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2 Introduction

Optimization is ubiquitous in our daily live. From the way we organize our office

to obtain more place to the angle the wing of a plane should have to obtain more

strength, we always explicitly or implicitly solve optimization problems. The

optimization problem is always addressed by scientific computing and applied

mathematician researchers due to the huge demand coming from fields such as

engineering or finance. In science, engineering and economics , decision prob-

lems are frequently modelled as optimizing the value of a (primary) objective

(criterion, performance, loss etc.) function, under stated feasibility constraints

to be met by all ’acceptable’ decisions.

On the strict mathematical point of view, with regard to the type of problem

(function), one can distinguish two types of optimization, namely linear opti-

mization and nonlinear optimization. One talks about linear optimization when

the function is linear in its variables, otherwise one talk about nonlinear opti-

mization. While the linear optimization field is now a well searched field, with

a rich literature and has many domains of application, the nonlinear optimiza-

tion field can be considered partially searched and very difficult with regard to

the huge CPU and memory requirement. We deal in this work with nonlinear

optimization.

For many problems, according to a restricted search domain, there are solutions

that do (that are satisfiable) there are called local optima. The best solution

among all these solutions is the global optimum and one has the global optimiza-

tion problem. Therefore, in contrast to local optimization, global optimization

is concerned with finding the best optimum among all local optima.

Two approaches exist to solve the nonlinear global optimization problem. The

first is the stochastic approach and the other is the deterministic approach. In

general, starting from some approximate trial points, stochastic methods pro-

ceed by iteration. They sample the objective function at a finite number of

points until some criterion is satisfied. Although widely applied, these meth-

ods lack robustness and are inherently unsuitable for ’verified complete search’.

Indeed, the global optimum may escape detection when using traditional tech-

niques due to a deep valley for example. The deterministic approach is based

on the branch and bound principle and uses interval analysis. With interval

analysis one is able to have a guaranteed enclosure of the result. Therefore,

the use of interval analysis will serve two purposes, firstly the purpose of global

convergence and secondly the purpose of auto-validation.

Verified global optimization requires a lot of computations and memory so that

without appropriate acceleration mechanisms it may be considered untractable.

The main subject of this thesis is to find some acceleration mechanisms to
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speedup the convergence of the interval global optimization algorithm.

Here is the organization of this thesis. In the first chapter we give an overview

of interval analysis - the basic tool for verified global optimization - and its

properties.

In the second chapter we do an in-depth analysis of the interval global optimiza-

tion problem. The algorithm we use belongs to the branch and bound category.

By branch and bound we mean that the initial search domain is subdivided

into smaller parts and these parts are searched for the global optimum. But

these parts are not uniformly searched, instead some parts are preferred. We

present in this chapter two mechanisms to speed up the convergence of the in-

terval global optimization algorithm. The first mechanism is concerned with

an appropriate management of subproblems arising during the search process.

As a matter of fact, for many difficult problems a great part of the whole com-

putation time is spent on the handling of a list, which for example can have

millions of elements. This is definitely an issue one has to deal with when solving

global optimization problems using interval analysis. Experimental results for

the mechanism we propose to cope with this issue show sometimes a dramatic

decrease of the computation time.

The second mechanism is concerned with a so called one dimensional Newton

iteration. This test is based on the fact that for many problems, a fairly good

approximation for global minimum is known relatively early in the search pro-

cess. It also uses the fact that - due to the smoothness of the function under

consideration - the value of the gradient is available via the monotonicity test

or the use of centered forms. The aim of this test is then to apply one iteration

of the Newton method to shrink or discard the box under consideration. This

test relies on the knowledge of the approximation of the global minimum, the

better the approximation, the more powerful the test. Experimental results

show interesting improvements when applying this test along with others.

The third and last chapter is concerned with the investigation of a new paral-

lelization strategy. Whereas for many linear algebra problems, the amount of

work at each node can be estimated at the beginning, it is very difficult (almost

impossible) to do the same for branch-and-bound algorithms. This is due to

their irregular and unpredictable computational behavior. It is then clear that,

static load balancing, very often efficient for many linear algebra problems, will

become inefficient for branch-and-bounds algorithms. In this chapter, we first

make a review of existing methods dealing with the parallelization of the interval

global optimization algorithm. We then present a new technique (distributed

management) to evenly load jobs among processors during the computation
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process. The strength of this new approach relies on the distribution of the

task of the root processor among other processors. With this new approach the

root (master) will hardly become a bottleneck.

Algorithms presented in this thesis are implemented in C++ using the interval

library CXSC see [45]. Parallel algorithms were implemented using the Message

Passing Interface (MPI) library. The environment for the parallel implementa-

tion is the Alpha Linux Cluster Engine at Wuppertal University see Section(

3.1.2). Appendix A gives the description of the problems considered in this

thesis.
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Notations

We describe in the following main typographic conventions and symbols used

in the thesis.

Sets

R : set of machine numbers

R : set of real numbers

IR : set of all interval real numbers

IRn : set of all interval vectors (box)

IRn×m : set of all interval matrices

L : list, stack, queue, heap

I(D) : elements of IRn contained in D

Intervals

[x] = [x, x, ] : an interval

[x] = ([x]i)i=1,...,n = ([x]1, . . . , [x]n)T : an interval vector or box

[A] = ([a]ij) i=1,...,n
j=1,...,m

: interval matrix

inf([x]) or x : lower bound of [x]

sup([x]) or x : upper bound of x

m([x]) : midpoint or center of [x]

w([x]) : width of [x]

mig([x]) : mignitude of [x]

|[x]| : absolute value or magnitude of [x]

q([x], [y]) : Hausdorff distance between [x] and [y]

Although an interval vector is denoted in the same manner as a scalar interval,

there should be no confusion. When we will be using box, we will state it

explicitly.

Operations inf, sup, w, m are defined componentwise on interval vectors and

matrices. For example m([x]) = (m([xi]), . . . , m([xn])).
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Functions

f : the objective function.

f ′ : the derivative or gradient of f

f ′′ : the second derivative or Hessian of f
∂f(x1 ,...,xn)

∂xi
: partial derivative of f

f ∗ : the global minimum

f̃ : an approximation for the global minimum

�f([x]) : the range of f over the box [x]

F ([x]) : interval extension of f

Other symbols

♦ : interval rounding

� : rounding to the nearest element of a floating point screen

O : rounding toward −∞ or downwardly directed

M : rounding toward +∞ or upwardly directed
◦

[x] : interior of [x]
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Interval arithmetic allows one to bound the range of a function over a domain,

it is therefore a tool of choice for global optimization. This ability that interval

analysis has to give all information about a function over a domain is a key

point in verified global optimization. Interval analysis is so important for global

optimization that it deserves a special section in this work. However, we will not

go deeply in details in its description, we would rather present some important

and key features that it has. For more details about interval analysis one can

consult the literature [18, 16, 45, 46, 34].

A real compact interval, we will simply call it interval, is an non-empty closed

and bounded subset of the real numbers R

[x] = [x, x] = {x ∈ R | x ≤ x ≤ x},
where x and x denote the lower and the upper bounds of the interval [x],

respectively. The interval [x] consists of the set of points between and including

its endpoints. If x = x then we have a point interval also called degenerated

or thin interval; otherwise the interval is called a thick interval. The set of

intervals is denoted IR.

Let D ⊆ R, we define

I(D) = {[x] : [x] ∈ IR and [x] ⊆ D}
So I(D) is the set of all intervals included in D. In the next section we extend

operations available for real numbers to intervals.

1.1 Interval arithmetic

Let ∗ ∈ {+,−, ·,÷} be a binary operation on the set of real numbers R and let

[x] and [y] ∈ IR. We set

[x] ∗ [y] = {z = x ∗ y | x ∈ [x], y ∈ [y]} (1.1)

which defines these binary operations in IR. This definition produces the fol-

lowing rules for generating endpoints for [x] ∗ [y] from [x] and [y]. (We first

suppose that 0 /∈ [y] for the case of the division ÷. If 0 ∈ [y] then we obtained

the extended interval arithmetic to be presented later).

[x] ∗ [y] =





[x] + [y] = [x + y, x + y]

[x]− [y] = [x− y, x− y]

[x] · [y] = [min{xy, xy, xy, xy}, max{xy, xy, xy, xy}]
[x]÷ [y] = [x] · [1/y, 1/y]

(1.2)
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In the above definitions we excluded the division by an interval containing 0.

For the case where 0 ∈ [y], we obtain the following expressions for [x] ÷ [y],

allowing the result to be the union of two possibly infinite intervals.

[x]÷ [y] =





[
x/y, ∞

)
if y ≤ 0 and y = 0

(−∞, x/y] ∪
[
x/y, ∞

)
if y ≤ 0 and x < 0 < y

(−∞, x/y] if x ≤ 0 and y = 0

(−∞, ∞) if x < 0 < y(
−∞, x/y

]
if x > 0 and y = 0(

−∞, x/y
]
∪ [x/y, ∞) if x > 0 and y < 0 < y

[x/y, ∞) if x > 0 and y = 0

(1.3)

The definition of these operations on the set IR allows one to manipulate in-

tervals as we usually manipulate reals, defining an arithmetic on IR. But the

properties of these operations on IR are not the same as their counterparts in

R.

1.1.1 The dependency problem

Suppose one wants to compute endpoints of the interval [x] − [x] with the

definition presented above. One obtains

[x] − [x] = [x− x, x− x]

and not 0. This is due to the fact that, with the definition of the subtraction,

the set computed is {x − y, x ∈ [x], y ∈ [x]} instead of {x − x, x ∈ [x]}.
This occurs in general when an expression contains more than one occurrence

of a variable. Those occurrences are treated in fact as if there were different

variables from the same interval, resulting in a widening of the result. There

exist special procedures to reduce the effect of this dependency problem, see [16]

and references therein.

We have defined binary operations on IR, in the next paragraph we do the same

for unary operations.

1.1.2 Unary operations in IR
Let r(x) be a unary operation defined on D ⊆ R, let [x] ⊆ D. Then

r([x]) = [min
x∈[x]

r(x), max
x∈[x]

r(x)]

defines its unary counterpart in IR.

Examples of such operations are cos, sin, xk, k ∈ R, log etc. For example
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[x]n =





[1, 1] if n = 0

[xn, xn] if (x ≥ 0) or (x ≤ 0 ≤ x and n odd)

[xn, xn] if x ≤ 0 and n even

[0, max{xn, xn}] if x ≤ 0 ≤ x and n even

Unary operations are interval valued functions depending on one interval vari-

able. The generalization to functions of many variables will be discussed in

section 1.4.

1.1.3 Real-valued functions of an interval

There are a lot of real-valued functions of an interval. Here we list those we are

going to use throughout this thesis.

The midpoint or the center of an interval [x] is

m([x]) =
x + x

2
.

The width of an interval [x] is

w([x]) = x− x .

The absolute value or the magnitude of an interval [x] is

| [x] |= max{| x |, | x |} .

The mignitude of an interval [x] is

mig([x]) =





x if x > 0

−x if x < 0

0 otherwise

The mignitude is the minimum value of | x | for all x ∈ [x].

The Hausdorff distance between two intervals is

q([x], [y]) = max{| x− y |, | x− y |} .

For more real-valued functions of intervals and the relations among them see

[18]. In the next section we present some properties of interval operations.
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1.1.4 Properties of the operations in IR
Let [x], [y], [z] be members of IR, it follows that

[x] + [y] = [y] + [x]

[x] · [y] = [y] · [x]
(Commutativity).

([x] + [y]) + [z] = [x] + ([y] + [z])

([x] · [y]) · [z] = [x] · ([y] · [z])
(Associativity).

[a] = [0, 0] and [b] = [1, 1] are the unique neutral elements with respect to

addition and multiplication. IR has no zero divisors.

If x 6= x then [x] has no inverse with respect to + and ·. But 0 ∈ [x] − [x] and

1 ∈ [x]÷ [x].

This is one of the differences between R and IR and the origin of the dependency

problem. One consequence of this difference is the absence of the distributivity.

In the case of interval analysis one only has a subdistributive property stated

by the following expression.

[x] · ([y] + [z]) ⊆ [x] · [y] + [x] · [z] (Subdistributivity).

Proofs of these rules can be found in [18].

The intersection, union and set relations for intervals are defined as for sets.

The interior of an interval [x] is denoted by
◦

[x] and is defined as the interval

without its bounds. Therefore, a ∈
◦

[x] ⇔ x < a < x.

In the next section we examine the multidimensional case.

1.2 Interval vectors and matrices

An interval vector is a vector whose elements are intervals. An interval matrix

is a matrix whose elements are intervals. The set of all n-dimensional interval

vectors is denoted by IRn. In the same manner, IRn×m denotes the set of all

real interval matrices. We use the notations

[x] = ([x]i)i=1,...,n = ([x]1, . . . , [x]n)T , for [x] ∈ IRn

and

[A] = ([a]ij) i=1,...,n
j=1,...,m

=




[a]11 . . . [a]1m
...

...

[a]n1 . . . [a]nm


 .
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A real interval vector may be interpreted as the set of points in n-dimensional

space bounded by a parallelepiped with sides parallel to the coordinate axes. For

this reason we will sometimes, to be short, call an interval vector a box. Many

operations and functions defined in IR are defined in IRn componentwise. For

example the midpoint of a box [x] is m([x]) := (m([x]i)). An exception is the

width of a box which is the width of the edge with the maximal width, that is,

for [x] ∈ IRn
w([x]) = max

1≤i≤n
w([x]i).

1.3 Implementation of interval arithmetic
Interval arithmetic as presented above requires exact arithmetic to compute

the endpoints of the resulting intervals. But if we want to implement interval

arithmetic on a computer we have to face the fact that computers have only a

finite set of numbers that are often represented in a semilogarithmic manner as

fixed length floating point numbers

x = m · be.

Here m is the mantissa, b the base, and e the exponent. The numbers are

normally represented internally with base b = 2 and a normalized mantissa,

that is 1
2
≤| m |< 1. The integer exponent e is bounded by emin ≤ e ≤ emax.

The set of machine numbers of the above type, the floating point screen, is

denoted by R. We now denote the set of floating-point intervals over R by

IR = {[x] ∈ IR, | x, x ∈ R}.

This definition means that a machine interval [x] ∈ IR denotes the continuum

of numbers lying between its bounds. Probably one of the most important

characteristic of floating-point interval arithmetic is that, when computing with

floating machine numbers we obtain results holding not only for every floating-

point number but also for every real number within that range.

To achieve this, we need a rounding

♦ : IR→ IR

which maps an interval to a machine interval. This interval rounding should

satisfy the following conditions.

♦ [x] = [x] for all [x] ∈ IR
[x] ⊆ [y]⇒ ♦ [x] ⊆ ♦ [y] for all [x] , [y] ∈ IR
♦(− [x]) = −♦ [x] for [x] ∈ IR
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The first condition guarantees that elements of the screen are not changed by a

rounding. The second means that a rounding is monotone, and the third means

that the rounding is antisymmetric. Moreover the following condition must be

satisfied

[x] ⊆ ♦([x]).

This is the most crucial requirement for machine interval arithmetic, as we will

explain later in Section 1.5. One distinguishes the following roundings for real

numbers

� : Rounding to the nearest element of R

O : Rounding toward −∞ or downwardly directed

M : Rounding toward +∞ or upwardly directed

The interval rounding ♦ can then be achieved by rounding the upper toward

+∞ and the lower bound toward −∞
An elementary floating-point interval operation is defined by

[x]∗♦[y] = ♦([x] ∗ [y]) for all [x], [y] ∈ IR,

where ∗ is an interval arithmetic operation, ∗ ∈ {+, −, ., /÷}
In a simple manner we extend unary operations r to unary machine operations

by setting

♦[x] = ♦(r[x]).

As a consequence of this definition, machine interval arithmetic guarantees that

the computed result of an expression will contain the range of this expression

interpreted as a function on its input interval. This sets the ground why machine

interval arithmetic can be used to obtain verified computational results, i.e

results which have the same rigor as a mathematical proof, see Section 1.5.

There are many libraries that implement a machine interval arithmetic with the

rounding requirements. One can cite C-XSC (C++ Class Library for eXtended

Scientific Computing), filib see [45], INTLIB see chapter 2 in [26] and IntLab

(Interval Laboratory) see [48]. We use the C-XSC library in this thesis. We give

in the next paragraph an overview of its major functionalities, for an extensive

presentation see [45, 11].
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1.3.1 The C-XSC library

C-XSC is a tool for solving scientific problems with automatic verification of

the result. It is available for personal computers, workstations and mainframes

due to its implementation as a C++ class library.

C-XSC supports additional features for safe programming such as index range

checking for vectors and matrices. It also supports checking for numerical errors

such as overflow, underflow, loss of accuracy, illegal arguments, etc.

All arithmetic operators provided by C-XSC deliver results of maximum ac-

curacy. The mathematical standard functions deliver results of high accuracy.

Moreover, C-XSC provides the possibility to evaluate dot product expressions

with maximum accuracy. The evaluation of such expressions is the fundamental

tool for solving sensitive numerical problems.

Now that we have defined binary and unary operations on IR and we know how

to implement them, we are now able to extend the definition of a real function

f to intervals.

1.4 Functions of intervals
An interval function is an interval-valued function of one or more interval ar-

guments. A natural interval extension of a real-valued function f is a function

F obtained by replacing, in the expression of f , all real variables and constants

by intervals. It follows that the following condition will be satisfied

F (x1, . . . , xn) = f(x1, . . . , xn) (1.4)

for all xi (i = 1, . . . , n) . That is, if the arguments of F are degenerate intervals,

then F (x1, . . . , xn) is a degenerate interval equal to f(x1, . . . , xn), provided exact

arithmetic is used.

Definition 1 Let f : D ⊆ Rn → R be a function. Then F : I(D)→ IR is called

inclusion function of f if

f(x1, . . . , xn) ∈ F ([x1], . . . , [xn])

whenever xi ∈ [xi], i = 1, . . . , n .

We define the range of a real function f over [y] ∈ IRn as

�f([x]) = {f(x) : x ∈ [y]}.

It follows from Definition (1) that

�f([y]) ⊆ F ([y]) (1.5)
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will be satisfied if F is an inclusion function of f . Because of the properties

of interval arithmetic presented earlier, natural interval extensions are special

inclusion functions.

Property (1.5) is the key of almost all interval arithmetic applications, it is

sometimes called the fundamental property of interval arithmetic, see [18].

Definition 2 An inclusion function F is said to be inclusion isotonic or inclu-

sion monotonic over [x] if for [y], [z] ∈ I([x]), [y] ⊆ [z] implies F ([y]) ⊆ F ([z]).

Definition 3 Let [x] ⊆ Rn be a box and F : I([x]) → IR an interval valued

function then F has the zero convergence property if w(F ([y]))→ 0 as w([y])→
0 for [y] ∈ I([x]).

Unless otherwise stated, we shall assume that any interval function used in the

sequel is inclusion isotonic. Since a real function may be expressed in many

ways, it follows that a given real function has many natural interval extensions.

Example 1 Let f be the real function defined by f(x) = x2 − 2x, x ∈ R. The

following interval functions are inclusion functions of f .

• F1([x]) = [x]2 − 2[x],

• F2([x]) = [x]([x] − 2),

• F3([x]) = ([x]− 1)2 − 1.

With [x] = [−2, 3], one obtains

• F1([x]) = [−6, 13],

• F2([x]) = [−12, 8],

• F3([x]) = [−1, 8] = �f([x]).

A measure of the quality of an inclusion function F of f is the excess-width,

w(F ([y]))− w(�f([y]))

for [y] ∈ IRn introduced by Moore, see [16].

An inclusion function F of f is said to have (convergence) order α > 0 if

w(F ([y]))− w(�f([y])) = O(w([y])α),



18 Overview of Interval Analysis

meaning that there exists a constant c > 0 such that

w(F ([y]))− w(�f([y])) < c · w([y])α for [y] ∈ IRn.

In order to obtain fast computational methods in optimization it is important

to choose inclusion functions of an order α as high as possible when w([y])

becomes small. A detailed investigation of the order of inclusion functions is

given in [16, 46]. A similar looking concept, which is however different of the

order, is the idea of a Lipschitz condition.

Let D ⊆ IRn and F : I(D) → IR. Then F is called Lipschitz if there exists a

real number K (Lipschitz constant) such that

w(F ([y])) ≤ K · w([y]) for [y] ∈ IRn.

The Lipschitz property delivers us a frequently used criterion for the meanvalue

form which is a special inclusion function of convergence order 2, see [46]. We

present this special inclusion function in the next section.

1.4.1 Centered forms, Meanvalue forms, Taylor forms

When evaluating an inclusion function one has in general two choices. One

can choose natural interval extensions as presented above or centered forms.

Centered forms are inclusion function with special features that were introduced

by Moore [16]. The most important centered forms are the meanvalue form and

the Taylor form.

Meanvalue forms

Let D ⊆ IRm be open and

f : D → R, D ⊆ Rm

be differentiable and let

F ′ : I(D)→ IRm

be an inclusion function for the gradient f ′ of f . Then

T1 : I(D)→ IR

defined by

T1(c, [y]) = f(c) + ([y]− c)TF ′([y]) for [y] ∈ I(D), (1.6)
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where c ∈ [y] is called the meanvalue form function or shorter: meanvalue form.

The point c is frequently taken equal to m([y]), the midpoint of [y]. However,

more sophisticated choices are possible by which one can minimize the upper

bound of the interval T1(c, [y]) or maximize its lower bound, see Baumann

[46]. Frequently, F ′ will be computed as a natural interval extension of f ′ via

automatic differentiation arithmetic, see [11, 43]

Theorem 1 If F ′ is Lipschitz, then the meanvalue form T1 is of convergence

order 2.

A proof can be found in many books dealing with interval arithmetic, e.g. [18].

Example 2 The following example from [46] gives us an idea about the qual-

itative difference between orders of convergence of the meanvalue form and the

natural interval extension of function.

Let f(x) = x − x2 be defined on D = {x : x ≥ 1} ⊆ R. An inclusion function

for f ′(x) = 1− 2x is

F ′([y]) = 1− 2[y] for [y] ∈ I(D).

With c = m([y]), the meanvalue form of f is

T1(c, [y]) = (c− c2) + ([y]− c)(1− 2[y]) for [y] ∈ I(D).

The natural interval extension of f(x) is

F ([y]) = [y]− [y]2 for [y] ∈ I(D).

The range of f over D is

�f([y]) = [x2 − x, y2 − y] for [y] = [x, y] ∈ I(D).

Let us now calculate the widths of the inclusion functions and the width of the

range. We have

w(�f([y])) = y2 − y − (x2 − x) = y2 − x2 − (y − x)

= w([y])(y + x− 1).

Using the fact that w([a][b]) = 2amax{| b |, | b |} whenever 0 ∈ [a], and the

fact that

max{| 1− 2x |, | 1− 2y |} = 2y − 1, (1 ≤ x ≤ y)
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one obtains

w(T1(c, [y])) = w[([y]− c)(1− 2[y])]

= w([y]− c)(2y − 1)

= w([y])(2y− 1).

And the width of the natural interval extension is

w(F ([y])) = (y − x) + (y2 − x2)

= w([y])(y + x+ 1).

A short calculation shows that

w(T1(c, [y])) ≤ w(F ([y])), iff w([y]) ≤ 2.

This means that the meanvalue form is superior for small intervals. In this

example we have

w(T1(c, [y]))− w(�f([y])) = w([y])2 = O(w([y])2)

w(F ([y]))− w(�f([y])) = 2 · w([y]) = O(w([y])).

This is consistent with the fact that the meanvalue form is of convergence order

2, but the interval extension is only of order 1. Yet an other example.

Example 3 Let f(x) = x2 − x. Suppose we evaluate this function over the

interval [x] = [−1, 3]. With the natural interval extension one obtains

F ([x]) = [x]2 − [x] = [−3, 10]

and with Taylor form one obtains

T1(c, [x]) = T1(1, [x]) = F (m([x])) + ([x]−m([x]))F ′([x]) = [−10, 10].

But if one evaluates the same function over the interval [x] = [0.3, 0.6], one

obtains

F ([x]) = [x]2 − [x] = [−0.51, 0.06], w(F ([x])) = 0.57

and

T1(c, [x]) = [−0.29, 0.18], w(T1(c, [x])) = 0.47

These examples show that is not always wise to use the meanvalue form. In

general it is not advantageous to use the meanvalue form for large width in-

tervals. In our numerical experiments we use meanvalue form (or in general

centered forms) when the width of the box under consideration is less 1/2. We

now discuss another centered form.
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Taylor forms

Let D ⊆ IRm be open and

f : D → R, D ⊆ Rm

be twice differentiable, and let

F ′′ : I(D)→ IRm×m

be an inclusion function for the Hessian matrix f ′′ of f . Then

T2 : I(D)→ IR

defined by

T2(c, [y]) = f(c) + ([y]− c)Tf ′(c) +
1

2
([y]− c)TF ′′([y])([y]− c) (1.7)

for [y] ∈ IRm where c ∈ [y], is called Taylor form function (or simply Taylor

form) for f of second order. The mean value form (1.6) may be regarded as a

Taylor form of first order. We have the following theorem.

Theorem 2 If f is twice differentiable, and |F ′′([y])| ≤ d for all [y] ∈ I(D),

then the Taylor form function T2, is of convergence order two.

For a proof see [18]. If m is large then the computation of F ′′ becomes expensive,

and its explicit computation should be avoided. Some techniques to deal with

this issue have been investigated, see [46].

Example 4 We take the same function as in the previous example, that is

f(x) = x2 − x. We take [x] = [−a, a] and c = 0 we have

�f([−a, a]) = [a2 − a, a2 + a],

T1(c, [x]) = [x] · (2 · [x]− 1),

and

T1(0, [−a, a]) = [−a, a] · ([2a− 1, −2a− 1]).

T2(c, [x]) = [x] · (2 · [x]− 1) + [x]2,

and

T2(0, [−a, a]) = [−a2 − a, a2 + a].
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Now we can compare the widths:

w(�f([−a, a])) = 2a,

w(T1(0, [−a, a])) = 2a ·max{|2a− 1|, |2a+ 1|} = 2a · (2a+ 1),

w(T2(0, [−a, a])) = 2a · (a + 1).

yielding

w(T2(0, [−a, a]))− w(�f([−a, a])) = 2a2 =
1

2
(w([a]))2,

w(T1(0, [−a, a]))− w(�f([−a, a])) = 2a ·max{|2a− 1|, |2a+ 1|} − 2a

= 4a2 = (w([a]))2.

We see that there is no improvement in the convergence order when passing

from T1 to T2.

An other technique related to centered forms has been investigated in the liter-

ature [22], the so-called mixed centered inclusion function. We give here a brief

description, for more details see [22].

Mixed centered inclusion functions

The main idea to obtain the mixed centered inclusion function is to apply (1.6)

n times, considering each variable of the function in turn. We expose this

technique, for the sake of simplicity, for the case n = 3.

Consider f(x1, x2, x3) as a function of x3 only and take m3 = m([x3]); we obtain,

applying (1.6)

f(x1, x2, x3) ∈ f(x1, x2, m3) + g3(x1, x2, [x3]) ∗ ([x3]−m3)

where g3 is the partial derivative of the function with respect to the third vari-

able. Consider furthermore f(x1, x2, m3) as a function of x2 only and take

m2 = m([x2]); One obtains using (1.6)

f(x1, x2, m3) ∈ f(x1, m2, m3) + g2(x1, [x2], m3) ∗ ([x2]−m2).

Finally, consider f(x1, m2, m3) as a function of x1 and take m1 = m([x1]); then

(1.6) yields

f(x1, m2, m3) ∈ f(m1, m2, m3) + g1([x1], m2, m3) ∗ ([x1]−m1)
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Combining these three equations one obtains

f(x1, x2, x3) ∈ f(m1, m2, m3) + g1([x1], m2, m3) ∗ ([x1]−m1)

+ g2(x1, [x2], m3) ∗ ([x2]−m2)

+ g3(x1, x2, [x3]) ∗ ([x3]−m3).

It follows that

�f([x1], [x2], [x3]) ⊂ f(m1, m2, m3) + g1([x1], m2, m3) ∗ ([x1]−m1)

+ g2([x1], [x2], m3) ∗ ([x2]−m2)

+ g3([x1], [x2], [x3]) ∗ ([x3]−m3).

This expression can be generalized for a function f of n variables. With x =

(x1, . . . , xn)T and m = m([x]), one gets

�f([x]) ⊂ f(m) +

n∑

i=1

[gi]([x1], . . . , [xi], mi+1, . . . , mn) · ([xi]−mi). (1.8)

The right hand side of (1.8) defines the mixed centered inclusion function.

Mixed centered inclusion functions can be viewed as a special case of slope

functions, definition of which is given below.

A slope sf of a function f w.r.t a point m is defined as a function from Rn to

Rn such that

f(x)− f(m) = sf(x, m)(x−m) for all x.

If SF is an inclusion function for sf , then

�f([x]) ⊆ f(m) + SF ([x], m) · ([x]−m).

For more details see [41, 34]. One advantage with slopes is that there is no

requirement concerning the smoothness of the function. Therefore one can

implement derivatives free global optimization algorithms.

1.5 Principles of numerical verification
This is one of the virtues interval analysis has; namely the automatic verification

of numerical results. The easiest way is probably to replace any real or complex

operation by its interval equivalent and then perform the computations using

interval arithmetics. The procedure leads to reliable, verified results. However,

the width of the computed enclosures may be too wide to bee practically useful.
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In general one therefor applies mechanisms, using interval arithmetic, to get a

verified result from an already computed approximate solutions. To achieve

this, many algorithms for numerical verification are based on the application of

well known fixed-point theorems to intervals sets. The following theorem can

be found in [11].

Theorem 3 (Brouwer’s fixed-point theorem) Let f : Rn → Rn be a con-

tinuous mapping and X ⊆ Rn a non-empty, closed, convex and bounded set. If

�f(X) ⊆ X, then f has at least one fixed-point x∗ in X.

A box [x] in n-dimensional space, satisfies the conditions of Brouwer’s fixed-

point theorem. So, if an inclusion function F for f satisfied F ([x]) ⊆ [x] we

have �f([x]) ⊆ [x], consequently f has a fixed point x∗ in [x]. This theorem

could be applied in our context to check the uniqueness of a local minimizer in

a subbox [y] of the starting box [x]0. For more details see [11].



Chapter 2

The Global Optimization

Problem
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The aim of this chapter is to present and discuss in detail the different aspects

of interval global optimization algorithms. In particular we will present new

strategies that we have developed to speed-up the convergence of such algo-

rithms.

We want to find the global minimum in a given area of Rn of a function f .

Global minimum here is by opposition to local minimum. This means that we

are looking for the smallest of all local minima if there exist several of them.

The theory and analysis of global optimization algorithms can be considered

to be relatively new in comparison to the local optimization theory for which

there exists a rich reference in the literature; see the references in [51]. Since the

global maximum of the function f is the global minimum of the function −f ,

global minimization is equivalent to global maximization, so that we restrict

ourselves to global minimization here. We also want to find all points where

the global minimum is reached. Global minimization or global optimization

in the sequel, is not an easy task for methods which use information of the

function at a finite number of points only, because narrow, deep valleys may

escape detection. In contrast, the interval method presented here evaluates the

function f on a continuum of points, including those points that are not finitely

representable, so valleys, no matter how narrow, are never neglected.

Algorithms to solve the global optimization problem can be divided into two

big groups, namely, stochastic and deterministic methods.

2.1 Stochastic methods

In general, starting from some approximate trial points, stochastic methods

proceed by iteration. They sample the objective function at a finite number of

points until some criterion is satisfied. Stochastic methods included simulated

annealing, evolutionary algorithms and clustering methods. For more details

about these methods one can see [19]. The advantage of these methods is that

they have a reasonable complexity which is why they are sometimes preferred

in practice. But since these methods sample the objective function at only a

finite number of points, they cannot guarantee that the global minimum has

been found.

2.2 Interval methods

Interval global optimization methods are the only ones which yield guaranteed

information about the global minimum and the points where this would be

achieved. These methods do so by producing an interval which is known to
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contain the minimum value and a set of boxes which contains all possible mini-

mizers. The aim of these methods is to discard parts of the search domain that

cannot contain global minimizers.

2.3 Problem statement
Given is a function

f : I(D) ⊂ Rn → R.

The aim is to find the minimum (provided it exists)

f ∗ = min
x∈D

f(x) (2.1)

subject to

gi(x) ≤ 0, i = 1, . . . , k,

hi(x) = 0, i = k + 1, . . . , r,

where gi, hi : D → R,

and the set

S∗ = {x ∈ D : f(x) = f ∗}
where this minimum is reached. The functions gi, hi are called constraints. If

r = 0, then the problem is said to be unconstrained. In this work we always

assume r = 0. If one prescribes an initial domain (box) where the minimum is

to be found, then one has these types of constraints

ai ≤ xi and xi ≤ bi, i = 1, . . . , n.

In this case, the problem is said to be with bounds constraints. This is exactly

the situation which will be considered in this work. Usually, we will also assume

that f is twice differentiable on D.

2.4 Interval global optimization methods

To solve the problem (2.1) the interval methods use the branch and bound prin-

ciple. By branch and bound we mean here that the given problem is divided into

several subproblems which themselves might be further subdivided recursively

(branching). When working on the (most promising) subproblems, a criterion is

dynamically updated which allows to discard some of the subproblems since one

knows that they do not contain the solution to the original problem (bounding).

For the box-constrained global optimization problem, subproblems are gener-

ated by subdividing the current box [x] ∈ IRn into smaller subboxes [x]1, . . . , [x]l
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(starting with [x] = [x]0) and by considering the global optimization problems

on the smaller boxes. Using interval arithmetic, as described in the previous

chapter, a lower bound for f over each such box [y] is computed. At the same

time, evaluating f at carefully chosen points, we know an upper bound f̃ for

the global minimum of f . Bounding is now done by discarding the subproblems

for those boxes [y] where the lower bound for �f([y] is large than f̃ .

Proceeding in this manner, one generates a tree of subproblems in which the

bounding principle prevents certain subproblems to be subdivided. Figure 2.1

illustrates this by showing the subdivision of the boxes which in this case are

bisected along their largest side.

starting box

subboxes (branches)

Fig. 2.1: Illustration of the branch and bounds principle

The algorithm we present next has been investigated, with some slight differ-

ences, by many authors, see Hansen [19], Moore-Skelboe [46] and Ichida-Fujii

[46].

An algorithmic framework for interval methods for global (unconstrained) op-

timization consists of

• the basic steps

• the accelerating devices

The basic steps are responsible for getting the solution of the problem or, at

least, an approximation. The aim of the accelerating devices is to obtain the

solution as fast possible. Below are the steps of the algorithm. The algorithm

begins with some initializations. The working list is set to the starting box
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algorithm 1 Interval Branch & Bound Algorithm for Global Optimization

1: Input: [x]0 starting box, ε tolerance for the stopping criterion,

2: F inclusion function for f

3: Output: f̃ , approximation for f ∗ and S, list of boxes covering S∗

4: f̃ = F (m([x]0))

5: initialize work list L = ([x]0, F ([x]0)), solution list S = ∅
6: while L is not empty do

7: choose a pair P = ([x], F ([x])) from L
8: if stopping criterion holds then

9: insert P into S and goto 6

10: end if

11: f̃ = min{f̃ , F (mid([x]))} {update the minimum}
12: split the box [x] into ([x]1, . . . , [x]n) { sub-dive [x]}
13: compute F ([x]i) for i = 2 . . . n and store ([x]i, F ([x]i)) in L
14: apply acceleration devices on [x]1
15: { monotonicity test, convexity test, Newton step, . . . }
16: perform cut off test on L
17: insert what remains of [x]1 into L
18: end while

[x]0 and the result list of boxes containing the global minimizers equals the

empty set. The algorithm subdivides parts of the starting box recursively and

updates the value of f̃ , the upper bound of the global minimum. As we have

said before, the algorithm consists of the basic part and the accelerating devices.

The basic part is the part without the accelerating devices which include the

monotonicity, convexity and the Newton test. These accelerating devices will be

presented separately. But before doing so, we give some general results about

the convergence, the complexity and the stopping criteria of Algorithm 1.

The cut off test is a procedure that removes some elements of the working list

for which one knows that they do not contain global minimizers. Details on this

test will be given in 2.5.1.

2.4.1 Convergence, complexity, and stopping criteria

Stopping criteria

In our algorithm a box [x] is inserted in the solution list S if it satisfies the

following condition

w(F ([x])) ≤ εF , (2.2)
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where εF is the tolerance on the function values. Some authors, [16], also require

that

w([x]) ≤ εx, (2.3)

where εx is the tolerance on the box. This second condition makes sense when

one wants to have global minimizers within a certain accuracy. In general the

first condition is sufficient to have a reasonable enclosures of both the minimum

and the minimizers. The first condition (2.2) can be relaxed and is sometimes

replaced by f̃ − F ([x]) < εF .

Proposition 1 If Algorithm 1 terminates, then S∗ ⊆ S, where S∗ is the set of

all global minimizers of f .

Proof: For the purpose of this proof we regard the lists L and S as sets consisting

of the union of their respective boxes, so that S∗ ⊆ S actually makes sense. We

now prove that at any iteration of the algorithm we have S∗ ⊆ L ∪ S. This

is true before the first iteration, since L = [x]0 and S = ∅. Assume that it is

true for some iteration. When lines 8-10 are executed, the set L ∪ S does not

change since we only shift boxes from L to S. When [x] is split in line 12, the

boxes [x]2, . . . , [x]n are inserted into L, and [x]1 may be modified by acceleration

devices. Since the acceleration devices are all such that all global minimizers

from [x]1 will still be contained in what remains from [x]1, we have that S∗ is

contained in the union of L, S and what remains from [x]1 after the acceleration

devices. The cut off test on line 16 can not remove a box containing a global

minimizer. On the line 18, what remains from [x]1 is inserted in L. It follows

that we still have S∗ ⊆ L ∪ S. Upon termination of the while loop, we have

L = ∅, so that S∗ ⊆ S. �

Proposition 2 Assume that for Algorithm 1 we use the stopping criterion (2.3)

with εx > 0. Then Algorithm 1 terminates.

Proof: Assume that the algorithm does not terminate. Let [y]k be the sequence

of boxes with [y]k the box selected in the k-th iteration. Let s([y]k) be the

number of subdivision steps performed, starting from [x]0, to obtain [y]k. Then

s([y]k) ≤ s∗ = m · dlogn
w([x]0)
εx
e, because otherwise w([y]k) ≤ εx and that ([y]k)

would have been moved to S. Here n denotes the number of subdivision parts

and m is the dimension. But there exist only
∑s∗

k=0 n
k boxes [y] with s([y]) ≤ s∗,

so that the boxes [y]k can not be all different. But this is a contradiction, since

a box [y]k which has been selected is never inserted again into L. �
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Proposition 3 Assume that F is zero convergent and the stopping criterion is

taken as (2.2), i.e.

w(F ([x])) < εF ,

then Algorithm 1 terminates.

Proof: Since F is zero-convergent, there exists εx ≥ 0 such that w([x]) ≤ εx
⇒ w(F ([x])) ≤ εF for all [x] ⊆ [x]0. With this assertion the proof follows in a

manner completely analogous to Proposition (2). �
Propositions 1 - 3 give the conditions under which Algorithm 1 is correct.

Proposition 1 shows that no global minimizer is lost during the search process.

Proposition 2 shows that condition (2.3) is enough to guarantee the termination.

Proposition 3 relies on the fact that condition (2.3) implies condition (2.2) if F

is zero convergent. Note that Proposition (2)- (3) are valid when one subdivides

the box along the coordinate with maximal interval width. More details about

subdivision strategies will be given in Section 2.4.6.

Complexity

The interval global optimization algorithm requires in general a lot of computa-

tional resources so that other methods are sometimes preferred in practice. But

recall that it is the only method that can claim to solve the global optimization

problem (that can guarantee that the global solution has been found). It is

obvious that if all accelerating devices fail then the algorithm is exponential in

the dimension of the starting box. The interval global optimization problem is

even NP-hard since the basic problem of computing exact bounds for the range

of a function is NP-hard, see [19] and references therein.

Convergence of the algorithm

To investigate the convergence of Algorithm 1 we suppose that the stopping cri-

terion will never be fulfilled. In this case Algorithm 1 is equivalent to Algorithm

3 on page 111 in [46]. To have the same settlements for Algorithm 1 as those

in [46], we denote by ([y]n, ỹn) the box with ỹn = min{F ([x])}, for [x] ∈ Ln,

where n is the iteration index. The working list at the iteration n is denoted

by Ln. We denote further by Un the union of boxes in the list Ln. We have the

following theorems concerning the convergence of Algorithm 1.

Lemma 1 Let ([y]n)∞n=1 be a sequence generated by Algorithm 1, then

w([y]n)→ 0 as n→∞.
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The proof of this lemma is similar to the one of proposition 2 and can be found

in [46], page 85.

Theorem 4 If the inclusion function F in Algorithm 1 has the zero convergence

property, then sequence (F ([y]n))∞n=1 converges to f ∗.

For a proof, see [46], page 86.

Theorem 5 If the inclusion function F in Algorithm 1 has the zero convergence

property, then Un ⊇ S∗ for all n and Un → S∗ as n → ∞. The sequence (Un)

is nested and thus S∗ = ∩∞n=1Un.

For proof, see [46], page 113.

2.4.2 Selection strategies

The first important point of the algorithm presented above is the way one

selects the next box to process. Many strategies have been investigated in the

literature on how to chose the next box. Here we present these strategies and

we also present a new strategy we developed. One distinguishes

• The oldest-first strategy: choose the oldest box, i.e. the work list L is

handled as a FIFO (First In First Out) queue.

• The best-first strategy: choose the box [x] with the smallest lower bound

F ([x]), i.e. L is handled as priority queue.

• The depth-first strategy: choose one of the most recently created boxes,

i.e. L is handled as a stack.

• The reject-index strategy: choose the box where a quantity to be defined

is the largest. As with the best-first strategy, L is a priority queue in this

case too.

Oldest-first strategy. In the oldest-first strategy, the next box to process

is the box that has spent the most time in the working list. In this case, the

algorithm implements L as a simple queue. The box at the head is the box

to select and new boxes are inserted at the tail. The first advantage of this

strategy is that all boxes are regularly subdivided. Therefore, one can expect

the width of the function over the boxes to tend to zero rapidly when the number

of iterations of the algorithm grows. The second advantage of this strategy is

that the management of the list is very simple and also efficient. Any operation
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on the list is done in constant time. This is definitely a very important practical

point in interval global optimization algorithm. In fact as the size of the list

grows, for some difficult test problems, where the work list is very large, the

algorithm may spend most of the time handling the list, the (computation of

functions or derivatives) becoming negligible. The disadvantage is that this

strategy does not favor promising boxes, so that some boxes which by other

strategies would have been discarded due to the cut-off test will remain in the

work list and will further be processed.

Best-first strategy. Widely used, this strategy favors the box where the

function has the smallest lower bound, i.e. the pair ([x], F ([x])) of the work list

with the smallest second element is chosen. The idea is that the algorithm will

then always be working on the most promising box. Therefore, a good approx-

imation of the global minimum will be reached relatively early. Consequently

the cut-off test and other tests based on the quality of f̃ will be more efficient.

A proposition emphasizing the importance of this strategy is given below and

can be found in [1].

Theorem 6 Using Algorithm 1 with the best-first strategy, no pair ([x], F ([x])

with F ([x]) > f ∗ + εF will be chosen for subdivision.

Proof, see [2].

The drawback with this strategy is that the time to manage the list as a priority

queue can become very noticeable for the algorithm on some problems. We will

come back to this point later.

Depth-first strategy. In the depth-first-strategy, one manages boxes in a

LIFO (Last In First Out) data structure. The algorithm thus implements a

stack. To proceed, one always takes the first box from the stack and places new

subboxes into the stack. In this way the box will be subdivided further and

further until the termination criteria are fulfilled.

One of the advantages of this strategy is that it maintains a short list (stack)

and that furthermore, the update operations on the list are in constant time.

With this strategy, boxes could be subdivided unnecessarily. This happens for

example when one only inserts the part of the box which contains the global

minimizer into the work list. The other part would be subdivided unnecessarily.

Reject-index based strategy. Recently introduced, ([9, 6]), this selection

strategy is based on a quantity called the reject index and noted pfk. This
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quantity is defined as following

pfk =
fk − F ([x])

F ([x])− F ([x])

where fk is an known approximation of the global minimum value at the it-

eration k which will be studied in more details later. With this strategy, the

next box to process is the box where this quantity is maximal. The reject index

estimates the relative position of the global minimum value of the objective

function within the range given by the inclusion function. This quantity should

then indicate whether the given interval f([x]) is likely to contain a minimizer.

The motivation is mainly as follows ([6]): Traditionally, the best-first strategy

is used, therefore the box [x] with the smallest F ([x]) is considered as the best

candidate to contain a global minimum. However, usually, the larger the box

[x], the larger the overestimation of �f([x]) in F ([x]). Therefore, in the best-

first strategy, a box could be considered as a best candidate to contain a global

minimizer just because it is larger than others. In order to compare subboxes

with different size one normalizes the distance between f̃ and F ([x]). The idea

behind is that one expects the overestimation to be symmetric, i.e. the overesti-

mation above f([x]) is almost equal to the overestimation below f([x]), for small

subboxes containing a global minimizer point. For more details and theoretical

investigations see [9, 6].

2.4.3 New selection strategies

We have implemented the reject-index and the best-first strategies on many

problems. The reject-index has a little advantage on the best-first on some

problems. Looking closer on the tables below we see that the maximal length

reached by the list when using the reject-index is almost always smaller than

the maximal length reached by the list when using of the best-first strategy.

It seems that the advantage the reject-index has is that the list is maintained

small. We present below some new selection strategies which maintain small

list while favoring promising boxes.

The relative reject-index

It is known that using the oldest-first strategy, the list remains in general smaller

than using another strategy. However, the algorithm with the oldest-first strat-

egy converges slowly, since it does not favor promising boxes. It would then

be advantageous to think of a strategy that could do both, namely, favor the

promising box and keep the list small.
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As with the reject-index presented above, we now propose to chose the next box

(pair) to process in Algorithm 1, the box for which the relative reject-index

rfk =
fk − F ([x])

(F ([x])− F ([x])) ∗ (w([x]))

is maximal. One can see that rfk is obtained by multiplying pfk by 1
w([x])

.

Therefore, rfk is maximal when pfk is maximal and w([x]) is minimal. In this

way, this new selection strategy can be seen as a combination of the reject-index

and the depth-first strategy, and would (hopefully) have the advantages of both.

According to our experimental results, The version of Algorithm 1 implement-

ing the relative reject-index is in general better the than the worst version of

the algorithm using the best-first and reject-index, see the experimental results

below. We will analyze the convergence of the algorithm with this new selection

strategy later.

The hybrid selection strategy

Since with the best-first strategy one obtains a good approximation for the

global minimum relatively early and, with the depth-first strategy the list is

maintained small, it would be interesting to combine the two strategies. One

could then begin with best-first and finish with depth-first. One switches from

best-first to depth-first when a good approximation for the global minimum is

reached. We call such strategy a hybrid selection strategy. Of cause, the question

arises as to know when to switch. One issue is to check whether the value of f̃

does not change during a certain number of iterations, taking this as an indicator

that f̃ , obtained so far, is a good approximation for the global minimum. The

problem with this approach is that it depends too much on the problem under

consideration, as our numerical experiments showed. Another way out is to

check whether the length of the working list decreases, because in this case

it is likely also that a good approximation of the minimum is reached. Our

tests indicate that this is often the case for difficult test problems. We therefore

opted for this second choice, and the experimental results presented below show

that using this strategy, one obtains improvements, we compare these strategies

later. The next section deals with the convergence of the algorithm when the

reject-index or the new selection strategies is used.

Convergence properties of the algorithm using the reject-indices and

the hybrid selection strategy

Since both versions of the algorithm using the best-first and the oldest-first

converge, it is clear, by the construction of the hybrid selection strategy, that
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the resulting algorithm will converge.

Now we investigate the convergence conditions of the algorithm using either of

the reject-index strategies. For this purpose we present Theorem 1 in [10] and

show that it is applicable in the case of the relative reject-index too. In [10],

the next box to process is the box [y] for which the reject index

pf(fk, [y]) =
fk − F ([y])

F ([y])− F ([y])
,

is maximal. Herein, we have a choice for fk which we assume to be between the

best known lower bound and upper bound f̃k of f ∗, i.e. we define

f
k

= min{F ([y]l), l = 1, . . . , |L|} ≤ fk < f̃k = f k. (2.4)

|L| denotes the current number of elements in the list L.

Theorem 7 ([10]) Assume the inclusion function of the objective function is

isotone and it has the zero convergence property. Consider further Algorithm 1

above in which the next pair to process is the pair ([y], F ([y])) from the working

list L which has the maximal value pf(fk, [y]). The boxes thus selected will be

called leading boxes. We assume that the stopping criterion is never fulfilled.

1. Each accumulation point of the sequence of leading boxes is a global min-

imizer of f if

f
k
≤ fk < δ(f k − f k) + f

k
(2.5)

holds for each iteration number k, where 0 < δ < 1 is fixed.

2. Condition (2.5) is sharp in the sense that δ = 1 allows convergence of f̃

to a value larger than f ∗.

Proof: 1. Since fk is not less than the minimal lower bound f
k

of F , it follows

that the maximal pf(fk, [y]) values are always nonnegative. The numerator of

pf is less than f̃ −min{F ([y]l), l = 1, . . . , |L|} since fk < f̃ . The sequence f
k

is monotonously nondecreasing and f k is monotonously non-increasing since F

is isotone.

Now consider an arbitrary point x′ ∈ [x] in such a way that f(x′) > f ∗, and

assume that there is a subsequence {[y]kl} of leading boxes that converges to

x′. We have that

f(x′) = lim
l→∞

f([y]kl) = lim
l→∞

F ([y]kl)
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since f is continuous and F has the zero convergence property.

Further, since

f̃k ≤ min
[y]∈Lk

F ([y])

because of the update of fk, we have

f̃kl ≤ F ([y]kl).

The sequence f̃kl is monotonously decreasing and bounded below by f ∗. There-

fore,

lim
l→∞

f̃kl

exists and due once more to the zero-convergence property, one has

lim
l→∞

f̃kl ≤ f(x′).

With this and according to (2.5) one has

fkl − F ([y]kl) = (fkl − f kl) + (f
kl
− F ([y]kl))

< δ(f̃kl − f kl) + (f
kl
− F ([y]kl))

= δ(f̃kl − F ([y]kl)) + (1− δ)(f
kl
− F ([y]kl))

= δ(f̃kl − F ([y]kl)) + δ(F ([y]kl)− F ([y]kl))

+ (1− δ)(f
kl
− F ([y]kl))

Herein, we have

f̃kl − F ([ykl]) ≤ 0 for all l.

Due to the zero convergence property

lim
l→∞

(F ([y]kl)− F ([y]kl)) = 0.

Since

lim
l→∞

f
kl
≤ f ∗ and lim

l→∞
F ([y]kl) = f(x′),

we know that for all l > l0 one has

f
kl
− F ([y]kl) ≤

1

2
(f ∗ − f(x′)).

For l sufficiently large we have

f
kl
− F ([y]kl) ≤ 0.
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Since 0 < δ < 1 this means that the respective pf values are negative from

an index K. This contradicts the fact that the maximale pf values are always

nonnegative

2. The second statement is a consequence of Theorem 3 and Corollary 2 in [8].

Since the correctness of this proof does not depend on the value of the denom-

inator of pf , this remains true for the relative reject-index and we have the

following theorem.

Theorem 8 Assume the inclusion function of the objective function is isotone

and it has the zero convergence property. Consider further Algorithm 1 above

in which the next pair to process is the pair ([y], F ([y])) from the working list

L which has the maximal value rf(fk, [y]).

1. Each accumulation point of the sequence of leading boxes is a global min-

imizer of f if

f
k
≤ fk < δ(f k − f k) + f

k
(2.6)

holds for each iteration number k, where 0 < δ < 1 is fixed.

2. Condition (2.6) is sharp in the sense that δ = 1 allows convergence of f̃

to a value larger than f ∗.

2.4.4 Handling the list

Numerical experiments show that the length of the working list can have a big

influence on the run-time. This is particularly the case when L is a priority

queue. Note that, in this case, the cut-off is easily done, but each insert opera-

tion has a complexity of O(|L|), where |L| is the length of the current list. We

would like to minimize the influence of handling the list. Therefore, we have to

implement a data structure that will allow us to do all operations in less than

O(|L|). The idea is to avoid all operations with linear cost on the list. Since at

any moment a particular box is preferred, we have to deal with a priority queue.

The efficient and straightforward data structure to think about is a heap. All

the element produced by the algorithm are therefore stored in the heap. Con-

sequently all operations are now in O(log(|L|)). The only drawback with the

heap is that performing the cut-off test is more complicated than without a

heap. Performing the cut-off with a heap would require that one goes through

the whole tree and this can not be done in less than log(|L|) asymptotically.

We therefore do not perform this test, we rather leave all elements in the list.

The boxes that would have been discarded by the cut-off test will never be
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considered for further computation. They will remain in the list until their turn

to be processed reaches. Since, we only handle boxes [x] for which F ([x]) ≤ f̃ ,

these boxes will be discarded.

2.4.5 Experimental results

We now give some experimental results obtained when applying these strategies

on some problems found in the literature. We distinguish two cases. For the

first case we use a simple linked list and for the second case we use a heap.

In the first column of Table 2.1 and Table 2.2 we have the description of the

problem as found in the literature. For convenience, these problems are listed

in the appendix of this thesis. In the second column we have the different

strategies; Bf for best-first, Depth for depth-first, Reject1 for the reject-index

Reject2 for the relative reject-index and Rejecth for the hybrid strategy, i.e.

the best-first combined with the depth-first, where we switch to depth-first as

soon as the list L starts to decrease.

In the third column we have the number of function evaluations (Feval), in the

fourth, the number of gradient evaluations (Geval), in the fifth the number of

Hessian evaluations (Heval). We have in the sixth column the maximal length

reached the by list. The last two columns give the number of iterations and

the CPU time required by the algorithm. For each problem, the best value

according to the metrics (Feval, Geval ...) listed above is written in bold. These

experimental results were carried out on a Pentium-IV machine (2.8 Ghz and 1

Gbyte) under the Linux operating system. The time unit is the second.
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Tab. 2.1: Performance of the algorithm using a simple linked list

Problem Strategy Feval Geval Heval Length Iteration Time

Bf 330 286 108 5 44 0.01

Depth 1552 1380 519 8 223 0.05

RO Reject1 329 285 108 6 44 0.01

Reject2 329 285 108 6 44 0.01

Rejecth 329 285 108 6 44 0.01

Bf 2799 2069 630 123 510 0.21

Depth 3068 2268 690 10 558 0.18

SHCB Reject1 2799 2069 630 105 510 0.18

Reject2 2799 2069 630 28 510 0.18

Rejecth 2822 2092 639 42 513 0.19

Bf 10756 8986 3278 290 1567 1.00

Depth 10738 8986 3278 20 1566 0.95

GP Reject1 10756 8986 3278 375 1567 0.97

Reject2 10756 8986 3278 68 1567 0.94

Rejecth 10756 8986 3278 131 1567 0.9

Bf 1504 1186 397 58 249 0.186

Depth 1508 1190 397 60 249 0.186

R4 Reject1 1504 1186 397 60 249 0.186

Reject2 1504 1186 397 16 249 0.16

Rejecth 1504 1186 397 57 249 0.16

Bf 510 350 92 30 83 0.69

Depth 148381 99257 28202 22 28192 205

L12 Reject1 519 357 94 31 85 0.7

Reject2 516 354 93 31 84 0.7

Rejecth 510 350 92 52 83 0.68

Bf 511 347 91 9 90 0.47

Depth 512 348 92 9 90 0.49

R8 Reject1 535 371 99 9 98 0.51

Reject2 535 371 99 9 98 0.51

Rejecth 535 371 99 9 98 0.5

Bf 605 409 125 1 106 0.22

Depth 568 372 107 1 100 0.21

G7 Reject1 605 409 125 1 106 0.22

Reject2 605 409 125 1 106 0.23

Rejecth 605 409 125 1 106 0.23

Bf 1276 1206 472 37 182 0.23

Depth 1277 1207 473 11 182 0.23

JS Reject1 1443 1349 518 22 216 0.25

Reject2 1443 1349 518 13 216 0.25

Rejecth 1276 1206 472 29 182 0.22

Bf 2283 1651 488 72 422 1.43

Depth 4795 3399 972 38 923 2.82

H6 Reject1 2385 1721 506 66 440 1.46

Reject2 2831 2045 595 57 530 1.72

Rejecth 2828 2042 595 57 529 1.75

Bf 1143 813 259 9 194 0.28

Depth 1144 814 259 11 194 0.27

Sch27 Reject1 1143 813 259 9 194 0.28

continue on the next page
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continued from previous page

Problem Strategy Feval Geval Heval Length Iteration Time

Reject2 1143 813 259 9 194 0.28

Rejecth 1143 813 259 8 194 0.28

Bf 8270 7724 3162 18 985 0.88

Depth 8270 7724 3162 18 985 0.87

SW Reject1 8270 7724 3162 18 985 0.88

Reject2 8270 7724 3162 18 985 0.87

Rejecth 8270 7724 3162 17 985 1.02

Bf 3484336 3483754 1452327 32 338706 86.04

Depth 3484337 3483755 1452328 32 338706 88.0

INF1 Reject1 3484336 3483754 1452327 32 338706 84.75

Reject2 3484336 3483754 1452327 32 338706 85.84

Rejecth 3484336 3483734 1452327 31 338706 87.58

Bf 5847 4175 1235 555 1408 0.64

Depth 7159 5089 1585 20 1258 1.02

L3 Reject1 5662 3984 1238 201 996 0.64

Reject2 10812 7794 2454 65 1885 1.22

Rejecth 5722 4050 1235 330 993 0.67

Bf 184052 127390 39344 9085 32628 31.12

Depth 195250 136334 42111 21 34340 22.25

L3* Reject1 184313 127575 39382 7931 32666 29.59

Reject2 184096 127416 39373 362 32645 21.4

Rejecth 184052 127390 39344 2703 32628 21.71

Bf 9040 5908 1752 522 1647 1.22

Depth 9962 6666 1940 11 1789 1.2

HM2 Reject1 9148 6006 1780 452 1660 1.12

Reject2 9801 6511 1946 108 1777 1.1

Rejecth 9040 5908 1752 504 1647 1.03

Bf 237132 158148 46254 12258 42662 54.49

Depth 238499 158483 47041 19 43270 27.4

HM2* Reject1 237500 158476 46355 11156 42715 50.28

Reject2 239020 159580 46700 470 42991 27.04

Rejecth 237132 158148 46254 10313 42662 35.63

Bf 37430 23686 6922 2218 6897 8.54

Depth 67784 43620 12385 17 12289 14

HM3 Reject1 37398 23652 6923 2006 6898 8.6

Reject2 711434 48004 13837 783 12966 16.02

Rejecth 37397 23653 6922 1851 6897 8.34

Bf 268051 170663 49641 15525 49225 101.32

Depth 310180 200338 58017 22 57136 65

HM3* Reject1 268210 170822 49666 14336 49234 97.933

Reject2 271220 172956 50275 3169 49785 60.38

Rejecth 268045 170657 49641 12036 49225 74.23

Bf 917956 915394 384049 28958 108166 943.24

Depth 1155549 1152641 479359 25 141326 626.89

KOW Reject1 976538 973962 407867 6643 115864 567.35

Reject2 983984 981406 410773 999 117074 556.87

Rejecth 986014 983362 411556 999 117373 542.19

Bf 16686 15708 6228 541 2038 2.07

Depth 16972 15994 6336 12 2075 1.96

WK Reject1 16680 15702 6225 657 2038 1.99

continue on the next page
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continued from previous page

Problem Strategy Feval Geval Heval Length Iteration Time

Reject2 16935 15957 6321 42 2071 1.93

Rejecth 16935 15957 6321 548 2071 1.97
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Tab. 2.2: Performance of the algorithm using the heap

Problem Strategy Feval Geval Heval Length Iteration Time

Bf 336 292 108 24 64 0.01

Depth 1979 1849 714 12 279 0.09

RO Reject1 740 718 288 22 105 0.02

Reject2 1223 1159 457 19 171 0.05

Rejecth 311 289 114 29 34 0.01

Bf 2802 2072 630 125 513 0.17

Depth 3008 2224 680 13 548 0.19

SHCB Reject1 613 565 209 24 90 0.05

Reject2 2799 2069 630 28 510 0.18

Rejecth 671 605 226 10 95 0.05

Bf 10760 8989 3278 290 1567 0.96

Depth 10756 8986 3278 332 1567 1.06

GP Reject1 10756 8986 3278 375 1567 1.00

Reject2 10756 8986 3278 190 1567 0.97

Rejecth 10756 8986 3278 93 1567 0.96

Bf 1512 1200 398 74 268 0.07

Depth 1504 1186 397 11 249 0.06

R4 Reject1 1504 1186 397 60 249 0.06

Reject2 1504 1186 397 53 249 0.06

Rejecth 1504 1186 397 53 249 0.06

Bf 514 353 93 53 135 0.69

Depth 148380 99256 28201 22 28192 206.7

L12 Reject1 519 357 94 33 138 0.7

Reject2 516 354 93 39 138 0.7

Rejecth 510 350 92 52 136 0.69

Bf 515 350 92 41 122 0.55

Depth 601 437 121 2 120 0.69

R8 Reject1 535 371 99 18 122 0.59

Reject2 589 425 117 5 122 0.66

Rejecth 511 347 91 40 122 0.55

Bf 569 372 107 1 178 0.21

Depth 568 372 107 1 100 0.21

G7 Reject1 568 372 107 1 100 0.21

Reject2 568 372 107 1 100 0.21

Rejecth 568 372 107 1 100 0.21

Bf 1280 1209 473 45 190 0.22

Depth 1373 1289 499 11 201 0.24

JS Reject1 1443 1349 518 23 219 0.25

Reject2 1335 1251 486 19 194 0.23

Rejecth 1301 1231 482 26 188 .23

Bf 2297 1664 489 115 468 1.38

Depth 4478 3386 969 37 919 2.86

H6 Reject1 2385 1721 506 78 476 1.46

Reject2 3459 2445 712 30 668 2.08

Rejecth 2283 1621 488 93 444 1.4

Bf 1143 813 259 11 194 0.29

Depth 1143 813 259 10 194 0.33

SCH27 Reject1 1143 813 259 15 194 0.28

continue on the next page
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continued from previous page

Problem Strategy Feval Geval Heval Length Iteration Time

Reject2 1143 813 259 10 194 0.28

Rejecth 1143 813 259 10 194 0.28

Bf 8270 7724 3162 27 985 0.89

Depth 8270 7724 3162 18 985 0.87

SW Reject1 8270 7724 3162 40 985 0.85

Reject2 8270 7724 3162 19 985 0.94

Rejecth 8270 7724 3162 31 985 0.88

Bf 3484336 3843754 1452327 410 338706 105.05

Depth 3484336 3483754 1452327 76 338706 92.03

INF1 Reject1 3484336 3483754 1452327 76 338706 92.03

Reject2 2484336 3483754 1452327 76 338706 90.46

Rejecth 3484336 3483734 1452377 31 338706 91.86

Bf 9082 5949 1753 589 1724 0.99

Depth 9762 6402 1899 16 1776 1.1

HM2 Reject1 9036 5904 1752 475 1649 1.01

Reject2 9424 6150 1824 88 1719 1.27

Rejecth 9040 5908 1752 504 1654 1.01

Bf 237137 158152 46255 12376 42779 26.16

Depth 239987 160269 46430 11126 42791 27.12

HM2* Reject1 237655 158657 46430 11126 42791 27.12

Reject2 237246 158218 46276 4596 42684 32.57

Rejecth 237132 158148 46254 10315 42662 27.12

Bf 5850 4177 1236 555 1408 0.63

Depth 7014 4988 1552 20 1235 0.79

L3 Reject1 5657 3981 1237 204 1006 0.64

Reject2 6280 4470 1393 66 1114 0.72

Rejecth 5722 4050 1235 331 1117 0.66

Bf 184061 127398 39345 9218 32763 20.75

Depth 184563 127693 39344 8328 32628 21.84

L3* Reject1 183992 127330 39344 8328 32628 21.84

Reject2 183992 127330 39344 3397 32628 21.44

Rejecth 184000 127338 39344 1145 32664 20.89

Bf 37479 23734 6923 2311 7090 7.58

Depth 48134 31324 9095 30 8803 10.13

HM3 Reject1 37416 23668 6924 1980 6948 7.88

Reject2 38755 24517 7172 96 7147 8.38

Rejecth 37397 23653 6922 1849 6909 7.91

Bf 268170 170781 49642 15720 49444 54.83

Depth 269164 171416 49852 31 49424 56.71

HM3* Reject1 268050 170662 49641 14531 49235 56.29

Reject2 271094 172598 50195 745 49779 58.3

Rejecth 268045 170657 49641 11741 49225 56.82

Bf 919247 916685 384563 29693 109620 521.6

Depth 1064614 1061916 443428 60 128297 577.21

KOW Reject1 991981 989405 4213704 7090 120122 549.05

Reject2 1008433 1005877 420077 1043 121669 547.48

Rejecth 953660 951096 398016 420 113469 583.07

Bf 17642 16664 6590 544 2158 2.06

Depth 16972 15994 6336 15 2075 1.98

WK Reject1 16680 15702 6225 657 2039 1.96

continue on the next page
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continued from previous page

Problem Strategy Feval Geval Heval Length Iteration Time

Reject2 16935 15957 6321 42 2071 1.96

Rejecth 16972 15994 6336 539 2075 1.99

The Problems listed above can be grouped in two categories, easy and hard

problems. Easy problems are at beginning of the tables and hard problems at

the end. Easy problems typically require less that 500 iterations.

We see that for easy problems there is not a great difference between various

strategies except for L12, where the depth-first is much slower than the other

strategies. For these problems the best-first and the reject1 are a bit better

than other strategies. For hard problems we see that reject2, depth-first and

the hybrid strategy are better than best-first and reject-index1. This is because

the list became large and the algorithm spends a great part of time handling

the list. We see that, in general, rejecth realizes a better compromise.

In Table 2.2 the influence of the length of the list is reduced by the use of

the heap. We see that in general depth-first and reject2 are worse than other

strategies. The best-first and rejecth show in general the best performances.

To conclude this part, we may say that the hybrid strategy seems to compete

with the best-first and the reject-index, but it is too much problem-dependent.

This hybrid strategy could be improved if one could find a better switching

metric. Using a heap, the time spent to handle the list is made smaller, and

then the best-first is to prefer to the other strategies.

Another important point of Algorithm 1 is the way one subdivides the box and

the number of parts the box is subdivided into.

2.4.6 Subdivision strategies

In each iteration step, Algorithm 1 computes enclosures for the objective func-

tion and enclosures for its gradient and Hessian over the current box, provided

f is sufficiently smooth. The smaller a box, the smaller the overestimation of

the range of these quantities. It follows that the algorithm is efficient when

the box is small. There are two aspects one muss take into consideration when

splitting (subdividing) the box, namely, the direction or the coordinate and the

number of subboxes to produce. We first discuss the subdivision direction and

then the number of subdivision parts.

Choice of the subdivision direction

In the literature one distinguishes two strategies to find the direction where to

split the box.
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Strategy A: The largest edge. This is the widely and traditionally used

subdivision strategy: It is also the one we assumed when deriving the conver-

gence results in Proposition 2 and 3. The box is subdivided along the coordinate

with maximal interval width. It means that the algorithm computes the width

w([x]) = (w([x]1, . . . , [x]n))

of the box [x] and chooses the coordinate d for which

w([x]d) =
n

max
i=1

w([x]i).

The box is split orthogonally to this direction. The idea with this strategy is

that splitting this way leads to boxes with shapes close to a cube, the width of

which possibly tends to zero fast. In this way one gets good enclosures of the

global minimizers and, hopefully, a good enclosure for the range of the function

over the boxes as well. For more details about this strategy see [46].

Now suppose we have the following objective function

f(x1, x2) = x2
1 + 1. (2.7)

Suppose we want to find its global minimum in the box [x] = [−2, 3]× [−2, 3].

If strategy A is applied, then the box would be split in the second direction

x2 as often as in the first direction . Since this function does not vary in the

second direction, splitting in this direction would not help in the search for the

minimum. This remark leads to a refined subdivision strategy developed by

Hansen [16].

Strategy B: Where the function varies the most. This strategy is de-

scribed in details in Hansen’s book [16], paragraph 9.13. Here we give an

overview.

Let

fi(t) = f(x1, . . . , xi−1, t, xi+1, . . . , xn), i = 1, . . . , n,

where xj = m([xj]). As a measure of how much f varies as xi varies over [x]i,

we could use

Wi = max
t∈[x]i

fi(t)− min
t∈[x]i

fi(t).

It would be reasonable to split along the jth component of [x] where j is chosen

such that Wj = max{Wi, i = 1, . . . , n}. Since determining Wi is another

optimization problem, it would be expensive to try to find this quantity exactly.

But since (Wi) can be estimated by

Wi ≤ w(F ′i ([x])).w([x]i),
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which immediately follows from the mean value form, one can use the quantity

in the right side of the inequality to determine the coordinate to split.

Strategy B thus defines the metric function

di = w(F ′i ([x])).w([x]i)

and it chooses the direction d where this quantity is maximal, i.e.

w(F ′d([x])).w([x]d) =
n

max
i=1

w(F ′i ([x])).w([x]i).

The box is split in the direction d. Strategy B requires the computation of the

gradient, but this value is already available if one uses accelerating devices we

will present later. In the definition of di the width could be replaced by the

absolute value, in this case one has

di = |F ′i ([x])|.w([x]i).

Now the direction where the function is steepest is chosen.

Using Strategy B on the example above one sees that, since F ′2([x]1, [x]2) = 0,

the first direction will almost always be favored for splitting subboxes.

Next, we present strategies for the number of subdivision parts.

Number of subdivision parts

Fig. 2.2: bisection (left) and multiselection (right)

The problem addressed here is to determine the number of times a box should be

subdivided at each iteration. If a box is split once then one obtains a bisection.

If the box is split more than once during an iteration then one is doing a

multisection. Figure 2.2 shows an example of bisection and of multisection.

The idea of multisection originates from the parallelization of methods for global

optimization. Since multisection generates many boxes, this is advantageous

to avoid idle processors, i.e. processors having no boxes to work on. This

strategy is now used in the serial case too. Suppose that during an iteration the

algorithm splits the current box [x] into [x]1, . . . , [x]n. Then progress is made if
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some of the new boxes [x]i can be discarded due to the cut-off test or if [x]1 is

discarded or contracted due to an accelerating device. Just as the cut-off test

the accelerating devices will be more likely to work if the interval extension of

the functions used lead only to an only small overestimation of the respective

ranges. But overestimation gets smaller as boxes become smaller, this is an

advantage of making boxes small rapidly which is achieved by multiselection.

The following algorithms (Algorithm 3 and 2 describe our subdivision strategy

in detail. Algorithm 2 determines l, not necessarily different, directions along

which the boxes will be subdivided in Algorithm 3. If l = 1 it is a bisection, if

l > 1 it is a multisection. If we choose l too large, we generate too many new

boxes. Many authors choose l = 3. We choose in this work l = 2 because we

allow some accelerating devices to split boxes, see Section 2.6 for exmaple.

algorithm 2 Determine directions for subdivision

Input: [x] the box to subdivide, l the number of components

Output: List List of subboxes

compute (di), i = 1, . . . , n, according to the Strategy A or Strategy B

for i = 1 to l do {determine the directions r1, . . . , rl}
ri = min{j ∈ {1, . . . , n} : dj = maxnt=1 dt};
dri = dri/2;

end for

List = Split([x], l, r1, . . . , rl)

algorithm 3 Split

Input: the box [y], number of directions l and directions r1, . . . , rl
Output: List List of subboxes

[u] = [y],

[v] = [y],

[u]rl = [[y]
rl
m([y]rl)], {bisection along direction rl}

[v]rl = [m([y]rl), [y]rl], {bisection along direction rl}
if l = 1 then

List = [u] ∪ [v];

else

List = Split([u], l − 1, r1, . . . , rl−1) ∪ Split([v], l − 1, r1, . . . , rl−1)

end if
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[y][y] [y] [y] [y] [y] [y]1 2 3 4 5 6 7
x

f(x)

f

Fig. 2.3: Illustration of the midpoint test

2.5 Accelerating devices
We understand by accelerating devices all techniques that can speed up the

convergence of Algorithm 1. In the literature there exist accelerating devices

based particularly on the smoothness of the objective function. In the sequel

we give an overview of the accelerating devices according to the smoothness of

the objective function, see [46, 16, 26] for more details.

2.5.1 The cut off test

This test is applied to determine boxes that cannot contain the global minimum.

In fact, this test finds boxes [x] in the working list for which F ([x]) > f̃ ; where

f̃ is the upper bound of the minimum known so far. Since for these boxes we

have

F ([x]) > f̃ ≥ f ∗ = min
x∈[x]

f(x),

they cannot contain a global minimizer and need not be considered further.

Figure 2.3 illustrates this test. In this case the intervals [y]2, [y]4, [y]5, [y]7 should

be discarded. This is one of the cheapest accelerating devices since it requires

no extra computation.

2.5.2 Finding a lower function value

The aim of doing this search is to improve the value of f̃ so that the tests like

the cut-off test based on the knowledge of this value should be more efficient.

The minimum requirement here is that f , the objective function is continuous.

• If f is not differentiable: One can do a grid or line search.
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• If f is a C1 function: There exists many methods in this case. One can

apply the steepest descent method or the conjugate gradient method, for

example to obtain a lower function value.

• If f is a C2 function: In this case Newton-like methods to approximate a

zero of f ′ are favored.

we apply the Newton-like method to do the local search since functions we deal

with are twice differentiable.

2.5.3 The monotonicity test

[y] [y]1 2 [y]3 [y]4 [y]5 [y]6

f(x)

xx x

Fig. 2.4: Illustration of the monotonicity test

The monotonicity test determines whether the function f is strictly monotone

on the current box [y] ⊂ [x]0. If f is strictly monotone in [y], then [y] cannot

contain a global minimum in its interior. Therefore, the algorithm deletes all

boxes which satisfies

0 /∈ F ′([y]), i.e. 0 /∈ F ′i for an i ∈ {1, . . . , n}

with the exception of the boundary points of [x] if those are also boundary

points of the starting box. Figure 2.4 illustrates this test. Here the function

is strictly monotone on the intervals [y]1, [y]4 and [y]6 but only [y]4 should be

discarded since y
1

= x and y6 = x.

2.5.4 The convexity test

For this test it is assumed that the function is in C2. This test examines whether

the function is convex. If the function is not convex in a subbox [y] ⊂ [x], then

[y] cannot contain a global minimizer in its interior. A necessary and sufficient

condition for a function f to be convex is that its hessian matrix should be
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positive semidefinite, and this requires the elements on the diagonal to be all

nonnegative. Therefore, this test checks for a box [y] whether

F ′′([y])ii < 0

for some i ∈ {1, . . . , n}. If this is the case, [y] is discarded, with exception of its

boundary points if these are also boundary points of the starting box. Figure

2.5 demonstrates the convexity test. Here the function is not convex in [y]1, [y]3
and [y]4, but since y4 = x, [y]4 can be reduced to x.

x

f(x)

[y] [y] [y] [y]4x x1 2 3

Fig. 2.5: Illustration of the convexity test

2.5.5 The Interval Newton Step

One way to solve the global optimization problem could be to first determine

all stationary points, i.e to solve the system of equations

f ′(x) = 0, x ∈ [x0]. (2.8)

One can then evaluate f over all stationary points of the function and choose

the smallest. The interval Newton step is based on this observation in the sense

that it determines a part of the current box [x] which is guaranteed to contain

all stationary points of f in [x].

The interval Newton step is one of the most important accelerating devices. The

difference with other discarding tests is that this is not an all or nothing test.

Applying this test on a box, the box can be deleted, the box can be contracted

or the box can be split. This is in contrast to the other tests, where the box is

either deleted or it is conserved.

The interval Newton test is also the computationally most expensive test since

it requires an interval evaluation of the Hessian matrix and the solution of an

interval linear system, etc. For this reason we apply only one iteration of an
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interval Newton method to solve the system of equations (2.8). Another reason

why we do not iterate until convergence is that the boxes produced at a certain

stage of the iteration would be discarded by other less expensive tests. We now

give a brief description of that variant of the interval Newton method we use

here; for more details one can refer to [16, 11, 26, 34].

Nonlinear systems of equations

Let f : Rn → Rn be a continuously differentiable function. The problem ad-

dressed here is to solve the system of equations f(x) = 0 in a box [x]. For non

interval methods it can sometimes be difficult to find one solution, quite difficult

to find all solutions, and often impossible to know whether all solutions have

been found. Using interval methods, it is on the other hand easy to compute a

collection of subboxes of [x] known to contain all zeros of f . Here we present

briefly how this is done.

Let Jf denote the Jacobian matrix of f . From the mean value theorem we have

f(c)− f(x∗) = Jf(ξ) · (c− x∗),

where

Jf(ξ) = (f ′1(ξ1), . . . , f ′n(ξn))T ,

x∗, c ∈ [x], ξ = (ξ1, . . . , ξn)

and

ξi ∈ [x] for i = 1, . . . , n.

Usually one takes c = m([x]). If we assume x∗ to be the a zero of f , we get

f(c) = Jf(ξ) · (c− x∗). (2.9)

If we assume Jf(ξ) ∈ Rn×n and all real matrices in an inclusion function

Jf([x]) ∈ IRn×n for Jf to be non singular, we have, e.g.

x∗ = m([x])− (Jf (ξ))−1 · f(m([x]))

∈ c− [B] · f(m([x])),︸ ︷︷ ︸
N([x])

where

[B] ⊇ {A−1, A ∈ Jf([x])}.
Relation 2.9 is at the basis of many Newton-like interval methods. The vec-

tors ξ1, . . . , ξn are unknown, but they are contained in the interval vector [x].

Therefore, knowing an interval enclosure for Jf(x), x ∈ [x], we can exploit the
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above relation to compute an interval vector containing x∗. One computes an

enclosure of the set of solutions x∗ of the linear systems

f(m([x])) = A · (m([x])− x∗), (2.10)

where

A ∈ {Jf(ξ), ξi ∈ [x], for i = 1, . . . , n}.
Usually, an inclusion function for Jf (x) being available, one takes

A ∈ Jf ([x]) ∈ IRn

since

{Jf(ξ), ξi ∈ [x], for i = 1, . . . , n} ⊂ Jf([x]).

We are therefore interested in computing an interval enclosure for the solution

set

S = {x ∈ [x] : ∃A ∈ Jf([x]). s.t. f(m([x])) = A · (m([x])− x∗)} ,

and we know that x∗ ∈ S. Abusing notation and terminology we say that an

interval vector [y] solves the linear interval system

f(m([x])) = Jf ([x]) · (m([x])− x∗)

if [y] ⊇ S.

As a preconditioner for the systems (2.10), one usually takes the numerically

computed inverse R ∈ Rn×n of m(Jf ([x])). This will also be the choice in this

work.

Doing so (2.10) is restated as

R · f(m([x])) = R · A · (m([x])− x∗). (2.11)

The idea is that one has

R · (Jf([x])) = R · (Jf ([x])−m(Jf([x])) +m(Jf ([x])))

= R ·m(Jf ([x])) +R · (Jf ([x])−m(Jf ([x])))

' I +R · (Jf ([x])−m(Jf([x]))).

If one sets b = R · f(m([x])), [A] = R · Jf([x]) and c = m([x]), Equation (2.11)

becomes the linear interval systems

b = [A] · (c− x∗). (2.12)

We apply the Gauss-Seidel iteration to solve the system of equations (2.12)
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Gauss-Seidel Iteration

We give a brief description taken from book the [11]. For more details about

this topic we refer to [16] or [46]. We are interested in the solution set

S := {x ∈ [x] : A · (c− x) = b, for A ∈ [A]}

of the interval linear equation

[A] · (c− x) = b.

The Gauss-Seidel iteration is obtained by writing the linear system A·(c−x) = b

componentwise as

n∑

j=1

Aij · (cj − xj) = bi, i = 1, . . . , n, (2.13)

and solving the ith equation for the ith variable, assuming that Aii 6= 0. Then

we have

xi = ci − (bi +
n∑

j=1
j 6=i

Aij · (xj − cj))/Aii.

Since we are interested in all possible solutions of (2.13) for all A ∈ [A], i =

1, . . . , n, the inclusion property of interval arithmetic gives

xi ∈ ci − (bi +

n∑

j=1
j 6=i

[Aij] · ([xj]− cj))/[Aii]

︸ ︷︷ ︸
=:[z]i

, i = 1, . . . , n, (2.14)

provided 0 /∈ [A]ii. The new enclosure [z] for the solution set S can therefore be

obtained from [x] by computing the interval vector components [z]i according

to (2.14) yielding

S ⊆ [z] ∩ [x].

The Gauss-Seidel approach uses the fact that it is possible to improve the en-

closures [z] since at the ith step improved enclosures [z1], . . . , [zn] are already

available. Thus, we compute

[y]i :=

(
ci −

(
bi +

Pi−1
j=1[A]ij ·([x]j−cj)+

Pn
j=i+1[A]ij ·([x]j−cj)

[A]ii

))
∩ [x]i (2.15)

and we get

NGS([x]) := [y].
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Accordingly, we have

S ⊆ NGS([x]) ⊆ [z] ∩ [x],

and turning back to our initial definition of [A], b and c, we know that every

zero of f lying in [x] also lies in NGS([x]). The interval Newton Gauss-Seidel

iteration starts with an interval vector [x](0) and iterates according to

[x]k+1 := NGS([x](k)), k = 0, 1, 2, . . . .

The intersection performed in (2.15) prevents the method form diverging. If an

empty intersection occurs it means that the function f has no zero in [x].

If 0 ∈ [A]ii for some i, then the extended interval arithmetic presented in Sec-

tion 1.1 is applied. In this case the division could produce two intervals and

the iteration should continue with these two intervals, details will be given in

Algorithm 4.

The following theorem summarize the properties of the iteration (2.15).

Theorem 9 Let f : D ⊆ R → R be a continuously differentiable function and

let [x] ∈ IRn be an interval vector with [x] ⊆ D. Then NGS([x]) defined by

(2.15) has the following properties:

1. Every zero x∗ ∈ [x] of f satisfies x∗ ∈ NGS([x]).

2. If NGS([x]) = ∅, then there exists no zero of f in [x].

3. If NGS([x]) ⊂
◦

[x], then there exists a unique zero of f in [x] and hence in

NGS([x]).

For a proof see [16].

The way in which [y]i is computed in (2.15) distinguishes the various interval

Newton methods. So also does the way in which [A] is defined. There ex-

ist many variations of interval Newton methods among which the Krawczyk’s

method, and the Hansen-Greenberg’s method, see [46, 16]. We now formulate

an algorithm implementing one step of the Gauss-Seidel iteration.

Algorithm 4 first performs the single component steps of the Gauss-Seidel iter-

ations for all i with 0 /∈ [A]ii and then for the remaining indices with 0 ∈ [A]ii.

Using this strategy, it is possible that the interval [y]i become smaller by inter-

sections with the old values [y]i before the first splitting, due to 0 ∈ [Aii], is

produced.
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algorithm 4 NewtonStep

Input: f : the function, [y] : the box, Jf : inclusion function for the jacobian.

Output: p the number of resulting subboxes, V the set of sub-

boxes.

c = m([y]); {compute the midpoint of [y]}
R = (m(Jf([y])))−1 {inverse of the midpoint matrix as preconditioner }
if m(Jf ([x])) singular then

R = I {R equals the identity}
end if

[A] = R · Jf([y]); [b] = R · f(c); [yc] = [y]− c; p = 0;

for i = 1 to n do

if 0 /∈ [Aii] then

[y]i := (ci − (bi +

n∑

j=1
j 6=i

[A]ij · ([y]j − cj))/ [A]ii) ∩ [y]i

if [y]i = ∅ then

p = 0; return ; {no solution in [y]}
end if

[yc]i = [y]i − ci;
end if

end for

for i = 1 to n do

if 0 ∈ [Aii] then

[z] := (ci − (bi +

n∑

j=1
j 6=i

[A]ij · ([y]j − cj))/[A]ii) ∩ [y]i; {[z] = [z]1 ∪ [z]2}

if [z] = ∅ then

p = 0; return {no solution in [y]}
end if

[y]i = [z]1; [yc]i = [y]i − ci;
if [z]2 6= ∅ then

p = p+ 1; [V ]p = [y]; [V ]pi = [z]2; { store part of [y] ∈ [V ]p}
end if

end if

end for

p = p + 1; [V ]p = [y];

return [V ], p;
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2.5.6 Position of accelerating devices

Many of the values computed during one step of Algorithm 1 can be reused

during other steps, therefore the position of each step in the algorithm is of

particular importance.

If one uses the first order Taylor form as the inclusion function of the objec-

tive function, then the enclosure of the gradient can be reused to perform the

monotonicity test. If the second order Taylor form is used, then the enclosure

of the Hessian matrix can be reused in the concavity test. The interval Newton

iteration is placed after the convexity test, so that the Hessian matrix can be

reused.

We present in the next section a new accelerating device based on the one-

dimensional Newton iteration.

2.6 A new accelerating device
The aim of this accelerating device is to remove parts of boxes which cannot

contain global minimizers.

We try to compute an interval vector containing the set

S = {x ∈ [x] : f(x) ∈ [f ∗]}, (2.16)

where [f ∗] is an interval known to contain the global minimum. For example,

we can take

[f ∗] = (−∞, f̃ ]

or

[f ∗] = [f, f̃ ],

where f̃ is the so far known best upper bound for the global minimum and f is

a lower bound. One can take, for example,

f = min
[y]∈L

F ([y])

or

f = F ([x]0).

The idea behind our new accelerating device is rather simple. If S is not empty,

then there exists x ∈ [x] and f̂ ∈ [f ∗] such that

g(x) := f(x)− f̂ = 0.

Knowing the enclosure function G([x]) = F ([x]) − [f ∗] for g, we now apply a

Newton-like iteration to find a zero of g.
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2.6.1 A method based on a 1-dimensional Newton step

Let f : B ⊆ Rn → IR be differentiable, let [f ∗] be an interval. Assume that

there is some x̂ with

f(x̂) = f̂ ∈ [f ∗].

Let m denote any fixed vector in [x], for example m = m([x]). Moreover, let

i ∈ {1, . . . , n} be a fixed direction. Then, by the mean value theorem

f(x̂)− f(x̂1, . . . , x̂i−1, mi, x̂i+1, . . . , x̂n) =
∂f(ξ)

∂xi
· (x̂i −mi), (2.17)

where

ξ = (x̂1, . . . , x̂i−1, ξi, x̂i+1, . . . , x̂n), ξi ∈ [xi].

If [gi] is an interval such that

[gi] ⊇
{
∂f(y)

∂xi
, y ∈ [x]

}

we have, solving (2.17) for x̂i

x̂i = mi −
f(x̂1, . . . , x̂i−1, mi, x̂i+1, . . . , x̂n)− f(x̂)

∂f(ξ)
∂xi

∈ mi −
f(x̂1, . . . , x̂i−1, mi, x̂i+1, . . . , x̂n)− f(x̂)

[gi]
.

If F is an inclusion function for f , then we can use

f(x̂1, . . . , x̂i−1, mi, x̂i+1, . . . , x̂n) ∈ F ([x1], . . . , [xi−1], mi, [xi+1], . . . , [xn])

and

f(x̂) ∈ [f ∗]

to obtain

x̂i ∈ mi −
F ([x1], . . . , [xi−1], mi, [xi+1], . . . , [xn])− [f ∗]

[gi]
.

We thus have proved the following lemma.

Lemma 2 Let f : B ⊂ Rn → R be differentiable, let [x] ∈ IRn, [x] ⊆ B and

[f ∗] ∈ IR. Consider

S = {x ∈ [x] : f(x) ∈ [f ∗]}.
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If i is any direction, i ∈ {1, . . . , n} then

S ⊆ ([x1], . . . , [xi−1], [x̂i], [xi+1], . . . , [xn]),

with

[x̂i] =

{
mi −

F ([x1], . . . , [xi−1], mi, [xi+1], . . . , [xn])− [f ∗]

[gi]

}
∩ [xi],

where

F ([x1], . . . , [xi−1], mi, [xi+1], . . . , [xn])

is an inclusion function for

f(x1, . . . , xi−1, mi, xi+1, . . . , xn)

and [gi] is an interval containing the i-th partial derivatives,

[gi] ⊇
{
∂f(y)

∂xi
, y ∈ [x]

}
.

The result of this lemma yields the following procedure. Here, we use the

notation G(x) to denote the function

G : [xi] −→ IR,
G(t) = F ([x1], . . . , [xi−1], t, [xi+1], . . . , [xn])− [f ∗].

(2.18)

Procedure

1. choose a direction i, 1 ≤ i ≤ n.

2. apply one step of a formal interval Newton method to G from (2.18). i.e.

[x̂i] =

{
mi −

G(mi)

[gi]

}
∩ [xi], (2.19)

where mi ∈ [xi] and [gi] is an interval containing

∂f(x)

∂xi
for all x ∈ [x].

3. replace [xi] by [x̂i]

Note that we can take [gi] = F ′i ([x]), the i-th component of the inclusion function

of the gradient of f , a quantity which has usually already been computed in

the global optimization algorithm in order to perform the monotonicity test, for

example. Thus the Newton step above is indeed cheap computationally.

The following situations can occur doing this iteration:
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1. The intersection is empty, meaning that there is no x ∈ [x] with f(x) ∈
[f ∗]. Consequently, the whole box [x] should no longer be considered for

the search of minimum points (global minimizers).

2. From an interval [xi] one obtains an interval [x̂i] with [x̂i] ⊂ [x]i. In this

case the search should continue with the smaller box

[x]′ = ([x1], . . . , [xi−1], [x̂i], [xi+1], . . . , [xn]) ⊂ [x].

3. From [xi], due to extended interval arithmetic, one obtains two intervals

[x̂i1 ] and [x̂i2 ] with [x̂i1 ] ⊂ [xi] and [x̂i2 ] ⊂ [xi]. In this case the search

continues with these two boxes,

[x]′ = ([x1], . . . , [xi−1], [xi1 ], [xi+1], . . . , [xn]) ⊂ [x]

[x]′′ = ([x1], . . . , [xi−1], [xi2 ], [xi+1], . . . , [xn]) ⊂ [x].

4. From the interval [xi] one obtains [x̂i] as the interval [x̂i] = [xi]. This is

the unfavorable case since we have no improvement. One should try to

avoid this situation for example by choosing an appropriate direction i as

we will discuss later.

Before we discuss some properties of (2.19), let’s take some examples.

Example 5 f(x) = x2
1 − x1 + x2

2 − 1, [x1] = [x2] = [1, 3], [f ∗] = [−1, 1]

1 We choose the first direction, i.e. i = 1,

2 We obtain the function G(x1) = f(x1, [1, 3])− [−1, 1] = x2
1−x1 +[−1, 9],

3 with ∂f(x)
∂x1

= 2x1 − 1 ∈ [1, 5] =: [g1] for x1 ∈ [x1] and

m([x1]) =
1

2
(x1 + x1) = 2,

we obtain

G(2) = [1, 11]

and

[x̂1] =

{
2− [1, 11]

[1, 5]

}
∩ [1, 3] = [−8,

8

5
] ∩ [1, 3] = [1,

8

5
].

Example 6 f(x) = x2
1 − 2x1 + 2x2 + 2, [x1] = [x2] = [0, 2], [f ∗] = [0, 0]
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1 We choose again i = 1,

2 We obtain the function G(x1) = f(x1, [0, 2]) = x2
1 − 2x1 + [2, 6],

3 with ∂f(x)
∂x1

= 2x1 − 2 ∈ [−2, 2] =: [g1] for x1 ∈ [x1] and

m([x1]) =
1

2
(x1 + x1) = 1,

one obtains

G(1) = [1, 5]

and

[x̂1] =

{
1− G([1, 1])

[−2, 2]

}
∩ [1, 3] = [0,

1

2
] ∪ [

3

2
, 2].

One more iteration with the interval [0, 1
2
] or [3

2
, 2] yields the empty set, proving

that there is no point x with f(x) = 0 in the box [0, 2]2.

Example 7 f(x) = ex1 − x1 · x2 − 2, [x1] = [x2] = [−2, 2], [f ∗] = [−2, 2]

1 We choose now the second direction, i.e. i = 2,

2 We obtain the function

G(x2) = f([−2, 2], x2) = [e−2 − 2, e2 − 2]− x2 · [−2, 2].

3 with ∂f(x)
∂x2

= −x1 ∈ [−2, 2] for x2 ∈ [x2] and

m([x2]) =
1

2
(x1 + x1) = 0,

one obtains

G(0) = [e−2 − 2, e2 − 2]

and

[x̂2] =

{
0− [e−2 − 2, e2 − 2]

[−2, 2]

}
∩ [−2, 2] = [−2, 2].

Here we obtained no improvement.

We now discuss properties of [x̂i].
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2.6.2 Properties of [x̂i] in (2.19)

Let’s consider equation (2.19)

[x̂i] =

{
mi −

G(mi)

[gi]

}
∩ [xi], (2.20)

The aim of this part is to explicitly compute the bounds of [x̂i]. To estimate the

improvement obtained, we compare the width of [x̂i] with the width of [xi]. For

the sake of notational simplicity, we put [gi] = [g1, g2] and mi = m([xi]) = m.

We also drop the index i.

case 1: g1 > 0. We have to distinguish three cases, since G(m) is an interval

and not a point (degenerated interval) as it would be the case in the classic

interval Newton iteration.

1. G(m) > 0, i.e. G(m) > 0.

[x̂] = {m−G(m)/[g]} ∩ [x, x]

=

{
m−

[
G(m)

g2
,
G(m)

g1

]}
∩ [x, x]

=

[
m− G(m)

g1
, m− G(m)

g2

]
∩ [x, x]

=

[
max

{
x, m− G(m)

g1

}
, min

{
x, m− G(m)

g2

}]

=

[
max

{
x, m− G(m)

g1

}
, m− G(m)

g2

]
.

This gives

w([x̂]) =

{
1
2
w([x])− G(m)

g2
, if x ≥ m− G(m)

g1
,

G(m)
g1
− G(m)

g2
, otherwise.

2. G(m) < 0, the same development yields

[x̂] =

[
m− G(m)

g2
, min

{
x, m− G(m)

g1

}]

and

w([x̂]) =

{
1
2
w([x]) + G(m)

g2
, if x ≤ m− G(m)

g2
,

G(m)
g2
− G(m)

g1
, otherwise.
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3. 0 ∈ G(m). Then

[x̂] = {m−G(m)/[g]} ∩ [x, x]

= {m− [G(m), G(m)]/[g]} ∩ [x, x]

=

[
max

{
x, m− G(m)

g1

}
, min

{
x, m− G(m)

g1

}]

and we get

w([x̂]) =





w([x]), if x ≥ m− G(m)
g1

and x ≤ m− G(m)
g1

1
2
(w([x])) + G(m)

g1
, if x ≤ m− G(m)

g1
and x ≤ m− G(m)

g1

1
2
(w([x]))− G(m)

g1
, if x ≥ m− G(m)

g1
and x ≥ m− G(m)

g1

w(G(m))
g1

, if x ≤ m− G(m)
g1

and x ≥ m− G(m)
g1

case 2: [g] < 0, i.e. g2 < 0. One obtains, proceeding as above, the following

results.

1. G(m) > 0.

[x̂] =

[
m− G(m)

g1
, min

{
x, m− G(m)

g2

}]

and

w([x̂]) =

{
1
2
w([x]) + G(m)

g1
, if x ≤ m− G(m)

g2
,

G(m)
g1
− G(m)

g2
, otherwise.

2. G(m) < 0.

[x̂] =

[
max

{
x, m− G(m)

g2

}
, m− G(m)

g1

]
.

and

w([x̂]) =

{
1
2
w([x])− G(m)

g1
, if x ≥ m− G(m)

g2
,

G(m)
g2
− G(m)

g1
, otherwise.

3. 0 ∈ G(m). Then

[x̂] =

[
max

{
x, m− G(m)

g2

}
, min

{
x, m− G(m)

g2

}]

and we get

w([x̂]) =





w([x]), if x ≥ m− G(m)
g2

and x ≤ m− G(m)
g2

1
2
(w([x])) + G(m)

g2
, if x ≤ m− G(m)

g2
and x ≤ m− G(m)

g2

1
2
(w([x]))− G(m)

g2
, if x ≥ m− G(m)

g2
and x ≥ m− G(m)

g2

w(G(m))
g2

, if x ≤ m− G(m)
g2

and x ≥ m− G(m)
g2
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case 3: 0 ∈ [g], i.e. g1 ≤ 0 ≤ g2. This is actually the case we will have

in a global optimization algorithm, since otherwise the function is monotone in

direction i on the current box and the box should be discarded with exception

of its boundary points. Equation (2.19) can be written as

[x̂] = N(x, [x]) ∩ [x] = {m−G(m)/[g]} ∩ [x, x]

By the properties of extended interval arithmetic one obtains

• if 0 ∈
◦
G(m) then G(m)/[g] = [−∞, +∞] and [x̂] = [x].

• G(m) ≤ 0 and g2 = 0, then

[x̂] = {{m−G(m)/[g]} ∩ [x, x]}

= {m− [
G(m)

g1
, +∞]} ∩ [x, x]

= [x, min{x, m− G(m)

g1

}]

= [x, m− G(m)

g1
]

which gives

w([x̂]) =
1

2
(w([x]))− G(m)

g1
≤ 1

2
(w([x])).

• if G(m) ≤ 0 and g1 = 0, then

[x̂] = {m−G(m)/[g]} ∩ [x, x]

= {m− [−∞, G(m)

g2
]} ∩ [x, x]

= [max{x, m− G(m)

g2

}, x]

= [m− G(m)

g2
, x],

which gives

w([x̂]) =
1

2
(w([x])) +

G(m)

g2

≤ 1

2
(w([x])).
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• if G(m) ≥ 0 and g2 = 0, then

[x̂] = {{m−G(m)/[g]} ∩ [x, x]

= {m− [−∞, G(m)

g1
]} ∩ [x, x]

= [max{x, m− G(m)

g1
}, x]

= [m− G(m)

g1
, x],

which gives

w([x̂]) =
1

2
(w([x])) +

G(m)

g1
≤ 1

2
(w([x])).

• if G(m) ≥ 0 and g1 = 0, then

[x̂] = {{m−G(m)/[g]} ∩ [x, x]

= {m− [
G(m)

g2

, +∞]} ∩ [x, x]

= [x, min{x, m− G(m)

g2

}]

= [x, m− G(m)

g2

]

which gives

w([x̂]) =
1

2
(w([x]))− G(m)

g2

≤ 1

2
(w([x])).

• G(m) ≤ 0 and g1 < 0 < g2, then

[x̂] = {m−G(m)/[g]} ∩ [x, x]

= {m− ([−∞, G(m)

g2

] ∪ [
G(m)

g1

, ∞])} ∩ [x, x]

= [max{x, m− G(m)

g2
}, x] ∪ [x, min{x, m− G(m)

g2
}]

= [m− G(m)

g2
, x] ∪ [x, m− G(m)

g1
] = [x̂]′ ∪ [x̂]′′.
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• G(m) ≥ 0 , g1 < 0 < g2

[x̂] = {{m−G(m)/[g]} ∩ [x, x]}

= {m− ([−∞, G(m)

g1
] ∪ [

G(m)

g2
, ∞])} ∩ [x, x]}

= [max{x, m− G(m)

g1

}, x] ∪ [x, min{x, m− G(m)

g2

}]

= [m− G(m)

g1

, x] ∪ [x, m− G(m)

g2

] = [x̂]′ ∪ [x̂]′′.

We sum up these computations in the following lemma.

Lemma 3 Assume that 0 is not in the interior of G(m), then

i If 0 lies on the boundary of [g], then N(m, [x]) is a (possibly empty) in-

terval [x̂] with

w([x̂]) ≤ 1

2
w([x]).

ii If 0 lies in the interior of [g] and 0 /∈ G(m), then N(m, [x]) is the union

of two (possibly empty) intervals [x̂]′, [x̂]′′ and

w ([x̂]′) < 1
2
w([x])

w([x̂]′′) < 1
2
w([x]).

In the case that 0 lies in the interior of [g] and G(m), then we have

N(m, [x]) = [x].

It would be interesting if one could choose a direction i so as to have the quantity
G(m)
g1
− G(m)

g2
or G(m)

g2
− G(m)

g1
minimized without calculating G(m(x)) for each

direction. An indicator could estimate this quantity. We don’t know so far how

to do it.

The aim of this new test is not to iterate the procedure until a an eventual

convergence. We simply apply one step of the procedure to discard, contract or

split the current box in the global optimization algorithm. In the next section

we present the steps of the algorithm with this new test and other discarding

tests.
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2.6.3 A new algorithm for global optimization problems

The following algorithm enhances the basic Algorithm 1 with the new test

one newton test. We take [f ∗] = [−F ([x]0), f̃ ]. If the global minimum f ∗ is

known, we can take [f ∗] = [f ∗, f ∗]. If we take the best-first strategy in line 7,

we can also take [f ∗] = [f, f̃ ] with f = min{F ([y]), [y] ∈ L}.

algorithm 5 A new Interval Branch & Bound Algorithm for Global Optimiza-

tion
1: Input: [x]0 starting box, ε tolerance for the stopping criterion,

2: F inclusion function for f

3: Output: f̃ , approximation for f ∗ and S, list of boxes covering S∗

4: f̃ = F (mid([x]0))

5: initialize work list L = ([x]0, F ([x]0)) , S = ∅
6: while L is not empty do

7: choose a pair P = ([x], F ([x])) from L
8: if stopping criterion holds then

9: insert P into S and goto 6

10: end if

11: f̃ = min{f̃ , F (mid([x]))} {update the minimum}
12: split the box [x] into ([x]1, . . . , [x]n) { sub-dive [x]}
13: compute F ([x]i) for i = 2 . . . n and store ([x]i, F ([x]i)) in L
14: [x]1.monotonicity test()

15: [x]1.one newton test() using [f ∗] = [−F ([x]0), f̃ ] { the new test }
16: [x]1.concavity test()

17: [x]1.newton step()

18: perform cut off test on L
19: insert what remains from [x]1 into L
20: end while

We placed the new test one newton test just after the monotonicity test to reuse

the value [gi] of the computed enclosure of the gradient. The only overhead due

to the new test is the computation of G(m([x])), nevertheless the experimental

results we are presenting in the next section show that it is in general worth

applying this test.

2.6.4 Experimental results and remarks

The new discarding test presented above is similar, to some extends, to slopes

techniques proposed by Ratz, see [44]. It is also similar to the branch-and-prune
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method for global optimization presented in [50]. The first difference between

the new test, the one-newton-test, and these others techniques is that, the

later are for univariate functions. Moreover, the basic idea behind the pruning

technique of Ratz is to incorporate to Algorithm 1 a new discarding test in lieu

of the ”powerful” monotonicity test when the objective function is not smooth.

While, the technique presented here can merely be used as a new discarding

test.

Tables 2.3 and 2.4 show the performance of different versions of Algorithm 1

on some standard test problems. The first version of the algorithm is without

the new test and the second version included this test. In Table 2.4 we suppose

that the global minimum is known, this is the case for some global optimization

problems. We used a heap to manage subproblems. We inserted a box [x] in the

solution list when w(F ([x]) < εF = 10−6, see Section 2.4.1. These experimental

results were carried out on a Pentium-IV machine (2.8 Ghz, 1 Gbyte) under the

Linux operating system. The time unit is the second.

These experimental results show that it is definitely worth considering this test

as a new acceleration device. In many cases when applying the new test, the

performance achieved by the interval global optimization algorithm is better

than the performance obtained by the algorithm without this test. Only in few

cases we observed that, with this test, the algorithm is slower but never signif-

icantly. We have an overall improvement of about 25% when the minimum is

not known and of about 40% when the minimum is known.

This test could also be applied for the set inversion problem and in constraints

propagation, but in this case the algorithm obtained could be less efficient be-

cause one would have to explicitly compute the gradient of the function, which

is not the case in global optimization where one already has the value of the

gradient via the monotonicity test. But if one uses centered forms to compute

the inclusion function then the value of the gradient would be available as well.

To apply this test we choose the directions cyclicly w.r.t the sub-boxes hier-

archy. The test could be more efficient if one would be able to choose a good

direction based on some indicators functions.
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Problems Old (Without the test) New (With the test) Improvement

Iter fEval gEval hEval Time Iter fEval gEval hEval Time

R4 540 1578 1095 463 0.15 466 1725 953 285 0.13 (13.33%)

GP 3895 13517 8010 3506 2.42 3715 14114 7644 3281 1.89 (21.9%)

SHCB 600 1508 1093 355 0.32 515 1563 932 269 0.29 (9.1 %)

MS 358 934 713 209 0.05 358 1066 714 210 0.06 (-1.0 %)

SW 3100 15288 11472 4658 2.03 1819 10332 6876 2766 1.21 (40.39%)

JS 301 1105 787 280 0.24 283 1152 786 276 0.19 (20.83%)

Gro 593 1664 1224 412 1.56 563 1522 826 187 1.54 (1.28%)

Gr0 53 1700 1301 430 2.97 591 2103 1304 433 3.05 (-2.2 %)

HM3 49264 147311 71834 21007 22.61 28959 151534 65727 22609 16.75 (25.91%)

HM3* 425536 1180367 849451 339084 225.95 182602 7366440 357627 138851 109.41 (55.55%)

HM2 28868 85901 45526 14514 10.49 16534 65582 33220 127727 7.04 (32.88%)

HM2* 42710 123443 85623 38220 16.73 22312 89254 44734 16906 9.77 (40.23%)

L3 32596 99100 54678 17769 13.49 17273 71032 37607 13539 8.78 (34.94%)

L3* 119679 358976 252243 112142 58.41 69724 295804 151013 58652 37.45 (36.22%)

L11 20050 59549 38158 17563 28.39 16209 65416 32046 15268 24.89 (12.32%)

KOW 222678 868440 589588 235988 388,71 220758 918781 584696 233850 385.1 (0.92%)

WK 28588 122689 73682 32996 24.43 21054 92408 50229 23288 17.06 (30.16%)

Siirola 2604624 7149394 6107712 2384268 99271.8 1250107 4726341 2677634 1022173 52274.3 (47.34 %)

(25.79%)

Tab. 2.3: Performance of the versions of the algorithm on some standard test problems, the minimum is unknown
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Problems Old (Without the test) New (With the test) Improvement

Iter fEval fEval hEval Time Iter fEval gEval hEval Time

R4 540 1578 1094 463 0.14 423 1620 868 254 0.11 (21.12%)

GP 3895 13517 8010 3506 2.17 3715 14114 7644 3281 2.00 (7.5 %)

SHCB 600 1508 1093 355 0.29 487 1472 879 244 0.26 10.3 %)

MS 358 934 713 209 0.05 358 1066 714 210 0.06 (-1.0 %)

SW 717 3063 1988 817 0.33 427 2078 1209 494 0.19 (42.43%)

JS 301 1105 787 280 0.19 273 1119 768 270 0.19 (0.0%)

Gr0 53 1700 1301 430 2.97 591 2103 1304 433 3.05 (-2.2 %)

HM3 49264 147311 71834 21007 22.61 17594 67531 33378 12395 9.74 (56.92%)

HM3* 425536 1180367 849451 339084 227.95 153840 572079 298225 102989 86.5 (60.26%)

HM2 28868 85901 45526 14514 10.41 13234 51628 26477 9521 5.59 (46.30%)

L3 32596 99100 54613 17704 13.8 17065 70202 37108 13358 8.59 (37.759%)

L3* 119679 358976 252243 112142 58.42 68570 290433 148521 57408 34.56 (38.42%)

L11 20050 59549 35770 15491 23.83 2212 9435 4378 2085 3.33 (86.15%)

KOW 222672 867900 588671 235716 383.82 220722 917983 583820 233576 384.85 (-0.26%)

WK 72332 287801 226215 73386 62.09 42834 203533 118318 45643 36.55 (41.11%)

Siirola 1605624 3244694 2207452 1284264 77269.4 850517 1725344 1275435 700134 24537.8 (68.34 %)

(39.17%)

Tab. 2.4: Performance of the versions of the algorithm on some standard test problems, the minimum is known
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This chapter is concerned with the parallelization of the branch-and-bound

algorithm for global optimization presented in the previous chapter. We begin

here with a presentation of parallel computing issues. A few words will be

said about issues such as memory organization, flow control, interconnection

network, etc. The second part of this chapter is about issues in the design of

approaches for the parallelization of the interval global optimization algorithm.

We first present existing methods, then we present a new approach based on

the distribution of the work of the root processor.

3.1 Parallel computing issues
In this part we explain basic issues of parallel computing. We make compar-

isons of parallel computers and describe the hardware characteristics of parallel

computers. For more details one can see [37, 7, 36, 38].

Definition 4 (see [36]) A high performance parallel computer is a computer

that can solve large problems in a much shorter time than a single desktop

computer. These computers are characterized by fast CPUs, large memory, a

high speed interconnect, and high speed input/output. They are able to speed

up computations; both by making the sequential components run faster and by

doing more operations in parallel.

One distinguishes two type of processes, namely, sequential processes and par-

allel processes.

Definition 5 Sequential processes are those that occur in a strict order, where

it is not possible to do the next step until the current one is completed. Parallel

processes are those in which many events happen simultaneously.

There are many examples of such sequential and parallel processes in our daily

live. Let’s look at the parallelism in computer programs. It is well known now

that almost all computer programs can lend themselves to parallelism. One

should only determine which part of the program can be executed simultane-

ously. Given a program that takes a time t to be executed on a single processor

machine, the ideal in parallel computing is to have the program executed in

time t/p on a p processors machine or using p such machines.

To execute a program in parallel, one checks in general whether its program

has independent parts. Part P1 is independent of part P2 if the execution of P1

does not affect P2 and vice versa. One also tries to determine if the data needed

by the program can be processed simultaneously. Dealing with these two issues

is what one calls decomposition. Two types of parallelism therefore exist: Data

parallelism and Task parallelism.
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Data parallelism In data parallelism the same code segment runs concur-

rently on each processor, but each processor is assigned its own part of the data

to work on.

Task parallelism Instead of the same operations being performed on different

parts of the data, each process performs different operations.

3.1.1 Parallelism in computers

Parallelism in computers intervenes at many levels. Parallelism is exploited

at the operating system level, arithmetic units level, and memory and disk

management level to enhance computation.

Performance Measures

There are numerous ways of measuring performance of a parallel computer or

a parallel program. Each performance measure is briefly described.

MFLOPS (Millions of Floating Point Operations Per Second) measures how

quickly a computer can perform floating-point operations such as add, subtract,

multiply, and divide. A gigaFLOPS (GFLOPS) is equal to one billion (109)

floating-point operations per second. A teraFLOPS (TFLOPS) is equal to one

trillion (1012) floating-point operations per second.

Peak Performance is the top speed at which the computer can operate. It is

a theoretical upper limit on the computer’s performance. The speed is usually

measured in MFlops, GFlops or TFlops.

Sustained Performance is the highest consistently achieved speed for a

given application. It is a more realistic measure of computer performance.

Cost Performance is used to determine if the computer is cost effective.

Speedup measures the benefit of parallelism. It shows how a program scales

as it is executed using more processors, compared to the performance on one

processor. Ideal speedup happens when the performance gain is linearly pro-

portional to the number of processors used. Let ts denote the time needed by

a sequential algorithm to solve a problem and tp the time needed by a parallel

algorithm to solve the same problem with p processors. The speedup of this

algorithm with p processors is

S(p) =
ts
tp
.
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Accordingly, one defines the efficiency of this algorithm as

E(p) =
S

p
=

ts
p · tp

.

If E(p) ≥ c > 0 for all p, then one has a linear speedup. E(p) = 1 is the optimal

speed-up. If E(p) > 1, then one has a superlinear speedup. A superlinear

speedup is unusual and indicates that the sequential algorithm can be improved.

For efficient serial algorithms, a superlinear speedup is typically due to the fact

that intensive memory requirements are handled more efficiently in parallel.

Benchmarks are used to rate the performance of parallel computers and

parallel programs. A well known benchmark that is used to compare par-

allel computers is the Linpack benchmark. Based on the Linpack results,

the Top 500 Supercomputer list is produced biannually. This list is main-

tained by the University of Tennessee and the University of Mannheim. See

http://www.top500.org/.

Load balancing is all about keeping processors busy by efficiently distribut-

ing the workload. In particular, an optimal load balancing method will have

the following general characteristics:

• computation is equally distributed across all processors

• throughput of all applications in the system is maximized

• response time of single requests is optimized

• task scheduling achieves the quickest execution of all tasks

3.1.2 Comparison of Parallel Computers

Parallel computers can be classified according to:

• number and type of processors

• memory organization

• flow of control

• interconnection networks
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Processors

One can distinguish three situations:

1. Computers with a small number of extremely powerful (vectors) proces-

sors. typically some tens of processors. The cooling of these computers

often requires very sophisticated and expensive equipment, making these

computers very expensive for computing centers.

2. Computers with a large number of less powerful processors. Often named

a Massively Parallel Processor (MPP). They typically have thousands of

processors. The processors are usually proprietary and air-cooled. Be-

cause of the large number of processors, the distance between the farthest

processors can be quite large requiring a sophisticated internal network

that allows distant processors to communicate with each other quickly.

These computers are suitable for applications with a high degree of con-

currency.

3. Computers that are medium scale in between the two extremes. Such

medium scale computers typically have hundreds of processors. The pro-

cessor chips are usually not proprietary; rather they are commodity pro-

cessors like the Pentium IV. These are general-purpose computers that

perform well on a wide range of applications. The most common example

of this class are Linux Clusters, like ALICEnext, the 1024 AMD opteron

processor cluster at the university of wuppertal. For more details see

http://www.alicenext.uni-wuppertal.de/.

Memory Organization

One finds three types of memory organization on parallel computers:

1. distributed memory

2. shared memory

3. distributed shared memory

Distributed memory In distributed memory computers, the total memory

is partitioned into memory that is private to each processor. There is a Non-

Uniform Memory Access time (NUMA), which is proportional to the distance

between the two communicating processors. On NUMA computers, data is ac-

cessed the quickest from a processor’s own private memory, while data from the

most distant processor takes the longest to access. Some examples of distributed
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memory parallel computers are the Cray T3E, the IBM SP, and workstation clus-

ters.

Processor
1

Processor
2

Processor
3

Memory
1

Memory
2

Memory
3

Network

Fig. 3.1: Distributed memory computer

Distributed memory computers use message passing such as MPI to communi-

cate between processors.

One advantage of distributed memory computers is that they are easy to scale.

As the demand for resources grows, computer centers can easily add more mem-

ory and processors. The drawback is that programming of distributed memory

computers can be quite complicated and that the network may become a bot-

tleneck.

Shared memory: In shared memory computers, all processors have access

to a single pool of centralized memory with a uniform address space. Any pro-

cessor can address any memory location at the same speed so there is Uniform

Memory Access time (UMA). Processors communicate with each other through

the shared memory.

Processor
3

Network

MemoryShared

1 2
ProcessorProcessor

Fig. 3.2: Shared memory computer

The advantages and disadvantages of shared memory machines are roughly the
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opposite of distributed memory computers. They are easier to program because

their programming resembles that of single processor machines, but they don’t

scale like their distributed memory counterparts.

Distributed shared memory: In Distributed Shared Memory (DSM) com-

puters, a cluster or partition of processors has access to a common shared mem-

ory. It accesses the memory of a different processor cluster in a NUMA fashion.

Memory is physically distributed but logically shared. Attention to data locality

again is important.

Distributed shared memory computers combine the best features of both dis-

tributed memory computers and shared memory computers. That is, DSM

computers have both the scalability of distributed memory computers and the

ease of programming of shared memory computers. Some examples of DSM

computers are the SGI Origin2000 and the HP V-Class computers.

Network

Cluster 1
Memory

Cluster 2
Memory

Cluster 3
Memory

Cluster 1
Processor

Cluster 3
Processor

Cluster 2
Processor

Fig. 3.3: Distributed shared memory computer

Flow control

According to the control of flow, one has three types of parallel computers:

1. Single Instruction Multiple Data (SIMD)

2. Multiple Instruction Multiple Data (MIMD)

3. Single Program Multiple Data (SPMD)

SIMD Computers: SIMD stands for Single Instruction Multiple Data.

There is a single instruction stream, so that each processor follows the same set

of instructions. But there are multiple data streams, with different data ele-

ments being allocated to each processor. SIMD computers may have distributed

memory with typically thousands of simple processors, and the processors run
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in lock step. SIMD computers, popular in the 1980s, are useful for fine grain

data parallel applications, such as neural networks. Some examples of SIMD

computers were the Thinking Machines CM-2 computer and the computers from

the MassPar company.

Processor I Processor 2 Processor 3

Instructions

Fig. 3.4: SIMD diagram

MIMD Computers: MIMD stands for Multiple Instruction Multiple Data.

There are multiple instruction streams with separate code segments distributed

among the processors. MIMD is actually a superset of SIMD, so that the pro-

cessors can run the same instruction stream or different instruction streams. In

addition, there are multiple data streams; different data elements are allocated

to each processor. MIMD computers can have either distributed memory or

shared memory. While the processors on SIMD computers run in lock step, the

processors on MIMD computers run independently of each other. MIMD com-

puters can be used for either data parallel or task parallel applications. Some

examples of MIMD computers are the SGI Origin2000 computer and the HP

V-Class computer.

SPMD Computers: SPMD stands for Single Program Multiple Data.

SPMD is a special case of MIMD. SPMD execution happens when a MIMD

computer is programmed to have the same set of instructions per processor.

With SPMD computers, while the processors are running the same code seg-

ment, each processor can run that code segment asynchronously. Unlike SIMD,

the synchronous execution of instructions is relaxed. An example is the execu-

tion of an if statement on a SPMD computer. Because each processor computes

with its own partition of the data elements, it may evaluate the right hand side

of the if statement differently from another processor. One processor may take

a certain branch of the if statement, and another processor may take a different

branch of the same if statement. Hence, even though each processor has the

same set of instructions, those instructions may be evaluated in a different order
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from one processor to the next.

SIMD MIDM

Memory distributed memory distributed or shared memory

Code segment same per processor same or different

Processors run in lock step asynchronously

Data elements different per processor different per processor

Applications data parallel data parallel or task parallel

Tab. 3.1: Summary of SIMD versus MIMD

Interconnection Networks

The interconnection network is made up of the wires cables and interfaces that

define how the multiple processors of a parallel computer are connected to each

other and to the memory units. The time required to transfer data is dependent

upon the specific type of the interconnection network. This transfer time is

called the communication time.

Possible network topologies (geometric arrangements of the computer network

connections) are:

• Bus

• Cross-bar Switch

• Hypercube

• Tree

• Mesh or Torus

The aspects of network issues are: cost, scalability, reliability, suitable

applications, data rate, diameter, degree.

Definition 6 (Degree) how many communicating wires are coming out of

each processor. A large degree is a benefit because it allows for multiple paths

in the graph defining the interconnection network.

Definition 7 (Diameter) This is the distance between the two processors that

are farthest apart. A small diameter corresponds to low latency.
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Bus Network: Bus topology is the original coaxial cable-based Local Area

Network (LAN) topology in which the medium forms a single bus to which all

stations are attached.

The benefits of a bus based network are that it is simple to construct. It is also

a mature technology that is well known and reliable. Since bus based networks

are so common, the cost is also very low.

The negative aspects to a bus based network are that it has a limited data

transmission rate. In addition to this the most significant problem is that it is

also not scalable in terms of performance.

When too many processors try to talk to each other over a bus based network,

the communication slows down and slows down the performance of the program.

An example of a computer with this type of network is the SGI Power Challenge.

The Power Challenge only scaled to 18 processors.

Bus

Shared Memory

Processor 1 Processor 2 Processor 4Processor 3

Fig. 3.5: Bus network diagram

Cross-bar Switch Network: A cross-bar switch is a network that works

through a switching mechanism to access shared memory. One benefit is that

it scales better than the bus network but it costs significantly more.

The telephone system uses this type of network. An example of a computer

with this type of network is the HP V-Class. Below is a diagram of a cross-bar

switch network which shows the processors talking through the switch boxes

to store or retrieve data in memory. There are multiple paths for a processor

to communicate with a certain memory. The switches determine the optimal

route to take.

Hypercube Network: In a hypercube network, the processors are connected

as if they were corners of a multidimensional cube. Each node in an N dimen-

sional cube is directly connected to N−1 other nodes. The fact that the number

of directly connected, ”nearest neighbor”, nodes increases with the total size of
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Processor Memory

Processor Memory

Processor Memory

Processor Memory

Fig. 3.6: Cross-bar switch network diagram

the network is also highly desirable for a parallel computer. The degree of a

hypercube network is logn and the diameter is also log n, where n is the number

of processors. Examples of computers with this type of network are the CM-2,

CUBE-2, and the Intel ipso860.

P P

P P

P P

P P

Fig. 3.7: Hypercube network diagram

Tree Network: The processors are the bottom nodes of a tree. For a proces-

sor to retrieve data, it must go up in the network and then go back down.

This is useful for decision making applications that can be mapped as trees. The

degree of a tree network is 3. The diameter of the network is 2 log(n + 1) − 2

where n is the number of processors.
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p p p p p p p p

Fig. 3.8: tree network diagram

Mesh or Torus: In a mesh network, the nodes are arranged in a k dimensional

lattice of width w, giving a total of wk nodes. A torus network is obtained from

a mesh by wraparound connections between nodes at the borders of the mesh.

Schematically we have Figure 3.1.2 and 3.1.2.

P11 P12

P21

P44

Fig. 3.9: 2D mesh network diagram

The ALICEnext case

We want to give here the characteristics of the machine on which the computa-

tion in the parallel case were carried out.

ALICEnext was in summer 2004 the most powerful parallel computer at a Ger-

man university and is now (July 2005) the number 167 in the top500 list.
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P11 P12

P21

P44

Fig. 3.10: 2D torus network diagram

ALiCEnext consists of 1024 AMD-Opteron processors distributed on 512 blades.

On each of these blades one has, two AMD Opteron 1.8 GHz processors, two

250 GB hard discs, two 1024 MByte RAM, 6 x Gigabit-Ethernet connections.

The 512 blades are mounted in 11 towers, 48 blades per tower in 4 rows of 12

blades. The network has two layers. One layer arranges 32 groups of 16 blades

as 2d-toruses. The other is a hierarchical switch-based network with 64-pat

switches arranged in 4 levels.

3.2 Parallel global optimization issues

The algorithm we want to parallelize belongs to the branch-and-bound category.

As was explained in the first chapter, branch-and-bound means that from the

original problem, subproblems, of not necessarily the same size, but of the same

type, are generated. Whereas for many linear algebra problems, the amount of

work at each node can be estimated at the beginning, it is very difficult (almost

impossible) to do the same for branch-and-bound algorithms. This is due to

their irregular and unpredictable computational behavior. It is then clear that

static load balancing which very often is efficient for many linear algebra prob-

lems will tend to be inefficient for branch-and-bound algorithms. We therefore

have to dynamically load work on processors. Dynamic load balancing means

that during the execution process, tasks should be evenly scheduled among the

involved processors. Even if, due to the branch-and-bound principle, interval
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global optimization lends itself to parallelism, load balancing is by no way a

straightforward task as it seems to appear. In fact the parallelization of this

algorithm is subject to many compromises.

It turns out that the main issue in the parallelization of the interval global

optimization algorithm is the dynamic load balancing. Two types of load bal-

ancing exist for this task, namely, quantitative load balancing and qualitative

load balancing. Quantitative load balancing, in the interval global optimization

context, is responsible of having the same number (or at least almost the same

number) of boxes on each processor. Qualitative load balancing is responsible

of having processors working on most promising boxes. The latter means that

the p processors involved in the parallel process should be working on the p

most promising boxes.

The following issues are to be considered in the design of parallel approaches

for the global optimization algorithm.

• Keep all processors busy, of course doing useful jobs.

• Provide processors as fast as possible with the newly updated lower bound

f̃ of the minimum. Since f̃ is used to discard boxes in the cut-off test,

the aim is to avoid handling boxes that would not have been handled in

the sequential algorithm.

Basically all approaches found in the literature to solve the global optimization

deal with these issues, the way they do it makes the originality of each of

them. Two methods exist to manage the distribution of subproblems. The

first is to store problems in a central processor, the other is to distribute these

subproblems on all available processors.

3.2.1 Management of subproblems

Centralized list

Here a central processor keeps the list of boxes and provides other processors

(workers) with these boxes when they need them. When a processor has fin-

ished processing a box it sends what remains from this box back to the central

processor. The advantage here is that it is likely that processors will be working

on most promising boxes if the central processor uses best-first as its selection

strategy. Therefore, qualitative load balancing is achieved. The other advantage

might be the easy implementation of methods based on this idea. The obvious

disadvantage is that the total memory available is limited to the memory of the
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central processor. This is a serious handicap for interval global optimization

which requires a lot of memory to keep subproblems, particularly for difficult

problems. Moreover it could be very expensive to migrate boxes after each

iteration; the central processor is likely to become a bottleneck very soon.

Distributed list

Here each processors manages its local list as in the serial case. The advantages

and disadvantages of the distributed list are roughly the opposite of the cen-

tralized list. Processors are unlikely to be working on most promising boxes.

However, this disadvantage is negligible compared to the advantage of having

small local list and of using the whole memory available. We use a distributed

list in the design of our method. We next present some existing methods, for

more details see [20] and references therein.

3.2.2 Existing approaches for global optimization

The Approach of Dixon and Jha (1993)

The parallelization in [52] takes place on a transputer net with p = 13 T800

Transputers. They are arranged in a tree where each node has three children.

The transputer in the root of the tree manages the list of boxes. If there are

more than p boxes in the list then each processor handles some box. Otherwise

the next box of the list is subdivided orthogonally to one direction into p parts

which are distributed between processors. This method was tested on five test

functions. The speedup was disappointing. Using 13 processors, the speedup

was between 2.83 and 8.75. In the majority of test functions it was less than 4.

The Approach of Henriksen and Madsen (1992)

This approach was implemented on a net of T800 transputers, see [25] For

parallelization, a master-slave principle was used. The master manages a central

list L of boxes and the upper bound f̃ . It sends boxes from the list to slaves,

who in turn send back the result to the master. A result is a pair consisting of

a box and a lower bound, and the updated value for f̃ . The master sends the

best (smallest) f̃ to the rest of the processors (see Figure 3.11). The starting

box is subdivided into p − 1 parts at the beginning, where p is the number of

processors used.

The program was tested on 1, 4, 8, 16 and 32 processors. When passing from

16 to 32 processors in most cases the speedup increases only a little or even

decreases much. This decrease was observed even earlier for the majority of test
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functions. One of the main reasons of the decrease of speedup is the overhead

for communication.

To reduce communication, in [25] the depth-first-strategy was used instead of

the best-first strategy. This has the advantage that the slaves need not to get a

box from the central processor in each iteration. Instead, after bisection, they

keep one box for further handling and send only the second box back to the

master (if it is not discarded). The slave must request a box from the master

only if both boxes are discarded or fulfill the stopping criterion. In [25] the upper

bound f̃ was initialized to the global minimum f ∗. In this case, all selection

strategies become equivalent in the sense that they handle exactly the same

boxes, though in different order. The number of boxes to handle is minimized.

The speedup for the depth-first-method was almost always better than with the

best-first-method (also initialized with f̃ = f ∗), sometimes quite significantly.

But even using the depth-first-strategy, the speedup does not increase any more

or increases only a little bit for larger value of p. For some test problems the

speedup for 32 processors was below 16. For the others the speedup on 32

processors was between 19 and 28.

P1 P2 P3 P4

P0

Slaves

Master

Fig. 3.11: The master-slave model: The master manages the central sorted list

and the upper bound f̃ . The boxes are sent to the slaves for handling, and the

results are received back.

The Approach of Eriksson (1991)

This method, see [13], which was implemented on a iPSC/2 Hypercube, arranges

all processors in a pool. The processors are logically located in a ring. There

is an orientation in the ring, so that there is a next one for every processor.

On every processor there are two processes running: a worker and a scheduler.

The worker is responsible for handling boxes and for the distribution of the

upper bound f̃ . The scheduler is responsible for load balancing of boxes left
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to be handled. On each processor the scheduler manages its own list of boxes.

When the worker has found a better upper bound f̃ , it sends this value to

all processors immediately. This becomes possible by using an asynchronous

receive-command available on the iPSC/2 that indicates readiness of another

worker. A signal sent to a worker is immediately received and its readiness is

reset. Several approaches on how the scheduler does the load balancing were

tested. Balancing with respect to the quantity of boxes was implemented using

the receive-initiated-scheduling. When the worker on a processor has handled

a box and the list of the scheduler is empty, the scheduler sends a request-

message to the next processor in the ring. If this processor has no boxes to

give, it retransmits the request further. The first scheduler whose list is not

empty sends the box to the scheduler of the process which initiated the request.

The box will not travel in the ring, but is sent to the corresponding processor

directly.

Balancing with respect to the quality of boxes was implemented as sender-

initiated-scheduling. In this way one tries to achieve that boxes with small

lower bounds are handled as soon as possible. More precisely, one tries to

handle the p most promising boxes analogously to the serial method. Since

we have local lists of boxes, it is difficult to guarantee that really the p most

promising boxes are handled. The following scheme was developed in [12]: If

the number of boxes on a certain processor is greater than the given limit (it

was set to 5), then the processor sends its first box to a randomly selected

processor. One modification of this approach is to use a dynamic limit instead

of a static one. If the box inserted is in the head (lists are sorted), then the limit

is decremented, otherwise it is incremented. In this manner good boxes are sent

early. On the other hand the processors with less promising boxes send boxes

only rarely, since their limit is incremented. Numerical results presented in

[12] show that a method which uses receive-initiated-scheduling combined with

dynamic send-initiated-scheduling is efficient. Through the usage of the sender-

initiated- scheduling the total number of boxes handled for a given problem is

reduced. The speedup for the three considered problems were 9.71, 19.58 and

11.97 on 16 processors and 15.04, 28.26 and 30.88 on 32 processors, respectively.

So superlinear speedup was achieved for one problem (on 16 processors). The

reason for superlinear speedup was not explained in [13].

The Approach of Moore, Hansen and Leclerc (1992)

As opposed to the methods considered so far the parallelization of Moore,

Hansen and Leclerc in [33] is based on the serial method that uses the oldest-
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Fig. 3.12: Communication structure by Eriksson

first-strategy for box selection. To accelerate the method along with the mid-

point test and the monotonicity test also the nonconvexity test and the interval

Newton method were used. The parallel method was implemented on a worksta-

tion cluster of 250 Sparc-Stations SLC. Like in the approach of Eriksson every

processor manages its own list. If processor Pi has no more boxes to handle,

then it sends a request to a randomly selected processor Pj. If processor Pj has

boxes in the list, then it sends half of its boxes (but no more than a limit set a

priori) to the processor which initiated the request. Otherwise Pi sends a request

to P(j+1) mod p, P(j+2) mod p and so on (see Figure 3.13). Running this parallel

method on the parameterized problem MHL (see [1]), superlinear speedup was

achieved. A maximum speedup of 170 on 32 processors was achieved.

The Approach of Berner (1995)

Berner’s approach described in [2] was implemented on a CM-5, a MIMD com-

puter with 32 processors. The parallel method is based on the serial method

that uses the monotonicity test, the nonconvexity test and the interval New-
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Fig. 3.13: Communication structure in the parallelization by Moore, Hansen

and Leclerc

ton method as accelerating devices. As a box selection strategy the best-first-

strategy is chosen. In this approach there is one centralized mediator and many

workers (see Figure 3.14). Each worker manages its own list of boxes whose

length is controlled by the centralized mediator. The centralized mediator waits

for requests of idle processors to send them new boxes. Moreover, it keeps a

limit max, that is changed dynamically. This limit is used to make sure that

the centralized mediator does not run out of boxes, but also that not too many

boxes are stored in its list. Processors which keep more than max boxes in

their lists send some of them to the centralized mediator (see Figure 3.14). The

boxes to be sent to the centralized mediator are selected neither randomly nor

from the tail. Every second box (at most max-send boxes are sent) is selected

from the list. Each processor sends the best upper bound to all workers and

the centralized mediator. An advantage of this parallel approach compared to

the master-slave model used in Henriksen and Madsen, see Section 3.2.2, is

that there is less work for the centralized mediator than for the master. So it

will not become a bottleneck if the number of processors used is not too large.

Moreover, the whole memory including that of the workers is used. Compared

to the approach of Eriksson and the one of Moore, [13], Hansen and Leclerc,

[33], there is no need to request several processors to get boxes if a processor

becomes idle. Instead, it is the centralized mediator that directly responds to

each request. The method was run on 4, 8, 16 and 32 processors. For some test
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problems slight superlinear speedup was achieved.
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Fig. 3.14: Communication structure by the parallelization by Berner

The Approach of Wiethoff (1997)

In [53] Wiethoff presented his distributed parallel method. It was implemented

on an IBM RS/6000 SP. Up to 96 processors were used. For the list management

he used the best-first-strategy. His parallel method was based on a serial method

with accelerating devices like the monotonicity test, the nonconvexity test and

the interval Newton method. Boxes were subdivided into 4 parts. Processors

were located in a pool logically arranged in a ring. All processors had their

own lists of boxes. Each processor communicates only with its 4 neighbors (two

nearest and two next to nearest). On every processor two processes run. One for

load balancing and exchange of the best upper bound. The other is for handling

local boxes. The newly found better upper bound is sent only to neighbors and

from there propagated further. This method was run on 4, 8, 16, 32, 64, 96

processors. A total of 18 problems were tested. For a few problems superlinear

speedup was achieved. On 8 processors for 2 problems, on 16 processors for 3

problems, on 32 and more processors only for one problem. The method has no

communication bottleneck at all. But the larger the number of processors the

lower the efficiency, since information is then distributed very slowly.

The Approach of Ibraev (2001)

Described in [20], this method uses the advantage of the best first strategy and

the centralized mediator. In this model there is always one leader and many

workers (see Figure 3.15). The leader is determined dynamically as the proces-

sor holding the smallest best upper bound. The leader has boxes for handling.
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Therefore idle processors send requests to the leader. When a processor ob-

tains a better upper bound, it sends a challenge to the leader but not to other

processors. The leader determines the smallest of the best upper bounds, if it

receives several of them, and decides who is the next leader. It sends the new

best upper bound together with the information on change of the leadership in

one message to all other processors. If the leader runs out boxes, i.e. boxes in

its list have been discarded or put into the solution list, it chooses any non-idle

processor as the next leader. In the case that there is no non-idle processors

left, it sends a termination signal to all the processors and the method ends.

One advantage of this method is that idle processors receive boxes from the

processors having the best upper bound, therefore it is likely that processors

will be working on promising boxes. For problems where there are many local

minima near the global minimum, this method could be inefficient since there

are many promising boxes and there is no need to ”challenge” processors. In

fact in this case, every non-idle processor has ”good enough” boxes that could

be sent to every idle processors. Recall that one of the characteristics of many

difficult problems is that there are many local minima near the global minimum.

This method was implemented on a cluster of SUN machines. In [20] it was

shown that for many problems superlinear speedup was achieved.

In Section 3.2.4 we will make a comparison with the new strategy we designed.

P0

P2 P3P1
f f L

f L f L f

f f<1
empty List

Request

sorted List

Worker

L(eader)

,

, 1,

Fig. 3.15: Communication model in Ibraev’s challenge leadership
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3.2.3 A new approach: Distributed Management

When communication in the parallel process becomes intensive, almost all meth-

ods presented have the common disadvantage that a root (master, leader, medi-

ator ...) processor is likely to become a bottleneck. This phenomenon is difficult

to avoid when the number of processors grows, since the root processor has to

listen to all possible communications with other processors. We propose in the

sequel an approach to avoid this situation. The main idea behind this method

is to alleviate the work of the root by allowing other processors (non idle ones)

to serve requests coming from idle processors.

Description

The aim of this method is to combine the qualitative and the quantitative load

balancing while trying to avoid the bottleneck effect. Each processor has its

own local list. The root processor (with rank 0) maintains a list containing

the number of boxes other processors have in their list. This is for a quantita-

tive load balancing purpose. The main difference with other strategies is the

behavior of the root processor when processors run out of boxes, that is when

processors are idle.

When processors become idle. In this case the root processor does not au-

tomatically send boxes to these idle processors, instead, it determines which non

idle processors process should provide these processors with boxes. It proceeds

as following. It creates two groups of processors. One group of idle processors

and one group of non idle processors. It sorts, in decreasing order, with respect

to the length of the list, the group of non-idle processors. This means that, one

has |L(pi)| ≥ |L(pi+1)|, for two consecutive processors in the group of non-idle

processors, where |L(pi)| denotes the length of the list of the processor of rank

i. The root then establishes a correspondence between these two groups of pro-

cessors. The first processor in the group of non-idle processor sends a number

N of boxes to the first idle processor. The second processor in the group of

non-idle processors should provide the second idle processor with boxes and so

on. The number of idle processors could be different to the number of non-idle

processors, in this case the distribution starts over cyclically with the first non

idle processor. That is, suppose we have 3 non idle processors (p1, p2, p3) and

5 idle processors (p4, p5, p6, p7, p8 ) in this order in their respective groups;

in this case P1 sends boxes to p4 and p7; p2 sends boxes to p5 and p8, and p3

sends boxes to p6. Figure 3.16 illustrates this mechanism. In this case there are

more busy processors than idle ones. Figure 3.17 shows the case where there
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Fig. 3.16: Distribution of boxes in the new method, 5 non-idle processors, 3
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are more idle processors than busy ones.
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Fig. 3.17: Distribution of boxes in the new method, 3 non-idle processors, 5

idle.

Figure 3.18 shows all possible communications among processors. Here Info

means that the root processor is exchanging some information with a worker.

Info contains information such as the number of boxes this processor should

send to a particular idle processor. Request means that a processor ran out of

boxes and wants some boxes. New bound means that a processor obtained a

smaller value for f̃ . Length means that a processor is sending the length of its

list to the root processor.
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Fig. 3.18: Illustration of communications in the new method.

To discuss our new method we present both advantages and disadvantages it

has over other methods.

Disadvantages

• The root processor must know the length of the list of all other proces-

sors. This is not easy to achieve and could produce some overhead. Each

processor must send the length of its list to the root. If they do this too

often, the root processor will become a bottleneck very soon. If they do it

too rarely, the root might be working with old, non-updated values. The

pace at which processors should send their length to the root should be

determined dynamically, we describe later how we do it.

• Boxes are not directly sent to idle processors since the root must determine

which processor should provide idle processors with boxes. So the idle

times of processors are somewhat increased.

These disadvantages are negligible compared to the advantages we present next.

Advantages

• In general the processor with the largest list is likely to have the most

promising boxes. Therefore, qualitative load balancing is implicitly achieved.
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Thus with this strategy, both quantitative and qualitative load balancing

are likely to be achieved simultaneously.

• Idle processors are provided with boxes simultaneously. In other strate-

gies, the root must first send boxes to the first i− 1 idle processors before

the ith idle processor sees itself provided with boxes. Figure 3.19 illus-

trates the distribution of boxes in these strategies. Here, if the number

of processors increases, the root node will soon become a bottleneck. In

high dimension where the time to send a box could be significant, the new

method is more efficient.

• There is no need to move boxes among processors. An idle processor

receives boxes directly from its provider.

Idles Processors

7P

0P

1P

2P

3P

4P

5P

6P

Fig. 3.19: Distribution of boxes in the old methods, three idle processors and

five non idle processors, P1 is likely to become a bottleneck.

Broadcasting the new upper bound of f ∗

In general, when a processor wants to share information with all other proces-

sors, the maximal time a processor must wait to have such an information is

linear in the number of processors involved. The aim of this part is to show

how one can reduce this time. One typical case for such a need is when a

processor obtains a better upper bound f̃ for the minimum. In this very case,

optimized broadcast routines available within MPI are not usable here since

they are collective routines which suppose that a broadcast must be posted on

all processors. But the processor which found a better upper bound is the only

one which knows that, since memory is distributed.
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Suppose that Pb obtained such a f̃ , suppose further that there are n proces-

sors involved. In the standard approach processor Pb would send this f̃ to

the other p − 1 processors one after the other. That is, Pb will send f̃ to

Pi, i ∈ {1, . . . , n}, i 6= b in the order 1 . . . n. Let t be the time needed to

send a message containing f̃ . In this case, processor Pn will receive the mes-

sage containing f̃ after a time T = (n − 1)t. Asymptotically, this means that

the maximal time a processor should wait to obtain a message is linear in the

number of processors.

We propose to minimize this time. To do this, we arrange processors in a g-ary

tree. In this virtual topology, processors communicate only with their neigh-

bors. The nodes of the tree represent processors. If a processor Pb wants to

send f̃ to other processors, it sends it to the root processor P0, the root pro-

cessor forwards this value to its sons, which forward this value to their own

sons, and so on. This process will continue until leaf processors are reached.

Schematically we have Figure 3.20 with 13 processors. With the same number

4P 7P 8P 9P 10P 12P11P

0P

1P 3P

6P

2P

5P

Fig. 3.20: A tree as a virtual topology to broadcast messages

of processors but sending messages to processors one after each other, one has

Figure 3.21. Suppose that processor P0 wants to send a message to P12. Using

P2 P3 P4 P5 P6 P7 P8 P9P1

P0

P11P10
P12

Fig. 3.21: Sending messages to processors one after others

the virtual topology with a 3-ary tree like the one on Figure 3.20, we see that

one needs a time T = 1 + 2× 3t = 7t to have the message on P12. Sending this

message with the one-after-the-other strategy, one would need 12t.
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Now, more generally, let’s do a simple analysis in the case where one has n

processors arranged in a g-ary tree where the leaf level is not necessarily full.

In this case, the maximal time to wait will occur for leaf processors. Suppose

again that t is the time required to send a message, then the total time to wait

for each processor is less or equal to

T (g) = (1 + gh) · t (3.1)

where

h = blogg(n)c.
In (3.1), we add 1 to gh because the processor which found the best upper

bound f̃ will first send it to the root processor.

For a fixed number n of processors the value of T depends on g. Let’s find the

value of g for which T (g) is minimal. Replacing h in (3.1) by logg(n), we have

the following estimation

T (g) = (1 + g logg(n)) · t.

Suppose for a while that g ∈ R and g > 1, i.e. g ∈ (1,+∞) so that we can write

T ′(g) =
(ln(g)− 1)

(ln(g))2
· log(n) · t.

With a short calculation we see that T ′(g) = 0 for g = e and T ′′(e) > 0,

meaning that g = e is the minimum of T . Moreover, T is decreasing before e

and increasing after e.

Now, since g ∈ N and g ≥ 2, it follows that T is minimum for g = 2 or g = 3.

Returning to (3.1), we see that T (3) > T (2) so that T (g) is minimal for a binary

tree.

This technique could also be used, with the communication pattern reversed,

to send the length of the lists of the processors to the root. This has the

advantage not only to obtain the length of the list of processors faster, but also

to avoid the bottleneck at the root processor. A possible drawback here could

be the latency. For slow networks interconnection where the latency is high, the

overhead due to this technique could be noticeable since some processors have

to receive and forward messages. Still, in the case where this strategy is used to

send best upper bounds f̃ , there is an advantage due to the fact that a processor

could update the value of the global minimum it received. Therefore, after a

broadcasting, processors could receive different values of f̃ . The efficiency of

such a technique is noticeable when the number of processors involved is very

large.
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Used communication routines

We describe our algorithm using pseudo code. Processors communicate by

sending messages. We give here the meaning of each subroutine and variable

we are using in the pseudo code of functions we are presenting later.

size: indicates the number of processors involved in the parallel process.

myrank: indicates the rank of the current processor (the calling proces-

sor)

root: indicates the root processor and is set equal to 0 for conveniences

of implementation.

Msg: This is a parameter for all communication routines. We assume, for

the sake of simplicity, in the pseudo codes, that it contains all necessary

fields. For example, when sending or receiving boxes, Msg.Boxes contains

the list of boxes to be sent or to be received. We also suppose that for a box

B, B.min is the lower bound of the function over B, i.e. B.min = F (B).

We actually send pairs (B,F (B)), not only boxes.

To specify the type of messages a processor will receive or send, message passing

tools use tags. Here are the tags used in our pseudo codes.

tag box: This tag indicates that a processor is sending or receiving

boxes.

tag empty: This tag is used when a processor ran out of boxes and

wants to notify that to the root.

tag length: This tag is used by a worker to send the length of its list

to the root. The root also uses this tag to receive this length.

tag not enough: This tag is used when a processor does not have

enough boxes to send to idle processors.

tag new minimum: This tag indicates that the message to be received

contained a new value for the global minimum f̃ .

tag provide: This tag is used by the root to ask a non idle processor

to send boxes to an idle one.

tag finish: This tag is used to mention the end.
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tag sol: This tag is used to send and receive solution boxes.

We have limited to three the number of communication routines to make the

presentation of pseudo codes easier. We explain what they mean.

Probe(Msg): With this routine, we mean that the calling processor is

checking if there are pending messages. Msg is an output argument

in this case containing all information needed to determine what type of

message it is. Msg.flag is a boolean indicating whether there is a pending

message. If Msg.flag = true, then there is a pending message, otherwise

there is no pending message.

Send(Msg, tag, destination): The processor which calls this routine

is sending a message contained in Msg with the tag tag to the processor

whose rank is destination .

Receive(Msg, tag, source): Receives the pending message with tag

tag from the processor with rank source in the variable Msg.

Broadcast(Msg): With this routine, the variable Msg is broadcasted

to all processors. This is used by a processor when it found a better value

for the minimum.

Description of the algorithm

Algorithm 6 begins by setting the root equal to the processor with rank 0, this

could have been any other processor. This part of the algorithm is executed by

all processors. After that, the algorithm is subdivided into two parts; one part

executed by the root and the other executed by workers. The root processor

reads the input and distributes parts of the starting box to workers. The root

subdivides the starting box so that each processor knows which part it should

work on. We describe next the first functions called by the root, namely, Ini-

tial Phase() and Distribut Input(). The aim of this procedure is to produce a

number of boxes a least equal to the number of processors. This procedure uses

Algorithm 2 presented in Section 2.4.6 with l = dlog2(size)e as argument. Thus,

a least size subboxes are generated. Some authors, see [2], prefer to run some

few steps of the sequential algorithm to produce subboxes. Merely subdividing

the starting box into the number of processors available has the disadvantage

that some processors could receive subboxes for which there is nothing to do,

because they already fulfilled the stopping criteria, consequently there will be

an immediate need of balancing. The second idea - running few steps of the
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algorithm 6 The Parallel Global Optimization Algorithm

Input: [x]0 starting box, ε the tolerance, f the function, P the number of

processors

Output: f ∗ the minimum and S the set of global minimizers

1: root = 0 {the root is the processor with rank 0}
2: if (myrank == root) then

3: Initial Phase()

4: Distribut Input()

5: while (!FINISH) do

6: handle Root Request()

7: handle Root boxes() {when necessary}
8: end while

9: Terminate()

10: else {for workers}
11: Receive Input()

12: while (!FINISH) do

13: handle Worker Request()

14: handle Root boxes()

15: end while

16: Terminate()

17: end if

algorithm 7 Initial Phase()

Input: [x]0 starting box size the number of processors Output: S the set of

subboxes

r = dlog2(size)e
S = Bisect([x]0, r);

sequential algorithm - has the advantage that a fairly good load balancing could

be achieved at the beginning due to the fact that processors will receive boxes

for which one is almost sure that the stopping criteria would not immediately

be satisfied. But such a starting phase would depend on the problem under

consideration and could be inefficient when the number of processors involved

is large. With many processors this initial phase could spend time uselessly

since a number of boxes equal to the number of processors should be produced.

Depending on the problem under consideration the time needed to perform this

initial phase could be very significant compared to time the whole algorithm
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will take. In this procedure the root sends boxes obtained from the initial phase

algorithm 8 Distribut Input()

Input: S set of subboxes from Initial Phase()

while S not empty do

for i = 0 to length of S do {for workers}
B = S.pop() {remove B from S}
Send(B, tag box, P(i+1) mod size)

end for

end while

to workers. If size is not a power of 2 then the number of boxes does not equal

the number of processors. In this case the root continues the distribution cycli-

cally with the processor with rank 1. Therefore, processors may receive different

numbers of boxes. This does not have a significant impact on the performance

of the algorithm.

The procedure corresponding to Distribute Input is the worker’s procedure Re-

ceive Input. With this procedure each processor receives its part of the starting

algorithm 9 Receive Input()

Receive(B, tag My Part, root) {receive the initial box from the root}
WorkList = B; {set the work list to B and continue with handle box()}

box. Now processors have boxes in their list, they can handle them, this is done

in Handle Worker Boxes.

This procedure actually does what the sequential algorithm does. The algorithm

has a global variable NumOfIter which indicates how many times the sequential

algorithm Handle Box() should be called. The idea is that processors should

not be querying for requests neither too often nor too rarely. Without the while

(line 3) loop in the algorithm presented above, processors would be probing

for new messages after each iteration. The consequence would have been some

additional overheads. NumOfIter should not be too large, otherwise another

processor could wait too long before its request is handled.

As soon as a new value of the minimum is found, it is broadcasted to the other

processors, line 8. Workers also send the length of their list to the root. To

avoid sending this information too often, the worker checks whether the length

of its list has changed significantly since the last send. It sends this information

when |MyLength−OldLength| > size, where OldLength indicates the length
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algorithm 10 Handle Worker Boxes()

1: f̃old = f̃ ;

2: Count = NumOfIter;

3: while (Count 6= 0) do

4: B = WorkList.pop();

5: Handle Box(B); {handle B as in the serial case}
6: Count = Count - 1;

7: end while

8: if ( f̃ 6= f̃ old) then

9: broadcast(f̃); {broadcast the new value of the minimum}
10: end if

11: if |MyLength− OldLength |> size then

12: Send(MyLength, tag length, root); {send length of list to the root}
13: OldLength = MyLength;

14: end if

15: if (WorkList.empty()) then

16: Send(char, tag empty, root);

17: end if

of the processor during the last send and MyLength the current length of its

list.

If the processor runs out of boxes, i.e. WorkList is empty, then it sends a request

to the root with the tag tag empty.

Now we present the corresponding procedure for the root.

The root processor handles boxes only if it does not have too many requests to

serve. It handles boxes when the number of requests is less than a threshold.

We set this threshold equal to the number of processors. If the root processor

obtains a better value for the minimum, it broadcasts this value too. If it runs

out of boxes, it asks for boxes from the worker having the largest list. This

worker is the worker whose rank is in ListOfRequest[0]. This ListOfRequest

variable is used by the root to evenly balance work among processors. We give

more details about that in the sequel.

We now describe the Handle Request() procedure, where the essential work of

the parallel process is done. We first present the Handle Request() procedure

on the worker’s side. The worker first checks if it has pending messages. If this

is the case, it determines the nature of the message.

If the message has a tag tag new minimum then it means that a processor has
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algorithm 11 Handle Root Boxes()

f̃old = f̃ ;

Count = NumOfIter;

threshold = size;

if (NumOfRequest < threshold ) then

while ( Count 6= 0) do

B = WorkList.pop();

handle box(B) {handle B as in the serial case}
end while

end if

if (f̃ 6= f̃old) then

Broadcast(f̃); {broadcast the new value of the minimum}
end if

if (WorkList.empty()) then

Send(char, Tag Empty, Request[0]);

end if

algorithm 12 Handle Worker Request()

f̃old = f̃ ;

repeat

Probe(Msg)

if (Msg.flag == true) then

if (Msg.tag == tag new minimum) then

Update Minimum(); {updating the minimum}
else if (Msg.tag == tag box) then

Receive Box(Msg); {receiving boxes}
else if (Msg.tag == tag provide) then

Serve Box(Msg); {sending boxes to idle processors}
else if (Msg.tag == tag not enough) then

Serve not enough();

else if (Msg.tag == tag finish) then

Serve Finish(Msg);

end if

end if

until Msg.flag == false
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found a new approximation for the global minimum and wants to share it with

other processors. The processor calls the procedure Update Minimum below to

update the value of f̃ . If the message is a message with tag tag box then the

algorithm 13 Update Minimum()

Input: Msg

Receive(Msg);

f̃new = Msg.f̃ ;

f̃ = min (f̃ , f̃new)

processor calls the procedure Receive Box below.

algorithm 14 Receive Box()

Input: Msg

Receive(Msg);

List = Msg.Boxes

while (List is not empty) do

B = List.pop();

if (B.min ≤ f̃) then

WorkList.push(B); {inserting boxes in the WorkList}
end if

end while

With this procedure, idle processors receive boxes and transfer them in their

working list. But before inserting boxes, they perform the cut-off test.

If the message has a tag tag provide then it means that the root is asking

a worker to send boxes to an idle processor. In this case, the variable Msg

contains the ranks of processors to which boxes should be sent. This variable

also contains the number of boxes that should be sent. Below is the procedure

called in this case.

In this procedure, the calling processor sends boxes from its list to idle proces-

sors. If the processor can not provide all idle processors with boxes, it sends

a message with tag tag not enough to processors which did not received boxes.

When those processors will receive a message with tag tag not enough, they will

resend a message with tag tag empty to the root, signaling that they are still

idle.

If the message has a tag tag not enough then Serve not Enough is called.
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algorithm 15 Serve Box()

Input: Msg

Receive(Msg);

List = Msg.List {list containing the ranks of processors}
NumBox = Msg.NumBox {number of boxes to send}
while List is not empty and WorkList.size() > 1 do

rank = List.pop();

while WorkList.size() ≥ 1 and NumBox ≥ 1 do

List1 = List1 + WorkList pop(NumBox); {pop boxes to send}
end while

Send(List1, tag box, rank); {sending boxes ...}
end while

while List is not empty do

rank = List.pop();

Send(char, tag not enough, rank);

end while

algorithm 16 Serve not Enough()

Input: Msg

Receive(Msg);

Send(char, tag empty, root);

Here the worker sends a new message with tag tag empty to the root since it

did not receive boxes.

If the message has a tag tag finish it means that the root has sent a termination

message, in this case Serve Finish() is called.

algorithm 17 Serve Finish()

Input: Msg

Receive(Msg);

FINISH = true; {it is the end}

Having finished describing the procedure handle Worker Request, we now present

the procedure Handle Root Request. To balance the work among processors, the

root has variables containing the statuses of other processors. It has a variable

ListOfRequest which is a vector of size size−1. This variable contains the length

of the list of other processors. When the root receives a new length it updates
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the length of the corresponding processor calling the procedure serve length.

The root can also receive a message with a tag tag box, in this case it receives

boxes by calling the procedure Receive Box presented earlier. The root can re-

ceive a new value for f̃ , in which case it calls Update Minimum presented above.

When the root receives a message with tag tag empty, it sets the entry of the

corresponding processor in the variable ListOfRequest to 0, meaning that this

processor is idle.

When the root has finished receiving messages, it calls the procedure balance,

see below.

algorithm 18 Handle Root Request()

f̃old = f̃ ;

repeat

Probe(Msg) {looking for new messages}
if (Msg.flag == true) then

if (Msg.tag == tag new minimum) then

Update Minimum(); {updating the minimum}
else if (Msg.tag == tag Box) then

Receive Box(Msg); {receiving boxes}
else if (Msg.tag == tag Length) then

Serve Length(Msg); {receiving length of workers}
else if Msg.tag == tag empty) then

Serve empty();

end if

end if

until Msg.flag == false

balance(); {creates the two groups of processors . . .}

We give the description of the procedure in the algorithm above. Many of these

procedure are very simple. For the sake of clarity and explanation we list them

separately.

algorithm 19 Serve Length()

Input: Msg, Tag, Source

Receive(Msg, Tag, Source);

rank = Msg.rank;

ListOfRequest[rank] = Msg.Length;
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algorithm 20 Serve Empty()

Input: Msg, Tag, Source

Receive(Msg, Tag, Source);

rank = Msg.rank;

ListOfRequest[rank] = 0;

For these two procedures we suppose that Msg contains the rank and the length

of the list of the processor that sent the message.

The aim of balance is to determine which processors should send boxes to idle

processors. The procedure begins by creating a list of non idle and a list of idle

processors, lines 3 and 6. It tests whether the size of the list of idle processors

equals the number of processors minus 1 (the number of workers), if this is the

case then, all workers are idle. If the root has no box, it means that the algorithm

terminates. The root then sends a message with tag tag finish to workers. If

the root has boxes, it sends them to idle processors. Now, if there are some

non idle processors, then the root sorts the list of these non idle processors, in

a decreasing order, with respect to the length of their list; this information is

contained in ListOfRequest. The first processor in the list of non idle processors

(the processor with the largest list) is asked by the root to send NumToSend

boxes to one idle processor. NumToSend is equal to the sum of boxes on all

processors divided by the number of processors. The idea is to have almost the

same number of boxes on all processors. When a processor has been asked to

send boxes, the root assumes it has done so and the length of its list is updated,

see line 30. The length of its list is set to the number of elements it had before

minus the number of elements it has been asked to send, and the process starts

again until there is no idle processor.

The next procedure to describe is terminate. This procedure is called at the

end by all processors. In this function workers send boxes in their SolutionList

to the root and exit. The root in this function receives solution boxes from

workers.
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algorithm 21 balance()

Input: Msg

1: SUM = 0;

2: for ( i = 1 to size− 1 ) do

3: if (ListOfRequest[i] == 0) then

4: ListOfIdle.push(i); {setting a processor as idle}
5: else

6: ListOfNonIdle.push(i); { setting a non idle processor}
7: end if

8: SUM = SUM + ListOfRequest[i];

9: end for

10: if (ListOfIdle.size() == size - 1) then {they are all idle, it might be the end }
11: if ( MyLength == 0) then

12: FINISH = true;

13: for ( i = 1 to size− 1) do
14: Send(FINISH, tag finish, i); {Terminating ...}

15: end for

16: else

17: while (ListOfIdle is not empty) do

18: B = WorkList.pop();

19: Send(B, tag box, ListOfIdle[i]); {sending boxes to workers }
20: end while

21: end if

22: else

23: NumToSend = SUM / size; {number of boxes to send}
24: Msg.NumToSend = NumToSend;

25: while ( ListOfIdle is not empty) do

26: Sort(ListOfNonIdle); {sorting the list of non idle }
27: rank = ListOfIdle.pop();

28: Msg.rank = rank;

29: Send(Msg, tag provide, ListOfIdle[1]); {sending the rank of idle processor to non

idle one}
30: ListOfRequest[ListOfNonIdle[1]] = ListOfNonIdle[1] - NumToSend;

31: end while

32: end if
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algorithm 22 Terminate()

if (myrank == root) then

probe(Msg);

while (Msg.flag) do

probe(Msg.flag); {receiving solution boxes ...}
Receive(Msg, tag sol, Msg.rank);

B = Msg.Box;

SolutionList.push(B); {pushing the solution boxes ...}
end while

else

Send(SolutionList, tag sol, root);

end if

Superlinear speedup?

Superlinear speedup achieved by algorithms in linear algebra or numerical com-

puting almost always indicates that the serial algorithm used to measure the

speedup is not efficient. In general superlinear speedup can be expected when

the serial algorithm requires a lot of memory. In the global optimization context

superlinear speedup can be due to the fact that the whole amount of work in

the parallel case is less than the amount of work in the serial case.

Superlinear speedup of a parallel global optimization method can be due to two

factors. Firstly, superlinear speedup can be achieved because of the memory

required by the problem under consideration. In fact, if the subproblems gener-

ated in the sequential case don’t fit in the memory available then the algorithm

will begin to swap to the disk and this will result in a very slow sequential

program. In the parallel case, since the whole available memory is used, this

phenomenon could not be observed, or at least will be delayed, provided the

subproblems are evenly distributed. This is the first reason for superlinear

speedup to occur, but this is not really specific to parallel global optimization.

In the global optimization context, superlinear speedup can also be due to the

fact that a good approximation for the global minimum in the parallel process is

obtained faster than in the serial case. This is due to the fact that, in the paral-

lel case many boxes are considered simultaneously. If a good approximation for

the global minimum is obtained, it will be broadcasted to other processors and

these can perform the cut-off test, discarding boxes that will have been consid-

ered by the sequential algorithm. Consequently, the number of boxes considered

in the parallel process could be less than the number of boxes considered by the
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sequential algorithm and a superlinear speedup could follow.

Experimental results and remarks

In this section we comment on experimental results obtained running the par-

allel algorithm on some standard test problems.

In Table 3.2 we recorded the time needed by the algorithm on some standard

test problems as a function of the number of processors. The second column

(p = 1) corresponds to the serial algorithm. The unit of time in the table is

second. The test environment is ALICEnext see section 3.1.2. Processors com-

municate using Message Passing Interface (MPI) routines. On Figure 3.22,

3.23, 3.24, 3.25 we plotted the speedup versus the number of processors, up to

64.

Number of processors

Problems 1 2 4 8 16 32 64

R4 2.54 1.31 0.72 0.41 0.30 0.31 0.34

SHCB 0.68 0.36 0.24 0.25 0.29 0.28 0.30

MS 0.13 0.8 0.7 0.6 0.5 0.9 0.10

JS 2.16 1.09 0.53 0.29 0.14 0.10 0.6

SW 13.56 6.45 3.19 1.89 0.98 0.51 0.28

Gro 16.54 8.23 4.09 2.01 1.03 0.6 0.31

GP 4.67 2.28 1.04 0.66 0.40 0.22 0.27

HM3 2050.23 1093.32 536.6 274.06 142.06 76.3 40.02

HM2 1207.56 742.3 372.6 141.6 67.86 35.85 20.5

L3 1235.22 606.5 298.3 152.2 77.99 40.8 23.1

L11 3010.22 1589.53 756.3 373.6 153.21 91.3 55.01

Siirola 30512.77 13235.62 6862.21 3285.4 1506.54 835.6 471.5

KOW 385.1 196.6 91.6 47.65 22.65 13.25 7.25

WK 389.35 185.54 85.6 40.15 21.6 12.64 7.23

INF1 826.94 394.6 198.31 94.74 42.65 23.09 13.13

Tab. 3.2: Performance of the parallel algorithm on some standard test problems

Figure 3.22 resumes the speedup achieved on some simple test problems. These

problems require few iterations, typically less than 500. The time required is

generally less than 5 seconds. This explains the bad speedup obtained. In

fact, these problems not really require parallelization. Such problems, with few
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iterations, could require parallelization if the optimization problem is a part

of a whole process as it is the case in robotic. For the sake of clarity, we

limited the presentation only to 4 test problems. The behavior is the same for

all problems in this category. Figure 3.23 shows the speedup of the algorithm

1 2 4 8 16 31 64
1

2

4

8

16

32

64

Number of processors

Sp
ee

du
p

Linear Speedup
R4
SHCB
MS
JS

Fig. 3.22: Speedup of the parallel algorithm on some simple problems

on some medium test problems. The speedup is a bit better than in the case

of simple problems. For a small number of processors the speedup is almost

linear. One observes an overall improvement of the speedup over the simple

test problems.

In Figures 3.24 and 3.25 we have the performance of the algorithm on difficult

test problems. The speedup is always almost linear. Superlinear speedup is

even sometimes attained. The most important positive aspect here is that

the speedup decreases only a little bit when the number of processors grows.

The serial algorithm requires a lot of iterations and produces many boxes on

these problems. In the parallel case, these boxes are distributed among all

processors. It turns, that processors will be, for a relative long time, busy.

With many processors (32, 64), it likely that many processors become idle

simultaneously. The Distributed Management has the advantage that these idle

processors receive boxes almost simultaneously. Therefore, the time to wait for

boxes is optimal (minimal). Moreover, it is likely that they receive promising

boxes.
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Fig. 3.23: Speedup of the parallel algorithm on some medium problems

3.2.4 Benchmarking

Difficulties with benchmark

Difficulties faced with the practical comparison of parallel approaches are inher-

ent to the heuristical behavior of accelerating devices used in the interval global

optimization algorithm. As a matter of fact, settings such as which accelerating

devices to use and when to do so, do have an influence on the performance of

the serial algorithm. So does the interval library in use too.

Now, considering the fact that for difficult problems, the interval global opti-

mization algorithm requires a lot of memory to store subproblems, it turns out

that parallel algorithms, no matter which approach is used, will achieve a good

performance, provided the memory of all processors is used. This is because one

has more memory and these subproblems are likely to fit in the whole available

memory. It follows that the data structures used by the serial algorithm plays

a key role in the analyze of the parallel approaches.

In Section 3.2.2 we gave a description of existing parallel approaches. As far

as we know, none of these approaches implements an appropriate data struc-

ture such as heap to store subproblems. It is then likely that, in the serial

algorithm used to calculate the speedup, most of the time is spent to handle

the list. In many cases, for difficult problems, the algorithm would even swaps

to disk, resulting in a very inefficient serial algorithm. This could explain the

embarrassingly high speedup achieved by these parallel approaches. Figure 3.26
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Fig. 3.24: Speedup of the parallel algorithm on some difficult problems
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Fig. 3.25: Speedup of the parallel algorithm on some difficult problems
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shows the speedup of our parallel algorithm on some test problems. In this case

we suppose that the working list is implemented as a simple queue. We see

that, for these difficult test problems superlinear speedup is always achieved.
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Fig. 3.26: Speedup of the parallel algorithm, the list is implemented as a simple

queue

Since the speedup depends on the serial algorithm, a fair comparison of parallel

approaches should consider the same serial algorithm for all parallel approaches.

This means that, in other to compare approaches, one has to implement all of

them. Here we make a comparison with the Challenge Leadership, the best of

all approaches we have presented.

Comparison with the Challenge Leadership

We have implemented the Challenge Leadership (CL) approach, a fair compar-

ison with the Distributed Management (DM) is possible. Figures 3.27, 3.28,

3.2.4 show the ratio
t DM

t CL
,

where t DM is the time required by the Distributed Management approach on

some test problems and t CL the time required by the Challenge Leadership

approach. For many problems we see that there is not a significant difference,

still that the Distributed Management achieves an overall better performance.

The ratio on medium is contained in [0.8 1.2] and the ratio on hard test problems

is contained in [0.9, 1.05]. We see that the ratio on hard problem is even

smaller, this may be because for these problems, these two strategies are almost
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Fig. 3.27: Distributed Management vs. Challenge Leadership on some medium

problems

equivalent since there are enough of ”good” boxes, consequently processors are

always almost busy and there is no need for a frequent load balancing. We

can also see that, when the number of processors increases, the Distributed

Management is slightly better than the Challenge Leadership. We used up to

64 processors only, may be with more processors the difference between these

two strategies could be significant.
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Fig. 3.28: Distributed Management vs. Challenge Leadership on some difficult

problems
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Fig. 3.29: Distributed Management vs. Challenge Leadership on some difficult

problems
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A.1 Simple problems

S5(n = 4, Shekel 5)

f(x) = −
5∑

i=1

=
1

(x− Ai)(x− Ai)T + ci

with [x] = [0, 10]4, ε = 10−6,

A =




4 4 4 4

1 1 1 1

8 8 8 8

6 6 6 6

3 7 3 7

2 9 2 9

5 5 3 3

8 1 6 2

6 2 7 3

6 7 3 6




and c =




0.1

0.2

0.2

0.4

0.4

0.6

0.3

0.7

0.5

0.5




The global minimum f ∗ ∈ [−10.153199707210, −10.153199650879].

The unique verified global minimizer is enclosed in




[4.000036851753, 4.000037458427]

[4.000133096919, 4.000133461207]

[4.000037057807, 4.000037252354]

[4.000133225965, 4.000133332058]




S7(n = 4, Shekel 7)

f(x) = −
7∑

i=1

=
1

(x− Ai)(x− Ai)T + ci

with [x] = [0, 10]4, ε = 10−6 ,A and c and in S5

The global minimum f ∗ ∈ [−10.402940854942, −10.402940278610]

The unique verified global minimizer is enclosed in




[4.000572392022, 4.000573448767]

[4.000689046287, 4.000689693693]

[3.999489540210, 3.999489885356]

[3.999606062342, 3.999606263183]






A.1 Simple problems 119

S10(n = 4, Shekel 10)

f(x) = −
10∑

i=1

=
1

(x− Ai)(x− Ai)T + ci

with [x] = [0, 10]4, ε = 10−6 ,A and c and in S5

The global minimum f ∗ ∈ [−10.536410152654, −10.536409480641].

The unique verified global minimizer is enclosed in




[4.000745984918, 4.000747087330]

[4.000592619822, 4.000593257244]

[3.999663227190, 3.999663575795]

[3.999509700323, 3.999509908542]




SHCB(n = 2, Six-Hump-Camel-Back)

f(x) = 4x2
1 − 2.1x4

1 +
1

3
x6

1 + x1x2 − 4x2
2 + 4x4

2

with [x] = [−2, 2]2, ε = 10−6

The global minimum f ∗ ∈ [−1.031628453614, −1.031628453366].

Candidates for the global minimizer are

(
[−0.089842013102,−0.089842013098]

[0.712656403010, 0.712656403032]

)
,

(
[0.089842013098, 0.089842013102]

[−0.712656403032,−0.712656403010]

)

BR (n = 2, Branin)

f(x) =

(
5

π
− 5.1

4π2
+ x2 − 6

)2

+ 10

(
1− 1

8π

)
cos x1 + 10

with [x] = [−5, 10]× [0, 15], ε = 10−6

The global minimum f ∗ ∈ [0.397887357729; 0.397887361142].

Candidates for the global minimizer are

(
[−3.141718350524, −3.141466904082]

[12.274921258894, 12.275078374432]

)
,

(
[3.141574972457, 3.141610336919]

[2.274998780786, 2.275001215451]

)

(
[9.424734796677, 9.424821122815]

[2.474998330906, 2.475001666965]

)
.
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Fig. A.1: The plot of the Six Hump Camel Back function

Ro(n = 2, Rosenbrock)

f(x) = 100(x2 − x2
1)2 + (x1 − 2)2

with [x] = [−5, 5]2, ε = 10−6 The global minimum f ∗ ∈ [0, 7.551320394136.10−8].

The unique verified global minimizer is enclosed in

(
[0.999988864642, 1.000011135358]

[0.999994813743, 1.000005186257]

)

L3(n = 3, Levy 8)

f(x) =
2∑

i=1

(yi − 1)2 (1 + 10 sin2 (πyi+1)
)

+ sin2 (πy1) + (y3 − 1)2

with yi = 1 + (xi − 1) /4, i = 1, . . . , 3, [x] = [−10, 10]3, ε = 10−6

The global minimum f ∗ ∈ [0.0000000000, 6.500293555635.10−8]

The unique verified global minimizer is enclosed in
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Fig. A.2: The plot of Rosenbrok’s function




[0.999999815271, 1.000000184787]

[0.999159280921, 1.000898023821]

[0.999664183571, 1.000388113611]

[0.999790540536, 1.000288039607]




H3(n = 3, Hartman)

f(x) = −
4∑

i=1

ci exp

(
−

3∑

j=1

Aij (xj − Pij)2

)

with [x] = [0, 1]3, ε = 10−6

A =




3 10 30

0.1 10 35

3 10 30

0.1 10 35


 , c =




1

1.2

3

3.2


 and P =




0.3689 0.1170 0.2673

0.4699 0.4387 0.7470

0.1091 0.8732 0.5547

0.03815 0.5743 0.8828




The global minimum f ∗ ∈ [−3.862782158846, −3.862782136795]

The unique verified global minimizer is enclosed in




[0.114614313535, 0.114614363644]

[0.555648849192, 0.555648850752]

[0.852546953063, 0.852546953979]



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G5 (n = 5 , Grienwank 5)

f(x) =

5∑

i=1

x2
i

400
−

5∏

i=1

cos

(
xi√
i

)
+ 1

with [x] = [−500, 600]5, ε = 10−6

The global minimum f ∗ ∈ [−0.0000000000, 3.162684336644.10−9]

The unique verified global minimizer is enclosed in




[−0.000047126184, 0.000026346703]

[−0.000050237712, 0.000025987328]

[−0.000049887998, 0.000024425925]

[−0.000067131531, 0.000029231509]

[−0.000063538412, 0.000025042049]




A.2 Medium problems

R4(n = 2, Ratz)

f(x) = sin(x2
1 + 2x2

2) exp(−x2
1 − x2

2)

with [x] = [−3, 3]2, ε = 10−6

The unique global minimum f ∗ ∈ [−0.106891344004, −0 : 106891338812]

Candidates for the global minimizers are

(
[−3.875919873641E − 008, 3.875919873641E − 008]

[−1.457522109420, −1.457522101088]

)

(
[−3.875919873641E − 008, 3.875919873641E − 008]

[1.457522101088, 1.457522109420]

)

L12(n = 10, Levy 12)

f(x) =

9∑

i=1

(yi − 1)2(1 + 10 sin2(πyi+1)) + sin2(πy1) + (y10 − 1)2

with yi = 1 + (xi − 1)/4, 1, . . . , 10, [x] = [−10, 10]10, ε = 10−6.

The global minimum f ∗ ∈ [0.000000000000, 5.022707427890.10−12].
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Fig. A.3: The plot of Ratz’s function

The unique verified global minimizer is enclosed in




[0.999999999999, 1.000000000001]

[0.999999999990, 1.000000000010]

[0.999999999989, 1.000000000011]

[0.999999999989, 1.000000000012]

[0.999999996389, 1.000000003645]

[0.999997930503, 1.000002086249]

[0.999992487985, 1.000007867647]

[0.999996881182, 1.000003658406]

[0.999999326761, 1.000000852685]

[0.999999997600, 1.000000002395]




L18(n = 7, Levy 18)

f(x) =

6∑

i=1

(xi − 1)2(1 + sin2(3πxi+1)) + (x7 − 1)2(1 + sin2(2πx7)) + sin2(3πx1)

with [x] = [−5, 5]7, ε = 10−6.

The global minimum f ∗ ∈ [0.000000000000, 5.415762071898.10−12].

The unique verified global minimizer is enclosed in
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


[0.999999999999, 1.000000000001]

[0.999999999988, 1.000000000012]

[0.999999881074, 1.000000117323]

[0.999998120221, 1.000001807931]

[0.999998570159, 1.000001318913]

[0.999999382590, 1.000000509353]

[0.999999889173, 1.000000097517]




G7(n = 7, Grienwank 7)

f(x) =
7∑

i=1

x2
i

4000
−

7∏

i=1

cos

(
xi√
i

)
+ 1

with [x] = [−500, 600]5, ε = 10−6

The global minimum f ∗ ∈ [−0.000000000000; 1.708910790655.10−9]

The unique global minimizer is enclosed in




[−0.000152632287, 0.000096304339]

[−0.000163024956, 0.000096174777]

[−0.000162823505, 0.000091817740]

[−0.000161711682, 0.000105549551]

[−0.000152903602, 0.000098344826]

[−0.000144957421, 0.000091601764]

[−0.000137798478, 0.000085371476]




G10(n = 10, Grienwank 10)

f(x) =
10∑

i=1

x2
i

4000
−

10∏

i=1

cos

(
xi√
i

)
+ 1

with [x] = [−100.5, 120]10, ε = 10−6.

The global minimum f ∗ ∈ [−0.000000000000; 2.56294.10−8].
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The unique verified global minimizer is enclosed in



[−0.000042329872, 0.000041768222]

[−0.000035576283, 0.000035135435]

[−0.000040145513, 0.000040868663]

[−0.000029043363, 0.000029562000]

[−0.000021972735, 0.000022353973]

[−0.000017243896, 0.000017528873]

[−0.000013935200, 0.000014149906]

[−0.000011522315, 0.000011683990]

[−0.000009693677, 0.000009814265]

[−0.000008257013, 0.000008345096]




GP(n = 2, Goldstein Price)

f(x) = (1 + (x1 + x2 + 1)2(19− 14x1 + 3x3
1 − 14x2 + 6x1x2 + 3x2

2))× . . .
(30 + (2x1 − 3x2)2(18− 32x1 + 12x2

2 + 48x2 − 36x1x2 + 27x2
2))

with [x] = [−2; 2]2, ε = 10−6.

The global minimum f ∗ ∈ [2.99999953835, 3.000000021153].

The unique verified global minimizer is enclosed in

(
[−7.092166092395E − 011, 6.674678603178E − 011]

[−1.000000000048, −0.999999999962]

)

H6(n = 6, Hartman 6)

f(x) = −
4∑

i=1

ci exp

(
−

6∑

j=1

Aij(xj − Pij)2

)

with [x] = [0, 1]6, ε = 10−6

A =




10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14


 , c =




1

1.2

3

3.2




and P =




0.13120.16960.55690.01240.82830.5886

0.23290.41350.83070.37360.10040.9991

0.23480.14510.35220.28830.30470.6650

0.40470.88280.87320.57430.10910.0381



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The global minimum f ∗ ∈ [−3.322368011452; −3.322368011379].

The unique verified global minimizer is enclosed in




[0.201689511002, 0.201689511012]

[0.150010691821, 0.150010691826]

[0.476873974209, 0.476873974235]

[0.275332430494, 0.275332430495]

[0.311651616600, 0.311651616601]

[0.657300534065, 0.657300534066]




S2.14( n = 4 , Schwefel 2.14)

f(x) = (x1 + 10x2)2 + 5(x3 − x4)2 + (x2 − 2x3)4 + 10(x1 − x4)4

with [x] = [−4, 5]4, ε = 10−6

The global minimum f ∗ ∈ [0.0000000000000, 4.475425668718.10−8]

Candidates for global minimizers are




[−0.009392075036, 0.009317319146]

[−0.000907897950, 0.000939203138]

[−0.002972763767, 0.003141232908]

[−0.002899169922, 0.003141401623]


 ,




[0.002319335937, 0.003033963163]

[−0.000289916993, −0.000221252441]

[−0.003233245939, −0.003173828125]

[−0.003233442004, −0.003173828125]







[−0.004477072180, −0.004272460937]

[0.000396728515, 0.000447702853]

[0.002868652343, 0.003184367790]

[0.003143310546, 0.003184542425]


 ,




[−0.004516072739, −0.004272460937]

[0.000396728515, 0.000451600668]

[0.003417968750, 0.003612312397]

[0.003417968750, 0.003612576659]




GEO1(n = 3, The problem from the Geodesy)

f(x) =
(√

x2
2 + x2

3 − 2c1x2x3 − s1

)2

+
(√

x2
3 + x2

1 − 2c2x3x1 − s2

)2

+ . . .
(√

x2
1 + x2

2 − 2c3x1x2 − s3

)2

with [x] = [10−13, 3600]× [10−13, 3520]2, ε = 10−6

c =




0.846735205

0.928981803

0.912299033


 and s =




1871.1

1592.4

1471.9



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The global minimum f ∗ ∈ [0.000000000000, 4.064659879814.10−8]

Candidates for the global minimizers are




[2.292480245974E + 003, 2.292480532764E + 003]

[3.225046974853E + 003, 3.225047033776E + 003]

[3.477180122515E + 003, 3.477180155240E + 003]







[3.575365805357E + 003, 3.575366350973E + 003]

[3.412155596113E + 003, 3.412155809792E + 003]

[2.435715337047E + 003, 2.435715899727E + 003]

.




GOE2(n = 3, The problem from the Geodesy)

The same as GEO1

with [x] = [10−13, 8.68]× [10−13, 9.24]× [10−13, 8.68], ε = 10−6.

c =




0.740824038

0.817119474

0.737253644


 and s =




6.2

5.0

6.3




The global minimum f∗ ∈ [0.000000000000, 1.623435961783.10−10].

Candidates for the global minimizers are




[8.369812220149, 8.369839576033]

[8.947975268228, 8.947982535122]

[8.150609828868, 8.150627639759]


 ,




[4.873871645490, 4.874651656288]

[8.964325384629, 8.964372850539]

[8.118603200621, 8.118671024373]







[8.284519260955, 8.284618895430]

[8.999435873302, 8.999467348600]

[5.288929330144, 5.289080719743]


 ,




[8.311368014175, 8.311422879085]

[3.271289310727, 3.271387415143]

[8.221033235082, 8.221046574887]




GOE3(n = 3, The problem from the Geodesy)

The same as GEO1

with [x] = [10−13, 8.0]
3
, ε = 10−6

c =




0.766044443

0.766044443

0.766044443


 and s =




5.0

5.0

5.0



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The global minimum f ∗ ∈ [0.000000000000, 1.435824800184 · 10−9]

Candidates for the global minimizers are



[7.309465389835, 7.309556607226]

[7.309480041821, 7.309541955399]

[7.309493137513, 7.309528859554]


 ,




[7.309455164529, 7.309566441765]

[3.889171586871, 3.889445949503]

[7.309484162818, 7.309537442613]







[3.889135969558, 3.889481326344]

[7.309473015841, 7.309548531135]

[7.309482573959, 7.309538972089]


 ,




[7.309463050123, 7.309558754954]

[7.309472945285, 7.309548860249]

[3.889221015008, 3.889397330209]




JS(n = 2, Jennrich-Sampson Problem)

f(x) =
10∑

i=1

(2 + 2i− (eix1 + eix2))2

with [x] = [−1, −1]2, ε = 10−6

The global minimum f ∗ ∈ [124.362182355353, 124.362182355877].

The unique verified global minimizer is enclosed in

(
[0.257825213670, 0.257825213671]

[0.257825213670, 0.257825213671]

)
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Fig. A.4: The plot of Jennrich-Sampson’s function
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A.3 Hard problems

S2.7(n = 3, Schwefel 2.7)

f(x) =

10∑

k=1

(
exp

(−kx1

10

)
− exp

(−kx2

10

)
−
(

exp

(−k
10

)
− exp (−k)

)
x3

)2

with [x] = [0, 5]× [8, 11]× [0.5 3], ε = 10−6

The global minimum f ∗ ∈ [0.00000000000000, 0.000000132422].

The unique verified global minimizer is enclosed in




[0.999760695233, 1.000238272497]

[9.997724926185, 10.002284236045]

[0.999951808024, 1.000048843040]




L3(n = 2, Levy3)

f(x) =
5∑

i=1

i cos((i+ 1)x1 + i)
5∑

j=1

j cos((j + 1)x2 + j)

with [x] = [−10, 10]2, ε = 10−6

The global minimum f ∗ ∈ [1.867309091505 · 102, 1.867309088310 · 102].

The unique verified global minimizer is enclosed in

(
[5.4828642057380, 5.48286420767700]

[4.858056878362, 4.858056879357]

)
,

(
[−7.708313735502, −7.708313735496]

[−7.083506407653, −7.083506407650]

)

(
[−0.800321100472, −0.800321100471]

[−1.425128428320, −1.425128428319]

)
,

(
[−7.708313735500, −7.708313735499]

[5.482864206707, 5.482864206708]

)

(
[−0.800321100996, −0.800321099948]

[4.858056878605, 4.858056879115]

)
,

(
[−1.425128428321, −1.425128428318]

[−7.083506407653, −7.083506407651]

)

(
[−7.708313735500, −7.708313735499]

[−0.800321100472, −0.800321100471]

)
,

(
[4.858056878859, 4.858056878860]

[−7.083506407652, −7.083506407651]

)

(
[−1.425128428320, −1.425128428319]

[5.482864206707, 5.482864206708]

)
,

(
[−0.800321100472, −0.800321100471]

[−7.708313735500, −7.708313735499]

)

(
[4.858056878859, 4.858056878860]

[5.4828642067070, 5.48286420670800]

)
,

(
[4.858056878859, 4.858056878860]

[−0.800321100472, −0.800321100471]

)
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(
[5.482864206707, 5.482864206708]

[−1.425128428320, −1.425128428319]

)
,

(
[5.482864206707, 5.482864206708]

[−7.708313735500, −7.708313735499]

)

(
[−1.425128428320, −1.425128428319]

[−0.800321100472, −0.800321100471]

)
,

(
[−7.083506407652, −7.083506407651]

[−7.708313735500, −7.708313735499]

)

(
[−7.083506407652, −7.083506407651]

[4.858056878859, 4.858056878860]

)
,

(
[−7.083506407652, −7.083506407651]

[−1.425128428320, −1.425128428319]

)
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Fig. A.5: The plot of Levy’s function

R8(n = 9, Ratz 8)

f(x) =

(
sin2

(
π
x1 + 3

4

)
+

8∑

i=1

(
xi − 1

4

)2(
1 + 10 sin2

(
π
xi+1 + 3

4

)))2

with [x] = [−10, 10]9, ε = 10−6.

The global minimum f ∗ ∈ [0.000000000000, 0.000000455511].

Candidates for the global minimizers are enclosed in
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


[0.996093750000, 1.015625000000]

[0.937500000000, 1.015625000000]

[0.976562500000, 1.015625000000]

[0.937500000000, 1.015625000000]

[0.937500000000, 1.015625000000]

[0.976562500000, 1.015625000000]

[0.937500000000, 1.015625000000]

[0.976562500000, 1.015625000000]

[−10.000000000000, 10.000000000000]




HM3 (n= 2, Henriksen and Madsen )

f(x) = −
2∑

i=1

5∑

j=1

j sin ((j + 1)xi + j)

with [x] = [−10, 10]2, ε = 10−6

The global minimum f ∗ ∈ [−24.062498884345, −24.062498884330]

Candidates for the global minimizers are

(
[−6.774576143440, −6.774576143438]

[−6.774576143440, −6.774576143438]

)
,

(
[−6.774576143440, −6.774576143438]

[5.791794470920, 5.791794470921]

)

(
[−6.774576143440, −6.774576143438]

[−0.491390836260, −0.491390836259]

)
,

(
[5.791794470920, 5.791794470921]

[−0.491390836260, −0.491390836259]

)

(
5.791794470920, 5.791794470921]

[−6.774576143440, −6.774576143438]

)
,

(
[−0.491390836260, −0.491390836259]

[−6.774576143440, −6.774576143438]

)

(
[5.791794470920, 5.791794470921]

[5.7917944709200, 5.79179447092100]

)
,

(
[0.491390836260, −0.491390836259]

[5.791794470920, 5.791794470921]

)

(
[−0.491390836260, −0.491390836259]

[−0.491390836260, −0.491390836259]

)

HM4 (n = 3, Henriksen and Madsen )

f(x) =

2∑

i=1

5∑

j=1

j sin ((j + 1)xi + j)

with [x] = [−5, 5]3, ε = 10−6

The global minimum f ∗ ∈ [−36.093748326755, −36.093748326248].
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Fig. A.6: The plot of Henriksen and Madsen’ function

The unique verified global minimizer is enclosed in




[−0.491390836264, −0.491390836254]

[−0.491390836260, −0.491390836259]

[−0.491390836264, −0.491390836254]




KOW(n = 4, Kowalik Problem)

f(x) =

11∑

i=1

(
ai − xi

b2
i + bix2

b2
i + bix3 + x4

)2
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with [x] = [0, 0.42]4], ε = 10−6

c =




0.19570.1947

0.1735

0.1600

0.0844

0.0627

0.0456

0.0342

0.0323

0.0235

0.0246




and s =




4

2

1

0.5

0.25
1
6

0.125

0.1
1
12
1
14

0.0625




The global minimum f ∗ ∈ [0.000307140870, 0.000307616995]

The unique verified global minimizer is enclosed in




[0.192832591586, 0.192834390270]

[0.190819898956, 0.190850903478]

[0.123112693715, 0.123121520922]

[0.135759694776, 0.135771333126]




WK(n = 1, Kräemer Problem)

f(x) = −p(x)

q(x)
= −

∑29
i=0 pix

i

∑4
i=0 qix

i

with [x] = [0, 64], ε = 10−6,

q =




0.5882867463286834293466299376 · 1011

0.3634674934656008741064237087 · 109

0.9963536031000602675027277824 · 106

0.1464341776255599539789435142 · 104

1




and
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p =




7.629394531250000 · 10−6

−1.150369644165040 · 10−5

1.372280530631542 · 10−5

−6.579421551577981 · 10−6

1.659054419178573 · 10−6

−2.521266665667100 · 10−7

2.505680664436719 · 10−8

−1.713721655060476 · 10−9

8.330923088212047 · 10−11

−2.935023067946825 · 10−12

7.564193999729689 · 10−14

−1.426868803614099 · 10−15

1.954186293985405 · 10−17

−1.910400220016202 · 10−19

1.299884226135079 · 10−21

−5.995712492310049 · 10−24

1.876066147446556 · 10−26

−4.291373306373139 · 10−29

7.622481227988642 · 10−32

−1.096397325341554 · 10−34

1.315291857866774 · 10−37

−1.344664974747858 · 10−40

1.190815536452828 · 10−43

−9.253132527171894 · 10−47

6.374582890249432 · 10−50

−3.926998956415952 · 10−53

2.170989219023664 · 10−56

−1.142719267106732 · 10−59

3.823185031874960 · 10−63

−3.691550884472599 · 10−66




The global minimum f ∗ ∈ [−5.129659043375E−016, −4.541716718401E−016]

The unique verified global minimizer is enclosed in

(
[34.566830008723, 34.566830519889]

[34.566830635070, 34.566830764922]

)
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INF1(n = 2)

f(x) = (x1 − x2)2

with [x] = [−2.0, 2.5]2, ε = 10−6

The global minimum f ∗ ∈ [0.000000000000, 1.885928213597E − 008].

Candidates for global minimizers are

[x]∗ = [x] ∩ {(x1, x2) : x1 = x2} .

Siirola(n = 6)

f(x) = 100
n∏

i=1

5∑

j=1

(
j5

4425
cos(j + jxi)

)
+

1

n

n∑

i=1

(xi − x0,i)
2

with [x] = [x0,i − 20, x0,i + 20]n, x0,i = 3, i = 1, . . . , n, ε = 10−6

The global minimum f ∗ ∈ [−87.241325, −87.241324]

Candidates for the global minimizers are




[5.282807, 5.282808]

[5.282807, 5.282808]

[5.282807, 5.282808]

[4.620368, 4.620369]

[5.282807, 5.282808]

[5.282807, 5.282808]



,




[5.282807, 5.282808]

[5.282807, 5.282808]

[5.282807, 5.282808]

[5.282807, 5.282808]

[5.282807, 5.282808]

[4.620368, 4.620369]







[5.282807, 5.282808]

[5.282807, 5.282808]

[5.282807, 5.282808]

[5.282807, 5.282808]

[4.620368, 4.620369]

[5.282807, 5.282808]



,




[4.620368, 4.620369]

[5.282807, 5.282808]

[5.282807, 5.282808]

[5.282807, 5.282808]

[5.282807, 5.282808]

[5.282807, 5.282808]







[5.282806, 5.282808]

[4.620367, 4.620371]

[5.282805, 5.282810]

[5.282804, 5.282810]

[5.282804, 5.282811]

[5.282801, 5.282813]



,




[5.282806, 5.282809]

[5.282805, 5.282810]

[4.620366, 4.620372]

[5.282803, 5.282812]

[5.282803, 5.282812]

[5.282799, 5.282816]



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