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Abstract 

The purpose of this work was to provide a scientific evaluation of the 

atmospheric fate of aromatic hydrocarbons, in particular, 1,2-dihydroxybenzenes 

and nitrophenols, which are important products in the oxidation of BTX. The data 

obtained within the present work will help to improve the knowledge on the 

atmospheric degradation of aromatic hydrocarbons.  

The rate coefficients of the OH and NO3 radical initiated oxidation of some 

nitro/hydroxy substituted monoaromatic hydrocarbons improve the kinetic data 

base required to model the degradation mechanisms of aromatic compounds and 

to develop structure reactivity relationships for OH and NO3 radical with VOCs. 

Relative rate coefficients have been measured for the first time for the 

reactions of NO3 radicals with 1,2-dihydroxybenzene, 3-methyl-1,2-

dihydroxybenzene and 4-methyl-1,2-dihydroxybenzene. The investigations were 

performed in two chambers: the 1080 l quartz glass reactor in Wuppertal and in the 

EUPHORE chambers in Valencia at 1000 mbar total pressure and 298 ± 3K. The 

following rate coefficients were obtained: 

reactant     kNO3 (cm3 s-1)   

1,2- dihydroxybenzene  (9.80 ± 5.0) × 10−11 
1,2-dihydroxy-3-methylbenzene (17.2 ± 5.6) × 10−11 
1,2-dihydroxy-4-methylbenzene  (14.7 ± 6.5) × 10−11 

 
This work has provided rate coefficients for the gas phase reactions of the 

OH radical with a series of methylated 2-nitrophenols (2-nitrocresols). The following 

rate coefficients were obtained at 1000 mbar total pressure and 298 ± 3K in the 

1080 l quartz glass reactor: 

reactant     kOH (cm3 s-1)   

3-methyl-2-nitrophenol   (3.69±0.16) × 10−12 
4-methyl-2-nitrophenol   (3.46±0.18) × 10−12 
5-methyl-2-nitrophenol   (7.34±0.52) × 10−12 
6-methyl-2-nitrophenol   (2.70±0.17) × 10−12 

 



 

 

Photolysis rates for the 2-nitrocresol isomers have also been determined. All the 

nitrocresols under investigation have a photolysis lifetime of less than 1 h. The 

results from this work have shown that photolysis will be the dominant gas-phase 

loss process for the 2-nitrocresols. 

The photolysis of nitrophenols was found to be a new gas-phase source of 

HONO. Previously, no observations of nitrous acid formation from the gas-phase 

photolysis of nitrophenols had been reported in the literature. A series of detailed 

experiments were performed to ensure that the gas phase photolysis of the 

nitrophenols was the source of HONO, these included: variation of the S/V ratio of 

the reactors, variation of the light intensity, testing the influence of the buffer gas 

and tests for a possible mechanism involing reactions of gaseous NO2. All the 

results were in line with gas-phase photolytic production of HONO from the 

nitrophenols. 

Since a linear dependence of the HONO yield on the nitrophenol 

concentration was observed, the results obtained here have been extrapolated 

linearly to atmospheric concentrations. Based on the experimental data obtained 

for 3-methyl-2-nitrophenol a photolytic HONO formation rate in the atmosphere of 

100 pptV h-1 is estimated for a maximum J(NO2) value of 10-2 s-1 in the presence of 1 

ppbV of nitrophenols. Based on the HONO formation yields, a general photolysis 

mechanism has been proposed. 

The formation of secondary organic aerosol (SOA) from the photolysis of a 

series of nitrophenols was investigated for the first time. The effect of NOx and the 

presence of an OH radical scavenger on the aerosol formation were also 

investigated. Significant aerosol formation was observed for the nitrophenols 

investigated. For 2-nitrophenol, the aerosol formation yield in the absence of an 

OH radical scavenger and NOx varied between 18 - 24%. The gas-phase/aerosol 

partitioning was fitted assuming the presence of only one compound in both 

phases. A possible mechanism to explain the aerosol formation observed in the 

photolysis of nitrophenols is proposed. 
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1. Introduction 

 The atmosphere is a complex photochemical reactor, which contains a 

complex mixture of natural and anthropogenic compounds with diverse properties. 

Processes occurring within the atmosphere can have adverse effects on human 

health, ecosystems, visibility, climate and lead to ozone depletion. Since the 

industrial revolution, a strong anthropogenic influence on the tropospheric 

composition has taken place. Many volatile organic compounds (VOCs), originating 

entirely from anthropogenic sources, are detected at mixing ratios of the order of 

less than parts per million (ppmV); many of them are present in the atmosphere at 

parts per trillion (pptV) levels (Finlayson-Pitts and Pitts, 2000). Even at such low 

concentrations these “innocent molecules” may still have significant effects on the 

environment. Once emitted, species are converted at various rates into new 

substances generally characterized by higher chemical oxidation states than their 

parent substances (Atkinson, 1994). Some trace gases control or affect the Earth’s 

climate and habitability (Seinfeld, 1989). Increasing our understanding of the 

chemical behaviour and properties of these compounds and their physico-chemical 

processes is vital for properly assessing their role in pollution, climatic change and 

ultimately establishing effective control strategies (Seinfeld and Pandis, 1998). 
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VOCs sometimes referred to as non-methane organic compounds (NMOCs) 

or reactive organic gases (ROG) can react with hydroxyl radicals (OH) (Wang et 

al., 1975; Barnes et al., 1982; Atkinson, 1986, 1987, 1989), nitrate radicals (NO3) 

(Carter et al., 1981; Winer et al., 1984; Atkinson et al., 1984; 1988; Atkinson, 1991; 

Platt and Heintz, 1994), ozone (O3) (Logan, 1985), ground-state oxygen atoms 

(O3P) (Boocock and Cvetanovic, 1961; Jones and Cvetanovic, 1961) and different 

other reactive species. In particular, reactions of VOCs with nitrogen oxides (NOx) 

in the presence of sunlight can lead to the formation of ozone, other oxidants, and 

particulate matter (PM), commonly referred to as “smog” (Warneck, 1988; Derwent 

et al., 1996, 1998; Seinfeld and Pandis, 1998; Finlayson-Pitts and Pitts, 2000, 

Calvert et al., 2002). In marine coastal areas the chlorine (Cl) atom can be an 

important reactive species for NMOCs (Fantechi et al., 1998). 

1.1 Aromatic hydrocarbons in the atmosphere 

Aromatic hydrocarbons are an important class of volatile organic 

compounds (VOC) emitted into the atmosphere (Calvert et al., 2002). The 

importance of aromatic hydrocarbons has increased since the sixties when the 

formation of photooxidants was discovered to be linked with the presence of 

aromatic/NOx/light-mixtures (Altshuller et al., 1962). The presence of aromatic 

hydrocarbons in the environment was first detected in 1968 by Lonnemann et al. 

(1968). In the initial studies the main hydrocarbon degradation pathway in the gas-

phase was considered to be reaction with ozone, however, it was later proposed 

that the degradation of most aromatic hydrocarbons (benzene, toluene, o-, m- and 

p-xylene, etc.) is initiated by reaction with OH radicals (Weinstock, 1969; Levy, 

1971; Atkinson et al., 1989; Atkinson, 1994; Calvert et al., 2002). Although reaction 

of aromatic hydrocarbons with OH radicals is a major atmospheric loss pathway for 

these compounds, reaction with NO3 radicals is also important for some aromatics 

such as hydroxylated benzenes (Carter et al., 1981). While the reaction of NO3 

radicals with benzene is quite slow (rate constant of the order of 10-17 cm3 s-1), OH-

substituted phenol-type compounds react fast, with reaction rate constants of the 

order of 10-12 cm3 s-1 (phenol) to 10-11 cm3 s-1 (cresols) (Calvert et al., 2002). Ten 

times faster rates have been obtained for the reaction of NO3 radicals with di-
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hydroxy-substituted-benzenes as will be presented in a section of this work (Bejan 

et al., 2002; Olariu et al., 2004b). 

The presence of aromatic hydrocarbons in the troposphere is mainly related 

to anthropogenic activities (Calvert et al., 2002) such as solvent use, fossil fuel 

combustion, gasoline emissions, and industrial processing. However, the presence 

of aromatic hydrocarbons in the troposphere is not restricted only to emissions 

from anthropogenic activities, natural emissions of aromatics to the atmosphere 

occur from biomass burning (Eyde and Richards, 1991; Blake et al., 1994), 

eruption of volcanoes (Isidorov et al., 1990) and lakes (Juenttner and Henatsch, 

1986). Plants are also known to emit aromatic hydrocarbons under conditions of 

environmental stress (Heiden et al., 1999). Estimations of the global emissions of 

aromatic hydrocarbons suggest that they comprise between 17-25% of the total 

anthropogenic NMVOC emissions (Calvert et al., 2002).  

Benzene, toluene and the xylenes isomers (BTX) are the main aromatic 

hydrocarbons present in the urban atmosphere (see Table 1.1). Recent field 

measurements (1995-2003) presented in Table 1.1 show the high abundance of 

aromatic hydrocarbons in urban air. As can be seen in Table 1.1, the 

concentrations in east European cities are twice as high as those measured in 

other world cities. This reflects the high permissive legislation on the control of 

urban pollution in Eastern Europe. In Germany, the overall hydrocarbon emissions 

have been greatly reduced in the last years (Kurtenbach, 2005). 

The modelling of the atmospheric chemistry of aromatic hydrocarbons and 

the determining the influence of these hydrocarbons on the urban atmosphere is 

an especially challenging task, since many of the details of the complex reactions 

that occur are presently unknown (Calvert et al., 2002). Many developments have 

occurred in computer modelling studies of aromatic hydrocarbon photooxidation 

over the last decade (Jenkin et al., 2003; Bloss et al., 2005a, 2005b). Based on the 

presently accepted but inadequate mechanism for the atmospheric degradation of 

aromatic hydrocarbons, it has been calculated that this class of VOC could account 

for up to 30% of the photooxidant formation in urban areas (Derwent et al., 1996; 

1998). In order to provide relevant data for modelling studies, kinetic information 

concerning atmospheric loss processes for aromatic hydrocarbons, e.g. reaction 
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with ozone, OH and NO3 radicals have been intensively studied during the last 

years (Atkinson et al., 1984, 1988, 1992b, 1997; Atkinson, 1989). 

 
Table 1.1  Urban median mixing ratios compared to traffic median mixing ratios 

in different world cities. 
 

Mixing ratios (ppbV) Benzene Toluene o-, m-. p-
xylene 

Berlin [traffic]a 2.09 [10.30] 3.84 [23.00] 2.72[12.49] 

Bucharest [traffic]a 1.75 [32.00] 3.83 [50.60] 2.03 [56.70] 

Dresdena 0.74 1.15 0.79 

Krakow [traffic]a 2.43[31.7] 2.76 [83.80] 1.71 [54.70] 

Prague [traffic]a 2.46 [62.7] 3.49 [98.10] 1.72 [100.5] 

Vienna [traffic]a 0.99 [13.3] 1.17 [21.90] 0.97 [19.22] 

Warsawa 0.75 0.96 0.67 

Zagreba 3.12 6.85 2.50 

London [traffic]a 0.8 [22] 2.01 [36.50] 1.34 [26.74] 

Paris 96 [traffic 98]a 0.68 [34.4] 2.36 [65.70] 1.11 [36.11] 

Rome [traffic]a 3.62 [8.2] 9.28 [21.40] 7.39 [20.45] 

Rome [traffic]b [14.00] [35.00] - 

Taipeia 0.52 1.49 0.73 

Hong Konga 1.64 4.45 1.26 

Mexico Cityc 1.7-3.7 7.50-17.60 - 

Wuppertal Cityd 11.70 18.50 3.10 

Kiesberg tunneld 15.80 24.90 12.60 

Münchene 3.60 7.00 5.30 

New York (1990-2003)f 1.60-32.00   

New York (2001-2003)f 0.70-4.40   
data from: (a) Monod et al., 2001; (b) Brocco et al., 1997; (c) Bravo et al., 2002; (d) 
Kurtenbach et al., 2002; (e) Rappenglück and Fabian, 1999; (f) Aleksic et al., 2005. 
 

 An important aspect of the atmospheric behaviour of aromatic hydrocarbon 

is their impact on human health (Pitts et al., 1978; Shepson et al., 1985; Dumdei et 

al., 1988; Grosjean, 1991; Finlayson-Pitts and Pitts, 1997; Cocheo et al., 2000). 

 Over the past decade, there has been intense interest concerning the role of 

aerosols in climate and atmospheric chemistry (Andreae and Crutzen, 1997; 

Seinfeld and Pandis, 1998; Finlayson-Pitts and Pitts, 2000; McMurry, 2000). 
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Particles in the atmosphere have different properties compared to their gaseous 

precursors. They scatter, absorb, or reflect the solar radiation and additionally, they 

can play an important role in cloud droplet formation (Ravishankara, 1997). 

Therefore, the study of particles and their formation pathways are of great interest. 

The formation of particles and their size distribution are dependent on the chemical 

composition of the surrounding air. Accordingly, industrial plumes or other gaseous 

components have an effect on the aerosols (Kulmala, 2003).  

Besides photooxidant formation, aromatic hydrocarbons are also assumed 

to make a significant contribution to secondary organic aerosol (SOA) formation in 

urban areas (Odum et al., 1996, 1997b; Forstner et al., 1997; Hurley et al., 2001; 

Kleindienst et al., 2004). These facts make aromatic hydrocarbon one of the most 

important classes of hydrocarbons emitted into the urban atmosphere. SOA is 

generally formed only from the oxidation of organic molecules sufficiently large to 

lead to products that have vapour pressures low enough to enable them to 

condense into the aerosol phase.  

What is particularly interesting from a chemical point of view is that a 

relationship exists between mortality and aerosols; a well known example is the 

London pollution episode in 1952 when the number of deaths increased by 4000 

persons over the average because of the sulphate aerosol accumulation caused by 

the large emissions of SO2. It is suggested that in cities with major particle sources 

there is a general inflammatory response to the inhalation of particles. The 

respiratory tract inflammation does not appear to depend too much on the specific 

chemical composition (Finlayson-Pitts and Pitts, 1997). 

1.2 State of knowledge 

1.2.1 Oxidation of aromatic hydrocarbons 

Aromatic hydrocarbons contribute significantly to the chemistry of urban air 

(Atkinson and Aschmann, 1994; Odum et al., 1997a; Calvert et al., 2002). Despite 

many years of intensive research on the atmospheric chemistry of aromatic 

hydrocarbons, our understanding of the oxidation mechanisms is still poor and is 

mainly limited to the principal oxidation steps.  
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Figure 1.1 The m
ain pathw

ays of benzene (toluene) oxidation. P
rocesses leading to the form

ation of nitrophenols and 1,2-dihdroxybenzenes
from

 benzene (toluene) via benzaldehyde and phenol, in gas-phase under conditions of O
H

 and N
O

3  oxidation (A
tkinson et al., 1989; B

olzacchini
et al., 2001; C

alvert et al., 2002; O
lariu et al., 2002; V

olkam
er et al., 2002; B

loss et al., 2005a, 2005b).  
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Benzene, toluene (xylenes) and phenol (alkylphenols) have been studied 

intensively by different groups and the results, implemented into different detailed 

mechanisms. A simplified representation of the important identified pathways in the 

oxidation of benzene and toluene leading to the main oxidation products, with 

focus on the ring-retaining products, is given in Figure 1.1 (Atkinson et al., 1989; 

Seuwen and Warneck, 1996; Klotz et al., 1997; 1998; Calvert et al., 2002; 

Volkamer et al., 2002; Bloss et al., 2005a, 2005b). 

The degradation of aromatic hydrocarbons is mainly initiated during the day 

by reaction with the hydroxyl radical (OH). Reactions with NO3 radicals are 

important only for the OH-substituted aromatic compounds; for BTX the reactions 

are too slow to be of significance (Atkinson et al., 1988, 1992a; Olariu et al., 

2004b). 

Monocyclic aromatic hydrocarbons absorb very little of the sunlight present 

in the troposphere. However, for oxygenated nitroaromatic compounds 

photodissociation may be very important and could be contributing to the 

generation of precursors of photooxidants in the troposphere (Bejan et al., 2006). 

 For the atmospherically important emitted monocyclic aromatic 

hydrocarbons, i.e. BTX, the rate constants for their reactions with the active 

species OH, NO3 and O3 are fairly well established (Calvert et al., 2002). However, 

rate constants for the reactions of these species with substituted (alkyl)aromatic 

hydrocarbons of atmospheric relevance are either unknown, have been determined 

only from a single study or are associated with very large uncertainty factors. 

 Product studies reported in the literature have been mainly focused on the 

analysis of the OH-radical initiated photooxidation of benzene and toluene. It is well 

established that the reaction of benzene (toluene) with OH radicals proceeds 

mainly by addition (~90%) to the aromatic ring forming an 

(methylated)hydroxycyclohexadienyl radical (OH-aromatic adduct); see Figure 1.1. 

Adduct formation is an intermediate step in the reaction pathway leading to phenol 

(cresol) formation (Atkinson et al., 1989; Seuwen and Warneck, 1996; Calvert et 

al., 2002; Volkamer et al., 2002). An interesting additional pathway of the OH-

aromatic adduct reaction to form benzene oxide/oxepin was proposed by Klotz et 

al. (1997), however, this pathway is now considered to be of negligible importance. 
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The H-atom abstraction channel for the reaction of OH with benzene is of 

minor importance (~5%) under atmospheric conditions (Calvert et al., 2002). The 

abstraction pathway for toluene, leads eventually to the formation of benzaldehyde 

with a yield of less than 10% (Bandow and Washida, 1985; Finlayson-Pitts and 

Pitts, 2000; Calvert et al., 2002). Further oxidation of benzaldehyde in the 

atmosphere results initially in formation of the C6H5CO radical via an aldehydic 

hydrogen abstraction channel. In the presence of NOx formation of 2-nitrophenol in 

substantial yield has been observed as a final oxidation product as shown in Figure 

1.1 (Calvert et al., 2002). 

1.2.2 Nitrophenols in the atmosphere 

Among the various types of aromatic hydrocarbons, nitroaromatics are of 

particular interest. Nojima et al. (1975) were the first to detect nitrophenols in the 

environment and reported the presence of several nitrophenols in rainwater. The 

initial impetus to study the atmospheric behaviour of nitroaromatics stems from 

interest in the possible contribution of these compounds to forest decline (Rippen 

et al., 1987) and their phytotoxic properties (Kawai et al., 1987; Grosjean, 1991; 

Behnke et al., 1998). Nitrophenols have been identified in air (Grosjean, 1991; 

Tremp et al., 1993; Belloli et al., 1999; Harrison et al., 2005), clouds (Lüttke and 

Levsen, 1997), water (Geissler and Schöler, 1994), rain (Schüssler and Nitschke, 

2001), soil (Voznakova et al., 1996), fog (Herterich, 1991) and snow (Kawamura 

and Kaplan, 1986). 

The phytotoxicity of nitro- and dinitrophenols is well known (Howe et al., 

1994; Isayev et al., 2006). The toxicity of mononitrophenols to mammals is low and 

in the case of dinitrophenols it is strongly dependent on the position of the nitro 

groups (Barleta et al., 1998, 1999). 

Nitroaromatics are directly emitted to the atmosphere and are also formed in 

situ in the atmosphere by secondary chemical processes. Nitrophenols and 

nitrocresols are known to be formed in internal combustion engines (Tremp et al., 

1993). Other primary sources may be the combustion of coal and wood, and the 

manufacture of phenol-formaldehyde resins, pharmaceuticals disinfectants, dyes 

and explosives (Harrison et al., 2005).  
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Studies in Wuppertal and other laboratories have shown that an additional 

important source of these compounds in the atmosphere (see Figure 1.1) could be 

the gas-phase OH-radical initiated photooxidation of aromatic hydrocarbons such 

as benzene, toluene, phenol, cresols and dihydroxybenzenes in the presence of 

NOx during the daytime as well as the reaction of NO3 radicals with these 

aromatics during the night time (Grosjean, 1985; Atkinson et al., 1992a; 

Bolzacchini et al., 2001; Olariu et al., 2002). Once released to or produced in the 

troposphere, these compounds will undergo further oxidation and are also 

expected to partition between the gas and aerosol phases.  

Quantification of nitrophenol formation in the gas phase reactions of OH or 

NO3 radicals with phenols has been reported in only a few studies. Table 1.2 gives 

an overview of the published nitrophenol product yields from studies on the OH- 

and NO3-radical initiated oxidation of several aromatic precursors. 

Olariu et al. (2002), reported the formation of ortho-nitro methyl substituted 

phenols in the gas phase OH-radical initiated photooxidation of phenolic 

compounds in the presence of NOx. These studies confirmed the yields reported 

for similar oxidation systems by Atkinson (1992). para-Nitrophenol formation from 

the photooxidation of phenols/OH/NOx has also been reported by Olariu et al. 

(2002). 

Berndt and Böge (2003) have studied the gas phase reaction of OH radicals 

with phenol and reported a 4% formation yield of nitrophenol. In the study they 

tested the influence of the oxygen, NO and NO2 concentrations on the nitrophenol 

formation yield. No affect on the yield was observed on changing the NO 

concentration. Increasing the NO2 concentration led to increase in the 2-

nitrophenol yields, which were significant for NO2 concentrations of 10 ppmV or 

more. 

The NO3-radical initiated oxidation of phenol leads to formation of 2-

nitrophenol and 4-nitrophenol as main ring-retaining products (Atkinson et al., 

1992a; Olariu, 2001; Bolzacchini et al., 2001). The mechanism involves the initial 

formation of an NO3 “ipso” adduct which decomposes (decomposition rate of ~ 5 × 

108 s-1 at 298 K) via H-atom abstraction to form HNO3 and phenoxy radicals; 
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further interactions of the phenoxy radicals with NO2 result in nitrophenol formation 

(Atkinson, 1991).  

 

Table 1.2 Molar product yields for the nitrophenols formed in the gas phase OH- 
and NO3-radical initiated oxidation of aromatic precursors. 

 

reactant product 
yield (%) 

OH reaction 

yield (%) 

NO3 reaction
reference 

phenol 

2-NP 

2-NP 

2-NP 

2-NP 

4-NP 

4-NP 

6.7 ± 1.5 

5.8 ± 1.0 

4 - 9 

- 

- 

- 

25.1 ± 5.1 

~ 22.7 

- 

58.8 ± 9.4 

~ 50.0 

27.6 ± 7.9 

Atkinson et al., 1992a 

Olariu, 2001 

Berndt and Böge, 2003 

Bolzacchini et al., 2001 

Olariu, 2001 

Bolzacchini et al., 2001 

ortho-cresol 

NC 

6M2NP 

6M2NP 

4.9 ± 11.0 

6.8 ± 1.5 

- 

~ 22.7 

~ 11.5 

12.8 ± 2.8 

Grosjean, 1985 

Olariu, 2001 

Atkinson et al., 1992a 

meta-cresol 

3M2NP 

5M2NP 

3M2NP 

5M2NP 

3M4NP 

1.6 ± 1.0 

1.6 ± 1.0 

4.3 ± 1.6 

4.4 ± 1.5 

- 

16.8 ± 2.9 

19.6 ± 3.6 

~ 22.0 

~ 23.0 

~ 22.0 

Atkinson et al., 1992a 

Atkinson et al., 1992a 

Olariu, 2001 

Olariu, 2001 

Olariu, 2001 

para-cresol 
4M2NP 

4M2NP 

10.0 ± 4.0 

7.6 ± 2.2 

~ 74.0 

~ 43.0 

Atkinson et al., 1992a 

Olariu, 2001 
 

In contrast to the liquid phase (Ishag and Moseley, 1977; Alif et al., 1987; 

Alif et al., 1990, 1991; Chen et al., 2005; Harrison et al., 2005), the photochemistry 

of nitrophenols in the gas phase (Bejan et al., 2004, 2005b, 2006) has received 

virtually no attention. 

Nitrophenols absorb strongly in the atmospherically relevant UV range 300-

400 nm, (Ishag and Moseley, 1977; Alif et al., 1991; Chen et al., 2005; Harrison et 

al., 2005) corresponding to the S1 → S0 transition as reported for the liquid phase 

(Ishag and Moseley, 1977). Thus, the photochemistry of nitrophenols might be of 

importance for the atmosphere. In the liquid phase, photolysis of nitrophenols leads 

to the formation of catechol, cyclopentadiene carboxylic acid, nitrohydroquinone, 3-

nitrocatechol, 2-nitrosophenol and 2-aminophenoxazone (Alif et al., 1991). The 
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formation of nitrous acid (HONO)/nitrite has been observed during the photolysis of 

nitrophenols in the liquid phase (Ishag and Moseley, 1977; Alif et al., 1991). 

Photochemical transformation of nitrophenols on ice surfaces has been 

studied and similar product compounds to those seen in the aqueous solution 

photolysis studies have been observed (Dubowski and Hoffmann, 2000; Baitinger 

et al., 1964; Schreiber, 1989; Borisenko and Hargittai, 1996; Chen et al., 1998; 

Kovács et al., 1998; 2000). 

1.2.3 Nitrous acid (HONO) in the atmosphere  

Nitrous acid (HONO) was detected for the first time in ambient air by Perner 

and Platt in 1979, and numerous subsequent laboratory, field, and modelling 

studies have since been conducted to explain the observed atmospheric 

concentration. 

Nitrous acid is of considerable atmospheric interest since its photolysis  

 

HONO     +     hν                      NO     +     OH                1.1 

 

leads to the formation of OH radicals (Stockwell and Calvert, 1978), the key 

atmospheric oxidant in the degradation of most air pollutants. HONO is a crucial 

intermediate in the formation of photochemical smog in the troposphere (Platt et 

al., 1980). Despite the other important sources for OH radical formation such as the 

photolysis of ozone and formaldehyde and the ozonolysis of VOCs, field and 

modelling studies have demonstrated that HONO photolysis can contribute 

considerably to the daily OH production with an integrated contribution of up to 

60% (Neftel et al., 1996; Staffelbach et al., 1997a, 1997b; Zhou et al., 2002a; 

Alicke et al., 2002, 2003; Kleffmann et al., 2003; Vogel et al., 2003; Kleffmann et 

al., 2005; Acker et al., 2006). Night-time HONO mixing ratios up to 15 ppbV have 

been observed in field measurements. HONO is a dominant source for OH radicals 

in the early morning being responsible for up to 80% of the OH concentration at 

this time of the day (Alicke, 2000; Alicke et al., 2003). While the night time 

formation of HONO in the atmosphere is reasonably well explained by direct 
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emissions and different heterogeneous conversion processes of NO2 (Gutzwiller et 

al., 2002; Finlayson-Pitts et al., 2003; Ammann et al., 2005) on ground surfaces 

(Vogel et al., 2003), recent measurements have shown unexpectedly high HONO 

concentrations during the daytime (Neftel et al., 1996; Zhou et al., 2001, 2002a; 

Kleffmann et al., 2002; 2003; 2005). The measured HONO levels were significantly 

higher than the values predicted on the basis of the available knowledge about 

daytime sources and sinks of HONO. The experiments revealed the existence of a 

strong unknown daytime source of HONO up to 60 times higher than the night time 

sources (Kleffmann et al., 2005). The results from the field studies imply that this 

source can contribute up to 60% to the direct OH radical sources (Ren et al., 

2003), which were suggested to arise from the photolysis of adsorbed HNO3/nitrate 

(Zhou et al., 2001; 2002a, 2002b, 2003; Ramazan et al., 2004) or by 

heterogeneous photochemistry of NO2 on organic substrates (George et al., 2005; 

Stemmler et al., 2005; 2006). 

1.2.4 (Methylated) 1,2 dihydroxybenzene in the atmosphere 

Catechols are used widely in industry in dye and drug production, in the 

production of antioxidants, in rubber and oil industries, in photographic processes 

and in special types of ink (Flickinger, 1976). Significant amounts of catechols have 

been found in the particulate phase from both the wounding and burning of wood 

(Hawthorne et al., 1992; Fine et al., 2002). Catechols are common contaminants of 

smoked products (Waltz et al., 1965; Eskinja et al., 1995). Catechols are strongly 

mutagenic and carcinogenic aromatic compounds (Stohs et al., 1997; Li et al., 

1997; Tsutsui et al., 1997; Silva et al., 2003).  

It is now known that catechols can be produced in the atmosphere by the 

photooxidation of phenols. Phenols are produced in substantial yields in 

atmosphere in the reactions of OH with BTX (benzene, toluene, xylene isomers), 

benzene producing phenol (Atkinson, 1994; Calvert et al., 2002; Volkamer et al., 

2002), toluene a mixture of o-, m- and p-cresols (Atkinson et al., 1989; Klotz et al., 

1998; Smith et al., 1998) and the xylene isomers a series of 

hydroxydimethylbenzenes (Smith et al., 1999). 
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The strongly ortho directing effect of the OH group in phenols leads to the 

formation of catechols as main products in the OH radical initiated photooxidation 

of these compounds. Olariu et al. (2002) have quantified the catechol yields in the 

OH-initiated oxidation of several phenols and cresols. Catechol yields of more than 

80 % were observed in some cases. Berndt and Böge (2003) have confirmed the 

data of Olariu et al. (2002) for the OH-initiated oxidation of phenol. In the studies of 

both Olariu et al. and Berndt and Böge the level of NO in the reaction system had 

no influence on the catechol yield, however, the yield was found to vary slightly 

with the NO2 concentration; decreasing with increasing NO2 concentration. A 

strong influence of temperature on the catechol yield in the reaction of OH with 

phenol has been observed by Berndt and Böge (2003) with the catechol yield 

increasing from 37% at 266 K to 87% at 364 K. 

An unexpected low yield of catechol (23.9%) for a phenol/OH/NOx reaction 

system has been reported by Sommariva (2000). Sommariva used PTR-MS 

(Proton Transfer Reaction Mass Spectrometry) in order to quantify the products of 

a phenol/OH/NOx reaction system. At present the reason for the 4 times lower yield 

obtained by Sommariva compared to the other studies is not known. 

 
Table 1.3 Rate coefficients for the reactions of OH, O3 and NO3 with 1,2-

dihydroxybenzenes (Olariu et al., 2000; Bejan et al., 2002; Olariu et 
al., 2004b; Tomas et al., 2003). 

 

compound k(OH) x 1011 
(cm3 s-1) 

k(O3) x 1017 
(cm3 s-1) 

k(NO3) x 1010  
(cm3 s-1) 

1,2-dihydroxy 
benzene 10.4 ± 2.1 0.96 ± 0.11 0.98 ± 0.5 

1,2-dihydroxy- 
3-methylbenzene 20.5 ± 4.3 2.81 ± 0.23 1.72 ± 0.56 

1,2-dihydroxy- 
4-methylbenzene 15.6 ± 3.3 2.63 ± 0.34 1.47 ± 0.65 

 

Benzenediols have been shown to react rapidly with OH radicals (Olariu et 

al., 2000). Reaction of benzenediols with NO3 radicals is also very fast (Bejan et 

al., 2002; Olariu et al., 2004b). OH and NO3 radicals compete for the decay of 

catechols even during the day and under certain conditions their contributions to 
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the decay are almost equal. Benzenediols have also been shown to react 

reasonably fast with O3 (Tomas et al., 2003). The reported rate coefficients for the 

reaction of catechols with OH, O3 and NO3 are summarized in Table 1.3. A very 

fast reaction of catechol with chlorine (Cl) atoms has also been reported (Bejan et 

al., 2005a). 

1.2.5 Secondary organic aerosol (SOA) formation in the atmospheric 

oxidation of aromatic hydrocarbons 

 Atmospheric aerosols are present in virtually all areas of the troposphere, 

and, in particular, in urban areas (Seinfeld and Pandis, 1998; Finlayson-Pitts and 

Pitts, 2000; Calvert et al., 2002). Aerosols affect the global budget of O3, OH and 

VOCs (mainly CH4) through their alteration of photolysis rates and through their 

direct chemical interaction with gases (Reuder and Schwander, 1999; Bian et al., 

2003; Tie et al., 2005; Kanakidou et al., 2005).  

Secondary organic aerosols (SOAs) result from the atmospheric oxidation of 

primary organic compounds, which lead to products that have vapour pressures 

low enough to enable them to condense into the particle phase. 

 Aromatic hydrocarbon photooxidation is alleged to make a significant 

contribution to secondary organic aerosol (SOA) formation in urban air (Leone et 

al., 1985; Stern et al., 1987; Izumi and Fukuyama, 1990; Odum et al., 1996, 1997a; 

1997b; Kleindienst et al., 1999; Johnson et al., 2005; Martin-Reviejo and Wirtz, 

2005). 

Studies on the aromatic SOA molecular composition have been focused on 

benzene and methylated benzene (Forstner et al., 1997; Kleindienst et al., 1999; 

Cocker et al., 2001; Jang and Kamens, 2001; Hurley et al., 2001). Based on the 

relationship between vapour pressure and the changes in molecular structure ring-

retaining products should have an important role in SOA formation as the oxidation 

process of the aromatic proceeds. Large decreases in vapour pressure occur when 

–OH and –NO2 groups are added to the aromatic ring structure (Yaws, 1999). 

Studies have been performed recently in the Wuppertal laboratories in order to 

investigate the SOA formation from phenol, catechols and nitrophenols (Olariu et 

al., 2003, 2004; Bejan et al., 2004). 
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While it has been known for some time that the oxidation of aromatic 

hydrocarbons leads to aerosol formation, the exact mechanism by which particles 

are formed is still unclear. In the last decade, a gas/particle absorption model has 

been developed in order to explain SOA yield data (see Annex IV) (Pankow, 

1994a, 1994b; Odum et al., 1996, 1997a, 1997b). 

1.3 Aim of the present work 

The atmospheric chemistry of aromatic hydrocarbons is complex and 

presently not well understood. Much research is required to elucidate the rates and 

mechanisms involved in the gas-phase initiated oxidation of aromatic hydrocarbons 

by reactive species such as OH, NO3 and O3. The detailed product analyses 

necessary in conjunction with the experimental rate measurements are extremely 

challenging. 

At present our understanding of secondary organic aerosol (SOA) formation, 

composition, physical and chemical properties, sources, and transformation 

characteristics are very limited, and estimates of the actual environmental effects of 

SOA are highly uncertain. 

The purpose of this work was to provide a scientific evaluation of the 

atmospheric fate of the following aromatic compounds, which are important 

products in the oxidation of BTX: 1,2-dihydroxybenzene, 3-methyl-1,2-

dihydroxybenzene, 4-methyl-1,2-dihydroxybenzene, 2-nitrophenol, 3-methyl-2-

nitrophenol, 4-methyl-2-nitrophenol, 5-methyl-2-nitrophenol, 6-methyl-2-

nitrophenol. The following investigations were performed: 

² Laboratory chamber experiments were performed at 

Wuppertal and at the EUPHORE outdoor chamber facilities 

Valencia/Spain in order to determine rate coefficients for the 

reactions of NO3 radicals with the dihydroxybenzenes (no 

literature data are available). 

² Kinetic experiments were carried out on the reactions of OH 

radicals with nitrocresols, which are important photooxidation 

products of cresols (only a computer estimation of the rates 
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based on the structure-activity relationship (SARs) is available 

in the literature). 

² The photolysis of several nitrocresols was investigated with 

respect to establishing 

i) their importance as an atmospheric source of 

HONO (no literature data are available). 

ii) the potential of the photolysis of these 

compounds to form secondary organic aerosols 

(only very limited literature data are available). 
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2. Experimental section 

 The kinetic investigations were carried out in a 1080 l quartz glass reactor at 

the Bergische University Wuppertal, Germany, and in the EUPHORE photoreactor 

chamber at the Centro des Estudios Ambientales (CEAM), Valencia, Spain. The 

experiments in EUPHORE, a large volume simulation smog chamber, were 

performed under conditions of natural sunlight irradiation. 

 Aerosol formation studies were carried out in the 1080 l quartz glass reactor 

noted above while the mechanistic investigations on the photolysis of nitrophenols 

were performed in a specially designed glass flow photoreactor. 

2.1a Description of the 1080 l reaction chamber 

 A schematic outline of the 1080 l reactor is shown in Figure 2.1 and a 

detailed description can be found in the literature (Barnes et al., 1994). 

 The reactor consists of two quartz glass tubes with an inner diameter of 47 

cm and a wall thickness of 5 mm. The reactor has a total length of 6.2 m. Silicone 

rubber rings are used for all the glass-metal connections as well as for metal-metal 

connections. The tubes are joined together by an enamelled flange ring and the 

ends are capped with two enamelled aluminium flanges. The reactor is connected 
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to a turbo molecular pump system via the central flange ring (Leybold-Heraeus PT 

450 C). With the pumping system an end vacuum of 10-3 mbar can be achieved. 

Also connected to this central ring is a temperature sensor PT-100, a Teflon mixing 

fan and two steel sampling lines. The sampling lines are connected to aerosol 

measurement and gas-chromatography analytical instruments. A total of three fans 

are used for homogeneous mixing of compounds within the reactor. Different types 

of inlets are mounted on the end flanges for the introduction of chemicals and bath 

gases and for pressure measurement. Optionally, the inlets can be heated to 

facilitate the addition of solid compounds into the chamber. A gas flow controller 

can be used for the compensation of total pressure within the reactor when using 

analytical instrumentation that requires high volume gas samples. 

 
Figure 2.1  Schematic representation of the 1080 l reactor with details of the 

quartz tube and gold-coated mirrors. 
 
 The beam from an externally situated FT-IR (Fourier Transform Infrared) 

spectrometer is coupled, via a mirror system, into the reactor through KBr windows 

located in one of the end flanges. A White-type mirror system (base path length 

(5.91 ± 0.01) m), mounted inside the reactor, is used for multiple-reflection of the 

infrared beam within the reactor volume before it reachs the detector. Reactants 
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and products were monitored in situ in the reactor in the infrared using 82 traverses 

of the beam, which is equivalent to a total optical path length of (484.7 ± 0.8) m. All 

of the spectra in the experimental part of this work were recorded with a spectral 

resolution of 1 cm-1. 

 The FT-IR spectrometers (BRUCKER IFS 88 and NICOLET NEXUS) used 

in this work are equipped with liquid nitrogen cooled (77 K) mercury-cadmium- 

tellurium (MCT) detectors. A Globar was used as the source of IR light. All the 

mirrors are gold coated to increase the reflectivity efficiency.  

 Two different types of lamps (32 each) are installed around the reactor. 

They are mounted alternatively around the reactor to ensure homogeneity of the 

light intensity within the reactor. The first type, Philips TL05 – 40W superactinic 

lamps, emit in the range 320 – 480 nm and have a maximum intensity at 360 nm. 

These lamps will be named VIS lamps in this work. The second type, low-pressure 

mercury lamps, Philips TUV – 40W, have an emission maximum at 254 nm and will 

be termed UV lamps in this work. The experiments can be performed at different 

temperatures within the range 283-313 K with a precision of ±1 K. 

2.1b Description of the EUPHORE chamber 

The outdoor European Photo-Reactor (EUPHORE) is part of the Centro de 

Estudios Ambientales del Mediterraneo (CEAM), located near Valencia, Spain 

(Becker, 1996). A schematic diagram of the chamber together with a photographic 

panoramic view is presented in Figure 2.2. 

Detailed descriptions of the chambers can be found in EUPHORE reports 

(Becker, 1996; Barnes and Brockmann, 2001). The two hemispherical chambers 

are made from FEP (fluorine-ethene-propene) foil with a thickness of 0.127 mm. 

This foil has a transmission of more than 80% in the wavelength range between 

280 and 640 nm. The flat aluminium floor panels of the chambers are covered with 

FEP foil and can be cooled with water to avoid heating of the chambers during sun 

exposure. The chambers are protected against wind and rain by steel housings, 

which can be opened and closed hydraulically. In the closed position, experiments 

can also be performed in the dark on O3 and NO3 reactions.  
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The chambers are filled with air from a separate air purification system. With 

the help of a special charcoal absorber, NOx is eliminated and oil vapour and non-

methane hydrocarbons are reduced to ≤ 0.3 µg m-3. In order to avoid the collapse 

of the foil hemisphere an overpressure is necessary. A magnetic valve controls the 

addition of air into the chamber. More details can be found in Becker (1996). 

 
Figure 2.2 Top view of the EUPHORE “chamber A” which was used in this 

study. 
 

The air inlets are located in the centre of the chamber floor. Outlets for the 

different analytical instruments used for monitoring of reactants and products are 

also integrated in the floor. Besides the conventional analytical instrumentation 

(GC-FID, GC-ECD, GC-PID, GC-MS, HPLC, monitors (O3, NOx, NOy), J(O1D) 

actinometer, J(NO2) actinometer, the chambers are equipped with in situ 

measurement techniques: DOAS – Differential Optical Absorption Spectroscopy, 

FT-IR – Fourier Transform InfraRed Spectroscopy, TDL – Tuneable Diode Laser. A 

Scanning Mobility Particle Sizer (SMPS) is used for monitoring the aerosol 

White System for FT-IR 

White System for 
DOAS 

Mixing Fan 

Ports for Reactant Inlet  
and Sampling 

Clean Air Inlet 

LIF  
Mounting Position 
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distribution. Two White-type multiple-reflection mirrors are mounted inside this 

chamber, one coupled to a FT-IR spectrometer and one to a DOAS system.  

The FT-IR spectrometer, a NICOLET MAGNA 550, was operated with a 

resolution of 1 cm-1. The White mirror arrangement in chamber A, used in this 

study, had a total optical path length of 326.8 m and a base path length of 8.17 m. 

2.2 Measurement procedure 

Kinetic experiments were performed in the 1080 l quartz glass reactor. The 

aerosol formation resulting from the photolysis of nitrophenols was also studied in 

this reaction chamber. 

Studies on the products produced by the photolysis of nitrophenols were 

performed in a specially constructed photolysis box connected to a small reactor, 

which was used for monitoring the nitrophenols by FT-IR. Also connected to the 

reactor was a LOPAP (LOng Path Absorption Photometer) instrument for 

measuring HONO (nitrous acid) formation. More details can be found in Kleffmann 

et al. (2002). 

2.2.1 Radical generation 

NO3 radical generation 

In the 1080 l reaction chamber, NO3 radicals were generated by the thermal 

decomposition of N2O5. 

 

  N2O5     NO3 + NO2  2.1 

 

N2O5 was synthesed according to the procedure given in Appendix I. 

In the EUPHORE photoreactor, the reaction of O3 with NO2 was used to 

produce NO3 radicals. 

 

 NO2 + O3    NO3 + NO2  2.2 

 

 NO3 + NO2    N2O5    2.3 
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O3 was produced by a corona discharge in O2 using a commercial ozone 

generator. 

OH radical generation 

The photolysis of CH3ONO (methyl nitrite) with 32 superactinic fluorescent 

lamps (Philips TL05/40 W; 320 nm < λ < 480 nm, with λmax = 360 nm) in the 

presence of NO was used as the OH radical source (equations 2.4 – 2.6). With this 

method steady-state OH radical concentrations of around 5 x 107 cm-3 can be 

generated. Methyl nitrite was synthesed by the procedure described in Appendix I. 

Methyl nitrite was stored at –78°C.  

 CH3ONO + hν   CH3O + NO  2.4 

 CH3O  + O2   HCHO + HO2  2.5 

 HO2  + NO   OH + NO2  2.6 

2.2.2 Kinetic measurements 

 Two sets of experiments were performed to determine the rate coefficients 

for the reactions of NO3 radicals with 1,2-dihydroxybenzenes and OH radicals with 

nitrocresols. A relative kinetic rate method was used for the rate coefficient 

determinations. 

2.2.2.1 Relative rate method in kinetic data analysis 

In the relative rate method the relative disappearance rates of the compound 

under investigation, i.e. the aromatic hydrocarbons, and a reference compound are 

monitored simultaneously in the presence of the radicals. 

aromatic + radical   products (k1)  2.7 

reference + radical   products (k2)  2.8 

 Control experiments showed that the aromatic hydrocarbons were also 

subject to losses in the absence of radicals, mainly due to wall deposition.  

aromatic + (wall losses)  products (k3)  2.9 
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 No wall deposition losses were observed for the reference hydrocarbons 

used in all the kinetic studies. On the basis of equations 2.7, 2.8 and 2.9 the 

following rate laws are valid for the aromatic and reference compounds: 
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where k1 and k2 are the rate coefficients for the reactions of the radicals with the 

aromatic hydrocarbon and reference compound, respectively. The terms 

[aromatic]t0, [aromatic]t, [reference]t0 and [reference]t are the initial concentration 

of the aromatic compound at time t0, its concentration at time t, the initial 

concentration of the reference hydrocarbon at time t0, and its concentration at time 

t, respectively. Hence plots of (ln([reactant]t0/[reactant]t) – k3(t-t0)) against 

ln([reference]t0/[reference]t) should yield a straight line of slope k1/k2 and zero 

intercept. The rate coefficient k1 can be placed on an absolute basis using the 

known rate coefficient k2 for the reaction of the reference hydrocarbon with the 

radical. 

2.2.2.2 NO3 kinetic experiments on 1,2 dihydroxybenzenes 

 Rate coefficients for the reactions of NO3 radicals with a number of 1,2-

dihydroxybenzene compounds have been measured in two photoreactor systems 

using the relative rate method outlined in this chapter: (i) at the Bergische 



Experimental section                                                                                   Chapter 2 
___________________________________________________________________________________________________ 

 24

Universität Wuppertal (Barnes et al., 1994) and (ii) at the European Photoreactor 

(EUPHORE), Valencia, Spain (Becker, 1996). 2,3-Dimethyl-2-butene was chosen 

as reference hydrocarbon because it is one of the few compounds that has a well-

established rate coefficient of a magnitude similar to that which was expected for 

the reaction of NO3 with the 1,2-dihydroxybenzenes. In addition, 2,3-dimethyl-2-

butene has interference-free adsorptions in the infrared, which do not overlap with 

those of the aromatic compounds under study. Unfortunately none of the other 

possible reference compounds checked in this study met the selection criteria. 

Two different types of experiment were performed in both chambers. Firstly, 

experiments were performed in which N2O5 was added as prepared and secondly, 

experiments were performed in which high concentrations of NO2 were added to 

N2O5 from the beginning of the experiments in order to shift the equilibrium 

between N2O5, NO2 and NO3 radicals towards N2O5 and to ensure that the reaction 

times were extended beyond the reactant mixing time in the reactor. In addition, 

the experiments with high NO2 served as a check for any possible interference 

from radical species generated from the NO3 radical reactions (such as OH 

radicals) and also possible influences of NO2 and/or N2O5 on the measured rate 

coefficient.  

Studies at the Bergische Universität Wuppertal 

 The experiments were performed at 1000 mbar total pressure of synthetic 

air and at a temperature 298 ± 2 K. The experimental procedure was as follows. 

The 1,2-dihydroxybenzene compound under investigation and the reference 

hydrocarbon, 2,3-dimethyl-2-butene, were injected into the chamber under reduced 

pressure. Because the aromatic compounds are solid a special heated inlet was 

used. The chamber was then pressurized to 1000 mbar with synthetic air. For the 

first 5 min the concentration-time behaviours of the two compounds were 

monitored by FT-IR spectroscopy, i.e. 5 spectra derived from 64 interferograms co-

added over a period of 1 min were recorded. N2O5 was then flushed into the 

chamber through a glass line at a flow rate of 50-100 ml min-1 for 15 min by 

evaporating solid N2O5. This procedure delivered N2O5 to the chamber at a rate of 

about 20-25 ppbV min-1. N2O5 was prepared as described in Appendix I and stored 
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at –78°C in dry ice. In total, the measurement period time for one experiment was 

about 20 min. 

The initial reactant concentration ranges were (in cm-3 units) (1.2 - 4.8) x 

1013 for the 1,2-dihydroxybenzene compounds and reference hydrocarbon and (0 – 

2.4) x 1013 for NO2. At least 5 experiments were performed for each 

dihydroxybenzene compound.  

 Control experiments showed that wall loss of the 1,2-dihydroxybenzenes in 

clean air in the chamber was typically between 35 - 40% per hour. No wall 

deposition loss was observed for the reference hydrocarbon. 

Studies at the EUPHORE chamber 

The experiments were performed at atmospheric pressure and 296 ± 2 K in 

purified air. Four kinetic experiments were performed on 1,2-dihydroxybenzene and 

three on each of the 1,2-dihydroxybenzene methylated isomers. The experimental 

procedure was as follows. The chamber was flushed with purified air overnight for 

approximately 10-12 h before the start of each experiment. The dihydroxybenzene 

compounds were added to the chamber using a spray inlet system. Prior to 

injection a weighted amount of 1,2-dihydroxybenzenes was first dissolved in a 

minimum of distilled water (~ 5ml). 2,3-Dimethyl-2-butene and NO2 were injected 

by means of a syringe into a glass tube (impinger) connected to the chamber via a 

Teflon line. The initial reactant concentration ranges were (in cm-3 units) (5 – 7.2) x 

1012 for the reactant compounds and reference hydrocarbon and (0 – 7) x 1012 for 

NO2. N2O5 was produced by titration of a flow of NO2 with O3 prior to entry into the 

chamber and was added continuously to the chamber through a Teflon line. This 

procedure resulted in a delivery rate for N2O5 to the chamber of about 1.2 ppbV 

min-1. 

Each experiment on the dihydroxybenzene/reference/N2O5 reaction system 

was performed over a period of approximately 2 h in the dark using in situ FT-IR 

spectroscopy (Nicolet Magna spectrometer) to monitor the compounds. Infrared 

spectra were derived from 130 co-added scans, which yielded a time resolution of 

2.5 min. The experiment was usually terminated when ca. 70-80% of the reactant 

had been consumed. The reaction chamber was pressurized continuously during 
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the experiments to compensate for losses due to leaks and air drawn by the 

external analytical instrumentation. This dilution was monitored by FT-IR using SF6 

as an inert tracer gas. The dilution loss was typically 3-4% h-1. The sum of the 

surface deposition and dilution rates for the dihydroxybenzenes were determined 

by observing the decay of their IR absorption features prior to addition of N2O5 and 

NO2. Loss rates of about 20% h-1 were measured. In the case of the reference 

hydrocarbon no wall deposition loss was observed but the dilution loss was taken 

into account in the data analysis. 

Because of the different behaviour of aromatics and alkenes in air (e.g. 

diffusion) possible inhomogeneous cloud formation close to the inlet in the 

chamber is a possible experimental artefact. In order to check the homogeneity of 

the mixing of the reactants in the chamber a test experiment was performed. Using 

o-cresol as the reference hydrocarbon, the rate coefficient for the reaction of NO3 

with 2,3-dimethyl-2-butene was measured. The rate coefficients for the reactions of 

both o-cresol and 2,3-dimethyl-2-butene with NO3 are considered as well as 

established. 

All the hydrocarbons studied (1,2-dihydroxybenzene, 1,2-dihydroxy-3-

methylbenzene and 1,2-dihydroxy-4-methylbenzene) as well as the reference 

hydrocarbon (2,3-dimethyl-2-butene) were used as supplied by Aldrich Chemical 

Company and had stated purities of > 98 %. 

2.2.2.3 OH kinetic experiments on nitrocresols 

The kinetic investigations on the reactions of OH radicals with the 

nitrocresols were carried out in a 1080 l cylindrical quartz-glass photoreactor in 

synthetic air (760 ± 10) Torr by (296 ± 3) K. A Nicolet Nexus FT-IR spectrometer 

was used for reactant and reference monitoring. IR spectra were recorded at a 

spectral resolution of 1 cm-1. Between 8 and 12 spectra were recorded in each 

kinetic experiment; each spectrum was comprised of 128 co-added interferograms. 

Prior to the kinetic experiments, 5 experiments were performed for every 

nitrocresol compound in order to obtain the photolysis and wall loss rates for these 

compounds. These two constants were used in corrections of the OH kinetic rate 

data. OH radicals were produced during the photolysis of nitrocresols. Using 
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isoprene as scavenger for OH radicals (kOH = 8.52 x 10-12 cm3 s-1, Atkinson and 

Arey, 2003) it was possible to calculate the concentration of OH radicals produced 

by the photolysis and thus calculate a “correct” value for the photolysis frequency. 

6-Methyl-2-nitrophenol was obtained from Olariu (2001) who prepared it by 

addition of sodium nitrite to o-toluidine dissolved in a concentrated solution of 

sulphuric acid, following a method described by Winzor (1935).  

Ethene was used as the reference compound. In the cases of 4-methyl-2-

nitrophenol and 5-methyl-2-nitrophenol a second reference compound, n-butane, 

was also used. 

Gaseous compounds (CH3ONO, NO, ethene, n-butane and isoprene) were 

injected into the reactor using calibrated gas-tight syringes with the reactor under 

reduced pressure. Solid compounds (nitrocresols) were introduced into the 

chamber in airflow through a special heated inlet system. The initial reactant 

concentrations (in cm-3 units) were as follows: C5H8 2 × 1014, C4H10 (6-8) × 1013, 

nitrocresols (4.8 - 9.2) × 1013, CH3ONO 5 × 1013, C2H4 (6 – 8) × 1013 and NO 3 × 

1014. 

2.2.3 Photolysis of nitrophenols. HONO formation 

The formation of HONO from the photolysis of nitrophenols was studied in 

the glass flow photoreactor system shown in Figure 2.3. The following nitrophenols, 

as provided by the manufacturer, were investigated: 2-nitro-1-hydroxybenzene (2-

nitrophenol: 2NP, Aldrich, 98 % purity), 3-methyl-2-nitro-1-hydroxybenzene (3-

methyl-2-nitrophenol: 3M2N, Fluka 98 % GC purity), 4-methyl-2-nitro-1-

hydroxybenzene (4-methyl-2-nitrophenol: 4M2N, Aldrich, 99 % purity) and 3-

methyl-6-nitro-1-hydroxybenzene (5-methyl-2-nitrophenol: 5M2N, Aldrich, 97 % 

purity).  
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Figure 2.3 Experimental set-up used for investigations on the photolysis of 
nitrophenols 

 
A gas phase mixture containing a nitrophenol was generated by flushing 2.5 

l min-1 pure synthetic air (flow controller: Bronkhorst, 2.5 l min-1) over a solid or 

liquid sample of the nitrophenol, which was immersed in a temperature regulated 

water bath. The vapour pressure of the nitrophenol in the gas phase was adjusted 

by varying the temperature of the water bath. For some experiments with 3M2N the 

influence of the buffer gas on the HONO formation rate was investigated using 

calibrated flows of N2 (99.999 and 99.9999), O2 (99.999), Ar (99.999) or He 

(99.9999) in place of synthetic air. 

The gas containing the nitrophenol was flushed through the photoreactor, 

for which either a 9 mm i.d. glass tube (length 46 cm, S/V = 4.4 cm-1, borosilicate 

glass) or a cylindrical glass flow tube (length 80 cm, 50 mm i.d., conic entrance and 

exit junctions, S/V: 0.75 cm-1, borosilicate glass) was used. The photoreactors were 

placed in an aluminium housing, in which six UV/VIS lamps (Phillips TL/05, 20 
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Watt, 300-500 nm, λmax= 370 nm, length 57 cm) were installed symmetrically 

around the photoreactor. The lamps are wired in parallel and can be switched 

individually to allow control of the light intensity. A fan installed in the aluminium 

housing prevented strong heating of the photoreactor. The temperature increase 

over ambient temperature (298 ± 5 K) during irradiation was around 3-4 K. 

Typically, the effluent from the photoreactor was analyzed for HONO, 

nitrophenols and in a few experiments also for NO2. Nitrous acid was measured 

with a newly developed, highly sensitive instrument (LOPAP), which is described in 

detail elsewhere (Heland et al., 2001; Kleffmann et al., 2002).  

Briefly, HONO is sampled in a stripping coil by a fast chemical reaction and 

converted into an azo dye, which is photometrically detected by long path 

absorption in light conducting Teflon tubes. The two-channel set-up of the 

instrument corrects for interferences (Kleffmann et al., 2002) including those 

caused by mixtures of NO2 and semi-volatile diesel exhaust components 

(Gutzwiller et al., 2002). In recent intercomparison campaigns with the DOAS 

technique, in the field and in a smog chamber, excellent agreement was obtained 

for daytime conditions (Kleffmann et al., 2006). For the experimental conditions 

applied in the present study, the instrument had a detection limit of 5 pptV for a 

time resolution of 2.5 min. 

The concentration of the nitrophenol was determined using a FTIR 

spectrometer coupled to a 10 l White type multiple reflection cell operated at a total 

optical path length of 32.8 m. The cell was connected to the exit of the 

photoreactor (Figure 2.3). IR spectra were recorded at a spectral resolution of 1 

cm-1 using a Nicolet NEXUS FT-IR spectrometer. Spectra were recorded by co-

adding 128 scans per spectrum over a time period of 2 min while sampling 

continuously during the experiments. Cross sections as reported by Olariu (2001) 

were used at the following spectral wavenumbers to calculate the nitrophenol 

concentrations: 1627 and 1343 cm-1 for 2-nitrophenol; 1609 and 1351 cm-1 for 3- 

methyl-2-nitrophenol; 1639, 1335 and 1191 cm-1 for 4-methyl-2- nitrophenol; 1634, 

1603, 1335 and 1203 cm-1 for 5-methyl-2- nitrophenol. 

A Perkin-Elmer Lambda 40 double-beam UV/VIS spectrometer equipped 

with a halogen/deuterium lamp was used to obtain the absorption spectrum of 
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3M2N in dichloromethane as solvent. The UV/VIS Spectrometer was operated at a 

resolution of 0.5 nm in the wavelength range 190-1100 nm. WinLab software was 

used to analyse the recorded spectra. 

For some experiments, the NO2 dependence of the photolytic HONO 

formation rate and the upper limit of the NO2 formation rate during the photolysis of 

pure nitrophenols were determined with a Luminol NO2 monitor (Unisearch, LMA-

3D). NO2 was obtained from Messer Griesheim as a 10 ppmV premix-gas in N2. 

The error in the NO2 concentration was calculated from the accuracy of the NO2 

calibration mixture, specified by Messer Griesheim, and the statistical errors of the 

calibration curve.  

Photolysis of NO2 (NO2+hν→NO+O) was studied as a photochemical 

reference reaction within the reactor. A NOx (NO+NO2) chemiluminescence 

analyser (Eco-Physics: AL 770 ppt) with a photolytic converter (Eco Physics: PLC 

760) was used to measure the decrease of the NO2 concentration upon irradiation 

at various photolysis times and different initial NO2 concentrations. The 

photochemical conversion rate of NO2 is quantified by the photolysis frequency 

J(NO2): 

t
NO

NO
NOJ

∆
∆

×−=
][

][
1)( 2

2
2     2.13 

J(NO2) was calculated numerically incorporating the chemistry of the Leighton 

equilibrium (Finlayson-Pitts and Pitts, 2000) and recommended rate constants 

(Atkinson et al., 2005). For all six lamps, a value for J(NO2) of 0.018 s-1 was 

determined inside the photoreactor. This result is in good agreement with 

J(NO2)=0.016 s-1 calculated (Kleffmann, 2005) from the measured actinic flux 

spectra taking into account the reactor geometry and molecular data of NO2, i.e. 

absorption cross sections and quantum yields (Hofzumahaus et al., 1999). The 

Eco-Physics instrument could not be used for experiments with the nitrophenols, 

since the NOx concentration measured by the instrument was significantly lower 

than the actual NOx concentration in the presence of ppmV levels of nitrophenols, 

because of photochemical reactions leading to NOx losses in the photolytic 

converter. 



Experimental section                                                                                   Chapter 2 
___________________________________________________________________________________________________ 

 31

2.2.4 Photolysis of nitrophenols. Aerosol formation 

The formation of aerosols in the 1080 l reactor was studied with an SMPS 

system presented in Figure 2.4. The SMPS consists of an electrostatic classifier 

TSI 3071 A and a particle counter TSI 3022 A. The classifier is connected to the 

reactor by a steel line. The particles generated in the gas phase inside the reactor 

were drawn in a laminar flow through a steel line to a DMA (Differential Mobility 

Analyzer) where the aerosols were classified according to their electrical mobility. 

The electrical field is adjustable between 10 and 12000 V.  

The mono-dispersed aerosol distribution then enters the Condensation 

Particle Counter (CPC) where the particle concentration for the classified size is 

determined. The counter is connected to a computer in order to achieve data 

acquisition. The CPC consist of 3 major subsystems: the sensor, the 

microprocessor-based signal-processing electronics and the flow system. The 

sensor itself is made up of a saturator, condenser, and optical detector, as shown 

in Figure 2.4. After passage through the heated saturator and the cooled 

condenser the submicrometer particle becomes supersaturated. The droplets then 

pass through a lighted viewing volume where they scatter light. The optical part of 

the CPC, which counts the light scattered from individual droplets, consists of a 

laser diode, collimating lens and cylindrical lens, and photodetectors. The 

scattered-light pulses are collected by a photodetector and converted into electrical 

pulses. The electrical pulses are then counted and their rate is a measure of the 

particle concentration. Aerosol size distributions between 10 and 1000 nm could be 

measured as a function of gas flow and impactor used. 

In addition to the SMPS system described above an ultrafine condensation 

particle counter (UCPC) TSI 3025 A was also used. The time set for this counter 

was 5 min per scan. This counter was used to observe the starting phase of the 

particle formation. 

 All the aerosol formation experiments were performed in the 1080 l quartz 

glass photoreactor as described previously. The experimental procedure during 

this work was as follows. Before each experiment a blind experiment was 

performed in order to check the background level of aerosols in clean air and also 

to ensure that no aerosol was coming from the reactor walls during the photolysis. 
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In all the blind experiments no particle formation was observed during 30 min 

photolysis time. With the chamber under reduced pressure the nitrophenols were 

added as described earlier in this chapter. Before the start of irradiation the 

nitrophenol was allowed to stand in the dark for 20 min in order to determine the 

wall loss rate. IR spectra were recorded at a spectral resolution of 1 cm-1 using a 

Nicolet NEXUS FT-IR spectrometer. FT-IR spectra were recorded continuously 

during the experiment by co-adding 128 scans per spectrum over a time period of 2 

min. The SMPS sampling was timed to coincide with the recording of the FT-IR 

spectra. 

Solid compounds (nitrocresols) were introduced into the chamber in airflow 

through a special heated inlet system. The initial reactant concentrations (in cm-3 

units) were (2 - 10) × 1013.  

Isoprene was injected in order to suppress the possible reaction of the 

nitrophenols with OH radicals formed during the experiment. The concentration of 

isoprene was varied between 10-100 × 1013 cm-3. 
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Figure 2.4 Detailed schematic diagram of the SMPS system (DMA and CPC) 
(adapted from Spittler (2001)).  
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3. Kinetic investigations of the gas-phase reaction of 
NO3 and OH radicals with some nitro/hydroxy 
substituted monoaromatic hydrocarbons 
The compounds investigated in this work are the main products of the 

atmospheric degradation of phenol and the cresol isomers in the gaseous phase. It 

is known that 1,2-dihydroxybenzene (catechol) and its methylated derivatives are 

formed in high yields in the OH initiated gas phase reaction of phenol and cresols, 

respectively (Olariu et al., 2002; Berndt and Böge, 2003). Formation of nitrophenol 

isomers has been observed from both the OH and NO3 radical reactions of the 

compounds (Atkinson et al., 1992; Bolzacchini et al., 2001; Olariu el al., 2002; 

Berndt and Böge, 2003). 

3.1 Kinetics of the reaction of NO3 radicals with 1,2-
benzenediol and methylated substitutes 

 Except for two kinetic studies made in our laboratories, nothing is presently 

known about the atmospheric chemistry of catechols. Olariu et al. (2002) and 

Tomas et al. (2003) have determined rate coefficients for the reaction of catechol 

with OH radicals and with O3, respectively. The work presented here, which in part 

is already published (Bejan et al., 2002; Olariu et al., 2004), provides new 

information on the rate coefficients for the gas phase reactions of NO3 radicals with 

a number of catechols. 
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3.1.1 Results 

The kinetic data obtained from investigations on the reactions of NO3 with 

selected catechols, performed in both the 1080 l quartz glass reactor in Wuppertal 

and in the EUPHORE chambers in Valencia, are plotted in accordance with eq. 

(2.12) in Figures 3.1–3.6. 

Reasonably linear plots were obtained in both chambers. As can be seen in 

all the figures, there is no discernable difference in the results between the 

experiments performed at low or high NO2 for both chambers; i.e., the kinetic 

behaviour was independent of the [N2O5]/[NO2] ratio. This supports that the 

reactions of the 1,2-dihydroxybenzenes take place with NO3 radicals and not with 

N2O5 or NO2.  

In the present work only 2,3-dimethyl-2-butene was used as a reference 

compound. The reaction of all other reference compounds tested with NO3 were 

either too slow or an interference free analysis of their infrared absorption bands 

was not possible. A value of k(2,3-dimethyl-2-butene + NO3) = (5.72 ± 0.21) x 10-11 

cm3 s-1 at 298 K (Atkinson, 1994) has been used as rate coefficient for the reaction 

of NO3 radicals with 2,3-dimethyl-2-butene to put the measured relative rates on an 

absolute basis. 

A possible problem, which can arise in the EUPHORE chamber, is the 

inhomogenity of the reactants as a consequence of the large chamber volume. 

Possible complications from “persistent cloud” formation close to the inlet port have 

been tested for in a separate experiment using the reference compound. This test 

experiment consisted of measuring the rate coefficient for the reaction of NO3 with 

2,3-dimethyl-2-butene relative to another reference compound whose kinetic rate 

coefficient is well established. o-Cresol was employed as a second reference 

organic compound with a recommended rate coefficient of k(o-cresol + NO3) = 1.4 

x 10-11 cm3 s-1 at 298 K (Calvert et al., 2002). Good linearity was obtained in the 

test experiment and a rate coefficient of k(2,3-dimethyl-2-butene + NO3) = 5.6 x 10-

11 cm3 s-1 was measured which is in perfect agreement with the rate coefficient of 

(5.72 ± 0.21) x 10-11 cm3 s-1 for the reaction recommended by Atkinson (1994). 

 



Kinetic investigations...                                                                                Chapter 3 
___________________________________________________________________________________________________ 

 37

ln([reference]t0
/[reference]t)

0.00 0.25 0.50 0.75 1.00

ln
([

di
hy

dr
ox

y]
t 0/[d

ih
yd

ro
xy

] t)
-k

w
al

l. t

0.0

0.4

0.8

1.2

1.6
OH

OH

WUPPERTAL

 
 

Figure 3.1  Plot of the kinetic data according to equation (2.12) for the reaction of 
1,2-dihydroxybenzene with NO3 radicals measured relative to 2,3-
dimethyl-2-butene in the 1080 l quartz glass reactor chamber: (□) low 
NO2; (■) high NO2. 
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Figure 3.2  Plot of the kinetic data according to equation (2.12) for the reaction of 
1,2-dihydroxybenzene with NO3 radicals measured relative to 2,3-
dimethyl-2-butene in the EUPHORE chamber: (□) low NO2; (■) high 
NO2. 
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Figure 3.3  Plot of the kinetic data according to equation (2.12) for the reaction of 
1,2-dihydroxy-3-methylbenzene with NO3 radicals measured relative 
to 2,3-dimethyl-2-butene in the 1080 l quartz glass reactor chamber: 
(□) low NO2; (■) high NO2. 
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Figure 3.4  Plot of the kinetic data according to equation (2.12) for the reaction of 

1,2-dihydroxy-3-methylbenzene with NO3 radicals measured relative 
to 2,3-dimethyl-2-butene in the EUPHORE chamber: (□) low NO2; (■) 
high NO2. 
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Figure 3.5  Plot of the kinetic data according to equation (2.12) for the reaction of 
1,2-dihydroxy-4-methylbenzene with NO3 radicals measured relative 
to 2,3-dimethyl-2-butene in the 1080 l quartz glass reactor chamber: 
(□) low NO2; (■) high NO2. 
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Figure 3.6  Plot of the kinetic data according to equation (2.12) for the reaction of 
1,2-dihydroxy-4-methylbenzene with NO3 radicals measured relative 
to 2,3-dimethyl-2-butene in the EUPHORE chamber: (□) low NO2; (■) 
high NO2. 

 



Kinetic investigations...                                                                                Chapter 3 
___________________________________________________________________________________________________ 

 40

The k1/k2 ratios determined from the slopes of the straight-line plots in 

Figures 3.1-3.6 in accord with eq. (2.12) are listed in Table 3.1. The errors quoted 

in Table 3.1 are a combination of the 2σ statistical errors from the linear regression 

analysis, the error given for the recommended value of the reference compound in 

the literature, and the errors arising from the subtraction procedure and from the 

wall-deposition correction of the reactant. The corrections for wall depositions of 

the catechols in the Wuppertal chamber experiments were approximately 40% 

compared to reaction with NO3; in the EUPHORE chamber the corrections for wall 

and dilution losses were also typically 40% compared to NO3 reaction. 

Good agreement was found between the rate coefficients measured in each 

of the chambers. The quality of the agreement is demonstrated in Figure 3.7 where 

the kinetic data obtained for 1.2-dihzdroxybenzene in the Wuppertal and 

EUPHORE chambers are plotted collectively according to eq. (2.12). Since the 

values of the rate coefficients determined in the two chambers are indistinguishable 

within the experimental uncertainties, final values k1(average) are given in Table 

3.1, which are the average of the individual measurements, together with error 

limits, which encompass the extremes of the individual measurements. 

In order to increase confidence in the rate coefficients determined for the 

1,2-dihydroxybenzenes the reference compound in the EUPHORE chamber was 

monitored by two different techniques, i.e. in-situ FT-IR and on-line GC-FID. No 

differences were observed in the rate coefficients determined using these 

techniques. An example of the measurements using both monitoring techniques is 

shown in Figure 3.8 for 3-methyl-1,2-dihydroxybenzene. 
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Figure 3.7  Plot of the kinetic data according to equation (2.12) for the reaction of 

1,2-dihydroxybenzene with NO3 radicals measured in the 1080 l 
quartz glass WUPPERTAL reactor chamber (○) and in the EUPHORE 
chamber (■). The reference hydrocarbon is 2,3-dimethyl-2-butene. 
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Figure 3.8 Plot of the kinetic data according to equation (2.12) for the reaction of 

3-methyl-1,2-dihydroxybenzene with NO3 radicals measured in the 
EUPHORE chamber using two different techniques for monitoring the 
reference: FT-IR (○) and GC-FID (■). The reference hydrocarbon is 
2,3-dimethyl-2-butene. 



Kinetic investigations...                                                                                Chapter 3 
___________________________________________________________________________________________________ 

 42

 
Table 3.1 Rate coefficients for the reaction of NO3 radicals with 1,2-

dihydroxybenzene, 1,2-dihydroxy-3-methylbenzene and 1,2-dihydroxy-
4-methylbenzene. 

 
1080 l reactor EUPHORE chamber 

Compound 
k1/k2 

k1  
(10-11 

 cm3 s-1) 
k1/k2 

k1  
(10-11  

cm3 s-1) 

k1 (average) 
(10-11  

cm3 s-1) 

τi 
= 

1/ki[NO3] 

OH
OH

 
1,2-

dihydroxybenzene 

1.58±0.07 9.03 ± 3.7 1.88±0.11 10.6 ± 4.3 9.8 ± 5.0 42 s 

OH
OH

CH3 
1,2-dihydroxy- 

3-methylbenzene 

3.01±0.10 17.3 ± 5.6 2.93±0.06 17.1 ± 4.8 17.2 ± 5.6 24 s 

OH
OH

CH3  
1,2-dihydroxy- 

4-methylbenzene 

2.80±0.10 16.0 ± 5.2 2.36±0.06 13.4 ± 5.0 14.7 ± 6.5 28 s 

 

3.1.2 Discussion 

This study represents the first determination of the rate coefficients for the 

reaction of NO3 radicals with 1,2-dihydroxybenzene, 1,2-dihydroxy-4- 

methylbenzene, and 1,2-dihydroxy-3-methylbenzene. No literature data for 

comparison are available. 

As seen from Table I, the reactivity of the 1,2-dihydroxybenzenes takes the 

following order: kNO3 (1,2- dihydroxybenzene) < kNO3(1,2-dihydroxy-4-

methylbenzene) < kNO3(1,2-dihydroxy-3-methylbenzene). Since the reaction of NO3 

with phenolic compounds is believed to proceed via an overall H-atom abstraction 

mechanism, which is preceded by an electrophilic addition of NO3 to the aromatic 

ring (Calvert et al., 2002), this order is what would be expected from a 
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consideration of the structures of the compounds. The initial addition step is 

addition of the NO3 radical to the ring in the ipso position of one of the hydroxy 

groups to form a six membered transition state with subsequent elimination of nitric 

acid, producing a phenoxy radical as shown below (Atkinson, 1991). The electronic 

structure of the phenoxy radical can be represented as an admixture of three 

principal resonance structures. 

NO3 +

OH
O O N

O
O

H
O

O

O

 

This mechanism explains the faster reactivity of hydroxylated monoaromatic 

compounds toward NO3 radicals compared to the corresponding methylated 

monoaromatic compounds. The faster rate coefficients for the reactions of the 

methylated 1,2-dihydroxybenzenes compared to 1,2-dihydroxybenzene can be 

attributed to the positive inductive effect of the methyl group, which increases the 

electron density at the one of the OH positions. 

At present there is no reliable method to quantitatively estimate rate 

coefficients for the reactions of the NO3 radical with aromatic hydrocarbons. 

However, in Figure 3.9 a comparison has been made between the recommended 

rate coefficients for the reaction of NO3 radicals with hydroxylated and alkylated 

monocyclic aromatic compounds at 298 K (Calvert et al., 2002). The rate 

coefficient for the reaction of NO3 with 1,2-dihydroxybenzene at 298 K is about a 

factor of 24 higher than that for phenol [kNO3 = (3.8 ± 0.6) × 10−12 cm3 s−1]. For 1,2-

dihydroxy-3-methylbenzene, the measured NO3 rate constant is factors of 12.3 and 

15.6 higher than those for the corresponding reactions of o-cresol [kNO3 = (1.43 ± 

0.16) × 10−11 cm3 s−1] and m-cresol [kNO3 = (1.1 ± 0.2) × 10−11 cm3 s−1], 

respectively. For 1,2-dihydroxy-4-methylbenzene, the rate coefficient is a factor of 
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14.5 higher than that for m-cresol and p-cresol [kNO3 = (1.1 ± 0.2) × 10−11 cm3 s−1], 

respectively. 
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Figure 3.9 Trend of experimental kinetic rate coefficients for the reaction of 
methylatedhydroxyaromatic compounds with NO3 radicals. For the 
isomers an average of the rate coefficients has been used. For 
benzene an upper limit of kNO3 = 3 × 10−17 cm3 s−1 has been used. 

 

On average, the addition of the second hydroxyl group to phenol and the 

cresols to form 1,2-dihydroxybenzenes increases the reactivity of the compounds 

toward the NO3 radical by a factor of about 16. The observed differences in 

reactivity can be ascribed to the activating effect of the hydroxyl groups toward 

electrophilic reactions and the magnitude of the o- and p-site directing strengths of 

the substituents. Using the NO3 rate coefficient database for aromatics as 

presented pictorially in Figure 3.9, it should now be possible to make reasonable 

estimates of rate coefficients for the reactions of NO3 radicals with 

hydroxymethylated benzenes which have not yet been experimentally determined. 

For example, the rate coefficients for the reactions of NO3 with trimethylphenols, 

which have not yet been measured, will probably be in the range of [kNO3 = (3 – 9) 

× 10−11 cm3 s−1].  
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3.1.3 Atmospheric implications 

 1,2-Dihydroxybenzene and its methylated derivatives react rapidly with NO3 

radicals, and this almost certainly constitutes the major nighttime atmospheric sink 

for these compounds. Using the kinetic data obtained in the present study, in 

combination with an average nighttime tropospheric nitrate radical concentration of 

[NO3] = 2.4 x 108 cm-3 (Geyer et al., 2001) an estimation can be made of the 

atmospheric residence time τi of a compound i due to its reaction with NO3 radicals 

using the relationship: τi = (ki[NO3])-1. The residence times thus obtained are 

presented in Table 3.1. The 1,2-dihydroxybenzenes will have very short 

atmospheric lifetimes in the night and, therefore, can influence chemical oxidant 

formation only on a local scale. 

The rate coefficients for the reaction of 1,2-dihydroxybenzene, 1,2-

dihydroxy-4-methylbenzene and 1,2-dihydroxy-3-methylbenzene with OH radicals 

are 1.04 x 10-10, 2.05 x10-10 and 1.56 x 10-10 cm3 s-1, respectively (Olariu et al., 

2000). Using this kinetic data for OH and the NO3 kinetic data from the present 

study, the relative contribution of each species to the degradation of the 

dihydroxybenzenes during the daytime can be estimated. Based on a daytime 

average tropospheric OH radical concentration of 1.6 x 106 cm-3 (Crutzen and 

Zimmermann, 1991; Prinn et al., 1995; Joeckel et al., 2003) and NO3 radical 

concentration of 3.1 x 106 cm-3 (Geyer et al., 2001) it can be shown that 1,2-

dihydroxybenzene will react during the daytime about 60 % with OH and about 40 

% with NO3 radicals. Therefore, reaction with NO3 is also an important daytime 

oxidation processes for these compounds. Finally, an additional important sink for 

dihydroxybenzene compounds in the atmosphere will be removal by wet and dry 

deposition. Dihydroxybenzenes are polar molecules with very high Henry’s law 

constants at 25 oC (Mackay et al., 1995) and, therefore, can also be efficiently 

scavenged by rain and fog droplets. 

 As mentioned in the results section the mechanism of the reaction of NO3 

with 1,2-dihydroxybenzene and its methylated derivatives is probably initial addition 

of NO3 to the ring followed by H-atom abstraction from an OH group.  

In preliminary tests the formation of 4-nitrocatechol, which has a very low 

vapor pressure, has been observed as a primary product. As a comparison, the 4-
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nitrophenol has a vapour pressure of 0.27 Torr at 25°C (see 

http://www.epa.gov/oppt/chemfact/nitro-sd.pdf). Therefore, the products from the NO3-

initiated oxidation of 1,2-dihydroxybenzenes (or their further oxidation products) are 

potentially important precursors for the formation of secondary organic aerosol 

(SOA). Detailed studies of the oxidation products from the NO3-initiated oxidation 

of 1,2-dihydroxybenzenes, particularly with respect to quantification of their SOA 

formation potential, seem warranted. 

3.2 Photolysis rates and kinetics of the reaction of OH 
radicals with selected nitrocresols 

Nitrocresols are secondary products of many atmospheric chemical 

reactions involving aromatic hydrocarbons and are formed mainly in the urban 

atmosphere. Very little is presently known about the gas phase atmospheric 

chemistry of nitrocresols. This work supplies new information on the rate 

coefficients for the gas phase reactions of the OH radical with nitrocresols. 

Photolysis rates for the nitrocresols have been determined in the Wuppertal quartz 

glass reaction chamber from which estimates of the photolysis rates of the 

compounds under atmospheric conditions have been made.  

3.2.1 Results 

The experimental kinetic data plotted in Figures 3.10-3.13 according to eq 

(2.12) were obtained from a minimum of 8 experiments with ethene as the 

reference hydrocarbon and a minimum of 4 experiments with n-butane as the 

reference hydrocarbon. The plots show reasonable linearity considering that the 

reactions are fairly slow and also the difficulties, which arise in the infrared spectral 

subtraction procedures and the handling of these sticky aromatic hydrocarbons. 

Table 3.2 lists the rate coefficients extracted from the plots in Figures 3.10-3.13 for 

the reaction of OH radicals with the four nitrocresols investigated. Rate coefficients 

of 8.52 x 10-12 and 2.36 x 10-12 (cm3 s-1) were used for the references ethene and 

n-butane, respectively (Atkinson and Arey, 2003). 
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Figure 3.10  Kinetic data plot for the reaction of 3-methyl-2-nitrophenols (3M2N) 

with OH radicals using (•) ethene as the reference hydrocarbon. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11  Kinetic data plot for the reaction of 4-methyl-2-nitrophenols (4M2N) 
with OH radicals using (•) ethene and (▲) n-butane as reference 
hydrocarbons. 
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Figure 3.12  Kinetic data plot for the reaction of 5-methyl-2-nitrophenols (5M2N) 
with OH radicals using (•) ethene and (▲) n-butane as reference 
hydrocarbons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.13  Kinetic data plot for the reaction of 6-methyl-2-nitrophenols (6M2N) 

with OH radicals using (•) ethene as the reference hydrocarbon. 
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Table 3.2  Rate coefficients for the reactions of OH with four i-methyl-2-
nitrophenols (i = 3, 4, 5, 6). 

compound reference k1/k2 k1 
(10-12cm3s-1) 

k(average) 
(10-12cm3s-1) 

k (literature)a

(10-12cm3s-1) 
3M2N 

ethene 0.43±0.02 3.69±0.16 3.69±0.16 11.2 

ethene 0.41±0.02 3.51±0.17 
4M2N 

n-butane 1.55±0.23 3.66±0.54 

3.46±0.18 5.38 

ethene 0.67±0.04 5.71±0.31 
5M2N 

n-butane 1.42±0.67 7.73±0.58 

7.34±0.52 11.2 

6M2N 

ethene 0.32±0.02 2.70±0.17 2.70±0.17 - 

(a)The literature values are computer estimates based on the structure-activity relationship (Meylan 
and Howard, 1993). 
 

Photolysis of methylated nitrophenols is a potential source of OH radicals 

(Bejan et al., 2006) and thus also a potential source of error in the determination of 

the correction for photolysis in the OH kinetic analysis. To obtain the exact values 

of the photolysis rates for the compounds it was necessary to perform separate 

experiments in which the OH radicals were scavenged. Using isoprene as 

scavenger it was possible to calculate the OH radical concentration and thus 

calculate the overestimation in the measured photolysis rate due to reaction with 

OH. The calculated concentrations of OH radicals produced in the photolysis of the 

various nitrocresols are presented in Table 3.3. 

The loss processes (wall deposition and photolysis) make a large 

contribution of around 50-55% to the measured total loss of most of the 

compounds investigated. In the case of 5-methyl-2-nitrophenol the contribution was 
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between 29 - 33%. This lower contribution from photolysis and wall loss to the 

overall loss for this compound can be explained by the higher reactivity of 5-

methyl-2-nitrophenol toward OH radicals compared to the other nitrocresols. The 

losses due solely to photolysis were approximately 23-27% in all cases. 

 
Table 3.3  Photolysis rates and the steady-state OH radical concentration 

estimated during the photolysis of all four i-methyl-2-nitrophenols (i = 
3, 4, 5, 6) investigated.  

 
 

compound 
 

3-methyl-2-
nitrophenol 

4-methyl-2-
nitrophenol 

5-methyl-2-
nitrophenol 

6-methyl-2-
nitrophenol 

 
photolysis rate(a) 

(s-1) 
1.67±0.11 x10-4 8.86±1.07x10-5 1.07±0.14x10-4 7.81±1.11x10-5 

 
OH concentration 

(cm-3) 
~3x105 ~2x105 ~3x105 ~2x105 

(a) Values for the photolysis rate obtained in the 1080 L quartz glass reactor. 

 

3.2.2 Remarks and conclusions 

 

 This work represents the first reported experimental kinetic study of the 

reaction of OH radicals with methylated nitrophenols, therefore, a comparison with 

other experimentally obtained data is not possible. Because of the difficulties in 

handling the compounds the measured rate coefficients should be used with 

caution and require validation using different experimental techniques. 

Up to now there has only been a theoretical estimation of the rate 

coefficients for the atmospheric gas-phase reactions of these compounds with OH 

radicals (Meylan and Howard, 1993). According to the estimate both 3M2N and 

5M2N should have the same rate coefficient of 1.12 × 10-11 cm3 s-1 and 4M2N a 

value of 5.4 × 10-12 cm3 s-1. The rate coefficient of 6M2N was not estimated. The 

results of the present work are in disagreement with the estimated values; all of the 

measured values are lower than the estimates with the differences being factors of 

2 and 3 in the cases of 5M2N and 3M2N, respectively.  
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The measured rate coefficients are higher than those reported for OH + 2-

nitrophenol (Atkinson et al., 1992a) and lower than those reported for OH with the 

cresol isomers (Calvert et al., 2002). This is in line with reactivity expectations. The 

rate coefficient for all four nitrocresols is around 10-12 cm3 s-1, however, the present 

results appear to indicate an influence of the position of the methyl group on the 

aromatic ring on the rate coefficient. Based on established chemical 

activating/deactivating effects for ring substituents (discussed below), the rate for 

OH + 5M2N would be predicted to have a higher rate than the others, and OH + 

6M2N should have the lowest rate coefficient; 3M2N and 4M2N would be expected 

to have fairly similar rate coefficients.  

 The reaction of phenolic compounds with OH radicals occurs predominantly 

by electrophilic addition of OH to the aromatic ring (Atkinson, 2000). NO2 is a meta 

director because electrophilic attack at the ortho and para positions generates an 

especially poor resonance structure and the CH3 group is an ortho-para director. 

OH has a strong electron donating resonance effect that activates the ring. For all 

of the four compounds investigated NO2 and OH are fixed on adjacent positions on 

the aromatic ring. Thus the position of the CH3 substituent has a profound affect on 

the reactivity of the aromatic compounds with OH radicals, as can be seen in 

Figure 3.14. 

 

 

 

 

 

 

 

 

Figure 3.14  The nitrocresol isomers considered in this study and the sites that are 
activated by the hydroxyl ( * ) and methyl ( ° ) groups toward 
electrophilic addition. 

 

The OH and CH3 entities both donate electron density to the aromatic ring 

and activate the ortho and para positions toward electrophilic addition. The 
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directing + I effect of the methyl group is considerably less than the + E effect of 

OH, but nevertheless the CH3 group still plays an important role. OH activation and 

NO2 deactivation effects are in the 4th and 6th positions for all compounds, so 

additional activation from CH3 becomes important. 

 The faster rate coefficient for the reaction of 5M2N compared with those of 

the other i-M2Ns (i=3,4,6) can be ascribed to enhanced activation of the 4th and 6th 

ring positions by both the methyl and OH groups (ortho- by CH3, and both ortho- 

and para- by OH).  

A similar effect is present in 3M2N, but the + I effect of CH3 is somewhat 

suppressed by the – E effect of the NO2 group. Within the experimental error limits, 

the rate coefficients for 4M2N and 6M2N are almost the same. This is expected 

because the number of possible addition sites for the OH radical is the same for 

both compounds. 

 Except for the study of Bardini (2006) the gas phase photolysis of 

nitrocresols has not received any attention until now. It is not possible to compare 

directly the photolysis frequencies obtained for the nitrophenols under natural 

sunlight conditions by Bardini (2006) with those determined in this work using 

fluorescent lamps. However, except for 6-methyl-2-nitrocresol, which was not 

studied by Bardini, the trend in the magnitude of J-values measured for the 

methylated 2-nitrophenols in the indoor photoreactor in Wuppertal is very similar to 

the trends observed by Bardini in natural sunlight for the same compounds, i.e. the 

same order of photoreactivity is also observed with 3M2N>5M2M>4M2N~6M2N.  

A rough estimate of the magnitude of the photolysis rates for methylated 

nitrophenols under atmospheric conditions can be made using the values obtained 

in the experiments with the superactinic lamps. This is accomplished by scaling the 

values obtained in the reactor and presented in Table 3.3 with a factor comprised 

of the ratio of the NO2 photolysis measured in the atmosphere and that measured 

in the reactor. For example, a factor of JNO2 (atmosphere)/ JNO2 (in the reactor) = 

(8.5 ± 0.5) x 10-3 s-1/ (2.0 ± 0.2) x 10-3 s-1 = 4.25 is obtained when using an 

atmospheric noontime photolysis frequency of NO2 typical for clear sky conditions 

at a latitude of 40o N for July 1 (Klotz et al., 1997). 
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The photolysis frequencies obtained on scaling the values obtained in the 

photoreactor to atmospheric conditions are plotted in Figure 3.15 where they are 

compared with the values measured in the EUPHORE reactor by Bardini (2006). 
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Figure 3.15 Comparison of the J-values measured for the 2-nitrocresols in the 
photoreactor scaled to atmospheric conditions (see text) with those 
measured by Bardini (2006) in the outdoor EUPHORE chamber. 

 
The J values measured in the reactor when scaled to atmospheric 

conditions are significantly larger than the values measured in EUPHORE under 

natural light conditions by Bardini (2006). This is not too surprising for a number of 

reasons i) the light distribution in the photoreactor does not truly mimic that of the 

atmosphere, ii) scaling by using JNO2 values is a rough approximation since the 

nitrophenol and NO2 UV spectra are different and iii) the value of JNO2(atmosphere) 

chosen for scaling may be different to that at the time of the measurements of 

Bardini (2006). Bardini used a value of JNO2(atmosphere) = 1×10-2 s-1. 

In recent studies the formation of secondary aerosol formation has been 

measured during the photolysis of nitrophenols in the reaction chamber (Bejan et 

al., 2004). The possible influences of aerosols on the kinetic rate have been 

studied by Sorensen et al. (2002). They found no discernable effect of aerosol on 

the rate of loss of the organic compounds via reaction with OH radicals. 
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3.2.3 Atmospheric implications 

The rate coefficients for the OH radical initiated oxidation of 2-nitrocresols 

can be used to calculate the tropospheric lifetime of the 2-nitrocresols with respect 

to reaction with OH radicals. Similarly the scaled photolysis frequencies for the 2-

nitrophenols can be used to roughly estimate their tropospheric lifetime with 

respect to photolysis. The estimated lifetimes of the 2-nitrophenols with respect to 

photolysis and reaction with OH calculated using the data obtained in this study are 

presented in Table 3.4. It is clear from Table 3.4 that photolysis will be the 

dominant gas phase loss process for the 2-nitrocresols even if the scaled 

photolysis frequencies are significantly overestimated. 

 

Table 3.4  Atmospheric lifetimes of the 2-nitrocresols with respect to photolysis 
and reaction with OH radicals. 

 
 

compound 
 

3-methyl-2-
nitrophenol 

4-methyl-2-
nitrophenol 

5-methyl-2-
nitrophenol 

6-methyl-2-
nitrophenol 

τhν
(a) 

(min) ~ 23 ~ 44 ~ 37 ~ 50 

τOH
(b) 

(h) ~ 47 ~ 50 ~ 24 ~ 64 

(a) Calculated using an atmospheric photolysis rate estimated by multiplication of the measured 
photolysis rate in the photoreactor by a scaling factor (see text). 
(b) Daily average OH = 1.6 x 106 cm-3 (Prinn et al., 1995). 
 

Nitrocresols are reactive species, so their overall effective atmospheric 

lifetime will be determined by a number of atmospheric processes like the kinetic 

rates of gas phase production and loss, rates of equilibrium partitioning and rates 

of the reactions in the aqueous phase. The net transfer of a gas into a liquid is the 

result of a series of processes: gas phase diffusion to the surface, mass 

accommodation, Henry’s law solubility, liquid phase diffusion and liquid phase 

reaction. 

2-Nitrocresols are polar molecules. Unfortunately no Henry`s law 

coefficients are known. For 2-nitrophenol, cresols and phenol at 298 K, the Henry`s 

law coefficients are fairly large with values of 84 M atm-1, 1114 M atm-1, 3174 M 

atm-1 respectively. The Henry`s law coefficient value for 2-nitrophenol is known to 
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increase by a factor 2.1 when the temperature decreases by 10 degrees (Harrison 

et al., 2002). 

A mass accommodation coefficient (α) of 8.3 x 10-4 at 298 K has been 

measured for 2-nitrophenol by Leysens et al. (2005). Using this value results in a 

calculated accommodation time for 2-nitrophenol of around 10 min. If this 

calculation is generally applicable to other methylated nitrophenols then mass 

accommodation is a fast process for this class of compound and could compete 

with gas phase photolytic losses. 
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4. Mechanistic investigations on the photolysis of 
nitrophenols: A new gas phase source of HONO 
formation 
Mechanistic investigations relevant to the atmospheric degradation of 

nitrophenols, with regard to the observation of its photolysis products, were carried 

out using a special photoreactor flow tube system at the Bergische University 

Wuppertal. Despite the numerous studies on the gas phase atmospheric chemistry 

of many aromatic hydrocarbons, very little attention has been given to the 

atmospheric fate of nitrophenols. 

Experiments performed in the 6 m quartz glass reactor on the photolysis of 

nitrophenol have shown the formation of OH radicals. The suggested source of the 

OH radicals is formation of HONO followed by HONO photolysis leading to OH 

radicals and NO. 

This is the first mechanistic study on the photolysis of nitrophenols leading 

to HONO formation. 

4.1 Results 

The gas phase photolysis of nitrophenols was first studied at Wuppertal 

University in a 6.2 m quartz glass reactor presented in Figure 2.1 in Chapter 2. In 
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order to prevent interference by possible OH radical formation in the reactor during 

the photolysis, isoprene was added to scavenge the OH radicals. It is now well 

established that the photolysis of nitrous acid formed at the chamber walls by 

reactions of NO2 can produce OH radicals in environmental chambers (Besemer 

and Nieboer, 1985; Rohrer et al., 2005, Zador et al., 2006). In the presence of 

isoprene it was assumed that only photolysis would be responsible for the decay of 

the nitrophenols. A fast decay of isoprene was observed during the irradiation of 

the nitrophenols that suggested a source of OH radicals other than heterogenic 

chemical production on the surface of the chamber. 

There have been many studies on surface processes leading to HONO 

formation (Zhou et al., 2001, 2002a, 2002b; George et al., 2005; Stemmler et al., 

2005, 2006), however, the preliminary work in the photoreactor indicated that the 

HONO formation was mainly a gas phase process. Because of the difficultly in 

decoupling gas phase from heterogeneous formation processes for HONO in the 

large quartz glass reaction chamber a flow tube photoreactor has been used in 

order to reduce the contribution of wall effects to HONO formation (see Chapter 2 ).  

When mixtures of nitrophenols at ppmV levels were irradiated in the flow 

tube photoreactor an instantaneous formation of HONO at ppbV levels was 

observed in the gas phase in all cases (see Figure 4.1). HONO formation was not 

observed in the dark. Using FTIR no significant change in the nitrophenol 

concentrations upon photolysis could be established. This, however, is due to the 

low precision of the FTIR measurements. The ratio of ∆[Nitro]/[Nitro] is << 1%. The 

upper limit of the loss of nitrophenols during the irradiation was < 50 ppbV for all 

the experiments. When the flow tube photoreactor was not throughly cleaned 

between experiments, HONO formation was also observed during the irradiation of 

the photoreactor flushed with synthetic air only. 
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Figure 4.1 HONO formation during the irradiation of the empty flow tube reactor 
flushed with synthetic air (blank) and during the irradiation of 3M2N in 
synthetic air (J(NO2) = 0.018 s-1, treac = 27 s). 

 

However, this blank formation was normally significantly lower than the 

HONO formation observed in the presence of the nitrophenols (see Figure 4.1) and 

was taken into consideration in the evaluation of the data. The stability of the 

nitrophenol source varied significantly during the experiments, however, the HONO 

concentration during irradiation followed perfectly the fluctuations in the nitrophenol 

concentration (see Figure 4.1).  

A linear correlation between the HONO and nitrophenol concentration was 

observed in separate experiments for all of the nitrophenols investigated. An 

example of this linear correlation is shown in Figure 4.2 for 3M2N. During the 

experiments the HONO formed from the photolysis of the nitrophenols can also 

photolyse. However, HONO loss by photolysis within the reactor is estimated to be 

< 5%.  

ten Brink and Spolestra (1998) have suggested that a dark decay of HONO 

also occurs. The dark decay is a second order decomposition process in which NO 

and NO2 are formed (Chan et al., 1976). However, because of the short reaction 

time of < 27 s in the flow reactor, this process can be totally neglected.  
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During the photolysis of nitrophenols there is appreciable aerosol formation 

(Bejan et al., 2004). The effect of aerosols on the HONO decay can, however, be 

neglected (ten Brink and Spolestra, 1998). Moreover, the very short reaction time is 

not sufficient to permit an aerosol catalytic effect. 

When two flow tube photoreactors with significantly different surface to 

volume ratios (S/V) and volumes were used, the HONO concentration in the 

effluent differed significantly between the reactors. The ratio of the HONO yield per 

ppmV of 3M2N used was a factor of 40 smaller for a 9 mm i.d. photoreactor 

compared to a 50 mm i.d. photoreactor (see slopes in Figure 4.2). The 40 times 

lower HONO yield perfectly matched the ratio of the photolysis time of the gas 

phase in both photoreactors, for which a value of 41 was calculated. In contrast, 

the ratio of the product S/V x treac changed by only a factor of 7. 
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Figure 4.2 HONO formation as a function of the concentration of 3M2N in two 

different photoreactors (S/V(large) = 0.75 cm-1, treac(large) = 26.7 s, 
S/V(small) = 4.44 cm-1, treac(small) = 0.64 s).  
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The influence of the light intensity on the HONO formation rate during the 

photolysis of 3M2N was also studied for the large flow tube photoreactor by 

variation of the number of lamps switched on. A linear correlation between the 

HONO formation and the number of lamps switched on was observed (see Figure 

4.3). 

0

1

2

3

4

5

6

7

8

0 2 4 6 8
No of lamps

H
O

N
O

 [p
pt

V
]

 

 

Figure 4.3 HONO formation during the photolysis of 3M2N in the large flow tube 
photoreactor as a function of the number of operating lamps 
(treac(large) = 26.7 s). 

 

 Since NO2 might have been formed during the irradiation of the nitrophenols 

and since NO2 can be photochemically converted into HONO on organic surfaces, 

(George et al., 2005; Stemmler et al., 2005, 2006) the influence of NO2 on the 

HONO formation rate was studied for 3M2N. A significant increase in the HONO 

formation was observed when NO2 was added (see Figure 4.4). The additional 

HONO formation was non-linearly correlated with the initial NO2 concentration. This 

is similar to what has been observed in recent studies on organic surfaces (George 

et al., 2005; Stemmler et al., 2005, 2006). 
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Figure 4.4 Additional HONO formation by NO2 photochemistry during the 
irradiation of 3M2N (2.5 ppmV) in the large flow tube photoreactor 
using 6 lamps as a function of the initial NO2 concentration (treac = 
26.7 s, J(NO2) = 0.018 s-1). The photolytic HONO formation in the 
absence of NO2 was ~3 ppbV. 
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Figure 4.5 Ratio of the HONO formation during the irradiation of 3M2N in a 
certain buffer gas to the formation in pure nitrogen normalized to the 
same concentration of 3M2N. Purity of buffer gas were N2 (99.999 
and 99.9999), O2 (99.999), Ar (99.999) or He (99.9999). 
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Only an upper limit of ≤ 0.14 ppbV NO2 could be estimated for the NO2 

formation during the irradiation of pure 3M2N mixtures (2.5 ppmV). The photolysis 

of any NO2 that might have been formed in the photoreactor was taken into 

consideration for the calculation of this upper limit. These observations strongly 

support that only a small fraction of the observed HONO yield during the irradiation 

of pure nitrophenol mixtures occurs by mechanisms involving NO2.  

The influence of the buffer gas on the HONO formation rate was also 

investigated for the photolysis of 3M2N. As can be clearly seen in Figure 4.5, the 

nature of the buffer gas had an impact on the HONO formation. Compared to pure 

nitrogen (99.999% or 99.9999%), the HONO yield increased by factors of 1.5, 1.8, 

2.5 and 3.0 in Ar, O2, synthetic air and He, respectively.  

Figure 4.6 shows the photolysis of the other nitrophenols studied in this 

work, 2NP, 4M2N and 5M2N, as a function of the concentration of the nitrophenols 

in synthetic air. For all of the compounds a linear dependency between HONO 

formation and the nitrophenol concentration was observed. 2NP, 4M2N and 5M2N 

were photolysed with all 6 lamps at a reaction time of 26.7 s in the large flow tube 

reactor. J(NO2) in the reactor was 0.0184 s-1. Figure 4.7 shows the variation of the 

concentration of HONO formation for the different ortho-nitrophenols.  
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Figure 4.6 HONO formation as a function of the concentration of the ortho-
nitrohydroxylated monoaromatic compounds. 
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Figure 4.7 HONO formation rate (ppt ppm-1 s-1) from the different ortho-
nitrohydroxylated monoaromatic compounds. 

 
The formation of HONO from the different nitrophenols can be quantitatively 

related to the photolysis frequency of the nitrophenol by,  
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The results are listed in Table 4.1. From the measured photolysis frequency 

of 3M2N a quantum yield φ(3M2N → HONO) has been estimated using equation 

4.2 under the assumption that this quantity is independent of wavelength 

(Finlayson-Pitts, 2000). 

 

λλλφλσ dFJ )()()( ××= ∫        4.2 

 

A value of φ(3M2N → HONO) ≈ 1.5 × 10-4 was calculated using the equation 

4.2 and based on the actinic flux spectrum from the reactor and an absorption 

spectrum of 3M2N obtained in liquid dichloromethane (see Figure 4.8). Since the 

absorption cross section of 3M2N is unknown for the gas phase, it was assumed 

that the cross sections for the gas and liquid phases are similar. The UV absorption 

spectrum of 3-methyl-2-nitrophenol shows three distinct absorption bands. The first 

two bands at ~ 200-250 nm and 270-330 correspond to π - π∗ electronic transitions 

within the aromatic ring. The broad absorption band at 350-440 nm is due to an n - 

π∗ electronic transition within the NO2 chromophore (Silverstein et al., 2005). 

Bardini (2006) has also studied the bathochromic effect of solvent. No significant 

shift in the absorption bands in the UV spectra of the nitrophenols was observed 

when using acetonitrile, methanol or 1-propanol as the solvent.  

For further verification of the mechanism, the photolysis of different 3- and 4-

nitrophenols was attempted. However, because of the much lower vapour 

pressures of these compounds they could not be detected by FTIR, i.e. the vapour 

pressure at the temperature of the experimental set-up (room temperature) was 

much lower than the detection limit of the FTIR.  
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Table 4.1 Photolysis frequency, J(nitrophenol → HONO), of HONO formation 
for different nitrophenols in the flow tube photoreactor under 
conditions with J(NO2) = 0.018 s-1 in synthetic air (errors: 2σ) 

 
Compound                    J(nitrophenol → HONO)/10-5 s-1 

3M2N 4.4 ± 0.3 

2NP 2.9 ± 0.6 

5M2N 2.4 ± 0.3 

4M2N 1.1 ± 0.1 
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Figure 4.8 Plot of the cross section (base 10) for 3M2N measured in 
dichloromethane solvent. 

 

4.2 Discussion 

4.2.1 Internal rotation proton transfer between OH and NO2 groups 

positioned ortho to one another  

The properties of 2-nitrophenol (OH and NO2 groups positioned ortho to 

each other, structure I) and its methylated analogues are significantly different 

compared to those of the 3- and 4-nitrophenols, i.e. the melting points of the 3- and 

4-nitrophenols are higher, the vapour pressures of 3- and 4-nitrophenols are 1000 
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times lower, and there are marked differences in the infrared absorption spectra 

(see Figure 4.9). The equilibrium between the cis and trans isomers in structure I is 

strongly shifted to the cis isomer (Schreiber, 1989). The differences in physical 

properties are caused by strong intramolecular hydrogen bonding in the 2-

nitrophenols as shown in structure II; the effect of “chelation” on physical properties 

is well known (Baitinger et al., 1964; Leavel and Curl, 1973; Schreiber, 1989; 

Borisenko et al., 1994; Borisenko and Hargittai, 1996; Chen et al., 1998; Kovacs et 

al., 1998, 2000). 
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In infrared spectroscopy evidence of “chelation” is based on the absence of 

the characteristic OH absorption infrared peak around 3650 cm-1 in phenols with an 

ortho nitro group (see Figure 4.9). For 2-nitrophenols the frequency of the OH 

stretching band is decreased by 400 cm-1 compared to other phenols while that of 

the OH torsion is increased by 380 cm-1 (Kovacs et al., 1998). Due to the 

constraining effect of the intramolecular hydrogen bonding, the NO2 torsional 

frequency is also increased with respect to that of nitrobenzene. 
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Figure 4.9 Infrared spectroscopic evidence of intramolecular hydrogen bonding 
in 2-nitrophenol. 

 

The hydrogen bond can be considered the first step in a proton transfer 

process, leading to a nitronic acid structure III (Chen et al., 1998; Chen and Chieh, 

2003). For the nitronic acid structure III arising from nitrobenzene, dissociation 

leading to the formation of HONO has been predicted for the gas phase on the 

basis of theoretical calculations (Polasek et al., 2001). Thus, photo-dissociation of 

2-nitrophenol and its methylated derivatives via structure III and formation of 

HONO in the gas phase might also be possible, as has been observed in the liquid 

phase (Ishag and Moseley, 1977; Alif et al., 1991; Bing et al., 2005). To date, no 

observations of nitrous acid formation from the gas phase photolysis of 

nitrophenols have been reported in the literature. 

4.2.2 Gas-phase process or surface chemistry? 

As shown in the Results section, the instantaneous HONO formation 

observed during the photolysis of several nitrophenols was linearly correlated with 

the light intensity in the photoreactor (Figure 4.3), the concentration of the 

nitrophenols (Figures 4.2 and 4.6), and the photolysis time. However, the HONO 

formation was found to be independent of the S/V ratio of the reactor, see Figure 

4.2. These observations all support that a gas phase process is forming HONO. In 
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the case of a heterogeneous reaction source a dependence on S/V would be 

expected. In addition, the perfect correlation of the HONO formation with the 

concentration of the nitrophenols, even for rapid concentration changes (Figure 

4.1), would not be expected for a surface process, where adsorption of the 

nitrophenols on the surface would lead to a measurable delay between the 

nitrophenol concentration changes and the HONO concentration. 

4.2.3 Can impurities be responsible for HONO formation? 

Due to the low estimated quantum yield of ~10-4 and purities of the different 

nitrophenols of only 97–99%, HONO formation might also result from the photolysis 

of nitrogen-containing impurities with a two orders of magnitude higher photolysis 

frequency than those of the nitrophenols. However, a linear concentration 

dependency was observed for all of the nitrophenols investigated (see Figure 4.6). 

Since the concentration of the nitrophenols was varied by changing the 

temperature of the nitrophenol source, impurities can only explain the observed 

HONO formation if the temperature dependencies of the vapour pressures of the 

hypothetical impurities are similar to those of the different nitrophenols 

investigated. In addition, during the experiments the physical state of the samples 

changed between liquid and solid, depending on the temperature of the nitrophenol 

source, without affecting the HONO yield. In experiments in which 3M2N with a 

higher purity (99% instead of 98%) was used, no effect on the photolysis frequency 

J(nitrophenol → HONO) was observed. 

A further indication that impurities are unimportant is given by the time 

dependence of the HONO formation during the blank experiments (see Figure 4.1). 

The HONO formation in these experiments was attributed to the photolysis of 

adsorbed nitrophenols on the walls, since in blank experiments, in which the 

photoreactor was cleaned prior to the experiment, significantly lower HONO 

formation was observed. If impurities of ~2% caused the HONO formation in the 

experiment with 3M2N shown in Figure 4.1, the photolysis frequency of the 

impurities should have been ~2 × 10-3 s-1 (50 times higher than the value for 3M2N, 

see Table 4.1) leading to a lifetime of only ~8 min for the impurities on the reactor 

walls. During the blank experiment shown in Figure 4.1 the reactor was irradiated 

for 45 min, which would thus result in an almost complete destruction of the 
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impurities. However, the HONO formation only decreased from 0.15 to 0.13 ppbV 

(see Figure 4.1), which is attributed to the decrease of the amount of adsorbed 

3M2N by desorption from the walls. In conclusion, HONO formation in the 

experiments by the photolysis of impurities is improbable. 

4.2.4 Is the HONO originating from a mechanism involving NO2? 

Recently, photolytic HONO formation was observed during the 

heterogeneous reaction of NO2 with phenolic hydrocarbons (George et al., 2005; 

Stemmler et al., 2005, 2006). This was also observed in the present study when 

NO2 was added to the nitrophenols under irradiation (see Figure 4.4). However, in 

the present investigation, during the photolysis of pure nitrophenol–bath gas 

mixtures no NO2 formation was observed. Thus, from the upper limit of the NO2 

yield of ≤ 0.14 ppbV for a concentration of 3M2N of 2.5 ppmV in the large 

photoreactor, and from the observed NO2 dependence in the case of 3M2N (see 

Figure 4.4) the contribution of HONO formation by reactions involving NO2 is 

estimated to be < 3%. Accordingly, the contribution to the formation of HONO by 

photolytic NO2 reactions during the photolysis of pure nitrophenols should be 

negligible. This conclusion is also supported by the gas phase nature of the 

process observed (see above). In contrast, for the photolytic HONO formation by 

NO2 reactions in the presence of phenolic compounds, a surface process has been 

proposed (George et al., 2005; Stemmler et al., 2005, 2006). 

4.2.5 Mechanistic investigations 

The linear dependence of the HONO formation on the concentration of the 

nitrophenols (see Figures 4.2 and 4.6) also excludes an intermolecular reaction 

between two nitrophenol molecules, for which a quadratic concentration 

dependency would be expected. Instead, an elimination of HONO from the nitronic 

acid structure III, formed by photoexcitation of structure II of 2-nitrophenol, is 

proposed. In the study of Chen et al. (1998), structure III was proposed as a 

thermal decomposition product of 2-nitrophenol and it appears to be feasible that it 

is also formed by photoexcitation. In addition, abstraction of HONO was calculated 

to be energetically possible from a similar nitronic acid structure III of nitrobenzene 

(Polasek et al., 2001) and might also explain the HONO formation in the gas phase 
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observed in the present study for the photolysis of nitrophenols. HONO formation 

has also been observed during the photolysis of 2-nitrophenol in the liquid phase 

(Ishag and Moseley, 1977; Alif et al., 1991; Bing et al., 2005) and was explained, at 

least in part, by the elimination of HONO leading to an organic biradical (Alif et al., 

1991).  

In a recent article, Nagaya et al., (2006) have studied in detail the 

intramolecular hydrogen bond between the OH and NO2 groups in the 2-

nitrophenol molecule. They identified the conformation of the aci-nitro isomer of 2-

nitrophenol and examined the photoreaction mechanism with the aid of DFT and 

time-dependent DFT calculations. Nagaya et al. (2006) confirmed the existence of 

the unstable intermediate proposed in this work. 

To obtain further insight into the mechanism leading to HONO formation 

upon photolysis, the influence of the buffer gas was studied. From the different 

experiments in the absence of oxygen the following trend in the HONO yield was 

observed: HONO(He)>HONO(Ar)>HONO(N2) (see Figure 4.5). From this 

observation it is concluded that HONO formation is caused, at least in part, by a 

sequence of reactions involving a photoinduced intramolecular H atom transfer to 

form a primary excited state III**, followed by energy transfer to form an excited 

state, structure III*, with subsequent elimination of HONO, i.e. reactions (a), (c) and 

(d) in the mechanism shown in Figure 4.10. To explain the observed buffer gas 

dependency of the HONO yield it is proposed that the excited state III** can be 

additionally quenched by the buffer gas, the effectiveness of which will depend on 

the nature of the quenching gas being used, see reaction (b).  
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Figure 4.10 Reaction mechanism proposed to explain HONO formation during the 
photolysis of 2-nitrophenol in the gas phase. 

 

For the liquid phase, the formation of a biradical leading to the formation of a 

ketene was proposed to explain HONO formation during the irradiation of 2-

nitrophenols (Alif et al., 1991) and might also be a co-product of HONO during the 

gas phase photolysis, see Figure 4.11. 
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Figure 4.11 Formation of cyclopentadiene ketene from the phototransformation of 

2-nitrophenol in aqueous solution (Alif et al., 1991) 
 

The proposed reactions (a)–(d) cannot, however, explain the observations in 

the presence of oxygen, for which a similar or even lower HONO formation 

compared to nitrogen would be expected, since oxygen is known to be an efficient 

quencher. However, O2 can potentially serve as both a quencher in the reactions 

and a reactant in bimolecular steps, depending on the electronic structure of the 

reactants and products (Pilling and Seakins, 1995). In the present experiments, the 

HONO yields in synthetic air and pure oxygen were significantly higher than that 

obtained in pure nitrogen (see Figure 4.5). Thus, in order to explain this anomaly, a 

further reaction is proposed, in which HONO is formed in a reaction of oxygen with 

the excited state III*, i.e. reaction (e) in the mechanism shown in Figure 4.10. With 

this additional process the decrease in HONO formation observed on switching 

from synthetic air to pure oxygen (see Figure 4.5) can be explained. For relatively 

low oxygen concentrations (synthetic air) the concentrations of III** and III* are still 

high and reaction (e) will lead to a high HONO yield. When the oxygen 

concentration is further increased (100% O2) the concentrations of III** and III* will 

significantly decrease, due to efficient quenching of III**, reaction (b), so reaction 

(e) will become less important. Although the mechanism explains the observations 

reasonably well, it should be remembered that it is only based on the observed 

HONO yield. None of the other reaction products, e.g., the proposed ketene, (Alif et 

al., 1991) were detected with the FTIR spectrometer. The mechanism is still highly 

speculative and needs to be validated by additional product and spectroscopic 

studies, and theoretical calculations.  

As reported by Bejan et al., (2004) and described in detail in Chapter 5 the 

instantaneous formation of submicron particles has been observed during the 



Mechanistic investigations ...                                                                       Chapter 4 
___________________________________________________________________________________________________ 

 74

photolysis of nitrophenols. Based on the mechanism proposed in this study, the 

formation of particles from the photolysis of nitrophenols is not unexpected. For 

example, the proposed biradical, reaction (d) in mechanism from Figure 4.10, will 

most probably undergo further reactions such as isomerisation, leading to the 

formation of acids (Alif et al., 1991) or reactions with nitrophenols, probably 

generating higher molecular species with vapour pressures low enough to 

generate particles. Detailed product studies will be necessary in order to explain 

the observed formation of particles during the photolysis of nitrophenols. 

Although in most experiments 3M2N was used, the photolytically induced 

HONO formation from other nitrophenols was also investigated. Although not as 

efficient as 3M2N, HONO formation was observed for all of the ortho-nitrophenol 

compounds investigated (see Figure 4.6). Thus, it is to be expected that higher 

molecular ortho-nitrophenols, such as nitro-PAH derivates and also polynitro-

phenols and polyhydroxy-nitroaromatics will also form HONO during photolysis. 

Using ab initio and DFT studies (density functional theory) a photoinduced 

hydrogen transfer leading to the nitronic acid structure III was also recently 

proposed for 2-nitrotoluene (Il’ichev and Wirz, 2000). Thus, it is possible that 

nitroaromatic compounds with even weaker hydrogen donors than the phenolic OH 

group in the ortho-position to the nitro group might form HONO during irradiation. 

This opens a field for further studies on photoinduced HONO formation from a wide 

variety of nitroaromatic hydrocarbons. 

4.3 Atmospheric implications 

In order to make a rough estimate of the homogeneous HONO formation 

rate upon photolysis of ortho-nitrophenols in the atmosphere, a concentration of 1 

ppbV for these compounds has been assumed, which is taken as being 

representative of urban conditions. Recently, gas phase mixing ratios of ~60 pptV 

of ortho-nitrophenol were measured at an urban site (Harrison et al., 2005). Since 

photolytic HONO formation is expected for all phenolic aromatic hydrocarbons with 

a nitro group in an ortho-position to the OH group, including higher molecular nitro-

PAHs, polynitro- and polyhydroxy-aromatics, a upper limit for the mixing ratio of 1 

ppbV is considered reasonable for the total collective concentration of all these 
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compounds present in the urban troposphere. In addition, as speculated above, 

other classes of nitroaromatics might also form HONO upon photolysis. 

Since a linear dependence of the HONO yield on the nitrophenol 

concentration was observed, the results obtained here have been extrapolated 

linearly to atmospheric concentrations. However, it should be borne in mind that 

the experiments were performed in the ppmV range and thus the extrapolation to 

atmospheric conditions needs to be verified by experiments using much lower 

concentrations of the nitrophenols. 

A linear dependence of the HONO yield on the light intensity (i.e., the 

number of lamps switched on) and on measured J(NO2) was observed for a spectral 

range of 300–500 nm (λmax = 370 nm) within the reactor. Because the wavelength 

dependency of the process was not studied, a direct extrapolation of the results to 

atmospheric conditions is uncertain. However, since (i) the nitrophenols studied 

absorb in the spectral range of the lamps used, (ii) the NO2 photolysis is most 

efficient at wavelengths <400 nm, and (iii) the lower spectral limit of the lamps is 

comparable to atmospheric conditions, the measured ratio J(3M2N → 

HONO)/J(NO2) was used to estimate the photolytic HONO formation under 

atmospheric conditions. Calculations using actinic flux spectra from the 

atmosphere indeed show that the ratio J(3M2N → HONO)/J(NO2) is similar to the 

photo-reactor conditions and virtually independent of time if a wavelength 

independent quantum yield φ(3M2N → HONO) is assumed (Bohn, 2005). 

Based on experimental data obtained for 3M2N and applying the 

assumptions described above, a photolytic HONO formation rate of 100 pptV h-1 is 

estimated for a maximum J(NO2) value of 10-2 s-1 in the presence of 1 ppbV of 

nitrophenols.  

Results obtained in recent field campaigns (Zhou et al., 2002; Kleffmann et 

al., 2003, 2005; Vogel et al., 2003) have suggested the presence of an additional 

photolytic HONO source. In two studies, (Kleffmann et al., 2005; Acker et al., 2006) 

the existence of a daytime source of HONO was unequivocally demonstrated 

based only on experimental observation. For semi-urban and rural conditions, 

daytime sources of HONO of 500 pptV h-1 and 400 pptV h-1 were calculated. Thus, 

the mechanism proposed in the present study might explain a significant fraction of 
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the observed HONO formation in the urban atmosphere, besides other postulated 

photolytic HONO sources (Zhou et al., 2001, 2002a, 2002b; George et al., 2005; 

Stemmler et al., 2005, 2006). However, this estimate needs to be verified using 

data from experiments performed under atmospheric conditions, and also 

investigations on the wavelength dependencies of the photolysis processes. 
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5. Secondary organic aerosol formation from the 
photolysis of nitrophenols 
Experiments on the SOA formation from the photooxidation of BTX in the 

EUPHORE chamber have indicated that the nitrophenols may play a key role in the 

aerosol formation observed in the oxidation systems (Martín-Reviejo and Wirtz, 

2005). In order to investigate this possibility the formation of secondary organic 

aerosol (SOA) from the photolysis of a series of nitrophenols has been investigated 

for the first time in this work. Results are presented here from observations of 

secondary organic aerosol formation during the irradiation of nitrophenols with 

actinic lamps in a large volume quartz glass chamber. Of 10 possible nitrophenol 

isomers, 4 have been investigated: 2-nitrophenol, 3-methyl-2-nitrophenol, 4-methyl-

2-nitrophenol and 4-nitrophenol. The experiments have mainly focused on the SOA 

formation from the photolysis of 2-nitrophenol. 

Since the photolysis is known to produce OH radicals, the influence of 

adding an OH scavenger on the SOA formation has been investigated as well as 

changes in the irradiation intensity. Qualitative information regarding the aerosol 

yield has been obtained using a gas/aerosol absorption model. Possible 

atmospheric implications of the observations are discussed.  
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5.1 Results 

The experiments on the photolysis of the nitrophenols were carried out in 

the quartz glass photoreactor described in Chapter 2. In addition to the 

experiments performed in order to investigate the formation of aerosols during the 

photolysis of nitrophenols, experiments were also performed to determine the 

effect of NOx and the presence of an OH radical scavenger on the aerosol 

formation.  

The nitrophenols were photolysed using the VIS lamps (emission in the 

range of 320 – 480 nm with the maximum intensity at 360 nm) as described in 

Chapter 2. 

Prior to the initiation of the photolysis by switching on the lamps, the reaction 

mixture, nitrophenol/air, was left to stand in the dark for 15 min; no particles were 

observed during this pre-irradiation period (see Figure 5.1). Test experiments were 

also performed with only synthetic air in the chamber. The air was irradiated for the 

same period of time as that used in the experiments with nitrophenol in the 

chamber. In these experiments formation of no more than 200 particles cm-3 was 

observed.  

A rapid formation of aerosols has been observed immediately after switching 

on the lamps for all of the nitrophenols investigated. The formation of very small 

particles with a mean diameter of 20-40 nm was observed for each compound in 

the first scan of the SMPS instrument, which has a time resolution of 5 min (an 

example for 2-nitrophenol is shown in Figure 5.1). Coagulation of the particles with 

increasing photolysis time resulted in a continuous increase of the mean particle 

diameter. 
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Figure 5.1 Secondary organic aerosol distribution observed during the photolysis 

of 2-nitrophenol without a scavenger for OH radicals. 
 

Concentration-time profiles showing the decrease in the reactant 

concentration and the increase in the aerosol mass is shown in Figure 5.2 for 2-

nitrophenol. As can be seen from Figure 5.2 conversion of only a very small 

amount of the nitrophenols is sufficient for aerosol formation. 

Figure 5.2, also shows the very fast rise in the particle number concentration 

as detected with the sensitive UCPC instrument. An aerosol formation burst in the 

reactor was detected in less than 1 min after initiation of the photolysis for all of the 

nitrophenols. Typically, only 10 - 15 ppbV of the nitrophenol had reacted before the 

aerosol appearance. The initial reactant concentrations were 0.4-1.2 ppmV. 

The concentrations of the reactants have been corrected for wall deposition. 

In Figure 5.1, a decrease in the aerosol formation is evident after termination of the 

photolysis. The dark decay has been used to calculate the deposition rate of the 

aerosol in the chamber. Physical processes such as electrostatic attraction to the 

chamber walls are also partially responsible for the particle losses. Corrections of 

10-15 % were applied to the aerosol mass.  
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Figure 5.2 Concentration-time profiles of 2-nitrophenol (♦), aerosol mass (●) and 
formation of particles (___) from one experiment. 

 
The aerosol mass formed during the photolysis time was obtained using the 

aerosol volume distribution and assuming unity density. The mass of aerosol 

formed during the photolysis was plotted against the amount of the nitrophenol 

reacted. The slopes give the formation yields of the aerosol formed. Examples are 

shown in Figure 5.3 for 2-nitrophenol and 2-nitro-p-cresol. 

Significant aerosol formation was observed for the four nitrophenols 

investigated. For 2-nitrophenol the aerosol formation yield in the absence of OH 

scavenger and NOx varied between 18% - 24%; slightly higher values were 

observed when the initial concentration was higher. The aerosol yields were also 

higher when all the lamps were used to initiate the photolysis; in experiments in 

which the number of lamps was reduced the aerosol yields were generally much 

lower. An overview of aerosol yields obtained for 2-nitrophenol and the associated 

experimental conditions is given in Table 5.1. 
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Figure 5.3 Examples of the aerosol mass yield as a function of reacted 2-
nitrophenol (●) and 2-nitro-p-cresol (■). 

 

Table 5.1 Overview of the results obtained from aerosol studies performed on 
the photolysis of 2-nitrophenol. 

 

experiment 
name 

2NP 
(ppmV) 

aerosol yield
(%) 

wall loss 
x10-5 

photolysis 
x10-5 conditions

100305 0.80 22.2 ± 1.15 7.3 ± 0.22 10.3 ± 0.49  

111002 0.49 21.3 ± 0.98 18.4 ± 1.53 9.3 ± 0.44  

061102 1.23 19.6 ± 2.64 9.8 ± 0.91 8.4 ± 0.60  

110305 1.12 6.9 ± 1.00 7.3 ± 0.45 5.8 ± 0.29 scav.* 

120305 0.66 2.9 ± 0.44 7.4 ± 2.60 7.0 ± 0.30 scav.* 

180305 1.14 7.5 ± 2.10 8.8 ± 0.72 4.6 ± 0.10 scav.* 

060705_1 0.70 ** 8.2 ± 0.43 7.3 ± 0.78 NOx 

060705_2 0.92 ** 9.0 ± 0.68 6.5 ± 0.24 NOx 

070705 0.61 ** 11.0 ± 1.44 9.7 ± 0.58 NOx 

*Experiments performed with the addition of isoprene as OH radical scavenger, 
** No aerosol yield calculation. 
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The reaction of nitrophenols with OH radicals is very slow (Bejan et al., 

2005b), whereas that of OH with isoprene is very fast (1 × 10-10 cm3 s-1 at 298 K; 

Atkinson, 2003). The amount of isoprene present in the experiments (0.5 - 4 ppmV) 

was sufficient to scavenge more than 97% of the OH radicals produced during the 

experiments. 

The aerosol yields measured in the absence of the scavenger were higher 

than those measured in the presence of isoprene (see Table 5.1) indicating an 

inhibitory effect of the OH scavenger on the aerosol formation. 

Figure 5.4 presents an example of a photolysis experiment with 2-

nitrophenol in which isoprene was used as the scavenger for OH radicals. The 

graph shows clearly that after the initial nucleation the particles grow in size during 

the photolysis period by uptake of condensable material from the gas phase.  After 

termination of the photolysis the particle size distribution changed due to a 

combination of further coagulation and deposition to the walls. This dark period 

was used to determine the aerosol deposition rate. 
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Figure 5.4 Time dependence of the aerosol size distribution measured during a 

typical photolysis experiment on 2-nitrophenol in which isoprene was 
used as a scavenger for the OH radicals formed in the system. 

 

By addition of NOx in the range 0.5–4 ppmV, the SOA formation in the 

photolysis of nitrophenols was almost totally suppressed. Nevertheless, the 

formation of a small number of particles could be detected with the UCPC. It was 

not possible to calculate an aerosol yield for the reaction systems in which NOx 

was present. The UCPC data showed a decrease in the number of particles in the 

presence of NOx. 

5.2 Discussion 

5.2.1 OH radical influence on aerosol formation 

 As presented in Chapter 4, the photolysis of nitrophenols is a source of 

HONO (Bejan et al., 2006). In order to suppress the reaction of OH radicals with 

nitrophenols in the systems studied, isoprene was used as an OH radical 

scavenger. Although SOA formation has been reported for the photooxidation of 
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isoprene (Claeys et al., 2004; Böge et al., 2006; Kroll et al., 2006; Surratt et al., 

2006) no aerosol formation was observed from isoprene at the concentration levels 

and on the experimental timescales used in the present studies.  

The effect of radical scavengers on the aerosol formation in studies on the 

ozonolysis of alkenes has been reported previously in the literature. The studies of 

Docherty and Ziemann (2003), Ziemann (2003) and Keywood et al. (2004) have 

clearly demonstrated that the radicals produced from the reactions of the OH 

(produced in the ozonolysis of alkene) with the scavenger have an effect on the 

SOA yield. The extent and direction of the effect have also been shown to be 

dependent on the specific alkene (Keywood et al., 2004). Keywood et al. (2004) 

present evidence in their paper that acylperoxy radicals formed in the system play 

a central role. 

5.2.2 NOx influence on aerosol formation 

 

In the photolysis of nitrophenols under high NOx conditions it would appear 

that the formation of aerosol producing oxidation products is strongly inhibited. It is 

now well established from theoretical and experimental studies that the 

concentration of NOx present in an aromatic hydrocarbon photooxidation system 

can modify the degradation chemistry of the aromatic hydrocarbons (Volkamer et 

al., 2002; Berndt and Böge, 2006) and consequently also the aerosol formation 

(Hurley et al., 2001; Martin-Reviejo and Wirtz, 2005; Song et al., 2005). 

From the present experimental work it was not possible to show whether the 

average levels of NOx in the ambient atmosphere (typically between 10 to 50 ppb 

in urban areas) will be effective in suppressing the aerosol formation. In order to do 

this it will be necessary to use a technique capable of measuring low 

concentrations of NOx. However, results from the photolysis experiments of Bardini 

(2006) on nitrophenols in the EUPHORE photoreactor, in which low levels of NOx 

were present, suggest that under moderately polluted conditions the formation of 

aerosol from the photolysis of nitrophenols will probably still be quite substantial. 

Unfortunately in the present work it has also not been possible to ascertain 

the identity of the product(s) inhibiting the aerosol in the photolysis of nitrophenols 
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at high NOx. It can only be speculated that reaction of the postulated aromatic 

biradical intermediate (see Figure 5.6 below) with NOx is forming some 

photochemically inactive aromatic nitro compound(s) with a reasonably high vapour 

pressure. It is evident that more experimental work is required in order to better 

assess the effects of the NOx concentration on SOA formation from the photolysis 

of nitrophenols. 

5.2.3 Expression for SOA yield 

Qualitative information regarding the aerosol yield can be obtained using a 

gas/aerosol absorption model (see Appendix IV). The fractional aerosol yield (Y), 

as defined by Odum et al. (1996), is the fraction of a reactive organic gas (ROG) 

converted to aerosol, and is given by the expression: 

Y = ∆M0/∆ROG    5.1 

where ∆M0 is the aerosol mass concentration produced for a given amount of 

nitrophenol photolyzed, ∆ROG.  

 As proposed by Odum et al. (1996) the semi-volatile compounds produced 

in the photolysis of nitrophenols can partition between the gas and aerosol phases, 

which can be represented by the expression  

∑ +
=

i i

ii

Mk
kMY

0
0 1

α

    5.2 

which includes the total aerosol yield in terms of the individual product 

stoechiometric coefficients αi, the partition coefficients Ki and the total aerosol mass 

M0. 

 Figure 5.5 shows plots of the aerosol mass yield plotted as a function of the 

aerosol mass concentration, for two experiments involving the photolysis of 2-

nitrophenol and 2-nitro-p-cresol. The gas-phase partitioning could be fitted 

assuming the presence of only one compound in both phases. As expected from 

the model the mass yield approaches a limiting value if the total mass rises 

infinitely. 

 



Secondary organic aerosol formation...                                                       Chapter 5 
___________________________________________________________________________________________________ 

 86

Particle mass M0 [µg/m3], uncorrected
0 20 40 60 80

SO
A

 m
as

s 
yi

el
d

0.00

0.05

0.10

0.15

0.20

0.25

fit for number of compounds i = 1 

(▪) 
(●) 

 α2NC = 0.225; k2NC = 0.096 
α2NP = 0.208; k2NP = 0.100 

 

Figure 5.5 Application of a partitioning model for estimation of the aerosol yield 
from the photolysis of 2-nitrophenol and 2-nitro-p-cresol 

 

The α coefficient obtained using Odum’s model, is almost equal to the 

aerosol yield (Figure 5.5). This suggests that the product(s) formed in the 

photolysis process is (are) very non-volatile, and that partitioning to the particle 

phase is favoured.  

5.2.4 Potential explanation of SOA formation in the photolysis of 
nitrophenols 

Unfortunately due to the low conversion of the nitrophenol compounds 

detection of photolysis products using FT-IR spectrometer was not possible under 

any of the experimental conditions. A possible mechanism to explain the aerosol 

formation is suggested in Figure 5.6.  
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Figure 5.6 A possible mechanism to explain the aerosol formation observed in 
the photolysis of nitrophenols. 

 

In this study, as discussed in Chapter 4, the instantaneous formation of 

HONO has been observed during the gas phase photolysis of nitrophenols. Based 

on the mechanism proposed in Chapter 4, the formation of particles from the 

photolysis of nitrophenols can be expected. The proposed biradical resulting from 

the generation of HONO, will most probably undergo further reactions such as 

reaction with O2 and isomerisation, leading to the formation of acids as presented 

in Figure 5.7 (Alif et al., 1991), or reactions with the parent nitrophenol, probably 

generating higher molecular species with vapour pressures low enough to 

generate particles.  

 

Aerosol 
precursors
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Figure 5.7 Mechanism proposed by Alif et al. (1991) to explain the carboxylic 
acid formation observed in the photolysis of nitrophenols in aqueous 
solution. 

 

In an attempt to gain more information on the mechanism of aerosol 

formation during the photolysis of nitroaromatic compounds, the photolysis of 2-

nitrotoluene was investigated under similar conditions to test for mechanistic 

similarities. Aerosol formation was also observed from the photolysis of 2-

nitrotoluene without NOx addition. In addition, Bejan et al. (2007) have 

demonstrated that the photolysis of 2-nitrotoluene also produces HONO. These 

observations suggest that for 2-nitrotoluene a photolysis and SOA formation 

mechanism similar to that of 2-nitrophenol is probably operative, i.e. the possible 

formation of a biradical via a nitronic acid intermediate. 

A significant finding of this work was that photolysis of nitrophenols 

produces high yields of secondary organic aerosols. Detailed product studies will 

be necessary in order to explain the observed formation of particles during the 

photolysis of both the nitrophenols and 2-nitrotoluene. Because of the very low 

mass conversion other much more sensitive techniques will need to be used for 

product identification and quantification. This information would help to elucidate 
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the intermediates responsible for aerosol formation as well as to validate the 

proposed mechanism for the photolysis of these compounds. 
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6. Summary 

 The overall objective of this work was to obtain a better understanding of the 

gas phase chemistry of aromatics. The purpose was to provide an evaluation of the 

atmospheric fate of the following aromatic compounds, which are important 

products in the oxidation of BTX: 1,2-dihydroxybenzene, 3-methyl-1,2-

dihydroxybenzene, 4-methyl-1,2-dihydroxybenzene, 2-nitrophenol, 3-methyl-2-

nitrophenol, 4-methyl-2-nitrophenol, 5-methyl-2-nitrophenol, 6-methyl-2-

nitrophenol. 

 The data obtained within the present work can be used to improve the 

knowledge on the atmospheric degradation of aromatic hydrocarbons. The rate 

coefficients of the OH and NO3 radical initiated oxidation of some nitro/hydroxy 

substituted monoaromatic hydrocarbons improve the kinetic data base required to 

model the degradation mechanisms of aromatic compounds and to develop 

structure reactivity relationships for OH and NO3 radical with VOCs. The 

mechanistic investigations on the photolysis of nitrophenols and formation of 

HONO as a new gas phase source and secondary organic aerosol investigation 

from the photolysis of nitrophenols improve our present understanding of the 
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reactions that are operative in the atmospheric oxidation of the aromatic 

hydrocarbons. 

The results of this work can be divided in three major parts: (1) kinetic data 

for the gas-phase reactions of NO3 and OH radicals with some nitro/hydroxy 

substituted monoaromatic hydrocarbons, (2) mechanistic information on the 

photolysis of nitrophenols as a new atmospheric gas phase source of HONO, (3) 

information on secondary organic aerosol formation from the photolysis of 

nitrophenols. 

 1) Relative rate coefficients have been measured for the reactions of NO3 

radicals with 1,2-dihydroxybenzene, 3-methyl-1,2-dihydroxybenzene and 4-methyl-

1,2-dihydroxybenzene. The kinetic data on the reactions of NO3 with selected 

catechols were obtained from investigations performed in two chambers: the 1080 l 

quartz glass reactor in Wuppertal and in the EUPHORE chambers in Valencia. The 

following rate coefficients (in units of cm3 s-1) were obtained: (9.8 ± 5.0) × 10−11 for 

1,2- dihydroxybenzene, (17.2 ± 5.6) × 10−11 for 1,2-dihydroxy-3-methylbenzene and 

(14.7 ± 6.5) × 10−11 for 1,2-dihydroxy-4-methylbenzene. The reactivity of the 1,2-

dihydroxybenzenes takes the following order: kNO3 (1,2- dihydroxybenzene) < 

kNO3(1,2-dihydroxy-4-methylbenzene) < kNO3(1,2-dihydroxy-3-methylbenzene). The 

experiments were performed at low and high NO2 in both chambers; the kinetic 

behavior was independent of the [N2O5]/[NO2] ratio supporting that the reactions of 

the 1,2-dihydroxybenzenes takes place only with NO3 radicals and not with N2O5 or 

with NO2. The reactions of 1,2-dihydroxybenzenes with NO3 has been found to be 

a potentially important daytime oxidation processes for these compounds. It has 

been estimated that 1,2-dihydroxybenzene will react during the daytime about 60% 

with OH and about 40% with NO3 radicals.  

 This work has provided rate coefficients for the gas phase reactions of the 

OH radical with 3-methyl-2-nitrophenol, 4-methyl-2-nitrophenol, 5-methyl-2-

nitrophenol, 6-methyl-2-nitrophenol. The following rate coefficients (in units of cm3 

s-1) were determined: (3.69±0.16) × 10−12 for 3-methyl-2-nitrophenol, (3.46±0.18) × 

10−12 for 4-methyl-2-nitrophenol, (7.34±0.52) × 10−12 for 5-methyl-2-nitrophenol and 

(2.70±0.17) × 10−12 for 6-methyl-2-nitrophenol. Photolysis rates for the nitrocresols 

have been determined in the Wuppertal quartz glass reaction chamber from which 
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estimates of the photolysis rates of the compounds under atmospheric conditions 

have been made. The following photolysis rates (in units of s-1) were determined 

for the four i-methyl-2-nitrophenols (i = 3, 4, 5, 6) investigated: (1.67±0.11) × 10−4 

for 3-methyl-2-nitrophenol, (8.86±1.07) × 10−5 for 4-methyl-2-nitrophenol, 

(1.07±0.14) × 10−4 for 5-methyl-2-nitrophenol and (7.81±1.11) × 10−5 for 6-methyl-

2-nitrophenol. The steady-state OH radical concentrations measured during the 

photolysis of the nitrophenols were 2 – 3 × 105 cm-3. The magnitude of the 

photolysis rates for the methylated nitrophenols under atmospheric conditions can 

be roughly estimated from the experiments. 

These studies represent the first determinations of the rate coefficients for 

the gas-phase reactions of NO3 and OH radicals with some nitro/hydroxy 

substituted monoaromatic hydrocarbons. The data is an important addition to the 

kinetic database on VOCs, which is used to develop structure-reactivity 

relationships for predicting rate coefficients for the reactions of NO3 and OH 

radicals with VOCs and also the tropospheric lifetime of VOCs. 

2) The photolysis of nitrophenols was found to be a gas phase source of 

HONO. To date, no observations of nitrous acid formation from the gas phase 

photolysis of nitrophenols have been reported in the literature. 

A linear correlation between the HONO and nitrophenol concentration was 

observed in separate experiments for all of the nitrophenols investigated.  

When two flow tube photoreactors with significantly different surface to 

volume ratios (S/V) were used, the HONO concentration in the effluent differed 

significantly between the reactors. The HONO formation was found to be 

independent of the S/V ratio of the reactors. 

The possible effect of NO2 formation has been considered. During the 

photolysis of pure nitrophenol–bath gas mixtures no NO2 formation was observed. 

From a consideration of an upper limit for NO2 formation, the contribution to HONO 

formation from mechanisms involving NO2 have been estimated to be negligible. 

The influence of light intensity on the HONO formation rate during the 

photolysis of 3M2N was also studied in the large flow tube photoreactor by varying 
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the number of lamps. A linear correlation between the HONO formation and the 

number of lamps switched on was observed. 

The influence of the buffer gas on the HONO formation rate was also 

investigated for the photolysis of 3M2N. The nature of the buffer gas had a 

significant impact on the HONO formation. 

Based on the HONO formation yields, a l photolysis mechanism has been 

proposed. 

Since a linear dependence of the HONO yield on the nitrophenol 

concentration was observed, the results obtained here have been extrapolated 

linearly to atmospheric concentrations. Based on the experimental data obtained 

for 3M2N and applying the assumptions described in Chapter 4, a photolytic HONO 

formation rate in the atmosphere of 100 pptV h-1 is estimated for a maximum J(NO2) 

value of 10-2 s-1 in the presence of 1 ppbV of nitrophenols.  

 3) The formation of secondary organic aerosol (SOA) from the photolysis of 

a series of nitrophenols was investigated for the first time. The effect of NOx and 

the presence of an OH radical scavenger on the aerosol formation were also 

investigated. Significant aerosol formation was observed for the 4 nitrophenols 

investigated.  

For 2-nitrophenol the aerosol formation yield in the absence of an OH 

radical scavenger and NOx varied between 18 - 24%, with slightly higher values 

being observed, when the initial nitrophenol concentration was higher. The aerosol 

yields measured in the absence of the scavenger were higher than those 

measured in the presence of isoprene indicating an inhibitory effect of the isoprene 

on the aerosol formation. In the photolysis of nitrophenols under high NOx 

conditions it would appear that the formation of aerosol producing oxidation 

products is strongly inhibited. 

Qualitative information regarding the aerosol yield has been obtained using 

a gas/aerosol absorption model. The gas-phase partitioning could be fitted 

assuming the presence of only one compound in both phases. A possible 

mechanism to explain the aerosol formation observed in the photolysis of 

nitrophenols is proposed. 
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Appendix I 

Synthesis 
 

I. 1. Synthesis of methyl nitrite (CH3ONO) 
 
 Methyl nitrite has been prepared following the method of Taylor et al. (1980) 

with some small changes. Methyl nitrite was generated by the reaction of sodium 

nitrite (NaNO2) with methanol (CH3OH) in acidic medium (H2SO4+H2O).  

Quantities: 

69 g (1 mol) of NaNO2  

solution of 26.8 ml H2SO4 (conc.) + 49 ml H2O 

solution of 48.7 ml CH3OH + 38.5 ml H2O 

NaNO2 and the CH3OH solution in H2O were mixed with a stirrer in a 2-liter 

three-neck flask. The flask is equipped with a dropping funnel in order to add the 

H2SO4/H2O solution. Because this exothermic reaction is very fast the addition has 

to be slow and the flask must be cooled in an ice bath (273 K). The acid solution is 

added over a period of 2-3 hours. The gaseous methyl nitrite produced in the 

reaction was passed over an anhydrous calcium chloride (CaCl2) bed to remove 

water and is then collected in a glass cylinder cold trap at the temperature of dry 

ice. The pale yellow liquid methyl nitrite was stored in the dark at 195 K to prevent 

thermal decomposition. 

The FT-IR spectrum of freshly prepared methyl nitrite did not contain any 

traces of methanol. However, if methyl nitrite is left for a long period in the glass 

cylinder it has been observed that traces of methyl nitrate (CH3ONO2) can be 

formed. 
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I. 2. Synthesis of nitrogen pentoxide (N2O5) 
 

N2O5 has been synthesized using a method proposed by Schott and 

Davidson (1958) without substantial changes. 

 

2NO2   +   O3                   N2O5   +   O2    I.2-1 

 

Oxygen and NO2 were taken gas cylinders and dried in a flow over P4O10. 

The driers contain glass balls in order to increase the contact surface of P4O10. The 

pre-dried oxygen is fed to an ozonizator where an oxygen-ozone mixture is formed. 

The oxygen-ozone is then mixed with the dried NO2. The new mixture of all the 

gases is then directed through a glass impinger which contains a frite for better 

mixing. N2O5 synthesized in this reaction is collected and frozen in a cooling trap at 

–78°C in the form of colourless crystals. In order to prevent the possible formation 

and collection of N2O4 to the gas flows have to be carefully adjusted such that no 

yellow colour appears in the glass impinger. N2O5 was stored at –78°C.  

N2O5 was added to the chamber using a nitrogen flow. The concentration of 

N2O5 added to the chamber can be controled by adjusting the storage temperature. 

 

I. 3. Synthesis of nitrous acid (HONO) 

Nitrous acid (HONO) has been prepared using the method described by 

Kleffmann (2004). 

In a 100 ml three-neck flask, connected with a dropping funnel system and a 

thermometer, is placed 30 ml of a 25-30% sulphuric acid solution. 20 ml of a 1% 

NaNO2 solution was added dropwise to the stirred H2SO4 solution over 30-50 

minutes. The gaseous HONO formed was added to the chamber in a flow of 

nitrogen, which was passed through the flask. Together with HONO formed in 

reaction I.3-1, in the gas stream also contains NO, NO2 and H2O formed in 

reactions I.3-2 and I.3-3. 
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2NaNO2   +   H2SO4               2HONO+Na2SO4   I.3-1 

 

 In the presence of water HONO is unstable and decomposes when heated 

or concentrated. At room temperature HONO also slowly decomposes (Finlayson-

Pitts and Pitts, 2000). 

 

  2HONO                    NO   +   NO2   +   H2O   I.3-2 

 

 Kleffmann et al. (1994, 1998) observed also the formation of N2O during the 

decay of HONO, which they explained by a reaction on the wall surface. They 

suggested that the overall reaction can be represented by I.3-3: 

 

  4HONO                     N2O   +   2HNO3   +   H2O   I.3-3 
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Appendix II 

Gas phase muconic acid infrared spectra 
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 Qualitative reference spectra of cis,cis-muconic acid (A) and trans,trans-

muconic acid (B). Difficulties were encountered in recording the spectra due to the 

extremely low vapor pressure and extremely high melting point of the compounds. 

A 

B 
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Appendix III 

Origin and purity of the gases and chemicals used 
 

III.1 Gases 
compound origin purity 

synthetic air 
20.5/79.5 = O2/N2 % 

Messer-Griesheim 
Air Liquid 

hydrocarbons free 
99.999% 

O2 Messer-Griesheim 99.999%
N2 Messer-Griesheim 99.999%
N2 Messer-Griesheim 99.9999% 
Ar Messer-Griesheim 99.999%
He Messer-Griesheim 99.999%
NO Messer-Griesheim 99.5%
NO2 Messer-Griesheim 98%
SF6 Messer-Griesheim 99.99%
ethene Messer-Griesheim 99.95 
n-butane Messer-Griesheim 99% 
 

III.2 Chemicals 
compound state origin purity 

1,2-dihydroxybenzene solid Aldrich 99%
1,2-dihydroxy-3-methylbenzene solid Aldrich 99% 
1,2-dihydroxy-4-methylbenzene solid Aldrich 98% 

2-nitrophenol solid Aldrich 98% 
4-nitrophenol solid Sigma 99% 

6-methyl-2-nitrophenol* solid synthesized 98% 
3-methyl-2-nitrophenol solid Fluka/Aldrich 98/99% 
5-methyl-2-nitrophenol solid Aldrich 97% 
4-methyl-2-nitrophenol solid Aldrich 99% 

2-nitrotoluene liquid Aldrich 99% 
2,3-dimethyl-2-butene liquid Aldrich 99% 

isoprene liquid Aldrich 99% 
CH2Cl2 liquid Aldrich 99.9% 

* the compound was synthesized by Olariu (2001) 
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Appendix IV 

Gas/Particle partitioning and secondary organic 
aerosol yield 
 

Like ozone, SOA results from the atmospheric oxidation of reactive organic 

gases (ROGs), but whereas the oxidation of most ROGs results in ozone formation 

(Derwent et al., 1996), SOA is generally formed only from the oxidation of ROGs 

comprised of six or more carbon atoms. This is because oxidation products must 

have high molecular weight and/or vapour pressures that are sufficiently low to 

enable them to partition into the aerosol phase (Odum et al., 1996, 1997). 

Efforts to represent SOA formation have primarily been based on using 

experimentally determined fractional aerosol yields (Seinfeld and Pandis, 1998). 

 The equilibrium gas/particle partitioning of a semivolatile organic species i 

between the gas phase and a particulate organic phase can be described by the 

vapour pressure relation (Pankow et al., 1994): 

 

IV.1   

 

where pi is the gas-phase partial pressure of species i, xi is the mole fraction of 

species i in the organic aerosol phase, γi is the activity coefficient of species i in the 

aerosol-phase organic mixture, and pi
0 is the vapour pressure of species i as a 

pure liquid. The activity coefficient γi describes the non-ideal interaction between 

dissolved species i and the other components of the solution. A value of γi above 1, 

means that the compound i is not easily miscible with the absorbing aerosol, and 

the non-ideal interactions favour that it remains in the gas phase. 

 Using pi the concentration of the gas-phase Gi (µg m-3) can be calculated 

with the ideal gas relation: 

 

IV.2   

 

where: MWi (µg m-3) is the molecular weight of species i, R (8.206 × 10-5 m3 atm 

mol-1 K-1) is the ideal gas constant, T (K) is the temperature. 

RT
MWp

G ii
i
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=
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 The total aerosol mass concentration M0 is a sum of the aerosol-phase 

mass concentration of species i (µg m-3): 

 

IV.3   

 

 The mean molecular weight is the sum of all the fractions: 

 

IV.4   

 

 Using IV.3, IV.2 and IV.1 leads to equation IV.5: 

 

IV.5   

 

where Ki is the equilibrium gas/particle partitioning coefficient of species i defined 

as the ratio of the aerosol to gas-phase mass concentration of species i, including 

the total mass of the organic particulate phase. Ki has the units (m3 µg-1), Ai is the 

concentration of compound i in the absorbing organic material phase, MW is the 

mean molecular weight of the absorbing organic material, γi is the activity 

coefficient of species i in the aerosol-phase organic mixture γi = γi(x1, x2, ...,xn; T) 

and pi
0 = pi

0(T). 

 The fractional aerosol yield (Y) has been widely used to represent the SOA 

formation potential of ambient organics. Y is defined as the fraction of a reactive 

hydrocarbon compound (HC) that is converted to aerosol and is expressed by the 

first part of equation IV.6. 

The aerosol yield calculated by Odum´s equation is an overall secondary 

organic aerosol yield from the beginning of an experiment to a certain level of 

accumulated organic mass concentration in particles and is expressed by the 

second part of equation IV.6. 

 

IV.6   

 

In equation IV.6 αi is the stoichiometric coefficient. Stoichiometric 

coefficients depend on the gas-phase chemical mechanism and represent the total 
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amount of semivolatile product formed, in both gas and aerosol phases, per 

amount of parent organic compound reacted.  

 In the limit of large organic aerosol mass concentration or low volatility of the 

products the total yield of SOA is independent of M0 being the sum of the mass 

based stoichiometric coefficients of the products. 
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Appendix V 

Gas-phase infrared absorption cross section 
 

 

Table V.1 FT-IR absorption cross sections of dihydroxybenzene compounds 
(Olariu, 2001) 

 
absolute cross section integrated cross section 

compound wavenumber 
(cm–1) 

× 10–20 
(cm2molecule–1)

range 
(cm–1) 

× 10–18 
(cm molecule –1)

1619 (13.5 ± 0.24) 1653-1590 (3.56 ± 0.60) 
1517 (35.8 ± 0.90) 1537-1495 (8.50 ± 0.21) 
1325 (13.6 ± 0.31) 1340-1306 (2.02 ± 0.40) 

1,2-
dihydroxybenzene

1092 (20.8 ± 0.70) 1112-1072 (3.45 ± 0.11) 
3671 (20.2 ± 0.80) 3689-3648 (3.90 ± 0.15) 
3608 (25.9 ± 1.52) 3629-3583 (6.04 ± 0.35) 
1488 (20.6 ± 0.95) 1545-1467 (8.66 ± 0.40) 
1359 (7.83 ± 0.40) 1377-1343 (1.56 ± 0.10) 
1188 (20.6 ± 1.14) 1207-1136 (9.35 ± 0.52) 

1,2-dihydroxy- 
3-methylbenzene 

759 (20.2 ± 0.80) 785-742 (2.93 ± 0.12) 
3666 (11.3 ± 0.67) 3689-3648 (2.51 ± 0.15) 
3608 (18.9 ± 0.13) 3629-3583 (3.87 ± 027) 
1527 (22.2 ± 1.32) 1545-1467 (5.31 ± 0.22) 
1315 (5.41 ± 0.42) 1343-1377 (0.96 ± 0.75) 
1200 (4.85 ± 0.21) 1207-1185 (0.66 ± 0.52) 
1168 (12.3 ± 1.01) 1182-1153 (2.17 ± 0.18) 
1110 (14.5 ± 0.93) 1123-1090 (2.57 ± 0.10) 

1,2-dihydroxy- 
4-methylbenzene 

790 (8.52 ± 0.52) 828-764 (2.80 ± 0.17) 
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Table V.2 FT-IR absorption cross sections of nitrophenol compounds 

 
absolute cross section integrated cross section 

compound wavenumber 
(cm-1) (cm2 molecule-1) region 

(cm-1) (cm molecule –1) 

1627 (3.10±0.34) ×·10-19 1654-1610 (7.47±0.84) × 10-18

2-nitrophenol 
1343 (4.21±0.47) ×·10-19 1367-1305 (1.25±0.14) × 10-17

1609 (4.46±0.38) × 10-19 1643-1580 (1.03±0.08) × 10-17
3-methyl-2-
nitrophenol 1351 (2.23±0.20) × 10-19 1373-1308 (8.16±0.74) × 10-18

1634 (3.58±0.13) × 10-19 1652-1617 (7.49±0.24) × 10-18

1603 (3.46±0.12) × 10-19 1615-1579 (7.22±0.22) × 10-18

1335 (4.35±0.13) × 10-19 1362-1315 (1.17±0.33) × 10-17

5-methyl-2-
nitrophenol 

1203 (2.48±0.07) × 10-19 1221-1184 (5.43±0.20) × 10-18

1639 (1.51±0.05) × 10-19 1668-1623 (3.52±0.09) × 10-18

1335 (3.78±0.16) × 10-19 1364-1307 (1.32±0.07) × 10-174-methyl-2-
nitrophenol 

1191 (2.75±0.02) × 10-19 1209-1165 (5.65±0.32) × 10-18
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Appendix VI 

Abbreviations 
 

 

2NP  2-nitrophenol 

3M2N  3-methyl-2-nitrophenol 

3M4N  3-methyl-4-nitrophenol 

4M2N  4-methyl-2-nitrophenol 

5M2N  5-methyl-2-nitrophenol 

6M2N  6-methyl-2-nitrophenol 

BTX  Benzene, Toluene, Xylenes 

CPC  Condensation Particle Counter 

DFT  Density Functional Theory 

DMA  Differential Mobility Analyzer 

DOAS  Differential Optical Absorption Spectroscopy 

EUPHORE EUropean PHOto-REactor 

FEP  fluorine-ethene-propene 

FT-IR  Fourier Transform Infrared 

GC-FID Gas Chromatography - Flame Ionization Detector 

GC-ECD Gas Chromatography - Electron Capture Detector 

GC-PID Gas Chromatography - PhotoIonization Detector 

GC-MS Gas Chromatography - Mass Spectrometry 

HC  Hydrocarbon compound 

HONO Nitrous acid 

HPLC  High Performance Liquid Chromatography 

LOPAP LOng Path Absorption Photometer 

MCT  mercury-cadmium- tellurium 

NC  Nitrocresols 

NMOCs Non-Methane Organic Compounds 

NOx  (NO + NO2) 

PAHs  Polycyclic Aromatic Hydrocarbons 
PM  Particulate Matter 
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ppmV  parts per million (1 ppmV = 2.46 x 1013 cm-3 at 1 atm and 298 K) 

ppbV  parts per billion (1 ppbV = 2.46 x 1010 cm-3 at 1 atm and 298 K) 

pptV  parts per trillion (1 pptV = 2.46 x 107 cm-3 at 1 atm and 298 K) 

PTR-MS Proton Transfer Reaction Mass Spectrometry 

SAR  Structure-Activity Relationship 

SMPS  Scanning Mobility Particle Sizer 

SOA  Secondary Organic Aerosol 

S/V  Surface/Volume ratio 
TDL  Tuneable Diode Laser 

UV/VIS UltraViolet/VISible 

VOC  Volatile Organic Compound 
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