
A NEW BLOCK KRYLOV SUBSPACE FRAMEWORK WITH
APPLICATIONS TO FUNCTIONS OF MATRICES ACTING ON

MULTIPLE VECTORS

Zur Erlangung des akademischen Grades eines

DOKTORS DER NATURWISSENSCHAFTEN (DR. RER. NAT.)

an der Fakultät Mathematik und Naturwissenschaften der
Bergischen Universität Wuppertal vorgelegte und genehmigte

DISSERTATION
von

Kathryn Lund

Betreut durch Prof. Dr. Andreas Frommer und Prof. Dr. Daniel B. Szyld

Dissertation eingereicht am: 23. Februar 2018
Tag der Disputation: 26. März 2018

Die Dissertation kann wie folgt zitiert werden:

urn:nbn:de:hbz:468-20180613-120530-8
[http://nbn-resolving.de/urn/resolver.pl?urn=urn%3Anbn%3Ade%3Ahbz%3A468-20180613-120530-8]

iii

ABSTRACT

We propose a new framework for understanding block Krylov subspace methods,

which hinges on a matrix-valued inner product. We can recast the “classical” block

Krylov methods, such as O’Leary’s block conjugate gradients, global methods, and

loop-interchange methods, within this framework. Leveraging the generality of the

framework, we develop an efficient restart procedure and error bounds for the shifted

block full orthogonalization method (Sh-BFOM(m)). Regarding BFOM as the proto-

typical block Krylov subspace method, we propose another formalism, which we call

modified BFOM, and show that block GMRES and the new block Radau-Lanczos

method can be regarded as modified BFOM. In analogy to Sh-BFOM(m), we develop

an efficient restart procedure for shifted BGMRES with restarts (Sh-BGMRES(m)),

as well as error bounds.

Using this framework and shifted block Krylov methods with restarts as a

foundation, we formulate block Krylov subspace methods with restarts for matrix

functions acting on multiple vectors f(A)B. We obtain convergence bounds for

B(FOM)2 (BFOM for Functions Of Matrices) and block harmonic methods (i.e.,

BGMRES-like methods) for matrix functions.

iv

With various numerical examples, we illustrate our theoretical results on Sh-

BFOM and Sh-BGMRES. We also analyze the matrix polynomials associated to the

residuals of these methods. Through a variety of real-life applications, we demon-

strate the robustness and versatility of B(FOM)2 and block harmonic methods for

matrix functions. A particularly interesting example is the tensor t-function, our

proposed definition for the function of a tensor in the tensor t-product formalism.

Despite the lack of convergence theory, we also show that the block Radau-Lanczos

modification can reduce the number of cycles required to converge for both linear

systems and matrix functions.

v

ZUSAMMENFASSUNG

In dieser Arbeit stellen wir einen allgemeinen Rahmen für die Formulierung

und theoretische Betrachtung von Block-Krylow-Unterraumverfahren vor, welcher

sich die Definition eines matrixwertigen Innen-Produktes zunutze macht. Inner-

halb dieses Rahmens formulieren wir die “klassischen” Block-Krylow-Unterraum-

Verfahren, wie O’Learys Block-Conjugate-Gradient-Verfahren, globale Krylow-

Unterraumverfahren und Schleifentausch-Verfahren. Die Allgemeinheit unseres

Ansatzes ermöglicht es uns, das Shifted-Block-Full-Orthogonalization-Verfahren (Sh-

BFOM(m)) um effiziente Neustarts zu erweitern und Fehlerschranken anzugeben.

Darüber hinaus geben wir eine Modifikation des BFOM-Verfahrens an, welche wir

Modified-BFOM nennen. Das BFOM-Verfahren lässt sich als Prototyp vieler Block-

Krylow-Unterraumverfahren ansehen. In gleicher Weise zeigen wir, dass sich das

Block-GMRES- sowie das neue Block-Radau-Lanczos-Verfahren als Modified-BFOM

auffassen lassen. Analog zur Konstruktion von Sh-BFOM(m) entwickeln wir eine ef-

fiziente Neustart-Prozedur und Fehlerschranken für das Shifted-BGMRES-Verfahren

(Sh-BGMRES(m)).

Unter Zurhilfenahme unseres allgemeinen Ansatzes und auf Basis von Neustarts

verwendenden Shifted-Block-Krylow-Verfahren entwickeln wir Block-Krylow-

Unterraum-Verfahren mit Neustarts für die Berechnung von f(A)B, d.h. für die

Berechnung des Produktes einer Matrix mit mehreren rechten Seiten, wobei die Ma-

trix durch die Anwendung einer Matrixfunktion gegeben ist. Des Weiteren leiten wir

Schranken für die Konvergenzgeschwindigkeit der B(FOM)2 (BFOM for Functions

vi

of Matrices) und Block-Harmonic-Verfahren (d.h. Verfahren ähnlich zu BGMRES)

für Matrixfunktionen her.

Anhand von diversen numerischen Beispielen bestätigen wir unsere theoretis-

chen Vorhersagen über Sh-BFOM und Sh-BGMRES. Außerdem analysieren wir

die matrixwertigen Polynome, welche mit den Residuenverläufen der Verfahren in

Beziehung stehen. Indem wir das B(FOM)2- und die Block-Harmonic-Verfahren in

diversen praxisrelevanten Anwendungen testen, zeigen wir, dass die Verfahren ro-

bust und vielseitig einsetzbar sind. Ein besonders interessantes Beispiel, welches

wir betrachten, ist die Tensor-t-Funktion. Sie ist der von uns vorgeschlagene Weg,

Funktionen auf Tensoren, welche mit der durch das t-Produkt gegebenen Struktur

versehen sind, zu definieren. Da wir keine theoretischen Belege haben, zeigen wir

mittels Experimenten, dass die Block-Radau-Lanczos-Modifikation die Anzahl der

Durchläufe sowohl für die iterative Lösung linearer Systeme als auch für die Berech-

nung von Matrixfunktionen reduziert.

vii

ACKNOWLEDGEMENTS

This thesis was written under the terms of the Agreement for a Doctoral Thesis

Co-tutorship between Temple University – Of the Commonwealth System of Higher

Education and Bergische Universität Wuppertal, Germany, School of Mathematics

and Natural Sciences.

I am painfully aware of my short-comings, as well as my privilege.1 This work

comprises not only the past few years of research, but many personal mountains and

valleys along the way. I cannot possibly thank everyone who has helped me, but as

a compulsive list-maker, I have to try.

If anyone challenges the mathematician stereotype, it is Daniel Szyld, an

intelligent man with heart and style. I have not always understood his words of

encouragement (I recall something about The Magic Flute), but they uplifted me

anyway. Tú no has sido solamente un consejero, sino también como un padre.

It is not often that I go up to a speaker after a talk, but I took that risk with

Andreas Frommer and then fell in love with matrix functions. I was lucky that Daniel

and Andreas are good friends, and lucky again that Andreas was willing to host me

for at first 3 months, and then 6 more months, in Wuppertal. His commitment to

my work inspired me to learn new things (and break old things). Und ich bin so

dankbar, dass du alle meine viele Emails immer geantwortet hast.

1Lots of people tell me to quit being so self-deprecating... really, I’m trying. It’s just, sometimes

I’m trying to be funny. Guess I’m not even good at that...

viii

Benjamin Seibold was the first to encourage me to pursue a career in applied

mathematics. With him, I got my first taste of real research via traffic modeling and

learned to expect more of myself than I thought possible.

I am also thankful to Gillian Queisser, who encouraged me to attend an

interesting multigrid conference in Bruchsal, and Matthias Bolten, who took an early

interest in my work and supported me in the job application process.

Maria Lorenz has been a cheerleader and coach throughout my time in grad

school. She often checked in on me and met for tea to talk about life.

My first math teacher was my mother, and she made sure I never fell behind,

despite attending three different high schools. I first learned about matrices and

Gaussian elimination from her Algebra II textbook. I am also very thankful to

DeAnn Scherer– my high-school calculus teacher– and David Zitarelli– my college

calculus professor– who both saw something in me early on.

Melena, mi amor, mi tesoro! Por t́ı, casi perd́ı los primeros años en el pro-

grama. Pero sin t́ı, estaŕıa perdida. Te quiero más de lo que tú me quieres a mı́.

My Temple peeps: you should be thanking me for making grad school such

a disruptively vibrant place.

Meine Wupperleute: Hannah for Kürbissuppe and for translating my abstract

into German (Isa auch!); Artur for not stealing the 50 euros I gave him to mail me

my residence permit; Sarah for rehearsal Oktoberfest; and many others for helping

me around Wuppertal when I first arrived on Krücken. I am especially thankful to

Teodor for introducing me to Mendeley and asynchronous methods and for helping

me slay the beast.

ix

Grace, Rayan, Max, Matty, Damaris, Kristen, and Alisa: you all have been

with me for a while. Thanks for sticking around and calling out my BS.

To all the benevolent postdocs and older “siblings” and “cousins”: thank you

for your sage wisdom.

Many thanks to various YouTube channels: Ambient, Arctic Empire, Sui-

cideSheep, Fluidified, Pandora Journey, and some relaxation channel that keeps

changing its name because of copyright infringement. My soul thanks the artists

whose albums often provided sweet resonance: Crywolf, Natalia Lafourcade, The

Glitch Mob, Tom Day, Chevelle, Relient K, Switchfoot, Hozier, Joy Williams, Thou-

sand Foot Krutch, and Lucius.

To my felines: Fluffy, you were my best friend since I was four. Chloe, you

were a spark of life. Shayera, you were the most beautiful demon-possessed cat I

have ever met. Dove, get off my keyboard. Auri, stop eating Dove’s food.

To my mother, who was discouraged from pursuing computer science and

higher level mathematics due the sexism of her time: whenever I thought of giving

up, I would think about you, and renew my resolve to be a gentle and persistent

thorn in the side of a culture that often lacks compassion. Thank you for trying to

understand what matrix functions are.

To my father, who has always supported me despite not understanding what

I do: I appreciate the jokes about real analysis vs. fake analysis, and partial vs. full

differential equations. Also, yes, there are definitely polynomials in the equations

of the graphs of the logarithm of the chart of the quadratic of the C-file of your

Mustang. But you’re right, I can’t hover.

x

I finally thank Bao, a man full of love and patience, for proving me wrong.

My parents and Bao were often much needed sources of funding. Other sources

of funding include teaching assistantships from the Department of Mathematics of

Temple University, the Deutsche Forschungsgemeinschaft through Collaborative Re-

search Centre SFB TRR55 “Hadron Physics from Lattice QCD;” the National Sci-

ence Foundation via grant DMS-1418882; and the U.S. Department of Energy under

grant DE-SC 0016578. I would also like to thank Temple, SIAM, ILAS, and AMS

for travel funding throughout the years to attend various conferences.

xi

Efolóh thah efolái.

Belóh ail efol.

xii

TABLE OF CONTENTS

Page

ABSTRACT . iii

DEDICATION . xi

LIST OF FIGURES . xvii

LIST OF TABLES . xx

CHAPTER

1. INTRODUCTION . 2

1.1 Musings on scientific computing . 5

1.2 Outline . 7

2. NECESSARY TOOLS . 9

2.1 Notation . 10

2.2 Matrix functions . 11

2.3 Hermitian positive definite and positive real operators 14

2.4 Block notions . 18

2.4.1 Disambiguation . 18

xiii

2.4.2 Block eigenvalues . 19

2.5 Matrix polynomials . 21

2.5.1 Solvents and latent roots . 24

2.5.2 Interpolating matrix polynomials 27

2.6 Stieltjes functions . 31

2.7 Gauss quadrature rules . 32

2.8 Matrix derivatives . 33

2.9 List of abbreviations . 34

3. BLOCK KRYLOV SUBSPACESWITHRESTARTS FOR SHIFTED

LINEAR SYSTEMS . 36

3.0.1 Disambiguation and history 37

3.0.2 Krylov subspace methods . 41

3.1 A comprehensive block Krylov subspace framework 43

3.1.1 The Block Arnoldi relation . 49

3.1.2 Preserving properties of A in K S

m(A,B) 54

3.1.3 Block orthogonal projectors 58

3.1.4 Cospatiality vs. collinearity 59

3.1.5 Characterizations of block Krylov subspaces 59

3.2 Block FOM . 60

3.2.1 Error bounds . 61

3.2.2 Shifted BFOM with restarts: Sh-BFOM(m) 64

3.2.3 Error bounds for shifted systems with restarts 67

3.3 Summary and outlook . 70

xiv

4. MODIFIED BLOCK FULL ORTHOGONALIZATIONMETHODS 72

4.1 A block Arnoldi polynomial relation 73

4.2 Shifted BGMRES with restarts: Sh-BGMRES(m) 78

4.2.1 The approximation . 79

4.2.2 Cospatial factors . 82

4.2.3 Restarts . 85

4.2.4 Error bounds for shifted systems with restarts 86

4.2.5 A matrix polynomial approach 93

4.3 Block Radau-Lanczos . 99

4.3.1 Block Gauss quadrature . 101

4.3.2 Block Gauss-Radau quadrature 104

4.3.3 Block Radau-Lanczos as a solver 106

4.4 Summary and outlook . 107

5. BLOCK KRYLOVMETHODS FOR MATRIX FUNCTIONS ACT-

ING ON MULTIPLE VECTORS 109

5.1 An overview of iterative methods for f(A)b 109

5.2 Block methods for f(A)B . 112

5.2.1 B(FOM)2 with restarts: B(FOM)2(m) 115

5.2.2 B(FOM)2+har with restarts: B(FOM)2+har(m) 120

5.2.3 B(FOM)2+mod with restarts: B(FOM)2+mod(m) 123

5.3 Expressions for the matrix error function for special f 124

5.3.1 f(z) = z−α, 0 < α < 1 . 124

5.3.2 f(z) = exp(z) . 124

xv

5.4 A note on preconditioning . 125

5.5 Summary and outlook . 126

6. APPLICATIONS . 128

6.1 Differential equations . 128

6.2 Lattice QCD . 129

6.3 Functions of tensors . 130

6.3.1 The tensor t-product and its properties 132

6.3.2 The tensor t-exponential . 134

6.3.3 The tensor t-function and its properties 135

6.3.4 Block diagonalization and the discrete Fourier transform . . . 139

6.3.5 Communicability of a third-order network 140

6.4 Summary and outlook . 140

7. NUMERICAL EXPERIMENTS 142

7.1 Remarks on implementation . 143

7.2 Understanding BFOM, BGMRES, and BRL with restarts and shifts . 145

7.2.1 Diagonal test matrices . 145

7.2.2 Shifted residual bounds . 146

7.2.3 Residual polynomials for BGMRES 149

7.2.4 Block Radau-Lanczos as a linear solver 153

7.3 Understanding B(FOM)2(m) . 157

7.3.1 B(FOM)2 on a random tridiagonal HPD matrix 157

7.3.2 Discretized two-dimensional Laplacian and f(z) = z−1/2 160

7.3.3 Overlap Dirac operator and f(z) = sign(z) 163

xvi

7.3.4 Convection-diffusion equation and exp(z) 164

7.4 Understanding B(FOM)2+har(m) . 164

7.4.1 A circulant . 164

7.4.2 A nonnormal and nondiagonalizable 168

7.4.3 Tensor t-exponential . 171

7.5 Understanding B(FOM)2+rad(m) . 172

7.6 Summary and outlook . 173

8. CONCLUSIONS AND FUTURE WORK 176

BIBLIOGRAPHY . 181

xvii

LIST OF FIGURES

Figure Page

1 A bas-relief of the sirrush, a chimera-like creature composed of different
parts of a dragon, a lion, an eagle, a snake, and other animals. The sirrush
is prominently featured throughout the reconstructed Ishtar Gate at the
Pergamon Museum in Berlin. The photograph is the author’s own work. 1

3.1 Illustration of the block Arnoldi relation. 52

3.2 Sparsity patterns of H4 for different block inner products and s = 4, with q = 2

for the hybrid example. 53

4.1 The zero-non-zero block structure of successive powers of Hm for m = 6.
The symbol × represents a non-zero block entry. 75

6.1 Different views of a third-order tensor A ∈ C
n1×n2×n3 . (a) column fibers:

A(:, j, k); (b) row fibers: A(i, :, k); (c) tube fibers: A(i, j, :); (d) horizontal

slices: A(i, :, :); (e) lateral slices: A(:, j, :); (f) frontal slices: A(:, :, k) 132

7.1 Eigenvalue distributions for the HPD matrices A. All matrices have condition

number 104. 147

7.2 Eigenvalue distributions for the positive real matrices. 148

7.3 Convergence plots and shifted residual plots for case 1. 149

7.4 Convergence plots and shifted residual plots for case 2. 150

xviii

7.5 Convergence plots and shifted residual plots for case 3. 150

7.6 Convergence plots and shifted residual plots for case 5. 151

7.7 Convergence plots and shifted residual plots for case 7. 151

7.8 Case 1 BGMRES residual polynomials . 154

7.9 Case 4 BGMRES residual polynomials . 155

7.10 Case 6 BGMRES residual polynomials . 156

7.11 Cycle length versus number of cycles needed to converge for cases 1-3 and

BFOM, BGRMES, and BRL . 158

7.12 Residual polynomial plots for the block Radau-Lanczos method and cases 1-3.

Cycle length m = 10, and the cycle index k = 20. 159

7.13 Convergence history for computing A−1/2B, where A ∈ C
100×100 is a random

tridiagonal HPD matrix, and B ∈ C
100×10 is random. 160

7.14 Convergence history for A−1/2B, where A ∈ C104×104 is the discretized
two-dimensional Laplacian. Left: B ∈ C104×10 has linearly independent
columns. Right: the first column of B is a linear combination of other
columns. 162

7.15 Number of cycles versus the cycle length for the overlap Dirac operator exam-

ple. 163

7.16 Convergence histories for computing exp(Aν)B, where Aν ∈ C
122,500×122,500 is

the finite differences stencil of a two-dimensional convection-diffusion equation

with varying convection parameters ν ∈ {0, 100, 200}, and B ∈ C
122,500×10 has

random entries. 165

7.17 Convergence plots for Section 7.4.1, where A ∈ C
1001×1001 is a circulant matrix. 167

7.18 Convergence plots for A1 in Section 7.4.2, where A1 is nonnormal and nondi-

agonalizable. 169

7.19 Convergence plots for A2 in Section 7.4.2, where A2 is nonnormal and nondi-

agonalizable. 170

xix

7.20 Sparsity structure for A. Blue indicates that a face is closer to the “front” and

pink farther to the “back”; see Figure 6.1(f) for how the faces are oriented. . 171

7.21 Sparsity patterns for block circulants . 172

7.22 Convergence plots for (A) classical and global methods on exp(D)Fp ⊗ InÊ1,

and (B) classical and global methods on exp(bcirc(A))Ê1 173

7.23 Cycle length versus number of cycles needed to converge for f(A)B, where

f(z) = z−1/2 and A and B from Section 7.2.1. 174

8.1 The author, deep in reflection. 180

xx

LIST OF TABLES

Table Page

2.1 Descriptions and examples of notation used throughout this work. . . . 10

3.1 Depictions and descriptions of block inner products used in numerical
examples. 48

xxi

LIST OF ALGORITHMS

Algorithm Page

3.0.1 Ruhe’s Arnoldi . 38

3.0.2 Arnoldi and Lanczos procedures . 42

3.1.1 Block Arnoldi and Block Lanczos procedures 51

3.2.1 Sh-BFOM(m): shifted BFOM with restarts 68

4.2.1 Sh-BGMRES(m): shifted BGMRES with restarts 87

5.2.1 B(FOM)2(m): block full orthogonalization method for functions of ma-
trices with restarts . 118

5.2.2 B(FOM)2+har(m): block harmonic method for functions of matrices
with restarts . 122

1

Figure 1. A bas-relief of the sirrush, a chimera-like creature com-

posed of different parts of a dragon, a lion, an eagle, a snake, and

other animals. The sirrush is prominently featured throughout the

reconstructed Ishtar Gate at the Pergamon Museum in Berlin. The

photograph is the author’s own work.

2

CHAPTER 1

INTRODUCTION

Functions of matrices are a bit like the sirrush (see Figure 1). In a naive sense,

they should not exist: how is it possible to insert a matrix into a scalar function

and obtain anything meaningful? Their definition is the fusion of disparate pieces

of complex analysis and linear algebra, and they appear in applications as varied as

differential equations, measures of connectedness in networks, and operators in the-

oretical particle physics. The methods for approximating matrix functions, whether

one wants to compute the matrix function f(A) itself or the matrix function acting

on a vector f(A)b, are also diverse and combine techniques from numerical linear

algebra, complex analysis, and polynomial and rational function approximations.

This dissertation focuses on new methods for computing

f(A)B,

where f has a Cauchy-Stieltjes integral representation, A : Cn×s → Cn×s, and

B ∈ Cn×s. When possible, we consider general A which are linear operators from Cn

to Cn, and where the action of A on elements of Cn×s is column-wise. In particular,

3

we consider scenarios with memory limitations, i.e., only a certain number of n× s

matrices can be stored at a given time.

There are three kinds of approaches established in the literature for com-

puting f(A)B, when f is the exponential, A is represented by a large and sparse

matrix, and B has multiple columns. The first is to find a polynomial p such that

f ≈ p and compute p(A)B instead. This is effectively what Al-Mohy and Higham

do in [5], where the polynomial is chosen as a truncated Taylor series and combined

with scaling and an efficient way of computing powers of A times B. Another ap-

proach is to find a rational approximation r to f . Then a series of linear systems

(A+τiI)
−1B must be approximated. Birk proposes a deflated shifted conjugate gra-

dients algorithm for this approach in his thesis [15], using Padé approximations; and

Wu, Pang, and Sun propose an “alternatively” shifted block full orthogonalization

method with restarts in [141], using Carathéodory-Fejér approximations. The third

approach is to generate a block Krylov subspace and project and restrict f(A)B onto

this subspace, meaning that only f(H) for a much smaller matrix H must be com-

puted. Lopez and Simoncini take this approach in [96], where they further modify

the algorithm so that special properties of A are forced upon H.

We aim to fill in many left by these methods by developing methods that

• are defined for general functions f that do not require a priori approximations;

• are suitable for general matrices A, in particular large and sparse matrices that

may be impossible to store or access directly; and

• treat B as a matrix, instead of as separate columns, so that matrix-matrix

products and Level 3 BLAS may be used (see the introduction to Chapter 3).

4

We also consider scenarios with memory limitations, and we want to obtain conver-

gence results for a broad class of functions and matrices.

The methods we propose are in the vein of the approach of Frommer, Güttel,

and Schweitzer [53, 52] and Frommer, Lund, Schweitzer, and Szyld [54], which com-

bine Krylov subspaces and quadrature to approximate f(A)b for a single vector b.

While such an approach is in many ways similar to that of approximating f by a

polynomial or rational function, there are some key differences. For one, we do not

need an a priori polynomial or rational approximation to f . In fact, we do not need

to know anything about f , except that it is defined on the field of values of A. (See

Lemma 3.13; the spectrum of H is contained in the field of values of A.) In our

particular analysis, we do require that f have a Cauchy-Stieltjes form, but this is

not such a stringent restriction for many functions of interest. Secondly, we do not

compute p(A) or r(A)– the computation is reduced to polynomials of H (or in the

case of rational Krylov methods, rational functions of H), which is a much smaller

matrix for which computations are cheap and we can use direct methods.

Foundational for our matrix function methods is a new, comprehensive frame-

work for block Krylov methods. This framework encompasses decades’ worth of liter-

ature and, in effect, describes all the reasonable variations of block Krylov methods.

We use this framework to generalize many well-known results, discover as-yet unex-

plored variations on block Krylov methods, and derive error bounds for our matrix

function methods. We devote particular attention to block full orthogonalization

methods (BFOM) with restarts for shifted linear systems, the results of which are

an end goal by themselves as well as a components in the analysis of the matrix

5

function methods. We also develop a formalism for modifying BFOM by low-rank

matrices, examples of which include block GMRES and a new method called “block

Radau-Lanczos,” and analyze these methods with matrix polynomials.

In addition to a number of traditional matrix function applications, we study

the behavior of our methods on a newly proposed definition for functions of tensors.

This definition is based on the t-product formalism of [88] and possesses analogous

versions of the key properties of matrix functions. What’s more, computing the

so-called “tensor t-function” reduces to computing a function of a block circulant

matrix times a block vector.

1.1 Musings on scientific computing

To make sense of the breadth of research encountered in the preparation of this

thesis, particularly in numerical linear algebra and high-performance computing, we

have developed a modest theory for tracking the possible sources of error a problem

encounters as it journeys from “real life” down into the underbelly of a computer

processor, and back up to reality.

(1) A real-life problem is discovered, formulated, and perhaps simplified. A sim-

plification introduces error, since it is not the actual problem a human wants

to solve.1

(2) Data is collected and stored. The collection process may introduce noise, and

large data sets may only be stored by some smaller representation. Both aspects

introduce error.

1Here we pay homage to Plato’s Allegory of the Cave.

6

(3) A model is proposed. This model introduces error by making assumptions and

oversimplifying certain complex aspects of reality.2

(4) A numerical algorithm is proposed in exact arithmetic to run simulations of

or compute solutions to the model. For problems requiring the solution of linear

systems of equations,3 such algorithms are often iterative, generating a sequence

of approximations that converge theoretically to a numerical solution. As the

iterative process must be limited to a finite number of steps, an approximation

error is introduced.

(5) The algorithm is implemented on a machine in floating point arithmetic– yet

another source of error. The implementation accounts for the choice of program-

ming language, memory management, parallelization, load balancing, and much

more. All of these components have spawned fields in and of themselves and lead

to additional sources of error, if not merely sources of annoyance for humans,

who consistently introduce bugs.

(6) A solution is obtained and then translated back into reality. Error can arise in

the translation between mathematical language to human language.4

These stages are not disjoint, and researchers do not necessarily move through them

linearly. There are often feedback loops between different stages, e.g., realizing that

the first round of data is insufficient and going back to collect more, running exper-

iments to find the model is not good enough, drawing conclusions from running an

2https://xkcd.com/669/
3i.e., all of them.
4See season 3, episode 11 of Last Week Tonight with John Oliver. Everything causes and cures

cancer.

7

algorithm and then finding a bug, and so forth. Ideally, an exhaustive scientific work

journeys through all stages, but as problems these days have become more compli-

cated, individual scientists have become more specialized and often work in only one

or two stages at a time.

The bulk of this thesis lives in stage 4, but one of the secondary goals of

the framework proposed in Chapters 3 and 4 is to bridge the gap between stages 4

and 5, to encourage that algorithmic development keep an eye towards implemen-

tation. Block Krylov methods in particular pose great potential for using hardware

more efficiently. Our framework comprises a wide array of options– choice of block

inner product and norm, additive low-rank modifications to adjust the eigenvalues

of the projection and restriction of A onto the block Krylov subspace, multiple in-

terpretations of the approximation, etc.– all at once. The associated software (see

Section 7.1) is written to be transparent and versatile, so that future users can eas-

ily switch settings to determine which is best for their applications. All of this is

extended even more generally to matrix functions, and much of the code and theory

can be recycled and recast for eigenvalue solvers and matrix equations.

1.2 Outline

Various tools from numerical analysis and linear algebra are collected in Chapter 2. A

summary of Krylov subspace methods for a single right-hand side and a detailed de-

velopment of the comprehensive block Krylov framework, including theory for shifted

block full orthgonalization methods (Sh-BFOM), is contained in Chapter 3. Chap-

ter 4 embellishes the themes of Chapter 3 by exploring a polynomial version of the

block Arnoldi relation with low-rank additive modifications, and posing shifted block

8

GMRES (Sh-BGMRES) as a modified Sh-BFOM. A block version of the Radau-

Lanczos method is also recast in this modified BFOM framework. In both Chapters 3

and 4, we devote attention to formulating efficient restart techniques, to mitigate well

understood issues with storage limitations for block Krylov methods, and to proving

error bounds for the restarted, shifted approximations. Throughout, we also make

use of the interpolating matrix polynomials associated to the BFOM and BGMRES

approximations, as well as their residuals. The block framework is applied to ap-

proximate f(A)B in Chapter 5, and error bounds on Sh-BFOM and Sh-BGMRES

allow us to prove error bounds for the new block Krylov matrix function methods.

The versatility and robustness of our matrix function methods are demon-

strated in the numerical experiments of Chapter 7, along with small-scale analyses

of shifted block Krylov methods and visualizations of matrix polynomials. In ad-

dition to a variety of academic examples useful for understanding the numerical

properties of the methods, real-life applications are also studied, whose background

is expounded in Chapter 6. Therein we also propose a new definition for a function

acting on a tensor, which appears to be the first of its kind in multilinear algebra.

A summary and outlook is provided at the end of Chapters 3-7. In Chapter 8

we discuss our main contributions, recommendations, and some directions for future

work.

9

CHAPTER 2

NECESSARY TOOLS

Here we aggregate disparate definitions, tools, and notions needed to understand the

rest of the work. There is no particular order to these concepts, i.e., the ordering

does not reflect a ranking of difficulty or importance.

This chapter contains some novel results, or in the least, results that we

have proven anew, as we could not find them in the literature in the form that

we require. Parts of Lemma 2.7 identify properties of Hermitian positive definite

and positive real matrices that are maintained through products and congruence-

like transformations. Theorem 2.15 demonstrates a relationship between the block

eigendecomposition of an operator A and that of f(A). Section 2.8 examines matrix

derivatives. Other concepts, like the notions of interpolating matrix polynomials

and block eigenvalues, are dusted off and cast in a new light. We use these concepts

to prove a nontrivial result on the factorization of a special interpolating matrix

polynomial (Theorem 2.24). The rest of this chapter contains results that are well

established in numerical analysis and linear algebra, so the seasoned researcher may

feel at ease skipping ahead and looking back here when necessary.

10

Table 2.1. Descriptions and examples of notation used throughout

this work.

typeface description usage examples

uppercase blackboard bold spaces S, C

lowercase plain
scalars, constants,

scalar-valued functions
α, f

uppercase plain
square matrices without

block structure
H , Λ

lowercase bold vectors b, x

uppercase bold block vectors Y , Γ

uppercase calligraphy
block matrices,

tensors
H, A

uppercase bold calligraphy
concatenation

of block vectors
V

2.1 Notation

We utilize various scripts and boldface settings to distinguish between different ob-

jects. We try to remain strict with these choices, so that it is possible to determine

from an object’s typeface what its usage is. See Table 2.1. A particular exception to

these rules is Krylov subspace K , which uses an uppercase script typeface, different

from the calligraphy typeface in Table 2.1. Per tradition, we also use Γ to denote a

curve in the complex plane.

11

Standard linear algebra notation is used throughout: spec(A) denotes the

spectrum of the operator A; trace (A) denotes the trace of A; and diag(A11, . . . , Amm)

creates a block diagonal matrix with A11, . . . , Amm as the block diagonal entries.

We additionally define some special objects as “standard block unit vectors.” Let

⊗ denote the Kronecker product between two matrices, i.e., with A = (aij) and

B = (bij),

A⊗ B =




a11B . . . a1,nB
a21B . . . a2,nB
...

. . .
...

an,1B . . . an,nB


 .

Let Id denote the d×d identity matrix. Then the kth standard unit vector êd
k ∈ Cd is

the kth column of Id, and the kth standard block unit vector is Êd×s
k = êd

k⊗Is ∈ Cd×s.

We often drop the superscripts when the dimensions are clear from context. See

equation (2.1) provides various ways of expressing Êd×s
1 :

Êd×s
1 =




Is×s

0
...
0


 =




1
0
...
0


⊗ Is×s. (2.1)

2.2 Matrix functions

Following [57, 74, 125], we concern ourselves with the three main matrix function

definitions, based on the Jordan canonical form, Hermite interpolating polynomials,

and the Cauchy-Stieltjes integral form. In each case, the validity of the definition

boils down to the differentiability of f on the spectrum of A. When f is analytic

on the spectrum of A, all the definitions are equivalent, and we can switch between

them freely.

12

Let A ∈ C
n×n be a matrix with spectrum spec(A) := {λj}Nj=1, where N ≤ n

and the λj are distinct. An m ×m Jordan block Jm(λ) of an eigenvalue λ has the

form

Jm(λ) =




λ 1

λ
. . .
. . . 1

λ


 ∈ C

m×m.

Suppose that A has Jordan canonical form

A = XJX−1 = X−1 diag(Jm1(λj1), . . . , Jmp
(λjℓ))X, (2.2)

with p blocks of sizes mi such that
∑p

i=1mi = n, and where the values

{λjk}ℓk=1 ∈ spec(A). Note that eigenvalues may be repeated in the sequence {λjk}ℓk=1.

Let nj denote the index of λj , or the size of the largest Jordan block associated to λj .

A function is defined on the spectrum of A if all the following values exist:

f (k)(λj), k = 0, . . . , nj − 1, j = 1, . . . , N.

Definition 2.1: Suppose A ∈ Cn×n has Jordan form (2.2) and that f is defined on

the spectrum of A. Then we define

f(A) := Xf(J)X−1,

where f(J) := diag(f(Jm1(λj1)), . . . , f(Jmp
(λjℓ))), and

f(Jmi
(λjk)) :=




f(λjk) f ′(λjk)
f ′′(λjk

)

2!
. . .

f
(njk

−1)
(λjk

)

(njk
−1)!

0 f(λjk) f ′(λjk) . . .
...

...
. . .

. . .
. . .

f ′′(λjk
)

2!
...

. . .
. . . f ′(λjk)

0 0 f(λjk)



∈ C

mi×mi

13

Note that when A is diagonalizable with spec(A) = {λj}nj=1 (possibly no longer

distinct), Definition 2.1 reduces to

f(A) = X diag(f(λ1), . . . , f(λn))X
−1.

Matrix powers are well defined, so a scalar polynomial evaluated on a matrix

is naturally defined. Given p(z) =
∑m

k=0 z
kck, for some {ck}mk=1 ⊂ C, we have

that p(A) :=
∑m

k=1A
kck. Based on this, we can define non-polynomial functions of

matrices by using again derivatives as we did in Definition 2.1.

Definition 2.2: Suppose that f is defined on spec(A), and let p with

deg p ≤
∑N

j=1 nj be the unique Hermite interpolating polynomial satisfying

p(k)(λj) = f (k)(λj), for all k = 0, . . . , nj−1, j = 1, . . . , N.

We then define f(A) := p(A).

Crucial for our methods and analysis is the Cauchy-Stieltjes integral defini-

tion.

Definition 2.3: Let D ⊂ C be a region, and suppose that f : D → C is analytic

with integral representation

f(z) =

∫

Γ

g(t)

t− z
dt, z ∈ D, (2.3)

with a path Γ ⊂ C \ D and function g : Γ → C. Further suppose that the spectrum

of A is contained in C \ D. Then we define

f(A) :=

∫

Γ

g(t)(tI −A)−1 dt.

14

When f is analytic, g = 1
2πi

f , and Γ is a contour enclosing the spectrum of A, then

Definition 2.3 reduces to the usual Cauchy integral definition.

Various matrix function properties will prove useful throughout our analysis.

Theorem 2.4 (Theorem 1.13 in [74]): Let A ∈ Cn×n and let f be defined on the

spectrum of A. Then

(i) f(A)A = Af(A);

(ii) f(AT) = f(A)T ;

(iii) f(XAX−1) = Xf(A)X−1;

(iv) f(λ) ∈ spec(f(A)) for all λ ∈ spec(A);

(v) XA = AX implies that Xf(A) = f(A)X ;

(vi) if A is block triangular, then f(A) is block triangular, and f(A)ii = f(Aii),

where Aii is a block diagonal element of A;

(vii) if A = diag(A11, . . . , Amm), then f(A) = diag(f(A11), . . . , f(Amm));

(viii) f(Im ⊗A) = Im ⊗ f(A); and

(ix) f(A⊗ Im) = f(A)⊗ Im.

2.3 Hermitian positive definite and positive real operators

We call an operator A : Cn → Cn Hermitian positive definite (HPD) if A = A∗, where

A∗ denotes the adjoint operator, and has positive eigenvalues. We say that A is pos-

itive real in the standard Euclidean sense or Euclidean positive real (EPR) if for all

x ∈ Cn, x 6= 0, Re(x∗Ax) > 0. Similar definitions hold with non-strict inequality: A

is Hermitian positive semi-definite (HPSD) if A = A∗ and has nonnegative eigenval-

ues, while A is Euclidean nonnegative real (ENNR) if for all x ∈ Cn, Re(x∗Ax) ≥ 0.

15

A useful notion for understanding the positive realness of an operator is its field of

values.

Definition 2.5: Let A be an operator on a Hilbert space H with inner product 〈·, ·〉.

The field of values F〈·,·〉(A) is defined as

F〈·,·〉(A) :=

{〈Ax, x〉
〈x, x〉 : x ∈ H, x 6= 0

}
.

Note that the field of values contains the spectrum of the operator A; additionally,

the spectrum of A is defined independently of the inner product 〈·, ·〉.

Lemma 2.6: The following properties are equivalent to the operator A : Cn → Cn

being Euclidean positive (nonnegative) real:

(i) A∗ is also EPR (ENNR);

(ii) A + A∗ is Hermitian positive (semi)definite;

(iii) F〈·,·〉2(A) lies in the right half of the complex plane (including the imaginary

axis if A is ENNR).

Proof: Let x ∈ Cn be nonzero. Part (i) follows by noting that x∗A∗x = (Ax)∗x =

x∗Ax and thus Re
(
x∗Ax

)
= Re(x∗Ax) ≥ 0. This also gives that x∗(A + A∗)x =

2Re(x∗Ax) and thus part (ii). Part (iii) is a straightforward application of Defini-

tion 2.5 and the definition for EPR (ENNR). �

Lemma 2.7: Let A,B ∈ Cn×n.

(i) (congruence) If A is Hermitian and Q ∈ C
n×n is nonsingular, then Q∗AQ is

Hermitian with the same number of positive, negative, and zero eigenvalues.

(ii) (similarity) If Q ∈ C
n×n is nonsingular, then Q−1AQ has the same spectrum

as A.

16

(iii) (semi-congruence) If A is HPSD and Q ∈ C
n×m with m ≤ n, then Q∗AQ is

HPSD.

(iv) Let B be EPR (ENNR) and Q ∈ C
n×m with m ≤ n. If Q has full rank,

then Q∗BQ is EPR (ENNR). If Q does not have full rank, then we can only

guarantee that Q∗BQ is ENNR.

(v) If B is EPR (ENNR), then the real part of its spectrum is positive (nonnega-

tive).

(vi) If A is HPD (HPSD) and B is EPR, then the real part of the spectrum of AB

is positive (nonnegative).

(vii) If B is normal and has spectrum with positive (nonnegative) real part, then B

is EPR (ENNR).

Proof: Part (i) is well established and otherwise known as “Sylvester’s Law of Iner-

tia;” see, e.g., [94, Section 5.5] for a proof. Part (ii) is also well known and simple to

prove using the Jordan canonical form of a matrix.

For part (iii), note that y∗Q∗AQy = (Qy)∗A(Qy), where y ∈ Cm. If y is

nonzero and Q has full rank, then Qy is nonzero; if Q does not have full rank, then

there is a y 6= 0 such that Qy = 0. Either way, since A is HPSD, (Qy)∗A(Qy) ≥ 0,

meaning Q∗AQ is HPSD.

The proof for part (iv) is analogous to that of part (iii); simply consider

Re(y∗Q∗AQy) instead.

Part (v) follows immediately from the definition of positive realness, since the

field of values contains the spectrum.

17

Part (vi) follows from everything before. We first assume that A is HPD; it

then has a well-defined and nonsingular square root, allowing us to write

AB = A1/2A1/2B = A1/2A1/2BA1/2A−1/2.

Part (i) implies that A1/2BA1/2 has a spectrum with positive real part, and the

similarity transformation A1/2A1/2BA1/2A−1/2 preserves the spectrum.

Now suppose that A is HPSD; i.e., it may have a zero eigenvalue and is

therefore not invertible. Letting ǫ > 0, we have that A + ǫI is HPD and invertible.

Following the discussion of the previous paragraph, (A + ǫI)B has spectrum with

positive real part. Since the spectrum depends continuously on the entries of the

matrix, letting ǫ → 0 gives that AB also has nonnegative real part.

Lastly, if B is normal, then there exists X ∈ Cn×n unitary and D ∈ Cn×n

diagonal such that B = XDX∗. Then B +B∗ = X(D +D∗)X∗. D is trivially EPR

(ENNR) since its diagonals are the eigenvalues of B, which have positive (nonnega-

tive) real part. Therefore, the eigenvalues of the diagonal matrix D+D∗ are all real

and positive, i.e. D + D∗ is Hermitian positive definite. Part (vii) then follows by

Lemma 2.6. �

Remark 2.8: Note that Lemma 2.7 holds for a general inner product, as long as one

replaces the notion of “Hermitian” with “self-adjoint” and regards normality with

respect to the general inner product.

18

2.4 Block notions

2.4.1 Disambiguation

There are two main uses of the term “block” in numerical linear algebra. The first

is with an eye towards high-performance computing and the motivation of making

algorithms more parallelizable. Given a matrix A ∈ Cn×n, one can partition A into a

number of sub-matrices or “blocks,” depending on the given computer architecture

and memory movement strategies; A may then be regarded as a block matrix. Simi-

larly, given a number of vectors {bi}si=1 on which A or f(A) must act, one can batch

or “block” these vectors into tall and skinny matrices or block vectors to help with

load balancing.

The second comes from the viewpoint of building matrices and vectors over

a space S ⊂ Cs×s. So that the resulting block objects have convenient structure,

we take S to be a ∗-subalgebra with identity;1 examples of such S are given in

Table 3.1. This means that S is a vector subspace containing Is that is also closed

under matrix multiplication and conjugate transposition. The nature of S leads to a

few importance consequences. For one, being a vector subspace with identity means

that S always contains the subspace CIs. Additionally, any scalar polynomial of an

element in S is also an element in S. Then the inverses of all nonsingular elements

of S are also members of S, since the inverse of a matrix can be expressed as a scalar

polynomial of that matrix (see Definition 2.2 or consequences of the Cayley-Hamilton

Theorem).

1We thank Michele Benzi for suggesting the use of a ∗-subalgebra.

19

The space S
m denotes the ms × s block vectors whose s × s block elements

are taken from S, and likewise the space Sm×m denotes ms×ms block matrices. In

this way, we can regard such block matrices as “flattened” fourth-order tensors; see,

e.g., [114]. For further thoughts on block matrix operations, see [65, Section 1.3].

2.4.2 Block eigenvalues

The earliest mention of block eigenvalues in the literature is a technical report by

Dennis, Traub, and Weber in 1971 [30]. Throughout this subsection, we rely on this

report and a subsequent publication [31].

Definition 2.9: For A ∈ C
n×n, (Λ,Q) ∈ C

s×s×C
n×s is a block eigenpair if s divides

n, Q has full rank, and

AQ = QΛ.

We call Λ a block eigenvalue and Q a block eigenvector.

It is important to keep in mind that block eigenpairs are merely another way of

describing certain kinds of invariant subspaces. If (Λ,Q) is a block eigenpair of A,

then the columns of Q form a basis for an invariant subspace of A, on which the

action of A can be represented by Λ. Consequently, the spectrum of block eigenvalues

of A are contained in the spectrum of A.

Theorem 2.10 (Theorem 8.1 in [30]): If (Λ,Q) ∈ Cs×s ×Cn×s is a block eigen-

pair of A ∈ C
n×s, and Q has full rank, then the eigenvalues of Λ are also eigenvalues

of A.

20

In analogy to results for scalar eigenvalues, we consider whether the action of

A can be described by a block eigendecomposition. We state the theorems without

proof, since they are rather technical, but they can be found, e.g., in [30].

Definition 2.11: A set of block eigenvalues of A is a complete set of block eigenval-

ues of A if the set of all the eigenvalues of the block eigenvalues is the same as the

set of eigenvalues of A.

Theorem 2.12 (Theorem 8.2 in [30]): Suppose that A ∈ Cn×n, and that s di-

vides n. Then A has a complete set of s× s block eigenvalues.

Note that Theorem 2.12 does not place a restriction on what type of matrix A is.

Definition 2.13: Two block vectors Q1,Q2 ∈ Cn×s are block orthogonal if

Q∗
1Q2 = 0.

In Chapter 3, we restate Definition 2.13 within the setting of a general matrix-valued

inner product. For now, the classical definition with the Euclidean inner product is

enough to obtain a block eigendecomposition result.

Theorem 2.14 (Theorem 8.4 in [30]): If A ∈ Cn×n has s × s block eigenvalues

Λ1, . . . ,Λm, m = n
s
, with respective block eigenvectors Q1, . . . ,Qm that are pairwise

block orthogonal, and if Λ is a block eigenvalue of A, then Λ is a block eigenvalue of

diag(Λ1, . . . ,Λm). Furthermore,

[Q1 · · ·Qm]
−1A[Q1 · · ·Qm] = diag(Λ1, . . . ,Λm). (2.4)

With the notion of a block eigendecomposition, we can obtain a result similar to

Theorem 2.4 (iv) for block eigenvalues.

21

Theorem 2.15: Let A ∈ C
n×n have a block eigendecomposition as in the hypotheses

of Theorem 2.14, and let f : C → C be defined on the spectrum of A. Then

f(A)Qj = Qjf(Λj), for all j = 1, . . . , m. (2.5)

In other words, we have a block eigendecomposition for f(A).

Proof: By equation (2.4) and parts (iii) and (vii) of Theorem 2.4,

[Q1 · · ·Qm]
−1f(A)[Q1 · · ·Qm] = diag(f(Λ1), . . . , f(Λm)). (2.6)

Note that for j = 1, . . . , m, f(Λj) is well defined, since by Theorem 2.10 the eigen-

values of a block eigenvalue are a subset of the eigenvalues of A, and f is defined on

the spectrum of A. Consequently, equation (2.6) gives the desired result. �

2.5 Matrix polynomials

Following in the footsteps of many others [43, 46, 73, 86, 127, 129, 130], we wish to

utilize matrix polynomials to enhance our understanding of block Krylov methods.

The thesis by Kent [86] is particularly inspirational, as one of the first works to

describe elements of a block Krylov subspace in terms of matrix-valued polynomials.

Matrix polynomials are analyzed extensively in the book by Gohberg, Lancaster,

and Rodman [62], as well as in a series of papers by Dennis, Traub, and Weber

[30, 31, 32]. Although we draw many definitions and foundational results from these

two wells of sources, we recast them for our own specific purposes.

Let Pd(K) denote the space of polynomials of degree d over some space of

matrices K; in particular, we mean that the polynomials of Pd(K) take their coeffi-

cients from K and refer to these polynomials as matrix polynomials. It is helpful to

22

think of an element P of Pd(K) as an ordered list of coefficients (Γ0, . . . ,Γd) ⊂ K
d+1,

where P (Z) =
∑d

k=0Z
kΓk. Note that we assume the argument Z is right-multiplied

by the coefficients Γk. Left multiplication is also possible, but we do not consider it

here for reasons that will soon be clear.

We focus on polynomials over the ∗-subalgebra S ⊂ Cs×s defined in Sec-

tion 2.4. Elements of Pd(S) are perhaps most naturally regarded as operators from

Cs×s to Cs×s, but just as scalar polynomials can be defined to act on matrices, these

matrix polynomials can be defined to act on other objects as well. We consider

the following three interpretations of P ∈ Pd(S) and let context determine which

particular interpretation is in use:

• P : Cs×s → Cs×s, P (Z) =
∑d

k=0 Z
kΓk;

• P : C → Cs×s, P (z) =
∑d

k=0 z
kΓk, known in the literature as a λ-matrix

[30, 31, 32, 62, 93]; and

• P : Cn×n × Cn×s → Cn×s, P (A) ◦ V =
∑d

k=0A
kV Γk, where the ◦ notation is

introduced in the thesis by Kent [86].

The final interpretation is the reason we only consider multiplying by matrix co-

efficients on the right; such polynomials arise in our description of block Krylov

subspaces in Section 3.1.

Two polynomials P (z) =
∑d

k=0 z
kΓk and P̃ (z) =

∑d
k=0 z

kΓ̃k are equal as

long as Γk = Γ̃k for all k = 0, . . . , d. Dividing a matrix polynomial by an element

of S is defined as right-dividing each coefficient, i.e., for some nonsingular S ∈ S,

P (z)S−1 =
∑d

k=0 z
kΓkS

−1. Note the distinction in notation when the ◦ operator is

23

involved:

(P (H)S−1) ◦ V =
d∑

k=0

HkV ΓkS
−1 = (P (H) ◦ V)S−1

vs.

P (H) ◦ (V S−1) =
d∑

k=0

HkV S−1Γk

One can also divide one matrix polynomial by another.

Definition 2.16: (i) A λ-matrix D is regular if there exists z such that

det(D(z)) 6= 0.

(ii) Let P,K,R and D be λ-matrices, where P has degree d and D is regular with

degree less than d. K is defined as the left quotient and R as the left remainder

of P on division by D if

P (z) = D(z)K(z) +R(z).

(iii) We say that P is left divisible by D if R ≡ 0.

All λ-matrices we consider are regular, unless otherwise noted. Consequently, the

division process is unique; see, e.g., [58, Chapter 4, Section 2].

Theorem 2.17: The λ-matrix P (z) is divisible on the left by zI − S if and only if

P (S) = 0.

Proof: This theorem originates as Theorem 3.3 and its corollary in [93]. We re-

produce the proof here, as the book may be difficult to find, and the proof itself is

24

illustrative. It is enough to show that the remainder of P (z) divided by zI−S is P (S):

P (z) = zdΓd + zd−1Γm−1 + · · ·+ Γ0

= (zI − S)zd−1Γd + zd−1(SΓd + Γd−1) + zd−2Γd−2 + · · ·+ Γ0

= (zI − S)
(
zd−1Γd + zd−2(SΓd + Γd−1)

)

+ zd−2(S2Γd + SΓd−1 + Γd−2) + zd−3Γd−3 + · · ·+ Γ0

= (zI − S)
(
zd−1Γd + zd−2(SΓd + Γd−1) + · · ·

+ (Sd−1Γd + Sd−2Γd−1 + · · ·+ Γ1)
)

+ SdΓd + Sd−1Γd−1 + · · ·+ Γ0

= (zI − S)Q(z) + P (S), where

Q(z) := zd−1Γd + zd−2(SΓd + Γd−1) + · · ·+ (Sd−1Γd + Sd−2Γd−1 + · · ·+ Γ1). �

2.5.1 Solvents and latent roots

As with scalar polynomials, there exists a notion of roots for matrix polynomials; but

unlike scalar polynomials, there is no Fundamental Theorem of Algebra. However,

under special assumptions, we can factor matrix polynomials.

Definition 2.18: Let P ∈ Pd(S). A matrix S ∈ S is called a left solvent of P if

P (S) = 0.

From now onward, we omit “left” when referring to quotients, divisibility, and sol-

vents.

Given a set of solvents for a matrix polynomial, one might want to inductively

apply the technique from Theorem 2.17 to write the polynomial as the product of

25

linear factors. In general, this is not possible. However, we can obtain something

useful if we make a few assumptions.

Theorem 2.19: Let P ∈ Pd(S) and let {Sj}dj=1 ⊂ Cs×s denote the set of solvents of

P . Suppose the pairwise differences of the solvents are nonsingular. Then

P (z) = (zI − S1) · · · (zI − Sd)Q0, (2.7)

for some Q0 ∈ S.

Proof: From the proof of Theorem 2.17, we obtain a quotient Qd−1 ∈ Pd−1 such that

P (z) = (zI − S1)Qd−1(z).

Since P (S2) = 0, we can conclude that Qd−1(S2) = 0 as well since S2−S1 is invertible.

Then we obtain the next quotient Qd−2 ∈ Pd−2 such that

Qd−1(z) = (zI − S2)Qd−2(z).

Since S3 − S2 is invertible, we obtain the next quotient, and so forth. Inductively,

P (z) = (zI − S1) · · · (zI − Sd)Q0,

where Q0 ∈ S. �

Theorem 2.19 is sufficient for our purposes in Section 4.2.5. However, for the

sake of context, we mention that there are other scenarios in which one can guarantee

a priori that a matrix polynomial can be decomposed into linear factors, in particular

with monic polynomials, for which the leading coefficient is the identity I.

26

Definition 2.20: Let P ∈ Pd(S).

(i) A scalar λ ∈ C is a latent root if P (λ) is singular. Equivalently, the latent

roots of a matrix polynomial P are precisely the zeros of the scalar polynomial

det(P (λ)).

(ii) The set {Sj}dj=1 ⊂ S is a complete set of solvents if P is monic and has ds

distinct latent roots, and if the ds eigenvalues of {Sj}dj=1 match the latent

roots exactly.

Theorem 2.21: If the latent roots of P ∈ Pd(S) are distinct and if P is monic, then

P has a complete set of solvents {Sj}dj=1 ⊂ S, and can be written as the product of

linear factors

P (z) = (zI − S1)(zI − S2) · · · (zI − Sd).

Proof: See [31, Theorem 4.1, Corollary 4.2, and Corollary 4.3], as well as

[62, Theorem 3.21], of which this result is a particular case. �

To illustrate these concepts, consider the polynomial

P (z) = z2I − z

[
−2 4
0 2

]
+

[
−3 0
0 −3

]
.

One can check that S1 =

[
1 2
0 3

]
and S2 =

[
−3 2
0 −1

]
are solvents of P . Furthermore,

−3,−1, 1, and 3 are latent roots of P . Therefore, {S1, S2} is a complete set of solvents

of P , and P can be factored as

P (z) =

(
zI −

[
1 2
0 3

])(
zI −

[
−3 2
0 −1

])
.

27

2.5.2 Interpolating matrix polynomials

In the same vein as Definition 2.2, we may want to match a matrix function to

a matrix polynomial, in which case, we need the notion of interpolating matrix

polynomials.

There are different, albeit related, notions for interpolating matrix polynomi-

als. Given a set of solvents, Dennis, Traub, and Weber define a set of fundamental

matrix polynomials and a block Vandermonde matrix in a fashion analogous to the

scalar case [31]. As long as the block Vandermonde matrix is nonsingular, the set

of fundamental matrix polynomials is well defined and interpolation can be carried

out. Our notion of interpolating matrix polynomials is closer to the development of

[86, Section 4.2].

Definition 2.22: Given H ∈ Sm×m, V ∈ Sm, and f such that f(H) : Sm → Sm is

defined, we say that Q ∈ Pm−1(S) interpolates f on the pair (H,V) if

Q(H) ◦ V = f(H)V .

Define the block Vandermonde matrix

V := [V |HV | · · · |Hm−1V]. (2.8)

If V is nonsingular, then the system

VΓ = f(H)V

has a solution Γ =




Γ0
...

Γm−1


 ∈ S

m, which is equivalent to the existence of an in-

terpolating matrix polynomial Q(z) =
∑m−1

j=0 zΓj for f and V . Note that Q is not

28

necessarily equivalent to the scalar interpolating polynomial associated to the func-

tion f acting on H guaranteed by Definition 2.2. For our purposes, when we invoke

an interpolating matrix polynomial characterization of f(H)V , we assume it exists.

Definition 2.23: A block characteristic polynomial of H ∈ Sm×m with respect to

V ∈ Sm is a matrix polynomial P ∈ Pm(S) such that

P (H) ◦ V = 0.

By letting Q ∈ Pm−1(S) be the matrix polynomial interpolating z−1 on (H,V), then

P (z) := I − zQ(z) is a block characteristic polynomial for (H,V). Under certain

assumptions, the block characteristic polynomial takes on the “spirit” of H, in the

sense that its latent roots match the eigenvalues of H, and its solvents are similarity

transformations of the block eigenvalues of H. The following theorem makes this

more precise.

Theorem 2.24: Suppose H ∈ Sm×m has a block eigendecomposition,

H = UT U−1,

where U ∈ Sm×m is invertible, T = diag({Θj}mj=1) ∈ Sm×m, and {Θj}mj=1 ⊂ S are

diagonalizable and the block eigenvalues ofH. Let V ∈ Sm,V 6= 0, be such that each

block entry Wj of W := [W1 · · ·Wm] := U−1V is invertible, and let Q ∈ Pm−1(S)

interpolate z−1 on (H,V). Defining P ∈ Pm(S) as P (z) := I − zQ(z), it holds that

(i) Sj := W−1
j ΘjWj are solvents of P , for all j = 1, . . . , m;

(ii) the eigenvalues of H exactly match the latent roots of P ; and

29

(iii) if Si − Sj is nonsingular for all i 6= j, then

P (z) = (I − zS̃−1
1) · · · (I − zS̃−1

m), (2.9)

where S̃j := (S1 · · ·Sj−1)Sj(S1 · · ·Sj−1)
−1.

Proof: (i) Let {Γk}m−1
k=0 ⊂ S denote the coefficients of Q. Then

Q(H) ◦ V = UT −1U−1V = UT −1W , (2.10)

while

Q(H) ◦ V =
m−1∑

k=0

HkV Γk =
m−1∑

k=0

UT kU−1V Γk = UQ(T) ◦W . (2.11)

Combining equalities (2.10) and (2.11) and multiplying both sides by U−1 gives that

Q(T) ◦W = T −1W .

The block structure of T further implies that

Q(Θj) ◦Wj = Θ−1
j Wj , (2.12)

and multiplying both sides of equation (2.12) by W−1
j finally results in

W−1
j Q(Θj) ◦Wj = W−1

j

m−1∑

k=0

Θk
jWjΓk =

m−1∑

k=0

W−1
j Θk

jWjΓk = W−1
j Θ−1

j Wj .

In summary, for Sj = W−1
j ΘjWj ,

Q(Sj) = S−1
j , for all j = 1, . . . , m. (2.13)

By the definition of P , P (Sj) = 0.

(ii) Fix j. Since each Θj is diagonalizable, so is Sj , i.e.,

Sj = XjTjX
−1
j ,

30

where Xj ∈ C
s×s and Tj := diag(θ1,j , . . . , θs,j), with {θij}si=1 being the eigenvalues of

Θj. Let {Γ̃k}mk=0 denote the coefficients of P . Consequently,

0 = P (Sj) = Xj

m∑

k=0

T k
j X

−1
j Γ̃k

= Xj

m∑

k=0



θk1j

. . .

θksj


X−1

j Γ̃k

Then multiplying on both sides by X−1
j gives that

m∑

k=0



θk1j

. . .

θksj


X−1

j Γ̃k = 0,

implying that the ith row of
∑m

k=0 θ
k
ijX

−1
j Γ̃k = X−1

j P (θij) is all zero. Therefore,

X−1
j P (θij) has determinant zero, but since det(X−1

j) 6= 0, then det(P (θij) = 0, for

all i = 1, . . . , s. Furthermore, the above holds for all j = 1, . . . , m, so
⋃m

j=1{θij}si=1

are precisely the latent roots of P . From Theorem 2.10,
⋃m

j=1{θij}si=1 are also the

eigenvalues of H, thus concluding the proof.

(iii) By Theorem 2.19, we can write

P (z) = (zI − S1) · · · (zI − Sm)K0,

where K0 = (−1)m(S1 · · ·Sm)
−1, since P (0) = I. Define

P̃k(z) := (zI − S1)(zI − S2) · · · (zI − Sk),

for each k = 1, . . . , m. Then, in particular,

P̃1(z) = zI − S1 = (I − zS−1
1)(−S1),

31

which serves as our base case. Suppose that for all 1 ≤ k ≤ m− 1,

P̃k(z) = (I − zS̃−1
1) · · · (I − zS̃−1

k)(−1)k(S1 · · ·Sk),

where for each j = 1, . . . , k, S̃j = (S1 · · ·Sj−1)Sj(S1 · · ·Sj−1)
−1. Then

P̃m(z) = P̃m−1(zI − Sm)

= (I − zS̃−1
1) · · · (I − zS̃−1

m−1)(−1)m−1(zS1 · · ·Sm−1 − S1 · · ·Sm−1Sm)

= (I − zS̃−1
1) · · · (I − zS̃−1

m−1)(S1 · · ·Sm − zS1 · · ·Sm−1)(−1)m

= (I − zS̃−1
1) · · · (I − zS̃−1

m−1)(I − z(S1 · · ·Sm−1)(S1 · · ·Sm)
−1)(−1)m(S1 · · ·Sm).

Noting that (S1 · · ·Sm−1)(S1 · · ·Sm)
−1 = (S1 · · ·Sm−1)S

−1
m (S1 · · ·Sm−1)

−1 and defin-

ing S̃m := (S1 · · ·Sm−1)Sm(S1 · · ·Sm−1)
−1 concludes the induction process. Then we

have that

P (z) = (I − zS̃−1
1) · · · (I − zS̃−1

m)(−1)m(S1 · · ·Sm)K0.

With (−1)m(S1 · · ·Sm)K0 = I, we obtain the final result. �

2.6 Stieltjes functions

A Stieltjes function is a function f : C \ (−∞, 0] → C that can be written as a

Riemann-Stieltjes integral:

f(z) =

∫ ∞

0

1

z + t
dµ(t), (2.14)

where µ is monotonically increasing and nonnegative on [0,∞) and
∫∞

0
1

t+1
dµ(t) < ∞.

We note that f(A) is defined as long as the spectrum of A, which could be complex,

contains no non-positive real values.

32

See, e.g., [72] for more information about Stieltjes functions. We focus on the

family of functions given as follows, for α ∈ (0, 1):

z−α =
sin((1− α)π)

π

∫ ∞

0

1

z + t
dµ(t), with dµ(t) = t−α dt. (2.15)

We pay special attention to z−1/2 and its role in the sign function, which can be writ-

ten as sign(z) = (z2)−1/2; see Section 6.2 and the numerical examples in Chapter 7.

2.7 Gauss quadrature rules

Quadrature, or numerical integration, is a standard method for approximating the

value of finite integrals. Let µ be a measure on an interval [a, b] whose moments are

finite, and let the function f : C → C be such that its Riemann-Stieltjes integral

exists. Then an N -point quadrature rule for approximating
∫ b

a
f(t) dµ(t) is a set of

weights {wi}Ni=1 and nodes {ti}Ni=1 such that

∫ b

a

f(t) dµ(t) =
N∑

i=1

wif(ti) +RN [f],

where RN [f] is the remainder. The rule is of degree d if RN [p] = 0 for all polynomials

of degree d; it is exact of degree d if in addition there exists q of degree d+1 such that

R[q] 6= 0. For more on quadrature rules, including their relationship to interpolation,

see, e.g., [28].

The idea behind Gauss quadrature rules is to solve for weights and nodes so

that the resulting rule has high degree. In particular, an N Gauss rule is exact of

degree 2N−1. The monograph by Golub and Meurant [63] expounds the fascinating

relationship among Gauss quadrature rules, orthogonal polynomials, and the Lanczos

procedure.

33

Variations of standard Gauss rules are also possible. In particular, the Gauss-

Radau rule determines the weights and remaining N−1 nodes when one node is fixed

as one of the end points of integration. The Gauss-Lobatto rule is similar, except

that both endpoints of the interval are fixed so that only N − 2 nodes must be

determined. Procedures for both are contained in [63].

Block Gauss quadrature rules can also be defined, where the given measure

µ is matrix-valued. In this case, the weights and nodes are also matrix-valued.

Analogous to the scalar case, there is a connection to matrix polynomials and the

block Lanczos procedure (see Algorithm 3.1.1). We consider block Gauss quadrature

rules in the context of the block framework developed in Chapter 3. See [63] for an

introduction via 2× 2 blocks, and [116] for a treatment of general k × k blocks.

2.8 Matrix derivatives

Suppose A : C → C
n×n is a matrix of scalar functions whose ijth entry is given as

aij(z). We define d
dz
[A(z)] to be the matrix of derivatives, i.e., the matrix whose ijth

entry is given as d
dz
[aij(z)]. A number of intuitive results hold for matrix derivatives.

Lemma 2.25: Let A,B : C → Cn×n be such that each of their entries is a function

of z. Let C ∈ Cn×n be a constant matrix. Assume that A and B are differentiable,

i.e., that

lim
h→0

A(z + h)−A(z)

h
=:

d

dz
[A(z)],

and likewise for B. Then

(i) d
dz
[A(z)B(z)] = d

dz
[A(z)]B(z) + A(z) d

dz
[B(z)];

(ii) d
dz
[CA(z)] = C d

dz
[A(z)];

34

(iii) d
dz
[A(z)∗] = d

dz
[A(z)]∗; and

(iv) d
dz
[A(z)−1] = −A(z)−1 d

dz
[A(z)]A(z)−1.

Proof: Parts (i)-(iii) follow by basic calculus. The proof for part (iv) is a bit more

subtle. Note that

A(z + h)−1 − A(z)−1

h
=

A(z + h)−1 (A(z)− A(z + h))A(z)−1

h

= −A(z + h)−1A(z + h)− A(z)

h
A(z)−1,

whose limit as h → 0 is the desired result. �

Note that if A is Hermitian, then by part (iii) of Lemma 2.25, the derivative is also

Hermitian.

2.9 List of abbreviations

In a work this size, it is easy to lose track of where an acronym is first defined. We

collect them here for reference.

• CG: Conjugate Gradients

• ENNR: Euclidean nonnegative real

• EPR: Euclidean positive real

• FOM: Full Orthogonalization Method

• (FOM)2: Full Orthogonalization Method for Functions Of Matrices

• GMRES: Generalized Minimal RESidual

• HPSD: Hermitian positive semi-definite

• HPD: Hermitian positive definite

• MINRES: MINimal RESidual

35

• RL: Radau-Lanczos

• SA: self-adjoint

The prefix of “B” to an acronym denotes “block.” With this in mind, the meaning

of acronyms such as “BCG,” “BPR,” “BFOM,” and “BGMRES” should be clear.

36

CHAPTER 3

BLOCK KRYLOV SUBSPACES WITH RESTARTS FOR

SHIFTED LINEAR SYSTEMS

Krylov subspace methods are among the most popular iterative methods for solving

linear systems Ax = b [122]. Their success hinges on the efficient computation of

matrix-vector products Ab, where A : Cn → Cn is sparse and often too large to store

or compute with directly, and b ∈ Cn. With the advent of Level 3 Sparse Basic

Linear Algebra Subprogram (BLAS3) standards for matrix-matrix products AB,

where B ∈ C
n×s, block Krylov subspace methods have gained more popularity. (For

details about these standards see, e.g., [37].) Indeed, it is well known that AB can

be computationally more advantageous than computing each column Abi separately

and concatenating them; see, e.g., [11, 15, 115, 111]. Furthermore, the demands of

high-performance computing have pushed for cheaper matrix-matrix product kernels,

so that operations like AB can be made extremely fast relative to the time needed for

communication between parallel processors, thus making them a common technique

for “communication avoidance” [33, 66, 80].

37

Block Krylov methods have additional benefits from a numerical algebraic

point of view. Because a block Krylov subspace utilizes information from multiple

columns at once, one might expect fewer iterations required for convergence. Block

methods also allow for computing multiple eigenvalues at once [24, 82, 85], and they

are a natural choice for solving matrix equations [45, 73].

The end goal for this chapter and the next is to develop a general framework

and theory for block Krylov methods in order to solve the family of shifted linear

systems

(A+ tI)X(t) = B, (3.1)

where A : Cn×s → Cn×s is large and sparse, B ∈ Cn×s, and t is such that A + tI is

nonsingular.

3.0.1 Disambiguation and history

Despite the abundance of block methods in the literature, there is some ambiguity

regarding what a “block” method is. For example, one of the earliest appearances

of the term “block” in the context of Krylov basis building is by Ruhe in [118]; see

Algorithm 3.0.1 for Ruhe’s variant of the block Arnoldi method. In our formalism,

we require that a block Krylov method be dominated by matrix-matrix products

AB, so that sparse BLAS3 can be exploited. In which case, we do not regard Ruhe’s

variant as a block method.

Another issue is that there are multiple ways of blocking and building a block

basis, and each has a significant effect on the implementation of the algorithm and

resulting algebraic properties of the solution. Gutknecht [69] and Elbouyahyaoui,

38

Algorithm 3.0.1: Ruhe’s Arnoldi

1: Given A, s orthonormal vectors b1, . . . , bs, m

2: Compute B = ‖B‖2 and V1 = BB−1

3: Set V0 = 0, H0,1 = B

4: for j = s, s+ 1, . . . , s+m− 1 do

5: Set k = j − s + 1

6: Compute w = Avk

7: for i = 1, 2, . . . , j do

8: hi,k = w∗vi

9: w = w − hi,kvi

10: end for

11: Compute hj+1,k = ‖w‖2 and vj+1 = w/hj+1,k

12: end for

13: return B, Vm = [V1| . . . |Vm], Hm = (Hj,k)
m
j,k=1, Vm+1, and Hm+1,m

39

Messaoudi, and Sadok [46] are some of the first authors to begin differentiating be-

tween the two main blocking techniques, which we refer to as “classical” and “global.”

The work by these authors is our main source of inspiration for extracting and for-

malizing the underlying mechanisms of block Krylov methods. In the following, we

present a brief historical overview and categorization of block methods present in the

literature; precisely what the block inner product is will be made clear in Section 3.1.

Though thorough, the sources listed are not exhaustive: block methods are found

in many shapes and sizes and are used for eigenvalue solvers, linear systems, and

matrix equations alike.

The classical block inner product. Block Krylov methods are first used for

eigenvalue solvers in 1974 by Cullum and Donath [24] and in 1977 by Golub and

Underwood [64]. We call the underlying block inner product (see Section 3.1) for

these methods the “classical” block inner product. In 1980, O’Leary applies block

methods in the form of block conjugate gradients (BCG) to solve linear systems

with multiple right-hand sides [108]. Since then, BCG has been explored thoroughly

in the literature. Much attention has been paid to the issue of linear dependence

among columns of the Krylov basis vectors (see Remark 3.10 and [16, 36, 105, 106])

or breakdown scenarios [20]. Other methods relying on the block Krylov basis have

also been developed, such as block Lanczos [119], two-side block Lanczos [7], and

block FOM (BFOM) [133, 134].

Classical Block GMRES (BGMRES) comprises a field by itself. Simoncini

and Gallopoulos first propose BGMRES, along with a thorough theoretical analysis

[127, 129, 130]. Other work has dealt with acceleration techniques [102], block grade

40

and block QR factorizations [69, 70], performance [11], breakdown scenarios [117],

and preconditioning and deflation techniques [21].

Many other methods rely on classical block Krylov subspaces. Recycling

shares many properties with block methods [111, 133]. Block SYMMLQ and MIN-

RES are explored in [124, 132], and block QMR in [50]. The block Arnoldi procedure

underlying all of these methods is also used for matrix equations [2, 45, 110] and

model reduction [1].

The global block inner product. Jbilou, Messaoudi, and Sadok debut global

FOM and GMRES for matrix equations in 1999 [83], but the nomenclature is in-

troduced by Saad in the first edition of [122]. Thorough convergence and algebraic

studies are conducted in [18, 73, 46], and it is precisely these works which begin to

uncover an underlying framework between the classical and global Krylov methods.

As with classical methods, variations and different uses of global methods

have been developed. They are used for model reduction in [1] and matrix equations

in [13]. Bi-conjugate gradients, QMR, BiCGStab, and other variations are developed

in [115, 143].

Loop-interchange block inner product. These methods involve “exchanging” a

loop in the implementation of Arnoldi for multiple vectors so that block operations

are used instead; another term more commonly used in computer science is “batch-

ing.” This technique has likely been considered many times before, but it is first

formally named and studied by Rashedi, Ebadi, Birk, and Frommer in 2016 [115].

41

3.0.2 Krylov subspace methods

We recapitulate some of the basic details of (non-block) Krylov spaces. Given

A : Cn → Cn, and b ∈ Cn, the mth Krylov subspace of A and b is defined as

Km(A, b) := span{b, Ab, . . . , Am−1b}.

An orthonormal basis can be generated with the Arnoldi or Lanczos procedure (see

Algorithm 3.0.2), leading to the Arnoldi (Lanczos) relation

AVm = VmHm + vm+1hm,m+1ê
∗
m = Vm+1Hm, (3.2)

where Hm =

[
Hm

hm+1,me
∗
m

]
, vm+1 and the columns of Vm are orthonormal, and Hm is

an m×m upper Hessenberg matrix. We assume the procedure does not breakdown,

and regardless of whether Arnoldi or Lanczos is used, we insist that the entire basis

Vm be returned, for reasons related to matrix function approximations; see Chapter 5

and [78]. Naturally, when the Lanczos procedure is used and A is thus Hermitian, Hm

reduces to a tridiagonal, Hermitian matrix, for which less storage can be used. For

other details and variations regarding Krylov subspace methods for a single vector,

we direct the reader to [38, 122, 131].

For comparison with the block case, we recall some well-known results for

FOM and GMRES. Let the FOM and GMRES approximations to Ax = b be given as

xF
m := VmH

−1
m ê1β, and

xG
m := Vm+1H

+
mê1β,

respectively, where the superscript + denotes the Moore-Penrose inverse. Let x∗

denote the exact solution to Ax = b. Assume that A is HPD and let 0 < λmin ≤ λmax

42

Algorithm 3.0.2: Arnoldi and Lanczos procedures

1: Given A, b, 〈·, ·〉, induced norm ‖·‖, m

2: Compute β = ‖b‖ and v1 = b/β

3: if A is Hermitian with respect to 〈·, ·〉 then

4: Set v0 = 0, h0,1 = β

5: for k = 1, . . . , m do

6: w = Avk − vk−1hk−1,k

7: hk,k = 〈vk,w〉

8: w = w − vkhk,k

9: Compute hk+1,k = ‖w‖ and vk+1 = wh−1
k+1,k

10: Set hk,k+1 = hk+1,k

11: end for

12: else

13: for k = 1, . . . , m do

14: Compute w = Avk

15: for j = 1, . . . , k do

16: hj,k = 〈vj,w〉

17: w = w − vjhj,k

18: end for

19: Compute hk+1,k = ‖w‖ and vk+1 = wh−1
k+1,k

20: end for

21: end if

22: return β, Vm = [v1| . . . |vm], Hm = (hj,k)
m
j,k=1, vm+1, and hm+1,m

43

denote the smallest and largest eigenvalues of A, respectively. Define the constants

κ :=
λmax

λmin
, c :=

√
κ− 1√
κ+ 1

, and ξm :=
1

cosh(m ln c)
=

2

cm + c−m
. (3.3)

If κ = 1, then set ξm = 0. Indeed, when A is HPD, FOM reduces to CG.

Theorem 3.1: The FOM error em := x∗ − xF
m at step m satisfies

‖em‖A = min
x∈Km(A,b)

‖x∗ − x‖A ≤ ξm ‖e0‖A ≤ 2cm ‖e0‖A .

Proof: See, e.g., [97, Ch. 8] and [122, Ch. 6]. �

Suppose now that A is positive real, and define

ρ := min

{
Re(v∗A−1v)

v∗v
: v ∈ C

n, v 6= 0

}
;

γ := min

{
Re(v∗Av)

v∗v
: v ∈ C

n, v 6= 0

}
; and

νmax := max

{
(Av)∗Av

v∗v
: v ∈ C

n, v 6= 0

}
.

Theorem 3.2: The GMRES residual rG
m := AxG

m − b at step m can be bounded as

‖rm‖ ≤
(
1− γ2

νmax

)m/2

‖b‖2 . (3.4)

Proof: See, e.g., [42, Theorem 3.3]. �

3.1 A comprehensive block Krylov subspace framework

We take S ⊂ Cs×s as the ∗-subalgebra with identity defined in Section 2.4. The key

behind the framework is pairing S with a matrix-valued inner product and scaling

quotient mapping elements from Cn×s to S. In this way, we regard S as a kind of

generalized field, and the following notions as generalizations of an inner product

44

and norm. Matrix-valued norms and inner products have been considered before

with similar purposes; see, e.g., the right bilinear form of [43], the ⋄ product of [18],

the block inner product of [60], or the matrix-valued inner products used to define

orthogonal polynomials in [25, 68]. The bulk of this section is taken from [55].

Definition 3.3: A mapping 〈〈·, ·〉〉
S
from Cn×s × Cn×s to S is called a block inner

product onto S if it satisfies the following conditions for all X,Y ,Z ∈ Cn×s and

C ∈ S:

(i) S-linearity : 〈〈X + Y ,ZC〉〉
S
= 〈〈X,Z〉〉

S
C + 〈〈Y ,Z〉〉

S
C;

(ii) symmetry : 〈〈X,Y 〉〉
S
= 〈〈Y ,X〉〉∗

S
;

(iii) definiteness : 〈〈X,X〉〉
S
is positive definite if X has full rank, and 〈〈X,X〉〉

S
= 0

if and only if X = 0.

Definition 3.4: A mapping N which maps all X ∈ Cn×s with full rank on a matrix

N(X) ∈ S is called a scaling quotient if for all such X there exists Y ∈ C
n×s such

that X = Y N(X) and 〈〈Y ,Y 〉〉
S
= I.

Remark 3.5: Let X ∈ Cn×s. Some consequences of Definitions 3.3 and 3.3 include

the following:

(i) Condition (ii) implies that 〈〈X,X〉〉
S
is always Hermitian. Then along with

condition (iii), 〈〈X,X〉〉
S
is HPD when X has full rank, and HPSD otherwise.

(ii) By the previous comment, 〈〈X,X〉〉
S
is at least HPSD. Then the Cholesky

factorization can induce a scaling quotient, provided the resulting factors belong

to S.

45

(iii) Let f(z) = z1/2. By Definition 2.2, f(〈〈X,X〉〉
S
) can be expressed as p(〈〈X,X〉〉

S
)

for some scalar polynomial p; consequently f(〈〈X,X〉〉
S
) ∈ S. Then f can in-

duce a scaling quotient asX = Y f(〈〈X,X〉〉
S
), since forX full rank, 〈〈X,X〉〉−1/2

S

is nonsingular and

〈〈Y ,Y 〉〉
S
= 〈〈Xf(〈〈X,X〉〉

S
)−1,Xf(〈〈X,X〉〉

S
)−1〉〉

S

= 〈〈X,X〉〉−1/2
S

〈〈X,X〉〉
S
〈〈X,X〉〉−1/2

S
= Is.

(iv) Although the scaling quotient N is only formally defined for full-rank X, it

can be extended in practice to rank-deficient X via a deflation routine. For

example, with a rank-revealing QR the linearly dependent columns of X can be

removed so that a skinnier X̂ ∈ Cn×ŝ is considered instead, with N then being

the analogous map from Cn×ŝ → Cŝ×ŝ. See Remark 3.10 for details regard-

ing deflation in implementation, and the thesis [15] for a thorough theoretical

consideration of deflation in the classical inner product.

(v) If X has full rank, then 〈〈XN(X)−1,XN(X)−1〉〉
S
= I.

Blocked-based notions of orthogonality and normalization also play important roles.

Definition 3.6: (i) X,Y ∈ Cn×s are block orthogonal, if 〈〈X,Y 〉〉
S
= 0.

(ii) X ∈ Cn×s is block normalized if N(X) = I.

(iii) {X1, . . . ,Xm} ⊂ C
n×s is block orthonormal if 〈〈Xi,Xj〉〉S = δijI, where δij is

the Kronecker delta.

Remark 3.7: When we need to distinguish between inner products, we may write,

e.g., “〈〈·, ·〉〉
S
-orthogonal” instead of “block orthogonal.” The reader may find it help-

ful to read “〈〈·, ·〉〉
S
” as “block” in such instances.

46

We say that a set of vectors {Xj}mj=1 ⊂ C
n×s

S-spans a space K ⊂ C
n×s and

write K = spanS{Xj}mj=1, where

spanS{Xj}mj=1 :=

{
m∑

j=1

XjΓj : Γj ∈ S for all j = 1, . . . , m

}
.

The set {Xj}mj=1 constitutes a block orthonormal basis for K , K = spanS{Xj}mj=1,

and {Xj}mj=1 are orthonormal. Furthermore, the S-span forms a proper subspace of

C
n×s, so that the mth block Krylov subspace for A and B is well defined as

K
S

m(A,B) = spanS{B, AB, . . . , Am−1B}.

The S-span notation is particularly important here. In some of the literature, au-

thors confuse notation, defining the classical block Krylov subspace as K Cl
m (A,B) =

span{B, AB, . . . , Am−1B}. Since span denotes a linear combination, i.e., with scalars,

this definition is usually not what authors intend; it would, however, be the correct

definition for the global Krylov subspace. What is often intended is not span but

rather colspan,

K
col
m (A,B) := colspan{B, AB, . . . , Am−1B} := Km(A, b1) + · · ·+ Km(A, bs).

The subspace K Cl
m (A,B) is related to K col

m (A,B) in that the columns of every

element of K Cl
m (A,B) are elements of K col

m (A,B). But K col
m (A,B) ⊂ Cn; given the

block-focused nature of our framework, we want to stick with a formulation of block

Krylov subspaces that are subsets of Cn×s.

Table 3.1 summarizes combinations of S, 〈〈·, ·〉〉
S
, and N that lead to estab-

lished or feasible block Krylov subspaces. The classical and global block products are

first identified in [46], and the hybrid case is first considered in [55] as a combination

47

of the classical and loop-interchange methods. To ensure that the block-diagonal

sparsity structure is retained, taking the matrix square root as the scaling quotient

is recommended for the hybrid case; an economic QR is also possible, though.

The choice of S directly affects what the elements of K S

m(A,B) look like. In

some sense, the structure and nature of S controls how much information is shared

among the columns of the block vectors in K S

m(A,B), as emphasized by the visu-

alizations in the first column of Table 3.1. More precisely, consider the classical,

loop-interchange, and global Krylov subspaces:

K
Cl
m (A,B) =

{
m−1∑

k=0

AkBCk : Ck ∈ C
s×s

}
;

K
Li
m (A,B) = Km(A, b1)× · · · × Km(A, bs) =

{
m−1∑

k=0

AkBDk : Dk ∈ C
s×s is diagonal

}
,

where Km(A, bi) := span{bi, Abi, . . . , Am−1bi} ⊂ C
n;

K
Gl
m (A,B) = span{B, AB, . . . , Am−1B} =

{
m−1∑

k=0

AkBck : ck ∈ C

}
.

In fact, these different spaces are nested as

K
Gl
m (A,B) ⊂ K

Li
m (A,B) ⊂ K

Cl
m (A,B).

Hybrid block Krylov subspaces would be nested between K Cl
m (A,B) and K Li

m (A,B).

In this sense, then, the global approach allows for the least interaction between

columns, and the classical approach the most.

Notions of self-adjointness and positive realness can also be represented in our

block framework.

Definition 3.8: Let A be an operator mapping Cn×s to Cn×s.

48

Table 3.1. Depictions and descriptions of block inner products used

in numerical examples.

S 〈〈X,Y 〉〉
S

N(X)

classical

Cs×s X∗Y
R, where X = QR,

and Q ∈ Cn×s

global

CIs
1
s
(X∗Y)Is

1
s
‖X‖F Is

loop-

interchange
Is ⊗ C diag(X∗Y) diag(‖x1‖2 , . . . , ‖xs‖2)

hybrid

Ip ⊗ C
q×q, s = qp diag(X∗

1Y1, . . . ,X
∗
pYp) (X∗X)1/2 or NCl(X)

49

(i) A is block self-adjoint (BSA) if for all X,Y ∈ C
n×s,

〈〈AX,Y 〉〉
S
= 〈〈X, AY 〉〉

S
.

(ii) A block self-adjoint A is block positive definite (BPD), if a) for all full rank

X ∈ Cn×s, the matrix 〈〈X, AX〉〉
S
∈ Cs×s is self-adjoint and positive definite,

and b) for all rank-deficient X 6= 0, 〈〈X, AX〉〉
S
is self-adjoint, positive semi-

definite, and nonzero.

(iii) A block self-adjoint A is block positive semi-definite (BPSD), if for X 6= 0,

〈〈X, AX〉〉
S
is self-adjoint and positive semi-definite.

(iv) A is block positive real (BPR), if a) for all full rank X ∈ Cn×s the matrix

〈〈X, AX〉〉
S
∈ Cs×s is EPR, and b) for all rank-deficient X 6= 0, 〈〈X, AX〉〉

S
is

ENNR and nonzero.

(v) A is block nonnegative real (BNNR), if for all X 6= 0, 〈〈X, AX〉〉
S
is ENNR.

As in the non-block case, an operator may be self-adjoint with respect to one inner

product, but not another, and likewise for other inner-product-based properties.

We examine how block properties of an operator translate into more familiar scalar

properties in Section 3.1.2.

3.1.1 The Block Arnoldi relation

To be useful in practice, we need a way to compute a block orthonormal basis of

K S
m(A,B). Algorithm 3.1.1 is the generalization of the Arnoldi and Lanczos pro-

cedures within our framework. Issues of breakdowns and eigenvalue deflation are

discussed for different 〈〈·, ·〉〉
S
in, e.g., [10, 15, 16, 70, 84, 124, 134]; we do not go

50

into such details here. We assume that Algorithm 3.1.1 runs to completion without

breaking down, i.e., that we obtain

(i) a block orthonormal basis {Vk}m+1
k=1 ⊂ Cn×s, such that each Vk has full rank

and K S
m(A,B) = spanS{Vk}mk=1, and

(ii) a block upper Hessenberg matrix Hm ∈ Sm×m and Hm+1,m ∈ S,

all satisfying the block Arnoldi relation

AVm = VmHm + Vm+1Hm+1,mÊ
∗
m, (3.5)

where Vm = [V1| . . . |Vm] ∈ Cn×ms, and

Hm =




H1,1 H1,2 . . . H1,m

H2,1 H2,2 . . . H2,m

. . .
. . .

...
Hm,m−1 Hm,m


 .

An alternative form of equation (3.5) will at times be more convenient:

AVm = Vm+1Hm, (3.6)

where Vm+1 := [Vm|Vm+1] and Hm :=

[Hm

Hm+1,mÊ
∗
m+1

]
.

A schematic of the block Arnoldi relation is given in Figure 3.1. Note that

the block entries of Hm are elements of S, so it is natural to say that Hm ∈ Sm×m

and maps elements of Sm, which is a proper subspace of Cms×s, to S
m.

Since the block upper Hessenberg matrix Hm is the restriction and projection

of A onto K S

m(A,B), it is insightful to consider the structure and sparsity of Hm in

different paradigms, which reveal how much of A is “captured” by K S

m(A,B). In

the classical case (top left of Figure 3.2), Hm is dense. The lower diagonal blocks

are only triangular because the traditional QR is used; if a rank-revealing QR or

51

Algorithm 3.1.1: Block Arnoldi and Block Lanczos procedures

Given: A, B, S, 〈〈·, ·〉〉
S
, N , m

1 Compute B = N(B) and V1 = BB−1

2 if A is block self-adjoint then

3 Set V0 = 0, H0,1 = B

4 for k = 1, . . . , m do

5 W = AVk − Vk−1Hk−1,k

6 Hk,k = 〈〈Vk,W 〉〉
S

7 W = W − VkHk,k

8 Compute Hk+1,k = N(W) and Vk+1 = WH−1
k+1,k

9 Set Hk,k+1 = H∗
k+1,k

10 else

11 for k = 1, . . . , m do

12 Compute W = AVk

13 for j = 1, . . . , k do

14 Hj,k = 〈〈Vj,W 〉〉
S

15 W = W − VjHj,k

16 Compute Hk+1,k = N(W) and Vk+1 = WH−1
k+1,k

17 Return B, Vm = [V1| . . . |Vm], Hm = (Hj,k)
m
j,k=1, Vm+1, and Hm+1,m

52

n

n

ms (m+1)s ms

(m+1)s

Figure 3.1. Illustration of the block Arnoldi relation.

matrix square root were used as the scaling quotient, they would have a different

structure. In terms of density, the hybrid case (bottom) is next in line, with a sparsity

between that of the classical and global or loop-interchange cases. In fact, the global

case produces an Hm with a special Kronecker structure: Hm = Hm ⊗ Is, where

Hm ∈ Cm×m and is upper Hessenberg.

Some properties will prove helpful for for understanding how the orthonor-

mality of the Krylov basis vectors works with respect to the block inner product.

The proofs are a straightforward exercise, using Definition 3.3 and properties of the

Krylov basis Vm.

Lemma 3.9: Let Y ,W ∈ Sm+1 ⊆ C(m+1)s×s, with S entries denoted as Yj and Wj ,

respectively, for j = 1, . . . , m+ 1. Then

(i) 〈〈Vj,Vm+1Y 〉〉
S
= Yj

(ii) 〈〈Vm+1Y ,Vj〉〉S = Y ∗
j

(iii) 〈〈Vm+1Y ,Vm+1W 〉〉
S
= Y ∗W

53

0 5 10 15

nz = 190

0

2

4

6

8

10

12

14

16

classical sparsity pattern

0 5 10 15

nz = 52

0

2

4

6

8

10

12

14

16

global and loop-interchange sparsity patterns

0 5 10 15

nz = 104

0

2

4

6

8

10

12

14

16

hybrid sparsity pattern

Figure 3.2. Sparsity patterns of H4 for different block inner products

and s = 4, with q = 2 for the hybrid example.

Remark 3.10: When implementing Algorithm 3.1.1, it is important to account for

linear dependence among columns of the basis vectors. The classical inner product

is most problematic with linear dependence; see techniques for BCG described in

[7, 15, 16, 36, 108] and for BGMRES in [69].

We make a particular choice for how to deal with linear dependence in the

classical and hybrid versions of Algorithm 3.1.1. There are methods for short-term

recurrences [36, 108], which are not appropriate for our purposes, since we focus

54

on FOM-like and GMRES-like methods and need the full Krylov basis for matrix

functions in Chapter 5. Other methods require breaking up the columns of the

block vectors and using matrix-vector multiplication [7], which is also not preferable,

since the resulting algorithm would not take advantage of Level 3 sparse BLAS.

Algorithm 7.3 of [15] is the only viable column deflation routine that both features

matrix-matrix operations and retains the entire Krylov basis. We employ this routine

when using Algorithm 3.1.1 for matrix functions.

3.1.2 Preserving properties of A in K S

m(A,B)

The motivation behind Krylov methods is to reduce A to a small matrix with similar

properties that is computationally cheaper to work with. In this section, we discuss

how properties of A are transferred to Hm via the block framework, but to do so,

we introduce a scalar inner product and norm induced by 〈〈·, ·〉〉
S
, as well as block

analogues of a number of linear algebra notions.

By taking the trace, we can convert 〈〈·, ·〉〉
S
into a scalar inner product

〈·, ·〉S : Cn×s × Cn×s → C:

〈X,Y 〉S := trace (〈〈Y ,X〉〉
S
) . (3.7)

Properties of 〈〈·, ·〉〉
S
guarantee that (3.7) is a true inner product on Cn×s. Naturally,

it induces the norm

‖X‖
S
:= 〈X,X〉

1
2
S
.

Note that the classical, global, loop-interchange, and hybrid paradigms all reduce to

the Frobenius norm. Weighted versions of 〈·, ·〉S and ‖·‖
S
can be easily defined for

operators W : Cn×s → Cn×s which are self-adjoint and positive definite with respect

55

to 〈·, ·〉S:

〈X,Y 〉W -S := 〈X,WY 〉S; and

‖X‖W -S := 〈X,X〉
1
2
W -S.

The following is a combination and generalization of [55, Lemmas 3.5 and 3.6].

Lemma 3.11: Let p be a scalar-valued polynomial with real coefficients and let

A : Cn×s → Cn×s be self-adjoint with respect to 〈·, ·〉W -S. Then

‖p(A)‖W -S = max
λ∈spec(A)

|p(λ)| .

Proof: Since A is self-adjoint with respect to 〈·, ·〉W -S on Cn×s, it admits an 〈·, ·〉W -S-

orthonormal basis of eigenvectors from C
n×s. Then the operator norm ‖A‖W -S is

given as

‖A‖W -S = max
λ∈spec(A)

|λ| .

Since p has real coefficients, p(A) is also 〈·, ·〉W -S-self-adjoint, and spec(p(A)) =

{p(λ) : λ ∈ spec(A)}, where the spectrum of A is precisely its eigenvalues. As a

direct consequence, we have that ‖p(A)‖W -S = maxλ∈spec(A) |p(λ)|. �

The scalar inner product 〈·, ·〉S induces a traditional, scalar notion of orthogonality,

and similarly for weighted versions. Trivially, block orthogonality implies scalar

orthogonality, since 〈〈Y ,X〉〉
S
= 0s implies 〈X,Y 〉S = trace (〈〈Y ,X〉〉

S
) = 0, and

likewise for weighted cases.

Another useful result bounds a weighted norm from above and below; the

original statement and proof are presented as [55, Lemma 4.4].

56

Lemma 3.12: Let A be 〈·, ·〉S-positive-definite, and let g : (0,∞) → (0,∞) be a

scalar rational function. Also, let gmin and gmax denote the minimum and maximum

values of g on spec(A), respectively. Then

√
gmin ‖V ‖

S
≤ ‖V ‖g(A)-S ≤

√
gmax ‖V ‖

S
.

Proof: Since A is 〈·, ·〉S-positive definite, its spectrum is positive and A has a 〈·, ·〉S-

orthonormal eigenbasis, i.e., there exist {βj}nsj=1 ⊂ C and {Qj}nsj=1 ⊂ Cn×s such that

AQj = λjQj and 〈Qj,Qk〉S = δjk. Given any V ∈ Cn×s, we expand it in terms of

this basis as V =
∑ns

j=1 βjQj. Then

‖V ‖2g(A)-S = 〈g(A)V ,V 〉S = 〈
ns∑

j=1

g(λj)βjQj,

ns∑

j=1

βjQj〉S =
ns∑

j=1

g(λj)|βj |2,

and thus

gmin

ns∑

j=1

|βj|2 ≤ ‖V ‖2g(A)-S ≤ gmax

ns∑

j=1

|βj|2.

Noting that
∑ns

j=1 |βj |2 = ‖V ‖2
S
leads to the desired result. �

Recall that the spectrum of an operator is defined independently of the inner

product. This independence is crucial, since we need to take advantage of an unusual

inner product 〈·, ·〉Vm
defined as

〈X,Y 〉Vm
:= 〈VmX,VmY 〉S, X,Y ∈ S

m,

where Vm is the matrix of the block Arnoldi vectors as in the relation (3.5). It

follows that the field of values of Hm with respect to 〈·, ·〉Vm
is contained in the field

of values of A with respect to 〈·, ·〉S; see Definition 2.5 for the definition of the field

of values with respect to a given inner product.

57

Lemma 3.13 (Lemma 4.1 of [55]): It holds that

F〈·,·〉Vm
(Hm) ⊂ F〈·,·〉S(A).

Proof: By the Arnoldi relation (3.5) it holds that

〈X,HmX〉Vm
= 〈VmX,VmHmX〉S

= 〈VmX, AVmX〉S − 〈VmX,Vm+1Hm+1,mÊ
∗
mX〉S

= 〈VmX, AVmX〉S.

The last equality holds since 〈〈VmX,Vm+1Hm+1,mÊ
∗
mX〉〉

S
= 0, which can be seen

by breaking VmX into components and applying Lemma 3.9. We conclude the proof

by noting that VmX ∈ Cn×s and 〈VmX,VmX〉S = 〈X,X〉Vm
. �

The block properties from Definition 3.8 carry over to their scalar analogues.

Lemma 3.14: Let A be an operator mapping Cn×s to Cn×s.

(i) If A is BSA, then A is self-adjoint with respect to 〈·, ·〉S.

(ii) If A is BSA and BP(S)D, then A is self-adjoint and positive (semi-)definite with

respect to 〈·, ·〉S.

(iii) If A is BPR (BNNR), then A is positive real (nonnegative real) with respect

to 〈·, ·〉S.

Proof: Part (i) follows by straightforward application of the definition of 〈·, ·〉S. For

part (ii), we note that whenever X 6= 0 and A is BPSD, 〈〈X, AX〉〉
S
is positive semi-

definite and therefore has nonnegative eigenvalues, so trace (〈〈X, AX〉〉
S
) ≥ 0. When

A is BPD, 〈〈X, AX〉〉
S
has at least one positive eigenvalue, so trace (〈〈X, AX〉〉

S
) > 0.

58

An analogous argument holds for part (iii) by looking instead at the real part of

trace (〈〈X, AX〉〉
S
). �

Lemma 3.15: If A possesses one of the block properties of Definition 3.8 with re-

spect to 〈〈·, ·〉〉
S
, then Hm possess the same property with respect to 〈〈·, ·〉〉

Vm
. Fur-

thermore, Hm possesses the scalar version of the property with respect to 〈·, ·〉Vm
.

Proof: Since Algorithm 3.1.1 switches to the block Lanczos procedure when A is

BSA, Hm inherits the same property by construction. Suppose now that A is BSA

and BP(S)D. By the proof of Lemma 3.13, 〈X,HmX〉Vm
= 〈VmX, AVmX〉S. Then

by Definition 3.8, Hm is also BSA and BP(S)D. Likewise when A is BPR or BNNR.

Lemma 3.14 applied to Hm and 〈·, ·〉Vm
concludes the proof. �

3.1.3 Block orthogonal projectors

Let P denote the 〈·, ·〉W -S-orthogonal projector onto a subspace K of Cn×s. The

following results are generalizations of [122, Theorem 1.38 and Corollary 1.39].

Theorem 3.16: Given Y ∈ Cn×s, K ⊂ Cn×s, and a 〈·, ·〉W -S-orthogonal P ,

‖Y −PY ‖W -S = min
X∈K

‖Y −X‖W -S .

Corollary 3.17: Let Y ∈ Cn×s and K ⊂ Cn×s be given. Then Z ∈ Cn×s satisfies

‖Y −Z‖W -S = min
X∈K

‖Y −X‖W -S

if and only if

Z ∈ K and Y −Z is 〈·, ·〉W -S-orthogonal to K .

59

3.1.4 Cospatiality vs. collinearity

The notion of collinearity is well established for vectors. Two vectors x,y ∈ Cn

are collinear if there exists a nonzero c ∈ C such that x = cy. This notion also

makes sense for block vectors, if one regards the space Cn×s as a vector space, i.e.,

X,Y ∈ C
n×s are collinear if there exists a c ∈ C such that X = cY .

A more general notion proves useful in our analysis, that of cospatiality, which

is first coined in [55]. We say that two block vectors X,Y ∈ C
n×s are cospatial if

there exists a C ∈ S such that X = Y C. Another way to regard cospatiality is to

think of the columns of X and Y as spanning the same subspace in a way specified

by the zero-nonzero structure of elements of S.

3.1.5 Characterizations of block Krylov subspaces

For reference throughout the rest of this chapter, it is helpful to summarize the

various characterizations of block Krylov subspaces up to this point:

K
S

m(A,B) = spanS{B, AB, . . . , Am−1B}

=

{
m∑

k=1

Ak−1BCk : Ck ∈ S

}

= {P (A) ◦B : P ∈ Pm−1(S)}

= {VmY : Y ∈ S
m},

where P is a matrix polynomial as defined in Section 2.5, Sm is the subspace of Cms×s

whose elements take their block entries from S, and Vm is the matrix of basis vectors

from the block Arnoldi relation (3.5).

60

3.2 Block FOM

The essential Krylov method is the Full Orthogonalization Method (FOM) [120].

While not the most popular method for solving linear systems, it serves as an impor-

tant starting point for Krylov methods for matrix functions [34, 35, 39, 52, 53, 54, 78,

81, 90, 121]. This section is largely taken from [55] and treats block FOM (BFOM).

Throughout we assume that the initial approximation to the system is X0 = 0.

We continue in the vein of the previous section, with quantities from Sec-

tion 3.1.1. Note that B ∈ K S

m(A,B), and B = VmÊ1B = V1B, where B =

N(B). We define the mth BFOM approximation to the linear system AX = B as

Xm ∈ K S

m(A,B) satisfying the block Galerkin condition

Rm := B −AXm ⊥〈〈·,·〉〉
S

K
S

m(A,B). (3.8)

Theorem 3.18 (Theorem 3.1 in [55]): Assume that Hm : Sm → Sm is nonsingu-

lar and let Ym = H−1
m Ê1B. Then Xm := VmYm belongs to K S

m(A,B) and satisfies

the block Galerkin condition (3.8).

Proof: Since Ym ∈ Sm, it follows that Xm ∈ K S

m(A,B) and

Rm = B − AXm = VmÊ1B − AVmYm

= VmÊ1B − (VmHm + Vm+1Hm+1,mÊ
∗
m)Ym

= −Vm+1Hm+1,mÊ
∗
mYm

= Vm+1Cm with Cm := −Hm+1,mÊ
∗
mYm ∈ S. (3.9)

Since Vm+1 is block orthogonal to K S

m(A,B) by construction, so is Vm+1Cm, implying

that Xm satisfies condition (3.8). �

61

Definition 3.19: Two block vectors X,Y ∈ C
n×s are S-cospatial if there exists

C ∈ S such that

X = Y C. (3.10)

The proof of Theorem 3.18 demonstrates that Rm and Vm+1 are S-cospatial; in

particular, they S-span the same subspace. We often drop the prefix S when it is

clear from context.

3.2.1 Error bounds

It is possible to interpret Xm and Rm from the point of view of matrix polynomials.

Since Xm ∈ K S

m(A,B), there exists a matrix polynomial Qm−1 ∈ Pm−1(S) such

that Xm = Qm−1(A) ◦ B, and another matrix polynomial Pm(z) := I − zQm−1(z)

satisfying Rm = Pm(A) ◦B. Denoting the space of mth degree matrix polynomials

P with P (0) = I as P̄m(C), it is clear that Pm ∈ P̄m(S). We can derive some useful

results on the error of BFOM, for matrices A that are BSA and BPD, in the spirit of

the conjugate gradient results of Theorem 3.1. We denote the BFOM error for the

mth approximation Xm = VmH−1
m Ê1B as

Em := X∗ −Xm,

where X∗ is the exact solution to AX = B. The following theorem is originally [55,

Theorem 3.7].

Theorem 3.20: Let A ∈ Cn×n be BSA and BPD with respect to 〈〈·, ·〉〉
S
, and

B ∈ Cn×s be a block right-hand-side vector. Then the BFOM error Em satisfies

‖Em‖A-S = min
X∈K S

m(A,B)
‖X∗ −X‖A-S ≤ ξm ‖B‖A-S , (3.11)

62

with ξm from (3.3).

Proof: By the block Galerkin condition (3.8), Rm is 〈〈·, ·〉〉
S
-orthogonal and conse-

quently 〈·, ·〉S-orthogonal to K S

m(A,B). Then for all V ∈ K S

m(A,B),

0 = 〈Rm,V 〉S = 〈AEm,V 〉S = 〈Em,V 〉A-S.

Applying Corollary 3.17 then gives the equality in (3.11).

To prove the inequality in (3.11), recall that Rm = Pm ◦B, for some matrix

polynomial Pm ∈ Pm(S). Since A−1 commutes with A,

Em = A−1Rm = A−1Pm(A) ◦B

= Pm(A) ◦ A−1B = Pm(A) ◦E0.

It follows that

‖Pm(A) ◦E0‖A-S = min
P∈P̄m(S)

‖P (A) ◦E0‖A-S . (3.12)

By embedding scalar polynomials ρ(λ) = 1+
∑m

i=1 γiλ
i in Pρ(λ) = Is+

∑m
i=1(γiIs)λ

i,

P̄m(C) can be regarded as a subspace of P̄m(S), with Pρ(A) ◦ X = ρ(A)X. Along

with equation (3.12) and Lemma 3.11, this gives that

‖Pm(A) ◦E0‖A-S ≤ ‖ρ(A)E0‖A-S ≤ max
λ∈spec(A)

|ρ(λ)| · ‖E0‖A-S for any ρ ∈ P̄m(C).

Taking ρ as the (scaled) Chebyshev polynomial of degreem for the interval [λmin, λmax]

(as in, e.g., [122, Chapter 6]), then maxλ∈[λmin,λmax] |ρ(λ)| ≤ ξm. �

Remark 3.21: Theorem 3.20 is not a novel result for the classical, global, and

loop-interchange block inner products. In the classical and loop interchange cases,

‖X‖A-S = ‖X‖A-F =
√

trace (X∗AX), and in the global case, ‖X‖A-S = s ‖X‖A-F.

63

Consequently, Theorem 3.20 reduces in all three cases to

‖Em‖A-F ≤ ξm ‖E0‖A-F . (3.13)

For the classical case, this result is contained in unpublished work by Eisenstat [41],

who rewrites results from [108] in terms of the A-weighted Frobenius norm. In the

loop interchange case, we can use the standard CG error bound from Theorem 3.1 for

each column as an alternative way to arrive at inequality (3.13). In the global case,

the estimate (3.13) can also be obtained as follows. Solving the block linear system

AX = B with global BFOM is identical to solving (Is ⊗ A) vec(X) = vec(B) with

FOM [73, Theorem 1], where vec is the operator that reshapes an n× s block vector

into an ns × 1 vector by stacking the columns. Since Is ⊗ A and A have identical

spectra, κ, c, and ξm are just as in (3.3). Applying Theorem 3.1 we obtain that

‖vec(Em)‖Is⊗A ≤ ξm ‖vec(E0)‖Is⊗A .

Converting everything back to block form gives inequality (3.13).

The power of Theorem 3.20 is the generality of the result. It holds for all

scalar inner products and weighted block inner products that satisfy Definition 3.3.

It also allows one to see how the error associated to different inner products relate

to each other.

Theorem 3.22: Let E�

m denote the error for the mth BFOM approximation X�

m,

where � denotes the choice of one of the paradigms from Table 3.1, i.e., � is a

placeholder for Cl (classical), Gl (global), Li (loop-interchange), or Hy (hybrid).

Then
∥∥ECl

m

∥∥
A-F

≤
∥∥EHy

m

∥∥
A-F

≤
∥∥ELi

m

∥∥
A-F

≤
∥∥EGl

m

∥∥
A-F

. (3.14)

64

Proof: The result follows immediately upon noting that SGl ⊆ S
Li ⊆ S

Hy ⊆ S
Cl. �

3.2.2 Shifted BFOM with restarts: Sh-BFOM(m)

Consider again the family of shifted linear systems

(A+ tI)X(t) = B, (3.1 revisited)

where the admissible shifts t are bounded away from the spectrum of −A. We now

develop a shifted BFOM with restarts. The main use of this method in our work is for

matrix functions with Cauchy-Stieltjes integral expressions (see Chapter 5). Shifted

BFOM with restarts is obviously also useful in and of itself for solving equation (3.1);

see, e.g., [141], where a modified version of shifted BFOM with restarts is used on

rational approximations to the matrix exponential.

Restarting is often paired with Krylov subspace methods to mitigate storage

limitations, i.e., the number of basis vectors that can be stored on one’s machine

at a time. Short-term recurrences are another common technique, but since we

need the entire Krylov basis for the matrix function approximations considered in

Chapter 5, we do not consider short-term recurrences here. Throughout this section,

we assume the number of Krylov basis vectors m, also referred to as the restart cycle

length, is fixed a priori. It is also possible to implement restarts where the number

of basis vectors changes per cycle, but since m usually reflects a hardware memory

limitation, it is reasonable to assume it is fixed. We use a superscript in parentheses

(k) to denote the cycle index, with k = 0, 1, 2, and so forth.

Cospatiality among the shifted and restarted residuals is essential for our

convergence analysis and for an efficient algorithm. To that end, we prescribe

65

X
(0)
m (t) := 0 and define the restarted BFOM approximation to X∗(t) obtained after

the k + 1st cycle as

X(k+1)
m (t) := X(k)

m (t) +Z(k)
m (t), k = 0, 1, . . .

with Z
(k)
m (t) defined as the BFOM approximation to Z

(k)
∗ (t) in the block residual

equation

(A+ tI)Z(k)
∗ (t) = R(k)

m (t), with R(k)
m (t) := B − (A+ tI)X(k)

m (t).

An explicit form for Z
(k)
m (t) is determined by the following discussion.

We start with the first cycle, which, by the shift invariance of the Arnoldi

relation (3.5) and the definition of the non-shifted BFOM approximation in Theo-

rem 3.18, is described by the quantities

Y (1)
m (t) :=

(
H(1)

m + tI
)−1

Ê1B
(1);

X(1)
m (t) := V

(1)
m Ym(t); and

R(1)
m (t) := V

(1)
m+1C

(1)
m (t), with C(1)

m (t) := −H
(1)
m+1,mÊ

∗
mY

(1)
m (t).

Since R
(1)
m (t) is cospatial to V

(1)
m+1 for all shifts, we can begin computing the second

Krylov basis with V
(1)
m+1. We then obtain the block basis {V (2)

1 = V
(1)
m+1, . . . ,V

(2)
m+1},

which S-spans K
S

m

(
A,V

(2)
1

)
; note that B(2) = Is since V

(1)
m+1 is already block or-

thonormal. The error of the first cycle Z
(1)
m (t) can then be approximated as

Z(1)
m (t) := V

(2)
m Y (2)

m (t)C(1)
m (t) with Y (2)

m (t) :=
(
H(2)

m + tI
)−1

Ê1.

66

Applying the same logic as in the derivation (3.9), we find that the residual to the

equation (A + tI)Z∗(t) = R
(1)
m (t) for the approximation Z

(1)
m (t),

R(1)
m (t)− (A+ tI)Z(1)

m (t) = −V
(2)
m+1H

(2)
m+1,mÊ

∗
mY

(2)
m (t)C(1)

m (t),

is block orthogonal to K S

m(A,V
(2)
1), thus satisfying the block Galerkin condition

(3.8) and affirming that Z
(1)
m (t) as defined is indeed the BFOM approximation for

the residual equation (A+ tI)Z
(1)
∗ (t) = R

(1)
m (t). The residual R

(2)
m (t) of the updated

approximation X
(2)
m (t) = X

(1)
m (t) +Z

(1)
m (t) is then given as

R(2)
m (t) = R(1)

m (t)− (A+ tI)Z(1)
m (t) = −V

(2)
m+1H

(2)
m+1,mÊ

∗
mY

(2)
m (t)C(1)

m (t).

Defining C
(2)
m (t) := −H

(2)
m+1,mÊ

∗
mY

(2)
m (t) leads to a succinct expression for the cospa-

tiality relationship between R
(2)
m (t) and V

(2)
m+1,

R(2)
m (t) = V

(2)
m+1C

(2)
m (t)C(1)

m (t).

Inductively, if we start the k+1st cycle with the m+1st block basis vector from the

previous cycle, i.e., if we take V
(k+1)
1 = V

(k)
m+1, we can then describe all cycles with

the following quantities:

Y (k+1)
m (t) =

(
H(k+1)

m + tI
)−1

Ê1 (3.15)

Z(k)
m (t) = V

(k+1)
m Y (k+1)

m (t)C(k)
m (t) · · ·C(1)

m (t) (3.16)

X(k+1)
m (t) = X(k)

m (t) +Z(k)
m (t) (3.17)

R(k+1)
m (t) = R(k)

m (t)− (A + tI)Z(k)
m (t) = V

(k)
m+1C

(k)
m (t) · · ·C(1)

m (t), (3.18)

67

with

C(j)
m (t) = −H

(j)
m+1,mÊ

∗
mY

(j)
m (t), j = 1, . . . , k. (3.19)

Shifted BFOM with restarts is summarized by Algorithm 3.2.1. Given a pre-

determined set of shifts t ∈ {ti}Ni=1, it is possible to make the implementation of

Algorthim 3.2.1 very efficient. At each cycle k, a new Krylov basis is generated that

can be reused for each ti, so lines 3-5 and 8-10 can be gathered in loops over the

index i. Furthermore, by carefully replacing intermediate quantities, it is possible

to predetermine and preallocate precisely how much memory is required for Algo-

rithm 3.2.1. In particular, we compute and store C̃
(k)
m (t) = C

(k)
m (t) · · ·C(1)

m (t) instead

of the individual matrices C
(j)
m (t). Of course, if the set of shifts is not fixed per cycle,

it is more difficult to preallocate memory.

3.2.3 Error bounds for shifted systems with restarts

Let the error to the Sh-BFOM(m) approximation at cycle k be given as

E(k)
m (t) := X∗(t)−X(k)

m (t). (3.20)

The goal now is to bound (3.20) by a quantity that decreases as k increases. To that

end, we consider shifted versions of quantities (3.3) for a BSA and BPD operator A,

with spec(A) ⊂ [λmin, λmax], λmin > 0:

κ(t) :=
λmax + t

λmin + t
, c(t) :=

√
κ(t)− 1√
κ(t) + 1

, and ξm(t) :=
1

cosh(m ln c(t))
. (3.21)

Theorem 3.23: Given A ∈ Cn×n BSA and BPD and t ≥ 0, let X
(k)
m (t) be the Sh-

BFOM(m) approximation to the shifted system (3.1) at cycle k. Then the error can

68

Algorithm 3.2.1: Sh-BFOM(m): shifted BFOM with restarts

1: Given A, B, S, 〈〈·, ·〉〉
S
, N , m, t, tol

2: Run Algorithm 3.1.1 with inputs A, B, S, 〈〈·, ·〉〉
S
, N , and m and store

V
(1)
m+1, H(1)

m , and B(1)

3: Compute Y
(1)
m (t) =

(
H(1)

m + tI
)−1

Ê1B
(1)

4: Compute and store X
(1)
m (t) = V

(1)
m Y

(1)
m (t)

5: Compute and store C̃
(1)
m (t) = H

(1)
m+1,mÊ

∗
mY

(1)
m (t)

6: for k = 1, 2, . . ., until convergence do

7: Run Algorithm 3.1.1 with inputs A, V
(k)
m+1, S, 〈〈·, ·〉〉S, N , and m and

store V
(k+1)
m+1 , H(k+1)

m , and B(k+1) in place of previous cycle

8: Compute Y
(k+1)
m (t) =

(
H(k+1)

m + tI
)−1

Ê1

9: Compute X
(k+1)
m (t) := X

(k)
m (t) + V

(k+1)
m Y

(k+1)
m (t)C̃

(k)
m (t) and replace

X
(k)
m (t)

10: Compute C̃
(k+1)
m (t) = H

(k+1)
m+1,mÊ

∗
mY

(k+1)
m (t)C̃

(k)
m (t) and replace C̃

(k)
m (t)

11: end for

12: return X
(k+1)
m (t)

69

be bounded for all t ≥ 0 as

∥∥E(k)
m (t)

∥∥
A-S

≤ ξm(t)
k

√
λmax

(λmin + t)(λmax + t)
‖B‖

S
. (3.22)

Proof: Lemma 3.12 provides for any V ∈ Cn×s that

‖V ‖2(A+tI)-S = 〈V ,V 〉A-S + t〈V ,V 〉S = ‖V ‖2A-S + t ‖V ‖2
S

≥ ‖V ‖2A-S +
t

λmax
‖V ‖A-S =

λmax+t
λmax

‖V ‖2A-S ;

consequently, ‖V ‖A-S ≤
√

λmax

λmax+t
‖V ‖(A+tI)-S. Then

∥∥E(k)
m (t)

∥∥
A-S

≤
√

λmax

λmax + t

∥∥E(k)
m (t)

∥∥
(A+tI)-S

, (3.23)

and repeated application of Theorem 3.20 to
∥∥∥E(k)

m (t)
∥∥∥
(A+tI)-S

gives that

∥∥E(k)
m (t)

∥∥
(A+tI)-S

≤ ξm(t)
k
∥∥∥E(1)

0 (t)
∥∥∥
(A+tI)-S

. (3.24)

Since E
(1)
0 (t) = X∗(t), we can use Lemma 3.12 again to bound

∥∥∥E(1)
0 (t)

∥∥∥
2

(A+tI)-S
= 〈(A+ tI)−1B, (A+ tI)(A+ tI)−1B〉S

= ‖B‖2(A+tI)−1-S ≤
1

λmin + t
‖B‖2

S
. �

Remark 3.24: Note that for all t ≥ 0, 0 ≤ ξm(t) < 1, and limt→∞ ξm(t) = 0; see

[52, Proposition 4.2]. This comment in combination with Theorem 3.23 shows that

∥∥E(k)
m (t)

∥∥
A-S

≤ ξm(0)
k 1√

λmin

‖B‖
S
,

i.e., that the error of the shifted restarted BFOM approximation can be bounded

independent of the shift.

70

3.3 Summary and outlook

The comprehensive framework explored in this chapter expands work begun by [46,

69, 73]. Via the ∗-subalgebra S, block inner product 〈〈·, ·〉〉
S
, and scaling quotient

N(·), the formalism gives a complete algebraic description for block Krylov subspace

methods. We have demonstrated in particular what shifted block FOM with restarts

looks like in this framework and have derived error bounds for shifted systems with

restarts. The algorithm Sh-BFOM(m) provides a versatile implementation of shifted

BFOM with restarts, along with notes on storage to aid with memory preallocation.

Our perspective on block Krylov methods leads to a number of insights which

may prove useful in other fields and future work. The generality of S and the block

inner product allows one to titrate the amount of information being communicated

among columns of the block vectors, which is important for adapting block methods

to different computer architectures. We examine this behavior in more detail in

Chapter 7. Having the freedom to choose S and 〈〈·, ·〉〉
S
may also prove to be helpful

in problems requiring that certain properties or sparsity patterns be maintained.

Weighted block inner products may also lead to improvement in some problems

[44, 47], and the generality of our framework provides a head-start on the analysis

of such methods.

Some concepts remain to be generalized within our framework. Block grade

is defined for the classical case in [69, 70] and block angles between subspaces are

explored in [134], but it remains open how one should define these concepts for

general block inner products. Doing so could lead to a deeper understanding of

stagnation for less standard block inner products, like the hybrid or weighted inner

71

products. It is also possible to generalize many other types of Krylov methods

with the concepts presented in this chapter, e.g., block MINRES, two-sided block

Lanczos, quasiminimal residual methods; extended and rational Krylov methods;

and so forth. We examine block GMRES and the so-called Radau-Lanczos method

in our framework in the next chapter.

72

CHAPTER 4

MODIFIED BLOCK FULL ORTHOGONALIZATION

METHODS

We continue in the framework from the previous chapter. That is, we assume that

we have a ∗-subalgebra S, a block inner product 〈〈·, ·〉〉
S
, a scaling quotient N , and a

block Krylov subspace K S

m(A,B) with block Arnoldi relation (3.5):

AVm = VmHm + Vm+1Hm+1,mÊ
∗
m. (3.5 revisited)

We now consider how to modify the block full orthogonalization method (BFOM)

via Hm, but first we must understand how Hm represents A in the block Krylov

subspace. Lemma 3.15 states how the block upper Hessenberg Hm captures some

features of A, and Lemma 3.13 ensures that the spectrum of Hm is always near, in

the sense of field of values, to the spectrum of A. Indeed, it is well known in the

non-block and classical block settings that as m approaches the (block) grade of the

Krylov space, the eigenvalues of Hm converge to a subset of the eigenvalues of A

[46, 70, 109].

When the number m of Krylov basis vectors that we can store is small, it

is possible that spec(Hm) may be a poor approximation to spec(A). Increasing

73

m would improve the approximation, but since we assume m is bounded by some

hardware limitation, this is not necessarily feasible. Another issue with some block

inner products, such as the global one, is that only a small subset of spec(A) is

captured and then given high multiplicity, thus leaving the method in a kind of rut.

Preconditioning is another viable technique, and it is well established for improving

the robustness of Krylov subspace methods (see, e.g., [67, 122]); however, traditional

preconditioning techniques (i.e., simple left or right preconditioning) are not feasible

for general functions of matrices, which is our end goal in Chapter 5.

We propose an approach that can adjust the spectrum of Hm without hav-

ing to compute additional basis vectors or recompute the Krylov basis altogether.

Quite simply, we add to Hm a low-rank matrix M of a particular structure. The

requirements on the modification M ensure that the resulting BFOM-like approxi-

mation remains in the Krylov subspace, and are derived by examining a polynomial

version of the block Arnoldi relation, which we do in Section 4.1. Furthermore, this

approach encompasses the block GMRES method of [127, 129, 130] and, within the

block framework of Chapter 3, generalizes a relatively new method known as the

Radau-Lanczos method of [54].

4.1 A block Arnoldi polynomial relation

We first consider the non-shifted, non-restarted scenario, i.e., that we have an opera-

tor A : Cn×s → Cn×s and B ∈ Cn×s, and we build a block Krylov subspace satisfying

the block Arnoldi relation (3.5):

AVm = VmHm + Vm+1Hm+1,mÊ
∗
m. (3.5 revisited)

74

Recall that B ∈ S is such that B = V1B, from the first step of Algorithm 3.1.1.

Right multiplying both sides of relation (3.5) by Ê1B gives that

AB = VmHmÊ1B. (4.1)

Left multiplying equation (4.1) by A and substituting (3.5) results in

A2B = AVmHmÊ1B

= VmH2
mÊ1B + Vm+1Hm+1,mÊ

∗
mHmÊ1B.

But Ê∗
mHmÊ1 = Ê∗

m(H11Ê1 +H21Ê2) = 0, so

A2B = VmH2
mÊ1B. (4.2)

Conveniently, Hj
mÊ1 has a special structure that we can take advantage of for

j = 1, . . . , m − 2. From Figure 4.1, we can conclude that for all j = 1, . . . , m − 2,

Ê∗
mHj

mÊ1 = 0. Then, by repeatedly left-multiplying equation (4.2) by A and using

the block Arnoldi relation (3.5), we find that

AjB = VmHj
mÊ1B, for all j = 0, . . . , m− 1,

or, more generally, the block Arnoldi polynomial relation:

Q(A) ◦B = VmQ(Hm) ◦ Ê1B, for all Q ∈ Pj(S), j = 0, . . . , m− 2. (4.3)

The block Arnoldi polynomial relation (4.3) provides a powerful perspective on the

representation of elements in Km(A,B). We know already that any element in

Km(A,B) can be written as a matrix polynomial up to degree m − 1 acting on

A and B (see Section 3.1.5). The relation (4.3) states that this element can also

75

be represented in terms of the block orthonormal basis Vm multiplied by the same

polynomial acting instead on Hm and Ê1B.

Hm =




× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×



, Ê1 =




×
0
0
0
0
0




HmÊ1 =




×
×
0
0
0
0




⇒ H2
mÊ1 = Hm(HmÊ1) =




×
×
×
0
0
0




⇒ · · · ⇒ Hm−2
m Ê1 =




×
×
×
×
×
0




Figure 4.1. The zero-non-zero block structure of successive powers

of Hm for m = 6. The symbol × represents a non-zero block entry.

We wish to know to what kinds of restrictions must be placed onM ∈ Sm×m so

that a relation like (4.3) holds forHm+M. Such additive modifications are equivalent

to altering the matrix polynomial that interpolates the modified Hessenberg matrix

Hm+M. When s = 1, it is already known that Hm can only be modified by a rank-

one matrix of the form wê∗
m, where m is the dimension of the Krylov subspace; see,

e.g., [54, Lemmas 1.3 and 1.4], as well as [34, 52, 109, 121, 137]. In the block case, the

modifying matrix takes on a similar form, based on the underlying ∗-subalgebra S.

76

Theorem 4.1: Let M ∈ S
m×m. The matrix M has the form M = MÊm for some

M ∈ Sm if and only if for all Q ∈ Pm−1(S)

Q(A) ◦B = VmQ(Hm +M) ◦ Ê1B. (4.4)

Proof: Since addition byMÊ∗
m, forM ∈ Sm does not alter the structure of the block

upper Hessenberg matrix Hm, the relationship from Figure 4.1 holds for

(Hm +MÊ∗
m)

jÊ1; consequently,

Ê∗
m(Hm +MÊ∗

m)
jÊ1 = 0, for j = 1, . . . , m− 2, (4.5)

but

Ê∗
j (Hm +MÊ∗

m)
jÊ1 6= 0, for j = 1, . . . , m− 1. (4.6)

We split the rest of the proof into two parts.

1. Sufficient conditions. Assume that M = MÊ∗
m, for some M ∈ Sm. It is

enough to show that AjB = Vm(Hm +M)jÊ1B for all j = 0, . . . , m− 1, which we

do by induction. Since A0B = B = V1B = VmÊ1B, we have that the base case

holds. Fixing j ∈ {0, . . . , m− 2}, we take as our induction hypothesis that

AjB = Vm(Hm +M)jÊ1B. (4.7)

Then

Aj+1B = AAjB = AVm(Hm +M)jÊ1B, by (4.7)

= (VmHm + Vm+1Hm+1,mÊ
∗
m)(Hm +M)jÊ1B, by (3.5)

= VmHm(Hm +M)jÊ1B + Vm+1Hm+1,mÊ
∗
m(Hm +M)jÊ1B. (4.8)

77

By equation (4.5), the second term in equation (4.8) vanishes. Similarly, since

M = MÊ∗
m,

M(Hm +M)jÊ1B = 0, for all j = 1, . . . , m− 2. Then equation (4.8) becomes

VmHm(Hm +M)jÊ1B

= VmHm(Hm +M)jÊ1B +M(Hm +M)jÊ1B

= Vm(Hm +M)j+1Ê1B,

concluding the induction process.

2. Necessary conditions. Let M ∈ Sm×m and suppose that for all

Q ∈ Pm−1(S), relation (4.4) holds. Then, in particular,

AjB = Vm(Hm +M)jÊ1B, ∀j = 1, . . . , m− 1,

and by part 1 with modification M = 0,

AjB = VmHj
mÊ1B, ∀j = 1, . . . , m− 1.

Then

VmHj
mÊ1B = Vm(Hm +M)jÊ1B, ∀j = 1, . . . , m− 1.

Since Vm has full rank and B is non-singular, Hj
mÊ1 = (Hm + M)jÊ1 for all

j = 1, . . . , m− 1. It then follows that for all j = 1, . . . , m− 1,

Hj
mÊ1 = (Hm +M)Hj−1

m Ê1, ∀j = 0, . . . , m− 1,

which implies for all j = 1, . . . , m− 1 that MHj−1
m Ê1 = 0. Then

MR = 0, (4.9)

78

where

R = [Ê1|HmÊ1| . . . |Hm−2
m Ê1] ∈ S

m×(m−1).

However, by equations (4.5) and (4.6),

Ê∗
jHj−1

m Ê1 6= 0, ∀j = 1, . . . , m− 1,

Ê∗
mHj

mÊ1 = 0, ∀j = 1, . . . , m− 1.

Therefore, R is a proper block upper triangular matrix. Relation (4.9) implies that

possibly only the mth block column of M could be nonzero, meaning that M is of

the desired form. �

It is also worth noting that this theorem does not merely generalize results

from s = 1 to the block case; it also generalizes the results for a variety of inner prod-

ucts. Other polynomial methods for computing matrix functions may be regarded

as Krylov subspace methods with the appropriate inner product and starting vector;

see, for example, [22].

4.2 Shifted BGMRES with restarts: Sh-BGMRES(m)

Both FOM and GMRES are known to stagnate in certain cases for both block and

single-column vectors [38, 52, 126, 134]. For our block Krylov framework to be

full-fledged, it is therefore important to develop the analogous block GMRES ap-

proximation to equation (3.1). We require that this approximation satisfy a block

Petrov-Galerkin condition, as well as some relation ensuring that the shifted residuals

are cospatial to the non-shifted one (cf. equation (3.18), the cospatial relationship for

79

Sh-BFOM(m)). This cospatial relation becomes important for formulating efficient

restarts and leads to a succinct convergence analysis.

The theory we develop draws inspiration from [69, 127, 130] for classical GM-

RES and [83, 73, 46] for global GMRES. In particular, we build off of Theorem 3.3 of

Simoncini and Gallopoulos [130], which establishes the form a non-shifted approxi-

mation should take for the classical block inner product and points to how BGMRES

can be thought of as a modified BFOM.

We additionally provide two approaches for obtaining error bounds, and each

approach is valid for different subsets of block positive real operators. The differences

hinge on which version of the cospatial relationship we use.

4.2.1 The approximation

Suppose that the approximation Xm(t) to equation (3.1) satisfies

• the block Petrov-Galerkin condition for t = 0:

B − AXm(0) ⊥S AK
S

m(A,B), Xm(0) ∈ K
S

m(A,B); (4.10)

• and a shifted condition for t 6= 0:

B − (A+ tI)Xm(t) ⊥S AK
S

m(A,B), Xm(t) ∈ K
S

m(A,B). (4.11)

Note that condition (4.11) gives rise to an approximation that is not, strictly speak-

ing, the BGMRES approximation for equation (3.1). A true BGMRES approxima-

tion would require that the shifted residual be block orthogonal to (A+tI)K S
m(A,B),

instead of AK S

m(A,B). Further note that both residuals, Rm(0) := B − AXm(0)

and Rm(t) := B − (A + tI)Xm(t), lie in the space K
S

m+1(A,B), and thus in the

80

〈〈·, ·〉〉
S
-orthogonal complement of AK

S

m(A,B) in that space, implying that they are

cospatial. Let

M := H−∗
m ÊmH

∗
m+1,mHm+1,mÊ

∗
m, (4.12)

and define

Xm(t) := VmYm(t), (4.13)

with

Ym(t) := (Hm +M+ tI)−1Ê1B. (4.14)

Theorem 4.2: With Xm(t) defined as in equation (4.13), Rm(0) satisfies condi-

tion (4.10) and Rm(t) satisfies condition (4.11), for all t > 0.

Proof: The block orthogonality condition on Rm(t) is equivalent to

〈〈AVmZ,B − (A+ tI)VmYm(t)〉〉S = 0, for all Z ∈ S
m,

the left-hand side of which can be expanded via the block Arnoldi relation (3.5) as

〈〈(VmHm + Vm+1Hm+1,mÊ
∗
m)Z,B − (Vm(Hm + tI) + Vm+1Hm+1,mÊ

∗
m)Ym(t)〉〉S.

This can be further broken into four parts:

〈〈VmHmZ,B −Vm(Hm + tI)Ym(t)〉〉S (4.15)

− 〈〈VmHmZ,Vm+1Hm+1,mÊ
∗
mYm(t)〉〉S (4.16)

+ 〈〈Vm+1Hm+1,mÊ
∗
mZ,B −Vm(Hm + tI)Ym(t)〉〉S (4.17)

− 〈〈Vm+1Hm+1,mÊ
∗
mZ,Vm+1Hm+1,mÊ

∗
mYm(t)〉〉S. (4.18)

Writing B = VmÊ1B, the term B − Vm(Hm + tI)Ym(t) becomes Vm(Ê1B −

(Hm + tI)Ym(t)). Then both (4.16) and (4.17) are of the form 〈〈VmW ,Vm+1W 〉〉
S
,

81

for some W ∈ S
m and W ∈ S, and consequently both terms equal zero by the

block orthonormality of the Krylov basis vectors. Using again that B = VmÊ1B,

and also that (Hm + M + tI)Ym(t) = Ê1B, the term (4.15) can be rewritten as

〈〈VmHmZ,VmMYm(t)〉〉S. The final term (4.18) can be rewritten by taking advan-

tage of properties of the block inner product and the block orthonormality of the

Krylov basis:

〈〈Vm+1Hm+1,mÊ
∗
mZ,Vm+1Hm+1,mÊ

∗
mYm〉〉S

= (Hm+1,mÊ
∗
mZ)∗(Hm+1,mÊ

∗
mYm).

It therefore suffices to show that

〈〈VmHmZ,VmMYm(t)〉〉S = (Hm+1,mÊ
∗
mZ)∗(Hm+1,mÊ

∗
mYm).

Indeed, by Lemma 3.9 and the definition of M, we find that

〈〈VmHmZ,VmMYm〉〉S =
m∑

j=1

(Ê∗
jHmZ)∗Ê∗

j (Hm+1,mÊ
∗
mH−1

m)∗Hm+1,mÊ
∗
mYm

=

m∑

j=1

Z∗H∗
mÊjÊ

∗
jH−∗

m (Hm+1,mÊ
∗
m)

∗Hm+1,mÊ
∗
mYm

= Z∗H∗
mH−∗

m (Hm+1,mÊ
∗
m)

∗Hm+1,mÊ
∗
mYm

= (Hm+1,mÊ
∗
mZ)∗Hm+1,mÊ

∗
mYm. �

By Theorem 3.16 and Corollary 3.16, satisfying condition (4.10) is equivalent to

minimizing the residual norm. Note that this equivalence only holds for the non-

shifted residual, and is originally stated for the classical paradigm in [130, Section 1]

and for the global paradigm in [73, Section 3.2] and [46, Section 2.2].

82

Corollary 4.3: The BGMRES residual minimizes the S-norm, i.e.,

‖Rm(0)‖S = min
X∈K S

m(A,B)
‖B − AX(0)‖

S
= min

P∈Pm(S)
P (0)=I

‖P (A) ◦B‖
S
. (4.19)

Theorem 3.22 establishes a relationship between the BFOM errors for different block

inner products, as a consequence of a minimization property and the fact that SGl ⊆

SLi ⊆ SHy ⊆ SCl. Thanks to Corollary 4.3, a similar property holds for the BGMRES

residuals, compare with [46, Theorem 2.4].

Theorem 4.4: Let R�

m denote the residual for the mth BGMRES approximation

X�

m, where � denotes the choice of one of the paradigms from Table 3.1. Then

∥∥RCl
m (0)

∥∥
S
≤
∥∥RHy

m (0)
∥∥
S
≤
∥∥RLi

m (0)
∥∥
S
≤
∥∥RGl

m (0)
∥∥
S
. (4.20)

4.2.2 Cospatial factors

In [51], the authors develop a restarted shifted GMRES method for a single right-

hand side. Their analysis hinges on the shifted residuals being collinear to the non-

shifted residual, i.e., r(t) = r(0)ρ(t), for some scalar collinear factor ρ(t), that is

derived from polynomials interpolating the harmonic Ritz values, or the eigenval-

ues of Hm + M; see Remark 4.17. While it is possible to proceed by analogy

within our block framework, one has to take great care, because the scalar factor

of collinearity is replaced by a matrix-valued factor for cospatiality, now derived

from non-commutative matrix polynomials. Without commutativity, such a factor

becomes difficult to analyze, especially for deriving error bounds. We therefore take

a different approach, showing that Rm(t) is cospatial to some special block vector in

83

K
S

m+1(A,B). An approach that is more similar to that of [51], but also much more

technical, can be found in Section 4.2.5.

Lemma 4.5: Denote U := H−∗
m ÊmH

∗
m+1,m ∈ Sm ⊂ Cms×s, and recall that B =

V1B. Then

Rm(t) = Vm+1

[
U

−I

]
U ∗
(
I +UU ∗ + tH−1

m

)−1
Ê1B. (4.21)

Proof: Since Xm(t) ∈ Km(A,B), there exists Gm(t) ∈ S
m such that Xm(t) =

VmGm(t). The block Petrov-Galerkin condition (4.11) is then equivalent to

0 = 〈〈AVj,B − (A+ tI)VmGm(t)〉〉S, for all j = 1, . . . , m. (4.22)

Using the block Arnoldi relation (3.6) and the fact that B = V1B = Vm+1Ê
(m+1)
1 B,

equation (4.22) becomes

0 =
〈〈
Vm+1HmÊj,Vm+1(Ê

(m+1)
1 B −

(
Hm + t

[
I
0

])
Gm(t))

〉〉

S

, for all j = 1, . . . , m,

which by Lemma 3.9 reduces to

0 = (HmÊj)
∗

(
Ê

(m+1)
1 B −

(
Hm + t

[
I
0

])
Gm(t)

)
for all j = 1, . . . , m. (4.23)

Equation (4.23) holding for all j = 1, . . . , m implies that

0 =H∗
m

(
Ê

(m+1)
1 B −

(
Hm + t

[
I
0

])
Gm(t)

)

=H∗
mÊ

(m)
1 B −H∗

m

(
Hm + t

[
I
0

])
Gm(t)

=H∗
mÊ

(m)
1 B

−
(
H∗

mHm + (ÊmH
∗
m+1,m)(ÊmH

∗
m+1,m)

∗ + tH∗
m

)
Gm(t) (4.24)

84

Recalling that U = H−∗
m ÊmH

∗
m+1,m, one can show that

(
H∗

mHm +
(
ÊmH

∗
m+1,m

)(
ÊmH

∗
m+1,m

)∗
+ tH∗

m

)−1

= H−1
m

(
I +UU ∗ + tH−1

m

)−1H−∗
m .

This fact plus equation (4.24) allows us to solve for Gm(t):

Gm(t) = H−1
m

(
I +UU ∗ + tH−1

m

)−1H−∗
m H∗

mÊ
(m)
1 B (4.25)

= H−1
m

(
I +UU ∗ + tH−1

m

)−1
Ê

(m)
1 B. (4.26)

We can then write the residual as

Rm(t) = B − (A + tI)VmGm(t)

= B − (A + tI)VmH−1
m

(
I +UU ∗ + tH−1

m

)−1
Ê

(m)
1 B

= Vm+1Ê
(m+1)
1 B − Vm+1

(
Hm + t

[
I
0

])
H−1

m

(
I +UU ∗ + tH−1

m

)−1
Ê

(m)
1 B

= Vm+1

(
Ê

(m+1)
1 B −

[
I + tH−1

m

U ∗

] (
I +UU ∗ + tH−1

m

)
Ê

(m)
1 B

)

= Vm+1

(
I −

[
I + tH−1

m 0
U ∗ 0

] [(
I +UU ∗ + tH−1

m

)−1
0

0 I

])
Ê

(m+1)
1 B

= Vm+1

[
U

−I

]
U ∗
(
I +UU ∗ + tH−1

m

)−1
Ê

(m)
1 B. �

Lemma 4.5 shows that all the residuals are cospatial to Vm+1

[
U

−I

]
with the cospa-

tiality factor

Gm(t) := U ∗
(
I +UU ∗ + tH−1

m

)−1
Ê

(m)
1 B

= Hm+1,mÊ
∗
m(Hm +M+ tI)−1Ê1B. (4.27)

85

4.2.3 Restarts

We refer to the quantities of Section 4.2.1 (i.e., equations (4.14), (4.13), etc.) as the

first cycle, denoting everything with the superscript (1). More explicitly,

Y (1)
m (t) =

(
H(1)

m +M(1) + tI
)−1

Ê1B
(1)

X(1)
m (t) = V

(1)
m Y (1)

m (t)

R(1)
m (t) = V

(1)
m+1

[
U (1)

−I

]
G(1)

m (t)

G(1)
m (t) = H

(1)
m+1,mÊ

∗
mY

(1)
m (t)

To restart efficiently, we seek an additive correction to the approximation from the

previous cycle. This process is similar to what is done for shifted BFOM with restarts

(cf. Section 3.2.2). Suppose we are at cycle k, with k ≥ 1. To approximate the error

E
(k)
m (t) := X(t)−X

(k)
m (t), we approximate the solution of the residual system

(A+ tI)Z(t) = R(k)
m (t) = V

(k)
m+1

[
U (k)

−I

]
G(k)

m (t) (4.28)

with a shifted BGMRES approximation. That is, we normalize V
(k)
m+1

[
U (k)

−I

]
as

V
(k+1)
1 B(k+1) to compute the next block Krylov space K S

m(A,V
(k+1)
1) and approxi-

mate Z(t) as

Z(k)
m (t) := V

(k+1)
m Y (k+1)

m (t), where (4.29)

Y (k+1)
m (t) :=

(
H(k+1)

m +M(k+1) + tI
)−1

Ê1B
(k+1)G(k)

m (t). (4.30)

Then we update X
(k)
m (t) as

X(k+1)
m (t) := X(k)

m (t) +Z(k)
m (t). (4.31)

86

Following a similar procedure as in Section 4.2.2, this time for the system (4.28), we

find that

R(k+1)
m (t) = V

(k+1)
m+1

[
U (k+1)

−I

]
G(k+1)

m (t), and (4.32)

G(k+1)
m (t) = H

(k+1)
m+1,mÊ

∗
mY

(k+1)
m (t). (4.33)

The restart procedure is summarized in Algorithm 4.2.1. Note that we never need to

compute the shifted residuals, just the cospatial factors and some other intermediate

quantities. As with the shifted BFOM approach, we can preallocate storage for some

quantities and reuse the block Krylov basis for efficiency.

4.2.4 Error bounds for shifted systems with restarts

We aim to reproduce a result like that of Theorem 3.23 for the shifted BGMRES with

restarts on systems where A is a block positive real operator. By Lemma 3.14(i), we

have that A and thus also A−1 is scalar positive real, implying that all the following

quantities are positive and well defined:

ρ := min

{
Re(〈V , A−1V 〉S)

〈V ,V 〉S
: V ∈ C

n×s,V 6= 0

}
;

γ := min

{
Re(〈V , AV 〉S)

〈V ,V 〉S
: V ∈ C

n×s,V 6= 0

}
; and (4.34)

νmax := max

{〈AV , AV 〉S
〈V ,V 〉S

: V ∈ C
n×s,V 6= 0

}
.

We also have some important results on the spectrum of Hm +M.

Lemma 4.6: Suppose that A is block positive real. Then the matrix Hm +M has

spectrum with positive real part.

87

Algorithm 4.2.1: Sh-BGMRES(m): shifted BGMRES with restarts

1: Given A, B, S, 〈〈·, ·〉〉
S
, N , m, t, tol

2: Run Algorithm 3.1.1 with inputs A, B, S, 〈〈·, ·〉〉
S
, N , and m and store

V
(1)
m+1, H(1)

m , and B(1)

3: Compute Y
(1)
m (t) =

(
H(1)

m +M(1) + tI
)−1

Ê1B
(1)

4: Compute and store X
(1)
m (t) = V

(1)
m Y

(1)
m (t)

5: Compute and store G
(1)
m (t) = H

(1)
m+1,mÊ

∗
mY

(1)
m (t)

6: for k = 1, 2, . . ., until convergence do

7: Run Algorithm 3.1.1 with inputs A, V
(k)
m+1

[
U (k)

−I

]
, S, 〈〈·, ·〉〉

S
, N , and

m to obtain V
(k+1)
m+1 , H(k+1)

m , and B(k+1)

8: Compute Y
(k+1)
m (t) =

(
H(k+1)

m +M(k+1) + tI
)−1

Ê1B
(k+1)G

(k)
m (t)

9: Update X
(k+1)
m (t) = X

(k)
m (t) + V

(k+1)
m Y

(k+1)
m (t) and replace X

(k)
m (t)

10: Compute G
(k+1)
m (t) = H

(1)
m+1,mÊ

∗
mY

(k)
m (t) and replace G

(k)
m (t)

11: end for

12: return X
(k+1)
m (t)

88

Proof: Let S := I + UU ∗, and note that it is Hermitian and nonsingular. Further

note that

Hm +M = Hm +UU ∗Hm = SHm,

which is similar to S1/2HmS1/2. Lemma 3.15 implies that Hm is 〈·, ·〉Vm
-positive real.

Then by Lemma 2.7 (iv)-(v) and Remark 2.8, S1/2HmS1/2 is also 〈·, ·〉Vm
-positive real

and its spectrum has positive real part. Since SHm and S1/2HmS1/2 are only related

by similarity, we cannot conclude that SHm is 〈·, ·〉Vm
-positive real, but we can

conclude by Lemma 2.7 (i) that SHm, and therefore Hm + M, has spectrum with

positive real part. �

A bound like that of [42, Theorem 3.3], relating the unshifted residual to the

original right-hand side B, holds within our framework.

Theorem 4.7: The non-shifted BGMRES residual Rm(0) can be bounded as

‖Rm(0)‖S ≤
(
1− γ2

νmax

)m/2

‖B‖
S
. (4.35)

Proof: Let p(z) = 1 − αz, where α is yet to be determined. By Corollary 4.3, since

the S-norm of Rm = Pm(A) ◦B is minimal over polynomials in Pm(S), we have that

‖Rm(0)‖S ≤ ‖p(A)mB‖
S
≤ ‖p(A)‖m

S
‖B‖

S
.

Since

〈p(A)V , p(A)V 〉S = 〈V − αAV ,V − αAV 〉S

= 〈V ,V 〉S − 2αRe(〈V , AV 〉S) + α2〈AV , AV 〉S,

it holds that

‖p(A)‖2
S
≤ 1− 2αγ + α2νmax.

89

With α = γ
νmax

minimizing the right-hand side, the inequality (4.35) follows. �

Results similar to those of Theorem 4.7 hold in the case of restarts.

Corollary 4.8: With the restarted residuals R
(k)
m (0) defined as in Section 4.2.3,

∥∥R(k)
m (0)

∥∥
S
≤
(
1− γ2

νmax

)mk/2

‖B‖
S
. (4.36)

Remark 4.9: Let (λ,V) ∈ C × Cn×s be an eigenpair of A such that ‖V ‖
S
= 1.

Then

γ2 ≤ Re(λ)2 and |λ|2 = Re(λ)2 + Im(λ)2 ≤ νmax,

implying that

0 < 1− γ2

νmax
< 1.

Consequently, the bounds of Theorem 4.7 and Corollary 4.8 are indeed decreasing as

functions of m and k, albeit possibly slowly, depending on how γ relates to νmax.

To show that the norms of the shifted residuals are bounded by the norms

of the non-shifted ones, we utilize Lemma 4.5, matrix derivatives, and the following

auxiliary quantities:

U := H−∗
m ÊmH

∗
m+1,m

T := U(I +U ∗U)U ∗

S := I +UU ∗ (4.37)

St := I +UU ∗ + tH−1
m = S + tH−1

m

Note that U ∈ S
m ⊆ C

ms×s and T ,S,St ∈ S
m×m ⊆ C

ms×ms.

90

Theorem 4.10: Let t ≥ 0. Suppose that A is block positive real, and that Hm+M

is normal. Then the residual for the shifted BGMRES approximation satisfies

‖Rm(t)‖S ≤ ‖Rm(0)‖S . (4.38)

Proof: We first note that since A is BPR, Hm has spectrum with positive real part,

by Lemmas 3.15 and 2.7 (v). Consequently, Hm is invertible and the quantities U ,

T , S, and St from (4.37) are well defined.

We now reduce ‖Rm(t)‖2S to an equivalent quantity whose derivative is easy

to take. Noting that Gm(t) from equation (4.27) can be expressed as Gm(t) =

U ∗S−1
t Ê1B, we have that

‖Rm(t)‖2S = trace

(([
U

−I

]
Gm(t)

)∗ [
U

−I

]
Gm(t)

)

= trace (Gm(t)
∗(I +U ∗U)G(t))

= trace
(
B∗Ê∗

1S−∗
t U(I +U ∗U)U ∗S−1

t Ê1B
)

= trace
(
B∗Ê∗

1S−∗
t T S−1

t Ê1B
)

= trace
(
B∗Ê∗

1R∗
tRtÊ1B

)
,

where Rt := T 1/2S−1
t . Applying Lemma 2.25, we take the derivative of ‖Rm(t)‖2S

with respect to t. In terms of Rt, this is

d

dt

[
‖Rm(t)‖2S

]
= trace

(
B∗Ê∗

1

(
d

dt
[Rt]

∗Rt +R∗
t

d

dt
[Rt]

)
Ê1B

)

= trace

(
(Ê1B)∗

d

dt
[Rt]

∗RtÊ1B + (Ê1B)∗R∗
t

d

dt
[Rt]Ê1B

)
. (4.39)

91

Our end goal is to show that the argument of the trace of (4.39) is seminega-

tive real for all t ≥ 0. The trace is of the form B + B∗, and trace (B +B∗) =

2
∑

λ∈spec(B) Re(λ), so it is enough to show that (Ê1B)∗R∗
t
d
dt
[Rt]Ê1B has spectrum

with nonpositive real part. In fact, by Lemma (2.7)(iv), it suffices to show that

−R∗
t
d
dt
[Rt] is Euclidean nonnegative real. We proceed by

1. computing d
dt
[Rt], and

2. examining spectral properties of −R∗
t
d
dt
[Rt].

1. Further application of Lemma 2.25 implies that d
dt
[Rt] = T 1/2 d

dt

[
S−1
t

]
and d

dt
[St] =

H−1
m , and part (iv) in particular of this lemma leads to

d

dt

[
S−1
t

]
= −S−1

t

d

dt
[St]S−1

t = −S−1
t H−1

m S−1
t = S−1

t (StHm)
−1.

Thus, d
dt
[Rt] = −T 1/2S−1

t (StHm)
−1.

2. By step 1, we have that −R∗
t
d
dt
[Rt] = S−∗

t T S−1
t (StHm)

−1. Since T is

HPSD, Lemma 2.7(i) implies that S−∗
t T S−1

t is also HPSD. Additionally,

(StHm)
−1 = (SHm + tI)−1 = (Hm +M+ tI)−1,

which has positive real spectrum by the hypothesis that A is BPR and Lemma 4.6.

Furthermore, since Hm+M is normal, then so are Hm+M+ tI and its inverse. By

Lemma 2.7 (vii), (Hm+M+ tI)−1 is also EPR. Finally, we can then apply part vi to

S−∗
t T S−1

t (StHm)
−1 to conclude that it has spectrum with nonnegative real part. �

Remark 4.11: Determining whether Hm +M is normal is not convenient in prac-

tice, but the quantity is at least a “naturally occurring” one in BGMRES. Although

92

a more general version of Theorem 4.10 remains an open problem, the result appears

to hold in many practical scenarios (see Section 7.2.2).

Theorem 4.10 extends to the restarted case, thanks to Lemmas 3.15, 2.7(v),

and 4.6, which ensure that both H(k)
m and H(k)

m +M(k) have spectrum with positive

real part.

Corollary 4.12: Let t ≥ 0 and suppose that A is block positive real, and that

H(k)
m + M(k) is normal. Then the residual for the restarted and shifted BGMRES

approximation satisfies
∥∥R(k)

m (t)
∥∥
S
≤
∥∥R(k)

m (0)
∥∥
S
.

To translate the residual results Theorem 4.10 and Corollary 4.12 into error

bounds, we need a way to go between the shifted and non-shifted norms. The proof

is a generalization of [52, Lemma 6.4], as long as one replaces the standard Euclidean

inner product and 2-norm with 〈·, ·〉S and ‖·‖
S
, respectively.

Lemma 4.13: Let A ∈ Cn×n be block positive real and t ≥ 0. For all V ∈ Cn×s,

‖V ‖2A∗A-S ≤
νmax

(t+ ρνmax)2
‖V ‖2(A+tI)∗(A+tI)-S .

Theorem 4.14: Let t ≥ 0 and suppose that A is block positive real, and suppose

that the hypotheses of Corollary 4.12. Then the errorE
(k)
m (t) = X∗(t)−X

(k)
m (t) of the

restarted BGMRES approximation to the shifted system

(A+ tI)X(t) = B can be bounded as

∥∥E(k)
m (t)

∥∥
A∗A-S

≤
√

νmax

(t+ ρνmax)2

(
1− γ2

νmax

)mk/2

‖B‖
S
, (4.40)

where ρ, γ, and νmax are as in (4.34).

93

Proof: By Lemma 4.13,

∥∥E(k)
m (t)

∥∥2
A∗A-S

≤ νmax

(t+ ρνmax)2
∥∥E(k)

m (t)
∥∥2
(A+tI)∗(A+tI)-S

=
νmax

(t+ ρνmax)2
∥∥R(k)

m (t)
∥∥2
S
. (4.41)

Corollaries 4.8 and 4.12 give the desired result. �

Remark 4.15: The bound from Theorem 4.14 can be made independent of t by

noting that νmax

(t+ρνmax)2
is monotonically decreasing and therefore bounded by

νmax

(ρνmax)2
=

1

ρ2νmax

.

4.2.5 A matrix polynomial approach

Several authors consider a matrix polynomial form of the BGMRES residual. Si-

moncini and Gallopoulos [127, 129, 130] describe properties of the classical BGM-

RES residual polynomial and use it to accelerate the convergence of BGMRES; El-

bouyahyaoui, Messaoudi, and Sadok [46] derive an explicit expression for the global

BGMRES residual polynomial. These polynomials expose underlying behavior of

the BGMRES approximation encapsulated in their latent roots. We also use them

to provide an alternative way to obtain the error bound (4.40).

For now, we consider only the first cycle and discard the cycle superscripts.

Recall from Lemma 4.5 that

Rm(t) = Vm+1

[
U

−I

]
Gm(t),

94

where Gm(t) is defined in equation (4.27). Assuming that Gm(0) is invertible, we

find that

Rm(t) = Rm(0)Cm(t) with Cm(t) := Gm(0)
−1Gm(t). (4.42)

Further assume that there exists a family of matrix polynomials

Qm−1,t ∈ Pm−1(S) interpolating z−1 on (Hm +M+ tI, Ê1B), i.e., such that

Qm−1,t(Hm +M+ tI) ◦ Ê1B = Ym(t).

Define the family Pm,t ∈ Pm(S) as

Pm,t(z) := I − zQm−1,t(z).

Note that

Rm(t) = B − (A+ tI)VmQm−1,t(Hm +M+ tI) ◦ Ê1B

= B − (A+ tI)Qm−1,t(A+ tI) ◦B, by Theorem 4.1

= Pm,t(A + tI) ◦B. (4.43)

In fact, Cm(t) can be written directly in terms of Pm,t(z), if some additional assump-

tions are fulfilled.

Theorem 4.16: Suppose that Rm(0) has full rank and that Hm +M has a block

eigendecomposition Hm + M = UT U−1, where U ∈ Sm×m is invertible,

T = diag({Θj}mj=1) ∈ S
m×m, and {Θj}mj=1 ⊂ S are diagonalizable and the block

eigenvalues of Hm +M. Let V ∈ Sm,V 6= 0, be such that each block entry Wj of

W := [W1 · · ·Wm] := U−1V is invertible. Noting that {Θj + tI}mj=1 are the block

eigenvalues of Hm +M + tI, define Sj := W−1
j ΘjWj , for all j = 1, . . . , m. Assume

95

that Si−Sj are nonsingular for all i, j = 1, . . . , m−1, i 6= j. With Qm−1,t ∈ Pm−1(S)

interpolating z−1 on (Hm +M+ tI,V) and Pm,t(z) := I − zQm−1,t(z), it holds that

(i) the latent roots of Pm,t match the eigenvalues of Hm +M+ tI;

(ii) Pm,t(z) = Pm,0(z − t)Pm,0(−t)−1; and

(iii) Cm(t) = Pm,0(−t)−1, where Cm(t) is defined in equation (4.42).

If in addition, Hm + M is has spectrum with positive real part, t ≥ 0, and each

S̃j := (S1 · · ·Sj−1)Sj(S1 · · ·Sj−1)
−1 is positive real, then

λmax(Cm(t)Cm(t)
∗) ≤ 1,

where λmax(A) denotes the maximum eigenvalue of the HPD matrix A.

Proof: By part (i) of Theorem 2.24, each Sj+tI is a solvent of Pm,t(z). By part (ii) of

the same theorem, the latent roots of each Pm,t match the eigenvalues ofHm+M+tI.

Combining Theorem 2.19 and the fact that Pm,t(0) = I, we obtain that

Pm,t(z) =
(
zI − S1 − tI

)
· · ·
(
zI − Sm − tI

)
(−1)m

(
(S1 + tI) · · · (Sm + tI)

)−1

=
(
(z − t)I − S1

)
· · ·
(
(z − t)I − Sm

)
(−1)m

(
(S1 + tI) · · · (Sm + tI)

)−1

Then

Pm,0(z − t) =
(
(z − t− 0)I − S1

)
· · ·
(
(z − t− 0)I − Sm

)
(−1)m(S1 · · ·Sm)

−1

=
(
(z − t)I − S1

)
· · ·
(
(z − t)I − Sm

)
(−1)m(S1 · · ·Sm)

−1,

96

and

Pm,0(−t) =
(
(−t− 0)I − S1

)
· · ·
(
(−t− 0)I − Sm

)
(−1)m(S1 · · ·Sm)

−1

= (S1 + tI) · · · (Sm + tI)(S1 · · ·Sm)
−1.

Multiplying Pm,0(z− t) by Pm,0(−t)−1 gives the desired result for part (ii). Part (iii)

follows by noting that

Rm(0)Cm(t) = Rm(t) = Pm,t(A + tI) ◦B

= (Pm,0(A)Pm,0(−t)−1) ◦B = (Pm,0(A) ◦B)Pm,0(−t)−1

= Rm(0)Pm,0(−t)−1.

Since Rm(0) has full rank, Pm,0(−t)−1 = Cm(t).

For the final part with additional assumptions, first note that by part (iii) of

this theorem and part (iii) of Theorem 2.24,

Cm(t) = (I + tS̃−1
m)−1 · · · (I + tS̃−1

1)−1.

Then

λmax(Cm(t)Cm(t)
∗) = ‖Cm(t)‖22 ≤

∥∥∥(I + tS̃−1
m)−1

∥∥∥
2

2
· · ·
∥∥∥(I + tS̃−1

1)−1
∥∥∥
2

2
. (4.44)

Note that for each j = 1, . . . , m,

∥∥∥(I + tS̃−1
j)−1

∥∥∥
2
= λmax

((
(I + tS̃−1

j)−1(I + tS̃−1
j)−∗

)−1
)

= λmax

((
I + t(S̃−∗

j + S̃−1
j) + t2S̃−∗

j S̃−1
j

)−1
)
.

Since S̃j is positive real, then so are its inverse and transpose, and by Lemma 2.6 ii,

S̃−∗
j + S̃−1

j is HPD. The product S̃−∗
j S̃−1

j is also HPD, so
(
(I+tS̃−1

j)−1(I+tS̃−1
j)−∗

)−1

97

is HPD and of the form I + tD for an HPD matrix D. Since t ≥ 0, the spectrum of

such a matrix is bounded by 1 from below. Consequently,
∥∥∥(I + tS̃−1

j)−1
∥∥∥
2
≤ 1, for all j = 1, . . . , m.

�

Part(i) of Theorem 4.16 is proven for the classical case in [130, Theorem 3.3] and for

the global case in [46, Theorem 3.1].

Remark 4.17: The eigenvalues of Hm are called the Ritz values of A. When s = 1,

the eigenvalues of Hm +M are referred to as the harmonic Ritz values of A, since

they turn out to be weighted harmonic means of the eigenvalues of A [109]. We

adopt the same nomenclature in the block case, noting that the latent roots of the

BGMRES residual polynomial give us harmonic Ritz values.

Under similar assumptions, Theorem 4.16 also holds for restarts. Define the

restarted cospatial factors

C(k)
m (t) :=

(
G(k)

m (0)
)−1

G(k)
m (t).

Corollary 4.18: Fix k ≥ 1, and denote H̃(ℓ)
m = H(ℓ)

m + M(ℓ), ℓ = 1, . . . , k. If each

H̃(ℓ)
m has spectrum with positive real part and meets the hypotheses of Theorem 4.16,

then for all t ≥ 0,
∥∥C(k)

m (t)
∥∥
2
≤ 1.

For the culminating result, we require the following bound on the trace of a

matrix product.

98

Lemma 4.19: Let X, Y ∈ R
s×s be symmetric matrices, and Y nonnegative definite.

Then

trace (XY) ≤ λmax(X) · trace (Y) .

Proof: See, e.g., [138, Lemma 1]. �

Theorem 4.20: Let A ∈ Cn×n be block positive real. Suppose further that the

assumptions of Theorem 2.24 hold on H(k)
m +M(k), so that the conclusion of Corol-

lary 4.18 holds. Then

∥∥E(k)
m (t)

∥∥
A∗A-S

≤
√

νmax

(t+ ρνmax)2

(
1− γ2

νmax

)mk/2

‖B‖
S
,

where ρ, γ, and νmax are as in (4.34).

Proof: Again Lemma 4.13 gives that

∥∥E(k)
m (t)

∥∥2
A∗A-S

=
νmax

(t+ ρνmax)2
∥∥R(k)

m (t)
∥∥2
S
.

Recalling that R
(k)
m (t) = R

(k)
m (0)C

(k)
m (t), and by employing Lemma 4.19,

∥∥R(k)
m (t)

∥∥2
S
= trace

(
〈〈R(k)

m (0)C(k)
m (t),R(k)

m (0)C(k)
m (t)〉〉

S

)

= trace
(
C(k)

m (t)∗〈〈R(k)
m (0),R(k)

m (0)〉〉
S
C(k)

m (t)
)

= trace
(
〈〈R(k)

m (0),R(k)
m (0)〉〉

S
C(k)

m (t)C(k)
m (t)∗

)

≤
∥∥R(k)

m (0)
∥∥2
S
λmax(C

(k)
m (t)C(k)

m (t)∗).

Corollaries 4.8 and 4.18 finish the proof. �

99

4.3 Block Radau-Lanczos

We have already established the need for restarts when there is a limitation on the

number of Krylov basis vectors we can store. Restarts can significantly slow down

convergence, however. Techniques such as eigenvalue deflation [102] can reduce the

number of cycles needed to converge, and in this section, we propose yet another

alternative called the block Radau-Lanczos (BRL) method, which is designed partic-

ularly for operators A : Cn×s → C
n×s that are 〈〈·, ·〉〉

S
-SA and 〈〈·, ·〉〉

S
-PD.

The Radau-Lanczos (RL) method for s = 1 is presented in [54], along with

a CG-like convergence bound and an in-depth numerical analysis. The main idea

behind the method is to prescribe a Ritz value for every cycle, typically one that

is slightly larger than the maximum eigenvalue of A. Given that BGMRES itself is

equivalent to modifying the Ritz values via an s-rank modification (see Remark 4.17),

it is reasonable to consider other Ritz-value-modifying methods and see if they can

also be cast as an s-rank modification. We describe the Radau-Lanczos process in

the case of blocks, where we now prescribe a block eigenvalue from S (and conse-

quently s Ritz values). The reader can review Section 2.4.2 for the definition of block

eigenvalues.

Since A is 〈〈·, ·〉〉
S
-SA and 〈〈·, ·〉〉

S
-PD, Hm is 〈〈·, ·〉〉

Vm
-SA and 〈〈·, ·〉〉

Vm
-PD by

Lemma 3.15 and also block tridiagonal, i.e., of the following form,

100

Hm =




H1,1 H∗
2,1

H2,1 H2,2 H∗
3,2

. . .
. . .

. . .

Hm−1,m−2 Hm−1,m−1 H∗
m,m−1

Hm,m−1 Hm,m




=

[
Hm−1 Êm−1H

∗
m,m−1

Hm,m−1Ê
∗
m−1 Hm,m

]
. (4.45)

We choose a Hermitian S0 ∈ S to be the matrix whose s eigenvalues we want to

impose upon the spectrum of Hm. Letting Êm−1 ∈ S
m−1 and Im−1 ∈ C

(m−1)×(m−1),

we then define

D := (Hm−1 − Im−1 ⊗ S0)
−1Êm−1 ∈ S

m−1, (4.46)

whereDm−1 = Ê∗
m−1D, i.e., the last block entry ofD. Then the block Radau-Lanczos

(BRL) modification is given as

Mrad := Em(S0 +Hm,m−1D
∗
m−1H

∗
m,m−1 −Hm,m)E

∗
m. (4.47)

It has already been shown why the modification (4.47) fixes eigenvalues when S = C

and 〈〈·, ·〉〉
S
is the usual Euclidean inner product in [54]. The explanation in the block

case is similar, but technically more challenging, as one must generalize block Gauss

quadrature within the framework of [55] and ensure that certain non-commutative

operations are tracked correctly. Furthermore, some additional assumptions must be

placed on the spectrum of A. To see why Mrad does what we want, we must take a

detour into block Gauss quadrature rules.

101

4.3.1 Block Gauss quadrature

Block quadrature rules are not new. One can find a nice introduction to them in

[63] for approximating expressions of the form B∗f(A)B, where s = 2; they are ex-

tended to general s in [116]. While we are not necessarily concerned with computing

B∗f(A)B, it is related to the computation of f(A)B, and it is precisely this connec-

tion that we want to exploit. However, to remain within our framework, we instead

consider computing 〈〈B, f(A)B〉〉
S
. Suppose that A has a block eigendecomposition

in the sense of Theorem 2.14, i.e., that s divides n and

AQj = QjΛj, where Qj ∈ C
n×s,Λj ∈ S, and 〈〈Qj,Qk〉〉S = δjkIs,

for all j = 1, . . . , m = n
s
, with δjk denoting the Kronecker delta function. When

〈〈·, ·〉〉
S
is the classical block inner product, it is possible to choose (Λj,Qj) so that

Qj = [qj| · · · |qj] and Λj = λjIs, where (λj , qj) ∈ C × Cn is an eigenpair of A, and

〈qj, qk〉2 = δjk. For other block inner products, however, we may not have such a

convenient relationship.

Since the block eigenvectors of A are block orthonormal, there exists some

{Cj}nj=1 ⊂ S such that

B =
n∑

j=1

QjCj ,

102

which allows us to rewrite 〈〈B, f(A)B〉〉
S
as

〈〈B, f(A)B〉〉
S
=

〈〈 n∑

j=1

QjCj, f(A)

n∑

k=1

QkCk

〉〉

S

=

n∑

j=1

n∑

k=1

〈〈QjCj, f(A)QkCk〉〉S

=
n∑

j=1

n∑

k=1

C∗
j 〈〈Qj,Qk〉〉Sf(Λk)Ck, by Theorem 2.15 (4.48)

=
n∑

j=1

C∗
j f(Λj)Cj. (4.49)

Since A is BSA and BPD, each Λj is HPD, so there exist Uj , Dj ∈ C
s×s such that

Λj = UjDjU
∗
j , where Dj = diag(dj1, . . . , djs). Then equation (4.49) becomes

n∑

j=1

s∑

i=1

f(dji)wjiw
∗
ji, (4.50)

where

wji := ê∗
iC

∗
jUj .

Let λmin and λmax denote the minimum and maximum eigenvalues of A, respectively,

and let H : R → R denote the Heaviside step function

H(t) =

{
1, t ≥ 0

0, t < 0
.

From equation (4.50), we define a matrix of measures dα(t) based on

α(t) :=
n∑

j=1

s∑

i=1

H(t− dji)wjiw
∗
ji, (4.51)

and a bilinear form on pairs of matrix polynomials P,Q taking coefficients in S:

(P,Q) :=

∫ λmax

λmin

P ∗Q dα(t). (4.52)

103

Remark 4.21: Line (4.48) in the preceding discussion merits a few comments. We

are making use of the fact that each Ck ∈ S, and that, due to the scalar polynomial

definition of f and that Λk ∈ S, f(Λk) is an element of S as well. These observations

are key, because only elements of S can move in and out of 〈〈·, ·〉〉
S
.

The bilinear form (4.52) gives rise to a set of orthogonal matrix polynomials

{Pj}nj=−1 with a three-term recurrence, given by

zPj−1(z) = Pj(z)Γj + Pj−1(z)Ωj + Pj−2(z)Γ
∗
j−1, (4.53)

P0(z) ≡ Is, P−1(z) ≡ 0s.

See, e.g., [25, 68] for more information on orthogonal matrix polynomials. Defining

Pm(z) :=




P0(z)
∗

...
Pm−1(z)

∗


 ,

and

Jm :=




Ω1 Γ∗
1

Γ1 Ω2 Γ∗
2

. . .
. . .

. . .

Γm−2 Ωm−1 Γ∗
m−1

Γm−1 Ωm



,

the three-term recurrence (4.53) can be rewritten as

JmPm(z) = zPm(z)−




0s
...
0s

Γ∗
mPm(z)

∗


 . (4.54)

It is not difficult to show that due to the definition of α and the bilinear form (4.52),

Jm = Hm.

104

4.3.2 Block Gauss-Radau quadrature

As mentioned earlier, we wish to alter the last block entry of Hm in order to change s

of its eigenvalues to those of some S0 = S∗
0 ∈ S. This is equivalent to generating a

new polynomial P̃m such that P̃m(S0) = 0s. By equation (4.54), we have that

J̃m

[
Pm−1(S0)

0s

]
= (Im ⊗ S0)

[
Pm−1(S0)

0s

]
, (4.55)

where

J̃m :=

[
Jm−1 Êm−1Γ

∗
m−1

Γj−1Ê
∗
m−1 Ω̃m

]
.

Then (perhaps seen more easily from the recurrence (4.53))

S0Pm−1(S0) = Pm−1(S0)Ω̃m + Pm−2(S0)Γ
∗
m−1;

and, assuming that Pm−1(S0) is invertible,

Ω̃m = Pm−1(S0)
−1S0Pm−1(S0)− Pm−1(S0)

−1Pm−2(S0)Γ
∗
m−1.

The trick now is to solve for each term using only Jm and its entries, and S0. We

solve for the second term first. Equation (4.55) reduces to the following, which can

also be seen by looking at equation (4.54) for m− 1:

Jm−1




P0(S0)
∗

...
Pm−2(S0)

∗


 = (Im−1 ⊗ S0)




P0(S0)
∗

...
Pm−2(S0)

∗


− Êm−1Γ

∗
m−1Pm−1(S0)

∗.

Right-multiplying by −Pm−1(S0)
−∗ and combining both terms multiplied by matrices

results in that

(Jm − Im−1 ⊗ S0)D = Êm−1Γ
∗
m−1,

105

with

D := −




P0(S0)
∗Pm−1(S0)

−∗

...
Pm−2(S0)

∗Pm−1(S0)
−∗


 .

Noting that Ê∗
m−1D = −Pm−2(S0)

∗Pm−1(S0)
−∗ means all we need to do is solve for

D to find the second term in Ω̃m. Indeed, this is precisely the D in the (4.46). If

S0 = θ0Is, then the first term in Ω̃m remains S0. When S0 takes any other form,

however, then we need to compute S̃0 := Pm−1(S0)
−1S0Pm−1(S0). Working with the

unmodified polynomials and matrix Jm, we have from the relation (4.53) that

S0Pm−1(S0) = Pm(S0)Γm + Pm−1(S0)Ωm + Pm−2(S0)Γ
∗
m−1,

implying that (and since Ωm = Ω∗
m)

Γ∗
mPm(S0)

∗ = Pm−1(S0)
∗S∗

0 − ΩmPm−1(S0)
∗ − Γm−1Pm−2(S0)

∗.

Then, making use of equation (4.54),

Jm




P0(S0)
∗

...
Pm−2(S0)

∗

Pm−1(S0)
∗


 =(Im ⊗ S0)




P0(S0)
∗

...
Pm−2(S0)

∗

Pm−1(S0)
∗




− Êm(Pm−1(S0)
∗S∗

0 − ΩmPm−1(S0)
∗ − Γm−1Pm−2(S0)

∗).

Right-multiplying by −Pm−1(S0)
−∗ and rearranging terms gives that

(Jm − Im ⊗ S0)

[
D

−I

]
= Êm(S̃

∗
0 − Ωm + Γm−1Dm−1). (4.56)

106

Simplifying the left-hand side of equation (4.56), we find

(Jm − Im ⊗ S0)

[
D

−I

]
=

[
(Jm−1 − Im−1 ⊗ S0)D − Êm−1Γ

∗
m−1

Γm−1Dm−1 − Ωm + S0

]

= Êm(Γm−1Dm−1 − Ωm + S0),

but by comparing with the right-hand side of equation (4.56), it finally follows that

S0 = S̃∗
0 . Since S0 = S∗

0 , we can conclude that

Ω̃m = S0 +D∗
m−1Γ

∗
m−1. (4.57)

In other words,

J̃m = Jm + Êm(S0 +D∗
m−1Γ

∗
m−1 − Ωm)Ê

∗
m.

Replacing Jm with Hm gives the expressions in equations (4.46) and (4.47).

4.3.3 Block Radau-Lanczos as a solver

The RL method for s = 1 is studied for Stieltjes functions of matrices in [54] and

compared with a FOM-based method for matrix functions. (See Chapter 5 for how

FOM is used for matrix functions.) Unfortunately, there are some flaws with the

conclusions of the RL paper. Due to the way the method is derived, the authors

compare the m + 1st RL approximation with the mth FOM approximation and

demonstrate improvement by several measures, mainly the reduction in the number

of cycles needed to converge. Re-running these tests but comparing instead the mth

approximations of both methods indicates that the RL modification by itself does

not lead to improvement in these scenarios; rather, the inclusion of an additional

basis vector is the source of improvement noted in the paper [54]. Our tests for BRL

as a linear solver can be found in Section 7.2.4. Additional tests on BRL as a matrix

107

function method can be found in Section 7.5 and suggest that BRL may prove useful

with matrix functions in scenarios not considered in [54].

The BRL modification also has potential in many theoretical situations as a

tool for devising worst-case scenarios. For example, since this method forces a subset

of spec(Hm +M) to match given values, it is possible to choose very “bad” values

and yet still have an approximation in the Krylov subspace with otherwise “good”

properties. This bolsters the importance of methods like BFOM and BGMRES,

which ensure that the spectrum of Hm +M is still close to that of A.

4.4 Summary and outlook

By regarding BFOM as the standard Krylov subspace method, we have formulated

other block Krylov methods, in particular BGMRES and BRL, and interpreted them

as modified versions of BFOM. Block GMRES with restarts for shifted systems has

been completely described, and two different proofs for error bounds for shifted

systems with restarts have been presented. Matrix polynomials feature strongly in

our approach to block Krylov methods, and they are specifically used to describe all

possible low-rank modifications to BFOM such that the resulting approximation still

lies in the Krylov subspace. Overall, the analysis for BGMRES serves as a template

in some sense for other modified methods.

Our work raises a number of open questions and directions for future work.

The shifted error bounds of Section 4.2 are not known to hold for all block positive

real matrices. (Compare the assumptions for Theorems 4.14 and 4.20.) A different

approach must be taken, perhaps by examining a generalized notion of angles between

block subspaces (see, e.g., [134]).

108

Regarding the BRL method, work by Frommer and Schweitzer for the case

s = 1 suggests that it may prove useful as an error estimator in the Lanczos method

for matrix functions [56]. Having a “built-in” error estimator is important for mak-

ing matrix function algorithms cheaper and more accurate than simply checking the

sequence of differences between approximations. At the same time, the BRL method

requires more theoretical research, especially within the context of our generalized

framework. Orthogonal matrix polynomials (see, e.g., [61]) would feature promi-

nently in such analysis.

At this point, we have a variety of tools for “customizing” Krylov methods:

block inner products, additive modifications, shifting, and restarting. More work in

the vein of high-performance computing is needed to determine which combinations

lead to robust solvers in which situations.

109

CHAPTER 5

BLOCK KRYLOV METHODS FOR MATRIX

FUNCTIONS ACTING ON MULTIPLE VECTORS

Interest in matrix functions has been increasing the past few decades. The mono-

graph by Higham [74] describes many of the key results in the field, particularly

for computing f(A) directly for general f as well as for common functions like the

sign function, square root, pth root, exponential, logarithm, sine, and cosine. We do

not recapitulate results on direct methods here, since many of them are well estab-

lished and even preprogrammed in current Matlab distributions [75]. We do briefly

discuss some of the iterative methods for computing f(A)b, many of which implic-

itly use direct methods after projecting and restricting A onto a smaller subspace.

Then we present our block Krylov methods for f(A)B, within the framework from

Chapters 3 and 4.

5.1 An overview of iterative methods for f(A)b

When A is large and even when it is sparse, it may be impossible to compute and

store f(A), because f(A) is often dense. (For why this is the case, simply examine

110

one of the definitions of f(A) in Section 2.2.) Iterative methods requiring only the

action of A on a vector or block vector are necessary in such cases.

It is not unreasonable to use a polynomial approximation to f to compute

f(A)b. Perhaps the simplest technique is a truncated Taylor series approximation

[74, section 4.3]. Other feasible polynomial methods are based on Chebyshev poly-

nomials, Fejér polynomials, least-squares approximations, or Faber series expansions

[22, 34, 99, 100, 101, 107].

Another common technique is to approximate f by a rational function r(z) =
∑

j
wj

z+tj
. Padé approximates are known to have many special properties [6, 8].

Quadrature rules [71] and partial fraction expansions [15] may also be used to gener-

ate rational approximations. A necessary tool for such methods is an efficient solver

for shifted systems, such as our block-featured methods from Chapters 3 and 4, or

other methods that employ techniques like eigenvalue deflation, subspace recycling,

and preconditioning [12, 26, 51, 123, 128, 133, 135, 141, 142].

Krylov methods have long been established as a viable method for computing

f(A)b [34, 35, 39, 52, 53, 54, 78, 81, 90, 121]. The earliest results by Druskin and

Knizhnerman [34] and Saad [121] focused on the exponential and cosine, but the

basic principle holds for general functions. Recall the Arnoldi relation for s = 1:

AVm = VmHm + vm+1hm,m+1ê
∗
m. (3.2 revisited)

Suppose that f is defined on the field of values of A, which contains the eigenvalues

of both A and Hm (cf. Lemma 3.13), then the Krylov approximation to f(A)b is

given by

fm := Vmf(Hm)V
∗
mb = Vmf(Hm)ê1β. (5.1)

111

Such an approximation is reasonable: f(Hm) is equivalent to a polynomial on Hm

interpolating the Ritz values (see Definition 2.2), which are close to the eigenvalues

of A; and by Theorem 4.1, the approximation (5.1) is equivalent to this polynomial

acting on A. Since f(A) is a polynomial interpolating spec(A), the polynomial from

spec(Hm) should be close to the one from spec(A). In this sense, Krylov methods for

f(A)b could be thought of as a polynomial approximation to f combined with model

order reduction. See [77] for additional ways of deriving the approximation (5.1).

A variety of names have been proposed for the approximation (5.1) depending

on whether the Arnoldi or Lanczos method is used to generate the Krylov basis. Since

the Arnoldi and Lanczos methods are, strictly speaking, methods for computing

this basis; and since just about any Krylov method for linear systems requires the

generation of a basis, but uses it differently (e.g., FOM vs. GMRES); we do not think

it is appropriate to name methods for matrix functions based on Arnoldi or Lanczos.

Instead, we propose the nomenclature (FOM)2: Full Orthogonalization Method for

Functions Of Matrices. For modified FOM or (FOM)2, we add a suffix to indicate

which modification, and for block-featured methods, we add the prefix “B.”

(FOM)2 require access to each block vector of the Krylov basis, even if A is

Hermitian and a Lanczos-based procedure has used to compute Vm. The reason is

that while short-term recurrences may hold for Hm, they do not necessarily hold for

f(Hm). As a result, storage is an inherent issue for (FOM)2, so we consider restarts.

Restarted (FOM)2 are explored in [3, 39, 40, 53, 52, 81]. The main issue with

formulating restarts for matrix functions is that there is no natural notion for defining

the residual, which is what is used for restarts for linear systems. Instead, the error

112

f(A)b − fm must be approximated. In [125], different methods for estimating the

error are summarized, including divided differences and rational approximations, but

only the quadrature-based method of [53] is known to be stable.

5.2 Block methods for f(A)B

A number of direct methods, i.e., non-iterative methods requiring full access to A,

have been proposed for computing the exponential and trigonometric functions. Al-

Mohy and Higham [5] use scaling and squaring techniques and a truncated Taylor

series approximation to compute exp(A)B. Their method is dominated by matrix-

block-vector multiplications AB, and they demonstrate its superiority to (FOM)2

without restarts acting on each column of B. Higham and Kandolf [76] modify

the algorithm of [5] for computing f(A)B, where f is a trigonometric or hyperbolic

trigonometric function. In [4], Al-Mohy uses scaling techniques, truncated Taylor

series, and Chebyshev polynomials to devise a method for f(tA)B and f(tA1/2)B,

where f is cosine, sine, or sinc, or a hyperbolic version of one of those. In all the

methods from this group, the authors perform extensive forward error analysis.

Iterative block methods have also been considered, mainly for the exponential

function and some classes of matrices. Lopez and Simoncini [96] developed a block

Krylov method for exp(A)B that ensures that certain geometric properties of B are

preserved when A is skew-symmetric or Hamiltonian. They do so via a classical block

Krylov subspace and a BFOM-like approximation that utilizes properties of the ma-

trix exponential and its action on special matrices. Wu, Pang, and Sun [141] explore

an alternatively shifted BFOM method for computing exp(A)B. They approximate

the exponential a priori with a Carathéodory-Fejér rational approximation and use

113

an inexact approximation to A−1, which has a preconditioning-like effect on shifted

BFOM. The method shows great improvement over state-of-the-art methods when

one can store an LU factorization of A.

There are many benefits to such methods, but they do not cover all possible

situations. Our aim is to provide methods that are defined for more general functions

and that take advantage of the sparsity of A, especially when A is not known explic-

itly or there are memory limitations. Iterative methods with restarts are essential in

such situations, and with the versatile framework for restarted block Krylov methods

from Chapters 3 and 4, we have many tools for building new methods for matrix

functions.

Again, the question of reasonableness arises, i.e., does it make sense to look

for approximations to f(A)B in K
S

m(A,B)? To answer this question, we utilize

interpolating matrix polynomials (Section 2.5.2) and the block Arnoldi polynomial

relation (Section 4.1). Suppose f is defined and differentiable “enough” on the field

of values of A (see Definition 2.5); then f(A) is defined and, by Definition 2.2,

there exists a p ∈ Pn(C) such that f(A) = p(A). Regarding the coefficients of p as

square matrices with constant diagonal– as in the embedding used in the proof of

Theorem 3.20– and recalling that CIs ⊂ S for all S (see Section 2.4), we then have

a matrix polynomial P ∈ Pn(A) such that f(A)B = P (A) ◦B. Keep in mind that

because S is possibly larger than CIs, the polynomial P is likely not unique; what

is important is that we know such a P ∈ Pn(S) exists. Recall now that the block

Arnoldi relation

AVm = VmHm + Vm+1Hm+1,mÊ
∗
m, (3.5 revisited)

114

and let M = MÊ∗
m ∈ S

m×m, with M ∈ S
m. As long as f(Hm +M) is defined, we

can define the (modified) block FOM approximation to f(A)B as

Fm := Vmf(Hm +M)Ê1B, (5.2)

with B = N(B). Indeed, with f defined on F〈·,·〉S(A), f(Hm+M) is also well defined

in several important scenarios:

• when M = 0, by Lemma 3.13;

• when A is block positive real, F〈·,·〉S(A) ⊂ C+, and M is as in BGMRES, by

Lemma 4.6; and

• when A is block self-adjoint and block positive definite, and M is chosen in

a block Radau-Lanczos fashion to ensure that Hm + M has eigenvalues in

F〈·,·〉S(A).

Note that Fm ∈ K S

m(A,B). By a similar argument as for f(A), there exists

Qm−1 ∈ Pm−1(S) such that f(Hm + M)Ê1B = Qm−1(Hm + M) ◦ Ê1B. By The-

orem 4.1, we then know that Fm = Qm−1(A)B. Consequently, as K S

m(A,B) ap-

proaches Cn×s, Qm−1 approaches a polynomial P̃ ∈ Pn(C) and Hm approaches A, so

that f(A)B = P̃ (A) ◦B.

When M = 0, we call (5.2) the B(FOM)2 approximation, where B(FOM)2

stands for Block Full Orthogonalization Method for Functions Of Matrices. When

M comes from BGMRES, we call (5.2) the B(FOM)2+har approximation, where

“har” stands for “harmonic” (see Remark 4.17); and when M is related to BRL,

B(FOM)2+rad. For unspecfied M, we abbreviate “modified B(FOM)2 ” as

B(FOM)2+mod.

115

The approximation (5.2) does not require that f have any particular kind of

representation, i.e., the approximation is defined as long as f(A) and f(Hm + M)

are. For the rest of this chapter, however, we assume that f is a Stieltjes function

as in equation (2.14). The integral form of f makes an efficient restart procedure

viable.

5.2.1 B(FOM)2 with restarts: B(FOM)2(m)

The approximation (5.2) requires full access to Vm and thus encounters the usual

memory limitations for large m. With linear systems, we could compute an update

by using the residual (see, e.g., Sections 3.2 and 4.2), but with matrix functions there

is no natural notion of residual. However, the integral definition of f allows us to

formulate a similar update via an error function. The development in this section is

taken from [55].

It will be useful to extend the definition of ◦ to integrals with matrix-valued co-

efficients. Recall that for a matrix polynomial P ∈ Pd(S), P (A)◦B =
∑d

k=0A
kV Ck,

for some coefficients {Ck}dk=0 ⊂ S. Let a function F : C → S be given as

F (z) =

∫

Γ

(t− z)−1G(t) dt,

for some G : C → S. Then we define F (A) ◦B as

F (A) ◦B :=

∫

Γ

(tI −A)−1BG(t) dt. (5.3)

Even though (5.3) is not of the form “matrix function times a block vector” like

f(A)B, we can still define a B(FOM)2 approximation to F (A) ◦B, i.e.,

VmF (Hm +M) ◦ Ê1B =

∫

Γ

(tI −Hm −M)−1Ê1BG(t) dt. (5.4)

116

Theorem 5.1 (Theorem 4.3 in [55]): Let f be a Stieltjes function as in (2.14).

For k ≥ 1 and t ≥ 0 with the cospatial factors C
(j)
m (t) ∈ S as in (3.19), define the

matrix-valued function ∆
(k)
m (z) of the complex variable z as

∆(k)
m (z) :=

∫ ∞

0

(z + t)−1C(k)
m (t) · · ·C(1)

m (t) dµ(t). (5.5)

Let

F (1)
m := V

(1)
m f
(
H(1)

m

)
Ê1B = V

(1)
m

∫ ∞

0

(
H(1)

m + tI
)−1

Ê1B dµ(t)

be the B(FOM)2 approximation to f(A)B after the first cycle. For k ≥ 1 set

D̃(k)
m := V

(k+1)
m ∆(k)

m

(
H(k+1)

m

)
◦ Ê1, and (5.6)

F (k+1)
m := F (k)

m + D̃(k)
m .

Then for k = 0, 1, . . . the kth B(FOM)2 error D
(k+1)
m := f(A)B − F

(k+1)
m is given as

D(k+1)
m = ∆(k+1)

m (A) ◦ V (k+1)
m+1 . (5.7)

Proof: The key to this result is reducing everything to Sh-BFOM(m). Recall the Sh-

BFOM(m) approximations X
(k)
m (t) to the system (3.1), together with the updates

Z
(k)
m (t), errorsE

(k)
m (t) := X∗(t)−X

(k)
m (t), and residualsR

(k)
m (t) := B−(A+tI)X

(k)
m (t)

(see (3.16)-(3.18)). Note that for all k = 0, 1, . . ., the error representation for D
(k+1)
m

from equation (5.7) can be written as

D(k+1)
m =

∫ ∞

0

(A+ tI)−1R(k+1)
m (t) dµ(t).

117

The exact error (5.7) with k = 0 is found via

D(1)
m = f(A)B − F (1)

m =

∫ ∞

0

(A + tI)−1B − V
(1)
m Y (1)

m (t)B dµ(t)

=

∫ ∞

0

(A + tI)−1B −X(1)
m (t) dµ(t)

=

∫ ∞

0

(A + tI)−1R(1)
m (t) dµ(t).

By induction, we can express the exact error for subsequent cycles k ≥ 1 as

D(k+1)
m = f(A)B − F (k+1)

m = f(A)B − (F (k)
m + D̃(k)

m) = D(k)
m − D̃(k)

m

and use equations (3.16) and (3.18) to find that

D(k+1)
m =

∫ ∞

0

(A+ tI)−1R(k)
m (t) dµ(t)

− V
(k+1)
m

∫ ∞

0

(
H(k+1)

m + tI
)−1

Ê1C
(k)
m (t) · · ·C(1)

m (t) dµ(t)

=

∫ ∞

0

(A+ tI)−1R(k)
m (t)−Z(k)

m (t) dµ(t)

=

∫ ∞

0

(A+ tI)−1
(
R(k)

m (t)− (A+ tI)Z(k)
m (t)

)
dµ(t)

=

∫ ∞

0

(A+ tI)−1R(k+1)
m (t) dµ(t),

with the last equality holding by equation (3.18). �

Algorithm 5.2.1 employs Theorem 5.1. Since quadrature is used to evaluate

the error function ∆
(k)
m , if the quadrature nodes are known beforehand, it is possi-

ble to preallocate memory for the cospatial factors, much in the same way as for

Algorithm 3.2.1. In such a case, not all the H(k)
m need to be stored from cycle to

cycle. In practice, however, adaptive quadrature is necessary to compute the error

118

to high enough accuracy, meaning that all H(k)
m must be stored so that C

(k)
m (t) can

be computed for arbitrary values of t.

Algorithm 5.2.1: B(FOM)2(m): block full orthogonalization method

for functions of matrices with restarts
1: Given f , A, B, S, 〈〈·, ·〉〉

S
, N , m, t, tol

2: Run Algorithm 3.1.1 with inputs A, B, S, 〈〈·, ·〉〉
S
, N , and m and store

V
(1)
m+1, H(1)

m , and B(1)

3: Compute and store F
(1)
m = V

(1)
m f
(
H(1)

m

)
Ê1B

4: Compute and store C
(1)
m (t) = H

(1)
m+1,mÊ

∗
m

(
H(1)

m + tI
)−1

Ê1B
(1) to define

∆
(1)
m (z)

5: for k = 1, 2, . . ., until convergence do

6: Run Algorithm 3.1.1 with inputs A, V
(k)
m+1, S, 〈〈·, ·〉〉S, N , and m and

store V
(k+1)
m+1 in place of the previous basis

7: Compute D̃
(k)
m := V

(k+1)
m ∆

(k)
m

(
H(k+1)

m

)
◦ Ê1, where ∆

(k)
m (z) is evaluated

via quadrature

8: Compute F
(k+1)
m := F

(k)
m + D̃

(k)
m and replace F

(k)
m

9: Compute C
(k+1)
m (t) = H

(k+1)
m+1,mÊ

∗
m

(
H(k+1)

m + tI
)−1

Ê1B
(k+1)C

(k)
m (t) and

replace C
(k)
m (t)

10: end for

11: return F
(k+1)
m

The convergence of Algorithm 5.2.1 can be shown by generalizing the tech-

niques of [52, Lemma 4.1 and Theorem 4.3] to the block case.

119

Theorem 5.2 (Theorem 4.5 in [55]): Let f be a Stieltjes function, A ∈ C
n×n

〈〈·, ·〉〉
S
-self-adjoint and 〈·, ·〉S-positive definite, and B ∈ Cn×s. Let D

(k)
m from equa-

tion (5.7) be the error of the B(FOM)2(m) approximation after k cycles. Then, with

the quantities defined in (3.21), it holds that

∥∥D(k)
m

∥∥
A-S

≤ ‖B‖
S

√
λmax

∫ ∞

0

ξm(t)
k

√
λmin + t

√
λmax + t

dµ(t) ≤ γξm(0)
k, (5.8)

where γ = ‖B‖
S

√
λmaxf(

√
λminλmax). In particular, B(FOM)2(m) converges for all

cycle lengths m as k → ∞.

Proof: We write the exact error D
(k)
m as an integral over the error of Sh-BFOM(m),

i.e.,

D(k)
m =

∫ ∞

0

(A+ tI)−1R(k)
m dµ(t) =

∫ ∞

0

E(k)
m (t) dµ(t).

Passing the energy norm through the integral (cf. [126, Lemma 2.1]), we obtain

∥∥D(k)
m

∥∥
A-S

≤
∫ ∞

0

∥∥E(k)
m (t)

∥∥
A-S

dµ(t). (5.9)

By Theorem 3.23,

∥∥E(k)
m (t)

∥∥
A-S

≤ ‖B‖
S

√
λmax

ξm(t)
k

√
(λmin + t)(λmax + t)

, (3.22 revisited)

which, combined with the inequality (5.9), gives the first inequality in (5.8). Noting

that ξm(t) is a monotonically decreasing function of t [52, Proposition 4.2], we can

bound ξm(t) by ξm(0). The denominator of ξm(0) is the geometric mean
√
λminλmax,

which satisfies

1√
λmin + t

√
λmax + t

≤ 1√
λminλmax + t

,

120

implying that

∫ ∞

0

ξm(t)
k

√
λmin + t

√
λmax + t

dµ(t) ≤ ξm(0)
k

∫ ∞

0

1√
λminλmax + t

dµ(t).

The integral on the right is just f(
√
λminλmax), thus concluding the second inequality

in (5.8). �

Note that when B is a column vector, we recover the same results as in [53].

5.2.2 B(FOM)2+har with restarts: B(FOM)2+har(m)

To formulate restarts for B(FOM)2+har, we use the theory developed for

Sh-BGMRES(m). The results are similar to B(FOM)2, with the only differences

stemming from the cospatial relationship between the residuals. Recall from Sec-

tion 4.2 that

R(k)
m (t) = V

(k)
m+1

[
U (k)

−I

]
G(k)

m (t) (4.32 revisited)

G(k)
m (t) = H

(k)
m+1,mÊ

∗
m(H(k)

m +M(k) + tI)−1Ê1B
(k). (4.33 revisited)

Theorem 5.3: Let f be a Stieltjes function as in (2.14). For k ≥ 1 and t ≥ 0

with the cospatial factors G
(j)
m (t) ∈ S as in (4.33), define the matrix-valued function

∆
(k)
m (z) of the complex variable z as

∆(k)
m (z) :=

∫ ∞

0

(z + t)−1G(k)
m (t) dµ(t). (5.10)

Let

F (1)
m := V

(1)
m f
(
H(1)

m +M(1)
har

)
Ê1B = V

(1)
m

∫ ∞

0

(
H(1)

m +M(1)
har + tI

)−1
Ê1B

(1) dµ(t)

121

be the B(FOM)2+har approximation to f(A)B after the first cycle. For k ≥ 1 set

D̃(k)
m := V

(k+1)
m ∆(k)

m

(
H(k+1)

m +M(k+1)
har

)
◦ Ê1B

(k+1), and (5.11)

F (k+1)
m := F (k)

m + D̃(k)
m .

Then for k = 0, 1, . . ., the kth B(FOM)2 error D
(k+1)
m := f(A)B −F

(k+1)
m is given as

D(k+1)
m = ∆(k+1)

m (A) ◦ V (k+1)
m+1

[
U (k+1)

−I

]
. (5.12)

The proof for Theorem 5.3 is nearly identical to that of Theorem 5.1, so we do not

present it here.

Algorithm 5.2.2 summarizes the block harmonic method for matrix functions.

It encounters the same preallocation issues as Algorithm 5.2.1 in the case that the

nodes of the quadrature are not fixed. In addition to storing H(k)
m per cycle, it is also

necessary to store B(k) per cycle.

The convergence of Algorithm 5.2.2 depends on bounds for the Sh-BGMRES(m)

errors.

Theorem 5.4: Let A ∈ Cn×n be block positive real, B ∈ Cn×s, f a Stieltjes func-

tion, and F
(k)
m the approximations defined in Theorem 5.3. Take νmax, ρ, and γ as

in (4.34). If the conclusion of either Theorem 4.14 or Theorem 4.20 holds, i.e., if

∥∥E(k)
m (t)

∥∥
A∗A-S

≤
√

νmax

(t+ ρνmax)2

(
1− γ2

νmax

)mk/2

‖B‖
S
,

then
∥∥D(k)

m

∥∥
A∗A-S

≤ √
νmaxf(ρνmax) ‖B‖

S

(
1− γ2

νmax

)mk/2

.

Since 0 < 1− γ2

νmax
< 1, B(FOM)2+har converges for all restart cycle lengths m.

122

Algorithm 5.2.2: B(FOM)2+har(m): block harmonic method for

functions of matrices with restarts
1: Given f , A, B, S, 〈〈·, ·〉〉

S
, N , m, t, tol

2: Run Algorithm 3.1.1 with inputs A, B, S, 〈〈·, ·〉〉
S
, N , and m and store

V
(1)
m+1, H(1)

m , and B(1)

3: Compute and store F
(1)
m = V

(1)
m f
(
H(1)

m +M(1)
)
Ê1B

(1)

4: Compute and store G
(1)
m (t) = H

(1)
m+1,mÊ

∗
m

(
H(1)

m +M(1) + tI
)−1

Ê1B
(1) to

define ∆
(1)
m (z)

5: for k = 1, 2, . . ., until convergence do

6: Run Algorithm 3.1.1 with inputs A, V
(k)
m+1, S, 〈〈·, ·〉〉S, N , and m and

store V
(k+1)
m+1 in place of the previous basis

7: Compute D̃
(k)
m := V

(k+1)
m ∆

(k)
m

(
H(k+1)

m +M(k+1)
har

)
◦ Ê1B

(k+1), where

∆
(k)
m (z) is evaluated via quadrature

8: Compute F
(k+1)
m := F

(k)
m + D̃

(k)
m and replace F

(k)
m

9: Compute G
(k+1)
m (t) = H

(k+1)
m+1,mÊ

∗
m

(
H(k+1)

m +M(k+1) + tI
)−1

Ê1B
(k+1)

and replace G
(k)
m (t)

10: end for

11: return F
(k+1)
m

123

Proof: The proof follows by noting that

∥∥D(k)
m

∥∥
A∗A-S

≤
∫ ∞

0

∥∥E(k)
m (t)

∥∥
A∗A-S

dµ(t), (5.13)

applying Theorem 4.14 or 4.20, and noting also that
∫∞

0
1

t+ρνmax
dµ(t) = f(ρνmax). �

As in the case of B(FOM)2(m), the results for B(FOM)2+har(m) reduce to

those of the non-block harmonic method of [52] when s = 1 and B is a column

vector.

5.2.3 B(FOM)2+mod with restarts: B(FOM)2+mod(m)

It is, of course, possible to devise algorithms with other modifications, for example,

a BRL modification. However, formulating an efficient restart procedure for other

modifications is not trivial, because a cospatial relationship between the residuals

of each cycle is needed. Furthermore, there is no guarantee of convergence for an

arbitraryM. The BRL modification is proof of this, since so-called “bad” eigenvalues

can be forced into the spectrum of Hm + M so that the approximation is always

inaccurate by a certain amount. However, a convergence proof for non-block RL

is presented in [54] which suggests that convergence for the BRL method could

be obtained as long as the spectrum of A is positive and the eigenvalues fixed by

Hm+Mrad are greater than the largest eigenvalue of A. Certainly similar restrictions

must be placed on M for a feasible algorithm, but deducing precisely what these

restrictions are in general is beyond the scope of this work.

124

5.3 Expressions for the matrix error function for special f

Following the quadrature rules suggested by [53], we work out the explicit expressions

for the B(FOM)2(m) error function ∆
(k)
m for two Cauchy-Stieltjes functions: z−α and

exp(z). The pattern becomes quickly apparent, making it easy to derive such expres-

sions for other functions with integral representation and other B(FOM)2+mod(m)

methods.

5.3.1 f(z) = z−α, 0 < α < 1

Recall from Section 2.6 that for α ∈ (0, 1),

z−α =
sin((1− α)π)

π

∫ ∞

0

1

z + t
dµ(t),

with dµ(t) = t−α dt. To approximate this integral, we apply the Cayley transform

t = δ 1−x
1+x

, for some δ > 0 and use N -node Gauss-Jacobi quadrature for the interval

[−1, 1] (as in, e.g., [28]). The associated error function can then be written as

D̃(k)
m ≈ −cα,δ

N∑

j=1

wj

1 + xj
V

(k+1)
m (H(k+1)

m + tjI)
−1Ê1C

(k)
m (tj) . . . C

(1)
m (tj),

with the Gauss-Jacobi nodes {xj}Nj=1, weights {wj}Nj=1, and {tj := δ
1−xj

1+xj
}Nj=1. Be

default, we take δ = 1.

5.3.2 f(z) = exp(z)

As a Cauchy-Stieltjes function, the exponential still fits within our framework:

exp(z) =
1

2πi

∫

Γ

exp(t)

t− z
dt. (5.14)

125

Following [136, 139, 140], we take Γ as a parabolic contour parametrized as

γ(s) = a+ is− cs2, s ∈ R.

The parameters a and c are chosen anew for each restart cycle to ensure that Γ

encloses the eigenvalues of the matrix Hm. The infinite interval of integration

for s is truncated for a given error tolerance tol by the truncation parameter

s0 :=
√

a− log(tol)/c, so that |exp(γ(±s0))| = tol. From the N -point mid-

point rule on [−s0, s0] we obtain the nodes sj := s0(
2j−1
N

), j = 1, . . . , N . Defining

wj := exp(γ(sj))γ
′(sj) and tj := −γ(sj), we then approximate the error approxima-

tion as

D̃(k)
m ≈ s0

Nπi

N∑

j=1

wjV
(k+1)
m (H(k+1)

m + tjI)
−1Ê1C

(k)
m (tj) · · ·C(1)

m (tj).

5.4 A note on preconditioning

Preconditioning Algorithms 5.2.1 and 5.2.2 remains an open problem. To understand

why, recall the possibilities for preconditioning the linear system AX = B, letting

P ≈ A−1:

left right

PAX = PB APY = B, with X = PY

Xm ∈ K S
m(PA, PB) Xm ∈ PK S

m(AP,B)

In the case of either left or right preconditioning, we can recover X so that it still

solves AX = B. Equivalent approaches for matrix functions would mean approx-

imating f(PA)PB in the case of left-preconditioning or Pf(AP)B in the case of

right-preconditioning. We would then need a way to recover f(A)B, which is not

126

immediately clear or possible for general f . For Cauchy-Stieltjes functions, it may

be possible to exploit to the linear system nature of the integral:

left right

f(PA)PB Pf(AP)B

=
∫
Γ
(tI − PA)−1PBg(t) dt =

∫
Γ
P (tI − AP)−1Bg(t) dt

The difficulty here is that we need an algebraic expression to recover the original

integral
∫
Γ
(tI − A)−1Bg(t) dt. When the preconditioner P depends on t, this may

be feasible (see, e.g., [12]). In general, however, the preconditioner should be inde-

pendent of the integral, thus rendering our situation rather challenging indeed.

5.5 Summary and outlook

We have demonstrated that restarted block Krylov methods are well defined for

matrix functions and, when formulated in terms of shifted block Krylov methods with

restarts, convergent in a number of important scenarios. Functions with Cauchy-

Stieltjes representations are especially suited for these methods. We have also found

that functions defined by integrals over matrix-valued coefficients (see equation (5.3))

can be approximated by these methods too.

As the first general-purpose methods proposed for f(A)B, B(FOM)2+mod(m)

show great potential but still have some remaining issues. Since the error is calculated

via quadrature, the choice of quadrature rule plays a crucial role in the efficiency of

the algorithm, but we have not included this choice in our error analysis. Future

analysis should account for the quadrature rule or determine a priori weights and

nodes that give the desired accuracy. It may also be interesting to see how block

quadrature rules [63, 116] behave.

127

B(FOM)2+mod effectively reduces the computation of f(A)B to the compu-

tation of a rational function on Hm + M, thanks to the quadrature rule on the

error function. Other common matrix function methods reduce f(A)B to a rational

function on A. It would be interesting to compare the theoretical and numerical

properties of such approaches. Numerical work to this end has been conducted by

Wu, Pang, and Sun [141] for a particular rational approximation to the matrix ex-

ponential.

128

CHAPTER 6

APPLICATIONS

Matrix functions have numerous applications in scientific computing. We aim to

demonstrate the efficacy of our methods on a range of problems, whose background

is described in this chapter. Recall that we focus on functions with a Cauchy-Stieltjes

representation, as in equation (2.3).

6.1 Differential equations

The matrix exponential is the quintessential matrix function problem [98]. Let

A : Cn×s → Cn×s, and consider the systems of differential equations

d

dt
[Y] = AY (t), (6.1)

for some Y : [0,∞) → Cn×s with Y (0) = B. We can write the solution to equa-

tion (6.1) as

Y (t) = exp(At)B.

The model equation (6.1) applies in particular when A is the central, second-order

finite differences discretization of the Laplace operator in the time-dependent heat

129

equation

d

dt
[Y] = ∆Y (t). (6.2)

The size of A depends on the number of discretization points in each dimension. We

consider only the two-dimensional case and suppose we have the same number of

points N in each dimension, so that A ∈ CN2×N2
. We generate A via the command

gallery(’poisson’,N) in Matlab.

A simple modification to (6.2) gives the convection-diffusion equation with

convection parameter ν:

d

dt
[Y] = ∆Y (t) + νY (t). (6.3)

A finite-differences matrix can be built for equation (6.3) by modifying the entries

of gallery(’poisson’,N) that correspond to the convection term. The value ν

determines how close to being symmetric the matrix is; the larger ν is, the more

difficult the problem is to solve.

The matrix function exp(At), where A corresponds to a differential operator,

is useful theoretically for differential equations, but it is more often used compu-

tationally for exponential integrators, especially when the differential equation is

inhomogeneous; see, e.g., [79].

6.2 Lattice QCD

Quantum chromodynamics (QCD) is the theory for describing the strong force in-

teractions between quarks and gluons. The “chromo” part of the theory comes from

the need to describe a kind of charge different from binary electric charge; this kind

of charge is called “color” and can take on the values of blue, red, or green. (They do

130

not correspond to color in the sense of the visible light spectrum.) To run simulations

on quarks, problems are mapped onto a four-dimensional space-time lattice. Each

point of the lattice carries 12 variables, and each variable corresponds to one of the

combinations of three colors and four spins a particle can carry.

The overlap Dirac operator (see, e.g., [103]) features prominently in these

simulations, an essential component of which is the computation of

sign(Q)V ,

for a matrix Q, which is the Hermitian form of the Wilson-Dirac matrix defined in,

e.g., [137]. For additional sources on QCD theory and its connection to numerical

linear algebra, see [17, 59].

The sign function does not at first glance have a Cauchy-Stieltjes representa-

tion. However,

sign(z) = (z2)−1/2,

and the inverted square root is a Stieltjes function. We can therefore apply our

methods to A−1/2, where A := Q2.

6.3 Functions of tensors

As high-dimensional analogues of matrices, tensors play crucial roles in network

analysis [23] and multidimensional differential equations [87]. A variety of decompo-

sitions and algorithms have been developed over the years to extract and understand

properties of tensors [91]. A natural question is whether the notion of functions

of tensors, defined in analogy to functions of matrices as a scalar function taking

131

a tensor A as its argument, could prove to be yet another useful tool for studying

multidimensional data.

Unfortunately, the definition of such notion is not nearly as straightforward

for tensors as it is for matrices. For matrices, the definitions of integration, poly-

nomials, eigendecompositions (ED), and singular value decompositions (SVD) are

unique and well established throughout linear algebra, and all of these notions serve

as building blocks for definitions of matrix functions, reducing to the same object

under reasonable circumstances [9, 74]. Classical decompositions such as Tucker and

CANDECOMP/PARAFAC (CP) generalize the SVD in some sense; but many other

generalizations of ED and SVD also exist for tensors [29, 88, 91, 92, 95, 104, 112, 113].

Each decomposition is based on maintaining or extracting some inherent structures,

which are distinct in high-order settings. That is, a tensor function definition based

on the Tucker decomposition would produce a fundamentally different object com-

pared to one based on the CP decomposition.

We propose a definition for functions of tensors based on a newer paradigm,

the tensor t-product [19, 88, 89]. The beauty of such a definition is that it reduces

to the f(A)B problem. One can think of this object in two ways: 1) as a new

application of matrix function theory, especially for the f(A)B problem; and 2) as

a generalization of such theory to higher-order arrays.

We make a brief comment on syntax and disambiguation: the phrase “ten-

sor function” already has an established meaning in physics; see, e.g., [14]. The

most precise phrase for our object of interest would be “a function of a multidimen-

sional array,” in analogy to “a function of a matrix.” However, since combinations of

132

prepositional phrases can be cumbersome in English, we risk compounding literature

searches by resorting to the term “tensor function.”

6.3.1 The tensor t-product and its properties

We direct the reader to Figure 6.11 for different “views” of a third-order tensor,

which will be useful in visualizing the forthcoming concepts.

(a) (b) (c) (d) (e) (f)

Figure 6.1. Different views of a third-order tensor A ∈ C
n1×n2×n3 . (a)

column fibers: A(:, j, k); (b) row fibers: A(i, :, k); (c) tube fibers: A(i, j, :);

(d) horizontal slices: A(i, :, :); (e) lateral slices: A(:, j, :); (f) frontal slices:

A(:, :, k)

In [19, 88, 89], a new concept is proposed for multiplying third-order tensors,

based on viewing a tensor as a stack of frontal slices (as in Figure 6.1(f)). We consider

a tensor A of size m × n× p and B of size n× s× p and denote their frontal faces

respectively as A(i) and B(i), i = 1, . . . , p. We also define the operations bcirc,

1We thank Misha Kilmer for these images.

133

unfold, fold, as

bcirc(A) :=




A(1) A(p) A(p−1) · · · A(2)

A(2) A(1) A(p) · · · A(3)

...
. . .

. . .
. . .

...

A(p) A(p−1) . . . A(2) A(1)


 , (6.4)

unfold(A) :=




A(1)

A(2)

...
A(p)


 , and fold(unfold(A)) := A.

The t-product of two tensors A and B is then given as

A ∗ B := fold(bcirc(A)unfold(B)).

Note that the operators fold, unfold, and bcirc are linear.

The notion of transposition is defined face-wise, i.e., A∗ is the n × m × p

tensor obtained by taking the conjugate transpose of each frontal slice of A and then

reversing the order of the second through pth transposed slices.

For tensors with n×n square faces, there is a tensor identity In×n×p ∈ C
n×n×p,

whose first frontal slice is the n×n identity matrix and whose remaining frontal slices

are all the zero matrix. Recall from equation (2.1) that Ênp×n
1 = ê

p
1 ⊗ In; it follows

that

Ê
np×n
1 = unfold(In×n×p). (6.5)

With In×n×p, it is possible to define the notion of an inverse with respect to the

t-product. Namely, A,B ∈ Cn×n×p are inverses of each other if A ∗ B = In×n×p and

B ∗ A = In×n×p. The t-product formalism further gives rise to its own notion of

polynomials, with powers of tensors defined as Aj := A ∗ · · · ∗ A︸ ︷︷ ︸
j times

.

134

Assuming that A ∈ C
n×n×p has diagonalizable faces, we can also define a

tensor eigendecomposition. That is, we have that A(k) = X(k)D(k)(X(k))−1, for all

k = 1, . . . , p, and define X and D to be the tensors whose faces are X(k) and D(k),

respectively. Then

A = X ∗ D ∗ X−1 and A ∗ ~Xi = ~Xi ∗ di, (6.6)

where ~Xi are the n × 1 × p lateral slices of X (see Figure 6.1(e)) and dj are the

1 × 1 × p tubal fibers of D (see Figure 6.1). We say that D is f-diagonal, i.e., that

each of its frontal faces is a diagonal matrix.

6.3.2 The tensor t-exponential

As motivation and in analogy to Section 6.1, we consider the solution to a multidi-

mensional ordinary differential equation. Suppose that A has square frontal faces,

i.e., that A ∈ Cn×n×p and let B ∈ Cn×s×p, whose entries depend on τ . With d
dτ

acting element-wise, we consider the differential equation

dB
dτ

(τ) = A ∗ B(τ). (6.7)

Unfolding both sides leads to

d

dτ



B(1)(τ)

...
B(n)(τ)


 = bcirc(A)



B(1)(τ)

...
B(n)(τ)


 ,

whose solution can be expressed in terms of the matrix exponential as


B(1)(τ)

...
B(n)(τ)


 = exp(bcirc(A)τ)



B(1)(0)

...
B(n)(0)


 .

135

Folding both sides again leads to the tensor t-exponential,

B(t) = fold(exp(Aτ)unfold(B(0))) =: exp(Aτ) ∗ B(0). (6.8)

6.3.3 The tensor t-function and its properties

Using the tensor t-exponential as inspiration, we can define a more general notion

for the scalar function f of a tensor A ∈ C
n×n×p multiplied by a tensor B ∈ C

n×s×p

as

f(A) ∗ B := fold(f(bcirc(A)) · unfold(B)), (6.9)

which we call the tensor t-function. Note that f(bcirc(A)) · unfold(B) is merely

a matrix function times a block vector. If B = In×n×p, then by equation (6.5) the

definition for f(A) reduces to

f(A) := fold
(
f(bcirc(A))Ênp×n

1

)
. (6.10)

But does the definition (6.9) behave “as expected” in common scenarios? To answer

this question, we require some results on block circulant matrices.

Theorem 6.1 (Theorem 5.6.5 in [27]): Suppose A,B ∈ Cnp×np are block circu-

lant matrices with n× n blocks. Let {αj}kj=1 be scalars. Then AT , A∗, α1A + α2B,

AB, q(A) =
∑k

j=1 αjA
j , and A−1 (when it exists) are also block circulant.

Remark 6.2: From (6.4), we can see that any block circulant matrix C ∈ Cnp×np

can be represented by its first column CÊ
np×n
1 . Let C ∈ Cn×n×p be a tensor whose

frontal faces are the block entries of CÊ
np×n
1 . Then C = fold

(
CÊ

np×n
1

)
.

Lemma 6.3: Let A ∈ C
m×n×p and B ∈ C

n×s×p. Then

(i) unfold(A) = bcirc(A)Ênp×n
1 ;

136

(ii) bcirc
(
fold

(
bcirc(A)Ênp×n

1

))
= bcirc(A);

(iii) bcirc(A ∗ B) = bcirc(A)bcirc(B);

(iv) bcirc(A)j = bcirc(Aj), for all j = 0, 1, . . .; and

(v) (A ∗ B)∗ = B∗ ∗ A∗.

Proof: We drop the superscripts on Ê
np×n
1 for ease of presentation. Parts (i) and (ii)

follow from Remark (6.2). To prove part (iii), we note by part (i) that

bcirc(A ∗ B) = bcirc(fold(bcirc(A)unfold(B)))

= bcirc
(
fold

(
bcirc(A)bcirc(B)Ê1

))
.

Note that bcirc(A)bcirc(B) is a block circulant matrix by Theorem 6.1. Then by

part (ii),

bcirc
(
fold

(
bcirc(A)bcirc(B)Ê1

))
= bcirc(A)bcirc(B).

Part (iv) follows by induction on part (iii). Part (v) is the same as [89, Lemma

3.16]. �

Theorem 6.4: Let A ∈ C
n×n×p and B ∈ C

n×s×p.

(i) If f ≡ q, where q is a polynomial, then the tensor t-function definition (6.9)

matches the polynomial notion in the t-product formalism, i.e.,

fold(q(bcirc(A)) · unfold(B)) = fold(bcirc(q(A)) · unfold(B)).

(ii) Let q be the scalar polynomial guaranteed by Definition 2.2 so that f(bcirc(A)) =

q(bcirc(A)). Then f(A) ∗ B = q(A) ∗ B.

137

(iii) If A is a matrix and B a block vector (i.e., if p = 1), then f(A) ∗ B reduces to

the usual matrix function definition.

(iv) If f(z) = z−1, then f(A) ∗ A = A ∗ f(A) = In×n×p.

Proof: For part (i), let q(z) =
∑m

j=1 cjz
j . Then by Lemma 6.3(iv) and the linearity

of fold, we have that

fold(q(bcirc(A)) · unfold(B)) = fold

(
m∑

j=1

cjbcirc(A)j · unfold(B)
)

=

m∑

j=1

cjfold
(
bcirc

(
Aj
)
· unfold(B)

)

=
m∑

j=1

cjbcirc
(
Aj
)
∗ B

= fold(bcirc(q(A)) · unfold(B)).

Part (ii) is a special case of part (i). As for part (iii), since p = 1, we have that

fold(A) = bcirc(A) = A = unfold(A), and similarly for B. Then the definition

of f(A) ∗ B reduces immediately to the matrix function case. Part (iv) follows by

carefully unwrapping the definition of f(A):

f(A) ∗ A = fold
(
bcirc(A)−1

unfold(A)
)

= fold
(
bcirc(A)−1

bcirc(A)Ênp×n
1

)
, by Lemma 6.3(i)

= fold
(
Ê

np×n
1

)
= In×n×p.

138

Likewise with the other product:

A ∗ f(A) = fold
(
bcirc(A)unfold

(
fold

(
bcirc(A)−1

unfold(In×n×p)
)))

= fold
(
bcirc(A)bcirc(A)−1

Ê
np×n
1

)

= fold
(
Ê

np×n
1

)
= In×n×p. �

We collect further properties of the definition (6.9) that generalize many of

the core properties of matrix functions stated in Section 2.2.

Theorem 6.5: Let A,D,X ∈ Cn×n×p, so that X is invertible and D is f-diagonal

with diagonal tubal entries di, and let B ∈ Cn×s×p. Let f : C → C be defined on a

region in the complex plane containing the spectrum of bcirc(A) for (i)-(iii) and on

bcirc(D) for (iv). Then it holds that

(i) f(A) commutes with A;

(ii) f(A∗) = f(A)∗;

(iii) f(X ∗ A ∗ X−1) = X f(A)X−1; and

(iv) f(D) ∗ ~Xi = ~Xi ∗ f(di), for all i = 1, . . . , n.

Proof: For all parts, it suffices by Theorem 6.4(ii) to show that the statements hold

for f(z) =
∑m

j=1 cjz
j . Part (i) then follows immediately. To prove part (ii), we need

only show that (Aj)∗ = (A∗)j for all j = 0, 1, . . ., which follows by induction from

Lemma 6.3(v). Part (iii) also follows inductively. The base cases j = 0, 1 clearly

hold. Assume for some j = k, (X ∗ A ∗ X−1)k = X (A)kX−1, and then note that

(X ∗ A ∗ X−1)k+1 = (X ∗ A ∗ X−1)k ∗ (X ∗ A ∗ X−1)

= X ∗ (A)k ∗ X−1 ∗ X ∗ A ∗ X−1 = X ∗ (A)k+1 ∗ X−1.

139

For part (iv), it suffices to show that for all i = 1, . . . , n and for all j = 0, 1, . . .,

Dj ∗ ~Xi = ~Xi ∗ dj
i . For fixed i, the cases j = 0, 1 hold, and we assume the statement

holds for some j = k ≥ 1. Then

Dk+1 ∗ ~Xi = D ∗ (Dk ∗ ~Xi) = D ∗ ~Xi ∗ dk
i =

~Xi ∗ dk+1
i .

�

Remark 6.6: Assuming A has an eigendecomposition X ∗D ∗X−1 as in (6.6), and

assuming f is defined not only on the spectrum of bcirc(A) but also each bcirc(di),

then by Theorem 6.5 (iii)-(iv) an equivalent definition for f(A) is given as

f(A) = X ∗



f(d1)

. . .

f(dn)


 ∗ X−1,

where the inner matrix takes its elements from the tube fibers (as in Figure 6.1(c)).

We further note that the conditions on f are likely redundant, i.e., it seems natural

that if f is defined on bcirc(A) then it should also be defined on each bcirc(di),

but we do not explore this issue further here.

6.3.4 Block diagonalization and the discrete Fourier transform

Per recommendations for tensor computations in [88, 89], we can reduce the compu-

tational effort of computing f(A) ∗B by taking advantage of the fact that bcirc(A)

can be block diagonalized by the discrete Fourier transform (DFT) along the tubal

fibers of A. Let Fp denote the DFT of size p× p. Then we have that

(Fp ⊗ In)bcirc(A)(F ∗
p ⊗ In) =




D1

D2

. . .

Dp


 =: D,

140

where Dk are n× n matrices. Then by Theorem 2.4(iii),

f(bcirc(A)) = (F ∗
p ⊗ In)f(D)(Fp ⊗ In).

6.3.5 Communicability of a third-order network

Functions of matrices emerge as measures of centrality and communicability in net-

works [49]. Given a network– which we regard here as an undirected, unweighted

graph with n nodes– we represent the network by its adjacency matrix A ∈ Rn×n.

The ijth entry of A is 1 if nodes i and j are connected, and 0 otherwise. As a rule,

a node is not connected to itself, so Aii = 0. The communicability between nodes i

and j is defined as exp(A)ij [48], and is just one of many ways to measure properties

of a network.

These notions can be extended to higher-order situations. Suppose we are

concerned instead about triplets, instead of pairs, of nodes. Then it is possible to

construct an adjacency tensor A, where a 1 at entry Aijk indicates that nodes i,

j, and k are connected and 0 otherwise. Alternatively, it is not hard to imagine a

time-dependent network stored as a tensor, where each frontal face corresponds to a

sampling of the network at discrete times. In either situation, we could compute the

communicability of a triple as exp(A)ijk, where exp(A) is our tensor t-exponential.

6.4 Summary and outlook

We have presented only a subset of the abundant applications for matrix functions.

Many more are described in, e.g., [74, Chapter 2].

The tensor t-function poses many directions for future work. We present

it as a first notion for functions of multidimensional arrays with anticipation that

141

other definitions are put forth and found to be useful in real-world applications. The

tensor t-function f(A) ∗ B shows versatility, and the fact that it reduces to a highly

structured matrix function problem means that a plethora of tools exist already for

understanding its properties.

142

CHAPTER 7

NUMERICAL EXPERIMENTS

The development of an algorithm is not complete without implementing it and study-

ing its behavior (see Section 1.1). In this chapter, we examine the behavior of the

methods developed in the previous chapters. While there are some examples whose

results could be used directly in an application, we emphasize that most examples

are intentionally devised to allow us to “see inside” the algorithms and understand

their properties. We compare different choices for block inner products (reference

Table 3.1) and different choices for modifications (i.e., none, harmonic, or Radau-

Lanczos). We also look at matrix polynomials explicitly and advocate a way to

visualize them that helps elucidate how block Krylov methods interpolate the Ritz

values. For the matrix function algorithms, we look at a variety of functions and

types of matrices to demonstrate the versatility and robustness of the algorithms,

even for functions and matrices that do not satisfy the requirements of the conver-

gence theorems.

143

7.1 Remarks on implementation

We highlight a number of choices made in the implementation of Algorithms 3.1.1,

3.2.1, 4.2.1, 5.2.1, and 5.2.2, since these choices may affect the observed behavior.

It is well known that breakdowns may occur in the block Arnoldi algorithm

(Algorithm 3.1.1). The global inner product has an advantage in this sense. A

breakdown (i.e., when W = 0 in lines 7 or 15) indicates that the space K Gl
m (A,B)

has reached its maximal size, and the exact solution for f(A)B lies in the space. In

the loop-interchange version of Algorithm 3.1.1, a zero in the i-th diagonal position of

〈〈W ,W 〉〉Li
S
implies that Km(A, bi) has reached its maximal size. We then implement

a kind of column deflation so that the ith column is not reused for the next iteration.

Breakdowns occurring with the classical method are more complicated to

treat. The scaling quotient of W (see lines 8 or 16) may be exactly or numerically

singular, even when the space K Cl
m (A,B) still has more “room” to grow. The prob-

lem is exact or inexact linear dependence among the columns of a basis vector. As

discussed in Remark 3.10, we employ [15, Algorithm 7.3], which features block opera-

tions and allows us to retain the entire Krylov basis. We also run the classical method

without deflation, which is a straightforward implementation of Algorithm 3.1.1.

Adaptive quadrature is used in B(FOM)2 routines. The quadrature error

tolerance is set to be the same as the error tolerance for a given example. Overall

error is calculated exactly, since we have access to a machine-accurate solution for

each example. In practical scenarios, the approximate error D̃
(k)
m can be used to

check whether the method has converged.

144

All B(FOM)2 experiments are run on a Dell desktop with a Linux 64-bit

operating system with an Intel R©CoreTM i7-4770 CPU @ 3.40 GHz and 32 GB

of RAM. In the plots, we abbreviate clB(FOM)2, glB(FOM)2, liB(FOM)2, and

(FOM)2 as Cl, Gl, Li, and nB, respectively, where “nB ” stands for “non-block.”

All other experiments are run on a Lenovo Thinkpad with a Windows 7 Profes-

sional 64-bit operating system with an Intel R©CoreTM i7-2760 CPU @ 2.40 GHz and

16 GB of RAM.1 A package of our routines written in Matlab can be found at

https://gitlab.com/katlund/bfomfom-main.2

Finally, we remark that we do not consider timings in our experiments, for a

number of reasons. On a practical level, it does not make sense, since the experiments

have been carried out on two very different machines. Assuming, however, that we

had access to the same machine for all experiments, it would still be misleading

to report timings. Our code has been written with transparency in mind. That

is to say, between the choice of language (Matlab) and the structure of the code

itself, we made little attempt to optimize for speed, instead favoring readability and

navigability. The code framework is also relatively general, so that users can easily

“plug-in” other functions, quadrature rules, or block inner products.

1We would like to take this opportunity to thank the author’s laptop for surviving multiple

overseas trips, unexpected shutdowns, and everyday abuse.
2If the reader happens to be from the not-too-distant future, please contact the author directly

for a current version, because who knows where things will be hosted by then.

145

7.2 Understanding BFOM, BGMRES, and BRL with restarts and shifts

As discussed in Chapters 3 and 4, BFOM and BGMRES are not new methods, but

shifted and restarted versions of them are. In this section, we aim to understand

their behavior and affirm the developed theory in a variety of different settings. We

also take a look at the BRL method as a linear solver and compare it with the BFOM

and BGMRES methods.

7.2.1 Diagonal test matrices

We consider a panel of 100 × 100 diagonal matrices A with different eigenvalue

distributions:

1. A is Hermitian positive definite and its spectrum is uniformly spaced in [10−2, 102];

2. A is Hermitian positive definite and its spectrum is logarithmically spaced in

[10−2, 102];

3. A is Hermitian positive definite with 50 uniformly spaced eigenvalues in [10−2, 101]

and the other 50 in [101, 102];

4. A is positive real, its spectrum is symmetric about the real axis, and the real part

of its spectrum is uniformly spaced in [10−2, 102];

5. A is positive real, its spectrum is symmetric about the real axis, and the real part

of its spectrum is logarithmically spaced in [10−2, 102];

6. A is positive real, and the real part of its spectrum is uniformly spaced in [10−2, 102];

and

7. A is positive real, and the real part of its spectrum is logarithmically spaced in

[10−2, 102].

146

See Figures 7.1 and 7.2 for plots of the eigenvalues of matrix in the complex plane.

We solve AX = B for a random right-hand side B with s = 4 columns; B

is the same in every example. We look at the restarted (non-shifted) error E
(k)
m =

X∗−X
(k)
m ; the restarted shifted residuals R

(k)
m (t) = B−(A+tI)Xk

m(t), calculated as

B−(A+tI)V (k)
m (H(k)

m +M(k)+tI)−1E1B
k; and the interpolating matrix polynomials

associated to R
(k)
m (0) for a specified cycle k.

7.2.2 Shifted residual bounds

We compute the BGMRES and BFOM approximations for cases 1, 2, 3, 5, and 7

with the classical, loop-interchange, and global block inner products to demonstrate

that Corollary 4.12 holds. In each of Figures 7.3-7.7, the window on the left shows

plots of the error per cycle of the non-shifted approximations, while the one on the

right displays the plots of the norm of R
(k)
m (t) with respect to t for the third cycle,

i.e., k = 3. In every case, the cycle length is m = 10, and the error tolerance is 10−10.

In every instance, Corollary 4.12 is affirmed, although not as dramatically

as one might expect. While this corollary does not lead to very optimistic bounds,

we can still be assured that the shifted approximation converges and is bounded

by the convergence behavior of the non-shifted approximation. It is also clear that

BGMRES does, in fact, generate a minimal residual, at least in comparison to the

BFOM residual.

Cases 1 and 3 display the behaviors for uniformly spaced spectra. It is inter-

esting that BGMRES shows so much improvement for the classical method, but not

for either the global or loop-interchange methods. However, the addition of more

147

0 20 40 60 80 100
Re(z)

-1

-0.5

0

0.5

1

Im
(z

)

(a) case 1

0 20 40 60 80 100
Re(z)

-1

-0.5

0

0.5

1

Im
(z

)

(b) case 2

0 20 40 60 80 100
Re(z)

-1

-0.5

0

0.5

1

Im
(z

)

(c) case 3

Figure 7.1. Eigenvalue distributions for the HPD matrices A. All ma-

trices have condition number 104.

148

0 20 40 60 80 100
Re(z)

-1

-0.5

0

0.5

1

Im
(z

)

0 20 40 60 80 100
Re(z)

-1

-0.5

0

0.5

1

Im
(z

)

case 4, κ(A) = O(102) case 5, κ(A) = O(103)

0 20 40 60 80 100
Re(z)

-5

0

5

10

15

Im
(z

)

0 20 40 60 80 100
Re(z)

-5

0

5

10

15

Im
(z

)

case 6, κ(A) = O(102) case 7, κ(A) = O(103)

Figure 7.2. Eigenvalue distributions for the positive real matrices.

149

dense eigenvalues near zero (i.e., case 3) makes the problem more challenging for

BFOM but does not affect the cycle count as much for BGMRES.

The cases with logarithmically space spectra– case 2 (Figure 7.4), case 5

(Figure 7.6), and case 7 (Figure 7.7)– show how the eigenvalue clustering affects the

performance of each method. In case 2, BFOM and BGMRES perform similarly,

with BFOM providing only a slight advantage over BGMRES. However, in cases 5

and 7– both of which have nonzero imaginary parts in their spectra–BFOM does not

converge at all. Only the classical BGMRES method converges reasonably in either

case, since both global and loop-interchange require a high number of restarts.

∥∥∥E(k)
m (0)

∥∥∥
F
, vary k

∥∥∥R(k)
m (t)

∥∥∥
F
, vary t

0 200 400 600 800 1000
cycle count

10-10

10-5

100

re
la

tiv
e

er
ro

r
in

 ||
|| F

case 1

cl-fom
cl-gmres
gl-fom
gl-gmres
li-fom
li-gmres

0 2 4 6 8 10
t

5

10

15

20

25

30

35

re
si

du
al

 in
 ||

|| F

case 1, k = 3

cl-fom
cl-gmres
gl-fom
gl-gmres
li-fom
li-gmres

Figure 7.3. Convergence plots and shifted residual plots for case 1.

7.2.3 Residual polynomials for BGMRES

The purpose of the examples in this section is to gain insight and intuition for

how different block inner products affect the residual polynomials of block Krylov

150

∥∥∥E(k)
m (0)

∥∥∥
F
, vary k

∥∥∥R(k)
m (t)

∥∥∥
F
, vary t

0 200 400 600 800 1000
cycle count

10-10

10-5

100

re
la

tiv
e

er
ro

r
in

 ||
|| F

case 2

cl-fom
cl-gmres
gl-fom
gl-gmres
li-fom
li-gmres

0 2 4 6 8 10
t

0

5

10

15

20

re
si

du
al

 in
 ||

|| F

case 2, k = 3

cl-fom
cl-gmres
gl-fom
gl-gmres
li-fom
li-gmres

Figure 7.4. Convergence plots and shifted residual plots for case 2.

∥∥∥E(k)
m (0)

∥∥∥
F
, vary k

∥∥∥R(k)
m (t)

∥∥∥
F
, vary t

0 200 400 600 800 1000
cycle count

10-10

10-5

100

re
la

tiv
e

er
ro

r
in

 ||
|| F

case 3

cl-fom
cl-gmres
gl-fom
gl-gmres
li-fom
li-gmres

0 2 4 6 8 10
t

5

10

15

20

25

re
si

du
al

 in
 ||

|| F

case 3, k = 3

cl-fom
cl-gmres
gl-fom
gl-gmres
li-fom
li-gmres

Figure 7.5. Convergence plots and shifted residual plots for case 3.

151

∥∥∥E(k)
m (0)

∥∥∥
F
, vary k

∥∥∥R(k)
m (t)

∥∥∥
F
, vary t

0 500 1000 1500 2000
cycle count

10-10

10-5

100

re
la

tiv
e

er
ro

r
in

 ||
|| F

case 5

cl-fom
cl-gmres
gl-fom
gl-gmres
li-fom
li-gmres

0 2 4 6 8 10
t

0

10

20

30

40

re
si

du
al

 in
 ||

|| F

case 5, k = 3

cl-fom
cl-gmres
gl-fom
gl-gmres
li-fom
li-gmres

Figure 7.6. Convergence plots and shifted residual plots for case 5.

∥∥∥E(k)
m (0)

∥∥∥
F
, vary k

∥∥∥R(k)
m (t)

∥∥∥
F
, vary t

0 200 400 600
cycle count

10-10

10-5

100

re
la

tiv
e

er
ro

r
in

 ||
|| F

case 7

cl-fom
cl-gmres
gl-fom
gl-gmres
li-fom
li-gmres

0 2 4 6 8 10
t

10

15

20

25

30

re
si

du
al

 in
 ||

|| F

case 7, k = 3

cl-fom
cl-gmres
gl-fom
gl-gmres
li-fom
li-gmres

Figure 7.7. Convergence plots and shifted residual plots for case 7.

152

methods. Although we focus on BGMRES polynomials, the insights and conclusions

apply to any of the methods considered in Chapters 3 or 4. We do not consider

shifts here, and we focus on cases 1, 4, and 6, as they have the simplest spectra.

For case 1, we look at the 20th restart cycle; case 4, the 10th cycle; and case 6,

the 7th cycle. We again have m = 10 and the same right-hand side B as before.

There is no particular rationale for the choice of cycle, except that we wanted to go

far enough into the restart process to generate polynomials associated to accurate

approximations. Recall that by Corollary 4.3, the matrix polynomial associated to

the residual is minimal in the S-norm over the space of polynomials of the form

I − zQ(z), where Q ∈ Pm−1(S). It is precisely this minimal polynomial that we look

at for each scenario. Also recall from Theorem 4.16 and Remark 4.17 that the latent

roots of the residual polynomial coincide with the Ritz values.

In Figure 7.8, we plot the absolute value of the residual polynomial on a range

of points containing the spectra of A and of H(k)
m +M(k). It is possible to plot in two

dimensions, since the spectra of A and H(k)
m +M(k) in case 1 are real. In the same

window, we plot |P (λ)| and |P (θ)|, where λ ∈ spec(A) and θ ∈ spec(H(k)
m +M(k)).

In the scalar case, it is easy to see that the inequality (4.20) holds.

Cases 4 and 6 necessitate three-dimensional plots, since the matrices are no

longer Hermitian and we must therefore plot the polynomial over the complex plane.

In Figures 7.9 and 7.10 we plot the absolute value of the determinant of the matrix

polynomial, i.e., |det(Pm(z))|, over a set in the complex plane containing the spectra

of A and of Hm + M. Given that the determinant of Pm(z) is itself a polynomial

whose roots coincide with the latent roots of Pm(z), det(Pm(z)) is a natural object to

153

look at. In Figure 7.9, we find that the residual polynomials are symmetric about the

real axis, just like the spectrum of A; naturally, in Figure 7.10, there is no symmetry,

since spec(A) has none.

We note too that the scales of the plots in Figures 7.9 and 7.10 differ dras-

tically, and the colorbars on the right only correspond to the plotted surface, not

the points. The global matrix polynomials are very accurate on the spectrum of

H(k)
m +M(k), but overall not as much, especially in comparison to the classical poly-

nomials, which have lower determinant in general.

Comparing Figures 7.8-7.10 across block inner products, we can understand

other properties of the residual polynomials. The classical method has the most

degrees of freedom and attempts to capture as much of the spectrum of A as possible;

for this reason, all the classical polynomials appear to have many zeros. At the

other extreme, the global method has the fewest zeros, and each of them has high

multiplicity. The loop-interchange method has a mixture of both extremes.

7.2.4 Block Radau-Lanczos as a linear solver

We consider cases 1, 2, and 3, and we choose S0 ∈ S to be S0 = diag(101, 102, 103, 104),

so that all the eigenvalues fixed by the BRL method are larger than the largest

eigenvalue of A. The right-hand side B ∈ Cn×s is kept the same as in the previous

sections.

The BRL method does appear to improve convergence for small values of

m (i.e., the cycle length) when the spectrum of A is uniformly distributed, which

can be seen for case 1 in Figure 7.11(A). Plot (B) of the same figure demonstrates

that when the spectrum clusters near zero, BRL performs worse for smaller cycle

154

10 20 30 40 50 60 70 80 90 100
x

10-60

10-50

10-40

10-30

10-20

10-10

100

y

case 1, k = 20

(a) classical

10 20 30 40 50 60 70 80 90 100
x

10-60

10-50

10-40

10-30

10-20

10-10

100

y

case 1, k = 20

(b) loop-interchange

10 20 30 40 50 60 70 80 90 100
x

10-60

10-50

10-40

10-30

10-20

10-10

100

y

case 1, k = 20

(c) global

Figure 7.8. Case 1 BGMRES residual polynomials

155

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

z

2

case 4, k = 10

0
y

1008060-2
x
4020

10-6

10-5

10-4

10-3

10-2

10-1

100

101

(a) classical

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

z
2

case 4, k = 10

0
y

1008060-2
x
4020

10-5

10-4

10-3

10-2

10-1

100

101

102

(b) loop-interchange

10-50

10-40

10-30

10-20

10-10

100

1010

z

2

case 4, k = 10

0
y

1008060-2
x
4020

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

(c) global

Figure 7.9. Case 4 BGMRES residual polynomials

156

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

z

10

case 6, k = 7

y
5 1008060

x
40200

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

(a) classical

10-20

10-15

10-10

10-5

100

105

z
10

case 6, k = 7

y
5 1008060

x
40200

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

(b) loop-interchange

10-60

10-50

10-40

10-30

10-20

10-10

100

1010

z

10

case 6, k = 7

y
5 1008060

x
40200

10-12

10-10

10-8

10-6

10-4

10-2

100

(c) global

Figure 7.10. Case 6 BGMRES residual polynomials

157

lengths. When the spectrum has two sections of differing density, as in case 3, the

BRL method performs about the same as BGMRES, shown in plot (C) of the figure.

Both plots (B) and (C) challenge the results posited in [54], which shows that the

Radau-Lanczos method consistently uses fewer cycles than the FOM-like method to

converge. However, our results indicate that the method may sometimes provide

benefit when m is small, but otherwise its behavior is similar to that of BGMRES.

The plots of the residual polynomials in Figure 7.12 shows that the BRL

method does fix eigenvalues in the way described in Section 4.3.

7.3 Understanding B(FOM)2(m)

In this section, we recapitulate results from [55] in order to demonstrate the potential

for improvement that block methods for matrix functions have over the non-block

methods, denoted by (FOM)2 or the abbreviation “nB.” We also examine how the

choice of block inner product affects the behavior of B(FOM)2(m).

7.3.1 B(FOM)2 on a random tridiagonal HPD matrix

In this example, we compare the bound from Theorem 5.2 with the actual behavior of

B(FOM)2(m) for f(z) = z−1/2 acting on a tridiagonal HPD matrix of size 100× 100

of condition number O(102). The cycle length m is set to 5, and the error tolerance is

set to 10−10. For the hybrid method, q = 5; i.e., SHy consists of 10×10 matrices with

5 × 5 blocks on the diagonal. The solid black line in Figure 7.13 is the theoretical

error bound, and it is clear that the bound does a poor job of predicting the true

convergence behavior. This is not surprising, since ξm(0) is close to 1 in this scenario.

We also note that the global, loop-interchange, and non-block versions have nearly

158

5 10 15
cycle length

0

500

1000

1500

2000

2500

nu
m

be
r

of
 c

yc
le

s
to

 c
on

ve
rg

e

case 1

cl-fom
cl-gmres
cl-rl

(a) case 1

5 10 15
cycle length

0

500

1000

1500

2000

2500

nu
m

be
r

of
 c

yc
le

s
to

 c
on

ve
rg

e

case 2

cl-fom
cl-gmres
cl-rl

(b) case 2

5 10 15
cycle length

0

500

1000

1500

2000

2500

nu
m

be
r

of
 c

yc
le

s
to

 c
on

ve
rg

e

case 3

cl-fom
cl-gmres
cl-rl

(c) case 3

Figure 7.11. Cycle length versus number of cycles needed to converge

for cases 1-3 and BFOM, BGRMES, and BRL

159

20 40 60 80 100
x

10-60

10-40

10-20

100

y

case 1, k = 20

(a) case 1

20 40 60 80 100
x

10-20

100

1020

y

case 2, k = 20

(b) case 2

20 40 60 80 100
x

10-60

10-40

10-20

100

y

case 3, k = 20

(c) case 3

Figure 7.12. Residual polynomial plots for the block Radau-Lanczos

method and cases 1-3. Cycle length m = 10, and the cycle index k = 20.

160

the same error curves and overlap to form what appears to be one line. (In the

case of loop-interchange and non-block, this makes sense, since the two should be

identical in exact arithmetic.)

0 5 10 15 20 25
cycle index

10-15

10-10

10-5

100

re
la

tiv
e

er
ro

r
in

 ||
|| A

-F

cl
gl
li
nB
hy

Figure 7.13. Convergence history for computing A−1/2B, where A ∈

C
100×100 is a random tridiagonal HPD matrix, and B ∈ C

100×10 is random.

7.3.2 Discretized two-dimensional Laplacian and f(z) = z−1/2

We now consider the real, symmetric positive definite matrix arising from the second-

order central difference discretization of the negative two-dimensional Poisson equa-

tion with 100 grid points in each spatial dimension, so that n = 104 (see Section 6.1).

We compute f(A)B for f(z) = z−1/2 and two different B with s = 10. The first

is given as B = u ⊗ I10, where u is the vector of dimension 103 whose entries are

all 1, and I10 is the 10× 10 identity, making B full rank. The second B is the same

as the first, except the first column is a linear combination of the others, leading to

linear dependence in the columns of the basis vectors of K S

m(A,B). We also run

161

two different versions of the classical B(FOM)2(m), one with deflation as described

in Remark 3.10 and the other without. The cycle length m = 25, and the error

tolerance is set to 10−6. We do not run the hybrid version of B(FOM)2(m) in either

scenario, since it requires an even more complicated deflation routine than classical.

The left plot of Figure 7.14 shows that all methods attain the same accuracy

in roughly the same number of cycles. The curves for clB(FOM)2 with and without

deflation overlap, and the remaining three overlap with each other, leading to what

appears to be only two curves. Not visible in the plot is that glB(FOM)2 is slightly

less accurate than liB(FOM)2 and (FOM)2; all are less accurate than either version

of clB(FOM)2, as predicted by the inequalities (3.14).

The right plot of Figure 7.14 displays the results for when linear depen-

dence has been forced into the situation. clB(FOM)2 without deflation stagnates

almost immediately– the code is written so that the process is stopped once the

error is no longer decreasing monotonically. We surmise that numerical error al-

lows the process to continue several cycles before an issue is detected. On the other

hand, clB(FOM)2 with deflation converges properly and in much fewer cycles than

glB(FOM)2, liB(FOM)2, or (FOM)2 (whose curves again appear to overlap).

Although we have promised to avoid discussing runtimes, the extreme nature

of the scenario with linear dependence requires commentary. For one, the scenario

is highly contrived– it is unlikely that such extreme linear dependence would occur

in practice, and in our particular set-up, a user should be able to detect the issue

before running the algorithm and adjust accordingly (i.e., by removing the column

beforehand and recomputing it afterwards). Secondly, the deflation procedure in our

162

Matlab implementation is painfully slow. In the full-rank example, the deflated

routine is 20 times slower than the non-deflated routine. Furthermore, neither the

global nor the loop-interchange methods require a complicated deflation procedure,

and they run in much more reasonable times. In fact, in both scenarios, the global

method is the fastest overall: at least 160 times faster than the classical method with

deflation in the full-rank case, and over 80 times faster than the classical method

with deflation in the rank-deficient case. As such, we do not consider the classical

method with deflation in any other example.

0 10 20 30 40
cycle index

10-8

10-6

10-4

10-2

100

re
la

tiv
e

er
ro

r
in

 ||
|| A

-F

cl
gl
li
nB
cl w/ deflation

0 5 10 15 20
cycle index

10-8

10-6

10-4

10-2

re
la

tiv
e

er
ro

r
in

 ||
|| A

-F
cl
gl
li
nB
cl w/ deflation

Figure 7.14. Convergence history for A−1/2B, where A ∈ C104×104

is the discretized two-dimensional Laplacian. Left: B ∈ C
104×10 has

linearly independent columns. Right: the first column of B is a linear

combination of other columns.

163

7.3.3 Overlap Dirac operator and f(z) = sign(z)

We take an 84 lattice, such that n = 12 · 84 = 49152 and A = Q2 ∈ C49152×49152.3

With sign(z) = (z2)−1/2, we compute sign(Q)Ê1 as A−1/2B, where B = QÊ1 ∈

C49152×12. The error tolerance is set to 10−6, and the cycle length is varied, i.e.,

m ∈ {25, 50, 100, 150}. The hybrid method is included in this example, with q = 4.

Regarding m as the number of basis vectors that can be stored per cycle, it is

not surprising that as m increases, all the methods require fewer cycles to converge,

as shown in Figure 7.15. However, it appears that no method particularly benefits

from the additional information provided by more basis vectors. In such scenarios,

the global method should be preferred.

0 50 100 150

m (cycle length)

2

4

6

8

10

12

nu
m

be
r

of
 c

yc
le

s

cl
gl
li
nB
hy

Figure 7.15. Number of cycles versus the cycle length for the overlap

Dirac operator example.

3We acknowledge Marcel Schweitzer for the providing the resulting matrix, which was initially

provided to him by Björn Leder. Both are formerly affiliated with the Bergischen Universität

Wuppertal.

164

7.3.4 Convection-diffusion equation and exp(z)

We now consider the action of the exponential on a panel of matrices with different

degrees of non-symmetry. The matrices correspond to the standard finite differences

discretization of a two-dimensional convection-diffusion equation on [0, 1]×[0, 1] with

a constant convection field and convection parameter ν (see Section 6.1). We use 350

discretization points in each dimension and a scaling parameter of 2 · 10−3, resulting

in matrices of size 3502 × 3502 = 122, 500 × 122, 500. We look at three matrices

Aν , for ν ∈ {0, 100, 200}. When ν = 0, Aν is real symmetric; otherwise, Aν is

non-symmetric.

Figure 7.16 displays the results for each ν. Although the classical method

is slightly more accurate than the others, all require the same number of cycles to

converge, with the number of cycles increasing as ν increases.

7.4 Understanding B(FOM)2+har(m)

In [52], the harmonic modification is shown to rectify some of the convergence prob-

lems that the non-modified method has for particular matrices. We reproduce two

such examples here, considering also how different block inner products affect the

resulting behavior.

7.4.1 A circulant

Let A be a circulant matrix, as in (7.1), of dimension 1001×1001 and with α = 1.01.

This matrix is of the same type as the one considered in [52, Section 7]. In this

paper, the authors consider a 21× 21 matrix, which leads to trivial convergence for

165

1 2 3 4
cycle index

10-8

10-6

10-4

10-2

100

re
la

tiv
e

er
ro

r
in

 ||
|| A

-F
 = 0

cl
gl
li
nB
hy

1 2 3 4 5 6
cycle index

10-10

10-5

100

re
la

tiv
e

er
ro

r
in

 ||
|| F

 = 100

cl
gl
li
nB
hy

0 2 4 6 8 10
cycle index

10-10

10-5

100

re
la

tiv
e

er
ro

r
in

 ||
|| F

 = 200

cl
gl
li
nB
hy

Figure 7.16. Convergence histories for computing exp(Aν)B, where

Aν ∈ C
122,500×122,500 is the finite differences stencil of a two-dimensional

convection-diffusion equation with varying convection parameters ν ∈

{0, 100, 200}, and B ∈ C
122,500×10 has random entries.

our block methods. Taking α > cos(2π
n
) ensures that A is positive real, so that the

convergence theory from Section 5.2.2 applies.

166

A =




α 0 · · · 0 1
1 α 0 · · · 0

0 1 α
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 α




(7.1)

As discussed in [52] and [126], unmodified FOM-based methods tend to stag-

nate while approximating f(A)b, when f is a Stieltjes function and b = ê1; harmonic

methods, however, provide a remedy. One might expect similar behavior for our

block methods. We only show results for the global and loop-interchange methods,

and compare them to the non-block method of computing each column of A−1/2B in

serial, where B ∈ C1001×10 is the first ten columns of the identity. We omit results

from the classical and hybrid methods, since neither would converge for this problem,

even with deflation.

Figure 7.17 displays the convergence results for each method, with m = 10

as the cycle length. The harmonic modification provides improvement in no case; in

fact, unlike the example in [52], the unmodified method converges in every case. The

reason is that the information from additional columns overcomes the anticipated

problems with convergence, thus rendering a modification unnecessary. We also

point out that all methods require exactly the same number of cycles to converge.

In such situations, the global method is the method of choice, since it uses sparse

Level 3 BLAS operations, unlike the non-block method, and it is cheaper than the

loop-interchange method in terms of storage and floating point operations.

167

0 20 40 60 80
cycle count

10-5

10-4

10-3

10-2

10-1

100

re
la

tiv
e

er
ro

r
in

 ||
|| F

gl
gl+har

(a) global

0 20 40 60 80
cycle count

10-5

10-4

10-3

10-2

10-1

100

re
la

tiv
e

er
ro

r
in

 ||
|| F

li
li+har

(b) loop-interchange

0 20 40 60 80
cycle count

10-5

10-4

10-3

10-2

10-1

100

re
la

tiv
e

er
ro

r
in

 ||
|| F

nb
nb+har

(c) non-block

Figure 7.17. Convergence plots for Section 7.4.1, where A ∈ C
1001×1001

is a circulant matrix.

168

7.4.2 A nonnormal and nondiagonalizable

We consider another example from [52, Section 7], matrices of size 1000× 1000 with

Jordan blocks of the following form on the diagonal:

[
λ 0
1 λ

]

Such matrices are nonnormal and nondiagonalizable, but they are still positive real

if Re(λ) > 0.5. We regard λ as a random variable and consider two such A:

• A1: Re(λ) is uniformly distributed in [0.6, 0.8], and Im(λ) is uniformly dis-

tributed in [−10, 10];

• A2: Re(λ) is uniformly distributed in [0.5001, 0.5099], and Im(λ) is uniformly

distributed in [−10, 10].

The second matrix is slightly less well conditioned than the first.

We take B ∈ C1000×4 to be random with B∗B = I4, m = 10. As shown in

Figures 7.18 and 7.19, the harmonic modification always reduces the total number of

cycles. The effect is stronger for A2, which is has a higher condition number than A1.

Another interesting feature is that the global and loop-interchange methods appear

to benefit the most from the modification, in the sense that reduction in the number

of cycles is greater for them than for the classical and hybrid methods, in comparison

to their respective unmodified versions.

169

0 20 40 60 80 100
cycle count

10-10

10-5

100

re
la

tiv
e

er
ro

r
in

 ||
|| F

cl
cl+har

0 20 40 60 80 100
cycle count

10-10

10-5

100

re
la

tiv
e

er
ro

r
in

 ||
|| F

gl
gl+har

classical global

0 20 40 60 80 100
cycle count

10-10

10-5

100

re
la

tiv
e

er
ro

r
in

 ||
|| F

li
li+har

0 20 40 60 80 100
cycle count

10-10

10-5

100

re
la

tiv
e

er
ro

r
in

 ||
|| F

hy
hy+har

loop-interchange hybrid

Figure 7.18. Convergence plots for A1 in Section 7.4.2, where A1 is

nonnormal and nondiagonalizable.

170

0 20 40 60 80 100
cycle count

10-10

10-5

100

re
la

tiv
e

er
ro

r
in

 ||
|| F

cl
cl+har

0 20 40 60 80 100
cycle count

10-10

10-5

100

re
la

tiv
e

er
ro

r
in

 ||
|| F

gl
gl+har

classical global

0 20 40 60 80 100
cycle count

10-10

10-5

100

re
la

tiv
e

er
ro

r
in

 ||
|| F

li
li+har

0 20 40 60 80 100
cycle count

10-10

10-5

100

re
la

tiv
e

er
ro

r
in

 ||
|| F

hy
hy+har

loop-interchange hybrid

Figure 7.19. Convergence plots for A2 in Section 7.4.2, where A2 is

nonnormal and nondiagonalizable.

171

7.4.3 Tensor t-exponential

We take A ∈ Cn×n×p to be a tensor whose p frontal faces are each adjacency ma-

trices for an undirected, unweighted network, i.e., the frontal faces of A are sym-

metric, and the entries are binary. The sparsity structure of this tensor is given in

Figure 7.20 for n = p = 50. Note that we must actually compute exp(A) ∗ I =

fold
(
exp(bcirc(A))Ê1

)
(see Definition (6.10)). With n = p = 40, this leads to a

1600 × 1600 matrix function times a 1600 × 40 block vector. The sparsity patterns

of bcirc(A) and D, where D is from the eigendecomposition of A, are shown in

Figure 7.21. Note that bcirc(A) is not symmetric, but it has a nice banded struc-

ture. It should also be noted that while the blocks of D appear to be structurally

identical, they are not numerically equal. This structure is a result of the discrete

Fourier transform.

400

10

0 30

20j

30

10

40

k

20

i

20
1030

040

Figure 7.20. Sparsity structure for A. Blue indicates that a face is closer

to the “front” and pink farther to the “back”; see Figure 6.1(f) for how the

faces are oriented.

172

0 500 1000 1500

nz = 25280

0

200

400

600

800

1000

1200

1400

1600
0 500 1000 1500

nz = 20164

0

200

400

600

800

1000

1200

1400

1600
0 20 40 60 80 100 120

nz = 1522

0

20

40

60

80

100

120

bcirc(A) D zoom in on D

Figure 7.21. Sparsity patterns for block circulants

We compute exp(A) ∗ I with Algorithms 5.2.1 and 5.2.2, both with the clas-

sical and global block inner products. The convergence behavior of each version is

displayed in Figure 7.22. The restart cycle length is m = 15, and the error tolerance

is 1e-12. Despite the pathological behavior known to occur with FOM-like methods

acting on circulant-type matrices [126], the BFOM methods do not suffer here. In

fact, the BFOM methods converge just as well as the block harmonic methods. The

methods based on D (case (A)) are only a little less accurate than those based on

bcirc(A) (case (B)), and they require the same number of iterations.

7.5 Understanding B(FOM)2+rad(m)

We run classical B(FOM)2+rad(m) here, with f(z) = z−1/2, A as in cases 1 and 3

from Section 7.2.1, and B as the same random block vector from Section 7.2.1. The

prescribed block eigenvalue S0 is the same as in Section 7.2.4. We seek an accuracy

of 10−4 and limit the maximum number of cycles to 100. While varying the cycle

173

1 1.2 1.4 1.6 1.8 2
cycle count

10-15

10-10

10-5

100

re
la

tiv
e

er
ro

r
in

 ||
|| F

D

cl
cl+har
gl
gl+har

1 1.2 1.4 1.6 1.8 2
cycle count

10-15

10-10

10-5

100

re
la

tiv
e

er
ro

r
in

 ||
|| F

A

cl
cl+har
gl
gl+har

(A) (B)

Figure 7.22. Convergence plots for (A) classical and global methods on

exp(D)Fp⊗InÊ1, and (B) classical and global methods on exp(bcirc(A))Ê1

lengthm from 5 to 15, we compare the convergence behavior of clB(FOM)2+rad(m)

with that of clB(FOM)2(m) and clB(FOM)2+har(m).

Figure 7.23 displays the results. The BRL modification leads to significant

improvement in both cases, most notably in the second, for which neither the un-

modified nor the harmonic methods converges in fewer than 100 cycles for any m.

7.6 Summary and outlook

The experiments of this chapter lead to a number of interesting and surprising results.

The main result is an affirmation that theory developed in Chapters 3 and 4 is indeed

practical and correct. Our framework provides many variations of BFOM, BGMRES,

BRL, B(FOM)2, and B(FOM)2+mod that prove to be efficient, robust, and stable in

a plethora of situations.

174

5 10 15
cycle length

0

20

40

60

80

100
nu

m
be

r
of

 c
yc

le
s

to
 c

on
ve

rg
e

case 1

cl
cl-har
cl-rad

(a) case 1

5 10 15
cycle length

20

40

60

80

100

nu
m

be
r

of
 c

yc
le

s
to

 c
on

ve
rg

e

case 3

cl
cl-har
cl-rad

(b) case 3

Figure 7.23. Cycle length versus number of cycles needed to converge

for f(A)B, where f(z) = z−1/2 and A and B from Section 7.2.1.

One of the most surprising results is how effective the global version of these

algorithms is. It is the easiest method to implement, requiring no complicated de-

flation routine nor multiple switches for handling different breakdown scenarios. It

is also often the fastest method in terms of runtime, at least in Matlab on the ma-

chines we used. If a user needs to compute f(A)B blindly, glB(FOM)2 is perhaps

the best starting point.

Also surprising is that B(FOM)2+rad outperforms B(FOM)2+har in terms

of reducing cycle counts relative to the non-modified method. Such results merit

further study for the BRL method for computing matrix functions.

We also highlight the potential that matrix polynomials have as analytical

tools. Computing and visualizing matrix polynomials is not computationally inten-

sive and provides insight into how block methods interact with the spectrum of A.

175

As noted earlier, the software used in this chapter is hosted publicly, and

we encourage interested researchers to make their own contributions. A number of

implementation issues remain open, but they are beyond the scope of this work. A

long-term goal, however, is to provide implementations of B(FOM)2(m) and modi-

fied versions (especially B(FOM)2+har(m)) that are optimized for speed, memory

movement, and parallelism, especially now that many attributes of the algorithms

are well understood. We also hope that a large-scale comparative study could be

conducted with other state-of-the-art methods (as in, e.g., [5, 141]) in order to make

recommendations for a wide range of scenarios.

176

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

This dissertation serves two important functions. On the one hand, it proposes a

comprehensive and, in many ways, exhaustive framework for understanding block

Krylov subspace methods; and on the other hand, it uses this framework as a foun-

dation on which to build analysis for restarted methods for families of shifted systems

and general-purpose methods for matrix functions. A number of tools are employed

for analyzing the methods and obtaining error bounds, including matrix polynomials,

matrix derivatives, lesser known properties of products of Hermitian positive definite

and positive real matrices, and so forth. Although the error bounds developed for

matrix functions are only shown for Stieltjes functions of matrices, it is not hard

to extend these results to functions of the more general Cauchy-Stieltjes form, in

analogy to the techniques of [53].

A number of our intermediate results merit further attention. The interpo-

lating matrix polynomials of Section 2.5.2 and the block Arnoldi polynomial relation

of Section 4.1 allow us to characterize block Krylov subspace methods from a matrix

polynomial viewpoint and look for approximations to f(A)B in terms of matrix poly-

nomials. The block Arnoldi polynomial relation also characterizes all the possible

177

s-rank modifications to the block upper Hessenberg matrix Hm so that the associ-

ated approximation Vm(Hm + M)−1Ê1B lies in K S

m(A,B). We have shown that

block GMRES can be cast as a modified block FOM method, along with the new

block Radau-Lanczos method. Both are translated into new methods for computing

f(A)B.

The general nature of our framework is valuable for describing block Krylov

methods not only in a theoretical sense, but also in a computational sense. The choice

of the ∗-subalgebra S and block inner product directly affects the computational

effort, as well as how information is shared between columns of the block vectors of

the Krylov basis, and ultimately the accuracy per cycle. The examples we discussed

(classical, hybrid, loop-interchange, and global; see Table 3.1) cover a spectrum of

possibilities: the classical method shares all the information available among all the

columns, is the most computationally expensive, and produces the most accurate

approximations per cycle; in contrast, the global method does not allow columns to

talk to each other, is the cheapest and most easily implemented, and produces the

least accurate approximations per cycle. The hybrid and loop-interchange methods

have attributes in between these two extremes. Different applications may benefit

from a particular choice of inner product, especially depending on the computational

resources available.

The proof techniques leading to the results of Theorems 4.14 and 4.20 are

themselves novel and may prove useful for future researchers. Further work could

lead to additional insights for shifted BFOM or BGMRES with restarts, and perhaps

also for a shifted BRL method with restarts.

178

The variety of numerical examples in Chapter 7 demonstrates how versatile

our methods for matrix functions are, and how visualizing the matrix polynomial as-

sociated to a block Krylov method can elucidate its behavior and properties. Methods

with the block Radau-Lanczos or block GMRES-like modifications (both for linear

systems and matrix functions) are shown to reduce the number of cycles needed to

converge in many cases, thus providing viable options when block FOM-like methods

are too slow or divergent. We mention again that the block Radau-Lanczos method

may prove to be the key to a more accurate error approximation and built-in stopping

criteria for the unmodified B(FOM)2(m) (Algorithm 5.2.1).

Our numerical results also indicate that global methods may be best for com-

puting f(A)B, at least in the context of the types of functions and matrices we have

considered. As noted already, it is the simplest method to implement and would

serve as a good starting point for researchers trying to determine which method is

best for their problem, since it is fast and would provide feedback quickly about

convergence.

We have also presented a surprising new application for block Krylov methods

for matrix functions: the tensor t-function. We have shown that the tensor t-function

retains many of the same properties as matrix functions, and its computation reduces

to the action of a function of a block circulant matrix on a block vector. A simple

generalization of some concepts in network theory points to possible real-life applica-

tions of this object. While B(FOM)2(m) proves to be a viable method for computing

the tensor t-function, we emphasize that further study is needed for a larger class of

179

tensors and functions. For example, there exist t-Krylov methods [88] that may be

competitive.

While the primary goal of this dissertation is to establish new methods for

computing f(A)B, it inadvertently poses many open questions. At this stage in

the development of iterative methods for f(A)B, many methods exist with many

options and parameters, but it is not immediately clear which methods perform

better than others. Comprehensive tests have been conducted for the exponential

[5, 141] for a subset of methods and matrices, but additional tests are needed for

other functions and matrices. A particular challenge is determining the ideal way to

incorporate blocking techniques, e.g., how many columns should B have with respect

to the size of A, which block inner product will lead to the speediest convergence,

etc. Some work for linear systems has already been done [11, 15, 111], but the

additional complexity of matrix functions, particularly storing and updating the

cospatial factors involved in Algorithms 5.2.1 and 5.2.2, makes this issue all the more

difficult. Lastly, thorough investigations of the operation counts of these algorithms

and acceleration techniques such as eigenvalue deflation [40] should be conducted to

make our methods even better understood and more robust.

We put forth this body of work as a launching point. We have discovered

much, but there is yet much to learn!

180

Figure 8.1. The author, deep in reflection.

181

BIBLIOGRAPHY

[1] Oussama Abidi, Mohammed Heyouni, and Khalide Jbilou. On some properties
of the extended block and global Arnoldi methods with applications to model
reduction. Numerical Algorithms, 75(1):285–304, 2017.

[2] Mohamed Addam, Mohammed Heyouni, and Hassane Sadok. The block Hes-
senberg process for matrix equations. Electronic Transactions on Numerical
Analysis, 46:460–473, 2017.

[3] Martin Afanasjew, Michael Eiermann, Oliver G. Ernst, and Stefan Güttel.
Implementation of a restarted Krylov subspace method for the evaluation of
matrix functions. Linear Algebra and its Applications, 429(10):229–314, 2008.

[4] Awad H. Al-Mohy. A new algorithm for computing the actions of trigonometric
and hyperbolic matrix functions. Technical report, 2017.

[5] Awad H. Al-Mohy and Nicholas J. Higham. Computing the action of the matrix
exponential with an application to exponential integrators. SIAM Journal on
Scientific Computing, 33(2):488–511, 2011.

[6] Awad H. Al-Mohy, Nicholas J. Higham, and Samuel D. Relton. New algorithms
for computing the matrix sine and cosine separately or simultaneously. SIAM
Journal on Scientific Computing, 37(1):A456–A487, 2015.

[7] José I. Aliaga, Daniel L. Boley, Roland W. Freund, and Vicente Hernández. A
Lanczos-type method for multiple starting vectors. Mathematics of Computa-
tion, 69(232):1577–1601, 2000.

[8] Mary Aprahamian and Nicholas J. Higham. Matrix inverse trigonometric and
inverse hypoerbolic functions: theory and algorithms. SIAM Journal on Matrix
Analysis and Applications, 37(4):1453–1477, 2016.

182

[9] Francesca Arrigo, Michele Benzi, and Caterina Fenu. Computation of gener-
alized matrix functions. SIAM Journal on Matrix Analysis and Applications,
37(3):836–860, 2016.

[10] James Baglama. Dealing with linear dependence during the iterations of the
restarted block Lanczos methods. Numerical Algorithms, 25:23–36, 2000.

[11] Allison H. Baker, John M. Dennis, and Elizabeth R. Jessup. On improving lin-
ear solver performance: a block variant of GMRES. SIAM Journal on Scientific
Computing, 27(5):1608–1626, 2006.

[12] Tania Bakhos, Peter K. Kitanidis, Scott Ladenheim, Arvind K. Saibaba, and
Daniel B. Szyld. Multipreconditioned GMRES for shifted systems. SIAM
Journal on Scientific Computing, 39(5):S222–S247, 2017.

[13] Fatemeh Panjeh Ali Beik and Davod Khojasteh Salkuyeh. On the global Krylov
subspace methods for solving general coupled matrix equations. Computers and
Mathematics with Applications, 62(12):4605–4613, 2011.

[14] Josef Betten. Creep mechanics. Springer, Berlin, 3rd edition, 2008.

[15] Sebastian Birk. Deflated shifted block Krylov subspace methods for Hermitian
positive definite matrices. PhD thesis, Fakultät für Mathematik und Naturwis-
senschaften, Bergische Universität Wuppertal, 2015.

[16] Sebastian Birk and Andreas Frommer. A deflated conjugate gradient method
for multiple right hand sides and multiple shifts. Numerical Algorithms,
67(3):507–529, 2014.

[17] Jacques C. R. Bloch, Andreas Frommer, Bruno Lang, and Tilo Wettig. An
iterative method to compute the sign function of a non-hermitian matrix and
its application to the overlap Dirac operator at nonzero chemical potential.
Computer Physics Communications, 177:933–943, 2007.

[18] R. Bouyouli, Khalide Jbilou, R. Sadaka, and Hassane Sadok. Convergence
properties of some block Krylov subspace methods for multiple linear systems.
Journal of Computational and Applied Mathematics, 196(2):498–511, 2006.

[19] Karen Braman. Third-order tensors as linear operators on a space of matrices.
Linear Algebra and Its Applications, 433(7):1241–1253, 2010.

183

[20] Charles George Broyden. A breakdown of the block CG method. Optimization
Methods and Software, 7(1):41–55, 1997.

[21] Henri Calandra, Serge Gratton, Julien Langou, Xavier Pinel, and Xavier
Vasseur. Flexible variants of block restarted GMRES methods with applica-
tion to geophysics. SIAM Journal on Scientific Computing, 34(2):A714–A736,
2012.

[22] Jie Chen, Mihai Anitescu, and Yousef Saad. Computing f(A)b via least
squares polynomial approximations. SIAM Journal on Scientific Computing,
33(1):195–222, 2011.

[23] Andrzej Cichocki. Era of Big Data Processing: A New Approach via Tensor
Networks and Tensor Decompositions. Technical Report arXiv:1403.2048v4,
2014.

[24] Jane K. Cullum and William E. Donath. A block Lanczos algorithm for com-
puting the q algebraically largest eigenvalues and a corresponding eigenspace of
large, sparse, real symmetric matrices. In 1974 IEEE Conference on Decision
and Control including the 13th Symposium on Adaptive Processes, volume 13,
pages 505–509, 1974.

[25] David Damanik, Alexander Pushnitski, and Barry Simon. The analytic theory
of matrix orthogonal polynomials. Surveys in Approximation Theory, 4:1–85,
2008.

[26] Dean Darnell, Ronald B. Morgan, and Walter Wilcox. Deflated GMRES for
systems with multiple shifts and multiple right-hand sides. Linear Algebra and
its Applications, 429(10):2415–2434, 2008.

[27] Philip J. Davis. Circulant Matrices. AMS Chelsea Publishing, Providence, 2nd
edition, 2012.

[28] Philip J. Davis and Philip Rabinowitz. Methods of Numerical Integration.
Academic Press, Boston, 2nd edition, 1984.

[29] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilinear
singular value decomposition. SIAM Journal on Matrix Analysis and Applica-
tions, 21(4):1253–1278, 2000.

184

[30] John E. Dennis, Joseph F. Traub, and Robert P. Weber. On the matrix polyno-
mial, lambda-matrix and block eigenvalue problems. Technical Report CMU-
CS-71-110, Carnegie-Mellon University, 1971.

[31] John E. Dennis, Joseph F. Traub, and Robert P. Weber. The algebraic theory
of matrix polynomials. SIAM Journal on Numerical Analysis, 13(6):831–845,
1976.

[32] John E. Dennis, Joseph F. Traub, and Robert P. Weber. Algorithms for solvents
of matrix polynomials. SIAM Journal on Numerical Analysis, 15(3):523–533,
1978.

[33] Richard Dorrance, Fengbo Ren, and Dejan Marković. A scalable sparse matrix-
vector multiplication kernel for energy-efficient sparse-blas on FPGAs. Proceed-
ings of the 2014 ACM/SIGDA international symposium on Field-programmable
gate arrays - FPGA ’14, pages 161–170, 2014.

[34] Vladimir L. Druskin and Leonid A. Knizhnerman. Two polynomial methods
of calculating functions of symmetric matrices. U.S.S.R. Computational Math-
ematics and Mathematical Physics, 29(6):112–121, 1989.

[35] Vladimir L. Druskin and Leonid A. Knizhnerman. Krylov subspace approxi-
mation of eigenpairs and matrix functions in exact and computer arithmetic.
Numerical Linear Algebra with Applications, 2(3):205–217, 1995.

[36] Augustin A. Dubrulle. Retooling the method of block conjugate gradients.
Electronic Transactions on Numerical Analysis, 12:216–233, 2001.

[37] Iain S. Duff, Michael A. Heroux, and Roldan Pozo. An overview of the sparse
basic linear algebra subprograms: The new standard from the BLAS technical
forum. ACM Transactions on Mathematical Software, 28(2):239–267, 2002.

[38] Michael Eiermann and Oliver G. Ernst. Geometric aspects of the theory of
Krylov subspace methods. Acta Numerica, 10:251–312, 2001.

[39] Michael Eiermann and Oliver G. Ernst. A restarted Krylov subspace method
for the evaluation of matrix functions. SIAM Journal on Numerical Analysis,
44(6):2481–2504, 2006.

[40] Michael Eiermann, Oliver G. Ernst, and Stefan Güttel. Deflated restarting
for matrix functions. SIAM Journal on Matrix Analysis and Applications,
32(2):621–641, 2011.

185

[41] Stanley C. Eisenstat. On the rate of convergence of B-CG and BGMRES.
Technical report, Unpublished, 2015.

[42] Stanley C. Eisenstat, Howard C. Elman, and Martin H. Schultz. Variational
iterative methods for nonsymmetric systems of linear equations. SIAM Journal
on Numerical Analysis, 20(2):345–357, 1983.

[43] A. El Guennouni, Khalide Jbilou, and Hassane Sadok. The block Lanczos
method for linear systems with multiple right-hand sides. Applied Numerical
Mathematics, 51(2-3):243–256, 2004.

[44] Lakhdar Elbouyahyaoui and Mohammed Heyouni. On applying weighted seed
techniques to GMRES algorithm for solving multiple linear systems. Boletim
da Sociedade Paranaense de Matemática, 36(3):155–172, 2018.

[45] Lakhdar Elbouyahyaoui, Mohammed Heyouni, Khalide Jbilou, and Abder-
rahim Messaoudi. A block Arnoldi based method for the solution of the
Sylvester-observer equation. Electronic Transactions on Numerical Analysis,
47:18–36, 2017.

[46] Lakhdar Elbouyahyaoui, Abderrahim Messaoudi, and Hassane Sadok. Alge-
braic properties of the block GMRES and block Arnoldi methods. Electronic
Transactions on Numerical Analysis, 33:207–220, 2008.

[47] Mark Embree, Ronald B. Morgan, and Huy V. Nguyen. Weighted inner prod-
ucts for GMRES and Arnoldi iterations. Technical Report arXiv:1607.0255v2,
2017.

[48] Ernesto Estrada and Naomichi Hatano. Communicability in complex networks.
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 77(3):1–
12, 2008.

[49] Ernesto Estrada and Desmond J. Higham. Network properties revealed through
matrix functions. SIAM Review, 52(4):696–714, 2010.

[50] Roland W. Freund and Manish Malhotra. A block QMR algorithm for non-
Hermitian linear systems with multiple right-hand sides. Linear Algebra and
its Applications, 254(1-3):119–157, 1997.

[51] Andreas Frommer and Uwe Glässner. Restarted GMRES for Shifted Linear
Systems. SIAM Journal on Scientific Computing, 19(1):15–26, 1998.

186

[52] Andreas Frommer, Stefan Güttel, and Marcel Schweitzer. Convergence of
restarted Krylov subspace methods for Stieltjes functions of matrices. SIAM
Journal on Matrix Analysis and Applications, 35(4):1602–1624, 2014.

[53] Andreas Frommer, Stefan Güttel, and Marcel Schweitzer. Efficient and stable
Arnoldi restarts for matrix functions based on quadrature. SIAM Journal on
Matrix Analysis and Applications, 35(2):661–683, 2014.

[54] Andreas Frommer, Kathryn Lund, Marcel Schweitzer, and Daniel B. Szyld.
The Radau-Lanczos method for matrix functions. SIAM Journal on Matrix
Analysis and Applications, 38(3):710–732, 2017.

[55] Andreas Frommer, Kathryn Lund, and Daniel B. Szyld. Block Krylov subspace
methods for functions of matrices. Electronic Transactions on Numerical Anal-
ysis, 47:100–126, 2017.

[56] Andreas Frommer and Marcel Schweitzer. Error bounds and estimates for
Krylov subspace approximations of Stieltjes matrix functions. BIT Numerical
Mathematics, 56:865–892, 2016.

[57] Andreas Frommer and Valeria Simoncini. Matrix functions. In Wilhelmus
H A Schilders, Henk A van der Vorst, and Joost Rommes, editors, Model
Order Reduction: Theory, Research Aspects and Applications, volume 13 of
Mathematics in Industry, pages 275–304, Berlin, 2008. Springer.

[58] Felix R. Gantmacher. The Theory of Matrices, volume 1. Chelsea, New York,
1959.

[59] Christof Gattringer and Christian B. Lang. Quantum Chromodynamics on the
Lattice. Springer, Berlin, 2010.

[60] André Gaul. Recycling Krylov subspace methods for sequences of linear sys-
tems - analysis and applications. PhD thesis, Fakultät für Mathematik und
Naturwissenschaften, Technische Universität Berlin, 2014.

[61] Israel Gohberg, editor. Orthogonal matrix-valued polynomials and applications:
seminar on operator theory at the School of Mathematics, Tel Aviv University.
Birkhäuser Verlag, Basel, 1998.

[62] Israel Gohberg, Peter Lancaster, and Leiba Rodman. Matrix Polynomials.
SIAM, Philadelphia, 2nd edition, 2009.

187

[63] Gene H. Golub and Gérard Meurant. Matrices, Moments and Quadrature with
Applications. Princeton University Press, Princeton, 2010.

[64] Gene H. Golub and Richard Underwood. The block Lanczos method for com-
puting eigenvalues. In Mathematical software III: Proceedings of a symposium
conducted by the Mathematics Research Center, the University of Wisconsin-
Madison, pages 361–377, New York, 1977. Academic Press.

[65] Gene H. Golub and Charles F. van Loan. Matrix Computations. Johns Hopkins
University Press, Baltimore, 4th edition, 2013.

[66] Kazushige Goto and Robert van de Geijn. High-performance implementation
of the level-3 BLAS. ACM Transactions on Mathematical Software, 35(1):4:1–
4:14, 2008.

[67] Anne Greenbaum. Iterative Methods for Solving Linear Systems. SIAM,
Philadelphia, 1997.

[68] Wolter Groenevelt, Mourad E. H. Ismail, and Erik Koelink. Spectral decom-
position and matrix-valued orthogonal polynomials. Advances in Mathematics,
244:91–105, 2013.

[69] Martin H. Gutknecht. Block Krylov space methods for linear systems with
multiple right-hand sides: An introduction. In A. H. Siddiqi, I. S. Duff,
and O. Christensen, editors, Modern Mathematical Models, Methods and Algo-
rithms for Real World Systems, pages 420–447, New Delhi, 2007. Anamaya.

[70] Martin H. Gutknecht and Thomas Schmelzer. The block grade of a block
Krylov space. Linear Algebra and its Applications, 430:174–185, 2009.

[71] Nicholas Hale, Nicholas J. Higham, and Lloyd N. Trefethen. Computing Aα,
log(A), and related matrix functions by contour integrals. SIAM Journal on
Numerical Analysis, 46(5):2505–2523, 2008.

[72] Peter Henrici. Applied and Computational Complex Analysis, volume 2. John
Wiley & Sons, New York, 1977.

[73] Mohammed Heyouni and Azeddine Essai. Matrix Krylov subspace meth-
ods for linear systems with multiple right-hand sides. Numerical Algorithms,
40(2):137–156, 2005.

[74] Nicholas J. Higham. Functions of Matrices. SIAM, Philadelphia, 2008.

188

[75] Nicholas J. Higham and Edvin Deadman. A catalogue of software for matrix
functions. Version 2.0. Technical Report 2016.3, Manchester Institute for Math-
ematical Sciences, School of Mathematics, University of Manchester, 2016.

[76] Nicholas J. Higham and Peter Kandolf. Computing the action of trigonomet-
ric and hyperbolic matrix functions. SIAM Journal on Scientific Computing,
39(2):A613–A627, 2017.

[77] Marlis Hochbruck and Michiel E. Hochstenbach. Subspace extraction for ma-
trix functions. Technical report, 2005.

[78] Marlis Hochbruck and Christian Lubich. On Krylov subspace approximations
to the matrix exponential operator. SIAM Journal on Numerical Analysis,
34(5):1911–1925, 1997.

[79] Marlis Hochbruck and Alexander Ostermann. Exponential integrators. Acta
Numerica, 19:209–286, 2010.

[80] Mark Hoemmen. Communication-avoiding Krylov subspace methods. PhD
thesis, Department of Computer Science, University of California at Berkeley,
2010.

[81] Milos Ilić, Ian W. Turner, and Daniel P. Simpson. A restarted Lanczos ap-
proximation to functions of a symmetric matrix. IMA Journal of Numerical
Analysis, 30:1044–1061, 2010.

[82] Akira Imakura and Tetsuya Sakurai. Block Krylov-type complex moment-
based eigensolvers for solving generalized eigenvalue problems. Numerical Al-
gorithms, 75(2):413–433, 2017.

[83] Khalide Jbilou, Abderrahim Messaoudi, and Hassane Sadok. Global FOM and
GMRES algorithms for matrix equations. Applied Numerical Mathematics,
31(1):49–63, 1999.

[84] Hao Ji and Yaohang Li. A breakdown-free block conjugate gradient method.
BIT Numerical Mathematics, 57(2):379–403, 2017.

[85] Zhongxiao Jia. Generalized block Lanczos methods for large unsymmetric
eigenproblems. Numerische Mathematik, 80:239–266, 1998.

189

[86] Mark David Kent. Chebyshev, Krylov, Lanczos: Matrix relationships and com-
putations. PhD thesis, Department of Computer Science, Standford University,
1989.

[87] Boris N. Khoromskij. Tensor numerical methods for multidimensional PDES:
theoretical analysis and initial applications. ESAIM: Proceedings and Surveys,
48(January):1–28, 2015.

[88] Misha E. Kilmer, Karen Braman, Ning Hao, and Randy C. Hoover. Third-order
tensors as operators on matrices: a theoretical and computational framework
with applications in imaging. SIAM Journal on Matrix Analysis and Applica-
tions, 34(1):148–172, 2013.

[89] Misha E. Kilmer and Carla D. Martin. Factorization strategies for third-order
tensors. Linear Algebra and Its Applications, 435(3):641–658, 2011.

[90] Leonid A. Knizhnerman. Calculation of functions of unsymmetric matrices us-
ing Arnoldi’s method. Computational Mathematics and Mathematical Physics,
31(1):1–9, 1991.

[91] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applica-
tions. SIAM Review, 51(3):455–500, 2008.

[92] Tamara G. Kolda and Jackson R. Mayo. Shifted power method for comput-
ing tensor eigenpairs. SIAM Journal on Matrix Analysis and Applications,
32(4):1095–1124, 2011.

[93] Peter Lancaster. Lambda-matrices and Vibrating Systems. Pergamon Press,
Oxford, 1966.

[94] Peter Lancaster and Miron Tismenetsky. The Theory of Matrices. Academic
Press, Orlando, 2nd edition, 1985.

[95] Lek-Heng Lim. Singular values and eigenvalues of tensors: a variational ap-
proach. In Proceedings of the IEEE International Workshop on Computa-
tional Advances in Multi-Sensor Adaptive Processing (CAMSAP ’05), vol-
ume 3, pages 129–132, 2005.

[96] Luciano Lopez and Valeria Simoncini. Preserving geometric properties of the
exponential matrix by block Krylov subspace methods. BIT Numerical Math-
ematics, 46(4):813–830, 2006.

190

[97] David G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley,
Reading, Massachusetts, 2nd edition, 1984.

[98] Cleve Moler and Charles F. van Loan. Nineteen dubious ways to compute
the exponential of a matrix, twenty-five years later. SIAM Review, 45(1):3–49,
2003.

[99] Igor Moret and Paolo Novati. An interpolatory approximation of the matrix ex-
ponential based on Faber polynomials. Journal of Computational and Applied
Mathematics, 131(1-2):361–380, 2001.

[100] Igor Moret and Paolo Novati. The computation of functions of matrices by
truncated Faber series. Numerical Functional Analysis and Optimization, 22(5-
6):697–719, 2001.

[101] Igor Moret and Paolo Novati. Interpolating functions of matrices on ze-
ros of quasi-kernel polynomials. Numerical Linear Algebra with Applications,
12(4):337–353, 2005.

[102] Ronald B. Morgan. Restarted block-GMRES with deflation of eigenvalues.
Applied Numerical Mathematics, 54(2):222–236, 2005.

[103] Herbert Neuberger. A practical implementation of the overlap dirac operator.
Physical Review Letters, 81(19):4060–4062, 1998.

[104] Michael Ng, Liqun Qi, and Guanglu Zhou. Finding the largest eigenvalue of
a nonnegative tensor. SIAM Journal on Matrix Analysis and Applications,
31(3):1090–1099, 2009.

[105] Andy A. Nikishin and Alex Yu. Yeremin. Variable block CG algorithms for
solving large sparse symmetric positive definite linear systems on parallel com-
puters, I: General iterative scheme. SIAM Journal on Matrix Analysis and
Applications, 16(4):1135–1153, 1995.

[106] Andy A. Nikishin and Alex Yu. Yeremin. An automatic procedure for updating
the block size in the block conjugate gradient method for solving linear systems.
Journal of Mathematics Sciences, 114(6):1844–1853, 2003.

[107] Paolo Novati. A polynomial method based on Fejér points for the computation
of functions of unsymmetric matrices. Applied Numerical Mathematics, 44(1-
2):201–224, 2003.

191

[108] Dianne P. O’Leary. The block conjugate gradient algorithm and related meth-
ods. Linear Algebra and its Applications, 29(1980):293–322, 1980.

[109] Christopher C. Paige, Beresford N. Parlett, and Henk A. van der Vorst. Ap-
proximate solutions and eigenvalue bounds from Krylov subspaces. Numerical
Linear Algebra with Applications, 2(2):115–133, 1995.

[110] Davide Palitta and Valeria Simoncini. Computationally enhanced projection
methods for symmetric Sylvester and Lyapunov matrix equations. Journal of
Computational and Applied Mathematics, 330:648–659, 2018.

[111] Michael L. Parks, Kirk M. Soodhalter, and Daniel B. Szyld. A block recy-
cled GMRES method with investigations into aspects of solver performance.
Technical report, Department of Mathematics, Temple University, 2016.

[112] Liqun Qi. Eigenvalues of a real supersymmetric tensor. Journal of Symbolic
Computation, 40(6):1302–1324, 2005.

[113] Liqun Qi. Eigenvalues and invariants of tensors. Journal of Mathematical
Analysis and Applications, 325(2):1363–1377, 2007.

[114] Stefan Ragnarsson and Charles F. van Loan. Block tensor unfoldings. SIAM
Journal on Matrix Analysis and Applications, 33(1):149–169, 2012.

[115] Somaiyeh Rashedi, Ghodrat Ebadi, Sebastian Birk, and Andreas Frommer. On
short recurrence Krylov type methods for linear systems with many right-hand
sides. Journal of Computational and Applied Mathematics, 300:18–29, 2016.

[116] Lothar Reichel, Giuseppe Rodriguez, and Tunan Tang. New block quadra-
ture rules for the approximation of matrix functions. Linear Algebra and Its
Applications, 502:299–326, 2016.

[117] Mickaël Robbé and Miloud Sadkane. Exact and inexact breakdowns in the
block GMRES method. Linear Algebra and its Applications, 419(1):265–285,
2006.

[118] Axel Ruhe. Implementation aspects of band Lanczos algorithms for computa-
tion of eigenvalues of large sparse symmetric matrices. Mathematics of Com-
putation, 33(146):680–687, 1979.

192

[119] Youcef Saad. On the Lanczos method for solving symmetric linear systems
with several right-hand sides. Mathematics of Computation, 47(178):651–651,
1987.

[120] Yousef Saad. Krylov subspace methods for solving large unsymmetric linear
systems. Mathematics of Computation, 37(155):105–126, 1981.

[121] Yousef Saad. Analysis of some Krylov subspace approximations to the matrix
exponential operator. SIAM Journal on Numerical Analysis, 29(1):209–228,
1992.

[122] Yousef Saad. Iterative methods for sparse linear systems. SIAM, Philadelphia,
2nd edition, 2003.

[123] Arvind K. Saibaba, Tania Bakhos, and Peter K. Kitanidis. A flexible Krylov
solver for shifted systems with application to oscillatory hydraulic tomography.
SIAM Journal on Scientific Computing, 35(6):A3001–A3023, 2013.

[124] Thomas Schmelzer. Block Krylov methods for Hermitian linear systems. PhD
thesis, Department of Mathematics, University of Kaiserslautern, 2004.

[125] Marcel Schweitzer. Restarting and error estimation in polynomial and extended
Krylov subspace methods for the approximation of matrix functions. PhD the-
sis, Fakultät für Mathematik und Naturwissenschaften, Bergische Universität
Wuppertal, 2015.

[126] Marcel Schweitzer. Any finite convergence curve is possible in the initial it-
erations of restarted FOM. Electronic Transactions on Numerical Analysis,
45:133–145, 2016.

[127] Valeria Simoncini. Ritz and Pseudo-Ritz values using matrix polynomials.
Linear Algebra and its Applications, 241-243:787–801, 1996.

[128] Valeria Simoncini. Restarted full orthogonalization method for shifted linear
systems. BIT Numerical Mathematics, 43:459–466, 2003.

[129] Valeria Simoncini and Efstratios Gallopoulos. A hybrid block GMRES method
for nonsymmetric systems with multiple right-hand sides. Journal of Compu-
tational and Applied Mathematics, 66:457–469, 1996.

193

[130] Valeria Simoncini and Efstratios Gallopoulos. Convergence properties of block
GMRES and matrix polynomials. Linear Algebra and its Applications, 247:97–
119, 1996.

[131] Valeria Simoncini and Daniel B. Szyld. Recent computational developments in
Krylov subspace methods for linear systems. Numerical Linear Algebra with
Applications, 14(1):1–59, 2007.

[132] Kirk M. Soodhalter. A block MINRES algorithm based on the band Lanczos
method. Numerical Algorithms, 69(3):473–494, 2015.

[133] Kirk M. Soodhalter. Block Krylov subspace recycling for shifted systems
with unrelated right-hand sides. SIAM Journal on Scientific Computing,
38(1):A302–A324, 2016.

[134] Kirk M. Soodhalter. Stagnation of block GMRES and its relationship to block
FOM. Electronic Transactions on Numerical Analysis, 46:162–189, 2017.

[135] Dong-lin Sun, Ting-Zhu Huang, Yan-Fei Jing, and Bruno Carpentieri. A block
GMRES method with deflated restarting for solving linear systems with mul-
tiple shifts and multiple right-hand sides. Numerical Linear Algebra with Ap-
plications, 2018.

[136] Lloyd N. Trefethen, J. Andre C. Weideman, and Thomas Schmelzer. Tal-
bot quadratures and rational approximations. BIT Numerical Mathematics,
46(3):653–670, 2006.

[137] Jasper van den Eshof, Andreas Frommer, Thomas Lippert, Klaus Schilling, and
Henk A. van der Vorst. Numerical methods for the QCDd overlap operator: I.
Sign-Function and error bounds. Computer Physics Communications, 146:203–
224, 2002.

[138] Sheng-De Wang, Te-Son Kuo, and Chen-Fa Hsu. Trace bounds on the solution
of the algebraic matrix Riccati and Lyapunov equations. IEEE Transactions
on Automatic Control, AC-31:654–656, 1986.

[139] J. Andre C. Weideman. Optimizing Talbot’s contours for the inversion of the
Laplace transform. SIAM Journal on Numerical Analysis, 44(6):2342–2362,
2006.

194

[140] J. Andre C. Weideman and Lloyd N. Trefethen. Parabolic and hyperbolic
contours for computing the Bromwich integral. Mathematics of Computation,
76(259):1341–1356, 2007.

[141] Gang Wu, Hong-kui Pang, and Jiang-li Sun. A shifted block FOM algorithm
with deflated restarting for matrix exponential computations. Applied Numer-
ical Mathematics, 127:306–323, 2018.

[142] Gang Wu, Yan-chun Wang, and Xiao-Qing Jin. A preconditioned and shifted
GMRES algorithm for the PageRank problem with multiple damping factors.
SIAM Journal on Scientific Computing, 34(5):A2558–A2575, 2012.

[143] Jianhua Zhang, Hua Dai, and Jing Zhao. A new family of global methods for
linear systems with multiple right-hand sides. Journal of Computational and
Applied Mathematics, 236(6):1562–1575, 2011.

