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Introduction

Computers play an important role in Scientific Computing. Many new fields of science have

emerged because of the invention and development of the computer. However, in many cases

the computer is not a perfect tool for doing scientific calculations. When using floating point

arithmetic real numbers are approximated by machine numbers. Because of this representation

two types of errors are generated. The first type of error occurs when a real valued input data

is approximated by a machine numbers. The second type of error is caused by intermediate

results being approximated by machine numbers. Therefore,the results of the computations

performed will usually be affected by rounding errors and inthe worst cases lead to completely

wrong results. This problem is getting even worse since computers are becoming faster, and it

is possible to execute more and more computations within a fixed time. It is possible to verify

the accuracy of the results generated by some complicated programs using other tools.

Interval analysis is an enormously valuable tool to solve this problem and to estimate and

control the errors (which occur on the computers) automatically. Instead of approximating a

real valuex by a machine number, the real valuex is approximated by an interval[x] that

includes a machine number. The upper and lower boundaries ofthis interval contain the usually

unknown valuex. The width of this interval may be used as a measure for the quality of the

approximation.

Solving parametric linear systems, involving uncertainties in the parameters, is an important

part of the solution to many scientific and engineering problems. Usually, in most engineering

design problems, models in operational research, linear prediction problems, etc.[51] there are

complicated dependencies between coefficients. The main reason for this dependency is that

the errors in several different coefficients may be caused bythe same factor. For this reason, the

interval analysis will be the tool which we will use for solving this type of problems. Interval

methods (validated methods) not only can determine such guaranteed error bounds on the true

solution, but can also verify that a unique solution to the problem exists.

The elements of the parametric interval systems occur in twotypes: affine-linear depen-
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x Introduction

dencies or nonlinear dependencies. The nonlinear dependencies are more complicated than the

other.

The goal of this work is to find inclusion solutions for parametric interval systems in the two

cases. Inclusion solution means an interval vector, which contains all possible solution of this

systems. Furthermore, our goal is trying to make this interval vector to be as narrow as possible.

The organization of this thesis is as follows:

Chapter 1 in this chapter we will give an introduction of interval analysis. In section

1.1, the definition of the real intervals, interval operations and some properties of the interval

arithmetic are given. The definition of complex intervals and some properties of the complex

interval arithmetic are presented in section 1.2. The definition of interval vectors and interval

matrices and some properties for their arithmetic are givenin section 1.3. In section 1.4,

the definition of the interval extension function and the central problem in interval arithmetic,

which called ”dependency” problem are given. Principles of numerical verifications are given in

section 1.5. In section 1.6, the implementation of intervalarithmetic in the computer is given

and which software we used in this thesis. An overview of linear systems of equations and

interval linear systems of equations and the solutions of these systems using interval methods

are presented in section 1.7. An overview of the C-XSC library (C++ for eXtended Scientific

Computing), which we used, is given in section 1.8.

Chapter 2 this chapter contains an overview of parametric interval systems. In section

2.1, an overview of the parametric systems whose elements are affine-linear are given. Some

methods, which deal with this case, and the algorithms of these methods are presented in this

section. In section 2.2 the case where the elements are nonlinear functions are studied; this

case is more complicated than the first case (affine-linear).Some methods, which study this

case, and the algorithms of these methods are presented.

Chapter 3 the goal of this chapter is to discuss a generalized intervalarithmetic, which

has been developed by Hansen[12], and extend it to complex interval arithmetic. The most

important purpose of a generalized interval arithmetic is to reduce the effect of the dependency

problem when computing with interval arithmetic. In section 3.1, Hansen forms are described.

In section 3.2, generalized interval arithmetic (Hansen Arithmetic) is introduced. In section

3.3, two arithmetic operations (multiplication and division) are discussed in more details with

some examples of how Hansen arithmetic deals with the dependency problem. The elementary

functions (exp(), sin(), ln(),......) are considered in section 3.4. In section 3.5, the algorithmic

descriptions are introduced. Minimax(Best) approximation method is discussed in section 3.6.



xi

A new complex generalized interval form is described in section 3.7. The extended generalized

interval arithmetic for complex generalized intervals is studied in section 3.8. In section 3.9,

the elementary complex functions are considered. The algorithms for complex generalized

interval arithmetic are introduced in section 3.10.

Chapter 4 in this chapter we will discuss some cases of parametric interval systems. Our

methods depend on directly generalized interval arithmetic and its extension (see chapter 3).

The methods that be will presented are some modifications of Popova’s and Rump’s methods.

We start in section 4.1 with the case if a constant matrix and aconstant vector of Popova’s

representation[48] are not exactly representable on the computer; we will modify Popova’s and

Rump’s methods. In section 4.2 we will discuss the case if theelements of the parametric matrix

and right-hand side are nonlinear functions of parametric intervals; in this section generalized

interval arithmetic and complex generalized interval arithmetic will be the basic aspect in our

modification. In section 4.3 we will study the over- and under-determined case of the parametric

interval systems.





Chapter 1

Introduction to Interval Analysis

The concept of interval analysis is to compute with intervals of real numbers in place of real

numbers. While floating point arithmetic is affected by rounding errors and can produce in-

accurate results, interval arithmetic has the advantage ofgiving rigorous bounds for the exact

solution. An application is if some parameters are not knownexactly but are known to lie within

a certain interval; algorithms may be implemented, using interval arithmetic with uncertain pa-

rameters as intervals, to produce an interval that bounds all possible results.

There are older antecedents, but it can be considered that the main ideas about interval

computations appear for the first time in[37]. In his Ph. D. thesis, R. E. Moore studied the errors

caused by truncation and rounding in arithmetic operationsperformed using digital computers.

The first monograph on interval analysis[38] is the starting point of interval analysis.

Nowadays, interval analysis is mostly developed in USA and Germany. This Chapter gives a

brief introduction to the main concepts of interval arithmetic. Interested readers can be directed

to [1], [38], [39], [55], [42], [13] , [10] and[20] for detailed treatments of interval arithmetic.

1.1 Real Interval Arithmetic

Definition 1.1. (Interval) a real interval, or just an interval[x], is a nonempty closed and

bounded subset of the real numbersR

[x] := [x, x] := {x ∈ R| x ≤ x ≤ x},

wherex andx denote the lower and upper bounds of the interval[x], respectively.

In general, the notation[x] will be used to denote an interval number. When specific infor-

mation can be gleaned from the bounds, then the interval willbe written as[x, x]. The set of all

1



2 Introduction to Interval Analysis

intervals is denoted byIR

IR := {[x, x]|x, x ∈ R, x ≤ x}

We call two intervals[x] = [x, x] and[y] = [y, y] equal if and only if (iff) their corresponding

endpoints are equal, that is,[x] = [y] iff x = y andx = y.

The intersection[x] ∩ [y] of two intervals[x] and [y] is empty, i.e.[x] ∩ [y] = ∅, if either

[x] < [y] ([x] < [y] iff x < y) or [y] < [x]. Otherwise the intersection of[x] and[y] is again an

interval

[x] ∩ [y] := [max(x, y), min(x, y)].

The interval hull of two intervals[x] and[y] (the interval hull is the smallest interval con-

taining[x] and[y]) is defined by

[x]∪[y] := [min(x, y), max(x, y)].

For instance, the interval hull of[2, 3] and[5, 7] is the interval[2, 7].

A useful relation for intervals is the set inclusion

[x] ⊆ [y] iff y ≤ x and x ≤ y.

An interval [x] is said to be contained in the interior of[y] if y < x andx < y. In this case,

we write[x]
◦⊂ [y]. We also call this relation the inner inclusion relation.

A number of useful real valued functions with interval arguments are also defined. These

functions describe important features such as the endpoints, the width, the midpoint, etc. of an

interval.

Definition 1.2. (inf([x])) The lower endpoint of an interval is the infimum of[x],

inf([x]) = x.

Definition 1.3. (sup([x])) The upper endpoint of an interval is the supremum of[x],

sup([x]) = x.

Definition 1.4. (wid([x])) The width of an interval is the difference between endpoints,

wid([x]) = x − x.

If the width of [x] is zero(x = x), then the interval is calleddegenerateor thin interval and

consists of only one real number. It is calledthick if x < x.
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Definition 1.5. (mid([x])) The midpoint of an interval is the point halfway between bothend-

points,

mid([x]) = (x + x)/2.

Definition 1.6. (rad([x])) The radius of an interval is the distance from the midpoint tothe

endpoints,

rad([x]) = (x − x)/2.

By using the definitions 1.5 and 1.6, we can write an interval[x] as following:

[x] = mid([x]) + [−rad([x]), rad([x])]. (1.1)

Definition 1.7. (|[x]|) The magnitude, or the absolute value, of an interval is defined by

|[x]| = max(|x|, |x|).

If [x], [y] ∈ IR, then the distance between[x] and[y] is defined by

q([x], [y]) := max(|x − y|, |x− y|)

Mathematical operations used for real numbers are also defined for intervals. The result of

an interval operation is a set that includes every possible value of the operation defined over the

interval arguments.

Definition 1.8. (Interval Operation) Let ∗ represent an operation from the set{+,−, ·, /}.

Then

[x] ∗ [y] := {x ∗ y| x ∈ [x] y ∈ [y]}, ∗ ∈ {+,−, ·, /}.

Note that the result of an interval operation is also an interval (except for the special case of

division by an interval containing zero).

Specific equations for interval operations are

[x] + [y] = [x + y, x + y], (1.2)

[x] − [y] = [x − y, x − y], (1.3)

[x] · [y] = [min(xy, xy, xy, xy), max(xy, xy, xy, xy)], (1.4)
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The endpoints of the multiplication[x] · [y] can be broken down depending on the signs of the

endpoints of each interval factor

[x] · [y] =






[xy, xy] if x ≥ 0 and y ≥ 0
[
xy, xy

]
if x ≥ 0 and y < 0 < y

[
xy, xy

]
if x ≥ 0 and y ≤ 0

[
xy, xy

]
if x < 0 < x and y ≥ 0

[xy, xy] if x < 0 < x and y ≤ 0
[
xy, xy

]
if x ≤ 0 and y ≥ 0

[
xy, xy

]
if x ≤ 0 and y < 0 < y

[
xy, xy

]
if x ≤ 0 and y ≤ 0

[
min(xy, xy), max(xy, xy)

]
if x < 0 < x and y < 0 < y

(1.5)

1/[y] = [1/y, 1/y] if 0 6∈ [y], (1.6)

[x]/[y] = [x] · [1/y, 1/y] if 0 6∈ [y], (1.7)

and when0 ∈ [y], Hansen has defined a set of extended rules for interval division [13]

[x]/[y] =






[x/y,∞) if x ≤ 0 and y = 0
(
−∞, x/y] ∪ [x/y,∞

)
if x ≤ 0 and y < 0 < y

(−∞, x/y ] if x ≤ 0 and y = 0

(−∞,∞) if x < 0 < x
(
−∞, x/y ] if x ≥ 0 and y = 0
(
−∞, x/y] ∪ [x/y,∞

)
if x ≥ 0 and y < 0 < y

[x/y,∞) if x ≥ 0 and y = 0.

(1.8)

Definition 1.9. (Unary Operation) If ϕ(x) is a continuous unary operation onD ⊆ R, then

ϕ([x]) =

[
min
x∈[x]

(ϕ(x)), max
x∈[x]

(ϕ(x))

]
, [x] ⊆ D

defines its unary operation onIR.

Examples of such unary operations onIR aree[x], sin([x]), cos([x]), [x]k(k ∈ R), etc. Here

we shall give the following example. For positive integer values ofk, the powers of an interval

are defined by

[x]k :=






[1, 1] if k = 0
[
xk, xk

]
if x ≥ 0 or k odd

[
xk, xk

]
if x ≤ 0 and k even

[
0, |[x]|k

]
if x ≤ 0 ≤ x and k even.

(1.9)
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Unary operations are interval valued functions depending on one interval variable. The gener-

alization of functions of many variables will be given in section 1.4.

For addition and multiplication we have the associative andcommutative laws, that is, if

[x], [y], [u] ∈ IR then

[x] + ([y] + [u]) = ([x] + [y]) + [u],

[x] · ([y] · [u]) = ([x] · [y]) · [u],

[x] + [y] = [y] + [x],

[x] · [y] = [y] · [x].

Zero and unity inIR are the degenerate intervals[0, 0] and [1, 1] which will be denoted by0

and1 respectively. In other words

[x] + 0 = 0 + [x] = [x], 1 · [x] = [x] · 1 = [x]

for any[x] ∈ IR.

It is important to underline that unlike real arithmetic

[x] − [x] 6= 0

and

[x]/[x] 6= 1

when rad([x]) > 0. Indeed,

[x] − [x] = [−(x − x), x − x] = wid([x])[−1, 1]

and

[x]/[x] = [x/x, x/x] for [x] > 0

or

[x]/[x] = [x/x, x/x] if [x] < 0.

This means, subtraction and division are no more the inverseoperations for addition and multi-

plication.

Widening of the result occurs because each interval is treated as an independent variable. This

is called the ”dependency” problem and can occur whenever an independent variable appears

more than once in an interval computation.
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The distributive law

[x] · ([y] + [u]) = [x] · [y] + [x] · [u].

is not always valid for interval values. For example, we have[0, 1](1 − 1) = 0 whereas[0, 1] −
[0, 1] = [−1, 1]. Instead we have the sub-distributive law[39]

[x] · ([y] + [u]) ⊆ [x] · [y] + [x] · [u].

In some special cases, the distributive law is valid

x · ([y] + [u]) = x · [y] + x · [u] for x ∈ R and [y], [u] ∈ IR

[x] · ([y] + [u]) = [x] · [y] + [x] · [u], if [y][u] ≥ 0.

Another important property of interval arithmetic is inclusion monotonicity. It means that if

[x] ⊆ [u], [y] ⊆ [w]

then

[x] + [y] ⊆ [u] + [w],

[x] − [y] ⊆ [u] − [w],

[x] · [y] ⊆ [u] · [w],

[x] /[y] ⊆ [u]/[w], (if 0 /∈ [w]).

We have the following properties regarding the absolute values and the widths of the result

of arithmetic operations[1]

|[x] + [y]| ≤ |[x]| + |[y]|, (1.10)

|[x][y]| = |[x]||[y]|, (1.11)

wid([x] ± [y]) = wid([x]) + wid([y]), (1.12)

wid([x][y]) ≥ max(|[x]|wid([y]), |[y]|wid([x])), (1.13)

wid([x][y]) ≤ |[x]|wid([y]) + |[y]|wid([x]). (1.14)

1.2 Complex Interval Arithmetic

In this section, we will introduce complex intervals, i.e. intervals in the complex plane, and so-

called a complex interval arithmetic. It will be shown that many of the properties and results for
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real interval arithmetic can be carried over to a complex interval arithmetic. In order to do this,

we have to define the set of complex numbers that will constitute the complex intervals. We

will use rectangular intervals with sides parallel to the coordinate axes, but a complex interval

could also be defined as a disk in the complex plane given by midpoint and its radius (see[1]

for more details, and references therein). A rectangular complex interval is defined by two real

intervals

Definition 1.10. (rectangular complex interval)Let [x], [y] ∈ IR. Then the set

[z] := [x] + i[y] := {z = x + iy|x ∈ [x], y ∈ [y]}

is called a complex interval, wherex =Re(z), y =Im(z) andi =
√
−1.

The set of complex intervals is denoted byIC

IC := {[x, x] + i[y, y]|x, x ∈ R, x ≤ x, y, y ∈ R, y ≤ y}.

A complex interval[z] is said to bethin or a point interval if both its real part [x] and its

imaginary part[y] are thin. It is calledthickotherwise.

We call two complex intervals[z1] and[z2] equaliff their real parts and their imaginary parts

are equal, i.e.

[x1] = [x2] and [y1] = [y2].

The lattice operators for the intersection and the union of two complex intervals may also be

defined by reduction to the corresponding operators for the real and the imaginary parts, i.e.

[z1] ∗ [z2] := ([x1] ∗ [x2]) + i([y1] ∗ [y2]), ∗ ∈ {∩,∪}.

Complex interval operations are defined in terms of the real intervals[x] ∈ IR and[y] ∈ IR

in the same way that complex operations onx = x + iy are defined in terms ofx ∈ R and

y ∈ R.

Definition 1.11. Let ∗ represent an operation from the set{+,−, ·, /}. Then if[z1], [z2] ∈ IC,

we define

[z1] + [z2] = [x1] + [x2] + i([y1] + [y2]),

[z1] − [z2] = [x1] − [x2] + i([y1] − [y2]),

[z1] · [z2] = [x1][x2] − [y1][y2] + i([x1][y2] + [y1][x2]), and (1.15)

[z1] /[z2] =
[x1][x2] + [y1][y2]

[x2]2 + [y2]2
+ i

[y1][x2] − [x1][y2]

[x2]2 + [y2]2
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In the case of division[z1]/[z2], it is assumed that0 /∈ [x2]
2 + [y2]

2. We point out that

[z1]/[z2] is evaluated using the elementary interval square functionto guarantee0 /∈ [x2]
2+[y2]

2

for 0 /∈ [z2]. To illustrate this point, let[z2] = [−2, 2] + i[2, 3]. Then0 /∈ [x2]
2 + [y2]

2 =

[0, 4] + [4, 9] = [4, 13]. Using multiplications instead of elementary square functions yields

0 ∈ [x2][x2] + [y2][y2] = [−4, 4] + [4, 9] = [0, 13]. Thus, the division would fail.

The operations introduced in Definition 1.11 satisfy

[z1] + [z2] = {z1 + z2| z1 ∈ [z1], z2 ∈ [z2]},
[z1] − [z2] = {z1 − z2| z1 ∈ [z1], z2 ∈ [z2]},
[z1] · [z2] ⊇ {z1 · z2| z1 ∈ [z1], z2 ∈ [z2]},
[z1] /[z2] ⊇ {z1/z2| z1 ∈ [z1], z2 ∈ [z2]}.

Addition and multiplication have the associative and commutative properties. Unfortu-

nately, the inverses for the sum and the multiplication do not exist (it is like the real interval

case, see section 1.1), and they do not always fulfill the distributive law.

1.3 Interval Vectors and Matrices

We define interval vectors and interval matrices in the natural way, i.e., having real or complex

intervals instead of real or complex numbers as elements. The sets of alln−dimensional real or

complex interval vectors are denoted byIRn or ICn, respectively. In the same manner, the sets

of all m × n real or complex interval matrices are denoted byIRm×n or ICm×n, respectively.

We use the notation

[x] := ([xi])i=1,··· ,n := ([x1], [x2], · · · , [xn])⊤ for [x] ∈ IR
n or IC

n

and

[A] := ([aij ])i=1,··· ,m
j=1,··· ,n

:=





[a11] · · · · · · [a1n]

· ·
· ·
· ·

[am1] · · · · · · [amn]





for [A] ∈ IR
m×n or IC

m×n.

Let D ⊆ Rn, we denote the set of all interval vectors inD by I(D)

I(D) := {[x] ∈ IR
n | [x] ⊆ D}
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All arithmetic operations on interval matrices and vectorsarise from interval operations.

The midpoint and the width of an interval vector or matrix arealso defined by component-wise

definitions. For example, mid([x]) := (mid([x]i)), and wid([A]) := (wid([a]ij)), for [x] ∈ IRn,

[A] ∈ IRm×n.

For interval matrix and vector additions, we have the associative and commutative laws

[A] + ([B] + [C]) = ([A] + [B]) + [C]

[A] + [B] = [B] + [A]

for [A], [B], [C] ∈ IRm×n or∈ ICm×n. Clearly we do not have the associative and commutative

laws for interval matrix and vector multiplications in general. However, we still have the sub-

distributive law

[A] · ([B] + [C]) ⊆ [A] · [B] + [A] · [C]

([B] + [C]) · [A] ⊆ [B] · [A] + [C] · [A],

for suitable dimensions of the interval matrices or vectors. If A is a real matrix of the proper

size we have the distributive laws

A · ([B] + [C]) = A · [B] + A · [C]

([B] + [C]) · A = [B] · A + [C] · A.

Let [A], [B], [C] ∈ IRn×n, [x] ∈ IRn and[α] ∈ IR, the product is no longer associative,

([A] · [B]) · [C] 6= [A] · ([B] · [C]),

or commutative with respect to scalars

[α] · ([A] · [x]) 6= [A] · ([α] · [x]).

Definition 1.12. Let [A] ∈ IR
n×n, then the Ostrowsky matrix (comparison matrix)〈[A]〉 is

defined as

〈[A]〉ii = 〈[aii]〉
〈[A]〉ij = −|[aij ]|, i 6= j, (i, j = 1, · · · , n)

where

〈[aii]〉 :=

{
0 aii ≤ 0 ≤ aii

min(|aii|, |aii|) otherwise
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Definition 1.13. An interval matrix[A] ∈ IRn×n is called H-matrix iff there exists a vector

R
n ∋ u > 0 such that

〈[A]〉u > 0.

Theorem 1.1. (Neumaier[42]) Let [A] ∈ IRn×n and suppose thaťA :=mid([A]) is regular.

Then the following conditions are equivalent:

1. [A] is strongly regular;

2. [A]⊤ is strongly regular ([A]⊤ is the transpose of[A]);

3. Ǎ−1 · [A] is regular;

4. ̺(|Ǎ|·rad([A])) < 1 (̺() is the spectral radius);

5. Ǎ−1 · [A] is an H-matrix.

Proof: (see Neumaier[42] ).

Further details on the properties of interval matrix operations can be found in[1, 42].

1.4 Interval Functions

Another advantage offered by interval mathematics is the ability to compute guaranteed bounds

on the range functions defined over interval domains. Therefore, we can compute bounds on

the output of a function with uncertain arguments.

Given a real functionf of real variablesx = (x1, x2, · · · , xn)⊤ which belong to the intervals

[x] = ([x1], [x2], · · · , [xn])⊤, the ideal interval extension off would be a function that provides

the exact range off in the domain([x1], [x2], · · · , [xn])⊤.

Definition 1.14. (Exact Range)The exact range off : D ⊆ Rn −→ R on [x] ⊆ D is denoted

by

f([x]) := {f(x)|x ∈ [x]}.

An interval function is an interval value that depends on oneor several interval variables.

Considerf as a real function of the real variablesx1, x2, · · · , xn andF as an interval function

of the interval variables[x1], [x2], · · · , [xn].

Definition 1.15. (Interval Extension) The interval functionF is an interval extension off if

F (x) = f(x), x ∈ D.



1.4 Interval Functions 11

Therefore, if the arguments ofF are degenerate intervals, then the result of computingF (x)

must be a degenerate interval equal tof(x). This definition assumes that the interval arithmetic

is exact. In practice, there are rounding errors, and the result of computingF is an interval that

containsf(x)

f(x) ∈ F ([x]).

To compute the range of the functionf , it is not enough to have an interval extensionF .

Moreover,F must be an inclusion function and must be inclusion monotonic.

Definition 1.16. An interval function is inclusion monotonic if[xi] ⊆ [yi] (i = 1, 2 · · · , n)

implies

F ([x1], [x2], · · · , [xn]) ⊆ F ([y1], [y2], · · · , [yn]).

Theorem 1.2. If F ([x]) is an inclusion monotonic interval extension of a real function f(x),

then

f([x]) ⊆ F ([x]); (1.16)

that is, the interval extensionF ([x1], [x2], · · · , [xn]) contains the range of values off(x1, x2, · · · , xn)

for all xi ∈ [xi] (i = 1, 2, · · · , n).

Proof: (see[13] ).

Example 1.1.Consider the functionf(x) = x · x, with [x] = [−1, 2].

It is easily seen that

f([x]) = f([−1, 2]) = [0, 4].

On the other hand

F ([x]) = F ([−1, 2]) = [x] · [x] = [−1, 2] · [−1, 2] = [−2, 4].

Hence the range obtained by computing the interval extensionF ([x]) is overestimating the exact

range off into [x].

A real-valued function may be defined by several equivalent arithmetic expressions. Math-

ematical equivalent expressions do not necessarily yield equivalent interval extensions. The

following example illustrate this point

Example 1.2.Consider the function

f(x) = x2 − 2x + 1 = x(x − 2) + 1 = (x − 1)2.
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Three possible interval extension functions are

F1([x]) = [x]2 − 2[x] + 1,

F2([x]) = [x]([x] − 2) + 1,

and

F3([x]) = ([x] − 1)2.

If we let [x] = [1, 2], then

F1([1, 2]) = [1, 2]2 − 2[1, 2] + 1 = [−2, 3],

F2([1, 2]) = [1, 2]([1, 2] − 2) + 1 = [−1, 1],

and

F3([1, 2]) = ([1, 2] − 1)2 = [0, 1].

Three mathematical equivalent expressions yield different answers. The true range off(x) over

x ∈ [1, 2] is [0, 1], and because[x] appears only once inF3, the bounds calculated using this

extension are tight.

The inclusion (1.16) is one of the basic results of interval analysis. Using (1.16) we can find

bounds on the range off(x) over[x] by just computing the interval extensionF ([x]). However,

the bounds thus found will not be sharp (due to the dependencyproblems, see examples 1.1,

1.2). Thus, one of the central problems in interval analysisis that of finding sharp bounds on

f([x]) [1, 42, 55], as will be shown in the next subsection.

1.4.1 Taylor Form

There are many types of methods to reduce the ”dependency” problem in interval arithmetic

[38, 39, 11, 13, 14, 22, 29]. In this section we will give one of these methods well-knownas

Taylor form (just the first-order form).

Let S ⊆ Rn be open,x, m ∈ S andS contains all the elements on the line segment joining

x, m. Let f : S ⊆ R
n −→ R be a real function of a vectorx = (x1, · · · , xn)⊤. Assume that

f is a differentiable function on the open setS. Then, there existsη = m + θ(x − m), with

0 ≤ θ ≤ 1, such that

f(x) = f(m) +

n∑

j=1

∂f

∂xj
(η)(xj − mj).
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Let F ′
j([x]) be an inclusion function for∂f/∂xj =: f ′

j, (j = 1, 2, · · · , n). Let x, m ∈ [x], then

η ∈ [x]. Therefore

f(x) ∈ f(m) +
n∑

j=1

F ′
j([x])([xj ] − mj) =: F ([x], m)

i.e.

f([x]) ⊆ f(m) +

n∑

j=1

F ′
j([x])([xj ] − mj) =: F ([x], m).

The interval functionF ([x], m) is an inclusion function forf(x), which we shall call first-order

Taylor form. For small widths of[x], this interval function often provides tighter enclosures

than the interval extension off .

Whenf has only one variable, the first-order Taylor form is given by

F ([x], m) := f(m) + F ′([x])([x] − m). (1.17)

Example 1.3.Consider the functionf(x) = x2 − 2x + 1, with x ∈ [1, 2].

It is easily seen that

f([x]) = f([1, 2]) = [0, 1].

On the other hand, the interval extension will give

F ([x]) = F ([1, 2]) = [−2, 3].

Using first-order Taylor form (1.17), wherem =mid([x]) = 1.5 andf(m) = f(1.5) = 0.25

F ([x], m) := 0.25 + (2[1, 2] − 2)([1, 2] − 1.5)

= 0.25 + [0, 2][−0.5, 0.5] = [−0.75, 1.25].

It is seen that

f([x]) ⊆ F ([x], m) ⊆ F ([x]).

In Chapter 3, we shall discuss in some detail a generalized interval arithmetic, which has

been proposed by Hansen [12], and show how to reduce the ”dependency” problem in real and

complex interval arithmetic.

1.5 Principles of Numerical Verification

The theory of interval arithmetic and appropriate algorithms are the bases of the automatic ver-

ification of numerical results. The easiest technique for computing verified numerical results
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is to replace any real or complex operation by its interval equivalent and to perform the com-

putations using interval arithmetic. This procedure leadsto reliable, verified results. However,

the diameter of the computed enclosure may be so wide to be practically useful. To get the

verified solution of the non-interval problems, a simple mechanism can be used. Compute the

approximation solution of the non-interval problems, and after that, its error (the error of the ap-

proximation solution) is enclosed using machine interval arithmetic. Probably, the width of the

error interval is less than a desired accuracy; in this case the verified enclosure of the solution is

given by the sum of the approximation and the enclosure error. Otherwise, the approximation

may be refined by adding the midpoint of the error interval andrepeating the process.

Many algorithms for numerical verification are based on the application of well-known fixed

point theorems. One of these is the Brouwer’s fixed point theorem[42].

Theorem 1.3. (Brouwer’s fixed point theorem) Letf : Rn −→ Rn be a continuous mapping

andX ⊆ Rn a non-empty, closed, convex and bounded set. Iff(X) ⊆ X, thenf has at least

one fixed pointx∗ ∈ X.

Assume thatf : Rn −→ Rn is a continuous function andF is an interval extension off .

Since an interval vector[x] ∈ IR
n is a closed and bounded convex set inR

n. If f([x]) ⊆ [x] then

it follows from the fixed point theorem thatf has a fixed point in[x]. Sincef([x]) ⊆ F ([x]),

it follows that the conditionF ([x]) ⊆ [x], which can be checked automatically by a computer

program, also implies existence of a fixed point off in [x]. Algorithms which use fixed point

theorems in this way to prove existence are called ”self-validating algorithms”.

1.6 Machine Interval Arithmetic

Interval arithmetic as presented above requires exact arithmetic to compute the endpoints of the

resulting intervals. But if we want to implement interval arithmetic on a computer we have to

face the fact that computers support only finite sets of numbers. In general, these numbers are

represented in a semilogarithmic manner as fixed length floating-point numbers. A floating-

point or machine number is of the form

x = ±m · be = ±m1m2 · · ·ml · be;

herem is a signed mantissa of fixed lengthl, b is the base, ande is the exponent. The digits of

the mantissa are restricted to1 ≤ m1 ≤ b − 1, and0 ≤ mi ≤ b − 1, i = 2, · · · , l. Because
1
b
≤ m < 1, x is called a normalized floating-point number. Its exponent is bounded by
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emin ≤ e ≤ emax. Floating-point numbers are usually represented in binaryformat, i.e. with

baseb = 2. Let F be a set of machine numbers of the above type, floating-pointscreen. Then

the set of floating-point intervals overF is denoted by

IF = {[x] ∈ IR|x, x ∈ F}.

This definition means that a machine interval[x] ∈ IF denotes the continuum of numbers lying

between its bounds. It is a very important fact that, thoughx andx are elements of the basic

number screenF , [x] contains not only every floating-point number betweenx andx, but also

every real number within that range. To compute with a computer representation of intervals,

we need a rounding

3 : IR −→ IF

which maps an interval to a machine interval. This interval rounding should satisfy the follow-

ing conditions:

3[x] = [x] for all [x] ∈ IF

[x] ⊆ [y] =⇒ 3[x] ⊆ 3[y] for all [x], [y] ∈ IR

3(−[x]) = −3[x] for all [x] ∈ IR

The first condition guarantees that elements of the screen are not changed by a rounding. The

second means that a rounding is monotone, and the third meansthat the rounding is antisym-

metric. Moreover the following condition must be satisfied

[x] ⊆ 3([x]) for all [x] ∈ IR.

This assumption is quite natural since the rounded image of an interval should always contain

its original. One distinguishes the following rounding forreal numbers

2 : Roundingto the nearestelement ofF

▽ : Roundingtoward −∞ or downwardlydirected

△ : Roundingtoward + ∞ or upwardlydirected.

The interval rounding3 can then be achieved by rounding the upper bound toward+∞ and the

lower bound toward−∞.

If ◦ ∈ {+,−, ·, /} is an arithmetic operation and[x], [y] ∈ IF , the corresponding floating-

point interval operation3◦ : IF × IF −→ IF is defined by

[x] 3◦ [y] := 3([x] ◦ [y]).
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A complex floating-point intervalis an interval whose real and imaginary parts are floating-

point intervals. The set of complex floating-point intervals is denoted by

IC := {[z] ∈ IC|[x], [y] ∈ IF}.

For a more detailed discussion of how to implement a floating-point arithmetic for complex

intervals and for real and complex interval vectors and matrices see[30].

There are many libraries that implement a machine interval arithmetic with the rounding

requirements[26]. One can citeC-XSC (C++ Class Library for eXtended Scientific Computing)

[21, 16, 17], filib [32, 33, 15]and IntLab(Interval Laboratory)[62]. In this thesis, we selected

the C-XSC class library as the implementation environment for our algorithms. An overview of

C-XSC will be given in Section 1.8.

1.7 Interval Linear System of Equations

Solving linear systems is one of the basic problems in numerical algebra. In this section we will

give an overview of verification algorithms for linear systems and interval linear systems. These

algorithms are based on a Newton method for an equivalent fixed point problem[59, 60, 63].

1.7.1 Linear Systems

Consider a linear system of equations given by

Ax = b (1.18)

whereA ∈ Rn×n andx, b ∈ Rn. Finding a solution of the systemAx = b is equivalent to

finding a zero off(x) = Ax− b. A well-know method for solving this equation is finding fixed

points of the mapg(x) = x − Y f(x), whereY ∈ Rn×n is a non-singular matrix. We have the

relation

f(x) = 0 ⇔ g(x) = x.

Assume thatf is differentiable. UsingY = (f ′(x))−1 in the fixed point operatorg yields the

method of Newton in the iteration scheme

x(l+1) = x(l) − A−1(Ax(l) − b), l = 0, 1, · · · . (1.19)

Here,x(0) is some arbitrary starting value. The inverse ofA is, in general, not exactly known.

Instead of (1.19), we use the following iteration

x(l+1) = x(l) − R(Ax(l) − b), l = 0, 1, · · · , (1.20)
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whereR ≈ A−1 is an approximation inverse ofA.

We replace the real iteratesx(l) by interval vectors[x(l)] ∈ IR
n. According to Brouwer’s

fixed point theorem, if there exists an indexl with [x(l+1)] ⊆ [x(l)], then Equation (1.20) has at

least one fixed pointx ∈ [x(l)]. If, moreover,R is regular, then this fixed point is also a solution

of (1.18). Because of the property (1.12) the interval iteration [x(l)]−R(A[x(l)]− b) is useless

since its width generally is larger than the width of[x(l)]

wid([x(l+1)]) = wid([x(l)]) + wid(R(A[x(l)] − b)) ≥ wid([x(l)]). (1.21)

In general, the subset relation will not be satisfied. For this reason, the right hand side of

equation (1.20) has been modified to

x(l+1) = Rb + (I − RA)x(l), l = 0, 1, · · · , (1.22)

whereI denote then × n identity matrix.

Theorem 1.4. (Rump[58]) Let Ax = b be a linear system, whereA ∈ Rn×n andx, b ∈ Rn

and letR ∈ Rn×n. For [x(0)] ∈ IRn we define the iteration

[x(l+1)] = Rb + (I − RA)[x(l)], l = 0, 1, · · · . (1.23)

If there exists an indexl with [x(l+1)]
◦⊂ [x(l)], then the matricesR andA are regular, and there

is a unique solutionx of the systemAx = b with x ∈ [x(l+1)].

Proof: (see Rump[58] ).

The above theorem tells us, that if the inclusion[x(l+1)]
◦⊂ [x(l)] is satisfied, then the spectral

radius ofI −RA is less than one (̺(I −RA) < 1), the matricesR andA are regular, and there

is a unique solution of the system. But, with some practical examples, the convergence of the

iteration (1.23) is decreasing, and the inclusion[x(l+1)]
◦⊂ [x(l)] is never satisfied. To illustrate

this point, we will give an example.

Example 1.4. Let 3x = 2 be the one-dimensional system. The exact solution for this system is

x∗ = 2/3. Using theorem 1.4, whereR = 0.3 ≈ (A−1 = 1/3),

[x(l+1)] = Rb + (I − RA)[x(l)], l = 0, 1, · · ·
[
x(l+1)

]
= 0.6 + (1 − 0.9)[x(l)], l = 0, 1, · · · .

Starting with[x(0)] = [0.5, 0.7],

[x(1)] = 0.6 + [0.05, 0.07] = [0.65, 0.67]
◦⊂ [0.5, 0.7] = [x(0)],
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i.e. x∗ ∈ [0.65, 0.67].

But if we start with[x(0)] = [0.5, 0.6],

[x(1)] = 0.6 + [0.05, 0.06] = [0.65, 0.66] 6⊆ [0.5, 0.6] = [x(0)]
[
x(2)
]

= 0.6 + [0.065, 0.066] = [0.665, 0.666] 6⊆ [0.65, 0.66] = [x(1)]

· · ·
· · ·

[
x(l)
]

= [0.666 · · ·65, 0.66 · · ·66].

This means[x(l+i)] 6⊆ [x(l)] for everyi, l ∈ N, whereN denotes the set of all integer numbers.

For the purpose of obtaining an inclusion even in those cases, the epsilon inflation or

ǫ−inflation has been introduced in[58]. Theǫ−inflation of a real floating-point interval[x] ∈
IF is defined by

[x] 1 ǫ :=

{
[x] + [−ǫ, ǫ] · wid([x]) if wid([x]) 6= 0

[x] + [−xmin, xmin] otherwise,
(1.24)

wherexmin denotes the smallest positive element of the floating-pointsystemF.

Theorem 1.5. (Rump[63]) Define[C] ∈ IRn×n and [z] ∈ IRn as

[z] := 3 (R · b) ,

[C] := 3 (I − R · A) .

For [x(0)] ∈ IRn define the iteration

[x(l+1)] := [z] 3+ [C] 3· ([x(l)] 3+ [E(l)]), l = 0, 1, · · · (1.25)

with [E(l)] ∈ IRn, liml→∞[E(l)] = [E] ∈ IRn, 0 ∈ [
◦

E]1. The following is equivalent

1. For every[x(0)] ∈ IRn existsl ∈ N with

[z] 3+ [C] 3· ([x(l)] 3+ [E(l)])
◦⊂ [x(l)].

2. ̺(|[C]|) < 1, (̺(C) is the spectral radius ofC).

Proof: (see Rump[63] ).

1[
◦

E] is the interior of[E]
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Example 1.5. We solve example 1.4 by usingǫ−inflation. Using theorem 1.5, whereR =

0.3 ≈ (A−1 = 1/3). Let [E(l)] = [−0.1, 0.1], l = 0, 1, . . . . We start with[x(0)] = [0.5, 0.6]

[x(1)] = [0.5, 0.6] + [−0.1, 0.1] = [0.4, 0.7]
[
x(2)
]

= 0.6 + 0.1[0.4, 0.7] = [0.64, 0.67]
◦⊂ [0.4, 0.7] = [x(1)],

i.e. x∗ ∈ [0.64, 0.67] and̺(|[C]|) = ̺(|I − RA|) = ̺(0.1) < 1.

Instead of solving the system (1.18) directly. We solve the systemAy = d, whered = b − Ax̃

is the residual ofAx̃, andx̃ is the approximation solution ofAx = b. Since

A(x̃ + y) = Ax̃ + b − Ax̃ = b.

Thenx̃ + y is exact solution ofAx = b. Applying Equation (1.22) to the systemAy = d yields

y(l+1) = R(b − Ax̃)︸ ︷︷ ︸
=:z∈Rn

+ (I − RA)︸ ︷︷ ︸
=:C∈Rn×n

y(l), l = 0, 1, · · · (1.26)

Theorem 1.6. (Rump[60]) Let A ∈ Rn×n, b ∈ Rn be given,R ∈ Rn×n, [y] ∈ IRn, x̃ ∈ Rn

and let[z] ∈ IRn, [C] ∈ IRn×n be defined by

[z] := 3 (R · (b − A · x̃)) ,

[C] := 3 (I − R · A) .

Define[v] ∈ IRn by means of the following Einzelschrittverfahren:

1 ≤ i ≤ n : [vi] = {3 ([z] + [C] · [u])}i where [u] := ([v1], · · · , [vi−1], [yi], · · · , [yn])
⊤.

If [v]
◦⊂ [y], thenR andA are regular, and the unique solutionx∗ = A−1b of A · x = b satisfies

x∗ ∈ x̃ + [v].

Proof: (see Rump[60] ).

Algorithm 1.1. Linear Systems (Rump’s method)

1. Input { A ∈ Rn×n, b ∈ Rn }
2. Compute an approximation inverseR (R ≈ A−1) of A with some standard algorithm

(see e.g.[10])

3. Compute an approximate solution of the equation (1.18)

x̃ = 2 (R · b) Optionally improvẽx by a residual iteration.

Continued on next page
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Algorithm 1.1 – continued from previous page

4. Compute an enclosure[C]

[C] := 3 (I − R · A)

5. Compute an enclosure[z]

[z] := 3 (R · (b − A · x̃))

6. Verification step

[v] := [z]

max= 1

repeat

[v] := [v] 1 ǫ ǫ-inflation

[y] := [v]

for i = 1 to n do { Einzelschrittverfahren}
[vi] = 3 ([zi] + [C(Row(i))] · [v])

max++

until [v]
◦⊂ [y] or max≥ 10

7.

if [v]
◦⊂ [y] then {

A andR are non-singular, and the solutionx∗ of Ax = b exists and is uniquely

determined, andx∗ ∈ [v] = x̃ + [v] }
else {

Err:= ” no inclusion computed; the matrixA is singular matrix or

is ill conditioned” }
8. Output { Inclusion solution[v] and Error code Err}

1.7.2 Over- and Under-determined Linear Systems

Let A ∈ Rm×n andb ∈ Rm. Form > n, the linear system

Ax = b

is over-determined and has no solution in general. Therefore, we are interested in a vector

x ∈ Rn which minimizes the Euclidian norm||b − Ax|| of the residual vectorb − Ax. If

m < n, we have an under-determined system. In general, there are infinitely many solutions

and we look for a vectory ∈ Rn for which Ay = b and ||y|| is minimal. If the rank ofA
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is maximal, the solution for both systems is uniquely determined. It is well-known (see e.g.

[18, 66, 70, 50, 67, 59]) that if

m > n and rank(A) = n then x is the solution ofA⊤Ax = A⊤b (1.27)

m < n and rank(A) = m then y = A⊤x, where AA⊤x = b (1.28)

whereA⊤ is the transpose matrix. We could now proceed to computeA⊤A , AA⊤ andA⊤b and

to solve the resulting square systems using the method presented in subsection 1.7.1. However,

as is well known,A⊤A andAA⊤ usually have very bad conditions. Moreover, on the computer

A⊤A or AA⊤ can only be obtained with roundoff errors or as an interval matrix (see subsection

1.7.3), which makes the solution of this systems difficult. In order to find guaranteed enclosures

of the solutions to the above (original) non-square systems, Rump[59] proposed to consider the

following large square(m + n) × (m + n) systems

(
A −I

0 A⊤

)(
x

y

)
=

(
b

0

)
for m > n, I is m × m identity matrix (1.29)

(
A⊤ −I

0 A

)(
x

y

)

=

(
0

b

)

for m < n, I is n × n identity matrix (1.30)

instead of solving (1.27) and (1.28).

Theorem 1.7. (Rump[59]) Let A ∈ R
m×n, b ∈ R

m, m > n. DefineB ∈ R
(m+n)×(m+n) to

be a square matrix in (1.29), and leth ∈ Rm+n to be the vector(b, 0)⊤2 and let ũ ∈ Rm+n,

[u] ∈ IR
m+n, R ∈ R

(m+n)×(m+n). Let [z] ∈ IR
m+n, [C] ∈ IR

(m+n)×(m+n) be defined by

[z] := 3 (R · (h− B · ũ)) ,

[C] := 3 (I − R · B) , I is (m + n) × (m + n) identity matrix.

Define[v] ∈ IRm+n by means of the following Einzelschrittverfahren:

1 ≤ i ≤ m + n : [vi] = {3 ([z] + [C] · [uu])}i

where[uu] := ([v1], · · · , [vi−1], [ui], · · · , [um+n])⊤.

If [v]
◦⊂ [u], then there is anx∗ ∈ x̃ + [x] with the following property:

For any x ∈ R
n with x 6= x∗ holds ||b − Ax∗|| < ||b − Ax||,

2(b, 0)⊤ ∈ R(m+n) is a vector such that the firstm elements are those ofb and the remainingn components

are zero.
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wherex̃ and [x] are the firstn components of̃u and [v], respectively. Further the matrixA has

maximum rankn.

Proof: (see Rump[59] ).

Theorem 1.8. (Rump[59]) Let A ∈ R
m×n, b ∈ R

m, m < n. DefineB ∈ R
(m+n)×(m+n) to

be a square matrix in (1.30), and leth ∈ Rm+n to be the vector(0, b)⊤ and let ũ ∈ Rm+n,

[u] ∈ IR
m+n, R ∈ R

(m+n)×(m+n). Let [z] ∈ IR
m+n, [C] ∈ IR

(m+n)×(m+n) be defined by

[z] := 3 (R · (h− B · ũ)) ,

[C] := 3 (I − R · B) , I is (m + n) × (m + n) identity matrix.

Define[v] ∈ IRm+n by means of the following Einzelschrittverfahren:

1 ≤ i ≤ m + n : [vi] = {3 ([z] + [C] · [uu])}i

where[uu] := ([v1], · · · , [vi−1], [ui], · · · , [um+n])⊤.

If [v]
◦⊂ [u], then there is any∗ ∈ ỹ + [y] with the following properties:

1. Ay∗ = b.

2. if Ay = b for somey ∈ Rn with y 6= y∗, then||y∗|| < ||y||,

whereỹ and [y] are the lastn components of̃u and [v], respectively. Further the matrixA has

maximum rankm .

Proof: (see Rump[59] ).

Now we will give the following algorithms for both cases (over- and under-determined)

Algorithm 1.2. Over-determined Linear Systems

1. Input { A ∈ R
m×n, b ∈ R

m }
2. From (1.29), define

B :=

(
A −I

0 A⊤

)
, Y :=

(
x

y

)
, h :=

(
b

0

)

3. Solve the systemsBY = h using algorithm 1.1

4. Vectorx from the vectorY is the desired enclosure

5. Output { The firstn components from the inclusion solution[v] and Error code Err}
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Algorithm 1.3. Under-determined Linear Systems

1. Input { A ∈ Rm×n, b ∈ Rm }
2. From (1.30), define

B :=

(
A⊤ −I

0 A

)

, Y :=

(
x

y

)

, h :=

(
0

b

)

3. Solve the systemsBY = h using algorithm 1.1

4. Vectory from the vectorY is the desired enclosure

5. Output { The lastn components from the inclusion solution[v] and Error code Err}

1.7.3 Interval Linear Systems

The method described in subsection 1.7.1 demands exactly representable ofA andb on the

computer. But, in practical applications the input data arenot know with certainty, but are

bounded by intervals. Replacing all input data with small intervals in the linear systemAx = b,

the new system will be defined as interval linear systems and will be written as

[A]x = [b], (1.31)

where[A] ∈ IRn×n and[b] ∈ IRn. The set of all possible solutions to (1.31) is given by

∑
([A], [b]) := {x ∈ R

n|A · x = b for some A ∈ [A], b ∈ [b]}.

The set
∑

([A], [b]) may have a very complicated structure, and is, in general, a non-convex

bounded set. As
∑

([A], [b]) is extremely difficult to find, it would be a more realistic task to

find an interval vector[y] ∈ IRn which contains
∑

([A], [b]). There are number of methods to

find an interval vector which contains the solution set[42]. We will extend Rump’s method for

linear systems, which has been described in the previous subsection. The iteration (1.26) will

be fined in the interval form as follows

[y(l+1)] = R([b] − [A]x̃)︸ ︷︷ ︸
=:[z]∈IRn

+ (I − R[A])︸ ︷︷ ︸
=:[C]∈IRn×n

y(l), l = 0, 1, · · · , (1.32)

whereR ∈ Rn×n is the approximate inverse of the midpoint of[A], R ≈ (mid([A]))−1.

Theorem 1.9. (Rump[60]) Let [A] ∈ IRn×n, [b] ∈ IRn be given,R ∈ Rn×n, [y] ∈ IRn,

x̃ ∈ Rn and define

[z] := 3 (R · ([b] − [A] · x̃)) ∈ IR
n, [C] := 3 (I − R · [A]) ∈ IR

n×n, I is an identity matrix.
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Define[v] ∈ IRn by means of the following Einzelschrittverfahren:

1 ≤ i ≤ n : [vi] = {3 ([z] + [C] · [u])}i where [u] := ([v1], · · · , [vi−1], [yi], · · · , [yn])
⊤.

If [v]
◦⊂ [y], thenR and every matrixA ∈ [A] are regular, and for everyA ∈ [A], b ∈ [b] the

unique solutionx∗ = A−1b of A · x = b satisfiesx∗ ∈ x̃ + [v].

Proof: (see Rump[60] ).

Now we will give an algorithm (see[59]) for computing an inclusion of the solution of a

system of interval linear equations.

Algorithm 1.4. Interval Linear Systems (Rump’s method)

1. Input { [A] ∈ IRn×n, [b] ∈ Rn }
2. Initialization

b̌ :=mid([b]); Ǎ :=mid([A])

3. Compute an approximation inverseR (R ≈ Ǎ−1) of Ǎ with some standard algorithm

(see e.g.[10])

4. Compute an approximate mid-point solution

x̃ = 2
(
R · b̌

)
Optionally improvẽx by a residual iteration.

5. Compute an enclosure[C]

[C] := 3 (I − R · [A])

6. Compute an enclosure[z]

[z] := 3 (R · ([b] − [A] · x̃))

7. Verification step

[v] := [z]

max= 1

repeat

[v] := [v] 1 ǫ ǫ-inflation

[y] := [v]

for i = 1 to n do { Einzelschrittverfahren}
[vi] = 3 ([zi] + [C(Row(i))] · [v])

max++

until [v]
◦⊂ [y] or max≥ 10

8.

Continued on next page
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Algorithm 1.4 – continued from previous page

if [v]
◦⊂ [y] then {

all A ∈ [A] are non-singular, and the solutionx∗ of Ax = b, b ∈ [b] exists and is

uniquely determined, andx∗ ∈ [v] = x̃ + [v] holds}
else {

Err:= ” no inclusion computed; the matrix[A] contains a singular matrix or

is ill conditioned” }
9. Output { Outer solution[v] and Error code Err}

1.8 The C-XSC Library

C-XSC is a tool for the development of numerical algorithms delivering highly accurate and

automatically verified results. It provides a large number of predefined operators, functions

and numerical data types. The types are implemented as C++ classes. Thus, C-XSC allows

high-level programming of numerical applications in C++[68]. It is available for personal

computers, workstations and mainframes with a C++ compiler.

C-XSC supports additional features for safe programming such as index range checking

for vectors and matrices. It also checks for numerical errors such as overflow, underflow, loss

of accuracy, illegal arguments, etc. C-XSC provides the dotprecision data types to obtain an

evaluation with maximum accuracy.

The C-XSC problem solving library (C++ Toolbox for verified computing[10]) is a col-

lection of routines for standard problems of numerical analysis producing guaranteed results of

high accuracy, like evaluation of polynomials, nonlinear systems of equations, linear systems

of equations, etc.
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Chapter 2

Overview of Parametric Interval Systems

In many practical applications[7, 40, 41, 65, 31], parametric interval systems involving un-

certainties in the parameters have to be solved. In most engineering design problems, linear

prediction problems, models in operations research, etc.[45] there are usually complicated

dependencies between coefficients. The main reason for thisdependency is that the errors in

several different coefficients maybe caused by the same factor [46, 27, 51, 57]. More precisely,

consider a parametric system

A(p) · x = b(p), (2.1)

whereA(p) ∈ Rn×n andb(p) ∈ Rn depend on a parameter vectorp ∈ Rk. The elements of

A(p) andb(p) are, in general, nonlinear functions ofk parameters

aij(p) = aij(p1, · · · , pk),

bi(p) = bi(p1, · · · , pk), (i, j = 1, · · · , n).

}

(2.2)

The parameters are considered to be unknown or uncertain andvarying within prescribed inter-

vals

p ∈ [p] = ([p1], · · · , [pk])
⊤. (2.3)

Whenp varies within a range[p] ∈ IRk, the set of solution to allA(p) · x = b(p), p ∈ [p], is

called parametric solution set, and is represented by

∑p
:=
∑

(A(p), b(p), [p]) := {x ∈ R
n|A(p) · x = b(p) for somep ∈ [p]}.

Since the solution set has a complicated structure (does noteven need to be convex), which is

difficult to find, one looks for the interval hull3(
∑

) where
∑

is a nonempty bounded subset

27
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of Rn. For
∑ ⊆ Rn, define3 : PRn −→ IRn by1

3(
∑

) := [inf
∑

, sup
∑

] = ∩{[x] ∈ IR
n|
∑

⊆ [x]}.

The calculation of3(
∑

) is also quite expensive.

The non-parametric interval matrix and vector, which correspond and are obtained from the

parametric matrix and vector, are denoted by

A([p]) := 3
(
A(p) ∈ R

n×n|p ∈ [p]
)
,

b([p]) := 3 (b(p) ∈ R
n|p ∈ [p])

respectively.

Hence,

A([p]) · x = b([p]) (2.4)

is the non-parametric system corresponding to the parametric one (the elements ofA([p]), b([p])

are assumed to be independent), and
∑g

:=
∑

(A([p]), b([p])) := {x ∈ R
n|A · x = b for someA ∈ A([p]), b ∈ b([p])}

is the non-parametric solution set corresponding to the parametric one. The parametric solution

set is a subset of the corresponding non-parametric solution set and has often a much smaller

volume than the latter.
∑

(A(p), b(p), [p]) ⊆
∑

(A([p]), b([p])). (2.5)

Since it is quite expensive to obtain
∑p or 3(

∑p), it would be a more realistic task to find an

interval vector[y] ∈ IRn such that[y] ⊇ 3(
∑p) ⊇ ∑p, and the goal is[y] to be as narrow as

possible.

In Section 2.1 we will give an overview for the parametric system, whose elements are

affine-linear. In Section 2.2 the case where the elementsaij and bi, (i, j = 1, · · · , n) are

nonlinear functions inp will be studied .

2.1 Parametric Linear Systems, whose Elements are Affine-

Linear Functions of Interval Parameters

Probably computing inclusion for
∑

(A([p]), b([p])) with data dependencies was first considered

by Jansson[19]. He treated symmetric and skew-symmetric matrices as well as dependencies

1PRn is the power set overRn. Given a setS, the power set ofS is the set of all subset ofS
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in the right hand side. His methods are based on the inclusionmethods of Rump[58, 59, 60]

and permit to estimate the sharpness of the calculated bounds.

When applying Rump’s theorem 1.9, which is described in Section 1.7, page 23, it is

assumedA ∈ Rn×n andb ∈ Rn to vary component-wise independently within[A] and [b], re-

spectively. In practical application this need not to be thecase. We may have further constraints

on the matrices within[A] possibly in connection with[b]. A simple example are symmetric

matrices, that is onlyA ∈ [A] with A = A⊤ (A⊤ is the transpose ofA) are considered. For this

reason, Jansson[19] modified Rump’s theorem for some special matrices like symmetric and

skew-symmetric matrices.

Theorem 2.1. (Jansson[19]) Let {Asym} := {A ∈ R
n×n|A ∈ [A], A symmetric} be a sym-

metric interval matrix2 ({Asym} /∈ IRn×n is not an interval matrix),R ∈ Rn×n, x̃ ∈ Rn and

[b] ∈ IRn.

1) Let [z] ∈ IRn be defined by

[zi] :=

n∑

µ=1

riµ([bµ] − [aµµ]x̃µ) −
n∑

ν, µ = 1
µ < ν

(riµx̃ν + riν x̃µ)[aµν ] (2.6)

for i = 1, · · · , n then

[z] = 3 ({R · (b − A · x̃)|A ∈ {Asym}, b ∈ [b]}) .

2) For [y] ∈ IRn let [v] ∈ IRn be defined by

[v] := [z] + (I − R · [A]) · [y].

If [v]
◦⊂ [y], thenR and allA ∈ {Asym} are non-singular and

3(
∑

({Asym}, [b])) ⊆ x̃ + [v] (2.7)

where
∑

({Asym}, [b]) := {x ∈ Rn|Ax = b, A ∈ {Asym}, b ∈ [b]}.

Proof: (see Jansson[19] ).

The following algorithm is a modification of Rump’s algorithm (1.4) for symmetric interval

matrices. This algorithm computes an interval vector[v] ∈ IRn andx̃ ∈ Rn satisfying (2.7).

2Then × n matrixA is called skew-symmetric ifA⊤ = −A.
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Algorithm 2.1. Interval Linear Systems with Symmetric Matrices and Dependencies

1. Input { [A] ∈ IRn×n, [b] ∈ IRn }
2. Initialization

b̌ :=mid([b]); Ǎ :=mid([A])

3. Compute an approximation inverseR (R ≈ Ǎ−1) of Ǎ with some standard algorithm

(see e.g.[10])

4. Compute an approximate mid-point solution

x̃ = 2
(
R · b̌

)
; Optionally improvẽx by a residual iteration.

5. Compute an enclosure[C]

[C] := 3 (I − R · [A])

6. Compute an enclosure[z] by formula (2.6)

7. Verification step

[v] := [z]

max= 1

repeat

[v] := [v] 1 ǫ ǫ-inflation

[y] := [v]

for i = 1 to n do { Einzelschrittverfahren}
[vi] = 3 ([zi] + [C(Row(i))] · [v])

max++

until [v]
◦⊂ [y] or max≥ 10

8.

if [v]
◦⊂ [y] then {

all A ∈ {Asym} are non-singular and the solutionx∗ of Ax = b, b ∈ [b] exists and is

uniquely determined andx∗ ∈ [v] = x̃ + [v] }
else {

Err:= ” no inclusion computed” }
9. Output { Outer solution[v] and Error code Err}

In [7] Rump’s fixed-point iteration is reformulated[56], Dessombz[7] solved the non-

parametric interval system, and also took the dependence between the parameters into account.
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He has written[A] ∈ IRn×n and[b] ∈ IRn as follows

[A] = Ǎ +

N∑

i=1

[ζi]A
(i), Ǎ = mid([A]) (2.8)

[b] = b̌ +
P∑

j=1

[βj ]b
(j), b̌ = mid([b]), (2.9)

whereN andP are the number of interval parameters to be taken into account when building the

interval matrix[A] and the interval vector[b]. [ζi], [βj ] are independent intervals. His algorithm

relies on Rump’s algorithm. Consider a system in which only one parameter is an interval, then

[A] = Ǎ + [ζ ]A(1),

is the equation of the system, where[ζ ] is an interval. His algorithm is as follows:

Algorithm 2.2. Interval linear systems (Dependencies are taken into account)

1. Input { [A] ∈ IRn×n, [b] ∈ IRn }
2. Initialization

b̌ :=mid([b]); Ǎ :=mid([A])

3. Compute an approximation inverseR (R ≈ Ǎ−1) of Ǎ with some standard algorithm

(see e.g.[10])

4. Compute an approximate mid-point solution

x̃ = 2
(
R · b̌

)
; Optionally improvẽx by a residual iteration.

5. B = 2
(
Ǎ−1 · A(1)

)
.

6. Compute an enclosure[C]

[C] := 3 (I − R · [A]) = 3 (−[ζ ] · B)

7. Compute an enclosure[z]

[z] := R · (b̌ − [A] · x̃) = −[ζ ]Ǎ−1A(1)Ǎ−1b̌ = −[ζ ]Bx̃

8. Verification step

[v] := [z]

max= 1

repeat

[v] := [v] 1 ǫ ǫ-inflation

[y] := [v]

for i = 1 to n do { Einzelschrittverfahren}
Continued on next page
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Algorithm 2.2 – continued from previous page

[vi] = 3 ([zi] + [C(Row(i))] · [v])

max++

until [v]
◦⊂ [y] or max≥ 10

9.

if [v]
◦⊂ [y] then {

all A ∈ [A] are non-singular and the solutionx∗ of Ax = b, b ∈ [b] exists and is

uniquely determined andx∗ ∈ [v] = x̃ + [v] }
else {

Err:= ” no inclusion computed, the matrix[A] contains a singular matrix or

is ill conditioned” }
10. Output { Outer solution[v] and Error code Err}

Probably the first general purpose method computing outer (and inner)3 bounds for3
∑p is

based on the fixed-point interval iteration theory developed by S. Rump. In[60] Rump ap-

plied the general verification theory for systems of nonlinear equations and explicity states the

method for solving parametric linear systems involving affine-linear dependencies. Rump has

consideredA(p) andb(p) depending linearly onp, that is:

There are vectorsw(i, j) ∈ R
k+1 for 0 ≤ i ≤ n, 1 ≤ j ≤ n with

{A(p)}ij = w(i, j)⊤ · p and {b(p)}j = w(0, j)⊤ · p (2.10)

where R
k+1 ∋ p := (1, p), p ∈ R

k.

Example 2.1. for A(p) ∈ R3×3, b(p) ∈ R3, p = (p1, p2)
⊤, pi ∈ [pi], (i = 1, 2)

A(p) =





3 + p1 p2 p1 + p2

p2 1 + 2p1 2p1 + 3p2

p1 + p2 p1 − p2 3p1



 , b(p) =





p1

2 + 3p2

2p1 + 3p2





w(1, 1) = (3, 1, 0)⊤ · · · · · ·
w(1, 2) = (0, 0, 1)⊤ w(2, 2) = (1, 2, 0)⊤

w(1, 3) = (0, 1, 1)⊤ w(2, 3) = (0, 2, 3)⊤ · · · · · ·
then{A(p)}11 = w(1, 1) · p = (3, 1, 0)⊤ · (1, p1, p2) = 3 + p1, {A(p)}12 = w(1, 2) · p =

(0, 0, 1)⊤ · (1, p1, p2) = p2, and so on. The same manner is forb(p).

3For more details about inner bounds see[48, 60, 19].
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Theorem 2.2. (Rump[60]) Let A(p) · x = b(p) with A(p) ∈ Rn×n, b(p) ∈ Rn, p ∈ Rk

be a parameterized linear system, whereA(p) and b(p) are given by (2.10). LetR ∈ R
n×n,

[y] ∈ IRn, x̃ ∈ Rn and define[z] ∈ IRn and [C] ∈ IRn×n by

[zi] :=

(
n∑

j,ν=1

{Rij · (w(0, j) − x̃ · w(j, ν))}⊤
)

· [p], (2.11)

[C] := I − R · A([p]), where I ∈ R
n×n is the identity matrix. (2.12)

Define[v] ∈ IRn by means of the following Einzelschrittverfahren:

1 ≤ i ≤ n : [vi] = {3 ([z] + [C] · [u])}i where [u] := ([v1], · · · , [vi−1], [yi], · · · , [yn])⊤.

If [v]
◦⊂ [y], thenR and every matrixA(p), p ∈ [p] are regular, and for everyp ∈ [p] the unique

solutionx∗ = A−1(p)b(p) of (2.1) satisfiesx∗ ∈ x̃ + [v].

Proof: (see Rump[60] ).

Now we will give a modification of Rump’s algorithm (1.4) for computing an inclusion of

the solution of a system of parametric interval linear equations

Algorithm 2.3. Parametric interval linear systems (Rump’s method)

1. Input { A(p) ∈ Rn×n, b(p) ∈ Rn, [p] ∈ IRk }
2. Initialization

b̌ := b(mid([p])); Ǎ := A(mid([p]))

3. Compute an approximation inverseR (R ≈ Ǎ−1) of Ǎ with some standard algorithm

(see e.g.[10])

4. Compute an approximate mid-point solution

x̃ = 2
(
R · b̌

)
Optionally improvẽx by a residual iteration.

5. Compute an enclosure[C]

[C] := 3 (I − R · A([p]))

6. Compute an enclosure[z] by formula (2.11)

7. Verification step

[v] := [z]

max= 1

repeat

[v] := [v] 1 ǫ ǫ-inflation

Continued on next page
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Algorithm 2.3 – continued from previous page

[y] := [v]

for i = 1 to n do { Einzelschrittverfahren}
[vi] = 3 ([zi] + [C(Row(i))] · [v])

max++

until [v]
◦⊂ [y] or max≥ 10

8.

if [v]
◦⊂ [y] then {

A(p) is non-singular for everyp ∈ [p] and the solutionx∗ of A(p)x = b(p) exists

and is uniquely determined andx∗ ∈ [v] = x̃ + [v] }
else {

Err:= ” no inclusion computed, the matrixA(p) contains a singular matrix or

is ill conditioned” }
9. Output { Outer solution[v] and Error code Err}

By using Rump’s method the matrixA(p) can be represented as a three dimensional matrix

from the orderRn×n×(k+1). In order to avoid the three dimensional numeric representation of the

parametric matrix, Popova[48, 49]used another equivalent representation. She has written each

individual component ofA(p), b(p) which is an affine-linear combination of thek parameters

in the following forms

aij(p) := a
(0)
ij +

k∑

ν=1

pνa
(ν)
ij , bi(p) := b

(0)
i +

k∑

ν=1

pνb
(ν)
i , (i, j = 1, 2, · · · , n). (2.13)

Denote thek + 1 numerical matrices

A(0) :=
(
a

(0)
ij

)
, A(1) :=

(
a

(1)
ij

)
, · · · , A(k) :=

(
a

(k)
ij

)
∈ R

n×n, (2.14)

and the corresponding numerical vectors

b(0) :=
(
b
(0)
i

)
, b(1) :=

(
b
(1)
i

)
, · · · , b(k) :=

(
b
(k)
i

)
∈ R

n.

Hence, the parametric matrix and the right-hand side vectorcan be represented by

A(p) = A(0) +
k∑

ν=1

pνA
(ν), b(p) := b(0) +

k∑

ν=1

pνb
(ν), (2.15)
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and the parametric system (2.1) can be rewritten in the following form

(
A(0) +

k∑

ν=1

pνA
(ν)

)
· x = b(0) +

k∑

ν=1

pνb
(ν), (2.16)

where the parametric vectorp varies within the range[p] ∈ IRk.

The important point in obtaining an enclosure of the parametric solution set is to obtain

sharp bounds for

[z] := 3 (R · (b(p) − A(p) · x̃) | p ∈ [p])

because a straightforward evaluationR · (b([p])−A([p]) · x̃) causes overestimation.[z], defined

in (2.11), provides a sharp estimation. Next, with the notations (2.15), Popova gave another

equivalent representation of (2.11)

[z] := 3 (R · (b(p) − A(p) · x̃) | p ∈ [p])

= 3(R · (b(0) +

k∑

ν=1

pνb
(ν) − (A(0) +

k∑

ν=1

pνA
(ν)) · x̃) | p ∈ [p])

= 3(R · (b(0) − A(0)x̃) +
k∑

ν=1

pν(Rb(ν) − RA(ν) · x̃) | p ∈ [p])

= R · (b(0) − A(0)x̃) +
k∑

ν=1

[pν ](Rb(ν) − RA(ν) · x̃).

As it is proven in[60], the inclusion[v]
◦⊂ [y] together with (2.11) — (2.13) implies

̺(|[C]|) < 1, consequently non-singularity ofR and everyA(p), p ∈ [p], thus the uniqueness of

the solution of (2.1). To our knowledge, Rump’s parametric iteration method and most methods

for solving parametric interval linear systems require strong regularity ofA([p]). Strong regu-

larity of a non-parametric interval matrix is introduced byNeumaier[42] (see Chapter 1 page

10). In[46], it is shown that, for some parametric matrices verifying̺(|[C]|) < 1 is false, while

R and everyA(p), p ∈ [p], are regular. For this reason, Popova[46] defined strong regularity of

a parametric interval matrix and gave conditions that characterize it.

Definition 2.1. A parametric matrixA(p) ∈ Rn×n, p ∈ [p] ∈ Rk is called strongly regular if

either of the following two matrices is regular

[B] := 3{A−1(p̌)A(p) | p ∈ [p]}, [B′] := 3{A(p)A−1(p̌) | p ∈ [p]} (2.17)

wherep̌ :=mid([p]).
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The parametric matrices, introduced in[46], show that the conditions for strong regularity

of a parametric matrix give better estimations for its regularity than the conditions based on

the non-parametric matrix. It is proven therein that to havea better sufficient condition for the

regularity of everyA(p), p ∈ [p], one has to compute

[C(p)] := 3 ({I − R · A(p) | p ∈ [p]})

= 3({I − R · (A(0) +
k∑

ν=1

pνA
(ν)) | p ∈ [p]})

= 3({I − R · A(0) −
k∑

ν=1

pνR · A(ν) | p ∈ [p]})

= I − R · A(0) −
k∑

ν=1

[pν ](R · A(ν))

instead of (2.12).

By using the above results Rump’s method was generalized in[47, 27].

Theorem 2.3. (Popova[47]) LetA(p) · x = b(p), with p ∈ R
k, be a parametric linear system,

whereA(p) and b(p) are given by (2.15). LetR ∈ Rn×n, [y] ∈ IRn, x̃ ∈ Rn and define

[z] ∈ IR
n and [C(p)] ∈ IR

n×n by

[z] := R · (b(0) − A(0)x̃) +

k∑

ν=1

[pν ](Rb(ν) − RA(ν) · x̃),

[C(p)] := I − R · A(0) −
k∑

ν=1

[pν ](R · A(ν)).

Define[v] ∈ IRn by means of the following Einzelschrittverfahren:

1≤ i≤n : [vi]={3 ([z] + [C(p)]·[u])}i, where[u] := ([v1],· · ·, [vi−1], [yi],· · ·, [yn])
⊤. (2.18)

If

[v]
◦⊂ [y], (2.19)

thenR and every matrixA(p), p ∈ [p] is regular, and for everyp ∈ [p] the unique solution

x∗ = A−1(p)b(p) of A(p) · x = b(p) satisfiesx∗ ∈ x̃ + [v].

Proof: (see Popova[47] ).

Now the modification of Rump’s algorithm (2.3) is:
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Algorithm 2.4. Parametric interval linear systems (Popova’s modification)

1. Input { A(p) ∈ Rn×n, b(p) ∈ Rn, [p] ∈ IRk }
2. Initialization

b̌ := b(mid([p])); Ǎ := A(mid([p]))

3. Compute an approximation inverseR (R ≈ Ǎ−1) of Ǎ with some standard algorithm

(see e.g.[10])

4. Compute an approximate mid-point solution

x̃ = 2(R · b̌) Optionally improvẽx by a residual iteration.

5. Compute an enclosure[C] for the set{I − R · A(p)|p ∈ [p]}
if (SharpC)then { sharp enclosure (Popova modification)}

[C] = 3

(
I − R · A(0) −∑k

ν=1[pν ](R · A(ν))
)

else { rough enclosure (Rump’s method)}
[C] = 3(I − R · A([p]))

6. Compute an enclosure[z] for the set{R · (b(p) − A(p) · x̃)|p ∈ [p]}
[z] = 3

(
R · (b(0) − A(0)x̃) +

∑k
ν=1[pν ](Rb(ν) − RA(ν) · x̃)

)

7. Verification step

[v] := [z]

max= 1

repeat

[v] := [v] 1 ǫ ǫ-inflation

[y] := [v]

for i = 1 to n do { Einzelschrittverfahren}
[vi] = 3([zi] + [C(Row(i))] · [v])

max++

until [v]
◦⊂ [y] or max≥ 10

8.

if [v]
◦⊂ [y] then {

A(p) is non-singular for everyp ∈ [p] and the solutionx∗ of A(p)x = b(p) exists

and is uniquely determined andx∗ ∈ [v] = x̃ + [v] }
else {

Err:= ” no inclusion computed, the matrixA(p) contains a singular matrix or

is ill conditioned” }
Continued on next page
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Algorithm 2.4 – continued from previous page

9. Output { Outer solution[v] and Error code Err}

The methods developed by Kolev[23, 24]are based on an expansion of the interval multi-

plication operation, but they are not designed as self-verification methods[61].

He has written the elements ofA(p) andb(p) in the following affine-linear forms

aij(p) = αij +

k∑

ν=1

αijνpν , αij, αijν ∈ R, (2.20)

bi(p) = βi +
k∑

ν=1

βiνpν , βi, βiν ∈ R, (i, j = 1, · · · , n). (2.21)

He putp, A(p), b(p) andx of the system (2.1) in centered form as follows

p = p̌ + u, u ∈ [u] = [−r, r], r = rad([p]), p̌ = mid([p]), (2.22)

A(p) = Ǎ + fA(u), Ǎ = A(p̌), (2.23)

b(p) = b̌ + f b(u), b̌ = b(p̌), (2.24)

x = x̃ + γ, γ ∈ [γ] ∈ IR
n, (2.25)

wherex̃ is the solution of

Ǎx = b̌.

He has rewritten the system (2.1) in the following equivalent form

Ǎγ + fA(u)x̃ + fA(u)γ − f b(u) = 0 (2.26)

from (2.23) and (2.24)

f
(A)
ij (u) =

k∑

ν=1

αijνuν ,

f
(b)
i (u) =

k∑

ν=1

βiνuν , (i, j = 1, · · · , n).

He introduced two matricesA(u) ∈ Rn×k andR ∈ Rn×n with elements

A
(u)
iν =

n∑

j=1

αijνx̃j − βiν , (2.27)

Rij =

k∑

ν=1

|αijν|rν, (i = 1, · · · , n). (2.28)
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UsingA(u), (2.26) can be rewritten in the following form

Ǎγ + fA(u)γ + A(u)u = 0, u ∈ [u].

Then

γ = −Ǎ−1fA(u)γ − Ǎ−1A(u)u, u ∈ [u]. (2.29)

Let B = −Ǎ−1 andC = BA(u) thus, (2.29) is equivalent to

γ = BfA(u)γ + Cu, u ∈ [u]. (2.30)

Let S([u]) denote the solution set of (2.30), i.e.

S([u]) := {γ : γ = BfA(u)γ + Cu, u ∈ [u]}. (2.31)

Obviously, the problem of finding an outer solution to (2.1),whereA(p) andb(p) are defined

by (2.20) and (2.21), respectively, is equivalent to determining an outer solution to (2.31). He

used the following notation

R
n×n ∋ D := |B|R, R

n ∋ c := |C|r,

and he considered the following real (non-interval) system

y = c + Dy,

or equivalently

(I − D)y = c, whereI is then × n identity matrix. (2.32)

With T := I − D, the system (2.32) takes the following form

Ty = c.

Lemma 2.1. Kolev [23] Assume that matrixT ∈ Rn×n is nonsingular. If the solutioñy to

(2.32) is positive, i.e.̃y > 0, then

̺(D) < 1.

Proof: (see Kolev[23] ).

After proofing the above lemma, he considered the following linear system

γ = [D]γ + [c], (2.33)

where[D] := [−D, D] and[c] := [−c, c]. Let
∑

denote the solution set of (2.33), i.e.
∑

:= {γ : γ = D′γ + c′, D′ ∈ [D], c′ ∈ [c]}. (2.34)
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Lemma 2.2. Kolev[23] The solution setS([u]) of (2.30) is contained in the set
∑

of (2.33),

i.e.

S([u]) ⊆
∑

.

Proof: (see Kolev[23] ).

The main result of his paper is the following theorem.

Theorem 2.4. (Kolev[23]) Assume that the matricešA andT are nonsingular. If the solution

ỹ to (2.32) is positive, i.e. if

ỹ > 0,

then

(i) the interval vector

[x] = x̃ + [h],

where

[h] = [−ỹ, ỹ]

is an outer solution to (2.1).

(ii) matrixA(p) is nonsingular for eachp ∈ [p].

Proof: (see Kolev[23] ).

Based on the above theorem, we can give the following algorithm:

Algorithm 2.5. Parametric interval linear systems (Kolev’s method)

1. Input { A(p) ∈ R
n×n, b(p) ∈ R

n, [p] ∈ IR
k }

2. Initialization

b̌ := b(mid([p])); Ǎ := A(mid([p])); r :=rad([p])

3. Compute an approximation inverseR (R ≈ Ǎ−1) of Ǎ with some standard algorithm

(see e.g.[10])

4. Set

B = −R

5. Compute the matrixR by formula (2.28)

6. Compute an approximate mid-point solution

x̃ = 2(R · b̌)
Continued on next page
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Algorithm 2.5 – continued from previous page

7. Compute the matrixA(u) by formula (2.27)

8. Compute the following help matrices and vectors

D = 2(|B| · R)

C = 2(B · A(u))

c = 2(|C| · r)
T = 2(I − D)

9. Compute an approximation inverseR1 (R1 ≈ T−1) with some standard algorithm

of T

10. Compute the approximate solutionỹ of the system (2.32)

ỹ = 2(R1 · c)
11.

if (ỹ > 0) then {
matrixA(p) is non-singular for eachp ∈ [p] and[x] = x̃ + [−ỹ, ỹ] is the outer

solution to (2.1)}
else{

Err:= ” Kolev’s method is not applicable” }
12. Output { Outer solution[x] and Error code Err}

In [65], Skalna has solved the parametric linear systems for a special matrix, called H-

matrix (see definition 1.13), and she has given some practical examples in the field of structure

mechanics. Her main result depends on the following theoremfrom Neumaier[42].

Theorem 2.5. (Neumaier[42], chapter 4)Let [A] ∈ IRn×n. If [A] is an H-matrix then for all

[b] ∈ IRn it holds

3

(∑
([A], [b])

)
⊆ 〈[A]〉−1|[b]|[−1, 1].

She has given the following two theorems, which depends on the above theorem

Theorem 2.6. (Skalna[65]) Let A(p) · x = b(p) with A(p) ∈ Rn×n, b(p) ∈ Rn, p ∈ Rk be a

parameterized linear system, whereA(p) andb(p) are given by (2.10). LetR ∈ Rn×n, x̃ ∈ Rn.

If [D] ∈ IRn×n defined by

[Dij ] =

(
n∑

ν=1

Riνw(ν, j)

)⊤

· [p], (i, j = 1, · · · , n) (2.35)
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is an H-matrix, and let[z] ∈ IRn defined by

[zi] =
n∑

j=1

Rij

(
w(0, j) −

n∑

ν=1

x̃νw(j, ν)

)⊤

· [p], (i = 1, · · · , n) (2.36)

then

3

(∑
(A(p), b(p), [p])

)
⊆ x̃ + 〈[D]〉−1|[z]|[−1, 1].

Proof: (see Skalna[65] ).

Theorem 2.7. (Skalna[65]) LetA(p) · x = b(p), p ∈ [p] ∈ IRk. If rad(A([p])) = 0, then

3

(∑
(A(p), b(p), [p])

)
= x̃ + 〈[D]〉−1|[z]|[−1, 1],

where[D] and[z] are given respectively by formulas (2.35) and (2.36).

Proof: (see Skalna[65] ).

Based on the theorems (2.6) (2.7), we can give the following algorithm:

Algorithm 2.6. Parametric interval linear systems (A([p]) is H-matrix)

1. Input { A(p) ∈ Rn×n, b(p) ∈ Rn, [p] ∈ IRk }
2. Initialization

b̌ := b(mid([p])); Ǎ := A(mid([p]))

3. Compute an approximation inverseR (R ≈ Ǎ−1) of Ǎ with some standard algorithm

(see e.g.[10])

4. Compute an approximate mid-point solution

x̃ = 2(R · b̌)
5. Compute the interval matrix[D] by formula (2.35)

6. Compute the interval vector[z] by formula (2.36)

7. Check if[D] is an H-matrix using favorite algorithm

8. Compute an approximation inverseR1 (R1 ≈ 〈[D]〉−1) with some standard algorithm

of 〈[D]〉
9.

if ( [D] is an H-matrix)then {
[x] = x̃ + R1 · |[z]|[−1, 1] is the outer solution to (2.1)}

else{
Err:= ” Skalna’s method is not applicable” }

10. Output { Outer solution[x] and Error code Err}
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2.2 Parametric Linear Systems, whose Elements are Nonlin-

ear Functions of Interval Parameters

In this section we will give an overview of the parametric linear system of equations whose

elements are nonlinear function of intervals. Dessombz[7] solved a practical example. In this

example, one elementp3
1 appears as nonlinear function of the interval parameterp1. He wrote

every parameter in the centered form, which means that if thesystem depends on the parameter

p1 ∈ [p1]. [p1] is written in the following form:

[p1] = p̌1 + [−r1, r1], p̌1 = mid([p1]), r1 = rad([p1]).

Usingp1 = p̌1 + ζ1, ζ1 ∈ [−r1, r1], he wrote the nonlinear elementp3
1 as follows

p3
1 = (p̌1 + ζ1)

3 = p̌3
1 + 3p̌2

1ζ1 + 3p̌1ζ
2
1 + ζ3

1 .

He stated that, ifζ1 and3p̌1ζ
2
1 + ζ3

1 are independent (which is false, but forζ1 << p̌1, ζ1 >>

3p̌1ζ
2
1 + ζ3

1 ), one will get the following linear form

p3
1 = p̌3

1 + 3p̌2
1ζ1 + ζ2,

whereζ1 ∈ [−r1, r1] andζ2 ∈ [0, 3p̌1r
2
1 +r3

1]. He solved the new system (the elements are linear

functions inζi) with several parameters by using his methods, which is described in Section 2.1,

page 31. An interval matrix[A] ∈ IRn×n and an interval vector[b] ∈ IRn will be defined as

in (2.8) and (2.9), respectively. Depending on his approach, we can write an interval matrix

[C] ∈ IRn×n and an interval vector[z] ∈ IRn (we will use them in algorithm 2.7) as follows:

[C] := I − R[A], R ≈ Ǎ−1, I is then × n identity matrix

= I − R(Ǎ +
N∑

i=1

[ζi]A
(i))

= −Ǎ−1

N∑

i=1

[ζi]A
(i), (2.37)

[z] := R(b̌ − [A]x̃), R ≈ Ǎ−1,

= R(b̌ − (Ǎ +
N∑

i=1

[ζi]A
(i))x̃)

= −Ǎ−1
N∑

i=1

[ζi]A
(i)x̃ (2.38)

respectively.

Now we will give the following algorithm, depending on this approach:
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Algorithm 2.7. Parametric Interval Systems (Dessombz’s method)

1. Input { A(p) ∈ Rn×n, b(p) ∈ Rn, [p] ∈ IRk }
2. Initialization

b̌ := b(mid([p])); Ǎ := A(mid([p]))

3. Compute an approximation inverseR (R ≈ Ǎ−1) of Ǎ with some standard algorithm

(see e.g.[10])

4. Compute an approximate mid-point solution

x̃ = 2(R · b̌). Optionally improvẽx by a residual iteration.

5. Compute an enclosure[C] using formula (2.37)

6. Compute an enclosure[z] using formula (2.38)

7. Verification step

[v] := [z]

max= 1

repeat

[v] := [v] 1 ǫ ǫ-inflation

[y] := [v]

for i = 1 to n do { Einzelschrittverfahren}
[vi] = 3([zi] + [C(Row(i))] · [v])

max++

until [v]
◦⊂ [y] or max≥ 10

8.

if [v]
◦⊂ [y] then {

The outer solution is̃x + [v] }
else {

Err:= ” no inclusion computed, the matrixA([p]) contains a singular matrix or

is ill conditioned” }
9. Output { Outer solution[x] and Error code Err}

In [25], Kolev used his approach (which is described in[22]) to transform the nonlinear

functions into interval linear form. In the following, we will give a simple introduction about

this approach:

Let [x] = ([x1], · · · , [xn]) and[xi] = ci +[vi], i = 1, · · · , n, whereci is the mid-point of[xi]

and[vi] is a symmetrical interval[vi] = [−ri, ri], whereri is the radius of[xi].
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Kolev defined an affine-linear interval form[x̂] as follows:

[x̂] =

n∑

i=1

αi[vi] + cx + [vx], [vx] = [−rx, rx],

whereαi andcx are real numbers, while[vi] and[vx] are ordinary intervals.

He studied addition, subtraction and multiplication of twoaffine-linear interval forms. The

intermediate or the final result will be affine-linear interval form. Let[x̂] and[ŷ] be two affine-

linear interval forms expressed as

[x̂] =

n∑

i=1

αi[vi] + cx + [vx], [vx] = [−rx, rx] (2.39)

[ỹ] =

n∑

i=1

αi[vi] + cy + [vy], [vy] = [−ry, ry]. (2.40)

Then we have the following rules.

Addition or subtraction: The sum (difference) of[x̂] and[ŷ] is another affine-linear interval

form [û]:

[û] =

n∑

i=1

γi[vi] + cu + [vu], [vu] = [−ru, ru], (2.41)

where

γi = αi ± βi, (i = 1, · · · , n), cu = cx ± cy, ru = rx + ry. (2.42)

Multiplication: The product of[x̂] and[ŷ] is another affine-linear interval form[û] if:

γi = cyαi + cxβi, (i = 1, · · · , n), cu = cxcy + 0.5

n∑

i=1

αiβir
2
i ,

rz = rxry + |cx|ry + |cy|rx +
n∑

i,j=1,j 6=i

|αiβj |rirj + rx

n∑

j=1

|βj|rj

+ry

n∑

i=1

|αi|ri + 0.5
n∑

i=1

|αiβi|r2
i . (2.43)

Example 2.2.Let

f(x) = (x1 − 2x2)x1, x1 ∈ [1, 2], x2 ∈ [2, 3].

Using (2.41) and (2.42 give

[x̂1] − 2[x̂2] = [v1] − 2[v2] − 3.5,
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where[x̂1] = [v1] + 1.5 and [x̂2] = [v2] + 2.5, with [v1] = [−0.5, 0.5] and [v2] = [−0.5, 0.5].

Using (2.43) we get

([x̂1] − 2[x̂2])[x̂2] = −2[v1] − 3[v2] − 5.125 + [−0.625, 0.625].

Using[v1] = [x1] − 1.5 and [v2] = [x2] − 2.5, then

([x̂1] − 2[x̂2])[x̂2] = −2[x1] − 3[x2] + [4.75, 6].

After using this approach foraij(p) and bi(p), (i, j = 1, · · · , n) from (2.2), he got the

following linear interval forms:

[Lij(p)] =
k∑

ν=1

αijνpν + [aij ], p ∈ [p], αijν ∈ R, [aij ] ∈ IR, (2.44)

[li(p)] =

k∑

ν=1

βiνpν + [bi], p ∈ [p], βiν ∈ R, [bi] ∈ IR, (i, j = 1, · · · , n). (2.45)

The above interval linear forms have the inclusion property

aij(p) ∈ [Lij(p)], p ∈ [p],

bi(p) ∈ [li(p)], p ∈ [p].

He used his methods, which described in Section 2.1, page 39,with some more computations

to solve the linear system

Ľx = ľ, R
n×n ∋ Ľ = mid(L([p])), R

n ∋ ľ = mid(l([p])),

getting the mid-point (approximation) solutioñx. In a similar wayỹ is found as the positive

solution of the equation

(I − D)y = c, (2.46)

whereI is the(n × n) identity matrix,D ∈ Rn×n andc ∈ Rn are given by

D = |B|R, c = |C|rp + |B|(ra + rb),

whereB = Ľ−1, C = BAu, Au is given by formula (2.27),rp =rad([p]), ra =rad([a])

([ai] =
∑n

j=1 x̃j [aij ], (i = 1, · · · , n)), rb
i =rad([bi]), (i = 1, · · · , n) and

Rij =

k∑

ν=1

|αijν|rp
ν + Ra

ij , Ra
ij = rad([aij ]). (2.47)

For more details about the above computation, see[25]. The following result was proved in

[25].
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Theorem 2.8. (Kolev[25]) Assume that the matricešL and I − D are nonsingular. If the

solutionỹ to (2.46) is positive, then

(i) the interval vector

[x] = x̃ + [h],

where

[h] = [−ỹ, ỹ]

is an outer solution to (2.1).

(ii) matrixA(p) is nonsingular for eachp ∈ [p].

Proof: (see Kolev[25] ).

Algorithm 2.8. Parametric interval linear systems (Kolev’s method)

1. Input { A(p) ∈ Rn×n, b(p) ∈ Rn, [p] ∈ IRk }
2. Using Kolev’s approach[22] to transform the nonlinear functions into

interval linear forms.

3. Initialization

Ľ :=mid(L([p])); ľ :=mid(l([p])); rp :=rad([p])

4. Compute an approximation inverseR (R ≈ Ľ−1) of Ľ with some standard algorithm

(see e.g.[10])

5. Compute an approximate mid-point solution

x̃ = 2(R · b̌)
6. Set

B = R

7. Compute the interval vector[a] ∈ IRn

[ai] =
∑n

j=1 x̃j [aij ], (i = 1, · · · , n),

where[aij ] is given by the right hand side of (2.44)

8. Compute the real vectorsra ∈ R
n andrb ∈ R

n

ra =rad([a]); [a] is obtained from step 6

rb =rad([b]); [b] is given by the right hand side of (2.45)

9. Compute the matrixR by formula (2.47)

10. Compute the matrixA(u) by formula (2.27)

11. Compute the following help matrices and vectors

Continued on next page
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Algorithm 2.8 – continued from previous page

D = 2(|B| · R)

C = 2(B · A(u))

c = 2(|C| · rp + |B|(ra + rb))

T = 2(I − D)

12. Compute an approximation inverseR1 (R1 ≈ T−1) with some standard algorithm

of T

13. Compute the approximation solutioñy of the system (2.46)

ỹ = 2(R1 · c)
14

if (ỹ > 0) then {
matrixA(p) is non-singular for eachp ∈ [p] and[x] = x̃ + [−ỹ, ỹ] is the outer

solution to (2.1)}
else{

Err:= ” Kolev’s method is not applicable” }
15. Output { Outer solution[x] and Error code Err}

In [52] Popova combined the inclusion theory, developed by S. Rump in [60, 64], with

methods of sharp range estimation of continuous and monotone rational functions. Her method

based on the arithmetic of proper and improper intervals (for more details see e.g.[48]), in

order to compute outer (inner) bounds for the parametric solution set, where the elements of

A(p) andb(p) are rational functions of the parametersp.

Meanwhile, there were many attempts to construct suitable methods for solving parameter

dependent interval linear systems[40, 41]. Muhanna and Mullen use construction methods

based on the application ofFiniteElementMethods (FEM ) in structural mechanics to overcome

the overestimation due to coupling and multiple occurrences of interval parameters[40, 41].

Recently, a new efficient method with result verification wasproposed by Neumaier and

Pownuk[43] for the special case of parametric linear systems involvinga particular structure of

the dependencies that arise in the analysis of truss structures. For other approaches in solving

mechanical problems involving uncertainties, see e.g.[41] and the literature therein.



Chapter 3

Hansen’s Generalized Interval Arithmetic

and its Extension

As described in Chapter 1, when a given variable occurs more than once in interval computa-

tion, it is treated as a different variable in each occurrence. This problem has called ”depen-

dency” problem. The goal of this chapter is to discuss a generalized interval arithmetic which

has been developed by Hansen[12]. The most important purpose of a generalized interval arith-

metic is to reduce the effect of the dependency problem when computing with standard interval

arithmetic. In section 3.1 we will describe Hansen forms. Insection 3.2 we will introduce

generalized interval arithmetic (Hansen arithmetic). In section 3.3 two arithmetic operations

(multiplication and division) will be discussed in more details, with some examples of how

Hansen arithmetic handles the dependency problem. The elementary functions (exp(), sin(),

ln(),......) will be considered in section 3.4. In section 3.5 wewill introduce the algorithmic

description[34, 17, 28, 8]. Minimax(Best) approximation method will be treated in section 3.6.

New complex generalized interval forms will be described insection 3.7. The extended gen-

eralized interval arithmetic for complex generalized intervals will be studied in section 3.8. In

section 3.9 the elementary complex functions will be considered. The algorithms for complex

generalized interval arithmetic will be introduced in section 3.10.

3.1 Representation of a Generalized Interval (Hansen Form)

For our purposes, we will use the representation of an interval [x] which was described in (1.1).

Let m =mid([x]), r =rad([x]), then it can be followed from (1.1):

[x] = m + [−r, r]

49
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Thus, an arbitrary pointx ∈ [x] may be expressed asx = m + ζ whereζ ∈ [−r, r] andr ≥ 0.

Definition 3.1. [11] A generalized interval[x̂] is given by

[x̂] = [mx] +

n∑

i=1

ζi[v
x
i ], (3.1)

where[mx] ∈ IR and [vx
i ] ∈ IR (i = 1, 2, · · · , n) are (computed numerical) intervals and

ζi ∈ [−ri, ri].

From the above definition, it is clear that every elementx̂ ∈ [x̂] can be written as a generalized

form

x̂ ∈ [x̂] ⇐⇒ x̂ = mx +
n∑

i=1

ζiv
x
i with mx ∈ [mx], vx

i ∈ [vx
i ] and − ri ≤ ζi ≤ ri.

When we reduce the generalized interval in (3.1) to an ordinary interval, we obtain

reduce([x̂]) = reduce([mx] +
n∑

i=1

[−ri, ri][v
x
i ])

:= [mx] + [−1, 1]

n∑

i=1

riv
x
i

wherevx
i := |[vx

i ]|. Conversely, any ordinary interval can be represented by a generalized

interval. The ordinary interval[x] = [x, x] can be represented as the generalized interval

[x̂] = [mx] + ζ1[v
x
1 ],

where[mx] := [mid([x]),mid([x])], ζ1 ∈ [−rad([x]),rad([x])] and[vx
1 ] := [1, 1].

In general, if we have an interval vector[x] := ([x1], · · · , [xn])⊤ ∈ IRn, thej-th interval[xj ]

can be represented by the generalized interval form

[x̂j ] = [mxj ] + [0, 0]ζ1 + · · ·+ [0, 0]ζj−1 + [1, 1]ζj + [0, 0]ζj+1 + · · · + [0, 0]ζn

= [mxj ] + [1, 1]ζj.

3.2 Generalized Interval Arithmetic (Hansen Arithmetic)

Assume two generalized intervals[x̂] and[ŷ] are expressed as

[x̂] = [mx] +

n∑

i=1

ζi[v
x
i ] (3.2)
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and

[ŷ] = [my] +
n∑

i=1

ζi[v
y
i ], (3.3)

respectively.

We now consider the four arithmetic operations applied to these intervals.

Addition or subtraction

The sum (difference) of[x̂] and[ŷ] is another generalized interval[û] = [mu] +
∑n

i=1 ζi[v
u
i ].

It holds

[x̂] ± [ŷ] = [mx] ± [my] +

n∑

i=1

ζi([v
x
i ] ± [vy

i ]). (3.4)

Thus we have to define

[mu] := [mx] ± [my], [vu
i ] := [vx

i ] ± [vy
i ], (i = 1, 2, · · · , n). (3.5)

Lemma 3.1. For everyx̂ ∈ [x̂] and ŷ ∈ [ŷ], it holds that

x̂ ∈ [x̂] and ŷ ∈ [ŷ] ⇐⇒ x̂ ± ŷ = mx ± my +
∑n

i=1 ζi(v
x
i ± vy

i ) ∈ [û].

Proof: (Addition)

(=⇒)

According to the definition 3.1, let̂x ∈ [x̂] andŷ ∈ [ŷ], then

x̂ = mx +

n∑

i=1

ζiv
x
i with mx ∈ [mx], vx

i ∈ [vx
i ] and − ri ≤ ζi ≤ ri

ŷ = my +
n∑

i=1

ζiv
y
i with my ∈ [my], vy

i ∈ [vy
i ] and − ri ≤ ζi ≤ ri, (i = 1, 2, · · · , n).

Hence,

x̂ + ŷ = mx +
n∑

i=1

ζiv
x
i + my +

n∑

i=1

ζiv
y
i

= mx + my +

n∑

i=1

ζi(v
x
i + vy

i )

∈ [mx] + [my] +
n∑

i=1

ζi([v
x
i ] + [vx

i ])

= [x̂] + [ŷ] = [û].



52 Hansen’s Generalized Interval Arithmetic and its Extension

(⇐=)

Let û ∈ [û] = [x̂] + [ŷ]. Then, from the definition 3.1, and the equations (3.4), (3.5) yield

û = mx + my +

n∑

i=1

ζi(v
x
i + vy

i )

= mx + my +
n∑

i=1

ζiv
x
i +

n∑

i=1

ζiv
y
i

= mx +

n∑

i=1

ζiv
x
i

︸ ︷︷ ︸
∈[x̂]

+ my +

n∑

i=1

ζiv
y
i

︸ ︷︷ ︸
∈[ŷ]

.

The subtraction is proven in a similar manner.

Multiplication

To obtain a rule for multiplication of two generalized intervals, note that

[x̂] · [ŷ] = {x̂ · ŷ| x̂ ∈ [x̂], ŷ ∈ [ŷ]}

⊆ [mx] · [my] +

n∑

i=1

ζi([m
x][vy

i ] + [my][vx
i ]) +

n∑

i=1

n∑

j=1

ζiζj[v
x
i ][vy

j ]

︸ ︷︷ ︸
(⋆)

.

We shall choose to retain only linear terms inζi (i = 1, 2, · · · , n) although higher order terms

could be kept.

Note that in (⋆) the terms fori = j involve ζ2
i , which can be replaced by[−ri, ri]

2 = [0, r2
i ].

For i 6= j, we cannot take advantage of the special result that the square of an interval must be

positive. We replaceζiζj by ζi[−rj , rj] sinceζj ∈ [−rj , rj]. Then

[x̂] · [ŷ] ⊆ [mx] · [my] +

n∑

i=1

ζi([m
x][vy

i ] + [my][vx
i ]) +

n∑

i=1

n∑

j=1

ζiζj[v
x
i ][vy

j ]

⊆ [mx] · [my] +
n∑

i=1

ζi([m
x][vy

i ] + [my][vx
i ])

+

n∑

i=1

[0, r2
i ][v

x
i ][vy

i ] +

n∑

i=1

ζi[v
x
i ]

n∑

j=1
j 6=i

[−rj , rj][v
y
j ]

=: [û] = [mu] +
n∑

i=1

ζi[v
u
i ], (3.6)

where

[mu] := [mx][my] +

n∑

i=1

[0, r2
i ][v

x
i ][vy

i ], (3.7)
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and

[vu
i ] := [mx][vy

i ] + [my][vx
i ] + [vx

i ]
n∑

j=1
j 6=i

[−rj , rj][v
y
j ]

= [mx][vy
i ] + [my][vx

i ] + [−1, 1]vx
i

n∑

j=1
j 6=i

rjv
y
j , (3.8)

where, as before,vx
i := |[vx

i ]| andvy
i := |[vy

i ]|. Thus, we define the product of two generalized

intervals[x̂] and[ŷ] to be given by (3.6), with[mu] defined by (3.7) and[vu
i ] defined by (3.8).

Lemma 3.2. If x̂ ∈ [x̂] and ŷ ∈ [ŷ], then

x̂ · ŷ = mxmy +
∑n

i=1 ζ2
i vx

i v
y
i +

∑n
i=1 ζi(m

xvy
i + myvx

i ) +
∑n

i=1 ζiv
x
i

∑n
j=1
j 6=i

ζjv
y
j ∈ [û].

Proof:

According to the definition 3.1, let̂x ∈ [x̂] andŷ ∈ [ŷ], then

x̂ = mx +
n∑

i=1

ζiv
x
i with mx ∈ [mx], vx

i ∈ [vx
i ] and − ri ≤ ζi ≤ ri

ŷ = my +

n∑

i=1

ζiv
y
i with my ∈ [my], vy

i ∈ [vy
i ] and − ri ≤ ζi ≤ ri, (i = 1, 2, · · · , n).

Hence,

x̂ · ŷ = (mx +

n∑

i=1

ζiv
x
i ) · (my +

n∑

i=1

ζiv
y
i )

= mxmy + mx
n∑

i=1

ζiv
y
i + my

n∑

i=1

ζiv
x
i +

n∑

i=1

ζiv
x
i

n∑

j=1

ζjv
y
j

= mxmy +

n∑

i=1

ζi(m
xvy

i + myvx
i ) +

n∑

i=1

ζiv
x
i ζiv

y
i +

n∑

i=1

ζiv
x
i

n∑

j=1
j 6=i

ζjv
y
j

= mxmy +
n∑

i=1

ζ2
i v

x
i vy

i +
n∑

i=1

ζi(m
xvy

i + myvx
i ) +

n∑

i=1

ζiv
x
i

n∑

j=1
j 6=i

ζjv
y
j

= mxmy +

n∑

i=1

ζ2
i v

x
i vy

i +

n∑

i=1

ζi(m
xvy

i + myvx
i + vx

i

n∑

j=1
j 6=i

ζjv
y
j ), i.e.

x̂ · ŷ ∈ {mxmy +
n∑

i=1

ζ2
i v

x
i vy

i +
n∑

i=1

ζi(m
xvy

i + myvx
i + vx

i

n∑

j=1
j 6=i

ζjv
y
j ) with mx ∈ [mx],

vx
i ∈ [vx

i ], my ∈ [my], vy
i ∈ [vy

i ] and − ri ≤ ζi ≤ ri}
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⊆ [mx][my] +

n∑

i=1

ζ2
i [vx

i ][vy
i ] +

n∑

i=1

ζi([m
x][vy

i ] + [my][vx
i ] + [vx

i ]

n∑

j=1
j 6=i

[−rj , rj][v
y
j ]).

=: [û] = [mu] +

n∑

i=1

ζi[v
u
i ].

Example 3.1.Consider the expressionf = x · y − x · y, with x ∈ [1, 2] andy ∈ [3, 4].

Ordinary interval computation givesF = [1, 2] · [3, 4] − [1, 2] · [3, 4] = [−5, 5].

Using Hansen forms, and using (3.7), (3.8) and (3.4) give

FHansen= [0, 0] + [−1, 1]ζ1 + [0, 0]ζ2,

which reduces to[−0.5, 0.5].

Consequently, for every

x̂ ∈ [x̂] = [1.5, 1.5] + [1, 1]ζ1 + [0, 0]ζ2,

and

ŷ ∈ [ŷ] = [3.5, 3.5] + [0, 0]ζ1 + [1, 1]ζ2,

whereζ1 ∈ [−0.5, 0.5] andζ2 ∈ [−0.5, 0.5], the expression̂x · ŷ − x̂ · ŷ belongs to

reduce([x̂] · [ŷ] − [x̂] · [ŷ])

x̂ · ŷ − x̂ · ŷ ∈ reduce([x̂] · [ŷ] − [x̂] · [ŷ]) = [−0.5, 0.5].

Even though, the converse is not correct. This means if we choose the point0.4 ∈ [−0.5, 0.5],

then we see that there is nôx ∈ [x̂] and ŷ ∈ [ŷ] such that̂x · ŷ − x̂ · ŷ = 0.4.

The (ordinary) interval result overestimates the reduced Hansen form.

Division

Division of two generalized intervals can also be done, Notethat

{ x̂

ŷ
| x̂ ∈ [x̂], ŷ ∈ [ŷ]} ⊆ [mu] +

n∑

i=1

ζi[v
u
i ] = [û] (3.9)

with

[mu] :=
[mx]

[my ]
(3.10)

and

[vu
i ] :=

[my][vx
i ] − [mx][vy

i ]

[my]([my] + [−1, 1]
∑n

j=1 rjv
y
j )

(3.11)
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The denominator in (3.11) should not be written as

[my]2 + [my][−1, 1]
n∑

j=1

rjv
y
j

since this form will always yield a wider interval unless thewidth of [my] is zero. No advantage

can be gained by using the special definition of the square of an interval to compute[my]2 since

0 /∈ [my]. For0 ∈ [my], we have0 ∈ [ŷ] and we cannot perform the division.

Lemma 3.3. If x̂ ∈ [x̂] and ŷ ∈ [ŷ] with 0 /∈ [ŷ], then

x̂

ŷ
=

mx

my
+

n∑

i=1

ζi
myvx

i − mxvy
i

my(my +
∑n

j=1 ζjv
y
j )

∈ [û] = [mu] +
n∑

i=1

ζi[v
u
i ]

Proof:

According to the definition 3.1, let̂x ∈ [x̂] andŷ ∈ [ŷ], then

x̂ = mx +

n∑

i=1

ζiv
x
i with mx ∈ [mx], vx

i ∈ [vx
i ] and − ri ≤ ζi ≤ ri

0 6= ŷ = my +
n∑

i=1

ζiv
y
i with my ∈ [my], vy

i ∈ [vy
i ] and − ri ≤ ζi ≤ ri, (i = 1, 2, · · · , n).

Hence,

x̂

ŷ
=

mx +
∑n

i=1 ζiv
x
i

my +
∑n

j=1 ζjv
y
j

=
my(mx +

∑n
i=1 ζiv

x
i )

my(my +
∑n

j=1 ζjv
y
j )

=
mx(my +

∑n
j=1 ζjv

y
j ) +

∑n
i=1 ζi(m

yvx
i − mxvy

i )

my(my +
∑n

j=1 ζjv
y
j )

=
mx

my
+

∑n
i=1 ζi(m

yvx
i − mxvy

i )

my(my +
∑n

j=1 ζjv
y
j )

=
mx

my
+

n∑

i=1

ζi
myvx

i − mxvy
i

my(my +
∑n

j=1 ζjv
y
j )

∈ {mx

my
+

n∑

i=1

ζi
myvx

i − mxvy
i

my(my +
∑n

j=1 ζjv
y
j )

with mx ∈ [mx], vx
i ∈ [vx

i ], my ∈ [my],

vy
i ∈ [vy

i ] and − ri ≤ ζi ≤ ri}

⊆ [mx]

[my]
+

n∑

i=1

ζi
([my][vx

i ] − [mx][vy
i ])

[my]([my] +
∑n

j=1 ζj[v
y
j ])

(3.10) and (3.11)−−−−−−−−−−−−→

=: [û] = [mu] +

n∑

i=1

ζi[v
u
i ].
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Example 3.2.Consider the expressionf = x/y − x/y, with x ∈ [1, 2] andy ∈ [3, 4].

Ordinary interval computation givesF = [1, 2]/[3, 4] − [1, 2]/[3, 4] = [−0.41667, 0.41667].

Using Hansen forms and using (3.10), (3.11) and (3.4) give

FHansen= [0, 0] + [−0.08334, 0.08334]ζ1 + [−0.03572, 0.03572]ζ2

which reduces to[−0.05953, 0.05953].

Consequently, for every

x̂ ∈ [x̂] = [1.5, 1.5] + [1, 1]ζ1 + [0, 0]ζ2,

and

ŷ ∈ [ŷ] = [3.5, 3.5] + [0, 0]ζ1 + [1, 1]ζ2,

whereζ1 ∈ [−0.5, 0.5] andζ2 ∈ [−0.5, 0.5], the expression̂x/ŷ − x̂/ŷ belongs to

reduce([x̂]/[ŷ] − [x̂]/[ŷ])

x̂/ŷ − x̂/ŷ ∈ reduce([x̂]/[ŷ] − [x̂]/[ŷ]) = [−0.05953, 0.05953].

But the converse is not correct; this means if we choose the point 0.05 ∈ [−0.05953, 0.05953],

then we see that there is nôx ∈ [x̂] and ŷ ∈ [ŷ] such that̂x/ŷ − x̂/ŷ = 0.05.

The (ordinary) interval result overestimates the reduced Hansen form.

In the next section, we shall consider the multiplication and division for generalized intervals

(Hansen arithmetic) in more detail and present some examples.

3.3 [x̂]2 and 1/[x̂]

3.3.1 [x̂]2

We first note that to obtain the square of a generalized interval, we can use a special definition

as in the case for ordinary interval arithmetic. For[x̂] = [ŷ], equation (3.7) becomes

[mu] := [mx]2 +

n∑

i=1

[0, r2
i ][v

x
i ]2

= [mx]2 +
n∑

i=1

[0, r2
i ](v

x
i )2. (3.12)
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The term[mx]2 should be computed using the special definition for the square of an interval.

Equation (3.8) becomes

[vu
i ] = 2[mx][vx

i ] + [−1, 1]vx
i

n∑

j=1
j 6=i

rjv
y
j . (3.13)

Consider the square of an interval[x̂] = mx + ζ with ζ ∈ [−r, r]. In this case,mx is a real

number and (3.12) and (3.13) yields

[x̂]2 = (mx)2 + [0, r2] + 2ζmx.

Reduced to an interval,

[x̂]2 = [(mx)2 − 2r|mx|, (mx)2 + r2 + 2r|mx|]
= [(mx)2 − 2r|mx|, (|mx| + r)2].

The right endpoint is correct. However, the left endpoint should be

0 if 0 ∈ [x̂],

(|mx| − r)2 if 0 /∈ [x̂].

Hence, we will obtain an incorrect left endpoint for our result unlessmx = 0.

The magnitude of the error is

|(mx)2 − 2r|mx|| if 0 ∈ [x̂],

r2 if 0 /∈ [x̂].

Thus ifr is small, the error is small. In fact, the error is O(r2) since in the case0 ∈ [x̂], we must

have|mx| ≤ r. If r is much greater than1, the error can be unacceptably large.

Example 3.3.Considerf = x2, with x ∈ [−0.2, 0.3].

Using ordinary interval arithmetic givesF = [0, 0.09]

Using generalized interval arithmetic, where[x̂] = [0.05, 0.05] + [1, 1]ζ , ζ ∈ [−0.25, 0.25],

gives

FHansen= [−0.0025, 0.065] + [0.1, 0.1]ζ

which reduces to[−0.0225, 0.09]. The reduced Hansen form overestimates the (ordinary) inter-

val result.
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However, letf = x2 − x2, with x ∈ [−0.2, 0.3].

Using ordinary interval arithmetic givesF = [−0.09, 0.09].

Using generalized interval arithmetic gives

FHansen= [−0.0625, 0.0625] + [0, 0]ζ,

which reduces to[−0.0625, 0.0625]. This is an improvement over the ordinary interval arith-

metic resultF = [−0.09, 0.09].

As a final note on multiplication, we consider multiplication of a generalized interval by a

real number or by an interval which we choose not to be represented by a generalized interval.

Let B be such a number or interval and

[x̂] = [mx] +
n∑

i=1

ζi[v
x
i ].

Then

{B · x̂| x̂ ∈ [x̂]} ⊆ B · [x̂] := [m̄x] +

n∑

i=1

ζi[v̄
x
i ],

where

[m̄x] := B · [mx], [v̄x
i ] := B · [vx

i ].

3.3.2 1/[x̂]

For an interval[x̂] = mx + ζvx, if the quantitiesmx andvx are real numbers, then from the

forms (3.10) and (3.11) we will find[x̂]/[x̂] = 1. This will never be true for interval arithmetic

if the width of [x] is nonzero.

In general, a single division in generalized interval arithmetic introduces errors which are of

second order in the interval widths. We now show this for an interval [x̂] = mx + ζvx, where

mx > 0 andvx > 0 are real numbers andζ ∈ [−r, r]. Consider[x′] = 1/[x̂].

From (3.10) and (3.11),

[x′] =
1

mx
− vx

mx(mx + [−1, 1]rvx)
ζ,
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which reduces to

[x′] =

[
1

mx
− rvx

mx(mx − rvx)
,

1

mx
+

rvx

mx(mx − rvx)

]
.

The width of this interval is

w′ =
2rvx

mx(mx − rvx)
.

The correct result is

[
1

mx + rvx
,

1

mx − rvx
],

which has width

w =
2rvx

(mx)2 − r2(vx)2
.

The error of the width is of amount

w′ − w =
2r2(vx)2

mx((mx)2 − r2(vx)2)
,

which is of second order inr.

Example 3.4. [37] Consider

f =
x1 + x2

x1 − x2

,

with x1 ∈ [1, 2] andx2 ∈ [5, 10].

Using (3.5) gives

[x̂1] + [x̂2] = [9, 9] + [1, 1]ζ1 + [1, 1]ζ2 and[x̂1] − [x̂2] = [−6,−6] + [1, 1]ζ1 − [1, 1]ζ2,

where[x̂1] = 1.5 + ζ1, [x̂2] = 7.5 + ζ2 with ζ1 ∈ [−0.5, 0.5] andζ2 ∈ [−2.5, 2.5].

Using (3.10) and (3.11) we get

FHansen= −9

6
+ ζ1[−

5

6
,− 5

18
] + ζ2[

1

18
,
1

6
],

which reduces to[−7
3
,−2

3
] ⊂ [−2.334,−0.666].

This is the same result as obtained by Moore ([37] ) using the centered form with interval arith-

metic; on the other hand it is better than the result[−67
18

, 13
18

] ⊂ [−3.723, 0.7223] he obtained

using the mean value theorem.

Direct use of interval arithmetic yields[−4,−2
3
].

We obtain an exact result using interval arithmetic by rewriting f asf = 1 + 2/(x1/x2 − 1)

since each variable occurs only once. We findF = [−7
3
,−11

9
] ⊂ [−2.334,−1.222]. Thus,

the result using generalized interval arithmetic has a sharp left endpoint but not a sharp right

endpoint.
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Example 3.5.Letx ∈ [0.001, 0.003]. Evaluate

F =
1 + x + x2

1 + x + 2x2
.

Using generalized interval arithmetic, where

[x̂] = [0.002, 0.002] + [1, 1]ζ, ζ ∈ [−0.001, 0.001],

we obtain

1 + [x̂] + [x̂]2 = [1.002003, 1.002006] + [1.003999, 1.00400]ζ,

and

1 + [x̂] + [x̂]2 = [1.002007, 1.002011] + [1.007999, 1.00800]ζ,

with ζ ∈ [−0.001, 0.001], so that

FHansen= [0.999994, 0.999998] + [−0.003993,−0.003981]ζ,

which reduces to[0.999990, 1.000001].

In interval arithmetic, we obtain the result[0.997989, 1.002005]. We obtain an exact result

using interval arithmetic by rewritingf asf = 1 − 1/((x + 0.5)2 + 1.75) since each variable

occurs only once. We findF = [0.999991, 0.999999].

3.4 Elementary Functions

Elementary functions can be evaluated in generalized interval arithmetic by making use of

Taylor series (only the first order).

If f : S ⊆ R −→ R. Using the first order Taylor form described in section 1.4 page 12, we

can expand the functionf in generalized interval arithmetic as

f(x̂) ∈ F ([mx]) + F ′([x̂])

n∑

i=1

ζi[v
x
i ]

= F ([mx]) +
n∑

i=1

ζi[v
u
i ] =: F ([x̂], ζ), (3.14)

where[vu
i ] := F ′([x̂])[vx

i ], (i = 1, 2, · · · , n).

Example 3.6.Letx ∈ [1, 1.1]. Evaluate

f = exp(x).
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Using generalized interval arithmetic, where[x̂] = [1.05, 1.05] + [1, 1]ζ , ζ ∈ [−0.05, 0.05],

we obtain

FHansen = exp([1.05, 1.05]) + [2.7182818, 3.0041661]︸ ︷︷ ︸
F ′([x̂])

[1, 1]ζ

= [2.8576511, 2.8576512] + [2.7182818, 3.0041661]ζ,

which reduces to[2.7074428, 3.0078595]. In interval arithmetic, we obtain the result

[2.7182818, 3.0041661].

In case of the functionf : S ⊆ R
n −→ R, the first order Taylor method (see page 12) in

generalized interval arithmetic will be defined as follows:

f(x̂1, · · · , x̂n) = f(mx) +

n∑

j=1

∂f

∂xj
(mx + θ

n∑

k=1

ζkv
x
k) ·

n∑

i=1

ζiv
xj

i , 0 ≤ θ ≤ 1

where

x̂i = mxi +
n∑

j=1

ζjv
xi

j , (i = 1, 2, · · · , n),

mx := (mx1 , · · · , mxn)⊤ ∈ R
n

and

vx
k := (vx1

k , · · · , vxn

k )⊤ ∈ R
n, (k = 1, 2, · · · , n).

If

x̂, mx + θ

n∑

k=1

ζkv
x
k ∈ [x̂],

then, it is obvious that

f(x̂1, · · · , x̂n) ∈ F ([mx]) +
n∑

j=1

F ′
j([x̂])

n∑

i=1

ζi[v
xj

i ]

= F ([mx]) +

n∑

i=1

ζi[v
u
i ] =: F ([x̂], ζ), (3.15)

where

[vu
i ] :=

n∑

j=1

F ′
j([x̂])[v

xj

i ], (i = 1, 2, · · · , n).

Example 3.7.Letx1 ∈ [5, 10], x2 ∈ [1, 2]. Evaluate

f =

√
x1 + x2

x1 − x2
.
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Using generalized interval arithmetic, where[x̂1] = [7.5, 7.5] + [1, 1]ζ1,

[x̂2] = [1.5, 1.5] + [1, 1]ζ2 with ζ1 ∈ [−2.5, 2.5], ζ2 ∈ [−0.5, 0.5], we obtain

[x̂1] + [x̂2]

[x̂1] − [x̂2]
= [1.5, 1.5] + [−0.166667,−0.0555555]︸ ︷︷ ︸

[v
x1
1 ]

ζ1 + [0.2777777, 0.833334]︸ ︷︷ ︸
[v

x2
2 ]

ζ2

so that

FHansen =
√

[1.5, 1.5] + [−0.6123725, 0.06804139]︸ ︷︷ ︸
∂F ([x̂])/∂x1

[−0.166667,−0.0555555]︸ ︷︷ ︸
[v

x1
1 ]

ζ1

+ [0.06061608, 1.0206207]︸ ︷︷ ︸
∂F ([x̂])/∂x2

[0.2777777, 0.833334]︸ ︷︷ ︸
[v

x2
2 ]

ζ2

= [1.2247448, 1.2247449] + [−0.0113402, 0.1020621]ζ1

+[0.0168378, 0.85051728]ζ2,

which reduces to[0.54433105, 1.9051587]. In interval arithmetic, we obtain the result

[0.81649658, 2.0].

Example 3.8.Letx1 ∈ [5, 10], x2 ∈ [1, 2]. Evaluate

f =

√
x1 + x2

x1 − x2

−
√

x1 + x2

x1 − x2

.

From the above example we get
√

[x̂1] + [x̂2]

[x̂1] − [x̂2]
= [1.2247448, 1.2247449] + [−0.0113402, 0.1020621]ζ1

+[0.0168378, 0.85051728]ζ2,

whereζ1 ∈ [−2.5, 2.5], ζ2 ∈ [−0.5, 0.5], so that

FHansen = [0, 0] + [−0.11340231, 0.11340231]ζ1

+[−0.83367948, 0.83367948]ζ2,

which reduces to[−0.70034550, 0.70034550]. This is an improvement over the ordinary interval

arithmetic result[−1.1835035, 1.1835035].
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3.5 Algorithmic Description

We now describe the algorithms for the elementary operations+,−, · and/, and for elementary

functionss ∈ {sqr, sqrt, power, exp, ln, sin, cos, tan, cot, arcsin, arccos, arctan, arccot, sinh,

cosh, tanh, coth} of generalized interval arithmetic (Hansen arithmetic) for a once continuously

differentiable function. We give an example to illustrate the rule of our algorithms and how it

works.

Example 3.9.Let

f(x) = (x − 2y)x, with x ∈ [1, 2], y ∈ [3, 5].

Let x̂ =mid([x]) = 1.5 and ŷ =mid([y]) = 4.

We will define Hansen form for[x] and[y] as follows

[x̂] :=




[x]︸︷︷︸

Ordinary interval

,

(
1.5

0

)

︸ ︷︷ ︸
mid-point

,

(
1

0

)

︸ ︷︷ ︸
[vx

i ]

,

(
0.5

0

)

︸ ︷︷ ︸
radius ri




,

[ŷ] :=




[y]︸︷︷︸

Ordinary interval

,

(
0

4

)

︸ ︷︷ ︸
mid-point

,

(
0

1

)

︸ ︷︷ ︸
[vy

i ]

,

(
0

1

)

︸ ︷︷ ︸
radius ri




.

The rule of multiplication a constant with Hansen form is as follows

2[ŷ] :=

(
2[y],

(
0

8

)
,

(
0

2

)
,

(
0

1

))
.

To addition (or subtraction) two Hansen form is as follows

[x̂] − 2[ŷ] :=

(

[x] − 2[y],

(
1.5

−8

)

,

(
1

−2

)

,

(
0.5

1

))

.

Before multiplying (or dividing) two Hansen forms, we always abide to the following rule: Add

all elements of mid-point values to the first element, and setthe rest of the mid-point values to

0. Then

[x̂] − 2[ŷ] :=

(

[x] − 2[y],

(
−6.5

0

)

,

(
1

−2

)

,

(
0.5

1

))

.



64 Hansen’s Generalized Interval Arithmetic and its Extension

Now, we will give the rule of multiplication

([x̂] − 2[ŷ])[x̂] :=

(
([x] − 2[y])[x],

(
−6.5 · 1.5 +

∑2
i=1[0, r

2
i ][v

x
i ][vy

i ]

0

)
,




−6.5 · 1 + 1.5 · 1 + [−1, 1][vx

1 ]
∑2

j=1
j 6=1

rj[v
y
j ]

−6.5 · 0 + 1.5 · −2 + [−1, 1][vx
2 ]
∑2

j=1
j 6=2

rj [v
y
j ]



 ,

(
0.5

1

)

 .

Then

([x̂] − 2[ŷ])[x̂] :=

(

[−18,−4],

(
[−9.75,−9.5]

0

)

,

(
[−5,−5]

[−4,−2]

)

,

(
0.5

1

))

.

For Hansen forms, we use quintets

X = ([x], [mx], [vx], [gx], r),

with [x] ∈ IR, [mx] ∈ IRn, [vx] ∈ IRn, [gx] ∈ IRn andr ∈ Rn for the description of the

arithmetic rules. Here[x], [mx], [vx], [gx] andrx denote the function value, the mid-point val-

ues, the argument (coefficient) values ofζi, (i = 1, · · · , n), the gradient values, and the radius,

respectively.

Algorithm 3.1. Addition Operator + (X, Y )

1. Input { X, Y }
2. Compute the sum of[x] + [y] in ordinary interval arithmetic ((Optional), this is to

compare the result between interval arithmetic and generalized interval arithmetic).

[u] = [x] + [y]

3. Compute the sum of[mx] =mid([x]) and[my] =mid([y])

[mu] = [mx] + [my]

4. Compute the sum of the coefficient values ofζi for [x̂] and[ŷ]

[vu] = [vx] + [vy]

5. Compute the sum of the gradient for[x] and[y] (we use it in elementary function

algorithm)

[gu] = [gx] + [gy]

6. return U := ( [u], [mu], [vu], [gu], r )

7. Output { U := ( [u], [mu], [vu], [gu], r ) }
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Algorithm 3.2. Subtraction Operator — (X, Y )

1. Input { X, Y }
2. Compute the subtraction[x] − [y] in ordinary interval arithmetic (this is to

compare the result between interval arithmetic and generalized interval arithmetic).

[u] = [x] − [y]

3. Compute the difference between[mx] =mid([x]) and[my] =mid([y])

[mu] = [mx] − [my]

4. Compute the difference between the coefficient values ofζi for [x̂] and[ŷ]

[vu] = [vx] − [vy]

5. Compute the difference between the gradient for[x] and[y] (we use it in

elementary function algorithm)

[gu] = [gx] − [gy]

6. return U := ( [u], [mu], [vu], [gu], r )

7. Output { U := ( [u], [mu], [vu], [gu], r ) }

In Algorithms (3.3) and (3.4),[sx], [sy], [sxy], [svxy], [sxg] and[syg] denote real intervals.

Algorithm 3.3. Multiplication Operator • (X, Y )

1. Input { X, Y }
2. Compute the multiplication[x] · [y] in ordinary interval arithmetic (this is

to compare the result between interval arithmetic and generalized interval arithmetic).

[u] = [x] · [y]

3. Initialization of the help real intervals

[sx] = 0; [sy] = 0; [svxy] = 0

[sxy] = 0; [sxg] = 0; [syg] = 0

4. for i = 1 to n do

[mu
i ] = 0

// compute the sum ofmid([x])

[sx] = [sx] + [mx
i ]

// compute the sum ofmid([y])

[sy] = [sy] + [my
i ]

// reduce Hansen form([x̂]) to an interval

Continued on next page
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Algorithm 3.3 – continued from previous page

[sxg] = [sxg] + [mx
i ] + [vx

i ]·interval(−ri, ri)

// reduce Hansen form([ŷ]) to an interval

[syg] = [syg] + [my
i ] + [vy

i ]·interval(−ri, ri)

// compute the sum, which is in the right hand side of (3.7)

[svxy] = [svxy]+interval(0, r2
i ) · [vx

i ] · [vy
i ]

5. for i = 1 to n do

absu=AbsMax([vx
i ])

[sxy] = 0

// compute the sum, which is in the right hand side of (3.8)

for j = 1 to n do

if(i 6= j)

absv=AbsMax([vy
j ])

[sxy] = [sxy]+interval(−1, 1)· absu·rj·absv

// Compute the coefficient values ofζi by using (3.8)

[vu
i ] = [mx

i ] · [vy
i ] + [my

i ] · [vx
i ] + [sxy]

// Compute the gradient values ofζi by the rule of differentiation of the

// multiplication[10]

[gu
i ] = [syg] · [gx

i ] + [sxg] · [gy
i ]

6. Compute the midpoint result by using (3.7)

[mu
1 ] = [sx] · [sy] + [svxy]

7. return U := ( [u], [mu], [vu], [gu], r )

8. Output { U := ( [u], [mu], [vu], [gu], r ) }

In Algorithm (3.4), we do not take care of the case0 ∈ [y], because it does not make any sense

to go any further in computations when this case occurs. In animplementation, the standard

error handling (runtime error) should be invoked if a division by zero occurs.

Algorithm 3.4. Division Operator / (X, Y )

1. Input { X, Y }
2. Compute the division[x]/[y] in ordinary interval arithmetic (this is

to compare the result between interval arithmetic and generalized interval arithmetic).

Continued on next page
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Algorithm 3.4 – continued from previous page

[u] = [x]/[y]

3. Initialization:

[sx] = 0; [sy] = 0; [svy] = 0

[sxg] = 0; [syg] = 0

4. for i = 1 to n do

[mu
i ] = 0 mid-point

// compute the sum ofmid([x])

[sx] = [sx] + [mx
i ]

// compute the sum ofmid([y])

[sy] = [sy] + [my
i ]

// reduce Hansen form([x̂]) to an interval

[sxg] = [sxg] + [mx
i ] + [vx

i ]·interval(−ri, ri)

// reduce Hansen form([ŷ]) to an interval

[syg] = [syg] + [my
i ] + [vy

i ]·interval(−ri, ri)

absv=AbsMax([vy
i ])

// compute the sum, which is in the denominator of the right hand side of (3.11)

[svy] = [svy]+interval(−1, 1) · ri·absv

5. for i = 1 to n do

// Compute the coefficient values ofζi by using (3.11)

[vu
i ] = ([sy] · [vx

i ] − [sx] · [vy
i ])/([sy] · ([sy] + [svy]))

// Compute the gradient values ofζi by the rule of differentiation of the division[10]

[gu
i ] = ([gx

i ] − ([sxg]/[syg]) · [gy
i ])/[syg]

6. Compute the midpoint result by using (3.10)

[mu
1 ] = [sx]/[sy]

7. return U := ( [u], [mu], [vu], [gu], r )

8. Output { U := ( [u], [mu], [vu], [gu], r ) }

Our implementation of Algorithm (3.5) uses the automatic differentiation module grad−ari

(see[10], Chapter 12).[temp], [sxg] and[sum] denote real intervals.
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Algorithm 3.5. Elementary function using first order Taylor form

1. Input { X }
2. Compute the interval extension elementary function in ordinary interval arithmetic

[u] := s([x])

3. for i = 1 to n do

// reduce Hansen form([x̂]) to an interval

[sxg] = [sxg] + [mx
i ] + [vx

i ]·interval(−ri, ri)

4. Compute the differential of the elementary function in generalized interval arithmetic

[temp] := s′([sxg]) temporary value

5. Initialization of help real interval

[sum] = 0

6. for i = 1 to n do

[mu
i ] = 0

// compute the sum ofmid([x])

[sum] = [sum] + [mx
i ]

// Compute the gradient values ofζi by the rule of differentiation[10]

[gu
i ] = [temp] · [gx

i ]

// Compute the coefficient values ofζi by using (3.15)

[vu
i ] = [vx

i ] · [gu
i ]

7. Compute the midpoint result by using (3.15)

[mu
1 ] = s([sum])

8. return s:= U = ( [u], [mu], [vu], [gu] )

9. Output { U := ( [u], [mu], [vu], [gu], r ) }

3.6 Minimax(Best) Approximation

In section 3.4, we have discussed the elementary functions in generalized interval arithmetic.

Hansen used first order Taylor arithmetic to compute an inclusion of these functions. But this

inclusion is not always a good inclusion, and we can use another method to get an inclusion

better than the inclusion of Taylor arithmetic. In this section we will discuss a method well-

known minimax(best) approximation.

Minimax(best) approximation seeks the polynomial of degree n (in our case n=1 because our

goal is a linear best approximation) that approximates the given function in the given interval
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such that the absolute maximum error is minimized. The erroris defined here as the difference

between the function and the polynomial. Chebyshev proved that such a polynomial exists and

that it is unique. He also gave the criteria for a polynomial to be a minimax polynomial (for

more details see[69, 54, 4, 6]).

3.6.1 Theoretical Background

Definition 3.2. A linear spaceX is called a normed linear space if for each elementx of the

space there is defined a real number designated by||x|| with the following properties:

• ||x|| ≥ 0 (positivity)

• ||x|| = 0 if and only ifx = 0 (definiteness)

• ||αx|| = α||x|| for every scalarα (homogeneity)

• ||x + y|| ≤ ||x|| + ||y|| (triangle inequality)

The quantity||x|| is know as the norm ofx.

Theorem 3.1. Let Y be a finite-dimensional subspace of a normed linear spaceX, and let

x ∈ X. Then, there exists a (not necessarily unique)y∗ ∈ Y such that

||x − y∗|| = min
y∈Y

||x − y||.

That is, there is a best approximation tox by elements ofY

Proof: (see Carothers[3] )

Let X be a normed linear space. Selectn linearly independent elementsx1, · · · , xn. Let

y be additional element. We wish to approximatey by an appropriate linear combination of

thex1, · · · , xn. The closeness of two elements will be defined as the norm of their difference.

We therefore would like to make||y − (a1x1 + a2x2 + · · · + anxn)|| as small as possible. The

element

y − (a1x1 + a2x2 + · · · + anxn)

is called the error.

Definition 3.3. A best approximation toy by linear combination ofx1, · · · , xn is an element

a1x1 + a2x2 + · · · + anxn for which

||y − (a1x1 + a2x2 + · · ·+ anxn)|| ≤ ||y − (b1x1 + b2x2 + · · ·+ bnxn)||

for every choice of constantsb1, · · · , bn.
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A best approximation solves the problem of minimizing the error norm.

Theorem 3.2.Giveny andn linearly independent elementsx1, · · · , xn. The problem of finding

min
ai

||y − (a1x1 + a2x2 + · · ·+ anxn)||

has a solution.

Proof: (see Davis[6] )

Corollary 3.1. Let f(x) is first order differentiable function in the interval[a, b] and n be a

fixed integer. The problem of finding

min
a0,··· ,an

max
a≤x≤b

|f(x) − (a0 + a1x + · · ·+ anxn)|

has a solution.

Corollary 3.2. Letx0, · · · , xk bek + 1 distinct points. Letk ≥ n. The problem of determining

min
a0,··· ,an

max
0≤i≤k

|f(xi) − (a0 + a1xi + · · · + anx
n
i )|

has a solution.

Definition 3.4. For a giveny; x1, · · · , xn set

min
ai

||y − (a1x1 + · · ·+ anxn)|| = En(y; x1, · · · , xn) = En(y)

En(y) is the measure of the best approximation that can be achievedwhen y is approximated

by linear combinations of thex’s. Evidently we have

E1(y) ≥ E2(y) ≥ E3(y) ≥ · · ·

This is true since linear combinations ofx1, x2, · · · , xk are also linear combination ofx1, x2, · · · ,

xk, xk+1.

We have observed that under the hypothesis of theorem 3.2 there is always one best ap-

proximation. But there may be more than one. In fact, the bestapproximation form is a convex

set

Theorem 3.3. Let S designate the set of best approximation ofy in the situation of theorem

3.2. ThenS is convex.

Proof: (see Davis[6] )
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Theorem 3.4. Let S be a closed and bounded set that contains more thann + 1 points. Let

f(x) be continuous onS and set

M = min
p∈Pn

max
x∈S

|f(x) − p(x)|, (3.16)

wherePn is the subspace of all polynomials whose maximum degree inS is n.

Let pn(x) be any polynomial that realizes this extreme value and set

β(x) = f(x) − pn(x).

Then,

1. The number of distinct points ofS at which|β(x)| takes on its maximum value is greater

thann + 1.

2. There is a unique solution to the problem (3.16).

Proof: (see Davis[6] )

We know by theorem 3.4 that the problem of finding

min
p∈Pn

max
a≤x≤b

|f(x) − p(x)|

for f is a first order differentiable function in the interval[a, b] that has a unique solution.

Designate the solution bypn(x) and set

En(f) = max
a≤x≤b

|f(x) − p(x)|.

(The polynomialpn(x) is frequently called the Chebyshev approximation of degree≤ n to

f(x)).

Theorem 3.5. If f be a first order differentiable function in the interval[a, b], then

E0(f) ≥ E1(f) ≥ · · · and lim
n→∞

En(f) = 0.

Proof: (see Davis[6] )

Corollary 3.3. The best approximation constant tof , which is a first order differentiable func-

tion in the interval[a, b], is

p0 =
1

2

[
max
a≤x≤a

f(x) + min
a≤x≤a

f(x)

]

and

E0(f) =
1

2

[
max
a≤x≤a

f(x) − min
a≤x≤a

f(x)

]
.

Proof: (see Carothers[3] )
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Theorem 3.6. Let f be a first order differentiable function in the interval[a, b], andpn(x) be

the best approximation off of degreen. Let

En = max
a≤x≤b

|f(x) − pn(x)|

andβ(x) = f(x) − pn(x). There are at leastn + 2 pointsa ≤ x0 < x1 < · · · < xn+1 ≤ b

whereβ(x) assumes the values±En, and with alternating signs

β(xi) = ±En i = 0, 1, · · · , n + 1, (3.17)

β(xi) = −β(xi+1) i = 0, 1, · · · , n. (3.18)

Proof: (see Davis[6] )

Corollary 3.4. Letf(x) be a bounded and twice differentiable function defined on some interval

[a, b], whose second derivativef ′′(x) does not change sign inside[a, b]. If a0 + a1x is the linear

best approximation off , then

a1 =
f(b) − f(a)

b − a
,

a0 =
1

2
(f(a) + f(c)) − f(b) − f(a)

b − a

a + c

2
,

wherec is the unique solution of

f ′(c) =
f(b) − f(a)

b − a
.

Proof: (see Davis[6] )

3.6.2 Generalized Interval Arithmetic with Best Approximation

In this section we will discuss the elementary functions using best approximation instead of

Taylor arithmetic (see page 60). The computation of these functions will be in generalized

interval arithmetic using best approximation. Our goal is alinear best approximation.

Let f : S ⊆ R −→ R be a differentiable function over an interval[x] = [a, b], [x] ⊆ S. The

linear best approximation off is fap and is written as follows:

fap(x) = a0 + a1x. (3.19)

Its absolute maximum error

||f − fap|| = max
a≤x≤b

|f(x) − fap(x)| (3.20)
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is minimized.

As described in section 3.1, if we have an elementx̂ ∈ [x̂], then we can write it in the

following generalized form

x̂ = mx +

n∑

i=1

ζiv
x
i . (3.21)

In the generalized interval arithmetic case, the linear best approximation off(x̂) is

fap(x̂) = a0 + a1x̂.

Using equation (3.21) we get

fap(x̂) = a0 + a1(m
x +

n∑

i=1

ζiv
x
i )

= a0 + a1m
x +

n∑

i=1

a1ζiv
x
i .

Let

E = min max
a≤x≤b

|f(x̂) − fap(x̂)| (3.22)

be its minimized maximum error. Then

fap(x̂) ∈ a0 + a1m
x + [−E, E] +

n∑

i=1

a1ζi[v
x
i ]

= [mu] +

n∑

i=1

ζi[v
u
i ] (3.23)

(3.23) is a generalized interval form, where

[mu] := a0 + a1m
x + [−E, E] (3.24)

and

[vu
i ] := a1[v

x
i ]. (3.25)

The computation ofa0, a1 andE depend on the function itself. This means, if the second

derivativef ′′ of f does not change its sign inside the given interval, then we use Corollary 3.4,

which may be modified as follows:
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Corollary 3.5. Letf(x) be a bounded and twice differentiable function defined on some interval

[a, b], whose second derivativef ′′(x) does not change sign inside[a, b]. If a0 + a1x is the linear

best approximation off , then

a1 =
f(b) − f(a)

b − a
,

a0 =
1

2
(f(a) + f(c)) − f(b) − f(a)

b − a

a + c

2
.

The maximum absolute error is

E =

∣∣∣∣
1

2
(f(c) − f(a)) − f(b) − f(a)

b − a

c − a

2

∣∣∣∣ ,

which occurs twice ata andb, with the same sign, and once with opposite sign at the interior

point c, wherec is the unique solution of

f ′(c) =
f(b) − f(a)

b − a
.

If the sign of the second derivative changes, we may use theorem 3.6.

The iterative method of Remez:To use theorem 3.6, we will use a method called iterative

method. The idea of this method described below is due to Remez [36, 69]. The main tool is

theorem 3.6 concerning the alternate.

We begin with a setS0 consisting ofn+2 (in our case3) pairwise distinct pointsx(0)
i ∈ [a, b],

(i = 0, · · · , n + 1), which are arranged in increasing order, i.e.

a ≤ x
(0)
0 < x

(0)
1 < · · · < x(0)

n < x
(0)
n+1 ≤ b.

Corresponding to these points we construct a functionp
(0)
1 (x) = a

(0)
0 + a

(0)
1 x which satisfies the

conditions

p
(0)
1 (x

(0)
i ) + (−1)iE0 = f(x

(0)
i ), (3.26)

for i = 0, · · · , n + 1. Equations (3.26) form a linear system of equations for the coefficients

of the expansion ofp(0)
1 (x) and for the quantityE0. The functionp

(0)
1 (x) is the linear best

approximation off(x) on the setS0. Now, either

||p(0)
1 − f || = |E0|,

or

||p(0)
1 − f || > |E0|,
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and then there exists a pointζ ∈ [a, b] such that

|p(0)
1 (ζ) − f(ζ)| > |E0|.

The idea of Remez is to construct a new setS1 from S0, which again consist ofn + 2 points,

but for which

||p(1)
1 − f || > ||p(0)

1 − f ||.

We define the setS1 = {x(1)
i } by the following properties:

1. The functionβ0(x) = p
(0)
1 (x) − f(x) satisfies

|β0(x
(1)
i )| ≥ |E0|, (i = 0, 1, · · · , n + 1) (3.27)

2. For at least one integeri = i0

|β0(x
(1)
i0

)| > |E0| (3.28)

3.

sgn(β0(x
(1)
i )) = ±sgn(β0(x

(0)
i )). (3.29)

Now starting with the setS1, there exists a functionp(1)
1 (x) = a

(1)
0 + a

(1)
1 x, which is the best

approximation off(x) on the setS1. Hence we have described an iterative method which either

stops after a finite number of steps or yields a sequence of sets Sl, l −→ ∞, with the property

that the quantities|El| are monotonically increasing. The method also produces a sequence of

functionsp(l)
1 (x), but we cannot conclude from the above that the expression

||p(l)
1 − f ||

is monotonically decreasing. We are interested in ascertaining under what condition the se-

quencep(l)
1 (x) converges to the best approximation off(x).

Before investigating these convergence questions, we present the most important special

method of constructing the setS1.

First we consider the so-called single exchange method, also known as the simplified method

of Remez[36]: Here exactly one of the points ofS0 is replaced by a new point which satisfies

(3.28). To make sure that (3.29) holds, we use a special rule in the exchange. Letζ be a point

such that

|β0(ζ)| > |E0|.

Then the substitution rule is given by the following table:
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Table 3.6: Special rule in the exchange method

Case ζ replaces

a ≤ ζ < x
(0)
0 sgn(β0(ζ)) = sgn(β0(x

(0)
0 )) x

(0)
0

a ≤ ζ < x
(0)
0 sgn(β0(ζ)) = −sgn(β0(x

(0)
0 )) x

(0)
n+1

0 ≤ i ≤ n

x
(0)
i < ζ < x

(0)
i+1 sgn(β0(ζ)) = sgn(β0(x

(0)
i )) x

(0)
i

x
(0)
i < ζ < x

(0)
i+1 sgn(β0(ζ)) = −sgn(β0(x

(0)
i )) x

(0)
i+1

x
(0)
n+1 < ζ ≤ b sgn(β0(ζ)) = sgn(β0(x

(0)
n+1)) x

(0)
n+1

x
(0)
n+1 < ζ ≤ b sgn(β0(ζ)) = −sgn(β0(x

(0)
n+1)) x

(0)
0

The general method of Remez involves simultaneous exchanges. The functionβ0(x) pos-

sesses at leastn zerosz(0)
i in the interval[a, b] and

x
(0)
i < z

(0)
i < x

(0)
i+1, (i = 0, 1, · · · , n). (3.30)

In general, the pointsz(0)
i are not uniquely defined by (3.30). Set

z
(0)
0 = a, z(0)

n = b.

Now in each interval

Ii := [z
(0)
i , z

(0)
i+1], (i = 0, 1, · · · , n − 1)

we determine a pointx(1)
i+1 such that

β0(x
(1)
i+1) ≥ β0(x) for x ∈ Ii if sgn(β0(x

(0)
i+1)) = 1

and

β0(x
(1)
i+1) ≤ β0(x) for x ∈ Ii if sgn(β0(x

(0)
i+1)) = −1.

Here we have assumed thatE0 6= 0. WhenE0 = 0, the pointsx(1)
i+1 are to chose as a sequence

of points at whichβ0(x) has alternately a maximum and a minimum. We see that the conditions

(3.27), (3.28) and (3.29) are then satisfied forS1.

The following convergence theorem is due to Remez[36].

Theorem 3.7. If the conditions (3.27), (3.28) and (3.29) are satisfied at each step, and if in

each of the setsSl+1, l −→ ∞, there is a pointζ ∈ [a, b] such that

|βl(ζ)| = ||βl||.



3.6 Minimax(Best) Approximation 77

As a result the exchange method converges. That is, the sequence of functionsp(l)
1 (x) converges

to the best approximation off(x) on the interval[a, b].

Proof: (see[36] )

Now, we compute the verified maximum norm of the error function:

Let

a0 + a1x

be the linear best approximation that was computed by the iterative method of Remez for the

functionf(x) on a known interval[a, b]. To compute the verified maximum norm of the error

function

a0 + a1x − f(x),

we divide the interval[a, b] into small intervals. Ifn is the number of the small intervals, then

the widthh of every small interval is

h =
b − a

n
.

Let xi = a + ih, i = 0, · · · , n, then we can define each of these small intervals as follows:

[yi] := [xi, xi+1], i = 0, · · · , n − 1, (3.31)

wherex0 = a andxn = b.

Consequently, we compute the error functiona0 + a1x − f(x) at every small interval[yi],

i = 0, · · · , n − 1, by using interval arithmetic. This means that we compute the following

interval functions:

βi([yi]) = a0 + a1[yi] − F ([yi]), i = 0, · · · , n − 1. (3.32)

We take the absolute value for every result computed in (3.32); the greatest absolute value is

our goal.

The following two elementary functions illustrate these points.

Square root
Let f(x) =

√
x be defined on the interval[a, b], a ≥ 0. The second derivative of

√
x is

f ′′(x) = − 1

4x
√

x
,
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which is always negative over the given interval[a, b]. Then from theorem 3.5

f ′(c) =
f(b) − f(a)

b − a
,

1

2
√

c
=

√
b −√

a

b − a
=

1√
b +

√
a
. (3.33)

From equation (3.33), it follows that

c =
a + b + 2

√
b
√

a

4
.

a1 is given by

a1 =
f(b) − f(a)

b − a

=

√
b −√

a

b − a
=

1√
b +

√
a
, (3.34)

and also according to Corollary 3.5,

a0 =

√
a +

√
b

8
+

1

2

√
a
√

b
√

a +
√

b
(3.35)

and the maximum error

E =
1

8

(
√

b −√
a)2

√
a +

√
b

. (3.36)

We substitute the above results into equations (3.24) and (3.25), to get a generalized interval

form.

sin() Function
Let f(x) = sin(x) be defined on the interval[a, b]. The second derivative ofsin(x) is

f ′′(x) = − sin(x),

which we do not know exactly if its sign is negative, positiveor changed on the given interval

[a, b]. Then from theorem 3.6 and the iterative method of Remez, there aren + 2 = 1 + 2 = 3

points (in our casen = 1) a ≤ x0 < x1 < x2 ≤ b:

1. First, we choosex0 = a, x2 = b andx1 =mid([a, b]).
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2. Then, from equations ( 3.17),

sin(x0) − (a0 + a1x0) = E

sin(x1) − (a0 + a1x1) = −E

sin(x2) − (a0 + a1x2) = E





(3.37)

Solve the above system in three unknownsa0, a1 andE.

3. But there may be other points at which the error is greater in magnitude. Find the local

maximum and minimum of the error function

β(x) = a0 + a1x − sin(x)

either by directed evaluation ofβ(x) at sufficiently large number of points in[a, b] or by

solvingβ ′(x) = 0.

4. Using the values ofx found in step3, revise the guess of step1, and repeat the steps2, 3

until the required accuracy in the following step is obtained.

5. Let M be the greatest magnitude computed in step3. If M/E is sufficiently close to1

(sayM/E ≈ 1.05), we consider that

a0 + a1x

is close enough to the linear best approximation.

6. We divide the interval[a, b] into small intervals as defined in (3.31). Then, we compute

the interval function (3.32) for every small interval. Consequently, we take the absolute

value for every computed interval function; the greatest absolute value will be the verified

maximum norm.

In our algorithms, we will use the directed evaluation ofβ(x) at a sufficiently large number of

points in[a, b].

In the following examples, we will compare the inclusion obtained by linear best approxi-

mation with the inclusion obtained by first-order Taylor form:

Example 3.10.Consider the function

f(x) =
√

x −
√

x, x ∈ [1, 4].

The generalized interval form[x̂] of [x] is given by

[x̂] = [2.5, 2.5] + [1, 1]ζ1, ζ1 ∈ [−1.5, 1.5].
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• Using first-order Taylor form:

From (3.14) we get
√

x̂ ∈
√

[2.5, 2.5] + [1, 1]
1

2
√

[x̂]
ζ1

= [1.58113, 1.58114] + [0.24999, 0.50001]ζ1.

Then,

f(x̂) ∈ ([1.58113, 1.58114] + [0.24999, 0.50001]ζ1) − ([1.58113, 1.58114] +

[0.24999, 0.50001]ζ1)

= [−0.00001, 0.00001] + [−0.25002, 0.25002]ζ1.

The generalized interval

[−0.00001, 0.00001] + [−0.25002, 0.25002]ζ1

reduces to[−0.375504, 0.37504]. Therefore

f(x̂) ∈ [−0.375504, 0.37504]. (3.38)

• Using linear best approximation:

We must test the sign of the second derivative of
√

x.

d2

dx2
(
√

x) = − 1

4x
√

x
< 0 for all x ∈ [1, 4] , i.e.

the second derivative of
√

x does not change its sign in the interval[1, 4]. From (3.34),

(3.35) and (3.36) we get

a1 =
1√

4 +
√

1
=

1

3
,

a0 =

√
1 +

√
4

8
+

1

2

√
1
√

4√
1 +

√
4

=
17

24
,

E =
1

8

(
√

4 −
√

1)2

√
1 +

√
4

=
1

24
.

Then, from (3.24) and (3.25) we get

[mu] = a0 + a1m
x + [−E, E]

=
17

24
+ [

5

6
,
5

6
] + [− 1

24
,

1

24
] = [

36

24
,
38

24
],

[vu
i ] = a1[v

x
i ], i = 1

= [
1

3
,
1

3
].
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Then, from the generalized interval form (3.23) we get
√

x̂ ∈ [
36

24
,
38

24
] + [

1

3
,
1

3
]ζ1, ζ1 ∈ [−1.5, 1.5].

Therefore,

f(x̂) ∈ ([
36

24
,
38

24
] + [

1

3
,
1

3
]ζ1) − ([

36

24
,
38

24
] + [

1

3
,
1

3
]ζ1)

= [− 1

12
,

1

12
] + [0, 0]ζ1.

The generalized interval

[− 1

12
,

1

12
] + [0, 0]ζ1

reduces to[− 1
12

, 1
12

] ⊆ [−0.08334, 0.08334]. Therefore,

f(x̂) ∈ [−0.08334, 0.08334]. (3.39)

From (3.38) and (3.39) we see that the inclusion obtained by linear best approximation is

better than the inclusion by first-order Taylor form, and both are better than the inclusion

obtained by ordinary interval arithmetic[−1, 1].

Example 3.11.Consider the function

f(x) = sin(x) − sin(x), x ∈ [2, 6.5].

The generalized interval form[x̂] of [x] is given by

[x̂] = [4.25, 4.25] + [1, 1]ζ1, ζ1 ∈ [−2.25, 2.25].

• Using first-order Taylor form:

From (3.14) we get

sin(x̂) ∈ sin([4.25, 4.25]) + [1, 1] cos([x̂])ζ1

= [−0.89499,−0.89498] + [−1, 1]ζ1,

thus,

f(x̂) ∈ ([−0.89499,−0.89498] + [−1, 1]ζ1) − ([−0.89499,−0.89498] + [−1, 1]ζ1)

= [−0.00001, 0.00001] + [−2, 2]ζ1.

The generalized interval

[−0.00001, 0.00001] + [−2, 2]ζ1

reduces to[−4.50001, 4.50001]. Therefore

f(x̂) ∈ [−4.50001, 4.50001]. (3.40)



82 Hansen’s Generalized Interval Arithmetic and its Extension

• Using linear best approximation:

According to theorem 3.6 and the iterative method of Remez, firstly we choose3 points

x
(0)
0 , x

(0)
1 andx

(0)
2 in the interval[2, 6.5]. Subsequently, we solve the system

a0 + a1x
(0)
i + (−1)iE0 = sin(x

(0)
i ), i = 0, 1, 2, (3.41)

in 3 unknownsa0, a1 andE0. After some iterations of the iterative method of Remez, we

find that

0.4664198 − 0.154262x

is close enough to the linear best approximation.

Next, we compute the verified maximum norm of the error function. We divide the interval

[2, 6, .5] into 10 small intervals. According to (3.31) and (3.32) the computed greatest

absolute value isE = 0.820817.

From (3.24) and (3.25) we get

[mu] = a0 + a1m
x + [−E, E]

= 0.4664198 + [−0.65561,−0.65561] + [−0.8208187, 0.820817]

= [−1.010009, 0.6316285],

[vu
i ] = a1[v

x
i ], i = 1

= [−0.154262,−0.154262].

Then, from the generalized interval form (3.23) we get

sin(x̂) ∈ [−1.010009, 0.6316285] + [−0.154262,−0.154262]ζ1, ζ1 ∈ [−2.25, 2.25].

Therefore,

f(x̂) ∈ ([−1.010009, 0.6316285]+[−0.154262,−0.154262]ζ1)−([−1.010009, .6316285]

+[−0.154262,−0.154262]ζ1)

= [−1.641637, 1.641637] + [0, 0]ζ1.

The generalized interval

[−1.641637, 1.641637] + [0, 0]ζ1

reduces to[−1.641637, 1.641637]. Therefore,

f(x̂) ∈ [−1.641637, 1.641637]. (3.42)
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From (3.40) and (3.42) we see that the inclusion obtained by linear best approximation is

better than the inclusion by first-order Taylor form, and is also better than the inclusion

obtained by ordinary interval arithmetic[−1.9093, 1.9093]. The inclusion obtained by

ordinary interval arithmetic is better than the inclusion obtained by first-order Taylor

form.

3.6.3 Algorithms

In this subsection we will give two algorithms derived from the results of the last subsection.

We use quintet (see section 3.5)

X = ([x], [mx], [vx], [gx], r).

The algorithm 3.6 depends on the corollary 3.5.

Algorithm 3.6. Elementary function using best approximation

1. Input { X }
2. Compute the interval elementary function in ordinary interval arithmetic

[u] := s([x])

3. for i = 1 to n do

// reduce Hansen form([x̂]) to an interval

[sxg] = [sxg] + [mx
i ] + [vx

i ]·interval(−ri, ri)

4. Compute the differential of the elementary function in generalized interval arithmetic

[temp] := s′([sxg]) temporary value

5. Initialization

[sum1] = 0; [sum2] = 0

6. for i = 1 to n do

[mu
i ] = 0

// reduce Hansen form([x̂]) to an interval

[sum1] = [sum1] + [mx
i ] + [vx

i ]·interval(−rad([x]),rad([x]))

// compute the sum of the midpoint

[sum2] = [sum2] + [mx
i ]

7. Computea1

a1 = (s(sup([sum1])) − s(inf([sum1])))/(sup([sum1]) − inf([sum1]))

8. Computec from the following equation

Continued on next page



84 Hansen’s Generalized Interval Arithmetic and its Extension

Algorithm 3.6 – continued from previous page

s′(c) = (s(sup([sum1])) − s(inf([sum1])))/(sup([sum1]) − inf([sum1]))

9. Computea0

a0 = 0.5(s(inf([sum1])) − s(c)) − 0.5(inf([sum1]) + c) s(sup([sum1]))−s(inf([sum1]))
sup([sum1])−inf([sum1])

10. ComputeE

E = 0.5(s(c) − s(inf([sum1]))) − 0.5(c − inf([sum1])) s(sup([sum1]))−s(inf([sum1]))
sup([sum1])−inf([sum1])

11. for i = 1 to n do

// Compute the coefficient values ofζi

[vu
i ] = a1 · [vx

i ]

// Compute the gradient values ofζi by the rule of differentiation[10]

[gu
i ] = [temp] · [gx

i ]

12.

//Compute the midpoint result

[mu
1 ] = a0 + a1 · [sum2]+interval(−E, E)

13. return s:= U = ( [u], [mu], [vu],[gu], r )

14. Output { U := ( [u], [mu], [vu], [gu], r ) }

The algorithm 3.7 depends on the theorem 3.6, and the iterative method of Remez.

Algorithm 3.7. Elementary function using best approximation (Remez’s method)

1. Input { X }
2. Compute the interval elementary function in ordinary interval arithmetic

[u] := s([x])

3. for i = 1 to n do

// reduce Hansen form([x̂]) to an interval

[sxg] = [sxg] + [mx
i ] + [vx

i ]·interval(−ri, ri)

4. Compute the differential of the elementary function in generalized interval arithmetic

[temp] := s′([sxg]) temporary value

5. Initialization

[sum1] = 0; [sum2] = 0

6. for i = 1 to n do

[mu
i ] = 0

Continued on next page
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Algorithm 3.7 – continued from previous page

// reduce Hansen form([x̂]) to an interval

[sum1] = [sum1] + [mx
i ] + [vx

i ]·interval(−rad([x]),rad([x]))

// compute the sum of the midpoints

[sum2] = [sum2] + [mx
i ]

7. Guess3 points

a = inf([sum1]) ≤ x0 < x1 < x2 ≤ sup([sum1]) = b

8. Solve the linear equations

a0 + a1xi + (−1)iE = s(xi), for i = 0, 1, 2

for the unknownsa0, a1 andE.

9. The error function

β(x) = a0 + a1x − s(x)

maybe has other points at which the error is greater in magnitude (greater than the

error for the guess points in step7). Find the local maximum and minimum ofβ,

either by directed evaluation ofβ(x) at a sufficiently large number of points in

[a, b] or by solvingβ ′(x) = 0.

10. Revise the guess of step7 using the values ofx found in step9, and repeat the steps

8, 9 until the required accuracy in step11 is obtained

11. Let M be the maximum magnitude computed in step9. If M/E is sufficiently close

to 1 (sayM/E ≈ 1.05), we consider thata0 + a1x is close enough to the linear

best approximation.

12. Divide the interval[a, b] into small intervals as defined in (3.31). Compute the

interval function (3.32) for every small interval. Take theabsolute value for

every computed interval function; the greatest absolute value is the verified

maximum norm. We useEE to denote the greatest absolute value.

13. for i = 1 to n do

// Compute the coefficient values ofζi

[vu
i ] = a1 · [vx

i ]

// Compute the gradient values ofζi by the rule of differentiation[10]

[gu
i ] = [temp] · [gx

i ]

14. Compute the midpoint result

[mu
1 ] = a0 + a1 · [sum2]+interval(−EE, EE)

Continued on next page
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Algorithm 3.7 – continued from previous page

15. return s:= U = ( [u], [mu], [vu],[gu], r )

16. Output { U := ( [u], [mu], [vu], [gu], r ) }

3.7 New Complex Generalized Interval Form

In this section, we describe a new complex generalized interval form. In section 1.2 page 6,

we have defined a complex interval[z] ∈ IC, which depends on two real intervals[x], [y] ∈
IR. The new complex generalized form for a complex interval will depend on the Hansen

form (definition 3.1) of a real interval. To define a complex generalized interval, we define

2 real generalized intervals[x̂] and[ŷ]. Thus, a new complex generalized interval will depend

on two generalized intervals. For this reason, we will choose the dimension as2n (general

case). Additionally, our idea is to use this form (complex generalized interval) to solve complex

parametric interval systems (see Chapter 4).

Definition 3.5. A complex generalized interval[ẑ] ∈ IC is given by

[ẑ] = [mx] +
2n∑

j=1

ζj[v
x
j ] + i([my] +

2n∑

j=1

ζj[v
y
j ]) (3.43)

where[mx], [my] ∈ IR, [vx
j ] ∈ IR and[vy

j ] ∈ IR, (j = 1, 2, · · · , 2n) are (computed numerical)

intervals andζj ∈ [−rj , rj], R ∋ rj ≥ 0.

From the definition 3.5, it is clear that, if we get a complex point ẑ ∈ [ẑ], we can write this

point in the following complex generalized form:

ẑ = mx +

2n∑

j=1

ζjv
x
j + i(my +

2n∑

j=1

ζjv
y
j ),

wheremx ∈ [mx], my ∈ [my], vx
j ∈ [vx

j ], vy
j ∈ [vy

j ] and−rj ≤ ζj ≤ rj , j = 1, · · · , 2n.

When we reduce the complex generalized interval in (3.43) toa complex interval, we obtain

reduce([ẑ]) = reduce([mx] +

2n∑

j=1

[−rj , rj][v
x
j ] + i([my] +

2n∑

j=1

[−rj , rj ][v
y
j ]))

:= [mx] + [−1, 1]

2n∑

j=1

rjv
x
j + i([my] + [−1, 1]

2n∑

j=1

rjv
y
j ),
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wherevx
j := |[vx

j ]| andvy
j := |[vy

j ]|, j = 1, · · · , 2n. Conversely, any complex interval can be

represented by a complex generalized interval. The complexinterval[z] = [x, x]+ i[y, y] can be

represented by the complex generalized interval[ẑ] = [mx] + ζ1[v
x
1 ] + i([my] + ζ2[v

y
2 ]), where

[mx] := [mid(x),mid(x)], ζ1 ∈ [−rad(x),rad(x)], [vx
1 ] := [1, 1], [my] := [mid(y),mid(y)],

ζ2 ∈ [−rad(y),rad(y)] and[vy
2 ] := [1, 1].

In general, if we have a complex interval vector[z] := ([z1], · · · , [zn])T ∈ IC
n, thek-th

interval[zk] can be represented with the generalized interval form

[ẑk] = [mxk ] + [0, 0]ζ1 + · · · + [0, 0]ζ2k−2 + [1, 1]ζ2k−1 + [0, 0]ζ2k + · · ·+ [0, 0]ζ2n

+i([myk ] + [0, 0]ζ1 + · · ·+ [0, 0]ζ2k−1 + [1, 1]ζ2k + [0, 0]ζ2k+1 + · · ·+ [0, 0]ζ2n)

= [mxk ] + [1, 1]ζ2k−1 + i([myk ] + [1, 1]ζ2k).

3.8 Complex Generalized Interval Arithmetic

Assume two complex generalized intervals[ẑ1] and[ẑ2] are expressed as

[ẑ1] = [mx1 ] +
2n∑

j=1

ζj[v
x1
j ] + i([my1 ] +

2n∑

j=1

ζj[v
y1

j ]), (3.44)

and

[ẑ2] = [mx2 ] +

2n∑

j=1

ζj[v
x2
j ] + i([my2 ] +

2n∑

j=1

ζj[v
y2

j ]), (3.45)

respectively.

We now consider the four arithmetic operations applied to these intervals.

Addition or subtraction

The sum (difference) of[ẑ1] and[ẑ2] is another complex generalized interval

[ẑ] = [mx] +
2n∑

j=1

ζj[v
x
j ] + i([my] +

2n∑

j=1

ζj[v
y
j ])
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It holds

[ẑ1] ± [ẑ2] = ([mx1 ] +
2n∑

j=1

ζj [v
x1
j ] + i([my1 ] +

2n∑

j=1

ζj[v
y1

j ]))

±([mx2 ] +
2n∑

j=1

ζj[v
x2
j ] + i([my2 ] +

2n∑

j=1

ζj[v
y2

j ]))

= [mx1 ] ± [mx2 ] +

2n∑

j=1

ζj([v
x1
j ] ± [vx2

j ])

+i([my1 ] ± [my2 ] +

2n∑

j=1

ζj([v
y1

j ] ± [vy2

j ])) (3.46)

Thus, we have to define

[mx] := [mx1 ] ± [mx2 ], (3.47)
[
vx

j

]
:= [vx1

j ] ± [vx2
j ], (j = 1, 2, · · · , 2n), (3.48)

[my] := [my1 ] ± [my2 ], (3.49)
[
vy

j

]
:= [vy1

j ] ± [vy2

j ], (j = 1, 2, · · · , 2n). (3.50)

Lemma 3.4. For everyẑ1 ∈ [ẑ1] and ẑ2 ∈ [ẑ2], it holds that

ẑ1 ∈ [ẑ1], ẑ2 ∈ [ẑ2] ⇐⇒ ẑ1 ± ẑ2 = mx1 ± mx2 +
2n∑

j=1

ζj(v
x1
j ± vx2

j ) + i(my1 ± my2

+

2n∑

j=1

ζj(v
y1

j ± vy2

j )) ∈ [ẑ].

Proof: (Addition)

(=⇒)

ẑ1 ∈ [ẑ1] andẑ2 ∈ [ẑ2] Def. 3.5, page 86−−−−−−−−−−−−→
ẑ1 = mx1 +

∑2n
j=1 ζjv

x1
j + i(my1 +

∑2n
j=1 ζjv

y1

j )

ẑ2 = mx2 +
∑2n

j=1 ζjv
x2
j + i(my2 +

∑2n
j=1 ζjv

y2

j ).
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Hence,

ẑ1 + ẑ2 = (mx1 +
2n∑

j=1

ζjv
x1
j +i(my1 +

2n∑

j=1

ζjv
y1

j ))+(mx2+
2n∑

j=1

ζjv
x2
j +i(my2 +

2n∑

j=1

ζjv
y2

j ))

= mx1 +mx2 +

2n∑

j=1

ζj(v
x1
j + vx2

j )+i(my1 +my2 +

2n∑

j=1

ζj(v
y1

j +vy2

j ))

∈ [mx1 ]+[mx2]+

2n∑

j=1

ζj([v
x1
j ]+[vx2

j ])+i([my1]+[my2]+

2n∑

j=1

ζj([v
y1

j ]+[vy2

j ]))

= [ẑ1] + [ẑ2] = [ẑ]

(⇐=)

ẑ ∈ [ẑ] Def. 3.5, page 86 and (3.46) - (3.50)−−−−−−−−−−−−−−−−−−−−−−−−−−−→

ẑ = mx1 +mx2 +

2n∑

j=1

ζj(v
x1
j +vx2

j )+i(my1+my2 +

2n∑

j=1

ζj(v
y1

j +vy2

j ))

= mx1 +mx2 +

2n∑

j=1

ζjv
x1
j +

2n∑

j=1

ζjv
x2
j +i(my1 +my2 +

2n∑

j=1

ζjv
y1

j +

2n∑

j=1

ζjv
y2

j )

= mx1 +
2n∑

j=1

ζjv
x1
j +i(my1 +

2n∑

j=1

ζjv
y1

j )

︸ ︷︷ ︸
∈[ẑ1]

+mx2 +
2n∑

j=1

ζjv
x2
j +i(my2 +

2n∑

j=1

ζjv
y2

j )

︸ ︷︷ ︸
∈[ẑ2]

.

The subtraction is proven in a similar manner.

Multiplication

To obtain a rule for multiplication of two generalized intervals, note that

[ẑ1] · [ẑ2] = {ẑ1 · ẑ1| ẑ1 ∈ [ẑ1], ẑ2 ∈ [ẑ2]}

⊆ ([mx1] +
2n∑

j=1

ζj[v
x1
j ] + i([my1 ] +

2n∑

j=1

ζj[v
y1

j ])) ·

([mx2] +

2n∑

j=1

ζj[v
x2
j ] + i([my2 ] +

2n∑

j=1

ζj[v
y2

j ])).

We will follow the rule of multiplication of two complex intervals, which is defined in the
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definition 1.11 on page 7. Then

[ẑ1]·[ẑ2]⊆([mx1 ]+

2n∑

j=1

ζj[v
x1
j ])·([mx2]+

2n∑

j=1

ζj[v
x2
j ])−([my1 ]+

2n∑

j=1

ζj[v
y1

j ])·([my2]+

2n∑

j=1

ζj[v
y2

j ])

︸ ︷︷ ︸
real part

+i (([mx1 ]+

2n∑

j=1

ζj[v
x1
j ])·([my2]+

2n∑

j=1

ζj[v
y2

j ])+([mx2]+

2n∑

j=1

ζj [v
x2
j ])·([my1]+

2n∑

j=1

ζj[v
y1

j ]))

︸ ︷︷ ︸
imaginary part

.(3.51)

In the right hand side of the above inequality, we will followthe rules of multiplication, subtrac-

tion and addition of generalized intervals, which have beendescribed in section 3.2, to get the

new complex generalized interval. For example, the real part contains two Hansen arithmetic

operations (multiplication and subtraction). At first, we multiply

([mx1 ] +

2n∑

j=1

ζj[v
x1
j ]) · ([mx2 ] +

2n∑

j=1

ζj[v
x2
j ])

and

([my1 ] +

2n∑

j=1

ζj[v
y1

j ]) · ([my2 ] +

2n∑

j=1

ζj [v
y2

j ])

by using Hansen arithmetic (see section 3.2) to get generalized intervals. After that we subtract

the result of the second multiplication from the result of the first multiplication. Then the final

result of the real part will be a generalized interval too. The imaginary part is computed in a

similar manner. Consequently, the final result will be a complex generalized interval.

Lemma 3.5. If ẑ1 ∈ [ẑ1] and ẑ2 ∈ [ẑ2], then

ẑ1 · ẑ2 ∈ [ẑ1] · [ẑ2].

Proof:

The proof is obvious from the proof of lemmas 3.1 and 3.2

Example 3.12.Consider the expression

f = z1 · z2 − z1 · z2, with z1 ∈ [1, 2] + i[3, 4] and z2 ∈ [4, 5] + i[5, 6].

Ordinary interval computation gives

F = ([1, 2]+i[3, 4])·([4, 5]+i[5, 6])−([1, 2]+i[3, 4])·([4, 5]+i[5, 6]) = [−15, 15]+i[−15, 15].
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Using complex generalized interval forms and using (3.5), (3.7), and (3.8) give

FCGI = [0, 0] + [−1, 1]ζ1 + [0, 0]ζ2 + [−1, 1]ζ3 + [0, 0]ζ4

+i([0, 0] + [−1, 1]ζ1 + [0, 0]ζ2 + [−1, 1]ζ3 + [0, 0]ζ4),

which reduces to

reduce(FCGI) = [−1, 1] + i[−1, 1].

This means that for every

ẑ1 ∈ [ẑ1] = [1.5, 1.5] + [1, 1]ζ1 + i([3.5, 3.5] + [1, 1]ζ2)

and

ẑ2 ∈ [ẑ2] = [4.5, 4.5] + [1, 1]ζ3 + i([5.5, 5.5] + [1, 1]ζ4),

whereζj ∈ [−0.5, 0.5], (j = 1, · · · , 4), the expression̂z1 · ẑ2 − ẑ1 · ẑ2 belongs to

reduce([ẑ1] · [ẑ2] − [ẑ1] · [ẑ2]):

ẑ1 · ẑ2 − ẑ1 · ẑ2 ∈ reduce([ẑ1] · [ẑ2] − [ẑ1] · [ẑ2]) = [−1, 1] + i[−1, 1].

Nonetheless the converse is not correct; this means if we choose the point

1 + i ∈ [−1, 1] + i[−1, 1],

then we see that there is nôz1 ∈ [ẑ1] and ẑ2 ∈ [ẑ2] such that̂z1 · ẑ2 − ẑ1 · ẑ2 = 1 + i.

The (ordinary) complex interval result overestimates the reduced complex generalized interval

form.

Division

Division of two complex generalized intervals can also be done, Note that

{ ẑ1

ẑ2
| ẑ1 ∈ [ẑ1], ẑ2 ∈ [ẑ2]} ⊆

([mx1 ]+
∑2n

j=1 ζj [v
x1
j ])·([mx2]+

∑2n
j=1 ζj[v

x2
j ])+([my1]+

∑2n
j=1 ζj [v

y1

j ])·([my2]+
∑2n

j=1 ζj[v
y2

j ])

([mx2 ]+
∑2n

j=1 ζj [v
x2
j ])2+([my2]+

∑2n
j=1 ζj[v

y2

j ])2

︸ ︷︷ ︸
real part

+i (
([my1 ]+

∑2n
j=1 ζj[v

y1

j ])·([mx2]+
∑2n

j=1 ζj [v
x2
j ])−([mx1]+

∑2n
j=1 ζj[v

x1
j ])·([my2]+

∑2n
j=1 ζj[v

y2

j ])

([mx2 ]+
∑2n

j=1 ζj[v
x2
j ])2+([my2]+

∑2n
j=1 ζj[v

y2

j ])2

︸ ︷︷ ︸
imaginary part

).
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We will compute the right hand side of the above subset relation like the case of the multi-

plication of two complex generalized intervals (see page 90). The real part is computed as

follows

1. Multiply the two generalized intervals

([mx1 ] +
2n∑

j=1

ζj[v
x1
j ]) · ([mx2 ] +

2n∑

j=1

ζj[v
x2
j ])

by using generalized interval arithmetic.

2. Multiply the two generalized intervals

([my1 ] +

2n∑

j=1

ζj[v
y1

j ]) · ([my2 ] +

2n∑

j=1

ζj [v
y2

j ])

as in step1.

3. Add the result from step1 to the result from step2 (of course the result in every step will

be generalized interval form).

4. The denominator is computed in a similar manner.

5. Divide the generalized interval from step3 by the generalized interval from step4. The

result will be a generalized interval.

The imaginary part will be computed in a similar manner. Thenthe final result will be a complex

generalized interval

Lemma 3.6. ẑ1 ∈ [ẑ1] and ẑ2 ∈ [ẑ2] with 0 /∈ [ẑ2] =⇒

ẑ1

ẑ2

∈ [ẑ1]

[ẑ2]

Proof:

The proof is obvious from the proof of lemmas 3.1, 3.2, and 3.3.

Example 3.13.Consider the expression

f =
z1

z2

− z1

z2

, with z1 ∈ [1, 2] + i[3, 4] and z2 ∈ [4, 5] + i[5, 6].

Ordinary interval computation gives

F = [−0.306, 0.306] + i[−0.3, 0.3].
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Using complex generalized interval forms and using (3.5), (3.7), (3.8), (3.10), and (3.11)

give

FCGI =[0.005, 0.005]+[−0.06, 0.06]ζ1+[−0.03, 0.03]ζ2+[−0.07, 0.07]ζ3+[−0.02, 0.02]ζ4

+i([−0.001, 0.001]+[−0.07, 0.07]ζ1+[−0.02, 0.02]ζ2+[−0.06, 0.06]ζ3+[−0.03, 0.03]ζ4),

which reduces to

[−0.092, 0.092] + i[−0.089, 0.089].

Thus, for every

ẑ1 ∈ [ẑ1] = [1.5, 1.5] + [1, 1]ζ1 + i([3.5, 3.5] + [1, 1]ζ2)

and

ẑ2 ∈ [ẑ2] = [4.5, 4.5] + [1, 1]ζ3 + i([5.5, 5.5] + [1, 1]ζ4),

whereζj ∈ [−0.5, 0.5], (j = 1, · · · , 4), the expression̂z1/ẑ2 − ẑ1/ẑ2 belongs to

reduce([ẑ1]/[ẑ2] − [ẑ1]/[ẑ2]):

ẑ1/ẑ2 − ẑ1/ẑ2 ∈ reduce([ẑ1]/[ẑ2] − [ẑ1]/[ẑ2]) = [−0.092, 0.092] + i[−0.089, 0.089].

The converse is not correct. If we choose e.g. the point

0.09 + 0.08i ∈ [−0.092, 0.092] + i[−0.089, 0.089],

we see that there is nôz1 ∈ [ẑ1] and ẑ2 ∈ [ẑ2] such that̂z1/ẑ2 − ẑ1/ẑ2 = 0.09 + 0.08i.

The (ordinary) complex interval result overestimates the reduced complex generalized interval

form.

In the following we will compare the inclusion function obtained by complex generalized

interval arithmetic with the inclusion obtained by complexinterval arithmetic.

Example 3.14.Let

f =
z1 + z2

z1 − z2

, z1 ∈ [1, 1.05] + i[2, 2.2], z2 ∈ [3, 3.1] + i[4, 4.05].

• Using Complex Generalized Interval arithmetic

The complex generalized interval forms[ẑ1], [ẑ2] of [z1], [z2] are given by

[ẑ1] = [1.025, 1.025] + [1, 1]ζ1 + i([2.1, 2.1] + [1, 1]ζ2), ζ1 ∈ [−0.025, 0.025], ζ2 ∈ [−0.1, 0.1]

[ẑ2] = [3.05, 3.05] + [1, 1]ζ3 + i([4.025, 4.025] + [1, 1]ζ4), ζ3 ∈ [−0.05, 0.05], ζ4 ∈ [−0.025, 0.025]
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respectively.

Using (3.47) — (3.50) give

[ẑ1] + [ẑ2] = [4.075, 4.075] + [1, 1]ζ1 + [1, 1]ζ3 + i([6.125, 6.125] + [1, 1]ζ2 + [1, 1]ζ4),

[ẑ1] − [ẑ2] = [−2.025,−2.025] + [1, 1]ζ1 + [−1,−1]ζ3

+i([−1.925,−1.925] + [1, 1]ζ2 + [−1,−1]ζ4).

From (3.52), (3.7), (3.8), (3.10) and (3.11) we obtain the following complex generalized

interval

FCGI = [1.0, 1.01] + [−0.015, 0.015]ζ1 + [−0.01, 0.01]ζ2 + [−0.01, 0.01]ζ3

+[−0.03, 0.03]ζ4 + i([0, 0] + [−0.02, 0.02]ζ1 + [−0.01, 0.01]ζ2

+[−0.02, 0.02]ζ3 + [−0.01, 0.01]ζ4),

which can be reduced to

reduce(FCGI) = [0.995, 1.004] + i[−0.0027, 0.0027].

• Using complex interval arithmetic gives

F = [0.904, 1.106] + i[−0.099, 0.104].

The result obtained by complex generalized interval arithmetic is better than the result

obtained by complex interval arithmetic

reduce(FCGI) ⊂ F.

3.9 Complex Elementary Functions

In sections 3.4 and 3.6, we have studied the real elementary functions using two approaches

(Taylor form and minimax approximation method). In this section, we will extend the real case

to the complex case. Letz = x + iy, with i =
√
−1, be a complex number. Assume thatf(z),

is analytic in the setU , whereU is a non-empty open subset of the complex plane.1) In this

section, we suppose thatf(z) is analytic; thenf(z) can be written as follows (for more details

see[44, 2])

f(z) = u(x, y) + i · v(x, y)

1A functionf is said to be analytic, iff is differentiable at every point ofU .
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A complex functionf(z) is called separable, if bothu(x, y) andv(x, y) can be written as prod-

ucts of two real functions. There are other complex functions, whereu(x, y) andv(x, y) can’t be

written as products of two real functions. In the following,we give some complex elementary

functions:

ez = ex · cos(y) + i · ex · sin(y),

sin(z) = sin(x) · cosh(y) + i · cos(x) · sinh(y),

cos(z) = cos(x) · cosh(y) + i · sin(x) · sinh(y),

sinh(z) = sinh(x) · cos(y) + i · cosh(x) · sin(y),

cosh(z) = cosh(x) · cos(y) + i · sinh(x) · sin(y).

tan z =
sin(2x)

cos(2x) + cosh(2x)
+ i · sinh(2x)

cos(2x) + cosh(2x)
. (3.52)

We can compute an inclusion of the complex function over a complex interval[z] = [x] + i[y]

using complex generalized interval arithmetic. As we have described in the multiplication and

division of two complex intervals, we have computed their real and imaginary parts separately

using real generalized interval arithmetic. For the complex elementary functions, we will follow

the same technique that are used for the multiplication and division two complex generalized

interval arithmetic. As example, the real part ofez will compute as follows:

1. Using Taylor or best approximation (see section 3.4 and 3.6) to computeex andcos(y).

2. multiply the result ofex with the result ofcos(y), by using generalized interval arithmetic.

The imaginary part will be computed in a similar manner. The last form will be a complex

generalized interval form.

3.10 Algorithms

We now describe the algorithms for the elementary operations +, −, · and/, and for complex

elementary functions. We will use a linear best approximation in our algorithms . For complex

generalized forms, we use hexagonal

Z = ([z], [mx], [vx], [my], [vy], [g]),

with [z] ∈ IC, [x], [y] ∈ IR, [mx], [my] ∈ IR2n, [vx], [vy] ∈ IR2n and [g] ∈ IR2n for the

description of the arithmetic rules.
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Algorithm 3.8. Addition Operator + (Z1, Z2 )

1. Input { Z1, Z2 }
2. Compute the sum[z1] + [z2] in ordinary complex interval arithmetic

[z] = [z1] + [z2]

3. Compute the sum of the mid-points

[mx] = [mx1 ] + [mx2 ]

[my] = [my1 ] + [my2 ]

4. Compute the sum of the coefficient values ofζi for real and imaginary parts

[vx] = [vx1 ] + [vx2]

[vy] = [vy1] + [vy2]

5. return Z := ( [z], [mx], [vx], [my], [vy], [g] )

6. Output { Z := ( [z], [mx], [vx], [my], [vy], [g] ) }

Algorithm 3.9. Subtraction Operator — (Z1, Z2 )

1. Input { Z1, Z2 }
2. Compute the difference[z1] − [z2] in ordinary complex interval arithmetic

[z] = [z1] − [z2]

3. Compute the difference of the mid-points

[mx] = [mx1 ] − [mx2 ]

[my] = [my1 ] − [my2 ]

4. Compute the difference of the coefficient values ofζi for real and imaginary parts

[vx] = [vx1 ] − [vx2 ]

[vy] = [vy1] − [vy2 ]

5. return Z := ( [z], [mx], [vx], [my], [vy], [g] )

6. Output { Z := ( [z], [mx], [vx], [my], [vy], [g] ) }

There will be no conflict by using the algorithms 3.1, 3.2, 3.3and 3.4, to compute the real

and imaginary parts of (3.51) and (3.52) in the following algorithms:

Algorithm 3.10. Multiplication Operator • (Z1, Z2 )

1. Input { Z1, Z2 }
2. Compute the multiplication of[z1] and[z2] in ordinary complex interval arithmetic

Continued on next page
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Algorithm 3.3 – continued from previous page

[z] = [z1] · [z2]

3. Compute the real and imaginary parts of (3.51) using algorithms 3.1,

3.2, 3.3 and 3.4

4. return Z = ([z], [mx], [vx], [my], [vy], [g] )

5. Output { Z := ( [z], [mx], [vx], [my], [vy], [g] ) }

Algorithm 3.11. Division Operator / (Z1, Z2 )

1. Input { Z1, Z2 }
2. Compute the division of[z1] over[z2] in ordinary complex interval arithmetic

[z] = [z1]/[z2]

3. Compute the real and imaginary parts of (3.52) using algorithms 3.1, 3.2, 3.3

and 3.4

4. return Z = ([z], [mx], [vx], [my], [vy], [g] )

5. Output { Z := ( [z], [mx], [vx], [my], [vy], [g] ) }

Algorithm 3.12. Complex elementary function

1. Input { Z1 }
2. Compute the interval extension elementary function in complex interval arithmetic

[z] := s([z1]) function value

3. Compute the real and imaginary parts of elementary functionby using the algorithm

3.6 or 3.7, and the algorithms 3.1, 3.2, 3.3 and 3.4

4. return Z = ([z], [mx], [vx], [my], [vy], [g] )

5. Output { Z := ( [z], [mx], [vx], [my], [vy], [g] ) }
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Chapter 4

Verified Solution of Parametric Linear

System of Equations using Generalized

Interval Arithmetic

In this chapter we will discuss some cases of parametric interval systems. Our methods depend

on directly generalized interval arithmetic and its extension (see chapter 3). The methods that

will presented are some modifications of Popova’s and Rump’smethods. We start in Section

4.1 with the case if the constant matrixA(0) and the constant vectorb(0) (equation (2.16) page

35) of Popova’s representation are not exactly representable on the computer; we will modify

Popova’s and Rump’s methods. In Section 4.2 we will study thecase if the elements of the

parametric matrix and right-hand side are nonlinear functions of parameter intervals; in this

section generalized interval arithmetic and complex generalized interval arithmetic will be the

basic role in our modification. In Section 4.3 we will study the over- and under-determined

case of the parametric interval systems.

4.1 Affine-linear Case

The methods for solving parametric interval systems, whichhave been represented in Sec-

tion 2.1, demand for an exactly representable constant matrix A(0) ∈ Rn×n (see page 35)

and constant vectorb(0) ∈ Rn on the computer. In practice,A(0) andb(0) may be not exactly

representable on the computer. To illustrate this point, wewill give the following example

99



100
Verified Solution of Parametric Linear System of Equations using Generalized Interval
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Example 4.1.Consider the2 × 2 parametric system with
(

p p

ǫ 0

)
x =

(
p

p

)
, p ∈ [1, 2], ǫ 6= 0.

The problem that will be solved on the computer will be as follows:
(

p p

2ǫ 0

)

x =

(
p

p

)

. ǫ 6= 0. (4.1)

The exact solution of the system isx = (p/ǫ, 1−p/ǫ). If we solve the system (4.1) forǫ = 10−20

using Popova’s modification or Rump’s method, we get the following result

[1.9999999999999E + 20, 3.000000000001E + 20]

[−3.5080692395E + 20,−1.491930760432E + 20] ,

which does not contain the exact solution

[1.0000E + 20, 2.0000E + 20]

[1 − 2.0E + 20, 1 − 1.0E + 20] .

The reason for this incorrect result is thatǫ = 10−20 is not exactly representable on the com-

puter.

To solve this problem, we will enclose all input data ofA(0) andb(0) in small intervals. For

our modification we define a matrixA([A(0)], [p]) and a vectorU([b(0)], [p]) as follows

A = A([A(0)], [p]) := {A(0) +

k∑

ν=1

pνA
(ν)| p ∈ [p], A(0) ∈ [A(0)]} 6∈ IR

n×n, (4.2)

U = U([b(0)], [p]) := {b(0) +
k∑

ν=1

pνb
(ν)| p ∈ [p], b(0) ∈ [b(0)]} 6∈ IR

n. (4.3)

The solution set of all

Ax = U ,

is represented by

∑
(A,U) := {x ∈ R

n|A · x = b, A ∈ A, b ∈ U}.

As we have seen in Section 2.1, the important point to obtain an enclosure of the parametric

solution set is to obtain sharp bounds for

IR
n ∋ [z] := 3{R · (U − Ax̃)|p ∈ [p]},
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whereR ∈ Rn×n andx̃ ∈ Rn.

Now, we will present our modification to compute[z]. We suppose that all the elements

of the interval matrix[A(0)] and the elements of the interval vector[b(0)] vary independently in

their intervals.

[z] := 3{R · (U −Ax̃)|p ∈ [p]}

= 3{R · (b(0) +
k∑

ν=1

pνb
(ν) − (A(0) +

k∑

ν=1

pνA
(ν))x̃)|p ∈ [p], b(0) ∈ [b(0)], A(0) ∈ [A(0)]}

= 3{R · (b(0) − A(0)x̃) +

k∑

ν=1

pνR · (b(ν) − A(ν) · x̃)|p ∈ [p], b(0) ∈ [b(0)], A(0) ∈ [A(0)]}

= R · ([b(0)] − [A(0)]x̃) +

k∑

ν=1

[pν ]R · (b(ν) − A(ν) · x̃).

An interval matrix[C] ∈ IR
n×n will be computed as follows

[C] := 3{I − R · A|p ∈ [p]}

= 3{I − R · (A(0) +
k∑

ν=1

pνA
(ν))|p ∈ [p], A(0) ∈ [A(0)]}

= 3{I − R · A(0) −
k∑

ν=1

pνR · A(ν))|p ∈ [p], A(0) ∈ [A(0)]}

= I − R · [A(0)] −
k∑

ν=1

[pν ]R · A(ν).

Theorem 4.1. Let A(p) ∈ R
n×n, b(p) ∈ R

n, p ∈ R
k. DefineA ∈ R

n×n andU ∈ R
n to be a

matrix and a vector in (4.2) and (4.3) respectively. LetR ∈ Rn×n, [y] ∈ IRn, x̃ ∈ Rn and

define[z] ∈ IR
n and [C] ∈ IR

n×n by

[z] := R · ([b(0)] − [A(0)]x̃) +

k∑

ν=1

[pν ]R · (b(ν) − A(ν) · x̃),

[C] := I − R · [A(0)] −
k∑

ν=1

[pν ](R · A(ν)).

Define[v] ∈ IRn by means of the following Einzelschrittverfahren:

1 ≤ i ≤ n : [vi] = {3{[z] + [C] · [u]}}i, where[u] := ([v1], · · · , [vi−1], [yi], · · · , [yn])
⊤. (4.4)

If

[v]
◦⊂ [y], (4.5)
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thenR and every matrixA ∈ A are regular. Therefore every matrixA(p), p ∈ [p] is regular.

And for everyp ∈ [p], A(0) ∈ [A(0)] and b(0) ∈ [b(0)] the unique solution̂x = A−1b, b ∈ U
satisfieŝx ∈ x̃ + [v].

Proof: To prove this theorem, we define a real matrixD(p) ∈ Rn×n and a real vectord(p) ∈
R

n, p ∈ [p], which are elements of the matrixA(A(0), p) and the vectorU(b(0), p), respectively.

If (4.4) and (4.5) are satisfied for these matrix and vector, thenD(p) is regular for every

p ∈ [p]. Therefore, every matrix fromA(A(0), p) is regular and (4.4), (4.5) will be satisfied for

every matrix fromA(A(0), p). This will complete the proof of the theorem.

Let

D(p) := A(0) +

k∑

ν=1

pνA
(ν), d(p) := b(0) +

k∑

ν=1

pνb
(ν),

whereA(0) ∈ [A(0)], b(0) ∈ [b(0)] andp ∈ [p] with

D(p) ∈ A(A(0), p), d(p) ∈ U(b(0), p).

Considerf : R
k ×R

n −→ R
n with f(p, x̃) = D(p)x̃− d(p), x̃ ∈ R

n. Let [z] := −R · f([p], x̃),

R ∈ Rn×n, then

−R · f([p], x̃) = 3{−R · f(p, x̃)|p ∈ [p]}
= 3{R · (d(p) − D(p)x̃|p ∈ [p]}

= 3{R · (b(0) +
k∑

ν=1

pνb
(ν) − (A(0) +

k∑

ν=1

pνA
(ν))x̃)|p ∈ [p]}

= 3{R · (b(0) − A(0)x̃) +

k∑

ν=1

pνR · (b(ν) − A(ν)x̃)|p ∈ [p]}

= R · (b(0) − A(0)x̃) +
k∑

ν=1

[pν ]R · (b(ν) − A(ν)x̃) =: [z].

This equality holds since every componentpν , (ν = 1, · · · , k) occurs at most once in the ex-

pression.
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Let [C] := 3{I − R · D(p)|p ∈ [p]}, I is then × n identity matrix, then

[C] := 3{I − R · D(p)|p ∈ [p]}

= 3{I − R · (A(0) −
k∑

ν=1

pνA
(ν))|p ∈ [p]}

= 3{I − R · A(0) −
k∑

ν=1

pνR · A(ν)|p ∈ [p]}

= I − R · A(0) −
k∑

ν=1

[pν ]R · A(ν).

Defineg : S ⊆ Rn −→ Rn by

g(x) = x − R · f(p, x), (4.6)

wheref(p, x) = f(p, x̃)+D(p)(x− x̃). According to theorem 2.3, and with (2.18) and (2.19),

yield

3{[z] + [C] · [v]} ◦⊂ [v], [v] ∈ IR
n. (4.7)

Hence, for allx ∈ x̃ + [v] we have

g(x) = x − R · (f(p, x̃) + D(p)(x − x̃))

= x − R · (D(p)x̃ − d(p) + D(p)(x − x̃))

= x − R · ((A(0) +

k∑

ν=1

pνA
(ν))x̃ − b(0) −

k∑

ν=1

pνb
(ν) + (A(0) +

k∑

ν=1

pνA
(ν))(x − x̃))

= x̃ + R · (b(0)− A(0)x̃)+
k∑

ν=1

pνR · (b(ν) − A(ν)x̃) +(I − RA(0) −
k∑

ν=1

pνRA(ν))(x − x̃)

∈ x̃ + R · (b(0) − A(0)x̃) +

k∑

ν=1

pνR · (b(ν) − A(ν)x̃) + (I − RA(0) −
k∑

ν=1

pνRA(ν))[v]

⊆ x̃ + [z] + [C] · [v]
◦⊂ x̃ + [v],

that is,g is a continuous mapping of the nonempty, convex and compact set x̃ + [v] into itself.

Thus Brouwer’s fixed point theorem implies the existence of somex̂ ∈ x̃ + [v] with g(x̂) = x̂ =

x̂ − R · f(p, x̂), and henceR · f(p, x̂) = 0. Then

R · f(p, x̂) = 0 =⇒ R · (D(p)x̃ − d(p) + D(p)(x̂ − x̃)) = 0. (4.8)
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First we will prove thatD(p) is regular, for everyp ∈ [p].

Let 0 6= y ∈ R
n with

D(p)y = 0, (4.9)

andλ ∈ R. From (4.6), we have

g(x̂ + λy) = x̂ + λy − R · (D(p)x̃ − d(p) + D(p)(x̂ + λy − x̃))

= x̂ + λy − R · (D(p)x̃ − d(p) + D(p)(x̂ − x̃))︸ ︷︷ ︸
=0, from (4.8)

−Rλ D(p)y︸ ︷︷ ︸
=0, from (4.9)

= x̂ + λy. (4.10)

This means,̂x + λy is a fixed point ofg for everyλ. But if y 6= 0, then a λ̂ exists with

x̂ + λ̂y ∈ ∂[v]1. This means that a fixed point exists on the boundary of[v], but this contradicts

(4.10) and (4.7). ThusD(p) is regular for everyp ∈ [p], therefore everyA ∈ A(A(0), p) is

regular for everyA(0) ∈ [A(0)] andp ∈ [p].

Next we will prove thatR is regular

Let 0 6= y ∈ R
n with

Ry = 0, (4.11)

andλ ∈ R. From (4.6), we have

g(x̂ + λD−1(p)y) = x̂ + λD−1(p)y − R · (D(p)x̃ − d(p) + D(p)(x̂ + λD−1(p)y − x̃))

= x̂ + λD−1(p)y − R · (D(p)x̃ − d(p) + D(p)(x̂ − x̃))︸ ︷︷ ︸
=0, from (4.8)

−D(p)D−1(p)λ Ry︸︷︷︸
=0, from (4.11)

= x̂ + λD−1(p)y. (4.12)

Sincey 6= 0, thenD−1(p)y 6= 0 andλ̂ exists witĥx+ λ̂D−1(p)y ∈ ∂[v]. This means that, a fixed

point exists on the boundary of[v], but this contradicts (4.12) and (4.7). Thus,R is regular.

For all A ∈ A(b(0), p) andb ∈ U(b(0), p), from (4.8) then

Ax̃ − b + Ax̂ − Ax̃ ∈ Kern{R} = {0},

thus,Ax̂ − b = 0 −→ x̂ = A−1b.

This completes the proof of the theorem.

Now our modification of Popova’s algorithm (2.4) is as follows:

1∂[v] is topology boundary of[v], ∂[v] := {v ∈ [v]|v is a boundary point of[v]}.
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Algorithm 4.1. Parametric interval linear systems (our modification)

1. Input { A([A(0)], [p]) ∈ Rn×n,U([b(0)], [p]) ∈ Rn, [p] ∈ IRk }
2. Initialization

b̌ := U(mid([b(0)]),mid([p])); Ǎ := A(mid([A(0)]),mid([p]))

3. Compute an approximation inverseR (R ≈ Ǎ−1) of Ǎ with some standard algorithm

(see e.g.[10])

4. Compute an approximate mid-point solution

x̃ = 2(R · b̌) Optionally improvẽx by a residual iteration.

5. Compute an enclosure[C] for the set{I − R · A}
if (SharpC)then { sharp enclosure (Popova modification)}

[C] = 3(I − R · [A(0)] −∑k
ν=1[pν ](R · A(ν)))

else { rough enclosure (Rump’s method)}
[C] = 3(I − R · A([A(0)], [p]))

6. Compute an enclosure[z] for the set{R · (U − A · x̃)}
[z] = 3(R · ([b(0)] − [A(0)]x̃) +

∑k
ν=1[pν ](Rb(ν) − RA(ν) · x̃))

7. Verification step

[v] := [z]

max= 1

repeat

[v] := [v] 1 ǫ ǫ-inflation

[y] := [v]

for i = 1 to n do { Einzelschrittverfahren}
[vi] = 3([zi] + [C(Row(i))] · [v])

max++

until [v]
◦⊂ [y] or max≥ 10

8.

if [v]
◦⊂ [y] then {

all A ∈ A are non-singular and the solution̂x of Ax = b, b ∈ U
exists and is uniquely determined andx̂ ∈ x̃ + [v] }

else {
Err:= ” no inclusion computed, the matrixA contains a singular matrix or

is ill conditioned” }
Continued on next page
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Algorithm 4.1 – continued from previous page

9. Output { Outer solution[v] and Error code Err}

4.2 Nonlinear Cases

In section 2.2 the methods for solving parametric interval systems whose elements are nonlinear

functions of interval parameters were presented. These methods demand exactly representable

of the arguments matrices and vectors. But in practice it is usually not the case (see example

4.1). For this reason, we will use another method to enclose all the input data of the argument

matrices and vectors in small intervals. In Chapter 3, we have introduced generalized interval

arithmetic and complex generalized interval arithmetic, whose most important purpose is to

reduce the effect of the ”dependency” problem. Furthermore, we have introduced enclosing the

nonlinear functions in linear interval forms, which calledgeneralized interval forms or complex

generalized interval forms. Therefore, we will use this method and its modification to solve

our parametric interval systems. In Subsection 4.2.1 we will start with the parametric interval

systems, whose elements are non-linear real functions[9]. We will show how we can use

generalized interval arithmetic to transform the nonlinear functions to their interval linear forms.

In Subsection 4.2.2, the complex parametric systems will bestudied

4.2.1 Nonlinear Real Case

In this subsection, a method for computing an outer solutionfor the system (2.1), in the general

case, is suggested. The method is based on the generalized interval arithmetic presented in

chapter 3.

Let f : [x] ⊂ Rk −→ R be a continuous function. The functionf(x) can be enclosed by

the following linear interval form

[Lf (ζ)] := [mf ] +

k∑

ν=1

ζν [v
f
ν ], (4.13)

where[mf ] and [vf
ν ], (ν = 1, · · · , k) are real intervals, andζν ∈ [−rad([xν ]), rad([xν ])]. The

form (4.13) can be determined in an automatic way by using thealgorithms that have been

presented in chapter 3, and it has the inclusion property

f(x) ∈ [Lf(ζ)], x ∈ [x], ζ ∈ [ζ ].
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We assume thataij(p) andbi(p), (i, j = 1, · · · , n) in (2.2) are continuous functions. In accor-

dance with (4.13), the corresponding linear interval formsare

[Lij(ζ)] := [maij ] +

k∑

ν=1

ζν [v
aij
ν ]

[li(ζ)] := [mbi ] +
k∑

ν=1

ζν [v
bi

ν ], (i, j = 1, 2, · · · , n)

whereζν ∈ [−rad([pν ]), rad([pν ])], (ν = 1, · · · , k). The above forms have the inclusion prop-

erty

aij(p) ∈ [Lij(ζ)] := [maij ] +

k∑

ν=1

ζν[v
aij
ν ] =: [aij(ζ)] (4.14)

bi(p) ∈ [li(ζ)] := [mbi ] +
k∑

ν=1

ζν [v
bi

ν ] =: [bi(ζ)]. (4.15)

From the above two relations, we can write every element fromthe parametric matrix and the

right-hand side vector in the following linear forms

aij(p) := maij +
k∑

ν=1

ζνv
aij

ν (4.16)

bi(p) := mbi +

k∑

ν=1

ζνv
bi

ν (4.17)

wheremaij ∈ [maij ], mbi ∈ [mbi ], v
aij
ν ∈ [v

aij
ν ] and vbi

ν ∈ [vbi
ν ], (i, j = 1, · · · , n), (ν =

1, · · · , k).

According to (4.14) and (4.15), denote thek + 1 numerical interval matrices

[A(0)] := ([maij ]) , [A(1)] :=
(
[v

aij

1 ]
)
, · · · , [A(k)] :=

(
[v

aij

k ]
)
∈ IR

n×n

and the corresponding numerical interval vectors

[ℓ(0)] :=
(
[mbi ]

)
, [ℓ(1)] :=

(
[vbi

1 ]
)
, · · · , [ℓ(k)] :=

(
[vbi

k ]
)
∈ IR

n.

Hence, a new parametric interval matrix and a right-hand side interval vector can be represented

by

[A(ζ)] = [A(0)] +

k∑

ν=1

ζν[A(ν)], [ℓ(ζ)] := [ℓ(0)] +

k∑

ν=1

ζν[ℓ
(ν)] (4.18)
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According to the parametric system (2.1), where its elements have defined by (2.2), we can

write a new parametric interval system in the following form

[A(ζ)] · x = [ℓ(ζ)],(

[A(0)] +

k∑

ν=1

ζν[A(ν)]

)

· x = [ℓ(0)] +

k∑

ν=1

ζν [ℓ
(ν)], (4.19)

where the new parametric vectorζ varies within the range[ζ ] ∈ IRk.

The solution set of the above system is represented by
∑

([A(ζ)], [ℓ(ζ)]; [ζ ]) := {x ∈ R
n|A(ζ) · x = ℓ(ζ),A(ζ) ∈ [A(ζ)], ℓ(ζ) ∈ [ℓ(ζ)]

for some ζ ∈ [ζ ]}.

Before giving the modification of the theorem (2.3), we will present an interval vector

[z] ∈ IRn, and an interval matrix[C] ∈ IRn×n. The modification theorem will depend on these

interval matrix and vector.

For the interval vector[z], we will start with the set{R · (b(p)−A(p)x̃)|p ∈ [p]}. According

to (4.16) and (4.17), we can write the nonlinear function in alinear form:

R
n ∋ Sz := {R · (b(p) − A(p)x̃)|p ∈ [p], }, R ∈ R

n×n, x̃ ∈ R
n

= {R · (ℓ(0) +

k∑

ν=1

ζνℓ
(ν) − (A(0) +

k∑

ν=1

ζνA(ν))x̃)|ζ ∈ [ζ ], ℓ(0) ∈ [ℓ(0)],

ℓ(ν) ∈ [ℓ(ν)], A(0) ∈ [A(0)], A(ν) ∈ [A(ν)]}

= {R · (ℓ(0) −A(0)x̃) +
k∑

ν=1

(ζν(R · ℓ(ν) − R · A(ν)x̃))|ζ ∈ [ζ ], ℓ(0) ∈ [ℓ(0)],

ℓ(ν) ∈ [ℓ(ν)], A(0) ∈ [A(0)], A(ν) ∈ [A(ν)]}
= {R · (ℓ(0) −A(0)x̃)| ℓ(0) ∈ [ℓ(0)], A(0) ∈ [A(0)]}

+{
k∑

ν=1

(ζν(R · ℓ(ν) − R · A(ν)x̃))|ζ ∈ [ζ ], ℓ(ν) ∈ [ℓ(ν)], A(ν) ∈ [A(ν)]}

⊆ 3{R · (ℓ(0) −A(0)x̃)| ℓ(0) ∈ [ℓ(0)], A(0) ∈ [A(0)]}

+3{
k∑

ν=1

(ζν(R · ℓ(ν) − R · A(ν)x̃))|ζ ∈ [ζ ], ℓ(ν) ∈ [ℓ(ν)], A(ν) ∈ [A(ν)]}

= R · ([ℓ(0)] − [A(0)]x̃) +

k∑

ν=1

([ζν ](R · [ℓ(ν)] − R · [A(ν)]x̃))

︸ ︷︷ ︸
=:[z]

For the interval matrix[C], we will start with the set{I −R ·A(p)|p ∈ [p]}. As for the interval

vector[z] and according to (4.16) and (4.17), we can write the nonlinear function in a linear
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form:

R
n×n ∋ Sc := {I − R · A(p)|p ∈ [p]}, R ∈ R

n×n, I is an n × n identity matrix

= {I − R · (A(0) +

k∑

ν=1

ζνA(ν))|ζ ∈ [ζ ] A(0) ∈ [A(0)], A(ν) ∈ [A(ν)]}

= {I − R · A(0) −
k∑

ν=1

ζν(R · A(ν))|ζ ∈ [ζ ] A(0) ∈ [A(0)], A(ν) ∈ [A(ν)]}

= {I − R · A(0)| A(0) ∈ [A(0)]} − {
k∑

ν=1

ζν(R · A(ν))|ζ ∈ [ζ ], A(ν) ∈ [A(ν)]}

⊆ 3{I − R · A(0)| A(0) ∈ [A(0)]} − 3{
k∑

ν=1

ζν(R · A(ν))|ζ ∈ [ζ ], A(ν) ∈ [A(ν)]}

= I − R · [A(0)] −
k∑

ν=1

([ζν ](R · [A(ν)]))

︸ ︷︷ ︸
=:[C]

The following theorem is a modification of theorem (2.3).

Theorem 4.2. Consider parametric linear system (2.1), whereA(p) and b(p) are given by

(2.2). Let[A(ζ)] ∈ IRn×n and[ℓ(ζ)] ∈ IRn be given by (4.18) withζ ∈ Rk, and letR ∈ Rn×n,

[y] ∈ IRn, x̃ ∈ Rn be given and define[z] ∈ IRn and[C] ∈ IRn×n by

[z] := R · ([ℓ(0)] − [A(0)]x̃) +
k∑

ν=1

[ζν ](R · [ℓ(ν)] − R · [A(ν)] · x̃)

[C] := I − R · [A(0)] −
k∑

ν=1

[ζν ](R · [A(ν)]).

Define[v] ∈ IRn by means of the following Einzelschrittverfahren:

1 ≤ i ≤ n : [vi]={3{[z]+[C] · [u]}}i, where[u] :=([v1], · · · , [vi−1], [yi], · · · , [yn])⊤. (4.20)

If

[v]
◦⊂ [y], (4.21)

thenR and every matrixA(ζ) ∈ [A(ζ)], ζ ∈ [ζ ] are regular. So every matrixA(p), p ∈ [p]

is regular, and for everyζ ∈ [ζ ] the unique solution̂x = A−1(ζ)ℓ(ζ) of A(ζ) · x = ℓ(ζ),

ℓ(ζ) ∈ [ℓ(ζ)] satisfieŝx ∈ x̃ + [v].

Proof: To prove this theorem, we define a real matrixD(ζ) ∈ Rn×n and a real vectord(ζ) ∈
Rn, ζ ∈ [ζ ], which are elements of the interval matrix[A(ζ)] and the interval vector[ℓ(ζ)],
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respectively. If (4.20) and (4.21) are satisfied to these matrix and vector, thenD(ζ) is regular

for everyζ ∈ [ζ ]. Therefore, every matrix from[A(ζ)] is regular and (4.20) and (4.21) will be

satisfied for every matrix from[A(ζ)]. This will complete the proof of the theorem.

Let

D(ζ) := A(0) +

k∑

ν=1

ζνA(ν), d(ζ) := ℓ(0) +

k∑

ν=1

ζνℓ
(ν)

whereA(0) ∈ [A(0)], A(ν) ∈ [A(ν)] ℓ(0) ∈ [ℓ(0)], ℓ(ν) ∈ [ℓ(ν)], (ν = 1, · · · , k) andζ ∈ [ζ ] with

D(ζ) ∈ [A(ζ)], d(ζ) ∈ [ℓ(ζ)].

The rest of the proof is done in a similar way as in the theorem 4.1.

Algorithm 4.2. Parametric interval linear systems (nonlinear real case, our modification)

1. Input { A(p) ∈ Rn×n, b(p) ∈ Rn, [p] ∈ IRk }
2. Using algorithms that have been presented in chapter 3 to transform the elements

(2.2) to interval linear forms (4.16) and (4.17); the final linear form will be in the

forms (4.18)

3. Initialization

b̌ :=mid([ℓ(mid([ζ ]))); Ǎ :=mid(A(mid([ζ ])))

4. Compute an approximation inverseR (R ≈ Ǎ−1) of Ǎ with some standard algorithm

(see e.g.[10])

5. Compute an approximate mid-point solution

x̃ = 2(R · b̌). Optionally improvẽx by a residual iteration.

6. Compute an enclosure[C]

if (SharpC)then { sharp enclosure (Popova modification)}
[C] = 3(I − R · [A(0)] −∑k

ν=1[ζν ](R · [A(ν)]))

else { rough enclosure (Rump’s method)}
[C] = 3(I − R · A([ζ ]))

7. Compute an enclosure[z]

[z] = 3(R · ([ℓ(0)] − [A(0)]x̃) +
∑k

ν=1[ζν ]R · ([ℓ(ν)] − [A(ν)] · x̃))

8. Verification step

[v] := [z]

max= 1

Continued on next page
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Algorithm 4.2 – continued from previous page

repeat

[v] := [v] 1 ǫ ǫ-inflation

[y] := [v]

for i = 1 to n do { Einzelschrittverfahren}
[vi] = 3([zi] + [C(Row(i))] · [v]);

max++

until [v]
◦⊂ [y] or max≥ 10

9.

if [v]
◦⊂ [y] then {

all A(ζ) ∈ [A(ζ)] are non-singular and the solution̂x ofA(ζ)x = ℓ(ζ),ζ ∈ [ζ ],

ℓ(ζ) ∈ [ℓ(ζ)] exists and is uniquely determined andx̂ ∈ x̃ + [v] }
else {

Err = ” no inclusion computed, the interval matrix[A(ζ)] contains a singular

matrix or is ill conditioned” }
10. Output { Outer solution[v] and Error code Err}

4.2.2 Nonlinear Complex Case

In this subsection, we will discuss the complex parametric interval system, whose elements are

nonlinear complex functions. Consider a complex parametric system

A(p) · x = b(p), (4.22)

whereA(p) ∈ C
n×n and b(p) ∈ C

n depend on a complex parameter vectorp ∈ C
k. The

elements ofA(p) andb(p) are, in general, nonlinear complex functions ofk parameters

aij(p) = aij(p1, · · · , pk),

bi(p) = bi(p1, · · · , pk), (i, j = 1, · · · , n).

}

(4.23)

The parameters are considered to be unknown or uncertain andvarying within prescribed inter-

vals

p ∈ [p] = ([p1], · · · , [pk])
⊤.

Whenp varies within a range[p] ∈ ICk, the set of solution to allA(p) · x = b(p), p ∈ [p], is

called complex parametric solution set, and is representedby
∑pc

:=
∑

(A(p), b(p), [p]) := {x ∈ C
n|A(p) · x = b(p) for somep ∈ [p]}.



112
Verified Solution of Parametric Linear System of Equations using Generalized Interval

Arithmetic

As in the real parametric interval systems (see chapter 2) case, since it is quite difficult to obtain
∑pc, it would be a more realistic task to find an interval vector[y] ∈ IC

n, such that[y] ⊇∑pc

and the goal is that[y] must be as narrow as possible.

Our method for computing an outer solution for the system (4.22) is based on the complex

generalized interval arithmetic, which has been presentedin chapter 3.

Let f : [z] ⊂ C
k −→ C be a continuous complex function, where[z] = [u] + i[w],

[u] ∈ IRk, [w] ∈ IRk. The functionf(z) can be enclosed by the following linear interval form

[Lf (ζ)] := [mf(re)
] +

2k∑

ν=1

ζν [v
f(re)

ν ] + i([mf(im)

] +

2k∑

ν=1

ζν [v
f(im)

ν ]), (4.24)

where [mf(re)
], [mf(im)

], [vf(re)

ν ] and [vf(im)

ν ], (ν = 1, · · · , 2k) are real intervals, andζ2ν−1 ∈
[−rad([uν ]), rad([uν])], ζ2ν ∈ [−rad([wν ]), rad([wν ])].

The following example illustrates the above procedure:

Example 4.2.Consider

f =
z1 + z2

z1 − z2
, z1 ∈ [1, 1.05] + i[2, 2.2], z2 ∈ [3, 3.1] + i[4, 4.05]

Using complex generalized interval arithmetic, where

[ẑ1] = [1.025, 1.025] + [1, 1]ζ1 + i([2.1, 2.1] + [1, 1]ζ2)

[ẑ2] = [3.05, 3.05] + [1, 1]ζ3 + i([4.025, 4.025] + [1, 1]ζ4)

with ζ1 ∈ [−0.025, 0.025], ζ2 ∈ [−0.1, 0.1], ζ3 ∈ [−0.05, 0.05] and ζ4 ∈ [−0.025, 0.025], we

get

[ẑ1] + [ẑ2] = [4.075, 4.075] + [1, 1]ζ1 + [1, 1]ζ3 + i([6.125, 6.125] + [1, 1]ζ2 + [1, 1]ζ4)

[ẑ1] − [ẑ2] = [−2.025, 2.025] + [1, 1]ζ1 − [1, 1]ζ3 + i([−1.925,−1.925] + [1, 1]ζ2 − [1, 1]ζ4)

Using (3.52), we get

[Lf (ζ)] := [1.0, 1.01] + [−0.015, 0.015]ζ1 + [−0.01, 0.01]ζ2 + [−0.01, 0.01]ζ3

+[−0.03, 0.03]ζ4 + i([0, 0] + [−0.02, 0.02]ζ1 + [−0.01, 0.01]ζ2

+[−0.02, 0.02]ζ3 + [−0.01, 0.01]ζ4).
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We can determine the form (4.24) in an automatic way by using the algorithms that have

been presented in chapter 3, Section 3.10. The form (4.24) has the inclusion property

f(z) ∈ [Lf (ζ)], z ∈ [z], ζ ∈ [ζ ] ∈ IR
2k.

We assume thataij(p) andbi(p), (i, j = 1, · · · , n) in (4.23) are continuous complex functions.

In accordance with (4.24), the corresponding linear interval forms are

[Lij(ζ)] := [ma
(re)
ij ] +

2k∑

ν=1

ζν [v
a
(re)
ij

ν ] + i([ma
(im)
ij ] +

2k∑

ν=1

ζν [v
a
(im)
ij

ν ])

[li(ζ)] := [mb
(re)
i ] +

2k∑

ν=1

ζν [v
b
(re)
i

ν ] + i([mb
(im)
i ] +

2k∑

ν=1

ζν [v
b
(im)
i

ν ]), (i, j = 1, 2, · · · , n)

and have the inclusion property

aij(p) ∈ [Lij(ζ)] := [ma
(re)
ij ] +

2k∑

ν=1

ζν [v
a
(re)
ij

ν ] + i([ma
(im)
ij ] +

2k∑

ν=1

ζν [v
a
(im)
ij

ν ])

= [ma
(re)
ij ] + i[ma

(im)
ij ] +

2k∑

ν=1

ζν([v
a
(re)
ij

ν ] + i[v
a
(im)
ij

ν ]) (4.25)

bi(p) ∈ [li(ζ)] := [mb
(re)
i ] +

2k∑

ν=1

ζν [v
b
(re)
i

ν ] + i([mb
(im)
i ] +

2k∑

ν=1

ζν [v
b
(im)
i

ν ])

= [mb
(re)
i ] + i[mb

(im)
i ] +

2k∑

ν=1

ζν([v
b
(re)
i

ν ] + i[v
b
(im)
i

ν ]). (4.26)

From the above two relations, we can write every element fromthe complex parametric matrix

and the right-hand side complex vector in the following linear forms:

aij(p) := ma
(re)
ij +

2k∑

ν=1

ζνv
a
(re)
ij

ν + i(ma
(im)
ij +

2k∑

ν=1

ζνv
a
(im)
ij

ν )

= ma
(re)
ij + ima

(im)
ij +

2k∑

ν=1

ζν(v
a
(re)
ij

ν + iv
a
(im)
ij

ν ) (4.27)

bij(p) := mb
(re)
i +

2k∑

ν=1

ζνv
b
(re)
i

ν + i(mb
(im)
i +

2k∑

ν=1

ζνv
b
(im)
i

ν )

= mb
(re)
i + imb

(im)
i +

2k∑

ν=1

ζν(v
b
(re)
i

ν + iv
b
(im)
i

ν ), (4.28)

wherema
(re)
ij ∈ [ma

(re)
ij ], ma

(im)
ij ∈ [ma

(im)
ij ], mb

(re)
i ∈ [mb

(re)
i ], mb

(im)
i ∈ [mb

(im)
i ], v

a
(re)
ij

ν ∈ [v
a
(re)
ij

ν ],

v
a
(im)
ij

ν ∈ [v
a
(im)
ij

ν ], v
b
(re)
i

ν ∈ [v
b
(re)
i

ν ] andv
b
(im)
i

ν ∈ [v
b
(im)
i

ν ], (i, j = 1, · · · , n), (ν = 1, · · · , 2k).
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According to (4.25) and (4.26), denote the2k + 1 numerical complex interval matrices

[A(0)] :=
(
[mare

ij ] + i[maim
ij ]
)

, [A(1)] :=

(
[v

a
(re)
ij

1 ] + i[v
a
(im)
ij

1 ]

)
, · · · ,

[
A(2k)

]
:=

(
[v

a
(re)
ij

2k ] + i[v
a
(im)
ij

2k ]

)
∈ ICn×n.

and the corresponding numerical complex interval vectors

[ℓ(0)] :=
(
[mb

(re)
i ] + i[mb

(im)
i ]
)

, [ℓ(1)] :=

(
[v

b
(re)
i

1 ] + i[v
b
(im)
i

1 ]

)
, · · · ,

[
ℓ(2k)

]
:=

(
[v

b
(re)
i

2k ] + i[v
b
(im)
i

2k ]

)
∈ ICn.

Hence, a new complex parametric interval matrix and a right-hand side complex parametric

interval vector can be presented by

[A(ζ)] = [A(0)] +
2k∑

ν=1

ζν[A(ν)], [ℓ(ζ)] := [ℓ(0)] +
2k∑

ν=1

ζν[ℓ
(ν)] (4.29)

According to the complex parametric system (4.22), where its elements are defined by (4.23),

we can write a new complex parametric interval system in the following form:

[A(ζ)] · x = [ℓ(ζ)],(
[A(0)] +

2k∑

ν=1

ζν[A(ν)]

)
· x = [ℓ(0)] +

2k∑

ν=1

ζν [ℓ
(ν)], (4.30)

where the new parametric vectorζ varies within the range[ζ ] ∈ IR2k.

The solution set of the system (4.30), is represented by
∑

([A(ζ)], [ℓ(ζ)]; [ζ ]) := {x ∈ C
n|A(ζ) · x = ℓ(ζ), A(ζ) ∈ [A(ζ)], ℓ(ζ) ∈ [ℓ(ζ)]

for someζ ∈ [ζ ]}.

For our modification, we need to present a complex interval vector [z] ∈ ICn, and a complex

interval matrix[C] ∈ IC
n×n. The next theorem will depend on these interval matrix and vector.

For the interval vector[z], we will start with the set{R ·(b(p)−A(p)x̃)|p ∈ [p]}, R ∈ Cn×n.

According to (4.27) and (4.28), we can write the nonlinear function in a linear form:

C
n ∋ Sz := {R · (b(p) − A(p)x̃)|p ∈ [p], }, R ∈ C

n×n, x̃ ∈ C
n

= {R · (ℓ(0) +
2k∑

ν=1

ζℓ(ν) − (A(0) +
2k∑

ν=1

ζA(ν))x̃)|ζ ∈ [ζ ], ℓ(0) ∈ [ℓ(0)],

ℓ(ν) ∈ [ℓ(ν)], A(0) ∈ [A(0)], A(ν) ∈ [A(ν)]}

= {R · (ℓ(0) −A(0)x̃) +

2k∑

ν=1

(ζ(R · ℓ(ν) − R · A(ν)x̃))|ζ ∈ [ζ ], ℓ(0) ∈ [ℓ(0)],

ℓ(ν) ∈ [ℓ(ν)], A(0) ∈ [A(0)], A(ν) ∈ [A(ν)]}
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= {R · (ℓ(0) −A(0)x̃)| ℓ(0) ∈ [ℓ(0)], A(0) ∈ [A(0)]}

+{
2k∑

ν=1

(ζ(R · ℓ(ν) − R · A(ν)x̃))|ζ ∈ [ζ ], ℓ(ν) ∈ [ℓ(ν)], A(ν) ∈ [A(ν)]}

⊆ 3{R · (ℓ(0) −A(0)x̃)| ℓ(0) ∈ [ℓ(0)], A(0) ∈ [A(0)]}

+3{
2k∑

ν=1

(ζ(R · ℓ(ν) − R · A(ν)x̃))|ζ ∈ [ζ ], ℓ(ν) ∈ [ℓ(ν)], A(ν) ∈ [A(ν)]}

= R · ([ℓ(0)] − [A(0)]x̃) +

2k∑

ν=1

([ζ ](R · [ℓ(ν)] − R · [A(ν)]x̃))

︸ ︷︷ ︸
=:[z]

For the complex interval matrix[C], we will start with the set{I−R ·A(p)|p ∈ [p]}. According

to (4.27) and (4.28), we can write the nonlinear function in alinear form:

C
n×n ∋ Sc := {I − R · A(p)|p ∈ [p]}, R ∈ C

n×n, I is an n × n identity matrix

= {I − R · (A(0) +

2k∑

ν=1

ζA(ν))|ζ ∈ [ζ ] A(0) ∈ [A(0)], A(ν) ∈ [A(ν)]}

= {I − R · A(0) −
2k∑

ν=1

ζ(R · A(ν))|ζ ∈ [ζ ] A(0) ∈ [A(0)], A(ν) ∈ [A(ν)]}

= {I − R · A(0)| A(0) ∈ [A(0)]} − {
2k∑

ν=1

ζ(R · A(ν))|ζ ∈ [ζ ], A(ν) ∈ [A(ν)]}

⊆ 3{I − R · A(0)| A(0) ∈ [A(0)]} − 3{
2k∑

ν=1

ζ(R · A(ν))|ζ ∈ [ζ ], A(ν) ∈ [A(ν)]}

= I − R · [A(0)] −
2k∑

ν=1

([ζ ](R · [A(ν)]))

︸ ︷︷ ︸
=:[C]

The following theorem is a modification of theorem (4.2).

Theorem 4.3. Consider parametric linear system (4.22), whereA(p) and b(p) are given by

(4.23). Let[A(ζ)] ∈ IC
n×n and [ℓ(ζ)] ∈ IC

n be given by (4.29) withζ ∈ R
2k, and let

R ∈ Cn×n, [y] ∈ ICn, x̃ ∈ Cn be given, and define[z] ∈ ICn and[C] ∈ ICn×n by

[z] := R · ([ℓ(0)] − [A(0)]x̃) +
2k∑

ν=1

[ζν ](R · [ℓ(ν)] − R · [A(ν)] · x̃)

[C] := I − R · [A(0)] −
2k∑

ν=1

[ζν ](R · [A(ν)]).
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Define[v] ∈ ICn by means of the following Einzelschrittverfahren:

1 ≤ i ≤ n : [vi]={3{[Z]+[C] · [u]}}i, where[u] :=([v1], · · · , [vi−1], [yi], · · · , [yn])
⊤. (4.31)

If

[v]
◦⊂ [y], (4.32)

thenR and every matrixA(ζ) ∈ [A(ζ)], ζ ∈ [ζ ] are regular. So every matrixA(p), p ∈ [p]

is regular, and for everyζ ∈ [ζ ] the unique solution̂x = A−1(ζ)ℓ(ζ) of A(ζ) · x = ℓ(ζ),

ℓ(ζ) ∈ [ℓ(ζ)] satisfieŝx ∈ x̃ + [v].

Proof: To prove this theorem, we define a real matrixD(ζ) ∈ Cn×n and a real vectord(ζ) ∈
C

n, ζ ∈ [ζ ], which are elements of the interval matrix[A(ζ)] and the interval vector[ℓ(ζ)],

respectively. If (4.31) and (4.32) are satisfied for these matrix and vector, thenD(ζ) is regular

for everyζ ∈ [ζ ]. Therefore, every matrix from[A(ζ)] is regular and (4.31), (4.32) will be

satisfied for every matrix from[A(ζ)]. This will complete the proof of the theorem.

Let

D(ζ) := A(0) +

2k∑

ν=1

ζνA(ν), d(ζ) := ℓ(0) +

2k∑

ν=1

ζνℓ
(ν)

whereA(0) ∈ [A(0)], A(ν) ∈ [A(ν)] ℓ(0) ∈ [ℓ(0)], ℓ(ν) ∈ [ℓ(ν)], (ν = 1, · · · , 2k) andζ ∈ [ζ ] with

D(ζ) ∈ [A(ζ)], d(ζ) ∈ [ℓ(ζ)].

The rest of the proof is done in a similar way as in the theorem 4.1.

Algorithm 4.3. Complex parametric interval linear systems (nonlinear complex case,

· our modification)

1. Input { A(p) ∈ Cn×n, b(p) ∈ Cn, [p] ∈ ICk }
2. Using algorithms that have been presented in chapter 3 to transform the elements

(4.23) to interval linear forms (4.27) and (4.28); the final linear form will be in the

forms (4.29)

3. Initialization

b̌ :=mid([ℓ(mid([ζ ]))); Ǎ :=mid(A(mid([ζ ])))

4. Compute an approximation inverseR (R ≈ Ǎ−1) of Ǎ with some standard algorithm

(see e.g.[10])

Continued on next page
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5. Compute an approximate mid-point solution

x̃ = 2(R · b̌). Optionally improvẽx by a residual iteration.

6. Compute an enclosure[C]

if (SharpC)then { sharp enclosure (Popova modification)}
[C] = 3(I − R · [A(0)] −∑2k

ν=1[ζν ](R · [A(ν)]))

else { rough enclosure (Rump’s method)}
[C] = 3(I − R · A([ζ ]))

7. Compute an enclosure[z]

[z] = 3(R · ([ℓ(0)] − [A(0)]x̃) +
∑2k

ν=1[ζν ]R · ([ℓ(ν)] − [A(ν)] · x̃))

8. Verification step

[v] := [z]

max= 1

repeat

[v] := [v] 1 ǫ ǫ-inflation

[y] := [v]

for i = 1 to n do { Einzelschrittverfahren}
[vi] = 3([zi] + [C(Row(i))] · [v])

max++

until [v]
◦⊂ [y] or max≥ 10

9.

if [v]
◦⊂ [y] then {

all A(ζ) ∈ [A(ζ)] are non-singular and the solution̂x ofA(ζ)x = ℓ(ζ),ζ ∈ [ζ ],

ℓ(ζ) ∈ [ℓ(ζ)] exists and is uniquely determined andx̂ ∈ x̃ + [v] }
else {

Err = ” no inclusion computed, the interval matrix[A(ζ)] contains a singular

matrix or is ill conditioned” }
10. Output { Outer solution[v] and Error code Err}

4.2.3 Extension Modification

The methods presented in subsections 4.2.1 and 4.2.2 assumed that the elements of[A(ν)] and

[ℓ(ν)] vary independently in their intervals. But in many practical examples (see e.g.[19]) there

are dependencies between the coefficients.
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In this subsection, we will give another modification of the methods presented in the last

subsections. Our modification, to our knowledge, is new. There are some methods, but, just for

some special cases of matrices (see[19]), not for general matrices.

We will start with the parametric interval systems, whose elements are nonlinear real func-

tions. After that, the complex case will be discussed.

Nonlinear Real Case

At first, we suppose that the dependency will occur only in theinterval matrices[A(ν)], (ν =

0, · · · , k).

Definition 4.1. Let (Jl)
N
l=1 be a partition of the index set{1, · · · , n}, i.e.

Jl ⊆ {1, · · · , n}, Jl1 ∩ Jl2 = ∅ for l1 6= l2,∪N
l=1 Jl = {1, · · · , n}.

Let [αil] ∈ IS, S ∈ {R, C}, (i = 1 · · · , n), (l = 1, · · · , N) andS ∈ Rn. We call the set

[Arow-dep] := {A ∈ Sn×n| aij = Sjαil, αil ∈ [αil], (i = 1, · · · , n), (l = 1, · · · , N), j ∈ Jl}

a row dependent (real or complex) interval matrix with respect to the partition(Jl)
N
l=1 and the

multipliersS.

According to the definition 4.1, we call the parametric interval matrix [A(ζ)] ∈ IR
n×n in

(4.18) row dependent if at least one of the interval matrices[A(0)] and[A(ν)], (ν = 1, · · · , k) is

row dependent.

A row dependent parametric interval matrix[Arow-dep(ζ)], ζ ∈ Rk and a right hand side[ℓ(ζ)]

define a family of linear systems

A(ζ)x = ℓ(ζ), A(ζ) ∈ [Arow-dep(ζ)], ℓ(ζ) ∈ [ℓ(ζ)]

with the corresponding solution set

∑
([Arow-dep(ζ)], [ℓ(ζ)]; [ζ ]) := {x ∈ R

n|A(ζ) · x = ℓ(ζ),A(ζ) ∈ [Arow-dep(ζ)], ℓ(ζ) ∈ [ℓ(ζ)]

for some ζ ∈ [ζ ]}.

Obviously
∑

([Arow-dep(ζ)], [ℓ(ζ)]; [ζ ]) ⊆∑([A(ζ)], [ℓ(ζ)]; [ζ ]).

Theorem 4.4.Let [Arow-dep(ζ)] ∈ IRn×n be a row dependent interval matrix with respect to the

partition (Jl)
N
l=1 and the multipliersS ∈ Rn. Let [ℓ(ζ)] ∈ IRn be given by (4.18) withζ ∈ Rk,
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and letR ∈ Rn×n, [y] ∈ IRn, x̃ ∈ Rn be given, and let[z] ∈ IRn be defined by

[zi] :=

n∑

j=1



[ℓ
(0)
j ] −

N∑

l1=1




∑

µ∈Jl1

Sµx̃µ



 [α
(0)
jl1

]



 rij +

k∑

ν=1

[ζν ]

{
n∑

j=1

([ℓ
(ν)
j ]

−
N∑

l2=1




∑

µ∈Jl2

Sµx̃µ



 [α
(ν)
jl2

])rij




 , (i = 1, · · · , n) (4.33)

then

[z] = 3{R · (ℓ(ζ) −A(ζ)x̃)|ℓ(ζ) ∈ [ℓ(ζ)],A(ζ) ∈ [Arow-dep(ζ)], ζ ∈ [ζ ]} (4.34)

Let [C] ∈ IRn×n

[C] := I − R · [A(0)] −
k∑

ν=1

[ζν ](R · [A(ν)]).

Define[v] ∈ IRn by means of the following Einzelschrittverfahren:

1 ≤ i ≤ n : [vi] = {3{[Z] + [C] · [u]}}i, where [u] := ([v1], · · · , [vi−1], [yi], · · · , [yn])
⊤.

If [v]
◦⊂ [y], thenR and every matrixA(ζ) ∈ [Arow-dep(ζ)], ζ ∈ [ζ ] are regular. So every

matrix A(p), p ∈ [p] is regular, and for everyζ ∈ [ζ ] the unique solution̂x = A−1(ζ)ℓ(ζ) of

A(ζ) · x = ℓ(ζ), ℓ(ζ) ∈ [ℓ(ζ)] satisfieŝx ∈ x̃ + [v].

Proof:

LetA(ζ) ∈ [Arow-dep(ζ)], ℓ(ζ) ∈ [ℓ(ζ)] with ζ ∈ [ζ ], and letri be thei−th row vector ofR.

Then thei−th component ofR · (ℓ(ζ) −A(ζ)x̃) satisfies

ri(ℓ(ζ) −A(ζ)x̃) = ri((ℓ(0) −A(0)x̃) +

k∑

ν=1

ζν(ℓ
(ν) −A(ν)x̃)

=

n∑

j=1

rijℓ
(0)
j −

n∑

j=1

(

n∑

τ=1

a
(0)
jτ x̃τ )rij +

k∑

ν=1

ζν(

n∑

j=1

rijℓ
(0)
j −

n∑

j=1

(

n∑

τ=1

a
(0)
jτ x̃τ )rij)

=

n∑

j=1

(ℓ
(0)
j −

n∑

τ=1

a
(0)
jτ x̃τ )rij +

k∑

ν=1

ζν(

n∑

j=1

(ℓ
(0)
j −

n∑

τ=1

a
(0)
jτ x̃τ )rij)

according to definition 4.1, then

ri(ℓ(ζ) −A(ζ)x̃) =
n∑

j=1

(ℓ
(0)
j −

N∑

l1=1

(
∑

µ∈Jl1

Sµx̃µ)α
(0)
jl1

)rij +
k∑

ν=1

ζν(
n∑

j=1

(ℓ
(ν)
j

−
N∑

l2=1

(
∑

µ∈Jl2

Sµx̃µ)α
(ν)
jl2

)rij).
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By a theorem of Moore[39] , we get

[zi] = {ri(ℓ(ζ) −A(ζ)x̃)|ℓ(ζ) ∈ [ℓ(ζ)],A(ζ) ∈ [Arow-dep(ζ)], ζ ∈ [ζ ]}, (i = 1 · · · , n)

because in (4.33) each interval variable occurs only once and to the first power. Hence (4.34)

is valid.

The rest of the proof is done in a similar way as in the theorem 4.1.

The next algorithm depends on the above theorem for the row dependent real case of the

parametric interval matrix and the right hand-side interval vector.

Algorithm 4.4. Parametric interval linear systems (nonlinear real case, row dependent)

1. Input { A(p) ∈ Rn×n, b(p) ∈ Rn, [p] ∈ IRk }
2. Using algorithms that have been presented in chapter 3 to transform the elements

(2.2) to interval linear forms (4.16) and (4.17); the final linear form will be in the

forms (4.18)

3. Initialization

b̌ :=mid([ℓ([ζ ])); Ǎ :=mid(A([ζ ]))

4. Compute an approximation inverseR (R ≈ Ǎ−1) of Ǎ with some standard algorithm

(see e.g.[10])

5. Compute an approximate mid-point solution

x̃ = 2(R · b̌). Optionally improvẽx by a residual iteration.

6. Compute an enclosure[C]

if (SharpC)then { sharp enclosure (Popova modification)}
[C] = 3(I − R · [A(0)] −∑k

ν=1[ζν ](R · [A(ν)]))

else { rough enclosure (Rump’s method)}
[C] = 3(I − R · A([ζ ]))

7. Compute an enclosure[z] using the form (4.33)

8. Verification step

[v] := [z];

max= 1;

repeat

[v] := [v] 1 ǫ ǫ-inflation

[y] := [v]

for i = 1 to n do { Einzelschrittverfahren}
Continued on next page
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[vi] = 3([zi] + [C(Row(i))] · [v])

max++

until [v]
◦⊂ [y] or max≥ 10

9.

if [v]
◦⊂ [y] then {

all A(ζ) ∈ [Arow-dep(ζ)] are non-singular and the solution̂x of A(ζ)x = ℓ(ζ),

ζ ∈ [ζ ], ℓ(ζ) ∈ [ℓ(ζ)] exists and is uniquely determined andx̂ ∈ x̃ + [v]; }
else {

Err = ” no inclusion computed, the interval matrix[Arow-dep(ζ)] contains a

singular matrix or is ill conditioned” }
10. Output { Outer solution[v] and Error code Err}

Next, we will discuss the column dependent case.

Definition 4.2. Let [αlj ] ∈ IS, S ∈ {R, C}, (j = 1 · · · , n), (l = 1, · · · , N) andS ∈ R
n. We

call the set

[Acol-dep] := {A ∈ Sn×n| aij = Siαlj , αlj ∈ [αlj ], (j = 1, · · · , n), (l = 1, · · · , N), i ∈ Jl}

a column dependent (real or complex) interval matrix with respect to the partition(Jl)
N
l=1 and

the multipliersS, whereJl has been defined in Definition 4.1 .

Also according to the definition 4.2, we call the parametric interval matrix[A(ζ)] ∈ IRn×n

in (4.18) column dependent if at least one of the interval matrices [A(0)] and [A(ν)], (ν =

1, · · · , k) is column dependent.

A column dependent parametric interval matrix[Acol-dep(ζ)], ζ ∈ R
k, and a right hand side

[ℓ(ζ)] define a family of linear systems

A(ζ)x = ℓ(ζ), A(ζ) ∈ [Acol-dep(ζ)], ℓ(ζ) ∈ [ℓ(ζ)]

with the corresponding solution set

∑
([Acol-dep(ζ)], [ℓ(ζ)]; [ζ ]) := {x ∈ R

n|A(ζ) · x = ℓ(ζ),A(ζ) ∈ [Acol-dep(ζ)], ℓ(ζ) ∈ [ℓ(ζ)]

for some ζ ∈ [ζ ]}.

It is also obvious that
∑

([Acol-dep(ζ)], [ℓ(ζ)]; [ζ ]) ⊆∑([A(ζ)], [ℓ(ζ)]; [ζ ])
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Theorem 4.5. Let [Acol-dep(ζ)] ∈ IRn×n be a column dependent interval matrix with respect

to the partition(Jl)
N
l=1 and the multipliersS ∈ R

n. Let [ℓ(ζ)] ∈ IR
n be given by (4.18) with

ζ ∈ Rk, and letR ∈ Rn×n, [y] ∈ IRn, x̃ ∈ Rn be given and let[z] ∈ IRn and[C] ∈ IRn×n be

defined by

[zi] := R(Row(i)) · [ℓ(0)] −
n∑

j=1




N∑

l1=1




∑

µ∈Jl1

riµSµ



 [α
(0)
l1j ]



 x̃j +
k∑

ν=1

[ζν ]
{
R(Row(i)) · [ℓ(ν)]

−
n∑

j=1




N∑

l2=1




∑

µ∈Jl2

riµSµ



 [α
(ν)
l2j ]



 x̃j}, (i = 1, · · · , n), (4.35)

[Cij] := Iij −
N∑

l1=1




∑

µ∈Jl1

riµSµ



 [α
(0)
l1j ] −

k∑

ν=1

[ζν ]




N∑

l2=1




∑

µ∈Jl2

riµSµ



 [α
(ν)
l2j ]



 , (4.36)

(i, j = 1, · · · , n).

Then

[z] = 3{R · (ℓ(ζ) −A(ζ)x̃)|ℓ(ζ) ∈ [ℓ(ζ)],A(ζ) ∈ [Acol-dep(ζ)], ζ ∈ [ζ ]},
[C] = 3{I − R · A(ζ)|A(ζ) ∈ [Acol-dep(ζ)], ζ ∈ [ζ ]}.

Define[v] ∈ IRn by means of the following Einzelschrittverfahren:

1 ≤ i ≤ n : [vi] = {3{[Z] + [C] · [u]}}i, where [u] := ([v1], · · · , [vi−1], [yi], · · · , [yn])
⊤.

If [v]
◦⊂ [y], thenR and every matrixA(ζ) ∈ [Acol-dep(ζ)], ζ ∈ [ζ ] are regular. So every

matrix A(p), p ∈ [p] is regular, and for everyζ ∈ [ζ ] the unique solution̂x = A−1(ζ)ℓ(ζ) of

A(ζ) · x = ℓ(ζ), ℓ(ζ) ∈ [ℓ(ζ)] satisfieŝx ∈ x̃ + [v].

Proof: The proof is obvious from proof of theorems 4.4 and 4.1.

Now, we will give an algorithm derived from the above theoremfor the column dependent

real case of the parametric interval matrix and the right hand-side real parametric interval vector.

Algorithm 4.5. Parametric interval linear systems (nonlinear real case, column dependent)

1. Input { A(p) ∈ R
n×n, b(p) ∈ R

n, [p] ∈ IR
k }

2. Using algorithms that have been presented in chapter 3 to transform the elements

(2.2) to interval linear forms (4.16) and (4.17); the final linear form will be in the

forms (4.18)

Continued on next page
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3. Initialization

b̌ :=mid([ℓ([ζ ])); Ǎ :=mid(A([ζ ]))

4. Compute an approximation inverseR (R ≈ Ǎ−1) of Ǎ with some standard algorithm

(see e.g.[10])

5. Compute an approximate mid-point solution

x̃ = 2(R · b̌);. Optionally improvẽx by a residual iteration.

6. Compute an enclosure[C] using the form (4.36)

7. Compute an enclosure[z] using the form (4.35)

8. Verification step

[v] := [z]

max= 1

repeat

[v] := [v] 1 ǫ ǫ-inflation

[y] := [v]

for i = 1 to n do { Einzelschrittverfahren}
[vi] = 3([zi] + [C(Row(i))] · [v])

max++

until [v]
◦⊂ [y] or max≥ 10

9.

if [v]
◦⊂ [y] then {

all A(ζ) ∈ [Acol-dep(ζ)] are non-singular and the solution̂x ofA(ζ)x = ℓ(ζ),

ζ ∈ [ζ ], ℓ(ζ) ∈ [ℓ(ζ)] exists and is uniquely determined andx̂ ∈ x̃ + [v]; }
else {

Err = ” no inclusion computed, the interval matrix[Acol-dep(ζ)] contains a

singular matrix or is ill conditioned” }
10. Output { Outer solution[v] and Error code Err}

In many applications dependencies in the right hand side occur [19]. For example this is

the case in many models in operations research. Here, we suppose that the dependencies occur

only in the right hand side of the system.

Definition 4.3. [19] Let [βl] ∈ IS, S ∈ {R, C}, (i = 1 · · · , n), (l = 1, · · · , N) andS ∈ Rn.
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We call the set

[ℓdep] := {ℓ ∈ Sn| ℓi = Sjβl, βl ∈ [βl], (i = 1, · · · , n), (l = 1, · · · , N), j ∈ Jl}

a dependent (real or complex) interval vector with respect to the partition(Jl)
N
l=1 and the mul-

tipliers S, whereJl has been defined in Definition 4.1 .

We call the parametric interval vector[ℓ(ζ)] ∈ IRn in (4.18) dependent if at least one of

the interval vectors[ℓ(0)] and[ℓ(ν)], (ν = 1, · · · , k) is dependent.

A parametric interval matrix[A(ζ)], ζ ∈ Rk and a dependent right hand side[ℓdep(ζ)] define

a family of linear systems

A(ζ)x = ℓ(ζ), A(ζ) ∈ [A(ζ)], ℓ(ζ) ∈ [ℓdep(ζ)]

with the corresponding solution set
∑

([A(ζ)], [ℓdep(ζ)]; [ζ ]) := {x ∈ R
n|A(ζ) · x = ℓ(ζ),A(ζ) ∈ [A(ζ)], ℓ(ζ) ∈ [ℓdep(ζ)]

for some ζ ∈ [ζ ]}.

It is obviously that
∑

([A(ζ)], [ℓdep(ζ)]; [ζ ]) ⊆∑([A(ζ)], [ℓ(ζ)]; [ζ ]).

Theorem 4.6. Let [ℓdep(ζ)] ∈ IRn be a dependent interval vector with respect to the partition

(Jl)
N
l=1 and the multipliersS ∈ Rn. Let [A(ζ)] ∈ IRn×n be given by (4.18) withζ ∈ Rk, and

let R ∈ Rn×n, [y] ∈ IRn, x̃ ∈ Rn be given and define[z] ∈ IRn and[C] ∈ IRn×n by

[zi] :=

N∑

l1=1




∑

µ∈Jl1

riµSµ



 [β
(0)
l1

] − R(Row(i)) · ([A(0)]x̃)

−
k∑

ν=1

[ζν ]




N∑

l2=1




∑

µ∈Jl2

riµSµ



 [β
(ν)
l2

] − R(Row(i)) · ([A(ν)]x̃)



 , (4.37)

for (i = 1, · · · , n)

[C] := I − R · [A(0)] −
k∑

ν=1

[ζν ](R · [A(ν)]). (4.38)

Define[v] ∈ IR
n by means of the following Einzelschrittverfahren:

1 ≤ i ≤ n : [vi] = {3{[Z] + [C] · [u]}}i, where [u] := ([v1], · · · , [vi−1], [yi], · · · , [yn])
⊤.

If [v]
◦⊂ [y], thenR and every matrixA(ζ) ∈ [A(ζ)], ζ ∈ [ζ ] is regular. So every matrixA(p),

p ∈ [p] is regular, and for everyζ ∈ [ζ ] the unique solution̂x = A−1(ζ)ℓ(ζ) ofA(ζ) · x = ℓ(ζ),

ℓ(ζ) ∈ [ℓdep(ζ)] satisfieŝx ∈ x̃ + [v].

Proof: The proof is done in a similar way as in the theorems 4.4 and 4.1.
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The following algorithm depends on the above theorem for thereal case of the parametric

interval matrix and the dependency right hand-side real parametric interval vector.

Algorithm 4.6. Parametric interval linear systems (nonlinear real case, dependency in the

· right hand side)

1. Input { A(p) ∈ Rn×n, b(p) ∈ Rn, [p] ∈ IRk }
2. Using algorithms that have been presented in chapter 3 to transform the elements

(2.2) to interval linear forms (4.16) and (4.17); the final linear form will be in the

forms (4.18)

3. Initialization

b̌ :=mid([ℓ([ζ ])); Ǎ :=mid(A([ζ ]))

4. Compute an approximation inverseR (R ≈ Ǎ−1) of Ǎ with some standard algorithm

(see e.g.[10])

5. Compute an approximate mid-point solution

x̃ = 2(R · b̌);. Optionally improvẽx by a residual iteration.

6. Compute an enclosure[C] using the form (4.38)

7. Compute an enclosure[z] using the form (4.37)

8. Verification step

[v] := [z]

max= 1

repeat

[v] := [v] 1 ǫ ǫ-inflation

[y] := [v]

for i = 1 to n do { Einzelschrittverfahren}
[vi] = 3([zi] + [C(Row(i))] · [v])

max++;

until [v]
◦⊂ [y] or max≥ 10

9.

if [v]
◦⊂ [y] then {

all A(ζ) ∈ [A(ζ)] are non-singular and the solution̂x ofA(ζ)x = ℓ(ζ),

ζ ∈ [ζ ], ℓ(ζ) ∈ [ℓdep(ζ)] exists and is uniquely determined andx̂ ∈ x̃ + [v]; }
else {

Err = ” no inclusion computed, the interval matrix[A(ζ)] contains a singular

matrix or is ill conditioned” }
Continued on next page
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10. Output { Outer solution[v] and Error code Err}

Nonlinear Complex Case

All the methods and the algorithms presented in this subsection for the parametric interval

systems whose elements are nonlinear real functions can be extended to complex parametric

interval systems (4.22), where the elements ofA(p) andb(p) are defined by (4.23).

Here, we will give one theorem and an algorithm derived from this theorem. The theorem

is an extension of theorem 4.4. All other methods and algorithms can be extended in a similar

way.

Theorem 4.7. Let [Arow-dep(ζ)] ∈ ICn×n be a row dependency interval matrix with respect to

the partition(Jl)
N
l=1 and the multipliersS ∈ Rn (definition 4.1). Let[ℓ(ζ)] ∈ ICn be given by

(4.29) withζ ∈ R2k, and letR ∈ Cn×n, [y] ∈ ICn, x̃ ∈ Cn be given and define[z] ∈ ICn and

[C] ∈ ICn×n by

[zi] := R(Row(i)) · [ℓ(0)] −
n∑

j=1




N∑

l1=1




∑

µ∈Jl1

Sµx̃µ



 [α
(0)
jl1

]



 rij +

2k∑

ν=1

[ζν ]
{
R(Row(i)) · [ℓ(ν)]

−
n∑

j=1




N∑

l2=1




∑

µ∈Jl2

Sµx̃µ



 [α
(ν)
jl2

]



 rij}, (i = 1, · · · , n) (4.39)

[C] := I − R · [A(0)] −
2k∑

ν=1

[ζν](R · [A(ν)]).

Define[v] ∈ ICn by means of the following Einzelschrittverfahren

1 ≤ i ≤ n : [vi] = {3{[Z] + [C] · [u]}}i, where [u] := ([v1], · · · , [vi−1], [yi], · · · , [yn])
⊤.

If [v]
◦⊂ [y], thenR and every matrixA(ζ) ∈ [Arow-dep(ζ)], ζ ∈ [ζ ] are regular. So every

matrix A(p), p ∈ [p] is regular, and for everyζ ∈ [ζ ] the unique solution̂x = A−1(ζ)ℓ(ζ) of

A(ζ) · x = ℓ(ζ), ℓ(ζ) ∈ [ℓ(ζ)] satisfieŝx ∈ x̃ + [v].

The next algorithm depends on the above theorem for the row dependency complex case of

the parametric interval matrix and the right hand-side parametric interval vector.
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Algorithm 4.7. Complex Parametric interval linear systems (nonlinear complex case,

· row dependency)

1. Input { A(p) ∈ C
n×n, b(p) ∈ C

n, [p] ∈ IC
k }

2. Using algorithms that have been presented in chapter 3 to transform the elements

(4.23) to interval linear forms (4.27) and (4.28); the final linear form will be in the

forms (4.29)

3. Initialization

b̌ :=mid([ℓ([ζ ])); Ǎ :=mid(A([ζ ]))

4. Compute an approximation inverseR (R ≈ Ǎ−1) of Ǎ with some standard algorithm

(see e.g.[10])

5. Compute an approximate mid-point solution

x̃ = 2(R · b̌). Optionally improvẽx by a residual iteration.

6. Compute an enclosure[C]

if (SharpC)then { sharp enclosure (Popova modification)}
[C] = 3(I − R · [A(0)] −∑2k

ν=1[ζν ](R · [A(ν)]))

else { rough enclosure (Rump’s method)}
[C] = 3(I − R · A([ζ ]))

7. Compute an enclosure[z] using the form (4.39)

8. Verification step

[v] := [z]

max= 1

repeat

[v] := [v] 1 ǫ ǫ-inflation

[y] := [v]

for i = 1 to n do { Einzelschrittverfahren}
[vi] = 3([zi] + [C(Row(i))] · [v])

max++

until [v]
◦⊂ [y] or max≥ 10

9.

if [v]
◦⊂ [y] then {

all A(ζ) ∈ [Arow-dep(ζ)] are non-singular and the solution̂x of A(ζ)x = ℓ(ζ),

ζ ∈ [ζ ], ℓ(ζ) ∈ [ℓ(ζ)] exists and is uniquely determined andx̂ ∈ x̃ + [v] }
else {

Continued on next page
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Err = ” no inclusion computed, the interval matrix[Arow-dep(ζ)] contains a

singular matrix or is ill conditioned” }
10. Output { Outer solution[v] and Error code Err}

4.3 Over- and Under-determined Parametric Interval Sys-

tems

In this section we will discuss the cases of over- and under-determined parametric interval

systems. In both cases, we assume that them × n−matrix A(p), p ∈ [p] has full rank. This

means, in the over-determined case(m > n), A(p) has rankn, and in the under-determined

case(m < n), A(p) has rankm.

In Subsection 1.7.2, we have presented Rump’s methods for solving over- and under-

determined linear systems. In this section, we will use Rump’s method for solving over- and

under-determined parametric interval linear systems. LetA(p) ∈ Sm×n, b(p) ∈ Sm, p ∈ [p],

whereS ∈ {R, C}. According to (1.29) and (1.30), we consider the following large square

(m + n) × (m + n)− parametric interval systems

(
A(p) −I

0 AH(p)

)(
x

y

)
=

(
b(p)

0

)
for m > n, I is m × m identity matrix (4.40)

(
AH(p) −I

0 A(p)

)

︸ ︷︷ ︸
=:B(p)∈S(m+n)×(m+n)

(
x

y

)
=

(
0

b(p)

)

︸ ︷︷ ︸
=:h(p)∈Sm+n

for m < n, I is n × n identity matrix (4.41)

whereAH(p) is the Hermitian matrix ofA(p), i.e. the transposed matrix in the real case,p ∈ [p].

In Subsection 4.3.1, we will study the parametric interval system, whose elements are affine-

linear. The case if the elements are nonlinear functions will be presented in subsection 4.3.2.

4.3.1 Systems with Affine-Linear Functions as Elements

The Real Case

In this Subsection, the over and under-determined parametric interval system, whose elements

are affine-linear will be discussed. The method presented here is based on the Rump’s method,

which has been presented in subsection 1.7.2. According to the form (2.15), we can write the
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big (m + n)× (m + n)− parametric matrix and the big(m + n)− parametric vector defined in

(4.40) or (4.41) in the following affine-linear forms

B(p) = B(0) +

k∑

ν=1

pνB
(ν), h(p) := h(0) +

k∑

ν=1

pνh
(ν). (4.42)

The big parametric system (4.40) or (4.41) can be rewritten into the following form

(
B(0) +

k∑

ν=1

pνB
(ν)

)
· x = h(0) +

k∑

ν=1

pνh
(ν),

where the parametric vectorp varies within the range[p] ∈ IRk.

Theorem 4.8. Let A(p) ∈ Rm×n, b(p) ∈ Rm, p ∈ Rk, m > n. DefineB(p) ∈ R(m+n)×(m+n)

to be a square parametric matrix in (4.40), and leth(p) ∈ Rm+n be the parametric vector

(b(p), 0)⊤2 and let ũ ∈ Rm+n, [u] ∈ IRm+n, R ∈ R(m+n)×(m+n). Let [z] ∈ IRm+n, [C] ∈
IR(m+n)×(m+n) be defined by

[z] := R · (h(0) − B(0)ũ) +
k∑

ν=1

[pν ](Rh(ν) − RB(ν) · ũ) (4.43)

[C] := I−R · B(0)−
k∑

ν=1

[pν ](R · B(ν)), I is (m + n) × (m + n) identity matrix (4.44)

Define[v] ∈ IRm+n by means of the following Einzelschrittverfahren:

1 ≤ i ≤ m+n : [vi]={3{[z]+[C] · [uu]}}i, where[uu] :=([v1], · · · , [vi−1], [ui], · · · , [um+n])
⊤.

If [v]
◦⊂ [u], then there is an̂x ∈ x̃ + [x] with the following property:

For any x ∈ R
n with x 6= x̂ holds ||b(p) − A(p)x̂|| < ||b(p) − A(p)x||, p ∈ [p]

wherex̃ and [x] are the firstn components of̃u and [v], respectively. Further the matrixA(p)

has maximum rankn for everyp ∈ [p].

Proof: The proof is obvious from the proof of theorem 4.1.

Theorem 4.9. Let A(p) ∈ Rm×n, b(p) ∈ Rm, p ∈ Rk, m < n. DefineB(p) ∈ R(m+n)×(m+n)

to be a square parametric matrix in (4.41), and leth(p) ∈ Rm+n be the parametric vector

2(b(p), 0)⊤ ∈ R(m+n) is a vector such that the firstm elements are those ofb(p) and the remainingn compo-

nents are zero.
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(0, b(p))⊤ and let ũ ∈ Rm+n, [u] ∈ IRm+n, R ∈ R(m+n)×(m+n). Let [z] ∈ IRm+n, [C] ∈
IR

(m+n)×(m+n) be defined by

[z] := R · (h(0) − B(0)ũ) +

k∑

ν=1

[pν ](Rh(ν) − RB(ν) · ũ) (4.45)

[C] := I−R · B(0)−
k∑

ν=1

[pν ](R · B(ν)), I is (m + n) × (m + n) identity matrix (4.46)

Define[v] ∈ IRm+n by means of the following Einzelschrittverfahren:

1 ≤ i ≤ m+n : [vi]={3{[z]+[C] · [uu]}}i, where[uu] :=([v1], · · · , [vi−1], [ui], · · · , [um+n])
⊤.

If [v]
◦⊂ [u], then there is ây ∈ ỹ + [y] with the following properties:

1. A(p)ŷ = b(p)

2. if A(p)y = b(p), p ∈ [p] for somey ∈ Rn with y 6= ŷ then||ŷ|| < ||y||,

whereỹ and [y] are the lastn components of̃u and [v], respectively. Furthermore the matrix

A(p) has maximum rankm for everyp ∈ [p] .

Proof: The proof is obvious from the proof of theorem 4.1.

Now we will give the following algorithms for both cases (over- and under-determined)

Algorithm 4.8. Over-determined Parametric Linear Systems (affine-linearreal case)

1. Input { A(p) ∈ Rm×n, b(p) ∈ Rm, [p] ∈ IRk }
2. From (4.40), define

B(p) :=

(
A(p) −I

0 A⊤(p)

)

, Y :=

(
x

y

)

, h(p) :=

(
b(p)

0

)

3. Solve the systemsB(p)Y = h(p) using algorithm 2.4, with[z] and[C] as defined

in (4.43) and (4.44), respectively

4. Vectorx from the vectorY is the desired enclosure

5. Output { The firstn components from the inclusion solution[v] and Error code Err}
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Algorithm 4.9. Under-determined Parametric Linear Systems (affine-linear real case)

1. Input { A(p) ∈ Rm×n, b(p) ∈ Rm, [p] ∈ IRk }
2. From (4.41), define

B :=

(
A⊤(p) −I

0 A(p)

)
, Y :=

(
x

y

)
, h(p) :=

(
0

b(p)

)

3. Solve the systemsB(p)Y = h(p) using algorithm 2.4, with[z] and[C] as defined

in (4.45) and (4.46), respectively

4. Vectory from the vectorY is the desired enclosure

5. Output { The lastn components from the inclusion solution[v] and Error code Err}

In Section 4.1 we have discussed the case if the elements ofA(0) ∈ Rm×n andb(0) ∈ Rm

in the form (2.16) are not exactly representable on the computer. Here, we will solve over-

and under-determined parametric interval systems using our modification . According to our

modification (see page 99) and the forms (4.40) and (4.41), wepresent a big interval matrix

[C] ∈ IR(m+n)×(m+n) and a big interval vector[z] ∈ IRm+n as follows:

[z] := R · ([h(0)] − [B(0)]ũ) +

k∑

ν=1

[pν ](Rh(ν) − RB(ν) · ũ) (4.47)

[C] := I−R · [B(0)]−
k∑

ν=1

[pν ](R · B(ν)), I is (m + n) × (m + n) identity matrix (4.48)

with [z] and[C] as defined in (4.47) and (4.48), respectively. We can apply the theorem 4.8

for the over-determined case, and the theorem 4.9 for the under-determined case.

The following two algorithms depend on the above modification (the forms (4.47) and

(4.48)).

Algorithm 4.10. Over-determined Parametric Linear Systems (affine-linearreal case, after

· the modification)

1. Input { A(p) ∈ Rm×n, b(p) ∈ Rm, [p] ∈ IRk }
2. From (4.40), define

B(p) :=

(
A(p) −I

0 A⊤(p)

)
, Y :=

(
x

y

)
, h(p) :=

(
b(p)

0

)

3. Solve the systemsB(p)Y = h(p) using algorithm 2.4, with[z] and[C] as defined

in (4.47) and (4.48), respectively

Continued on next page
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4. Vectorx from the vectorY is the desired enclosure

5. Output { The firstn components from the inclusion solution[v] and Error code Err}

Algorithm 4.11. Under-determined Parametric Linear Systems (affine-linear real case, after

· the modification)

1. Input { A(p) ∈ R
m×n, b(p) ∈ R

m, [p] ∈ IR
k }

2. From (4.41), define

B :=

(
A⊤(p) −I

0 A(p)

)
, Y :=

(
x

y

)
, h(p) :=

(
0

b(p)

)

3. Solve the systemsB(p)Y = h(p) using algorithm 2.4, with[z] and[C] as defined

in (4.47) and (4.48), respectively

4. Vectory from the vectorY is the desired enclosure

5. Output { The lastn components from the inclusion solution[v] and Error code Err}

A close look at the structure of the matrices in the parametric systems (4.40) and (4.41),

shows that each element of the matrixA(p) appears twice in the big square matrix, which means

that this matrix involves dependencies. In this subsection, we deal with the parametric system,

whose elements are affine-linear. Considering form (4.42):If the elements ofB(0), B(ν), h(0)

andh(ν), (ν = 1, · · · , k) are exactly representable on the computer, there are no dependencies,

and we use the algorithms 4.8 and 4.9 without any modification. But, in case of the elements

of B(0) andh(0) not exactly representable on the computer3, the dependencies occur between

the elements of the big square parametric interval matrix (every element occurs twice).

In [50], Popova has studied the over- and under-determined interval linear systems, and she

took into account the dependencies between the elements in an interval matrix[A] ∈ Rm×n and

its transpose[A]⊤ (every element occurs twice in the big system). However, shedid not take

account of the dependencies (column or row dependency) between the elements in the same

matrix [A] or [A]⊤ (which means that this matrix may involve dependencies).

Here, we will give a modification of Popova’s method. Our modification takes into account

the dependencies between the elements in the same matrix andthe elements of its transpose

matrix.

We will start with the over-determined parametric intervalsystems. Firstly, we suppose

that there is only row dependency between the elements. According to the definition 4.1, the

3We have enclosed these elements in small intervals (the form(4.47), page 131).
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theorems 4.4 and 4.8, and Popova’s method[50], we can rewrite the forms (4.47) and (4.48)

into the following forms:

[zi] :=

m∑

j=1

(
ũn+j + [b

(0)
j ] +

N∑

l=1

(
∑

µ∈Jl

(rij ũµ + ri,m+µũn+j)Sµ

)
[α

(0)
jl ]

)

+
k∑

ν=1

[pν ]

(
m∑

j=1

rijb
(ν)
j −

m∑

j=1

n∑

τ=1

(rijũτ + ri,m+τ ũn+j)a
(ν)
jτ

)
, (4.49)

(i = 1 · · · , m + n),

and

[Cij ] := Iij −






∑m
τ=1 riτ [a

(0)
τj ], j = 1, · · · , n

∑N
l1=1

(∑
µ∈Jl1

ri,m+µSµ

)
[α

(0)
l1j ] − ri,j−n, j = n + 1, · · · , m + n

−
k∑

ν=1

[pν ] ·






∑m
τ=1 riτa

(ν)
τj , j = 1, · · · , n

∑m
τ=1 ri,m+τa

(ν)
m+τ,j − ri,j−n, j = n + 1, · · · , m + n

, (4.50)

(i = 1 · · · , m + n)

respectively, whereJl andJl1, (l, l1 = 1, · · · , N) are the partition of the index set{1, · · · , n}.

Next we suppose that the dependency between the elements of the matrix is column depen-

dency. According to Popova’s methods, the definition 4.2, and the theorems 4.5 and 4.8, we

can rewrite the forms (4.47) and (4.48) into the following forms:

[zi] :=

m∑

j=1

(ũn+j + [b
(0)
j ]) +

n∑

j=1

(
N∑

l=1

(
∑

µ∈Jl

(riµũj + ri,m+jũn+µ)Sµ

)
[α

(0)
lj ]

)

+
k∑

ν=1

[pν ]

(
m∑

j=1

rijb
(ν)
j −

m∑

j=1

n∑

τ=1

(rij ũτ + ri,m+τ ũn+j)a
(ν)
jτ

)
, (4.51)

(i = 1 · · · , m + n),
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and

[Cij] := Iij −






∑N
l1=1

(∑
µ∈Jl1

riµSµ

)
[α

(0)
l1j ], j = 1, · · · , n

∑n
τ=1 ri,m+τ [a

(0)
m+τ,j ] − ri,j−n, j = n + 1, · · · , m + n

−
k∑

ν=1

[pν ] ·






∑m
τ=1 riτa

(ν)
τj , j = 1, · · · , n

∑n
τ=1 ri,m+τa

(ν)
m+τ,j − ri,j−n, j = n + 1, · · · , m + n

, (4.52)

(i = 1 · · · , m + n)

respectively, whereJl andJl1, (l, l1 = 1, · · · , N) is the partition of the index set{1, · · · , m}.

The above forms (4.49), (4.50), (4.51) and (4.52) take into account the dependencies

between the elements of the matrixA(p) and its transposeA⊤(p) and the dependencies between

the elements in the same matrix.

According to the forms (4.49), (4.50), (4.51) and (4.52), wewill give two algorithms for

the over-determined case.

Algorithm 4.12. Over-determined Parametric Linear Systems (affine-linearreal case,

· row dependency taken into account)

1. Input { A(p) ∈ Rm×n, b(p) ∈ Rm, [p] ∈ IRk }
2. From (4.40), define

B(p) :=

(
A(p) −I

0 A⊤(p)

)
, Y :=

(
x

y

)
, h(p) :=

(
b(p)

0

)

3. Solve the systemsB(p)Y = h(p) using algorithm 4.1, with[z] and[C] as defined in

(4.49) and (4.50), respectively

4. Vectorx from the vectorY is the desired enclosure

5. Output { The firstn components from the inclusion solution[v] and Error code Err}

Algorithm 4.13. Over-determined Parametric Linear Systems (affine-linearreal case,

· column dependency taken into account)

1. Input { A(p) ∈ Rm×n, b(p) ∈ Rm, [p] ∈ IRk }
2. From (4.40), define

Continued on next page
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B(p) :=

(
A(p) −I

0 A⊤(p)

)
, Y :=

(
x

y

)
, h(p) :=

(
b(p)

0

)

3. Solve the systemsB(p)Y = h(p) using algorithm 4.1, with[z] and[C] as defined in

(4.51) and (4.52), respectively

4. Vectorx from the vectorY is the desired enclosure

5. Output { The firstn components from the inclusion solution[v] and Error code Err}

Next, we will discuss the under-determined parametric interval systems. First we suppose

that there is only row dependency between the elements. Alsoaccording to the definition 4.1,

Popova’s method, and the theorems 4.4 and 4.9, we can rewritethe forms (4.47) and (4.48)

into the following forms:

[zi] :=
m∑

j=1

ri,n+j[b
(0)
j ] +

n∑

j1=1

rij1ũm+j1 −
m∑

j=1

(
N∑

l=1

(
∑

µ∈Jl

(riµũj + ri,n+jũm+µ)Sµ

)
[α

(0)
jl ]

)

+

k∑

ν=1

[pν ]

(
m∑

j=1

ri,n+jb
(ν)
j −

m∑

j=1

n∑

τ=1

(riτ ũj + ri,n+jũm+τ )a
(ν)
jτ

)

, (4.53)

(i = 1 · · · , m + n),

and

[Cij] := Iij −






∑N
l1=1

(∑
µ∈Jl1

riµSµ

)
[α

(0)
l1j ], j = 1, · · · , m

∑m
τ=1 ri,n+τ [a

(0)
n+τ,j] − ri,j−m, j = m + 1, · · · , m + n

−
k∑

ν=1

[pν ] ·






∑n
τ=1 riτa

(ν)
τj , j = 1, · · · , m

∑m
τ=1 ri,n+τa

(ν)
n+τ,j − ri,j−m, j = m + 1, · · · , m + n

, (4.54)

(i = 1 · · · , m + n)

respectively, whereJl andJl1, (l, l1 = 1, · · · , N) is the partition of the index set{1, · · · , n}.

Next we suppose that, the dependency is column dependency between the elements of the

matrix. According to the definition 4.2, and the theorems 4.5and 4.9, we rewrite the forms
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(4.47) and (4.48) into the following forms

[zi] :=
m∑

j=1

ri,n+j[b
(0)
j ] +

n∑

j1=1

rij1ũm+j1 −
n∑

j=1

(
N∑

l=1

(
∑

µ∈Jl

(rijũµ + ri,n+µũm+j)Sµ

)
[α

(0)
lj ]

)

+

k∑

ν=1

[pν ]

(
m∑

j=1

ri,n+jb
(ν)
j −

m∑

j=1

n∑

τ=1

(riτ ũj + ri,n+jũm+τ )a
(ν)
jτ

)
, (4.55)

(i = 1 · · · , m + n),

and

[Cij ] := Iij −






∑n
τ=1 riτ [a

(0)
τj ], j = 1, · · · , m

∑N
l1=1

(∑
µ∈Jl1

ri,n+µSµ

)
[α

(0)
l1j ] − ri,j−m, j = n + 1, · · · , m + n

−
k∑

ν=1

[pν ] ·






∑n
τ=1 riτa

(ν)
τj , j = 1, · · · , m

∑n
τ=1 ri,n+τa

(ν)
m+τ,j − ri,j−m, j = m + 1, · · · , m + n

, (4.56)

(i = 1 · · · , m + n)

respectively, whereJl andJl1, (l, l1 = 1, · · · , N) is the partition of the index set{1, · · · , m}.

The forms (4.53), (4.54), (4.55) and (4.56) take into account the dependencies between

the elements of the matrixA(p) and its transposeA⊤(p) and the dependencies between the

elements in the same matrix.

The following two algorithms for the under-determined casedepend on the above modifica-

tions (4.53), (4.54), (4.55) and (4.56).

Algorithm 4.14. Under-determined Parametric Linear Systems (affine-linear real case,

· row dependency taken into account)

1. Input { A(p) ∈ Rm×n, b(p) ∈ Rm, [p] ∈ IRk }
2. From (4.41), define

B :=

(
A⊤(p) −I

0 A(p)

)

, Y :=

(
x

y

)

, h(p) :=

(
0

b(p)

)

3. Solve the systemsB(p)Y = h(p) using algorithm 4.1, with[z] and[C] as defined in

(4.53) and (4.54), respectively

4. Vectory from the vectorY is the desired enclosure

5. Output { The lastn components from the inclusion solution[v] and Error code Err}
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Algorithm 4.15. Under-determined Parametric Linear Systems (affine-linear real case,

· column dependency taken into account)

1. Input { A(p) ∈ Rm×n, b(p) ∈ Rm, [p] ∈ IRk }
2. From (4.41), define

B :=

(
A⊤(p) −I

0 A(p)

)
, Y :=

(
x

y

)
, h(p) :=

(
0

b(p)

)

3. Solve the systemsB(p)Y = h(p) using algorithm 4.1, with[z] and[C] as defined in

(4.55) and (4.56), respectively

4. Vectory from the vectorY is the desired enclosure

5. Output { The lastn components from the inclusion solution[v] and Error code Err}

Now, we suppose that the dependencies occur only in the righthand side of the system.

According to the definition 4.3, the theorems 4.6, 4.8 and 4.9, and Popova’s methods, we can

rewrite the form (4.47) into the following forms:

[zi] :=
N∑

l=1

(
∑

µ∈Jl

riµSµ

)
[β

(0)
l ] +

m∑

j=1

(
ũn+j +

n∑

l=1

(rijũl + ri,m+lũn+j)[a
(0)
jl ]

)

+

k∑

ν=1

[pν ]

(
m∑

j=1

rijb
(ν)
j −

m∑

j=1

n∑

τ=1

(rijũτ + ri,m+τ ũn+j)a
(ν)
jτ

)

, (4.57)

(i = 1 · · · , m + n) for m > n

[zi] :=
N∑

l=1

(
∑

µ∈Jl

ri,n+µSµ

)
[β

(0)
l ] +

n∑

j=1

rijũm+j −
m∑

j=1

n∑

l=1

(rilũj + ri,n+jũm+l)[a
(0)
jl ]

+

k∑

ν=1

[pν ]

(
m∑

j=1

ri,n+jb
(ν)
j −

m∑

j=1

n∑

τ=1

(riτ ũj + ri,n+jũm+τ )a
(ν)
jτ

)

, (4.58)

(i = 1 · · · , m + n) for m < n

whereJl, (l = 1, · · · , N) is the partition of the index set{1, · · · , m}.

The above two forms (4.57) and (4.58) take the dependencies between the elements of the

vectorb(p) into account.

The following algorithms depend on the forms (4.57) and (4.58), which take into account

only the dependency in the right hand side.
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Algorithm 4.16. Over-determined Parametric Linear Systems (affine-linearreal case,

· right hand side dependency taken into account)

1. Input { A(p) ∈ Rm×n, b(p) ∈ Rm, [p] ∈ IRk }
2. From (4.40), define

B(p) :=

(
A(p) −I

0 A⊤(p)

)
, Y :=

(
x

y

)
, h(p) :=

(
b(p)

0

)

3. Solve the systemsB(p)Y = h(p) using algorithm 4.1, with[z] as defined in (4.57)

4. Vectorx from the vectorY is the desired enclosure

5. Output { The firstn components from the inclusion solution[v] and Error code Err}

Algorithm 4.17. Under-determined Parametric Linear Systems (affine-linear real case,

· right hand side dependency taken into account)

1. Input { A(p) ∈ Rm×n, b(p) ∈ Rm, [p] ∈ IRk }
2. From (4.41), define

B :=

(
A⊤(p) −I

0 A(p)

)
, Y :=

(
x

y

)
, h(p) :=

(
0

b(p)

)

3. Solve the systemsB(p)Y = h(p) using algorithm 4.1, with[z] as defined in (4.58)

4. Vectory from the vectorY is the desired enclosure

5. Output { The firstn components from the inclusion solution[v] and Error code Err}

The Complex Case

All the methods and the algorithms that presented in this subsection can be extended to the over

and under-determined complex parametric interval systemsA(p) ·x = b(p), where the elements

of A(p) ∈ Cm×n andb(p) ∈ Cm, p ∈ [p] ∈ ICk are complex affine-linear.

4.3.2 Systems with Nonlinear Functions as Elements

Nonlinear real case

In this subsection we will study the over and under-determined parametric interval system

whose elements are nonlinear real functions. The method will be presented here based on the

methods presented in section 4.2. In Section 4.2, we have transformed the nonlinear elements

of the parametric matrix and the right hand side parametric vector into linear interval forms.

After this transformation, we have presented a new parametric interval system, whose elements

are now interval affine-linear. According to this new system(form (4.19)), we can rewrite the
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big (m + n) × (m + n)−parametric system (4.40)(m > n) into the following form

(

[B(0)] +

k∑

ν=1

ζν[B(ν)]

)

︸ ︷︷ ︸
=:[B(ζ)]

·x = [u(0)] +

k∑

ν=1

ζν [u
(ν)]

︸ ︷︷ ︸
=:[u(ζ)]

, (4.59)

where the parametric vectorζ varies within the range[ζ ] ∈ IRk.

Theorem 4.10.LetA(p) ∈ R
m×n, b(p) ∈ R

m, p ∈ R
k, m > n. Define[B(ζ)] ∈ IR

(m+n)×(m+n)

and [u(ζ)] ∈ IRm+n be a square parametric interval matrix and a parametric interval vector

in (4.59), respectively. Furthermore, letũ ∈ R
m+n, [u] ∈ IR

m+n, R ∈ R
(m+n)×(m+n). Let

[z] ∈ IRm+n, [C] ∈ IR(m+n)×(m+n) be defined by

[z] := R · ([u(0)] − [B(0)]ũ) +
k∑

ν=1

[ζν ]R · ([u(ν)] − [B(ν)] · ũ)

[C] := I − R · [B(0)] −
k∑

ν=1

[ζν ](R · [B(ν)]), I is (m + n) × (m + n) identity matrix.

Define[v] ∈ IR
m+n by means of the following Einzelschrittverfahren:

1 ≤ i ≤ m + n : [vi] = {3{[z] + [C] · [uu]}}i,

where[uu] := ([v1], · · · , [vi−1], [ui], · · · , [um+n])⊤.

If [v]
◦⊂ [u], then there is an̂x ∈ x̃ + [x] with the following property:

For any x ∈ R
n with x 6= x̂ it holds that ||b(p) − A(p)x̂|| < ||b(p) − A(p)x||, p ∈ [p],

wherex̃ and [x] are the firstn components of̃u and [v], respectively. Furthermore, the matrix

A(p) has maximum rankn for everyp ∈ [p].

Proof: The proof is obvious from the proof of theorems 4.1 and 4.2.

The big(m + n) × (m + n)−parametric system (4.41) can be rewritten into the following

form
(

[B(0)] +
k∑

ν=1

ζν[B(ν)]

)

︸ ︷︷ ︸
=:[B(ζ)]

·x = [u(0)] +
k∑

ν=1

ζν [u
(ν)]

︸ ︷︷ ︸
[u(ζ)]

, (4.60)

where the parametric vectorζ varies within the range[ζ ] ∈ IRk.
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Theorem 4.11.LetA(p) ∈ Rm×n, b(p) ∈ Rm, p ∈ Rk, m < n. Define[B(ζ)] ∈ IR(m+n)×(m+n)

and[u(ζ)] ∈ IR
m+n to be a square parametric interval matrix and a parametric interval vector

in (4.60), respectively. Furthermore, letũ ∈ Rm+n, [u] ∈ IRm+n, R ∈ R(m+n)×(m+n). Let

[z] ∈ IR
m+n, [C] ∈ IR

(m+n)×(m+n) be defined by

[z] := R · ([u(0)] − [B(0)]ũ) +

k∑

ν=1

[ζν ]R · ([u(ν)] − [B(ν)] · ũ)

[C] := I − R · [B(0)] −
k∑

ν=1

[ζν ](R · [B(ν)]), I is (m + n) × (m + n) identity matrix.

Define[v] ∈ IRm+n by means of the following Einzelschrittverfahren:

1 ≤ i ≤ m+n : [vi]={3{[z]+[C] · [uu]}}i, where[uu] :=([v1], · · · , [vi−1], [ui], · · · , [um+n])
⊤.

If [v]
◦⊂ [u], then there iŝy ∈ ỹ + [y] with the following properties:

1. A(p)ŷ = b(p)

2. if A(p)y = b(p), p ∈ [p] for somey ∈ Rn with y 6= ŷ then||ŷ|| < ||y||,

whereỹ and [y] are the lastn components of̃u and [v], respectively. Furthermore, the matrix

A(p) has maximum rankm for everyp ∈ [p] .

Proof: The proof is obvious from the proof of theorems 4.1 and 4.2.

The following algorithms will be given for the over- and under-determined parametric in-

terval systems whose elements are nonlinear functions.

Algorithm 4.18. Over-determined Parametric Linear Systems (nonlinear real case)

1. Input { A(p) ∈ R
m×n, b(p) ∈ R

m, [p] ∈ IR
k }

2. From (4.40), define

B(p) :=

(
A(p) −I

0 A⊤(p)

)
, Y :=

(
x

y

)
, h(p) :=

(
b(p)

0

)

3. Solve the systemsB(p)Y = h(p) using algorithm 4.2

4. Vectorx from the vectorY is the desired enclosure

5. Output { The firstn components from the inclusion solution[v] and Error code Err}
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Algorithm 4.19. Under-determined Parametric Linear Systems (nonlinear real case)

1. Input { A(p) ∈ Rm×n, b(p) ∈ Rm, [p] ∈ IRk }
2. From (4.41), define

B(p) :=

(
A⊤(p) −I

0 A(p)

)
, Y :=

(
x

y

)
, h(p) :=

(
0

b(p)

)

3. Solve the systemsB(p)Y = h(p) using algorithm 4.2

4. Vectory from the vectorY is the desired enclosure

5. Output { The lastn components from the inclusion solution[v] and Error code Err}

When applying the theorems 4.10 and 4.11, it is assumed that no dependencies occur.

However, as said in Subsection 4.3.1 on page 133 every element of A(p) occurs twice in the

big square parametric interval system. Consequently, the big square matrix involves depen-

dencies, which may also occur between the elements of the matrix A(p) itself (row or column

dependency). For this reason, we will modify the method described above to take account of

the dependency between the elements in the big square matrixand between the elements in the

matrixA(p) itself.

We will start with the over-determined parametric intervalsystems. First, we suppose that

there is only row dependency between the elements. According to the definition 4.1, and the

theorems 4.4 and 4.10, we rewrite the forms (4.49) and (4.50)into the following forms

[zi] :=

m∑

j=1



(ũn+j+[b
(0)
j ])rij −

N∑

l1=1




∑

µ∈Jl1

(rij ũµ + ri,m+µũn+j)Sµ



 [α
(0)
jl1

]





+
k∑

ν=1

[ζν ]




m∑

j=1

rij[b
(ν)
j ]−

m∑

j=1




N∑

l2=1




∑

µ∈Jl2

(rij ũµ + ri,m+µũn+j)Sµ



 [α
(ν)
jl2

]







,(4.61)

(i = 1 · · · , m + n),

and

[Cij] := Iij −






∑m
τ=1 riτ [a

(0)
τj ], j = 1, · · · , n

∑N
l1=1

(∑
µ∈Jl1

ri,m+µSµ

)
[α

(0)
l1j ] − ri,j−n, j = n + 1, · · · , m + n

−
k∑

ν=1

[ζν ] ·






∑m
τ=1 riτ [a

(ν)
τj ], j = 1, · · · , n

∑N
l1=1

(∑
µ∈Jl1

ri,m+µSµ

)
[α

(ν)
l1j ] − ri,j−n, j = n + 1, · · · , m + n

,(4.62)

(i = 1 · · · , m + n)
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respectively, whereJl1 , Jl2, (l1, l2 = 1, · · · , N) is the partition of the index set{1, · · · , n}.

The above two forms (4.61) and (4.62) take into account the dependencies between the el-

ements of the matrixA(p) and its transposeA⊤(p) and the dependencies between the elements

in the same matrix.

Next, we suppose that the dependency is column dependency between the elements of the

matrix. According to the definition 4.2, and the theorems 4.5and 4.10, we can rewrite the

forms (4.51) and (4.52) into the following forms

[zi] :=

m∑

j=1

(ũn+j + [b
(0)
j ])rij −

n∑

j=1




N∑

l1=1




∑

µ∈Jl1

(riµũj + ri,m+j ũn+µ)Sµ



 [α
(0)
l1j ]





+

k∑

ν=1

[ζν ]




m∑

j=1

rij[b
(ν)
j ]−

n∑

j=1




N∑

l2=1




∑

µ∈Jl2

(riµũj + ri,m+jũn+µ)Sµ



 [α
(ν)
l2j ]







,(4.63)

(i = 1 · · · , m + n),

and

[Cij] := Iij −






∑N
l1=1

(∑
µ∈Jl1

riµSµ

)
[α

(0)
l1j ], j = 1, · · · , n

∑n
τ=1 ri,m+τ [a

(0)
m+τ,j ] − ri,j−n, j = n + 1, · · · , m + n

−
k∑

ν=1

[ζν] ·






∑N
l1=1

(∑
µ∈Jl1

riµSµ

)
[α

(ν)
l1j ] j = 1, · · · , n

∑n
τ=1 ri,m+τ [a

(ν)
m+τ,j] − ri,j−n, j = n + 1, · · · , m + n

, (4.64)

(i = 1 · · · , m + n)

respectively, whereJl1 , Jl2, (l1, l2 = 1, · · · , N) is the partition of the index set{1, · · · , m}.

As in the row dependency case, the above two forms (4.63) and (4.64) take into account

the dependencies between the elements of the matrixA(p) and its transposeA⊤(p) and the

dependencies between the elements in the same matrix.

The following two algorithms for the over-determined case depend on the above modifica-

tions.
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Algorithm 4.20. Over-determined Parametric Linear Systems (nonlinear real case,

· row dependency)

1. Input { A(p) ∈ Rm×n, b(p) ∈ Rm, [p] ∈ IRk }
2. From (4.40), define

B(p) :=

(
A(p) −I

0 A⊤(p)

)
, Y :=

(
x

y

)
, h(p) :=

(
b(p)

0

)

3. Solve the systemsB(p)Y = h(p) using algorithm 4.4, with[z] and[C] as defined in

(4.61) and (4.62), respectively

4. Vectorx from the vectorY is the desired enclosure

5. Output { The firstn components from the inclusion solution[v] and Error code Err}

Algorithm 4.21. Over-determined Parametric Linear Systems (nonlinear real case,

· column dependency)

1. Input { A(p) ∈ R
m×n, b(p) ∈ R

m, [p] ∈ IR
k }

2. From (4.40), define

B(p) :=

(
A(p) −I

0 A⊤(p)

)
, Y :=

(
x

y

)
, h(p) :=

(
b(p)

0

)

3. Solve the systemsB(p)Y = h(p) using algorithm 4.5, with[z] and[C] as defined in

(4.63) and (4.64), respectively

4. Vectorx from the vectorY is the desired enclosure

5. Output { The firstn components from the inclusion solution[v] and Error code Err}

Now, we will discuss the under-determined parametric interval systems. First, we suppose

that there is only row dependency between the elements. Alsoaccording to the definition 4.1,

and the theorems 4.4 and 4.11, we can rewrite the forms (4.53)and (4.54) into the following

forms

[zi] :=
m∑

j=1

ri,n+j[b
(0)
j ] +

n∑

j1=1

rij1ũm+j1−
m∑

j=1




N∑

l1=1




∑

µ∈Jl1

(riµũj + ri,n+jũm+µ)Sµ



 [α
(0)
jl1

]





+
k∑

ν=1

[ζν ]




m∑

j=1

ri,n+j[b
(ν)
j ]−

m∑

j=1




N∑

l2=1




∑

µ∈Jl2

(riµũj + ri,n+jũm+µ)Sµ



 [α
(ν)
jl2

]







,(4.65)

(i = 1 · · · , m + n),
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and

[Cij ] := Iij −






∑N
l1=1

(∑
µ∈Jl1

riµSµ

)
[α

(0)
l1j ], j = 1, · · · , m

∑m
τ=1 ri,n+τ [a

(0)
n+τ,j] − ri,j−m, j = m + 1, · · · , m + n

−
k∑

ν=1

[ζν ] ·






∑N
l1=1

(∑
µ∈Jl1

riµSµ

)
[α

(ν)
l1j ], j = 1, · · · , m

∑m
τ=1 ri,n+τ [a

(ν)
n+τ,j] − ri,j−m, j = m + 1, · · · , m + n

, (4.66)

(i = 1 · · · , m + n)

respectively, whereJl1 , Jl2, (l1, l2 = 1, · · · , N) is the partition of the index set{1, · · · , n}.

The above forms take into account the dependencies between the elements of the matrix

A(p) and its transposeA⊤(p) and the dependencies (row dependency) between the elementsin

the same matrix.

Next, we suppose that the dependency is column dependency between the elements of the

matrix. According to the definition 4.2, and the theorems 4.5and 4.11, we can rewrite the

forms (4.55) and (4.56) into the following forms

[zi] :=

m∑

j=1

ri,n+j[b
(0)
j ] +

n∑

j1=1

rij1ũm+j1−
n∑

j=1




N∑

l1=1




∑

µ∈Jl1

(rij ũµ + ri,n+µũm+j)Sµ



 [α
(0)
l1j ]





+
k∑

ν=1

[ζν ]




m∑

j=1

ri,n+j[b
(ν)
j ]−

n∑

j=1




N∑

l2=1




∑

µ∈Jl2

(rijũµ+ri,n+µũm+j)Sµ



 [α
(ν)
l2j ]







,(4.67)

(i = 1 · · · , m + n),

and

[Cij ] := Iij −






∑n
τ=1 riτ [a

(0)
τj ], j = 1, · · · , m

∑N
l1=1

(∑
µ∈Jl1

ri,n+µSµ

)
[α

(0)
l1j ] − ri,j−m, j = n + 1, · · · , m + n

−
k∑

ν=1

[ζν ] ·






∑n
τ=1 riτ [a

(ν)
τj ], j = 1, · · · , m

∑N
l1=1

(∑
µ∈Jl1

ri,n+µSµ

)
[α

(ν)
l1j ] − ri,j−m, j = m + 1, · · · , m + n

,(4.68)

(i = 1 · · · , m + n)

respectively, whereJl1 , Jl2, (l1, l2 = 1, · · · , N) is the partition of the index set{1, · · · , m}.
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As in the row dependency case, the above forms take into account the dependencies be-

tween the elements of the matrixA(p) and its transposeA⊤(p) and the dependencies (column

dependency) between the elements in the same matrix.

The following two algorithms for the under-determined casedepend on the above modifica-

tions.

Algorithm 4.22. Under-determined Parametric Linear Systems (nonlinear real case,

· row dependency)

1. Input { A(p) ∈ R
m×n, b(p) ∈ R

m, [p] ∈ IR
k }

2. From (4.41), define

B(p) :=

(
A⊤(p) −I

0 A(p)

)
, Y :=

(
x

y

)
, h(p) :=

(
0

b(p)

)

3. Solve the systemsB(p)Y = h(p) using algorithm 4.4, with[z] and[C] as defined in

(4.65) and (4.66), respectively

4. Vectory from the vectorY is the desired enclosure

5. Output { The lastn components from the inclusion solution[v] and Error code Err}

Algorithm 4.23. Under-determined Parametric Linear Systems (nonlinear real case,

· column dependency)

1. Input { A(p) ∈ Rm×n, b(p) ∈ Rm, [p] ∈ IRk }
2. From (4.41), define

B(p) :=

(
A⊤(p) −I

0 A(p)

)
, Y :=

(
x

y

)
, h(p) :=

(
0

b(p)

)

3. Solve the systemsB(p)Y = h(p) using algorithm 4.5, with[z] and[C] as defined in

(4.67) and (4.68), respectively

4. Vectory from the vectorY is the desired enclosure

5. Output { The lastn components from the inclusion solution[v] and Error code Err}

Now, we suppose that the dependencies occur only in the righthand side of the system.

According to the definition 4.3, the theorems 4.6, 4.8 and 4.9, and Popova’s methods, we can
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Arithmetic

rewrite the form (4.47) into the following forms:

[zi] :=
N∑

l=1

(
∑

µ∈Jl

riµSµ

)
[β

(0)
l ] +

m∑

j=1

ũn+jrij −
m∑

j=1

(
n∑

τ=1

(rij ũτ + ri,m+τ ũn+j)[a
(0)
jτ ]

)

+

k∑

ν=1

[ζν ]

(
N∑

l=1

(
∑

µ∈Jl

riµSµ

)
[β

(ν)
l ] −

m∑

j=1

n∑

τ=1

(rij ũτ + ri,m+τ ũn+j)[a
(ν)
jτ ]

)
, (4.69)

(i = 1 · · · , m + n) for m > n,

and

[zi] :=

N∑

l=1

(
∑

µ∈Jl

ri,n+µSµ

)

[β
(0)
l ]+

n∑

j=1

rijũm+j−
m∑

j=1

n∑

τ=1

(riτ ũj + ri,n+jũm+τ )[a
(0)
jτ ]

+
k∑

ν=1

[ζν ]

(
N∑

l=1

(
∑

µ∈Jl

ri,n+µSµ

)
[β

(ν)
l ]−

m∑

j=1

n∑

τ=1

(riτ ũj+ri,n+jũm+τ )[a
(ν)
jτ ]

)
,(4.70)

(i = 1 · · · , m + n) for m < n

whereJl, (l = 1, · · · , N) is the partition of the index set{1, · · · , m}.

The above two forms (4.57) and (4.58) take into account the dependencies between the

elements of the vectorb(p) (right-hand side dependency).

The following algorithms depend on the forms (4.57) and (4.58), which take into account

only the dependency in the right hand side.

Algorithm 4.24. Over-determined Parametric Linear Systems (nonlinear real case,

· right hand side dependency is taken into account)

1. Input { A(p) ∈ Rm×n, b(p) ∈ Rm, [p] ∈ IRk }
2. From (4.40), define

B(p) :=

(
A(p) −I

0 A⊤(p)

)
, Y :=

(
x

y

)
, h(p) :=

(
b(p)

0

)

3. Solve the systemsB(p)Y = h(p) using algorithm 4.6, with[z] as defined in (4.69)

4. Vectorx from the vectorY is the desired enclosure

5. Output { The firstn components from the inclusion solution[v] and Error code Err}

Algorithm 4.25. Under-determined Parametric Linear Systems (nonlinear real case,

· right hand side dependency is taken into account)

1. Input { A(p) ∈ Rm×n, b(p) ∈ Rm, [p] ∈ IRk }
Continued on next page
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Algorithm 4.25 – continued from previous page

2. From (4.41), define

B(p) :=

(
A⊤(p) −I

0 A(p)

)

, Y :=

(
x

y

)

, h(p) :=

(
0

b(p)

)

3. Solve the systemsB(p)Y = h(p) using algorithm 4.6, with[z] as defined in (4.70)

4. Vectory from the vectorY is the desired enclosure

5. Output { The lastn components from the inclusion solution[v] and Error code Err}

Nonlinear complex case

Next, we will study the over- and under-determined complex parametric interval systems. In

subsection 4.2.2, we have transformed the nonlinear complex elements of the complex paramet-

ric matrix and the right hand side complex parametric vectorin complex linear interval forms.

According to the new system (form (4.29)), we can rewrite thebig (m+n)× (m+n) complex

parametric system (4.40)(m > n) into the following form:
(

[B(0)] +

2k∑

ν=1

ζν[B(ν)]

)

︸ ︷︷ ︸
=:[B(ζ)]

·x = [u(0)] +

2k∑

ν=1

ζν [u
(ν)]

︸ ︷︷ ︸
=:[u(ζ)]

, (4.71)

where the parametric vectorζ varies within the range[ζ ] ∈ IR2k.

All the methods and the algorithms presented in this subsection for the parametric interval

systems whose elements are nonlinear real functions can be extended to the complex parametric

interval systems (4.22), where the elements ofA(p) andb(p) have been defined in (4.23) .

Here, we will give one theorem and an algorithm depending on this theorem. The theorem

is an extension of the theorem 4.4. All other methods and algorithms can be extended in a

similar way.

Theorem 4.12.LetA(p) ∈ C
m×n, b(p) ∈ C

m, p ∈ C
k, m > n. Define[B(ζ)] ∈ IC

(m+n)×(m+n)

and[u(ζ)] ∈ ICm+n to be a square parametric interval matrix and a parametric interval vector

in (4.71), respectively. Furthermore, letũ ∈ C
m+n, [u] ∈ IC

m+n, R ∈ C
(m+n)×(m+n). Let

[z] ∈ ICm+n, [C] ∈ IC(m+n)×(m+n) be defined by

[z] := R · ([u(0)] − [B(0)]ũ) +
2k∑

ν=1

[ζν ]R · ([u(ν)] − [B(ν)] · ũ)

[C] := I − R · [B(0)] −
2k∑

ν=1

[ζν ](R · [B(ν)]), I is (m + n) × (m + n) identity matrix,
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Define[v] ∈ ICm+n by means of the following Einzelschrittverfahren:

1 ≤ i ≤ m + n : [vi] = {3{[z] + [C] · [uu]}}i,

where[uu] := ([v1], · · · , [vi−1], [ui], · · · , [um+n])⊤.

If [v]
◦⊂ [u], then there is an̂x ∈ x̃ + [x] with the following property:

For any x ∈ R
n with x 6= x̂ it holds that ||b(p) − A(p)x̂|| < ||b(p) − A(p)x||, p ∈ [p],

wherex̃ and [x] are the firstn components of̃u and [v], respectively. Furthermore, the matrix

A(p) has maximum rankn for everyp ∈ [p].

The next algorithm depends on theorem 4.12 for the complex case of the parametric interval

matrix and the right hand-side parametric interval vector.

Algorithm 4.26. Over-determined Parametric Linear Systems (nonlinear complex case)

1. Input { A(p) ∈ Cm×n, b(p) ∈ Cm, [p] ∈ ICk }
2. From (4.40), define

B(p) :=

(
A(p) −I

0 A⊤(p)

)
, Y :=

(
x

y

)
, h(p) :=

(
b(p)

0

)

3. Solve the systemsB(p)Y = h(p) using algorithm 4.2

4. Vectorx from the vectorY is the desired enclosure

5. Output { The firstn components from the inclusion solution[v] and Error code Err}

The big(m + n) × (m + n)−parametric system (4.41)(m < n) can be rewritten into the

following form

(
[B(0)] +

2k∑

ν=1

ζν[B(ν)]

)

︸ ︷︷ ︸
=:[B(ζ)]

·x = [u(0)] +
2k∑

ν=1

ζν [u
(ν)]

︸ ︷︷ ︸
[u(ζ)]

, (4.72)

where the parametric vectorζ varies within the range[ζ ] ∈ IR2k.

All the methods and the algorithms presented in this subsection can be extended for the

system (4.72) in a similar way as for the system (4.71).
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Numerical Examples

Here, we will give some numerical examples. These examples will be solved by using our

methods and our extension modifications. We will compare ourresults with results of other

methods[25], [50]. The results will show if our methods are better than the other methods or

not. The results are rounded outwardly to10 digits accuracy.

Example A.1. Consider the parametric linear system




−(p1 + p2)p2 p1p3 p2

p2p4 p2
2 1

p1p2 p3p5
√

p2



 · x =





1

1

1



 ,

[p] = ([1, 1.2], [2, 2.2], [0.5, 0.51], [0.39, 0.40], [0.39, 0.40])T ∈ IR
5.

Table A.1: Comparison between the result of our approach andthe result of Kolev’s method for

the example A.1

Our approach Kolev’s Method [25]

[0.0437186424, 0.0497723017] [0.0431128394, 0.0503945267]

[0.07401702462, 0.0875727930] [0.0736025551, 0.0882198954]

[0.5818193467, 0.6272108705] [0.5794103909, 0.6293882420]

Example A.2. Consider the parametric linear system

(
−(p1 + p2)p4 p2p4

p5 p3p5

)
· x =

(
1

1

)
,

149
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Table A.2: Comparison between the result of our approach andthe result of Kolev’s method for

the example A.2

Our approach Kolev’s Method

[0.3746486793, 0.4566410667] [0.3671813238, 0.4641084222]

[1.6214783193, 1.7293906570] [1.6137117081, 1.7371572682]

[p] = ([0.96, 0.98], [1.92, 1.96], [0.96, 0.98], [0.48, 0.5], [0.48, 0.5])T ∈ IR5.

Example A.3. Consider the parametric linear system




−(p1 + 1)p2 p1p3 exp(p2)

p2p4 p2
2 1

p1p2 p3p5
√

p2



 · x =





cos(p1)

1

1



 ,

[p] = ([1, 1.2], [2, 2.2], [0.5, 0.51], [0.39, 0.40], [0.39, 0.40])T ∈ IR5.

Table A.3: Comparison between the result of our approach andthe result of Kolev’s method for

the example A.3

Our approach Kolev’s Method

[0.265762779, 0.3255627206] [0.2602971444, 0.3261979655]

[0.1037992094, 0.1460538387] [0.1028701372, 0.1471736909]

[0.1692320664, 0.2406349268] [0.1667725335, 0.2440364907]

Example A.4. Consider the parametric linear system




−(p1 + 1)p2 p3p5
√

p2

p1p2 p2
2 1

p2p4 p1p3 cos(p1)



 · x =





exp(p5)

1

1



 ,

[p] = ([1, 1.2], [2, 2.2], [0.5, 0.51], [0.39, 0.40], [0.39, 0.40])T ∈ IR5.
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Table A.4: Comparison between the result of our approach andthe result of Kolev’s method for

the example A.4

Our approach Kolev’s Method

[0.0878602547, 0.5907797390] [0.01169636310, 0.6643751080]

[−0.8388826950,−0.0219649822] [−0.9637189875, 0.1052272441]

[1.2781973595, 2.9547867497] [0.9611400557, 3.2630834342]

Example A.5. Consider the parametric linear system

(
cos(p1) p2

1

1
√

p1

)
x =

(
1 + p2

1 + p1

)
, (A.1)

[p] = ([0.5, 0.51], [0.39, 0.40])⊤.

In this example, we will draw our result and the solution set of the parametric linear system

(A.1) by using WebComputing[35] . For more details about the visualization of parametric

solution sets, see[53] . The drawing will be shown in Fig. A.1.

Table A.5: Comparison between the result of our approach andthe result of Kolev’s method for

the example A.5

Our approach Kolev’s method

[1.6401046782, 1.6715562634] [1.6369952413, 1.6750861296]

[−0.2262226732,−0.19827572339] [−0.2356109207,−0.18949654811]
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Figure A.1: The plot of the solution set and our results for the example A.5

Example A.6. Consider the complex parametric linear system




(p1 + p2)p2 p1p3 p2

p2p4 p2
2 1

p1p2 exp(p4) p3p5



 · x =





1

1

1



 , (A.2)

[p] = ([1, 1.2] + i[2, 2.2], [3, 3.5] + i[4, 4.5], [0.5, 0.51]+ i[1.5, 1.51], [0.39, 0.40]+ i[1.39, 1.40],

[0.39, 0.40] + i[1.39, 1.40])T ∈ IC
5.

Table A.6: The result of our approach for the example A.6

Our approach

[0.00818396281, 0.01318191794], [−0.05208158842,−0.04246270799]

[−0.02491301580,−0.01323649406], [−0.03736785316,−0.02530939799]

[−0.27549008680,−0.23020222589], [−0.00245649126, 0.01436352664]
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The complex parametric linear system (A.2) contains5 complex parameters, i.e.10 real

parameters. Kolev’s method is not applicable to solve complex parametric linear systems. Thus,

we can’t compare the result. If the system (A.2) can be embedded in two3 × 3 real parametric

linear systems with5 real parameters, we could solve the new systems using Kolev’s method.
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Appendix B

Practical Examples

In this appendix, practical examples illustrate the methods have been presented in this thesis for

obtaining narrow bounds to the solutions of parametric interval systems, whose elements are

nonlinear functions of interval parameters.

Example B.1. [5] Structural engineers use design codes formulated to consider uncertainty for

both reinforced concrete and structural steel design. A simple one-bay structural steel frame

(initially considered in[5] ), is presented in Fig. B.1.

Figure B.1: One-bay Structural Steel Frame[5]

The authors of[5] have applied conventional methods for analysis of frame structures to as-

155
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semble a system of linear equations

K · x = F.

In [5] , the system has been presented as follows:




12EcIc

L3
c

+ AbEb

Lb
0 6EcIc

L2
c

0 0 −AbEb

Lb

0 12EbIb

L3
b

+ AcEc

Lc
0 6EbIb

L2
b

6EbIb

L2
b

0

6EcIc

L2
c

0 α + 4EcIc

Lc
−α 0 0

0 6EbIb

L2
b

−α α + 4EbIb

Lb

2EbIb

Lb
0

0 6EbIb

L2
b

0 2EbIb

Lb
α + 4EcIc

Lc
0

−AbEb

Lb
0 0 0 0 AbEb

Lb
+ 12EcIc

L3
c

0 −12EbIb

L3
b

0 −6EbIb

L2
b

−6EbIb

L2
b

0

0 0 0 0 −α 6EcIc

L2
c

0 0

−12EbIb

L3
b

0

0 0

−6EbIb

L2
b

0

−6EbIb

L2
b

−α

0 6EcIc

L2
c

AcEc

Lc
+ 12EbIb

L3
b

−6EbIb

L2
b

−6EbIb

L2
b

α + 4EcIc

Lc





·





d2x

d2y

r2z

r5z

r6z

d3x

d3y

r3z





=





H

0

0

0

0

0

0

0





whose elements are, in general, nonlinear functions of the following parameters: Material

propertiesEb, Ec, cross sectional propertiesIb, Ic, Ab, Ac, lengthsLb, Lc, and the joint stiffness

α. The right hand side vectorF = (H, 0, 0, 0, 0, 0, 0, 0)⊤ in this example is considered to

depend only on the applied loadingH. Table B.1 will show the typical nominal parameter

values and the corresponding worst case uncertainties as proposed in[5] .

In [5] all the parameters, except the lengths, are considered to beuncertain and varying

within given intervals. ReplacingLb andLc with their nominal values will give the following

parametric interval linear system

K(p) · x = F (p), (B.1)

where the vector of the uncertain parameters isp = (Eb, Ec, Ib, Ic, Ab, Ac, α, H)⊤, the right



157

Table B.1: Parameters involved in the steel frame example, their nominal values, and worst case

uncertainties

Parameters Nominal value Uncertainty

Young modulus Eb 29 ∗ 106 lbs/in2 ±348 ∗ 104 (±12%)

Ec 29 ∗ 106 lbs/in2 ±348 ∗ 104 (±12%)

Second moment Ib 510 in4 ±51 (±10%)

Ic 272 in4 ±27.2 (±10%)

Area Ab 10.3 in2 ±1.03 (±10%)

Ac 14.4 in2 ±1.44 (±10%)

External forces H 5305.5 lbs ±2203.5 (±41.6%)

Joint stiffness α 2.77461 ∗ 108 lb-in/rad ±1.26504 ∗ 108 (±45.6%)

Length Lb 288 in

Lc 144 in

hand side vector isF (p) = (H, 0, 0, 0, 0, 0, 0, 0)⊤, and the parametric matrixK(p) is




EcIc

248832
+ AbEb

288
0 EcIc

3456
0

0 EbIb

1990656
+ AcEc

144
0 EbIb

13824
EcIc

3456
0 α + EcIc

36
−α

0 EbIb

13824
−α α + EbIb

72

0 EbIb

13824
0 EbIb

144

−AbEb

288
0 0 0

0 − EbIb

1990656
0 − EbIb

13824

0 0 0 0

0 −AbEb

288
0 0

EbIb

13824
0 − EbIb

1990656
0

0 0 0 0
EbIb

144
0 − EbIb

13824
0

α + EcIc

36
0 − EbIb

13824
−α

0 AbEb

288
+ EcIc

248832
0 EcIc

3456

− EbIb

13824
0 AcEc

144
+ EbIb

1990656
− EbIb

13824

−α EcIc

3456
− EbIb

13824
α + EcIc

36





.

We will solve the system (B.1) by algorithms that in this thesis. The results will be compared
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with other methods based on the Element-By-Element approach [5] . In order to compare the

results generated by our methods and those generated by other methods, we strictly follow the

structure system and the uncertainties for the parameters considered in[5] . Initially, the system

(B.1) will be solved with parameter uncertainties which are1% of the values presented in the

last column of Table B.1,

Ab ∈ [10.2897, 10.3103], Ac ∈ [14.3856, 14.4144],

Eb ∈ [28965200, 29034800], Ec ∈ [28965200, 29034800],

Ib ∈ [509.49, 510.51], Ic ∈ [271.728, 272.272],

α ∈ [276195960, 278726040], H ∈ [5283.465, 5327.535].






(B.2)

A directed replacement approach, called naive interval approach, which does not take into

account the dependencies between the parameters in solvingpractical problems. It is well-

known that the solution of a naive interval system greatly overestimates the solution of the

original parametric interval system. In[5] , the naive interval results have been compared with

the results obtained by the authors of[5] .

Table B.2 (this table has been presented in[5] ), gives the naive interval solution of the

one-bay frame problem and the solution of the element-by-element global stiffness system using

intervals of uncertainty1% of those given in equation (B.2) in interval arithmetic. Thecol-

umn ”Mid-point solution” contains the floating point solutions to the system whose coefficients

are given by the midpoints of the parameter intervals. The column ” Naive interval solution”

contains the solution computed by an interval linear equation solver applied to equation (B.1)

with interval coefficients. The column ”Interval solution element-by-element approach” con-

tains the solution computed by element-by-element approach; dashes mean no available data.

For the column labeled ”Tight solution” the authors of[5] have solved the210 extremal indi-

vidual problems formed by taking lower and upper bounds of the intervals for each of the10

parameters in this system.
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Table B.2: Naive interval solution, element-by-element ap-

proach, tight solution and the mid-point solution of the one-

bay steel frame example with uncertain parameters

Interval solution

Solution Mid-Point Naive interval element-by element

components solution c solution [u] approach [v] [5] Tight solution [w]

1. d2x 0.153568 [0.09375783, 0.21337873] [0.09246203, 0.21467453] [0.15237484, 0.15476814]

2. d2y ∗ 103 0.332364 [0.19060424, 0.47412283] [0.18751797, 0.4772091] [0.32940418, 0.33533906]1

3. r2z ∗ 103 −0.962852 [−1.3531968,−0.57250484] [−1.361667,−0.56403468] [−0.97085151,−0.95490139]

4. r5z ∗ 103 −0.459955 [−0.6557609,−0.26414725] [−0.66002154,−0.25988661] [−0.4638112,−0.45611532]

5. r6z ∗ 103 −0.445563 [−0.64100045,−0.2501251] −−−− [−0.44930811,−0.4418354] 1

6. d3x 0.151028 [0.091230936, 0.21082444] −−−− [0.14985048, 0.15221127]

7. d3y ∗ 103 −0.332364 [−0.47412283,−0.19060424] −−−− [−0.33533906,−0.32940418] 1

8. r3z ∗ 103 −0.943133 [−1.3330326,−0.55323186] −−−− [−0.95100335,−0.93531196]

1These intervals are disjoint to our results, see page 162 formore details
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Next, we will solve the parametric linear system (B.1) by using our algorithms that have

been presented in Chapter 4 (Algorithm 4.2, page 110). TableB.3 shows the results obtained

by our methods. The results are rounded outwardly to 10 digits accuracy. In table B.4, we will

compare our results with the results that have been presented in table B.2. Additionally, we

will compare the width between the results. Dashes mean no available data.

Table B.3: The results using our algorithms for the one-bay

steel frame example

Solution Mid-Point

components solution c Our approach [u]

1. d2x 0.1532674393 [0.1522003979, 0.1543344807]

2. d2y ∗ 103 0.3267821043 [0.3237265615, 0.3298376470]1

3. r2z ∗ 103 −0.9646668639 [−0.9718884924,−0.9574452354]

4. r5z ∗ 103 −0.4656795813 [−0.4692080254,−0.4621511371]

5. r6z ∗ 103 −0.4270205236 [−0.4303066281,−0.4237344189] 1

6. d3x 0.1507136505 [0.1496603364, 0.1517669645]

7. d3y ∗ 103 −0.6709042527 [−0.6775001999,−0.6643083054]1

8. r3z ∗ 103 −0.9327734470 [−0.9398183531,−0.9257285408]

1These intervals are disjoint to the results of[5], see page 162 for more details
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Table B.4: Comparison of width between the results of the

solution of one-bay steel frame example

Interval solution wid([w]) wid([w])

Solution element-by element <=> <=>

components Tight solution [u] approach [v] [5] Our approach [w] wid([u]) wid([v])

1. d2x [0.15237484, 0.15476814] [0.09246203, 0.21467453] [0.1522003979, 0.1543344807] < <

2. d2y ∗ 103 [0.32940418, 0.33533906] [0.18751797, 0.4772091] [0.3237265615, 0.3298376470] see page 162 <

3. r2z ∗ 103 [−0.97085151,−0.95490139] [−1.361667,−0.56403468] [−0.9718884924,−0.9574452354] < <

4. r5z ∗ 103 [−0.4638112,−0.45611532] [−0.66002154,−0.25988661] [−0.4692080254,−0.4621511371] < <

5. r6z ∗ 103 [−0.44930811,−0.4418354] −−−− [−0.4303066281,−0.4237344189] see page 162−−−
6. d3x [0.14985048, 0.15221127] −−−− [0.1496603364, 0.1517669645] < −−−
7. d3y ∗ 103 [−0.33533906,−0.32940418] −−−− [−0.6775001999,−0.6643083054] see page 162−−−
8. r3z ∗ 103 [−0.95100335,−0.93531196] −−−− [−0.9398183531,−0.9257285408] < −−−
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Discussion about the disjoint intervals: As for the second, fifth and seventh elements of

the solution components presented in table B.4, we see that the seventh element of[5] (tight

solution column) is disjoint to our result (our approach column). The same apply to the sec-

ond and fifth elements. During our research, when asking the author of [5] about this point,

he answered that it maybe represent a significant difference1. To be sure that our results are

correct, we solve a linear system whose coefficients are given by the mid-points of the para-

metric intervals. This means that we solve the system (B.3) using a standard program that has

been presented in the C++ Toolbox book[10] 2 chapter 10. The results obtained by using this

program are shown in table B.5.





1.068852880658436E6 0 2.282407407407407E6

0 2.907429711612654E6 0

2.282407407407407E6 0 4.965721111111111E8

0 1.069878472222222E6 −2.77461E8

0 1.069878472222222E6 0

−1.037152777777778E6 0 0

0 −7.429711612654321E3 0

0 0 0

0 0 −1.037152777777778E6

1.069878472222222E6 1.069878472222222E6 0

−2.77461E8 0 0

4.828776666666666E8 1.027083333333333E8 0

1.027083333333333E8 4.965721111111111E8 0

0 0 1.068852880658436E6

−1.069878472222222E6 −1.069878472222222E6 0

0 −2.77461E8 2.282407407407407E6

1We still have contact with the author of[5].
2This book contains standard verification methods for solving some numerical problems.
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0 0

−7.429711612654321E3 0

0 0

−1.069878472222222E6 0

−1.069878472222222E6 −2.77461E8

0 2.282407407407407E6

2.907429711612654E6 −1.069878472222222E6

−1.069878472222222E6 4.965721111111111E8





·





d2x

d2y

r2z

r5z

r6z

d3x

d3y

r3z





=





5.3055E3

0

0

0

0

0

0

0





(B.3)

Table B.5: The result of the standard program for the equa-

tion (B.3)

Solution The results using a

components standard program from [10]

1. d2x [0.15326743932, 0.15326743933]

2. d2y ∗ 103 [0.32678210426, 0.32678210427]

3. r2z ∗ 103 [−0.96466686393,−0.96466686392]

4. r5z ∗ 103 [−0.46567958126,−0.46567958125]

5. r6z ∗ 103 [−0.42702052356,−0.42702052355]

6. d3x [0.15071365047, 0.15071365048]

7. d3y ∗ 103 [−0.67090425268,−0.67090425267]

8. r3z ∗ 103 [−0.93277344698,−0.93277344697]

From table B.5, we see that the second, fifth and seventh elements are inside our results, in

the other hand they are outside the result of[5] .

Fortunately, we found another article[52] that treated the same system. From[52] , we

present the disputed points, which are

[0.3237760067, 0.3297873075] , [−0.4306060526,−0.4234337856] and

[−0.6773978325,−0.664409280] , respectively.

We see that this results are approximately similar to our results and are disjoint to the result

obtained by the author of[5] . We leave this point as an open point to be dealt with in further

research.
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A close look at the structure of the matrixK(p) shows that some of the elements occur more

than once in the matrix. For example, in the first column the elementAbEb/Lb occurs twice, and

in the second column the element12EbIb/L
3
b also occurs twice, which means that this matrix

involves column dependencies. For this reason, we will use our modification method for solving

the parametric linear system. We can get very sharp enclosures by using our algorithm 4.5.

The result obtained by this algorithm will be shown in table B.6 and will be compared with the

results presented in[5] . Dashes mean no available data.
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Table B.6: Comparison of width between the results ob-

tained by using our algorithm 4.5 and the results have been

presented in[5] for the one-bay steel frame example

Interval solution the Interval solution wid([w]) wid([w])

Solution Mullen-Muhanna EBE Element-By Element <=> <=>

components approach[u] [5] approach [v] [5] Our approach [w] wid([u]) wid([v])

1. d2x [0.15206288, 0.15507492] [0.09246203, 0.21467453] [0.1522222105, 0.1543126681] < <

2. d2y ∗ 103 [0.32918317, 0.33554758] [0.18751797, 0.4772091] [0.3237737639, 0.3297904446] < <

3. r2z ∗ 103 [−0.97485786,−0.95084958] [−1.361667,−0.56403468] [−0.9717510343,−0.9575826935] < <

4. r5z ∗ 103 [−0.46757208,−0.45234116] [−0.66002154,−0.25988661] [−0.4691418232,−0.4622173393] < <

5. r6z ∗ 103 −−−− −−−− [−0.4302440072,−0.4237970398] −−− −−−
6. d3x −−−− −−−− [0.1496821482, 0.1517451527] −−− −−−
7. d3y ∗ 103 −−−− −−−− [−0.6774029258,−0.6644055795] −−− −−−
8. r3z ∗ 103 −−−− −−−− [−0.9396826738,−0.9258642201] −−− −−−
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In table B.7, we present the solution of the system (B.1) withparameters uncertainties4%,

6% and10% of the values presented in the last column of table B.1.

Our methods presented in this thesis fail in solving the parametric linear system (B.1) for the

worst case (over40%) parameters uncertainties given in table B.1.
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Table B.7: The results obtained by using our methods for

the one-bay steel frame example with several uncertainties

Solution Our approach Our approach Our approach

components with uncertainties 4% with uncertainties 6% with uncertainties 10%

1. d2x [0.1486049172, 0.1579299614] [0.1458478424, 0.1606870363] [0.1393293982, 0.1672054804]

2. d2y ∗ 103 [0.3137079637, 0.3398562448] [0.3062538575, 0.3473103510] [0.2891932959, 0.3643709126]

3. r2z ∗ 103 [−0.9965488214 − 0.9327849064] [−1.0157707980− 0.9135629298] [−1.0621554053,−0.8671783225]

4. r5z ∗ 103 [−0.4816098940,−0.4497492685] [−0.4915948991,−0.4397642634] [−0.5165829082,−0.4147762542]

5. r6z ∗ 103 [−0.4418829137,−0.4121581334] [−0.4512239293− 0.4028171178] [−0.4746488393,−0.3793922078]

6. d3x [0.1461065413, 0.1553207596] [0.1433777279, 0.1580495730] [0.1369167455, 0.1645105554]

7. d3y ∗ 103 [−0.6992543615 − 0.6425541438] [−0.7155622139,−0.6262462914] [−0.7532523551− 0.5885561502]

8. r3z ∗ 103 [−0.9639052139,−0.9016416800] [−0.9827050822,−0.8828418117] [−1.028137227,−0.8374096674]
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Example B.2. [31] A frame is a mechanical system. It is build from elastic elongated beams

joined at nodes using both stiff joints and possibly also rotary joints, and loaded by some exter-

nal forces applied at its nodes or distributed along the beams.

Figure B.2: Planar Frame (a) and its Fundamental System of internal Parameters (b)[31]

Assuming small displacements and linear elastic material law and using the method of

forces, the frame has been described in[31] by a set of equations which start from equilib-

rium equations for forces and bending moments, see Fig. B.2.The beam properties are Young

modulusE and momentum of inertiaJ of the beam cross-section. In case of this frame the final

matrix of the system is not symmetric. More than one coefficient of the matrix depends on the

value of any given parameter. Moreover, the elements of the right hand side vector depend on

parameters of the beams, not only on external loads (this is partly due to the presence of dis-

tributed load along one of the beams). The parameters of thisframe are given as dimensionless

numbers. It is assumed that all the beams have the same Young modulusE but momentum of

interia J of the beam cross-section are related by the formulaJ12 = J23 = 1.5J24. Substitut-

ing that into the combined equations for the frame and makingappropriate simplifications, the
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following system has been obtained in[31] :





2l12 l12 0 0 0 0 0 0

l12 2l12 + 2l23 −2l23 0 0 0 0 0

0 −2l23 3l24 + 2l23 0 0 0 0 0

0 0 0 0 0 0 1 1

0 0 0 1 1 1 0 0

−1 0 0 0 l12 l12 + l24 0 l23

−1 1 0 −l12 0 0 0 0

0 0 −1 0 0 l24 0 0





·





M1

M21

M24

Ry
1

Ry
3

Ry
4

Rx
1

Rx
3





=





0

0

−3
8
ql324

0

ql24

ql24(l12 + 1
2
l24)

0
1
2
ql224





(B.4)

As described in[31] , the values of lengths of the beams and the load have taken thevalues

l12 = l24 = 1, l23 = 0.75 andq = 10 with the uncertainty of±1%. Then

l12 ∈ [0.99, 1.01], l24 ∈ [0.99, 1.01], l23 ∈ [0.7425, 0.7575], q ∈ [9.9, 10.1].

The authors of[31] , have compared the results of the mid-point solution and thewidth of their

results, as shown in table B.8.

Table B.8: Interval results of the frame example

Solution Mid-Point Interval wid([x])/x0

components solution x0 solution [x][31] %

1. M1 0.25 [0.233, 0.268] 14

2. M21 −0.5 [−0.536,−0.466] 14

3. M24 −1 [−1.072,−0.932] 14

4. Ry
1 −0.75 [−0.812,−0.692] 16

5. Ry
3 6.75 [6.573, 6.933] 5.3

6. Ry
4 4 [3.911, 4.091] 4.5

7. Rx
1 −0.667 [−0.722,−0.615] 16

8. Rx
3 0.667 [0.615, 0.722] 16

Now, we will solve the parametric linear system (B.4) by using our algorithms that have

been presented in Chapter 4 (algorithm 4.2 page 110). Table B.9 shows the results obtained

by our methods. The results are rounded outwardly to 10 digits accuracy.
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Table B.9: The results using our algorithms for the frame

example

Solution Mid-Point wid([w])/c

components solution c Our approach [w] %

1. M1 0.2500375000 [0.2390812483, 0.2609937517] 8.7

2. M21 −0.5000750000 [−0.5218084621,−0.4783415378] 8.7

3. M24 −1.0001500000 [−1.0350459364,−0.9652540635] 7

4. Ry
1 −0.7501125000 [−0.7906129894,−0.7096120106] 10.8

5. Ry
3 6.7500125000 [6.5837604614, 6.9162645385] 4.9

6. Ry
4 4.0001000000 [3.9171122546, 4.0830877454] 4.1

7. Rx
1 −0.6667666666 [−0.7155390805,−0.6179942528] 14.6

8. Rx
3 0.6667666667 [0.6179942528, 0.7155390805] 14.6

In table B.10, we will compare our results with the results that presented in table B.8.

Additionally, we will compare the width between the results. The results are rounded outwardly

to 3 digits accuracy.

Table B.10: Comparison of width between the results of the

frame example

wid([w])

Solution Interval <=>

components solution [x] [31] Our approach [w] wid([x])

1. M1 [0.233, 0.268] [0.239, 0.261] <

2. M21 [−0.536,−0.466] [−0.522,−0.478] <

3. M24 [−1.072,−0.932] [−1.035,−0.965] <

4. Ry
1 [−0.821,−0.692] [−0.791,−0.709] <

5. Ry
3 [6.573, 6.933] [6.583, 6.916] <

6. Ry
4 [3.911, 4.091] [3.917, 4.083] <

7. Rx
1 [−0.722,−0.615] [−0.716,−0.617] <

8. Rx
3 [0.615, 0.722] [0.617, 0.716] <
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[27] Krämer, W.; Popova, E. D.:Zur Berechnung von verlässlichen Außen- und Innenein-
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