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Abstract  

Hole transporting materials based on π-conjugated organic compounds have already 

been the focus of intense research and investigation. Nevertheless, the charge transport 

mechanism occurring in such materials and its relation to the device stability in oxidizing 

atmosphere remains not fully clear. It has been demonstrated many times that the stability 

issue for p-type organic materials is one of the key features for their application in organic 

field-effect transistors. 

In a conjoint work with the Evonik Degussa Creavis, research were lead to develop a 

series of novel polymeric compounds usable as semiconducting layers of organic 

field-effect transistors (OFETs) e.g. for printed radio frequency identification tags (RFID 

Tags) being processed and working under ambient conditions. 

In this regard, arylamine-based aromatic materials such as triphenylamine- or 

carbazole-type polymers constitute ideal candidates for such applications due to their 

good environmental stability and OFET properties coupled with an easy processability of 

the polymeric materials. 

In chapter 2, a series of six main chain polytriphenylamines (PTPAs) with different alkyl 

substituants and aromatic systems will be described. Chapter 3 deals with different N-aryl 

substituted 3,6-polycarbazoles and their use as active layer in OFETs. At last, higher 

condensed aromatic systems based on the phenazine unit comprising model compounds 

as well as the corresponding polymers are presented in chapter 4. In each chapter, the 

key reactions are depicted including history, mechanism and the application for our 

approach. Additionally, a short introduction presents the state-of-the-art for the mentioned 

classes of compounds. 

All the materials synthesized during this work were intensively analysed by spectroscopic 

methods and most of them tested as semiconducting layer in OFET devices in order to 

determine the influence of certain structural factors on the intrinsic electronic properties of 

the compounds. The stability problem has been intensively addressed and discussed with 

the goal to provide a better understanding of the oxidation/degradation mechanism taking 

place in OFET devices while operating. 
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1. General Introduction 

1.1. Conjugated Polymers and Organic Electronics 

Troughout its history, mankind has always used macromolecular materials such as wood, 

leather or wool in all-day life. In the 19th century, the French pharmacist Henri Braconnot 

described pioneering work in derivatizing cellulose compounds and thus probably one of 

the earliest important study in polymer science.[ 1 ] The development of vulcanization 

procedures in the later 19th century improved the durability of the natural polymer rubber, 

signifying the first popularized semi-synthetic polymer.[ 2 ] The 20th century saw the 

emergence of new modified natural polymers and synthetic materials and the arising of 

polymer science. The first wholly synthetic polymer (or plastic), Bakelite, was introduced in 

1909.[ 3 ] Despite the advances in synthesis and characterization of polymers, an 

understanding of the macromolecular character did not take place before the 1920’s. Until 

this time, scientists thought polymers were clusters of small molecules (colloids) held 

together by intermolecular forces according to the association theory advanced by the 

chemist Thomas Graham in 1861.[4 ] In 1920 Hermann Staudinger first proposed that 

polymers consist of long chains of atoms held together by covalent bonds[5] and was 

awarded for his work with the Nobel Prize in Chemistry in 1953. Since then the polymer 

industry grew exponentially developing plastics like Nylon, polyethylene or Teflon. 

Nowadays, polymers find applications in nearly every industry field with a worldwide 

production of over 108 tones yearly. Polymers are widely used as adhesives and 

lubricants, as well as components for products ranging from childrens' toys to aircraft. 

Most of the plastic materials are known as electric insulator but this vision changed in 

1977 with Alan J. Heeger, Alan G. McDiarmid and Ideki Shirakawa.[6] These pioneers 

asserted that polyacetylene can become conductive by oxidation or reduction of the 

unsatured polymer backbone with halogen vapors (oxidative doping process). In 2000 

they were awarded with the Nobel Prize of Chemistry "for the discovery and development 

of conductive polymers". Such conducting (or semiconducting in neutral state) polymers 

are called π-conjugated polymers due to the presence of π-bonded electrons in each 

main chain atom (preferably carbon) leading to a backbone of alternating single and 

double (or triple) bonds. In the following years, a lot of other π-conjugated polymers such 

as poly(para-phenylene) (PPP), poly(para-phenylenevinylene) (PPV),[ 7 ] polyfluorene 

(PF)[8] or polythiophene (PT)[9] have been developed and investigated. 
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Figure 1.1: Examples of π-conjugated polymers. 

 

Some of these materials found applications in the field of xerography[10] and optoelectronic 

devices such as light emitting diodes (OLEDs),[11] field-effect transistors (OFETs)[12] or 

organic solar cells.[13] In the last few years, new application areas have emerged with their 

use in biosensors or as implants.[14] 

The industry has already showed a lot of interest in optoelectronic applications. OLEDs 

have been the first technology field under intense industrial R&D with prototypes 

developed by companies like CDT, Samsung, Fujitsu Siemens, Toshiba or Sony. Solar 

cell applications have also come in focus of industrial actors (e.g. Konarka Technologies) 

which invest in the development of new “low cost” photovoltaic products. One of the most 

promising markets for organic electronics is the one of intelligent labels, so-called RFID 

tags. They are considered the next generation of printed identification labels as 

replacement for the bar code. Such devices are simple passive electronic devices, 

preferably made of organic semiconducting materials, in which information can be stored 

and read out by a contactless technique. Compared to silicon, organic semiconducting 

materials present several advantages. Except the low production costs, the most 

significant one is the possibility of using printing techniques on large areas and on flexible 

substrates. Companies like Evonik Degussa and PolyIC have already heavily invested in 

the development and the prototype production of so-called printed chips.[ 15 ] The first 

products based on this technology were announced in 2007 as shown in Figure 1.2. 

 

  

 

Figure 1.2: RFID tags (from PolyIC). 
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Easy processibility and sufficiently high performances are two specifications requested for 

semiconducting materials used in this kind of applications.[ 16 ] Poly(3-alkylthiophene)s 

(P3ATs) are one promising candidate which fullfill these requirements with a hole mobility 

µp  up to 0.1 cm2·V-1·s-1, on/off ratios up to 106 and a good solubility in common organic 

solvents. Nevertheless, thiophene-based polymeric materials present several restrictions 

due to their poor stability under ambient conditions and the necessity of thermal 

post-treatments to afford the optimal performances.[17] In this view, triarylamine-based 

materials presents an alternative to P3AT because of their good performance, amorphous 

solid state structure and high stability. A wide range of triarylamine-based derivatives and 

polymers have already been developed and investigated for OLED or solar cell 

applications.[18] In 2000, Veres et al. from Avecia published the first results about main-

chain polytriphenylamines (PTPAs or PTAAs) as semiconducting (hole transporting) layer 

in OFETs.[19] 

1.2. Triphenylamines: General Aspects 

Necessary material properties like sufficient thermal stability, non-crystalline or 

amorphous morphology of thin films and electrochemical reversibility in addition to high 

electronic-grade purity constitute some of the requirements for a wide variety of 

optoelectronic materials for applications in printed electronic devices. Triarylamine 

derivatives are well known photoconducting materials with high hole mobility which have 

already been used in xerographic applications.[20] The structural unit triphenylamine (TPA), 

responsible for the photoconducting and hole transporting properties, can be incorporated 

into a broad range of small molecules (e.g. star-shaped, oligomers) and polymers (e.g. 

dendrimers, homopolymers, copolymers). Many of the resulting aromatic amines are hole 

transporting materials where the electron donating amine nitrogen atom is responsible for 

the hole transporting behavior. 

The TPA functional moiety possesses two basic properties: an easy oxidizability of the 

amine nitrogen atom and the ability to transport positive charges. The charge involved in 

the transport for these materials are radical cations which necessitate two requirements: 

the electrical or photophysical formation of the radical cation and its sufficient stability to 

undergo an infinite number of redox cycles. Under oxidative conditions, unsubstituted TPA 

moieties dimerize to tetraphenylbenzidine, commonly called triphenylamine-dimer (TPD), 

via formation of an unstable monocationic radical as depicted in Figure 1.3. 
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Figure 1.3: Dimerization of the unsubstituted TPA unit by formation of an unstable radical cation. 

 

This dimerization process is accompanied by the loss of two protons per TPD dimer.[21] 

The formed TPD dimer can more easily be oxidized than the TPA moiety and undergoes 

oxidation to give the TPD+• monocation and the TPD2+ dication species as proved by 

cyclic voltammetric studies.[ 22 ] Nevertheless, such dimerization processes can be 

suppressed in bulky, p-substituted TPA derivatives as well as in TPA oligomers. Under 

application of an electric field, the transport mechanism in such disordered organic 

systems is assumed to be a hopping process as shown in Figure 1.4 (see chapter 1.4).[23] 
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Figure 1.4: Charge transport by a hopping process under electric field for TPA-containing 

disordered materials. 

1.3. Triphenylamine-Based Materials 

The amorphous nature of the TPA-containing materials can be enhanced by the 

attachment of bulky substituents or the generation of more extended TPA oligomers via 

connection by para-linkages. Numerous TPA-based small molecules, oligomers or 

polymers have already been developed and investigated. Among them, star-shaped 

triarylamines have been receiving many attentions. The star-shaped structure leads to a 

decreased crystallization tendency due to the bulky, non-planar geometry. Shirota et al.[24] 

synthesized numerous low oxidation potential, star-shaped oligotriarylamine compounds 

with different cores (Figure 1.5). 

• • 

• 

• 

• 
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Figure 1.5: Star-shaped triphenylamines: 1,3,5-tris(diphenylamino)benzene TDAB (1) with benzene 

core, 4,4’,4’’-tris(diphenylamino)triphenylamine TDATA (2) with triphenylamine core and 

1,3,5-tris(4-diphenylaminophenyl)benzene TDAPB (3) with 1,3,5-triphenylbenzene core. 

 

These compounds were generally synthesized by Ullmann couplings starting from the 

corresponding triiodo core segments with the suitable secondary amine. In order to 

improve the thermal and optical properties, Thelakkat et al. prepared several star-shaped 

triphenylamines derivatives with a wide range of subsituents in para-positions.[25] The size 

of the π-conjugated system within the TDAB derivatives can be extended by attaching 

diarylamino substituents in the para-positions to obtain extended starbust molecules 

(Figure 1.6).[26] 

Starbust triarylamines (4 and 5) were also synthesized by Ullmann condensation of 

1,3,5-tris[(4-phenylaminophenyl)amino]benzene with the corresponding aryl iodide and did 

not exhibit any crystallinity at all, in contrary to the all-phenyl substituated compounds.[27] 

These star-shaped molecules were tested as hole transport layer in electronic devices 

and presented appreciable properties in OLEDs or solar cells.[28] 
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Figure 1.6: Starburst triarylamine derivatives according to Thelakkat et al.
[25,26]
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Spiro derivatives in which spiro cores are substituted with TPA moieties present an 

alternative to obtain bulky, amorphous compounds (Figure 1.7).[29] 
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Figure 1.7: Spiro triphenylamine compounds. 

 

Nevertheless, irrespectively to spiro structure, a lot of these derivatives crystallize 

indicating the possibility of closely packed ensembles. The family of compounds 6 and 7 

were prepared from a tetra-halogenated core (e.g. tetrakis(4-iodophenyl)methane for 6 

and tetrabromo-9,9’-spirobifluorene for 7) and the corresponding diphenylamine by 

palladium-catalyzed Buchwald-Hartwig amination or copper-catalyzed Ullmann 

condensation depending on the substituents. 

In contrast to star-shaped compounds, linear oligomers (8) show a very poor solubility in 

common solvents like THF and chloroform due to their high crystallization tendency. 

Strohriegel et al. reported the synthesis and cyclic voltametric study of oligomeric TPAs up 

to tetramers (Figure 1.8).[30] 

 

N
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8  

 

Figure 1.8: Linear triphenylamine tetramer prepared by Strohriegel et al.
[30] 

 

The oligomer 8 is prepared by coupling of a lithiated secondary amine (here 

N,N’-diphenyl-1,4-phenylenediamine) with 4-iodotriphenylamine according to a procedure 

by Neuenhoffer et al.[31] An attempt to prepare PTPA by this method only resulted in an 
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poorly soluble and non-processable mixture of oligomers and polymers. Later, Tokito et al. 

synthesized well defined soluble oligomers up to pentamers by Ullmann coupling (Figure 

1.9).[32] 
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Figure 1.9: Soluble linear triphenylamine oligomers prepared by Tokito et al.
[32]

 

 

Recent developments to extended oligotriphenylamines led to dendridic structures 

(dendrimers and hyperbranched polymers) which represent a new class of highly 

branched compounds with a multitude of end-groups (Figure 1.10).[33] 
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Figure 1.10: Dendritic and hyperbranched oligotriphenylamines. 

 

Tanaka et al. reported an hyperbranched polytriphenylamine with triphenylamine units as 

core synthesized by nickel-catalyzed Grignard coupling of monometalated tribromo 

monomers to afford a polymer with an assumed degree of polymerization of 16 repeat 

units.[34] As the Grignard procedure was not satisfactory due to the generation of large 

amounts of cross-linked insoluble products, Wang et al. used a palladium-catalyzed 

Negeshi coupling of the corresponding chlorozinc derivative to obtain a fully soluble, 

branched polymer 15 (Figure 1.11).[35] 
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Figure 1.11: Hyperbranched polytriphenylamine according to Wang et al.
[35]
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Polymers with side-chain TPA moieties have also been widely investigated over the past 

few years. Stolka et al. reported the first synthesis and study of such side chain 

triphenylamine polymers (16) derived from the class of poly(methyl methacrylate)s 

(PMMA). As shown in Figure 1.12, the polymers carry a substituted aromatic amine in the 

side chain and were obtained by free radical polymerization.[36] 
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Figure 1.12: PMMA derivatives carrying TPA derivatives pending units or poly(triphenylamine 

methacrylate). 

 

The materials exhibited a similar to higher hole transport mobility than that of the widely 

used poly(N-vinylcarbazole) (PVK) as well as a high photoconductivity in the UV region. 

Other polymers, 17 and 18, have been developed by Sato et al. for photorefractive 

applications.[37] These materials were also reported as hole transporting layer in OLEDs, 

in combination with Alq3 as green triplet emitter.[38] Bellmann et al. described the anionic 

polymerization to a series of low molecular weight side chain polymers (Mn < 104 g·mol-1) 

from vinyl monomers with substituted TPD pending units (Figure 1.13) which were tested 

as hole transporting and injecting layer in OLEDs.[39] 
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Figure 1.13: Vinyl polymers with substituted TPD side groups. 
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Bacher et al. synthesized and characterized photocrosslinkable hole conducting TPA or 

TPD substituted polystyrenes.[40] The monomers were synthesized in standard free radical 

polymerization protocols with α,α’-azo-bis(isobutyronitrile) (AIBN) as initiator to afford the 

materials depicted in Figure 1.14. 
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Figure 1.14: Photocrosslinkable polystyrene with TPA or TPD derivatives as pending unit according 

to Bacher et al.
[40] 

 

Many polymers with TPA units in the backbone have been developed for applications in 

optoelectronic devices. Main chain TPA polymers with ether “spacers” of appreciable 

molecular weight (Mn > 104 g·mol-1) could be afforded by Ullmann coupling of 

bis(secondary amines) and aromatic diiodides involving phase transfer catalysis and 

dichlorobenzene as solvent (Figure 1.15).[41] 
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Figure 1.15: Main chain polytriarylamines with ether spacers according to Thelakkat et al.
[41]
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The polymers 25 and 26 present an interesting amorphous behavior, electrochemical 

stability as well as solubility in common solvents and can be efficiently applied as hole 

injecting layer in multilayer OLEDs.[42] Triarylamine-based polymers can also be prepared 

by palladium-catalyzed amination of aryl halides. This method was independently 

developed by Hartwig[43] and Buchwald[44] in the early 90’s to effectively synthesize tertiary 

aromatic amines from primary or secondary amines. Problems arising by the transfer of 

this synthetic procedure to polymerization reactions (phosphorous moities from the 

ligands incorporated into the polymer main chain, dehydrohalogenation of the aryl halide, 

or cyclizations as side reaction) have been overcome by Goodson et al.[45] With the help of 

more suitable phosphine ligands and starting from “oligomeric” monomers, high molecular 

weight polymers (Mn > 104 g·mol-1) as depicted in Figure 1.16 could be obtained. 
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Figure 1.16: Main chain polytriarylamines synthesized by palladium catalyzed Buchwald-Hartwig 

amination reaction according to Goodson et al.
[45] 

 

Triphenylamine units were also incorporated in “classical” emissive polymers like 

poly(para-phenylenevinylene) (30, 31)[46] or poly(9,9-dialkylfluorene) (32-34)[47] in order to 

improve their hole injection and transport properties (Figure 1.17). 
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Figure 1.17: Alternating copolymers containing TPA moieties. 
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Figure 1.18: Alternating copolymers with TPA and heterocyclic units. 

 

As depicted in Figure 1.18, several alternating copolymers containing heterocyclic 

functional monomers such as oxadiazole (35),[48] benzoxazole/benzothiazole (36)[49] or 
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quinoline (37)[50] units have been developed due to their bipolar nature (supporting both 

hole and electron transport). 
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Figure 1.19: Main chain linear polytriarylamines via electrochemical polymerization according to 

Lambert et al.
[52]

 

 

The first elaboration of triphenylamine dimers and oligomers resulted from an 

electrochemical oxidation of suitable triphenylamine monomers.[21] In 2000 Petr et al. 

developed a procedure for the preparation of polytriarylamines by electrochemical 

oxidation of triphenylamine with Bu4NPF6 as electrolyte in a toluene/acetonitrile mixture 

resulting in a strongly cross-linked, insoluble polymer.[ 51 ] In 2003, Lambert et al. 

electrochemically synthesized a linear TPA-type main chain polymer from a “dimeric” 

monomer containing two acetylene or diacetylene bridged TPA units (Figure 1.19).[52] The 

polymerization reaction to linear polymers was possible due to the high reactivity of the 

radical cation at the end of the growing polymer chain. 

 

NN

nn

40 41  

 

Figure 1.20: Main chain, polymeric triphenylamines PTPA1 (40) and PTPA2 (41) according to 

Veres et al.
[19] 

 

In 2002 Veres et al. reported the first main chain, polymeric triphenylamine (PTPAs) as 

semiconducting material for solution-processed OFETs.[19] Their polymers were 

synthesized by reductive aryl-aryl coupling of dichloro-functionalized monomers in 

presence of a nickel chloride/zinc catalytic system. The functionalized monomers resulted 

from a one-pot Ullmann coupling of 1-chloro-4-iodobenzene with the suitable aniline 

derivative. The PTPAs 40 and 41 prepared according to this procedure exhibited a 
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molecular weight Mn around 3000 g·mol-1 with a polydispersity PD between 1.5 and 1.9 

after soxhlet extraction to remove low molecular weight oligomers. In this study, it was 

observed that only the high molecular weight fractions lead to high OFET performance. It 

was also determined that chlorine atoms remaining at the ends of the polymer chains lead 

to lower hole mobilities. In order to remove these unwanted chloro-end groups, 

chlorobenzene was used as an end-capping reagent. 

1.4. Charge Transport in Organic Semiconductors 

1.4.1. Charge Carriers: Solitons and Polarons 

During the charge transport in an organic, semiconducting material, the individual 

molecules form excited states. Contrary to inorganic semiconductors, the excited states of 

organic semiconductors are much more localized. The charge carriers involved in the 

charge transport in conjugated organic materials are polarons, bipolarons, or solitons. 

These “quasi-particles”[53 ] can move along the π-bonds as well as between adjacent 

macromolecules.[54] When an electron is added to or removed from a neutral chain, it 

causes the chain to deform, creating a characteristic pattern of bond deformation. The 

formed charge plus the deformation pattern constitute a polaron. Along with the chain 

deformation, there is a characteristic change of the energy level structure: a level is pulled 

out of the valence band into the gap and another is pulled out of the conduction band 

(Figure 1.21). Polarons can have a charge +e (hole polaron P+) or a charge -e (electron 

polaron P-) with a spin ½. 

A bipolaron is formed by the interaction of two polarons of the same charge. They are 

spinless, doubly charged carriers (+2e for positive bipolaron BP2+ and -2e for negative 

bipolaron BP2-). If more electrons are put on or removed from a polymer chain, larger 

energy bands can be generated within the band gap. 
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Figure 1.21: Energy levels of non-degenerate conjugated polymers: neutral polymer, a positive and 

negative polaron, and a positive and negative bipolaron. 
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Polarons and bipolarons described above can be formed in so-called “non-degenerated 

ground state” polymers. In the case of “degenerated ground state polymers” such as 

polyacetylene, the carriers involved are solitons. Their can move along the polymer chain 

with their energy level in the middle of the band gap. Neutral solitons have a spin ±½; 

charged solitons do not have a spin. 

1.4.2. Electrical Conductivity and Charge Carrier Mobility 

The electrical conductivity σ is determined by the sum of the products of electron/hole 

carrier mobilities µe / µp and carrier concentrations (n electron, p hole): 

 Eq. 1.1 σ = e n µe + e p µp  

Electrons or holes injected into a conjugated semiconducting material result either in 

positively or negatively charged polarons/bipolarons which can move. 

 

Semiconductor µe [cm
2
·V

-1
·s

-1
] µp [cm

2
·V

-1
·s

-1
] 

Single-crystalline silicon 1 500 480 

Hydrogenated amorphous silicon 0.11 < 0.1 

Tetracene ≈ 2 ≈ 2 

 10 000 
[a,c]

 100 000 
[a,c]

 

Pentacene 1.7 2.7 

 10 000 
[a,c]

 100 000 
[a,c]

 

α-Sexithiophene 0.7 1.1 

 ≈ 200 
[b]

 ≈ 200 
[b]

 

Regioregular poly(3-hexylthiophene) - 0.1 

Perfluorinated copper phthalocyanine 1.7 - 

Perylene 5.5 0.4 

Fullerene C60 2.1 
[c]
 1.8 

[c]
 

[a] At 1.7 K; [b] At 100 K; [c] Superconductive below a certain critical temperature. 

 

Table 1.1: Mobilities of electrons µe and holes µp in typical inorganic and organic semiconductors at 

room temperature unless otherwise indicated.
[55]

 

 

The charge carrier mobility µ is one of the central parameters for the charge transport in 

semiconducting materials. It gives a measure how easy electrons or holes drift through a 

semiconductor in response to an electric field (Table 1.1). Although charge carrier 

mobilities in single-crystalline silicon are much larger, for practical applications a mobility 

of approx. 1 cm2·V-1·s-1 (as found in amorphous silicon) remains the benchmark.[55] 

1.4.3. Charge Transport Mechanism in Polymers 

Many conjugated, organic materials are intrinsically semiconducting materials. They are 

able to transport charges generated by light, injected by electrodes, or due to chemical 
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doping. The structure of conjugated, organic materials strongly differs from the 

three-dimensional crystal structure of most inorganic semiconductors, for example silicon 

(Si) or germanium (Ge) crystals, which are characterized by a long regular order and 

strongly bonded atoms. This results in long-range delocalized energy bands (valence 

band VB and conduction band CB), separated by a ”forbidden” energy band gap Eg. 

Charge carriers added to the semiconductor are strongly delocalized and can move in 

these energy bands with a relatively large mean free path (depicted as the straight line in 

Figure 1.22,a). The limiting factor for this band transport is the scattering of the carriers at 

thermal lattice vibrations, i.e. phonons which disrupt the crystal symmetry (Figure 

1.22,a).[56] The mobility for band transport increases with decreasing temperature. 
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Vibration

Electron Localized 
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Figure 1.22: Charge transport mechanisms in solids: a) Band transport and b) Hopping transport.
[56] 

 

On the other hand, in most conjugated, organic materials the molecules are bonded by 

weak van der Waals (or intramolecular) forces resulting e.g. from the hydrogen atom 

interactions. They typically exhibit narrow energy bands, including the highest occupied 

molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), with a 

wide energy band gap. The charge transport mechanism in such organic semiconductors 

is connected to the degree of disorder in the material. Due to the complexity of the organic 

semiconducting materials, it was still not possible to develop a closed theory of charge 

transport. Several models of charge transport depending on the molecular structure and, 

hence, on the structural order of the materials have been developed, as the polaron model 

for organic single crystals[57 ] or the multiple trapping and temperature release (MTR) 

model[58] and the grain boundary (BG) model[59] for polycrystalline organic semiconductors. 

Because of their disorder, semiconducting polymers can not be simply regarded as 

possessing two delocalized energy bands separated by an energy gap. Bässler proposed 

a model based on the Miller-Abraham hopping theory[ 60 ] assuming that the charge 

transporting sites, which are the segments of the main chain polymer, are subject to a 
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Gaussian distribution of energies (Figure 1.23), implying that all states are localized.[61] 

Due to the observation of a Gaussian shape in the absorption spectra of such polymers, 

the shape of the density of states (DOS) is suggested to be Gaussian. The charge carriers 

are believed to move by hopping (phonon-assisted tunneling) on and between the chains. 

If the carrier is localized due to defects, disorder or selflocalization, e.g. in the case of 

polarons, the lattice vibrations are essential for a carrier to move from one site to another 

(Figure 1.22,b). For hopping transport the mobility increases with increasing temperature. 

 

Broken Conjugation

Localized Transport Site

Charge Carrier

a) b)

 

 

Figure 1.23: (a) Polymer chains broken up in conjugated segments (charge transport sites) 

between which the charge carriers hop. (b) A representation of the density of states approximated 

by a Gaussian distribution for the HOMO and LUMO levels.
[61] 

 

For the description of the temperature and gate voltage dependencies of organic 

field-effect transistors, Vissenberg and Matters[62] adapted a percolation model based on 

variable range hopping in an exponential density of states described by Monroe for 

inorganic semiconductors.[63] 

1.5. Organic Field-Effect Transistors (OFETs) 

1.5.1. Basic OFET Architectures 

Field-effect transistors based on organic semiconducting materials are in most of the 

cases thin film transistors (TFTs). They can be build in two main types of device 

architectures: in top-gate or bottom-gate geometry as depicted in Figure 1.24.[64] In the 

top-gate configuration, the source and drain electrodes are deposited on a PET or glass 

substrate. The semiconducting layer is then generated on the top of the electrodes and 

separated from the gate electrode by an insulating layer (Figure 1.24,a). In the 
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bottom-gate configuration, the gate electrode is deposed directly on the gate and 

separated from the semiconducting film by a dielectric layer. Here, two different 

configurations are suitable: bottom-gate/bottom-contact where the source and drain 

electrodes are situated directly on the dielectric with the semiconductor on top, or the 

bottom-gate/top-contact where the semiconductor is deposited directly on the insulator 

with the source and drain electrodes on top (Figure 1.24,b). 

 

 

 

Figure 1.24: Architecture of an OFET in a) top-gate configuration and b) 

bottom-gate/bottom-contact configuration (left) or bottom-gate/top-contact configuration (right) with: 

substrate (black), source and drain electrodes (grey), semiconductor (red), insulator (blue) and 

gate electrode (white). 

1.5.2. OFET Principle 

The field-effect transistor FET (or thin film transistor TFT) controls the flow of electrons 

from the source S to drain D by affecting the size and shape of a "conductive channel" 

created and influenced by the voltage (or lack of voltage) VG applied across the gate G 

and source S terminals. (Figure 1.25) This conductive channel is the "stream" through 

which charge carriers flow from source S to drain D. When a negative gate voltage VG is 

applied, positive charges are generated at the semiconductor interface adjacent to the 

gate dielectric (a p-type conducting channel is formed). Charges carriers can be then 

extracted by the electrodes by applying a voltage VD between drain and source. Such 

organic semiconductors with ability to conduct only positive charge carriers are said to be 

p-type semiconductors. On the other hand, when a positive voltage is applied to the gate 

negative charges are generated at the semiconductor interface adjacent to the gate 

dielectric (a n-type conducting channel is formed). Negative charges (electrons) can then 

be injected and extracted by the electrodes by applying a voltage VD between drain D and 

source S. Such organic semiconductors with ability to conduct only negative charge 
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carriers are said to be n-type semiconductors. A third type of transistor, called ambipolar, 

can transport both positive and negative charge carriers (hole and electrons). 

 

 

Figure 1.25: OFET principle with ID drain-to-source current, VD drain-voltage, IG gate-to-source 

current, VG gate voltage, W channel width, L channel length, S source D drain and G gate. 

1.5.3. OFET Characteristics: Output and Transfer 

The output and transfer characteristics are the two typical measures used in the 

characterization of field-effect transistors. They allow to determine the FET parameters of 

the devices described below. The output characteristic is obtained by measuring the 

drain-to-source current ID during drain-voltage VD sweeps at various constant gate 

voltages VG. In the transfer characteristics the drain-to-source current ID is measured by 

applying various constant drain-voltages VD and sweeping the gate-voltage VG. Figure 

1.26 depicts a typical set of output and transfer curves. 
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Figure 1.26: Typical set of curves for a) output characteristics and b) transfer characteristics 

(semilogarithmic plot) of an organic field-effect transistor with drain-to-source current ID, drain 

voltage VD, and gate voltages VG. 
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1.5.4. OFET Model and Field-Effect Mobility 

In order to describe theoretically the current-voltage characteristics of a field-effect 

transistor Horowitz et al. proposed a model[65] which will be only roughly described here. 

From the output characteristics two different regimes can be determined: the linear 

domain in which the drain-to-source current ID increases proportionally to the drain-voltage 

VD and the saturation domain in which the drain-to-source current ID stays constant as 

shown in Figure 1.27. 
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Figure 1.27: Linear and saturation domains in output characteristics. 

 

In the linear regime, the source-to-drain current ID,lin for VD < VG can be described 

according to: 

Eq. 1.2 ( ) 







−−=

2

V
VVV

L

CµW
I

2
D

D0G
ilin,FET

lin,D  

where ID,lin the source-to-drain current in the linear regime, W the channel width, L the 

channel length, µFET,lin the field-effect mobility in the linear regime, Ci the insulator 

capacitance per unit area, VG the gate voltage, VD the drain voltage and V0 the drain 

voltage for VG = 0 V. 

In the saturation regime, the source-to-drain current ID,sat which stays constant for VD > VG, 

can be described by: 

Eq. 1.3 ( )20G
isat,FET

sat,D VV
L2

CµW
I −=  

where ID,sat the source-to-drain current in the saturation regime and µFET,sat the field-effect 

mobility in the saturation regime. 

The charge carrier density in a FET is distributed non-uniformly and is decreasing from 

the semiconductor/insulator (S/I) interface to the bulk. Therefore, the field-effect mobility in 

an OFET has not the same value for all regions and charge carriers. The major part of the 
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charge carriers is, however, located near the S/I interface and has nearly the same 

mobility in this region, but the mobility still depends on the applied gate-voltage VG. 

Using the equation 1.4, the field-effect mobility of an OFET in the linear regime (VD < VG) 

can be calculated by: 

Eq. 1.4 

constDVG

D

Di

lin,FET
V

I

VWC

L
µ

=









∂

∂
=  

In the same way, using the equation 1.5, the field-effect mobility of an OFET in the 

saturation regime (VD > VG) can be calculated as: 

Eq. 1.5 
i

2

constDV
G

sat,D

sat,FET
WC

L2

V

I
µ

=















∂

∂
=  

It is to notice that the equations 1.4 and 1.5 have been derived under the assumption of a 

constant mobility. But in organic semiconductors, due to the significant dependence of the 

mobility on the gate voltage and the temperature, these equations could only be used to 

afford an approximate value of the mobility. Moreover, the influence of contact resistance 

is neglected. For further enhancement of this method, Horowitz et al. proposed an 

improved model for the determination of the field effect mobility considering the influence 

of the temperature and the gate voltage.[66] 

The mobilities measured within this study were the mobilities µFET,sat from the saturation 

domain which gave the best results and allowed a direct comparison of different devices 

made of different semiconducting materials. 

1.5.5. OFET Parameters: On/Off Ratio, Hysteresis and Turn-On Voltage 

The three parameters on/off ratio, hysteresis and turn-on voltage can be graphically 

described with the transfer characteristics curve as shown in Figure 1.28. 
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Figure 1.28: Transfer characteristics of an OFET. 
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The on/off ratio is the ratio of the source-to-drain current in the on-state ID,on (high VD and 

high VG) to the source-to-drain current in the on-state ID,off (high VD an VG = 0 V). Well 

performing devices should exhibit on/off-current ratios in the order of 106. 

The hysteresis represents the difference of source-to-drain current ID between forward 

and backward sweeps. A big hysteresis is a hint for impurities or instability of the material. 

In this regard, an hysteresis as small as possible is always desired. 

The turn-on voltage Von is the gate-voltage, at which no band-bending in the 

semiconductive layer is observed (flat-band condition). In general, it is the first gate 

voltage at which the conducting channel is generated and the charge carriers start to flow 

from the source to the drain electrodes. Below Von no gate-voltage dependence to source-

to-drain current ID is observable, while ID increases with VG above Von. In an ideal 

semiconductor, where no fixed (or trapped) charges are present neither in the 

semiconductor nor in the dielectric layer, Von should be zero. The turn-on voltage of an 

OFET is closely related to localised (or trapped) charges at the semiconductor/dielectric 

interface. Degradation processes, such as doping under ambient conditions, where the 

number of these charge traps changes, can generate shifts of Von. 

1.6. Aim and Scope 

Inspired by the work of the Avecia group, a couple of triarylamine-based materials have 

been synthesized within this study. Different polymers as well as small molecule model 

compounds were investigated in order to determine the impact of several structural factors 

on the properties of the materials used as active layers in OFETs. In the second chapter, 

the synthesis of main-chain triphenylamine-based polymers with different alkyl 

substituents as well as different aromatic systems within the backbone was described. 

The influence of the structural modifications on the processability has been investigated 

as well as the optical properties of the polymers. In the chapter 3, investigations of 

polytriarylamines with carbazole building block are reported. N-aryl substituted 

polycarbazoles were synthesized and investigated. Chapter 4 introduces small molecules 

and polymers based on the 5,10-diphenylphenazine unit. The model compounds have 

been synthesized to optimize the synthetic procedures and to run first device tests. A 

series of corresponding copolymers have been prepared to determine the influence of an 

increased number of triarylamine units within the materials. 
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Figure 1.29: Functional moieties of the synthesized materials. 

 

All derivatives synthesized for this study have been characterized by NMR and mass 

spectroscopy. Additionally, UV-Vis and photoluminescence (PL) as well as OFET 

investigations have been carried out for the semiconducting materials. All results are 

discussed in details and summarized at the end of each chapter. 
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2. Polytriphenylamine-Type Materials 

2.1. Introduction 

The synthesis of compounds containing N-aryl moieties has recently met with a great deal 

of interest due to their importance in diverse fields including natural products,[ 67 ] 

photography,[ 68 ] and electronic materials.[ 69 ] Among them, polytriphenylamine-type 

materials (Figure 2.1) have gained many attention from chemists and physicists. Their 

properties as organic hole transporting materials made them a research target towards 

OLED[70] or solar cell[71] devices or organic field-effect transistors.[16,19] 
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Figure 2.1: General chemical structure of polytriphenylamine-type materials. 

 

The synthesis of such materials commonly occurs in two major steps. First, functionalized 

monomers are obtained by amination reaction of an aryl halide compound with an amine 

(Figure 2.2). The functionalized monomer can then polymerize in an aryl-aryl coupling 

reaction. 
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Figure 2.2: Synthesis of polytriphenylamine-type materials. 

2.2. Synthesis 

2.2.1. Monomer Synthesis 

The amination reaction of aryl-halides according to Buchwald and Hartwig will be now 

presented in detail as well as the advantages (and disadvantages) of this amination 

reaction compared to other procedures. The reaction mechanism and the role of the 
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catalytic system will also be described. Afterwards, the synthesis and structure 

investigation of our triphenylamine-based monomeric species will be outlined. 

2.2.1.1. The Buchwald-Hartwig Amination Reaction 

Despite the “simplicity” of the triarylamine moiety, the synthesis of these compounds is 

often difficult. Synthetic procedures involving nitration and reduction steps are 

incompatible with many functional groups and often require protection and deprotection 

steps. Reductive aminations, which involve formation of an imine from an arylamine and 

subsequent reduction of the imine, are often multiplestep procedures and require a 

preformed carbon-nitrogen (C-N) bond, an excess of the amine, and sluggish 

reductions.[72] 

One of the most widely used methods for the synthesis of triarylamines is the 

Ullmann-type condensation, in which a diarylamine is condensed with an aryl halide in the 

presence of a base and a copper catalyst (Figure 2.3).[73] 

 

+ NHNX
Cu, Base

X = Cl, Br, I  

 

Figure 2.3: Amination of aryl halides according to Ullman.
[73]

 

 

Traditionally, this method has been plagued by the requirement of stoichiometric amounts 

of copper compounds and harsh reaction conditions (e.g. high temperatures) while often 

giving diarylation side products, providing poor yields and being substrate-specific. 

Improved reaction conditions have been developed to circumvent some of these problems. 

For example, it has been determined that the addition of crown ethers as phase-transfer 

catalyst allows milder reaction conditions. Recently, 1,10-phenanthroline has been 

employed to coordinate the copper, enabling lower temperatures and shorter reaction 

times. These catalytic systems also allow the twofold coupling of anilines with two 

equivalents of an aryl halide to form a symmetric triarylamine, a process which is difficult 

under traditional Ullmann conditions. Copper-mediated reactions derived from the Ullman 

reaction for C-O, C-S or C-N bond formations are now also subject of increasing 

interest.[74] 

In the early 1980’s, Kosugi et al. reported the coupling of electron-neutral aryl bromides 

with tin amides in presence of a palladium catalyst containing a sterically hindered 

aromatic phosphine ligand as depicted in Figure 2.4.[75] 
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Figure 2.4: C-N bond formation according to Kosugi et al.
[75] 

 

The scope of this reaction appeared to be limited to dialkylamides and electron-neutral 

aryl halides. The use of aryl halides with additional nitro, acyl, methoxy, and 

dimethylamino substituents gave poor yields upon palladium-catalyzed reaction with 

tributyltin diethylamide. Furthermore, aryl bromides were the only aryl halides that 

provided any reaction product. However, this prior work demonstrated that the 

carbon-nitrogen bond formation could also be catalyzed by palladium complexes. 

Palladium-catalyzed coupling chemistry has proven to be a powerful method for the 

formation of new carbon-carbon (C-C) bonds at aryl halides or triflates by replacement of 

the aryl halogen or pseudo-halogen with a carbon nucleophile.[76] A variety of main group 

and transition metal reagents such as tin and boron compounds but also aluminum, zinc, 

magnesium, and silicon reagents, are used as carbon nucleophiles. Nickel and palladium 

complexes are now the preferred catalysts in these cross-coupling reactions. 

In the late 1990’s, the groups of Buchwald[44] and Hartwig[43] inspired by the work of 

Kosugi et al. developed a new tin-free method to produce a carbon-nitrogen bond under 

mild conditions by reaction of an amine and a aryl halide in presence of a palladium 

catalyst, phosphine ligands and a strong base in an aromatic solvent (Figure 2.5). 
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Figure 2.5: General Buchwald-Hartwig amination reaction with catalyst (e.g. Pd2(dba)3, Pd(dba)2 or 

Pd(OAc)2), ligand (e.g. P(o-tolyl)3, PPh3, P(t-Bu)3, ±BINAP, DPPF or JohnPhos), base (NaO-t-Bu or 

LiN(SiMe3)2) and aromatic solvent (e.g. benzene, toluene or xylene). 

 

The first synthetic attempt published concurrently by Buchwald and Hartwig in 1995 

showed that amines could react with an aryl bromide in the presence of an alkoxide or 

silylamide base (e.g. NaO-t-Bu or LiN(SiMe3)2) with the catalyst used by Kosugi et al. 

Many catalytic systems (Figure 2.5) have now been efficiently applied and allow the 

reaction of various amine species (cyclic secondary, acyclic secondary, aliphatic primary, 

aromatic amine) and aryl “halide” compounds (bromides, iodides, chlorides, triflates and 

sulfonates). The mechanism of the Buchwald-Hartwig amination is very similar to aryl-aryl 

coupling reactions such as Miyaura-Suzuki, Stille or Negeshi-type reaction (Figure 2.6). 
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Figure 2.6: General mechanism of the Buchwald-Hartwig amination. 

 

At first, the formation of the palladium(II) species B takes place by oxidative addition of the 

aryl halide (or triflates) on the palladium(0) complex A. The palladium(II) complex B can 

further react in two pathways: coordination of the amine to the intermediate C followed by 

deprotonation to afford the palladium(II) complex E or formation of E via the nucleophile 

complex D.[77] At least, reductive elimination of the C-N coupled compound leads to the 

regeneration of the catalyst. 

However, the palladium(II) complex E can undergo a side reaction where a reduction of 

the aryl halide to the corresponding aromatic hydrocarbon is observed (Figure 2.7).[78] 
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Figure 2.7: Reductive elimination reaction mechanism as side reaction in the catalytic cycle of the 

Buchwald-Hartwig reaction. 

 

Hereby, in a first step, a slow reversible β-H elimination at the palladium(II) complex E 

takes place and leads to the palladium(II)-imino complex F. Through a fast reductive 

elimination, the dehalogenated arene is formed and the catalyst regenerated. Other side 

reactions, such as epimerization of α-chiral amine (Figure 2.8) lead to a reduction of the 

stereospecificity and the enantiomeric excess. However, this side reaction can be avoided 

by an appropriate ligand design.[79] 
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Figure 2.8: Epimerisation of α-chiral amine substrates. 

 

As already mentioned, the ligand at the metal center and the amine substrate play a 

crucial role regarding the scope, the selectivity and the yield of the amination reaction. 

The groups of Buchwald[44] and Hartwig[43] reported in 1995 a very efficient catalytic 

system based on tris(dibenzylideneacetone)dipalladium(0) (Pd2(dba)3) and 

tri(ortho-tolyl)phosphine (P(o-tolyl)3). This catalytic system revealed to be efficient for 

intermolecular aminations of a large range of aryl halides with secondary amines, and also 

for electron-poor aryl halides with primary amines. However, for primary amines and 

electron-neutral aryl halides, only poor yield of the expected products were obtained from 

the reaction. Arene reduction as side reaction is favored here. The catalytic system can be 

also applied to an intramolecular amination of aryl halides towards nitrogen-containing 

heterocycles (Figure 2.9). For this kind of reactions, Pd(PPh3)4 in presence of a mixture 

NaO-t-Bu/K2CO3 appeared to be an even more efficient catalystsystem.[80] 
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n

N
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Figure 2.9: Intramolecular Buchwald-Hartwig amination with Pd(PPh3)4 as catalyst and 

NaO-t-Bu/K2CO3 as base in toluene.
[80]

 

 

In order to broaden the scope of the amination reactions aryl halides and amines, more 

effective, bidentate chelate ligands like 1,1’-bis(diphenylphosphino)ferrocene (DPPF) and 

2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (±BINAP) were developed. This kind of 

ligands appeared to be more efficient than P(o-tolyl)3 for primary alkylamines, cyclic 

secondary amines or anilines due to the low amount of arene byproducts formed during 

the reaction. For these bidentate chelate ligands, the regeneration to the palladium(II) 

complex E is faster than the reductive elimination towards the palladium(0) complex A 

during the β-H elimination (Figure 2.10). For the coupling of electron-neutral, hindered aryl 

halides with primary amines in presence of DPPF, the formation of diarylation products 
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can occur. Nevertheless, this can be easily avoided by an excess of amine in the reaction 

mixture. 
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Figure 2.10: β-H elimination reaction mechanism for chelating ligands (e.g. DPPF, ±BINAP) with 

formation of palladium(II)-imine complex G. 

 

Another advantage of such bidentate chelate ligands is the opportunity to use a wide 

range of aryl substrates such as triflates or halides on a solid support.[81] 

However, the benefit associated with the use of bidentate ligands should not distract from 

the importance of the monodentate phosphine ligands in Buchwald-Hartwig-type C-N 

coupling. In this view, bulky electron-rich phosphine ligands are the most efficient ligands. 

Nishiyama et al. from Tosoh Corp. reported in 1998 a catalytic system based on 

tri(tert-butyl)phosphine (P(t-Bu)3) as ligand for the preparation of triphenylamines through 

N-arylation of diarylamines (Figure 2.11) which provided excellent yields compared to 

systems based on ±BINAP or P(o-tolyl)3.
[82] 
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Pd(OAc)2 (0.025 mol% Pd)
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+
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Figure 2.11: Generation of triarylamine according to Nishiyama et al.
[82]

 

 

Due to the poor stability of the P(t-Bu)3 ligand against air, the use of air-stable dimeric 

palladium(I) complex Pd(P(t-Bu)3)2 presents a good alternative and even gives slightly 

better yields.[83] 

Buchwald and co-workers have also developed palladium catalysts based on bulky, 

electron-rich biarylphosphine ligands (Figure 2.12) which are also efficient in Suzuki-type 

(G) (E) 
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couplings of aryl halides and aryl boronic esters.[84] These catalysts couple a wide range 

of aryl chlorides, including electron-rich ones, with secondary and primary alkyl amines 

and anilines. 
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Figure 2.12: Bulky, electron-rich biarylphosphine ligands 

 

As shown in Figure 2.14, the mechanism of the oxidative addition step can differ 

depending on the ligands involved and the geometry of the primary palladium(II) complex. 

In the case of triphenylphosphine ligands (PPh3), Fauvarque and Amatore[ 85 ] 

independently showed that oxidative addition of aryl halides to Pd(PPh3)3 occurs after 

dissociation of one ligand to generate a linear Pd(PPh3)2 intermediate which then inserts 

into the carbon-halogen bond to generate the complex (PPh3)2Pd(Ar)(X) (Figure 2.13,a). 

Hartwig et al.[86] showed that palladium complexes with hindered phosphine ligands such 

as P(o-tolyl)3, which are stable in their disubstituted form, also undergo the oxidative 

addition of aryl halides after dissociation of one phosphine ligand. This trisubstituted 

intermediate then dimerizes to form a stable, dimeric palladium(II) complex (Figure 2.13,b). 

Hartwig and co-workers also showed that oxidative addition to palladium(0) complexes 

with bidental bisphosphine ligands, such as ±BINAP or DPPF, occurs after dissociation of 

one chelating ligand under generation of a bent monoligand complex (Figure 2.13,c).[87]  
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Figure 2.13: Oxidative addition mechanisms for a) PPh3, b) P(o-tolyl)3 and c) ±BINAP as ligand.
[88]

 

 

The use of the sterically, hindered monodentate ligand P(t-Bu)3 instead of P(o-tolyl)3 leads 

to a dramatic acceleration of the rate of the oxidative addition.[89] In this case, in contrary 

to the P(o-tolyl)3 complex, the reactive, T-shaped P(t-Bu)3 complex does not undergo any 

dimerization (Figure 2.14). 
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Figure 2.14: Oxidative addition mechanisms for the ligand P(t-Bu)3.
[88]

 

 

The reductive elimination step plays a determining role concerning the yield and the scope 

of the Buchwald-Hartwig amination reaction.[90] Kinetic studies showed that the reductive 

elimination can follow two concurrent pathways: a fast reductive elimination from a 

trisubstituted complex in the case of hindered monodentate phosphine ligands such as 

P(t-Bu)3 (Figure 2.15,a) or a slower reductive elimination from a cis-tetrasubstituted 

complex in the case of bidente chelating ligands such as DPPF (Figure 2.15,b). 
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Figure 2.15: Possible mechanisms for the reductive elimination of a) trisubstituted or b) 

tetrasubstituted palladium complex.
[88]

 

 

Wolfe et al. investigated the reductive elimination occurring from a tetrasubstituted 

palladium(II) complex bearing a chelating ligand (DPPF). The study revealed that the 

combining of an electron-rich ligand and an electron-poor aryl halide leads to the fastest 

reductive elimination.[91] Moreover in aryl palladium(II) amido complexes with chelating 

ligands the reductive elimination is faster than the β-H elimination as side reaction.[92] It 

was demonstrated that β-H elimination from square-planar amido complexes occurs after 

generation of trisubstituted complexes.[93] Thus, catalyst complexes tetrasubstituted with 

bidentate chelate ligands exhibit slow β-H elimination but facile reductive elimination. As a 

consequence, the supression of the β-H elimination leads to a better selectivity in the 

formation of aryl amines over the formation of arene by-products. 

Sterically hindered ligands like P(t-Bu)3 also enhance the relative rate of the reductive 

elimination over the β-H elimination.[94] Reductive elimination reduces the coordination 

number of the metal where the β-H elimination either increases it or leaves it unchanged. 

Sterically hindered ligands therefore accelerate the reductive elimination but suppress the 

β-H elimination and thus favor the formation of the amine versus the formation of arene 

side product. Hereby, a strong influence of the sterically hindered phosphine ligands on 

the rate of reductive elimination can be observed. For example, aryl palladium(II) amido 

complex with the P(t-Bu)3 ligand allow the reductive elimination at –10 °C while for 

analogous the complex with DPPF or PPh3 as ligand a reaction temperature of 70 °C is 

necessary. However, the low coordination number of such palladium complexes can 

cause a problem in the case of primary amine substrate which can displace one ligand 

molecule. The tetrasubstituted complex that is generated in this case revealed to be 

inactive for the coupling of aryl chlorides.[88] 

In summary, the effectivity of the catalytic system for the Buchwald-Hartwig amination 

reaction is strongly influenced by different factors: the electronic nature of the aryl halide 

(electron-poor or electron-rich), the leaving group (e.g. chloride, bromide, triflate) the steric 

hindrance (both of the ligand or the amine), or the amine component involved (e.g. 
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primary, secondary or heterocyclic amine). For example, mild coupling reactions of less 

active aryl chlorides occur with catalysts containing phosphines with sterically hindered 

alkyl substituents (e.g. P(t-Bu)3), but reactions of aryl bromides occur with catalysts 

containing triarylphosphines (e.g. P(o-tolyl)3 or PPh3). In the case of secondary amines, a 

greater steric hindrance at the aryl halide improves the rate of the reductive elimination 

versus the β-H elimination. Moreover, the use of sterically hindered, monodentate ligands 

accelerates the coupling of secondary amines with aryl halides. Nevertheless, the 

reductive elimination proceeds slower with palladium amido complexes generated from 

primary amines in relation to those generated from secondary amines. Thus the β-H 

elimination side reaction more often competes with the reductive elimination in the 

coupling of primary amines with aryl halides. Primary amines are more tightly bound to the 

palladium cores than secondary amines and can lead to ligand displacements in the 

complex. Considering this, catalytic systems with bidentate chelate ligands are more 

reactive in the coupling of secondary amines with aryl halides than catalysts containing 

monodentate ligands. 

2.2.1.2. Functionalized Monomers 

Different triphenylamine-based, functional monomers were synthesized for our study. 

These monomers were synthesized by an amination of an aryl halide with an aniline 

compound according to Buchwald and Hartwig. As mentioned previously, catalytic 

systems containing bidentate chelate ligands are most effective for the coupling of primary 

amine with aryl halides. Thus, the catalytic system used here, composed of Pd2(dba)3 

(catalyst) and DPPF (ligand), allowed a direct, “double arylation” of the aniline in a one-pot 

synthesis in a modified procedure after Louie et al. (Figure 2.16).[95] 
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Figure 2.16: Synthesis of the functionalized triphenylamine-based monomer. 

 

In this case, 1-bromo-4-iodobenzene was used as aryl halide. The lower dissociation 

energy of the C-I bond compared to the C-Br bond permits to obtain bromine 

functionalized monomers in one step without further manipulation. The other components 

utilized for this reaction are the commonly used sodium-tert-butoxide NaO-t-Bu as base 

and toluene as solvent. 
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Two modification strategies were investigated for this kind of monomers. The first one 

involves a variation for the substituent of the “side chain” aryl group; the second was 

based on the increase of the aromatic system of the polymeric target by increasing the 

number of phenylene units between two nitrogen atoms. 

First, a range of five functionalized monomers with different substituents on the “side 

chain” phenyl group were synthesized (Figure 2.17) in order to determine the influence of 

these different substituents on the processability and field effect transistor properties. 
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Figure 2.17: Synthesized monomers with variations of substituents along the side-chains. 

 

The yields of the coupling reactions vary from 40 to 70 % depending on the aniline 

derivative involved. The molecular structures of the monomeric compounds were 

investigated by mass spectrometry and NMR spectroscopy. The 1H NMR spectra of the 

five compounds all show similar doublets for the proton (a) between δ = 7.20 and 

7.30 ppm as well as the doublet for the proton (b) between δ = 6.80 and 6.95 ppm with a 

coupling constant of 3J = 8.8 ± 0.2 Hz. Hereby, (a) is more downfield shifted due to the 

influence of the neighboring halogen functional group (Figures 2.18–2.22). 

The TPA1 monomer is commercially available from Sensient Imaging Technologies 

GmbH - Syntec Division. Therefore, no analytical data for this compound will be provided 

here. 
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Figure 2.18: 
1
H NMR of TPA2 monomer in CDCl3. 

 

Figure 2.18 shows the 1H NMR spectrum of the TPA2 monomer in CDCl3. For the protons 

(a) and (b), two douplets at δ = 6.83 and 7.29 ppm respectively can clearly be observed. 

Beside (a) and (b), the proton (4) can be determined as the sole singlet (δ = 6.99 ppm) in 

the aromatic region. The methyl group (5) shows a lucid through space 1H-1H NOESY 

signal connected with (b) and can then be assigned to the singlet at δ = 1.90 ppm. The 

second methyl group (3) exhibits a singlet at δ = 2.26 ppm and couples with (4) and (2) in 

the 1H-1H ROESY spectrum. Thus, the proton (2) can be associated to the doublet at 

δ = 6.95 ppm (3J = 8.1 Hz) in the aromatic region of the 1H NMR spectra. Finally, the 

proton (1) can be identified as a doublet at δ = 6.89 ppm which couples with (2) with a 

constant 3J = 8.0 Hz. Moreover, ten aromatic signals beside the two peaks for the two 

methyl carbon atoms (δ = 21.0 ppm and δ = 18.3 ppm) can be observed on the 13C NMR 

spectrum. The 13C NMR (dept135) analysis reveals five tertiary as well as five quaternary 

carbon atoms as expected. Among them, a typical signal at δ = 113.9 ppm which is 

characteristic for a C-Br group can be observed. The molecular integrity of TPA2 is also 

verified by mass spectrometric investigation with a molar peak at 430.6 g·mol-1. 
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Figure 2.19: 
1
H NMR of TPA3 monomer in CDCl3. 

 

In the aromatic region of the 1H NMR spectrum of the TPA3 monomer in CDCl3 (Figure 

2.19), one singlet at δ = 1.98 ppm for the protons of the methyl groups (1) and one at 

δ = 2.32 ppm for the protons of the methyl group (3) can be observed. In the aromatic 

region, beside (a) and (b), the singlet at δ = 6.94 ppm refers to the proton (2). In the 13C 

NMR spectrum, beside the two methyl carbon peaks in the aliphatic region (δ = 21.0 and 

18.4 ppm), eight peaks can be observed in the aromatic region. The 13C NMR (dept135) 

analysis allows to recognize three non-equivalent tertiary carbon atoms and five non-

equivalent quaternary carbon atoms as expected. Moreover, one peak for a quaternary 

carbons arises at approx. 115 ppm (δ = 113.1 ppm) which is typical for a C-Br carbon. The 

molecular structure is confirmed by mass spectrometry study with a molar peak at 

444.6 g·mol-1. 
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Figure 2.20: 
1
H NMR of TPA4 monomer in C2D2Cl4. 

 

In the 1H NMR spectrum of TPA4 in C2D2Cl4 (Figure 2.20), the protons of the n-butyl side 

chain can be assigned to the four signals in the aliphatic region with a triplet at 

δ = 0.86 ppm for (6), a sextet at δ = 1.29 ppm for (5), a multiplet at δ = 1.51 ppm for (4) 

and a triplet at δ = 2.50 ppm for (3) with a common coupling constant 3J = 7.5 Hz. As for 

TPA2, the two signals for the protons (a) and (b), respectively at δ = 6.85 and 7.25 ppm, 

present the typical coupling pattern. The proton (2) shows a clear through space coupling 

with (3) (1H-1H NOESY spectra) and can be therefore associated with the doublet at 

δ = 7.01 ppm (3J = 8.4 Hz) in the 1H NMR spectra. The remaining doublet at δ = 6.89 ppm 

can finally be associated to the proton (1) coupling with (2) with a constant 3J = 8.3 Hz. 

Hereby, (2) is logically downfield shifted due to the inductive effect induced by n-butyl 

group. In the 13C NMR spectrum (dept135), one primary and three secondary carbon 

atoms can be observed in the aliphatic region as well as four tertiary and four quaternary 

carbon atoms in the aromatic region, with a typical C-Br signal at δ = 115.1 ppm. The 

molecular structure was also proved by the mass spectrometry with a molar peak at 

459.6 g·mol-1. 
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Figure 2.21: 
1
H NMR of TPA5 monomer in in C2D2Cl4. 

 

As shown in Figure 2.21, every proton of the biphenyl side chain of the TPA5 monomer 

can be attributed to a peak in the aromatic region of the 1H NMR spectrum. The protons 

(1) and (2) can be associated to the two doublets respectively at δ = 7.04 and 7.44 ppm, 

respectively through the common coupling constant 3J = 8.4 Hz and the clear 1H-1H COSY 

coupling signal. The signal for the proton (2) is deshielded due to the steric effect induced 

by the neighboring phenyl group. The only doublet left at δ = 7.51 ppm (3J = 7.5 Hz) can 

then be assigned to the proton (3). The protons (4) and (5) can be attributed to the two 

triplets at δ = 7.36 and 7.26 ppm respectively due to the common coupling constant 

3J = 7.5 Hz and the two clear signals for the coupling of (4) with (3) and (5) in the 1H-1H 

COSY spectrum. Finally, the molecular integrity was confirmed by mass spectrometry with 

a molar peak at 479.6 g·mol-1. 

Other monomers leading to structurally modified PTPA polymers were also synthesized in 

this study (Figure 2.22). However, only PTPA6 could be obtained in suitable yield. The 

polymers PTPA7 and PTPA8 could not be prepared in satisfactory yields. Therefore, only 

the monomer TPA6 leading to PTPA6 will be described. 
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Figure 2.22: Polymers representing structural modification of PTPAs. 

 

The monomer TPA6 was synthesized according to the same Buchwald-Hartwig amination 

method introduced before. In this case, 4-bromo-4’-iodobiphenyl was used as aryl halide 

in order to directly afford the target monomer as depicted in Figure 2.23. This reaction 

yielded about 50 % of the TPA6 monomer as pale yellow crystals after purification. As 

previously described, the structural integrity of TPA6 was checked by NMR spectroscopy 

and mass spectrometry. 
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Figure 2.23: Synthesis of the functionalized monomer TPA6. 
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Figure 2.24: 
1
H NMR of TPA6 monomer in CDCl3. 

 

In the aliphatic region of the 1H NMR spectrum of TPA6 in CDCl3 (Figure 2.24) two 

singlets at δ = 2.05 and 2.35 ppm can be respectively assigned to the protons of the 

methyl groups (1) and (3). In the aromatic region, the only singlet at δ = 6.98 ppm can be 

logically attributed to the proton (2). The proton (d) can be identified by a clear coupling 

signal with (1) in the 1H-1H NOESY spectrum and associated to the doublet at 

δ = 7.07 ppm (3J = 8.7 Hz) in the 1H NMR spectrum. By 1H-1H COSY NMR investigation, 

the protons (c) and (b) could be assigned to the multiplet at δ = 7.42 ppm and the proton 

(a) to the doublet at δ = 7.52 ppm (3J = 8.7 Hz). Hereby, the doublet for (a) is downfielded 

due to the influence of the neighboring electronegative bromine atom. The structural 

integrity of TPA6 was also confirmed by the mass spectrometry with a molar peak at 

597.6 g·mol-1. 

2.2.2. Polymer Synthesis 

In this chapter, the synthetic methods involved in the generation of the TPA-based 

polymers (PTPAs) will be exposed. As for the precedent part, the metal-catalyzed aryl-aryl 

coupling reactions involved, from mechanism to the optimization of the reaction conditions, 

will be outlined as well as the characterization of the different PTPAs prepared. 

2.2.2.1. Metal-Catalyzed Aryl-Aryl Coupling Reactions 

Within the last twenty years, transition metal-catalyzed reactions have revolutionized the 

area of organic synthesis. Aryl-aryl coupling reactions are generally known as reactions 
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between an activated R-X compound (R = aryl, alkyl and X = Cl, Br, I, OTos, OTf) with an 

appropriate leaving group and a carbanion or carbanion equivalent counterpart under 

transition metal catalysis in order to form a new carbon-carbon bond. While halogen or 

triflate leaving groups are widely and most commonly used, the choice concerning the 

metal M of the carbanion equivalent is much more multiple.[96] Popular examples utilize 

boron (Suzuki-Miyaura), tin (Stille), zinc (Negeshi), magnesium (Kumada-Tamao), silicon 

(Hiyama), lithium (Murahashi) or copper (Normand) organyls. A wide range of transition 

metals as catalysts for these reactions has been investigated but particular attention has 

been paid to palladium, copper and nickel complexes.[97] The extensive research in the 

past decades have lead to an huge variety of reaction conditions and even to new types  

of coupling reactions as the heteroatom-carbon bond formation of which the  

Buchwald-Hartwig reaction as outlined before is a prominent example.[83] 

Nevertheless, common to all these reactions is their mechanism described as a catalytic 

cycle. The different steps have been widely and intensively investigated to achieve a 

broader and deeper understanding of these reactions and resulted in a lot of mechanistic 

details.  

One of the very useful transition metal-mediated reactions is the nickel(0) mediated  

homo-coupling reaction according to Yamamoto, which undergoes a somewhat different 

reaction cycle. Semmelhack et al. were the first to observe the coupling of two aryl halides 

towards biaryls under use of stoechiometric amounts of (1,5-dicyclooctadiene)nickel(0) 

(Ni(COD)2).
[98]  

 

Ni + Ar X Ar Ar + NiX2 + 2 COD
DMF

 

 

Figure 2.25: Coupling of aryl halides to biaryl according to Semmelhack et al.
[98]

 

 

Due to the mild reaction conditions, this reaction has been proposed as an alternative to 

the copper catalyzed Ullmann-type coupling reaction which requires very harsh 

conditions.[73] During their studies toward conjugated polymers, the group of Yamamoto 

extended the scope of this coupling reaction to polymerization reactions by use of 

2,2’-bipyridine (BPy) as a supporting ligand leading to increased yields at mild 

conditions.[99] Detailed studies concerning the mechanism of this reaction (Figure 2.26) 

have been carried out by Semmelhack, Yamamoto and Knochi. After the ligand exchange 

between COD and BPy, the nickel(0) complex A undergoes an oxidative addition of the 

aryl halide under the formation of the nickel(II) aryl complex B. The use of BPy as ligand 

accelerates the reaction drastically as the bipyridine complex A undergoes the oxidative 
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addition much faster. Complex B disproportionates within the following step into 

complexes C and D. While the complex C leaves the reaction cycle, the aryl-aryl coupling 

product is liberated in a reductive elimination step of the complex D. 
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Figure 2.26: Mechanism of the aryl-aryl Yamamoto homo-coupling reaction. 

 

Most Yamamoto-type coupling reactions carried out within this thesis are a variation of the 

initial synthetic protocol according to Pei and Yang.[100] Furthermore, it should be noticed 

that a multitude of related, catalytic nickel(0) mediated reactions have been developed 

which utilize catalytic amounts of metal complexes together with reducing agents such as 

zinc, manganese[ 101 ] or electrochemical support.[ 102 ] However, applied to the herein 

presented monomers, lower yields and molecular weights are obtained. 

2.2.2.2. Triphenylamine-Based Polymers 

The general synthesis of the triphenylamine-based polymers (PTPAs) elaborated for this 

study is outlined in Figure 2.27. All the polymers were polymerized by aryl-aryl 

homo-coupling according to Yamamoto. These nickel-mediated polycondensation 

reactions were carried on with BPy as supporting ligand and the Ni(COD)2 catalyst in a 

toluene/DMF mixture at 70 °C for 3 days. 
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Figure 2.27: Polymerization reaction towards polytriphenylamine. 

 

As for the functionalized monomers, a series of polymers with different substituents at the 

side chain aromatic group were generated as shown in Figure 2.28. 
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Figure 2.28: Triphenylamine-based polymers (PTPAs). 

 

After polymerization and filtration the polymers were precipitated into a 

methanol/acetone/hydrochloric acid mixture in order to remove the remaining catalyst. 

The obtained greenish polymers were then stirred with hydrazine hydrate over eight hours 

in order to reduce radical cations build up during the purification process as shown in 

Figure 2.29. 
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Figure 2.29: Formation and reduction of PTPA radical cations. 
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A polymeric compound comprising two more phenylene units in the backbone (Figure 

2.30) was also synthesized according to a similar procedure. 

 

N N

n

PTPA6

 

 

Figure 2.30: Triphenylamine-based polymer PTPA6 with four interconnected phenylene units 

between two nitrogen atoms of the backbone. 

 

The raw polymers obtained were then extracted with ethyl acetate over 24 hours and 

characterized by 1H and 13C NMR spectroscopy, DSC, GPC, as well as UV-Vis and 

fluorescence spectroscopy. The results of the NMR analysis are in accordance with the 

proposed structure (see Experimental Section). The DSC curves did not show any endo- 

or exothermic peak (e.g. crystallization or melting) and in most cases not even a glass 

transition proving thus that the polymers prepared are completely amorphous. Only the 

polymers PTPA4 and PTPA5 exhibited a slender glass transition around 140–150 °C. 

The molecular weight afforded for the different polymers after extraction are resumed in 

the Table 2.1. The quite low molecular weight and high polydispersities for some of the 

polymers are noticable. These kinds of problems are known for metal-mediated 

polycondensation reactions of electron-rich monomers.[103] The substitution of the aromatic 

side group plays a determining role in the solubilization of the growing polymer chain in 

the reaction medium used and therefore in the possibility to achieve high molecular 

weights. Especially the 2,4,6-trimethylphenyl-substituted monomer TPA3 allows the 

synthesis of high molecular weight PTPA3. 

 

 PTPA1 PTPA2 PTPA3 PTPA4 PTPA5 PTPA6 

Mn 2 500 4 600 37 600 8 700 3 200 11 200 

Mw 5 100 16 600 68 700 21 400 4 700 19 100 

PD 2.0 3.6 1.8 2.5 1.4 1.7 

 

Table 2.1: GPC analysis of the PTPAs. 
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One other possibility to reduce the polydispersity of the polymers is the use of 

end-capping reagents like chloro- or bromobenzene during the polymerization reaction. It 

was asserted that the addition of monofunctional reagents in order to remove the 

unfavorable halogen atoms remaining as end-groups allows to afford much better 

semiconducting properties.[ 104 ] However, our study showed that for the two polymers 

PTPA1 and PTPA2 such an end-capping strategy leads, despite a lower polydispersity, to 

poorer molecular weights and semiconducting properties. Therefore, the end-cap 

reagents were added at the end of the polymerization period in order to remove remaining 

bromine atoms. A proper polydispersity control of the polymers is possible by soxhlet 

extraction (solvent fractionation). 

2.3. Material Characterization 

2.3.1. Spectroscopic Investigation 

Different spectroscopic methods were used to characterize the PTPAs. Absorption and 

emission spectra were recorded by UV-Vis and photoluminescence (PL) spectroscopy, 

both in chloroform solution and in solid state (thin film). These studies allowed to 

investigate the influence of the side chains on the optical properties as well as the 

band-gap energies of the materials. On the other hand, the HOMO energy levels of the 

different polymers were determined by UV photoelectron spectroscopy (UPS). 

2.3.1.1. UV-Vis and PL spectroscopic Investigation 

The optical properties were investigated both in chloroform and in thin films. All polymers 

show unstructured UV-Vis spectra with broad absorption bands and almost identical 

absorption maxima (Figure 2.31). 
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a) UV-Vis and PL spectra for PTPA1, PTPA2, PTPA3, PTPA4 and PTPA5 in chloroform solution. 
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b) UV-Vis and PL spectra for PTPA1, PTPA2, PTPA3, PTPA4 and PTPA5 in solid state (thin films). 

 

Figure 2.31: UV-Vis and PL spectra for PTPA1, PTPA2, PTPA3, PTPA4 and PTPA5 a) in solution 

and b) in solid state. 

 

The influence of the substituents at the side chain aromatic group on the optical properties 

seems to be negligible in regard to shifts of the absorption maxima in solution as well as in 

the solid state (Table 2.2). The polymer PTPA3 presents a slight red shift if compared to 

the other polymers probably related to the higher molecular weight than to any side group 

influence. It is interesting to notice that the absorption maxima for solutions and films are 

almost identical for each polymer. This can be explained by the fact that the polymers are 

completely amorphous and that no formation of ordered phases occurs, e.g. involving π-π 
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stacking.The polymers show a dark blue luminescence with very close emission maxima 

around 420 nm. The spectra in chloroform solution are narrow with the appearance of a 

lower energy shoulder. In the solid state, broader PL bands are observed especially for 

PTPA4 and PTPA5 where vibrational side band appears. 

In the same way, increasing the number of phenylene groups between two main chain 

nitrogen atoms of the backbone (PTPA3 � PTAP6) did not cause significant changes 

concerning the optical properties in solution. A slight bathochromic shift of 12 nm was 

observed for the PL maxima (Figure 2.32,a). As for PTPA5, a vibrational band at 454 nm 

appears in the solid state PL spectrum of PTAP6 (Figure 2.32,b). 
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a) UV-Vis and PL spectra for PTPA3 and PTPA6 in chloroform solution. 
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b) UV-Vis and PL spectra for PTPA3 and PTPA6 in solid state. 

 

Figure 2.32: UV-Vis and PL spectra for PTPA3 and PTPA6, a) in solution and b) in solid state. 
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  PTPA1 PTPA2 PTPA3 PTPA4 PTPA5 PTPA6 

Absorption [nm] 373 377 389 379 370 382 
Solution 

Emission [nm] 423 418 417 423 425 429 

Absorption [nm] 375 385 390 378 378 385 
Film 

Emission [nm] 428 422 422 428 434, 460 435, 454 

 

Table 2.2: Absorption and emission maxima for the PTPAs in solution and in solid state. 

 

The optical band-gap energies of the PTPA materials were determined from the onset 

position of their absorption bands in the solid state by fitting a tangent to the UV curve with 

subsequent conversion of the intersection with the wavelength axis from nm to eV as 

depicted in Figure 2.33. 
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Figure 2.33: Determination of the band-gap from the UV-Vis spectra. 

 

According to Louis de Broglie, the energy (in Joules) is directly related to the wavelength 

as: 

Eq. 2.1: 
λ

hc
(J) E =  

Considering that 1 eV = 1.602176487×10-19 J, h = 6.62606896×10-34 J.s the Plank 

constant and c = 299792458 m.s-1 the speed of light, the previous equation can be 

simplified as: 

Eq. 2.2: 
(nm) λ

1243.125
(eV) E =  

To afford the band-gap energy Eg, a correction of ∆E = 300 meV, corresponding to the 

exciton binding energy involved in the absorption process, must be done on the measured 

λg 
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optical band gap value. The equation for the determination of the band-gap energy by 

UV-Vis spectroscopy can be then written as follows: 

Eq. 2.3: 3.0
 (nm)

g
λ

125.1243
 (eV)

g
E +=  

It is noticable that the bang-gap energies for the different polymers are almost identical 

with values around 3.2 eV (Table 2.3). The band-gap energy for PTPA6 appears very 

similar despite the presence of a more extended aromatic system between two main chain 

nitrogens. 

 

 PTPA1 PTPA2 PTPA3 PTPA4 PTPA5 PTPA6 

λg [nm] 426 433 427 428 439 428 

Band Gap [eV] 3.22 3.17 3.21 3.20 3.13 3.20 

 

Table 2.3: Optical band-gap energy Eg for the PTPAs. 

2.3.1.2. UV Photoelectron Spectroscopy (UPS) 

For this study, the HOMO levels of the different polymers were measured with help of an 

AC-2 surface analyzer from Riken Keiki Co. based on the UV photoelectron spectroscopy 

principle. UV photoelectron spectroscopy (UPS) or photoemission spectroscopy (PES) 

refers to the measurement of kinetic energy spectra of photoelectrons emitted by 

ultraviolet photons, to determine molecular energy levels in the valence region. This 

method based on the Einstein’s photoelectric effect was originally developed for 

gas-phase molecules by David W. Turner, physical chemist at the Oxford University. The 

material (usually gases or liquids) to be analyzed is exposed to a beam of UV or X-UV 

light inducing photoelectric ionization of the sample atoms. The UV light penetrates 

several micrometers (1–3 µm) into the sample producing photoelectrons throughout the 

penetration depth of the X-rays.[105] 

The Riken AC-2 photoelectron spectrometer (Figure 2.34) presents the considerable 

advantage to allow measurements under ambient conditions (air and atmospheric 

pressure) when a high vacuum environment is needed for classical UPS measurements. 

This method is commonly presented as “photoelectron spectrometer in the atmosphere” 

or PESA. However, this spectrometer presents also other non-negligible advantages such 

as easy sample preparation (spin-coated polymer films on ITO substrates) and short 

measuring times, as well as the parallel identification of work function, ionization potential 

and density of states (DOS) for solids. 
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Figure 2.34: AC-2 Riken photoelectron spectrometer. 

 

Here, the photoelectron signal is amplified by electron multiplication as a result of a 

so-called electron avalanche process or avalanche breakdown. In principle, the ultraviolet 

ray is applied to the sample and if the energy is sufficient, the photoelectron is discharged. 

The discharged photoelectrons in the atmosphere come then into contact with the oxygen 

molecule forming the O2
- ionic species. These O2

- ionic species are lead to the counter by 

the electric field produced by the suppresser grid, pass this grid and finally reach the 

anode neighborhood. At this stage, the electron avalanche occurs, the O2
- ion acting as a 

trigger. 
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Figure 2.35: Electron avalanche process with air as a medium. 

 

Due to the energy obtained from the high electric field between the grid and the anode, 

the O2
- ion is separated into an electron and an oxygen molecule again. The free electrons 

in the medium (here the air) are subjected to strong acceleration by the electric field, 

ionizing the mediums’ atoms by collision, thereby forming "new" electrons to undergo the 

same process in successive cycles as shown in Figure 2.35. 
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This kind of measurements proved to be very reliable for triphenylamine-based material 

as compared to UPS standard measurements as shown in Table 2.4. 
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 AC-2 [eV] UPS [eV]
[106]

 

Alq3 5.84 5.8 

αααα-NPD 5.50 5.4 

CuPc 4.99 5.2 

ITO 4.7 - 

 

Table 2.4: Ionization potential or work function of some semiconducting materials (Source: Riken 

Keiki Co., Ltd). 

 

It is clear that this kind of measurement is not suitable for materials which are highly 

sensitive to oxygen and moisture. For some metals or semiconducting materials, the work 

function or ionization potential measured are shifted as a result of the oxidation of the 

sample. 

The HOMO levels measured for the different PTPA-type polymers are summerized in 

Table 2.5. 

 

 PTPA1 PTPA2 PTPA3 PTPA4 PTPA5 PTPA6 

Band Gap [eV] 3.22 3.17 3,21 3.20 3.13 3.20 

HOMO [eV] 5.13 5.10 5.06 5.12 5.16 5.28 

 

Table 2.5: Energetic structure of the PTPAs polymers. 

 

All HOMO levels (ionization potentials) measured for PTPAs polymers are lower than 5 eV 

considered as an empirical energetic limit of the HOMO level for good stability against 

oxidation by oxygen (or air). 

2.3.2. OFET Investigation 

All polymers have been investigated as active layers in OFETs in cooperation with the 

Evonik Degussa Creavis-S2B Nanotronics (Marl, Germany) and the Prof. E.J.W. List 

(TU Graz, Austria). All measurements were done in the glove box on 

Alq3 αααα-NPD CuPc 
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bottom-gate/bottom-contact configured OFETs devices. Highly n-doped silicon (Si) wafer 

pieces with a thermally grown SiO2 dielectric layer have been used as substrates on which 

source and drain gold electrodes have been evaporated. All materials have been spin 

coated from chloroform solution onto the devices.  

2.3.2.1. OFET Characteristics 

The OFET characteristics of the different triphenylamine-based polymers are shown in 

Figure 2.36 and the measured mobilities, on/off ratios and turn-on voltages in Table 2.6. 
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a) Output characteristics PTPA1. b) Transfer characteristics PTPA1.  
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c) Output characteristics PTPA2. d) Transfer characteristics PTPA2. 
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e) Output characteristics PTPA3. f) Transfer characteristics PTPA3. 
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g) Output characteristics PTPA4. h) Transfer characteristics PTPA4. 
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i) Output characteristics PTPA5. j) Transfer characteristics PTPA5. 
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k) Output characteristics PTPA6. l) Transfer characteristics PTPA6. 

 

Figure 2.36: Output and transfer characteristics for OFETs based on PTPA1 (a, b), PTPA2 (c, d), 

PTPA3 (e, f), PTPA4 (g, h), PTPA5 (i, j) and PTPA6 (k, l) in bottom-gate/bottom-contact 

configuration measured in argon under ambient light. 

 

The mobilities of the different polymers were measured from the saturation regime of the 

output characteristics for high gate voltages (VG = –100 V) and the on/off ratios from the 

transfer characteristics for high drain voltages (VD = –100 V). 

 

 PTPA1 PTPA2 PTPA3 PTPA4 PTPA5 PTPA6 

Mobility [cm
2
V

-1
s

-1
] 5×10

-4
 1×10

-4
 9×10

-4
 1×10

-4
 1×10

-5
 1×10

-4
 

On/Off Ratio 10
4
 10

4
 10

5
 10

4
 10

4
 10

5
 

Turn-on Voltage [V] –10 –30 –1 –20 –20 –30 

 

Table 2.6: Mobility and on/off ratio for the triphenylamine-based polymers. 

 

All PTPA based devices investigated showed a typical field-effect transistor behavior with 

clear saturation regime on the output characteristics for small as for high gate voltages VG. 

Of all the OFETs scanned, the one based on PTPA3 presents the best characteristics 

with high mobility (µFET = 9×10-4 cm2·V-1·s-1) and on/off ratio (106), as well as small turn-on 

voltage (Von > –1 V) and hysteresis of the transfer characteristic. 

Moderate (Von = –10 V for PTPA1, Von = –20 V for PTPA4 and PTPA5) until high  

(Von = –30 V for PTPA2 and PTPA6) turn-on voltages appear for all other devices. The 

OFET based on PTPA4 also exhibits a rather large hysteresis in the transfer 

characteristics proving the presence of impurities probably due to a previous partial 

oxidation of the material. On the other hand, devices based on PTPA1, PTPA2, PTPA5 

and PTPA6 display slender hysteresis. 
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Concerning the mobility, PTPA1 appears to be the best one after PTPA3  

(µFET = 5×10-4 cm2·V-1·s-1) despite a slender on/off ratio around 104. As expected from the 

OFET characteristics, PTPA2 and PTPA4 showed only moderate mobilities 

(µFET = 1×10-4 cm2·V-1·s-1) with on/off ratios around 104. 

PTPA5 and PTPA6 can be considered as exceptions because of their poor solubility in 

common solvent. Under these two polymers, no homogenous films could be obtained for 

device applications. In these conditions PTPA5 revealed a rather good OFET behavior 

with a good saturation regime, a poor hysteresis and a fair turn-on voltage but low mobility 

(µFET = 1×10-5 cm2·V-1·s-1) and on/off ratio (104). On the contrary, despite of a weak FET 

behavior with high turn-on voltage and hysteresis, PTPA6 revealed better mobility 

(µFET = 1×10-4 cm2·V-1·s-1) and good on/off ratio (105). 

2.3.2.2. Molar Mass-OFET Characteristics Relationship 

As already described in the case of poly-3-hexylthiophene, the molecular weight of the 

polymers can have a significant influence on the OFET characteristics.[ 107 ] For such 

experiments, several polymeric fraction of P3HT with increasing molecular weight have 

been investigated. It allowed to determine that mobility of the P3HT-based devices with 

increased molecular weight of the polymer fractions used as semiconducting layer (as 

shown in Table 2.7). 

 

P3HT Fractions Mn [g·mol
-1

] Mw [g·mol
-1

] PD 
[a]

 DP 
[b]

 Mobility [cm
2
·V

-1
·s

-1
] On/Off Ratio 

1 1.9×10
4
 2.6×10

4
 1.35 114 2.6×10

-3
 3.8×10

4
 

     4.2×10
-3 [c]

 8×10
5 [c]

 

2 1.4×10
4
 2.0×10

4
 1.48 83 1.3×10

-3
 1.9×10

4
 

     4.7×10
-4 [c]

 8.1×10
3 [c]

 

3 5.6×10
3
 6.6×10

3
 1.18 33 1.6×10

-5
 270 

     4.3×10
-5 [c]

 1.1×10
3 [c]

 

4 2.2×10
3
 3.1×10

3
 1.43 13 5.5×10

-7
 12 

     2.5×10
-6 [c]

 35 
[c]
 

[a] Polydispersity; [b] Degree of Polymerisation; [c] Annealed at 150°C for 5 min 

 

Table 2.7: Relationship between the molecular weight of the P3HT polymers and their OFET 

characteristics (mobility in saturation regime and on/off ratio).
[107]

 

 

Similar investigation have been conducted for the PTPAs: the raw polymer was extracted 

with different solvents (ethyl acetate, dichloromethane then chloroform) in order to 

become fractions of increasing molecular weight. The results are summarized for PTPA3 

in Table 2.8. Similar results have been observed for the other PTPAs but will not be 

outlined here. 



Polytriphenylamine-Type Materials 56 

 

 

 

PTPA3 Fractions Mn [g·mol
-1

] Mw [g·mol
-1

] PD 
[a]

 DP 
[b]

 Mobility [cm
2
·V

-1
·s

-1
] On/Off Ratio 

1 3.7×10
4
 6.4×10

4
 1.7 157 9×10

-4
 1×10

6
 

2 5.2×10
3
 1.9×10

4
 3.6 18 2×10

-4
 3×10

5
 

3 650 900 1.4 2-3 5×10
-5
 1×10

5
 

[a] Polydispersity; [b] Degree of Polymerisation 

 

Table 2.8: Relationship between the molecular weight of the PTPA3 polymers and their OFET 

characteristics (mobility in saturation regime and on/off ratio). 

 

As for the P3HT, the fractions with the higher molecular weight provide better OFET 

properties in the devices. On the transfer characteristics linear and semilogarithmic plots, 

this tendency is also visible (Figure 2.37). However, the tendency is much weaker for the 

amorphous PTPA3 in relation to the semicrystaline P3HT. 
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Figure 2.37: Transfer characteristics of the different PTPA3 fractions with increasing molecular 

weights in linear and semilogarithmic plots. 

2.3.2.3. Stability Investigation 

The OFET characteristics of the different triphenylamine-based polymers has been further 

investigated in the group of Prof. E.J.W. List in the University of Technology Graz, Austria. 

Time dependant transfer characteristic measurements have been done for PTPA1, 

PTPA2, PTPA3 and PTPA4 under ambient conditions after five minutes, ten minutes and 

every ten minutes until one hour exposition. 

For all polymers, a shift of the onset voltage of the device under operation could be 

observed. This could be explained by an increasing amount of traps in the semiconducting 

materials during the measurements. However, this shift, related to the amount of traps 

involved, is different for different polymers. The shift of the onset voltage increases in the 

series: 

 

PTPA1 > PTPA4 > PTPA2 > PTPA3 



Polytriphenylamine-Type Materials 57 

 

 

indicating decreasing stabilities of the PTPAs under OFET operation: 

 

PTPA3 > PTPA2 > PTPA4 > PTPA1 

 

The charge carriers in triphenylamine-based materials are radical cations formed by the 

injection of holes through the anode. Nevertheless, radical cations are also formed due to 

chemical oxidation, in our case by oxygen of the atmosphere, and act as traps for the 

mobile charges. Regarding the molecular structures of the polymers, the difference in the 

stability of the different polymers could be explained by a shielding effect of the 

ortho-substituents. This assumption needs further investigation such as EPR 

measurement of the polymers in operation. Another possibility could be the use of larger, 

more bulk substituents such as tert-butyl or iso-propyl to verify this hypothesis. However, 

the corresponding monomers could, until now, not be synthesized according to the 

Buchwald-Hartwig or Ullmann-type amination reaction as depicted in Figure 2.38.  
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Figure 2.38: Synthesis of monomeric compounds with bigger substituent groups, a) tert-butyl and 

b) iso-propyl. 

 

In the case of tert-butyl groups in 2,4,6-positions of the side chain aromatic groups, no 

TPA-product could be found. For iso-propyl groups in 2,6-positions, only the 

monosubstituated product could be isolated. Further arylation of the monosubstituted 

compound through Buchwald-Hartwig or Ulman-type reactions did not provide any 
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monomer either well. This can be explained by the steric hindrance of the tert-butyl or, in a 

slender way, iso-propyl groups. 

PTPA3 being the polymer with the best OFET characteristics and highest stability was 

used in further stability tests. Changes of the OFET characteristics after exposure to 

ambient conditions have been recorded and compared to poly(3-hexylthiophene)-based 

devices under similar conditions. P3HT represents one of the most widely used polymers 

for OFET applications, regarding to its very good properties, but shows a very poor OFET 

stability against oxygen (and air). 
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a) Transfer characteristics of PTPA3 in linear and semilogarithmic plots under argon atmosphere 

(black curve), under ambient conditions directly after storage in the glove box (green curve), 2 days 

storage under ambient conditions (light blue curve) and after one hour annealation at 100 °C (red 

curve). 
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b) Transfer characteristics of P3HT in linear and semilogarithmic plots under argon atmosphere 

(black curve), under ambient conditions directly after storage in the glove box (green curve), after 1 

hour (light blue curve) and 17 hours exposure (blue curve). 

 

Figure 2.39: Evolution of the transfer characteristics of a) PTPA3 and b) P3HT under exposure to 

ambient conditions. 

 

The transfer characteristics of both polymers display similar OFET properties under inert 

atmosphere (Figure 2.39,b, black curves) such as good mobility (µFET ≈ 10-3 cm2·V-1·s-1) 
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and good saturation of the source-to-drain current ID even if PTPA3 shows a higher 

saturation source-to-drain current ID,sat. Nevertheless, both polymers show very different 

behavior after their exposure to an oxidative atmosphere (Figure 2.39,b, green curves). 

The PTPA3-based device exhibits a similar mobility as under glove box conditions and 

always a good field-effect behavior with a clear saturation regime even if shifted to a 

smaller saturation source-to-drain current ID,sat. On the other hand, the mobility of the 

P3HT-based device decreases dramatically and a very poor field-effect behavior can be 

observed. Even after two days exposure to air, the PTPA3-based device shows a 

satisfying field-effect behavior with good saturation of the source-to-drain current ID on the 

transfer characteristics plots and a mobility µFET = 4 × 10-4 cm2·V-1·s-1 while P3HT does not 

show any significant field-effect behavior already after one hour storage (Figure 2.39,b, 

light blue curves). It is interesting to notice that, after annealing to 100 °C for one hour, the 

PTPA3-based device recovers its best mobility (µFET = 9 × 10-4 cm2·V-1·s-1) under 

glove-box conditions (Figure 2.39,a, red curves). It can be then concluded that the 

deterioration of the OFET characteristics of the PTPA3-based device is based on fully 

reversible processes (e.g. aging). The traps formed under ambient conditions can be 

destroyed by thermal annealing. The results summarized here are in accordance with 

those of other similar studies.[108] 

2.4. Conclusion 

A series of triphenylamine-based polymers have been synthesized and characterized. It 

has been determined that the side chains have no significant influence on the intrinsic 

optical and electronic properties but on the processability of the materials. Increasing the 

number of phenylene groups between two nitrogen atoms of the main chain did not lead 

to significant decrease of the band-gap energy. Despite a somewhat better stability 

against air, such a modification induced a dramatic decrease of the processability and the 

device performance. 

A relation between the molecular weight of the PTPA-polymers and the OFET 

performances could also be deduced by investigating polymer fractions of increasing 

molecular weight. As for P3HT, it was established that the polymer fractions with the 

highest molecular weight provide the best OFET performances. 

Of the polymers studied, PTPA3-based devices showed the best field-effect 

characteristics with a mobility µFET of approx. 10-3 cm2·V-1·s-1, an on/off ratio up to 106, a 

turn-on voltage Vto above –1 V and almost no hysteresis as well as the best stability under 

operation. In comparison to the widely used P3HT, PTPA3-based devices exhibit a far 
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better stability against air and moisture. All the results presented here are in accordance 

with a study published by Hübler et al. for all-printed PTPA-based transistors.[108] 

This stability was assumed to be a consequence of a shielding effect towards induced by 

the ortho-substituent of the side chain phenyl the nitrogen atom. Initial experiments 

towards an enhancement of the shielding effect by increasing the size of the 

ortho-substituents (e.g. from methyl group to iso-propyl or tert-butyl) were carried on. 

Unfortunately, the monomeric compound could not be isolated in Buchwald-Hartwig or 

Ullmann amination reactions most probably due to the high steric hindrance at the 

nitrogen center. 
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3. Carbazole-Based Materials 

3.1. Polycarbazoles 

Hole-transporting materials based on the carbazole moiety have been subject of an 

increasing number of investigations over the last decade. This could be explained by the 

very interesting features such as low cost of the starting material (9H-carbazole), good 

chemical and environmental stability provided by the fully aromatic unit, easy substitution 

of the nitrogen atom with a wide range of functional groups permitting a better solubility 

and a fine tuning of the electronic and optical properties. Moreover, as shown in Figure 

3.1, carbazole units can be linked at the 3- and 6-positions to afford poly(3,6-carbazole)s 

as well as the 2- and 7-positions to afford poly(2,7-carbazole)s. This two isomers exhibit 

different properties and potential applications.[109] 
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Figure 3.1: Possible substitutions of the carbazole unit: a) poly(3,6-carbazole) and b) 

poly(2,7-carbazole). 

 

A lot of side chain polymers with pendant carbazolyl groups such as 

poly(N-vinylcarbazole) (PVK) have also been investigated over the last few years.[110] 

These materials found applications in the xerographic process, e.g. of photocopy 

machines or laser printers but will not described here in detail. 

The aromatic backbone of covalently connected carbazol moieties is expected to improve 

the mobility of the charge carriers (holes), in this case radical cations and dications formed 

upon oxidation (p-doping). The first soluble main-chain oligomers (mainly dimers) based 

on carbazole units have been synthesized by electrochemical oxidation.[ 111 ] These 

oligomers were composed of N-substituted carbazoles linked in their 3,6-positions (Figure 

3.2) or coupled via the 9-positions (nitrogen) of unsubstituated carbazole monomers. 

Generally, it was found out that the 3-, 6- and 9-positions are the most reactive ones. 
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Figure 3.2: Electrochemical oxidation of N-alkylcarbazoles (1) into 3,3’-bicarbazyl (2), and further 

oxidation of (2) into bicarbazylium radical-cation (3) and dication (4). 

 

Due to the high stability of the oxidized states (bicarbazylium cations), only dimers were 

obtained by electrochemical oxidation of N-substituted carbazole units. In 1997, Marrec et 

al. described carbazole-based polymers synthesized by electrochemical polymerization 

starting from N,N’-substituted carbazole dimers. The obtained polymers showed a redox 

characteristics similar to bicarbazyls (Figure 3.3).[112] 
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Figure 3.3: Electrochemical polymerization of N,N’-substituted carbazole dimers according to 

Marrec et al.
[112]

 

 

In the case of a chemical oxidation of N-substituted carbazoles with iron(III) trichloride 

(FeCl3), the resulting product is the 3,3’-bicarbazyl dimer. Obviously, this reaction is often 

used to produce 3,3’-bicarbazyl dimers (Figure 3.4).[113] 
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Figure 3.4: Chemical oxidation of N-substituted carbazoles with iron(III) trichloride. 

 

Finally, in both cases (electrochemical and chemical oxidation), the stabilization of the 

oxidized states (bicarbazylium cations), due to the delocalization of the positive charges 

through the extended π-conjugated system between the two nitrogen atoms, hinders any 

follow-up coupling reaction and thus polymerization. Siove et al. showed that oxidation 

polymerization by FeCl3 is possible in the case of stericaly hindered carbazole derivatives 

(e.g. 1,4,5,8,9-pentamethylcarbazole, Figure 3.5). The twisting of the dimeric unit due to 

the steric hindrance leads to a reduced conjugation between two consecutive carbazole 

units (non-planar dimers) and then a destabilization of the oxidized 3,3’-bicarbazyls 

dimer.[114] 

 

N
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Figure 3.5: Chemical (oxidative) polymerization of 1,4,5,8,9-pentamethylcarbazole according to 

Siove et al.
[114] 

 

Concurrently to the polymerization routes presented previously, the reductive 

polymerization of 3,6-dihalocarbazoles have been developed for the preparation of 

poly(3,6-carbazole)s (Figure 3.6). These include electrochemical,[115] Grignard,[116] and 

palladium- or nickel-catalyzed coupling reactions.[117] All these methods lead to more or 

less soluble polymers with a molecular weight around 104 g·mol-1, depending on the side 

chain substitution at the nitrogen atom. 
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Figure 3.6: Syntheses of poly(3,6-carbazole)s by a) Grignard, b) electroreductive and c) 

Yamamoto-type coupling reactions. 

 

In 2002, Zhang et al. obtained the first high molecular weight poly(N-alkyl-3,6-carbazole) 

(Mw > 105 g·mol-1) by applying a reverse order during addition of the reagents (nickel 

catalyst added into the monomer solution) in a coupling procedure according to 

Yamamoto.[118]  
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Figure 3.7: GPC curves of poly(N-alkyl-3,6-carbazole)s obtained from polymerizations with different 

monomer concentration.
[119]

 

 

Ostrauskaite et al. also discovered that, the molecular weight of 

poly(N-alkyl-3,6-carbazole)s under Yamamoto standard conditions strongly depends on 
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the monomer concentration during the polymerization reaction (Figure 3.7). According to a 

MALDI-TOF mass spectrometry investigation and analysis of the isotope distribution (for 

linear and cyclic species) in the MALDI spectrum, the formation of cyclic oligomers (4 to 

12 carbazole units) could be illustrated and assessed as the limiting factor for the 

molecular weight.[119] 

Beside via the 3- and 6-positions, the carbazole units can also be linked in the 2- and 

7-positions to afford poly(2,7-carbazole)s (Figure 3.1). Such fully π-conjugated materials 

are of interest for optoelectronic applications because of the extended conjugation 

induced by the linkage in 2,7-positions.[120] These polymers were tested as light emitting 

layer in blue, polymer light emitting diodes (PLEDs) and as donor material in solar 

cells.[ 121 ] However, the synthesis of 2,7-carbazole-based materials is much more 

complicated as compared to 3,6-carbazole-based materials. The 2,7-positions are located 

in meta-position relative to the amino group, not allowing any direct functionalisation by 

standard electrophilic, aromatic substitutions. On that account, several strategies starting 

from biphenyl precursors have been developed to produce 2,7-carbazolebased monomers 

as depicted in Figure 3.8.[122] 
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Figure 3.8: Possible synthetic routes for poly(2,7-carbazole).
[109]
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More complex carbazole derivatives such as indolocarbazole[ 123 ] or ladder-type 

carbazole[124] (Figure 3.9) have been generated and tested for OFET or PLED applications, 

but will not be further discussed here. 
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Figure 3.9: Poly(indolocarbazole)s and carbazole-based ladder-type polymers. 

3.2. Poly(N-phenylcarbazole)s 

In this work, we have focused on a special carbazole containing polymers: 

poly(N-phenylcarbazole-3,6-diyl)s. In these derivatives, the nitrogen atom is substituted 

with an aromatic group. The molecular structure could be described as a “bridged 

triphenylamine”. The carbon atoms in the 2,2’-position of the amine group are linked 

(Figure 3.10) allowing a planarization of the monomeric units along the backbone. 
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Figure 3.10: Moleculare structures of triphenylamine- and N-arylcarbazole-based polymers. 
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Two kinds of N-arylcarbazole polymeric materials have been synthesized and investigated. 

The first one is a poly(N-phenylcarbazole-3,6-diyl)s with a long alkyl side chain in the 

para-position of the aromatic side chain phenyl group (PNPC, Figure 3.11,a). The long 

alkyl chain should allow a better solubilityn of the polymer in common organic solvents, 

e.g. toluene, chloroform or THF. The second one was a novel polymer based on 

meta-dicarbazolyl-phenylene units (PdCP, Figure 3.11,b). For PdCPs, the 3,3’-positions of 

the carbazole units as well as the 5-position of the phenyl group were blocked by an alkyl 

substituent in order to avoid any unwanted side reactions. 

 

R

N N

3 3'

6'6

R' R'

nN

R

n

a) PNPC b) PdCP  

 

Figure 3.11: Molecular structure of a) poly[9-(4-alkylphenyl)carbazole-3,6-diyl] (PNPC) and b) 

poly[1,3-bis(3’-alkylcarbazole-9’-yl)-5-alkylphenylene-6’,6”-diyl] (PdCP). 

3.2.1. Poly(N-phenylcarbazole-3,6-diyl) (PNPC) 

The polymer described here (PNPC8, Figure 3.12) contains an octyl chain as 

para-substituent of the side aromatic group, due to the commercial availability of the 

starting reagents. 
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Figure 3.12: Molecular structure of poly[9-(4-octylphenyl)carbazole-3,6-diyl] (PNPC8). 

3.2.1.1. Synthesis 

The non functionalized 9-(4-octylphenyl)carbazol moiety NPC8 was first synthesized 

according to Chen et al.[ 125 ] as shown in Figure 3.13. Carbazole and the 
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1-bromo-4-octylbenzene were coupled by a nickel catalyzed reaction derived from the 

Kumada coupling reaction. The N-MgBr species was generated by in-situ addition of a 

Grignard reagent to the carbazole in dry THF. The dry THF was then removed under 

vacuum and replaced by dry toluene under argon. The use of only one solvent (THF or 

toluene) or a THF/toluene mixture led to a lower yield of the product. The N-C coupling 

reaction was then performed in toluene under addition of nickel catalyst, 

triphenylphosphine ligand and aryl halide in a similar way as for a classical Kumada 

coupling reaction. This reaction yielded about 60 % of the desired product after 

purification. The NMR spectroscopic investigation was in accordance with the expected 

spectra and will not be commented here in details. The molecular as structure deduced 

from NMR spectorscopy was further confirmed by mass spectrometry with the molar peak 

at 354.8 g·mol-1. 
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Figure 3.13: Synthesis a 9-(4-octylphenyl)carbazol monomer unit NPC8 via formation of the  

N-MgBr compound and N-C coupling reaction. 

 

The carbazol monomer was then brominated in the 3,6-positions with 

N-bromosuccinimide (NBS) (Figure 3.14) in DMF to afford ca 90 % of the monomer as 

yellow crystals. 
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Figure 3.14: Synthesis of the 3,6-dibromocarbazole monomer (MNPC8) 
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Figure 3.15: 
1
H NMR of MNPC8 in CDCl3. 

 

The molecular integrity of the MNPC8 monomer was investigated by NMR spectroscopy 

and mass spectrometry. Figure 3.15 shows the 1H NMR spectrum of MNPC8 in CDCl3. 

The protons of the octyl side chain can be assigned to the signals in the aliphatic region. 

The proton (13) can be associated to the triplet at δ = 0.91 ppm (3J = 7.0 Hz). The broad 

multiplet at δ = 1.36 ppm can be assigned to the protons (12) to (8). The quintuplet at 

δ = 1.72 ppm and the triplet at δ = 2.73 ppm refer respectively to the protons (7) and (6) 

with a common coupling constant 3J = 7.7 Hz. In the aromatic region, the proton (1) can 

be associated to the doublet at δ = 8.19 ppm with a coupling constant 4J = 1.9 Hz for the 

long range coupling with the proton (2). Therefore, the proton (2) can be assigned to the 

doublet of doublets at δ = 7.49 ppm with a coupling constant 3J = 8.7 Hz for the coupling 

with (3) and a long range coupling constant 4J = 1.9 Hz due to the coupling with the proton 

(1). The proton (3) couples with (2) and can be associated to a doublet of doublets at 

δ = 7.23 ppm (3J = 8.7 Hz). This assumption is confirmed by the 1H-1H COSY investigation 

with a clear signal for the coupling of (2) with (3). The two remaining protons (4) and (5) 

can be assigned to the multiplet centered at δ = 7.38 ppm. Moreover, a signal for the 

through space coupling of (5) with (6) can be identified in the 1H-1H NOESY spectrum. 

The molecular structure was confirmed by mass spectrometry with a molar peak at 

512.5 g·mol-1. 

The monomer MNPC8 was then polymerized in a microwave-assisted Yamamoto-type 

aryl-aryl coupling reaction.[ 126 ] The reaction under classical conditions leads to the 
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formation of oligomeric (and macrocyclic) compounds. Microwave-assisted coupling 

protocols have already been the subject of a lot of publications.[127] The reaction has been 

carried out in a highly concentrated solution of the monomer in THF in presence of 

Ni(COD)2 as catalyst and COD and BPy as ligands during twelve minutes at 120 °C 

(Figure 3.16). At the end of the reaction a solution of bromobenzene was added under 

argon in order to end-cap the bromine atoms present at the terminals of the polymer 

chains. After purification, the reaction yielded about 65–70 % of the PNPC8 polymer as a 

grey solid. 
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C8H17
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THF, microwave, 120°C, 12 min

NiCOD2, BPy, COD
N

C8H17

n
MNPC8 PNPC8  

 

Figure 3.16: Microwave-assisted polymerisation of PNPC8 according to Yamamoto. 

 

The polymer was extracted with ethyl acetate to remove small molecules and oligomers to 

afford a polymer with a molecular weight of Mn = 4.7×103 g·mol-1 and a polydispersity 

PD = 1.3. In the aliphatic region of the 1H NMR spectrum of the PNPC8 polymer, four 

peaks at δ = 0.89 ppm, δ = 1.27 ppm, δ = 1.70 ppm and δ = 2.69 ppm can be observed 

for the protons of the octyl side chain. In the aromatic region, one multipet at δ = 7.35 ppm, 

one doublet at δ = 7.71 ppm and one singlet at δ = 8.55 ppm can be assigned to the 

protons of the aromatic system by comparison with the 1H NMR spectrum of the MNPC8 

monomeric compound. For this polymer no thermal transitions could be observed in the 

DSC curves reflecting an amorphous behavior. 

3.2.1.2. Optical Properties and Energy Levels 

The polymer PNPC8 in chloroform solution absorbs light in a range up to 380 nm with two 

peaks at 259 and 313 nm (maximum absorption λmax, Figure 3.17, Table 3.1). The 

observed value are similar to the absorption maxima of other 3,6-carbazole-based 

polymers[128] as well as dimeric species.[129] It reflects the restriction of the electronic 

conjugation along the polymer chain to two carbazole units, regardless of the average 

molecular weights. Measurement of the solid state absorption (film) for this polymer 

displays similar values compared to the measurement in solution, with a λmax value at 

322 nm (Table 3.1) and indicates that no significant electronic interaction takes place in 
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the solid state. However the large Stokes shift (119 nm in solution and 129 nm in solid 

state) implies large structural differences between the ground and excited states for this 

polymer. PNPC8 shows a blue emission similar to other 3,6-carbazole-based polymers 

with a maximum centred at 432 nm in solution and 450 nm in the solid state. 
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Figure 3.17: UV-Vis and PL spectra of PNPC8 in chloroform solution and in solid state. 

 

  PNPC8 

Absorption [nm] 259, 313 
Solution 

Emission [nm] 432 

Absorption [nm] 259, 322 
Film 

Emission [nm] 451 

 

Table 3.1: Absorption and emission data of PNPC8 in chloroform solution and in solid state. 

 

The band gap of this polymer, as determined by the onset position of its absorption bands 

in the solid state (λg = 396 nm), is about 3.4 eV. The ionization energy of this polymer, 

pointing to the HOMO level of the material, was measured at 5.2 eV by UPS. 

3.2.1.3. OFET Properties 

For the OFET investigation, devices were built in bottom-gate/bottom-contact 

configuration. Highly n-doped silicon wafers (gate) with a thermally grown SiO2 dielectric 

layer on which source and drain gold electrodes have been evaporated were used as 

substrates. The polymer has been spin coated from chloroform solution onto the devices. 

The mobility were measured in the saturation regime from the transfer characteristics at 

VD = –100 V. 
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Figure 3.18: Output and transfer characteristics for OFETs based on PNPC8. 

 

The transistor based on PNPC8 showed a field-effect behavior with a clear saturation 

regime in the output characteristics as plotted in Figure 3.18. A moderate turn-on voltage 

Von around –20 V with a slight hysteresis can be derived from the transfer curves. 

Nevertheless, only a quite low mobility with µFET = 6×10-5 cm2·V-1·s-1 in the saturation 

regime for VG = –100 V has been measured for this device. The on/off ratio was up to 105. 

3.2.2. Poly(meta-dicarbazolyl-phenylene) (PdCP) 

Furthermore, we concentrated on a second class of 3,6-carbazole-based  

polymers. Due to the commercial availability of the starting reagents, the 

poly(meta-dicarbazolyl-phenylene) synthesized (PdCP1, Figure 3.19) contains methyl 

groups in the 6,6’-positions of the carbazole groups and a tert-butyl group at the 5-position 

of the central meta-phenylene moiety. 

 

NN n

PdCP1  

 

Figure 3.19: Molecular structure of poly[1,3-bis(3’-methylcarbazole-9’-yl)-5-tert-butylphenylene-

6’,6”-diyl] (PdCP1). 

3.2.2.1. Synthesis 

For the synthesis of the monomer dCP1, 1,3-dibromo-5-tert-butylbenzene has been first 

produced from 4-tert-butylaniline. The 4-tert-butylaniline was brominated in the 

2,6-positions by bromine in cold dichloromethane (Figure 3.20) to afford 79 % of 
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2,6-dibromo-4-tert-butylaniline as white crystals. The chemical structures of the 

compounds were determined by mass and NMR investigation. In the 1H NMR spectrum of 

2,6-dibromo-4-tert-butylaniline, one singlet at δ = 7.37 ppm for the protons of the benzene 

core in the aromatic region, one singlet at δ = 5.37 ppm for the proton of the amino group 

and one singlet at δ = 1.20 ppm for the protons of the tert-butyl group could be observed. 

Moreover, a peak for a quaternary carbon at δ = 108 ppm typical for a C-Br group was 

observed in the 13C NMR spectrum. The MS analysis displays a molar peak at 

306.2 g·mol-1. Afterwards, the amino group was removed by diazotation and  

subsequent protonation (Figure 3.20) in order to yield (after purification) 52 % of 

1,3-dibromo-5-tert-butylbenzene as a colorless oil. 

 

BrBrBrBr

NH2 NH2

Dichloromethan, 0°C, 3h

Bromine

Ethanol:Benzene
Reflux, 3h

NaNO2, H2SO4

 

 

Figure 3.20: Synthesis of 1,3-dibromo-5-tert-butylbenzene. 

 

Beside a singlet at δ = 1.22 ppm for the protons of the tert-butyl group, the 1H NMR 

spectrum did not show any peak for proton of an amine group but one doublet at 

δ = 7.42 ppm for the two protons in the 4,6-position and one triplet at δ = 7.37 ppm for the 

proton in the 2-position of the benzene core. These two peaks present a coupling constant 

of 4J = 1.6 Hz typical for a long range coupling in a benzene ring. The molecular integrity 

was confirmed by mass spectrometric analysis with a molar peak at 293.0 g·mol-1. 
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Figure 3.21: Synthesis of 3-methylcarbazole. 

 

Secondly, the 3-methylcarbazole monomer has been formed by synthesis of the aryl 

hydrazone from 4-methylhydrazine hydrochloride and cyclohexanone followed by a ring 

closing Fischer-type indol reaction. According to a literature procedure,[130] the terahydro 

carbazole intermediate was used without further purification and reduced with help of 

palladium on charcoal (Figure 3.21) to yield about 80 % of 3-methylcarbazole as white 

crystals. 
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Figure 3.22: 
1
H NMR of spectrum 3-methylcarbazole in C2D2Cl4. 

 

The structural integrity of 3-methylcarbazole was proved by MS and NMR studies. The 1H 

NMR spectrum of the title compound is depicted in Figure 3.22. The singlet at 

δ = 2.43 ppm can be attributed to the proton (3) of the methyl group. The 1H-1H COSY 

long-range spectrum reveals a clear long range coupling between the protons (3) and the 

protons of the singlet at δ = 7.82 ppm and the doublet at δ = 7.21 ppm. Thus, the singlet 

at δ = 7.82 ppm can logically be attributed to the proton (4) and the doublet at 

δ = 7.21 ppm to the proton (2). The 1H-1H COSY reveals also a coupling of the doublet at 

δ = 7.21 ppm with the doublet at δ = 7.27 ppm which can be associated to the proton (1). 

In the aromatic region, the remaining singlet at δ = 7.95 ppm can be easily assigned to the 

proton (9) of the amine group. In the 13C NMR spectrum, two very narrow peaks for 

tertiary carbon atoms can be observed at δ = 120.5 ppm. The 1H-13C COSY spectrum 

shows the coupling of these peaks with the singlet at δ = 7.82 ppm as well as with the 

doublet at δ = 7.99 ppm. It can be then deduced that one peak on the 13C NMR spectrum 

corresponds to the carbon bearing the proton (4). Thus, the almost chemically equivalent 

peak corresponds to the carbon atom bearing the proton (5), which can be legitimately 

assigned to the doublet at δ = 7.99 ppm. From the 1H-1H COSY spectrum, the coupling 

between the protons (5) and (6), (6) and (7) as well as (7) and (8) can clearly be 

determined. The proton (6) can be associated to the multiplet at δ = 7.17 ppm and the 

protons (7) and (8) to the multiplet (doublet+triplet) at δ = 7.35 ppm. Beside the extensive 

NMR investigation, the 13C NMR (dept135) allowed to recognize one peak for a primary 
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carbon atom in the aliphatic region as well as seven peaks for tertiary carbon atoms and 

five peaks for quarternary carbon atoms in the aromatic region, as expected. The 

structure was also confirmed by mass spectrometry with a molar peak at 180.8 g·mol-1. 

The 1,3-dicarbazolylbenzene monomer dCP1 has been synthesized by 

palladium-catalyzed Buchwald-Hartwig-type amination of 1,6-dibromo-5-tert-butylbenzene 

and 3-methylcarbazole (Figure 3.23). The catalyst system was composed of Pd2dba3 as 

catalyst and biphenyl-2-di-tert-butylphosphine (JohnPhos) as ligand with NaO-t-Bu as 

base. This system provided the best selectivity and yield (about 90 %) compared to other 

catalytic systems or other reactions procedures (e.g. Ullman-type amination). 

 

Pd2(dba)3, JohnPhos, Na-t-BuO

Toluene, 80°C, 12h

BrBr

H
N

NN

dCP1  

 

Figure 3.23: Synthesis of the 1,3-dicarbazolylbenzene monomer dCP1 by palladium-catalyzed 

Buchwald-Hartwig-type amination. 
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Figure 3.24: 
1
H NMR spectrum of dCP1 in DMSO-d6. 

 

Structural identification was completed by mass spectrometry and NMR spectroscopy 

investigations. Figure 3.24 shows the 1H NMR spectrum of the compound dCP1 in 

DMSO-d6. In the aliphatic region, the two singlets at δ = 2.44 ppm and at δ = 1.39 ppm 

can be attributed to the protons (3) of the methyl groups and to the protons (9) of tert-butyl 

group respectively. The typical long rang coupling constant 4J = 1.7 Hz allows to identify 

the protons of the metaphenylene bridge with a doublet for the protons (a) at δ = 7.68 ppm 

and a triplet for the proton (b) at δ = 7.53 ppm. The other peaks in this region can be 

associated with the protons of the 3-methylcarbazole unit, as described previously, with a 

doublet at δ = 8.14 ppm for (5), a singlet at δ = 7.99 ppm for (4), a doublet at δ = 7.49 ppm 

for (1), a multiplet around δ = 7.40 ppm (doublet+triplet) for (7) and (8), and finally another 

multiplet around δ = 7.22 ppm (doublet+triplet) for (2) and (6). The postulate concerning 

the molecular structure was confirmed by mass spectrometry with a molar peak at 

495.4 g·mol-1. 

The MdCP1 monomer unit has been finally generated by bromination of dCP1 in the 

6,6’-positions with NBS in acetronitrile at room temperature (Figure 3.25) with a 

conversion over 80 %.  
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Figure 3.25: Synthesis of the MdCP1 monomer. 

 

1.02.03.04.05.06.07.08.09.0

7.307.407.507.607.707.807.908.008.108.20

ppm

a

b

5

4
1

7

2

8 9

3

a

b
NN

9

87

5

4

2

1

Br Br

3

 

 

Figure 3.26: 
1
H NMR spectrum of MdCP1. 

 

In the 1H NMR spectrum of the monomer MdCP1 (Figure 3.26), the peak for the proton (5) 

at δ = 8.16 ppm displays now a long range coupling (4J = 1.8 Hz) with the protons (7) but 

no short range coupling. The signal associated to the proton (7) is now a doublet with a 

long range coupling constant 4J = 1.8 Hz and a short range coupling constant 3J = 8.7 Hz 

associated to a strong deshielding effect due to the neighboring bromine atom. 

Additionally, the multiplet around δ = 7.22 ppm corresponding to the proton in the 

6-position disappeared. A new doublet at 7.24 ppm is associated to the proton (2). In the 

aromatic region of 13C NMR (dept135) spectrum, eight peaks of tertiary carbon atoms and 

eight peaks of quarternary carbon atoms of the monomer MdCP1 can be determined. 

MdCP1 presents one non-equivalent tertiary carbon atom less and one non-equivalent 

quarternary carbon atom more compared to the non-brominated precursor dCP1. 

Moreover, the peak for the quarternary carbon atom rises around δ = 115 ppm which is 
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typical of a C-Br group. The MS investigation gave a further proof of the expected 

structure by exhibiting the molar peak at 648.3 g·mol-1. 

The PdCP1 polymer has been synthesized, like PNCP8, in a Yamamoto-type aryl-aryl 

coupling reaction[126] of the monomeric compound MdCP1 in THF with Ni(COD)2 as 

catalyst, COD and BPy as ligands under microwave irradiation during twelve minutes at 

120 °C (Figure 3.27). At the end of the reaction, an end-capping procedure with 

bromobenzene was applied to remove the bromine atoms left at the terminals of the 

polymer chains. After purification, the reaction yielded 80 % of the PdCP1 polymer as a 

grey solid. 
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Figure 3.27: Synthesis of PdCP1 polymer. 

 

The PdCP1 polymer was extracted with ethyl acetate to remove short chain oligomers to 

afford a polymer with Mn = 2.5×104 g·mol-1 and PD = 2.1. The 1H NMR spectrum of the 

PdCP1 polymer showed two singlets in the aliphatic region at δ = 1.53 and 2.60 ppm, 

respectively, for the protons of the tert-butyl and methyl groups. In the aromatic region, 

four doublets at δ = 7.33, 7.53, 7.70 and 7.86 ppm, two singlets at δ = 8.08 and 8.49 ppm 

as well as a multipet at δ = 7.77 ppm can be observed. This peak pattern is hereby similar 

to the one in the 1H NMR spectrum of the MdCP1 monomer. Moreover, in the 13C NMR 

spectrum, as for the MdCP1 monomer, eight peaks for tertiary carbon atoms and eight 

peaks for quarternary carbon atoms can be observed in the aromatic region. As expected, 

a DSC analysis of this polymer did not reveal any thermal transition such as 

recrystalization or melting, but also no clear glass transition. 

3.2.2.2. Optical Properties and Energy Levels 

The absorption and emission spectra of the PdCP1 polymer display some similarity with 

those of the PNPC8 polymer. As deduced from the molecular structure, the conjugation 

along the polymer main chain is reduced to two π-interacting carbazole units. The polymer 

absorbs light up to 390 nm. In chloroform solution as well as in solid state, the absorption 

spectrum displays two distinct peaks around 250 and 309 nm (maximum absorption λmax) 
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with a weak shoulder around 355 nm (Figure 3.28, Table 3.2). The carbazole-based 

polymer PdCP1 exhibits a blue emission with a maximum centered at 414 nm in solution 

or 421 nm in the solid state. Here as well, the rather large Stokes shift (105 nm in solution 

and 112 nm in solid state) points for distinct structural differences between the ground and 

excited states. The absence of any shift between the absorption spectra in solution and in 

the film suggests the absence of any higher order in the solid state. 
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Figure 3.28: UV-Vis and PL spectra of PdCP1 in chloroform solution and in the solid state. 

 

  PdCP1 

Absorption [nm] 252, 309 (355) 
Solution 

Emission [nm] 414 

Absorption [nm] 247, 309 (358) 
Film 

Emission [nm] 421 

 

Table 3.2: Absorption and emission data of PdCP1 in chloroform solution and in solid state. 

 

The band gap of this polymer, as determined by the onset position of its absorption bands 

in the solid state (λg = 358 nm), was about 3.8 eV. The HOMO level of the material was 

determined by UPS to be ca. 5.5 eV. 

3.2.2.3. OFET Characteristics 

As for the previous materials, the OFET characteristics (output and transfer) has been 

investigated for the same kind of devices presenting a bottom-gate/bottom-contact 

configuration with highly n-doped silicon as gate, a thermally grown SiO2 dielectric layer 

as well as source and drain gold electrodes. The hole mobility has been measured from 

the saturation regime of the transfer characteristics for VD = –100 V. 
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Figure 3.29: Output and transfer characteristics for OFETs based on PdCP1. 

 

The device based on PdCP1 exhibits a nice field-effect behaviour with a clear saturation 

regime in the output characteristics as plotted in Figure 3.29. On the other hand, the 

transfer characteristics displays a moderate turn-on voltage Von around –20 V but a large 

hysteresis which could be explained by the presence of hole traps (defects or impurities; 

e.g. metal traps from the catalyst) or an oxidation in solution prior to processing. Also here, 

similar to PNCP8, only a quite moderate mobility with µFET = 7×10-5 cm2·V-1·s-1 in the 

saturation regime for VG = –100 V has been measured for this device. The on/off ratio was 

up to 104. 

3.3. Conclusion 

During this work, two novel, soluble 3,6-carbazole-based, amorphous polymers have been 

developed for solution processed OFETs devices. In these two semiconducting materials, 

the hole conduction should occurr via formation of radical cations along the backbone, 

with dimeric units being the most extended conjugated segment (Figure 3.30). 
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a) Most extended π-conjugated segment for PNPC8 
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b) Most extended π-conjugated segment for PdCP1 

 

Figure 3.30: Most extended π-conjugated segments in a) PNPC8 and b) PdCP1. 

 

The measured HOMO levels were below –5.0 eV for the two materials indicating a good 

stability against air and oxygen. The band gap of 3.4 eV for PNPC8 and 3.8 eV for PdCP1 

determined from the absorption spectra were in accordance with those of other 

carbazole-based polymers (3–4 eV) such as poly(9-alkylcarbazole-2,7-diyl)s or 

poly(9-alkylcarbazole-3,6-diyl)s. Moreover, the presence of the meta-substituted 

phenylene bridge between two carbazole dimers clearly reduces the planarity of the 

backbone, inducing a somewhat blue-shifted absorption both in solution and in the solid 

state as well as a higher band gap energy. 

These two polymers exhibited a very similar field effect behaviour as well, with mobilities 

µFET of 6×10-5 cm2·V-1·s-1 for PNPC8 and 7×10-5 cm2·V-1·s-1 for PdCP1. Even if a higher 

on/off ratio has been observed for PNPC8 (105 against 104 for PdCP1) PdCP1 seems to 

show more room for improvement via reduction of the strong hysteresis and presents a 

slightly smaller turn-on voltage. Optimization of the monomer and polymer synthesis and 

purification or of the processing conditions could lead to an improvement of the OFET 

parameters, e.g. by reducing the amount of defects or impurities which act as energy 

traps. 

The PdCP1 polymer has already been used by Evonik Degussa Creavis-S2B Nanotronics, 

Marl in partnership with the group of Prof. Hübler, TU Chemnitz, for an application in 

all-printed organic transistors. 
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4. Phenazine-Based Materials 

4.1. Introduction 

Electron-rich compounds are potentially useful materials in several electronic or magnetic 

devices. As developed previously, due to their electron donating π-electron system and 

reversible redox properties, oligomers and polymers based on nitrogen containing 

heterocycles seem to be attractive candidates. 5,10-Diaryl-5,10-dihydrophenazine-based 

compounds (Figure 4.1) can be considered as one promising class of such materials. 

 

N N

R

R

 

 

Figure 4.1: 5,10-Diaryl-5,10-dihydrophenazine compound. 

 

Lots of procedures to synthesize 5,10-dialkyl-5,10-dihydrophenazine derivatives from 

5,10-dihydrophenazine have been developed. These are mainly based on 

reduction/alkylation sequences,[131] reduction/lithiation/alkylation sequences,[132] or the use 

of Grignard reagents[133] to afford the desired compounds in high yields. The synthesis of 

5,10-diarylsubstituated 5,10-dihydrophenazines has been first achieved in a Ullmann-type 

copper-catalyzed coupling reaction of lithiated phenazine with aryl halides, as reported by 

Gilman and Dietrich in 1957, but required very harsh conditions (e.g. 210 °C during 12 

hours to yield 16 % of 5,10-diphenyl-5,10-dihydrophenazine).[131] Other methods involving 

electrochemical[ 134 ] or aromatic nucleophilic[ 135 ] cyclizations have also been reported. 

Nevertheless, the best synthetic method for the formation of symmetrically or 

asymmetrically substituated 5,10-diaryl-5,10-dihydrophenazines were reported by Okada 

and co-workers. This procedure based on the Buchwald-Hartwig-type palladium-catalyzed 

cross coupling reaction of 5,10-dihydrophenazine and an aryl halide using NaO-t-Bu as a 

base, P(t-Bu)3 as a ligand and Pd(OAc)2 as a catalyst in toluene allowed to afford the 

desired derivatives in good yields (65 to 85 %) depending on the subsituents.[136] Several 

of the compounds developed by Okada and co-workers were used in electroluminescent 

devices[136] or for magnetic[137] applications (Figure 4.2). EL device studies in particular 

showed good hole injecting properties for 5,10-diaryl-5,10-dihydrophenazines. 
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Figure 4.2: 5,10-Diaryl-5,10-dihydrophenazine-based compounds developed by Okada and  

co-workers for a) electroluminescent
[136]

 and b) magnetic applications.
[137]

 

 

Polymers containing photosensitive 5,10-dihydrophenazine units for laser ablation 

applications were also reported by Mikulla et al.[138] They explored the influence of an 

incorporation of such units in polyaramides on the resulting optical properties. The 

5,10-bis(4-aminophenyl)-5,10-dihydrophenazine monomer used was prepared by in-situ 

silylation of phenazine to form 5,10-bis(trimethylsilyl)-5,10-dihydrophenazine followed by a 

reaction with 4-nitrobenzoyl chloride and catalytic hydrogenation. The final polyamides 

were then synthesized by polycondensation of the bisamino monomer with terephthaloyl 

chloride in N-methyl-2-pyrrolidone (Figure 4.3). 
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Figure 4.3: Preparation of a polyaramide containing phenazine units according to Mikulla et al.
[138]

 

 

In this chapter, the synthesis and characterization of one model compound and several 

copolymers containing the 5,10-diaryl-5,10-dihydrophenazine unit are presented. 
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4.2. Model Compound 

A 5,10-diphenyl-5,10-dihydrophenazine model with two octyl chain at both phenyl side 

groups (d8PPz) has been first synthesized and characterized within this study. The long 

alkyl chains were attached to increase the solubility and processability of the diphenyl 

phenazine compound.  

 

N NC8H17 C8H17

d8PPz  

 

Figure 4.4: Diphenyl phenazine-based model compound (d8PPz). 

4.2.1. Synthesis 

For the synthesis of the model compound, phenazine was first reduced to 

5,10-dihydrophenazine with sodium dithionite[138] and arylated in a palladium-catalyzed 

Buchwald-Hartwig-type coupling reaction with the corresponding aryl halide (Figure 

4.5).[139] 

 

N N HN NH
EtOH/H2O

Na2S2O4
N NC8H17 C8H17

Pd2(dba)3, CycloJohnPhos
NaO-t-Bu, Toluene

C8H17Br

d8PPz  

 

Figure 4.5: Synthesis of the model compound (d8PPz). 

 

The catalytic system used for the amination reaction was based on Pd2(dba)3 and  

2-(dicyclohexylphosphino)biphenyl (CycloJohnPhos) in toluene with NaO-t-Bu as a base. 

A screening procedure of several ligands and catalysts monitored by GC-MS allowed to 

determine the above mentioned system as the most efficient one concerning yield and 

selectivity. In this reaction, after purification 90 % of d8PPz could be isolated as orange 

crystals. Unfortunately, only a MS investigation was possible yielding a molar peak at 

557.3 g·mol-1. Despite the fact that d8PPz showed a good solubility in common deutered 

solvents (e.g. CDCl3, DMSO-d6) its poor stability in solution against light and air did not 

allow the recording of NMR spectra. 
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4.2.2. Optical Properties and Stability Investigation 

The absorption and emission spectra of the d8PPz model compound were measured by 

UV-Vis and photoluminescence (PL) spectroscopy, both in chloroform solution and in the 

solid state (thin film). A detailed UV-Vis study of d8PPz was carried out to investigate its 

stability in solution. As previously described, the HOMO energy level was estimated by UV 

photoelectron spectroscopy (UPS). 

Figure 4.6 shows the UV-Vis and PL spectra of d8PPz in chloroform solution and in solid 

state (film). 
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Figure 4.6: UV-Vis and PL spectra of d8PPz in chloroform solution and in solid state. 

 

  d8PPz 

Absorption [nm] 318, 375 
Solution 

Emission [nm] 416 

Absorption [nm] 310, 367 
Film 

Emission [nm] 423, 464, 505, 537 

 

Table 4.1: Absorption and emission data of d8PPz in chloroform solution and in solid state. 

 

The model compound d8PPz in chloroform solution and in the solid state displays two 

UV-absorption maxima λmax at approx. 320 and 375 nm (Figure 4.6, Table 4.1). In solution, 

it exhibits an unstructured blue emission peak centered at 416 nm. On the other hand, a 

handful of low energy emission peaks of unclear origin appear in the solid state (Figure 

4.6, Table 4.1). 

The stability of d8PPz against ambient conditions (air and light) in solution was 

investigated by absorption spectroscopy for several times of exposition. 
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 a) In chloroform solution under light exposition. b) In chloroform solution protected from light. 

 

Figure 4.7: Evolution of the UV-Vis spectra of d8PPz in chloroform solution a) under light 

exposition and b) protected from light. 

 

The UV-Vis spectrum of d8PPz in chloroform solution displays a main peak at 375 nm 

and a smaller peak at ca. 320 nm (Figure 4.7, black curve). The generation of several 

lower energy peaks around 470 nm and in a range between 560 and 800 nm as well as a 

decrease of the main absorption peak at 375 nm can clearly be observed after a few 

minutes of exposition to sunlight. The exposition to light seems to be the critical factor 

regarding the stability. The triphenylamine derivatives, this phenomenon is probably due 

to a photooxidation of the compound and the occurence of radical cationic species. This 

hypothesis could be corroborated by further investigations e.g. EPR analysis. The stability 

of d8PPz against light seems to be poor and probably insufficient for an application in 

solution-processed OFETs. 

As determined from the onset position of its absorption band in the solid state 

(λg = 428 nm) d8PPz possesses a band gap energy around 3.2 eV. The HOMO level of 

the material was measured to be approx. 5.1 eV by UPS. The values for the energy levels 

are similar to the ones of the PTPA polymers. 

4.2.3. OFET Characteristics 

The OFET characteristics (output and transfer) have been investigated for devices in a 

bottom-gate/bottom-contact configuration with highly n-doped silicon as gate, thermally 

grown SiO2 dielectric layer and source and drain gold electrodes. The mobility has been 

measured from the transfer characteristics for VD = –100 V. The active layer has been 

spin-coated from chloroform solution onto the devices. 
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Figure 4.8: Output and transfer characteristics for OFETs based on d8PPz. 

 

As depicted in Figure 4.8 the devices based on d8PPz showed only poor OFET behavior 

without a clear saturation region for high source-to-drain voltages VD. The same 

conclusion can be deduced from the transfer characteristics where a poor OFET behavior 

can be observed. The extracted mobility for this device is logically very poor with a hole 

mobility µFET = 4×10-7 cm2·V-1·s-1 at an on/off ratio of only approx. 10. These values are far 

below the ones observed for the other triphenylamine derivatives.[136] OLEDs devices 

based on similar compounds have been all prepared by vacuum evaporation processes, 

avoiding the decomposition in solution.[136] 

4.3. Phenazine-Containing Polymers 

Despite the low stability of the diphenyl phenazine model compound, several copolymers 

(PdPPzs) with comonomeric units such as carbazole or triphenylamine were synthesized 

and characterized (Figure 4.9). 
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Figure 4.9: Phenazine containing copolymers. 
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4.3.1. Synthesis 

A dibromo-functionalized diphenyl phenazine monomer (MdPPz) was synthesized similar 

to the model compound d8PPz by palladium-catalyzed Buchwald-Hartwig-type amination 

of an aryl halide and 5,10-dihydrophenazine as depicted in Figure 4.10. 

 

N N HN NH
EtOH/H2O

Na2S2O4
N NBr Br

Pd2(dba)3, CycloJohnPhos
NaO-t-Bu, Toluene

IBr

MdPPz  

 

Figure 4.10: Synthesis of a bis(bromophenyl)phenazine monomer (MdPPz). 

 

In this case, as for the TPA monomers, 1-bromo-4-iodobenzene was used as aryl halide 

due to the lower dissociation energy of the C-I bond compared to the C-Br bond allowing 

to afford dibromo-functionalized monomers within one step. This procedure yielded 

approx. 80 % of the MdPPz compound too, as yellow crystals after purification by 

recrystallization from toluene. No NMR spectroscopy investigation could be carried out for 

this compound due to its very poor solubility in all available deutered solvents (e.g. CDCl3, 

C2D2Cl4, DMSO-d6). As for the model compound, characterization could only be done by 

mass spectrometry showing molar peak at 490.7 g·mol-1. 

A first attempt was made to synthesize the corresponding homopolymer in a homo-

coupling reaction according to Yamamoto. Unfortunately, this procedure did not lead to 

any coupling product due to the very low solubility of the MdPPz monomer in the solvents 

commonly used for this kind of reaction (e.g. THF, toluene and DMF). 

A first copolymer synthesized was an alternating copolymer of diphenyl phenazine and 

dicarbazole units (PdPPz1). This polymer was prepared by standard palladium-catalyzed 

Suzuki-Miyaura-type cross-coupling reaction of aryl halides and boronic ester compound. 

The dicarbazole bis(boronic ester) comonomer was prepared by oxidative dimerization of 

N-decylcarbazole followed by bromination and formation of the diboronic ester (Figure 

4.11) to afford ca. 35 % (overall) of the pure comonomer as white crystals. The molecular 

integrity was shown by NMR spectroscopy and mass spectrometry (see Experimental 

Section). 
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Figure 4.11: Synthesis of the dicarbazole bis(boronic ester) comonomer. 

 

The Suzuki-Miyaura-type cross-coupling reaction has already been the focus of a wide 

range of publications[140] and will not be described here any further. This reaction was 

carried out with tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4) as catalyst, aqueous 

potassium carbonate as base in toluene with Aliquat 336 as phase-transfer catalyst 

(Figure 4.12)[141] to afford more than 85 % of PdPPz1. 
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Figure 4.12: Synthesis of the copolymer PdPPz1. 

 

After purification, the PdPPz1 copolymer displayed a molecular weight 

Mn = 2.1×103 g·mol-1 with a polydispersity at PD = 1.16. Considering that the molecular 

weight of one repeat unit is around 1000 g·mol-1, the material produced was just a dimer. 

This low molecular weight can be explained by the poor solubility of the products in the 

reaction medium leading to a precipitation of oligomers. 
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The second copolymer prepared was a random copolymer with diphenyl phenazine and 

triphenylamine building blocks (PdPPz2). A mixture of 20 % MdPPz and 80 % of MTPA3 

was randomly polymerized in a Yamamoto-type homo-coupling procedure as shown in 

Figure 4.13, to yield ca. 55 % of PdPPz2. 
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Figure 4.13: Synthesis of PdPPz2. 

 

After purification and extraction, the random copolymer PdPPz2 exhibited a molecular 

weight Mn = 2.1×104 g·mol-1 with a polydispersity PD = 1.6. The exact amount of 

incorporated diphenyl phenazine units into the polymer chain could not be exactly 

estimated by 1H NMR investigation due to the fact that no characteristic for both 

monomeric units were available in the spectrum. 

The third and last copolymer synthesized for this study was an alternating copolymer of 

phenazine and triphenylamine units (PdPPz3). In order to overcome the solubility 

problems, 5,10-dihydrophenazine was directly coupled with the triphenylamine units in a 

Buchwald-Hartwig-type amination, as depicted in Figure 4.14. 
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Figure 4.14: Synthesis of PdPPz3. 

 

As shown by Hartwig and co-workers, polymers with high molecular weight can be 

obtained by direct amination of dihaloaryls and diamine with a suitable catalytic system 

based on a palladium catalyst and phosphine ligands. For this reaction, conditions as 

used for the model compound were applied and ca. 65 % of a polymer PdPPz3 have 

been isolated. Beside CycloJohnPhos, the alternative P(t-Bu)3 proved to be also an 

effective phosphine ligand. The polymer exhibited a molecular weight Mn = 6.7×103 g·mol-1 
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with a polydispersity of PD = 1.2 after extraction with ethyl acetate to remove low 

molecular weight oligomers. 

4.3.2. Optical Properties and OFET Investigation 

Figure 4.15 shows the UV-Vis spectra of the three phenazine-containing copolymers 

(PdPPz1, PdPPz2, PdPPz3) in chloroform compared to the tiphenylamine homopolymer 

PTPA3, the dibromomonomer MTPA3 and the model compound d8PPz. 
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Figure 4.15: UV-Vis spectra of PTPA3 (blue dotted curve), MTPA3 (pink dotted curve), d8PPz 

(black dot curve), PdPPz1 (orange curve), PdPPz2 (green curve) and PdPPz3 (red curve) in 

chloroform. 

 

PdPz1 (Figure 4.15, orange curve) presents two distinct absorption maxima centered at 

258 nm and at 308 nm, PdPPz3 exhibits two peaks at 258 and 312 nm. Both polymers 

display absorption shoulders at ca. 375 nm. The shoulders correspond to the main chain 

diphenyl phenazine units (Figure 4.15, red and black curves). The random copolymer 

PdPPz2 displays an unstructured absorption band centered at 388 nm similar to that of 

PTPA3. This may suggest that only few diphenyl phenazine units are incorporated into the 

backbone. 

The optical band gaps of PdPPz1 and PdPPz2 were determined by the onset of the 

absorption bands to be 3.8 and 3.2 eV, respectively, and the HOMO levels to 4.90 eV and 

5.02 eV respectively (UPS analysis). 

A bottom-gate/bottom-contact-configured OFET device based on PdPPz1 did not show 

any field-effect behavior under ambient conditions. On the other hand, devices based on 

the PdPPz2 random copolymer showed good field effect behavior with clear saturation 

region, moderate turn-on voltage (Von = –10 V) and small hysteresis (Figure 4.16). 
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Figure 4.16: Output and transfer characteristics of PdPPz2 based OFET devices. 

 

The mobility measured in the saturation regime is µFET = 4×10-4 cm2·V-1·s-1 with an on/off 

ratio up to 105. These good results have to be contrasted by the fact that the amount of 

incorporated phenazine units is unclear. 

The alternating copolymer PdPPz3 have not been analyzed so far and thus, no results 

concerning the energy levels or OFET characteristics could be presented here. 

4.3.3. Conclusion 

Despite the encouraging results shown in other studies, the different phenazine-based 

derivatives of this study did not fulfill the expectations of being suitable materials for 

solution-processed OFETs. The d8PPz model compound showed a very weak stability in 

solution, especially in daylight. After a very short time (approx. 1 min), solutions of the 

material were already oxidized preventing a satisfying OFET performances. 

Beside its very low molecular weight, a first alternating copolymer with diphenyl phenazine 

and dicarbazole units (PdPPz1) exhibited the similar stability problems in solution, 

probably also in the solid state (film). The devices based on this material did not even 

show any OFET behavior. 

Concerning the random copolymer PdPPz2 composed of diphenylphenazine and 

triphenylamine units, the characterization results indicate the incorporation of only a low 

amount of phenazine subunits. The OFET properties are mainly influenced by the 

polytriarylamine backbone with low influence of the phenazine moietites. 

The last alternating copolymer produced (PdPPz3) showed a higher concentration of 

incorporated phenazine units. The Buchwald-Hartwig-type amination allowed to overcome 

the solubilization problem of the phenazine monomer and afforded a copolymer with 

reasonable molecular weight (Mn > 5×103 g·mol-1). Moreover, the higher amount of 

incorporated phenazine units in the polymer will allow to study the influence of this moiety 
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on the OFET properties. The PdPPz3 polymer will now be investigated for its OFET 

properties. However, early UV-Vis investigation as well as difficulties to obtain 

well-resolved NMR spectra indicate stability problems as for the model compound d8PPz. 

In conclusion, despite the prominsing literature reports on phenazine-based materials as 

hole-conducting materials for optoelectronic applications, their poor stability make them 

unsuitable for a use in solution-processed OFETs. 
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5. Summary 

In this thesis, it has been shown that triarylamine-based semiconducting polymers 

represent suitable candidates for solution-processed organic field-effect transistors. A 

couple of materials showed a clear field-effect when used as semiconducting layer in 

OFET devices. Moreover, a special focus of this work has been put on the stability against 

air which is one of the most crucial prerequisites. Thiophene-based polymers show 

serious restrictions in this direction.  

In the polytriphenylamine series, PTPA3 showed the most promising electronic properties 

regarding the stability as well as the OFET performance, with a hole mobility µFET around 

10-3 cm2·V-1·s-1 and on/off ratio up to 106. It has been determined that the stability of the 

polymers is directly related to the shielding effect induced by the ortho-substituents at the 

side chain phenyl group. However, the stability of the PTPA polymers could not further be 

improved due to restrictions in the chemical reactions that have been applied in the 

synthesis of the triphenylamine monomers. Monomers with increased shielding effect 

could not be prepared in the amination reaction (according to Buchwald-Hartwig or 

Ullmann) due to the high steric hindrance of the arylating reagents with larger 

ortho-substituents.  

In the case of the polycarbazoles (PNPC8 and PdCP1), OFET devices based on these 

polymers exhibited a promising OFET behavior comparable to the OFET properties 

(mobility and on/off ratio) of PTPA3. 

At last, phenazine-containing polymers turned out to be unsuitable for air-stable, solution 

processed OFET devices. Their very poor stability in solution against light and air seems 

to exclude this class of compounds for OFET applications. 
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6. Outlook 

6.1. New Polymers for OFETs 

Concerning the polytriphenylamines PTPAs, further improvements via modification of the 

molecular structure seem possible. Nevertheless, PTPA3 has already proved to be the 

most suited polymer for OFET applications so far. The use of larger aromatic main chain 

segments seems to decrease the solubility and processibility of the materials without any 

increase of the OFET performance including mobility and on/off ratio. 

In partnership with the Evonik Degussa Creavis, new carbazole containing polymers will 

be developed and tested for OFET applications. Based on the PdCP structure (two 

carbazoles bridged by an aromatic group) similar compounds with different aromatic cores 

are under investigation. Through this, it will be possible to determine the influence of the 

core unit on the OFET properties. Possible core units are pyridine-2,6-diyl, 1,4-phenylene 

or more complex aromatic systems (e.g. benzophenone, fluorene) as depicted in Figure 

6.1. 
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Figure 6.1: PdCP-type polymers with pyridine (A), para-phenylene (B), benzophenone (C) or 

fluorene (D) as core unit. 

 

As for thiophene-based polymers, “fused” carbazole compounds such as indolocarbazoles 

could be also attractive for OFET applications (See Chapter 3).[123,124] In this view, 

polymers like E or F are possible candidates for an use as semiconducting layer in OFET 

devices (Figure 6.2). 
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Figure 6.2: Fused carbazole-containing materials. 

6.2. Triphenylamine-Based Polymers as Bio-Sensor and Dyes 

During the last few years, sensor applications of conjugated polymers and oligomers 

appeared as a new research field. Several sensors have already been developed for 

metallic cations and anions, proteins or DNA based on small organic molecules or 

polymers. [14,142 ] In this view, triarylamine-based polymers containing heterocyclic side 

groups such as 4-pyridyl (Figure 6.3) should be of interest for the detection of acidic 

analytes e.g. in the gas or liquid phase. 
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Figure 6.3: A 4-pyridyl-containing polytriphenylamine for potential sensor applications. 

 

Dye-sensibilized organic solar cells have also been the focus of intense research.[143] 

However, only a few polymers containing triphenylmethane-type dyechromophores 

incorporated into the backbone of a semiconducting polymer have been described so 

far.[144] Therefore, copolymers containing triphenylmethane dyes (TPMD) as depicted in 

Figure 6.4 could be an interesting target. 
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Figure 6.4: Dye-containing triphenylamine-based semiconducting polymers. 
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7. Experimental Section 

7.1. General Methods  

The 1H and 13C NMR spectra were recorded on a Bruker ARX 400 spectrometer. Low-

resolution mass spectrometry (LR-MS) was carried out on a Varian MAT 311 A operating 

at 70 eV (electron impact) and reported as m/z. Elemental analyses were performed on a  

Vario EL II (CHNS) instrument. UV-Vis absorption spectra were recorded on a  

Jasco V 550 spectrophotometer. Fluorescence measurements were carried out on a 

Varian Cary Eclipse instrument. 

Unless otherwise indicated, all reagents were obtained from commercial suppliers and 

were used without further purification. All reactions were carried out under an argon 

atmosphere by use of standard and Schlenk techniques. The solvents were used as 

commercial p.a. quality. 

7.2. Synthesis of Triphenylamine-Based Materials 

7.2.1. General procedure for the synthesis of N,N-bis(4-bromophenyl)-

arylanilines (MTPAs) 

To a stirred solution of Pd2(dba)3 (126 mg, 0.138 mmol), DPPF (230 mg, 0.414 mmol), 

1-bromo-4-iodobenzene (13.07 g, 46 mmol) and NaO-t-Bu (5.3 g, 55 mmol) in 30 ml of 

toluene a solution of freshly distilled aniline (22 mmol) in 10 ml of toluene was slowly 

added at 80 °C. The reaction mixture was stirred for 24 hours at 90 °C. At the end of the 

reaction, the mixture was diluted with hot ethyl acetate and mixed with cellite. The 

non-soluble solids were filtered off and washed several times with hot ethyl acetate. The 

filtrat was washed with aqueous, saturated EDTA solution and water, the organic layer 

subsequently dried over MgSO4 and all solvents removed under vacuum. The raw product 

was then purified by column chromatography with hexane as eluent and recrystallized 

from a methanol/2-propanol (1/3) mixture to afford the monomers as white crystals. 

7.2.1.1. N,N-bis(4-bromophenyl)-2,4-dimethylaniline (MTPA2). 

N

BrBr  
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According to the general procedure, 2,4-dimethylaniline (2.67 g, 22 mmol) was used to 

obtain 5.88 g (62 %) of the title compound as white crystals. 

 1H NMR (400 MHz, CDCl3, 32 °C): δ [ppm] = 7.29 (td, 4H, Ar-H, 3J = 8.9 Hz), 7.07 

(s, 1H, Ar-H), 7.03 (d, 1H, Ar-H, 3J = 8.1 Hz), 6.97 (d, 1H, Ar-H, 3J = 8.0 Hz), 6.83 (td, 4H, 

Ar-H, 3J = 9.0 Hz), 2.35 (s, 3H, -CH3), 2.00 (s, 3H, -CH3). 
13C NMR (101 MHz, CDCl3, 

32 °C): δ [ppm] = 146.2, 141.8, 136.5, 136.0, 132.6, 132.1, 129.2, 128.4, 122.8, 113.9, 

21.0, 18.3. LR-MS (EI, 70 eV): m/z = 430.6 [M+]. Anal. Calcd. for C20H17Br2N: C 55.71 %, 

H 3.97 %, N 3.25 %. Found: C 55.88 %, H 3.92 %, N 3.33 %. 

7.2.1.2. N,N-bis(4-bromophenyl)-2,4,6-trimethylaniline (MTPA3). 

N

BrBr  

 

According to the general procedure, 2,4,6-trimethylaniline (2.97 g, 22 mmol) was used to 

give 3.7 g (38 %) of the title compound as white crystals. 

 1H NMR (400 MHz, CDCl3, 32 °C): δ [ppm] = 7.27 (d, 4H, Ar-H, 3J = 8.6 Hz), 6.94 

(s, 2H, Ar-H), 6.82 (d, 4H, Ar-H, 3J = 8.9 Hz), 2.32 (s, 3H, -CH3), 1.98 (s, 6H, -CH3).  

13C NMR (101 MHz, CDCl3, 32 °C): δ [ppm] = 144.8, 139.2, 137.4, 137.3, 132.1, 130.1, 

121.1, 113.27, 21.0, 18.4. LR-MS (EI, 70 eV): m/z = 446.6 [M+]. Anal. Calcd. for 

C21H19Br2N: C 56.66 %, H 4.30 %, N 3.15 %. Found: C 56.64 %, H 4.28 %, N 3.19 %. 

7.2.1.3. N,N-bis(4-bromophenyl)-4-butylaniline (MTPA4) 

N

BrBr  

 

According to the general procedure, 4-butylaniline (3.28 g, 22 mmol) was used to afford 

6.36 g (63 %) of the title compound as white crystals. 

 1H NMR (400 MHz, C2D2Cl4, 32 °C): δ [ppm] = 7.25 (m, 4H, Ar-H), 7.01 (d, 2H, 

Ar-H, 3J = 8.4 Hz), 6.89 (d, 2H, Ar-H, 3J = 8.3 Hz), 6.85 (m, 4H, Ar-H), 2.49 (t, 2H, -αCH2, 

3J = 7.7 Hz), 1.52 (m, 2H, -CH2-), 1.29 (m, 2H, -CH2-), 1.29 (t, 3H, -CH3, 
3J = 7.3 Hz).  

13C NMR (101 MHz, C2D2Cl4, 32 °C): δ [ppm] = 146.9, 144.4, 139.2, 132.5, 129.8, 125.3, 
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125.2, 115.1, 35.3, 33.8, 22.7, 14.4. LR-MS (EI, 70  eV): m/z = 459.6 [M+]. Anal. Calcd. for 

C22H21Br2N: C 57.54 %, H 4.61 %, N 3.05 %. Found: C 57.81 %, H 4.53 %, N 3.14 %. 

7.2.1.4. N,N-bis(4-bromophenyl)-4-phenylaniline (MTPA5) 

N

BrBr  

 

According to the general procedure, 4-phenylaniline (3.72 g, 22 mmol) was used to give 

5.48 g (52 %) of the title compound as white crystals. 

 1H NMR (400 MHz, C2D2Cl4, 32 °C): δ [ppm] = 7.52 (d, 2H, Ar-H, 3J = 7.5 Hz), 7.44 

(d, 2H, Ar-H, 3J = 8.4 Hz), 7.36 (t, 2H, Ar-H, 3J = 7.5 Hz), 7.30 (d, 4H, Ar-H, 3J = 8.4 Hz), 

7.26 (t, 1H, Ar-H, 3J = 7.5 Hz), 7.05 (d, 2H, Ar-H, 3J = 8.4 Hz), 6.92 (d, 4H, Ar-H, 

3J = 8.4 Hz). 13C NMR (101 MHz, C2D2Cl4, 32 °C): δ [ppm] = 146.6, 146.3, 140.4, 136.2, 

132.7, 129.2, 128.3, 127.5, 126.9, 125.9, 124.7, 115.8. LR-MS (EI, 70 eV): 

m/z = 479.6 [M+]. Anal. Calcd. for C24H17Br2N: C 60.15 %, H 3.58 %, N 2.92 %. Found:  

C 60.30 %, H 3.51 %, N 2.99 %. 

7.2.1.5. N,N-bis(4-bromo-1,1’-biphen-4’-yl)-2,4,6-trimethylaniline (MTPA6) 

N

Br Br  

 

To a stirred solution of tris Pd2(dba)3 (126 mg, 0.138 mmol), DPPF (230 mg, 0.414 mmol), 

1-bromo-4-iodobiphenyl (16.51 g, 46 mmol) and Na-t-BuO (5.3  g, 55 mmol) in 30 ml of 

toluene a solution of fresh distilled 2,4,6-trimethylaniline (2.97 g, 22 mmol) in 10 ml of 

toluene was slowly added at 80 °C. The reaction mixture was stirred for 24 hours at 90 °C. 

At the end of the reaction, the mixture was diluted with hot ethyl acetate and mixed with 

cellite. The non-soluble solids were filtered off and washed several times with hot ethyl 

acetate. The filtrat was washed with aqueous, saturated EDTA solution and water, the 

organic layer subsequently dried over MgSO4 and all solvents removed under vacuum. 

The raw product was then purified by column chromatography with hexane as eluent and 
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recrystallized from a methanol/2-propanol (1/3) mixture to afford 6.12 g (46 %) of the title 

compound as pale yellow crystals. 

 1H NMR (400  MHz, CDCl3, 32 °C): δ [ppm] = 7.52 (d, 4H, Ar-H, 3J = 8.7 Hz), 7.42 

(dd, 8H, Ar-H, 3J = 8.6 Hz), 7.07 (d, 4H, Ar-H, 3J = 8.7 Hz), 6.98 (s, 2H, Ar-H), 6.82 (d, 4H, 

Ar-H, 3J = 8.9 Hz), 2.35 (s, 3H, Ar-CH3), 2.05 (s, 6H, Ar-CH3). 
13C NMR (101 MHz, CDCl3, 

32 °C): δ [ppm] = 145.5, 139.6, 137.6, 137.2, 132.3, 131.8, 130.1, 128.0, 127.5, 127.3, 

120.7, 119.9, 21.1, 18.5. LR-MS (EI, 70 eV): m/z = 597.6 [M+]. Anal. Calcd. for 

C33H27Br2N: C 66.35 %, H 4.56 %, N 2.34 %. Found: C 66.87 %, H 4.42 %, N 2.59 %. 

7.2.2. General procedure for the synthesis of triphenylamine-based polymers 

(PTPAs) 

To a stirred solution of Ni(COD)2 (1.98 g, 7.2 mmol), BPy (1.124 g, 7.2 mmol) and COD 

(779 mg, 7.2 mmol) in 10 ml of DMF at 80 °C, a solution of the corresponding monomer 

(3 mmol) in 20 ml of toluene was slowly added under argon and protected from light. The 

reaction mixture was stirred at 90 °C for 48 hours. Afterwards, a solution of 

bromobenzene in toluene (3 ml, 1 M) was added and the reaction mixture stirred at this 

temperature for additional 24 hours. The mixture was then allowed to cool down to room 

temperature, diluted with 1000 ml of warm chloroform and filtered to remove the solid 

catalyst. The chloroform phase was washed several times with aqueous, saturated EDTA 

solution and water, concentrated and precipitated into 2000 ml of mixture of 

methanol/acetone/conc. aq. HCl (1/3/0.2, v/v/v). The greenish product was then filtered off, 

re-dissolved in chloroform and stirred overnight with 2 ml of aqueous hydrazine hydrate 

(80 %). The solvents were removed under vacuum, the polymer re-dissolved in small 

amount of chloroform and finally precipitated (as a highly concentrated solution) into 

1000 ml of methanol to give a pale yellow solid. The raw polymer was extracted 24 hours 

in a soxhlet apparatus with ethyl acetate and additional 24 hours with chloroform. The 

chloroform fraction was concentrated and re-precipitated into methanol to obtain the target 

polymer as a pale yellow solid. In all cases, the chloroform fraction was used for the 

following characterization and OFET experiments. 

7.2.2.1. Poly(N,N-diphenyl-4-methylaniline) (PTPA1) 

N

n  
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According to the general procedure, N,N-bis(4-bromophenyl)-4-methylaniline (1.251 g, 

3 mmol) was polymerized to afford after extraction about 500 mg (approx. 65 %) of the 

title compound. 

 1H NMR (400 MHz, CDCl3, 32 °C): δ [ppm] = 7.58 (d, Ar-H), 7.44 (m, Ar-H), 7.32 (d, 

Ar-H), 7.13 (d, Ar-H), 7.09 (m, Ar-H), 7.02 (d, Ar-H), 6.96 (d, Ar-H), 2.34 (s, -CH3).  

13C NMR (101 MHz, CDCl3, 32 °C): δ [ppm] = 146.7, 145.0, 134.5, 132.1, 130.1, 130.0, 

128.7, 127.2, 126.6, 125.1, 124.7, 123.7, 20.8. GPC Anal.: Mn = 2 500 g·mol-1, 

Mw = 5 000 g·mol-1, PD = 2.0. UV-Vis & PL (CHCl3): λmax,ab = 373 nm, λmax,em = 423 nm. 

UV-Vis & PL (Film): λmax,ab = 375 nm, λmax,em = 428 nm. 

7.2.2.2. Poly(N,N-diphenyl-2,4-dimethylaniline) (PTPA2) 

N

n  

 

According to the general procedure, N,N-bis(4-bromophenyl)-2,4-dimethylaniline (1.293 g, 

3 mmol) was polymerized to yield after extraction about 640 mg (approx. 75 %) of the title 

compound. 

 1H NMR (400 MHz, CDCl3, 32 °C): δ [ppm] = 7.72 (d, Ar-H), 7.50 (d, Ar-H), 7.41 (m, 

Ar-H), 7.08 (d, Ar-H), 7.03 (d, Ar-H), 6.96 (m, Ar-H), 2.36 (s, -CH3), 2.05 (s, -CH3).  

13C NMR (101 MHz, CDCl3, 32 °C): δ [ppm] = 146.2, 142.5, 136.3, 135.9, 133.6, 132.4, 

129.5, 128.1, 127.4, 127.3, 127.0, 121.5, 21.0, 18.4. GPC Anal.: Mn = 4 600 g·mol-1, 

Mw = 16 600 g·mol-1, PD = 3.6. UV-Vis & PL (CHCl3): λmax,ab = 377 nm, λmax,em = 418 nm. 

UV-Vis & PL (Film): λmax,ab = 385 nm, λmax,em = 422 nm. 

7.2.2.3. Poly(N,N-diphenyl-2,4,6-trimethylaniline) (PTPA3) 

N

n  

 

According to the general procedure, N,N-bis(4-bromophenyl)-2,4,6-trimethylaniline 

(1.336 g, 3 mmol) was polymerized to give after extraction about 750 mg (approx. 85 %) 

of the title compound. 
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 1H NMR (400 MHz, CDCl3, 32 °C): δ [ppm] = 7.72 (d, Ar-H), 7.65 (d, Ar-H), 7.50 (d, 

Ar-H), 7.46 (d, Ar-H), 7.43 (d, Ar-H), 7.36 (d, Ar-H), 7.08 (d, Ar-H), 7.04 (d, Ar-H), 6.97 (s, 

Ar-H), 2.36 (s, -CH3), 2.05 (s, -CH3). 
13C NMR (101 MHz, CDCl3, 32 °C): δ [ppm] = 144.7, 

140.0, 137.7, 136.8, 133.0, 129.9, 128.8, 127.5, 127.4, 126.9, 126.7, 119.8, 21.0, 18.6. 

GPC Anal.: Mn = 37 600 g·mol-1, Mw = 68 700 g·mol-1, PD = 1.8. UV-Vis & PL (CHCl3): 

λmax,ab = 389 nm, λmax,em = 417 nm. UV-Vis & PL (Film): λmax,ab = 390 nm, λmax,em = 422 nm. 

7.2.2.4. Poly(N,N-diphenyl-4-butylaniline) (PTPA4) 

N

n
 

 

According to the general procedure, N,N-bis(4-bromophenyl)-4-butylaniline (1.378 g, 

3 mmol) was polymerized to afford after extraction about 700 mg (approx. 80 %) of the 

title compound. 

 1H NMR (400 MHz, C2D2Cl4, 32 °C): δ [ppm] = 7.71 (m, Ar-H), 7.52 (m, Ar-H), 7.44 

(d, Ar-H), 7.12 (d, Ar-H), 7.08 (m, Ar-H), 2.58 (m, -αCH2), 1.61 (m, -CH2-), 1.38 (m, -CH2-), 

0.94 (m, -CH3). 
13C NMR (101 MHz, CDCl3, 32 °C): δ [ppm] = 146.8, 145.1, 138.0, 134.6, 

132.5, 130.8, 129.3, 128.8, 127.2, 124.9, 123.9, 123.8, 35.1, 33.6, 22.4, 14.0. GPC Anal.: 

Mn = 8 700 g·mol-1, Mw = 21 400 g·mol-1, PD = 2.5. UV-Vis & PL (CHCl3): λmax,ab = 379 nm, 

λmax,em = 423 nm. UV-Vis & PL (Film): λmax,ab = 378 nm, λmax,em = 428 nm. 

7.2.2.5. Poly(N,N-bis(phenyl)-4-phenylanaline-4,4’-yl) (PTPA5) 

N

n
 

 

According to the general procedure, N,N-bis(4-bromophenyl)-4-phenylaniline (1.438 g, 

3 mmol) was polymerized to give after extraction about 300 mg (approx. 30 %) of the title 

compound. 
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 1H NMR (400 MHz, CDCl3, 32 °C): δ [ppm] = 7.58 (m, Ar-H), 7.50 (m, Ar-H), 7.41 

(m, Ar-H), 7.31 (m, Ar-H), 7.21 (m, Ar-H). 13C NMR (101 MHz, CDCl3, 32 °C): 

δ [ppm] = 128.7, 127.9, 127.4, 127.3, 126.7, 124.5, 124.3. GPC Anal.: Mn = 3 200 g·mol-1, 

Mw = 4 700 g·mol-1, PD = 1.4. UV-Vis & PL (CHCl3): λmax,ab = 370 nm, λmax,em = 425 nm. 

UV-Vis & PL (Film): λmax,ab = 378 nm, λmax,em = 434 nm, λem = 460 nm. 

7.2.2.6. Poly[N,N-bis(1,1-biphenyl)-2,4,6-trimethylaniline] (PTPA6) 

N

n

N

 

 

According to the general procedure, N,N-bis(4-bromo-1,1’-biphen-4’-yl)-2,4,6-

trimethylaniline (1.792 g, 3 mmol) was polymerized to give after extraction about 1.1 g 

(approx. 85 %) of the title compound. 

 1H NMR (400 MHz, C2D2Cl4, 32 °C): δ [ppm] = 7.64 (m, Ar-H), 7.50 (d, Ar-H), 7.40 

(m, Ar-H), 7.15 (m, Ar-H), 7.06 (d, Ar-H), 6.94 (s, Ar-H), 2.32 (s, -CH3), 2.04 (s, -CH3).  

13C NMR (101 MHz, CDCl3, 32 °C): δ [ppm] = 145.8, 139.8, 139.0, 137.9, 132.9, 130.8, 

130.3, 128.0, 127.7, 127.4, 126.9, 120.6, 120.3, 21.3, 18.7. GPC Anal.: 

Mn = 11 200 g·mol-1, Mw = 19 100 g·mol-1, PD = 1.7. UV-Vis & PL (CHCl3): λmax,ab = 382 nm, 

λmax,em = 429 nm. UV-Vis & PL (Film): λmax,ab = 385 nm, λmax,em = 435 nm, λem = 454 nm. 

7.3. Synthesis of Carbazole-Based Monomers and Polymers 

7.3.1. Synthesis of 9-(4-octylphenyl)carbazole (NPC8) 

N

C8H17

 

 

To 40 ml of ethylmagnesium bromide (40 mmol, 1 M in THF) a solution of carbazole 

(6.21 g, 37.1 mmol) in 20 ml of THF was added dropwise under nitrogen at room 

temperature. Then the THF of the reaction mixture was removed under vacuum and 

replaced by 20 ml of dry toluene. After addition of NiCl2(PPh3)2 (972 mg, 1.49 mmol), PPh3 
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(779 mg, 2.97 mmol) and 1-bromo-4-octylbenzene (8 g, 29.7 mmol) the reaction mixture 

was reacted at 100 °C for 8 hours, and then cooled down to room temperature, quenched 

with 40 ml water, and filtered through a pad of silica. The organic layer was separated, 

and the aqueous phase extracted with ether. The combined organic phases were dried 

over MgSO4 and all solvents removed under vacuum. The residue was purified by column 

chromatography on silica gel with petroleum ether as eluent to afford 6.2 g (59 %) of the 

desired product. 

 1H NMR (400 MHz, C2D2Cl4, 32 °C): δ [ppm] = 8.09 (d, 2H, Ar-H, 3J = 7.7 Hz), 

7.43–7.32 (m, 8H, Ar-H), 7.24 (m, 2H, Ar-H), 2.68 (t, 2H, -αCH2, 
3J = 7.8 Hz), 1.67 (q, 

2H, -CH2-, 
3J = 7.7 Hz), 1.42-1.19 (m, 10H, -CH2-), 0.86 (t, 3H, -CH3, 

3J = 7.0 Hz). 13C 

NMR (101 MHz, C2D2Cl4, 32 °C): δ [ppm] = 142.7, 141.2, 135.1, 130.1, 127.0, 126.3, 

123.3, 120.5, 120.1, 110. 3, 36.0, 32.2, 31.7, 29.8, 29.7, 29.6, 23.0, 14.6. LR-MS (EI, 

70 eV): m/z = 354.8 [M+]. 

7.3.2. 3,6-Dibromo-9-(4-octylphenyl)carbazole (MNPC8) 

N

C8H17

Br

Br  

 

To a solution of 9-(4-octylphenyl)carbazole (4.03 g, 11.3 mmol) in 50 ml of DMF, a 

solution of N-bromosuccinimide (4.24 g, 23.8 mmol) in 35 ml of DMF was added dropwise 

under nitrogen at 0 °C. The reaction mixture was then allowed to warm up to room 

temperature, stirred for 3 hours and poured onto ice. The precipitate was filtered off and 

purified by recrystallization from hexane to afford 5.1 g (88 %) of the title compound as 

yellow crystals. 

 1H NMR (400 MHz, C2D2Cl4, 32 °C): δ [ppm] = 8.19 (d, 2H, Ar-H, 4J = 1.9 Hz), 7.49 

(dd, 2H, Ar-H, 3J = 8.7 Hz, 4J = 1.9 Hz), 7.38 (m, 4H, Ar-H), 6.85 (d, 2H, Ar-H, 3J = 8.7 Hz), 

2.73 (t, 2H, -αCH2, 
3J = 7.7 Hz), 1.72 (q, 2H, -CH2-, 

3J = 7.7 Hz), 1.36 (m, 10H, -CH2-), 

0.91 (t, 3H, -CH3, 
3J = 7.0 Hz). 13C NMR (101 MHz, C2D2Cl4, 32 °C): δ [ppm] = 143.2, 

140.1, 134.2, 130.0, 129.3, 126.8, 123.8, 123.1, 112.9, 111.6, 35.7, 31.9, 31.4, 29.5, 29.4, 

29.3, 22.7, 14.1. LR-MS (EI, 70 eV): m/z = 512.5 [M+]. Anal. Calcd. for C26H27Br2N:  

C 60.84 %, H 5.30 %, N 2.73 %. Found: C 61.03 %, H 5.25 %, N 2.81 %. 
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7.3.3. Poly[9-(4-octylphenyl)carbazole] (PNPC8) 

N

C8H17

n
 

 

A solution of 3,6-dibromo-9-(4-octylphenyl)carbazole (150 mg, 0.292 mmol), Ni(COD)2 

(177 mg, 0.643 mmol), BPy (110 mg, 0.701 mmol) and COD (76 mg, 0.701 mmol) in 2 ml 

of THF was irradiated with microwaves (300 W) at 120 °C for 12 min. A 1 M solution of 

bromobenzene (0.3 ml, 0.03 mmol) in toluene was then added and the reaction mixture 

stirred at 80 °C overnight. The reaction mixture was poured into 100 ml of chloroform and 

the non-soluble solids filtered off. The chloroform solution was washed with aqueous, 

saturated EDTA solution, water and stirred with 1 ml aqueous hydrazine hydrate (80 %) 

for 1 hour. Afterwards, the solvents were removed under vacuum. The grey solid was 

dissolved in a small amount of CHCl3 and precipitated from a highly concentrated solution 

into 250 ml of methanol to afford 70 mg (68 %) of the target polymer as a grey solid. 

 1H NMR (400 MHz, CDCl3, 32 °C): δ [ppm] = 8.56 (s, Ar-H), 7.73 (d, Ar-H),  

7.53–7.22 (m, Ar-H), 2.71 (m, -αCH2), 1.71 (m, -CH2-), 1.49-1.19 (m, -CH2-), 0.89 

(m, -CH3). 
13C NMR (101 MHz, CDCl3, 32 °C): δ [ppm] = 142.0, 140.4, 134.1, 129.6, 127.3, 

126.6, 125.6, 124.2, 118.7, 110.1, 35.7, 31.9, 31.5, 29.7, 29.5, 29.5, 29.3, 22.7, 14.1. 

GPC Anal.: Mn = 4 700 g·mol-1, Mw = 6 100 g·mol-1, PD = 1.3. UV-Vis & PL (CHCl3): 

λab = 259 nm, λmax,ab = 313 nm, λmax,em = 432 nm. UV-Vis & PL (Film): λab = 259 nm, 

λmax,ab = 322 nm, λmax,em = 451 nm. 

7.3.4. 2,6-Dibromo-4-tert-butylaniline 

Br Br

NH2  

 

In a 250 ml flask 50 ml of a bromine solution (43 g, 270 mmol) in dichloromethane were 

added to a cold (0 °C), stirred solution of 4-tert-butylaniline (20 g, 134 mmol) in 100 ml of 

dichloromethane within 1 hour. The reaction mixture was then stirred for 2 more hours at 

0 °C, allowed to warm up to room temperature and stirred for additional 12 hours. The 

white precipitate was filtered off and washed several times with dichloromethane to afford 
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32.5 g (79 %) of 2,6-dibromo-4-tert-butyaniline as white crystals. The product was used 

for the next step without further purification. 

 1H NMR (400 MHz, (CD3)2SO, 32 °C): δ [ppm] = 7.37 (s, 2H, Ar-H), 5.37 (s, -NH2), 

1.20 (s, 9H, C-(CH3)3). 
13C NMR (101 MHz, C2D2Cl4, 32°C): δ [ppm] = 141.6, 140.3, 128.6, 

107.8, 33.7, 30.9. LR-MS (EI, 70 eV): m/z = 306.2 [M+]. 

7.3.5. 3,5-Dibromo-1-tert-butylbenzene 

Br Br  

 

Sodium nitrite (9 g, 130 mmol) in 9 ml of conc. sulphuric acid was added to a stirred 

solution of 2,6-dibromo-4-tert-butylaniline (19 g, 61 mmol) in 100 ml of ethanol and 34 ml 

of benzene, and the reaction mixture was refluxed for 3 hours. After addition of ether 

(200 ml) the organic layer was separated, washed with water, dried over Mg2SO4 and 

concentrated under vacuum. The oil obtained was then purified by column 

chromatography with hexane as eluent to give 9.3 g (52 %) of the desired product as 

colorless oil. 

 1H NMR (400 MHz, C2D2Cl4, 32 °C): δ [ppm] = 7.42 (m, 1H, Ar-H), 7.37 (m, 2H, 

Ar-H), 1.22 (s, 9H, -CH3). 
13C NMR (101 MHz, C2D2Cl4, 32 °C): δ [ppm] = 155.8, 131.4, 

127.9, 123.0, 35.3, 31.3. LR-MS (EI, 70 eV): m/z = 293.0 [M+]. 

7.3.6. 3-Methylcarbazole 

H
N

 

 

To a refluxed solution of p-tolylhydrazine hydrochloride (6.345 g, 40 mmol) and 5 ml of 

acetic acid in 150 ml of ethanol, a solution of cyclohexanone (4 ml, 60 mmol) in 50 ml of 

ethanol was added over 1 hour. The mixture was refluxed overnight and allowed to cool to 

room temperature. The solution was neutralized with aq. sodium carbonate until the 

carbon dioxide formation is finished and then cooled down to 0 °C. The formed solid was 

filtered off and washed several times with cold ethanol. In order to get the maximum of 

product, the filtrate was concentrated under vacuum, one more time cooled in the fridge. 

Finally all solids were filtered off. The beige product was mixed with 5 g palladium (5 %) 

on char coal in a 1,2,4-trimethylbenzene/water (1/3) mixture and refluxed overnight under 

argon and protected from light. The reaction mixture was diluted with hot CHCl3 (150 ml), 
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the solids were filtered off and washed several times with hot CHCl3. The organic layer 

was separated and the solvents removed under vacuum. The product was then 

recrystalized several times from methanol to afford 5,89 g (82 %) of 3-methylcarbazole as 

white crystals. 

 1H NMR (400 MHz, CDCl3, 32 °C): δ [ppm] = 7.97 (d, 1H, J = 8.0 Hz, Ar-H), 7.94 (s, 

1H, N-H), 7.80 (s, 1H, Ar-H), 7.33 (d, 2H, J = 3.7 Hz), 7.26 (d, 1H, J = 8.2 Hz), 7.17 (m, 

2H), 2.47 (s, 3H). 13C NMR (100 MHz, CDCl3, 32°C): δ [ppm] = 140.0, 137.9, 129.1, 127.6, 

126.1, 123.6, 123.3, 120.5 (×2), 119.6, 111.0, 110.7, 21.8. LR-MS (EI, 70 eV): 

m/z = 180.8 [M+].  

7.3.7. 1,3-Bis(6’-methylcarbazol-9’-yl)-5-tert-butylbenzene (dCP) 

N N

 

 

To a solution of Pd2(dba)3 (22 mg, 24 µmol), 2-(di-tert-butylphosphino)biphenyl (14 mg, 

48 µmol), 3-methylcarbazole (218 mg, 1.2 mmol) and NaO-t-Bu (250 mg, 2.6 mmol) in 

4 ml of toluene, a solution of 1,5-dibromo-5-tert-butylbenzene in 2 ml of toluene was 

added dropwise and the reaction mixture reacted at 100 °C for 3 hours. Afterwards, the 

mixture was allowed to cool down to room temperature, all solvents removed under 

vacuum and the raw product diluted with chloroform (20 ml). The chloroform phase was 

washed with aqueous, saturated EDTA solution and water, and finally dried  

over MgSO4. The crude product was then purified by column chromatography 

(hexane/dichloromethane/triethylamine, 1/9/0.5 %) and dried under high vacuum to afford 

260 mg (90 %) of the title compound as a white solid. 

 1H NMR (400 MHz, (CD3)2SO, 32 °C): δ [ppm] = 8.18 (d, 1H, Ar-H, 3J = 7.7 Hz), 

7.99 (s, 2H, Ar-H), 7.69 (d, 2H, Ar-H, 4J = 1.7 Hz), 7.53 (t, 1H, 4J = 1.7 Hz), 7.49 (d, 2H, 

3J = 8.2 Hz), 7.40 (m, 4H, Ar-H), 7.22 (m, 4H, Ar-H), 2.44 (s, 6H, -CH3), 1.39 (s, 

9H, -(CH3)3). 
13C NMR (101 MHz, (CD3)2SO, 32 °C): δ [ppm] = 153.6, 139.5, 137.7, 137.6, 

128.2, 126.0, 124.6, 122.3, 122.1, 121.4, 120.5, 119.0, 118.6, 108.3, 108.4 108.1, 34.0, 

30.0, 20.0. LR-MS (EI, 70 eV): m/z = 495.4 [M+].  
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7.3.8. 1,3-Bis(3’-bromo-6’-methylcarbazole-9’-yl)-5-tert-butylbenzene (MdCP) 

N N

Br Br

 

 

To a stirred solution of 1,3-bis(6’-methylcarbazole-9’-yl)-5-tert-butylbenzene (493 mg, 

1 mmol) in 10 ml of acetonitrile, NBS (445 mg, 2.5 mmol) was added in 10 portions under 

protection from light. The mixture was stirred for 3 hours at room temperature. At the end 

of the reaction, the mixture was poured into ice, the precipitate filtered off and washed 

with cold acetonitrile. The raw product was purified by column chromatography 

(hexane/dichloromethane, 9/1) to afford 597 mg (92 %) of the title compound as a white 

powder. 

 1H NMR (400 MHz, C2D2Cl4, 32 °C): δ [ppm] = 8.16 (d, 2H, Ar-H, 4J = 1.8 Hz), 7.83 

(s, 2 H), 7.59 (d, 2H, Ar-H, 4J = 1.7 Hz), 7.46 (dd, 3H, Ar-H, 3J = 8.8 Hz, 4J = 1.7 Hz), 7.36 

(d, 2H, Ar-H, 3J = 8.4 Hz), 7.33 (d, 2H, Ar-H, 3J = 8.7 Hz), 7.24 (d, 2H, Ar-H, 3J = 8.4 Hz), 

2.48 (s, 6H, -CH3), 1.38 (s, 9H, -(CH3)3). 
13C NMR (101 MHz, C2D2Cl4, 32°C): 

δ [ppm] = 155.8, 139.7, 139.5, 138.8, 130.6, 129.0, 128.7, 125.3, 123.4, 123.2, 122.7, 

121.6, 120.8, 113.0, 111.6, 110.1, 52.9, 35.6, 31.5, 21.7. LR-MS (EI, 70 eV): 

m/z = 648.3 [M+]. Anal. Calcd. % for C36H30Br2N2: C 66.48 %, H 4.65 %, N 4.31 %. Found:  

C 66.68 %, H 4.77 %, N 4.10 %.  

7.3.9. Poly[1,3-bis(3’-methylcarbazole-9’-yl)-5-tert-butylphenylene-6’,6”-diyl] 

(PdCP) 

N N
n

 

 

A solution of 1,3-bis(3’-bromo-6’-methylcarbazole-9’-yl)-5-tert-butylbenzene (150 mg, 

0.231 mmol), Ni(COD)2 (140  mg, 0.507 mmol), BPy (86 mg, 0.553 mmol) and COD 

(60 mg, 0.553 mmol) in 2 ml of THF was irradiated with microwaves (300 W) at 120 °C for 

12 min. A 0.1 M solution of bromobenzene in toluene (0.25 ml, 0.025 mmol) was then 

added and the reaction mixture stirred at 80 °C overnight. The reaction mixture was 
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poured into 100 ml of chloroform and the non-soluble solids filtered off. The chloroform 

solution was washed with aqueous, saturated EDTA solution, water and stirred with 1 ml 

of aqueous hydrazine hydrate (80 %) for 1 hour. Afterwards, the solvents were removed 

under vacuum. The grey solid was dissolved in a small amount of CHCl3 and precipitated 

from a highly concentrated solution into 250 ml of methanol to afford 91 mg (80 %) of the 

target polymer as a grey solid. 

 1H NMR (400 MHz, CDCl3, 32 °C): δ [ppm] = 8.48 (s, Ar-H), 8.08 (s, Ar-H), 7.84 (d, 

Ar-H), 7.78 (m, Ar-H), 7.70 (d, Ar-H), 7.52 (m, Ar-H), 7.33 (d, Ar-H), 2.60 (s, -CH3), 1.53 (s, 

-(CH3)3). 
13C NMR (101 MHz, CDCl3, 32 °C): δ [ppm] = 140.0, 139.5, 139.2, 134.4, 129.7, 

127.6, 125.88, 124.1, 124.0, 122.6, 121.6, 120.5, 118.9, 110.0, 109.7, 35.4, 31.4, 21.4. 

GPC Anal.: Mn = 25 000 g·mol-1, Mw = 57 000 g·mol-1, PD = 2.3. UV-Vis & PL (CHCl3): 

λmax,ab = 252 nm, λab = 309 nm, λab = 355 nm, λmax,em = 414 nm. UV-Vis & PL (Film): 

λmax,ab = 247 nm, λab = 309 nm, λab = 358 nm, λmax,em = 421 nm. 

7.4. Synthesis of the Phenazine-Based Materials 

7.4.1. 5,10-Dihydrophenazine 

H
N

N
H  

 

To a solution of phenazine (10 g, 55.5 mmol) dissolved in 300 ml of boiling ethanol under 

argon, a solution of sodium dithionite (19.3 g, 110.1 mmol) in 300 ml of water was added 

over one hour. The reaction mixture was then stirred for 2.5 hours at room temperature. 

The precipitate was filtered off and dried under vacuum overnight to afford 9.8 g (97 %) of 

a slightly greenish product. 

1H NMR (400 MHz, (CD3)2SO, 32 °C): δ [ppm] = 7.25 (s, 2H, N-H), 6.26 (m, 4H, 

Ar-H), 6.01 (m, 4H, Ar-H). 13C NMR (101 MHz, (CD3)2SO, 32 °C): δ [ppm] = 133.7, 120.2, 

111.3. LR-MS (EI,  V): m/z = 180.2 [M+]. 

7.4.2. 5,10-Bis(4-octylphenyl)-5,10-dihydrophenazine (d8PPz) 

NNC8H17 C8H17

 

 

To a solution of Pd2(dba)3 (9.2 mg, 10 µmol), 2-(dicyclohexylphosphino)biphenyl (10.5 mg, 

30 µmol), 1-octyl-4-bromophenyl (80 mg, 3 mmol) and NaO-t-Bu (346 mg, 3.6 mmol) in 
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3 ml of toluene, a solution of 5,10-dihydrophenazine (182 mg, 1 mmol) in 2 ml of toluene 

was slowly added at 80 °C. The reaction mixture was stirred for 24 hours at 90 °C under 

protection from light. The mixture was then allowed to cool down to room temperature, 

diluted with hot chloroform and mixed with cellite. The non-soluble solids were filtered off 

and washed several times with hot chloroform. The chloroform filtrates were washed with 

saturated, aqueous EDTA solution and water. The organic layer was subsequently dried 

over MgSO4 and all solvents removed under vacuum. The raw product was then purified 

by flash chromatography using chloroform as an eluent and further recrystallized from 

toluene to afford 528 mg (94 %) of the title compound as orange crystals. 

 1H NMR (400 MHz, 32 °C): decomposition during the recording of the spectra.  

13C NMR (101 MHz, 32 °C): decomposition during the recording of the spectra. LR-MS  

(EI, 70 eV): m/z = 557.3 [M+]. 

7.4.3. 5,10-Bis(4-bromophenyl)-5,10-dihydrophenazine (MdPPz) 

NNBr Br

 

 

To a solution of Pd2(dba)3 (27.5 mg, 30 mol), 2-(dicyclohexylphosphino)biphenyl (31.5 mg, 

90 µmol), 1-Bromo-4-iodobenzene (2.55 g, 9 mmol) and NaO-t-Bu (1.038 mg, 10.8 mmol) 

in 10 ml of toluene, a solution of 5,10-dihydrophenazine (546 mg, 3 mmol) in 5 ml of 

toluene was slowly added at 80 °C. The reaction mixture was stirred for 24 hours at 90 °C 

under protection from light. The mixture was then allowed to cool down to room 

temperature, diluted with hot chloroform and mixed with cellite. The non-soluble solids 

were filtered off and extracted several times with hot chloroform. The chloroform filtrates 

were washed with saturated, aqueous EDTA solution and water. The organic layer was 

subsequently dried over MgSO4 and all solvents removed under vacuum. The raw product 

was then purified by recrystallization from toluene to afford 3.41 g (77 %) of the title 

compound as yellow crystals. 

 1H NMR (400 MHz, 32 °C): decomposition during the recording of the spectra.  

13C NMR (101 MHz, 32 °C): decomposition during the recording of the spectra. LR-MS  

(EI, 70 eV): m/z = 490.7 [M+].  

7.4.4. 9-Decylcarbazole 

N

C10H21
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To a stirred solution of carbazole (10 g, 60 mmol) and benzyltriethylammoniumchloride 

(400 mg, 3 %mol) in 50 ml of toluene at room temperature, 1-bromodecane (14 g, 

70 mmol) was added dropwise and the mixture refluxed overnight. Afterwards, the 

reaction mixture was washed with water, dried over MgSO4 and concentrated. The crude 

was purified by column chromatographie (hexane/triethylamine, 98/2) to afford 16.3 g 

(88 %) of the title compound as a colorless oil. 

1H NMR (400 MHz, CDCl3, 32 °C): δ [ppm] = 8.06 (d, 2H, Ar-H, 3J = 7.7 Hz), 7.44 

(t, 2H, Ar-H, 3J = 8.1 Hz), 7.38 (d, 2H, Ar-H, 3J = 7.8 Hz), 4.23 (t, 2H, -αCH2, 
3J = 7.3 Hz), 

1.82 (q, 2H, -CH2-, 
3J = 7.3 Hz), 1.40-1.18 (m, 14H, -CH2-), 0.85 (t, 3H, -CH3, 

3J = 7.0 Hz). 

13C NMR (101 MHz, CDCl3, 32 °C): δ [ppm] = 140.4, 126.0, 122.9, 120.6, 119.1, 109.1, 

43.4, 32.2, 29.85, 29.7, 29.6, 29.3, 27.6, 23.0, 14.5. LR-MS (EI, 70 eV): m/z = 307.2 [M+]. 

7.4.5. 9,9'-Didecyl-3,3'-bicarbazole 

N

N

C10H21

C10H21  

 

A solution of 9-decylcarbazole (10 g, 32.5 mmol) and iron(III) chloride (10.5 g, 65 mmol) in 

150 ml of chloroform was stirred overnight at room temperature. The reaction was 

quenched with water, the organic layer separated, washed with water and dried over 

MgSO4. After removal of the solvents, the raw product was purified by column 

chromatography (hexane/dichloromethane/triethylamine, 80/19/1) and recrystallized from 

a dichloromethane/hexane mixture to yield 81 % (16.1 g) of the carbazole dimer as white 

crystals. 

1H NMR (400 MHz, CDCl3, 32 °C): δ [ppm] = 8.42 (d, 2H, Ar-H, 4J = 1.5 Hz), 8.20 

(d, 2H, Ar-H, 3J = 7.7 Hz), 7.84 (dd, 2H, Ar-H, 3J = 8.4 Hz, 4J = 1.7 Hz), 7.49 (m, 4H, Ar-H), 

7.44 (d, 2H, Ar-H, 3J = 8.0 Hz), 7.27 (t, 2H, Ar-H, 3J = 6.9 Hz), 4.35 (t, 4H, -αCH2, 

3J = 7.2 Hz), 1.93 (q, 4H, -CH2-, 
3J = 7.2 Hz), 1.48-1.22 (m, 28H, -CH2-), 0.90 (t, 6H, -CH3, 

3J = 7.0 Hz). 13C NMR (101 MHz, CDCl3, 32 °C): δ [ppm] = 140.9, 139.6, 133.4, 125.6, 

125.5, 123.4, 123.1, 120.4, 118.9, 118.7, 108.9, 108.8, 43.2, 31.9, 29.5 (×2), 29.4, 29.3, 

29.0, 27.3, 22.7, 14.1. LR-MS (EI, 70 eV): m/z = 610.9 [M+]. 



Experimental Section 113 

 

 

7.4.6. 6,6’-Dibromo-9,9'-didecyl-3,3'-bicarbazole 

N

N

Br

C10H21

C10H21

Br

 

 

To a stirred solution of 9,9'-didecyl-3,3'-bicarbazole (6 g, 9.8 mmol) in 200 ml of THF at 

0 °C, NBS (3.5 g, 19.6 mmol) was added in small portions. The mixture was allowed to 

warm up to room temperature and stirred overnight. The THF was then removed under 

vacuum, the mixture diluted with diethyl ether and washed several times with water. The 

organic layer was dried over MgSO4 and concentrated. The raw product was purified by 

column chromatography (hexane/dichloromethane, 95/5) and recrystallized from an 

hexane/dichloromethane mixture to afford 4.8 g (64 %) of the title compound as white 

crystals. 

1H NMR (400 MHz, C2D2Cl4, 32 °C):  ppm] = 8.26 (d, 2H, Ar-H, 4J = 1.5 Hz), 8.22 

(d, 2H, Ar-H, 4J = 1.8 Hz), 7.78 (dd, 2H, Ar-H, 3J = 8.5 Hz, 4J = 1.6 Hz), 7.50 (dd, 2H, Ar-H, 

3J = 8.7 Hz, 4J = 1.9 Hz), 7.44 (d, 2H, Ar-H, 3J = 8.6 Hz), 7.25 (d, 2H, Ar-H, 3J = 8.7 Hz), 

4.23 (t, 4H, -αCH2, 
3J = 7.2 Hz), 1.82 (q, 4H, -CH2-, 

3J = 7.2 Hz), 1.37-1.13 (m, 28H, -CH2-

), 0.81 (t, 6H, -CH3, 
3J = 7.0 Hz). LR-MS (EI, 70 eV): m/z = 768.7 [M+]. 

7.4.7. 9,9'-Didecyl-6,6'-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,3'-

bicarbazole 

N

N

B

C10H21

C10H21

BO

O

O

O

 

 

To a stirred solution of 6,6’-dibromo-9,9'-didecyl-3,3'-bicarbazole (4.6 g, 6 mmol) in 100 ml 

of THF under argon at –78°C, a 1.6 N solution of n-BuLi in hexane (10 ml,  

16 mmol) was added dropwise and the mixture stirred for 1.5 hours.  

Afterwards, 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3.5 g, 19 mmol) was 

added dropwise, the mixture allowed to warm up to room temperature and stirred 

overnight. The THF was then removed under vacuum, the mixture diluted with diethyl 

ether and washed several times with water. The organic layer was dried over MgSO4 and 
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concentrated. The raw product was purified by recrystallization from a hexane/diethyl 

ether mixture to yield 3.7 g (71 %) of the desired product as white crystals. 

1H NMR (400 MHz, CDCl3, 32 °C): δ [ppm] = 8.72 (s, 2H, Ar-H), 8.50 (s, 2H, Ar-H), 

7.95 (d, 2H, Ar-H, 3J = 8.2 Hz), 7.85 (d, 2H, Ar-H, 3J = 8.5 Hz), 7.50 (d, 2H, Ar-H, 

3J = 8.4 Hz), 7.42(d, 2H, Ar-H, 3J = 8.3 Hz), 4.35 (t, 4H, -αCH2, 
3J = 7.0 Hz), 1.92 (m, 

4H, -CH2-), 1.43 (m, 24H, -CH3), 1.26 (m, 28H, -CH2-), 0.89 (t, 6H, -CH3, 
3J = 7.0 Hz).  

13C NMR (101 MHz, CDCl3, 32 °C): δ [ppm] = 140.9, 139.6, 133.4, 128.3, 127.2, 125.6, 

125.5, 123.4, 123.1, 120.4, 118.9, 108.9, 43.2, 31.9, 29.5 (×2), 29.4, 29.3, 29.0, 27.3, 22.7, 

14.1. LR-MS (EI, 70 eV): m/z = 862.1 [M+].  

7.4.8. Alternating Copolymer dPPz/Bis-N-decylcarbazol (PdPPz1) 

N

N

N

C10H21

N

C10H21
n

N

N

 

 

A 25 ml Schlenk tube containing a mixture of MdPPz (147.7 mg, 0.3 mmol)  

and 9,9'-Didecyl-6,6'-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,3'-bicarbazole 

(259.5 mg, 0.3 mmol), 1 drop of Aliquat 336, aqueous saturated K2CO3 (3 ml, 6 mmol) and 

2 mol% of tetrakis(triphenylphosphine)palladium(0) catalyst (7 mg, 6 µmol) in 5 ml of 

toluene was stirred at 55 °C for 48 hours under argon and protected from light. The 

polymer formed was end-capped by addition of a mixture of 7 mg phenylboronic acid and 

some fresh catalyst in 1 ml of toluene and stirred at 55 °C for 24 more hours. The reaction 

mixture was then stopped with the addition of aq. 2 w% NaCN and stirred for several 

hours. This procedure was then repeated one more time with fresh aq. NaCN. The 

organic layer was separated, dried over MgSO4 and the solvent removed. The polymer 

was precipitated from a highly concentrated chloroform solution into 100 ml of methanol to 

afford 248 mg (88 %) of the target polymer as an orange solid.  

 1H NMR (400 MHz, 32 °C): decomposition during the recording of the spectra.  

13C NMR (101 MHz, 32 °C): decomposition during the recording of the spectra.  

GPC Anal.: Mn = 2 100 g·mol-1, Mw = 2 400 g·mol-1, D = 1.16. UV-Vis & PL (CHCl3): 

λmax,ab = 358 nm, λab = 308 nm. 
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7.4.9. Random Copolymer dPPz(20%)/TPA3 (PdPPz2) 

NN N

n

m

 

 

To a stirred mixture of Ni(COD)2 (999 mg, 3.6 mmol), BPy (562 mg, 3.6 mmol)  

and COD (389 mg, 3.6 mmol) in 5 ml of DMF at 80 °C, a solution of  

5,10-bis(4-bromophenyl)-5,10-dihydrophenazine MdPPz (148 mg, 0.2 mmol) and  

N,N-bis(4-bromophenyl)-2,4,6-methylaniline MTPA3 (534 mg, 1.2 mmol) in 10 ml of 

toluene was added. The resulting mixture was stirred at 80 °C for 48 hours under 

protection from light. Afterwards, a 0.1 M solution of bromobenzene in toluene (1.5 ml, 

0.15 mmol) was added and the mixture stirred for additional 24 hours. The mixture was 

then allowed to cool down to room temperature, dissolved in warm CHCl3 and filtered to 

remove the solid catalyst. The chloroform phase was washed several times with saturated, 

aqueous EDTA solution and water, and stirred overnight with 2 ml of aqueous hydrazine 

hydrate (80 %). The solvents were then removed under vacuum, the polymer re-dissolved 

in a small amount of chloroform and finally precipitated from a highly concentrated 

solution into 750 ml of methanol to give a pale yellow solid. The raw polymer was 

extracted 24 hours with dichloromethane, and then 24 hours with chloroform. The 

chloroform extract was concentrated and re-precipitated one more time into 150 ml of 

methanol to give 289 mg (56 %) of the polymer as beige solid. 

 1H NMR (400  MHz, CDCl3, 32 °C): δ [ppm] = 7.41 (d, Ar-H), 7.03 (d, Ar-H), 6.96 (s, 

Ar-H), 2.36 (s, -CH3), 2.05 (s, -CH3). 
13C NMR (101 MHz, CDCl3, 32 °C): δ [ppm] = 144.7, 

140.0, 137.7, 136.8, 133.0, 129.9, 126.9, 119.8, 21.0, 18.6. GPC Anal.: 

Mn = 21 000 g·mol-1, Mw = 33 600 g·mol-1, D = 1.6. UV-Vis & PL (CHCl3): λmax,ab = 388 nm, 

λmax,em = 417 nm. UV-Vis & PL (Film): λmax,ab = 389 nm, λmax,em = 421 nm. 

7.4.10. Alternating Copolymer Phenazine TPA3 (PdPPz3) 

N

N N

n

NN
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To a mixture of 5,10-dihydrophenazine (182 mg, 1 mmol), N,N-bis(4-bromophenyl)-2,4,6-

methylaniline MTPA3 (445 mg, 1 mmol) and NaO-t-Bu (269 mg, 2.8 mmol) in 18 ml of 

toluene, a solution of Pd2(dba)3 (18 mg, 0.02 mmol) in 2 ml of toluene and P(t-Bu)3 as 1 M 

toluene solution (0.4 ml, 0.04 mmol) were added under argon. The reaction mixture was 

stirred at 90 °C for 48 hours. For end-capping, bromobenzene as 0.1 M solution in toluene 

(1 ml, 0.1 mmol) was added and the mixture stirred for additional 8 hours. The mixture 

was then allowed to cool down to room temperature, diluted with hot chloroform and 

filtered to remove most of the catalyst. The organic phase was washed several times with 

saturated, aqueous EDTA solution and water, and stirred overnight with 2 ml of aqueous 

hydrazine hydrate (80 %). The solvents were then removed under vacuum, the polymer 

dissolved in a small amount of chloroform (2 ml) and finally re-precipitated from a highly 

concentrated solution into 150 ml of methanol the give a pale orange, solid product. The 

raw polymer was extracted 24 hours with dichloromethane, and then 24 hours with 

chloroform. The chloroform extract was concentrated and precipitated into 400 ml of 

methanol to give 298 mg (64 %) of the target polymer as a pale orange solid. 

 1H NMR (400 MHz, 32 °C): decomposition during the recording of the spectra.  

13C NMR (101 MHz, 32 °C): decomposition during the recording of the spectra.  

GPC Anal.: Mn = 6 700 g·mol-1, Mw = 7 700 g·mol-1, D = 1.15. UV-Vis & PL (CHCl3):  

λmax,ab = 258 nm, λab = 312 nm, λab,sh = 375 nm, λab,sh = 475 nm. 
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“Centre Inter universitaire de Recherche et d’Ingéniérie des 
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Matériaux” (CIRIMAT), CNRS, Toulouse (F) 
Korrosion und Materialienschutz Abteilung 
Thema: “Messungen von elektrochemischer-Impedanz auf 

Aluminiumlegierungen” 

  

Sept. 2000 - Juni 2001 License in Physikalischer Chemie 
Université Paul Sabatier, Toulouse (F) 

  

März 2000 - Juli 2000 Labortechniker 
“Centre Inter universitaire de Recherche et d’Ingéniérie des 
Matériaux” (CIRIMAT), CNRS, Toulouse (F) 
Mechanics/Oxidation/Microstructures Abteilung 
Thema: “Einrichtung einer Prüfanlage für zyklische Oxydation von 

Aluminiumoxide unter kontrollierter Atmosphäre” 

  

Sept. 1998 - Juli 2000 DUT Mesures Physiques 
Université Paul Sabatier, IUT A, Toulouse (F) 

Analytische und Physikalische Chemie 

  

Sept. 1997 - Mai 1998 Hochschule “Ecole Nationale Supérieure d’Ingénieur” (ENI) 
Tarbes (F) 

Maschinenbau, Elektrotechnik, Ingenieurwesen 
  

Juni 1997 Baccalauréat in Naturwissenschaft, Toulouse (F) 
Schwerpunkt Chemie und Physik 

  

Sept. 1994 - Juni 1997 Lycée Polyvalent Rive Gauche, Toulouse, France 




