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Chapter 0

Introduction

This thesis concerns the interaction of two widely known topics in the field
of applied mathematics. These are Markov chains (or likewise singular M-
matrices) and Schwarz methods.

Markov chains (see, e.g., [9, 20, 62, 65]) as well as singular M-matrices [9, 73]
are extensively used, their range of application stretching from stochastic
processes over network modeling to the discretisation of partial differential
equations.

Schwarz methods are widely used as preconditioners for the numerical solu-
tion of partial differential equations and can be classified as domain decom-
position methods; see, e.g., [57, 63, 71].

Both topics are brought together for the solution of a consistent square linear
system of the form

(0.1) x = Bx + b,

where a nonnegative matrix B is considered. The matrix B is either column
stochastic, i.e. it represents a Markov chain, or I−B is a singular M-matrix;
see, e.g., [15, 40, 48]. If

(0.2) (I −B)z = 0, z > 0

for some positive vector z, then (0.1) can be regarded as the same problem,
whether B is a Markov chain or I −B is a singular M-matrix.

It is a known technique to solve (0.1) using block Jacobi or block Gauss-
Seidel iterations; see, e.g., [65]. Schwarz methods can be seen as a gener-
alisation of these techniques. They naturally occur in two setups; see, e.g.,
[6, 30, 63, 71]. First, the additive Schwarz iterations, which generalise the
block Jacobi iteration. Second, the multiplicative Schwarz iterations which
extend the block Gauss-Seidel iteration. The generalisation comes mainly
from the decomposition which now allows the blocks to have overlap.

1



0. Introduction 2

Both techniques, the additive and multiplicative Schwarz iteration, have
their own advantages. Additive Schwarz methods are easy to parallelise.
Multiplicative Schwarz usually converges more rapidly but cannot be par-
allelised in such an easy way. However, it can be partly parallelised using
block asynchronous iterations; see, e.g, [2, 10, 39].

In this work, solutions of (0.1) with the restriction (0.2) using additive and
(standard and asynchronous) multiplicative Schwarz iterations are consid-
ered.

This is done for several different block updates including the standard (one-
level) update (see, e.g., [6, 48]), the two-stage update (see, e.g., [14]), and an
update derived from the power iteration. Additionally, relaxed versions of
the three block updates are considered. The Schwarz iterations are presented
in an algebraic setup which is used in a variety of articles, e.g., [6, 15, 40, 48].

One main goal of this thesis lies in the detailed analysis of the structure of
a nonnegative matrix B from (0.1) which satisfies (0.2). It turns out that B
possesses some basic pattern which can be exploited to construct convergent
Schwarz iterations.

The first investigations are made in the case that I−B has a one dimensional
null space. Then B has exactly one strongly connected class and the graph
of BT contains necessarily a spanning tree which is rooted in this strongly
connected class. If the null space of B has dimension r > 1, then B has
exactly r strongly connected classes and the graph of BT contains r trees,
each of which is rooted in another strongly connected class. The union
of this trees can be interpreted as a spanning forest which is the natural
generalisation to the spanning tree.

Based on these observations, operators for Schwarz iterations can be con-
structed which have the same null space as I − B (consistency) and are
(semi)convergent.

First of all, this is done for non-relaxed block updates. Then it turns out
that multiplicative Schwarz iterations do not converge unconditionally; one
needs a compatibility condition on how to choose the blocks and the order
in which these blocks are updated. The blocks and the order come from the
spanning tree within the graph of BT .

Then it is shown that relaxed block updates eliminate the restrictions of
the non-relaxed case and multiplicative Schwarz as well as additive Schwarz
can be carried out with nearly no restrictions. Additionally, applications to
block asynchronous iterations become possible.

Based on the results for the case that I−B has a one dimensional null space,
some extensions are made in the case of higher dimensional null spaces.

Altogether, several new results for additive and multiplicative Schwarz it-
erations as well as asynchronous iterations are achieved. In contrast to the



3

known theory on this topics (see, e.g., [2, 10, 13, 15, 39, 40, 44, 48, 55, 56]),
the theory presented here is completely uniform and based only on the struc-
ture which is either a spanning tree or a spanning forest within the graph
of BT .

As a lot of theoretical aspects are covered in here, the thesis is divided into
seven chapters.

Chapter 1 introduces some known basics and notation in matrix theory.

Then the two model problems for nonnegative matrices B from (0.1) which
satisfy (0.2) are stated (Section 2.1). They are distinguished by the dimen-
sion of the null space of I −B which is either one or larger. After this, the
necessity and sufficiency of the above mentioned structure is proven for both
model problems (Sections 2.2 and 2.3).

The additive and multiplicative Schwarz iterations including all block up-
dates are introduced in Sections 3.2 and 3.3 of Chapter 3. Beside this, the
concept of partially asynchronous iterations for linear systems is discussed
and their application to the block updates is explained (Section 3.4). After
this, the operators which occur within the iterations are analysed in Section
3.5. Based on the analysis, the problems which one must try to overcome
for Schwarz methods and partially asynchronous iterations are discussed in
Section 3.6.

According to the problems revealed in Chapter 3, a graph based approach
is motivated in Section 4.1 of Chapter 4. The approach is restricted to the
case that the null space of I −B is one dimensional.

This motivation is followed by a few known theorems which provide a frame-
work for the convergence of inhomogeneous Markov chains (Section 4.2).
Then, in Section 4.3, the basic idea is presented, which is based on the
structure revealed in Chapter 2. As the first idea is only applicable to sin-
gle row updates, the generalisation to block updates follows in Section 4.4.
With this results, consistent (semi)convergent multiplicative Schwarz op-
erators are constructible. Equipped with the convergence framework and
the constructed operators, the first new results for multiplicative Schwarz
iterations for the classical one-level update and the two-stage iteration are
proved in Section 4.5.

The behaviour of relaxed block updates is examined in Section 4.6. It
turns out that relaxation transforms the problem of consistency and
(semi)convergence from a multiplicative to an additive one (in a graph theo-
retical sense). Additionally, some conditions which are needed to guarantee
consistency and (semi)convergence are not needed anymore. This leads to
some new results for relaxed Schwarz iterations.

Furthermore, the analysis of additive and relaxed multiplicative Schwarz
iterations can be carried out in parallel, which immediately delivers new
results for additive Schwarz iterations for both, one-level and relaxed two-
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stage block updates (Section 4.7).

Finally, an application to partially asynchronous iterations becomes possible
in the case of relaxed one-level and relaxed two-stage block updates (Section
4.8). The presented results are all new.

As the theory in Chapter 4 concerns the case that the null space of I − B
is one dimensional, the more general case is discussed in Chapter 5. There,
new generalised results for the one-level update are derived but the con-
vergence for the two-stage update is only achieved for stationary iterations
(Sections 5.1). The same holds for relaxed block updates for multiplicative
and additive Schwarz iterations (Sections 5.2 and 5.3). Finally, some trivial
extensions are discussed in Section 5.4. Additional results for asynchronous
iterations are not presented as the convergence theory from Chapter 4 is not
strong enough.

After all results are presented, a detailed comparison with known results
and other convergence theories is done in Chapter 6. After a survey of some
analytical convergence theories in Section 6.1, the results of multiplicative
and additive Schwarz are compared with the latest known results (Section
6.2 and 6.3). The comparison of the results for the partially asynchronous
iterations are done in a very detailed manner in Section 6.4. The chapter
ends with a discussion of other graph based results (Section 6.5).

Chapter 7 summarises the results and, additionally, further questions and
open problems are presented.



Chapter 1

Preliminaries

In this chapter all objects of interest which frequently appear in this thesis
will be introduced. If not stated otherwise everything being discussed below
can be found in [9]. Further background material can be found in, e.g., [43].

1.1 Basic notation and definitions

The identity operator on IRn is denoted by In or simply I, the null operator
by 0n or 0. The vector e is always the vector of all ones, i.e. (1, 1, . . . , 1)T ∈
IRn.

Indexing

For a given A ∈ IRm×n the elements of A are denoted by aij or ai,j for
1 ≤ i ≤ m and 1 ≤ j ≤ n.

For a given matrix A ∈ IRn×n and two subsets V1, V2 ⊂ {1, . . . , n} the matrix
A[V1, V2] consists of the entries aij satisfying i ∈ V1 and j ∈ V2. If V1 = V2,
then the notation A[V1] is used, and A[V1] is also said to be the principal
minor of A. If the sets V1 and V2 can be uniquely identified by their indices,
the notation A[1, 2] or A12 is used.

If A ∈ IRn×m and B ∈ IRn×k, then [A | B] ∈ IRn×(m+k) represents the
concatenated matrix.

Nonnegativity

A matrix A ∈ IRm×n is called nonnegative if all aij ≥ 0; this is denoted by
A ≥ 0. If all aij > 0, the matrix A is called positive. In the latter case one
writes A > 0. For some compatible B, the relation A ≥ B holds if and only
if A−B ≥ 0 and similarly A > B if and only if A−B > 0.

5
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The concept carries naturally over to vectors.

Spectra

For A ∈ IRn×n the vector spaces R(A) and N (A) are the range and the null
space, respectively. The set σ(A) ⊂ IC denotes the set of all eigenvalues of
A and ρ(A) ∈ IR the spectral radius, i.e.

ρ(A) := max{|λ| : λ ∈ σ(A)}.

The scalar γ(A) is defined to be

γ(A) := max{|λ| : λ ∈ σ(A) and λ 6= ρ(A)},

and plays an important role if ρ(A) = 1. The index of an eigenvalue λ ∈ IC
is defined as

indλ(A) := min{k ∈ IN0 : rank((λI −A)k) = rank((λI −A)k+1)}.

The ranks are equal (cf. [9, 73]) if and only if

(1.1.1) R((λI −A)k)⊕N ((λI −A)k) = IRn.

M-matrices and splittings

Let A ∈ IRn×n. A is an M-matrix if A = βI − B, B ≥ 0, and ρ(B) ≤ β. If
ρ(B) = β, the matrix A is singular, otherwise nonsingular; see [9, 73].

The following theorem is well known; see, e.g., [9, 73].

Theorem 1.1 A ∈ IRn×n is a nonsingular M-matrix if and only if A−1 ≥ 0.

A pair of matrices (M, N) is called a splitting of A if A = M −N and M−1

exists. A splitting is called

• weak (or nonnegative) if M−1N ≥ 0,

• weak-regular [53] if M−1N ≥ 0 and M−1 ≥ 0,

• regular [73] if M−1 ≥ 0 and N ≥ 0, or

• M-splitting [61] if M is an M-matrix and N ≥ 0.

The following theorem can be helpful to create a splitting based on principal
minors (cf. [9]).

Theorem 1.2 Let A ∈ IRn×n be a nonsingular M-matrix, then each prin-
cipal minor is a nonsingular M-matrix.
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Moreover there holds:

Theorem 1.3 Let A ∈ IRn×n be a nonsingular M-matrix, then there exists
a (weak) regular splitting A = M −N such that ρ(M−1N) < 1. Moreover,
each (weak) regular splitting A = M −N satisfies ρ(M−1N) < 1.

Norms and nonexpansivity

The only norm being frequently used here is the weighted max norm which
is defined as

‖x‖v = max
i=1,...,n

|xi|

vi
,

for a positive vector v ∈ IRn; see, e.g., [6]. Therefore, ‖ · ‖e = ‖ · ‖∞. The
associated matrix norm for given A ∈ IRn×n is

‖A‖v := sup
‖x‖v=1

‖Ax‖v = max
i=1,...,n

(|A|v)i

vi
.

A matrix A ∈ IRn×n is said to be nonexpansive [25] if there exists a norm
‖ · ‖ such that

‖Ax‖ ≤ ‖x‖,

for all x ∈ IRn or, equivalently, ‖A‖ ≤ 1 . Furthermore, A is called paracon-
tractive [25] if there exists a norm such that for all x ∈ IRn,

‖Ax‖ < ‖x‖ ⇔ Ax 6= x.

1.2 Graphs

The basic definitions are taken from [61]. The definitions related to the
classification of vertices are due to [9].

Basics

A (directed) graph Γ is a pair (V, E) with E ⊆ V × V . Elements of V are
called vertices, while elements of E are called edges.

If the vertex set is V = {1, . . . , n} then sometimes the graph Γ is directly
identified with its edge set E.

A path from u ∈ V to w ∈ V of length k is a sequence (v0, . . . , vk) in V such
that v0 = u, vk = w, and (vj , vj+1) ∈ E for j = 0, . . . , k − 1.

If there exists a nonempty path from u to w one says that u has access to
w in Γ. This is denoted by u→ w. If u = w, the path is called closed. If all
vertices of a closed path are pairwise distinct, the path is called a circuit.
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A graph is called a forest if it does not contain a closed path. A forest is
a tree, if there is one vertex v0 ∈ V which has access to all other vertices.
This vertex is called the root of the tree.

The union Γ1 ∪ Γ2 of two graphs Γ1 and Γ2 with identical vertex sets V is
defined to be the union of the edge sets.

If Γ1 and Γ2 are graphs with identical vertex sets V , the product graph
Γ1Γ2 = (V, E) is defined by (u, w) ∈ E if there is a v ∈ V such that
(u, v) ∈ E1 and (v, w) ∈ E2. One writes Γ2 = ΓΓ, etc. If V is a given vertex
set, the graph ∆ = (V, E) with E := {(v, v) : v ∈ V } denotes the diagonal
graph of V .

The reflexive transitive closure Γ of a graph Γ is defined to be

Γ = ∆ ∪ Γ ∪ Γ2 ∪ . . . .

Therefore, a u ∈ V has access to w ∈ V if and only if (u, w) is an edge of Γ.

The graph of a matrix

For A ∈ IRn×n, the (directed) graph of A is the pair Γ(A) = (V (A), E(A))
with V (A) = {1, . . . , n} and E(A) = {(i, j) : aij 6= 0}. In this case, the
vertices are also called states or indices.

The first three results in the following lemma are an immediate consequence
of the above definitions.

Lemma 1.1 Let A, B ∈ IRn×n be nonnegative, and let α ∈ IR be positive.
Then

Γ(αA) = Γ(A),

Γ(A + B) = Γ(A) ∪ Γ(B),

Γ(AB) = Γ(A)Γ(B).

If A is a nonsingular M-matrix then Γ(A−1) = Γ(A).

Proof: See [61].

Classification of vertices

Now the notion of irreducibility will be introduced [9, 62, 73] and some basic
definitions for the classification of indices/vertices are given.

Let a graph Γ be given. If some u ∈ V has access to v ∈ V and vice versa,
then u communicates with v which is denoted by u ↔ v. The relation
induced by communication is an equivalence relation. The classes are the
strongly connected components (subgraphs) where in each class every vertex
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communicates with every other vertex. A graph is called strongly connected
if there is only one equivalence class with respect to the communication
relation.

If A ∈ IRn×n is some matrix and Γ(A) the corresponding graph, then A
is called irreducible if Γ(A) is strongly connected. Otherwise A is called
reducible.

The concept of irreducibility leads to the following theorem.

Theorem 1.4 Let A ∈ IRn×n be an irreducible M-matrix.

1) If A is nonsingular, then A−1 > 0.

2) If A is singular, then each proper principal minor of A is a nonsingular
M-matrix.

Proof: For 1) see [9] or apply Lemma 1.1. For 2) see [9].

For an A ∈ IRn×n, the classes of A are the equivalence classes of Γ(A) with
respect to the communication relation. A class α has access to a class β if
there is an index i ∈ α and a j ∈ β such that i has access to j. A class is
called final if it has no access to another class.

If α is a class of A, then A[α] is the submatrix of A based on the indices
j ∈ α. With this, a class α is called basic if ρ(A[α]) = ρ(A), otherwise α is
called nonbasic.

1.3 Singularity and convergence

Let A ∈ IRn×n be given. It is standard to say that A is convergent if
limk−→∞ Ak = 0 and this holds if and only if ρ(A) < 1; see [9, 73]. Since the
case ρ(A) = 1 is to be discussed here, the notion of convergence becomes
more general.

Semiconvergence

The matrix A is called semiconvergent if limk−→∞ Ak = A∗ exists and ad-
ditionally A∗ 6= 0.

The property A∗ 6= 0 is not necessary but separates convergent from semi-
convergent matrices. The following lemma is well known.

Lemma 1.2 A ∈ IRn×n is semiconvergent if and only if A satisfies the
following three conditions:

1) 1 ∈ σ(A),
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2) γ(A) < 1, and

3) R(I −A)⊕N (I −A) = IRn.

Furthermore, if A∗ = limk−→∞ Ak then A∗ is a projection onto N (I − A)
along R(I −A).

Proof: See [9].

Remark 1.1 1) Condition 3) of the above lemma is an algebraic formu-
lation, which states that there are no generalised eigenvectors to the
eigenvalue 1. This is equivalent to ind1(A) = 1 (cf. (1.1.1)).

2) By definition, P ∈ IRn×n is a projection if P 2 = P . For any projection
P one has R(P ) ⊕ N (P ) = IRn and I − P is also a projection. The
matrix P is called a projection onto R(P ) along N (P ). For more
details see [5, 9, 17].

Spectral decompositions

In contrast to convergent matrices, semiconvergent matrices have an additive
decomposition which splits the matrix into a projection and a convergent
part. To understand this, the concept of the group generalised inverse is
needed.

Let A ∈ IRn×n be given. A matrix X ∈ IRn×n is the group inverse of A (see
[5, 9, 17]) if

1) AXA = A,

2) XAX = X,

3) AX = XA.

The group inverse of A is denoted by A# and is unique if it exists. The
existence is equivalent to R(A) ⊕ N (A) = IRn or likewise ind1(A) = 1.
Furthermore, the mapping XA is a projection onto R(A) along N (X) and
AX is a projection onto R(X) along N (A). But AX = XA, and therefore
R(A) = R(X).

The conditions for the existence of the group inverse give the final relation-
ship to semiconvergence by the following lemma.

Lemma 1.3 A matrix A ∈ IRn×n is semiconvergent if and only if there
exists a pair of matrices (P, Q), such that

1) A = P + Q,
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2) P is a projection onto N (I −A),

3) PQ = QP = 0, and

4) ρ(Q) < 1.

In this case, limk−→∞ Ak = P with P = I − (I − A)(I − A)# and Q =
A(I −A)(I −A)#. Additionally, ρ(Q) = γ(A).

Proof: See [44].

The above lemma allows statements for iterations of the form

xk+1 = Axk + b, k = 0, 1, 2, . . . ,

where x0 is given, b ∈ R(I − A), and A = P + Q is a decomposition as
above. In this case (see [9])

lim
k−→∞

xk = (I −A)#b +
(

I − (I −A)(I −A)#
)

x0 = (I −A)#b + Px0.

For semiconvergent A ∈ IRn×n, a pair (P, Q) that satisfies the above condi-
tions is called a spectral decomposition. Spectral decompositions have been
successfully used by several authors, e.g. [7, 14, 15, 35, 37, 40, 41, 42].

It should be mentioned that for any A with ind1(A) = 1, there always exists
a decomposition

A = P + Q̃,

where P is a projection onto N (I − A) and PQ̃ = Q̃P = 0. But in this
general case ρ(Q̃) < 1 need not hold since γ(A) < 1 is not guaranteed.

This section ends with a few results on spectral decomposable matrices.

Lemma 1.4 Let B ∈ IRn×n be given and let (P, Q) be a spectral decompo-
sition of B. Then:

1) R(Q) ⊂ N (P ) and R(P ) ⊂ N (Q).

2) Bv = 0 for some 0 6= v ∈ IRn if and only if Pv = Qv = 0.

3) Equality holds in 1) if and only if B is nonsingular.

4) I −B = (I − P )(I −Q) = (I −Q)(I − P ).

5) (I −B)# = (I − P )(I −Q)−1 = (I −Q)−1(I − P ) = (I −Q)−1 − P .

Proof: Easy, by direct calculation. ⊔⊓

For the next lemmata, the restriction of an operator B ∈ IRn×n to an in-
variant subspace X is denoted by B|X . If B is a basis of X, then the
corresponding coordinate representation is denoted by (B|X)B.
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Lemma 1.5 Let B ∈ IRn×n be given and let (P, Q) be a spectral decompo-
sition of B. Then:

1) P ≥ 0, if B ≥ 0.

2) ‖P‖z = ‖B‖z = 1, if Bz = z for a positive z ∈ IRn.

3) R(P ) and N (P ) are invariant subspaces of I −Q.

4) (I −Q)|R(P ) = I|R(P ).

Proof: Assertion 1) follows immediately from 0 ≤ limk−→∞ Bk = P . If
Bz = z, then Pz = z and Qz = 0. Hence, 2) follows. If x ∈ N (P ), then
(I − Q)x ∈ N (P ) since PQ = 0. If x ∈ R(P ), then Px = x and Qx = 0,
therefore (I − Q)x ∈ R(P ). Hence, 3) is proven and 4) is an immediate
consequence. ⊔⊓

Lemma 1.6 Let B ∈ IRn×n be nonnegative. Assume there exists a spec-
tral decomposition (P, Q) of B and let the subset B = {el1 , . . . , elk} of the
canonical basis of IRn be a basis of N (P ). Then, with V = {l1, . . . , lk}:

1) (Q|N (P ))B = Q[V ] ≥ 0.

2) ((I −Q)|N (P ))B = (I −Q)[V ] is a nonsingular M-matrix.

Proof: Assume w.l.o.g. that V = {1, . . . , k}. Let Q be partitioned w.r.t. V
and its complement, then

Q =

(
Q11 Q22

Q21 Q22

)

.

Part 3) of Lemma 1.5 implies QN (P ) ⊂ N (P ) and therefore Q21 = 0 and
Q11 ≥ 0. Additionally, ρ(Q11) < 1 follows from ρ(Q) < 1. Since B =
{e1, . . . , ek}, the restriction of Q to N (P ) w.r.t. B is necessarily Q[V ] = Q11

and this proves 1). Part 2) is obvious since ρ(Q[V ]) = ρ(Q11) < 1 and
I[V ] = I|N (P ) = (I|N (P ))B. ⊔⊓

Remark 1.2 The restriction of Lemma 1.6 to a subset of the canonical base
has been done for simplicity. There might exist a generalisation of part 2)
to arbitrary bases of N (P ) with respect to the invariant cone of P , but cones
will not be further considered here; for cones see, e.g., [8, 9, 58].

1.4 Spectra and eigenvectors of nonnegative ma-

trices

There is a large bibliography on the theory of spectra of nonnegative matri-
ces; see [9, 62, 73] and the references therein. Here some basics are recapit-
ulated which will be helpful in the next chapters.
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The first fact presented here deals with the interaction of matrix norms and
the index of a maximum modulus eigenvalue.

Theorem 1.5 Let B ∈ ICn×n be given. The following two statements are
equivalent:

1) indλ(B) = 1 for all λ ∈ σ(B) with |λ| = ρ(B).

2) There exists a matrix norm ‖ · ‖ with ‖B‖ = ρ(B).

Proof: See [47] or [64].

If B ∈ IRn×n is a nonnegative matrix with a positive right eigenvector v
with respect to ρ(B), then there holds for the weighted max norm

‖B‖v = ρ(B).

For such matrices B, each eigenvalue λ with |λ| = ρ(B) has the index one.

Another algebraic ansatz which leads to the same result is based on M-
matrices having the so called property c (for details see [9, 49, 54]).
This property is defined for M-matrices A ∈ IRn×n and is equivalent to
ind0(A) ≤ 1. One consequence is the following lemma which might be a
good alternative to Theorem 1.5.

Lemma 1.7 Let A ∈ IRn×n be a singular M-matrix. Suppose there exists
a vector v > 0 such that Av ≥ 0, then A has the property c which implies
ind0(A) = 1.

Proof: See [49].

The link between Lemma 1.7 and Theorem 1.5 is clear since A = ρ(B)I−B
for some nonnegative B and ind0(A) = 1 if and only if indρ(B)(B) = 1.

If A = I − B is an M-matrix with B ≥ 0, ρ(B) = 1, and there exists some
positive v ∈ IRn satisfying Bv = v, then both, Lemma 1.7 and Theorem 1.5
apply and at least the conditions 1) and 3) of Lemma 1.2 are fulfilled. It
should therefore be interesting under which conditions there exists a posi-
tive eigenvector corresponding to the spectral radius. One answer for the
irreducible case (cf. Section 1.2) is given by the famous Theorem of Perron
and Frobenius.

Theorem 1.6 Let B ∈ IRn×n be nonnegative and irreducible. Then:

1) There exists a λ ∈ σ(B) such that λ = ρ(B).

2) There exists a positive eigenvector z corresponding to ρ(B).

3) ρ(B) is a simple eigenvalue.
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Proof: See [9, 62, 73].

If the above B is reducible, then a positive vector must exist if the basic
classes of B (cf. Section 1.2) behave in a certain manner.

Theorem 1.7 Let B ∈ IRn×n be nonnegative, then there is a positive eigen-
vector z to the spectral radius if and only if the basic classes of B are exactly
its final ones. The latter means that if B has r > 0 final classes, then there
is a permutation matrix Π such that

(1.4.1) ΠBΠT =










D1 0 . . . 0 0
0 D2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Dr 0
E1 E2 . . . Er F










where each Di is square, irreducible, and its indices belong to a final class.
Additionally, ρ(Di) = ρ(B) and ρ(F ) < ρ(B).

Proof: See [9].

If B ∈ IRn×n, B ≥ 0 does not meet the assumption of Theorem 1.6 or 1.7,
then part 1) of Theorem 1.6 still holds, but the eigenvector v needs not be
positive. Anyway, it can be assumed nonnegative as Rothblum has proven.

Theorem 1.8 Let B ∈ IRn×n be nonnegative and let N ((ρ(B)I − B)k)
with k = indρ(B)(B) be the algebraic eigenspace. Assume that B has m
basic classes α1, . . . , αm, then the algebraic eigenspace contains nonnegative

vectors v(1), . . . , v(m), such that v
(i)
j > 0 if and only if the index j has access

to αi in the corresponding graph Γ(B). Furthermore, any such collection is
a basis of the algebraic eigenspace.

Proof: See [9, 60].

Finally, consider other eigenvalues whose modulus is equal to ρ(B). The
following theorems provide informations about their position in the complex
plane and their eigenvectors.

Theorem 1.9 Let B ∈ IRn×n, B ≥ 0. Assume that ρ(B) = 1 and there ex-
ists a positive eigenvector z satisfying Bz = z. Then every other eigenvalue
λ with |λ| = 1 is a root of unity of degree at most n.

Proof: See [3].

Theorem 1.10 Let B ∈ IRn×n be nonnegative. Suppose there exists an
eigenvalue λ ∈ σ(B) satisfying λ ∈ IC \ IR+ and a corresponding eigenvector
v = y + iz.
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Then span{y, z} ∩ IRn
+ = {0} and if λ /∈ IR, then y and z are linearly

independent.

Proof: See [3].

For a given nonnegative B ∈ IRn×n with ρ(B) = 1 there are some simple
results which guarantee that there are no complex eigenvalues λ such that
|λ| = 1, i.e. γ(B) < 1.

Theorem 1.11 Let B ∈ IRn×n be nonnegative and suppose ρ(B) = 1.

1) If B is irreducible and has at least one positive diagonal entry, then
γ(B) < 1.

2) If B has a positive diagonal, then γ(B) < 1.

3) If Bα = (1−α)I+αB with α ∈ (0, 1), then γ(Bα) < 1 and N (I−Bα) =
N (I −B).

Proof: For 1) and 3) see [9, 73]. For 2) see [1].

Remark 1.3 If a nonnegative B ∈ IRn×n has a positive eigenvector z corre-
sponding to ρ(B), then this eigenvector will also be called the Perron vector
of B.
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Chapter 2

The problem classes

This chapter introduces the model problems and the singular linear systems
to be dealt with in this thesis. First, there will be two problem classes
defined, namely MP and GMP. The class GMP can be regarded as an
extension of MP because the solution of GMP will be partly generated from
the solution of MP in Chapter 4. Finally, some subclasses of M-matrices and
Markov chains will be defined which are derived from the model problems.
Those matrices have a structure which will be helpful in Chapters 4 and 5
to solve MP and GMP with iteration methods provided in Chapter 3.

2.1 The model problems MP and GMP

Assume that for A ∈ IRn×n there holds

A = I −B,

B ≥ 0,

ρ(B) = 1.

For a given b ∈ R(A), the problem to be solved is to find a solution x∗ ∈ IRn

of

(2.1.1) Ax = b⇔ x = Bx + b,

for x ∈ IRn.

If B fulfils the assumptions of Theorem 1.6, i.e. B is irreducible, there is a
positive vector z such that Az = 0 and dimN (A) = 1. The latter implies
that z is a basis of N (A). Since such a situation is of further interest but
still too special, assume that there exists a positive vector z ∈ IRn such that

(2.1.2) z ∈ N (A).

17
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Condition (2.1.2) is fundamental because it implies some basic structure of
the non-zero pattern of B which will be analysed in the following sections.
Moreover, this structure exists whether dimN (A) = 1 (cf. Section 2.2) or
not (cf. Section 2.3); but if dimN (A) > 1 it becomes more general.

The focus of this thesis is to compute a solution of (2.1.1) which satisfies
Condition (2.1.2) by iteration.

If dimN (A) = 1, then the construction of the iteration operators is easier
to understand and there will be more convergence results. Thus, the first
model problem is given as follows.

Definition 2.1 Let A ∈ IRn×n be given such that A = I − B, B ≥ 0, and
ρ(B) = 1. Assume N (A) = span{z}, z > 0, and let b ∈ R(A). Then the
model problem MP is to find a solution x∗ of

(2.1.3) Ax = b, x ∈ IRn,

or equivalently to the (inhomogeneous) fixed point problem

(2.1.4) x = Bx + b, x ∈ IRn.

This problem is of course not just a theoretical exercise, but it arises in
many applications.

Example 1:

This example is taken from [9] and can also be found in [16].

Let R := {x ∈ IR2 : a ≤ x1 ≤ b, c ≤ x2 ≤ d} for finite a, b, c, d ∈ IR.
The problem is to find an approximation to the solution of the continuous
function u(x1, x2) satisfying Poisson’s equation

∂2u

∂2x1
+

∂2u

∂2x2
= −f(x1, x2),

where f is a given continuous function on R. The periodic boundary condi-
tions are

u(a, x2) = u(b, x2), c ≤ x2 ≤ d,

u(x1, c) = u(x1, d), a ≤ x1 ≤ b.

A standard discretisation, using a 5-point star and a lexicographical ordering
of the unknowns, leads to a system Au = g where g is entirely determined by
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the right hand side f and the boundary conditions. The matrix A becomes

A =












D −I 0 . . . 0 −I
−I D −I . . . 0 0
0 −I D . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . D −I
−I 0 0 . . . −I D












,

with blocks

D =












4 −1 0 . . . 0 −1
−1 4 −1 . . . 0 0
0 −1 4 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 4 −1
−1 0 0 . . . −1 4












.

This matrix is symmetric and has rank n− 1 with N (A) = span{e}. It fits
therefore the prerequisites of the model problem MP.

Example 2:

For this example suppose b = 0 and let B be a finite homogeneous Markov
chain, i.e. a nonnegative matrix B with eT B = eT ; see, e.g., [9, 62, 65]. If B
is irreducible, then the rank of B is again n− 1 and there exists a positive
solution x∗ such that Bx∗ = x∗, which is also known as the stationary
probability distribution.

More applications can be found in the literature (see, e.g., [65]), but the
above ones are very common and therefore presented here.

Remark 2.1 Note that nonnegative matrices satisfying eT B = eT are also
called column stochastic, while nonnegative matrices with Be = e are called
row stochastic.

What remains to be defined is the model problem in the case dimN (A) =
r ≥ 1.

Definition 2.2 Let A ∈ IRn×n be given such that A = I − B, B ≥ 0, and
ρ(B) = 1. Assume there exists a vector z > 0 such that z ∈ N (A) and
dimN (A) = r ≥ 1. Let b ∈ R(A). Then the generalised model problem
GMP is to find a solution x∗ of

(2.1.5) Ax = b, x ∈ IRn.

For examples concerning GMP see, e.g., [65].
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2.2 ST- and STM-matrices

The model problem MP has been described for M-matrices A having a null
space spanned by a positive vector. This property exhibits some internal
structure which will be exploited in Chapter 4 to prove some convergence
results based on iterative methods which will be introduced in Chapter 3.
The class of matrices to be defined in the sequel is actually the class of
matrices that fulfil the requirements of Theorem 1.7 in the case there is only
one final and basic class. But first some more notation is needed.

A directed graph Γ = (V, E) contains a directed spanning tree T = (VT , ET )
(see, e.g., [22] and Section 1.2) if

1) T is a directed tree,

2) V = VT , and

3) E ⊃ ET .

Since all graphs which will appear (and therefore all spanning trees) are
directed, the term ”directed” will be omitted in the future.

Definition 2.3 Assume B ∈ IRn×n. Let Γ(B) = (V (B), E(B)) be the cor-
responding graph and let Γ(BT ) be the graph of BT . Then B is called a
GST-matrix (GST for ”general spanning tree”) if

1) Γ(BT ) contains a spanning tree TB, and

2) if the index i ∈ V (B) is the root of TB, then i has access to some
j ∈ V (B) via (i, j) ∈ Γ(B).

The above defined index j will be called guard index.

Remark 2.2 It might happens that i, i.e. the root, communicates with itself
via (i, i) ∈ Γ(B).

The following examples illustrate the above definition.

B1 =







0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0







, B2 =







0 0 1 0
0 0 0 1
0 0 0 1
1 0 0 0







, B3 =







0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1







.

For B1, every index might act as a root, especially the index 4 with guard
1. The root index of B2 is obviously the index 4 and the index 1 represents
the guard. In B3, the index 4 also acts as a root and is its own guard entry.
The spanning trees for the above examples are illustrated in Figure 2.1.
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2 32

4

2

1

3

4

1

T4

3

1

TT (B (B(B1 2 3) ) )

Figure 2.1: Spanning trees of B1, B2 and B3

All examples are somehow minimal because the elimination of any entry de-
stroys the GST property. Clearly, there could exist more than one spanning
tree.

The existence of the guard index ensures that there is at least one strongly
connected class and the next lemma will show that this class is final (cf.
Section 1.2). For the above examples this is illustrated in Figure 2.2.

41

2 3

41

2 3

41

2 3

ΓΓΓ (B (B (B1 2 3) ) )

Figure 2.2: Graphs of B1, B2 and B3

Lemma 2.1 Let B be a GST-matrix, then there is a permutation matrix Π
such that

ΠBΠT =

(
D 0
E F

)

.

Furthermore:

1) D is square and irreducible.

2) If B is irreducible, then Π = I and B = D.

3) If j is the root index of any tree in Γ(BT ), then j resides in the index
set belonging to D.

Proof: Since there is always at least one final class, r > 1 final classes are
being assumed. Then there is a permutation matrix Π (see, e.g., [9]) such
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that

ΠBΠT =










D1 0 . . . 0 0
0 D2 . . . 0 0
...

. . .
...

...
Dr

E1 E2 . . . Er F










.

Hence

ΠT BT Π =










DT
1 0 . . . 0 ET

1

0 DT
2 . . . 0 ET

2
...

. . .
...

...
DT

r ET
r

0 0 . . . 0 F T










,

where the Di are all square, irreducible, and correspond to the final classes.

Let j be the root of a spanning tree in Γ(BT ). If j is an index belonging
to F T , then j cannot have access to any k belonging to one of the DT

i in
Γ(BT ). On the other hand, if j is an index belonging to a DT

i , then j might
have access to elements of F T , but again F T has no access to any other
DT

j . In both cases, j cannot be the root of the spanning tree. This is a
contradiction, hence r = 1 and

(2.2.1) ΠBΠT =

(
D 0
E F

)

or B is irreducible. Furthermore, the root of any tree must reside in the
index set belonging to D. ⊔⊓

Now a few corollaries of Lemma 2.1.

Corollary 2.1 Let B ∈ IRn×n be an GST-matrix and let α be the set of
indices of the final class of B. Then Γ(BT ) contains at least |α| spanning
trees with corresponding guard indices, i.e. each index in α might act as a
root.

Proof: Every index i0 ∈ α has access to all other indices in Γ(BT ). ⊔⊓

The next corollary shows that the set of square irreducible matrices of di-
mension n is a proper subset of the set of n× n GST-matrices.

Corollary 2.2 Let B ∈ IRn×n be irreducible. Then Γ(BT ) contains at least
n spanning trees with corresponding guard indices, i.e. each index can act
as a root.

Proof: Easy, using Corollary 2.1. ⊔⊓

Corollary 2.3 Let B ∈ IRn×n be symmetric, then Γ(BT ) contains a span-
ning tree if and only if B is irreducible.
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Proof: Easy, using again Corollary 2.1 and Corollary 2.2. ⊔⊓

The term symmetric in Corollary 2.3 might be replaced by ”symmetric non-
zero pattern”.

Now consider the following matrix.

B =











0 1 0 0 0 0
0 0 0 1/2 0 0
1 0 0 0 0 0
0 0 1 0 0 0

0 0 0 1/2 0 1
0 0 0 0 1 0











=:

(
D 0
E F

)

The graph Γ(BT ) contains obviously a spanning tree and each index from D
can be chosen as a root with corresponding guard index (cf. Corollary 2.1);
thus B is a GST-matrix. But B does not have a positive right eigenvector
corresponding to ρ(B) = 1 since ρ(D) < 1. Therefore, Definition 2.3 needs
some refinement.

Definition 2.4 Let B ∈ IRn×n be a GST-Matrix such that B ≥ 0 and
ρ(B) = 1. Then B is said to be an ST-matrix (ST for ”spanning tree”) if
each class of B is final if and only if it is basic.

Remark 2.3 If B ≥ 0 is a GST-matrix whose row sums up to a constant,
say a > 0, then it is not hard to see that 1

aB is an ST-matrix.

Now the desired existence of a positive right hand fixed point is guaranteed.

Lemma 2.2 Let B ∈ IRn×n be an ST-matrix and let

ΠBΠT =

(
D 0
E F

)

be the standard form of B from Lemma 2.1, then:

1) ρ(D) = ρ(B) = 1.

2) ρ(F ) < 1.

3) There exists a vector z > 0 such that Bz = z, N (I − B) = span{z},
and ind1(B) = 1.

Proof: Assertion 1) is obvious by Definition 2.4. To prove assertion 2) note
that there exists a permutation matrix Π̃, acting on the indices of F such
that

Π̃ΠBΠT Π̃T =








D 0 . . . 0
E1 F11 . . . 0
...

...
. . .

...
El Fl1 . . . Fll








=: C,
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and Fii is either square and irreducible or 1 × 1 and 0 for all i = 1, . . . , l.
Now assume ρ(F ) = 1, then there exists an index i0 such that ρ(Fi0,i0) = 1.
Assume w.l.o.g. that i0 = l, then Fll represent a final class, thus a basic one
by Definition 2.4. Consequently, El = 0 and Flj = 0 for j = 1, . . . , l − 1.
But then

C =








D 0 . . . 0
E1 F11 . . . 0
...

...
. . .

...
0 0 . . . Fll








.

As in the proof of Lemma 2.1, Γ(BT ) cannot contain a spanning tree which
contradicts the assumptions. Hence, D represents the only final and basic
class. To prove the existence of a positive z such that Bz = z let z0 be any
positive fixed point of D. Define inductively

zi := (I − Fii)
−1



Eiz0 +
i−1∑

j=1

Fijzj





for i = 1, . . . , l. Each zi is well defined since ρ(Fii) < 1. Moreover, (I−Fii)
−1

is a positive matrix (cf. Theorem 1.4) and a simple induction proves each
zi to be positive. Thus, zT := (zT

0 , . . . , zT
l )T > 0 and Bz = z follows by a

direct calculation. Theorem 1.5 implies ind1(B) = 1, and thus, the algebraic
eigenspace is given by N (I − B). Since there is only one basic class, the
positive vector z is a base for N (I −B) by Theorem 1.8. ⊔⊓

The property that each class is basic if and only if it is final, follows from
Theorem 1.7 because the theorem implies the existence of a positive right
hand fixed point. Thus, the following corollary is an easy consequence.

Corollary 2.4 Consider a nonnegative GST-matrix B ∈ IRn×n, ρ(B) = 1,
and a positive vector z > 0 such that Bz = z, then B is an ST-matrix.

Proof: As usual let

ΠBΠT =

(
D 0
E F

)

,

for a proper permutation matrix Π. Then there is a partitioning (Πz)T =
(yT

1 , yT
2 ) such that Dy1 = y1, i.e. ρ(D) = 1. Thus, D is a final and basic

class. The proof of ρ(F ) < 1 can be done in the same fashion as for Lemma
2.2. ⊔⊓

If every class is final if and only if it is basic, then the existence of a spanning
tree is not only sufficient but also necessary.

Theorem 2.1 Let B ∈ IRn×n be nonnegative and ρ(B) = 1. Then B is an
ST-matrix if and only if the final classes of B are exactly its basic ones and
there is only one such class.
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Proof: The sufficient part has been proven by Lemma 2.2. The necessity
is shown now.

Again there is a permutation matrix Π such that

(2.2.2) C := ΠBΠT =

(
D 0
E F

)

⇒ CT =

(
DT ET

0 F T

)

.

By Theorem 1.7, D can be assumed irreducible, satisfying ρ(D) = 1 and
ρ(F ) < 1. Additionally, there exists a positive vector z > 0 such that
Bz = z. Let the index set {1, . . . , n} be split with respect to (2.2.2) into
sets V1 and V2 where V1 corresponds to the indices of D. It remains to show
that each index in V2 is accessible from V1 in Γ(BT ). If this is proven, the
existence of a spanning tree is obvious because any index i0 belonging to D
has access to every other index in Γ(BT ) (cf. Corollary 2.1).

Assume that there is a nonempty subset W2 of V2 containing the indices
that are not accessible from V1. Then there is another permutation matrix
Π̃ acting on V2 such that
(2.2.3)

Π̃CΠ̃T =





D 0 0
E1 F11 F12

E2 F21 F22



 , and Π̃T CT Π̃ =





DT ET
1 ET

2

0 F T
11 F T

21

0 F T
12 F T

22



 .

Here F22 corresponds to the set W2 ⊂ V2 of all non-accessible indices, while
F11 corresponds to W1 = V2 \W2.

Since each j ∈ W2 is not accessible from V1, one gets ET
2 = 0 whereas

ET
1 6= 0. But then F T

21 = 0, since all indices in W1 are accessible, hence
F T

21 6= 0 would imply that an index i ∈ V1 has access to some j ∈ W2 via a
k ∈W1. Thus

Π̃CΠ̃T =





D 0 0
E1 F11 F12

0 0 F22



 .

If z is split into (z1, z2, z3) with respect to V1, W1, and W2, then F22z3 =
z3 > 0. Now, F22 is a final and basic class, contradicting the assumptions.

Since there is only one final and basic class, z is a basis for N (A). ⊔⊓

Sometimes column stochastic matrices, i.e. matrices satisfying eT B = eT ,
which have also positive right hand fixed points, are being treated (see, e.g.,
[40]). The following lemma proves that this class of matrices is not too large.

Lemma 2.3 Let

STn := {B ∈ IRn×n : B is an ST-matrix}

and
CSn := {B ∈ IRn×n : B is column stochastic}.

If B ∈ STn ∩ CSn, then B is irreducible.
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Proof: Let B ∈ STn ∩ CSn. If B is irreducible, then the lemma is obvious
by Theorem 1.6. Thus, assume that B is reducible. Then by Lemma 2.1,

ΠBΠT =

(
D 0
E F

)

for some permutation matrix Π. But then

ΠT BT Π =

(
DT ET

0 F T

)

and since BT e = e, BT has a positive fixed point. By Theorem 1.7, ρ(F ) = 1
and ρ(D) < 1 since E 6= 0. Thus the indices of D represent a final class
which is not basic, i.e. B is not an ST-matrix. ⊔⊓

The above lemma reflects entirely the situation of the example given on page
23. If a column stochastic B contains a spanning tree with a corresponding
guard and is reducible, then B cannot have a positive right hand fixed point
(this is also obvious by Theorem 1.8).

Remark 2.4 In the literature dealing with Markov chains, i.e. row stochas-
tic matrices (e.g. [9, 62, 65]), the indices here are called states. In the situ-
ation of Lemma 2.2, the states belonging to D are called ergodic while those
belonging to F are called transient. It is known that a transient state must
have access to an ergodic one, thus the description of that property using
a tree structure seems to be natural. The definition of ST-matrices is also
motivated by Theorem 1.8.

This section will be completed with the introduction of another class of
matrices and several properties of its elements. Recall that ∆ denotes the
diagonal graph of the vertex set {1, . . . , n} (cf. Section 1.2).

Definition 2.5 A matrix A ∈ IRn×n is called an STM-matrix (STM for
”spanning tree monotone”) if A = I −B and B is an ST-matrix.

Lemma 2.4 Let A = I − B be an n × n STM-matrix. If the final class
of B contains more than one index, then each aii is positive. If it contains
exactly one index i0 then the i0-th row of A is entirely zero and aii > 0 for
all i 6= i0.

Proof: We have A = I − B and Bz = z for a positive vector z. By the
existence of a spanning tree in Γ(BT ), every non-root row of B has a positive
off diagonal element.

If the final class of B contains exactly one element, then the root coincides
with the guard index and there is only a positive diagonal element in the
corresponding row. Otherwise, the root has access to a guard element which
is indicated by a positive off diagonal element. ⊔⊓
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Remark 2.5 If the final class of B contains more than one index, then
Γ(A) = ∆∪Γ(B), but otherwise, i.e. the root coincides with the guard index,
not. In the latter case, the single edge from the root to itself vanishes and
this may cause problems for block iteration methods. However, the whole
bunch of results for ST-matrices carries over (in the M-matrix sense) to
STM-matrices.

The next theorem is very important in the context of block iteration meth-
ods.

Theorem 2.2 Let A = I − B ∈ IRn×n be an STM-matrix and let α be the
subset of indices of the final class of B. If V ( {1, . . . , n} is given such that
V ∩α 6= α, then the principal minor M := A[V ] is a nonsingular M-matrix.
If B[V ] is the related principal minor of B, then ρ(B[V ]) < 1

Proof: Let W1 = V ∩ α and W2 = V ∩ ({1, . . . , n} \ α), then according to
(2.2.2), there is a permutation matrix Π such that

ΠMΠT =

(
M11 0
M21 M22

)

.

Here the indices of W1 correspond to M11 and those of W2 to M22. If one
of these sets is empty, then the corresponding entry vanishes. If W1 6= ∅,
M11 is a principal minor of an irreducible M-matrix, hence nonsingular by
Theorem 1.4. On the other hand, if W2 6= ∅, then M22 is the principal
minor of a nonsingular M-matrix and also nonsingular by Theorem 1.2. The
proposition for B[V ] is obvious. ⊔⊓

Remark 2.6 The assertion of Theorem 2.2 holds also in the case of r > 1
final and basic classes (cf. Section 2.3). If αj are sets of indices corre-
sponding to the basic classes and V ⊂ {1, . . . , n}, then V ∩ αj 6= αj for all
j = 1, . . . , r, leads to the same result.

Finally, some remarks and a definition.

Remark 2.7 1) The definition of ST-matrices covers only nonnegative
matrices having spectral radius 1. This is for convenience only, since
only those matrices are being treated here (cf. Definition 2.1).

2) The flavor of ST-matrices is comparable to the so called regular ma-
trices in [31, 62] (cf. Section 4.2). Note that regularity in [31, 62] is
different to regularity in the standard sense; see [9, 65, 73].

An STM-matrix naturally fulfils the requirements of the model problem MP.
On the other hand, each matrix A = I − B having a positive vector z > 0
such that Az = 0 and dimN (A) = 1 is an STM-matrix. Thus, the model
problem can be restated.



2. The problem classes 28

Definition 2.6 Let A ∈ IRn×n be an STM-matrix and b ∈ R(A). The
model problem MP is to find a solution x∗ ∈ IRn of

Ax = b, x ∈ IRn.

2.3 SF- and SFM-matrices

The concept of ST-matrices will now be slightly generalised. This generali-
sation is quite natural in view of Theorems 1.7, 1.8, and 2.1.

Definition 2.7 Assume B ∈ IRn×n is nonnegative and ρ(B) = 1. Let
Γ(B) = (V (B), E(B)) be the corresponding graph and let Γ(BT ) be the graph
of BT . Then B is called an SF-matrix of degree r (SF for ”spanning forest”)
if Γ(BT ) contains r ≥ 1 trees Tk = (Vk, Ek), k = 1, . . . , r, and if i1, . . . , ir
are the roots of those trees, then

1) any ik has access to at least one j ∈ V (B) in Γ(B) (possibly itself),
and

2) ik 9 il for each 1 ≤ k, l ≤ r and k 6= l, and

3) if ik → j in Γ(B) for some j ∈ V (B), then also j → ik for all
1 ≤ k ≤ r.

Furthermore

4)
⋃r

k=1 Vk = V (B) and

5) each class is final if and only if it is basic.

Condition 1) guarantees the existence of a guard element for each root and
both reside in the same class (i.e. strongly connected component). Point 2)
separates these classes and 3) makes them final and irreducible. Condition
4) makes the forest spanning and 5) guarantees the existence of a positive
right fixed point.

Remark 2.8 1) Note that Condition 5) can be replaced by the assump-
tion that the rows of B sums up to 1 (cf. Definition 2.4 and Remark
2.3).

2) If B ∈ IRn×n satisfies only Conditions 1) to 4) of Definition 2.7, then
B is said to be a GSF-matrix (cf. Definition 2.3).

At this point, a result analogous to Lemma 2.1 and Lemma 2.2 can be
established. For the sake of completeness we present a proof.
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Lemma 2.5 Let B ∈ IRn×n be an SF-matrix of degree r, then there exists
a permutation matrix Π such that

ΠBΠT =










D1 0 . . . 0 0
0 D2 . . . 0 0
...

. . .
...

...
Dr

E1 E2 . . . Er F










.

Furthermore:

1) Each Dk, k = 1, . . . , r, is square, irreducible, and ρ(Dk) = 1.

2) ρ(F ) < 1.

3) If F = (T1, . . . , Tr) is a spanning forest and i1, . . . , ir are the roots of
T1, . . . , Tr, then each Dk contains exactly one il.

4) There exists a positive vector z such that Bz = z.

5) dimN (I −B) = r.

Proof: Assume there are l ∈ IN final classes, then for a proper permutation
matrix

(2.3.1) ΠT BT Π =










DT
1 0 . . . 0 ET

1

0 DT
2 . . . 0 ET

2
...

. . .
...

...
DT

l ET
l

0 0 . . . 0 F T










,

where the Di are square, irreducible, and final in Γ(B). Now let α1, . . . , αl

be the classes corresponding to D1, . . . , Dl. If l > r then there is a final
class, say αl, which contains no root and is not accessible. Thus the forest is
not spanning, which contradicts Condition 4) of Definition 2.7. Hence l ≤ r.

If l < r, each αk, k = 1, . . . , l, must contain a root (otherwise, with the same
argumentation as above, there cannot be a spanning forest). If ij ∈ αk, then
Condition 2) of Definition 2.7 implies il /∈ αk for all 1 ≤ l ≤ r, l 6= j. Thus
αk contains exactly one ij . Hence m = r − l roots reside in the index set
given by F . Since the roots are in different classes, one gets with a proper
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permutation matrix Π̃:

Π̃T BT Π̃ =

















DT
1 0 . . . 0 ET

11 . . . ET
m1 ET

m+1,1

0 DT
2 . . . 0 ET

12 . . . ET
m2 ET

m+1,2
...

...
. . .

...
...

...
...

0 0 . . . DT
l ET

1l . . . ET
ml ET

m+1,l

0 0 . . . 0 F T
11 . . . F T

m1 F T
m+1,1

...
...

...
...

. . .
...

...
0 0 . . . 0 0 F T

mm F T
m+1,m

0 0 . . . 0 0 . . . 0 F T
m+1,m+1

















.

The classes the m roots in F belong to are given by the Fii, i = 1, . . . , m.
But from Condition 3) of Definition 2.7, the classes containing a root are
final, hence ET

i,j = 0 for i = 1, . . . , m and j = 1, . . . , l, and also F T
i,j = 0 for

i = 1, . . . , m− 1 and i < j < m. Thus

Π̃T BT Π̃ =

















DT
1 0 . . . 0 0 . . . 0 ET

m+1,1

0 DT
2 . . . 0 0 . . . 0 ET

m+1,2
...

...
. . .

...
...

...
...

0 0 . . . DT
l 0 . . . 0 ET

m+1,l

0 0 . . . 0 F T
11 . . . 0 F T

m+1,1
...

... . . .
...

...
. . .

...
...

0 0 . . . 0 0 F T
mm F T

m+1,m

0 0 . . . 0 0 . . . 0 F T
m+1,m+1

















.

This is exactly the representation (2.3.1) for l = r. Moreover, each Di (i.e.
the class of Di) contains exactly one ik, which is assertion 3).

Assertion 1) is obvious, using Condition 5) of Definition 2.7. The proof of
ρ(F ) < 1 and the existence of a positive vector z such that Bz = z follows
that of Lemma 2.2.

Now assume the representation (2.3.1) and let z1, . . . , zr be positive right
hand eigenvectors of D1, . . . , Dr which correspond to the eigenvalue 1. De-
fine

zr+1 := (I − F )−1

(
r∑

k=1

λkEkzk

)

, λ1, . . . , λr ∈ IR,

then yT := (λ1z
T
1 , . . . , λrzr, z

T
r+1)

T satisfies By = y by direct calcula-
tion. Since zr+1 is uniquely determined for any linear combination of the
z1, . . . , zr, dimN (I −B) = r follows and this is assertion 5). ⊔⊓

Corollary 2.5 Let B ∈ IRn×n be given. Then B is an SF-matrix of degree
1 if and only if B is an ST-matrix.
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The last corollary and the results of Section 2.2 imply that there usually
exist a lot of different trees within the graph of a transposed SF-matrix;
thus a lot of different forests.

Now an analogous result to Theorem 2.1. Since the proof is almost the same,
it will be omitted here.

Theorem 2.3 Let B ∈ IRn×n be nonnegative. Then B is an SF-matrix of
degree r ≥ 1 if and only if the final classes of B are exactly its basic ones
and there are exactly r such classes. Furthermore, there exists a positive
vector z such that Bz = z.

There holds a proposition which is similar to Lemma 2.3. If B ∈ IRn×n is
column stochastic and also an SF-matrix, then B has a positive right hand
eigenvector if and only if B is completely decomposable into a block diagonal
matrix whose blocks are irreducible.

This is a hint how to reduce the number of unknowns of systems of the form
Bx = x. To understand this let B ∈ IRn×n be nonnegative and consider a
positive vector y such that yT B = yT . Assume that for a proper permutation
matrix,

ΠBΠT =










D1 0 . . . 0 0
0 D2 . . . 0 0
...

. . .
...

...
Dr

E1 E2 . . . Er F










,

where as usual each Di is square and irreducible and Ei 6= 0 for all i =
1, . . . , r.

The matrix BT has the positive right eigenvector y and it follows from
Theorem 1.7, that each final class of BT is also basic, i.e. ρ(F ) = 1. Because
all Ei 6= 0, the relation ρ(Di) < 1 follows for all i = 1, . . . , r. Thus, if z ∈ IRn

is such that Bz = z and z = (zT
1 , . . . , zT

r+1)
T , then z = (0, . . . , 0, zT

r+1)
T .

Hence, it suffices to find a right hand eigenvector of F instead of B (cf. [9],
Chapter 8, Theorem 3.23).

Thus, if complexity permits, it might be a good idea to find the strongly
connected components which are final in Γ(B) and not final in Γ(BT ) first.
Those classes can be omitted in iterations which compute the Perron vector,
i.e. solutions for Bx = x.

This section ends with some definitions.

Definition 2.8 A matrix A ∈ IRn×n is called an SFM-matrix of degree r
(SFM for ”spanning forest monotone”) if A = I−B and B is an SF-matrix
of degree r.
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Definition 2.8 leads to an alternative to Definition 2.2, which is comparable
to the situation in Section 2.2. The matrices that fulfil the requirements of
the generalised model problem GMP are SF-matrices of some degree r ≥ 1
by Theorem 2.3 and vice versa. For this reason, GMP can be restated as
follows.

Definition 2.9 Let A ∈ IRn×n be an SFM-matrix of degree r ≥ 1 and
let b ∈ R(A). The generalised model problem GMP is to find a solution
x∗ ∈ IRn of

Ax = b, x ∈ IRn.



Chapter 3

Block iterative methods for

MP and GMP

Now some basic iterative methods to solve MP (cf. Definition 2.6) and GMP
(cf. Definition 2.9) will be discussed. At the beginning multiplicative and
additive Schwarz methods will be introduced; followed by inexact variants.
It follows a discussion of partially asynchronous iterations which are based
on the operators being defined for the Schwarz iterations. Further on, the
relationships between operators of Schwarz iterations and those of partially
asynchronous iterations will be discussed and the main problems to be solved
in this thesis are revealed.

Since the above mentioned methods are well known, the discussion will be
very short. Anyway, some more notation must be introduced.

3.1 Notation

Let the finite set S = {1, . . . , n} be given. The nonempty sets S1, . . . , Sp are
called a partitioning of S if

p
⋃

i=1

Si = S and Si ∩ Sj = ∅ for all 1 ≤ i, j ≤ n, i 6= j.

The nonempty sets S1, . . . , Sp are called a decomposition of S if

p
⋃

i=1

Si = S.

Here, an index j ∈ S is allowed to appear in more than one set, in which
case the so-called overlap occurs. The measure of overlap is the maximum

33
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number of sets each index j ∈ S belongs to. It is given by

(3.1.1) q = max
j=1,...,n

|{i : j ∈ Si}|,

and q = 1 if and only if no overlap occurs; see, e.g., [6].

If A ∈ IRn×n, then either a partitioning or a decomposition of {1, . . . , n} is
called regular (w.r.t. A) if A[Si] is invertible for i = 1, . . . , p (cf. Theorem
2.2, Remarks 2.5 and 2.6).

3.2 Exact Schwarz methods

In this section an algebraic formulation of exact Schwarz methods will be
given. The methods are restricted to SFM-matrices. For more details see
[6, 15, 30, 40].

Consider GMP (cf. Definition 2.2) and let S1, . . . , Sp be a regular decom-
position of {1, . . . , n} w.r.t. A.

The idea of multiplicative Schwarz methods is the consecutive application
of projections onto the subspaces given by sets {1, . . . , n} \ Si, i = 1, . . . , p.

For this purpose, restriction operators Ri ∈ IR|Si|×n onto the subspaces are
needed. Here, the rows of the Ri are defined to be the rows of the identity
corresponding to the indices in Si. E.g., if n = 6 and S1 = {1, 3, 2}, then

R1 =





1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0



 .

With the above restriction operators, a projection onto the subspace asso-
ciated with {1, . . . , n} \ Si is given by

(3.2.1) H(i) := I −RT
i (RiART

i )−1RiA.

With (3.2.1) and a given x0 ∈ IRn a (one-level) multiplicative Schwarz
method for GMP is defined by

(3.2.2) xk+1 = Txk + c, k = 0, 1, 2, . . . ,

where T is given as

(3.2.3) T := H(1) ·H(2) · . . . ·H(p).

The vector c ∈ IRn is given by

(3.2.4) c =
1∑

i=p

(
i−1∏

l=1

H(l)

)

bi, where
0∏

l=1

H(l) =: idn
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and

(3.2.5) bi = RT
i (RiART

i )−1Rib.

The idea of additive Schwarz is to eliminate the error (i.e. the distance to
the exact solution) simultaneously on each subspace corresponding to Si.
Since the error of x ∈ IRn w.r.t. to Si is given by (I −H(i))x, the (damped)
additive Schwarz method is defined as

(3.2.6) xk+1 = Tθx
k + cθ, k = 0, 1, 2, . . . ,

where Tθ is given by

(3.2.7) Tθ := I − θ

p
∑

i=1

(I −H(i)) = I − θ

p
∑

i=1

RT
i (RiART

i )−1RiA.

Using (3.2.5), the right hand side cθ ∈ IRn×n is defined as

(3.2.8) cθ = θ

p
∑

i=1

RT
i (RiART

i )−1Rib = θ

p
∑

i=1

bi.

To achieve convergence, θ ∈ (0, 1/q) is usually assumed. The number q is
the measure of overlap defined in Section 3.1.

First of all it should be noted that the term RiART
i = A[Si] in (3.2.1) is a

nonsingular M-matrix, since the decomposition is assumed regular. There-
fore, the inverse always exists and is nonnegative.

The last observation leads to an alternative representation of (3.2.1). For a
given Si, let ¬Si := {1, . . . , n} \ Si. Furthermore, define Mi := A[Si] and
Ni := −A[Si,¬Si]. Then Mi is the principal minor of A corresponding to Si

and the matrix [Mi| −Ni] ∈ IR|Si|×n represents the rows of A corresponding
to Si.

With this, there is a permutation Πi such that

(3.2.9) ΠiH
(i)ΠT

i =

(
0 M−1

i Ni

0 I

)

∈ IRn×n.

The following lemma is easy to prove and summarises the properties of the
operators defined above.

Lemma 3.1 Let A ∈ IRn×n be an SFM-matrix and let S1, . . . , Sp be a reg-
ular decomposition. Let z ∈ IRn be the positive vector satisfying Az = 0.
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Then, with operators as given in (3.2.1) and (3.2.3):

1 ) H(i) ≥ 0, i = 1, . . . , p, 6 ) T ≥ 0,

2 ) H(i)z = z, i = 1, . . . , p, 7 ) Tz = z,

3 ) ‖H(i)‖z = 1, i = 1, . . . , p, 8 ) ‖T‖z = 1,

4 ) ρ(H(i)) = 1, i = 1, . . . , p, 9 ) ρ(T ) = 1,

5 ) ind1(H
(i)) = 1, i = 1, . . . , p, 10 ) ind1(T ) = 1.

If Tθ is defined by (3.2.7) and θ ∈ (0, 1/q), then parts 6) to 10) apply
verbatim to Tθ. Moreover, the diagonal of Tθ is positive and therefore, Tθ is
semiconvergent.

Proof: To prove 1), note that Ni ≥ 0 for all i = 1, . . . , p. The regularity
of the decomposition implies the existence of M−1

i . It follows by Theorems
1.1 and 2.2 that M−1

i ≥ 0 for all i = 1, . . . , p. Hence, H(i) ≥ 0, i = 1, . . . , p,
follows by (3.2.9). Statement 2) is obvious using again (3.2.9). Part 3)
follows from 1) and 2), after an application of the weighted max norm (see
Section 1.1). Finally, 4) follows directly from 2) and 3); and assertion 5) by
applying Theorem 1.5. The above results for T are obvious.

To prove the assertions for Tθ note that

p
∑

i=1

RT
i Ri ≤ qI <

1

θ
I.

Thus with (3.2.9)

Tθ = I − θ

p
∑

i=1

(I −H(i)) = I − θ

p
∑

i=1

ΠT
i

(
I −M−1

i Ni

0 0

)

Πi

= I − θ

p
∑

i=1

ΠT
i

(
I 0
0 0

)

Πi + θ

p
∑

i=1

ΠT
i

(
0 M−1

i Ni

0 0

)

Πi

= I − θ

p
∑

i=1

RT
i Ri

︸ ︷︷ ︸

=:Iθ≥0

+ θ

p
∑

i=1

ΠT
i

(
0 M−1

i Ni

0 0

)

Πi

︸ ︷︷ ︸

≥0

.

Hence Tθ ≥ 0. Since (Iθ)ii > 0 for i = 1, . . . , n, there also holds (Tθ)ii > 0
for i = 1, . . . , n. The rest is obvious and the semiconvergence of Tθ follows
from Lemma 1.2 and Theorem 1.11. ⊔⊓

From now on, the operators given by (3.2.1) will be denoted by H
(i)
1 or simply

P (i), the multiplicative Schwarz operator (3.2.3) by T1, and the additive

Schwarz operator (3.2.7) by Tθ,1. The H
(i)
1 are called the local operators,

while T1 and Tθ,1 are called global operators.
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3.3 Inexact Schwarz methods

Assume GMP with an SFM-matrix A and a regular decomposition
S1, . . . , Sp. The matrices Mi = A[Si] and Ni = −A[Si,¬Si] are as defined
in the foregoing section. For x ∈ IRn let xi = x[Si] and x¬i = x[¬Si].

An algorithmic description of the multiplicative Schwarz methods leads to
the following pseudo code.

Algorithm 3.1 multiplicative Schwarz iteration / Framework

Require: x0 ∈ IRn

1: for k = 1, 2, . . . do
2: y ← xk−1

3: for i = 1, . . . , p do
4: update y
5: end for
6: xk ← y
7: end for

For (one-level) multiplicative Schwarz the update at line 4 is defined as:

Algorithm 3.2 Update 1

yi ←M−1
i Niy¬i + M−1

i bi

An algorithmic description for additive Schwarz can be given as follows.

Algorithm 3.3 additive Schwarz iteration / Framework

Require: x0 ∈ IRn, θ ∈ (0, 1/q)
1: for k = 1, 2, . . . do
2: for i = 1, . . . , p do
3: y(i) ← xk−1

4: update y(i)

5: end for
6: xk ← xk−1 − θ ·

∑p
i=1(x

k−1 − y(i))
7: end for

The update at line 4 is exactly the same as for exact multiplicative Schwarz,
i.e. given by Algorithm 3.2.

Now some alternatives to Algorithm 3.2 will be discussed and they will also
apply to both, additive and multiplicative Schwarz iterations. These updates
can be regarded as ”inexact” because they all behave in a certain manner
as will be shown in Section 3.5.
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Relaxed (one-level) Schwarz method

The first modification concerns the diagonal. It might be interpreted as an
outer relaxation for some α ∈ (0, 1) and will be helpful to ensure convergence
later on.

Algorithm 3.4 Update 2

yi ← (1− α)yi + α ·M−1
i Niy¬i + α ·M−1

i bi

The local operators for this scheme are denoted by H
(i)
2 and have the fol-

lowing shape

(3.3.1) ΠiH
(i)
2 ΠT

i =

(
(1− α)I αM−1

i Ni

0 I

)

≥ 0,

for 1 ≤ i ≤ p and a proper permutation matrix Πi (cf. 3.2.9). The global
operators T2 and Tθ,2 are as defined in (3.2.3) and (3.2.7) (and this will also
be the case for the following updates).

Two-stage Schwarz method

The next update is really an inexact one, as the inverse of Mi is approxi-
mated. To establish this, a weak regular splitting Mi = Fi − Gi (cf. Sec-
tion 1.1) is assumed. Such a splitting always exists and is convergent since
ρ(F−1

i Gi) < 1 (cf. Theorem 1.3).

Algorithm 3.5 Update 3

1: for j = 1, . . . , q(k, i) do
2: yi ← F−1

i (Giyi + Niy¬i + bi)
3: end for

Here 1 ≤ q(k, i) ∈ IN might depend on the set Si being updated and on
the outer iteration index k. Such two stage iteration schemes have been
analysed by several authors in the framework of a multi-splitting iteration
(see [51, 52]). For singular systems this has been done in [44, 65].

It should be noted that the whole inner iteration can be described by one
assignment which is convenient for theoretical purposes (see [29, 44, 51]).
Define R(k,i) := (F−1

i Gi)
q(k,i), then the for-loop in Algorithm 3.5 can be

replaced by

yi ← R(k,i)yi + (I −R(k,i))M−1
i (Niy¬i + bi) .

The local operators H
(i)
3 for this block update are given as

(3.3.2) ΠiH
(i)
3 ΠT

i =

(
R(k,i) (I −R(k,i))M−1

i Ni

0 I

)

≥ 0.
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The nonnegativity of H
(i)
3 follows from the identity

(I −R(k,i))M−1
i =

q(k,i)−1
∑

j=0

(F−1
i Gi)

jF−1
i

and the weak regularity of the splitting Mi = Fi −Gi.

Relaxed two-stage Schwarz method

The next obvious modification of Algorithm 3.5 is the use of a relaxed version
of line 2. For ω ∈ (0, 1) the update is given by:

Algorithm 3.6 Update 4

1: for j = 1, . . . , q(k, i) do
2: yi ← (1− ω)yi + ω · F−1

i (Giyi + Niy¬i + bi)
3: end for

Define R
(k,i)
ω :=

(
(1− ω)I + ω(F−1

i Gi)
)q(k,i)

, then Algorithm 3.6 reduces to

yi ← R(k,i)
ω yi + (I −R(k,i)

ω )M−1
i (Niy¬i + bi) .

Since R
(k,i)
ω ≥ 0 for ω ∈ (0, 1), there follows

0 ≤ ω

q(k,i)−1
∑

j=0

(
(1− ω)I + ω(F−1

i Gi)
)j

F−1
i Ni

= ω(I −R(k,i)
ω )

(
I − (1− ω)I − ω(F−1

i Gi)
)−1

F−1
i Ni

= ω(I −R(k,i)
ω )

1

ω

(
I − F−1

i Gi

)−1
F−1

i Ni

= (I −R(k,i)
ω )M−1

i Ni.

The nonnegative local operators H
(i)
4 are given by

(3.3.3) ΠiH
(i)
4 ΠT

i =

(

R
(k,i)
ω (I −R

(k,i)
ω )M−1

i Ni

0 I

)

.

Furthermore, ρ(R
(k,i)
ω ) < 1 as is shown in [38].

Remark 3.1 The notation H
(i)
3 and H

(i)
4 (and also T3, T4, Tθ,3 and Tθ,4) is

somehow misleading since the number of inner iterations may vary. Hence,
if not stated otherwise, the number of inner iterations for each block may be
assumed fixed, i.e. they do not depend on k. In the other case the operators

are labelled T
(k)
3 and so on.

To complete this section, two other updates will be discussed.
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Power-like Schwarz method

For Update 1,2,3 and 4, the local operators have been explicitly converted
to fixed point operators. Anyway, the fixed point property is still in the
original operator A (cf. 2.1.4) and will be exploited now.

Since A = I − B, the identities Mi = A[Si] = I − B[Si] and Ni =
−A[Si,¬Si] = B[Si,¬Si] follow. By Theorem 2.2 and the assumed regu-
larity of the decomposition, there holds ρ(B[Si]) < 1. Furthermore,

[I −Mi|Ni] = [ B[Si] | B[Si,¬Si] ] ∈ IR|Si|×n

and the following local update seems natural.

Algorithm 3.7 Update 5

yi ← (I −Mi)yi + Niy¬i + bi

The local operators for this update are given by

(3.3.4) ΠiH
(i)
5 ΠT

i =

(
(I −Mi) Ni

0 I

)

≥ 0.

Relaxed power-like Schwarz method

Finally, a modification of Algorithm 3.7 is given. It is again an outer relax-
ation similar to Algorithm 3.4. Let α ∈ (0, 1) be given and take the following
update.

Algorithm 3.8 Update 6

yi ← (1− α)yi + α · (I −Mi)yi + α ·Niy¬i + α · bi

Obviously

[(1− α)I + α · (I −Mi) | α ·Ni] = [ (1− α)I + αB[Si] | α ·B[Si,¬Si] ]

and therefore

(3.3.5) ΠiH
(i)
6 ΠT

i =

(
I − αMi αNi

0 I

)

≥ 0.

At this point the relationship between each of the operators H
(i)
l , l =

2, . . . , 6 and H
(i)
1 is not clear, since no H

(i)
l is a projection. In Section

3.5 a link between these operators will be established with tools provided
in Section 1.3. This link will also lead to a ”normal form” of the discussed
updates.

This section ends with the following lemma whose proof is analogous to that
of Lemma 3.1.
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Lemma 3.2 For l ∈ {2, . . . , 6} let the local operators H
(i)
l be given by

(3.3.1) – (3.3.5) and let the Tl and Tθ,l be the corresponding global opera-

tors, respectively. Then Lemma 3.1 applies verbatim to H
(i)
l , Tl and Tθ,l for

l = 2, . . . , 6 and i = 1, . . . , p. Moreover, Tl is semiconvergent for l ∈ {2, 4, 6}
and Tθ,l is semiconvergent for all l = 2, . . . , 6, as soon as θ ∈ (0, 1/q).

Remark 3.2 The parameters α and ω for Update 2,4 and 6 (Algorithms
3.4, 3.6 and 3.8) can be chosen different on different sets Si.

3.4 Asynchronous iterations

In this section the notion of asynchronous iterations will be introduced (see
[28] and the extensive bibliography therein, or [10, 27]). The iterations will
be defined for linear systems only and the notation is adopted from [4] with
some restrictions which are due to [39] (see also [10]).

Basic definitions

Let there be given A ∈ IRn×n and a vector c ∈ IRn. For k = 0, 1, 2, . . ., let
Jk ⊂ {1, . . . , n} 6= ∅ and Sk = (s1(k), . . . , sn(k)) ∈ INn

0 such that

si(k) ≤ k, for i = 1, . . . , n, k = 0, 1, 2, . . . ,(3.4.1)

lim
k−→∞

si(k) = +∞, for i = 1, . . . , n,(3.4.2)

|{k ∈ IN0 : i ∈ Jk}| =∞, for i = 1, . . . , n.(3.4.3)

Then, for a given x0 ∈ IRn, the assignment

(3.4.4) xk+1
i :=

{

xk
i if i /∈ Jk,
∑n

j=1 aij · x
sj(k)
j + ci if i ∈ Jk,

is said to be an asynchronous iteration (for the system x = Ax + c).

The set Jk is called the set of active components and Sk the strategy. A
sequence {(Jk,Sk)}k∈IN0 is called a scenario.

The term k − si(k) might be interpreted as the delay of a component when
this component is used in an update. Such delays can be caused by communi-
cation delays between processors on parallel computers or load unbalancing.
The inequality (3.4.1) states, that only components computed earlier are
used. The eventual use of new information is guaranteed by (3.4.2). The
identity (3.4.3) guarantees that no component fails to be updated when k
tends to infinity.

The index k might be interpreted as a global counter which is incremented
after the update of the set of active components. But on parallel computers,
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this index is most likely unknown to each processor and loses its meaning in
the common sense (i.e., as a timestamp or an iteration index).

Partially asynchronous iterations

Since it has been proven that the above iteration might fail to converge
for singular systems [10, 18, 27, 67], some restrictions which may yield the
convergence have been introduced in [39] (see also [10]). Those restrictions
concern the delays, since they are mainly responsible for the convergence.
The restrictions are given as follows:

si(k) = k, if i ∈ Jk, k = 0, 1, 2, . . . ,(3.4.5)

∃d ∈ IN : k − d ≤ si(k) ≤ k, i = 1, . . . , n, k = 0, 1, 2, . . . ,(3.4.6)

∃s ∈ IN : ∪k+s
l=kJl = {1, . . . , n}, k = 0, 1, 2, . . . ..(3.4.7)

An iteration method (3.4.4) that fulfils (3.4.5) – (3.4.7) is said to be a
partially asynchronous iteration (PAI) and will be denoted by the triple
(A, x0, {Jk,Sk}k∈IN0) with the convention x−d = . . . = x−1 = x0.

The interpretation of (3.4.5) is, that the values of the components being ac-
tually computed are the latest. On parallel computers, this may be achieved
in practice by assigning a certain set of variables to one processor only. The
relation (3.4.6) bounds the delays while (3.4.7) assures that each component
is updated within a fixed interval.

The advantage of PAIs over general asynchronous iterations is the possibility
to construct operators which act on the iterates to produce the assignment
(3.4.4). This construction goes also back to [39] and will be shown now.

Construction of operators

Assume a matrix A ∈ IRn×n and a scenario {Jk,Sk}k∈IN0 that fulfils (3.4.5)–
(3.4.6). Let k be arbitrary but fixed.

Define the diagonal matrix D(k) ∈ IRn×n by

d
(k)
i,j :=

{

1 if i ∈ Jk and i = j,

0 else,

then D(k) can be viewed as an indicator function of Jk. Another indicator
for the delays can be defined as

δτ,k−sj(k) :=

{

1 if τ = k − sj(k),

0 else.

By (3.4.6) there holds k − d ≤ si(k) ≤ k, so the above definition may be
restricted to τ = 0, . . . , d. Now define E(k,τ) ∈ IRn×n by

e
(k,τ)
i,j := d

(k)
i,i · δτ,k−sj(k) · ai,j , τ = 0, . . . , d,
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then
d∑

τ=0

E(k,τ) = D(k)A.

With this construction, the assignment (3.4.4) can be written as

xk+1 = (I −D(k))xk +
d∑

τ=0

E(k,τ)xk−τ + D(k)c.

After at most d steps the iterates xm with m < k − d have no further
influence on xk+1. Hence, the operator H(k) ∈ IR(d+1)n×(d+1)n with

(3.4.8) H
(k)
d :=










(I −D(k) + E(k,0)) E(k,1) . . . E(k,d−1) E(k,d)

I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0










completely defines the k-th step of a partially asynchronous iteration. In-
deed, if one defines xk

d = ((xk)T , . . . , (xk−d)T )T ∈ IR(d+1)n and x−1 = . . . =
x−d = x0, then the PAI is given by

(3.4.9) xk+1
d = H

(k)
d xk

d + ck, k = 0, 1, 2, . . . .

Here, ck = ((D(k)c)T , 0T , . . . , 0T )T ∈ IR(d+1)n.

Application to GMP

Consider GMP and a regular decomposition S1, . . . , Sp w.r.t. A. Since it is
natural in real world applications to assign a set Si to exactly one processor,
the set of active components can be regarded as follows.

(3.4.10) Jk ∈ {S1, . . . , Sp}, k = 0, 1, 2, . . . .

Now consider a block update as discussed in the last two sections. If at the
k-th step of a PAI the set Si(k) is updated, then by (3.4.4) and (3.4.10) the
application of a block update leads to

(3.4.11) I −D(k) +
d∑

τ=0

E(k,τ) = H
(i(k))
l

where H
(i(k))
l is given by (3.2.9) or (3.3.1)–(3.3.5) depending on l ∈

{1, . . . , 6}. Hence there is a relationship between multiplicative Schwarz
methods and block PAIs.
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Furthermore, by (3.4.5) and a proper permutation matrix Πi(k) (cf. (3.2.9))

(3.4.12) Πi(k)

(

I −D(k) + E(k,0)
)

ΠT
i(k) =

(

H
(i(k))
l [Si(k)] ∗

0 I

)

where the ∗ might indicate that there are some nonnegative components in
the upper right block.

By the regularity of the decomposition and the construction of the local
operators (cf. (3.3.1)–(3.3.5))

(3.4.13) ρ(H
(i(k))
l [Si(k)]) < 1.

So even in the case of PAIs, the local updates should make some progress
towards a (local) solution.

Remark 3.3 1) In the case of overlap, (3.4.5) requires a lot of synchro-
nisation, since different processors which are assigned to the same vari-
ables must be synchronised.

2) All PAIs being discussed further on, are to be understood in the sense
of (3.4.5)–(3.4.11). They will only be applied to MP with respect to a
regular decomposition and the block updates from Sections 3.2 and 3.3
(see Algorithms 3.2– 3.8 and (3.2.9), (3.3.1)–(3.3.5)).

3) Since (3.4.11) holds, the corresponding local operators of a PAI are

denoted by H
(k)
d,l , for l ∈ {1, . . . , 6}. Then H

(k)
d,l = H

(i(k))
l if d = 0 and

H
(k)
d,l updates the i(k)-th block.

4) The identity (3.4.11) reveals another relationship. If s = n, si(k) = k
for all i = 1, . . . , n, and Jk = Sj for j = p − (k mod p), then the
iteration (3.4.9) coincides exactly with (3.2.2) for any update given by
(3.2.9) and (3.3.1)–(3.3.5). Hence the multiplicative Schwarz itera-
tions are a subset of the partially asynchronous ones for every block
update discussed.

The question that should be discussed now is the following.

Under which conditions converges a PAI applied to MP for every possible
scenario (which include the multiplicative Schwarz methods)?

Instead of giving an answer to the above question, the problem will be
discussed for multiplicative Schwarz methods. This is because results for
PAIs can be easily obtained from a generalisation of multiplicative Schwarz
methods, as will be shown in Chapter 4.
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3.5 Analysis of local operators

As mentioned in the foregoing section some relationships between local mul-
tiplicative Schwarz operators and those of PAIs will be presented here. The
results of this and the next section will not affect the results to be discussed
later, but they should be mentioned because one gets more familiar with the
operators and the problems to be solved. Note that some proofs have been
moved to the appendix to keep the discussion short.

First of all the links between the different local Schwarz operators will be
established.

Throughout this section one may assume GMP and a regular decomposition

S1, . . . , Sp w.r.t. A. Furthermore, the operators H
(i)
l , l = 1, . . . , 6, i =

1, . . . , p denote again the local Schwarz operators; while the H
(k)
d,l denote

the local operators of a PAI, (A, x0, {Jk,Sk}k∈IN0), updating a certain block
i(k) ∈ {1, . . . , p} for k ∈ IN0 and l = 1, . . . , 6.

To emphasise the role of the H
(i)
1 , i = 1, . . . , p, denote them by P (i), i =

1, . . . , p. Then with (3.2.1) and (3.2.9)

P (i) = H
(i)
1 = I −RT

i (RiART
i )−1RiA = ΠT

i

(
0 M−1

i Ni

0 I

)

Πi,

where Mi = A[Si] = RiART
i , Ni := −A[Si,¬Si], and Πi is a proper permu-

tation matrix. As usual,

(3.5.1) R(k,i) := (F−1
i Gi)

q(k,i), q(k, i) ≥ 1

and

(3.5.2) R(k,i)
ω :=

(
(1− ω)I + ωF−1

i Gi)
)q(k,i)

, q(k, i) ≥ 1, ω ∈ (0, 1),

where Mi = Fi −Gi is a weak regular splitting.

Fixed points of local Schwarz operators

Proposition 3.1 Let i ∈ {1, . . . , p} be arbitrary but fixed. For l = 2, . . . , 6

define Z
(i)
l ∈ IR|Si|×|Si| by

(3.5.3)

Z
(i)
l :=







(1− α)I, α ∈ (0, 1) if l = 2 (cf. (3.3.1)),

R(k,i) if l = 3 (cf. (3.3.2) and (3.5.1)),

R
(k,i)
ω , ω ∈ (0, 1) if l = 4 (cf. (3.3.3) and (3.5.2)),

I −Mi if l = 5 (cf. (3.3.4)),
I − αMi, α ∈ (0, 1) if l = 6 (cf. (3.3.5)).
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Then for a proper permutation matrix Πi:

(3.5.4) (I −H
(i)
l ) = ΠT

i

(

I − Z
(i)
l 0

0 I

)

Πi · (I − P (i)), l = 2, . . . , 6.

Moreover

(3.5.5) N (I −H
(i)
l ) = N (I − P (i)) = R(P (i)), l = 2, . . . , 6.

Proof: The representation (3.5.4) follows by direct calculation. Since the

decomposition is regular, the relation ρ(Z
(i)
l ) < 1 follows by the construction

for l = 2, . . . , 6. Hence I − Z
(i)
l is invertible and z ∈ IRn is a fixed point

of H
(i)
l if and only if it is a fixed point of P (i). Since P (i) is a projection,

N (I − P (i)) = R(P (i)), and (3.5.5) follows. ⊔⊓

A consequence of Proposition 3.1 is that the projections of a spectral de-

composition of each H
(i)
l are the same and equal to P (i) = H

(i)
1 .

Proposition 3.2 For a fixed i ∈ {1, . . . , p}, the spectral decomposition of

each H
(i)
l , l = 2, . . . , 6 is given by

(3.5.6) H
(i)
l = P (i) + ΠT

i

(

Z
(i)
l 0
0 0

)

Πi · (I − P (i)) =: P (i) + Q
(i)
l ,

wherein Z
(i)
l is given by (3.5.3). Therefore, σ(H

(i)
l ) = {1} ∪ σ(Z

(i)
l ), the

multiplicity of the eigenvalue 1 is n − |Si|, and γ(H
(i)
l ) = ρ(Z

(i)
l ) < 1. If v

is a (possibly generalised) eigenvector to an eigenvalue λ 6= 1 and split as
v = ((vi)

T , (v¬i)
T )T , then v¬i = 0 and (vT

i , 0) is a (generalised) eigenvector

of Z
(i)
l .

Proof: The decomposition (3.5.6) follows by Proposition 3.1. Since

ΠiP
(i)ΠT

i =

(
0 M−1

i Ni

0 I

)

there holds
(

0 M−1
i Ni

0 I

)(

Z
(i)
l 0
0 0

)

= 0

and P (i)Q
(i)
l = 0. The equality Q

(i)
l P (i) = 0 follows, since (I−P (i))P (i) = 0.

With
(

Z
(i)
l 0
0 0

)(
I −M−1

i Ni

0 0

)

=

(

Z
(i)
l −Z

(i)
l M−1

i Ni

0 0

)
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one gets σ(Q
(i)
l ) = σ(Z

(i)
l ) ∪ {0}. Additionally, ρ(Z

(i)
l ) < 1 follows from

Proposition 3.1. This implies that (3.5.6) is a spectral decomposition and

P (i) is a projection ontoN (I−H
(i)
l ). The linear independence of the columns

of P (i) is obvious, hence the multiplicity of the eigenvalue 1 is n− |Si|.

If v is an eigenvector w.r.t. λ 6= 1, λ ∈ σ(H
(i)
l ), then

0 = ΠiP
(i)ΠT

i Πiv =

(
0 M−1

i Ni

0 I

)(
vi

v¬i

)

= λ

(
∗

v¬i

)

since P (i) is a projection. Thus v¬i = 0 and Z
(i)
l vi = λvi. The assertion for

generalised eigenvectors follows by induction on the corresponding Jordan-
chain. ⊔⊓

Remark 3.4 1) Proposition 3.2 implies that

lim
k−→∞

(

H
(i)
l

)k
= P (i)

for all l = 2, . . . , 6, i = 1, . . . , p. Each H
(i)
l represents an approxi-

mation to H
(i)
1 = P (i) (not always a good one). Thus, the operators

H
(i)
l , l = 2, . . . , 6 can be regarded as inexact Schwarz operators.

2) Note that each Z
(i)
l given by (3.5.3) coincides with (Q

(i)
l )|N (P (i)) from

Lemma 1.6.

3) With Z
(i)
l given by (3.5.3), define

∆
(i)
l := ΠT

i

(

Z
(i)
l 0
0 0

)

Πi.

Then, with (3.5.4) and (3.5.6),

I −H
(i)
l = (I −∆

(i)
l )(I − P (i)),

H
(i)
l = P (i) + ∆

(i)
l (I − P (i)),

for all i = 1, . . . , p and l ∈ {2, . . . , 6}. And this might be interpreted
as the ”normal forms” of the local Schwarz operators.

The following result is obvious from equation (3.5.5) of Proposition 3.1.

Proposition 3.3 There holds

p
⋂

i=1

N (I −H
(i)
l ) = N (A)

for all l = 1, . . . , 6.
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Spectra of local asynchronous operators

Let k ∈ IN0 be arbitrary but fixed and assume that for some l ∈ {1, . . . , 6}

the operator H
(k)
d,l ∈ IR(d+1)n×(d+1)n updates the i(k)-th block and is given

as

(3.5.7) H
(k)
d,l :=










Ẽ
(k,0)
l E

(k,1)
l . . . E

(k,d−1)
l E

(k,d)
l

I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0










,

according to (3.4.8) and (3.4.11). Here Ẽ
(k,0)
l = I −D(k) + E

(k,0)
l .

First, there is an analogous result to Lemma 3.1 and 3.2.

Proposition 3.4 Let z ∈ IRn be positive such that Az = 0. Define zd :=
(zT , . . . , zT )T ∈ IR(d+1)n. Then for each l = 1, . . . , 6 and k ∈ IN0:

1 ) H
(k)
d,l ≥ 0, 4 ) ρ(H

(k)
d,l ) = 1,

2 ) H
(k)
d,l zd = zd, 5 ) ind1(H

(k)
d,l ) = 1,

3 ) ‖H
(k)
d,l ‖zd

= 1.

Proof: Condition (3.4.11) together with Lemma 3.1 or 3.2 implies

(

I −D(k) +

d∑

τ=0

E
(k,τ)
l

)

z = H
(i(k))
l z = z

and therefore H
(k)
d,l zd = zd, which proves 2). The rest is easy. ⊔⊓

Now a partially analogous result to Proposition 3.2 is presented.

Proposition 3.5 Let (λ, v) be an eigenpair of H
(k)
d,l , λ 6= 0. Assume v to

be split in d + 1 parts vi ∈ IRn such that v = ((v0)
T , . . . , (vd)

T )T . Then

(3.5.8) v0 = λv1 = λ2v2 = . . . = λdvd.

If λ 6= 1, then v is an eigenvector of H
(k)
d,l if and only if v0 is an eigenvector of

H
(i(k))
l to the eigenvalue λ (and the same holds for generalised eigenvectors).

Furthermore, v is an eigenvector to the eigenvalue 1 if and only if

(3.5.9) v0 = v1 = . . . = vd

and v0 is a fixed point of H
(i(k))
1 = P (i(k)).
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Proof: See Appendix A.

The last proposition implies that the non-zero spectrum of H
(k)
d,l corresponds

one to one to the non-zero spectrum of H
(i(k))
l . Thus the influence of the

delays on the spectrum can only concern eigenvalues equal to 0.

Lemma 3.3 Let H
(k)
d,l be given, then σ(H

(k)
d,l ) = σ(H

(i(k))
l ) ∪ {0} and the

multiplicity of the eigenvalue 0 is at least d · n. Furthermore, there holds

γ(H
(k)
d,l ) = γ(H

(i(k))
l ) < 1.

This one-to-one-correspondence implies that the projection ontoN (I−H
(k)
d,l )

must be constant for all k ∈ IN0 such that i(k) = i0 ∈ {1, . . . , p}, (as it is

for the H
(i0)
l ). And this is the case, because a simple argumentation using

the dual basis of N (I −H
(k)
d,l ) leads to the result that

(3.5.10) P
(i0)
d :=






P (i0) 0 . . . 0
...

...
...

P (i0) 0 . . . 0




 ∈ IR(d+1)n×(d+1)n

is the projection onto N (I −H
(k)
d,l ). Here, again, P (i0) = H

(i0)
1 .

Lemma 3.4 For a partially asynchronous iteration let {H
(k)
d,l }i0 be the sub-

set of local operators such that i(k) = i0 ∈ {1, . . . , p}. Then the spectral

decomposition of every H
(k)
d,l ∈ {H

(k)
d,l }i0 is (P

(i0)
d , Q

(k)
d,l ) where P

(i0)
d is de-

fined by (3.5.10) and Q
(k)
d,l = H

(k)
d,l − P

(i0)
d . Moreover, the projection P

(i0)
d is

independent of any scenario and depends only on d and the block i0.

Proof: The relations P
(i0)
d ·Q

(k)
d,l = Q

(k)
d,l · P

(i0)
d = 0 follow by direct compu-

tation. The inequality ρ(Q
(k)
d,l ) < 1 follows from Proposition 3.5. That P

(i0)
d

is a projection onto N (I −H
(k)
d,l ) is obvious by Proposition 3.5. ⊔⊓

Remark 3.5 The spectral decomposition of an exact local Schwarz opera-
tor (cf. (3.2.9)) is given by the operator itself since the convergent part is

zero. On the other hand, the convergent part Q
(k)
d,1 of a local operator of an

asynchronous operator is nonzero. But the spectra of Q
(k)
d,1 must be entirely

zero due to Proposition 3.5. Hence Q
(k)
d,1 is nilpotent.

To prove an analogous result to Proposition 3.3, assume N (A) =
span{z1, . . . , zm} and define zd,i := (zT

i , . . . , zT
i )T ∈ IR(d+1)n for i = 1, . . . , m.
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Proposition 3.6 Let {H
(k)
d,l }k∈IN0 be the sequence of local operators of a

PAI. If s is given by (3.4.7), then

k+s⋂

i=k

N (I −H
(i)
d,l ) = span{zd,1, . . . , zd,m} ( N (A)× . . .×N (A)

︸ ︷︷ ︸

(d+1)times

for all k ∈ IN0 and l = 1, . . . , 6.

Proof: Follows from Proposition 3.3, Proposition 3.5, and (3.4.7). The

strict inclusion is due to the shift within each H
(k)
d,l . ⊔⊓

It might happens during a PAI that the same block is updated twice or

more times in a row by operators H
(k1)
d,l , . . . , H

(kL)
d,l , satisfying i(k1) = . . . =

i(kL) = i0. If d = 0, then

H
(k1)
d,l · . . . ·H

(kL)
d,l = H

(i0)
l · . . . ·H

(i0)
l

= (P (i0) + Q
(i0)
l )kL−k1+1 = P (i0) + (Q

(i0)
l )kL−k1+1,

since the convergent part, i.e. Q
(i0)
l is constant for the spectral decomposi-

tions. This implies that (P (i0), (Q
(i0)
l )kL−k1+1) is a spectral decomposition

for H
(k1)
d,l · . . . ·H

(kL)
d,l . In the case d ≥ 1 the convergent part will change in

general but the result is still the same.

Proposition 3.7 Let H
(k1)
d,l , . . . , H

(kL)
d,l be given such that i(k1) = . . . =

i(kL) = i0 and let (P
(i0)
d , Q

(kj)
d,l ), j = 1, . . . , L be the spectral decompositions.

Then
H

(k1)
d,l · . . . ·H

(kL)
d,l = P

(i0)
d + Q

(k1)
d,l · . . . ·Q

(kL)
d,l

︸ ︷︷ ︸

=:Q̃

and (P
(i0)
d , Q̃) is a spectral decomposition of H

(k1)
d,l · . . . ·H

(kL)
d,l .

Proof: See Appendix A

3.6 On the way to the main problem

Equipped with the results from the foregoing section, a weak result for
Schwarz iterations in the non-overlap case can be proved. This result is not
new (since it is restricted to iterations corresponding to exact and inexact
Gauss-Seidel), but the technique of the proof will reveal a few problems
which will led to the graph based approach in Section 4. Moreover, other
relations between Schwarz iterations and partially asynchronous iterations
will be presented.
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Suppose there are linear operators H(i) ∈ IRn×n, i = 1, . . . , p with spectral
decompositions (P (i), Q(i)). Assume further

p
⋂

j=1

R(P (j)) 6= {0} and(3.6.1)

the sum N (P (1))⊕ . . .⊕N (P (p)) ⊂ IRn is direct.(3.6.2)

Lemma 3.5 Let H(1), . . . , H(p) be given as above, i.e., (3.6.1) and (3.6.2)
hold. Then for each k ∈ {1, . . . , p}:

(3.6.3) N (I −H(1) · . . . ·H(k)) =
k⋂

j=1

N (I −H(j)) =
k⋂

j=1

R(P (j)).

The following proposition is needed for the proof.

Proposition 3.8 Let (P, Q) be a spectral decomposition of H ∈ IRn×n.
Then for each x ∈ IRn and y = Hx there is a vector x∆ ∈ N (P ) such
that x = y + x∆.

Proof: For an arbitrary x ∈ IRn there holds

x = Hx + (I −H)x = y + x∆.

Now (cf. Lemma 1.4)

x∆ = (I −H)x = (I −Q)(I − P )x = (I − P )(I −Q)x

and obviously x∆ ∈ N (P ). ⊔⊓

Proof (of Lemma 3.5): Since ⊃ is trivial, only ⊂ will be proven. Fur-
thermore, only the case k = p will be shown since the case k < p follows
immediately.

Let x ∈ N (I −H(1) · . . . ·H(p)), x 6= 0, then there are vectors xi ∈ R(H(i))
and x∆

i ∈ N (P (i)) (cf. Proposition 3.8) for i = 1, . . . , p, such that

H(p)x = xp and x = xp + x∆
p ,

H(p−1)xp = xp−1 and xp = xp−1 + x∆
p−1 ⇒ x = xp−1 + x∆

p−1 + x∆
p ,

...

H(2)x3 = x2 and x3 = x2 + x∆
2 ⇒ x = x2 +

p
∑

j=2

x∆
j ,

H(1)x2 = x1 and x2 = x1 + e∆
1 ⇒ x = x1 +

p
∑

j=1

x∆
j .
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But H(1)x2 = x1 = x, hence

p
∑

j=1

x∆
j = 0 with x∆

j ∈ N (P (j)), j = 1, . . . , p.

The vectors x∆
j are linearly independent owing to (3.6.2), i.e. x∆

j = 0 for

all j = 1, . . . , p. This implies x = x1 = . . . = xp and H(j)x = x for all
j = 1, . . . , p. ⊔⊓

Remark 3.6 1) It follows from (3.6.2) that the order of the operators
does not matter.

2) The assumption ρ(Q(j)) < 1 can be weakened to 1 /∈ σ(Q(j)). The
lemma is then applicable to more general decompositions (cf. Section
1.3).

Assume now the model problem GMP and a regular decomposition
S1, . . . , Sp without overlap, i.e. a regular partitioning of {1, . . . , n} (cf. Sec-
tion 3.1).

After an appropriate permutation, A can be assumed to be partitioned by
blocks in the following way:

A =






A11 A12 . . . A1p
...

. . .
...

Ap1 Ap2 . . . App




 ,

with square diagonal blocks Aii of dimension ni. With the terminology of
Section 3.2 and 3.3, the i-th projection of the Schwarz iteration discussed in
Sections 3.2 and 3.3 becomes

H
(i)
1 =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

In1

.
. .

Ini−1

A
−1
i,i

Ai1 . . . A
−1
i,i

Ai,i−1 0ni
A

−1
i,i

Ai,i+1 . . . A
−1
i,i

Ai,p

Ini+1

. . .

Inp

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

=

0

@

I 0 0

M
−1
i

NL 0 M
−1
i

NR

0 0 I

1

A =: P
(i)

where NL and NR are the ”left” and the ”right” part of Ni.

These projections fulfil (3.6.1) and (3.6.2), hence the following lemma is an
immediate consequence.
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Lemma 3.6 Assume the generalised model problem GMP and a regular

partitioning S1, . . . , Sp w.r.t. A. For an l ∈ {1, . . . , 6} let H
(i)
l be the local

Schwarz operators for i = 1, . . . , p. Then

N (I −H
(1)
l · . . . ·H

(p)
l ) =

p
⋂

j=1

N (I −H
(j)
l )

=

p
⋂

j=1

R(P (j))

= N (A)

for all l ∈ {1, . . . , 6}.

Lemma 3.6 states, that if the multiplicative Schwarz iteration

xk+1 = Tlx
k, k = 0, 1, 2, . . .

converges, then the limit is some vector v ∈ N (A) for each l ∈ {1, . . . , 6}.
Hence the next result follows easily from Lemmas 3.1 and 3.2.

Theorem 3.9 Assume the generalised model problem GMP and a regular
partitioning S1, . . . , Sp w.r.t. A. Let Tl be the global Schwarz operator for a
fixed l ∈ {2, 4, 6}. Then for any x0 ∈ IRn the iteration

xk+1 = Tlx
k + c

converges to the solution x∗ of GMP, i.e.

x∗ = Ax∗ + b

wherein c is given by (3.2.4).

Remark 3.7 The result of Theorem 3.9 also holds for T3 and T5 (cf. Sec-
tion 3.3) if the diagonals of each F−1

i Gi and Bi are positive.

There is an asynchronous equivalent to Lemma 3.6.

Lemma 3.7 Assume the generalised model problem GMP and a regu-
lar partitioning S1, . . . , Sp w.r.t. A. For a fixed l ∈ {1, . . . , 6} let

{H
(k)
d,l }k∈IN0 be the set of local operators of a partially asynchronous iteration

(A, x0, {Jk,Sk}k∈IN0) and i(k) be the index of the corresponding block. Fur-
thermore, let N (A) = span{z1, . . . , zm} and define zd,i = (zT

i , . . . , zT
i )T ∈

IR(d+1)n, for i = 1, . . . , m. Then for any set {H
(k1)
d,l , . . . , H

(kp)
d,l } such that

p
⋃

j=1

{i(kj)} = {1, . . . , p},
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there holds

N (I −H
(k1)
d,l · . . . ·H

(kp)
d,l ) =

p
⋂

j=1

N (I −H
(kj)
d,l )

=

p
⋂

j=1

R(P
(i(kj))
d )

= span{zd,1, . . . , zd,m} ( N (A)× . . .×N (A).

Here, P
(i(kj))
d is the projection (3.5.10) onto N (I −H

(kj)
d,l ) for j = 1, . . . , p.

Proof: See Appendix A

There is no equivalent of Theorem 3.9 in the context of PAIs, since the

diagonal of any product of local operators H
(k)
d,l will never be positive in

general. Additionally, the order of local operators will be almost chaotic in
the sense

s⋃

j=1

{i(kj)} = {1, . . . , p}

for s > p and
l⋃

j=1

{i(kj)} ( {1, . . . , p}

for l < s. Therefore, Lemma 3.7 is interesting for theory but not for practice.

In view of Lemma 3.6 and 3.7, there are two questions which arise immedi-
ately.

1) What happens if there is overlap?

2) What happens if the order becomes chaotic?

Since overlap causes a lot of synchronisation in PAIs, it will be avoided most
likely. Thus, question 1) concerns more the Schwarz type methods. On the
other hand, question 2) is to be discussed for PAIs, because the order of the
operators is arbitrary in general.

To discuss question 1), consider the situation of Lemma 3.5 and Lemma 3.6.
If overlap occurs, there still holds

x = Tlx = H
(1)
l · . . . ·H

(p)
l x⇔

p
∑

j=1

x∆
j = 0

for each l = 1, . . . , 6. But the vectors x∆
j need not to be linearly independent

anymore. This means that in the situation of Theorem 3.9, the operator Tl

is still semiconvergent, but

N (I − Tl) = N (I −H
(1)
l · . . . ·H

(p)
l ) = N (A)
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may not necessarily hold. In this situation, convergence is obtained but
convergence to the fixed point z is not guaranteed.

It should be mentioned that the same situation arises in the analysis of
additive Schwarz methods. Again, the overlap is to be discussed rather
than the order. For l ∈ {1, . . . , 6} there holds

y = Tθ,lx = x− θ

p
∑

j=1

(I −H(j))x
︸ ︷︷ ︸

=:y∆
j

= x− θ

p
∑

j=1

y∆
j .

And again

x = Tθ,lx⇔

p
∑

j=1

y∆
j = 0.

Since y∆
j ∈ N (P (j)) the equation

N(I − Tθ,l) = N(I −A)

can be guaranteed if no overlap occurs.

For question 2) consider a PAI for d = 0 without overlap. Here, the number
of local operators to be applied in a sequence such that each block is updated
at least once, is at most s (cf. (3.4.7)), and usually s > p. Consider a

sequence H
(k1)
l , . . . , H

(km)
l , s ≥ m > p such that each block is updated and

let
x = H

(km)
l · . . . ·H

(k1)
l x.

If the operators which update the same block occur in a consecutive order,
i.e.

H
(km)
l · . . . ·H

(k1)
l =

(

H
(π(1))
l

)t1
· . . . ·

(

H
(π(p))
l

)tp

for a permutation π and numbers tj ∈ IN, j = 1, . . . , p, then Lemma 3.7
applies by Proposition 3.7.

But if all operators occur in an arbitrary order, then an ansatz according to
Lemma 3.5 leads to

m∑

j=1

x∆
j = 0.

If, as usually, P (i) = H
(i)
1 and Ii := {j : x∆

j ∈ N (P (i))}, i = 1, . . . , p, then

0 =
m∑

j=1

x∆
j =

p
∑

i=1

∑

j∈Ii

x∆
j

where ∑

j∈Ii

x∆
j ∈ N (P (i)), i = 1, . . . , p.
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Since the null spaces N (P (i)) are direct sums there follows

0 =
∑

j∈Ii

x∆
j , i = 1, . . . , p.

But again, x∆
j = 0 for j = 1, . . . , m may not follow and there is no guarantee

that
N (I −H

(km)
l · . . . ·H

(k1)
l ) = N (A)

holds.

Hence the algebraic ansatz does not yield general results, but reveals the
problems to be solved. In Chapter 4 an approach will be introduced which
will eliminate the above problems for Schwarz type methods and PAIs. This
approach is based on the combinatorial non-zero structure rather than on
invariant subspaces.



Chapter 4

A graph based approach for

MP

In this chapter a graph based approach will be presented, which is applicable
to the model problem MP and the iteration schemes discussed in Chapter
3. The approach will eliminate the problems which have been revealed in
Section 3.6. The theory given now is somehow in the tradition of [21, 46, 59,
61] (cf. Section 6.5) but not the same. Some parts of it can also be found
implicitly in [39, 55] (cf. Section 6.4).

The approach is very basic and uses a convergence theory which has become
out of the scientific interest as the impact of analytical methods grew. How-
ever, the approach leads to the insight why convergence just happens since
it is based on the structure of the iteration operators rather than analytical
properties. Moreover, the theory solves the problems in an easy manner and
that is what matters.

Note that the comparison with known results takes place in Chapter 6. This
has been done to present the theory as a whole.

4.1 Introduction

To start with an easy example, consider the nonnegative matrix

B =





0 1 0
0 0 1
1 0 0





and a multiplicative (one-level) Schwarz iteration for A = I −B with three
one-element blocks, one for each component. Then the local operators be-

57
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come

H(1) =





0 1 0
0 1 0
0 0 1



 , H(2) =





1 0 0
0 0 1
0 0 1



 and H(3) =





1 0 0
0 1 0
1 0 0



 .

Now, it is not hard to see, that each product H(1)H(2)H(3), H(3)H(1)H(2)

and H(2)H(3)H(1) has a positive column and represents a convergent oper-
ator (actually a rank one projection), e.g.,

H(3)H(1)H(2) =





0 0 1
0 0 1
0 0 1



 .

This guarantees the convergence of the multiplicative Schwarz iteration by
Lemma 1.2. Each other order leads to a non-convergent operator with the
eigenvalues {1,−1, 0}, e.g.,

H(1)H(3)H(2) =





0 0 1
0 0 1
1 0 0



 .

This example can be generalised to arbitrary dimensions.

In view of Theorem 3.9, the application of a relaxed version will solve the
problem from the above example; but this is not always a good idea, as the
following example will show.

Consider the singular M-matrix

A :=

0

B

B

B

B

B

B

B

B

B

B

@

0.7 −0.6 0 0 0 0 0 0

0 0.6 −0.2 0 0 0 0 0

0 0 0.2 −0.1 0 0 0 0

0 0 0 0.1 −0.5 0 0 0

0 0 0 0 0.5 −0.25 0 0

0 0 0 0 0 0.25 −0.75 0

0 0 0 0 0 0 0.75 −0.5

−0.7 0 0 0 0 0 0 0.5

1

C

C

C

C

C

C

C

C

C

C

A

and the regular partitioning S = {S1, S2, S3} where

S1 = {1, 2, 3}, S2 = {4, 5}, S3 = {6, 7, 8}.

The construction of the local Schwarz operators H
(1)
1 , H

(2)
1 and H

(3)
1 leads

to the same result as above, i.e. H
(1)
1 H

(2)
1 H

(3)
1 and any cyclic permutation of

{1, 2, 3} leads to a semiconvergent operator, having a positive column, while
each other order leads to a non-convergent operator. To become indepen-
dent of the order, consider the relaxed Schwarz iteration scheme (Update

2 in Section 3.3) with local operators H
(1)
2 , H

(2)
2 , H

(3)
2 . Now, Theorem 3.9
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implies the convergence of the relaxed Schwarz iteration, but the number of
iterations still depends on the order.

A MATLAB test with the starting vector

x0 = (0.6517 − 0.4133 − 0.3918 0.6625 0.3456 0.4923 0.2511 − 0.464 )T

and the orders 1–2–3 and 3–2–1 leads to the following number of iterations
using different values of the relaxation parameter α and a desired accuracy
of 10−10.

3–2–1 1–2–3

α = 0.25 345 24
α = 0.5 21735 21
α = 0.75 >60000 21
α = 1 divergent 21

The result for the order 3–2–1 is to be expected, since the larger α becomes,
the more the iteration operator approaches a non-convergent one. The pro-
cess ends up in a non-convergent operator, whereas the operator with respect
to 1–2–3 is always semiconvergent.

This example shows that it is probably very important to think about order-
ings which yield (fast) convergence rather than enforcing (slow) convergence
via relaxation. Therefore, it might be a good idea to think about methods
that allow to create a positive column. Here is another good reason:

Theorem 4.1 Let B ∈ IRn×n be nonnegative with ρ(B) = 1. Assume that
B has a positive column and there exists a z > 0 such that Bz = z. Then
γ(B) < 1, i.e. B is semiconvergent.

The above result has been used in [31] and [62] and will be proven in the
next section. However, it is easy to prove it in the ST-matrix context.

Proof: Let the j-th column of B be positive. Then B contains a spanning
tree with the root index j. Since Bz = z for a positive z, it follows from
Corollary 2.4 that B is an ST-matrix. Owing to Lemma 2.2, there is a
permutation matrix Π such that

ΠBΠT =

(
D 0
E F

)

,

where ρ(F ) < 1, ρ(D) = 1 and D is irreducible. But positive columns are
invariant under symmetric permutation. Hence D has a positive diagonal
element. But then, γ(D) < 1 from part 1) of Theorem 1.11. Thus γ(B) < 1
and the semiconvergence follows from Lemma 1.2. ⊔⊓

Another good reason to use operators having a positive column is the fol-
lowing one.
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Consider local nonnegative Schwarz operators H(i), i = 1, . . . , p and a pos-
itive vector z ∈ IRn such that

Hz = H(1) · . . . ·H(p)z = z, N (I −H) = span{z}.

Since H ≥ 0, there is a left eigenvector y ≥ 0 corresponding to the eigenvalue
1. If yT z = 1, then

z · yT ∈ IRn×n

is a nonnegative projection onto span{z} and necessarily has a positive col-
umn. Thus, if H has a positive column, it is semiconvergent by Theorem
4.1 and each power Hk has also a positive column; hence the limit should
have. Moreover,

lim
k−→∞

Hk = z · yT ,

so it seems to be natural to start with an operator having a positive column.

But again, convergence can not be guaranteed if the iteration becomes in-
homogeneous, i.e., H is replaced by H(k). Even if each H(k) contains a
positive column, an appropriate common norm for each operator is needed
to obtain convergence. But in practice norms are not generally available.
Hence another tool is needed and will be introduced in the next section.

4.2 A framework for convergence

The convergence theorem presented now is not based on a norm but on
algebraic properties of row stochastic matrices and can be easily applied to
the model problem MP. The theorem is not new and has been successfully
used by several authors, e.g., in [39].

Definition 4.1 Let B ∈ IRn×n be row stochastic (cf. Remark 2.1). Then
B is said to be a Markov-matrix if B has a positive column. B is called
scrambling if any two rows of B have a positive element in the same position.
Finally, B is said to be ST-regular if B is an ST-matrix and semiconvergent.

Remark 4.1 The above definition is taken from [62]. Note that ST-regular
matrices are called regular matrices in [62]. They have been renamed here
because today the term regular is used for irreducible semiconvergent non-
negative matrices (see [9, 73]). Anyway, regular matrices are of course ST-
regular.

If n ∈ IN is fixed, then Mn,G3
n and G1

n denote the set of n × n Markov-
matrices, scrambling matrices, and ST-regular matrices respectively.

Theorem 4.2 Mn ( G3
n ( G1

n. Moreover Mn and G3
n are closed under

multiplication while G1
n is not.
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Proof: The proof can be found in [62]. A nice counterexample that G1
n is

not closed under multiplication is given in [31].

All three sets are connected in the following sense:

Theorem 4.3 If A ∈ G3
n or A ∈ G1

n, then there exists a k ∈ IN such that
Ak ∈Mn.

Proof: See also [62].

The following result is about the spectra of nonnegative matrices with con-
stant row sums.

Theorem 4.4 ([62], Theorem 2.10) Let B ∈ IRn×n be a nonnegative matrix
with constant row sums a and let λ 6= a be an eigenvalue, then

|λ| ≤ τ(B) :=
1

2
max

1≤i,j≤n

{
n∑

k=1

|bik − bjk|

}

(4.2.1)

= a− min
1≤i,j≤n

{
n∑

k=1

min{bik, bjk}

}

≤ a− max
1≤k≤n

{

min
1≤i≤n

{bik}

}

.

Remark 4.2 Let the assumptions of Theorem 4.4 be fulfilled. Then γ(B) =
a is possible, if there are two rows bi,∗ and bj,∗ such that 〈bi,∗, bj,∗〉 = 0.

Corollary 4.1 Let B ∈ IRn×n be row stochastic.

1) τ(B) ≤ 1

2) If either B ∈Mn or B ∈ G3
n, then τ(B) < 1.

Markov and scrambling matrices have a very nice contraction property, as
will be presented now.

Theorem 4.5 ([62], Theorem 3.1) Assume B ∈ IRn×n is row stochastic
and let x ∈ IRn be arbitrary. Then for y = Bx:

{

max
j

yj −min
j

yj

}

≤ τ(B)

{

max
j

xj −min
j

xj

}

.

Moreover, the functional τ(·) is submultiplicative.

Theorem 4.6 ([62], Theorem 4.3) Let there be given row stochastic matri-
ces B1, B2 ∈ IRn×n, then

τ(B1 ·B2) ≤ τ(B1) · τ(B2).
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Remark 4.3 Any continuous functional τ(·) : IRn×n −→ IR which satisfies
condition 1) of Corollary 4.1 and Theorem 4.6, is called a coefficient of
ergodicity and there are a few more in the literature (see e.g., [62]). Here,
only the functional given by (4.2.1) is used and will play a vital role in the
sequel.

The following theorem will be the key to prove convergence for multiplicative
Schwarz iterations and PAIs with block updates defined in Chapter 3. The
proof can also be found in [62] in the context of so called ”weak ergodicity
of backward products”. But the part of the theory presented here is much
easier and the full range of the results in [62] will not be exploited. The
first part of the proof is similar to the proof of Theorem 2 in [39], the
second part to Theorem 4.17 in [62]. Hence the proof is given for the sake
of completeness.

Theorem 4.7 Let there be given a sequence {H(k)}k∈IN0 of nonnegative ma-
trices. Assume that each H(k) has a positive column and there exists a posi-
tive vector z such that N (I−H(k)) = span{z} for all k ∈ IN0. If there exists

a constant κ > 0 such that h
(k)
ij ≥ κ for each h

(k)
ij 6= 0 and all k ∈ IN0, then

the sequence

xk+1 = H(k)xk, k = 0, 1, 2, . . .

converges to λz for any vector x0 ∈ IRn, where λ ∈ IR. Moreover, the
convergence is obtained at a geometric rate of at least

0 < θ := 1− min
1≤i,j≤n

{
κ · zj

zi

}

< 1

and the limit H∗ := limk−→∞ H(k) · H(k−1) · . . . · H(0) is a projection onto
span{z}.

Proof: Define D = diag(z1, . . . , zn) and G(k) := D−1H(k)D. For an arbi-
trary x0 ∈ IRn let y0 := D−1x0 and consider the equivalent iteration

yk+1 = G(k)yk, k = 0, 1, 2, . . . .

Then obviously xk = Dyk for all k ∈ IN0. On the other hand, each G(k)

is now row stochastic, thus G(k) ∈ Mn for all k ∈ IN0. For an arbitrary
k ∈ IN0 let

η := min
1≤i,j≤n

{g
(k)
ij 6= 0} ≤ 1,

then

1 ≥ η = min
1≤i,j≤n

{

h
(k)
ij · zj

zi
, h

(k)
ij 6= 0

}

≥ min
1≤i,j≤n

{
κ · zj

zi

}

> 0,
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and furthermore

(4.2.2) max
1≤j≤n

{

min
1≤i≤n

{g
(k)
ij }

}

≥ η.

(Note that the last relation holds especially for matrices in Mn and is the
only point where the assumption that each H(k) has a positive column is
needed.) Owing to Theorem 4.4,

τ(G(k)) ≤ 1− max
1≤j≤n

{

min
1≤i≤n

{g
(k)
ij }

}

≤ 1− η

≤ 1− min
1≤i,j≤n

{
κ · zi

zj

}

= θ < 1,

uniformly for all k ∈ IN0.

Now apply Theorem 4.5 for a fixed k, then

{

max
j

yk
j −min

j
yk

j

}

≤ τ(G(k−1)

{

max
j

yk−1
j −min

j
yk−1

j

}

≤ τ(G(k−1) · . . . · τ(G(0))

{

max
j

y0
j −min

j
y0

j

}

≤ θk

{

max
j

y0
j −min

j
y0

j

}

.

Thus

lim
k−→∞

{

max
j

yk
j −min

j
yk

j

}

= 0,

hence

lim
k−→∞

yk = λ · e, λ ∈ IR,

and finally,

lim
k−→∞

xk = lim
k−→∞

Dyk = λ ·D · e = λ · z.

To complete the proof let G(0,k) := G(k) · . . . ·G(0). Then τ(G(0,k)) ≤ θk and
limk−→∞ τ(G(0,k)) = 0. Hence, for an ε > 0 there is a k0 such that

g
(0,k)
il − ε ≤ g

(0,k)
jl ≤ g

(0,k)
il + ε
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for all i, j, l = 1, . . . , n and k ≥ k0 from the definition of τ(·) (cf. (4.2.1)).
But since G(0,k+1) = G(k+1)G(0,k) there holds

g
(0,k)
il − ε =

n∑

m=1

g
(k+1)
jm (g

(0,k)
il − ε)

≤
n∑

m=1

g
(k+1)
jm g

(0,k)
ml

= g
(0,k+1)
jl

≤
n∑

m=1

g
(k+1)
jm (g

(0,k)
il + ε)

= g
(0,k)
il + ε.

And by induction

g
(0,k)
il − ε ≤ g

(0,k+r)
jl ≤ g

(0,k)
il + ε

for all i, j, l = 1, . . . , n and r ≥ 0. Thus, g
(0,k)
jl is a Cauchy sequence in k and

lim
k−→∞

G(0,k) = G∗

exists. Since τ(G∗) = 0 by Theorem 4.4, the limit must be a rank one
matrix. Additionally, G(k)e = e for all k ∈ IN0 implies G∗e = e. Thus, G∗ is
a rank one projection. Now it is obvious that H∗ = DG∗D−1 and the proof
is complete. ⊔⊓

Remark 4.4 1) If the sequence {H(k)}k∈IN0 consists of only finitely
many different matrices, then Theorem 4.7 holds without any restric-

tion on the elements, i.e. h
(k)
ij ≥ κ holds automatically whenever

h
(k)
ij 6= 0.

2) Theorem 4.7 implies Theorem 4.1 if a constant sequence of operators
is considered.

The next corollary is given to emphasise the role of a positive column. Its
proof follows easily from (4.2.2) and it plays a major role in the construction
of convergent multiplicative Schwarz iterations.

Corollary 4.2 Let there be given a sequence {H(k)}k∈IN0 of nonnegative
matrices. Assume that each H(k) has its jk-th column positive and there
exists a positive vector z such that N (I −H(k)) = span{z} for all k ∈ IN0.

If there exists a constant κ > 0 such that h
(k)
ijk
≥ κ for each i = 1, . . . , n and

all k ∈ IN0, then Theorem 4.7 applies to the sequence {H(k)}k∈IN0.
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The following result is needed to complete the convergence theory.

Theorem 4.8 Let {H(k)}k∈IN0 be a sequence of nonnegative square matrices
such that there exists a vector z > 0 satisfying H(k)z = z for all k ∈ IN0.
Suppose limk−→∞ H(k) · . . . ·H(0) = P and P is a projection onto span{z}. If
{ck}k∈IN0 is a sequence of vectors such that ck ∈ R(I−H(k)) and there exists
a x∗ ∈ IRn such that (I −H(k))x∗ = ck for all k ∈ IN0, then the sequence

xk+1 = H(k)xk + ck, k = 0, 1, 2, . . .

converges to x∗ + λz, λ ∈ IR for every given x0 ∈ IRn and (I −H(k))(x∗ +
λz) = ck for all k ∈ IN0.

Proof: Define ek = xk − x∗, then ek+1 = H(k)ek and

lim
k−→∞

ek = Pe0 = λz

exists for some λ ∈ IR. But then

lim
k−→∞

xk = x∗ + λz

and

(I −H(k))(x∗ + λz) = ck + (I −H(k))(λz) = ck

for all k ∈ IN0. ⊔⊓

As a motivation for the sections to follow, consider MP and let Tl = H
(1)
l ·

. . . · H
(p)
l be a multiplicative global Schwarz operator for l ∈ {1, . . . , 6} as

defined in Section 3.2 and 3.3. If it is possible to guarantee that Tl has a
positive column whose elements are bounded from below, then convergence
is obtained from Corollary 4.2. Actually, Theorem 4.1 is sufficient for l =
1, 2, 5, 6, but Corollary 4.2 is needed for Update 3 and 4.

For Update 3 and 4 there is a dependence on the iteration index k, since the

number of inner iterations may vary, i.e. Tl = T
(k)
l for l = 3, 4 (and even the

right hand side, if any, depends on the iteration index). Thus the iteration
becomes

xk+1 = T
(k)
l xk + ck

for a given x0 ∈ IRn and proper right hand sides ck.

The problem here is, that the more inner iterations are carried out the

smaller some elements of T
(k)
3 will become (cf. (3.3.2) and (3.3.3)).

Anyway, for Update 3, the identity (3.3.2) implies for each i ∈ {1, . . . , p}

ΠiH
(k,i)
3 ΠT

i =

(
R(k,i) (I −R(k,i))M−1

i Ni

0 I

)

≥ 0.
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But

(I −R(k,i))M−1
i =

q(k,i)−1
∑

j=0

(F−1
i Gi)

jF−1
i ≥ F−1

i ≥ 0

and therefore

0 ≤ H̃
(i)
3 := ΠT

i

(
0 F−1

i Ni

0 I

)

Πi

≤ ΠT
i

(
R(k,i) (I −R(k,i))M−1

i Ni

0 I

)

Πi = H
(k,i)
3 ,

since the inner splitting is weak regular and R(k,i) ≥ 0.

If it is possible to find a decomposition such that

T̃3 := H̃
(1)
3 · . . . · H̃

(p)
3

has a positive column, then convergence is obtained from Corollary 4.2. This
is because

1) T̃3 ≤ T
(k)
3 for all k ∈ IN0, and

2) each element of T̃3 is bounded from below by some κ > 0, since T̃3 is
independent of the number of inner iterations q(k, i), thus independent
of k.

An analogous argumentation holds for T
(k)
4 . Hence, if Corollary 4.2 applies,

then Theorem 4.8 can be used to obtain convergence.

Now assume a PAI (A, x0, {Jk,Sk}k∈IN0) for MP with operators H
(k)
d,l for

some scenario and l ∈ {1, . . . , 6}. If it is possible to find a number r ∈ IN
which is independent of k ∈ IN0 and any scenario, such that

T
(k)
d,l := H

(k+r)
d,l · . . . ·H

(k)
d,l

has a positive column whose elements are bounded from below, then Corol-
lary 4.2 applies again and convergence for

x
k+(m+1)r
d = T

(k+mr)
d,l xk+mr

d + ck+mr
d , m = 0, 1, 2, . . . ,

is obtained from Theorem 4.8.

Thus, convergence of multiplicative Schwarz iterations and PAIs can be
proven with Corollary 4.2 if it is possible to find conditions that guarantee
the existence of a positive column whose elements are bounded from below.
This cannot be shown without a consideration of the non-zero pattern of
the iteration operators as will be demonstrated in the following sections.
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Remark 4.5 The convergence for multiplicative Schwarz iterations and
PAIs is generally obtained on a subsequence {xkr}k=IN0 for some r > 0.

But since all operators H
(k)
l and H

(k)
d,l are nonexpansive w.r.t. ‖ · ‖z (cf.

Lemma 3.1, Lemma 3.2 and Proposition 3.4), the convergence for the whole
sequence is immediately obtained (see, e.g., [13]).

4.3 The basic idea

In this section the basic idea which will guarantee convergence by the ex-
istence of a positive column will be presented. First for operators which
update a single row and in the next section for block operators.

Consider the following ST-matrices.

B4 =

0

B

B

B

B

B

@

1
1

1
1

1
1

1

C

C

C

C

C

A

, B5 =

0

B

B

B

B

B

@

1
1
1

1
1

1

1

C

C

C

C

C

A

, B6 =

0

B

B

B

B

B

@

1
1

1
1
1

1

1

C

C

C

C

C

A

.

Assume an inexact multiplicative Schwarz iteration with Update 5 for
B4, B5, and B6 such there is only one row updated (this is equivalent to
Update 1 for the STM-matrices Ai = I − Bi, i = 4, 5, 6 applied to single
rows). Then, e.g., the local operator H(3) for B4 becomes

H
(3)

=

0

B

B

B

B

B

B

@

1

1

0 1

1

1

1

1

C

C

C

C

C

C

A

.

Now it is easy to see that for each of the above examples the operator

T = H(1) · . . . ·H(6)

has the first column positive. And this can be explained by a consideration of
the spanning trees of the above examples (see Figure 4.1) and an application
of an appropriate vector to each Bi.

Consider the vector x = (1, 0, 0, 0, 0, 0)T and apply it to some Bi. Then
the initial information is stored in state 6, the root. Another application
of Bix to Bi reveals that the information is carried to the states which are
direct children of the root and so on. Hence the information ”flows” through
the tree, until it reaches the leaves. The product operator T combines this
transport into a single step, i.e. it introduces a shortcut. Moreover, T is



4. A graph based approach for MP 68
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Figure 4.1: Trees of B4, B5 and B6

also an ST-matrix and has exactly one final and basic class. Thus, fixed
points are preserved (cf. Section 4.4). It turns out that this simple idea is
a key to convergent exact multiplicative Schwarz iterations, since the above
mentioned flow will be kept working if the partitions and their order are
chosen properly (cf. Section 4.5). This idea will also have a natural extension
to inexact multiplicative Schwarz iterations (cf. Section 4.6). Finally, the
ansatz will be further improved using relaxation. This improvement will
also lead to results on additive Schwarz iterations (cf. Section 4.7) and PAIs
(cf. Section 4.8).

Definition 4.2 Let A be an STM-matrix (or ST-matrix) and let T be an
arbitrary spanning tree in Γ(AT ) with some guard index. A flow com-
patible numbering (or permutation) of the vertices of T is a permutation
π : {1, . . . , n} −→ {1, . . . , n} such that if there is a path from π(i) to π(j)
in T , then i > j for each 1 ≤ i, j ≤ n, i 6= j. Any such permutation is also
called flow compatible (w.r.t. T ).

Figure 4.2 shows a flow compatible numbering for an ST-matrix B (guard
edges have been left out).

The example defines a numbering (10, 11, 9, 8, 7, 5, 6, 4, 3, 2, 1), but note that
(9, 11, 8, 4, 6, 3, 10, 7, 5, 2, 1) is also flow compatible.

Definition 4.2 allows the following theorem.

Theorem 4.9 Let B ∈ IRn×n be an ST-matrix and let π be a flow compat-
ible permutation w.r.t. some tree T ⊂ Γ(BT ). Consider Update 5, applied

to single rows and let H
(1)
5 , . . . , H

(n)
5 be the corresponding operators, then

H
(π(1))
5 · . . . ·H

(π(n))
5

has at least one positive column and therefore it is semiconvergent.

Proof: Since the node π(n) is always the root of a tree T in Γ(BT ) (cf.

Definition 4.2), there is a guard index j such that (H
(π(n))
5 )π(n),j > 0. It will



69 4.3. The basic idea

π(11)=1

π(9)=3

π(8)=4

π(7)=6

π(6)=5

π(5)=7

π(4)=8

π(3)=9
π(2)=11

π(1)=10

π(10)=2

1

2

3

4

9

6

5

7

10

11

8

Γ (B)

Figure 4.2: A flow compatible numbering

first be shown by induction that

(H
(π(k))
5 · . . . ·H

(π(n))
5 )π(k),j > 0

for an arbitrary k ∈ {1, . . . , n}. Since the proposition is obvious for k = n
let 1 ≤ k < n be arbitrary but fixed.

Case 1: (π(k), π(k + 1)) ∈ Γ(B).
In this case, the node π(k + 1) represents the parent of π(k) in T . Thus

(H
(π(k))
5 )π(k),π(k+1) > 0 and there is an l ∈ IN, k < l ≤ n such that

(H
(π(k+1))
5 )π(k+1),π(l) > 0. The latter holds, since there is a path from π(k+1)

to π(n) in T . But then

(H
(π(k))
5 ·H

(π(k+1))
5 )π(k),π(l) > 0,

i.e. the entry (π(k), π(k + 1)) has been moved to the π(l)-th column. Thus
π(l) is the new parent of π(k).

Case 2: (π(k), π(k + 1)) /∈ Γ(B).
In this case, the index π(k) must have access to π(l) for some l ∈ IN, k+1 <
l ≤ n, since there is also a path from π(k) to π(n) in T . The construction

of the operators implies that (H
(π(k+1))
5 )π(l),π(l) > 0; thus

(H
(π(k))
5 ·H

(π(k+1))
5 )π(k),π(l) > 0.

The entry (π(k), π(l)) has been preserved and π(l) is still the parent of π(k).

A simple induction leads to

(H
(π(k))
5 · . . . ·H

(π(n−1))
5 )π(k),π(l) > 0

for some l ∈ IN, n−1 < l ≤ n, i.e. l = n. But since (H
(π(n))
5 )π(n),j > 0 there

holds
(H

(π(k))
5 · . . . ·H

(π(n))
5 )π(k),j > 0.
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To finish the proof of the theorem observe that (H
(π(j))
5 )π(k),π(k) > 0 follows

for all 1 ≤ j < k from the construction of H
(j)
5 . Hence

(H
(π(1))
5 · . . . ·H

(π(n))
5 )π(k),j > 0.

This is the theorem since k was arbitrary. ⊔⊓

Remark 4.6 1) Theorem 4.9 can be interpreted as a mapping from the
set of ST-matrices into itself while the fixed points are preserved and
the image contains a flat tree (of height 1).

2) It can be easily shown that each positive entry in the root row (i.e.
every guard) creates a positive column.

Now the question is how to find a flow compatible numbering. An easy way
is to find the strongly connected component first (see [69] and also [22]) and
then apply a depth first search (see [22]) to the transposed graph.

The depth first search algorithm is usually split into two parts. An outer
loop (usually called DFS) which runs until each node has been visited and
a part that performs the depth first search (DFS VISIT). For an ST-matrix
there is only a need for the second part and the DFS-Algorithm reduces to
the pseudo code given in Algorithm 4.1. The algorithm works on a graph
G = (V, E) with V = {1, . . . , n}, a global array π of length n, and a global
counter t which has to be initialised with 0.

Algorithm 4.1 DFS VISIT

Require: j ∈ {1, . . . , n}
1: for each i ∈ V such that (j, i) ∈ E do
2: if i is not visited then
3: mark i as visited
4: DFS VISIT(i)
5: end if
6: end for
7: t← t + 1
8: π(t)← j

Let B be an ST or STM-matrix. If Algorithm 4.1 is applied to Γ(BT ),
and the initial vertex j is chosen from the final and basic class, then each
accessible vertex is marked. But there is at least one tree in Γ(BT ), hence
each vertex is accessible and there is only the need of one call to DFS VISIT.
Since the numbers t coincide with the finishing times of DFS in [22], the
π(t), t = 1, . . . , n, represent a flow compatible numbering. That leads to the
following lemma.
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Lemma 4.1 Let B be an ST or STM-matrix and let j be any index from the
final and basic class. Then DFS VISIT(j), given by Algorithm 4.1, applied
to Γ(BT ) delivers a flow compatible permutation π for some tree T ⊂ Γ(BT ).

Remark 4.7 1) None of the algorithms to compute strongly connected
components in [22] and [69] delivers a flow compatible numbering, thus
the algorithm of [69] should be preferred since it is slightly faster. How-
ever, Algorithm 4.1 has to be applied separately.

2) Let π be a compatible permutation w.r.t. some tree T ⊂ Γ(BT ), B ∈
IRn×n. If Π is the permutation matrix corresponding to π, then all
edges of T reside in the upper triangular part of ΠT BΠ by the defini-
tion of flow compatibility. A flow compatible numbering might therefore
be interpreted as a generalised topological sorting.

3) If an ST-matrix B has a symmetric pattern, then irreducibility can be
proven via DFS VISIT. Moreover, DFS VISIT can be used to find the
strongly connected components.

4.4 Block operators

The idea of the previous section will be extended to show that the ”flow”
can be preserved for exact multiplicative Schwarz iterations if the blocks are
chosen properly.

The following lemma is as fundamental as it is easy, but the proof is a bit
stretchy and there is a need for additional notation. To this purpose, let A
be an STM-matrix, and let T be any spanning tree in Γ(AT ). Furthermore,
let π be a flow compatible permutation corresponding to T . Denote by Π
the permutation matrix corresponding to π.

A vertex i has access to a vertex j along T , if there is a path (j =
l1, l2, . . . , lk = i) in T . This is denoted by i →T j. A vertex i has di-
rect access to j along T , if (j, i) ∈ T . This is denoted by (i, j)T and the
vertex i is said to be adjacent to j in T .

Remark 4.8 1) If i→T j holds, then (i = lk, lk−1, . . . , l1 = j) ⊂ Γ(A).

2) The term (i, j)T is to be interpreted as a predicate rather than an edge.
However, (i, j)T implies (i, j) ∈ Γ(A).

3) The access relation along T is used to focus on the structure of interest.
This structure represents the minimum of positive elements needed to
construct convergent multiplicative Schwarz iterations and PAIs. All
other positive elements of A can be ignored.
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Lemma 4.2 Let A be an STM-matrix. Let π be a flow compatible per-
mutation corresponding to a spanning tree T in Γ(AT ). Denote by Π the
permutation matrix corresponding to π. Additionally let

V := (π(k), π(k + 1), . . . , π(l)), 1 ≤ k < l ≤ n, l − k + 1 < n

such that V satisfies the assumption of Theorem 2.2, i.e. A[V ]−1 exists. Let
the matrix P be defined through

(4.4.1) ΠPΠT =





I 0 0
M−1NL 0 M−1NR

0 0 I





where M = A[V ], NL = −A[V, (π(1), . . . , π(k−1))], and NR = −A[V, (π(l+
1), . . . , π(n))]. Then for each k ≤ j0 ≤ l, one of the following three condi-
tions hold:

1) If j0 = n, then there exists a π(i0) /∈ V such that π(n) → π(i0) in
Γ(A) and (π(n), π(i0)) ∈ Γ(P ).

2) If j0 6= n and (π(j0), π(i0))T for a π(i0) /∈ V , then (π(j0), π(i0)) ∈
Γ(P ).

3) If j0 6= n and (π(j0), π(o))T for a π(o) ∈ V , then there exists
π(h) ∈ V , π(i0) /∈ V such that π(j0) →T π(h), (π(h), π(i0))T , and
(π(j0), π(i0)) ∈ Γ(P ).

Furthermore the index π(i0) in 1),2) and 3) satisfies:

4) If l < n, then l < i0.

5) If l = n, then k > i0 and i0 is given by assertion 1).

In case 4) i0 is unique (w.r.t. T ). In case 5) i0 depends on the chosen guard.

Remark 4.9 The lemma has an easy interpretation if one considers
(4.4.1). The case π(n) ∈ V plays a special role. Assertion 1) states that
there exists a path in Γ(A) starting at π(n), which leads out of V and this
path is replaced by an edge in Γ(P ) which resides in M−1NL. Assertion
2) says that if π(j0) ∈ V has direct access to π(i0) /∈ V along T (i.e.
(π(j0), π(i0)) ∈ Γ(A)), then this edge is still in Γ(P ), i.e. connections lead-
ing out of V are preserved. Assertion 3) says that if π(j0) ∈ V has direct
access to some element in V along T , then there is a path in V along T
leading to some π(i0) /∈ V . Furthermore, for each such path there will be an
edge in Γ(P ). The latter means that a multiplication with M−1 introduces
a shortcut in T , but the flow itself is preserved. Assertion 4) states that the
edges of interest lie in M−1NR except, and that is assertion 5), the root is in
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V . Since then each vertex has access to the root, thus access to some vertex
outside V due to assertion 1).

Figure 4.3 describes the situation for an STM-matrix A = I−B. The figure
shows the graph of B and the set V = {π(4), π(5), π(6), π(7)} = {8, 7, 5, 6}.
Γ(P ) is the graph of P given by (4.4.1) with respect to V . Note that the
dashed edges exist in Γ(A) = ∆∪Γ(B) and have been shortcut in Γ(P ). The
diagonal edges of Γ(P ) and the guard edges in Γ(A) have been left out.

2 3
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Figure 4.3: Graph of a matrix with corresponding projection

Proof: The proof is a bit technical and has therefore been split into several
parts.
Part 1: Classification of vertices in V .
Define inner (I(V )), outer (O(V )), and boundary vertices (B(V )) by

B(V ) := {v ∈ V : there exist w /∈ V such that (v, w)T },

I(V ) := {v ∈ V : there exist u ∈ V such that (v, u)T },

O(V ) := V \ (B(V ) ∪ I(V )).

Then there holds:

i) B(V ) ∩ I(V ) = ∅,

ii) B(V ) ∪O(V ) ∪ I(V ) = V ,

iii) O(V ) 6= ∅ ⇒ O(V ) = {π(n)},

iv) B(V ) = ∅ ⇔ O(V ) 6= ∅.

To prove this let v ∈ V be arbitrary. Assume there exists a w such that
(w, v) ∈ T , i.e. (v, w)T holds. Then w is unique since T is tree. If w ∈ V ,
then v ∈ I(V ) else v ∈ B(V ). If there exists no w satisfying (v, w)T , then
v = π(n) and obviously π(n) ∈ O(V ). Since the root is unique, this proves
i) to iii) and the sets are well defined.
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Suppose B(V ) = ∅. Since every vertex, except the root, has a parent but
no vertex v ∈ V has an adjacent vertex w /∈ V relative T , π(n) ∈ V holds
necessarily. Now assume O(V ) 6= ∅, then O(V ) = {π(n)} follows from
iii). If there is a v ∈ B(V ), then there exists a w /∈ V satisfying (v, w)T .
Additionally, there are numbers k1, k2 ∈ {1, . . . , n} such that v = π(k1) and
w = π(k2). Since π is flow compatible, k ≤ k1 < k2 ≤ l = n. But then
w = π(k2) ∈ V , a contradiction and iv) follows.

Part 2: The case π(n) ∈ V
Assume π(j0) = π(n) ∈ V . Then there is an index k0 ∈ {1, . . . , n} such
that (A)π(j0),π(k0) > 0, i.e. k0 is a guard index. If π(k0) /∈ V , then we are
done (i0 := k0). Hence assume π(k0) ∈ V and let α be the final and basic
class of A. Denote α̃ = π(α), then α̃ ∩ V 6= α̃ since M = A[V ] is regular
(cf. Theorem 2.2) and π is bijective. Owing to the strong connectivity of
α, there exists a π(i0) ∈ α̃ \ V and a path (π(n) = π(ik), . . . , π(i1), π(i0))
from π(n) to π(i0) in Γ(A) such that (π(ik), . . . , π(i1)) ⊂ Γ(M). Lemma 1.1
implies Γ(M−1) = Γ(M), thus there is an edge (π(n), π(i1)) ∈ Γ(M−1) and
(π(i1), π(i0)) ∈ Γ(A). By the construction, π(i0) /∈ V and i0 < k < l = n.

Part 3: Inner vertices
Let v ∈ I(V ), then there exists exactly one vertex w ∈ V such that
(v, w)T . If w ∈ I(V ) then the last argument can be applied inductively
until a vertex u /∈ I(V ) is reached. Now u ∈ B(V ) or from part 1)
of assertion iv), u = π(n). But in either case there is a unique path
p = (u = π(ik), π(ik−1), . . . , π(i1) = v) in T , i.e. v →T u. Furthermore,
l ≥ ik > ik−1 > . . . > i1 ≥ k and pT = (π(i1), . . . , π(ik)) is a path in Γ(M).
As in part 2), there holds Γ(M−1) = Γ(M), i.e. (v, u) ∈ Γ(M−1). The latter
means, that the path is being shortcut in Γ(M−1) by (v, u) = (π(i1), π(ik))
and ik > i1.

Part 4: Conclusions
Let k ≤ j0 ≤ l be arbitrary but fixed. Write P as follows:

ΠPΠT =





I 0 0
M−1NL 0 M−1NR

0 0 I





=





I 0 0
0 M−1 0
0 0 I









I 0 0
NL 0 NR

0 0 I



 =: M−1
n Nn.

By Lemma 1.1

(4.4.2) Γ(M−1
n Nn) = Γ(M−1

n )Γ(Nn) = Γ(Mn)Γ(Nn).

Case a: π(j0) ∈ B(V )
There exists exactly one π(i0) satisfying (π(j0), π(i0))T and π(i0) /∈ V . But
then (π(j0), π(i0)) ∈ Γ(NR) since i0 > j0. With ∆ ⊂ Γ(Mn) and (4.4.2) the
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relation (π(j0), π(i0)) ∈ Γ(P ) follows. Hence, assertion 2) combined with 4)
is proven.

Case b: π(j0) ∈ I(V ) and B(V ) 6= ∅
In view of part 3) there exists exactly one π(h) ∈ B(V ) such that
(π(j0), π(h)) ∈ Γ(Mn) and h > j0. Since π(h) satisfies the assumptions
of case a) there is exactly one edge (π(h), π(i0)) ∈ Γ(NR). Again, from
(4.4.2) there follows (π(j0), π(i0)) ∈ Γ(P ) and i0 > h > j0. This is assertion
3) combined with 4).

Case c: π(j0) = π(n)
By part 2) there are edges π(i0) /∈ V and π(j1) ∈ V such that (π(j1), π(i0)) ∈
Γ(A) and (π(j0), π(j1)) ∈ Γ(M−1). But i0 < k < l = n, thus (π(j1), π(i0)) ∈
Γ(NL) and again by (4.4.2), (π(j0), π(i0)) ∈ Γ(P ), which is assertion 1)
combined with 5).

Case d: π(j0) ∈ I(V ) and π(n) ∈ V
By part 1) there holds B(V ) = ∅. Part 3) implies that there exists an edge
(π(j0), π(n)) ∈ Γ(Mn) which is unique in T . An application of case c) leads
to the existence of edges (π(j1), π(i0)) ∈ Γ(NL) and (π(j0), π(j1)) ∈ Γ(Mn).
This implies (π(j0), π(i0)) ∈ Γ(P ) and j0 ≥ k > i0. Hence, assertion 2) with
5) is proven.

This finishes the proof of the lemma. ⊔⊓

Suppose π(n) ∈ V and i0 is the index of assertions 1) and 5). An inspection
the proof of Lemma 4.2 shows that each π(k) ∈ V generates a positive entry
(π(k), π(i0)), i.e. Pπ(k),π(i0) > 0 for all π(k) ∈ V . This is because each vertex
has access to the root due to the definition of V . The latter means, that the
root always generates a positive column in the block row corresponding to
V .

Corollary 4.3 Let the assumptions of Lemma 4.2 be fulfilled and let π(n) ∈
V . Then there exists an i0 such that π(i0) /∈ V and (π(k), π(i0)) ∈ Γ(P ) for
all π(k) ∈ V .

If V is any subset of {π(1), . . . , π(n)}, the assertions 1), 2) and 3) of Lemma
4.2 still hold. But the assertions 4) and 5) can not hold in general since
there might be some gaps in the set. If π(n) /∈ V , then assertion 4) still
applies but in the other case there holds a somehow weaker condition.

If π(n) /∈ V , the situation can be easily understood by considering different
flow compatible numberings of an STM-matrix A. Figure 4.4 shows such
a situation (guard edges of A have been left out). Consider the set V =
(π(4), π(5), π(6), π(7)) which satisfies the assumptions of Lemma 4.2 w.r.t.
π. In contrast to this, the set Ṽ = (σ(3), σ(5), σ(8), σ(9)) does not fulfil
the assumptions of Lemma 4.2 w.r.t. σ. But the access relation in the
corresponding projections is of course the same, since the access relation of
the reflexive transitive closure of A[V ]−1 is invariant under permutation.
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Figure 4.4: Graph of a matrix with different flow compatible numberings

Corollary 4.4 Let V be any subset of {π(1), . . . , π(n)} such that M−1 =
A[V ]−1 exists (cf. Theorem 2.2) and assume π(n) /∈ V . Then Lemma 4.2
applies with the assertions 2), 3) and 4) to V .

To understand the situation if π(n) ∈ V , consider the STM-matrix A with
the graph given by Figure 4.4 and the permutation π. Assume that the guard
index of π(11) = 1 is π(4) = 8, Π is the permutation matrix corresponding
to π, and V = (π(6), π(10), π(11)). Then the corresponding projection PV

is given by

ΠPV Π
T

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1
1

1
1

1
1

1
1

1
1
1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

Assertion 5) of Lemma 4.2 applies directly with π(i0) = π(4) = 8 and
i0 = 4 < 6 = min{k : π(k) ∈ V }, since each vertex has direct access to the
root. But now consider the tuple U = (π(1), π(6), π(10), π(11)), then

ΠPU Π
T

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1
1

1
1

1
1

1
1

1
1
1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,

and PU posses no positive column in the block row corresponding to U .
However, Lemma 4.2 and Corollary 4.4 can be applied to parts of U .

Corollary 4.5 Let V be any subset of (π(1), . . . , π(n)) such that M−1 =
A[V ]−1 exists (cf. Theorem 2.2). Assume π(n) ∈ V and define TV :=
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T ∩ Γ(MT ),

VT := {π(k) ∈ V : π(k)→TV
π(n)} ∪ {π(n)},

and V¬T := V \VT . Then Corollary 4.4 applies verbatim to V¬T . Moreover,
there exists an i0 ∈ {1, . . . , n} such that i0 < n and (π(k), π(i0)) ∈ Γ(P ) for
all π(k) ∈ VT , i.e. Lemma 4.2 applies with assertions 1), 3) and 5) to VT .

Proof: Since π(n) /∈ V¬T , Corollary 4.4 applies. Now consider the guard
index π(j0) of π(n) ∈ VT . If π(j0) /∈ V , then Lemma 4.2 applies directly to
VT with i0 = j0. Thus assume π(j0) ∈ V . Then an argumentation analogous
to part 2) of the proof of Lemma 4.2 can be used which gives the proposition
for some i0 satisfying i0 < n and π(i0) /∈ V . ⊔⊓

Remark 4.10 As the proof of Lemma 4.2 and the above discussion have
shown, the order within the set V does not matter. The reflexive transitive
closure is of course not invariant under permutation but, as previously men-
tioned, the access relation is. Hence, V can be interpreted as a set rather
than a tuple.

Definition 4.3 Let A ∈ IRn×n be an STM-matrix and let π be a flow com-
patible numbering of a spanning tree T ⊂ Γ(AT ). A regular partitioning
S1, . . . , Sp of (π(1), . . . , π(n)) is termed a block flow compatible partitioning
if

max{j : π(j) ∈ Sk} < min{j : π(j) ∈ Sl},

for all 1 ≤ k < l ≤ p.

Corollary 4.6 Let A ∈ IRn×n be an STM-matrix and let π be a flow compat-
ible numbering of a spanning tree T ⊂ Γ(AT ). Consider a block flow compat-
ible partitioning S1, . . . , Sp and define Mi := A[Si], M = diag(M1, . . . , Mp),
and N = M −A. Then M−1N is an ST-matrix.

Proof: Owing to the regularity of the partitioning and Theorem 2.2, each
Mi is invertible. By Lemma 4.2, each index u ∈ Si, i < p has access to some
v ∈ Sj , j > i in Γ(M−1N). Therefore each index u ∈ {1, . . . , n} \ Sp has
access to some v ∈ Sp. Furthermore, each index v ∈ Sp has access to a single
index w /∈ Sp, which is the guard index of π(n) ∈ Sp. Hence Γ((M−1N)T )
contains a spanning tree. Since w /∈ Sp, there follows w ∈ Si for some i < p
and w has access to some index in Sj , j > i. Hence there is a path from w to
w in Γ(M−1N). The vertex w can be considered as the root and there must
exist a guard index, since there is a path from w to w. Thus M−1N is a
nonnegative GST-matrix. But since A is an STM-matrix, the ST property
follows from Corollary 2.4. ⊔⊓

Corollary 4.7 With the assumptions of Corollary 4.6 there exists a span-
ning tree T̃ in M−1N of height at most p.
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To give an example to Corollary 4.6 and Lemma 4.2, consider the STM-
matrix A = I − B where the graph of B is given by Figure 4.3 and the
guard index of index 1 is index 3. Then

A =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 −1
−1 1

−1 1 −1
−1 1

−1 1
−1 1

−1 1
−1 1

−1 1
−1 1

−1 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

After applying the flow compatible permutation given in Figure 4.3, A be-
comes

ΠAΠ
T

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 −1
1 −1

1 −1
1 −1

1 −1
1 −1

1 −1
1 −1

−1 1 −1
1 −1

−1 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

Now consider the (permuted) partitions S1 = {1, 2, 3}, S2 = {4, 5, 6, 7},
S3 = {8, 9, 10, 11}, and a splitting according to Corollary 4.6. Then M−1N
becomes

M
−1

N =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 0 0 1 0 0 0 0 0 0
1
1

1
1
1

1
1
1
1
1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

The matrix M−1N is obviously an ST-matrix with the root index π(4) = 8
and the guard index π(10) = 2. Note that M−1N is not semiconvergent.

Let A and Si, i = 1, 2, 3 be as given in the above example. Let P (1), P (2) and
P (3) be the operators given by (4.4.1) with respect to Si, i = 1, 2, 3. Then
the non-trivial block row of P (i) corresponds one to one to the i-th block
row of M−1N . Additionally, P (1) · P (2) · P (3) contains a positive column
and is semiconvergent. This is not surprisingly because now, the block rows
behave as single states and the order of the projections, given by the sets
Si, can be interpreted as a flow compatible numbering of a (block) spanning
tree of height p (cf. Corollary 4.7).

This observation leads to Theorem 4.10. Since the theorem will be formu-
lated in terms of decompositions, i.e. with overlap, the notion of block flow
compatible decompositions has to be introduced.
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Definition 4.4 Let A ∈ IRn×n be an STM-matrix and let π be a flow com-
patible numbering of a spanning tree T ⊂ Γ(AT ). A regular decomposition
S1, . . . , Sp of (π(1), . . . , π(n)) is said to be block flow compatible if there
exists a block flow compatible partitioning S̃1, . . . , S̃p such that S̃i ⊆ Si for
all i = 1, . . . , p.

Theorem 4.10 Assume an STM-matrix A ∈ IRn×n, a flow compatible
numbering π of a spanning tree T ⊂ Γ(AT ), and a block flow compatible de-
composition S1, . . . , Sp such that π(n) ∈ Sp and π(n) /∈ Sj , j = 1, . . . , p− 1.
Let

Π(i)P (i)(Π(i))T =

(
0 M−1

i Ni

0 I

)

where Mi = A[Si], Ni = −A[Si,¬Si], and Π(i) is a suitable permutation
matrix. Then the product

P := P (1) · . . . · P (p)

has at least one positive column.

Proof: Set

S̄j :=

p
⋃

l=j

S̃l, j = 1, . . . , p.

Furthermore let
P (j,p) := P (j) · . . . · P (p).

The proof will be done by showing for j = p, . . . , 1:

(*) For all π(k) ∈ S̄j there holds (π(k), π(l0)) ∈ Γ(P (j,p)) for a fixed l0.

To prove this by induction note that S̄p = S̃p. With Definition 4.4, S̃p =
{π(kp), π(kp + 1), . . . , π(n)} and Corollary 4.5 implies that there is an index
l0 < n such that (π(j), π(l0)) ∈ Γ(P (p)) for all j = kp, . . . , n.

Let p > j > 1 and assume (*) for j. The induction step is twofold.

Increasing number of positive elements:
Again from Definition 4.4, S̃j−1 = {π(kj−1), π(kj−1 + 1), . . . , π(kj−1 + l)}
for some l ∈ IN0. Due to Lemma 4.2, there exists for each i = 0, . . . , l an
li > kj−1+i such that (π(kj−1+i), π(li)) ∈ Γ(P (j−1)). Since π(n) /∈ Sj−1 one
gets li > kj−1+ l for all i = 0, . . . , l. But kj−1+ l = kj−1 from Definition 4.4
and thus n ≥ li ≥ kj for all i = 0, . . . , l. By the induction hypothesis there
is an edge (π(li), π(l0)) ∈ Γ(P (j,p)) for all i = 0, . . . , l. Since Γ(P (j−1,p)) =
Γ(P (j−1))Γ(P (j,p)), the relation (π(kj−1 + i), π(l0)) ∈ Γ(P (j−1,p)) follows for
all i = 0, . . . , l.

Positivity preservation:
Let π(k0) ∈ S̄j = {π(kj), . . . , π(n)} be arbitrary but fixed. Then by the
induction hypothesis (π(k0), π(l0)) ∈ Γ(P (j,p)). There are two possible cases.



4. A graph based approach for MP 80

Case 1: π(k0) /∈ Sj−1

Considering the construction of P (j−1), there must be an edge
(π(k0), π(k0)) ∈ Γ(P (j−1)). But then obviously (π(k0), π(l0)) ∈
Γ(P (j−1,p+1)).

Case 2: π(k0) ∈ Sj−1

Lemma 4.2 implies that there is an edge (π(k0), π(l1)) ∈ Γ(P (j−1)), and
l1 > k0. Consequently, π(l1) ∈ S̄j . By the induction hypothesis there is an
edge (π(l1), π(l0)) ∈ Γ(P (j,p)) and therefore (π(k0), π(l0)) ∈ Γ(P (j−1,p)).

All together this is the induction step.

If j = 1, then there follows S̄1 = {π(1), . . . , π(n)} and (π(j), π(l0)) ∈
Γ(P (1,p)) for all j = 1, . . . , n. Hence the theorem is proven. ⊔⊓

Corollary 4.8 Suppose the assumptions of Theorem 4.10 are fulfilled. Then
the product P := P (1) · . . . · P (p) contains at least one spanning tree T of
height 1 in Γ(P T ). If i0 is the root of T , then i0 ∈ α where α is the final
(and basic) class of A. Moreover i0 ↔ i0 in Γ(P ).

Proof: A skillful look on the proofs of Corollary 4.5 and Theorem 4.10
shows that a positive column is either created at the position of a guard
index i0 ∈ α, i0 /∈ Sp, or there is a path in Γ(A[α]) from a guard entry to
some entry in i1 ∈ α, i1 /∈ Sp which is then the index of the positive column.
But in either case, i0 or i1 are roots of a tree of height one in Γ(P T ). ⊔⊓

Corollary 4.9 With the assumptions of Theorem 4.10, let α be the final
class of A and β be the final class of P , then β ⊂ α.

The condition π(n) /∈ Sj for j 6= p might seem somehow unsatisfactory but
cannot be omitted in the context of general overlap as the following example
shows.

Consider the STM-matrix

A =

0

B

B

B

B

B

B

B

@

1 −1 0 0 0 0 0
0 1 −1 0 0 0 0
0 0 1 −1 0 0 0
0 0 0 1 0 0 −1
0 0 −1/2 0 1 0 −1/2
0 0 0 0 0 1 −1
0 0 0 0 −1 0 1

1

C

C

C

C

C

C

C

A

.

Assume S1 := {1, 2, 3}, S2 := {4, 5, 7} and S3 := {6, 7}. Then

P (1) =

0

B

B

B

B

B

B

B

@

0 0 0 1 0 0 0
0 0 0 1 0 0 0
0 0 0 1 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

1

C

C

C

C

C

C

C

A

, P (2) =

0

B

B

B

B

B

B

B

@

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0

1

C

C

C

C

C

C

C

A

,
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and

P (3) =

0

B

B

B

B

B

B

B

@

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 1 0 0
0 0 0 0 1 0 0

1

C

C

C

C

C

C

C

A

.

Now the product becomes

T1 := P (1)P (2)P (3) =

0

B

B

B

B

B

B

B

@

0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0

1

C

C

C

C

C

C

C

A

.

This is a rank two semiconvergent matrix. Thus N (I − T1) 6= N (A).

The above problem can only occur if

1) there is more than one set containing the root and those sets have a
gap, i.e. there are elements in the set having no access to the root,
and

2) the guard index of the sets containing the root changes (in the above
example, the guard of S3 is 5 and that of S2 is 3).

If one of those points can be avoided, it is not hard to prove that there still is
a positive column in the product, but this will be omitted here. Furthermore,
the above conditions are probably the only ones to construct a multiplicative
Schwarz operator T2 for Update 2 (cf. (3.3.1) and Algorithm 3.4) w.r.t. some
STM-matrix A, such that N (I−T2) 6= N (A). But this has not been proven
formally.

This section ends with the following definition.

Definition 4.5 Let A ∈ IRn×n be an STM-matrix and let π be a flow com-
patible numbering of a spanning tree T ⊂ Γ(AT ). A block flow compatible
decomposition S1, . . . , Sp of (π(1), . . . , π(n)) is said to be ms-compatible (ms
for ”multiplicative Schwarz”) if π(n) /∈ Sj, for j = 1, . . . , p− 1.

4.5 Applications to multiplicative Schwarz itera-

tions

The theory developed in Section 4.4 will be applied in order to prove con-
vergence results for exact and inexact multiplicative Schwarz iterations.
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For this section, consider MP (cf. Definition 2.1 and 2.6) and let π be a
flow compatible numbering with respect to a spanning tree T ⊆ Γ(AT ).
Furthermore, let S1, . . . , Sp be an ms-compatible decomposition.

The following result concerns exact (one-level) Schwarz Iterations, i.e., Al-
gorithm 3.2 in Section 3.3.

Theorem 4.11 If H
(1)
1 , . . . , H

(p)
1 are the local Schwarz operators given by

(3.2.1) w.r.t. S1, . . . , Sp , T1 := H
(1)
1 · . . . · H

(p)
1 and c a proper right hand

side, then the multiplicative Schwarz iteration

xk+1 = T1x
k + c, k = 0, 1, 2, . . . ,

converges to the solution of Ax = b for every given x0 ∈ IRn. The conver-
gence is obtained at a geometric rate.

Proof: The operator T1 has a positive column which follows from Theorem
4.10. Hence, Corollary 2.4 implies that it is an ST-matrix and the semi-
convergence follows from Theorem 4.1. Since dimN (I − T1) = 1, one gets
N (I − T1) = N (A). ⊔⊓

To apply the results of this chapter to two-stage multiplicative Schwarz
iterations, let Mi = A[Si] and assume a weak regular splitting Mi = Fi−Gi.
A local operator of a two-stage Schwarz iteration in the k-th step is given
as (cf. (3.3.2))

ΠiH
(k,i)
3 ΠT

i =

(
R(k,i) (I −R(k,i))M−1

i Ni

0 I

)

≥ 0,

where R(k,i) = (F−1
i Gi)

q(k,i), q(k, i) ≥ 1, and Πi is an appropriate permuta-
tion matrix. Following the discussion in Section 4.2 (see page 65),

ΠiH
(k,i)
3 ΠT

i =

(
R(k,i) (I −R(k,i))M−1

i Ni

0 I

)

(4.5.1)

=

(

R(k,i)
∑q(k,i)−1

j=0 (F−1
i Gi)

jF−1
i Ni

0 I

)

≥

(
0 F−1

i Ni

0 I

)

≥ 0.(4.5.2)

This observation is essential for the following reason.

Denote by T|Si
the restriction of the spanning tree T to Si. The main

property that was exploited in Lemma 4.2 and its corollaries, was that each
path (v1, . . . , vk) ⊂ T such that (v1, . . . , vk−1) ⊂ T|Si

∩ Γ(MT
i ) and vk /∈ Si,

was replaced by an edge (v1, vk). But if T|Si
∩ Γ(F T

i ) = T|Si
∩ Γ(MT

i ), then
Lemma 4.2 applies verbatim to (4.5.2) and therefore to (4.5.1) since Fi is a
nonsingular M-matrix.
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Definition 4.6 Let A be an STM-matrix and let T be a spanning tree in
Γ(AT ). For an arbitrary regular decomposition S1, . . . , Sp let A[Si] = Mi =
Fi−Gi be a weak regular splitting. Then (Fi, Gi) is called a flow compatible
splitting, if T|Si

∩ Γ(F T
i ) = T|Si

∩ Γ(MT
i ).

Theorem 4.12 Let H
(k,1)
3 , . . . , H

(k,p)
3 be the local Schwarz operators given

by (3.3.2). Define T
(k)
3 := H

(k,1)
3 ·. . .·H

(k,p)
3 , and let the c(k) be corresponding

right hand sides. Additionally, assume that the inner splittings are flow
compatible. Then the two-stage multiplicative Schwarz iteration

xk+1 = T
(k)
3 xk + c(k), k = 0, 1, 2, . . . ,

converges to the solution of Ax = b for every given x0 ∈ IRn and any number
of inner iterations. The convergence is obtained at a geometric rate.

Proof: Define (cf. (4.5.2))

H̃
(i)
3 := ΠT

i

(
0 F−1

i Ni

0 I

)

Πi

for i = 1, . . . , p. Then H
(k,i)
3 ≥ H̃

(i)
3 for all i = 1, . . . , p and k ∈ IN. Thus

(4.5.3) T
(k)
3 = H

(k,1)
3 · . . . ·H

(k,p)
3 ≥ H̃

(1)
3 · . . . · H̃

(p)
3 =: T̃3

and Theorem 4.10 implies that T̃3 has a positive column, say (T̃3)∗,l. Since
T̃3 is independent of k there exists a κ > 0 such that (T̃3)j,l > κ for all

j = 1, . . . , n. Now, T
(k)
3 satisfies the assumptions of Corollary 4.2 since

(4.5.3) holds and the convergence follows by Theorem 4.8. ⊔⊓

Remark 4.11 1) Theorem 4.11 and 4.12 apply also to the relaxed ver-
sions given by Algorithm 3.4 and 3.6, i.e. Update 2 and 4.

2) Consider some set Si according to Theorem 4.12, but now interpret Si

as a tuple (π(ki1), π(ki2), . . . , π(kil)) such that ki1 < ki2 < . . . < kil.
Then each edge v ∈ T|Si

∩Γ(MT
i ) remains in the upper triangular part

of Mi = A[Si] by the definition of flow compatibility (cf. Remark 4.7).
Hence, in this case a simple Gauss-Seidel-Splitting (Fi, Gi), where Fi

is the upper triangular part and Gi the lower is flow compatible.

3) Note that it is sufficient to have one inner iteration to guarantee con-
vergence.

4) If the inner splitting is a Jacobi-Splitting, it is not flow compatible. So
convergence cannot be deduced from Theorem 4.12.
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So far, simple results for multiplicative iteration schemes with Update 1,2,3,
or 4 from Section 3.2 and 3.3 have been derived. What remains to be
discussed is the Update 5 given by Algorithm 3.7 and (3.3.4).

Theorem 4.9 gives a convergence result in the case that single rows are
updated and there seems to be no easy generalisation to the block case.
Consider the cyclic matrix

B =

0

B

B

B

@

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

1

C

C

C

A

.

Choose the ms-compatible decomposition S1 = {1, 2, 3} and S2 = {3, 4, 5},
then

H
(1)
5 =

0

B

B

B

@

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1

1

C

C

C

A

, H
(2)
5 =

0

B

B

B

@

1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

1

C

C

C

A

.

and finally

H
(1)
5 · H

(2)
5 =

0

B

B

B

@

0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1
1 0 0 0 0

1

C

C

C

A

which is not semiconvergent. The problem is of course, that all variables
belonging to one set are updated simultaneously. If this would be done in a
Gauss-Seidel fashion, semiconvergence is achieved by Theorem 4.9.

4.6 The impact of relaxation

In this section the impact of relaxation to multiplicative Schwarz iterations
with Update 2,4 and 6 will be discussed. First, the results from Section 4.5
will be slightly generalised but then the concept of relaxation will led to a
natural extension of the idea given in Sections 4.3 and 4.4.

With the usual assumptions, consider the local operators of one of Up-
date 2, 4 or 6 given by (3.3.1), (3.3.3), or (3.3.5) and denote them by
H(1), . . . , H(p). Then each H(i) can be written as H(i) = D(i) + R(i) with

D(i) = diag(h
(i)
11 , . . . , h

(i)
nn) > 0 and R(i) = H(i) −D(i) ≥ 0. Obviously, there

holds

H(j)H(i) = D(j)D(i) + R(j)D(i) + D(j)R(i) + R(j)R(i),
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and, consequently, from Lemma 1.1

Γ(H(j)H(i)) = Γ(D(j)D(i) + R(j)D(i) + D(j)R(i) + R(j)R(i))

= ∆2 ∪ Γ(R(j))∆ ∪∆Γ(R(i)) ∪ Γ(R(j)R(i))

= ∆ ∪ Γ(R(j)) ∪ Γ(R(i)) ∪ Γ(R(j)R(i))

= Γ(H(j) + H(i)) ∪ Γ(R(j)R(i)).

This implies that if p̃ ≥ p and σ : {1, . . . , p̃} −→ {1, . . . , p} is any surjective
mapping, then

Γ(H(i)) ⊂ Γ(H(σ(1)) · . . . ·H(σ(p̃)))

for each i = 1, . . . , p, by induction. Thus the graphs of the local operators
are preserved. Define

ξ :=
p

min
i=1
{h

(i)
jj : j = 1, . . . , n}

then

(4.6.1) H(σ(1)) · . . . ·H(σ(p̃)) ≥ ξp−1H(i)

for each i = 1, . . . , p.

To get back to Schwarz iterations consider MP and let S1, . . . , Sp be an ms-
compatible decomposition with respect to a flow compatible numbering π.
Define H := H(σ(1)) · . . . ·H(σ(p̃)). Then (4.6.1) implies,

(4.6.2) Hk =
(

H(σ(1)) · . . . ·H(σ(p̃))
)k
≥ ξk(p−1)H(1) · . . . ·H(k)

for any k ≤ p. Hence it follows from (4.6.2) that

1) Hk has a positive column for some k ≤ p if Update 2 or 4 is used, and

2) Hk has a positive column for some k ≤ n if Update 6 is used.

Point 1) follows from Theorem 4.10 and 2) from Theorem 4.9. This is obvious
because the graph of each local operator is preserved by the positive diagonal
and an appropriate order of the local operators is forced by (4.6.2). Thus
the following results are an immediate consequence.

Theorem 4.13 Let H
(1)
2 , . . . , H

(p)
2 be the local Schwarz operators given by

(3.3.1) and let σ be any permutation on {1, . . . , p}. Let T2 := H
(σ(1))
2 · . . . ·

H
(σ(p))
2 . Then the relaxed multiplicative Schwarz iteration

xk+1 = T2x
k + c, k = 0, 1, 2, . . . ,

where c is a proper right hand side, converges to the solution of Ax = b for
every given x0 ∈ IRn at a geometric rate.
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Theorem 4.14 Let H
(k,1)
4 , . . . , H

(k,p)
4 be the local Schwarz operators given

by (3.3.3) and let σ be any permutation on {1, . . . , p}. Define T
(k)
4 :=

H
(k,σ(1))
4 · . . . · H

(k,σ(p))
4 and assume that the inner splittings are flow com-

patible. Then the two-stage relaxed multiplicative Schwarz iteration

xk+1 = T
(k)
4 xk + c(k), k = 0, 1, 2, . . . ,

where the c(k) are corresponding right hand sides, converges to the solution
of Ax = b for every given x0 ∈ IRn and any number of inner iterations. The
convergence is obtained at a geometric rate.

Theorem 4.15 Consider an arbitrary decomposition S1, . . . , Sp. Let

H
(1)
6 , . . . , H

(p)
6 be the local Schwarz operators given by (3.3.5) and let σ be

any permutation on {1, . . . , p}. Define T6 := H
(σ(1))
6 · . . . ·H

(σ(p))
6 and let c be

a proper right hand side. Then the relaxed power-like multiplicative Schwarz
iteration

xk+1 = T6x
k + c, k = 0, 1, 2, . . . ,

converges to the solution of Ax = b for every given x0 ∈ IRn at a geometric
rate.

Remark 4.12 1) Note that the iteration of Theorem 4.15 is nothing
more than a slightly modified successive under relaxation method.

2) Theorems 4.13, 4.14 and 4.15 have shown that relaxed iteration
schemes are independent of the order of the local updates. But the
speed of convergence may not be independent of the order as the ex-
ample on page 58 has shown.

Theorems 4.13, 4.14 and 4.15 can be further improved. This is due to the
fact that since the diagonals of each H are positive, a positive column is no
longer needed. If it is possible to prove each H to be an ST-matrix, then H
is ST-regular (cf. Definition 4.1) by Theorem 2.1 and Theorem 1.11. The
convergence of the multiplicative Schwarz iteration will again be obtained
from Theorem 4.7 and Theorem 4.8.

This approach is motivated by Corollary 4.6 and the following lemma.

Lemma 4.3 Consider nonnegative square matrices L(1), . . . , L(p) and as-
sume that the diagonals of each L(i) are positive. Then for any permutation
σ : {1, . . . , p} −→ {1, . . . , p},

Γ





p
∑

j=1

L(σ(j))



 =

p
⋃

j=1

Γ(L(σ(j))) ⊂ Γ(L(σ(1)) · . . . · L(σ(p))).
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Proof: Easy, using Lemma 1.1. ⊔⊓

Lemma 4.3 can be interpreted as transforming the multiplicative problem
to an additive one.

Additionally, there is no need of ms-compatibility nor of flow compatible
inner splittings by the following theorem whose proof is pretty straight for-
ward.

Theorem 4.16 Suppose A ∈ IRn×n is an STM-matrix, α the final and
basic class of A, and j0 ∈ α is arbitrary. Assume a regular decomposition
S1, . . . , Sp such that

(4.6.3) |{j : j0 ∈ Sj}| = 1.

If H
(j)
2 , H

(k,j)
4 , and H

(j)
6 are the corresponding local operators for j = 1, . . . , p

and the inner splittings (if any) are M-splittings, then each product

T2 := H
(σ(1))
2 · . . . ·H

(σ(p))
2 ,

T
(k)
4 := H

(k,σ(1))
4 · . . . ·H

(k,σ(p))
4 ,

T6 := H
(σ(1))
6 · . . . ·H

(σ(p))
6

is ST-regular for any permutation σ : {1, . . . , p} −→ {1, . . . , p}.

Proof: By Lemma 4.3 and the nonnegativity of the operators, it suffices to
show that

p
∑

j=1

H
(j)
l

is an ST-matrix (for Update 4, the k is sometimes omitted).

Part 1: Proof for T6

For T6, there is nothing to prove since A = I −B and

Γ(B) ⊂

p
⋃

j=1

Γ(H
(j)
6 ) = Γ





p
∑

j=1

H
(j)
6



 .

Here, one can even skip the condition on j0.

Thus, T6 is a GST-matrix and Corollary 2.4 implies that T6 is an ST-matrix,
i.e. N (I − T6) = N (A). Since its diagonal is positive, T6 is semiconvergent
(the same argumentation will also apply to T2 and T4).

Part 2: Choose a tree
To prove the result for T2 and T4, let T ⊂ Γ(AT ) be an arbitrary spanning
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tree with root j0 (cf. Corollary 2.1). Consider a flow compatible numbering
π of T , then j0 = π(n). Assume w.l.o.g. that π(n) ∈ Sp and define

(4.6.4) S̃p := {π(j) ∈ Sp : π(j)→T π(n)} ∪ {π(n)}.

The idea is to prove that the ”flow” given by T is preserved for Update 2
and 4, i.e. there exists a spanning tree with a corresponding guard in Γ(T T

2 )
and Γ(T T

4 ).

Part 3: Proof for T2

By Corollary 4.5 there exists an i0 such that i0 < n and each π(j) ∈ S̃p

has access to π(i0) /∈ S̃p in Γ(H
(p)
2 ). Thus, it remains to show that each

π(l) ∈ {1, . . . , n} \ S̃p has access to some π(j) ∈ S̃p in

(4.6.5) Γ





p
∑

j=1

H
(j)
2



 .

Therefore let π(l0) ∈ {1, . . . , n} \ S̃p be arbitrary but fixed. Then π(l0) ∈
Sk0 \ S̃p for some k0 ∈ {1, . . . , p}. It follows from Lemma 4.2 that π(l0)

has access to some π(l1) in Γ(H
(k0)
2 ) and l1 > l0. If π(l1) /∈ S̃p, then π(l1)

has access to some π(l2) in Γ(H
(k1)
2 ) for some k1 ∈ {1, . . . , p} and l2 > l1.

So, inductively, after a maximum of n − 1 steps, π(l0) has access to some
π(j) ∈ S̃p in (4.6.5).

Consequently, each π(j) ∈ {1, . . . , n} has access to π(i0) and since π(i0) ∈
{1, . . . , n} \ S̃p, π(i0) must have access to itself, i.e. T2 is a GST-matrix.
Now the same argumentation as for T6 completes the proof for T2.

Part 4: Proof for T4

For an arbitrary 1 ≤ i ≤ p there holds

ΠiH
(k,i)
4 ΠT

i =

(

R
(k,i)
ω (I −R

(k,i)
ω )M−1

i Ni

0 I

)

with a proper permutation matrix Πi. Furthermore

(I −R(k,i)
ω )M−1

i Ni = ω

q(k,i)−1
∑

j=0

(
(1− ω)I + ω(F−1

i Gi)
)j

F−1
i Ni

≥ ωF−1
i Ni ≥ 0,

for each q(k, i) ≥ 1. Define

R(i)
ω := (1− ω)I + ω(F−1

i Gi).

Then R
(i)
ω is nonnegative and has a positive diagonal. Additionally

R(k,i)
ω = (R(i)

ω )q(k,i)
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and thus
Γ(R(i)

ω ) ⊂ Γ(R(k,i)
ω ).

Let

(4.6.6) ΠiH̃
(i)
4 ΠT

i =

(

R
(i)
ω ωF−1

i Ni

0 I

)

≥ 0,

then H̃
(i)
4 is the local operator if one inner iteration is carried out and

Γ(H̃
(i)
4 ) ⊂ Γ(H

(k,i)
4 ) for all q(k, i) ≥ 1.

Hence it suffices to show that

p
∑

j=1

H̃
(j)
4

is a GST-matrix. The prove becomes a bit stretchy, because the resulting
spanning tree is not only made up of elements given by F−1

i Ni, but also of

elements from R
(i)
ω because the inner splittings need not be flow compatible.

Consider the M-splitting (cf. Section 1.1) Mi = Fi − Gi. Then Γ(Mi) =
Γ(Fi) ∪ Γ(Gi) (see [61]). In analogy to Lemma 4.2, define inner vertices as

I(Si) := {π(j) ∈ Si : there exists π(l) ∈ Si such that (π(j), π(l))T }

and set B(Si) = Si \ I(Si) for all i = 1, . . . , p.

Part 4.1: Preserved flow for Si, 1 ≤ i < p
Let 1 ≤ i < p be arbitrary. Then each π(l0) ∈ B(Si) has access to some

π(l1) /∈ Si. But since ∆ ⊂ Γ(F−1
i ), this relation is also valid in H̃

(i)
4 and

l1 > l0. Thus let π(l0) ∈ I(Si), then there exists an π(lk+1) such that
π(lk+1) /∈ Si and π(l0) →T π(lk+1). If lk+1 is chosen as in assertion 3)
of Lemma 4.2, then there is a path p = (π(l0), π(l1), . . . , π(lk)) ⊂ Γ(Mi),
(π(lk), π(lk+1))T , and π(lk) ∈ B(Si). Furthermore, l0 < l1 < . . . < lk < lk+1.

To prove that this connection still exists in H̃
(i)
4 , there are three cases to

consider:

Case 1: p ⊂ Γ(Fi)
As in the proof of Lemma 4.2, π(l0) has access to π(lk) in Γ(F−1

i ) = Γ(Fi).

Hence π(l0) has access to π(lk+1) in Γ(H̃
(i)
4 ).

Case 2: p ⊂ Γ(Gi)
Here, p ⊂ Γ(F−1

i Gi) follows from ∆ ⊂ Γ(F−1
i ). Thus π(l0) has access to

π(lk+1) in Γ(H̃
(i)
4 ).

Case 3: p ∩ Γ(Fi) 6= ∅ and p ∩ Γ(Gi) 6= ∅
In this case, p can be split into m subpathes such that p = (p1, . . . , pm).
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Since π(lk) ∈ pm has access to π(lk+1) and ∆ ⊂ Γ(F−1
i ), pm ⊂ Γ(Fi)

can be assumed w.l.o.g. This construction implies that pm−1 ⊂ Γ(Gi),
pm−2 ⊂ Γ(Fi) and so on, and pν can be written as pν = (π(lν1), . . . , π(lνµ)).

Now consider pν for an arbitrary ν, 1 ≤ ν < m, then π(lνµ) has access to
π(l(ν+1)1) ∈ pν+1 in Γ(Mi).

If pν ⊂ Γ(Fi), then pν+1 ⊂ Γ(Gi) and each π(lνη), 1 ≤ η ≤ µ has access to

π(l(ν+1)1) in Γ(F−1
i Gi) = Γ(Fi)Γ(Gi) following the argumentation of case

1).

If pν ⊂ Γ(Gi), then each π(lνη) has access to π(l(ν+1)1) in Γ(F−1
i Gi) since

∆ ⊂ Γ(F−1
i ) as in case 2).

Since 1 ≤ ν ≤ m was arbitrary, π(l0) has access to π(lk+1) in Γ(H̃
(i)
4 ).

What has been proven so far is that each π(l0) ∈ Si has access to some

π(l1) /∈ Si and l1 > l0 in Γ(H̃
(i)
4 ), for all 1 ≤ i < p.

Part 4.2: Preserved flow for Sp

Consider Sp. The first thing to note is, that there is nothing further to
be discussed for elements π(j) ∈ Sp \ S̃p (cf. (4.6.4)), because the same
argumentation as for the sets S1, . . . , Sp−1 can be applied. Since π(n) can
be regarded as an element of Γ(Fp) let

(4.6.7) S̃F
p :=

{

π(j) ∈ S̃p : π(j)→T π(n) in T ∩ Γ(F T
p )
}

∪ {π(n)}

and

(4.6.8) S̃G
p = S̃p \ S̃F

p .

Then each element π(j) ∈ S̃G
p has access to π(n) in Γ(Gp) according to the

argumentation used for S1, . . . , Sp−1. Additionally, j < n.

Part 4.3: Existence of a guard
Let π(i0) be the guard index of π(n). If π(i0) /∈ Sp, then, as usual, each

π(j) ∈ S̃F
p has access to π(i0) in Γ(H̃

(p)
4 ). If π(i0) ∈ Sp, then consider

the path p ⊂ Γ(A) as in Lemma 4.2, assertion 1). Then p = (π(n) =
π(kν), . . . , π(k1), π(k0)), n = kν > ki, i = 0, . . . , ν − 1, and π(k0) /∈ Sp.
If (π(kν), . . . , π(k1)) ⊂ Γ(Fp), then each π(j) ∈ S̃F

p has access to π(k1) in
Γ(F−1

p ), thus access to π(k0) in Γ(F−1
p Np) and consequently access to π(k0)

in Γ(H̃
(p)
4 ).

If not, there is a maximum index ν > ξ > 1 such that (π(kξ), π(kξ−1)) ∈
Γ(Gp) and n = kν > kξ. But then each π(j) ∈ S̃F

p has access to π(kξ) in
Γ(F−1

p ) and therefore access to π(kξ−1) in Γ(F−1
p Gp), i.e. access to π(kξ−1)

in Γ(H̃
(p)
4 ).

Part 4.4: Conclusion
By part 4.1) and 4.2), each π(l0) ∈ Si \ S̃F

p (cf. (4.6.7)) has access to some
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π(l1) in Γ(H
(i)
4 ) for all i = 1, . . . , p and l1 > l0. Furthermore, it follows from

part 4.3) that each π(l0) ∈ S̃F
p has access to a single index π(l1) in Γ(H

(p)
4 )

and l1 < n. But now an application of the same argumentation as for T2

leads to the result that T4 is a GST-matrix. ⊔⊓

Remark 4.13 1) The flow compatibility of the inner splitting has been
given up for the price of M-splittings. But that should not be a problem
in practice.

2) Note that the inner relaxation for T4 is mainly responsible to guarantee
the ST-property. The same argumentation is not applicable to T3!
Although, there might exist similar results for T3.

3) If the inner M-splitting is chosen such that the diagonal of each F−1
i Gi

is positive, then Theorem 4.16 also holds for T3.

4) The ST-property is based on elements which might become arbitrarily
small as the number of inner iterations grows. Thus the number of
inner iterations should be bounded (cf. discussion in Section 4.2).

5) Again, there is the annoying condition (4.6.3) concerning the decompo-
sition. But in the case of an irreducible matrix, this condition reduces
to one variable which has no overlap. And that should not be a problem
in practice.

Definition 4.7 Let A = I − B ∈ IRn×n be an STM-matrix and denote by
α its basic class. A regular decomposition S1, . . . , Sp w.r.t. A is said to be
root preserving, if there exists a j0 ∈ α such that |{j : j0 ∈ Sj}| = 1.

The following theorems are a simple application of Theorem 4.16. Consider
MP and a root preserving decomposition S1, . . . , Sp w.r.t. A.

Theorem 4.17 Let H
(1)
2 , . . . , H

(p)
2 be the local Schwarz operators given by

(3.3.1) and let σ be any permutation on {1, . . . , p}. Define T2 := H
(σ(1))
2 ·

. . . ·H
(σ(p))
2 . Then the relaxed multiplicative Schwarz iteration

xk+1 = T2x
k + c, k = 0, 1, 2, . . .

where c is a proper right hand side, converges to the solution of Ax = b for
every given x0 ∈ IRn at a geometric rate.

Proof: Since T2 is ST-regular by Theorem 4.16, it is semiconvergent by
Theorem 1.11. Furthermore, owing to the ST-regularity, N (I−T2) = N (A).
⊔⊓
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Theorem 4.18 Let H
(k,1)
4 , . . . , H

(k,p)
4 be the local Schwarz operators given

by (3.3.3) and let σ be any permutation on {1, . . . , p}. Define T
(k)
4 :=

H
(k,σ(1))
4 · . . . ·H

(k,σ(p))
4 and assume that all inner splittings are M-splittings

and that the numbers of inner iterations q(k, i) are bounded. Then the re-
laxed two-stage multiplicative Schwarz iteration

xk+1 = T
(k)
4 xk + c(k), k = 0, 1, 2, . . .

where the c(k) are corresponding right hand sides, converges to the solution
of Ax = b for every given x0 ∈ IRn. The convergence is obtained at a
geometric rate.

Proof: By Theorem 4.16, each T
(k)
4 is ST-regular. But moreover, each T

(k)
4

contains a pattern of positive elements which is the same for all k ∈ IN0 and

makes T
(k)
4 ST-regular.

To outline this, note that

Γ





p
∑

j=1

H
(k,j)
4



 ⊂ Γ(T
(k)
4 )

by Lemma 4.3. Consider the operators H̃
(j)
4 , j = 1, . . . , p given by (4.6.6),

then

Γ





p
∑

j=1

H̃
(j)
4



 ⊂ Γ





p
∑

j=1

H
(k,j)
4



 ⊂ Γ(T
(k)
4 ).

And the pattern induced by H̃
(j)
4 , j = 1, . . . , p is independent of k. Since

the number of inner iterations is bounded there exists a κ > 0 such that

(H
(k,j)
4 )r,s > κ

for all 1 ≤ r, s ≤ n satisfying (H
(k,j)
4 )r,s > 0 and all k ∈ IN0. Theorem 4.3

and the nonnegativity of T
(k)
4 imply that there exists an l ∈ IN such that

T
(k+l)
4 · . . . · T

(k)
4 has a positive column whose elements are bounded from

below by at least κl. Thus Corollary 4.2 applies and Theorem 4.8 delivers
the desired convergence. ⊔⊓

Remark 4.14 1) The result for T6, which can be deduced from Theorem
4.16 is exactly the same as in Theorem 4.15 and has been left out.

2) Note that the number of inner iterations has to be bounded in Theorem

4.18. This seems unavoidable, because the term R
(k,i)
ω has some influ-

ence on the pattern of T
(k)
4 and becomes arbitrarily small as the num-

ber of inner iterations grows. This should not be a problem in practice,
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since the smaller R
(k,i)
ω becomes, the more the influence of M−1

i Ni in

(I−R
(k,i)
ω )M−1

i Ni grows. Clearly, the term M−1
i Ni posses the structure

which is necessary for convergence, but it cannot be guaranteed that

some elements of M−1
i Ni are not cancelled out in (I − R

(k,i)
ω )M−1

i Ni

(and this is also the problem for T3). For an approach to overcome this
problem see [2] and also Theorem 6.12 in Section 6.4. There it was
assumed, that the number of inner iteration q(kj , i) tends to infinity
on a subsequence kj.

4.7 Application to additive Schwarz methods

Based on the results from the previous section, a few propositions for ad-
ditive Schwarz methods will be proven. They are basically derived from
Theorem 4.16.

Consider MP and a root preserving decomposition S1, . . . , Sp w.r.t. A. Let
Tθ,l be the global additive Schwarz operators from Section 3.2 and 3.3. The
discussion here will be restricted to Update 1 and 4, i.e. exact and relaxed
two-stage inexact additive Schwarz (cf. Algorithm 3.2 and 3.6) for the fol-
lowing reasons.

1) The results for Update 1 will apply verbatim to Update 2.

2) Since the results will be based on Theorem 4.16, they will not apply
to Update 3 (cf. Remark 4.13).

3) While Update 5 and 6 could make some theoretical sense in multi-
plicative Schwarz iterations, they will not make any sense in additive
Schwarz.

If H
(j)
l , j = 1, . . . , p, l ∈ {1, 4} are the local operators given by (3.2.9) and

(3.3.3), then by (3.2.7)

Tθ,l := I − θ

p
∑

i=1

(I −H
(i)
l )

where θ ∈ (0, 1/q) and q is given by (3.1.1). According to the proof of
Lemma 3.1, one has

Tθ,1 = I − θ

p
∑

i=1

(I −H
(i)
1 ) = I − θ

p
∑

i=1

ΠT
i

(
I −M−1

i Ni

0 0

)

Πi

= I − θ

p
∑

i=1

ΠT
i

(
I|Si| 0

0 0

)

Πi

︸ ︷︷ ︸

=:Iθ≥0

+θ

p
∑

i=1

ΠT

(
0 M−1

i Ni

0 0

)

Πi

︸ ︷︷ ︸

=H̄
(i)
1 ≥0
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wherein H̄
(i)
1 can be written as

H̄
(i)
1 = ΠT

i

(
I|Si| 0

0 0

)

Πi ·Π
T

(
0 M−1

i Ni

0 I|¬Si|

)

Πi

= ΠT
i

(
I|Si| 0

0 0

)

Πi ·H
(i)
1

A similar representation is valid for Tθ,4. Thus

Γ(Tθ,l) = ∆ ∪ Γ

(
p
∑

i=1

H̄
(i)
l

)

for l ∈ {1, 4} and obviously

(4.7.1) ∆ ∪ Γ

(
p
∑

i=1

H̄
(i)
l

)

= ∆ ∪ Γ

(
p
∑

i=1

H
(i)
l

)

.

The proof of Theorem 4.16 has shown that
∑p

i=1 H
(i)
l is an ST-matrix for

l ∈ {2, 4}. Thus (4.7.1) implies that Tθ,4 is an ST-matrix and therefore
ST-regular.

The same holds for Tθ,2 by Theorem 4.16. But as the argumentation con-

cerns only the off-diagonal pattern, and those patterns are equal for H
(i)
1

and H
(i)
2 , Theorem 4.16 applies also to Tθ,1.

Theorem 4.19 The (one-level) additive Schwarz iteration

xk+1 = Tθ,1x
k + c, k = 0, 1, 2, . . .

converges to the solution of Ax = b for every given x0 ∈ IRn and θ ∈ (0, 1/q)
at a geometric rate.

Proof: See Theorem 4.17. ⊔⊓

Theorem 4.20 Assume for T
(k)
θ,4 inner M-splittings and the number of in-

ner iterations to be bounded. Then the relaxed two-stage additive Schwarz
iteration

xk+1 = T
(k)
θ,4 xk + c(k), k = 0, 1, 2, . . .

converges to the solution of Ax = b for every given x0 ∈ IRn and θ ∈ (0, 1/q).
Moreover, the convergence is obtained at a geometric rate.

Proof: See Theorem 4.18. ⊔⊓

Remark 4.15 It should be mentioned that the two-stage-methods in [44]
should be analysed in a similar way as above for STM-matrices. The differ-
ences between additive Schwarz and multisplittings are small.
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4.8 Application to partially asynchronous itera-

tions

The observations of the last chapters allow some statements for PAIs. The
results will be proven in a complete algebraic fashion as in [39], rather than
an analytical one as in [2, 55, 56]. The result here is restricted to ms-
compatible decompositions. It generalises the results of [2] quite a bit (cf.
Section 6.4).

Consider MP and let S1, . . . , Sp be an ms-compatible decomposition with
respect to a flow compatible permutation π (see Definition 4.5). Additionally
let S̃1, . . . , S̃p be the block flow compatible core partitioning.

Additionally, consider a PAI (A, x0, {Jk,Sk}k∈IN0) with an arbitrary sce-
nario for the constants d and s (cf. (3.4.6) and (3.4.7)), such that Jk ∈
{S1, . . . , Sp} (cf. Section 3.4) and the local updates are given by Algorithm

3.4 or Algorithm 3.6. Denote the local operators by H
(k)
d,2 and H

(k)
d,4 re-

spectively (cf. Section 3.4) and let i(k) ∈ {1, . . . , p} be the block which is
updated in the k-th step, k ∈ IN0. Furthermore let the inner splittings for
the two-stage method be flow compatible (see Definition 4.6).

With the above assumptions, the behaviour of H
(k)
d,2 and H

(k)
d,4 is almost the

same (on the pattern). In order to formulate results for both local updates,

the labels H
(k)
d and H(i(k)) are used.

Theorem 4.21 Let k ∈ IN0 be arbitrary and r = p(d+s). Then the product

matrix H
(k,k+r)
d := H

(k+r)
d · . . . ·H

(k)
d contains a positive column.

Remark 4.16 The proof follows that of Propositions 4 to 6 in [39] and will
be illustrated by an example afterwards.

Proof: The proof is divided into five steps.

Step 1: General properties of H
(k)
d , k ∈ IN0

Since the matrix H
(k)
d can be constructed from H(i(k)), the following relations

hold for the graph of H
(k)
d .

(4.8.1) (j, j) ∈ Γ(H
(k)
d ), for 1 ≤ j ≤ n.

There exists a unique number 0 ≤ s(i) ≤ d such that

(4.8.2) (j, i + s(i) · n) ∈ Γ(H
(k)
d )

for all indices j ∈ Si(k).

(4.8.3) (j, j − n) ∈ Γ(H
(k)
d ), for n < j ≤ (d + 1) · n.
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Relation (4.8.1) follows from (3.4.5) and the fact that relaxation is used.
(4.8.2) is due to (3.4.6) and because complete block columns correspond to
the same delay by assumption. The last relation follows directly from the

construction of the H
(k)
d .

Now let k ∈ IN0 be arbitrary but fixed. Since all local operators are nonnega-
tive, any graph operation is to be interpreted as in Lemma 1.1. Furthermore,
for l ≥ k let

H
(k,l)
d := H

(l)
d ·H

(l−1)
d · . . . ·H

(k)
d .

Step 2: Finding the root column
By (3.4.7) there is an index l0, k ≤ l0 ≤ k + s such that Sp = Si(l0) = J (l0)

and π(n) ∈ S̃p ⊆ Sp. With Corollary 4.5 and (4.8.2) there exists an i0 ∈

{1, . . . , n} such that 0 ≤ s(π(i0)) ≤ d and (π(j), π(i0)+s(π(i0))n) ∈ Γ(H
(l0)
d )

for all π(j) ∈ S̃p. Furthermore 1 ≤ π(j) ≤ n.

What will be proven now, is the existence of a ξ, 1 ≤ ξ ≤ (d + 1) · n such

that (π(j), ξ) ∈ Γ(H
(k,l0)
d ) for all π(j) ∈ S̃p.

If l0 = k, then there is nothing to prove since H
(k,l0)
d = H

(k)
d , i.e. ξ =

π(i0) + s(π(i0))n. Therefore let l0 > k. If s(π(i0)) = 0, then (π(j), π(i0)) ∈

Γ(H
(k,l0)
d ), i.e. ξ = π(i0) by (4.8.1). So assume s(π(i0)) > 0 and note that

n ≤ π(i0) + s(π(i0)) · n ≤ (d + 1) · n. It follows from (4.8.3) that

(π(i0) + s(π(i0)) · n, π(i0) + s(π(i0)) · n− n)

= (π(i0) + s(π(i0)) · n, π(i0) + (s(π(i0))− 1) · n) ∈ Γ(H
(l0−1)
d )

hence with (4.8.2)

(π(j), π(i0) + (s(π(i0))− 1) · n) ∈ Γ(H
(l0−1,l0)
d ).

If s(π(i0)) − 1 = 0, then we are done using (4.8.1). If s(π(i0)) − 1 > 0, the
above argumentation might be applied inductively. There are two cases to
consider. In the first case s(π(i0)) ≤ l0−k+1. After s(π(i0)) multiplications

(π(j), π(i0)) ∈ Γ(H
(l0−s(i0),l0)
d )

and ξ = π(i0) is proper by (4.8.1).

In the other case s(π(i0)) > l0 − k + 1 and

(π(j), π(i0) + (s(π(i0))− l0 + k − 1) · n) ∈ Γ(H
(k,l0)
d ).

In this case ξ = (s(π(i0))− l0 +k−1) ·n is the choice. Again, taking (4.8.2),
the last observation is valid for each π(j) ∈ S̃p.

Step 3: Positivity preservation and duplication to the past

From step 2), (π(j), ξ) ∈ Γ(H
(k,l0)
d ) and 1 ≤ π(j) ≤ n for all π(j) ∈ Sp.

Hence
(π(j), ξ) ∈ Γ(H

(k,l0+t)
d ),
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for all t ∈ IN from (4.8.1). Now (π(j) + n, π(j)) ∈ Γ(H
(l0+1)
d ) which follows

from (4.8.3) and therefore

(π(j), ξ) ∈ Γ(H
(k,l0)
d )⇒ (π(j) + n, ξ) ∈ Γ(H

(k,l0+1)
d ).

The same argumentation applied d− 1 times leads to

(4.8.4) (π(j) + m · d, ξ) ∈ Γ(H
(k,l0+d)
d ),

for m = 0, . . . , d and all π(j) ∈ S̃p. Moreover, k < l0 + d ≤ k + (s + d).

Additionally, (4.8.4) holds also for H
(k,l0+d+t)
d for all t ∈ IN.

Step 4: Increasing positivity
According to the definition of PAIs, there exists a l0 + d < l1 ≤ l0 + d + s
such that Sp−1 = Si(l1) = J (l1). Consider the set S̃p−1 ⊆ Sp−1. By step 3),

(4.8.4) holds for H
(k,l1−1)
d since l1 − 1 ≥ l0 + d. Let h be the ξ-th column of

H
(k,l1−1)
d and divide it into d+1 blocks hi ∈ IRn such that h = (hT

0 , . . . , hT
d )T .

Then within each block, (hi)π(j) > 0 for all π(j) ∈ S̃p and i = 0, . . . , d. Hence

the action of h on H
(k,l1)
d is (restricted to the pattern) the same as the action

of h0 on H(p−1), the corresponding local Schwarz type operator. But now
the same argumentation as in Theorem 4.10 can be applied, leading to

(π(j), ξ) ∈ Γ(H
(k,l1)
d )

for all π(j) ∈ S̃p ∪ S̃p−1.

Step 5: Conclusion
Step 3 can be applied again, which results in

(π(j) + m · d, ξ) ∈ Γ(H
(k,l1+d)
d )

for m = 0, . . . , d and all π(j) ∈ S̃p∪S̃p−1. Furthermore, k < l1 ≤ k+2(s+d).
If steps 3 and 4 are applied p − 2 times, then the complete ξ-th column of

H
(k,lp−1)
d is positive. Finally, lp−1 ≤ p(d + s). ⊔⊓

What follows is an illustration of the proof:

Consider the STM-matrix

A =







1 0 −1 0
0 1 0 −1
0 0 1 −1
−1 0 0 1







,

the partitioning S1 = {1, 3} and S2 = {2, 4}, a PAI using Update 2, d = 2,
and the following operators which are assumed fixed
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H
(1)
d

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

∗ ∗

1
∗ ∗

1
1

1
1

1
1

1
1

1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,

H
(2)
d

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1
∗ x

1
∗ x

1
1

1
1

1
1

1
1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

The sequence (H
(1)
d )3(H

(2)
d )3H

(1)
d will be analysed now. Basic entries are

marked by an ”x”.

The root column is obviously in H
(2)
d ; it is column 9 = 1 + s(1)4 with

s(1) = 2. Following step two of the proof, the root column must move one

block to the left in H
(2)
d H

(1)
d .

H
(2)
d

H
(1)
d

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

∗ ∗

∗ x

∗ ∗

∗ x

∗ ∗

1
∗ ∗

1
1

1
1

1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

The root column is now determined and ξ = 1 + (s(1) − 1)4 = 5. Here an
illustration of step three of the proof; the duplication of entries to the past.

(H
(2)
d

)
2
H

(1)
d

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

∗ ∗

∗ ∗ x

∗ ∗

∗ ∗ x

∗ ∗

∗ x

∗ ∗

∗ x

∗ ∗

1
∗ ∗

1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,

(H
(2)
d

)
3
H

(1)
d

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

∗ ∗

∗ ∗ x ∗

∗ ∗

∗ ∗ x ∗

∗ ∗

∗ ∗ x

∗ ∗

∗ ∗ x

∗ ∗

∗ x

∗ ∗

∗ x

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A
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The occurrence of a positive block within column eight is accidental. The
basic entries have been moved downward. The following multiplication,
which also reflects the flow compatibility, will produce a positive block within
the root column. This is step four in the proof.

H
(1)
d

(H
(2)
d

)
3
H

(1)
d

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

∗ ∗ x ∗

∗ ∗ x ∗

∗ ∗ ∗ x ∗

∗ ∗ x ∗

∗ ∗

∗ ∗ x ∗

∗ ∗

∗ ∗ x ∗

∗ ∗

∗ ∗ x

∗ ∗

∗ ∗ x

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

The last multiplication is a nice demonstration why Theorem 4.10 is appli-
cable in step four of the proof of Theorem 4.21. Since the necessary infor-
mation to produce positive elements has been copied, an application of the

root column to H
(1)
d is the same (on the pattern) as in the case d = 0. The

inheritance of the positive elements within the root column is now obvious.

To outline the importance of the positive diagonals which are due to Update
2, consider Update 1. Then

H
(1)
d

(H
(2)
d

)
3
H

(1)
d

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1
1

1
1
1
1
1
1
1

1
1

1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

This product is a rank-two projection. Thus, it is not guaranteed that the
iteration converges to the correct result of Ax = 0.

Theorem 4.21 leads to the following statements.

Theorem 4.22 Consider MP and let S1, . . . , Sp be an ms-compatible de-
composition w.r.t. a flow compatible permutation π. Then every PAI
(A, x0, {Jk,Sk}k∈IN0) with Update 2, given by Algorithm 3.4, converges to
the solution x∗ of

Ax = b, x ∈ IRn.

Proof: Since the maximum delay is bounded by d there are only finitely

many different local operators H
(k)
d,2 . Therefore, and since s is bounded, there

are only finitely many different operators H(k,k+r) having a positive column
for r ≤ p(d + s). Hence, Theorem 4.7 is applicable and the convergence
follows from Theorem 4.8. ⊔⊓
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Theorem 4.23 Consider MP and let S1, . . . , Sp be an ms-compatible de-
composition w.r.t. a flow compatible permutation π. Assume Update 4, given
by Algorithm 3.6, and let the inner splittings be flow compatible. If the
number of inner iterations is bounded, then every PAI (A, x0, {Jk,Sk}k∈IN0)
converges to the solution x∗ of

Ax = b, x ∈ IRn.

Proof: Since the inner iterations are bounded, there are only finitely many

different local operators H
(k)
d,4 . Thus, the same argumentation as for Theorem

4.22 applies. ⊔⊓

Remark 4.17 1) A convergence result for Update 6 has been left out
since it is obvious. It can be formulated for general decompositions
and holds for STM-matrices. Thus, it generalises the result of [39]
and confirms a more general result given in [56].

2) The number of inner iterations in Theorem 4.23 should be bounded.
Otherwise the prove of Theorem 4.21 does not guarantee that the ele-
ments of the positive column have some certain size.



Chapter 5

Some extensions for GMP

Once the theory has been understood for ST- and STM-matrices, it can
be partly extended to SF- and SFM-matrices which will lead to solutions
of GMP. Though the expansion of the structure is easy (cf. Section 2.3),
the extension of the convergence results is not. There will be some results
for multiplicative and additive Schwarz, but unfortunately there are no new
propositions for PAIs. This is because PAIs imply certain problems which
have not yet been solved.

Note that results for Update 5 and 6 (cf. Algorithms 3.7 and 3.8 in Section
3.3) have been left out since they have no relevance in practice.

5.1 Non-relaxed multiplicative Schwarz iterations

The first extension concerns the non-relaxed multiplicative Schwarz itera-
tions, i.e. Update 1 and 3 (cf. Section 3.3, Algorithms 3.2 and 3.5).

According to the theory given in Section 2.3, terms like block flow compati-
bility or ms-compatibility can be extended by a localisation.

Consider an SF-matrix B ∈ IRn×n of degree r and let F = (T1, . . . , Tr) be
a spanning forest in Γ(BT ). By a simple exchange of certain vertices, the
trees Ti = (Vi, Ei), i = 1, . . . , r can be chosen such that Ei ∩ Ej = ∅, for all
1 ≤ i, j ≤ r, i 6= j. This property can always be assumed w.l.o.g., and such
a forest F = (T1, . . . , Tr) will be called a disjoint spanning forest.

Definition 5.1 A permutation π : {1, . . . , n} −→ {1, . . . , n} is said to be
a locally flow compatible numbering w.r.t. a disjoint spanning forest F =
(T1, . . . , Tr), if for each Ti, i = 1, . . . , r, there exist numbers ki

1 < ki
2 < . . . <

ki
ni

, ki
j ∈ {1, . . . , n}, j = 1, . . . , ni, such that π(i) = (π(ki

1), . . . , π(ki
ni

)) is a

flow compatible numbering of Ti. The tuples π(i) = (π(ki
1), . . . , π(ki

ni
)), i =

1, . . . , r are called the localisations of π.

101
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Definition 5.1 is an extension of Definition 4.2 by a localisation of the flow
compatibility.

Remark 5.1 It should be clear that an r-times application of DFS VISIT
(Algorithm 4.1) to an SFM-matrix of degree r, where each run starts within
another basic (and final) class, delivers a locally flow compatible numbering
of a disjoint forest.

The following definitions are an immediate consequence of the idea given in
Definition 5.1.

Definition 5.2 Consider a locally flow compatible numbering π with local-
isations π(i) = (π(ki

1), . . . , π(ki
ni

)), i = 1, . . . , r.

1) A regular partitioning S1, . . . , Sp of (π(1), . . . , π(n)) is called locally
block flow compatible if

max{j : π(ki
j) ∈ Sk} < min{j : π(ki

j) ∈ Sl}

for all 1 ≤ k < l ≤ p and i = 1, . . . , r.

2) A regular decomposition S1, . . . , Sp is called locally block flow com-
patible if there exists a locally block flow compatible partitioning
(S̃1, . . . , S̃p), such that S̃i ⊆ Si for all i = 1, . . . , p.

3) A locally block flow compatible decomposition is called gms-compatible
(gms for ”generalised multiplicative Schwarz”) if for each i ∈
{1, . . . , r}

• there exists exactly one l0 ∈ {1, . . . , p} such that π(ki
ni

) ∈ Sl0 and

• if π(j) ∈ Sk then k ≤ l0 for all j ∈ {ki
1, . . . , k

i
ni
}.

Part 1) of Definition 5.2 extends Definition 4.3 and part 2) Definition 4.4.
Finally, part 3) generalises Definition 4.5, since π(ki

ni
) is the root of Ti.

Let A = I − B ∈ IRn×n be an SFM-matrix of degree r and let F =
(T1, . . . , Tr) be a disjoint spanning forest. Assume that A has the follow-
ing block structure

(5.1.1) A =










D1 0 . . . 0 0
0 D2 . . . 0 0
...

. . .
...

...
0 0 Dr 0

E1 E2 . . . Er F










,

where each Di contains the root of Ti (cf. Lemma 2.5). The idea of localisa-
tion establishes a new standard representation of A, which is an alternative
to (5.1.1).
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Lemma 5.1 Let Di, . . . , Dr and F be given as in (5.1.1). There exists a
permutation matrix Σ such that

(5.1.2) ΣAΣT =














D1 0 0 0 . . . 0 0
E11 F11 E12 F12 . . . E1r F1r

0 0 D2 0 . . . 0 0
E21 F21 E22 F22 . . . E2r F2r
...

...
...

...
. . .

...
...

0 0 0 0 . . . Dr 0
Er1 Fr1 Er2 Fr2 . . . Err Frr














where each submatrix
(

Di 0
Eii Fii

)

, i = 1, . . . , r

represents an STM-matrix and Fii is a principal minor of F . The minor Fii

is of dimension 0× 0 if the vertex set Vi of Ti contains no index from F .

Proof: Since the spanning forest F = (T1, . . . , Tr) is assumed disjoint, each
index given by F belongs to exactly one tree. Thus, F can be partitioned
as follows.

F =








Fσ(1),σ(1) Fσ(1),σ(2) . . . Fσ(1),σ(r)

Fσ(2),σ(1) Fσ(2),σ(2) . . . Fσ(2),σ(r)
...

...
. . .

...
Fσ(r),σ(1) Fσ(r),σ(2) . . . Fσ(r),σ(r)








.

Here, σ : {1, . . . , r} −→ {1, . . . , r} is a permutation such that the indices
of Fσ(i),σ(i) belongs to Ti. If no vertex of Ti belongs to the indices given by
F , Fσ(i),σ(i) might be considered as the 0 × 0 matrix. The permutation σ
induces a partitioning

Ei =








Eσ(1),i

Eσ(2),i
...

Eσ(r),i








for i = 1, . . . , r. Now, it is easy to see that there exists a permutation matrix
Σ, such that ΣAΣT becomes (5.1.2). ⊔⊓

Lemma 5.1 delivers the structure that is needed for the following result.

Lemma 5.2 Let A be an SFM-matrix of degree r and let S1, . . . , Sp be
a gms-compatible decomposition w.r.t. to a spanning disjoint forest F =

(T1, . . . , Tr). If H
(i)
1 , i = 1, . . . , p are the local Schwarz operators given by

(3.2.9) w.r.t. S1, . . . , Sp, then

T1 := H
(1)
1 · . . . ·H

(p)
1
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is a semiconvergent SF-matrix of degree r.

Proof: By Lemma 5.1, assume A to be given in the standard form (5.1.2).
Then

(5.1.3) A ≤














D1 0 0 0 . . . 0 0
E11 F11 0 0 . . . 0 0
0 0 D2 0 . . . 0 0
0 0 E22 F22 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . Dr 0
0 0 0 0 . . . Err Frr














=: Ã.

Let Mi = A[Si], then Mi ≤ Ã[Si] =: M̃i and obviously M−1
i ≥ M̃−1

i . Let

H̃
(i)
1 be given by (3.2.9) w.r.t. Ã and S1, . . . , Sp for i = 1, . . . , p. Then

H
(i)
1 ≥ H̃

(i)
1 ≥ 0, i = 1, . . . , p, and finally

(5.1.4) T1 ≥ H̃
(1)
1 · . . . · H̃

(p)
1 =: T̃1.

The gms-compatibility implies ms-compatibility within each diagonal block
of Ã. The representation

T̃1 =















Ũ1 0 0 0 . . . 0 0

Ṽ11 W̃11 0 0 . . . 0 0

0 0 Ũ2 0 . . . 0 0

0 0 Ṽ22 W̃22 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . Ũr 0

0 0 0 0 . . . Ṽrr W̃rr















follows from Theorem 4.10 and each diagonal block of T̃1, i.e.
(

Ũi 0

Ṽii W̃ii

)

, i = 1, . . . , r,

has a positive column. This and (5.1.4) imply that each block

T
(i)
1 :=

(
Ui 0
Vii Wii

)

, i = 1, . . . , r,

in

T1 =














U1 0 0 0 . . . 0 0
V11 W11 V12 W12 . . . V1r W1r

0 0 D2 0 . . . 0 0
V21 W21 V22 W22 . . . V2r W2r
...

...
...

...
. . .

...
...

0 0 0 0 . . . Dr 0
Vr1 Wr1 Vr2 Wr2 . . . Vrr Wrr














≥ T̃1
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has a positive column. Thus, Γ(T T
1 ) contains a disjoint spanning forest

which contains r trees of height 1.

Theorem 4.1 implies that each T
(i)
1 is a semiconvergent ST-matrix for all

i = 1, . . . , r, thus ρ(Ui) = 1, γ(Ui) < 1, and also ρ(Wii) < 1 since Vii 6= 0.
Therefore, the indices of the blocks U1, . . . , Ur represent the only r final (and
also basic) classes. Theorem 2.3 implies that T1 is an SF-matrix of degree r
and the semiconvergence follows since γ(Ui) < 1 for all i = 1, . . . , r. ⊔⊓

The following theorem is actually a corollary of Lemma 5.2.

Theorem 5.1 Let A be an SFM-matrix of any degree and let S1, . . . , Sp

be a gms-compatible decomposition. If H
(1)
1 , . . . , H

(p)
1 are the local Schwarz

operators given by (3.2.9) w.r.t. S1, . . . , Sp, then the multiplicative Schwarz
iteration

xk+1 = T1x
k + c, k = 0, 1, 2, . . .

converges to the solution of Ax = b, b ∈ R(A) for every given x0 ∈ IRn and
a proper right hand side c. The convergence is obtained at a geometric rate.

Proof: Trivial using Lemma 5.2 since T1 is semiconvergent and N (I−T1) =
N (A). ⊔⊓

Theorem 5.1 shows that an extension for exact Schwarz iterations is no
problem. Thus, Theorem 5.1 can be regarded as generalisation of Theorem
4.11.

The results for two-stage iteration schemes will be weaker than in the ST-
matrix case. To prove them, a generalisation of Definition 4.6 is needed.

Definition 5.3 Let A be an STM-matrix and F = (T1, . . . , Tr) be a span-
ning disjoint forest in Γ(AT ). For an arbitrary regular decomposition
S1, . . . , Sp let (Fi, Gi) be an M-splitting of Mi = A[Si]. Then (Fi, Gi) is
called a locally flow compatible splitting if

(Tj)|Si
∩ Γ(F T

i ) = (Tj)|Si
∩ Γ(MT

i )

for all i = 1, . . . , p and j = 1, . . . , r.

Note that locally flow compatible splittings have been defined for M-
splittings instead of weak regular splittings. That should not be a problem
in practice and has been done to simplify the proof of the following lemma.

Lemma 5.3 Let A be an SFM-matrix of degree r and let S1, . . . , Sp be
a gms-compatible decomposition w.r.t. to a spanning disjoint forest F =

(T1, . . . , Tr). Let H
(k,i)
3 be the local Schwarz operators given by (3.3.2) w.r.t.

S1, . . . , Sp for i = 1, . . . , p and k ∈ IN0. Assume that the inner splittings are
locally flow compatible. Then

T
(k)
3 := H

(k,1)
3 · . . . ·H

(k,p)
3



5. Some extensions for GMP 106

is a semiconvergent SF-matrix of degree r.

Proof: Again, define Ã by (5.1.3) and let Ã[Si] = M̃i. Then Mi =≤ M̃i.
For a locally flow compatible splitting Mi = Fi −Gi define F̃i by

(F̃i)k,l :=

{

(Fi)k,l if (M̃i)k,l 6= 0,

0 else,

for all 1 ≤ k, l ≤ n and i = 1, . . . , p. Additionally, let G̃i := F̃i − M̃i, then
(F̃i, G̃i) is an M-splitting and Fi ≤ F̃i. This implies F−1

i ≥ F̃−1
i . Finally,

G̃i ≤ Gi for all i = 1, . . . , p since (Fi, Gi) is an M-splitting. Therefore,

R(k,i) = (F−1
i Gi)

q(k,i) ≥ (F̃−1
i G̃i)

q(k,i) =: R̃(k,i)

for all q(k, i) ≥ 1 and

(I −R(k,i))M−1
i =

q(k,i)−1
∑

j=0

(F−1
i Gi)

jF−1
i

≥

q(k,i)−1
∑

j=0

(F̃−1
i G̃i)

jF̃−1
i = (I − R̃(k,i))M̃−1

i .

Now define H̃
(k,i)
3 by (3.3.2) in terms of (F̃i, G̃i) and Ã, then

0 ≤ H̃
(k,i)
3 ≤ H

(k,i)
3

for all i = 1, . . . , p and k ∈ IN0.

With the above defined matrices H̃
(k,i)
3 , the same argumentation as used

in the proof of Lemma 5.2 can be applied (using Theorem 4.12 instead of

Theorem 4.1), leading to the result that T
(k)
3 is a semiconvergent SF-matrix

of degree r. Moreover, the existence of a spanning disjoint forest whose r
trees are of height 1 follows. The elements of those trees are bounded from
below by some κ > 0 for any number of inner iterations q(k, i). ⊔⊓

Unfortunately there is no complete generalisation of Theorem 4.12. The
problem here is, that there is no proper extension of the coefficient of er-
godicity τ(·) defined in Theorem 4.4 in Section 4.2.

To outline this, consider an SFM-matrix A ∈ IRn×n and a two-stage multi-
plicative Schwarz iteration. Assume w.l.o.g.

(5.1.5) A =










D1 0 . . . 0 0
0 D2 . . . 0 0
...

. . .
...

...
0 0 Dr 0

E1 E2 . . . Er F










.
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Since Az = 0 for some positive vector z, assume w.l.o.g. z = e. Each global

operator T
(k)
3 is a semiconvergent SF-Matrix by Lemma 5.3. Since T

(k)
3 e = e

for all k ∈ IN0, each global operator is row stochastic. Moreover

(5.1.6) T
(k)
3 =











U
(k)
1 0 . . . 0 0

0 U
(k)
2 . . . 0 0

...
. . .

...
...

0 0 U
(k)
r 0

V
(k)
1 V

(k)
2 . . . V

(k)
r W (k)











.

where each U
(k)
i is a row stochastic matrix and the dimension of U

(k)
i and

Di in (5.1.5) is the same for all i = 1, . . . , r and k ∈ IN0.

The elements of the disjoint spanning forest constructed in Lemma 5.3 are
bounded from below by some κ > 0 for all k ∈ IN0 (cf. Section 4.5). This
implies immediately that ρ(W (k)) ≤ θ < 1 for all k ∈ IN0. Moreover, each

U
(k)
i is row stochastic and has a positive column whose elements are also

bounded from below for each i = 1, . . . , r and k ∈ IN0.

Thus, everything is fine but τ(T
(k)
3 ) ≡ 1 for all k ∈ N0 if the degree of

A exceeds 1. Indeed, the class of row stochastic SF-matrices of degree 1,
i.e. row stochastic ST-matrices, is the largest class on which τ(·) works
properly. Hence, a convergence result similar to Theorem 4.7 can not be
achieved using τ(·).

This makes the analysis of the convergence of

lim
k−→∞

T
(k)
3 · T

(k−1)
3 · . . . · T

(0)
3

more difficult. According to (5.1.6) let

U
(k,0)
j := U

(k)
j · U

(k−1)
j · . . . · U

(0)
j ,

for j = 1, . . . , r, and define

W (k,0) := W (k) ·W (k−1) · . . . ·W (0).

Define for k ∈ IN

Y
(k,0)
j := V

(k)
j U

(k−1,0)
j + W (k)Y

(k−1,0)
j ,

where

Y
(0,0)
j := V

(0)
j
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for j = 1, . . . , r. Then

(5.1.7) T
(k)
3 · . . . · T

(0)
3 =











U
(k,0)
1 0 . . . 0 0

0 U
(k,0)
2 . . . 0 0

...
. . .

...
...

0 0 U
(k,0)
r 0

Y
(k,0)
1 Y

(k,0)
2 . . . Y

(k,0)
r W (k,0)











.

The convergence of

lim
k−→∞

U
(k,0)
j = U∗

j

is obvious by Theorem 4.7 for each j = 1, . . . , r, and the limit is a rank one
row stochastic matrix. Additionally

lim
k−→∞

W (k,0) = 0

since ρ(W (k)) ≤ θ < 1 for all k ∈ IN0. But the problem is to prove the
convergence of the sequences

lim
k−→∞

Y
(k,0)
j = lim

k−→∞

(

V
(k)
j U

(k−1,0)
j + W (k)Y

(k−1,0)
j

)

whose limits can not be the zero matrix for all j = 1, . . . , r.

The problem comes from the submatrices V
(k)
j given in (5.1.6), which reflect

the accessibility relation between indices in U
(k)
j and W (k). If this relation

stays constant, then the convergence can be proven (which will not be done
here). But this can not be guaranteed if the number of inner iterations vary.

However, if x0 ∈ IRn is an arbitrary vector and partitioned with conformity
to (5.1.7) into blocks (x0)T = ((x0

1)
T , . . . , (x0

r+1)
T ), then clearly

lim
k−→∞

xk
j = lim

k−→∞
U

(k,0)
j x0

j = λjej

for each j = 1, . . . , r. Thus it remains to prove the existence of

lim
k−→∞

xk
r+1

and to discuss the questions, whether its existence is independent of the

existence of limk−→∞ T
(k)
3 · . . . · T

(0)
3 or not. Though it should be feasible,

it will be omitted here. Thus the following theorem will be formulated
with a constant number of inner iterations, i.e. for a stationary two-stage
multiplicative Schwarz iteration.

Theorem 5.2 Let A be an SFM-matrix of any degree and let S1, . . . , Sp

be a gms-compatible decomposition. The local Schwarz operators
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H
(k,1)
3 , . . . , H

(k,p)
3 are given by (3.3.2) w.r.t. S1, . . . , Sp. Assume that the

number of inner iterations q(k, i) = q(i) is constant for each i = 1, . . . , p
and that the inner splittings are locally flow compatible. Then the stationary
two-stage multiplicative Schwarz iteration

xk+1 = T3x
k + c, k = 0, 1, 2, . . .

converges to the solution of Ax = b, b ∈ R(A) for every given x0 ∈ IRn and
a proper right hand side c. The convergence is obtained at a geometric rate.

Proof: Obvious by Lemma 5.3. ⊔⊓

Remark 5.2 Theorem 5.1 can obviously be applied to Update 2 (relaxed
exact Schwarz, cf. (3.3.1)), while Theorem 5.2 can also be applied to Update
4 (relaxed two-stage Schwarz, cf. (3.3.3)).

5.2 Relaxed multiplicative Schwarz iterations

With the ideas of Section 5.1, results for relaxed multiplicative Schwarz iter-
ations for SFM-matrices can be simply derived. This will led to extensions
of Theorems 4.7, 4.17 and 4.18. A revision of Theorems 4.13 and 4.14 will
be omitted because it is obvious in view of Theorems 5.1 and 5.2.

At first, a localisation of Definition 4.7.

Definition 5.4 Let A ∈ IRn×n be an SFM-matrix of degree r and let
α1, . . . , αr be the basic classes. A regular decomposition S1, . . . , Sp is called
locally root preserving if for all i = 1, . . . , r there exists an ji ∈ αi, such
that |j : ji ∈ Sj | = 1.

With this definition, Theorem 4.16 can be restated as follows.

Lemma 5.4 Suppose that A ∈ IRn×n is an SFM-matrix of degree r and
assume a locally root preserving decomposition S1, . . . , Sp. If for j = 1, . . . , p,

the local operators H
(j)
2 and H

(k,j)
4 are given by (3.3.1) and (3.3.3) and the

inner splittings (if any) are M-splittings, then each product

T2 := H
(σ(1))
2 · . . . ·H

(σ(p))
2 ,

T
(k)
4 := H

(k,σ(1))
4 · . . . ·H

(k,σ(p))
4 ,

is a semiconvergent SF-matrix of degree r for any permutation σ :
{1, . . . , p} −→ {1, . . . , p}.
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Proof: Apply the ideas of the proofs of Lemma 5.2 and 5.3 to T2 and T
(k)
4 ,

respectively. Then the lemma follows by an easy application of Theorem
4.16. ⊔⊓

The following results are an immediate consequence.

Theorem 5.3 Let A be an SFM-matrix of any degree. Let S1, . . . , Sp be a
locally root preserving decomposition and σ be any permutation on {1, . . . , p}.

For T2 := H
(σ(1))
2 · . . . ·H

(σ(p))
2 let the local operators H

(i)
2 be given by (3.3.1).

Then the relaxed multiplicative Schwarz iteration

xk+1 = T2x
k + c, k = 0, 1, 2, . . .

converges to the solution of Ax = b, b ∈ R(A) for every given x0 ∈ IRn and
a proper right hand side c. The convergence is obtained at a geometric rate.

Theorem 5.4 Let A be an SFM-matrix of any degree. Let S1, . . . , Sp be a
locally root preserving decomposition and σ be any permutation on {1, . . . , p}.

For T
(k)
4 := H

(k,σ(1))
4 · . . . ·H

(k,σ(p))
4 let the local operators H

(k,i)
4 be given by

(3.3.3). Assume that the numbers of inner iterations q(k, i) = q(i) are
constant, and the inner splittings are M-splittings for each i = 1, . . . , p.
Then the relaxed stationary two-stage multiplicative Schwarz iteration

xk+1 = T4x
k + c, k = 0, 1, 2, . . .

converges to the solution of Ax = b, b ∈ R(A) for every given x0 ∈ IRn and
a proper right hand side c. The convergence is obtained at a geometric rate.

5.3 Additive Schwarz iterations

Results for additive Schwarz iterations are now easily obtained from the
previous section and the discussion in Section 4.7. Actually, there is nothing
to prove for the following theorems.

Assume a decomposition S1, . . . , Sp. Let the local operators H
(j)
l , j =

1, . . . , p, l ∈ {1, 4} be given by (3.2.9) and (3.3.3), then from (3.2.7),

Tθ,l := I − θ

p
∑

i=1

(I −H
(i)
l )

where θ ∈ (0, 1/q) and q is given by (3.1.1).

Theorem 5.5 Let A be an SFM-matrix of any degree and let S1, . . . , Sp be
a locally root preserving decomposition. Then the additive Schwarz iteration

xk+1 = Tθ,1x
k + c, k = 0, 1, 2, . . .
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converges to the solution of Ax = b, b ∈ R(A) for every given x0 ∈ IRn,
θ ∈ (0, 1/q), and a proper right hand side c. The convergence is obtained at
a geometric rate.

Theorem 5.6 Let A be an SFM-matrix of any degree and let S1, . . . , Sp be
a locally root preserving decomposition. If the number of inner iterations
q(k, i) = q(i) are constant and the inner splittings are M-splittings for each
i = 1, . . . , p, then the relaxed stationary two-stage additive Schwarz iteration

xk+1 = Tθ,4x
k + c, k = 0, 1, 2, . . .

converges to the solution of Ax = b, b ∈ R(A) for every given x0 ∈ IRn,
θ ∈ (0, 1/q), and a proper right hand side c. The convergence is obtained at
a geometric rate.

5.4 Trivial extensions

Finally, it should be mentioned that there are two easy generalisations using
the definitions given in Sections 5.1 and 5.2.

Thus, consider an SFM-matrix A given in the normal form (5.1.2) of Lemma
5.1, i.e.

(5.4.1) A =














D1 0 0 0 . . . 0 0
E11 F11 E12 F12 . . . E1r F1r

0 0 D2 0 . . . 0 0
E21 F21 E22 F22 . . . E2r F2r
...

...
...

...
. . .

...
...

0 0 0 0 . . . Dr 0
Er1 Fr1 Er2 Fr2 . . . Err Frr














.

The first case to consider is the existence of a positive vector y, such that
yT A = 0. This case naturally occurs in the analysis of Markov chains and
A becomes (cf. discussion in Section 2.3 and also Lemma 2.3)

A =








D1 0 . . . 0
0 D2 . . . 0
...

...
. . .

...
0 0 . . . Dr








.

For the second case consider every spanning forest within Γ(AT ) to be dis-
joint. Then each index in each Fii from (5.4.1) belongs to exactly one tree.
Hence, Ei,j = 0 for all 1 ≤ i, j ≤ r and i 6= j. But also Fi,j = 0 for all
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1 ≤ i, j ≤ r and i 6= j. In this case

A =














D1 0 0 0 . . . 0 0
E11 F11 0 0 . . . 0 0
0 0 D2 0 . . . 0 0
0 0 E22 F22 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . Dr 0
0 0 0 0 . . . Err Frr














.

Thus, in both cases, A decomposes into a block diagonal matrix, whose
blocks are either irreducible or STM-matrices. Hence the extensions are
trivial, i.e. with the definitions given in Section 5.1 and 5.2, every theorem
from the Sections 4.5, 4.6, 4.7, and 4.8 applies. Since the resulting theorems
are obvious they are not restated here.



Chapter 6

Comparison with known

results

In this chapter, some known results which are related to the iteration
schemes introduced in Chapter 3 will be discussed. This is not only for
the sake of completeness but for an assessment of the results which have
been presented in Chapters 4 and 5. The differences and similarities be-
tween various known results and the approach given here will be examined.
Then a closer look at the techniques used elsewhere will also reveal that
these techniques are all quite nonuniform, while the ansatz used here is
more homogeneous.

6.1 General convergence

There is a lot of theory for iterations

(6.1.1) xk+1 = H(k)xk, k = 0, 1, 2, . . .

where x0 ∈ IRn is given and {H(k)}k∈IN0 ⊂ IRn×n is a sequence of matrices
such that ρ(H(k)) ≤ 1 and ind1(H

(k)) = 1 for all k ∈ IN0; see, e.g., [11, 13, 23,
24, 31, 32, 33, 44, 50, 62] and for constant sequences, e.g., [9, 21, 46, 61, 59].

For the above iteration it is sufficient to prove the existence of

lim
k−→∞

H(k) · . . . ·H(0) = P

where either P = 0 or P is a projection onto some common invariant sub-
space S.

The theory can be split into two groups. The results of the first group are
based on the structure of the H(k) and the operators are usually nonnegative;
see [21, 31, 32, 46, 59, 61, 62]. The results of the second group are retrieved
from norm conditions; see [11, 13, 23, 24, 33, 44, 50].

113
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The results of [21, 46, 59, 61] will be discussed in detail in Section 6.5.
The ansatz in [32] is too special and some results from [31, 62] have been
mentioned in Section 4.2. The approach in [50] is comparable to the ideas
given in [62]. Thus, what remains to be discussed now are the norm based
results from [11, 13, 23, 24, 33, 44].

Since norms are a strong tool, the results based on norms are very general
but sometimes hard to verify. Though norms are not used here explicitly,
some theory depending on norms should be discussed as the problems are
almost the same.

The iteration (6.1.1) is a special case of the so called LCP set problem
(”LCP” stands for ”left convergent products”).

Let Σ := {H(i)}Mi=0 be a (possibly countable infinite) set of square matrices.
Then Σ is called an LCP set (or is said to fulfil the the LCP property), if
for any sequence {dk}

∞
k=0 of numbers dk ∈ {1, . . . , M} the left sided product

lim
k−→∞

H(dk) ·H(dk−1) · . . . ·H(d0)

is (semi)convergent. The LCP problem is to decide whether a set has the
LCP property or not.

The pioneering paper for the LCP problem is [23]. There it is discussed under
which conditions those limits exist. Furthermore, the question whether the
limits are continuous (i.e. independent of the sequence {dk}

∞
k=0) or not is

examined; see also [13] or [31]. Note that the limit of (6.1.1) is not continuous
in general for MP and the iteration methods introduced in Chapter 3.

To discuss one main result from [23], let the subspace S ⊂ IRn be a common
right-eigenspace to the eigenvalue 1 of each H(k) ∈ Σ. A finite product
B := H(k) · . . . ·H(1), H(i) ∈ Σ is called a block, if

(6.1.2) S = ∩k
i=1N (I −H(i)) and S 6= ∩k−1

i=1N (I −H(i)).

Denote by ΣB the set of blocks of Σ. Further define the joint spectral radius
by

ρ̂(Σ) := lim sup
k−→∞

(ρ̂k(Σ, ‖ · ‖))1/k

where the norm ‖ · ‖ is arbitrary and

ρ̂k(Σ, ‖ · ‖) := sup

{∥
∥
∥
∥
∥

1∏

i=k

H(i)

∥
∥
∥
∥
∥

: H(i) ∈ Σ

}

.

Finally, a set of matrices Σ is said to be product bounded, if there exists a
finite number ∆ such that

∥
∥
∥
∥
∥

1∏

i=k

H(i)

∥
∥
∥
∥
∥
≤ ∆

for all k <∞ and all H(i) ∈ Σ.
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Theorem 6.1 (Theorem 5.1 in [23]) A finite set Σ is a product bounded
LCP set of n× n matrices if and only if :

1) All strict subsets are product bounded LCP sets.

2) All B ∈ ΣB have N (I −B) = S.

3) There is a subspace V ⊂ IRn such that S ⊕ V = IRn, and the set
PV ΣBPV := {PV BPV : B ∈ ΣB}, where PV is an orthogonal projec-
tion onto V , has

(6.1.3) ρ̂(PV ΣBPV ) < 1.

Theorem 6.1 reflects entirely the discussion in Section 3.6. There it has been
analysed if blocks have the property (6.1.2). Additionally, (6.1.3) says that
each block B satisfies γ(B) < 1. Thus, each block is semiconvergent. This
is the main idea and has been modified by several authors.

In [33] the condition (6.1.3) is modified, i.e. other norm conditions are
introduced. In [11, 13] and [24], norm conditions based on paracontractivity
(cf. Section 1.1) are used. However, the main idea of [23] is always adapted.

Another condition is given in [44]. There, it is supposed that each
H(k) is semiconvergent and the spectral decomposition (P (k), Q(k)) satis-
fies ‖P (k)‖ ≤ c <∞ and ‖Q(k)‖ < θ < 1 for all k ∈ IN0 and a certain norm
which may not depend on k.

If all projections are equal, then the latter conditions imply paracontractivity
for all H(k) w.r.t. the same norm.

Lemma 6.1 If A is semiconvergent and there exists a norm ‖ · ‖1 such that
for the spectral decomposition (P, Q), ‖Q‖1 < 1 holds, then A is paracon-
tractive w.r.t. the following norm

‖x‖2 := ‖Px‖1 + ‖(I − P )x‖1, x ∈ IRn.

Proof: Following [50], define for x ∈ IRn

‖x‖2 := ‖Px‖1 + ‖(I − P )x‖1.

It is immediately seen that ‖ · ‖2 is a norm since ‖ · ‖1 is one. With the
identity (I − P )Q = Q = Q(I − P ) one gets

‖Ax‖2 = ‖PAx‖1 + ‖(I − P )Ax‖1

= ‖P (P + Q)x‖1 + ‖(I − P )(P + Q)x‖1

= ‖Px‖1 + ‖Q(I − P )x‖1.
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If Px = x, then (I − P )x = 0 and ‖Ax‖2 = ‖x‖2. If Px 6= x, then
(I − P )x 6= 0 and

‖Ax‖2 = ‖Px‖1 + ‖Q(I − P )x‖1

≤ ‖Px‖1 + ‖Q‖1‖(I − P )x‖1

< ‖Px‖1 + ‖(I − P )x‖1 = ‖x‖2

since ‖Q‖1 < 1. ⊔⊓

But the projections in [44] are usually different, i.e. they depend on k, and
the lemma can not be applied in such an easy manner. The H(k) in [44] are
of course paracontractive, but to different norms. So it is a good (and open)
question, whether this is a generalisation of the uniform paracontractivity
assumed in [11, 24] or not. Anyway, in Theorem 3.5 of [44], the set of the
H(k) was proved to be an LCP set (though the notion of an LCP set was
not used). Indeed, Theorem 3.5 of [44] and also Lemma 6.1 build a bridge
between LCP set theory and the theory that uses spectral decompositions.
Note that there might be a countably infinite number of operators H(k) in
[44], rather than finitely many ones as in Theorem 6.1.

All together, the above results are very strong but they also need quite
restrictive assumptions based on a norm. Moreover (6.1.2) and (6.1.3), or
likewise the conditions of [44], imply several complications for Schwarz it-
erations or PAIs in practice (cf. Section 3.6) since it is hard to show that
finite blocks of iteration operators fulfil some norm conditions.

As the iteration operators discussed in this thesis are nonnegative, it is much
easier and somehow more natural to argue on the structure rather than on
norms. This has been done in Chapter 4 leading to the convergence of (6.1.1)
by Theorem 4.7 which is due to [31] and [62].

6.2 Multiplicative Schwarz methods

The most recent papers for multiplicative Schwarz methods are [40] and [48],
whose results will be discussed now.

The main theorem presented in [40] reads as follows.

Theorem 6.2 (Theorem 4.1 in [40]) Let A = I−B, where B is an n×n
column stochastic matrix such that Bz = z with z > 0. If S1, . . . , Sp is a
regular decomposition and for each i = 1, . . . , p the splitting
(6.2.1)

Πi

(
A[Si] A[Si,¬Si]

0 I

)

ΠT
i =

(
M̃i 0
0 I

)

−

(
Ñii Ñi,¬i

0 I

)

=: M̄i − N̄i

is nonnegative and the diagonals of H(i) = M̄−1
i N̄i are positive, then the
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multiplicative Schwarz iteration

xk+1 = Txk + c, k = 0, 1, 2, . . . ,

where T is given as

T := H(1) ·H(2) · . . . ·H(p), H(i) = M̄−1
i N̄i,

converges to a solution of Ax = b, b ∈ R(A) for every given x0 ∈ IRn and a
proper right hand side c.

This result, if correct, is just a bit more general than the results given in
Sections 4.5, 4.6, and 5.2 (especially Theorem 5.3). This is because the
decomposition might be arbitrary (but of course regular) instead of locally
root preserving.

Unfortunately, there is a problem with the proof presented in [40] since
it was not shown that N (I − T ) = N (A) holds (cf. Section 3.6). The
semiconvergence itself was shown in [40]; it follows by the theory presented
in Chapters 1 and 3.

Note that A is an SFM-matrix and decomposes into a block diagonal matrix,
whose diagonal blocks are STM-matrices by the theory given in Sections 2.3
and 5.4.

The splittings (6.2.1) proposed in [40] where

(6.2.2) M̃i := αiI + A[Si], αi > 0.

They have a nice embedding into the normal forms given in Remark 3.5 of
Section 3.5. With the notation for Mi, Ni and P (i) given there and

∆(i)
ms := ΠT

i

(
α · M̃−1

i 0
0 0

)

Πi

it follows that
H(i) = P (i) + ∆(i)

ms(I − P (i))

and
I −H(i) = (I −∆(i)

ms)(I − P (i)).

Note that I −∆
(i)
ms is always nonsingular for every αi > 0 and the iteration

scheme can be classified as an inexact Schwarz iteration.

Since

ΠiH
(i)ΠT

i =

(
αiM̃

−1
i (I − αiM̃

−1
i )M−1

i Ni

0 I

)

=

(
αiM̃

−1
i M̃−1

i Ni

0 I

)

and
Γ(M̃−1

i ) = Γ(M−1
i ),
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Theorem 5.3 applies directly for multiplicative Schwarz and Theorem 5.5 for
additive Schwarz if a locally root preserving decomposition is used.

Finally, it should be noted, that there are no results for two-stage methods
nor exact Schwarz methods in [40] which can be immediately obtained by
the theory provided here (cf. Section 5.4).

In [48] symmetric positive semidefinite problems are discussed. The main
result for multiplicative Schwarz reads as follows.

Theorem 6.3 (Theorem 4.2 in [48]) Let A be a symmetric positive
semidefinite matrix such that each principal submatrix is positive definite.
If S1, . . . , Sp is a decomposition, b ∈ R(A) and x0 /∈ N (A) then the (exact)
multiplicative Schwarz iteration (3.2.2) converges to a solution x∗ of Ax = b.

There is no need of ms-compatibility nor root preserving decompositions
in Theorem 6.3. However, the theorem is restricted to symmetric positive
semidefinite matrices, as opposed to the results of Sections 4.5 and 5.1.
The generality comes from the symmetry, which implies several additional
conditions on the error-distribution of Lemma 3.5 in Section 3.6. Note that
the proposed positive definiteness of each principal minor is a restriction
to A. This holds, e.g., if A is non singular or A is irreducible. Hence, an
application of Theorem 6.3 to the problems discussed in this thesis is only
possible for the model problem MP. In this case A becomes irreducible (cf.
Section 2.2).

Additionally, there is also a result for inexact iterations in [48].

Theorem 6.4 (Theorem 5.7 in [48]) Let A be a symmetric positive
semidefinite matrix such that each principal submatrix is positive definite.
Let S1, . . . , Sp be a decomposition, b ∈ R(A) and x0 /∈ N (A). If M̃−1

i is an
approximation to M−1

i = A[Si]
−1 such that M̃i + M̃T

i −Mi is symmetric
positive definite, then the (inexact) multiplicative Schwarz iteration (3.2.2),
using M̃i instead of Mi, converges to a solution x∗ of Ax = b.

This compares to the results from Sections 4.5 and 5.1 in a similar manner
as Theorem 6.3. But explicit examples of those inexact methods have not
been given. The two-stage methods discussed in [48] were all interpreted
as coarse grid corrections, needing an additional step. Hence, they do not
coincide with the two-stage methods given in this thesis.

6.3 Additive Schwarz methods

The following results are from [15] and again [48] (cf. Section 6.2).

The main result in [15] can be stated as follows.
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Theorem 6.5 (Theorem 3.3 and 4.4 in [15]) Let A = I − B, where B
is an n×n nonnegative matrix such that Bz = z with z > 0. If S1, . . . , Sp is a
regular decomposition and Si∩Si+k = ∅ for k ≥ 2, i.e. the maximum overlap
is q = 2, then the (exact) additive Schwarz iteration (3.2.6) converges to a
solution x∗ of Ax = b if b ∈ R(A).

Again, A is assumed to be an SFM-matrix by Theorem 2.3. Theorem 6.5
gives an alternative to the locally root preserving decompositions used in
Theorem 5.5. On the other hand, Theorem 5.5 has no restriction to the
amount of overlap as long as the decomposition is locally root preserving.
Furthermore, the theory presented here can be applied to inexact methods
using Theorem 5.6. Note that the proof in [15] follows the idea given in [34].

As in the previous section, the result for exact additive Schwarz in the
symmetric positive semidefinite case does not need further assumptions on
the graph of A and the decomposition.

Theorem 6.6 (Theorem 3.3 in [48]) Let A be a symmetric positive
semidefinite matrix such that each principal submatrix is positive definite.
If S1, . . . , Sp is a decomposition, b ∈ R(A) and x0 /∈ N (A) then the (exact)
additive Schwarz iteration (3.2.6) converges to a solution x∗ of Ax = b if
0 < θ < 2/p.

In contrast to Theorem 6.5, the maximum overlap is not restricted by q = 2
and the condition A = I − B, Bz = z for some positive z can be given up.
Compared to Theorem 5.5, there is no need of locally root preservation.
The range of the damping factor has been doubled but this is no surprise in
the symmetric case (see [30]). This shows that the results in the symmetric
positive semidefinite case are quite general. But as mentioned in the previous
section, Theorem 6.6 can only be applied to the model problem MP in which
case A becomes irreducible.

A result for inexact additive Schwarz is also given in [48].

Theorem 6.7 (Theorem 5.1 in [48]) Let A be a symmetric positive
semidefinite matrix such that each principal submatrix is positive definite.
Let S1, . . . , Sp be a decomposition, b ∈ R(A) and x0 /∈ N (A). If M̃−1

i is an
approximation to M−1

i such that M̃i−Mi is symmetric positive semidefinite
and 0 < θ < 2/p then the inexact additive Schwarz iteration (3.2.6), using
M̃i instead of Mi, converges to a solution x∗ of Ax = b.

Again, no explicit application for Theorem 6.7 is given in [48]. The proposed
two-stage method for additive Schwarz given in [48] is again a coarse grid
correction and cannot be compared with the method given here.
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6.4 Asynchronous Iterations

The results given for asynchronous iterations will be discussed in the context
of [2, 39] and [56].

The theorem of B. Lubachevsky and D. Mitra

To point out the differences between non-block and block iterations the
main result from [39] will be discussed first (it can also be found in [10],
Section 7.3.2, Proposition 3.2). The main convergence result given in [39] is
as follows.

Theorem 6.8 (Theorem 2 in [39]) Let B ∈ IRn×n be irreducible, column
stochastic, and assume bi0,i0 > 0 for some i0 ∈ {1, . . . , n}. Let 0 ≤ x0 ∈ IRn

such that x0
i0

> 0. Then a PAI (B, x0, {Jk,Sk}k∈IN0) such that Jk = {jk}
and jk ∈ {1, . . . , n} for all k ∈ IN0, converges to a positive vector z > 0
satisfying Bz = z.

The PAI proposed in [39] is actually Update 5 (cf. (3.3.4)) applied to single
rows rather than blocks. The proof of Theorem 6.8 is more or less based on
Theorem 4.7 and therefore uses the following proposition.

Proposition 6.9 (Proposition 6 in [39]) Let H
(k)
d,5 be the operators from

Theorem 6.8. Then for any k ∈ IN0 the product

H(k,k+rlm) := H
(k+rlm)
d,5 ·H

(k+rlm−1)
d,5 · . . . ·H

(k)
d,5

has a positive column for rlm = 1 + d + (n− 1)(d + s).

Proposition 6.9 should be analysed in the context of Theorem 4.21.

The first point to be noticed is that Proposition 6.9 does not need the
complete diagonal to be positive. This is for the following reasons:

1) The positive diagonal element of B might be interpreted as the root
of some spanning tree in BT (cf. Corollary 2.2) having access to itself.
Thus, the information stored in the root remains there during the
whole iteration by the construction of the local updates.

If block iterations are used, i.e. Update 2 or 4, the root will be trans-
ported out of the diagonal. Hence an element that stores the infor-
mation is needed, therefore the relaxation. The technique of the proof
of Theorem 4.21 implies that the whole diagonal should be positive,
because the root can change (cf. the example in Section 4.4).



121 6.4. Asynchronous Iterations

2) Then, if a son of the root is updated, it will inherit the information of
the root. This information will also be stored during the whole itera-
tion, again by the irreducibility of B and the construction of the local

updates H
(k)
d,5 (indeed, a graph based approach was used, cf. Proposi-

tion 3 in [39]).

The second main difference between Theorem 4.21 and Proposition 6.9 is
the following.

In Theorem 4.21, the upper bound for the positive column to be generated
was r = p(d+s). Thus, if the number of blocks p is sufficiently smaller than
n, then

p(d + s) < 1 + d + (n− 1)(d + s) < n(d + s).

Hence the speed of convergence should be increased, since semiconvergent
operators are obtained faster if block updates and ms-compatible decompo-
sitions are used. Note that a better performance cannot be assumed in the
case of a block Update 6 according to the discussion in Section 4.6.

The theory of M. Pott

To discuss the results of [55, 56] some basics have to be introduced as the
theory is quite different from the classical approaches (cf. [4, 10, 12, 18, 70]
and Section 3.4) and generalises some concepts from [25]. In the presentation
below, the results from [55] are restricted to linear operators. The discussion
is necessary since the approach in [55, 56] is graph based as well.

Let I ⊂ IN, m ∈ IN, D ⊂ IRp be closed and let G := {Gi : i ∈ I} be a ”pool”
of operators such that

Gi : Dmi −→ IRp

for mi ∈ {1, . . . , m} and all i ∈ I.

A vector z ∈ IRp is said to be a fixed point of G if

Gi(z, . . . , z) = z

for all i ∈ I. The problem that is tackled in [25, 55, 56], is to find a fixed
point for a pool G. In [55] it is analysed how this could be done by using an
asynchronous iteration in the following sense.

For k ∈ IN, i(k) ∈ I and (s1(k), . . . , smi(k)
(k)) ∈ IN

mi(k)

0 the assignment

xk+1 = Gi(k)(xs1(k), . . . , x
smi(k)

(k)
)

defines an asynchronous iteration method if

sj(k) ≤ k,

lim
k−→∞

sj(k) = +∞,

i : IN −→ I,
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for j = 1, . . . , mi(k) and k = 0, 1, 2, . . .. Here the notation
(G, x0, {Jk,Sk}k∈IN0) is used for a given x0 ∈ IRp, Sk as usual, and
Jk = {i(k)}.

As it is not possible to prove satisfactory results with such general asyn-
chronous iterations the notion of confluent asynchronous iterations (CAI)
must be introduced.

The directed graph G = (V, E) of an asynchronous iteration
(G, x0, {Jk,Sk}k∈IN0) consists of the vertex set V = IN and the edge set
E such that

(k, k0) ∈ E ⇔ there exists 1 ≤ l ≤ mi(k0−1) such that sl(k0 − 1) = k.

(G, x0, {Jk,Sk}k∈IN0) is said to be a CAI, if there are numbers n0, b, d ∈ IN
and a sequence (bk)

∞
k=n0

of natural numbers, such that for all k ≥ n0 the
following conditions hold:

1) For all k0 ≥ k there exists a directed path from bk to k0.

2) k − b ≤ bk ≤ k.

3) k − d ≤ si(k) ≤ k, i = 1, . . . , mi(k).

4) For all i ∈ I there exists a ci ∈ IN such that for each k ≥ n0 a vertex
wi

k ∈ V exists, which is a successor of bk, a predecessor of bk+ci
, and

i(wi
k − 1) = i.

This needs some interpretation.

• The graph of an asynchronous iteration consists of an edge (k, k0), if
the calculation of xk0 needs the approximation of the k-th step as a
certain parameter (the l-th).

• Assumption 1) is a connectivity condition for the graph G. The in-
formation of xbk flows into the the calculation of each successor and
especially into xbk+1 .

• Condition 2) is needed to guarantee Assumption 4).

• Point 3) is the same as (3.4.6).

• At first sight, condition 4) seems to be a generalisation of (3.4.7) and
seems to be equivalent to (3.4.7) if the pool G consists of only finitely
many operators. But it is actually more restrictive since it connects
the iteration and the operators directly. It implies a structure that
guarantees all local data to be at least dependent on the other local
data generated by the subsequence bk (and this can be interpreted as a
tree structure in certain cases). The exchange of that data is ensured
by the sequence {bk} (see also Section 7.3 in [10]).



123 6.4. Asynchronous Iterations

To give a convergence result for CAIs, a pool G is said to be strictly non-
expansive on D w.r.t. ‖ · ‖ if for all i ∈ I and X = (x1, . . . , xmi), Y =
(y1, . . . , ymi) ∈ Dmi

‖Gi(X)−Gi(Y )‖ < max
j
‖xj − yj‖ or

Gi(X)−Gi(Y ) = xj − yj for all j = 1, . . . , mi.

The following theorem is restricted to strictly nonexpansive pools of opera-
tors. The general version is Theorem 4.2 in [56].

Theorem 6.10 Let G be a strictly nonexpansive pool on D ⊂ IRp and as-
sume that G has a fixed point z ∈ D, then a CAI (G, x0, {Jk,Sk}k∈IN0)
converges to a fixed point of G in D.

To embed iterations for linear systems into the theory given above, consider
a B ∈ IRn×n which is row stochastic, irreducible, and has a positive diagonal
element, say bi0,i0 . Now define for i = 1, . . . , n the compatibility mappings
ci : {1, . . . , mi} −→ {1, . . . , n} such that

{ci(1), . . . , ci(mi)} = {j ∈ {1, . . . , n} : bij > 0},

ci(j) < ci(j0) ⇔ j < j0.

Then the pool G := {Bi : 1 = 1 . . . , n} with

Bi : IRmi −→ IR

Bi(y1, . . . , ymi) :=

mi∑

j=1

bi,ci(j)y
j ,

is strictly nonexpansive w.r.t. | · | on each closed interval on IR (and this is
independent of the irreducibility of B). The iteration now becomes

yk+1 = Bi(k)(ys1(k), . . . , y
smi(k)

(k)
).

To apply Theorem 6.10, the iteration has to be confluent and this can be
obtained (cf. Theorem 5.2 in [56]) by requiring the following conditions

1) There exists a d ∈ IN such that k − d ≤ si(k) ≤ k for all k ∈ IN, i =
1, . . . , mi(k) (cf. (3.4.6)).

2) There exists an r ∈ IN such that ∪k+r
l=k i(l) = {1, . . . , n} for all k ∈ IN

(cf. (3.4.7)).

3) s
c−1
i0

(i0)
(k) = max{k0 < k : i(k0 − 1) = i0} for all k ∈ IN satisfying

i(k) = i0 (cf. (3.4.5)).
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4) i(sl(k)− 1) = ci(k)(l) for all k ∈ IN and l = 1, . . . , mi(k) (remapping of
the matrix structure).

Here Bi0 generates the sequence bk by condition 3) and, as already men-
tioned, acts as a root of a spanning tree.

The above setup applies to arbitrary irreducible nonnegative matrices having
a positive fixed point, hence Theorem 6.10 is applicable to MP in the sense
of [39] (cf. Theorem 5.3 in [56]). But there has been shown more in [56].
By a localisation of confluence it was proven that the above setup also ap-
plies to general semiconvergent nonnegative matrices rather than irreducible
semiconvergent ones (cf. Theorem 5.4 in [56]).

Theorem 6.11 Let B ∈ IRn×n be nonnegative and semiconvergent. As-
sume B to be in Frobenius normal form, i.e.

B =








B11 0 . . . 0 0
B21 B22 . . . 0 0
...

...
...

. . .
...

B21 B22 . . . Bp,p−1 Bpp








.

Further, let there be a subset I0 ⊂ {1, . . . , n}, such that for each i ∈
{1, . . . , p}, for which ρ(Bii) = 1, there is some index i0 ∈ I0 such that
(Bii)i0,i0 > 0. In addition assume

1) k − d ≤ si(k) ≤ k for all k ∈ IN, i = 1, . . . , n , for a d ∈ IN,

2) ∪k+r
l=k i(l) = {1, . . . , n} for all k ∈ IN, for an r ∈ IN,

3) si0(k) = max{k0 < k : i(k0−1) = i0} for all k ∈ IN satisfying i(k) = i0
and for all i0 ∈ I0.

If b ∈ R(I −B), then the iteration

xk+1
i :=

{

xk
i if i 6= i(k)
∑n

j=1 bij · x
sj(k)
j + bi if i = i(k)

converges to a solution of (I −B)x = b.

Theorem 6.11 is in view of Update 5, i.e. in the sense of [39], quite more
general than Theorem 6.8, since it does not require irreducibility.

The differences between the approach given in this thesis and in [55] will be
discussed now.

First of all, the structure of the operators in [55] is directly embedded into
confluent iterations. This is in contrast to the standard models of asyn-
chronous iterations (cf. [4, 10, 12, 18, 39, 70]). The discussions there usually
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concern the conditions on the operators such that an asynchronous iteration
converges for every scenario, i.e. the iteration itself is separated from the
operators. Thus, Theorem 6.10 will not apply to any strictly nonexpansive
pool of operators, but this is of course not a disadvantage.

In this thesis, the separation of iteration and operators has been kept. Fur-
thermore the question has been answered, how the original flow (which is
reflected by condition 4) of confluence) is kept alive under certain trans-
formations, i.e. block iteration methods in various versions. Thus, the
motivation here is quite different.

In [55, 56] only Update 5 applied to single rows has been analysed, leading to
Theorem 6.11 which looks quite general, as B need not to be an SF-matrix.
In this thesis, certain transformations of the original system have been anal-
ysed for ST and SF-matrices. Although the class is smaller, the results are
more general. Additionally, the techniques used here, give a hint that the
speed of convergence might be increased (in the case of ms-compatibility)
and that cannot be seen if the iteration operators are interpreted as a pool
of linear functionals.

Furthermore, it has been shown that the whole machinery of asynchronous
iterations is not needed for additive and multiplicative Schwarz. Though it
can be embedded into the classical model and the theory given in [55, 56].
On the contrary, the convergence of asynchronous iterations can be easily
derived from the convergence of multiplicative Schwarz methods including
some overlap.

The advantage of the theory given in [55, 56] is that it is applicable to
nonnegative semiconvergent matrices or reducible singular M-matrices (and
even to nonlinear pools of operators which makes this concept to one of the
strongest in literature). The graph based approach given here is restricted
to ST and STM-matrices.

Finally, it should be mentioned that the approach here is a complete alge-
braic approach for an algebraic problem and might have further applications.
As the nature of the convergence of iterations of nonnegative matrices lies
in the flow of information through the graph structure of the iteration op-
erators, a graph based approach is quite natural and cannot be avoided.
Therefore, it is used implicitly in [10, 39] and explicitly in [55] and here.

The Theorems of J. Bahi

The last result to be discussed in this section is that of [2]. It was the first
paper that has examined block one-level and block two-stage methods for
asynchronous iterations.

The main results are based on norms and use some ideas from [12]. The
main theorems will be given with all their prerequisites. First two-stage
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methods will be considered.

As the iteration proposed in [2] is a bit different to the model described in
Section 3.4, a few redefinitions must be done.

Let A ∈ IRn×n and let S1, . . . , Sp be a regular partitioning. Additionally, let
Mi = A[Si], M = diag(M1, . . . , Mp), N = M−A, and consider weak regular
splittings Mi = Fi − Gi. A vector x ∈ IRn is now split as (xT

1 , . . . , xT
p )T

conforming to the partitioning. With Algorithm 3.5 in mind, let q(k, i) be
the number of inner iterations in the k-th step and R(k,i) = (F−1

i Gi)
q(k,i).

Theorem 6.12 (Proposition 7 in [2]) With the assumptions made and
Jk ⊂ {S1, . . . , Sp}, consider the asynchronous two-stage iteration
(6.4.1)

xk+1
i =







xk
i if i /∈ Jk,

R(k,i)x
si(k)
i +

(I −R(k,i))M−1
i

(
∑p

j=1,j 6=i N [Si, Sj ]x
sj(k)
j + b[Si]

)

if i ∈ Jk.

Additionally assume:

1) There exists a z > 0 such that Az = 0.

2) There holds either Ne > 0 or F−1
i Gie[Si] > 0 for each l = 1, . . . , p.

3) The matrix M−1N is paracontractive w.r.t. ‖ · ‖z.

4) There is a subsequence kj such that Jkj
= {S1, . . . , Sp} and s1(kj) =

. . . = sp(kj) = kj.

5) There holds limj−→∞ q(kj , i) =∞ for all i = 1, . . . , p.

6) Condition (3.4.6) holds.

Then the asynchronous iteration (6.4.1) converges for every starting vector
x0 to the solution x∗ of Ax = b for every b ∈ R(A).

The differences to the asynchronous iteration given in Section 4.8 are many.

• Theorem 6.12 allows more than one block to be updated simultane-
ously. But this is only an apparent generalisation.

• Condition 1) is as usual and has been extensively discussed in Chapter
3.

• Condition 2) guarantees that ‖diag(R(k,1), . . . , R(k,p))‖z < 1 holds (cf.
[12]) which causes the iteration operators to converge to M−1N on
the subsequence kj in combination with condition 5). This condition
holds automatically for ms-compatible decompositions (cf. Section 4.4
and 4.5).
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• Condition 3) is hard to verify in practice.

• Condition 4) replaces (3.4.5) and (3.4.7) and is in fact synchronisation,
and thus, very restrictive.

• Condition 5) is somehow unrealistic since one will bound the number of
inner iterations usually, instead of letting them grow on a synchronised
subsequence.

The matrix A can be chosen more general in Theorem 6.12 as compared
to the result of Chapter 4. Condition 2) will usually be fulfilled after some
preprocessing only. Thus in the case of A being an STM-matrix, the asyn-
chronous iteration proposed in Section 4.5 should be preferred as neither
the paracontractivity of M−1N nor a synchronised subsequence is needed.
Therefore the result for STM-matrices provided by Theorem 4.23 is more
general than 6.12.

There is also a result for one-level block iterations in [2].

Theorem 6.13 (Proposition 3 in [2]) With the assumptions of Theorem
6.12 and Jk ⊂ {S1, . . . , Sp}, consider the block asynchronous iteration

(6.4.2) xk+1
i =

{

xk
i if i /∈ Jk,
∑p

j=1,j 6=i M
−1
i N [Si, Sj ]x

sj(k)
j + M−1

i b[Si] if i ∈ Jk.

Additionally assume:

1) There exists a z > 0 such that Az ≥ 0.

2) The splitting (M, N) is weak regular.

3) The matrix M−1N is paracontractive w.r.t. ‖ · ‖z.

4) There is a subsequence kj such that Jkj
= {S1, . . . , Sp} and s1(kj) =

. . . = sp(kj) = kj.

5) The condition (3.4.6) holds.

Then the asynchronous iteration (6.4.2) converges for every starting vector
x0 to the solution x∗ of Ax = b for every b ∈ R(A).

There is again the annoying condition that M−1N is paracontractive and
also a synchronised subsequence is needed. Anyway, the synchronised sub-
sequence cannot be avoided in the theory given in [2]. Thus, Theorem 6.13
is weaker than Theorem 4.22 since once an ms-compatible decomposition
has been found, the iteration can be carried out without any restrictions.
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6.5 Other graph based approaches

To end this chapter, some other explicit graph based approaches (rather than
those mentioned in the previous section) will be discussed. Those approaches
can be found in [21, 46, 59, 61]. The results given in [21, 46, 59, 61] did
not include overlap nor inexact iterations. Thus they are not as general
as the results given here. But as the ideas are quite similar, they must be
discussed.

All the articles mentioned above discuss the question under which conditions
a splitting A = M −N , where A ∈ IRn×n is an M-matrix, is semiconvergent,
i.e. M−1N is semiconvergent.

If necessary, A may be considered as partitioned into p blocks, i.e.

(6.5.1) A =








A11 A12 . . . A1p

A21 A22 . . . A2p
...

...
. . .

...
Ap1 Ap2 . . . App








where the diagonal blocks Aii are square.

In [59], A ∈ IRn×n is assumed to be partitioned with conformity to (6.5.1)
and split as A = D−L−U , where, as usual, D is the block-diagonal matrix
corresponding to the partitioning of A.

Now, define M = D − L and N ≥ 0 such that

(6.5.2) A0 := D − L− U(N)

is irreducible, where

(6.5.3) N := L(N) + D(N) + U(N) ≥ 0

and L(N), D(N), and U(N) are strictly lower block triangular, block diag-
onal, and strictly block upper triangular, respectively. Then

A = (D −D(N))− (L + L(N))− U(N) = M −N.

With the above notation, the block splitting A = M − N is said to be an
R-splitting if

1) M = D − L and N is given by (6.5.3),

2) D−1
ii > 0 for all 1 ≤ i ≤ p, i.e. each Dii is irreducible,

3) A0 = D − L− U(N) is irreducible,

4) Γ(A0) contains a monotone cycle c, i.e. c = (i1, . . . , il, i1), and ij >
ij+1 for 1 ≤ j ≤ l − 1.
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The above definition implies the irreducibility of A by the irreducibility
of A0. As A0 is irreducible it contains a cycle (i.e. a circuit) and the
monotonicity may be achieved by a reordering of the variables. This is, of
course, comparable to the definition of flow compatibility but different, since
states not belonging to the circuit can be arranged in any way. The idea is
now, to prove that the greatest common divisor of the length of all cycles in
Γ(M−1N), say c(M−1N), is one, since this imply γ(M−1N) < 1 (cf. [9] and
also Theorem 1.11). That is, each circuit is mapped on a primitive class.

The main results of [59] can be restated as follows.

Proposition 6.14 (Proposition 3 in [59]) Let A be an irreducible M-
matrix and A = M −N be a block splitting such that D is the block diagonal
of M . Suppose each Dii is an irreducible regular M-matrix. Then there
exists a permutation matrix P such that PAP T has an R-regular splitting
with the same diagonal blocks.

Theorem 6.15 (Theorem 1 in [59]) Any R-regular splitting of an irre-
ducible M-matrix A is semiconvergent.

The techniques used in [59] are somehow comparable to those used here, but
the result here is more general, as the irreducibility of the diagonal blocks
is not necessary.

Another Theorem that is proven is

Theorem 6.16 (Theorem 2 in [59]) Any regular splitting of an irre-
ducible M-matrix A with M−1 > 0 is semiconvergent.

The proof is based on the fact that M−1N has a positive column. It can
be generalised to ST-matrices by the concept of flow-compatibility what has
been done in this thesis.

In [61], a result which is similar to Theorem 6.16 is proven together with
some more general propositions. E.g.:

Theorem 6.17 Let A ∈ IRn×n be an irreducible M-matrix and A = M −
N be an M-splitting. Then in either of the following cases, γ(M−1N) <
ρ(M−1N), i.e. c(M−1N) = 1.

1) There exists a circuit α in Γ(M) ∪ Γ(N) which has a single edge in
Γ(N) \ Γ(M).

2) For some i, j ∈ {1, . . . , n} there holds mij 6= 0 and nij 6= 0.

3) There exist i, j ∈ {1, . . . , n} such that mij 6= 0 and nji 6= 0.

4) There exists an edge (i, j) ∈ Γ(N) such that Γ(M)∪{(i, j)} is strongly
connected.
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5) M is irreducible.

Those results are pretty strong, but again they did not cover the case of
overlap nor inexact splittings. Anyway, in both papers, it is shown that all
circuits are mapped on a primitive class.

This has also been done in this thesis by the application of a flow compatible
reordering which leads to Theorem 4.10. Additionally, it turns out that such
a mapping is not necessary if relaxation is used (cf. Section 4.6). Then it
suffices to prove that the structure is preserved, what leads to Theorem
4.16. Clearly, at least Theorem 4.10 is applicable to the above situation
as multiplicative Schwarz without overlap leads to a simple Gauss-Seidel-
splitting. Thus Theorem 4.10 can be seen as a slight generalisation of the
above results.

Another approach has been made in [21] where it has been proven that
convergence of the iterates can be achieved even if the iteration matrix is
cyclic.

Consider an irreducible M-matrix A = I −B such that ρ(B) = 1. Let A be
partitioned into p blocks as in (6.5.1). Furthermore, let A = M − N be a
block Jacobi or block Gauss-Seidel-splitting.

If H = M−1N is cyclic and irreducible, then there is a permutation matrix
(cf. [9]) such that

(6.5.4) PHP T =










0 H12 0 . . . 0
0 0 H32 . . . 0
...

...
...

...
0 0 0 . . . H(h−1)h

Hh1 0 0 . . . 0










.

Every right eigenvector β(c), 0 ≤ c ≤ h− 1, which corresponds to the h unit
modulus eigenvalues 1, λ, . . . , λh−1, can be written as (Theorem 1 in [21])

(6.5.5) β(c) = (λcξT
1 , λ2cξT

2 , . . . , λhcξT
h )T

where the set of subvectors ξ1, . . . , ξh is unique (up to a multiplicative con-
stant).

Now consider the iteration xk+1 = Hxk. Then the argumentation in [21]
shows, that the iterates xk become parallel (in the limit) to some linear
combination of the h eigenvectors given by (6.5.5). The iterates are therefore
composed of subvectors which are parallel to the ξi. The ξi can be found if
the partitioning of H into its cyclic classes, given by the non-zero blocks in
(6.5.4), is known. This is possible if the i-th block of A correspond to the
i-th cyclic class, i.e. h = p.
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Consider the suitably partitioned Perron vector zT = (α1z
T
1 , . . . , αpz

T
p ),

where zi > 0 are subvectors and αi > 0 are weights such that
∑p

j=1 αj = 1.
Then

β(0) = (ξT
1 , . . . , ξT

p ) = (α1z
T
1 , . . . , αpz

T
p ) = z.

Thus, if the i-th block of the iterate becomes parallel to ξi it remains to
calculate the weights αi. This can be done by applying the well known
iterative aggregation/disaggregation methods (see [36, 68, 72] and also [65])
to H.

To achieve the one-to-one-correspondence of the blocks of A and the cyclic
classes of H, a block j is said to be connected if each pair of different indices
(v, w) of Ajj is connected by an undirected path. That means

v → w in Γ(Ajj) ∪ Γ(AT
jj).

The result now becomes

Theorem 6.18 (Theorem 2 in [21]) For an irreducible matrix A, when
the associated block Jacobi or block Gauss-Seidel iteration matrix H is cyclic
and irreducible, the indices of the same connected block of A will belong to
the same cyclic class of H.

This connectivity might obviously be achieved by a reordering of states. The
existence of a spanning tree is a harder condition than the above connectivity
of the diagonal blocks but the flow compatibility avoids cyclic iteration op-
erators. Thus, there is no need of iterative aggregation/disaggregation. Ad-
ditionally, iterative aggregation/disaggregation might not be applicable to
MP, since the error vector of an iteration with a right hand side need not be
nonnegative. Hence it is possible that iterative aggregation/disaggregation
cannot be carried out properly.

The approach of [46] (see also [65]) is the one which has the closest connec-
tions to the one developed here (unfortunately, this is not clear from the
presentation of the results of [46] in [65]). Since the examples and the argu-
mentation given in [46] are based on transition rates and probabilities, the
main proposition is a bit hard to find. In short it can be given as follows.

Consider an irreducible M-matrix A = I −B where B is column stochastic
and A is given by (6.5.1). As usual, let A = D − L − U be a block Gauss-
Seidel decomposition.

The matrix A has property R if for each index i ∈ {1, . . . , n} there is a path
to a certain index i0 ∈ {1, . . . , n} in Γ(D−1(L + U)) and i0 = n. The result
now is

Theorem 6.19 (Proposition 5.5 in [46]) If property R holds, then the
Gauss-Seidel iteration matrix satisfies

γ((D − L)−1U) < 1.
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This is exactly Theorem 4.10 in the case of no overlap. Moreover, the
property R reflects the spanning tree property of the Jacobi-splitting. In the
approach used here, this property was proposed for A and it has been shown
that it is preserved if a flow compatible ordering is used (cf. Corollary 4.6).
Thus the idea is related, but here it has been generalised from ”pure” Gauss-
Seidel to various iteration schemes and more general classes of matrices.



Chapter 7

Summary

7.1 Results

The main topic of this thesis was the solution of systems of linear equations
of the form

(7.1.1) (I −B)x = b, B ∈ IRn×n, B ≥ 0, ρ(B) = 1, x ∈ IRn, b ∈ R(I −B),

using multiplicative and additive Schwarz iterations as well as block partially
asynchronous iterations for various block updates.

The system (7.1.1) was not solved in the most general setup, but for the
model problems MP (cf. Definitions 2.1 and 2.6) and GMP (cf. Definitions
2.2 and 2.9). If z ∈ IRn denotes a positive vector, then the model problems
are defined by the following relations.

(7.1.2) N (I −B) = span{z},

in the case of MP, or

(7.1.3) N (I −B) ∋ z

in the case of GMP.

Both model problems were examined and classified. This led to the concept
of ST-matrices in the case of model problem MP (Section 2.2). For these
matrices there exists a spanning tree in Γ(BT ) and Γ(B) contains a single
basic and final class. It turned out, that this structure is sufficient and nec-
essary if (7.1.2) holds. Additionally, the set of STM-matrices was introduced
as {A ∈ IRn×n : A = I −B, B is an ST-matrix } (Definition 2.5).

The concept of ST-matrices was generalised using (7.1.3). This led to the
class of SF-matrices of a certain degree (Section 2.3). The graph of an SF-
matrix of degree r contains r trees, whose union represents a spanning forest.

133



7. Summary 134

Additionally, there are r final and basic classes within Γ(B). Sufficient and
necessary conditions for this structure to exist were also proven. Finally, the
set of SFM-matrices was defined analogously to STM-matrices (Definition
2.8).

As (7.1.1) should be solved by iteration methods, exact and inexact mul-
tiplicative and additive Schwarz iterations were introduced (Sections 3.2
and 3.3). In addition to the one-level block update (exact update) five
different block updates were introduced (inexact updates). These updates
are: relaxed one-level update, two-stage update, relaxed two-stage update,
power-like update, and relaxed power-like update

Beneath Schwarz iterations, block partially asynchronous iterations have
been defined (Section 3.4). By their nature the same block updates as for
Schwarz iterations can be used.

All the iteration schemes were analysed within the context of the model
problems MP and GMP. The connections between multiplicative Schwarz
iterations and partially asynchronous iterations have been revealed (Section
3.5). Furthermore, the problems to overcome when trying to analyse these
iterations were identified (Section 3.6). It turned out that algebraic subspace
theory is not an appropriate tool to prove the convergence of the iteration
schemes applied to (7.1.1) with the conditions (7.1.2) and (7.1.3).

In Chapter 4, a graph based approach was introduced. This approach deals
with the following question leading to the solution of MP.

Given an STM-matrix A = I − B, is it possible to find a mapping which
maps A onto a sequence of ST-matrices {T (k)}k∈IN0 , that represents a mul-
tiplicative Schwarz iteration

(7.1.4) xk+1 = T (k)xk + ck, ck ∈ R(T (k)),

such that (7.1.4) converges to a solution of (7.1.1) satisfying (7.1.2)?

This means, mapping A onto a sequence {T (k)}k∈IN0 which satisfies N (A) =
N (I − T (k)), T (k) ≥ 0, and T (k)z = z, for all k ∈ IN0, and additionally
limk−→∞ T (k) · . . . · T (0) = P exists, and P is a projection onto N (A) (cf.
Section 4.2).

This question was successfully answered for several setups, depending on
the iteration scheme and the block updates. The idea was always the same,
based on a mapping of the basic structure of A into {T (k)}k∈IN0 . This
has been discussed for both, non-block (Section 4.3) and block iterations
(Section 4.4). It led to the idea of flow compatibility w.r.t. some spanning
tree T ⊂ Γ(AT ). While flow compatibility was sufficient for single-row
updates and non-overlap block updates, the so called ms-compatibility was
defined for general multiplicative Schwarz iterations including overlap.

The ms-compatibility implies, that the spanning tree within Γ(AT ) can be
mapped onto a spanning tree within Γ(T (k)) for all k ∈ IN0; i.e. N (A) =
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N (I−T (k)) for all k ∈ IN0. After this, it was proven that the single final and
basic class α in Γ(A) can be mapped onto a final, basic, and regular class
of T (k). And there is again only one such class in Γ(T (k)), which implies
γ(T (k)) < 1 for all k ∈ IN0 (Section 4.4). The only two things which must
be considered are the order of the block updates and the non-overlap of the
root-index of the spanning tree T of A. To outline the necessity of those
conditions a counterexample has been given.

The combination of both, consistency (N (A) = N (I − T (k))) and conver-
gence (γ(T (k)) < 1), led to new convergence results for one-level and two-
stage multiplicative Schwarz iterations in Section 4.5 via the convergence
theorems provided in Section 4.2.

In contrast to the non-relaxed iteration schemes for MP from Section 4.5,
the analysis of relaxed one-level and relaxed two-stage iteration schemes was
much easier (Section 4.6). As relaxed iteration schemes imply γ(T (k)) < 1,
for all k ∈ IN0 by their nature, only N (A) = N (I−T (k)) was to verify. This
was an easy task, since positive diagonals preserve graphs. Thus, the fixed
order that was needed in Section 4.5 could be given up.

A non-consistent multiplicative Schwarz iteration which uses relaxed block
updates has not been given. It is still an open question whether it can be
constructed.

Those new results on relaxed iteration schemes led directly to new conver-
gence results for additive Schwarz iterations (Section 4.7), again by theorems
from Section 4.2. These new results use one-level and relaxed two-stage block
updates.

Finally, an application of the developed theory delivered directly some new
convergence results for relaxed block partially asynchronous iterations (Sec-
tion 4.8) applied to MP. The block updates were again relaxed one-level and
relaxed two-stage block updates.

While there were reliable results for MP, their extensions to the model prob-
lem GMP was only partly successful. As GMP is given by (7.1.1) combined
with (7.1.3), i.e. given in terms of an SFM-matrix A = I −B, some results
were carried over to this problem by a localisation. This was, because an
SFM-matrix of degree r contains a spanning forest in Γ(AT ) containing r
trees, whose roots lie in different final and basic classes. Actually, there
are r non-overlapping principal minors within A which are STM-matrices.
Now, by exploiting the local STM-structure, several extensions were made
(Sections 5.1, 5.2, and 5.3).

Indeed, all theorems from Chapter 4, which deliver results for one-level and
relaxed one-level multiplicative and additive Schwarz, were generalised. But
the convergence theorems on two-stage methods given in Section 4.2 were not
applicable anymore. Thus, some restrictions to two-stage iterative methods
had to be done, leading to new convergence results, which are partly weaker
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than those presented in Chapter 4. The restrictions concerned the inner
splittings as well as the number of inner iterations for relaxed and non-
relaxed multiplicative and also additive Schwarz iterations. Actually, the
results were only formulated for stationary two-stage methods but they are
new.

Last but not least, two trivial generalisations were analysed (Section 5.4).
They were trivial because the systems decompose into a block diagonal form.
Thus, all results given in Chapter 4 apply by the localisation given in Section
5.1.

Unfortunately, there are no such generalised results for partially asyn-
chronous iterations so far. An extension for these iterations will be more
tricky.

The theory of the solution of the model problems MP and GMP was accom-
plished with Chapter 6. There the results given in this thesis were compared
to the latest known results in the literature.

The similarities of the algebraic-subspace-ansatz (Section 3.6) and some an-
alytical approaches were examined in Section 6.1. This has been done to
delimit the graph based approach from the other ones. Then there followed
a brief comparison of the results for multiplicative and additive Schwarz
iterations (Sections 6.2 and 6.3).

The results for the partially asynchronous iteration were discussed in a more
detailed manner (Section 6.4). This has been done so because the theoreti-
cally background is somehow more complex and a comparison of the results
is not as easy as for Schwarz iterations.

Finally, other graph based approaches haven been compared with the one
presented here. It turned out that there are similarities between the ansatz
used here and those of other authors. Actually several authors showed,
that strongly connected classes are mapped onto regular ones, resulting in a
semiconvergent operator. This is exactly one of the basic conditions which
implies semiconvergent Schwarz iterations. But usually, only splittings of
irreducible singular M-matrices were examined in other works. Thus, the
problem of non-consistency is avoided. Finally, the results given elsewhere
did not cover Schwarz iterations nor partially asynchronous iterations.

Altogether, this thesis shows that a lot of different theories can be embedded
within a simple theory, which is based on the structure of certain nonneg-
ative matrices. Once this structure is analysed, the conditions needed for
semiconvergent iterations are easily obtained. Clearly, there are more gen-
eral results in the literature, but the homogeneity of the theory presented
here and the number of results makes the concept of ”flow” a strong tool.

Especially sparse non-symmetric ST- or SF-matrices must be handled care-
fully as certain examples have shown. If the ST- or SF-matrix is dense or
symmetric, convergence will usually happens (cf. Section 7.2), since either
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a lot of trees exist or the matrix becomes (block) irreducible.

An overview of the achieved results is given in Table 7.1. The results for
Update 1,2,3, and 4 are all new. The results for Update 5 and 6, although
new, have only a theoretically value.

The results from Section 5.4 have been left out, since they are just simple
applications of the theory given in Chapter 4. The results concerning the
splitting (6.2.2) in Section 6.2 are also not stated. As previously mentioned,
results for multisplitting methods (cf. Section 4.7) from [44, 52] should be
obtained in a similar way.

Now a brief description of the contents of Table 7.1.

Column one contains the model problem, which is either MP or GMP. Col-
umn two displays the basic iterative method. This is ”MS” for multiplicative
Schwarz, ”AS” for additive Schwarz (Section 3.2), and ”PAI” for partially
asynchronous iterations (Section 3.4). The block updates are given in col-
umn three by numbers and have been introduced in Section 3.3. The num-
bers stand for:

Number Update Algorithm local update

1 one-level (exact) 3.2 (3.2.9)
2 relaxed one-level 3.4 (3.3.1)
3 two-stage 3.5 (3.3.2)
4 relaxed two-stage 3.6 (3.3.3)
5 power method 3.7 (3.3.4)
6 relaxed power method 3.8 (3.3.5)

Column four gives an overview of the decompositions to be used. Here,
”ms” stands for ms-compatible (cf. Definition 4.5), ”gms” for gms-compatible
(cf. Definition 5.2), ”rp” for root preserving (cf. Definition 4.7), ”lrp”
for locally root preserving (cf. Definition 5.4), and ”a” for an arbitrary
decomposition. The acronym ”gs” stands for Gauss-Seidel and is actually
not a decomposition as non-block updates are assumed.

Column five gives some information of the inner splittings if two-stage meth-
ods are used. One has ”fc” for flow compatible inner splittings (cf. Definition
4.6), ”lfc” for locally flow compatible (cf. Definition 5.3), and ”M” for M-
splitting (cf. Section 1.1). The number of inner iterations within each block
update is given in column six. Here, ”a” stands for an arbitrary number,
”b” for a bounded number of inner iterations, and ”c” for a constant number
(i.e. stationary two-stage iterations).

As the order of local updates could be important for non-relaxed multi-
plicative Schwarz iterations, the dependence on the order is given in column
seven. Here, ”f” stands for a fixed order, while ”a” marks an arbitrary order.
If an entry makes no sense in either of the columns five, six, or seven, it has
been left out.
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Finally, column eight gives the references to the convergence theorems within
this thesis.

Pr. Meth. Upd. Decomp. Spl. Iter. Order Th.

MP MS 1 ms – – f 4.11
MP AS 1 rp – – – 4.19

GMP MS 1 gms – – f 5.1
GMP AS 1 lrp – – – 5.5

MP MS 2 ms – – a 4.13
MP MS 2 rp – – a 4.17
MP PAI 2 ms – – – 4.22

GMP MS 2 lrp – – a 5.3

MP MS 3 ms fc a f 4.12
GMP MS 3 gms lfc c f 5.2

MP MS 4 ms fc a a 4.14
MP MS 4 rp M b a 4.18
MP AS 4 rp M b – 4.20
MP PAI 4 ms fc b – 4.23

GMP MS 4 lrp M c a 5.4
GMP AS 4 lrp M c – 5.6

MP MS 5 gs – – f 4.9

MP MS 6 a – – a 4.15
MP PAI 6 a – – – obvious

GMP MS 6 a – – – obvious

Table 7.1: Convergence theorems

7.2 Further questions and open problems

Finally, a few open problems and further questions which might be worth
to be discussed in the future are presented here.

Reduced flow compatibility

Motivated by the results from Section 6, especially by Theorems 6.15 and
6.19, the following question arises:

Is it sufficient to restrict the flow compatibility to the final and basic class
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of an ST-matrix?

The answer should be yes. Clearly, one loses the positive column in the
STM-matrix case, but semiconvergent operators will be obtained anyway.

Reduced relaxation

In [39] and [55], the existence of a positive diagonal element is only proposed
for a single element. It has been mentioned in Section 6.4, that the index
of this positive element can be interpreted as the root of a spanning tree.
As blocks behave similarly to single states (cf. Section 4.4), the following
question immediately arises for multiplicative Schwarz methods, based on
ms-compatible decompositions S1, . . . , Sp, i.e. the root lies in Sp.

Is it sufficient to have relaxation only for the p-th block, i.e. the root block?

The answer should be yes, but clearly, this will not have practical impact.

The symmetric case

Consider a symmetric STM-matrix A ∈ IRn×n.

Does every regular decomposition lead to semiconvergent multiplicative
Schwarz iterations with block updates introduced here?

A good hint how this question could be successfully answered is Theorem
6.4, which is Theorem 5.7 in [48]. But in contrast to the methods used there,
a proof with the technique given in this thesis would be preferable. This
is because the proof will then be based on the pattern. Therefore it would
imply results on STM-matrices having a symmetric pattern, rather than
being itself symmetric. Probably, those results might also have applications
to multi splittings.

Non-consistency

It has been shown in Section 4.4, that the ms-compatibility is sufficient
for semiconvergent non-relaxed multiplicative Schwarz iterations for MP.
Consequently, gms-compatibility is sufficient for GMP.

To show the necessity of ms-compatibility, a counterexample has been given
for a non-ms-compatible splitting. For an STM-matrix A, there was a flow
compatible decomposition such that the global multiplicative Schwarz oper-
ator T1 for Update 1 was semiconvergent but non-consistent, i.e.

N (I − T1) 6= N (A).

In Section 4.6 the notion of root preservation has been introduced for re-
laxed iteration schemes as a logical consequence of ms-compatibility. But
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the necessity of root preservation is an open problem. I.e., is it possi-
ble to construct non-consistent non-root-preserving relaxed multiplicative
Schwarz-type iteration operators?

Concretely, let A be an STM-matrix. Consider one local update of Update 2,
4, or the update given by (6.2.2). Let T̃ be a corresponding semiconvergent
global multiplicative Schwarz operator.

Give an example for an arbitrary regular decomposition S1, . . . , Sp, such that

N (I − T̃ ) 6= N (A),

or prove equality for every arbitrary regular decomposition.

The proof in [40] that every regular decomposition leads to a consistent
operator is not correct.

Bounds on the number of inner iterations for GMP

Results for additive and multiplicative Schwarz iterations for GMP have
only been given for a constant number of inner iterations if Update 3 or 4
is used. The problem has been outlined in Section 5.1.

Prove Theorems 5.2 and 5.4 for an arbitrary number of inner iterations.

This should not be a problem if the accessibility relations within each global
operator are constant, as mentioned in Section 5.1. But what about a general
proof?

Bounds on the inner iterations for PAIs

It should be possible to prove, that the number of inner iterations for PAIs
applied to MP can be chosen arbitrarily.

Prove Theorem 4.23 for any number of inner iterations.

The only thing to be shown is to find some fixed κ > 0, which bounds the
relevant entries.

PAIs for GMP

While some results for multiplicative and additive Schwarz could be ex-
tended to GMP, the same step was not possible for PAIs. The problem is
actually the same as for two-stage multiplicative and additive Schwarz it-
erations. Results for these iterations have only been proven for a constant
number of iterations, i.e. for stationary schemes. This was because the sta-
tionary iterations imply a constant sequence of operators. The latter cannot
be guaranteed for PAIs, whether the number of inner iterations is constant
or not. Indeed, it cannot be guaranteed for every chosen block update.
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Anyway, it is not hard to prove a result similar to Theorem 4.21. Let A be

an SFM-matrix of degree r and let {H
(k)
d }k∈IN0 be any sequence for Update

2 or 4, which is based on a gms-compatible splitting. Then, there exists for
any k ∈ IN0 a number m ∈ IN such that

H
(k,k+m)
d = H

(k+m)
d · . . . ·H

(k)
d

is an SF-matrix of degree r. The forest contains r trees of height one, i.e.

H
(k,k+m)
d is semiconvergent. Moreover, any finite product of these semicon-

vergent matrices is again a semiconvergent SF-matrix of degree r. But the
proof of the convergence of the whole sequence seems to be sophisticated
without a norm. However, it should be possible to prove it.

Optimal trees / fast convergence

One of the most sophisticated problems in the solution of linear equations
using additive and multiplicative Schwarz methods is the domain decompo-
sition. Thus, the question that immediately arises is that of an optimal tree
for an ST-matrix (or likewise of an optimal forest for an SF-matrix). This
means, a flow compatible numbering of a spanning tree which delivers fast
converging iteration operators for a given number of partitions (i.e. small
γ-values).

Unfortunately, this work delivers no new answers in which way fast conver-
gent domain decompositions can be achieved.

A few tests have been made, but the results are all unsatisfactory (cf. Ap-
pendix B). Indeed, the results achieved with block partitioners (see, e.g.,
[45, 65]) will usually be better. Looking for a tree that delivers a strong
positive column is to crude and the number of iterations depends heavily on
the chosen flow compatible numbering.

Note that the authors of [45, 65] do not care about flow compatibility. But

• the iteration operators need not have a positive column to produce
a convergent sequence (cf. the above discussion on the reduced flow
compatibility),

• although the problems in [45, 65] are almost sparse, it is pretty hard
to construct non-consistent iterations (i.e. convergence usually takes
place), and

• almost all problems have a symmetric pattern, thus, probably every
decomposition is allowed (cf. the above discussion of the symmetric
case).

An optimal tree which leads to fast convergence cannot be obtained without
considering the whole matrix structure (especially for NCD-matrices) and a
good way to obtain one has not been found yet.
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Anyway, flow compatibility might be a good tool for sparse matrices which
have a non-symmetric pattern.

General problems

Suppose the theory for MP has been completely extended to GMP and
every regular decomposition for relaxed multiplicative and additive iteration
schemes has been proven to deliver consistent iteration operators (see above).
Then, the following problem can be possibly tackled.

Find a solution of

(7.2.1) (I −B)x = b, x ∈ IRn, b ∈ R(I −B),

where B ∈ IRn×n, B ≥ 0, R(I −B)⊕N (I −B) = IRn, and ρ(B) = 1.

This should be possible, because for A := I−B there holds Av = 0 for some
v ≥ 0. Thus, A can be permuted into the following form

ΠAΠT =















A11 . . . 0 0 A1,r+2 . . . A1,m
...

. . .
...

...
...

...
0 . . . Ar,r 0 Ar,r+2 . . . Ar,m

Ar+1,1 . . . Ar+1,r Ar+1,r+1 Ar+1,r+2 . . . Ar+1,m

0 . . . 0 0 Ar+2,r+2 . . . Ar+2,m
...

...
...

...
. . .

...
0 . . . 0 0 0 . . . Am,m















.

The upper left part represents an SFM-matrix of degree r and the lower right
part a block upper triangular matrix, whose diagonal blocks are irreducible
regular M-matrices. Thus, a convergence analysis should be possible.



Epilogue

What remains to be said on the relaxed iteration schemes discussed here . . .

Anything that happens, happens.

Anything that, in happening, causes something else to happen, causes some-

thing else to happen.

Anything that, in happening, causes itself to happen again, happens again.

It doesn’t necessarily do it in chronological order, though.

Douglas Adams, Mostly Harmless,

The fifth book of the Hitchhiker’s trilogy in four parts
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Appendix A

Proofs

Proof of Proposition 3.5 Let (λ, v) be an eigenpair of H
(k)
d,l . Taking (3.5.7)

and a proper partitioning v = (vT
0 , . . . , vT

d )T ,

H
(k)
d,l v =








Ẽ
(k,0)
l v0 + . . . + E

(k,d)
l vd

v0
...

vd−1








= λ








v0

v1
...
vd








and the representation (3.5.8) follows.

Now let λ 6= 1, then

(I −D(k))v0 +
d∑

τ=0

E
(k,τ)
l vτ = λv0.

Each j-th row of each E
(k,τ)
l is zero if j /∈ Jk = Si(k) since these components

are not updated, i.e.
(

d∑

τ=0

E
(k,τ)
l vτ

)

j

= 0 for all j /∈ Si(k).

On the other hand
(

(I −D(k))v0

)

j
= (v0)j = λ(v0)j for all j /∈ Si(k).

But then (v0)j = 0 for all j /∈ Si(k) since 0 6= λ 6= 1 (this is the same result
as in Proposition 3.2). With (3.5.8), (vτ )j = 0 follows for all τ = 0, . . . , d,
and j /∈ Si(k).

It follows from (3.4.5) that the j-th column of E
(k,τ)
l is entirely zero, i.e.

E
(k,τ)
l vτ = 0
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for all j ∈ Si(k) and τ = 1, . . . , d. But then

(I −D(k))v0 +
d∑

τ=0

E
(k,τ)
l vτ = E

(k,0)
l v0 = λv0.

Assume now v0 to be split as v0 = ((v0)
T
Si

, (v0)
T
¬Si

)T = ((v0)
T
Si

, 0)T . Then

by the construction of the H
(k)
d,l and a proper permutation matrix Πi(k)

Πi(k)

(

E
(k,0)
l

)

ΠT
i(k)Πi(k)v0 =

(

H
(i(k))
l [Si(k)] ∗

0 0

)

·

(
(v0)Si(k)

0

)

=

(

Z
(i(k))
l ∗
0 0

)

·

(
(v0)Si(k)

0

)

= λ

(
(v0)Si(k)

0

)

with Z
(i(k))
l given by (3.5.3).

Thus, (λ, v0) is an eigenpair of H
(i(k))
l by Proposition 3.2. The assertion

for generalised eigenvectors follows by an induction on the corresponding
Jordan-chain.

To prove that an eigenvector v0 of H
(i(k))
l is an eigenvector of H

(k)
d,l , con-

struct v as in (3.5.8) and apply the above proof backwards. The claim for
eigenvectors to the eigenvalue 1 should be obvious by Proposition 3.4. ⊔⊓

Proof of Proposition 3.7: Since the relations P
(i0)
d · Q̃ = Q̃ · P

(i0)
d = 0

are obvious, it remains to prove ρ(Q̃) < 1. Therefore, let v ∈ IR(d+1)n be an
eigenvector of Q̃ to an eigenvalue λ with 1 6= λ 6= 0. Let v = (vT

0 , . . . , vT
d )T ,

then 0 = P
(i0)
d · Q̃v = λP

(i0)
d v and by the structure of P

(i0)
d

(v0)i = 0, for all i /∈ Si0 .

This structure is inherited to the other blocks by the implicit shift of the

H
(kj)
d,l (cf. proof of Proposition 3.5 and take powers of Q̃ if need be). Thus,

(A.1) (vj)i = 0, for all i /∈ Si0 and j = 0, . . . , d.

Taking (3.4.5) and (3.5.7), then the 0-th block of the image of Q
(kL)
d,l v be-

comes
(

Q
(kL)
d,l v

)

0
=

(

(H
(kL)
d,l − P

(i0)
d )v

)

0
=
(

H
(kL)
d,l v

)

0

= Ẽ
(kL,0)
l v0 +

d∑

τ=1

E
(kL,τ)
l vτ

= Ẽ
(kL,0)
l v0 =

(

I −DkL + E
(kL,0)
l

)

v0

= E
(kL,0)
l v0.
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And inductively

λv0 = (Q̃v)0 = E
(k1,0)
l · . . . · E

(kL,0)
l v0.

With (3.4.12) and (A.1)

E(k,0)v0 = ΠT
i0

(

H
(kL,i0)
l [Si0 ] ∗

0 0

)

Πi0v0

= ΠT
i0

(

H
(kL,i0)
l [Si0 ] 0

0 0

)

Πi0v0

for a proper permutation matrix Πi0 . Again by induction

λv0 = E
(k1,0)
l · . . . · E

(kL,0)
l v0

= ΠT
i0

(

H
(k1,i0)
l [Si0 ] 0

0 0

)

· . . . ·

(

H
(kL,i0)
l [Si0 ] 0

0 0

)

Πi0v0.

But ρ(H
(kj ,i0)
l [Si0 ]) < 1 for each j = 1, . . . , L by (3.4.12), hence λ < 1. ⊔⊓

Proof of Lemma 3.7: Let j with 1 ≤ j ≤ p be given and consider some

vj ∈ N (P
(i(kj))
d ). From (3.5.10) follows the orthogonal decomposition

vj =








v0

0
...
0








+








0
v1
...
vd








= ṽj + ṽ0
j ,

satisfying ṽj ∈ N (P (i(kj))) and ṽ0
j ∈ N (P

(i(kl))
d ) for all 1 ≤ l ≤ p. Thus, the

null spaces of all P
(i(kl))
d fulfill

N (P
(i(kl))
d ) = N l ⊕N 0, for all l = 1, . . . , p,

IRn ⊇ N 0 ⊕N 1 ⊕ . . .⊕N p,(A.2)

N k ⊥ N j , for all 0 ≤ k, j ≤ p, k 6= j.

Here N j = N (P (i(kj))) and N 0 = ∩p
l=1N (P

(i(kl))
d ).

Since the relation ⊃ is obvious let x ∈ N (I −H
(k1)
d,l · . . . ·H

(kp)
d,l ) and assume

x 6= 0. Denote xi = H
(k1)
d,l · . . . ·H

(ki)
d,l x.

Now, analogous to the proof of Lemma 3.5, a decomposition

x = x1 +

p
∑

j=1

x∆
j
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such that x∆
j ∈ N (P

(i(kj))
d ) follows. With the same argumentation as in

Lemma 3.5 one gets

0 =

p
∑

j=1

x∆
j .

It follows from (A.2) that each x∆
j can be decomposed to x∆

j = x̃j + x̃0
j , such

that x̃j ∈ N
j and x̃0

j ∈ N
0. Thus,

0 =

p
∑

j=1

x̃j +

p
∑

j=1

x̃0
j

and again by (A.2)

(A.3) x̃j = 0, for all j = 1, . . . , p.

Let xT = (z0, . . . , zd). Now if each H
(kl)
d,l is written as in (3.5.7) then

xT
p = (H

(kp)
d,l x)T =





(

Ẽ
(kp,0)
l zT

0 +
d∑

τ=1

E
(kp,τ)
l zT

τ

)T

, z0, . . . , zd−1



 .

The conditions (A.2) and (A.3) imply that Ẽ
(kp,0)
l zT

0 +
∑d

τ=1 E
(kp,τ)
l zT

τ = zT
0 ,

i.e.
xT

p = (z0, z0, z1, . . . , zd−1).

In general
xT

p−j = (z0, . . . , z0
︸ ︷︷ ︸

j+1−times

, z1, . . . , zd−j).

If d ≤ p then xT
1 = (z0, . . . , z0) and therefore x = (z0, . . . , z0). Otherwise,

x = x1 = (z0, . . . , z0
︸ ︷︷ ︸

p+1−times

, z1, . . . , zd−p−1),

and several applications of the same argument lead again to xT =
(z0, . . . , z0). But now

z0 =

(

Ẽ
(kj ,0)
l zT

0 +
d∑

τ=1

E
(kj ,τ)
l zT

τ

)T

=
(

H
(i(kj))
l zT

0

)T
,

for all j = 1, . . . , p and zT
0 is a fixed point of H

(i(k1))
l · . . . · H

(i(kp))
l . Now,

from Lemma 3.5, (I − P (i(kj)))zT
0 = 0 for all j = 1, . . . , p which implies

(I − P
(i(kj))
d )x = 0. The latter means x∆

j = 0 for all j = 1, . . . , p, and the
lemma is proved. ⊔⊓



Appendix B

Some simple tests

This section contains a few remarks concerning the calculation of a flow
compatible numbering and the dependence of the number of iterations on
the chosen root index; thus on the chosen tree.

It has been shown in Section 4.3 that Algorithm 4.1 (see also Lemma 4.1)
applied to an ST- or STM-matrix delivers a flow compatible numbering.
Now, there will be a few examples and a short discussion on two other
approaches.

Following the argumentation of depth first search (DFS), the same result as
in Lemma 4.1 can be achieved using a breadth first search (BFS); see, e.g.,
[22]. It is given by the following algorithm.

The algorithm should be called with some index j0 lying in the basic class
of some ST-matrix B, a field π such that π(1) = j0, and an index t = 1. As
usually, Γ(BT ) = (V, E).

Algorithm B.1 BFS VISIT

Require: j ∈ {1, . . . , n}
1: for each i ∈ V such that (j, i) ∈ E do
2: if i is not visited then
3: mark i as visited
4: t← t + 1
5: π(t)← i
6: end if
7: end for
8: for each i ∈ V such that (j, i) ∈ E do
9: BFS VISIT(i)

10: end for

The second alternative to be discussed is a modification of Algorithm 4.1.
The modification concerns the strategy how to choose the next node. Instead
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of taking the first possible index, the index that will locally maximize the
weight of the resulting spanning tree T is chosen. The weight of a spanning
tree T for a matrix A is the sum of the modulus of all elements aj,i such
that (j, i) ∈ E(T ). I.e., if j0 is the actual index, then the next index i0 is
chosen such that

(B.1) |ai0,j0 | = max
i=1,...,n

|ai,j0 |

This greedy strategy leads to a method which will be called DFSM. The
necessary modification of Algorithm 4.1 should be obvious.

The above mentioned approaches will now be shortly discussed for three
examples. The system to be solved is always

(B.2) (I −B)x = 0

for some nonnegative ST-matrix B ≥ 0.

The iteration numbers for the examples have been calculated with a MAT-
LAB implementation of the one-level multiplicative Schwarz iterations, i.e.
Algorithm 3.2. The inverse of each principal minor has been calculated with
the MATLAB function inv. The start vector is always (1, . . . , 1)/n and the
iterations stopped if ‖xk+1 − xk‖∞ < 10−8 or the number of iteration ex-
ceeds some specific value. Overlap (if any) has been added to the borders of
the partitions. If flow compatible permutations were computed, the systems
have always been permuted w.r.t. to this numbering.

Courtois matrix

The first example is the well known 8× 8 Courtois matrix (see [20, 65]). It
is given by

B =

0

B

B

B

B

B

B

B

B

B

B

@

0.85000 0.10000 0.10000 0 0.00050 0 0.00003 0

0 0.65000 0.80000 0.00040 0 0.00005 0 0.00005

0.14900 0.24900 0.09960 0 0.00040 0 0.00003 0

0.00090 0 0.00030 0.70000 0.39900 0 0.00004 0

0 0.00090 0 0.29950 0.60000 0.00005 0 0.00005

0.00005 0.00005 0 0 0.00010 0.60000 0.10000 0.19990

0 0 0.00010 0.00010 0 0.24990 0.80000 0.25000

0.00005 0.00005 0 0 0 0.15000 0.09990 0.55000

1

C

C

C

C

C

C

C

C

C

C

A

.

The Courtois matrix is a nice example of a non-symmetric column stochas-
tic NCD-matrix; for NCD-matrices see [20, 65]. Equation (B.2) with an
NCD-matrices B is usually solved by iterative aggregation/disaggregation
methods (IAD); see, e.g., [36, 42, 65, 68, 72]. To apply IAD successfully, an
optimal partitioning is needed in the sense that the diagonal blocks contain
large elements, while the outer diagonal blocks contain only small elements.
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Those partitionings can be calculated by tools like MARCA (see [65] and the
references therein), TPABLO [19], or XPABLO [26]. However, the optimal
partitioning for the Courtois matrix is given by S1 = {1, 2, 3}, S2 = {4, 5},
and S3 = {6, 7, 8}, i.e. the diagonal blocks already contain the large ele-
ments. An IAD iteration with block Gauss-Seidel smoother needs 3 itera-
tions on the given partitioning (the starting vector is obtained from e by a
local normalisation).

Multiplicative Schwarz on the given partitioning (i.e. block Gauss-Seidel)
needs 8 iterations. The iteration numbers for the reordered system depend
on the chosen root index and are given in the following table.

1 2 3 4 5 6 7 8

BFS > 4000 3645 > 4000 > 4000 > 4000 > 4000 > 4000 > 4000

DFS 6 6 1136 > 4000 > 4000 > 4000 > 4000 > 4000

DFSM 6 6 6 7 8 7 7 7

The advantage of DFSM seems obvious, because the larger the elements of
the spanning tree become, the larger the elements of a resulting positive
column will be (this is not hard to see). Then, the influence of the positive
column may outweigh the influence of the rest of the resulting system.

But the truth is that the reordering keep the block structure alive. To see
this consider the partitioning S1 = {1, 2, 3}, S2 = {4, 5, 6}, and S3 = {7, 8}.
As this partitioning does not respect the NCD structure, the number of
iterations for IAD is 14 and that of block Gauss-Seidel is 55.

1 2 3 4 5 6 7 8

BFS > 4000 > 4000 > 4000 > 4000 > 4000 > 4000 > 4000 > 4000

DFS 7 7 7 > 4000 > 4000 > 4000 > 4000 > 4000

DFSM 7 7 7 7 7 2220 2220 2441

While the number of iterations stay reliable for the first five reordering, the
other three become unacceptable. To understand this, consider the DFSM-
reordered matrix B(1) with the root index 1.

B
(1)

=

0

B

B

B

B

B

B

B

B

B

B

@

0.55000 0.15000 0.09990 0 0 0.00005 0 0.00005

0.19990 0.60000 0.10000 0 0.0001 0.00005 0 0.00005

0.25000 0.24990 0.80000 0.0001 0 0 0.0001 0

0 0 0.00004 0.7000 0.3990 0 0.0003 0.00090

0.00005 0.00005 0 0.2995 0.6000 0.00090 0 0

0.00005 0.00005 0 0.0004 0 0.65000 0.8000 0

0 0 0.00003 0 0.0004 0.24900 0.0996 0.14900

0 0 0.00003 0 0.0005 0.10000 0.1000 0.85000

1

C

C

C

C

C

C

C

C

C

C

A

The spanning tree is represented by the upper bidiagonal. Actually, the
reordering maps the strong components into the given partitioning.
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As the root has access to state/index 7, the boldfaced matrix entry can be

regarded as a guard. Indeed, this element causes the iteration operator T
(1)
1

to have a strong positive column.

T
(1)
1 ≈

0

B

B

B

B

B

B

B

B

B

B

@

0.0143 0.0143 0.0116 0 0.0034 1.0242 0 0

0.0169 0.0169 0.0138 0 0.0040 1.2109 0 0

0.0391 0.0391 0.0318 0 0.0092 2.7942 0 0

0.0401 0.0401 0.0324 0 0.0051 1.5097 0 0

0.0301 0.0301 0.0242 0 0.0038 1.1326 0 0

0.0002 0.0002 0.0002 0 0.0026 0.9956 0 0

0 0 0.0001 0 0.0011 0.4348 0 0

0 0 0.0002 0 0.0041 0.9566 0 0

1

C

C

C

C

C

C

C

C

C

C

A

Additionally, all positive columns within T
(1)
1 are nearly proportional which

seems to be an advantage since the positive column in the limit must be

proportional. A MATLAB calculation shows that γ(T
(1)
1 ) ≈ 0.06315 which

explains the fast convergence and is maybe caused by the proportionality.

In contrast to the above situation, consider the DFSM-reordering for the
root index 8.

B
(8)

=

0

B

B

B

B

B

B

B

B

B

B

@

0.6000 0.2995 0 0 0.00090 0.00005 0 0.00005

0.3990 0.7000 0.00090 0.0003 0 0 0.00004 0

0.0005 0 0.85000 0.1000 0.10000 0 0.00003 0

0.0004 0 0.14900 0.0996 0.24900 0 0.00003 0

0 0.0004 0 0.8000 0.65000 0.00005 0 0.00005

0.0001 0 0.00005 0 0.00005 0.60000 0.10000 0.19990

0 0.0001 0 0.0001 0 0.24990 0.80000 0.25000

0 0 0.00005 0 0.00005 0.15000 0.09990 0.55000

1

C

C

C

C

C

C

C

C

C

C

A

At first site, everything looks fine. But the iteration operator becomes

T
(8)
1 ≈

0

B

B

B

B

B

B

B

B

B

B

@

0.0031 0.0033 1.1705 0.0000 0.0000 0.1124 0 0

0.0042 0.0044 1.5601 0.0000 0.0000 0.1499 0 0

0.0027 0.0027 0.9892 0.0000 0.0000 0.0019 0 0

0.0012 0.0009 0.4498 0.0000 0.0000 0.0004 0 0

0.0028 0.0031 1.0281 0.0000 0.0000 0.0012 0 0

0.0003 0.0003 0.0004 0.0002 0.0001 0.9990 0 0

0 0.0007 0.0002 0.0007 0.0002 2.3061 0 0

0 0.0002 0.0002 0.0002 0.0002 0.8453 0 0

1

C

C

C

C

C

C

C

C

C

C

A

.

Now γ(T
(8)
1 ) ≈ 0.99554, which explains the large number of iterations. The

main difference between T
(8)
1 and T

(1)
1 is that the proportionality within the

positive columns is lost. While the lower right boldfaced entries in B(8)

cause column 6 to have some large elements, the marked entry in the upper
left part adds large elements to column 3. This may cause the worse γ-value,
since such an element does not exist in B(1).

Note that the situation becomes completely worse if the partitioning S1 =
{1, 2}, S2 = {3, 4}, S3 = {5, 6}, and S4 = {7, 8} is used. The number of
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iterations of IAD is 6225, of block Gauss-Seidel 2055, and for each reordering,
the number of iterations exceeds 4000. It is a good and open question if there
exists a fast converging reordering within the 40320 possibilities.

Stewart’s NCD matrix

The following example is taken from [66]. It is again an NCD-matrix and
its dimension is n = 286. The number of non-zeros is 1606, thus the matrix
is sparse. Additionally, the matrix has a symmetric pattern without being
itself symmetric. As the numbers of iterations for BFS and DFS become
unacceptable, DFSM is analysed only.

An application of IAD, using a partitioning provided by XPABLO (standard
configuration) needs 107 iteration steps to achieve the desired accuracy.
A block Gauss-Seidel iteration, based on the same XPABLO partitioning
needs 641 iterations without overlap and 494 iterations with an overlap of 3
elements. The number of the partitions XPABLO returned was 8.

The calculations using DFSM have been carried out on 5 partitions. The
following plot shows the numbers of iterations needed to achieve the de-
sired accuracy using no overlap. The three dashed lines show the iterations
needed by the iteration methods as labeled. This is either block Gauss-
Seidel without reordering (GS), Gauss-Seidel using the XPABLO reorder-
ing (XPABLO), and iterative aggregation/disaggregation using the same
XPABLO ordering (IAD).

0 50 100 150 200 250 300
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1000

2000

3000

4000

5000

6000

Root

Ite
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tio
ns

GS

IAD

XPABLO

Figure B.1: NCD example: DFSM without overlap

The results for DFSM do not look satisfactory but sometimes the number
of iterations are below the XPABLO-iteration.

This behavior seems to be completely accidental because the γ-values of
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the iteration operators are not as good as the speed of convergence might
indicate. E.g., taking index/state 111 as the root, then the number of iter-
ations becomes 149. But the γ-value of the (global) iteration operator T1

exceeds 0.99, thus is badly large. Additionally, the columns of T1 are not
proportional. The acceptable number of iterations comes from the starting
vector which seems to be optimal in this case.

The situation does not become better if an overlap of 3 elements is used.
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Figure B.2: NCD example: DFSM with overlap

Stewart’s TCOMM matrix

The last example is also taken from [66]. The TCOMM matrix is a sparse
matrix of dimension 666 having again a symmetric pattern. It can not be
classified as an NCD-matrix; thus represents a ”normal” problem.

A block Gauss-Seidel iteration using a 14 block standard partitioning takes
125 iterations without overlap and only 28 with an overlap of 6 elements.

An application of XPABLO to the matrix delivers a partitioning with 14
blocks. The block Gauss-Seidel iteration with the given partitioning needs
371 iterations without overlap and 364 with overlap. In this case, a reorder-
ing brings nothing. The number of iterations for IAD is also unsatisfactory,
it takes 199 iterations. Thus, the TCOMM examples shows that a reordering
is not always a good idea and that overlap must not repair a bad reordering.

As in the previous examples, the following figure shows the number of iter-
ations vs. the chosen root in the non-overlap case. The dashed lines show
the number of iterations for the alternative methods.
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Figure B.3: TCOMM example: DFSM without overlap

Figure B.3 shows that it is possible to lower the number of iterations using
DFSM. Although, it is likely to increase it. But the numbers of iterations
stay within reliable bounds, which indicates that the problem is really ”nor-
mal”.

The situation changes a bit if overlap is used, as the following sketch shows.
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Figure B.4: TCOMM example: DFSM with overlap

Here, the standard partitioning is almost optimal and a bad reordering seems
unavoidable. However, a reordering which takes only 26 iterations has been
found.

Clearly, the results for IAD and the XPABLO-reordering are unacceptable.
Thus the question is, if it is possible to configure XPABLO in such a way
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that the numbers of iterations can be lowered.

Conclusion

The simple examples show that the DFSM-reordering can deliver fast con-
vergent iteration operators if the problems are not too hard. But it usually
fails for the interesting problems which proves it to be unusable. But even
XPABLO delivers some unsatisfactory results (within its standard configu-
ration) on an easy problem.

The most remarkable thing is the good column proportionality for the re-
orderings of the Courtois matrix. Note that XPABLO delivers a reordering
such that the iteration operator is nearly a projection. The convergence was
obtained after 1 iteration.

So, column proportionality seems to be a key to fast convergence but it is
not obtained easily.


