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CHAPTER I

Introduction

Financial markets have been growing substantially over the last decades. This growth
could be realised primarily by innovation. Investment banks introduce new products
which are of value for existing and new customers. The motives for buying financial
products differ depending on the counter-parties. In any case investment banks as well as
their customers will only buy substantial amounts of financial derivatives if price and risk
structure seem appealing or at least fair to them. Thus it is not only necessary to develop
innovative products but one also has to understand the dynamics of it. Further it may
be necessary to adapt these dynamics to the market and find a suitable computational
realisation.
That is where quantitative finance or financial mathematics and computational finance
come into play. The task is to set up a suitable model describing all parts of the market
which have important influence on the derivative and to hedge its risk thereafter. This
requires a recalibration of the model parameters on a day to day basis. Lastly it should be
implemented to obtain prices and risk analysis. Naturally a balance between complexity
of the model and speed of the implementation has to be found.

The motivation underlying this thesis is one particular rather new product: the cor-
relation swap. We are going to suggest a model for correlation to price such a swap.
But let us first have a short look on the structure of a correlation swap:

1.1 Motivation

The correlation swap is a swap on realised correlation. It is yet not publicly traded but
the major investment banks trade correlation swaps over-the-counter. The correlation
swap is a financial derivative on a basket of assets which pays off the correlation between
the logarithmic changes in the assets.

Definition 1.1 (Correlation swap on m-dimensional basket) An unweighted cor-
relation swap on i = 1, ...,m underlyings Si is defined by an observation structure
T = {t0, t1, ..., tn}, start date, maturity and its payoff:

N · (C −K)

1
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where N denotes the notional and K the strike. C denotes the averaged realised
correlation between the underlying assets:

(1.1) C =
2

m · (m− 1)

m∑
i=1

m∑
j=i+1

∑n
k=1

(
Xk

i −
∑n

`=1 X`
i

) (
Xk

j −
∑n

`=1 Xk
j

)√∑n
k=1

(
Xk

i −
∑n

`=1 X`
i

)2∑n
k=1

(
Xk

j −
∑n

`=1 X`
j

)2 .

Due to the implicitly assumed lognormal distribution of the assets, the realised correlation
is calculated based on the logarithmic changes:

Xk
i = log

(
Sk

i

Sk−1
i

)
, k = 1, ..., n .

Often the payoff is simplified to

(1.2) Csimple =
2

m · (m− 1)

m∑
i=1

m∑
i=j+1

∑n
k=1

(
Xk

i

) (
Xk

j

)√∑n
k=1

(
Xk

i

)2∑n
k=1

(
Xk

i

)2 .

Exemplarily a correlation swap could look like:

Example 1.2 (Correlation Swap) The contract is specified by

Underlying EuroStoxx50: S1, ..., S50

Start date t0 = 02.01.2007
maturity and pay off date tn = 29.06.2007
Observation dates closing prices of days when all Si are traded
Strike K = 0.4
Payoff 20000 · (Csimple −K)

Table 1.1: Example of correlation swap

In an analogous way it is possible to construct European and American style calls,
puts etc on realised correlation.

Note that this product makes only sense if the underlying asset - correlation - is
not constant and not known in advance. Thus the market assumes that correlation is
stochastic. For pricing the correlation risk itself and correlation dependent derivatives, it
is necessary to develop a suitable model.

We consider the correlation swap as the main motivation for the work presented in
this thesis, as it shows a particularly clear distinction between correlation risk and other
risk sources. Nonetheless there are other areas of application for stochastic correlation
as well. For example in credit, the pricing of Collateralised Debt Obligation (CDO)
strongly depends on the assumed interdependency structure of the relevant debtors. It is
a type of asset-backed security and we define it as follows:
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Definition 1.3 (Collateralised Debt Obligation) A CDO is a financial product de-
rived from a basket of i = 1, ...,m defaultable assets Si with notional Ni. The respective re-
covery rates are denoted by Ri. The payoff depends on tranches [0, U1], (U1, U2], (Un−1, Un]
with 0 < U1 ≤ ... ≤ Un ≤ 1. Over the period t0 until maturity T the total loss is added,
resulting in:

L =
m∑

i=1

(Ni −Ri) · 1{Si,defaulted}

where 1{Si,defaulted} takes the value one if asset Si defaulted and zero otherwise. The payoff
for the j-th tranche is specified by

(L− Uj−1)
+ − (L− Uj)

+.

The tranches are called equity, mezzanine and senior tranches in ascending order.

Note that one must consider time and definition of default, interest rate etc for a real
CDO, which we neglect here. The risk structure of the single tranches depends on the
correlation. It is particularly easy to see for the most-senior tranche. The tranche is only
hit if a very high number of assets default. This will usually only happen if they are
highly correlated. Some models like the large homogeneous portfolio model (LHPM) use
constant correlation, but they fail in reproducing market quotes. Throughout the tranches
one observes an implied correlation skew. Introducing stochastic correlation could lead
to a better market fit.
So the CDO as well as the credit field in general could turn out to be useful application
for stochastic correlation.

Correlation swap and CDO are products which are clearly correlation dependent. In
addition there are already well known models which use the concept of correlated Brow-
nian motions, for example stochastic volatility models such as the Heston model [Hes93]
where the correlation describes the dependence between two Brownian motions where one
of them drives the asset and the other one the asset’s (stochastic) volatility:

dSt = µStdt +
√

VtStdWt , S0 = s0 ,(1.3)

dVt = κ(θ − Vt)dt + σ
√

VtdZt , V0 = v0 ,(1.4)

dWtdZt = ρdt .(1.5)

Here µ, κ, θ, σ, s0 and v0 denote positive constants, ρ ∈ [−1, 1] is also constant.
Another example is a basic foreign exchange model, abbreviated with FX model in the
following:

dS1
t = µ1S

1
t dt + σ1S

1
t dWt , S1

0 = s1
0 ,(1.6)

dS2
t = µ2S

2
t dt + σ2S

2
t dZt , S2

0 = s2
0 ,(1.7)

dWtdZt = ρdt ,(1.8)

with positive constants µ1, µ2, σ1, σ2 as well as positive initial values s1
0 and s2

0. ρ ∈ [−1, 1]
denotes again a constant. Hereby the first geometric Brownian motion describes an asset
in a foreign currency. Whilst the second prescribes the exchange rate between that asset’s
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currency and the domestic currency.
In the Heston model the correlation coefficient is important because it describes the shape
of the volatility skew. In the FX model the correlation leads to a parameter restriction
because of arbitrage arguments, see chapter 5.

The Brownian motions in both models are correlated with the (constant) correlation
coefficient ρ:

(1.9) dWtdZt = ρdt

which is a symbolic notation for

(1.10) E [WtZt] = ρ · t.

As this thesis tries to extend the concept of the linear correlation coefficient we say a few
more words about it.

1.2 Linear correlation coefficient

There are different concepts of dependence. We would like to mention the copula approach
which is often used in credit modelling see for example Schönbucher [Sch03]. The cop-
ula ansatz is a very flexible framework. It features a clear distinction between marginal
and joint distribution. Originally a static approach, recently one tries to extend the
idea to the dynamic case via Lévy copulae (see for example Cont and Tankov [CT04] or
Tappe [Tap07]). But if the risk described by a copula is supposed to be sold as a product,
the mathematical problem arises how to measure that risk. From a market point of view
it would be necessary that all participants agree on one copula. At least they should
comprehend the risk concept and how the risk measure is calculated. Currently such an
agreement cannot be observed in the market.
For the sake of completeness we mention a totally different concept of dependence, the
long-range-dependence as it is for example represented in form of a fractional Brownian
motions. But as we are rather interested in the dependence between assets and not in
the dependence through time it does not seem appropriate for our purposes. For proper-
ties of fractional Brownian motion and theoretical framework see for example Duncan et
al [DHPD00].

In case of the CDO various dependence approaches can be considered, but the corre-
lation swap clearly indicates the use of the linear correlation coefficient, which is the idea
we pursue in this thesis. It is closely connected to covariance. For example Gourieaux
et al [GJS04] show a multivariate covariance model where the matrix is modelled as a
Wishart process. We prefer to stick to the pure correlation, because we think that the
modelling, calibrating and also the market itself for variance is well developed. Here we
refer to the stochastic volatility models of Heston [Hes93] and the local volatility models
such as the one presented by Dupire [Dup94]. There is extensive work on the numerical
treatment, for example Kahl et al [KJ06] or Andersen [And06]. We would like to use
these accomplishments by separating the modelling of variance and correlation strictly.
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From a market point of view the linear correlation coefficient has several advantages
compared to more complex dependence approaches like long-term memory processes and
copulae. They are useful modelling approaches but it is difficult to create products which
exclusively map their specific risk. Moreover it makes only sense to specify a product
on a risk exposure which everyone can easily comprehend. In contrast to that the linear
correlation coefficient is a measure of dependence which is known to everyone. Further
it can be easily reproduced by every market participant. We give the definition for two
random variables

Definition 1.4 (Linear correlation coefficient) The linear correlation coefficient ρ is
defined for two random variables X and Y as

(1.11) ρ :=
E [(X − E [X]) (Y − E [Y ])]√

V ar(X)V ar(Y )
.

It is a meaningful measure of dependence between normal random variables.
In view of the definition above for two random variables it is between −1 and 1. It is

often quoted in form of the correlation matrix. For multivariate X1, ..., Xn it reads:

C =


1 ρ1,2 ... ρ1,n

ρ1,2 1
. . . ρ2,n

...
. . . . . .

...
ρ1,n ρ2,n . . . 1

(1.12)

where ρi,j = ρj,i =
E[(Xi−E[Xi])(Xj−E[Xj ])]

V ar(Xi)V ar(Xj)
denotes the pairwise correlation for 1 ≤ i, j ≤ n.

Note that the correlation matrix must be symmetric and positive definite.

By definition the correlation coefficient ρ is a number. We consider two random
variables X and Y . If realisations X̄1, ..., X̄n and Ȳ1, ..., Ȳn are given it can be estimated
pairwise as

ρ ≈ ρ̃ =

∑n
i=1

(
X̄i −

∑n
j=1 X̄j

)(
Ȳi −

∑n
j=1 Ȳj

)
√∑n

i=1

(
X̄i −

∑n
j=1 X̄j

)2∑n
i=1

(
Ȳi −

∑n
j=1 Ȳj

)2
.(1.13)

Short calculations show that the estimator ρ̃ is unbiased.
If the realisations are observed at t0, ..., tn, the quantity ρ̃ = ρ̃(t0, ..., tn) is also denoted as
realised correlation over t0, .., tn.
Related to this estimator is the idea of rolling correlation. Given n + 1 data points at
t0, ..., tn, the rolling correlation over intervals of length m < n reads:

ρ̃ (t0, ..., tm−1) , ρ̃ (t1, ..., tm) , ..., ρ̃ (tn−m+1, ..., tn) .

In consideration of definition 1.4, rolling correlation should be constant - less numerical
and estimation errors. As observed rolling correlation is not constant even for large m, we
will suggest and analyse an extension of the concept of the linear correlation coefficient
in this thesis:
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1.3 Outline

In the beginning of chapter 2 we present some visualisations of correlation. Due to the
lack of market data, we solely focus on the historically observed correlation. From this
we will derive some properties which correlation should possess. Mainly we will see that
correlation is indeed non-deterministic but its behaviour rather resembles a stochastic
process.
As a next step we introduce a univariate stochastic process which can be used to model
correlation. In analogy to interest rates and having in mind the structure of a correlation
swap, the model describes short correlation.

Chapter 3 shows some analysis on the suggested stochastic correlation process. Par-
ticularly it shows that with regard to boundaries and density the process seems suitable
for modelling correlation, but we also derive some necessary parameter restrictions. Addi-
tionally a system of ordinary differential equations is derived which describes all moments
of correlation and integrated correlation.

We use this knowledge in chapter 4, in order to develop an estimator for the correlation
process. The estimation procedure works with historical data, but notably it bases on the
observed integrated correlation. One can argue that there is only information about that
data available. The estimator is of Maximum-Likelihood type, where we need to use the
similarity to Ornstein-Uhlenbeck processes.

The subsequent chapter 5 shows two examples. The first example deals with a call
in a FX framework as presented above. We compare the constant correlation case to
the model where we use the stochastic correlation process from chapter 2. The second
example is taken from credit. We consider the LHPM for pricing CDOs and analyse the
influence of stochastic correlation on implied correlation, density etc.

The thesis concludes with a short summary and an outlook showing what would be
possible or necessary areas for further work from a practical and from a theoretical point
of view respectively.

There is also a short appendix where we say a couple of words about the numerical
treatment, which we particularly need for the examples. Further some of the computations
needed in chapter 3 can be found here.

Assumptions

To ease reading, we want to introduce some of the assumptions we make throughout this
thesis already at this point:

• Without loss of generality we assume t = 0 as the starting point of stochastic
processes.

• We assume that all stochastic differential equations have constant initial value with-
out loss of generality. We do so for the sake of simplicity, although one can argue
that for some of the considered processes the initial value is not observable, and
should therefore be featured with some noise. One possibility to include stochastic
initial values into financial models is presented in [PE07].
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• Throughout this thesis we assume that the appropriate filtrations Ft underly the
stochastic processes. Thus we denote the stochastic processes by Zt, they generate
the filtration: Ft = F

(
Z(0≤s≤t)

)
.

Moreover we need some assumptions on the financial environment:

• Interest rate is constant.

• Market is frictionless and arbitrage free. In the last chapter we also postulate
completeness.

• Assets are lognormally distributed with constant mean and variance.

Further we will use the following notation:

• Given a random variable X, we denote one realisation with X̄.

• The estimator of a parameter p is described as p̃.

• The stepsize is usually denoted forward in time: ∆i = ti+1 − ti.

• A process Xti at ti is abbreviated with Xi.

• The process for stochastic correlation is given in Xt whereas the variable ρ describes
constant correlation.

• Z− denotes the non-positive integers.

Additionally if there is no risk of misunderstanding, we will use the term correlation for
denoting the linear correlation coefficient.



CHAPTER II

Model

In this chapter the concept of the linear correlation coefficient is extended from a single
number to a stochastic process. Naturally the extension should still cover the case of
constant correlation. Further it should fit the observed characteristics of correlation. We
start with the latter. Then we will show how to stochastically correlate Brownian motions.
Lastly we introduce a stochastic correlation model.

2.1 Observed characteristics of correlation

In the introduction it is motivated why it is necessary to extend the concept of the constant
correlation coefficient to stochastic correlation. The main motivation is the existence of a
correlation swap. Unfortunately this correlation swap is not exchange traded. Thus we do
not have sufficient data for a market analysis. Instead of that we will look on the historic
behaviour of correlation. It indicates that ’correlations are even more unstable
than volatilities’ as mentioned by Wilmott[Wil00a]. Figure 2.1 shows the estimated
correlations between Dow Jones Composite (DJI) and Euro/US-Dollar exchange rate
(EURUSD) on a daily basis1. Considered is the period from 1998 till 2005. Hereby it is
assumed that both processes follow a lognormal distribution as in (1.6) and (1.7). Shown
is the rolling correlation over time frames of two weeks. The usual estimator as given
in (1.13) is used.

Figure 2.1 (A) clearly shows that correlation is not constant over time. Moreover, cor-
relation seems even to be nondeterministic. In figure 2.1 (B) we receive a first impression
how the density of a stochastic process modelling correlation could look like. The distri-
bution possesses one peak. From that peak it decreases while approaching the boundaries
where it vanishes.

The next pictures in Fig. 2.2 are the analogue for the DJI and its volatility. It is
assumed that the index S moves like a geometric Brownian motion. The volatility v is

1Source of data: yahoo.com

8
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Figure 2.1: Correlation between Dow Jones and Euro/US-Dollar exchange rate from 1998
until 2005, process and density. (A): Estimated historical correlation over time. (B):
Empirical density.

measured as standard deviation. For n + 1 data points it is calculated as

ṽ =

√√√√ 1

n− 1

n∑
i=1

(
X̄i −

1

n

n∑
j=1

X̄j

)2

.(2.1)

Hereby X denotes the logarithmic returns in the index from ti−1 to ti:

Xi = ln

(
Si

Si−1

)
(2.2)

Fig. 2.2 (A) shows the rolling correlation between the DJI and its historical volatility2.
The historical standard deviation is calculated over time intervals of 20 business days. As
can be read from the legend, the rolling correlation refers to 20 and 60 business days.
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Figure 2.2: Correlation between Dow Jones Composite and its volatility from 2002 until
2007, process and density estimated over n = 20 and n = 60 business days. (A): Estimated
historical correlation over time. (B): Empirical density.

2Source of data: yahoo.com



CHAPTER 2. MODEL 10

As in case of DJI and EURUSD correlation is not constant. Again one observes
a peaked density, which vanishes in the boundary. The longer observation interval of
60−days leads hereby to a more stable path and therewith a more centered density com-
pared to the 20−day rolling correlation.

Lastly the correlation between all stocks in the EuroStoxx50 (SX5E) is visualised,
measured as the average of the pairwise correlations as in (1.1).
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02/01/03 − 07/09/07

Figure 2.3: Average correlation in SX5E. (A): Rolling correlation versus correlation cal-
culated for non-overlapping intervals from 02/01/02 until 07/09/07. (B): Realised corre-
lation until 07/09/07 with different starting dates.

Fig. 2.3(A) shows the path of correlation over a time window of 60 days. Hereby
the rolling correlation is shown (corresponding to overlapping time intervals) and the
correlation estimated for distinct intervals of 60 days. Fig. 2.3(B) depicts the realised
correlation for different initial dates. For each day they show the respective value of a
correlation swap maturing at this day with according start date.

All graphs indicate that correlation is not deterministic. Therefore assuming constant
correlation in a financial model neglects the correlation risk. In view of the figures above
we sum up as follows:

• Correlation seems to vary stochastically around a mean.

• There is some reverting to that mean over time.

• Notably correlation does not reach the boundaries.

2.2 Stochastically correlated Brownian motions

Before introducing the model analysed within this thesis it is illustrated what we un-
derstand if we say stochastically correlated. Hereby we consider only ordinary Brownian
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motions. An Itô-process Xt given by

(2.3) dXt = a(t,Xt)dt + b(t,Xt)dBt , X0 ∈ R constant

with Xt ∈ [−1, 1] ∀ t can be used to correlate two Brownian motions W and Z. Hereby
denotes B a Brownian motion. For the construction of Z let W and V be two independent
Brownian motions, also independent of B. Set

(2.4) Zt =

t∫
0

XsdWs +

t∫
0

√
1−X2

s dVs , Z0 = 0 .

For proving that Z (2.4) is a Brownian motion, we remark that Z0 = 0 and show that
E [Z2

t ] = t. Because of the Itô-isometry (see for example [Øks00]), we can calculate:

E
[
Z2

t

]
= E

 t∫
0

XsdWs

2

+

 t∫
0

√
1−X2

s dWs

2

+ 2Mt

 = t .

with Mt :=
∫ t

0
XsdWs

∫ t

0

√
1−X2

s dVs. We used that E[Mt] = 0 which follows from
M0 = 0 and

dMt = XtdWt

t∫
0

√
1−X2

s dVs +
√

1−X2
t dVt

t∫
0

XsdWs + Xt

√
1−X2

t dWtdVt︸ ︷︷ ︸
=0

.

In a similar way, one verifies that E [Zt|Fs] = Zs, t ≥ s. By virtue of Lévy’s Theorem
(see again [Øks00]) it follows that Z is a Brownian motion. Thus we have two Brownian
motions W and Z correlated by the stochastic process X.
Especially it holds for W and Z that

E [Zt ·Wt] = E

 t∫
0

Xsds


which agrees for constant Xs = ρ ∀ s with

E [Zt ·Wt] = ρt .

This construction should be borne in mind throughout the remaining parts of this thesis.
We have not mentioned the correlation between B and Z, B and W respectively. For
simplicity we assume independence throughout this thesis, but clearly generalisation is
possible and desirable. Observing market behaviour leads to the clear conclusion that
correlation and market movement are not independent.
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2.3 Bounded mean reversion model

The model we suggest and analyse within this thesis is a time-continuous bounded mean
reverting model described by a stochastic differential equation. The rate of mean reversion
is denoted by κ, the level of mean reversion by θ. Both as well as the diffusion parameter
ω are constant. The process we suggest for describing stochastic correlation Xt reads
therewith:

dXt = κ (θ −Xt) dt + ω
√

(r −Xt) (Xt − `)dWt(2.5)

with ` < r and initial value X0 ∈ (`, r). Clearly the process is only well-defined on the
interval [`, r]. The parameters κ and ω are assumed to be positive. The mean θ shall be
in (`, r). The stochastic correlation process (2.5) is driven by a Brownian motion Wt. As
already mentioned for simplicity this Brownian motion is assumed to be independent of
the Brownian motions (or more generally the random processes) which are correlated by
Xt.
If the process describes the correlation between two random variables, one could set
` = −1, r = 1. If a higher number of identically distributed assets is considered (see also
chapter 5) the upper boundary stays the same r = 1, but the lower boundary increases.
Therefore if not stated otherwise we will set r = 1 in the following and the left boundary
remains unspecified. As it describes the minimal value we change the notation from ` to
m ∈ [−1, 1) and therefore consider the stochastic process

dXt = κ (θ −Xt) dt + ω
√

(1−Xt) (Xt −m)dWt .(2.6)

In general the need for positive definiteness can make particular choices of the boundaries
` and r necessary.

For pricing a correlation swap on realised correlation as mentioned above the raw
correlation is not explicitly needed. But there is a similarity to the approximation of an
integral.
Let V and W denote Brownian motions stochastically correlated with X. Let the re-
alised correlation observed at the market between 0 and t be denoted with C. One can
approximate:

C ≈ E [VtWt|F0]

t
=

1

t
E

 t∫
0

Xsds


For a single realisation holds:

C̄r ≈ 1

t

t∫
0

X̄sds ≈ 1

t

n∑
i=1

X̄i ·∆i

with equidistant stepsizes ∆i = t
n
. Thus in the following we will also consider the stochas-

tic process Y for realised correlation. It is given as the time scaled integral over the
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correlation process X:

(2.7) Yt :=
1

t

t∫
0

Xsds.

A possible interpretation of the relationship between realised correlation Y and X is that
the process (2.6) describes the instantaneous or short correlation in analogy to short
rate models in interest rate modelling.



CHAPTER III

Analytical Properties

In chapter 2 we suggested the mean reverting process (2.6) for modelling correlation. In
accordance to the visualisations of historically observed correlation in Fig. 2.1, 2.2 and 2.3
and coinciding with intuition, the process possesses a mean reverting property. Naturally
this is not sufficient for making (2.6) a suitable modelling approach. The most obvious
requirement for such a process is that it preserves the boundaries, which are −1 and 1 in
the univariate case. But it is as important that the model shares some of the observed
characteristics of correlation. Therefore we will do some analysis in this chapter which
shows that the idea of modelling correlation via (2.6) can be pursued.

We start by analysing the process (2.6) suggested in chapter 2 with regard to its
behaviour at the boundaries m and 1. One will observe that certain restrictions on the
parameters are necessary. If these conditions are not satisfied, the process can reach the
degenerated state of perfect positive or negative correlation.

For the appropriate parameter configurations, where the boundaries are not reached,
the transition density for t −→∞ is calculated in the second section of this chapter. This
density is stationary. It will enable us to compare the model density with the one extracted
from historical data. Additionally the stationary density can be used for calibration.

Further insight will be gained in the third section. All moments of correlation given
by (2.6) and realised correlation (2.7) are calculated. This knowledge has various appli-
cations. One of them will be shown in chapter 4 where it is used to derive a historical
parameter estimator. Further it can be used for fitting the model to historical observation
or to market.

3.1 Boundary behaviour

The processes (2.5) and (2.6) respectively are only useful for modelling correlation if they
are bounded. We show this property by proving that there are parameter configurations
for which the boundaries are not reached. As the process is continuous, it therefore does
not leave the interval given by the boundaries ` and r if X0 ∈ (`, r). Hereby we follow the
notation of Karlin and Taylor[KT81] for classifying the boundaries ` = m and r = 1. We

14
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start with a general bounded Itô diffusion xt with xt ∈ [`, r] and omit time-dependence
as the process under consideration does not feature time-dependent parameters:

(3.1) dxt = a(xt)dt + b(xt)dWt , x0 ∈ R .

We concentrate on the left boundary ` in the following. Later we will set ` = m as in (2.6).
The analysis of the right one works analogously. Now we introduce some notations,
thereby we assume x ∈ (`, r),

s(v) = exp

− v∫
v0

2a(w)

b2(w)
dw

 , v0 ∈ (`, x) , v ∈ (v0, r) ,

S(x) =

x∫
x0

s(v)dv , x0 ∈ (`, x) ,

S[c, d] = S(d)− S(c) =

d∫
c

s(v)dv , (c, d) ∈ (`, r) ,

S(`, x] = lim
a→`

S[a, x] .

We already indicate that x0 and v0 will be of no relevance in the following. We use that
dS(x) = s(x)dx. S is called the scale measure whereas N is the speed measure:

n(x) =
1

b2(x)s(x)
,

N [c, d] =

d∫
c

n(x)dx .

Analogously we can use the relation dN(x) = n(x)dx. Lastly we need the expression

Σ(`) = lim
a→`

x∫
a

N [v, x]dS(v) .

Using these notations we can classify the left boundary.

Definition 3.1 (Attractiveness and Attainability) The boundary ` is called attrac-
tive if and only if there is an x ∈ (`, r) such that

(3.2) S(`, x] < ∞ .

Otherwise it is non-attractive. Furthermore ` is classified as an attainable boundary if
and only if

(3.3) Σ(`) < ∞ .

Otherwise it is unattainable.
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Attractiveness

We want to analyse if there are parameters configurations for which the boundaries of
(2.6) are not attractive. We focus on the left boundary m. Note that the procedure can
be used for the right boundary 1 in a very similar way. It is also straightforward to extend
the results to (2.5).

First we are going to determine S(m, x] for the mean-reverting process (2.6). We
compute s(x) as a first step:

− log (s(v)) =

v∫
v0

2κ(θ − z)

ω2(1− z)(z −m)
dz

=

[
2κ

(m− 1)ω2
((θ − 1) log(x− 1) + (m− θ) log(x−m))

]v

v0

= log

[
(−1 + v)

2κ(−1+θ)

ω2(m−1) (−m + v)
2κ(m−θ)

ω2(m−1)

(
(−1 + v0)

2κ(−1+θ)

ω2(m−1) (−m + v0)
2κ(m−θ)

ω2(m−1)

)−1
]

= log

[
(1− v)

2κ(−1+θ)

ω2(m−1) (−m + v)
2κ(m−θ)

ω2(m−1)

(
(1− v0)

2κ(−1+θ)

ω2(m−1) (−m + v0)
2κ(m−θ)

ω2(m−1)

)−1
]

= log

[
(1− v)

2κ(−1+θ)

ω2(m−1) (−m + v)
2κ(m−θ)

ω2(m−1) c−1
v0

]
with c−1

v0
= (1− v0)

2κ(−1+θ)

ω2(m−1) (−m + v0)
2κ(m−θ)

ω2(m−1) . Consequently

s(v) = cv0 (1− v)
− 2κ(−1+θ)

ω2(m−1) (−m + v)
− 2κ(m−θ)

ω2(m−1) .

For the behaviour near the left boundary m we have to investigate

S(m, x] = lim
a→m

c0 ·
x∫

a

(1− v)
− 2κ(−1+θ)

ω2(m−1) (−m + v)
− 2κ(m−θ)

ω2(m−1) dv .

We note that 1 − a ≥ 1 − v ≥ 1 − x > 0 for v ∈ [a, x] ⊂ (m, 1) and −2κ(−1+θ)
ω2(m−1)

≤ 0 .

Therefore the term (1− v)
− 2κ(−1+θ)

ω2(1−m) is bounded for v ∈ [a, x]:

(1− v)
− 2κ(−1+θ)

ω2(m−1) ≥ (1− a)
− 2κ(−1+θ)

ω2(m−1) ≥ (1−m)
− 2κ(−1+θ)

ω2(m−1) ,(3.4)

(1− v)
− 2κ(−1+θ)

ω2(m−1) ≤ (1− x)
− 2κ(−1+θ)

ω2(m−1) .(3.5)

Applying the first inequality (3.4) we can estimate as follows

S(m, x] ≥ lim
a→m

(1− a)
− 2κ(−1+θ)

ω2(m−1) cv0

x∫
a

(−m + v)
− 2κ(m−θ)

ω2(m−1) dv

= lim
a→m

(1− x)
− 2κ(−1+θ)

ω2(m−1) cv0

[(
−2κ(m− θ)

ω2(m− 1)
+ 1

)−1

(−m + v)
1− 2κ(m−θ)

(m−1)ω2

]x

a
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for 2κ(m−θ)
(m−1)ω2 6= 1. The first factor converges to a constant. Therefore we only need to look

at

(−m + a)
1− 2κ(m−θ)

(m−1)ω2 .(3.6)

The expression (−m + a) is positive and approaching 0 for a ∈ (m, x), a → m. Thus (3.6)

converges if the exponent is positive and diverges if it is negative. If 2κ(m−θ)
(m−1)ω2 = 1 one

obtains

S(m, x] ≥ lim
a→`

(1− x)
− 2κ(−1+θ)

ω2(m−1) cv0 [ln (−m + v)]xa ≥ ∞.

In all we can write

S(m, x] ≥

{
const for 1− 2κ(m−θ)

(m−1)ω2 > 0

∞ for 1− 2κ(m−θ)
(m−1)ω2 ≤ 0 .

The exponent 1− 2κ(m−θ)
(1−m)ω2 is not positive and the boundary m therewith non-attractive if

2κ (m− θ)

(m− 1) ω2
≥ 1 .

By applying the inequality (3.5) we show in which case the left boundary is attractive.
For that we calculate as before:

S(m, x] ≤ cv0(1− x)
− 2κ(−1+θ)

ω2(m−1) lim
a→m

[(
−2κ(m− θ)

ω2(m− 1)
+ 1

)−1

(−m + v)
1− 2κ(m−θ)

(m−1)ω2

]x

a

=

{
const for 1− 2κ(m−θ)

(m−1)ω2 > 0

∞ for 1− 2κ(m−θ)
(m−1)ω2 < 0 .

again for 2κ(m−θ)
(m−1)ω2 6= 1. Including this case as before we get:

S(m, x] ≤

{
const for 1− 2κ(m−θ)

(m−1)ω2 > 0

∞ for 1− 2κ(m−θ)
(m−1)ω2 ≤ 0 .

We can sum up, the left boundary m is attractive if

(3.7)
2κ (m− θ)

(m− 1) ω2
< 1 .

It is not attractive if

(3.8)
2κ (m− θ)

(m− 1) ω2
≥ 1

which is the case suitable for modelling correlation.
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Attainability

Now we are going to figure out if the left boundary is attainable. We remark that only
an attractive boundary can be attainable, which follows directly from the definition of Σ.
For that reason we assume 2κ(m−θ)

(m−1)ω2 < 1 in the following. For notational simplicity, let c
denote a suitable constant in the remaining part of this section. We consider

Σ(m) = lim
a→m

x∫
a

N [v, x]dS(v) = lim
a→m

x∫
a

S[a, v]dN(v)

= lim
a→m

x∫
a

v∫
a

s(w)dw
1

b2(v)s(v)
dv .

First we calculate Σ(m) for κ = 0:

Σ(m) = lim
a→m

1

(m− 1)ω2
·
[
(a− 1) log(a− 1) + (m− a) log(a−m)

−(a− 1) log(x− 1)− (m− a) log(x−m)
]

=
1

(m− 1)ω2
lim
a→m

[
(a− 1) log

(
a− 1

x− 1

)
+ (m− a) log

(
a−m

x−m

)]
.

It holds

lim
a→m

(a− 1) log

(
a− 1

x− 1

)
= lim

a→m
(a− 1) log

(
1− a

1− x

)
< ∞ ,

lim
a→m

(m− a) log

(
a−m

x−m

)
= lim

a→m
(m− a) log

(
m− a

m− x

)
= 0 .

Hence the left boundary m is attainable if κ = 0. Now we consider the case κ > 0. We
can deduce that

Σ(m) = lim
a→−1

x∫
a

 v∫
a

cv0 (1− w)
− 2κ(−1+θ)

ω2(m−1) (−m + w)
− 2κ(m−θ)

ω2(m−1) dw

 1

β2(v)s(v)
dv

≤ (1− x)
− 2κ(−1+θ)

ω2(m−1) cv0 lim
a→−1

x∫
a

 v∫
a

(−m + w)
− 2κ(m−θ)

ω2(m−1) dw

 1

β2(v)s(v)
dv

= (1− x)
− 2κ(−1+θ)

ω2(m−1) cv0

(
−2κ(m− θ)

ω2(m− 1)
+ 1

)−1

lim
a→−1

1

ω2cv0 x∫
a

[
(−m + w)

1− 2κ(m−θ)

(m−1)ω2

]v

a

1

(1− v)(v −m)

1

(1− v)
− 2κ(−1+θ)

ω2(m−1) (−m + v)
− 2κ(m−θ)

ω2(m−1)

dv


=

1

ω2
(1− x)

− 2κ(−1+θ)

ω2(m−1) cv0

(
−2κ(m− θ)

ω2(m− 1)
+ 1

)−1

lim
a→−1

x∫
a

(
(−m + v)

1− 2κ(m−θ)

(m−1)ω2

− (−m + a)
1− 2κ(m−θ)

(m−1)ω2

)
(1− v)

−1+
2κ(−1+θ)

ω2(m−1) (−1) (−m + v)
−1+

2κ(m−θ)

ω2(m−1) dv .
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We will use the abbreviation K = 1
ω2 (1−x)

− 2κ(−1+θ)

ω2(m−1) cv0

(
− 2κ(m−θ)

ω2(m−1)
+ 1
)−1

which is positive

and does not depend on a. Therewith:

Σ(m) ≤ −K lim
a→−1

x∫
a

(1− v)
−1+

2κ(−1+θ)

ω2(m−1)

− (−m + a)
1− 2κ(m−θ)

(m−1)ω2 (1− v)
−1+

2κ(−1+θ)

ω2(m−1) (−m + v)
−1+

2κ(m−θ)

ω2(m−1) dv

= K lim
a→−1

(−m + a)
1− 2κ(m−θ)

(m−1)ω2

x∫
a

(1− v)
−1+

2κ(−1+θ)

ω2(m−1) (−m + v)
−1+

2κ(m−θ)

ω2(m−1) dv

−
x∫

a

(1− v)
−1+

2κ(−1+θ)

ω2(m−1) dv

≤ K lim
a→−1

x∫
a

(1− v)
−1+

2κ(−1+θ)

ω2(m−1) dv −K (1−m)
−1+

2κ(−1+θ)

ω2(m−1) (x−m)

≤ K lim
a→−1

(1− x)
−1+

2κ(−1+θ)

ω2(m−1) (x− a)−K (1−m)
−1+

2κ(−1+θ)

ω2(m−1) (x−m) .

Due to the attractiveness condition we already assumed −1 + 2κ(m−θ)
(m−1)ω2 < 0. Therefore

Σ(m) < ∞ holds. Thus if the left boundary m is attractive, it is also attainable. If
condition (3.8) holds, the left boundary is neither attractive nor attainable.
Following the same line of thought one derives that the right boundary r = 1 is attractive
and attainable if

(3.9)
κ

ω2
(1− θ) < 1 .

Otherwise it is neither attractive nor attainable.

We sum up in a theorem:

Theorem 3.2 (Boundary condition) The stochastic process given by (2.6) possesses
unattractive and unattainable boundaries m and 1 if and only if

2κ

ω2
≥ max

(
2

1− θ
,
m− 1

m− θ

)
.(3.10)

Only if this condition is fulfilled, we will consider the stochastic process as a suitable
model for correlation.

We will only consider (2.6) with (3.10) in the following.

Fig. 3.1 depicts the lowest possible values for the mean reversion parameter κ according
to Thm. 3.2. The red lines in 3.1(A) show the lowest possible value for κ such that the
boundaries m = −0.1 and 1 are not attractive (and therewith not attainable) resulting
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from ω = 1 for different mean values. The blue line shows the respective information for
ω = 2. The dashed lines describe the restriction which is necessary for the left boundary
to be not attractive, the solid lines show the restrictions for the upper bound. Fig. 3.1(B)
visualises the lowest possible value for κ such that the lower boundary is not attractive
for different diffusion parameter and differing mean.
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Figure 3.1: (A): Lowest κ such that (2.6) is not attractive for m = −0.1, ω = 1, 2, θ ∈
[0, 0.9]. (B): Lowest κ such that (2.6) is not attractive for m = −1, ω ∈ [0.5, 5], θ ∈
[−0.5, 0.5].

One observes that a higher diffusion parameter forces higher level for the mean rever-
sion. Fig. 3.1(A) shows that the restrictions are not symmetric. The restriction resulting
from the upper boundary is more often active (for θ & 0.3). As already indicated by (A),
(B) shows that increasing ω must be balanced by an over-proportional increasing of the
rate of mean reversion.

In the following we will only deal with the case of unattainable boundaries. Thus we
exclusively allow for parameter configurations which satisfy (3.10).

3.2 Stationary density

The transition density describes the distribution of a stochastic process in t starting at
t0. In this section we will compute the transition density of (2.6) for t → ∞, where it
becomes stationary. By determining this density we hope to gain further insight into the
behaviour of the stochastic correlation process. Particularly we will be able to compare
it to the observed distributions of correlation as shown for example in Fig. 2.1.
We will use the Fokker-Planck equation, also known as Kolmogoroff forward equation.
It is a partial differential equation or parabolic type. The transition density solves it. We
restrict ourselves to non-time dependent coefficient functions. More precisely, assuming
that the stochastic differential equation

(3.11) dXt = a(Xt)dt + b(Xt)dWt , X0 = x0 ,
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possesses a transition density p(t, y|x0), then p satisfies the Fokker-Planck equation

(3.12)
∂

∂t
p(t, x) +

∂

∂x
(a(x)p(t, x))− 1

2

∂2

∂x2

(
b(x)2p(t, x)

)
= 0 .

For example in case of an ordinary Brownian motion the Fokker-Planck equation reduces
to a diffusion equation:

∂

∂t
p(t, x) =

1

2

∂2

∂x2
(p(t, x)) .

For a thorough discussion of the Fokker-Planck equation and its properties we refer to
the book by Risken[Ris89]. We want to derive the transition density of the correlation
process for t →∞. We demand the solution p to fulfill two structural conditions. Firstly
p is required to be a density

1∫
m

p(t, x)dx = 1 .(3.13)

Moreover we postulate that p preserves the expectation1

1∫
m

x · p(t, x)dx −→
t→∞

θ .(3.14)

For the mean reversion process (2.6) one can show that every two solutions of (3.12) for
t →∞ are equal, see Risken[Ris89], section 6.1. As a consequence it suffices to show that
a stationary solution exists to know that it is the unique solution. This is how we proceed
in the following: We will derive a stationary solution which fulfills the stationary Fokker
Planck equation

∂

∂x
(a(x)p(x))− 1

2

∂2

∂x2

(
b(x)2p(x)

)
= 0

as well as (3.13) and (3.14). Firstly we examine the simplified case θ = 0, ω = 1 and
m = −1 and look for the stationary solution p0(x) = lim

t→∞
p0(t, x). We consider the

stationary Fokker-Planck equation for a(x) = −κx, b(x) =
√

1− x2:

(3.15) (1− κ)p0(x) + x(2− κ)p′0(x)− 1

2
(1− x2)p′′0(x) = 0.

We receive as a solution to (3.15)

(3.16) p0(x) = (1− x2)(κ−1)

c + b

1∫
x

(
1− z2

)κ
dz


1Short calculations show that for the expectation of (2.6) holds E[Xt] = θ +(X0− θ) exp(−κt), which

converges to θ for t →∞. See also section 3.3.
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with constants b, c ∈ R. If b = 0, p0 is symmetric around x = 0. Hence

1∫
−1

x · p0(x)dx = 0 = θ ,

and (3.14) holds. Thus we choose b = 0. The still free variable c must be chosen such that
condition (3.13) is fulfilled. The primitive of p can be described via the hyper-geometric
function. See for example [AS72] and [WW72]. The classical standard hyper geometric
series 2F1 for a, b, c, z ∈ R is given by

(3.17) 2F1(a, b, c, y) = 1 +
ab

c
y +

a(a + 1)b(b + 1)

2!c(c + 1)
y2 + ...

If c is a negative integer, one of the denominators becomes zero. Therefore we exclude
that case. If a or b is a negative integer, the series terminates at the (1−a)th or (1− b)th
term respectively and thus converges. For all other parameter configurations, one can
prove that 2F1 is absolute convergent if

(3.18) a + b− c < 0 .

It is possible to formulate many functions with the help of 2F1, among others:

(1− x2)κ−1 = 2F1

(
1− κ, 1, 1, x2

)
.

Therewith one can easily integrate for κ ∈ [1,∞):∫
(1− x2)(κ−1)dx = x · 2F1(1− κ,

1

2
,
3

2
, x2) > 0 .

Thus we must choose c as

c =
1

2 · 2F1(1− κ, 1
2
, 3

2
, 1)

.

With this choice

(3.19) p0(x) = c(1− x2)(κ−1)

becomes a density.
As a next step we consider the mean-reverting process (2.6) with θ 6= 0, but still ω = 1,

m = −1. The density p is solution of

(3.20) (1− κ)p(x) + x(2− κ)p′(x) + κθp′(x)− 1

2
(1− x2)p′′(x) = 0 .

Lengthy calculations show that

p(x) =

(
1− x

1 + x

)−κ·θ (
1− x2

)κ−1 ·

c + b

1∫
x

e(−κ(2θ tanh−1(z)+log(z2−1)))dz


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solves (3.20) with b, c ∈ R. For θ = 0 we want p to be equal to the above solution (3.19).
This is only possible if b = 0. Thus the final solution is2

p(x) = c

(
1− x

1 + x

)−κ·θ (
1− x2

)κ−1
,

with c such that
∫ 1

−1
p(x) = 1 holds. Note that p is only well-defined on [−1, 1] if the

parameter constraint (3.10) holds. We sum up the results in a theorem:

Theorem 3.3 (Stationary Density) The transition density p of

dXt = κ (θ −Xt) dt +
√

1−X2
t dWt

for t →∞ under the constraints (3.13) and (3.14) reads

(3.21) p(x) = c

(
1− x

1 + x

)−κ·θ (
1− x2

)κ−1
,

with

c =
( 1

κ + θκ
2F1(1, (θ − 1)κ + 1; θκ + κ + 1;−1)

+
1

κ− θκ
2F1(1, 1− (θ + 1)κ;−θκ + κ + 1;−1)

)−1

.(3.22)

Proof: It remains to calculate the constant c and to show that (3.21) with (3.22) preserves
the expectation (3.14). The necessary computations can be found in the appendix A.2.
�

Figure 3.2 shows how the stationary densities may look like.

We can observe that

• p is concentrated on [−1, 1].

• p is symmetric with respect to θ in the sense of pθ(x) = p−θ(−x).

• If θ = 0 the global maximum is attained at x = 0.

• The probability mass decreases when getting away from the mean. In particular, it
vanishes in the boundary values.

These properties agree with intuition and what we demanded in the chapter 2. Especially
they correspond to figure 2.1, 2.2 and 2.3.

2Note that this corresponds to a β-distribution.
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Figure 3.2: (A): Stationary density (3.21) of (2.6) with m = −1 and ω = 1 for varying
κ ∈ [3, 20], θ = 0.2, (B): Stationary density (3.21) of (2.6) with m = −1 and ω = 1 for
varying θ ∈ [−0.75, 0.75], κ = 12 .

Remark 3.4 (Calibration via stationary density) The transition density can be used
for calibrating the parameters. Hereby one fits the historically observed density to the
stationary density (3.21). See for example Wilmott [Wil00b], chapter 46. An example
from FX is shown in Fig. 5.1.

Remark 3.5 (Static stochastic correlation) A random variable distributed accord-
ing to the density (3.21) can be used in static models as stochastic correlation. We show
an example from credit in chapter 5.

One can easily extend the result to the more general case of (2.6). We do so in two
steps. We start by allowing for arbitrary lower bound m ∈ [−1, 1) in (2.6). The diffusion
parameter is still fixed, ω = 1. As throughout this chapter, we assume that (3.10) holds.

Corollary 3.6 The stationary density for

dXt = κ (θ −Xt) dt +
√

(1−Xt) (Xt −m)dWt

reads

(3.23) pm(x) = c

(
1−x
x−m

)1−κ(m−2θ+1)
m−1 ((1− x)(x−m))κ

(x− 1)2
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with

c =

(
(1−m)2κ−1Γ(κ− 1)Γ

(
2(m− θ)κ

m− 1

)

· 2F1

(
2(m− θ)κ

m− 1
,
(m− 2θ + 1)κ

m− 1
− 1;

(3m− 2θ − 1)κ

m− 1
− 1; 1

))−1

· Γ
(

(3m− 2θ − 1)κ

m− 1
− 1

)
.

Proof: We transform

dXt = κ (θ −Xt) dt +
√

(1−Xt) (Xt + 1)dWt

with

x → y = f(x) =
(1−m)

2
(x + 1) + m ∈ [m, 1] .

The inverse function is

y ∈ [m, 1] → x = f−1(y) = (y −m)
2

(1−m)
− 1 ∈ [−1, 1] .

By applying Itô’s formula we obtain the following stochastic differential equation for the
Itô process Yt = f(Xt):

dYt = f ′(Xt)dXt =
1−m

2

(
κ (θ −Xt) dt +

√
(1−Xt) (Xt + 1)

)
= κ

(
(θ + 1)

(1−m)

2
+ m− Yt

)
dt +

√
(1− Yt) (Yt −m)dWt

= κ
(
θ̃ − Yt

)
dt +

√
(1− Yt) (Yt −m)dWt

where θ̃ = (θ + 1) 1−m
2

+ m. We know the stationary density for the process Xt from
theorem 3.3:

p(x) =

(
1− x

1 + x

)−κ·θ̃ (
1− x2

)κ−1
,

less scaling by a constant. The density for the transformed process can be derived from
that:

h(x) = p
(
f−1(x)

) (
f−1(x)

)′
= −

22κ−3(m− 1)3
(

x−1
m−x

)1−κθ̃
(

(m−x)(x−1)
(m−1)2

)κ

(x− 1)2
.

The scaling constant c is calculated in A.2, see (A.9). Therewith the original process Xt

possesses the stationary density as given. �
Next we state the stationary density for the correlation process with arbitrary ω > 0,

which corresponds to (2.6):
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Corollary 3.7 The stationary density for (2.6)

(3.24) dXt = κ (θ −Xt) dt + ω
√

(1−Xt) (Xt −m)dWt

is given by

(3.25) pω(x) = c

(
1−x
x−m

)1− κ
ω2 (m−2θ+1)

m−1 ((1− x)(x−m))
κ

ω2

(x− 1)2

with

c =

(
(1−m)

2κ
ω2−1Γ

( κ

ω2
− 1
)

Γ

(
2(m− θ)κ

(m− 1)ω2

)

· 2F1

(
(m− 2θ + 1)κ

(m− 1)ω2
− 1,

2(m− θ)κ

(m− 1)ω2
;
(3m− 2θ − 1)κ

(m− 1)ω2
− 1; 1

))−1

· Γ
(

(3m− 2θ − 1)κ

(m− 1)ω2
− 1

)
.

Proof: The stationary Fokker-Planck equation for (2.6) reads.

0 =
∂

∂x
(κ (θ − x) pω(x))− 1

2

∂2

∂x2

(
ω2 (1− x) (x−m) pω(x)

)
⇐⇒ 0 =

∂

∂x

( κ

ω2
(θ − x) pω(x)

)
− 1

2

∂2

∂x2
((1− x)) (x−m) pω(x))

Now one can use corollary 3.6 and obtains the result. The constant c is computed in the
appendix , see (A.8). �

3.3 Moments

In this section we will derive a system of ordinary differential equations describing the
moments of the stochastic correlation process (2.6). As already indicated in chapter 2,
the integral (2.7) over this stochastic process can be interpreted as an approximation to
realised correlation, which is for example used in the correlation swap and of importance
as well. Therefore we will also calculate its moments.

3.3.1 Moments of stochastic correlation

Dufresne [Duf01] derived a system of ordinary differential equations for the moments of
the Cox-Ingersoll-Ross process [CIR85]

(3.26) dZt = α (β − Zt) dt + σ
√

ZtdWt , Z0 = z0
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and its integral

(3.27)

t∫
0

Zsds .

This process is famous for modelling the short rate in an interest rate framework or for
modelling volatilities. Its popularity is due to (among others) its analytical tractability,
which allows for semi-analytical solutions. In contrast to (2.6) it is an affine linear diffusion
such that the characteristic function is given as a solution of a system of Riccati equations.
We refer to Duffie, Pan and Singleton [DPS00] for a detailed discussion. Here we apply
the methodology of Dufresne to the correlation process (2.6).

In this section we use the abbreviation mi(t) = E [X i
t ]. We can directly calculate that

m0(t) = 1 and m1(t) = θ + (X0 − θ) exp (−κt)

holds3. Therefore let i ≥ 2 in the following. By virtue of Itô’s formula we can calculate
the stochastic differential equations for X i:

dX i
t = i ·X i−1

t dXt +
i(i− 1)

2
X i−2

t (dXt)
2

= iX i−1
t

(
κ (θ −Xt) dt + ω

√
(1−Xt) (Xt −m)dWt

)
+

i(i− 1)

2
X i−2

t ω2 (1−Xt) (Xt −m) dt

=

[
−im(i− 1)

2
ω2X i−2

t +

(
iκθ +

i(i− 1)

2
ω2(1 + m)

)
X i−1

t

−
(

iκ +
i(i− 1)

2
ω2

)
X i

t

]
dt + iX i

tω
√

(1−Xt) (Xt −m)dWt .

Using the equivalent integral presentation and taking the expectation one obtains:

E
[
X i

t

]
= X i

0 −
im(i− 1)

2
ω2

t∫
0

E
[
X i−2

s

]
ds +

(
iκθ +

i(i− 1)

2
ω2(1 + m)

)

·
t∫

0

E
[
X i−1

s

]
ds−

(
iκ +

i(i− 1)

2
ω2

) t∫
0

E
[
X i

s

]
ds .

Differentiating with respect to t, we obtain the following system of ordinary differential
equations describing the moments of X:

m′
i(t) = aimi−2(t) + bimi−1(t) + cimi(t) , ∀ i ≥ 2(3.28)

m1(t) = θ + (X0 − θ) exp (−κt) ,(3.29)

m0(t) = 1 ,(3.30)

3The first equation m0(t) = 1 goes without saying. Standard calculation show the second: Xt = X0 +
κ
∫ t

0
θ−Xsds + ω

∫ t

0

√
(1−Xs) (Xs −m)dWs leads in expectation to E [Xt] = X0 + κθt− κ

∫ t

0
E [Xs] ds.

The solution to this differential equation is m1(t).
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with the auxiliary parameters

ai = −im(i− 1)

2
ω2 ,(3.31)

bi = iκθ +
i(i− 1)

2
ω2(1 + m) ,(3.32)

ci = −
(

iκ +
i(i− 1)

2
ω2

)
.(3.33)

Solving this system of differential equations exemplarily for the second moment leads to
the following results:

E[X2
t ] =

1

ω4 + 3κω2 + 2κ2
e−t(ω2+2κ)

·
((

ω4 + 3κω2 + 2κ2
)
X2

0 +
(
−1 + et(ω2+κ)

) (
ω2 + 2κ

) (
(m + 1)ω2 + 2θκ

)
X0

−
(
−1 + et(ω2+2κ)

)
mω2

(
ω2 + κ

)
−(m + 1)θω2

((
−1 + 2et(ω2+κ) − et(ω2+2κ)

)
κ− et(ω2+κ) (−1 + etκ

)
ω2
)

−2θ2κ
((
−1 + 2et(ω2+κ) − et(ω2+2κ)

)
κ− et(ω2+κ) (−1 + etκ

)
ω2
))

.

As the solutions for higher moments become even more complicated, their explicit pre-
sentations are omitted, but recursive calculation directly leads to the solutions.

Figure 3.3 shows the first three centralised moments for two different parameter con-
figurations:
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Figure 3.3: (A): First three centralised moments of correlation for κ = 1, θ = 0.3, ω =
1.5, m = −1 and X0 = 0.2. (B): First three centralised moments of correlation for
κ = 3, θ = 0.1, ω = 1.7, m = −1 and X0 = 0.2.

As expected the first moment converges to the long term mean θ. The second moment
increases up to t ≈ 1 in (A) and up to t ≈ 1

3
in (B), slightly decreases and then stays

stable afterwards. The third moment in (A) shows a decrease which becomes flatter for
higher t. In (B) one observes a small hump. This behaviour agrees with the prospects
about a mean reverting process with constant mean. After a certain period of time the
system finds its equilibrium.
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3.3.2 Moments of integrated stochastic correlation

Now we consider the moments M(i,j) := E
[
X i

tY
j
t

]
where

(3.34) Yt :=

t∫
0

Xsds .

We already know various cases. If i = j = 0, one directly sees that M(0,0) = 0. For j = 0
we can use the results of the previous section:

M(i,0)(t) = mi(t) .

As well one can directly observe that

M ′
(0,j)(t) = jM(1,j−1)

holds. Short calculation shows

M ′
(1,j)(t) = jM(2,j−1) + κθM(0,j) − κM(1,j) .

Therewith we can now state the stochastic differential equations for the remaining M(i,j)(t).
Again we use Itô’s formula:

d
(
X i

tY
j
t

)
= X i

tdY j
t + Y j

t dX i
t

= X i
tjY

j−1
t Xtdt + Y j

t

(
iX i−1

t dXt +
i(i− 1)

2
(dXt)

2

)
+ . . . dWt

= jX i+1
t Y j−1

t dt + Y j
t

(
aiX

i−2
t + biX

i−1
t + ciX

i
t

)
dt + . . . dWt.

As we are only interested in the expectation, the coefficient function of dWt is of no
significance and left out. Thus the raw (non-centralised) moments fulfill the following
system of ordinary differential equations:

M ′
(i,j)(t) = j ·M(i+1,j−1)(t) + aiM(i−2,j)(t) + biM(i−1,j)(t) + ciM(i,j)(t) ,(3.35)

M(i,0)(t) = mi(t) ,(3.36)

M ′
(0,j)(t) = jM(1,j−1) , j ≥ 1(3.37)

M ′
(1,j)(t) = jM(2,j−1) + κθM(0,j) − κM(1,j) , j ≥ 1(3.38)

M(i,j)(0) = 0 , ∀ j > 0 .(3.39)

Note that one recovers the moments of the integrated stochastic correlation by setting
i = 0. This system can be solved recursively as illustrated in the following graph 3.4 for
i = 0, j = 3:
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M(i,0)
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Figure 3.4: Recursive computation of moments of integrated correlation for M(0,3)

.

As an example we present the solutions for the first non-centralised moment of inte-
grated correlation

E

 t∫
0

Xsds

 = θt +
1

κ
(X0 − θ) (1− exp(−κt))
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and the second:

E

 t∫
0

Xsds

2 =
1

κ2 (ω2 + κ)2 (ω2 + 2κ)2 e−t(ω2+3κ)

·

(
2etκ

(
(X0 − 1)(X0 −m)ω4 + 2(X0 − θ)2κ2

+
(
3X2

0 − 2(θ + 1)X0 + θ + m(−2X0 + θ + 1)
)
κω2

)
κ2

−2et(ω2+2κ) (ω2 + 2κ
)2 · ((3θ2 − 2mθ − 2X0θ − 2θ

+m + mX0 + X0 + t(m− θ + 1)(X0 − θ)κ
)
ω4

+κ
(
X2

0 − 2θX0 + 2θ2 + m−mθ − θ + (m + 1)t(X0 − θ)κ
)
ω2

+(X0 − θ)κ2(X0 + θ(tκ− 1))
)

+et(ω2+3κ) (ω2 + κ
)2 ((

t2θ2κ2 + 2t(m(θ − 1) + (X0 − 2θ + 1)θ)κ

+2
(
3θ2 − 2(m + X0 + 1)θ + m + mX0 + X0

) )
ω4

+2κ
(
X2

0 + (4tκθ − 6θ + 2)X0 + m(2X0 − 5θ + 2t(θ − 1)κ + 3)

+θ(2tκ + 2θ(tκ(tκ− 3) + 4)− 5)
)
ω2 + 4κ2(X0 + θ(tκ− 1))2

))
.

Again the solutions for higher moments become even more complicated, and their explicit
presentations are omitted.

Figure 3.5 shows the first three centralised moments of realised correlation, which we
obtain by scaling with time, for two different parameter configurations:
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Figure 3.5: (A): First three centralised moments of realised correlation for κ = 1, θ =
0.3, ω = 1.5, m = −1 and X0 = 0.2. (B): First three centralised moments of realised
correlation for κ = 3, θ = 0.1, ω = 1.7, m = −1 and X0 = 0.2.
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Again the first moment starts at the initial value and converges to the long term mean
θ. The development of second and third moment shows that uncertainty increases in the
beginning. The underlying process diffuses from the initial value. This diffusing is stronger
than the averaging effect of the integral. Uncertainty reaches a peak. Afterwards both
moments decrease towards zero which is clear as the higher moments of the underlying
process tend to a constant. The peak is reached around t = 1

κ
.

3.4 Summary

We could show that under the parameter restrictions in Thm. 3.2 the process given by (2.6)
does not reach the boundaries. For these parameter configurations it was also possible to
compute the transition density for t →∞. Further we could derive a system of ordinary
differential equations for the correlation process as well as for the realised correlation. This
knowledge will turn out to be important for the algorithm to calibrate the parameters
presented in the following chapter.



CHAPTER IV

Maximum-Likelihood estimator

After having established in the previous chapter that (2.6) is suitable for modelling cor-
relation for certain parameter configurations, there is still the problem of calibration. We
noted that the transition density can be used for calibration. However this methodology
only works under the assumption that correlation itself is observable.
In this chapter we do not need that assumption. Instead the presented algorithm bases
on data which indeed can be observed: the realised correlation calculated from market
data as in (1.13). In chapter 2 we already mentioned the similarities to the integrated
correlation.
Here we derive a maximum-likelihood estimator which solely uses historical values of the
time scaled integrated process (the realised correlation). As the density of the correlation
integral is not known in closed form, the similarity to an Ornstein-Uhlenbeck process is
used1.

4.1 Overview

The aim is the historical calibration of the stochastic correlation process (2.6)

dXt = κ(θ −Xt)dt + ω
√

(1−Xt)(Xt −m)dWt , X0 = const1

to the observed realised correlation. Hereby we interprete the realised correlation as the
average for a certain time period as in (2.7):

Yt =
1

t

t∫
0

Xsds.

The density of the process Yt is not known analytically. However, since Yt is an averaged
quantity, we may hope that the approximation by the aid of a normal process leads to
satisfactory results.

1This chapter bases on cooperation with Valer Zetocha from Bear Stearns, London.
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The Ornstein-Uhlenbeck process is a well known and analysed stochastic process with the
same drift behaviour as the stochastic correlation process:

(4.1) dxt = a(b− xt)dt + σdVt , x0 = const2.

Moreover its integral is normally distributed for every t. For more information on the
Ornstein-Uhlenbeck process the reader is referred to [UO30].

Here we want to make use of these similarities. At first we will compare normal densi-
ties to the densities of the integrated correlation process to get an impression how close the
distribution of the stochastic correlation process is to the Ornstein-Uhlenbeck distribution
for every t. Fig. 4.1 visualises the estimated densities of integrated stochastic correlation
and densities from a normal distribution where standard deviation and mean are fitted
to standard deviation and mean of the correlation density. The correlation density stems
from a Monte Carlo simulation with the implicit Milstein scheme2 and M = 10000 paths3.
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Figure 4.1: Simulated densities of 1
t

∫
Xsds with κ = 2, θ = X0 = 0, ω = 0.5, m = −1.

(A): Varying time t = 0.25, 1, 4. (B): Simulated densities compared to fitted normal
distributions for t = 0.25, t = 4.

Fig. 4.1 (A) shows the density of realised correlation for different t. As already indi-
cated by the behaviour of the second and third moment, observable in Fig. 3.5, for small
t the density becomes wider and flatter. There is a point in time after which the density
becomes more and more centered. Theoretically for t →∞ it converges to a Dirac mea-
sure.
Fig. 4.1(B) shows the fitted normal densities compared to the correlation densities for
t = 1

4
and t = 4. Both fits are rather close.

2For an explanation concerning the choice of the integration scheme see appendix A.1.
3The estimated densities in (A) and (B) stem from different Monte Carlo simulations. The difference

between them is due to this comparatively low number of paths.
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Fig. 4.2 gives the analogous information but for a correlation process with m = −1,
which is not centered and therewith not symmetrically distributed in contrast to the
normal distribution.
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Figure 4.2: Simulated densities of realised correlation with κ = 2, θ = X0 = 0.3, ω =
0.5, m = −1. (A): Varying time t = 0.25, 1, 4. (B): Simulated densities compared to fitted
normal distributions for t = 0.25, t = 4.

As expected the fit worsens. But it is still rather good such that we can hope that the
approximation via an Ornstein-Uhlenbeck process will work.

In the following we denote the average over the Ornstein-Uhlenbeck process (4.1) by

(4.2) yt =
1

t

t∫
0

xsds.

For this process the density can be calculated, see section 4.2. Here we would like to
stress that the method of parameter calibration is constructed based on the values of the
realised correlation (2.7). We assume that our given data only stems from the realisation
of the integrals.

We will proceed as follows. First a maximum-likelihood estimator for the Ornstein-
Uhlenbeck process is derived in section 4.2. No analytical features from the correlation
process enter the procedure, such that it could also be used in a different context to purely
calculate the parameters of (4.1). At the end of this section we will be able to estimate
the parameters of the Ornstein-Uhlenbeck process. Afterwards the parameters of the
correlation process (2.6) will be calibrated such that Ornstein-Uhlenbeck and correlation
process are close.
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4.2 Estimating the integral of an Ornstein-Uhlenbeck

process

The method bases on n + 1 observations of the integral. They are denoted by ȳ0, ..., ȳn

for time points t0, ..., tn. The length of the time steps is denoted by ∆i = ti+1 − ti. Note
that they do not need to be equidistant.
Following the idea of [Fra03], the likelihood function will eventually be maximised with
respect to one variable, the rate of mean reversion. This simplifies and speeds up the
optimisation considerably.

For the maximum likelihood estimator we need conditional expectation and conditional
variance of the Ornstein-Uhlenbeck process (4.1).
The process xt given in (4.1) possesses the following presentation

(4.3) xt = x0e
−at + b

(
1− e−at

)
+ σ

t∫
0

ea(s−t)dVs .

See for example [UO30]. Therewith we can compute the first two unconditional moments
of the integrated process (4.2). For the expectation one can easily see:

(4.4) E[yt] = b +
x0 − b

at
(1− exp(−at)) .

Of course this agrees with the results from chapter 3 where the moments of the correlation
process are calculated since both processes only differ in the diffusion term. More tedious
but straightforward calculations show that the variance is given by

(4.5) V ar[yt] =
1

t2
σ2

a2

(
t− 3

2a
+

2 exp(−at)

a
− exp(−2at)

2a

)
.

Therewith we can write up conditional expectation and variance of yi when the integral
yi−1 at ti−1 is given. For the first moment holds

E [yi|ȳi−1] = E

 1

ti

ti−1∫
0

xsds +
1

ti
∆i−1

1

∆i−1

ti∫
ti−1

xsds

∣∣∣∣∣∣ ȳi−1


=

ti−1

ti
ȳi−1 +

1

ti
∆i−1E[y∆i−1

]

=
ti−1

ti
ȳi−1 +

1

ti
∆i−1b

(
1− 1

a∆i−1

(1− exp(−a∆i−1))

)
+

1

ti
xi−1

1

a
(1− exp(−a∆i−1)) ,

where y∆i
is defined as y∆i

= 1
∆i

∫ ti
ti−1

xsds. The value xi−1 of the underlying process

at ti−1 is not known since we can only observe the realisation of the integral at discrete
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observation points. Thus we need a suitable approximation. We suggest the following for
i ≥ 1:

tiyi − ti−1yi−1 ≈ ∆i−1 (qxi + (1− q)xi−1)

⇔ xi ≈ 1

q

(
1

∆i−1

(tiyi − ti−1yi−1)− (1− q)xi−1

)
=: x̃i ,(4.6)

with q ∈ [1
2
, 1] and initial value x0 = ȳ0. This discretisation coincides with the so called θ-

method. Here we substituted the traditional weighting variable θ with q, to avoid potential
confusing with the level of mean reversion in the correlation process. For information on
the θ-scheme see for example [GJ03]. For q = 1 it is fully implicit and numerically stable.
It corresponds to an approximation through Riemann sums. If q = 1

2
one obtains the

trapezoidal rule

xi ≈
2

∆i−1

(ti−1yi − ti−1yi−1)− xi−1 with x0 = y0 .(4.7)

It is advantageous concerning consistency, but at the border of numerical stability4. Un-
fortunately it often leads to oscillation in the likelihood function (4.10) below. The trape-
zoidal rule does not damp but preserve oscillation. Here we have stochastic input values,
thus there is always noise or oscillation in every step. The trapezoidal rule preserves and
sums up all those oscillations. See for example Hairer and Wanner [HW02], chapter 15.
With a suitable choice of q is is possible to avoid these oscillations and (4.6) turns out to
be an appropriate approximation.
It may be possible to use other discretisation schemes as well, but one should use them
with care because of the possible oscillation problem.
After having approximated the conditional expectation, we state the conditional variance:

V ar[yi|ȳi−1] =
1

t2i

σ2

a2

(
∆i−1 −

3

2a
+

2 exp(−a∆i−1)

a
− exp(−2a∆i−1)

2a

)
,(4.8)

which tends to zero for large t. Knowing that yt is normally distributed with expectation
µ and variance σ2, its density reads

f(x) =
1√

2πσ2
exp

(
−1

2

(x− µ)2

σ2

)
.

We want to determine a, b, σ such that the probability for the independent realisations
ȳ0, ..., ȳn is maximised. The likelihood function P (a, b, σ) = P (a, b, σ; ȳ0, ..., ȳn) for the
realisations is given by

P (a, b, σ) =
n

Π
i=1

1√
2πV ar[yi|ȳi−1]

exp

(
−1

2

(ȳi − E[yi|ȳi−1])
2

V ar[yi|ȳi−1]

)
.(4.9)

Taking the logarithm of P (a, b, σ) leads to

g(a, b, σ) = −1

2
ln(2π)− 1

2

n∑
i=1

ln(V ar[yi|ȳi−1])−
1

2

n∑
i=1

(
(ȳi − E[yi|ȳi−1])

2

V ar[yi|ȳi−1]

)
(4.10)

4For q ∈ [0, 1
2 ) specific constraints are necessary to guarantee stability.
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Lemma 4.1 The function

g(a, b, σ) : L := (0,∞)× (−∞,∞)× (0,∞) −→ R

defined in (4.10) does not attain its global maximum at the boundary ∂L.

Proof: We use A := 1
2

∑n
i=1 ln(V ar[yi|ȳi−1]) and B := 1

2

∑n
i=1

(
(ȳi−E[yi|ȳi−1])2

V ar[yi|ȳi−1]

)
as abbrevi-

ations in (4.10). Without loss of generality we assume that ∃ ȳi0 such that ȳi0 6= E[yi|ȳi−1].
We begin with the diffusion parameter σ. One directly observes

V ar [yi|ȳi−1] −→

{
0 for σ −→ 0

∞ for σ −→∞ .

For σ →∞, it holds that A →∞ and B → 0. Thus

g(a, b, σ) −→ −∞ for σ →∞ .

For σ → 0, it holds A → −∞ and B →∞. As
ln(σ2)

1
σ2

→ 0, A is dominated by B and thus

also in this case
g(a, b, σ) −→ −∞ for σ → 0 .

holds. For the rate of mean reversion we note that

E [yi|ȳi−1] −→

{
ti−1

ti
ȳi−1 + ∆i−1

ti
θ for a −→∞

ti−1

ti
ȳi−1 + ∆i−1

ti
xi−1 for a −→ 0.

The influence of a on the variance (which is non-negative by construction) is similar to
the influence of σ, but the other way round:

V ar [yi|ȳi−1] −→

{
∞ for a −→ 0

0 for a −→∞ .

Therefore analogous argumentation as above leads to

g(a, b, σ) −→ −∞ for a → {0,∞} .

If a, σ →∞ or a, σ → 0 the limit behaviour is dominated by a see (4.8).
Concerning the dependence on b one only has to consider the expectation which depends
linearly on the mean factor: A →∞. Thus

g(a, b, σ) −→ −∞ for b → {−∞,∞}.

If b, σ →∞, B converges to a constant. As A →∞:

g(a, b, σ) −→ −∞

holds in this case. The same result is obtained if b → −∞, σ → 0. Again A and B
diverge, but the limit behaviour is dominated by B.
The results for the remaining combinations can be shown as easily. �
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The likelihood expression shall be maximised. In view of the previous lemma 4.1, we
can calculate the derivatives and set them to zero:

0
!
= g(a, b, σ)b =

n∑
i=1

(
(ȳi − E[yi|ȳi−1])

V ar[yi|ȳi−1]

)
· E[yi|ȳi−1]b

=
n∑

i=1

(
(ȳi − E[yi|ȳi−1])

V ar[yi|ȳi−1]

)
· 1

ti
∆i−1

(
1− 1

a∆i−1

(1− exp(−a∆i−1))

)
.

We want to derive an expression for b by rearranging this equation:

n∑
i=1

 1
ti
∆i−1b

(
1− (1−exp(−a∆i−1))

a∆i−1

)
V ar[yi|ȳi−1]

 · ∆i−1

ti

(
1− 1

a∆i−1

(1− exp(−a∆i−1))

)

=
n∑

i=1

 ȳi − ti−1

ti
ȳi−1 −

x̃ti−1 (1−exp(−a∆i−1))

tia

V ar[yi|ȳi−1]

 · ∆i−1

ti

(
1− 1

a∆i−1

(1− exp(−a∆i−1))

)
,

which results in

b =

n∑
i=1

(
ȳi−

ti−1
ti

ȳi−1−
x̃i−1
tia

(1−exp(−a∆i−1))

V ar[yi|ȳi−1]

)
∆i−1

ti

(
1− 1

a∆i−1
(1− exp(−a∆i−1))

)
n∑

i=1

(
1
ti

∆i−1

“
1− 1

a∆i−1
(1−exp(−a∆i−1))

”
V ar[yi|ȳi−1]

)
∆i−1

ti

(
1− 1

a∆i−1
(1− exp(−a∆i−1))

)

=

n∑
i=1

(
ȳi−

ti−1
ti

ȳi−1−
x̃i−1
tia

(1−exp(−a∆i−1))

1
ti

“
∆i−1− 3

2a
+

2 exp(−a∆i−1)

a
− exp(−2a∆i−1)

2a

”
)(

∆i−1 − 1
a

(
1− e−a∆i−1

))
n∑

i=1

(
(∆i−1− 1

a
(1−exp(−a∆i−1)))

2“
∆i−1− 3

2a
+

2 exp(−a∆i−1)

κ
− exp(−2a∆i−1)

2a

”
) .(4.11)

Note that this expression does not depend on the parameter σ, but only on the speed of
mean reversion.
Analogously we compute the derivative with respect to the diffusion parameter σ. We
need the derivative of the variance (4.8):

V ar[yi|ȳi−1]σ =
2

t2i

σ

a2

(
∆i−1 −

3

2a
+

2 exp(−a∆i−1)

a
− exp(−2a∆i−1)

2a

)
.

Therewith we can calculate g(a, b, σ)σ:

g(a, b, σ)σ = −1

2

n∑
i=1

V ar[yi|ȳi−1]σ
V ar[yi|ȳi−1]

+
1

2

n∑
i=1

(
(ȳi − E[yi|ȳi−1])

2

V ar[yi|ȳi−1]2

)
· V ar[yi|ȳi−1]σ.

In view of lemma 4.1 it must hold for the maximum value that g(a, b, σ)σ = 0. We
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obtain

∑n
i=1

2
σ

=
n∑

i=1

(
(ȳi − E[yi|ȳi−1])

2

V ar[yi|ȳi−1]

)
· 2

σ

⇐⇒ n =
1

σ2

n∑
i=1

 (ȳi − E[yi|ȳi−1])
2

1
t2i

1
a2

(
∆i−1 − 3

2a
+ 2 exp(−a∆i−1)

a
− exp(−2a∆i−1)

2a

)


=⇒ σ =

√√√√√1

n

n∑
i=1

 (ȳi − E[yi|ȳi−1])2

1
t2i

1
a2

(
∆i−1 − 3

2a
+ 2 exp(−a∆i−1)

a
− exp(−2a∆i−1)

2a

)
.

To sum up we obtained an expression for σ which depends on the mean reversion factor
a and the level of mean reversion b:

σ =

√√√√√ 1

n

n∑
i=1

 (ȳi − E[yi|ȳi−1])2

1
t2i

1
a2

(
∆i−1 − 3

2a
+ 2 exp(−a∆i−1)

a
− exp(−2a∆i−1)

2a

)
 .(4.12)

As b can be expressed in terms of a, independent on σ, see (4.11), we can conclude that we
can also express σ as a function in the mean reversion factor. We denote those functions
given by (4.11) and (4.12) by

(4.13) b = hb(a) and σ = hσ(a).

By aid of these functions the maximisation of the likelihood function (4.10) reduces to a
one-dimensional optimisation problem in a single variable a, the speed of mean reversion:

g(a) = g (a, hb(a), hσ(a)) → max(4.14)

This problem can be solved with standard optimisation methods, see for example [NM02].

Now we are able to calibrate an Ornstein-Uhlenbeck process if historical data for the
integral are given. In the next section we want to use that procedure for the calibration
of the stochastic process (2.6) given in the introduction.

4.3 Fitting the stochastic correlation process

We use the observation that the integral yt over the Ornstein-Uhlenbeck process (4.1)

dxt = a(b− xt)dt + σdVt

and the integral Yt over the correlation process

dXt = κ(θ −Xt)dt + ω
√

(1−Xt)(Xt −m)dWt ,
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are similarly distributed as indicated by Fig. 4.1 and 4.2. For the first moment of yt holds

E[yt] = b +
x0 − b

at
(1− exp (−at)) ,

which is equal in expectation to the integrated correlation process (2.6)

E[zt] = θ +
X0 − θ

κt
(1− exp (−κt)) .

In section 4.2, we computed that the variance of yt is given as

V ar[yt] =
σ2

a2

(
t− 3

2a
+

2 exp(−at)

a
− exp(−2at)

2a

)
with the obvious parameter identification. One can also calculate the second moment of
Yt, see chapter 3:

E
[
(Yt)

2] =
1

κ2t2 (ω2 + κ)2 (ω2 + 2κ)2 e−t(ω2+3κ)

·

(
2etκ

(
(X0 − 1)(X0 −m)ω4 + 2(X0 − θ)2κ2

+
(
3X2

0 − 2(θ + 1)X0 + θ + m(−2X0 + θ + 1)
)
κω2

)
κ2

−2et(ω2+2κ) (ω2 + 2κ
)2 · ((3θ2 − 2mθ − 2X0θ − 2θ

+m + mX0 + X0 + t(m− θ + 1)(X0 − θ)κ
)
ω4

+κ
(
X2

0 − 2θX0 + 2θ2 + m−mθ − θ + (m + 1)t(X0 − θ)κ
)
ω2

+(X0 − θ)κ2(X0 + θ(tκ− 1))
)

+et(ω2+3κ) (ω2 + κ
)2 ((

t2θ2κ2 + 2t(m(θ − 1) + (X0 − 2θ + 1)θ)κ

+2
(
3θ2 − 2(m + X0 + 1)θ + m + mX0 + X0

) )
ω4

+2κ
(
X2

0 + (4tκθ − 6θ + 2)X0 + m(2X0 − 5θ + 2t(θ − 1)κ + 3)

+θ(2tκ + 2θ(tκ(tκ− 3) + 4)− 5)
)
ω2 + 4κ2(X0 + θ(tκ− 1))2

))
.

Therewith we obtain (
κ̃, θ̃, ω̃

)
∈ L2 := (0,∞)× (m, 1)× (0,∞) .

as solution of the optimisation problem:(
κ̃, θ̃, ω̃

)
= {κ, θ, ω ∈ L2 | ||F || minimal} .(4.15)

The function F to minimise can be chosen according to different criteria which are of
particular importance in the given application. Using the abbreviation K[θ, κ, ω] =
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E
[
(Xt − E [Xt])

3] for the third centralised moment we suggest5

F = α1 · |EOU − ECorr[κ, θ]|+ α2 · |V arOU − V arCorr[κ, θ, σ]|
+α3 · |K[θ, κ, ω]|

to fit the first three centralised moments. The third moment of the centralised Ornstein-
Uhlenbeck is zero because of its normal distribution. The weighting factors αi > 0, i =
1, 2, 3 should hereby sum up to 1. In this notation the focus is on one (arbitrary) point in
time, but naturally different horizons should be considered to make the solution unique.
The actual choice of the term structure t as well as the number clearly influences the
quality of the estimation.

The concept can be extended to the lower bound m of the correlation process, by
including m in the optimisation problem (4.15), i. e. ECorr, V arCorr and K would then
depend on κ, θ, ω and m.

4.4 Numerical tests

This section is subdivided into two parts. First we show numerical results for the cali-
bration of the Ornstein-Uhlenbeck process. Afterwards the estimator for the correlation
process is tested.

4.4.1 Numerical test for calibration of the Ornstein-Uhlenbeck
process

For the numerical tests, we simulate the integral (4.2) over the stochastic process (4.1).
We do not use a discretisation scheme but use the known density, i. e. we directly draw
from its normal distribution. The presented results base on M = 500 paths, simulated
from t = 0 until t = 15 with time discretisation ∆t = 1

200
, corresponding to 15 years with

200 observation dates each year. Every ∆t is further disctretised with H = 4 equidistant
discretisation steps6. We consider four time periods:

• T1 = {t0, ..., t200}: 1 year;

• T2 = {t0, t1, ..., t1000}: 5 years;

• T3 = {t0, t1, ..., t2000}: 10 years;

• T4 = {t0, t1, ..., t3000}: 15 years.

5Here we use intuitive abbreviations: EOU and V arOU denote the quantities for expectation and
variance resulting from fitting the realisations to an integrated Ornstein-Uhlenbeck process. ECorr[·, ·, ·]
and V arCorr[·, ·, ·] denote expectation and variance of realised correlation as functions of κ, θ and ω.

6We restricted the numerical tests to only M = 500 paths because of computation time. An increase
is surely sensible. It would make the results more reliable. Obviously the distributions in Fig. 4.3-4.5
would become smoother.
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We computed an analytical expression (4.11) for the mean which depends on a. Although
theoretically justified this expression sometimes leads to numerical problems. In particular
it slows down the computation. This problem is enforced because b̃ enters the Maximum-
Likelihood procedure twice, as the estimator of the level of mean reversion and as an
input parameter for the diffusion parameter σ. Therefore from a practical point of view
it would be nice, to make the computation of b̃ more stable and faster.
Usually the estimation of the level of mean reversion does not pose a real problem. It
can usually be fixed rather closely from historical observation or be fitted to market
expectation. Therefore we include in the numerical tests as an alternative the estimation
of b as the mean over the realisations:

(4.16) ĥb =
1

n

n∑
i=1

ȳi .

Note that this estimator also influences the estimation of a and σ.

For (4.11) and (4.16) we present the calibration results for the parameters a, b and σ.
The input parameters for the Monte Carlo simulation are chosen as

(4.17) a = 3.5, b = 0.4, σ = 0.8, x0 = 0.4.

Table 4.1 shows the results when b is estimated via the Maximum-Likelihood expres-
sion (4.11). For every simulated path the parameters are estimated. The table shows the
percentage of paths leading to estimation results in the respective integral. For a the in-
tervals are [3.1, 3.9], [2.7, 4.3] and [2.3, 4.7], corresponding to deviations of ±0.4, ±0.8 and
±1.2 from the input parameter a = 3.5. In case of b they are chosen as [0.35, 0.45], [0.3, 0.5]
and [0.25, 0.55]. The intervals for σ are set to [0.79, 0.81], [0.78, 0.82] and [0.77, 0.83].

a b σ

±0.4 ±0.8 ±1.2 ±0.05 ±0.1 ±0.15 ±0.01 ±0.02 ±0.03

T1 3% 7% 12% 20% 37% 52% 21% 37% 53%
T2 16% 33% 46% 34% 62% 80% 39% 67% 85%
T3 26% 50% 66% 43% 75% 94% 47% 78% 95%
T4 31% 60% 81% 54% 86% 98% 49% 86% 99%

Table 4.1: Percentage of paths leading to correct parameter estimation for the Ornstein-
Uhlenbeck process with a = 3.5, b = 0.4, σ = 0.8, x0 = 0.4 and q = 0.8. Level of mean
reversion calculated via Maximum-Likelihood estimator.

As expected the estimators improve, the longer the observation period is. But one
notices that the estimation of the rate of mean reversion does not lead to precise estimation
results. To this respect the estimator can only give an idea about the magnitude of a. In
contrast to that, the results for b are rather good, for σ they are even highly accurate.
Thus the maximum-likelihood estimator for level of mean reversion and diffusion can
compensate for some of the weaknesses in the estimation of the speed of mean reversion.
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As the latter is an input parameter it does influence the quality of the estimation for b
and σ. This is clearly observable, when we compare Fig. 4.3 and Fig. 4.5.

In table 4.2 the corresponding results are presented when the level of mean reversion
is estimated as the average of the integral realisations:

a b σ

±0.4 ±0.8 ±1.2 ±0.05 ±0.1 ±0.15 ±0.01 ±0.02 ±0.03

T1 6% 12% 18% 28% 54% 74% 21% 37% 52%
T2 19% 35% 49% 31% 60% 78% 39% 67% 85%
T3 26% 49% 67% 40% 71% 90% 46% 77% 94%
T4 36% 61% 80% 45% 78% 94% 49% 85% 98%

Table 4.2: Percentage of paths leading to correct parameter estimation for the Ornstein-
Uhlenbeck process with a = 3.5, b = 0.4, σ = 0.8, x0 = 0.4 and q = 0.8. Level of mean
reversion calculated as average.

The results are similar, but one observes that averaging via (4.16) leads to slightly
better results, especially for shorter time frames. As the Maximum-Likelihood estimator
for the mean does not seem to be clearly superior to the average, we are going to use the
average for the remaining tests, as it is computationally faster.

Note that both estimators for b seem to be unbiased as we can see from Fig. 4.3.
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Figure 4.3: Distribution of estimation results for mean with a = 3.5, b = 0.4, σ = 0.8, x0 =
0.4, q = 0.8. (A): Mean as average (4.16). (B): Mean via Maximum-Likelihood estima-
tor (4.11).

Also the estimation of σ seems to be unbiased, see table 4.4. One can observes that
both graphs are very similar. Thus we can record that the estimation of σ seems to
depend only weekly on the estimation of b.

In contrast to the unbiased calibration of b and σ there is a clear bias in the estimation
of the speed of mean reversion. The maximum-liklihood estimator tends to overestimate
a. The bias decreases for increasing number of observations. Here one also sees that
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Figure 4.4: Distribution of estimation results for σ with a = 3.5, b = 0.4, σ = 0.8, x0 = 0.4,
q = 0.8. (A): Mean as average (4.16). (B): Mean via Maximum-Likelihood estima-
tor (4.11).

M = 500 paths are not sufficient for making a precise statement on the distribution of
the results.
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Figure 4.5: Distribution of estimation results for a with a = 3.5, b = 0.4, σ = 0.8, x0 = 0.4,
q = 0.8. (A): Mean as average (4.16). (B): Mean via Maximum-Likelihood estima-
tor (4.11).

In Fig. 4.3-4.5 one observes a steepening in the distribution of the estimates through
time. This steepening is rather slow in case of the mean-reversion factor, resulting in
unprecise estimation results. But it gives hope that increasing the amount of input data
improves the estimation results. This could either be done by prolonging the observation
period. Although it is questionable if there are many fields of application where more
than 15 years of data are available and meaningful. Refining the observation stepsize
could turn out to be successful.

For comparison we show the results for a second parameter configuration:

(4.18) a = 2, b = 0, σ = 0.6, x0 = 0 .

Table 4.3 shows the estimation results. Hereby we estimated the level of mean reversion
as the average:
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a b σ

±0.4 ±0.8 ±1.2 ±0.1 ±0.15 ±0.2 ±0.01 ±0.02 ±0.03

T1 7% 12% 18% 33% 60% 78% 26% 50% 69%
T2 23% 39% 53% 34% 60% 79% 55% 84% 97%
T3 36% 60% 77% 38% 66% 85% 71% 96% 100%
T4 44% 72% 87% 44% 73% 91% 70% 97% 100%

Table 4.3: Percentage of paths leading to correct parameter estimation for the Ornstein-
Uhlenbeck process with a = 2, b = 0, σ = 0.6, x0 = 0, q = 0.8. Level of mean reversion
calculated as average.

The parameter configuration given as in (4.17) seems to be easier to calibrate with
the Maximum-Likelihood method. Particularly the results for the rate of mean reversion
have improved.

4.4.2 Numerical results for calibration of the correlation process

Instead of simulating the Ornstein-Uhlenbeck integral as before, we now simulate the
correlation process (2.6) and then build the integral accordingly. We consider the same
time horizons as before: 1 year, 5, 10 and 15 years. The parameters are chosen as

κ = 3.5 , θ = 0.4 , ω = 0.8 , m = −0.5 , x0 = 0.4 .

The simulation uses the implicit Milstein scheme7. Each ∆t = 1
200

is again discretised
with H = 4 equidistant discretisation steps. None of the paths exceeded the boundaries.
We only use the simplified way of calculating the mean θ. For the approximation (4.6)
we used q = 0.71. Note that the intervals for the diffusion parameter have been adapted.
As in case of the Ornstein-Uhlenbeck process the Maximum-Likelihood method can only

κ θ ω

±0.4 ±0.8 ±1.2 ±0.05 ±0.1 ±0.15 ±0.02 ±0.04 ±0.06

T1 10% 17% 23% 40% 66% 85% 14% 27% 39%
T2 19% 31% 42% 48% 80% 94% 25% 47% 59%
T3 25% 44% 61% 59% 91% 99% 36% 59% 70%
T4 32% 60% 73% 67% 95% 100% 41% 66% 75%

Table 4.4: Percentage of paths leading to correct parameter estimation for correlation
process with κ = 3.5, θ = 0.4,ω = 0.8, m = −0.5. H = 4 and q = 0.71. Mean is
estimated as average.

give a rough estimate for the mean-reversion κ. This was to be expected. The level of
mean reversion is estimated as well as before. The results for ω are worse, than before
but still rather accurate.

7See appendix for an explanation of the choice of this integration scheme.
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4.5 Summary

In this chapter a Maximum-Likelihood estimator for the parameters of an Ornstein-
Uhlenbeck process (4.1) was developed, which employs data from the integrated Ornstein-
Uhlenbeck process, only. It was possible to reduce the optimisation of the likelihood
function to an optimisation problem in one variable. The relationship to the remaining
parameters is given analytically. Applying this estimation procedure to the integrated
correlation process, it became possible to calibrate the correlation process (2.6).
The estimation of κ and ω as the stochasticity parameters often poses problems. We
observe this phenomenon here as well in case of the speed of mean-reversion. It is fair to
say that the results are not very accurate. On the other hand the diffusion factor could be
estimated with rather high precision. This holds particularly for the Ornstein-Uhlenbeck
process, but also for the correlation process.



CHAPTER V

Application

The theoretical results presented in the previous chapters are of no practical use, as long
as we cannot incorporate stochastic correlation into modelling/pricing. In section 2.2 we
demonstrated how two Brownian motions can be stochastically correlated.
The main motivation given in chapter 1 was the correlation swap. If we assume the easiest
case of identically correlated (geometric) Brownian motions representing the assets, the
valuation of the correlation swap on a basket of these assets works straightforward via
simulating of the integrated correlation process.

But the concept of stochastic correlation can be used in a broader sense. We present
two examples which show two structurally different areas of application.
In section 5.1 two geometric Brownian motions are correlated via the full stochastic pro-
cess (2.6). The two geometric Brownian motions hereby build a foreign exchange model
as presented in chapter 2.
The second example presented in section 5.2 comes from credit modelling where it can be
used for pricing collateralised debt obligations. The model is static, thus we only include
correlation as a random variable which is drawn from the stationary density (3.25).

5.1 Foreign exchange model

A quanto is a cross-currency option. It is a combination of a regular option (European,
American, Asian etc.) which pays off in currency A and a currency option which hedges
against the exchange risk between A and another currency B. The quanto pays off in B.
Thus the payoff is defined with respect to an underlying noted in currency A. Then this
payoff is converted to currency B.
As an example we can think of a call on the Dow Jones whose payoff is paid in Euro

(DowT − Strike)+ · exchange− rate0 .

For pricing a quanto option a model is needed which takes into account asset, exchange
rate and the correlation between them. An easy example of such a model is the fol-
lowing foreign exchange (FX) model. We assume a Black-Scholes world with lognormal

48
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distribution for the underlying asset

dSt = µSStdt + σSStdW S
t , S0 = s0

and lognormally distributed exchange rate

dRt = µRRtdt + σRRtdWR
t , R0 = r0 .

For simplification we will price a call in this framework. If the correlation ρ between W S

and WR is constant,
dW S

t dWR
t = ρdt ,

an analytical solution for pricing a call exists. It turns out that pricing a call in the FX
model reduces to pricing a call in the original Black-Scholes setting with the adjusted
constant dividend yield

rf − rh + ρσSσR .

See for example Wilmott[Wil00a], chapter 11. Hereby rf denotes the risk-free interest
rate in the currency in which S is traded (foreign currency). The risk-free interest rate of
the other currency is rh (home).

The remaining question is how to incorporate stochastic correlation Xt in this frame-
work. We assume the model to be arbitrage free and complete. Thus the expected return
of one unit of home currency, exchanged, risk-free invested in the foreign country and
re-exchanged must equal the risk-free return on one unit:

(5.1)
1

R0

exp(rfT )E [RT ] = exp(rhT ) .

The exchange rate Rt follows a geometric Brownian motion and thus E [RT ] = R0 exp(µRT ).
Insertion in (5.1) yields the restriction

(5.2) µR = rh − rf .

In addition the arbitrage argument leads to a second restriction. Analogous argumentation
as above makes clear that

(5.3)
1

R0

1

S0

E [ST RT ] = exp(rhT ) .

must hold. Hereby the left side describes the re-exchanged expectation of an investment
of one home currency unit into the underlying S.
For calculating E [S(T )R(T )] we need to compute

d(StRt) = StdRt + RtdSt + dStdRt

= StRt

[
(µS + µR)dt + σSdW S

t + σRdWR
t + ρtσSσRdt

]
.

Itô’s formula implies

d(ln(xt)) =
1

xt

dxt −
1

2

1

x2
t

(dxt)
2 .
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Application to StRt leads to

T∫
0

d(StRt)

StRt

= (µS + µR)T + σSW S
T + σRWR

T −
1

2

((
σ2

S + σ2
R

)
T
)

.

A further application of Itô’s formula leads to

(5.4) E [ST RT ] = S0R0E

exp

(µS + µR)T + σSσR

T∫
0

Xtdt

 .

Thus with the choice

(5.5) µS = rh − µR − σSσR
1

T

T∫
0

Xtdt ,

the no-arbitrage condition (5.3) is fulfilled. Note that the choice

µS = rh − µR −
1

T
ln E

exp

σSσR

T∫
0

Xtdt

 ,

would also be consistent with (5.3), but in that case the stochasticity would have been
lost.
The idea is to use a conditional Monte Carlo approach [Gla03] to price the FX option with
stochastic correlation. Therefore let us denote the Black-Scholes formula with continuous
dividend yield with

(5.6) Black(S0, K, r,D, σ, T ) = P (0, T )
(
S0e

(r−D)TN (d1)−KN (d2)
)

where N denotes the cumulative distribution function of the normal density, P (0, T ) is
todays value of a zero coupon bond expiring at T , r the risk free interest rate and D the
continuous dividend yield. Interpreting (5.5) as return minus continuous dividend

(5.7) D(Xt) = rh − (rh − rf + σSσR
1

T

T∫
0

Xtdt) ,

the fair value of the FX option is given by

(5.8) FX = E
[
E
[
Black(S0, K, rh, D(Xt), σ, T )| F(X{0≤s≤t})

]]
where F is the filtration given the full information about the correlation process Xt. Note
that the conditional Monte Carlo formula (5.8) is the same approach as the one used by
Hull and White [HW87] to compute the option price in a stochastic volatility framework.
Thus we can approximate the integral and obtain a constant expression for µS for every
path. This allows to simply use the Black-Scholes price for stocks with continuous dividend
payments (5.6) and get a solution for every path. Afterwards we compute the fair price
of the quanto as the mean over all Black-Scholes prices. The formula (5.8) further allows
to make a qualitative statement about the impact of stochastic correlation.
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Figure 5.1: Correlation between Dow Jones and Euro/US-Dollar exchange rate; empirical
distribution vs. density (3.21) computed with κ = 10.6, θ = −0.1, ω = 1, m = −1.

Lemma 5.1 Let us assume that K = S0 then

E
[
Black(D(Xt))| F(X{0≤s≤t})

]
≥ Black(E

[
E
[
D(Xt)| F(X{0≤s≤t})

]]
) ,(5.9)

where Black denotes the Black-Scholes formula (5.6). We omitted some of the parameters.

Proof: Formula (5.9) directly follows from the fact, that the Black-Scholes formula with
continuous dividend yield is convex with respect to the dividend and applying Jensen’s
inequality for conditional expectations twice1. In order to prove the convexity we use the
formula by Wilmott [Wil00a, p. 127]

(5.10)
∂

∂D
Black(S0, S0, r,D, σ, T ) = −TS0e

−DTN (d1) ,

for the first derivative and a subsequent differentiation yields

∂2

∂D2
Black(S0, S0, r,D, σ, T ) = T 2S0e

−DTN (d1)− TS0e
−DT ∂

∂D
N (d1)

= T 2S0e
−DTN (d1) + TS0e

−DT

√
T

σ
φ(d1) > 0(5.11)

where φ is the density of the normal distribution. Note that both terms in (5.11) are
positive. �
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Figure 5.2: Call price with fixed and stochastic correlation with different inital values.
Parameters: ρ = −0.1 and κ = 10.6, θ = −0.1, ω = 1 and m = −1. (A): X0 = −0.1, (B):
X0 = 0.

Next we put theory into practice and test if stochastic correlation leads to different
prices for calls compared to the constant correlation case. We consider the process (2.6)
with m = −1 for stochastic correlation

dXt = κ · (θ −Xt)dt + ω ·
√

1−X2
t dWt , X0 = x0 .

As above W denotes a Brownian motion. If not mentioned otherwise θ = −0.1, κ =
10.6, ω = 1. The parameter choice results from a least-square fitting of (2.6) to the
historical data from figure 2.1. This fit is surprisingly good, see figure 5.1.

Underlying and exchange rate are supposed to follow lognormal distributions with
σS = 0.2 and σR = 0.4, respectively. The risk free interest rates amounts to rh = 0.05
and rf = 0.03. The underlying starts in 100, the starting value of the exchange rate is
1. The strike amounts to 120. For numerical integration the implied Milstein scheme is
used. The number of paths amounts to 10000, and the step size is set to 0.001. In none
of the cases the boundaries ` = −1 and r = 1 have been exceeded thus we consider the
Milstein scheme as an appropriate choice. This effect perfectly agrees with the result that
the boundaries are not attractive for this parameter configuration.

Figures 5.2 and 5.3 show prices computed for constant correlation ρ = θ using the
analytic formula (continuous line). The crosses show the prices determined by simulation
using our correlation process (2.6).

In figure 5.2 (A) there is no significant difference between the prices calculated with
constant correlation and the prices calculated with (5.5) where Xt follows (2.6). The rea-
son is that we do not use the whole path of correlation but eventually only the distribution
of the integral at T . One can easily verify that with X0 = θ the Milstein scheme gener-
ates random variables at T with mean θ. As the mean-reverting factor κ is relatively high
this distribution is strongly concentrated around the mean. In contrast to that, in figure
5.2 (B) we can observe a difference: The prices for stochastic correlation are higher as for

1See Øksendal [Øks00] for Jensen’s inequality for conditional expectations.
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Figure 5.3: Prices for call with fixed and stochastic correlation for different level of
correlation. (A): X0 = −0.1, θ = −0.1, κ = 1.06, ω = 1 and ρ = −0.1, (B):
X0 = 0.4, θ = 0.4, κ = 1.06, ω = 1 and ρ = 0.4.

constant correlation. This is due to the fact that the expectation of correlation changes
over time. Consequently the additional freedom we win by using stochastic processes for
modelling correlation does have an influence on pricing.
In figure 5.3 (A) initial value and mean are equal but here the mean reverting factor κ
is smaller compared to figure 5.2. We observe that stochastic correlation leads to higher
prices than constant correlation although the expectation is equal. Thus pricing with
constant correlation means neglecting correlation risk. The effect is even stronger if θ is
higher as seen in figure 5.3 (B).

The first figures made clear that stochastic correlation leads to higher prices, and thus
changes the model structurally. Fig. 5.4 gives even more insight how the model is changed.
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Figure 5.4: FX model with X0 = −0.1 = θ = 0.2, κ = 10.6, ω = 1, m = −1, M = 30000.
(A) Relative price difference. (B): Implied correlation.
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Relative price difference between non-stochastic and stochastic correlation as well as
implied correlation are presented. Implied correlation denotes the constant correlation
we must insert in the FX model to obtain the price calculated with stochastic correlation
where all other parameters remain the same. One observes a clear skew in the implied
correlation. The skew is even more pronounced if the speed of mean reversion is decreased
as in figure 5.5 where κ is chosen as 1.06. This behaviour is expected as the higher the
speed of mean reversion is the closer stochastic correlation comes to constant correlation.
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Figure 5.5: FX model with X0 = −0.1, θ = 0.2, κ = 1.06, ω = 1, m = −1, M = 30000.
(A) Relative price difference. (B): Implied correlation.

5.2 Large homogeneous portfolio model (LHPM)

The LHPM is used for pricing derivatives on a basket of defaultable assets. Hereby it is
assumed that they are identically correlated. It is a static model. Therefore we do not
model stochastic correlation by a process, but we will draw random numbers from the
transition density (3.25). We will analyse how the incorporation of stochasticity in the
correlation changes the characteristics of the LHPM. We will do this analysis with regard
to prices, density and implied correlation.

5.2.1 Model

We start with a short description of the large homogeneous portfolio model (LHPM). For
more details see Schönbucher [Sch03]. The LHPM can be used to model the default of a
credit. It is based on N assets Ai which are constructed as

(5.12) Ai = ρZ +
√

1− ρ2Yi .
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Z, Y1, ..., YN are independent standard normal random variables. The associated correla-
tion matrix 

1 ρ . . . ρ

ρ 1
. . . ρ

...
. . . . . .

...
ρ . . . ρ 1


is positive definite if ρ ∈

(
− 1

N−1
, 1
]
. Therefore we assume ρ ∈ [0, 1] in this section. By

this construction the single assets are correlated with ρ. The model is static, the focus is
on one single point in time. The default is triggered when the asset’s value falls below the
barrier K. This barrier is identical for every asset. The default probability is assumed to
be

(5.13) q = Φ(K)

where Φ denotes the cumulative standard normal distribution.
We are interested in the loss fraction of the portfolio which is given as

(5.14) L =
1

N

N∑
i=1

1{Ai<K}.

This construction is the idea underlying the LHPM. In order to achieve further an-
alytical tractability, in the LHPM an infinite number of assets is considered. Thus one
takes the limit N −→∞ and therewith the loss fraction (5.14) becomes continuous. Then
density and cumulative distribution function (cdf) are known in closed form. The density
is given as

(5.15) p(x) =

√
1− ρ2

ρ2
exp

(
1

2

(
Φ−1(x)

)2 − 1

2ρ2

(
Φ−1(p)−

√
1− ρ2Φ−1(x)

)2
)

.

The cdf is as follows

(5.16) P (x) = Φ

(
1

ρ

(√
1− ρ2Φ−1(x)− Φ−1(p)

))
.

In the following the LHPM is equipped with stochastic correlation. Referring for more
details to previous chapters, we assume correlation to follow the stochastic process (2.6)
with m = 0 and ω = 1:

dXt = κ (θ −Xt) dt +
√

Xt (1−Xt)dZt , X0 = x0

with x0, θ ∈ (0, 1) and κ > 0. Regarding Thm. 3.2 the boundaries are neither attainable
nor attractive if

(5.17) κ ≥ max

(
1

θ
,

1

1 + θ

)
.
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As the LHPM is time independent, we do not need to consider the whole process
over time. Therefore we will only include the randomness from the transition density for
t →∞ which becomes stationary and reads

(5.18) f(x) = c ·
(
−2 +

2

x

)−κθ

(x (1− x))−1+κ

with c ∈ R+ such that
∫ 1

0
f(x)dx = 1 see corollary 3.7. Thus in the following we will

analyse the stochastic LHPM (SLHPM). With abuse of notation the random variable
describing the correlation is denoted with X:

(5.19) Ai = XZ +
√

1−X2Yi.

where X ∼ Pf and Pf is the probability distribution implied by the stationary density f
in (5.18). The probability that the loss fraction L is below a barrier B ∈ [0, 1] reads

P (L ≤ B) =

1∫
0

B∫
0

p(x, X)f(X)dxdX.

5.2.2 Results

We want to calculate densities, CDO prices and implied correlations in SLHPM and
compare them to LHPM. As there is no closed-form solution if the correlation is stochastic,
X is simulated with the help of numerical algorithms.
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Figure 5.6: Densities of LHPM and SLHPM. (A): Different number of simulations of
(5.15) in SLHPM with θ = 0.3, κ = 5, , ω = 1, q = 0.1 compared to LHPM with ρ = 0.3.
(B): Logarithmic coordinates on y-axes.
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5.2.2.1 Density

We start by computing the densities. Hereby the SLHPM density is an estimated den-
sity. M random numbers for the correlation are drawn. For each of those the density is
calculated. The mean over those M densities is considered as the SLHPM density. For
making the two considered models comparable the mean parameter θ in the SLHPM is
generally identical with the constant correlation ρ in the LHPM: ρ = θ.

Fig. 5.6 result from the parameter configuration θ = 0.3, κ = 5 and q = 0.1. One
observes that the maximum is shifted to the right in case of SLHPM. Further both tails
are fatter for the stochastic model which becomes visible in Fig. 5.6 (B). This is a rather
interesting feature as many models based on normals like the LHPM, have the problem,
that they underestimate the probability of rare events. Stochastic correlation as intro-
duced here seems to lessen this problem.

The dependence on κ is illustrated in the next graph 5.7. One observes that for the con-
sidered values of κ, the density becomes stable for high mean reversion factor, see Fig. 5.7.
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Figure 5.7: (A): Density (5.15) for fixed θ = 0.3, ω = 1, q = 0.1 and varying κ ∈ [3, 15] in
SLHPM. M = 500. (B): Difference of densities to LHPM density with ρ = 0.3 measured
as LHPM - SLHPM

In Fig. 5.7 (B) the difference between the densities for increasing κ in SLHPM and the
LHPM density is visualised. Although high mean reversion in (2.6) leads to a centrali-
sation around the mean, the difference does not vanish for high mean reversion. Neither
does it vanish for large argument values because of the fat tails. The difference at x = 0.4
is between −0.055 and −0.015. Thus both models are structurally different.

The next graph 5.8 shows the LHPM densities and their stochastic counterparts for
different mean θ and ρ respectively.

One observes that the differences between LHPM and SLHPM induced densities are
relatively large for low correlation. But the higher correlation ρ in LHPM and θ in
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Figure 5.8: (A): Density (5.15) for fixed κ = 12, ω = 1, q = 0.1 and varying θ in SLHPM
and varying ρ in LHPM, respectively. M = 500. (B): Logarithmic scale.

SLHPM, the smaller this difference seems to become. This agrees with intuition as this
corresponds to an approach to the degenerated case of perfect correlation.
Particularly for ρ = 0.5 one observes that the density for constant correlation is more
strongly peaked. This can be explained as there is one source of risk less.

The comparison of varying default probabilities q is presented in the subsequent graph.
The stochastic densities still feature fat tails, see Fig 5.9:
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Figure 5.9: (A): Density (5.15) for θ = 0.3, κ = 12, ω = 1 compared to LHPM density
with constant ρ = 0.3. Default probability q varies from. M = 500. (B): Logarithmic
scale

Furthermore the maximum is always shifted towards higher loss fraction in case of
the SLHPM which corresponds to a higher risk level. For small default probabilities the
biggest differences show up in the right tail corresponding to the catastrophic events. For
large q the differences at the very left tail appear bigger.
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5.2.2.2 Price

As a next step the influence of randomness on the prices of a CDO, as defined in 1.3, is
analysed. We consider an artificial CDO with detachment points u1 = 0.02, u2 = 0.04
and so on.

Fig. 5.10 shows the prices of tranches of a CDO with notional one. Thus we actually
look at the loss fraction itself. The tranches (ui+1, ui] and the pure equity tranches [0, ui]
are considered. The interest rate is set to zero.
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Figure 5.10: (A): Tranche prices for LHPM with ρ = 0.3, q = 0.1, and for SLHPM with
θ = 0.3, κ = 4.5, 20, , ω = 1, q = 0.1. M = 1000. (B): Equity tranches.

One observes that the prices from LHPM and SLHPM are very close to each other.
The higher the mean reversion, the closer the prices are. But one also sees that the
simulated prices show a lack of smoothness. For further analysis therefore the number of
paths should be increased.

Fig. 5.11 shows the same comparison with θ and ρ being lowered. Again one notices
that generally the prices of LHPM and SLHPM are rather close.

5.2.2.3 Implied Correlation

For getting more insight we calculate the implied correlations. Therefore we first simulate
the prices with correlation according to the density (5.18). Afterwards we compute the
constant correlation which has to be inserted into the LHPM to get this price. This input
correlation is considered as implied correlation throughout this section. The calculation
bases on the equity tranche prices. Hereby we follow the concept of base correlation,
introduced by Ahluwalia et al in [RAW04]. The advantage of equity tranches is that its
prices are monotone in correlation. This is in contrast to the prices of mezzanine tranches.
Therewith the implied correlation is unique.

First Fig.5.12 depicts the implied correlation. It uses the same parameter configura-
tion as used for the prices presented in Fig. 5.10 and 5.11.



CHAPTER 5. APPLICATION 60

(A)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

−2

0

2

4

6

8

10

12

14

16

18

x 10
−3

 

 

LHPM

SLHPM, κ = 4.5

SLHPM, κ = 20

(B)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

 

 

LHPM

SLHPM, κ = 4.5

SLHPM, κ = 20

Figure 5.11: (A): Tranche prices for LHPM with ρ = 0.2, q = 0.1, and for SLHPM with
θ = 0.2, κ = 4.5, 20, ω = 1, q = 0.1. M = 1000. (B): Equity tranches.

Although there is no obvious difference in the tranche price, the implied correlations
do differ. There is a clear smile effect in the SLHPM. The lowest implied correlation
is measured hereby for the tranche with detachment point 0.1 which also is the default
probability.
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Figure 5.13: (A) Implied correlation in SLHPM for varying mean θ with κ = 20, ω = 1,
q = 0.1. M = 500. (B) Implied correlation in SLHPM for varying default probability q
with θ = 0.3, κ = 20, ω = 1. M = 500.

Fig. 5.13 (A) visualises the changes in the smile according to the level of input corre-
lation changes. Although the smile is clearly visible for all levels of correlation, it flattens
with increasing θ. This goes in line with the result that LHPM and SLHPM become
closer for increasing correlation, see also Fig. 5.8.
Fig. 5.13 (B) shows the implied correlation smile for different default probabilities q. The
minimum of implied correlation - the smile - moves along with default probability. Fur-
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Figure 5.12: (A): Implied correlation for LHPM with ρ = 0.3, q = 0.1, and for SLHPM
with θ = 0.2, κ = 4.5, 20. q = 0.1. M = 1000. (B): Implied correlation for LHPM with
ρ = 0.3 and for SLHPM with θ = 0.2, κ = 4.5, 20. q = 0.1. M = 1000.

ther one can observes that lower default probabilities lead to steeper smiles. In the case
of small probability of default, the smile effect rather resembles a skew. A skew is often
observed in market prices, see again for example [RAW04]. Therewith we can hope, that
the suggested model can successfully map market dynamics.

5.3 Summary

We presented two different ways to include stochastic correlation, first as a stochastic
process and secondly as a random variable. As expected in both cases the incorporation
led to structural changes in the models. In case of the FX model, we observed an increase
in call prices, reflecting the new source of risk. Consequently neglecting stochasticity of
correlation in the FX model counts for an underpricing of the risk associated with this
derivative.
In the second example we saw that stochastic correlation between the defaultable assets
led to significantly fatter tails in the distribution. This effect shows also up in the implied
correlation, where we observed a non-symmetrical smile or a skew respectively. This is of
particular interest, as there is an observed implied correlation skew in the market.
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Conclusion

This thesis developed a model which can be used for pricing correlation swaps. We sug-
gested a stochastic process for modelling correlation. Equation (2.6) defines a continuous
and bounded mean reversion process driven by a Brownian motion. Chapter 3 was de-
voted to the analysis of this process, the following chapter to its calibration. In chapter 5
we included stochastic correlation into two models used within quantitative finance and
illustrated its impact.

We can conclude that the analysis led to satisfactory results. There are parameter
configurations where the process reaches the state of perfect correlation. This is undesir-
able because it does not agree with market observation. On the other hand, in the case
of perfect correlation, we would clearly use a different modelling approach. By a specific
parameter restriction given in Thm. 3.2, it is guaranteed that the process stays within
the interval (m, 1).
In the subsequent section we computed the stationary density by the virtue of the Fokker-
Planck equation. In contrast to usual differential equations, we chose structural conditions
instead of boundary conditions. To be specific, we demanded that it is a density and that
it preserves the already known expectation. The knowledge of this density has many ad-
vantages. It allows for a comparison to reality and therewith calibration. It can be used
by itself as a static model for stochastic correlation which features an intuitive explanation
because it is coming from a bounded mean reversion model.
Afterwards we set up a system describing all moments of correlation. This knowledge
can also be used for calibration, as we can now compare the market term structures of
expectation and variance (possibly more moments) to the ones given by the market. But
in our opinion this result is also promising from another point of view. By knowing the
moments we basically know everything about the process. Further work will show if it
is possible to set up the characteristic function, and therewith to obtain semi-analytical
solutions.

The analysis on (2.6) showed that the process is suitable for modelling correlation.
For practical usage it is necessary to calibrate the model. We already hinted at some
ways of calibration. But as we assume that correlation is not constant, one can argue
that the observed correlation estimated via (1.13) is not a single estimation of correlation
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at a single point in time, but one (approximation to a) realisation over the respective
time period. Therefore we developed an estimator which uses the historical data from the
integral. Unfortunately integration over a process leads to loss of information through the
averaging property of the integral. The developed estimation procedure suffers from that
as well. The numerical tests show a lack of accuracy in estimating κ. On the other hand
ω could be calibrated rather precisely. The estimation of the level of mean reverting is
satisfactory in general. We would like to stress, that the numerical tests are not exhaustive.
The fact that two out of three parameters are usually estimated quite good, gives hope,
that maybe finer observation intervals or different weighting can improve the results.

Surely the topic of calibration should still be further researched. Especially the task
of how to measure the dependence between correlation and asset.

In chapter 5 two examples were presented. First a call in an FX model was valued.
Foreign exchange rate and asset are hereby stochastically correlated through time by (2.6).
The call prices tend to be higher if correlation is taken into account. Moreover there is a
skew in the implied correlation.
In the second example the correlation in the static LHPM is chosen as a random vari-
able according to the density (3.25). The stochasticity led to fatter tails compared to
the constant correlation case. There is a clear smile or skew respectively in the implied
correlation. As there is a correlation skew in the market, the result is promising.
Further analysis must show if the stochastic LHPM meets the market dynamics.

As there is no analytical solution for (2.6), it was necessary to simulate the pro-
cess (2.6). The appendix explains why we chose the implicit Milstein scheme. Among the
compared integration schemes it gives the highest probability of preserving the analytical
boundaries. As all compared schemes stem from stochastic Taylor expansion, they can-
not be expected to preserves both boundaries. Thus it remains the question of a suitable
integration schemes which preserves upper and lower boundary.

It would be an interesting area of further research. As we know all moments, one
could try an approach similar to the one by Andersen [And06], where the integration
scheme is supposed to preserves the first two moments. One could extend the idea to
the requirement that the boundaries may not be exceeded. Other approaches are also
possible, see for example Alfonsi [Alf05] or Malham and Wiese [MW07].

We already mentioned various topics for further work. But there is still more to
do. In the last stage of this work, Freddy Delbaen made me aware of joint work with
Shirakawa [DS02], where they used (2.5) for modelling interest rates. They derived some
interesting analytical results. For example they could compute the price of a zerobond.
This gives hope, that correlation products can be solved analytically or in some sort of
semi-analytical way.

Although the motivation in this work is mainly from equity, the effects showing up in
the LHPM already indicate that stochastic correlation as presented here, may be success-
fully applied in credit modelling. This field of application should be further investigated.

There are only few comparisons with market data in this thesis. Especially the com-
parison with and fitting to market prices must be made, before the model can be used in
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praxis. All in all more market analysis is of interest.
Deeper market analysis will possibly show that the concept of short correlation is not

rich enough to cover the dynamics observed in the market. This is particularly likely
if the market of correlations swaps develops further. A possible approach is to model
the forward rates of correlation. This could be done in analogy to the Heath, Jarrow,
and Merton framework [HJM92] for interest rates. Bühler [Büh06] extended the idea to
modelling variance.

We restricted ourselves to the case of two correlated underlyings and the case of iden-
tically correlated underlyings. In the first case the positive definiteness is given if the
process is in [−1, 1]. In the case of identically correlated random variables, the positive
definiteness can be reached by adjusting the lower boundary from −1 to − 1

N−1
where N

denotes the number of random variables.
Related to this topic is the question of how to measure and include the correlation be-
tween the assets and the Brownian motion driving the correlation itself. A still unsolved
problem in correlation modelling is how to model the whole matrix such that it stays pos-
itive definite. In the introduction we mentioned the Wishart process. Here the covariance
matrix is described by a stochastic differential equation. There we also mentioned why
we prefer to model variance and correlation separately. Similarly to the covariance matrix
it is possible to model the correlation matrix C as follows [BG07]: One does not model
C itself, but one splits C into Cholesky factor L and scaling matrix D: C = DLLT D.
Hereby D is defined via L such that ci,i = 1, ci,j ≤ 1, i, j = 1, ..., n. Now L can be
modelled arbitrarily. This approach is feasible. But from a more general point of view,
it would be nice, if the dimension of the correlation matrix would not matter when we
model and calibrate the stochastic process for the correlation ci,j(t) between two assets.

Although there are many open questions which further research must investigate,
we think that stochastic correlation is an important source of risk which should not
be neglected. Based on the results of this thesis one can conclude that the suggested
model (2.6) is suitable for modelling correlation. It is intuitive, fits observed characteristics
of correlation, can be calibrated and numerically handled.



APPENDIX A

Appendix

Within the main part of this thesis we left aside the numerical treatment of the correla-
tion process (2.6). Although at some points numerical solving of the stochastic differential
equation in a Monte Carlo simulation was necessary. We devote section A.1 of the ap-
pendix to the task of numerical discretisation of (2.6), because the process has one feature
which distinguishes it from the vast majority of stochastic processes considered in quanti-
tative finance. It possesses a lower and an upper bound. So far there are mainly results on
preserving one boundary, which is motivated from volatility and interest rate modelling,
see for example Kahl and Schurz [KS06].

Further we postponed some of the computations within section 3.2. In A.2 we will
compute the scaling constants necessary to make the solutions of the Fokker-Planck to
density. Additionally we will show that constraint (3.14) holds, i. e. that the scaled
solutions preserve the analytically known expectation θ.

A.1 Numerical treatment

Throughout this work it is necessary to simulate the stochastic process (2.6) as so far its
analytical solution is not know. For calculating prices of correlation dependent options
it may therefore be necessary to use Monte Carlo simulation techniques. Within this
thesis we use the implicit Milstein scheme for discretising the stochastic differential equa-
tion (2.6). We reason this decision with a comparison between four integration schemes.
Let

dxt = a(t, xt)dt + b(t, xt)dWt(A.1)

be an Itô process driven by a Brownian motion Wt. For this stochastic differential equation
and a time grid t0 < t1 < ... < tn the integration schemes under consideration read:

• explicit Euler-Maruyama

xti+1
= xti + a(ti, xti) (ti+1 − ti) + b(ti, xti)

(
Wti+1

−Wti

)
(A.2)
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• drift-implicit Euler-Maruyama,

xti+1
= xti + a(ti+1, xti+1

) (ti+1 − ti) + b(ti, xti)
(
Wti+1

−Wti

)
(A.3)

• explicit Milstein

xti+1
= xti + a(ti, xti) (ti+1 − ti) + b(ti, xti)

(
Wti+1

−Wti

)
+

1

2
b(ti, xti)

∂

∂x
b(ti, xti)

((
Wti+1

−Wti

)2 − (ti+1 − ti)
)

(A.4)

and

• drift-implicit Milstein

xti+1
= xti + a(ti+1, xti+1

) (ti+1 − ti) + b(ti, xti)
(
Wti+1

−Wti

)
+

1

2
b(ti, xti)

∂

∂x
b(ti, xti)

((
Wti+1

−Wti

)2 − (ti+1 − ti)
)

.(A.5)

Naturally for the implicit schemes a rearrangement has to be undertaken. We will use the
abbreviations ∆n = tn+1 − tn and ∆Wn = Wtn+1 −Wtn in the following. For more infor-
mation on stochastic discretisation schemes like derivation and definition of convergence
order see for example Kloeden and Platen[KP99].

We chose the implicit Milstein scheme because of the following reasons. Both Euler
schemes possess a weak convergence order of 1 and a strong convergence order of 0.5. The
Milstein schemes feature a higher strong order of convergence. It is 1 if the coefficient
function are continuously differentiable.
This does not hold for the correlation process, since although the diffusion function√

(1− x)(x−m) is continuously differentiable in the inner interval (m, 1), it is not in
the boundaries. Nonetheless we hope that the strong order of convergence of 1 is practi-
cally valid if the boundaries are not attainable. Thus from the point of view of convergence
the Milstein schemes should be preferred.

But the correlation process (2.6) inhibits a second problem, a discretisation scheme
has to deal with: the treatment of the boundaries. Here we can state the following:

Corollary A.1 (Boundary preservation) Let the realisation X̄n at tn be given and
within the boundaries. Denote the probability that the explicit Euler scheme exceeds the
upper boundary in the next step by

P 1
EE := P

(
Xn+1 > 1|X̄n

)
.

Analogously the probability for violating the lower boundary shall be denoted by

Pm
EE := P

(
Xn+1 < m|X̄n

)
.

Using the analogous notations for the other three discretisation schemes, it holds in every
point X̄n ∈ (m, 1):

Pm
EE ≥ Pm

IE and P 1
EE ≥ Pm

IE ,

Pm
EM ≥ Pm

IM and P 1
EM ≥ Pm

IM
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Proof: First we look at the probability P
(
Xn+1 < 1|X̄n

)
at the upper boundary r = 1

and compare explicit and implicit Euler scheme.

P
(
Xn+1 < 1|X̄n

)
= P

(
∆Wn <

1− X̄n − κ(θ − X̄n)∆

ω
√

(1− X̄n)(X̄n −m)

)

= Φ

(
1− X̄n − κ(θ − X̄n)∆

ω
√

(1− X̄n)(X̄n −m)

)
.

On the other hand the probability for the implicit scheme is

P
(
Xn+1 < 1|X̄n

)
= P

(
∆Wn <

1 + κ∆n − X̄n − κθ∆n

ω
√

(1− X̄n)(X̄n −m)

)

= Φ

(
1 + κ∆n − X̄n − κθ∆n

ω
√

(1− X̄n)(X̄n −m)

)
.

By presumption X̄n ∈ (m, 1), therefore 1− X̄n − κ(θ − X̄n)∆n < 1 + κ∆n − X̄n − κθ∆n

and thus:
P 1

EE ≥ P 1
IE .

The calculations work similar for the lower boundary, where we have to use that X̄n > m.
Next we have a look at the Milstein schemes. First we consider the explicit one:

P
(
Xn+1 < 1|X̄n

)
= P

(
X̄n + κ(θ − X̄n)∆n + ω

√
(1− X̄n)(X̄n −m)∆Wn

+
1

4
ω2
(
1 + m− 2X̄n

) (
(∆Wn)2 −∆

)
< 1
)

= P
(
α + β∆Wn + γ(∆Wn)2 < 0)

)
,

where

α = −1 + X̄n + κ(θ − X̄n)∆n −
1

4
ω2
(
1 + m− 2X̄n

)
∆n

β = ω
√

(1− X̄n)(X̄n −m)

γ =
1

4
ω2
(
1 + m− 2X̄n

)
.

One can derive the probabilities for the implicit scheme in analogous manner:

P
(
Xn+1 < 1|X̄n

)
= P

(
− 1− κ∆n + Xn + κθ∆n + ω

√
(1− X̄n)(X̄n −m)∆Wn

+
1

4
ω2
(
1 + m− 2X̄n

) (
(∆Wn)2 −∆n

)
< 0
)

,

with

αI = −1− κ∆n + X̄n + κθ∆n −
1

4
ω2
(
1 + m− 2X̄n

)
∆n = α + κ∆nXn − κ∆n

= α + κ∆n(X̄n − 1) < α

βI = ω
√

(1− X̄n)(X̄n −m) = β

γI =
1

4
ω2
(
1 + m− 2X̄n

)
= γ .
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Therewith:

P
(
α + κ∆n(X̄n − 1) + β∆nWn + γ(∆Wn)2 < 0

)
= P

(
α + β∆Wn + γ(∆Wn)2 < 0

)
+ P

(
0 < α + β∆Wn + γ(∆Wn)2 < −κ∆n(X̄n − 1)

)
> P

(
α + β∆nWn + γ(∆nWn)2 < 0

)
.

�
Thus the implicit schemes perform better in preserving the boundaries. Fig. A.1

visualises the theoretical result:
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Figure A.1: Percentage of paths exceeding the boundaries, m = −1, σ = 1, T = 5,
M = 250000. (A) θ = X0 = 0.4, κ = 1.7. (B) θ = X0 = 0.0, κ = 1.1.

Further it indicates that the second order scheme is better suited than the first order
one in the explicit and the implicit case, respectively. Therefore in chapters 4 and 5,
we numerically solved the stochastic differential equation (2.6) by virtue of the implicit
Milstein scheme1.

A.2 Calculating the integration constants for the sta-

tionary densities

We will only show the calculations for Cor. 3.7, as this is the most general case. The
constants in Thm. 3.3 and Cor. 3.6 can be derived from that.

The function p given by (3.25)

p(x) =

(
1−x
x−m

)1− κ
ω2 (m−2θ+1)

m−1 ((1− x)(x−m))
κ

ω2

(x− 1)2

1As noted there the implicit Milstein schemes worked successfully in these applications. The bound-
aries were not exceeded.
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fulfills the Fokker-Planck equation (3.24) of (2.6) for t →∞. Also every pC(x) = C · p(x)
with C ∈ R fulfills this differential equation. Now we want to calculate a constant C such
that (3.13)

1∫
m

pC(x)dx = 1 .

We will show that therewith also (3.14)

1∫
m

x · pC(x)dx = θ

holds. Mathematica[Wol05] computes the integral from m to 1 over p as

1∫
m

p(x)dx = (1−m)
2κ
ω2−1Γ

( κ

ω2
− 1
)

Γ

(
2(m− θ)κ

(m− 1)ω2

)

· 2F̃1

(
(m− 2θ + 1)κ

(m− 1)ω2
− 1,

2(m− θ)κ

(m− 1)ω2
;
(3m− 2θ − 1)κ

(m− 1)ω2
− 1; 1

)
where

(A.6) 2F̃1(α, β; γ; z) :=
2F1(α, β; γ; z)

Γ(γ)

denotes the regularised hypergeometric function2. The definition of the hypergeo-
metric function 2F1 is given in (3.17). See also [AS72] and [WW72]. Thus we set C such
that

1

C
= (1−m)

2κ
ω2−1Γ

( κ

ω2
− 1
)

Γ

(
2(m− θ)κ

(m− 1)ω2

)
· 2F̃1

(
(m− 2θ + 1)κ

(m− 1)ω2
− 1,

2(m− θ)κ

(m− 1)ω2
;
(3m− 2θ − 1)κ

(m− 1)ω2
− 1; 1

)
.

Note that by construction the right hand side is not zero. Thus C is well-defined.
It remains to shows that pω(x) := C · p(x) satisfies condition (3.14). We calculate the
expectation with Mathematica[Wol05]:

1∫
m

xpω(x)dx = m +
2(θ −m)κ 2F̃1

(
(m−2θ+1)κ
(m−1)ω2 − 1, 2(m−θ)κ

(m−1)ω2 + 1; (3m−2θ−1)κ
(m−1)ω2 ; 1

)
ω2

2F̃1

(
(m−2θ+1)κ
(m−1)ω2 − 1, 2(m−θ)κ

(m−1)ω2 ;
(3m−2θ−1)κ

(m−1)ω2 − 1; 1
) .

According to [WW72] the hypergeometric function 2F1(a, b, c, 1) can be expressed in terms
of the gamma function as follows:

(A.7) 2F1(α, β, γ, 1) =
Γ(γ)Γ(γ − α− β)

Γ(γ − α)Γ(γ − β)

2The gamma function is defined as Γ(x) =
∫∞
0

tz−1etdt for z /∈ Z−.
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as long as γ is not a negative integer, see [WW72], chapter XIV. As Mathematica cannot
simplify this term any further, we do the necessary calculations ourselves. We introduce
the following abbreviations:

a =
(m− 2θ + 1)κ

(m− 1)ω2
− 1 ,

b =
2(m− θ)κ

(m− 1)ω2
+ 1 ,

c =
(3m− 2θ − 1)κ

(m− 1)ω2
.

Therewith we can write:

1∫
m

xpω(x)dx = m +
2(θ −m)κ 2F1 (a, b; c; 1)

ω2
2F1 (a, b− 1; c− 1; 1)

· Γ(c− 1)

Γ(c)
.

Due to c = (3m−2θ−1)κ
(m−1)ω2 > 0, neither c nor c − 1 are negative integers. Using (A.7) and

Γ(z + 1) = zΓ(z), we can thus calculate:

1∫
m

xpω(x)dx = m +
2(θ −m)κ

ω2

Γ(c)Γ(c− a− b)Γ(c− 1− a)Γ(c− 1− (b− 1))

Γ(c− a)Γ(c− b)Γ(c− 1)Γ(c− 1− a− (b− 1))
· Γ(c− 1)

Γ(c)

= m +
2(θ −m)κ

ω2

Γ(c− 1− a)

Γ(c− a)

= m +
2(θ −m)κ

ω2

Γ(c− 1− a)

(c− a− 1)Γ(c− a− 1)

= m +
2(θ −m)κ

ω2

1

(c− a− 1)
.

With

c− a− 1 =
(3m− 2θ − 1)κ

(m− 1)ω2
−
(

(m− 2θ + 1) κ

(m− 1)ω2
− 1

)
− 1 =

2κ

ω2

we can conclude that

1∫
m

pω(x)dx = m +
2(θ −m)κ

ω2

ω2

2κ
= θ .

Thus in Cor. 3.7 we must choose

C =

(
(1−m)

2κ
ω2−1Γ

( κ

ω2
− 1
)

Γ

(
2(m− θ)κ

(m− 1)ω2

)

· 2F̃1

(
(m− 2θ + 1)κ

(m− 1)ω2
− 1,

2(m− θ)κ

(m− 1)ω2
;
(3m− 2θ − 1)κ

(m− 1)ω2
− 1; 1

))−1

.(A.8)
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Therefore the constant in Cor. 3.6 must be

C =

(
(1−m)2κ−1Γ(κ− 1)Γ

(
2(m− θ)κ

m− 1

)

· 2F̃1

(
2(m− θ)κ

m− 1
,
(m− 2θ + 1)κ

m− 1
− 1;

(3m− 2θ − 1)κ

m− 1
− 1; 1

))−1

.(A.9)

With some simplification, one can write

C =
( 1

κ + θκ
2F1(1, (θ − 1)κ + 1; θκ + κ + 1;−1)

+
1

κ− θκ
2F1(1, 1− (θ + 1)κ;−θκ + κ + 1;−1)

)−1

(A.10)

for the constant in Thm. 3.3. Thus all solutions fulfill the Fokker-Planck equation and
the structural conditions (3.13) and (3.14).
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