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Introduction

Computers play an important role in Scientific Computing.nMaew fields of science have
emerged because of the invention and development of theuempgHowever, in many cases
the computer is not a perfect tool for doing scientific cadtions. When using floating point
arithmetic real numbers are approximated by machine nusnBacause of this representation
two types of errors are generated. The first type of error rsoatnen a real valued input data
is approximated by a machine numbers. The second type af isrcaused by intermediate
results being approximated by machine numbers. Therefloeetesults of the computations
performed will usually be affected by rounding errors anth@worst cases lead to completely
wrong results. This problem is getting even worse since aderp are becoming faster, and it
is possible to execute more and more computations withired fixme. It is possible to verify
the accuracy of the results generated by some complicatepigms using other tools.

Interval analysis is an enormously valuable tool to solve pnoblem and to estimate and
control the errors (which occur on the computers) autorabyic Instead of approximating a
real valuex by a machine number, the real values approximated by an intervét| that
includes a machine number. The upper and lower boundartegsohterval contain the usually
unknown valuer. The width of this interval may be used as a measure for thétyaéd the
approximation.

Solving parametric linear systems, involving uncertasitn the parameters, is an important
part of the solution to many scientific and engineering pFotd. Usually, in most engineering
design problems, models in operational research, lineatigiion problems, etd51] there are
complicated dependencies between coefficients. The masomnefor this dependency is that
the errors in several different coefficients may be causetidgame factor. For this reason, the
interval analysis will be the tool which we will use for satg this type of problems. Interval
methods (validated methods) not only can determine suctagteed error bounds on the true
solution, but can also verify that a unique solution to thaebpem exists.

The elements of the parametric interval systems occur intyyes: affine-linear depen-
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dencies or nonlinear dependencies. The nonlinear depeiedaare more complicated than the
other.

The goal of this work is to find inclusion solutions for pararieeinterval systems in the two
cases. Inclusion solution means an interval vector, whicttains all possible solution of this
systems. Furthermore, our goal is trying to make this iratiergctor to be as narrow as possible.

The organization of this thesis is as follows:

Chapter 1 in this chapter we will give an introduction of interval agsis. In section
1.1, the definition of the real intervals, interval operaia@and some properties of the interval
arithmetic are given. The definition of complex intervalsl@ome properties of the complex
interval arithmetic are presented in section 1.2. The defmbof interval vectors and interval
matrices and some properties for their arithmetic are gimesection 1.3. In section 1.4,
the definition of the interval extension function and thetcamroblem in interval arithmetic,
which called ‘lependencyproblem are given. Principles of numerical verifications given in
section 1.5. In section 1.6, the implementation of intear&thmetic in the computer is given
and which software we used in this thesis. An overview ofdmgystems of equations and
interval linear systems of equations and the solutions efé¢hsystems using interval methods
are presented in section 1.7. An overview of the C-XSC lip(@++ for eXtended Scientific
Computing), which we used, is given in section 1.8.

Chapter 2 this chapter contains an overview of parametric intervateys. In section
2.1, an overview of the parametric systems whose elemeatsaffine-linear are given. Some
methods, which deal with this case, and the algorithms cfelmeethods are presented in this
section. In section 2.2 the case where the elements areneanliunctions are studied; this
case is more complicated than the first case (affine-lingaone methods, which study this
case, and the algorithms of these methods are presented.

Chapter 3 the goal of this chapter is to discuss a generalized intemdimetic, which
has been developed by Hand@], and extend it to complex interval arithmetic. The most
important purpose of a generalized interval arithmetioigetiuce the effect of the dependency
problem when computing with interval arithmetic. In senti8.1, Hansen forms are described.
In section 3.2, generalized interval arithmetic (Hanseithfretic) is introduced. In section
3.3, two arithmetic operations (multiplication and diwis) are discussed in more details with
some examples of how Hansen arithmetic deals with the demegdgroblem. The elementary
functions €xp(), sin(), In(),......) are considered in section 3.4. In section 3.5, iperdhmic
descriptions are introduced. Minimax(Best) approxintatitethod is discussed in section 3.6.
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A new complex generalized interval form is described inisec8.7. The extended generalized
interval arithmetic for complex generalized intervalstisdsed in section 3.8. In section 3.9,
the elementary complex functions are considered. The itthgas for complex generalized
interval arithmetic are introduced in section 3.10.

Chapter 4 in this chapter we will discuss some cases of parametricvatsystems. Our
methods depend on directly generalized interval aritherestd its extension (see chapter 3).
The methods that be will presented are some modificationepd¥’s and Rump’s methods.
We start in section 4.1 with the case if a constant matrix acdrestant vector of Popova’s
representatiofd8] are not exactly representable on the computer; we will nydeiifpova’s and
Rump’s methods. In section 4.2 we will discuss the case ébbments of the parametric matrix
and right-hand side are nonlinear functions of parametiiervals; in this section generalized
interval arithmetic and complex generalized intervalhamietic will be the basic aspect in our
modification. In section 4.3 we will study the over- and undetermined case of the parametric
interval systems.






Chapter 1
Introduction to Interval Analysis

The concept of interval analysis is to compute with intes\afl real numbers in place of real
numbers. While floating point arithmetic is affected by rdingy errors and can produce in-
accurate results, interval arithmetic has the advantaggvofg rigorous bounds for the exact
solution. An application is if some parameters are not knemactly but are known to lie within
a certain interval; algorithms may be implemented, usitgriral arithmetic with uncertain pa-
rameters as intervals, to produce an interval that bouhg®ss$ible results.

There are older antecedents, but it can be considered thah#in ideas about interval
computations appear for the first timg8Y]. In his Ph. D. thesis, R. E. Moore studied the errors
caused by truncation and rounding in arithmetic operatmmmdrmed using digital computers.
The first monograph on interval analy§s8] is the starting point of interval analysis.

Nowadays, interval analysis is mostly developed in USA aath@&any. This Chapter gives a
brief introduction to the main concepts of interval arithimelnterested readers can be directed
to[1], [38], [39], [55], [42], [13] , [10] and[20] for detailed treatments of interval arithmetic.

1.1 Real Interval Arithmetic

Definition 1.1. (Interval) a real interval, or just an intervalz], is a nonempty closed and
bounded subset of the real numb&rs

[z] = [2,7] :={z € Rlz <z < T},
wherez and denote the lower and upper bounds of the intefwalrespectively.

In general, the notatiofx] will be used to denote an interval number. When specific infor
mation can be gleaned from the bounds, then the intervabeiritten agz, z|. The set of all
1
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intervals is denoted byR
IR :={[z,7]|z,T € R,z < T}

We call two interval§z| = [z, 7] and[y] = [y, 7] equal if and only if {ff) their corresponding
endpoints are equal, that {8] = [y] iff z = y andz = 7.
The intersectioriz] N [y] of two intervals[z] and[y] is empty, i.e.[z] N [y] = 0, if either
[z] < [y] ([z] < [y] iff T < y)or[y] < [z]. Otherwise the intersection ¢f] and|y] is again an
interval
[z] N [y] := [max(z, y), min(7, 7)].

The interval hull of two interval$x] and[y] (the interval hull is the smallest interval con-
taining [x] and|[y]) is defined by

[]Uly] := [min(z, y), max(7, 7)].

For instance, the interval hull ¢2, 3] and[5, 7] is the interval2, 7].
A useful relation for intervals is the set inclusion

] Cly] iff y<z and 7<7.
An interval [z] is said to be contained in the interior jof if y < 2 andZ < 7. In this case,

we write [z] c [y]. We also call this relation the inner inclusion relation.

A number of useful real valued functions with interval argnts are also defined. These
functions describe important features such as the endpahg width, the midpoint, etc. of an
interval.

Definition 1.2. (inf([z])) The lower endpoint of an interval is the infimumof

inf([x])

z.
Definition 1.3. (sup(z])) The upper endpoint of an interval is the supremurfx:pf
sup([z]) = .
Definition 1.4. (wid([x])) The width of an interval is the difference between endppints
wid([z]) =T — z.

If the width of [z] is zero(z = T), then the interval is calledegenerat®r thin interval and
consists of only one real number. It is calliuckif » < 7.
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Definition 1.5. (mid([z])) The midpoint of an interval is the point halfway between heit-
points,
mid([z]) = (T +z)/2.

Definition 1.6. (rad([x])) The radius of an interval is the distance from the midpointhe
endpoints,

rad[z]) = (T — z)/2.
By using the definitions 1.5 and 1.6, we can write an intepwighs following:
[x] = mid([z]) + [-rad([«]), rad([])]. (1.1)
Definition 1.7. ([z]|) The magnitude, or the absolute value, of an interval is ddfime
|[#]| = max([z], |z]).
If [x], [y] € IR, then the distance betweér] and|y] is defined by

q([2], [y]) := max(|z -y, [z — 7])

Mathematical operations used for real numbers are alsoedtfor intervals. The result of
an interval operation is a set that includes every poss#Hilgevof the operation defined over the
interval arguments.

Definition 1.8. (Interval Operation) Let « represent an operation from the sgt, —, -, /}.
Then

2] [yl =A{wxyl v ela] yely, =e{+ -/}

Note that the result of an interval operation is also an vrdkexcept for the special case of
division by an interval containing zero).
Specific equations for interval operations are

]+ [yl = [z +y, T+ 7], (1.2)

(7] = [yl = [z — 7,7 — ¥, (1.3)

[] - [y] = [min(zy, 27, Ty, T7), max(zy, 27, Ty, TY)], (1.4)
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The endpoints of the multiplication] - [y] can be broken down depending on the signs of the
endpoints of each interval factor

4

[zy, 77 if z>0andy >0
[fy,:)s_y} if z>0andy<0<y
[Eg,g@} if xt>0andy <0
(27, Ty if r<0<7andy >0
[z] - [yl = [z7, 27 if z<0<7andy <0 (1.5)
[xy,:)sy} if 7<0andy >0
[xy,xy} if 7<0andy<0<y
[xy,xy} if 7<0andy <0
\ [m (Ty, 27), max(xy,xyﬂ if z<0<7Tandy<0<7y
1yl =[1/y,1/y] i 0¢ [y], (1.6)
[2]/[y] = [z] - [1/7,1/y] if O &[y], (1.7)
and wher) € [y], Hansen has defined a set of extended rules for intervaialiit3]
([ [7/y, ) if <0 andy=0
(—o0, T/l U [T/y,0) if T<0andy <0<y
(—o00,T/7] if 7<0andy=0
[z]/ly] = ¢ (—o00,00) if z<0<® (1.8)
(—oo,g/g] if z>0andy =0
(—o00,z/ylU[z/F,00) if z>0andy<0<y
| [2/7,00) if >0 andy = 0.

Definition 1.9. (Unary Operation) If ¢(x) is a continuous unary operation db C R, then
o([z]) = ;gi[g](w(x)), gé?ﬁ(w(x)) , ] €D

defines its unary operation afR.

Examples of such unary operations Bh arecl®), sin([z]), cos([z]), [2]*(k € R), etc. Here
we shall give the following example. For positive integelues ofk, the powers of an interval
are defined by

[1,1] if k=0
(2%, zF] if 2 >0 or k odd
T~ x

1.9
,z¥] if <0 andk even (1.9)

[0,|[z]|*] ifz<0<7 andk even



1.1 Real Interval Arithmetic 5

Unary operations are interval valued functions dependmgree interval variable. The gener-
alization of functions of many variables will be given in 8en 1.4.

For addition and multiplication we have the associative emghmutative laws, that is, if
[z], [y], [u] € IR then

[z] + ([yl + [u]) = ([z] + [y]) + [u],
[] - (ly] - [u]) = ([z] - [y]) - [ul,
[+l = [yl + 2],
[z]- [yl = []-[2].

Zero and unity in/R are the degenerate intervals 0] and[1, 1] which will be denoted by
and1 respectively. In other words

for any|z] € IR.
It is important to underline that unlike real arithmetic

[z] = [2] #0
and

[z]/[x] # 1
when rad|z]) > 0. Indeed,

(2] = 2] = [-(T — 2), 7 — 2] = wid([z])[-1,1]
and
[2]/[] = [z/7,7/2] for [2] >0

or

[2]/[2] = [&/z, z/7] i [2] <O.

This means, subtraction and division are no more the invagreeations for addition and multi-
plication.

Widening of the result occurs because each interval isddeas an independent variable. This
is called the Blependencyproblem and can occur whenever an independent variableaapp
more than once in an interval computation.
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The distributive law
2] - ([y] + [u]) = [a] - [y] + [a] - [u].
is not always valid for interval values. For example, we hiivé|(1 — 1) = 0 whereag0, 1] —
0,1] = [-1, 1]. Instead we have the sub-distributive |{89]

=] - (ly] + [u]) € [2] - [y] + [a] - [u].
In some special cases, the distributive law is valid

z-(yl+[u]) = =z [y]+2x-[u] for x € R and [y], [u] € IR

[ - (Wl + [u]) = [l [yl + [2]- [, if [y][u] = 0.
Another important property of interval arithmetic is insian monotonicity. It means that if

(2] € [u], [yl € [w]

then
2]+ [y] C [u] + [w],
[2] = ly] € [u] = [w],
2] - [y] € [u]-[w],
[zl /ly] € [u]/[w], (if 0¢ [w]).

We have the following properties regarding the absolutaasbnd the widths of the result
of arithmetic operationfl]

] + [yl < [l + 1], (1.10)
=]yl = [l=]ll[y]]; (1.11)
wid([z] + [y]) = wid([z]) + wid([y]), (1.12)
wid([z]ly]) > max(|[z]|wid([y]), |[y]lwid([x])), (1.13)
wid([z][y]) < |[]lwid([y]) + |[y]|wid([z]). (1.14)

1.2 Complex Interval Arithmetic

In this section, we will introduce complex intervals, i.etarvals in the complex plane, and so-
called a complex interval arithmetic. It will be shown thaamy of the properties and results for
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real interval arithmetic can be carried over to a complegrival arithmetic. In order to do this,
we have to define the set of complex numbers that will constiive complex intervals. We
will use rectangular intervals with sides parallel to therchnate axes, but a complex interval
could also be defined as a disk in the complex plane given bypaimd and its radius (s€é]
for more details, and references therein). A rectangulartex interval is defined by two real
intervals

Definition 1.10. (rectangular complex interval)Let [z], [y] € IR. Then the set
[2] := 2] +ily] == {z = v +iylw € [z],y € [y]}
is called a complex interval, where=R¢gz), y =Im(z) andi = /1.
The set of complex intervals is denoted by
IC:={[z,7] +ily,7llz,T € R,z <T,y,5 € R,y <7}

A complex interval(z| is said to bethin or a point intervalif both its real part [z] and its
imaginary part[y| are thin. It is calledhick otherwise.
We call two complex intervall;| and|z;] equaliff their real parts and their imaginary parts
are equal, i.e.
[z1] = [z2] and [y1] = [y2].
The lattice operators for the intersection and the uniorwaf complex intervals may also be
defined by reduction to the corresponding operators foreakand the imaginary parts, i.e.

(2] * [z0] := ([a] % [w2]) +i([ya] % [wa]),  » € {N, U}

Complex interval operations are defined in terms of the reatvals[z] € IR and[y] € IR
in the same way that complex operations:or- x + iy are defined in terms of € R and
y € R.

Definition 1.11. Let « represent an operation from the set, —, -, /}. Then if[z], [z2] € IC,

we define
[21] + [22] = [z1] + [m2] +i([ta] + [y2)),
[21] = [z2] = [21] = [22] +i([1] — [v2]),
[21] - [22] = [m][a] = [w1]lye) + i([21][y2] + [n1][z2]), and (1.15)
_ [zadlze] + [illya] | [s][ze] — [24][ye]
Pl/lEl = T e T e P
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In the case of divisionz;]/[2], it is assumed thal ¢ [x5]* + [y2]*>. We point out that
[21]/[22] is evaluated using the elementary interval square funttiguiarante® ¢ [z5)* + [y2)?

for 0 ¢ [2]. To illustrate this point, lefzs] = [—2,2] + i[2,3]. Then0 ¢ [x2]? + [1]? =
[0,4] 4+ [4,9] = [4,13]. Using multiplications instead of elementary square fioms yields
0 € [xa][za] + [y2][ye) = [—4.4] + [4,9] = [0, 13]. Thus, the division would fail.

The operations introduced in Definition 1.11 satisfy

[21] + [22] = {21+ 22| 21 € [21], 22 € [22]},
[21] = [22] = {z1 — 2| 21 € [1], 22 € [2a]},
[21] - [z2] 2 {21 22| 21 € [21], 22 € [29]},
[21] /[z2] 2 {z1/22| 21 € [21], 22 € [20]}.

Addition and multiplication have the associative and cortative properties. Unfortu-
nately, the inverses for the sum and the multiplication dbexist (it is like the real interval
case, see section 1.1), and they do not always fulfill theibligtve law.

1.3 Interval Vectors and Matrices

We define interval vectors and interval matrices in the ratway, i.e., having real or complex
intervals instead of real or complex numbers as elemenesséts of alh—dimensional real or
complex interval vectors are denoted I or /C", respectively. In the same manner, the sets
of all m x n real or complex interval matrices are denoted/B®y"*™ or IC™*", respectively.
We use the notation

(2] := ([#])iz1. = ([21], [22], - -+, [w]) " fOr [2] € IR™ or IC"
and
[an] <o [a1,]
(4] := ([CLij])iil{::.,m = : : for [A] € IR™™ or IC™*".
[ap] <o (]

Let D C R", we denote the set of all interval vectorsiinby /(D)

1(D) == {[a] € IR"| [2] C D}
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All arithmetic operations on interval matrices and vectarse from interval operations.
The midpoint and the width of an interval vector or matrix al® defined by component-wise
definitions. For example, mifr]) := (mid([z];)), and wid[A]) := (wid([a];;)), for [x] € IR",
[A] € TR™™,

For interval matrix and vector additions, we have the asgivei and commutative laws

A+ (Bl +1C) = (Al+[B]) +[C]
(Al +[B] = [Bl+[4]
for [A], [B], [C] € IR™ " ore IC™ ™, Clearly we do not have the associative and commutative

laws for interval matrix and vector multiplications in geae However, we still have the sub-
distributive law

=
=
+
Q
N
=
=
+
=
Q

(Bl +[C])-1A] < [B]-[A]+[CT-

for suitable dimensions of the interval matrices or vectdfsA is a real matrix of the proper
size we have the distributive laws

A-([BI+[C]) = A-[B]+A-[C]
(B]+[C))-A = [B]-A+[C]- A
Let [A], [B],[C] € IR™™, [z] € IR™ and[a] € IR, the product is no longer associative,
([A]-[B]) - [C] # [A] - ([B] - [C]),
or commutative with respect to scalars
[o] - ([A] - []) # [A] - ([a] - []).
Definition 1.12. Let [A] € IR™ ", then the Ostrowsky matrix (comparison matr{fi]) is
defined as
([Ahi = (laul)
<[A]>Z] - _l[ain’ i %]7 (Zvj = 17' T ?n)

where

0 a; <0 <ay;
(laz]) = . .
min(|az;]|, |a;|) otherwise
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Definition 1.13. An interval matrix|A] € IR™*" is called H-matrix iff there exists a vector
R™ 5« > 0 such that
([A])u > 0.

Theorem 1.1. (Neumaier[42]) Let [A] € IR™" and suppose thafl :=mid([A]) is regular.
Then the following conditions are equivalent:

1. [A] is strongly regular
2. [A]" is strongly regular {A] " is the transpose dfA));
3. A . [A]isregular,
4. o(|A|-rad([A])) < 1 (o() is the spectral radius)
5. A~'.[A] is an H-matrix.
Proof: (see Neumaig@d?2]).

Further details on the properties of interval matrix operet can be found ifi, 42].

1.4 Interval Functions

Another advantage offered by interval mathematics is tliléyato compute guaranteed bounds
on the range functions defined over interval domains. Thesgefve can compute bounds on
the output of a function with uncertain arguments.

Given a real functiorf of real variables: = (z;, x5, - -, x,) " which belong to the intervals
[z] = ([21], [z2], -+ -, [xa]) ", the ideal interval extension gfwould be a function that provides
the exact range of in the domain([z1], [zo], - - - , [2,]) .

Definition 1.14. (Exact Range)The exactrange of : D C R® — R on[z] C D is denoted
by
f(lz]) = A{f(2)]z € [2]}.

An interval function is an interval value that depends on onseveral interval variables.
Considerf as a real function of the real variableg z,, - - - , z,, and F' as an interval function
of the interval variable§e, |, [xs], - - -, [x,].

Definition 1.15. (Interval Extension) The interval functior¥’ is an interval extension of if

F(z) = f(x), x € D.
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Therefore, if the arguments &f are degenerate intervals, then the result of compufifg
must be a degenerate interval equafte). This definition assumes that the interval arithmetic
is exact. In practice, there are rounding errors, and thdtrescomputingF’ is an interval that
containsf ()

f(x) € F(lx]).

To compute the range of the functigh it is not enough to have an interval extensibn
Moreover,F' must be an inclusion function and must be inclusion monatoni

Definition 1.16. An interval function is inclusion monotonic [if;] C [y;] (i = 1,2--- ,n)
implies

F(la] [wa], - [2a]) € F([ydl, [yo], -+ [yal)-

Theorem 1.2.If F([z]) is an inclusion monotonic interval extension of a real fumetf (x),
then

f([z]) € F(l2)); (1.16)
thatis, the interval extensiafi([x4], [z2], - - - , [x,,]) contains the range of values pfzy, o, - - - , x,)
forall z; € [z;] (i =1,2,--- ,n).
Proof: (se€g[13]).
Example 1.1. Consider the functiorf (z) = « - z, with [z] = [-1, 2].

It is easily seen that

On the other hand
F(z]) = F([-1,2]) = [z] - [2] = [-1,2] - [-1,2] = [-2,4].

Hence the range obtained by computing the interval extensigz|) is overestimating the exact
range off into [z].

A real-valued function may be defined by several equivalgtitraetic expressions. Math-
ematical equivalent expressions do not necessarily yigldvalent interval extensions. The
following example illustrate this point

Example 1.2. Consider the function

f@)=2"-20+1=x(x—2)+1= (v —1)>
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Three possible interval extension functions are

Fy([a]) = [a]? — 2[a] + 1.

and

If we let[x] = [1, 2], then
Fi([1,2]) = [172]2 —2[1,2]+1=[-2,3],

FZ([LQ]) = [172]([172] - 2) +1= [_17 1]7

and
F([1,2]) = ([1,2] = 1)* = [0,1].

Three mathematical equivalent expressions yield diffexeswers. The true range ¢fx) over
x € [1,2]is [0, 1], and becausér] appears only once i, the bounds calculated using this
extension are tight.

The inclusion (1.16) is one of the basic results of intervallgsis. Using (1.16) we can find
bounds on the range ¢fz) over|z] by just computing the interval extensidi{|x]). However,
the bounds thus found will not be sharp (due to the dependerdyems, see examples 1.1,
1.2). Thus, one of the central problems in interval analisstbat of finding sharp bounds on
f([z]) [1, 42, 55] as will be shown in the next subsection.

1.4.1 Taylor Form

There are many types of methods to reduce thepéndencyproblem in interval arithmetic
[38, 39, 11, 13, 14, 22, 29]in this section we will give one of these methods well-kncaen
Taylor form (just the first-order form).

Let S C R"” be openx, m € S andS contains all the elements on the line segment joining
r,m. Letf : S C R" — R be a real function of a vectar = (x,,---,z,)". Assume that

f is a differentiable function on the open set Then, there exists = m + 6(x — m), with

0 <6 <1, suchthat
fo) = fmy+ 3 Y

1 Oxj

(m)(x; —my).

J]=
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1.5 Principles of Numerical Verification

Let F([z]) be an inclusion function fob f /0x; =: f}, (j = 1,2,--- ,n). Letx,m € [z], then

n € [z]. Therefore

f(x) € f(m) + ZF}([x])([%] —m;) =: F([z],m)

f(l=]) € f(m) + ZF}([SU])([%] —my) = F([z],m).

The interval functior¥'([z]|, m) is an inclusion function forf (x), which we shall call first-order
Taylor form. For small widths ofz], this interval function often provides tighter enclosures

than the interval extension gt
When f has only one variable, the first-order Taylor form is given by
(1.17)

F([z],m) := f(m) + F'([z])([z] — m).
Example 1.3. Consider the functiorf (z) = 2 — 2z + 1, withx € [1,2].

It is easily seen that

f(l=]) = f([1,2]) = [0,1].

On the other hand, the interval extension will give

F(lal) = F([1,2]) = [-2,3].
Using first-order Taylor form (1.17), where =mid([z]) = 1.5 and f(m) = f(1.5) = 0.25

0.25 + (2[1,2] — 2)([1,2] — 1.5)

F([z],m) =
0.25 + [0,2][—0.5,0.5] = [~0.75,1.25].

It is seen that
f([2]) € F([z],m) C F([z]).

In Chapter 3, we shall discuss in some detail a generalizedvad arithmetic, which has
been proposed by Hansen [12], and show how to reducedygehdencyproblem in real and

complex interval arithmetic.

1.5 Principles of Numerical Verification

The theory of interval arithmetic and appropriate algonghare the bases of the automatic ver-
ification of numerical results. The easiest technique fangoting verified numerical results
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is to replace any real or complex operation by its intervaliement and to perform the com-
putations using interval arithmetic. This procedure lead®liable, verified results. However,
the diameter of the computed enclosure may be so wide to lmtiqaly useful. To get the
verified solution of the non-interval problems, a simple hatdsm can be used. Compute the
approximation solution of the non-interval problems, aftdrahat, its error (the error of the ap-
proximation solution) is enclosed using machine intervahenetic. Probably, the width of the
error interval is less than a desired accuracy; in this dasegerified enclosure of the solution is
given by the sum of the approximation and the enclosure.e@trerwise, the approximation
may be refined by adding the midpoint of the error interval @epkating the process.

Many algorithms for numerical verification are based on p@iaation of well-known fixed
point theorems. One of these is the Brouwer’s fixed pointrigrad42].

Theorem 1.3. (Brouwer’s fixed point theorem) Let f : R" — R™ be a continuous mapping
and X C R™ a non-empty, closed, convex and bounded set(Xf) C X, thenf has at least
one fixed point* € X.

Assume thatf : R™ — R" is a continuous function an#l is an interval extension of.
Since aninterval vectge| € /R™ is a closed and bounded convex sekih If f([z]) C [z] then
it follows from the fixed point theorem thgt has a fixed point ifiz]. Sincef([z]) C F([z]),
it follows that the conditior¥'([x]) C [z], which can be checked automatically by a computer
program, also implies existence of a fixed pointfoh [z]. Algorithms which use fixed point
theorems in this way to prove existence are calkself>validating algorithm’s

1.6 Machine Interval Arithmetic

Interval arithmetic as presented above requires exatinagitic to compute the endpoints of the
resulting intervals. But if we want to implement intervaitiametic on a computer we have to
face the fact that computers support only finite sets of numbda general, these numbers are
represented in a semilogarithmic manner as fixed lengthirflpgioint numbers. A floating-
point or machine number is of the form

r==2m-b°=Emimy---my- b

herem is a signed mantissa of fixed lengthb is the base, andis the exponent. The digits of
the mantissa are restrictedto< m; < b—1,and0 <m; <b—1,7i = 2,---,[. Because

% < m < 1, z is called a normalized floating-point number. Its exponsnbounded by
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emin < e < emax. FlOating-point numbers are usually represented in bif@myat, i.e. with
baseb = 2. Let F' be a set of machine numbers of the above type, floating-gomeen Then
the set of floating-point intervals ovéris denoted by

IF ={[z] € IR|z,T € F'}.

This definition means that a machine interidl€ 1 F' denotes the continuum of numbers lying
between its bounds. It is a very important fact that, thougindz are elements of the basic
number screett’, [x] contains not only every floating-point number betweesndz, but also
every real number within that range. To compute with a coeiprgpresentation of intervals,
we need a rounding

O IR — IF

which maps an interval to a machine interval. This intereainding should satisfy the follow-
ing conditions:

Olz] = [«] forall [x] € IF

[z] C [yl = Olz] S Ofy] forall [z],[y] € IR

O(—[z]) = —=Ola] forall [z] € IR
The first condition guarantees that elements of the scre=narchanged by a rounding. The
second means that a rounding is monotone, and the third niieainthe rounding is antisym-
metric. Moreover the following condition must be satisfied

[z] C<O([z]) forall [z] € IR.

This assumption is quite natural since the rounded image aftarval should always contain
its original. One distinguishes the following rounding feal numbers

O : Roundingto the neareselement ofF’
v : Roundingtoward — oo or downwardlydirected

A Roundingtoward + oo or upwardlydirected

The interval rounding> can then be achieved by rounding the upper bound towatdand the
lower bound toward-oo.

If o € {+,—,-,/} is an arithmetic operation arjd], [y] € I F, the corresponding floating-
point interval operation® : [F' x [F' — [ F'is defined by

(2] © [y] := ©([x] o [y]).
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A complex floating-point intervas an interval whose real and imaginary parts are floating-
point intervals. The set of complex floating-point intes/a denoted by

IC :={[z] € IC|[z], [y] € [F'}.

For a more detailed discussion of how to implement a flogpiogt arithmetic for complex
intervals and for real and complex interval vectors and itedrsed30].

There are many libraries that implement a machine intemvdiraetic with the rounding
requirement26]. One can cit&€€-XSC (C++ Class Library for eXtended Scientific Computing)
[21, 16, 17]filib [32, 33, 15]and IntLab(Interval Laboratoryb2]. In this thesis, we selected
the C-XSC class library as the implementation environmeno@r algorithms. An overview of
C-XSC will be given in Section 1.8.

1.7 Interval Linear System of Equations

Solving linear systems is one of the basic problems in nurakaigebra. In this section we will
give an overview of verification algorithms for linear systeand interval linear systems. These
algorithms are based on a Newton method for an equivalert figet problen{59, 60, 63]

1.7.1 Linear Systems
Consider a linear system of equations given by
Ar =10 (1.18)

whereA € R™™ andz,b € R™. Finding a solution of the systeixz = b is equivalent to
finding a zero off () = Az — b. A well-know method for solving this equation is finding fixed
points of the mag(x) = x — Y f(z), whereY € R™*" is a non-singular matrix. We have the
relation

f@) =0 g(z) =
Assume thatf is differentiable. Using” = (f’(z))~* in the fixed point operatoy yields the
method of Newton in the iteration scheme

l'(l+1) _ l'(l) N A_l(A{L'(l) o b)’ | = 07 1’ e (119)

Here,2(®) is some arbitrary starting value. The inversedofs, in general, not exactly known.
Instead of (1.19), we use the following iteration

2D = 20 — R(Az® —b), 1=0,1,- -, (1.20)
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whereR ~ A~!is an approximation inverse of.

We replace the real iterate$’ by interval vectorgz)] € IR". According to Brouwer’s
fixed point theorem, if there exists an indewith [z(+1] C [2(], then Equation (1.20) has at
least one fixed point < [z()]. If, moreover,R is regular, then this fixed point is also a solution
of (1.18). Because of the property (1.12) the interval tterez(V)] — R(A[z")] — b) is useless
since its width generally is larger than the widthof)]

wid([z0+1]) = wid([z®]) + wid(R(A[zD] — b)) > wid([zD). (1.21)

In general, the subset relation will not be satisfied. Fos teiason, the right hand side of
equation (1.20) has been modified to

Y = Rb+ (I — RA)2Y, 1=0,1,--, (1.22)
wherel denote the: x n identity matrix.

Theorem 1.4. (Rump[58]) Let Az = b be a linear system, wheré € R"*" andx,b € R"”
and letk € R™". For [2(V] € TR" we define the iteration

[x(l“)] = Rb+ (I — RA)[{L‘(I)], [=0,1,---. (1.23)

If there exists an indekwith [z(+1] C [z()], then the matrices and A are regular, and there
is a unique solution: of the systemlz = b with z € [#(+1)].
Proof: (see Rumps8]).

The above theorem tells us, that if the inclusiof )] - [z"] is satisfied, then the spectral
radius of/ — RA is less than oneg(/ — RA) < 1), the matricesd? and A are regular, and there
is a unique solution of the system. But, with some practizah&ples, the convergence of the
iteration (1.23) is decreasing, and the inclusiofi™] C (2] is never satisfied. To illustrate
this point, we will give an example.

Example 1.4.Let3x = 2 be the one-dimensional system. The exact solution foryktes is
r* = 2/3. Using theorem 1.4, whe® = 0.3 ~ (A~ = 1/3),

[x(l+1)] _ Rb+(I—RA)[x(l)], 1=0,1,---
(2] = 0.6+ (1-09)[z"], I=0,1,--.

Starting with[z(¥)] = [0.5,0.7],

(V] = 0.6 + [0.05,0.07] = [0.65,0.67] C [0.5,0.7] = [2©)],
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i.e.z* € [0.65,0.67).
But if we start withz(?)] = [0.5,0.6],

2] = 0.6+ [0.05,0.06] = [0.65,0.66] Z [0.5,0.6] = [V]
[2®] = 0.6+ [0.065,0.066] = [0.665,0.666] Z [0.65,0.66] = [z!)]
(2] = [0.666---65,0.66- - -66].

This meangx+9] ¢ [z(] for everyi, [ € N, whereN denotes the set of all integer numbers.

For the purpose of obtaining an inclusion even in those c¢abesepsilon inflation or
e—inflation has been introduced [B8]. Thee—inflation of a real floating-point intervak]
ITF is defined by

(2] M = (] + [—€, €] - wid([z]) if Wid([t')s]) # 0 (1.24)
[z] + [—Zmin, Zmin) otherwise
wherezx i, denotes the smallest positive element of the floating-myistenF.
Theorem 1.5. (Rump[63]) Define[C] € IR"*™ and|[z] € IR" as
2] = O(R-D),
C] = O(I—-R-A).
For [z(¥] € IR define the iteration
] =21 @ [C] & (Y] & [EY]), 1=0,1,--- (1.25)

with [EQ] € IR", lim;_..[EV] = [E] € IR, 0 € [E]. The following is equivalent
1. Forevery[z(¥] € IR existsl € N with
21 & (€] (2] & [BM)) € 2],
2. o(|[C]]) < 1, (o(C) is the spectral radius af).

Proof: (see Rumjp63]).

1[E] is the interior of ]



1.7 Interval Linear System of Equations 19

Example 1.5. We solve example 1.4 by usiaginflation. Using theorem 1.5, whe =
0.3~ (A" =1/3). Let[EW] = [-0.1,0.1],1 = 0,1,.... We start withz(®] = [0.5, 0.6]

2] = [0.5,0.6] +[~0.1,0.1] = [0.4,0.7]
(@] = 0.6+ 0.1[0.4,0.7] = [0.64,0.67] C [0.4,0.7] = [zV],

ie.z* € 0.64,0.67] and o(|[C]]) = o(|I — RA|) = 0(0.1) < 1.

Instead of solving the system (1.18) directly. We solve §stesm Ay = d, whered = b — Az
is the residual oAz, andz is the approximation solution ofx = b. Since

Alz+y)=At+b— Az =b.
Thenz + y is exact solution ofdx = b. Applying Equation (1.22) to the systesy = d yields

y" = R(b— AZ)+ (I — RA)y", 1=0,1,--- (1.26)

(. ~/ (. ~/

Vv Vv
=:2€R" —:CeRnxn

Theorem 1.6. (Rump[60]) Let A € R™", b € R" be given,R € R"*", [y] € IR", = € R"
and let[z] € IR", [C] € IR™ " be defined by

2] = O(R-(b—A-7)),
C] = O(UI—-R-A).

Define[v] € IR™ by means of the following Einzelschrittverfahren:
L<i<n:[v] ={O([]+[C] [ul)}i  where[u] = ([vi], -, [vica, [yl - [ya]) -

If [v] c [y], thenR and A are regular, and the unique solutiart = A~'b of A - x = b satisfies
z* €T+ [v].
Proof: (see Rumjp60]).

Algorithm 1.1. Linear Systems (Rump’s method)

1. Input { AecR™™ beR"}

2. Compute an approximation inverée(R ~ A~') of A with some standard algorithm
(see e.g[10])

3. Compute an approximate solution of the equation (1.18)
T=0(R-b) Optionally improvet by a residual iteration.

Continued on next page
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Algorithm 1.1 — continued from previous page

4. Compute an enclosufé’]
[C]:=C(I—-R-A)
5. Compute an enclosufe]
2] =C(R-(b—A-1))
6. Verification step
(o] = [
max= 1
repeat
[v] := [v] M € e-inflation
[y) = [0
for i = 1tondo { Einzelschrittverfahren
vi] = © ([] + [C(Row()] - [v])
max++

o

until [v] C [y] or max> 10

if [v] C [y] then {
A and R are non-singular, and the solutiart of Az = b exists and is uniquely
determined, and* € [v] = + [v] }
else {
Err:= " no inclusion computed; the matrix is singular matrix or
is ill conditioned” }
8. Output { Inclusion solutior|v] and Error code Er}

1.7.2 Over- and Under-determined Linear Systems

Let A € R™*™ andb € R™. Form > n, the linear system
Ar =10

is over-determined and has no solution in general. Thezefae are interested in a vector
x € R™ which minimizes the Euclidian norfib — Az|| of the residual vectob — Azx. If

m < n, we have an under-determined system. In general, therefmédly many solutions
and we look for a vectoy € R" for which Ay = b and||y|| is minimal. If the rank ofA
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is maximal, the solution for both systems is uniquely deteea. It is well-known (see e.g.
[18, 66, 70, 50, 67, 59khat if

m >n and rankA) =n then z isthe solution of A" Az = ATb (1.27)
m <n and rankA) =m then y= A"z, where AA"z =1 (1.28)

whereA" is the transpose matrix. We could now proceed to comgduted , AAT andA b and

to solve the resulting square systems using the methodriessm subsection 1.7.1. However,
as is well knownAT™ A andAA T usually have very bad conditions. Moreover, on the computer
ATAor AAT can only be obtained with roundoff errors or as an intervatixgsee subsection
1.7.3), which makes the solution of this systems difficuitofder to find guaranteed enclosures
of the solutions to the above (original) non-square syst&ump[59] proposed to consider the
following large squar¢m + n) x (m + n) systems

A -1 b
S - for m >n, I ism x m identity matrix (1.29)
0 AT Y 0

AT T 0
S for m <n, I isn xn identity matrix (1.30)
0 A Y b

instead of solving (1.27) and (1.28).

Theorem 1.7. (Rump[59]) Let A € R™", b € R™, m > n. DefineB € Rm+m)x(m+n) tq
be a square matrix in (1.29), and lete R™*" to be the vectofb,0)'2 and leta € R™*",
[u] € IR™*", R € Rm+m)x(m4n) | et[z] € IR™", [C] € IRM+W*(m+n) he defined by

[z] = O(R-(b—B-1))),
[C] = (I —R-B), Iis(m+mn)x(m-+n) identity matrix

Define[v] € IR™"™ by means of the following Einzelschrittverfahren:
I1<i<m+n:[v]={O([z] +[C] - [uu])};

where[uu] := ([v1], -+, [, [wi], -+ [tmgn)) T
If [v] C [u], then there is an* €  + [z] with the following property:

Forany = € R" with = # z* holds ||b — Az™|| < ||b — Ax||,

2(b,0)T € RU™+7) is a vector such that the first elements are those éfand the remaining. components
are zero.
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wherez and [z] are the first, components of and [v], respectively. Further the matri® has
maximum ranko.
Proof: (see Rump9]).

Theorem 1.8. (Rump[59]) Let A € R™*™ b € R™, m < n. DefineB € R™+m)x(mtn) to
be a square matrix in (1.30), and late R™*" to be the vector0,b)" and leta € R™*",
[u] € IR™*", R € Rimtmx(m+n) | et[z] € IR™ ", [C] € IRM+W*(m+n) he defined by

[z] = O(R-(b—B-1))),
[C] = (I —-R-B), Iis(m+mn)x(m-+n) identity matrix

Define[v] € IR™™™ by means of the following Einzelschrittverfahren:
I1<i<m+n:[v]={O(z] +[C]- [uu])};

where[uu] := ([v1], -+, [via], [wil, - [umsn]) T
If [v] C [u], then there is an* € g + [y] with the following properties:

1. Ay* =b.
2. if Ay = b for somey € R"™ withy # y*, then||y*|| < ||y]],

wherey and [y] are the last» components of and [v], respectively. Further the matri® has
maximum rankn .
Proof: (see Rump9]).

Now we will give the following algorithms for both cases (ovand under-determined)

Algorithm 1.2. Over-determined Linear Systems

1. Input {AeR™" bheR™}
From (1.29), define

(o) e (0) = ()

3. Solve the systemBY = h using algorithm 1.1
4. \Vectorz from the vectory” is the desired enclosure
5. Output { The firstn components from the inclusion soluti@r} and Error code Erg
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Algorithm 1.3. Under-determined Linear Systems
1. Input { Ae R™" bheR™}
2. From (1.30), define

B::<AT —]>, Y::<x>, h::<0>
0o A Yy b

3. Solve the systemBY = h using algorithm 1.1
4. Vectory from the vectorY” is the desired enclosure
5. Output { The last: components from the inclusion soluti@r and Error code Erg

1.7.3 Interval Linear Systems

The method described in subsection 1.7.1 demands exagptlgsentable oA andb on the
computer. But, in practical applications the input data ot know with certainty, but are
bounded by intervals. Replacing all input data with smaéiwals in the linear systetiz = b,
the new system will be defined as interval linear systems alhédewritten as

[Alz = [o] (1.31)
where[A] € TR™™ and[b] € IR™. The set of all possible solutions to (1.31) is given by
> ([ALp]) :=={zeR"A-z=b forsome A€ [4], be [B]}.

The set) ([A], [b]) may have a very complicated structure, and is, in generagnaconvex
bounded set. AS ([A], [b]) is extremely difficult to find, it would be a more realistic ka®
find an interval vectofy] € IR™ which containsy_([A], [b]). There are number of methods to
find an interval vector which contains the solution[ge&X]. We will extend Rump’s method for
linear systems, which has been described in the previousestibn. The iteration (1.26) will
be fined in the interval form as follows

~~

[[C)eTRnxn

[y = R([p] - [A)7) + (I = R[A) ¢, 1=0,1,--, (1.32)

::[zEIR”
whereRR € R™" is the approximate inverse of the midpoint{df, R ~ (mid([A]))~'.

Theorem 1.9. (Rump[60]) Let [A] € IR™", [b] € IR" be given,R € R™", [y|] € IR",
Z € R™ and define

2] = (R-([b] — [A] - 7)) € IR", [C]:=< (1 —R-[A]) € IR™™, Iis an identity matrix
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Define[v] € IR"™ by means of the following Einzelschrittverfahren:
L<i<n:[v]={O([]+[C]-[ul)}i where[u] := ([vi], -, [viea], [y, -+ [ya]) -
If [v] c [y], thenR and every matrixA € [A] are regular, and for everyl € [A], b € [b] the
unique solutions* = A='p of A - z = b satisfiest* € 7 + [v].

Proof: (see Rumjp60]).

Now we will give an algorithm (sef59]) for computing an inclusion of the solution of a
system of interval linear equations.

Algorithm 1.4. Interval Linear Systems (Rump’s method)

Input { (4] € IR™" [5] € R" }
Initialization
b :=mid([b]); A :=mid([A])
3. Compute an approximation inverge(R ~ A~') of A with some standard algorithr
(see e.g[10))
4. Compute an approximate mid-point solution

=)

i=0(R"b) Optionally improvet by a residual iteration.
5. Compute an enclosuré’|
[C]:=C - R-[A])
6. Compute an enclosufe]
[2] := & (R~ ([b] = [A] - 7))
7. Verification step
[v] =[]
max= 1
repeat
[v] := [v] M € e-inflation
[yl := [v]
for i = 1tondo { Einzelschrittverfahren
[vi] = & ([z] + [C(Row(2))] - [v])
max++

o

until [v] C [y] or max> 10

Continued on next page
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Algorithm 1.4 — continued from previous page

if [v] C [y] then {
all A € [A] are non-singular, and the solutiort of Az = b, b € [b] exists and is
uniquely determined, and" € [v] = Z + [v] holds}
else {
Err:= " no inclusion computed; the matriXd] contains a singular matrix or
is ill conditioned” }
9. Output { Outer solutior{v] and Error code Er}

1.8 The C-XSC Library

C-XSC is a tool for the development of numerical algorithnefiveébring highly accurate and
automatically verified results. It provides a large numbiepredefined operators, functions
and numerical data types. The types are implemented as @ssed. Thus, C-XSC allows
high-level programming of numerical applications in Cf68]. It is available for personal
computers, workstations and mainframes with a C++ compiler

C-XSC supports additional features for safe programmirgn sas index range checking
for vectors and matrices. It also checks for numerical srsoich as overflow, underflow, loss
of accuracy, illegal arguments, etc. C-XSC provides th@maision data types to obtain an
evaluation with maximum accuracy.

The C-XSC problem solving library (C++ Toolbox for verifiedraputing[10]) is a col-
lection of routines for standard problems of numerical gsialproducing guaranteed results of
high accuracy, like evaluation of polynomials, nonlinegstems of equations, linear systems
of equations, etc.
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Chapter 2
Overview of Parametric Interval Systems

In many practical applicationlg, 40, 41, 65, 31] parametric interval systems involving un-
certainties in the parameters have to be solved. In mosheagng design problems, linear
prediction problems, models in operations research, Bt6] there are usually complicated
dependencies between coefficients. The main reason fodéjpisndency is that the errors in
several different coefficients maybe caused by the samerfd@&, 27, 51, 57] More precisely,
consider a parametric system

A(p) -z = b(p), (2.1)

where A(p) € R™"™ andb(p) € R" depend on a parameter vectoe R*. The elements of
A(p) andb(p) are, in general, nonlinear functions/oparameters

bz(p) :bl(pb 7pk)7 (7'7.]:17 : 7n)'
The parameters are considered to be unknown or uncertaiveayidg within prescribed inter-

vals

pep =(pl -, (2.3)

Whenp varies within a rangép] € IR*, the set of solution to ali(p) - = = b(p), p € [p)], is
called parametric solution set, and is represented by

S =S (AW), bp). [p]) = {x € R*|A(p) - = = b(p) for somep € [p]}.

Since the solution set has a complicated structure (doesveot need to be convex), which is
difficult to find, one looks for the interval huib(> ") where) is a nonempty bounded subset
27
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of R*. For}_ C R, define® : PR® — IR" by*

O ) =inf> " supd | =n{[z] € IR"| > C [z]}.

The calculation of>(> ") is also quite expensive.
The non-parametric interval matrix and vector, which cgpnd and are obtained from the
parametric matrix and vector, are denoted by

Alp]) = ©(Alp) eR™"p e p]),
b(lp]) = < (b(p) € R"|p € [p])
respectively.
Hence,
A([p]) - = = b([p]) (2.4)

is the non-parametric system corresponding to the paranoeie (the elements of([p]), b([p])
are assumed to be independent), and

Zg = (A(lp).b([p])) = {z €R"|A-z=1b forsomeA € A([p]). beb([p])}

is the non-parametric solution set corresponding to thamatric one. The parametric solution
set is a subset of the corresponding non-parametric solsgband has often a much smaller
volume than the latter.

> (AP, b(p). o)) € Y (A([p), b([p])). (2.5)

Since it is quite expensive to obtajn” or (> °F), it would be a more realistic task to find an
interval vector{y] € IR" such thafy] 2 <(3°7) 2 7, and the goal i$y] to be as narrow as
possible.

In Section 2.1 we will give an overview for the parametricteys, whose elements are
affine-linear. In Section 2.2 the case where the elemeptandb;, (i,; = 1,---,n) are
nonlinear functions ip will be studied .

2.1 Parametric Linear Systems, whose Elements are Affine-
Linear Functions of Interval Parameters

Probably computing inclusion for (A([p]), b([p])) with data dependencies was first considered
by Janssofl9]. He treated symmetric and skew-symmetric matrices as walependencies

LPR™ is the power set ovék™. Given a setS, the power set of is the set of all subset df
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in the right hand side. His methods are based on the inclus&gthods of Rump58, 59, 60]
and permit to estimate the sharpness of the calculated sound

When applying Rump’s theorem 1.9, which is described iniSectl.7, page 23, itis
assumed € R™™ andb € R" to vary component-wise independently withiy] and [b], re-
spectively. In practical application this need not to bedage. We may have further constraints
on the matrices withinA] possibly in connection witlp]. A simple example are symmetric
matrices, that is onlyl € [A] with A = AT (AT is the transpose o) are considered. For this
reason, Janssdft9] modified Rump’s theorem for some special matrices like sytrimand
skew-symmetric matrices.

Theorem 2.1. (Janssonjl19]) Let {ASY™} = {A € R"™"|A € [A], A symmetri¢ be a sym-
metric interval matrix ({ A ¢ IR™" is not an interval matrix),2 € R, & € R" and
b] € IR™.

1) Let[z] € IR" be defined by

n n

[Zi] = Z T’Z'“([b CLHH Z Tz,uxzx + 7’“,.13“ [a,uu] (26)
p=1 V=
n<v

fori=1,--- ,nthen
[[]=C{R-(b—A-D)[Ac{A},beb]}).
2) For [y] € IR" let [v] € IR™ be defined by

o] =[]+ (I = R-[A]) - [yl.

o

If [v] C [y], thenR and all A € {A%¥™} are non-singular and

O _({A™™} [b]) € & + [v] 2.7)

whered ({A%™, [0]) := {x € R"|Az =b, A € {AY™},b € [b]}.

Proof: (see Janssofi9]).

The following algorithm is a modification of Rump’s algonith(1.4) for symmetric interval
matrices. This algorithm computes an interval ve¢tdre /R” andz € R” satisfying (2.7).

°Then x n matrix A is called skew-symmetric ifAT = —A.
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Algorithm 2.1. Interval Linear Systems with Symmetric Matrices and Dependncies

1. Input { [A] € IR™" [0] € IR" }
2. Initialization
b :=mid([b]); A :=mid([A])
3. Compute an approximation inverd&(R ~ A~') of A with some standard algorithm
(see e.g[10])
4. Compute an approximate mid-point solution
=10 (R . B) ; Optionally improver by a residual iteration.
5. Compute an enclosuf€’|
(C] =0 (I - R-[A))
6. Compute an enclosure| by formula (2.6)
7. \Verification step
W] = [2]
max= 1
repeat
[v] == [v] M € e-inflation
[y] = [v]
fori =1tondo { Einzelschrittverfahren
[vi] = © ([=] + [C(Row(i))] - [v])
max++

o

until [v] C [y] or max> 10

if [v] C [y] then {
all A € {A%Y™ are non-singular and the solutiort of Ax = b, b € [b] exists and ig
uniquely determined anef € [v] = & + [v] }
else {
Err:= " no inclusion computed }
9. Output { Outer solutior[v] and Error code Er}

In [7] Rump’s fixed-point iteration is reformulatd86], DessombZ7] solved the non-
parametric interval system, and also took the dependenagbr the parameters into account.
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He has writterfA] € IR™*™ and[b] € IR" as follows

[A] = A+ ]61AY, A= mid([4]) (2.8)
Bl = b+ _[B]b), b= mid([b]), (2.9)

whereN andP are the number of interval parameters to be taken into aceduwen building the
interval matrix[A] and the interval vectdp|. [(;], [3;] are independent intervals. His algorithm
relies on Rump’s algorithm. Consider a system in which omlg parameter is an interval, then

is the equation of the system, whé¢gis an interval. His algorithm is as follows:

Algorithm 2.2. Interval linear systems (Dependencies are taken into accot)

1. Input {[A] € IR™" ] € IR" }
Initialization
b :=mid([b]); A :=mid([A])
3. Compute an approximation inver&(R ~ A~') of A with some standard algorithm
(see e.g[10])
4. Compute an approximate mid-point solution
=0 (R . B) : Optionally improver by a residual iteration.
5. B=0O(A" AW),
6. Compute an enclosufé’]
(€] =0 (I—R-[A)) =0 (-[¢] - B)
7. Compute an enclosure]
2] = R-(b—[A]- &) = —[(JA" AW A = —[(| Bz
8. Verification step
[v] = [4]
max= 1
repeat
[v] := [v] X € e-inflation
] = [v]

for i = 1tondo { Einzelschrittverfahren

Continued on next page
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Algorithm 2.2 — continued from previous page

[vi] = & ([z1] + [C(Row(2))] - [v])
max+-+

o

until [v] C [y] or max> 10

if [v] C [y] then {
all A € [A] are non-singular and the solutiart of Az = b, b € [b] exists and is
uniquely determined andt € [v] = & + [v] }
else {
Err:= " no inclusion computed, the matiiX| contains a singular matrix or
is ill conditioned” }
10. Output { Outer solutiorfv] and Error code Erg

Probably the first general purpose method computing outet i@ner§ bounds for® 7 is
based on the fixed-point interval iteration theory devetbpg S. Rump. IN60] Rump ap-
plied the general verification theory for systems of nordinequations and explicity states the
method for solving parametric linear systems involvingregflinear dependencies. Rump has
consideredA(p) andb(p) depending linearly op, that is:

There are vectorsv(i, j) € R*™ for0 <i <n, 1 <j <n with
{A(p)}y =w(ij)" -p and {b(p)}; = w(0,5)" -p (2.10)
where R*™ 5 p:= (1,p), p € R~

Example 2.1.for A(p) € R¥3,b(p) € R3, p = (p1,p2) ", pi € [pi], (i = 1,2)

3+ P2 p1+ D2 P1
A(p) = P 1+2p 2pi+3py |, bp)=| 2+3ps
p1+Dp2 p1— P2 3p1 2p1 + 3p2
UJ(l, 1) = (37 ]-7 O)T """
w(1,2) = (0,0,1)" w(2,2) = (1,2,0)"
w(1,3)=(0,1,1)" w(2,3)=(0,2,3)" -----.
then{A(p)}1 = w(1,1)-p = (3,1,0)" - (1,p1,p2) = 3+ pl, {A(p)}12 = w(1,2) - p =

(0,0,1)" - (1, p1, p2) = p2, and so on. The same manner is b@p).

3For more details about inner bounds §@, 60, 19]
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Theorem 2.2. (Rump[60]) Let A(p) - © = b(p) with A(p) € R™", b(p) € R*, p € R*
be a parameterized linear system, whel@) and b(p) are given by (2.10). LeR € R™*",
[y] € IR", & € R™ and defindz] € IR™ and[C] € IR™ " by

2] = (Z{Rij (w(0,7) =& - w(j, V))}T> - [pl, (2.11)
C] = 1 - R - A([p]), where I € R"*" is the identity matrix (2.12)

Define[v] € IR™ by means of the following Einzelschrittverfahren:
L<i<n:lu]={0 (] +I[C][ul)}i where [u] == ([va], -, [vica]s [yl - [ya]) "
If [v] c ly], thenR and every matrixA(p), p € [p] are regular, and for every € [p] the unique
solutionz* = A~!(p)b(p) of (2.1) satisfies* € 7 + [v].
Proof: (see Rumjpe0]).

Now we will give a modification of Rump’s algorithm (1.4) foomputing an inclusion of
the solution of a system of parametric interval linear eiqunet

Algorithm 2.3. Parametric interval linear systems (Rump’s method)

1. Input { A(p) € R b(p) € R*, [p] € IR* }
Initialization
b := b(mid([p])); A := A(mid([p]))
3. Compute an approximation inver&&(R ~ A~') of A with some standard algorithmn
(see e.g[10])
4. Compute an approximate mid-point solution
=0 (R . 13) Optionally improver by a residual iteration.
5. Compute an enclosufé€’|
[C]:= < = R-A(lp))
Compute an enclosufe] by formula (2.11)
7. Verification step
o] = [2]
max= 1
repeat
[v] := [v] M € e-inflation

Continued on next page
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Algorithm 2.3 — continued from previous page

Yl =[]

for i = 1tondo { Einzelschrittverfahren
[vi] = © ([z] + [C(Row(2))] - [v])

max++

o

until [v] C [y] or max> 10

if [v] C [y] then {
A(p) is non-singular for every € [p] and the solution:* of A(p)x = b(p) exists
and is uniquely determined and € [v] = % + [v] }
else {
Err:=" no inclusion computed, the matri(p) contains a singular matrix or
is ill conditioned” }
9. Output { Outer solutiorv] and Error code Er}

By using Rump’s method the matriX(p) can be represented as a three dimensional matrix
from the ordeR™*"*(#+1) |n order to avoid the three dimensional numeric represientaf the
parametric matrix, PopoJd8, 49]used another equivalent representation. She has writtén ea
individual component ofd(p), b(p) which is an affine-linear combination of tlkeparameters
in the following forms

k k
aij(p) = a’z(;)) + Zpl/ag'j)? bz(p) = bz(O) + Zpl/bz(u)v ('Lv] = 17 27 e 7”)' (213)
v=1 v=1
Denote theé: + 1 numerical matrices

AO) . (agg>) AW = (a(l)) AR (aﬁ’?)) e RV, (2.14)

ij
and the corresponding numerical vectors
b= (6), 6= (o) b0 = (o) e R

Hence, the parametric matrix and the right-hand side veaobe represented by

k k
Alp) = A9+ " p, AV b(p) =00+ pb™), (2.15)
v=1

v=1
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and the parametric system (2.1) can be rewritten in theviatig form

k k
(19 ) e 0m - -~
v=1 v=1

where the parametric vectpivaries within the rang@)] € IR*.
The important point in obtaining an enclosure of the paraimeblution set is to obtain
sharp bounds for

[z] := O (R (b(p) — A(p) - %) | p € [p])

because a straightforward evaluati@n(b([p]) — A([p]) - ) causes overestimatiofx], defined
in (2.11), provides a sharp estimation. Next, with the notet (2.15), Popova gave another
equivalent representation of (2.11)

[z] == O(R-(b(p) — Alp)-7) | p € [p])

k k
= O(R- (00 +) pb” —(AY+> p,AY) - ) | p € [p))
v=1 v=1

k
= O(R- (" — ADF) + ) " p, (R — RAV - &) [ p € [p])
v=1

k
= R-(" =A%)+ [p, (R — RAV - 7).
v=1
As itis proven in[60], the inclusionv] - [y] together with (2.11) — (2.13) implies
o(][C]]) < 1, consequently non-singularity & and everyA(p), p € [p], thus the uniqueness of
the solution of (2.1). To our knowledge, Rump’s parametgcation method and most methods
for solving parametric interval linear systems requiresty regularity ofA([p]). Strong regu-
larity of a non-parametric interval matrix is introduced idgumaief42] (see Chapter 1 page
10). In[46], itis shown that, for some parametric matrices verifyiigC]|) < 1 is false, while
R and everyA(p), p € [p|, are regular. For this reason, Pop{¥6] defined strong regularity of
a parametric interval matrix and gave conditions that attarie it.

Definition 2.1. A parametric matrix4(p) € R™", p € [p] € R* is called strongly regular if
either of the following two matrices is regular

[B] == O{AT (p)A(p) [p € ]}, [B]:=<{A)A™'(0) | p € [p]} (2.17)

wherep :=mid([p]).
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The parametric matrices, introduced[#46], show that the conditions for strong regularity
of a parametric matrix give better estimations for its regity than the conditions based on
the non-parametric matrix. It is proven therein that to haveetter sufficient condition for the

regularity of everyA(p), p € [p], one has to compute
[Cp)] = S{I—-R-Alp)|pe<lpl})

= O({I-R- (A9 +> " p,AY) |p e [p]})

v=1

= O{I-=R-AD =3 "p,R- AV |p e p]})

v=1

= J—R-AO _ Z[py](R.A(V))

v=1

instead of (2.12).
By using the above results Rump’s method was generalizptVir27]

Theorem 2.3. (Popovd47]) Let A(p) - = = b(p), with p € R*, be a parametric linear system,
where A(p) and b(p) are given by (2.15). LekR € R™", [y] € IR", & € R" and define

2] € IR and [C'(p)] € IR™ " by

k

2] = R- (00— A97)+ Y [p,)(R6Y) — RAV - 7),
[C(p)] = I—R-A©— ZLPV](R'A(V))-

Define[v] € IR"™ by means of the following Einzelschrittverfahren:

L<i<n : [u,]={0 ([e] + [C(p)]-[u]) }i, wherelu] := ([vi],- -+, [vima], ]+ [ya]) - (2.18)

[v] C [y], (2.19)

then R and every matrixd(p), p € [p] is regular, and for every € [p] the unique solution
" = A7 Y(p)b(p) of A(p) - x = b(p) satisfiest* € T + [v].

Proof: (see Popov§d7]).

Now the modification of Rump’s algorithm (2.3) is:
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Algorithm 2.4. Parametric interval linear systems (Popova’s modificatioi

1. Input { A(p) € R b(p) € R*, [p] € IR* }
Initialization
b= b(mid([p])); A := A(mid([p]))
3. Compute an approximation inver&&(R ~ A~') of A with some standard algorithmn
(see e.g[10])
4. Compute an approximate mid-point solution
F=0(R-b) Optionally improver by a residual iteration.
5. Compute an enclosufé€’] for the sef{7 — R - A(p)|p € [p]}
if (SharpClthen { sharp enclosure (Popova modificatign)
C1=0(1-R-A9 =Y} [p](R-A"))
else { rough enclosure (Rump’s methgd)
[C] =< = R- A([p]))
6. Compute an enclosufe| for the se{ R - (b(p) — A(p) - Z)|p € [p|}
2] = © (R (B — AOz) 4+ SF_[p,[(RD®) — RAW . :z))
7. \Verification step
[v] := [2]
max= 1
repeat
[v] := [v] M € e-inflation
] = [v]
for i = 1tondo { Einzelschrittverfahren
[vi] = O ([z] + [C(Row(@))] - [v])
max-+-+

o

until [v] C [y] or max> 10

if [v] C [y] then {
A(p) is non-singular for every € [p] and the solution:* of A(p)x = b(p) exists
and is uniquely determined and € [v] = % + [v] }

else {
Err:=" no inclusion computed, the matri(p) contains a singular matrix or

is ill conditioned” }

Continued on next page
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Algorithm 2.4 — continued from previous page

9. Output { Outer solutior{v] and Error code Er}

The methods developed by Kol§3, 24]are based on an expansion of the interval multi-
plication operation, but they are not designed as selfigation method$61].
He has written the elements df p) andb(p) in the following affine-linear forms

k

aij(p) = iy + Y QP i oy, ER, (2.20)
v=1
k

bilp) = Bi+ Y Bupu BifBw€R, (i,j=1,- n) (2.21)
v=1

He putp, A(p), b(p) andzx of the system (2.1) in centered form as follows

p = Ptu, uelu]=[-rr], r=radp]), p=mid([p]), (2.22)
Alp) = A+ fHu), A= A(p), (2.23)
bp) = b+ fO(u), b="b(p), (2.24)
xr = T+7, 7€ elIR", (2.25)
wherez is the solution of
Ax =b.

He has rewritten the system (2.1) in the following equivaferm
Ay + fAw)E + fH(w)y = fo(u) =0 (2.26)

from (2.23) and (2.24)

k
fz('A)(u) = Zaijuuw
v=1

k

fi(b)(u) = Zﬁiuuy, (t,7=1,--+,n).

v=1

He introduced two matriced™ e R™** andR € R™*™ with elements

Aﬁﬁ) = Zaijui'j — Biv, (2.27)
j=1
k

Rij = Z |aijl/|/rl/7 (Z - 17 e 7”)- (228)

v=1
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Using A®™), (2.26) can be rewritten in the following form
Ay + fAuy+ AYu =0, ue [u].
Then
y= AT A )y — ATTAWy, e [ul. (2.29)
Let B = —A"!'andC = BA® thus, (2.29)is equivalent to
v = Bf*Yu)y + Cu, u € [u]. (2.30)
Let S([u]) denote the solution set of (2.30), i.e.
S(lul) = {y : v =Bf*(u)y+ Cu, u € [u]}. (2.31)

Obviously, the problem of finding an outer solution to (2Where A(p) andb(p) are defined
by (2.20) and (2.21), respectively, is equivalent to deteimg an outer solutionto (2.31). He
used the following notation

R™"™ > D:=|B|R, R">3c:=|C|r
and he considered the following real (non-interval) system
y = c+ Dy,
or equivalently
(I — D)y = ¢, wherel isthen x n identity matrix. (2.32)
With T := I — D, the system (2.32) takes the following form
Ty = c.

Lemma 2.1. Kolev[23] Assume that matrif" € R™*" is nonsingular. If the solutio to
(2.32) is positive, i.ey > 0, then
o(D) < 1.

Proof: (see Kole\J23]).
After proofing the above lemma, he considered the followingdr system

v = [Dly +[d], (2.33)
where[D] := [-D, D] and|c| := [—c, ¢|. Let ) denote the solution set of (2.33), i.e.

Y i={y:y=Dy+c, DeD], deld}. (2.34)
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Lemma 2.2. Kolev[23] The solution sef([u]) of (2.30) is contained in the s&t of (2.33),

i.e.
S(u) <) .
Proof: (see Kole\J23]).

The main result of his paper is the following theorem.

Theorem 2.4. (Kolev[23]) Assume that the matricesand T are nonsingular. If the solution
g to (2.32) is positive, i.e. if

y>0,
then
(i) the interval vector
] = &+ [h],
where
[h] = [=9.,9]

is an outer solutionto (2.1).
(i) matrix A(p) is nonsingular for each € [p].
Proof: (see Kole\J23]).

Based on the above theorem, we can give the following alguorit

Algorithm 2.5. Parametric interval linear systems (Kolev's method)

1. Input { A(p) € R™" b(p) € R, [p] € IR* }
Initialization
b := b(mid([p])); A := A(mid([p])); r :=rad([p])
3. Compute an approximation inverge(R ~ A~') of A with some standard algorithm
(see e.g[10])
4. Set
B=-R
5. Compute the matriR by formula (2.28)
6. Compute an approximate mid-point solution
i=0(R-b)

Continued on next page
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Algorithm 2.5 — continued from previous page

7. Compute the matrixd™ by formula (2.27)
Compute the following help matrices and vectors

D =0(B| R)
C=0(B-AW)
c=0(C]7)
T=0(I - D)
9. Compute an approximation invergd (R1 ~ T—!) with some standard algorithm
of T’
10. Compute the approximate solutigrof the system (2.32)
y=0(Rl-¢)

11.
if (g > 0)then{
matrix A(p) is non-singular for eacly € [p| and[z] = & + [—7, ] is the outer
solutionto (2.1)}
else{
Err:=" Kolev’'s method is not applicable}
12. Output { Outer solutior{z] and Error code Er¥

In [65], Skalna has solved the parametric linear systems for aap®eitrix, called H-
matrix (see definition 1.13), and she has given some praetieanples in the field of structure
mechanics. Her main result depends on the following thedrem Neumaief42].

Theorem 2.5. (Neumaieff42], chapter 4) Let[A] € ITR™*™. If [A] is an H-matrix then for all
[b] € IR™ it holds
o (320AL b)) < (A)Ill-1, 1.

She has given the following two theorems, which depends emliove theorem

Theorem 2.6. (Skalna[65]) Let A(p) - = = b(p) with A(p) € R™", b(p) € R", p € R* be a
parameterized linear system, wheté€p) andb(p) are given by (2.10). Lek € R"*", & € R"™.
If [D] € IR™™ defined by
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is an H-matrix, and lefz] € /R™ defined by

[Zi] = ZRU <w(07j) - Zjqu? V)) ' [p]v (Z =1 >n) (236)
then

o (SZ(AW). ). ) € 7+ (D) [I-1,1)

Proof: (see Skalngb5]).

Theorem 2.7. (Skalna[65]) Let A(p) - = = b(p), p € [p] € TR, If rad(A([p])) = 0, then
o (3o (AW), b(w). b)) = &+ (D) |[=]I[-1,1),

where[D] and|z] are given respectively by formulas (2.35) and (2.36).
Proof: (see Skaln§65]).

Based on the theorems (2.6) (2.7), we can give the followiggrahm:

Algorithm 2.6. Parametric interval linear systems (A([p]) is H-matrix)

=

Input { A(p) € R, b(p) € R", [p] € IR* }
Initialization
b := b(mid([p])); A := A(mid([p]))
3. Compute an approximation inverge(R ~ A~') of A with some standard algorithm
(see e.g[10])
4. Compute an approximate mid-point solution
F=0(R-D)

N

5. Compute the interval matri)0] by formula (2.35)

6. Compute the interval vectot] by formula (2.36)

7. Check if D] is an H-matrix using favorite algorithm

8. Compute an approximation invergd (R1 ~ ([D])~') with some standard algorithm
of ([D))

9.

if ([D]is an H-matrix)then {
[z] =&+ R1-|[z]|[—1, 1] is the outer solution to (2.1)
else{
Err:= " Skalna’s method is not applicable}
10. Output { Outer solutiorz] and Error code Er}
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2.2 Parametric Linear Systems, whose Elements are Nonlin-
ear Functions of Interval Parameters

In this section we will give an overview of the parametricelam system of equations whose
elements are nonlinear function of intervals. Dessofi@bsolved a practical example. In this
example, one element appears as nonlinear function of the interval parameteHe wrote
every parameter in the centered form, which means that gyktem depends on the parameter
p1 € [p1]. [p1] is written in the following form:

1] =1+ =71, ), pr=mid([p1]), = rad([p]).
Usingp; = p1 + (1, (1 € [—r1, 1], he wrote the nonlinear elementas follows
pi = (P +G)° =Py + 3pIC + 3 CE + ¢

He stated that, if; and3p,(? + ¢} are independent (which is false, but far<< py, ¢; >>
3p1¢E + ¢}), one will get the following linear form

P =P} +3p7¢ + G,

where(; € [—ry, ] and(, € [0, 3p;r} +13]. He solved the new system (the elements are linear
functions in(;) with several parameters by using his methods, which isrthesstin Section 2.1,
page 31. An interval matrikd] € IR™™ and an interval vectdp] € /R" will be defined as
in (2.8) and (2.9), respectively. Depending on his apprpaehcan write an interval matrix
[C] € IR™™ and an interval vectde] € IR" (we will use them in algorithm 2.7) as follows:

[C] := I—R[A], R~ A™' Iisthen x n identity matrix

N
— _i Z[Q]A(i)’ (2.37)
i=1
2] = R(b—[A]Z), R~ A",

N
— A Z[Q]A(i)j (2.38)

respectively.
Now we will give the following algorithm, depending on thig@oach:
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Algorithm 2.7. Parametric Interval Systems (Dessombz’s method)

Initialization

[v] == [¢]
max= 1
repeat

[yl = [v]

max++

o

else {

7. \Verification step

1. Input { A(p) € R™" b(p) € R*,[p] € IR }

b= b(mid([p])); A := A(mid([p]))
3. Compute an approximation inver&(R ~ A~') of A with some standard algorithmn
(see e.g[10])
4. Compute an approximate mid-point solution
i = O(R - b). Optionally improvei by a residual iteration.
5. Compute an enclosufé€’] using formula (2.37)
6. Compute an enclosufe] using formula (2.38)

[v] := [v] X € e-inflation

for i = 1tondo { Einzelschrittverfahren
[vi] = O([z:] + [C(Row())] - [v])

until [v] C [y] or max> 10

if [v] C [y] then {
The outer solution ig + [v] }

Err:= " no inclusion computed, the matri([p]) contains a singular matrix or
is ill conditioned” }
9. Output { Outer solutior{z] and Error code Er

In [25], Kolev used his approach (which is describeddg]) to transform the nonlinear
functions into interval linear form. In the following, we Wgive a simple introduction about

this approach:

Let[z] = ([z.],---

) andl] = e+ o], i =

1,---,n, wherec; is the mid-point of z;]

and[v;] is a symmetrical intervdb;] = [—r;, ;], wherer; is the radius ofz;].
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Kolev defined an affine-linear interval forfa| as follows:
@] =D ailvil + o+ [0a], [oe] = [,
1=1

wherea; andc, are real numbers, while;| and[v,] are ordinary intervals.

He studied addition, subtraction and multiplication of tafbne-linear interval forms. The
intermediate or the final result will be affine-linear inteiform. Let[z] and[y] be two affine-
linear interval forms expressed as

n

@ = ) aulvi]+ ot Ve, [va] = [—7a,7a] (2.39)

i=1
n

9] = Z a;lvi] + ey + [vy], [vy] = [—ry, 1) (2.40)

i=1
Then we have the following rules.
Addition or subtraction: The sum (difference) dft] and[y] is another affine-linear interval

form [u]:
[’l/L\] = Z’}/z[vz] +Cy + [Uu]a ['Uu] - [_Tuaru 5 (241)
i=1
where
vi=o; £ 6B, =1,---.n), c,=c,tcy,, T,=Ty+Ty. (2.42)

Multiplication: The product ofz] and|y] is another affine-linear interval forfa] if:

Vi = ot (i=1,---.n), ¢, =cycy +0.5 Zaiﬁirf,
i=1

n
reo= eyt lelry Flelre+ Y Bl e > |85l
R j=1

1y 3 Jalr +0.5 3 el (2.43)
i=1 i=1

Example 2.2. Let
f(x) = (1 — 2x9)21, @1 € [1,2], 29 € [2,3].

Using (2.41) and (2.42 give

[71] — 2[72] = [v1] — 2[va] — 3.5,
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where[z,] = [v1] + 1.5 and [Z5] = [vs] + 2.5, with [v;] = [—0.5,0.5] and [vy] = [-0.5,0.5].
Using (2.43) we get

([z1] = 2[@2])[72] = —2[v1] — 3[vs] — 5.125 4 [—-0.625, 0.625].
Using[v] = [z1] — 1.5 and[vs] = [2z2] — 2.5, then
([71] = 2[@])[72] = —2[21] = 3[wo] + [4.75, 6].

After using this approach fod;;(p) andb;(p), (i,7 = 1,---,n) from (2.2), he got the
following linear interval forms:

k

(Lij(p)] = Y ijps +[ai), p€pl, iy €R, [a;) € IR, (2.44)
k

[lz(p)] = Zﬁi,/p,/ -+ [bz], pE [p], ﬁi,, - R, [bz] € IR, (’l,] = 1, cee ,n). (245)

The above interval linear forms have the inclusion property

ai;(p) € [Liy(p)], p € pl,
bi(p) € [L(p)], p€lpl

He used his methods, which described in Section 2.1, pag&isome more computations
to solve the linear system

Le =1, R™" > L =mid(L([p])), R" > 1=mid(([p])),

getting the mid-point (approximation) solutian In a similar wayy is found as the positive
solution of the equation

(I —D)y=c, (2.46)
where! is the(n x n) identity matrix,D € R"*™ andc € R™ are given by
D =|B|R, c¢=|C|r?+|B|(r* + "),
whereB = L', C = BA*, A" is given by formula (2.27);” =rad([p]), r* =rad([a])
(lai) = 377, Zjlay), G = 1,---,n)), v} =rad([bi]), (i = 1,--- ,n) and

k
Rij = Z |Oé7;j,/|’f’§ + R?j, jo = rad([a,-j]). (247)
v=1

For more details about the above computation[26¢ The following result was proved in
[25].



2.2 Parametric Linear Systems, whose Elements are Nonkngections of Interval
Parameters 47

Theorem 2.8. (Kolev[25]) Assume that the matrices and I — D are nonsingular. If the
solutiony to (2.46) is positive, then

(i) the interval vector

where

is an outer solutionto (2.1).
(i) matrix A(p) is nonsingular for each € [p].

Proof: (see Kole\J25]).

Algorithm 2.8. Parametric interval linear systems (Kolev's method)

Input { A(p) € R, b(p) € R", [p] € TR* }
Using Kolev’s approack22] to transform the nonlinear functions into

N

interval linear forms.
3. Initialization
L :=mid(L([p])); I :=mid(1([p])); r :=radl([p])
4. Compute an approximation inver&(R ~ L) of L with some standard algorithim
(see e.g[10])
5. Compute an approximate mid-point solution

i =0(R-b)

6. Set
B=R

7. Compute the interval vectda] € IR™
ai] = 375, Zjlay], (i =1, n),

where|a;;] is given by the right hand side of (2.44)
8. Compute the real vector§ € R" andr® € R”
r® =rad([a]); [a] is obtained from step 6
rb =rad([b]); [6] is given by the right hand side of (2.45)
9. Compute the matriR by formula (2.47)
10. Compute the matrixi® by formula (2.27)
11. Compute the following help matrices and vectors

Continued on next page
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Algorithm 2.8 — continued from previous page

D=0(|B|-R)
C =0(B-AW)
c=0(|C]-r? + |B|(r* + %))
T =0(] - D)
12. Compute an approximation inveréd (R1 ~ T~!) with some standard algorithm
of T’
13. Compute the approximation solutigrof the system (2.46)
g=0(R1-¢)

14
if (y > 0)then{
matrix A(p) is non-singular for each € [p| and[z] = & + [—7, y] is the outer
solutionto (2.1)}
else{
Err:.= " Kolev's method is not applicable}
15. Output { Outer solutiorz] and Error code Er

In [52] Popova combined the inclusion theory, developed by S. Runjpd, 64] with
methods of sharp range estimation of continuous and moaatdional functions. Her method
based on the arithmetic of proper and improper intervalsrtfore details see e.q48]), in
order to compute outer (inner) bounds for the parametriatinl set, where the elements of
A(p) andb(p) are rational functions of the parameters

Meanwhile, there were many attempts to construct suitalefénoas for solving parameter
dependent interval linear systerf@, 41] Muhanna and Mullen use construction methods
based on the application Bfnite ElementM ethods FEM) in structural mechanics to overcome
the overestimation due to coupling and multiple occurrerafenterval parametefd40, 41]

Recently, a new efficient method with result verification wasposed by Neumaier and
Pownuk[43] for the special case of parametric linear systems involaipgrticular structure of
the dependencies that arise in the analysis of truss stasctéor other approaches in solving
mechanical problems involving uncertainties, see [@.3] and the literature therein.



Chapter 3

Hansen’s Generalized Interval Arithmetic
and its Extension

As described in Chapter 1, when a given variable occurs niame dnce in interval computa-
tion, it is treated as a different variable in each occureenthis problem has calledlgpen-
dency problem. The goal of this chapter is to discuss a generliaterval arithmetic which
has been developed by Hang#&8]. The mostimportant purpose of a generalized interval-arith
metic is to reduce the effect of the dependency problem whepating with standard interval
arithmetic. In section 3.1 we will describe Hansen formssdgction 3.2 we will introduce
generalized interval arithmetic (Hansen arithmetic). éot®n 3.3 two arithmetic operations
(multiplication and division) will be discussed in more aié&t, with some examples of how
Hansen arithmetic handles the dependency problem. Theeatany functionsdxp(), sin(),
In(),...... ) will be considered in section 3.4. In section 3.5wikintroduce the algorithmic
description34, 17, 28, 8] Minimax(Best) approximation method will be treated ints&at 3.6.
New complex generalized interval forms will be describedégction 3.7. The extended gen-
eralized interval arithmetic for complex generalized iméés will be studied in section 3.8. In
section 3.9 the elementary complex functions will be comsd. The algorithms for complex
generalized interval arithmetic will be introduced in sewt 3.10.

3.1 Representation of a Generalized Interval (Hansen Form)

For our purposes, we will use the representation of an iatérywhich was described in (1.1).
Letm =mid([z]), » =rad([z]), then it can be followed from (1.1):

2] = m + [=r,7]

49
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Thus, an arbitrary point € [x] may be expressed as= m + ¢ where( € [—r,r| andr > 0.
Definition 3.1. [11] A generalized intervdlz] is given by
(@] = [+ ) Glf], (3.1)
i=1
where[m*] € IR and[vf] € IR (i = 1,2,---,n) are (computed numerical) intervals and
Ci € [—Ti,Ti].
From the above definition, it is clear that every elemest [z] can be written as a generalized

form

n
Peli] e i=m"+Y Cuf with m” € [m”], of € [vf] and —r; < ¢ <.
=1

When we reduce the generalized interval in (3.1) to an orgimaerval, we obtain
reduce([#]) = reduce([m”] + > [—r;,r[vF])
i=1

= [m"] +[-1,1] Zrivf

whereov? := |[v7]|. Conversely, any ordinary interval can be represented bgremglized
interval. The ordinary intervdl] = [z, 7] can be represented as the generalized interval

2] = [m"] + Gfot],

where[m"] := [mid([z]),mid([z])], G, € [-rad([z]),rad[z])] and[v] := [1, 1].
In general, if we have an interval vectar] := ([z4],- -+, [z,])" € IR", thej-th interval[z;]
can be represented by the generalized interval form

[Z;] = [m™]+1[0,0]¢ + -+ +[0,0]¢i—1 + [1,1]¢; + [0, 0]Cjp1 + - -+ + [0, 0]¢,
lal]Cj‘

I
8
[
+

3.2 Generalized Interval Arithmetic (Hansen Arithmetic)

Assume two generalized intervald and[y| are expressed as

3] = ("] + 3 Gilef] (3.2)
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and
[9] = [m¥] + Z GilvY], (3.3)

respectively.

We now consider the four arithmetic operations applied ésé¢hintervals.

Addition or subtraction

The sum (difference) dfi] and[y] is another generalized intenvial = [m*] + >, ;[vY].
It holds

2] £ [9] = [m*] £ [m*] + Z Gl[vi1 = [v]]). (3.4)
Thus we have to define

[m*] = [m*] £ [m?], [vf] =

Wi+ [w!], (i=1,2,---,n). (3.5)

Lemma 3.1. For everyz € [z] andy € [g], it holds that

~

teftlandg e =i Lg=m"tmV+> " GF£v!) € i

Proof: (Addition)
(=)
According to the definition 3.1, let € [2] andy € [g], then

o= m 4 (P withm® € [m*],vf € [vf]and —r; < ¢ <7
i=1
g = my+zgvfwith m? e [mY],vf € v/land —r; < ¢ <, (i=1,2,--- ,n).
i=1
Hence,

=>
_|_
<>

I

m* + ;Cﬂ%x +m’ + ;QU?

= 3 G )
i=1

€ [m]+[m'] + Z Gi([vi] + [v7])
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(=)
Letu € [a] = [2] + [g]. Then, from the definition 3.1, and the equations (3.4), )(@&ld

i o= mtm Y Gof )

i=1

= m"+mY+ i@vf + igvf
=1 =1

n n
= m"+ E Gy +mY + E Gy .
o i=1 P =1 Py

g v~

€[#] €[9]

The subtraction is proven in a similar manner.

Multiplication
To obtain a rule for multiplication of two generalized intals, note that

2] -[g) = {z-9l 2 e[z], yelgl}

n

C ] [T+ Y Gl + [m][of]) + Y0 D GG loflll]

i=1 =1 j=1
*)
We shall choose to retain only linear term<(jr(z = 1,2, - - - , n) although higher order terms
could be kept.
Note that in €) the terms fori = j involve ¢?, which can be replaced by-r;, ;]*> = [0,72].
Fori # 7, we cannot take advantage of the special result that theesg@ian interval must be
positive. We replace;(; by ¢;[—r;,r;] since(; € [—r;,r;]. Then

[2]-1g] < [m*]-[m"] + Z G ! + ]l ]) + Y D GGl ]

i=1 j=1

7

c [m*-[m*]+ Z Gi([m*)[w]] + [m¥][v)

n n

+ 0,77 ][o!] + Z Glos] Y[y rilvf]

- pot
=: [l = [m*] + > Gt (3.6)
where
[m"] = [m*][m?] + > [0, r7)[vf][v!]. (3.7)
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and
] = [ Iol] + [m][of] + [of] Y[ ) (o]
7
)+ ]+ L Y @8)
7
where, as beforey’ := |[v7]| andv! := |[v!]|. Thus, we define the product of two generalized

intervals|z] and[y] to be given by (3.6), withm“| defined by (3.7) an¢v!] defined by (3.8).

Lemma 3.2.If Z € [z] andy € [y], then
Beg=mtmt 4300 Gofvl + 3050 GlmTv] +mof) + 300 Gop 3 j=1 Gy € [d].
JFi

Proof:
According to the definition 3.1, let € [z] andy € [7], then

T = m"+ ZQU? with m® € [m*],vf € [vf]and —r; < ¢ <y
i=1
g = my+zgvlywith mY e mY],vf € [v]and —r; < G <1, (i=1,2,--- ,n).
i=1
Hence,

=>

G o= S CaE) (mr+ 3 )
i=1 i=1
= m"mY +m" i Gul +m? i Gy + i Gvy i Givy
i=1 i=1 i=1 J=1
= mmmy+ZQ(m Y+ mYuf +ZQU Gy ‘|‘Z<z Zgjvf
i=1

J#Z
= m my+ZQ ,v§/+Z<, m ! + mYu? +Z<, ch v!
i=1
J#Z
= mxmy+i§f +ZQ (m*v! + mYvf + of chy ie.
i=1
J#Z
-y € {m"m’+ i CGofo? + i G(m*v! +mYuf + v Z Gvf) with m* € [m”],
i=1 i=1
J#Z

vf € ], mY € [m?], v € v!] and —r; < <r;}

K3 7 (2
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n

C Tl + Y Gl + D G(m ] + m?]fvf] + (0] Y =y, mil[e)))-
i=1 =1 ]];1
= [a] = [+ Y Gl
=1
Example 3.1.Consider the expressioh=z -y — z - y, withz € [1,2] andy € [3,4].
Ordinary interval computation gives = [1,2] - [3,4] — [1,2] - [3,4] = [-5, 5].
Using Hansen forms, and using (3.7), (3.8) and (3.4) give

Fransen= [07 O] + [_17 1]C1 + [070]C27

which reduces t¢—0.5, 0.5].
Consequently, for every

i € [#] = [1.5,1.5] + [1,1]¢1 + [0, 0)Ca,

and
g € [9] = [3.5,3.5] + [0, 0]¢1 + [1, 1] ¢z,

where(; € [-0.5,0.5] and(, € [—0.5,0.5], the expressiont - j — & - § belongs to
reduce([2] - [9] — [2] - [4])

Ty —i-y e reduce([z] - [g] — [2] - [9]) = [-0.5,0.5].
Even though, the converse is not correct. This means if wesehthe poin0.4 € [—0.5,0.5],
then we see that there is o< [2] andy € [y] such thatt - g — 2 - § = 0.4.
The (ordinary) interval result overestimates the reduceshsen form.
Division
Division of two generalized intervals can also be done, Nt

(Glaeld gell © [+ Ghl)=[ @9
with
o [
[m"] == - (3.10)
and
PR .0 ) B 611

[m¥]([m] + [=1,1] 325, )

J=1
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The denominator in (3.11) should not be written as

n

(2 + ][ =1, 1] Yy

7=1

since this form will always yield a wider interval unless thiglth of [m?] is zero. No advantage

can be gained by using the special definition of the squara oftarval to computén?]? since

0 ¢ [mY]. For0 € [mY], we have) € [y] and we cannot perform the division.

Lemma 3.3.If Z € [z] andy € [g] with 0 ¢ [¢], then

Proof:

< | &

ZCZmy my+2 1CJ y) ]:[mu]‘l';Cl[vﬂ

According to the definition 3.1, let € [2] andy € [g], then

z

079

Hence,

<] &

N

i=1

mY +ZQU§J withm? € [m¥],vY € [v!]and —r; < (<, (1=1,2,---,n).
i=1

m® + 3L Gy
mY + Z?:l ijg
m?(m® + 30, (o)
my(mY + Z;;l Gv)
m®(mY + 37 o) + 2o G(mPuf — m*oy)
m¥(mY + Z?:l Gvy)
I Glmt — meet)

m*
mr o z; L))
m*
_y

— m'u;
ZCZ my+zj 1(’] )

mYv¥ — m*v! .
G with m*® € [m®], of € [vf], m? € [mY],
ZZ: my(m¥ + > GvY)
U?G['U;y] and —TZ<CZ§T’Z}
Yy

— [m*][v{])
ZQ my my +Z] o) (3.10) and (3.11)

1=1

= )+ 3 Gl
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Example 3.2. Consider the expressioh= z/y — z/y, withx € [1,2] andy € [3,4].
Ordinary interval computation gives = [1,2]/[3,4] — [1,2]/[3,4] = [-0.41667,0.41667].
Using Hansen forms and using (3.10), (3.11) and (3.4) give

Fhansen= [0, 0] + [—0.08334, 0.08334]¢; + [—0.03572, 0.03572]¢;

which reduces t¢—0.05953, 0.05953].
Consequently, for every

i € [#] = [1.5,1.5] + [1, 1]¢1 + [0, 0)Ca,

and
g € [9] = [3.5,3.5] +[0,0]¢1 + [1, 1]z,

where¢; € [-0.5,0.5] and(, € [—0.5,0.5], the expressiont/y — /¢ belongs to

reduce([z]/[9] — [2]/[9])
#/j— /i e reduce([#]/[7] — [2]/[7]) = [~0.05953,0.05953].

But the converse is not correct; this means if we choose the pd5 € [—0.05953, 0.05953],
then we see that there is o [z] andy € [g] such thatt /g — 2/ = 0.05.
The (ordinary) interval result overestimates the reduceshsen form.

In the next section, we shall consider the multiplicatiod division for generalized intervals
(Hansen arithmetic) in more detail and present some example

3.3 [x?and1/[¥]

3.3.1 [%]?

We first note that to obtain the square of a generalized iatewe can use a special definition
as in the case for ordinary interval arithmetic. Fgr= [y], equation (3.7) becomes

(m*] = [W]HZ[O,&][@]Z

= [m]*+ Z[o, 2 (v®)?. (3.12)
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The term[m®]? should be computed using the special definition for the sgofan interval.
Equation (3.8) becomes

W] = 2[m"][vf] + [—1,1]vf zn:rjv?. (3.13)
i
Consider the square of an interjal = m” + ¢ with ¢ € [—r,r]. In this casem” is a real
number and (3.12) and (3.13) yields

[2]7 = (m")* + [0, r*] + 2¢m”.
Reduced to an interval,

2] = [(m®)? —2r|m®|, (m")* + r* + 2r|m”|]

= [(m")? = 2r|m?|, (jm"| + r)?].
The right endpoint is correct. However, the left endpoirtgt be
0 if 0ela],
(jm*| —r)* if 0¢ [7].

Hence, we will obtain an incorrect left endpoint for our reésumlessm® = 0.
The magnitude of the error is

(m™)2 — 2r|m®|| i 0 €[],
P2 it 0¢ 3]

Thus ifr is small, the error is small. In fact, the error i$/®) since in the case € [z], we must
have|m?®| < r. If r is much greater thah, the error can be unacceptably large.

Example 3.3.Considerf = 22, withz € [-0.2,0.3].

Using ordinary interval arithmetic gives' = [0, 0.09]

Using generalized interval arithmetic, whefg] = [0.05,0.05] + [1,1]¢, ¢ € [—0.25,0.25],
gives

which reduces t¢—0.0225, 0.09]. The reduced Hansen form overestimates the (ordinary-inte
val result.
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However, letf = z* — 2%, withx € [-0.2,0.3].
Using ordinary interval arithmetic give8' = [—0.09, 0.09].
Using generalized interval arithmetic gives

Fiansen= [—0.0625, 0.0625] + [0, 0],

which reduces t¢—0.0625, 0.0625]. This is an improvement over the ordinary interval arith-
metic result?” = [—0.09, 0.09].

As a final note on multiplication, we consider multiplicatiof a generalized interval by a
real number or by an interval which we choose not to be reptedeby a generalized interval.
Let B be such a number or interval and

n

2] = [m"]+ > Glvf].

i=1

Then
(B3l e} B3] z[m“’HéQ[vﬂ,
where _
] = B ], ()= B [of
332 1/[%

For an intervalz] = m® + (v”, if the quantitiesn® andv® are real numbers, then from the
forms (3.10) and (3.11) we will finfiz| /[2] = 1. This will never be true for interval arithmetic
if the width of [z] is nonzero.

In general, a single division in generalized interval ani#tic introduces errors which are of
second order in the interval widths. We now show this for dariral 2] = m® + (v*, where

m®* > 0 andv® > 0 are real numbers ande [—r, r|. Considefz’] = 1/[z].

From (3.10) and (3.11),
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which reduces to

@] 1 ro® 1 n ro®
rli =1 — -
m*  m*(m* —rv*) m*  m*(m* —ro®)

The width of this interval is

, 2rv®

v :7nx0nx—7wxy
The correct result is
1 1

me + rot’ me — ro®

[ ]7

which has width

2rv®

(m:v)2 — 2 (U:v)2 ’

w =

The error of the width is of amount
2r2(v®)?
m ()2 = r2(07)?)

/
w —w =
which is of second order in.

Example 3.4.[37] Consider

T+ X9
N X1 — 1’2’
with z; € [1, 2] andz, € [5, 10]
Using (3.5) gives
[21] + [22] = [9,9] + [1,1]¢1 + [1,1]¢ and [1] — [Zo] = [-6, —6] + [1, 1]¢1 — [1, 1]¢a,

Where[{i'l] =15+ Cl, [i’g] =75+ CQ with Cl € [—0.5, 05] andCQ € [—2.5, 25]
Using (3.10) and (3.11) we get

9 5 5 11
)z == _ S
Hansen 6 + Cl[ 67 18] C2[187 6]7
which reduces t¢—%, —2] C [—2.334, —0.666].

This is the same result as obtained by Mod8¥{) using the centered form with interval arith-
metic; on the other hand it is better than the resufZ, 3] ¢ [-3.723,0.7223] he obtained
using the mean value theorem.

Direct use of interval arithmetic yields-4, —2].

We obtain an exact result using interval arithmetic by réing f asf = 1 + 2/(x1/xs — 1)
since each variable occurs only once. We fifid= [—£, —4l] C [-2.334,-1.222]. Thus,
the result using generalized interval arithmetic has a ghlaft endpoint but not a sharp right

endpoint.
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Example 3.5.Letz € [0.001,0.003]. Evaluate

142+ 22

14+ 222
Using generalized interval arithmetic, where

[] = [0.002,0.002] + [1,1]¢, ¢ € [—0.001,0.001],

we obtain
1+ [2] + [2]* = [1.002003, 1.002006] + [1.003999, 1.00400]C,

and
1+ [z] + [:2]2 = [1.002007,1.002011] + [1.007999, 1.00800]¢,

with ¢ € [-0.001,0.001], so that
Fhansen= [0.999994, 0.999998] 4 [—0.003993, —0.003981]C,

which reduces t¢0.999990, 1.000001].

In interval arithmetic, we obtain the resul.997989, 1.002005]. We obtain an exact result
using interval arithmetic by rewriting as f = 1 — 1/((x + 0.5) 4 1.75) since each variable
occurs only once. We finl = [0.999991, 0.999999.

3.4 Elementary Functions

Elementary functions can be evaluated in generalizecMatarithmetic by making use of
Taylor series (only the first order).

If f:S5 CR — R. Using the first order Taylor form described in section 1.4edl?2, we
can expand the functiofiin generalized interval arithmetic as

f(&) e F(lm®]) + F'([2]) ZQ[U?]

= F(m )+ 3 Glei] = F((2),0), (3.14)

where[v¥] := F'([z])[vf], (i = 1,2, -+ ,n).

Example 3.6.Letz € [1,1.1]. Evaluate

f = exp(x).
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Using generalized interval arithmetic, wheid = [1.05, 1.05] + [1, 1]¢, ¢ € [-0.05, 0.05],
we obtain

Fransen = exp([1.05,1.05)) + [2.7182818,3.0041661][1, 1]¢

(-

J/
-~

F([2])
[2.8576511,2.8576512] + [2.7182818, 3.0041661]C,

which reduces t¢2.7074428, 3.0078595]. In interval arithmetic, we obtain the result
[2.7182818, 3.0041661].

In case of the functiorf : S C R" — R, the first order Taylor method (see page 12) in
generalized interval arithmetic will be defined as follows:

]

j=1 " k=1 i=1

where

n
Bo= mT Y U (i=1,2,-- ),
j=1

m® = (m*™,---,m™)" €R"

and

'Ulf = (U/?»"' 7vlfn)T eRna (k:1727 7n)'

Em" 40> G €[],
k=1

then, it is obvious that

f(@y, - d) € F([mx])JrZF}‘([f])ZQ[vmj]

i

= F(m )+ Gl = F([#,0), (3.15)
where .
i)=Y Fj([@D"], (i=1,2,---,n).

Example 3.7.Letx, € [5,10], =, € [1,2]. Evaluate

T+ T2
f=1/ :
1 — X9
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Using generalized interval arithmetic, whetg | = [7.5, 7.5] + [1, 1]y,
[22] = [1.5,1.5] + [1, 1] with (; € [-2.5,2.5], (» € [-0.5,0.5], we obtain

% = [1.5,1.5] + [—0.166667, —0.0555555] ¢; + [0.2777777,0.833334] (o
[v71] [v52]
so that

Fhansen = /[1.5, 1.5] + [—0.6123725, 0.06804139] [—0.166667, —0.0555555] (4

- - 7

g '

OF ([2])/011 ]
+ [0.06061608, 1.0206207] [0.2777777,0.833334] (3

. - 7

v~

OF([2])/0x2 [v52]
= [1.2247448,1.2247449] + [—0.0113402, 0.1020621]¢;

+[0.0168378, 0.85051728](o,

which reduces t¢0.54433105, 1.9051587]. In interval arithmetic, we obtain the result
0.81649658, 2.0].

Example 3.8.Letx; € [5,10], z, € [1,2]. Evaluate

= 1+ T2 1+ T2
Ty — T2 931—$2.

From the above example we get

ﬁ = [1.2247448,1.2247449] + [-0.0113402, 0.1020621]¢;

+1[0.0168378, 0.85051728](o,
where(; € [-2.5,2.5], (3 € [-0.5,0.5], so that

Fhansen = [0,0] + [—0.11340231,0.11340231]¢;
+[—0.83367948, 0.83367948] (s,

which reduces t§—0.70034550, 0.70034550]. This is an improvement over the ordinary interval
arithmetic resulf—1.1835035, 1.1835035].
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3.5 Algorithmic Description

We now describe the algorithms for the elementary operatign-, - and/, and for elementary
functionss € {sqr, sqrt, power, exp, In, sin, cos, tan, cot, arcsin, arccos, arctan, arccot, sinh,

cosh, tanh, coth} of generalized interval arithmetic (Hansen arithmeticefonce continuously
differentiable function. We give an example to illustréte tule of our algorithms and how it

works.

Example 3.9. Let
f(z) = (z — 2y)z, with x € [1,2],y € [3,5].

Letz =mid([z]) = 1.5 andy =mid([y]) = 4.
We will define Hansen form foz] and[y| as follows

] - 1.5 1 0.5
R Lo Slo) Lo ’
—_——— —— ——

Ordinary interval
mid-point [vF] radius ;

= W V().
ve= N P R N U A
— N N —

Ordinary interval
mid-point [Uﬂ radius r;

The rule of multiplication a constant with Hansen form is @ltofvs

()

To addition (or subtraction) two Hansen form is as follows

] - 20g] = (m—zm ( - ) , ( B ) , ( " ))

Before multiplying (or dividing) two Hansen forms, we alwaypide to the following rule: Add
all elements of mid-point values to the first element, andhsgetest of the mid-point values to

0. Then
s (s ()2 ()
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Now, we will give the rule of multiplication

(1) — 20)) = <[x]—2[y1>[x],<"6‘5'1'5+Zf=1[0’”””m“ﬂ>,

0
—6.5-1+1.5-1+ -1, 1][v]] Z?;;} ri[v}] 0.5
J
—6.5-0+ 1.5 =2+ [~ 1, 1] [vg] S m?] |\ 1
J#2

Then

ot (e [ 7975, -9.5] [—5, —5] 0.5
([2] —2[D[2] = ([ 18, 4]7< . )’([—4,—2]>’< , >>

For Hansen forms, we use quintets

X = ([.T], [mmL [Um]v [g:r]’ T)?

with [z] € IR, [m*] € IR", [v*] € IR", [¢°] € IR™ andr € R" for the description of the
arithmetic rules. Heréx], [m*], [v*], [¢] andr* denote the function value, the mid-point val-

ues, the argument (coefficient) valuesipf(i = 1, - - - , n), the gradient values, and the radius,
respectively.
Algorithm 3.1. Addition Operator + (X, Y)

1. Input { X,Y }
Compute the sum df:] + [y] in ordinary interval arithmetic ((Optional), this is to
compare the result between interval arithmetic and gemedhinterval arithmetic)
[u] = [z]+[y]
3. Compute the sum din*] =mid([z]) and[m¥] =mid([y])
[m*"] = [m"] + [m"]
4. Compute the sum of the coefficient valueg pfor [z] and[y]
[v"] = [v*] + [v*]
5. Compute the sum of the gradient faff and[y] (we use it in elementary function
algorithm)
l9"] = 9" + [9"]
. return U :=([u], [m"], [v¥], [¢"], r)
7. Output { U= ([u], [m"], [v*], [9), ) }
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Algorithm 3.2. Subtraction Operator — (X, Y)

1. Input { XY }

2. Compute the subtractidn| — [y] in ordinary interval arithmetic (this is to
compare the result between interval arithmetic and gezedhinterval arithmetic)
[u] =[] = [y]

3. Compute the difference betweén®] =mid([x]) and[mY] =mid([y])
[m"] = [m*] = [m?]

4. Compute the difference between the coefficient values fafr [z] and[y]
[0*] = [v"] = [v"]

5. Compute the difference between the gradien{foand[y] (we use itin
elementary function algorithm)
l9"] = l9"] = [9"]

6. return U :=([u], [m"], [v"], [¢"], 7)

7. Output { U:=([u], [m"], [v"). [¢"], ) }

In Algorithms (3.3) and (3.4)sx], [sy], [szy], [svsy], [szg] @and[syg] denote real intervals.

Algorithm 3.3. Multiplication Operator e (X, Y)

1. Input { XY }
Compute the multiplicatiofiz| - [y] in ordinary interval arithmetic (this is
to compare the result between interval arithmetic and @gdized interval arithmetic)
[u] = [z] - [y]
3. Initialization of the help real intervals
[s2] = 0; [sy] = 0; [s0y) = 0
[szy] = 0; [szg] = 0; [syg] =0
4. fori=1tondo
[mi] =0
/I compute the sum ofid([z])
[sx] = [sa] + [my]
/I compute the sum ofhid([y])
[sy] = [sy] + [m{]
Il reduce Hansen forrfiz]) to an interval

Continued on next page
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Algorithm 3.3 — continued from previous page

[sxg] = [szg] + [m7] + [vF]-interval —r;, r;)
Il reduce Hansen forrf{y]) to an interval
[syg] = [syg] + [mY] + [v}]-interval —r;, r;)
/I compute the sum, which is in the right hand side of (3.7)
[Suzy] = [Suay]+interval, r7) - [vf] - [v]]
5. fori=1tondo
absu=AbsMax([v}])
[szy] =0
/I compute the sum, which is in the right hand side of (3.8)
for j =1tondo
if (i # j)
absv=AbsMax([v}])
[szy| = [szy]+interval—1, 1)- absur;-absv
/I Compute the coefficient values(pby using (3.8)
[0F] = [mf] - [vf] + [mf] - [vf] + [szy]
I Compute the gradient values @fby the rule of differentiation of the
/[ multiplication[10]
97] = [syg] - [g7] + [s2g] - [g7]
6. Compute the midpoint result by using (3.7)
(] = [sz] - [sy] + [Svay]
7. return U :=([u], [m"], [vY], [g"], )
8. Output { U:= ([u], [m"], [0"], [9"].7) }

In Algorithm (3.4), we do not take care of the case [y], because it does not make any sense
to go any further in computations when this case occurs. limghementation, the standard
error handling (runtime error) should be invoked if a digisby zero occurs.

Algorithm 3.4. Division Operator / (X,Y)

1. Input { XY }
2. Compute the divisiofnz]/[y] in ordinary interval arithmetic (this is
to compare the result between interval arithmetic and gdized interval arithmetic).
Continued on next page
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Algorithm 3.4 — continued from previous page

3.

4.

[u] = [=]/y]
Initialization:
[sz] = 0; [sy] = 0; [svy] =0
[szg] = 0; [syg] = 0
fori =1tondo
m{] =0  mid-point
I/l compute the sum ofid([z])
[sx] = [sa] + [my]
/I compute the sum ohid([y])
[sy] = [sy] + [m{]
Il reduce Hansen forrf{z]) to an interval
[sxg] = [szg] + [m?] + [vF]-interval —r;, ;)
I reduce Hansen forrf{y]) to an interval
[syg] = [syg] + [m{] + [vf]-interval(—r;, r;)
absv=AbsMax([v])
/I compute the sum, which is in the denominator of the rightdside of (3.11)
[svy| = [svy]+interval—1,1) - r;-absv
for i = 1ton do
/I Compute the coefficient values(pby using (3.11)
[w#] = (sy] - [of] = [sa] - 1)/ ([sy] - ([sy] + [svy])
/l Compute the gradient values @fby the rule of differentiation of the divisi¢gtO]
l9t] = ([g7] — ([szg]/[sygl) - [97])/[syg]
Compute the midpoint result by using (3.10)
[mY] = [sz]/[sy]
return U = ([u], [m"], [v"], [¢"], )
Output { U= ([u], [m"], [v*], [9"], 7) }

Our implementation of Algorithm (3.5) uses the automatftedéntiation module gradari
(see[10], Chapter 12)[temy, [szg] and[sumn denote real intervals.
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Algorithm 3.5. Elementary function using first order Taylor form

1. Input { X }
Compute the interval extension elementary function inready interval arithmetic
[u] == s([2])
3. fori=1tondo
Il reduce Hansen forriz]) to an interval
[sxg] = [szg] + [m7] + [vF]-interval —r;, r;)
4. Compute the differential of the elementary function in gatiezed interval arithmetic
[temg := s'([sxzg]) temporary value
5. Initialization of help real interval
[sum =0
6. for:=1tondo
[mi] =0
/I compute the sum ofid([z])
[sum = [sun] + [m;]
/I Compute the gradient values Qfby the rule of differentiatiofil0]
lgi'] = [temd - [g]
/I Compute the coefficient values(pby using (3.15)
[vi'] = [v7] - [g7]
7. Compute the midpoint result by using (3.15)
[mi] = s([sun)
8. return s:=U = ([u], [m"], [v"], [¢"])
9. Output { U :=([u], [m"], [v"], [g"],7) }

3.6  Minimax(Best) Approximation

In section 3.4, we have discussed the elementary functrogeneralized interval arithmetic.
Hansen used first order Taylor arithmetic to compute an sicfuof these functions. But this
inclusion is not always a good inclusion, and we can use anattethod to get an inclusion
better than the inclusion of Taylor arithmetic. In this sextwe will discuss a method well-
known minimax(best) approximation.

Minimax(best) approximation seeks the polynomial of degréin our case n=1 because our
goal is a linear best approximation) that approximates thengfunction in the given interval
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such that the absolute maximum error is minimized. The esrdefined here as the difference
between the function and the polynomial. Chebyshev pravatiduch a polynomial exists and
that it is unique. He also gave the criteria for a polynomiabé a minimax polynomial (for
more details sef9, 54, 4, 6].

3.6.1 Theoretical Background

Definition 3.2. A linear spaceX is called a normed linear space if for each elemerdf the
space there is defined a real number designatefdadywith the following properties:

e ||z]| > 0 (positivity)

e ||z|| = 0if and only ifz = 0 (definiteness)

o ||ax|| = o||z|| for every scalaw (homogeneity)

o ||z +y|| < |lz|| + ||yl (triangle inequality)
The quantity|z|| is know as the norm af.

Theorem 3.1.Let Y be a finite-dimensional subspace of a normed linear spacand let
x € X. Then, there exists a (not necessarily uniguie¥ Y such that

— * — 1 J— .
[l — 7|l = min [lo — 5|

That is, there is a best approximation:tdy elements of’
Proof: (see Carother§3])

Let X be a normed linear space. Seleclinearly independent elements, --- ,x,. Let
y be additional element. We wish to approximateéy an appropriate linear combination of
thexy,---,x,. The closeness of two elements will be defined as the normeaf diifference.
We therefore would like to makiéy — (a2 + asxs + - - - + a,x,)|| @s small as possible. The
element

y — (@121 + agwy + -+ + apzy)

is called the error.

Definition 3.3. A best approximation tg by linear combination ok, --- , z, is an element
a121 + asxs + - - - + a,x, for which

|y — (@171 + axws + - - + anxy)|| < |y — (brwy + bawy + - - + b2y ||

for every choice of constants, - - - , b,,.
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A best approximation solves the problem of minimizing th@enorm.

Theorem 3.2.Giveny andn linearly independent elements, - - - , x,,. The problem of finding

min ||y — (@121 + ag@s + - + a2y

1

has a solution.
Proof: (see Davig6])

Corollary 3.1. Let f(z) is first order differentiable function in the intervid, b] andn be a
fixed integer. The problem of finding

min max |f(z) — (ap + a1z + - - - + a,z")|
ag, - ,an a<z<b

has a solution.

Corollary 3.2. Letxy, - - -, x; bek + 1 distinct points. Let: > n. The problem of determining

aﬂ?gnggglf(xz) (ap + a1m; + - - + a,zl)|

has a solution.

Definition 3.4. For a giveny; x4, - - - , x,, Set

H(l}n ||y - (alxl +-+ anxn)|| = En(y;xla T 7xn) = En(y)

(3

E,.(y) is the measure of the best approximation that can be achigvedy is approximated
by linear combinations of the’'s. Evidently we have

Ei(y) = Ex(y) = Es(y) = -

Thisis true since linear combinations@f z», - - - , z;, are also linear combination of , z», - - -,
Ly Tht1-

We have observed that under the hypothesis of theorem 3@ ihalways one best ap-
proximation. But there may be more than one. In fact, the &gstoximation form is a convex
set

Theorem 3.3. Let S designate the set of best approximationyah the situation of theorem
3.2. ThenS is convex.
Proof: (see Davig6])
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Theorem 3.4.Let S be a closed and bounded set that contains more thanl points. Let
f(z) be continuous oy and set

M = min max |f(z) — p(x)|, (3.16)

pEPn TS
whereP, is the subspace of all polynomials whose maximum degréasm.
Letp,(z) be any polynomial that realizes this extreme value and set

B(x) = f(z) — palz).
Then,

1. The number of distinct points Sfat which|3(x)| takes on its maximum value is greater
thann + 1.

2. There is a unigue solution to the problem (3.16).
Proof: (see Davig6])
We know by theorem 3.4 that the problem of finding

min max |f(z) - p(z)|

for f is a first order differentiable function in the intervial b] that has a unique solution.
Designate the solution hy,(x) and set

En(f) = max |f(z) — p(z)|.

a<z<b
(The polynomialp,(x) is frequently called the Chebyshev approximation of degfee to
f (@)

Theorem 3.5.If f be a first order differentiable function in the interal ], then

Eo(f) > Er(f)>--- and lim E,(f) =0.

n—oo

Proof: (see Davig6])

Corollary 3.3. The best approximation constant tpwhich is a first order differentiable func-
tion in the intervalla, b], is

a<zx<a

- Lrgggaf(x) T min f(x)}

and

Ba(f) = 5 | o )~ pain 1(0)].

a<z<a alzr<a

Proof: (see Carother§3])
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Theorem 3.6. Let f be a first order differentiable function in the intervial b], andp,, (=) be
the best approximation gf of degreen. Let

E, = max |f(x) — p,(x)|

a<z<b
andfg(x) = f(x) — p.(z). There are at least + 2 pointsa < xp < r1 < -+ < Ty < b
where[(z) assumes the valuesFE,,, and with alternating signs
Blx;)) = £E, 1=0,1,--- n+1, (3.17)
ﬁ(xz) = _ﬁ(xi-i-l) i = 0717"' , T (318)

Proof: (see Davig6])

Corollary 3.4. Let f(z) be a bounded and twice differentiable function defined oresoterval
la, b], whose second derivativé(x) does not change sign inside b|. If ag + a;x is the linear
best approximation of, then

-
1 — b-—-a )
b) — a
w0 = 3@+ () - LU ate
wherec is the unique solution of
f(0) = fa)

R

Proof: (see Davig6])

3.6.2 Generalized Interval Arithmetic with Best Approximation

In this section we will discuss the elementary functionsigdiest approximation instead of
Taylor arithmetic (see page 60). The computation of thesetions will be in generalized
interval arithmetic using best approximation. Our goal ismear best approximation.

Let f: S C R — R be a differentiable function over an interval| = [a, b], [z] C S. The
linear best approximation gfis f,, and is written as follows:

fap(2) = ao + ay. (3.19)
Its absolute maximum error

||f - fap|| = max |f(1’) - fap(x” (320)

a<z<b
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IS minimized.
As described in section 3.1, if we have an elemert [z], then we can write it in the
following generalized form

F=m"+ Y Gl (3.21)
=1
In the generalized interval arithmetic case, the lineat &pgroximation off (z) is

fap(i') = Qo + Cl,li'.

Using equation (3.21) we get
fap(i') = ap+ al(mx + Z Civix)
=1

n
= a0+a1mx + E Cl,lcil)g:.
1=1

Let
E = min max |f(2) — fu,(2)] (3.22)

a<z<b

be its minimized maximum error. Then

fap(#) € ao+am® +[~E,E]+ > aiG[vf]
i=1

e .23
i=1
(3.23) is a generalized interval form, where
[m"] := ag + aym”® + [~ E, F] (3.24)
and

[v}] == aq[vf]. (3.25)

7 [

The computation ofiy, a; and £ depend on the function itself. This means, if the second
derivativef” of f does not change its sign inside the given interval, then weQasollary 3.4,
which may be modified as follows:
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Corollary 3.5. Let f(z) be a bounded and twice differentiable function defined oresoterval
la, b], whose second derivativé(x) does not change sign inside b|. If ag + a;x is the linear
best approximation of, then

- i@
1 b . )
1 f(b) — fla)a+c
aw = (fl@)+ 1) - T
The maximum absolute error is
1 f(b) = fla)e—a
E = |5(f(e) = fla) = =5 =5

which occurs twice at and b, with the same sign, and once with opposite sign at the imteri
pointc, wherec is the unique solution of

b) — f(a
ro =10 -J@

If the sign of the second derivative changes, we may use¢he@.6.
The iterative method of Remez: To use theorem 3.6, we will use a method called iterative
method. The idea of this method described below is due to R¢Bée 69] The main tool is
theorem 3.6 concerning the alternate.

We begin with a sef, consisting of.+2 (in our case3) pairwise distinct pointﬁf-o) € [a,b],

(t=0,---,n+ 1), which are arranged in increasing order, i.e.

a < x(()o) < x§°) <--- < xglo) < :c,(fjl <b.

Corresponding to these points we construct a funqﬂ@mx) = a((]o) + ag% which satisfies the
conditions

PO (@) 4+ (—1)'Ey = f(z), (3.26)

fori =0,---,n+ 1. Equations (3.26) form a linear system of equations for teffrcients
of the expansion opg‘” (x) and for the quantityr,. The functionpgo) (x) is the linear best
approximation off (x) on the setS,. Now, either

0
1P = fIl = |Eol,

or
0
19” — f]] > | Eol,
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and then there exists a poiie [q, b] such that

P () = F(Q)] > | Eo.

The idea of Remez is to construct a new Sefrom S,, which again consist of + 2 points,
but for which

1 0
15 — £l > 1P — f]]-

We define the sef; = {xgl)} by the following properties:
1. The functiongy(z) = p§°)(9:) — f(x) satisfies

Bo(z)| > |Eol, (i=0,1,---,n+1) (3.27)

2. For at least one integér i

Bo(zi))| > | Byl (3.28)

sgn(Bo(z.")) = £sgn(Go(z\")). (3.29)

Now starting with the sef;, there exists a functiopgl)(x) = a(()l) + ag%, which is the best

approximation off (x) on the setS;. Hence we have described an iterative method which either
stops after a finite number of steps or yields a sequence ®55ét— oo, with the property
that the quantitiesZ;| are monotonically increasing. The method also producesga@esee of
functionSpgl) (x), but we cannot conclude from the above that the expression

l
1Y — ]|

is monotonically decreasing. We are interested in ascémgiunder what condition the se-
quencepg”(x) converges to the best approximationfdf:).

Before investigating these convergence questions, weepreése most important special
method of constructing the sét.

First we consider the so-called single exchange methaalkal®wn as the simplified method
of RemeZ36]: Here exactly one of the points 6§ is replaced by a new point which satisfies
(3.28). To make sure that (3.29) holds, we use a specialmuleei exchange. L&t be a point
such that

150(C)| > [ Eql-

Then the substitution rule is given by the following table:
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Table 3.6: Special rule in the exchange method

Case ( replaces

a<C<ay  sgnB(Q)) = sanBo(x)) z
a<C<a))  sgrB(C) = —sgrifo(zy))) bl
0<i<n

2 < <ally sgrf(C)) = sanBo(z”)) z
<c<xzﬁl sgn(6o(¢)) = —sgrifo(«”)) 2\,
n+l<<<b sgr(5(¢)) = sgr(Go(z',)) e
2 < C<b o osgrA(Q) = —sarBo(al)y)) @)

8

The general method of Remez involves simultaneous exclariges functions,(z) pos-

(0)

sesses at leastzerosz; in the intervalfa, b] and

%(0) < ZZ(O) < %@17 (i=0,1,---,n). (3.30)

(0)

In general, the points; ™’ are not uniquely defined by (3.30). Set

Now in each interval

I, = [zl-(o),zi(?r)l], (1=0,1,--- ,n—1)

we determine a pomth)l such that

Bo(zth) = Bo(x) for @ € I if sgn(f(z2))) = 1

and
Bo(zM)) < Bo(x) for z € I if sgn(Bo(a'V))) = —1.
Here we have assumed thiag # 0. WhenE, = 0, the pointSrSr)1 are to chose as a sequence
of points at whichj,(z) has alternately a maximum and a minimum. We see that the thomsli
(3.27), (3.28) and (3.29) are then satisfied $or
The following convergence theorem is due to Reif3&.

Theorem 3.7.If the conditions (3.27), (3.28) and (3.29) are satisfiedatrestep, and if in
each of the setS;,, | — oo, there is a point € [a, b] such that

15 (O)] = 8]l
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As a result the exchange method converges. That s, theramqoéfunction&i”(:c) converges
to the best approximation ¢f(xz) on the intervala, b].
Proof: (se€g[36])

Now, we compute the verified maximum norm of the error funttio
Let

ap + a1 x

be the linear best approximation that was computed by thatite method of Remez for the
function f(z) on a known intervala, b]. To compute the verified maximum norm of the error
function

ap + ayx — f(x),

we divide the intervala, b] into small intervals. Ifn is the number of the small intervals, then
the widthh of every small interval is

potze
n
Letz; =a+ih,i=0,---,n,then we can define each of these small intervals as follows:
lyi] == [z, zipa], i=0,--- ;0 —1, (3.31)

wherexy = a andx,, = b.

Consequently, we compute the error function+ @,z — f(x) at every small intervaly],
1 = 0,---,n — 1, by using interval arithmetic. This means that we compugeftilowing
interval functions:

Billyi]) = ao + aryi] — F(lyi]), i =0,--- ,n— 1. (3.32)

We take the absolute value for every result computed in §3i82 greatest absolute value is
our goal.

The following two elementary functions illustrate thesénps.

Square root
Let f(z) = /= be defined on the interval, b], « > 0. The second derivative gf'z is

1

f'(x) = —m>
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which is always negative over the given interjalb]. Then from theorem 3.5

ro = L0-Se

1 Vb—ya 1

= = ) 3.33
2,/c b—a Vb ++/a (3-33)
From equation (3.33), it follows that
a+b+2vVbya
— 1 .
a, IS given by
_ f(b) = f(a)
a = —FF—=
b—a
_ Vh—va 1 (3.34)
b—a  Vo+./a
and also according to Corollary 3.5,
by = YOrVh 1 Vavh (3.35)
8 2/a+ b
and the maximum error
B 2
E = EM (3.36)
8 Va+ b

We substitute the above results into equations (3.24) an2b)3to get a generalized interval
form.

sin() Function
Let f(z) = sin(x) be defined on the intervéd, b]. The second derivative efn(x) is

f"(x) = —sin(z),

which we do not know exactly if its sign is negative, positorechanged on the given interval
la, b]. Then from theorem 3.6 and the iterative method of Remerethien +2 =1+2 =3
points (inourcase =1)a < zp < x1 < 19 < b:

1. First, we choose, = a, x5 = b andz; =mid([a, b]).
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2. Then, from equations ( 3.17),

sin(zo) — (ag + a129) = £
sin(x1) — (ag + az1) = —FE (3.37)

sin(zy) — (ag + a1xe) = E

Solve the above system in three unknowgsa; and £.

3. But there may be other points at which the error is greatenagnitude. Find the local
maximum and minimum of the error function

B(x) = apg + ayx — sin(x)

either by directed evaluation of(x) at sufficiently large number of points |n, b] or by
solving'(z) = 0.

4. Using the values of found in ste3, revise the guess of stépand repeat the stefs3
until the required accuracy in the following step is obtaine

5. Let M be the greatest magnitude computed in steff M/ /E is sufficiently close tal
(sayM/E =~ 1.05), we consider that

ap + a1 x
is close enough to the linear best approximation.

6. We divide the interval, b] into small intervals as defined in (3.31). Then, we compute
the interval function (3.32) for every small interval. Ceqgsently, we take the absolute
value for every computed interval function; the greatesbélite value will be the verified
maximum norm.

In our algorithms, we will use the directed evaluationsot) at a sufficiently large number of
points in|a, b].

In the following examples, we will compare the inclusionahbed by linear best approxi-
mation with the inclusion obtained by first-order Taylorrfor

Example 3.10.Consider the function
fl@)=vr -z, wzell4].
The generalized interval forfit| of [z] is given by

7] = [2.5,2.5] + [1,1]¢, G € [~1.5,1.5].
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e Using first-order Taylor form:

From (3.14) we get

1

Vi e [25.25) +[1,1]——G
2¢/[#]

— [1.58113,1.58114] 4 [0.24999, 0.50001]¢;.

Then,

f(@) € ([1.58113,1.58114] + [0.24999, 0.50001]¢;) — ([1.58113,1.58114] +
[0.24999, 0.50001]¢;)
— [—~0.00001,0.00001] + [—0.25002, 0.25002]C; .

The generalized interval
[—0.00001, 0.00001] 4 [—0.25002, 0.25002](;
reduces td—0.375504, 0.37504]. Therefore

£(2) € [~0.375504, 0.37504]. (3.38)

e Using linear best approximation:

We must test the sign of the second derivativg/of
d? 1
=V =L
the second derivative qfz does not change its sign in the interyal4]. From (3.34),
(3.35) and (3.36) we get

<0 forall z €[1,4] ,i.e.

1 1
R v
CVI+VE 1 VIVE 1T
L L N Y/ Y
O 1(VA-V1)2 1
8 Ji+v4 A
Then, from (3.24) and (3.25) we get
[m"*] = ag+am®+[—FE, E|
17 55 1 1. 36 38
= ﬁ_'_[é?é]—i_[_ﬂ?ﬁ]_[ﬁ?ﬂ]a
W = wpf], i=1

iy
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Then, from the generalized interval form (3.23) we get
11
e 36 38

[ﬂ’ ﬁ] + [g,g]@, ¢ €[—1.5,1.5].
Therefore,
36 38 11 36 38 11
f(@) € ([ﬂ, ﬂ] + [ga g]Cl) - ([ﬂ, ﬂ] + [§’ g]Cl)
1 1
= [_Ev E] + [0,0]Cl
The generalized interval
IR R
TP

reduces td—5, 5] C [—0.08334, 0.08334]. Therefore,
F(#) € [~0.08334,0.08334]. (3.39)

From (3.38) and (3.39) we see that the inclusion obtained®al best approximation is
better than the inclusion by first-order Taylor form, andibate better than the inclusion
obtained by ordinary interval arithmetie-1, 1].

Example 3.11.Consider the function
f(z) =sin(z) —sin(x), x € [2,6.5].
The generalized interval forifi] of [z] is given by
(7] = [4.25,4.25] + [1,1]¢1, G € [—2.25,2.25].
e Using first-order Taylor form:
From (3.14) we get

sin(z) € sin([4.25,4.25]) + [1, 1] cos([Z])Cy
= [—0.89499, —0.89498] + [—1, 1]¢3,

f(2) € (]—0.89499, —0.89498] + [—1,1]¢1) — ([—0.89499, —0.89498] + [—1,1]¢})
= [~0.00001,0.00001] + [—2, 2]¢;.

The generalized interval
[—0.00001, 0.00001] + [—2, 2|¢y
reduces td—4.50001, 4.50001]. Therefore

F(#) € [~4.50001,4.50001]. (3.40)
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e Using linear best approximation:

According to theorem 3.6 and the iterative method of Reme#lyfive choos@& points

20 2 and 2" in the interval[2, 6.5]. Subsequently, we solve the system

ao + a1 + (=1)'Ey =sin(2\"), i=0,1,2, (3.41)

in 3 unknownsig, a; and E,. After some iterations of the iterative method of Remez, we
find that
0.4664198 — 0.154262x

is close enough to the linear best approximation.

Next, we compute the verified maximum norm of the error fonctiVe divide the interval
2,6, .5] into 10 small intervals. According to (3.31) and (3.32) the comgdwesatest
absolute value i#Z = 0.820817.

From (3.24) and (3.25) we get

[m"] = a0+ am”® + [-E, E]
= 0.4664198 + [—0.65561, —0.65561] 4+ [—0.8208187, 0.820817]
= [—1.010009, 0.6316285],

vi] = alvf], =1

= [-0.154262, —0.154262].
Then, from the generalized interval form (3.23) we get
sin(2) € [—1.010009, 0.6316285] + [—0.154262, —0.154262]¢1, ¢4 € [—2.25,2.25).
Therefore,

£(#) € ([~1.010009, 0.6316285] 4 [—0.154262, —0.154262] ;) — ([~ 1.010009, .6316285]
+[—0.154262, —0.154262] 1)
= [~1.641637, 1.641637] + [0, 0)(;.

The generalized interval
[—1.641637,1.641637] + [0, 0]¢
reduces td—1.641637, 1.641637]. Therefore,

f(2) € [~1.641637,1.641637)]. (3.42)
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From (3.40) and (3.42) we see that the inclusion obtained®al best approximation is
better than the inclusion by first-order Taylor form, and isabetter than the inclusion
obtained by ordinary interval arithmetig-1.9093, 1.9093]. The inclusion obtained by
ordinary interval arithmetic is better than the inclusioibtained by first-order Taylor
form.

3.6.3 Algorithms

In this subsection we will give two algorithms derived frohetresults of the last subsection.
We use quintet (see section 3.5)

X = ([, [m”], [v"], 1g°], 7).

The algorithm 3.6 depends on the corollary 3.5.

Algorithm 3.6. Elementary function using best approximation

=

Input { X }
2. Compute the interval elementary function in ordinary iméarithmetic
[u] 1= s([a])
3. fori=1tondo
Il reduce Hansen forrf{z]) to an interval
[szg] = [szg] + [m¥] + [vF]-interval—r;, r;)
4. Compute the differential of the elementary function in gafized interval arithmetic
[temp := §'([szg]) temporary value
5. Initialization
[suml = 0; [sumZ =0
6. fori=1tondo
[mi] =0
Il reduce Hansen forrfiz]) to an interval
[suml = [sum] + [m] + [vf]-interval —rad([x]),rad[x]))
/I compute the sum of the midpoint
[sum2 = [sum2 + [m?]
7. Computea,
ay = (s(sup([sum1)) — s(inf([sum1)))/(sup([sum3) — inf([sum3))
8. Computec from the following equation

Continued on next page
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Algorithm 3.6 — continued from previous page

9.

10.

11.

12.

13.
14.

s'(c) = (s(sup([sum1)) — s(inf([sum1)))/(sup([sum1) — inf([sum1))
Computen
ao = 0.5(s(inf([sum1)) — s(c)) — 0.5(inf([sum1]) 4 ¢)2uplsumd)) —s(inf([sumd))

sup([suml)—inf([sum1)

ComputeFr
E = 0.5(s(c) — s(inf(jsum1))) — 0.5(c — inf([sum]))stuplsumd)) —s(ini((sumd))

sup([suml)—inf([sum])

for i = 1ton do
/l Compute the coefficient values(pf

o] = a1 - [vf]

/I Compute the gradient values Qfby the rule of differentiatioifil O]
[g}'] = [temp - [g7]

//Compute the midpoint result

[mY] = ag + a; - [sum3+interval(—E, E)
return s:=U = ([ul, [m“], [v"],[¢"], r)
Output { U= ([u], [m"], [v*], [9"], ) }

The algorithm 3.7 depends on the theorem 3.6, and the itenatethod of Remez.

Algorithm 3.7. Elementary function using best approximation (Remez's métod)

N

Input { X }
Compute the interval elementary function in ordinary imé&arithmetic
[ := s([a])
for i = 1ton do
Il reduce Hansen forrf{z]) to an interval
[sxg] = [sxg] + [m]] + [vF]-interval—r;, 7;)
Compute the differential of the elementary function in gafieed interval arithmetic
[temp := s'([sxg]) temporary value
Initialization
[suml =0; [sum2 =0
for i = 1ton do

mi] = 0

Continued on next page
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Algorithm 3.7 — continued from previous page

10.

11.

12.

13.

14.

Il reduce Hansen forr|z]) to an interval
[sum] = [sum1 + [m?] + [v¥]-interval —rad([z]),rad([z]))
/I compute the sum of the midpoints
[sum2 = [sum2 + [m}]
Guess3 points
a = inf([suml) < zy < x; < 292 < sup([sumd) =b
Solve the linear equations
ap + a1r; + (—=1)'E = s(x;), for i =0,1,2
for the unknowns, a; andE.
The error function
B(z) = ap + ax — s(x)
maybe has other points at which the error is greater in magaifgreater than the
error for the guess points in st&p Find the local maximum and minimum of
either by directed evaluation ¢f(z) at a sufficiently large number of points in
[a, b] or by solving3'(z) =0
Revise the guess of st@pusing the values of found in stef, and repeat the steps
8, 9 until the required accuracy in stép is obtained
Let M be the maximum magnitude computed in steff ///FE is sufficiently close
to1 (sayM/E =~ 1.05), we consider that, + a;x is close enough to the linear
best approximation.
Divide the intervala, b] into small intervals as defined in (3.31). Compute the
interval function (3.32) for every small interval. Take thesolute value for
every computed interval function; the greatest absoluligevia the verified
maximum norm. We us& F to denote the greatest absolute value.
fori=1tondo
/l Compute the coefficient values(pf

[vi] = a1 - [v]]

/I Compute the gradient values Qfby the rule of differentiatioifil O]
lg7"] = [temp - [g7]
Compute the midpoint result
[m{] = ag + a; - [sum2+intervall—EE, EE)

Continued on next page
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Algorithm 3.7 — continued from previous page

15. return s:=U = ([u], [m"], [v*],[¢"], )
16. Output { U :=([u], [m*], [v"], [¢"], 7) }

3.7 New Complex Generalized Interval Form

In this section, we describe a new complex generalizedvatéorm. In section 1.2 page 6,
we have defined a complex intena] € IC, which depends on two real intervdls, [y] €

IR. The new complex generalized form for a complex interval ddpend on the Hansen
form (definition 3.1) of a real interval. To define a complexgelized interval, we define
2 real generalized intervalg] and[y]. Thus, a new complex generalized interval will depend
on two generalized intervals. For this reason, we will cleotiee dimension a8n (general
case). Additionally, our idea is to use this form (compleregralized interval) to solve complex
parametric interval systems (see Chapter 4).

Definition 3.5. A complex generalized intervgl] € IC is given by
+Z¢] +i([mY] +Z<j (3.43)
7j=1

where[m?], [m¥] € IR, [v7] € IR and[vj] € IR, (j = 1,2, ,2n) are (computed numerical)
intervals and(; € [—r;,r;], R > r; > 0.

From the definition 3.5, itis clear that, if we get a complexpé € [Z], we can write this
point in the following complex generalized form:

= +Zijj+zmy+ZCj

wherem?® € [m*], m¥ € [mY], v} € [vf], v € [v/]and—r; < <7j,5=1,---,2n.
When we reduce the complex generalized interval in (3.4&)domplex interval, we obtain

N

n

reduce([2]) = reduce([m +Z —rj,rj][v7] +i([m?] +

M

(=75, 73] [v7]))

1

N,
M3 I
b@

= [mw]+[—1,1]zrjv;?+¢([my]+[ L1] » rvf),

1

J
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wherev? = [[vf]| andv} := [[v]]|, j = 1,---,2n. Conversely, any complex interval can be
represented by a complex generalized interval. The coniplerval 2] = [z, 7] + [y, 7] can be
represented by the complex generalized intefdlak [m®] + (i [vf] + i([m¥] + (2[vY]), where

[m*] = [mid(x),mid(x)], ¢ € [—radz),radz)], [v7] := [1,1], [mY] := [mid(y),mid(y)],
(2 € [-radly),rady)] and[v;] := [1,1].
In general, if we have a complex interval vector := ([z1],-- -, [z.])T € IC", the k-th

interval [z;| can be represented with the generalized interval form

(2] = [m™]+[0,0]¢; + -+ [0,0]Cor—2 + [1, 1]Co—1 + [0,0]Cor + - - - + [0, 0]Can
Fi([m¥] 4 [0,0]¢1 + - - - 4+ [0, 0]Cop—1 + [1, 1]Cox + [0, O]Copgr + - - - + [0, 0]C2)
= [m™] + [1,1]Cor—1 + i([m”] + [1,1]Cox).

3.8 Complex Generalized Interval Arithmetic

Assume two complex generalized intervglg and|z,] are expressed as

T +ZCJ |+ i([m¥] +ZCJ ), (3.44)
j=1
and
= [m™] +ZCJ | + i([m¥*] +ZCJ ), (3.45)
respectively.

We now consider the four arithmetic operations applied ésé¢hintervals.
Addition or subtraction
The sum (difference) dE,| and[z,] is another complex generalized interval

+Z§] +i([mY] +ZQ
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It holds

(1) £ 1[5 = (m™) +ch | 4 i([m¥] +ch
m*?| —l—ZCj | + i([m¥?] —l—ZCj
= [ x1 m=2 +ZCJ

+i([m*] £ [m*] + Z Gof'] £ [v°])) (3.46)
Thus, we have to define
m*] = [m™] £ [m™], (3.47)
[U;C} = [’U;'Cl] + [U;'C2]7 (] = 17 27 e ,2”), (348)
[m?] = [m*] £ [m*], (3.49)
W] = P ERE], (=12, ,2n). (3.50)

Lemma 3.4. For everyz; € [2;] andz; € %], it holds that
2n
2 € [21], Zy € [22] < Z1t 2% = m* £ m*? + ch(vf_l + ’U;-EQ) + i(myl + mY?
j=1
2n
+) G £ o) € [2].
j=1
Proof: (Addition)
(=)
Z1 € [z1] andz, € [2,] Def. 3.5, page 86
= m" + 2321 Guit 4 i(m + 2311 God')
=m0 Uit 4 im0 ).
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Hence,

2n 2n 2n 2n
St = (mT Y GuitHi(mT Y Gui))H(mT Y GuitHimP 4+ Gul?))
Jj=1 Jj=1 Jj=1 j=1

on 2n
= YT G ) im0 40l)
=1 a
+Z<y Dl 4+ ] +Z<z D)

(=)
z € [z] Def. 3.5, page 86 and (3.46)- (3.50)

2n 2n
E=m"m™ Y GTt ) HimY mP 4y Gl o))
j 1 =1
o mx1+mx2+ZCg m“’ZCJ IQ—I—Z y1+my2+Z<jvyl+ZC] y2
Jj=1 j=1

= m™ +Z it +i(m” +Z Gult)+m™ +Z Gur+i(m? +Z v,
j=1 j=1 ‘ '

€[z1] €[22]

The subtraction is proven in a similar manner.

Multiplication
To obtain a rule for multiplication of two generalized intals, note that

[21] - [2o] = {&1- 4] 21 €[], 2 € [%]}

C +ZQ | + i([m¥] +ZQ
—i—ZCJ | +i([m*?] +ZCJ

We will follow the rule of multiplication of two complex intgals, which is defined in the
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definition 1.11 on page 7. Then

[21]-[22] € (] ””1+ZCJ WEQHZCj[va])—([myl]JrZCj[vfl])~([my2]+26j[vf])

(. J/
~~

real part

[m“]+z Gl ([my2]+z Gilvi ) +( [m‘”HZ Gilog*D)-((m* ]+Z Glvj'])) (3.51)

imaginary part

In the right hand side of the above inequality, we will follthe rules of multiplication, subtrac-

tion and addition of generalized intervals, which have béescribed in section 3.2, to get the
new complex generalized interval. For example, the redlqartains two Hansen arithmetic
operations (multiplication and subtraction). At first, weltiply

[m™] + ch[vj-“]) ([m™] + ch[v;” )
and . .
(] + Gl D - (] 4+ 3 L)

by using Hansen arithmetic (see section 3.2) to get gemethintervals. After that we subtract
the result of the second multiplication from the result @ thist multiplication. Then the final
result of the real part will be a generalized interval too.eTimaginary part is computed in a
similar manner. Consequently, the final result will be a claxgeneralized interval.

Lemma 3.5.If 2, € [2] and 2, € [2,], then

A~

21 : ZA’Q c [21] . [22]

Proof:
The proof is obvious from the proof of lemmas 3.1 and 3.2

Example 3.12.Consider the expression
f=2120— 2129, With z; € [1,2] +4[3,4] and z, € [4,5] + i[5, 6].
Ordinary interval computation gives

F = ([1,2]+i[3,4])- ([4,5] +i[5, 6]) — ([1, 2] +i[3, 4])- (|4, 5] + i[5, 6]) = [~ 15, 15] +i[—15, 15].
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Using complex generalized interval forms and using (3.8)7) and (3.8) give

FCGI = [07 O] =+ [_17 1]C1 + [07 0]C2 + [_17 1]C3 + [07 0]C4
_H:([O? 0] + [_17 1]C1 + [07 O]CZ + [_17 1]C3 + [07 0]C4)7

which reduces to
reduce(Fegl) = [—1,1] +¢[—1,1].

This means that for every
Z1 € [&]) = [1.5,1.5] + [1,1]¢1 +4([3.5, 3.5] + [1,1](a)

and
Z9 € [Z9] = [4.5,4.5] 4+ [1,1]¢ +i([5.5,5.5] + [1, 1]¢4),

where¢; € [-0.5,0.5], (j =1, - - ,4), the expression, - 2, — 2; - 2, belongs to
reduce([2] - [2] — [21] - [22]):

~ ~

212y — 21 %9 € reduce([él] : [22] — [21] . [ZQ]) = [—1, 1] + Z[—l, 1]
Nonetheless the converse is not correct; this means if wesehthe point
14i€[=1,1]+i[-1,1],

then we see that there is ip € [2;] and 2, € [Z;] suchthat, - 25 — 21 - 2, = 1 + 4.

The (ordinary) complex interval result overestimates #duced complex generalized interval
form.

Division

Division of two complex generalized intervals can also beejdNote that

A

{2—1| Z1 €[], e[} C
2

(™ 33252 Glog D) (2o Glog D)+ (m Gl D) (m2 07 Gl])
([mm2 525 Glop? D)2+ ([me 525 Glop?))?

v~

real part
([ 320 Glop ) (21300 Glog?D) = (Im 2002 G o) - (ImP2 5202 Glol))
([me= D200 Glog )2+ ([mee 300 Glef])?

imaginary part

7

+i ( ).

7
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We will compute the right hand side of the above subset mldike the case of the multi-
plication of two complex generalized intervals (see pagg. 9he real part is computed as
follows

1. Multiply the two generalized intervals

2n

([m™] + Z GLop'D) - (] + Y Glog?))

j=1

by using generalized interval arithmetic.

2. Multiply the two generalized intervals
2n 2n
("] + D Glof']) - (m*] + ) ¢lof)
j=1 j=1

as in stepl.

3. Add the result from stepto the result from step (of course the result in every step will
be generalized interval form).

4. The denominator is computed in a similar manner.

5. Divide the generalized interval from stgfy the generalized interval from stdp The
result will be a generalized interval.

The imaginary part will be computed in a similar manner. Ttherfinal result will be a complex
generalized interval

Lemma 3.6. 2, € [2;] and 2, € [Z] with 0 ¢ [25] =

Proof:
The proof is obvious from the proof of lemmas 3.1, 3.2, and 3.3

Example 3.13.Consider the expression

=222 with 2 €[1,2] +i[3,4] and z € [4,5] + i[5, 6].
Z9 Z9

Ordinary interval computation gives

F = [~0.306,0.306] + i[—0.3,0.3].
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Using complex generalized interval forms and using (3.8.,7)¢ (3.8), (3.10), and (3.11)
give

Feei=[0.005,0.005]+[—0.06, 0.06]¢; +[—0.03, 0.03] ¢+ [—0.07, 0.07] ¢34 [—0.02, 0.02] (4

+i([—0.001,0.001]4[—0.07, 0.07]¢1+[—0.02, 0.02]¢5 +[—0.06, 0.06]¢3+[—0.03, 0.03]¢4),

which reduces to
[—0.092, 0.092] + i[—0.089, 0.089).

Thus, for every
2 € [&]) = [1.5,1.5] + [1,1]¢; +4([3.5, 3.5] + [1,1](z)

and
Zy € [29] = [4.5,4.5] 4+ [1,1]¢s +i([5.5,5.5] + [1, 1]¢4),
where(; € [-0.5,0.5], (j =1, - ,4), the expressio#; /z, — 2, /%, belongs to
reduce([%1]/[2:] — [£1]/[2)):
213 — 51/ %, € reduce([21] /(%] — [£1]/]22]) = [—0.092, 0.092] 4 i[—0.089, 0.089].
The converse is not correct. If we choose e.g. the point

0.09 + 0.08i € [—0.092, 0.092] 4 i[—0.089, 0.089),

we see that there is ng € [2;] and 2, € [%,] such thaté, /2, — 21/2 = 0.09 + 0.08i.
The (ordinary) complex interval result overestimates #duced complex generalized interval
form.

In the following we will compare the inclusion function obtad by complex generalized
interval arithmetic with the inclusion obtained by compieterval arithmetic.

Example 3.14.Let

=22 1,105 £ i[2,2.2], 2 € [3,3.1] +i[4, 4.05).

21 — 22

e Using Complex Generalized Interval arithmetic

The complex generalized interval forfag|, [22] of [z1], [22] are given by

(2] = [1.025,1.025] + [1,1]¢; +i([2.1,2.1] + [1,1]¢2), G € [—0.025,0.025], ¢ € [—0.1,0.1]
2] = [3.05,3.05] + [1,1]¢5 + 4([4.025,4.025] + [1,1]¢4), ¢3 € [—0.05,0.05], {4 € [—0.025,0.025)
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respectively.

Using (3.47) — (3.50) give

[21] + [22) = [4.075,4.075] + [1,1]¢ + [1,1]¢ +4([6.125, 6.125] + [1,1]¢ + [1, 1]¢),
[21] = [22] = [-2.025,—2.025] + [1,1]¢, + [-1, —1]¢s
+i([—1.925, —1.925] + [1,1]¢ + [—1, —1]¢)-

From (3.52), (3.7), (3.8), (3.10) and (3.11) we obtain tHefeing complex generalized
interval

Fear = [1.0,1.01] + [<0.015,0.015]¢; 4 [—0.01,0.01]¢, 4 [—0.01,0.01]¢s
+[—0.03,0.03]¢4 + ([0, 0] + [—0.02,0.02]¢; + [—0.01,0.01]¢,
+[-0.02, 0.02]¢; + [—0.01, 0.01]¢4),

which can be reduced to

reduce( Feg)) = [0.995, 1.004] + i[—0.0027,0.0027].

Using complex interval arithmetic gives

F =1[0.904, 1.106] 4 i[—0.099, 0.104].

The result obtained by complex generalized interval arétimis better than the result
obtained by complex interval arithmetic

reduce( Feg)) C F.

3.9 Complex Elementary Functions

In sections 3.4 and 3.6, we have studied the real elemeniactibns using two approaches

(Taylor form and minimax approximation method). In thistsat, we will extend the real case

to the complex case. Let= x + iy, with i = \/—1, be a complex number. Assume tifdt),

is analytic in the set/, whereU is a non-empty open subset of the complex planeln this

section, we suppose th#tz) is analytic; thenf(z) can be written as follows (for more details
see[44, 2))

f(z) = ulz,y) +i-v(z,y)

LA function f is said to be analytic, if is differentiable at every point df .



3.10 Algorithms 95

A complex functionf(z) is called separable, if both(z, ) andv(z, y) can be written as prod-
ucts of two real functions. There are other complex funajevhere.(z, y) andv(z, y) can’'t be
written as products of two real functions. In the followingg give some complex elementary

functions:
e = e"-cos(y)+i-e”-sin(y),
sin(z) = sin(x) - cosh(y) + i - cos(z) - sinh(y),
cos(z) = cos(z) - cosh(y) + ¢ - sin(x) - sinh(y),
sinh(z) = sinh(x) - cos(y) + i - cosh(x) - sin(y),
cosh(z) = cosh(z) - cos(y) + i - sinh(x) - sin(y).
tanz = sin(27) i sinh(2z) (3.52)

cos(2x) + cosh(2x) " cos(2z) + cosh(2z)”

We can compute an inclusion of the complex function over agerinterval[z] = [z] + i[y]
using complex generalized interval arithmetic. As we hasgcdbed in the multiplication and
division of two complex intervals, we have computed theal @nd imaginary parts separately
using real generalized interval arithmetic. For the complementary functions, we will follow
the same technique that are used for the multiplication @vidiain two complex generalized
interval arithmetic. As example, the real partedfwill compute as follows:

1. Using Taylor or best approximation (see section 3.4 ar) t8.compute=* andcos(y).
2. multiply the result o&” with the result ot:os(y), by using generalized interval arithmetic.

The imaginary part will be computed in a similar manner. Tds form will be a complex
generalized interval form.

3.10 Algorithms

We now describe the algorithms for the elementary operstign-, - and/, and for complex
elementary functions. We will use a linear best approxiamain our algorithms . For complex
generalized forms, we use hexagonal

Z = ([2], [m"], [v*], [m"], [v¥], [9]),

with [z] € IC, [z],[y] € IR, [m®],[mY] € IR*", [v7],[vY] € IR*" and[g] € IR*" for the
description of the arithmetic rules.
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Algorithm 3.8. Addition Operator + (71, Z5)

1. Input { 71,75 }
Compute the surr,] + [22] in ordinary complex interval arithmetic
[2] =[] + [2]
3. Compute the sum of the mid-points

[m®] = [m®] + [m™?]
[m¥] = [m*] + [m"?]
4. Compute the sum of the coefficient valueg pfor real and imaginary parts
[v7] = [v™'] + [v™2]
[v9] = [v¥"1] + [v*2]

5. return Z:=([2], [m”], [v"], [mY], [v¥], [g])
Output { Z:=([2], [m*], [v*], [m"], [v*], [g]) }

o

Algorithm 3.9. Subtraction Operator — (71, Z5)

1. Input { Zl, ZQ }
Compute the differencl;] — [z2] in ordinary complex interval arithmetic
[2] = [z1] — [22]
3. Compute the difference of the mid-points
[m?®] = [m®™] — [m*?]
[m¥] = [m"] — [m"?]
4. Compute the difference of the coefficient valuegdbr real and imaginary parts
[v?] = [v™] = [v™2]
[v¥] =[] — [v*2]
5. return Z:=([z], [m*], [v"], [mY], [vY], [g])
Output { Z:=([z], [m*], [v*], [m¥], [v¥], [g]) }

o

There will be no conflict by using the algorithms 3.1, 3.2, &8 3.4, to compute the real
and imaginary parts of (3.51) and (3.52) in the followingaalthms:

Algorithm 3.10. Multiplication Operator e (71, Z5)

1. Input { 7,25 }
2. Compute the multiplication dk; | and|z;] in ordinary complex interval arithmetic

Continued on next page
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Algorithm 3.3 — continued from previous page

2] = 2] - [2]
3. Compute the real and imaginary parts of (3.51) using algorét 3.1,
3.2, 3.3and 34
4. return Z=([z], [m”], [v7], [m?], [v"], [9])
5. Output { Z := (2], [m"], [v*], [m"], [v"], [g)) }
Algorithm 3.11. Division Operator / (71, Z5)
1. Input { 7,75 }
2. Compute the division ofz; | over[z,] in ordinary complex interval arithmetic
[2] = [z1]/]z]
3. Compute the real and imaginary parts of (3.52) using algor#t 3.1, 3.2, 3.3
and 3.4
a. return Z=([2], [m?], [v”], [m¥, [0, [g])
5. Output { Z:= (2], "], [v*), [m"], [v"], [g]) }

Algorithm 3.12. Complex elementary function

Input { Z; }

Compute the interval extension elementary function in demmterval arithmetic
[z] := s([z1]) function value

Compute the real and imaginary parts of elementary fundtjousing the algorithm
3.6 or 3.7, and the algorithms 3.1, 3.2, 3.3and 3.4

return Z = ([z], [m”], [v*], [m?], [v"], [9])

Output { Z:= ([2], [m*], [v7), [m], [+"], [9]) }

97
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Chapter 4

Verified Solution of Parametric Linear
System of Equations using Generalized
Interval Arithmetic

In this chapter we will discuss some cases of parametricvatsystems. Our methods depend
on directly generalized interval arithmetic and its exiengsee chapter 3). The methods that
will presented are some modifications of Popova’s and Rumgthods. We start in Section
4.1 with the case if the constant matrdX?) and the constant vectét®) (equation (2.16) page
35) of Popova’s representation are not exactly represkentabthe computer; we will modify
Popova’s and Rump’s methods. In Section 4.2 we will studyctee if the elements of the
parametric matrix and right-hand side are nonlinear fumstiof parameter intervals; in this
section generalized interval arithmetic and complex gaimad interval arithmetic will be the
basic role in our modification. In Section 4.3 we will study tbver- and under-determined
case of the parametric interval systems.

4.1 Affine-linear Case

The methods for solving parametric interval systems, wtiakie been represented in Sec-
tion 2.1, demand for an exactly representable constantxmatf) ¢ R"*" (see page 35)
and constant vectdt?) ¢ R™ on the computer. In practice}® andb® may be not exactly
representable on the computer. To illustrate this pointwilegive the following example

99
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Example 4.1. Consider the& x 2 parametric system with

<p p>$:<p>7 pe[l,2], e#0.
e 0 P

The problem that will be solved on the computer will be a®ied:

p P (P .
(20)e-(7) or0 ”

The exact solution of the systenxis- (p/e, 1 —p/¢). If we solve the system (4.1) foe= 1072
using Popova’s modification or Rump’s method, we get thewiatlg result

[1.9999999999999 F + 20, 3.000000000001 £ + 20|
[—3.5080692395E + 20, —1.491930760432E + 20] ,

which does not contain the exact solution

[1.0000E + 20,2.0000E + 20]
[1—2.0F+20,1—1.0F+ 20].

The reason for this incorrect result is that= 102" is not exactly representable on the com-
puter.

To solve this problem, we will enclose all input data4f andb® in small intervals. For

our modification we define a matrit([A(?)], [p]) and a vectot/([b”)], [p]) as follows

A= A(AD)[p) = +Zpy I pep], AV e [AV]} ¢ IR, (4.2)

U=UDOLP) = {b©+ Zpy | pep,b@ e b)) ¢ IR (4.3)

The solution set of all
Axr =U,
is represented by

Y (AU) = {zeR"A -z =bAc AbeU}.

As we have seen in Section 2.1, the important point to obtaiareclosure of the parametric
solution set is to obtain sharp bounds for

IR" 3 [z] := O{R- (U — AZ)|p € [p]},
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whereR € R™*™ andz € R".
Now, we will present our modification to compuitd. We suppose that all the elements

of the interval matri{A®] and the elements of the interval vecitf’] vary independently in

their intervals.

2] = O{R- (U - AZ)lp € [pl}
k k
= O{R- (09 + Zp’/b(y) — (A© 4 ZPVA(”))@MD e [p], b € [p®], A € [AO]}
=1 . v=1
= O{R- (0" — A0z Z — AV - 3)|p € [p],0© € pO], A € (A0}
v
= R-([b9] Z (0 — AW L 7).

An interval matrix|C] € IR™ ™ will be computed as follows
(€] = U —-R-Apel ]}
— O{I—R-(A© ¢ Zpu p € [p], A© € [AV]}

= O{I-R-AY - ZpuR - A)lp € [p], A© € [AOT}

v=1

k
= ZPVR Al
v=1

Theorem 4.1.Let A(p) € R™", b(p) € R", p € R¥. DefineAd € R™" andi/ € R" to be a
matrix and a vector in (4.2) and (4.3) respectively. ke R"*", [y] € IR", ¥ € R" and
definez] € IR™ and[C] € IR"*" by

B = R () - [AV)7) + Y p )R- (60— AV -3,
€] = T=R-[A9= Y [pJ(R- AV

Define[v] € IR™ by means of the following Einzelschrittverfahren:
L<i<n:fu] ={O{[] +[C] - [u]}}i, wherelu] .= ([vi], - fvica] [y, [ya]) - (4.4)

If

[v] C [y, (4.5)
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then R and every matrixA € A are regular. Therefore every matri(p), p € [p] is regular.
And for everyp € [p], A© € [AQ] and @ ¢ [b(?] the unique solutior = A~'b, b € U
satisfiest € 7 + [v].

Proof: To prove this theorem, we define a real mattixp) € R"*" and a real vectorl(p) €
R”, p € [p], which are elements of the mattik( A©), p) and the vectot/ (b, p), respectively.
If (4.4) and (4.5) are satisfied for these matrix and vectoentD(p) is regular for every
p € [p]. Therefore, every matrix frotd(A®, p) is regular and (4.4), (4.5) will be satisfied for
every matrix from4(A© p). This will complete the proof of the theorem.

Let

k k
D(p) == AQ +Y " p, AV d(p) ==+ " p,p),
v=1 v=1

whereA©® € [A©], 50 € [6@] andp € [p] with
D(p) € A(A,p), d(p) eU®,p).

Considerf : R* x R" — R" with f(p,Z) = D(p)Z — d(p), & € R". Let[z] := —R- f([p], 7),
R € R™", then

~R-f(lp,7) = ©{-R-f(p,7)|p <}
— O{R-(d(p) — D(p)i|p € [p]}
= O{R- (0 + Y pb" — (AV + 3 p, A)T)Ip € [p]}

v=1 v=1

k
= O{R- (00 = AVz)+> p,R- (b — AV &)|p € [p]}
v=1

k
= R-(° =A%)+ [pR- (0¥ — AVz) = [2].
v=1
This equality holds since every compongnt(v = 1,--- , k) occurs at most once in the ex-
pression.
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Let[C] := {1 — R- D(p)|p € [p]}, I is then x n identity matrix, then
€l == S =R-Dp)lp e [ I}
= O{I-R-(AD - Zp A)p € p

= O{I-R-AY - ZpyR - A¥p € [pl}

v=1
k

= J—R-AO _Z[pV]R'A(V)'

v=1

Defineg : S C R" — R by
g() =z —R- f(p,x), (4.6)

wheref(p,x) = f(p,2) + D(p)(x — ). According to theorem 2.3, and with (2.18) and (2.19),
yield

2]+ [C] - [v]} C [v], [v] € IR™ (4.7)
Hence, for allz € 7 + [v] we have

g(z) =z —R-(f(p,7) + D(p)(z — 7))
=z —R-(D(p)Z —d(p) + D(p)(z — 1))

k k k
= o= R4+ 3o AN 80 = 3D+ (A0 + 3 Ao~ 2)

v=1 v=1

=i+ R- (b0 - +Zpy (0" — A¥F) +(I — RAY ZPVRA(V - )
k
ci+R-("— )+ Z poR- (") — A¥z) + (I = RAO =Y "p,RAV)y]
v=1
Cz+[z]+[C]-[v]
C i+ [v],

that is, g is a continuous mapping of the nonempty, convex and comegetis [v] into itself.
Thus Brouwer's fixed point theorem implies the existencermks € z + [v] with g(z) = & =
z—R- f(p,z),and henceR - f(p,z) = 0. Then

R-f(p,2)=0 = R-(D(p)T —d(p)+ D(p)( — 1)) =0. (4.8)
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First we will prove thatD(p) is regular, for every € [p).
LetO # y € R™ with

D(p)y =0, (4.9)
and\ € R. From (4.6), we have

9@+ Xy) = T+ —R-(D(p)z—d(p
= I+Xy—R-(D(p)r —d(p) + D(p)(& — 7)) —RA  D(p)y

v~

——
=0, from (4.8) =0, from (4.9)

= T+ \y. (4.10)

S~—
_|_
=)

s

S~—
=>
_|_
>

<

|
IS

This means;: + \y is a fixed point ofg for everyA\. Butify # 0, then a\ exists with
& + Ay € d[v]*. This means that a fixed point exists on the boundafy]pbut this contradicts
(4.10) and (4.7). Thu®(p) is regular for everyp € [p], therefore everyd ¢ A(A© p) is
regular for everyA©® ¢ [A®] andp € [p].

Next we will prove tharR is regular

LetO # y € R™ with

and)\ € R. From (4.6), we have

g(@+AD" ' (p)y) = &+ AD'(p)y —

=0, from (4.8)

(&

=0, from (4.11)

= 2+ 2D Y p)y. (4.12)

Sincey # 0, thenD~'(p)y # 0 and\ exists withi + AD~'(p)y € d[v]. This means that, a fixed
point exists on the boundary pf], but this contradicts (4.12) and (4.7). Thugjs regular.
Forall A € A(b©, p)andb c U, p), from (4.8) then

Az — b+ Az — Az € Kern{ R} = {0},

thus,Az —b=0 — & = A~ 'h.
This completes the proof of the theorem.

Now our modification of Popova’s algorithm (2.4) is as folkw

19[v] is topology boundary dffv], 9[v] := {v € [v]|v is a boundary point ofv]}.
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Algorithm 4.1. Parametric interval linear systems (our modification)

1. Input { A([AO), [p]) € R™".U([BO], [p]) € R", [p] € IR* }
Initialization
b= U(mid([5])mid([p])); A := A(mid([A®]),mid([p]))
3. Compute an approximation inver&&(R ~ A~') of A with some standard algorithmn
(see e.g[10])
4. Compute an approximate mid-point solution
F=0(R-b) Optionally improver by a residual iteration.
5. Compute an enclosuf€’| for the set{/ — R - A}
if (SharpClthen { sharp enclosure (Popova modificatign)
[C] =0 — R-[AV] = 3¢ [p,J(R- AV))
else { rough enclosure (Rump’s methgd)
[C] = O = R- A(AY], [p]))
6. Compute an enclosufe| for the se{ R - (U — A-T)}
(2] = O(R - ([b©] — [A®)7) + F_, [.] (RbY) — RA®) - 7))
7. Verification step
o] = [2]
max= 1
repeat
[v] := [v] M € e-inflation
] = [v]
for i = 1tondo { Einzelschrittverfahren
[vi] = O([zi] + [C(Row(i))] - [v])
max+-+

o

until [v] C [y] or max> 10

if [v] C [y] then {
all A € A are non-singular and the solutionof Ax = b, b € U
exists and is uniquely determined ahd& = + [v] }
else {
Err:= " no inclusion computed, the matri4 contains a singular matrix or
is ill conditioned” }

Continued on next page
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Algorithm 4.1 — continued from previous page

9. Output { Outer solutior{v] and Error code Er}

4.2 Nonlinear Cases

In section 2.2 the methods for solving parametric interyasteams whose elements are nonlinear
functions of interval parameters were presented. Theskadstdemand exactly representable
of the arguments matrices and vectors. But in practice isigally not the case (see example
4.1). For this reason, we will use another method to enclbgkeainput data of the argument
matrices and vectors in small intervals. In Chapter 3, weshiatroduced generalized interval
arithmetic and complex generalized interval arithmetibose most important purpose is to
reduce the effect of thedependencyproblem. Furthermore, we have introduced enclosing the
nonlinear functions in linear interval forms, which callgeheralized interval forms or complex
generalized interval forms. Therefore, we will use this moet and its modification to solve
our parametric interval systems. In Subsection 4.2.1 wkstdtt with the parametric interval
systems, whose elements are non-linear real funcfi®ehs We will show how we can use
generalized interval arithmetic to transform the nonlirfaactions to their interval linear forms.
In Subsection 4.2.2, the complex parametric systems wiitbdied

4.2.1 Nonlinear Real Case

In this subsection, a method for computing an outer soldtiothe system (2.1), in the general
case, is suggested. The method is based on the generalteechirarithmetic presented in
chapter 3.

Let f : [z] € R* — R be a continuous function. The functigitz) can be enclosed by
the following linear interval form

(L ()] =[]+ D Glvl, (4.13)
where[m/] and[v/], (v = 1,--- , k) are real intervals, and, € [—rad([z,]), rad[z,])]. The

form (4.13) can be determined in an automatic way by usingatgerithms that have been
presented in chapter 3, and it has the inclusion property

f(@) € [Ly(Q)], x€lz], C€I[C].
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We assume that;;(p) andb;(p), (i,7 = 1,--- ,n) in (2.2) are continuous functions. In accor-
dance with (4.13), the corresponding linear interval foares

L (O] = [m™]+ > ¢ [vew]

[l2(<>] = [mbz] + ZCV[USi]7 (Zvj = 17 27 e 7”)

where(, € [—rad([p.]),rad[p,])], (v = 1,--- , k). The above forms have the inclusion prop-

erty
ai(p) € [Liy(Q)] = [m™] + D G [ve] =: [ay(C)] (4.14)
bip) € (O] :=[m"]+ Y Gl = bi(Q)]. (4.15)

From the above two relations, we can write every element fiteerparametric matrix and the
right-hand side vector in the following linear forms

k
ay(p) = m Yy G (4.16)
v=1
k
bi(p) = mh DGl (4.17)
v=1
wherem®i € [m®i], mb € [m¥], vy € [v”] andv¥ € %], (i,j = 1,---,n), (v =

1, k).
According to (4.14) and (4.15), denote the- 1 numerical interval matrices

(A = ([m]), [AD] = ([017]) - [AW] = ([0p7]) € TR™"
and the corresponding numerical interval vectors
(O] := ([m"]), 0] = () -+, 9] = ([w]) € TR™

Hence, a new parametric interval matrix and a right-hane isiterval vector can be represented
by

[AQ] = [A9T+ Y GIAYL [0 =16+ ) ¢ [e")] (4.18)
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According to the parametric system (2.1), where its elembate defined by (2.2), we can
write a new parametric interval system in the following form

[AO] -z =[],

([A(O)] +Y CV[A(”)]> =[O+ ¢ e, (4.19)

where the new parametric vectpwaries within the rangg| € IR*.
The solution set of the above system is represented by

D (AQLIUQLD = {z € RMAQ) -2 = (), AC) € A 4(Q) € [¢(C)]

for some ¢ € [(]}.

Before giving the modification of the theorem (2.3), we wilkpent an interval vector
[z] € IR™, and an interval matri}C| € IR"*". The modification theorem will depend on these
interval matrix and vector.
For the interval vectojz|, we will start with the se{ R - (b(p) — A(p)Z)|p € [p]}. According
to (4.16) and (4.17), we can write the nonlinear function limear form:

R"> S, = {R-(b(p)— A(p)D)|p € [p],}, ReR™", T eR"
= {R- (1 + iw — (A + Zcu B¢ e [¢], €9 e[,
A= [g(l/)]:j:'lA(O [A( )]7 A(”) c [A(”)]}
= {R- ({9 — A0z +i (G(R- W CAVR)|C € [¢], €O € [0,

(W) e (], AD ¢ [A(O)], AW € A}
= {R- (1O — AOp)| O ¢ (], A® ¢ [AO]}
k

D (G(R-Y = R-AVD))|C €[], € € [(¥)], AY) € [AV]}

O{R- (10 = A3)| 10 € (), AV € [A"))

N

k
+O{) (G(R- 1Y = R-AVF)[C e [¢], € € [(¥], AV € [A¥)]}
v=1

= R- (V] = [A”]2) + D _(IGI(R- (V)] = R [A¥)]7))

-~

=:[z]
For the interval matrixC|, we will start with the se{/ — R - A(p)|p € [p]}. As for the interval
vector|z] and according to (4.16) and (4.17), we can write the nontifigaction in a linear
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form:
R™" > S.:={I—R-A(p)lp € [p]}, ReR™™, I isann x nidentity matrix

k
= {I-RA(ADH D GAVICE (] AV € [AT], AV € [AV])

= {I-R-A© - Zcu (R-AM)[¢ € [(] AV € [AY], AV € [AV]}
= {I-R-A9] A© € [AV]} - {ZCV (R-AM)[¢C € [¢], A¥) € [A¥]}
C O{I-R-AY AV € [A(O)]}—O{ZCV(R-A(”’)ICE ], AV € [A¥]}
- I-R- ij ([G(R - [AM)))
N f[rc] _

The following theorem is a modification of theorem (2.3).

Theorem 4.2. Consider parametric linear system (2.1), whetép) and b(p) are given by
(2.2). Let[A(¢)] € IR™™and[((¢)] € IR™ be given by (4.18) with € R*, and letkR € R"*",
ly] € IR™, € R™ be given and defing] € IR™ and[C] € IR™*" by

2] = R (O] = [A)2) + Y [GIR - [(¥] - R [AY)] - )
C] = JAOT =N [GIR - [AM)

Define[v] € IR™ by means of the following Einzelschrittverfahren:

L<i<n: o] ={O{[]+[C] - [u]}}i, where[u]:=([va], -, [viea], [y, [ya]) - (4.20)

[v] < [y, (4.21)

then R and every matrixA(¢) € [A(({)], ¢ € [(] are regular. So every matrid(p), p € [p]
is regular, and for every € [¢] the unique solutio: = A~1(¢){(¢) of A(C) -z = £(¢),
0(¢) € [¢(Q)] satisfiest € & + [v].

Proof: To prove this theorem, we define a real matfix) € R"*" and a real vector(() €
R™, ¢ € [¢], which are elements of the interval matfid(¢)] and the interval vectof/(¢)],
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respectively. If (4.20) and (4.21) are satisfied to theseimand vector, thenD(() is regular
for every( € [(]. Therefore, every matrix frofd(¢)] is regular and (4.20) and (4.21) will be
satisfied for every matrix fromd (¢)]. This will complete the proof of the theorem.

Let

k k
D(Q) =AY+ AV, d(Q) =0+ ¢
v=1 v=1

where A©) € [A©)], AW € [AW] ¢©) ¢ [(O], ¢0) € ()], (v =1,--- , k) and( € [¢] with

The rest of the proof is done in a similar way as in the theoreth 4

Algorithm 4.2. Parametric interval linear systems (nonlinear real case, or modification)

1. Input { A(p) € R b(p) € R", [p] € IR* }
Using algorithms that have been presented in chapter 3risftran the elements
(2.2) to interval linear forms (4.16) and (4.17); the finakar form will be in the
forms (4.18)
3. Initialization
b :=mid([¢(mid([¢]))); A :=mid(A(mid([¢])))
4. Compute an approximation inver&(R ~ A~') of A with some standard algorithm
(see e.g[10)])
5. Compute an approximate mid-point solution
i = O(R - b). Optionally improvet by a residual iteration.
6. Compute an enclosufé’]

if (SharpCjthen { sharp enclosure (Popova modificatign)
(O] = oI = R-[AV] = 37, [GI(R - [AV])
else { rough enclosure (Rump’s methgd)

[C]= <o = R-A([¢])
7. Compute an enclosure]
[2] = O(R- ([(O] = [AV]Z) + 35, [GIR - (V)] = [A¥)] - 7))
8.  Verification step
[v] := [4]
max= 1

Continued on next page
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Algorithm 4.2 — continued from previous page

repeat
[v] := [v] X € e-inflation
] = [v]
for i = 1tondo { Einzelschrittverfahren
[vi] = (=] + [C(Row(i))] - [v]);
max++
until [v] C [y] or max> 10

f [v] C [y] then {
all A(¢) € [A(¢)] are non-singular and the solutiohof A(¢)x = ¢(¢),¢ € [(],
((C) € [¢(¢)] exists and is uniquely determined and 7 + [v] }
else {
Err =7 no inclusion computed, the interval matfi®(¢{)| contains a singular
matrix or is ill conditioned” }
10. Output { Outer solutiorfv] and Error code Er}

4.2.2 Nonlinear Complex Case

In this subsection, we will discuss the complex parametitierval system, whose elements are
nonlinear complex functions. Consider a complex paramstrstem

A(p) -z = b(p), (4.22)

where A(p) € C*™ andb(p) € C" depend on a complex parameter vegtoe C*. The
elements ofA(p) andb(p) are, in general, nonlinear complex functions:qgfarameters

aij(p) = ai(p1, - pr), }
)

bl(p) :bi(plv'” 7pk)7 (17]:17 ,
The parameters are considered to be unknown or uncertaiveayidg within prescribed inter-

(4.23)

vals

pE [p] = ([pl]v' o v[pk])T‘

Whenp varies within a rangép] € ICF, the set of solution to ali(p) - = = b(p), p € [p], is
called complex parametric solution set, and is represédmnted

S A = {z € C"|A(p) - = = b(p) for somep € [p]}.
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As in the real parametric interval systems (see chapter &), sance it is quite difficult to obtain
>Pe, it would be a more realistic task to find an interval vedtdre IC", such thafy] 2> >
and the goal is thdy| must be as narrow as possible.

Our method for computing an outer solution for the systen2Q¥is based on the complex
generalized interval arithmetic, which has been presenteldapter 3.

Let f : [z] € C* — C be a continuous complex function, wheg = [u] + i[w],
[u] € IR*, [w] € IR*. The functionf(z) can be enclosed by the following linear interval form

2k _ 2k _
L (O)] = [m 1+ 3 Gl + (™) + 3 Gl ™)), (4.24)
v=1 v=1

(re)] (im)]

where [m/™], [m/™], [v/"] and [v/"™], (v = 1,---,2k) are real intervals, and,,_, €

[=rad([w.]), rad([w.])], G2 € [-rad([w,]), rad([w,])].

The following example illustrates the above procedure:

Example 4.2. Consider

Zl—|—22

f=

.z € [1,1.05] +i[2,2.2], 2 € [3,3.1] + i[4,4.05]

21 — 29
Using complex generalized interval arithmetic, where

[21] = [1.025,1.025] + [1,1]¢; +i([2.1,2.1] + [1,1]¢)
(2] = [3.05,3.05] + [1,1]¢s + ([4.025,4.025] + [1,1]¢,)

with ¢; € [—0.025,0.025], ¢, € [—0.1,0.1], (5 € [—0.05,0.05] and ¢, € [—0.025,0.025], we
get

(2] + [22] = [4.075,4.075] + [1,1]¢; + [1,1]¢ +4([6.125,6.125] + [1, 1]¢ + [1,1]¢)
(2] — [22] = [-2.025,2.025] + [1,1]¢; — [1,1]¢3 + i([—1.925, —1.925] + [1, 1]¢ — [1, 1]¢4)

Using (3.52), we get

[Li(C)] = [1.0,1.01] 4 [—0.015,0.015]¢; + [—0.01,0.01]¢, + [—0.01,0.01]¢s
+[~-0.03,0.03]¢4 + ([0, 0] 4 [—0.02,0.02]¢; + [—0.01,0.01]¢,
+[~0.02,0.02]¢5 + [—0.01,0.01]¢y).
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We can determine the form (4.24) in an automatic way by udiegaigorithms that have
been presented in chapter 3, Section 3.10. The form (4.24heanclusion property

f(2) €[Ls(Q), z€[z], ¢€[¢]e IR

We assume that;;(p) andb;(p), (i,7 = 1,--- ,n) in (4.23) are continuous complex functions.
In accordance with (4.24), the corresponding linear irgkiorms are

al™® N al’® . a{m 2k al™
L (O] o= [m™ 1+ > G [+i(m™ ]+ v )
v=1 v=1
" (@ b(im) 2 p{m™ .
[ZZ(C)] = +ZCV ' ]_‘_ZCV[UVZ ])? (27] = 1727"' >n)
v=1

and have the inclusion property

re (re) a(_if“)
ai(p) € [Ly(Q)] = [m* +Z<V 0] (] + S G )
v=1
(re) 0 (re) a(im)
= [m™ ] +i[m® +Z<V ) (4.25)

p(im)

bi(p) € [H(Q) = [m""] +ch AT T )

re) (im) (re) (im)
= [mbE +i[mbi ] +ZC,, v —|—ZU3 D- (4.26)

From the above two relations, we can write every element ttcomplex parametric matrix
and the right-hand side complex vector in the following éinforms:

4 a® (lm) (|m)
a;;j(p) = mi + Z CZ,UV Yo i(m® 4 Z Cyvu”
(re) o (m) al™® o™
= mY% +im* 4+ Z(}, NCRNEY ) (4.27)

ptre

(re) (im) (|m)
biy(p) = m" +Z<Lvu +i(m" +ZC,, ;

b M)

b(re) b(lm)
= m’ +4im” +ZC,, + vy ), (4.28)
(re) (re) (im) (im) (re) (re) (im) (im) (re) (re)
wherem® € [m® |, m% € [m® ], mb" € [mt"], mi" € [mh ], vt € ot ],

G oim pre p(re p(m) pim) o
v e o €l ] andv,, € v' |,G,j=1,---,n),(v=1---,2k).
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According to (4.25) and (4.26), denote thle+ 1 numerical complex interval matrices
re im a(@) aom)
[AO] = ([m] +i[mS]) , [AV] = ([ |+ ifor 1) S

e o™
9] s= (1671 +iesf 1) € 10

and the corresponding numerical complex interval vectors

00 = (i) 4 ™) 0= (17787

(1) (i
[09] = ([v;’;; |+ ol ]) e IC".

Hence, a new complex parametric interval matrix and a rigirte side complex parametric
interval vector can be presented by

FAO] = [ADT+ Y GIAYL (U] =691+ GleY)] (4.29)

According to the complex parametric system (4.22), wherelgments are defined by (4.23),
we can write a new complex parametric interval system inallewing form:

LAO] -z = Q]

2k 2k
([A@] +Z<V[A<”>1> o= [0+ 3G, (4.30
v=1 v=1

where the new parametric vectpwaries within the rangg] € IR?*.
The solution set of the system (4.30), is represented by

Y (AQLIUQLD = {z € CMAWQ) -z = (), AC) € [AQ] £(C) € [¢(C)]

for some( € [(]}.

For our modification, we need to present a complex intervetoréz] € /C", and a complex
interval matrix|C'] € IC™*". The next theorem will depend on these interval matrix aratiore

For the interval vectojz], we will start with the sef R - (b(p) — A(p)Z)|p € [p]}, R € C*™*™.
According to (4.27) and (4.28), we can write the nonlineaction in a linear form:

C"> S, = {R-(blp)—A(p)T)|p € [pl, }, R eCv zeC"
= {R-((+ icﬂ”) +ZCA D¢ e [¢], 0 e [V,
ON= [gm],_ AO € [40), A(u AMT]
= {R-(1" - A"%) + i(cw Y —R-AVE)|C € [(], (O e [(V],
=

(W) e (], AO ¢ [AQ] AW € (A
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= {R- (" = A7) (O € [(], AV € [A]}
)R-V = R-AVF)|C € [¢], @ e [e], AV € [AV]}

O{R - (19 — AO7)| 1O ¢ [¢O] A® ¢ [AO]}

N

+O{Y (R 4®) — R- AVT))|¢ € [¢), € € [(¥), A®) € [AM]}

= R- (V] = [A”12) + ) (IR [("] = R- [AV]2))

(. J/
~~

=:[z]

For the complex interval matri)x], we will start with the se{7 — R- A(p)|p € [p]}. According
to (4.27) and (4.28), we can write the nonlinear function limaar form:

C" s S.:={I—R-Ap)|p € [ |}, Re C™ ", I isann x nidentity matrix

= {I-R-( +ZC«4 )¢ e [¢] A” e [AD], A¥) e [AM]}

- {I-R-A©® ZMA|mH © € 1A0], AW € [AM]}
= {I-R-AY| AV € [AD]} ~ {ZCR AM)¢ e [¢), AV e [AV]}
C O{I-R A" AV e [A(O)]}—O{ZGR-A(”’)ICG ], AV € [A¥]}
= [-R-[A"] - 2i([d(R [AY]))
oG }

The following theorem is a modification of theorem (4.2).

Theorem 4.3. Consider parametric linear system (4.22), wheté&) and b(p) are given by
(4.23). Let[A(¢)] € IC™™ and [((¢)] € IC" be given by (4.29) witlf € R?*, and let
R e C™", [y] € IC™, & € C™ be given, and defing| € IC" and[C] € IC™"*" by

2] == R-([(©] —[A9)%) + Z GIR-[(] = R-[AY] . %)

(€] = I-R-[AY] - Z[@](R- [AX]).
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Define[v] € IC™ by means of the following Einzelschrittverfahren:

1<i<n:[o]={O{[Z)+(C] - [ul} ), wherefu]:=([un], - . [or-a]. [y, - . [9]) 7. (4.31)

[v] < [y, (4.32)

then R and every matrixA(¢) € [A(C)], ¢ € [¢] are regular. So every matriXd(p), p € [p]
is regular, and for every € [¢] the unique solutior: = A~1(¢){(¢) of A(C) -z = £(¢),
0(¢) € [£(Q)] satisfiest € & + [v].

Proof: To prove this theorem, we define a real matfix) € C"*" and a real vector(() €
C", ¢ € [¢], which are elements of the interval matfi4(¢)] and the interval vectof/(¢)],
respectively. If (4.31) and (4.32) are satisfied for thes&imand vector, therD(() is regular
for every( € [(]. Therefore, every matrix fromA(()] is regular and (4.31), (4.32) will be
satisfied for every matrix fromod (¢)]. This will complete the proof of the theorem.

Let

2k 2k
D(¢) =AY+ AV, d(¢) =0+ (1Y
v=1 v=1

whereA©) € [A©)], AW € [AW] (O g [¢©O], (@) € (W], (v =1,---,2k) and( € [¢] with

The rest of the proof is done in a similar way as in the theoreth 4

Algorithm 4.3. Complex parametric interval linear systems (nonlinear conplex case,

our modification)

1. Input { A(p) € C™" b(p) € C", [p] € IC }
Using algorithms that have been presented in chapter 3risftran the elements
(4.23) to interval linear forms (4.27) and (4.28); the finakhr form will be in the
forms (4.29)
3. Initialization
b :=mid([¢(mid([¢]))); A :=mid(A(mid([¢])))
4. Compute an approximation inverde(R ~ A~') of A with some standard algorithm
(see e.g[10])

Continued on next page
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Algorithm 4.3 — continued from previous page

5. Compute an approximate mid-point solution
i = O(R - b). Optionally improvei by a residual iteration.
6. Compute an enclosufé’]

if (SharpCjthen { sharp enclosure (Popova modificatign)
[C] = O(I = R-[A9] = 3238 [G(R - [A¥)]))
else { rough enclosure (Rump’s methgd)

[C= o = R-A([c])
7. Compute an enclosure]
[2] = O(R - (L] = [AV]2) + 3SR [GIR - (1] — [A¥)] - 7))
8. Verification step
[v] == [4]
max= 1
repeat
[v] := [v] X € e-inflation
[yl = [v]
for i = 1tondo { Einzelschrittverfahren
[vi] = O([z] + [C(Row())] - [v])
max++
until [v] C [y] or max> 10

f [v] C [y then {
all A(¢) € [A(¢)] are non-singular and the solutioihof A(¢)x = ¢(¢),¢ € [(],
((C) € [¢(¢)] exists and is uniquely determined and 7 + [v] }
else {
Err =7 no inclusion computed, the interval matfi®(¢{)| contains a singular
matrix or is ill conditioned’ }
10. Output { Outer solutiorfv] and Error code Er}

4.2.3 Extension Modification

The methods presented in subsections 4.2.1 and 4.2.2 asshat¢he elements ¢f4*)] and
[¢™)] vary independently in their intervals. But in many pradtizeamples (see e.§19]) there
are dependencies between the coefficients.
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In this subsection, we will give another modification of thethods presented in the last
subsections. Our modification, to our knowledge, is new.rdlaege some methods, but, just for
some special cases of matrices (EE3), not for general matrices.

We will start with the parametric interval systems, whosarednts are nonlinear real func-
tions. After that, the complex case will be discussed.

Nonlinear Real Case

At first, we suppose that the dependency will occur only inithterval matrices.A®)], (v =
0, k).

Definition 4.1. Let (J;)¥, be a partition of the index s€tl, - - - ,n}, i.e.
J {1, n}, Jy0Jy, =0 for Iy # 1,0, J={1,--- ,n}.
Let|ay] € IS, S € {R,C},(i=1---,n),(l=1,---,N)andS € R". We call the set
[AEeR . £ A € SN qy = S, ag € o], (=1, ,n), (I=1,---,N), j€J}

a row dependent (real or complex) interval matrix with resige the partition(.J;)?¥, and the
multipliersS.

According to the definition 4.1, we call the parametric imggmatrix [A(()] € TR™ " in
(4.18) row dependent if at least one of the interval matrjge€®] and[A™W], (v =1,--- , k) is
row dependent.

A row dependent parametric interval matii& V-9 ()], ¢ € R* and a right hand sidé(¢)]
define a family of linear systems

A(Q)x = (), A(¢) € LA C)], €(Q) € [¢(C)]

with the corresponding solution set

D (AR, Q)] [€]) = {z € R'AQ) - & = €(C), A(C) € [A™ ()], €(¢) € [€(0)]
for some ¢ € [(]}.
Obviouslyy ([A™*X ()], [¢(Q)); [¢]) € YA [(O)]; [€])-

Theorem 4.4.Let[A™"9P(()] € TR™*" be a row dependent interval matrix with respect to the
partition (J;)¥, and the multipliersS € R™. Let[((¢)] € IR" be given by (4.18) witl) € R¥,
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and letR € R™", [y] € IR", & € R™ be given, and lefz] € IR" be defined by

=¥ ([40)] Z (Z S xu) al) ) rij +Z C] {Z ([

3

j=1 =1 MEJll

N

— Z SuT, ]12 Jrij ¢, (i=1,---,n) (4.33)
la=1 \ peJy,

[2] = O{R - (£(¢) — A(Q)D)|(C) € [£(Q)], A(C) € [APRQ)], ¢ € [¢]} (4.34)
Let[C] € IR™"

then

k

€] = I—=R-[AD] = [GI(R - [A¥)).

v=1

Define[v] € IR"™ by means of the following Einzelschrittverfahren:

1<i<n: [o] = {O{2) + (0] [ul} ), where [u] = (for], - o] [y, [o]) -

If [v ] [y], then R and every matrixA(¢) € [A™9R()], ¢ € [(] are regular. So every

matrix A(p), p € [p] is regular, and for every € [¢] the unique solutior: = A~*(¢)¢(¢) of
A(Q) -z =£(C), £(C) € [¢(C)] satisfiest € T + [v].
Proof:

Let A(¢) € [A™W9eR()], £(¢) € [£(¢)] with ¢ € [¢], and letr? be thei—th row vector ofR.
Then the—th component oR - (/(¢) — A({)Z) satisfies

r(0(¢) — A(Q)E) = r'(((© — AV%) + Z Cv )
v=1
— iZa z,) rlj—l-ZC,,Zmﬂ(o iia T:)7ri5)
i=1 j=1 =1 = j=1 =1
= i €(0 Z i‘ ’T’ZJ + Z(l, Z €(0 - iagg)i}—)’f’w)
i—1 =1 7=1 =1

according to definition 4.1, then

n

rUC) — AQF) = (1 Z > Sudaal)ry +Z<u Z G

7j=1 =1 uEJll

- Z( Z Sufumg'll;))rij)-

lo=1 MEJLQ
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By a theorem of Moorf89], we get

[z1] = {r'(€(¢) = AQ)D)IE(C) € [E(Q)], A(Q) € [AP O], ¢ e [T}, (i=1---.n)

because in (4.33) each interval variable occurs only onagtarthe first power. Hence (4.34)
is valid.
The rest of the proof is done in a similar way as in the theoret 4

The next algorithm depends on the above theorem for the rperdkent real case of the
parametric interval matrix and the right hand-side inteveator.

Algorithm 4.4. Parametric interval linear systems (nonlinear real case,ow dependent)

1. Input { A(p) € R b(p) € R", [p] € IR* }
Using algorithms that have been presented in chapter 3risftran the elements
(2.2) to interval linear forms (4.16) and (4.17); the finakar form will be in the
forms (4.18)
3. Initialization
b :=mid([£([¢])); A =mid(A([]))
4. Compute an approximation inver&(R ~ A~') of A with some standard algorithm
(see e.g[10])
5. Compute an approximate mid-point solution
i = O(R - b). Optionally improvet by a residual iteration.
6. Compute an enclosufé’]

if (SharpC)then { sharp enclosure (Popova modificatign)
(€] = (I = R-[AV] = 337 [GI(R - [A¥)]))
else { rough enclosure (Rump’s methgd)

[C]= o = R-A([¢]))
7. Compute an enclosufe] using the form (4.33)
8.  \Vrification step
[v] = [2];
max=1;
repeat
[v] := [v] X € e-inflation
ly] == [v]

fori =1tondo { Einzelschrittverfahren

Continued on next page
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Algorithm 4.4 — continued from previous page

[vi] = O([z] + [C(Row())] - [v])
max+-+

o

until [v] C [y] or max> 10

if [v] C [y] then {
all A(¢) € [A™W9eR(()] are non-singular and the solutiohof A(¢)x = £(¢),
¢ €[¢], 4(¢) € [¢(¢)] exists and is uniquely determined ahd z + [v]; }
else {
Err = ” no inclusion computed, the interval matfi{™"-%¢7(()] contains a
singular matrix or is ill conditioned }
10. Output { Outer solutiorfv] and Error code Erg

Next, we will discuss the column dependent case.

Definition 4.2. Let[oy;] € IS, S € {R,C}, (j=1---,n),({=1,---,N)andS € R". We
call the set

[AC .= {A € S| aij = Siwj, cyj € o], (j=1,--,n), I=1,---,N), i € L}

a column dependent (real or complex) interval matrix witbpect to the partitiorf./;)7, and
the multipliersS, whereJ, has been defined in Definition 4.1 .

Also according to the definition 4.2, we call the parametiteival matrix| A(¢)] € IR™*"
in (4.18) column dependent if at least one of the intervalrives [A”)] and [AV)], (v =
1,---, k) is column dependent.

A column dependent parametric interval maftide-4R(¢)], ¢ € R¥, and a right hand side
[¢(¢)] define a family of linear systems

A(Q)z = (), A(C) € [AC)], £(C) € [¢(C)]

with the corresponding solution set

D (AR [OL [C]) = {2 € RUA(Q) - & = £(Q), A(¢) € [AHRQ)], €(¢) € [£(Q)]

for some( € [(]}.

It is also obvious tha}_ ([A(()], [¢(¢)]; [¢]) € SS(LAQ)], [4(O)]; [€])
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Theorem 4.5. Let [A9()] € IR™™" be a column dependent interval matrix with respect
to the partition(./;)Y, and the multipliersS € R". Let[¢(¢)] € IR" be given by (4.18) with

¢ € R¥, and letkR € R™*", [y] € IR, & € R" be given and lefz] € IR" and[C] € ITR™ " be
defined by

[z = R(Row(i)) - [¢] -] (Z (Z s) [aﬁ}-]) 7+ > _[G] {R(Row)) - [

7=1 l1=1 MEJLl
n N
>N Sy | [ef] | 25}, (=1, ,n), (4.35)
7j=1 lo=1 MEJ12
N k N
0 v
[Cyj] == I;; — PanS | sl = SIS S | [ | (4.36)
=1 uEJll v=1 lo=1 ;,LEJ12
(Zvj = ]-7 : 7n)

Then

[2] = O{R-(£(¢) — AQ)R)(C) € [6(Q)], A(C) € [A® ()], ¢ € [¢]},
[C] = O{I—R-A«Q)A(C) € [A®R(Q)], ¢ € [¢]}-

Define[v] € IR"™ by means of the following Einzelschrittverfahren:
L<i<n:[v]={{[Z]+[C]- [ul}}i, where[u] := ([vi],--, [vici), [yl [ym]) -

If [v] C [y], thenR and every matrix4(¢) € [A®er()], ¢ € [¢] are regular. So every
matrix A(p), p € [p] is regular, and for every € [¢] the unique solutior = A~'({)¢(¢) of
A(Q) -z =£(C), £(C) € [¢(C)] satisfiest € T + [v].

Proof: The proof is obvious from proof of theorems 4.4 and 4.1.

Now, we will give an algorithm derived from the above theorfemthe column dependent
real case of the parametric interval matrix and the rightlkside real parametric interval vector.

Algorithm 4.5. Parametric interval linear systems (nonlinear real case, @umn dependent

1. Input { A(p) € R™" b(p) € R, [p] € IR* }

2. Using algorithms that have been presented in chapter 3risftian the elements
(2.2) to interval linear forms (4.16) and (4.17); the finakar form will be in the
forms (4.18)

Continued on next page
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Algorithm 4.5 — continued from previous page

3. Initialization
b :=mid([£([¢])); A :=mid(A([(]))
4. Compute an approximation inver&(R ~ A~') of A with some standard algorithm
(see e.g[10)])
5. Compute an approximate mid-point solution
i = O(R - b);. Optionally improve: by a residual iteration.
6. Compute an enclosufé€’] using the form (4.36)
7. Compute an enclosufe] using the form (4.35)
8.  \Verification step
[v] := [4]
max= 1
repeat
[v] := [v] X € e-inflation
[y] = [v]
fori =1tondo { Einzelschrittverfahren
[vi] = O[] + [C(Row(i))] - [v])
max+-+

o

until [v] C [y] or max> 10

if [v] C [y] then {
all A(¢) € [Aer(()] are non-singular and the solutiohof A(¢)z = £(¢),
¢ €[¢], €(C) € [¢(¢)] exists and is uniquely determined and z + [v]; }
else {
Err =" no inclusion computed, the interval matfi%°9"(()] contains a
singular matrix or is ill conditioned }
10. Output { Outer solutiorv] and Error code Erg

In many applications dependencies in the right hand sidardd®]. For example this is
the case in many models in operations research. Here, weselpipat the dependencies occur
only in the right hand side of the system.

Definition 4.3. [19] Let[g)] € IS, S € {R,C}, (i =1---,n),(I=1,---,N)andS € R".
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We call the set
[gdep] = {€€Sn‘£l :Sjﬁl, 61 - [61], (i: 1,~-~ ,n), (l: 1,'“ ,N), j - Jl}

a dependent (real or complex) interval vector with respeche partition(J;)#, and the mul-
tipliers S, whereJ;, has been defined in Definition 4.1 .

We call the parametric interval vect@#(()|] € IR™ in (4.18) dependent if at least one of
the interval vector§(”)] and[¢™)], (v = 1,-- - , k) is dependent.

A parametric interval matrix4(¢)], ¢ € R* and a dependent right hand sid&®(¢)] define
a family of linear systems

A(Q)z = €(C), A(¢) € [AQ], £(¢) € [¢*M(¢)]
with the corresponding solution set

D (AL IO [¢]) = {z € R™A(Q) - = €(Q), A(C) € [AQ] Q) € [1**(¢)]

for some ¢ € [(]}.

Itis obviously thaty S([A(Q)], [(°(C)); [¢]) < SZ(A] [T [€D-

Theorem 4.6. Let [(%P(()] € IR™ be a dependent interval vector with respect to the partition
(J))~, and the multipliersS € R™. Let[.A(¢)] € IR™" be given by (4.18) with € R*, and
let R € R™*", [y] € IR", & € R" be given and defing] € IR™ and[C] € IR"*" by

2] = ) (Z S) 18] — R(Row(i)) - ([AY)]z)

KEJ

Z (Z(Zm )ﬂ ’]R(ROV\(O)-([A(”’]:E>), (437)

HEJiy
for (i=1,---,n)
k
[C] = JAOT =N T[GIR - [AM) (4.38)
v=1

Define[v] € IR"™ by means of the following Einzelschrittverfahren:

L<i<n:fu] = {H{[Z] +[C] [ul}}i, where [u] := (o], [oima]. (] lya])

If [v] c [y], thenR and every matrixA(¢) € [A(C)], ¢ € [¢] is regular. So every matrid(p),
p € [p] is regular, and for every € [¢] the unique solutior = A~(¢)¢(¢) of A(C) -z = £(C),
0(¢) € [£9P(¢)] satisfiest € 7 + [v].

Proof: The proof is done in a similar way as in the theorems 4.4 and 4.1
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The following algorithm depends on the above theorem forélad case of the parametric
interval matrix and the dependency right hand-side realrpatric interval vector.

Algorithm 4.6. Parametric interval linear systems (nonlinear real case, dpendency in the
right hand side)

1. Input { A(p) € R™" b(p) € R", [p] € IR* }
Using algorithms that have been presented in chapter 3risftran the elements
(2.2) to interval linear forms (4.16) and (4.17); the finakar form will be in the
forms (4.18)
3. Initialization
b :=mid([£([¢])); A :=mid(A([(]))
4. Compute an approximation inver&e(R ~ A~') of A with some standard algorithm
(see e.g[10)])
5. Compute an approximate mid-point solution
i = O(R - b);. Optionally improvet by a residual iteration.
6. Compute an enclosufé€’] using the form (4.38)
7. Compute an enclosufe] using the form (4.37)
Verification step
[v] := [4]
max= 1
repeat
[v] := [v] X € e-inflation
] = [v]
for i = 1tondo { Einzelschrittverfahren
(] = ©([=] + [C(Row(i))] - [v])
max++;
until [v] c [y] or max> 10

if [v] C [y] then {
all A(¢) € [A(¢)] are non-singular and the solutiohof A({)z = ¢(¢),

¢ €[], £(¢) € [19eP(¢)] exists and is uniquely determined ahe 7 + [v]; }
else {
Err =7 no inclusion computed, the interval matfi®(¢)| contains a singular

matrix or is ill conditioned’ }

Continued on next page
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Algorithm 4.6 — continued from previous page

10. Output { Outer solutior{v] and Error code Erf

Nonlinear Complex Case

All the methods and the algorithms presented in this sulmseddr the parametric interval
systems whose elements are nonlinear real functions cartbeded to complex parametric
interval systems (4.22), where the elements\gf) andb(p) are defined by (4.23).

Here, we will give one theorem and an algorithm derived frbm theorem. The theorem
is an extension of theorem 4.4. All other methods and algmstcan be extended in a similar
way.

Theorem 4.7. Let [A™"9eR()] € IC™™ be a row dependency interval matrix with respect to
the partition(.J;)¥, and the multipliersS € R™ (definition 4.1). Lef/(¢)] € IC™ be given by
(4.29) with¢ € R?**, and letR € C™*", [y] € IC", & € C" be given and defing] € IC" and

[C] € IC™ " by

=] = R(Row(i)) (Z (Z Suxu) ) wZ@ {R(Row(i) - (]

i =1 /.LGJll

_Z (Z (Z Sﬂxﬂ) jlg ) TZJ} (Z = 17 7n) (439)

J=1 \le=1 \peJi,
2k

€] == I-R-[AY] = [GI(R-[AY)]).

v=1

Define[v] € IC™ by means of the following Einzelschrittverfahren

L<i<n:fu] = {{[Z] +[C] [ul}}i, where [u] := (o], [vima]. (] lya])

If [v ] [y], then R and every matrixA(¢) € [A™"9R()], ¢ € [(] are regular. So every
matrix A(p), p € [p] is regular, and for every € [¢] the unique solutior: = A~'(¢)¢(¢) of
A(C) -2 =£(C), £(C) € [¢(C)] satisfiest € & + [v].

The next algorithm depends on the above theorem for the rperdency complex case of
the parametric interval matrix and the right hand-side ipa&taic interval vector.
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Algorithm 4.7. Complex Parametric interval linear systems (nonlinear corplex case,

row dependency)

1. Input { A(p) € C™" b(p) € C", [p] € IC* }
Using algorithms that have been presented in chapter 3risftran the elements
(4.23) to interval linear forms (4.27) and (4.28); the finakhr form will be in the
forms (4.29)
3. Initialization
b :=mid([£([¢])); A :=mid(A([(]))
4. Compute an approximation inver&e(R ~ A~') of A with some standard algorithm
(see e.g[10)])
5. Compute an approximate mid-point solution
i = O(R - b). Optionally improvet by a residual iteration.
6. Compute an enclosuré’|

if (SharpClthen { sharp enclosure (Popova modificatign)
[C] = O = R-[A9] = 3278 [G(R - [A¥)]))
else { rough enclosure (Rump’s methgd)

[C] = o = R-A([¢]))
Compute an enclosufe| using the form (4.39)
8. Verification step
] = [2]
max= 1
repeat
[v] := [v] X € e-inflation
] = [v]
for i = 1tondo { Einzelschrittverfahren
[vi] = O([zi] + [C(Row(@))] - [v])
max+-+
until [v] c [y] or max> 10

if [v] C [y] then {
all A(¢) € [A™"9r()] are non-singular and the solutiohof A(¢)x = £(¢),
¢ €[C], 4(¢) € [¢(¢)] exists and is uniquely determined ahd z + [v] }
else {

Continued on next page
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Algorithm 4.7 — continued from previous page

Err =" no inclusion computed, the interval matfix™"-9"(()] contains a
singular matrix or is ill conditioned }
10. Output { Outer solutiorv] and Error code Erg

4.3 Over- and Under-determined Parametric Interval Sys-
tems

In this section we will discuss the cases of over- and und&rchined parametric interval
systems. In both cases, we assume thatithe n—matrix A(p), p € [p] has full rank. This
means, in the over-determined cdse > n), A(p) has rankn, and in the under-determined
case(m < n), A(p) has rankm.

In Subsection 1.7.2, we have presented Rump’s methods feingoover- and under-
determined linear systems. In this section, we will use Ramyethod for solving over- and
under-determined parametric interval linear systems. A(@h) € S™*", b(p) € S™, p € [p],
whereS € {R,C}. According to (1.29) and (1.30), we consider the followiagge square
(m 4+ n) x (m + n)— parametric interval systems

( A(()p) -1 ) < v ) — ( bp) ) for m >n, I ism x m identity matrix (4.40)

A (p) y 0
AH —1 0
( 2 ) ( ! ) = ( ) for m <n, I isn xn identity matrix (4.41)
0 Alp) Y b(p)
A - ~~ - N /
=:B(p)eS(m+n)x(m+n) =:h(p)eSmtn

whereA” (p) is the Hermitian matrix ofi(p), i.e. the transposed matrix in the real case, [p].
In Subsection 4.3.1, we will study the parametric interyastem, whose elements are affine-
linear. The case if the elements are nonlinear functiond®ipresented in subsection 4.3.2.

4.3.1 Systems with Affine-Linear Functions as Elements
The Real Case

In this Subsection, the over and under-determined paraneterval system, whose elements
are affine-linear will be discussed. The method presentsgliedased on the Rump’s method,
which has been presented in subsection 1.7.2. Accordirtgetiorm (2.15), we can write the
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big (m +n) x (m + n)— parametric matrix and the bign + n)— parametric vector defined in
(4.40) or (4.41) in the following affine-linear forms

k k
B(p) =BY +> p,B”, n(p):=n® 4+ pnt. (4.42)
v=1

v=1

The big parametric system (4.40) or (4.41) can be rewrittémthe following form

k k
(B(O) + ZPVB(V)> .z =1 4 Zp”h(y)’
v=1 v=1

where the parametric vectpvaries within the rang@] € IR*.

Theorem 4.8.Let A(p) € R™*", b(p) € R™, p € R¥, m > n. DefineB(p) € Rim+mx(mtn)
to be a square parametric matrix in (4.40), and 1ép) € R™"" be the parametric vector
(b(p),0)"% and leta € R™*", [u] € IR™™", R € RUmtx(min) et[z] € IR™™, [C] €
IR +m)x(m+n) he defined by

k

z]:=R- (0@ - BOa)+ "[p,)(Rh"”) — RBY - @) (4.43)
v=1
k
[C]:=T-R-BY-) [p,J(R-B™), I'is(m +n) x (m + n) identity matrix (4.44)

v=1

Define[v] € IR™™™ by means of the following Einzelschrittverfahren:
L<i<mtn: ] ={O{[e]+[C] - [uul} }i, where[uu]:=([v1], -, [vie1], [ual, -, [men]) "
If [v] c [u], then there is ari: € & + [ with the following property:

Forany z € R" with z # & holds [|b(p) — A(p)z|| < |[b(p) — A(p)z||,p € [p]

wherez and|[z] are the firstn. components of and [v], respectively. Further the matri(p)
has maximum rank for everyp € [p].
Proof: The proof is obvious from the proof of theorem 4.1.

Theorem 4.9.Let A(p) € R™ ", b(p) € R™, p € R¥, m < n. DefineB(p) € Rm+m)x(min)
to be a square parametric matrix in (4.41), and 1€p) € R™" be the parametric vector

2(b(p),0)" € RI™*7) is a vector such that the first elements are those bfp) and the remaining compo-
nents are zero.
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(0,b(p))" and leta € R™™", [u] € IR™™, R € RmWx(min) ) et[z] € IR™", [C] €
IR(m+m)x(m+n) he defined by

k

2] :=R- (0 - BOa)+ "[p,)(Rh"”) — RBY - @) (4.45)
v=1
k
[C]:=T-R-BY-) [p,J(R-B™), I'is(m +n) x (m + n) identity matrix (4.46)

v=1

Define[v] € IR™™™ by means of the following Einzelschrittverfahren:
L<i<men: [o]={O{[e]+[C] - [uu]}}:, wherefuu]:=([v1], -, [vima], [u], - [tmsn])
If [v] - [u], then there is & € y + [y] with the following properties:

1. A(p)y = b(p)

2. if A(p)y = b(p), p € [p] for somey € R™ withy # g then||y|| < ||y

whereg and [y] are the lastn components of and [v], respectively. Furthermore the matrix
A(p) has maximum rank. for everyp € [p] .
Proof: The proof is obvious from the proof of theorem 4.1.

Now we will give the following algorithms for both cases (ovand under-determined)

Algorithm 4.8. Over-determined Parametric Linear Systems (affine-lineareal case)

1. Input { A(p) € R™" b(p) € R™, [p] € IR* }
2. From (4.40), define

[ Alp) I (= _( blp)
D) ()

3. Solve the systemB(p)Y = h(p) using algorithm 2.4, wittz] and[C] as defined
in (4.43) and (4.44), respectively
Vectorz from the vectory” is the desired enclosure
5. Output { The firstn components from the inclusion soluti@rj and Error code Erg
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Algorithm 4.9. Under-determined Parametric Linear Systems (affine-lineareal case)

1. Input { A(p) € R™*" b(p) € R™, [p] € IR* }
2. From (4.41), define

_ AT(p) -1 _ (= _ 0
b ( 0 A(p))y' <y>’h(p)' (b(p)>

3. Solve the systemB(p)Y = h(p) using algorithm 2.4, wittz] and[C] as defined
in (4.45) and (4.46), respectively
4. Vectory from the vectorY” is the desired enclosure
5. Output { The last» components from the inclusion soluti@r) and Error code Er¥

In Section 4.1 we have discussed the case if the elememt& o R™*" andb® € R™
in the form (2.16) are not exactly representable on the coenpidere, we will solve over-
and under-determined parametric interval systems usingnadification . According to our
modification (see page 99) and the forms (4.40) and (4.41pre®ent a big interval matrix
[C] € ITR(m+7)x(m+n) gand a big interval vectde] € ITR™*" as follows:

k

)+ [p) (R — RBY) - @) (4.47)

v=1

2
I
-
—~
(=3

c
|
Sy

c
=

Ead

[C]:=T-R-[BY]=) [p](R-B™), I's(m+n) x (m+ n) identity matrix (4.48)
v=1
with [z] and[C] as defined in (4.47) and (4.48), respectively. We can ap@yhborem 4.8
for the over-determined case, and the theorem 4.9 for therwhetermined case.
The following two algorithms depend on the above modificatjthe forms (4.47) and
(4.48)).

Algorithm 4.10. Over-determined Parametric Linear Systems (affine-lineareal case, after

the modification)

1. Input { A(p) € R™" b(p) € R™, [p] € IR* }
2. From (4.40), define

[ Alp) I (= _( blp)
o (5ay) v (4)

3. Solve the systemB(p)Y = h(p) using algorithm 2.4, wittz] and[C] as defined
in (4.47) and (4.48), respectively

Continued on next page
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Algorithm 4.10 — continued from previous page

B

Vectorz from the vectorY” is the desired enclosure
Output { The firstn components from the inclusion soluti@rj and Error code Er

o

Algorithm 4.11. Under-determined Parametric Linear Systems (affine-lineareal case, aftef

the modification)

1. Input { A(p) € R™" b(p) € R™, [p] € IR* }
From (4.41), define

_ AT(p) I _ (= _ 0
b ( 0 A(p)>’y' <y> hp): (b(p)>

3. Solve the systemB(p)Y = h(p) using algorithm 2.4, wittz] and[C] as defined
in (4.47) and (4.48), respectively
4. \Vectory from the vectorY” is the desired enclosure
5. Output { The last, components from the inclusion soluti@r and Error code Erg

A close look at the structure of the matrices in the paramesystems (4.40) and (4.41),
shows that each element of the matfip) appears twice in the big square matrix, which means
that this matrix involves dependencies. In this subsecti@ndeal with the parametric system,
whose elements are affine-linear. Considering form (4.62he elements o3, B, n(©
andh®, (v = 1,--- , k) are exactly representable on the computer, there are nodepeies,
and we use the algorithms 4.8 and 4.9 without any modificatBut, in case of the elements
of B andn® not exactly representable on the comptjténe dependencies occur between
the elements of the big square parametric interval matvigrfeelement occurs twice).

In [50], Popova has studied the over- and under-determined ihtarear systems, and she
took into account the dependencies between the elementdnteaval matrix|A] € R™*" and
its transposéA] " (every element occurs twice in the big system). However,ditienot take
account of the dependencies (column or row dependency)eketthe elements in the same
matrix [A] or [A]T (which means that this matrix may involve dependencies).

Here, we will give a modification of Popova’s method. Our nfigdition takes into account
the dependencies between the elements in the same matrtheamiements of its transpose
matrix.

We will start with the over-determined parametric interggbtems. Firstly, we suppose
that there is only row dependency between the elements. rdicgpto the definition 4.1, the

3We have enclosed these elements in small intervals (the {dcav), page 131).
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theorems 4.4 and 4.8, and Popova’s metfa, we can rewrite the forms (4.47) and (4.48)
into the following forms:

2] =) (u J+)° (Z ity + ri7m+uan+j>su> [aﬁ’])

J=1 =1 HeJ)
k
_'_Z[ V] <Z TZ] J Z Z TZJUT + 7 m+7u”+]) ET)> ) (449)
v=1 j=1 j=1 =1
i=1e mtn)
and
m 0 )
ZT:lriT[aS—j):l7 j=1,---.n
[Cyy) = 1ij —
N S W N N
211:1 ZUEJl T’L7m—|—u o [allj] TZ,j—nv ] =N + yoe ’m _I_ n
k ZT 1T2Tas—])7 jzl,"‘,n
-2 lnl- . (450)
o Z:—nzl Ti,m—‘,-ﬂ'a?(;;l_ﬂj — Tij—n, j =n-+ 17 ceem +n

('L:]_.’m_l_n)

respectively, wherg, andJ,,, (I, = 1,--- , N) are the partition of the index sét, - - - , n}.

Next we suppose that the dependency between the elemehtsmogtrix is column depen-
dency. According to Popova’s methods, the definition 4.2, the theorems 4.5 and 4.8, we
can rewrite the forms (4.47) and (4.48) into the followings:

2] = Z(ﬂnﬂ' + [bE'O)]) + Z (Z (Z(Twﬂj + Ti7m+jﬁn+u)5u> [aﬁ»])
=1

j=1 j=1 HEJ,
k m n

+Z[ 1/] (Z TZ_] j Z TZ_]UT + 7 m+7un+j> §7)> ) (451)
v=1 j=1 j=1 =1

(t=1---,m+n),
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and

N (0) -
Zh:l <ZN€JI1 riu5u> [allj]a J = ]-7 N

[Cijl == 1L
Yo 7’z’,m+7[a£2)+m] ~Tijm j=nA41 mAn
k ET:N@'TCLS;-), j=1--,n
-2 Inl- . (4.52)
S Pimer 0~ Tijny j=n4 1, men

(=1, m+n)

respectively, wherd, and.J;,, (I,l; = 1,--- , N) is the partition of the index s€tl, - - - ,m}.

The above forms (4.49), (4.50), (4.51) and (4.52) take immpant the dependencies
between the elements of the matrikp) and its transposé " (p) and the dependencies between

the elements in the same matrix.
According to the forms (4.49), (4.50), (4.51) and (4.52),wik give two algorithms for
the over-determined case.

Algorithm 4.12. Over-determined Parametric Linear Systems (affine-linearreal case,

row dependency taken into account)

1. Input { A(p) € R™" b(p) € R™, [p] € IR* }
From (4.40), define

[ Al I [z [ b(p)
B(p)-—< 0 AT(p)>' Y-—<y>, h(p)-—< 0 )

3. Solve the systemB(p)Y = h(p) using algorithm 4.1, withz] and[C] as defined in
(4.49) and (4.50), respectively

4. \Vectorz from the vectory” is the desired enclosure

5. Output { The firstn components from the inclusion solutiérj and Error code Erg

Algorithm 4.13. Over-determined Parametric Linear Systems (affine-lineareal case,

column dependency taken into account)

=

Input { A(p) € R™" b(p) € R™, [p] € IR* }
From (4.40), define

n

Continued on next page
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Algorithm 4.13 — continued from previous page

[ Alp) I (= _( blp)
o ( ) v=(T) o= (2)

3. Solve the systemB(p)Y = h(p) using algorithm 4.1, wittz] and[C] as defined in
(4.51) and (4.52), respectively
4. \Vectorz from the vectorY” is the desired enclosure

5. Output { The firstn components from the inclusion soluti@rj and Error code Er}

Next, we will discuss the under-determined parametriavatesystems. First we suppose
that there is only row dependency between the elements. alsording to the definition 4.1,
Popova’s method, and the theorems 4.4 and 4.9, we can reéheiferms (4.47) and (4.48)
into the following forms:

m m N
erz n+] b(o + Z nglum—i-ﬂ Z (Z (Z(Tiﬂaj + Ti,”‘i'jam-iw)sﬂ) [ 5(1))])

j=1 jl1=1 j=1 \li=1 \ueJ;

k m m n
+ Z[ y] (Z T n+j J Z Z(’f’iq—ﬂj + Ti,n+jam+T)a§I:—)> , (453)
v=1 j=1 j=1 =1

(=1 ,m+n),

and

N 0 .
Eh:l (ZNEJll riuS ) [al(lj)] J = ]-7 e,

[Cyy] = L;j —
> Ti,n+r[a5104)rm] —Tijem, J=m+1,--- m+n
k 22217}'7@%), j=1,---,m
> Il . (4.54)
- 2 Timwaf(ﬁm —Tijom, J=m+1-- m+n

(Z:]_.’m_‘_TL)

respectively, wherd, andJ,,, (I,l; = 1,--- , N) is the partition of the index sétl, - - - , n}.

Next we suppose that, the dependency is column dependetwgdiethe elements of the
matrix. According to the definition 4.2, and the theorems ah8 4.9, we rewrite the forms



Verified Solution of Parametric Linear System of Equatiosisig Generalized Interval
136 Arithmetic

(4.47) and (4.48) into the following forms

m n n N
[Zi] = Zn,n+j[b§-0)] + Z Tij1Um4j1 — Z <Z <Z(T2‘jau + Tz',n+,uam+j)5u> [041(30')]>
=1

=t j1=1 j=1 e,
k m m n
+ Z[ 1/] <Z Ti,n—‘,—jbg.y) o Z Z(TZTQJ + Ti7n+j71m+7)a§-l;)> ’ (455)
v=1 j=1 j=1 =1
(’L: 1-.. ’m_'_n)7
and
n 0 )
ZTeriT[as_j)], ] = ]_7 ,m
[Ciy] = Iij —
N 0 .
Zh:l (ZUEJll Ti,n-ﬁ-MSM) [al(lj)] — Ti7j—m7 ]=n + ]_7 ceeLm +n
k’ Z:—L:lrlTag—Z), ]: 1’-.. ,m
-2l . (4.56)
v=1 Z:—Lzl Ti,n—i-rag:z_q_’j = Tij—ms j =m + 17 ceom4n

('L:]_.’m_|_n)

respectively, wherg, and.J,, (I, = 1,--- , N) is the partition of the index s€tl, - - - ,m}.

The forms (4.53), (4.54), (4.55) and (4.56) take into actdi@ dependencies between
the elements of the matriX(p) and its transposel " (p) and the dependencies between the
elements in the same matrix.

The following two algorithms for the under-determined cdspend on the above modifica-
tions (4.53), (4.54), (4.55) and (4.56).

Algorithm 4.14. Under-determined Parametric Linear Systems (affine-lineareal case,

row dependency taken into account)

1. Input { A(p) € R™" b(p) € R™, [p] € IR* }
From (4.41), define

_ Al(p) -1 _ (= _ 0
v ( 0 A(p)>'Y' <y> hp) (b(p)>

3. Solve the systemB(p)Y = h(p) using algorithm 4.1, wittz] and[C] as defined in
(4.53) and (4.54), respectively

4. \Vectory from the vectorY” is the desired enclosure

5. Output { The last: components from the inclusion soluti@r and Error code Erg
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Algorithm 4.15. Under-determined Parametric Linear Systems (affine-lineareal case,

column dependency taken into account)

1. Input { A(p) € R™" b(p) € R™, [p] € IR* }
From (4.41), define

_ Al(p) -1 _ (= _ 0
b ( 0 A(p)>’y' <y> we) (b(p)>

3. Solve the systemB(p)Y = h(p) using algorithm 4.1, wittz] and[C] as defined in
(4.55) and (4.56), respectively

4. \Vectory from the vectorY” is the desired enclosure

5. Output { The last» components from the inclusion soluti@r) and Error code Er

Now, we suppose that the dependencies occur only in the higidl side of the system.
According to the definition 4.3, the theorems 4.6, 4.8 and &l Popova’s methods, we can
rewrite the form (4.47) into the following forms:

2] == Z (Z Tipd, ) ]+ Z (ﬁnﬂ' + Z(wﬁl + Ti,m+zﬂn+j)[a§?)]>

=1 \peJ; J=1 =1
k m n
+3 In] (Z righ = 3" N ity + Timrting)a §2> , (4.57)
v=1 j=1 j=1 17=1
(t=1---,m+n) for m>n

N m n
[z] = Z (Z Tintn ) 137+ Z Tijlmj — Z Z(mﬁj + ri,n+jﬁm+l)[af§(l))]
=1 1=1

HEJ

k m
+> )] (Z Pompibl — Z Z(r”aj + rmﬂamﬂ)ag?) , (4.58)

v=1 j=1 j=1 =1
(t=1---,m+n) for m<n

whereJ;, (I =1,--- , N) is the partition of the index s€tl, - - - , m}.
The above two forms (4.57) and (4.58) take the dependenetasebn the elements of the

vectorb(p) into account.
The following algorithms depend on the forms (4.57) and &4.%hich take into account

only the dependency in the right hand side.
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Algorithm 4.16. Over-determined Parametric Linear Systems (affine-lineareal case,

right hand side dependency taken into account)

1. Input { A(p) € R™" b(p) € R™, [p] € IR* }
From (4.40), define

[ Alp) I (= _( blp)
(5 ) v (4)

3. Solve the systemB(p)Y = h(p) using algorithm 4.1, withz] as defined in (4.57)
4. Vectorz from the vectorY” is the desired enclosure
5. Output { The firstn components from the inclusion solutiérj and Error code Erg

Algorithm 4.17. Under-determined Parametric Linear Systems (affine-lineareal case,

right hand side dependency taken into account)

1. Input { A(p) € R™" b(p) € R™, [p] € IR* }
From (4.41), define

_ Al(p) -1 _ [ _ 0
b ( 0 A(p)>’y' <y> we) (b(p)>

3. Solve the systemB(p)Y = h(p) using algorithm 4.1, withz] as defined in (4.58)
4. \Vectory from the vectorY” is the desired enclosure
5. Output { The firstn components from the inclusion solutiérj and Error code Erg

The Complex Case

All the methods and the algorithms that presented in thisectiion can be extended to the over
and under-determined complex parametric interval systéfms = = b(p), where the elements
of A(p) € C™ ™ andb(p) € C™, p € [p] € IC* are complex affine-linear.

4.3.2 Systems with Nonlinear Functions as Elements
Nonlinear real case

In this subsection we will study the over and under-deteethiiparametric interval system
whose elements are nonlinear real functions. The methddwipresented here based on the
methods presented in section 4.2. In Section 4.2, we hansftianed the nonlinear elements
of the parametric matrix and the right hand side paramegator into linear interval forms.
After this transformation, we have presented a new paraerieterval system, whose elements
are now interval affine-linear. According to this new sysigonm (4.19)), we can rewrite the
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big (m + n) x (m + n)—parametric system (4.40)» > n) into the following form

k k
([B(O)] +3° @[BM]) o=+ ) G, (4.59)

-

g

=[B(¢)] =:[Er(<)]

where the parametric vectgvaries within the rang&] € IR”.

Theorem 4.10.Let A(p) € R™", b(p) € R™, p € R*, m > n. Defing[B(¢)] € IRm+m)x(m+n)
and[u(¢)] € IR™™™ be a square parametric interval matrix and a parametric imgg vector
in (4.59), respectively. Furthermore, lgtc R™", [u] € IR™", R € Rm+mx0m+n) | et
2] € IR™ ™, [O] € IR(™F7)x(mHn) pe defined by

2] = R (W= [B"a)+ ) [GIR- (u] = [BY]- @)
C] = =Y [GIR-[B¥]), Iis(m+n)x (m+n) identity matrix

Define[v] € IR™*" by means of the following Einzelschrittverfahren:
L<i<m+n: o] = {{[]+[C]- [uul}t}s,

wherefuu] := ([v1], -+, [via], [, -+ [tmn]) T
If [v] C [u], then there is ari: € & + [ with the following property:

Forany z € R™ with = # # it holds that ||b(p) — A(p)z|| < ||b(p) — A(p)z||,p € [p],

wherez and|[z| are the firstn components of and [v], respectively. Furthermore, the matrix
A(p) has maximum rank for everyp € [p].
Proof: The proof is obvious from the proof of theorems 4.1 and 4.2.

The big(m + n) x (m + n)—parametric system (4.41) can be rewritten into the follgvin
form

v

k k
( T+ ¢BY)] ) =0T+ ¢t (4.60)
v=1 =1

J (.

-~ ~~

=:[B(¢)] [u(<)]

where the parametric vectgvaries within the rangé] € IR*.
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Theorem 4.11.Let A(p) € R™ ", b(p) € R™, p € R*, m < n. Defing[B((¢)] € ITRm+m)x(mn)

and[u(¢)] € IR™*" to be a square parametric interval matrix and a parametriemal vector
in (4.60), respectively. Furthermore, létc R™", [u] € IR™", R ¢ Rm+mxtmin) | et
2] € IR™ ™, [O] € IR0 T7)x(mHn) pe defined by

k

2] = R (W= [B"a)+ ) [GIR- (u] = [BY]- @)
[C] = I—R-[BYT=>[¢J(R-[BY]), Iis(m+n)x (m+mn) identity matrix

Define[v] € IR™™™ by means of the following Einzelschrittverfahren:

L<i<man: o] ={O{[14(C] - [uul}}, wherefuu]:= (o], - [o,oal. [, - [msn]) T

If [v] C [u], then there ig) € § + [y] with the following properties:
1. A(p)g = b(p)
2. it A(p)y = b(p), p € [p] for somey € R™ withy # 7 then|[7]| < |lyl],

wherey and[y| are the last, components of and [v], respectively. Furthermore, the matrix
A(p) has maximum rank. for everyp € [p] .
Proof: The proof is obvious from the proof of theorems 4.1 and 4.2.

The following algorithms will be given for the over- and umdketermined parametric in-
terval systems whose elements are nonlinear functions.

Algorithm 4.18. Over-determined Parametric Linear Systems (nonlinear re&case)

1. Input { A(p) € R™" b(p) € R™, [p] € IR* }
From (4.40), define

[ Alp) I (= )
B(ﬁ)-—( 0 AT(p)>’ Y-—<y>, h(p)-—< 0 )

3. Solve the systemB(p)Y = h(p) using algorithm 4.2
4. Vectorz from the vectory” is the desired enclosure
Output { The firstn components from the inclusion soluti@r and Error code Erg

N

o
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Algorithm 4.19. Under-determined Parametric Linear Systems (nonlinear ral case)

1. Input { A(p) € R™*" b(p) € R™, [p] € IR* }
From (4.41), define

[ ATp) I (= - 0
Br= ( 0 Alp) ) . ( y ) 2= ( b(p) )

3. Solve the systemB(p)Y = h(p) using algorithm 4.2
4. Vectory from the vectorY” is the desired enclosure
5. Output { The last» components from the inclusion soluti@r and Error code Erg

When applying the theorems 4.10 and 4.11, it is assumed thdependencies occur.
However, as said in Subsection 4.3.1 on page 133 every etevhelip) occurs twice in the
big square parametric interval system. Consequently, ifpesduare matrix involves depen-
dencies, which may also occur between the elements of théxmflp) itself (row or column
dependency). For this reason, we will modify the method idiesd above to take account of
the dependency between the elements in the big square raattizetween the elements in the
matrix A(p) itself.

We will start with the over-determined parametric intersgstems. First, we suppose that
there is only row dependency between the elements. Acaptdithe definition 4.1, and the
theorems 4.4 and 4.10, we rewrite the forms (4.49) and (4@0}he following forms

m N
~ 0 ~ ~ 0
] =3 | @+ 0D = DS (rijts + rimsting ) Sy | 1ol
7=1 =1 MEJLl

3G D> Z > (rigity + T ting;) Sy | [al)] | 4.62)

v=1 7=1 Jj=1 la=1 MEJLQ

and
> rir[al]), j=1m
[Cis] = L5 —
Zﬁ;l <Zu€le ri,mﬂSH) [041(?])'] —Tijen, j=n4+1--- m+n
’ S rielaly), j=1-.n
-> 16 (4.62)
v=1 Zﬁ;l <Zu€le ri7m+uSH) [ozl(fj)] —Tijen, J=n+1-- m+n

(=1, m+n)
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respectively, wherd,,, J,,, (I1,lo = 1,--- , N) is the partition of the index sé€tl, - - - , n}.

The above two forms (4.61) and (4.62) take into account tipedencies between the el-
ements of the matrixi(p) and its transposd " (p) and the dependencies between the elements
in the same matrix.

Next, we suppose that the dependency is column dependetwgdiethe elements of the
matrix. According to the definition 4.2, and the theorems a8 4.10, we can rewrite the
forms (4.51) and (4.52) into the following forms

m n N
2 =Y g + 0Dy = S ST Y ity + rissiins ) Su | [af)]
Jj=1 j=1 \lh=1 \peJ,
k m n N
EYG S YT S ity i) S | 0] ] |4.63)
v=1 j=1 j=1 \la=1 \peJ,

and

N (0) -
Zh:l <ZN€JI1 riu5u> [allj]a J = ]-7 N

[Cijl == 1L
22:1 Ti,m+r[a£2)+7,j] — Tij—n, j=n+1,-- m+n
N (v) .
k lezl (Z}LEJll TZ'HS;U') [allj] J = 17 e, n
- 6l . (4.64)
" Z?:l /r?i7m+7'[a'£si-7,j] — Tij—n, ] =n-+ ]-, e, m+An

(=1, m+n)

respectively, wherd,,, J,,, (l1,lo = 1,--- , N) is the partition of the index s€t., - - - ,m}.

As in the row dependency case, the above two forms (4.63) dwid)(take into account
the dependencies between the elements of the matyix and its transposel ' (p) and the
dependencies between the elements in the same matrix.

The following two algorithms for the over-determined caspehd on the above modifica-
tions.
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Algorithm 4.20. Over-determined Parametric Linear Systems (nonlinear rehcase,

row dependency)

1. Input { A(p) € R™" b(p) € R™, [p] € IR* }
From (4.40), define

[ Alp) I (= _( blp)
o (5ay) v (4)

3. Solve the systemB(p)Y = h(p) using algorithm 4.4, wittz] and[C] as defined in
(4.61) and (4.62), respectively

4. Vectorz from the vectory” is the desired enclosure

5. Output { The firstn components from the inclusion soluti@r and Error code Er}

Algorithm 4.21. Over-determined Parametric Linear Systems (nonlinear re&case,

column dependency)

1. Input { A(p) € R™" b(p) € R™, [p] € IR* }
From (4.40), define

[ Al I [ [ b(p)
n (e ()

3. Solve the systemB(p)Y = h(p) using algorithm 4.5, withz] and[C] as defined in
(4.63) and (4.64), respectively

4. \Vectorz from the vectory” is the desired enclosure

5. Output { The firstn components from the inclusion soluti@rj and Error code Er}

Now, we will discuss the under-determined parametric uakesystems. First, we suppose
that there is only row dependency between the elements. alsording to the definition 4.1,
and the theorems 4.4 and 4.11, we can rewrite the forms (4r&B)(4.54) into the following
forms

m m N
erz n+] b 0 + Z nglum—i-ﬂ Z (Z (Z Twaj + Ti7n+jam+u)5u) [Oéﬁf])
=1

j=1 j1=1 = pedy,

_'_Z[Cu] (Z T n+J by Z (Z (Z TWUJ + 7 n+3um+u>5 ) [ le]))(A' 65)
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and

N (0) -
lezl (ZMEJll Tiu5u> [allj]a J = 17 e, Mm

[Cz] = Iij —
Z:—nzl Ti,n—i-T[aiLO_’)_TJ] — Tij—ms j =m + 17 ceeomA+n
N () .
k lezl <ZHEJ11 Tiﬂsﬂ) [allj]7 J = 17 e, Mm
-2 6] , (4.66)
v=1 Z:—nzl Ti7n+T[a7(’L,/-i)-T,j] — 7“7;7j_m, ] =m + 1’ S Lm +n

(t=1---,m+n)

respectively, wherd,,, J,,, (l1,lo = 1,--- , N) is the partition of the index sétl, - - - , n}.

The above forms take into account the dependencies betweesldments of the matrix
A(p) and its transposd ' (p) and the dependencies (row dependency) between the eleiments
the same matrix.

Next, we suppose that the dependency is column dependetwgdrethe elements of the
matrix. According to the definition 4.2, and the theorems a8 4.11, we can rewrite the
forms (4.55) and (4.56) into the following forms

m n n N
(2] = Z Tim+i [bg»o)] + Z Tijlam—i-jl_z Z Z (rijlip + it plime ) Sy [O‘l(?y)']
j=1 j1=1 j=1 \lh=1 \pey
k m n N
3G D rns B> > (it A Timtinss)Su | [0f)] ] ](4.67)
v=1 7=1 7=1 la=1 MEJLQ
i=1---,m+n),
and
n 0 .
S rirlaly, j=1em
[Cis] == L5 —
P (B, i) 0 e =
n=1 \ Zopes, Tintup | 10,50 = Tij-m: ] = )T
k el j=Lee,m
-> 6 (4.68)
v= N v .
1 lezl <Z,U«€Jll Ti,”"rﬂSH) [al(1j)] — Tij—ms J :m—i—l, 7m—|—n

(i:l...’m_l_n)

respectively, wherd,,, J,,, (I1,lo = 1,--- , N) is the partition of the index s€tl, - - - ,m}.
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As in the row dependency case, the above forms take into attbe dependencies be-
tween the elements of the matri¥p) and its transposé ' (p) and the dependencies (column
dependency) between the elements in the same matrix.

The following two algorithms for the under-determined cdspend on the above modifica-
tions.

Algorithm 4.22. Under-determined Parametric Linear Systems (nonlinear ral case,

row dependency)

1. Input { A(p) € R™*" b(p) € R™, [p] € IR* }
From (4.41), define

- AT(p) —1 [z o 0
Pl = ( 0 Alp) ) he ( y ) o) = ( b(p) )

3. Solve the systemB(p)Y = h(p) using algorithm 4.4, wittz] and[C] as defined in
(4.65) and (4.66), respectively

4. Vectory from the vectorY” is the desired enclosure

5. Output { The last» components from the inclusion soluti@r and Error code Erg

Algorithm 4.23. Under-determined Parametric Linear Systems (nonlinear ral case,

column dependency)

1. Input { A(p) € R™*" b(p) € R™, [p] € IR* }
From (4.41), define

B Al(p) -1 (= - 0
Blor= ( 0 Ap) ) he ( y ) hp) = ( b(p) )

3. Solve the systemB(p)Y = h(p) using algorithm 4.5, wittz] and[C] as defined in
(4.67) and (4.68), respectively

4. Vectory from the vectorY” is the desired enclosure

5. Output { The last» components from the inclusion soluti@r) and Error code Er¥

Now, we suppose that the dependencies occur only in the higidl side of the system.
According to the definition 4.3, the theorems 4.6, 4.8 and &l Popova’s methods, we can
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rewrite the form (4.47) into the following forms:

[Zi] = Z <Z Tip “> Zun_w’f’w Z <Z(rijm + ri7m+Tﬂn+j)[a§3)]>

=1 HEJ] j=1 =1
k m n
+> 6] (Z (Z ) 5] ZZ(rijaT+n,m+7an+,»>[a§?1> . (4.69)
v=1 =1 \peJ; =1 7=1

i=1---,m+n) for m>n,

and

N
Z (Z Tintu ) ﬁl ‘|‘Z szum—i—] ZZ Tz*ru] + 7 n+]um+7)[ gg)]

=1 ned; j=1 =1
k N m n
Z (Z (Zn ) B1= D3 (ririy 7 lim ) 1) (4.70)
v=1 =1 \peJ; Jj=1 7=1
(i=1---,m+mn) for m<n

whereJ,, (I =1,---, N) is the partition of the index s€tl, - - - ,m}.

The above two forms (4.57) and (4.58) take into account tiped@encies between the
elements of the vectdKp) (right-hand side dependency).

The following algorithms depend on the forms (4.57) and &4.@hich take into account
only the dependency in the right hand side.

Algorithm 4.24. Over-determined Parametric Linear Systems (nonlinear rehcase,

right hand side dependency is taken into account)

1. Input { A(p) € R™" b(p) € R™, [p] € IR* }
From (4.40), define

[ Alp) I (= _( blp)
B(p)-—< 0 AT(p)>’ Y-—<y>, h(p)-—< ; )

3. Solve the systemB(p)Y = h(p) using algorithm 4.6, withz] as defined in (4.69)
4. Vectorz from the vectorY” is the desired enclosure
5. Output { The firstn components from the inclusion solutiérj and Error code Erg

Algorithm 4.25. Under-determined Parametric Linear Systems (nonlinear ral case,

right hand side dependency is taken into account)

1. Input { A(p) € R™" b(p) € R™, [p] € IR* }

Continued on next page
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Algorithm 4.25 — continued from previous page

2. From (4.41), define

- AT(p) —I [z - 0
= ( 0 Alp) ) he ( y ) )= (b(p) )

3. Solve the systemB(p)Y = h(p) using algorithm 4.6, withz] as defined in (4.70)
4. \Vectory from the vectorY” is the desired enclosure
5. Output { The last» components from the inclusion soluti@r) and Error code Er

Nonlinear complex case

Next, we will study the over- and under-determined complasametric interval systems. In
subsection 4.2.2, we have transformed the nonlinear corefdenents of the complex paramet-
ric matrix and the right hand side complex parametric vect@momplex linear interval forms.
According to the new system (form (4.29)), we can rewritettiggm +n) x (m +n) complex
parametric system (4.4Q)n > n) into the following form:

2% 2%k
([B(O)] + Z (V[B(”)]> o — [U(O)] + Z Cu[u(”)], (4.71)

B —[u(0)]

where the parametric vectgvaries within the rangg] € TR?*.

All the methods and the algorithms presented in this sulwsefir the parametric interval
systems whose elements are nonlinear real functions caxtdreded to the complex parametric
interval systems (4.22), where the elementslgf) andb(p) have been defined in (4.23) .

Here, we will give one theorem and an algorithm dependingh@theorem. The theorem
is an extension of the theorem 4.4. All other methods andrittgns can be extended in a
similar way.

Theorem 4.12.Let A(p) € C™ ", b(p) € C™,p € C¥,m > n. Defing[B(¢)] € ICm+mx(m+n)

and[u(¢)] € IC™*™ to be a square parametric interval matrix and a parametrieival vector
in (4.71), respectively. Furthermore, lgtc C™*", [u] € IC™*", R € Cm+mxtm+n) | et
[z] € IC™™, [O] € ICt™7)x(mHn) pe defined by

2] = R-(u”)-[B"]a +ZCV - [B"] @)

(€] = I—R-[BYT=>[¢I(R-[BY]), Iis(m+n)x (m+mn) identity matrix
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Define[v] € IC™™™ by means of the following Einzelschrittverfahren:
1<i<m+n:[y ={{]+I[C] [uu]}};,

where[uu] := ([v1], -+, [vis1], [wil, -+, [tman)) T
If [v] c [u], then there is art: € & + [ with the following property:

Forany z € R™ with z # # it holds that||b(p) — A(p)z|| < ||b(p) — A(p)z||,p € [p],

wherez and[z] are the firstn. components of and [v], respectively. Furthermore, the matrix
A(p) has maximum rank for everyp € [p).

The next algorithm depends on theorem 4.12 for the complex cbthe parametric interval
matrix and the right hand-side parametric interval vector.

Algorithm 4.26. Over-determined Parametric Linear Systems (nonlinear corplex case)

Input { A(p) € C™",b(p) € C™, [p] € IC* }
From (4.40), define

[ Al I (= [ b(p)
n T8 Yoo (4)

3. Solve the systemB(p)Y = h(p) using algorithm 4.2
4. Vectorz from the vectory” is the desired enclosure
5. Output { The firstn components from the inclusion soluti@rj and Error code Er}

N

The big(m + n) x (m + n)—parametric system (4.41)n < n) can be rewritten into the
following form

2% 2%k
([B(O)] + Z (V[B(”)]> o — [U(O)] + Z Cu[u(”)], (4.72)
v=1 v=1

-~ ~~

=:[B(¢)] [u(<)]

where the parametric vectgvaries within the rangé] € TR?*.
All the methods and the algorithms presented in this sulmsecan be extended for the
system (4.72) in a similar way as for the system (4.71).



Appendix A

Numerical Examples

Here, we will give some numerical examples. These exampikk$e&vsolved by using our
methods and our extension modifications. We will compareresults with results of other
methodd25], [50]. The results will show if our methods are better than the rothethods or
not. The results are rounded outwardlyl todigits accuracy.

Example A.1. Consider the parametric linear system

—(p1 +p2)p2 pips P2 1
D2Pa P 1 x= | 1 |,
P1p2 DP3Ps /P2 1

p] = ([1,1.2],]2,2.2],[0.5,0.51], [0.39, 0.40], [0.39, 0.40))” € IRS.

Table A.1: Comparison between the result of our approachtaencesult of Kolev’'s method for
the example A.1

Our approach Kolev’'s Method [25]
[0.0437186424,0.0497723017] | [0.0431128394,0.0503945267]
[0.07401702462, 0.0875727930] | [0.0736025551, 0.0882198954]
[0.5818193467,0.6272108705] | [0.5794103909, 0.6293882420]

Example A.2. Consider the parametric linear system

—(p1 + p2)ps p2pa e 1
Ds D3Ps 1)’

149
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Table A.2: Comparison between the result of our approactitemcesult of Kolev’s method for
the example A.2

Our approach Kolev's Method

[0.3746486793, 0.4566410667] | [0.3671813238, 0.4641084222]
[1.6214783193,1.7293906570] | [1.6137117081, 1.7371572682]

[p] = ([0.96,0.98], [1.92, 1.96], [0.96, 0.98], [0.48, 0.5], [0.48, 0.5])" € IR>.

Example A.3. Consider the parametric linear system

—(p1 +1)p2 pips exp(p2) cos(p1)
D2Pa4 P 1 "X = 1 ;
P1p2 P3ps \/]9_2 1

p] = ([1,1.2],]2,2.2], [0.5,0.51], [0.39, 0.40], [0.39, 0.40))T € IRS.

Table A.3: Comparison between the result of our approachitaencesult of Kolev’s method for
the example A.3

Our approach Kolev’'s Method
[0.265762779, 0.3255627206] | [0.2602971444,0.3261979655]
[0.1037992094, 0.1460538387] | [0.1028701372,0.1471736909]
[0.1692320664, 0.2406349268] | [0.1667725335, 0.2440364907]

Example A.4. Consider the parametric linear system

—(p1+1)p2 p3ps /D2 exp(ps)
P1p2 P3 1 = 1 ;
Papa p1ps  cos(p) 1

p] = ([1,1.2],]2,2.2], [0.5,0.51], [0.39, 0.40], [0.39, 0.40))T € IRS.
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Table A.4: Comparison between the result of our approachtaentesult of Kolev’'s method for

the example A.4

Our approach Kolev’'s Method
[0.0878602547, 0.5907797390] [0.01169636310, 0.6643751080]

[—0.8388826950, —0.0219649822] | [—0.9637189875, 0.1052272441]
[1.2781973595, 2.9547867497] [0.9611400557, 3.2630834342]

Example A.5. Consider the parametric linear system

( cos(p1) P )x _ ( I+ po ) | (A1)
1 VD1 I+p
] = ([0.5,0.51],[0.39,0.40]) .

In this example, we will draw our result and the solution dehe parametric linear system
(A.1) by using WebComputiri85]. For more details about the visualization of parametric
solution sets, sef®3]. The drawing will be shown in Fig. A.1l.

Table A.5: Comparison between the result of our approactitencesult of Kolev’s method for

the example A.5

Our approach Kolev’'s method

[1.6401046782,1.6715562634] [1.6369952413, 1.6750861296]
[—0.2262226732, —0.19827572339] | [—0.2356109207, —0.18949654811]
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Eolev's method

Teeeeewe 655 1.66 1.665 1.6 1.475

our approach

Figure A.1: The plot of the solution set and our results ferélkample A.5

Example A.6. Consider the complex parametric linear system

(p1+p2)p2 P1p3 D2 1
P2Pa 3 1 x=| 11, (A.2)
DP1P2 exp(ps) P3Ds 1

[p] = ([1,1.2] +i[2,2.2],[3,3.5] +i[4,4.5], [0.5,0.51] +4[1.5, 1.51],[0.39, 0.40] + 4[1.39, 1.40],
(0.39,0.40] + 4[1.39, 1.40))T € IC>.

Table A.6: The result of our approach for the example A.6

Our approach
[0.00818396281, 0.01318191794], [—0.05208158842, —0.04246270799]
[—0.02491301580, —0.01323649406], [—0.03736785316, —0.02530939799]
[—0.27549008680, —0.23020222589], [—0.00245649126, 0.01436352664]
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The complex parametric linear system (A.2) contdircomplex parameters, i.eL0 real
parameters. Kolev’'s method is not applicable to solve cemparametric linear systems. Thus,
we can’t compare the result. If the system (A.2) can be endakididwo3 x 3 real parametric
linear systems with real parameters, we could solve the new systems using Kotesthod.
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Appendix B

Practical Examples

In this appendix, practical examples illustrate the meshuale been presented in this thesis for
obtaining narrow bounds to the solutions of parametricruatiesystems, whose elements are
nonlinear functions of interval parameters.

Example B.1.[5] Structural engineers use design codes formulated to censitcertainty for
both reinforced concrete and structural steel design. Ap&none-bay structural steel frame
(initially considered in5] ), is presented in Fig. B.1.

I‘ 2h >I

H %1 L %
—> N 7

EC EC
I ] h

C C

A A

C C
AN R +

Figure B.1: One-bay Structural Steel Frafag

The authors of5] have applied conventional methods for analysis of framecstires to as-
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semble a system of linear equations
K- -x=F.

In [5], the system has been presented as follows:

12ECIC AbEb 6E.1. _ A By
+ 0 in 0 0 L,
0 12E;,I;, 4 A Ec 0 6Jib21b 6]?,2[;, 0
b b
651, 41361c -
“Ee 0 o+ = « 0 0
6E,1, . 4E, T, 2E, I,
0 % « + T T 0
GEbIb 2Eb1b 4Ec1c
0 % 0 T a+ =7 0
ApEp ApEy | 12E I
T 0 0 0 0 P+ =5
12,1 65,1 6E, 1
0 - 0 1 T 0
b b b
0 0 0 0 —a 08 L.
(&
0 0
d2,
12E,1, 0 H
L d2, 0
0 0 r2,
6B, 0 0
L? 75, 0
65,1 ' -
— Lb2b —x T6Z
b 0
0 6E I 3,
L? 0
A E 12E I 6E,1
Acbe 4 % _ Lb2 b d3y
Ly b 0
_6Eb1b 4ECIC 7”3
L: “t L : 0

whose elements are, in general, nonlinear functions ofdhewing parameters: Material
propertiesky, E., cross sectional propertief, 1., Ay, A., lengthsL,, L., and the joint stiffness
«. The right hand side vectoF = (H,0,0,0,0,0,0,0)" in this example is considered to
depend only on the applied loadirg. Table B.1 will show the typical nominal parameter
values and the corresponding worst case uncertainties eggsed if5] .

In [5] all the parameters, except the lengths, are considered tonoertain and varying
within given intervals. Replacing, and L. with their nominal values will give the following
parametric interval linear system

K(p) -z = F(p), (B.1)

where the vector of the uncertain parametergis- (E, E., Iy, I., Ay, Ac,a, H) T, the right
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Table B.1: Parameters involved in the steel frame exampddr, hominal values, and worst case
uncertainties

Parameters Nominal value Uncertainty
Young modulus FEj, 29 x 10 Ibs/in? +348 % 10* (£12%)
E, 29 % 10 Ibs/ir? +348 % 10* (+12%)
Second moment I, 510in* +51 (+10%)
L. 272 in? +27.2 (+£10%)
Area Ay 10.3in? +1.03 (£10%)
A, 14.4in? +1.44 (£10%)
External forces H 5305.5 lbs +2203.5 (£41.6%)
Joint stiffness o 2.77461 * 108 Ib-in/rad  41.26504 * 108 (£45.6%)
Length Ly 288 1in
L. 144 in

hand side vector i$'(p) = (H,0,0,0,0,0,0,0) ", and the parametric matrix(p) is

EcIc AbEb Eclc
518332 T 288 0 3456 0
Byl AcE, EyIy
0 1990656 | 144 0 13824
E.l. Eclc _
3456 0 &+ =5 «
Eply _ Eply
0 13824 o o+ =5
Eblb Eblb
0 13824 0 144
ALE,
— 5 0 0 0
0 _ By 0 _ Eply
1990656 13824
0 0 0 0
AyE
0 - 2b88b 0 0
Eyply 0 _ By, 0
13824 1990656
0 0 0 0
Eply _ Eply
144 0 13824 0
E.l. Byl _
a+ =55 0 13824 @
AbEb ECIC ECIC
0 288 T 248832 0 3456
Byl 0 AcEe | Byl Byl
13824 144 1990656 13824
. E.l. _ EyI %
« 3456 13824 a+ =55

We will solve the system (B.1) by algorithms that in thisithé@he results will be compared
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with other methods based on the Element-By-Element apipiféac In order to compare the
results generated by our methods and those generated byro#tbods, we strictly follow the
structure system and the uncertainties for the parametansidered ir{5] . Initially, the system
(B.1) will be solved with parameter uncertainties which &¥é of the values presented in the
last column of Table B.1,

A, € [10.2897,10.3103], A, € [14.3856, 14.4144],
E, € [28965200, 29034800], E, € [28965200, 20034800],
I, € [509.49,510.51], I, € [271.728,272.272),

o € [276195960, 278726040], H € [5283.465, 5327.535).

(B.2)

A directed replacement approach, called naive intervalrapph, which does not take into
account the dependencies between the parameters in sgivé@egical problems. It is well-
known that the solution of a naive interval system greatlgrestimates the solution of the
original parametric interval system. I3] , the naive interval results have been compared with
the results obtained by the authorg[bf.

Table B.2 (this table has been presentedsh), gives the naive interval solution of the
one-bay frame problem and the solution of the element-byeht global stiffness system using
intervals of uncertaintyl % of those given in equation (B.2) in interval arithmetic. Tdw-
umn "Mid-point solution” contains the floating point solotis to the system whose coefficients
are given by the midpoints of the parameter intervals. THeroo ” Naive interval solution”
contains the solution computed by an interval linear equagolver applied to equation (B.1)
with interval coefficients. The column "Interval solutiolement-by-element approach” con-
tains the solution computed by element-by-element appratashes mean no available data.
For the column labeled "Tight solution” the authors {§] have solved the!® extremal indi-
vidual problems formed by taking lower and upper bounds efititervals for each of the0
parameters in this system.



Table B.2: Naive interval solution, element-by-element ap

proach, tight solution and the mid-point solution of the one

bay steel frame example with uncertain parameters

Interval solution

Solution Mid-Point Naive interval element-by element
components| solution ¢ solution [u] approach [v] [5] Tight solution [w]

1. d2, 0.153568 [0.09375783,0.21337873] [0.09246203, 0.21467453| [0.15237484,0.15476814]

2. d2,%10° 0.332364 [0.19060424, 0.47412283] [0.18751797,0.4772091] [0.32940418,0.33533906]*
3. 2,103 | —0.962852 | [—1.3531968, —0.57250484] | [—1.361667, —0.56403468] [—0.97085151, —0.95490139]
4. r5,%10° | —0.459955 | [—0.6557609, —0.26414725] | [—0.66002154, —0.25988661] | [—0.4638112, —0.45611532]
5. 76,%10° | —0.445563 | [—0.64100045, —0.2501251] - [—0.44930811, —0.4418354]
6. d3, 0.151028 [0.091230936, 0.21082444] - — [0.14985048, 0.15221127]

7. d3, * 10° —0.332364 | [—0.47412283, —0.19060424] - — [—0.33533906, —0.32940418] *
8. r3, * 103 —0.943133 | [—1.3330326, —0.55323186] - — —— [—0.95100335, —0.93531196]

These intervals are disjoint to our results, see page 162doe details

64T
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Next, we will solve the parametric linear system (B.1) bygsiur algorithms that have
been presented in Chapter 4 (Algorithm 4.2, page 110). T&Bshows the results obtained
by our methods. The results are rounded outwardly to 10glagturacy. In table B.4, we will
compare our results with the results that have been predantéable B.2. Additionally, we
will compare the width between the results. Dashes mean aitasle data.

Table B.3: The results using our algorithms for the one-bay
steel frame example

Solution Mid-Point
components|  solution ¢ Our approach [u]
d2, 0.1532674393 [0.1522003979, 0.1543344807]

d2, % 103 0.3267821043 [0.3237265615, 0.3298376470]*
r2, %10 | —0.9646668639 | [—0.9718884924, —0.9574452354]
r5, * 10> | —0.4656795813 | [—0.4692080254, —0.4621511371]
r6, * 10> | —0.4270205236 | [—0.4303066281, —0.4237344189] *
d3, 0.1507136505 [0.1496603364, 0.1517669645]
d3, «10® | —0.6709042527 | [—0.6775001999, —0.6643083054]*
r3, %103 | —0.9327734470 | [—0.9398183531, —0.9257285408]

O N~ W N E

These intervals are disjoint to the result§%si see page 162 for more details



Table B.4: Comparison of width between the results of the

solution of one-bay steel frame example

Interval solution wid([w]) Wwid([w])
Solution element-by element <=> <=>
components Tight solution [u] approach [v] [5] Our approach [w] wid([u]) wid([v])
1. d2, [0.15237484,0.15476814)] [0.09246203, 0.21467453| [0.1522003979, 0.1543344807] < <
2. d2, % 10° [0.32940418, 0.33533906] [0.18751797,0.4772091] [0.3237265615,0.3298376470] |see page 16 <
3.72, %10 |[-0.97085151, —0.95490139]| [—1.361667, —0.56403468] |[—0.9718884924, —0.9574452354] < <
4.75, %103 [—0.4638112, —0.45611532] |[—0.66002154, —0.25988661]|[—0.4692080254, —0.4621511371] < <
5. r6, * 10? [—0.44930811, —0.4418354] - — —— [—0.4303066281, —0.4237344189] | see page 16p— — —
6. d3, [0.14985048, 0.15221127] - = —— [0.1496603364, 0.1517669645] < - — =
7.d3,x10° |[—0.33533906, —0.32940418] - = —— [—0.6775001999, —0.6643083054] |see page 162— — —
8.73.x10° |[-0.95100335, —0.93531196] - —— [—0.9398183531, —0.9257285408] < - — =

T9T
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Discussion about the disjoint intervals: As for the second, fifth and seventh elements of
the solution components presented in table B.4, we seehbatdventh element [F] (tight
solution column) is disjoint to our result (our approach ewin). The same apply to the sec-
ond and fifth elements. During our research, when asking thbaa of [5] about this point,
he answered that it maybe represent a significant differénd® be sure that our results are
correct, we solve a linear system whose coefficients arendiyethe mid-points of the para-
metric intervals. This means that we solve the system (BiBywa standard program that has
been presented in the C++ Toolbox bofdld] 2 chapter 10. The results obtained by using this
program are shown in table B.5.

1.068852880658436 /6 0 2.282407407407407E6
0 2.907429711612654 £'6 0
2.282407407407407E6 0 4.965721111111111E8
0 1.069878472222222E6 —2.7T7T461E8
0 1.069878472222222E6 0
—1.0371527777TT7TT8 EG 0 0
0 —7.429711612654321E'3 0
0 0 0
0 0 —1.03715277TTTTTTS E6
1.069878472222222FE6  1.069878472222222F6 0
—2.77461E8 0 0
4.828776666666666£8  1.027083333333333 '8 0
1.027083333333333E£8  4.965721111111111E8 0
0 0 1.068852880658436 6
—1.069878472222222E6 —1.069878472222222E6 0
0 —2.T7461E8 2.282407407407407E6

We still have contact with the author [&].
2This book contains standard verification methods for sgigome numerical problems.
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0 0 d2,
—7.429711612654321F3 0 dz, 030553

0 0 r2, !
—1.069878472222222 6 0 ‘ rd, _ 8 (B.3)
—1.069878472222222 6 —2.7T7461E8 r6,

0 2.282407407407407 E6 d3, !
2.907429711612654F6 —1.069878472222222F6 d3y /
—1.069878472222222F6 4.965721111111111E8 r3, 8

Table B.5: The result of the standard program for the equa-

tion (B.3)
Solution The results using a
components standard program from [10]
1. d2, [0.15326743932, 0.15326743933]
2. d2,*10? [0.32678210426, 0.32678210427]
3. r2, %103 [—0.96466686393, —0.96466686392]
4. 75,103 [—0.46567958126, —0.46567958125]
5. 76, *10° [—0.42702052356, —0.42702052355]
6. d3, [0.15071365047, 0.15071365048]
7. d3,* 103 [—0.67090425268, —0.67090425267]
8. r3,x10° [—0.93277344698, —0.93277344697]

From table B.5, we see that the second, fifth and seventh elsi@e inside our results, in
the other hand they are outside the resulfs]f.

Fortunately, we found another articl®2] that treated the same system. Fr¢b2], we
present the disputed points, which are

[0.3237760067, 0.3297873075], [—0.4306060526, —0.4234337856] and
[—0.6773978325, —0.664409280], respectively.
We see that this results are approximately similar to ounlssand are disjoint to the result

obtained by the author db]. We leave this point as an open point to be dealt with in furthe
research.
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A close look at the structure of the mat#iX(p) shows that some of the elements occur more
than once in the matrix. For example, in the first column tleereint4, £, / L, occurs twice, and
in the second column the elemént, I,/ L; also occurs twice, which means that this matrix
involves column dependencies. For this reason, we will usenodification method for solving
the parametric linear system. We can get very sharp enadssbly using our algorithm 4.5.
The result obtained by this algorithm will be shown in tables Bnd will be compared with the
results presented ifb] . Dashes mean no available data.



Table B.6:

Comparison of width between the results ob-

tained by using our algorithm 4.5 and the results have been
presented ifj5] for the one-bay steel frame example

Interval solution the Interval solution wid([w]) wid([w])
Solution Mullen-Muhanna EBE Element-By Element <=> <=>
components approach[u] [5] approach [v] [5] Our approach [w] wid([u]) | wid([v])
1. d2, [0.15206288, 0.15507492] [0.09246203, 0.21467453] [0.1522222105, 0.1543126681] < <
2. d2,x10% | [0.32918317,0.33554758| [0.18751797,0.4772091] 0.3237737639, 0.3297904446] < <
3. r2,%10% |[—0.97485786, —0.95084958]| [—1.361667,—0.56403468] |[—0.9717510343, —0.9575826935]| < <
4. 15, %10% |[—0.46757208, —0.45234116] | [—0.66002154, —0.25988661] | [—0.4691418232, —0.4622173393]| < <
5. r6,x10° - = —— - = —— [—0.4302440072, —0.4237970398] | — — — | — — —
6. d3, - — = - — —— [0.1496821482,0.1517451527] - | ===
7. d3,x10° - = —— - = —— [—0.6774029258, —0.6644055795]| — — — | — — —
8. r3,x*10? - — —— - = —— [—0.9396826738, —0.9258642201]| — — — | — — —

GoT
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In table B.7, we present the solution of the system (B.1)pethmeters uncertainties),
6% and 10% of the values presented in the last column of table B.1.
Our methods presented in this thesis fail in solving the peetric linear system (B.1) for the
worst case (ovet0%) parameters uncertainties given in table B.1.



Table B.7: The results obtained by using our methods for

the one-bay steel frame example with several uncertainties

Solution Our approach Our approach Our approach
components with uncertainties 4% with uncertainties 6% with uncertainties 10%
1. d2, [0.1486049172,0.1579299614] [0.1458478424,0.1606870363] [0.1393293982, 0.1672054804]
2. d2, * 103 [0.3137079637, 0.33985624438| [0.3062538575,0.3473103510] [0.2891932959, 0.3643709126]
3. r2, % 103 [—0.9965488214 — 0.9327849064] | [—1.0157707980 — 0.9135629298] | [—1.0621554053, —0.8671783225]
4. r5, % 103 [—0.4816098940, —0.4497492685] | [—0.4915948991, —0.4397642634] | [—0.5165829082, —0.4147762542]
5 76,%10% | [-0.4418829137,—0.4121581334] | [—0.4512239293 — 0.4028171178] | [—0.4746488393, —0.3793922078]
6. d3, [0.1461065413, 0.1553207596] [0.1433777279, 0.1580495730] [0.1369167455,0.1645105554]
7. d3,x10° | [-0.6992543615 — 0.6425541438] | [—0.7155622139, —0.6262462914] | [—0.7532523551 — 0.5885561502]
8.  r3.%10% | [-0.9639052139, —0.9016416800] | [—0.9827050822, —0.8828418117] | [—1.028137227, —0.8374096674]

L9T
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Example B.2. [31] A frame is a mechanical system. It is build from elastic ekdad beams
joined at nodes using both stiff joints and possibly alsampjoints, and loaded by some exter-
nal forces applied at its nodes or distributed along the beam

a)

g
y Julllulltéj
§1 2 :
FiN
b) ~
Rz Ml Mﬁl MM llzﬂ
~f T BTzt

yj—b
% B=in:

Figure B.2: Planar Frame (a) and its Fundamental Systenterhial Parameters (31]

Assuming small displacements and linear elastic mateaal &nd using the method of
forces, the frame has been described3d] by a set of equations which start from equilib-
rium equations for forces and bending moments, see Fig. Bi@.beam properties are Young
modulust’ and momentum of inertid of the beam cross-section. In case of this frame the final
matrix of the system is not symmetric. More than one coeftiokthe matrix depends on the
value of any given parameter. Moreover, the elements ofitfie hand side vector depend on
parameters of the beams, not only on external loads (thisifypdue to the presence of dis-
tributed load along one of the beams). The parameters ofriduise are given as dimensionless
numbers. It is assumed that all the beams have the same YauhgusZ' but momentum of
interia J of the beam cross-section are related by the formila= J;3 = 1.5.J54. Substitut-
ing that into the combined equations for the frame and makjmgropriate simplifications, the
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following system has been obtained3i]:

Ay s 0 00 0 00 M, ;
o 2ho+2ls —2bs 0 0 0 00 Moy ;
0 2y 3lyt+2s 0 0 0 00 Mo, .
0 0 0o 00 0 11 RY 802
: — 0 (B.4)

0 0 0 11 1 00 RY z
—1 0 0 0 l12 l12+l240l23 RZ I (lqz—i ll )
11 0 —lu0 0 00 R 2 120 274
0 0 100 Iy 00 R o

§ql24

As described iff31], the values of lengths of the beams and the load have takevatbhes
lig = loy = 1, l53 = 0.75 and ¢ = 10 with the uncertainty of=1%. Then

l12 € [0.99,1.01], Iy € [0.99,1.01], los € [0.7425,0.7575], ¢ € [9.9,10.1].

The authors 0f31], have compared the results of the mid-point solution andnikiéh of their
results, as shown in table B.8.

Table B.8: Interval results of the frame example

Solution Mid-Point Interval wid([z])/xo

components| solution z, | solution [z][31] %
1. M, 0.25 0.233,0.268] 14
2. My —0.5 [—0.536, —0.466] 14
3. My —1 [—1.072, —0.932] 14
4. RY —0.75 | [~0.812, —0.692] 16
5. RY 6.75 6.573,6.933] 5.3
6. RY 4 [3.911,4.091] 4.5
7. RY —0.667 | [-0.722,—0.615] 16
8. R: 0.667 0.615,0.722] 16

Now, we will solve the parametric linear system (B.4) by gsar algorithms that have
been presented in Chapter 4 (algorithm 4.2 page 110). TabfsBows the results obtained
by our methods. The results are rounded outwardly to 10<slagturacy.
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Table B.9: The results using our algorithms for the frame
example

Solution Mid-Point wid([w])/c
components solution ¢ Our approach [w] %

1. M, 0.2500375000 [0.2390812483, 0.2609937517] 8.7

2. Moy —0.5000750000 | [—0.5218084621, —0.4783415378] 8.7

3. My —1.0001500000 | [—1.0350459364, —0.9652540635] 7

4. RY —0.7501125000 | [—0.7906129894, —0.7096120106] 10.8

5 R} 6.7500125000 [6.5837604614, 6.9162645385] 4.9

6. RY 4.0001000000 [3.9171122546, 4.0830877454] 4.1

7. Ry —0.6667666666 | [—0.7155390805, —0.6179942528] 14.6

8. R} 0.6667666667 [0.6179942528, 0.7155390805] 14.6

In table B.10, we will compare our results with the resultattpresented in table B.8.
Additionally, we will compare the width between the resultse results are rounded outwardly

to 3 digits accuracy.

Table B.10: Comparison of width between the results of the

frame example

wid([u])
Solution Interval <=>
components| solution [z] [31] | Our approach [w] | wid([z])
1. M, 0.233,0.268] 0.239,0.261] <
2. My [—0.536, —0.466] | [—0.522, —0.478] <
3. My [—1.072,-0.932] | [—1.035,—0.965] <
4. RY [—0.821,—0.692] | [—0.791, —0.709] <
5. RY 6.573,6.933] 6.583,6.916] <
6. RY 3.911,4.091] 3.917,4.083] <
7. R® [—0.722, —0.615] | [—0.716,—0.617] <
8. RY 0.615,0.722] 0.617,0.716] <
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