
      

Investigation of Biologically Active Vanadium- 

Containing Complexes using DFT-computed 

NMR parameters 

 

PhD Thesis 

This thesis is submitted as required for the fulfilment of a 

Doctorate of Philosophy at the University of Wuppertal 
Presented by 

Geethalakshmi K. Rangaswamy 

  

Inaugural- Dissertation 
Zu Erlangung des Doktorgrades der Naturwissenschaften 

 dem Fachbereich der Bergischen Universität Wuppertal 

vorgelegt von 

Geethalakshmi K. Rangaswamy 

 

 

 

 

 

Mülheim an der Ruhr 

2008



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Referent: Prof. Dr. Michael Bühl 

Co-Referent: Prof. Dr. Per Jensen 

Date of Verbal Defence: 05-02-2009  

 

Diese Dissertation kann wie folgt zitiert werden:  
 
urn:nbn:de:hbz:468-20090552
 [http://nbn-resolving.de/urn/resolver.pl?urn=urn%3Anbn%3Ade%3Ahbz%3A468-20090552] 



 

 

 

 

 

 

 

 

 

Dedicated  To  My  Beloved  Parents 

 

“ When a mother hears her son heralded a good and learned 

man, Her joy exceeds that of his joyous birth “ 

Thirukural -Verse 69 

 

 

 

 

 

 

 

 

 

 



 

Acknowledgments 

It is my pleasure and privilege to thank many persons who made this thesis possible. 

Supervisory panel: 

A large thanks to Prof. Dr. Michael Bühl for being an excellent supervisor, his 

support and generosity throughout my candidature are highly appreciated. He has 

invested so much time and energy throughout my PhD, a simple thank you will never 

be able to repay his kindness.  I would like to thank and acknowledge the continued 

support of Prof. Dr. W. Thiel, especially for making me welcome in his laboratory. 

Financial support: 

I would like to thank DFG and Max Planck Institute for Kohlenforschung for the 

financial support during the period of my Ph.D. programme. 

Personal Support: 

I would like to appreciate the past and present members of the theory group at the 

MPI in Mülheim, especially Dr. Mark P.Waller, Dr. Dongqi Wang, for their fruitful 

collaboration, valuable assistance, interesting discussions and support during the 

period of my work. It has been my pleasure to work in this team amongst such a 

pleasant atmosphere and I would like to offer my sincere thanks and gratitude to one 

and all. I would also like to thank computer department of the MPI-Mülheim, 

especially Horst Lenk for essential technical support in hardware and software related 

problems. 

I would like to take this opportunity to thank my school teachers and my professors 

who taught me and encouraged me in all aspects to come to this position. 

I am very thankful to many of my close friends and colleagues especially, for their 

wealth of advice and support to complete this work successfully. 

I wish to thank my entire extended family: My sister, my brother in law, my little 

nephew-Aathi, uncles, aunties, cousins and my fiancé for their eternal support and 

providing a loving environment for me. 

Lastly, and most importantly, I am indebted and would like to thank my beloved 

parents, Rangaswamy and Sarasvathi for their inspiration and never ending love, care, 

support and encouragement.  



  Introduction 
 

 i 

 

Table of Contents 

1 Introduction 1 

1.1 Amavadin 2 

1.2 Vanadium containing haloperoxidases 4 

Vanadium containing chloroperoxidase 6 

Vanadium containing bromoperoxidase 8 

The peroxo intermediate 10 

2 Theoretical background 15 

2.1 Molecular Dynamics 15 

2.2 Molecular Mechanics 18 

2.3 Quantum mechanics: 20 

One-electron systems 20 

Many-electron systems 21 

2.4 Density Functional Theory 22 

Kohn-Sham Theory 23 

2.5 Time-Dependent Density Functional Theory 24 

2.6 Basis Sets 25 

2.7 QM/MM methodology 27 

Coupling of the QM and MM regions 29 

2.8 NMR chemical shifts 30 

NMR chemical shift tensors 32 

EFG tensors and NQC 33 

NMR Chemical shift with QM/MM approach 35 

2.9 Molecular Properties 36 

Population Analysis 36 

3 Computational Details 38 

3.1 Gas-phase optimisation 38 

3.2 QM/MM optimisation 38 



  Introduction 
 

 ii  

3.3 Molecular dynamics simulations 41 

3.4 NMR chemical shifts 41 

4 Results 43 

4.1 A DFT directed verdict on oxidized amavadin 43 

Geometries: 44 

Chemical shifts 46 

Stereoisomers 48 

Conclusions 53 

4.2 51V NMR Chemical Shifts Calculated from QM/MM Models of Vanadium 

Chloroperoxidase – Native form 54 

Preface 54 

QM/MM setup 54 

General Considerations 58 

Geometries 59 

Hydrogen Bonding 64 

Isotropic 51V NMR Chemical Shifts 65 

Anisotropic 51V NMR Chemical Shifts:  The CSA and EFG Tensors 68 

Electrostatic and Geometric Effects on the 51V NMR Chemical Shifts 74 

Conclusions 78 

4.3 51V NMR Chemical shifts calculated from QM/MM models of  Vanadium 

Bromoperoxidase – Native Form 79 

QM/MM setup 79 

Geometries 83 

Hydrogen Bonding 90 

Isotropic Chemical Shifts 92 

Anisotropic 51V NMR Chemical Shifts:  The CSA and EFG Tensors 95 

Conclusions 104 

4.4 51V NMR chemical shifts calculated from QM/MM models of  Vanadium 

haloperoxidase  - peroxo forms 105 

QM/MM setup 105 

Geometrical Details 107 

Hydrogen bonding 113 

Solvation 116 

Isotropic chemical shifts 118 

Anisotropic chemical shifts 121 



  Introduction 
 

 iii  

TD-DFT 125 

Conclusions 128 

5 Summary 130 

6 Outlook 134 

References 136 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  Introduction 
 

 1

 

Chapter 1 

1 Introduction 
 

51V NMR spectroscopy is an important analytical tool for diamagnetic vanadium 

complexes.[1] Among transition metal nuclei, 51V is one of the most abundant natural 

isotopes with characteristics that are very favorable for NMR spectroscopy, affording 

a sensitive probe for electronic and steric effects of the coordinating ligands. From the 

large body of data available, spans of 51V chemical shifts can be extracted that are 

characteristic for a given ligand environment and, to a lesser extent, for the oxidation 

state. 51V NMR can also be a potential tool to study vanadium compounds in the 

biosphere. Bioinorganic chemistry of vanadium[2] is less well developed than that of, 

e.g., iron. Besides nitrogenases, haloperoxidases is an important area of vanadium 

chemistry, that can be studied with 51V NMR.[1b] Another fascinating aspect of 

vanadium chemistry is that of vanadium accumulation by living organisms, for 

example to provide a sufficient concentration for the use of the vanadium in one or 

more specific biochemical functions and/or as a means of protection against the 

toxicity that arises as an excess of vanadium.[3] An intriguing example of such 

biologically active vanadium complexes that may be used for this purpose is 

amavadin[8] which, in oxidised form, is also amenable to 51V NMR spectroscopy. 

 

Density functional theory (DFT) computations of 51V chemical shifts are well 

advanced[1b,4] and have been applied so far mostly for small molecules, usually in 

context with their structures, reactivities (catalytic activities) and the relation between 

molecular dynamics and chemical shifts.[1b,5,125] One of the remaining challenges of 

such applications is the size of the complexes when it comes to very large systems 

such as biomolecules. To treat such large systems, quantum mechanics/molecular-

mechanics (QM/MM) approaches have become the method of choice. QM/MM 

methods have been mostly applied for the modelling of the enzymatic reactions and 
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other biomolecular processes that involve changes in the electronic structure, such as 

charge transfer or electronic excitation.[6]  However, properties such as chemical shifts 

are only rarely addressed.[48a,d] The main goal of this thesis is to validate a suitable 

QM/MM method for computing 51V NMR parameters of VHPO’s (vanadium 

containing haloperoxidases), to apply this technique to specific structural problems 

and to assist in the interpretation of the observed results. Also included are 

applications of 51V NMR computations for a smaller system, oxidized amavadin, 

aiming to rationalize its unusual 51V chemical shift. 

1.1 Amavadin 

Occasionally deviations from “normal” chemical-shift ranges can suggest unusual 

electronic structures. For instance, exceptionally strong downfield shifts are observed 

for 51V nuclei in vanadium (V) complexes containing catecholate or hydroxamate-

based ligands (see Scheme 1.1.1). These downfield shifts can exceed 1000 ppm with 

respect to corresponding vanadates without these former ligands. This observation 

was first made by Pecoraro et al.[7] who labelled these ligands as “non-innocent” and 

who reported close relationships between 51V chemical shifts and λmax from low 

energy electronic excitations in the near IR spectra at around 900 nm. 

 

 
Acetohydroxamic acid  
 

Scheme 1.1.1 

 
Oxidized amavadin is a species with an unusually high 51V chemical shift, which, as 

had been speculated,[1b] could arise from non-innocent behavior of the ligands in this 

compound. Amavadin is a vanadium (IV) complex with the composition [ -

V IV{(S,S)-hidpa}2]
2–,where H3hidpa is 2,2´-hydroxyiminodipropionic acid. Amavadin  
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is found in the fungal genus Amanita and has an unusual structure and metal-ligand 

bonding mode as shown in Figure 1.1.1. Since the isolation of this compound from A. 

muscaria[8] there have been discordant reports in the literature with respect to its 

structure and function.[9,10] Initially a V=O species had been postulated[11,12], whereas 

later studies indicated that amavadin is a non-oxo octacoordinated vanadium complex 

(see Figure 1.1.1).[13] Since amavadin is the only naturally occurring compound with 

such a structure, the apparent stability of this complex is very unusual.[14] The 

hydroxylamido moieties in the amavadin complexes have fascinated chemists for 

some time, and various model systems and spectroscopic characterizations have been 

carried out, including EPR measurements.[15,16,17,18] Previous studies of vanadium 

hydroxylamido complexes have shown that the hydroxylamido ligand coordinates in a 

side on manner as does the peroxo functionality.[19,20,21] 

 

 

1.  

Figure 1.1.1   Amavadin, (VIV-hidpa)2)
2-, hidpa=2,2´((hydroxyimino)diproponoic acid). 

 

Amavadin and its derivatives are readily oxidized to afford diamagnetic vanadium (V) 

complexes, which are amenable to 51V NMR spectroscopy. Oxidized amavadin [-

VV{(S,S)-hidpa}2]
– and [ -VV(hida)2]

–  compounds (H3hida = 2,2´-

hydroxyiminodiacetic acid) showed single 51V resonances at  -281 and -263,  

 

2- 
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respectively.[22] Further studies on model amavadin complexes obtained with (R,S)-

H3hidpa revealed, after oxidation, three signals at δ(51V) = -250, -270, and −280, due 

to the presence of three diastereomers.[23] In a recent study on the self-exchange 

electron transfer in amavadin-type complexes synthesized from the racemic hidpa 

ligand, Lenhardt et al also reported three 51V NMR signals for the oxidized form, at δ 

= -217, -234, and -252,[24] again due to the presence of three diastereomers. All these 

δ values display an unusually low shielding of the 51V nucleus, given that 

hydroxylamine ligands, much like peroxo moieties, generally induce high field shifts, 

up to δ = -860 in oxo-vanadium complexes.[25,26] Whether the low shielding in the 

oxidized amavadin derivatives would originate from to a non-innocent nature of the 

specific hydroxylamido ligands is addressed in the present work for the parent hida 

complex and selected stereoisomers of hidpa derivatives, and the results are discussed 

in section 4.1. 

 

1.2 Vanadium containing haloperoxidases 

Vanadium-containing haloperoxidases (VHPOs) are efficient at catalyzing the 

oxidation of a number of halides, olefins, and organic sulfides using hydrogen 

peroxide as an oxygen source (see Scheme 1.2.1). [27,28,29,30,31] The controlled partial 

oxidation of such substrates to well-defined products is potentially very useful. 

 

a) H2O2 + X-  + H+  → H2O + HOX          oxidation of halide to hypohalous acid 

b) H2O2 + RSR´ → H2O + RS(O)R´           oxidation of sulfide to sulfoxide 

c) H2O2 + R2C=CR2´ → H2O + R2C  
O   

CR2´   oxidation of olefin to epoxide 

Scheme 1.2.1  The oxidation of a) halide b) sulfide and c) olefin in the presence of hydrogen peroxide. 
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In the biosphere, VHPOs are thought to be responsible for the majority of halogenated 

natural products. These enzymes are especially abundant in the marine 

environment.[32] As the catalytic turnover of VHPO far exceeds any synthetic catalyst 

for halide oxidation known to date[30] this family of proteins has aroused interest for 

bio-inspired catalyst design.[33] The observed stability of VHPO’s in the presence of 

high concentrations of strong oxidants or organic solvents and their stability at 

elevated temperatures make them attractive as industrial biocatalysts. Pharmaceutical 

applications have recently emerged based upon structural analogues of the active site 

in VHPO.[34] The pharmacotherapeutic activity of these model systems has prompted 

further research into the structure and function of these enzymes. Another potential 

commercial application of VHPO’s is their use in environmentally friendly 

antifouling paints. A haloperoxidase has already been used in the coating on the outer 

walls of marine vehicles in order to prevent these walls from biofouling, making use 

of the natural presence of hydrogen peroxide in sea water.[35] 

 

Experimentally VHPOs have been shown to contain vanadium in the oxidation state 

(V)[36] which is believed to be constant throughout the catalytic cycle.[37]  The first 

stage of the catalytic cycle is thought to involve an initial proton transfer to one of the 

oxygen atoms directly bound to the vanadium.[38] 

 

Two classes of vanadium haloperoxidase enzymes have been isolated, namely 

vanadium chloroperoxidase (VCPO) and vanadium bromoperoxiase (VBPO). 

Haloperoxidases are named after the most electronegative halide that they are able to 

oxidize; hence chloroperoxidases can oxidize chloride, bromide, or iodide, whereas 

bromoperoxidases are incapable of using chloride as a substrate. Both VCPO and 

VBPO bind vanadates formally derived from a VO4
3- core as a prosthetic group. 
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 Vanadium containing chloroperoxidase 

 
The X-ray structure was reported for the vanadium dependent chloroperoxidase 

(VCPO) extracted from Curularia Inaequalis in the native form by Messerschmidt et 

al. in 1996.[39] The resolution of protein X-ray crystallography precludes definite 

conclusions on protonation states and hydrogen bonding interactions, which may be  

crucial for the action of this enzyme. The X-ray structure of the peroxo form of VCPO 

has also been resolved.[39] 

 

A number of theoretical studies have investigated small vanadium complexes as 

models of the vanadium chloroperoxidase protein. Zampella et al.[40] performed a 

systematic survey of a large number of small active site mimics and found the doubly 

protonated monoanionic vanadate to be the most energetically stable using density 

functional theory (DFT) in the gas phase. A time dependent density functional study 

by Bangesh and Plass[41] also advocated the doubly protonated monoanionic vanadate 

to be the resting state. However the omission of the protein environment may lead to 

large geometric and/or electronic structure changes, which can qualitatively affect the 

results of these two studies. 

 

There have been two previous QM/MM investigations of this protein (VCPO) to date. 

[42,43]  Carlson and co-workers[42] identified the triply protonated, neutral vanadate 

moiety with an axially coordinated water and one hydroxyl group in the equatorial 

position as the lowest energy model and therefore considered it likely to be the resting 

state in the naturally occurring enzyme. They used a truncated protein model, 

designed to capture the electrostatic effects acting on the active site of VCPO. More 

recently Raugei and Carloni[43] reported on a series of CPMD/MM simulations. Free 

energy calculations and geometric similarity to the original X-ray structure of the 

native VCPO provided support for the doubly protonated, monoanionic vanadate 

form. 

 



  Introduction 
 

 7

There now exists a multitude of studies on 51V NMR spectra of vanadium-containing 

peptides recorded in solution. Butler et al. [44] reported a 51V NMR spectrum of human 

transferrin (Tf)  = -529.5 / -531.5 ppm. Rehder et al.[45] measured 51V NMR chemical 

shifts of bovine apo-transferrin(Tf)  = -515 ppm and of bovine prostatic acid 

phosphatase (Pp) = −542 ppm in solution. It is reasonable to assume that the 51V 

NMR chemical shifts might be in a similar region for VCPO. On the other hand, an 

unusually strong shielding (δ ≈ −930 ppm) was found for a related vanadium-

containing bromoperoxidase.[45] 

A recent paper by Pooransingh-Margolis et al. [46] was a major impetus for the current 

study. The authors published the first experimental 51V solid-state magic angle 

spinning (MAS) NMR spectrum of VCPO. They determined the isotropic chemical 

shift to be -507.5 ppm in the solid state (corrected for the second-order quadrupole 

shift), which is in fair agreement with the solution studies referred to above for other 

biological systems. The nuclear quadrupole coupling constant CQ and asymmetry 

parameter Q of the electric field gradient (EFG) tensor were both determined along 

with the reduced anisotropy σδ  and the asymmetry ση  of the chemical shift 

anisotropy (CSA) tensor. Gas-phase DFT calculations were used to investigate a large 

number of small vanadium-containing complexes as models of VCPO. The theoretical 

work did not include the protein environment, but aimed instead at the identification 

of small model systems that would resemble the experimentally observed 51V NMR 

chemical shifts. 

 

It has been shown recently that 51V chemical shifts can be computed with modern 

DFT methods and are quite often sensitive to structural details. [47] Herein chemical 

shifts are calculated from QM/MM models that incorporate the protein environment 

using a fully solvated and equilibrated system starting from the X-ray structure. The 

values refined from the experimental 51V NMR spectrum [46] are used to evaluate the 

QM/MM models of the resting state of VCPO. 
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Computations of NMR chemical shifts in a QM/MM framework are becoming 

increasingly popular,[48] and the potential usefulness of such schemes for the treatment 

of a transition metal nucleus in a model for an active site of an enzyme has been 

demonstrated early on. [48a]  To the best of our knowledge, the first application of such  

a QM/MM scheme to study NMR properties of a transition metal in a metalloenzyme 

are reported here. The results and elaborate discussions are given in section 4.2. 

 Vanadium containing bromoperoxidase 

 

The native form of vanadium dependent bromoperoxidase (VBPO), extracted from 

Ascophyllum nodosum, was characterized by X-ray crystallography in 1999 (2.0 Å 

resolution).[49] Despite little similarity in the peptide backbones, the vanadium-

binding sites of VBPO and VCPO show a high degree of homology50, see Figure 

1.2.1. The key difference on going from VCPO to VBPO is the replacement of a 

hydrophobic PHE residue close to the vanadate with a hydrophilic HIS residue. Also, 

VBPO is found to exist as a homodimer and is roughly twice the size of VCPO. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.2.1  a. VBPO- Vanadate moiety and b. VCPO- Vanadate moiety with the key difference circled in red.  

The vanadium and four O atoms with the coordinated imidazole moiety, show the oxygen labeling used throughout 

this study and potential hydrogen bonding interactions with the protein environment (all labels are consistent with 

those in the 1QI9.pdb and 1IDQ.pdb file for VBPO and VCPO respectively). 

a. b. 
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The 51V isotropic chemical shift for VBPO recorded by Rehder et al.[45] in solution is 

ca. -931ppm, and is some 400 ppm more shielded compared to typical vanadium 

complexes in solution, and also to the isotropic chemical shift extracted from the solid 

state for VCPO.[46] The reason for this large difference is certainly interesting giving 

the high degree of similarity in the active sites of these two enzymes. Preliminary 

studies on the solid-state MAS spectrum of VBPO[51] suggest an isotropic chemical 

shift of around -687 ppm. This isotropic value in the solid-state is therefore also 

significantly shielded with respect to that in solid VCPO, but only by ca. 170 ppm. 

The reasons for this apparent quantitative discrepancy between solution and solid-

state 51V NMR of VBPO is unclear at present. 

 

Site directed mutagenesis was used by Wever et al.[52] to investigate the notable 

difference in the primary sequence between the active sites of VBPO and VCPO. 

They mutated PHE397 into a HIS effectively converting the VCPO to a VBPO active 

site mimic. They noted an increase in bromonation activity and a pH dependant 

inactivation of the enzyme. This clearly shows the residue has some important role in 

the relative activity of VBPO and VCPO.  This primary structural difference is herein 

studied using QM/MM methods in combination with 51V chemical shift calculations. 

 

A bromine K-edge EXAFS study by Dau et al.[53] on VBPO from Ascophyllum 

nodosum proposed that the SER416 may be protonated during the catalytic cycle. A 

more recent study by Feiters et al.[54] also suggested some possible bromination within 

the active site. To investigate the importance of the brominated SER402,  Wever et al. 

performed site directed mutagenesis (SER402ALA) studies on the VCPO and found 

that the extent of this mutation was only marginal. The VBPO protein resolved by X-

ray crystallography was found to crystallize as a homodimer.[49] Whether the two 

different active sites are indeed fully isostructural, also in terms of protonation state 

and H-bond network, is an important question that has yet to be addressed. 
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To date, there appears to be no explicit computational studies of VBPO in the 

literature. In contrast there exists quite a substantial body of literature for the VCPO 

enzyme. Due to the high homology of the active sites of the two enzymes, conclusions 

based on VCPO are often transferred to the VBPO enzyme and the remainder of the  

VHPO family. Zampella et al. published a gas-phase DFT study on the reactivity of 

the peroxo form of VCPO.[55] The study of the peroxo form does not include the 

primary difference between VCPO and VBPO, namely the distal HIS. However, the 

experimental observation that different members of the VHPO family can oxidize 

halogens of different electronegativities does suggest that some (perhaps subtle) 

differences are present. Furthermore the experimental EXAFS and site directed 

mutagenesis studies above further discourage the transferability of conclusions from 

VBPO and VCPO. 

 

There have been no QM/MM studies of VBPO to date, presumably as the homodimer 

is significantly larger in size than the closely related VCPO. Such study is now 

presented in section 4.3, calling special attention to the computation of 51V NMR 

chemical shifts and a detailed comparison of both geometries and chemical shifts 

between VBPO and VCPO . 

 

 The peroxo intermediate 

 
Vanadium peroxides have the potential to generate a number of biological and 

biochemical responses[56], and are utilized as insulin-mimetic agents in the treatment 

of human diabetes.[57] The X-ray-derived structure of the peroxide-form of VCPO 

(2.24 Å resolution),[39] denoted p-VCPO, reveals a distorted tetragonal bipyramidal 

vanadium site, see Figure 1.2.2. The peroxide ligand is coordinated in a side-on 

manner, and the apical oxygen ligand is no longer present. In addition to the two 

peroxo oxygen atoms bound to vanadium, two equatorial oxo ligands and a nitrogen 

(N
ε 2) from HIS496 in the basal plane completes the coordination scheme.  One of the  
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peroxo oxygens O4, is in a pseudo-axial position, and the other is in an equatorial 

position, therefore giving an overall distorted pyramidal coordination geometry. One 

of the equatorial oxo ligands is hydrogen-bonded to ARG490, the coordinated 

peroxide is hydrogen-bonded to the neighboring glycine amide backbone and also to 

LYS353, and the remaining oxo ligand is hydrogen-bonded to ARG360, see Figure 

1.2.2. It has been shown that the VCPO protein has a higher affinity for 

peroxovanadate than for vanadate.[58] 

 

a      b  

 

Figure 1.2.2 a. Vanadate moiety and coordinated imidazole in native VCPO. b. Peroxovanadate moiety and 

coordinated imidazole. The labels used throughout this study for potential hydrogen bonding interactions with the 

protein environment are consistent with those in the 1IDU.pdb file. The oxygen labeling scheme of the vanadate 

has been edited to be consistent with the p-VCPO labeling scheme within the 1IDU.pdb file. 

 
A possible pathway for the formation of p-VCPO from VCPO has been outlined by 

Zampella et al.:[55] Assuming the axial ligand in native VCPO (O4 in Figure 1.2.2a) is 

present as OH-, which is made more basic by its H-bond to HIS404, this OH- unit 

would deprotonate the approaching H2O2, thereby generating a HOO- species. The 

weakly ligated axial water molecule dissociates from the vanadate and a side-on 

bound peroxide intermediate is formed after the departure of another water molecule, 

see Scheme 1.2.2. Furthermore, Zampella et al.[55] suggested that an attack of a 

chloride ion on one of the peroxo atoms, and the uptake of a proton from one of the  
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surrounding water molecules, leads to the generation of the hypochlorous acid (HOCl) 

and the restoration of the native state. Wever et al.[59] has shown that the vanadium 

ion plays the role of a strong Lewis acid which activates the peroxide, as seen by its 

inability to undergo redox cycling during catalysis. Kinetic studies showed that the 

protonation of the bound peroxo group is a crucial step in the heterolytic cleavage of  

the O-O bond.[60] These observations prompted the proposal of the protonated oxygen 

being transferred to the halide according to an oxo-transfer mechanism. A subsequent 

computational study disagrees, [61] instead suggesting that the non-protonated peroxo 

oxygen is the atom transferred to the substrate. 

 

 

 

 

 

 

 

 

Scheme 1.2.2 Proposed formation of  p-VHPOs. The actual protonation states of vanadate and peroxovanadate 

moieties are not known with certainty.  

 

The protonation state of the peroxovandate cofactor affects its reactivity and this 

might be a crucial factor in tuning the selectivity profile of these enzymes.[62,63] 

Determining the protonation state of the intermediate peroxo-forms of the VHPO 

enzymes is experimentally challenging, as a VHPO enzyme shuttles between a 

trigonal bipyramidal structure (native-form) and a distorted tetragonal structure 

(peroxo-intermediate) during the catalytic cycle. The X-ray structure solved by 

Messerschmidt et al.[39] failed to resolve the protonation state of the peroxovanadate 

active site within p-VCPO. Furthermore, there currently exists no X-ray crystal 

structure for the peroxo-form of VBPO (hereafter labeled p-VBPO). A gas-phase DFT  
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study on the active site of VCPO[55] addressed the protonation state of the 

intermediate peroxo-form of the enzyme, suggesting a singly protonated species. 

Protonation of the peroxovanadate was previously suggested[64] to be a possible 

explanation for the difference between VCPO and VBPO, therefore further studies 

that incorporate the intrinsic environmental differences might be necessary. 

 

Wever et al.58 used stopped-flow UV-vis spectroscopy to investigate the formation of 

the peroxo-form of VCPO from the native-form after the addition of H2O2. The 

native-form had a characteristic peak at 315nm and upon formation of the peroxo-

form of VCPO a peak appeared at 385nm. The pH dependence on the activity was 

also investigated experimentally within this study, revealing maximum stability at a 

pH value of 8.3, while maximum activity was observed at pH 5.0. These findings 

highlight the importance of understanding the protonation scheme within the active 

site. 

The very center of the active site has been probed with 51V NMR spectroscopy. The 
51V isotropic chemical shift for VBPO recorded by Rehder et al.[45] in solution is 

-931ppm for the native form, and -1135ppm for the peroxo-form . Interestingly, the 

peroxo-resonance is shifted upfield by ca. -200ppm from that of the native-form, in 

line with observations for small vanadates and peroxovanadates derived thereof. The 

experimental isotropic chemical shift of VPBO in the native-form is 400ppm more 

shielded compared to typical vanadium complexes in solution, in particular VCPO, 

and also to the isotropic chemical shift extracted from the solid-state for VCPO.[46] 

Quantum-chemical computations can be an important structural tool for investigating 

the active sites of vanadium haloperoxidases.  Zampella et al.[55] performed an active-

site model study, using DFT, for both the native and peroxo-form of the VHPOs and 

considered the reaction energies combined with TD-DFT results when suggesting a 

singly protonated peroxovanadate as being the most likely candidate for the 

intermediate peroxo-form, as it had the best agreement with the UV-vis spectral band 

at 385nm. Identifying which of the two equatorial oxo ligands would be protonated 

within VHPO, either O1 or O3, is a question that remains open at present. 
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The resolution of the solid-state structure of p-VCPO is not high enough to locate 

hydrogen atoms, and the uncertainty in the atom positions of heavier atoms makes it 

very speculative to differentiate between oxo and hydroxy bond lengths for the 

vanadate cofactor. Apparently, the crystallization of the VBPO enzyme is as yet 

unsuccessful for the peroxo-intermediate. In view of these current limitations in the 

experimental data, computational methods were applied to probe and assess structural 

differences between these proteins, differences that may have important implications 

for their reactivities. The results are summarized in section 4.4, where protonation 

states of the intermediate peroxo-form of the VHPOs are critically compared to the 

previously investigated native-forms. 
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Chapter 2  

2 Theoretical background  

Since NMR properties can be very sensitive to the molecular structure, accurate 

geometries need to be used as input in the calculations. One choice, in order to obtain 

accurate geometries, is to use structures optimized at appropriate quantum-mechanical 

levels. However, such methods scale unfavourably with the size of the system, so that 

they become very CPU-intensive, if not impossible at all, for large systems. A popular 

way to overcome this limitation is to use hybrid QM/MM theory, a new class of 

emerging method that combines the advantages of QM and MM calculations, namely 

accuracy and speed, respectively. In this approach, a small part of the system is treated 

quantum-mechanically (typically active-site of an enzyme) and the remaining system 

is treated classically.[65] For systems containing transition metals, density functional 

theory (DFT) is the QM method of choice. As the systems get larger, additional 

problems arise due to the very large number of degrees of freedom. Frequently the 

systems are characterized by a conformational flexibility that is reflected in many 

local minima, which makes it difficult to find the relevant ones (including the global 

minimum). The molecular dynamics technique is one strategy that allows detailed 

sampling of a representative phase space. The present chapter briefly outlines the 

formal foundations on which computational methods of this thesis are based, 

providing descriptions of the molecular dynamics simulations, the specific QM/MM 

methodology, DFT in static and time-dependent forms, as well as molecular 

properties. 

 

2.1 Molecular Dynamics 

Molecular dynamics (MD) uses computed forces to propagate the atomic positions in 

time applying the laws of Newtonian (as opposed to quantum) mechanics. The 

simulation is performed by numerically integrating Newton's equations of motion  
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over small time steps (usually 10-15 secs or 1 fsec). The Verlet algorithm is used to 

compute the velocities of the atoms from the forces and atom locations. Once the 

velocities are computed, new atom locations and the temperature of the assembly can 

be calculated. These values then are used to calculate trajectories, or time dependent 

locations, for each atom. Over a period of time, these values can be stored on disk and 

played back after the simulation has completed to produce a "movie" of the dynamic 

nature of the molecule. 

 

The simplest way to compute the necessary forces is by way of a classical empirical 

force field (see sec. 2.2). With this approach, MD simulations have been used in a 

variety of biomolecular applications.[66] The technique, when combined with data 

derived from Nuclear Magnetic Resonance (NMR) studies, has been used to derive 

3D structures for peptides and small proteins in cases where X-ray crystallography 

was not practical.[67] Additionally, structural, dynamic and thermodynamic data from 

molecular dynamics has provided insights into the structure-function relationships, 

binding affinities, mobility and stability of proteins, nucleic acids and other 

macromolecules that cannot be obtained from static models. MD can be used to 

disturb an optimized structure to generate a new starting point for an optimization, in 

order to discover multiple minima for molecules with a complex energy surface. The 

time evolution gives us the time dependence of molecular motion and so allows 

access to transport properties, such as the self diffusion coefficient. Molecular 

dynamics can be used to supply configurations for averaging properties (i.e. chemical 

shifts) as an alternative to Monte Carlo. 

 

To set the momenta we need to give each atom an initial velocity such that the overall 

kinetic energy of the system is consistent with the desired temperature. From the 

Boltzmann distribution we know that the expectation value for the molecular velocity 

is: 

Eqn 2.1.1 
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The temperature of the system gives the atomic speeds to use but not their direction. 

The directions can be chosen at random but with the proviso that the system as a 

whole has zero momentum. This ensures that the entire system does not drift off 

during the simulation. 

 

Molecular dynamics is a simulation technique that uses Newton’s Laws of motion to 

integrate the trajectory of atoms in a simulation. The forces on the atoms may be 

derived from a force field or from quantum mechanics but the method of generating 

the trajectory will be the same. 

  

In a simulation we calculate the force F on any atom from the geometric arrangement 

of the atom centers, and, knowing the atom mass, m, this equation is used to find out 

the acceleration, a, on a given atom: 

Eqn. 2.1.2  a =
F

m
 

The acceleration is the rate of change of velocity with time, i.e.:  

Eqn. 2.1.3  
dv

dt
=

F

m
 

If a particle has an initial velocity, u, and moves under the action of this force for a 

time, τ , its velocity will be given by integrating this equation: 

Eqn. 2.1.4  v = u+
dv

dt
dt

0

τ

∫ = u+
F

m
dt

0

τ

∫   

Provided the force on the atom does not change during the time of the integration, F 

will be constant and so: 

Eqn. 2.1.5  

  

The velocity itself is a rate of change of atom position, s, with time,  
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Eqn. 2.1.6  v =
ds

dt
  

and so the position of the particle after a certain time will again be an integration: 

 Eqn. 2.1.7  s= so +
ds

dt
dt

0

τ

∫  

Remembering that the velocity is always changing even under uniform acceleration: 

Eqn. 2.1.8  s= so + u+
F

m
t

 
 
 

 
 
 dt =

0

τ

∫ so + uτ +
1

2

F

m
τ 2 

So we work out the forces on a given atom from its disposition with respect to all 

other atoms in the simulation. This allows us to work out the acceleration on that 

atom, then its velocity and finally its position after a time interval. The forces can also 

be computed quantum mechanically with the molecular dynamics techniques such as 

Born-Oppenheimer (BOMD) or Car-Parrinello MD (CPMD).[5,68] However, such 

techniques have the restriction of quite limited simulation times. 

2.2 Molecular Mechanics 

Molecular mechanics is a mathematical formalism which attempts to reproduce 

molecular geometries, energies and other features by adjusting bond lengths, bond 

angles and torsion angles to equilibrium values that are dependent on the 

hybridization of an atom and its bonding scheme (this atom description is referred to 

as the atom type). Rather than utilizing quantum physics, the method relies on the 

laws of classical Newtonian physics and experimentally derived parameters to 

calculate geometry as a function of steric energy. The general form of the force field 

equation is 

Eqn 2.2.1 Epot =  Ebnd +  Eang +  Etor +  Eoop +  Enb +  Eel 

 

Epot is the total steric energy which is defined as the difference in energy between a 

real molecule and an ideal molecule. Ebnd, the energy resulting from deforming a bond  
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length from its natural value, is calculated using Hooke's equation for the deformation 

of a spring (E = 1/2 Kb(b – b0)2 where Kb is the force constant for the bond, b0 is the 

equilibrium bond length and b is the current bond length). Eang, the energy resulting 

from deforming a bond angle from its natural value, is also calculated from Hooke's 

Law. Etor is the energy which results from deforming the torsion or dihedral angle. 

Eoop is the out-of-plane bending component of the steric energy. Enb is the energy 

arising from non-bonded interactions and Eel is the energy arising from coulombic 

forces. 

 

When the terms shown in the general form of the force field are expanded, the 

equation becomes 

Eqn 2.2.1  Epot = 1/2 Kb(b – b0)
2  +  1/2 Kθ (  – 0)

2  +  1/2 KΦ  (1 + cosN )2  

+  1/2 K ( - 0)
2   ((B/r)1/12 –(A/r)1/6)+  (qq/r) 

The manner in which these terms are utilized to build a model is referred to as the 

functional form of the force field. The force constants Kb, Kθ , KΦ , K   and equilibrium 

values b0, 0, K Φ , K   are atomic parameters which are experimentally derived from X-

ray, NMR, IR, microwave, Raman spectroscopy, thermochemical (calorimetric data) 

and ab initio calculations on a given class of molecules (alkanes, alcohols, etc). The 

energy of the atoms in a molecule is calculated and minimized using a variety of 

directional derivative techniques. 

 

In contrast to ab initio methods, molecular mechanics is used to compute molecular 

properties which do not depend on electronic effects. These include geometry, 

rotational barriers, vibrational spectra, heat of formation and the relative stability of 

conformers. Since the calculations are fast and efficient, molecular mechanics can be 

used to examine systems containing thousands of atoms and to explore their 

conformational flexibility (conformational search).[69]. What is inherently difficult to 

describe with this technique is the breaking and formation of chemical bonds. Also, 

unlike ab initio methods, molecular mechanics relies on experimentally derived 

parameters so that calculations on new molecular structures may be misleading. 
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2.3 Quantum mechanics: 

 One-electron systems 

Electrons display both wavelike and particle behaviour, and it is necessary to describe 

their motions and distributions using a probabilistic theory (quantum mechanics). 

At the heart of this 'wave mechanics' is the state function or "wavefunction", ψ(r ,t), 

associated with an electron. This function describes the time evolution of the 

electron's spatial distributions and also its motion (momentum and/or kinetic energy). 

In principle it also depends on spin of the electron; but since the calculations 

presented in this thesis concern solely closed-shell, non-radical species, we will refer 

to the spin-free formulation of the background theory. 

 

At low (non-relativistic) speeds, the wavefunction of the electron evolves according to 

the time-dependent Schrödinger equation 

Eqn 2.3.1 
  

ˆ H (r ,t) ψ(r ,t) =  ih
∂ψ(r ,t)

∂t
 

where ˆ H  is the Hamilton operator.  If the Hamiltonian is independent of time then the 

equation simplifies to an eigenvalue equation: 

Eqn 2.3.2 ˆ H (r ) ψn(r )  =   En ψn(r ) 

Here the different electronic states are labelled by the subscript n; the lowest energy 

state is the ground state (all subsequent calculations presented are ground state 

calculations). One of the most useful properties which may be obtained from the 

wavefunction is the electron density (often also called the charge density), and in this 

one-electron case it is given by ρ(r) = ψ(r)*ψ(r) = ψ(r)2 if the wavefunction is real. 

ρ(r)dr   represents the probability of finding the electron in the volume element dr . 

The commonest method for estimating ground state properties is to write a trial 

wavefunction which is a linear combination of atomic orbitals (the LCAO 

approximation).  
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Eqn 2.3.3  ψ = ai
i =1

N

∑ φi  

Then we can apply the variational principle to obtain the ground-state wavefunction 

with the associated energy E0 

 Eqn 2.3.4  
02

  ˆ 
E

d

dH
=

∫
∫

r

r

ψ

ψψ  

  

 Many-electron systems  

 

In a molecule with N electrons and M nuclei, the Schrodinger equation becomes 

Eqn 2.3.5 ˆ H ({ r}, {R} ) Ψn({ r}, {R} )  =   En Ψn({ r}, {R} ) 

 

Where R is a nuclear coordinate. For almost any system of interest, this equation is 

intractable and a number of approximations are introduced. The most fundamental of 

these is where the Born-Oppenheimer approximation, therefore the total wavefunction 

is written as a product of electronic and nuclear wavefunctions: 

Eqn 2.3.6 Ψnm({ r}, {R} )  =   Φn({ r; R} ) χnm({R})  

 
Where Φn is the electronic wavefunction and χnm is the nuclear wavefunction.  

The electronic wavefunction is therefore only parametrically dependant on the nuclear 

coordinates and is an eigenfunction of an electronic Schrödinger equation 

Eqn 2.3.7 ˆ H el({ r;R} ) Φn({ r;R} )  =   En({R}) Φn({ r;R} ) 

Note that the eigenvalue of the electronic equation is a function of the nuclear 

coordinates – this is usually called the potential energy surface (PES). Focusing on the 

electronic wavefunction, the electron density is now obtained by integrating (in effect 

averaging) over all electronic coordinates except one. 
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Eqn 2.3.8     ρ(r ) =  Φn({ r1, r2, r3 ... rn};{R} )*∫  Φn({ r1,r2, r3 ... rn};{R} ) dr2dr3 .... drn 

The forms of the electron kinetic energy, electron-nuclear attraction energy and 

electron-electron repulsion energy operators in the electronic Hamiltonian are as 

follows (in a.u.): 

Eqn 2.3.9 ˆ H el =  ˆ T e + ˆ V ne + ˆ V ee 

where 

 

 

 

 

ˆ T e is the electronic kinetic energy operator; ˆ V ne is the nuclear-electron potential 

operator, ˆ V ee is the electron-electron potential operator, Zj is the charge of the j-th 

nucleus, Rj is the position of the j-th nucleus, r i is the position vector of the i-th 

electron, and  

 

 

 
 
 

 

2.4 Density Functional Theory 

Once the Born-Oppenheimer approximation is applied, the electronic part of the total 

energy  

E = Ee + Enn can be related to the electron density ρ(r) of a system of electrons and 

nuclei using density functional theory (DFT):[70] 

 

Eqn 2.4.1       eeVeTne VeE ++=

∇2 = ∂ 2

∂x2
+ ∂ 2

∂y2
+ ∂ 2

∂z2

 

 
 

 

 
 

 ˆ T e =  -
1
2

∇2
e,i

i

∑
ˆ V ne =   -

Zj

|r i - Rj |j

∑
i

∑

ˆ V ee =     
1

|r i - r j |j> i

∑
i

∑
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   ˆ  neV

   ˆ  xcV

 

Where:  Vne is the electron-nuclear energy  

   Te is the electronic kinetic energy  

   Vee is the electron-electron interaction energy. 

The potential energy terms in DFT are given by     

Eqn 2.4.2     

Eqn 2.4.3 

 

where the electron-nuclear operator        was already defined in equation 1.19 and                  

       is the exchange-correlation potential. In other words, the potential energy can in 

principle be expressed as a function of the density, providing we know the form of the 

exchange-correlation potential Vxc[ρ(r )]. Only crude approximations to the kinetic 

energy functional Te[ρ(r )] are known. Modern density functional theory circumvents 

this problem by employing Kohn-Sham[17] theory outlined below. 

 Kohn-Sham Theory 

In the Kohn-Sham formalism,[71] the total energy functional is partitioned in the 

following way: 

Eqn 2.4.4 Ee   =    Tni + Vne + Vee + ∆T + ∆Vee 

where Tni is the kinetic energy of a system of non-interacting electrons, and ∆T is the 

correction to the kinetic energy arising from instantaneous electron-electron 

interactions.  

Similarly ∆Vee is the exchange energy plus that part of the electron-electron 

interaction energy due to their instantaneous interactions (i.e. exchange plus the so-

called electron correlation energy). In DFT the terms ∆Vee, and ∆T are lumped 

together in a single term that is known as the exchange-correlation functional.  

Expressing the density as a linear combination of molecular orbital products 

 

 

[ ] rrrrr
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rr
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Eqn 2.4.5 ρ(r )   =      nj
j

∑  φ j(r ) φj * ( r ) 

the Kohn-Sham orbital total energy expressed in terms of these orbitals is 

Eqn 2.4.6 

 

  

 

The exact form of the exchange-correlation functional is unknown and has been the 

source of much research; a large number have been proposed. Minimisation of E[ρ ] is 

achieved in the usual way by expanding the molecular orbitals in an LCAO basis and 

determining the coefficients variationally. This results in a pseudo one-electron 

equation (the Kohn-Sham equation) for the orbitals with eigenvalues i, which is 

analogous to the Hartree Fock(HF) SCF equation: 

Eqn 2.4.7    

  
[ − 1

2
∇2  +      ˆ V ne(r )   +    

ρ( ′ r )
r − ′ r 

∫ d ′ r    +    ˆ V xc(r )  ]  φ i (r )    =     εi  φ i (r ) 

These equations are solved iteratively using methods similar to those applied in HF 

calculations (the difference is the requirement for numerical integration methods for 

evaluating the complicated exchange-correlation potential terms).[72] 

 

Density functional theory in its original Hohenberg-Kohn context is essentially a 

ground state theory and not applicable a priori to excited states. 

  

2.5 Time-Dependent Density Functional Theory 

TDDFT is a quantum mechanical method used to investigate the properties of many-

body systems beyond the electronic ground state structure. TDDFT extends the 

concept of stationary DFT to time-dependent situations by describing the interaction  

 

E ρ (r )[ ] =  φ i − 1
2

∇ i
2 φ i

i

N

∑   − φ i

Z k

r i − r k

φ i

k

nuclei

∑  +  
1
2

ρ (r i ) ρ (r j )

r i − r j

 ∫ dr i  dr i  + ρ (r∫ )  Vxc ρ (r )[ ] dr
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of a quantum many-particle system with a given time-dependent potential, e.g. a 

periodic electromagnetic field. Using additional simplifications in the linear response 

regime,[73] the main area of TDDFT applications till now has been the calculation of 

energies of electronically excited states. The excitation energies can be computed as 

the poles of the response function of the system which can be computed using a 

Dyson equation. The key ingredients become the Kohn-Sham non-interacting 

response function and the Hartree plus exchange-correlation kernel, which is the 

functional derivative of the effective potential with respect to the density.  

 

In TDDFT, excitation energies are essentially computed from ground-state densities, 

without recourse to the actual excited states (which are not covered by the original 

Hohenberg-Kohn theorems). In many cases TDDFT rivals sophisticated MR based ab 

initio methods in terms of accuracy of the excited energies. Problems can arise with 

certain types of excitations, e.g. involving high-lying diffuse orbitals (Rydberg states) 

and, most notably, for long-range CT states, the energies of which are notoriously 

underestimated with present day Xc functionals.[74] 

 

2.6 Basis Sets 

In LCAO orbital methods the orbitals are expanded using predefined basis set -a 

collection of mathematical functions used to model the spatial variation of the 

orbitals. Historically Slater-type orbitals were used due to their geometric similarity to 

the hydrogenic orbitals.  However they do have a significant drawback in that there 

are no analytical solutions for the many-centre integrals involving Slater-type orbitals. 

Consequently most practitioners of quantum chemistry turned to Gaussian type 

orbitals.  

 

The general form for a normalised Gaussian-type orbital (GTO) within a cartesian 

coordinate system is 
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GTO's have an atom-centered gaussian form (i.e. decay exponentially with the square 

of the distance from the atom). A major problem with GTOs is the dissimilarity to 

hydrogenic orbitals in the radial portion of the function: they have no "cusp" at the 

nucleus. This issue is partly resolved by using a fixed linear combination of GTO's 

(known as primitives) to better approximate the shape of an STO closer to the nucleus 

(it doesn't rectify the problem of there being no cusp actually at the nucleus). A basis 

function that is composed of a fixed linear combination of primitive Gaussians is 

commonly known as a contracted basis function. These effectively combine the 

computational advantage of the Gaussian functions while providing a good 

approximation to the shapes of Slater-type orbitals. 

Eqn 2.6.2      { } ∑
=

=
M

a
aa kjizyxCkjizyx

1

),,,,,,(),,,:,,( αφαφ  

Larger basis sets give rise to more accurate representations of the MOs. It is 

mathematically evident that an infinite basis is required for exact solutions of the 

Schrödinger equation. However, practical considerations have dictated the need for 

optimisation of finite compact basis sets to best described molecular properties within 

sensible computational expense. This has led to the development of various basis sets 

each with differing characteristics reflecting their intended applications. The use of 

such optimised finite basis sets does produce reasonably accurate geometries (as basis 

sets do not strongly influence structure).  However energies are much more basis set 

dependent. 

 

Minimal basis sets (e.g. STO-3G[75]) assign a single basis function to each atomic 

orbital in the ground state. This provides a fairly inflexible description of the 

molecular orbitals, particularly with regard to expansion/contraction of the function as 

a response to differing molecular environment. 
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Extended basis sets have been developed with the addition of extra functions for all 

orbitals which would be occupied in the ground state of the associated atom (or in 

some cases only valence orbitals are assigned these extra functions). Two or more 

contracted GTOs per atomic orbital, as in the so-called double-zeta basis sets76, 

provide much greater flexibility. Split-valance basis sets partitions the atomic orbitals 

into core and valence regions. The core AO’s are assigned a minimal basis whilst the 

valence orbitals are described at the double-zeta level. For example the 6-31G basis 

set77 describes the core AO’s with a single contracted Gaussian composed of primitive 

Gaussian functions. The valence AO’s are described using two functions: a contracted 

GTO with 3 primitives and a separate single diffuse GTO. 

 

Polarisation functions are frequently added to improve the flexibility: this is a 

function with higher angular momentum than is found in the occupied ground state 

atomic orbitals. The basis set  6-31G*[78a] adds 5 or 6 d-type GTOs to first and second-

row atoms; the basis set 6-31G**[78b,c] also adds three p-type GTO's to hydrogen 

atoms.  
 

2.7 QM/MM methodology 

The basic idea is to identify a small region, the Inner Region in Figure 2.7.1 to which 

the higher (QM) level of theory is to be applied.  As in an extended covalent system, 

the excision of this region involves bonds, it will be necessary to compute the QM 

wavefunction of the Inner Region in the presence of at least a layer of atoms which 

serve to provide a satisfactory termination for the QM calculation.  

 

In many methods, traditionally those used for covalent systems, a number of 

additional atoms, which have no counterparts in the real system, are added to the QM 

region to terminate the broken bonds, these are typically called link atoms.  These are 

hereafter referred to as link-atom methods. When handling solid-state systems, the 

models, often referred to as embedding models, handle the termination of the QM  
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region by defining a boundary region in which the atoms have some quantum 

character, as well as being described fully by the classical force field. No new centres 

are needed. These models are called boundary region methods. 

 

 

 

 

 

 

 

 

 

 

 

 

                                  Figure 2.7.1   Inner, outer and boundary regions                                    

QM/MM schemes may also be classified by the nature of the total energy expression. 

At one extreme, a QM/MM energy expression can be obtained by adding the QM and 

MM contributions, together with the appropriate coupling terms 

 

Eqn 2.7.1.  E = E(Inner,QM)  +  E(Outer, MM)  +  E(Couple, QM/MM)  

 

E(Couple,QM/MM) is a QM/MM coupling term that includes all interactions between 

the two regions, for example, classically handled bonding and van der Waals 

interactions and modifications to the QM Hamiltonian to reflect the electrostatic 

influence of some or all of the atoms in the outer region (vide infra). 

This approach is referred as the additive QM/MM model. The method can be applied 

easily to systems where there are no boundary atoms (as in studies of solvation) but as 
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presented above the approach takes no account of the handling of link atoms at the 

interface.  

 Coupling of the QM and MM regions  

 
The QM and MM regions are coupled by bonded and non-bonded interactions. The 

bonded terms are generally handled by terms in the classical force field or (for 

boundary region methods) by a combination of quantum and classical terms between 

QM and boundary atoms. The non-bonded terms comprise van der Waals and 

electrostatic interactions. The former are handled in the same way as they are in the 

MM region (perhaps with modified parameters). Bakowies and Thiel[79] defined three 

ways of treating the QM/MM electrostatic interaction, labelled A–C, as follows. 

 

A. Mechanical embedding: The QM calculation is essentially performed in the 

gas phase, without electronic coupling to the environment. The electrostatic 

interaction between QM and MM regions is either omitted or performed by the 

MM code, using a classical point charge model for the QM charge distribution 

(e.g. a potential derived charge model). 

B.  Electrostatic embedding: The classical partition appears as an external charge 

distribution (e.g. a set of point charges) in the QM Hamiltonian. The 

polarisation of the QM region by the MM charge distribution thus occurs as 

part of the QM electronic structure calculation. The partial charges used to 

describe the MM distribution are frequently taken to be those used in the force 

field [80,81,82], relying on the use of electrostatic properties in the force field 

charge derivation. In ab initio schemes it is clear that the electrostatic 

embedding scheme should be implemented, at least at long range, by adding 

the contribution of the MM point charges to the 1-electron Hamiltonian.  

C.  Polarised embedding: The polarisation of the MM region in response to the 

QM charge distribution is also included. Intuitively this makes most sense 

when the force field incorporates polarisation as unpolarised force-fields 

implicitly incorporate MM polarisation in their parameterisation, and care 
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must be taken to ensure such implicit contributions do not occur in the 

QM/MM potential. A variety of models for classical polarisation are possible,  

including the shell model [83], and coupled distributed atomic 

polarizabilities.[84] Polarisation of MM atoms close to the QM region (e.g. 

those connected by link-atom terminated bonds) was found to be unphysically 

large, leading to the suggestion that these atoms be treated as unpolarizable.[79] 

 

2.8 NMR chemical shifts 

Nuclear magnetic resonance (NMR) is an extremely popular experimental technique. 

The information that can be extracted from such spectra is ever increasing. Structural 

information such as distances and angles are now routinely extracted from elegant 

experiments on systems ranging in size up to large bio-molecules. Coordination 

numbers, bond types and even some insight into the electronic structure can be 

interpreted from NMR spectra. Evolution in the field of quantum chemistry has made 

possible calculations of useful accuracy and reliability on fragments of biomolecules 

and transition metal complexes, containing dozens of atoms.[85] Here, a brief 

explanation of the chemical shifts is given. 

 

NMR active nuclei have a non-zero spin I, which can take 2I+1 orientations. In an 

external magnetic field the degeneracy of these orientations is lifted due to the 

splitting of the energy levels. For I=1/2 the energy splitting is : 

 

 Eqn 2.8.1 
π2

ghB
E =∆  

Where g is the gyrometric ratio, an intrinsic constant of every nucleus, and h is the 

Planck constant. B is the magnetic field at the nuclei. 

 
The effective magnetic field at the nucleus is not equal to the applied magnetic field 

since the latter is shielded by the electrons moving around the nucleus. The resulting 

effective field is : 
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Eqn 2.8.2           )1( σr
rr

−= exteff BB  

 

Where σr  is the nuclear shielding tensor, which in the isotropic case simplifies to the 

isotropic shielding constant Trσr /3. The shielding tensor depends on the chemical 

environment of the nucleus. Nuclei of the same kind placed in a different chemical 

context are shielded differently and can therefore be distinguished. The chemical shift 

is then defined as: 

Eqn 2.8.3         
ref

refLppm
ν

νν
δ

−
= 610/   

Where Lν  is the Larmor frequency of the sample and refν  is the Larmor frequency of 

a reference compound. The Larmor frequency is related to the shielding constant as 

follows: 

Eqn 2.8.4
π

σν
2

)1(         L

effBg ⋅−=   

The shielding constants can be calculated from the mixed second-order derivative of 

the energy with respect to the nuclear magnetic moment and the external field 

assuming that in lowest order the energy of the system is linear to both  extB
r

andµ : 

 

Eqn 2.8.5 
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The calculation of the shielding constant requires an accurate description of the 

wavefunction close to the nuclei. Thus, the nuclear magnetic shielding (absolute 

shielding) is the molecular electronic property. The isotropic chemical shift isoδ  is 

defined as σσδ −= refiso where isoσ  is the isotropic shielding of the vanadium 

nucleus and refσ  is the isotropic chemical shielding of the reference compound. 

 Almost all modern approaches to the shielding use some method with the distributed 

origin for the gauge of the magnetic field. This is necessary to avoid the nonphysical-

dependence of calculated properties on the coordinate origin or, on more generally, on  
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the gauge of the magnetic vector potential. This dependence vanishes, of course, if the 

quantum mechanical equations have been solved exactly. It can, however, have 

serious consequences if this is not the case, for instance for finite basis sets. One of 

the most popular methods for avoiding this gauge dependence is the so-called ‘gauge 

including atomic orbitals (GIAO, originally known as gauge invariant atomic orbitals) 

method. [86,87] The GIAO/DFT approach[88] is known to give satisfactory chemical 

shifts for different nuclei with larger molecules. 

 NMR chemical shift tensors 

The NMR chemical shift is a tensor quantity. Depending on the local symmetry at the 

nuclear site, the magnitude of the chemical shift will vary as a function of the 

orientation of the molecule with respect to the external magnetic field. This 

orientation dependence of the chemical shift is referred to as chemical shift anisotropy 

(CSA). Mathematically, the chemical shift anisotropy is described by a second-rank 

tensor (a 3 by 3 matrix), which in the case of the symmetric part of the chemical shift 

(CS) tensor consists of six independent components. Generally, one is able to express 

the chemical shift tensor in a coordinate frame where all off-diagonal elements 

vanish. In this principal axis system, the chemical shift tensor is fully described by the 

three diagonal elements - the principal components - and the three eigenvectors or 

Euler angles describing the orientation of the principal axes with respect to an 

arbitrary frame. In addition, various combinations of the principal components (and 

their orientations) are in use to describe the chemical shift tensor. 

 

 

 

 

 

 

 

 

                 Figure 2.8.1     Principal components and isotropic chemical shift representation  

 



  Theoretical background 
 

 33








 −
=

σ
σ δ

δδ
η xxyy

In the Haeberlen-Mehring-Spiess convention, the principal axes are defined as 

follows: 

                               isoyyisoxxisozz δδδδδδ −≥−≥−  

 
where ˆ δ = ˆ I σ iso − ˆ σ   
 
The centre of gravity of the line shape is described by the isotropic value (iso), which 

is the average value of the principal components and is represented by, 

Eqn 2.8.6                           )(
3

1
zzyyxxiso δδδδ ++=  

 
The reduced anisotropy (σδ ) describes the largest separation from the centre of 

gravity which is shown below. 

Eqn 2.8.7                     isozz δδδσ −=    

The asymmetry parameter (η σ ) indicates by how much the line shape deviates from 

that of an axially symmetric tensor. 

 

Eqn 2.8.8 

 

 EFG tensors and NQC 

 

Quadrupole nuclei with a half-integer spin larger than 1/2 possess a quadrupole 

moment Q, which interacts with the electric-field gradient (EFG) generated by their 

surroundings. The coupling of Q (a property of the nucleus) with an EFG (a property 

of a sample) is called the quadrupole interaction. 

 

Consider a free nucleus in a uniform space, that is, the three coordinate axes x, y, and 

z are equivalent. The Hamiltonian representing the quadrupole interaction of this 

nucleus, independent of the Cartesian coordinate frame, is defined by: 
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Eqn 2.8.9 

 

where Vjk are the Cartesian components of V, the EFG at the origin, which is a 

second-rank symmetrical tensor, and δjk is the Kronecker delta. In the principal-axis 

system of the EFG (XPAS, YPAS, ZPAS), V is diagonal: 

 

 

Eqn 2.8.10 

 

with the convention 

 

 

 

Furthermore, the Laplace equation, VXX + VYY + VZZ = 0, holds for V, because the 

electric field at the nucleus is produced by charges wholly external to the nucleus.  

 

Thus, only two independent quadrupole parameters are required: 

 

Eqn 2.8.11                                 eq = Vzz                    

Eqn 2.8.12                                       
( )

zz

yyxx
Q V

VV −
=η                         with 1 ≥ Qη  ≥ 0 

 

the largest component eq and the asymmetry parameter Qη , respectively. 

In practice, the asymmetry parameter  defines the powder lineshape and eq is related 

to the linewidth.  

 

The product of eq with eQ divided by Planck's constant is called the quadrupole 

coupling constant QC  
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During line shape analysis of the solid-state NMR spectra, values for the quadrupole 

coupling constant QC (MHz) and asymmetry parameter Qη  are refined, which are 

related to the EFG tensor by the following formulas: 

                                            
h

QVe
C zz

Q

2

=     
( )

zz

yyxx
Q V

VV −
=η  

where Vii is the EFG tensor at  nucleus in atomic units, ordered according to |Vzz| > 

|Vyy| ≥|Vxx| ; 

 

  NMR Chemical shift with QM/MM approach 

 
NMR is a widely used tool for studying the structure and dynamics of chemical and 

biological systems ranging from small molecules to proteins and nucleic acids.[89] 

Although shielding (chemical shifts) tensors are determined and assigned in an 

essential step of any NMR study, it has been shown only recently that they can 

provide useful information for protein structure determination.[90] 

 

Quantum chemical calculations of NMR parameters, often have to be limited to 

isolated (gas-phase) molecules and to some preferred (optimized) structures while 

experimental NMR spectra are commonly statical averages affected by dynamic 

processes such as conformational equilibria as well as intra and/or intermolecular 

interactions. Since DFT is the most useful quantum mechanical technique for larger 

systems to about 100 atoms,[91] particularly where metal ions are involved, 

implementation for calculating magnetic properties such as chemical shielding tensors 

within the DFT framework are of considerable importance. For macromolecules, 

including proteins[92] and nucleic acids[93], useful empirical and semiempirical 

methods for chemical shift estimates have been developed. They are based on 

measured values for different systems, augmented by semiempirical calculations. The 

recent increase in the number of protein structures determined by NMR has made 

possible a simple, yet useful, empirical description for proton chemical shifts. The 

model includes electric field effects, the contribution of the magnetic susceptibility of 

other atoms or groups, and closed contact interactions.[94]  
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To complement these empirical approaches and to treat nuclei other than the proton, it 

is important to be able to calculate chemical shielding with high accuracy for specific 

groups in a large molecule. This can be achieved with a method that treats the 

shielding of only a part of the systems in detail and describes the environment by a 

simpler and fast approach. QM/MM methodologies are well suited for this purpose 

where the important part is treated quantum mechanical methods, and the 

environment part is described with molecular mechanics method. The chemical 

shielding tensor in a large molecule like a protein is usefully divided into terms that 

arise from the electronic structure of the atoms of the interest perturbed by the 

environment and additive contribution from the other parts of the system. The former 

includes primarily the electrostatic effects arising from the partial charges on the MM 

atoms, and the later includes the contribution of anisotropic magnetic susceptibility 

tensors of aromatic and carbonyl groups.[95] 

 

2.9 Molecular Properties 

 Population Analysis 

The electron density can be arbitrarily partitioned and assigned to nuclei in a 

molecule, giving rise to the concept of the electron population of an atom. The atomic 

charge is therefore the sum of this electron population and the nuclear charge. A 

number of schemes exist for this type of partitioning. Population analysis is a scheme 

that follows naturally from the LCAO form of most wavefunctions. One of the most 

popular schemes is due to Mulliken.[96] Mulliken analysis also employs the (fixed) 

AO basis function overlap matrix S to give the following expression for the electron 

population of an atom: 

Eqn 2.9.1              S P 
2

1
   -   P        

A B;A
A ij

i jij
ij

i
iiP ∑ ∑∑

∈ ≠∈∈

=  
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The use of diffuse functions in quantum mechanical calculations presents a challenge 

for Mulliken analysis. This is due to the delocalised nature of the orbitals arising for 

such functions, which may no longer be assigned to a single atomic centre. Mulliken 

charges can thus be quite basis-set dependent. The most preferable method in that 

respect is Natural Population Analysis (NPA) introduced by Weinhold and co-

workers in the mid 1980s.[97]  Certainly, NPA method seems to be excellently 

positioned for the formidable task of substituting the Mulliken method for the 

assignment of electronic populations to atomic orbitals. On the other hand, it 

overcomes some of its most serious limitations, namely the basis set dependence and 

the appearance of physically meaningless results when non-covalent bonds are 

considered. 
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Chapter 3 

3 Computational Details 

3.1 Gas-phase optimisation 

Stationary points of amavadin-derived species were optimized with the Gaussian 03 

program[98] at the BP86/AE1 level, i.e. employing the exchange and correlation 

functionals of Becke[99] and Perdew,[100] respectively, together with a fine integration 

grid (75 radial shells with 302 angular points per shell), the augmented Wachters' 

basis[101]on V (8s7p4d, full contraction scheme 62111111/3311111/3111), and 6-

31G* basis[102] on all other elements. For the amavadin-based model complexes the 

resolution of identity was used with fitting of the density employing suitable auxiliary 

basis sets generated automatically in Gaussian 03 (denoted RI-BP86). This and 

comparable DFT levels have proven quite successful for transition-metal compounds 

and are well suited for the description of structures, energies, barriers, etc.[103] The 

nature of the stationary points was verified by computations of the harmonic 

frequencies at that level. In selected cases, geometries were also optimized at the RI-

BP86 level as implemented in the TURBOMOLE program,[104] using suitable 

auxiliary bases[105] and a medium-sized grid (m3). 

 

3.2 QM/MM optimisation 

The pdb file VCPO (1IDQ.pdb) and VBPO (1QI9.pdb) was obtained from the RCSB 

website.[106]  Protonation states of the titratable residues were assigned based on 

calculated pKa values using the Propka program.[107] The overall charge of the protein 

model after protonation, e.g. −19e for VCPO, was then neutralized by selectively 

protonating residues on the surface of the protein which were > 5 Å from the active 

centre (residues with higher pKa values were preferentially protonated). The 

InsightII[108] software package was employed to add a 14 Å solvent shell of TIP3 

water iteratively (with intermediate relaxation) to the VCPO protein X-ray structure. 

A frozen crust of solvent molecules (outer 7 Å) was imposed to prevent solvent  
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‘escaping’ during the model relaxation and equilibration phase. The solvation of the 

VBPO homodimer was achieved by placing a 30 Å solvent sphere of TIP3 water 

centered on one of the vanadate moieties (resid VO4). The solvation was performed 

iteratively (with intermediate relaxation) to the protein X-ray structure of VBPO. A 

boundary potential was imposed to prevent solvent ‘escaping’ during the model 

relaxation and equilibration phase. Due to the large size of the VBPO homodimer, the 

previous setup, which immerses the enzyme totally in the solvent, would have 

resulted in a very large number of solvent molecules. A large majority of these 

solvent molecules would be located very far from the active site in the non-active 

QM/MM region, and would thus affect the results only marginally. 

 

The initial geometry of the p-VCPO enzyme was taken from the pdb file (1IDU.pdb), 

and the initial geometry of the p-VBPO enzyme was constructed from the pdb file of 

the n-VBPO (1QI9.pdb), obtained from the RCSB website.[106] As the experimental 

structure of p-VBPO is not available till date, we produced a ‘homology-type’ model. 

The VBPO file was modified by deleting the vanadium cofactor, and then the 

coordinates from the peroxo-form of the VCPO cofactor were transposed into the 

emptied active site of the n-VBPO.  

 

The vanadate moiety was also fixed at X-ray coordinates with an additional rigid 

constraint being applied to the vanadium - histidine 496 Nε  bond during equilibration.  

The solvated protein was relaxed via several cycles of molecular mechanics (MM) 

minimization and molecular dynamics (MD) simulations. Once the system was 

equilibrated (~200-400 picoseconds of MD simulation) six snapshots were taken at 

random intervals along the MD trajectory for QM/MM optimizations, in order to 

generate a reasonable sample size with different protein configurations.[109]  

 

ChemShell[110] was utilized as the QM/MM software suite. Turbomole[104] with the 

BP86[99] functional and the AE1 basis set was applied to the QM regions using the  

resolution of identity approximation, RI-BP86/AE1.  The AE1 basis comprises the  
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Wachters basis[101] augmented with two diffuse p and one diffuse d sets for metal 

centers (8s7p4d, full contraction scheme 62111111/3311111/3111), and 6-31G*[102] 

for all other atoms in the QM region, together with suitable auxiliary fitting functions 

from the Turbomole library.[104] DL_POLY[111] provided the MM energy and 

gradients using the CHARMM27 force field.[112] An electrostatic embedding scheme 

was applied.[113] Partial atomic charges for the vanadate moiety were created using a 

Mulliken population analysis from gas-phase models optimized at the RI-BP86/AE1 

level of theory. Partial atomic charges for the vanadate moiety were created using 

Weinhold natural population analysis (NPA)[97] from gas-phase models optimized at 

the RI-BP86/AE1 level of theory and are shown in Tables 3.2.1. and 3.2.2.  

 

Table 3.2.1  Partial atomic charges that are calculated by NPA[97] for selected vanadate moieties of  native form of  

VHPOs  

 

 

 
 

 

 

 

 

 

 

 

 

 

 VHPO-T VHPO-D VHPO-S 

V 1.48 1.14 1.01 

O-Terminal(O1) -0.43 -0.63 -1.00 

O-Hydroxyl(O2) -0.84 -0.63 -0.81 

O-Hydroxyl (O3) -0.84   -0.89 -0.81 

O-Hydroxyl (O4) -0.84 -0.89 -0.80 

H1 - - - 

H2 0.49 - - 

H3 0.49 0.45 0.41 

H4 0.49 0.45 - 

Total Charge 0 -1 -2 
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Table 3.2.2  Partial atomic charges that are calculated by NPA[97] for selected vanadate moieties of peroxo form of 

VHPOs  

 
 

 

 

 

 

 

 

 

 

 

3.3 Molecular dynamics simulations 

For amavadin-derived species, Born-Oppenheimer MD simulations (denoted BOMD) 

were performed at the RI-BP86/AE1 level, using the ChemShell program[110] for NVE 

ensembles at ca. 300 K for 3000 ps, with a time step of 1 fs. In these simulations, 

Turbomole was used as QM program,[104] and the C-H distances were frozen with the 

SHAKE algorithm. Data and snapshot sampling was started after the first picosecond, 

which was taken for equilibration.  

 

3.4 NMR chemical shifts 

The magnetic shielding tensors σ̂  were computed using the Gaussian 03[98] package 

with the B3LYP[99,114] functional and the AE1+ basis (AE1 basis augmented with 

additional diffuse functions[115]  on all non-hydrogen atoms). The protein and solvent 

surrounding the QM region were treated as fixed point charges.  

 

A single VOCl3 molecule was used as a reference for the conversion to relative 

chemical shifts with a calculated isotropic magnetic shielding of -2294.4 ppm (which  

 p-VHPO-Z p-VHPO-S1 p-VHPO-D13 

V 1.09 1.19 1.32 

O-Terminal -0.58 -0.48 - 

O-Hydroxyl - -0.74 -0.63 

O-Peroxo (O2) -0.51  -0.27 -0.11 

O-Peroxo (O4) -0.42 -0.18 -0.17 

H - 0.48 0.62 

Total Charge -1 0 1 
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is bracketed by the reported B3LYP values,[46 ] -2317.2 and -2279.4 ppm for the TZV 

and 6-311+G basis, respectively). The isotropic chemical shift isoδ  is defined as 

3VOClisoiso σσδ −= where isoσ  is the isotropic shielding of the vanadium nucleus and 

3lVOCσ  is the reference isotropic chemical shielding of VOCl3.  

 

There are a number of conventions in the literature with respect to the definitions of 

the principal components of the CSA and EFG tensors, which may lead to confusion. 

The Haeberlen-Mehring-Spiess[116] convention is adopted here (see chapter 2.8) for 

consistency with the previous work by Pooransingh-Margolis et al.[46 ]  

 

Magnetic shieldings were computed for equilibrium structures and for snapshots 

along the trajectories employing the B3LYP[114] hybrid functional, together with 

AE1+ basis, i.e. AE1 augmented with diffuse functions on C, N, and O.[115]  

Snapshots were taken every 20 fs during 1000-2000 ps of the total runs. Chemical 

shifts are reported relative to VOCl3, optimized or simulated at the same respective 

level (σ values -2294 ppm and -2320 ppm employing BP86/AE1, and RI-BP86/AE1 

geometries, respectively, and -2382 ppm for a BOMD simulation averaged over 1 ps). 

 

In selected cases, magnetic shieldings were evaluated at the GIAO-B3LYP/AE1+ 

level in conjunction with the polarizable continuum model (PCM) of Tomasi and 

coworkers[117] (employing UFF radii and the parameters of water, both for geometries 

optimized in the gas phase and the continuum at the BP86/AE1 level. 
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Chapter 4 

4 Results  

4.1 A DFT directed verdict on oxidized amavadin 

The oxidized amavadin complex [-VV{(S,S)-hidpa}2]
– (2a)  and its hida analogue (3) 

are known in the solid state (PPh4
+ counterion).[22]  Their structures, as well as 

hypothetical (4 – 6) with the same donor atoms in the first coordination sphere are 

shown in Figure 4.1.1. These model species were constructed from 3 by deleting the 

appropriate atoms and saturating the dangling bonds with H atoms.  

 
Figure 4.1.1 Oxidized amavadin (2a), its parent (3), and model complexes (4 – 6), Oxo-vanadium(V) 

hydroxylamido complex  [VO(NH2O)2Gly] (7) and model complex [VO(NH2O)2(OH)2]
−  (8), together with 

computed gas-phase equilibrium 51V chemical shifts (GIAO-B3LYP/AE1+ level, in parentheses). 

 

 
 

 Compound 2a. hidpa (-382) Compound 3. hida (-341) Compound 4. (-415) 

  

V

O OH

HO

O N

O N

H

H

H

H

−

 

Compound 5. (-578) Compound 6.  (-633) Compound 7. (-863)         Compound 8. (-866)      

- - - 

- - 
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 Geometries: 

As mentioned in the introduction, model complexes 2 can exists in the form of several 

stereoisomers, as it contains four stereogenic carbon centers and one axis of symmetry 

giving rise to axial chirality. Gas-phase and PCM-optimized geometrical parameters 

for 2a and selected stereoisomers, as well as for 3 - 6 are collected in Table 4.1.1 and 

Table 4.1.2, respectively, together with experimental data for 2a and 3 in the solid-

state.[22] As expected, the different diastereomers of the oxidized amavadin 2a have 

quite similar gas phase optimized bond lengths. The computed values for the all-S 

form 2a and for 3 tend to be longer than the corresponding experimental ones, which 

may in part be due to packing effects in the solid, and may in part be related to the 

particular density functional employed.[118] Typically, distances are overestimated by 

a few picometers in the computations, with a maximum deviation of 0.046 Å for a V-

N bond in 2a.  

 

For the discussion of substituent effects on the 51V chemical shifts (see below), 

several model complexes 4 - 6 were constructed that preserve the general ligand 

environment of amavadin. Turning the carboxylate donors into alkoxy groups 

introduces only minor changes in the geometrical parameters (compare 3 and 4 in 

Table 4.1.2). Dissecting the tetradentate ligand backbone in 4 to afford 5 effectively 

leads to a dissociation of the N atoms from the metal (with fully optimized V-N 

distances of 2.978 Å in 5). Apparently, the chelate is necessary to counteract the steric 

bulk of 8 donor atoms about the metal. In order to evaluate substituent effects for the 

same ligand environment, partial optimizations were performed for 5, in which the 

two V-N and V-O distances to the hydrozylimido moiety were fixed to their 

respective values in 4. It is the data from these constrained optimizations that are 

included in Table 4.1.1. and Table 4.1.2. Relative to the corresponding fully 

optimized minimum, this partially optimized structure of 5 is higher in energy by 23.7 

kcal/mol (RI-BP86/AE1 level).[119]  
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Table 4.1.1 RI-BP86/AE1 optimized bond lengths (Å) of the diastereomeric oxidized amavadin complexes [
�

-

VV(hidpa}2]
– (2).  

 

2a 

SS,SS 

Expt.a 

2a 

SS,SS 

(PCM) 

2a 

SS,SS 

 

2b 

RR,RR 

2c 

RR,SS 

2d 

SR,RS 

2e 

RS,SR 

2f 

RS,RS 

V-O1 1.993 2.025 2.038 2.035 2.037 2.029 2.031 2.029 

V-O2 1.923 1.951 1.958 1.957 1.956 1.968 1.950 1.968 

V-O3 1.959 1.987 1.976 1.977 1.978 1.972 1.968 1.972 

V-O4 1.977 1.987 1.976 1.977 1.976 1.972 1.968 1.967 

V-O5 1.940 1.951 1.958 1.957 1.958 1.968 1.950 1.950 

V-O6 1.972 2.025 2.038 2.035 2.037 2.029 2.031 2.029 

V-N7 2.018 2.047 2.045 2.046 2.046 2.050 2.063 2.053 

V-N8 1.999 2.047 2.045 2.046 2.046 2.050 2.063 2.053 
aSolid state, PPh4

+ counterions, from reference 22; see Figure 1 for numbering of atoms. 

 

Table 4.1.2 RI-BP86/AE1 optimized bond lengths (Å) of the oxidized amavadin model complexes [
�

-VV(hida}2]
– 

(3), and for selected models thereof. 

 3 

Expt.a 

3 

    

   4 

       

   5 

    

  6 

   

V-O1 1.991 2.041 2.036 2.037 2.109 

V-O2 1.963 1.961 1.953 1.953b 1.952 

V-O3 1.955 1.979 2.016 1.950 1.952 

V-O4 1.920 1.979 2.016 1.950 1.952 

V-O5 1.936 1.961 1.963 1.963b 1.952 

V-O6 1.978 2.041 2.036 2.036 2.109 

V-N7 2.016 2.038 2.040 2.040b 2.048 

V-N8 2.028 2.038 2.040 2.040b 2.048 
aSolid state, PPh4

+ counterions, from reference 22. bFixed to the corresponding value of 4. 
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 Chemical shifts          

Equilibrium 51V chemical shifts computed in the gas phase are included in Figure 

4.1.1. For 2a and 3, the static values δ = -382 and -341, respectively, are considerably 

more shielded than the corresponding experimental numbers, δ = -281 and -263, 

respectively, a frequent observation for this particular level of theory (see below for 

further results on 2a - 2h). Figure 4.1.1 shows a typical oxovanadium(V) complex 

with two hydroxylamido ligands, [VO(NH2O)2Gly] (7, Gly = glycine anion).26a Even 

though some geometrical parameters observed for 7 in the solid-state are not very 

well reproduced by the gas-phase optimization (see, Table 4.1.3), the computed 51V 

chemical shift for 7, δ = -863, compares favorably to experiment, δ = -830 (aqueous 

solution value). Clearly, the substantial deshielding on going from 7 to 2a is well 

captured by the computations.  

 
 

Table 4.1.3 Geometrical parameters for gas phase optimized (RI-BP86/AE1) oxo-vanadium(V) hydroxylamido 

complexes.  

Bond length Å 7 Exp.a  7 8 

V1-O2 ---- ------ 2.007 

V1-N2 2.121(2) 2.253 ----- 

V1-N3 2.008(2) 2.068 2.068 

V1-N4 2.021(2) 2.065 2.068 

V1=O5 1.603(2) 1.626 1.662 

V1-O6 2.188(14) 2.064 1.992 

V1-O7 1.898(2) 1.898 1.960 

V1-O8 1.901(2) 1.900 1.960 
a From solid-state X-ray diffraction, see Keramidas, A.D.; Miller, S.M.; Anderson, O.P.; Crans, D.C. J. Am. Chem. 
Soc., 1997,119, 8901. 
 
 
Starting from 7, model complex 8 was constructed by replacing the carboxylate and 

amine donors with hydroxy substituents. The vanadium(V) centers in both complexes 

are seven-coordinate in a pentagonal bipyramidal geometry with the oxo ligand and 

an amino or hydroxy group in apical positions, and they contain two bidentate  
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hydroxyamido ligands, one oxo ligand, and two monodentate N or O donors. The two  

hydroxylamido ligands are in an equatorial plane perpendicular to the V=O. Despite 

different overall charges and some variations in the metal-ligand bond distances 

(cf.Table 4.1.3), the computed chemical shifts for 7 and 8 are remarkably similar 

(Figure 2). The latter is closely related to the amavadin model 6 in Figure 4.1.2, via 

the equation 

 

  6    →     8  +  H2O, ∆E = -7.8 kcal/mol (RI-BP86/AE1) (1)     

 

On going from 8 to 6, a substantial deshielding is computed for the 51V nucleus, by ∆δ 

= +233 ppm. This large effect is difficult to analyze, because the mutual orientation of 

the ligands differs in both complexes. For instance, the X-V-X angle (where X 

denotes the midpoint of the side-on NO group) is 128° and 179° in 8 and 6, 

respectively. In any event, it appears that the transition from a heptacoordinate oxo 

complex to an octacoordinate non-oxo species entails a large deshielding of the metal. 

 

Replacing the hydroxylamido moieties in 6 with N,N´-dimethylhydroxylamido 

ligands (constraining the latter to prevent detachment) results in a further, slight 

downfield shift, ∆δ = +55 ppm (compare 6 and 5 in Figure 4.1.1). Closing the 

tetradentate ligand backbone by going from 5 to 4 produces another large deshielding, 

by ∆δ = +163 ppm. This rather large effect is mostly steric in nature, as the general 

electronic structure of both complexes should be very similar. One factor that 

arguably will contribute to this effect is the considerable elongation of the two V-O3 

and V-O4 bonds by almost 0.07 Å in the course of this transformation (Table 4.1.1.). 

 

Mutating the alkoxy moieties in 4 into the carboxylate donors of the hidpa ligands in 

3 produces a final, small downfield shift of ∆δ = +74 ppm. All these transformations 

just discussed have a deshielding effect on the central metal, and add up to ∆δ = +525 

ppm. Thus, the change in δ(51V) between a typical oxovanadium complex 8 (or 7) and 

the oxidized amavadin parent 3 can be broken down into a series of increments, the  
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two most important of which stem from the difference between oxo- and non-oxo 

complexes (i.e. an electronic effect), and from those between mono-/bidentate and 

tetradentate ligands (i.e. a steric effect). There is thus no need to invoke a non-

innocent nature of the hidpa and related ligands in order to explain the observed 

unusual 51V chemical shifts of oxidized amavadin and its derivatives. 

 

When the electronic structure of 2a is analyzed, no evidence for low-lying ligand-to-

metal charge charge transfer (LMCT) excitations are found. For instance, a notable 

HOMO-LUMO gap and singlet-triplet splitting are computed (3.75 and 1.97 eV, 

respectively, at the B3LYP level). These are much larger than those in vanadium 

catecholate complexes, where very low-lying LMCT bands and, possibly, thermal   

population of triplet states are indicated to be responsible for the unusual deshielding 

of the 51V resonances in the complexes.[120] This result further corroborates the 

innocent nature of the ligands in amavadin. 

 Stereoisomers 

Natural amavadin 1 (see Figure 1.1.1) has been shown to consist of two diastereomers 

with -V{(S,S)-hidpa}2 and Λ-V{(S,S)-hidpa}2 configuration. The interconversion 

between both is rapid in the native vanadium(IV) form, but is kinetically hindered 

upon oxidation to the vanadium(V) species. Depending on the ligands employed, and 

on their optical purity, synthetic amavadin derivatives can consist of complex 

equilibria between stereoisomers, which can give rise to multiple 51V NMR signals in 

the oxidized forms. Depending on the source of the hidpa ligand, 51V chemical shifts 

between δ = -217 and δ = -280 have been reported, a quite substantial variation for 

complexes with identical composition and connectivity that differ essentially in the 

stereochemistry at C atoms three bonds away from the metal. Even within the same 

probe, where experimental conditions are certainly exactly the same, variations of up 

to ∆δ = 35 ppm have been noted. 

 

The stereoisomers considered in this study are shown schematically inFigure 4.1.2. 

They consist of the pairwise combinations of (S,S) and (R,R) forms, as well as pairs 

of the meso-(R,S) forms among themselves. Only ∆-isomers have been computed, as 
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most of the corresponding Λ-isomers are implicitly included (e.g., Λ-V{(S,S)-hidpa}2 

and -V{(R,R)-hidpa}2 are enantiomeric pairs with identical energies and NMR 

parameters). In the study by Lenhardt et al,[24] the racemic form of the hidpa ligand 

has been used to synthesize the vanadium complexes in situ. This racemic form has 

been shown to consist of a mixture of (S,S)-, (R,R)-, and meso-(R,S)-isomers.[121] 

Thus, not only the pairwise combinations between each of these ligands are possible 

in the vanadium complexes, but also mixed combinations such as (S,S) with (R,S). 

Such mixed forms have not been included in this study. 
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Figure 4.1.2 Amavadin diastereomers selected in this study (∆-forms); schematic views of the (Me-C)2-N-O 
fragments along the X-V-X axis (X = midpoint of NO groups). 
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The equilibrium δ(51V) values computed for a number of salient stereoisomers are all 

closely spaced around two values (around ca. -380 ppm and -350 ppm for complexes 

with asymmetric and meso ligands, respectively, see entry 2 in Table 4.1.4. No further 

differentiation is apparent between the isomers within each of the two groups upon 

inclusion of bulk solvent effects via a simple PCM approach, neither in terms of 

single-point computations on the gas-phase geometries (entry 3), nor upon relaxation 

in the continuum (entry 4). For selected isomers (2a-d) we have performed BOMD 

simulations in the gas phase and averaged the chemical shifts along the respective 

trajectories. This or similar procedures to model thermal averaging of chemical shifts 

has recently been applied to other transition-metal complexes.[122] The BOMD 

simulations were done at the same level of theory as the Gaussian 03 optimizations 

(RI-BP86/AE1), but with another program with a slightly different scheme for the 

numerical integration, resulting in slightly different equilibrium distances and 

chemical shifts (compare entries 2 and 5 in  Table 4.1.4). Dynamical (thermal) 

averaging results in a noticeable general increase of the δ values, i.e. deshielding, and 

in a somewhat larger spread of the individual resonances (compare entries 5 and 6). 

For instance, while the equilibrium δe values of 2a and 2b are almost identical, the 

corresponding thermally averaged δav values differ by ca. 30 ppm. For the individual 

snapshots, fluctuations in the instantaneous magnetic shieldings are much larger than 

this value, but the running average over 50 or more such snapshots is well converged 

within this range, without showing a noticeable drift after 1 ps (see Figure 4.1.3). 

Note that the computed deshielding due to thermal motion brings the δav values 

somewhat closer to experiment than the raw δe data. 
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Figure 4.1.3 Convergence of the 51V isotropic magnetic shielding for 2b, from the first to second picosecond of 

BOMD simulation. Dashed line and diamonds is for individual snapshots, and the solid line with squares 

represents the cumulative running average (i.e. the average over all preceding points).  

 

Table 4.1.4  Relative energies (in kcal/mol) and 51V NMR chemical shifts δ (in ppm)a for selected amavadin 

diastereomers. 

Entry Isomer 
2a 

SS,SS 

2b 

RR,RR 

2c 

RR,SS 

2d 

SR,RS 

2e 

RS,SR 

2f 

RS,RS 

1 Erel, RI-BP86 0.00 0.17 0.10 0.4 11.37 5.96 

 (B3LYP)a 0.00 0.47 0.19 1.79 11.77 6.91 

2 e (gas)b -382 -381 -379 -357 -349 -354 

3  (PCM//gas)c -313 -311 -310 -302 -314 -308 

4  (PCM// PCM)d -353 -352 -349 -350 ---- --- 

5 e (gas)e -394 -393 -397 -382 ---- ---- 

6 av (BOMD)f -355 -327 -340 -325 ---- ---- 

7 Expt.  g -252 -217 -234 ---- ---- ---- 

8 Expt.  h ----- ----- ---- -280 / -270/ -250 

 

aB3LYP/AE1+ level. bRI-BP86/AE1 optimized using Gaussian 03. cPCM single point on gas-phase optimized 
geometries. dGeometries optimized with PCM. eRI-BP86/AE1 optimized using Turbomole. fMean value over 
snapshots from BOMD trajectory. gRacemic ligand, reference 24. hmeso-ligand, reference [23]. 
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As expected, this deshielding is related to an increase of the mean bond distances over 

the trajectories[123] with respect to the corresponding equilibrium values. On average, 

this elongation of the vanadium-ligand bonds amounts to 0.01 Å (see Table 4.1.5)  

 

Table 4.1.5  Equilibrium (re) and averaged (rav) bond-lengths (in Å) at the RI-BP86/AE1 optimized 

geometry (from the snapshots selected for NMR computation) in amavadin diastereomers (in parentheses: standard 

deviation during 1000-2000 ps), all distances are in Å. 
 

 2a 

 (S,S)(S,S) 

2b 

 (R,R)(R,R) 

2c 

 (R,R)(S,S) 

2d 

(S,R)(R,S) 

 re rav re rav re rav re rav 

V-O1 2.037 2.048(10) 2.034 2.050(20) 2.035 2.051(7) 2.029 2.048(6) 

V-O2 1.956 1.986(21) 1.955 1.962(12) 1.953 1.949(7) 1.968 1.963(8) 

V-O3 1.975 1.980(8) 1.976 1.982(10) 1.975 1.988(8) 1.972 1.994(6) 

V-O4 1.975 1.972(10) 1.976 1.992(16) 1.974 1.986(4) 1.972 1.994(18) 

V-O5 1.956 1.964(13) 1.955 1.967(18) 1.956 1.975(17) 1.968 1.966(7) 

V-O6 2.037 2.040(9) 2.034 2.044(10) 2.035 2.051(10) 2.029 2.041(5) 

V-N7 2.043 2.055(8) 2.045 2.068(6) 2.043 2.057(4) 2.050 2.056(5) 

V-N8 2.043 2.056(5) 2.045 2.058(13) 2.044 2.055(9) 2.050 2.066(7) 

 

 

For the complexes formed from the racemic ligand (2a-c), the computed sequence of 

the signals is in qualitative agreement with the observed pattern (assuming that the 

rr,ss combination has double intensity), and the isomers are tentatively assigned 

correspondingly. For the complexes with the meso ligand, MD simulations have been 

performed only for one representative (2d), because performing them for all possible 

components of the mixture would be a formidable task, and because confident 

assignment of experimental numbers to specific stereoisomers based on these results 

will probably be difficult.  
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 Conclusions 
51V chemical shifts of oxidized amavadin derivatives have been computed and the 

reasons for the unusually deshielded 51V chemical shifts in these species have been 

analyzed. This deshielding can be broken down into a number of increments from 

regular substituent effects, the most important of which arises from the non-oxo 

nature of these complexes. No evidence is found for low-lying LMCT excitations. 

There is thus no need to invoke a non-innocent nature of the ligand in order to explain 

the unusual chemical shifts in this case. These findings constitute an important 

contribution from theory to the interpretation of experimental findings. δ(51V) values 

computed for static equilibrium geometries show only little variation for 

diastereomeric isomers. The observed noticeable discrimination in case of 

diastereomeric mixtures is indicated to be dynamic in origin. Even though chemical 

shifts averaged over MD trajectories apparently can reproduce certain experimental 

trends, definite assignment of individual 51V resonances to specific isomers is difficult 

at this point. 
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4.2 51V NMR Chemical Shifts Calculated from QM/MM Models of 

Vanadium Chloroperoxidase – Native form  

 Preface 

 
The investigation on the native VCPO enzyme that is presented in this chapter was 

done in collaboration with Dr. Dongi Wang and Dr. Mark P.Waller.The calculations 

on the triply protonated model VOT234 and the singly protonated models VOS1, 

VOS3 and VOS4 were done exclusively by me. I was involved in selecting the other 

models and evaluation of all results. Thus, the discussion in this chapter is based on 

all the selected models. 

 QM/MM setup 

The vanadate moiety has four crystallographically resolved oxygen atoms (one axial 

and three equatorial) as shown in Figure 4.2.1. This work is based on considering 

triply, doubly and singly protonated models, which are hereafter referred to as VOT, 

VOD and VOS respectively. The oxygen labels from the X-ray study (1IDQ.pdb) are 

used throughout this work. The labeling of the equatorial oxo ligands is not uniform 

in the literature, since some of the authors[42,43 ] use different conventions. 

 

 

 

 

 

 

 

 
Figure 4.2.1  Vanadate moiety (vanadium and four O atoms) and coordinated imidazole moiety, showing the 

oxygen labeling used throughout this study and potential hydrogen bonding interactions with the protein 

environment (all labels are consistent with those in the 1IDQ.pdb file). 
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Protonation at different vanadate oxygen atoms generates positional isomers. Those 

that are studied presently are listed in Table 4.2.1, which also introduces the chosen 

notation.  An exhaustive study on all possible permutations of positional isomers for 

each protonation state was not performed. Visual inspection of the immediate protein 

environment surrounding O2 does not indicate any available residues that may act as 

significant hydrogen bond acceptor. Therefore protonation of O2 appears less likely 

than that of the other equatorial oxygen atoms. We thus do not consider the singly 

protonated VOS2, the doubly protonated VOD24, and the triply protonated VOT124 

and VOT244 models as candidate structures and include only the VOT234 model to 

check the validity of this assumption.  Previously Carlson and co-workers[42] have 

noted that an axial water may represent a low energy conformation with one 

additional equatorial hydroxo group, and therefore we also studied a number of 

models that contain water in the axial position.  

 

Table 4.2.1 Selected models labeled according to the protonation state (VOT,VOD and VOS) and the oxygen 

atoms that are protonated (1,2,3,4). 

 
Triply protonated Doubly protonated Singly protonated 

VOT134 VOD14 VOS1 

VOT234 VOD34 VOS3 

VOT144 VOD44 VOS4 

VOT344   
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Figure 4.2.2  a. A cross section through the solvated protein: the outer region in blue is solvent (14 Å layer from 

the protein surface), the fixed protein environment during the QM/MM optimization (residues > 10 Å from 

vanadate ) is displayed as a green ribbon. The purple sphere centered on the vanadate moiety is the active region 

subjected to the QM/MM optimization (including all residues < 10 Å from vanadate ). The residues in the active 

region (~1000 atoms) are shown in Table 4.2.2. .The vanadate moiety and the bound HIS496 are shown as a visual 

guide.  b. Schematic system partitioning with the filled black circle (roughly in the centre) representing the 

vanadate moiety. 

 

Table 4.2.2  Example of the residues included in the active region for VOT234 (995 atoms, residue numbering 

according to that in 1IDQ.pdb) 

GLY46  PRO47 PRO48 PHE193 HSP222 GLY286 TRP289 ALA290 TYR291 ASP292 
GLY293 THR299 PRO300 PRO301 PHE303 TYR304 ALA345 GLY346 SER349 TRP350 
LYS353 TRP354 PHE358 ARG360 PRO361 GLY382 ALA383 PRO384 PHE393 LYS394 
PRO395 PRO396 PHE397 PRO398 ALA399 TYR400 PRO401 SER402 GLY403 HSE404 
ALA405 THR406 PHE407 GLY408 GLY409 GLU485 ASN486 ALA487 ILE488 SER489 
ARG490 ILE491 PHE492 LEU493 GLY494 VAL495 HSD496 TRP497 ARG498 PHE499 
ASP500 ALA501 ALA502 GLY551 GLY552 VAL553  

Crystal water molecules in the active region (48 atoms) 

Solvent water molecules in the active region (6 atoms) 

 

 

14 Å 

10Å 

Inactive Protein 
Environment 

 

Inactive Solvent 

Active 
QM/MM 

a. b. 
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                                      Four QM regions were investigated for each of the selected models in  

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.3  QM regions (I-IV), the insert lists the residues that are included in each of the QM regions (for the 

VOD34 example).  

 

QM region 
(Number of atoms) 

Residues included 

I (19 atoms ) Vanadate moiety (VAN), HIS496 

II(37 atoms) I +  HIS404, CRYW200, CRYW333 

III(71 atoms) II +  LYS353, ARG360, ARG490 

IV(96 atoms) III +  PRO401, SER402, GLY403 

I I 

HIS496 

VAN 

II 

HIS496 

VAN 

HIS404 

CRYW333 

CRYW200 

III 

HIS496 

VAN 

HIS404 
LYS353 

ARG360 
ARG490 

CRYW333 

CRYW200 

IV 

HIS496 

LYS353 

CRYW200 

CRYW333 

ARG360 

HIS404 

VAN 
ARG490 

SER402 

PRO401 

GLY403 
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 General Considerations 

 
 QM/MM results are available for each of the 10 selected models (Table 4.2.1) with 

four different QM regions I – IV of increasing size (Figure 4.2.3). The results for the 

largest QM region IV should be the most reliable and will therefore be discussed 

preferentially, while those for the smaller QM regions I – III will be presented 

primarily in the context of establishing their convergence (or sensitivity) with regard 

to the size of the QM region. In each system, we have generated data for 6 individual 

snapshots (see section 3.2) which will not be discussed individually, but only in terms 

of their mean values and standard deviations. The latter gives an indication of how 

much the result may vary due to fluctuations in the protein environment (as 

encountered along an MD trajectory). 

 

In the following we shall focus on geometries and NMR properties. We shall not 

address energetics, mainly for two reasons: Firstly, it is extremely demanding to 

compute reliable relative QM/MM energies for models (Table 4.2.1) that differ in the 

protonation state of the central vanadate moiety, because of long-range electrostatic 

interactions and the associated need for extensive sampling. Secondly, in our current 

computational setup, the various models and snapshots are generated independently, 

and hence the active (optimized) regions will generally be different so that the 

energies are no longer directly comparable. We have not attempted to remedy this 

latter issue, because our primary interest is on geometries and NMR properties where 

one can compare the computational results with experimental data from X-ray 

crystallography and 51V NMR spectroscopy. Active-site geometries and chemical 

shifts are expected to be essentially local properties that should not depend too much 

on the more distant protein environment (certainly less so than the total energy). 
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  Geometries 

In general there appears to be excellent geometric convergence (for individual 

models) across the six snapshots after QM/MM optimization. Figure 4.2.4a displays 

an overlay of the heavy atoms in QM region III for the 6 snapshots of VOT144 to 

illustrate this small deviation. Figure 4.2.4b shows an overlay of the heavy atoms for 

QM region III for three different models and highlights that the location of the protons 

can significantly perturb the geometry around the vanadate moiety. 

 

\ 
 

Figure 4.2.4  a).  Overlay of the six optimized snapshots (VOT144 model, QM region III) showing small variation 

in the geometry  crystallographic water is omitted for clarity. b). Overlay of the heavy atoms in the active site for 

X-ray[39] (orange), VOD144(blue), VOD14(red) and VOD34(green) for QM region III with noticeable variation 

amongst different models. Note that the complete residues are plotted here; see Figure 4.2.3 for the atoms included 

in the actual QM regions.  

 

The X-ray structure of VCPO solved by Messerschmidt et al.[39] has three almost 

identical equatorial VO bond lengths (within ~0.04 Å), see top of Table 4.2.3. The 

axial VO distance is reported to be longer than the equatorial ones by around 0.26 Å. 

This would suggest a protonated axial oxygen and three deprotonated equatorial 

oxygen atoms. However due to the current resolution limitations of X-ray  
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crystallography, we consider a wider range of possible protonation states. The average  

bond lengths and standard deviations for the atoms coordinated to vanadium are given 

in Table 4.2.3 for QM regions I to IV.  

 

A first glance at the standard deviations in Table 4.2.3 (values in parentheses) reveals 

that the geometrical parameters for each model and QM region are generally very 

similar within the 6 selected snapshots. For most of the cases included in the table, 

this standard deviation is no larger than 0.02 Å. This finding indicates that in each 

case, there is predominant population of minima that are closely related as far as the 

geometry of the active site is concerned, and that there are only small perturbations in 

the latter due to the protein environment. 

 

Overall the results for each of the models are fairly insensitive toward extension of the 

QM regions from I to IV. Apparently, the effects of the local environment on the 

vanadate geometry are reasonably well described already by the smallest QM region 

and the electrostatic embedding scheme. There are two notable exceptions, however, 

namely models VOT134 and VOT234: In these cases, a proton is transferred from O4 

to HIS404 after the QM region is extended to include the two crystal water and 

HIS404 moieties. This proton transfer is observed in all 6 snapshots during 

optimization, effectively converting these triply protonated models into the respective 

doubly protonated ones, with H atoms remaining at O1,O3 and O2,O3. Concomitantly, 

the V-O4 bond length decreases by ca. 0.13 Å as the OH ligand is transformed into a 

terminal oxo atom (compare QM I and IV data for VOT134 and VOT234 models in 

Table 4.2.3). Even in these cases, the distances involving the equatorial oxygen atoms 

O1 – O3 are not strongly affected by increasing the QM region. 

 

Interestingly, in those cases where a water molecule is placed at the axial position 

(VOT144, VOT344, and VOD44), the V-O4 bond length also decreases noticeably 

(by 0.04 – 0.13 Å) upon going from QM region I to IV. In these cases, however, no 

proton transfer is observed and the water molecules stay intact throughout, forming a  
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persistent hydrogen bond to HIS404. Arguably, the bond between vanadium and 

water is weaker than that involving an hydroxy or oxo ligand, and is thus more  

sensitive to specific hydrogen-bonding interactions and the way these are treated 

computationally. 

 

Table 4.2.3 Bond lengths involving atoms coordinated to vanadium for QM/MM regions I - IV. Mean bond 

lengths and standard deviations are reported in Å.  X-ray refined experimental values[39] are shown for comparison. 

  V-NHIS496 V-O1 V-O2 V-O3 V-O4 

X-ray[39]    2.08    1.60    1.61    1.64    1.88 

VOT134 I 2.15 (0.02) 1.87 (0.02) 1.63 (0.00) 1.84 (0.01) 1.80 (0.01) 

 II 2.34 (0.09) 1.87 (0.03) 1.66 (0.01) 1.89 (0.01) 1.69 (0.05) 

 III 2.35 (0.11) 1.88 (0.04) 1.66 (0.01) 1.89 (0.01) 1.69 (0.06) 

 IV 2.36 (0.11) 1.88 (0.03) 1.66 (0.01) 1.88 (0.02) 1.69 (0.06) 

VOT234 I 2.14 (0.01) 1.63 (0.00) 1.90 (0.00) 1.80 (0.01) 1.83 (0.00) 

 II 2.38 (0.23) 1.66 (0.00) 1.91 (0.00) 1.88 (0.00) 1.67 (0.00) 

 III 2.32 (0.01) 1.66 (0.00) 1.92 (0.00) 1.90 (0.00) 1.67 (0.01) 

 IV 2.32 (0.01) 1.66 (0.00) 1.93 (0.00) 1.89 (0.00) 1.67 (0.00) 

VOT234a I 2.14 (0.01) 1.63 (0.00) 1.89 (0.00) 1.81 (0.00) 1.82 (0.00) 

 II 2.28 (0.02) 1.67 (0.00) 1.92 (0.00) 1.90 (0.01) 1.66 (0.00) 

 III 2.29 (0.03) 1.67 (0.00) 1.93 (0.02) 1.89 (0.01) 1.65 (0.00) 

 IV 2.28 (0.02) 1.67 (0.01) 1.92 (0.02) 1.90 (0.02) 1.66 (0.00) 

VOT144 I 2.04 (0.02) 1.87 (0.00) 1.65 (0.00) 1.65 (0.00) 2.18 (0.01) 

 II 2.09 (0.01) 1.90 (0.00) 1.65 (0.00) 1.66 (0.00) 2.05 (0.01) 

 III 2.10 (0.01) 1.90 (0.01) 1.66 (0.00) 1.66 (0.01) 2.06 (0.01) 

 IV 2.11 (0.00) 1.90 (0.00) 1.66 (0.00) 1.66 (0.00) 2.05 (0.01) 

VOT344 I 2.07 (0.00) 1.66 (0.00) 1.66 (0.00) 1.87 (0.00) 2.11 (0.00) 

 II 2.10 (0.00) 1.66 (0.00) 1.66 (0.00) 1.87 (0.00) 2.06 (0.00) 

 III 2.10 (0.00) 1.66 (0.00) 1.66 (0.00) 1.88 (0.00) 2.06 (0.00) 

 IV 2.11 (0.00) 1.66 (0.01) 1.66 (0.00) 1.90 (0.01) 2.07 (0.00) 

VOD14 I 2.21 (0.02) 1.91 (0.01) 1.66 (0.01) 1.66 (0.01) 1.89 (0.01) 

 II 2.25 (0.01) 1.90 (0.01) 1.66 (0.02) 1.66 (0.02) 1.89 (0.01) 

 III 2.24 (0.01) 1.91 (0.01) 1.67 (0.00) 1.67 (0.00) 1.90 (0.02) 

 IV 2.24 (0.01) 1.91 (0.01) 1.67 (0.00) 1.67 (0.00) 1.90 (0.02) 

VOD34 I 2.20 (0.02) 1.67 (0.00) 1.66 (0.01) 1.91 (0.01) 1.90 (0.01) 



  Results 
 

 62

 
 II 2.20 (0.02) 1.67 (0.01) 1.67 (0.01) 1.92 (0.01) 1.91 (0.01) 

 III 2.19 (0.01) 1.67 (0.01) 1.67 (0.01) 1.93 (0.01) 1.91 (0.02) 

 IV 2.19 (0.01) 1.67 (0.01) 1.67 (0.00) 1.93 (0.01) 1.91 (0.02) 

VOD44 I 2.10 (0.00) 1.70 (0.00) 1.69 (0.00) 1.69 (0.00) 2.24 (0.01) 

 II 2.13 (0.01) 1.70 (0.00) 1.69 (0.00) 1.70 (0.00) 2.16 (0.04) 

 III 2.13 (0.01) 1.70 (0.00) 1.70 (0.00) 1.70 (0.00) 2.16 (0.05) 

 IV 2.14 (0.00) 1.70 (0.00) 1.71 (0.00) 1.71 (0.00) 2.14 (0.05) 

VOS1 I 2.15 (0.02) 1.97 (0.00) 1.69 (0.01) 1.70 (0.00) 1.72 (0.00) 

 II 2.32 (0.02) 1.95 (0.03) 1.68 (0.01) 1.68 (0.01) 1.79 (0.05) 

 III 2.34 (0.04) 1.98 (0.02) 1.69 (0.01) 1.68 (0.02) 1.78 (0.06) 

 IV 2.29 (0.05) 1.94 (0.02) 1.67 (0.01) 1.67 (0.01) 1.67 (0.01) 

VOS3 I 2.54 (0.04) 1.71 (0.00) 1.69 (0.00) 1.95 (0.01) 1.70 (0.00) 

 II 2.41 (0.02) 1.70 (0.00) 1.68 (0.00) 1.95 (0.00) 1.75 (0.00) 

 III 2.44 (0.02) 1.70 (0.00) 1.69 (0.00) 1.96 (0.01) 1.74 (0.00) 

 IV 2.42 (0.01) 1.70 (0.00) 1.69 (0.00) 1.98 (0.00) 1.74 (0.00) 

VOS4 I 2.39 (0.03) 1.71 (0.00) 1.70 (0.00) 1.71 (0.00) 1.92 (0.00) 

 II 2.37 (0.01) 1.72 (0.00) 1.70 (0.00) 1.71 (0.00) 1.95 (0.00) 

 III 2.38 (0.01) 1.73 (0.00) 1.72 (0.00) 1.71 (0.00) 1.93 (0.00) 

 IV 2.32 (0.01) 1.72 (0.00) 1.72 (0.00) 1.71 (0.00) 1.93 (0.00) 
a VOT234 model with no neutrality imposed. (Total system charge of -19e ) 

 Optimized V-O bond distances invariably adopt values that are typical for the 

particular ligand involved, around ca. 1.7 Å, 1.8-2.0 Å, and 2.1 Å for oxo, hydroxy, 

and water ligands, respectively, with a slight tendency to increase with the amount of 

negative charge on the central vanadate unit (e.g. note the elongation of the V-O3 

distance from 1.90 to 1.98 Å on going from VOT344 via VOD34 to VOS3, i.e. as the 

overall charge on vanadate successively increases from zero to −2). 

 

The V-N bond length involving HIS496 is somewhat more variable across models, 

ranging from ca. 2.1 – 2.4 Å. Closest V-N contacts are observed when the other axial 

ligand trans to HIS96 is a water molecule (as in VOT144, VOT344, and VOD44), 

longer values are found when this is just an oxo atom (as in VOS1, VOS3, or in 

VOT134 and VOT234 after the aforementioned proton transfer). 
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Table 4.2.4 Root-mean-square deviations (RMSD, in Å) for all heavy atoms included in the QM region IV, 

relative to the X-ray-derived structure (1IDQ.pdb).[39] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unfortunately, a direct comparison of the optimized and observed distances appears 

difficult due to the limitations set by the resolution achievable experimentally (in this 

case, 2.03 Å resolution with R = 19.7%, affording mean positional errors of the atoms 

of ±0.24 Å).[39] Models VOS1 and VOS3 appear to be less likely candidates because 

the computed V-O distances to the equatorial O atoms are much longer than that 

involving the axial O4 (by up to 0.27 Å for the protonated O atoms), whereas the 

opposite trend is observed experimentally.[39] However, assessment of individual 

models based on such singular deviations may not be very reliable. To quantify the 

overall difference between optimized QM/MM models and the X-ray structure the 

RMSD values for non-hydrogen atoms are reported in. These RMSD values show a  

 

  I  IV 

VOT134 0.31 ± 0.01 0.30 ± 0.02 

VOT234 0.33 ± 0.01 0.41 ± 0.01 

VOT144 0.26 ± 0.01 0.26 ± 0.01 

VOT344 0.32 ± 0.03 0.32 ± 0.01 

VOD14 0.30 ± 0.03 0.32 ± 0.02 

VOD34 0.35 ± 0.02 0.36 ± 0.04 

VOD44 0.22 ± 0.00 0.22 ± 0.01 

VOS1 0.28 ± 0.01 0.32 ± 0.02 

VOS3 0.24 ± 0.01 0.26 ± 0.01 

VOS4 0.28 ± 0.02 0.30 ± 0.02 
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rather modest variation and make it difficult to advocate or exclude any model as a 

possible candidate for the resting state of VCPO based solely upon the RMSD. 

Interestingly, the RMSD values obtained by Carloni[43] show significantly more 

variation amongst models and are also much larger in magnitude than observed here. 

The RMSD values do not significantly differ between the QM I and QM IV regions 

for individual models (compare columns 1 and 2 of  Table 4.2.4). 

 

 Hydrogen Bonding 

Hydrogen bonding interactions between the vanadate moiety and the surrounding 

protein matrix are important for active-site properties. They are best studied by 

QM/MM calculations with QM region IV, which by design contains all such possible 

direct hydrogen bonding interactions.  The corresponding hydrogen-bond lengths 

around the vanadate moiety are presented in Table 4.2.5. The generally rather small 

standard deviations across the six snapshots (values in parentheses) indicate that the 

individual models of VCPO have a dominant hydrogen-bonding network and not a 

multitude of different networks.  As expected, the hydrogen bonds formed with 

crystallographically resolved water molecules exhibit much larger variations due to 

the inherent mobility of water.  

 

The O1-ARG360 hydrogen bond is found to be around 2 Å for all models. This 

hydrogen bond is stable across the six snapshots (cf. the low standard deviation). The 

O1-ARG490 distance shows greater variation and is rather longer (ranging up to 2.9 

Å) than the O1-ARG360 hydrogen bond. The O2-LYS353 and O2-GLY403 distances 

generally mirror each other and range from medium (1.8 Å) to large values (3.0 Å for  

O2-LYS353). The O3-SER402 follows the same basic pattern with stability across 

snapshots and variation between models. The H4 atom (when present) is hydrogen 

bonded to HIS404 and generally has the shortest distance of all possible hydrogen  

bonds considered around the vanadate moiety. The initially (in QM region I) triply 

protonated models VOT134 and VOT234 lose the axial H4 atom to the HIS404  
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moiety as mentioned previously, and the resulting H4-HIS404 distances clearly 

indicate N-H single bonds, see final column of Table 4.2.5. In summary, the hydrogen  

bonding around the vanadate moiety is generally similar for different snapshots of a 

given model, but there is some variation between the models. 

 

Table 4.2.5  Possible hydrogen bonds in QM/MM calculations using QM region IV.  Mean bond lengths and 

standard deviations are reported in angstroms. CHARMM atom types are given in brackets and superscripted 

residue labels are consistent with the X-ray pdb file. 

 
O1 - H 

[HH11]ARG360 

O1- H 
[HH22]ARG490 

O2 - H 
[HZ]LYS353 

O2 - H 
[HN]GLY403 

O3 - HG 
[HG]SER402 

H4 - N 
[ND1]HIS404 

VOT124 2.15 (0.21) 2.40 (0.44) 1.81 (0.04) 1.83 (0.02) 1.90 (0.05) 1.15 (0.25) 

VOT234 2.00 (0.02) 2.04 (0.04) 1.79 (0.01) 1.93 (0.01) 2.09 (0.03) 1.04(0.00) 

VOT144 1.84 (0.02) 2.90 (0.06) 2.97 (0.81) 1.88 (0.02) 2.13(0.08) 1.58 (0.02) 

VOT344 1.95 (0.02) 2.27 (0.07) 1.82 (0.00) 1.96 (0.01) 1.88 (0.01) 1.68 (0.01) 

VOD14 1.92 (0.08) 2.88 (0.11) 1.75 (0.01) 1.78 (0.00) 2.20 (0.38) 1.75 (0.01) 

VOD34 1.93 (0.08) 2.79 (0.23) 1.79 (0.08) 1.89 (0.15) 1.99 (0.13) 1.93 (0.06) 

VOD44 1.95 (0.08) 2.01 (0.02) 1.56 (0.03) 1.74 (0.00) 1.79 (0.02) 1.78 (0.01) 

VOS1 2.07 (0.02) 1.74 (0.01) 1.72 (0.02) 2.00 (0.21) 2.52 (0.17) - 

VOS3 1.99 (0.02) 1.84 (0.01) 1.95 (0.01) 1.99 (0.01) 1.67 (0.00) - 

VOS4 1.84 (0.04) 1.84 (0.04) 1.62 (0.01) 1.74 (0.01) 1.73 (0.01) 1.87 (0.00) 

 

 Isotropic 51V NMR Chemical Shifts 

Computed isotropic chemical shifts are obtained as the difference between magnetic 

shieldings and can thus benefit from error cancellation. This applies e.g. for the 

neglect of relativistic effects, which are especially important for core orbitals, but tend  
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to be quite transferable for 3d transition metals in different environments.[124] The 

computed isotropic 51V chemical shifts (iso) are displayed in Table 4.2.6.  

Table 4.2.6  51V isotropic chemical shifts (ppm) averaged over 6 snapshots, together with the corresponding 

standard deviations. For each of the QM/MM models considered, results are given for QM regions I – IV.  VOS4* 

indicates HIS404 being doubly protonated. VOS4+  indicates model where 30 Å solvent sphere of TIP3 centered 

on vanadate moiety. 

 

A cursory glance at Table 4.2.6 shows that the iso values of all models are rather 

stable across the QM regions II – IV, where variations typically amount to less than 

20 ppm. Fluctuations across QM regions I – IV can be somewhat larger, in particular 

for the first two triply protonated models, for which deprotonation of O4 has occurred  

 I II III IV 

VOT124 -550 ± 6 -635 ± 2 -623  ± 8 -618 ± 11 

VOT234 -540 ± 4 -587 ± 3 -585 ± 3 -583 ± 3 

VOT344 -610 ± 1 -620 ± 2 -610 ± 2 -602 ± 2 

VOT144 -606 ± 3 -617 ± 2 -609 ± 3 -602 ± 2 

VOD14 -615 ± 8 -620 ± 11 -596 ± 5 -580 ± 13 

VOD34 -623 ± 6 -628 ± 11 -618 ± 2 -607 ±  3 

VOD44 -541 ± 3 -558 ± 9 -547 ± 10 -541 ± 10 

VOS1 -645  ±  2 -627 ± 18 -621 ± 16 -615 ± 18 

VOS3 -651 ±  1 -629 ± 2 -619 ± 1 -610  ±  1 

VOS4 -560 ± 3 -570 ± 2 -564 ± 2 -553 ± 2 

VOS4+ -572 -573        -        558 

VOS4* -554 ± 3 -564 ± 3 -553 ± 3 -546 ± 4 
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upon inclusion of HIS404 into the QM region. Concomitant with this proton transfer, 

a noticeable shielding of the 51V nucleus is found, by ca. −70 ppm and −45 ppm for 

VOT124 and VOT234, respectively. 

 

 Starting from the equilibrated VOS4 model, a new model was generated in which an 

additional proton was placed on HIS404, labeled VOS4* in Table 4.2.6. Interestingly, 

the additional proton on HIS404 did not transfer back to the singly protonated 

vanadate moiety. There is no large difference in the isotropic chemical shift due to the 

additional proton. Therefore the protonation state of the HIS404 has no direct effect 

on the isotropic chemical shifts. However, an indirect effect is observed when the 

deprotonated HIS404 accepts the axial proton in the case of VOT124 and VOT234.   

 

The isotropic NMR shifts range from around -550 ppm to -620 ppm for QM region 

IV, without showing a clear dependence on the protonation state. This range is 

dominated by values of the VOS4 and VOD44 outliers, which are considerably more 

deshielded than the other models.  The range for the remaining models is only around 

40 ppm, which implies that all models are potential candidates for the experimentally 

observed structure. The experimentally measured isotropic chemical shift was 

reported to be -507.5 ppm[46] which is noticeably less shielded than all models shown 

in Table 5.  This is consistent with previous computational results at the same or 

comparable QM levels for other vanadates,[47,125] where the computed isotropic value 

is generally too strongly shielded by roughly 100ppmThus, while VOS4 and VOD44 

would seem to be the most likely candidates based on the best agreement between 

computed and experimental isotropic shifts, this assignment cannot be upheld when 

the systematic errors of the QM method are taken into consideration. 

 

A test calculation was performed for one of the singly protonated models, VOS4 

(denoted VOS4+  in Table 4.2.6), where a 30 Å solvent sphere of TIP3 water was 

centered on vanadates moiety, instead of solvating the full enzyme (cf. Figure 4.2.2).  
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There is no significant variation in isotropic chemical shifts (see Table 4.2.6), thus 

confirming that 51V isotropic chemical shifts are independent of the types of solvation 

scheme and the number of solvent molecules far away from the active region. 

 

In summary, the isotropic 51V chemical shifts are found to be a poor discriminator of 

likely protonation configurations for QM/MM models of VCPO, due to the small 

variation resulting from changes in the proximal proton environment. 

 

 Anisotropic 51V NMR Chemical Shifts:  The CSA and EFG Tensors 

There are four parameters that characterize the experimental 51V NMR anisotropic 

spectra, namely the reduced anisotropyσδ , asymmetry ση , nuclear quadrupole 

coupling constant CQ(MHz), and asymmetry parameter Q. Their experimentally 

refined numerical values[46] are given at the top of Table 4.2.7. These same parameters 

( σδ , ση ,CQ, Q) were computed from the CSA and EFG tensors obtained from the 

QM/MM optimized models and these values are collated in Table 4.2.7. The mean 

absolute percent deviation (MAPD) of all four parameters for an individual model 

with the associated standard deviation (SD) is also included in Table 4.2.7. A detailed 

discussion of the deviations between individual parameters computed from QM/MM 

models and the experimentally reported values is not given in the interest of brevity.  

 

In general, the computed σδ  values can be somewhat more sensitive to the size of the 

QM region than the isotropic chemical shifts. As expected, changes between QM 

region I and II are particularly pronounced for the initially triply protonated models 

VOT134 and VOT234, due to the concomitant proton transfer to HIS496. Further 

extension of the QM region usually produces relatively small changes in σδ ; the same 

trend is observed for most of the other models (with some exceptions, notably 

VOD14 and VOD34), and in the following we will only discuss results obtained with 

the largest QM region IV. 
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The σδ  values computed for five of the models (VOT144, VOT344, VOD34, 

VOD14, and VOS1) fall into the range of ±100 ppm from experiment, while the 

remaining models show larger shifts to more positive values. Very large deviations 

are found for those models that bear no protons on the equatorial oxygen atoms, 

VOD44 and VOS4. For these models positive σδ  values are predicted, clearly 

incompatible with experiment, where a negative value is found for this property. It is 

noteworthy that these are the very models that might have been anticipated based on 

the raw structural data (VO distances) and from an uncritical assessment of the 

isotropic 51V chemical shifts (see above). That these models can now be safely 

excluded based on the anisotropic chemical shifts is testimony to the usefulness of 

solid-state NMR in combination with quantum-chemical calculations. 

 

Only the absolute value of CQ can be determined experimentally, not its sign. There 

are two models that miss the experimental absolute value, CQ = 10.5 MHz, by an 

uncomfortably large margin, namely VOT134 and VOD44, which under- and 

overestimate CQ by nearly 4 and 8 MHz, respectively (QM IV results in Table 4.2.7). 

The asymmetry parameters can only assume values between zero and 1, and both ησ 

and ηQ have been refined experimentally to an intermediate value. The VOT134 and 

VOT344 models (together with VOD44 and VOS4, which are already excluded based 

on their σδ  values) afford η values that are significantly too low compared to 

experiment.  

 

A critical assessment of the models would require precise knowledge of the inherent 

errors of the applied QM method for each of the CSA and EFG tensor elements. A 

conservative estimate for these errors is ca. ±20%,[46] that is, computed values are 

considered satisfactory when they are within this range from experiment. The absolute 

percent deviation, averaged over the four tensor parameters, is included in Table 4.2.7 

(MAPD values, last column). In a ranking based on this value, three models emerge 

as the most promising candidates, namely VOT144, VOD14, and VOD34, which all 

have absolute percent errors as low as 11-12%. One of the singly protonated models,  
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VOS1, also shows a satisfactory agreement with experiment (MAPD 18%). However, 

this model has not been identified previously as a low energy structure (neither from 

gas-phase or QM/MM studies) and is therefore not thought to represent the resting 

state of VCPO. 

 

Table 4.2.7  Reduced anisotropyσδ , asymmetry ση , nuclear quadrupole coupling constant CQ(MHz), and 

asymmetry parameter η Q with the associated standard deviations for six snapshots. The mean absolute percent 

deviation (MAPD) is also tabulated. Results are given for QM regions I to IV. 

  σδ  ση  CQ η Q MAPD(SD) 

EXP[46]  -520 ± 13 0.4 ± 0.05 10.5 ± 1.5 0.55 ± 0.15  

VOT134 I -414 ± 53 0.6 ± 0.13 -6.0 ± 0.5 0.24 ± 0.06 42 ± 16 

 II -252 ± 73 0.8 ± 0.19 -7.5 ± 0.7 0.15 ± 0.06 63 ± 30 

 III -283 ± 92 0.7 ± 0.20 -7.5 ± 0.8 0.13 ± 0.10       56 ± 23 

 IV -280 ± 91 0.2 ± 0.21 -6.9 ± 0.9 0.16 ± 0.11 50 ± 15 

VOT234 I -568 ± 3 0.2 ± 0.01 4.6 ± 0.1 0.63 ± 0.04 32 ± 24 

 II -375 ± 10 0.5 ± 0.02 
-8.4 ± 0.1 0.25 ± 0.02 31 ± 15 

 III -369 ± 10 0.5 ± 0.03 
-8.5 ± 0.1 0.24 ± 0.03 32 ± 16 

 IV -354 ± 8 0.5 ± 0.02 -8.6 ± 0.1 0.36 ± 0.02 27 ±  7 

VOT234a I -563 ± 14 0.2 ± 0.05 5.83 ± 0.7 0.39 ± 0.11 33 ± 19 

 II -371 ± 25 0.7 ± 0.05 -8.6 ± 0.5 0.43 ± 0.11 35 ± 26 

 III -369 ± 20 0.6 ± 0.02 -9.1 ± 0.5 0.45 ± 0.15 27 ± 16 

 IV -343 ± 15 0.6 ± 0.04 -9.0 ± 0.5 0.47 ± 0.13 28 ± 17 

VOT144 I -605 ± 15 0.3 ± 0.03 14.0 ± 0.4 0.44 ± 0.03 23 ±  7 

 II -648 ± 19 0.4 ± 0.04 12.3 ± 0.4 0.68 ± 0.02 16 ± 11 

 III -619 ± 15 0.4 ± 0.04 12.0 ± 0.4 0.51 ± 0.10 10 ± 8 

 IV -600 ± 19 0.4 ± 0.05 11.9 ± 0.4 0.45 ± 0.09 11 ±  8 

VOT344 I -570 ± 3 0.4 ± 0.01 14.1 ± 0.1 0.11 ± 0.02 31 ± 36 
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 II -597 ± 5 0.4 ± 0.01 12.6 ± 0.0 0.14 ± 0.03 27 ± 33 

 III -584 ± 5 0.4 ± 0.01 12.6 ± 0.1 0.18 ± 0.02 25 ± 29 

 IV -587 ± 5 0.5 ± 0.01 12.8 ± 0.1 0.22 ± 0.03 29 ± 21 

VOD14 I -618 ± 7 0.4 ± 0.01 -5.8 ± 0.4 0.67 ± 0.07 21 ± 19 

 II -549 ± 11 0.4 ± 0.02 -6.3 ± 0.2 0.58 ± 0.08 12 ± 18 

 III -575 ± 5 0.4 ± 0.02 9.3 ± 0.3 0.79 ± 0.03 16 ± 19 

 IV -499 ± 26 0.5 ± 0.03 9.3 ± 0.0 0.54 ±0.03 11 ± 10 

VOD34 I -610 ± 34 0.3 ± 0.03 6.4 ± 0.3 0.78 ± 0.04 31 ± 16 

 II -529 ± 13 0.4 ± 0.03 6.6 ± 0.1 0.78 ± 0.01 20 ± 22 

 III -518 ± 8 0.3 ± 0.03 9.5 ± 0.1 0.30 ± 0.05 20 ± 20 

 IV -551 ± 16 0.3 ± 0.03 9.5  ± 0.1 0.51 ± 0.04 12 ±  9 

VOD44 I 415 ± 4 0.4 ± 0.01 20.1 ± 0.1 0.05 ± 0.02 91 ± 73 

 II 435 ± 5 0.3 ± 0.03 19.3 ± 0.5 0.14 ± 0.09 92 ± 66 

 III 417 ± 3 0.3 ± 0.02 18.7 ± 0.7 0.30 ± 0.13 82 ± 69 

 IV 417 ± 11 0.2 ± 0.03 18.2 ± 0.9 0.18 ± 0.09 93 ± 59 

VOS1 I -317 ± 6 0.3 ± 0.01 9.1 ± 0.1 0.44 ± 0.00 24 ± 11 

 II -423 ± 63 0.4 ± 0.08 8.6 ± 0.5 0.80 ± 0.14 21 ± 19 

 III -392 ± 104 0.4 ± 0.06 8.6 ± 0.2 0.71 ± 0.20 18 ± 13 

 IV -404 ± 82 0.3 ± 0.08 8.1 ± 0.3 0.49 ± 0.17 18 ±  6 

VOS3 I -236 ± 8 0.4 ± 0.01 8.6 ± 0.1 0.27 ± 0.03 33 ± 23 

 II -309 ± 10 0.3 ± 0.03 8.6 ± 0.1 0.32 ± 0.05 31 ± 12 

 III -274 ± 10 0.3 ± 0.01 8.5 ± 0.0 0.24 ± 0.02 37 ± 18 

 IV -295 ± 6 0.3 ± 0.01 8.5 ± 0.0 0.24 ± 0.02 37 ± 16 

VOS4 I 334 ±.2 0.6 ± 0.01 13.6 ± 0.1 0.27 ± 0.02 71 ± 63 

 II 353 ± 3 0.5 ± 0.01 14.5 ± 0.1 0.14 ± 0.01 76 ± 65 

 III 331 ± 2 0.6 ± 0.01 13.0 ± 0.1 0.26 ± 0.02 73 ± 62 

 IV 330 ± 2 0.6 ± 0.01 12.9 ± 0.1 0.07 ± 0.01 79 ± 62 

VOS4*  I 380 ± 4 0.2 ± 0.02 
14.4 ± 0.1 0.14 ± 0.03 

83 ± 62 
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 II 439 ± 3 0.3 ± 0.02 
19.4 ± 0.1 0.10 ± 0.01 94 ± 66 

 III 423 ± 3 0.3 ± 0.02 
18.9 ± 0.1 0.13 ± 0.01 

91 ± 65 

 IV 419 ± 4 0.1 ± 0.02 
18.5 ± 0.1 0.07 ± 0.01 

104 ± 51 
a VOT234 model with no neutrality imposed. (Total system charge of -19e ), VOS4* indicates HIS404 being 

doubly protonated 

Figure 4.2.5  Simulated 51V MAS spectra for VCPO. The spectra were plotted using the Simpson program[126.] 

and the NMR and NQR tensor elements taken from experiment (top) and QM/MM computations for models 

VOT144 (middle) and VOS1 (bottom). As the Euler angles were found to have only very minor effects on the 

appearance of the spectra, they were set to zero throughout.  

a. VCPO-expt. 

   b.Good candidate:VOT144 
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c. Poor candidate:VOS4 

 

The quality of the computed NMR parameters can be further gauged by a comparison 

of the actual solid-state NMR spectrum against those simulated using the DFT-

computed NMR parameters. As can be seen in Figure 4.2.5, the overall experimental 

pattern (top spectrum) is reasonably well reproduced by the "good" candidates (e.g. 

for VOT144 in the middle spectrum), whereas the other models can show larger 

discrepancies or even no resemblance whatsoever (e.g. VOS4 in the lower spectrum). 

 

To summarize this section, Table 4.2.7 contains three models that are significantly 

closer to the experimentally determined parameters than all other candidates. These 

models are the triply protonated VOT144 and two of the doubly protonated models 

namely VOD14 and VOD34.  Unfortunately, further discrimination between these 

candidates is not possible at present. Interestingly these models have been identified 

in the previous QM/MM study by Carlson and co-workers[42] based upon energy.  

Therefore, by demonstrating that these models can reproduce the spectroscopical 

observables, we provide compelling evidence that one of them (or a mixture) is 

indeed a faithful representation of the actual ground state of the enzyme. 
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 Electrostatic and Geometric Effects on the 51V NMR Chemical Shifts 

 
The environment (i.e. everything outside the QM region) is modeled as fixed point 

charges for the calculation of 51V NMR chemical shifts from the QM/MM optimized 

geometries. An increase in the size of the QM region led to convergence (generally a 

downfield shift) in the 51V NMR isotropic chemical shifts (see Figure 4.2.5 and 

associate discussion). A similar behavior was noted above for the anisotropic 51V 

NMR chemical shifts, which turned out to be somewhat more sensitive.  Despite 

being a local property, the chemical shifts are thus influenced by the definition of the 

QM region. We now address the question whether this is due to either electrostatic or 

geometric differences between the QM/MM partitioning schemes or some 

combination of both, and discuss the effect of the electrostatic embedding upon the 

wave function and subsequently the 51V NMR chemical shifts for a few representative 

cases. 

 

Calculations127 without surrounding point charges were performed to probe the direct 

electrostatic effect of the protein environment on the 51V chemical shifts. Model A 

uses the atomic coordinates of all the QM atoms in the QM/MM optimized VOT134 

structure with QM region I. There is a large difference in the parameters that 

characterize the CSA and EFG tensors as seen by significant deviations (Table 4.2.8) 

between model A without point charges and model VOT134-I with these point 

charges (data as shown in Table 4.2.7). However, when an analogous deletion of point 

charges surrounding VOT134-IV is performed, labeled model B, a reasonable 

agreement (a low MAPD) with the original model is observed.  There are two obvious 

conclusions; firstly, the electrostatic embedding scheme used within this study does 

significantly affect the 51V NMR chemical shifts for small QM regions. Secondly, if a 

large enough QM region is employed then the effects of such an embedding scheme 

become less influential on the chemical shift of the metal center. Hence, when 

calculating the 51V NMR chemical shifts within a QM/MM framework, a good  
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electrostatic representation of the MM region seems crucial when using small QM 

regions. 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.2.6 Overlay of the QM/MM-optimized VOD34 model in the enzyme (green) and the same model QM-

optimized in the gas phase (purple, QM region IV employed in both cases, CRYW shown as unlabeled dots). 

The next step was to determine the importance of the protein environment on the 

geometry of the QM region. Starting from the QM/MM optimized VOD34-IV model, 

the active and inactive MM regions were deleted. The QM region was then re-

optimized at the RI-BP86/AE1 level of theory.  The starting structure was not stable, 

i.e. a large structural difference between the original QM/MM optimized geometry 

and the new QM gas-phase geometry was observed (RMSD 0.79 Å).  This is to be 

expected; as the protein environment is no longer included, the geometry is free to 

relax without any constraint (see Figure 4.2.5) for an illustration of the geometrical 

changes). Two separate calculations of CSA and EFG tensors were performed from 

this gas-phase optimized geometry; model C included only the subset of atoms which 

are defined in the QM I region and model D included all atoms defined in the QM IV 

region. Table 4.2.8 shows the deviation between the parameters calculated from 

models C and D and the analogous parameters optimized from the QM/MM 

optimized geometries. Immediately one can note significant discrepancies. Therefore  
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the inclusion of the MM layer can have an extremely large effect on the 51V NMR 

chemical shifts, and care needs to be taken when assessing results computed for 

models in the gas phase, even if these are quite sizable. 

 

The geometric and electrostatic effects were further studied by taking the QM/MM 

optimized geometry of VOD34-IV and computing the NMR chemical shifts for the 

atoms defined in the QM region I. This is labeled as model E and the results are given 

in Table 4.2.8. The low deviation for the parameters computed from model E and the 

VOD34-IV shows that the small QM region is capable of reproducing the chemical 

shifts of the larger QM model if the same geometry is used. 

 

The influence of the protein matrix on the 51V chemical shifts is thus largely 

geometrical in nature, by favoring a particular ligand arrangement about the metal 

center. The “direct response” of the electronic wave functions in the QM part to the  

surrounding charge distribution is, in comparison, smaller with an appropriately sized 

QM region. Similar findings have been reported for solvent effects on δ(51V) of small 

vanadates[125] and on other transition metal shifts, for example δ(57Fe) [128] and 

δ(59Co), [129] with somewhat larger “direct solvent” effects noted for δ(195Pt).[130] 

 

To conclude, a crucial advantage of QM/MM calculations is the ability to effectively 

optimize the whole system (QM and MM) to realistic geometries, which is a 

prerequisite for computing reliable chemical shifts. For the actual NMR calculations, 

it is best to use large QM regions, but realistic chemical shifts can already be obtained 

with small QM regions provided that the electrostatic effects of the environment are 

included at least via suitable point charges.  
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Table 4.2.8   The percent deviation (PD) between the models A-E and the original models (values from Table 

4.2.7).The mean absolute percent deviation (MAPD) is also provided for an overall assessment of numerical  

similarity 

 
Model 

ID 
Brief Description 

PD σδ  PD ση  PD CQ PD Q 
MAPD 

A 

 

VOT234-I : EFG and CSA tensors 

calculated without point charges 
-12 +45 +36 -55 37 

B 

 

VOT234-IV : EFG and CSA tensors 

calculated without point charges 
-2 +14 -1 -3 5 

C 

 

VOD34-I : Optimization (at QM IV), EFG and 

CSA tensors calculated without point charges 
+21 -4 -81 +32 35 

D 

 

VOD34-IV : Optimization (at QM IV), EFG and 

CSA tensors calculated without point charges 
+18 +45 -43 +11 30 

E 

 

 

 

QM/MM optimized geometry of 

VOT34 IV with EFG and CSA tensors 

calculated including only atoms 

from QM region I plus all point charges 

-4 +8 -2 +4 

 

5 
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Conclusions 
51V NMR parameters of VCPO, for a large number of QM/MM optimized models, are 

computed, calling special attention to different possible protonation states and 

positional isomers. In terms of non-hydrogen atomic coordinates all of the many 

models considered show reasonable agreement with the initial X-ray structure. This 

makes exclusion of candidates based solely on geometric criteria (RMSD) rather 

difficult.  The bond lengths for atoms coordinated to vanadium across individual 

models, as well as the computed 51V NMR parameters, turned out to be rather 

insensitive to the conformational flexibility of VCPO. The latter was sampled by 

classical MD simulations with subsequent QM/MM optimizations starting from a 

number of snapshots.  The isotropic 51V chemical shifts were found to be a poor 

indicator of protonation states due to small variation amongst models.  

 

Investigation of the EFG and CSA tensors has identified three models that agree with 

the experimental derived values from the 51V NMR spectrum. These models, 

VOT144, VOD14, and VOD34, all have similar calculated isotropic and anisotropic 

chemical shifts, as well as similar geometries (only 0.1 Å difference in RMSD across 

the three models). Therefore these three models are equally consistent with both the 

X-ray and the NMR experimental.  It is encouraging that by modeling the protein in a 

rational and systematic way the computed 51V NMR anisotropic chemical shifts agree 

with the recently reported experimental 51V NMR spectrum of VCPO. It is reassuring 

that the conclusions from the present spectroscopic QM/MM work are consistent with 

those from previous QM/MM studies,[42,43] which identified the same models as being 

good candidates solely on the basis of energetic considerations.  
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4.3 51V NMR Chemical shifts calculated from QM/MM models of  

Vanadium Bromoperoxidase – Native Form  

 QM/MM setup 
The vanadate moiety has four crystallographically resolved oxygen atoms (one axial 

and three equatorial) as shown in Figure 1.2.1. Consistent with the previous study on 

VCPO,  triply, doubly and singly protonated models are considered here along with a 

model that is fully deprotonated, which are hereafter referred to as VBPO-T, VBPO-

D, VBPO-S and VBPO-Z respectively. The oxygen labels from the X-ray study 

(1QI9.pdb) are used throughout this work.  Protonation at different vanadate oxygen 

atoms generates positional isomers. Those that are studied presently are listed in 

Table 4.3.1 which also introduces the chosen notation. The most notable difference 

between the immediate vicinities of the active site of these proteins is the non-polar 

PHE397 in VCPO being a more polar in HIS411 VBPO, which may interact via 

hydrogen bonding interactions with the vanadate moiety. In the previous chapter on 

VCPO, the models which included protonated O2 were not intensively studied 

because the closely located PHE397 will act as H-bond acceptor. The corresponding 

HIS411 in VBPO is such a potential H-bond parter, so that additional models 

protonated at O2 were considered here. 

Table 4.3.1. Selected models labeled according to the protonation state (VBPO-T, VBPO-D and VBPO-S) and the 

oxygen atoms that are protonated (1,2,3,4). 

Triply protonated Doubly protonated Singly protonated 

VBPO-T144  VBPO-D14 VBPO-S1 

VBPO-T344 VBPO-D24 VBPO-S2 

VBPO-T234 VBPO-D34 VBPO-S3 

Unprotonated VBPO-D12 VBPO-S4 

VBPO-Z  VBPO-D13  
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The models are selected based on results of the previous work on VCPO, as there is 

high sequence homology in the active site and very similar X-ray refined coordinates. 

Preference has been given to models protonated at O4, as suggested by the rather long 

V-O4 bond in the solid state (see below). Three QM regions were investigated for 

each of the selected models in Table 4.3.1 and Figure 4.3.1 displays the residues, 

which are included in each QM region, see Table 4.3.2. Note that QM region III 

herein (i.e. the largest one for VBPO) is analogous to region IV from the previous 

chapter on VCPO.[131] HIS411 has been included as this represents the major 

difference in the sequence of the active site of VBPO. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.1. The three QM regions of the VBPO system including crystallographic water molecules, hydrogen 

atoms are omitted for clarity for QM region III.  
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Table 4.3.2. The residues, which are, included in each of the QM regions for VBPO. 

 

The residues within 10 Å of the vanadium cofactor were included in the active region 

(see Figure 4.3.2). The residues in the active region (~1000 atoms) are shown in  

Table 4.3.3. 

 

Table 4.3.3   Example of the residues included in the active region for VOD24(1194 atoms, residue numbering 

according to that in 1QI9.pdb) 

 

PHE53   LYS55   VAL102  ASN103  PRO104  THR105  ALA106  ILE122  
VAL273  THR274  PHE275  THR276  ASP277  ASN278  ILE279  ASN280  
THR281  GLU282  GLU330  GLN333  ARG334  SER335  SER336  TRP337  
TYR338  GLN339  LYS340  TRP341  PHE346  ARG348  PRO349  GLU350  
GLN401  ILE403  GLU405  GLY406  SER407  PRO408  THR409  HSE410  
PRO411  SER412  TYR413  PRO414  SER415  GLY416  HSE417  ALA418  
THR419  GLN420  ASN421  GLY422  PHE424  ASN474  VAL475  ALA476  
PHE477  GLY478  ARG479  GLN480  MET481  LEU482  GLY483  ILE484  
HSD485  TYR486  PHE488  ASP489  GLY490  GLY493  LEU496  ARG298  
PHE314  VAL315  ILE319  SER320   

 

QM region (Number of atoms) Residues included 

I (19 atoms ) Vanadate moiety (VAN), HIS486 

II(37 atoms) I +  HIS418, CRYW772, CRYW774 

III(97 atoms) II +  LYS341, ARG349, GLY417, 

HIS411,SER416,PRO415 
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Figure 4.3.2 a.  A cross section through the solvated protein: the region in blue is                                          
  solvent (30 Å sphere centered on vanadium), the fixed protein environment during the  
QM/MM optimization (residues > 10 Å from vanadate) is displayed as a yellow ribbon. The 
green sphere centered on the vanadate moiety is the active region subjected to the QM/MM 
optimization (including all residues < 10 Å from vanadate). The vanadate moiety and the 
bound HIS486 are shown as a visual guide.  Crystallographically resolved waters (oxygen 
position) are displayed as red spheres. 

b. Schematic system partitioning with the filled black circle (roughly in the centre) 
representing the vanadate moiety.  

 

  

QM/MM results are available for each of the selected models (Table 4.3.1) with three 

different QM regions I – III of increasing size (Figure 4.3.1 and Table 4.3.2). The 

results for the largest QM region III should be the most reliable and will therefore be 

discussed preferentially, while those for the smaller QM regions I –II will be 

presented primarily in the context of establishing their convergence (or sensitivity) 

with regard to the size of the QM region. In the majority of cases, we have generated 

data for 6 individual snapshots (see Computational details). As before, these will not 

be discussed individually, but only in terms of their mean values and standard 

deviations.  

b. 

 30 Å 

10Å 

Inactive Protein 
Environment 

 

Active 
QM/MM 

a. 

 
Solvent 
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 Geometries 

 

The X-ray structure of the native form of VBPO solved by Weyand et al.[49] has the 

equatorial V-O1 and V-O2 bond lengths almost identical (within ~0.01 Å) with the V-

O3 being comparatively shorter (~0.08 Å), see top of Table 4.3.4. The axial VO 

distance is reported to be longer than the equatorial ones by around 0.17-0.25 Å. Both 

V-O3 and V-O4 distances are noticeably shorter in VBPO than VCPO, otherwise there 

is little variation in the bond lengths between both these enzyemes. This has led to 

suggestions of one axial and one equatorial hydroxyl ligand, in agreement with the 

proposed proton arrangement of VCPO enzyme. However due to the current 

resolution limitations of X-ray crystallography, and the unresolved protonation state 

of VCPO, a wider range of possible protonation states were considered. The average 

bond lengths and standard deviations for the atoms coordinated to vanadium are given 

in Table 4.3.4 for QM regions I to III.  

 

In general there appears to be excellent geometric convergence (for individual 

models) across the six snapshots after QM/MM optimization.  The standard 

deviations in Table 4.3.4 (values in parentheses) reveals that the geometrical 

parameters for each model and QM region are generally very similar within the 6 

selected snapshots. This finding indicates that in each case, there is a predominant 

population of minima that are closely related as far as the geometry of the active site 

is concerned, and that there are only small perturbations in the latter due to the protein 

environment.  

 

The mean absolute deviation (MAD) against the analogous models for the QM/MM 

optimized models of VCPO and against the X-ray-derived bond lengths are given in 

columns 8 and 9 of Table 4.3.4, respectively, along with identifying the bond which 

represents the maximum absolute deviation (∆Max  where ∆=rVCPO-rVBPO) between 

VBPO and VCPO.  The MAD values are extremely low and there appears to be no  
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particular model presenting a strong difference between VBPO and VCPO. The ∆Max 

are also consistently low and show a small deviation across the different models, and 

no particular bond appears to persistently dominate the ∆Max values. The agreement 

between the QM/MM models of VBPO and VCPO appears to be even better than that 

between the VBPO and VCPO X-ray structures.  

 

Overall the results for each of the models are almost completely insensitive toward 

extension of the QM regions from I to III. Apparently, the effects of the local 

environment on the vanadate geometry are reasonably well described already by the 

smallest QM region and the electrostatic embedding scheme.  The only notable 

exception is the case where a water molecule is placed at the axial position (VBPO-

T144) the V-O4 bond length contracts by 0.13 Å and there is a concurrent elongation 

(albeit less dramatic) of the V-N HIS486  of 0.06 Å, is observed upon going from QM 

region I to III. In the VBPO case, no proton transfer is observed from axial water 

molecule (as seen in VCPO for the VOT134 model previously), forming a persistent 

hydrogen bond to HIS418. The axial water ligand in the VBPO-T144 model 

undergoes a notable change in geometry when increasing the size of the QM region, 

this was also observed in the analogous VCPO models. The axial water ligand is less 

tightly bound to the vanadium metal centre, thus making it more susceptible to the 

specific hydrogen-bonding interactions and the way these are treated computationally.  

 

Optimized V-O bond distances invariably adopt values that are typical for the 

particular ligand involved, around ca. 1.7 Å, 1.8-2.0 Å, and 2.1 Å for oxo, hydroxy, 

and water ligands, respectively. The V-N bond length involving HIS486 is somewhat 

more variable across models, ranging from ca. 2.1 – 2.3 Å. Closest V-N contacts are 

observed when the other axial ligand trans to HIS486 is a water molecule (VBPO-

T144) longer values are found when this is just an oxo atom (as in VBPO-S1 and 

VBPO-S3). To summarize, essentially the same observations were noted for VCPO 

and VBPO, and there is no significant geometric differences between the vanadate 

moiety in corresponding QM/MM models for both enzymes, see Figure 4.3.3. 
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Table 4.3.4 Bond lengths involving atoms coordinated to vanadium for QM/MM regions I and III. Mean bond lengths and standard deviations are reported in Å.  X-ray refined experimental 

values[39,49]  are shown for comparison. 

 

  V-NHIS486 V-O1 V-O2 V-O3 V-O4 
MAD  (∆Max) 

VBPO-VCPO 

MAD  (∆Max) 

QM/MM-Expt 

VCPO[39] X-ray 2.08 1.60 1.61 1.62 1.88 - - 

VBPO[49] X-ray 2.11 1.59 1.60 1.52 1.77 0.06(0.12) - 

VBPO-T344 I 2.09(0.00) 1.65(0.00) 1.65(0.00) 1.85(0.00) 2.13(0.02) 0.02(0.02)a,d,e 0.16(0.36)e 

 II 2.16(0.02) 1.65(0.00) 1.65(0.00) 1.85(0.01) 2.00(0.03) 0.03(0.03)a.e 0.14(0.33)d 

 III 2.15(0.00) 1.66(0.00) 1.65(0.00) 1.85(0.00) 2.00(0.04) 0.03(0.07)d 0.14(0.23)e 

VBPO-T144 I 2.11(0.01) 1.85(0.00) 1.65(0.00) 1.65(0.01) 2.13 (0.02) 0.03(0.04)a 0.16(0.36)e 

 II 2.16(0.01) 1.88(0.02) 1.65(0.00) 1.66(0.01) 2.00(0.08) 0.03(0.07)a 0.15(0.29)b 

 III 2.20(0.01) 1.90(0.00) 1.67(0.00) 1.64(0.01) 1.92(0.08) 0.07(0.23)e 0.15(0.31)e 

VBPO-T234 I 2.19(0.03) 1.63(0.00) 1.86(0.01) 1.81 (0.01) 1.81 (0.01) 0.02(0.05)a 0.14(0.29)d 

 II 2.32(0.07) 1.66(0.02) 1.88(0.01) 1.86(0.03) 1.68(0.05) 0.02(0.06)a 0.20(0.34)d 

 III 2.31(0.39) 1.66(0.02) 1.90(0.04) 1.84(0.04) 1.69(0.06) 0.02(0.05)d 0.19(0.32)d 

VBPO-T234* I 2.19(0.02) 1.62(0.00) 1.82(0.00) 1.85(0.01) 1.84(0.00) 0.04(0.08)c 0.15(0.33)d 

 II 2.38(0.04) 1.67(0.00) 1.86(0.00) 1.89(0.00) 1.67(0.00) 0.04(0.06)c 0.22(0.37)d 
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 III 2.39(0.03) 1.66(0.00) 1.87(0.00) 1.87(0.03) 1.52(0.28) 0.06(0.15)e 0.24(0.35)d 

VBPO-D14 I 2.21(0.03) 1.91(0.01) 1.68(0.02) 1.65(0.00) 1.89(0.00) 0.01(0.02)c 0.15(0.32)b 

 II 2.23(0.02) 1.91(0.01) 1.67(0.00) 1.65(0.00) 1.88(0.01 0.01(0.02)a 0.15(0.32)b 

 III 2.21(0.01) 1.92(0.01) 1.67(0.00) 1.66(0.00) 1.87(0.01) 0.02(0.03)a,d 0.15(0.33)b 

VBPO-D34 I 2.22(0.01) 1.67(0.01) 1.66(0.00) 1.89(0.01) 1.87(0.01) 0.01(0.03)e 0.14(0.37)d 

 II 2.24(0.01) 1.68(0.01) 1.66(0.00) 1.90(0.00) 1.86(0.02) 0.03(0.05)e 0.15(0.38)d 

 III 2.23(0.01) 1.67(0.01) 1.68(0.00) 1.89(0.01) 1.86(0.02) 0.03(0.05)e 0.15(0.38)d 

VBPO-D34* I 2.20(0.02) 1.67(0.00) 1.67(0.00) 1.90(0.01) 1.88(0.00) 0.01(0.02)e 0.15(0.38)d 

 II 2.22(0.03) 1.67(0.00) 1.67(0.00) 1.91(0.01) 1.87(0.00) 0.01(0.04)e 0.15(0.39)d 

 III 2.21(0.03) 1.67(0.00) 1.68(0.01) 1.90(0.01) 1.87(0.04) 0.02(0.04)e 0.15(0.38)d 

VBPO-D34*+ I 2.2(0.00) 1.67(0.00) 1.69(0.00) 1.88(0.00) 1.87(0.00) 0.02(0.03)e 0.14(0.36)d 

 II 2.24(0.05) 1.68(0.01) 1.67(0.02) 1.89(0.01) 1.83(0.02) 0.03(0.08)e 0.14(0.37)d 

 III 2.25(0.07) 1.67(0.01) 1.72(0.01) 1.88(0.01) 1.83(0.04) 0.05(0.08)e 0.15(0.36)d 

VBPO-D12 I  2.31(0.02) 1.90(0.00) 1.66(0.00) 1.91(0.00) 1.64(0.00) - 0.22(0.39)d 

 II  2.33(0.02) 1.89(0.00) 1.65(0.00) 1.91(0.00) 1.64(0.00) - 0.22(0.39)d 

 III  2.29(0.03) 1.92(0.00) 1.89(0.00) 1.66(0.00) 1.64 (0.00) - 0.21(0.33)b 

VBPO-D24 I 2.25(0.05) 1.67(0.01) 1.91(0.00) 1.66(0.01) 1.87(0.03) - 0.15(0.31)c 

 II 2.29(0.00) 1.68(0.00) 1.91(0.01) 1.66(0.00) 1.82(0.01) - 0.15(0.31)c 

 III 2.27(0.03) 1.68(0.00) 1.93(0.00) 1.66(0.00) 1.82(0.00) - 0.15(0.33)c 



  Results 
 

 87

 
VBPO-S4 I 2.38(0.01) 1.72(0.00) 1.70(0.00) 1.70(0.00) 1.93(0.01) 0.01(0.01) 0.17(0.27)a 

 II 2.36(0.02) 1.72(0.00) 1.69(0.00) 1.70(0.00) 1.96(0.01) 0.01(0.01) 0.17(0.25)a 

 III 2.37(0.01) 1.72(0.00) 1.72(0.00) 1.70(0.00) 1.93(0.00) 0.01(0.05)a 0.17(0.26)a 

VBPO-S4*  I 2.4(0.04) 1.72(0.00) 1.73(0.04) 1.70(0.00) 1.92(0.01) 0.01(0.03)c 0.18(0.29)a 

 II 2.36(0.01) 1.72(0.00) 1.70(0.00) 1.76(0.12) 1.96(0.01) 0.01(0.05)d 0.18(0.25)a 

 III 2.37(0.02) 1.71(0.00) 1.74(0.00) 1.70(0.03) 1.93(0.01) 0.02(0.05)a 0.17(0.26)a 

VBPO-S4*+ I 2.32(0.02) 1.72(0.01) 1.73(0.00) 1.69(0.00) 1.91(0.02) 0.03(0.07)a 0.16(0.21)a 

 II 2.32(0.03) 1.71(0.01) 1.72(0.00) 1.69(0.00) 1.94(0.02) 0.02(0.05)a 0.16(0.21)a 

 III 2.32(0.02) 1.68(0.04) 1.81(0.07) 1.68(0.01) 1.89(0.04) 0.04(0.09)c 0.16(0.21)a,b 

VBPO-S3 I 2.69(0.08) 1.72(0.00) 1.69(0.00) 1.91(0.00) 1.68(0.00) 0.04(0.15)a 0.26(0.58)a 

 II 2.65(0.07) 1.72(0.00) 1.69(0.00) 1.91(0.00) 1.69(0.00) 0.07(0.24)a 0.25(0.54)a 

 III 2.64(0.08) 1.72(0.00) 1.71(0.00) 1.90(0.00) 1.68(0.00) 0.08(0.22)a 0.25(0.53)a 

VBPO-S3*  I 2.72(0.05) 1.71(0.00) 1.69(0.00) 1.91(0.01) 1.69(0.01) 0.05(0.18)a 0.26(0.61)a 

 II 2.72(0.05) 1.71(0.01) 1.69(0.01) 1.91(0.01) 1.69(0.01) 0.09(0.31)a 0.26(0.61)a 

 III 2.66(0.04) 1.71(0.01) 1.71(0.00) 1.90(0.02) 1.69(0.01) 0.08(0.24)a 0.22(0.55)a 

VBPO-S2 I 2.44(0,07) 1.71(0.01 1.96(0.01) 1.9(0.00) 1.69(0.01) - 0.25(0.38)a 

 II 2.53(0.05) 1.69(0.00) 1.93(0.00) 1.69(0.00) 1.72(0.00) - 0.21(0.42)a 

 III 2.42(0.04) 1.71(0.01) 1.99(0.01) 1.69(0.00) 1.71(0.01) - 0.21(0.39)c 

VBPO-S1 I 2.48(0.04) 1.94(0.01) 1.70(0.00) 1.70(0.00) 1.70(0.00) 0.08(0.33)a 0.21(0.37)a 
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 II 2.52(0.09) 1.93(0.01) 1.69(0.00) 1.70(0.00) 1.71(0.01) 0.07(0.08)e 0.22(0.41)a 

 III 2.31 1.98 1.72 1.70 1.69 0.03(0.05)c 0.19(0.39)b 

VBPO-Z III 2.87 1.75 1.75 1.71 1.72 - 0.26(0.75)a 

* denotes a flipped HIS411 conformation. + denotes a doubly protonated HIS411. a∆Max observed for V-NHIS.  b∆Max observed for V-O1. c∆Max observed for V-O2. d∆Max 
observed for V-O3.e∆Max observed for V-O4.  
 

 

 

 

 

 

 

 

 
 
 
 
 

 

 

 

Figure 4.3.3  An overlay of the QM parts of VBPO(green) and VCPO(blue), for model D34, omitting hydrogen for clarity. 
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Considering the main geometric difference between the VBPO and VCPO X-ray 

structures in the active site, Zameplla et al. suggested that the HIS vs. PHE 

differences between VBPO and VCPO might be due to HIS411 tuning the hydrogen 

bond strength of LYS341.[]  A set of new calculations containing the HIS411 in the 

‘flip’ conformation, that is rotating the aromatic group of the HIS residue so that the 

Nε is facing away from the LYS 341, was performed (see Figure 4.3.4). This 

procedure was motivated by the fact that the current resolution of protein X-ray 

crystallography makes a clear distinction between N and C atoms in the five-

membered rings of HIS residues difficult, and that, hence, two orientations are 

possible a priori. The geometric difference between the flip conformation of a given 

protonation state is not particularly pronounced.  

 

 

 

 

 

 

 

Figure 4.3.4 Vanadate moiety with the HIS411 a. ‘normal’, b. flipped and c. doubly protonated.  

 

As the observed high shielding of the 51V resonance in VBPO (see below) could be 

indicative of a very high negative charge, exploration was done on a fully 

unprotonated, triply charged model (VBPO-Z). During QM/MM optimization of the 

first snapshot for this model, the HIS486 residue essentially detached from the 

vanadate moiety (attaining a V...N distance of nearly 2.9 Å, see Table 4.3.4). This 

model is therefore in severe discord with the structure in the solid and was no longer 

considered. 

 

 

 

 

a. b. c. 
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 Hydrogen Bonding 

The analysis of the H-bond patterns is analogous to those in the VCPO variants 

discussed in the preceding chapters. The models generally show rather small standard 

deviations (see Table 4.3.5) across the six snapshots (values in parentheses), which 

indicates that the individual models of VBPO, as those of VCPO, have a dominant 

hydrogen-bonding network and not a multitude of different networks.  As expected, 

the hydrogen bonds formed with crystallographically resolved water molecules 

exhibit much larger variations than those involving the amino acid residues due to the 

inherent mobility of water. 

  

The O1-ARG349 hydrogen bond is found to be around 1.9-2 Å for all models, except 

for the shorter VBPO-S1 due to the protonated O1, and the VBPO-Z model which is 

also significantly shorter than the other models in Table 4.3.5. This hydrogen bond is 

stable across the six snapshots (cf. the low standard deviation). The O2-LYS341 is 

generally shorter than the O2-GLY417 distances, in the VCPO models these two 

hydrogen bonds tended to be in greater agreement with one another. The O3-SER415 

follows the same basic pattern with stability across snapshots and variation between 

models.  The H4 atom (when present) is hydrogen bonded to HIS418 and generally 

has the shortest distance of all possible hydrogen bonds considered around the 

vanadate moiety. In summary, the hydrogen bonding around the vanadate moiety is 

generally similar for different snapshots of a given model, but there is some variation 

between the models. A rather similar hydrogen-bonding network was noted for the 

VCPO system as shown by the low MAD in Table 4.3.5. The only hydrogen bond, 

which shows an appreciable difference, is the H4 to HIS418 that tends to be longer 

for the VBPO than the VCPO models. Whether this can be partly responsible for 

experimentally observed differences in the properties of both enzymes is unclear at 

present. 
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Table 4.3.5  Possible hydrogen bonds in QM/MM calculations using QM region III.  Mean bond lengths and 

standard deviations are reported in angstroms. CHARMM atom types are given in brackets and superscripted 

residue labels are consistent with the X-ray 1QI9.pdb file. 

 
O1 - H 

[HH11]ARG349 

O2 - H 
[HZ]LYS341 

O2 - H 
[HN]GLY417 

O3 - H 
[HG]SER416  

H4 - N 
[ND1]HIS418 

MAD(∆Max) 

VBPO-T344 1.99 (0.05) 1.78 (0.04) 1.87 (0.01) 1.85 (0.03) 1.50 (0.10) 0.08 (0.18)c 

VBPO-T144 2.08 (0.21) 1.82 (0.06) 1.78 (0.03) 1.72 (0.04) 1.08 (0.00)  0.48 (1.15)a 

VBPO-D234 2.02 (0.20) 1.73 (0.08) 2.01 (0.18) 1.91 (0.05) 1.56 (0.93) 0.17 (0.52)c 

VBPO-D234* 2.09 (0.04) 4.51 (0.28) 1.85 (0.02) 2.08 (0.02) 1.21 (0.27) 0.61 (2.72)a 

VBPO-D14 1.86 (0.05) 1.79 (0.03) 1.76 (0.04) 1.74 (0.03) 1.80 (0.12) 0.13 (0.46)b 

VBPO-D34 1.95 (0.08) 1.70 (0.08) 1.82 (0.02) 1.93 (0.03) 1.86 (0.10) 0.06 (0.09)a 

VBPO-D34* 1.87 (0.04) 1.69(0.02) 1.84(0.04) 1.96 (0.06) 1.84 (0.04) 0.07(0.09)c 

VBPO-D34*+  1.93 (0.05) 1.69 (0.02) 1.97 (0.04) 1.86 (0.17) 1.64 (0.15) 0.09 (0.29)c 

VBPO-D24 1.88 (0.02) 1.71 (0.02) 1.87(0.00) 1.83(0.04) 1.63(0.05) - 

VBPO-D12 1.89 (0.03) 2.99 (0.02) 1.82(0.01) 1.83 (0.00) - - 

VBPO-S4 1.88 (0.02) 1.62 (0.01) 1.62 (0.01) 1.68 (0.01) 1.93 (0.05) 0.05 (0.12)a 

VBPO-S4* 1.87 (0.02) 1.61 (0.01) 1.83 (0.01) 1.75 (0.01) 1.84 (0.03) 0.04 (0.09)a 

VBPO-S4*+ 1.95 (0.14) 1.63 (0.04) 1.86 (0.04) 1.76 (0.06) 1.83 (0.05) 0.06 (0.12)a 

VBPO-S3 1.81 (0.00) 1.58 (0.02) 1.76 (0.01) 2.05 (0.01) - 0.29 (0.38)b 

VBPO-S3* 1.83 (0.05) 1.60 (0.03) 1.87 (0.08) 1.99 (0.16) - 0.24 (1.67) b 

VBPO-S2 1.72 (0.04) 1.73 (0.07) 1.87 (0.02) 1.76 (0.01) - - 

VBPO-S1    1.74  1.57  1.64 1.75 - 0.40 (0.77)b 

* denotes a flipped HIS411 conformation. + denotes a doubly protonated HIS411 
a. ∆Max observed for O2 - [HZ]LYS341 

b. ∆Max observed for O3 - [HG]SER416  

c. ∆Max observed for O4- NHIS418  

d. ∆Max observed for O1- [HH11]ARG349 
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 Isotropic Chemical Shifts 

 

The computed isotropic 51V chemical shifts (iso) are displayed in Table 4.3.6. A 

cursory glance at Table 4.3.6 shows that the iso values of all models are rather stable 

across the QM regions I-III, where variations typically amount to less than 25 ppm. 

Fluctuations across QM regions I–III tend to be somewhat smaller than observed for 

VCPO. This is primarily because no proton transfer to HIS 418 occurred, which had 

been observed for VCPO to the corresponding, proximal HIS404 residue.[131] 

 
The isotropic NMR shifts in VBPO range from around -550 to -690 pmm (VCPO 

range from -550 ppm to -620 ppm), without showing a clear dependence on the 

protonation state. This range is bracketed by VBPO-S4* being the most de-shielded 

and VBPOS1 is the most shielded of the models considered. Although the latter 

seemingly is in best agreement with the experimental solid-state value, the substantial 

shielding of the 51V resonance with respect to that in solid VCPO is not very well 

reproduced. Furthermore, all the models in Table 4.3.6 are less shielded than the 

experimental value.  This is completely opposite to prior experience, where previous 

results at the same or comparable QM levels  for other vanadate complexes displayed 

isotropic values that were generally too strongly shielded by roughly 100ppm.[47,125] 

Thus, no QM/MM optimized model can be proposed as a solid candidate based on the 

agreement between computed and experimental isotropic shifts.  
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Table 4.3.6  51V isotropic chemical shifts (ppm) averaged over 6 snapshots, together with the corresponding 

standard deviations. For each of the QM/MM models considered, results are given for QM regions I – III.  The 

MAD and ∆Max relative to the VCPO are also reported.  

aFrom references [46,51]. * denotes a flipped HIS411 conformation. + denotes a doubly protonated 

HIS411§ CSA tensors calculated without point charges. 

 

 I II III MAD ( ∆Max) 
∆δ∆δ∆δ∆δ VBPO(III) 
rel. to VCPO(IV)  

 VBPO-T344 -616 ± 7 -645 ± 9 -613 ± 7 14 (20)II  
-11 

VBPO-T144 -593 ± 9 -623 ± 9 -592 ± 13 14 (20)II  
10 

VBPO-D234 -573 ± 24 -640 ± 12 -622 ± 10 26 (39)I 
-39 

VBPO-D234* -549 ± 7 -603 ± 4 -603 ± 6 24 (36)I 
-20 

VBPO-D14 -633 ± 21 -641 ± 15 -624 ± 14 23 (28)III  
-44 

VBPO-D24 -624 ± 7 -642 ± 12 -622 ± 7 8 (12)II  
- 

VBPO-D34 -630 ± 2 -635 ± 3 -605 ± 4 12 (18)III  
2 

VBPO-D34* -633 ± 5 -636 ± 6 -607 ± 8 12 (18)III  
0 

VBPO-D34*+ -617 ± 2 -623 ± 2 -591 ± 2 13 (19)III  
16 

VBPO-34§ -567 ± 4 -568 ± 3 -573 ± 10 2 (4)III  
34 

VBPO-34*§ -567 ± 5 -569 ± 5 -587 ± 14 8 (13)III  
20 

VBPO-S4 -562 ± 11 -576 ± 7 -561 ± 7 6 (10)II  
-8 

VBPO-S4* -566 ± 5 -578 ± 5 -546 ± 4 12 (17)III  
7 

VBPO-S4*+ -576 ± 7 -587 ± 1 -554 ± 10 11 (17)II 
-1 

VBPO-S3 -686 ± 10 -683 ± 10 -655 ± 10 12(18)III  
-45 

VBPO-S3* -687 ± 2 -682 ± 2 -655 ± 4 13 (20)II 
-45 

VBPO-S2 -645 ± 4 -628 ± 3 625 ± 6 8(12)I 
- 

VBPO-S1 -681 -687 -670 6 (9)III  
-55 

Experimenta   -687  
-179 
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The role of the HIS411 residue, as compared to PHE397 in VCPO, was studied in a 

number of ways. Firstly the difference between having HIS411 in the QM region or 

the MM active region has little effect on the chemical shifts (compare entries I and III 

in Table 4.3.6). Secondly, flipping the HIS into the two rotamers also has little effect 

on the chemical shifts (compare starred and unstarred results in Table 4.3.6). 

Therefore the electrostatic forces either using the charge distribution of the QM 

region or modeled as point charges is not significant enough to alter the chemical shift 

of vanadium by more than 26ppm.  Thirdly, site directed mutagenesis experiments on 

VCPO converted PHE to a HIS, this did change the activity of the enzyme. 

Computational we trialed the reverse, that is we mutated the HIS411 into a PHE in 

VBPO, resulting in a ∆δiso=20ppm downfield shift. This deviation in chemical shifts 

was very small and therefore this cannot be used to rationalize the unusually high 

chemical shielding of V chemical shift in VBPO using steric arguments. In short, the 

inclusion of the HIS411 has little direct effect on chemical shifts in either 

conformation or either region and therefore cannot be proposed as the basis for the 

unusually high chemical shielding of 51V in VBPO. 

 

The QM/MM regions are centered on one of the active sties (VO4, notation as in the 

pdb file), the other active site (VO5) is too far beyond the radial cuttoff to be 

considered in the active QM/MM regions, and therefore remains fixed. To ensure the 

choice of which active site to study had no bearing on the results, a series of 

calculations were performed where QM/MM active site was centered on VO5, and 

subjected to QM/MM minimization.  The results do not significantly differ between 

the VO4 and VO5 models and the values are therefore not included in Table 4.3.5 and 

Table 4.3.6. 

 

In summary, and in keeping with our results for VCPO, the isotropic chemical shifts 

are found to be a poor discriminator of protonation state of VBPO, due to the small 

variation resulting from changes in the proximal proton environment. Furthermore, all 

of the models are noticeably deshielded when compared to experiment. 
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 Anisotropic 51V NMR Chemical Shifts:  The CSA and EFG Tensors 

The computed parameters characterizing the CSA and EFG tensors are collated in 

Table 4.3.7. The mean absolute percent deviation (MAPD) to those computed for the 

corresponding VCPO with the associated standard deviation (SD) is also included. 

These deviations provide a numerical feel for the similarity to the VCPO QM/MM 

models.  

 

In general, the computed CSA and EFG values are somewhat more sensitive to the 

size of the QM region than the isotropic chemical shifts above. As expected, changes 

between QM region I and III are not particularly pronounced, in agreement with the 

previous VCPO conclusions, which were taken to indicate good convergence.  

 

The difference between the flipped conformation of a given protonation state is larger 

than the difference between model I and model III for the same protonation state. The 

flip conformation is simply a computational tool to investigate the effect of such a 

residue.  

 

A critical assessment of the models would require precise knowledge of the 

experimental CSA and EFG tensor elements. However, only a preliminary spectrum 

is published so far (as noted above), with only the isotropic chemical shift reported.[51] 

Therefore confident assignment of the protonation state is not possible at present, but 

may become possible as better experimental spectra and reliable refinements of the 

tensorial quantities become available. The computed values were presented in Table 

4.3.7 to illustrate the differences amongst these members of the VHPO family and as 

predictions for future reference. 

  

The previous section showed that the bromination of SER402 had no notable effect on 

the 51V isotropic chemical shift of VBPO. Table 4.3.7 shows that the parameters that 

characterize the solid-state 51V NMR are severely effected by SER402 becoming 

brominated in VBPO. This finding does suggest that the experimental method of 

solid-state 51V NMR could be beneficial in addressing this question.   
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Inspection of the MAPD values in Table 4.3.7 reveals noticeable differences between 

the parameters that characterize the EFG and CSA tensor between individual models 

of VBPO and VCPO. The asymmetry parameter of the EFG generally shows the 

greatest deviation. Therefore the solid-state 51V NMR spectrum of VBPO should be 

rather different from the previously published one of VCPO, which is in qualitative 

agreement with the preliminary experimental results for VBPO.[51] This is in spite 

rather similar geometries, hydrogen bonding networks and isotropic chemical shifts of 

QM/MM optimized models.  It appears that experimentally observed differences 

between VBPO and VCPO is at least partially related to the PHE vs. HIS difference 

between VBPO and VCPO, and the longer-range electrostatic effects of more distant 

structural differences may also contribute to some degree.  

 
 
Table 4.3.7  Reduced anisotropy δσ, asymmetry ησ, nuclear quadrupole coupling constant CQ(MHz), and 

asymmetry parameter η Q with the associated standard deviations for six snapshots. The mean absolute percent 

deviation (MAPD) compared to the respective QM/MM VCPO models[131] is also tabulated. Results are given for 

QM regions I to III.  

 

  δσ ησ CQ η Q MAPD(∆Max) 

VBPO-T344 I -536 ± 6 0.5 ± 0.02 15 ± 0.0 0.14 ± 0.02 16 (27)g 

 II -549±12 0.5±0.02 11±1.0 0.31±0.13 42(121)g 

 III -550 ± 5 0.5 ± 0.02 12  ± 1.4 0.28 ± 0.06 10 (27)g 

VBPO-T144 I -646±20 0.4±0.02 16±7.0 0.57±0.27 21(30)g 

 II -620±47 0.5±0.03 8±9.9 0.77±0.37 19(35)f 

 III -511 ± 26 0.5 ± 0.03 10 ±3.90 0.67 ±0.33 26 (48)g 

VBPO-T234 I -460±76 0.3±0.18 5±0.2 0.60±0.38 21(50)e 

 II -379±78 0.4±0.20 7±1.4 0.54±0.40 38(116)g 

 III -323 ± 117 0.6 ± 0.29 7 ±1.10 0.57 ±0.30 26 (58)g 

VBPO-T234* I -464±13 0.4±0.03 -6.5±0.19 0.34±0.05 35(100)e 

 II -317±28 0.5±0.08 -5.9±0.34 0.58±0.07 44(132)g 

 III -303 ± 26 0.5 ± 0.04 -5.6 ±3.2 0.39 ±0.10 14 (35)f 

VBPO-D14 I -568 ±  7 0.4 ± 0.01 9 ± 0.1 0.58 ± 0.11 13 (26)f 
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 II -550±24 0.4±0.03 9±0.6 0.67±0.20 15(43)f 

 III -598 ± 51 0.7 ± 0.16 8 ± 0.8 0.58 ± 0.24 20 (40)e 

VBPO-D34 I -531 ± 34 0.4 ± 0.32 9 ± 0.6 0.18 ± 0.09 26 (51)g 

 II -552±12 0.4±0.02 9±0.7 0.16±0.11 14(36)f 

 III -532 ± 16 0.4 ± 0.02 9 ± 0.6 0.27 ± 0.14 22 (47)g 

VBPO-D34* I -515±16 0.4±0.03 9±0.21 0.3±0.04 38(61)g 

 II -508±22 0.4±0.01 9±0.32 0.3±0.04 25(61)g 

 III -519 ± 41 0.4 ± 0.01 9 ± 0.35 0.4 ± 0.07 16 (33)e 

VBPO-D34*+ I -480±8 0.5±0.03 8±0.08 0.5±0.04 37(66)e 

 II -426±25 0.5±0.00 9±0.25 0.4±0.07 32(49)g 

 III -449 ± 41 0.6 ± 0.03 7 ± 0.21 0.7 ± 0.05 45 (100)e 

VBPO-D34§ I -653±11 0.3±0.00 11±0.48 0.3±0.06 - 

 II -631±9 0.3±0.00 11±0.59 0.3±0.08 - 

 III -652 ±  11 0.3 ± 0.00 11  ± 0.5 0.28 ± 0.06 24 (64)g 

VBPO-D34*§ I -642±7 0.3±0.01 11±0.17 0.3±0.03 - 

 II -661±20 0.3±0.01 11±0.34 0.3±0.02 - 

 III -409 ± 34 0.5 ± 0.06 10 ±0.3 0.33 ± 0.06 40 (67)e 

VBPO-D12 III 320 ± 27 0.2 ± 0.03 -8 ± 0.0 0.24 ± 0.06 - 

VBPO-D24 I -311±5 0.6± 0.01 8±0.07 0.3±0.03 - 

 II -305±2 0.6±0.01 8±0.17 0.3±0.03 - 

 III -425 ± 9 0.3 ± 0.02 8 ± 0.2 0.56 ± 0.05 - 

VBPO-S4 I 362 ±  7 0.2 ±0.08 13 ±0.4 0.20 ± 0.06 58 (100)e 

 II 379±8 0.2±0.24 15±0.0 0.22±0.06 32(57)g 

 III 359 ±   11 0.1 ±0.05 14 ±0.7 0.27 ± 0.05 88 (285)g 

VBPO-S4* I 358±19 0.3±0.09 15±0.23 0.32±0.04 43(128)g 

 II 379±5 0.4±0.03 15±0.38 0.26±0.01 39(128)g 

 III 353 ± 5 0.3 ± 0.022 14 ± 0.28 0.3 ± 0.02 99 (328)g 

VBPO-S4MC2 I 366 0.26 14 0.32 23(56)e 

 II 390 0.25 15 0.19 25(35)g 

 III 363 0.1 14 0.18 57 (157)g 
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VBPO-S3 I -121±18 0.6±0.07 6±0.3 0.51±0.12 54(88)g 

 II -133±15 0.7±0.04 6±0.3 0.55±0.12 73(113)e 

 III -143 ± 17 0.9 ± 0.03 5.0 ± 0.30 0.49 ± 0.13 107 (200)f 

VBPO-S3* I -515±16 0.4±0.03 9±0.21 0.3±0.04 33(118)h 

 II -508±22 0.4±0.01 9±0.32 0.3±0.04 27(64)h 

 III -151 ± 23 1.0 ± 0.21 5.4 ± 0.61 0.70 ± 0.26 114 (233)f 

VBPO-S2 I -180±9 0.8±0.03 7±0.18 0.4±0.00 - 

 II -207±8 0.9±0.01 7±0.21 0.6±0.05 - 

 III 242± 27 0.2 ± 0.02 7.8 ± 0.35 0.37 ± 0.16 - 

VBPO-S1 I -258 0.32 9 0.40 25 (75)g 

 II -241  0.4  7  0.7  19(43)h 

 III -270 0.43 7 0.32 39 (47)h 

* denotes a flipped HIS411 conformation. +denotes a doubly protonated HIS411. §CSA tensors 

calculated without point charges. MC2 indicates the active site of the other half of the homodimer was 

investigated.  
e. ∆Max observed for ησ

 

f. ∆Max observed for CQ
 

g. ∆Max observed for η Q
 

 

 

Simulated MAS NMR spectra of selected models are provided in Figure 4.3.5. The 

different protonation states are clearly producing grossly different spectral features, 

e.g. VOD34 vs. VOS4. Qualitatively, the triply and doubly protonated models with 

their large absolute values of δσ seem to fit somewhat better to the preliminary 

spectrum of VBPO than the singly protonated models. More definite conclusions, 

however, would have to await more precise experimental data. Eventually, this may 

provide an indication as to the assignment of protonation state, without explicit 

recourse to energetic arguments from theoretical calculations. 
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Figure 4.3.5  Theoretical spectra simulated using SIMPSON[126] with parameters taken from Table 4.3.7  for  QM 
region III of selected models (star: isotropic shift). * denotes a flipped HIS411 conformation. + denotes a 
doubly protonated HIS411§ CSA tensors calculated without point charges. 

 

 

 

a.   VBPO-T344 

 

b.   VBPO-D34 

 

c. VBPO-S4 

 

 

 

 

*  
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d.   VBPO-T144 

 

e.   VBPO-T234 

 

f. VBPO-D14 

* 

* 

* 
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g. VBPO-D24 

 

h.   VBPO-S3 

 

i. VBPO-S1 

 

* 

* 

* 
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j. VBPO-T234* 

 

 

k.   VBPO-D34* 

 

l. VBPO-D34*+ 

 
 

* 

* 

* 
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m. VBPO-D34 § 

  

n.   VBPO-S4* 

 

o. VBPO-S3* 

 

* 

* 

* 
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 Conclusions 
51V NMR parameters of VBPO were computed for a large number of QM/MM 

optimized models, calling special attention to different possible protonation states and 

positional isomers. VBPO shows a small degree of conformational flexibility in terms 

of bond lengths for atoms coordinated to vanadium across individual models, as well 

as the computed 51V NMR parameters, evidenced by the low standard deviation 

amongst models sampled along a classical MD simulation with subsequent QM/MM 

optimizations. In terms of non-hydrogen atomic coordinates all of the many models 

considered show good agreement with those of VCPO. 

 

As had been the case with VCPO, the computed isotropic 51V chemical shifts of 

VBPO show rather little variation between the models, making structural assignments 

based on this quantity difficult. The notable upfield shift of the isotropic 51V NMR 

resonance that is observed on going from solid VCPO to solid VBPO is only partly 

recovered in the computations, and only for some of the models. No structural 

candidate could be identified that could account for the exceptional shielding of the 

VBPO 51V NMR signal on going from the solid state into solution.  

 

As there is a notable difference between the EFG and CSA tensors computed from 

models of VBPO and VCPO, and furthermore, the latter showed good agreement with 

the experimental derived values from the 51V NMR spectrum, it is likely that the 

anisotropic chemical shifts reported here would be of use to future studies of VBPO 

using solid-state MAS NMR spectroscopy.  
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4.4 51V NMR chemical shifts calculated from QM/MM models of  

Vanadium haloperoxidase  - peroxo forms 

 QM/MM setup 

 

Starting from the X-ray structures[39], a number of possible protonation states of the 

peroxovanadate cofactor were modeled using the same QM/MM optimization 

protocol as for the native forms discussed in the preceding chapters. Our previous 

QM/MM studies[132] showed that two vanadium active sites of native VBPO  are 

similar, and therefore only one such ‘homology type’ model was studied, focusing 

only on one of the metal centers. The large degree of homology, particularly within 

the active site, provides validity to this approach.   In order to provide a convenient 

comparison to the pure DFT work by Pecoraro et al.[55]   a range of models was 

considered, see Table 4.4.1.  

 

Table 4.4.1 Selected models labeled according to the protonation state.  

   Unprotonated  Singly protonated  Doubly protonated 

    p-VHPO-Z p-VHPO-S1  

p-VHPO-S2 

p-VHPO-S3 

p-VHPO-S4 

p-VHPO-D13 

p-VHPO-D12† 

p-VHPO-D14† 

 
† Only investigated for  p-VCPO.  

 

Results for QM regions I (small) to III (large) are herein presented for each of the 

selected models in Table 4.4.1 and Figure 4.4.1 shows the segments of the residues 

and the crystallographic water molecules that are included in the QM I and III 

regions. Note that QM region III corresponds to QM region IV from our first study on 

native VCPO.[39] 
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I                                   II                                             III 

 

 

                                                                                        

Figure 4.4.1  QM regions I to III for peroxo-form of haloperoxidases, deprotonated vanadate moiety shown as an 

example.  

 

 

 

 

 

 

 

 

 

 

 

 

a.                                                                                     b. 

Figure 4.4.2 a. Vanadate co-factor surrounded by residues in the first shell of the active regions that are included 

in the larger QM III region. b. Solvated p-VCPO protein,. The region in blue is solvent (30 Å sphere centered on 

vanadium), and the fixed protein environment during the QM/MM optimization (residues > 10 Å from vanadate) is 

displayed as a green ribbon. The orange sphere centered on the vanadate moiety is the active region subjected to 

the QM/MM optimization (including all residues <10 Å from the vanadate). Crystallographically resolved waters 

(oxygen positions) are displayed as purple spheres. 
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Results and discussion 

 Geometrical Details 

Because the constituent V(O2)O2 unit bears one overall negative charge and because 

neutral vanadates or peroxovanadates are usually not acting as strong Brønsted bases, 

an unprotonated (p-VHPO-Z) or a singly protonated state would seem as the most 

probable. Consistent with this expectation, most of the doubly protonated models that 

were considered turned out to be unstable with respect to maintaining the peroxo-

coordinated geometry. For instance, QM/MM optimization of p-VCPO-D12 and p-

VCPO-D14 resulted in partial detachment of the hydroperoxy ligand, which 

rearranged from the side-on η2 coordination to an essentially end-on η1 mode. 

Because of this clear disagreement with experiment, these models were not explored 

further. The only stable doubly protonated species was p-VHPO-D13. Salient 

distances of all final p-VCPO models and those of the corresponding p-VBPO 

homologues are summarized in Table 4.4.2 and Table 4.4.3.  

 

The bond lengths of the peroxovanadate cofactor fall within the expected range, ca. 

1.6-1.7 Å for vanadium oxo bonds, 1.8-1.9 Å for vanadium hydroxy and peroxo 

bonds, and 2.0- 2.1 Å for the V-N bond to HIS404. As the standard deviations across 

the six snapshots for the bond lengths of the peroxovanadate cofactor are rather small, 

all the models are generally very similar within the six selected snapshots .The 

geometric convergence for the individual models is comparable to our prior QM/MM 

optimizations of the native VHPO forms,[131] indicating that the active site is rather 

rigid, and that the use of a small number of snapshots seems valid. Furthermore, a 

good degree of similarity is observed between the bond lengths of the 

peroxovanadate, across many of the different protonated models of p-VCPO and p-

VBPO, see Table 4.4.2 and Table 4.4.3, respectively. 

 

 



  Results 
 

 108 

 
 

Table 4.4.2 Bond lengths involving vanadium cofactor for QM/MM regions I to III of p-VCPO.a 

 
  V-NHIS 496 V-O1 V-O2 V-O3 V-O4 O2-O4 V-Owat b  MAD(

�

MAX) 

c 

MAD(

�
MAX) c 

X-ray p-

VCPO 

     2.19 1.93    1.89     1.60 1.86 1.47 4.39 (including 

V-Owat) 

(without 

V-Owat) 

p-VCPO-Z I 

II 

III 

2.06(0.01) 

2.07(0.01) 

2.06(0.01) 

1.68(0.00) 

1.66(0.01) 

1.67(0.00) 

1.89(0.00) 

1.89(0.01) 

1.93(0.01)    

1.65(0.00) 

1.67(0.01) 

1.66(0.00) 

1.87(0.01) 

1.87(0.01) 

1.87(0.00) 

1.47(0.00) 

1.47(0.00) 

1.47(0.00) 

4.02(0.57)d 

3.86(0.26) 

3.90(0.22) 

0.12(0.37)h 

 

0.14(0.49)h 

0.07(0.25) f 

 

0.08(0.26) f 

p-VCPO-S1 I 

II 

III 

2.03(0.01) 

2.14(0.00) 

2.13(0.00) 

1.83(0.00) 

1.88(0.01) 

1.88(0.00) 

1.87(0.00) 

1.86(0.00) 

1.88(0.00) 

1.61(0.00) 

1.62(0.00) 

1.62(0.00) 

1.84(0.00) 

1.85(0.01) 

1.86(0.00) 

1.45(0.00) 

1.45(0.01) 

1.45(0.00) 

2.64(0.01) d  

2.12(0.01) 

2.13(0.01) 

0.30(1.75)h 

 

0.35(2.26)h 

0.06(0.16) e 

 

0.03(0.06) e 

p-VCPO-S2 I 

II 

III 

2.06(0.02) 

2.18(0.01) 

2.13(0.04) 

1.65(0.01) 

1.67(0.01) 

1.66(0.00) 

2.10(0.03) 

2.15(0.05) 

2.11(0.06) 

1.63(0.00) 

1.64(0.01) 

1.65(0.01) 

1.90(0.01) 

1.91(0.01) 

1.89(0.02) 

1.47(0.01) 

1.47(0.01) 

1.47(0.01) 

3.11(0.60) d 

2.22(0.03) 

2.51(0.31) 

0.21(1.28)h 

 

0.36(1.88)h 

0.12(0.28) f 

0.11(0.27) f 

p-VCPO-S3 I 

II 

III 

2.04(0.02) 

2.13(0.03) 

2.13(0.04) 

1.63(0.00) 

1.65(0.01) 

1.64(0.00) 

1.85(0.00) 

1.86(0.00) 

1.87(0.01) 

1.81(0.02) 

1.86(0.02) 

1.86(0.02) 

1.85(0.01) 

1.85(0.01) 

1.87(0.01) 

1.45(0.00) 

1.45(0.00) 

1.45(0.00) 

2.89(0.73) d 

2.14(0.07) 

2.15(0.10) 

0.32(1.50)h 

 

0.41(2.24)h 

0.12(0.21) g 

 

0.11(0.26) g 

p-VCPO-S4 

 

I 

II 

III 

2.04(0.01) 

2.07(0.01) 

2.06(0.01) 

1.64(0.00) 

1.66(0.00) 

1.66(0.00) 

1.94(0.00) 

1.9(0.01) 

1.94(0.00) 

1.63(0.01) 

1.89(0.01) 

1.66(0.00) 

2.05(0.00) 

1.89(0.01)∗ 

1.88(0.00)*  

1.47(0.00) 

1.47(0.00) 

1.47(0.00) 

3.15(0.36) d 

3.51(0.13) 

3.68(0.01) 

0.28(1.24)h 

 

0.18(0.71)h 

0.12(0.29) f 

 

0.09(0.27) f 
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p-VCPO-D12 I 2.01(0.01) 1.75(0.09) 2.37(0.04) 1.59(0.00) 1.84(0.02) 1.46(0.00) 2.65(0.97) f   

p-VCPO-D13 I 

II 

III 

2.05(0.01) 

2.09(0.01) 

2.08(0.01) 

1.78(0.00) 

1.81(0.01) 

1.83(0.00) 

1.82(0.02) 

1.82(0.02) 

1.82(0.00) 

1.77(0.00) 

1.80(0.02) 

1.77(0.01) 

1.84(0.02) 

1.84(0.00) 

1.83(0.00) 

1.42(0.01) 

1.43(0.00) 

1.43(0.00) 

2.30(0.01) d 

2.09(0.01) 

2.11(0.01) 

0.38(2.09)h 

 

0.40(2.28)h 

0.10(0.17) g 

 

0.09(0.17) g 

p-VCPO-D14 I 2.04(0.01) 1.79(0.00) 1.88(0.00) 1.59(0.00) 2.25(0.05) 1.46(0.01) 2.21(0.02) f   
a Mean bond lengths and standard deviations are reported in Å, X-ray refined experimental values of p-VCPO are shown for comparison. b Owat is in the MM region for the small QM I models. c 

MAD is the mean absolute deviation ( , where ∆=rvcpo-rexp) and 

�

MAX  is the maximum deviation relative to the X-ray distances of 1IDU.pdb (with and without V-Owat, see text). dWater in 

MM region. e �

MAX   observed for V-NHis.  f  

�

MAX  observed for V-O1. g �

MAX   observed for V-O3.  *Proton transfers to HIS404. h 

�
MAX   observed for V-Owat.



  Results 
 

 110

 
 

Table 4.4.3 Bond lengths involving vanadium cofactor for QM/MM regions I, II and III for p-VBPO.§ 

§ Mean bond lengths and standard deviations are reported in Å, X-ray-refined experimental values of p-VCPO are shown for 
comparison. + denotes a flipped HIS411.† MAD is the mean absolute deviation and MAX  is the maximum deviation relative to 
the X-ray distances of 1IDU.pdb. a 

MAX   observed for V-NHis.  b 
MAX   observed for V-O1.  c 

MAX   observed for V-O2.  d 
MAX   

observed for V-O3.  e 
MAX   observed for V-O4, fWater in MM region. + denotes models with a flipped HIS411 conformation. 

‡Owat is in the MM region for the small QM I models. ∗Proton transfers to HIS404. 
 

 

The X-ray structure of p-VCPO with a resolution of 2.24Å  determined by Messerschmidt et al.[39] shows 

the terminal oxo ligands O3 and O1 at distances of 1.60 Å and 1.93Å , respectively, suggesting that these 

atoms are unprotonated and protonated, respectively. The QM/MM-optimized bond distances from 

vanadium to the O3 and O1 ligands for the p-VCPO-S1 model fit best to the experimentally refined 

values, however the experimental uncertainty is too large to provide definitive conclusions. All other 

models that are not protonated at O1 have the V-O1 bond length elongated by up to 0.27Å relative to the 

X-ray structure. 

 

 

  V-NHIS  496 V-O1 V-O2 V-O3 V-O4 O2-O4 V-Owat‡  MAD( � MAX)† 

X-ray p-

VCPO 

     2.19 1.93    1.89     1.60 1.86 1.47 4.39  

p-VBPO-Z I 

II 

III 

2.07(0.01) 

2.08(0.01) 

2.07(0.01) 

1.68(0.00) 

1.68(0.00) 

1.67(0.00) 

1.90(0.01) 

1.89(0.01) 

1.93(0.01) 

1.65(0.01) 

1.65(0.01) 

1.65(0.00) 

1.86(0.00) 

1.87(0.01) 

1.87(0.00) 

1.47(0.01) 

1.47(0.00) 

1.47(0.00) 

4.30(0.53)f 

4.09(0.55) 

4.10(0.50) 

0.07(0.25)b 

0.07(0.25)b 

0.08(0.26)b 

p-VBPO-Z+ III 2.09 1.68 1.94 1.64 1.88 1.48 3.32 0.08(0.25)b 

p-VBPO-S1 I 

II 

III 

2.04(0.01) 

2.14(0.09) 

2.20(0.04) 

1.83(0.01) 

1.91(0.03) 

1.94(0.02) 

1.88(0.01) 

1.88(0.01) 

1.90(0.00) 

1.60(0.00) 

1.61(0.01) 

1.61(0.00) 

1.83(0.01) 

1.86(0.02) 

1.88(0.01) 

1.45(0.00) 

1.45(0.00) 

1.45(0.00) 

3.05(0.25) f 

2.23(0.31) 

2.03(0.10) 

0.05(0.15)a 

0.02(0.05)a 

0.01(0.02)e 

p-VBPO-S1+ III 2.17 1.94 1.90 1.63 1.88 1.45 1.96 0.02(0.03)d 

p-VBPO-S2 I 

III 

2.03(0.01) 

2.05(0.02) 

1.65(0.00) 

1.65(0.01) 

2.24(0.08) 

2.12(0.03) 

1.62(0.00) 

1.63(0.01) 

1.88(0.02) 

1.88(0.00) 

1.47(0.00) 

1.48(0.01) 

3.03(0.13) f 

3.05(0.11) 

0.14(0.35)c 

0.12(0.28)b 

p-VBPO-S3 I 

II 

III 

2.05(0.02) 

2.11(0.05) 

2.06(0.06) 

1.62(0.01) 

1.67(0.01) 

1.64(0.01) 

1.87(0.01) 

1.90(0.01) 

1.89(0.03) 

1.79(0.01) 

1.70(0.06) 

1.76(0.04) 

1.82(0.01) 

1.85(0.01) 

1.84(0.01) 

1.45(0.00) 

1.46(0.01) 

1.46(0.00) 

3.13(0.29) f 

3.37(0.53) 

3.49(0.17) 

0.12(0.31)b 

0.08(0.26)b 

0.10(0.29)b 

p-VBPO-S4 

 

I 

II 

III 

2.07(0.01) 

2.08(0.01) 

2.08(0.01) 

1.65(0.00) 

1.69(0.01) 

1.68(0.02) 

1.95(0.01) 

1.91(0.01) 

1.95(0.01) 

1.62(0.00) 

1.64(0.02) 

1.65(0.02) 

2.05(0.01) 

1.87(0.01)∗ 

1.87(0.02)∗ 

1.47(0.00) 

1.47(0.00) 

1.47(0.00) 

3.10(0.20) f 

3.66(0.08) 

2.31(0.51) 

0.11(0.28)b 

0.07(0.24)b 

0.08(0.25)b 

p-VBPO-

D13 

I 

II 

III 

2.03(0.01) 

2.17(0.03) 

2.19(0.01) 

1.77(0.01) 

1.86(0.01) 

1.88(0.02) 

1.83(0.01) 

1.83(0.00) 

1.84(0.00) 

1.76(0.01) 

1.80(0.00) 

1.77(0.01) 

1.82(0.01) 

1.84(0.01) 

1.86(0.00) 

1.42(0.00) 

1.43(0.00) 

1.43(0.00) 

2.52(0.39) f 

1.89(0.02) 

1.89(0.01) 

0.11(0.16)b,d 

0.07(0.07)b 

0.05(0.17)d 



  Results 
 

 111

 
The rather long refined V-O1 distance might also nurture the speculation that this O atom could be 

doubly protonated, i.e. be present as a water ligand. In fact, the resulting ligand environment about the 

metal would be reminiscent of VO(O2)(H2O)n
+, the formulation of peroxovanadate at low pH. Because 

the nearby Arg360 residue is probably protonated and a good H-bond donor, this situation is unlikely so 

that we did not set up and prepare any p-VHPO-D11 models from the onset. In order to test this 

expectation, we constructed such a model from one of the p-VCPO-S1 minima (optimized with QM 

region III) by manually moving the proton from Arg360 to O1. During optimization of this p-VHPO-D11 

structure with a neutral Arg, the proton jumped back to the arginine, affording the regular p-VCPO-S1 

model. 

 

In general, most of the vanadium-ligand bond distances increase between ~0.01 to ~0.05 Å when going 

from the smaller QM region I to the larger QM III region. In contrast, the V-O4 bond in the singly 

protonated model p-VCPO-S4 shortens by about 0.17 Å when going from the smaller to the larger QM 

III region. This is attributed to a proton transfer from the O4 ligand to a crystal water, and a subsequent 

proton transfer to the neighboring HIS404, which occurred spontaneously during optimization. This 

creates an active site which is structurally similar to the originally unprotonated model, p-VCPO-Z, 

except for an additionally charged histidine group (HIS404). This occurs for both the p-VCPO and p-

VBPO active sites, see Table 4.4.2 and Table 4.4.3, respectively. Likewise, for p-VBPO-S3 the proton is 

transferred from the O3 ligand to HIS404 during QM/MM optimisation with QM region II, but the same 

proton hops back to O3 during optimization with QM region III (no such event occurred with the 

corresponding p-VCPO models). 

 

The distance between the vanadium and NHIS496 is typically shorter in the QM/MM optimized models 

than in the X-ray structure, by up to 0.13Å for p-VCPO-Z and p-VCPO-S4; smaller deviations are 

typically seen when a crystal water molecule is bound to the peroxovanadate center, as in the other singly 

protonated models. The computed V-NHIS496 distances vary between 2.06Å up to 2.19Å for the p-VCPO 

models, while they range from 2.3Å to 2.6Å in the native VCPO forms, suggesting that peroxovanadate 

binds more strongly than vanadate to HIS496. This trend has already been observed by Renirie et al.,[58] 

and aqueous peroxovanadate has been found to bind imidazole more strongly than vanadate.[133]
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Typically the QM/MM-optimized bond distances of p-VCPO and p-VBPO, with the same 

protonation state of the peroxovanadate cofactor, show little variation between these two 

proteins, which adds support to the validity of homology modeling in the case of p-VBPO. 

The p-VCPO-Z and the related p-VCPO-S4 models (essentially p-VCPO-Z with protonated 

HIS) contain an empty cavity above the peroxovanadate moiety, in agreement with the X-ray 

structure. The remaining models contain a water molecule in this position, with a computed 

distance short enough to be considered bound to the metal (V-O distances between 2.1 and 

2.5 Å), in apparent disagreement with experiment, where this site remains empty.  

 

It is difficult at this point to judge the significance of the seemingly empty coordination site in 

the solid-state structure. If this site is truly vacant, p-VCPO-Z and p-VCPO-S4 would fit 

much better to the refined coordinates than all other models. For these two models, the mean 

absolute deviation (MAD) between all optimized and experimental bond lengths in Table 

4.4.2 amounts to 0.14 and 0.18 Å, respectively (QM region III), whereas those of the other 

candidates approach or exceed 0.4 Å (see last but one column in Table 4.4.2). If, on the other 

hand, this site was occupied by a very mobile or labile water ligand, the latter might well 

escape detection in the X-ray analysis, given the low resolution presently achievable. In that 

case, i.e. when the V-Owat distance is disregarded in the analysis, the resulting MAD is lowest 

for the p-VCPO-S1 model (0.03Å, see last column in Table 4.4.2) and shows little variation 

across the remaining models, typically around 0.1Å. We refrain from making structural 

assignments based on these data and note that essentially all models presented in Table 4.4.2 

could be viable candidates, with a slight preference for p-VCPO-Z and p-VCPO-S1 (or, 

perhaps, an equilibrium mixture between both). 

 

In this context the intrinsic water binding energy of the pristine V(O2)O(OH)(H2O)(Im) 

fragment (Im = methyl-imidazole) common to all p-VCPO-S models is of interest. Starting  

from the corresponding coordinates of the p-VCPO-S1 minimum obtained with QM region II,  

this complex was optimized in the gas phase. In the resulting minimum, the V-Owat distance is 

2.35 Å. At the RI-BP86/AE1 level, water dissociation affording V(O2)O(OH)(Im) is 

computed to be endothermic by 11.5 kcal/mol (6.0 kcal/mol when corrected for basis-set 

superposition error). The water is thus indicated to be weakly bound. An attempt to optimize 

a non-protonated hydrated complex, i.e. [V(O2)O2(H2O)(Im)]−, resulted in detachment of the 
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water ligand from the metal, in agreement with the results from the full QM/MM 

computations. 

 Hydrogen bonding 

In all of the above-considered models of p-VCPO the HIS404 residue (which is included in 

QM region III) is no longer hydrogen bonded to the peroxovanadate cofactor, see Figure 1.2.2 

This residue acts as a hydrogen bond acceptor from the nearest solvent water molecule, which 

in turn donates a hydrogen bond to the peroxovanadate cofactor. The O1 ligand of the 

peroxovandate is hydrogen bonded to ARG360 and ARG490. The singly protonated p-

VCPO-S1 model no longer forms a hydrogen bond with ARG490 , as compared to its native 

counterpart, and this is also observed for the p-VCPO-D13 doubly protonated models. This 

causes a gross structural deviation relative to the other models, as seen in overlay of all the 

models in Figure 4.4.3, and the RMSD is much larger for p-VCPO-D13 when compared to 

other protonated and unprotonated models. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4.3  Overlay of the heavy atoms in the active 

site of p-VCPO for X-ray (Yellow),VOD13 (Red), 

VOS4 (Green), VOS3 (Orange), VO4 (Blue), VOS1 

(Magenta) for the QM region III.  
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Table 4.4.4 Selected hydrogen bonds in QM/MM calculations using the QM III region for p-VCPO. Mean bond distances 

and standard deviations are reported in Å. CHARMM atom types are given in brackets and superscripted residue labels are 

consistent with the X-ray pdb file.  

 
  O1-H, 

[HH11]ARG360 

O1-H, 

[HH21]ARG360 

O1-H, 

[HH22]ARG490 

O2-H, 

[HZ1]LYS353 

O2-H, 

[HN] GLY403 

O3-H, 

[HE]ARG490 

O3-H, 

[HN] SER402 

O4-Hwat 

p-VCPO-Z III 1.91(0.06) 2.21(0.10) 2.15(0.12) 1.69(0.03) 1.80(0.02) 1.87(0.02) 2.07(0.10) 1.94(0.04) 

p-VCPO-S1 III 1.94(0.00) 2.26(0.03) -- 1.79(0.01) 1.82(0.01) 2.07(0.01) -- -- 

p-VCPO-S3 III 2.39(0.33) 2.04(0.13) 2.00(0.08) 1.76(0.03) 1.90(0.05) 2.00(0.10) -- -- 

p-VCPO-S4 III 1.96(0.04) 2.00(0.01) 1.91(0.01) 1.74(0.01) 1.76(0.01) 1.96(0.02) -- 1.84(0.01) 

p-VCPO-

D13 

III -- -- -- -- 2.13(0.05) -- 1.72(0.02) -- 

 

Table 4.4.5 Selected hydrogen bonds in QM/MM calculations using the QM III region for p-VBPO.  Mean bond distances 

and standard deviations are reported in Å. CHARMM atom types are given in brackets and superscripted residue labels are 

consistent with the X-ray pdb file. ARG 417 is not included in the QM region III of p-VBPO, but it is included in the p-

VCPO QM region III. +  Model with  flipped HIS411 

 

Table 4.4.6 Root-mean-square deviations (RMSD, in Å) for all heavy atoms included in the QM region I and III, relative to 

the X-ray structure.  

         I       III 

     p-VCPO-Z       0.0 ± 0.01 0.2 ± 0.03 

     p-VCPO-S1       0.0 ± 0.00 0.3 ± 0.01 

     p-VCPO-S3       0.1 ± 0.01 0.3 ± 0.02 

     p-VCPO-S4†       0.1 ± 0.01 0.3 ± 0.00 

     p-VCPO-D13       0.1 ± 0.01 0.5 ± 0.06 

† p-VCPO-S4 deprotonates to resemble the p-VCPO-Z model, with a charged histidine.  

 

  O1-H, 

[HH11]ARG380 

O1-H, 

[HH21]ARG380 

O2-H, 

[HZ1]LYS343 

O2-H, 

[HN]GLY417 

O3-H, 

[HN]SER416 

O4-Hwat 

p-VBPO-Z III 2.02(0.02) 2.15(0.11) 1.75(0.03) 1.84(0.01) 1.98(0.02) 1.96(0.14) 

p-VBPO-Z+ III 1.91 2.08 1.69 1.81 -- -- 

p-VBPO-S1 III >2.5 >3 1.88(0.01) 1.85(0.01) -- -- 

p-VBPO-S2 III 1.85(0.08) 2.28(0.51) 1.83(0.03) -- -- -- 

p-VBPO-S3 III 2.06(0.06) 2.35(0.52) 1.86(0.15) 2.07(0.14) 1.80(0.11) -- 

p-VBPO-S4 III 1.88(0.04) 2.03(0.06) 1.75(0.03) 1.81(0.01) -- -- 

p-VBPO-D13 III -- -- 2.11(0.07) 1.58(0.02) 1.72(0.02) -- 
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The LYS353 residue in p-VCPO, like the corresponding LYS341 in p-VBPO, forms a strong 

hydrogen bond to the O2 peroxo oxygen ligand see Table 4.4.4 and Table 4.4.5. This 

hydrogen bond is generally believed to induce the bond polarization necessary for the 

heterolytic cleavage of the side-on-bound peroxide.[55] The major difference in the active sites 

of p-VCPO and the homology-modeled p-VBPO is a HIS411 in the position corresponding to 

a PHE397 in the p-VCPO. Since the HIS411 is within hydrogen bonding distance of LYS353, 

it has been suggested[49] that this residue in VBPO may form significant hydrogen bonds, 

thereby indirectly altering the reactivity of the enzyme. Previous site-directed mutagenesis 

studies have confirmed that these residues are crucial for activity.[64,52] This HIS411 may 

affect the reactivity, by either protonating or deprotonating the LYS353, thereby indirectly 

affecting the oxidative strength of these enzymes and their affinity for the halide. To 

understand the possible roles of the HIS411, a set of calculations were performed with 

HIS411 in a flipped conformation, that is, rotating the aromatic group of HIS residue so that 

the N
ε
 atom is facing away from the LYS341. Keeping in mind that the resolution of the X-

ray structure makes it difficult to distinguish clearly between N and C atoms in the five-

membered rings of histidine residues, special attention is called to the two possible 

orientations. Such a rotated HIS411 residue is stable only for two models, p-VBPO-Z and p-

VBPO-S1, see Table 4.4.5, and for the rest of the models it flipped back to the original 

position during the QM/MM optimization. The geometric difference between the flipped 

conformations of a given protonation state is not particularly pronounced.  

 

To summarize this part, the non- and singly protonated models p-VCPO-Z and p-VCPO-S1 

appear to be the best candidates for the protonation state of p-VCPO. It is difficult to exclude 

all the other models, however, and many of these may be further regarded as possible 

candidates. A comparable degree of similarity was also observed in our earlier studies on the 

native-forms of VCPO and VBPO. The lack of p-VBPO X-ray data prevents a similar type of 

analysis for this enzyme at present. 
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 Solvation 

As the apical oxygen (O4) in the native-form of VCPO is released and the peroxide binds 

side-on in the equatorial plane to the vanadium, an empty coordination site is generated and is 

able to accept the chloride ion during the catalytic cycle. In the crystallographic structure of  

p-VCPO, the nearest water molecules are about 4.4 Å and 5.7 Å away from the metal center, 

leaving a visibly large empty space at the latter. During the MD equilibration of p-VCPO-Z, 

these two water molecules diffuse closer to the vanadium, occupying this void that exists in 

the experimentally determined structure. The solvent molecules, Cryw420 and Cryw165, 

oscillate between ∼3 and ∼5.5 Å from the vanadium, due to an interchange of their positions, 

which is shown in Figure 4.4.4a. Whether this void can accommodate any additional water 

molecules that are as yet unidentified crystallographically, is an important question that may 

have mechanistic consequences.134 

 

To probe if such an unidentified water molecule could have been missed by our standard 

solvation/equilibration protocol, three additional water molecules were placed manually into 

this cavity of p-VCPO-Z and a series of classical molecular dynamics simulations were 

performed. The additional solvent molecules were found to interchange with one of the two 

crystal water molecules within the active site, subsequently undergoing the same oscillation 

of ∼3 or ∼5.5Å from the vanadium throughout the MD simulation, see Figure 4.4.4b. Such 

frequent exchange processes are an indication of low barriers, presumably due to weak 

interactions. In general, there appears to be only sufficient room for two water molecules 

close to the metal, either one of the two crystallographically observed, or one of the added 

waters.  The overall affect of the additional water is only marginal on the isotopic chemical 

shifts, typically less than 10ppm, as discussed in further detail below. 
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a.              b. 

 

 

 

 

 

 

Figure 4.4.4 Plot of the distances between vanadium and the oxygen atoms of the nearest solvent molecules during MD 

initial equilibration. a. The crystal water molecule Cryw420 (black) and Cryw165 (pink) b.  The crystal water molecule 

Cryw420 (black)and the additional water molecules SOLVz(red) and SOLVy(green), that were manually added during the 

solvation phase.  

 
Figure 4.4.5 Plot of the distances between vanadium and the O atoms of the nearest solvent molecules during initial MD 

equilibration for 300ps. The crystal water molecules Cryw420 (black) and Cryw165 (pink). 
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 Isotropic chemical shifts 

An investigation is made whether 51V chemical shifts may act as a useful probe for the 

assignment of protonation states of the peroxovanadate active site in vanadium haloperoxidase 

enzymes. The 51V chemical shifts (iso) of the vanadium nuclei in the different QM regions are 

given in Table 4.4.7 (computed with inclusion of the MM point charges).  

Table 4.4.7  51V Isotropic chemical shifts (ppm) averaged over six snapshots for the two regions, together with the 

corresponding standard deviations.∆ δ  and δ are  the mean signed and mean absolute deviations between the VCPO and 

VBPO models.  

Model  

ID 

QM region I 

p-VCPO          p-VBPO  

QM region III 

p-VCPO      p-VBPO 

Z -704 ±  7 -708 ± 6 -696 ± 8 -693 ± 15 

S1 -611 ± 3 -668 ± 13 -683 ± 20 -757 ± 21 

S2 -741 ± 13 -694 ± 64 -700 ± 30 -735 ± 30 

S3 -599 ± 23 -612 ± 17 -658 ± 35 -617 ±34 

S4 -751 ± 7 -755 ± 9 -739 ± 6 -703 ± 16 

D13 -227 ± 10 -327 ± 5 -379 ± 28 -428 ± 9 

∆ δ  ( δ) 58(58) -9 (41) 

 

The isotropic chemical shifts across the QM regions I-III are fairly stable, where variations 

typically amount to less than 30ppm for most of the models (p-VHPO-Z, p-VCPO-S2,S4 and 

p-VBPO-S2,S3). The other models show larger fluctuations, with more significant shielding 

occurring on going from QM region I to III, up to ca. -90ppm. This shielding may be partially 

attributed to the binding of the apical water molecule as it gets included in the larger QM 

region (see discussion above). In the following, focus is set on the QM III results. For the 

isotropic chemical shifts there are some notable differences between p-VCPO and p-VBPO 

models, cf. the δ value of ca. 40 ppm in Table 4.4.7. The isotropic chemical shifts may be 

loosely collected together into two groups, based on their locations. Firstly, a downfield region 

from around ca. -400ppm has the doubly protonated models located within it. Secondly, an 

upfield region from -620 to -760ppm contains all singly and non-protonated models, with the 

axially protonated models representing the more upfield of these shifts. 
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Table 4.4.8  51V Isotropic chemical shifts (ppm) averaged over six snapshots, together with the corresponding standard 

deviations for p-VCPO, where 
� δ

1 is the difference between p-VCPO(III) and  n-VOT144(IV), 
� δ

2 is difference between p-

VCPO(III) relative to n-VOD14(IV) and 
� δ

3 is the difference between p-VCPO(III) and n-VOD34(IV). 

 
 I II III 1      2 3  ∆   

p-VCPO-Z -704 ± 7 -699 ±  9 -696 ± 8 -94 -116 -89 -100 

p-VCPO-Z* -650 ± 5 -646 ±  9 -669 ±  9     

p-VCPO-Z** -- -704 -706 -104 -126 -99 -110 

p-VCPO-S1 -611 ± 3 -713 ± 4 -683 ± 20 -81 -103 -76 -87 

p-VCPO-S1* -490 ± 3 -612 ± 3 -647 ± 3     

p-VCPO-S2 -741 ± 13 -697 ± 29 -700 ± 30 -98 -120 -93 -104 

p-VCPO-S3 -599 ± 23 -675 ± 35 -658 ± 35 -56 -78 -51 -62 

p-VCPO-S4 -751 ± 7 -729 ± 12 -739 ± 6 -137 -159 -132 -143 

p-VCPO-S4b -681 ± 10 -671 ± 15 -720 ± 7     

p-VCPO-D13 -227 ± 10 -314 ± 68 -379 ± 28 223 201 228 217 
*Denotes calculation of isotropic chemical shifts without point charges. 
** Denotes model with three additional solvent water molecules along with two crystal water molecules near the 
vanadium cofactor.  

 

Table 4.4.9  51V Isotropic chemical shifts (ppm) averaged over six snapshots, together with the corresponding standard 

deviationsa for p-VBPO, 
� δ

1 is the difference between p-VBPO(III) and n-VBPO-D34(III), 
� δ

2 is the difference between p-

VBPO(III) and  n-VBPO-T344(III). 

 
 I II III 1 2 ∆ δ   

p-VBPO-Z -708 ±  6 -701 ±  11 -693 ± 15 -88 -80 -84  

p-VBPO-Z* -649 ± 5 -650 ±  17 -666 ± 13    

p-VBPO-Z+ -- -- -695    

p-VBPO-S1 -668 ± 13 -717 ±  49 -757 ± 21 -152 -144 -148  

p-VBPO-S1* -583 ± 11 -662 ± 50 -742 ± 14    

p-VBPO-S1+ -- -- -733    

p-VBPO-S2 -694 ± 64 -- -735 ± 30 -130 -122 -126  

p-VBPO-S3 -612 ± 17 -669±20 -617 ± 34 -12 -4 -8  

p-VBPO-S4 -755 ± 9 -695 ± 15 -703 ± 16 -98 -90 -94  

p-VBPO-S4* -676 ± 8 -649 ± 15 -685 ± 9    

p-VBPO-D13 -327 ± 5 -408 ± 21 -428± 9 177 185 181 

*Denotes calculation of isotropic chemical shifts without point charges. 
+Model with flipped HIS411. 
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Comparison of these isotropic shifts with experiment is hampered by the fact that only a 

single value is known, namely that of p-VBPO in solution at  = -1135 ppm.[45] None of the 

computed values comes even close to this exceptionally shielded region. The same had been 

noted for the native VBPO, where the solution (51V) value of -931 ppm reported in the same 

study was reproduced neither computationally[132] nor in a preliminary solid-state NMR study 

of the same enzyme.[51] What is clear, however, is that transformation of the native into the 

peroxo form entails a substantial shielding of the 51V resonance, by ca. -200 ppm according to 

the VBPO solution study. Assessment of the corresponding trend for the QM/MM data 

depends noticeably on the particular model(s) used for the native forms. For instance, the 

three VCPO models that have reproduced the solid-state 51V NMR-tensor elements 

reasonably well, VCPO-D14, -D34, and -T144, showed isotropic (51V) values of -580, -607, 

and -602 ppm, respectively (largest QM region).[131] Except for the diprotonated p-VCPO-

D13, all other p-VCPO models show clear upfield shifts from these numbers. For the p-

VCPO-Z and p-VCPO-S1 variants, which emerged as particularly promising from the 

structural parameters discussed above, this computed upfield shift is between ca. -80 ppm and 

-120 ppm. Comparing the same VBPO and p-VBPO models models with each other135 

affords computed upfield shifts around ca. -70 to -160 ppm. These (and the other singly 

protonated) models thus reproduce the observed trend qualitatively reasonably well. The 

quantitative underestimation of this effect may be rooted in shortcomings of the particular 

exchange-correlation functionals employed as these have shown problems to accurately 

reproduce similar trends between simple aqueous vanadate and peroxovanadate 

complexes.[136] In any event the qualitative agreement with experimental trend for most of the 

QM/MM models is encouraging. One model for each enzyme fails to reproduce this trend, 

namely the doubly protonated p-VHPO-D13, for which substantial downfield shifts are 

computed (Table 4.4.7). This candidate can thus be safely excluded.  
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Anisotropic chemical shifts 

The four parameters that characterize a solid-state 51V spectrum are are collected in Table 

4.4.10. 

Table 4.4.10 Reduced anisotropy 
δ σ

 , asymmetry  
η σ

, nuclear quadrupole coupling constant CQ (MHz) and asymmetry 

parameter η
Q with the associated standard deviations for six snapshots. MAPD is the mean absolute percent deviation across 

the four parameters relative to the average values for the S1 model (QM region III) of the respective haloperoxidases.  

*Denotes calculation of isotropic chemical shifts without point charges. 
**Denotes model with three additional solvent water molecules along with two crystal water molecules near the vanadium 
cofactor.   +Model with flipped HIS411. 

 
Model 

ID 

p-VCPO 

p-VBPO 

σ  σ  CQ Q MAPD 

Z I 

I 

II 

II 

III 

III 

-685 ± 9 

-729 ± 7  

-738 ± 6 

-733 ± 8 

-699 ± 6 

-695 ± 11 

0.4 ± 0.01 

0.3 ± 0.01 

0.3 ± 0.05 

0.3 ± 0.03 

0.3 ± 0.03 

0.3 ± 0.06 

9 ± 0.35 

8 ± 0.12 

9 ± 0.23 

9 ± 0.42 

8 ± 0.36 

8 ± 0.24 

0.30 ± 0.14 

0.25 ± 0.05 

0.32 ± 0.13 

0.22 ± 0.09 

0.28 ± 0.22 

0.18 ± 0.06 

 

 

 

 

44 

52 

Z* I 

I 

II 

II 

III 

III 

-684 ± 9 

-686 ± 4 

-698 ± 6 

-728 ± 10 

-677 ± 7 

-780 ± 12 

0.4 ± 0.01 

0.4 ± 0.01 

0.3 ± 0.05 

0.3 ± 0.02 

0.3 ± 0.03 

0.1 ± 0.04 

11 ± 0.27 

11 ± 0.15 

11 ± 0.24 

11 ± 0.41 

9 ± 0.37 

9 ± 0.23 

0.32 ± 0.13 

0.11 ± 0.04 

0.34 ± 0.17 

0.09 ± 0.03 

0.27 ± 0.15 

0.2 ± 0.12 

 

 

 

 

-- 

-- 

p-VCPO-

Z** 

II 

III 

-730 

-668 

0.3 

0.3 

10 

9 

0.29 

0.52 

 

p-VBPO-

Z+ 

III -684 0.3 8 0.18  

S1 I 

I 

II 

II 

III 

III 

-809 ± 4 

-750 ± 12 

-951 ± 4 

-965 ± 80 

-923  ± 6 

-1014 ± 5 

0.6 ± 0.01 

0.6 ± 0.04 

0.8 ± 0.01 

0.7 ± 0.17 

0.8 ± 0.04 

0.5 ± 0.03 

-8 ± 0.06 

-8 ± 0.02 

6 ± 0.23 

-6 ± 1.36 

6 ± 0.30 

5 ± 0.45 

0.84 ± 0.03 

0.34 ± 0.04 

0.77 ± 0.07 

0.67 ± 0.08 

0.65 ± 0.06 

0.86 ± 0.10 

 

 

 

 

-- 

-- 

S1* I 

I 

II 

II 

III 

-727 ± 2 

-644 ± 4 

904 ± 4 

-923 ± 18 

-913 ± 5 

0.9 ± 0.01 

0.9 ± 0.01 

0.9 ± 0.00 

0.9 ± 0.05 

0.9 ± 0.00 

9 ± 0.11 

-9 ± 0.03 

8 ± 0.20 

-7 ± 0.33 

7 ± 0.17 

0.95 ± 0.03 

0.3  ± 0.08 

0.49 ± 0.04 

0.20 ± 0.15 

0.66 ± 0.05 

 

 

 

 

-- 
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III -1032 ± 10 0.5 ± 0.04 -5 ± 0.76 0.72 ± 0.09 -- 

p-VBPO-

S1+ 

 

III 

 

-1052 

 

0.4 

 

7 

 

0.6 

 

-- 

 S2 I 

I 

II 

II 

III 

III  

-668 ± 40 

-501 ± 108 

-837±8 

-466±114 

-739 ± 93 

-618 ± 59 

0.23 ± 0.03 

0.60 ± 0.26 

0.2±0.02 

0.5±0.32 

0.19 ± 0.08 

0.20 ± 0.10 

9 ± 0.26 

9 ± 1.29 

14±0.7 

9±0.12 

12 ± 2.34 

8 ± 0.20 

0.82 ± 0.10 

0.93 ± 0.02 

0.51±0.07 

0.10±0.03 

0.44 ± 0.13 

0.80 ± 0.13 

 

 

 

 

57 

42 

S3 I 

I 

II 

II 

III 

III 

-800 ± 38 

-708 ± 29 

-918 ± 34 

-711 ± 89 

-901 ± 35 

-716 ± 74 

0.7 ± 0.02 

0.7 ± 0.03 

0.9 ± 0.03 

0.6 ± 0.19 

0.8 ± 0.18 

0.7 ± 0.19 

4 ± 0.11 

7 ± 0.59 

6 ± 1.52 

9 ± 1.40 

7 ± 1.57 

8 ± 1.63 

0.47 ± 0.35 

0.74 ± 0.17 

0.57 ± 0.25 

0.58 ± 0.28 

0.52 ± 0.34 

0.67 ± 0.19 

 

 

 

 

10 

37 

S4 

 

I 

I 

II 

II 

III 

III 

-800± 23 

-772 ± 8 

-725 ± 12 

-692 ± 5 

-672 ± 6 

-674 ± 17 

0.9 ± 0.01 

0.1 ± 0.02 

0.3 ± 0.01 

0.4 ± 0.07 

0.21± 0.00 

0.3 ± 0.06 

13 ± 0.42 

13 ± 0.41 

8 ± 0.82 

8 ± 0.14 

7 ± 0.04 

7 ± 0.58 

0.64 ± 0.05 

0.32 ± 0.03 

0.27 ± 0.03 

0.48 ± 0.02 

0.18 ± 0.03 

0.24 ± 0.08 

 

 

 

 

47 

46 

S* I 

I 

II 

II 

III 

III 

-834± 19 

-815± 3 

-695 ± 14 

-688 ± 10 

-636 ± 7 

-756 ±17 

0.1 ± 0.00 

0.1 ± 0.01 

0.3 ± 0.02 

0.4 ± 0.07 

0.3 ± 0.01 

0.1 ± 0.03 

15 ± 0.42 

15 ± 0.42 

10 ± 0.71 

10 ± 0.12 

7 ± 0.05 

9 ± 0.48 

0.61 ± 0.04 

0.35 ± 0.03 

0.35 ± 0.02 

0.44 ± 0.10 

0.21 ± 0.00 

0.15 ± 0.13 

 

 

 

 

-- 

-- 

D13 I 

I 

II 

II 

III 

III 

1070 ± 10 

981 ± 19 

1157 ± 60 

-1040 ± 18 

1107 ± 34 

-1028 ± 18 

0.7 ± 0.03 

0.9 ± 0.04 

0.7 ± 0.06 

0.9 ± 0.03 

0.7 ± 0.02 

0.9 ± 0.04 

10 ± 0.57 

9 ± 0.29 

5  ± 0.64 

10 ± 0.90 

5 ± 0.24 

10 ± 0.93 

0.62 ± 0.11 

0.45 ± 0.06 

0.47 ± 0.06 

0.17 ± 0.01 

0.79 ± 0.27 

0.04 ± 0.02 

 

 

 

 

68 

69 

 

In general, small variations are observed in the calculated CSA and EFG values across the six 

snapshots. There are variations in the reduced anisotropy( σ ) when increasing the size of the 

QM region for all models, and these variations are heavily dependent upon the distance of the  
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crystal water to the vanadium metal center. They are particularly pronounced for both the p-

VCPO-S4 and p-VBPO-S4 models, which can be traced back to the proton transfer 

concomitant with the increase of the QM region. For the p-VBPO-S3 model, where a similar 

intermittent proton transfer was observed (see section on Geometric Details above), the 

variation in the reduced anisotropy is less pronounced.  

 

  

a.   p-VCPO-Z b.   p-VBPO-Z 

  

c.   p-VCPO-S1 d.   p-VBPO-S1 

  

e.   p-VCPO-S3 f.   p-VBPO-S3 

 

Figure 4.4.6  Simulated spectra of a. p-VCPO-Z, b. p-VBPO-Z, c. p-VCPO-S1, d. p-VBPO-S1 e. p-VCPO-S3, f. p-VBPO-

S3, to visualize the difference between the unprotonated and singly protonated candidates in both p-VCPO and p-VBPO.  
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Considering the MAPD in Table 4.4.10, which are given relative to the p-VHPO-S1 models, 

it is apparent that there are substantial differences between the various candidates. The p-

VHPO-S1 models are simply chosen as a reference since they are strong candidates. These 

differences can be even better appreciated in the spectra that are simulated using the QM/MM 

data (Figure 4.4.6). These results thus provide a promising avenue of discriminating between 

the likely candidates, once the corresponding experimental data becomes available.  

 

In particular, the breadth of the experimental spectrum should be a good indicator for the 

protonation state, i.e. non- vs. singly protonated (compare, e.g. Figure 4.4.6a with 4.4.6c/e). It 

remains unclear at present whether the differences within the singly protonated models will 

be sufficient for specific assignments of the protonation site. According to the calculations, 

the differences should be more prominent for p-VPBO, which therefore appears to a better 

experimental target than p-VCPO for solid-state MAS 51V NMR spectroscopy.   

 

When the same p-VCPO and p-VBPO models are compared with each other, the variations in 

the tensorial properties are much less pronounced than when going from one protonation 

model to another. To appreciate the difference between a VHPO protein in the native or in the 

peroxo-form, illustrative examples of simulated 51V NMR spectra for VCPO are given in 

Figure 4.4.7a and 4.4.7b.  

 

 

 

 

 

a.   n-VCPO-D14 b.   p-VCPO-S1 

 

Figure 4.4.7  Simulated spectra for one of the best candidates of the native-form of VCPO, a. VCPO-D14, compared to one 

of the best candidates for the peroxo-form, b. p-VCPO-S1.  
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As in our previous studies on the native enzymes, we assessed the direct effect of the 

surrounding peptide regions on the 51V NMR and EFG tensors by simply deleting the point 

charges from the MM part in the property computation. The corresponding results, denoted 

by an asterisk, show similar trends as the tensor values for the full models given in Table 

4.4.7. It was also checked for selected models that the inclusion of additional water molecules 

in the apical cavity discussed above (data denoted by a double asterisk ), or the possible ring-

flip of the extra HIS411 in p-VBPO (denoted by a dagger) , have only minor effects on the 

computed NMR and EFG tensors of the metal center.  

 

 TD-DFT 

TD-DFT was employed to calculate electronic excitation energies from the QM/MM 

optimized models of both the native and peroxo-forms of VCPO and VBPO. Despite the 

known deficiencies of TD-DFT for long-range charge-transfer states,137 this method has 

proven to be very promising for many transition-metal systems138 and has recently been used 

to assess the protonation state of native VCPO.[139] Results for the two strongest, low-lying 

excitations for the p-VCPO and p-VBPO models are presented in Table 4.4.11. The last 

column of Table 4.4.11 shows the difference between the calculated excitation energy for the 

most intense of these two bands (QM I region) and the experimentally observed absorption 

band at 384nm reported by Renirie et al.58 We list only results for the smaller QM region I 

because those for the larger QM region III were plagued by spurious long-range charge 

transfer states (e.g. from a lone pair on a distant peptide N atom to an empty metal-centered 

MO). In a series of test calculations on the p-VCPO-Z model, only small differences between 

the snapshots were observed, and therefore only results for a single snapshot are presented in 

Table 4.4.11. 

 

In most cases there are two close-lying absorptions with similar intensities, which would 

probably not be resolved, as the UV-vis absorption bands reported for p-VCPO[58] or p-

VBPO140 are very broad. According to visual inspection of the MOs involved (QM I region) 

the excitations occur predominantly from the occupied π-orbitals on the imidazole ring of  

HIS496, or an occupied π* orbital on the peroxo moiety, into anti-bonding orbitals with a 

large d-character on vanadium. 
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Table 4.4.11 The transition energy λ in nm, the oscillator strength (f ), and the coefficients (Cij ) of the CI expansion from 

TD-DFT calculations of the peroxo-form of p-VCPO and p-VBPO (QM region I). 
�

 denotes the difference between the 

calculated absorption maximum and the experimental absorption maximum at 384nm. 

 

Modela λnm( f ) Dominant Contribution Cij (λ-384)   

p-VCPO-Z 336(0.01) 

292(0.01) 

H     

H-1  

→ 

→ 

L 

L 

0.532 

0.608 

-48 

 

p-VBPO-Z 335(0.009) 

297(0.007) 

H     

H  

→→→→ 

→→→→ 

L+1 

L 

0.457 

0.615 

-49 

 

p-VCPO-S1 320(0.03) 

376(0.03) 

H-2 

H 

→ 

→ 

L 

L+1 

0.567 

0.693 

-8 

 

p-VBPO-S1 469(0.006) 

427(0.006) 

H 

H 

→→→→ 

→→→→ 

L 

L 

0.490 

0.495 

43 

 

p-VCPO-S2 331(0.01) 

336(0.01) 

H 

H-1 

→ 

→ 

L+2 

L+1 

0.661 

0.461 

-53 

P-VBPO-S2 329(0.008) 

292(0.004) 

H 

H-2 

→→→→ 

→→→→ 

L+1 

L 

0.697 

0.573 

-55 

p-VCPO-S3 453(0.01) 

407(0.01) 

H 

H-1 

→ 

→ 

L 

L 

0.669 

0.601 

69 

p-VBPO-S3 457(0.006) 

342(0.005) 

H 

H-1 

→→→→ 

→→→→ 

L 

L+1 

0.653 

0.587 

73 

p-VCPO-D13 773(0.01) 

396(0.01) 

H 

H-1 

→ 

→ 

L 

L  

0.687 

0.671 

389 

p-VBPO-D13 739(0.01) 

437(0.06) 

H 

H-1 

→→→→ 

→→→→ 

L 

L+1 

0.678 

0.582 

355 

aNo results are given for p-VHPO-S4 models, because they are not stable as such when the size of the QM region is 

increased.  
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Table 4.4.12 The transition energy λ in nm, the oscillator strength (f ), and the coefficients (Cij ) of the CI expansion from 

TD-DFT calculations. 

 
 λnm( f ) Dominant contribution Cij 

V (=O)2 (OH)2 

 

268(0.008) H-1 → L 0.598 

 
I 

 λnm( f ) Dominant contribution Cij 

p-VCPO-S1* 337(0.02) 

310(0.01) 

H-2  

H-1 

→ 

→ 

L 

L 

0.558 

0.627 

n-VCPO-S1 269(0.02) H-1 → L+1 0.557 

n-VBPO-S1 279(0.02) H-1 →→→→ L+2 0.439 

n-VCPO-S3 281(0.02) H-1 → L+1 0.402 

n-VBPO-S3 274(0.02) H-2 →→→→ L 0.392 

n-VCPO-S4 273(0.02) H-3 → L 0.368 

n-VBPO-S4 278(0.01) H →→→→ L 0.381 

n-VCPO-T234 431(0.009) H → L+1 0.699 

n-VBPO-T234 340(0.01) H-2 →→→→ L 0.552 

                  *Denotes point-charges are not present. 

 

Most models agree with experiment within ca. 50 nm (or ca. 0.4 eV - 0.5 eV in excitation 

energies), a rather modest accuracy for TD-DFT, and it is difficult to assign or exclude one 

particular model based on these data. Because only the small QM region could be employed 

in the TDDFT computations, the effect of the surrounding MM charges is noticeable. For the 

p-VCPO-S1 model, for instance, the λmax value decreases from 376 nm (Table 4.4.11) to 337 

nm (see first row in the above Table 4.4.12) upon deletion of these point charges. 

 

In the resting state of the native VCPO enzyme, the UV-vis band appears at 305 nm - 315nm, 

depending on the pH value.[58] TD-DFT computations for selected native VCPO and VBPO 

models furnished strong absorptions in the observed region, again without clear distinctions 

for specific protonation states (See Table 4.4.12). The computed changes between the native  
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and peroxo forms are more significant than differences between the two proteins at a 

particular stage of the catalytic cycle, as seen above for anisotropic chemical shifts. 

Interestingly the difference between VCPO and VBPO appears more pronounced in the 

peroxo-form. For the parent vanadate, H2VO4
−, a band at ca. 268 nm is computed,141 i.e. 

distinctly blue-shifted relative to the vanadate cofactors in the enzymes and in good accord 

with experiment (λ = 270 nm).[141] 

 

 Conclusions 

We have used a QM/MM scheme to compute structures, 51V NMR tensors, and UV-Vis 

excitation energies of two vanadium-dependent haloperoxidases in their peroxo forms, 

namely p-VCPO and p-VBPO. The latter has been modeled for the first time, assuming 

homology of the active site with that of p-VCPO, for which the structure is known in the 

solid. Special attention was called to the dependence of the properties on the protonation state 

of the peroxovanadate moiety and the ensuing hydrogen-bond network. The ligand 

environment about the metal as observed in solid p-VCPO is best preserved in the 

unprotonated models, whereas most of the singly protonated variants bind a nearby water 

molecule, which is present as free crystal water in the solid. Judging from the agreement of 

optimized bond lengths and the isotropic 51V chemical shifts with experiment, the non- or 

singly protonated models are the most likely structural candidates for these enzymes. Models 

that are doubly protonated (whether at the terminal oxo or the peroxo atoms) can be excluded, 

as they are either unstable during optimization, or afford isotropic chemical shifts that fail to 

reproduce the experimentally observed increase in shielding on going from native to peroxo 

forms.  

 

For a further discrimination between non- and singly protonated models (and the specific site 

of protonation in the latter), isotropic chemical shifts and TDDFT-derived excitation energies 

are not sufficient. Theoretical chemical-shift and EFG tensors, on the other hand, predict 

substantial intrinsic differences between the various protonation models, in particular between 

non- and singly protonated ones. When an experimental solid-state 51V MAS NMR of p-

VCPO or p-VBPO will be reported eventually, a comparison to the simulated spectra reported  

herein should enable the discrimination between the possible candidates and furnish detailed 

insights into the structure of the active site.  
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The VCPO and VBPO proteins have been experimentally shown to have a different oxidation 

profile. Whether this is a result of a single step in the catalytic cycle or whether this is a 

fundamental difference throughout the cycle is a question that may be addressed 

systematically with QM/MM calculations. This study takes the first steps toward answering 

this question, as it was shown that the secondary environment of the proteins, i.e. outside the 

first hydrogen bonding sphere, effectively tunes the properties of the active site via indirect 

hydrogen bonds and electrostatic interactions. The subtle differences between the active sites 

of both native and peroxo forms of VCPO and VBPO are best probed by the anisotropic 51V 

NMR properties, i.e. CSA and EFG tensors.   

 

In summary, we have successfully analyzed a challenging reactive intermediate by using a 

combination of theoretical methods for a comprehensive comparison to a number of 

previously published experimental reports. The multidisciplinary nature of this comparison 

serves to gauge the strengths of the various theoretical approaches and to increase the 

confidence in the results. New interpretations of available experimental data, and predictions 

where such data is currently lacking, open the way for further studies on these intriguing 

systems. 
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5 Summary 

This thesis has contributed to understanding of vanadium containing complexes via a study of 

the chemical shifts computed using Density Functional Theory. A series of biologically 

important Vanadium containing complexes in gaseous and condensed phases were 

investigated using static and dynamic calculations, and the results have been critically 

compared with the experimental data. 

 

DFT has been used to determine the innocence of oxidized amavadin, a derivative of an 

intriguing natural product with an unusual structure. 51V NMR chemical shifts have been 

computed for non-oxo vanadium(V) complexes related to oxidized amavadin, [-VV{(S,S)-

hidpa}2]
–, (H3hidpa = 2,2´-hydroxyiminodipropionic acid). According to model calculations, 

the unusual deshielding of the 51V resonance is due to a combination of conventional 

substituent effects (e.g. oxo- vs. dihydroxo-, or alkoxy- vs. carboxylato-ligands), rather than 

to a non-innocent nature of the hidpa ligand. For selected diastereomeric vanadium hidpa 

complexes, Born-Oppenheimer molecular dynamics simulations have been carried out in 

order to rationalize the observed differentiation of 51V NMR chemical shifts. 

 

 

 
Figure 5.1 Going from an oxovanadium complex to a nonoxo species modelling the unusual ligand environment in oxidized 

amanadin is responsible for a large part of the low shielding of the 51V nucleus in the latter. 
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In the main part of this thesis, a protocol for computation of 51V NMR chemical shifts of 

large molecules has been developed, validated, and applied to elucidate structural details of  

vanadium-containing enzymes. This protocol is based on a popular hybrid QM/MM model 

and has been extensively tested for computations of the 51V NMR tensor parameters of an 

entire enzyme, vanadium-dependent chloroperoxidase (VCPO). Special attention is called to 

the protonation state and protonation sites of the vanadates cofactor, important information 

that has not yet been obtained experimentally. An extensive number of protonation states for 

the vanadium cofactor (active site of the protein) and a number of probable positional isomers 

for each of the protonation states have been considered. Isotropic chemical shifts are found to 

be a poor indicator of the protonation state, however, anisotropic chemical shifts and the 

nuclear quadrupole tensors appear to be sensitive to changes in the proton environment of the 

vanadium nuclei. It turns out that only a small number out of many possible candidates with 

different protonation states and H-bond networks can be reconciled with the experimental 

solid-state MAS 51V NMR data. The computations show that the effect of the peptide 

environment on the metal shift in the active site is indirect: the peptide backbone acts as 

scaffold dictating the precise location of the ligands about the metal, which is more important 

for the tensor elements than the direct response of the wave function to the charge distribution 

of the environment. 

 

 

  

Figure 5.2  Schematic sketches of VCPO candidates that can reproduce the experimental NMR data)  
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The observed unusual 51V chemical shift in the related vanadium-containing 

bromoperoxidase (VBPO) is only partly reproduced using that QM/MM based computational 

approach. The primary difference between these related structures, the presence of a histidine 

in VBPO whereas a phenylalanine is located at that position in VCPO, is studied via analysis 

of the respective theoretical 51V NMR parameters. Theoretical 51V chemical shift and EFG 

tensors for VBPO and VCPO show only minor differences in the isotropic δ(51V) value, but 

somewhat more pronounced changes in the tensor values of both enzymes. Once these tensor 

values can be accurately refined experimentally for VBPO, selection of the best model(s) 

should be possible, which would furnish insights into structural details (protonation state, H-

bond network) of this enzyme. 

 

 

 

 

 

 

 

 

 

Figure 5.3   Structure predicted for peroxo-VBPO via homology modeling. The predicted V NMR and EFG tensors should 

allow to assign protonation state (and site) once experimental data become available. 
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Finally, theoretical CSA and EFG tensors have been computed from QM/MM models of 

VCPO and VBPO in their peroxo-forms. As the structure of the peroxo form of VBPO has 

not been determined experimentally or studied computationally so far, the homology model 

presented in this thesis constitutes the first explicit structural proposal for this important 

intermediate. Based on the trends in isotropic shifts on going from the native to the peroxo-

forms and on the requirement for a stable side-on peroxo unit, the possibility for doubly 

protonated models can be excluded. The computed NMR and EFG tensors combined with 

TD-DFT results for UV/Vis bands highlight intrinsic differences that may provide means to 

elucidate structural differences between the remaining non- and singly protonated models. 

When an experimental solid-state 51V MAS NMR of VBPO in the peroxo form will be 

reported eventually, a comparison to the simulated spectra reported herein should enable the 

discrimination between the possible candidates.  

 

In summary, this thesis has helped to expand the limits of NMR computations significantly. 

Using an appropriate hybrid QM/MM methodology, it is now possible to compute transition- 

metal NMR properties for entire metalloenzymes. For a vanadium containing haloperoxidase, 

this approach turned out to be a valuable complement to experimental 51V solid state NMR 

spectroscopy and X-ray crystallography, because a combination of all three methods can now 

be used to obtain refined structural information concerning the H-bond network in the active 

site. The multidisciplinary nature of this approach only serves to increases the confidence in 

the results, and holds great promise for further applications in the bioinorganic chemistry of 

transition metals. The calculations were not only used for interpretation and assignment of 

available experimental data, but also to make predictions where the experimental data is 

currently lacking, thus leading the way for further experimental studies. 
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6 Outlook 

One area where the present approach can be immediately applied is that of VCPO mutants, 

which are being prepared and studied experimentally in order to assess the effects of 

individual residues on structure and catalytic activity. QM/MM computations of the type 

presented in this thesis can be expected to furnish detailed insights into the way how specific 

residues can fine-tune the H-bond pattern in the active site. Eventually it would be desirable 

to perform not just geometry optimizations, but also MD simulations at a suitable QM/MM 

level, in order to improve the sampling for the NMR properties.  
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