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1. Introduction 

Soils are an important compartment in the global terrestrial ecosystem. Soils are 

complex systems and are in contact and relating with the atmo-, hydro-, bio- and 

lithosphere (Tarquis et al. 2011, FAO and ITPS 2015).  

The development of soils is driven by the following soil-forming factors: climate, 

parent material, topography, vegetation. The specific strength of the soil-forming 

factors varies depending on global and local geographical position. The soil-

forming factors cause numerous single processes and impacts, which have an 

effect on the soil and its different characteristics (Scheffer & Schachtschabel 

2010). The formation of soils induced by these factors is often a slow occurring 

process. In contrast, the changes and development in the characteristics of soils 

affected by anthropogenic activities can take place very quickly.  

The relevance of different processes and impacts can vary considerably. Climate 

Change is a worldwide impact, affecting soils in different ways. Increasing 

temperatures can, for example, affect the soil moisture (Müller & Zhang 2016). 

Another overall impact on the soils is the deposition, especially of acidifying and 

eutrophying compounds as shown in Europe (Waldner et al. 2014). Other overall 

impacts can be widespread, but be limited to soils with particular land use, for 

example the input of trace elements via fertilizers in agricultural soils in Europe 

(Nziguheba & Smolders 2008). Besides the overall influence of those impacts the 

strength of influence can vary on different scales as shown in these studies. 

Further examples of scale effects are given for instance by Wang et al. (2015). 

They provide detailed insights into the impacts that soil texture and climate have 

on soil organic carbon at different scales. Biswas et al. (2013) presented scale 

and spatial depending effects by using soil water storage and clay content data.  

In addition, impacts can be also restricted to a typical scale. An example of a 

large-scale (local) influence is the emission of crematories, which increase the 

mercury content of nearby soils significantly (Mari & Domingo 2009). As we have 

known for a long time, a single process can influence small subareas of a soil, as 

root exudates alter pH and redox potential in microsites of the rhizosphere 

(Fischer et al. 1989, Dorau et al. 2016). The mentioned processes and impacts 

reflect only a tiny part of the existing multiplicity.  
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Scale effects hold true for the spatial scale as well as for the time scale (Tarquis 

et al. 2011). Biological parameters of the soil change in the course of the year, 

because of changing temperature and moisture (Haag et al. 2015). Flooding 

events, following a more or less typical yearly pattern, can also cause influence 

e.g. the microbial community and soluble organic carbon content (Moche et al. 

2015) as well as pH, redox potential and heavy metal content of soil solution 

(Schulz-Zunkel et al. 2015).  

Despite the complex interplay of different spheres or the locally and globally 

varying characteristics of soil-forming factors, occurring impacts, and processes, 

it is possible to describe soils from all over the world with a single taxonomy, 

namely the World Reference Base (WRB) (FAO 2014). The WRB uses diagnostic 

horizons, properties and materials to classify and describe the soils. In addition 

to a precise soil classification, further knowledge of pedogenetic processes is 

necessary to understand the past and future development of soils (Bockheim & 

Gennadiyev 2000, Arrouays et al. 2014). 

Soils fulfill essential functions for human life (Oliver & Gregory 2015) and for 

ecosystems (Brumme & Khanna 2009). In the last decades the ongoing 

worldwide soil degradation (FAO and ITPS 2015) has raised the awareness of 

soils as a non-renewable resource essential for the persistence of the ecological 

environment and for human society (BMU 2017, EEA 2015). Soils are used for 

food production, as habitat for animals and plants or as a settlement area for 

humans, to only name a few. The protection of soils and their function is an 

important part of national (BMU 2017) and international (EC 2006) political 

programs. The need for soil protection can be illustrated by different ways which 

can influence human health. Contaminated soils can harm the human health by 

direct human inhalation or indirectly by releasing stored contaminants in to 

drinking water or crops that are consumed by humans (Oliver & Gregory 2015). 

On the other hand, healthy soils can remove different contaminants from seepage 

water, e.g. biocides (Bester et al. 2011), organic pollutants (Rentz et al. 2005) or 

heavy metals (Yobouet et al. 2016), and therefore can be regarded as natural 

protectors for groundwater and surface water. To protect the important 

characteristics and functions of the soil requires an increasing amount of soil 
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information (Richer de Forges & Arrouays 2010), especially with regard to 

processes that threaten the soils (Arrouays 2014). 

In the Federal Republic of Germany the Federal (FRG) Soil Protection Act 

(BBodSchG – Bundes-Bodenschutzgesetz) came into force in 1998 (BBodSchG 

1998). As determined in Article 1 of the BBodSchG the purpose of the Act is to 

protect the function of the soil and to prevent harmful changes. Soil monitoring is 

essential to understanding the processes of the current soil status or for changes 

to the soils and their characteristics (Arrouays 2009). It is also a useful tool in 

precautionary soil protection (Barth et al. 2001). To detect (harmful) changes in 

soils, the monitoring is inevitable and is in accordance to the BBodSchG. Only by 

understanding today’s soil status as well as the processes in soils and impacts 

on soils, is a prognosis of future soil development possible. To understand the 

soil, its characteristics and the changes, a monitoring of soils was established in 

Germany. 

Soil research and observation has a long history. At single sites, soil has been 

studied since the end of the 18th century (e.g. Körschens et al. 2002, Girma et al. 

2007). Soil research started with the focus on agricultural aspects and the 

productivity of soils and suitable tillage systems (Rasmussen et al. 1998). Today 

the data generated at these sites is used for further investigation in to quantifying 

nutrient cycles, carbon sequestering, studying possible effects of climatic change 

and the use of pesticides (Ellmer 2012).  

The long-term agronomic research sites, which can be found all over the world 

e.g. in the United States of America (Mitchel et al. 1991), India (Pathak et al. 

2011) as well as in Europe (Körschens et al. 2013) e.g. Great Britain (Jenkinson 

1991) and Germany (Körschens 2010, Körschens et al. 2014), cannot be 

regarded as monitoring sites in terms of systematic comprehensive soil 

monitoring (even if they provide valuable information), because of the clear 

agricultural focus of research on such sites. Comprehensive soil monitoring, as 

defined for the German Soil Monitoring Program, must be able to 

• describe the current state of soils,  

• determine changes of soil properties, 

• and identify and document the causal processes 
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in different environmental regions as well as under different soil management and 

treatment conditions (Barth et al. 2001). To fulfill the aims of soil monitoring it is 

obvious that a network of soil monitoring sites covering the different regions and 

management systems is required (Morvan et al. 2008, Arrouays et al. 2012).  

During the last decades of soil research, a lot of data has been collected. It is 

commonly felt that only a minor fraction of information has been extracted from 

these data so far and much more information remain to be revealed to meet the 

requirements of sustainable resources management. This seems to be a 

common feature nowadays, to cite John Naisbitt: “We are drowning in information 

but starved for knowledge” (Naisbitt 1983). The difficulty in working with large and 

multivariate datasets is delineating the relevant information in the dataset from 

the statistical noise. This problem is well known and can be overcome with the 

selection of adequate statistical approaches (Webster & Oliver 1990, Desaules 

et al. 2010, van Wesemael 2011). Nevertheless, the selection of the appropriate 

statistical methods is still a challenge (Arrouays 2014, Tonidanel et al. 2016).  

In this thesis the datasets of the pan German long-term Soil Monitoring Program 

will be analyzed with innovative explorative multivariate approaches the first time. 

Additionally a comparable dataset from a large scale monitoring program will be 

analyzed with the same method. For this task the selection of appropriate 

statistical methods is necessary (Morvan et al. 2008, Arroays et al. 2012). The 

selection will be based on the demands put on the German long-term Soil 

Monitoring Program. Furthermore the strengths, weaknesses, and future 

possibilities of the German long-term Soil Monitoring Program and the belonging 

dataset will be evaluated. 
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2. Soil research and monitoring programs  

To detect (harmful) changes in the soil, comprehensive soil monitoring is 

necessary. The objectives of a soil monitoring are defined by several authors. 

The authors (Arrouays et al. 1998, Barth et al. 2001, Havlikova & Klement 2002, 

de Gruijter et al. 2006, Desaules et al. 2010, Nicolas et al. 2014) agree in the 

following objectives: 

• The description and evaluation of the current state of soil properties and 

characteristics  

• The determination of long-term changes of soil properties and 

characteristics 

• To identify reasons for changes in the soil 

• To act as an early warning system for harmful changes 

• To inform and advise politics and administration based on well-grounded 

information 

To achieve the monitoring aims of determination of long-term changes of soil 

properties and characteristics two conditions must be met. At first the parameter 

spectrum of monitoring networks has to be broad to detect (unknown) common 

and peculiar characteristics and trends. The selection of parameters, especially 

when used as indicators for particular questions is difficult (Stone et al. 2016). 

Even if processes are known or a concrete question is defined, the choice of 

adequate indicators remains a difficult one (Zornoza et al. 2015, Stone et al. 

2016). Therefore a broad spectrum of parameters is necessary to explore 

unknown interdependencies.  

Second a monitoring has to be continuous. The long-term aspect of monitoring 

networks should not be underestimated (Prounier et al. 2015). Parameters 

respond at different rates to environmental influences. The required sampling 

frequency and time to reach first resilient results varies widely between different 

parameters. For example the soil respiration can clearly differ between 1 to 3 

years in grassland and forest soils (Haag et al. 2015). A time span of 10 or more 

years can be necessary to confirm changes of nitrogen content, base cation 

exchange in forest soils (de Vries et al. 2009) or of organic carbon in arable soils 
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(Körschens 2010, Körschens et al. 2015). On the other hand changes in the 

environment which can influence the soil, such as changing deposition 

(Meesenburg et al. 2016) or climate change (Müller & Zhang 2016), extend over 

a long period. Even if a lot of data can be generated in a short time, e.g. by yearly 

investigations, the results and conclusions should be handled with care. Short-

term programs, e.g. a program in New Zealand which lasts only six years 

(Sparling & Schipper 2004), may not detect significant changes when regarding 

parameters like TOC or heavy metal contents. It is possible that other programs 

like the Terrestrial Environmental Observatories (TERENO) project (Zacharias et 

al. 2011) or the program in the federal state North-Rhine Westphalia in Germany 

investigating soil carbon contents and stocks (Kaufmann-Boll et al. 2012) will 

have to deal with such problems if stopped after 15 years as planned. 

In addition to the common aims, some authors include further aims, e.g.  

• The evaluation and validation of analytical methods (Havlikova & Klement 

2002), 

• The development and validation of models for predicting changes 

(Arrouays et al. 1998). 

All over the world numerous programs collect soil information of different kinds. 

The investigation areas vary in scale. A worldwide project is the development of 

the global soil map. To fulfill this task, data is and will be collected and merged 

from different programs (Arrouays et al. 2017). Further programs collect data from 

all over a continent, e.g. the pan-European LUCAS Program (Toth et al. 2013), 

with focus on monitoring land use/land cover changes and analyzing soil samples 

with regard to soil fertility. The International Co-Operative Programme on 

Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) 

focus on forest health (Lorenz 2010, Sanders et al. 2016) covering Europe and 

North America. The parameter set by ICP Forests includes parameters of soil 

fertility and heavy metals (Kaufmann-Boll et al. 2012). A real global soil 

monitoring network does not exist today, but is needed to investigate soil quality 

worldwide and to check and to support outputs of models on a small as well as 

at a global scale (Montanarella & Vargas 2012, FAO and ITPS 2015, Arrouays et 

al. 2017).  
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In Europe, national borders outline most of the small-scale soil monitoring 

networks. Within Europe 30 countries maintain national soil monitoring networks 

of varying ranges and qualities (Morvan et al. 2008). The different networks are 

not concerted, especially with respect to uniformity in distribution of sites and 

analytical and practical methodology (Morvan et al. 2008, van Wesemael et al. 

2011). Soil monitoring programs are primarily conducted in financially strong 

industrialized countries or are financed by international initiatives (Montanarella 

& Vargas 2012). Nevertheless there are further countries outside Europe 

maintaining national monitoring systems e.g. in Ghana and Bangladesh 

(Brammer & Nachtergaele 2015), Kazakhstan (Dzhalankuzov 2014) or the six-

year monitoring program in New Zealand (Sparling & Schipper 2004). Teng et al. 

(2014) reviewed several soil environmental monitoring activities in China. Most 

of them are focused on soil productivity or soil pollution. The various Chinese 

programs are not coordinated and use different parameter sets, analytical 

methods, and aims of research, similar to the European national programs. 

Apart from nationwide programs, there are many other programs using a larger 

scale. For example, there are 16 national parks in Germany, established between 

1970 (Bayerischer Wald) and 2015 (Hunsrück-Hochwald). The land area within 

these parks varies from 4 km² (Hamburgisches Wattenmeer) to 24.2 km² 

(Bayerischer Wald) (BfN 2016). The national parks were and are supposed to 

persist permanently. In these national parks a comprehensive ecosystem 

research and monitoring is carried out, including the monitoring of soil 

parameters. In most national parks the regarded soil parameters are focused on 

interactions and relevance for plant growth and health and water quality 

(Schlumprecht et al. 2015, Kowatsch et al. 2011). 

The network of TERENO will run for at least 15 years. It includes four regional 

investigation sites in Germany. The Terrestrial Environmental Observatories 

focus on the long-term impacts of climatic change on ecological, social, and 

economic development (Zacharias et al. 2011, Bogena et al. 2012). An example 

of a program at the scale level of a federal state is the monitoring of organic 

carbon in agricultural soils of the federal state of North-Rhine Westphalia over 15 

years (Kaufmann-Boll et al. 2012). The measured parameters shall explore 

climate change effects and soil fertility. 
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At a local level, small catchments for ecological issues are investigated as the 

Lehstenbach and Steinkreuz Catchment (Gerstenberger et al. 2004) or the 

Chicken Creek (Gerwin et al. 2010). The artificial Chicken Creek catchment was 

established to study the initial development phase in a post-mining landscape. 

Often such research areas are supervised by universities. The mentioned 

programs can only represent a small part of the existing programs collecting soil 

data. Kaufmann-Boll et al. 2012 report from nine programs at the national scale 

in Germany alone.  

Most of the European national monitoring networks focused on comprehensive 

soil monitoring comprise physical, chemical, and biological parameters, just as 

do, e.g. the network of the Czech Republic (Havlikova & Klement 2002), Germany 

(Barth et al. 2001) or Swiss (Schwab et al. 2006). Nevertheless, the general 

parameter set (pollutants, nutrients, and physical characteristics) is similar. Some 

parameters are determined in a few countries only, such as earthworm diversity 

(France, Germany, Lativa, and Netherlands) or soil water retention (Austria, 

Romania and Spain) (Morvan et al. 2008). Therefore, it can be stated, that there 

is a lack of harmonization between the existing (national) networks (FAO and 

ITPS 2015). 

In contrast to the uniform targets of soil monitoring and similar parameter sets the 

programs vary in the way monitoring sites were selected. The selection and 

spatial distribution of the sites should be based on the characteristics of the 

monitoring area, but follows different rules if the several national monitoring 

systems are compared. While, for example Hungary, France, and Poland chose 

the sites by considering land use and terrain information, other countries select 

the sites by using a grid e.g. Wales, Denmark, Scotland, or Ireland. An 

uncoordinated selection of sampling sites can be found in such places as Spain 

(Van Camp et al. 2004, Morvan et al. 2008).  
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2.1 The German long-term Soil Monitoring Program (GSMP) 

The German long-term soil monitoring program (GSMP) was initiated in the FRG 

in the 1980’s. The responsibilities lie with the federal states and not with the 

federation. The main goals of the GSMP are to describe the current state of soils, 

to monitor long-term changes of soil properties, and to assess the future 

development (Barth et al. 2001). After the German reunification in 1990, the 

program was extended to the area of the former German Democratic Republic. 

Here, the measurements mostly started in the middle of the 1990s (Huschek et 

al. 2004). Today, soil monitoring is performed at about 800 sites stretched all over 

the FRG. The sites of GSMP mainly comprise grassland, arable land, and forest 

sites. Less than 7 % of the sites are fallow ground, specialized cultivation or urban 

soils (Figure 1).  

Because there is no national law or guideline for selecting monitoring sites in 

each federal state different numbers of sites were selected based on varying 

criteria. The sites were chosen by considering the typical soils, landscapes and 

land use or using expert knowledge or statistical criteria. Additionally a few sites 

were chosen to reflect specific characteristics, such as contaminated sites or 

special soil forms. Another important criterion was the long-term availability of the 

sites, to facilitate long-term measurements. The various procedures have 

generated different numbers, distributions and characteristics of sites within the 

federal states and the FRG.  

The recommendations of Barth et al. 2001 include the classification of the 

monitoring sites in to two types: basic monitoring sites for trait documentation and 

intensive monitoring sites for additional documentation of processes. At basis 

monitoring sites at least 70 mandatory physical, chemical and biological 

parameters should be measured. Soil samples should be collected as composite 

samples from different horizons down to 200 cm. Depending on the parameter 

the measurements should be repeated from once a year (mostly biological 

parameters) to once in five years (mostly chemical parameters) (Table 11 in 

Appendix I). These frequencies are typical for European soil monitoring networks 

in order to meet the requirements for a trend analysis, e.g. for soil contaminates 

(DIN ISO 16133). 
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Figure 1: Monitoring sites of the GSMP. Grey lines delineate the federal states of 
Germany. 

The Federal Environment Agency (UBA) compiled all the information and data of 

the GSMP on to a single database (bBIS – nationwide soil information system) to 

give an overview and to allow nationwide analyses (UBA 2010). The bBIS 

contains the descriptions of the monitoring sites and the quality proofed analytical 

data of measured soil matrix samples. The bBIS includes information from 11 of 
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the 16 federal states and from more than 700 study sites in 2014. A continuous 

complementation is intended in the future. Up to 2016, however, this has been 

carried out only for individual questions and therefore parameter-specific and not 

comprehensively. 

Despite the recommendations for temporal replications (Barth et al. 2001), the 

number of analytical results in the bBIS is rather low. The number of temporal 

measurements usually is less than the recommended frequency of replication. 

For example, only seven federal states provided heavy metal content data 

covering a period of 10 or more years till 2014. In some states this period is 

covered by two samples, which means one replication after 10 years (Schilli et 

al. 2011). Similarly other European countries monitoring programs also lack an 

adequate number of temporal replicates (Arrouays 2009). 

At more than 90 monitoring sites of the GSMP the soil matrix and the soil solution 

is sampled. These sites are called intensive monitoring sites. The soil solution is 

collected continuously with mostly three to six suction cups or plates at each 

depth at biweekly to four weekly intervals. Different soil solutions of each depth 

are pooled. Chemical analysis is conducted on the merged samples. The 

analyzed parameter set from the soil solution is similar to that of extractions of 

the soil matrix samples (cf. Barth et al. 2001). The maintenance of the sites 

varies, especially in the case of the measured parameters and the use of 

analytical methods.  

The bBIS currently does not include these data from intensive monitoring sites. 

In most cases the federal states maintain their own database. Some federal 

states, e.g. Lower Saxony, Hesse and Saxony-Anhalt, pool the data from (a part 

of) their intensive monitoring sites which are managed by a common institution - 

the Northwest German Forest Research Station. Therefore a nationwide 

evaluation of data from intensive monitoring is currently not possible, due to the 

lack of a composite dataset. 

Although general guidelines are provided these days, the implementation of the 

program as well as of the soil analytics, slightly differ between the federal states. 

For example, the extraction of heavy metals in soils with aqua regia is a 

mandatory parameter (Table 11 in Appendix I), whereas the total content after 

Ruppert (1987) including the extraction with hydrofluoric acid under pressure is 
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an optional parameter (Barth et al. 2001). In a few cases only the latter has been 

determined. In addition, the methods to measure the contents vary. Table 1f 

heavy metals and As in soils. 

Table 1 shows different extraction methods used in the GSMP for the “whole” 

content of heavy metals and As in soils. 

Table 1: Methods used to analyze the content of heavy metals and arsenic in 
the GSMP 

Parameter Method description 

Total content of heavy metals and As 

Total content (Ruppert 1987) 

Total content (modified method of 
Ruppert 1987) 

Total content extracted with 
HF/HClO4 (DIN ISO 14869-1 
01/2003) 

Total content extracted with 
HF/HNO3 under pressure in 
microwave (GAFA 2005) 

Aqua regia extractable content of 
heavy metals and As 

Aqua regia (DIN ISO 11446) 

Aqua regia (federal state specific 
method with adapted HNO3 – HCl 
proportion) 

Aqua regia (federal state specific 
method with no further method 
description) 

 

However, in most cases the mandatory chemical and physical soil characteristics 

as given by Barth et al. (2001) are analyzed with the equivalent or comparable 

analytical techniques. This means it is possible to recalculate the results of 

different methods to obtain comparable results (Ad-hoc Arbeitsgruppe Boden 

2005b, Schilli et al. 2011) for these parameters. In spite of the federal 

competences, it can be stated that the GSMP reveals an appreciable degree of 

harmonized methods and coverage of different landscapes and ecosystems 

(Schröder et al. 2004). 

The GSMP can be characterized as a typical (national) program that fulfills all of 

the criteria for a comprehensive soil monitoring. The broad spectrum of physical, 

biological, and chemical parameters (Barth et al. 2001) enables the program to 

detect changes in soil characteristics beyond current tasks. The measurement of 
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additional climatic parameters, especially at intensive monitoring sites (Barth et 

al. 2001), supports analyses regarding climate change. The GSMP includes 

several parameters like biodiversity data (Morvan et al. 2008) and bulk density 

and soil depth (Brammer, H. & Nachtergaele, F. O. 2015) which are often 

disregarded in soil monitoring programs.  

The missing harmonization of methods, with respect to analytical procedures can 

be moderated by the often comparable or equivalent results of the different 

methods (Kaufmann-Boll et al. 2011). The GSMP should provide a dataset that 

is typical for a comprehensive (national) soil monitoring dataset and should be 

suitable to fulfill the determined aims of the program. 
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2.2 Using soil monitoring data for research  

Soil monitoring is a challenging task generating huge datasets. The datasets of 

soil monitoring networks often include very heterogeneous data because of such 

things as different site characteristics, sampling depths, land use, and various 

involved agencies. The GSMP has generated a very large multivariate and 

heterogeneous dataset, which is compiled in the bBIS dataset. The analysis of 

such large and heterogeneous datasets is difficult because of the complexity of 

the investigated system soil, especially under different conditions (e.g. parent 

material and land use) and its interdependencies with other compartments of the 

environment. Such datasets require the use of adequate statistical approaches 

to fulfill the monitoring aims (Arrouays 2014).  

The GSMP generates two different types of datasets to meet the requirements of 

different aims. One type is generated at basic monitoring sites to investigate the 

soil matrix. According to Barth et al. (2001) the soil should be characterized by 

numerous biological, chemical, and some optional physical parameters like soil-

water content or penetration resistance.  

The second type of dataset is generated by intensive monitoring sites. It is 

characterized by a large number of replications due to biweekly or monthly 

sampling of soil solution and determination of chemical parameters. 

Recommendations for biological and physical parameters (Barth et al. 2001) are 

not available for soil solution data. 

Such large multivariate datasets, such as the pan-German soil monitoring 

dataset, open new opportunities for improving our understanding of soils, 

evaluating local peculiarities, identifying the onset of trends as well as providing 

unexpected results without requiring any pre-defined hypotheses. Single 

parameters or a combination of parameters are defined for special questions like 

soil fertility. Different chemical, biological and physical parameters can give 

information about varying aspects of soil quality (Zornoza et al. 2015). In most 

cases impacts on processes in soil influence a number of variables. For example, 

the podzolation is characterized by specific dynamics of e.g. pH and the contents 

of organic carbon, iron, and aluminum in soil matrix and soil solution (Lundström 

et al. 2000). Therefore, when monitoring datasets are analyzed the statistical 
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approaches should be multivariate and explorative to identify and describe 

(unknown) characteristics and trends as well as relevant processes.  

To investigate relationships or patterns in data, numerous approaches of 

clustering, ordination or trend analyses can be used. The use of such statistical 

approaches like e.g. multi linear regression (Riek et al. 1995, Guckland et al. 

2012, Ayoubi et al. 2014), Cluster analysis (Fabietti et al. 2010, Morrison et al. 

2011) or Principal component analyses (PCA) (e.g. Abollino et al. 2002, Langer 

& Rinklebe 2009, Ou et al. 2013, Kelepertzis & Argyraki 2015) are well known in 

soil science and have often been used. Most of the used approaches are linear, 

in spite of the documented occurrence of nonlinear effects in the environment 

(Ramette 2007, Lischeid 2014), in earth (e.g. Beresnev & Wen 1996) and also in 

soil science (e.g. Manzoni et al. 2004, Biswas et al. 2013, Shcherbak et al. 2014). 

Innovative nonlinear statistical approaches are used in different empirical and 

ecological science to deal with this problem (e.g. Isakin & Teplykh 2011, Maassen 

et al. 2015). There is a need for research to identify possible benefits when using 

such approaches to investigate soil monitoring data (Figure 2).  

In addition to the different soil monitoring objectives, monitoring can vary at 

different scale levels (from the continental to the local scale) as well as the 

impacts do. Therefore it seems to be necessary to have a look at different scales 

when analyzing soil monitoring data. The relevance of the different scales when 

monitoring soil quality and organic carbon in soils is emphasized by e.g. Wang et 

al. 2015 and Teng et al. 2014 who stated, that it is necessary to observe soils at 

national, regional and local scale.  
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Figure 2: Derivation of the need for research 
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2.3 Research aims 

By summing up the different tasks and utilizing the available data from soil 

monitoring the aims of this thesis can be defined as testing modern statistical 

approaches to make more efficient use of large and multivariate soil data from 

extensive monitoring programs in order to  

o Identify the main impacts and processes on soil quality;  

o Detect long-term shifts based on a large number of replicates but 

only a low number of temporal replications; 

o Draw conclusions with respect to the suitability or need for 

modifications of the respective soil quality monitoring programs in 

order to address these questions. 

To that end, advanced nonlinear methods were applied to soil quality data from 

various monitoring programs at different spatial scales that have rarely been 

applied in soil science before.  

The possible relevance of scale effects requires the use of data at different 

scales. For this reason three different scales, with three different datasets were 

chosen for the analyses (Figure 3). The national scale is chosen to represent the 

small scale due to the available data pool of the basic monitoring sites of the 

GSMP (Chapter 4.1). The analysis for the medium scale deals with 5 plots from 

three intensive monitoring sites of the GSPM (Chapter 4.2). Four intensive 

monitoring sites within the Lehstenbach Catchment (Matzner 2004) will represent 

the large scale (Chapter 4.3). 

 

Figure 3: Study scales and data    
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3. Statistical methods  

When analyzing complete monitoring datasets high demands are placed on the 

used statistical approaches. The demands on analyzing the basic and intensive 

monitoring datasets have some commonalties. Both large and multivariate 

datasets should be analyzed to uncover characteristics, processes, impacts, 

trends et cetera, without requiring any pre-defined hypotheses. For this reason 

methods of classification or pattern recognition, often used when looking for 

hidden characteristics in datasets, have a crucial drawback (Bahrenberg et al. 

2003). They try to compare the unknown structures within the dataset with known 

reference patterns to assign classes or they use distinctive classifications which 

emphasize differences between the classes. In the latter case the variability 

within the group is not taken in account, which reduces the suitability.  

The use of such “biased” methods impedes the exploration of new or unexpected 

information. Therefore, adequate explorative approaches of data mining should 

be used. Besides the knowledge of promising and powerful statistical approaches 

in fields outside the ecological research the use of the well-known and 

established statistical approaches, e.g. nonmetric multidimensional scaling 

(NMDS), PCA or correspondence analysis, are preferred by the bulk of ecological 

researchers until today (de Carvalho et al. 2015). Nevertheless, there is as 

necessity to try and prove the use of modern statistical approaches especially for 

analyses of extensive datasets (Lischeid et al. 2016). 

As presented in chapter 2.1 the monitoring datasets include a large number of 

parameters. Preceding studies frequently considered only one or two of the 

numerous monitoring parameters to be compared with each other like in the 

studies in Saxony-Anhalt (Tischer 2015) and North Rhine Westphalia (Haag et 

al. 2015). Since soil characteristics and processes mostly are affected by or affect 

more than one parameter (Lundström et al. 2000, Schulz-Zunkel 2015) and one 

measured parameter is usually influenced by numerous different impacts and 

processes (Lischeid 2014). Therefore the approaches should be multivariate to 

regard possible interdependencies between the measured variables (Arrouays et 

al. 2011, Zornoza et al. 2015).  

The presentation of results of high dimensional datasets can be difficult because 

of the various measured parameters and interactions between them. The 



 

19 

 

interpretation of high multivariate datasets can be supported by dimension 

reduction (De Carvalho et al. 2015, Fernandez et al. 2015). Approaches of 

dimension reduction try to display a large amount of the information which is 

included in a dataset with a lower number of dimensions. A typical and well-

known kind of such an approach is the PCA which tries to display a large part of 

the variance within a dataset by only a few components. Each component reflects 

a structure in the dataset which can be interpreted scientifically (Webster 2001). 

Further approaches try to “map” the variance of a dataset in a low dimensional 

space to visualize the included information. E.g. the results of the PCA or other 

multivariate approaches can be presented in diffusion maps (Chen et al. 2008, 

Fernandez et al. 2015). Other approaches, like the Self-Organizing-Map 

(Kohonen 2001), create their own plane of projection to display the variance of a 

dataset.  

Common approaches like PCA account only for linear relationships. On the other 

hand there are often nonlinear structures in environmental dataset sets (James 

& McCulloch 1990, Tarquis et al. 2011, Lischeid 2014). Nonlinear structures 

cannot be captured using linear approaches (Kerschen & Golinval 2002) without 

transforming the dataset, but the transformation of data to create linearity should 

be avoided (Lane 2002) because of a possible loss of information. Consequently 

nonlinear statistical approaches often achieve better results than linear 

approaches when analyzing ecological datasets to identify relevant processes or 

impacts (Tennenbaum et al. 2000, Mahecha et al. 2007, Schilli et al. 2011, 

Lischeid 2014). In soil science (explorative) nonlinear statistical approaches are 

rarely used, whereas they are more common since several years in other 

empirical sciences (Tennenbaum et al. 2000, Lane 2002, Isakin & Teplykh 2011) 

and ecological sciences, as climate research (Gamez et al. 2004), hydrology 

(Böttcher et al. 2014, Maassen et al. 2015) and molecular biology (Scholz et al. 

2005). Nevertheless, the use of such statistical approaches remains 

comparatively uncommon in soil science, although their use and necessity in soil 

science is known (Tarquis et al. 2011). 

When analyzing datasets from soil monitoring networks there is a requirement for 

determination of statistical changes with adequate accuracy and power 

(Desaules et al. 2010, Schilli et al. 2011, van Wesemael et al. 2011). 
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In this thesis nonlinear explorative statistical approaches will be used. It will be 

examined, if promising nonlinear approaches successfully applied in other 

ecological sciences are provide any benefit when analyzing soil monitoring data. 

The approaches were evaluated and selected with regard to their applicability to 

the different kinds of datasets generated by basic and intensive soil monitoring. 

Justifications for the selection and the description of the respective statistical 

methods are given in the corresponding chapters. 
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4. Case Studies 

In this chapter three case studies are presented. The studies vary in scale, from 

a nationwide scale (area of ca. 360.000 km²) down to the catchment scale 

(4.2 km²). The small scale study (Chapter 4.1) comprises the entire FRG and 

analyses the soil matrix data of the basic monitoring sites of the GSMP. The 

medium and large scale study is based on soil solution data. In chapter 4.2, the 

medium scale study, data from three different intensive monitoring sites of the 

GSMP up to 100 km apart from each other were used. Chapter 4.3  presents 

results based on data from intensive monitoring sites independent of the GSMP. 

While chapter 4.1 focuses on the visualization of the results without quantifying 

the impacts, the medium and large scale study compare different statistical 

approaches to quantify the main drivers influencing the soil solution chemistry.  
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4.1 Visualization of data of the basic monitoring of the GSMP 

4.1.1 Introduction 

There is urgent need for environmental and soil resources authorities for efficient 

tools to address these challenges with those large datasets (Arrouays et al. 

2012). These tools are required for the initial step of the analysis of large 

multivariate datasets in order to structure subsequent steps of the analysis. To 

present data of high dimensionality or complex relationships data visualization is 

used since several decades. The use of visual data mining, especially if the 

dataset is large and the previous knowledge is low, has been proven (Keim 2002, 

Vesanto 2002, Chen et al. 2008). These tools should definitely not replace well-

known existing statistical methods but can be used to give information to 

adequate further investigations. 

Data visualization uses the human eye’s and the human brain’s excellent ability 

to detect patterns in visual sensations. The human brain is the most powerful tool 

when it comes to pattern analysis and exceeds the performance of computers by 

far (Chen et al. 2008). The human visual cognition is able to reduce an extremely 

high number of input data to low number of relevant information faster than every 

computer. The human eye can collect about 1010 bit/s using the photoreceptors 

of the eye. The amount of data is reduced intuitively when passing the visual 

nerve and frontal lobe down to 100 bits/s of essential information that are 

recorded cognitively (Welsch et al. 2013).  

Different patterns and connections within the visually recorded information are 

extracted fast and automatically by the human brain (Dulclerci & Tavares 2003).  

Highly inhomogeneous and noisy data, which can be expected in environmental 

monitoring, can be handled by the flexibility and creativity of the human brain and 

its cognitive performance conducting visual data exploration (Keim 2002). By 

data visualization of large datasets the information complexity is reduced and the 

users knowledge acquisition is supported (Koua 2003).  

Thus, data visualization is considered as the most powerful interface between 

large datasets, stored in a computer, and the human brain. Consequently, maps 

and computer screens play an outstanding role in science as well as in every 

day’s life (Kohonen 2001, Keim 2002). The methods of visualization vary from 
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presentation in simple graphics (e.g. diagrams) to complex approaches. Here 

approaches of Data Mining and Machine Learning can be taken into account to 

simplify mapping processes and visual representation (Dulclerci & Tavares 

2003).  

An explorative Data Mining tool focusing on data visualization is the Self-

Organizing Map (SOM). The SOM is a kind of an artificial neural network and was 

introduced by Kohonen 2001. The SOM has been successfully used in different 

ecological (Annas et al. 2007, Olawoyin et al. 2013, Lischeid et al. 2016) and soil 

science studies (Merdun 2011, Voyslavov et al. 2012, Ye et al. 2015). Rivera et 

al. 2015 explicitly emphasize the applicability of the SOM for data exploration and 

recommend the SOM for analyses of complex monitoring dataset including 

physical, chemical and biological parameters. The performance of visual 

interpretation of the SOM can be enhanced by further statistical analyses 

(Vesanto 2002).  

The SOM belongs to the field of unsupervised learning methods which makes it 

suitable to discover unknown patterns and interdependencies, because no 

predefined category information or classes are used when data training is 

conducted (Koua 2003). On the other hand the SOM allocates datasets to certain 

distinct units, which can be a drawback when looking for hidden characteristics 

(Bahrenberg et al. 1996, cf. chapter 3). If relations between data sets within an 

SOM unit should be interpreted, a further projection regarding and visualizing 

their similarity is necessary (Kohonen 2001). The static class boundaries should 

be resolved and possible transitions visualized. Kohonen (2001) suggested 

combining Self-Organizing Maps with Sammon’s Mapping (Sammon 1969) to 

increase visualization quality. 

The requirements given above result in the selection of the SOM as a statistical 

approach, supported by the Sammon’s Mapping (SM) approach (Sammon 1969), 

as recommended by Kohonen (2001) and conducted by e.g. Lischeid et al. 2016 

using hydrological data. The SOM is known for being able to handle multivariate 

noisy datasets and possible nonlinearity in the dataset, which cannot be excluded 

in soil monitoring datasets (Kohonen 2001, Rivera et al. 2015). 

An additional aim of the statistical analyses was to perform multivariate trend 

analyses. The approach should be able to perform this even with a low number 
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of temporal replications but a large number of spatial replicates, as described for 

the available dataset of basic monitoring sites of the GSMP (Schilli et al. 2011, 

cf. chapter 2.1). To handle this problem an innovative way to analyze the result 

of the combined Self-Organizing Map and Sammons Mapping (SOM-SM) with 

regard to time trends is presented (chapter 4.1). 

Here, this approach will be applied to the data of the nation-wide German long-

term Soil Monitoring program. Parts of this dataset have been used in various 

studies to test pre-defined hypotheses (Mindrup et al. 2011, Olbricht 2011), 

mostly within the borders of the different federal states and only for a single 

variable. In other cases numerous variables are regarded, but each one was used 

to explain the change of contents of a single one. Such studies using GSMP data 

were presented by e.g. Nerger et al. 2016 analyzing changes of TOC in a dataset 

of the federal state Schleswig-Holstein or Haag et al. 2015 analyzing changes of 

biological and chemical variables in a dataset of North-Rhine Westphalia.  

 

The main objectives of the study are: 

1) To explore the large and multivariate dataset from the GSMP and 

visualize the current state of soil characteristics and the relationships 

with other the soil properties; 

2) To determine multivariate long-term trends with many spatial replicates 

but a limited number of temporal replicates;  

3) To evaluate the suitability of the SOM-SM approach for analyzing 

monitoring data in soil science with respect to monitoring goals. 
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4.1.2 Material and methods 

4.1.2.1 Dataset and data preposition 

The statistical analyze is based on the bBIS dataset, provided by the UBA. The 

bBIS contains data from 733 monitoring sites within Germany. Data from more 

than 8.000 soil samples from nearly 3.800 different organic and mineral soil 

horizons are available. Over 330.000 analyzed soil matrix’s of different physical, 

chemical and biological parameters are quality-assured and could be compiled in 

to the bBIS. This study aimed at including as many samples and as many 

parameters as possible. The selection of the dataset was conditioned by the 

selected approach of the SOM, which does not except blank values in the data 

(Kohonen 2001).  

According to this, each parameter should be measured at each soil sample within 

a dataset in the ideal case. In the dataset the most frequently and nationwide 

measured chemical parameters are total organic carbon (TOC), total nitrogen 

(N), pH in CaCl2 (pH) as well as the concentration of cadmium (Cd), chromium 

(Cr), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn) in aqua regia (Table 2) 

(Schilli et al. 2011). 

Table 2: Regarded parameters and number of measurements 

TOC N pH(CaCl2) Cd Cr Cu Pb Ni Zn 

5023 5492 5627 4135 4246 4324 4357 4368 4384 

 

The mandatory biological and physical parameters were measured in less than 

1000 samples each. The exception is soil texture with >5000 measurements 

(Schilli et al. 2011). In this study soil texture was treated as an independent 

variable that could explain a part of the variance of soil quality.  

In a first step of data preparation blank values in the data sets were filled. Missing 

values could be deduced by results of further parameters. For example TOC was 

calculated in 430 times by subtracting the total inorganic carbon from total carbon 

when these parameters were measured. Missing pH(CaCl2) were estimated by 

existing measurements of pH(KCl) and pH(H2O) or by calculated soil texture and 

horizon specific means, based on the pH measurements. The uncertainty of pH 
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estimation in CaCl2 based on the measurement with other methods is accepted, 

because the resulting values should be close to reality (Schilli et al. 2011).  

The second step replaces values below detection limit by zero. The decision 

against the replacement by half or quarter of the detection limit is justified by the 

different detection limit in the data of different federal states and the often 

decreasing detection limit with time. Half of the detection limit for e.g. Cd at the 

beginning of the monitoring period in a federal state was more than double the 

youngest detected value in the dataset of another federal state (Schilli et al. 

2011). 

In a last step samples with two or more missing values were excluded from further 

statistical analyses, because of the need of complete data sets. Single missing 

values were replaced by land use and horizon specific means of the respective 

parameter. This was carried out for Ni (1 case), Pb (4), Cu (23), Cr (23), pH (113), 

Cd (148), TOC (200) and N (204). To assign equal weight to the variables the 

data were z-normalized (mean = 0, standard deviation = 1) separately for each 

variable. In total, 3724 samples from 2343 different horizons and 529 sites met 

the requirements, covering a period from 1985 to 2007 (Schilli et al. 2011).  

The dataset comprises samples from organic and mineral soil horizons of various 

land use classes and of different parent material. Consequently, the samples 

exhibited large differences of soil bulk density. Therefore it would have been 

desirable to calculate the stocks of the elements and include them into the 

statistical analyses. However, since those data were not available from all sites 

and horizons the analyses were restricted to concentration data (Schilli et al. 

2011). 
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4.1.2.2 Statistical methods 

A combination of the SOM and the SM was chosen to analyze the GSMP dataset. 

The SOM-SM aims at visualizing large high-dimensional datasets in a low 

dimensional, usually two dimensional, projection (Kohonen 2001). The SOM is a 

very efficient tool to discover structures and dependencies in large multivariate 

datasets and is recommended for Data Mining in ecological datasets (Giraudel & 

Lek 2001, Merdun 2011) and soil monitoring data (Rivera et al. 2015) especially 

if efficiency and visualization is improved by combining the SOM with further 

approaches such as Sammon’s Mapping (Kohonen 2001, Lischeid 2014).  

Self-Organizing Map 

The SOM tries to display a high dimensional dataset in a 2-dimensional, as in this 

study, or 3-dimensional space. As an unsupervised artificial neural network the 

SOM clusters and projects the dataset in an iterative training procedure (Kohonen 

2001). In this map patterns can be visualized which can be interpreted as typical 

characteristics of the dataset, respectively the analyzed soils.  

In a first step an initial map is set up, which is a network with a defined number 

of units (in this case a hexagonal grid of 60 times 40 units). Each unit can be 

understood as a vector of the same dimensionality as the underlying dataset. The 

vectors are initialized randomly. Therefore, if the SOM generation is repeated, 

the results will never be exactly the same, but very similar (Kohonen 2001). In 

general, the SOM performs a kind of two-step cluster analysis, aiming first at 

assigning similar data vectors (i.e., soil samples with similar parameter values) to 

the same units, and second arranging units with similar data vectors close to each 

other. Figure 4 provides an example of a SOM-grid with 5 times 3 units and three 

dimensions (i.e., the number of the observed parameters). 
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Figure 4: Scheme of an SOM grid with three variables 

In an iterative “learning” procedure each sample of the dataset ud, is presented 

to the network and the “winnig-unit” uw is identified which is the most similar to 

the respective sample. The winning unit uw is then updated to match the values 

of the sample ud even a little bit more closely:  

 𝑤 + =  𝑤 + ℎ ∗ 𝑑 − 𝑤   
 

where t is the learning index and tmax is the number of learning steps. In this study 

800 learning steps were used. Besides the winning unit nearby units in the 

network are updated as well, but to a lower degree, defined by the neighborhood 

function h(t). Here a Gaussian function was used:  

 ℎ =  𝛼 ∗  exp  − ‖ 𝑤 − 𝑎 ‖𝜎²  

 

The term ||uw-uall|| is the multivariate Euclidean distance between the winning unit 

and each dataset unit on the map. The learning procedure is defined by the α(t) 

and σ(t) parameters which both approach 0 with increasing number of learning 

steps, where 𝛼  is the “learning-rate factor” and 𝜎   is the width of the kernel 

of the neighborhood function. The latter covers 2/3 of the units of the SOM in the 

beginning of the learning procedure. 
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Sammon’s Mapping 

The SM approach uses the results of the SOM and arranges them corresponding 

to the multivariate similarity of the data. Sammon’s Mapping was developed to 

project a high dimensional dataset into a low-dimension space (Sammon 1969). 

Starting from a random initialization or with the scores of the first two principal 

components, the location of single data vectors is stepwise adjusted in an 

iterative procedure in order to maximize the correlation between interpoint 

distances in the high-dimensional data space and the low-dimensional projection. 

As recommended by Kohonen (2001) the coordinates of the 2-D projected SOM 

units were used for initialization instead. 

The interpoint distances of the original data set (dij*) and the interpoint distances 

of adapted SOM coordinates (dij) are used to define an error function  

 

= ∑ [𝑑 ∗]<  ∑ [𝑑 ∗ −  𝑑 ]𝑑 ∗<  

 

The error is stepwise minimized (tmax = 100) by adapting the SOM coordinates 𝑥𝑆  by 

 𝑥𝑆 + = 𝑥𝑆 − 𝑀 ∗  ∆  

 

where ∆  is 

 ∆ =  𝜕𝜕𝑥𝑆  𝜕²𝜕𝑥𝑆 ²⁄  

 

and α is the learning rate (0 < α < 1).  

It has been shown that combining SOM and SM (SOM-SM) is a very powerful 

tool for low-dimensional projection of large multivariate datasets (Kohonen 2001). 

The application of SM supports the visual pattern recognition and allows trend 

analyses, even with a low number of temporal replications if a larger number of 

spatial replications are given, which will be presented in chapter 4.1.3. 
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For statistical analyses and creating diagrams the R-software package (Version 

2.10.0) (R Development Core Team 2006), the Kohonen extension (Version 

2.0.5) for Self-Organizing Maps (Wehrens & Buydens 2007) and the MASS 

Extension (Version 7.3-13) for Sammons Mapping (Venables and Ripley 2002) 

which are available at http://www.r-project.org were used. 

  

http://www.r-project.org/
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4.1.3 Results 

The outcome of the SOM-SM is a single graph where every data point denotes 

one sample of the dataset. In contrast to more common ways of visualization of 

data, the location of the symbols within the graph, and their projections on the 

axes do not bear any information. Thus, coordinates are given only for orientation. 

Here, every sample is represented by a symbol. Distances between any two 

symbols can be interpreted to be proportional to the dissimilarities of the 

respective soil samples with respect to all nine parameters. Thus, the more 

similar any two samples are, the closer they are plotted to each other in the graph. 

In this study, correlation between dissimilarities of the soil samples with respect 

to the nine variables and distance in the SOM-SM is r² = 0.94. 

The same graph will be shown with various colour codes or gray shadings for 

different values and characteristics of the samples. In this regard the SOM-SM 

can be compared with a topographic map, where elevation is colour-coded and 

(usually) does not increase continuously along the x- or y-axis. In this study colour 

codes used for concentration of different parameters (Table 2) as well as further 

information such as land use, soil texture etc.. Please note that only the 

concentration of Cd, Cr, Cu, Pb, N, Ni, TOC, Zn, and pH values have been used 

for setting up the SOM-SM. However, every soil sample can be associated with 

soil type, land use, etc. and thus, the colour coding can reflect these properties 

as well. Therefore, sample or site information can be considered and displayed 

in the graph even if not available for all samples. For example soil texture was 

not measured in organic soil samples e.g. peat soil or forest floor horizons. In 

Figure 5 to Figure 8 certain data points of the total dataset are highlighted, and 

the remaining data points are represented by light grey symbols to allow 

comparison between different figures. About 1.6 % of data points would be plotted 

outside the range presented in Figure 5 to Figure 8 and will not be considered in 

the following, allowing focusing on the majority of the samples.  

In general, the more the samples from a specific subgroup spread over the graph 

the larger the variance of the respective parameter values. The more clear the 

pattern of the values of a parameter are, e.g., a clear increase of parameter 

values from one side to another side of the graph, the more this parameter is 

correlated with other parameters. Correspondingly, similar patterns for different 
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parameters in the SOM-SM point to a strong correlation between the respective 

parameters. In contrast, gradients that run perpendicular to each other indicate 

that there is no correlation between the respective two variables. 

TOC and pH 

Figure 5A shows a high density of symbols in the upper range of the graph and 

a lower density towards the lower left corner. In addition, the cloud splits into a 

larger cluster to the right and a small cluster to the left, as illustrated by a solid 

line. Accordingly, the dataset can be divided in two groups of different chemical 

characteristics. Please note that this line has been added for orientation only and 

to support the visualization.  

 

Figure 5: Total organic carbon of soil samples, and samples from organic 

horizons and from mineral topsoil horizons shown in the SOM-SM graph. 

In Figure 5B samples with high TOC content are highlighted. The smaller cluster 

(left of the line) is characterized by TOC exceeding the 90. percentile (that is, > 

27.76%; cf. Table 3). Samples with slightly lower TOC contents plot next to these 

in the bigger cluster (80.-90. percentile; Figure 5B) between the solid and the 

dashed line. Here, TOC contents are between 6.5% and 27.76%. The TOC 

indicates a tripartition of the SOM-SM in organic samples from forest floor and 

peat soil horizons, and mineral samples (Figure 5C) as indicated by TOC 

contents (Figure 5B). The solid line divides the small cluster with samples from 

the organic horizons (organic cluster, left of the line) from the cluster with mainly 
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mineral samples (mineral cluster, right of the line). The mineral cluster can be 

differentiated by the dashed line in mineral horizons of forest soils down to 10 cm 

depth (mineral cluster; left of the line) and samples from soils under agricultural 

use or deeper mineral horizons of forest sites (mineral cluster; right of the line). 

The patterns of N and TOC are very similar (r = 0.75). Therefore, N will not be 

discussed separately. 

Table 3: Statistical values of the studied parameters (n=3724), Q = Quantile 

 
Cd Cr Cu Ni Pb Zn pH TOC 

mg kg -1  % 

Min. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 1.90 b.d.l. 

Q 10 b.d.l. 4.24 2.01 2.90 3.02 12.8 3.50 0.12 

Q 20 b.d.l. 8.39 4.34 5.60 8.82 23.1 3.99 0.30 

Q 30 0.03 12.8 7.00 8.70 12.60 32.9 4.39 0.49 

Q 40 0.08 17.9 9.30 11.9 16.9 42.9 4.83 0.80 

Q 50 0.11 24.0 11.4 16.0 21.6 52.0 5.31 1.21 

Q 60 0.17 30.8 14.5 20.2 27.1 60.8 5.90 1.79 

Q 70 0.28 39.7 18.1 26.5 35.3 72.0 6.35 2.97 

Q 80 0.48 50.0 24.00 33.0 51.0 89.0 6.88 6.50 

Q 90 0.89 67.0 38.2 45.4 92.6 128 7.30 27.7 

Max. 103 361 914 544 7985 5905 8.20 81.7 

 

The pH shows a different pattern for mineral and organic samples (Figure 6A). 

Interpretation of the pattern has to account for the fact that the symbols partially 

overlay each other. The sample points were coloured beginning with the first 

quintile and ending with the fifth quintile. The mineral samples reveal a very clear 

gradient. The pH-values exhibit a clear increase from the upper left to the lower 

right part of the cluster. Most of the high pH-values belong to samples from arable 

soils, while low values belong to upper horizons of forest soils (Figure 5C, Figure 

6A). In the smaller organic cluster hardly any samples with pH-values of the fourth 

and fifth quintile are found. Here, the gradient is roughly perpendicular to that of 

the mineral cluster, increasing from the lower left to the upper right. However, the 

gradient is less clear compared to the mineral soil samples cluster.  
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Figure 6: Heavy metal concentration and pH values of the soil samples shown 

in the SOM-SM. 

Heavy metals 

Figure 6B-F depicts the quintiles of heavy metal concentrations. In general, 

different elements roughly exhibit similar patterns. The results of Cu and Zn are 

very similar (r = 0.77). Therefore, Zn will not be discussed in detail. 

In contrast to the pattern of pH values (Figure 6A) the lowest values of the heavy 

metals (except for Cd), were found in a small sub region along the upper edge of 

both clusters, and element concentration increases towards the lower left. 

Especially for Cr, Cu, and Ni the width of the strips for single quintiles tend to 

increase with increasing concentration. This seems to be due to the highly 

skewed distribution of the data. Concentration values in the lowest quintile are 

within a small range and that of the higher quintiles exhibit much larger variance 
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(Table 3). In contrast to the patterns of pH values and TOC content (Figure 6A, 

Figure 5B) the organic and mineral clusters do hardly differ with respect to the 

heavy metal contents. Only for Ni the cluster of organic horizons left of the solid 

line is predominated by the lower quintiles. The same holds true, although to a 

lesser extent, for the mineral topsoil samples from afforested sites located 

between the solid and the dashed line (Figure 6D; cf. Figure 5C). This general 

pattern is obvious for Ni, Cu, and less clear for Pb. 

Texture and parent material 

Soil texture roughly reflects the gradient of the heavy metals in the mineral cluster 

(Figure 7A; cf. Figure 6B-F). Sandy samples plot at the top of the mineral cluster, 

silty and clayey samples more towards the lower left. The latter’s exhibit large 

variance (large scatter) and widely overlap each other. For the parent material a 

similar pattern can be found (Figure 7B). Samples from sand and sand-loess are 

located at the upper right of the cluster where low heavy metal concentrations 

prevail (Figure 6B-F). Limestone and marl with clayey weathering products reveal 

mainly mean to high contents of heavy metal elements. Samples with silty 

weathering products of alkaline igneous and metamorphic rock scatter to the 

lower left (Figure 4B) indicating high contents of heavy metals (Figure 6B-F). This 

relation of soil texture and geogenic content of heavy metals in German soils and 

the high heavy metal concentrations in silty weathering products of alkaline 

igneous and metamorphic rocks is in good agreement with previous results 

(Utermann et al. 2010). 



 

36 

 

 

Figure 7: Soil texture and parent material of the soil samples shown in the 

SOM-SM graph. 

In addition the data points were coloured using additional spatial information of 

the sampling sites, i.e., climatic region (Finke et al. 2001), type of landscape (BfN 

2007), ecological classification (UBA 2001), mean temperature and mean 

precipitation (not shown). However, for those cases no clear patterns could be 

found indicating only poor relationships to the additional spatial characteristics of 

sampling sites. 

Organic horizons 

Within the organic cluster left of the solid line different soil horizons can be 

distinguished (Figure 8). At the top of the organic cluster (Y > 2.5) most of the 

samples from peat and litter horizons are plotted. The O horizons are located in 

the lower part of the cluster. Some samples from cultivated fens and organic 

horizons are located right of the continuous line, in the direction of the mineral 

sample cluster. Please note that the location of the samples in the SOM-SM is 

based only on soil chemical data without considering any information about soil 
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type or depth. Thus, it can be concluded that these different groups of soil 

horizons differ systematically with respect to the soil chemical characteristics. 

 

Figure 8: Samples of different organic horizons shown in the SOM-SM graph. 

Multivariate Trend analysis 

The SOM-SM was used for multivariate trend analysis as well. Corresponding to, 

e.g., comparing different groups of samples with respect to location in the graph, 

temporal replicates from the same sites can be compared. Multivariate trends can 

be identified by systematic shifts within the SOM-SM of samples from different 

sampling dates. Please note that any visible shift in the SOM-SM would be either 

due to substantial changes for single parameters, or, more likely, less substantial 

but correlated changes of different variables. To detect a shift the coordinates of 

data points in the SOM-SM of the first and last samples of the respective sites 

from the same horizons each were compared. Here only sites with at least ten 
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years monitoring were considered, according to the recommendations of e.g. Bak 

et al. (1997) and Desaules et al. (2010).  

In a first step trend analyses were conducted using samples from all depths. No 

clear trend could be identified (not shown). In a second step the dataset was 

restricted to samples from the upper mineral soil horizons (organic samples were 

not regarded). Differentiation between top and subsoil samples gave more clear 

results in a former study that analyzed heavy metal sorption in German soils with 

artificial neural networks (Anagu et al. 2009). Trend analyses of the organic forest 

floor and mineral subsoil horizons were not conducted because of the low number 

of available data covering ten or more years. Despite the long-time of soil 

monitoring the number of data is relatively low (Schilli et al. 2011). 

The mean shift of paired upper mineral soil horizons samples in the SOM-SM is 

shown in Figure 9. In Figure 9A the calculated coordinate means of the compared 

land use specific youngest and oldest data points are depicted. The relative 

differences between paired samples are shown in Figure 9B as single points. A 

single point reflects the shift in the SOM-SM. The 95%-confidence interval was 

calculated for the shift in direction of the x- and y-axis. The ellipses in Figure 9B 

provide the 95%-confidence intervals of all individual time shifts of respective 

samples. A shift is significant, if an ellipse does not include the intersection of the 

axes. 
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Figure 9: Trend analysis with the SOM-SM. A: Land use specific coordinate 

means of compared upper mineral soil samples in the SOM-SM. B: Land use 

specific 95% confidence interval of the shift of compared upper mineral soil 

samples. 

One can observe a tendency for opposing trends for arable soils and forest soil, 

respectively, reflected by land use specific ellipses of the 95%-confidence 

interval. However, none of those trends is significant, indicated by the intersection 

of calculated ellipses and the axes. Arable soils show a shift into the direction of 

the upper right of the SOM-SM, while the opposite is shown for forest soils. For 

grassland soils, there was no clear trend (Figure 9B).   
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4.1.4 Discussion 

TOC and pH 

The pH pattern in the organic cluster (Figure 6A) might be mainly caused by 

decomposition of organic matter of the forest floor horizons. At the top of the 

cluster (Y > 2.5) most of the samples of less decomposed organic material 

originated from litter horizons are plotted (Figure 6A, cf. Figure 8). Litter samples 

reveal the similar pH than conifers or leaves. The more decomposed samples of 

O horizons are located in the middle and lower part of the organic cluster. The 

pH values are decreasing from the upper right to the lower left, indicating an 

acidification during decomposition (Schilli et al. 2011). This might be due to 

processes, such as nitrification of ammonium and the formation of sulfuric acids 

from sulfur oxides. The acidification is additionally supported by acidic 

precipitation. On the other hand the acidification of the humus layer is opposed 

to the decarboxylation process which consumes protons during decomposition 

(Barekzai & Mengel 1992). The pH gradient indicates that the consumption of 

protons during decomposition cannot buffer the acidic input. Some samples from 

pristine bogs and fens did not follow this pH gradient (upper part of the organic 

cluster with pH values within the first quantile). Here, the pH might reflect that of 

the groundwater rather than that of soil processes. 

Some samples plot between the organic and mineral cluster (Figure 8, close to 

the solid line). Those samples originated from Oh and Ah horizons, according to 

the German soil classification (Wittmann et al. 1997). The location of these 

samples between the clusters may indicate a smooth transition between the 

forest floor and the underlying mineral horizons caused by biological activity 

mixing O and A material. On the other hand difficulties in dividing forest floor 

horizons from the top mineral soil during sampling (Kaste et al. 2003) might be 

responsible. The location of those data points indicates that the typical chemical 

characteristics of those samples neither correspond to typical upper mineral 

topsoil samples nor to the organic horizons of forest soils regarding the 

researched parameters. Other samples in this area can be ascribed to cultivated 

fens. The agricultural use of those horizons leads to higher pH (Figure 6A, cf. 

Figure 8). Organic horizons of cultivated fens are often mixed with sand (e.g. by 
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plowing) and mostly drained. The agricultural use of fens influences the chemical 

characteristic in the direction of mineral topsoil horizons at afforested sites.  

The differentiation within the mineral cluster left and right of the dashed line 

(Figure 5B and C) obviously is related to the accumulation of TOC and 

acidification of the topsoils under forest compared to agricultural soils (e.g. 

Andersen et al. 2002). The pH increases from the upper forest soil horizons left 

of the dashed line to the lower right, were arable soils dominate (Schilli et al. 

2011).  

A general relation of pH and TOC to soil texture was not detected (cf. Figure 5B, 

Figure 6A, Figure 7A). Only the top soils of arable land show a significant relation 

between pH and soil texture (Table 4). This is presumably due to the fact that pH 

was be controlled by liming or application of alkali organic fertilizers.  

Table 4: Mean values and 95%-confidence interval of pH of the uppermost 

mineral soil horizons. 

 

 

Chromium and Ni 

In the mineral cluster all quintiles of Cr and Ni concentration are represented. 

Contents of Cr and Ni show clear relations with parent material (Wahsha et al. 

2014, Kelepertzis & Argyraki 2015) and soil texture (Schilli et al. 2011). They 

generally increase from sandy to clayey samples (Figure 6C, E; Figure 7A). 

Several studies have previously documented that enhanced concentrations of Cr 

Land use Texture pH mean  
95%-confidence 

interval 
n 

Arable land 

Sand 5.76 0.15 94 

Silt 6.79 0.10 153 

Clay 7.21 0.10 48 

Grassland 

Sand 6.19 0.29 27 

Silt 5.58 0.43 65 

Clay 6.40 0.27 18 

Forest 

Sand 3.67 0.31 52 

Silt 3.98 0.18 34 

Clay 5.00 0.40 128 
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and Ni can be associated with higher clay contents (e.g. Andersen et al. 2002, 

Utermann et al. 2010) which is in good agreement with the presented results. The 

strong impact of parent material on the contents of Cr and Ni (Alloway 2013) can 

cover other impacts such as land use (Kelepertzis 2014, Zhou et al. 2016). Even 

the input of Cr into arable soils by phosphate fertilizers, which exceeds the 

German average of atmospheric deposition by a factor of three, is comparably 

small compared to the geogenic stock in soils (Nziguheba & Smolders 2008).  

For Ni, less samples of the fifth quintile can be found between the lines in the 

topsoils of the forest sites compared to Cr (Figure 6C, E). The depletion of Ni in 

the topsoils of the forest sites compared to farmland is described by Anderson et 

al. (2002) and explained by increased weathering and leaching. The leaching of 

nickel within the soil profile is also described for numerous Austrian forest soils 

(Türtscher et al. 2017). Another possible explanation for differences between Ni 

and Cr could be that Ni is mainly sorbed to oxides and clay minerals (Rinklebe & 

Shaheen 2014) while Cr is strongly sorbed or occluded in pedogenic oxides and 

is sorbed by or builds up strong complexes with organic substances in soils 

(Alloway 2013). Generally, the mobility of Ni in soils increases faster with 

decreasing pH than the mobility of chromium, which should lead to a more 

pronounced leaching of Ni. Furthermore, Huang et al. (2011) describe an input of 

Cr by litterfall exceeding the sum of bulk precipitation and interception deposition 

in a German catchment which was not the case for Ni. A translocation of Cr from 

deeper soil horizons to plants and subsequent accumulation in the topsoil 

following litterfall is indicated (Schilli et al. 2011). 

In spite of the documented translocation and input by litterfall high contents of Cr 

and Ni (4. and 5. quintile) were very rarely detected in the organic samples 

(Figure 5C; cf. Figure 6C, E). Those findings correspond very well with the 

observation that an important source for Cr and Ni in soils is the parent material 

(e.g. Andersen et al. 2002, Hernandez 2003). The input by deposition is relatively 

low in comparison to the stocks of the mineral soil. This is reflected by missing Ni 

and Cr contents of the 4. and 5. quintile in the organic samples. Even the above 

mentioned input by litterfall (Huang et al. 2011) is not able to compensate for 

those differences. 
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Litter decomposition and mineralization is usually connected with a mass loss of 

leaf material (Scheid et al. 2009). In addition there is an increase of storage 

capacity during decomposition due to changes of the structure of the organic 

material. As a consequence the concentration of heavy metals can increase (e.g. 

Scheid et al. 2009, Huang et al. 2011). The gradient of Ni and Cr in the organic 

cluster may follow the grade of decomposition. 

Pristine, non-cultivated bogs and fens generally contain little decomposed 

organic matter. Iron and manganese oxides are often missing in bogs and fens 

due to anoxic conditions. The exchange capacity of the organic material of bogs 

and fens might be lower compared to the more decomposed O horizons. 

Therefore, lower concentrations of heavy metals can be detected (Figure 6C, E; 

cf. Figure 8) (Schilli et al. 2011). 

Copper 

The pattern of Cu content of the mineral soils is similar to that of Cr which 

indicates similar impacts (Figure 6C, D). The parent material and clay contents 

have been identified as important general sources of Cu by several authors (e.g. 

Andersen et al. 2002, Utermann et al. 2010, Mihajlovic et al. 2012, Wahsha et al. 

2014) supporting the interpretation of the presented results.  

For topsoils of agricultural soils (Figure 6D, mostly to the right of the dashed line) 

fertilizers such as manure (especially pig slurry) and sewage sludge might be 

relevant sources (Boysen 1992, Bak et al. 1997) as well as agrochemicals 

(Kelepertzis 2014, Simoncic et al. 2017). The anthropogenic impact on Cu 

contents should not be underestimated and can be of similar relevance than 

natural sources, especially in and around areas known for industrial activity 

(Rautengarten et al. 1995, Alloway 2013, Zhou et al. 2016). In this case study the 

pronounced pattern of Cu contents at the right site of the dashed line indicates 

that anthropogenic impacts are not able to compensate the influence of the parent 

material, respectively the soil texture (Schilli et al. 2011). 

For forest topsoil samples (between the dashed and the solid line) the gradient is 

less clear. Some samples of the fifth quintile scatter to the upper right. Those 

samples show no similarities in soil characteristics or in spatial distribution. A 

possible explanation would be an influence of deposition (Schilli et al. 2011). 

Comparing the deposition amount and the soil stocks of Cu, the ratio is closer 
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than for Cr and Ni, as shown by Bak et al. (1997) for Denmark. Additionally, Cu 

has a strong affinity to organic matter (Altaher 2001, Neupane & Roberts 2009) 

which is enhanced in forest topsoils compared to agricultural soils (Andersen 

2002, Fabietti et al. 2010). On the other hand Neupane & Roberts (2009) did not 

find any enrichment of Cu in topsoils of adjacent broadleaf forest and arable soils 

in spite of enhanced Cu contents, presumably due to aerosol deposition. This is 

in accordance to the presented results, were significantly higher contents of 

topsoils of forest sites compared with arable topsoils of the same parent material 

could be not be found (Schilli et al. 2011). The less pronounced pattern could be 

interpreted as an evidence for the relevance of deposition as a Cu source, being 

consistent to previous studies (Bak et al. 1997, Zhou et al. 2016), but this cannot 

be confirmed here.  

Copper contents of the litter and of the O horizon are within the third to fifth 

quintile, increasing from litter to more decomposed material of O horizons, 

corresponding to the results of Scheid et al. (2009). Besides deposition there 

could be an additional enrichment of Cu in the mineral horizons by plant uptake 

and subsequent litterfall (Jonczak & Parzych 2014, Türtscher et al. 2017). The 

observed contents in the range of the fifth and fourth quintile in forest floor 

samples might point to deposition and litterfall as possible sources of Cu into the 

soils (Schilli et al. 2011). 

Lead 

In contrast to Cr and Ni atmospheric deposition has been identified as an 

important source for Pb in soils (Zhou et al. 2016, Türtscher et al. 2017) due to 

the use of leaded gasoline. Lead concentration in fuel in West Germany was 

stepwise reduced from 0.4 g l-1 (1972) to 0.0 g l-1 (1988). This led to a substantial 

reduction of lead deposition since the 1980’s (Huang et al. 2011). Nevertheless, 

considerable amounts of the deposited lead are still stored in the forest floor 

(Kaste et al. 2003) and the uppermost mineral soil horizons (Hernandez et al. 

2003, LUBW 2008). Corresponding to those studies high lead concentrations in 

the forest floor and in the upper mineral horizons of the forest sites were found 

(Figure 6F). Exceptions, which plot right of the dashed line, are, e.g. sites in the 

ore containing Harz Mountains were high concentrations of Pb are common (e.g. 

Bartels 1996) and floodplain soils downstream the Harz as well as exceptions like 
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an arable soil close to a smelter which is extremely affected by deposition (Jacob 

2008).  

The Pb pattern in the organic cluster shows numerous samples of the highest 

concentration class for O horizons (Figure 6F, cf. Figure 8). Samples of fens, 

bogs and litter material exhibit lower Pb concentrations. During decomposition of 

leaf litter a significant increase of Pb was observed (Scheid et al. 2009). The high 

contents of Pb in O horizons give some evidence for atmospheric input and Pb 

accumulation in those horizons (Schilli et al. 2011, Türtscher et al. 2017). 

Different studies found that Pb is leached from the forest floor and accumulates 

in the top mineral soil (Kaste et al. 2003, Hernandez et al. 2003, LUBW 2008). In 

spite of the reduction of lead deposition the forest floor can release the stored Pb 

which is then leached to greater depth (Huang et al. 2008). 

Leached Pb from the forest floor is mainly sorbed in the uppermost humic mineral 

soil horizons of forest sites (Kaste et al. 2003, LUBW 2008), especially in acidic 

soils (Degryse et al. 2009). A high affinity of Pb to organic substances is reported 

by, e.g. Huang et al. (2008), Neupane & Roberts (2009) and Rinklebe & Shaheen 

(2014). This is confirmed in this study by high Pb concentrations in the cluster of 

topsoil horizons of forest sites between the continuous line and the dashed line 

(Figure 6F). The input of anthropogenic lead might dominate over the influence 

of the geogenic source for mineral topsoils at the forest sites. 

Compared to other heavy metals high Pb contents seem not to be closely related 

to finer texture (Figure 6F, Figure 7A). This is in contrast to various studies which 

described significant relations between total Pb and clay content (Anderson et al. 

2009). Utermann et al. (2010) give background values for German subsoils for 

different textures, soil depths and land use. For Pb the given median of 

background values of silty/loamy subsoils were similar to those of the sandy 

topsoils regardless of land use. Corresponding to these results a clear texture 

gradient for Pb (Figure 6F, Figure 7A) is not recognizable. Copper and Ni reveal 

high concentrations in soils developed from igneous and metamorphic rock. In 

contrast to Cr and Ni only medium to low contents of Pb were found except for 

forest topsoil samples (Figure 6C,E,F, Figure 7B). This corresponds to rather low 

Pb contents in the bedrock (Utermann et al. 2010). Substantially higher Pb 
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contents in the forest topsoils underline the role of deposition as an important 

source for Pb for these soils (Türtscher et al. 2017). 

Cadmium 

Among the heavy metals Cd exhibits the least clear gradient, indicating first order 

controls that differ from the other heavy metals. In contrast to the other heavy 

metals samples of the fifth quintile are located in the area of sandy and silty 

samples in the upper part of the mineral cluster (Figure 6B; cf. Figure 7A). 

Samples of the fifth and forth quintile are rarely represented in the upper part of 

the mineral cluster left of the dashed line, which represents acidic sandy samples 

of forest sites. The results of the analyses of the GSMP correspond to Andersen 

et al. (2002) who found slightly enhanced Cd concentration in arable topsoils 

compared with nearby afforested sites. As possible explanation accumulation 

induced by fertilizer application on arable soils (Nziguheba & Smolders 2008, 

Rochayati et al. 2011) and cadmium leaching because of low pH in the studied 

forest soils are mentioned. This is in accordance to e.g. Huang et al. 2011 

describing Cadmium leaching induced by low pH for forest soils.  

High concentration in arable soils right of the dashed line is presumably due to 

fertilizers, especially to phosphate fertilizers (Boysen 1992, Loganathan et al. 

2003), which can increase the Cd content in soils (Knappe et al. 2008, Kelepertzis 

2014). Cadmium contents in fertilizers differ widely (Nziguheba 2008) as well as 

the applied amounts of fertilizers. This might explain why Cd concentrations are 

not equally enhanced in all arable soils (Schilli et al. 2011).  

In the SOM-SM area around X=2, Y=0 several samples with high concentrations 

of Cd were found (Figure 6B). Most of the samples were taken from different sites 

in the region of the Harz Mountain and its foreland which is known to exhibit 

enhanced geogenic contents of Cd from different ores (Bartels 1996). However, 

not all of the samples in the region of the Harz Mountains show equally high Cd 

concentrations, presumably due to various local effects (Schilli et al. 2011).  

In the organic cluster more than 90% of the samples of the O horizons belong to 

the fourth and fifth quintile. However, samples from pristine bogs and fens often 

show low Cd concentrations (Figure 6B; cf. Figure 8). More than 30% of the 

samples belong to the second quintile. Like for Cr and Ni this can be mainly 

ascribed to the lower exchange capacity of bogs and fens (Schilli et al. 2011).  
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The missing accordance of the pattern of Cd concentrations with the pattern of 

other heavy metal Cd concentrations indicates that the Cd concentration is driven 

by different impacts or processes. Fabietti et al. (2010) explain the missing 

correlation of Cd concentration of Italian soils with other variables, such as land 

use, with a generally low degree of contamination. Neither land use, texture, 

deposition nor parent material seemed to be main drivers for the spatial 

differences of the Cd content in the soils. (Schilli et al. 2011). Thus the main driver 

for high Cd concentration remains unclear.  

Main drivers 

As main driver for TOC, N and pH the land use can be identified (Figure 5, Figure 

6). In forest soils the distribution of organic matter is caused by natural processes. 

High concentration of TOC can be found typically in the forest floor, where only 

small amounts of mineral compounds can be found. The TOC accumulation in 

forest soils is mostly restricted to a few centimeters close to the surface. 

Exceptions are acidified soils e.g. Podzols, where TOC is transported to the sub 

soil and accumulate in deeper horzions (Sauer et al. 2007). The exceptions are 

bogs and fens, revealing high TOC and N values because of the hydrological site 

characteristics.  

The results indicate two main drivers of soil chemistry when regarding 

concentrations of Cd, Cu, Cr, Pb, Ni and Zn in aqua regia extract. The impact of 

deposition can be visualized focusing on Pb compared with mostly geogenic Cr 

in the subregion of the SOM-SM between the solid and dashed line. Increased 

lead content in humus layers and top soil horizons of natural grown soils generally 

indicates anthropogenic impacts, especially deposition (Filipinski & Gruppe 

1990), even if the input of Pb has decreased (Kaste et al. 2003). Comparing the 

concentration gradient for Cr and Pb for the mineral top soils at forest sites 

different directions of the gradient can be recognized. 
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Figure 10: Comparison of Cr and Pb content for mineral top soils at forest sites 

The Cr gradient follows the typical gradient from upper right to lower left reflecting 

the geogenic contents of the soil (Figure 10). For Pb the gradient changes the 

direction from more or less right to left. Contents of mineral top soil samples of 

forest sites from the first and second quintile can be found in the area of X-axis 

from -0.3 to 0.5. In the area of -1.0 to -0.3 contents of the third and fourth quintile 

are plotted, while high contents of the fifth quantile can be found with X-axis <1.0. 

The contents increase in the direction of the organic horizons (small cluster), 

which are mainly effected by deposition (Schilli et al. 2011), which is in 

accordance to higher efficiency of forests in air pollution regulation compared to 

other land use classes (Meesenburg et al. 2016). At forest sites the Pb from 

deposition is stored in the humus layer and the uppermost, TOC-rich mineral soil 

horizon (Huang et al. 2008). The latter often is only a few cm depth with low 

density.  

The deposition effect is not pronounced for Pb for other mineral soil samples, like 

top soils of agricultural soils or sub soils at forest sites. The thickness of top soil 

horizons of grassland or arable land is generally quoted with about 10cm 

(grassland) to 25-30cm (arable land) in the underlying dataset. Besides the 

thickness agricultural top soils also reveal higher soil densities. The deposition 

input is distributed to a larger amount of soil and therefore diluted. Here, the 

geogenic impact can cover the deposition effect (Schilli et al. 2011).  

The deposition impact is pronounced in organic horizons located at the (upper) 

left of the different figures, at the left of the solid line. At the right site of the dashed 

line the impact of parent material dominates the contents of heavy metals (Figure 
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6 cf. Figure 7). In general it can be stated, that the influence of deposition on the 

soil sample chemistry increases, the more the sample is located in the direction 

of the (upper) left of the figure. In the direction of the lower left the general level 

of heavy metal concentration increases (Schilli et al. 2011).  

Multivariate Trend analysis 

The multivariate trend analysis revealed no significant trend as indicated by the 

overlapping confidence intervals (Figure 9B). However, it gave some evidence 

for systematic changes of some parameters in the mineral topsoil horizons. The 

indicated trends of arable land and forest sites demonstrate an increase of 

dissimilarity of the chemical characteristics. The distance between the calculated 

coordinate mean of the compared data points increases (Figure 9A). 

Arable soils indicate a shift towards the upper right in the SOM-SM, that is, 

towards lower heavy metal contents (except Cd). There may be several reasons 

for that. Lower heavy metal contents in atmospheric deposition (Huang et al. 

2011) and fertilizers (Nziguheba & Smolders 2008), e.g. due to regulatory 

requirements, lead to lower input in soils. Increasing biomass production and 

continuous plant uptake can enhance the removal of heavy metals from arable 

soils by harvesting the plants. Additionally an increase of plowing depth might 

contribute to this phenomenon through mixing the topsoil with the subsoil material 

with lower heavy metal contents as described for contaminants in arable soils of 

the GSMP of Lower-Saxony (Höper & Meesenburg 2012). 

For grassland sites the calculated confidence interval is relatively high. On the 

one hand similar site treatments as for arable land could be expected and thus, 

a similar trend could be assumed. On the other hand different grasslands sites 

had been used as arable land earlier as revealed by an old plow horizon. In 

grassland soils without plowing activity anthropogenic heavy metals and organic 

carbon accumulate mainly in the upper 10 cm of the soils. Thus, care should be 

taken not to misinterpret land use change induced changes as a trend of single 

parameters (Schilli et al. 2011). To prevent such misinterpretation land use and 

possible varying plow depth should be considered when interpreting results for 

single sites (Fortmann et al. 2012). Therefore a careful documentation of the site 

handling of agricultural soils is necessary in a long-term monitoring.  
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The analysis for the top mineral soils of the forest sites pointed to increasing 

heavy metal contents. Those results seem to be inconsistent with the decreasing 

deposition. Some studies described the forest floor as a current source for 

different heavy metals which were accumulated in former decades (e.g. Huang 

et al. 2008). The mineral soil might still act as a sink for heavy metals which are 

mobilized from the forest floor (Huang et al. 2011). This might increase the 

contents of heavy metals in the mineral soil in spite of decreasing deposition as 

described for single GSMP forest sites in the federal state Baden-Württemberg 

(LUBW 2008). 

The size of the confidence intervals decreases with increasing number of 

samples. Thus, assuming that the mean location of the samples in the SOM-SM 

would not change when additional samples were considered, these shifts would 

prove to be significant. Thus, it is recommend to increase the number of sites with 

replications in the future (Schilli et al. 2011). 
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4.1.5 Conclusions 

Soils are a basic resource for agricultural and forest products and provide a vast 

range of ecosystem services. Long-term soil quality monitoring is a prerequisite 

for assessing the current status, revealing long-term shifts, and identifying needs 

for soil protection actions. Differing from most scientific studies analysis of 

monitoring data by the respective authorities urgently needs tools for efficient 

screening of the large and multivariate datasets in order to identify and evaluate 

local peculiarities, to identify the onset of trends, or to yield some hints on 

prevailing processes without requiring any pre-defined hypotheses.  Therefore, 

the SOM-SM approach was used and it can be stated that this is a versatile tool 

for visualization and first analysis of a large heterogeneous dataset like the one 

from the German national long-term monitoring program. General patterns and 

additional spatial peculiarities were identified. Dissimilarities between different 

elements could be easily detected. The most pronounced differentiation in the 

dataset was between samples from organic and mineral horizons that exhibited 

substantially different behavior with respect to the observed parameters. The 

chemism of organic horizons seemed to be mainly influenced by decomposition 

processes and deposition. Within the organic samples, clear differences between 

decomposed O horizons and less decomposed material of litter, bog and fen 

horizons were identified. The characteristics of mineral horizons were dominated 

by the parent material. For the top mineral soil horizons of forest sites the 

deposition seemed to be an important factor determining the contents of heavy 

metals.  

Land use effects on heavy metal contents and TOC content were shown for 

surface near mineral horizons, particularly for forest sites. The cultivation of fens 

obviously led to a shift of chemical characteristics in direction of upper mineral 

soil samples of afforested sites regarding the studied nine parameters. There was 

no clear relationship between pH and heavy metal content in mineral soils.  

Pairwise comparison of the first and last samples from sites that had been 

monitored for at least ten years did not yield significant differences. However, 

there were evidences for systematic shifts for different land use classes that 

deserve more attention. 
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The presented SOM-SM is highly recommended as a very efficient tool for a first 

inspection of large datasets in order to structure subsequent steps of the analysis 

without requiring pre-defined hypotheses. The SOM-SM makes use of the most 

efficient interface between a data base and the human’s brain. The SOM-SM 

generates a single graph, that is, a low-dimensional projection of the dataset. The 

study shows that this graph can be used for a quick scan of the dataset to answer 

very different questions and giving clear hints on even unexpected features. 

Thus, it allows authorities and science to “play” with large datasets in very efficient 

ways in order to allow a more efficient use of large soil monitoring datasets. 



 

53 

 

4.2 Bedrock effects on forest soils: Commonalities and differences   

4.2.1 Introduction 

The soil is a complex compartment of the environment and can be influenced by 

the interplay and impact of atmosphere, lithosphere, hydrosphere and human 

activity. In spite of the complexity a worldwide valid classification for soils could 

be developed (FAO 2014), which is possible, amongst other reasons, because 

similar processes prevail in soils all over the world (Bockheim & Gennadiyev 

2000). On the other hand different processes in soils can vary at smaller scales, 

e.g. in a landscape or within single soil profiles (Wang et al. 2013), affecting 

biological, physical and chemical soil characteristics. 

Due to a large variety of factors and processes known to impact soil chemical 

properties differences between various sites usually can equally well ascribed to 

very different causes. This renders soil resources management very difficult and 

more an art rather than a science. However, as soil science now approaches the 

era of big data, both quality and quantity of available data as well as available 

methods allow addressing these issues. Thus this study aims at delineating 

various candidate processes with respect to their impact on soil solution quality. 

The dataset comprised soil solution data from three forested sites with contrasting 

bedrock lithology and from different depths. More than 10.000 soil solution 

samples, comprising a time span of 15 years, were analyzed. The size of the 

dataset, combined with powerful statistical approaches might enable to 

differentiate between commonalities and differences in spite of substantially 

differing sites conditions and a heterogeneous dataset, far from any orthogonal 

design of classical experiments. Thus the study was meant to check and to 

demonstrate the potential of big data approaches being applied to monitoring 

datasets. The performance of a linear and of a nonlinear statistical approach was 

compared. Using those approaches the relevant processes in the soils should be 

identified, quantified and distinguished in overall and site specific impacts and 

processes.  
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4.2.2 Material and Methods 

4.2.2.1 Statistical methods 

According to the aims in a second step the identification and a quantification of 

processes in soils and impacts on soil chemistry is focused. For this purpose data 

from a medium and small scale were chosen. In chapter 4.2 the results from 

analyzing soil solution of three soil profiles with distances of up to 100 km as 

medium scale and in chapter 4.3 the results from four soil profiles within a 

catchment of 4,2 km² as small scale are presented.  

The chosen statistical approach should be able to identify the main impacts and 

processes on the soil characteristics. Because most processes and impacts are 

influenced by or influence more than one parameter multivariate approaches 

should be used.  

The identified factors should be separated from each other and the relevance 

quantified. Those factors should be clearly delineated from other factors to be 

interpreted more easily and to allow further statistical analyses without the 

problem of multicollinearity. Therefore they should be stochastically independent. 

To reach this goal principal component analyses or factor analyses can be used 

and are popular (Bahrenberg et al. 2003).  

In this thesis the PCA was chosen. As a first step explorative explanation tool the 

PCA is more suitable than the factor analyses, which is a model based approach. 

To regard probable hidden nonlinearity in the datasets (e.g. Manzoni et al. 2004, 

Biswas et al. 2013) the nonlinear Isometric Feature Mapping (Isomap) approach, 

which results can be interpreted similar to the principal component analysis, is 

used here. The similarity of the approaches minimizes a possible effect of varying 

algorithms influencing the results when comparing a linear and nonlinear 

approach. The often stated (sligth) superiority of Isomap using environmental 

datasets (e.g. Tarquis et al. 2011, Lischeid 2014, Maassen et al. 2015) was tested 

for soil science monitoring dataset in this way. Possibly the use of the more 

complicated and time-consuming nonlinear analyze is needless. For instance, the 

comparison of both approaches using a medical dataset showed the Isomap to 

be only slightly inferior to the PCA (Dai et al. 2015). The results will be compared 
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to assess the use of nonlinear approaches and to give recommendations for 

further analyses.  

 In comprehensive soil monitoring often a large number of variables are 

measured. To analyze the relation and interdependencies of all this variables a 

consideration of the different variables is necessary. In single graphs only two or 

three variables can be presented and interpreted. Therefore a large number of 

figures would be necessary to regard all possible cases. Even then it is not 

ensured, that a display of up to three variables is enough to understand complex 

interdependencies.  

To deal with this problem it is useful to reduce the dimensionality of the dataset. 

The idea of dimension reduction is to identify few representative characteristics 

in the underlying dataset explaining a large part of the variance of all measured 

variables which can be projected in graphs. The axes of the graphs can reflect 

the most relevant characteristics, which represent a large fraction of the explained 

variance of the dataset (Legendre & Legendre 2012). 

For this purpose the PCA has been frequently used in different ecological studies 

(Selle et al. 2013, Ansari et al. 2014) as well as in soil science (Jia et. al. 2010, 

Kelepertzis 2014).  

The PCA extracts so called principal components by conducting an eigenvalue 

decomposition of the covariance matrix of the measured variables. These 

components are able to describe circumstances, interactions, or processes which 

cannot be measured directly (Selle et al. 2013). To regard possible nonlinear 

relationships in environmental datasets (James & McCulloch 1990) the Isomap 

is used additionally. The Isomap approach has been developed and presented 

by Tenenbaum et al. (2000). 

Both approaches are based on a matrix Xnm with n observations of m variables, 

which is the basis for the distance matrix D(x) of Euclidean distances dx(i,j) 

between all datapairs i,j in the space X which are calculated as 

 

√∑ 𝑥 − 𝑥 ²=1            
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Both approaches are sensitive to missing values (Legendre & Legendre 2012), 

which is why missing values should be replenished or the whole data set cannot 

be regarded. To assign equal weight to possible different scaled variables the 

data should be z-normalized (mean = 0, standard deviation = 1) before calculating 

the distance matrix (Webster 2001).  

Principal component analysis (PCA) 

The PCA tries to project a high-dimensional dataset in a low-dimensional 

embedding of data points. The given amount variance in the high-dimensional 

data should be reflected in the low-dimensional embedding as large as possible. 

For this reason the PCA extracts so called principal components by conducting 

an eigenvalue decomposition of the covariance matrix of the measured variables. 

Those components are able to describe circumstances, interactions, or 

processes which cannot be measured directly (Selle et al. 2013). 

In general the PCA is based on a covariance matrix and its eigenvalue 

decomposition (Legendre & Legendre 2012). In this thesis the PCA and the 

Isomap approach (see next section) will be compared. Therefore, the 

eigenvectors and eigenvalues (based on distance matrix of Euclidean distances 

D(x)) are calculated as  

 

Λ = ET * D * E 

 

The eigenvector matrix of ET is Emm. The eigenvalue matrix Dis diagonal. The 

first principal component is the eigenvector with the highest associated 

eigenvalue and so on. Since E is m dimensional m principal components can be 

calculated (Jolliffe 2010). 

It is assumed that different components can be used as quantitative measures of 

the effect of different processes and impacts. Ascribing components to those is 

based on loadings of the variables on the components, that is, their Pearson 

correlation coefficients with the respective component.  

  



 

57 

 

Isometric Feature Mapping (Isomap)  

The main difference between the Isomap approach and the classical MDS and 

PCA, is the use of the geodesic distances when calculating interpoint distances. 

The Isomap tries to grasp the nonlinear structures by a stepwise linear 

approximation. For this purpose the Isometric Feature Mapping passes three 

steps (Tenenbaum et al. 2000), which are described in more detail in Appendix 

III.  

Step 1: Set up a neighborhood graph using a chosen number of nearest 

neighbors k based on the distance matrix.  

Step 2: Set up a distance matrix D(G) using geodesic distances calculated from 

the neighborhood graph. The geodesic distance is approximated by finding the 

shortest path between the data points. If k is equal to n each data point would be 

connected with each other and shortest path would be equal to the Euclidean 

distance. The calculation of the useful geodesic distance depends on the choice 

of the regarded nearest neighbors k. The optimal k can only be determined by 

trial and error. 

Step 3: Based on the distance matrix D(G) a singular value decomposition is 

performed. 

Following these steps a piecewise linear regression is performed in a high 

dimensional data space. The requirement of any pre-defined mathematical 

structure is not given. Accordingly high nonlinear structures can be recognized.  

While the performance of the PCA can be evaluated by eigenvalues, the 

nonlinear approach of Isomap cannot use eigenvalues as quality criterion of the 

performance. For Isomap the squared Pearson correlation of D(x) to the distance 

matrix of the low-dimensional projection, consisting of the component scores, is 

used, to estimate the explained cumulative variances (Schilli et al. 2011). 

However, as relationships might be nonlinear, the rank-based Spearman ρ 

correlation coefficient will be used instead of the linear Pearson correlation 

coefficient. In addition, boxplots will support component interpretations. 
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Interpreting components 

The Isomap and PCA components can be interpreted analogously. The scores 

of the different components can be understood as measures of the effect size of 

single processes. The components of PCA and Isomap are numbered in 

decreasing order of explained variance of the data set. Therefore, components 

with higher number mostly show lower loadings. For this reason, the detection of 

nonlinear relationships might be difficult. To that end, for all components (with 

exception of the first component) residuals of linear regression of the variables 

with all preceding components were used and related to the appropriate 

component. The linear regression was used for PCA and Isomap, because it is 

much more stable than various nonlinear regression approaches that had been 

tested. The resulting error is presumably negligible when using a nonlinear rank-

based measure of correlations (when conducting the Isomap) and with nonlinear 

relationships close to monotonous relationships.  

Boxplots will support the interpretation of the components. The boxes show the 

25th and the 75th percentile, the black bar the median of the analyzed data. 

Whiskers denote the range as long as they do not differ more than 1.5 times from 

the interquartile range from the box. In that case the 1.5 times interquartile range 

will be displayed, and values outside the whiskers are displayed as single 

symbols. 
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4.2.2.2 Study sites 

This study comprises data from three different sites located in the federal states 

of Lower Saxony (Lange Bramke and Solling site) and Hesse (Zierenberg site) in 

Germany (Figure 11). All sites are afforested and incorporated in the Intensive 

Forest Monitoring Program of the International Co-operative Program on 

Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests). The 

Lange Bramke site comprises three subplots at different hillslope positions, while 

the Zierenberg and Solling sites had only one subplot each. A summary of the 

main site characteristics is given in Table 5. In Table 6 Depth and site specific 

means of soil solution variables are given. More detailed information for 

Zierenberg and Solling can be found in Meesenburg & Brumme (2009) and 

Meesenburg et al. (2009a) and for Lange Bramke in Meesenburg et al. (2010). 

Table 5: Site characteristics 

 Zierenberg Solling Lange Bramke 

  North slope  South slope  Ridge 

Location  
51°22’N 
09°16’E 

51°45’N 
09°34’E 

51°51’N 
10°25’E 

Elevation [m] 450 500 600 600 660 

Exposure 
north-east 

(15°) 
south (0-3°) 

North (5-
10°) 

South (10-
15°) 

south 
(0-5°) 

Precipitation 
[mm] 

754 1193 1339 

Mean 
temperature [°C] 

6.9 6.9 5.9 

Bedrock 
Basalt over 
limestone 

Sandstone with 
loess cover 

Quarzitic sandstone 

Texture  Clayey Silt Loamy Silt Loamy sandy Silt 

Soil type WRB 
Hablic 

Cambisol 
Dystric 

Cambisol Dystric Cambisol 
Entic 

Podzol 

Humus type mull moder mor 

Main tree species 
Fagus 

sylvatica 
Fagus sylvatica Picea abies 

Stand age [years 
in 2013] 

158 166 65 

Sampling depths 
[cm] 

20, 60, 100 
0*1, 10, 20, 40, 

80, 90 
80, 300 0*1, 80, 300 

20, 80, 
300 

*1 transition zone of humus layer and mineral soil  
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Table 6: Depth and site specific means of soil solution variables (LB= Lange Bramke, b.d.l.=below detection limit) 

site number 
depth pH Na K Mg Ca Al Fe Mn Cl NH4-N NO3-N SO4-S DOC 

cm - mg/l 

Zierenberg 

2397 20 6.4 3.16 0.28 5.26 8.27 0.27 0.09 b.d.l. 4.20 b.d.l. 5.27 3.60 16.25 

1804 60 6.9 3.71 0.15 5.48 9.57 0.02 b.d.l. b.d.l. 5.72 b.d.l. 4.46 4.20 6.08 

652 100 7.3 4.66 0.20 6.26 15.36 b.d.l. b.d.l. b.d.l. 5.97 b.d.l. 3.83 4.94 5.50 

Solling 

615 0 3.8 1.79 1.11 0.32 0.82 0.72 0.42 0.29 2.99 0.13 0.96 1.19 37.61 

387 10 4.1 1.73 0.33 0.26 0.40 1.65 0.31 0.32 3.11 0.09 0.53 1.47 16.23 

422 20 4.4 1.88 0.08 0.19 0.25 1.68 b.d.l. 0.29 3.51 b.d.l. 0.08 1.93 6.83 

461 40 4.5 1.89 0.14 0.25 0.36 1.63 b.d.l. 0.27 3.42 b.d.l. 0.64 2.38 2.33 

282 80*1 4.4 2.32 0.17 0.14 0.17 1.87 b.d.l. 0.20 4.38 b.d.l. 0.21 3.45 1.83 

279 90 4.5 1.55 0.36 0.21 0.20 1.05 b.d.l. 0.19 2.66 b.d.l. 0.25 2.17 1.27 

LB 

North 
1082 80 4.4 1.16 0.31 0.15 0.29 2.09 b.d.l. 0.18 1.77 b.d.l. 1.63 2.09 2.35 

251 300 4.4 1.65 0.59 0.26 0.74 2.24 b.d.l. 0.57 2.65 b.d.l. 2.19 3.84 1.62 

South 

64 0 4.2 0.80 0.83 0.10 0.61 0.08 b.d.l. 0.14 1.36 0.52 0.67 1.08 16.85 

957 80 4.3 1.93 0.26 0.25 0.31 2.70 b.d.l. 0.37 3.17 b.d.l. b.d.l. 6.15 2.50 

224 300 4.3 2.25 1.07 1.59 3.57 2.50 b.d.l. 0.65 3.78 b.d.l. b.d.l. 9.99 1.56 

Ridge 

486 20 3.9 2.15 0.43 0.23 0.77 0.87 0.59 0.19 2.96 b.d.l. b.d.l. 2.11 27.10 

497 80 4.2 2.39 0.16 0.19 0.26 1.51 b.d.l. 0.21 3.54 b.d.l. b.d.l. 3.42 6.85 

155 300 4.3 1.70 0.37 0.22 0.55 1.84 b.d.l. 0.31 2.56 b.d.l. b.d.l. 4.78 1.82 
*1 not measured within the whole study period 
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Figure 11: Location of the study sites in the Federal Republic of Germany 
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4.2.2.3 Dataset 

For this study data from 30.000 soil solution samples from the three sites were 

available from the period 1993-2008. Soil solution was collected with ceramic 

suction cups or ceramic plates. The cups were sampled at weekly to biweekly 

intervals and pooled to monthly samples at Solling and Lange Bramke and at 

biweekly intervals, (pooled to monthly samples since 2006) at Zierenberg. In the 

depth of 0 cm (transition zone of humus layer and mineral soil) at Lange Bramke 

(south) and Solling suction plates were installed with identical measuring intervals 

and sample treatment. The plates at Solling were operated with continuous low 

suction, while the Lange Bramke (south) plate used no tension (Table 7). For 

further information and detailed description of soil solution sampling see 

Nieminen et al. (2013) and Klinck et al. (2012) for Solling and Lange Bramke and 

Brumme et al. (2009) for Zierenberg.  

Table 7: Sampling methods at selected sites and depths 

Study site Depth [cm] Method 

LB-S 0 Zero tension sampling plates 

Solling 0 Low tension sampling plates 

Solling 10 Suction cups 

LB-R 20 Suction cups 

 

Values below detection limit were replaced by half the detection limit. Only 

variables with long and continuous observation periods were considered. 

Because of the necessity of complete data sets for the intended statistical 

analysis, the period was limited from December 1993 to September 2008 and the 

number of variables was reduced from more than 25 variables to a set of 14 

variables. Data sets with more than two missing values were excluded. The data 

cleaning left 11.015 data sets for statistical analyses. Total nitrogen was excluded 

afterwards due to strong correlations to NO3 (Spearman ρ 0.94), leaving 13 

variables available for the subsequent statistical analyses:  

Al, Ca, Cl, Fe, K, Mg, Mn, Na, NH4, NO3, pH, SO4 and DOC. 
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Replenishing 660 missing values with the variable site and depth specific mean 

(pH mean was calculated with delogarithmized pH values), a complete data set 

was generated. Only in the case of Mn (1.80 %), NO3 (1.03 %) and TOC (1.16 

%) more than 1 % of the data were replenished. Additionally the data were z-

normalized by subtracting the variable specific mean from each value and 

subsequent division by the standard deviation. 

For statistical analyses and generating diagrams the software package R 

(Version 2.10.0) and Vegan extension (Version 1.15-4) for Isometric Feature 

Mapping available at http:/www.r-project.org (R Development Core Team. 2006) 

was used. 
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4.2.3 Results and discussion 

The calculation of the geodesic distances for Isomap has been performed using 

different k values (1000, 3000, 5000, 7000, 7500, 8000, 8500 and 9000). The 

best results were achieved for k=8000, which were superior to the results of PCA 

with respect to the explained variance (Figure 12). Further figures and analyses 

are based on the results of Isomap with k=8000. A superiority of Isomap in 

comparison to PCA could also be approved in other studies (Tenenbaum et al. 

2000, Lischeid & Bittersohl 2008, Lischeid 2014). The superiority of the nonlinear 

approach accounts for relationships which are not detected by the linear 

approach. On the other hand the superiority is not guaranteed, as presented by 

Dai et al. 2015. 

More than 95 % of the variance of the dataset can be explained by the first four 

components, and more than half (54.4 %) by the first Isomap component (Figure 

12). Considerable negative correlations (Spearman ρ < -0.5) for this component 

were found for Al, Mn and NH4 (Figure 13). Comparable positive correlations 

were calculated for pH, Na, Mg, Ca, Cl and NO3. Positive correlations for Fe and 

DOC in contrast to negative loadings of Al and SO4 were calculated for the 

second component explaining 31.5 % of the dataset variance. The third 

component shows positive correlations throughout, except of pH and accounts 

for 7.5 % of the dataset variance. Additional 2.2 % of the variance of the dataset 

can be ascribed to the fourth component. This component is characterized by 

negative loadings of DOC and Fe and positive loadings of NH4 and K especially. 
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Figure 12: Explained variance by PCA and Isomap 
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Figure 13: Parameter loadings determined as Spearman ρ for residuals of regression 

of single variables with the scores of the preceding Isomap dimensions. The X-axis is 

scaled between [−1;1] for every component. Grey shading is proportional to the 

absolute values of the Spearman ρ coefficient. 
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4.2.3.1 Component 1: Bedrock 

The first component indicates the chemical peculiarities of the more acidic sites 

developed on sandstone (Solling and Lange Bramke) and the less acidic site on 

basalt over limestone (Zierenberg). Negative component values are mostly 

calculated at Lange Bramke and Solling, while positive component values 

exclusively occur at Zierenberg (Figure 14 - left). It is the only component out of 

the first four components studied in more detail that clearly differentiates between 

the sites. 

In comparison to acidic sites, the soil on substrate rich in bases mostly shows a 

higher pH and higher base cation availability, which is indicated by high positive 

loadings of Ca, Mg, Na and pH (cf. Figure 13, Figure 14). In contrast, release of 

Al and Mn at the more acidic sites is reflected by negative loadings of Al and Mn. 

The buffering of acids by clay minerals and Al-(hydr-)oxides (pH < 5) leads to 

increased Al contents in soil solution, while the dissolution of Mn-(hydr-)oxides 

releases Mn (Ulrich 1986). With sustained dissolution of Al- and Mn-(hydr-

)oxides, increasing Al and Mn concentrations in soil solution and resorption at the 

soil matrix the concentration of base cations decreases in soil solution. Besides 

Al and Mn, a negative loading was calculated for NH4. Ammonium can be 

oxidized to NO3 by microbial activity, removed from soil solution by root uptake, 

fixated in interlayers of clay minerals or immobilized in organic layers close to the 

surface (Brumme et al. 2009, Nieder et al. 2011). The differences in sampled 

depths may explain the negative loading of NH4. Surface near soil solution 

samples (< 20 cm), where ammonium can be detected most frequently, are 

missing at Zierenberg (see Table 6).  

At the Solling and the Zierenberg site a depth gradient can be recognized. The 

component values tend to increase from the surface to deeper horizons (Figure 

14 - right). At the Solling site to a maximum of 80 cm depth. Lange Bramke 

reveals a depth gradient at the south slope only, which is poorly developed (not 

shown). Soil formation causes depth gradients, affecting the upper horizons to a 

larger degree. Such depth gradients are consistent with previous findings 

(Marschner et al. 1998, Meesenburg et al. 2016). Obviously, soil formation and 

atmospheric input lead to a development of soil solution composition ranging from 
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the state in the subsoil at Zierenberg towards the characteristics of the upper 

horizons at the Solling site. Although the soil formation processes play an 

important role, the influence of the bedrock dominates and distinguished the sites 

developed on sandstone from the Zierenberg with basalt over limestone. 

 

Figure 14: Scores of the first component at different sites and site-specific depths 
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4.2.3.2 Component 2: Acid induced soil formation effects 

The second component relates to different soil formation effects associated with 

the buffering of acidic inputs. In contrast to the first component, the second 

component - explaining 31.5 % of the variance - does not reveal distinct site 

differences. The second component is dominated by depth gradients. These 

gradients are similar at each site. Positive component values occur in the upper 

soil horizons (Figure 15). The component reveals positive loadings of DOC and 

Fe and negative loadings of Al, SO4 and Mn.  

Negative component values reflect reactions in the exchanger buffer range, 

typical for pH 4.2 - 5.0. The buffering of acidic inputs by Mn-oxides and clay 

minerals releases Al and Mn to soil solution (Ulrich 1986).  

The buffering of acids by iron minerals, e.g. Fe(OH)3, associated with the 

formation of organic Fe complexes, is indicated by positive values. The latter is 

typical for mineral soils with pH values < 3.8 in the aluminium /iron buffer range 

(Ulrich 1986). Single pH measurements down to < 3,7 can be found at Lange 

Bramke till 80cm and Solling till 10cm depth (Table 6). Lowest pH median (3.9) 

and highest average component values can be found in 20 cm depth at Lange 

Bramke (ridge) supporting the interpretation. 

Suction cups and plates revealing positive component values are installed in 

upper soil horizons with elevated contents of humic substances, like the forest 

floor or A horizon, respectively E horizon. Acidic atmospheric input is often linked 

with podzolization processes and the formation of iron-humate complexes in the 

upper soil. The latter are translocated in deeper soil horizons. (Riise et al. 2000). 

At Zierenberg a median of pH 6.4 could be measured in 20 cm depth which is 

untypical for podzolization processes and is unexpected with regard to the 

positive component values found (Figure 15). On the other hand the formation 

and dislocation of iron-humate complexes and development of podzolic horizons 

could be shown at different sites with pH > 7 (Protz et al. 1984). The necessary 

organic acids may originate from plants or litter decomposition. Additionally, the 

exudation of organic acids by roots, fungi and microorganisms is possible 

(Lundström et al. 2000).  



 

70 

 

Typically, podzolization processes also lead to a formation of Al-organic 

complexes, similar to Fe, which is contrary to the negative loading of Al in these 

results. For the Solling site the decoupling of Fe and Al dynamic because of the 

formation of Al-(Hydroxy-)Sulfates is described in the exchanger buffer range 

(Ulrich 1986), which support opposing loadings of Al and SO4 to Fe. Al-(Hydroxy-

)Sulfates are formed by buffering processes induced by sulfide entries at pH 4,2 

- 5.0 values. In the range of pH 4.2 and lower, the solution of aluminum sulfates 

begins an important role in the buffering of acid contents (Ulrich 1986, Brümmer 

2010). Accordingly, this process will play only subordinate role at the Solling and 

Lange Bramke site, where pH values in this range where measured. For this 

reason the loading of SO4 may be lower than the ones of Al and Mn. 

According with the component characteristic Al concentration is usually lower 

close to the surface were higher DOC concentrations and detectable Fe 

concentration were measured (Table 6). Another explanation may be the 

competition of Fe and Al for binding sites on dissolved organic matter (DOM). At 

pH values similar to Solling and Lange Bramke, Fe shows a stronger tendency 

for soluble complexation with DOM than Al (Jansen et al. 2002).  

In summary, this component combines numerous processes (e.g. formation and 

dissolution of minerals and organic substances, vertical translocation of 

substances), all of which can be related to the buffering of acid inputs. 
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Figure 15: Scores of the second component at site specific depths, LB=Lange 

Bramke, N=North, S=South, R=Ridge 
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4.2.3.3 Component 3: Concentration through evapotranspiration 

Explaining 7.5 % of the dataset variance, the third component reveals positive 

loadings for all studied solutes with exception of pH (Figure 13). On the other 

hand, the negative loading of pH can be regarded as a positive correlation with 

H+ ions. Accordingly, this component indicates a process, which influences all 

parameters in a similar way. Solutes derived from mineral weathering such as Mn 

or Al reveal highest loadings. Comparably low positive loadings are calculated for 

Ca, nitrogenous compounds and DOC.  

The most pronounced pattern for this component is revealed when regarding the 

yearly median at depth of 80cm at Lange Bramke, 60cm at Zierenberg and 90cm 

at Solling site (Figure 16). The depth of 90cm at the Solling site was chosen since 

the depth of 80cm was not active during the entire study period. Similar trends 

can be recognized for Lange Bramke Ridge and Solling (r² = 0,9), Lange Bramke 

Ridge and Zierenberg and Zierenberg and Solling (both r² = 0,64). The similarity 

indicates an overall impact on the soils. It is also striking that the level of the 

medians of the yearly component values at the Lange Bramke site can be 

distinguished by the surface morphology slope. The highest values can be found 

at the south slope, while the lowest ones are calculated for the north slope. The 

correlations between the yearly medians of the component values and the 

precipitation do not exceed an r² of 0.05. The opposite is the case for yearly 

temperature medians (Table 8). With r² of 0.63 to 0.75 a relation between both 

parameters is indicated. An exception is the Lange Bramke (north) with a lower 

r² of 0.4. 

Table 8: r² of yearly means of temperature and yearly medians of the third component 

differentiated according to study sites 

site r² 

Solling 0.63 

Zierenberg 0.75 

Lange Bramke 

South 0.65 

Ridge 0.72 

North 0.40 
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Regarding the monthly medians of the component values, the values tend to be 

higher in summer months and lower in spring for Zierenberg, Solling and Lange 

Bramke Ridge. This trend is particulary evident on the southern slope of Lange 

Bramke. At Lange Bramke north it is hardly pronounced (Figure 17). The 

observed overall seasonal pattern may be attributed to evapotranspiration. 

Sutmöller et al. (2007) estimated by means of model calculations for the Lange 

Bramke sites the highest evapotranspiration rates at the south facing slope and 

the lowest rates at the north facing slope, supporting the results shown in Figure 

17 with higher component values at the south and lower ones at Lange Bramke 

(north).  

The relevance of evapotranspiration short-term effects on soil solution 

composition has been considered in several studies identifying long-term trends. 

A relative increase of solutes in soil solution because of evapotranspiration is well 

known. The effect of evapotransipiration and root water uptake on solutes with 

high loadings as Cl and SO4 is described (Wesselink et al. 1995, Brumme et al. 

2009). Evapotranspiration directly influences the soil moisture. In turn soil 

moisture is known to effect the ionic strength of soil solution (e.g. van Hess et al. 

2000; Rennert & Rinklebe, 2010), which is consistent with generally higher 

loadings in times of plant growth and lower ones in spring. The annual differences 

in the component values can be attributed to the temperature fluctuations and the 

expected higher evapotranspiration respectively lower soil water content. 

However, the evapotranspiration and the root uptake are not known to increase 

concentrations of dissolved substances of mostly geogenic origin such as Al and 

Mn. Especially manganese as a nutritional element is more likely to be taken by 

plants (Türtscher et al. 2017), than it should come to a concentration. The same 

is true for cations K, Ca, Mg and Na, especially in the tree growing season 

(Nietfeld et al. 2017). The extent to which such a nutrient uptake by water removal 

can be compensated is not known. 

On the other hand an increased water uptake will enhance the residence time of 

the remaining soil water. The longer residence time will increase the effect of 

weathering. The release of nutrients and typical geogenic solutes by weathering 

processes may exceed the plant uptake (Calvaruso et al. 2014) and can explain 

the higher loadings Mg, Na and K as well as Al and Mn. Furthermore all sites can 
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be assigned to the Exchanger buffer range. Here mainly Al and Mn are released 

during buffer processes (Ulrich 1986), which supports their high positive 

component loadings.  

 

Figure 16: Site specific scores of the third component  

 

 

Figure 17: Component scores divided by months for different sites of Lange Bramke 
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4.2.3.4 Component 4: surface processes 

The process indicated by the fourth component is most pronounced in horizons 

close to the surface. In depths of > 20 cm the component value median is close 

to 0 within narrow limits (mostly between 1 and 1) at all sites (Figure 18). 

Therefore, this component is not discussed for Lange Bramke (north) with suction 

cups in 80 cm and 300 cm. At Lange Bramke (south) clearly positive component 

values are calculated for the 0 cm depth. Further positive component values 

exceeding the typical range [-1; 1] can be found at the Solling site in 0 cm only. 

Values below -1 are found for the depth of 0 cm at the Solling site, the ridge of 

Lange Bramke in 20 cm depth and sometimes in 10 cm at the Solling site. 

Accordingly the processes reflected by this component are mainly restricted to 

the humus layer and the top soil, especially pronounced at the forest floor of 

Lange Bramke (south). 

The decomposition and mineralization of litter is a main source for nutrients in 

soils. While several other nutrients can be of geogenic origin (Johnson-Maynard 

et al. 2005) the decomposition is a main source of nitrogen compounds and 

potassium in soils corresponding to the positive loadings of the component 

(Brumme et al. 2009). The decomposition is driven by temperature effects leading 

to higher decomposition rates in the summer and lower ones in winter (Bisht et 

al. 2014). A resulting seasonality is shown in Figure 19. Induced by the 

decomposition process Vestin et al. (2008) reported a release of DOC, SO4, Al 

and Ca caused by the pedogenetic processes of litter degradation and 

weathering because of acidic input for top soils. Similar negative loadings of Fe 

and DOC may reflect the presence of Fe-organic complexes often developed 

when organic acids are released in the topsoil, which would be typical for the 

podzolic soils (Lundström et al. 2000) in the study. The observations of Vestin et 

al. (2008) and Lundström et al. (2000) as well as the quick immobilization of K 

and NH4 in interlayers of clay minerals (Kretzschmar 2010) correspond with the 

negative loadings of the component in the mineral soil close to the surface. 

Therefore, positive values of this component are most pronounced in the depth 

of 0cm, while the negative ones are dominating in the mineral soil close to the 

surface.  
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Furthermore, deposition (precipitation and throughfall) is described as a major 

source of K and nitrogen compounds in soils (Meesenburg et al. 1995, Hojjati et 

al. 2009), corresponding to the positive loadings. Enhanced concentrations of K, 

nitrogen compounds (especially NH4) in throughfall compared to soil solution are 

documented for Zierenberg and Solling (Meesenburg et al. 2009b). For Mn in 

soils plant cycling can be a relevant process (Türtscher et al. 2017) including 

litterfall and leaching. At the Solling site in 0 cm depth the highest component 

value medians are calculated for (early) summer (Figure 19), which is period of 

intense growth of Fagus Sylvatica. In the depth of 0 cm of Lange Bramke (south) 

a similar seasonality is indicated, but not shown because of the uncertainty 

because of the low number of data (n=64; cf. Table 6). 

During this period the leaching of e.g. K from recently developed leaves or 

needles can be intensified (Chen et al. 2010). In contrast to the indicated 

seasonality (Figure 19) Chen et al. (2010) reported a decrease of NH4 in 

throughfall by canopy effects during the growing season. On the other hand, the 

contents of NH4 in throughfall in comparison to soil solution, especially of the 

mineral soil, remain high (Ulrich 1986, Meesenburg et al. 2009b). Nevertheless, 

the detected seasonality indicates a decisive influence of the decomposition. In 

this component the effects of such pedogenetic processes induced by acidic 

organic inputs of the decomposition process (negative loadings) are opposed to 

the initial nutrient input by decomposition and throughfall effects (positive 

loadings).  

The obvious differences of the 0 cm depth at Solling and Lange Bramke (south) 

can not be explained definitely. Different explanations are possible, always taking 

into account the small number of measurements on the Lange Bramke site 

compared to the Solling site. A first one is based on natural processes. The more 

pronounced characteristic of the component at Lange Bramke may be caused by 

the tree species. Hojjati et al. (2009) showed, that K and nitrogen leaching is 

higher at spruce sites compared to beech sites, possibly leading to higher 

component scores at 0 cm at Lange Bramke (south) compared to Solling. 

Additionally, the site specific tree species, humus type and microbial activity may 

regulate soil solution composition (Titeux & Delvaux 2009). However, no 

significant differences for microbial biomass and microbial activity were found 
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between Solling and Lange Bramke (Mintrup & Höper 2012). On the other hand, 

the high values at Lange Bramke are measured on the southern slope where a 

higher influence of the sun radiation can be expected which may increase the 

decomposition (Bisht et al. 2014). 

Another explanation of technical nature are possible differences during 

installation of the suction plates without suction at Lange Bramke and the 

installation of low suction plates at the Solling site. The suction plates were 

installed at the transition zone from organic layer to mineral soil. Nieminen et al. 

(2013) describe the difficult installation of (zero tension) plate lysimeters and 

refers to disturbance of the humus layer. In Figure 20 the component values of 

the four suction plates of the Solling site are presented separately. The plates 2 

and 4 show highest and mostly clear positive values with a large span from April 

to August. Plate 4 reveals very high component values which are similar to the 

ones measured and the Lange Bramke site. The plate 3 of the Solling site shows 

negative values similar to the depth of 10cm in most cases. Plate 1 fluctuates 

weakly by the value zero. Such differences can not be recognized for the first and 

second component and is only slightly pronounced for the third component. As 

described above this component is strongly influenced by processes taking place 

above the mineral soil which is why possible weak deviations of the installation 

locations (transition zone of humus layer and mineral soil) may have a 

correspondingly strong effect. At the Solling site the vacuum applied may 

additionally induce a negative hydraulic gradient from the subjacent mineral soil 

to the lysimeter plates if installed closer to or within the mineral soil supporting 

the occurrence of negative component values. 

The pattern of the fourth component is similar to effects of different methods. It is 

known that the sampling of soil solutions with different methods leads to varying 

results (Marques et al. 1996, Nieminen et al. 2013). A comparison of the 

chemistry of soil solution collected with zero-tension lysimeters and suction 

lysimeters differs considerable. When comparing the methods higher 

concentrations of Ca and K for zero tension lysimeters could be proven, while 

concentrations of e.g. Al, DOC, Cl, Mg and the nitrogen compounds were 

enhanced in soil solution from suction lysimeters (Marques et al. 1996). The 
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described results do not correspond completely to the signature of the fourth 

component (cf. Figure 13), but reveal similarities for e.g. K, Al or DOC.  

Such differences are explainable by difference residence time of the collected 

soil solution in the soil. Zero suction lysimeters rather collect soil solution with 

lower residence time like fast draining water in macro pores (Nieminen et al. 

2013), which can be close to the chemical characteristics of rainfall or throughfall. 

However suction cups collect soil solution which closer to the equilibrium between 

soil matrix and soil solution (Marques et al. 1996), which is mostly from meso- 

and fine pores. These differences should be regarded, especially when dealing 

with parameters with fast kinetic like NH4 and K. 

A possible main influence of the sampling method can be excluded, because of 

a missing effect in depths below 10cm. However, an intensified pattern of the 

component is possible due to different methods. 

Summarizing the results it can be stated, that this component reflects a variety of 

possible and hardly distinguishable influences. By this reason, the various 

impacts and processes are summarized as surface processes. 
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Figure 18: Scores of the fourth component at different sites and depths 
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Figure 19: Scores of the fourth component at the Solling site at 0 cm depth 

 

 

Figure 20: Scores of the fourth component at the Solling site at 0 cm depth for each 

suction plate 
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4.2.3.5 Single solutes 

Besides the identification of processes using several variables, the Isomap gives 

information about the interplay between single solutes and the different 

processes. In Figure 13 it is shown, which variable is influenced by the different 

processes. Impacts of single processes now could be assessed with regard to 

their impact on single solute concentration. For example the concentration of Al 

in soil solution is influenced clearly by the first three components, while Ca 

concentration is dominated by the first component. Therefore, a number of 

relevant variables can be chosen for the setup of further research when analyzing 

single processes. The presented results show for example, that Ca should be 

regarded, when comparing the soil development on the three different sites (first 

component), but can be dismissed when dealing with impacts connected with the 

third component, like evapotranspiration.  
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4.2.4 Conclusions 

Taking advantage of the available large datasets as well as of a modern nonlinear 

dimensionality reduction approach this study aimed at disentangling different 

effects that were supposed to act at different intensities at the three different sites. 

By outperforming the PCA slightly the Isomap revealed nonlinear relationships in 

the dataset, which can be expected in soil monitoring datasets.  

That approach obviously was successful in extracting the effects of site-specific 

different bedrock lithology (first component) from soil formation effects (second 

component) and general climatic effects (third component) that were immanent 

at all three sites at about the same magnitude (Table 9). The forth component 

emphasized the noticeable peculiarity of a specific depth. Since the depth of 0 

cm was regarded at two sites only, an overall impact cannot be proven, but 

expected. 

In addition the results allowed to weight the different processes according to the 

respective fraction of variance explained (Table 9). In total, four processes with 

different spatial and temporal patterns could be identified, explaining nearly 96 % 

of the variance. In spite of clearly differing site characteristics, overall processes 

and impacts such as buffering of acidic inputs, evapotranspiration are responsible 

for 39 % of the variance in soil solution composition. Component specific spatial 

and time trends could be extracted. 

Table 9: Similarities and differences of the researched sites 

Component Name 
Explained 
variance  Impact 

1 Bedrock 54.4 % site specific 

2 
Acid induced soil 
formation effects 

31.5 % overall 

3 Concentration through 
evapotranspiration 

7.5 % overall 

4 Surface processes 2.2 % 
site specific because of 

sampling depths; expected 
overall 

The results of Isomap are additionally valuable for further applications. Different 

solutes of the dataset can be rated with respect to their relevance for advanced 

investigations.   
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4.3 Further intensive monitoring sites 

In this chapter a study dealing with soil solution data from outside the GSMP are 

presented. The results were published in the scientific journal GEODERMA in 

2010 (Appendix III). The data of soil solution analyses were collected in the 

Lehstenbach catchment, which is located in the `Fichtelgebirge` in South 

Germany. In contrast to the GSMP the data were not collected within the focus 

on soil science. Nevertheless, the underlying dataset of the presented study is a 

large, high dimensional and very heterogeneous (Appendix III) and against this 

background comparable to the complex datasets generated by the GSMP 

(chapter 2.1). 

The intensive investigation of a small stream catchment area (4.2 km²) aimed at 

the exploration of ecosystem processes from e.g. hydrology, soil science, 

climatology etc. and their interdependencies (Matzner 2004). However, the 

techniques of sampling using suction cups (cf. Appendix III and chapter 4.2.2.3) 

and measurement technique are similar. In the Lehstenbach catchment the study 

sites are close to each other, providing the opportunity to have a look at large 

scale processes compared to chapter 4.1 and 4.2. In the GSMP the distances 

between different monitoring sites are far larger (Figure 1) in most cases. 

Exceptions were only made at a few single sites with enclosed subplots, as 

presented for the Lange Bramke site in Table 5. Regarding the large scale in this 

chapter all scales of the research concept (chapter 2.2) are considered.  

The data were provided by Prof. E. Matzner from the University of Bayreuth and 

by the former Federal Bavarian Water Resources Agency. The analyses of soil 

solution and field work, including maintaining the study sites and collecting the 

samples, were conducted by the former Bayreuth Institute of Terrestrial 

Ecosystem Research. Research idea and concept of interpreting the data were 

generated by Prof. Gunnar Lischeid and me. Prof. Gunnar Lischeid and Prof. Jörg 

Rinklebe supported the published paper (Appendix III) by helpful discussions and 

correcting the manuscript before submission.  
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4.3.1 Abstract 

The large scale study comprises more than 4000 soil solution data analyses of 

16 parameters from several depths and three soil types which could be analyzed. 

The used nonlinear isomap approach slightly outperformed the linear PCA, 

indicating nonlinear relationships in the dataset (Appendix III). 

As dominating and most important impact on soil solution chemistry the 

deposition could be identified. Nearly 60% of the dataset variance can be 

explained by the first component “Deposition” and the third component “Changing 

deposition chemistry”, clearly reflecting the importance of deposition for soil 

solution chemistry. The second component “Acidification”, explaining 28%, is 

mainly initiated by deposition (Meesenburg et al. 2016). Further impacts, like 

matrix-solution interactions (fourth component – 5.8% of explained variance) and 

decomposition of organic matter (fifth component 1.6% of explained variance) 

can only explain a small part of the variance in soil solution chemistry within the 

Lehstenbach catchment (Appendix III).  
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4.3.2 Conclusions 

As well as in the medium and small scale spatial and temporal patterns could be 

shown. Spatial pattern and/or temporal patterns (seasonal and long-term) could 

be clearly assigned to the different components. The higher efficiency of Isomap 

indicates that nonlinear relationships can be found in the dataset, which is in 

accordance with other studies (Ter Braak 1998, Mahecha et al. 2007, Lischeid 

2014, chapter 4.2). The analyses show, that often used linear approaches in soil 

science, like the PCA (e.g. Astel. et al. 2011, Henriksson et al. 2013, Zhou et al. 

2016), may not be the best choice. Therefore, the Isomap approach is more 

suitable to reach the aim of intensive soil monitoring, the identification and 

documentation of processes influencing the soil system by measuring the soil 

solution, to quantify the main drivers on soil solution chemistry and to denominate 

the most relevant variables, than the PCA (Appendix III). Thus, the Isomap 

approach can be recommended when analyzing large heterogeneous datasets 

in soil science.  

The characteristics of the impacts and processes could be identified. More than 

94% of the variance of the high dimensional dataset can be explained by only 

five components. As the main driver of soil solution chemistry in the soils of the 

Lehstenbach catchment the deposition can be identified (Appendix III).  

Even if not separated as an own component the impact of the soil form can still 

be recognized in the first component. The relevant impact of parent material, as 

presented in chapter 4.1.3 (Figure 7) and chapter 4.2.3.1 (Figure 14), here is 

represented e.g. by the histosol and its redox-characteristics (Appendix III). The 

redox processes modify the effects of deposition input (Appendix III). 

Groundwater influenced soils, like e.g. Gleysols and different histosols mostly 

reveal anoxic conditions and low redox potentials (Scheffer & Schachtschabel 

2010). Such anoxic conditions, which are proven for the histosols in the 

Lehstenbach Catchment (Alewell et al. 2006, Lischeid et al. 2007), can reduce 

anions like NO3 and SO4 to gaseous forms and completely remove them from 

the soil solution (Kretzschmer 2010, Fritzsche et al. 2016). The decreasing 

amount of cations in the soil solution in consequence of the loss of anions can 

cover the effect of deposition input, as indicated by the first component (Appendix 

III). Similarly Weyer et al. 2014 identified redox processes as the most relevant 
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impact when regarding soil -, ground- and stream water of the Lehstenbach 

catchment. The use of groundwater samples which exhibited more strong redox 

characteristics (Lischeid & Bittersohl 2008) may explain the higher impact of 

redox processes in the mentioned study. 

In opposite to the soil type the impact of soil acidification is separated from 

deposition by an own component. Nevertheless it should be kept in mind that the 

acidification of soils is mainly caused by the input of acidic ions like SO4 with 

deposition, even though the input has been reduced considerably in the last 

decades (Brumme et al. 2009, Waldner et al. 2014, Meesenburg et al. 2016) 

which is well documented for the Lehstenbach Catchment (Matzner et al. 2004) 

as well. The impacts of acidification could equally well be identified in a dataset 

including soil solution, groundwater and stream water samples explaining about 

30% of the variance supporting the findings (Weyer et al. 2014) confirming the 

results and supporting the demarcation as a separate component. 

Further processes like evapotranspiration, mineral weathering, plant uptake and 

decomposition, cause only small differences in the soil solution chemistry. Less 

than 8% of the dataset variance could be ascribed to the components associated 

with those processes (Appendix III).  

It is exciting how well the processes identified by soil chemical information can 

also be reflected in other data. The results using the chemical analysis of the soil 

solution are very consistent with the results using the soil matrix potential. 

Lischeid et al. 2017 calculated the relevance of evapotraspiration for hydrological 

signals in the top soil with 5,8% using data from 2002-2009 of two sites in the 

Lehstenbach catchment, which is exactly the same explained variance as 

calculated by Schilli et al. 2010 (Appendix III). 
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5. Overall Discussion 

In this thesis the three studies were presented, analyzing soil monitoring data at 

varying scales, with different parameters and of different origin. Innovative 

statistical approaches for analyzing soil monitoring datasets were used. The 

results of the different studies will be compared and interpreted in an overall 

discussion. The findings are compared in three sections under different aspects. 

The first chapter focuses on the soil processes, soil chemistry and complexity of 

soils in the different studies (chapter 5.1). The second chapter will evaluate the 

use of the presented statistical approaches when analyzing soil monitoring data 

(chapter 5.2). Finally recommendations for the GSMP will be given to improve its 

quality (chapter 5.3). 

 

5.1 Soil chemistry and complexity of soils 

Three studies were conducted to identify the characteristics of soil chemistry and 

the responsible processes and impacts. In this chapter the focus lies on the 

question, in how far the recognized characteristics and influences reflect 

themselves in the different scales. 

In a first step (chapter 5.1.1), the results of the medium and large scale study are 

be compared, since they have used the same statistical approach, soil medium 

and a similar parameter set. The discussion of the identified and quantified 

processes in the comparison of the two studies is in the foreground. In a second 

step (chapter 5.1.2), the results are compared with those of the third study, using 

different scale, statistical method, parameter set and soil samples from sites with 

varying land use. It will be shown how the results are different due to differences 

in data records and methods, or are similar despite the differences. In chapter 

5.1.3 conclusion of the results of the previous two chapters are given. 
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5.1.1 Process identification at the large and medium scale 

The comparison of the identified components, the explained variance and the 

related impacts of the large and medium scale study (Table 10) reveals clear 

similarities. In both studies the parent material as well as its the specific reaction 

on deposition explains about half of the variance in soil solution chemistry. The 

calculated explained variance, 54.4% at the medium scale and 58.6% (45.7% 

first component plus 12.9% third component), are very close to each other. The 

high relevance of deposition for these components is reflected by the importance 

of NO3, SO4 and Cl which are mostly of atmospheric deposition origin. In the 

second study the different bedrock (acidic sites with sandstone vs. alkaline basalt 

over limestone) cause the differentiation, while at the large scale the redox-

conditions of the Fibric Histosol are responsible for the site differentiation. The 

high relevance of the parent material in both studies supports the necessity to 

use the soil form instead of the soil type when characterizing sites. 

The results of both studies are very similar regarding the second component. In 

the medium scale the consequences of acid induced soil formation effects 

explains 31.5% of dataset variance (Chapter 4.2.3.2). The second component of 

the large scale “Acidification”, responsible for 28% of dataset variance, shows the 

consequences of acidic input by deposition, which is indicated by the described 

depth gradient (Appendix III). The second component is marked by positive 

loadings of DOC and Fe opposed to SO4, Mn and Al and most pronounced in the 

upper soil. Horizons close to the surface are separated from deeper horizons. 

When measured all sites show positive mean component values in depths down 

to 35cm, with exception of the Solling site, revealing positive means only down to 

10cm. Despite the significant differences of the soils in both studies the 

similarities are very clear.  
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Table 10:  Comparison of the different components of the medium and large 
scale study 

C. 
Medium scale study Small scale study 

E [%] 
Component-

name 
Impacts and 
processes E [%] 

Component-
name 

Impacts and 
processes 

1 54.4 Bedrock 

site 
characteristic 
(bedrock / soil 
form), 
deposition, soil 
formation  

45.7 Deposition 

Deposition, site 
characteristic 
(parent material 
and redox 
conditions / soil 
form) 

2 31.5 
Acid induced 
soil formation 
effects 

formation and 
dissolution of 
minerals and 
organic 
substances by 
different 
processes, 
podzolization 

27.6 Acidification 
Buffering acidic 
input, 
podzolization 

3 7.5 

Concentration 
through 
evapotrans-
piration 

Evapotranspirati
on, root uptake, 
weathering 

12.9 
Changing 
deposition 
chemistry 

Deposition 
chemistry, 
exchange 
processes 

4 2.2 
Surface 
processes 

decomosition, 
mineralization, 
throughfall,  

5.8 
Matrix–
solution 
interactions 

Residence time, 
weathering, 
evapotranspiration 

5 - -  1.7 
Decompositio
n 

Decomposition, 
mineralization 

C. = Component; E [%] = Explained variance in % 

 

The second component in both studies should be distinguished from the 

deposition dominated components because of different reasons. The component 

characteristics, respectively the characterizing ions, are typical for the 

pedogenetic processes of podzolization and the buffering acidic inputs and not 

for deposition chemistry. Furthermore, deposition is not the only source for acidic 

substances in the soil. They may also derive from e.g. litter decomposition, root 

exudation or microbial activity (Lundström et al. 2000). However, the deposition 

can be named as a primary source of acidity (Brumme et. al 2009, Meesenburg 

et al. 2016). The significant reduction of acidic components with precipitation in 

Germany (UBA 2013) does not eliminate its relevance for soil acidification, 
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because the emission reduction holds true for cationic inputs too (e.g. Waldner 

et al. 2015, Meesenburg et al. 2016).  

The evapotranspiration is most relevant impact of the third component in the 

medium scale and also important for the fourth component in the small scale. 

Again the explained variance is quite similar with 7.5% and 5.8% (Table 10). In 

both studies, a separation of the different sites and the identification of seasonal 

effects were possible. Besides the evapotranspiration, other impacts affecting the 

soil water balance (e.g. plants, soil texture) as well as the residence time of water 

(influenced by evapotranspiration) show relevance for the chemical signature of 

the components. 

Comparable percentage of dataset variance is also explained by the fourth 

component in the medium scale and the fifth component in the large scale. Both 

components having positive loadings of NO3, NH4 and K opposed to Fe, Al, SO4 

and DOC pronounced in surface near horizons. The positive loadings reflect the 

release of ions from organic material by e.g. decomposition and mineralization 

(c.f. chapter 5.5 Appendix III, chapter 4.2.3.4). The peculiarity of the surface 

process effects in the medium scale study may be explained by the sampling 

depth of 0 cm with low / no suction plates, which was not regarded in the 

Lehstenbach Catchment. In spite of the low explained variance and the 

uncertainty in interpretation due to possible natural effects or different sampling 

methods a similarity of the different studies is indicated. 

The main difference between the large and medium scale is the separation of 

deposition influence in two components for the large scale. The changing 

deposition chemistry can be identified as a distinguishable impact from the first 

component dealing with deposition too. The distinction in to two components may 

be explained by the particular situation at the study site. The region of the 

Lehstenbach catchment, as well as large areas close to the border of the Czech 

Republic, are well known for being heavily polluted with acidic, sulphur-containing 

deposition loaded with heavy metals in the 90’s and former decades 

(Rautengarten et al. 1995). Also a drastic decrease of acidic input for this area 

during the following years (Matzner et al. 2004) is common knowledge and 

presented in Figure 8 in Appendix III for the study period. A decreasing acidic 

deposition is known for the sites at the medium scale too (Meesenburg et al. 



 

91 

 

2016). On the other hand the deposition at the nearby sites of the small 

Lehstenbach catchment will be very similar compared to the sites far apart from 

each other of the second study. This may support the lacking differentiation in 

two components in the second study. 

It can be stated, that the soils in both studies are influenced in a similar way by 

the same processes and impacts. Despite the differences in scale and soil forms 

regarded in the studies, the relevance and characteristic of the processes and 

impacts is comparable, reflected by the components and the explained variance. 

Even at different scales and varying substrates the complex system of soil seems 

to be influenced in similar ways in most instances. The main impacts given in 

Table 10 can explain about 90% of the variance in soil solution chemistry. The 

depth gradients given in some components indicate that the relevance of single 

impacts will change or may be not detected when the regarded depths would 

vary. 
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5.1.2 Comparison to the results of the small scale 

In opposite to the other studies the contents of different heavy metals, TOC and 

N as well as pH of the soil matrix with different land use were evaluated in the 

small scale study. Nevertheless the results show clear similarities to the results 

of the two studies dealing with soil solution and a different parameter set.  

At the small scale a general differentiation of organic horizons, mostly humus 

layers of forest sites, and mineral soil samples is visible in the SOM-SM. The 

cluster of the organic horizons and mineral horizons show clear differences in the 

chemical characteristics by the location in the SOM-SM (Figure 5C). Even if not 

pronounced in a similar way than for the large and medium scale the 

differentiation between forest floor horizons (respectively horizons close to the 

surface) and mineral horizons can be recognized in the small scale study too. 

The peculiar chemical characteristic of forest floor horizons is also indicated by 

the fourth component in the medium scale study (Chapter 4.2.3.4) and the fifth 

component in the Lehstenbach Catchment study (Appendix III). The more 

pronounced differentiation in the small scale study can be explained by a more 

direct consideration of the organic horizons. Here the material of the organic 

horizons was sampled and analyzed. In the medium scale only two sites were 

equipped with suction plates in contact with the organic material of the forest floor. 

Therefore a considerable impact of the forest floor on the soil solution chemistry 

could not be expected. Nevertheless it was revealed by the mentioned 

components. 

The strong impact of deposition, especially wet deposition, could be expected 

when regarding the soil solution. However, the relevance of deposition is also 

pronounced when regarding the chemistry of the soil matrix (Chapter 4.1). Here 

the impact can be visualized and evaluated for each single parameter (Figure 10) 

in opposite to the multivariate quantification of these parameters from the second 

and third study. The input of further substances with deposition is indicated by Pb 

(Figure 10). Highest concentrations can be found in the humus layer and top soils 

of forest sites (Figure 6F) supporting the interpretation. 

The depth gradient, which can be found for soil solution chemistry (e.g. Figure 

14) is also indicated in Figure 5C and Figure 6A. The acidification can be 

visualized by lower pH values in top soils of forest sites compared to sub soils.  
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Besides the deposition the parent material of the soil is of vital importance for soil 

chemistry. The geogenic content of heavy metals and the texture of the 

weathered parent material is the most important impact for the investigated heavy 

metal concentrations (except Pb in forest top soils and Cd) in the mineral soil. 

The mineral soil samples in the small scale study clearly reflect the relevance of 

the parent material for the soil chemistry (Figure 6 and Figure 7), and this is also 

given in the medium (Chapter 4.2.3.1) and large scale (Appendix III) as relevant 

driver. In Figure 14 the difference between sites with alkaline and more acidic 

material can be shown for soil solution regarding nutrients, reflecting the 

relevance of the parent material. 

The clear differentiation of organic horizons from bogs, fens, and mineral horizons 

could be found in both studies dealing with such soil horizons (large and small 

scale study). The first component of the large scale study divides between 

mineral horizons and organic horizons of the histosol (Appendix III). A clear 

differentiation between such horizons is also given in the SOM-SM (Figure 8). 

Soil water (Appendix III - Figure 5) and soil matrix (chapter 4.1.4) are 

characterized by lower concentrations of most of the investigated parameter, 

which is explainable by e.g. the low redox potential. Low redox potential can 

reduce the quality of organic matter and exchange capacity (Weyer et al. 2014). 

In soil solution the amount of anions (e.g. nitrate and sulphate) is reduced under 

such conditions (Fritzsche et al. 2016) leading to lower ionic strength of the 

solution. The differentiation supports the relevance of the soil form on chemistry 

of soil matrix and soil solution. In the small scale study the active bogs and fens 

can be distinguished (Figure 8) indicating different chemical characteristics 

compared to other samples, especially to mineral soil samples. Instead of the 

consumption of NO3 or SO4 (not measured in the small scale study) the low 

exchange capacity of the soil matrix of bogs and fens is crucial for the typical 

characteristics. This is caused by hardly decomposed organic matter and low the 

amount of reactive oxides cause of microbial consumption, both typical for anoxic 

conditions in pristine bogs and fens. 

Other known influences on soil chemistry, as e.g. land use on heavy metal 

contents (Anderson et al. 2002, Schilli & Hütter 2005), are often covered by the 

impact of the parent material or deposition (Neupane & Roberts 2008, Zhou et al. 
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2016), especially on a small scale (Anderson et al. 2000, Desaules et al. 2010). 

Exceptions can be found for single parameter and single land use like Cu in 

vineyard soils (Fabietti et al. 2010, Simoncic et al. 2017).  

In the presented case studies the expected complex interplay of atmosphere (e.g. 

deposition), hydrosphere (e.g. groundwater in bogs and fens) and biosphere (e.g. 

evapotranspiration and microbial activity) can be identified as reason for the 

characteristics of soil chemistry. Nevertheless it can be stated, that despite the 

complexity of the system soil similar results are achieved in the different studies. 

Even if regarding varying parameter sets, land use, soil horizons and scales the 

main impacts and processes stay the same.  
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5.1.3 Conclusion  

To describe the soil and its characteristics different taxonomies are in use, e.g. 

the World Reference Base (FAO 2014) or the German soil Taxonomy (Ad-hoc 

Arbeitsgruppe Boden 2005). In such soil taxonomies soils were classified by 

diagnostic horizons, their properties, pedogenetic processes and/or the soil 

material. Those characteristics are summed up in the soil typ. The type of soil is 

a result of the different impacts and processes on the parent material with time. 

The results of the three studies clearly indicate, that the soil type is not sufficient 

to define the chemical characteristics of a soil. For example the two sites 

Zierenberg and Solling are classified as Cambisols, revealing a similar soil type 

(Table 5). Nevertheless the chemical properties are substantially different 

(Chapter 4.2.3.1, cf. Table 9). The relevance of the parent material for e.g. heavy 

metals in the soil matrix is pronounced in the first study (Chapter 4.1.3). The 

physical characteristic of the soil texture, which is important for e.g. heavy metal 

contents, is covered by the impact of the parent material for soils developed on 

alkaline igneous and metamorphic rocks (Figure 7A; cf. Figure 7B). Therefore the 

use of soil forms, as combination of pedogenetic characteristics and 

characteristics of the soil material, is strongly recommended. 

It can be summarized, that the soil is a complex system in contact with different 

spheres of the environment. Numerous processes and impacts influencing the 

soil and soil solution chemistry are proven. From overall impacts and processes, 

like weathering (Johnson-Maynard et al. 2005) or deposition (Marschner et al. 

1998, Waldner et al. 2015), to local ones, as are root exudates (Haichar et al. 

2014), the soil-influencing effects are well known. Additionally only small changes 

in one of the numerous environmental conditions, like e.g. temperature or soil 

moisture, can influence the sensitive system soil considerable (Szukics et al. 

2010, FAO 2015). However, there are a few main impacts and processes 

influencing soils of different pedogenesis and / or land use. The same is true for 

soil horizons in different depths. Besides the complex soil system and numerous 

known soil processes and impacts on soil chemistry different soils seem to have 

more commonalities than expected.  

The main difference seems to be the intensity of the impacts or processes, which 

depends among other things on the recorded parameter set and the soils 
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included in the underlying dataset. For example, the relevance of the special 

characteristic of bogs and fens cannot be found in the medium scale, because no 

samples from such soils were included. The same is true for, e.g. effects in the 

forest floor in the large scale study. 

 

Main findings: 

• The complex soil system is dominated by the influence of the same few 

impacts and processes at different sites. 

• Despite the different scales and parameter sets, the identified relevant 

impacts and processes are comparable. 

• The most relevant impacts from national to local scale are deposition of 

acidifying compounds, the parent material and the acidification. More than 

80% of the dataset variance at the medium and large scale can be 

explained by these three main impacts and processes 

• The quantified relevance (conducted at medium and large scale only) of 

the dominating impacts and processes can be regarded as similar despite 

the different scale levels. 

• Soils should be described by the soil form, as the soil type of different soil 

taxonomies excludes the relevant parent material in most cases. 
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5.2 Statistical methods for analysis of soil monitoring data 

The analysis of long-term soil monitoring data is a challenging task. Different 

common challenges were investigated in the presented studies. The first is the 

problem of the dataset characteristics. On the one hand soil matrix datasets 

comprise a large number variables and mostly a small number of replications 

(Morvan et al. 2008, Arrouays et al. 2012). The statistical method of the SOM-

SM, which was used to analyze the dataset, is discussed with regard to the use 

of data visualization and the problem of identifying the main characteristics and 

impacts on soil chemistry and to perform trend analyses if replications are low. 

On the other hand, there are soil solution datasets with a high number of 

replications but a lower one of study sites (Chapter 2.1). Furthermore, several 

studies find that nonlinearity cannot be excluded when dealing with 

environmental monitoring datasets (Scholz et al. 2005, Lischeid and Bittersohl 

2008, Tarquis et al. 2011) and can be expected in soil science (Biswas et al. 

2013, Shcherbak et al. 2014), which is why the results of the comparison of the 

PCA and the Isomap receive special attention.  

The use and potential of the used innovative nonlinear approaches will be 

evaluated in the separate chapter 5.2.2. As a first step the different datasets are 

evaluated with regard to their evaluability in the next subsection. 
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5.2.1 Soil monitoring datasets and requirements on statistical 

approaches   

The decentralized management of the various monitoring areas is a problem that 

leads to a non-uniform dataset due to the different methods of the responsible 

ones (Chapter 2.1). Nevertheless, the existing guidelines for the GSMP (Barth et 

al. 2001) lead to comparable results, even if the used procedures are not identical 

(Chapter 4.1, Schröder et al. 2004, Schilli et al. 2011). The results of the three 

case studies show that analyses of the used datasets can fulfill the aims of 

monitoring, with the restriction that a trend analysis using of the basic data at the 

present time is difficult with standard methods due to the small number of 

replications. The questions which can be answered by analyzing such huge soil 

monitoring datasets with an extensive parameter sets exceed soil science. For 

example different questions dealing with climatic change (Körschen et al. 2014), 

human health (Zornoza et al. 2015), environmental management (Meesenburg 

2013) or the success of political actions (Chapter 0 and 4.3, LUBW 2008). The 

latter is also the case regarding the third component of the large scale study 

(changing deposition chemistry) as a consequence of the implementation of the 

BImSchG (2013) coming into effect in 1974.  

In contrast to other environmental monitoring programs, like water or air quality 

monitoring, a common problem of soil monitoring programs is the mentioned low 

number of temporal replicates when monitoring the soil matrix because of the low 

frequency of sampling, e.g. 5-10 years. Most of the analyzed parameters of the 

soil matrix in the first study (Chapter 4.1), like the contents of heavy metals 

(Desaules et al. 2010) and carbon (Körschens et al. 2014), react very slowly to 

environmental influences in most cases. Therefore, a higher frequency is not 

reasonable for numerous parameters (Desaules et al. 2010) and would not 

increase the quality of the results. Accordingly, sites in many national long-term 

monitoring networks have been sampled and analyzed only once to three times 

until today (Arrouays 2009, Arrouays et al. 2012, Marx et al. 2015). On the other 

hand, the soil of the monitoring sites is consumed by sampling (in particular forest 

soil), which means that a higher sampling frequency is not useful. Therefore the 

frequency of soil sampling should be defined carefully to conserve the soil 

monitoring sites for long-term monitoring.  
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In most cases the soil solution reacts more sensitively to environmental impacts, 

like e.g. precipitation, than the soil matrix. Therefore, the measurement of the 

chemical composition of the soil solution enables an early recognition of changes 

in the soil system (Barth et al. 2001). The parameters measured in soil solution 

are subjected to different kinetics. While parameters, like NH4, K and PO4, are 

known to react quickly, parameters mainly originating from soil minerals, like Si 

have slower kinetics in the solution. Additionally the soil solution can be and is 

sampled at a higher frequency than the soil matrix without consuming the soil of 

the monitoring site. Because of this reasons annual (e.g. Figure 4 - Appendix III) 

and interannual trends (e.g. Figure 9 - Appendix III; Figure 16) could be identified 

by the studies using soil solution, while there were only overall indications for a 

trend in the first study. However, it must be borne in mind that the parameter set 

of intensive monitoring sites is significantly smaller due to the lack of biological 

and physical parameters. Especially the biological parameters are of great 

interest because of their potential power of expression for e.g. climate change 

(Giardina et al. 2014, Haag et al. 2015) issues which is why the basic monitoring 

set is of high value. 
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5.2.2 Use and potential of innovative approaches 

The results presented in chapter 4 reveal the high potential of the used statistical 

approaches, which are innovative in soil science, when analyzing soil monitoring 

data. The use of the Isomap approach identified three (chapter 4.2), respectively 

four components (Appendix III), each explaining more than 5 % of the dataset 

variance. In both studies the approach was able to explain about 93% of the 

variance with only few components. The SOM-SM was able to visualize 94% of 

the variance within the dataset, mainly influenced by two different drivers without 

quantifying them. Both approaches are able to deal with such large and 

heterogeneous multivariate datasets which are typical for long-term soil 

monitoring and explain most of the variance of the dataset. Besides the results 

and the proven use of both approaches the advantages and disadvantages of 

SOM-SM and Isomap are discussed with respect to the monitoring datasets and 

the aims of soil monitoring in the following. 

As presented in chapter 4.1 the SOM-SM was able to identify the state of the soil. 

The identification and documentation of causal processes is possible. Very 

promising is the use of the SOM-SM to perform multivariate trend analyses. 

Assuming a continued sampling frequency of 5-10 years there will be not enough 

results in the close future for traditional trend analyses, like regression analyses 

or Mann-Kendall-Test. The presented approach of SOM-SM offers a alternative 

for multivariate trend analyses, if there are numerous sites with a low number of 

replicates. In chapter 4.1.3 it was shown, that there are hints for a multivariate 

trend, based on the data of few sites from the GSMP with low number of 

replications. The number of sites with available data from replicates will increase 

with time when monitoring continues. Accordingly it can be assumed, that the 

indicated trends (Figure 9) can be verified by decreasing confidence intervals 

because of the increasing number of data, even if only a period of 10 years is 

covered.  

Advantage and disadvantage of the SOM-SM is the output for interpreting the 

results. The output of the SOM-SM is only one graph and has no output function 

as known from other artificial neural networks. Nevertheless, the entire explained 

variance is visualized in this single graph, and different effects and processes can 

be derived by the colouring of the graph in different ways, depending on location 
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and pattern characteristics. The results of PCA and Isomap have to be presented 

in numerous figures and tables with statistical values (e.g. graphs of parameter 

loadings or component values) depending on the number of relevant 

components. Compared to the quantitative results of PCA and Isomap, in which 

different effects and processes can be quantified and distinguished, the 

visualization of the SOM-SM is, however, qualitative.  

The interpretation of the results of SOM-SM and Isomap differs clearly. The SOM-

SM approach aims at arranging the observations by their similarity. The scientific 

interpretation of the results is supported by the power of the human brain. 

Different colour codes used for the SOM-SM can be interpreted by eye-minded 

pattern recognition. The human brain is able to recognize and analyze patterns 

and anomalies in patterns in presented in figures in very short time, independent 

from the shown scientific contents. Therefore the results may be easier to 

understand even for a non-statistically skilled audience. Additionally the ability of 

the human brain to abstract can recognize hazy patterns (Keim 2002) which may 

not be detected when using other statistical approaches. Therefore, the SOM-SM 

can be used as a first step analyzing tool, which can identify pattern fast and 

efficient.  

The interpretation of the PCA and Isomap results is a task for experts. The 

attribution of a component to a process, impact or a combination of processes or 

impacts is complicated and requires a deeper knowledge of the researched topic. 

Moreover, it is possible that the results obtained can be caused for various 

impacts which can not be unambiguously identified and distinguished from one 

another, as shown in chapter 4.2.3.4. The presentation of the results to layperson 

is very difficult. The comparison of the linear PCA and the nonlinear Isomap 

approach shows in both comparative studies that the nonlinear Isomap approach 

outperformed the linear PCA, even if only slightly. Correspondingly it can be 

stated that there are nonlinear interactions influencing soil chemistry and these 

are not detected by the linear approach of the PCA. This supports the findings of 

different other studies dealing with ecological data (Mahecha et al. 2007; Ramette 

2007, Weyer et al. 2014). With regard to the monitoring aims of process 

identification the superiority of the Isomap for this purpose could be proven in 

chapter 4.2 and 4.3. Based on the results the use nonlinear statistical approaches 
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are recommended when analyzing soil monitoring data, especially when 

nonlinear relationships cannot be excluded.  

The need of complete data sets is one disadvantage both approaches have in 

common. In all studies the necessity of complete data sets reduced the size of 

the useable dataset considerable. The problem of incomplete data sets will be 

distinct when dealing with data from diverse sources, like different institutions, 

federal states or states, which use different parameter sets or methods in their 

monitoring programs (Schilli et al. 2011). Another problem will be a change the 

analysis methods and/or parameter sets. The information of not continuously 

(comparable) measured parameter cannot be regarded in the analyses. 

The results of the three studies show, that the datasets and used statistical 

approaches are suitable tools when analyzing soil monitoring datasets to achieve 

the aims of soil monitoring. Both approaches seem to be promising tools for future 

analyses.  
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Main findings: 

• The GSMP can provide information to fulfill all national and international 

demands and aims of a comprehensive monitoring. 

• Intensive monitoring sites of the GSMP can provided large datasets with 

high temporal resolution suitable for trend analyses and to identify inner 

annual characteristics and impacts. 

• The frequency of the soil matrix sampling of the monitoring areas provides 

a dataset which is currently only conditionally suitable for trend analyzes. 

• The SOM-SM approach is a powerful tool to give insight in information 

hidden in soil monitoring datasets as a qualitative first step analyze. 

• The successful trend analysis with the SOM-SM can deal with the typical 

problem of the soil matrix monitoring datasets – the numerous sites with a 

low number of measurements in time. 

• The nonlinear isomap approach (slightly) outperformed the similar linear 

PCA, thus demonstrating nonlinearity in soil datasets. 

• Both methods can  

o deal with soil monitoring datasets and perform a clear dimensional 

reduction without a substantial loss of information (explained 

variance >93%). 

o analyze the soil monitoring datasets and answer the questions 

addressed to the soil monitoring 

• The analysis of soil monitoring data can be used to answer questions that 

go beyond the field of soil science.  
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5.3 Recommendations for monitoring programs  

When researching complex system as the pedosphere which is in permanent 

contact and interrelation with other systems each measured parameter possibly 

gives specific information. Therefore a wide spectrum of regarded parameters is 

useful. To ensure the reliability and comparability of the data from different 

stakeholders each regarded parameter or characteristic should be measured or 

described identically in the ideal case, or at least in a comparable way. On the 

other hand it is known, that measurements in different laboratories using 

standardized analytical methods can provide differences in the results, as shown 

for the European forest monitoring network (Cools et al. 2004), revealing the 

necessity of high quality standards and management. Often it is necessary to 

exclude possible valuable parameters from analyses because of different 

reasons, like a large number of comparable or missing values because of 

different measuring methods (table 11 Appendix I). The recommendations given 

in Barth et al. 2001 aim at avoiding such problems. However, when analyzing the 

dataset of the GSMP only a few of more than 70 mandatory parameters could be 

used (Chapter 4.1.2). The recommendations given in Barth et al. (2001) have not 

been implemented in the different federal countries in a similar way. Even if the 

degree of harmonization of methods of the GSMP can already be characterized 

as high for large parts (Schröder et al. 2004), it should be improved for different 

parameters further to increase the quality of the data. A comprehensive 

harmonization of sampling and analysis methodology is essential for soil 

monitoring (Nieminen et al. 2013).  

Analyzing for time trends in soil monitoring data is a challenging task, especially 

when regarding time spans of more than a decade with data provided by different 

stakeholders. The first and most important thing for analyses in all cases and 

fields is a reliable dataset. The necessity of comparable methods was already 

mentioned. Besides the harmonization of working procedures the technical 

advances support and increase the data quality by e.g. more accurate analyzing 

tools. On the other hand the increased accuracy of measurements can 

complicate the interpretation of the data. Within the time span of more than 20 

year of the GSMP the technical standards had changed and make it necessary 

to have a closer look at the data. Here, the measured contents of different 
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parameters often were close to the detection limit, for example for Cd, Hg and 

organic pollutants. Generally the detection limits are decreasing with time. The 

detection limits for Cd are given in the GSMP dataset vary in some federal states 

from 0.5 mg/kg (1985) to 0.01 mg/kg (2007). Additionally, the detection limits vary 

between the different federal states, adding a spatial uncertainty in federal wide 

analyses for such parameters.  

The demand on soil monitoring data to answer questions of different topics 

changes with time. For example 2009 in France the most inquired topics were 

contamination, erosion and soil organic carbon decline, while soil acidification - 

one of the top topics of the 80’s – takes a backseat (Richer de Forges & Arrouays 

2010). The decreasing relevance of acidification may be explained by first sign 

revealing a recovery of soils from acidification (Graf Pannatier et al. 2005, 

Meesenburg et al. 2016), even if the effects are still recognizable in the soils 

(chapter 4.2.3.2 and 4.3.1). Against the background of the increasing number of 

environmental quality standards in the European Union and expansion of the 

parameter set seems to be necessary. Until today the amendment of the 

BBodSchV (BMUB 2015) is in discussion, even if the first step towards 

implementation was carried out in May 2017 (BMUB 2017). Threshold values for 

so far not regarded elements (e.g. thallium, vanadium) will be defined. At least 

the new parameters of a revision of the BBodSchV should be added to the 

mandatory parameter set. With modern analytical methods the measurement of 

additional parameters is cost-efficient compared to the maintenance of the 

sampling sites and sampling procedure. A consideration of additional parameters 

which can be measured by modern analytical apparatus easily and at low costs 

seems to be efficient and forward-looking, but depends on the used apparatus, 

supporting further method harmonization. Reducing the list of parameters should 

carefully be thought about because the prospective relevance cannot be clearly 

evaluated. As an example the measurement of different radioactive isotopes at 

different GSMP sites in Bavaria (Spörlein & Wölfel 2011) or Austria (Smidt et al. 

2012) can be mentioned, induced by the reactor catastrophe in Tschernobyl in 

1986. The general recording of radioactive isotope receives new relevance with 

the consequences of Fukoshima accident caused by a Tsunami. Therefore, the 

elimination of the parameters should be avoided unless absolutely necessary. 
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It can be stated, that the creation of a high quality soil monitoring dataset is a 

complex task, which has to face several problems. To deal with such problems, 

as changing analytical standards and parameter sets or potential measurement 

uncertainty, an adequate quality management system seems to be necessary. A 

useful quality management system based on the measurement of retain samples, 

especially for soil monitoring, was presented by Meuli et al. (2013). Meuli et al. 

(2013) advice a parallel measurement of a retain samples when analyzing new 

samples. The new analyses can be referred to the retain samples, using the 

difference of measurements (Δ1 in Figure 21 A) as correction value for the values 

of the new measurement. As shown in Figure 21 the indicated time trend by the 

non-referenced measurement cannot be found for the referenced time line, 

revealing the relevance of such quality assurance. 

 

 

Figure 21: Part of the Swiss soil monitoring reference system (adopted from Meuli 

et al. 2013) 
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Such a reference system would provide several advantages to monitoring 

datasets. 

• Missing values of parameters (never measured or measured with different 

non-comparable methods) can ascertained when analyzing the retain 

samples. 

• The reference system also minimizes the laboratory bias caused by e.g. 

changing analyzing laboratories / apparatus or different employees. 

• Results below the detection limit may change to analyzed low 

concentration because of advances in analytical techniques. 

 

By using such quality assurance the quality of monitoring data and the number of 

measured parameters can be increased, especially if samples have been 

analyzed for a long time span and the parameter spectrum has changed in 

between.  

The use of the presented quality assurance requires an adequate amount of 

retain samples. This can be a problem for long-term soil monitoring systems 

regarding the soil matrix because more soil material would be sampled and 

stored. The collection of additional soil material is especially problematic at forest 

sites with a humus layer. Here, it is necessary to collect material from a large 

area because of the low raw density and possible low thickness of humus layers. 

Therefore a careful setup of the sampling and analytical design with a long-term 

strategy is necessary. Such problems generally do not occur, or occur with 

smaller relevance, when monitoring air or water in similar frequencies and can be 

regarded as an additionally challenge for soil scientists. The increasing amount 

of necessary retain samples increases the cost for storing the samples over a 

long period. Different parameters make different demands on sample stocking 

(Pezzolesi et al. 2000). While air-dried samples are appropriate for e.g. heavy 

metal contents frozen retain samples are necessary for different biological 

parameters or organic contaminates. The storage and related preparation of the 

latter is more complicated and expensive. Accordingly the mentioned system of 

quality assurance is limited to available adequate retain samples which are often 

missing. 
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Besides the varying used methods the documentation of those is not always 

sufficient, as presented in Table 1 and Table 12. To avoid insufficient 

documentation the UBA presented a method code developed for the GSMP 

dataset (Kaufmann-Boll et al. 2011). 

In conclusion, it should be noted that a continuation of the monitoring is urgently 

recommended. Ideally, it is continued in at least the existing or an adapted and 

expanded frame, as mentioned above. The continuation of soil monitoring will 

increase the quality of the dataset considerably for two reasons:  

• The number of measurements will increase. High population supports 

statistical analyses.  

• The investigated time span increase, and this is very important for 

research regarding parameters with slow kinetic (Desaules et al. 2010, 

Körschens 2010).  

The continuously growing number of data sets will increase the efficiency by far 

when identifying time trends and secure them statistically. Nonetheless, it can be 

stated that even if the number of replicates at present is low, multivariate trend 

analyses of soil monitoring data are possible if adequate statistical approaches 

were used.  
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Main findings: 

• Maintenance of basic monitoring is necessary, as the value of the data will 

increase considerable in close future, when more quality assured 

replications are available for trend analyses. 

• The operational procedure like soil sampling, soil analyses and data 

management should be harmonized at the national level to ensure the 

comparability and a joint analyzability of the data. 

• Gaps in the documentation should be filled if possible. 

• The broad parameter set should be kept or even expanded to be able to 

answer prospective questions because of changing environmental quality 

standards. 

• The implementation of a quality management system to reduce laboratory 

bias and time effects is recommended and should be connected with an 

adapted management of retain samples. 

• Measurement of retain samples is recommended 

o as part of a quality assurance as presented above, 

o to complete data sets,  

o to analyze parameters of a possibly adapted parameter set,  

o to analyze parameters which were not detected in former times 

because of high detection limits in past decades 

• The federal fragmentation within the GSMP lead to difficulties when joining 

data for nationwide analysis. 
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6. Synthesis 

A comprehensive soil monitoring is a challenging task generating heterogeneous 

and multivariate datasets. To analyze these datasets adequate statistical 

approaches are necessary. Statistical approach should be selected in 

dependence of the aim of analyses and the underlying dataset. Here two different 

approaches were used which are innovative in soil science.  

A tool of visual Data Mining was chosen for the first step analyze of the basic 

monitoring data, which is promising when the dataset is large and the previous 

knowledge is low. The use of the SOM-SM approach as a tool of data 

visualization is well known. The data visualization and interpretation by the 

human brain showed numerous well–defined pattern, which indicate the most 

relevant impacts and processes. Difficult-to-recognize patterns show questions, 

such as for Cd in chapter 4.1.3, which should be investigated more closely in a 

next step. Additionally the SOM-SM can provide a way to successfully perform 

trend analyses for datasets with low number of replications at numerous sites. 

The aim of the analyses of intensive monitoring sites was the identification and a 

quantification of the most relevant processes in soils and trends in soil chemistry. 

For this purpose approaches of dimension reduction were used. Since nonlinear 

relationships in ecological science are known a similar linear (PCA) and nonlinear 

(Isomap) approach was used, to identify a possible benefit of nonlinear analyses. 

The slight advantage of the results of the Isomap approach, compared to the 

PCA, had revealed that nonlinear interactions in soils can be found and should 

be expected and regarded in the future. Therefore the use of nonlinear 

approaches can be recommended, as long as nonlinearity cannot be excluded. 

Further research concepts can be designed more precisely using the achieved 

results with higher accuracy from nonlinear approaches. Additionally the 

dimension reduction done by the Isomap approach can be used to set up models 

with lower dimensions resulting in a reduced model uncertainty. 

The three presented studies are based on datasets varying in different 

characteristics, e.g. soil medium (soil matrix and soil solution), regarded land use, 

observed parameters and sampling frequency. Despite of all these differences all 

the studies show similar main drivers of the chemical characteristics of the soil. 

The changes in the chemical characteristics of the complex soil system can be 
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attributed to and explained by only a small number of driving impacts and 

processes. In the presented studies the main driver’s deposition and parent 

material, as well as acidification, could be identified in all studies, regardless of 

the study scale. Despite the complexity of the system soil, the different soils seem 

to have more commonalities than expected. The identified impacts and 

processes can be distinguished from each other and quantified as shown for the 

different components in chapter 4.2.3 and Appendix III. The determination of the 

main drivers on soil chemistry increases the understanding of the complex soil 

system. The identified processes can explain the past and can give hints to the 

future development of soils. The effects of political actions like the reduction of 

emissions of e.g. SO4 by the BImSchG (chapter 4.2 and 4.3) or Pb by the BzBIG 

(LUBW 2008) on soils can be identified and evaluated.  

The studies could clearly reveal the high relevance of the parent material of soils 

for the characteristics of the soil. To describe soils and the characteristics and to 

compare soils always the soil form, and not only the soil type, should be used.  

Deficits within the GSMP were identified. The federal fragmentation of the GSMP 

can lead to difficulties in nationwide analysis. Besides the non-uniform parameter 

set in different federal states, the main problem is the diversity of used analytical 

methods, although recommendations for the parameter set and standard 

methods are available. Besides these shortcomings the GSMP can fulfill the 

national and international criteria of a comprehensive soil monitoring. 

Recommendations could be given to solve parts of the problems and to increase 

the quality of the dataset by analyzing retain samples. 
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7. Outlook and research requirements 

The used statistical approaches reveal high potential for analyzing soil monitoring 

data. Nevertheless there is a need for further research. The advantage of the 

nonlinear Isomap was only slight, which is why it should be used on further 

monitoring datasets and compared again to PCA to confirm the superiority. 

Furthermore, monitoring data from soils should be used which are influenced 

from more dynamic or additional processes such as floodplain soil. Possibly the 

advantage of Isomap will be more pronounced at such sites. The results achieved 

with the Isomap approach (and PCA) are still interpretations and could be 

complemented by an isotope technique in order to, e.g. a clear determination of 

the sources of different parameters (Houle et al. 2014).  

Both approaches should not be limited to a first step analyze of soil monitoring 

datasets as presented in this thesis. A combination with each other or further 

statistical result seems to be promising as presented by several authors of 

ecological research (e.g. Fujino & Yoshida 2006, Annas et al. 2007, Lischeid 

2014). For example the approaches of SOM-SM and Isomap could be combined 

when using soil monitoring data, by e.g. colouring the data points of SOM-SM 

according to calculated component values of Isomap. A simple visualization of 

complex, quantitative results of the soil monitoring should be possible. 

The SOM-SM and Isomap results can be used for further investigation. The 

reduction of dimensions by calculating components is promising for the use in 

models. The results of Isomap could be combined with further statistical 

approaches. The presented approaches are only a part of the numerous 

possibilities in the area big data analyses. Big data provide the diverse 

requirements and possibilities for evaluation methods.  

Besides the used statistical approaches there are further promising statistical 

approaches when analyzing large datasets, for example approaches of Machine 

Learning (Qiu et al. 2016). Methods that are worth testing are numerous and in 

most cases free of charge (Tonidandel et al. 2016). 

One of the most important advantages of comprehensive soil monitoring, which 

collects data and analyses parameter not only of the soil, is the large potential to 

answer unexpected questions, even beyond soil science. Besides soil focused 

research further questions should be taken into account when dealing with soil 
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monitoring data. Actually the topic “climate change” and the consequences are 

discussed on political and public level. Studies in soil science can support the 

estimation of possible effects of climate change (Giardina et al. 2014, Marx et al. 

2015). Furthermore high quality monitoring data and associated analyses can act 

as decision support for forest management and environmental management 

(Meesenburg 2013, BMU 2017) and may provide useful information for future 

actions, as measured contaminants may serve as a basis to develop benchmarks 

(Nicolas et al. 2014). 

Against the background of changing statutory framework in the European Union 

and the FRG the parameter set should be reconsidered. In the course of time 

new parameters get relevant. For example different medical products in soils, as 

antibiotics (Aga et al. 2016), are of interest for human and ecological health as 

well as nanoparticels in soils (Anjum et al. 2013). Further the intended 

amendment of the German soil protection act will set up threshold values for to 

date unstated parameters, e.g. thallium, vanadium or antimony (BMUB 2015). 

Therefore an adaption of the parameter set of the GSMP, as recommended in 

chapter 5.3 and different studies (e.g. Marx et al. 2015, Nerger et al. 2016) seems 

to be necessary. The adaption of the parameter set should be combined with a 

harmonization of methods.   
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Appendix I 

Table 11: Mandatory parameters for the soil solid phase (altered from Barth et 
al 2001) 

Parameter Method Frequency 

Soil physic 
Grain size DIN 19683-2 once 
Raw density, dry DIN 19683-12, ISO 11 272 once 
Solid substance density DIN 19683-11 once 
Pore size distribution DIN 19683-5 once 
Saturated water conductivity (kf) DIN 19683-9 once 
Soil chemistry 
pH value DIN 19684-1, DIN ISO 10390-7 > 5 years 
Ctotal., Corg DIN 19684-2, DIN ISO 10694 > 5 years 
Ntotal DIN 19684-4, DIN ISO 11261-8 > 5 years 
Carbonate content DIN 19684-5, DIN ISO 10693 > 5 years 
CECpot (Ca, Mg, Na, K, H-Wert) DIN 19684-8, DIN ISO 13536 > 5 years 
CECeff (Ca, Mg, Na, K, Al, H, Mn, Fe) BZE (1994); bei pH(CaCl2) <6,5 > 5 years 
Extractable aqua regia contents: Ca, 
Mg, Fe, K, Mn, P, S 

DIN 38414-7, DIN ISO 11446 > 5 years 

Extractable aqua regia contents: Cd, 
Cr, Cu, Hg, Ni, Pb, Zn, As, Al 

DIN 38414-7, DIN ISO 11446 
> 5 years or event 
related 

Long-lived radionuclides:137Cs, 134Cs BMU (1997) 
> 5 years or event 
related 

Polychlorinated biphenyls: PCB 28, 
52, 101, 138, 153, 180 

DIN 38407-2 F2 
> 5 years or event 
related 

Chlorine pesticides: HCB, -, -, -, 
-HCH, DDD, DDT, DDE 

DIN 38407-2 F2 
> 5 years or event 
related 

Polycyclic aromatic hydrocarbons: 
16 PACs (EPA) 

DIN ISO 13877 
> 5 years or event 
related 

Soil microbiology 

Microbial biomass 

Substrate-induced respiration 
(according to Anderson & 
Domsch 1978 and Heinemeyer et 
al. 1989), DIN ISO 14240-1 

> 1 year 

Microbial biomass 
Fumigation-extraction method 
(according to Vance et al. 1987), 
DIN ISO 14240-2 

> 1 year 

Microbial Basal respiration 

Continuous flow method 
Heinemeyer et al. (1989) or 
determination of O2 uptake 
(Schinner et al. (1993), DIN 
19737 

> 1 year 

Metabolic quotient Anderson & Domsch 1990) > 1 year 
Soil zoology 

Lumbricids 
Hand picked (Graefe 1991, 
Bauchhenß 1997) 

> 5 years 

Lumbricids 
Formalin expulsion (Graefe 1991, 
Bauchhenß 1981) 

> 5 years 

Small annelids 
Wet extraction according to  
Graefe 1991 or Graefe in Dunger 
& Fiedler 1998  

> 5 years 
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Table 12: Different methods when analyzing the parameter Cd listed in the 
database of the German long-term soil monitoring program (altered from Schilli 
et al. 2011) 

Parameter Method 

Cd Aqua regia extractable (DIN 38414-7) 

Cd Aqua regia extractable (DIN ISO 11466) 

Cd Aqua regia extractable (laboratory specific method) 

Cd Effective Cation Exchange Capacity (laboratory specific method) 

Cd Potential Cation Exchange Capacity (laboratory specific method) 

Cd Ammonium nitrate extractable (DIN EN 19730) 

Cd EDTA-extractable (DIN 68406 E29) 

Cd DTPA-extractable 

Cd Oxalate extractable (laboratory specific method) 

Cd HNO3-extractable 

Cd Total contents (federal state specific method) 

Cd Total contents (GAFA 2005 – chapter 3.3.2) 

Cd Total contents (laboratory specific method) 

Cd Total contents (Ruppert 1987) 

Cd X-ray fluorescence analysis 

Cd Method not defined 
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Soil monitoring yields large and heterogeneous data sets. To identify the prevailing processes as well as
identifying spatial patterns or temporal trends, mostly linear approaches are used. Here, a nonlinear
approach, Isometric Feature Mapping (Isomap), was applied and compared to the established linear Principal
Component Analysis (PCA) to a data set from a long-term monitoring program in the forested Lehstenbach
catchment (Fichtelgebirge, Germany). The data set comprised more than 4000 soil solution samples from
different periods, soil types and varying depths, where 16 solutes were determined.
The nonlinear Isomap approach achieved slightly better results than the linear procedure. More than 94% of
the variance of the given data set was explained by the first five components. About 46% of the variance was
ascribed to the impact of long-term atmospheric deposition. Soil acidification may explain the characteristics
of the second component and another 28% of the data set's variance. The third component indicated a long-
term shift of deposition chemistry that accounted for nearly 13% of the variance. Matrix–solution interactions
and decomposition of organic matter were ascribed to the fourth and fifth component, explaining another
5.8% and 1.6% of the variance of the data set. Thus, long-term deposition could be interpreted as the most
important factor influencing soil solution chemistry in different ways. Based on the Isomap results spatial
and temporal patterns were investigated. Different redox conditions and depth of sampling accounted for
much of the spatial variance. The identified components differed substantially with respect to seasonal
patterns or long-term trends. The nonlinear Isomap approach revealed applicability and further potential for
analyzing comprehensive data sets in soil science.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Long-term soil monitoring programs have generated large multi-
variate data sets all over the world. To understand the observed
temporal changes identification of the relevant processes is necessary.
Besides, the latter is necessary for a better understanding of spatial
heterogeneities. In most cases, various processes have an effect on
single solutes. As soon as the prevailing processes are identified low-
dimensional models can be set up with reduced model uncertainty
compared to high dimensional models.

In soil science as well as in other ecological sciences different
multivariate methods are used to analyze monitoring data. For the
purpose of dimensionality reduction and process identification
methods like multivariate linear regression (e.g. Graf Pannatier et
al., 2005) and the common Principal Component Analysis (PCA) (e.g.
Gupta et al., 2006; Zhang et al., 2007; Weyer et al., 2008; Langer

and Rinklebe, 2009) are frequently used. However, many of those
methods require linear data sets, but linearity often is more an
exception rather than the rule in ecological data sets (Mahecha et al.,
2007; Ramette, 2007). Mathematical methods based on linearity
assumptions can cause difficulties in interpretation (James and
Culloch, 1990). Nonlinear analyses of ecological data have revealed
higher efficiency (e.g. Tenenbaum et al., 2000; Mahecha et al., 2007)
analyzing different ecological data sets. However, nonlinear
approaches in soil science are still very rarely used today.

In this study the linear PCA and the nonlinear Isometric Feature
Mapping (Isomap) (Tenenbaum et al., 2000) were applied to analyze
long-term monitoring soil solution data. The use of PCA for inves-
tigating ecological datasets, even in soil science is well established.
Isomap was successfully used in different ecological sciences like
botany (Mahecha et al., 2007), hydrology (Lischeid and Bittersohl,
2008) and climate research (Gámez et al., 2004). The data set was
collected from different sites of an intensively studied forested
catchment in south Germany (e.g. Moritz et al., 1994; Lischeid et al.,
2002; Matzner et al., 2004a; Weyer et al., 2008). The sites differ with
respect to, e.g., soil type andvegetation andwith respect to the number
of collected samples resulting in a very heterogeneous data set.
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The aim of this study is i) to identify the dominating impacts and
soil-chemical processes based on soil solution chemistry and ii) to
study possible long-term shifts of the prevailing processes using and
comparing a linear and a nonlinear approach. The results will be
interpreted with regard to their relevance when analyzing long-term
monitoring data.

2. Sites

The Lehstenbach catchment (4.2 km²) is located in the mountain-
ous region “Fichtelgebirge” in South Germany, close to the border to
the Czech Republic (Fig. 1). Here, numerous studies have been
performed (e.g. Alewell et al., 2000; Matzner et al., 2004a,b; Bogner et
al., 2008; Lischeid and Bittersohl, 2008). The altitude varies between
695 and 877 m above sea level. Themean annual temperature is 5.3 °C
(1971–2000), the mean annual precipitation is approximately
985 mm (1988–1999) (Gerstberger et al., 2004).

The geological parent material is Variscan granite, intensively
weathered during tertiary. Thickness of the regolith varies between
0 m and more than 30 m. Fens and bogs have developed in
topographic depressions. Acidic soils, like Podzols or Dystric Areno-
and Cambisols (according to IUSS/ISRIC/FAO, 2006), prevail in more
than two thirds of the catchment area. Wetland soils cover about 30%
of the area (Gerstberger et al., 2004).

3. Data set

Soil solution data from the Lehstenbach catchment measured from
1992 to 2000 have been used. This data pool includes 4061 samples
of four different sampling sites within the catchment (Table 1).
Vegetation is Norway spruce (Picea abies) at all sites.

At the Coulissenhieb site the soil is classified as a Haplic Podzol
(according to IUSS/ISRIC/FAO, 2006) with an incumbent humus form
of mor type (Gerstberger et al., 2004). Soil solution concentration data
was available from four sub-plots here, covering the period from 1992
to 2000. Data were provided by the former Bayreuth Institute of
Terrestrial Ecosystem Research (BITÖK) at the University of Bayreuth.
The data of the four different nearby sub-plots are merged and
treated as single site. The samples were taken at 20 and 90 cm
depths. In addition, samples from 35 cm were taken 1992–1995
only. Four ceramic suction cups with mean pore diameter of 0.45 μm
and constant suction of 240–320 hPa were installed per depth

(Manderscheid and Matzner, 1995). Samples were collected at
biweekly intervals and analyzed separately.

In addition, soil solution data were provided by the Bavarian
Environmental Agency (LfU; former Federal BavarianWater Resources
Agency) from another three sites in the catchment (Moritz et al.,
1994). The soils at these sites were classified as Haplic Podzol at
Gemös, Dystric Arenosol atWeidenbrunnen, both coveredwith a thick
rawhumus, and as SapricHistosol (according to IUSS/ISRIC/FAO, 2006)
at the Köhlerloh site (Moritz et al., 1994). Sampling depthwas 50, 100,
150 and 200 cm at Gemös and Weidenbrunnen, and 50 and 100 cm
only at Köhlerloh, due to the high groundwater table at this site
(Table 1).

Samples were collected via ceramic aluminium-oxide sintercups
with mean pore diameter of 0.5 μm and periodical suction (4–5 days)
of 300 hPa (Moritz et al., 1994). Sub-samples of four different cups per
depth were pooled to one sample before analysis. Monthly data are
available for those sites from 1996 through 2000.

In total, 39 variables (e.g. heavy metals, nutrients, temperature and
conductivity) were determined with different frequencies and periods.
Variablesmeasured in less than 3000 observationswere not included in
the analysis. Nitrogen and sulfur were excluded due to strong
correlations to NO3 and SO4 (Spearmans ρ exceeding 0.9). As a result

Fig. 1. Map of the study sites (left) and location of the Lehstenbach catchment in Germany (upper right).

Table 1

Site characteristics (Moritz et al., 1994; Gerstberger et al., 2004).

Study site Coulissenhieb Köhlerloh Gemös Weidenbrunnen

Depths [cm] 20, 35, 90 50, 100 50, 100, 150,
200

50, 100, 150,
200

Size [ha] 2.50 ∼0.10 0.11 ∼0.15
Depth to ground
water [m]

About 4.00 0.77–1.90 2.52–4.53 3.00–7.00

Stand age 2009
[year]

136 73 124 53

Mean height of
tree 1992 [m]

26.70 19.93 26.95 14.90

Texture Loam to
sandy loam

Silty to
sandy loam

Silty sand to
silty loam

Silty to loamy
grus

Exposition/form West/slope East/
depression

East/slope Southwest/slope

Soil type-FAO-
classification

Haplic Podzol Fibric
Histosol

Haplic Podzol Dystric Arenosol

Number of
samples

2562 338 565 596

413C. Schilli et al. / Geoderma 158 (2010) 412–420



Author's personal copy

16 variables were available for the subsequent statistical analyses: Al,
Ba, Ca, Cl, DOC, Fe, K, Mg, Mn, Na, NH4, NO3, pH, PO4, Si and SO4.

4. Methods

Data values below detection limit were replaced by half the
detection limit. Samples with more than two missing values were
disregarded. Single missing values were replaced by the variable site
and depth specific mean. This was necessary for 8% of all samples
regarding a single and 9% regarding two variables. We replenished
more than 1% of data for PO4 (1.03%), SO4 (1.3%), Si (2.5%) and DOC
(11.4%). In total, data from 4061 samples could be used. In a next step
the data were z-normalized (mean=0, standard deviation=1) to
assign equal weight to the different variables.

Data pre-processing was performed using MS Access 2007.
Statistical analyses and diagrams were generated with the R-software
package (Version 2.6.1) and the Vegan package (Version 1.13-0) for
Isometric Feature Mapping available at http://www.r-project.org (R
Development Core Team, 2006). The data set was analyzed by
applying PCA and the Isomap.

The basic principle for either approach can be characterized as
follows: The data set forms a matrix Xnm with n observations of m
variables. Thus, every instant is located in an m dimensional space. A
distance matrix D(x) is build up by the Euclidean distances dx(i,j)
between all datapairs i,j in the space X, following Eq. (1)

dij = ‖xi−xj‖ ð1Þ

Both approaches aim at preserving as much of the variance in the
m dimensional data space as possible in a low-dimensional projection.
The projection is purely linear in case of the principal component
analysis, whereas Isomap performs a piecewise linear approximation
of a nonlinear manifold. In fact, principal component analysis can be
regarded as a specific form of Isomap, and both approaches yield
exactly the same results for a specific parameterization of the Isomap
approach. The axes of the coordinate system of the projection are
assumed to represent independent processes. Mapping single data
points on these axes gives a quantitative assessment of the effect of
that process.

4.1. Principal component analysis (PCA)

The PCA is a common mathematical approach for dimensionality
reduction aiming to characterize a high dimensional dataset by few
components (see, e.g. Legendre and Legendre, 1998) which are
independent from each other. In a mathematical sense, PCA is an
eigenvalue decomposition of the covariance matrix. Interpretation of
components is based on loadings of the single variables on the
components, that is, correlations with the respective component.

4.2. Isometric feature mapping (Isomap)

The Isomap approach, presented by Tenenbaum et al. (2000), can
be regarded as a variant of the classical multidimensional scaling of
the Euclidean distance matrix of the data. The Isomap approach
consists of three steps (Tenenbaum et al., 2000):

(1) Constructing a neighborhood graph for a defined number of
nearest neighbors (k) in D(x) using Euclidean distances;

(2) Setting up a distance matrix D(G) by calculating the shortest
path between the pairs of data points using the sum of the
smallest interpoint distances defined in Eq. (1). The smallest
interpoint distances can be calculated using Eq. (2)

gij = ∑
m

k=1

∂Xk

∂θi

∂Xk

∂θj
ð2Þ

Θ is part of X defined by the chosen k. If the chosen k is equal to
n−1, than gij=dij and Eqs. (1) and (2) would lead to the same
results. Calculating geodesic distances following Eq. (2) in Θ the
distance matrix D(G) can be constructed.

(3) Performing a singular value decomposition of the distance
matrix.

The Isomap approach performs a piecewise linear regression in a
high dimensional data space without requiring any pre-defined
mathematical structure. Thus, the Isomap approach enables to map
even high nonlinear structures in the data set.

The parameter k has to be optimized in an iterative way. High k

values will overestimate the low-dimensional manifold, whereas too
low values will lead to a loss of useful information (Gámez et al.,
2004). In contrast, nonlinear relationships can be mapped by using
rather low k values. Only then the nonlinear Isomap approach will be
clearly superior to linear methods (Tenenbaum et al., 2000; Gámez et
al., 2004; Lischeid and Bittersohl, 2008).

In contrast to PCA, performance of the Isomap approach cannot be
assessed using eigenvalues. Instead, a more universal measure is used
and applied to PCA as well. It is equal to the squared Pearson
correlation of the distance matrix of the 16-dimensional data set
compared to the distance matrix of the low-dimensional projection,
e.g., scores of the first three Isomap components. This measure will be
referred to as “explained variance” in the following. Please note that it
is related to but not equal to the eigenvalue based assessment
commonly used for PCA.

The Isomap components can be interpreted analogously to the
components of the PCA. However, as relationshipsmight be nonlinear,
the rank-based Spearman ρ correlation coefficient will be used
instead of the linear Pearson correlation coefficient. In addition,
boxplots will support component interpretations. The boxes show the
25- and 75-percentile of the analyzed data. Whiskers denote the
range, as long as it is within the 1.5 interquartile range from the box,
or the 1.5 interquartile range otherwise. The component scores are
interpreted as measures of the effects of single processes.

4.3. Loadings of residuals

Both for PCA and Isomap the components are numbered in
decreasing order according to their contribution to explaining the
total variance of the data. Consequently nonlinear relationships might
be very difficult to detect for components of higher number that
exhibit only weak correlations with single variables. Thus, in this
study loadings are analyzed based on using residuals of the respective
variables. For all components except for the first one, residuals of
linear regression of the variables with all preceding components are
related to the respective component. Linear regression does not grasp
nonlinear relationships that the Isomap approach could have
identified. However, linear regression is much more stable compared
to various nonlinear regression approaches that had been tested. As
long as the nonlinear relationships are close to monotonic relation-
ships, and a nonlinear rank-based measure of correlations like
Spearman ρ is used, the resulting error is assumed to be negligible.

5. Results and discussion

Table 2 shows the site and depth specific means. Most variables
were negatively skewed except Cl and pH, whereas normality was
rarely found. Site and depth specific differences are given in Table 2.
E.g., the Köhlerloh site exhibits very low NO3, SO4 and Al concentra-
tions, attended by enhanced Na concentration and pH in compar-
ison to the other sites. Highest DOC concentrations were measured
at the uppermost depth at Coulissenhieb and at Köhlerloh.
Trends in soil solution for different variables are known (e.g. Matzner
et al., 2004a) such as a decrease of ionic strength in soil solution
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with time. Based on this heterogenic dataset PCA and Isomap were
performed to identify the processes causing or influencing these
differences.

The performance of Isomap depends on the connectivity of the
underlying graph, which is equal to the number of links to nearest
neighbor's k. Isomap has been run with different k values (500, 1000,
2000, 2500, 3000, 3500, 4000) and yielded best results for k=3000.
Fig. 2 shows the slight superiority of Isomap (k=3000) in comparison
to PCA and Isomap (k=500). The first five components explained
more than 94% of the total variance.

Isomap was slightly superior to the linear PCA with respect to
explained variance. The Isomap dimensions were very similar to the
PCA components. In fact, the Isomap components are easier to
identify, to interpret and to assign to processes in comparison to the
linear PCA components. Thus we have focused our discussion on the
Isomap results. Further figures and analyses are based on the Isomap
(k=3000) variant.

Similarly, Lischeid and Bittersohl (2008) found that Isomap was
slightly superior to PCA when investigating stream and groundwater
quality data from the Lehstenbach catchment. In other studies
differing results were found. Isomap clearly outperformed linear
approaches in various studies (Tenenbaum et al., 2000; Gámez et al.,
2004; Mahecha et al., 2007). These differences can be explained

by varying degrees of nonlinearity in the respective data sets. De-
termining the different components via Isomap was the first step. In
the second step these components were assigned to biogeochemical
processes.

5.1. Component 1: Deposition

The first component explains almost 46% of the variance of the
data set (Fig. 2). Very high positive loadings (N0.7) were found for Al,
Ba, Mg, Mn and NO3. Loadings between 0.4 and 0.7 were calculated for
Ca, K, Cl and SO4 (Fig. 3).

Component means decreased in the long-term at Coulissenhieb
(Fig. 4) (1993–2000) and at Gemös (1996–2000) at all depths but to
different degrees. In contrast, there was no clear trend at Weiden-
brunnen and Köhlerloh. The results of Coulissenhieb and Gemös cor-
respond to the well documented decrease of atmospheric deposition
(Marschner et al., 1998; Oulehle et al., 2006; Schmid, 2008; Wu et al.,
2010). Nitrate, SO4 and Cl are mostly due to atmospheric deposition.
Furthermore most of the Mg found in the topsoil originates from
deposition (Weyer et al., 2008). Moreover, Al andMn concentration in
susceptible soils are known to be enhanced by atmospheric depo-
sition. An obvious decrease of K, Mg, Ca, SO4 and H+ concentration
was observed in the Lehstenbach catchment in bulk deposition and
throughfall from 1987 to 2001 (Matzner et al., 2004b). A corre-
sponding decline of ionic strength in acidic forest mineral soil horizon
solution is consistent with previous findings (Marschner et al., 1998;
Graf Pannatier et al., 2005; Wu et al., 2010). Thus, the first component
seems to reflect the reaction of soil solution chemistry to reduced
atmospheric deposition of the last decades.

Dissolved organic carbon is not correlated with the first compo-
nent. This is contrary to the assumption that the decreased deposition
of sulfur would increase DOCmobility because of increasing charge on
hydrophobic organic colloids. On the other hand there is an enhanced
competition between DOC and SO4 for adsorption sites with
decreasing sulfur deposition (Wu et al., 2010).

Beside temporal trends the decrease of deposition input is
reflected by a depth gradient. The uppermost soil layers sampled at
Coulissenhieb and Gemös, that is, 20 cm at Coulissenhieb and 50 cm at
Gemös, exhibit lower component scores compared to the deeper soil
layers (Fig. 5). Similar depth gradients were described for the ter-
restrial soils of the Lehstenbach catchment by Matzner et al. (2001).
Obviously, the effect of decreasing deposition is the most pronounced
in the upper soil layers. Such a depth gradient as reaction of changing
deposition was described for different forest soils (e.g. Marschner
et al., 1998; Oulehle et al., 2006).

At Weidenbrunnen no corresponding depth gradient was found.
This could be due to reduced input of deposition atWeidenbrunnen in

Table 2

Depth and site specific means of variables with less than 25% of measurements below detection limit. C=Coulissenhieb, K=Köhlerloh, G=Gemös, W=Weidenbrunnen, b.d.l.=below
detection limit.

Site Depth pH Al Ba Ca K Mg Mn Na Si Cl NO3 SO4 DOC

[cm] CaCl2 [mg/l]

C 20 3.63 3.10 0.04 2.53 1.52 0.47 0.09 1.62 5.97 1.99 18.9 15.0 24.5
35 3.88 5.43 0.05 2.60 1.12 0.58 0.11 1.79 7.45 2.25 21.6 19.9 19.5
90 4.13 5.55 0.05 1.96 1.13 0.48 0.15 1.89 5.45 2.11 19.3 23.3 4.8

K 50 4.93 0.39 b.d.l. 0.70 0.48 0.11 b.d.l. 3.36 7.73 3.05 b.d.l. 1.4 14.7
100 5.25 0.16 b.d.l. 1.05 0.49 0.27 b.d.l. 3.82 8.19 2.34 b.d.l. 2.2 6.7

G 50 4.25 5.26 0.02 0.47 0.98 0.32 0.05 1.61 6.03 1.93 1.9 29.2 6.1
100 4.22 6.44 0.02 0.55 1.58 0.31 0.15 1.55 3.93 2.68 6.5 32.3 4.5
150 4.28 5.00 0.03 0.37 1.10 0.21 0.12 1.65 2.96 1.68 2.6 28.7 2.4
200 4.22 5.02 0.04 0.57 1.01 0.34 0.11 1.93 4.32 1.87 1.6 30.3 4.6

W 50 4.13 10.27 0.14 1.15 3.82 0.53 0.24 1.12 4.73 2.08 60.9 14.8 4.8
100 4.12 9.66 0.08 1.26 1.78 0.54 0.34 1.51 3.47 2.41 52.8 16.8 3.5
150 4.05 11.08 0.06 0.99 1.41 0.47 0.24 1.36 3.41 2.88 53.3 20.0 3.5
200 4.07 9.95 0.06 0.97 1.57 0.42 0.20 1.44 2.55 3.29 49.3 18.9 5.9

Fig. 2. Comparison of the explained variance by PCA and Isomap.
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comparison to Coulissenhieb and Gemös because of lower stand age
(Table 1). Tree height at Weidenbrunnen is lower compared to the
surrounding stands supporting lower deposition influence.

The Histosol at the Köhlerloh site exhibits very low component
values and even lower component scores at greater depth (Fig. 5).
Nitrate and SO4 concentrations at Köhlerloh are very low in com-

parison to the other sites (Table 2). Here, NO3 does not reach the
detection limit in nearly 90% of the samples, whereas Cl exhibits
similar values compared to the other sites. Due to high groundwater
level at the Köhlerloh site, anoxic conditions prevail (Lischeid et al.,
2007). The low concentrations of NO3 and SO4 are ascribed to denitri-
fication and desulfurication in anaerobic conditions in the Histosol
(Matzner et al., 2001; Küsel and Alewell, 2004; Lischeid et al., 2007)
causing considerably lower ionic strength and rather high pH values
caused by proton consumption (Yu et al., 2007) and the release of Fe2+

by reduction of soil immanent iron oxides (Küsel and Alewell, 2004).
Correspondingly, pH and Fe exhibit slight negative loadings.

The differences of soil solution ionic strength between the
terrestrial soils might be additionally conditional on general varieties
in soil properties, soil moisture, variable amounts of litterfall and
uptake by roots. The impact of soil moisture on ionic strength in soils
was emphasized in numerous studies (e.g. van Hess et al., 2000; Dyer
et al., 2008; Rennert and Rinklebe, 2010). Manderscheid and Matzner
(1995) ascribed the spatial variation of soil solution chemistry at a
small scale mainly due to patterns in throughfall chemistry depending
on distance from the stems at the Coulissenhieb site. Larger scale
spatial heterogeneities in throughfall fluxes in the Lehstenbach
catchment caused by stand age, exposition and elevation are
documented but low (Matzner et al., 2001). Differences in root
uptake or throughfall may support the span of component values and
the variable specific variance.

5.2. Component 2: Acidification

The second component explains 28% of the variance. The first two
components explain more than two third of the variance of the data
set. The second component is dominated by positive loadings of Fe
and DOC and a negative loading of pH (Fig. 3). The combination of Fe
and DOC contrary to pH is a typical signature for podzolization
processes (Lundström et al., 2000a). Likewise Al is pronounced with a
correlation of−0.5 and Ca with 0.64. Highest component scores were
found at 20 cm depth, and slightly lower scores at 35 cm at
Coulissenhieb. In contrast, component scores are much lower and
usually below 0 at greater depth at all sites (Fig. 6). We allocate this
second component to soil acidification and associated impacts.

Fig. 3. Parameter loadings (Spearman ρ). Correlations of components 2–5 are calculated
for residuals. X-axis is scaled between [−1;1] for every component. Grey shading is
proportional to Spearman ρ.

Fig. 4. Scores of the first component at Coulissenhieb. The black bar represents the
mean. Upper and lower whiskers extend to the most extreme data points within the 1.5
interquartile range from the mean.

Fig. 5. Scores of the first component for different sites.
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Acidification of sandy soils under forest is frequently linked with
podzolation. The suction cups at 20 cm and 35 cm depth are installed
in the Bs-horizon and in the transition zone between the Bs- and Bw-
horizon of the Haplic Podzol at Coulissenhieb. The location in the
accumulation horizons of the Podzol is reflected by the strong positive
correlations with DOC and Fe opposed to pH. Thus, positive com-
ponent scores are mainly represented in data of the upper soil
horizons at Coulissenhieb with high DOC concentrations and low pH
(Table 2), supporting the interpretation as acid induced podzolation.

The slightly positive correlation of Si with the second component
scores may be partly ascribed to enhanced mineral weathering
because of e.g. higher mycorrhizal activity and lower pH in upper
mineral soil horizons (Lundström et al., 2000b). Differences of base
cation correlations could be explained by their varying association to
organicmaterial. Contrary toNa, the cations Ca, K andMg are primarily
bound to humic compounds in soil solution (Gustafsson et al., 2000)
explaining the different strength of correlation. Certainly the negative
correlation of Al (in opposite to Fe andDOC) is contrary to expectations
during podzolization. On the other hand, Al is rather ubiquitous in
these acidic soils. Thus no clear loading emerged for this component.

5.3. Component 3: Changing deposition chemistry

Nearly 13% of variance of the data set is explained by this
component. Calcium, Mg, Na, Cl, SO4 and pH correlates negatively
with the third component in opposite to the positive loading for NO3

(Fig. 3). Component scores show similar long-term trends and depth
gradients compared to the first component (Fig. 7).

A substantial long-term decrease of sulfur and corresponding cation
(e.g. Ca and Na) deposition but ongoing high nitrogen deposition have
been observed at many sites in Europe (e.g. Marschner et al., 1998;
Alewell et al., 2000; Oulehle et al., 2006; Schmid, 2008). The same holds
true for the Lehstenbach catchment. During the observation period we
can constitute a decrease in deposition of Ca and especially SO4, while
NO3 andKdonot clearly decrease in the Lehstenbach catchment (Fig. 8).
Additionally a decline for Cl and Mg was observed (Matzner et al.,
2004b),which corresponds tonegative loadings of the third component.

Thus, the third component seems to reflect the effects of a shift
from sulfur dominated to a more nitrogen dominated deposition on
soil solution.

Decrease of SO4 concentration in soil solution could enhance
remobilization of adsorbed ions like NO3 (Matzner et al., 2001). Graf
Pannatier et al. (2005) describe a relative enrichment of Al in soil
solution because of decreasing base cation input according to our
findings, showing slight positive Al values. In addition, negative
loading of pH and positive loading of Femight be related to decreasing
base cation input via deposition (Meesenburg et al., 1995).

The long-term increase of component values is in line with the
changing deposition chemistry that was observed at 50 cm depth at
Weidenbrunnen, indicating decreasing sulfate dominance in soil
solution. Correspondingly, the observed depth gradients are consis-
tent with a long-term shift in deposition chemistry.

5.4. Component 4: Matrix–solution interactions

The fourth component explains almost 6% of the variance of the
data set and revealed positive correlations with pH, Ba, Na, NO3, Si,
and negative correlations with NH4, SO4 and PO4 (Fig. 3). Loadings of
Si and Na give hints on feldspar weathering (e.g. Lischeid and
Bittersohl, 2008). The kinetics of feldspar weathering is very slow.
Thus soil water residence time is likely to have an effect on its imprint
on solute concentration. Soil water content and thus residence time
depends on different impacts, e.g. soil matrix effects, plant growth
period, precipitation and temperature (Robinson et al., 2008).

The positive loadings of mostly mineral-borne solutes like Si, Ba, Al
and Fe can be interpreted as the slow occurring processes of
weathering indicating longer residence time in soil (Velbel, 1993;
Lischeid et al., 2002; Lischeid and Bittersohl, 2008; Vestin et al., 2008).
The local bedrock, mainly feldspar, is naturally rich in Na and poor in
Mg, which can cause the positive Na and opposing Mg loading.
Weathering could also explain the positive loading of pH. Infiltrating
rain water decreases concentrations of different weathering products
like Si because of dilution effects (Vestin et al., 2008). For this reason

Fig. 6. Scores of the second component for different sites.

Fig. 7. Scores of the third component.

Fig. 8. Deposition in Lehstenbach catchment during the observation period.
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lower component values would be explainable by shorter water
residence time. Most of the variables with negative loadings (e.g. NH4,
PO4 and SO4) are known to be quickly adsorbed to the soil matrix.
Thus enhanced concentrations are only observed if water of lower
residence time was sampled.

Fig. 9 shows the seasonal characteristic of the fourth component.
The seasonality is comparable to that of air temperature, presumably
caused by lower soil moisture during periods of higher evapotrans-
piration. The variance of component values in single months is wide,
which possibly reflects different number and intensity of rain events in
different years. Samples at 20 and 35 cm depth exhibit the strongest
variance, probably as a result of stronger effects of temperature and
rainfall in comparison to deeper soil horizons. Low component scores
in deeper horizons may be explained by low residence time in con-
sequence of fast seepage, which was described by Bogner et al. (2008)
for the Coulissenhieb site where precipitation mainly follows pref-
erential flow pathways in the upper soil horizons down to 40 cm
depth, whereas matrix flow dominates below.

The site differences correspond to those of the first component for
the terrestrial soils. The highest component means of terrestrial soils
were found at Weidenbrunnen (Fig. 10). An explanation might be
different minerals of Gemös and the Weidenbrunnen and Coulissen-
hieb sites. The Köhlerloh site exhibits the highest component scores.
Suction cups in 50 and 100 cm depth actually sample laterally flowing
groundwater with long residence time, suiting to higher Si concen-
trations (Table 2). The depth gradient may be related to the dilution
effect of precipitation or lower residence time in the upper horizons,
leading to lower component scores.

5.5. Component 5: Decomposition

The fifth component is positively correlated with pH, Ba, K, Na,
NH4, PO4, Si and NO3, and negatively with SO4 and Fe (Fig. 3). This
component explains about 2% of the dataset's variance.

We ascribe positive correlations of Na, K, PO4 and nitrogen com-
pounds to solute release during decomposition of soil organic matter.
Low or negative correlations point to nutrient consumption, e.g., by
root uptake. The fifth component is interpreted to reflect the effect of
net decomposition, that is, solute release by decomposition minus
nutrient uptake by plants and microorganisms. Additionally sorption
of decomposition products has to be considered.

The component shows substantial differences between the sites
(Fig. 11). Outliers with very low values nearly exclusively occur at
Gemös and Coulissenhieb (not shown). While the mature stands at
Coulissenhieb and Gemös show negative component means, Weiden-
brunnen and Köhlerloh have positive component means. Influence of
tree age and crown density on decomposition (Moore, 1986) may
explain the deviating characteristic of the fifth component. Cerli et al.
(2006) have reported of acceleratedmineralization of organic matter in
younger stands. The higher the plant age the more carbon and nutrient
accumulation increases and the more organic acids can be mobilized,
resulting in decreasing pH values. That corresponds to our findings of
positive pH and negative DOC loading. To mobilize nutrients in the soil,
plants release different organic acids, and decrease the pH (Vestin et al.,
2008; Du Laing et al., 2009), documented by opposing correlation of
DOC to pH and base cations. Those organic acids may build up
complexeswith Fe, resulting in similar negative loadings of DOC and Fe.

Different nutrients like K, Mg and P are preferentially taken up by
plant roots while others, like Al and Fe are excluded (Lundström et al.,
2000b). The latters show negative loadings according to plant uptake
effects. Such an influence of uptake on base cations and other
nutrients on concentrations in soil solution is well documented (e.g.
Johnson-Maynard et al., 2005; Vestin et al., 2008). Vestin et al. (2008)
have reported increasing concentrations of DOC, SO4 and Al in soil
solution during the growing season, corresponding to the character-
istics of our fifth component.

Callesen et al. (2007) measured high amounts of leachable NO3

following soil-freezing events. They suppose, that an increased
mortality of roots and organisms and thus reduced nutrient uptake
supports the leaching. Lower component values dominate from
December to February, and higher scores from March to August at
Gemös and Weidenbrunnen (not shown). Beneath freezing/thawing
cycles drying/wetting phases can have similar effects (Borken and
Matzner, 2009). Those phases do not occur every year, which might
explain why this component does not exhibit any clear seasonality
like the fourth component. Furthermore, the available data set did not
include humus layer or E-horizon samples where these patterns
presumably are much more pronounced.

5.6. Multivariate process-solutes relationships

Variable loadings shown in Fig. 3 offer the possibility to identify
processes which dominate the concentration dynamics of single
variables. Few variables show high loadings in only one component.

Fig. 9. Scores of the fourth component (all sites and depths). Fig. 11. Scores of the fifth component for different sites.

Fig. 10. Scores of the fourth component for different sites.
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Thereby this component is a crucial one for the variable concentration
dynamics in the dataset. Other variables are obviously prone to a
variety of different processes. For example acidic deposition seems
not to be the only process influencing the SO4 concentrations and pH,
as may be expected. Instead, both variables are affected by additional
processes, e.g. matrix–solution interactions (loadings of third com-
ponent: SO4 0.55; pH −0.36). For Mn the amount of deposition is the
most crucial one. For the DOC-dynamics acidification turned out as
the most important process, actually more important than decompo-
sition. The nonlinear Isomap approach gave insight into the interplay
between different processes and solutes. Thus, the effects of different
processes on single solutes could be differentiated.

6. Conclusions

The results achieved with Isomap have slightly outperformed the
results gained with PCA as a linear approach. The higher efficiency of
Isomap which was detected in other ecological studies could be
confirmed. Moreover, Isomap is able to discriminate between
differences caused by temporally and spatially varying impact factors.
Thus, the nonlinear Isomap approach can be deemed to be applicable
to analyze large heterogeneous data sets as generated e.g. by long-
term soil monitoring. Isomap is a promising alternative to linear
approaches if explorative statistical analyses are accomplished and
nonlinearity cannot be excluded. Therefore the higher amount of
work is justified. In our study, five components explained more than
94% of the variance of the data set. Deposition is the main driver
influencing the soil solution chemistry at the studied sites. With 46%
of the first and 13% of the third component the impact of changing
deposition explains almost 60% of the data set's variance. Factors, like
redox processes at Köhlerloh, modify the strength of the influence of
deposition. Other processes like mineral weathering and decompo-
sition of organic matter could be identified and assigned to different
components. Isotope techniques should allow discriminating between
the origin of variables such as deposition, geogenic origin, and
decomposition. Moreover these techniques might be a promising way
to verify the interpretations in future.

Using the Isomap approach offers insights in the prevailing
processes; additionally the relevant variables can be identified.
Those advantages of Isomap which were also detected in other
ecological studies could be confirmed. Isomap offers a high potential
in the future and should be used in soil science when investigating
large datasets.
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