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ABSTRACT 

 

Vehicles with combustion engines are significant emitters of air pollutants and therefore have 

a major influence on the environment. Road and tunnel studies are important tools in 

evaluating the traffic emission models and in assessing the achievements of new technologies 

for emission reduction.  

During three tunnel measurement campaigns namely: the Lundby Tunnel in Sweden (March, 

2001), the Plabutsch Tunnel in Austria (November, 2001), the Kingsway Tunnel in England 

(March, 2003) and an additional field experiment conducted along a section of the A656 

motorway in Germany (May 2001), emissions from a large variety of vehicles were 

investigated. The measurements covered the standard pollutants CO2, NOx and non methane 

volatile organic compounds (NMVOC). 

The data obtained from the measurements carried out in these European locations were 

analysed with respect to the composition of the NMVOC mixture and the ratio of individual 

compounds to benzene, CO2 and NOx. The NMVOC profiles observed in the tunnel as well as 

in motorway measurements are in good agreement with the NMVOC profiles observed in 

other campaigns. Among the aromatic hydrocarbons, toluene showed the highest mixing ratio, 

whereas iso-pentane and propene had the highest mixing ratios among the alkanes and 

alkenes, respectively. During the motorway experiment, vertical gradients were observed for 

several NMVOC downwind of the motorway, in contrast to the upwind measurement site, 

where NMVOC were constantly distributed. This indicates that the studied NMVOCs are 

directly emitted by the traffic. The ratio toluene/benzene, which is an indicator of traffic 

activity, was found in the performed studies to be: 3.09 in the Lundby Tunnel, 2.44 in the 

Plabutsch Tunnel and 2.87 in the Kingsway Tunnel. During the A656 motorway experiment, 

the ratio was constantly 2.5 except for stop and go periods when this could increase up to 3.6. 

These values are higher than the previously measured ratios at traffic sites. This finding can be 

explained by an over proportional decrease in the benzene emissions compared with the 

aromatic compounds since the year 2000, when the new European Directive 98/70/EC 

limiting the benzene content in gasoline to 1% started to be applied.  

Within the framework of extensive emission data validation experiments, the emission factors 

for the Lundby Tunnel, the Plabutsch Tunnel and the A656 motorway have been determined 

using the local traffic measurements in combination with new emission models. The models 

provide emission factors with a temporal resolution of 20 min for the tunnel studies and 3 h 

for the motorway study. The models took as input parameters the emission factors for CO2 - 



 

model 1; total hydrocarbons (THC) - model 2; and benzene, toluene, xylene (BTX) - model 3 

from the Handbook Emission Factors for Road Transport (HBEFA) version 2.1. The input 

parameters were modified by taking into account the slope gradients for the corresponding 

measurement sites as well as the fleet composition and the driving pattern. By comparing the 

direct calculated values of emission factors with the model 1 values, a good correlation of data 

was obtained for the time intervals characterised by fluent and high traffic density. This 

proves that the emission factors for CO2 in the HBFEA 2.1 are a good estimation for the real 

traffic situation. In the case of the Lundby and the Kingsway Tunnels, for all analysed 

compounds except benzene, the emission factors calculated through model 1 were higher than 

those obtained from model 2 and 3. For the Plabutsch Tunnel, the models 2 values were 

higher. The data analysis of THC emission factors for the given traffic fleets was used in order 

to clarify the discrepancy between measured and model calculated emission data. 

Two hypotheses were verified: 

 the THC emission factor of heavy duty vehicles is not correct; and/or 

 the percentage of catalyst vehicles determined from the fleet data analysis does 

not reflect the reality, i.e. cars that are registered with catalyst in fact have a 

malfunctioning catalyst and should be counted as non-catalyst vehicles with the 

corresponding emission factor. 

The influence on the emission factors of the about 12% malfunctioning catalysts was 

demonstrated.  

From the overall emission factors determined for weekday traffic, in the Plabutsch Tunnel, the 

emission factors for light duty vehicles (LDV) and heavy duty vehicles (HDV) were 

calculated by means of a regression analysis. The comparison of the LDV emission factors for 

benzene and toluene obtained in the Plabutsch Tunnel, to data from a previous study 

performed in the same tunnel shows a clear decrease of the emission factors in this tunnel. 

The A656 motorway experiment, showed for benzene, toluene, ethylbenzene and 1,2,4 

trimethylbenzene/decane that within the statistical errors the measured values are in good 

agreement with the modeled ones.  

The results of the present study show that the NMVOC split is influenced by the fleet 

composition and that the most important contribution to the NMVOC emissions results from 

poorly maintained vehicles and those with malfunctioning catalysts. The results of the present 

study reflect the current situation and the improvements of the European car fleet with respect 

to hydrocarbons emissions after the introduction of the new European legislation in 2000.
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CHAPTER 1 

 

1 INTRODUCTION 
 

1.1 STATE OF THE ART 
 

Air pollution has been recognised as a serious problem throughout the world starting in the 

Middle Ages when the burning of coal in cities released increasing amounts of smoke and 

sulphur dioxide to the atmosphere. In the late 18th century, the UK Industrial Revolution led to 

a significant increase in pollutant emissions, which was mainly caused by the use of coal with 

high sulphur content by both domestic heating and industry. Also, atmospheric concentrations 

of several greenhouse gases have increased significantly since pre-industrial times, causing the 

anthropogenic greenhouse effect (Harries et al., 2001). More recently, pollution from motor 

vehicles became an air quality issue, which attracted considerable attention. Gasoline and 

diesel fuelled motor vehicles emit a wide variety of pollutants, principally carbon monoxide 

(CO), nitrogen oxides (NOx = NO + NO2), volatile organic compounds (VOCs) and 

particulate matter (PM), which all have an important impact on urban air quality.  

The revolution in the understanding of atmospheric chemistry began in the late 60-ties, when 

the OH radicals were identified as the most important oxidizing agent in the troposphere. The 

discovery resulted in particular from the analysis of the CO budget (Heicklen et al., 1969; 

Weinstock, 1969; Stedman et al., 1970; Levy, 1971), though the oxidation of CO by OH had 

already been measured two years earlier (Greiner, 1967). In the early 1970s, Crutzen (1973) 

and Chameides and Walker (1973) suggested that tropospheric ozone originates mainly from 

production within the troposphere by photochemical oxidation of CO and hydrocarbons 

catalyzed by NOx and HOx (OH+ HO2). Radical chemistry, considered to be important only in 

the stratosphere, was found to be strongly involved in tropospheric chemistry as well, and 

ozone was identified as the main precursor of the important hydroxyl radical (OH) (Levy, 

1971, 1972, 1973). OH is therefore the dominant sink for methane, carbon monoxide and 

many other organic substances in the atmosphere and is often called the “detergent of the 

atmosphere''.  
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1.1.1 NMVOC in the atmosphere 

 

The changing composition of the atmosphere is of particular interest since some of the minor 

constituents (trace gases) can affect the earth's energy balance. The so-called greenhouse gases 

absorb infrared radiation and can therefore “trap'' the outgoing long-wave radiation leading to 

changes in the climate system (e.g. increasing the surface temperature, changing the 

hydrological cycle through increased evaporation etc.). 

Large quantities of NMVOCs are emitted into the troposphere from anthropogenic and 

biogenic sources (Guenther et al., 1995, 2000; Sawyer et al., 2000; Placet et al., 2000). Motor 

vehicles (Zielinska et al., 1996), biomass burning, industrial processes such as chemical 

production, the production, processing, storage, and distribution of liquid fossil fuels (e.g., 

crude oil), gaseous products (Friedrich and Obermeier, 1999) and hazardous waste facilities 

(Placet et al., 2000; Sawyer et al., 2000) have all been identified as major sources of 

NMVOCs. 

The emissions of anthropogenic and biogenic NMVOCs have a composition, concentration 

and reactivity of wide variety. At urban sites, mixing ratios of atmospheric NMVOCs can be 

in the ppb range, whereas measurements at remote continental or marine sites show levels in 

the ppt range. The global emission strength from biogenic and anthropogenic sources is 

estimated to be about 1100 and 180 Tg (Carbon)/yr, respectively (Guenther et al., 1995; 

Olivier et al., 1996). Large uncertainties exist, especially for biogenic emissions. This may be 

compared to the emission strength of the most abundant hydrocarbon in the atmosphere, 

methane, which is about 500 Tg (CH4)/yr (Houweling et al., 1999).  

Biogenic emissions are of special interest as they could change in the future due to a shifting 

temperature providing a positive feedback loop through their photochemical impact on ozone 

and OH radicals. This mechanism has been suggested by Shallcross and Monks (2000) for 

isoprene, whose emissions are known to depend mainly on temperature and solar irradiance. 

According to Fuentes et al. (2001), the mechanism can be extended to other compounds and 

provide a general view on biosphere-atmosphere feedbacks. 

Typical NMVOCs lifetimes in the Northern hemisphere range from less than one hour to 

several days depending on a combination of NMVOCs reactivity, atmospheric conditions and 

solar flux.  

NMVOC have important effects on the tropospheric chemistry.  
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They increase the ozone production efficiency per unit NOx in the continental boundary layer 

(Liu et al., 1987), they form organic nitrates such as PAN which provide reservoirs for the 

long-range transport of anthropogenic NOx to the remote atmosphere (Singh and Hanst, 1981; 

Maxim et al., 1996, Jacob, 2000), and provide a sink for OH (Kasting and Singh, 1986) but 

also provide a source of HOx due to photolysis of NMVOC oxidation products such as 

formaldehyde and acetone (Sillman et al., 1990; Singh et al., 1995). 

The ozone and photo-oxidants formation is inter-connected in an alternate sequence  

day/night. 

Day time chemistry is controlled by OH radicals whereas night time chemistry is driven by  

the NO3 radicals (Finlayson-Pitts and Pitts, 1986, 1997; Kley, 1997). A detailed presentation 

of the key aspects of the complex interplay of NMHCs and NOx in the atmosphere can be 

found in  Atkinson, (2000), Atkinson and Arley, (2003), Jenkin and Clemitshaw, (2000), 

Jenkin et al., (1997) and references therein.  

In recent years, the availability of kinetic and mechanistic data relevant to the oxidation of 

NMVOCs has increased significantly (Becker et al., 1995), and various aspects of the 

tropospheric chemistry of NMVOCs have been reviewed extensively (e.g. Atkinson, 1997, 

2000). Detailed reviews of mechanisms and rate constants of atmospheric reactions of 

particular groups of compounds can be found in Atkinson (1997, 2000), Atkinson and Arley 

(2003), Calvert et al. (2000), Wayne (2000), and references therein. Because NMVOCs have 

very diferent chemical reactivities, the speciation of NMVOCs emitted by motor vehicles is 

therefore very important for estimating their efect on ozone budget. 

Studies that have ranked NMVOCs by their ability to generate ozone have involved, therefore, 

the use of trajectory models of the planetary boundary layer, incorporating detailed  

chemical schemes describing the degradation of a large variety of organic compounds 

(Derwent and Jenkin, 1991; Derwent et al., 1996). Recalculated historical ozone 

measurements from 1870s and 1880s in Paris, by using 3D global models have estimated that 

ozone concentrations may have more than doubled over large parts of the Northern 

Hemisphere (NH) since pre-industrial times (e.g. Crutzen and Zimmermann, 1991; Lelieveld 

and Dentener, 2000), which is also supported by older measurements in Paris corrected by 

Volz and Kley (1988).  

 

1.1.2 Transport air pollution in Europe. Emission trends  
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Automobile exhaust has been recognized a potential air pollutant since 1915, but only in 

1945, in Los Angeles urban pollution was manly attributed to automobiles (Haagen-Smit, 

1952). Although the emissions from gasoline–fuelled vehicles have been significantly reduced 

since 1960, pollution from motor vehicles remains a major problem in many urban areas. As a 

growing concern for better air quality, legislation was enacted requiring further reduction of 

vehicle exhaust emissions.  

In Europe, the constituents of the vehicle emissions, which are regulated by law are carbon 

monoxide (CO), nitrogen oxides (NOx), total hydrocarbons (HC) and particulate material 

(PM10) (for diesel-powered cars).  

However, vehicle exhaust is always associated with the emission of the unregulated species 

such as CO2, CH4, N2O, NH3, various organic species (aliphatics, aromatics, PAHs, carbonyls, 

etc.), primary NO2, metals (e.g. arsenic, cadmium, mercury, nickel), PM size/number/surface 

area, some of which such as benzene, 1,3 butadiene are known to be highly carcinogenic and 

mutagenic. 

Benzene levels in car exhaust have attracted considerable attention since this compound is 

classified by to be carcinogenic (Directive 92/32/EEC). According to EU legislation, the 

atmospheric threshold (1) level for benzene is 5µg/m3 (Directive 96/62/EEC). Benzene is 

considered being almost exclusively emitted from road traffic (Doskey et al., 1992; Schmitz et 

al., 1999; Derwent et al., 2000) because the use of benzene as solvent is forbidden in Western 

Europe since 1991 (Directive 89/677/EEC; Wickert et al., 1999). The exhaust gas from 

vehicles includes both burnt and unburnt hydrocarbons. Benzene is formed through the 

dealkylation of higher molecular weight aromatics (Fraser et al., 1998). 

In the framework of the UNECE Convention on Long Range Transboundary Air Pollution the 

VOC protocol has been developed. The countries that signed the UNECE protocol undertake 

to reduce emissions of non-methane volatile organic compounds. This specifies reductions of 

NMVOC emissions per country by 30% relative to the levels the year 1988. 

In Germany, the reduction of 50% between 1990 and 2000, according to the German Federal 

Environmental Agency, as can be observed from Figure 1-1 (http:// www.env-

it.de/umweltdaten/) has been achieved possibly by legal regulations on exhaust gases, which 

brought significant reductions in the emissions from road transport. Under the EU Directive 

on National Emissions Ceilings, there is a commitment to reduce NMVOC emissions in 

Germany further to 995 kt by 2010. 

                                                 
(1) Threshold level represents the level below which no adverse health effects are expected. 
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Figure 1-1: NMVOC emissions for the period 1990-2001 in Germany for major source 

categories, according to to the German Federal Environmental Agency.  

(source: www.env-it.de/umweltdaten/) 

 

According to the Department for Environment Food and Rural Affairs, DEFRA, U.K., 

(www.defra.gov.uk/environment/statistics/index.htm) in Figure 1-2, it is obvious that also for 

the UK road transport, solvent use and fugitive emissions from gas and oil extraction and 

distribution are the primary sources of NMVOC emissions.  

Emissions from road transport peaked in 1989 at 895 kt. Since then they have fallen steadily 

and in 2003 road transport emissions were 82% lower than in 1989. Emissions from solvent 

use fell steadily through the 1990s as the UK began modern emission controls in 1992.  

Fugitive emissions from the oil and gas industry increased during 1970 - 1990 as industry 

grew reaching their peak emissions in the mid 1990s. Between the peak year of 1997 and 2002 

they fell by 20% (DEFRA, 2005). NMVOC emissions fell by 55% between 1990 and 2003 to 

a value of 1.1 Mt, which is already slightly below the UK target value for 2010 of 1.2 Mt, 

according to the UNECE Gothenburg Protocol and the EU National Emissions Ceilings. 

Euro 4 emission standards for vehicles became effective in 2003 and the European 

Commission drafted new Euro 5 and Euro 6 stricter standards in 2005 (Appendix: Table 1). 
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Figure 1-2: NMVOC emissions for the period 1970-2003 in the UK for major source 

categories, according to DEFRA.  

(source: www.defra.gov.uk/environment/statistics/index.htm) 

 

Emission standards for road vehicles have improved significantly since the introduction of the 

new catalysts. Nevertheless, studies performed in the US and Europe during the last 15 years 

revealed that several factors may contribute to the emission decreasing, such as improved 

vehicle technologies, cleaner fuels and also maintenance of the vehicles (Stedmann, 1995; 

Sjödin et al., 2004).  

Only few global modeling studies on the impact of road traffic exist. E.g. Granier and 

Brasseur (2003) investigated the impact of NOx and CO emissions from road traffic and 

estimated relative contribution of such emissions to ozone concentrations near the surface in 

the Northern Hemisphere of between 12 and 15% in industrialized regions and about 9% in 

remote regions. Current trends indicate that the use of motor vehicles and airplanes will 

increase continuously in the near future together with the expansion of industrial processes in 

order to maintain economic growth for both, the developed and developing countries (IPCC, 

2000). 

 

1.1.3 Emission models 

 

Emission inventories are an important instrument in air pollution control and atmospheric 

research. Their data are used as input for dispersion modelling and, thus, are the basis for air 
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pollution reduction scenarios. Chemical modules of computer based dispersion models need, 

beside others, precise data of the temporally and spatially distributed NOx and VOC 

emissions. The basis for emission inventories only partially results from emission 

measurements but to a large extent from statistical inputs and assumptions (Kühlwein et al., 

2005).  

Emission factors (EF), which represent a very important tool in developing emission 

scenarios, are derived from emission measurements. Emission factors have been the 

fundamental tool for air quality management as they express the emissions as a function of 

source activity. 

As already presented, vehicular emissions are of a special concern for the VOC, NOx and PM 

emissions. For a better understanding of the contribution of vehicular emissions to air 

pollution, their accurate characterisation is required. In order to determine emission factors, 

different methods are currently being used, namely: 

 engine test bed studies (Hausberger et al., 2003), 

 chassis-dynamometer studies (Heeb et al., 2000, 2002, 2003; Weilenmann et al., 

2001) 

 measurements under “real world conditions” (Lonneman et al., 1986; Pierson et al., 

1996; Fraser et al., 1998; Kristensson et al., 2004; Stemmler et al., 2005).  

The latter studies should ideally be carried out on motorways for a large number of vehicles 

and include at least the measurement of speciated NMVOCs and NOx. 

Chassis-dynamometer tests are used for the determination of EFs of the whole vehicle 

according to well-defined boundary conditions such as driving cycles and vehicle load. It is 

well known that emission factors of vehicles depend on engine design and condition, driving 

situation, as well as fuel composition (Staehelin et al., 1998).  

In order to obtain representative results for real road traffic emissions, the exhaust of a large 

number of vehicles has to be analysed. These types of studies are usually conducted in road 

traffic tunnels. However, road traffic tunnel measurements have also some disadvantages, e.g. 

different emission patterns of the vehicles caused by the so-called piston effect, the resistance 

caused by tunnel walls, the speed limits inside the tunnels, etc.  

Up to now, only a few experimental studies were focused on the comparison of calculated 

emissions with real world emission measurements (Staehelin et al., 1998; Vogel et al., 2000, 

Corsmeier, 2005). In addition to “inverse” dispersion modelling of street canyon 

measurements (e.g. Mannschreck, 2000; Corsmeier et al., 2005; Ketzel et al., 2003) and mass 

conservation box models of open-road measurements (e.g. Jamriska and Morawska, 2001) 
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such experiments mainly took place in road tunnels (Pierson et al., 1978; Lonneman et al., 

1986; Kirchstetter et al., 1996; Zielinska et al., 1996; Weingartner et al., 1997; Fraser et al., 

1998; Rogak et al., 1998; Staehelin et al., 1995, 1998; Schmidt et al., 2001; Kean et al., 2001; 

Sturm et al., 2001; Kurtenbach et al., 2002; Gomes, 2003; Kristensson et al., 2004; 

McGaughey et al., 2004; Colberg et al., 2005; Stemmler et al., 2005) 

Previous studies have observed significant differences between measured and model  

predicted emissions from on-road vehicles. Tunnel air measurements have been used as a tool 

for comparing and verifying emission models with “real world emissions” starting in the 

1990s.  

Instantaneous emissions models (modal modelling) have been developed in Europe since the 

beginning of the 1990s (Staehelin et al., 1995; Sturm, 1999). Among them, the most 

commonly used are: 

 the German-Austrian-Swiss Handbook for Emission Factors Model (HBEFA) 

(Hassel, 1995; Keller, 1998). The results of this model can be used at both macro and 

micro scale (e.g. emission inventories at local, regional or national levels, in the 

evaluation of strategies to reduce air pollution, environmental impact assessment, 

etc.). The HBEFA model used instantaneous emission data to generate emission 

factors for different combinations of vehicle categories, driving cycles, road  

gradients and vehicle loadings. The basis for the emission matrices was a series of 

chassis dynamometer tests using the FTP 75 cycle (US-Highway Federal Test 

Procedure), which includes following segments: cold start, transient phase, hot start 

phase and the NEDC(2) (New European Driving Cycle), which is an urban driving 

cycle characterized by low vehicle speed, low engine load and low exhaust 

temperature. The last version is HBEFA 2.1, released in 2004; this version will be 

used also in the present study. It showes that instantaneous modelling is no more an 

available approach for modern vehicles; therefore, for this version new real test 

bench cycles were developed. Emission factors for Euro 2 and Euro 3 are based on 

bag data (multiple sets of data) from real world cycles or a linear combination of the 

results of these cycles. Euro 4 emissions were estimated using reduction factors 

based on Euro 3 (gasoline) and Euro 2 (diesel) (Haan and Keller, 2004). 

                                                 
(2) The NEDC represents the typical usage of a car in Europe, and is used to assess the emission levels of car 

engines. 



  Introduction 

 9

 The COPERT III (Computer Programme model to calculate Emissions from Road 

Transport); the development of COPERT (Kouridis et al., 2000) has been financed 

by the European Environment Agency (EEA) in the framework of the activities of the 

European Topic Centre on Air Emissions, and it is proposed to be used for road 

traffic emissions by the EEA(3) member countries. Total emission estimates are 

calculated by a combination of firm technical vehicle data (e.g. emission factors) and 

activity data (e.g. total vehicle kilometres) provided by the user. 

 In the USA, the EPA's highway vehicles emission-factor model (MOBILE) was 

released in 1979. MOBILE 6 released in 2000, provides average in-use fleet  

emission factors for three criteria pollutants, namely NMVOC, CO and NOx for eight 

categories of vehicles for the years 1970-2020 and under various conditions affecting 

in-use emission levels (e.g. ambient temperature, average traffic speed, gasoline 

volatility) as specified by the model user.  

 The EMFAC (Emission Factors) model is developed by the California Air Resources 

Board (CARB). It is very similar to MOBILE in its concept, but it has been adapted  

to the Californian car fleet and later on also to the Taiwan car fleet, too. 

The performance of the emission models have been verified using data from real-world 

measurements performed in road traffic tunnels. A summary of the results coming from these 

studies over the past 30 years is presented in Appendix: Table 2.  

 

 

 

 

 

 

 

 

 

                                                 
(3)European Environmental Agency (EEA) member countries: Austria, Belgium, Denmark, Finland, France, 

Germany, Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain, Sweden, United Kingdom, Czech 

Republic, Cyprus, Estonia, Hungary, Latvia, Lithuania, Malta, Poland, Slovenia, Slovak Republic, Bulgaria, 

Romania, Turkey, Iceland, Liechtenstein, Norway 
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1.2 AIM OF THE WORK 
 

This work was performed in the frame of the EU project ARTEMIS (Assessment and 

Reliability of Transport Emission Models and Inventory Systems) and of the German project 

BAB II (Bundesautobahn II). 

The goal of the road tunnel studies within ARTEMIS was the validation of fleet weighted 

emission factors, which are based on the ARTEMIS database for vehicle category specific 

emission factors, which are derived from chassis dynamometer tests (Sturm et al., 2001).  

The BAB II project intended to evaluate the quality of emission data, which are deduced from 

emission models. 

As part of these projects, measurements of real world traffic emissions were carried out in 

four different locations in Europe namely in Sweden, Austria, England and Germany. 

Further than a simple identification and apportionment of air pollutants, this work was aimed 

to present a trend of NMVOC emissions from vehicular traffic in Europe during recent years. 

Accordingly, the tasks of the present study were: 

 to determine the typical NMVOC profiles from road traffic for the studied locations; 

 to estimate the real-world emissions for speciated NMHCs, using different 

calculation methods; 

 to evaluate the relative contributions of light-duty vehicles (LDV) and heavy-duty 

vehicles (HD) to the NMVOC emissions, and 

 to analyse the long term evolution of NMVOC road traffic emissions in Europe. 
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CHAPTER 2 

 

2 EXPERIMENTAL PART 
 

Road tunnel measurements have been used in the past to define the detailed chemical 

composition of traffic NMVOC emissions (Pierson et al., 1978, Lonneman et al., 1986, 

Staehelin et al., 1995, Kirchstetter et al., 1996, Gertler et al., 1997, Rogak et al., 1997, 

Sagebiel et al., 1996, Zielinska et al., 1996, Kurtenbach et al., 2002). From these data 

emission factors were derived and evaluated. 

Motor vehicle emissions of CO2, NOx and speciated NMVOCs in the range C2-C9 were 

measured during three campaigns performed in different tunnels, namely:  

• the Lundby Tunnel in Sweden (March, 2001),  

• the Plabutsch Tunnel in Austria (November, 2001), and  

• the Kingsway Tunnel in England (March, 2003).  

In addition, a field experiment was conducted along a section of the A656 motorway in 

Germany (May, 2001).  

The set-up of the measurements and the used analytical equipment is presented in detail 

below. 

 

2.1 SITE DESCRIPTION 
 

2.1.1 Tunnel measurements 

 

For the tunnel experiments the selection of the measurement site was dependent on the tunnel 

ventilation system. Therefore, the instrument locations were chosen by taking into account: 

 the expected concentration in the tunnel air (inlet/outlet), 

 the fact that the air flow has to be exactly defined at the measurement point and that 

 the measurement site should be ideally not being influenced by changes of engine 

load due to changes in road gradient (Sturm et al., 2001). 

It is known that the type of ventilation system is dictated to a large extent by the tunnel  

length, configuration and ventilation cost. Adequate information on the tunnel ventilation 

systems is prerequisite for getting reliable measurement data. 
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For tunnels with uni-directional traffic flow and longitudinal ventilation system, instruments 

should be placed where the highest concentrations are to be expected and the volume airflow 

can be defined exactly. This is normally near to the tunnel exit. 

For transverse ventilation system, pollutant concentrations are more or less constant over a 

considered ventilation section. The measurements have to be carried out in this ventilation 

section and at the entrance of the ventilation system. 

In tunnels with more than one ventilation sections, the location of the instruments has to be 

chosen in such a way that the influence of emissions and air mass transport in or into other 

sections is minimised. If no measurements inside the bore or at the end of the tunnel are 

possible, the stack would be an appropriate location. 

During the measurement campaigns it was assumed that the air at the sampling site is well 

mixed over the total cross section of the tunnel by the vigorous turbulence caused by the 

piston effect of the traffic and that the engines of the vehicles, which passed the sampling  

port, were under “warm” driving conditions. The relatively well defined dilution and 

residence time of the exhaust gases in tunnels allowed the absolute determination of the 

emissions of the observed species. 

 

2.1.1.1  Lundby Tunnel 

 

The Lundby Tunnel is one of the newest tunnels in the area of Gothenburg, Sweden. The 

tunnel was opened in 1998. It has a length of 2 km and connects the city motorway with the 

centre of Gothenburg. The tunnel consists of two independent tubes in the east - westerly 

direction. Each tube is carring traffic on two lanes.  

Figure 2-1 shows a sketch of the tunnel and its ventilation. The Lundby Tunnel ventilation 

system consists of two separate sub-systems: longitudinal ventilation consisting of 40 fans in 

each tube, placed in the ceilings and an axial ventilator in a vertical shaft mounted 400 m 

before the tunnel exit. This type of ventilation transports gases down wind to the tunnel exit 

using the axial ventilator, the fans inside the tunnel and the piston effect of moving vehicles.  

During the measurement campaign, the axial ventilator and the fans in the tunnel were not 

used. Hence, the tunnel could be treated like a longitudinal ventilated tunnel using only the 

piston effect of moving vehicles. 

Accordingly, the analytical instruments were installed 350 m behind the entrance (inlet 

station-site 1) and 400 m before the city-bound exit (outlet station-site 3) as shown in Figure 

2-1. 
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Figure 2-1: View of the Lundby Tunnel with ventilation and measurement sites. 

 

2.1.1.2  Plabutsch Tunnel 

 

The Plabutsch Tunnel has a length of 9755 m and serves as by-pass for the city of Graz, 

Austria, on the A9 motorway (Pyhrnautobahn).  

During the time of the measurements the tunnel consisted of one tube in the south - northerly 

direction. The traffic was operated in counter flow, i.e. the vehicles passed in both directions.  

In Figure 2-2 it is shown that the tunnel is divided into five ventilation sections operating as a 

transverse ventilation system providing the necessary fresh air supply. Each ventilation section 

has a length of 2 km. 
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Figure 2-2: View of the Plabutsch Tunnel, ventilation and measurement sites. 
 

The fresh air enters the tunnel’s traffic area through fresh air ducts and the exhaust is 

discharged through exhaust ducts, as can be seen in Figure 2-3. 
 

 
exhaust air ductfresh air duct

 

Figure 2-3: Cross section of the Plabutsch Tunnel. 

 

The measurement site 1 inside the tunnel was placed in the middle of the tunnel at a parking 

bay 4500 m before the southern exit. This location, assured that the emission behaviour of the 

vehicles was almost constant.  
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2.1.1.3 Kingsway Tunnel 

 

The Kingsway Tunnel has a length of 2480 m and connects the city of Liverpool, U.K., in the 

east, with the Wallasey area in the west. The tunnel consists of two tubes, each carrying two 

lanes with uni-directional traffic. 
 

 

Figure 2-4: View of the Kingsway Tunnel and its ventilation and measurement sites. 

 

The tunnel ventilation is semi-transverse. A longitudinal section of the tunnel is presented in 

Figure 2-4. Clean air enters the tunnel via the two ventilation shafts and portals. The air from 

the ventilation shafts is fed into a sub-floor duct and permeates into the tunnels through vents 

along its length. The vents allow even flow of inlet air along the tunnel length. Exhaust air can 

also leave via the portals and is removed via two ventilation shafts.  

According to the tunnel operators, there is a plug of air that oscillates around the tunnel 

mid/point, and the air circulation in each half of the tunnel forms a separate system. At times 

of heavy congested traffic, jet fans mounted in the tunnel crown are activated to force this 

move the air from its middle-tunnel position to the exit. One of the main problems during the 

Kingsway Tunnel campaign was to ensure that the ventilation followed a consistent pattern 

and that tunnel airflow conditions were maintained constantly.  

During the experiment, the ventilation was configured in a way, which would encourage the 

longitudinal flow of air through the northern tube of the tunnel in the traffic direction. At the 

Promenade ventilation station, site 1, (Figure 2-4) the inlet air fan was switched on and the 

exhaust fan was switched off. At the Victoria ventilation station, site 3, (Figure 2-4) the 

exhaust fan was switched on and the inlet fan was switched off as well as the jet fans in the 

tunnel tube. However, at the portal locations both tunnel tubes lead into two halls used for all 

four traffic lanes, which could lead to a recirculation of air from one tube into the other. This 

fact complicated the definition of the volume flow into and out of the tunnel and, hence, the 
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whole measurement set-up. During the measurements, the instruments were located at the 

Promenade ventilation station (background air) and the Victoria ventilation station (exhaust 

air). The sampling of the gaseous components required a 6 m sampling line through a hole in 

the shaft.  

Table 2-1 presents a summary of the different tunnel characteristics and the location of the 

analytical equipment during the experiments.  

 

Table 2-1: Overview of the tunnel characteristics and the location of analytical equipment 

during the experiments. 
Tunnel Lundby Plabutsch Kingsway 
Length 2060 m 9755m 2480m 

Type of traffic 
flow 

Two tubes 
one direction, 

two lanes / tube 

One tube 
two directions, 
two lanes / tube 

Two tubes 
two directions, 
two lanes / tube 

Ventilation 
system 

longitudinale ventilation 
system 

transverse ventilation 
system 

semi transverse 
ventilation system 

Gradient 
(Slope) 

-3.5% -1217m 
+0.25% -475m 

+4% -462m 

-1% -3825m 
+1% -4017m 

-0.5% -1916m 

-4% -895m 
-0.4% - 290m 
+3.3% -980m 

Vehicle speed 80-120 km/h 80-120 km/h 65 km/h 
Equipment 

location 
inlet station: 350m 

behind entrance 
outlet station: 400m 

before exit 

inlet station: in the fresh 
air shaft 

outlet station: 4000 m 
behind entrance 

inlet station: Promenade 
outlet station: Victoria 

vent station 

 

2.1.2 The BAB II - A656 motorway experiment  

 

The measurements took place upwind and downwind of the motorway A656 between 

Heidelberg and Mannheim near the city of Wieblingen, about 1.5 km west of the Heidelberg 

motorway intersection of the motorways A5 and A656. The measurements were carried out 

during four weeks in April and May 2001. The motorway A656 is directed straight from 

south-east to north-west (135°-315°) and, hence located perpendicular to the expected main 

wind direction. The motorway runs on a 1.0 to 1.5 m high, grass covered embankment. 

Corsmeier et al., (2005) give a more detailed description of the field campaign and the 

experimental set-up. 

Figure 2-5 shows the experimental set-up of the upwind and downwind measurements. Quasi 

on-line NMVOC measurements were performed continuously at the ground level stations, i.e. 

3 m above the ground, VOC 1 and VOC 5 at a distance of 60 and 84 m, respectively, from the 

motorway. Vertical NMVOC profiles were obtained from non-continuous measurements at 
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the two 52 m towers at the following heights above ground level: 5, 17, 27, 37, 47 m 

(downwind, VOC 6- 10) and 5, 27 and 47 m (upwind, VOC 2- 4). The instruments, which are 

described in more detail in the following section, were operated during seven so called special 

observation periods (SOP) during the entire measurement period. 

 

Figure 2-5: Location of the experimental set-up for the NMVOC (VOC) measurements on 

the A656 highway (sites are numbered as VOC 1-VOC 10). 

 

2.2 ANALYTICAL EQUIPMENT 
 

The analytical equipment used in the tunnel and the A656 motorway campaigns were 

commercial instruments, optimised and improved in the laboratory for the specific tasks. 

Table 2-2 presents a summary of the analytical equipment used during the various 

experiments.  

The term NMHC (non-methane hydrocarbons) is introduced to indicate a subset of NMVOC, 

consisting of compounds containing only carbon and hydrogen.  
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Table 2-2: Summary of the analytical equipment used during the experiments. 

Experiment Instrument 
location 

Measured 
compound

Instrument Measuring 
method 

Sampling
Cycle (min)

Inlet station NMHC Airmovoc HC 
2010 

(NMHC B)

GC-FID 20 

NMHC Airmovoc HC 
2010 

(NMHC A) 

GC-FID 20 

 
Lundby Tunnel 

Outlet 
station 

N2O/ 
CO2 

Chromato-Sud GC-ECD/TCD 5 

NMHC Airmovoc HC 
2010 

(NMHC A)

GC-FID 20 

N2O/ 
CO2 

Chromato-Sud GC-ECD/TCD 5 

 
Plabutsch Tunnel 

 

Outlet 
station 
(Site1) 

NO/NO2 ML9841 Chemi-luminescence 
(Mo converter) 1 

NMHC Airmovoc HC 
2010 

(NMHC A) 

GC- FID 10 

NMHC Prepared tubes GC- FID 
 120-180 

CO2 Carbondio 
1000 

NDIR 1 

 
Kingsway 

Tunnel 

Outlet 
portal 

Victoria 
vent station 

NO/NO2 APNA 360 Chemi-luminescence 
(Mo converter) 1 

Upwind 

 

NMHC Airmovoc HC 
2010 

(NMHC B) 

GC- FID 20 

Downwind NMHC Airmovoc HC 
2010 

(NMHC A) 

GC- FID 20 

NMHC NIOSH 
charcoal tubes 

Tubes + 
GC-FID 120-160 

NO/NO2 
APNA 360 Chemi-luminescence  

(Mo converter) 1 

 

A656 motorway 

Vertical 

profile 

(up/down 

wind) 
NO/NOx 

CLD AL 770 Photolysis 
converter 1 
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2.2.1 Non-methane hydrocarbons (NMHCs) 

 

2.2.1.1 Quasi on-line GC systems Airmovoc 2010 

 

During the various campaigns, the C2-C9 aliphatic and aromatic hydrocarbons were monitored 

using two quasi on-line compact gas chromatographic systems (Airmovoc 2010) with 

enrichment system (cryotrap) and flame ionisation detector (FID).  

The instrument is fully automated and especially designed for field measurements. A more 

detailed description of the instrument can be found elsewhere (Winkler et al., 2002; Gomes, 

2003). 

Briefly, the two used Airmovoc systems called NMHC A and NMHC B have the same 

instrumental design. A simple scheme of the instruments is presented in the Appendix: Figure 

1. During sampling, the air was drawn by an external pump into the sampling line at a flow 

rate of 50-100 ml/min, through a presampling unit. The presampling unit comprised of a filter 

(10 μm pore-size filter paper) in order to remove particulates from the sampled air and a 

humidifier at a fixed temperature of 3°C for keeping the sample at constant relative humidity. 

After that, the gas stream sample passed through an ozone scrubber, i.e. a 50 cm long steel 

tube heated to ~ 70oC (Schmitz, 1997).  

The gas sample was then drawn into the sampling unit represented by an adsorption tube. The 

adsorption tubes are made of glass with two steel endings. The tubes are packed with the 

multisorbent materials, Carbotrap and Carbosieve S III (3:1 ratio). The two adsorbent 

materials were chosen, because they are capable to retain hydrocarbons in the range C2-C3 

(Carbosieve S III) and C5-C9 (Carbotrap), and present good temperature stability up to 400 oC. 

The tubes are packed in such a way that the compounds with lowest molecular mass go 

through the initial Carbotrap layer, which is the least active and are trapped in the last 

Carbosieve S III layer, which is the most tenacious. Six adsorption tubes were kept in a 

cylindrical drum, arranged in a circular way, having an angular distance of 60° or 2 h (if the 

cross section of the cylinder is imaged as a clock). The cylinder carrying the adsorption tubes 

was cooled during the adsorption by using the cooling effect of expanded gaseous CO2 (from 

60 bar to normal atmospheric pressure). Using this instrument, simultaneous adsorption of a 

fresh sample and desorption of the adsorbed sample from the last run can be carried out. Thus, 

for a typical method, after adsorption at 10-h position, the drum containing the tube was 

rotated in such a way that the tube should be inserted into the flow path of the chromatograph 

at the 12 h position. During desorption the compounds were focused in a small volume, the 
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cryo-focussing unit, at -500C. This low temperature was obtained also by the cooling effect of 

the expansion of gaseous CO2 from 60 bar to atmospheric pressure. This unit has the role of 

retaining effectively the light hydrocarbons, and is represented by a micro fused silica 

capillary tube (18 cm × 0.78 mm × 0.50 mm), packed with Carbopack B and Envi-Carb X 

(Gomes, 2003; Winkler, 2001). The main characteristics of the employed sorbents are 

presented in Table 2-3. 

 

Table 2-3: Characteristics of the adsorbent materials used for NMHC sampling (Cao et  

al., 1994, 1999; Matisova et al., 1995). 
Adsorbent Type. Particle size 

(mesh) 
Surface 

m2/g 
Adsorption range Max. temp (oC) 

Carbosieve S-III Carbon molecular sieve; 
Mesh 60-80 

820 C2-C3 400 

Carbotrap Graphitized carbon 
black; Mesh 20-40 

120 C5-C9 400 

Carbopack B Graphitized carbon 
black; Mesh 60-80 

100 C4-C14 400 

Envi-Carb X Graphitized carbon 
black; Mesh 120-400 

250 C2-C4 maximum 500 

 

The hydrocarbons were afterwards quickly vaporised at 355 oC and flowed together with the 

carrier gas (hydrogen, purity >99.999%) into the separation unit. A fused silica capillary 

column (24m × 0.25 mm), BGB 2.5, with a film thickness of 1 μm represents the separation 

unit. The relative short column (other systems use columns of 90 m) permits the separation in 

20 min of the fraction C2-C9 (Schmitz et al., 1997). The stationary phase consists of 2.5% 

phenyl- and 97.5% methylpolysiloxan. The temperature programme for the chromatographic 

separation increased with a rate of 17°C /min from a start temperature of 20oC and remains 

isothermal at 160oC for the next 50 seconds. The effluent from the column is mixed with 

hydrogen and synthetic air in the FID. The FID responds to the number of carbon atoms 

entering the detector per unit of time and is a mass sensitive rather than a concentration 

sensitive device. Consequently, the FID has the advantage that changes in the flow rate of the 

mobile phase have little effect on the detector response (Skoog, 2000).  

The operating conditions of the Airmovoc 2010 system are listed in Table 2-4. 
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Table 2-4: Operating conditions of the quasi on- line GC system Airmovoc 2010. 
Sampling tube  Carbosieve III and Carbotrap in the ratio 1:3 
Sampling temperature Cooling, 0oC 
Sampling flow rate 100 ml/min 
Sampling volume 0-1600 ml 
Sampling time 0 -960 s 
Cryofocusing trap and cooling effect Micro-packed fused silica capillary tube, 

adsorbents: Carbopack B and Envi-Carb X in 
the ratio 3:1 cooling through gaseous CO2 
expanded from 60 bar to atm. pressure 

Cryofocusing temperature -50oC 
Desorbtion temperature 355°C 
Column BGB-2.5 (OV 178) (2.5% phenyl- and 97.5% 

methylpolysiloxane) 25 m × 0.2 mm, 2 µm 
Temperature programme Isothermal, with ramp ( e.g. a constant value of 

25°C for first 210 s, then ramp of 17 0C/min up 
to 1600C) 

Pressure programme from 212 hPa till 900 hPa  
Carrier gas Hydrogen (> 99.999) 
Detection FID 

 

The instrument parameters such as column temperature, start/end of sampling, revolving of 

the adsorption tubes, start/end of desorption and data acquisition are controlled through the 

Airmovista software that allows the usage of different controlling programs in order to 

achieve better performance of the system. The controlling program consists of two parts 

named concept and method. All instrument settings and the measurement sequences are laid 

down in a particular method. One or more methods are grouped together in a concept, which 

describes the methods routine. For both systems, the measuring cycle was 20 min during all 

measurements. The chromatograms obtained were integrated using the Borwin software. The 

method for the chomatographic conversion from Airmovista to Borwin is presented in 

Appendix: Explanation 1. 

 

2.2.1.1.1 Performance of the instrument during the measurement campaigns 

 

Identification  

Compounds identification was achieved by matching their retention times with those of an 

NPL (National Physics Laboratory) (Appendix: Table 3), standard calibration mixture for  

each compound in reproducible conditions. Identification of the chromatographic peaks in the 

standard (NPL) chromatogram was realised by correlating the specific retention time of the 

components with their boiling points and chemical structure.  
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Figure 2-6: A typical chromatogram of air sample registered during the BAB II - A656 

experiment using the Airmovoc HC-2010 instrument, namely NMHC A.  
1 Ethene/Ethyne; 2 Ethane; 3 Propene/propane; 4 i-Butane; 5 i-Butene; 6 n-Butane/1,3- 
Butadiene; 7 trans-2-Butene; 8 cis-2-Butene; 9 i-Pentane; 10 1-Pentene; 11 n-Pentane; 12 2,2 
Dimethylbutane; 13 Cyclopentane; 14 n-Hexane; 15 Isoprene; 16 trans-2-Pentene; 17  
Benzene; 18 Cyclohexane; 19 n-Heptane; 20 Toluene; 21 n-Octane; 22 Ethylbenzene; 23 m-/p-
Xylene; 24 o-Xylene. 

 

The retention times of different non-methane hydrocarbons were found to be stable in the 

laboratory and during the field measurements. The standard deviations of the retention time 

for the continuous measurements were 4-7% for 24 h runs as can be observed in Appendix: 

Figure 2.  

The following compounds were co-eluted: ethene and ethyne; 1-butene and 2-methylpropene; 

n-butane and 1,3-butadiene; isoprene and trans-2-pentene; cyclopentane and 2- 

methylpentane; benzene and cyclohexane as well as m-/p-xylene. In the case of the co-eluted 

compounds the peak separation was performed by means of the Origin programme. The 

software fits the Gauss curves in co-eluted peaks and separates them without significant  

losses or gains of the integrated peak area (Gomes, 2003; Niedojadlo, 2005). 

Calibration procedure 

The performance of the GC system was checked by periodical calibrations using ppbV levels 

of standard compounds. During the measurements, the performance of the NMHC GC 

systems was stable, which is reflected by the response factors. The response factor is defined 

as the peak area (relative unit) per mixing ratio (ppbV) per molecular mass (g/mol) per  
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sample volume (ml) (Sternberger, 1962). The response factor for the co-eluted peaks was 

calculated using average molecular masses. This procedure assures small errors due to the 

similar molar mass of the most co-eluting hydrocarbons present in the NPL standard gas 

mixture.  

In Figure 2-7, for the system NMHC A, the response factors calculated at the beginning and  

at the end of the Lundby Tunnel experiment are shown as an example.  
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Figure 2-7: Typical bar diagram of the response factors for NMHCs in the NPL standard 

gas mixture during the Lundby Tunnel experiment. The compounds are shown 

in the order of their elution. 

 

Similar behaviour has been observed also during the other experiments.  

The precision of the NMHC measurement is defined as the agreement (the standard deviation) 

among the results from repeated measurements of the same concentration under identical 

conditions. As can be seen from Figure 2-8, the precision ranged from 2 to 16%, i.e. the 1σ 

standard deviation of the field calibrations using the NPL standard gas mixture. On average, 

the precision of the NMHCs measurements was 9% for alkanes, 8% for alkenes and 5% for 

aromatic hydrocarbons.  

The comparison between the two GC systems yielded good agreement; the accuracy of the 

two instruments was about 12%. 
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Figure 2-8: The precision of the measurements of different hydrocarbons. 

 

At the beginning of each campaign the adsorption tubes were purged with zero gas (synthetic 

air), followed by desorption in order to remove impurities. According to earlier investigations 

(Schmitz, 1999), the memory effect of the adsorption tubes depends on the desorption 

temperature, which has been found to be optimal at 350°C. 

The calibration procedure implied subsequent measurements of zero gas (blanks) in order to 

insure the absence of impurities. These measurements were performed before and after each 

calibration. 

 

Mixing ratio determination 

The measured individual compounds were quantified by comparing the corresponding 

response factor of the standard gas mixture and the peak area produced from the sample. 

During the experiments, the sampling period was varying according to the expected ambient 

air concentrations from 5-10 min for tunnel measurements to 16 min for open-air road 

measurements. The analysis of “clean” air samples with mixing ratios in the lower pptv level 

afforded a sampling volume of up to 1600 ml in order to achieve a good sensitivity for the 

quantification of the NMHCs. 
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2.2.1.2  Prepared adsorption tubes and off-line GC system  

 

During the Kingsway Tunnel campaign multi-bed tubes packed with 125 mg Carbotrap 

graphitized carbon and 150 mg Carbosieve SIII carbon molecular sieve separated by glass 

wool have been used. The higher molecular weight compounds were retained on the front, on 

the least retentive material (Carbotrap), the more volatile compounds were retained on the 

stronger adsobent (Carbosieve S III). 

The adsorption tubes (Figure 2-9) are part of a measurement system, which comprises of an 

enrichment device (Preconcentrator 7100) and gas chromatograph (HP GC 6890) with non-

polar column and FID detector. This system is described in more detail elsewhere 

(Niedojadlo, 2005). 

More than 58 compounds including 23 alkanes, 28 alkenes and alkynes as well as 14 aromatic 

hydrocarbons were identified and quantified.  

 
 

Pump flow

Desorb flow

40 mm 

4 mm 1/4 inch (6mm) O.D.

Glass wool Glass wool

Glass woolCarbotrap Carbosieve SIII  

 

Figure 2-9: Construction of adsorbent tubes used for the sampling of hydrocarbons. 

 

2.2.1.2.1 Performance of the instrument during measurements campaigns 

 

During the Kingsway Tunnel measurements the data obtained from the prepared sampling 

tubes were compared with the data from the quasi on- line GC system, NMHC A. The 

hydrocarbons were sampled at the same time through a common sampling line. The results 

exhibit a good correlation for the measured hydrocarbons. 

In order to harmonize the data from both systems, a correction factor has been calculated. The 

average correlation factor for the following compounds: trans-2-butene, cis-2-butene, i-

pentane (2-methylbutane), cis-2-pentene, 2-methylpentane, 3-methylpentane, n-hexane, 

benzene, n-heptane, toluene, ethylbenzene, m-/p- xylene, o-xylene was found to be 0.81 ± 
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0.08. This factor was applied to the data obtained from the off-line system. This procedure is 

similar to the application of NIOSH adsorption tubes, which is described below. 

 

2.2.1.3  NIOSH adsorption tubes  

 

During the BAB II experiment the Institut für Verfahrenstechnik und Dampfkesselwesen, 

University of Stuttgart, (IVD) measured non-continuously the vertical profiles of NMHC. The 

measurements were performed using special sampling cartridges (NIOSH adsorption 

cartridges by Draeger). The C6-C9 NMHCs were collected on active carbon with a coconut 

base. After SOP periods, the cartridges were analysed in the laboratory. The collected 

hydrocarbons were eluted with CS2 and analysed using a GC-FID system (Fisons 8180) 

(Glaser, 2001). The NIOSH adsorption tubes have been used during the BERLIOZ field 

campaign showing excellent results (Volz-Thomas et al., 2002). 

An intercomparison procedure between the NMHC data obtained from the NIOSH adsorption 

tubes and the NMHC data obtained from the quasi on- line GC instruments (Airmovoc 2010) 

has been performed and is discussed in detail in the section below. 

 

2.2.1.4  NMHC data quality assurance (QA) 

 

For each measurement campaign a quality assurance (QA) was performed prior and after the 

measurements. 

A two-stage QA procedure was applied:  

 first stage, called internal quality assurence, the instruments applied were assured 

and validated by calibration with synthetic standard gas mixtures (Kanter et al., 

2002) 

 second stages, called external quality assurence, the instruments were inter-

compared by sampling and measuring ambient air at the same time and at the same 

place. From this procedure, the combined uncertainty and relative uncertainties were 

calculated. 

In addition, the instruments were periodically controlled by calibrations. 

In the following sections, the QA procedure applied for the NMHC measurement during the 

BAB II - A656 experiment is presented. 
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Internal quality assurance 

The used calibration gases contained 30 different C2-C9 NMHCs in the ppbV range from 

which the following were measured by all systems: 2-methylpentane, 3-methylpentane, n-

hexane, benzene, cyclohexane, n-heptane, toluene, ethylbenzene, m-/p-xylene, o-xylene. 

According to the expected ambient concentrations, the calibration gas mixtures were diluted 

with synthetic air and measurements were carried out in the pptV range.  
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Figure 2-10:  Comparison of the calibration gases NPL1 and NPL2 used for the NMHC B 

system. 

 

Figure 2-10 shows as an example the comparison of the response factors for one of the quasi 

on-line GC system, namely NMHC B, obtained from the analysis of the NPL1 calibration gas 

mixture (performed on April 25, 2001) and NPL2 calibration gas (performed on April 27, 

2001). It shows that for the NMHC B system the two calibration gases agree within 3%. The 

off-line system (NIOSH tubes) revealed within the standard deviation the same variation. 

Accordingly, an average mixing ratio of the two calibrations was used for further calculations. 

During the campaigns, the on-line systems were calibrated every week. The response factors 

obtained from different calibrations were averaged and used to calculate the mixing ratios. 

During a one-month measurement campaign, an average standard deviation of the response 

factors of 20% was found.  
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External quality assurance: Comparison of measurements in ambient air 

Following the second step of the quality assessment all systems were installed at the same 

place, sampled and measured ambient air at the same time. The diurnal variation of the 

toluene mixing ratio, which was calculated by using the corresponding response factors, 

resulting from the calibration is plotted as an exampled in Figure 2-11. 
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Figure 2-11: Time series of 16 min mean values for the NMHC A and NMHC B systems 

and of 3 h mean values (NIOSH tubes) for toluene. 

 

The day variation shown in Figure 2-11 is for time series of 16 min time resolution for the on-

line systems NMHC A and NMHC B and 3 h mean values for the NIOSH tubes. In order to 

correlate the data sets, the on-line data were averaged afterwards to the sample interval of the 

off-line system. For further calculations, the off-line system was used as the reference system 

since vertical profiles for the C6-C9 NMHC were measured only with this system and for  

some compounds such as 1,2,4 and 1,3,5 trimethylbenzene (TMB) its accuracy was better  

than that of the on-line systems. Harmonisation of the data: the reduction of the systematic 

deviation of the on-line analysers data were achieved by applying correction equations, which 

have been calculated by plotting the off-line data (reference) versus the on-line data, as shown 

in Figure 2-12.  
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Figure 2-12: Correlation of toluene for the systems NMHC A and NMHC B with the 

reference systems data (NIOSH tubes) 

 

A good correlation between the on- and off-line systems was found and the obtained 

correction equations were applied to the on-line data.  

Figure 2-13 presents, for toluene as an example, the data after the application of the correction 

equation. 
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Figure 2-13: Time series of 16 min mean values for the NMHC A and NMHC B systems 

 and of 3 h mean values (NIOSH tubes) for corrected toluene data. 
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Since C2-C6 compounds were measured only by the quasi on-line systems an internal 

validation procedure was performed. Figure 2-14 shows, for i-pentane as an example, the 

correlation plot of the mixing ratio obtained for the two quasi on-line GCs. A slope of 1.12 ± 

0.026 exhibits good agreement between the two systems. Similar results were obtained for all 

other compounds. 
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Figure 2-14: Correlation plot of i-pentane mixing ratios, 16 min data, quasi on-line systems. 

 

Assessment of measurement uncertainties  

Only recently accepted international guidelines for the calculation of uncertainties have been 

published. Different guidelines are available for the calculation of measurement uncertainties 

namely: 

 ISO - Guide to the Expression of Uncertainty in Measurements, 1995,  

 ISO/IEC Guide 43-1, 1997,  

 DIN ISO 13752, 1999. 

The German standard DIN ISO 13752 was chosen in the present work, as it was established 

for the determination of measurement uncertainties under field conditions from results of 

parallel measurements with different analysers. Contrary to other guidelines, for the DIN ISO 

13752 measurement uncertainties depend on the concentration level.  

The guideline can be used in case of a linear correlation between the reference values cref 

(mean values of all analysers) and the independent measurement values ca (results of 
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individual analysers). In equations 1-3 b0 and b1 are the coefficients of the linear correlation 

equation, s is the standard deviation, a0, a1, a2 stand for the coefficients of the general variance 

equation and u denotes the measurement uncertainty. 

 

ca = b0 + b1 × cref              Equation 1 

 

To calculate the standard deviation, the general variance equation was used: 

 

s² = a0² + a1² × cref + a2² × cref²          Equation 2 

 

The procedure of determining the coefficients, a0, a1, a2, is iterative, using a likelihood 

function, L(4) for the adaptation of the most probable model function to the data set.  

Equation 2 considers the deviation of the analysers’ readings from the reference value for low 

values (b0  → a0), the slope of the correlation equation (b1 → a2) and the general noise of the 

analysers (a1). The remaining uncertainty when concentrations of air masses are measured 

before and after passing an emission source was calculated according to the following 

equation that results from Equation 2 being extended by the well-known uncertainty 

propagation equation (ISO, 1995): 

 

²)c²a  c²a  ²(a22 ref2ref10 ×+×+×=×= su        Equation 3 

 

The measurement uncertainty according to Equation 3 is also called “combined” uncertainty. 

The uncertainties shown in Table 2-5 are expressed in the form of absolute “combined” 

uncertainties (ppbV) and relative “combined”uncertainties (%).  

The reported uncertainty was given at the concentration level of the sample in question. This 

is indispensable since the analyses usually encompass wide concentration ranges, while at the 

                                                 
(4) A likelihood function L(a) is the probability or probability density for the occurrence of a sample  

configuration x1…xn,  given that the probability density f(x, a) with parameter is known: 

L(a) = f(x1, a)….f(xn, a) (Harris and Stocker, 1998). 
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same time the uncertainty is strongly dependent on the concentration. The calculations were 

performed using the SOLVER program, under Microsoft Excel.  
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Figure 2-15: Correlation between reference values and mean values from systems NMHC A 

and NMHC B for toluene (ambient air) and range of measurements  

uncertainty. 

 

Figure 2-5 and Table 2-5 show that the combined uncertainty is increasing with higher 

concentrations, whereas the relative uncertainty (%) decreases. In reality, for higher 

concentrations than those presented in the table, the measured uncertainties would be lower 

than the presented ones.  
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Table 2-5: Uncertainties obtained using the Solver program for assessing the C6-C9 

compounds. 
Compound Mixing ratios 

(ppbV) 
Absolute "combined" 
uncertainty u (ppbV) 

Relative "combined" 
uncertainty u (%) 

0.02 0.16 799.30 
0.10 0.16 159.90 
0.15 0.16 106.60 
0.20 0.16 79.90 

2-methylpentane 

0.45 0.16 35.50 
0.01 0.02 193.20 
0.10 0.02 22.70 
0.15 0.03 17.50 
0.20 0.03 15.30 

3-methylpentane 

0.25 0.04 14.20 
0.02 0.02 102.40 
0.04 0.02 56.10 
0.80 0.21 26.60 
0.10 0.03 33.10 

n-hexane 

0.15 0.04 29.60 
0.05 0.01 28.70 
0.10 0.03 28.70 
0.30 0.09 28.70 
0.40 0.11 28.70 

benzene 

0.60 0.17 28.70 
0.01 0.02 183.50 
0.03 0.03 105.90 
0.07 0.05 69.40 
0.09 0.06 61.20 

cyclohexane 

0.17 0.08 44.50 
0.02 0.01 29.50 
0.04 0.01 29.50 
0.06 0.02 29.50 
0.07 0.02 29.50 

n-heptane 

0.15 0.04 29.50 
0.05 0.06 121.90 
0.25 0.07 27.60 
0.50 0.08 15.60 
0.75 0.09 11.50 

toluene 

1.25 0.10 8.00 
0.02 0.01 63.00 
0.04 0.02 47.90 
0.10 0.04 35.90 
0.20 0.06 30.90 

ethylbenzene 

0.50 0.14 27.40 
0.01 0.01 116.20 
0.15 0.04 30.00 

o-xylene 

0.20 0.05 26.00 
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Table 2-5: (continued) 
Compound Mixing ratios 

(ppbV) 
Absolute "combined" 
uncertainty u (ppbV) 

Relative "combined" 
uncertainty u (%) 

0.25 0.06 23.20 o-xylene 
0.30 0.06 21.20 
0.03 0.03 93.70 
0.10 0.04 44.00 
0.50 0.12 23.80 
0.60 0.14 22.80 

m-/p-xylene 

0.75 0.16 21.80 

 

Similar results were obtained in the case of the NMHC A system in comparison with the 

prepared tubes. The relative uncertainty in this case range from 3.5 to 20%. 

 

2.2.2 CO2, NOx  

 

2.2.2.1  CO2 Monitor- Chromatosud 

 

Carbon dioxide (CO2) was measured using an automatic, compact GC system (Chromatosud), 

which has been described in more detail elsewhere (Becker et al., 1999). The used measuring 

procedure for this instrument is the one recommended by the US Department of Labor 

Occupational Safety and Health Administration (OSHA). The air sample is collected using an 

internal sampling pump through a 1 ml-sample loop and afterwards is injected automatically 

through a 10-way sampling loop into the GC system. Since this internal sampling pump has 

only a limited flow rate, a second external pump was used for increasing the pumping 

capacity. Ambient air was pumped at 10 l/min to the GC and 150 ml per min through 1 ml 

sample loops. The large flow ensures a small residence time of the sample in the sampling 

line. The 2 m long separation column has an outside diameter of 0.306 cm and is packed with 

Porapak Q (80-100 mesh). A thermal conductivity detector (TCD) with helium as carrier gas 

is used. A computer programme, namely the Borwin software by which the setting parameters 

of the instrument such as sampling time, sampling volume etc. can be adjusted, automatically 

controls the instrument. The duration of a typical sampling cycle was 5 min. The same 

software was used for the integration of the obtained chromatograms. The CO2 mixing ratios 

were determinate by comparing the peak areas of the sample chromatogram with the one 

obtained by using a calibration gas mixture. 
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2.2.2.1.1 Performance of the instrument during measurement campaigns 

 

Calibration procedure  

During the Lundby Tunnel experiment the linearity of the instrument’s response was verified 

by a calibration procedure, using two calibration gases namely a calibration gas (BUW) 

containing 893 ± 18 ppmV and a calibration gas (IVL), containing 967 ± 19.3 ppmV CO2. 

According to the expected ambient air concentrations, the calibration gases were diluted with 

synthetic air and measurements were performed. As can be observed in Figure 2-16 there is a 

good linear correlation between peak areas and the CO2 mixing ratio.  
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Figure 2-16: Calibration curve for CO2 using the CO2 Monitor from Chromatosud. 

 

From the intercept of the straight line in Figure 2-16 a detection limit of 4 ppmV was 

determined. The slope provided the response factor of the instrument of 53.5 ± 0.6 

area/ppmV. 

 

External quality assurence; Intercomparison with other CO2 monitors  

During the different experiments, different working groups were involved in measuring 

different air pollutants including CO2, CO, NO and NO2. Accordingly, the same quality 

assessment procedure was applied for the CO2 instruments as for the NMHCs. The CO2 
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instruments participating in the quality assessment procedure were inter-compared by 

sampling and measuring ambient air at the same time and at the same place. 

A typical correlation plot of the data obtained from the Chromatosud CO2 monitor, operated 

by the BUW group, and the data obtained using the NDIR (API 360) instrument of the 

Technical University of Graz (TUG) group is presented in Figure 2-17. 
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Figure 2-17: Comparison of the CO2 data (15 min average) from BUW and TUG during the 

Plabutsch Tunnel campaign. 

 

A good correlation between the two instruments was found, with a correlation factor of 1.05 ± 

0.02. Accordingly, the mixing ratios obtained by the BUW instrument were further considered 

in the data evaluation of the present study. 

 

2.2.2.2  CO2 Monitor - Carbondio 1000 

 

During the Kingsway Tunnel experiment measurements of CO2 were performed with the 

compact automatic Carbondio 1000 analyser from Pewatron AG. The non-dispersive infrared 

method (NDIR) is used in the instrument to quantify CO2. As the basis for the concentration 

measurements, the Lambert-Beer law is applied. The absorption spectra are recorded at 4.26 

μm. Calibration of the instrument was performed with a CO2 standard gas mixture. The 

system has a measurement range up to 1000 ppmV and a time resolution of 3 s. Figure 2-18 

shows a calibration curve for this instrument as an example.  
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Figure 2-18:  Calibration curve for CO2 using the Carbondio 1000 instrument. 

 

The calibration curve from Figure 2-18 shows an excellent correlation between the standard 

gas mixture and the instrument readings.  

 

2.2.2.3 NOx  Monitors 

 

NO and NO2 were measured using different monitors based on the chemiluminescence 

principle. NOx measurements were performed during the BAB II - A656 campaign not only at 

the base of the towers but also at different altitudes. The BUW group operated one analyser, 

namely: CLD AL 770 ppt (ECO-Physics) with photolysis converter PLC 760. The  

instruments calibration was performed using standard calibration gas-mixtures (Messer-

Griesheim). Figure 2-19 presents typical calibration curves for NO and NO2 using the Eco-

Physics instrument during the A656 measurements.  

Figure 2-19 (b) (NOc-NO) represents the signal regarding the fractionally converted NO2  

The calibration curves shown in Figure 2-11 (a and b) showed good correlation between the 

standard gas mixtures and the readings of the monitors. Using the Eco-Physics instrument, the 

calculated response factor for NO and NO2 were used to calculate the mixing ratios of 

nitrogen oxides. In Figure 2-11(b), NOc-NO denotes the signal regarding to the fractionally 

converted NO2. During the campaign, the NOx monitors participated in the quality assurence 

procedure. The quality assurence procedure was similar to the one performed for NMHC and 

is described in more detail by Vogt et al., 2005. 
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Figure 2-19:  Typical calibration curve for nitrogen monoxide (a) and nitrogen dioxide (b). 

 

2.2.3 Meteorological parameters  

 

In order to derive vehicle emission rates from tunnel air measurements it is necessary to know 

the flow rates of the incoming fresh air and of the outgoing exhaust air. 

A large set of instruments were used during the tunnel campaigns. Herewith, information 

relevant for the discussion of the results of this work will be briefly presented. In the tunnels, 

the air flow measurements were made using a FLOWSIC 200 ultrasonic device, which 

measures the mean air flow velocity across the entire width of a tunnel. The device can 
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measure flow velocities of up to 20 m/s with a typical accuracy of ± 0.1 m/s. Sender and 

receiver units were mounted on both sides of a tunnel at a fixed angle of inclination to the air 

flow. The units contain piezoelectric ultrasonic transducers which operate alternately as 

transmitter and receiver. The transit time of the ultrasonic pulses varies according to the flow 

velocity. The tunnel operators provided data of the performed airflow measurements (Rodler 

et al., 2005).  

During the Lundby Tunnel measurements, wind speed was measured with two instruments at 

different locations. The tunnel operator provided data of the airflow measurements performed 

in the middle of the tube. In addition, SF6 was used as a tracer and measured with a Fourier 

Transform InfraRed spectrometer (FTIR) at different places. With the measured mixing ratio 

of SF6 the wind speed data were validated. A good agreement between the data was found. 

Airflow measurements in the Plabutsch Tunnel took place in the third tunnel section; where 

fresh air was only supplied by the ventilation shaft north, see Figure 2-2. From the airflow 

measurements, it was concluded that the horizontal air exchange between the section, three 

and the two adjacent ventilation segments is negligible. An airflow rate typically of 200 m3/s 

was applied for the calculation of emission factors. 

The airflow in the north bore of the Kingsway Tunnel was recorded continuously during the 

experiment. The flow rates were calculated from fan settings provided by the tunnel operator 

(Rodler et al., 2005). 

During the BAB II - A656 motorway experiment (Corsmeier et al., 2005) meteorological 

parameters: temperature, pressure, wind direction, wind speed and relative humidity were 

recorded (Kohler et al., 2005). 

 

2.3 FLEET AND DRIVING CHARACTERISATION 
 

Traffic composition is an important factor for estimating emissions, especially if details of 

typical vehicle-mixes are available. Although national statistics of fleet composition are 

available they may not adequately describe the local situation leading to erroneous emission 

factors. During the performed experiments, traffic data were automatically recorded using 

loop detectors and/or laser/radar devices from which the fleet composition and vehicle speed 

was determined with a time resolution of 1 min. 
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3 MEASUREMENT RESULTS 
 

Continuous measurements of NMHC, NOx, CO2, meteorological parameters and traffic  

census have been carried out during three tunnel measurements i.e. the Lundby Tunnel in 

Sweden (during March, 2001), the Plabutsch Tunnel in Austria (during November, 2001), the 

Kingsway Tunnel in England (during March, 2003) and in field experiments conducted along 

a section of the A656 motorway in Germany (during May, 2001). 

Special emphasis was placed on the speciation of the hydrocarbons emissions. From the large 

number of NMHCs present in the exhaust air, the following groups of hydrocarbons have 

been analysed: 

alkanes: ethane, propane, iso-butane, n-butane, iso-pentane, n-pentane, 2-methylpentane, 

3-methylpentane, n-hexane, n-heptane 

alkenes/alkynes: ethyne, ethane, propene, iso-butene, 1-butene, trans-butene, cis-butene, 

isoprene, trans-2-pentene, cis-2-pentene, 1,3-butadiene 

aromatic hydrocarbons: benzene, toluene, ethylbenzene, m,-p-,o-xylene, 1,2,4 

trimethylbenzene, 1,3,5 trimethylbenzene 

These compounds are together with the nitrogen oxides important ozone precursor substances 

recommended for measurements in the European Ozone Directive 2002/3/EC.  

The results of these campaigns are presented and discussed in the following sections.  

 

3.1 FLEET AND DRIVING CHARACTERISATION 
 

3.1.1 Tunnel experiments 

 

In order to simplify the traffic data analysis the vehicles were classified into two categories: 

 Light duty vehicles (LDV): private cars (PC) and delivery vans (with or without 

trailer) - light duty commercial vehicles (LDCV) 

 Heavy duty vehicles (HDV): trucks with 2 or 3 axes (with or without trailer), urban 

buses, coaches. 

Table 3-1 presents an overview of the road traffic statistics registered during the tunnel 

experiments. 
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During the tunnel campaigns for a shorter time period the license plates of the vehicles 

passing through the tunnels were recorded. These data were used to obtain information about 

the emission concept of the corresponding vehicles, i.e.conventional, G-cat, EURO 1, EURO 

2 etc. For the model calculations, which are described in more detail below, it was assumed 

that the fleet composition remained constant during the whole measurement campaign. 

For the Plabutsch Tunnel, data are presented in comparison with fleet data obtained in a 

campaign performed in 1998 (Rodler, 2000). The table shows in addition to an increase of the 

traffic density an increasing contribution of HDV to the total traffic. 

The average vehicle speed was 80 km/h in the Lundby and in the Plabutsch Tunnel and 65 

km/h in the Kingsway Tunnel.  

 

Table 3-1: Overview of the road traffic statistics during the performed experiments. 
Lundby Tunnel 

 
Plabutsch Tunnel Kingsway Tunnel  

March 
2001 

November 
1998 

November 2001 February 
2003 

LDV(1) 24665 15679 18447 19403 
HDV(1) 4011 4156 5410 1702 
HDV(4) 14% 21% 22.7% 8% 
LDV(2) 7974 12011 13226 15072 
HDV(2) 535 1007 1340 470 
HDV(5) 6.3% 7.7% 9.2% 3% 

LDV+HDV(3) 
 

1194(1) 

354(2) 
826(1) 

542(2) 
994(1) 
606(2) 

880(1) 

648(2) 
(1)number of vehicles during working days; (2)number of vehicles during weekend, (3) vehicles/h;  
(4)contribution of HDV during working days; (5)contribution of HDV during weekend 

 
3.1.2 The BAB II- A656 motorway experiment  

 

During the BAB II - A656 experiment, the traffic measurements allowed the classification of 

individual passenger cars with respect to the Euro norms they fulfilled. The results showed 

that in 2001 there were 7.5% more vehicles with low-level catalyst systems, i.e. before EURO 

1 standards, on the road than calculated by the HBEFA. Based on HBEFA calculations the 

prediction for the number of gasoline fuelled cars with high-level catalyst systems (EURO 3) 

is 29% for the week days, in reality, only 17% have been observed (Kühlwein and Friedrich, 

2005). 
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Table 3-2: Overview of the average road traffic statistics obtained from automatic and 

manual traffic counts during April 27-May 27, 2001. 

All vehicles(1) 
Number/day 

HDV(1) 
% 

All vehicles (2) 

Number/day 
HDV(2) 

% 
All vehicles 

Vehicles /hour 
A656 

60590 5.5 39988 1.5 2524(1)/1666(2) 
(1)working days; (2)weekend 

 

3.2 TUNNEL AIR MIXING RATIOS 
 
During three-measurement campaigns in the Lundby Tunnel (Sweden), the Plabutsch Tunnel 

(Austria) and the Kingsway Tunnel (England), 27 C2-C9 NMHCs were quasi-continuously 

measured and quantified by using prepared standard gas mixtures (NPL) for calibration. In  

Figure 3-1 the average working day profile of NMHC, shown for toluene as an example, 

follows the diurnal traffic variation.  
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Figure 3-1: Diurnal variation of toluene and CO2 during a four days period from Tuesday 

to Friday, March 27-30, 2001 in the Lundby Tunnel. 

 

The higher concentrations of NMHC that were observed at the outlet station during the 

Lundby Tunnel measurements show in comparison with the results from the inlet station, that 

these compounds were emitted as primary pollutants from traffic (Lies, 1988; Gregori et al., 

1989; Staehelin and Schläpfer, 1995; Fraser et al., 1998; Schmitz et al., 1999; Gomes, 2003). 
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Since the tunnel is a covered place where no direct sunlight can enter, the tunnel 

measurements supply the directly emitted values from the road traffic under real world 

condition without any photochemistry. Accordingly, it was assumed that the increase in the 

NMHC concentration is proportional to the emission strength of the corresponding species as 

is presented in Figure 3-2. 

Figure 3-3 shows the diurnal variation of traffic density, CO2, toluene, benzene and i-pentane 

for one week during the measurement campaign in the Plabutsch Tunnel. The inlet 

concentration of CO2 was about 390 ppmV. The diurnal variation observed in the studied 

tunnels is very similar. However, the CO2 concentration in the Plabutsch Tunnel was almost a 

factor of two higher than in the Lundby Tunnel, whereas the NMHC concentrations in the 

Plabutsch Tunnel were significantly smaller than in the Lundby Tunnel. This difference can  

be attributed to the different fleet composition in both tunnels, i.e. the Plabutsch Tunnel is 

passed by more HDV (22.7%) leading to an increase in CO2 but not in the NMHC 

concentration. This is confirmed also by the higher values of NOx in the Plabutsch Tunnel of 

4.42 ± 2.11 ppbV.  

Figure 3-4 shows the diurnal variation of traffic density, CO2, toluene, benzene and i-pentane 

for one day during the measurement campaign in the Kingsway Tunnel. The concentrations 

start to increase early in the morning and afternoon with a maximum during rush hours. 

Similar profiles were also obtained for the other NMHC species investigated.  

The Appendix: Table 4, Appendix: Table 5 and Appendix: Table 6 summarise the maximum, 

minimum, average, median and standard deviation (S.D.) mixing ratios (ppbV) of the NMHC, 

CO2, and NOx for the three tunnel campaigns. The presented results show that the largest 

mixing ratios of the NMHC were found among the alkanes for: ethane, iso-butane, iso-

pentane, among the alkenes/alkynes: propene, i-butene/1-butene and among the aromatic 

hydrocarbons: toluene followed bybenzene, o-xylene and m-/p-xylene.  
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Figure 3-2: Diurnal variation of traffic density, NOx, CO2, toluene, benzene and i-pentane 

during four working days, March 27-30, 2001, in the Lundby Tunnel. 
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Figure 3-3: Diurnal variation of traffic density, NOx, CO2, toluene, benzene and i-pentane 

during four days, November 7-12, 2001, in the Plabutsch Tunnel. 
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Figure 3-4: Diurnal variation of traffic density, CO2, toluene, benzene and i-pentane during 

one day, February 12, 2003, in the Kingsway Tunnel. 
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A direct comparison of the obtained NMHC mixing ratios in absolute values with results from 

other studies is difficult to perform because of differences in the tunnel characteristics, traffic 

volume, and fuel composition. Nevertheless, as it is shown in Table 3-3 the average mixing 

ratios of some measured species were comparable with results obtained from other studies. 

The data of the present study agree with studies performed during 2002 in the Gubrist Tunnel, 

in Switzerland, but are lower compared with the results of the Kiesberg Tunnel, in Germany 

obtained by measurements performed in 1997-1998. 

 

Table 3-3: Average and mean mixing ratios (ppbV) of some selected compounds from 

various tunnel studies. 
Tunnel i- butane i-pentane benzene toluene m-/p -

xylene 
Traffic 
density 

Lundby (2001)a,b 4.9 ± 3.6 6.4 ± 4.61 4.97 ± 4.3 14.69 ± 9.0 NA 14% DV 
Plabutsch (2001)a 5.3 ± 3.14 5.9 ± 3.6 3.8 ± 1.5 8.2 ± 3.6 5.7 ± 3.0 23% DV 
Kingsway(2001)a 2.23 ± 1.58 8.72 ± 5.16 5.19 ± 2.76 13.93 ± 6.9 NA  8% HDV 
Kiesberg (1998)c 14.4 ± 12.3 30.5 ± 28.9 23.8 ± 20.9 36.8 ± 35.3 10.6 ± 8.0 6% HDV 
Gubrist (2002)d 2.86  14.8  6.65  14.5  5.98  8% HDV 

a this study; brepresents the average mixing ratios measured at the outlet station; cGomes, 2003; d Stemmler et al., 

2004, represent the mean mixing ratios at the outlet station, online GC-MS measurements 

 
3.3 A656 MOTORWAY EXPERIMENT MIXING RATIOS  
 

3.3.1 NMHC emission profiles upwind-downwind 

 
During the one-month measurement campaign, April-May, 2001, the C2-C9 NMHCs were 

continuously measured on both basement sites of the motorway. Only four measurement days, 

namely May 8, 14, 17 and 18, 2001, were considered having suitable meteorological 

conditions, such as wind direction perpendicular to the motorway. Accordingly, only data 

from these days were used for further evaluations. The emission ratios of the C2- C9 

compounds measured at the north and south towers basement (5 m) are presented, as an 

example, for May 17, 2001 in the Appendix: Table 7. The observed NMHC distribution is in 

good agreement with literature data. Among the aromatic hydrocarbons, toluene showed the 

largest mixing ratio, whereas iso-pentane and propene had the largest mixing ratios among the 

classes of alkanes and alkenes, respectively.  
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For further evaluation and data discussion (see paragraph 4.2.4), the NMVOC concentrations 

were recalculated from the ppbV in μg/m3(5). Typical downwind and upwind concentration 

differences are up to 1.00 μg/m3 toluene and 0.35 μg/m3 benzene, depending on the traffic 

load. 

It should be point out that vertical profiles were measured only for C6-C9 NMHC. For 

computing the vertical distribution of the C2-C6 compounds, it was assumed that at the 

upwind tower the ratio pollutant/toluene at the basement site was equal to the ratio at higher 

altitude. Toluene was chosen as the reference compound since it was shown to be emitted 

from road traffic and it has been measured with the on-line and off-line systems. Down-wind 

vertical concentrations for compounds that were not directly vertically measured, respectively 

of C2-C6 compounds were calculated as a function of altitude starting above the motorway 

plume, by multiplying the up-wind ratios obtained at ground level (on line measurements), 

with the toluene concentration at the desired altitude, measured down-wind with the off-line 

system. As an example, in the Appendix: Table 7 the vertical calculated profiles for May 17, 

2001 are presented. 

Figure 3-5 shows the vertical variation of toluene on both sides of the motorway for different 

periods of May 14, 2001, as an example. The figure shows a vertical gradient of the toluene 

concentration at the north tower (black bullets), which is downwind of the motorway, whereas 

at the upwind south tower, the toluene concentration is vertically almost constantly  

distributed (white bullets). The toluene vertical gradient at the downwind north tower is much 

more pronounced only at the first measurement height of 5 m above ground level (agl). This 

can be attributed to the motorway as a NMHC emission source. The vertical gradient that was 

exemplarily shown for toluene has not been observed for all hydrocarbons measured during 

the campaign. This fact points to the fact that the analysed NMHC compounds are not equally 

emitted by the traffic and that for the NMHCs, which are characterise by very low emission 

factors, the difference between downwind and upwind concentrations could not be resolved 

within the standard deviation of the NMHC measurements. As at the upwind site the NMHC 

were vertically constant, the existence of a plume of NMHC emitted from road traffic is 

demonstrated. The difference between downwind and upwind hydrocarbon concentrations is 

                                                 
(5) concentrations calculated for the normal conditions (273.15 K and 1 atm)  
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mostly pronounced in the rush hour as this time interval is characterised by the highest traffic 

density.  

The time intervals when emissions of the motorway were moved occasionally to the north 

tower and occasionally to the south tower as the wind direction turned were not considered in 

the further calculations.  
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Figure 3-5: Vertical profiles for toluene on May 14, 2001, 08:00-10:00 CEST, 10:15-12:15 

CEST, 12:30-14:30 CEST and 14:45-16:45 CEST. 

 

3.4 RELATIONSHIPS BETWEEN HYDROCARBONS AND OTHER 
POLLUTANTS 

 

Under the assumption of constant background mixing ratios and well-mixed emissions, the 

emission ratio, E(x)/E(y) is given by the slope of the regression of x and y mixing ratios. 
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3.4.1 Hydrocarbons versus benzene 

 

In the urban atmosphere, aromatic hydrocarbons are of great interest due to their associated 

health effects (e.g. benzene) as well as their reactivity with respect to formation of aerosols 

and ozone.  

Since the absolute concentrations measured at different sampling sites cannot be compared 

directly due to different dilution factors; the normalisation to benzene is commonly used. For 

further evaluation, these mixing ratios in ppbV were converted into ppbC(6). This unit is 

related to the moles of carbon and reflects the upper limit of potential reactivity by 

considering all carbon atoms in a molecule. On the other hand, the evaluation with ppbV 

could give the lower limit of potential reactivity of carbon atoms in a molecule. In addition, 

the ratio ppbC/ppbC is related to the moles of carbon in the molecule and will supply almost 

the same value of the emission ratios calculated in wt/wt.  

Figure 3-6 profiles of selected NMHC compounds relative to benzene (ppbC/ppbC) from the 

Lundby, Plabutsch and Kingsway Tunnel measurements are presented.  

For getting an appropriate traffic profile only data points from dense traffic episodes were 

taken into consideration. The profiles show that propene, propane, i-butane, i-pentane, 

benzene, toluene, ethylbenzene and the xylenes exhibit the highest mixing ratios and are 

obviously the most significant constituents of NMHC speciation profiles in the performed 

studies. The toluene/benzene ratio can be used as a marker of road traffic emissions (Staehelin 

and Schläpfer, 1994; Schmitz et al., 1999; Rappenglück et al., 2005). 

 

                                                 
(6) Mixing ratios in ppbV are converted into ppbC by multiplying them with the number of carbons atoms in the 

molecule of the particular NMHC, e.g. for propene with 3, for n-butane with 4 etc. 
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Figure 3-6: Profiles of selected NMHC compounds relative to benzene (ppbC/ppbC) for 

the Lundby, Plabutsch and Kingsway Tunnel experiments. 
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Figure 3-7 shows as an example a correlation diagram between toluene (ppbC) and benzene 

(ppbC) obtained from the measured values for weekdays during the Kingsway Tunnel 

campaign, February 2003.  
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Figure 3-7: Correlation plot between toluene and benzene for the measurements performed 

in the Kingsway Tunnel, in February, 2003. 

 

Figure 3-7 exhibits a good correlation between the measured values of toluene and benzene. 

Similar behaviours were found for many other hydrocarbons. 

In Table 3-4 emission ratios relative to benzene (ppbC/ppbC) for toluene, ethylbenzene, and 

the three xylene isomers are compared with literature values. The compounds mentioned 

above were chosen since they were measured in many traffic emission studies and they are 

main fuel constituents. 

As shown in Table 3-4, similar relations between the ratios to benzene at different sites were 

found for other hydrocarbons. 

The ratio of 3.091 ± 0.06 ppbC/ppbC in the Lundby Tunnel and of 2.89 ± 0.05 ppbC/ppbC in 

the Kingsway Tunnel are higher than in studies performed earlier than 2000 studies (Brocco  

et al., 1997; Derwent et al., 1998; Staehelin et al., 1998; Schmitz et al., 2000), when toluene/ 

benzene ratios of 1.5 up to 2.5 ppbC/ppbC were measured. The obtained ratios were found to 

be in agreement with the recent studies of Kristensson et al.(2004), Niedojadlo, (2005), 

Stemmler et al.  (2005).  
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Table 3-4: Comparison of emission ratios relative to benzene (ppbC/ppbC) during 

various measurement campaigns. 

Location Time 
period 

Traffic 
situation 

Toluene 
/benzene 

Ethyl- 
benzene/
benzene 

m, p 
Xylene/b
enzene 

o-
Xylene/

benzene 
Reference 

Lundby 
Tunnel 

March 
2001 

high 
traffic 3.091 0.81 n.a. 0.45 This study 

Plabutsch 
Tunnel 

November 
2001 

high 
traffic 2.44 0.57 2.05 0.96 This study 

Kingsway 
Tunnel 

February 
2003 

high 
traffic 2.87 0.65 2.04 0.8 This study 

Gubrist 
tunnel 2002 High 

traffic 2.57 0.46 1.20 0.53 Stemmler et 
al., 2005 

A656 2001 traffic 2.48 0.45 1.36 0.51 This study 

A656 2001 stop and 
go 3.6 0.67 1.85 0.61 This study 

Wuppertal 2001-2003 high 
traffic 3.83 0.73 1.28 0.38 Niedojadlo, 

2005 

Wuppertal 1998 high 
traffic 2.40 0.49 0.26 0.15 Gomes, 

2003 
Duesseldorf 

 1998 traffic 3.00 0.69 1.43 0.52 LUAQS, 
1998 

Essen 
 1998 traffic 2.58 0.6 1.20 0.42 LUAQS, 

1998 

 

As an example, the toluene/benzene yearly evolution for the city of Gothenburg, according to 

the Swedish Statistics Central Office (SCB) is shown in Figure 3-8.  

In Figure 3-8 the trends show that the yearly mean values for benzene and toluene decreased 

during 1999/2000 compared to 1998/1999. Possibly, this decrease can be attributed to the 

increased number of catalyst equipped cars emitting less hydrocarbons, as well as to the lower 

benzene content in gasoline fuel, which decreased from 5 to 1% since the year 2000  

(Directive 98/80/70 /EC). Figure 3-8 shows also that from the years 92/93 to 99/00 the 

emission ratio between toluene and benzene remained almost constant with a mean value of 

2.65 ± 0.43 wt/wt.  
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Figure 3-8: Yearly trend of toluene and benzene in the city of Gothenburg according to the 

Swedish Statistics Central Office (SCB). 

 

3.4.2 Hydrocarbons versus CO2 

From the measured data, emission ratios were calculated for NMHCs relative to CO2 by 

plotting the corresponding NMHC mixing ratio vs. CO2. The emission ratio relative to CO2 is 

the slope from the corresponding linear regression. These ratios will be used later to calculate 

fuel based emission estimates. 

Figure 3-9 presents as an example a correlation plot between n-hexane and the CO2, during 

the Lundby Tunnel experiment. 

Similar results have been obtained for the analysed compounds in the performed experiments. 

As an example in the Appendix : Table 8 and Appendix: Table 9 the NMHC emission ratios 

determined in the Lundby Tunnel and in Kingsway tunnel relative to CO2 are presented. 

The Appendix table 9 shows that during Kingsway Tunnel experiment most compounds are 

well correlated with CO2, with correlation coefficients exceeding 0.7. For the Lundby Tunnel 

the correlation coefficients did not exceed 0.5 and for the Plabutsch Tunnel did not exceed 

0.6. It is noticeable that for the three campaigns from the present study toluene and iso-

pentane showed the largest emission ratios relative to CO2. This is in agreement also with 

other tunnel and dynamometer studies reflecting different driving conditions (Duffy et al., 

1996; Fraser et al., 1998; Gomes, 2003).  
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Figure 3-9: Correlation plot between n-hexane and CO2 mixing ratios for the 

measurements performed in the Lundby Tunnel, March 2001. 

 

3.4.3 Hydrocarbons versus NOx 

 

It is known that diesel-powered vehicles, in particular HDVs, emit more NOx than light-duty 

vehicles (LDV), in particular, cars powered by gasoline. In contrast, LDVs emit more 

NMVOC than HDVs (Staehelin et al., 1997; Rogak et al., 1998). NO2 is directly emitted from 

transport activities in smaller quantities and is principally formed from secondary reactions of 

the emitted NO. NOx is besides particulate matter a critical exhaust component for HDV 

(Hausberger et al., 2003). The NO2 fraction in the NOx traffic exhaust in the investigated 

tunnels was found to be 15.04 ± 8.77% in the Lundby Tunnel, 7.45 ± 0.98% in the Plabutsch 

Tunnel and 4.51 ± 1.84% in the Kingsway Tunnel A similar trend of the NO2/NOx ratios was 

reported by Carslaw, 2005 in a study on air quality data from 36 urban monitoring sites in 

London, UK. Recently, Hueglin et al., 2006, in a study performed in Switzerland during  

1992-2004 reported that NO2 road traffic emissions increased from 92 to 2004 by about 23%. 

The observed increased NO2/NOx ration can partially be explained by the increased fraction  

of diesel – powered LDV and passenger cars in the vehicular fleet, during the last years. 

Previous studies (Lies, 1988; Gregori et al., 1989; Staehelin and Schläpfer, 1994; Kirchstetter 

et al., 1996; Pierson et al., 1996; Becker et al., 1999), reported the NO2/NOx ratio to be about 

5%.  
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The ratio NMVOC/ NOx (ppbC/ppbV) plays a very important role in atmospheric chemistry, 

particulary with regard to the tropospheric ozone production (Carter et al., 1995; Derwent et 

al., 1996; Jenkin and Hayman, 1999; Andersson-Sköld and Holmberg, 2000). 

From the measured data, NMHC/NOx (ppbC/ppbV) ratios were calculated. Table 3-5 shows 

the NMHC/NOx (ppbC/ppbV) ratios obtained from the different tunnel measurements in 

correlation with the HDV contribution.  

 

Table 3-5: Summary of NMHC/NOx (ppbC/ppbV) ratios observed in the present study in 

comparison with literature studies. 

Location NMHC/NOx 
(ppbC/ppbV) 

HDV 
contribution 

Reference 

*Lundby Tunnel (2001) 0.67 14% HDV This study 
*Plabutsch Tunnel (2001) 0.20 23% HDV This study 
*Kingsway Tunnel (2003) 0.55 8% HDV This study 
Gothenburg, 1994-1995 0.68 10%HDV Sjödin et al., (1998) 
**Plabutsch Tunnel (1998) 0.4 21% HDV Rodler (2000) 
**Tauern tunnel (1988) 2.57 Traffic fleet Gregori et al., (1989) 
**Tauern tunnel (1998) 0.05 

0.24 
17% HDV 
week-end 

Schmidt et al., (2001) 

*Kiesberg tunnel (1997) 0.64 – 1.55 6% HDV Gomes (2003) 
*Kiesberg tunnel  
(2001-2003) 

0.56 6% HDV Niedojadlo (2005) 

German traffic ≤1.5 LDV Hassel et al.,, (1994; 
1995) 

*as sum of the total measured non-methane hydrocarbons (ppbC); **total NMHCs-measured with the THC 

analyser (FID detector)  

 

Table 3-5 shows that the NMHC/NOx ratio that was found in the Kingsway Tunnel, 

corresponding to an 8% HDV load is close to the ratio found in the Lundby Tunnel, which  

has 14% HDV load. This can be explained by the high fraction of LDV diesel-powered 

vehicles in the Kingsway Tunnel: 21% among PC, 94% among LDCV. The fraction of LDV 

diesel powered vehicles in the Lundby Tunnel is 5.1% among PC and 5.05% among LDCV. 

It is noteworthy that the results from the present study are consistent with previous studies. 



 

 58



  Vehicle emission factors calculations 

 

 59

CHAPTER 4 

 

4 VEHICLE EMISSION FACTORS CALCULATIONS 

An emission factor or an emission index is a representative value that attempts to relate the 

quantity of a pollutant released to the atmosphere with a source activity associated with the 

release of that pollutant. By knowing the emission factors or emission indices and the activity 

rate of the source, it is possible to estimate the emission for a particular emittent. 

The emission factors for traffic are being calculated for a specific pollutant and for a  

particular class of vehicles. Typically, emission factors have been calculated based on 

dynamometer studies (Weilenmann et al. 2001), remote sensing (Kuhns et al., 2004; Chan et 

al., 2004; Chan and Ning, 2005) or tunnel air measurements coupled with mathematical 

modelling.  

In the literature two different approaches are presented for calculating emissions factors, 

namely the travel based approach leading to emission factors expressed in g/(km×vehicle) and 

the fuel based approach leading to emission indices expressed in g/(kg × fuel). 

In the present study, the travel based approach calculation was carried out for a better 

comparison with literature values. 

 

4.1 EMISSION FACTORS CALCULATION - THEORETICAL 
CONSIDERATIONS  

 

Conservation of mass is the basic principle underlying the development of the emission 

models. The base assumption is that pollutants are long-lived species with no deposition and 

no destruction or reaction, and that movement of air and vehicles cause uniform mixing and 

distribution of pollutants through the tunnel. Additionally, emission rates and wind velocity 

are assumed being constant. 

Measurements of average emission factors (EF) from a road or traffic tunnel may not be 

representative for different road types and fleet mixes. The disadvantage of the average 

emission factors is that they do not allow the relative contributions from different individual 

vehicles to be determined. In this case, an inventory that is based on such emission factors  

will have limited value as a policy analysis tool. The advantage of the average emission factor 

is to monitor emission trends over time and to compare the results with emission factors 

derived from models. 
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4.1.1 The travel based approach 

 

4.1.1.1 The direct method for emission factors calculation 

 

The different methods for estimating mobile source emissions in tunnels have been previously 

described in detail (Gertler and Pierson, 1994; Pierson et al., 1996; Bellasio, 1997; El-Fadel et 

al., 1997). 

The direct calculation method produces the EF of a specific pollutant in the tunnel air based 

on the measured pollutant concentration, tunnel length, tunnel cross section and number of 

vehicles passing the measurement site.  

The mass of a pollutant i emitted by vehicles in a certain time interval j in the tunnel is given 

by the difference between its concentration at the outlet stations and the inlet stations. 

 

i
k

inin
j

ioutouti VCVCM )()( ∑∑ ×−×=        Equation 4 

dn
MEFveh ×

=              Equation 5 

 

where:  M = mass of a pollutant emitted by vehicles during time t, [g] 

Ci out/in = concentration of a pollutant leaving/entering the tube, [g/m3] 

Vi out/in = volume of air leaving /entering the tube during time t, [m3] 

EFveh = average vehicle emission factor, [g/ (km × vehicle)] 

n = number of vehicles, [vehicles] 

d = tunnel length [km] 

i = index of pollutant, 

j, k = number of entrance/exit channels. 

For a tunnel with one entrance and one exit air channel, i.e. j, k=1, the emission factors for a 

given pollutant i, is expressed as: 

 

dn
tAuCuC

EF ininoutout
veh ×

××−
=

)(
                     Equation 6 

where:  A = tunnel cross sectional area, [m2] 

 u = tunnel wind speed, [m/s] 

 t = time interval, [s] 

 V = u×A×t, volume of air leaving /entering the tube during time t, [m3]. 
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In case of negligible differences between entrance and exit air speed, the emission factor is: 

 

           Equation 7 

 

 
Otherwise, the airflow at the entrance and exit can be related to the ventilation rate α (s-1) and 

the tunnel length L [km]: 

 

uout = uin + α×(1000L)           Equation 8 

 
The tunnel length L can be replaced by Lveh, i. e. the distance covered by the vehicles 

travelling through the tunnel at the air speed uveh during the time transit of air over L as 

presented in Equation 9: 

 

u
Lu

L veh
veh

×
=            Equation 9 

 

where:  uveh = vehicle speed, [m/s] 

Lveh = distance covered by the vehicles during the time transit of air over L, [km] 

Several operational parameters such as variability in the traffic, speed flow and ventilation 

contribute to the complexity of airflow patterns in a tunnel atmosphere. As a result,  

significant air speed (or concentration) non-uniformities can be revealed across the tunnel 

section. 

In order to calculate accurately the emission factors, the operational parameters have to be 

taken into consideration for each tunnel characteristics. 

In tunnels with longitudinal ventilation system, pollutant concentrations increase along the 

length of a tunnel as the emissions from traffic accumulate. In passively ventilated tunnels,  

the air always moves in the same direction due to the piston effect.  

The starting sampling time of the instruments at outlet/inlet stations have to be adjusted 

according to the average transport times between measuring points. The transport times are 

calculated from the measured wind speeds. 

Steady and transient tracer experiments have been used to estimate the airflow in the tunnels. 

While in a steady tracer experiment the tracer substance SF6 is released at one point in the 

dn
tuACC

EF inout
veh ×

×××−
=
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tunnel at a constant rate, in transient tracer experiments SF6 is released at a constant rate  

along the tunnel length.  

To account for velocity and concentration non-uniformities in the tunnel, the air speed in 

Equation 8 is multiplied by a correction factor that is determined from SF6 tracer experiments. 

The magnitude of the correction factor differs for different tunnels and is considered being 

inversely proportional to the air velocity inside the tunnel as expressed by Equation 10. The 

correction factor is the ratio between the measured and the modelled SF6 concentration at the 

measurement site. 

 

b
u
aF +=             Equation 10 

 

where:  F = correction factor, dimensionless 

a = empirical constant, [m/s] 

b = empirical constant, dimensionless 

u = vehicles speed, [m/s] 

The principle of mass balances at open roadways as is shown in Figure 4-1 considers an 

imaginary box, which includes the road section on the ground and the total exhaust plume. 

There are two vertical measuring lines, one upwind and one downwind of road. The pollutant 

mass flows entering at one side (x1) and leaving at the opposite side (x2) have to be 

determined. Because of the wind speed perpendicular to the road and pollutant concentrations 

are not expected to be homogeneous with height z, vertical wind and pollutant concentration 

profiles have to be measured. More details on the A656 emission factors calculation  

procedure are given in Corsmeier et al. (2005) and Kühlwein and Friedrich  (2005). The wind 

profiles, which were used for the calculation, have been described in more detail elsewhere 

(Kohler et al., 2005). 

 



  Vehicle emission factors calculations 

 

 63

v

x 1 x2
x

z

h

 

Figure 4-1: Principle of pollutant mass balances from open roadway experiment. 

 

From the results of the profile measurements, the source strength of the motorway traffic 

emissions was determinate. The method for calculating the source strength in mass per time 

per driving distance has been described in more detail elsewhere by Vogel et al. (2000). The 

source strength is defined as the mass of the pollutant emitted per unit of time (t) and length 

(L) and was evaluated by the difference between the downwind and the background 

concentration multiplied with the wind velocity and integrated over the height of the plume  

The source strength was calculated from 1 to 51 m with a height resolution Δz of 2 m. From 1 

to 5 m, which is the minimum height of NOx and NHMC measurements, the NOx as well as 

the NMHC concentrations were assumed to be constant with height. 

The NMHCs source strength was computed by multiplying the corresponding concentration 

difference measured downwind and upwind the motorway in µg × m-3 with the incident wind 

velocity in m/s, as shown in the following equation: 

 

∑
=

⊥ Δ−×=
25

1
)),(),(()(

n
nupwindNMHCndownwindNMHCnNMHC zzxczxczvQ

iii   Equation 11 

 

where:  QNMHCi
= the source strength of a selected NMHC component i, [µg×m-1×s-1]  

v⊥(z)      = incident wind velocity. 
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Multiplication by 3.6 yields the final desired source strength from µg/(m × s) in g/(km ×h). 

The calculations were carried out under the assumption that the emissions do not change 

within the length of 1 km along the motorway during 1 h. 

Further, the source strength calculated per time interval divided by the total number of 

vehicles (ntotal), which passed the sampling site within this time unit gives the emission factor 

per vehicle of substance i expressed as [g/(km×veh)]. 

 

total

NMHCi

n
QEFi =           Equation 12 

 
The determination of emission factors of vehicle classes, namely HDV and LDV, is based on 

statistical modelling, which is required since these vehicles have different emission factors. 

The approach is based on the linearization of the EF of the entire fleet as function of the 

proportion of one of the classes, namely LDV or HDV (Staehelin et al., 1997). 

The EFtotal of the entire fleet is a linear combination of the EFi of the i vehicle class by its 

fraction ni/nt for the different vehicle classes.  

 

 

       Equation 13 

 

where: EFi = emission factor for vehicle class i, [g/(km ×veh] 

ni    = traffic density of vehicle class i, [veh/min] 

ntotal = total traffic density, [veh/min] 

Further, EF is plotted against the fraction of LDV. From the linear regression, the slope yields 

the EF for LDV and the intercept the EF for HDV.   

 

 

    Equation 14 

 

where: EFLDV  = emission factor for LDV, 

EFHDV  = emission factor for HDV. 
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4.1.2 The fuel based approach - Indirect emission factors calculation 

 
If the exact characterisation of the air flow, and the concentration for the different j, k 

entrances/exits points are not available, as e.g. for the Kingsway Tunnel experiment, the 

emission factors for the total fleet can be calculated by using the model calculated emission 

factor of CO2 or the vehicle fuel consumption. CO2 emissions are estimated based on fuel 

consumption only, assuming that the carbon content of the fuel is fully oxidised into CO2.  

The fuel based approach method for estimating the emission factors obviously does not take 

into consideration vehicle weight and operating conditions (Singer and Harley, 1996; Kean et 

al., 2003). The fuel based approach method has also the disadvantage that the CO2 

apportionment between gasoline and diesel engine contribution is not possible. 

 

4.1.2.1 Use of HBEFA 2.1 CO2 emission factor  

 

During the tunnel campaigns of the present study measurements of the airflow rate and the 

uniformity of the air mixing inside the tunnels were carried out. Technical problems 

encountered during the Lundby and Kingsway Tunnel studies for which the airflow inside the 

tunnels was difficult to characterise. Since CO2 was always measured during all campaigns, it 

was possible to calculate the emission factors by using the model-calculated emission value of 

CO2 for the vehicles passing through the tunnels. 

The emission factors for the entire fleet is in this case calculated by multiplying the model 

calculated emission factor of CO2 (mg/km) with the emission ratios of those components 

relative to CO2 (mg/mg). In the present study, the modelled emission factor for CO2 was  

taken from the HBEFA 2.1. Emissions also vary significantly with the mode of operation, 

involving factors such as traffic flow, road gradient and vehicle speed. Traffic situations are 

defined as linear combination of driving patterns. No driving pattern that would describe the 

tunnel driving (Staehelin and Sturm, 2004)) exists in the literature. Most appropriate for 

further calculations is the highway driving cycle (HW). As an example for the Plabutsch 

Tunnel emission factors the HBEFA 2.1 driving cycle 80-AB>80, named HW 80, for traffic 

smaller than 1400 vehicles/h was used. This driving cycle has an average vehicle velocity of 

80 km/h, weighted according to a highway velocity of 70-80 km/h (12%), highway velocity of 

80-90 km/h (23%), highway velocity of 90-100 km/h (30%), highway velocity of 100-110 

km/h (23%) and highway velocity of 110-120 km/h (12%). This driving pattern is suitable for 
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the driving situation in the Lundby and the Plabutsch tunnels. Table 4-1 presents as an 

example for the Plabutsch Tunnel experiment the CO2 emission factors calculated using the 

HBEFA 2.1 for the driving pattern HW 80 and for different road gradients. Positive road 

gradients correspond to uphill driving and vice versa. Table 4-1 shows that the model 

calculated value of CO2 is strongly influenced by the gradient factor (slope).  

 

Table 4-1: Emission factors for CO2 (mg/km) for different vehicle categories and road 

gradients (%) and driving pattern HW-80, in the Plabutsch tunnel. 

Vehicle category Road gradient 
PC LDV HDV 

-2 124 201 62 
0 169 284 684 
2 229 390 1761 
-1 149 243 375 
0.5 178 310 950 
1 200 337 1225 

 

Table 4-2 shows as an example the BTX emission factors for different driving situations. 

It is shown that gradient factors have a direct impact on all vehicle emissions as well as on 

fuel consumption. For example for LDV, BTX emissions do not change significantly for 

downhill driving, whereas for uphill driving the emission factors can increase up to a factor of 

2 compared to the zero gradient driving situation. This behaviour has also been observed 

during the Gubrist tunnel study (Colberg et al., 2005a). 

 

Table 4-2: Emission factors (g/km) for BTX determined from HBEFA 2.1 for different 

driving situations, in the Plabutsch tunnel. 
Traffic situation Compound Vehicle category Road 

gradient HW 100 HW 80 
-2 0.0045 0.0048 
0 0.0056 0.0049 

PC 

+2 0.0151 0.0130 
-2 0.0058 0.0059 
0 0.0060 0.0052 

LDV 

+2 0.0107 0.0089 
-2 0.0049 0.0045 
0 0.0064 0.0063 

benzene 

HDV 

+2 0.0058 0.0059 
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Table 4-2 (continued) 
Traffic situation Compound Vehicle category Road 

gradient HW 100 HW 80 
-2 0.0051 0.0056 
0 0.0059 0.0052 

PC 

+2 0.0134 0.0117 
-2 0.0057 0.0055 
0 0.0061 0.0050 

LDV 

+2 0.0122 0.0095 
-2 0.0009 0.0009 
0 0.0012 0.0012 

toluene 

HDV 

+2 0.0011 0.0011 
2 0.0043 0.0046 
0 0.0049 0.0043 

PC 

+2 0.0111 0.0096 
2 0.0048 0.0047 
0 0.0052 0.0043 

LDV 

+2 0.0101 0.0079 
2 0.0023 0.0022 
0 0.0031 0.0030 

xylenes 

HDV 

+2 0.0028 0.0028 

 

4.1.2.2 Use of the emission index 

 

Carbon dioxide is the final C-containing product of fuel combustion and provides a measure 

of the amount of burned fuel in the engine. Concentrations of NMHC relative to CO2 provide 

emissions per quantity of fuel consumed. Using an average emission index of 3.138 g CO2 per 

kg burned fuel (Kurtenbach, 2001) the emission indices for NMVOCs can be calculated. 

If emissions in g/km are required, obviously averaged fuel consumption per km is required. 

From the literature it is known that NMHCs, which are emitted especially by gasoline 

powered passenger cars, depend on driving status as well as vehicle age (affects the tailpipe 

emissions) and maintenance (Sjödin et al., 1997, 2000). The average age of the vehicles fleet 

can be used to estimate the fuel consumption per km. 

Emission factors can be calculated, by using the emission index corroborated with the fuel 

consumption and fuel density according to Equation 15: 
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ρ××= fEiEF         Equation 15 

 

where :  Ei = Emission Index ,[g/(kg × fuel)] 

f  = fuel consumption, [l/km] 

ρ = fuel density, [kg/l] 

Fuel consumption and hence the CO2 emission is the variable and can be calculated on the 

basis of the fleet composition if the driving pattern is accurately described. If the calculated 

and the measured concentrations have a correlation coefficient close to 1, it can be assumed 

that boundary conditions such as air flow and vehicle mix fit well to each other. 

 

4.1.3 Models for emission factors 

 

Within the framework of extensive emission data validation experiments, the emission factors 

for the Lundby Tunnel, the Plabutsch Tunnel, the Kingsway Tunnel and the A656 motorway 

have been determined using the local traffic measurements in combination with new emission 

models. The models provide emission factors with a temporal resolution of 20 min for the 

Lundby and Plabutsch tunnel studies, one hour for the Kingsway Tunnel and 3 h for the 

motorway study. 

The models took as input parameters the fleet composition and the emission factors for THC, 

CO2 and BTX from the HBEFA modified by taking into account the slope gradients for the 

corresponding measurement sites as well as the fleet composition and the driving pattern. 

For the model calculation the year 2001 was chosen as base case because the measurements 

were carried out in the same year. Emission factors were calculated for the following vehicle 

categories: PC, LDV, HDV, Urban Bus, Coach and Motorcycles. For the calculations the 

HBEFA 2.1, highway: HW100, 80 and 60 driving patterns with a traffic volume <1400 

vehicles/h were chosen. Since vehicles were assumed to reach their maximum working 

temperature before passing the measurement area “cold running” conditions were not 

considered in the calculations. The HBEFA 2.1 provides the emission factors for road 

gradients of 0, ± 2, ± 4, ± 6% from which the desired ones were calculated as discussed in 

section 4.1.2.  
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Three emission models were used:  

 Model 1 calculates emissions factors for NMHCs using the HBEFA calculated 

emission factor for CO2. The calculation of the emission factors of NMHCs were done by 

multiplying the estimated emission factor of CO2 (mg/km) with the emission ratios of those 

components relative to CO2 (mg/mg). This method has been described in more detail in 

section 4.1.2.  

 Model 2 calculates emissions factors for individual compounds by using the total 

hydrocarbon emission factor calculated from HBEFA and the relative contribution of 

individual hydrocarbons to the NMHC exhaust according to Schmitz et al. (1999). Schmitz et 

al. (1999) analysed on a chassis dynamometer the exhaust of cars equipped with different 

engine types, i.e. cars with diesel engines, cars with gasoline engines and three-way-catalysts 

and cars with gasoline engines without catalysts using different driving cycles. For the present 

calculations the data for the driving cycle “Autobahn Phase 1” (average speed 107 km/h, 

minimum speed: 90 km/h and maximum speed: 124 km/h, contribution of the stop mode: 0%) 

was used. Although the speed range of this driving pattern is higher than that in the Lundby 

and Plabutsch Tunnel, this phase has been considered for comparison because the other 

driving pattern had an even higher speed range. Since the data from Schmitz et al. (1999) did 

not provide the NMHC speciation for gasoline vehicles with different exhaust after 

treatments; these data were used in the present calculation for Euro 1, 2, and 3. The data from 

Schmitz et al, (1999) for diesel vehicles were used to calculate the emission factors for all 

vehicles with diesel engine. 

The final emission factor EF of an individual NMHC is represented by the sum of emission 

factors determined for each vehicle category multiplied with the percental composition of the 

pollutant in the exhaust mix (according to Schmitz et al., 1999) divided by the number of 

vehicles passing the measurement site in the chosen time interval: 

 

ijj iji EFaEF ×= ∑ =

3

1
         Equation 16 

 

where:  i = compound number 

a1 = percental contribution of the compound i in the hydrocarbon exhaust mix for 

gasoline engines without catalyst 
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a2 = percental contribution of the compound i in the hydrocarbon exhaust mix for 

gasoline engines with catalyst 

a3 = percental contribution of the compound i in the hydrocarbon exhaust mix for 

diesel engines without catalyst 

EFj with j from 1 to 3 represent the emission factors for individual vehicles category, as 

follows: 

EF1 = emission factor of total hydrocarbons for gasoline engines without catalyst 

for PC, LDV and motorcycles 

EF2 = sum of emission factors of total hydrocarbons for gasoline PC and LDV 

engines with G-cat, Euro 1, 2 and 3 

EF3 = sum of emission factors of total hydrocarbons for diesel engines without 

catalyst for HDVs, coaches, urban busses 

The emission factor for a specific vehicular category in a time interval was calculated by 

multiplying the number of vehicles with the percental composition in the fleet for that 

category and the emission factor for total hydrocarbons from HBEFA calculated for the 

specific vehicle category and emission concept. 

 Model 3 calculated emission factors for benzene, toluene and xylenes derived from 

HBEFA by summing the specific vehicular category emission factors. 

Since the calculation of the emission factors of NMHCs were carried out by multiplying the 

estimated emission factor of CO2 (mg/km) with the emission ratios of those components 

relative to CO2 (mg/mg), CO2 was always measured during the three campaigns of the present 

study, the model 1 data will be referred as calculated emission factors and the model 2 and 3 

values as modelled ones. 

 

4.1.3.1 Error calculation 

 

The absolute error of the emission factor EFΔ  related to the error of the input parameter xi 

results from the multiplication of the sensitivity  ∂EF/∂xi with calculated or estimated absolute 

error dxi or Δxi. By use of the error propagation law, the mean total error EFΔ   of the 

emission factor EF for any functional relations between the input parameters xi according to 

Hartung et al. (1995) is:  
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        Equation 17 

 
where: n = the number of the input parameters 

 
ix

EF
∂

∂  = the sensitivity of the emission factor related to the input parameter xi 

 Δxi = the absolute error of the input parameter xi (e.g. standard deviation) 

More details on the determination of uncertainties of emission factors from road transport 

models can be found in Kühlwein and Friedrich (2000). 

 

4.2 EMISSION FACTORS CALCULATION FROM MEASUREMENT 
DATA 

 

4.2.1 Lundby Tunnel 

 

Since in the Lundby Tunnel the wind speed measurements were difficult, SF6 has been used as 

a tracer in order to determine the wind speed data. However, the results from the tracer 

experiments were not reliable enough (Colberg et al., 2005b) and, therefore, in the present 

study the vehicle emission factors were calculated using the indirect method, namely model 1 

and were modelled using model 2 and 3. 

 

4.2.1.1 Calculation of emission factors using HBEFA 2.1  

 

The HBEFA 2.1 emission factors calculated for CO2, THC and BTX considered according to 

the tunnel topography, as Figure 2-1 shows, gradients of -3.5%, 0.25% and 4%. The driving 

pattern HW 80 for traffic smaller than 1400 vehicles/hour is also in agreement with the speed 

limit in the tunnel, namely 80 km/h and the number of vehicles that transit the tunnel in 1h.  

As an example the Appendix: Table 10, Table 11, Table 12, Table 13, and Table 14 

summarise the results of the emission factors for CO2, THC, benzene, toluene and xylenes 

applying HBEFA 2.1 for three driving situations: HW100, HW80 and HW60 and the 

reference year 2001. 
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The emission factors of the vehicle fleet in the Lundby Tunnel were calculated as section  

4.1.3 presents. The emission factors were calculated with a 20 min time resolution. The model 

1 result will be compared with the calculations of model 2 and 3, below. 

As an example, Figure 4-2 shows for i-pentane, benzene and toluene the obtained time series 

from model 1 in comparison with the model 2 results and the corresponding calculated 

absolute errors. The error calculation included both the possible variation of traffic fleet in the 

Lundby Tunnel and the contribution of the HW-80 driving situation.  

The comparison of the two models shows for i-pentane and toluene that the calculated values 

are significantly higher than the modelled values for periods with high traffic density. 

However, it is worth mentioning that for benzene the agreement between the two models is 

always quite good. 
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Figure 4-2: Time series for i-pentane, benzene and toluene calculated with model 1 and 

model 2, in the Lundby tunnel. 
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Figure 4-3 shows for benzene a good correlation between the different models. This proves 

that for benzene, the calculated values are within the standard deviation in good agreement 

with the HBEFA 2.1 model 2 and 3 estimations for the real traffic situation in the Lundby 

Tunnel. 
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Figure 4-3: Correlation diagrams for benzene: model 2 and model 3 versus benzene model 

1 emission factors, respectively. 

 

Figure 4-4 shows a similar correlation plot for toluene. Although the linearity between the 

different models is quite good as indicated by the R2 values, the slopes are significantly 

smaller than the expected 1 to 1 relation. 
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Figure 4-4: Correlation diagrams for toluene: model 2 and model 3 versus model 1 

emission factors. 

 

Figure 4-5 shows for a variety of other hydrocarbons the ratio of the emission factors 

calculated from model 1 and model 2, 3. It is worth mentioning that for model 1 the emission 

factors are 1.3-8.7 times higher than those obtained from model 2. 
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Figure 4-5: Ratio of NMHCs emission factors of model 2 and 3 versus model 1, in Lundby 

Tunnel. 
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The data analysis of the THC emission factors for the given traffic fleet in the Lundby Tunnel, 

PC with catalyst (85%), LDV with catalyst (3%) and HDV (12%), shows that the  

main contributions result from PC with catalyst (39%), LDV with catalyst (6%) and HDV 

(52%). The THC emission factors given by the HBEFA 2.1 are higher for HDV than for PC 

and LDV and though increase the percental contribution to the THC emission factor. The 

discrepancy between measured and calculated emission data obviously must be found in the 

emission factors for PC with catalyst, LDV with catalyst and/or HDV. 

This leads to two hypotheses: 

1. the THC emission factor of HDV is not correct; and/or 

2. the percentage contribution of catalyst vehicles resulting from the fleet data 

analysis does not reflect the reality, i.e. cars that are registered with catalyst in fact 

have a malfunctioning catalyst and should be counted as non-catalyst vehicles  

with the corresponding emission factor. 

In order to check the HBEFA 2.1 THC emission factor for HDV, it was changed stepwise in 

10% increments from 200% to 10%. 
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Figure 4-6: Correlation diagrams for toluene (model 2) versus toluene (model 1) with a 

stepwise change of the THC emission factor for HDV. 
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Table 4-3: Correlation equations for toluene (model 2) versus toluene (model 1) for a 

stepwise change of the THC emission factor for HDV. 

HDV EF variation Slope (m) Intercept (b) Correlation 
coefficient (R2) 

10% 0.198 ±0.008 0.0008±0.005 0.88 
50% 0.220±0.006 0.0007±0.004 0.93 

100% 0.247±0.005 0.0005±0.003 0.96 
150% 0.275±0.004 0.0004±0.002 0.98 
200% 0.302±0.002 0.0002±0.001 0.99 

 

Figure 4-6 and Table 4-3 show for toluene as an example, only a small variation of the slope 

when the EF was changed. Accordingly, by a 10% percent decrease of the HDV EF a slope of 

0.198 ± 0.008 was obtained, whereas for a 200% increase of the HDV an EF of 0.302 ± 0.002 

was determined. The resulting slope variation shows that the HDV EF does not strongly affect 

the model 2 results. 

The European Commission in 2000 and National Environmental Technology Centre, UK 

(NETCEN) in 2002 reported that about 15% of the PC catalysts have a malfunction leading to 

a much higher emission of hydrocarbons. In order to test whether this finding could explain 

the discrepancy observed between model 1 and 2, the emission factors were recalculated 

considering that 12% of PC and LDV G-cat vehicles have malfunctioning catalysts and, 

therefore, their emissions have been counted as the ones of conventional cars. 

 Figure 4-7 shows the modelled values for toluene considering that the PC and LDV G-cat 

vehicles have conventional exhaust treatment. The slopes change from 0.247 ± 0.005 to 0.745 

± 0.255  for model 2 versus model 1 and from 0.212 ± 0.008 to 0.486 ± 0.02 for model 3 

versus model 1, see Figure 4-4 and Figure 4-7. This indicates that the catalyst condition may 

be the main reason for the discrepancy between measured and modelled emission factors. The 

same behaviour was observed for the other compounds, although the change is not so 

significant in all cases. 

Table 4-4 presents the correlation equation for NMHC measured compounds, (model 2) 

versus NMHC (model 1) with and without change in the model assumptions, i.e. PC and LDV 

G-cat counted as conventional vehicles.  
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Figure 4-7: Correlation diagram for toluene model 2 and model 3 versus model 1, PC and 

LDV G-cat counted as conventional vehicles. 

 

Table 4-4: Correlation equation for NMHCs, model 2 versus NMHC model 1 with and 

without change in the model assumptions, i.e. PC and LDV G-cat counted as 

conventional vehicles. 
Compound Correlation 

equation 
no changes 

Correlation 
coefficient

R2 

Correlation equation 
Model 2 values, PC and 

LDV GKat as 
conventional, 
HDV 100% 

Correlation 
coefficient 

R2 

propane y = 0.156x - 2E-05 0.9784 y = 0.214x - 1E-06 0.999 
i-butane y = 0.159x + 8E-05 0.939 y = 0.318x + 0.0002 0.903 
i-pentane y = 0.159x + 8E-05 0.939 y = 0.935x + 0.0013 0.934 
n-pentane y = 0.509x + 0.0001 0.9822 y = 0.923x + 0.0005 0.941 

3-methylpentane y = 0.157x + 0.0001 0.8701 y = 0.347x + 0.0003 0.865 
n-hexane y = 0.284x + 0.0001 0.8703 y = 0.628x + 0.0003 0.865 

cyclohexane y = 0.116x + 3E-07 0.9997 y = 0.186x + 2E-05 0.980 
n-heptane y = 0.150x + 4E-05 0.9389 y = 0.302x + 0.0001 0.903 
propene y = 0.768x - 0.0004 0.9534 y = 0.963x - 0.0003 0.989 

trans-butene y = 0.173x + 2E-07 0.9996 y = 0.275x + 2E-05 0.981 
cis 2 butene y = 0.308x - 2E-07 0.9995 y = 0.485x + 2E-05 0.982 

benzene y = 0.786x + 0.004 0.9998 y = 1.272x + 0.0008 0.978 
o-xylene y = 0.268x + 0.0001 0.8799 y = 0.583x + 0.0003 0.870 
toluene y = 0.249x + 0.0006 0.9616 y = 0.745x + 0.0033 0.901 

ethylbenzene y = 0.145x + 0.0001 0.9233 y = 0.297x + 0.0004 0.894 
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This finding emphasizes once more the poor knowledge on NMHC emissions from vehicles, 

especially from the passenger cars. Accordingly, there is an urgent need for reliable real- 

world emission factors for most NMHCs compounds, except benzene, which seems to be well 

described by HBEFA 2.1, taking into account various engine types, exhaust after treatment 

systems, driving patterns and vehicle age, which are probably the main reasons for the under- 

prediction of the emissions from model 2 and 3. The influence of 12% malfunctioning 

catalysts on the emission factors demonstrates not only the importance of modern emission 

technologies but also that good maintenance of these systems is prerequisite for the reduction 

of NMHC emissions.  

In the new version 2.1 of HBEFA emission factors for PC and LDV Euro 1 (gasoline and 

Diesel) and Euro 2 (gasoline only) are based on bag data (multiple sets of data) or linear 

combinations of bag data from real world test bench cycles, and not from instantaneous 

modelling as in HBEFA 1.1. For other vehicle classes the emission factors for Euro 1 and 

older vehicles remained unchanged and, hence, still are based on instantaneous modelling, the 

so-called TÜV method (Haan and Keller, 2004). This is important, as investigations of the 

past few years have shown that emissions can be significantly higher under real world driving 

than emission standards suggest (Xie et al., 2005). The Appendix: Table 15 summarises the 

model 1 calculated emission factors in [g/(km × veh)] for the entire fleet during the Lundby 

Tunnel experiment. 
 

4.2.2 Plabutsch Tunnel 

 

4.2.2.1 Calculation of emission factors by the direct method 

 

Emission factors [g/(km×vehicle)]  
have been directly calculated from the Plabutsch Tunnel 

data for speciated NMHC, NO, NO2, NOx using Equation 7 (see section 4.1.1) adapted for a 

tunnel with transverse ventilation. The Equation 18 was developed by TUG based on the 

results of two previous tunnel studies in the Plabutsch Tunnel in 1998 and 1999 (Rodler, 

2000). 

As already mentioned, the Plabutsch Tunnel has a transverse ventilation system, which 

requires measuring the pollutants in the air entering ventilation system and the air leaving the 

tunnel ventilation. In tunnels with transverse ventilation systems, pollutant concentrations are 

more or less constant over a considered ventilation section. 
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NLt
ucEFveh

1
×

×
×

=           Equation 18 

 

where:  c = concentration of the pollutant, [g/m3] 

u = flow of the supply air, [m3/s]  

t = time period of determination, [s] 

L = tunnel length, [km] 

N = traffic density, [vehicles/s]. 

As Figure 4-8 shows, although all pollutants exhibit a strong positive correlation with the 

traffic count, the flow of the supply air has a far greater impact on emissions. This is 

particularly visible on Friday, Nov. 9, 2001 when the measured concentrations are low 

although the traffic is high. It has been observed that minor changes in the flow of the supply 

air could produce significant changes in the emission factors. As an example, it is shown in 

the same figure that toluene, i-pentane, i-butane and NOx exhibited a defined trend consistent 

with the source strength (traffic count) and the flow of the supply air. This pattern is typical 

for direct source measurements, when the product peaks mirror the traffic peaks but also 

diminish with higher wind speed.  

As in the studied tunnels the LDV and HDV are not routed through separate tubes, the 

emissions derived from raw data are representative for the overall fleet and afterwards derived 

for LDV, HDV. The traffic flow is more or less the same in both directions, as can be 

observed in the Appendix: Table 3. 
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Figure 4-8: Diurnal variation of airflow, traffic density and emission factors for i-butane, i-

pentane, toluene and NOx during the Plabutsch Tunnel measurement, Nov. 

2001. 
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4.2.2.2 Calculation of emission factors using HBEFA 2.1  

 

Emission factors for the Plabutsch Tunnel were calculated also using the HBEFA 2.1 model  

1, and modelled using model 2 and 3. The HBEFA 2.1 emission factors calculated for CO2, 

THC and BTX considered the reference year 2001, a gradient of -1, and +1 and the driving 

pattern HW 80 for traffic <1400 vehicles/h. The emission factors for road gradients between ± 

1%, which were necessary for the Plabutsch Tunnel data evaluation, were obtained from a 

linear interpolation of emission factors for road gradients of -2, 0 and +2%. The emission 

factors were calculated with 20 min time resolution. In Appendix Tables, Table 16, 17, 18, 19 

and 20 summarise the results of the emission factors for CO2, THC, benzene, toluene and 

xylenes applying HBEFA 2.1 for the adequate driving situations. 

According to the ARTEMIS Validation Final Report, 2005 (Rodler et al., 2005) there was 

good agreement between the CO2 emissions calculated from HBEFA 2.1 and the Plabutsch 

Tunnel measurements. The regression analysis of emissions factors derived from the HBEFA 

2.1 and those derived from the measurements showed a coefficient of determination (R2) of 

0.99 and a regression coefficient (k) of 0.96. This is an important quality check of the used 

model 1 method. 

In order to calculate the emission ratios of different components relative to CO2, the 

background value of CO2 was subtracted punctually for each value for the model 1 

calculation.  

Figure 4-9 shows the obtained time series from the direct calculated emission factors in 

comparison with model 1 for i-pentane, benzene and toluene as examples. The comparison 

shows good agreement for the weekdays November 7-9, 2001. For the weekends, the model 1 

values are higher than the emission factors from the direct method, which is probably 

resulting from the poor ventilation during weekends.  
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Figure 4-9: Time series for i-pentane, benzene and toluene calculated with the direct 

method and model 1, in the Plabutsch Tunnel. 
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Figure 4-10 shows in the red circle that the mechanical ventilation of the tunnel was strongly 

reduced during weekends, i.e. in our case November 10, 11, and hence the pollutant emission 

factors could not be accurately determined by using the direct method (Hausberger et al., 

2003).  
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Figure 4-10: Fresh and waste air volume flows (ventilation section 3) for time intervals of 

15 minutes. 

 

Figure 4-11 shows for benzene and toluene a good correlation obtained by use of the two 

calculation methods, namely direct and indirect. The same behaviour was observed for all 

other compounds. The good agreement between direct and indirect emission factors 

calculation can be considered as an important “quality check” of the used calculation model 

because fuel consumption and hence the CO2 emission is the variable which can be calculated 

on bases of the fleet composition and description of the driving pattern with the highest 

accuracy. This proves that the emission factors for CO2 in the HBFEA 2.1 are a good 

estimation for the real traffic situation.  
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Figure 4-11: Correlation diagram for benzene and toluene (model 1) versus benzene and 

toluene (direct method). 

 

The model 1 result will be compared with the calculations of model 2 and 3, below. 

Appendix: Table 21 and Appendix: Table 22 summarises the direct and the model 1 

calculated emission factors [g/(km×vehicle)] for the entire fleet during the Plabutsch Tunnel 

experiment. 

As an example, Figure 4-12 shows for i-pentane, benzene and toluene, the obtained time 

series from model 1 in comparison with the model 2 results and the corresponding calculated 

absolute errors. The error calculation included the possible variation of the traffic fleet in the 

Plabutsch Tunnel and the contribution of the HW 80 driving situation. 

The comparison of the two models shows for the selected three compounds that the model 2 

values are significantly higher than the model 1 ones for the periods with high traffic density.  
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Figure 4-12 Time series for i-pentane, benzene and toluene calculated with model 1 and 

model 2, in the Plabutsch Tunnel. 
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The discrepancy between measured and calculated emission data obviously must be found in 

the emission factors for PC and/or HDV. 

As in the previous case, respectively the Lundby Tunnel, the data analysis of the THC 

emission factors for the given traffic fleet (PC and LDV 75.63% with and without catalyst  

and HDV 24.37%) was performed. Since the distribution of catalyst and pre-Euro catalyst 

among the PC gasoline fuelled pre-Euro cars was not available, a sensitivity study of non-

catalyst influence was performed for which four different cases were considered:  

 all pre-Euro cars were considered as conventional cars, 

 all pre-Euro cars were considered as G-catalyst cars, 

 from the pre-Euro cars 50% were considered as conventional and 50% as G-catalyst 

cars, 

 from the pre-Euro cars 10% were considered as conventional and 90% as G-catalyst 

cars. 

It is worth mentioning that in the Plabutsch Tunnel among the PC cars 19.27% are pre-Euro, 

conventional and G-cat, 10.49% are Euro 1, 18.2% Euro 2 and 7.18% Euro 3. Among the 

LGDV 4.54% are pre-Euro, 2.53% Euro 1 and 4.6% respectively 2.64 are Euro 2 and 3. 

Among the LDVs, 45.7% are gasoline fuelled and 54.3% are diesel fuelled vehicles. 

In order to study the influence of the catalyst, the contribution of pre-Euro PCs was different 

allocated between conventional and G-cat cars, as presented in Table 4-5. 

Table 4-5 shows that the HDVs have the major contribution to the THC emission factors, 

namely 38-65%. The contribution of PC conventional cars is about 7-43% and of PC G-cat 

cars about 4-9%. 
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Table 4-5: THC emission factors percental contribution from different vehicle class 

categories, for four different cases. 
Vehicle category 

 
Pre-Euro PC 

vehicles as 
conventional 

PC 

Pre-Euro 
PC vehicles 

as G-cat 

Pre-Euro 
PC vehicles 

as 50% 
conv and 

50% G-cat 

Pre-Euro 
PC vehicles 

as 10% 
conv, and 

90% G-cat 
PC /B/without catalyst 42.76 - 26.59 6.56 

PC B G-cat 0 9.26 4.09 9.08 
PC B Euro 1 1.98 3.40 2.46 3.04 
PC B Euro 2 3.05 5.25 3.80 4.68 
PC B Euro 3 0.46 0.79 0.57 0.71 

PC /D/without catalyst 0.76 - 0.47 0.58 
PC G-cat - 1.00 1.14 1.40 

PC D Euro 1 0.62 1.07 - - 
PC D Euro 2 1.20 2.07 1.50 1.84 
PC D Euro 3 1.02 1.75 1.27 1.56 

LDCV/B/without catalyst 3.65 - 2.27 0.56 
LDCV G-cat - 1.35 - 1.75 

LDCV B Euro 1 0.44 0.75 1.03 0.67 
LDCV B Euro 2 0.34 0.59 0.42 0.52 
LDCV B Euro 3 0.13 0.22 0.16 0.19 

LDCV/D/without catalyst 0.81 1.39 1.00 1.24 
LDCV D Euro 1 0.62 2.23 0.77 0.95 
LDCV D Euro 2 1.30 0.78 1.61 1.99 
LDCV D Euro 3 0.45 - 0.56 0.69 

Bus 2.23 3.82 2.77 3.41 
HDV 38.19 65.59 47.50 58.57 
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In order to check the HBEFA 2.1 THC emission factor for HDV, it was varied by 10%, 50% 

and 100%.  
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Figure 4-13: Correlation diagram for benzene (model 2) versus benzene (model 1). 
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Figure 4-14: Correlation diagram for toluene (model 2) versus toluene (model 1). 

 

Figure 4-13, Figure 4-14 and Table 4-6 show for benzene and toluene small variation of the 

slope when the HDV EF was changed. Accordingly, by a 10% decrease of the HDV EF, for 
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toluene a slope of 0.304 ± 0.010 was obtained, whereas for a 100% contribution of the HDV 

EF a slope of 0.575 ± 0.018 was obtained. The slope variation from 3.074 ± 0.112 for benzene 

and 1.797 ± 0.060 for toluene for non catalyst pre-Euro cars to 2.07 ± 0.07 and 0.575 ± 0.018, 

respectively, as well as for the other considered situations, as presented in Figure 4-13, Figure 

4-14 and Table 4-6 indicate that the catalyst condition may represents the main reason that 

could explain the discrepancy between measured and modelled emission factors. This 

emphasizes again the importance of the exact determination of the contribution of non- 

catalyst or cars with malfunctioning catalyst to the traffic fleet.  

Table 4-6: Correlation equations for benzene and toluene, model 2 versus model 1, HDV 

contribution, conventional and G-cat contribution analysis. 
Slope (m) Correlation coefficient (R2)HDV EF 

contribution 
PC pre-Euro 
distribution Benzene Toluene  Benzene Toluene  

10% G-cat 0.829±0.028 0.304±0.010 0.348 0.328 
50% 90%Gcat 

10% conv 
1.439±0.048 0.453±0.014 0.348 0.328 

100% 90%Gcat 
10% conv 

1.962±0.066 0.523±0.017 0.348 0.308 

100% 80%Gcat 
20% conv 

2.145±0.071 0.653±0.022 0.375 0.130 

100% 70%Gcat 
30% conv 

2.338±0.076 0.717±0.022 0.348 0.328 

100% conventional 3.074±0.112 1.797±0.060 0.115 0.265 
100% G-cat 2.070±0.07 0.575±0.018 0.348 0.328 

 

4.2.2.3 Comparison with the literature data 

 

In order to determine the evolution of traffic emissions, the results from the present study have 

been compared with results from a previous campaign performed in the Plabutsch Tunnel in 

1998. 

From the direct emission factors determined for weekday, high traffic periods, emission 

factors for LDV and HDV were calculated by means of regression analysis. Also, has to be 

specified that although the HDV proportion is increased in the Plabutsch tunnel  

comparatively to the other tunnels, the percentage of the HDV never exceeds 30%. The 

obtained LDV and HDV emission factors will be further used in order to compare the trend of 

emission factors for the Plabutsch Tunnel from 1998 to 2001. Table 4-7 shows the emission 

factors derived from the Plabutsch Tunnel measurements in 2001, for LDV and HDV 

[g/(km×vehicle)]. 
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Table 4-7: Emission factors (direct calculation method) for the Plabutsch Tunnel 

measurements for LDV and HDV [g/(km×vehicle)]. 
Working day, 
HDV 10-30% 

LDV SD HDV SD 

propene, propane 0.0163 0.0069 0.0025 0.0013 
propine 0.0023 0.0002 0.0005 0.0002 
i-butane 0.0092 0.0010 0.0015 0.0009 

1-butene, i butene 0.0149 0.0014 0.0028 0.0014 
1,3-butadien, n- butanee 0.0183 0.0019 0.0024 0.0018 

trans-2-butene 0.0048 0.0008 0.0026 0.0008 
cis-2-butene 0.0059 0.0004 0.0005 0.0004 

i-pentane 0.0041 0.0008 0.0027 0.0007 
isoprene 0.0104 0.0018 0.0017 0.0018 

cis-2-pentene 0.0062 0.0005 0.0002 0.0005 
2-methylpentane 0.0040 0.0006 0.0019 0.0006 
3-methylpentane 0.0018 0.0003 0.0009 0.0003 

n-hexane 0.0018 0.0002 0.0005 0.0002 
benzene 0.0068 0.0004 0.0011 0.0004 

cyclohexane 0.0047 0.0004 -0.0003 0.0004 
n-heptane 0.0015 0.0007 0.0015 0.0006 
toluene 0.0126 0.0017 0.0053 0.0016 

ethylbenzene 0.0024 0.0005 0.0015 0.0004 
o-xylene 0.0060 0.0010 0.0019 0.0009 

m-/p- xylene 0.0097 0.0017 0.0045 0.0016 
1,2,4-trimethylbenzene 0.0090 0.0011 0.0008 0.0010 

 

Table 4-8 shows a clear decrease of the emission factors in the Plabutsch Tunnel from 1998 to 

2001 although the traffic density has slightly increased during this period, as Table 3-1 

presents.  

 

Table 4-8: Calculated emission factors [g/(km×vehicle)] in the Plabutsch Tunnel in 

comparison with the previous study performed in 1998 (Rodler, 2000). 

Compound, 

measurement year 

Emission factors for LDV 

[g/(km×vehicle)] 

Ratio 

1998/2001 

Benzene, 2001 0.0068 ± 0.0041 

Benzene, 1998 0.0079 ± 0.0052 

 

1.2 

Toluene, 2001 0.0126 ± 0.0017 

Toluene, 1998 0.0198 ± 0.0016 

 

1.6 
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The decrease in the emission factors can be attributed to the increased number of catalyst-

equipped cars, i.e. 80% LDV and 94% HDV among which more then 60% are Euro 2 and 

Euro 3.  

Similar results have been obtained in Austria during studies performed in the Tauern Tunnel 

in 1988 and 1997 (Schmidt et al., 2001). The study performed by Schmidt reveals that the 

emission rates of individual hydrocarbons (aromatics) decrease during 9 years of about 80-

90%. The author attributed this reduction mainly to a strong increase of the catalyst equipped 

passenger cars from 0% in 1988 to 60% in 1997. 

 

4.2.3 Kingsway Tunnel 

 

The complicated situation in defining the flow volume into and out of the tunnel and the 

whole measurement set-up made the determination of the emission factors by the direct 

method impossible. Accordingly, the vehicle emission factors were calculated and modelled, 

as in Lundby Tunnel study. 

 

4.2.3.1 Calculation of emission factors using HBEFA 2.1  

 

The HBEFA 2.1 emission factors calculated for CO2, THC and BTX considered a gradient of  

–4% and 3.3% and the driving pattern HW 60, for traffic smaller than 1400 vehicles /hour. 

This distribution is also in agreement with the speed limit in the tunnel, namely 65 km/h. The 

emission factors were calculated with 60 minutes time resolution. As an example, in 

Appendix Tables, Table 23, 24 and 25 summarise the results of the emission factors for CO2, 

THC and benzene, applying HBEFA 2.1 for the adequate driving situations. 

As in the previous tunnel studies reported here, the model 1 results will be compared with the 

model 2 and 3, below. 

Figure 4-15 shows for i-pentane, benzene and toluene, the obtained time series from model 1 

in comparison with the model 2 results and the corresponding calculated absolute errors. The 

error calculation included both, the possible variation of traffic fleet in the Kingsway Tunnel 

and the contribution of the HW-60 driving situation. 

The comparison of the two models shows for i-pentane and toluene that the calculated values 

are higher than the modelled values for periods with high traffic density. However, it should 

be pointed out, that for benzene the two models agree quite well. 
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Figure 4-15: Time series for i-pentane, benzene and toluene calculated with model 1 and 

model 2 during the Kingsway Tunnel campaign. 
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Figure 4-16 shows for benzene a relatively good correlation between the different models. 

This proves that the calculated values are within the standard deviation in good agreement 

with the HBEFA 2.1 model 2 and 3 estimations for the real traffic situation in the Kingsway 

Tunnel.  
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Figure 4-16: Correlation diagrams for benzene and toluene (model 2) versus benzene and 

toluene (model 1) emission factors. 

 

A similar correlation plot for toluene is presented. Although the linearity between the  

different models is quite good as indicated by the R2 values, the slopes are significantly 

smaller than for the expected 1 to 1 relation. 

Figure 4-17 shows for a variety of other hydrocarbons the ratio of the emission factors 

calculated from model 1, model 2 and model 3. It is worth mentioning that for model 1 the 

emission factors are from 0.3 (propene) to 8 (cis-2-butene) times higher than those obtained 

from model 2. 
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Figure 4-17: Ratio of NMHCs emission factors of model 2 and model 3 versus model 1. 

 

In Figure 4-18, it is shown that for the given traffic fleet of 94.51% LDV and 5.5% HDV, the 

main contributions is resulting from PC with catalyst (66.97%). HDVs have a contribution of 

only 8.9%, which is significantly smaller than in the two other studies presented here. From 

the fleet data analysis, most LDVcars have Euro 2 and Euro 3 catalyst (28.7% and 32.23%, 

respectively) and only 11.21% are G-cat catalyst cars.  

Taking into consideration the small contribution of HDVs, about 5% in the Kingsway Tunnel, 

the variation of the HDV emission factors was not performed, as has been done in the Lundby 

and in Plabutsch Tunnel data analysis.  

Obviously, the discrepancy between measured and calculated emission data must result from 

the emission factors for PC and LDV. 
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Figure 4-18: THC emission factors percental contribution for the Kingsway Tunnel fleet 

composition. 

 

In order to test whether the 11.21% G-cat cars have catalysts malfunction the emission factors 

were recalculated considering their emissions as the ones of conventional cars.  

Figure 4-19 shows the correlation diagram for benzene and toluene, model 2 versus model 1, 

PC and LDV G-cat counted as conventional vehicles 

The slopes changes for benzene from 0.615 ± 0.001 to 0.948 ± 0.005, for model 2 versus 

model 1 and from 0.266 ± 0.008 to 0.632 ± 0.012 for toluene, respectively. The same situation 

as in Lundby Tunnel is encountered indicating that the catalyst condition represents the main 

reason that may explain the discrepancy between measured and modelled emission factors. 
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Figure 4-19  Correlation diagram for benzene and toluene (model 2), versus benzene and 

toluene (model 1), PC and LDV G-cat counted as conventional vehicles. 

 

The Appendix: Table 26 summarises the model 1 calculated emission factors for the entire 

fleet during Kingsway Tunnel experiment in [g/(km×vehicle)]. 
 

4.2.3.2 Comparison with literature data 

 

Figure 4-20 shows the comparison of the NMHCs emission profiles determined in the present 

study with the estimated road transport emission in Liverpool, for the Mersey area (where the 

Kingsway Tunnel is located, in 2002. The data were published by DEFRA (source: e-Digest 

of Environmental Statistics, March 2004).  

It is showen that the estimated values for most of the investigated NMHC were higher than the 

measured ones for most of the compounds, within the statistical error. The differences can  

be explained by the chosen road profile as well as from the different traffic distribution used 

by DEFRA model. The DEFRA model is a statistical one, which takes into account the 

general distribution between urban and rural roads in the whole UK, and not the Kingsway 

Tunnel traffic conditions. However, the comparison shows the same profile for the measured 

and modelled NMHCs. 
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Figure 4-20:  Comparison of NMHCs emission profiles relative to benzene determined in the 

present study with the estimated road transport emission for 2002 published by 

DEFRA, (source publication: e-Digest of Environmental Statistics, 

http://www.defra.gov.uk/environment/statistics/index.htm). 

 

4.2.4 A656 Motorway  

 

Calculating the source strength of a compound just by taking the measured vertical profile 

with its rather low vertical resolution could lead to significant errors in the calculated source 

strength.  

For a more precise calculation of the source strength of a selected compound a quasi-

continuous vertical profile (Figure 4-21) of the corresponding compound has to be taken into 

account as has been measured for NOx. 

Figure 4-21(a), benzene is shown as an example: discontinuous vertical benzene profile (left), 

quasi-continuous vertical NOx profile (right). Accordingly, in order to obtain quasi- 

continuous vertical profiles for the different NMHC the data, which were measured 

discontinuously at different height, were correlated with the corresponding measured NOx 

data, which were obtained with a much better vertical resolution, see Figure 4-21(b). The 

correlation shown in this figure is strongly dependent on the benzene concentration measured 

at high NOx. However, it should be mentioned that the averaging time interval for the 

concentration shown was 2 hours. Accordingly, e.g. the impact of a single high emitting  

diesel vehicle on the data would have a neglijable impact on the measured concentrations.  
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Good correlation was obtained only for the NMHC compounds, for which also in vertical 

profiles a significant near-surface increase of the concentrations was determined. 
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Figure 4-21:  Building the quasi-continous vertical NMHC profile from discontinuous 

profile. 

 

The equations obtained from the linear correlation of the corresponding NMHC and NOx  

were used to calculate quasi-continuous profiles for the individual NMHC.  
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A similar profile structure for NOx and the individual NMHC components was observed, see  

Figure 4-21(c). The quasi-continuous vertical profile for benzene after application of the 

correlation equation to the discontinuous benzene data is shown in Figure 4-21(c). 

By use of the  Equation 11 the calculated source strengths for the different hydrocarbons, for 

different time intervals are summarised in the Appendix: Table 27. It shows for increasing 

traffic density an increase in the source strength. As an example, for toluene, a maximum 

value of 138.9 ± 41.7 g/(km×h)was obtained for a working day morning rush hour and a 

minimum of 38.0 ± 11.4 g/(km×h)for a weekend. The same trend was observed for benzene, a 

maximum of 47.7 ± 14.3 and a minimum of 17.6 ± 5.3 g/(km×h), for i-pentane a maximum of 

241.7 ± 72.5 g/(km×h)and a minimum of 53.8 ± 16.4 g/(km×h). 

Figure 4-22 shows the source strength for n-butane, i-pentane, benzene and toluene in 

comparison with the mean course for passenger cars (LDV) and heavy-duty vehicles (HDV) 

for different time intervals, during a working day, namely May 08, 2001. The source strength 

variation with the traffic density is shown. Exception is the time interval 0800-1000 CEST, 

which is characterised by a high traffic volume. Since the reason for this behaviour is unclear, 

the data obtained during this time interval were not considered for further calculations.  
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Figure 4-22:  Source strength for n-butane, i-pentane, benzene and toluene for different time 

intervals in comparison with the mean course for passenger cars (LDV) and 

heavy duty traffic (HDV), during weekday May 08, 2001. 
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It should be pointed out, that the toluene/benzene mass ratio of 2.5± 1.1 was almost constant 

during that day, as it is shown in Figure 4-23. 
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Figure 4-23:  Source strength for benzene and toluene in comparison with the 

toluene/benzene ratio for working day May 08, 2001 

 

From the source strengths, emission factors [g/(km×vehicle)] have been calculated by use of 

Equation 12.  

Table 4-9 presents the calculated emission factor [mg/(km×vehicle)] for the different intervals 

for four days in May 2001.  

The results provide evidence for different emission factors of the fleet for different days of the 

week, most probably caused by differences in fleet composition, which needs to be  

considered when comparing the emission factors of tunnel and road studies with road traffic 

emission models. 
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Table 4-9:  Calculated emission factor [mg/(km×vehicle)] for the different time intervals, in May 2001, BAB II - A656 experiment. 

08.05.2001 
Wednesday  

14.05.2001 
Thursday  

17.05.2001 
Saturday  

18.05.2001 
Sunday  

EMISSION 
FACTOR  
[mg/(km×veh)] 04:45-

07:45 
08:00-
10:00 

17:00-
19:00  

20:00-
22:00 

8:00-
10:00  

10:15-
12:15 

12:30-
14:30  

13:00-
16:30 

16:30-
20:15 

12:00-
16:00 

16:00-
18:00 

18:00-
20:00 

i-butane 7.5 
 ± 5.6  

4.1 
 ± 1.5 

- - 1.0 
 ± 0.4 

11.1 
± 3.3 

8.3 
 ± 2.5 

3.7 
 ± 1.3 

5.9 
 ± 2.2 

4.6  
± 1.5 

5.0 
 ± 1.5 

1.7 
 ± 0.6 

iso-/1-butene 5.6  
± 4.2 

1.7 
 ± 0.6 

- - - - - 1.3 
 ± 0.5 

0.7 
 ± 0.3 

1.2 
 ± 0.4 

- - 

1,3-butadiene/n-
butane 

19.7 
 ± 4.8 

8.6 
 ± 3.1 

- - - - - 6.8 
 ± 2.5 

7.2  
± 2.7 

9.6  
± 3.1 

- 4.9 
 ± 1.7 

i-pentane 18.8 
 ±13.8 

11.6 
 ± 4.2 

- - 30.3 
 ± 1.2 

54.3 
 ± 6.3 

40.1 
 ± 2.0 

9.0 
 ± 3.2 

11.1 
 ± 4.1 

12.0 
 ± 3.8 

13.0 
 ± 3.9 

16.2 
 ± 5..5 

isoprene/trans-2-
pentene 

- - 4.2 
 ± 1.3 

- 7.9 
 ± 2.9 

- 5.4  
± 1.6 

- - 2.1 
 ± 0.7 

3.0 
 ± 0.9 

3.4 
 ± 1.2 

cis-2-pentene 17.3 
 ± 3.0 

12.6  
± 4.5 

- - 3.2 
 ± 1.2 

8.7  
± 2.6 

- - - 1.0 
 ± 0.3 

- 1.1  
± 0.4 

2-methylpentane 5.1  
± 3.9 

2.6 
 ± 0.9 

6.4 
 ± 2.0 

- 7.5 
 ± 2.8 

5.7 
 ± 1.7 

3.6 
 ± 1.1 

0.8 
 ± 0.3 

5.6 
 ± 2.1 

- 2.1  
± 0.6 

6.9 
 ± 2.4 

3-methylpentane 1.9 
 ± 1.5 

0.7  
± 0.2 

1.0  
± 0.3 

2.6  
± 1.0 

2.6 
 ± 1.0 

- 0.7 
 ± 0.2 

1.3 
 ± 0.5 

1.9 
 ± 0.7 

- 1.9 
 ± 0.6 

-. 

n-hexane 2.4 
 ± 1.8 

0.7 
 ± 0.2 

2.0 
 ± 0.6 

5.2 
 ± 2.0 

5.4  
± 2.0 

4.2 
 ± 1.3 

2.5 
 ± 0.8 

- - 4.6 
 ± 1.5 

- 4.0 
 ± 1.4 

benzene 8.4  
± 6.3 

4.1 
± 1.5 

7.2 
 ± 2.2 

14.2 
 ± 5.4 

8.8  
± 3.3 

10.9 
 ± 3.3 

9.3 
 ± 2.8 

4.8 
 ± 1.7 

6.4 
 ± 2.4 

12.4  
± 4.0 

10.7  
± 3.2 

11.7 
 ± 4.0 

cyclohexane 0.8 
 ± 0.6 

- 0.1 
±0.1 

- 0.7  
± 0.3 

- 0.7 
 ± 0.2 

- 1.2  
± 0.5 

- 0.3 
 ± 0.1 

- 

3-methylhexane 1.7  
± 1.3 

0.5 
 ± 0.2 

1.6 
 ± 0.5 

2.2 
 ± 0.8 

2.5 
 ± 0.9 

1.0 
 ± 0.3 

2.4 
 ± 0.7 

0.6 
 ± 0.2 

- 2.5 
 ± 0.8 

2.7 
 ± 0.8 

2.1 
 ± 0.7 

2,2,4-
trimethylpentane 

1.7 
 ± 1.3 

0.3 
 ± 0.1 

1.7  
± 0.5 

4.2 
 ± 1.6 

5.0  
± 1.9 

7.3  
± 2.2 

2.3 
 ± 0.7 

1.8  
± 0.6 

2.9  
± 1.1 

3.5  
± 1.1 

4.3 
 ± 1.3 

3.2  
± 1.1 
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Table 4-9 (continued) 

  
 
 
 

08.05.2001 
Wednesday  

14.05.2001 
Thursday 

17.05.2001 
Saturday  

18.05.2001 
Sunday  

EMISSION 
FACTOR  

[mg/(km×veh)] 04:45-
07:45 

08:00-
10:00 

17:00-
19:00  

20:00-
22:00 

8:00-
10:00  

10:15-
12:15 

12:30-
14:30  

13:00-
16:30 

16:30-
20:15 

12:00-
16:00 

16:00-
18:00 

18:0-
20:0 

n-heptane 0.9  
± 0.7 

0.4 
 ± 0.1 

0.8 
 ± 0.3 

3.5 
 ± 1.3 

0.5  
± 0.2 

1.2 
 ± 0.4 

1.0 
 ± 0.3 

0.1  
± 0.1 

1.0 ± 
0.4 

- 1.7  
± 0.5 

1.7 
 ± 0.6 

2,3,4-
trimethylpentane 

- - - 1.0  
± 0.4 

1.0 
 ± 0.4 

- - - - - - - 

toluene 18.7 
 ± 4.1 

9.4  
± 3.4 

14.3 
 ± 4.4 

31.4  
± 11.9 

32.0 
 ± 1.8 

19.6  
± 5.9 

17.4 
 ± 5.2 

9.0  
± 3.2 

16.4 
 ± 6.1 

20.3 
 ± 6.5 

22.3  
± 6.7 

21.0 
 ± 7.2 

n-octane 23.9 
 ± 7.9 

7.1 
 ± 2.6 

- - 4.1 
 ± 1.5 

- - - - 2.5 
 ± 0.8 

- - 

ethylbenzene 3.3 
 ± 2.5 

3.4 
 ± 1.2 

2.0 
 ± 0.6 

10.1 
 ± 3.8 

5.9  
± 2.2 

3.6 
 ± 1.1 

3.1 
 ± 0.9 

1.7 
 ± 0.6 

2.8 
 ± 1.0 

4.6 
 ± 1.5 

5.3 
 ± 1.6 

4.4 
 ± 1.5 

m-/p-xylene 9.7  
± 7.3 

5.3 
 ± 1.9 

7.5  
± 2.3 

20.3 
 ± 7.7 

16.4 
 ± 6.1 

11.8 
 ± 3.5 

9.9 
 ± 3.0 

5.1  
± 1.8 

10.0 
 ± 3.7 

12.4 
 ± 4.0 

13.3 
 ± 4.0 

12.8 
 ± 4.3 

o-xylene 2.9  
± 2.2 

- 2.6 
 ± 0.8 

5.9 
 ± 2.2 

5.4 
 ± 2.0 

3.9  
± 1.2 

- 2.0  
± 0.7 

3.9 
 ± 1.4 

4.2 
 ± 1.3 

6.0  
± 1.8 

4.1  
± 1.4 

1,2,4-TMB/decane - - - - 10.4 ± 
3.8 

- - 1.7 ± 
0.6 

2.9± 
0.9 

- - - 
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4.2.4.1 Comparison of measured and modelled-calculated source strength  

 

The measured data from this experiment were used in order to evaluate the quality of a high-

performance emission model developed at the Institute of Energy Economics and Rational 

Use of Energy (IER-University of Stuttgard). The model provides emission rates of individual 

road section of high temporal resolution and includes measurements of the most important 

traffic parameters relevant to emissions (Külwein and Friedrich, 2005). 

Figure 4-24 gives the comparison of measured and modelled calculated source strength for 

benzene, for different 12 time intervals between 2 and 4 h duration. As can be observed, the 

model over and under predicts the measurements, but on average, the measurements are about 

26% higher than the modelled calculated values. If the data of May, 8, 20-22 CEST, a period 

with poorly fulfilled prerequisities for source strength calculations is substracted, the 

difference between measurements and calculations is reduced to 18%. This result points out 

relative good emissions factors for benzene from roller test stand investigations compared to 

most of the other NMHCs compounds. 

 

0.00 10.00 20.00 30.00 40.00 50.00 60.00

8.5.2001 4:45 - 7:45 CEST

8.5.2001 8:00 - 10:00 CEST

8.5.2001 17:00 - 19:00 CEST

8.5.2001 20:00 - 22:00 CEST

14.5.2001 8:00 - 10:00 CEST

14.5.2001 10:15 - 12:15 CEST

14.5.2001 12:30 - 14:30 CEST

17.5.2001 13:00 - 16:30 CEST

17.5.2001 16:30 - 20:15 CEST

18.5.2001 12:00 - 16:0 CEST

18.5.2001 16:00 - 18:0 CEST

18.5.2001 18:00 - 20:00 CEST

modelled benzene
measured benzene

 
Figure 4-24:  Comparison of measured and model-calculated source strength of benzene 

(error bars- statistic error 1σ). 

 

For benzene, toluene, ethylbenzene and 1, 2, 4 trimethylbenzene/decane the measured values 

are in good agreement within standard deviation within the modelled ones. For the other 

hydrocarbons the measured compounds are a factor of 1.3-7 higher, see Figure 4-25 (a). 
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Exception are: i-butane, 1, 3- butadiene, n-butane, cyclohexane, n-octane for which the 

measured values are 11-21 higher than the modelled ones, see Figure 4-25 (b). 

a

0 2 4 6 8 10 12

i-pentane

n-pentane

2-methylpentane

3-methylpentane

n-hexane

3-methylhexane

n-heptane

i/1-butene

benzene

toluene

o-xylene

m-/p-xylene

ethylbenzene

1,2,4-trimethylbenzene/decane

ratio masured/ modelled
 

 

b

0 5 10 15 20 25 30

n-octane

cyclohexane

1,3 butadiene, n-butane

i-butane

ratio measured/modelled
 

Figure 4-25:  Comparison of measured and modelled source strength. 

 

The differences between measured and modelled emissions may have several reasons. Within 

the EUROTRAC-2 subproject subproject, GENEMIS (Friedrich, 2003) it was shown that an 

important contribution to NMHCs emissions is made by poorly maintained vehicles and those 

with defective catalysts. An analysis of measurements of in-use cars in Germany revealed that 
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the exhaust emissions of NMHC from cars with catalysts (current fleet) are about 9% higher 

due to malfunctioning equipment than the calculated values with actual emission models. 

From former investigations (Heeb et al., 2000, 2003; Schauer et al., 2002; Clark et al., 2003) 

it is known that the spectrum of NMHC compounds emitted from the vehicles especially 

passenger cars differs depending on the actual driving status of individual vehicles and on its 

age. 

 

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

i-B
ut

an
e 

iso
-/1

-B
ute

ne

1,3
-B

uta
die

ne
/n-

But
an

e 

i-P
en

tan
e

Iso
pr

en
e/t

ran
s-2

-P
en

ten
e

cis
-2-

Pen
ten

e

2-M
eth

ylp
en

tan
e

3-M
eth

ylp
en

tan
e

n-H
ex

an
e

Ben
ze

ne

Cyc
loh

ex
an

e

3-M
eth

ylh
ex

an
e

2,2
,4-

Tr
im

eth
ylp

en
tan

e

n-H
ep

tan
e

2,3
,4-

Tr
im

eth
ylp

en
tan

e

To
lue

ne

n-O
cta

ne

Eth
ylb

en
ze

ne
 

m-/p
-X

yle
ne

o-X
yle

ne

1,2
,4-

Tr
im

eth
ylb

en
ze

ne
/D

ec
an

e

Em
is

si
on

 fa
ct

or
s 

[m
g/

(k
m

 x
 v

eh
)]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ra
tio

 K
ie

sb
er

g 
tu

nn
el

/A
-6

56
 m

ot
or

w
ay

A656 motorway
Kiesberg tunnel
ratio Kiesberg tunnel/A-656 motorway

 

Figure 4-26:  Average emission factors for NMHC calculated during the A656 experiment 

performed in 2001 in comparison with the average emission factors determined 

from the Kiesberg tunnel campaigns in1997-1998 and ratio between the two 

measurements. 

 

The comparison of EFs derived from the Kiesberg tunnel and the A656 measurements shown 

in Figure 4-26 exhibits a clear decrease of emissions for German traffic in the period 1998-

2001 for Germany. However large uncertainties of the measurements due to different 

campaigns cannot be excluded.  
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4.2.5 Conclusions 

 

The observed NMHC distribution is in a good agreement with literature data. Among the 

aromatic hydrocarbons, toluene showed the largest mixing ration, whereas iso-pentane had the 

largest mixing ratio among the class of alkanes. 

During the BAB II - A656 motorway experiment, vertical gradients were observed for several 

NMHC downwind of the motorway, in contrast to the upwind measurement site, where 

NMHC were constantly distributed. This indicates that these NMHC are directly emitted from 

traffic.  

For the tunnel studies, average road traffic emission factors for the total vehicle fleet were 

direct calculated and/or  modelled using the emission factors for CO2 (model 1), THC (model 

2) and BTX (model 3) from the HBEFA 2.1, adapted for each road traffic fleet composition 

and highway conditions.  

The comparison of the times series from the direct calculated emission factors, in the 

Plabutsch Tunnel in comparison with model 1 shows good agreement for the weekdays. For 

the weekends, the model 1 values are higher than the emission factors from the direct method, 

which is probably resulting from the poor ventilation during weekends. This can be 

considered as an important “quality check” of the used calculation model because fuel 

consumption and hence the CO2 emission is the variable which can be calculated on bases of 

the fleet composition and description of the driving pattern with the highest accuracy. This 

proves that the emission factors for CO2 in the HBFEA 2.1 model are a good estimation for 

the real traffic situation. Not similar results have been obtained for the other models.  

In the case of the Lundby and the Kingsway tunnels the NMHC emission factors calculated 

from model 1 were higher than those obtained from model 2 and 3. For Plabutsch Tunnel, the 

models 2 values were higher. For benzene a good correlation between the different models 

was found. This proves that for benzene, the calculated values are within the standard 

deviation in good agreement with the HBEFA 2.1 model 2 and 3 estimations for the real 

traffic situation in the studied tunnels. 

The data analysis of THC emission factors for the given traffic fleets seems to clarify the 

discrepancy between measured and calculated emission data. The influence on the emission 

factors of about 12% malfunctioning catalysts was demonstrated. The importance of the exact 

determination of the contribution of non-catalyst cars or of the cars with malfunctioning 

catalyst to the traffic fleet was revealed. This underlines not only the importance of modern 
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emission technologies but also that good maintenance of these systems is a prerequisite for the 

reduction of NMHC emissions.  

In the case of BAB II – A656 experiment, the measurements exceed the model calculated 

emissions by factors 1.3-21. This discrepancy may be attributed to the still insufficient 

knowledge of traffic emissions of NMHC under real-world conditions.  

The present work urge the need for reliable real-world emission factors for the NMHCs 

compounds by taking into account various engine types, fuels, exhaust treatment system, 

driving patterns and vehicle age. 

By comparing the present calculated and modelled emission factors with results obtained  

from previous studies was found that progress has been achieved over the last years in the area 

of reduction of NMHCs emissions in Europe.  
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CHAPTER 5 

 

5 SUMMARY  
 

The objective of this study was to investigate the NMVOC emissions from vehicular traffic in 

Europe during recent years.  

As part of the ARTEMIS – EU project and BAB II project, motor vehicle emissions of CO2, 

NOx and speciated NMHCs in the range C2-C9 were measured. The experiments were 

performed during three campaigns in different tunnels: the Lundby Tunnel in Sweden (March, 

2001), the Plabutsch Tunnel in Austria (November, 2001) and the Kingsway Tunnel in 

England (March, 2003). In addition, a field experiment was conducted along a section of the 

A656 motorway in Germany (May, 2001). The locations showed different characteristics 

regarding the traffic flow, the ventilation system, the roadway gradient, the vehicles speed  

and the vehicle fleet composition. 

More than 50 NMHC were detected and 26 of them quantified by using quasi on-line gas 

chromatography and by using adsorbtion tubes, which were analysed off-line in the  

laboratory. 

The experimental results show that the largest mixing ratios of the NMVOC were found 

among the alkanes for: ethane, iso-butane, iso-pentane, among the alkenes/alkynes: propene,  

i-butene/1-butene, and among the aromatic hydrocarbons: toluene followed by o-xylene and 

m-/p-xylene.  

During the A656 experiment, vertical gradients were observed for several NMHCs downwind 

of the motorway, in contrast to the upwind measurement site, where NMHCs were constantly 

distributed. This indicates that these NMHC are not equally emitted by the traffic. 

Accordingly, it was assumed that the increase in the NMHC concentration is proportional to 

the emission strength of the corresponding species. 

As indicator of the traffic emissions, the toluene/benzene (ppbC/ppbC) ratio was calculated. 

The ratio of 3.091 ± 0.06 ppbC/ppbC in the Lundby Tunnel and of 2.89 ± 0.05 ppbC/ppbC in 

the Kingsway Tunnel are higher than in studies performed before 2000. The obtained ratios 

were found to be in agreement with the recent literature. These values can be explained by the 

over proportional decrease of benzene emissions compared with other aromatic compounds 

due to the new European regulations on the benzene content in fuel, which became effective 

in 2000.  
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With the measured value of CO2 the emission ratios of NMHCs relative to CO2 (ppbC/ppbV) 

were determined.  These ratios where further used in the emission factors calculations. 

The NMHC/NOx ratio as ppbC/ppbV was found to be 0.67 in Lundby Tunnel, 0.20 in the 

Plabutsch Tunnel and 0.55 in Kingsway Tunnel. This variation is explained by the different 

HDV load in each tunnel. It is noteworthy that the results from the present study are  

consistent with previous studies. During the A656 experiment the NMHC/NOx ratio was used 

in order to obtain quasi-continuous vertical profiles for the different NMHC. Good correlation 

was obtained only for the NMHC components, for which also in the vertical profiles a 

significant near-surface increase of the concentrations was determined.  

Within the framework of extensive emission data validation experiments, emission factors 

from the campaigns in the Lundby Tunnel, the Plabutsch Tunnel, the Kingsway Tunnel, and 

on the A656 motorway have been determined using the local traffic measurements in 

combination with new emission models.  

From the measured data emission factors were calculated by use of different direct and 

indirect methods. The travel based approach was applied by use of the mass balance equation 

of pollutant in the tunnel and on the road (direct method). The method was applied in 

calculating the emission factors in the Plabutsch Tunnel and in the A-656 experiment. 

The models took as input parameters the fleet composition and the emission factors for CO2 

(model 1), THC (model 2) and BTX (model 3) from the HBEFA 2.1. The HBEFA 2.1 

emission factors were modified by taking into account the slope gradients for the 

corresponding measurement sites as well as the fleet composition and the driving pattern. The 

models provide emission factors with a temporal resolution of 20 min for the Lundby and 

Plabutsch tunnels, 60 min for the Kingsway Tunnel and 3 h for the motorway studies. 

The comparison between the direct emission factors calculation and the model 1 during the 

Plabutsch Tunnel measurements showed a good agreement. This proves that the emission 

factors for CO2 in the HBFEA 2.1 model are a good estimation for the real traffic situation. 

In the case of the Lundby and the Kingsway Tunnels the emission factors calculated from 

model 1 were higher than those obtained from model 2 and 3. For Plabutsch Tunnel, the 

models 2 values were higher. The discrepancy between measured and calculated emission  

data obviously must be found in the emission factor for PC with catalyst, LDV with catalyst 

and/or HDV. The data analysis of THC emission factors for the given traffic fleets seems to 

clarify the discrepancy between measured and calculated emission data. 

Two hypotheses were verified: 

 the THC emission factor of HDV is not correct; and/or 
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 the percentage of catalyst vehicles resulting from the fleet data analysis does not 

reflect the reality, i.e. cars that are registered with catalyst in fact have a 

malfunctioning catalyst and should be counted as non-catalyst vehicles with the 

corresponding emission factor. 

In order to check the HBEFA 2.1 THC emission factor for HDV, this was changed stepwise  

in 10% increments from 200% to 10%. The resulting slope variation shows that the HDV EF 

does not strongly affect the model 2 results in the case of Lundby and Plabutsch tunnels. 

Publications of European Commission, 2000 and NETCEN, 2002 reported that about 15% of 

the PC catalysts have a malfunction, leading to a much higher emission of hydrocarbons. In 

order to test whether this finding could explain also the discrepancy between model 1 and 2, 

and between model 1 and 3 the emission factors were recalculated considering that the (10-

12%) PC and LDV G-cat vehicles have malfunctioning catalysts. Therefore, their emissions 

have been counted as the ones of conventional cars. The correlation slopes improvement 

indicates that the catalyst conditions represent the main reason explaining the discrepancy 

between measured and modelled emission factors. The influence on the emission factors of 

about 12% malfunctioning catalysts demonstrates not only the importance of modern  

emission technologies but also that good maintenance of these systems is prerequisite for the 

reduction of NMHC emissions. The importance of the exact determination of the contribution 

of non-catalyst cars or of the cars with malfunctioning catalyst to the traffic fleet was 

demonstrated.  

Comparison of measured and modelled emission factors in the BAB II - A656 experiment 

showed that the measurements exceed the model-calculated emissions by factors 1.3-21. This 

discrepancy for NMHCs may be attributed to the still insufficient knowledge of traffic 

emissions of NMHC under real-world conditions. 

This work emphasizes once more the poor knowledge on NMHC emissions from vehicles, 

especially from the passenger car fraction, in real- world conditions. Accordingly, there is an 

urgent need for reliable real-world emission factors for most NMHCs compounds, except 

benzene, which seems to be well described by HBEFA 2.1. 

By comparing the present calculated and modelled emission factors to results obtained from 

previous works it was found that a progress has been achieved over the last years in the area 

of reduction of NMHCs emissions in Europe. Several factors may have contributed to the 

emissions decrease: stronger emission limits due to EU directives, improved emission-control 

technology and more rigid quality requirements for fuels.  
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Appendix: Abbreviations 

A656 - Autobahn 656 

ARTEMIS - Assessment and Reliability of Transport Emission Models and Inventory 

Systems 

BAB II - Bundesautobahn II 

BTX - Benzene, Toluene, Xylenes 

BUW - Bergische Universität Wuppertal  

BERLIOZ - Berlin Ozone Experiment 

CARB - California Air Resources Board  

CEST - Central European Summer Time 

COPERT - Computer Programme to calculate Emissions from Road Transport 

DEFRA - Department for Environment, Food and Rural Affairs, UK 

EEA - European Environment Agency 

EMFAC - Emission Factors 

EPA - U.S. Environmental Protection Agency 

FTIR - Fourier Transform InfraRed  

FTP 75 - US-Highway Federal Test Procedure 

GENEMIS - Generation and Evaluation of Emission data  

HBEFA - Handbook Emission Factors for Road Transport  

HDV - Heavy Duty Vehicles 

IVD - Institut für Verfahrenstechnik und Dampfkesselwesen, University of Stuttgart 

IPCC - Intergovernmental Panel on Climate Change 

LACTOZ - Laboratory Studies of Chemistry related to Tropospheric Ozone  

LDCV - Light Duty Commercial Vehicles 

LDV - Light Duty Vehicles 

MC - Motorcycles 

NAEI - National Atmospheric Emission Inventory  

NEDC - New European Driving Cycle 

NDIR - Non- Dispersive InfraRed 

NETCEN - National Environmental Technology Center, AEA Technology Environment, UK 

NMHCs - Non-Methane Hydrocarbons  

NMVOCs - Non-Methane Volatile Organic Compounds  

NOx - Oxides of Nitrogen (NO+NO2) 
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NPL - National Physical Laboratory 

MOBILE - Vehicles Emission Factor Model 

OSHA - US Department of Labor Ocupational Safety and Health Administration 

PAH – Policycle Aromatic Hydrocarbons 

PC - Passenger Cars 

SOP - Special Observation Periods 

THC - Total Hydrocarbons 

TUG - Technical University of Graz 

U.S.EPA - United States Environmental Protection Agency 

UBA - Umbeltbundesamt 

UNECE - United Nations Economic Comission for Europe 
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Appendix: Explanation 

Appendix: Explanation 1: Chromatographic Conversion. 

The Airmovista software, which was used for the data acquisition, saves the chromatograms 

in a compressed format. In order to convert these data in a column based ASCII format a new 

folder has to be created. Here the data will be stored together with the conversion programme: 

Convert.bat, Deheader.exe, List.exe and Run 386.exe. The conversion programme runs in the 

MS-DOS modus and saves the chromatograms in the created folder. From this folder the 

chromatograms can be imported in the Borwin 1.21 programme. 
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Appendix: Tables 

Appendix: Table 1:  Progression of Euro norms for passenger cars in Europe (g/km). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Description 

 
Effective year of 
implementation 

 
CO 

 
HC 

 
NOx 

 
HC and 
NOx 

 
Particulate 
matter 

Gasoline 
Euro 1 1993 2.72 - - 0.97 - 
Euro 2 1996 2.20 - - 0.50 - 
Euro 3 2000 2.30 0.20 0.15 - - 
Euro 4 2005 1.00 0.10 0.08 - - 

Diesel 
Euro 1 1993 2.72 - - 0.97 0.14 
Euro 2 1996 1.06 - 0.56 0.71 0.080 
Euro 3 2000 0.64 - 0.50 0.56 0.050 
Euro 4 2005 0.50 - 0.25 0.30 0.025 
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Appendix: Table 2:  Summary of the tunnel studies performed in the last 30 years.  

 

Tunnel  Year Emission 
model 

Toluene/ 
Benzene 

NMHC: 
Model/ 
Calc. 

References 

Unites States 
Allegheny 1979 

1981 
MOBILE 1 
MOBILE 2 

- -1.4 LDV 
<2 HDV 

Gorse et al., 1981, 
1984 
Pierson et al., 
1983 

Van Nuys  
 
 

1987 
 
1995 

EMFAC 7C 
slow speed 
EMFAC 7F 
high speed 

- 1.9 ± 0.6  
4.0 ± 1.4  
 
1.2 ± 0.6 

Inghalls et al., 
1989 
Gertler et al., 1996
Gofa et al.,1998 

Ford Mc Henry 1992 MOBILE 4.1 
MOBILE 5 

1.9 
(LDV) 
1.4 
(HDV) 

 Robinson et al., 
1996 
Sagebiel et al., 
1996  
Pierson et al., 
1996 

Tuscaora 1992 MOBILE 4.1 
 
MOBILE 5 

1.5 LDV, 
1.6 HDV 
1.5 LDV 
1.6 HDV 

 Robinson et al., 
1996 
Pierson et al., 
1996 
Gertler et al., 1996 

Sepulveda 1995 MOBILE 5 C  1.8 ± 0.4 Gertler et al.1997 
Lincoln 1995 MOBILE  5a  0.83 ± 0.24 Gertler et al., 1997
Callahan 1995 MOBILE  5a  0.64 ± 0.23 Gertler et al., 1997
Deck Park 1995 MOBILE  5a  0.91± 0.50 Gertler et al., 1997
Washburn      McGaughey et al., 

2004 
Canada 

Cassiar 1993 MOBILE 4.1  
MOBILE 5 C 

 1.35 ± 0.53 
0.77 ± 0.30 

Gertler et al., 
1994, 1997 ; 
McLaren et al., 
1996 ; Rogak et 
al., 1998 

EUROPE 
Craeybeckx 1991 CORINAIR   De Fré et al., 1992 
Tingstads  1994 EVA 2.3 0.86 Sjödin et al., 1997 
Gubrist,  1993 

1998 
2002 

UBA 2 LDV 
1.6 HDV 

1.69 ± 0.47 
LDV 
0.64 HDV 

John et al., 1999  
Staehelin et al. 
1995  
Stemmler et al., 
2005 

Söderleds 1995/ 
1996  

EVA 3.7 
3.9 

- 
- 

Johansson et al., 
1996 

Stockholm,  1998/1999    Kristenson et al., 
2004 
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Appendix: Table 2 (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EUROPE 
Lundby 2001 HBEFA 2.1 3.09  This study, 

Colberg et al., 
2005 

Thiais 1996 EF in g/km 
C1-C5 

  Tuaty and 
Bonsang, 2000 

Tauern 1989 
1997 

-  
2.1 

- Gregory et al., 
1989; Schmid et 
al., 2001 

Plabutsch  1998/1999 
2001 

HBEFA 1.1 
HBEFA 2.1 

 
2.4 

- Rodler, 2000 
This study 

Kiesberg,  1998/1999 HBEFA 2.1 - 1.73 Gomes, 2003 
Kingsway 2003 HBEFA 2.1 2.9  This study 

AUSTRALIA 
Sydney Harbour 1995   - Duffy et al. 1996 

ASIA 
Chung-Cheng,  1997 MOBILE 

Taiwan (5) 
 - Hsu et al. 2001 

Taipei  2000 MOBILE 
Taiwan (5) 

 1.6 Hwa et al. (2002) 

Seul 2000    Na et al. (2002) 
Japan     Sakurai et al., 

2002 
Salim –Slam,  1998 EMFAC7F1.1   El-Fadel et al. 

2000 
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Appendix: Table 3:  NPL standard gas mixture (ppbV), delivered by National Physical 

Laboratory. 

S.D.:  standard deviation 

 

 

Compound Id. NPL1 S.D. NPL2 S.D. 
ethane 3 6.79 0.15 7.30 0.15 
ethene 2 10.63 0.20 11.50 0.20 
ethyne 1 8.86 0.20 9.60 0.20 

propane 7 2.57 0.05 2.77 0.05 
propene 6 6.70 0.15 7.20 0.15 
propyne 5 2.89 0.05 3.12 0.05 
n-butane 14 2.59 0.05 2.80 0.05 

iso-butane 13 3.00 0.05 3.24 0.05 
iso-butene 11 2.84 0.05 3.07 0.05 
but-1-ene 10 3.33 0.05 3.59 0.05 

trans-2-butene 9 2.22 0.05 2.40 0.05 
cis-2-butene 12 2.38 0.05 2.57 0.05 

1,3-butadiene 8 5.32 0.10 5.75 0.10 
n-pentane 26 2.65 0.05 2.86 0.05 
i-pentane 25 1.18 0.02 1.28 0.02 

trans-2-pentene 21 4.04 0.10 4.35 0.10 
cis-2-pentene 22 1.54 0.03 1.66 0.03 

isoprene 16 1.84 0.04 1.99 0.04 
2-methylpentane 45 3.18 0.05 3.43 0.05 
3-methylpentane 46 3.64 0.05 3.93 0.05 

cyclohexane 42 3.33 0.05 3.60 0.05 
n-hexane 47 1.77 0.04 1.91 0.04 
benzene 28 3.42 0.05 3.70 0.05 

n-heptane 61 2.77 0.05 2.99 0.05 
toluene 48 3.22 0.05 3.48 0.05 

ethylbenzene 64 1.77 0.04 1.91 0.04 
o-xylene 65 1.00 0.02 1.06 0.02 
m-xylene 66 1.40 0.03 1.51 0.03 
1,2,4-tmb 87 1.13 0.02 1.22 0.02 
1,3,5-tmb 88 0.93 0.02 1.00 0.02 
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Appendix: Table 4:  Summary of the volume mixing ratios (ppbV) measured at the inlet/outlet station during the Lundby Tunnel experiment, 

March, 2001. 

Compund (ppbV) OUTLET STATION INLET STATION 
 Max Min Median Average SD Max Min Median Average SD 
ethane 62.33 3.80 8.0 12.49 11.85 11.6 1.52 3.66 4.05 1.75 
propene 30.34 0.63 8.27 8.44 4.55 9.90 0.17 3.44 3.59 2.04 
propane 17.03 0.06 2.46 3.36 3.02 8.93 0.3 1.84 2.27 1.50 
propine 4.35 0.15 1.41 1.53 0.79 2.03 0.16 0.51 0.65 0.52 
i-butane 33.04 0.36 4.35 4.85 3.60 13.42 0.48 2.28 3.01 2.22 
i-butene, i-butene 12.85 0.38 4.26 4.33 2.58 4.38 0.19 1.34 1.51 0.86 
1.3 butadiene, n-butane 36.51 0.27 13.32 13.50 7.93 7.00 0.94 3.81 3.79 1.68 
trans-2-butene 45.14 0.07 0.52 1.15 5.06 0.73 0.08 0.16 0.22 0.17 
cis-2-butene 55.04 0.09 0.47 1.17 6.14 0.35 0.08 0.16 0.18 0.07 
i-pentane  28.54 0.01 5.74 6.41 4.61 13 0.15 3.42 4.04 2.48 
n-pentane 18.6 0.26 2.15 2.65 2.14 4.85 0.1 1.38 1.6 0,87 
isoprene, trans-2-penten 13.90 0.04 0.34 1.56 2.52 1.09 0.04 0.34 0.36 0.19 
cis-2-penten 9.85 0.08 0.94 2.51 2.79 4.15 0.03 0.97 1.12 0.8 
3-methylpentane 13.01 0.14 1.68 2.04 1.57 2.58 0.12 0.77 0.89 0.47 
n-hexane  5.7 0.13 0.89 1.08 0.84 1.78 0.05 0.5 0.58 0.31 
benzene 33.47 0.46 4.27 4.97 4.31 6.6 1.23 3.01 3.21 1.06 
cyclohexane  23.69 0.11 0.98 1.41 2.21 2.31 0.08 0.59 0.7 0.42 
n-heptane 6.53 0.12 1.09 1.19 0.77 1.4 0.05 0.36 0.44 0.24 
toluene 58.13 0.76 14.19 14.59 9.02 16 0.36 6.15 7.13 3.9 
ethylbenzene 19.87 0.08 3.58 3.68 2.72 4.37 0.04 1.25 1.55 0.89 
o-xylene 11.31 0.01 2.08 2.33 1.65 4.53 0.07 1.46 1.66 0.81 
1,3,5-trimethylbenzene  5.09 0.25 1.72 2.02 1.07 3.29  0.58 0.92 0.81 
1,2,4-trimethylbenzene 2.77 0.13 0.92 1.11 0.72 2.6 0.23 0.94 1.01 0.54 
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Appendix: Table 5:  Summary of the volume mixing ratios (ppbV) measured at the middle 

point station during the Plabutsch Tunnel experiment, November,  

2001. 

Compound Max Min Median Average SD 
CO2* 1443.615 568.279 915.195 941.393 206.174
NO* 7.631 0.774 3.618 4.082 1.936 
NO2* 0.703 0.088 0.257 0.340 0.176 
NOx * 8.332 0.866 3.877 4.428 2.110 

propene, propane 25.557 0.872 11.203 10.980 6.267 
propine 7.016 0.619 3.368 3.774 1.790 
i-butane 16.702 0.461 5.115 5.319 3.139 

1-butene,i-butene 22.671 1.848 8.163 9.133 5.169 
1,3-butadiene, n-butane 27.307 1.355 8.064 8.704 5.320 

trans-2-butene 4.549 0.245 1.508 1.637 0.887 
cis-2-butene 7.713 0.545 2.717 2.962 1.393 

i-pentane 18.965 0.089 5.666 5.933 3.658 
n-pentane 15.311 0.013 0.695 1.661 2.001 

isoprene, trans 2- pentene 18.950 0.422 3.245 4.291 3.268 
cis-2-pentene 14.808 0.137 1.443 2.389 2.648 

2-methylpentane 8.232 0.270 2.675 2.755 1.236 
3-methylpentane 3.780 0.190 1.125 1.297 0.771 

n-hexane 2.017 0.176 0.893 0.886 0.357 
benzene 7.833 1.329 3.569 3.788 1.464 

cyclohexane 2.559 0.127 0.687 0.764 0.439 
n-heptane 8.594 0.187 1.335 1.840 1.449 
toluene 22.229 1.957 8.095 8.224 3.628 

ethylbenzene 4.365 0.226 1.607 1.629 0.804 
o-xylene 8.469 0.094 2.743 2.744 1.477 

m-/p-xylene 19.188 0.700 5.663 5.697 3.037 
1,3,5-trimethylbenzene 12.677 0.318 3.918 4.139 2.369 
1,2,4-trimethylbenzene 13.264 0.159 2.140 2.411 1.531 

* ppmV 
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Appendix: Table 6:  Summary of the volume mixing ratios (ppbV) measured at the 

Victoria vent station during the Kingsway Tunnel experiment, 

February,  2003. 

Compound Background air Tunnel air 
 Average SD Max Min Median Average SD 

ethene 0.22 0.15 1.31 0.31 0.64 0.69 0.40 
ethine 0.25 0.17 3.38 0.54 0.85 1.10 0.94 
ethane 0.20 0.15 0.88 0.26 0.41 0.48 0.32 

propene 0.20 0.15 5.83 0.32 0.87 1.43 1.71 
propane 0.23 0.17 4.46 0.24 0.86 1.28 1.40 

propadiene 0.14 0.14 0.20 0.14 0.15 0.16 0.16 
propine 0.14 0.14 0.49 0.14 0.16 0.20 0.24 
i-butane 0.19 0.16 5.82 0.84 1.63 2.23 1.58 

1-butene, i-butene 0.60 0.37 6.35 1.14 2.26 2.62 1.65 
1,3-butadiene,n-butane 0.61 0.37 6.89 1.22 2.40 2.82 1.78 

trans-2-butene 0.19 0.16 5.76 0.45 1.31 1.78 1.69 
cis-2-butene 0.16 0.16 4.92 0.39 1.28 1.57 1.48 

3-methyl-1-butene 0.15 0.15 0.71 0.23 0.35 0.39 0.28 
i-pentane 0.23 0.17 20.97 3.99 6.95 8.72 5.16 
1-pentene 0.17 0.15 2.98 0.63 0.97 1.22 0.82 

n-pentane, 2-methyl-1-
butene 

0.35 0.21 14.55 2.15 4.02 5.47 3.48 

isoprene 0.17 0.15 1.69 0.36 0.51 0.66 0.50 
trans-2-pentene 0.16 0.15 2.98 0.47 0.75 1.09 0.85 
cis-2-pentene 0.15 0.15 1.17 0.26 0.38 0.49 0.39 

2,2-dimethylbutane 0.21 0.15 3.97 0.76 1.51 1.75 1.01 
cyclopentene 0.15 0.15 0.50 0.16 0.23 0.26 0.24 

2-methylpentane 0.39 0.18 8.45 2.33 3.85 4.17 1.90 
3-methylpentane 0.31 0.16 5.27 1.51 2.52 2.67 1.22 

n-hexane, 2-ethyl-1-
butene 

0.36 0.17 5.37 1.57 2.78 2.79 1.23 

2,3-dimethyl-1,3-
butadiene 

0.15 0.14 1.02 0.15 0.25 0.42 0.45 

methylcyclopentane, 1-
methyl-1-cyclopentene 

0.26 0.16 4.57 1.36 2.19 2.24 1.04 

2,3-dimethyl-2-butene 0.16 0.15 0.79 0.26 0.43 0.46 0.30 
benzene 0.48 0.21 12.21 3.14 4.09 5.19 2.76 

cyclohexene 0.15 0.15 0.41 0.24 0.29 0.31 0.20 
1-heptene 0.19 0.16 1.07 0.47 0.65 0.69 0.33 
n-heptane 0.23 0.15 1.85 0.61 1.01 1.09 0.51 
toluene 0.656 0.195 30.541 7.778 12.358 13.939 6.689 
n-octan 0.033 0.008 0.461 0.145 0.222 0.247 0.096 

ethylbenzene 0.114 0.026 4.378 0.816 1.646 1.855 0.964 
m-/ p-xylene 0.386 0.081 14.077 2.147 5.565 6.021 3.293 

o-xylene 0.178 0.011 5.438 0.684 2.146 2.374 1.300 
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Appendix: Table 7:  Summary of concentrations measured at ground level (N/S – 05 m) (µg/m3)* measured during the A656 experiment (May 

17, 2001) and calculated resolved on vertical profile (N/S- 17, 27, 37, 47 m) for the compounds C4-C5. 

Time interval of measurements 13:00- 16:30 16:30- 20:15 
Altitude on N/S tower N-05 N-17 N-27 N-37 N-47 S-05 S-27 S47 N-05 N-17 N-27 N-37 S-05 S-27 S47 

i-butane 0.267 0.022 0.019 0.020 0.017 0.020 0.020 0.020 0.347 0.021 0.021 0.019 0.020 0.022 0.011 
i-butene, 1-butene 0.323 0.346 0.303 0.325 0.275 0.316 0.314 0.325 0.451 0.319 0.322 0.287 0.297 0.324 0.171 

1,3-butadiene, n-butane 0.483 0.312 0.273 0.293 0.248 0.285 0.283 0.293 0.523 0.342 0.342 0.342 0.318 0.347 0.183 
trans-2-butene 0.026 0.047 0.041 0.044 0.038 0.043 0.043 0.044 0.043 0.047 0.048 0.042 0.044 0.048 0.025 
cis-2-butene 0.028 0.060 0.052 0.056 0.048 0.055 0.054 0.056 0.046 0.044 0.045 0.040 0.041 0.045 0.024 

i-pentane 0.904 0.120 0.105 0.113 0.096 0.110 0.109 0.113 1.067 0.080 0.081 0.072 0.074 0.081 0.043 
n-pentane 0.443 0.399 0.349 0.374 0.317 0.364 0.362 0.375 0.368 0.668 0.675 0.600 0.621 0.678 0.357 

isoprene, trans-2 pentene 0.128 0.051 0.045 0.048 0.041 0.047 0.047 0.048 0.196 0.190 0.192 0.171 0.177 0.193 0.102 
cis-2-pentene 0.012 0.054 0.048 0.051 0.043 0.050 0.049 0.051 0.074 0.127 0.128 0.114 0.118 0.129 0.068 

2-methylpentane 0.095 0.049 0.042 0.046 0.039 0.044 0.044 0.046 0.118 0.044 0.045 0.040 0.041 0.045 0.024 
3-methylpentane 0.119 0.275 0.240 0.258 0.219 0.251 0.249 0.258 0.136 0.286 0.289 0.257 0.266 0.290 0.153 

benzene 0.320 0.195 0.170 0.183 0.155 0.222 0.221 0.229 0.382 0.213 0.215 0.191 0.198 0.216 0.114 
cyclohexane 0.087 0.053 0.047 0.050 0.042 0.081 0.081 0.084 0.113 0.096 0.097 0.086 0.090 0.098 0.051 

toluene 0.688 0.420 0.367 0.394 0.334 0.383 0.381 0.394 0.893 0.450 0.455 0.405 0.419 0.457 0.241 
ethylbenzene 0.135 0.124 0.108 0.116 0.099 0.113 0.112 0.116 0.191 0.130 0.131 0.116 0.121 0.131 0.148 

o-xylene 0.131 0.080 0.070 0.075 0.064 0.057 0.057 0.059 0.173 0.074 0.075 0.067 0.069 0.075 0.040 
m-, p-xylene 0.349 0.213 0.186 0.200 0.169 0.166 0.166 0.171 0.476 0.240 0.242 0.216 0.187 0.204 0.108 

*concentrations calculated for the normal conditions (273.15 K and 1 atm) 
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Appendix : Table 8: Emission ratios of NMHC/CO2 (ppbV/ppmV) determined using the 

measured data in Lundby Tunnel, March, 2001.  

Compound Slope(m) ± (Δm) R2 
ethane 0.033 0.028 0.039 

propene 0.030 0.005 0.276 
propane 0.008 0.005 0.030 

1,3-butadiene, n-butane 0.045 0.007 0.415 
trans-2-butene 0.004 0.001 0.558 
cis-2-butene 0.002 0.000 0.310 

i-pentane (2-methylbutane) 0.032 0.004 0.343 
cis-2-pentene 0.021 0.003 0.515 

n-pentane 0.015 0.002 0.299 
3-methylpentane 0.012 0.002 0.332 

n-hexane 0.006 0.001 0.347 
benzene 0.023 0.003 0.340 

cyclohexane 0.005 0.001 0.242 
n-heptane 0.005 0.001 0.289 
toluene 0.062 0.007 0.473 

ethylbenzene 0.014 0.003 0.243 
o-xylene 0.006 0.002 0.107 
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Appendix: Table 9: Emission ratios of NMHC to CO2 (ppbV/ppmV) determined using the 

measured data in Kingswaytunnel, February, 2003. 

Compound Slope(m) ± (Δm) R2 
propene, propane 0.023 0.005 0.67 

propine 0.001 0.000 0.61 
i-butane (2-methylpropane) 0.014 0.001 0.91 

1-butene, i-butene (2-methylpropene) 0.013 0.002 0.72 
1,3-butadiene 0.001 0.000 0.91 

n-butane 0.061 0.009 0.79 
trans-2-butene 0.014 0.002 0.77 
cis-2-butene 0.012 0.002 0.74 

3-methyl-1-butene 0.001 0.000 0.68 
i-pentane (2-methylbutane) 0.049 0.003 0.94 

1-pentene 0.007 0.001 0.93 
n-pentane, 2-methyl-1-butene 0.032 0.003 0.9 

isoprene 0.003 0.000 0.88 
trans-2-pentene 0.007 0.001 0.88 
cis-2-pentene 0.002 0.000 0.89 

2-methylpentane 0.016 0.002 0.79 
3-methylpentane 0.010 0.001 0.78 

n-hexane, 2-ethyl-1-butene 0.009 0.002 0.73 
methylcyclopentane, 1-methyl-1-cyclopentene 0.008 0.001 0.75 

benzene 0.025 0.002 0.91 
cyclohexane, 2,3-dimethylpentane, 1,3 

cyclohexadiene 
0.011 0.001 0.84 

2-methylhexane 0.003 0.000 0.8 
cyclohexene 0.001 0.000 0.81 

2,2,4-trimethylpentane (i-octane) 0.013 0.002 0.79 
n-heptane 0.003 0.000 0.81 
toluene 0.057 0.007 0.85 

2-methylheptane 0.016 0.002 0.85 
3-methylheptane 0.001 0.000 0.62 

n-octane 0.001 0.000 0.8 
ethylbenzene 0.011 0.002 0.75 

m- and p-xylene 0.036 0.007 0.68 
ortho-xylene 0.014 0.003 0.65 

1,3,5-trimethylbenzene 0.002 0.000 0.61 
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Appendix: Table 10: CO2 emission factors (g/km) alculated from the HBEFA 2.1.e for the 

Lundby Tunnel. 

Vehicle 
class 

Fuel Emission concept EF 
HW 100 

EF 
HW 80 

EF 
HW 60 

PC/gas/conv. 181.316 99.231 87.334 
PC/gas/cl.l.cat.<91 194.562 106.766 95.214 

PC/gas/Euro1 151.127 78.322 65.580 
PC/gas/Euro2 181.211 99.885 86.134 
PC/gas/Euro3 175.777 96.881 83.526 

Gasoline 

PC/gas/Euro4 180.625 99.583 85.863 
PC/dies./conv. 194.396 103.454 89.266 

PC/dies./XXIII/EEA1 186.220 98.906 85.321 
PC/dies./Euro2 165.480 87.624 74.163 

PC 

Diesel 

PC/dies./Euro3 160.379 84.926 71.886 
LDV/gas/conv. 267.389 223.625 180.437 

LDV/gas/cl.l.cat.<91 278.563 282.227 277.769 
LDV/gas/Euro2 262.846 267.027 258.412 
LDV/gas/Euro3 269.611 274.821 266.142 

Gasoline 

LDV/gas/Euro4 271.705 277.293 268.818 
LDV/dies./conv. 273.708 272.543 265.775 
LDV/dies./Euro1 262.062 262.765 258.383 
LDV/dies./Euro2 256.594 259.298 256.257 

LDV 

Diesel 

LDV/dies./Euro3 261.339 264.698 262.227 
HDV/80ies 769.876 747.820 730.595 
HDV/Euro1 698.782 683.330 671.287 
HDV/Euro2 682.148 675.232 659.393 

COACH Diesel 

HDV/Euro3 728.395 715.361 703.652 
HDV/80ies 733.515 733.515 733.515 
HDV/Euro1 636.923 636.923 636.923 
HDV/Euro2 633.777 633.777 633.777 

URBAN 
BUS 

Diesel 

HDV/Euro3 669.855 669.855 669.855 
HDV/80ies 694.654 685.212 685.717 
HDV/Euro1 693.217 681.238 729.313 
HDV/Euro2 746.421 739.920 776.428 

HDV Diesel 

HDV/Euro3 807.147 797.189 683.996 
MC Diesel  104.776 98.625 94.998 
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Appendix: Table 11: THC emission factors (g/km) calculated from the HBEFA 2.1.e for the 

Lundby Tunnel . 

Vehicle category Fuel Emission concept EF 
HW 100 

EF 
HW 80 

EF 
HW 60 

PC/gas/conv. 0.863 0.916 1.054 
PC/gas/cl.l.cat.<91 0.132 0.142 0.213 

PC/gas/Euro1 0.100 0.095 0.100 
PC/gas/Euro2 0.085 0.085 0.092 
PC/gas/Euro3 0.032 0.032 0.036 

Gasoline 

PC/gas/Euro4 0.021 0.021 0.023 
PC/dies./conv. 0.062 0.070 0.082 

PC/dies./XXIII/EEA1 0.042 0.044 0.054 
PC/dies./Euro2 0.035 0.033 0.033 

PC 

Diesel 

PC/dies./Euro3 0.030 0.028 0.028 
LDV/gas/conv. 1.175 1.215 1.356 

LDV/gas/cl.l.cat.<91 0.371 0.329 0.271 
LDV/gas/Euro2 0.195 0.163 0.116 
LDV/gas/Euro3 0.150 0.118 0.066 

Gasoline 

LDV/gas/Euro4 0.110 0.086 0.047 
LDV/dies./conv. 0.054 0.075 0.101 
LDV/dies./Euro1 0.032 0.056 0.079 
LDV/dies./Euro2 0.022 0.043 0.061 

LDV 

Diesel 

LDV/dies./Euro3 0.027 0.025 0.035 
HDV/80ies 0.346 0.356 0.417 
HDV/Euro1 0.394 0.402 0.341 
HDV/Euro2 0.236 0.251 0.249 

COACH Diesel 

HDV/Euro3 0.234 0.244 0.287 
HDV/80ies 1.389 1.389 1.389 
HDV/Euro1 0.486 0.486 0.486 
HDV/Euro2 0.306 0.306 0.306 

URBAN BUS Diesel 

HDV/Euro3 0.290 0.290 0.290 
HDV/80ies 0.501 0.452 0.431 
HDV/Euro1 0.425 0.389 0.368 
HDV/Euro2 0.296 0.272 0.258 

HDV Diesel 

HDV/Euro3 0.291 0.263 0.246 
MC Diesel  0.838 0.829 0.830 
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Appendix: Table 12: Benzene emission factors (g/km) calculated from the HBEFA 2.1.e for 

the Lundby Tunnel. 

Vehicle 
category 

Fuel Emission concept EF 
 HW 100 

EF  
HW 80 

EF 
 HW 60 

PC/gas/conv. 0.0378 0.0360 0.0462 
PC/gas/cl.l.cat.<91 0.0171 0.0194 0.0275 

PC/gas/Euro1 0.0129 0.0102 0.0129 
PC/gas/Euro2 0.0110 0.0090 0.0119 
PC/gas/Euro3 0.0041 0.0070 0.0046 

Gasoline 

PC/gas/Euro4 0.0028 0.0050 0.0030 
PC/dies./conv. 0.0010 0.0016 0.0014 

PC/dies./XXIII/EEA1 0.0007 0.0011 0.0009 
PC/dies./Euro2 0.0006 0.0005 0.0005 

PC 

Diesel 

PC/dies./Euro3 0.0005 0.0004 0.0005 
LDV/gas/conv. 0.1372 0.1412 0.1570 

LDV/gas/cl.l.cat.<91 0.0162 0.0144 0.0119 
LDV/gas/Euro2 0.0160 0.0153 0.0150 
LDV/gas/Euro3 0.0051 0.0111 0.0086 

Gasoline 

LDV/gas/Euro4 0.0008 0.0012 0.0061 
LDV/dies./conv. 0.0009 0.0010 0.0017 
LDV/dies./Euro1 0.0006 0.0008 0.0013 
LDV/dies./Euro2 0.0005 0.0005 0.0010 

LDV 

Diesel 

LDV/dies./Euro3 0.0003 0.0001 0.0006 
HDV/80ies 0.0058 0.0059 0.0061 
HDV/Euro1 0.0066 0.0067 0.0069 
HDV/Euro2 0.0039 0.0042 0.0043 

COACH Diesel 

HDV/Euro3 0.0039 0.0041 0.0043 
HDV/80ies 0.0232 0.0232 0.0232 
HDV/Euro1 0.0081 0.0081 0.0081 
HDV/Euro2 0.0051 0.0051 0.0051 

URBAN 
BUS 

Diesel 

HDV/Euro3 0.0048 0.0048 0.0048 
HDV/80ies 0.0084 0.0076 0.0072 
HDV/Euro1 0.0071 0.0065 0.0061 
HDV/Euro2 0.0049 0.0046 0.0043 

HDV Diesel 

HDV/Euro3 0.0049 0.0044 0.0041 
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Appendix: Table 13: Toluene emission factors (g/km) calculated from the HBEFA 2.1.e for 

the Lundby Tunnel. 
Vehicle 
category 

Fuel Emission concept EF 
HW 100 

EF 
HW 80 

EF 
HW 60 

PC/gas/conv. 0.0906 0.0962 0.1107 PC Gasoline 
PC/gas/cl.l.cat.<91 0.0123 0.0132 0.0198 

PC/gas/Euro1 0.0093 0.0089 0.0093 
PC/gas/Euro2 0.0079 0.0079 0.0086 
PC/gas/Euro3 0.0030 0.0030 0.0033 

 

PC/gas/Euro4 0.0020 0.0020 0.0021 
PC/dies./conv. 0.0002 0.0002 0.0003 

PC/dies./XXIII/EEA1 0.0001 0.0006 0.0002 
PC/dies./Euro2 0.0001 0.0015 0.0001 

 

Diesel 

PC/dies./Euro3 0.0001 0.0001 0.0001 
LDV/gas/conv. 0.1114 0.1152 0.1287 

LDV/gas/cl.l.cat.<91 0.0389 0.0345 0.0284 
LDV/gas/Euro2 0.0181 0.0151 0.0108 
LDV/gas/Euro3 0.0140 0.0110 0.0062 

Gasoline 

LDV/gas/Euro4 0.0102 0.0080 0.0044 
LDV/dies./conv. 0.0002 0.0002 0.0003 
LDV/dies./Euro1 0.0001 0.0002 0.0003 
LDV/dies./Euro2 0.0001 0.0001 0.0002 
LDV/dies./Euro3 0.0001 0.0001 0.0001 

LDV 

Diesel 

HDV/80ies 0.0011 0.0011 0.0012 
HDV/Euro1 0.0013 0.0013 0.0013 
HDV/Euro2 0.0008 0.0008 0.0008 

COACH Diesel 

HDV/Euro3 0.0007 0.0008 0.0008 
HDV/80ies 0.0012 0.0044 0.0044 
HDV/Euro1 0.0013 0.0016 0.0016 
HDV/Euro2 0.0008 0.0010 0.0010 
HDV/Euro3 0.0008 0.0009 0.0009 

URBAN 
BUS 

Diesel 

HDV/80ies 0.0016 0.0014 0.0014 
HDV/Euro1 0.0014 0.0012 0.0012 
HDV/Euro2 0.0009 0.0009 0.0008 

HDV Diesel 

HDV/Euro3 0.0009 0.0008 0.0008 
MC Diesel  0.0880 0.0871 0.0872 
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Appendix: Table 14: Xylene emission factors (g/km) calculated from the HBEFA 2.1.e for 

the Lundby Tunnel.  

Vehicle 
category 

Fuel Emission concept EF HW 
100 

EF HW 80 EF HW 
60 

PC/gas/conv. 0.073 0.078 0.090 
PC/gas/cl.l.cat.<91 0.010 0.011 0.016 

PC/gas/Euro1 0.008 0.007 0.008 
PC/gas/Euro2 0.007 0.007 0.007 
PC/gas/Euro3 0.002 0.002 0.003 

Gasoline 

PC/gas/Euro4 0.002 0.002 0.002 
PC/dies./conv. 0.000 0.001 0.001 

PC/dies./XXIII/EEA1 0.000 0.000 0.000 
PC/dies./Euro2 0.000 0.000 0.000 

PC 

Diesel 

PC/dies./Euro3 0.000 0.000 0.000 
LDV/gas/conv. 0.092 0.095 0.106 

LDV/gas/cl.l.cat.<91 0.032 0.028 0.023 
LDV/gas/Euro2 0.015 0.009 0.005 
LDV/gas/Euro3 0.012 0.007 0.004 

Gasoline 

LDV/gas/Euro4 0.008 0.001 0.001 
LDV/dies./konv 0.000 0.001 0.001 
LDV/dies./Euro1 0.000 0.000 0.001 
LDV/dies./Euro2 0.000 0.000 0.000 

LDV 

Diesel 

LDV/dies./Euro3 0.000 0.000 0.000 
HDV/80ies 0.003 0.003 0.003 
HDV/Euro1 0.003 0.003 0.003 
HDV/Euro2 0.002 0.002 0.002 

COACH Diesel 

HDV/Euro3 0.002 0.002 0.002 
HDV/80ies 0.011 0.011 0.011 
HDV/Euro1 0.004 0.004 0.004 
HDV/Euro2 0.002 0.002 0.002 

URBAN 
BUS 

Diesel 

HDV/Euro3 0.002 0.002 0.002 
HDV/80ies 0.004 0.004 0.003 
HDV/Euro1 0.003 0.003 0.003 
HDV/Euro2 0.002 0.002 0.002 

HDV Diesel 

HDV/Euro3 0.002 0.002 0.002 
MC Diesel  0.071 0.070 0.071 
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Appendix: Table 15: Emission factors [g(km×veh)] calculated for the entire fleet using 

model 1 for the Lundby Tunnel measurements in March, 2001. 

Compund Emission factors SD 
propane 0.002 0.001 
i-butane 0.006 0.001 
i-pentane 0.013 0.003 
n-pentane 0.006 0.001 

3-methylpentane 0.006 0.001 
n-hexane 0.004 0.006 

cyclohexane 0.002 0.001 
n-heptane 0.003 0.001 
propene 0.008 0.002 

trans-butene 0.001 0 
cis-butene 0.001 0 
benzene 0.01 0.003 
toluene 0.033 0.008 

o-xylene 0.004 0.001 
m/p-xylene 0.014 0.003 

ethylbenzene 0.009 0.002 
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Appendix: Table 16: CO2 emission factors (g/km) calculated from the HBEFA 2.1.e for the 

Plabutsch Tunnel. 

Vehicle category Fuel Emission concept Emission factors
PC/gas/conv. 158.81 

PC/gas/cl.l.cat.<91 178.58 
PC/gas/Euro1 124.68 
PC/gas/Euro2 164.51 
PC/gas/Euro3 159.54 

gasoline 

PC/gas/Euro4 163.99 
PC/dies./conv. 175.03 

PC/dies./XXIII/EEA1 167.3 
PC/dies./Euro2 146.53 

PC 

diesel 

PC/dies./Euro3 142.02 
LDV/gas/conv. 210.06 

LDV/gas/cl.l.cat.<91 320.54 
LDV/gas/Euro2 300.65 
LDV/gas/Euro3 310.28 

gasoline 

LDV/gas/Euro4 313.46 
LDV/dies./konv 314.57 
LDV/dies./Euro1 306.14 
LDV/dies./Euro2 303.85 

LDV 

diesel 

LDV/dies./Euro3 311 
HDV/80ies 785.57 
HDV/Euro1 674.45 
HDV/Euro2 668.57 

URBAN BUS diesel 

HDV/Euro3 710.17 
HDV/80ies 674.79 
HDV/Euro1 659.88 
HDV/Euro2 701.73 

HDV diesel 

HDV/Euro3 755.79 
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Appendix:Table 17: THC emission factors (g/km) calculated from the HBEFA 2.1.e for the 

Plabutsch Tunnel. 

Vehicle category Fuel Emission concept Emission factors
PC/gas/conv. 0.780 

PC/gas/cl.l.cat.<91 0.120 
PC/gas/Euro1 0.066 
PC/gas/Euro2 0.059 
PC/gas/Euro3 0.023 

gasoline 

PC/gas/Euro4 0.015 
PC/dies./conv. 0.049 

PC/dies./XXIII/EEA1 0.037 
PC/dies./Euro2 0.025 

PC 

diesel 

PC/dies./Euro3 0.021 
LDV/gas/conv. 1.004 

LDV/gas/cl.l.cat.<91 0.215 
LDV/gas/Euro2 0.092 
LDV/gas/Euro3 0.059 

gasoline 

LDV/gas/Euro4 0.043 
LDV/dies./konv 0.072 
LDV/dies./Euro1 0.057 
LDV/dies./Euro2 0.044 

LDV 

diesel 

LDV/dies./Euro3 0.025 
HDV/80ies 1.593 
HDV/Euro1 0.532 
HDV/Euro2 0.329 

URBAN BUS diesel 

HDV/Euro3 0.317 
HDV/80ies 0.529 
HDV/Euro1 0.408 
HDV/Euro2 0.270 

HDV diesel 

HDV/Euro3 0.264 
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Appendix: Table 18:  Benzene emission factors (g/km) calculated from the HBEFA 2.1.e for 

the Plabutsch Tunnel. 

Vehicle 
category 

Fuel Emission concept Emission factors 

PC/gas/conv. 0.033 
PC/gas/cl.l.cat.<91 0.015 

PC/gas/Euro1 0.008 
PC/gas/Euro2 0.007 
PC/gas/Euro3 0.002 

gasoline 

PC/gas/Euro4 0.001 
PC/dies./conv. 0.001 

PC/dies./XXIII/EEA1 0.0006 
PC/dies./Euro2 0.0004 

PC 

diesel 

PC/dies./Euro3 0.0004 
LDV/gas/conv. 0.116 

LDV/gas/cl.l.cat.<91 0.0094 
LDV/gas/Euro2 0.011 
LDV/gas/Euro3 0.007 

gasoline 

LDV/gas/Euro4 0.005 
LDV/dies./konv 0.001 
LDV/dies./Euro1 0.001 
LDV/dies./Euro2 0.0007 

LDV 

diesel 

LDV/dies./Euro3 0.0005 
HDV/80ies 0.026 
HDV/Euro1 0.009 
HDV/Euro2 0.005 

URBAN BUS diesel 

HDV/Euro3 0.005 
HDV/80ies 0.009 
HDV/Euro1 0.007 
HDV/Euro2 0.005 

HDV diesel 

HDV/Euro3 0.004 
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Appendix: Table 19: Toluene emission factors (g/km) calculated from the HBEFA 2.1.e for 

the Plabutsch Tunnel. 

Vehicle 
category 

Fuel Emission concept Emission 
factors 

PC/gas/conv. 0.081 
PC/gas/cl.l.cat.<91 0.011 

PC/gas/Euro1 0.006 
PC/gas/Euro2 0.006 
PC/gas/Euro3 0.005 

gasoline 

PC/gas/Euro4 0.004 
PC/dies./conv. 0.004 

PC/dies./XXIII/EEA1 0.0001 
PC/dies./Euro2 0.00008 

PC 

diesel 

PC/dies./Euro3 0.00007 
LDV/gas/conv. 0.09 

LDV/gas/cl.l.cat.<91 0.023 
LDV/gas/Euro2 0.008 
LDV/gas/Euro3 0.005 

gasoline 

LDV/gas/Euro4 0.004 
LDV/dies./konv 0.0002 
LDV/dies./Euro1 0.0002 
LDV/dies./Euro2 0.0001 

LDV 

diesel 

LDV/dies./Euro3 0.00008 
HDV/80ies 0.005 
HDV/Euro1 0.002 
HDV/Euro2 0.001 

URBAN BUS diesel 

HDV/Euro3 0.0009 
HDV/80ies 0.002 
HDV/Euro1 0.001 
HDV/Euro2 0.0008 

HDV diesel 

HDV/Euro3 0.0008 

 

 

 

 

 

 

 

 

 

 



Appendix 

 136

Appendix:Table 20: Xilenes emission factors (g/km) calculated from the HBEFA 2.1.e for 

the Plabutsch Tunnel. 

Vehicle 
category 

Fuel Emission concept Emission factors 

PC/gas/conv. 0.071 
PC/gas/cl.l.cat.<91 0.011 

PC/gas/Euro1 0.005 
PC/gas/Euro2 0.004 
PC/gas/Euro3 0.002 

gasoline 

PC/gas/Euro4 0.001 
PC/dies./conv. 0.0005 

PC/dies./XXIII/EEA1 0.0002 
PC/dies./Euro2 0.0002 

PC 

diesel 

PC/dies./Euro3 0.0001 
LDV/gas/conv. 0.078 

LDV/gas/cl.l.cat.<91 0.018 
LDV/gas/Euro2 0.007 
LDV/gas/Euro3 0.004 

gasoline 

LDV/gas/Euro4 0.003 
LDV/dies./konv 0.0006 
LDV/dies./Euro1 0.0005 
LDV/dies./Euro2 0.0004 

LDV 

diesel 

LDV/dies./Euro3 0.0002 
HDV/80ies 0.012 
HDV/Euro1 0.004 
HDV/Euro2 0.003 

URBAN BUS diesel 

HDV/Euro3 0.002 
HDV/80ies 0.004 
HDV/Euro1 0.003 
HDV/Euro2 0.002 

HDV diesel 

HDV/Euro3 0.002 
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Appendix: Table 21: Emission factors [g/(km×veh)] calculated for the entire fleet using the 

direct method for the Plabutsch Tunnel measurements in November, 

2001. 

Compound Emission factors SD 
CO2* 495.387 320.039 
NO* 1.349 0.802 
NO2* 0.162 0.087 
NOx* 1.377 0.810 

propene,propane 0.006 0.004 
propyne 0.001 0.000 
i-butane 0.003 0.002 
1-butene 0.006 0.003 

1,3-butadiene 0.005 0.004 
trans-2-butene 0.004 0.003 
cis-2-butene 0.002 0.001 

i-pentane 0.004 0.003 
n-pentane 0.001 0.001 
isoprene 0.003 0.004 

cis-2-pentene 0.002 0.004 
2-methylpentane 0.002 0.002 
3-methylpentane 0.001 0.001 

n-hexane 0.001 0.001 
benzene 0.003 0.002 

cyclohexane 0.001 0.001 
n-heptane 0.002 0.002 
toluene 0.008 0.004 

ethylbenzene 0.002 0.001 
o-xylene 0.003 0.002 

m-/p- xylene 0.006 0.004 
1,3,5-trimethylbenzene 0.006 0.005 
1,2,4-trimethylbenzene 0.004 0.005 
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Appendix: Table 22: Emission factors [g/(km×veh)] calculated for the entire fleet using 

model 1 for the Plabutsch Tunnel measurements in November, 2001. 

Compound Emission factors SD 
propane 0.007 0.004 
i-butane 0.004 0.003 
i-pentane 0.006 0.004 
n-pentane 0.002 0.002 

3-methylpentane 0.001 0.001 
n-hexane 0.001 0.001 

cyclohexane 0.001 0.001 
n-heptane 0.002 0.002 
propene 0.006 0.004 

trans-butene 0.001 0.001 
cis-butene 0.003 0.005 

cis-2-pentene 0.000 0.001 
benzene 0.004 0.003 
toluene 0.011 0.005 

o-xylene 0.004 0.002 
m/p-xylene 0.009 0.005 

ethylbenzene 0.002 0.001 
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Appendix: Table 23:  CO2 emission factors (g/km) calculated from the HBEFA 2.1 for the 

Kingsway Tunnel. 

Vehicle 
category 

Fuel Emission concept Emission 
factors 

PC/gas/conv. 148.789 
PC/gas/cl.l.cat.<91 178.368 

PC/gas/Euro1 122.108 
PC/gas/Euro2 158.529 
PC/gas/Euro3 153.749 

gasoline 

PC/gas/Euro4 153.810 
PC/dies./conv. 168.712 

PC/dies./XXIII/EEA1 161.507 
PC/dies./Euro2 137.965 
PC/dies./Euro3 132.408 

PC 

diesel 

PC/dies./Euro4 132.359 
LDV/gas/conv. 192.874 

LDV/gas/cl.l.cat.<91 306.214 
LDV/gas/Euro2 284.890 
LDV/gas/Euro3 292.978 

gasoline 

LDV/gas/Euro4 292.699 
LDV/dies./konv 192.163 
LDV/dies./Euro1 285.466 
LDV/dies./Euro2 283.680 
LDV/dies./Euro3 286.547 

LDV 

diesel 

LDV/dies./Euro4 285.035 
HDV/80ies 886.455 
HDV/Euro1 163.477 
HDV/Euro2 813.389 
HDV/Euro3 890.498 

COACH diesel 

HDV/Euro4 909.069 
HDV/80ies 824.031 
HDV/Euro1 831.933 
HDV/Euro2 946.456 

HDV diesel 

HDV/Euro3 1011.042 
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Appendix: Table 24:  THC emission factors (g/km) calculated from the HBEFA 2.1 for the 

Kingsway Tunnel. 

Vehicle 
category 

Fuel Emission concept Emission factors 

PC/gas/conv. 1.176 
PC/gas/cl.l.cat.<91 0.284 

PC/gas/Euro1 0.129 
PC/gas/Euro2 0.126 
PC/gas/Euro3 0.047 

gasoline 

PC/gas/Euro4 0.031 
PC/dies./conv. 0.089 

PC/dies./XXIII/EEA1 0.059 
PC/dies./Euro2 0.034 
PC/dies./Euro3 0.029 

PC 

diesel 

PC/dies./Euro4 0.028 
LDV/gas/conv. 1.526 

LDV/gas/cl.l.cat.<91 0.362 
LDV/gas/Euro2 0.156 
LDV/gas/Euro3 0.088 

gasoline 

LDV/gas/Euro4 0.061 
LDV/dies./konv 0.102 
LDV/dies./Euro1 0.085 
LDV/dies./Euro2 0.065 
LDV/dies./Euro3 0.038 

LDV 

diesel 

LDV/dies./Euro4 0.032 
HDV/80ies 0.344 
HDV/Euro1 0.575 
HDV/Euro2 0.353 
HDV/Euro3 0.348 

COACH diesel 

HDV/Euro4 0.468 
HDV/80ies 0.379 
HDV/Euro1 0.489 
HDV/Euro2 0.254 

HDV diesel 

HDV/Euro3 0.232 
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Appendix: Table 25: Benzene emission factors (g/km) calculated from the HBEFA 2.1 for 

the Kingsway Tunnel. 

Vehicle 
category 

Fuel Emission concept Emission 
factors 

PC/gas/conv. 0.052 
PC/gas/cl.l.cat.<91 0.037 

PC/gas/Euro1 0.017 
PC/gas/Euro2 0.016 
PC/gas/Euro3 0.006 

gasoline 

PC/gas/Euro4 0.004 
PC/dies./conv. 0.001 

PC/dies./XXIII/EEA1 0.001 
PC/dies./Euro2 0.001 
PC/dies./Euro3 0.001 

PC 

diesel 

PC/dies./Euro4 0.000 
LDV/gas/conv. 0.176 

LDV/gas/cl.l.cat.<91 0.016 
LDV/gas/Euro2 0.020 
LDV/gas/Euro3 0.011 

gasoline 

LDV/gas/Euro4 0.008 
LDV/dies./konv 0.002 
LDV/dies./Euro1 0.001 
LDV/dies./Euro2 0.001 
LDV/dies./Euro3 0.001 

LDV 

diesel 

LDV/dies./Euro4 0.001 
HDV/80ies 0.006 
HDV/Euro1 0.007 
HDV/Euro2 0.004 

COACH diesel 

HDV/Euro3 0.004 
HDV/80ies 0.007 
HDV/Euro1 0.006 
HDV/Euro2 0.004 
HDV/Euro3 0.004 

HDV diesel 

HDV/Euro4 0.006 
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Appendix: Table 26: Emission factors [g/(km×veh)] calculated for the entire fleet using the 

model 1 for the Kingsway Tunnel measurements, February, 2003. 

Compound Emission factors SD 
propane 0.0013 0.0003 
i-butane 0.0024 0.0005 
i-pentane 0.0107 0.0024 
n-pentane 0.0068 0.0015 

3-methylpentane 0.0025 0.0006 
n-hexane 0.0024 0.0005 

cyclohexane 0.0027 0.0006 
n-heptane 0.0010 0.0002 
propene 0.0018 0.0004 

trans-butene 0.0023 0.0005 
cis-butene 0.0020 0.0004 

cis-2-pentene 0.0003 0.0001 
benzene 0.0059 0.0013 
toluene 0.0158 0.0035 

o-xylene 0.0044 0.0010 
m/p-xylene 0.0114 0.0025 

ethylbenzene 0.0035 0.0008 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Appendix: Table 27: Calculated NMHC source strength [g/(km×h)], mean total traffic density (MTTD) (vehicle h-1) and % HDV contribution 

for different time intervals for four days in May, 2001. 

08.05.2001 
Wednesday / Weekdays 

14.05.2001 
Thursday / Weekdays 

17.05.2001 
Saturday / 
Weekend 

18.05.2001 
Sunday / Weekend 

SOURCE 
STRENGTH 
(g h-1 km-1) 

per time interval 04:45-
07:45 
HDV: 
6.8 ± 
2.0 

08:00-
10:00 
HDV: 
7.6 ± 
1.0 

17:00-
19:00 
HDV: 
2.9 ± 
0.3 

20:00-
22:00 
HDV: 
2.9 ± 
0.4 

8:00-
10:00 
HDV: 
6.7 ± 
0.8 

10:15-
12:15 
HDV: 
10.6 ± 

1.1 

12:30-
14:30 
HDV: 
8.7 ± 
0.5 

13:00-
16:30 
HDV: 
7.7 ± 
2.3 

16:30-
20:15 
HDV: 
3.3 ± 
0.6 

12:00-
16:00 
HDV: 
7.1 ± 
1.3 

16:00-
18:00 
HDV: 
3.8 ± 
1.3 

18:00-
20:00 
HDV: 
2.0 ± 
0.2 

i-butane 23.96 ± 
7.19 

17.84 ± 
5.35 

- - 4.46 ± 
1.34 

35.39 ± 
0.62 

28.02 ± 
8.41 

15.58 ± 
4.67 

27.62 ± 
8.29 

16.90 ± 
5.07 

22.26 ± 
6.68 

6.24 ± 
1.87 

iso-/1-butene 17.79 ± 
5.37 

7.30 ± 
2.19 

- - - - - 5.45 
± 1.64 

3.12 
± 0.94 

4.20 
± 1.26 

- - 

1,3-butadiene/ 
n-butane 

63.04 ± 
8.91 

37.30 ± 
1.19 

- - - - - 28.79 ± 
8.64 

33.75 ± 
0.13 

34.96 ± 
0.49 

- 18.09 ± 
5.43 

i-pentane 58.82 ± 
17.65 

50.11 ± 
15.03 

- - 131.74 
± 39.52 

172.76 
± 51.83 

135.68 
± 40.70 

38.26 ± 
11.48 

51.80 ± 
15.54 

43.68 ± 
13.10 

58.39 ± 
17.52 

59.80 ± 
17.94 

isoprene/trans-2-
pentene 

- - 20.06 ± 
6.02 

- 34.29 ± 
0.29 

- 18.26 ± 
5.48 

- - 7.69 
± 2.31 

13.63 ± 
4.09 

12.49 ± 
3.75 

cis-2-pentene 55.38 ± 
6.61 

54.54 ± 
6.36 

- - 13.76 ± 
4.13 

27.65 ± 
8.30 

- - - 3.78 ± 
1.13 

- 4.04 ± 
1.21 

2-methylpentane 16.40 ± 
4.92 

11.25 ± 
3.38 

30.36 ± 
9.11 

- 32.52 ± 
9.76 

18.23 ± 
5.47 

12.18 ± 
3.65 

3.30 ± 
0.99 

26.36 ± 
7.91 

- 9.36 ± 
2.81 

25.45 ± 
7.64 

3-methylpentane 6.18 
± 1.85 

2.92 
± 0.88 

4.86 
± 1.46 

4.89 
± 1.47 

11.32 ± 
3.39 

- 2.23 
± 0.67 

5.47 
± 1.64 

8.82 
± 2.65 

- 8.30 
± 2.49 

- 
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Appendix: Table 27 (continued) 
SOURCE 

STRENGTH 
(g h-1 km-1) 

per time interval 

08.05.2001 
Wednesday / Weekdays 

14.05.2001 
Thursday / Weekdays 

17.05.2001 
Saturday / 
Weekend 

18.05.2001 
Sunday / Weekend 

benzene 26.86 ± 
8.06 

17.63 ± 
5.29 

34.17 ± 
0.25 

26.69 ± 
8.01 

38.35 ± 
1.50 

34.74 ± 
0.72 

31.57 ± 
9.47 

20.50 ± 
6.15 

30.11 ± 
9.03 

45.24 ± 
3.57 

47.73 ± 
4.32 

43.11 ± 
2.93 

cyclohexane 2.48 
± 0.74 

- 0.63 
± 0.19 

- 2.90 
± 0.87 

- 2.32 
± 0.70 

- 5.70 
± 1.71 

- 1.37 
± 0.41 

- 

3-methylhexane 5.54 
± 1.66 

2.17 
± 0.65 

7.55 
± 2.27 

4.14 
± 1.24 

10.77 ± 
3.23 

3.17 
± 0.95 

8.23 
± .47 

2.62 
± 0.79 

- 8.95 
± 2.68 

12.16 ± 
3.65 

7.74 
± 2.32 

2,2,4-trimethyl-
pentane 

5.53 
± 1.66 

1.28 
± 0.38 

7.90 
± 2.37 

7.82 
± 2.35 

21.84 ± 
6.55 

23.12 ± 
6.94 

7.73 
± .32 

7.55 
± 2.27 

13.68 ± 
4.10 

12.63 ± 
3.79 

19.32 ± 
5.79 

11.85 ± 
3.55 

n-heptane 2.78 
± 0.83 

1.50 
± 0.45 

3.94 
± 1.18 

6.56 
± 1.97 

2.07 
± 0.62 

3.94 
± 1.18 

3.24 
± 0.97 

0.52 
± 0.16 

4.63 
± 1.39 

- 7.40 
± 2.22 

6.12 
± 1.84 

2,3,4-trimethyl- 
pentane 

- - - 1.94 ± 
0.58 

4.30 ± 
1.29 

- - - - - - - 

toluene 59.86 ± 
7.96 

40.86 ± 
2.26 

67.90 ± 
0.37 

58.83 
±17.65 

138.92 
± 1.68 

62.18 ± 
8.65 

58.79 ± 
7.64 

38.14 ± 
1.44 

76.55 ± 
2.96 

74.20 ± 
2.26 

100.08 
± 0.02 

77.58 ± 
3.27 

n-octane 76.28 ± 
2.88 

30.93 ± 
9.30 

- - 17. 80 
± 5.34 

- - - - 9.21 
± 2.76 

- - 

ethylbenzene 10.48 ± 
3.14 

14.61 ± 
4.38 

9.67 ± 
2.90 

18.90 ± 
5.67 

25.65 ± 
7.70 

11.29 ± 
3.39 

10.54 ± 
3.16 

7.19 ± 
2.16 

12.84 ± 
3.85 

16.95 ± 
5.09 

23.70 ± 
7.11 

16.35 ± 
4.91 

m-/p-xylene 31.05 ± 
9.3 

22.92 ± 
6.88 

35.53 ± 
10.6 

38.02 ± 
1.41 

71.10 ± 
1.33 

37.53 ± 
1.26 

33.52 ± 
0.06 

21.71 ± 
6.51 

46.98 ± 
4.09 

45.14 ± 
3.54 

59.76 ± 
7.93 

47.10 ± 
4.13 

o-xylene 9.16 ± 
2.75 

- 12.20 ± 
3.66 

10.97 ± 
3.29 

23.55 ± 
7.07 

12.29 ± 
3.69 

- 8.69 ± 
2.61 

17.98 ± 
5.39 

15.28 ± 
4.58 

26.83 ± 
8.05 

15.26 ± 
4.58 

1,2,4-tmb/decane - - - - 44.94 
±13.48 

- - 7.28 
± 2.18 

13.32 ± 
4.00 

- - - 
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Appendix: Figures 

Appendix: Figure 1:  Simple sketch of the Airmovoc 2010. 

 
Appendix: Figure 2: Variation of the gross retention time of NMHCs detected by the quasi 

on-line GC system Airmovoc 2010 in the Lundby Tunnel air. The 

numbers in the table represent the identification number of the 

hydrocarbons as specified in Appendix - Table 3.  
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Appendix: Figure 3: Traffic count with loop detectors in the Plabutsch Tunnel over the 

whole measurement period for time intervals of 15 minutes. 
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