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Abstract  

 
 

Recent field campaign and modeling studies have highlighted significant 

discrepancies between expected levels of pollutants from solvent use using current 

emission inventories and observed levels. This indicates either inadequate emission 

inventory calculations and/or knowledge of the atmospheric fate of emitted 

compounds, of which mostly significant fraction is composed of oxygenated organic 

compounds such as ethers.  

Vinyl ethers are widely applied in industry as oxygenated solvents, additives and in 

different types of coatings. They are released to the atmosphere entirely from 

anthropogenic sources. Consequently, a better understanding of the atmospheric fate 

of vinyl ethers is highly desirable.  

 

This work presents investigations on the gas-phase chemistry of vinyl ethers 

performed in a 405 l borosilicate glass chamber and a 1080 l quartz glass reactor in 

the Bergische University Wuppertal, Germany.  

 

Relative rate coefficients were determined for the OH radical, ozone and NO3 radical 

initiated oxidation of selected vinyl ethers. Using in situ Fourier transform infrared 

(FTIR) absorption spectroscopy the following rate coefficients were obtained at room 

temperature and atmospheric pressure in synthetic air (in cm3 molecule-1 s-1):  

 

Vinyl ether kOH×1011 kO3×1016 kNO3×1012 

Propyl vinyl ether,  

n-C3H7OCH=CH2 

 

9.73±1.94 
 

2.34±0.48 
 

1.85±0.53 

Butyl vinyl ether 

n-C4H9OCH=CH2 

 

11.3±3.1 
 

2.59±0.52 
 

2.10±0.54 
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Ethyleneglycol monovinyl ether 

HOCH2CH2OCH=CH2 

 

10.4±2.15 
 

2.02±0.41 
 

1.95±0.50 

Ethyleneglycol divinyl ether 

H2C=CHOCH2CH2OCH=CH2 

 

12.3±3.25 
 

1.69±0.41 
 

2.23±0.46 

Diethyleneglycol divinyl ether 

H2C=CHOCH2CH2OCH2CH2OCH=CH2

 

14.2±3.00 
 

2.70±0.56 
 

6.14±1.38 

 

 

Product investigations on the gas-phase reactions of the OH radical, ozone and NO3 

radical with propyl vinyl ether (PVE) and butyl vinyl ether (BVE) were performed in 

the 405 l borosilicate glass chamber by in situ FTIR spectroscopy. At room 

temperature and atmospheric pressure of synthetic air the products observed and their 

molar formation yields were as follows:  

 

           Products 

Reactants 

Formate 

(%) 

HCHO 

(%) 

HPMF a 

(%) 

CO 

(%) 

FA b 

(%) 

Propyl vinyl ether,  

n-C3H7OCH=CH2 

78.6±8.8 i) 

63.0±9.0 ii)
75.9±8.4 i)

61.3±6.3 ii)

 

- 
 

- 
 

- 
 

 

OH Butyl vinyl ether 

n-C4H9OCH=CH2 

64.7±7.1 i) 

52.2±6.3 ii)
64.3±6.9 i) 

52.9±6.3 ii)

 

- 
 

- 
 

- 

Propyl vinyl ether,  

n-C3H7OCH=CH2 

88.3±9.3 iii)

89.7±9.9 iv)

- 

12.9±4.0 iv)

- 

13.0±3.4 iv)

- 

10.9±2.6 iv) 

- 

1.94±0.59 iv) 

 

 

O3 Butyl vinyl ether 

n-C4H9OCH=CH2 

78.5±8.8 iii)

76.7±8.9 iv)

- 

10.5±1.8 iv)

- 

12.0±2.9 iv)

- 

8.2±1.3 iv) 

- 

2.6±0.54 iv) 

Propyl vinyl ether,  

n-C3H7OCH=CH2 
52.7±5.9 55.0±6.3 

 

- 
 

- 
 

- 
 

 

NO3 Butyl vinyl ether 

n-C4H9OCH=CH2 

 

43.6±4.5 
 

48.0±5.6 
 

- 
 

- 
 

- 

 

i) with NOx present; ii) without NOx present; iii) with cyclohexane as OH radical scavenger;  

iv) with 1,3,5-trimethylbenzene as OH radial tracer  

a) HPMF---hydroperoxy methyl formate; b) FA---formic anhydride  
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Hydroxyl radical yields of (17±9)% and (18±9)% have been estimated for the 

reactions of PVE and BVE with ozone, respectively. Total nitrate formation yields of 

(56.0±12.3)% and (57.1±12.3)% have been estimated for the NO3 radical initiated 

oxidation of PVE and BVE, respectively.  

Simplified reaction mechanisms for the reactions of the OH radical, ozone and NO3 

radical with the investigated vinyl ethers are proposed.  

 

Secondary organic aerosol (SOA) formation was observed in the reactions of ozone 

with PVE and BVE. The observed aerosol profiles showed typical behavior associated 

with homogeneous nucleation. In the presence of an excess of cyclohexane to 

scavenge OH, SOA yields of 0.4% were obtained for PVE and 0.3-1.1% for BVE. The 

role that the OH radial scavenger might play in the SOA formation is unclear.  

 

This work has augmented the atmospheric chemistry database for vinyl ethers; it has 

substantially improved the knowledge on the distribution of oxidation products 

formed in the atmospheric degradation of vinyl ethers. All the information will allow 

a better assessment of the potential environmental impacts of vinyl ethers.  
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Chapter 1 

 

 

Introduction 
 

The troposphere is the region of the Earth’s atmosphere in which we live and into 

which volatile organic compounds (VOCs) are emitted from biogenic (e.g. wetlands, 

vegetation, termites, naturally occurring natural gas vent and biomass fires) and 

anthropogenic sources (e.g. motor vehicle exhaust, solvent usage, industrial operation, 

oil refining, petrol storage and distribution, natural gas pipe leakage, food manu- 

facture and biomass burning) [1,2]. It is estimated that the yearly worldwide emission 

of methane is 150 and 350 million tons from biogenic and anthropogenic sources, 

respectively. Large uncertainties are associated with the emissions of non-methane 

organic compounds (NMOCs) and around 100 and 1000 million tons yr-1 is estimated 

for the emissions from anthropogenic and biogenic sources, respectively [3].  

In addition to emissions of VOCs, oxides of nitrogen (NOx = NO + NO2) and 

sulfur-containing compounds are released into the troposphere, leading to a complex 

series of chemical and physical transformations, which result in the formation of 

ozone in urban and regional areas as well as in the global troposphere [4], acid 

deposition [5], and the formation of secondary particulate matter through gas/particle 

partitioning of both emitted chemicals and the atmospheric reaction products of VOCs, 

NOx, SO2, and organosulfur compounds [6-9].  

During a typical “summer smog” episode, high levels of ozone are observed as a 

result of the atmospheric degradation of VOCs in the presence of NOx. Increasing 

ozone levels in industrialized regions, e.g. Europe, where the O3 levels have doubled 

over the last century [10], is now of major concern since ozone is not only a 

greenhouse gas but also a harmful secondary pollutant having adverse effects on 
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human health, vegetation, and building materials. In order to reduce the level of 

oxidants the European Union (EU) has adopted several emission directives to regulate 

the emissions of NOx and VOCs from traffic and organic solvent usage. It is predicted 

that these measures will result in a reduction of around 10% in VOCs emissions 

within the European region [11,12] in the near future.  

 

 

1.1 Oxygenated volatile organic compounds 
 

There is evidence for a large global source of oxygenated volatile organic compounds 

(OVOCs) in the atmosphere [13,14 and references therein]. These compounds are 

emitted directly into the atmosphere from biogenic and anthropogenic sources and are 

also formed in situ in the atmosphere from the oxidation of all hydrocarbons present 

within the atmosphere [15,16 and references therein]. OVOCs are heavily involved in 

key atmospheric processes and play a central role in the chemical processes that 

determine the oxidizing capacity of the atmosphere [13,14]. It is thought that 

oxygenated organics also make a significant contribution to the organic fraction of 

atmospheric aerosols [17].  

Since a number of organic solvents, e.g. aromatics and halocarbons have shown not 

only to have adverse health effects, but also to undergo complex chemical reactions in 

the atmosphere, which lead to the formation of environmentally damaging compounds, 

it is now well accepted that the switch from aromatic and halocarbon solvents to 

oxygenated compounds is inevitable both in terms of toxicity problems and reducing 

the level of oxidant formation in the troposphere. From available experimental data, it 

has been suggested that the ozone forming potential of oxygenates is likely to be less 

than aromatic and unsubstituted hydrocarbons but considerably greater than that of the 

chlorocarbons [14,18-27]. Table 1.1 summarizes the development in solvent consum- 

ption during the last 20 years in West Europe [28].  

The increasing use of organic oxygenates as solvents has led to the need for 

knowledge on their contribution to the oxidizing capacity of the atmosphere, their 

possible contribution to toxic contaminant formation, indoor pollution and their 

contribution to secondary organic aerosol (SOA) formation [15-17]. Therefore, a large 

number of gas-phase reactions of small-chain oxygenated organic compounds has 
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been investigated and reviewed over the last decade [1,16,17,28-36].  

The initial step in the oxidation of simple OVOCs such as alcohols, ethers, carbonyls 

and esters in the atmosphere is mainly reaction with the OH radical. The kinetics and 

mechanisms for such OVOCs have been reasonably established for compounds with 

carbon skeletons with up to six carbon atoms [18-21,28,37-42]. However, the 

oxidation of higher molecular weight and polyfunctional OVOCs is much less clear 

and knowledge is rather sparse. In addition, current structure-activity relationships can 

not predict the reactivity of these more complex species with any degree of accuracy.  
 

 

Table 1.1  Development in the consumption of solvents in Western Europe (as 

percentage of total) [28]. 

 

Category 1980 1986 1990 1995 2000 

Oxygen-containing solvent 36.5 45 51 58 65 

Aliphatic 28.5 22 20.5 19 15 

Aromatics 20.5 20 19 17 15.5 

Chlorinated hydrocarbons 14.5 13 9.5 6 1.5 

Total consumption (106 t) 5.1 4.75 4.7 4.15 3.3 

 

 

1.2 Atmospheric chemistry of vinyl ethers 
 

Field measurements indicate that OVOCs constitute a major component of the trace 

gases found in the troposphere [13]. However, recent field campaign and modeling 

studies [43,44] have highlighted significant discrepancies between the expected levels 

of pollutants from solvent use using current emission inventories and the observed 

levels. This indicates either inadequacy in the emission inventory calculations and/or 

knowledge of the atmospheric fate of the emitted solvents, a large proportion of which 

are oxygenated organic compounds such as ethers.  

Vinyl ethers (ROCH=CH2) are widely applied in industry as oxygenated solvents, 

additives and in different types of coatings [45,46]. They are a class of ethers that is 
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released to the atmosphere entirely from anthropogenic sources. Due to the presence 

of the alkene moiety in vinyl ethers it is to be expected that they will show moderate 

to high reactivity towards the major atmospheric oxidants, i.e. OH radical, ozone and 

NO3 radical, and under certain circumstances possibly Cl atoms. To date only limited 

kinetic and product data are available in the literature on the gas-phase reactions of a 

few vinyl ethers with the OH radical [16,47-56], O3 [29,48-55,58,59] and the NO3 

radical [16,48,49,51-54,57,60].  

 

 

1.2.1 Kinetic studies of vinyl ethers 
 

Like other carbon-carbon double bond containing compounds the principle degrada- 

tion processes of vinyl ethers are controlled mainly by chemical reaction with OH 

radicals, ozone and NO3 radicals. Perry et al. [47] reported an absolute rate coefficient 

for the reaction of the OH radical with methyl vinyl ether (MVE). As can be seen in 

Table 1.2, the value obtained by Perry et al. [47] was in fair agreement with that 

reported by Mellouki [51] who used a relative kinetic technique. However, both 

determinations are substantially lower than the value estimated by Grosjean and 

Williams [49] from structure-activity-relationships (SAR) and linear free-energy 

relationships (LFER).  

In last few years, several research groups have conducted kinetic studies on alkyl 

vinyl ethers. As shown in Table 1.2, using pulsed laser photolysis-laser induced 

fluorescence (PLP-LIF) and a relative kinetic technique, Mellouki et al. [51,56] have 

measured rate coefficients for the reaction of OH radicals with a series of alkyl vinyl 

ethers. Among them, only the result for propyl vinyl ether (PVE) is in agreement with 

that obtained by Al Mulla [55] who used a relative kinetic method. The result from Al 

Mulla for the reaction of OH with ethyl vinyl ether (EVE) is lower than Mellouki’s 

determinations; for reactions of OH with butyl vinyl ether (BVE) and iso-butyl vinyl 

ether (iBVE) the values are higher than the other determinations although they agree, 

in part, within the combined quoted errors. The rate coefficient for the OH reaction 

with tert-butyl vinyl ether (tBVE) obtained by Al Mulla is higher than Mellouki’s 

measurements by a factor of more than two.  
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Table 1.2  Rate coefficients (in cm3 molecule-1 s-1) measured at 298 K for the reactions of the OH radical, O3 and the NO3 radical with 

vinyl ethers reported in the literature  

Vinyl ether OH reaction 
(kOH×1011) 

Technique / Ref O3 reaction 
(kO3×1016) 

Technique / Ref NO3 reaction 
(kNO3×1012) 

Technique / Ref 

 

MVE,  

CH3OCH=CH2 

3.35±0.34 
4.5±0.7  

6.4  

FP-RF [47] i) 
relative rate [51] 

SAR-estimation [49] ii)

 
- 

 
- 

0.47 
0.72±0.15 

SAR-estimation [49] ii)

relative rate [57] 

 

EVE,  
C2H5OCH=CH2 

6.8±0.7  
7.3±0.9  

5.51±0.13 

PLP-LIF [50,51] iii) 
relative rate [50,51] 

relative rate [55] 

2.0±0.2  
1.54±0.3 

1.3 

concentration fit [50] 
p-f-o kinetics [59] iv) 

relative and S-CL [55] v) 

1.7±1.3 
1.31±0.27 

relative rate [60] 
relative rate [57] 

 

PVE,  
C3H7OCH=CH2 

10±1  

11±1 
11.5±0.4 

PLP-LIF [51,56] iii) 
relative rate [51] 
relative rate [55] 

2.4±0.4 
2.4 

concentration fit [51] 
relative and S-CL [55] v) 

 
1.33±0.30 

 
relative rate [57] 

 

BVE, 
n-C4H9OCH=CH2 

10±1  
11±1 

16.3±2.8 

PLP-LIF [51,56] iii) 
relative rate [51] 
relative rate [55] 

2.9±0.2 
2.3 

concentration fit [51] 
relative and S-CL [55] v) 

 
1.70±0.37 

 
relative rate [57] 

 

iBVE, 
i-C4H9OCH=CH2 

11±1  
11±1 

15.9±5.9 

PLP-LIF [51,56] iii) 
relative rate [51] 
relative rate [55] 

3.1±0.2 
2.3 

concentration fit [51] 
relative and S-CL [55] v) 

 
- 

 
- 

 

tBVE, 
t-C4H9OCH=CH2 

11±1 
11±1 

25.2±1.8 

PLP-LIF [51,56] iii) 
relative rate [51] 
relative rate [55] 

5.0±0.5 
2.4 

concentration fit [51] 
relative and S-CL [55] v) 

 
- 

 
- 

 

i)  Flash Photolysis - Resonance Fluorescence (FP-RF), Arrhenius expressions for the temperature range 299-427 K are reported;  

ii) Structure-activity relationship (SAR);  iii) Pulsed Laser Photolysis - Laser Induced Fluorescence (PLP-LIF), Arrhenius expressions 

 for the temperature range 230-373 K are reported; iv) pseudo-first-order kinetics; v) Static system - Chemiluminescence analysis (S-CL). 
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Mellouki [51] and Al Mulla [55] also measured rate coefficients for the ozonolysis of 

alkyl vinyl ethers. As can be seen in Table 1.2, only the results for PVE + O3 and BVE 

+ O3 from Al Mulla [55] are consistent with those reported by Mellouki [51]. The rate 

coefficients for the ozonolysis of EVE, iBVE and tBVE determined by Al Mulla [55] 

are significantly lower than the values determined by Mellouki [51].  

Kinetic studies on the NO3 radical initiated oxidation of vinyl ethers are much sparser 

than those for the OH radical and ozone reactions. Only data from Scarfogliero et al. 

[57] and Pfrang et al. [60] for reactions of the NO3 radical with MVE, EVE, PVE and 

BVE are available in the literature. Though the rate coefficient for the reaction of NO3 

with EVE from Scarfogliero et al. [57] is in agreement with that determined by Pfrang 

et al. [60], the data reported by Pfrang et al. [60] has large error limits. They had 

considerable difficulties with the measurements and concluded that the data would 

benefit from refinement.  

Accurate kinetic data is essential for a reliable estimation of the tropospheric lifetimes 

of the vinyl ethers with respect to photooxidation by atmospheric reactive species 

since this will determine the scale of their geographical impact, i.e. local, regional or 

global. Therefore, an extended database for the reaction of vinyl ethers with 

atmospheric reactive species i.e. OH radical, ozone and NO3 radical is necessary.  

 

 

1.2.2 Product and mechanistic studies of vinyl ethers 
 

Investigations of the products and mechanisms for the gas-phase reactions of alkyl 

vinyl ethers have only appeared during the last few years: MVE reaction with OH, O3 

and NO3 by Klotz et al. [52], EVE and ethyl propenyl ether (EPE) reaction with O3 by 

Grosjean et al. [29], EVE reaction with OH radical and O3 by Thiault et al. [50], EVE 

and EPE reaction with OH and NO3 radicals and O3 by Barnes et al. [48], MVE, EVE, 

PVE and BVE reaction with OH and O3 by Al Mulla [55] and MVE, EVE, PVE and 

BVE reaction with NO3 radicals by Scarfogliero et al. [57].  

It is established that the OH and NO3 radical initiated oxidation of vinyl ethers 

proceeds essentially by the radicals addition to the carbon-carbon double bond. The 

addition of OH and NO3 radicals results in the formation of β-hydroxyalkyl (X = OH) 

and β-nitrooxyalkyl (X = NO3) radicals, respectively.  
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C C
H

H

OR

H
X

C C
H

H

OR

H

C C
H

H

OR

H
X

(a)

(b)

+   X

 
 

The β-hydroxy/β-nitrooxy alkyl radicals (a) and (b) react with O2 to give the 

corresponding peroxy radicals (c) and (d), respectively:  
 

C C
H

H

OR

H
X

C C
H

H

OR

H
X

C C
H

H
OR

H
XOO

O2
C C

H
H

OR

H
X OO

O2

(a)

(b)

(c)

(d)  
 

As alkyl peroxy radicals the β-hydroxy/β-nitrooxy alkyl peroxy radicals react with 

NO2, NO, peroxy radicals and HO2 radicals. Take radical (c) as an example:  
 

C C
H

H
OR

H
X OO

C C
H

H
OR

H
X OONO2

+  NO2

(c)  
 

C C
H

H
OR

H
X OO

C C
H

H
OR

H
X ONO

NO2

RO2
or

RO+O2
(c) (e)

 
 

C C
H

H
OR

H
X OO HO2

C C
H

H
OR

H
X OOH

+ O2

(c)  
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The reaction of β-hydroxy/β-nitrooxy alkyl peroxy radicals (c) and (d) with NO will 

also lead to the formation of nitrates.  
 

C C
H

H
OR

H
X OO

C C
H

H

OR
H

X ONO2

+  NO

(c)

C C
H

H
OR

H
XOO

C C
H

H

OR
H

X

+  NO

(d)

O2NO

 
 

The possible reactions of β-hydroxy/β-nitrooxy alkoxy radical are isomerization, 

decomposition or reaction with O2. The product studies on the OH and NO3 radical 

initiated oxidation of MVE [52] and EVE [48,50,55,57] indicate that the β-hydroxy/ 

β-nitrooxy alkoxy radicals formed after OH and NO3 addition to the terminal carbon- 

carbon double bond in the alkyl vinyl ether mainly decompose to produce 

formaldehyde and the corresponding alkyl formates. Take radical (e) as an example:  
 

C C
H

H

OR
H

X O

H
+ C

H H

X

C
H H

OO2

HO2

C

O

OR
(e)  

 

For the OH radical reactions, the molar yields of the alkyl formates for the different 

vinyl ethers investigated by Klotz et al. (OH + MVE) [52] and Al Mulla (alkyl vinyl 

ethers + OH) [55] fall within the range of (60-80) molar % for NOx-containing 

systems and (50-70) molar % for NOx-free systems. However, Thiault et al. [50] have 

reported a very high formate yield for the reaction of OH with EVE.  

The observations of formates and HCHO formation for the reactions of NO3 radicals 

with MVE, EVE, PVE and BVE reported by Scarfogliero et al. [57] largely agree 

with those made by Klotz et al. [52] for the reaction of NO3 with MVE. No other 

product studies on the reactions of NO3 with vinyl ethers currently exist.  

As discussed by Barnes et al. [48], Klotz et al. [52], Thiault et al. [50] and Al Mulla 

[55], the general mechanism for the ozonolysis of vinyl ethers is initial addition of O3 

to the terminal carbon-carbon double bond in the vinyl ethers to form an energy-rich 
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primary ozonide, which rapidly decomposes, as shown below, to form carbonyls and 

so-called Criegee biradicals. The decomposition of Criegee biradicals gives formates 

and HCHO. 
 

C C
H

H

OR

H O3
C C

H

H

OR

H
O

O
O

HCHO + [ROCH(OO)]*
. .

[H2COO]* + HC(O)OR
..

 
 

The formation yields of formates and HCHO for the ozonolysis of vinyl ethers 

determined by Klotz et al. [52] for MVE, Thiault et al. [50] and Al Mulla [55] for 

EVE and Barnes et al. [48] for EVE, iBVE, tBVE and EPE fall within the ranges 

(75±15) and (20±10) molar %, respectively. However, the formate yield reported by 

Grosjean and Grosjean [29,58] for EVE + O3 is much lower (factor of 2) and the 

HCHO yields much higher (factor of 2 or more) than those reported by the other 

aforementioned authors. Higher yields of HCHO are also obtained by Al Mulla [55] 

for the reactions of ozone with iBVE and tBVE. The reason for this large discrepancy 

is presently not known.  

 

 

1.2.3 Secondary organic aerosol (SOA) formation from vinyl 

ethers 
 

It is commonly accepted that seven or more C-atoms are required for aerosol 

formation from non-cyclic hydrocarbons and six for cyclic species [61-63]. MVE, 

with only 3 carbon atoms, is the smallest compound studied until now that has been 

shown to produce aerosol during its atmospheric degradation. Klotz et al. [52] have 

postulated that oxalic acid and/or condensation reactions, possibly involving the 

Criegee intermediates are responsible for the SOA formation in the ozonolysis of 

MVE. Recently Sadezky et al. [64] reported SOA formation in the gas-phase reactions 
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of ozone with other alkyl vinyl ethers (EVE, PVE, BVE, iBVE and tBVE). The 

formation yields of SOA were reduced in the presence of an excess amount of 

cyclohexane (used as OH radical scavenger), water and formic acid (Criegee biradical 

scavengers). Using mass spectrometry the authors identified the formation of 

oligomers having the basic structure -[CH(R)-O-O]n-, where R=H for alkyl vinyl 

ethers and R=CH3 for EPE, as major constituents of the SOA. The mechanism of the 

formation of the oligomer is unclear but is assumed by the authors to involve reaction 

of the Criegee biradicals with the double bond of the vinyl ethers.  

The aerosol profiles observed in the ozonolysis of alkyl vinyl ethers [52,64] showed 

typical behavior associated with homogeneous nucleation. According to Odum et al. 

[8] if condensation plays a significant role in the aerosol formation, the evaluation 

should give higher aerosol yields when the initial reactant concentrations are raised.  

 

 

1.3 Aim of the work  
 

As discussed previously, the atmospheric chemistry of vinyl ethers has only been 

studied to date for a few alkyl vinyl ethers. Among these studies there are quite a 

number of discrepancies between the results reported by the different research groups. 

Ideally a complete understanding of the atmospheric behavior and environmental 

impact of a chemical is highly desirable before its widespread deployment, especially 

in the case of high volume chemicals such as oxygenated solvents. For many 

chemicals, such as vinyl ether solvents, the pre-use environmental impact analysis is 

often very rudimentary.  

The purpose of this work was to provide a scientific evaluation of the atmospheric 

fate of alkyl vinyl ethers and ethyleneglycol vinyl ethers, which are either presently 

being used in industry or are being considered as replacements for other 

atmospherically detrimental solvents.  

The research work involved measuring rate coefficients for the reactions of PVE, 

BVE, ethyleneglycol monovinyl ether (EGMVE), ethyleneglycol divinyl ether 

(EGDVE) and diethyleneglycol divinyl ether (DEGDVE) with the OH radical, O3 and 

the NO3 radical at atmospheric pressure and room temperature using a relative kinetic 

technique.  
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Laboratory chamber studies were performed to identify and quantify the oxidation 

products from the reactions of PVE and BVE with the OH radical, O3 and the NO3 

radical. This information was used to formulate atmospheric degradation mechanisms 

for the reactions of the alkyl vinyl ethers with the atmospheric oxidants.  

Using scanning mobility particle sizer (SMPS) exploratory SOA studies were 

performed on the ozonolysis of PVE and BVE in the presence of an excess of 

cyclohexane. 
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Experimental Section  
 

2.1 Reaction chambers  
 

2.1.1 Description of the 405 l reactor 

 
All the kinetic and product studies performed in this work were carried out in a 405 

liter evacuable chamber. A detailed description of the reactor can be found in the 

literature [65,66]. Only a brief description is given below. Figure 2.1 shows a 

schematic representation of the reactor.  

The chamber is comprised of a cylindrical borosilicate glass vessel, having a length of 

1.5 m and an inner diameter of 60 cm, and is closed at both ends by Teflon coated 

aluminum flanges. One of the metal flanges contains inlet ports for reactants and bath 

gases, vacuum connections and a capacitance manometer (Membranovac MV 110 S2). 

Additional inlet and outlet ports and a magnetically coupled Teflon mixing fan to 

ensure homogeneous mixing of the reactants are located on the other flange. The 

reactor can be evacuated to 10-3 Torr by a pumping system consisting of a Balzer 

turbo/molecular pump, model WZ 500, backed by a Leybold double stage rotary fore 

pump, model D 40 B. Two types of photolysis sources are available for the 

experiments: 18 fluorescent lamps (Philips TLA 40 W/05; 300≤λ≤450 nm, λmax=360 

nm) spaced evenly around the outside of the reactor and 3 low-pressure mercury 

vapor lamps (Philips TUV40W; λmax=254 nm) placed inside a quartz glass tube which 
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is mounted centrally inside the main reactor vessel and supported by the end flanges.  

In order to maintain the reactor at room temperature during the photolysis of the 

reactants, the lamps are cooled by flowing ambient air through the lamp housing units. 

A White-type mirror system (base path length 1.4m) mounted internally within the 

chamber, and coupled to an FTIR spectrometer (Fourier Transform-Infrared 

Spectrometer; Nicolet Magna 550) equipped with a globar as IR source and a liquid 

nitrogen cooled MCT-detector (mercury-cadmium-tellurium detector), enables in situ 

infrared monitoring of both reactants and products. The White system was operated 

with a total optical absorption path of 50.4 m and infrared spectra were recorded with 

a spectral resolution of 1 cm-1. The spectrometer and the external transfer optics are 

permanently purged with dry air to maintain atmospheric water vapor at a minimum. 

The spectrometer is directly controlled by the software OMNIC, installed on a 

personal computer.  

 

 

2.1.2 Description of the 1080 l reactor and scanning mobility 

particle sizer (SMPS) system  
 

 
 

Figure 2.1  Schematic representation of the 405 l borosilicate glass chamber 



Chapter 2 

 14 

 

2.1.2.1 Description of the 1080 l reactor  
 

All the studies on the SOA formation performed in this work were carried out in a 

1080 l reaction chamber equipped with a Scanning Mobility Particle Sizer (SMPS) 

system. There are some constructive similarities between the1080 l reactor and the 

405 l reaction chamber and a detailed description can be found in the literature [67]. 

Only a brief description is given here.  

The reactor, which has a total length of 6.2 m and an inner diameter of 0.47 m, 

consists of two quartz glass cylinders connected by a central enamel flange ring and 

silicon rubber seals and is closed at both ends by aluminum flanges. Figure 2.2 shows 

a schematic representation of the reaction chamber experimental setup.  

The reactor can be evacuated by a turbo molecular pump (Leybold-Heraeus PT 450) 

backed by a Leybold D65B double stage rotary vacuum pump to a pressure of less 

than 10-3 mbar. To ensure homogeneous mixing of the reactants three fans with Teflon 

blades are mounted inside the chamber. Both end flanges contain inlet systems for 

 
 

Figure 2.2  Schematic representation of the 1080 l quartz glass reactor 
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reactants and bath gases and ports for mounting pressure and temperature 

measurement instruments. The chamber is equipped with 32 super actinic fluorescent 

lamps (Philips TL 05/40 W: 320≤λ≤480 nm, λmax=360 nm) and 32 low-pressure 

mercury lamps (Philips TUV40W, λmax=254 nm). A White type multi-reflection mirror 

system with a base length of (5.91±0.01) m for sensitive in situ long path absorption 

monitoring of both reactants and products in the IR spectral range is mounted on the 

flanges. The White system was operated at 82 traverses, giving a total optical path 

length of (484.7±0.8) m. The IR spectra were recorded with a spectral resolution of 1 

cm-1 using a Bruker IFS 88 FTIR spectrometer equipped with an MCT detector.  

An outlet port for particle sampling is located in the central flange of the reactor.  

 

 

2.1.2.2 Description of the scanning mobility particle sizer (SMPS) 

system  
 

The Model 3934 SMPS system consists of an electrostatic classifier and two 

independent condensation particle counters (CPC) (TSI 3022 A connected to the 

classifier and a standalone TSI 3025 ultra-fine condensation particle counter UCPC). 

The TSI 3022 A CPC was mainly used in the present work.  

The SMPS uses a bipolar charger in the electrostatic classifier to charge the particle to 

a known charge distribution. The particles are then classified according to their ability 

to traverse an electrical field and counted with the CPC. Figure 2.3 shows a schematic 

diagram of the electrostatic classifier with the TSI 3022 A CPC.  

The electrostatic classifier used in the present work is a model 3071 A manufactured 

by the TSI company. The aerosol sample enters through an inertial impactor which 

removes larger particles that may carry more than a single charge and lie outside the 

measurement range. The aerosol then passes through the Kr-85 charger. The charger 

consists of 2 mCi (7.4 × 107 Bq) of Kr-85 radioactive gas contained in a capillary tube. 

This creates a high level of positive and negative ions and brings the aerosol charge 

level to a Fuchs’ equilibrium charge distribution [68]. The center rod inside the 

electrostatic classifier is connected to a variable high voltage source and the outer 

cylinder is kept at ground potential and this creates an electric field. Some of the 

particles are attracted to the center rod when the particles pass through the classifier.
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Figure 2.3  Schematic representation of the SMPS system
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The electrical mobility of a particle is inversely proportional to the size of the particle. 

Particles with a higher mobility will be captured near the top of the rod and others will 

go on through the exhaust. Some of the particles will have the correct mobility to go 

through the opening at the bottom. The classifier separates aerosols based on their 

electrical mobility, which is dependent on their charge state and particle size, allowing 

for a flow of monosize particles to exit the classifier. This mono-dispersed aerosol can 

then be counted by the CPC.  

The CPC employed in the present work is the model 3022 A. An internal pump draws 

the aerosol into the CPC with low-flow operation (0.3 liter per minute). A volumetric 

flowmeter controls the flow rate. Upon entering the instrument, the sample passes 

through a heated saturator (37 ºC), where n-butanol evaporates into the air stream and 

saturates the flow. The aerosol sample then passes into a cooled condenser tube (10 ºC), 

where vapor supersaturates and condenses onto the airborne particles. This produces 

larger, easily detectable aerosol droplets. These droplets pass through a heated optical 

detector (36 ºC) immediately after leaving the condenser.  

For concentrations below 104 particles cm-3 the detector counts individual pulses 

produced as each particle (droplet) passes through the sensing zone (single-count 

mode). Higher concentrations up to 107 particles cm-3 are measured by detecting light 

scattered by all particles in the sensing zone at any one time and comparing the intensity 

of the scattered light with calibration levels (photometric mode).  

 

 

2.2 Experimental procedure and data evaluation  
 

2.2.1 General  
 

All the experiments performed in this work were carried out at (298±3) K in synthetic 

air. The compounds under investigations were introduced into the evacuated reactor 

by methods which depended on their states, i.e. solid, liquid or gaseous, and on their 

vapor pressure: gas and liquid compounds were injected by means of syringes 

(gas-tight syringes and microliter syringes), either directly into the chamber or in a 

stream of bath gas. For the liquid compounds with high boiling-point the inlet port 
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was also heated. Solid compounds were introduced into the reactor using a special 

inlet system. This inlet system consists of a long glass tube having a small glass 

container attached in the middle where weighed amounts of the substances can be 

added. One port of this inlet system is connected to the bath gas by a Teflon tube and 

the other port is connected to the reaction chamber through a steel tube and a special 

valve. The solid compounds are then heated in the small glass container until a certain 

pressure is reached. The content of the glass container is then added to the evacuated 

reactor by opening the valve and flushing the heated glass container with a slow flow 

of the bath gas. In order to avoid condensation of the semi-volatile compounds onto 

the inlet system, the system was heated with an electrical heating band. The 

concentrations of the reactants and products were determined by computer-aided 

subtraction of calibrated reference spectra. The source of the chemicals used and their 

stated purity are listed in Appendix II. The values of the FT-IR integral cross sections 

that have been used in the quantification procedure are given in Appendix III.  

 

 

2.2.2 Kinetic studies  
 

A relative kinetic technique was used to determine the rate coefficients for the 

reactions of OH radical, O3 and NO3 radical with selected vinyl ethers.  

 

 

2.2.2.1 Relative rate method  

 
In the relative rate method the disappearance of reactants, i.e. vinyl ethers, due to 

reaction with the reactive species (OH, O3 and NO3) is measured relative to that of a 

reference compound(s), whose rate coefficient(s) with the reactive species is(are) 

reliably known, e.g. for the OH radical reaction:  
 

Reactant  +  OH  →  Products,  k1               (2.1) 

Reference  +  OH  →  Products,  k2            (2.2) 
 

Additionally, vinyl ethers and the reference hydrocarbon(s) could be lost by 

deposition on the reactor walls or photolysis. However, when the vinyl ethers were 
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admitted into the chamber, as discussed later, in addition to wall loss, dark decays of 

the compounds were observed accompanied by the formation of new bands in the IR 

spectrum.  

The combined dark decay and wall loss was found to obey first order kinetics and can 

be represented by,  
 

Reactant (dark decay and wall loss)  →  products,  k3      (2.3) 

Reference (dark wall loss)  →  wall,  k4           (2.4) 
  

The following equation has been used to evaluate the kinetic data:  
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where [Reactant]t0 and [Reference]t0 are the concentrations of the reactants and 

reference compound(s), respectively, at time t0; [Reactant]t and [Reference]t are the 

corresponding concentrations at time t; k1 and k2 are the rate coefficients for the 

reaction of reactants and reference(s) with OH radical, respectively; k3 and k4 are the 

dark loss rates of reactants and reference(s), respectively. Plots of ln([Reactant]t0/ 

[Reactant]t)-k3(t-t0) versus ln([Reference]t0/[Reference]t)-k4(t-t0) should give straight 

lines with slopes k1/k2. The rate coefficient k1 can be derived from the known rate 

coefficient k2. Since the dark losses of the vinyl ethers and reference(s) are first order 

reactions, the rate k3 and k4 can be derived from the slope of plots of 

ln([Reactant]t0/[Reactant]t) and ln([Reference]t0/[Reference]t) versus time before 

reactions (2.1) and (2.2) are initiated. Frequent checks were made to verify that the 

dark losses of both the vinyl ethers and reference(s) did not change during the course 

of the reactions by measuring their rates in the pre- and post-reaction periods.  

The rate coefficients for the ozone and NO3 radical reactions with the vinyl ethers 

have been determined using the relative kinetic technique in a manner analogous to 

that described above for the OH radical reactions.  

 

 

2.2.2.2 OH radical reaction 
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Kinetic experiments for the reactions of OH radical with selected vinyl ethers were 

performed at (750±10) Torr total pressure of synthetic air using two hydrocarbons as 

reference compounds. The photolysis of either CH3ONO-NO-air mixtures in the 

visible light (λmax = 360 nm) or H2O2 under UV light (λmax = 254 nm) was used for the 

production of OH radicals,  
 

CH3ONO  +  hν  →  CH3O  +  NO                (2.5) 

CH3O  +  O2  →  CH2O  +  HO2                          (2.6) 

HO2  +  NO  →  NO2  +  HO                   (2.7) 
 

H2O2   +   hν    →   2 OH                     (2.8) 
 

The addition of nitric oxide, NO, to the CH3ONO-air mixtures is generally used to 

enhance OH production and to suppress the formation of O3 and, hence of NO3 

radicals. Using the photolysis of methyl nitrite or hydrogen peroxide, OH radical 

concentrations of about 1×108 molecules cm-3 can be readily obtained for time scales 

of 10 minutes or more. The synthesis and storage of CH3ONO is given in Appendix I. 

H2O2 was supplied as an 85% solution and was used without further pre-concen- 

tration.  

 

 

2.2.2.3 O3 and NO3 radical reaction  
 

All the experiments on the reactions of O3 and NO3 radicals with vinyl ethers were 

carried out at (740±10) Torr total pressure of synthetic air. Ozone was added step-wise 

to pre-mixed mixtures containing the vinyl ether, reference compound(s) and 

cyclohexane. Cyclohexane was present in excess to scavenge more than 95% of OH 

radicals produced in the reaction system. Ozone was generated as a mixture in O2 by 

passing O2 through an ozone generator.  

NO3 radicals were produced by the thermal dissociation of N2O5 prepared in solid 

form according to a literature method [69] given in Appendix I:  

 

 

N2O5  +  M  →  NO3  +  NO2  +  M               (2.9) 
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As for the investigations on the ozonolysis of the vinyl ethers the experiments on the 

NO3 radical reactions were performed using multiple additions of N2O5 to a mixture 

of the vinyl ether and reference compound(s) (isoprene or 2,3-dimethyl-1,3-butadiene). 

N2O5 was added to the chamber by passing air over the surface of solid N2O5, which 

was placed in a dry ice-ethanol cooling trap at -50°C.  

 

 

2.2.3 Product studies  
 

2.2.3.1 Correction of product formation yields  
 

In some cases the concentrations of the products can not be evaluated directly due to 

dark wall loss of the product and/or reaction of the product with the reactive species, 

e.g. OH radicals. In such cases the yields were corrected with the method outlined by 

Tuazon et al. [70].  

In order to correct the formation yields of the products in the OH radical initiated 

oxidation of vinyl ethers the following reaction sequence needs to be considered:  
 

Reactant  +  OH  →  Producti,  k1               (2.1) 

   Reactant (wall loss and dark reaction)  →  Products,  k3       (2.3) 

Product i  +  OH  →  Products,  k5              (2.10) 

Product i (wall loss and photolysis)  →  Products,  k6        (2.11) 
 

If the reasonable assumption is made that the OH radical concentration remains 

essentially constant over the small irradiation periods, then from the rate law,  
 

[ ] [ ] [ ] [ ]OHReactantkReactantk
dt

Reactantd
13 ×−−=               (II) 

 

one obtains  
 

[ ]
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13 ×+−=                     (III) 

 

By making the reasonable assumption that the OH radical concentrations were 
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essentially constant over the small irradiation period t1-t2, integration of the above 

equation and rearrangement leads to the following expression for the OH 

concentration:  
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where [OH]t1-t2 is the OH radical concentration between time t1 and t2; [Reactant]t1 and 

[Reactant]t2 are the concentrations of reactants, i.e. vinyl ethers at time t1 and t2, 

respectively; k1 is the rate coefficient for the reaction of OH radicals with the 

reactants and k3 is the dark loss rate of the reactants.  

The product concentration is given by:  
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where [Producti]t1 and [Producti]t2 are the concentrations of Producti observed at time 

t1 and t2, respectively; k5 is rate coefficient of Producti with OH radical; k6 is the dark 

wall loss rate of Producti; Yt1- t2 is the formation yield of individual product over time 

period of t1-t2. Use of eq. (IV) and (V) allows the formation yield of the product Yt1- t2 

to be calculated. The corrected concentrations of Product i are then given by,  
 

[ ] [ ] [ ] [ ]( )1221 12 ttt-t
 corr.

ti
 corr.
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where [ ]  corr.
ti   Product 1  and [ ]  corr.

ti  2 Product   are the corrected product concen- 

trations at time t1 and t2, respectively.  

 

 

2.2.3.2 OH radical reaction 
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In order to understand the reaction mechanism in the presence and absence of NOx the 

photolysis of both nitrous acid (HONO) and hydrogen peroxide (H2O2) were used as 

the OH radical source for the product investigations. According to the method given 

in Appendix I, HONO, a NOx-containing OH radical source, was synthesized by 

adding a 1% NaNO2 aqueous solution dropwise into a flask containing 30% sulfuric 

acid [71]. The photolysis of HONO produces OH radicals and NO:  
 

       HONO   +   hν  (λ≤400 nm)  →  NO  +  OH        (2.12) 
 

The photolysis of H2O2 was shown in reaction 2.6.  

 

 

2.2.3.3 O3 reaction  
 

Two types of experiments were performed for product investigations on the 

ozonolysis of vinyl ethers: i) experiments in which an excess of cyclohexane was 

added to scavenge more than 95% of the OH radicals produced in the reaction and ii) 

experiments in which 1,3,5-trimethylbenzene (TMB) was added as a tracer for the OH 

radicals. Ozone was added step-wise to pre-mixed vinyl ether and cyclohexane or 

TMB in synthetic air.  

In the OH radical “tracer type” of experiment the product concentrations measured 

cannot be evaluated directly since the vinyl ether also reacts with the OH radicals and 

produces products which are also formed in the ozonolysis of the vinyl ether. Use of 

TMB as an OH tracer allows the OH radical concentration to be evaluated:  
 

Reactant  +  OH  →  Products, k1             (2.1) 

TMB (dark wall loss)  →  k7       (2.13) 

TMB  +  OH  →  products,  k8                  (2.14) 
 

The method of correction of the concentrations of the reactant and products due to OH 

radical reaction is the same as that used in the OH initiated oxidation of vinyl ether 

which is described above in detail. The amount of vinyl ether which reacts with OH 

radicals is given by:  
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where [ ] OH 
t t n1nReactantΔ −+  is the concentration of vinyl ether which consumed by OH 

radicals over time period of tn-tn+1; [Reactant]tn is the concentration of vinyl ether at 

time tn, k1 is the rate coefficient for the reaction of vinyl ether with OH radicals taken 

from kinetic studies; k7 is the dark loss rate of TMB and k8 is the rate coefficient for 

the reaction of OH with TMB (k8 = 5.67 × 10-11 cm3 molecule-1 s-1) [15], [TMB]tn and 

[TMB]tn+1 are the concentrations of TMB at time tn and tn+1, respectively.  

The total amount of OH radicals formed in the ozonolysis of vinyl ether between 

times tn and tn+1 is given by [52]: 
 

[ ] [ ] [ ]    ReactantΔOHOH
i

OH  
t t it t 
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t t n1nn1nn1n ∑ −−− +++ +=           (VIII) 

 

where [ ]total
t t n1nOH −+  is the total amount of OH radicals formed in the reaction of ozone 

with vinyl ether in the time interval tn+1-tn; [ ] n1n t t OH −+  is the OH radical concen- 

tration over time interval tn+1-tn; [ ] OH  
t t i n1n

ReactantΔ −+
 represents the concentration of 

each species that consumes OH radicals including the vinyl ether; tn and tn+1 are the 

reaction times. The concentrations calculated for each time interval tn+1-tn can then be 

added to give the total amount over the reaction time range.  

 

 

2.2.3.4 NO3 radical reaction  
 

The product studies on the reactions of the NO3 radical with the vinyl ethers were 

performed in a manner analogous to the NO3 kinetic studies, however, without 

addition of the reference compounds.  
 

 

2.2.4 Secondary organic aerosol (SOA) formation 
 

The SOA formation from the ozonolysis of PVE and BVE was measured in the 

presence of an excess of cyclohexane.  
 

 

2.2.4.1 Aerosol yield  
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In the present work the SOA formation yield, Y, is defined as the fraction of the 

reactant, i.e. vinyl ether, which is converted into aerosol:  
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where, ΔM0 is the total organic aerosol mass concentration resulting from the 

oxidation of a given reacted amount of reactant, Δ[Reactant].  

The oxidation of the vinyl ethers gives rise to many different products and the total 

concentration of any given product, Ci in both the gas and aerosol phases is given as: 
 

Ci = Gi + Ai                             (X) 
 

where, Gi is the concentration of species i in the gas-phase and Ai is that in the aerosol 

phase. So the total organic aerosol mass concentration ΔM0 can be expressed by: 
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If αi is a mass-based stoichiometric coefficient of species i, the total concentration of 

species i is also given by 

Ci = αi × Δ[Reactant]                      (XII) 

According to the gas/aerosol partition model proposed by Odum et al. [8] a 

semi-volatile compound can partition between the gas and aerosol phase, i.e. the 

compound resides in both the gas and aerosol phase. The partitioning between these 

two phases is described by the partitioning coefficient Ki:  
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where the M0 is the absorbing organic mass concentration.  

Combining equations (IX)-(XIII) leads to the following expression for the total 

aerosol yield from the vinyl ether: 
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From a fit of the SOA yield Y to the absorbing organic mass concentration M0, the 

parameters αi and Ki can be determined.  
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2.2.4.2 Experimental procedure  
  

All the experiments on the SOA formation from the ozonolysis of alkyl vinyl ethers 

were carried out in the 1080 l quartz chamber in synthetic air. Excess amounts of 

cyclohexane were introduced to trap the OH radical produced in the system. The vinyl 

ether and cyclohexane were first injected into the heated inlet and flushed into the 

evacuated reactor in a stream of synthetic air. The chamber was then pressurized to 

around 1000 mbar and infrared spectra were then recorded and the gas mixture was 

sampled using the SMPS system. The loss in pressure in the chamber due to sampling 

with the SMPS was compensated by an air flow. The reaction was initiated by 

introduction of a continuous flow of ozone to the pre-mixed vinyl ether/cyclohexane/ 

air mixtures.  

In all the experiments the FTIR was operated with 1 cm-1 resolution and a total of 30 

to 40 spectra were recorded. The SMPS instrument scan times were adjusted to match 

those of the FTIR.  

 

 

2.3 The dark reaction of vinyl ethers  
 

In the present studies when PVE, BVE, EGDVE and DEGDVE were admitted into 

the chamber, in addition to wall loss, dark decays of the compounds were observed 

accompanied by the formation of new bands in the IR spectra which could be 

assigned to acetaldehyde (CH3CHO) and an alcohol. Taking PVE as an example, the 

dark decay of PVE resulted in the formation of CH3CHO and propanol (C3H7OH). 

The dark product spectrum and reference spectra are shown in Figure 2.4.  

This process was not enhanced in the presence of light showing that photolytic losses 

of vinyl ethers are not important. The enhanced loss of the vinyl ethers at the walls is 

attributed to acid catalyzed hydrolysis, e.g. 
 

CH2=CH-O-C3H7 + H+  →  CH3CH+-O-C3H7                 (2.15) 

CH3CH+-O-C3H7 + H2O → CH3CHO + C3H7OH + H+              (2.16) 
 

The combined dark decay and wall loss was found to obey first order kinetics.  
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When EGMVE was introduced into the chamber, the product of the dark decay of this 

compound was found to be 2-methyl-1,3-dioxolane. Figure 2.5 shows the product 

spectrum and the reference spectrum of 2-methyl-1,3-dioxolane. This dark conversion 

is also attributed to acid catalyzed hydrolysis, via a five-member ring intermediate:  
 

 

HO

CH2H2C

O

H2C=HC

HO

CH2H2C

O+   H+

H3C-HC+

- H+
O

CH2H2C

O

C

CH3

H (2.17)

EGMVE 2-methyl-1,3-dioxolane  

 

 

Figure 2.4  Dark reaction of propyl vinyl ether (PVE) in the reaction chamber: (a) 

product spectrum obtained after introducing PVE into the chamber and leaving it 

to stand in the dark for 15 min; (b) reference spectrum of acetaldehyde; (c) 

reference spectrum of propanol and (d) residual spectrum of (a) after subtraction 

of (b) and (c) 
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Figure 2.5  Dark reaction of ethyleneglycol monovinyl ether (EGMVE) in the 

chamber: (a) product spectrum obtained after introducing EGMVE into the 

chamber and leaving to stand in the dark for 15 min; (b) reference spectrum of 

2-methyl-1,3-dioxolane 
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Chapter 3 

 

 

Kinetic Studies on the OH Radical, O3 

and NO3 Radical Initiated Oxidation of 

Selected Vinyl Ethers 
 

In order to assess the potential environmental impacts of vinyl ethers, a series of 

kinetic studies on the OH, O3 and NO3 initiated oxidation of PVE, BVE, EGMVE, 

EGDVE and DEGDVE have been conducted. All the kinetic measurements were 

carried out in the 405 l borosilicate glass chamber at the University of Wuppertal, 

Germany.  

 

 

3.1 Results and discussions  
 

3.1.1 OH radical reactions  
 

Kinetic experiments for the reactions of OH radical with selected vinyl ethers were 

performed at (298±3) K and (750±10) Torr total pressure of synthetic air. Typically, at 

least three experimental runs were performed for each reaction to test the reprodu- 

cibility of the results. The OH radical source and the reference compounds used in the 

OH kinetic studies are listed in Table 3.1.  

The initial concentrations of the vinyl ethers and the reference compound(s) were 
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approximately 5.0 ppm (1 ppm = 2.46 × 1013 molecule cm-3 at 298 K) and 4.9-5.5 ppm, 

respectively; those of CH3ONO, NO and H2O2 were 1.5-4.0 ppm, 9.8-19.8 ppm, and 

~20 ppm, respectively. The reactants were monitored in the infrared at the following 

wavenumbers (in cm-1): PVE at 965, 1211.2 and 3129; BVE at 3128.9 and 1614; 

EGMVE at 3131; EGDVE at 3127; isobutene at 890; isoprene at 893.4 and 905.9 and 

TMB at 836.  
 

 

Table 3.1 Measured rate coefficient ratios, k1/k2, and values of the rate coefficients k1 

(in cm3 molecule-1 s-1) for the reactions of OH radical with selected vinyl ethers 

obtained at 298 K in 750 Torr of synthetic air using the relative kinetic technique.  
 

 

Vinyl ether 

 

OH source 

 

Reference

 

k1/k2 

 

k1×1011 
Average 

k1×1011 

Isobutene 1.89±0.03 9.71±1.96 PVE, 

n-C3H7OCH=CH2 

 

CH3ONO+NO
Isoprene 0.95±0.02 9.75±1.00 

 

9.73±1.94

Isobutene 2.13±0.06 10.9±2.2 BVE, 

n-C4H9OCH=CH2 

 

CH3ONO+NO
Isoprene 1.14±0.04 11.5±2.4 

 

11.3±3.10

EGMVE 

HOCH2CH2OCH=CH2 

 

H2O2 
 

TMB 
 

1.83±0.05
 

10.4±2.15 
 

10.4±2.15

CH3ONO+NO TMB 2.04±0.07 11.6±2.45 

TMB 2.28±0.05 12.9±2.65 

 

EGDVE 

H2C=CHOCH2CH2O- 

CH=CH2 

 

H2O2 
Isoprene 1.24±0.05 12.5±2.56 

 

12.3±3.25

 

Isobutene
 

2.78±0.10
 

14.3±2.90 
DEGDVE 

H2C=CHOCH2CH2O- 

CH2CH2OCH=CH2 

 

CH3ONO+NO
Isoprene 1.41±0.04 14.2±2.88 

 

 

14.2±3.00

Ethene 1.26±0.04 1.07±0.23 2-methyl-1,3-dioxolane 

O O

 

 

H2O2 
Propene 0.39±0.01 1.03±0.21 

 

 

1.05±0.25

 

 

Apart from EGMVE all the rate coefficients for the OH radical reactions with the 

vinyl ethers were determined using two reference compounds. In the kinetic study of 
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OH + EGDVE, both CH3ONO and H2O2 were used as radical sources to check for 

possible influences of the OH radical source on the kinetics. 

In addition to the vinyl ethers, a kinetic study on the reaction of OH with 2-methyl- 

1,3-dioxolane was also performed. This compound is a product formed in the dark 

wall decay of EGMVE (see Section 2.3). The measurements were made relative to 

ethene and propene using H2O2 as the OH radical source (see Table 3.1).  

Examples of the kinetic data, plotted according to eq. (I), for all the vinyl ethers 

investigated and 2-methyl-1,3-dioxolane are shown in Figures 3.1 to 3.6.  

Good linear relationships were generally found for all the vinyl ethers and 2-methyl- 

1,3-dioxolane with the different reference compounds and OH radical sources. The 

data plots for EGMVE showed more scatter than those for the other compounds. This 

arises from the relatively fast dark reaction of EGMVE, which makes a large 

contribution to the overall decay of EGMVE and thus the uncertainty in the decay.  

The rate coefficient ratios k1/k2, obtained from the experiments at 298 K are listed in 

Table 3.1. The rate coefficients, k1, determined for the reaction of OH with PVE, BVE, 

EGMVE, EGDVE and DEGDVE, were put on an absolute basis using the following 

values of k2: k2(isobutene, 298 K) = 5.14 × 10-11, k2(isoprene, 298 K) = 1.01 × 10-10 

and k2(TMB, 298 K) = 5.67 × 10-11 cm3 molecule-1 s-1 [72]. 

 

Figure 3.1  Plots of the kinetic data according to eq. (I) for the gas-phase 

reaction of OH radical with propyl vinyl ether (PVE).  
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Figure 3.2  Plots of the kinetic data according to eq. (I) for the gas-phase reaction 

of OH radical with butyl vinyl ether (BVE). 

 

Figure 3.3  Plots of the kinetic data according to eq. (I) for the gas-phase 

reaction of OH radical with ethyleneglycol monovinyl ether (EGMVE).  
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Figure 3.5  Plots of the kinetic data according to eq. (I) for the gas-phase reaction 

of OH radical with diethyleneglycol divinyl ether (DEGDVE). 

 

Figure 3.4  Plots of the kinetic data according to eq. (I) for the gas-phase reaction 

of OH radical with ethyleneglycol divinyl ether (EGDVE). The data for TMB/ 

CH3ONO has been offset by 0.2 on the y-axis for clarity. 
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The corrections to the data for dark losses of the vinyl ethers were approximately: 

10% for PVE and BVE, 40% for EGMVE and 15% for EGDVE and DEGDVE. No 

evidence for photolysis of the vinyl ethers was found with either the visible 

fluorescence lamps or the UV lamps. The quoted errors are a combination of the least 

squares standard 2σ deviations plus an additional 20% to cover uncertainties in the 

values of the rate coefficients of the reference compounds.  

As can be seen in Table 3.1, there is excellent agreement between the values obtained 

using the different reference compounds and also the different OH radical sources. We, 

therefore, prefer to quote rate coefficients for the reactions of OH with the vinyl ethers 

that are averages of the determinations obtained using either the different reference 

compounds or different OH radical sources. Averaging the values of the rate 

coefficients and taking errors that encompass the extremes of the determinations for 

each reaction gives rate coefficients (in cm3 molecule-1 s-1 units) at 298K of:  
 

k1(OH+PVE) = (9.73±1.94) × 10-11, 

k1(OH+BVE) = (11.3±3.1) × 10-11, 

k1(OH+EGMVE) = (10.4±2.15) × 10-11, 

 

Figure 3.6  Plots of the kinetic data according to eq. (I) for the gas-phase 

reaction of OH radical with 2-methyl-1,3-dioxolane. 
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k1(OH+EGDVE) = (12.3±3.25) × 10-11, 

and k1(OH+DEGDVE) = (14.2±3.00) × 10-11 

 

These values are listed in Table 3.2 where they are compared with the available 

literature kinetic data on vinyl ethers.  

From Table 3.2 it is obvious that the rate coefficients for the reaction of OH with PVE 

and BVE measured in this study are in excellent agreement with the values reported 

by Mellouki and coworkers [51,56], which were obtained using pulsed laser 

photolysis-laser induced fluorescence (PLP-LIF) and also a relative kinetic technique. 
 

 

Table 3.2 Comparison of the rate coefficients (in cm3 molecule-1 s-1) measured in the 

present work at 298 K for the reactions of OH with selected vinyl ethers with values 

reported in the literature at the same temperature.  

 

Vinyl ether k×1011 Technique References 

 

MVE,  

CH3OCH=CH2 

3.35±0.34 

4.5±0.7  

6.4  

FP-RF i) 

Relative Rate  

SAR-estimation  

Perry et al. [47]  

Mellouki [51] 

Grosjean and Williams [49]

 

EVE,  

C2H5OCH=CH2 

6.8±0.7  

7.3±0.9  

7.79±1.71 

5.51±0.13 

PLP-LIF ii) 

Relative Rate  

Relative Rate 

Relative Rate  

Mellouki et al. [50,51] 

Mellouki et al. [50,51] 

Zhou et al. [53] 

Al Mulla [55] 

 

PVE,  

C3H7OCH=CH2 

10±1  

11±1 

9.73±1.94 

11.5±0.4 

PLP-LIF ii) 

Relative Rate 

Relative Rate 

Relative Rate 

Mellouki et al. [51,56] 

Mellouki [51] 

This work 

Al Mulla [55] 

 

BVE, 

n-C4H9OCH=CH2 

10±1  

11±1 

11.3±3.1 

16.3±2.8 

PLP-LIF ii) 

Relative Rate 

Relative Rate 

Relative Rate 

Mellouki et al. [51,56]  

Mellouki [51] 

This work 

Al Mulla [55] 

 

iBVE, 

i-C4H9OCH=CH2 

11±1  

11±1 

10.8±2.3 

15.9±5.3 

PLP-LIF ii) 

Relative Rate 

Relative Rate 

Relative Rate 

Mellouki et al. [51,56]  

Mellouki [51] 

Barnes et al. [48] 

Al Mulla [55] 
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tBVE, 

t-C4H9OCH=CH2 

11±1 

11±1 

12.5±3.2 

25.2±1.8 

PLP-LIF ii) 

Relative Rate 

Relative Rate  

Relative Rate 

Mellouki et al. [51,56]  

Mellouki [51] 

Barnes et al. [48] 

Al Mulla [55] 

EGMVE 

HOCH2CH2OCH=CH2 

10.4±2.15 Relative Rate This work 

EGDVE 

H2C=CHOCH2CH2O- 

CH=CH2 

 

12.3±3.25 

 

Relative Rate 

 

This work 

DEGDVE 

H2C=CHOCH2CH2O- 

CH2CH2OCH=CH2 

 

14.2±3.00 

 

Relative Rate 

 

This work 

 

i) flash photolysis – resonance fluorescence (FP-RF), Arrhenius expressions for the 

temperature range 299-427 K are reported; ii) pulsed laser photolysis – laser induced 

fluorescence (PLP- LIF); Arrhenius expressions for the temperature range 230-373 K 

are reported. 

 

 

Recently, Al Mulla [55] has reported rate coefficients for the OH radical reaction with 

a series of alkyl vinyl ethers determined with the relative kinetic technique, where 

only the result for OH with PVE is in good agreement with those of Mellouki [51,56] 

and the present study. The result from Al Mulla [55] for OH with EVE is lower than 

the determinations reported by Zhou et al. [53] and Mellouki et al. [50,51]; for OH 

with BVE and iBVE the values are higher than other determinations although they 

agree, in part, within the combined quoted errors. The rate coefficient for the reaction 

of OH with tBVE obtained by Al Mulla is higher than other measurements by a factor 

of two. The reason for such a large discrepancy is presently not known.  

The value of 6.4 × 10-11 cm3 molecule-1 s-1 estimated by Grosjean and Williams [49] 

from structure-activity-relationships (SAR) and linear free-energy relationships 

(LFER) for the reaction of OH with MVE, is substantially higher than the two 

experimentally determined values [47,51]. The rate coefficients for the reaction of OH 

with MVE obtained by Perry et al. [47] and Mellouki [51] are in fair agreement when 

account is taken of the errors quoted by the authors.  

Table 3.3 compares the rate coefficients for reactions the OH radical with alkyl vinyl 
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ethers and those for OH reactions with simple ethers, alkenes and unsaturated 

carbonyls.  

In Table 3.3 it can be seen that there is an increase in the rate coefficients for the 

reaction of OH with vinyl ethers on progressing from MVE through EVE, PVE to 

BVE, and thereafter the rate coefficients for iBVE and tBVE are indistinguishable 

from that of BVE.  

The rate coefficients for the OH radical initiated oxidation of simple ethers (ROR, R = 

alkyl group) and alkenes show similar reaction trends with the exception of the 

compounds containing the tert-butyl group (see Table 3.3). The rates for the reactions 

of OH radicals with alkyl vinyl ethers are higher than those of OH with simple ethers 

and significantly higher than those of OH with the corresponding alkenes. As 

discussed by Mellouki and coworkers [50,51] the kinetic evidence supports that the 

alkoxy groups, -OR, in the alkyl vinyl ethers activate the double bond towards 

electrophilic addition by OH more than alkyl groups, -R. Whereas the rate coefficients 

for the reaction of OH with alkenes do not seem to be influenced very much by the 

nature of the R group (k(OH+alkene) ≈ 3 ×10-11 cm3 molecule-1 s-1 for R = CH3 to C4H9), 

those of OH with alkyl vinyl ethers increase from approximately 4×10-11 for R = 

CH3O- to 1.1×10-10 cm3 molecule-1 s-1 for R = CH3CH2CH2CH2O-. However, based 

on the values reported by Barnes et al. [48], Zhou et al. [53] and Mellouki et al. 

[50,51], it would appear that for alkoxy chains longer than C4 the electron donating 

influence of the -OR group on the double bond towards electrophilic addition of OH 

radicals has reached a limiting value.  

The effect of the -OR group entity on the reactivity of the double bound toward OH 

addition can also be compared with that of other oxygenated entities, i.e. a vinyl 

carbonyl (CH2=CH-CO-R), a vinyl ester grouping (CH2=CH-OC(O)R), and an alkyl 

acrylate grouping (CH2=CH-C(O)OR), where R is an H atom or alkyl group.  

There is not presently a large database for these types of oxygenated compounds, but 

from the data that are available in the literatures [15,72-77], which are also listed in 

Table 3.3, it can be seen that the rate coefficients for acrolein (CH2=CHC(O)H), 

methacrolein (CH2=C(CH3)C(O)H), methyl vinyl ketone (CH2=CHC(O)CH3), vinyl 

acetate (CH2=CHO(O)CCH3) and methyl acrylate (CH2=CH-C(O)OCH3) with OH 

radicals are somewhat lower than those of the corresponding alkenes, propene, 

1-butene and hence lower than those of the corresponding alkyl vinyl ethers.
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Table 3.3  Comparison of the rate coefficients (in cm3 molecule-1 s-1) for the reactions of OH with alkyl vinyl ethers with values reported 

in the literature for ethers, alkenes and unsaturated carboxylic compounds at the same temperature. 
 

Vinyl ether (k×1011) Ether (k×1011) Alkene (k×1011) Unsaturated carbonyl (k×1011)

MVE 

CH3OCH=CH2 

 

3.9a)
Methylethylether 

CH3OCH2CH3 

0.69d) 

0.82k) 

Propene 

CH3CH=CH2 

 

2.63f)
Acrolein 

H(O)CCH=CH2 

 

1.96h) 

EVE 

C2H5OCH=CH2 

 

7.3 a)
Diethylether 

CH3CH2OCH2CH3 

1.31e) 

1.36 k) 

1-Butene 

C2H5CH=CH2 

 

3.14 f)
Methacrolein 

H(O)CC(CH3)=CH2 

 

2.85 h) 

PVE 

n-C3H7OCH=CH2 

 

10.2b)
Ethyl-n-propyl ether

n-C3H7OCH2CH3 

 

1.77 k) 
1-Pentene 

n-C3H7CH=CH2 

 

3.14 f)
Methyl vinyl ketone 

CH3C(O)CH=CH2 

 

1.88i) 

BVE 

n-C4H9OCH=CH2 

 

11.5 b)
Ethyl-n-butyl ether 

n-C4H9OCH2CH3 

2.13 e) 

2.03 k) 

1-Hexene 

n-C4H9CH=CH2 

 

3.7 f) 
Vinyl acetate 

CH3C(O)OCH=CH2 

 

2.04j) 

iBVE 

i-C4H9OCH=CH2 

 

10.9c)
Ethyl-i-butyl ether 

i-C4H9OCH2CH3 

 

2.03 k) 
4-Methyl-1-pentene 

i-C4H9CH=CH2 

 

3.8g) 
Methyl acrylate 

CH3O(O)CCH=CH2 

 

2.5l) 

tBVE 

t-C4H9OCH=CH2 

 

11.5 c)
Ethyl-t-butylether 

t-C4H9OCH2CH3 

0.88 e) 

0.86 k) 

3,3-Dimethyl-1-butene

t-C4H9CH=CH2 

 

2.8 f) 
  

 

a) Data taken as an average of the experimental determinations of Perry et al. [47] and Mellouki [51];  b) Data taken as an average of the values 

determined in the present work and that reported by Mellouki [51];  c) Data taken as an average of the values determined by Barnes et al. [48] and 

that reported by Mellouki [51];  d) Data taken from Starkey et al. [76];  e) Data taken from Atkinson [1];  f) Data taken from Atkinson and Arey 

[15];  g) Data taken from Kwok et al. [77];  h) Data taken from Atkinson [78];  i) Data taken from Atkinson et al. [79];  j) Data taken from Al 

Mulla [55];  k) Estimated values from Structure-Activity-Relationships using the group rate constants assumed by Mellouki et al. [16].  l) Data 

taken from Saunders et al. [73].  
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A deactivating effect on the rate of electrophilic OH addition to the double bond from 

the -C(O)R, -OC(O)R and -C(O)OR constellations is to be expected because of the 

negative inductive effect introduced by the carbonyl functionality. In the case of vinyl 

aldehyde the decrease in the reactivity of the double bond is offset to some extend by 

H-atom abstraction of the aldehydic hydrogen. The meager kinetic dataset presently 

available on these types of oxygenates does not warrant a more detailed comparison at 

this time.  

In the OH radical reaction, apart from OH addition to the double bond, H-atom 

abstraction by the OH radical may occur. In Table 3.4 the rate coefficients for the 

overall reactions of OH with alkyl vinyl ethers and the corresponding alkenes are 

compared with the partial rate coefficients for H-atom abstraction from the alkyl 

groups.  

Though there is no similar trend in the H-abstraction from vinyl ethers and alkenes it 

is obvious that for MVE, tBVE, propene and 1-butene that the OH radical reactions 

proceed essentially by OH addition to the carbon-carbon double bond under 

atmospheric conditions, with H-atom abstraction from the alkyl groups accounting for 

less than 5% of the overall reaction at room temperature. For the other alkyl vinyl 

ethers from EVE to iBVE and the alkenes from 1-pentene to 3,3-dimethyl-1-butene 

the rate data show that H-atom abstraction accounts for between 10-17% of the total 

reaction at room temperature. However, as presented in Chapter 4, in the product 

study of the OH radical reaction with PVE and BVE no evidence was found for 

products resulting from the H-atom abstraction channel. 

To the best of my knowledge there are no other experimentally determined rate 

coefficients for the reactions of OH with ethyleneglycol vinyl ethers presently 

available in the literature with which the values determined in this work can be 

compared.  

A number of rate coefficients have been reported for the reactions of OH with 

unsaturated alcohols [81-83]. Papagni et al. [81] have established that the rate 

coefficients for the reactions of OH with the unsaturated alcohols are larger than those 

of OH with the corresponding alkenes by factors of between 1.6 to 2.1, which is 

somewhat larger than the constituent group factor of 1.6 for -CH2OH recommended 

by Kwok and Atkinson [77]. Recently Imamura et al. [82] have reported constituent 

factors for -CH2OH and -CH2CH2OH which are consistent with those of Papagni et al. 

[81].  
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Table 3.4 Comparison of the overall rate coefficients (at 298 K, in units of cm3 

molecule-1 s-1) for the reactions of OH with vinyl ethers and analogous alkenes with 

the rate coefficients estimated for H-atom abstraction from the alkyl groups in the 

compounds.  

 

Vinyl ether (k×1011) Alkene (k×1011) 

 Overall  

rate a) 

Abstraction 

rate b) 

 Overall  

rate 

Abstraction 

rate c) 

MVE 

CH3OCH=CH2 

 

3.9 
 

0.14 
Propene 

CH3CH=CH2 

 

2.63 d) 
 

0.014 

EVE 

C2H5OCH=CH2 

 

7.3 
 

0.68 
1-Butene 

C2H5CH=CH2 

 

3.14 d) 
 

0.11 

PVE 

n-C3H7OCH=CH2 

 

10.2 
 

1.1 
1-Pentene 

n-C3H7CH=CH2 

 

3.14 d) 
 

0.25 

BVE 

n-C4H9OCH=CH2 

 

11.5 
 

1.4 
1-Hexene 

n-C4H9CH=CH2 

 

3.7 d) 
 

0.39 

iBVE 

i-C4H9OCH=CH2 

 

10.9 
 

1.3 
4-Methyl-1-pentene 

i-C4H9CH=CH2 

 

3.8 c) 
 

0.39 

tBVE 

t-C4H9OCH=CH2 

 

11.5 
 

0.2 
3,3-Dimethyl-1-butene

t-C4H9CH=CH2 

 

2.8 d) 
 

0.50 

 
a) Data from Table 3.3;  b) Data taken from Mellouki et al. [16] assuming that the -OCH=CH2 

group has the same substituted factor as a simple ether -OR (R=alkyl);  c) Estimated from 

structure-activity-relationships given in Kwok et al. [77];  d) Data taken from Atkinson and 

Arey [15].  

 

 

EGMVE (CH2=CHOCH2CH2OH) is structurally very similar to EVE (CH2=CHO- 

CH2CH3); the only difference being substitution of one of the methyl H-atoms in the 

-CH2CH3 group of EVE by an -OH group. The rate coefficient for the reaction of OH 

with EGMVE (see Table 3.2) is about a factor of 1.4 higher than that of OH with 

EVE.  

This enhancement, although somewhat lower than the enhancement factors of 1.6-2.1 
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observed for the unsaturated alcohols compared to the structurally analogous alkenes, 

indicates that substitution of the OH group on the alkyl group of EVE has enhanced 

the rate coefficient of the OH reaction.  

Unfortunately there are no other rate coefficients for -OH group substituted alkyl 

vinyl ethers available to validate this single observation. However, since EGMVE, 

alkyl vinyl ethers, unsaturated alcohols and alkenes all react with OH by a similar 

reaction mechanism, i.e. OH radical addition to the carbon-carbon double bond in the 

compounds, it seems reasonable to assume that the rate coefficients for the reactions 

of OH radical with -OH group substituted alkyl vinyl ethers will be enhanced 

compared to those of the structurally analogous alkyl vinyl ethers.  

Table 3.5 lists the rate coefficients for the OH radical reactions with ethyleneglycol 

vinyl ethers, diethers, some structurally similar unsaturated oxygenates and the 

estimated rate coefficients for H-atom abstraction from the -OCH2CH2O-R (R = H or 

alkyl) groups in the ethyleneglycol vinyl ethers obtained using the structure-activity- 

relationship recommended by Mellouki et al. [16].  

As was observed for the alkyl vinyl ethers the rate coefficients for the reactions of OH 

with EGMVE, EGDVE and DEGDVE are significantly higher than those of diethers 

and higher than those of 3-buten-1-ol, 1,4-pentadiene and 1,5-hexadiene, respectively. 

This demonstrates that the ether group neighboring the double bond activates the 

reactivity towards OH radical reaction. The rate coefficient for the reactions of OH 

with EGDVE is higher than that of OH with EGMVE, which is to be expected since 

EGDVE contains two carbon-carbon double bonds. However, the rate coefficient for 

the reaction of OH with EGDVE is higher than that of OH with EGMVE by only 

1.9×10-11 cm3 molecule-1 s-1; this difference is much less than what one would predict 

for the addition of a second double bond entity using SAR and is seen in the trends for 

mono-alkenes and dialkenes where the rate coefficients of the OH radical reactions 

with 1,4-pentadiene and 1,5-hexadiene are almost twice those of propene and 

1-butene (see Tables 3.4 and 3.5), respectively.  

Interestingly, the rate coefficient for DEGDVE is higher than that of EGDVE by 

1.9×10-11 cm3 molecule-1 s-1, which is almost the calculated difference in the H-atom 

abstraction contributions for DEGDVE and EGDVE caused by the additional 

-CH2CH2- group. Until more information for kinetic and product studies on this type 

of compounds becomes available further speculation is unwarranted.  
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Table 3.5  Comparison of the rate coefficients (in cm3 molecule-1 s-1) for the reactions of OH with ethyleneglycol vinyl ethers with 

values reported in the literature for diethers, unsaturated organic compounds and that for OH abstraction from alkyl group in vinyl ethers 

at the same temperature. 

 

 

Vinyl ether (k×1011) a) 

 

Diether (k×1011) b) 
Unsaturated organics 

(k×1011) 

Estimated H-atom abstraction 

rate (k×1011) e) 

EGMVE 

HOCH2CH2OCH=CH2 

 

10.4 

1,2-Dimethoxyethane 

CH3O(CH2)2OCH3 

 

2.7

3-Buten-1-ol 

HOCH2CH2CH=CH2 

 

5.5 c)

EGMVE 

HOCH2CH2OCH=CH2

 

1.4 

EGDVE 

H2C=CHOCH2CH2O- 

CH=CH2 

 

12.3 

 

1,3-Dimethoxypropane

CH3O(CH2)3OCH3 

 

5.1

 

1,4-Pentadiene 

CH2=CHCH2CH=CH2

 

5.3 d)

EGDVE 

H2C=CHOCH2CH2O- 

CH=CH2 

 

1.9 

DEGDVE 

H2C=CHOCH2CH2O- 

CH2CH2OCH=CH2 

 

14.2 

 

1,4-Dimethoxybutane 

CH3O(CH2)4OCH3 

 

3.0

1,5-Hexadiene 

CH2=CHCH2CH2- 

CH=CH2 

 

6.2 d)

DEGDVE 

H2C=CHOCH2CH2O- 

CH2CH2OCH=CH2 

 

3.9 

 
a) This work;  b) Data taken from Moriarty et al. [80];  c) Data taken from Imamura et al. [82];  d) Data taken from Al Mulla [55];   

e) Estimated from structure-activity-relationships given in Mellouki et al. [16] 
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Compared to alkyl vinyl ethers, H-atom abstraction from ethyleneglycol vinyl ethers 

will occur to a significant extent (see Table 3.4 and 3.5), with this process accounting 

for between 14-27% of the overall OH radical reactions with the ethyleneglycol vinyl 

ethers.  

Using 1-hexanol as a reference compound Stemmler et al. [84] have determined the 

rate coefficient for the reaction of the OH radical with 2-methyl-1,3-dioxolane. Their 

result of 9.4×10-12 cm3 molecule-1 s-1 is in good agreement with the value of (1.05± 

0.25) ×10-11 cm3 molecule-1 s-1 (see Table 3.1) determined in the present work.  

 

 

3.1.2 O3 reactions  
 

All the experiments on the reactions of O3 with the selected vinyl ethers were carried 

out at (298±3) K and (740±10) Torr total pressure of synthetic air. For each reaction at 

least three experimental runs were performed. The reference compound(s) employed 

in the experiments are listed in Table 3.6.  

Rate coefficients for the ozonolysis of PVE, BVE, EGMVE, EGDVE and DEGDVE 

were determined relative to cyclohexene and/or trans-2-butene in the presence of an 

excess of cyclohexane to scavenge more than 95% of OH radicals produced in the 

reaction systems.  

The initial concentrations used in the ozonolysis experiments were: vinyl ethers 

2.7-5.5 ppm; reference compound(s) 3.8-7.3 ppm; O3 1.0-1.8 ppm; cyclohexane 290 

ppm.  

The reactants were monitored at the following wavenumbers (in cm-1): PVE at 965, 

1211.2 and 3129; BVE at 3128.9 and 1614; EGMVE at 1622.2; EGDVE at 1619.7; 

DEGDVE at 1617.2; cyclohexene at 1139.7; trans-2-butene at 962.7 and 973.8.  

Figures 3.7 to 3.11 show examples of the kinetic data plotted according to eq. (I) for 

all the vinyl ethers investigated.  

The rate coefficient ratios, k1/k2, obtained from these plots are listed in Table 3.6 and 

have been used in combination with k2(cyclohexene) = 8.1 × 10-17 and k2(trans-2- 

butene) = 1.9 × 10-16 cm3 molecule-1 s-1 [72] to put the rate coefficients for the 

reactions of O3 with the vinyl ethers on an absolute basis. This results in rate 

coefficients for the ozonolysis of PVE, BVE, EGMVE, EGDVE and DEGDVE (in 



Chapter 3 

 44 

units of cm3 molecule-1 s-1) of: 

 

k1 (O3+PVE) = (2.34±0.48) × 10-16, 

k1 (O3+BVE) = (2.59±0.52) × 10-16, 

k1 (O3+EGMVE) = (2.02±0.41) × 10-16, 

k1 (O3+EGDVE) = (1.69±0.41) × 10-16, 

 and k1 (O3+DEGDVE) = (2.70±0.56) × 10-16 

 

 

Table 3.6 Measured rate coefficient ratios, k1/k2, and rate coefficients k1 (in cm3 

molecule-1 s-1) for the reactions of O3 with PVE, BVE, EGMVE, EGDVE and 

DEGDVE obtained in present work at 298 K using the relative kinetic technique.  
 

Vinyl ether Reference k1/k2 k1×1016 Average 

k1×1016 

PVE, 

n-C3H7OCH=CH2 

 

Cyclohexene 
 

2.89±0.15 
 

2.34±0.48 
 

2.34±0.48 

BVE, 

n-C4H9OCH=CH2 

 

Cyclohexene 
 

3.20±0.10 
 

2.59±0.52 
 

2.59±0.52 

EGMVE 

HOCH2CH2OCH=CH2 

 

Cyclohexene 
 

2.49±0.10 
 

2.02±0.41 
 

2.02±0.41 

Cyclohexene 2.01±0.06 1.63±0.33 EGDVE 

H2C=CHOCH2CH2OCH=CH2 Trans-2-butene 0.92±0.02 1.75±0.35 

 

1.69±0.41 

DEGDVE 

H2C=CHOCH2CH2O- 

CH2CH2OCH=CH2 

 

Trans-2-butene
 

1.42±0.07 
 

2.70±0.56 
 

2.70±0.56 

 

 

Corrections to the kinetic data for dark wall loss and dark reaction of the vinyl ethers 

were of the order of approximately 5% for PVE and BVE, 30-40% for EGMVE and 

10-15% for EGDVE and DEGDVE. The quoted errors are again the combination of 

the least squares standard 2σ deviations plus an additional 20% for uncertainties in the 

value of the rate coefficient for the reference(s). 
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Figure 3.7  Plot of the kinetic data according to eq. (I) for the gas-phase reaction 

of O3 with propyl vinyl ether (PVE).  

 

Figure 3.8  Plot of the kinetic data according to eq. (I) for the gas-phase reaction 

of O3 with butyl vinyl ether (BVE).  
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Figure 3.10  Plots of the kinetic data according to eq. (I) for the gas-phase reaction 

of O3 with ethyleneglycol divinyl ether (EGDVE). 

 

Figure 3.9  Plot of the kinetic data according to eq. (I) for the gas-phase reaction 

of O3 with ethyleneglycol monovinyl ether (EGMVE). 
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The rate coefficients determined in this work for the reactions of ozone with alkyl 

vinyl ethers are compared with literature values in Table 3.7. The rate coefficients 

determined in the present work for the O3 reactions with PVE and BVE and those 

measured by Barnes et al. [48] for the ozonolysis of iBVE and tBVE are in excellent 

agreement with the values determined by Mellouki and co-workers [50,51] from a 

best fit to concentration-time profiles measured in the EUPHORE chamber facility in 

Valencia, Spain (see Table 3.7). Using a pseudo-first-order kinetic method Grosjean 

and Grosjean [59] have determined a rate coefficient for the reaction of O3 with EVE 

of (1.54±0.3) × 10-16 cm3 molecule-1 s-1 which is somewhat lower than the value 

determined by Thiault et al. [50] and Zhou et al. [53]. The value of Grosjean and 

Grosjean, however, does agree within the combined reported error limits of the other 

studies.  

As seen in Table 3.7, using both a relative and absolute kinetic method, the rate 

coefficients measured by Al Mulla [55] for the ozonolysis of PVE and BVE are 

consistent with those from this work and the reported values of Mellouki [51].  

 

 

Figure 3.11  Plot of the kinetic data according to eq. (I) for the gas-phase 

reaction of O3 with diethyleneglycol divinyl ether (DEGDVE).  
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Table 3.7 Comparison of the rate coefficients (in cm3 molecule-1 s-1) measured in the 

present work at 298 K for the reactions of O3 with selected vinyl ethers with values 

reported in the literature at the same temperature. 
 

Vinyl ether k×1016 Technique References 

 

EVE,  

C2H5OCH=CH2 

2.0±0.2 

1.54±0.3

2.06±0.42

1.3 

Concentration fit 

p-f-o kinetics i) 

Relative 

Relative and Absolute ii)

Thiault et al. [50] 

Grosjean and Grosjean [59]

Zhou et al. [53] 

Al Mulla [55] 
 

PVE,  

C3H7OCH=CH2 

2.4±0.4 

2.34±0.48

2.4 

Concentration fit 

Relative Rate 

Relative and Absolute ii)

Mellouki [51] 

This work 

Al Mulla [55] 
 

BVE, 

n-C4H9OCH=CH2 

2.9±0.2 

2.59±0.52

2.3 

Concentration fit 

Relative Rate 

Relative and Absolute ii)

Mellouki [51]  

This work 

Al Mulla [55] 
 

iBVE, 

i-C4H9OCH=CH2 

3.1±0.2 

2.85±0.62

2.3 

Concentration fit 

Relative Rate 

Relative and Absolute ii)

Mellouki [51]  

Barnes et al. [48] 

Al Mulla [55] 
 

tBVE, 

t-C4H9OCH=CH2 

5.0±0.5 

5.30±1.07

2.4 

Concentration fit 

Relative Rate 

Relative and Absolute ii)

Mellouki [51]  

Barnes et al. [48] 

Al Mulla [55] 

EGMVE 

HOCH2CH2OCH=CH2 

 

2.02±0.41
 

Relative Rate 
 

This work 

EGDVE 

H2C=CHOCH2CH2O- 

CH=CH2 

1.69±0.41
 

5.4 

Relative Rate 
 

Relative and Absolute ii)

This work 
 

Al Mulla [55] 

DEGDVE 

H2C=CHOCH2CH2O- 

CH2CH2OCH=CH2 

 

2.70±0.56

 

Relative Rate 

 

This work 

 
i) pseudo-first-order kinetic; ii) Absolute determination in a static system using chemilumine- 

scence analysis to monitor the ozone decay in the presence of an excess of the vinyl ether 
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However, the value for EVE, iBVE and tBVE obtained by Al Mulla [55] are 

significantly lower than those determined by Barnes et al. [48] and Mellouki and 

co-workers [50,51]. 

To measure the rate coefficient for the ozone reaction with EGDVE two different 

reference compounds were used in the present work. The results from these two 

reference compounds are in good agreement (see Table 3.6). The rate coefficient for 

the ozonolysis of EGDVE determined by Al Mulla is higher than this work by a factor 

of about 3. As for the discrepancies which exist between this study and that of Al 

Mulla for the OH radical kinetic measurements the reasons for the discrepancies in the 

ozone kinetic studies are also unknown.  

Table 3.8 compares the rate coefficients for the reactions of ozone with alkyl vinyl 

ethers, with those of the corresponding alkenes and other unsaturated oxygenated 

organic compounds.  
 

 

Table 3.8  Comparison of the rate coefficients (in cm3 molecule-1 s-1) for the 

reactions of O3 with alkyl vinyl ethers with values reported in the literature for 

corresponding alkenes and unsaturated carbonyls. 
 

Vinyl ether (k×1016) a Alkene (k×1017) b Unsaturated carbonyls (k×1018)

EVE 

C2H5OCH=CH2 

 

2.06 
1-Butene 

C2H5CH=CH2 

 

0.96 
Acrolein 

H(O)CCH=CH2 

 

0.28 d 

PVE 

n-C3H7OCH=CH2 

 

2.34 
1-Pentene 

n-C3H7CH=CH2 

 

1.06 
Methacrolein 

H(O)CC(CH3)=CH2 

 

1.12 d 

BVE 

n-C4H9OCH=CH2 

 

2.59 
1-Hexene 

n-C4H9CH=CH2 

 

1.13 
Methyl vinyl ketone 

CH3C(O)CH=CH2 

 

4.77 d 

iBVE 

i-C4H9OCH=CH2 

 

2.85 
4-Methyl-1-pentene 

i-C4H9CH=CH2 

 

1.00 
Vinyl acetate 

CH3C(O)OCH=CH2 

 

2.9 e 

tBVE 

t-C4H9OCH=CH2 

 

5.30 
3,3-Dimethyl-1-butene

t-C4H9CH=CH2 

 

0.39 c
Methyl acrylate 

CH3O(O)CCH=CH2 

 

2.92 e 

 

a) Data for PVE and BVE taken from this work and those for iBVE and tBVE taken from 

Barnes et al. [48];  b) Data taken from Atkinson and Arey [15];  c) Data was given at 285 K;  

d) Data taken from Atkinson et al. [85];  e) Data taken from Grosjean et al. [86]   
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Although in the ozonolysis of alkyl vinyl ethers there is a tendency towards higher 

rate coefficients with increase in the carbon chain length with EVE<PVE<BVE< 

iBVE<tBVE, the increase from EVE to BVE is much less pronounced than that 

observed for the reactions of OH radicals with the alkyl vinyl ethers. As can be seen 

from Table 3.8 a very similar reactivity pattern has been observed for the reactions of 

ozone with the corresponding alkenes from 1-butene to 1-hexene [15], however, the 

rate coefficients for the ozonolysis of the alkyl vinyl ethers are much higher than 

those of the corresponding alkenes by factors of more than 20. This again reflects the 

strong electron donating effect of alkoxy groups, RO-, to the carbon-carbon double 

bond, which facilities the electrophilic addition of ozone to the double bond.  

The much higher rate coefficient for the reaction of tBVE with ozone could be 

explained by the stronger electron donating effect of the (CH3)3CO- group compared 

to other alkyl groups. However, from Table 3.8 it is evident that this is not true for the 

corresponding alkenes where the rate coefficients for the ozonolysis drop off on 

proceeding from 1-hexene via 4-methyl-1-petene to 3,3-dimethyl-1-butene. This can 

not be explained by simple electronic arguments since the more branched group will 

improve the stabilization of the radical character developing in the transition state. 

From a steric view of point, however, for the highly branched compound the steric 

effects hinder the approach of ozone towards the reactive double bond of the alkene 

which results in a lowering of the rate coefficient. In tBVE the extra O atom between 

the double bond and the tertiary butyl group lessens the steric hinderance and thus a 

higher reactivity is observed.  

The rate coefficient for the ozonolysis of tBVE measured by Al Mulla [55] is lower 

than that reported by Barnes et al. [48] and Mellouki [51] by a factor of 2. It has to be 

noted that in his relative rate measurement of the ozonolysis of tBVE, Al Mulla used 

1-methyl-1-cyclohexene and EVE as reference compounds and reported rate 

coefficients ratios k1/k2 of 1.16 and 2.04 for 1-methyl-1-cyclohexene and EVE, 

respectively. In combination with his measurement of kref = 1.15 × 10-16 cm3 

molecule-1 s-1 for EVE he obtained a rate coefficient for the ozonolysis of tBVE of 

2.35 × 10-16 cm3 molecule-1 s-1, which was in agreement with the rate coefficient he 

obtained relative to 1-methyl-1-cyclohexene (kref = 1.88 × 10-16 cm3 molecule-1 s-1) 

and also that obtained using an absolute method (2.65× 10-16 cm3 molecule-1 s-1). 

However, a rate coefficient of 2.06 × 10-16 cm3 molecule-1 s-1 has been measured by 

Zhou et al. [53] for the ozonolysis of EVE. If this value is applied to Al Mulla’s 
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determination a rate coefficient of k1(O3+tBVE) = 4.20 × 10-16 cm3 molecule-1 s-1 is 

obtained for the ozonolysis of tBVE, which is in line with the value of (5.30±1.07) × 

10-16 cm3 molecule-1 s-1 obtained by Barnes et al. [48].  

As can be seen in Table 3.8, when alkyl groups in alkenes are substituted by a 

carbonyl grouping (-C(O)R), ester grouping (-OC(O)R), or alkyl acrylate grouping 

(-C(O)OR), where R is an H atom or alkyl group, the rate coefficients for the 

ozonolysis of these type of compounds e.g. acrolein (CH2=CHC(O)H), methacrolein 

(CH2=C(CH3)C(O)H), methyl vinyl ketone (CH2=CHC(O)CH3), vinyl acetate 

(CH2=CHO(O)CCH3) and methyl acrylate (CH2=CHC(O)OCH3), are lower than 

those of the structurally analogous alkenes and much lower than the corresponding 

alkyl vinyl ethers by around two orders of magnitude [1,15,72].  

To date no other experimentally determined rate coefficients for the reactions of O3 

with EGMVE, EGDVE and DEGDVE have been reported in the literature with which 

the values determined in the present work can be compared. Table 3.9 lists the rate 

coefficients for the reactions of O3 with the ethyleneglycol vinyl ethers together with 

the values reported in the literature for structurally similar alkenes at the same 

temperature.  
 

 

Table 3.9 Comparison of the rate coefficients (in cm3 molecule-1 s-1) for the reactions 

of O3 with ethyleneglycol vinyl ethers with values reported in the literature for 

alkenes at the same temperature.  
 

Vinyl ether (k×1016) a) Alkenes (k×1017) b) 

EGMVE 

HOCH2CH2OCH=CH2 

 

2.02 
1-Pentene 

CH3CHCH2CH=CH2 

 

1.06
  

EGDVE 

H2C=CHOCH2CH2O- 

CH=CH2 

 

1.69 

 

1-Hexene 

CH3CH2CH2CH2CH=CH2

 

1.13

 

1,4-Pentadiene 

CH2=CHCH2CH=CH2 

 

 

1.45

DEGDVE 

H2C=CHOCH2CH2O- 

CH2CH2OCH=CH2 

 

2.70 

  2,5-Dimethyl-1,4-hexadiene

CH2=C(CH3)CH2CH=C- 

(CH3)CH3 

 

1.4

 

a) This work;  b) Data taken from Atkinson and Arey [15] 
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The rate coefficients determined for ethyleneglycol vinyl ethers are somewhat higher 

than those of the structurally analogous terminal alkenes and non-conjugated 

dialkenes. This again reflects that electron donating groups neighboring the double 

bond strongly activate the double bond towards electrophilic addition of O3.  

The result in this work for EGDVE is surprising since its rate coefficient with ozone is 

somewhat lower than EGMVE. It was expected that this reaction would be faster than 

EGMVE because the former contains two double bonds in its structure. Within the 

combined error limits the value of the rate coefficient for the ozonolysis of EGDVE is 

not significantly different to the values obtained for EVE and EGMVE. The reason for 

this anomaly is presently not known, it could be speculated that when an electron 

donating group is positioned between two double bonds that the electron donating 

ability is equally divided between each double bond entity such that the overall 

reactivity is not very different from the corresponding single double bonded alkyl 

analogue. It is to be expected that the theoretical calculations could possibly give 

more insight into the observed anomaly. 

 

 

3.1.3 NO3 radical reactions  
 

Rate coefficients for the reactions of NO3 with PVE, BVE, EGMVE, EGDVE and 

DEGDVE were measured at (298±3) K and (740±10) Torr total pressure of synthetic 

air using the relative kinetic technique. The reference compounds employed in the 

measurements are listed in Table 3.10.  

The initial concentrations used in the NO3 reactions were: vinyl ethers 5.0 ppm; 

reference compound(s) i.e. isoprene, 2,3-dimethyl-1,3-butadiene and 1,3-cyclohepta- 

diene, 4.8-5.5 ppm. The reactants were monitored at the following wavenumbers (in 

cm-1): PVE at 965, 1211.2 and 3129; BVE at 3128.9 and 1614; EGMVE at 1622.2; 

EGDVE at 1619.7; DEGDVE at 1617.2; isoprene at 893.4 and 905.9; 2,3-dimethyl- 

1,3-butadiene at 895; 1,3-cycloheptadiene at 1442.  

For each reaction at least three experimental runs were performed.  

Figures 3.12 to 3.16 show examples of the kinetic data plotted according to eq. (I) for 

NO3 reactions with the selected vinyl ethers.  
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Figure 3.12  Plots of the kinetic data according to eq. (I) for the gas-phase 

reaction of NO3 with propyl vinyl ether (PVE).  

 

Figure 3.13  Plots of the kinetic data according to eq. (I) for the gas-phase reaction 

of NO3 with butyl vinyl ether (BVE). 
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Figure 3.14  Plot of the kinetic data according to eq. (I) for the gas-phase 

reaction of NO3 with ethyleneglycol vinyl ether (EGMVE).  

 

Figure 3.15  Plots of the kinetic data according to eq. (I) for the gas-phase reaction 

of NO3 with ethyleneglycol divinyl ether (EGDVE).  
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For all the vinyl ethers investigated good linear relationships were generally obtained. 

Difficulties were only encountered in measurements of the rate coefficient for the 

reaction of NO3 with EGMVE due to the relatively high dark loss rate of the 

compound. The rate coefficient ratios, k1/k2, obtained from these plots are listed in 

Table 3.10. Using these ratios in combination with k2(isoprene) = 6.78 × 10-13 cm3 

molecule-1 s-1, k2(2,3-dimethyl-1,3- butadiene) = 2.1 × 10-12 cm3 molecule-1 s-1 and 

k2(1,3-cycloheptadiene) = 6.5 × 10-12 cm3 molecule-1 s-1 [75] leads to the rate coeffi- 

cients k1 for the NO3 reaction with the vinyl ethers which are also listed in Table 3.10. 

The contribution of the combined dark wall and dark reaction losses of the vinyl 

ethers to the measured overall losses were approximately 5% for PVE and BVE, 

40-50% for EGMVE and 10-15% for EGDVE and DEGDVE. The errors are again the 

standard 2σ deviations plus an additional 20% to cover uncertainties in the values of 

the rate coefficients for the reference compounds. The rate coefficients obtained for 

the vinyl ether using the two reference compound(s) are in reasonable agreement (see 

Table 3.10).  

 

Figure 3.16  Plots of the kinetic data according to eq. (I) for the gas-phase reaction 

of NO3 with diethyleneglycol divinyl ether (DEGDVE).  
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Table 3.10 Measured rate coefficient ratios, k1/k2, and rate coefficients k1 (in cm3 

molecule-1 s-1) for the reaction of NO3 radical with PVE, BVE, EGMVE, EGDVE and 

DEGDVE obtained in the present work at 298 K using the relative kinetic technique 
 

Vinyl ether Reference k1/k2 k1×1012 Average k1×1012

Isoprene 2.54±0.05 1.72±0.35 PVE, 

n-C3H7OCH=CH2 2,3-Dimethyl-1,3-butadiene 0.94±0.02 1.98±0.40 

 

1.85±0.53 

Isoprene 2.94±0.04 2.00±0.40 BVE, 

n-C4H9OCH=CH2 2,3-Dimethyl-1,3-butadiene 1.05±0.02 2.20±0.44 

 

2.10±0.54 

EGMVE 

HOCH2CH2O- 

CH=CH2 

 

2,3-Dimethyl-1,3-butadiene

 

1.06±0.05

 

 

2.23±0.46 

 

 

2.23±0.46 

 

Isoprene 2.73±0.04 1.85±0.38 EGDVE 

H2C=CHOCH2CH2-

OCH=CH2 
2,3-Dimethyl-1,3-butadiene 0.98±0.02 2.06±0.41 

 

1.96±0.50 

 

2,3-Dimethyl-1,3-butadiene 2.89±0.12 6.07±1.24 DEGDVE 

H2C=CHOCH2CH2O-

CH2CH2OCH=CH2 
1,3-cycloheptadiene 0.96±0.05 6.21±1.31 

 

6.14±1.38 

 

 

 

Since the last data evaluation on NO3 kinetics [75], Kind et al. [87] have reported a 

rate coefficient of 1.4 × 10-12 cm3 molecule-1 s-1 for the reaction of NO3 with 

2,3-dimethyl-1,3-butadiene which is one of the reference compounds used in this 

study. The value reported by Kind et al. is much lower than those reported in previous 

determinations. Using this value gives rate coefficients (in cm3 molecule-1 s-1) of 

(1.32±0.28) × 10-12, (1.47±0.30) × 10-12, (1.48±0.31) × 10-12, (1.36±0.28) × 10-12 and 

(4.05±0.83) × 10-12, for the reactions of NO3 with PVE, BVE, EGMVE, EGDVE and 

DEGDVE, respectively. These values are not in as good agreement with those 

obtained with isoprene as reference compound when the currently recommended 

value of 2.1 × 10-12 cm3 molecule-1 s-1 [75] is used as the rate coefficient for NO3 

reaction with 2,3-dimethyl-1,3-butadiene in the calculation of the rate coefficients for 

the reactions of NO3 with the vinyl ethers.  
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To solve this reference problem, it was attempted to substitute 2,3-dimethyl-1,3- 

butadiene with another reference compound. Unfortunately, for all the potentially 

suitable substitute compounds selected, interferences in the FTIR data analyses were 

observed. Therefore, since Kind et al. could offer no explanation for the discrepancy, 

use the value of 2.1 × 10-12 cm3 molecule-1 s-1 [75] for the rate coefficient for the 

reaction of NO3 with 2,3-dimethyl-1,3-butadiene is preferred. Thus the following final 

rate coefficients (in units of cm3 molecule-1 s-1) at 298K are presented here: 
 

k1(NO3+PVE) = (1.85±0.53) × 10-12, 

k1(NO3+BVE) = (2.10±0.54) × 10-12, 

k1(NO3+EGMVE) = (2.23±0.46) × 10-12, 

k1(NO3+EGDVE) = (1.96±0.50) × 10-12 

and k1(NO3+DEGDVE) = (6.14±1.38) × 10-12, 
 

which are averages of the values obtained using the two reference compounds (with 

the exception of EGMVE where only one reference was employed) with error limits 

which encompass the extremes of both determinations.  

The rate coefficients for the NO3 reaction with the alkyl vinyl ethers measured in this 

work are listed in Table 3.11 where they are compared with the available literature 

kinetic data at the same temperature.  

From Table 3.11 it can be seen that the rate coefficients for the reaction of NO3 with 

PVE and BVE measured in this study and those reported by Scarfogliero et al. [57] 

are in fair agreement when account is taken of the errors. The kinetic data plots of 

Scarfogliero et al. show much more scatter than those of the present work.  

Recently, relative kinetic determinations of the rate coefficient for the NO3 reaction 

with EVE have been reported by Zhou et al. [53], Scarfogliero et al. [57] and Pfrang 

et al. [60]. The value of (1.7±1.3) × 10-12 cm3 molecule-1 s-1 measured by Pfrang et al. 

[60] has a large associated error, which the authors attributed to considerable 

difficulties with the measurements, and concluded that the data would benefit from 

refinement. Considering the experimental difficulties encountered in the measure- 

ments of Pfrang et al. and the larger scatter in their data points their measured k value 

for NO3 + EVE is in fair agreement with the values of (1.4±0.35) × 10-12 and 

(1.31±0.27) × 10-12 cm3 molecule-1 s-1 determined by Zhou et al. [53] and Scarfogliero 

et al. [57], respectively.  
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Grosjean and Williams [49] have estimated a rate coefficient of 4.68 × 10-13 cm3 

molecule-1 s-1 for the reaction of NO3 with MVE using structure-reactivity and linear 

free-energy relationships (SAR and LFER).  
 

 

Table 3.11 Comparison of the rate coefficients (in cm3 molecule-1 s-1) for the reactions 

of NO3 with the vinyl ethers with values reported in the literature at the same 

temperature.  
 

Vinyl ether k×1012 Technique  References  

MVE 

CH3OCH=CH2 

0.47 

0.72±0.15 

SAR and LFER a) 

Relative Rate 

Grosjean and Williams [49]

Scarfogliero et al. [57] 

 

EVE,  

C2H5OCH=CH2 

1.40±0.35 

1.7±1.3 

1.31±0.27 

Relative Rate  

Relative Rate 

Relative Rate 

Zhou et al. [53] 

Pfrang et al. [60] 

Scarfogliero et al. [57] 

PVE,  

C3H7OCH=CH2 

1.85±0.53 

1.33±0.30 

Relative Rate  

Relative Rate 

This work 

Scarfogliero et al. [57] 

BVE, 

n-C4H9OCH=CH2 

2.10±0.54 

1.70±0.37 

Relative Rate 

Relative Rate 

This work 

Scarfogliero et al. [57] 

iBVE, 

i-C4H9OCH=CH2 

 

1.99±0.56 
 

Relative Rate 
 

Barnes et al. [48] 

tBVE, 

t-C4H9OCH=CH2 

 

4.81±1.01 
 

Relative Rate 
 

Barnes et al. [48] 

EGMVE 

HOCH2CH2OCH=CH2

 

2.23±0.46 
 

Relative Rate 
 

This work 

EGDVE 

H2C=CHOCH2CH2O- 

CH=CH2 

 

1.95±0.50 

 

Relative Rate 

 

This work 

DEGDVE 

H2C=CHOCH2CH2O- 

CH2CH2OCH=CH2 

 

6.14±1.38 

 

Relative Rate 

 

This work 

 
a) structure-reactivity and linear free-energy relationships (SAR and LFER) 
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The rate coefficients determined for the NO3 reaction with EVE, PVE and BVE are 

factors of 3 to 4.5 higher than the estimated k value for NO3 with MVE. Based on a 

comparison with the rate coefficients for the analogous OH radical reactions, where 

increases of a factor of between 2 to 3 are observed for the reactions of OH with EVE, 

PVE and BVE compared to OH with MVE, this seems fairly reasonable since the NO3 

radical reactions with the vinyl ethers appear to follow a similar reactivity trend to the 

OH radical reactions.  

As for the analogous OH radical and ozone reactions, the rate coefficients determined 

for the NO3 reactions show an increase with increasing carbon-chain length with 

k(MVE)<k(EVE)<k(PVE)<k(BVE)≈k(iBVE)<k(tBVE), indicating that the order of 

reactivity of NO3 towards alkyl vinyl ethers is similar to that observed for the OH and 

ozone reactions. As was the case for ozone reaction the relatively large increase in the 

NO3 rate coefficient observed for tBVE compared with BVE and iBVE reflects the 

large increase in the positive inductive contribution to the electron density at the 

double bond caused by the increase in the branching complexity of the tert-butyl 

group which renders the bond more acceptive to electrophilic addition of the NO3 

radical.  

To the best of my knowledge, at the time of writing, no other reports of 

experimentally determined rate coefficients for the reactions of NO3 with alkyl vinyl 

ethers are published in the literature with which the values determined in this work 

can be compared.  

Table 3.12 compares the rate coefficients for the reactions of NO3 with alkyl vinyl 

ethers with those reported in the literature for the NO3 reaction with structurally 

analogous alkenes and unsaturated carbonyls.  

It can be seen from Table 3.12 that the rate coefficients for the reactions of NO3 with 

EVE, PVE, BVE and iBVE are approximately two orders of magnitude higher than 

the corresponding rate coefficients for the reactions of NO3 with propene, 1-butene, 

1-pentene, 1-hexene and 3-methyl-1-butene [15], respectively. However, whereas an 

increase in rate coefficient is observed for the NO3 reaction with the vinyl ethers with 

increase in the electron donating power of the alkyl group, this dose not seem to be 

the case for the alkenes (at least on the basis of the available data), i.e., the rate 

coefficients for the NO3 reaction with 1-pentene and 3-methyl-1-butene are very 

similar. This probably reflects the higher degree of steric hindrance associated with 

NO3 addition to the alkenes compared with the vinyl ethers where an O atom 
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separates the double bond from the alkyl group.  

In contrast to the analogue OH radical reactions the difference in the reactivity of the 

alkyl vinyl ethers toward electrophilic NO3 addition to that of CH2=CH-C(O)R, 

CH2=CH-OC(O)R and CH2=CH-C(O)OR compounds is much starker (see Table 

3.12). For the few compounds for which data are available [1,15,60,72-76,88] the rate 

coefficients for the reactions of NO3 with the alkyl vinyl ethers are an order of 

magnitude larger compared to those for CH2=CH-OC(O)R compounds and 3-4 orders 

of magnitude higher compared to those for CH2=CH-C(O)R and CH2=CH-C(O)OR 

compounds.  
 

 

Table 3.12 Comparison of the rate coefficients (in cm3 molecule-1 s-1) for the reactions 

of NO3 with alkyl vinyl ethers with values reported in the literature for structurally 

similar alkenes and unsaturated carboxylic compounds at the same temperature  
 

Vinyl ether (k×1012)  a) Alkene (k×1014) Unsaturated Carbonyls (k×1016)

MVE 

CH3OCH=CH2 

 

0.72  
Propene 

CH3CH=CH2 

 

0.95 b
Methyl vinyl ketone 

CH3C(O)CH=CH2 

 

4.7d 

EVE 

C2H5OCH=CH2 

 

1.40 
1-Butene 

C2H5CH=CH2 

 

1.35 b
Ethyl vinyl ketone 

CH3CH2C(O)CH=CH2 

 

0.94 e 

PVE 

n-C3H7OCH=CH2 

 

1.85 
1-Pentene 

n-C3H7CH=CH2 

 

1.5 b
Acrolein 

H(O)CCH=CH2 

 

11 d 

 BVE 

n-C4H9OCH=CH2 

 

2.10 
1-Hexene 

n-C4H9CH=CH2 

 

1.8 b
Methacrolein 

H(O)CC(CH3)=CH2 

 

37 d 

iBVE 

i-C4H9OCH=CH2 

 

1.99 
3-Methyl-1-butene 

CH3CH(CH3)CH=CH2

 

1.4 c
Methyl acrylate 

CH3O(O)CCH=CH2 

 

1.0 d 

tBVE 

t-C4H9OCH=CH2 

 

4.81 
    

 
(a) Data taken from Table 3.11;  b) Data taken from Atkinson and Arey [15];  c) Data taken 

from Noda et al. [34];  d) Data taken from Canosa-Mas et al. [88];  e) Data taken from Pfang et 

al. [60]. 
 

 



Kinetics of the OH, O3 and NO3 Reactions with Vinyl Ethers 

 61

The rate coefficients for the reactions of the NO3 radical with the alkyl vinyl ethers 

have been shown to increase with increasing electron donation to the double bond. 

This trend is fully in line with a mechanism involving electrophilic addition of NO3 to 

the double bond. A comparison of the kinetic data with that for other structurally 

analogous compounds has demonstrated the high electron donating nature of alkoxy 

groups compared to alkyl groups as has also been seen for the reactions of unsaturated 

organics with OH and O3.  

Table 3.13 compares rate coefficients for the reactions of NO3 with ethyleneglycol 

vinyl ethers with those for structurally similar alkenes. As was observed for the 

analogue O3 reactions the rate coefficient for the reaction of NO3 with EGDVE is 

somewhat lower than that of NO3 with EGMVE, but agrees with that of NO3 with 

EGMVE within the experimental error limits. The rate coefficient determined for 

DEGDVE is higher than that measured for EGDVE by a factor of about 3.  
 

 

Table 3.13 Comparison of the rate coefficients (in cm3 molecule-1 s-1) for the reactions 

of NO3 with ethyleneglycol vinyl ethers with values reported in the literature for 

structurally similar alkenes at the same temperature  
 

Vinyl ether (k×1012) a Alkene (k×1014)  

EGMVE 

HOCH2CH2OCH=CH2 

 

2.23 

 

1-Pentene 

n-C3H7CH=CH2 

 

1.5 b  

EGDVE 

H2C=CHOCH2CH2O- 

CH=CH2 

 

1.95 

 

1,4-Pentadiene 

CH2=CHCH2CH=CH2 

 

2.3 c 

DEGDVE 

H2C=CHOCH2CH2O- 

CH2CH2OCH=CH2 

 

6.14 

 

  

 

a) This work;   b) Data taken from Atkinson and Arey [15];   c) Data taken from Bale et 

al. [94].  
 

 

The rate coefficients for the NO3 reaction with ethyleneglycol vinyl ethers are higher 

than those of structurally similar alkenes by about two orders of magnitude. Since 
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there are no other kinetic data available in the literature for the reactions of NO3 

radical with structurally similar oxygenated organic compounds a more detailed 

comparison is not warranted.  

In the experiments on the reactions of NO3 with EGDVE and DEGDVE the baselines 

of the FTIR spectra from 2000 cm-1 to 4000 cm-1 were elevated after introduction of 

N2O5 (see Figures 3.17 and 3.18). This is possibly due to the formation of secondary 

organic aerosols causing scattering of the IR light.  

Oh and Andino [89-91] have reported an enhancement in the rate of reaction of OH 

radicals with methanol, ethanol and 1-propanol in the presence of aerosol in the 

system. In the presence and absence of 500-8000µg/m3 of NaCl, Na2SO4 or NH4NO3 

aerosol, Sørensen et al. [92] studied the effect of aerosol on the reactivity of the OH 

radical toward methanol, ethanol and phenol. In contrast to the findings of Oh and 

Andino [89-91], Sørensen et al. found that there was no discernable effect of aerosol 

on the rate of loss of the organics via OH radical reactions. A theoretical calculation 

using gas-kinetic theory indicates that under the experimental conditions of Oh and 

Andino [89-91], OH radicals were at least a factor of 1000-9000 times more likely to 

react in the gas-phase than to collide with aerosol surface [92]. Therefore reaction on 

the aerosol surface would appear to be a negligible loss process.  

This is also the case for the present work. From the kinetic data plots shown in Figure 

3.15 and 3.16 an additional explanation is given here, i.e. that the formation of aerosol 

does not enhance the rate coefficients measured for the reactions of NO3 radicals with 

the ethyleneglycol vinyl ethers. When the reaction is initiated, the reaction then 

generates semi-volatile products. After these products have reached their saturation 

vapor pressure, they start to nucleate homogeneously and aerosol is formed. If the 

aerosol formed had enhanced the loss of EGDVE and DEDVE, this would result in a 

faster decay of both compounds as the reaction proceeds compared to the initial stage 

of reaction. Therefore, in comparison with first few points in Figure 3.15 and Figure 

3.16 the points measured at later stages in the reaction should result in curvature in the 

plot if aerosol formation was affecting the homogeneous reaction mechanism. 

However, as seen in Figures 3.15 and 3.16 this was not the case for the measurements 

with both EGDVE and DEDVE, where all the plotted data show good linearity, 

indicating that the loss rate of both EGDVE and DEGDVE did not show any 

discernable differences with and without aerosol present in the system.  
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Figure 3.17  Baseline elevation in a study of the NO3 radical reaction with 

ethyleneglycol divinyl ether (EGDVE): (a) before introduction of N2O5; (b) after 

introduction of N2O5 for 5 minutes; (c) after introduction of N2O5 for 8 minutes. 

 

Figure 3.18  Baseline elevation in a study of the NO3 radical reaction with 

diethyleneglycol divinyl ether (DEGDVE): (a) before introduction of N2O5; (b) after 

introduction of N2O5 for 5 minutes; (c) after introduction of N2O5 for 8 minutes. 
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Many types of correlations of kinetic data have been applied to highlight trends in 

chemical behavior and also to predict the rate coefficient for the reaction of a 

compound with the atmospheric reactive species such as OH, O3 and NO3 for which 

experimental data do not exist. For example, rate coefficients for the reactions of OH 

and NO3 radicals with unsaturated organic compounds have often been correlated 

with the first vertical ionization potentials (Ev) of the compounds [93], whereby the 

logarithm of the rate coefficient for the particular reaction is plotted as a function of 

the corresponding Ev.  

Other types of correlation that are typically applied, and are known as “linear 

free-energy relationships”, involve plotting the logarithm of the rate coefficient for 

reaction of the compound with, for example, OH (log(kOH)), against the logarithm of 

the rate coefficient values for the corresponding reactions with another species, e.g., 

NO3 (log(kNO3)) [93]. However, the data sets for the reactions of species such as OH, 

ozone and NO3 with organic compounds are often not sufficiently large to allow 

reasonable rate coefficient recommendations to be made for the reactions of interest. 

Ionization potentials could not be found in the literature for vinyl ethers. The number 

of available rate coefficients for the reactions of OH and NO3 radicals with the vinyl 

ethers is too small for the construction of a meaningful “linear free-energy 

relationship”; however, a plot using the available data suggests that a reasonable 

linear relationship exists between these reactants for C1 to C4 alkyl vinyl ethers.  

It has been shown in recent years that it is possible to predict the rate coefficients for 

the reactions of OH, ozone and NO3 with alkenes by perturbation frontier molecular 

orbital (PFMO) theory [93-98]. The natural logarithm of the room-temperature rate 

coefficients have been shown to correlate with the energy change, ΔE, when the 

highest occupied molecular orbital (HOMO) of the alkene perturbs the single 

occupied molecular orbital (SOMO) of the OH and NO3 radical or the lowest 

unoccupied molecular orbital (LUMO) of O3 as two reactant orbitals overlap. To the 

best of my knowledge this predictive technique has only been applied to unsubstituted 

alkenes [93,95] and chloroalkenes [96] and not to oxygenated alkenes. It would be 

interesting to extend the technique to the available database on oxygenated alkenes. 

Unfortunately, during the work the computer programs necessary to calculate the 

HOMO and SOMO energies for the correlations were not available.  
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3.2 Atmospheric implications  
 

The atmospheric transformation processes for volatile organic compounds are 

initiated by reaction with OH radicals, ozone, NO3 radicals, and under certain 

circumstances possibly Cl atoms, in addition to photolysis and wet / dry deposition.  

Due to the presence of the alkene moiety vinyl ethers show high reactivity toward OH 

radicals, ozone and NO3 radicals. Mellouki et al. [16] have concluded that reaction 

with these species represents the major degradation pathways of vinyl ethers in the 

troposphere.  

The rate coefficients determined in this study for the reactions of OH radicals, O3 and 

NO3 radicals with PVE, BVE, EGMVE, EGDVE and DEGDVE can be used to 

estimate the atmospheric lifetimes of the vinyl ethers studied in this work with respect 

to chemical degradation by these species. The lifetime τ is defined as:  
 

τ = 1/k[species]                        (XV) 
 

where k is the rate coefficient for the reaction of the reactive species (OH, O3 or NO3) 

with the vinyl ethers determined in this study and [species] is the concentration of the 

reactive species. 

The average tropospheric concentrations of OH radicals, ozone and NO3 radicals used 

in calculations of the lifetimes were ca. 1.6 × 106 (12-h daytime average [99]), 7 × 1011 

(24-hr average concentration [4]), and 5.0 × 108 molecule cm-3 (12-h nighttime 

average [100,101), respectively. These are the values most commonly used in 

publications presenting calculations of the lifetimes of organic compounds with 

respect to reactions with OH radicals, ozone and NO3 radicals. The atmospheric 

concentration of NO3 radicals, however, is highly variable [101].  

The atmospheric lifetimes of PVE, BVE, EGMVE, EGDVE and DEGDVE with 

respect to reactions with OH, ozone and NO3 are shown in Table 3.14. The lifetimes 

for the reactions of the vinyl ethers with OH, ozone and NO3 are all no more than a 

few hours in all cases. Thus all three loss processes can make significant contributions 

to the degradation of all the vinyl ethers investigated. The short lifetimes of the vinyl 

ethers show that they will be quickly degradated when emitted to the atmosphere and 

will only be actively involved in tropospheric chemistry on local to regional scales. 
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On the other hand, the losses of the vinyl ethers due to the catalyzed hydrolysis at the 

acidic chamber walls indicate the possibility of a contribution to the atmospheric 

removal of the vinyl ethers from catalyzed degradation on acidic aerosol surfaces. 

Work done here and within the EU project MOST [48] has shown that the photolysis 

of vinyl ethers is a negligible loss process for this class of organic compound in the 

troposphere. 
 

 

Table 3.14 Estimated atmospheric lifetime (in hours) of PVE, BVE, EGMVE, 

EGDVE and DEGDVE with respect to degradation by OH radicals, ozone and NO3 

radicals  
 

Vinyl ether τΟΗ 
a τΟ3  

b τΝΟ3 
c 

PVE,  

C3H7OCH=CH2 

 

1.78 
 

1.70 
 

0.30 

BVE, 

n-C4H9OCH=CH2 

 

1.54 
 

1.53 
 

0.26 

EGMVE 

HOCH2CH2OCH=CH2 

 

1.67 
 

1.96 
 

0.28 

EGDVE 

H2C=CHOCH2CH2OCH=CH2 

 

1.41 
 

2.35 
 

0.25 

DEGDVE 

H2C=CHOCH2CH2OCH2CH2OCH=CH2 

 

1.22 
 

1.47 
 

0.09 

 
a) Based on the average tropospheric concentrations of OH radicals of ca. 1.6 × 106 

molecule cm-3 (12-h daytime average) [99];  

b) Based on the average tropospheric concentrations of ozone of ca. 7 × 1011 molecule 

cm-3 (24-hr average concentration) [4];  

c) Based on the average tropospheric concentrations NO3 radicals of ca. 5.0 × 108 

molecule cm-3 (12-h nighttime average) [100,101].  
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Chapter 4  

 

 

Mechanisms of the Atmospheric Oxidation 

of Vinyl Ethers  
 

As discussed in Chapter 3, the dominant atmospheric chemical loss processes for 

vinyl ethers are reactions with OH radicals, ozone and NO3 radicals. Studies aimed at 

clarifying the oxidation mechanisms of the OH radical, ozone and NO3 radical initi- 

ated oxidation of alkyl vinyl ethers were performed in the 405 l borosilicate glass 

chamber system at the University of Wuppertal.  

 

 

4.1 Product studies of the OH radical initiated 

oxidation of vinyl ethers  
 

In the studies on the OH radical reactions with vinyl ethers two types of OH radical 

source were employed, i.e. the photolysis of a NOx-containing OH source, HONO, 

and the photolysis of a NOx-free OH source, H2O2. After all the reactants were 

pre-mixed in the reactor the reactions were initiated by switching on the visible 

fluorescence lamps or UV lamps to irradiate the vinyl ethers and HONO or H2O2 in 

the bath gas. The contents of the chamber were monitored in the pre- and post- 

irradiations periods for a short time in order to establish the dark behaviors of the 

reactants and products for the data evaluation.  
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4.1.1 Experimental results  
 

The product studies on the OH radical initiated oxidation of PVE and BVE were 

performed at (298±3) K and (760±10) Torr total pressure of synthetic air. For each 

reaction at least three experimental runs were performed.  

The initial concentrations of the vinyl ethers, i.e. PVE and BVE, HONO and H2O2 

were approximately 5.5, 1.9-4.7 and 20 ppm, respectively.  

 

 

4.1.1.1 Results for the OH radical reaction with PVE  
 

Figure 4.1 shows an example of a typical concentration-time profile of the reactants 

and products observed from an experiment on the OH radical reaction with PVE using 

the NOx-containing OH radical source (HONO).  

From Figure 4.1 it can be seen that the dark loss of PVE in the pre- and post- OH 

 

Figure 4.1  Concentration-time profiles of the reactants and products from the 

OH radical initiated oxidation of PVE obtained with the NOx-containing OH 

radical source (HONO): (●)-PVE; (Δ)-HONO; (∇)-NO2; (▲)-NO; (○)-propyl 

formate; (×)-HCHO.  
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radical reaction periods is the same.  

With the photolysis of HONO as the OH radical source the wall loss for the identified 

products, HCHO and propyl formate, was negligible. From the plot it can also be seen 

that the amounts of formaldehyde and propyl formate formed in experiment are 

approximately the same.  

Figure 4.2 gives an example of the concentration-time profiles of the reactants and 

products observed in an experiment on the OH radical reaction with PVE with the 

NOx-free OH radical source (H2O2).  

The shape of the curve for formaldehyde in Figure 4.2 shows that there is a secondary 

loss for this compound in the system. With H2O2 as the OH radical source a first order 

dark wall loss of formaldehyde was observed, and no dark loss was observed for 

propyl formate. Test experiments showed no evidence for photolysis of PVE, HCHO 

and propyl formate with either the visible fluorescence lamps or the UV lamps.  

Figure 4.3 shows typical product spectra recorded in the OH radical initiated 

oxidation of PVE. Trace (a) is a product spectrum obtained with the NOx-containing 

 

Figure 4.2  Concentration-time profiles of the reactants and produces from an 

experiment on the OH radical initiated oxidation of PVE with the NOx-free OH 

radical source (H2O2): (●)-PVE; (○)-propyl formate; (×)-HCHO. 
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OH radical source and trace (b) shows a product spectrum obtained with the NOx-free 

OH radical source.  

It can be seen from a comparison of these spectra, with the reference spectra of propyl 

formate (trace (c)) and formaldehyde (trace (d)), that these two compounds are the 

main products of the reaction of OH with PVE in both systems. Traces (e) and (f) in 

Figure 4.3 show the residual spectra obtained from traces (a) and (b), respectively, 

after subtraction of the identified products. For easier comparison both spectra are 

expanded by a factor of 5.  

In experiments using the NOx-free OH radical source the concentration of 

formaldehyde has been corrected for dark loss and reaction with OH using the 

procedure outlined in the Section 2.2.3.1. The loss of formaldehyde due to reaction 

 

Figure 4.3  Product spectra recorded during the reaction of OH radicals with 

PVE; (a) product spectrum in the presence of NOx; (b) product spectrum in the 

absence of NOx; (c) scaled reference spectrum of propyl formate; (d) scaled 

reference spectrum of formaldehyde; (e) spectrum (a) after subtraction of all 

identified compounds; (f) spectrum (b) after subtraction of all identified products. 

For easier comparison all the spectra are offset and spectra (e) and (f) are 

expanded by a factor of 5.  
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with OH was only 2% because the rate coefficient for the reaction of PVE with OH is 

about 10 times higher than that of formaldehyde with OH. No correction was 

necessary for propyl formate due to its very low reactivity toward OH radicals. 

Figure 4.4 presents examples of plots of the propyl formate and corrected 

formaldehyde concentrations as a function of reacted PVE for systems with and 

without NOx present. The data points for propyl formate have been displaced for 

clarity. The slopes of the linear regression lines give the yields of the products. From a 

minimum of 3 experiments for each system averaged molar formation yields of 

(78.6±8.8)% and (75.9±8.4)% were obtained for propyl formate and formaldehyde, 

respectively, in the presence of NOx and (63.0±9.0)% and (61.3±6.3)%, respectively, 

in the absence of NOx.  

 

 

4.1.1.2 Results for the OH radical reaction with BVE  

 
 

Figure 4.4  Plots of the measured product concentrations from the reaction of OH 

with PVE plotted as function of the amount of PVE reacted with OH radicals. 

(Δ)-propyl formate in the presence of NOx; (●)-propyl formate in the absence of 

NOx; (▲)-HCHO in the presence of NOx; (○)-HCHO in the absence of NOx. The 

propyl formate concentrations are offset by 1ppm. 
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Figure 4.5  Concentration-time profiles of the reactants and products from an 

experiment on the OH radical initiated oxidation of BVE using a NOx-containing 

OH radical source (HONO): (●)-BVE; (Δ)-HONO; (○)-butyl formate; (×)-HCHO. 

 

Figure 4.6  Concentration-time profiles of the reactants and products from an 

experiment on the OH radical initiated oxidation of BVE using a NOx-free OH 

radical source (H2O2): (●)-BVE; (○)-butyl formate; (×)-HCHO.  
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The product studies on the reaction of OH with BVE were carried out exactly in the 

same manner as those on the reaction of OH with PVE.  

Figure 4.5 and Figure 4.6 show the concentration-time profiles of the reactants and 

products for experiments on the reaction of OH with BVE with and without NOx 

present in the system, respectively.  

As for the studies on OH reaction with PVE, dark loss of BVE was observed and the 

data was corrected accordingly. As for PVE, the photolysis losses of BVE, butyl 

formate and HCHO were negligible with both the visible fluorescence and UV lamps. 

In the presence of NOx no corrections for dark loss of butyl formate and HCHO were 

necessary. In contrast, in the presence of H2O2, dark loss of HCHO was observed. 

This was corrected using the procedure outlined in Section 2.2.3.1.   

From the product spectra shown in Figure 4.7 it can be seen that butyl formate and 

HCHO are the main products in the OH radical reaction with BVE. Traces (e) and (f) 

 

Figure 4.7  Product spectra recorded during studies on the OH radical reaction 

with BVE; (a) product spectrum in the presence of NOx; (b) product spectrum in 

the absence of NOx; (c) scaled reference spectrum of butyl formate; (d) scaled 

reference spectrum of formaldehyde; (e) spectrum (a) after subtraction of all 

identified compounds; (f) spectrum (b) after subtraction of all identified products. 

For easier comparison all the spectra are offset and spectra (e) and (f) are expanded 

by a factor of 5. 
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in Figure 4.7 give the residual spectra obtained for the NOx-containing and NOx-free 

systems, respectively, after subtraction of the identified products. For easier compa- 

rison both spectra are expanded by a factor of 5.  

Figure 4.8 presents examples of the butyl formate and corrected formaldehyde 

concentrations, measured with and without NOx present in the system, plotted as a 

function of the reacted BVE. The data points for butyl formate have been displaced in 

Figure 4.8 for clarity.  

The slopes of the linear regression lines give the yields of the products. From a 

minimum of 3 experiments for each system averaged molar formation yields of 

(64.7±7.1)% and (64.3±6.9)% were obtained for butyl formate and formaldehyde, 

respectively, in the presence of NOx and (52.2±6.3)% and (52.9±6.3)%, respectively, 

in the absence of NOx.  

 

4.1.2 Discussion of the OH radical reactions  

 
 

Figure 4.8  Plots of the measured product concentrations from the reaction of 

OH with BVE plotted as a function of the amount of BVE reacted with OH 

radicals. (Δ)-butyl formate in the presence of NOx; (●)-butyl formate in the 

absence of NOx; (▲)-HCHO in the presence of NOx; (○)-HCHO in the absence of 

NOx. The butyl formate concentrations are offset by 1ppm.  
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Alkyl formates and formaldehyde have been observed as major products in the 

reactions of OH with alkyl vinyl ethers [16,48,50-52,54]. Table 4.1 compares the 

yields of alkyl formates and formaldehyde determined in this study for the reactions 

of the OH radical with PVE and BVE with those reported in the literatures for alkyl 

vinyl ethers. It can be seen in Table 4.1 that high yields of alkyl formates and 

formaldehyde are observed for all of the vinyl ethers both with and without NOx in the 

system. 
 

 

Table 4.1 Comparison of the yields of alkyl formates (HC(O)OR) and HCHO/ 

CH3CHO from the reaction of OH radicals with vinyl ethers 

 

Vinyl ether 
Formate yield  

(molar %) 

HCHO yield  

(molar %) 

 

Reference 

MVE, 

 CH3OCH=CH2 

(80.9±8.2) i) 

(50.2±5.1) ii) 

 (76.6±7.9) i) 

(57.0±6.0) ii) 

Klotz et al. [52] 

Klotz et al. [52] 
 

EVE, 

 C2H5OCH=CH2 

 76.8 i) 

(92±7) i) 

(83±7) ii) 

 71.8i) 

 

Barnes et al. [48] 

Thiault et al. [50] 

Thiault et al. [50] 
 

PVE,  

n-C3H7OCH=CH2 

 (78.6±8.8 ) i) 

(63.0±9.0) ii) 

(72±6) i) 

 (75.9±8.4) i) 

(61.3±6.3) ii) 

 

This work 

This work 

Al Mulla [55] 
 

BVE,  

n-C4H9OCH=CH2 

 (64.7±7.1) i) 

(52.2±6.3)ii) 

(75±8) i) 

 (64.3±6.9) i) 

(52.9±6.3) ii) 

This work  

This work  

Al Mulla [55] 
 

iBVE 

i-C4H9OCH=CH2

(70.2±8.8) i) 

(59.8±7.3) ii) 

(63±6) i) 

(69.0±6.1) i) 

(59.0±7.3) ii) 

Barnes et al. [48] 

Barnes et al. [48] 

Al Mulla [55] 
 

tBVE 

t- C4H9OCH=CH2

(56.8±6.2) i) 

(50.9±6.0) ii) 

(73±6) i) 

(60.4±6.4) i) 

(56.7±5.8) ii) 

(70±6) i) 

Barnes et al. [48] 

Barnes et al. [48] 

Al Mulla [55] 

EPE,  

C2H5OCH=CHCH3

 

86.9 i) 
 

56.9 i & iii) 
 

Barnes et al. [48] 

  

i) with NOx present; ii) without NOx present; iii) acetaldehyde 
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Al Mulla [55] has reported formate product yields for the reactions of OH with PVE, 

BVE and iBVE with NOx present in the system which are in agreement with those 

determined in this work and by Barnes et al. [48]. The value reported by Al Mulla [55] 

for the yield of tert-butyl formate from the reaction of OH with tert-butyl vinyl ether 

(tBVE) is higher than that determined by Barnes et al. [48]; however, the values agree 

within the combined quoted errors limits.  

In the absence of NOx the yields of both the alkyl formate and HCHO are lower than 

with NOx present. The molar yields of both the alkyl formate and HCHO for the 

different vinyl ethers fall within the range of (70±10) molar % for the NOx-containing 

system and (60±10) molar % for the NOx-free system. The only exception is the very 

high formate yield reported for the reaction of the OH with ethyl vinyl ether (EVE) by 

Thiault et al. [50].  

The reaction mechanisms for the OH radical initiated oxidation of PVE and BVE are 

expected to be very similar to that proposed by Klotz et al. [52] for the reaction of OH 

with MVE. The possible reactions of OH with alkyl vinyl ethers (CH2=CHOR, where 

R = -CH2CH2CH3 for PVE and -CH2CH2CH2CH3 for BVE) are addition of OH radical 

to the carbon-carbon double bond (2 possible addition sites) and H-atom abstraction 

from the alkyl group.  

Addition results in formation of the radical β-hydroxy intermediates 2 and 3, whereby 

formation of 2 is favored.  

 

C C
H

H

OR

H
OH

C C
H

H

OR

H

C C
H

H

OR

H
OH1

2

3  
 

The intermediates 2 and 3 react with O2 to give the organic β-hydroxy peroxy radicals 

4 and 5, respectively. In the presence of NOx 4 and 5 react with NO to form either the 

β-hydroxy alkoxy radicals 6 and 7, respectively, or the nitrates 8 and 9, respectively.  
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Subsequently the β-hydroxy alkoxy radicals 6 and 7 can react with O2, unimole- 

cularly decompose by C-C bond scission or isomerize by H atom shift. From the 
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products observed in the OH radical reaction with PVE and BVE, the major fate of 6 

and 7 is decomposition to produce alkyl formate 10 and formaldehyde 11, and the 

reaction of 6 and 7 with O2 is of minor importance.  

In the absence of NOx the β-hydroxy peroxy radicals 4 and 5 can react with 

themselves or other RO2 radicals to form the β-hydroxy alkoxy radicals 6 and 7, 

respectively, which follow the reactions mentioned above to produce alkyl formate 10 

and formaldehyde 11. However, the self reaction of the β-hydroxy peroxy radicals 4 

and 5 can also lead to the formation of multifunctional group compounds such as 

glycolic acid alkyl ester 12, and hydroxy alkoxy acetaldehyde 13 and 1-alkoxy 

ethane-1,2-diol 14.  
 

× 2

RO2

RO + O2

C C
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H
OHHO
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Despite the relatively high production of HO2 radicals in the NOx-free system and 

their likely reaction with the peroxy radicals to give hydroperoxides shown below:  
 

 RO2 + HO2 → ROOH + O2                   (4.1)  
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the modest drop in the alkyl formate and HCHO yields (from 75-80% to around 

60-65% for OH with PVE and from 65-70% to around 50-55% for OH with BVE) 

suggests that the self- and cross-reactions of the β-hydroxy peroxy radicals 4 and 5 

proceed predominately to give the corresponding β-hydroxy alkoxy radicals 6 and 7, 

respectively.  

In the NOx-containing systems there were no discernible absorptions in the product 

spectrum which could be attributed to the -OH group, however, in the product 

spectrum obtained under NOx-free conditions absorptions around 3600 cm-1 attribu- 

table to an -OH group were clearly visible. The formation of hydroperoxides and the 

-OH group containing compounds such as glycolic acid alkyl ester 12, hydroxy 

alkoxy acetaldehyde 13 and 1-alkoxy ethane-1,2-diol 14 could be responsible for this 

observation. The formation of these compounds can explain the reduced yields of the 

formates and HCHO observed in the absence of NOx compared to the higher yields 

measured in the presence of NOx.  

As discussed in Section 3.1.1, 10-12% of the OH radical reaction proceeds via 

H-atom abstraction from the n-propyl group in PVE and n-butyl group in BVE. This 

in turn implies that around 10% and 20 % of OH addition to the double bond of PVE 

and BVE respectively, in the NOx-containing system is leading to products other than 

alkyl formates and HCHO.  

The H-atom abstraction channel for OH radical reactions with PVE leads to different 

radicals such as 15, 16 and 17, which in sequential reactions involving molecular 

oxygen, NO or RO2 radicals can lead to the production of compounds such as vinyl 

formate 18, acetaldehyde 19, vinyl propionate 20, ethenoxyacetone 21 and 3-ethen- 

oxypropanal 22 in very low molar yields.  

The analogue H-atom abstraction by OH radical for BVE produces vinyl formate 18, 

propanal 19, vinyl butyrate 20, ethenoxy-2-butanone 21, 4-ethenoxy-2-butanone 22 

and 4-ethenoxybutanal 24.  

Simplified reaction mechanisms for the OH radical initiated oxidation of PVE and 

BVE are outlined in Scheme 4.1 and Scheme 4.2, respectively. Branching ratios 

(expressed in %) for OH radical addition to the double bond and H-atom abstraction 

from the alkyl group of 89.2 : 10.8 and 87.8 : 12.2 have been estimated for the 

reactions of OH radical with PVE and BVE, respectively, as mentioned in Chapter 3.  
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As discussed above the H-atom abstraction channel results in the formation of a 

variety of radicals. H-atom abstraction from the -CH2- group adjacent to the ether 

oxygen to give radical 15 is the most favorable.  

The subsequent reactions of 15 give rise to the production of vinyl formate 18 and the 

corresponding aldehyde 19 (acetaldehyde or propanal for PVE or BVE, respectively). 

As mentioned in Chapter 2, acetaldehyde is one of the products of the dark reaction of 

alkyl vinyl ethers, so it is not possible to say whether or not acetaldehyde is produced 

from the H-atom abstraction reaction of OH with PVE. However, in the OH + BVE 

reaction no absorptions were observed which could be attributed to propanal, with and 

without NOx presence in the systems.  

For the OH radical initiated oxidation of PVE, in the presence of NOx, 77.0% C can 

be accounted for, compared to 63.4% C in the absence of NOx. For the reaction of OH 

with BVE, in the presence of NOx, 64.6% C can be accounted for, compared to 52.3% 

C in the absence of NOx. In the presence of NOx the residual product spectra (trace (e) 

in Figures 4.3 and 4.7), show an absorption in the carbonyl region around 1760 cm-1. 

The absorptions in the regions around 1665 cm-1, 1286 cm-1 and 835 cm-1 in trace (e), 

Figure 4.3 and those around 1664 cm-1, 1284 cm-1 and 834 cm-1 in trace (e), Figure 

4.7 are characteristic of compounds containing the nitrate group. Based on the known 

chemistry of RO2 and NOx it is reasonable to assume that multifunctional organic 

nitrate products comprise the majority of the missing carbon in the reaction systems of 

PVE + OH and BVE + OH containing NOx. 

The residual absorptions obtained in the NOx-free system, trace (f) in both Figure 4.3 

and Figure 4.7, are very similar to those observed by Klotz et al. [52] in their study of 

the reaction of OH with MVE. It is assumed that some of these absorptions stem from 

hydroxyl carbonyl compounds such as 12, 13 and 14 shown in the reaction 

mechanisms Scheme 4.1 and 4.2 and also from hydroperoxides formed from the 

reactions of the peroxy radicals with HO2. Unfortunately neither reference compounds 

nor the technical facilities for detection of these types of compounds were available to 

validate this assumption.  
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Scheme 4.1  Simplified reaction mechanism for the OH radical initiated oxidation of PVE 
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Scheme 4.2  Simplified reaction mechanism for the OH radical initiated oxidation of BVE 
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4.2 Product studies of the ozone initiated oxidation of 

vinyl ethers  

 
As described in Chapter 2, two types of experiments were conducted for the product 

studies on the reactions of ozone with PVE and BVE, i.e. i) in the presence of an OH 

radical scavenger, cyclohexane, and ii) in the presence of an OH radical tracer, 

1,3,5-trimethyl-benzene (TMB).  
 

 

4.2.1 Experimental results  
 

The product studies on the ozone initiated oxidation of PVE and BVE were performed 

at (298±3) K and (733±4) Torr total pressure of synthetic air. For each reaction at least 

three experimental runs were performed.  

The approximate reactant concentrations were vinyl ether 3.2-6.5 ppm, O3 1.0-1.8 

ppm, cyclohexane 290 ppm and TMB 4.0 ppm.  

 

 

4.2.1.1 Results for the reaction of ozone with PVE  
 

Figure 4.9, trace (a), shows the product spectrum obtained from the reaction of O3 

with PVE in an excess of cyclohexane used to trap the OH radicals produced in the 

system. Traces (b) and (c) in Figure 4.9 are reference spectra of PVE and propyl 

formate, respectively.  

In the presence of the OH radical scavenger, the only product that could be positively 

identified was propyl formate. The infrared absorption regions of other products were 

either saturated by absorptions due to cyclohexane or were subject to strong overlap 

by absorptions from cyclohexane.  

Trace (a) in Figure 4.10 is the residual product spectrum obtained from the ozonolysis 

of PVE in the presence of TMB after subtraction of the identified products propyl 

formate, HCHO and CO. Traces (b) and (c) in Figure 4.10 show reference spectra of 
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hydroxyperoxy methyl formate (HPMF) and formic anhydride (FA), respectively, 

while trace (d) is the residual spectrum obtained from trace (a) after the subtraction of 

HPMF and FA. For easier visual comparison spectra (a) and (d) are multiplied by a 

factor of 5.  

 

Figure 4.11 gives the concentration-time profiles of PVE and the identified products 

from a typical experiment performed in the presence of the OH radical tracer TMB. It 

can be seen that propyl formate is the major product in the ozone reaction with PVE. 

Figure 4.12 shows examples of the concentration of propyl formate formed i) in the 

presence of the OH radical scavenger and ii) in the presence of the OH radical tracer, 

plotted as a function of the reacted PVE. The data points for the propyl formate 

formation measured in the presence of the OH radical scavenger have been offset by 

0.3 ppm in Figure 4.12 for clarity.  

From the slopes of the linear regression lines in Figure 4.12 molar yields for propyl 

 

Figure 4.9  Product spectra recorded during the ozonolysis of PVE in the 

presence of excess cyclohexane: (a) spectrum recorded after reaction of O3 with 

PVE; (b) scaled reference spectrum of PVE; (c) scaled reference spectrum of 

propyl formate. 
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formate formation of (88.3±9.3)% in the presence of the OH scavenger and (89.7±9.9) 

% in the presence of the OH radical tracer are obtained. Since both yields are in 

excellent agreement it is preferred to quote a value of (89.0±11.4)% for the yield of 

propyl formate, which is an average of the two determinations with error limits which 

encompass the extremes of both determinations.  

 

Figure 4.13 presents a plot of the concentrations of the other products identified in the 

ozonolysis of PVE versus the amount of consumed PVE for a typical experiment 

performed in the presence of the OH radical tracer. Formaldehyde and CO could be 

measured and were formed in significant yields with values (corrected for reaction 

with OH radicals) of (12.9±4.0) and (10.9±2.6) molar %, respectively. Formaldehyde 

and CO are thought to stem entirely from the ozonolysis of PVE since they have not 

been observed as products in the reaction of the OH radical with TMB [102-104].  

 

Figure 4.10  Product spectra obtained for the reaction of ozone with PVE in the 

presence of an OH radical tracer: (a) product spectrum after subtraction of the 

products propyl formate, HCHO and CO; (b) scaled reference spectrum of 

hydroxyperoxy methyl formate (HPMF); (c) scaled reference spectrum of formic 

anhydride (FA); (d) spectrum (a) after subtraction of (b) and (c). For easier 

comparison (a) and (d) are multiplied by a factor of 5.  
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Figure 4.12  Plots of the measured product concentrations of propyl formate as a 

function of the amount of PVE reacted with ozone. (○)-propyl formate produced 

in the presence of the OH radical scavenger; (●)-propyl formate produced in the 

presence of the OH radical tracer. The propyl formate concentration measured in 

the presence of the OH radical scavenger is offset by 0.3 ppm. 

 

Figure 4.11  Concentration-time profiles of PVE and identified products from 

the ozone initiated oxidation of PVE: (∇)-PVE; (Δ)-HCHO; (×)-CO ; (♦)-propyl 

formate; (●)-FA; (○)-HPMF.  
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From Figure 4.13 a molar yield of (13.0±3.4)% has been determined for HPMF. 

Formation of FA was only observed after the formation of HPMF and its yield was 

very low (1.94±0.59)%.  

 

 

4.2.1.2 Results for the reaction of ozone with BVE  

 
The product studies on the ozonolysis of BVE were conducted exactly in the same 

manner as those on the ozone reaction with PVE.  

Figure 4.14, trace (a), is the product spectrum obtained from the reaction of O3 with 

BVE performed in an excess of cyclohexane to trap the OH radicals produced in the 

system. Traces (b) and (c) in Figure 4.14 show reference spectra of BVE and butyl 

formate, respectively. 

As in the ozonolysis of PVE, in the presence of an OH radical scavenger the only 

 

Figure 4.13  Plots of the measured product concentrations as a function of the 

amount of PVE reacted with ozone from experiments performed in the presence 

of an OH tracer. (▼)-HPMF; (Δ)-CO; (●)-HCHO; (○)-FA. The concentrations of 

CO and HPMF are offset by 0.15 ppm and 0.3 ppm respectively.  
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product that could be positively identified was an alkyl formate, i.e. butyl formate in 

the case of BVE. The infrared absorption regions of other products were either 

saturated or strongly overlapped by cyclohexane absorptions.  
 

Trace (a) in Figure 4.15 is the residual product spectrum obtained from the ozonolysis 

of BVE in the presence of the OH radical tracer TMB after subtraction of the 

identified products: butyl formate, HCHO and CO. Traces (b) and (c) in Figure 4.15 

are again reference spectra of HPMF and FA, respectively, while trace (d) is the 

residual spectrum obtained from trace (a) after the subtraction of HPMF and FA.  

The concentration-time profile of the reactants and the products identified in a typical 

experiment on the ozonolysis of BVE are shown in Figure 4.16. It is obvious that 

butyl formate is the major product in the ozone reaction with BVE.  

Figure 4.17 presents plots of the amount of butyl formate formed i) in the presence of 

an OH scavenger and ii) in the presence of the OH tracer, versus the amount of 

reacted BVE. The data points for butyl formate measured in the presence of the OH 

scavenger have been offset by 0.3 ppm in Figure 4.17 for clarity. From the slopes of 

 

Figure 4.14  Product spectra recorded during the ozonolysis of BVE in the 

presence of excess cyclohexane: (a) reaction mixture spectrum; (b) scaled reference 

spectrum of BVE; (c) scaled reference spectrum of butyl formate.  
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the linear regression lines molar yields for butyl formate formation of (78.5±8.8)% 

and (76.7±8.9)% have been obtained in the presence of the OH scavenger and the OH 

radical tracer, respectively. Since both yields are in good agreement it is preferred to 

quote a value of (77.6±9.8)% for the yield of butyl formate, which is again an average 

of the two determinations with error limits which encompass the extremes of both 

determinations.  

 

 

 

Figure 4.18 shows plots of the concentrations of the other quantified products versus 

the amount of consumed BVE for an ozonolysis experiment performed with the OH 

radical tracer. Formaldehyde, CO, HPMF and FA could be quantified and were 

formed with molar yields of (10.5±1.8)%, (8.2±1.3)%, (12.0±2.9)% and (2.6±0.54)%, 

respectively. FA was again observed after the formation of HPMF.  

 

Figure 4.15  Product spectra from an experiment on the reaction of ozone with 

BVE in the presence of an OH radical tracer: (a) residual product spectrum after 

subtraction of butyl formate, HCHO and CO; (b) scaled reference spectrum of 

hydroxyperoxy methyl formate (HPMF); (c) scaled reference spectrum of formic 

anhydride (FA); (d) spectrum (a) after subtraction of (b) and (c). For easier 

comparison (a) and (d) is multiplied by a factor of 5. 
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Figure 4.16  Concentration-time profiles of reactants and products for the ozone 

initiated oxidation of BVE: (∇)-BVE; (Δ)-HCHO; (×)-CO ; (♦)-butyl formate; 

(●)-FA; (○)-HPMF. 

 

Figure 4.17  Plots of the measured butyl formate concentrations as function of 

the amount of BVE reacted with ozone. (○) n-butyl formate produced in the 

presence of the OH radical scavenger; (●) n-butyl formate produced in the 

presence of the OH radical tracer. The n-butyl formate concentration measured in 

the presence of the OH scavenger is offset by 0.3ppm.
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4.2.2 Discussion on the ozone reactions  
 

The products identified in the ozonolysis of PVE and BVE presented above account 

for 81.9% and 70.2% of reacted carbon, respectively.  

The yields of the products for the reaction of O3 with PVE and BVE are listed in 

Table 4.2 where they are compared with the results from product studies on the 

ozonolysis of alkyl vinyl ethers. From Table 4.2 it can be seen that the yields of the 

formates and formaldehyde determined within this study for the vinyl ethers fall 

within the ranges (75±15) and (20±10) molar %, respectively. The values reported by 

Klotz et al. [52] for MVE, Mellouki [51] for EVE and Barnes et al. [48] for iBVE, 

tBVE and EPE also fall within these ranges. 

The formate and HCHO yields for the reactions of ozone with EVE and EPE reported 

by Grosjean and Grosjean [29] do not fall within these ranges, the formate yields are 

much lower (factor of 2) and the HCHO yields much higher (factor of 2 or more) than 

those measured in this work and reported by other authors. 

  

Figure 4.18  Plots of the measured product concentrations as a function of the 

amount of BVE reacted with ozone for experiments performed in the presence of 

the OH tracer. (▼)-HPMF; (Δ)-CO; (●)-HCHO; (○)-FA. The concentrations of 

CO and HPMF are offset by 0.15 ppm and 0.3 ppm, respectively.  
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Table 4.2 Comparison of the product yields reported in the literature for the ozonolysis of alkyl vinyl ethers 
 

Vinyl ether 
Formate yield  

(molar %) 

HCHO yield 

(molar %) 

HPMF yield  

(molar %) 

CO yield  

(molar %) 

FA yield 

 (molar %) 

 

Reference 

MVE, CH3OCH=CH2 73.5±7.5 27.8±6.6 19.6±6.2 14.2±1.5  Klotz et al. [52] 

 

 

EVE, C2H5OCH=CH2 

87±6 

86.5  

>38.8i) 

 

80±8 

19±4 

21  

48.7±5.2 

46±7 

15±4 

- 

20.5 

- 

- 

- 

11.2 

- 

- 

 Thiault [50,51] 

Barnes et al. [48] 

Grosjean et al. [29] 

Grosjean et al. [58] 

Al Mulla [55] 
 

PVE, n-C3H7OCH=CH2 
89.0±11.4 

60±8 

12.9±4.0 

40±4 

13±3.4 10.9±2.6 1.94±0.59 This work 

Al Mulla [55] 
 

BVE, n-C4H9OCH=CH2 
 77.6±9.8 

59±8 

 10.5 ±1.8 

41±6 

12.0±2.9 8.2±1.3 2.6±0.54 This work 

Al Mulla [55] 
 

iBVE, i-C4H9OCH=CH2 
81.1±11.2 

55±6 

11.9±5.0 

38±6 

14.2±4.4 9.4±2.2 2.5±0.54 Barnes et al. [48] 

Al Mulla [55] 
 

tBVE, t-C4H9OCH=CH2 
65.9±8.9 

68±8 

11.5±3.4 

32±4 

11.8 7.4 1.5±0.4 Barnes et al. [48] 

Al Mulla [55] 
 

EPE, C2H5OCH=CHCH3 
83.1 

>43.3 i) 

11.7 ii) 

35.3±1.4 ii) 

- 13.3  Barnes et al. [48] 

Grosjean et al. [29] 

 

i) lower limit; ii) this yield refers to acetaldehyde formation from the split of the propenyl bond; formation of HCHO was also observed
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Grosjean and Grosjean [29] collected their samples on C18 cartridges coated with 

2,4-dinitrophenylhydrazine (DNPH) and analyzed them by liquid chromatography 

with UV detection. Although they reported that their formate yields were probably 

lower limits due to difficulties with the analysis this can not explain the difference in 

the HCHO yields. The yields reported by other authors in Table 4.2 were determined 

using mainly in situ long path FTIR and well established infrared cross sections for 

HCHO and the formates. The consistency of the FTIR data obtained with the different 

experimental systems would tend to suggest that the method employed by Grosjean 

and Grosjean [29] to study the ozonolysis products of EVE and EPE is in some way 

flawed, at least as far as the analysis of the ozonolysis products from these particular 

compounds is concerned.  

Al Mulla [55] has used FTIR to measure product formation yields for the reactions of 

ozone with a series of vinyl ethers. The yields were not measured directly; gas 

samples from a photoreactor were expanded into an evacuated long path multi- 

reflection cell mounted in the sample compartment of the spectrometer and spectra 

were recorded at a resolution of 4 cm-1. The product yields reported by Al Mulla [55] 

for EVE are in good agreement with those determined by Barnes et al. [48] and 

Thiault [50]. For tBVE the formate yield reported by Al Mulla [55] is in excellent 

agreement with the yield determined by Barnes et al. [48] but his formaldehyde yield 

is over a factor of 3 times higher. For the other vinyl ethers studied by Al Mulla [55], 

i.e. PVE, BVE and iBVE, the reported formate yields are approximately 30% lower 

than other determinations and the formaldehyde yields are between factors of 3 to 4 

higher. At present the reason for these discrepancies are not clear. The sampling 

system used by Al Mulla [55] could give rise to sampling artifacts which would 

influence the product yields; however, until more information on the work of Al Mulla 

[55] becomes available this is merely speculation.  

HPMF has been detected previously in the ozonolysis of MVE [52], iBVE, tBVE and 

EPE [48]. The yields determined here for HPMF formation in the reactions of O3 with 

PVE and BVE are very similar to those measured for the reactions of O3 with iBVE 

and tBVE but a little lower than the values of approximately 20% reported for MVE 

and EPE.  

FA is a decomposition product of HPMF; observation of its formation in the 

decomposition of HPMF has been reported previously in the literature [52,105]. 

Formation of formic acid (HCOOH), an expected product of the ozonolysis of PVE 
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and BVE, was not observed in the present product studies. Klotz et al. [52] reported 

very low yields (0.75±0.13)% of formic acid in their study on the ozonolysis of MVE.  

From the known reactions of the Criegee biradicals [105] formation of formic acid 

would be expected either by the decomposition of excited Criegee biradicals or the 

reaction of stable Criegee biradical with water. Klotz et al. [52] attributed the low 

formic acid yield in ozonolysis of MVE to the known fast reaction of formic acid with 

Criegee biradicals to produce HPMF [52]. It is assumed that this is also the case in 

this study on the ozonolysis of PVE and BVE and that the concentration of formic 

acid remains below the detection sensitivity of the FTIR set-up employed for the 

investigations.  

Carbon monoxide yields have been reported for the ozonolysis of MVE [52], EVE, 

EPE, iBVE and tBVE [48], the measured yields are very similar to those determined 

here for the ozonolysis of PVE and BVE.  

In the OH tracer type of experiment averaged OH radical concentrations of (1.3±0.38) 

× 106 and (2.5±0.72) × 106 molecules cm-3 have been calculated for the ozonolysis of 

PVE and BVE, respectively. The total concentration of OH radicals formed in the 

ozonolysis of PVE and BVE can be calculated using the procedures described in 

Section 2.2.3.3. The OH formation yield is given by the ratio of the total amount of 

OH radicals formed against the amount of vinyl ethers reacted. Using this procedure 

OH radical yields of (17±9)% and (18±9)% have been estimated for the ozonolysis of 

PVE and BVE, respectively. These yields are similar to that determined for the 

ozonolysis of MVE [52], where an OH formation yield of (14±7)% was found. As not 

all the possible sinks for the OH radicals can be included in the calculations, the OH 

formation yields should be considered as lower limits.  

There are large discrepancies in the reported OH formation yields for the ozonolysis 

of alkenes [106,107], and structure activity relationships regarding OH formation in 

ozonolysis reactions are still unclear. The work from this study and that of Klotz et al. 

[52] show that the ozonolysis of MVE, PVE and BVE result in similar OH radical 

yields. The yields are also similar to that found for the ozonolysis of ethene. It would, 

therefore, appear that the OH formation yield in the ozonolysis of alkyl vinyl ethers is 

comparatively independent of the nature of the alkoxy group.  

As for other carbon-carbon double bond containing compounds, the reaction of O3 

with alkyl vinyl ethers is initiated by addition of O3 to the double bond in the vinyl 

ether (CH2=CHOR, where R = -CH2CH2CH3 for PVE or -CH2CH2CH2CH3 for BVE) 
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1.  

The addition results in the formation of an energy rich primary ozonide 25 which can 

decompose in two ways (I) and (II). The decomposition can lead to formation of an 

alkyl formate 10 and the Criegee biradical CH2OO 26 or 27, by pathway (I) or 

formaldehyde 11 and the alkoxy Criegee biradical RO-CHOO 28 or 29, by pathway 

(II). 
 

C C
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H
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O3
C C

H
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O

O
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Criegee intermediates 26 and 28 are excited and 27 and 29 are stabilized forms.  

The excited forms 26 and 28 are generally regarded to largely decompose with the 

formation of the products shown above, while the stabilized Criegees 27 and 29 are 

thought to react with various components in the system. As discussed above the 

formation of HPMF 30 is attributed to the reaction of the stable radical 27 with formic 

acid, which decomposes to give FA 31.  

According to the reaction mechanism shown above (decomposition of excited Criegee 

biradicals 26 and 28) and product studies of the reaction of ozone with MVE [52] and 

terminal alkenes [72] CO2 will be a product in the ozonolysis of PVE and BVE and 

will account for some of the unidentified carbon. 
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Unfortunately due to the presence of CO2 in the external optics of the FTIR setup used 

in this work CO2 could not be quantified. Klotz et al. [52], however, have reported a 

molar CO2 yield of (30.3±6.0)% for the ozonolysis of MVE, and molar yields of 

around 20% and 31.9% have been reported for the ozonolysis of EVE and EPE, 

respectively [48]. Based on the narrow range of the reported yields of the major 

products from the ozonolysis of vinyl ethers it is assumed that the yields of CO2 from 

the ozone reactions with PVE and BVE will be fairly similar to those reported for 

MVE, EVE and EPE.  

Based on the product yields of alkyl formates and HCHO the branching ratios for 

channels (I) and (II) must be of the order of approximately (89.0±11.4)% and 

(12.9±4.0)% for ozonolysis of PVE and (77.6±9.8)% and (10.5±1.8)% for that of 

BVE, respectively, giving a total yield of (101.9±16.9)% and (88.1±13.7)% for the 

reactions of ozone with PVE and BVE, respectively. Of the products listed in the 

overall reaction mechanism in Scheme 4.3 it has only been possible to identify and 

quantify the alkyl formate, HPMF, HCHO, CO and FA (Table 4.2). Trace (d) in Figure 

4.10 and Figure 4.15 show typical residual spectra acquired after subtraction of all the 

identified products from a spectrum obtained from the ozonolysis of PVE and BVE, 

respectively. The identities of the products giving rise to the absorption bands are 

presently unclear; potential candidates are shown in a tentative simplified reaction 

mechanism outlined in Scheme 4.3. 
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Scheme 4.3  Simplified reaction mechanism for the ozonolysis of vinyl ethers (R=-CH2CH2CH3 for PVE and -CH2CH2CH2CH3 for BVE) 
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4.3 Product studies on the NO3 radical initiated 

oxidation of vinyl ethers  
 

4.3.1 Experimental results  
 

The product studies on the NO3 radical initiated oxidation of PVE and BVE were 

conducted at (298±3) K and (733±4) Torr total pressure of synthetic air. For each 

reaction at least three experimental runs were performed to test the reproducibility of 

the results. The approximate vinyl ether concentrations were 5.5 ppm. 

 

 

4.3.1.1 Results for the reaction of NO3 with PVE  
 

Figure 4.19, trace (a) shows a typical spectrum obtained upon addition of N2O5 to 

PVE; trace (b) is the residual product spectrum obtained after subtraction of the 

absorptions due to PVE, propyl formate, formaldehyde, HNO3 and NO2 from the 

spectrum shown in trace (a); trace (c) is the product spectrum obtained from (b) after 

addition of NO to the reaction mixture. 

Figure 4.20 presents the concentration-time profile for the decay of PVE and the 

formation of products after addition of N2O5 to the system. It can be seen from Figure 

4.20 that after the addition of N2O5 was terminated no further decay of PVE due to 

reaction with NO3 was observed. However, the concentrations of formaldehyde and 

propyl formate were both observed to increase at the same slow rate. On injection of 

NO there was a fast drop in the PVE concentration accompanied by increases in the 

concentrations of both HCHO and propyl formate.  

Figure 4.21 shows plots of the concentrations of the identified products versus the 

amount of consumed PVE for a NO3 experiment. From Figure 4.21 molar formation 

yields for propyl formate and formaldehyde of (52.7±5.9)% and (55.0±6.3)%, respe- 

ctively, have been determined.  
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Figure 4.19  Product spectra for the reaction of NO3 radicals with PVE: (a) reaction 

mixture spectrum after reaction with NO3; (b) spectrum (a) after subtraction of all 

identified organic and inorganic compounds (PVE, HCHO, propyl formate, NO2, 

HNO3, H2O); (c) spectrum (b) after addition of NO to the reaction system. 

 

Figure 4.20  Typical concentration-time profiles obtained from an experiment on the 

NO3 radical initiated oxidation of PVE: (●)-PVE; (○)-HCHO; (▼)-propyl formate.  
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4.3.1.2 Results for the reaction of NO3 with BVE  
 

Figure 4.22, trace (a), shows a typical spectrum obtained upon addition of N2O5 to 

BVE in air; trace (b) is the residual product spectrum obtained after subtraction of the 

absorptions due to butyl formate, formaldehyde, HNO3 and NO2 from the spectrum 

shown in trace (a); trace (c) is the product spectrum obtained from (b) after addition of 

NO to the reaction mixture.  

Figure 4.23 gives the concentration-time profiles for BVE and the identified products 

in the NO3 initiated oxidation of BVE. As was observed in the PVE reaction after the 

addition of N2O5 was terminated no further decay of BVE was observed. However, 

the concentrations of formaldehyde and butyl formate both showed a slow increase. 

After injection of NO into the reaction system there was a sharp drop in the 

concentration of BVE decayed and a fast elevation in the concentrations of both 

HCHO and butyl formate.  

 

 

Figure 4.21  Plots of the measured product concentrations as function of the 

amount of PVE reacted with NO3 radicals: (●)-propyl formate; (○)-HCHO. For 

clarity the propyl formate concentration is offset by 0.4ppm. 
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Figure 4.23  Concentration-time profiles obtained from a typical experiment on the 

NO3 radical initiated oxidation of BVE: (●)-BVE; (○)-HCHO; (▼)-butyl formate. 

 

Figure 4.22  Product spectra for the reaction of NO3 radical with BVE: (a) 

spectrum after addition of N2O5 to BVE in air; (b) spectrum (a) after subtraction of 

all identified organic and inorganic compounds such as BVE, HCHO, butyl 

formate, NO2, HNO3, H2O; (c) spectrum (b) after addition of NO to the reaction 

system. 
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Molar formation yields for butyl formate and formaldehyde of (43.6±4.5)% and 

(48.0±5.6)%, respectively, have been obtained from the slopes of the linear regression 

lines in Figure 4.24, where the product concentrations versus the amount of reacted 

BVE were plotted.  

 

 

4.3.2 Discussion on the reactions of the NO3 radical with 

vinyl ethers 

 
The formation yields obtained for the formates and formaldehyde for the NO3 radical 

initiated oxidation of PVE and BVE are listed in Table 4.3 together with those 

reported in the literature for the NO3 radical reaction with alkyl vinyl ethers.  

It can be seen from Table 4.3 that the formation of the alkyl formate and HCHO for 

the different vinyl ethers are both being formed with molar yields within the range of 

(55±10) molar % with the exception of tBVE and EPE [48], where the formation yield 

of HCHO for tBVE is much higher than other vinyl ethers and the yields of ethyl 

formate and formaldehyde for EPE are considerably lower than the corresponding 

 

Figure 4.24  Plots of the measured product concentrations as function of the amount 

of BVE reacted with NO3 radical: (●)-butyl formate; (○)-HCHO. For clarity the butyl 

formate concentration is offset by 0.4 ppm. 
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products from other vinyl ethers. To the best of my knowledge there are no other 

product studies presently available in the literature with which the results obtained in 

the present work for PVE and BVE and those determined by Barnes et al. [48] for 

iBVE, tBVE and EPE can be further compared.  
 

 

Table 4.3 Comparison of the yields of formate (HC(O)OR) and HCHO/CH3CHO 

from the reaction of NO3 radical with vinyl ethers  
 

Vinyl ether 
Formate yield 

(molar %) 

HCHO yield 

(molar %) 

 

Reference 

 

MVE, CH3OCH=CH2 
52.5±6.3 

57±17 

 51.4±6.2 

56±23 

Klotz et al. [52] 

Scarfogliero et al. [57] 
 

EVE, C2H5OCH=CH2 
 50.1 

60±7 

 52.7 

68±13 

Barnes et al. [48] 

Scarfogliero et al. [57] 
 

PVE, n-C3H7OCH=CH2 
52.7±5.9 

52±14 

55.0±6.3 

52±14 

This work 

Scarfogliero et al. [57] 
 

BVE, n-C4H9OCH=CH2 
43.6±4.5 

52±4 

48.0±5.6 

49±8 

This work 

Scarfogliero et al. [57] 

iBVE, i-C4H9OCH=CH2 47.4±5.0 50.2±5.0 Barnes et al. [48] 

tBVE, t-C4H9OCH=CH2 58.8±6.6 74.0±8.4 Barnes et al. [48] 

EPE, C2H5OCH=CHCH3 32.2 38.3i ) Barnes et al. [48] 

 

i) acetaldehyde 
 

 

The absorptions with maximums around 1766, 1729, 1672, 1296, 1282, 843 and 791 

cm-1 in Figure 4.19, trace (b), and 1767, 1728, 1673, 1296, 1282, 842 and 791 cm-1 in 

Figure 4.22, trace (b), are indicative of the formation of different types of organic 

nitrates such as dinitrates, carbonyl nitrates and peroxynitrates [108]. Absorption 

bands around 1729 (-NO2 asymmetric stretch), 1296 (-NO2 symmetric stretch) and 

791 (-NO2 deformation) cm-1 are characteristic for peroxynitrate-type compounds 

[108,109] while absorptions around 1672, 1296 and 843 cm-1 are characteristic for 

alkyl nitrates/ dinitrates [108,110]. The absorption band at 1766/1767 cm-1 indicates 
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the presence of a carbonyl group in addition to the nitrate group.  

As described previously, on leaving the products to stand in the dark no further decay 

in both PVE and BVE was observed (see Figure 4.20 and Figure 4.23) but the 

concentrations of the alkyl formates and formaldehyde increased slowly and the 

intensities of the bands at 1729 and 791 cm-1 for NO3 + PVE and 1728 and 791 cm-1 

for NO3 + BVE decreased faster than those of the other bands. Figures 4.19, trace (c) 

and 4.22, trace (c), are the product spectra obtained from the respective (b) traces after 

addition of NO to the reaction mixture. The addition of NO to the reaction mixture 

resulted in the rapid disappearance of the bands at 1729/1728 and 791 cm-1, changes 

in the maxima and shapes of the bands at 1672, 1296, 1282 and 843 cm-1 for NO3 + 

PVE, 1673, 1296, 1282 and 842 cm-1 for NO3 + BVE, and increases in the concen- 

trations of the alkyl formate and HCHO.  

Thermal instability is a typical characteristic of peroxynitrate-type compounds:  
 

ROONO2 + M ↔ ROO▪ + NO2 + M                       

ROO▪ + ROO▪ → 2RO▪ + O2                              (4.2) 

 

and in the presence of NO, the peroxy radical ROO▪ will react rapidly as follows:  
 

ROO▪ + NO → RO + NO2                     (4.3) 
 

Reaction (4.3) disturbs the equilibrium in reaction (4.2) which leads to a rapid 

decomposition of the peroxynitrates.  

The remaining absorptions at around 1766, 1680, 1292 and 841 cm-1 in Figure 4.19 

trace (c) and Figure 4.22 trace (c) are most probably due to the formation of organic 

carbonyl nitrate and/or dinitrate compounds.  

As with other carbon-carbon double bond containing compounds the NO3 radical 

reaction with vinyl ethers mainly proceeds by addition of NO3 to the double bond (2 

possible addition sites) to produce the β-nitrooxyalkyl radicals 32 and 33 [72].  
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In the presence of O2 radicals 32 and 33 react with O2 to form the 

nitrooxyalkyl-peroxy radicals 34 and 35, respectively.  
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The further reactions of the nitrooxyalkyl-peroxy radicals are either with RO2 to 

produce the β-nitrooxy alkoxy radicals 36 and 37, respectively, or reversibly with NO2 

to form the thermally unstable nitrooxy-peroxy nitrates 38 and 39, respectively. The 

strong absorptions in the product spectrum (Figure 4.19, trace (b) and Figure 4.22, 

trace (b)) at around 1729, 1296 and 791 cm-1 are probably attributable to the 

peroxynitrate-type compounds 38 and 39. When NO is injected into the reaction 

system nitrooxy-peroxy radicals 34 and 35 react rapidly with NO to form the 

nitrooxy-alkoxy radicals 36 and 37, respectively.  

Nitrooxy-peroxy radicals 34 and 35 may also react with RCH2OO radicals to form the 

hydroxy nitrates 9 and 8, respectively.  

There are several reaction channels open to β-nitrooxy alkoxy radicals 36 and 37: i) a 

carbon-carbon bond scission to give the observed major products propyl formate 10 

and formaldehyde 11; ii) reaction with NO2 to form a dinitrate 42; iii) reaction with 

molecular oxygen to give the corresponding carbonyl nitrates 30 and 31, respectively.  
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As mentioned above the residual absorptions at around 1766 (-C(O)- stretch), 1680 

(-NO2 asymmetric stretch), 1292 (-NO2 symmetric stretch) and 841 (O-N stretch) cm-1 

in Figure 4.19 trace (c) and Figure 4.22 trace (c) are attributed to a carbonyl nitrate 

[109], probably mainly the alkyl nitrooxyacetate (ROC(O)CH2(ONO2)) 43, with 

possible minor contributions from a dinitrate 42.  

From the formation yields of the alkyl formates and HCHO carbon balances of 53.2% 

and 44.3% are obtained for the reactions of NO3 with PVE and BVE, respectively. 

Based on the analysis of 14 nitrate compounds Barnes et al. [109] have estimated an 

averaged absorption cross section of σ = (6.4±1.4) × 10-19 cm2 molecule-1 for the 

-ONO2 symmetric stretching band located around 1285 cm-1. Using this cross section 
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total nitrate formation yields of (56.0±12.3)% and (57.1±12.3)% have been estimated 

for the reactions of NO3 with PVE and BVE, respectively. Simple addition of the 

carbon balance yields and the estimated nitrate yields results in values of 109.2% and 

101.4% for the overall carbon balance for NO3 + PVE and NO3 + BVE, respectively. 

This would suggest that most unidentified nitrates are probably mono-functional 

nitrates since the nitrates and carbonyl nitrates 8, 9, 43 and 44 shown above contain 

the same number of carbon atoms as the alkyl vinyl ethers. However, the estimation 

technique is subject to substantial errors and confirmation using calibrated spectra of 

the authentic nitrate compounds is desirable.  

Scheme 4.4 shows a tentative simplified reaction mechanism for the reaction of NO3  
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Scheme 4.4  Simplified reaction mechanism for the NO3 radical initiated oxidation of an 

alkyl vinyl ether (R = -CH2CH2CH3 for PVE and R = -CH2CH2CH2CH3 for BVE).  



Chapter 4 

 110 

radicals with alkyl vinyl ether where for PVE R=-CH2CH2CH3 and for BVE R= 

-CH2CH2 CH2CH3.  
 

 

4.4 Atmospheric implications 
 

It is known that the reactions of vinyl ethers with OH radical, ozone and NO3 radical 

make a significant contribution to their losses in the troposphere. The product 

distributions for the OH, ozone and NO3 initiated oxidation of vinyl ethers in the 

present investigations were carried out in reaction chambers under simulated 

atmospheric conditions, which are similar but not identical to those found in the 

troposphere.  

The OH radical reactions performed in the present work were carried out both in the 

presence of a high level of NOx and under NOx-free conditions. Both sets of 

conditions are not representative for the real troposphere. However, the presence of 

NOx does not seem to have a very significant effect on the main product yields; the 

yields of the alkyl formate and HCHO for the different vinyl ethers are both being 

formed with molar yields within the range of (70±10) molar % for the NOx-containing 

system and (60±10) molar % for the NOx-free system.  

Due to the levels of NOx presence in the regions of the troposphere in which the vinyl 

ethers are emitted, it is expected that the organic peroxy radicals will mainly react 

with NO, not undergo self-reaction or reaction with other RO2 radicals. In the OH 

radical initiated oxidation of PVE and BVE in the presence of NOx about 23% and 

36% of carbon still remains unidentified for PVE and BVE, respectively. From a 

consideration of the radical chemistry it is likely that hydroxyl carbonyls comprise the 

majority of the missing carbon in the reactions of PVE + OH and BVE + OH in the 

troposphere with the remainder being made up of multifunctional organic nitrates.  

The experiments for the reactions of ozone with the vinyl ethers were carried out 

under “dry” conditions. However, under the “humid” conditions prevailing in the 

troposphere, based on the available data, the dominant loss of the 

thermalized ·CH2OO· Criegee biradical will be reaction with water vapor [111,112] to 

produce hydroxymethyl hydroperoxide (HOCH2OOH) as shown in channels (b) and 

(d), Scheme 4.3, while the formation of HPMF will be a minor process.  
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The NO3 radical initiated oxidation of vinyl ethers performed in this work were 

carried out under conditions of high NO2 concentrations that are not representative of 

the troposphere. As a result, the formation of the thermally unstable peroxy nitrates 

and dinitrate observed in this work are not expected to be significant under 

atmospheric conditions. To derive product formation yields for the NO3 radical 

reaction with MVE under atmospheric conditions Klotz et al. [52] assumed in their 

studies that the nitrooxyperoxy radicals behave similarly to their hydroxyl peroxy 

radical analogues in an NOx-free system and a branching ratio of 0.330.67׃ for the 

molecular versus the peroxy radical formation channels of RO2+RO2 [55,113] 

reaction shown in Scheme 4.4. If the same assumption is made in the present work the 

following formation yields can be estimated for the reaction of NO3 with PVE under 

tropospheric conditions: propyl formate and HCHO 62.2%, hydroxyl nitrates 16%, 

carbonyl nitrates 21.8%. Similarly, for the reaction of NO3 with BVE: butyl formate 

and HCHO 55.5%, hydroxyl nitrates 16%, carbonyl nitrates 28.5%.  

The OH radical, ozone and NO3 radical initiated oxidation of alkyl vinyl ethers leads 

to the formation of carbonyl compounds, alkyl formates and formaldehyde as 

demonstrated in the present work. As shown in the kinetic studies, these short-lived 

vinyl ethers, based purely on the tropospheric lifetimes can have atmospheric impacts 

on local and regional scales, however, the atmospheric impacts are not only be 

determined solely by the persistence of these unsaturated ethers but also by the fate of 

their oxidation products. HCHO will be removed by photolysis or by reaction with 

OH radicals and has a lifetime of less than a day; therefore its effect will remain local. 

The formates, on the other hand, will be oxidized mainly by reaction with OH radicals 

leading to formic acid and acetic formic anhydride which are highly soluble and can 

be rapidly incorporated into cloud droplets. Formates have lifetimes ranging from 3 

days to 2 months [48], therefore, the formation of formates from the oxidation of 

vinyl ethers, if used on a large industrial scale, could lead to atmospheric acidification 

on an extensive tropospheric scale.  

As discussed in Chapter 2 an acid catalyzed hydrolysis of the vinyl ethers on the glass 

walls of the chambers was observed. This is very likely also to occur on acidic 

surfaces in the atmosphere. An assessment of the atmospheric relevance/importance of 

this phenomenon requires further investigation.  
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Chapter 5 

 

 

Exploratory Studies on Secondary Organic 

Aerosol Formation in Ozonolysis of Alkyl 

Vinyl Ethers  

 
Secondary organic aerosol (SOA) is ubiquitous in the atmosphere, being present in 

both urban and remote locations. SOA is formed when a parent volatile organic 

compound is oxidized to form semi-volatile organic products with sufficiently low 

vapor pressures so that the products undergo absorptive partitioning between the gas 

and particle phases.  

In 2001 the Intergovernmental Panel on Climate Change [114] estimated global 

biogenically derived SOA to be in the range of 8-40 Tg/yr, while SOA from 

anthropogenic precursors was estimated to be in the range from 0.3 to 1.8 Tg/yr. As 

urban areas continue to grow the interaction between their emissions and those from 

the rural biosphere is of increased importance.  

After Klotz et al. [52] reported SOA formation from the ozonolysis of MVE, the 

smallest compound studied that produces aerosol during its atmospheric degradation, 

Sadezky et al. [64] investigated the SOA formation from the gas-phase reactions of 

ozone with a series of alkyl vinyl ethers and observed formation of oligomers in the 

SOA. The mechanism of the formation of the oligomers is so far unknown but is 

thought to involve reaction of the Criegee biradicals formed in the ozonolysis of the 

vinyl ethers with the double bond of the compounds. The observed aerosol profiles in 
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both studies showed typical behavior associated with homogeneous nucleation.  

 

 

5.1 SOA formation from the ozonolysis of PVE and 

BVE  
 

5.1.1 Size distribution of SOA  
 

The experiments on the SOA formation in the ozonolysis of PVE and BVE were 

carried out at (298±3)K and 1000mbar of synthetic air. Excess amounts (~150 ppm) 

of cyclohexane were introduced to scavenge the OH radical produced in the systems. 

The initial vinyl ether conditions for the reaction of ozone with PVE and BVE are 

given in Table 5.1.  

Figure 5.1 and 5.2 show typical time evolution profiles of the particle number size 

distribution during the ozonolysis of PVE and BVE, respectively.  
 

 

Table 5.1 Experimental conditions and results for the reaction of ozone with PVE and 

BVE at 298K and atmospheric pressure  
 

 

 

From Figure 5.1 and Figure 5.2, the SOA formed in the ozonolysis of PVE and BVE 

appears to be mono modal in both cases. The formation of detectable particles (>14 

nm) was observed a few minutes after initiation of the ozonolysis (6 and 4 minutes for 

 

Vinyl ether 
 

Initial concentration (ppm)
 

Y(%)
 

αi (%)
 

Ki (m3/μg) 
 

P0
i (μTorr) 

 

PVE 

 

2.6 

1.0 

0.69 

0.42 

0.45 

0.48 

0.40 

0.46 

0.47 

0.1050 

0.2233 

0.2716 

0.44 

0.21 

0.17 

 

BVE 

1.87 

1.68 

0.95 

0.63 

1.09 

0.31 

0.64 

1.12 

0.31 

0.1069 

0.057 

0.5289 

0.43 

0.82 

0.09 
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PVE and BVE, respectively). No seed aerosol was used in the experiments and the 

background particle concentration was less than 300 particles/cm3. The observed 

aerosol profiles showed typical behavior associated with homogeneous nucleation.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1  Evolution of the SOA distribution with reaction time (t) during the 

ozonolysis of PVE.  
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Figure 5.2  Evolution of the SOA distribution with reaction time (t) during ozone 

reaction with BVE. 
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A maximum total particle concentration of (2-2.5) × 106 particles cm-3 was reached. 

As seen in Figure 5.1 and 5.2 the particle number concentrations decreased with 

increasing reaction time and the mean particle diameter increased from an initial value 

of 20 nm to around 40 nm due to particle coagulation and/or evaporation of small 

particles followed by re-condensation on the larger particle surfaces.  

 

 

5.1.2 Aerosol yields and partition coefficients for SOA in the 

ozonolysis of PVE and BVE  
 

Figure 5.3 presents a typical plot of the total aerosol mass concentration as a function 

of the amount of PVE reacted while Figure 5.4 gives a plot of the aerosol formation 

yield as a function of the aerosol mass concentration for the same reaction, assuming 

only one partitioning semi-volatile compound. The solid line is a fit to the data points 

using the adsorption/partitioning model developed by Odum et al. [8]. As described in 

Chapter 2 the slope of the straight line of Figure 5.3 gives the aerosol yield Y (eq. IX).  

 

The mass-based stoichiometric coefficient αi as well as partitioning coefficients Ki for 

 

Figure 5.3  Typical plot of the aerosol mass concentration M0 as a function of 

the mass of reacted PVE  
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semi-volatile compound i can also be obtained from a fit of the points in Figure 5.4 

(equation XIII), by assuming spherical particles with a density of 1 g cm-3. 

 

 

Figure 5.5 and 5.6 are the typical profiles of SOA formation obtained from the 

ozonolysis of BVE. The SOA yields and the partitioning coefficients calculated for 

the ozonolysis of PVE and BVE are listed in Table 5.1.  

From Figure 5.3 and 5.5 it is clear that a certain amount of vinyl ethers must react 

before detectable aerosol is observed. This is an indication of mass of reacted vinyl 

ethers necessary to produce enough semi-volatile products to reach the saturation 

vapor pressure Pi
0. The saturation vapor pressure Pi

0 of the hypothetical semi-volatile 

compound can be derived from the partitioning coefficient Ki, which is calculated 

using the following equation,  
 

                             
iii

i
KM

RTP
ζ610

7600

×
=                     (XVI) 

 

where R is the universal gas constant, T is the temperature in Kelvin; Mi is the molar 

mass of the aerosol and ζi is the activity coefficient. As discussed by Sadezky et al. 

[64] Mi and ζi were assumed to be 400 g/mol and 1, respectively. 

 

Figure 5.4  Typical plot of the aerosol yield for the reaction of ozone with PVE as 

a function of the aerosol mass concentration M0. The solid line is a fit based on the 

adsorption/partitioning model.  
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The calculated values of Pi
0 are also listed in Table 5.1. The calculated saturation 

vapor pressures should be considered as estimated upper limits, since the calculations 

 

Figure 5.6  Typical plot of the aerosol yield as a function of the aerosol mass 

concentration M0 for BVE. The solid line is a fit based on the adsorption/partitioning 

model.  

 

Figure 5.5  Typical plot of the aerosol mass concentration M0 as a function of the 

mass of reacted BVE  
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are based on liquid compounds with flat surfaces and does not take into account the 

curved surface of the liquid droplets. According to Kelvin’s law, the smaller the radius 

of the droplet, the higher is the vapor pressure over the droplet surface. The observed 

particle size is expected to be several nanometers so the real saturation vapor 

pressures of the SOA formed should, therefore, be much lower.  

 

 

5.2 Discussion on SOA formation in the ozonolysis of PVE and 

BVE  
 

As can be seen in Table 5.1 the aerosol formation yields Y are in excellent agreement 

with the calculated mass-based stoichiometric coefficient α, indicating near ideal 

behavior of the hypothetical semi-volatile products. According to the adsorption/ 

partitioning model, if condensation plays a significant role in SOA formation higher 

initial concentrations of the reactants will give rise to higher SOA yields. However, as 

seen in Table 5.1 variation in the initial PVE concentrations did not affect the aerosol 

yields which are all around 0.4%. In contrast, the aerosol yields for the ozonolysis of 

BVE were found to vary between 0.3 to 1.1% under the conditions applied; however, 

the aerosol yields are not proportional to the initial concentration of BVE as predicted 

by the model. 

The SOA yields are very low and are associated with relatively large errors. More 

experiments, under a wider range of conditions, are necessary in order to determine 

whether or not the results for BVE are statistically relevant. Artifacts in the 

experimental system can also not be excluded. 

Table 5.2 compares the results for SOA formation from the reaction of ozone with 

PVE and BVE from the present study with values reported in the literature for alkyl 

vinyl ethers.  

It is clearly evident from Table 5.2 that the presence of an OH radical scavenger 

(cyclohexane) significantly reduces aerosol formation in the ozonolysis of alkyl vinyl 

ethers.  

It is well established that the OH radical is a product of the ozonolysis of unsaturated 

organics. The OH radical can be produced from various reactions of the Criegee 

intermediates (CI). Therefore, an OH radical scavenger is commonly used to isolate 
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the ozone reaction. To date, the effects of the addition of an OH radical scavenger and 

a stabilized CI scavenger on SOA formation in chemical systems are not well unders- 

tood.  
 

 

Table 5.2 Comparison of the SOA yields obtained in the present study with those 

reported in literature for the ozonolysis of alkyl vinyl ethers.  
 

Vinyl ether Initial concentration 
(ppm) 

OH tracer OH scavenger αi  (%) 

MVE 4.9-8.9 di-n-butyl ether - 0.66 a) 

EVE 0.2-0.4 - - 3.5 b) 

 

PVE 
0.69-2.6 

0.2-0.4 

 

- 

Cyclohexane 

- 

0.44 c) 

3.8 b) 

 

BVE 
0.95-1.87 

0.2-0.4 

 

- 

Cyclohexane 

- 

0.31-1.12 c) 

4.3 b) 

 

iBVE 
0.2-0.4 

0.2-0.4 

 

- 

Cyclohexane 

- 

0.9 b) 

4.4 b) 

tBVE 0.2-0.4 - - 1.6 b) 

 
a) Data taken from Klotz et al. [52]   b) Date taken from Sadezky et al.[64]  c) Present work 

  

 

Resent studies aimed at investigating the effects of OH radical and CI scavengers on 

SOA formation in the ozonolysis of alkenes have been performed by several 

laboratories. 

Docherty and Ziemann et al. [115-118] have studied the effect of an OH scavenger on 

the SOA formation from the ozonolysis of several alkenes and established that the OH 

radical scavenger definitely plays a role. They have demonstrated that the extent and 

direction of the influence is dependent on the specific alkene. For example, in a 

β-pinene/ozone reaction system Ziemann [116] observed a higher SOA yield when 

cyclohexane was used as the scavenger compared to propanol. In a cyclohexene/ 

ozone reaction system, using three different OH radical scavengers, Keywood et al. 

[117] observed that the SOA yield was highest with CO, intermediate with 2-butanol 

and the lowest with cyclohexane.  
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To explain the OH scavenger effects on SOA formation in the ozonolysis of alkenes 

Docherty et al. [115,118] and Keywood et al. [117] have proposed that the main 

influence of the scavengers arises from their independent production of HO2 radicals, 

which apparently enhances the rate of reaction of hydroperoxy radicals with key 

radical intermediates in SOA formation.  

The effect of water vapor, an effective CI scavenger, on the SOA formation from the 

reaction of ozone with several monoterpenes has been investigated recently [119-125]. 

Regarding the mass of SOA, most studies found an increase in SOA on adding water 

to the system [120,122,125]. However, with regard to the number of the particles, the 

results are more contradictory. The study performed by Jonsson et al. [125] showed an 

increase in the number of particles with increase in humidity, while most of the other 

studies found either a slight decrease or no effect [119,120,123,124]. The increase in 

mass could be partly explained by physical water uptake, but not the observed 

increase in the number concentration.  

The water dependence of the SOA formation from ozonolysis of monoterpenes 

observed by Jonsson et al. [125] was attributed by the authors to water influence on: i) 

the gas-phase reactions, e.g. reaction of the stabilized CI with water producing 

carboxylic acids, ii) the HOx chemistry, and iii) the partitioning and condensed phase 

chemistry.  

Docherty et al. [115,118], on the other hand, observed that the aerosol mass spectrum 

and the yields were relatively insensitive to the identity of the CI scavenger (water, 

alcohols and aldehydes) in the ozonolysis of β-pinene, indicating that the association 

reactions of the stabilized CI contribute minimally to the SOA formation, at least, in 

this system.  

The present work in combination with that of Sadezky et al. [64], clearly show that 

the presence of an OH radical scavenger affects the SOA formation from the 

ozonolysis of alkyl vinyl ethers. As with the other ozonolysis systems, the effect of 

the OH radical scavenger on the mechanism of the SOA formation from ozonolysis of 

vinyl ethers is not clear.  

In the ozonolysis of alkyl vinyl ethers Sadezky et al. [64] have also shown that the 

SOA formation is dramatically reduced in the presence of HCOOH and water. The 

reactions of the stabilized CI with HCOOH and water are discussed in Chapter 4. 

From the above results it would appear on first glance, that the influence of a CI 

scavenger on SOA formation from the ozonolysis of alkyl vinyl ethers is completely 
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different to that observed for ozone/monoterpene systems, and that different 

mechanisms leading to SOA formation must be operative in the systems. However, 

the SOA yields from the ozone/monoterpene systems are much higher than those 

observed in the ozonolysis of alkyl vinyl ethers. It is, therefore, more likely that the 

mechanism leading to the small SOA yields in the ozonolysis of the vinyl ethers is 

also operative in the ozone/monoterpene systems but is going undetected because of 

the large variability in the SOA yields from the ozone/monoterpene systems.  

The formation of oligomers in the ozonolysis of alkyl vinyl ethers observed by 

Sadezky et al. [64], which contain the Criegee biradical structural entity, and the large 

decrease in the SOA yield on adding a CI scavenger to the reaction systems strongly 

support a major role of CI in the SOA formation observed in the “dry” ozonolysis of 

alkyl vinyl ethers. If this is the case, addition of an OH radical scavenger such as 

cyclohexane to the ozone/alkyl vinyl ether systems will increase the HO2 radical level 

in the system. These radicals can react with the CI to form hydroperoxides, which will 

reduce the amount of attack of the CI at the double bond. The hydroperoxides are 

relatively small and highly volatile compared to those formed in terpene ozonolysis 

systems and will not form SOA, thus the overall SOA yield would be expected to 

decrease in the presence of cyclohexane compared to that in its absence if reaction of 

CI with the alkyl vinyl ether is the SOA formation route as is observed 

experimentally.  

Similarly, the presence of CI scavengers, such as water and HCOOH, will very 

effectively transform the CI to highly volatile hydroperoxides thus hindering reaction 

of the CI with the alkyl vinyl ether double bond and reducing SOA formation. 

If reaction of the CI with the double bond in the ozonolysis of alkyl vinyl ethers is the 

major route to the SOA formation as the results of Sadezky et al. [64] suggested the 

SOA formation from the ozonolysis of alkyl vinyl ethers will be of negligible 

importance under atmospheric conditions due to scavenging of the CI by the high 

concentrations of water vapour constantly present in the troposphere. However, if the 

SOA observed in the ozonolysis of alkyl vinyl ethers via reaction of the CI with the 

double bond is a general phenomena for alkenes then it needs to be taken into account 

in all SOA studies on the ozonolysis of alkenes performed under dry conditions. 
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Chapter 6 

 

 

Summary  

 
Vinyl ethers are used increasingly as organic solvents, additives and in different types 

of coatings in industry. Because of their fairly high volatility this class of compound 

will result in a significant emission into the urban atmosphere and hence will be 

oxidized by OH radical, ozone and NO3 radical.  

 

The objectives of present work were: i) to determine the rate coefficients for the 

reactions of selected vinyl ethers with atmospheric reactive species, i.e. OH radical, 

ozone and NO3 radicals, ii) to elucidate the atmospheric reaction mechanisms for the 

OH, ozone and NO3 initiated oxidation of alkyl vinyl ethers, and iii) to study the 

secondary organic aerosol (SOA) formation from the ozonolysis of alkyl vinyl ethers.  

This study has successfully addressed these objectives.  

 

The kinetic studies performed in the present work were carried out in a 405 l 

borosilicate glass chamber at Wuppertal University, Germany. Relative rate coeffi- 

cients have been measured for the reactions of OH radical, ozone and NO3 radicals 

with propyl vinyl ether (PVE), butyl vinyl ether (BVE), ethylene glycol monovinyl 

ether (EGMVE), ethylene glycol divinyl ether (EGDVE) and diethylene glycol 

divinyl ether (DEGDVE). The rate coefficients (in cm3 molecule-1 s-1) obtained in the 

present work are listed in the following table.  
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Vinyl ether kOH×10 11 kO3×10 16 kNO3×10 12 

Propyl vinyl ether,  

n-C3H7OCH=CH2 

 

9.73±1.94
 

2.34±0.48
 

1.85±0.53 

Butyl vinyl ether 

n-C4H9OCH=CH2 

 

11.3±3.1
 

2.59±0.52
 

2.10±0.54 

Ethyleneglycol monovinyl ether 

HOCH2CH2OCH=CH2 

 

10.4±2.15
 

2.02±0.41
 

1.95±0.50 

Ethyleneglycol divinyl ether 

H2C=CHOCH2CH2OCH=CH2 

 

12.3±3.25
 

1.69±0.41
 

2.23±0.46 

Diethyleneglycol divinyl ether 

H2C=CHOCH2CH2OCH2CH2OCH=CH2

 

14.2±3.00
 

2.70±0.56
 

6.14±1.38 

 

 

In addition, the rate coefficient for OH radical reaction with 2-methyl-1,3-dioxolane, 

the only product of the dark reaction of EGMVE, was measured as (1.05±0.25)×1011 

cm3 molecule-1 s-1.  

The present kinetic data has considerably supplemented the kinetic database required 

to develop structure-reactivity relationships for the reactions of OH radical, ozone and 

NO3 radicals with oxygenated volatile organic compounds. Using the rate coefficients 

obtained in this work, in combination with tropospheric concentrations (in molecule 

cm-3) of [OH] = 1.6×106 (12 hour daytime average), [O3] = 7.0×1011 (24 hour average) 

and [NO3] = 5.0×108 (12 hour nighttime average) the atmospheric lifetimes of the 

selected vinyl ethers with respect to their reactions with OH radical, ozone and NO3 

radicals range from few minutes for reaction with NO3 to a few hours for reaction 

with OH and ozone. Thus all three reactions can make significant contributions to the 

degradation of the selected vinyl ethers. The short lifetimes of the vinyl ethers show 

that they will be quickly degradated when emitted to the atmosphere and will only be 

actively involved in tropospheric chemistry on local to regional scales. Results from 

laboratory studies show that photolysis of vinyl ethers is a negligible loss process for 

this class of organic compound in the troposphere.  

 

As mentioned above the tropospheric degradation of vinyl ethers is initiated by 
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reactions with OH radical, ozone and NO3 radicals. Product studies of the OH, ozone 

and NO3 initiated oxidation of alkyl vinyl ethers were performed in the 405 l 

borosilicate glass reactor at Wuppertal University.  

In the case of the OH radical initiated oxidation of PVE and BVE alkyl formate and 

formaldehyde are the main products. The molar yields of both the alkyl formate and 

HCHO for the different vinyl ethers fall within the range of (70±10) molar % for the 

NOx-containing system and (60±10) molar % for the NOx-free system. The reduced 

yields of the formates and HCHO observed in the absence of NOx compared to the 

higher yields measured in the presence of NOx can be explained by different 

mechanisms.  

The reactions of the OH radical with alkyl vinyl ethers is mainly initiated by the 

addition of the OH radical to the carbon-carbon double bond of the vinyl ethers to 

form β-hydroxy alkyl radicals. Further reactions of the β-hydroxy alkyl radicals with 

O2 and NO (in the presence of NOx) or RO2 radicals (in the absence of NOx) give 

mainly β-hydroxy alkoxy radicals. In the absence of NOx self-reaction of the 

β-hydroxy alkyl peroxy radicals will also lead to formation of multifunctional group 

compounds while in the presence of NOx, β-hydroxy alkyl peroxy radicals will almost 

completely react with NO to form β-hydroxy alkoxy radicals, which decompose to 

produce an alkyl formate and HCHO. The self reaction of the β-hydroxy alkyl peroxy 

radicals can explain the reduced yields of the formates and HCHO in the NOx-free 

system. For the OH radical initiated oxidation of PVE, in the presence of NOx, 77.0% 

C can be accounted for, compared to 63.4% C in the absence of NOx. For the reaction 

of OH with BVE, in the presence of NOx, 64.6% C can be accounted for, compared to 

52.3% C in the absence of NOx. The residual infrared product spectra suggest that 

nitrate or carbonyl nitrate products comprise the majority of the missing carbon in the 

NOx-containing systems. However, under tropospheric conditions it is likely that 

hydroxyl carbonyls comprise the majority of the missing carbon in the reactions of 

PVE + OH and BVE + OH with the remainder being made up of multi-functional 

organic nitrates.  

 

Two types of experiments were conducted for the product studies on the reactions of 

ozone with the alkyl vinyl ethers, i.e. i) in the presence of an OH radical scavenger, 

cyclohexane, and ii) in the presence of an OH radical tracer, 1,3,5-trimethyl-benzene 

(TMB). In the presence of the OH radical scavenger, the only product that could be 
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positively identified and quantified in each system was an alkyl formate. The 

formation yields for alkyl formates measured in both types of experiments were in 

good agreement (within the range of 75±15%). Ozonolysis of the alkyl vinyl ethers 

also led to the formation of HCHO (within the range of 20±10%), hydroperoxy 

methyl formate (HPMF, ~12%), CO (~10%) and formic anhydride (FA, ~2%). In the 

OH tracer type of experiment OH radical yields of ~17% have been estimated for the 

ozonolysis of the alkyl vinyl ethers.  

The products identified in the ozonolysis of PVE and BVE presented above account 

for 81.9% and 70.2% of reacted carbon, respectively.  

As for other carbon-carbon double bond containing compounds, the reactions of O3 

with alkyl vinyl ethers are initiated by addition of O3 to the double bond to give 

energy rich primary ozonides. The decomposition of the ozonides leads to the 

formation of Criegee intermediates and end products, i.e. alkyl formates and HCHO. 

The branching ratios for the different channels of the decomposition of the ozonides 

depend on the structure of the individual vinyl ethers. The further reactions of the 

Criegee biradicals produce CO, HPMF, FA and OH radicals. Detailed reaction 

mechanisms describing the formation of the products are discussed in Chapter 4.  

 

In the reactions of NO3 radical initiated oxidation of alkyl vinyl ethers alkyl formates 

and HCHO were again observed as major products with molar formation yields of 

around 53% for PVE and around 45% for BVE.  

The gas-phase reactions of the NO3 radical with alkyl vinyl ethers have been 

postulated to proceed via NO3 radical addition to the double bond to form β-nitrooxy 

alkyl radicals. The subsequent reactions of the β-nitrooxy alkyl radicals are analogous 

to those of the β-hydroxy alkyl radicals formed from the corresponding OH radical 

reactions and lead to the formation of β-nitrooxy alkyl peroxy radicals. In the 

presence of NO2, β-nitrooxy alkyl peroxy radicals can react with NO2, to form 

thermally unstable peroxy nitrates, however, self-reactions and/or cross-reaction with 

peroxy radicals will also produce nitrooxy alkoxy radicals. There are several reaction 

channels open to nitrooxy alkoxy radicals: i) carbon-carbon bond scission to give the 

observed major products alkyl formates and HCHO; ii) reaction with NO2 to form 

dinitrates; iii) reaction with O2 to form the corresponding carbonyl nitrates.  

From the formation yields of the alkyl formates and HCHO carbon balances of 53.2% 

and 44.3% are obtained for the reactions of NO3 with PVE and BVE, respectively, and 
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total nitrate formation yields of about 56.0% and 57.1% have been estimated for the 

reactions of NO3 with PVE and BVE, respectively.  

 

Exploratory studies on secondary organic aerosol (SOA) formation in the reactions of 

ozone with PVE and BVE were performed in a 1080 l quartz glass rector coupled with 

a scanning mobility particle sizer (SMPS) system at Wuppertal University. The 

observed aerosol profiles show typical behavior associated with homogeneous 

nucleation. In the presence of an excess amount of cyclohexane, SOA yields of 0.4% 

and 0.3-1.1% were obtained for PVE and BVE, respectively. The SOA formation 

mechanism and the role that the OH radial scavenger plays in the SOA formation 

remain unclear. There are indications that the SOA formation will be of negligible 

importance under atmospheric conditions.  

 

Interest in the oxidation of alkyl vinyl ethers, i.e. PVE and BVE is likely to be mainly 

focused in urban air masses with significant NOx, i.e. where the major emission 

sources will be. The reaction mechanisms developed in the present work are complex. 

Since CT-models generally require simple chemical mechanisms, therefore, based on 

the available product information (Chapter 4) and the conditions prevailing in the 

urban troposphere, the following highly simplified one-line mechanisms for use in 

chemical models of the OH radical, ozone and NO3 radical initiated atmospheric 

oxidation of PVE and BVE are proposed:  
 

PVE + OH → 0.8 propyl formate + 0.8 HCHO + 0.1 hydroxy carbonyls + 0.1 

unsaturated carbonyls/esters 

PVE + O3 → 0.85 propyl formate + 0.15 HCHO + 0.15 CO + 0.3 CO2 + 0.2 HCOOH 

+ 0.15 OH + 0.35 hydroxy hydroperoxides + 0.01 aerosols 

PVE + NO3 → 0.62 propyl formate + 0.62 HCHO + 0.16 hydroxy nitrate + 0.22 

carboxyl nitrate 
 

BVE + OH → 0.65 butyl formate + 0.65 HCHO + 0.25 hydroxy carbonyls + 0.1 

unsaturated carbonyls/esters  

BVE + O3 → 0.87 butyl formate + 0.13 HCHO + 0.15 CO + 0.3 CO2 + 0.2 HCOOH + 

0.15 OH + 0.35 hydroxy hydroperoxides + 0.01 aerosols  

BVE + NO3 → 0.56 propyl formate + 0.56 HCHO + 0.16 hydroxy nitrate + 0.29 

carboxyl nitrate  
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Appendix I 

 

 

Syntheses  
 

 

I.1 Synthesis of methyl nitrite (CH3ONO)  
 

Methyl nitrite was prepared using the method described in the literature [126].  

In a 2 l two-neck flask fitted with a magnetic stirrer and dropping funnel, 69 g (1 mol) 

of sodium nitrite (NaNO2) and 50 ml methanol (CH3OH) dissolved in 40 ml water. 

The flask was cooled with an ice bath.  

A solution of 27 ml concentrated sulfuric acid in 50 ml water was added dropwise to 

the solution mentioned above. After being generated, the gaseous methyl nitrite was 

first dried by passing it through a glass tube containing calcium chloride (CaCl2) and 

then collected in a glass cylinder placed in a cooling trap. The cooling bath is a 

combination of dry ice and ethanol (-68 ºC). The pale yellow liquid methyl nitrite was 

stored in the glass cylinder at -78 ºC in dry ice.  

 

 

I.2 Synthesis of nitrous acid (HONO)  
 

Nitrous acid was synthesized by the method of Cavalli et al. [71] 

In a three-neck round-bottomed flask equipped with a magnetic stirrer, dropping 

funnel, thermometer and synthetic air inlet and outlet, 30 ml of a 30% sulfuric acid 

solution was placed. The synthetic air outlet was directly connected to the reaction 

chamber.  

The nitrous acid was produced by adding a 1% sodium nitrite (NaNO2) aqueous 



Appendix I                                                            Syntheses 

 128 

solution dropwise into the stirred flask at 20 ºC.  

 

2 NaNO2 + H2SO4  →   2 HONO + Na2SO4                       (I.1) 

 

 

I.3 Synthesis of dinitrogen pentoxide (N2O5)  
 

Dinitrogen pentoxide was synthesized by the method of Schott et al. [69]. 

 

1. NO2 condensation to N2O4:  

 
NO2 was condensed from an NO2 gas cylinder into a storage trap at -32 ºC. Figure A.1 

shows the experimental set-up used for the NO2 condensation. NO2 vapor was sucked 

out of the NO2 gas cylinder slowly by a pump connected to the storage trap. Prior to 

condensation in the storage trap it was passed through a column of P2O5 coated glass 

beads.  

2. Preparation of N2O5:  
 

N2O5 was prepared from N2O4 by oxidation with O3. Figure A.2 presents a schematic 

representation of the experimental set-up for the synthesis of N2O5.  

NO2 P2O5

Pump

Dry ice + ethanol
       (- 32 oC)  

 

Figure A. 1  Schematic representation of the experimental set-up for the NO2 

condensation  
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The oxygen stream was divided into two. One stream passed through a column of 

P2O5 coated glass beads prior to entering the ozone generator. The other one passed 

over the solid N2O4 in a storage trap placed in a cooling bath at -30 ºC and was then 

dried by a column of P2O5 coated glass beads. The flow rates were adjusted so that the 

stream was colorless after the two streams merged in the mixing column.  

 

The O2-O3-N2O5 gas mixture emerging from the mixing column passed through a 

collection trap at -78 ºC and N2O5 was collected as a white solid on the walls of the 

collection trap.  

The N2O5 was stored in solid form in dry ice at -78 ºC.  

 

 

 

 

 

 

 

 

 

 

O2

P2O5

Dry ice + ethanol
     (- 30 oC)

N2O4

P2O5

O3 generator

Dry ice + ethanol
      (- 78 oC)

Mixing column  
 

Figure A. 2  Schematic representation of the experimental set-up used in the 

synthesis of N2O5 
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Appendix II 

 

 

Gases and Chemicals Used 

 
II.1 Gases 

 

Compounds Origin Purity (%) 

Synthetic air 

O2:N2=20.579.5׃(%) 

 

Messer-Griesheim 
Hydrocarbon free 

99.999 

O2 Messer-Griesheim 99.995 

CO Messer-Griesheim 99.997 

NO Messer-Griesheim 99.5 

NO2 Messer-Griesheim 98 

Isobutene Messer-Griesheim 99 

Ethene Messer-Griesheim 99.95 

Propene Aldrich 99 

Trans-2-butene Messer-Griesheim 99 
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II.2 Chemicals 

 

Compounds State Origin Purity (%) 

Propyl vinyl ether  Liquid  Aldrich 99 

Butyl vinyl ether  Liquid  Aldrich 98 

Propyl formate  Liquid  Aldrich 97 

Butyl formate  Liquid  Aldrich 97 

Ethyleneglycol monovinyl ether  Liquid  Aldrich 97 

Ethyleneglycol divinyl ether  Liquid  Aldrich 97 

Diethyleneglycol divinyl ether  Liquid  Aldrich 98 

Isoprene  Liquid  Aldrich 99 

H2O2  Liquid Peroxid-Chemie 85 

Cyclohexane  Liquid Aldrich 99.9 

Cyclohexene  Liquid Aldrich 99 

2,3-Dimethyl-1,3-butadiene  Liquid Aldrich 98 

1,3-Cycloheptadiene  Liquid Aldrich 97 

2-Methyl-1,3-dioxolane  Liquid Aldrich 97 

1,3,5-Trimethylbenzene  Liquid Aldrich 99 

Methanol  Loquid  Fluka 99.8 

1-Propanol  Liquid  Merck 99.7 (GC) 

1-Butanol  Liquid  Lancaster  99 

Sodium formate  Solid  Fluka 99.5 
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Appendix III 

 

 

Gas-phase Infrared Absorption Cross Sections 
 
 
III.1 Calibration method 
 

The 405 l borosilicate glass chamber at the University of Wuppertal was used to 

determine the gas-phase FTIR absorption cross sections for several vinyl ethers and 

alkyl formates. The integral cross sections were determined using the procedure 

outlined by Etzkorn et al. [127] and Olariu [128]. Only a brief description of the 

method employed is given here.  

Absorption cross sections are defined by Lambert-Beer’s law: 
 

)()(
)(
)(ln 0 ννσ

ν
ν Dlc

I
I

e =××=⎥⎦
⎤

⎢⎣
⎡                     (XVII) 

 

where I0(ν) and I(ν) represent the measured light intensities at wavenumber ν with and 

without absorber present in the cell, σe(ν) denotes the absorption cross section at the 

wavenumber ν, c is the analyte concentration and l is the optical path length through 

the cell. The term ln(I0(ν)/I(ν)) is also known as the optical density D(ν) at the 

wavenumber ν. Integrated band intensities are defined as absorption cross sections 

integrated over a given wavenumber range, therefore the integration ranges used are 

reported with integrated band intensities.  

Most compounds used in this work were liquids. The transfer of the liquid sample into 

the gas-phase was accomplished by injecting a known volume of the sample into a 

heated inlet connected with the evacuated chamber as described in the experimental 

section (Section 2.2.1). A valve controlling the bath gas was then opened to produce a 

strong gas flow. As a result the sample vaporizes into the reactor.  
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For solid and liquid samples with very low vapor pressures weighed amounts of the 

compounds were dissolved in HPLC grade dichloromethane. The concentrations of 

solution were chosen to result in total injected volumes between 100 and 1000 µl for 

the calibration.  

For the calculation of the concentrations in the cell the uncertainty of the injected 

volume due to the unknown volume of the syringe needle has to be taken into account. 

The true concentration ci,t in the cell will be different from the concentration 

calculated from the injected volumes ci by an offset α. By injecting different volumes 

for one compound this offset can be corrected.  

Table III.1 gives the integrated absorption cross sections (base 10, in cm2 molecule-1) 

for several vinyl ethers and alkyl formates determined in the present work.  
 

 

Table III.1 Integrated absorption cross sections determined in this work (base 10)  

 

Compounds Range / cm-1 σ10 / cm2 molecule-1 

 

Propyl vinyl ether 

3180-3106 

1710-1560 

1250-1162 

(7.74±0.21)×10-19 

(1.21±0.16)×10-17 

(1.39±0.12)×10-17 

 

Propyl formate 
1814-1680 

1251-1089 

(2.27±0.03)×10-17 

(3.16±0.04)×10-17 

 

Butyl vinyl ether 

 

3160-3106 

1720-1550 

1266-1158 

(6.55±0.40)×10-19 

(1.07±0.10)×10-17 

(1.34±0.07)×10-17 

 

Butyl formate 
1845-1650 

1292-1039 

(2.10±0.07)×10-17 

(3.13±0.10)×10-17 
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