−1

= η̄‖dk−1‖Ak−1

Now we may write for the error after a modified coarse grid correction step:

T̄kek = ek − Pkd̄k−1

= ek − Pkdk−1 + Pk(dk−1 − d̄k−1)
= Tkek + Pk(dk−1 − d̄k−1).

As ‖Pk · ‖Ak = ‖ · ‖Ak−1
we can estimate ‖Pk(dk−1 − d̄k−1)‖Ak ≤ η̄‖Pkdk−1‖Ak . Using

the Ak-orthogonality of ran(Tk) and ran(Pk) we thus get:

‖T̄kek‖2Ak = ‖Tkek‖2Ak + ‖Pk(dk−1 − d̄k−1)‖2Ak
≤ ‖Tkek‖2Ak + η̄2‖Pkdk−1‖2Ak .

So using Pkdk−1 = (I − Tk)ek together with the Ak-orthogonality leads to

‖T̄kek‖2Ak ≤ ‖Tkek‖
2
Ak

+ η̄2(‖ek‖2Ak − ‖Tkek‖
2
Ak).

Now we observe that

TkT̄k = (I − PkA−1
k−1RkAk)(I − PkN̄k−1RkAk)

= I − PkNk−1RkAk − PkA−1
k−1RkAk

+ PkA
−1
k−1RkAkPkNk−1RkAk

= I − PkA−1
k−1RkAk

= Tk

and that ‖Tk‖Ak = 1. Similar to the proof of Lemma 3.3 we now write

‖SkT̄kek‖2Ak ≤ ‖T̄kek‖
2
Ak
− α‖T̄kek‖2∗

≤ ‖T̄kek‖2Ak − α/β‖TkT̄kek‖
2
Ak

≤ ‖Tkek‖2Ak + η̄2(‖ek‖2Ak − ‖Tkek‖
2
Ak)− α/β‖Tkek‖2Ak

= (1− η̄2 − α/β)‖Tkek‖2Ak + η̄2‖ek‖2Ak
≤ max{(1− α/β), η̄2}‖ek‖2Ak

65

3 Multigrid Methods

�

Recursive application of this theorem yields convergence of multigrid methods using the
Galerkin operator on the coarser levels. In that case η is the convergence rate of the
method on the coarse level, thus the overall convergence rate is bounded by

√
1− δ, as

on the coarsest level the convergence rate is 0.

3.3.2 Replacement of the Galerkin operator

Besides its nice properties, the Galerkin operator has one main downside. As it is es-
sentially formed by prolongating the residual to the fine level, applying the fine level
operator there and restricting the result back to the coarse level, its application can be
very expensive per unknown. As an example consider the following: Assume that the
model problem is discretized using the 5-point discretization from (2.15), yielding the
stencil (2.16), i.e.

1
h2

 1
1 −4 1

1

 .
Now we construct a twogrid method utilizing the full-weighting operator given in Def-
inition 3.10 for restriction and using the bilinear interpolation from Definition 3.12 as
prolongation. Instead of rediscretizing the problem using the new grid spacing 2h, we
now use the Galerkin operator, yielding the following stencil representation on the coarse
level

1
h2


1
16

1
8

1
16

1
8 −3

4
1
8

1
16

1
8

1
16

 .
So the Galerkin operator on the coarse level has nine entries, compared to five entries
on the fine level or using a coarse rediscretization. Numerical experiments show that the
convergence of the method using the Galerkin operator is sightly better than the use of
the rediscretization, but not enough to justify the additional cost. We like to emphasize
that this example is a best case scenario, as the drawback of the Galerkin operator will be
even more pronounced in higher dimensions or for stencils involving more neighbors than
only the next ones. For unstructured grids the problem can get even worse, as after a
few levels we might end up with an operator that is not sparse anymore. For our purpose
we are interested in reducing the computational time for structured matrices, only. For
that purpose in the following we will present sufficient conditions for replacements of the
Galerkin operator on the coarse grid, presumably resembling the sparsity pattern of the
original matrix and the describing stencils, respectively.

We can subsume that we are interested in not using the Galerkin operator Ak−1 =
RkAkR

H
k on the coarse level but rather an approximation Âk−1. The convergence of the

two grid method stated by the following lemma is an immediate consequence of Theorem
3.8 above.

Lemma 3.6 Let Ak, Rk and Tk be defined as in Theorem 3.8 fulfilling the smoothing
property and the approximation property, cf. Definition 3.23 and Definition 3.24, and let

66

3.3 Algebraic Multigrid Theory for Structured Matrices

T̂ be defined as T̄ in Theorem 3.8 with N̂k−1 = Â−1
k−1. Assume that

η := ‖I − Â−1
k−1Ak−1‖Ak−1

< 1.

Then the (post-smoothing) two grid method using the approximation Âk−1 of the Galerkin
operator converges with a convergence bounded from above by max{η,

√
1− δ}.

As a consequence, in order to optimize the twogrid method we have to minimize

η = ‖I − Â−1
k−1Ak−1‖Ak−1

= ‖A
1
2
k−1(I − Â−1

k−1Ak−1)‖2.

under appropriate restriction given, for example, by a sparsity pattern imposed on Âk−1.
For application of the method we are interested in multigrid convergence rather than in
twogrid convergence. Thus we need to analyze the convergence if the altered system is
not solved directly but rather by a multigrid method itself, i.e we solve

Âk−1dk−1 = RkA+ kek (3.16)

using the multigrid method, which is the iterative method φ̃ given by

φ̃k−1(xk−1,bk−1) = M̃k−1xk−1 + Ñk−1bk−1

with initial zero approximation, i.e. we use Ñk−1 as an approximate inverse of Âk−1,
which itself is an approximation of A−1

k−1. Assume that

η̂ := ‖I − Â−1
k−1Ak−1‖Ak−1

< 1

and that the iterative method φ̃k−1 used to solve the modified defect equation converges
with a convergence rate of at most η̃ in the Âk−1-norm. More precisely, assume that

η̃ := µ‖I − Ñk−1Âk−1‖Âk−1
< 1,

where µ > 0 is the constant of the upper bound of the Ak−1-norm in terms of the Âk−1-
norm, i.e.

‖B‖Ak−1
≤ µ‖B‖Âk−1

,

which exists due to the equivalence of norms. Since we want to apply Theorem 3.8 we
only analyze ‖I − Ñk−1Ak−1‖Ak−1

. We have

‖I − Ñk−1Ak−1‖Ak−1
= ‖I − Ñk−1Âk−1Â

−1
k−1Ak−1‖Ak−1

= ‖(I − Ñk−1Âk−1)Â−1
k−1Ak−1 + (I − Â−1

k−1Ak−1)‖Ak−1

≤ ‖I − Ñk−1Âk−1‖Ak−1
‖Â−1

k−1Ak−1‖Ak−1
+ ‖I − Â−1

k−1Ak−1)‖Ak−1

≤ µ‖I − Ñk−1Âk−1‖Âk−1
‖Â−1

k−1Ak−1‖Ak−1
+ ‖I − Â−1

k−1Ak−1)‖Ak−1

≤ η̃‖Â−1
k−1Ak−1‖Ak−1

+ η̂

67

3 Multigrid Methods

This is smaller than 1 if
‖Â−1

k−1Ak−1‖Ak−1
≤ 1− η̂

η̃
,

which can always be fulfilled if Âk−1 is sufficiently close to Ak−1, because then η̂ → 0 as
‖Â−1

k−1Ak−1‖Ak−1
→ 1. For uniform multigrid convergence we need more, namely

‖I − Ñk−1Ak−1‖Ak−1
≤ max{η̃,

√
1− δ}. (3.17)

So we would have to impose

η̃‖Â−1
k−1Ak−1‖Ak−1

+ η̂ ≤ η̃

⇔ η̂ ≤ (1− ‖Â−1
k−1Ak−1‖Ak−1

)η̃.

Now two cases are possible.

1. ‖Â−1
k−1Ak−1‖Ak−1

< 1. That implies that 1 − ‖Â−1
k−1Ak−1‖Ak−1

= η̂, thus we would
require η̂ ≤ η̂η̃, which is true only for η̃ ≥ 1. So we would have no convergence.

2. ‖Â−1
k−1Ak−1‖Ak−1

> 1. This implies 0 < η̂ ≤ αη̃, where α = 1− ‖Â−1
k−1Ak−1‖Ak−1

<
0, so η̃ < 0 as well, which is not admissible.

So we conclude that this approach is not feasible to show the desired result: Rewriting
the modified method in a way that allows us to split it into one part describing the
approximation of the Galerkin operator and another part describing the approximate
solution of the modified coarse grid correction using the triangle inequality prohibits to
prove uniform convergence. So we have to alter Ruge’s and Stüben’s theorem in order to
allow us to prove uniform convergence in the case that an alternative coarse grid operator
is used and the defect equation is solved approximately, only.

For that purpose we show two auxiliary results that will allow us to formulate a con-
vergence theorem that is closely related to Ruge’s and Stüben’s Theorem 3.1 in [69].

Lemma 3.7 Let T̂k = I − PkÂ
−1
k−1RkAk, with Âk−1 ∈ Cnk−1×nk−1 and Ak ∈ Cnk×nk

symmetric and positive definite, Pk = RHk ∈ Cnk×nk−1 being a full rank prolongation and
Rk ∈ Cnk−1×nk a full rank restriction. Assume that

0 ≤Ak T̂k ≤Ak I

Then for all e ∈ Cnk we have

‖Pkd̂k−1‖2Ak ≤ ‖ek‖
2
Ak
− ‖T̂kek‖2Ak ,

where d̂k−1 is the solution of the linear system Â−1
k−1d̂k−1 = RkAkek.

Proof. As T̂k ≤Ak I and as

AkT̂k = Ak(I −RHk A−1
k−1RkAk) = (I −AkRHk A−1

k−1Rk)Ak = T̂Hk Ak,

we have
T̂ 2
k − T̂k ≤ 0⇔ AkT̂

2
k −AkT̂k ≤ 0⇔ T̂Hk AkT̂k −AkT̂k ≤ 0.

68

3.3 Algebraic Multigrid Theory for Structured Matrices

Now we can write

‖RHk d̂k−1‖2Ak = ‖ek − T̂kek‖2Ak
= 〈Ak(ek − T̂kek), (ek − T̂kek)〉
= 〈Akek, ek〉 − 〈Akek, T̂kek〉 − 〈AkT̂kek, ek〉+ 〈AkT̂kek, T̂kek〉
= 〈Akek, ek〉 − 〈AkT̂kek, T̂ke〉+ 2〈AkT̂kek, T̂kek〉
− 〈Akek, T̂ek〉 − 〈AkT̂kek, ek〉

= 〈Akek, ek〉 − 〈AkT̂ke, T̂kek〉+ 2〈AT̂kek, T̂kek〉
− 〈T̂Hk Akek, ek〉 − 〈AkT̂kek, ek〉

= ‖ek‖2Ak − ‖T̂kek‖
2
Ak

+ 2(〈T̂Hk AkT̂kek, ek〉 − 〈AkT̂kek, ek〉)
= ‖ek‖2Ak − ‖T̂kek‖

2
Ak

+ 2〈(T̂Hk AkT̂k −AT̂k)︸ ︷︷ ︸
≤0

ek, ek〉

≤ ‖ek‖2Ak − ‖T̂kek‖
2
Ak
.

�

As before, we assume that we do not solve the coarse grid equation

Âk−1dk−1 = RkAkek

directly but by an iterative method with iteration matrix I−Ñk−1Âk−1, yielding another
approximate coarse grid correction T̃k given by

T̃k = I −RHk Ñk−1RkAk.

We assume that the iterative method converges with a convergence rate of at most η̃ < 1
measured in the Âk−1-norm, i.e. ‖Ik−1 − Ñk−1Âk−1‖Âk−1

≤ η̃. We define

d̃k = Ñk−1RkAkek.

The second auxiliary result seems to be a little bit unhandy. We need a feature of
the kernels of matrix products in order to show that we can estimate the square of the
norm of the modified coarse grid correction times some error plus the prolongation of the
difference of the defects using the modified defect equation and its approximation by the
sum of the norm of both plus a bit more of the coarse grid correction times the error.
Nevertheless we will see later on, that we are able to fulfill this prerequisite at least in
the case of circulant matrices.

Lemma 3.8 Let T̂k = I − PkÂ−1
k−1RkAk, T̃k = I − PkÑkRkAk with Â−1

k−1 ∈ Cnk−1×nk−1,
Ñk−1 ∈ Cnk−1×nk−1 and Ank×nkk symmetric and positive definite, Pk ∈ Cnk−1×nk being a
full rank prolongation and Rk ∈ Cnk×nk−1 a full rank restriction. Assume that

ker(T̂Hk AkT̂k) ⊂ ker((T̃k − T̂k)HAkT̂k + T̂Hk Ak(T̃k − T̂k)).

69

3 Multigrid Methods

Then

λk := min
ek∈Cnk

〈((T̃k − T̂k)HAkT̂k + T̂Hk Ak(T̃k − T̂k))ek, ek〉
〈T̂Hk AkT̂kek, ek〉

exists, and for all ek ∈ Cnk the following holds true:

‖T̂kek + Pk(d̂k−1 − d̃k−1)‖2Ak ≤ (1 + λk)‖T̂kek‖2Ak + ‖Pk(d̂k−1 − d̃k−1)‖2Ak .

Proof. Under the lemma’s assumption both (T̃k−T̂k)HAkT̂k+T̂Hk Ak(T̃k−T̂) and T̂Hk AkT̂k
are symmetric and positive definite linear mappings on the quotient space Cnk\ ker((T̃k−
T̂k)HAkT̂k + T̂Hk Ak(T̃k − T̂k)), so they induce norms on that space that are given by

‖ · ‖(T̃k−T̂k)HAkT̂k+T̂Hk Ak(T̃k−T̂k) = 〈((T̃k − T̂k)HAkT̂k + T̂Hk Ak(T̃k − T̂k))·, ·〉
1
2 ,

‖ · ‖T̂Hk Ak = 〈T̂Hk Ak·, ·〉
1
2 .

Due to the equivalence of norms we can estimate

〈((T̃k − T̂k)HAkT̂k + T̂Hk Ak(T̃k − T̂k))·, ·〉 ≤ λk〈T̂Hk Ak·, ·〉,

where we chose λk to be the minimum λk which fulfills this estimate. Now we have:

Pk(d̂k−1 − d̃k−1) = (PkÂ−1
k−1RkAk − PkÑk−1RkAk)ek = (T̃k − T̂k)ek.

So we can write:

‖T̂kek + Pk(d̂k−1 − d̃k−1)‖2Ak
= ‖(T̂k + (T̃k − T̂k))ek‖2Ak
= 〈Ak(T̂k + (T̃k − T̂k))ek, (T̂k + (T̃k − T̂k))ek〉
= 〈AkT̂kek, T̂kek〉+ 〈Ak(T̃k − T̂k)ek, (T̃k − T̂k)ek〉+
〈AkT̂ke, (T̃k − T̂k)ek〉+ 〈Ak(T̃k − T̂k)ek, T̂kek〉

= ‖T̂kek‖2Ak + ‖(T̃k − T̂k)ek‖2Ak+

〈(T̃k − T̂k)HAkT̂kek, ek〉+ 〈T̂Hk Ak(T̃k − T̂k)ek, ek〉
= ‖T̂kek‖2Ak + ‖Pk(d̂k−1 − d̃k−1)‖2Ak+

〈((T̃k − T̂k)HAkT̂k + T̂Hk Ak(T̃k − T̂k))ek, ek〉
≤ ‖T̂kek‖2Ak + ‖Pk(d̂k−1 − d̃k−1)‖2Ak + λk〈T̂Hk AkT̂kek, ek〉
= ‖T̂kek‖2Ak + ‖Pk(d̂k−1 − d̃k−1)‖2Ak + λk‖T̂kek‖2Ak
= (1 + λk)‖T̂kek‖2Ak + ‖Pk(d̂k−1 − d̃k−1)‖2Ak .

�

Now we can show the convergence of the modified multigrid method not using a Galerkin
coarse grid operator but rather an approximation to it and solving the coarse grid defect
equation using that approximation with the help of an iterative method.

70

3.3 Algebraic Multigrid Theory for Structured Matrices

Theorem 3.9 Let T̂k = I − PkÂ−1
k−1RkAk, T̃k = I − PkÑkRkAk, with Ak ∈ Cnk×nk and

Âk−1 ∈ Cnk−1×nk−1 both symmetric and positive definite, Pk = RHk ∈ Cnk×nk−1 being a
full rank prolongation and Rk ∈ Cnk−1×nk a full rank restriction. Let Ñk−1 ∈ Cnk−1×nk−1

be a symmetric and positive definite matrix defined by a linear iterative method given by

φ̃k−1(xk−1,bk−1) = M̃k−1xk−1 + Ñk−1bk−1

converging with a convergence rate of at most η̃k−1 given by

η̃k−1 := ‖I − Ñk−1Âk−1‖Âk−1
< 1.

Further let the linear iterative method φ
(k)
S with iteration matrix Sk used as smoother

fulfill the smoothing property (3.12) and let T̂k fulfill the approximation property (3.13),
i.e.

‖T̂kek‖2Ak ≤ β̂k‖ek‖
2
∗

Let

0 ≤Ak T̂k ≤Ak I,
Âk−1 ≥ RkAkPk,

ker(T̂Hk AkT̂k) ⊂ ker((T̃k − T̂k)HAkT̂k + T̂Hk Ak(T̃k − T̂k))

and choose λk such that

λk := min
ek∈Cnk

〈((T̃k − T̂k)HAkT̂k + T̂Hk Ak(T̃k − T̂k))ek, ek〉
〈T̂Hk AkT̂kek, ek〉

and µk such that

µk = min
ek∈Cnk

‖T̃kek‖2∗
‖T̂kek‖2∗

Under the assumptions that √
(1 + λk)− α̂k/β̂k < 1,

where α̂k := µkαk, the (post-smoothing) two grid method using the modified coarse grid
correction and solving the coarse grid defect correction using the iterative method con-
verges with convergence factor of at most

max
{
η̃k−1,

√
(1 + λk)− αk/β̂k

}
,

i.e.

‖Sν2 T̃kek‖Ak ≤ max
{
η̃k−1,

√
(1 + λk)− αk/β̂k

}
‖ek‖Ak for all ek ∈ Cnk .

71

3 Multigrid Methods

Proof. Combining the smoothing property (3.12) with (3.13) yields

‖Sν2k ek‖2Ak ≤ ‖ek‖
2
Ak
− αk

β̂k
‖T̂kek‖2A (3.18)

for all ek ∈ Cnk . For the error of the approximate defect we can write

‖d̂k−1 − d̃k−1‖Ak−1
= ‖Â−1

k−1RkAkek − Ñk−1RkAkek‖Ak−1

= ‖Â−1
k−1RkAkek − Ñk−1Âk−1Â

−1
k−1RkAkek‖Ak−1

= ‖(I − Ñk−1Âk−1)Â−1
k−1RkAkek‖Ak−1

≤ ‖I − Ñk−1Âk−1‖Ak−1
‖Â−1

k−1RkAkek‖Ak−1

≤ ‖I − Ñk−1Âk−1‖Âk−1
‖Â−1

k−1RkAkek‖Ak−1

≤ η̃k−1‖d̂k−1‖Ak−1
.

Now we may write for the error after an approximate modified coarse grid correction step:

T̃kek = ek −RHk d̃k−1

= ek −RHk d̂k−1 +RHk (d̂k−1 − d̃k−1)

= T̂kek +RHk (d̂k−1 − d̃k−1).

As ‖RHk · ‖Ak = ‖ · ‖Ak−1
we can estimate ‖RHk (d̂k−1− d̃k−1)‖Ak ≤ η̃k−1‖RHk d̂k−1‖Ak and

combined with Lemma 3.8 we get

‖T̃kek‖2Ak = ‖T̂kek +RHk (d̂k−1 − d̃k−1)‖2Ak
≤ (1 + λk)‖T̂kek‖2Ak + ‖RHk (d̂k−1 − d̃k−1)‖2Ak
≤ (1 + λk)‖T̂kek‖2Ak + η̃2

k−1‖RHk d̂k−1‖2Ak .

So with Lemma 3.7 we have

‖T̃kek‖2Ak ≤ (1 + λk)‖T̂kek‖2Ak + η̃2
k−1(‖ek‖2Ak − ‖T̂kek‖

2
Ak

).

Overall, with (3.18) we get:

‖Sν2k T̃kek‖
2
Ak
≤ ‖T̃kek‖2Ak − αk‖T̃kek‖

2
∗

≤ ‖T̃kek‖2Ak − αkµk‖T̂kek‖
2
∗

≤ ‖T̃kek‖2Ak − α̂k‖T̂kek‖
2
∗

≤ ‖T̃kek‖2Ak − α̂k/β̂k‖T̂kek‖
2
Ak

≤ ((1 + λk)− α̂k/β̂k − η̃2
k−1)‖T̂kek‖2Ak + η̃2

k−1‖ek‖2Ak
≤ max{((1 + λk)− α̂k/β̂k), η̃2

k−1}‖ek‖2A.

�

We like to emphasize, that both, λk and µk depend on T̃k and can be very large and
small, respectively. So for a detailed analysis of a multigrid method both require further
investigation.

By recursive application we immediately obtain the following result.

72

3.3 Algebraic Multigrid Theory for Structured Matrices

Theorem 3.10 Let φ(kmax)
MGM be a multigrid method where Tk and Ak−1, k = 1, . . . , kmax

fulfill the requirements of Theorem 3.9. Then the convergence rate of φ(kmax)
MGM is bounded

from above by

max
k=1,...,kmax

{
max

{
η̃,

√
(1 + λk)− α̂k/β̂k

}}
< 1.

It remains to note that the degradation of the performance of the multigrid method using
a replacement of the Galerkin operator depends on how much worse the approximation
property (3.13) is fulfilled by T̂k compared to Tk and on the size of λk, which should be
very small and almost negligible.

We will close this section with a lemma providing an alternative requirement implying
0 ≤Ak T̂k ≤Ak I.

Lemma 3.9 Let T̂k = I − PkÂ
−1
k−1RkAk, Ak ∈ Cnk×nk and Âk−1 ∈ Cnk−1×nk−1 both

symmetric and positive definite, Pk = RHk ∈ Cnk×nk−1 being a full rank prolongation and
Rk ∈ Cnk−1×nk a full rank restriction. If

Âk−1 ≥ Ak−1,

then we also have
0 ≤Ak T̂k ≤Ak I.

Proof. Let Tk,2 = I −A
1
2
kR

H
k A
−1
k−1RkA

1
2
k and T̂k,2 = I −A

1
2
kR

H
k Â
−1
k−1RkA

1
2
k . Then we have

0 ≤Ak T̂k ≤Ak I

⇔ 0 ≤ I −A
1
2
kR

H
k Â
−1
k−1RkA

1
2
k ≤ I

⇔ 0 ≤ T̂k,2 ≤ I.

Now we can write

T̂k,2 = T̂k,2Tk,2 + T̂k,2(I − Tk,2)

= Tk,2 + T̂k,2(I − Tk,2)

= Tk,2 + (I −A
1
2
kR

H
k Â
−1
k−1RkA

1
2
k)(A

1
2
kR

H
k A
−1
k−1RkA

1
2
k)

= Tk,2 + (A
1
2
kR

H
k A
−1
k−1RkA

1
2
k −A

1
2
kR

H
k Â
−1
k−1RkAkR

H
k A
−1
k−1Rk)

= Tk,2 +A
1
2
kR

H
k (A−1

k−1 − Â
−1
k−1)RkA

1
2
k .

As Tk,2 is the orthogonal projector onto the complement of A
1
2
kR

H
k and as the range of

A
1
2
kR

H
k (A−1

k−1 − Â
−1
k−1)RkA

1
2
k is a subset of the range of A

1
2
kR

H
k we obtain that all vectors

belonging to the orthogonal complement of A
1
2
kR

H
k are mapped to itself, so we only have

to show that
0 ≤ A

1
2
kR

H
k (A−1

k−1 − Â
−1
k−1)RkA

1
2
k ≤ I. (3.19)

73

3 Multigrid Methods

From Âk−1 ≥ Ak−1 we immediately obtain the first part of the inequality. Furthermore

we obtain that A
1
2
kR

H
k (A−1

k−1 − Â
−1
k−1)RkA

1
2
k is positive definite and that

A
1
2
kR

H
k (A−1

k−1 − Â
−1
k−1)RkA

1
2
k ≤ A

1
2
kR

H
k A
−1
k−1RkA

1
2
k .

Choosing an arbitrary x ∈ ran (A
1
2
kR

H
k) there exists a y such that x = A

1
2
kR

H
k y and we

get

A
1
2
kR

H
k A
−1
k−1RkA

1
2
k x = A

1
2
kR

H
k A
−1
k−1RkA

1
2
kA

1
2
kR

H
k y = A

1
2
kR

H
k y = x,

yielding the second part of inequality 3.19. �

3.3.3 Application to circulant matrices

In the following we will discuss multigrid methods for circulant matrices. As circulant
matrices form a matrix algebra, they are relatively easy to analyze. Nevertheless they
are an important class of matrices, as they occur in various problems, i.e. when solving
discretized partial differential equations with constant coefficients or integral equations
on the torus. Further on they are prototypes for the analysis of Toeplitz matrices, as
the spectrum of both is asymptotically equal and they serve well for the analysis of non-
constant coefficient problems, as well. A review covering both circulant and Toeplitz
matrices has been written by Gray [44].

The development of multigrid methods for circulant matrices is based on the theory for
Toeplitz matrices. The idea is to apply the algebraic multigrid theory that was presented
before to Toeplitz or circulant matrices and to construct prolongation and restriction
such that the resulting matrices on the coarser levels still belong to the same class of
matrices. This methodology goes back at least to Fiorentino and Serra who published
first results for banded symmetric Toeplitz matrices which arise in the discretization of
partial differential equation in [32] and in [34] and extended their theory to the indefinite
case in [33]. They provided the basis of the theory to be presented later on, namely the
choice of the restriction and prolongation operator and the application of the algebraic
multigrid theory to structured problems we presented in the previous section. These
works were continued by Sun, Chan and Chang in [79]. Chan, Chang and Sun published
results on ill-conditioned Toeplitz systems in [17]. Their theory is similar to the theory
presented in the works of Fiorentino and Serra, but they use a different interpolation
operator. In [80] Sun, Jin and Chang extended the theory to cover ill-conditioned block
Toeplitz systems as well. While the theory for Toeplitz matrices uses τ -matrices as a
theoretical foundation, in [74, 73] Serra Capizzano and Tablino-Possio presented first
results for the application of the theory to circulant matrices. Aricò, Donatelli and Serra-
Capizzano provided a proof of the optimality of the V-cycle in the unilevel case in [3],
further details and applications of these theoretical results and a general overview can be
found in the PhD thesis of Aricò [1] and in the one of Donatelli [22]. In [2] they provided
an extension to the multilevel case.

We now start with a brief introduction of circulant matrices and some of their proper-
ties.

74

3.3 Algebraic Multigrid Theory for Structured Matrices

3.3.4 Circulant matrices

Circulant matrices are a special class of structured matrices, that are given by the fol-
lowing definition.

Definition 3.27 Let f : [−π, π)→ C be a univariate 2π-periodic function and let

(Fn)n−1
j,k=0 with (Fn)j,k =

1√
n
e−2πi jk

n

be the Fourier matrix of dimension n× n. The matrix A ∈ Cn×n given by

A = A(f) = Fn diag
(

(f(2πj/n))n−1
j=0

)
FHn

is called a circulant matrix, the function f is called the generating symbol of C.

Circulant matrices are diagonalized by the orthogonal Fourier matrix, the rows of the
Fourier matrix are the eigenvectors of circulant matrices. Due to the simultaneous di-
agonalizability they form a commutative matrix algebra. The multiplication of vectors
with circulant matrices and the solution of linear systems with circulant coefficient ma-
trix can be carried out in O(n log n) operations using the FFT. The concept of circulant
matrices can also be transferred to multiple levels, i.e. multivariate generating symbols
and Kronecker products of Fourier matrices.

Definition 3.28 Let f : [−π, π)d → C be a d-variate periodic function defined on
[−π, π)d. Let

Fn =
1

√
n1n2 · · ·nd

(
e−ik·w

[n]
j

)
j,k∈In

.

be the d-level Fourier matrix, where the vector w[n] is a sampling of the domain of f , i.e.

w[n]
j =

(
2πj1
n1

, . . . ,
2πjd
nd

)
,

and In = {0, . . . , n1 − 1} × · · · × {0, . . . , nd − 1} is the set of multi-indices. Then

A = A(f) := FnDiag(f(w[n]))FHn

is the d-level circulant matrix with generating symbol f .

All the properties of the unilevel circulant matrix can be transferred to the multilevel
case using tensorial arguments. In the following, we will discuss the unilevel case, only
where the transfer to the multilevel case gets more involved, we will explicitly switch to
that case.

75

3 Multigrid Methods

3.3.5 Multigrid methods for circulant matrices

Although there already exist fast O(n log n) algorithms for circulant matrices, we are
interested in multigrid methods for those matrices, as the multiplication with banded
circulant matrices is even cheaper, namely it can be done with O(n) operations. In
the construction of multigrid methods for circulant matrices the zeros of the generating
symbols play an important role. As the eigenvalues of the circulant matrices are given by
a sampling of the generating symbol, these circulant matrices are at least asymptotically
ill-conditioned and may get singular at some point. A singularity can be handled at least
theoretically, c.f. [86], by a rank one correction, a technique Aricò and Donatelli [2] refer
to as Strang correction.

Definition 3.29 (Strang correction) Let A(f) be a circulant matrix with generating
symbol f ≥ 0 and let f have a single zero at x0 = 2πj0/n, j0 ∈ N. Then the modification
of the system by using

f+(x) =

{
f(x) for x 6= x0

δ for x = x0

,

δ > 0, as generating symbol, resulting in the altered matrix

A(f+) = A(f) + δ(Fn)Hj=j0,k=0,...,n−1(Fn)j=j0,k=0,...,n−1

is called Strang correction.

This modification still solves the original system, at least if the right hand side does
not have components that are collinear to the eigenvector belonging to the originally zero
eigenvalue. It does keep the ill-conditioning of the system, so iterative methods like Jacobi
or Richardson will fail. Like in the geometric case multigrid methods do not share this
downside. The Strang correction approach might be chosen for more than one isolated
zero. For methods dealing with generating symbols with zero curves, we refer to the PhD
thesis of Fischer [35]. For the definition of multigrid methods for circulant matrices we
restrict ourselves to the case n = 2kmax , kmax ∈ N. The extension to other factors than
2 is straightforward. So we define the number of unknowns nk on level k as nk = 2k, in
the multilevel case we do the same for each direction. For the definition of the restriction
operator, we need the cutting matrix Knk , given by

Knk =


1 0

1 0
.

1 0

 ∈ Cnk×
nk
2 ,

the multilevel equivalent is given by Knk = K(nk)1⊗· · ·⊗K(nk)d . The restriction operator
itself is defined as KnkA(pk), where pk is a trigonometric polynomial. Assuming that the
generating symbol fk of Ak has a unique zero x0 the symbol pk is chosen such that the
limit

lim sup
x→x0

∣∣∣∣pk(x+ π)
fk(x)

∣∣∣∣
76

3.3 Algebraic Multigrid Theory for Structured Matrices

exists. Further for the prolongation to have full rank we demand for all x ∈ [−π, π) that
p(x) + p(x + π) > 0. In the multilevel case, i.e. for a unique zero x0, the symbol pj is
chosen that the limit

lim sup
x→x0

∣∣∣∣pj(y)
fj(x)

∣∣∣∣
exists for all points y ∈ {z | zj ∈ {x0j , x0j +π}}\{x0} and such that the sum of the value
of p over all mirror points, i.e. the points y ∈ {z | zj ∈ {x0j , x0j +π}}, is larger than zero.
Now for a zero x0 in accordance to [74] we consider x̂ = x0 + π if x0 < π or x̂ = x0 − π
otherwise, and we set the generating symbol of the restriction to

p(x) = (2− 2 cos(x− x̂))dβ/2e,

with

β ≥ min
{
i
∣∣∣ lim
x→x0

|x− x0|2i

f(x)
<∞

}
.

Using the transpose of the restriction as prolongation these choices assure, that the
Galerkin operator still has only one zero, see [2]. Serra-Capizzano and Tablino-Possio
showed in [74] that using these choices the coarse grid correction operator fulfills the
approximation property. They have also shown that the Richardson iteration fulfills the
smoothing property for the circulant matrices under consideration. In contrast to their
work, which is based on the use of the Ak diag(Ak)−1Ak-norm for both, the approxima-
tion and the smoothing property, like Ruge and Stüben did in their introduction [69], in
[2] Aricò and Donatelli used the A2 norm for the same purpose, which in our opinion
makes the proof a little bit more elegant. Besides this difference, they have also shown
the uniform convergence of the multigrid method by analyzing the series of generating
symbols of the Galerkin operators, something that is missing in the previous works of
Serra and his colleagues. For details of these proofs we refer to their paper [2]. We
will use their approach to show that a modified coarse grid correction still possesses the
approximation property.

3.3.6 Replacement of the Galerkin operator for circulant matrices

We want to replace the Galerkin operator by some operator that is similar to it. For our
purpose we demand from this replacing operator Âk−1 that it is spectrally larger than
the Galerkin operator RkAkPk, but we want it to be bound by an upper bounded Λ times
the Galerkin operator, i.e. we want to have

RkAkR
H
k ≤ Âk−1 ≤ ΛRkAkRHk . (3.20)

Further on we demand Âk−1’s generating symbol and the generating symbol of RkAkRHk
to have only one zero, that is common. To simplify our theoretical considerations, we
require the approximation to satisfy a little more, namely for some ε > 0 we want to have

(1 + ε)RkAkPk ≤ Âk−1 ≤ ΛRkAkRHk . (3.21)

We express both requirements in terms of the generating symbols, the proof is a direct
consequence of the properties of the generating symbols.

77

3 Multigrid Methods

Lemma 3.10 Let fk−1 be the generating symbol of Ak−1 = RkAkR
H
k and let f̂k−1 be the

generating symbol of Âk−1 and assume that for some ε > 0 and some Λ > 1 we have

(1 + ε)fk−1 ≤ f̂k−1 ≤ Λfk−1.

Then we have (3.20) and (3.21).

Now we have to show four presumptions in order to be able to apply Theorem 3.9, namely

1. ‖T̂kek‖2Ak ≤ β̂‖ek‖
2
∗,

2. 0 ≤Ak T̂k ≤Ak I,

3. ker(T̂Hk AkT̂k) ⊂ ker((T̃k − T̂k)HAkT̂k + T̂Hk Ak(T̃k − T̂k)).

We will now show these prerequisites. The second is fulfilled by the requirements stated
above and Lemma 3.9. Now we have to show the remaining two items. We start with
the first one, the proof is similar to the proof of the approximation property of the coarse
grid correction involving the Galerkin operator by Aricò and Donatelli in [2].

Theorem 3.11 For a fixed level k let fk be the generating symbol of the matrix Ak, fk−1

be the generating symbol of Ak−1 = RkAkR
H
k and let f̂k−1 be the generating symbol of

the matrix Âk−1. Assume that fk−1 ≤ f̂k−1 ≤ Λfk−1 and that the generating symbol pk
defining the restriction fulfills the conditions

lim sup
x→x0

∣∣∣∣pk(y)
fk(x)

∣∣∣∣ <∞ for all y ∈ Ω(x0)\{x0} and (3.22)∑
y∈Ω(x)

p2
k(y) > 0 for all x ∈ [−π, π)d, (3.23)

where
Ω(x) := {z | zl ∈ {xl, xl + π}}.

Then there exists a constant β̂, depending only on p, f and Λ, such that

||T̂kek||2Ak ≤ β̂||ej ||
2
A2
k
. (3.24)

Proof. Equation (3.24) can equivalently be formulated as

T̂Hk AkT̂k ≤ β̂A2
k.

Now,

T̂Hk AkT̂k = (I −RHk Â−1
k−1RkAk)

HAk(I −RHk Â−1
k−1RkAk)

= (I −AkRHk Â−1
k−1Rk)(Ak −AkR

H
k Â
−1
k−1RkAk)

= Ak −AkRHk Â−1
k−1RkAk −AkR

H
k Â
−1
k−1RkAk +AkR

H
k Â
−1
k−1RkAkR

H
k︸ ︷︷ ︸

≤Âk−1

Â−1
k−1RkAk

≤ Ak −AkRHk Â−1
k−1RkAk −AkR

H
k Â
−1
k−1RkAk +AkR

H
k Â
−1
k−1Âk−1Â

−1
k−1RkAk

= Ak −AkRHk Â−1
k−1RkAk

= AkT̂k.

78

3.3 Algebraic Multigrid Theory for Structured Matrices

To prove (3.24) it is thus sufficient to show

Aj T̂k ≤ β̂A2
k. (3.25)

This will now be done in a manner similar to the convergence proof for multigrid for
multilevel matrix algebras in [2]. Define R̂k = RkA

1/2
k = Knj

Ak(p̂k) with p̂k = pkf
1/2
k .

Then (3.25) is implied by
I − R̂Hk Â−1

k−1R̂k ≤ β̂Ak, (3.26)

which is what we will show now. Let us for the moment assume that Ak is 1-level circulant,
i.e. d = 1. Multiplying the Fourier matrix from the left with the cut matrix then yields
the decomposition

KnkFnk =
1√
2

(
Fnk−1

∣∣Fnk−1

)
,

as is shown in [74], e.g. So

Ank(fk−1) = RkAkR
H
k = KnkAnk(pk)AkAnk(pk)HKH

nk

= KnkFnkF
H
nk
Ank(pk)Ank(f)Ank(pk)HFnkF

H
nk
KH
nk

=
1
2
(
Fnk−1

∣∣Fnk−1

)
FHnkAnk(pkfkpk)Fnk

(
FHnk−1

∣∣∣FHnk−1

)H
,

which gives

FHnk−1
Ank(fk−1)Fnk−1

=
1
2

(I | I)FHnkAnk(pkfkpk)HFnk (I | I)T . (3.27)

This decomposition can be generalized to d > 1 using tensorial arguments.
According to [74] the matrix FHnk T̂kFnk can be symmetrically permuted to a block

diagonal matrix with 2d × 2d-blocks. Using the “square bracket notation” f [x] to denote
the vector of length 2d with

f [x] =
1
2d
· (f(y1), . . . , f(y2d))

T ,

where the yj are a systematic enumeration of all the 2d elements of the set Ω(x), these
blocks are given as

I − 1

f̂k−1(2 w[n]
k)

p̂k[w
[n]
k]
(
p̂k[w

[n]
k]
)H

.

With the d-dimensional analogue to (3.27) we obtain

fk−1(2 w[n]
k) = ||(pkf

1/2
k)[w[n]

k]||22 = ||p̂k[w
[n]
k]||22.

Using f̂k−1 ≤ Λfk−1 and the definition of the Galerkin coarse grid operator we obtain

I − 1

f̂k−1(2 w[n]
k)

p̂k[w
[n]
k]
(
p̂k[w

[n]
k]
)H

≤ I − 1

Λfk−1(2 w[n]
k)

p̂k[w
[n]
k]
(
p̂k[w

[n]
k]
)H

= I − 1

Λ||p̂k[w
[n]
k]||22

p̂k[w
[n]
k]
(
p̂k[w

[n]
k]
)H

.

79

3 Multigrid Methods

Consequently, to show (3.26), it is sufficient to prove

I − 1

Λ||p̂k[w
[n]
k]||22

p̂k[w
[n]
k]
(
p̂k[w

[n]
k]
)H

< β̂ diag(fk[wn
k]).

Actually, we will show slightly more, namely that for all x we have

Z(x) = (diag(fk[x]))−1/2

(
I − 1

Λ||p̂k[x]||22
p̂k[x] (p̂k[x])H

)
(diag(fk[x]))−1/2 ≤ β̂I.

First we deal with an entry Z(x)q,r, where q 6= r:

Z(x)q,r = − p̂k(yq)p̂k(yq)√
fk(yq)fk(yr)

· 1
Λ||p̂k[x]||22

= − pk(yq)pk(yr)
Λ

∑
y∈Ω(x)

p2
k(y)fk(y)

.

This is bounded due to the hypothesis on pk from (3.22). For Z(x)q,q we can write

Z(x)q,q =
∑

y∈Ω(x)\{x}

p̂k(yq)2

fk(yq)
· 1

Λ||p̂k[x]||22

=
1
Λ

 1
fk(yq)

−
p2
k(yq)∑

y∈Ω(x)

p2
k(y)fk(y)

 .

If q > 1, then fk(yq) 6= 0 and by (3.22) again we have that Z(x)q,q is bounded. For q = 1
we have yq = x, so we get

Z(x)1,1 =

∑
y∈Ω(x)\{x}

pk(y)2fk(y)

fk(x)2
· 1

Λ
∑

y∈Ω(x)

pk(y)2 fk(y)
fk(x)

,

which is also bounded, as the first part of the product is bounded due to the same
argument as before and the second part is bounded since the sum in the denominator is
bounded away from 0 due to (3.23). So we can choose β̂ as

β̂ := max
q,r=1,...,d

{
max

x∈[−π,π)d
(Zq,r(x))

}
(<∞).

�

Comparing the proof of this Theorem with the proof of the approximation property by
Aricò and Donatelli yields that β̂ differs from β by a factor of 1/Λ. Now we proceed
showing the last required property. Using the altered requirement (3.21) we can show the
following.

80

3.3 Algebraic Multigrid Theory for Structured Matrices

Lemma 3.11 Let T̂k = I − RHk Â
−1
k−1RkAk, with RHk ∈ Cnk×nk−1 being a full rank pro-

longation operator. Let both Ak−1 = RkAkR
H
k and Âk be non-singular. Assume that for

some ε > 0 we have
(1 + ε)Ak−1 ≤ Âk ≤ ΛAk−1.

Then T̂k is non-singular.

Proof. As Tk = I − Pk(RkAkPk)−1RkAk is the A-orthogonal projector onto the comple-
ment of ran(Rk), we have dim(ker(Tk)) = dim(ran(Pk)), this is the maximum possible
dimension of the kernel of a coarse grid correction. As we have Ak−1 < Âk−1, we imme-
diately obtain that T̂k has full rank. �

Obviously with this lemma the last requirement is fulfilled, as ker(T̂Hk AkT̂k) = ∅.

3.3.7 Replacement strategies for the Galerkin operator for circulant matrices
with compact stencils

Our original goal was to provide an alternative to the usage of the Galerkin operator
for circulant matrices with compact stencils, like the ones presented as motivation at
the beginning of Section 3.3.2. We will now give examples of replacement strategies,
that guarantee multigrid performance, as the prerequisites of the theory presented in the
former sections are fulfilled. We do this by analyzing the generating symbols. We start
by a general result on d-variate periodic functions.

Lemma 3.12 Let f, f̂ ∈ C2 : [−π, π)d → R+
0 be two nonnegative non-vanishing periodic

functions on [0, 2π)d having only common zeros and that for some ε > 0 we have f̂ ≥
(1 + ε)f . Furthermore, assume that there are only finitely many such zeros x∗ and that
they all satisfy

∇2f(x∗) is positive definite and ∇2f̂(x∗) is positive definite.

Then there exists a constant Λ > 1 such that

f̂(x) ≤ Λf(x) for all x ∈ [−π, π)d.

Proof. Let x∗ be a zero of f and f̂ . Since ∇2f(x∗) as well as ∇2f̂(x∗) are positive definite
for all v ∈ Rd,v 6= 0 we have

0 <
λmin(∇2f̂(x∗))
λmax(∇2f(x∗))

≤ vT∇2f̂(x∗)v
vT∇2f(x∗)v

≤ λmax(∇2f̂(x∗))
λmin(∇2f(x∗))

<∞.

By continuity, and since we only have finitely many (common) zeros of f and f̂ in [0, 2π)d,
there exists ε̃ > 0 and Λ̃ such that whenever ‖x− x∗‖ < ε̃ and ‖y − x∗‖ < ε̃ we have

vT∇2f̂(x)v
vT∇2f(y)v

≤ Λ̃.

81

3 Multigrid Methods

Using the Taylor expansion

f(x) = f(x∗) +∇f(x∗)T (x− x∗) +
1
2

(x− x∗)T∇2f(x∗ + θ(x− x∗))(x− x∗)

=
1
2

(x− x∗)T∇2f(x∗ + θ(x− x∗))(x− x∗), θ ∈ [0, 1],

and similarly for f̂ , we see that whenever ‖x− x∗‖ < ε̃ for some zero x∗ we have

f̂(x) ≤ Λ̃f(x).

The complement C in [0, 2π]d of these finitely many balls is compact, and the function
f̂/f is continuous and positive on C. Putting

Λ = max

{
Λ̃,max

x∈C

(
f̂(x)
f(x)

)}
(<∞),

we finally obtain
f̂(x) ≤ Λf(x) for all x ∈ [−π, π)d.

�

This lemma provides all necessary conditions to formulate concrete schemes for the re-
placement of the Galerkin operator. First we consider the replacement of a compact
9-point stencil of a 2-level circulant matrix.

Definition 3.30 (Replacement 5-point stencil in 2D) Let a, b, c ∈ R−0 and let c b c
a −2(a+ b)− 4c a
c b c

 (3.28)

be a 9-point stencil in 2D. We define the replacement 5-point stencil as

(1 + ε)

 b+ 2c
a+ 2c −2(a+ b)− 8c a+ 2c

b+ 2c

 . (3.29)

If the Galerkin operator is a member of the matrix sequence defined by a 9-point stencil
of the form (3.28), the sparser 5-point stencil defined by (3.29) can be used instead. The
generating symbol f̂ of the circulant matrix sequence defined by the 9-point stencil (3.28)
is given by

f(x, y) = −2(a+ b)− 4c+ 2a cos(x) + 2b cos(y) + 4c cos(x) cos(y).

It is non-negative and has a unique zero at the origin with vanishing gradient. The same
holds for the generating symbol ĝ of the 5-point stencil (3.29),

f̂(x, y) = (1 + ε)(−2(a+ b)− 8c+ 2(a+ 2c) cos(x) + 2(b+ 2c) cos(y)).

82

3.3 Algebraic Multigrid Theory for Structured Matrices

Moreover,

∇2f(0, 0) =
(
−2a 0

0 −2b

)
and

∇2f̂(0, 0) =
(
−2(a+ 2c) 0

0 −2(b+ 2c)

)
are both positive definite and for some ε > 0 we have

(1 + ε)f(x, y) ≤ f̂(x, z).

So all requirements are fulfilled and a method using this modified coarse grid operator
still converges. Analogously, a replacement stencil can be defined for 3-level circulant
matrices

Definition 3.31 (Replacement 7-point stencil in 3D) Let a, b, c, d, e, f, g ∈ R−0 and
let g f g

e c e
g f g


d b d
a −2(a+ b+ c)− 4(d+ e+ f)− 8g a
d b d


g f g
e c e
g f g


be a 27-point stencil in 3D. We define the associated 7-point stencil as

(1 + ε)

 c+ 2(e+ f) + 4g


(1 + ε)

 b+ 2(d+ f) + 4g
a+ 2(d+ e) + 4g −2(a+ b+ c)− 8(d+ e+ f)− 16g a+ 2(d+ e) + 4g

b+ 2(d+ f) + 4g


(1 + ε)

 c+ 2(e+ f) + 4g

 .
In a similar manner as before – we refrain from reproducing all the details – the corre-
sponding generating functions

f(x, y, z) = −2(a+ b+ c)− 4(d+ e+ f)− 8g + 2a cos(x) + 2b cos(y) + 2c cos(z)
+ 4d cos(x) cos(y) + 4e cos(x) cos(z) + 4f cos(y) cos(z)
+ 8g cos(x) cos(y) cos(z)

f̂(x, y, z) = (1 + ε)(−2(a+ b+ c)− 8(d+ e+ f)− 16g + (a+ 2(d+ e) + 4g) cos(x)
+ (b+ 2(d+ f) + 4g) cos(y) + (c+ 2(e+ f) + 4g) cos(z))

83

3 Multigrid Methods

can be shown to again have a unique common zero at 0, thus fulfilling all postulated
conditions.

The application to stencils of other shapes or involving generating symbols with zeros
at other positions can be done in the same way.

3.3.8 Numerical Examples

We tested our replacement strategy in different settings. In contrast to the theory we
always chose ε = 0, as this did not harm convergence. This is an indicator that this
requirement can probably be skipped. We start with some experiments for 2-level cir-
culant matrices where the replacement has almost no influence on the convergence rate.
Both, the standard model problem with linear interpolation and full-weighting and a
non-standard problem, involving a zero of the generating symbol which is not at the
origin, are presented. After the examples for the 2-level circulant matrices we present
an example for 3-level circulant matrices, where the generating symbol has a zero at the
origin, again.

5-point Laplacian in 2D

First we consider the standard model problem of Poisson’s equation in 2D with periodic
boundary conditions yielding a circulant coefficient matrix of the linear system arising
from a discretization using the well-known 5-point stencil −1

−1 4 −1
−1

 .
The symbol

p(x, z) =
1
8

(2− 2 cos(x− π))(2− 2 cos(y − π))

was used for interpolation, thus the stencil describing A(p) is given by
1
8

1
4

1
8

1
4

1
2

1
4

1
8

1
4

1
8

 ,
resulting in the Galerkin coarse grid operator given by the stencil−

1
64 − 1

32 − 1
64

− 1
32

6
32 − 1

32

− 1
64 − 1

32 − 1
64

 .
The Galerkin operator has been replaced by the operator described by the following
stencil, which was chosen in the way defined in Definition 3.30. − 1

16
− 1

16
1
4 − 1

16
− 1

16

 .

84

3.3 Algebraic Multigrid Theory for Structured Matrices

!2
0

2
!2

0
2

0

0.2

0.4

f(
x,

y)

!2
0

2
!2

0
2

0

0.2

0.4

f̂
(x

,y
)

!!
"

!
!!
"

!

"

"#$

%

f(
x,

y)
/f̂

(x
,y

)

Figure 3.4: Generating symbols f of the Galerkin coarse grid operator for the 5-point
discretization of Poisson’s equation, f̂ of the replacement operator and of the
ratio f/f̂ .

5 10 15

10
!10

10
0

iterations

||e
|| 2

n = 162

Galerkin
replacement

5 10 15

10
!10

10
0

iterations

||e
|| 2

n = 322

Galerkin
replacement

Figure 3.5: Convergence of the multigrid method for the 5-point Laplacian using the
Galerkin operator and the replacement operator for n = 162 and n = 322.

This coincides with the original stencil multiplied by 1/16. Due to the factor 1/h2 = 1/4
from the doubling of the grid-spacing and another factor of 1/4 from the inter-grid transfer
operators defined with the help of p, the proposed method is equivalent to standard
geometric multigrid method in this case. A plot of the associated generating symbols
can be found in Fig. 3.4. Fig. 3.5 reports the convergence behavior of the method going
down to the level that contains one variable only. As expected, the convergence of the
method is only marginally affected by the use of the replacement coarse grid operators.

85

3 Multigrid Methods

5 10 15

10
!10

10
0

iterations

||e
|| 2

n = 102

Galerkin
replacement

5 10 15

10
!10

10
0

iterations

||e
|| 2

n = 322

Galerkin
replacement

Figure 3.6: Convergence of the multigrid method for the example with zero at (0, π) rather
than at the origin using the Galerkin operator and the replacement operator
for n = 162 and n = 322.

Example with a zero which is not the origin

Our next example is the stencil  1
−1 4 −1

1

 ,
as it can be found in [78], e.g. Such a stencil cannot be handled by standard geometric
multigrid methods. We chose the symbol for the interpolation as

p(x, z) =
1
8

(2− 2 cos(x− π))(2− 2 cos(y)),

as suggested by Serra Capizzano and Tablino-Possio in [74], so that A(p) is described by
the stencil  −

1
8 −1

4 −1
8

1
4

1
2

1
4

−1
8 −1

4 −1
8

 .
The Galerkin operator is then given by the (scaled) stencil of the standard Poisson prob-
lem  −

1
16 −1

8 − 1
16

−1
8

3
4 −1

8

− 1
16 −1

8 − 1
16

 .
The convergence of the stencil collapsing multigrid method going down to the maximum
possible level is depicted in Fig. 3.6. The results are very similar to the results for the
standard model problem. In particular, the convergence rate degrades only marginally
as compared to the multigrid using the Galerkin operators.

86

3.3 Algebraic Multigrid Theory for Structured Matrices

n # iterations final rel. residual time per iteration total time

163 6 2.6446 · 10−7 0.0047 s 0.0308 s
323 6 3.4160 · 10−7 0.0352 s 0.2215 s
643 6 3.4430 · 10−7 0.2833 s 1.7576 s

1283 6 3.4429 · 10−7 2.2263 s 13.7980 s

Table 3.1: Convergence of the multigrid method for the 7-point Laplacian in 3D using
the Galerkin coarse grid operator.

n # iterations final rel. residual time per iteration total time

163 7 1.4726 · 10−7 0.0024 s 0.0182 s
323 7 1.5726 · 10−7 0.0165 s 0.1255 s
643 7 1.5813 · 10−7 0.1333 s 0.9830 s

1283 7 1.5853 · 10−7 1.0347 s 7.5916 s

Table 3.2: Convergence of the multigrid method for the 7-point Laplacian in 3D using
the replacement grid operator.

7-point Laplacian in 3D

The 3D test is again the model problem, i.e. the 7-point stencil for the 3D-Laplacian. It
is given by  −1

 −1
−1 6 −1

−1

 −1

 .
The interpolation is defined by the symbol

p(x, y, z) =
1
8

(2− 2 cos(x− π))(2− 2 cos(y − π))(2− 2 cos(z − π)).

The resulting Galerkin coarse grid operator has 19 entries, and the Galerkin operators
on all subsequent levels have 27 entries. The stencil collapsing multigrid method was
incorporated into a multigrid code for 3-level circulant matrices, thus keeping the size of
the stencils corresponding to the coarse grid operators constantly at 7.

In order to measure timings for 3D problems, a multigrid method for circulant matrices
with generating symbols having zeros at the origin was implemented in C and compiled
using the gcc compiler with O3-optimization. The Galerkin coarse grid operator was
formed automatically on each level and the replacement given in Definition 3.31 was
computed automatically as well. The measurements were taken on a Linux machine with
3.2 GHz Pentium 4 CPU. The times needed by the method to reduce the relative residual
to 10−7 using the Galerkin coarse grid operator can be found in Table 3.1, the ones
for the replacement operator are given in Table 3.2. It can be seen that one additional
iteration is needed when using the Galerkin coarse grid operator, but the execution using
the replacement operator is much faster.

87

3 Multigrid Methods

3.4 Parallelization

Parallelization of algorithms of numerical linear algebra is an important part of the de-
velopment of scientific applications, as many applications from different fields of research
spend a lot of time in these routines. For that purpose various books with a special
focus on parallelization have been published, for example the book by Golub and Ortega
[42] or the book by Frommer [37]. Albeit multigrid algorithms are very fast and efficient
methods for the solution of linear systems and although our extension to the theory al-
lows additional savings in terms of CPU cycles and wall clock time, the parallelization of
multigrid still can be necessary for two reasons:

1. The lack of memory on one node when the system that should be solved is too
large.

2. Parallelization is necessary because of the computational requirements of the un-
derlying problem, that requires the solution of the linear system.

While the first is relatively easy to understand, we like to emphasize the second part a little
bit more. If the underlying problem that requires to solve the system, is computationally
complex, for example because forming the right hand side of our linear system costs a
lot of time, it might be necessary to parallelize the problem. It would be unsatisfactory
not to parallelize the multigrid part, because due to Amdahl’s law, the speedup will be
bound by the time spent in the solution of the linear system.

The parallelization of multigrid methods is well analyzed. For an overview see the work
of Chow, Falgout, Hu, Tuminaro and Yang [18], a more detailed introduction and analysis
of the parallelization of geometric multigrid methods can be found in the PhD thesis of
Tuminaro [85]. Our parallel implementation, which was used to produce the results in
Section 3.4.2, is kept as simple as possible, i.e. a data distribution scheme is chosen that is
equivalent to a domain decomposition approach, and processors become idle when there
are no variables left that belong to them. It shares this concept with the code of Ashby
and Falgout introduced in [4] that is a predecessor to the structured multigrid code that
is contained in the hypre package [28, 29]. Other parallelization approaches, especially
some that utilize idle processors on coarse levels, are possible, but they are not covered,
here.

3.4.1 Data distribution for banded matrices

What we want to do is solving a linear system on a parallel computer. In the cases
we are interested in, here, we deal with banded circulant matrices, although the chosen
approach can be transferred to band matrices with similar structures, as well. For our
algorithms we need matrix vector multiplication with a matrix A := A(f) and transfer
of the vectors, only. We start with 1-level circulants with a fixed bandwidth m, that is
independent of the system size n. That means that in order to calculate the i-th entry of
the matrix-vector product we only need the information of the entries that have indices
from Ii,m,n, where

Ii,m,n = {(i−m) mod n, . . . , (i− 1) mod n, i, (i+ 1) mod n, . . . , (i+m) mod n}.

88

3.4 Parallelization

Figure 3.7: Communication pattern for a vector with 10 components, distributed to 4
processors. Highlighted is processor P2 and its communication, when m = 2
neighbors are needed for the matrix vector multiplication.

Concretely we have

(Ax)i =
∑

j∈Ii,m,n

ai,jxj .

In order to evaluate this product on a parallel computer it is favorable to have as much as
possible of this information stored locally. Therefore we choose to distribute the vector
over the processors block-wise, i.e. when we have p processors the i-th processor gets the
components ranging from (i − 1)dn/pe to min{idn/pe, n}. Using this distribution the
processors are logically arranged in a 1-D torus and they only have to exchange compo-
nents with dm/min{dn/pe, n− (p− 1)dn/pe}e neighbors in a one-dimensional torus. An
outline of the communication needed can be found in Figure 3.7. As multilevel circulant
matrices are formed by the use of tensor products, this concept can be carried over to
that case, as well. As long as the bandwidth of the according circulant matrices is fixed
and independent of ni, the same communication pattern can be used in d different direc-
tions in the d-level case. So the optimal communication topology for circulant matrices
is a d-dimensional torus. Obviously for the non-periodic case, that leads to a Toeplitz
matrix, a d-dimensional mesh is sufficient. Going down to the coarser levels, the locality
of a variable on the fine level determines on which processor the coarse level variable will
be located. The variables on the coarse level are located on the same processor as their
fine grid counterpart. This leads to a structured communication scheme on the lower lev-
els. Starting with a d-dimensional torus we have communication with the next neighbors
holding the m needed components, as long as all processors still have variables to treat.
At some point, namely when the number of processors in one direction is bigger than the
number of unknowns, we will have idle processors, which do not hold any variable on that
level anymore. These processors then have to be ignored, when the communication takes
place. Technically we tackle this issue by storing the neighborhood information on each
level. In the initialization step processors ask the neighbors of the previous level which
neighbor they should use on this level. The asked processor answers this question with its
own id, if it still has to do work, or with its own neighbor. Of course this scheme requires
that only every second processor may become idle per level, but that is guaranteed if
the unknowns are equally distributed on the finest level at the beginning. Otherwise it
could be fixed by providing a function that computes the corresponding variable on the
finest level, eventually combined with a distributed directory of the variable location, like
proposed in the work of Baker, Falgout and Yang [5].

89

3 Multigrid Methods

3.4.2 Example results on Blue Gene/L and Blue Gene/P

The algorithm was implemented in the C programming language, using MPI for the
distributed memory parallelization. As the torus is well-suited to implement the commu-
nication pattern of the algorithm, the implementation makes use of cartesian communi-
cators and the associated functions. The implementation was tested on both Blue Gene
systems of the Jülich Supercomputing Centre, the 8-rack Blue Gene/L system JUBL [71]
and the 16-rack Blue Gene/P system JUGENE [72]. Both Blue Gene generations, the
Blue Gene/L and the Blue Gene/P, consist of several racks, where each rack consists
of two midplanes with 512 nodes each. The nodes are designed as systems on chip, i.e.
one chip contains all necessary components as the processor itself, network adaptors,
memory controllers etc., where each system has two cores in the Blue Gene/L and four
cores in the Blue Gene/P. The chips are clocked at 700 MHz in the Blue Gene/L, in the
Blue Gene/P the clock rate has been raised to 850 MHz. Besides Gigabit networking for
communication with the outside world, a very fast interrupt network, and a network for
system management purpose, the Blue Gene architecture has two networks that are used
for the communication of the parallel programs. These are a torus network that is used
for point to point communication and a tree network for collective communication. For
an overview of the Blue Gene/L architecture see the article of Gara et al. [39]. Further
details can be found on the web pages on JUBL [71] and JUGENE [72] and the references
therein.

The implementations of the solver for circulant matrices using the Galerkin operator
and of the one using the replacement were tested in different configurations. First we
like to emphasize, that the use of a V-cycle instead of a W-cycle is mandatory. Not only
is a W-cycle in general slower than a V-cycle, but in the W-cycle the amount of time
the multigrid method spends in the coarser levels is much larger than in the V-cycle and
many more communication steps are necessary. To illustrate that, we refer to Figure
3.8, where the weak scaling behavior of the V-cycle and the W-cycle using the Galerkin
operator for a system with 64×128×128 unknowns per processor are depicted. The tests
were carried out on JUBL and the system was arising from a 7-point discretization of the
Laplacian with periodic boundary conditions. It is clear, that the W-cycle’s performance
decreases in the parallel case, thus the effort spend in order to proof V-cycle convergence
in Section 3.3.2 is necessary in the parallel case. Otherwise the time that is saved by the
replacement of the Galerkin operator gets lost in the parallel case or even more time is
spent.

To illustrate the good scaling results of the V-cycle using the Galerkin operator as
well as the replacement we ran a number of tests. Strong scaling results on up to one
rack of Blue Gene/L were obtained for both for a 7-point discretization of the Laplace
operator with periodic boundary conditions resulting in a system with 1283 unknowns.
The timings for the solution of the system up to an absolute error of 10−7 of this case
are found in Table 3.3, a plot of the speedup and the efficiency can be found in Figure
3.9. Obviously the replacement of the operator does not harm the scaling behavior of
the method, although the time needed to solve the system is smaller and thus the ratio
of communication and computation is even worse than in the case, where the Galerkin
operator was used. We like to emphasize that although the scaling curves do not look

90

3.4 Parallelization

10
0

10
2

0

0.5

1

1.5

processors

sp
ee

du
p

V!cycle
W!cycle
ideal

Figure 3.8: Speedup for the V-cycle and the W-cycle compared.

very impressive, the results are nevertheless pretty good, considering that the system
consists of 1283 unknowns, only. This is the largest problem, that can be solved on a
single Blue Gene/L node and could thus be easily solved on a desktop PC, as the node
of a Blue Gene is much slower than todays’ PCs. Nevertheless we increase the number
of nodes to 1024, as a result each node is responsible for handling 2048 unknowns on the
finest level, only. Additionally we ran some tests on the newly installed Blue Gene/P
system for the V-cycle using the Galerkin operator. The behavior of the method using
the replacement operator should be similar. In the test, a system with 10243 unknowns
has been solved, see Table 3.4 and Figure 3.4 for the results. Again, the system was
arising from a 7-point discretization of the Laplacian with periodic boundary conditions.
We can see that the scaling looks much better for this case, although we have to mention
that the amount of data is 64 times as big. Regarding weak scaling the results are very
good. The results of a run where each processor has 64 × 128 × 128 unknowns are as
expected, see the measurements in Table 3.5 and the plot of this data in Figure 3.11.

3.4.3 Further parallelization issues

What we have not covered here is the parallelization of the FAC method introduced in
Section 3.2.4. Although the communication pattern will be more involved, the problem
still possesses a lot of structure that can be exploited for the solution on a parallel system.

Besides massively parallel systems that are similar to the Blue Gene architecture, re-
cently multicore architectures became more and more important. One famous member of
this family is the hybrid multicore architecture Cell Broadband Engine Architecture or
CBEA for short. We investigated the usefulness of the CBEA for multigrid methods for
structured matrices and published some ideas and preliminary results in [9]. A general
analysis of the CBEA for scientific applications can be found in [88].

91

3 Multigrid Methods

Galerkin operator replacement operator
#processors time/iteration total time time/iteration total time

1 3.218399 · 100 3.604389 · 101 1.896993 · 100 2.138000 · 101

2 1.741969 · 100 1.951582 · 101 1.045804 · 100 1.178795 · 101

4 8.436338 · 10−1 9.454753 · 100 5.272539 · 10−1 5.947049 · 100

8 4.503158 · 10−1 5.045441 · 100 2.902817 · 10−1 3.270748 · 100

16 2.493376 · 10−1 2.790456 · 100 1.677954 · 10−1 1.887067 · 100

32 1.351773 · 10−1 1.510425 · 100 9.678527 · 10−2 1.085267 · 100

64 7.951982 · 10−2 8.889820 · 10−1 5.906118 · 10−2 6.629070 · 10−1

128 4.887073 · 10−2 5.466090 · 10−1 3.710509 · 10−2 4.169230 · 10−1

256 3.117418 · 10−2 3.487930 · 10−1 2.662664 · 10−2 2.989930 · 10−1

512 1.794464 · 10−2 2.019890 · 10−1 1.440055 · 10−2 1.634570 · 10−1

1024 1.443436 · 10−2 1.627610 · 10−1 1.227636 · 10−2 1.393520 · 10−1

2048 1.029345 · 10−2 1.164280 · 10−1 9.510182 · 10−3 1.085170 · 10−1

4096 5.794727 · 10−3 6.665800 · 10−2 5.452455 · 10−3 6.333800 · 10−2

8192 2.941091 · 10−3 3.515200 · 10−2 2.787636 · 10−3 3.370500 · 10−2

Table 3.3: Timings on Blue Gene/L for the solution of a system with 1283 unknowns
arising from the discretization of the Laplacian using a 7-point stencil.

100 102
100

102

processors

sp
ee

du
p

Galerkin
replacement
ideal

100 102
0

0.5

1

1.5

processors

ef
fic

ie
nc

y

Galerkin
replacement
ideal

Figure 3.9: Speedup and efficiency on Blue Gene/L for the solution of a system with 1283

unknowns arising from the discretization of the Laplacian using a 7-point
stencil.

92

3.4 Parallelization

processors average time per iteration

4096 5.216130 · 10−1

8192 2.789460 · 10−1

16384 1.938290 · 10−1

32768 7.484900 · 10−2

65536 4.131500 · 10−2

Table 3.4: Timings on Blue Gene/P for the solution of a system with 10243 unknowns
arising from the discretization of the Laplacian using a 7-point stencil.

104
100

101

processors

sp
ee

du
p

Galerkin
ideal

104
0

0.5

1

1.5

processors

ef
fic

ie
nc

y

Galerkin
ideal

Figure 3.10: Speedup and efficiency relative to one rack with 4096 processors on Blue
Gene/P for the solution of a system with 10243 unknowns arising from the
discretization of the Poisson equation using a 7-point stencil.

100 102
0

0.5

1

1.5

processors

sp
ee

du
p

Galerkin
replacement
ideal

!"
"

!"
#

!"
!#

!"
"

$%&'()*++('+

*,
,-)
-*
.)
/

%

%
012*'3-.
'*&21)*4*.5
-6*12

Figure 3.11: Speedup and efficiency for the weak scaling test on Blue Gene/L for different
numbers of unknowns for the discretization of the Laplacian with periodic
boundary conditions using a 7-point stencil. Each Processor has 64× 128×
128 unknowns on the finest level.

93

3 Multigrid Methods

Galerkin operator replacement operator
#processors time/iteration total time time/iteration total time

1 1.586269 · 100 1.776711 · 101 9.536420 · 10−1 1.074958 · 101

2 1.741970 · 100 1.951583 · 101 1.045803 · 100 1.178818 · 101

4 1.686735 · 100 1.890513 · 101 1.013224 · 100 1.143372 · 101

8 1.742680 · 100 1.952863 · 101 1.016574 · 100 1.146883 · 101

16 1.857210 · 100 2.079570 · 101 1.084866 · 100 1.221705 · 101

32 1.758144 · 100 1.969952 · 101 1.041178 · 100 1.174254 · 101

64 1.824098 · 100 2.043441 · 101 1.059706 · 100 1.195079 · 101

128 1.885549 · 100 2.111226 · 101 1.087700 · 100 1.225203 · 101

256 1.856749 · 100 2.080243 · 101 1.059373 · 100 1.194493 · 101

512 1.843628 · 100 2.065635 · 101 1.018313 · 100 1.148949 · 101

1024 1.919460 · 100 2.149173 · 101 1.085729 · 100 1.222963 · 101

2048 1.976223 · 100 2.213161 · 101 1.191898 · 100 1.341163 · 101

4096 1.970838 · 100 2.207169 · 101 1.187782 · 100 1.336699 · 101

8192 1.923521 · 100 2.153583 · 101 1.090093 · 100 1.227793 · 101

Table 3.5: Weak scaling results on Blue Gene/L for different numbers of unknowns for
the discretization of the Laplacian with periodic boundary conditions using a
7-point stencil. Each Processor has 64 × 128 × 128 unknowns on the finest
level.

94

4 Particle Simulation

4.1 Introduction

Particle simulation plays an important role in computational science. For many fields
of applications the simulation of atomistic particles using simple integration of Newton’s
equations of motion is sufficient. Considering e.g. astrophysics computer experiments are
the only choice to verify new models, as the studied phenomenon can not be influenced
by the researcher and the time-scales in question are far too large. Another example is
the field of biophysics, which became more and more important in recent years. Here,
computer experiments help to save a lot of money, as the experiments that have to be
conducted are very expensive and time-consuming. So computer experiments are used to
have a guideline, which experiments one wants to carry out in reality. At the Jülich Su-
percomputing Centre there exists the complex atomistic modeling and simulation group,
where scientists with different backgrounds and applications work on the development
of particle simulation methods. Most of these methods are highly scalable, as a huge
amount of supercomputer time is spend in particle simulation codes. The method that
will be described in the following was developed as part of the work in this group that
led to this thesis.

Given that computers became available in the middle of the last century, the field of
particle simulation is relatively old. As a consequence a huge number of algorithms using
different techniques and approximations exist. In the following, we will present a short
introduction into the problem. A more detailed overview on classical molecular dynamics
is given by Sutmann [81], and an overview over long-range interactions by Gibbon and
Sutmann [40], introductions with larger details can be found in the books of Hockney and
Eastwood [56] and in the book of Griebel, Knapek, Zumbusch and Caglar [46]. After the
introduction we give a brief overview over the available methods for particle simulation,
and finally present the approach that allows us to use multigrid methods in the context
of particle simulation.

4.2 Mathematical formulation

Given is an initial state S0 = [x1, . . . ,v1, . . .] of a, not necessarily finite, set P of particles.
In classical mechanics the system is described completely by this set, i.e. the coordinates
and the velocities of the particles. The time evolution of the system is described by

95

4 Particle Simulation

Newton’s equations of motion, i.e.

vi =
d

dt
xi,

Fi =
d

dt
mivi

for a particle with index i. The force acting on particle i is given by the sum of the forces
due to all other particles in the system, i.e.

Fi =
∑

i∈P\{i}

Fi,j . (4.1)

In some cases an external force may be present as well. The forces are given by the
gradient of the potentials, yielding

Fi = −∇Φi, respectively Fi,j = −∇Φi,j , (4.2)

where
Φi =

∑
i∈P\{i}

Φi,j . (4.3)

So the evolution of the system is a consequence of the effective potential. Depending on
the type of application different potentials are used, e.g.

1. Coulomb potential

Φi,j =
1

4πε0

qj
‖xi − xj‖2

, (4.4)

2. Gravitational potential
Φi,j = −G mj

‖xi − xj‖2
,

3. Van der Waals potential

Φi,j = −a
(

1
‖xi − xj‖2

)6

,

4. Lenard-Jones potential

Φi,j = αε

[(
σ

‖xi − xj‖2

)n
−
(

σ

‖xi − xj‖2

)m]
,m < n,

α :=
1

n−m

(
nn

mm

) 1
n−m

.

We differentiate potentials by their range, i.e. a potential that decays faster than 1/rd,
where d is the space dimension, is called a short-ranged potential, whereas potentials
decaying at least as slowly as that are called long-ranged potentials. Short ranged po-
tentials, like the Van der Waals potential or the Lenard-Jones potential, can be easily
evaluated using list-techniques, like the the linked list array (see [56]).

96

4.2 Mathematical formulation

While we need methods for short-ranged potentials later on to correct artificially intro-
duced errors in our potential, we cover the Coulomb potential, here. Differentiating the
potential energy, i.e. the potential of the particle times it’s charge, leads to the force that
is acting on a particle. The Coulomb potential is one of the most important potentials,
as it arises in various applications like biophysics and plasma physics. For the forces due
to this potential we obtain

Fi =
1

4πε0

∑
j∈P\{i}

qiqj
xi − xj
‖xi − xj‖2

. (4.5)

Another important quantity of Coulomb systems is the electrostatic energy that can be
calculated with the help of the potential, as

E =
1
2

∑
i∈P

qiΦi =
1

4πε0

∑
i∈P

qi
∑

j∈P\{i}

qj
‖xi − xj‖32

. (4.6)

We like to note that the gravitational potential is of the same form as the Coulomb
potential, so we are able to cover applications from astrophysics, as well.

In order to simulate a particle system, a time integration scheme is required. For that
purpose we use a simple integrator like the Euler integration scheme or a leapfrog scheme.
These integration schemes need at least the input of the forces and velocities at one time
step and they provide the new positions and updated velocities as output. Integration
schemes are not covered by this work, we refer to the books of Hockney and Eastwood
[56] or the book of Griebel, Knapek, Zumbusch and Caglar [46], which both cover particle
simulation methods in general. The applications in the first book are focussed on plasma
physics and astrophysics and the authors of the second book concentrate on biophysical
applications. We will focus on methods that calculate the potential of particles and thus
provide a way to calculate the forces needed as input to the integrators.

We will now provide a rough overview over the different ways the problem may be
posed. Particle systems differ in the domain they cover. In this work we will cover the
most important options, namely open and periodic systems.

4.2.1 Open systems

In open systems the set of particles P is finite and the particles can move in the open
space freely. As the number of involved particles is finite, the problem can be directly
solved by evaluating (4.1) or (4.3), utilizing (4.2). As an example consider the total
energy of a system of N particles. Substituting {1, 2, . . . , N} for P in (4.6) yields

E =
1
2

N∑
i=1

qi

N∑
j=1
j 6=i

1
4πε0

qj
‖xi − xj‖2

.

Using symmetry we can write

E =
N∑
i=1

qi

N∑
j=i+1

1
4πε0

qj
‖xi − xj‖2

.

97

4 Particle Simulation

We note that the complexity for evaluating E is quadratic. Therefore methods have been
developed that reduce the complexity to O(N logN) or even O(N). The price to pay
these methods is accuracy, as they only compute an approximation to the real solution.
As all the computations are carried out in floating point arithmetic on a finite computer,
this is not necessarily a downside, as the direct calculation is inexact there, as well.

4.2.2 Periodic systems

In periodic systems the set of particles P is infinite, but the particle distribution itself
is periodic and the number of particles in a box representing the whole system is finite.
The particles in the box are interacting with each other and with all periodic images of
all particles in the box, including the periodic images of the particle itself. As an example
we consider the total electrostatic energy of the system, again, which is given by

E =
1
2

N∑
i=1

qi

N∑
j=1
j 6=i

1
4πε0

qj
‖xi − xj‖2

+
∑

n∈Z3\{0}

1
2

N∑
i=1

qi

N∑
j=1

1
4πε0

qj
‖xi − xj + n‖2

. (4.7)

Here, without loss of generality, we assume the system to be represented by a cube with
side length 1. This system cannot be solved using direct summation anymore, as the
sum over n is infinite. Furthermore this sum is divergent, so other summation techniques
have to be used, which take information about the underlying physics into account. An
example is the Ewald summation [27], which splits this sum into two parts replacing
the point charge by a charge distribution described by a gaussian and correcting this
afterwards. The sum can now be split into two parts, where the point charge minus
the charge distribution decays very fast and the other part converges very fast after
transformation to Fourier space. This approach will be used later on when we discuss the
numerical solution scheme used.

4.2.3 Relation to the Poisson equation

There is an obvious connection between the electrostatic potential and the solution of
the Poisson equation discussed as model problem in Chapter 2. In Theorem 2.7 we have
shown that the Green function of the Poisson equation in R3 is given by (2.10), i.e.

U(x) =
1

4π‖x‖2
.

This reminds us of the definition of the Coulomb potential in (4.4). In fact we have that

Φi =
N∑
j=1
j 6=i

1
4πε0

qj
‖xi − xj‖2

is a solution of the Poisson equation

∆Φi(x) = ρi :=
1
ε0

N∑
j=1
j 6=i

qjδ(‖x− xj‖2). (4.8)

98

4.3 Numerical solution

Therefore we call the solution of this Poisson equation the potential induced by all particles
except for the i-th particle. Now the potential of particle i is given as Φi(xi) and the
force acting on it by −∇Φi(x). The connection to the Poisson equation provides us with
a way to define numerical schemes to calculate the electrostatic quantities of the system
that are based on the solution of the Poisson equation on a mesh.

4.3 Numerical solution

Before we come to our numerical method we like to subsume the available methods for
the calculation of forces and energies. On the one hand there are mesh-free methods,
that directly tackle the sums in (4.5) or (4.6). Other methods exploit the fact that the
potential can be evaluated on a mesh, effectively solving the Poisson equation. The forces
are obtained by numerical differentiation afterwards.

4.3.1 Mesh-free methods

A 1/r-term, where r denotes the distance between two particles, is not neglectable, i.e.
even particles far away have a noticeable impact on the force. Nevertheless, changes in the
position of the other particles that are small compared to the distance, will not induce
noticeable changes in neither the potential or the forces. That observation led to the
development of tree codes. In the Barnes-Hut tree code [7] the whole simulation domain is
put into a box. By recursively subdividing the box into sub-boxes that are represented by
pseudo-particles, the calculation of particle-box interactions is possible. For each particle-
box interaction a criterion controls, whether this pair is chosen or whether a further
subdivision is chosen. As a consequence, the Barnes-Hut tree code has a complexity of
O(N logN), where N is the number of particles.

The idea can be extended to not only exploit the idea in one direction, i.e. computing
particle-box interactions, but to computing box-box interactions for boxes that are far
enough away, as well. This is the basis of the Fast Multipole Method (FMM), that was
presented by Greengard and Rokhlin in [45]. They combined this idea with not only
taking monopole interactions into account but rather computing multipole interactions,
as well. The multipole interactions in principle are a Taylor-Expansion of the potential.

Both methods originally have been developed for open systems. Mesh-free methods for
periodic systems include the Ewald summation [27], although there are efforts to extend
tree codes to the periodic case, as well. As an example consider the method of Kudin
and Scuseria recently presented in [60].

4.3.2 Mesh-based methods

The developed numerical method is mesh-based and thus similar to the P3M, the SPME
and the method presented in the diploma thesis of Füllenbach [38]. As mentioned above,
these methods exploit the connection between the Poisson equation and the electrostatic
potential. All of these methods have in common that they are based on the development
of the Ewald summation and thus have been developed for periodic systems. To derive

99

4 Particle Simulation

the methods, we start with (4.7), i.e.

E =
1
2

N∑
i=1

qi

N∑
j=1
j 6=i

1
4πε0

qj
‖xi − xj‖2

+
∑

n∈Z3\{0}

1
2

N∑
i=1

qi

N∑
j=1

1
4πε0

qj
‖xi − xj + n‖2

.

This sum is not absolutely convergent. In order to define the sum’s value, we split it
using the identity

1
‖xi − xj‖2

=
f(‖xi − xj‖2)
‖xi − xj‖2

+
1− f(‖xi − xj‖2)
‖xi − xj‖2

,

where we choose f , such that f(‖xi − xj‖2)/‖xi − xj‖2 decays very fast and thus can be
neglected beyond some cutoff and such that (1−f(‖xi−xj‖2))/‖xi−xj‖2 is slowly varying,
i.e. the Fourier coefficients belonging to large indices become small. As a consequence the
first sum can be evaluated like a short-ranged potential and the second sum is calculated
by calculating the Fourier sum only up to a certain index. In order to properly Fourier
transform the second part of the sum, the so-called “self-energy” Es has to be introduced,
yielding

E =
1
2

N∑
i=1

N∑
j=1
j 6=i

qiqj
4πε0

f(‖xi − xj + n‖2)
‖xi − xj‖2

+
∑

n∈Z3\{0}

1
2

N∑
i=1

N∑
j=1

qiqj
4πε0

f(‖xi − xj + n‖2)
‖xi − xj + n‖2︸ ︷︷ ︸

=:Er

+
∑
n∈Z3

1
2

N∑
i=1

N∑
j=1

qiqj
4πε0

1− f(‖xi − xj + n‖2)
‖xi − xj + n‖2︸ ︷︷ ︸

=:Ek

− 1
2

N∑
i=1

q2
i

4πε0
f
′
(0)︸ ︷︷ ︸

=:Es

.

The traditional choice for f is the complementary error function

erfc(r) :=
2√
π

∞∫
r

e−x
2
dx.

This also has a physical interpretation, namely that the point charges are “hidden” by
a “charge cloud” of the same charge. The “charge cloud” simply is a distribution of
measure one, in the Ewald case it is point-symmetric and described by the error function.

The Ewald approach can easily be transferred to a grid based approach. In that case
the particles charges are mapped to grid points in an appropriate way. Several ways
exist to do that, the simplest one being the nearest neighbor scheme. More sophisticated
approaches split a particle into several pseudo-particles, which reside on the grid point.
The charges of these pseudo-particles are then calculated using interpolation schemes or
using B-splines. Once the charges are mapped to the mesh, the mesh can be transferred
to Fourier space using the FFT and the reciprocal sum Ek can be evaluated there using
convolution with the Fourier transformed version of f(1 − ‖xi − xj‖2) or another so-
called “influence function”. The summation Er in real (physical) space can be carried

100

4.3 Numerical solution

out approximately using a cut-off radius. At that point a data structure comes in handy
that stores the particles that are contained in a certain grid cell. For that purpose the
linked list algorithm has been developed (c.f. [56]). It creates a three-dimensional array
HOC that contains the index of the first particle inside the corresponding box. Another
one-dimensional array LL contains the next particle in that box of each particle. If there
is no particle in a box or if a particle has no successor, the entries are set to zero. The
algorithm that creates the data structures is to be found in Algorithm 4.1.

Algorithm 4.1 Creation of the linked list arrays HOC and LL for a grid G.
for i ∈ G do

HOC(i)← 0
end for
for i = 1 to |P| do

j← round(x/h)
LL(i)← HOC(j)
HOC(j)← i

end for

For the evaluation of the reciprocal sum Ek, there exist two different approaches. The
first one is the Particle Particle Particle Mesh Method (P3M) developed by Hockney
and Eastwood. They have published several papers concerning this method, e.g. [23,
24, 25, 55, 56, 57]. They do not approximate the sum by using the discrete Fourier
transform of a periodic version of the error function, but they optimize that to minimize
the discretization error that has been introduced by meshing-up the charges.

Another approach was chosen by Essmann, Perera, Berkowitz, Darden, Lee and Ped-
ersen, who introduced the Smooth Particle Mesh Ewald (SPME) method in [26], which
is an improvement of the Particle Mesh Ewald (PME) method that was introduced by
Darden, York and Pedersen in [19]. They use the unmodified Fourier transform when
calculating the reciprocal sum, effectively solving the Poisson equation after smoothing
with the error function. In order to compensate the discretization error, in the SPME the
point charges are gridded using splines, resulting in an approximation to cardinal Euler
B-splines.

All these methods use the FFT, thus the complexity is O(N +n log n), where N is the
number of particles and n is the number of grid points. A comparison of these mesh-based
methods for the evaluation of the Ewald sum can be found in [20], further information
on the P3M is contained in [21]. Although the analysis and experiments in [20] have
shown, that the SPME method is not as accurate as the P3M, it has the big advantage of
being able to use other solvers for the Poisson equation. So Sagui and Darden were able
to use a multigrid method in a modification of the SPME presented in [70]. They also
suggested to use a diffusion approach to prevent smearing in the reciprocal space. This
results in an computationally optimal algorithm. Another method that uses multigrid
has been published by Sutmann and Steffen in [82]. In contrast to the approach by Sagui
and Darden and to the approach presented here, they use an discrete approximation to
the fundamental solution to carry out the self-energy correction.

101

4 Particle Simulation

4.4 Meshed continuum method

Unlike the P3M and the SPME method, we chose a continuum approach that is not
assigning the point charges to a grid. Instead we replace the point charges by charge
distributions that are sampled on the mesh. As a result, unlike P3M or SPME, we do
not introduce additional discretization errors. We like to note, that our approach is very
similar to the one presented by Füllenbach in [38].

4.4.1 Derivation of the method

To replace the point charges, we need to choose another point symmetric density.

Definition 4.1 Let g : R+ → R+ be a function with supp(g) = [0, rcut], rcut > 0 the
cut-off radius and let ρg : R3 → R+ be a function defined by

ρg(x) := g(|x|).

If ∫
R3

ρg(x)dx = 1,

then ρg is called a point symmetric density.

If such a point symmetric density is used as the right hand side of the Poisson equation,
beyond the cut-off radius we have that the solution is equal to the solution of the Poisson
equation with the δ-distribution as right-hand side.

Lemma 4.1 Let ρg be a point symmetric density with cut-off radius rcut. Let u and v be
the solutions of the respective Poisson equations

∆u(x) = δ(x),
∆v(x) = ρg(x),

for all x ∈ R3. Then for all x with ‖x‖2 ≥ rcut we have

u(x) = v(x).

Proof. We solve
∆u(x) = δ(x), for all x ∈ R

by convolution with the Green function, yielding

u(x) =
∫
R3

1
4π

1
‖x− y‖2

ρg(y)dy.

102

4.4 Meshed continuum method

Without loss of generality we set x = (0, 0, z)T . Transformation to spherical coordinates
yields

u(x) =
1

4π

∞∫
0

π∫
0

2π∫
0

g(r)r2 sin(θ)√
(r sin(θ) sin(φ))2 + (r sin(θ) cos(φ))2 + (r cos(θ)− z)2

dφdθdr

=
1
2

∞∫
0

π∫
0

g(r)r2 sin(θ)√
r2 sin2(θ) + r2 cos2(θ) + z2 − 2rz cos(θ)

dθdr

=
1
2

∞∫
0

π∫
0

g(r)r2 sin(θ)√
r2 + z2 − 2rz cos(θ)

dθdr

=
1
2

∞∫
0

g(r)r(r + z − |r − z|)
z

dr

So for z > rcut we obtain finally

u(x) =
1
2

rcut∫
0

g(r)r(r + z − z + r)
z

dr =
1
z

rcut∫
0

g(r)r2dr =
1

4πz

∫
R3

φg(y)dy =
1

4πz

�

To further simplify the representation we assume that the point symmetric density has
cut-off radius rcut = 1/2. Other radii can be obtained according to the following Lemma.

Lemma 4.2 Let φg be a point symmetric density with cut-off radius rcut. A point sym-
metric density with cut-off radius 1

arcut is given by

ρga(x) := ag(a ‖x‖2).

The solution of the Poisson equation with this function instead of the non-scaled version
is obtained in terms of the solution of the non-scaled version as

Φga(x) = aΦg(a x). (4.9)

Proof. Obviously ρga is point symmetric and its cut-off radius is 1
arcut. The volume is

∫
Rd

ρga(x)dx = 4π

1
a
rcut∫

0

a3g(ar)r2dr = 4π

rcut∫
0

g(r)r2dr = 1.

The remaining equation (4.9) directly follows when the solution is constructed by convo-
lution with the Green’s function. �

103

4 Particle Simulation

Now, in analogy to (4.8), we define

∆Φga,i(x) = ρga,i :=
1
ε0

N∑
j=1
j 6=i

qjρga(‖x− xj‖2). (4.10)

If ρg is sufficiently smooth, we can solve (4.10) numerically. Furthermore, we have

Φix = Φga,i − (Φga,i − Φi),

so if we are given Φga,i we can calculate Φi by subtracting the solution of the equation

∆(Φga,i − Φi) =
1
ε0

N∑
j=1
j 6=i

qj(ρga − δ)(‖x− xj‖2).

As a consequence of Lemma 4.1 this can be evaluated by direct particle-particle interac-
tions with the help of a near-field correction, as the potential induced by this right hand
side only has to be evaluated in a ball of radius 1

2a around x. The use of smooth point
symmetric densities instead of the δ-distribution allows another reduction of complexity.
Instead of computing Φga,i for each particle, we can compute

∆Φga,P(x) = ρga :=
1
ε0

N∑
j=1

qjρga(‖x− xj‖2).

From this we can obtain the needed Φga,i(xi) as

Φga,i(xi) = Φga,P(xi)− qiΦga .

This step corresponds to the self-energy correction in P3M or SPME and allows the
definition of an optimal method, as the Poisson equation only has to be solved once.
So a necessary condition for defining an optimal method this way is having an optimal
Poisson solver, e.g. a multigrid method. In Algorithm 4.2 we subsume the method for the
calculation of the system’s electrostatic energy. The calculation of the forces is carried
out by numerical differentiation of the potential surface. The resulting method will be
optimal in case when the number of particles in the near field, i.e. the particles that have
to be treated using a particle-particle method, can be kept constant when the number
of particles is growing. We can ensure this while keeping the same accuracy if only the
number of particles grows, but not their mean distance, i.e. if only the system grows. As
an example, we consider a system of randomly distributed charges inside of a unit cell
to be simulated. In order to keep the number of particles in the near-field constant, the
number of grid points has to grow as the number of particles grows, while the radius of
the point symmetric densities replacing the δ-distribution has to shrink reciprocally in
order to keep the number of particles in the near-field constant. E.g. if the number of
particles grows by a factor of b3, the number of grid points in each dimension grows by
b and the radius of the replacing charge distribution shrinks by a factor of 1/b. As only
the extent of the system is enlarged, the charge of the particles inside of the unit cell

104

4.4 Meshed continuum method

Algorithm 4.2 Calculation of the energies using the meshed continuum method. The
linked list arrays HOC and LL for the grid G are used to speed up sampling of the point
symmetric densities.

for i ∈ G do
for j ∈ {j|‖i− j‖∞ ≤ a/h} do
k = HOC(j)
while k 6= 0 do
f(xi) = qkρga(xi − xk)
k = LL(k)

end while
end for

end for
Solve ∆Φga,P = f numerically using Poisson solver
E = 0
for k = 1, . . . , N do

Approximate Φga,P(xk) by interpolating the potential surface
E = E + qk(Φga,P(xk)− Φga(0))

end for

is multiplied with 1/b like the radius, yielding a potential as large in magnitude as the
potential of the smaller system. So, for the potential of a single unit charge in the center

∆hu(x) = −4πρga(x)⇒ u(x) = φga(x) + e(x),

we get
∆h

b
u(x) = −b34πρga(bx)⇒ u(x) = b φga(bx) + b e(bx). (4.11)

If the charge is multiplied with 1/b, we see that neither the magnitude of the potential
nor the magnitude of the error change, thus the method has the same accuracy and scales
linearly.

4.4.2 Point symmetric densities described by B-splines

We chose point symmetric densities that can be described by B-splines. A B-spline is
given by the following definition:

Definition 4.2 A B-spline Bi, i = 0, 1, . . . of unit width is given by

B0(x) =

{
1 for −1

2 ≤ x ≤
1
2

0 otherwise
,

Bi+1(x) = 2 Bbi/2c(2 x) ∗ 2 Bdi/2e(2 x), for i = 1, 2,

For example, the resulting quadratic B-spline density is given by:

ρB2(r) =


−27r2+36

16 : 0 ≤ r < 1
6

27r2−108r+108
32 : 1

6 ≤ r ≤
1
2

0 : otherwise
(4.12)

105

4 Particle Simulation

2 4 6 8 10 12 14
10

!4

10
!3

10
!2

10
!1

10
0

10
1

10
2

cells

||e
|| !

h = 1/32
h = 1/64
h = 1/128

Figure 4.1: Influence of the width of the charge distribution measured in neighboring cells
in each direction for various grid-spacings for the 7-point discretization of the
Laplacian.

and it induces the potential:

φB2(r) =


3(1296r4−360r2+65)

40 : 0 ≤ r ≤ 1
6

−8505r5+12960r4−6480r3+810r−2
160r : 1

6 < r ≤ 1
2

1
r : 1

2 < r

(4.13)

4.4.3 Numerical experiments

In the following we will present some tests of the method. First we compare the influence
of the width of the replacing charge distribution while using either a standard 7-point
stencil or the compact fourth-order scheme presented in Section 2.3.1. The potential
surface due to a single unit charge distribution in the center of the simulation box was
computed using a multigrid method an either the standard 7-point discretization of the
Laplacian or the compact fourth-order discretization given by (2.21). The absolute error
e between the analytical and the numerical solution was measured. In Tables 4.1 and
4.2 the results for various widths of the charge distribution are printed. Furthermore in
Tables 4.3 and 4.4 the dependence of the error on the number of neighboring cells, i.e. the
radius of the charge distribution divided by the grid spacing, can be found for the second-
order and the fourth-order solver, respectively. In Figures 4.1 and 4.2 this dependence
is shown graphically. We can see that keeping the number of neighbors constant while
halving the grid spacing and doubling the grid size, the error is doubled as predicted by
(4.11). Comparison of the results of the second-order solver and the fourth-order solver
strongly suggests the use of high order solvers.

Next we consider a test of randomly distributed charges inside of a cube. In accordance

106

4.4 Meshed continuum method

width h = 1/32 h = 1/64 h = 1/128
||e||∞ # cells ||e||∞ # cells ||e||∞ # cells

2/32 6.740 · 100 (2 · 1)3 7.658 · 10−1 (2 · 2)3 1.699 · 10−1 (2 · 4)3

4/32 3.823 · 10−1 (2 · 2)3 8.486 · 10−2 (2 · 4)3 2.049 · 10−2 (2 · 8)3

6/32 9.874 · 10−2 (2 · 3)3 2.378 · 10−2 (2 · 6)3 5.973 · 10−3 (2 · 12)3

8/32 4.232 · 10−2 (2 · 4)3 1.023 · 10−2 (2 · 8)3 2.527 · 10−3 (2 · 16)3

10/32 2.159 · 10−2 (2 · 5)3 5.212 · 10−3 (2 · 10)3 1.291 · 10−3 (2 · 20)3

12/32 1.188 · 10−2 (2 · 6)3 2.980 · 10−3 (2 · 12)3 7.444 · 10−4 (2 · 24)3

14/32 7.666 · 10−3 (2 · 7)3 1.885 · 10−3 (2 · 14)3 4.686 · 10−4 (2 · 28)3

16/32 5.090 · 10−3 (2 · 8)3 1.258 · 10−3 (2 · 16)3 3.133 · 10−4 (2 · 32)3

18/32 3.515 · 10−3 (2 · 9)3 8.795 · 10−4 (2 · 18)3 2.195 · 10−4 (2 · 36)3

20/32 2.584 · 10−3 (2 · 10)3 6.409 · 10−4 (2 · 20)3 1.598 · 10−4 (2 · 40)3

22/32 1.929 · 10−3 (2 · 11)3 4.804 · 10−4 (2 · 22)3 1.198 · 10−4 (2 · 44)3

24/32 1.474 · 10−3 (2 · 12)3 3.684 · 10−4 (2 · 24)3 9.206 · 10−5 (2 · 48)3

26/32 1.163 · 10−3 (2 · 13)3 2.897 · 10−4 (2 · 26)3 7.230 · 10−5 (2 · 52)3

28/32 9.305 · 10−4 (2 · 14)3 2.315 · 10−4 (2 · 28)3 5.780 · 10−5 (2 · 56)3

30/32 7.509 · 10−4 (2 · 15)3 1.879 · 10−4 (2 · 30)3 4.695 · 10−5 (2 · 60)3

Table 4.1: Error of the potential of a single charge distribution for different widths and
grid spacings calculated using the 7-point discretization of the Laplacian.

width h = 1/32 h = 1/64 h = 1/128
||e||∞ # cells ||e||∞ # cells ||e||∞ # cells

2/32 8.633 · 100 (2 · 1)3 2.345 · 10−1 (2 · 2)3 1.204 · 10−2 (2 · 4)3

4/32 1.172 · 10−1 (2 · 2)3 6.012 · 10−3 (2 · 4)3 3.018 · 10−4 (2 · 8)3

6/32 1.318 · 10−2 (2 · 3)3 6.187 · 10−4 (2 · 6)3 3.421 · 10−5 (2 · 12)3

8/32 3.001 · 10−3 (2 · 4)3 1.504 · 10−4 (2 · 8)3 7.687 · 10−6 (2 · 16)3

10/32 8.581 · 10−4 (2 · 5)3 4.424 · 10−5 (2 · 10)3 2.436 · 10−6 (2 · 20)3

12/32 3.106 · 10−4 (2 · 6)3 1.711 · 10−5 (2 · 12)3 9.839 · 10−7 (2 · 24)3

14/32 1.456 · 10−4 (2 · 7)3 7.834 · 10−6 (2 · 14)3 4.466 · 10−7 (2 · 28)3

16/32 7.451 · 10−5 (2 · 8)3 3.845 · 10−6 (2 · 16)3 2.287 · 10−7 (2 · 32)3

18/32 3.725 · 10−5 (2 · 9)3 2.161 · 10−6 (2 · 18)3 1.229 · 10−7 (2 · 36)3

20/32 2.195 · 10−5 (2 · 10)3 1.212 · 10−6 (2 · 20)3 7.196 · 10−8 (2 · 40)3

22/32 1.356 · 10−5 (2 · 11)3 7.586 · 10−7 (2 · 22)3 4.417 · 10−8 (2 · 44)3

24/32 8.415 · 10−6 (2 · 12)3 4.823 · 10−7 (2 · 24)3 2.854 · 10−8 (2 · 48)3

26/32 5.395 · 10−6 (2 · 13)3 3.130 · 10−7 (2 · 26)3 1.883 · 10−8 (2 · 52)3

28/32 3.757 · 10−6 (2 · 14)3 2.137 · 10−7 (2 · 28)3 1.276 · 10−8 (2 · 56)3

30/32 2.581 · 10−6 (2 · 15)3 1.460 · 10−7 (2 · 30)3 8.749 · 10−9 (2 · 60)3

Table 4.2: Error of the potential of a single charge distribution for different widths and
grid spacings calculated using the compact fourth-order discretization of the
Laplacian.

107

4 Particle Simulation

neighbors h = 1/32 h = 1/64 h = 1/128

1 6.740 · 100 1.357 · 101 2.722 · 101

2 3.823 · 10−1 7.658 · 10−1 1.533 · 100

3 9.874 · 10−2 1.977 · 10−1 3.957 · 10−1

4 4.232 · 10−2 8.486 · 10−2 1.699 · 10−1

5 2.159 · 10−2 4.332 · 10−2 8.676 · 10−2

6 1.188 · 10−2 2.378 · 10−2 4.756 · 10−2

7 7.666 · 10−3 1.541 · 10−2 3.087 · 10−2

8 5.090 · 10−3 1.023 · 10−2 2.049 · 10−2

9 3.515 · 10−3 7.071 · 10−3 1.415 · 10−2

10 2.584 · 10−3 5.212 · 10−3 1.044 · 10−2

11 1.929 · 10−3 3.894 · 10−3 7.802 · 10−3

12 1.474 · 10−3 2.980 · 10−3 5.973 · 10−3

13 1.163 · 10−3 2.354 · 10−3 4.720 · 10−3

14 9.305 · 10−4 1.885 · 10−3 3.784 · 10−3

15 7.509 · 10−4 1.520 · 10−3 3.051 · 10−3

Table 4.3: Influence of the width of the charge distribution measured in neighboring cells
in each direction for various grid-spacings for the 7-point discretization of the
Laplacian.

neighbors h = 1/32 h = 1/64 h = 1/128

1 8.633 · 100 1.748 · 101 3.518 · 101

2 1.172 · 10−1 2.345 · 10−1 4.690 · 10−1

3 1.318 · 10−2 2.661 · 10−2 5.348 · 10−2

4 3.001 · 10−3 6.012 · 10−3 1.204 · 10−2

5 8.581 · 10−4 1.732 · 10−3 3.480 · 10−3

6 3.106 · 10−4 6.187 · 10−4 1.235 · 10−3

7 1.456 · 10−4 2.934 · 10−4 5.886 · 10−4

8 7.451 · 10−5 1.504 · 10−4 3.018 · 10−4

9 3.725 · 10−5 7.477 · 10−5 1.495 · 10−4

10 2.195 · 10−5 4.424 · 10−5 8.852 · 10−5

11 1.356 · 10−5 2.762 · 10−5 5.545 · 10−5

12 8.415 · 10−6 1.711 · 10−5 3.421 · 10−5

13 5.395 · 10−6 1.109 · 10−5 2.218 · 10−5

14 3.757 · 10−6 7.834 · 10−6 1.570 · 10−5

15 2.581 · 10−6 5.527 · 10−6 1.113 · 10−5

Table 4.4: Influence of the width of the charge distribution measured in neighboring cells
in each direction for various grid-spacings for the compact fourth-order dis-
cretization of the Laplacian.

108

4.4 Meshed continuum method

2 4 6 8 10 12 14
10

!6

10
!4

10
!2

10
0

10
2

cells

||e
|| !

h = 1/32
h = 1/64
h = 1/128

Figure 4.2: Influence of the width of the charge distribution measured in neighboring
cells in each direction for various grid-spacings for the compact fourth-order
discretization of the Laplacian.

to the considerations at the end of Section 4.4.1, the charges were scaled with the help of
(4.9) such that the expected potential energy per particle for the system was constant.
The results for the different steps of Algorithm 4.2 can be found in Table 4.5 and Figure
4.3. Here “sampling” denotes the process of sampling the right hand side on the grid,
in the column titled “solution of PDE” the times for the multigrid solver can be found
and finally the times measured for the back interpolation of the potential to the particle
positions is shown in the outermost right column. We see that the proposed method scales
linearly with the number of particles while keeping about the same accuracy. Fluctuations
in the accuracy are due to the random distributions of the charges inside the simulation
box. The last test we want to present is the calculation of the total electrostatic energy of
a DNA fragment including counter ions consisting of 1316 atoms. This test was performed

time/s
particles grid size

∣∣∣Epot−E∗pot

E∗pot

∣∣∣ sampling solution of PDE back interp.

1000 333 1.579 · 10−2 0.25 0.14 0.16
8000 653 1.989 · 10−3 2.01 3.46 1.41

64000 1293 1.033 · 10−2 16.34 35.18 12.29
512000 2573 2.481 · 10−3 132.30 340.05 108.95

Table 4.5: Scaling behavior and accuracy of Algorithm 4.2 for randomly distributed parti-
cles using the fourth-order discretization of the Laplacian and a B-spline width
of 10 grid spacings.

109

4 Particle Simulation

10
3

10
4

10
5

10
6

10
!1

10
0

10
1

10
2

particles

tim
e/

s

sampling
solution of PDE
back interp.

Figure 4.3: Scaling behavior of Algorithm 4.2.

in order to show that the method provides a way to accurately calculate the electrostatic
energy of a real molecule. The relative error of the total electrostatic energy is found in
Table 4.6.

110

4.4 Meshed continuum method

neighbors h = 1/32 h = 1/64 h = 1/128

1 1.656 · 10−1 1.007 · 100 1.701 · 100

2 7.370 · 10−3 7.935 · 10−2 1.595 · 10−1

3 7.658 · 10−4 4.963 · 10−3 2.218 · 10−2

4 1.104 · 10−4 4.584 · 10−4 3.879 · 10−3

5 2.985 · 10−5 1.436 · 10−4 6.941 · 10−4

6 9.356 · 10−6 5.147 · 10−5 1.356 · 10−4

7 3.309 · 10−6 1.578 · 10−5 5.151 · 10−5

8 1.078 · 10−6 4.660 · 10−6 2.568 · 10−5

9 1.733 · 10−7 2.996 · 10−6 1.718 · 10−5

10 1.356 · 10−7 1.185 · 10−6 7.477 · 10−6

11 6.242 · 10−7 5.755 · 10−7 5.208 · 10−6

12 2.506 · 10−8 1.637 · 10−7 2.472 · 10−6

13 2.075 · 10−8 5.355 · 10−8 1.542 · 10−6

14 1.132 · 10−8 2.995 · 10−8 9.037 · 10−7

15 2.503 · 10−10 0.152 · 10−8 5.209 · 10−7

Table 4.6: Relative error of the electrostatic energy of a DNA fragment calculated for
various grid spacings using the compact fourth-order discretization of the
Laplacian.

111

4 Particle Simulation

112

5 Conclusion

In this work we presented a framework for the application of multigrid methods as a
solver for the Poisson equation that arises in particle simulation methods. As the Poisson
equation’s Green’s function is equal to the Coulomb potential and gravitational potential
up to a constant factor, the use of multigrid methods is possible for a wide range of
applications, i.e. in molecular dynamics simulations and in the simulation of astrophysical
phenomena. We reformulated the problem in a consistent way, such that the problem is
equivalent to the solution of a partial differential equation with a special right hand side.
Additionally, a near field correction has to be applied. Given that the continuous partial
differential equation is solved analytically, no errors are introduced by this reformulation.
When solved numerically, the only errors introduced are the discretization error of the
numerical scheme used to solve the PDE and the error of the back-interpolation scheme.

For the solution of PDEs in open systems we introduced the hierarchical grid refinement
technique by Washio and Oosterlee [87] and a new modification of this technique which
is guaranteed to yield a result of the desired accuracy. We were able to show that the
modified method still scales optimally in terms of unknowns, although new grid points
are introduced. For the solution of the resulting method a geometric multigrid method
using the FAC method is appropriate.

In the periodic case the problem of solving the Poisson equation with constant coeffi-
cients on an equispaced grid yields a linear system with circulant coefficient matrix. We
reviewed the algebraic multigrid theory for hermitian positive matrices in general and its
use in the circulant case. Motivated by the possible computational savings, we analyzed
the theory and developed sufficient conditions for a replacement coarse grid operator in-
stead of the Galerkin operator. The derived conditions were verified for schemes that are
applicable to certain circulant matrices.

Although multigrid methods are fast methods, it can still be desirable to parallelize
even fast methods. Therefore we presented a parallel implementation of the solver for
circulant matrices, which included the Galerkin operator as well as its replacement. The
results were obtained on up to 65536 processors on Jülich Supercomputing Centre’s Blue
Gene/P system JUGENE and on the Blue Gene/L system JUBL. The method shows very
good scaling results, allowing very large systems to be solved in fractions of a second.

With this work a new method using multigrid for the solution of the long-ranged
Coulomb potential or gravitational potential becomes available for the simulation of sys-
tems consisting of atomic particles.

The obtained theoretical results for multigrid methods pay off in this application. In
the future we will extend the theory to cover other classes of matrices to be able to replace
the Galerkin operator there, as well.

113

5 Conclusion

114

Acknowledgments

This work would not have been possible without the support of a lot of people. First
of all I like to thank my wife Beate, who always understood me and encouraged me to
continue to work in a field that really fascinates me and makes me curious. I like to thank
our daughter Emma for being cute and sympathetic when I had to work.

Next I like to thank my advisor Prof. Andreas Frommer a lot. It was a pleasure to
work with him and I always had a lot of fun – and gained additional insight – travelling
to Wuppertal.

Dr. Godehard Sutmann was a great help to me. I enjoyed our fruitful discussions and I
am grateful for his introduction to particle simulation in general and his patient answers
to all of my questions.

Besides Godehard Sutmann I like to thank many other former and current colleagues
at the Jülich Supercomputing Centre: Prof. Dr. Dr. Thomas Lippert, who gave me the
possibility to work on this thesis at his institute and who acted as a second examiner,
Dr. Rüdiger Esser, who was a great department manager, and the other Ph.D. students at
the FZJ, i.e. Daniel Becker, Ivo Kabadshow, Stefan Krieg, Tom Schröder, Robert Speck,
Dr. Tatjana Streit, and Binh Trieu. I also like to mention the group members of the
complex atomistic modelling and simulation group at the Jülich Supercomputing Centre
and the great technical and administrative staff at the institute, there are just too many
to mention all.

My thanks go to James Brannick who acted as another second examiner.
I also like to thank Rob Falgout and the whole Scalable Linear Solvers team at Lawrence

Livermore National Laboratory for the nice atmosphere during my stay at Livermore and
for a many lessons learned in parallel and algebraic multigrid.

115

5 Conclusion

116

Bibliography

[1] A. Aricò, Fast algorithms for some structured linear algebra problems, PhD thesis,
Uiversità degli studi di pavia, Pavia, 2005.

[2] A. Aricò and M. Donatelli, A V-cycle multigrid for multilevel matrix algebras:
proof of optimality, Numer. Math., 105 (2007), pp. 511–547.

[3] A. Aricò, M. Donatelli, and S. Serra-Capizzano, V-cycle optimal conver-
gence for certain (multilevel) structured linear systems, SIAM J. Matrix Anal. Appl.,
26 (2004), pp. 186–214.

[4] S. F. Ashby and R. D. Falgout, A parallel multigrid preconditioned conjugate
gradient algorithm for groundwater flow simulations, Nucl. Sci. Eng., 124 (1996),
pp. 145–159.

[5] A. H. Baker, R. D. Falgout, and U. M. Yang, An assumed partition al-
gorithm for determining processor inter-communication, Parallel Computing, 32
(2006), pp. 394–414.

[6] N. S. Bakhvalov, On the convergence of a relaxation method with natural con-
straints on the elliptic operator, USSR Comp. Math. Math. Phys., 6 (1966), pp. 101–
135.

[7] J. E. Barnes and P. Hut, A hierarchical O(N log N) force calculation algorithm,
Nature, 324 (1986), pp. 446–449.

[8] M. Bolten, Hierarchical grid coarsening for the solution of the Poisson equation in
free space, Electron. Trans. Numer. Anal., 29 (2008), pp. 70–80.

[9] M. Bolten, A. Dolfen, N. Eicker, I. Gutheil, W. Homberg, E. Koch,
A. Schiller, G. Sutmann, and L. Yang, Juice - Jülich Intitiative Cell Clus-
ter - Report 2007, Tech. Rep. FZJ-JSC-IB-2007-13, Jülich Supercomputing Centre,
Research Centre Jülich, Jülich, December 2007.

[10] D. Braess and W. Hackbusch, A new convergence proof for the multigrid method
including the V-cycle, SIAM J. Numer. Anal., 20 (1983), pp. 967–975.

[11] A. Brandt, Multi-level adaptive technique (MLAT) for fast numerical solution to
boundary value problems, in Proceedings of the Third International Conference on
Numerical Methods in Fluid Mechanics, H. Cabammes and R. Temam, eds., no. 18 in
Lecture Notes in Physics, Berlin, Heidelberg, New York, July 1973, Springer-Verlag,
pp. 82–89.

117

Bibliography

[12] , Multi-level adaptive solutions to boundary-value problems, Math. Comp., 31
(1977), pp. 333–390.

[13] , Multi-level adaptive technique (MLAT) for partial differential equations: Ideas
and software, in Proceedings of a Symposium Conducted by the Mathematics Re-
search Center, J. R. Rice, ed., vol. 3 of Mathematical Software, New York, San
Francisco, London, March 1977, The University of Wisconsin–Madison, Academic
Press, pp. 277–318.

[14] , Algebraic multigrid theory: The symmetric case, Appl. Math. Comput., 19
(1986), pp. 23–56.

[15] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial,
SIAM, Philadelphia, 2000.

[16] R. H. Burkhart, Asymptotic expansion of the free-space green’s function for the
discrete 3-D Poisson equation, SIAM J. Sci. Comput., 18 (1997), pp. 1142–1162.

[17] R. H. Chan, Q.-S. Chang, and H.-W. Sun, Multigrid method for ill-conditioned
symmetric Toeplitz systems, SIAM J. Sci. Comput., 19 (1998), pp. 516–529.

[18] E. Chow, R. D. Falgout, J. J. Hu, R. S. Tuminaro, and U. M. Yang, A
survey of parallelization techniques for multigrid solvers, in Parallel Processing for
Scientific Computing, M. A. Heroux, P. Raghavan, and H. D. Simon, eds., SIAM
Series on Software, Environments, and Tools, SIAM, Philadelphia, 2006, ch. 10.

[19] T. Darden, D. York, and L. Pedersen, Particle mesh ewald: An N log(N)
method for ewald sums in large systems, J. Chem. Phys., 98 (1993), pp. 10089–10092.

[20] M. Deserno and C. Holm, How to mesh up Ewald sums (I): A theoretical and
numerical comparison of various particle mesh routines, J. Chem. Phys., 109 (1998),
pp. 7678–7693.

[21] , How to mesh up Ewald sums (II): An accurate error estimate for the P3M
algorithm, J. Chem. Phys., 109 (1998), pp. 7694–7701.

[22] M. Donatelli, Image deconvolution and multigrid methods, PhD thesis, Uiversità
degli studi di milano, Milano, 2005.

[23] J. Eastwood, R. Hockney, and D. Lawrence, PM3DP – the three dimensional
periodic particle-particle/particle-mesh program, Comp. Phys. Comm., 19 (1977),
pp. 215–261.

[24] J. W. Eastwood, Optimal particle mesh algorithms, J. Comput. Phys., 18 (1975),
pp. 1–20.

[25] , Optimal P3M algorithms for molecular dynamics simulations, in Computa-
tional Methods in Classical and Quantum Physics, M. B. Hooper, ed., London,
1976, Advance Publications Ltd, pp. 206–228.

118

Bibliography

[26] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G.
Pedersen, A smooth particle mesh ewald method, J. Chem. Phys., 103 (1995),
pp. 8577–8593.

[27] P. Ewald, Die Berechnung optischer und elektrostatischer Gitterpotentiale, Ann.
Phys., 64 (1921), p. 253.

[28] R. D. Falgout, J. E. Jones, and U. M. Yang, The design and implementation of
hypre, a library of parallel high performance preconditioners, in Numerical Solution of
Partial Differential Equations on Parallel Computers, A. M. Bruaset and A. Tveito,
eds., vol. 51 of Lecture Notes in Computational Science and Engineering, Springer-
Verlag, Berlin, Heidelberg, 2006, ch. 8, pp. 267–294.

[29] R. D. Falgout and U. M. Yang, hypre: a library of high performance precon-
ditioners, in Computational Science - ICCS 2002 Part III, P. M. A. Sloot, C. J. K.
Tan., and J. J. Dongarra, eds., vol. 2331 of Lecture Notes in Computer Science,
Berlin, Heidelberg, 2002, Springer-Verlag, pp. 632–641.

[30] R. P. Fedorenko, A relaxation method for solving elliptic difference equations,
USSR Comp. Math. Math. Phys., 1 (1962), pp. 1092–1096.

[31] , The speed of convergence of one iterative process, USSR Comp. Math. Math.
Phys., 4 (1964), pp. 227–235.

[32] G. Fiorentino and S. Serra, Multigrid methods for Toeplitz matrices, Calcolo,
28 (1991), pp. 238–305.

[33] , Multigrid methods for indefinite Toeplitz matrices, Calcolo, 33 (1996), pp. 223–
236.

[34] G. Fiorentino and S. Serra, Multigrid methods for symmetric positive definite
block Toeplitz matrices with nonnegative generating functions, SIAM Journal on Sci-
entific Computing, 17 (1996), pp. 1068–1081.

[35] R. Fischer, Multigrid methods for anisotropic and indefinite structured linear sys-
tems of equations, PhD thesis, Technische Universität München, 2006.

[36] A. Friedman, Partial differential equations, Holt, Rinehart and Winston, New
York, Chicago, San Francisco, Atlanta, Dallas, Montreal, Toronto, London, Syd-
ney, 1969.

[37] A. Frommer, Lösung linearer Gleichungssysteme auf Parallelrechnern, Vieweg,
Braunschweig, 1990.

[38] T. Füllenbach, Mehrgitterverfahren für die zwei- und dreidimensionale Poisson-
gleichung mit periodischen Randbedingungen und eine Anwendung in der Molekular-
dynamik, Tech. Rep. 11/2000, GMD, St. Augustin, 2000.

119

Bibliography

[39] A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus, M. E.
Giampapa, R. A. Haring, P. Heidelberger, D. Hoenicke, G. V. Kopcsay,
T. A. Liebsch, M. Ohmacht, B. D. Steinmacher-Burow, T. Takken, and
P. Vranas, Overview of the Blue Gene/L system architecture, IBM J. Res. & Dev.,
49 (2005), pp. 195–212.

[40] P. Gibbon and G. Sutmann, Long range interactions in many-particle simulation,
in Quantum simulations of many-body systems: from theory to algorithms, J. Gro-
tendorst, D. Marx, and A. Muramatsu, eds., vol. 10 of NIC series, Jülich, 2001, John
von Neumann Institute for Computing, pp. 467–506.

[41] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second
order, vol. 224 of A series of comprehensive studies in mathematics, Springer-Verlag,
Berlin, Heidelberg, New York, 1970.

[42] G. Golub and J. Ortega, Scientific Computing an introduction with parallel com-
puting, Academic Press, San Diego, 1993.

[43] E. A. González-Velasco, Fourier analysis and boundary value problems, Aca-
demic Press, San Diego, 1995.

[44] R. Gray, Toeplitz and circulant matrices: A review, Tech. Rep. 6504-1, Stanford
University, Stanford, CA, 1977.

[45] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J.
Comp. Phys., 73 (1987), pp. 325–348.

[46] M. Griebel, S. Knapek, G. Zumbusch, and A. Caglar, Numerische Simula-
tion in der Moleküldynamik, Springer-Verlag, Berlin, Heidelberg, New York, 2004.

[47] K. E. Gustafson, Introduction to partial differential equations and Hilbert space
methods, Dover, Mineola, 1999.

[48] W. Hackbusch, Ein iteratives Verfahren zur schnellen Auflösung elliptischer
Randwertprobleme, Rep. 76-12, Institute for Applied Mathematics, University of
Cologne, West Germany, Cologne, 1976.

[49] , On the convergence of a multi-grid iteration applied to finite element equations,
Rep. 77-8, Institute for Applied Mathematics, University of Cologne, West Germany,
Cologne, 1977.

[50] , Convergence of multi-grid iterations applied to difference equations, Math.
Comp., 34 (1980), pp. 425–440.

[51] , On the convergence of multi-grid iterations, Beiträge Numer. Math., 9 (1981),
pp. 213–239.

[52] , Multi-grid convergence theory, in Multigrid methods, W. Hackbusch and
U. Trottenberg, eds., vol. 960 of Lecture Notes in Mathematics, Berlin, 1982,
Springer-Verlag, pp. 177–219.

120

Bibliography

[53] , Multi-Grid Methods and Applications, Springer-Verlag, Berlin, 1985.

[54] , Iterative solution of large sparse systems of equations, no. 95 in Applied Math-
ematical Sciences, Springer-Verlag, New York, 1994.

[55] R. W. Hockney, The potential calculation and some applications, in Methods in
Computational Physics: Plasma Physics, B. Alder, S. Fernbach, and M. Rotenberg,
eds., vol. 9 of Methods in Computational Physics, Academic Press, New York, 1970,
pp. 136–211.

[56] R. W. Hockney and J. W. Eastwood, Computer simulation using particles,
Institute of Physics, Bristol, 1988.

[57] R. W. Hockney, S. P. Goel, and J. W. Eastwood, A 10000 particle molecular
dynamics model with long rang forces, Chem. Phys. Lett., 21 (1973), pp. 589–591.

[58] J. Jost, Partial Differential Equations, Springer-Verlag, Berlin, Heidelberg, New
York, 2002.

[59] T. W. Körner, Fourier analysis, Cambridge University Press, Cambridge, 1988.

[60] K. N. Kudin and G. E. Scuseria, Revisiting infinite lattice sums with the periodic
fast multipole method, J. Chem. Phys., 121 (2004), pp. 2886–2890.

[61] S. Larsson and V. Thomée, Partial Differential Equations with Numerical Meth-
ods, Springer-Verlag, Berlin, Heidelberg, New York, 2005.

[62] P. D. Lax and A. N. Milgram, Parabolic equations, Ann. of Math., 33 (1954).

[63] J. Mandel, Algebraic study of multigrid methods for symmetric, definite problems,
Appl. Math. Comput., 25 (1988), pp. 39–56.

[64] S. F. McCormick, Multigrid methods for variational problems: General theory for
the v-cycle, SIAM J. Numer. Anal., 22 (1985), pp. 634–643.

[65] , Multilevel adaptive methods for partial differential equations, vol. 6 of Frontiers
Appl. Math., SIAM, Philadelphia, 1989.

[66] S. F. McCormick and J. Thomas, The fast adaptive composite grid (FAC) method
for elliptic equations, Math. Comp., 46 (1986), pp. 439–456.

[67] A. Meister, Numerik linearer Gleichungssysteme, Vieweg, Braun-
schweig/Wiesbaden, 1999.

[68] U. Rüde, Mathematical and computational techniques for multilevel adaptive tech-
niques, vol. 13 of Frontiers Appl. Math., SIAM, Philadelphia, 1993.

[69] J. W. Ruge and K. Stüben, Algebraic multigrid, in Multigrid methods, S. F.
McCormick, ed., vol. 3 of Frontiers Appl. Math., SIAM, Philadelphia, 1987, pp. 73–
130.

121

Bibliography

[70] C. Sagui and T. Darden, Multigrid methods for classical molecular dynamics
simulations of biomolecules, J. Chem. Phys., 114 (2001), pp. 6578–6591.

[71] U. Schmidt, FZJ-ZAM IBM Blue Gene/L - JUBL home page. Website, Novem-
ber 2007. Available online at http://www.fz-juelich.de/jsc/ibm-bgl visited on
March 3rd 2008.

[72] , FZJ-JSC IBM Blue Gene/P - JUGENE home page. Website, February 2008.
Available online at http://www.fz-juelich.de/jsc/jugene visited on March 3rd
2008.

[73] S. Serra-Capizzano and C. Tablino-Possio, Preliminary remarks on multigrid
methods for circulant matrices, in Numerical Analysis and its Applications, Second
International Conference, NAA 2000, Rousse, Bulgaria, June 11–15, 2000, Revised,
L. V. amd J. Waśnievski and P. Y. Yalamov, eds., vol. 1988 of Lecture Notes in
Computer Science, Berlin, 1988, Springer-Verlag, pp. 152–159.

[74] , Multigrid methods for multilevel circulant matrices, SIAM J. Sci. Comput., 26
(2004), pp. 55–85.

[75] W. Spotz and G. Carey, A high-order compact formulation for the 3D Poisson
equation, Numer. Methods Partial Differential Equations, 12 (1996), pp. 235–243.

[76] K. Stüben, Algebraic multigrid: An introduction with applications, GMD Report 70,
GMD - Forschungszentrum Informationstechnik GmbH, St. Augustin, November
1999.

[77] , A review of algebraic multigrid, GMD Report 69, GMD - Forschungszentrum
Informationstechnik GmbH, St. Augustin, November 1999.

[78] , An introduction to algebraic multigrid, in Multigrid, U. Trottenberg, C. Oost-
erlee, and A. Schüller, eds., Academic Press, 2001, ch. Appendix A, pp. 413–532.

[79] H.-W. Sun, R. H. Chan, and Q.-S. Chang, A note on the convergence of the
two-grid method for Toeplitz systems, Computers Math. Applic., 34 (1997), pp. 11–
18.

[80] H.-W. Sun, X.-Q. Jin, and Q.-S. Chang, Convergence of the multigrid method
for ill-conditioned block Toeplitz systems, BIT, 41 (2001), pp. 179–190.

[81] G. Sutmann, Classical molecular dynamics, in Quantum simulations of many-body
systems: from theory to algorithms, J. Grotendorst, D. Marx, and A. Muramatsu,
eds., vol. 10 of NIC series, Jülich, 2001, John von Neumann Institute for Computing,
pp. 211–254.

[82] G. Sutmann and B. Steffen, A particle-particle particle-multigrid algorithm for
long range interactions in molecular systems, Comp. Phys. Comm., 169 (2005),
pp. 343–346.

122

Bibliography

[83] , High-order compact solvers for the three dimensional Poisson equation, J.
Comp. Appl. Math., 187 (2006), pp. 142–170.

[84] U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid, Academic Press,
San Diego, 2001.

[85] R. S. Tuminaro, Multigrid algorithms on parallel processing systems, PhD thesis,
Stanford University, Stanford, December 1989.

[86] E. E. Tyrtyshnikov, Circulant preconditioners with unbounded inverses, Linear
Algebra Appl., 216 (1995), pp. 1–23.

[87] T. Washio and C. W. Oosterlee, Error analysis for a potential problem on
locally refined grids, Numer. Math., 86 (2000), pp. 539–563.

[88] S. Williams, J. Shalf, L. Oliker, P. Husbands, S. Kamil, and K. Yelick,
The potential of the Cell processor for scientific computing, Tech. Rep. LBNL-59071,
Lawrence Berkeley National Laboratory, Berkeley, October 2005.

[89] K. Yosida, Functional analysis, Springer-Verlag, Berlin, Heidelberg, New York,
1971.

123

